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A further tribute to those who showed us
how enjoyable mathematics can be,
especially as one penetrates deeper.



Preface

Focusing YourAttention

We have called this book Mathematical Vistas because we have already
published a companion book Mathematical Refiections in the same series;1

indeed, the two books are dedicated to the same principal purpose - to
stimulate the interest ofbright people in mathematics. It is not our intention
in writing this book to make the earlier book aprerequisite, but it is,
of course, natural that this book should contain several references to its
predecessor. This is especially - but not uniquely - true of Chapters 3, 4,
and 6, which may be regarded as advanced versions of the corresponding
chapters in Mathematical Reflections.

Like its predecessor, the present work consists of nine chapters, each
devoted to a lively mathematical topic, and each capable, in principle, of
being read independently of the other chapters.' Thus this is not a text
which - as is the intention of most standard treatments of mathematical
topics - builds systematically on certain common themes as one proceeds

1Mathematical Reflections - In a Room with Many Mirrors, Springer Undergraduate Texts in Math
ematics, 1996; Second Printing 1998. We will refer to this simply as MR.

2There was an exception in MR; Chapter 9 was concerned with our thoughts on the doing and teaching
of mathematics at the undergraduate level.

vii
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systematically through the book from Chapter 1 to Chapter 9. Any chapter
that takes the reader's fancy may be studied at any time; and one is as likely
to find in Chapter 4 a key reference to Chapter 8 as the other way round.'

Since the chapters are quite distinct from each other - though interre
lated as the parts of mathematics inevitably are - each carries its own list
of references." We believe it will thus be clear to the reader why there is
not simply a common list of references at the end of our text, but there is
a common index.

We have chosen the topics treated with several considerations in mind.
We have, as we have said, always hoped to intrigue and inform the bright
and curious reader; but we do not believe that all topics should be treated
at the same depth and with the same thoroughness. At one end of the
spectrum we have the content of Chapters 3, 4, and 6, where students may be
expected to have the necessary background for a complete understanding,"
and where the proofs themselves constitute, in our judgment, an essential
part of the appeal of the topics treated. At the other end of the spectrum
we have Chapter 2, on Fermat's Last Theorem. The amazing triumph of
Andrew Wiles in proving a famous result conjectured over 300 years aga
is now - and forever will remain - a notable event in the history of the
mathematical sciences. A book designed to highlight the attractions of
mathematics should obviously tell the reader about this event, but it would
be quite unrealistic to expect our readers to have the necessary technical
background to be able to follow every step of the subtle argument used
by Wiles and his colleagues. So we have discussed the history of FLT6 in
some detail, and sketched the arguments used in its proof.

Another consequence of the fact that the material of this book is not
sequential, but rather consists of nine related mathematical essays, is that
figures are sometimes repeated. We have preferred to repeat a figure rather
than oblige our readers to study a figure that may be in apart of the book
far from the pages currently being read.

We have thought of Chapters land 2 as appetizers, though of a very
different kind. Chapter I (Paradoxes) is quite self-contained and quite
elementary; but it does serve to show that it is not sufficient to learn math
ematics - one must also think about it. Unfortunately, many students of

3Actually - and exceptionally - we da recommend that Chapter 4 be read before Chapter 8, because
Chapter 4 provides so much of the raw material for the examples used in Chapter 8.

4We include, in some cases, references to the web, which most of you will readily recognize from the
format.

5Such a background is provided by a reading of Chapters 3, 4, 6, respectively, of MR.

6As Fermat's Last Theorem is abbreviated by all mathematicians.
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mathematics today seem to believe it suffices just to commit mathematical
techniques and arguments to memory, and regard it as almost a breach of
contract if they are asked actually to reason mathematicaIly. So Chapter 1
is included to help the reader to appreciate the proper roIe of thinking in
doing mathematics, at any level.

Chapter 2 (FLT) is in our book to show how remarkable and rewarding
mathematics is; but, of course, as we have said, it does not claim to be a
complete treatment of its subject matter. The remaining chapters, however,
are comprehensive in that they give clear? indications of all relevant argu
ments. Where we believe that the arguments or concepts are really difficult
to grasp we have starred the material, that is, we have drawn a wavy line
in the Ieft-hand margin, with its initial and terminal points marked by a
star. Sometimes an entire section has been starred. Starred material may,
of course, be omitted on first reading if preferred.

Let us now describe some special features of our text. We have included
a number of BREAKS in each chapter. These breaks consist of problems
designed to enable our readers to test their understanding of the material
thus far in the chapter. Answers to some of the problems appear at the end
of the book. A complete set of answers to the problems in the breaks is
available on request from Jean Pedersen, Department of Mathematics and
Computer Science, Santa Clara University, Santa Clara, CA 95053.

Items in each chapter are numbered consecutively through the chapter.
If an item in one chapter is referred to in another, then the chapter number is
also given in the reference. We believe that the only conceivable confusion
the reader may find in our numbering system is that n may refer either to
formula (n) in the chapter or to the nth question of a given break. However,
we have tried to ensure that the context always makes clear to which we
are referring.

We adopt the standard abbreviations RHS and LHS for the right-hand
side and left-hand side, respectively, of an equation, and the standard
tombstone symbol 0 to mark the end of a proof.

In connection with reading proofs, we advise the reader to foIlow, where
appropriate, one of our guidelines (in Chapter 9 of MR), and to look at a
particular but not special case; that is, to replace one of the parameters
appearing in the argument by a particular, but not special, numerical value.
By substituting a particular value the reader may weIl make the argument
easier to understand; by avoiding a special value, the reader does not risk
failing to recognize the true nature of the argument.

7We hope!
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The authors wish to thank Dr. Ina Lindemann very warmly for her
encouragement and very valuable cooperation during the production of
our manuscript, and to express to the referee their gratitude for his very
helpful and expert comments on an earlier version of Chapter 2, which
enabled us to improve our presentation substantiaIly. The authors also wish
to extend their grateful thanks to Kent Pedersen and Roberta TeIles for the
essential help they provided in assembling the Index. Further, we have
benefited greatly from the collaboration of Hans Walser in the preparation
of Chapter 6, and from consultation with Robert Bekes, John Holdsworth,
Peter Ross, and Richard Scott.
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Paradoxes in
Mathematics

CHAPTER

1.1 INTRODUCTION: DON'T BELIEVE
EVERYTHING YOU SEE AND HEAR

A good dictionary will give two (or perhaps more) distinct meanings of
the word "paradox." The first meaning is "a self-contradictory statement";
thus the celebrated classical paradox due to Bertrand Russell (1872-1970),
based on a naive set theory which permits the proposition x EX. Apopular,
but not very accurate, form of this paradox is contained in the following
little story:

In the little village of Humblemeir there is a male barber. Now this barber
shaves only those men who don't shave themselves. When you think about
it, this leads to a paradox. Who shaves the barber? If he shaves himself, he
doesn't, because he only shaves those who don't shave themselves. On the
other hand, if he doesn't shave himself, he does, because he only shaves
those who don't shave themselves.

So we apparently have a paradox. But, if you think deeper about it,
you see that the statement"... the barber shaves only those... " allows the
possibility that the barber never has a shave, since it does not claim that
the barber shaves everybody who doesn't shave himself. 1

I For those who are comfortable with set theory, here is the formally accurate form of the paradox.
The paradox goes as follows. Let s be the set of all x such that x rt x. We conclude that

1
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We cannot tolerate such paradoxes as the Russell paradox in mathemat
ics (though a celebrated theorem of Gödel tells us we cannot guarantee that
our mathematical system is free of them); if we do meet such a paradox
we must modify our logical axioms to eliminate it.

However, we are concemed in this chapter with a different use of the
term "paradox"; this refers to an assertion that is an affront to conventional
or accepted thinking. Thus the famous writer Bemard Shaw, defending the
introduction of aNational Health Service in Great Britain after the Second
World War, wrote, "My main reason for supporting its introduction is that
it interferes with the freedom of the doctor." While most apologists for the
NHS had been at great pains to argue that no curtailment of the freedom of
the doctor would result, Shaw, a life-long critic of the medical profession,
outraged conventionaI opinion by impIying that such a curtailment wouId
be a thoroughIy good thing. Again, the ceIebrated wit Oscar Wilde was
responsibIe for the aphorism "Work is the curse of the drinking classes." By
transposing the roIes of work and drink, Wilde stood conventionaI morality
on its head.

MathematicaI reasoning may wellIead to such paradoxes.' If it does so,
there is no impIied criticism of the mathematics - it is the conventionaI
reasoning that is called into question by the paradox. We do not need to
repair our mathematicaI system, since no contradiction has been revealed
within the system. We do need to revise our conceptuaI thinking in order
to avoid a popular misconception which our mathematics has uncovered.

We propose in this chapter to discuss five examples of such paradoxes.
We do not claim originality for any of them, aIthough, as a matter of fact,
we have not seen a paradox of the fourth kind in the literature. Each paradox
is introduced by a description of the popuIar view that is affronted by the
paradox and accompanied by a suggestion as to how the paradox may be
avoided.

We argue that the study of paradoxes of this kind has an important
roIe (or, perhaps, several important roIes) to pIay in education. In these
days when we are constantly being toId by the media, the politician, and
the commercial advertiser what we shouId think and believe, it is more
than ever necessary to adopt a position of healthy skepticism with regard
to claims and assertions that are presented to us as self-evident truths. It
is very enIightening to see that mathematicaI reasoning can enabIe us to

if SES, then S rf; s,
and if S rf; s, then SES.

Here, of course, we have been led to an actual contradiction.

2For further examples of interesting paradoxes see [5].
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discover weaknesses and inconsistencies in conventional viewpoints. Let
us give just one illustration of this point here in the introduction.

In many of our activities we are faced with tables in which members of
a set are ranked according to some attribute or property. We place baseball
players in order according to their batting averages, we place students in
order according to some measure of their performance in an examination.
Now such ranking presupposes an ordering that is transitive and linear.
Here, an ordering of a set S is said to be transitive if, whenever a < band
b < c, we may infer that a < c; and it is said to be linear or total if, for
any elements a, bin S, we have a < b, a = b, or a > b. Thus the set of
positive integers is ordered by size, when a < b means that a is a smaller
integer than b; but it may also be ordered by divisibility, where a < b
means that alb. The first ordering is total, but the second is not. (Why not?)
An ordering that is not linear (i.e., not total) is usually called partial.

Now, if an attribute is multidimensional, the ordering fails to be linear
there is no natural linear ordering of the points in the plane, for example,
even if we confine ourselves to points with integer coordinates.' Moreover,
for more complicated situations, the relation in question may even fail to
be transitive. Where a sophisticated skill is involved, of the kind we test
in a math exam, it may well happen that A usually beats B, and B usually
beats C, without it being true that A usually beats C. Thus such ranking ta
bles implicitly contain certain assumptions that our mathematical training
should cause us to question." Without this skepticism we are led to assume
unquestioningly that A is better than B if A appears higher than B on
our list. The very use of a comparative adjective "better" presupposes the
presence of a transitive relation and thus biases our thinking. We view this
age-old error with regard to the ranking of students as a pemicious aspect
of traditional education. There are many qualities involved in doing math
ematics successfully (skill, imagination, accuracy, logical thinking, speed
of execution, to name some), so that a measure of mathematical success
should be a multidimensional vector; and we do much harm by crudely
and arbitrarily converting that vector, for administrative convenience, into a
scalar. We may describe this as superimposing an avoidable error -linear
ordering - on an unavoidable error - the inherent unreliability of tests.

However, paradoxes of this kind, conflicting with conventional assump
tions and ways of thinking, need not arise from a mathematical argument

30f course, you could define a linear ordering, since there is a one-to-one correspondence between
points in the plane and the set of real numbers, but the resulting ordering would not be natural, in the
sense of fitting weil with the algebra of the real numbers.

4Many of tbe paradoxes in this chapter illustrate failure of transitivity in what appears to be a ranking
situation.
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directly. There are paradoxes arising from the nature of mathematical rea
soning itself, and we would like to deal with one of the most pervasive of
these as our final example in this chapter.

Many people argue that since, in teaching mathematics, we want to
enable our students to use mathematics in the real world, we must make
the mathematics more concrete and less abstract. We have no quarrel with
the viewpoint that, for most students, the objective of being able to apply
mathematics to a real-world problem is paramount," but that is no reason
to try to make the mathematics concrete in order to match that world. For
mathematics is, by its very nature, abstract - numbers do not exist in the
real world but are abstracted from our real-world experience of numbers
of apples, numbers of chairs, numbers of students, .... Thus the paradox
is that, to draw conclusions about the real world, we construct an abstract,
mathematical model that is not apart of the real world. What's more,
we reason within that model, using concepts and constructions that may
have no meaning in the real-world context. This remarkable feature of
mathematical reasoning, then, is the topic of our fifth example. Each of the
foIlowing five sections of this chapter will be devoted to a discussion of a
particular paradox.

• •• BREAK 1

Here is a paradox for you to think about. We ask four questions.

- What is the probability that an integer, chosen at random, is
divisible by 2?

- What is the probability that an integer, chosen at random, is
divisible by 3?

- Does the function 2n f-+ 3n set up a one-to-one correspondence
between integers divisible by 2 and integers divisible by 3?

- How, then, can the probabilities be different?

1.2 ARE THINGS EQUAL TO THE SAME
THING EQUAL TO ONE ANOTHER? (PARADOX 1)

The answer is yes, if we speak of equality as identity. Thus, in set theory,
we write A = B only if A and B are the same (numbers, elements, or
sets), and then we may well conclude that if A = Band B = C, then
A = C, since the notion of sameness is surely transitive. But in our daily
lives we may well describe A and B as equal if each is equaIly likely

5Though we would caution that it must be the world of the student, not the world of the (adult) teacher.
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to win in a contest between the two. That this is a dangerous use of the
word "equal" we demonstrate by the paradox in this section, where it is
shown that this sort of equality is not transitive. The danger is removed by
recognizing that conventional usages do not always correspond to precise
mathematical usages, and that we should therefore beware of believing
ourselves to be in the presence of an equivalence relation (in particular, a
transitive relation) whenever equality is mentioned in ordinary day-to-day
conversation.

Consider this example: A machine is producing a sequence of O's and
1's at random. Let this sequence for a given "game" be S. Suppose that

player Ais assigned the ordered pair (0, 1);
player B is assigned the ordered pair (1, 0);

and player C is assigned the ordered pair (1, 1).

Then, if Ais playing against B, A wins if, in the sequence S, the pair (0, 1)
occurs before the pair (1, 0). Similarly, if A plays against C, A wins if,
in the sequence S, the pair (0, 1) occurs before the pair (1, 1). A similar
rule applies when B plays against C. For example, if the sequence S were
0010110· .. , then A would beat B (since (0, 1) starts in place 2, while
(1, 0) starts in place 3), B would beat C, and A would beat C. Of course, we
expect transitivity in a single game, since the notion of "before" is certainly
transitive. However, let us consider which of A and B is more likely to win
the game. We claim that, by reasons of symmetry, they must be equally
likely to win, since the machine is producing the sequence at random. Thus
we might write A = B (but remember that this is a dangerous notation).

We also claim that B = C. In this case we argue as follows. Neither
B nor C is interested until the machine produces a 1. Then both become
interested, and the issue is decided by the next digit produced by the
machine; if it is 0, B wins, and, if it is 1, C wins.

However, we find a very different situation if A plays against C. Suppose
that the machine initially produces O. We claim that then A cannot lose.
For we simply have to wait till the machine produces a 1 for A to achieve
the sequence (0, 1); C never has a chance. Now suppose that the machine
first produces 1; in that case we consider the next number it produces. If
the next number is 1, then, of course, C wins. But ifthe next number is 0,
the situation once again is that A cannot lose. Thus the probabilities may
easily be computed from a tree diagram. (See Figure 1 below.)

We find that the probability that A beats C is ~. Thus, A = B, B = C,
but A > C, meaning that in a contest between A and C, A is likely to win;
indeed, the odds on Aare 3 to I.
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first outcome second outcome

-!~. - C wins with probability -! X-!.> I

y;~
•~ , ; - A wins with probability j X j

• A wins with probability -!
o

FIGURE 1

• • • BREAK2

Now suppose that player A is assigned the ordered triple (0, 0, 1),
player B is assigned the ordered triple 0, 1, 0), and player C is
assigned the ordered triple 0, 1, 1). Show that A = B, B = C, but
A > C. (Hint: The subtle part is working out the probabilities when
A plays C, as you might expect.)

1.3 IS ONE STUDENT BETTER TRAN ANOTHER? (PARADOX 2)6

You may think that this is true of students, but the simple example below
shows that it is not true of certain crazy dice! Here we understand a crazy
die? to be a cube, each of whose faces is labeled by an integer, but not
in the usual way. If dice A and B are thrown, we say that A wins if the
top face of A is labeled with a number that exceeds that on the top face
of B. It is thus reasonable to ask whether A is likely to beat B, and, if so,
what is the probability that A beats B. It is common parlance to describe
A as better than B if this probability exceeds 4; and it is in the unthinking
adoption of this terminology, involving a comparative adjective, that the
error lies. Tennis player A may indeed be better than player B; but, if our

6A more sophisticated version of this type of paradox is found in [6]. Somewhat different versions
of the paradox are to be found in [8, 9]. An algorithm for labeling the faces of other Platonic solids
(except the tetrahedron, for obvious reasons) to produce similar paradoxes can be found in [10].

7These days, many people would say "a crazy dice,' but this is not really correct, since "dice" is the
plural form.



1.3 Is One Student Better Than Another? (Paradox 2)

evidence is simply A's tendency to beat B, then we are-as our example
will show - in danger of having to say that A is better than B, B is better
than C, and C is better than A. And if this is true of tennis players, is it not
also true of students?

Let the three crazy dice A, B, C have their six faces labeled as shown
below:

A 5 5 5 5 1 1

B 4 4 4 4 4 4

C 6 6 2 2 2 2

A pair of dice is rolled, and the one showing the highest number on the top
is said to be the winner.

It should be clear that A beats B with a probability of ~, so that we may
write A > B, "A is better than B." Likewise, B beats C with a probability
of ~, so that we may write B > C, "B is better than C." Now consider a
match between A and C; here the situation is not quite so obvious, but a
simple tree diagram allows us to compute the probability. (See Figure 2.)
Thus the probability that C wins is ~ + ~ = ~, so C beats A with a
probability of ~, so that we may write C > A, usually described by the
phrase "C is better than A." We conclude that A > B > C > A; it is then
pertinent to ask "Which die would you rather have?" We leave the answer
to the reader, but offer the remark that this may not be the same question as
"Which die is best?" At the very least, we should stop saying "A is better
than B," replacing it by "A usually beats B."

first outcome second outcome

~. - C wins with probability ~ X 1
~3 C=6

y:~
•~ • - A wins with probability ~ X ~

3~ C=2

• C wins with probability 1
A=l

(We suppose A is rolled first)

FIGURE2
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••• BREAK3

(1) Can you label the six faces of four dice A, B, C, D in such a way
that, in the sense used above, A > B > C > D > A?

(2) Which of the dice in part (1) would you rather have? Or doesn't
it matter?

(3) Can a similar situation be created for 5 dice?

1.4 DO AVERAGES MEASURE PROWESS? (PARADOX 3)

In many sports the standing of an individual player, or of a team, is mea
sured by the ratio of the number of successful attempts to the total number
of attempts. For example, simplifying slightly, a baseball player's average
is computed by dividing the number ofhits by the total number of occasions
at bat during the specified time interval. This is called the player's batting
average over that time interval. 8 Tables are provided at regular intervals
listing the batting averages of the leading players (in decimal form) up to
the day in question. Moreover, the players are listed in order of decreas
ing batting average, thus encouraging the popular view that player A is
better than player B if player A has a higher batting average. This view is
logically untenable, as the following example shows.

Suppose that in period I player A has 3 successes in 4 attempts and
player B has 2 successes in 3 attempts; and that in period II player A has
4 successes in 11 attempts while player B has 1 success in 3 attempts. If
the entire season consists of periods land II, then Figure 3 displays the
players' averages during each period separately and over the entire season.

We now notice that since ~ (= 0.750) is greaterthan ~ (~ 0.667), and TI
(~ 0.364) is greater than k(~ 0.333), player Ais judged to have played
better than player B during both periods land II; but since ~ (= 0.500)

Average for

Player Period I Period II Entire season

A ~ = 0.750 TI ~ 0.364 is ~ 0.467

B ~ ~ 0.667 k~ 0.333 ~ = 0.500

FIGURE3

80f course, a similar average is calculated for a batsman in cricket.



1.4 Do Averages Measure Prowess? (Paradox 3)

is greater than Ts (~ 0.467), we are forced to conclude, by the same
criterion, that player B played better than A over the entire season! Such a
set of conclusions, taken together, makes obvious rubbish. We can avoid the
paradox by abandoning the view that the average is a sensible measure of a
player's prowess. We remark that if instead we measured performance by
the difference between the number of successes and the number offailures,
then the anomaly revealed in our example could not occur. There may, of
course, be other objections to this proposed procedure - we encourage the
reader to consider what they might be.

A different analysis of the potential defects of measuring the prowess
by means of averages may be found in [1].

The reader may believe that the paradox in our example arose because
player A made many more attempts than player B. This is not so; we may
consider two students who must take 10 pass-or-fail tests in the course of
the semester. In the first half of the semester, student A took 8 tests and
passed 2, while student B took 5 tests and passed 1; in the second half,
student A took the 2 remaining tests and passed both, while student B took
the 5 remaining tests and passed 4. See Figure 4.

We "conclude" that student A did better over each half-semester, but
student B did better over the whole semester!

The perceptive reader will notice that, in this section, we have found
ourselves adding fractions by an illegitimate method! The fact is that,
strictly speaking, this is a perfectly valid method of combining fractions,
but not of adding the rational numbers they represent. Since we use the
fractions to represent numbers (in order to say who performed "better"),
we shouldn't wonder that paradoxes arise.

Historical Note Readers may be interested to know that instances of
this paradox-known to many as Simpson's Paradox (see [7])
have already been noted in the annals of United States major league

Average for

Student First half Second half Semester

A 2 2 4
8 2 10

B 1 4 5
5 5 10

FIGURE4



baseball. The table shown in Figure 5, published in the American
Mathematical Monthly in 1992 (see [2]), compares, first, the averages
of Ken Oberkfell and Mike Scioscia in 1983 and 1984, and, second,
the averages of Dave Justice and Andy Van Slyke in 1989 and 1990.
You will see that Oberkfell had an inferior average to Scioscia in
each of the seasons 1983, 1984, but a superior average over the two
seasons combined; likewise, Justice had an inferior average to Van
Slyke in each of the seasons 1989, 1990, but a superior average over
the two seasons combined.?

• • • BREAK4

(1) Make up an example, similar to the one shown in Figure 4, but
with more tests given (and not just multiples of the numbers in
Figure 4!).

(2) Make up a baseball scenario where there are three parts to the
season and such that the batting average of player A is higher than
the batting average of player B in all three parts of the season,
but player B has an overall batting average that is better than the
overall batting average of player A.

9We are indebted to Dr. Peter Ross for drawing our attention to Friedlander 's note [2]- and for many
other helpful suggestions.



1.5 May Procedures Be Justified Exclusively by Statistical Tests? (Paradox 4)

(3) Make up an example like that shown in Figure 4 where students
A and B take the same number of tests over a semester, and the
semester is divided into three parts.

1.5 MAY PROCEDURES BE JUSTIFIED
EXCLUSIVELY BY STATISTICAL TESTS? (PARADOX 4)

Today data are collected with great speed and efficiency. We are bombarded
with statistics; and we are encouraged to believe that firm conclusions may
be drawn from those statistics ("eating butter predisposes you to cancer,"
"women are more prone than men to jet-lag").

Often the data take the form of a 2 x 2 table. 10 Thus a given treatment T
is under consideration. A group of participants in the experiment is chosen;
to some members of the group the treatment is administered, but not to the
rest. A certain outcome is considered favorable, and we count the number
of favorable outcomes (F) and unfavorable outcomes (U), both among
those treated (T) and those not treated (N). The results are presented as a
2 x 2 table. (See Figure 6.)

It is plain that we would want to maximize the number of favorable
outcomes. Hence if ~ is significantly greater than ~, that is, if ad is signif
icantly greater than bc, then we conclude that the treatment is effective; in
the contrary case we conclude that it is not.

The question of statistical significance is important here, but we need
not concern ourselves with it in our discussion. For given entries a, b, c, d
in our example, we may change the example to ka, kb, kc, kd, and by
choosing k large enough, we will achieve statistical significance at any
desired level. Thus we may always suppose our 2 x 2 tables statistically
significant.

Now, we do not criticize the procedure of reasoning from 2 x 2 tables
if a well-founded scientific hypothesis is being tested by experiment; such
an experiment certainly serves to strengthen (or weaken, perhaps fatally)

T N

F a c

U b d

FIGURE6

10This is usually read "two-by-two table."
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our confidence in the hypothesis. But we do criticize a blind reliance on
the statistics in the absence of asolid scientific basis of belief.

The following example shows why; you will see that, in presenting
this example, we indulge in a little fantasy. Mathematics, after all, should
appeal to and develop the imagination. We tell our fairy tale as follows.

Once upon a time in the peaceful country of Borgia the successful
playing ofPing-Pong was considered to be a very prestigious activity. When
a dispute arose with the neighboring warlike country of Mackerelroe, the
Prime Minister of Borgia, on behalf of his loyal countrymen, challenged
the Prime Minister of Mackerelroe to an enormous Ping-Pong tournament
between the two countries." Since Ping-Pong had been a revered, and
hence skillful, pursuit of the citizens of both countries for thousands of
years, the challenge was readily accepted and, as fate would have it, it was
quickly discovered that each country had exactly 2,090,000 Ping-Pong
players who had been granted "National Ping-Pong Player" status. The
matches between players were arranged by a lottery and the date was set
for the tournament.

At this stage, the Mackerelroe Minister ofHealth, Dr. Ignoramus Fuddle
Thought, popularly known as "Drift," intervened to propose that the tour
nament provided an excellent opportunity to test a potentially wonderful
potion that he had hirnself invented and called Everswear. He claimed
that his potion would greatly increase a player's chances of success, and
suggested that all the Mackerelroe players should drink his potion before
their tournament match. Not all agreed - to his intense annoyance - but
he determined to show the players just how beneficial his potion was.

In fact, Mackerelroe won the tournament 1,100,000 to 990,000; but Drift
was more interested in demonstrating the effectiveness of the potion than in
celebrating the victory. Accordingly, he recorded the results (in 1O,000's)
as follows, separating his players according to age and sex (see Figure 7).

Since, in every case, "ad - bc > 0," Drift was jubilant, announcing
confidently that Everswear had contributed significantly to Mackerelroe's
success.

However, these were days of great social upheaval in Mackerelroe. The
Committee against Age Discrimination (CAD) objected to the filing of
separate figures for players over and under 30. They therefore insisted on
publishing, both for men and for women, the combined figures, irrespective

11Readers who are at least 30 years old will vividly recall the great feats of two outstanding tennis
players, Bjom Borg and lohn McEnroe, and their very different temperaments.
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Potion No potion

Mwins 6 8

Bwins 6 9

Men over 30
(6 x 9 > 6 x 8)

Potion No potion

Mwins 4 17

B wins 6 27

Women over 30
(4 x 27 > 6 x 17)

FIGURE7

Potion No potion

Mwins 6 22

Bwins 3 12

Men 30 or under
(6 x 12 > 3 x 22)

Potion No potion

Mwins 4 43

B wins 3 33

Women 30 or under
(4 x 33 > 3 x 43)

of age. These were (as you may verify from Figure 7) those given in
Figure 8.

CAD duly reported, to Dr. Fuddle-Thought's horror, that, in fact, the
potion disadvantaged both men and women players, since "ad - bc < 0"
held for both men and women.

Reeling under this blow, Drift was next confronted with adelegation
from the Association against Sexual Supremacy (ASS), who objected ve
hemently to the publication of separate figures for men and women. They
insisted on amalgamating the two tables - a procedure to which Drift
made no objection, expecting that his faith in Everswear would thereby be
vindicated. The final table, then, was as shown in Figure 9.

Thus, since "ad - bc = 0," the entire experiment, involving 2,090,000
of Mackerelroe's most outstanding citizens, was totally inconclusive. The
unfortunate Dr. Fuddle-Thought, unable to reconcile hirnself to his confu-

Potion No potion

Mwins 12 30

Bwins 9 21

Men
(12 x 21 < 9 x 30)

FIGURE8

Potion No potion

Mwins 8 60

B wins 9 60

Women
(8 x 60 < 9 x 60)
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Potion No potion

Mwins 20 90

Bwins 18 81

All players
(20 x 81 = 18 x 90)

FIGl]RE9

sion and disappointment, took a massive overdose of Everswear, trampIed
underfoot his favorite Ping-Pong paddle.P let out a shrill and prolonged
expletive, and expired.

The moral is clear. Statistics can, and should, be used to test a scientific
hypothesis for which there is already some evidence and strong theoretical
underpinning. In the absence of such a hypothesis they can be highly
unreliable!

1.6 A BASIC MISUNDERSTANDING - AND A SALUTARY
PARADOX ABOUT SAILORS AND MONKEYS (PARADOX 5)

We believe that there may well be prevalent even among many teachers of
mathematics a serious misunderstanding about the nature of mathematics
and about the implications, for the teaching of mathematics, of the dictum
that we must make the teaching of mathematics relevant to the world of
the student.

The misunderstanding, in its starkest form, consists in believing that,
if the mathematics is to be relevant to real-world problems, then it must
somehow take place itself in the real world; that is, it must be concrete, and
not abstract. We must always deal directly with real-world objects; thus,
mathematical "theory" is to be replaced by rules of calculation using hand
calculators, microcomputers, and computers, and we should be concemed
to get numerical answers to specific problems rather than formulae of a
general nature.

This viewpoint is grossly mistaken, so much so that we have even found
it difficult to describe it in such a way that it could be held by any intelli
gent person. It is mistaken because it fails to recognize that mathematics
is, by its very nature, abstract, whether or not the problem to be solved
is a real-world problem or a problem within mathematics itself. When

12Some of our readers may call this a bat.
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we reason mathematicaIly, we construct, explicitly or implicitly, a math
ematical model of the real-world situation," and we reason within the
model. This process of passing to the mathematical model is mathemati
cal abstraction. It is a subtle process; it is an art and it cannot be made
algorithmic. To be able to construct a mathematical model offering a rea
sonable expectation for success in solving a problem, one must understand
the problem well and one must be able to reason effectively within the
model. Thus non-mathematical intelligence, together with mathematical
experience, understanding, and skill, are all vital ingredients of success
ful problem-solving." If, as so often happens in traditional mathematics
courses, the student is given the mathematical model, with no explanation
of why it is appropriate to a certain class of problem and no discussion of its
theoretical features, and is then asked to carry out some mechanical steps
on the model with no real understanding of their validity and significance,
then the student is indeed simply "manipulating symbols." But constructing
a model, reasoning within the model, and then executing weIl-motivated
calculations - these are the very stuff of mathematics itself.

A companion misunderstanding of the nature of mathematics is revealed
by the bad advice, which one hears so often even from reputable sources,
always to keep the real-world problem in mind when doing the mathemat
ics. The philosopher Bertrand Russell once described mathematics as the
subject "in which you don't know what you're talking about and don't care
whether what you're saying is true." The intended meaning behind this
deliberately provocative aphorism is that criteria of truth, in the sense of
correspondence to reality, are inapplicable to an axiomatic system; and that
the concepts of such a system are not themselves "real," however useful
they may be to solving a real problem, and thus not "knowable" in the
sense that an apple or a ladder is knowable.

No, the better advice is to trust the mathematical model, to stay within
the model until the time is appropriate for checking the theoretical deduc
tions and the calculations against the original real-world situation. There
is, of course, some risk in this - one may not have made a clear statement
of what information one is hoping to derive from the model, and thus one
may go off on a wild goose chase of irrelevant reasoning and pointless cal
culation. But the remedy is to use mathematical reasoning more efficiently,
not to clutter the model with incongruous concrete props.

130f course, there may weil be a scientific model, or conceptual model, intervening between the
real-world problem and the mathematical model. (See [3].)

14We oppose the teaching of problem-solving as aseparate skill- of course!
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Let us give two very elementary examples here of this point we are
making that the model is abstract and that we do mathematics with abstract
concepts and entities - of which "number" is the most fundamental. Then
we will be ready to give a more sustained and sophisticated example of the
value and validity of abstract reasoning for solving concrete problems
this will be our "salutary paradox."

There is a popular phrase, "That's like adding apples and oranges." The
thought behind this is that you can only add like objects. The truth of the
matter is that you can only add numbers, if addition is the arithmetical
operation familiar to all children. It is true that you can't add apples and
oranges; but, strictly speaking, it is also true that you can't add apples
and apples. To find out how many apples you have if, already possess
ing 6 apples, you are given 4 more, you add the numbers 6 and 4. This
mathematical model is also appropriate for very different real-world situa
tions - if you are 6 miles east of Chicago and travel a further 4 miles east,
you add 6 + 4 to find out how many miles you are now east of Chicago. Of
course, once it is understood that only numbers can be added, we should
allow ourselves to talk of adding 6 apples and 4 apples to get 10 apples.
We should not insist gratuitously on the rigors of precise language, since
that inhibits lively discussion; but we should know what we mean, and so
should the people with whom we communicate."

In arecent V.S. Children's Television Workshop production "Square
One," comprising 75 half-hour programs for children in grades 3 through 6,
an actor playing the role of a woman mathematician says "50 miles per hour
times 4 hours is 200 miles." We claim that no mathematician would say
any such thing; instead, she would say "50 miles per hour for 4 hours, 50
times 4 equals 200, so that's 200 miles." The maxim "speed times time
equals distance" is best interpreted as a rule telling you to use the mathe
matical model of multiplication to obtain the number representing distance
when given the numbers representing speed and time. We believe that this
distinction between the real world and the model would eliminate much of
the confusion surrounding the topic of rates and ratios. Mathematically, a
ratio is just a rational number, but unfortunately rational numbers tend to
remain unmentioned in the elementary curriculum, with much consequent
detriment to the study of fractions; and a rate is a real-world quantity
represented by a ratio in the model.

Let us combine the spirits of these two examples and ask the question,
"If my speed now is 6 mph, and I am accelerating at the rate of 4 mph",

15This is an application of the Principle of Licensed Sloppiness (see Chapter 9 of [4]).
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what will my speed be in one hour's time?" The mathematical model is
again 6 + 4, but we are certainly not forming the disjoint union of two
collections. Moreover, we hardly want to keep the rather complicated units
around in the mathematical model. Of course, the units have a vital roIe to
play in the scientific model and in the interpretation of our mathematical
result- but that's another story.

Now we will discuss the principal example of this section, our salutary
paradox. We call it

The Problem 0/ the Sailors, the Monkeys and the Coconuts
The problem is the following.!" A group of s sailors find themselves

at dusk marooned on a desert island with m monkeys and c coconuts.
The sailors wish to divide the coconuts evenly among themselves, but are
so tired they agree to wait until morning. However, they are very hungry
sailors and each fears he won't get enough coconuts to survive. So during
the night each sailor in turn wakes up, goes to the pile of coconuts, hands a
coconut to each monkey (to keep them quiet), divides the remainder into s
equal piles, takes his own pile, and leaves the rest. The question is - what
is the smallest value of c (as a function of sand m) that makes this possible?
As an example, let s = 3, m = 7. Our general solution will show that then
c = 40; let's check it now. Given 40 coconuts, the first sailor gives 7 to the
monkeys, takes 11 for himself, and leaves 22. The second sailor gives 7 to
the monkeys, takes 5 for himself, and leaves 10. The third sailor gives 7 to
the monkeys, takes 1 for himself, and Ieaves 2. Of course, when the sailors
awake in the morning they will realize that the pile is smaller, but, since
each one has cheated during the night, no one will say anything - perhaps
they will all blame the monkeys.

We now construct a mathematical model to solve the general problem.
Let Uo be the original number of coconuts and let u, be the number of
coconuts left by the ith sailor, i = 1, 2, ... , s. It is then easy to see that

s - 1
Ui+l = --(Ui - m), i = 0,1"", (s - 1)

s
(1)

We seek the smallest value of Uo such that each u, is a positive integer.
Since obviously u, > 0 if Ui+l > 0, this is equivalent to seeking the smallest
value of Uo such that each u, is an integer and u, > O.

16Remember, the real-world is the world of the student.
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We now reason within the model, using arguments that have no meaning
whatsoever in our original "real-world" problemF' We ask for thefixed
point of the transformation f defined by (1), that is, we consider the
transformation

(s - 1)
fex) = (x - m)

s
(2)

and we seek a number x such that f (x) = x. Simple algebra shows that
the unique fixed point is x = -es - 1)m. Let us write u for the fixed point,
so that u = -es - l)m.

To the sailors - and to the critics of our approach to applying mathe
matics (see [2]) - this is all meaningless nonsense, "abstract," "symbol
manipulation," However, it is, in fact, crucial to the solution of our problem.
For we see that if we set Vi = u, - u, that is, if

Vi = u, + (s - 1)m

then (1) is transformed into Vi+1 = s-I Vi, or
s

(3)

S
Vi = --Vi+1

S - 1
(4)

Thus

Vo = _s VI = (_s )2V2 = ... = (_s )iVi = ... = (_s )SVs
s-l s-l s-l s-l

(5)
We require that each Vi be an integer with (see (3» Vs > (s - 1)m.

Now, (5) shows that Vo is an integer if and on1yif u, has the form k(s - l )",
where k is an arbitrary integer. Then Vo = ks' and Vi = k(s - 1Yss-i, so
that each Vi is an integer. Finally, the condition Vs > (s - l)m translates to

m
k » ---

(s - 1)s-1
(6)

Since Uo = Vo - (s - l)m = ks' - (s -1)m, we may announce the solution
ofthe problem. The minimum value of cis ks' - (s - 1)m, where k is the
smallest positive integer satisfying (6). Plainly,

if s = 3, m = 7, then k = 2 and c = Uo = 2 x 27 - 2 x 7 = 40

We have already drawn attention to a key feature of our solution, namely,
that the mathematical model incorporated features uncorrelated to the con-

17This is the paradox. We make essential use of negative numbers in our argument, but negative
numbers of coconuts are unheard of on tbe island. Nor could there conceivably be a "fixed point" for
the function describing the sailor's raids on the coconut supply.
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text of the original problem but essential to its solution - this shows how
subtle is the notion of relevance in mathematics! Notice also, in this connec
tion, that condition (6) involves a fraction on the right-hand side, although
k must be a whole number andfractions are excluded by the context.

However, there are other points about mathematical method illustrated
by this example. First, our method, involving a study of the linear re
currence relation (1), placed us firmly within an important mathematical
context. Thus, once the mathematical model has been identified, it is the
mathematical context, and not the physical context, which should deter
mine our strategy.

Second, we find that our mathematical model has provided us with
much additional information beyond the mere answer to our original ques
tion - and some of that information is highly relevant to our real-world
situation. For example, our solution gives us all possible values of c,
namely, ks' - (s - l)m, and not merely the smallest possible value. As
another example, suppose we restriet our original problem so that s :::: m
(this restriction is implicit in some published versions of the problem). We
then see that condition (6) is satisfied by k = 1, except in the trivial case
s = 2. Thus the solution if s :::: m, excluding the trivial case, is

c = s' - (s - l)m (7)

We remark that if we hold s fixed in (7), then c is a decreasing function
of m; that is, the more monkeys, the fewer coconuts needed to render
the process possible - a counter-intuitive conclusion which would surely
surprise the monkeys as much as it does us!

This last remark illustrates our experience that orienting a course of
mathematical instruction around problems is, really, a difficult thing to do
weIl. It is not sufficient to pose problems and discuss their solution; for
the solution answers questions one could not reasonably have expected, in
advance, even to ask. Even more, the solution will itself almost certainly
suggest questions, perhaps of a purely mathematical nature, that it would
be advantageous to consider even if the original problem is entirely solved;
and such questions may have nothing to do with the context of the original
problem. We leave our readers with the challenge to find such questions in
the mathematics discussed above - and elsewhere.

• •• BREAKS

(1) Show that exactly the same mathematical model works if the
monkeys are so cantankerous that monkey j can only be placated
by receiving, each time, nj coconuts, instead of just one.
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(2) Suppose that Ui+l = dtu, - m), i = 0,1, .... Express u, as a
function of uo.

• •• BREAK 6 (The Philanthropist's Paradox" )

An American philanthropist went up to a poor man in the street and
showed hirn two envelopes. "I have put some money into each of these
envelopes. There is twice as much in one envelope as in the other.
You can take whichever envelope you like." The poor man chose
one, opened it, and found $100 in it. The philanthropist then said, "If
you like, you can return the $100 and take the other envelope." The
poor man thought to hirnself, "There are equal chances that the other
envelope contains $200 and $50. Thus my expectation, if I choose
the other envelope, is 200;+-50 = 125 dollars." So he chose the other
envelope.

One concludes that the correct strategy when one meets the phi
lanthropist with the two envelopes is to choose one and then alter
one's choice and choose the other. Discuss!
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Not the
Last of Fermat

CHAPTER

2.1 INTRODUCTION: FERMAT'S LAST THEOREM (FLT)

A lot has been written about Ferrnat's Last Theorem since its proof was
announced in 1993.' What we write here will undoubtedly not be the last
that's written on the subject.

As it took Andrew Wiles, a brilliant mathematician, seven years to put
together the deepest mathematical proof ofthe last century, there's no way
that we are going to be able to take you step by step through his proof. In
fact, relatively few mathematicians could actually do that anyway, however
strong their mathematical background. What we will try to do, instead, is
to give you the background to the problem and an idea of the strategy
adopted by those involved in solving it - and of the human perspiration
expended in the final fall of the theorem. What follows then is a middle
course between Singh's best-selling book [8] and the more mathematical,
and more sharply focused, treatments to be found in Cox [1], Gouvea [3],
Mazur [5], and Ribenboim [7]. If you become interested in the topic of
this chapter, we recommend you first read [8] and then, if you have some
undergraduate mathematics under your belt, try [1], [3], [5], or [7]. For
more background material there is also [9]. So you should think of this
chapter as not the end but rather the beginning of what there is to know about

1The announcement was premature! There was a gap in the argument, but a complete proof did appear
in 1994.

23



2 Not the Last of Fermat24 ---=--~__==_=___==_=___.::..::..._=__.::..::..:==_=_ _

Ferrnat's Last Theorem. Certainly we are making no claim whatsoever that
OUf exposition is complete.'

2.2 SOMETHING COMPLETELY DIFFERENT

Freda keeps some beetles and some spiders. Altogether her pets have 48
legs. How many spiders does she have?

If you play around with this problem for a while, you might suspect that
it contains insufficient information. After all, if Freda has b beetles and
s spiders we can only get one equation,

6b + 8s = 48

This equation holds simply because beetles have 6legs and spiders have 8.
But we have one equation that has two things we don't know: sand b.
Norrnally in problems like this we need another equation. However, nobody
thought to give us one. So what do we do now?

One step that might simplify things a little is to divide through by the
common factor 2. Is

3b + 4s = 24

any better? Well, we want to find s, so rearrange the equation to give

4s = 24 - 3b

And then you might see that the RHS of the last equation has a factor 3:

4s = 3(8 - b)

So what? Remember that band s are positive integers.
So 4s must also be divisible by 3. That surely means that s is divisible

by 3. OK, then s = 3k for some integer k. What should we do next?
Perhaps we'll make some progress if we replace s by 3k in the equation:

4(3k) = 3(8 - b)

so
4k = 8 - b

Now it's clear that the RHS is no greater than 8, so k = 0, 1, or 2. Hang
on! If k = 0, there are no spiders, and we're told that Freda has "some
spiders." And if k = 2, then b = 0, but she's got "some beetles." This must
mean then that k = 1, so s = 3k = 3. Freda has three spiders.

2Michael Rosen, in his favorable review of [7] (Notices ofthe AMS, 47, No. 4 (2000), 474) wrote, "It
is somewhat sad that no one expects any longer that an elementary proof of FLT will ever emerge,"



2.2 Something Completely Different

• • • BREAKl

Try this one. At the Post Office, Dennis spent exactly $2 on stamps.
He bought some 4~ stamps, ten times as many 2~ stamps and made up
the balance with 1O~ stamps. How many stamps of each denomination
did he buy?

Let's try one more. The other day Jose cashed acheck at the bank. The
teller accidentally interchanged the dollars and cents values. When later,
Jose could only get 49~ for his 1963 Cadillac he thought he was having a
bad day. But then he realized that he now had twice as much cash as he
had written the check out for. What was the real value of the check?

Doing this the traditional way would probably mean assuming that the
original check was for x dollars and y cents. So the teller had given Jose
y dollars and x cents . After selling the Cadillac he had y dollars and
(x + 49) cents . But this tumed out to be twice the value of the original
check - exactly 2x dollars and 2y cents . This gives us an "equation"

y dollars + (x + 49) cents = 2x dollars + 2y cents

Probably we won't get anywhere with this until we change it all into
cents. At that point we get a genuine linear equation

100y + (x + 49) = 200x + 2y

Once again we have one equation in two unknowns ; but once again we
know that x and y are positive integers. How can we solve our equation ?
Probably in much the same way as we did with the insects. But let's tidy it
up first. The equation then becomes

98y + 49 = 199x

There seems to be a factor of 49 on the left, so we rewrite the equation as

49 (2y + 1) = 199x

Since 199 and 49 have no factors in common and 49 is a factor of the
LHS of this equation , then x must be divisible by 49. So let x = 49k. We
then get

2y+ 1 = 199k

Did that help? What do we know about y? It can't be bigger than 99,
because it was the cents amount on Jose's check. Now, since y :::: 99

199k = 2y + 1 :::: 198 + 1 = 199
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So k = 0 or 1. If k were zero, then y wou1dbe negative, which is absurd.
(The teller wou1d sure1y have noticed a check made out for minus half a
cent!) This means that k = 1 and x = 49. What's more, 2y + 1 = 199, so
y = 99, and Jose's check was for $49.99.

• •• BREAK2

Check the last answer just in case we've made amistake.

The point of this section, is to show that not all the information you
need is given explicitly in a problem or contained in the equation(s) you
obtain from the data. More than that, the fact that some problems are about
integers, and even positive integers, can be as helpful as having another
equation. When you think about it, we couldn't have solved 6b + 8s = 48
if spiders didn't come in whole numbers. And we would have been all at
sea with Jose's problem if he had written out his check for non-integer
values of dollars and cents (and if there were more than 100 cents to the
dollar).

2.3 DIOPHANTUS

It turns out that we know rather little about the Greek mathematician
Diophantus. We certainly don't know where he was born or when he was
born. We might know how old he was when he died. Supposedly, the
following was carved on his tomb.

God granted hirn to be a boy for the sixth part of his life, and adding a
twelfth part to this, He clothed his eheeks with down; He lit hirn the light of
wedloek after a seventh part, and five years after his rnarriage He granted
hirn a son. Alas! Late-bom wretehed ehild; after attaining the rneasure of
half his father's full life, chill Fate took hirn. After eonsoling his grief by
this seienee of nurnbers for four years he ended his life.

As we were saying then, he lived to a ripe old age for someone who
flourished about 250 A.D. (but he may have been living as early as 150 A.D.

or as late as 360 A.D.). His farne comes from the six extant books of the
thirteen-volume set he wrote called Arithmetica. This was a treatise that
he compiled while he was in Alexandria, the center of intellectual life in
the Mediterranean from about 350 B.C. until about 640 A.D. Diophantus'
Arithmetica was to number theory what Euclid's Elements was to geometry.
While he was in Alexandria, Diophantus collected and invented a range of
number-theoretical problems. He was particularly interested in problems



2.4 Enter Pierre de Fermat

whose solutions were rationals. However, problems involving integers are
now known asDiophantineproblems. Similarly equations whose solutions
are required to be whole numbers are called Diophantine equations.

So the two problems of Section I (three if you include the one in
BREAK 1) are Diophantine problems. The equations

6b + 8s = 100 and 98y + 49 = 199x

are Diophantine equations.
The library at Alexandria, which held hundreds of thousands of books

containing all the knowledge that had been accumulated by the Greeks,
was finally destroyed. The destruction began at the hands of Christians in
389 A.D. They were out to destroy all pagan monuments, and the library
was housed in what was once an Egyptian temple. What books survived
the Christians were largely destroyed by Moslems in 642 A.D. SO it may be
somewhat surprising that even six volumes of Diophantus' magnum opus
survived.

2.4 ENTER PIERRE DE FERMAT

It's not clear that you would necessarily have gotten along very weIl with
Pierre de Fermat. If you were an English mathematician, it's almost cer
tain that you wouldn't! Pierre de Fermat was born into a rich family in
the southwest of France in 1601. His family's fortune allowed hirn a good
education, and he entered the civil service. His job was to make a prelimi
nary assessment of petitions to the King of France. If someone wanted to
petition the king, they had to go through Fermat. Ifhe wasn't convinced of
the merit of the case, then the petition went no further. Because of his role
in society, Fermat had few social contacts. It was feIt that, if a petition was
put forward by one of his associates, Fermat (or indeed any other of the
councillors at the Chamber of Petitions) might be swayed by his friendship
to support it. Consequently, Fermat led a very solitary life. But this did
give hirn the opportunity to engage in his lifelong interest of mathematics.
In fact, he was so good at mathematics that he has been called the Prince
of Amateur Mathematicians.

Today, most mathematicians are eager to publish their research resuIts in
journals that are readily available to their peers. In seventeenth-century Eu
rope, though, mathematicians were more secretive. There was a tendency
to throw out problems as achallenge. Mark you, these were problems that
the poser already knew how to solve.
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Fermat engaged in this practice and was particularly keen to embarrass
the English mathematicians. At one stage he discovered that a particular
square and a particular cube had only one number between them. What's
more, he found that this was the only instance where a square and a cube
differed by 2. Fermat gained particular satisfaction from the fact that the
English mathematicians had to admit that they were unable to solve his
square and cube problem.

• •• BREAK3

Can you find one solution in integers of the equation y3 = x 2 + 2?

It's worth remarking here that in 1918 the English mathematician LJ.
MordeIl was able to show that there are only a finite number of integer
solutions to

l = x 2 +k

for any integer k, positive or negative. But perhaps a lag of 280 years or so
is somewhat excessive for the English to claim a victory, even if k is much
more general than 2.

Somehow, Fermat came across a copy of Diophantus' Arithmetica. What
he had was a translation into Latin, which, for some fortunate but unknown
reason, had particularly large margins. As Fermat went through the book
he frequently made comments in those margins. These may well have been
lost to posterity had it not been for the fact that his son, Clement-Samuel,
put together all Fermat's notes, letters, and marginaljottings and published
them in a special edition of the Arithmetica. This volume contained many
ehallenging problems. Eventually, only one of these remained unsolved.
It was the final challenge. Because Fermat said that he had a proof, it was
called Fermat's Last Theorem. However, given the fact that it remained
unsolved for over 350 years, there's a very good chance that Fermat did
not have a complete proof of the "theorem." Really we should have called
it Fermat's Last Conjecture. But it's too late to rename it now. So what is
Fermat's Last Theorem all about?

2.5 FLASHBACK TO PYTHAGORAS

Pythagoras is weIl known for several things. In fact we know rather more
about hirn than we do about Diophantus. Pythagoras lived in the sixth
century B.C. and wandered around the Eastern Mediterranean area until
he set up his scholastic community in southern Italy. That community is
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known for realizing the links between hannonics and the ratios of lengths
in a lyre string. They are also supposed to have sacrificed 100 oxen when
Pythagoras' theorem was proved. But no one knows who actually proved
the result. Anything that Pythagoras and his followers discovered was
considered the property of the community.

Pythagoras' Theorem In a right-angled triangle. the square on the
hypotenuse is equal to the sum ofthe squares on the other two sides.

h

b

a

One important thing to note here is that Pythagoras did actually prove
that this result was true for all right-angled triangles. A thousand years
before Pythagoras, the Chinese and the Babylonians knew specific values
of a, b, and h -for specific right-angled triangles. Pythagoras' contribu
tion was proving the theorem for any right-angled triangle.

• •• BREAK4

(1) Give a proof of Pythagoras' Theorem.
(2) Give another proof.

Pythagoras had a lot in common with Diophantus. Pythagoras very much
preferred dealing with integers and fractions.

Pythagoras and his disciples were able to find an infinite number of
right-angled triangles whose sides had integer lengths. You may remember
a few of the following:

32+42 = 52

52 + 122 = 132

72+ 242 = 252

92+ 402 = 412

You may even be able to see a pattern here.
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Three integers that can be the sides of a right-angled triangle are known
as Pythagorean trip/es and are sometimes represented by the notation
(a, b, h). We've seen that (3,4,5), (5, 12, 13), and so on, are Pythagorean
triples, Now, it turns out that (u2 - v2

, 2uv, u2 +v2
) , for u, v integers with

u > v, are Pythagorean triples. So, by using different values of u and v,
we can get a number of Pythagorean triples. In fact, we can get an infinite
number, as we shall soon see.

• •• BREAKS

Show that (u2 - v2
, 2uv, u2 + v2

) is indeed a Pythagorean triple.

Before we get started on the following arguments, let's agree to use the
abbreviation PTfor Pythagorean triple. Now, we will say that aPT (a, b, h)
is primitive if a, b, h are pairwise coprime. We now prove two key results.

Theorem 1 Every PT is a multiple ofa primitive PT. Moreover, if

(a, b, h) = J...(aJ, b., h l)

J... = gcd(a, b) = gcd(a, h) = gcd(b, h) = gcd(a, b, h)

Thus (al, b., h l) is primitive ifand only ifgcd(al, bi, h l) = 1.

Proof Let J... = gcd(a, b). Then J...la, J...lb, so J... 2Ia2
, J...2Ib2

, and thus J...2Ih2
•

But if J...2Ih 2, then certainly J...[h. It follows that

gcd(a, b) = gcd(a, b, h)

Similarly, we can prove that

gcd(a, h) = gcd(a, b, h)

and
gcd(b, h) = gcd(a, b, h) = J...,

say. Set

a=J...al, b=J...bl, h=J...h l

Then gcd(al' bi, hd = 1, so (al, bi, h l) is certainly a primitive PT.
Moreover, if (a, b, h) is primitive, then

gcd(a, b) = gcd(a, h) = gcd(b, h) = 1,

so gcd(a, b, h) = 1. This completes the proof. D
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Now let (a, b, h) be a primitive PT. We claim that one of a, b is odd and
the other even, and that h is odd. For we certainly can't have a, b, h all
even, since (a, b, h) is primitive; and we can't have a, b both odd, since
a 2 == 1 (mod 4) and b2 == I (mod 4) implies h2 == 2 (mod 4), which is
clearly impossible. Suppose, then, that a is odd, b is even, and h is odd.

Theorem 2 Let (a, b, h) be a primitive PT with a odd, b even, h odd.
There are then unique integers u, v such that u > v and

a=u2-v2
, b=2uv, h=U2

+ V
2

moreover, u, v are coprime and ofopposite parity. 3

Proof We have a 2 + b2 = h2
, so

(1)

but hia, h;a are coprime, for any factor of hiaand h;a is a factor of h
and of a (why?). But (a, b, h) is primitive, so gcd(a, h) = 1. Thus it
follows from (1) that each of hia, h;a is a perfect square, say

h +a 2
--=U

2 '
h-a__ =v2

2 '

u, v coprime. But then h = u2 + v2
, a = u2

- v2
, and (~)2 = U2

V
2

, so
b = 2uv. Since ais odd, u and v must have opposite parity. Finally,
we prove uniqueness. For if we also have h = ui + vi, a = ui - vi,
b = 2uI VJ, then

u2 _ v2 - u2 _ v 2
- I l'

showing that u2 = ui, v2 = vi, so u = UJ, v = VI. D

Notice that we can extend the uniqueness statement to arbitrary PTs.
Thus, if (a, b, h) is a PT, it is uniquely expressible as

(a, b, h) = ).(al, b., hd

where (al, b l, hd is primitive, since x is determined as gcd(a, b, h); hence
(a, b, h) is uniquely expressible as

).(u 2
- v2

, 2uv, u2 + v2
) (2)

where u, v are coprime of opposite parity, and we assume al odd.

3This means that one is odd and the other is even.
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••• BREAK6

(l) Which ofthe following are primitive PTs and which are not? For
those that are, find the values of u and v that yield the given PT.

(3,4,5); (5,12,13); (231,108,255); (99,20,101).

(2) Write those that are not primitive PTs as a product A(a, b, h) as
in Theorem 1, and then find the corresponding u and v.

2.6 SCRIBBLES IN MARGINS

Apparently, Fermat was working on Diophantus' Arithmetica in about
1637. He was fascinated by Pythagoras' Theorem and Pythagorean tripies.
While working in this area of Diophantus' book, Fermat was inspired to
write (in Latin)

To divide a cube into two cubes, a fourth power into two fourth powers,
and in general any power above the second into two powers of the same
denomination, is impossible. Of this I have assuredly found a marvelous
proof, but this margin is too narrowto contain it.

What Fermat had first done was to do what mathematicians continually
try to do. He had attempted to generalize. Pythagorean tripies are positive
integer solutions to the equation

x 2 + l = Z2.

Fermat had asked the obvious mathematical question: Do the Diophantine
equations

x 3 + / = Z3,

x 4 + l = Z4,

x 5 + y5 = Z5,

etc. have any positive-integer solutions? He had worked on them and
decided that they did not. He then thought that he could prove it.

Fermat's Last Theorem For n ~ 3 an integer, there are no positive
integer solutions 01

But did he really have a proof? We think the answer has to be "most
likely not." There are at least two compelling reasons for this. The first is
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that Fermat had made other claims of this nature that were doubtful. For
instance, the problem of the cube and square that differ by 2, which Fermat
used to torture the English, appears not to have been satisfactorily solved by
Fermat. (This may be little consolation to the poor English mathematicians
of the seventeenth century.)

The second reason is that, whatever proof he thought he had, it would
have been elementary from a modern standpoint. Consequently, it would
be extremely surprising that no one in the last 300 years had been able to
find Fermat's proof.

What seems to be quite possible is that Fermat made amistake. He
thought he had a proof, but there was an error. Mathematicians do make
errors. As you will see in Chapter 5, Kempe made an error when he thought
he had proved the Four Color Theorem. As you will see in Section 9 of this
chapter, Wiles, who ultimately put the final nail in the coffin of Fermat's
Last Theorem, made an error in his first "proof" which was made public
in 1993.

It is unlikely, however, that Fermat was attempting to mislead. There is
no evidence of his doing anything like that on any other occasion. And he
seems to have mentioned only the cases n = 3 and n = 4 in correspondence
with other mathematicians. It is perhaps likely that he meant to delete his
marginal comment but forgot to do so. What's more, ifhe had a conjecture
rather than a theorem he would probably have admitted it. For instance,
he stated once that he thought that 22

" + 1 was always a prime number for
every positive integer n. But he added that while he was pretty sure that
this was the case, he didn't know how to prove it. (See Chapter 4 for a
counterexample.)

On balance, we probably have to believe in Fermat's integrity. It is
reasonable to believe that he thought he had a proof of FLT but that
somehow he had made an error and his proof was false.

2.7 n = 4

The case n = 3, that is, the fact that x 3 + y3 = Z3 has no integer solutions,
was known to Arabian mathematicians some 700 years before Fermat
scribbled his cryptic margin message. However, they were unable to prove
it to the rigorous level required by present day mathematics. Fermat thought
he had a proof, but it is not likely that he did. Surprisingly, then, the value
n = 4 was the first case of Fermat's Last Theorem to be solved, though
perhaps "solved" is not quite the right word. Fermat himself put down
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enough details in 1640 that we can reconstruct a complete proof. This
proof was not complete by today's standards. However, it did introduce a
nice new method. The cunning idea that Fermat used for his "proof' of
the case n = 4 (and which was completed in detail by Leibniz in 1678)
was the method 01infinite descent. The concept here is to assume that you
have a solution of the equation and show that you can produce a smaller
solution. Hence you can keep getting smaller and smaller solutions. This is
obviously not possible when you are dealing with positive integers , so the
method of infinite descent will show that there are no solutions. Another
way of thinking of this is to suppose that you have the smallest solution.
By showing a smaller solution you have a contradiction.

Now we can consider the equation x4 + y4 = Z4. Just to be perverse,
though, we will apply the method of infinite descent to x 4 + y 4 = Z2.

Let's think about this for a moment. How does the logic go? Suppose
x 4 + y 4 = Z4 has a solution in integers x = p , y = q , Z = r. Then
p4 + q4 = r 4 = (r 2)2. So a solution to x 4 + y 4 = Z4 will give a solution
to x 4 + y 4 = Z2 (via p4 + q4 = (r2)2). Logically, then, if we can show that
x4 + y 4 = Z2 has no solutions in positive integers, then the last sentence
teIls us that neither does x 4 + y 4 = Z4.

If we then start with x 4 + y4 = Z2, we can immediately relate this to
Pythagoras. SO (X2)2 + (y 2)2 = Z2. We now know that we can concentrate
on primitive solutions arid hence suppose that

where u and v have no common factor and they are not both odd. Suppose
now that u is even and v is odd. Then u2 = 4s and v2 = 4t + I for some s
and t. Hence x 2 = 4(s - t) - I = 4(s - t - 1) + 3. But squares can only
have remainders of 0 or 1 when divided by 4. Hence u is odd and v is even.
We nowhave

We then have, since (x , v , u) must be a primitive PT (remember that
gcd(u , v) = 1),

where p , q have no factors in common and p , q are not both odd. Recall
that y 2 = 2uv. So now we have
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But p and q have no common factors, so neither do p and p2 + q2, or q
and p2 + q2. This means that p, q, p2 + q2 are all squares. Hence

p = r2, q = S2, p2 + q2 = [2, and gcd(r, s) = l.

Now here's the coup de gräce! This shows that

(r2)2 + (S2)2 = [2

or
r 4 + S4 = [2

Now, we can measure the "size" of a primitive solution of x4 + l = Z2
by the size of z. Ifwe could show that t < z, we'd have a primitive solution
r, s, [ smaller than the original x, y, z. So how is [ related to z?

Now

z = u2 + v2 > u2 = (p2 + q2)2 = [4.

Then z > [4. So [ < yrz < z, since z > I, obviously. A solution x, y, z of
x4+ y4 = Z2 has led us to a smaller solution r, s, t. Infinite descent comes
into play. So Fermat's Last Theorem is true for n = 4.

• •• BREAK7

Why is it that squares have only remainders of 0 and I on division
by4?

It's worth thinking about where we are right now. It may seem that we
have only covered one of an infinite number of cases of Fermat's Last
Theorem, the case n = 4. In fact, though, we have settled an infinite
number of cases. Why is this so? Have a look at x 8 + y8 = Z8. Suppose
r, s, t is a solution to this. Then

r 8 + S8 = [8

and
(r2)4 + (S2)4 = ([2)4

A solution to x 8+ l = Z8 would then give us a solution to x 4+ y4 = Z4.
We have just shown that the last equation has no integer solutions. So
x 8+ y8 = Z8 has no integer solutions. It's the same little trick that we used
in going from knowing that x 4+ y4 = Z2 has no solutions to knowing that
x 4 + y4 = Z4 has no solutions.

As a result of all that, then, we are now able to assert confidently that
x 12 +Y12 = Z 12 has no integer solutions, that x 16 +Y16 = Z16 has no integer
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solutions, that .... Fine, so we now know that, for any positive integer m,
x 4rn + y4rn = z4rn has no integer solutions.

This same argument now puts us in a position where we only have to
show that Fermat's Last Theorem is true when n is an odd prime. If we
could prove that x"+v" = z"has no integer solutions for all odd primes p,
then the truth ofFermat's Last Theorem for any composite number n would
follow. This is because, if n ~ 3, then either n is apower of 2 divisible
by 4 or n = pq for some odd prime p. Since x 4 + y4 = Z4 has no integer
solutions, we have already settled the first case. On the other hand, if
n = pq, then x pq + ypq = zpq gives (xq)P + (yq)p = (z")". The usual
argument now reduces the cases we have to consider for n. We thus have
to settle FLT only for n an odd prime.

2.8 EDLER ENTERS THE FRAY

Mathematics is a hard taskmaster. We have seen how excited mathemati
cians get when they prove a theorem - remember the story of Pythagoras
and the 100 oxen. We have noted the incompleteness of Fermat's attempts
at producing proofs. But mathematics has standards. The full proof must
be foolproof.

Although Fermat thought that he had settled the case n = 3 by the same
infinite descent approach that he had used with the case n = 4, there is
no evidence of this. In fact, it is generally accepted that the first person to
prove FLT for n = 3 was the Swiss mathematician Leonhard Euler.

Euler is known for his contributions to many areas of mathematics.
You will see his work on the Königsberg bridges problem in Section 5.4.
Then there is the result that a<p(n) == 1 (mod n), where 4> is Euler's totient
function" (see Chapter 2 of [4]). And there is his polyhedral formula
V - E + F = 2, which links the number of vertices, edges, and faces of
a polyhedron homeomorphic to a sphere. Euler did much, much more. He
was extremely prolific.

In 1753, Euler was able to settle the case n = 3 of Fermat's Last
Theorem. This was the first development in Fermat's Last Theorem in over
100 years. However, there was a step in the proof that happened to be
correct for the situation where Euler applied it, but it was a step that would
not work in general. Strictly speaking, Euler should have justified this step.
Now the general approach to Fermat's Last Theorem seemed to be to try
to knock off a case at a time. This was a bit like proving that any map with

4In fact, <jJ(n) is the number ofpositive integers m such that m :s n and m is prime to n.
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10 countries is 4-colorable, and then that a map with 11 is 4-colorable,
and so on (see Chapter 5). While everyone knew that this case-by-case
approach was never going to solve either problem, there was always the
hope that, after enough cases had been dealt with, someone would see a
general approach or find a counterexample.

One person who tried to move away from this case-by-case strategy
was one of the outstanding pre-twentieth-century women mathematicians,
Sophie Germain. Her attack lay in looking at a special class P of primes,
namely, those primes p for which 2p + 1 is also a prime. This class
obviously includes 5 and 11 but not 7 or 13. For primes of this class,
Germain was able to show that if there is a solution of x" + yP = z", then
one of x, y, or z would be a multiple of p. This result could then be used
to restriet the set of possible solutions.

As a result of the high interest in the problem generated partly by
Germain's new idea, the French Academy established aseries of prizes for
a solution to Fermat's problem. This was not to be the last such prize.

In 1825, as a result of Germain's work, two famous mathematicians,
Peter Gustav Lejeune Dirichlet and Adrien-Marie Legendre, working in
dependently, managed to settle the case n = 5.

But still the method used by Fermat and Euler was popular. Gabriel
Lame thought that he would be able to use this approach to solve Fermat's
Last Theorem not just for some specific cases, but for all odd primes. This
was in 1847. And it was the German mathematician Ernst Kummer who
first was able to point out that the approach would not work in general, and
second was able to show that it was valid for a large class of primes called
the regular primes (for a definition of a regular prime, see [1]).

What Lame (and Euler) had done was to make a very simple oversight.
He had assumed that, in the realms in which he had been working, unique
factorization occurred. This is a perfectly natural assumption. In ordinary
arithmetic this always holds. For instance, 1050 = 2 x 3 X 52X 7, and this is
the only way to factorize 1050 expressing the result as a product of primes
(irreducibles). Taking a simpler example, 6 = 2 x 3, the factorization
is unique. It can only be done in one way among the positive integers,
assuming that one ignores the order of the factors.

But the way that the proofs had been developing required calculations
to take place among the complex numbers. A complex number is one of
the form a + bi, where i = ,J=T. For instance, 3 + 4i and 2 - 3i are two
complex numbers. If you want to do arithmetic with them you just treat
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the i as an algebraic quantity except that, if you ever get i2
, you convert it

to -1. So

(3 + 4i ) + (2 - 3i) = 5 + i

(3 + 4i) - (2 - 3i ) = I + 7i

and
(3 + 4i)(2 - 3i) = 6 + 8i - 9i - 12i2

= 6 - i - 12(-1)

= 6 - i + 12

= 18 - i

Furtherrnore,

(1 + .;si) (I - .;si) = I- 5i 2 = 6

Ah! (1+JSi)(1-JSi) = 2 x 3, where each ofthe four (complex) numbers
is irreducible in the set of numbers a + bJSi, with a, b ordinary integers.
So, using the complex numbers that were relevant for the Euler-Ferrnat
proof of FLT, it was possible for numbers to be factorized in more than one
way. It is possible for 6 to be factorized as 2 x 3 or as (1 + JSi)(1 - JSi).

Th is problem of unique factorization had actually been a problem
for Ferrnat, though he hadn 't realized it. Let 's go back to the equation
x 3 = y2 + 2, which Fermat claimed had a unique solution in positive inte
gers. His method of proving this was to note that

Now, since the left-hand side of the equation is a cube and since the
two factors on the right have no factors in common, then, given unique
factorization, these factors must both be cubes. Hence

y + hi = (p + qhi) 3 = p3+ 3p2qhi + 6pq 2i2+ 2q3hi3

= p3 _ 6pq2+ h (3 p2q - 2q3) i

where p and q are integers. This implies that 3p2q - 2q3 = 1, and so
q (3 p2 - 2q) = 1. Since p and q are integers, q = 1 or -1. Hence, if
q = I , 3p2 - 2 = 1. So p = ±1. This means that y = p3 - 6pq2 = ±5.
Since y is a positive integer, y = 5, and hence x = 3.



2.8 Euler Enters the Fray

••• BREAKS

What happens if q = -1 in the above argument?

The possible lack of unique factorization was something that Ferrnat
overlooked in his x 3 = y2 + 2 problem. (Could it have been the reason
that the English mathematicians couldn't do it?) However, it was also an
insurmountable difficuIty for a certain class of odd primes , in one approach
to FLT. For the rest of the primes , the regular primes, Kummer was able to
show that the Euler-Fermat style of proof would go through. But how to
tackle the irregular primes?

Apparently, Lame was devastated when Kummer's letter about the reg
ular and irregular primes was read to the French Academy of Seiences in
1847. It was no consolation that Lame had proved the case n = 7 in 1839.
He had hoped that he could get much further.

Again there was a long period oflittle development. The next significant
progress occurred in 1908 when Dickson proved that FLT was true for all
n up to 7000 .

In 1908, Paul Wolfskehl died and left 100,000 marks for anyone who
could prove the truth ofFLT. There is a fascinating story about this. Appar
ently, Wolfskehl had been spurncd in love and decided to commit suicide.
He nominated a time and place for himself and put everything in readiness
for the final event. Having got everything nicely organized ahead of time,
he had some time to kill before he pulled the trigger. Being an amateur
mathematician of some note, he started to read a book on number theory.
He became interested in Kummer's proof for regular prime s and was SUf

prised to find that Kummer had made amistake. Wolfskehl tried to patch
up Kummer's proof and became so engrossed in the problem that the ap
pointed time of his suicide passed unnoticed. As it happened, he was able
to rectify Kummer's proof. Elated by this, he decided that life was worth
living after all. So he gave up the idea of suicide and changed his will to
include the very substantial prize of 100,000 marks for the first person to
prove FLT.

Unfortunately, the prize did not have the reaction he had hoped for.
Mathematicians generally seemed to have decided that FLT was too hard
or not sufficiently significant to bother with. On the other hand, the prize ,
worth just under 2 million US dollars in today's money, attracted a great
deal of interest outside profe ssional mathematical circles. The committee
responsible for overseeing the prize in the Gerrnan town of Göttingen was
inundated with entries. The prize was not awarded (until recently).
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2.9 I BAD TO SOLVE IT

In 1963, the ten-year-old Andrew Wiles wandered into a library in Cam
bridge, England, and found a copy of E.T. Bell's The Last Problem. This
presented the long history of FLT including its Greek roots. Wiles was
fascinated by what he read. In [7] he says

It looked so simple, and yet all the great mathematicians in history couldn't
solve it. Here was a problem that I, a ten-year-old, could understand and 1
knew from that moment that 1 would never let it go. 1had to solve it.

How many other ten-year-olds have said they had to solve it? How many
other people had said they had to solve it? Possibly thousands. But none
had succeeded and at that time, not much seemed to be happening on the
FLT front. With the advent of computers after the Second World War, it
soon became known that the theorem was true for progressively larger
values of n. By 1993 it had been shown to be true for n up to 4,000,000.
However, proving the theorem by computer (in general, using the computer
to prove anything in mathematics) is not just a matter of starting out with a
particular value of n, and checking all possible values of x, y, and z. That
approach is doomed to failure from the start' There are, after all, an infinite
number of numbers to try for x, y, and z, so the process is, in principle,
endless. So there have to be ways found to reduce the problem to a finite
search. This means that some relevant mathematical arguments have to be
developed and applied. Tricks like that produced by Sophie Germain are
needed to make the problem a finite one.

There is, of course, another problem with the computer. It may perhaps
help you to show that a particular value of n satisfies FLT, but it won't
enable you to solve the entire problem. At the end of the computations you
will just know that the theorem is true for another value of n. There will
still remain an infinite number of numbers n to be checked. In fact, it may
be better to solve for a particular value of n by hand. This way you may get
some insight into the problem that you would not get by using the computer.
On the other hand, to solve for a particular n by computer requires various
reduction techniques. These techniques might be developed into a more
general argument. But these are the hands-on parts of the process and in
some sense are independent of the computer.

So there is still the need for mathematicians to invent proofs. Of course,
this is the position at the end of the twentieth century. It may be that, in
the future, machines will have been developed to the stage where they can

5Unless FLT turned out to be false.
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find proofs of theorems. Penrose in [6] suggests that this is unlikely, but
who knows for sure what the future will bring?

Anyway, while we have been chatting, Wiles has achieved his Bachelor's
degree and become a graduate student under lohn Coates at Cambridge.
In order to get a Ph.D. (Doctor of Philosophy degree) at Cambridge, and
most other universities operating under the British system, it's necessary
to work on a problem for 3 years or so and then submit your results in the
form of a book called a thesis. The thesis is examined by a small group
of people. They are looking for original material; if they don't find it, the
candidate is unlikely to pass and be granted the Ph.D.

Coates decided that Wiles should work on elliptic curves. These are
equations of the form y2 = Ax3 + Bx2 + Cx + D, where A, B, C, D
are whole numbers. We've already seen one of these in Section 3, namely,
y2 = x 3 - 2. You remember that Fermat claimed to be able to show that
the only solution in positive integers of this equation is x = 3, y = 5.

While it may seem that Wiles was putting his ambition on hold, it is
important to have a Ph.D. to be an academic mathematician; and Wiles
wanted a career in academia. As it turned out, elliptic curves are funda
mental to his proof ofFLT. But there is another concept fundamental to his
proof - that of modular functions.

* We're afraid that from here we are going to have to skim over many
of the details of Wiles' proof. In that vein we give an approximation to
the definition of modular functions but refer the reader who would like
something more precise to [1] or [3]. Approximately, a modular funetion
of level N is a complex function f such that

f (az + b) = f(z)
ez+d

for all integers a, b, e, d with ad - be = 1 and Nie. An example of a
modular function is

. 00 ( 1 + e2:n:inz ) 8l6e :n: IZD 1 + e 2:n:i(n-l)z

In the 1950s, Yutaka Taniyama and Goro Shimura began to be interested
in these relatively complicated functions of complex variables. It is easy
to define complex functions. For instance, f(z) = Z2 is an example. This
means that f(i) = i2 = -1,

f(l + 2i) = (l + 2i)2 = 1 + 4i + 4i 2 = -3 + 4i,

and so on.
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Taniyama and Shimura began to see a link between elliptic curves and
modular functions. In every case they tried, they could get two modular
functions to fit into a given elliptic curve. So they made the following
conjecture.

The Shimura-Taniyama Conjecture: Given an elliptic curve

y2 = Ax3+ Bx2+ Cx + D

over (j) (the rationals) there exist non-constant modular functions
f(z) and g(z), of the same level N, such that f(Z)2 = Ag(Z)3 +
Bg(Z)2 + Cg(z) + D.

(For reasons we won't go into here, Andre Weil's name is sometimes also
attached to this conjecture, and Taniyama's name is sometimes written
first.)

For experts in the field, this was an astounding and exciting conjecture.
It is rare that two such apparently disparate areas of mathematics as the
theory of elliptic curves and the theory of modular functions turn out to be
so closely linked. If the conjecture were true, it would undoubtedly mean
advances in both areas. These would come because results in one area
could be applied to the other.

Rather tragically, Taniyama committed suicide before his work with
Shimura could be advanced very far.

The Shimura-Taniyama Conjecture attracted a considerable amount
of attention. Many mathematicians were confident that it was true and
even wrote papers with results worded "Assuming the Shimura-Taniyama
conjecture, such and such folIows." This is not an unusual thing to happen
in mathematics. At one stage there was a conjecture about something
called the Classification of Finite Simple Groups. Many group theorists
wrote papers based on the assumption that the classification was correct.
What is the value of such work? WeIl, first, if the conjecture turns out to be
true, then we know that all the results that had assumed it are also true, so
the field has progressed. And, secondly, the results based on the conjecture
may lead to a contradiction. In that case the conjecture would be shown to
be false. So there are potential gains both ways.

Now there is one final type of function to be introduced, whose signifi
cance is explained below. It is called a cusp form ofweight 2 and level N.
Such a function F satisfies the identity

(
az +b)F -- = (CZ+d)2F(z)
cz +d
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where a, b, c, d, N are as in the definition of a modular function, but we
will not attempt to define it fully here.

The next development was somewhat surprising. Gerhard Frey decided
to assume that FLT was false, in order to produce a contradiction. Where
would that lead and what had that got to do with the Shimura-Taniyama
Conjecture?

In 1982 Frey assumed that u, v, w satisfy x" + yP = z", where p is an
odd prime. In other words, ur + vP = ui", From this equation he produced
the elliptic curve

l = x (x - uP) (x + vP)

But this was astrange elliptic curve, so strange that it probably wasn't
related to a modular form. If that was so, it would contradict the Shimura
Taniyama Conjecture; you see, Frey was feeling his way towards a proof
of FLT by contradiction.

So Frey went about setting up a proof that the Shimura-Taniyama Con
jecture implied FLT. He recognized that a complete proof would require
the expertise of a specialist in the arithmetic of modular forms; he thought
such an expert would find it fairly easy to design a proof, and was surprised
that it tumed out to be more difficult than he had supposed. However, Jean
Pierre Serre succeeded in showing that "Shimura-Taniyama implies FLT"
would follow from a certain "level-lowering" conjecture ofhis own, which
experts could indeed start working on.

So at this stage it required two conjectures to prove FLT. This was
reduced to one conjecture when Kenneth Ribet proved Serre's level con
jecture in 1986. An outline of the proof went like this. Assume that the
equation x" + yP = z" has a solution. Then produce the Frey elliptic
curve. If the Shimura-Taniyama Conjecture is true, there exists a cusp
form of weight 2 and level N, suitably related to the Frey elliptic curve.
By the Serre level conjecture, this implies the existence of a cusp form of
weight 2 and level smaller than N. Repeating this step eventually leads to
the existence of a non-zero cusp form of weight 2 and level 2. It is known
that the vector space of such cusp forms is the zero space, so we have a
contradiction. Hence the original assumption is false and FLT is true.

So the only hurdle left to be overcome was finding a proof of the
Shimura-Taniyama Conjecture.

You can imagine that the announcement of Frey's elliptic curve, and
the consequent arguments linking Shimura-Taniyama and Fermat, caused
a great deal of excitement in the mathematical community. However, sur
prisingly few mathematicians were prepared to make the attempt to prove
the Shimura-Taniyama conjecture. They felt that it was an impossible task
and tumed their attention to other things.
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But this was the spur that Wiles needed. He had long since finished
his Ph.D. and had moved to a job in the Mathematics Department at
Princeton University. Now he devoted hirnself almost entirely to settling
the Shimura-Taniyama Conjecture. He didn't expect that it would be easy.
He thought it might take 10 years or so. But he decided to concentrate all
his research efforts into solving this one problem.

As part of his strategy he locked hirnself away from his colleagues and
worked single-mindedly on his own. This was actually an unusual strat
egy. Nowadays mathematiciansprefer to meet with their peers at regular
intervals to discuss their work and the work of others. They also regularly
go to conferences to leam what the latest techniques and results in their
area are. But Wiles, very naturally, wanted the scalp of FLT for hirnself,
and he also did not want to be distracted by others. So working on his own
in his attic, he started to leam all there was to know about the subject he
was about to tackle.

In 1988, Yoichi Miyaoka described a proof of FLT to a mathematics
seminar in Bonn. Wiles must surely have been very upset by this news.
The "proof," however, lasted only a short period before an unpatchable
difficulty was discovered.

Then, in 1993, with a great sense of theater, Wiles announced his proof
at a meeting in the Isaac Newton Institute in Cambridge, England. As with
Miyaoka, the news hit the front pages of the world's leading newspapers!
But, once again, an error was found. Wiles tried to find a way round his
mistake, but there seemed to be no way that he could patch up his original
argument. It was back to the attic.

Another blow came when rumours circulated that a counterexample to
FLT had been found. There was, it was claimed, some n, suitably enormous,
for which integer values of x, y, z could be found such that x" + yn = z",
An advantage of e-mail is that news like this sweeps the mathematical
world very quickly. Another advantage is that the original e-mail is dated.
The message that started the excitement was sent on April I!

At this stage Wiles was not working alone. A former research student
of his, Richard Taylor, came and worked with hirn in an effort to provide
mathematical support in areas where Wiles felt he would like to have some
expert cooperation. It took some time to work around the error of the 1993
proof, but Wiles and Taylor came up with a proof of a restricted form of the
Shimura-Taniyama Conjecture in late 1994.6 This time the referees who
pored over the two submitted manuscripts could find no error. In 1995 these

6In fact, they confined themselves to the so-called serni-stable elliptic curves; this, however, is enough
to prove FLT. Subsequently, Henri Darrnon reported in the NOT/CES 01the American Mathematical
Society [2], that Cristophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor have announced
a full proof of what Darrnon refers to as the Shimura-Taniyama-Weil conjecture.
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manuscripts were published under the titles "Modular elliptic curves and
Fermat's Last Theorem," by Andrew Wiles, and "Ring-theoretic properties
of certain Hecke algebras," by Richard Taylor and Andrew Wiles. They
took up 130 pages in the prestigious mathematics research journal the
Annals ofMathematics.

Although the Wolfskehl prize started off at the equivalent of about
$2 million, it lost considerable value in the deep recession that Germany
experienced in the 1930s. However, in 1997, when presented to Wiles, it
was worth a healthy $50,000.

But, from the international mathematical community's perspective,
Wiles missed out on the big prize - the Fields Medal. The will of John
Charles Fields, a Canadian mathematician, established a fund to provide a
medal that would play the role of the Nobel Prize in mathematics. The In
ternational Congress of Mathematicians in 1932 adopted Fields' proposal,
and the medal was first awarded at the next congress in 1936. It is almost
certain that Wiles would have been awarded a Fields Medal. However,
there is a restriction to the award. A recipient has to be under 40, and
Wiles was 41 when he and Taylor completed the proof of Fermat's Last
Theorem! However, the International Congress ofMathematicians, held in
Berlin in 1998, awarded Wiles a special International Mathematical Union

* silver plaque in recognition of his work.

• • • BREAK9

(1) Sally Jones bought some pigs, goats, and sheep. Altogether she
purchased 100 animals and spent $600. Now, the pigs cost $21
each, the goats $8, and the sheep $3. Ifthere was an even number
of pigs, how many of each animal did Sally buy?

(2) Show that the equation

x 4 + 251 = 5l

has no integral solutions for x and y.
(3) Show that the equation

x2 + l = 80z + 102

has no integral solutions for x, y, and z.
(4) How old was Diophantus when he died? (See the inscription from

his tomb at the beginning of Section 3.)
(5) Show that the equation

has no solution in positive rational numbers x, y, z.
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(6) Show that the equation x n/ 2 + v:" = zn/2, where n is a positive
integer i= 1,2, or 4, has no solution in positive integers x, y, z.

Significant Dates for Fermat's Last Theorem (FLT)

1636? Fermat "proves" FLT for n = 3.
1637? Fermat writes a marginal note.
1640 Fermat proves FLT for n = 4.
1753 Euler proves FLT for n = 3.
1825? Germain considers the case where p and 2p + 1 are both prime.
1825 Dirichlet and Legendre independently prove FLT for n = 5.
1839 Lame proves FLT for n = 7.
1847 Lame tries to prove FLT for all n assuming unique factorization.

Kummer points out Lame's error and proves FLT for all regular
primes n.

1908 Dickson proves FLT for all n ::::: 7000.
1908 Establishment of Wolfskehl prize.
1955 Beginnings of the Shimura-Taniyama Conjecture.
1985 Frey and SeITe link the Shimura-Taniyama Conjecture with FLT

via a potentially non-modular elliptic curve.
1986 Ribet completes the connection between the Shimura-Taniyama

Conjecture and FLT.
1988 Miyaoka claims a proof ofFLT.
1993 Wiles announces a proof of FLT that turns out to be incomp1ete.
1994 Wiles and Taylor complete Wiles' 1993 proof ofFLT by replacing

the defective part of the argument.
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CHAPTER

Fibonacci and
Lucas Numbers:
Their
Connections
and Divisibility
Properties

3.1 INTRODUCTION: A NUMBER TRICK AND ITS EXPLANATION

In [1] we presented a discussion of some properties of Fibonacci and Lucas
numbers, motivated by a number trick that usually intrigues an audience
of students. We repeat the number trick here.

You ask a group of students to write down the numbers from 0 to 9
in a column, while doing the same thing yourself on the blackboard. You
then select one student to come to the board and (with your back tumed
so that you can't see the board) have the student put one number against 0
and another number against 1. The student may choose to write any two
numbers (but you might suggest two fairly small positive integers just to
avoid tedious arithmetic). Instruct each member of the dass to write the

49
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same pair of numbers next to 0 and 1 on their own paper. At this point have
the student at the board erase the two numbers written on the board. You
may then turn around and allow the student who has been assisting you to
return to his or her place. Next instruct the dass to write against 2 the sum
of the entries against 0 and 1; and then write against 3 the sum of the entries
against 1 and 2; and so on. When it is clear that they are all weIl embarked
on this process, producing entries against each number from 0 to 9, you
suggest that, as acheck, they call out the entry against the number 6, since,
as you are careful to explain, the trick would fall flat if they got different
answers at the end of the process. Thus their table (which, of course, you
do not see) might look like this:

0 4

1 5

2 9

3 14

4 23

5 37

6 60 (This one is used as acheck)

7 97

8 157

9 254

You now ask the students to add all the entries in the second column, while
you quietly write 660 on the blackboard below the 9th entry (they generally
won't notice you doing this, since they will be busy calculating). When
they look up they will see that you have the correct total.

They will want to know how you did your calculation so easily
indeed, how you did it at all, since you don 't know their original two
numbers. Well, let's look at the procedure from an algebraic viewpoint. If
you had started with any numbers a and b, your table would have looked
like Table 1. And if we supplement Table 1 with the running sums we get
Table 2.

Now we see why the trick works-the running sum L9 is actually 11
times U6, whatever numbers a, b we choose (but the values of a and b
themselves are not known when you give the answer)! However, you may
have noticed, in the tables above, certain sequences of numbers occurring
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o a
1
2 a
3 a
4 2a
5 3a

6 5a

7 8a
8 13a
9 21a

b

+ b
+ 2b
+ 3b
+ 5b

+ 8b I
+ 13b
+ 21b
+ 34b

TABLE 1

as eoefficients, namely, 0, 1, 1,2,3,5 , 8, . . -,These numbers are ealled the
Fibonaeei numbers (more precisely defined below). There is a eompanion
sequenee of numbers (also more precisely defined below) ealled the Lueas
numbers, namely, 2,1 ,3,4,7,11 ,· . .. As you will see, when we study
both sequenees of numbers together, the mathematies is far rieher than if
we studied either sequenee by itself.

N

N UN LU"
,,=0

0 a a
1 b a + b
2 a + b 2a + 2b
3 a + 2b 3a + 4b
4 2a + 3b 5a + 7b
5 3a + 5b 8a + 12b

6 5a + 8b 13a + 20b

7 8a + l3b 21a + 33b
8 l3a + 21b 34a + 54b

9 21a + 34b 55a + 88b

TABLE2
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Of course, in [1] we carried the explanation of the number trick much
further, so that it occupied the second and third sections of Chapter 3
of [1] - and, in fact, that discussion eventually led us to some properties
involving divisibility.

Here we want to proceed directly to those and other divisibility properties
of these numbers (see Seetion 3.3 of [1]). However, we will devote a final
section of this chapter to a nice, simplifying observation about polynomial
identities relating Fibonacci and Lucas numbers.

Let us first recall some basic facts which may be found in Chapter 3
of [1].

The Fibonacci and Lucas sequences of integers, written {Fn} and {Ln},
respectively, both satisfy the recurrence relation

(1)

For the Fibonacci sequence, the initial conditions are

Fa = 0, FI = 1

while, for the Lucas sequence, the initial conditions are

La = 2, LI = 1

(2)

(3)

(Why do you think we don't consider the sequence {un } with initial condi
tions Ua = 1, U I = I?)

Here is a table of the values of F; and Ln up to n = 13. You may
find it useful to extend it further in order to verify some of the following
Theorems in special cases.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Fn 0 1 1 2 3 5 8 13 21 34 55 89 144 233

Ln 2 1 3 4 7 11 18 29 47 76 123 199 322 521

TABLE3

Now let a, ß be the roots of the equation x 2
- x-I = 0, so that

a + ß = 1, aß = -1 (4)

(5)

Then the Fibonacci and Lucas numbers are given by the Binetformulae

an - ß"
F; = ,Ln = an + ß"

a-ß
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From these formu1ae we infer our primary divisibility results,' name1y,

Theorem 1 Ifmsn, then FmlFn'

Theorem 2 Ifmin oddly, then LmiLn.

Here, and subsequently, m In oddly if m divides n with odd quotient.
These theorems are refined in the following results. Let m, n ~ 1 and

gcd(m, n) = d. Then

To state the next theorem, we need a definition. If m is a positive integer,
then Im12 is the highest power of 2 dividing m; we may call it the 2-value
of m. Now comes the theorem.

Theorem 4

{

Ld iflml2 = Inl2
gcd(L m , Ln) = 1 iflml2 i= Inl2 and 3,yd

2 iflml2 i= Inl2 and 3id

Theorems 1,2,3,4 may all be found in [1J. But there is an important
companion result to Theorems 3 and 4 not mentioned in [1]; we will be
using it here. The proofs of Theorems 3,4, 5 may be found in [2].

TheoremS

{

Ld iflml2> Inl2
gcd(Fm , Ln) = 1 if Iml2 :s Inl2 and 3,yd

2 iflml2 :s Inl2 and 31d

An easy result which he1ps to exp1ain the last parts of Theorems 4 and 5
states that

F; even {} Ln even {} 31n (6)

IThe symbol mln means m divides n, that is, m is a factor of n. The symbol mtn means m does not
divide n.
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••• BREAK 1

Cl ) Show, using the Binet fonnulae and (4), that

Ln+1Ln = L2n+1 + (_l)n

and

Fn+1Ln = F2n+1 + (_ l)n

(Notice the enrichment of the mathematics, of which we spoke
earlier.)

(2) Try to prove (6). (Hint: Look at the first few tenns ofthe Fibonacci
and Lucas sequences mod 2.)

As pointed out in [1], given any positive integer q , there is a Fibon acci
number Fm, with m ~ I , such that q IFm' If m is taken as small as possible,
we call it the Fibonacci Index of q and write

m=FI (q) (7)

On the other hand , there are positive integers q that exactly divide no
Lucas number Ln; 5 and 8 are examples. If there exists m ~ 1 such that
qlLm, we call q Lucasian; and, if m is taken as small as possible, we call
it the Lucas Index of q and write

m = LI (q ) (8)

We are now ready to start proving a remarkable series of results related
to these ideas . Note that, from now onwards, we will only be cons idering F;
and Ln for? n ~ 1.

3.2 A FIRST SET OF RESULTS ON
THE FIBONACCI AND LUCAS INDICES

We start with some fairly easy (but important) results.

Theorem 6 Let q ~ 1 and F I (q ) = m. Then, for any n ~ 1,

qlFn {} mln {} FmlFn

In particular, if qllq2, then F I (qt) IF I (q2 )'

2The proofs of Theorems 3. 4. 5 given in [2] involve the use of Fibonacci and Lucas numbers Fn• Ln
with n negative.



3.2 A First Set of Results on the Fibonacci and Lucas Indices

Proof That m In implies Fm IFn is Theorem 1. That Fm IFn implies q IFn
is obvious, since q IFm. Thus we are left to prove that q IF« implies
that mln. Now, if qlFn, then, since we also have qlFm, it follows
that ql gcd(Fm, Fn) or, by Theorem 3, qlFd , where d = gcd(m, n).
But m is the smallest positive integer such that qlFm, so d = m, or,
equivalently, mln. 0

We leave the proof of the last statement of the theorem as an exercise,
and turn to the corresponding statement for the Lucas Index. We assurne all
the numbers involved to be Lucasian, so that they do have a Lucas Index,
but we further assurne them to be ~ 3. We have then

Theorem 7 Let q ~ 3 be Lucasian with LI(q) = m. Then, for any
n ~ 1,

In particular,

ifq" q2 ~ 3 are Lucasian, and ifqllq2, then LI(ql)ILI(q2) oddly.

Proof As for Theorem 6, the key step in the proof is to establish that

qil.; =} mln oddly.

We have qlLm, qlLn, so ql gcd(Lm, Ln). It is here that we need
the hypothesis q ~ 3; for Theorem 4 then teIls us that we must have
Iml2 = Inl2 and gcd(Lm, Ln) = Ld . It now follows as in Theorem 6
that d = m, mln; but, since Iml2 = Inb we conclude that mln oddly.

We again leave the proof of the last statement of the theorem as an
exercise. 0

••• BREAK2

(1) Prove the last part of Theorem 6.
(2) Similarly, prove the last part of Theorem 7.
(3) Use Theorem 6 to infer that any Fibonacci number divisible by 4

is divisible by 8. Find a similar statement for Lucas numbers that
follows from Theorem 7.

(4) Prove that 5 and 8 are not Lucasian. (Hint: Record the residue
classes mod 5 and mod 8 of the sequence of Lucas numbers.)
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We now use Theorem 5 to prove a sensational - and very recent
result (first published in [5] in 1997).3

Theorem 8 No Fibonacci number > 3 is Lucasian.

Remark We have already noted that 5, 8 are not Lucasian.

Proof of Theorem 8 We prove Theorem 8 in the form: if Fm ::: 3 is
Lucasian, then Fm = 3. We first prove that if Fm ::: 3 is actually a
Lucas number, then Fm = 3.

So we suppose Fm = Ln ::: 3. Then gcd(Fm, Ln) = Ln ::: 3 so, by
Theorem 5, Iml2 > Jnl2 and gcd(Fm, Ln) = Ld , where

d = gcd(m, n)

But, for n ::: I, Ln is an increasing function of n (why?), so that

Ld = Ln {} d = n {} n Im

But, since Iml2 > Inb nlm implies that 2nlm. Hence we have

LnlF2nlFm

since F2n = FnLn(from the Binet formulae (5)). But Ln = Fm, so
Ln = F2n, whence F; = I. This implies that n = I or 2. However,
n = 1 is impossible, since Ln 2: 3 and LI = 1. Thus n = 2 and
Fm = L2 = 3 (so m = 4). Thus we have proved that, if Fm ::: 3 is a
Lucas number, Fm = 3.

We now suppose that Fm ::: 3 is Lucasian, say Fm ILn. Then
gcd(Fm, Ln) = Fm ::: 3. A second application of Theorem 5 shows
us that Fm = Ld ::: 3, where d = gcd(m, n). But we have already
seen that this implies that Fm = 3. Our proof is complete. D

Of course, there are non-Lucasian numbers that are not Fibonacci num
bers, for any multiple of a non-Lucasian number is non-Lucasian. We will
find in Section 4 another source of non-Lucasian numbers.

3.3 ON ODD LUCASIAN NUMBERS

We will prove in this section the remarkable fact that if s is an odd Lucasian
number, then a11 powers of s are Lucasian. This is intrinsica11y surprising;

3rt is striking that new results are to be found today about number sequences that have been studied
for 600 years and 100 years, respectively.
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but it becomes even more surprising when one realizes that it is fa1se for
every even number. For 2,4 are Lucasian but 8 is not; thus the cube of
every even number is non-Lucasian. Here is a tru1y unexpected situation.

We establish the facts for odd Lucasian numbers by means of a key
formu1a which we are about to prove, namely, for any odd integer s, and
any positive integer r,

Lsr = ±sLr + cL;, for some integer c.

To obtain this formu1a, we first prove a fairly deep result for Lucas numbers
Ln with n even.

Theorem 9

\

2 mod L; ifr is odd
L 2kr ==

2( -l)k mod L; ifr is even

Proof By the Binet formu1a for Ln, together with aß = -1, we see that

L2r = a" + ß2r = (ar + ßr)2 - 2a rßr = L; - 2(-1)',

so

if r even

if r is odd_\2modL;
L 2r =

-2 mod L;
Hence L 4r = L~r - 2, so, by (9),

L 4r == 2 mod L;

(9)

(10)

Thus the statement of Theorem 9 ho1ds good if k = 1 or 2. We
may therefore prove Theorem 9 by using a rather unusua1 kind of
inductive argument; that is, by assuming the truth of the statement of
Theorem 9 with k rep1aced by k - 2 and by k - 1 (k ::: 3) and proving
its truth in the form given. The formula we use to do this, namely,

(11)

is based, as before, on the Binet formu1a for Ln and the identity
aß = -1. We suggest that you verify (11) as an exercise, starting
from the right-hand side and app1ying the Binet formu1a for Ln; in
fact, (11) is a special case ofthe fundamental quadratic identity (24),
which you will meet in Section 6.
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Let us first assurne r odd. Then we know, by the inductive hypoth
esis, that LZ(k-Z)r == 2 mod L;, LZ(k-\Jr == 2 mod L;, and, by (9), that
L Zr == 2 mod L;. Thus (11) tells us that

L Zkr == 4 - 2 = 2 mod L~

as claimed. Next assurne that r is even. Then

LZ(k-Z)r == 2(-I)k mod L~

LZ(k-l)r == 2( _1)k-l mod L~

L Zr == -2 mod L~

Thus, by (11),

L Zkr == -4(_I)k-l - 2( _I)k = 2( _1)k mod L~

as claimed, and the proof of Theorem 9 is complete. D

• • • BREAK3

(1) Verify Theorem 9 (i) for r = 3, k = 3; (ii) for r = 4, k = 3.
(2) Verify formula (11).

Now we introduce an odd number s = 2k + I. We know from Theorem 2
that LrlLsr' We will prove

Theorem 10 Let s = 2k + 1. Then

t.; Is mod L;
I:; == (_1)k s mod L;

ifr is odd

ifr is even

Proof Let us first assurne r odd. By elementary algebra we know that

t.; a sr + ßsr

L, a' + ßr

= a Zkr _ a(Zk-\Jrßr + a(Zk-Z)r ßZr + ... + (_1)kakr ßkr

+ ... + a" ß(Zk-Z)r _ a' ß(Zk-l)r + ß Zkr (12)
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Collecting tenns from either end of (12), we obtain (remember that
aß = -1 and r is odd)

t.;
- = L 2kr + L 2(k - l )r + L 2(k - 2)r + ... + L 2r + 1
Lr

== (2k + 1) mod L;, by Theorem 9,

= s mod L;
Now assume r even. We again proceed to (12) and collect tenns

as before. Now, however, with r even, we obtain

t.; 1 k-l (l)k- = L 2kr - L 2(k- l )r + L 2(k - 2)r - ..• - (-) L 2r + -
L r

== (-I)k(2k + 1) mod L;, by Theorem 9,

= (-I)k s mod L;

o

Except to verify the fonnula of Theorem 10, we will not be concerned
in the sequel with the precise sign" in Theorem 10. Thus we will be content
to quote: if s is odd, then

L sr 2
- ==±smodLL r

r

Indeed, we go further. We know from (13) that

L sr = ±s + cL2

L
r

r

for some integer c, so that, as c1aimedearlier,

l.; = ±sLr + cL;

(13)

(14)

It is (14) that we regard as our key formula. It enables us to prove
yet another remarkable theorem. To state this theorem we introduce some
notation. First,

sk[]l

means that skll but sk+1Yl; if sk[]l and s is a prime p, we may also write"

[llp = k

4But notice that we could not have proved Theorem 10, even with ± replacing the precise sign,
without knowing the precise sign in Theorem 9. Don't get sloppy too soon - that would be unlicensed
sloppiness!

5The notation lel p is consistent with the meaning earlier attached to the syrnbol lml-.
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Second,

sklle

means that Sk le with quotient prime to s. Obviously, Sk [Je if Sk Ile, but the
converse only holds if s is a prime. We now prove a result that has not been
published before.

Theorem 11 Suppose that s is odd and s]L r • Then,for any q :::: 1,

(i) sqILr {:} sq+llLm

(ii) sq[]L r {:} sq+l[]Lsn

(iii) sq/I t., {:} sq+l/iLsr •

Before proving this (rather surprising) theorem, we give some examples
to illustrate it, which you might like to check; and we make aremark
harking back to the claim we made at the start of this section.

Examples of Theorem 11 Using L l 8 = 5778 = 27 . 214 you may
verify that

31L2,

3[]L2 ,

311L2 ,

321L
fi ,

32[]L
6 ,

32/1L
fi ,

331L
l8

33[]L
18

33/1L
l 8

Next we remark that it is part (i) of this theorem that establishes the
fact that every power of s is Lucasian if s is Lucasian. For it follows
immediately from (i) that

slL r ~ sqILsq-!" « : 1

We now come to the proof" of Theorem 11.

(15)

Proof of Theorem 11 The entire proof is based on (14). We begin by
proving the ~ part of (i). For if sqlL" then sq+llsLr and s3qlcL;.
Thus, since q :::: 1, sq+llcL;, so, by (14), sq+lILsr • Next, we prove
the ~ part of (ii). If sq[]Lr , then sq+l [Js t.; but sq+2IcL;. 11 follows,
from (14), thatsq+1[]Lsr • Next we prove the~ part of(iii). If sqllL"
then sq+l/ls Lv. Since sq+2IcL;, it follows, from (14), thatthe quotient

51t is obvious that, in practice, the =} parts of Theorem 11 would be used far more often than the
{= parts.
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of Lsr by Sq+l is the sumofanumberprime to sand anumberdivisible
by s, and hence is prime to s. Thus sq+lIILsr'

We now prove the reverse implications, starting with {= in (ii).
Since slL" there exists t ~ I such that st[]Lr. But then st+l[]L",
so t + 1 = q + 1, t = q. We next prove {= in (i). Given sq+lIL",
suppose that st+l []L", t ~ q ~ 1. Then st[]L" so sqILr. Finally, we
prove {= in (iii). Given sq+lIIL", we know that sq[]Lr (why?). Thus
sq+lIIL", sq+2IcL~, so, by (14), sq+lllsL" and finally, sqllL r. 0

We now make another crucial use of our key formula (14).

Theorem 12 Let p be a prime divisor of Lv. Then, with the data of
Theorem 11, that is, assuming that s is odd and s IL r» we conclude that

(16)

Proof Let ILri p = n ~ 1, so IcL~lp ~ 3n; and, repeating (14),

Lsr = ±sLr + cL;

Now, [s], .:s n, since slL" so IsLrlp .:s 2n < IcL~lp, yielding

ILsrl p = I ± sL, + cL;l p = IsLrlp = ILri p+ Isl p

o

We use Theorem 12 to prove one of our most important results on the
Lucas Index.

Theorem 13 Suppose s is odd and sq I1 Ln so that sq+lll L", where q ~ 1.
Then, ifr = Ll tst ),

Proof The claim is trivial if s = 1, so we may assume s ~ 3 (remember
thats is odd). By Theorem 7, with LI (sq+l) = t, we have rltlsr (with
odd quotients). It follows that t = ur, with u Is. If u =1= s, then there
exists a prime p such that pis and lulp < Islp. Now, by Theorem 12,
since plL" we have

ILurl p = ILri p+ lulp < ILri p+ Isl p = ILsrl p = (q + l)lsl p ,

since sq+lIILsr' Thus sq+l1Lu" contradicting LI(sq+l) = ur. Hence
u = sand LI (Sq+l) = sr, as claimed. 0
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Remarks on Theorem 13

(i) The hypothesis sq11 L, is essential; it is not sufficient to suppose
that sq[JLr ; indeed, if sq[]L r , then the conclusion may be false.
See [3] for detailed results on this issue.

(ii) Of course, we may iterate Theorem 13 to infer that

snr = LI (sq+n)

(iii) The converse ofTheorem 13 holds. IfsqIILr and sr = LI (sq+I),
let LI(sq) = t. Then tlr oddly, so LtIL" whence sqllL t. Thus,
by Theorem 13, LI(sq+l) = st, so that st = sr, t = r.
However, it is unlikely that the converse would be useful in
determining the Lucas Index.

Example 14 We observe that L 1s = 1364 = 4 x 11 x 31. Now L 3 = 4,
t., = 11. Thus

LI(31) = 15 and 3111L 1s

It follows that LI (31n+ I) = 15 . 31n, and that any Lucas number divisible
by 31 is divisible by 1364. (Why?)

••• BREAK4

(1) Answer the last question above.
(2) Find another example similar to that given.

3.4 A THEOREM ON LEAST COMMON MULTIPLES

We suppose a, b ::: 3 are Lucasian and ask: is lcm(a, b) necessarily Lu
casian? The answer is no, for 3 and 7 are Lucasian, but 21 is not. The
complete answer is to be found in the following theorem.

Theorem 15 Let a, b ::: 3 and let a, b be Lueasian with LI (a) = q,
LI(b) = r. Then lcm(a, b) is Lueasian {:} Iql2 = Ir12.

Moreover, iflql2 = Ir12, then

LI(lcm(a, b» = lcm(LI(a), LI(b» (17)

Proof Set e = lcm(a, b) and suppose e Lucasian. Then ale so, by Theo
rem 7, qILI(e) oddly. Similarly, rILI(e) oddly. Hence

Iqb = ILI(e)12 = Irb
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Conversely, suppose /q/2 = /r12 and let e =lcm(q, r). Then q/e
oddly, so alLe. Similarly, blLe, so eiLe and eis Lucasian.

Finally, assurne /q12 = Irl2 and LI(e) = m. Then mle oddly. On
the other hand, alelLm , so qlm oddly, and similarly rlm oddly, so
elm oddly, whence e = m. But this is exactly (17). 0

Example 16 LI (3) = 2, LI (7) = 4, so Theorem 15 gives a second
explanation of the fact that the Fibonacci number 21 is not Lucasian. On
the other hand, LI(9) = 6, (L 6 = 18), LI(4l) = 10 (Lw = 123), and
1612 = 11012 = 1. Thus 369 is Lucasian and LI (369) = 30.

• •• BREAKS

Of course, the analogue of (17) holds for the Fibonacci Index with
no restrictions on a and b. Prove this; that is, prove that

FI(lcm(a, b» = lcm(FI(a), FI(b» (18)

3.5 THE RELATION BETWEEN THE
FIBONACCI AND LUCAS INDICES

In this section we establish a precise relation between the Fibonacci and
Lucas indices of a Lucasian number q ::: 3. The theorem states:

Theorem 17 If q is Lucasian, and q ::: 3, then

FI(q) = 2LI(q) (19)

Notice that (19) does not hold if q = 1 or 2. For F 1(1) = LI (1) = 1,
F 1(2) = LI (2) = 3. In proving (19) we will need a nice fact from
elementary number theory. We leave the proof of the following lemma to
the reader.

Lemma 18 Let qsab. Then q ean be written as q = uv, where ula, vlb.

Proof of Theorem 17 We first assurne that q ::: 3 is odd. Suppose
FI(q) = m, LI(q) = n. Then qlLn, so qIF2n and ml2n. On the
other hand, qlFn, since gcd(Fn, Ln) = 1 or 2 (see Theorem 5). Thus
mtn, whence m is even, say m = 2e, ein (oddly). Now qlFeLo since
qlF2e, so, by our lemma, q = uv, where ulFe, vlLe. Then ulFelFn
and ujqlLn, so, by Theorem 5, u, being odd, must be 1. Thus q = v,
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so qlLe , whence nie (oddly), by Theorem 7. This shows that n = e,
so m = 2n, as claimed.

We next prove (19) for q = 2s, where s is odd, s ~ 3. For
let FI(s) = m, LI(s) = n, so that m = 2n. Now, if 31n, then
21Ln , so 2s/Ln , and similarly 2slFm, so m = FI(2s), n = LI(2s),
and (19) holds. If 31n, then 21L3n and slL3n , so 2s1L3n • Moreover,
3n = LI(2s), since LI(2s) must be a number t such that nlt oddly,
3/t and tl3n oddly. Even more obviously, F I (2s) = 3m if 31m
(equivalent, of course, to 31n), so (19) holds in this case.

We next prove (19) for q = 4s, where s is odd, s ~ 3. We first
observe that 4s is Lucasian {} LI(s) is odd, by Theorem 15, since
LI (4) is odd. Again, by Theorem 15, if 4s is Lucasian,

LI(4s) = lcm(3, LI(s))

Thus

F l(4s) = lcm(F1(4), F I (s))

= lcm(6, 2LI(s))

= 2lcm(3, LI(s)) = 2LI(4s);

and, finally, F 1(4) = 2LI (4) = 6.
We claim that the proof of Theorem 17 is now complete. For 8

is not Lucasian, so no number divisible by 8 is Lucasian. Thus our
analysis of odd numbers s, of even numbers 2s (s odd), and even
numbers 4s (s odd), has included all Lucasian numbers q ~ 3. We
rest our case! 0

••• BREAK6

(1) Show that, if 4s is Lucasian, then LI (4s) = LI (2s).
(2) Prove Lemma 18. (lf you can't prove it, illustrate it with

examples.)

3.6 ON POLYNOMIAL IDENTITIES
RELATING FIBONACCI AND LUCAS NUMBERS

There is an extensive literature in which polynomial identities relating
the Fibonacci and Lucas numbers are discovered and proved? (see, for
example, [4,6]). Of course, there is no problem in proving a linear identity;

7In this seetion we regard Fn and Ln as defined for all integer values of n.
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for a linear identity may be established by simply verifying it for two
successive values of n. For example, if we want to verify that

Ln = Fn+i + Fn- i, for all n, (20)

we simply observe that this holds for n = I (I = I + 0), and for n = 2
(3 = 2 + I). This works because the defining recurrence relation for both
Fibonacci and Lucas numbers is the same linear relation:

Un+2 = Un+i + u.;

The companion relation to (20) is

5Fn = Ln+i + Ln

and the remaining key linear relations" are

Fs; = (_1)n-i Fn, L_n = (_1)n Ln

(21)

(22)

(23)

But we may regard any linear relation as trivial if true, by the argument
above, and proceed to discuss relations of higher degree. First, however,
we take a break.

• •• BREAK7

(1) Prove (22) for all values of n.
(2) Use the recurrence relation to carry Table I back one place; and

thus prove the relations in (23).
(3) Explain why linear identities involving linear second order re

currence relations (and not only (21) may be proved in this easy
fashion.

Let us now turn to quadratic identities. We first prove the identity

t.u., = L m+n + (-It Lm - n (24)

(Notice that (11) is a special case of (24).)
Toprove (24) we use the Binetidentity (5). Thus (withm, n any integers)

t..i; = (am + ßm)(an + ßn)

= a m+n + ßm+n + anßn(am-n + ßm-n)

= L m+n + (_l)n L m-n, since aß = -1

8There is a small extra subtlety about proving the identities (23), due to the presence of a sign depending
on n, but it does not invalidate the proof strategy we have described.
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There are two other quadratic identities similar in nature to (24); they are

5FmFn = L m+n - (-lrLm-n

FmLn = Fm+n + (_1)n Fm-n

(25)

(26)

However, it is not difficult to see that any one of (24), (25), (26) may
be derived from any other by applying (20) or (22). Thus, for example,
given (22), (24), we have

5FmLn = (Lm+1+ Lm-1)Ln

= L m+n+1+ (-IrL m-n+1+ L m+n- 1+ (_1)n Lm-n- 1

= 5Fm+n + (-lr5Fm-n

establishing (26). Likewise, (22) and (26) together establish (25).
Now, given any conjectured polynomial identity of degree k 2: 2, we

may use the quadratic identities (24), (25), (26) to reduce it to an equivalent
identity of degree k - 1, and hence eventually to a linear identity. This
linear identity may then be verified - or disproved - by checking it for
two successive values of n.

Thus one can say that, in addition to linear identities, one only needs one
quadratic identity to establish all polynomial identities relating Fibonacci
and Lucas numbers - one may choose that quadratic identity to be (24),
(25), or (26). Moreover, one can make the derivation process entirely
algorithmic if one wishes. Let us give an example of the process.

Example 19 Prove that

_ i j k
LiLjLk - L i+H k + (-1) L_i+j+k + (-1) Li-Hk + (-1) L i+j-k

To reduce this cubic identity to a quadratic identity we invoke (24) to
write it as

(L i+j + (-I)j Li-j)Lk
_ i j k
- L i+H k + (-1) L-i+H k + (-1) Li-Hk + (-1) L i+j-k

We invoke (24) again to reduce this to a linear identity. We find that we
have only to verify that

Hk _ i(-1) L i - j-k - (-1) L-i+H k

but this is an immediate consequence of the identity Li.;
(see (23».
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We emphasize that we have been discussing polynomial identities relat
ing, specifically, the Fibonacci and Lucas numbers. However, the simple
procedure we described for verifying a linear identity applies to any such
identity involving a sequence, or combination of sequences, satisfying (21).
Let us now illustrate this point, by proving the following theorem.

Theorem 20 Let {un } be an arbitrary sequence satisfying (21). Then

(27)

Proof The relationship (27) has the appearance of a quadratic identity.
However, we can convert it into a linear identity by holding m and the
sequence {un } fixed and regarding (27) as a relationship between the
sequence {u n } and the Fibonacci sequence {Fn }, true for all n. Now,
to prove (27), we have only to verify it for two successive values of n;

we choose n = 1,2. We recall that Fo = 0, FI = 1, Fz = 1.
With n = 1, (27) asserts that Um = Um, evidently true; with

n = 2, (27) asserts that Um+1 = Um + Um-i> also evidently true.
Thus (27) is established for all values of m, n and all sequences {u n }

satisfying (21). D

We may regard (27) as showing why, from a mathematical point of
view, the Fibonacci sequence has a primacy? among all sequences satisfy
ing (21). For it shows how to express the terms of any other sequence {un }

satisfying (21) as a linear combination of the terms of the sequence {Fn } ,

namely,

(28)

Notice the example of this in the first display of Table 2.
We will use Theorem 20 to provide alternative proofs of two of our

basic divisibility results, namely, Theorem 1 and Theorem 3. In fact, we
will invoke (27) with u; = Fi: that is, we will exploit the relationship

We suppose a, b to be positive integers with a :::: b; then

a = qb + r, 0 :::: r :::: b - 1

Setting m = a - b + 1, n = b in (29), we obtain

90f course, the Fibonacci sequence also has a primacy in biology.

(29)

(30)
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Thus

Now it is easy to see, from the recurrence relation Fn+2 = Fn+1 + Fn, that

gcd(Fn+2 , Fn+l) = gcd(Fn+h Fn).

Proceeding in this way we see that

gcd(Fb, Fb- I ) = gcd(F2, F1) = gcd(l, 1) = 1

Thus we see that Fb , Fb- I are coprime. It follows that

gcd(Fa-bFb- l , Fb ) = gcd(Fa_b• Fb) (why?)

so that

gcd(Fa, Fb ) = gcd(Fa_b , Fb )

Iterating (3 I) and using (30), we arrive at the conclusion

gcd(Fa, Fb) = gcd(Fn Fb )

(31)

(32)

where r is the remainder on dividing a by b.
We complete the proof of Theorem I as follows. If bla, then r = O.

Thus, in this case,

that is, FbiFa.
We complete the proof of Theorem 3 as foIlows. We employ the Eu

clidean algorithm to caIculate d = gcd(a , b). That is, we obtain a sequence
of remainders rl (= r), r2, ... , rk (= d) , r k+I (= 0), where r, is the remain
der when r j-2 is divided by ri-I, i = 1,2, ... ,k + 1, with r - I = a, ro = b.
But (32) teIls us that

gcd(Fa, Fb ) = gcd(Fb, Fr,) = gcd(Frl, Fr2)
= ... = gcd(Frp FrHI) = gcd(Fd , Fo) = Fd ,

establishing Theorem 3. Notice that Theorems 1 and 3 have here been
established without recourse to the Binet formulae .

• •• BREAKS

Cl ) Answer the two questions (introduced by "why ?") in our proof
offormula (31).

(2) Prove (29) as a consequence of our basic quadratic identity (25).
(3) Find gcd(377, 10946) .
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CHAPTER

Paper-Folding,
Polyhedra
Building, and
Number Theory

4.1 INTRODUCTION: FORGING THE LINK BETWEEN
GEOMETRIC PRACTICE AND MATHEMATICAL THEORY

In this chapter we carry the paper-folding procedures and the mathematics
of paper-folding further than we did in [2]. However, in order to make
this account as self-contained as possible, we will recall, in Section 2, the
systematic folding procedures from Chapter 4 of [2] that enabled us to
approximate, to any degree of accuracy desired, any regular convex N
gon. I We will see, from the examples, that the process also enables us to
fold certain regular star {~}-gons,2 some of which are shown in Figure 1.
For brevity we will refer to the approximations we obtain for both the
regular convex N -gons and the regular star {~}-gons (when a ::: 2) as
quasi-regularpolygons. In most cases the context will make it unnecessary
to state whether or not they are genuine convex polygons. Sonietimes we

lIt is not uncommon for people to adopt special conventionally-pennitted paper-folding procedures
that produce exact constructions for certain families of regular polygons (see, for example, [13]).

2We will give a more precise definition of these star polygons in Seetion 2. Note that, when we speak
of a {* I-gon, we assume that a, b are coprime; but, if a, b emerge from a calculation (see (3), (4) of
Section 2), they may not, at that stage, be coprime.

71
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(a) (b)

(e)

FIGURE I Some star I~ I-gons. (a) a = 28, b = 11. (b) a = 27, b = 5. (c) a = 19, b = 4.

refer to a star b-gon to mean a star {~}-gon for some a prime to band
satisfying a < ~.

In the process of recalling the folding procedures we will also describe
again how to construct a symbol that enables one to read off the folding
instructions for constructing any quasi-regular N -gon, where N is odd
and :::: 3. Surprisingly, the construction of this symbol led us, in [2], to
the Quasi-Order Theorem in base 2 in number theory (the "2" came natu
rally from the paper-folding, since the folding procedure always involved



4.2 What Can Be Done Without Euclidean Tools

bisecting angles). We will restate that remarkable theorem in Seetion 2 (the
proof begins on page 130 of [2]) and illustrate it with some examples.

In Seetion 3 we describe precisely how to make secondary fold lines,
to augment the primary fold lines described in Seetion 2, so that we can
construct any quasi-regular polygon.

Section 4 gives instructions for how to use the folded strips of paper that
produce 3-, 4-, 5-gons to build certain polyhedra. Many of these models
are very striking to behold - but they have other unusual characteristics.
Some of them come apart into straight strips, thus making them easy to
store, others collapse in unexpected ways, and, as we show in Chapter 8,
some are also connected with beautiful mathematical ideas; and we believe
that this connection is no accident. Thus Seetion 4 is not itself mathematical
in nature, but it can stimulate and enliven some fine mathematics.

In Seetion 5 we generalize the Quasi-Order Theorem to a general base t.
In doing this we then are forced to give up the interpretation of folding
paper, but the analogy is clear, and the result is truly remarkable. The proof
of the general theorem is scarcely more difficult than that of the Quasi
Order Theorem in base 2, but the statement of the generalization is not at
all obvious. If you try generalizing the Quasi-Order Theorem of Seetion 2
before reading Seetion 5, we think you will see what we mean .

• •• BREAKl

Why is it no restriction on the notion of a star {!!. }-gon to insist that
a < ~? [Hint: What would be the difference betw~en the star {~ }-gon
and the star {~}-gon?]

4.2 WHAT CAN BE DONE WITHOUT EUCLIDEAN TOOLS

We begin by recalling how the question of whether or not, for a given N, it is
possible to construct a regular N -gon using Euclidean tools (straight edge
and compass) has fascinated people since the time of the ancient Greeks.
In fact, Gauss (1777-1855) completely settled the question by proving that
a Euclidean construction of a regular N -gon is possible if and only if the
number of sides N is of the form N = 2c TI Pi, where the numbers Pi are
distinct Fermat primes - that is, primes of the form F; = 22

" + 1. Now,
since F; is only known to be prime for

Fo = 3, Fr = 5, F2 = 17, F3 = 257, F4 = 65537,
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it is clear that a Euclidean construction of a regular N -gon is known to
exist for very few values of N; and even for these N we do not know, at
the time of writing, an explicit construction in all cases.

Despite this restrictive result we still would like, somehow, to construct
alt regular polygons. Our approach (as in [2]) is to modify the question so
that, instead of asking for an exact construction,' we ask:

For whicb N ~ 3 is it possible, systematically and explicitly, to
construct quasi-regular (convex) N-gons by paper-folding?

Surprisingly, as we will show, the answer to this question is: alt N ~ 3.
Furthermore, in showing precisely how this is done, we receive a bonus,
that is, we will also be able to construct all possible quasi-regular {!!. }-gons.

a
Let us now begin by recalling the precise and fundamental folding proce-

dure, involving a straight strip of paper with parallel edges. We suggest that
you will find it useful to have a long strip of paper handy. Adding-machine
tape or ordinary unreinforced gummed tape work well.

Assume that we have a straight strip of paper that has certain vertices
marked on its top and bottom edges, at equally spaced intervals, and that
also has creases orfolds along straight lines emanating from the vertices at
the top edge of the strip. Further assume that the creases at those vertices
labeled Ank. n = 0, 1,2, ... (see Figure 2), which are on the top edge,
form identical angles of a; with the top edge, with an identical angle of a;
between the crease along the lines AnkAnk+2 and the crease along AnkAnk+!

(as shown in Figure 2(a)). If we fold this strip on AnkAnk+2, as shown in
Figure 2(b), and then twist the tape so that it folds on AnkAnk+h as shown
in Figure 2(c), the direction of the top edge of the tape will be rotated
through an angle of 2( a;). We call this process of folding ~nd twisting the
FAT-algorithm (see any of [4,5,6, 7,8, 11] ).

Now consider the A nk along the top of the tape, with k fixed and n
varying. If the FAT-algorithm is performed on a sequence of angles, each
of measure a;, at the vertices given by n = 0, 1, 2, ... , b - 1, then the
top of the tape will have tumed through an angle of Zatt . Thus the vertex
A bk will come into coincidence with Ao; and the top edge of the tape will
have visited every ath vertex of abounding regular convex b-gon, thus
creating a quasi-regular {~}-gon. As an example, see Figure 6(c), where
a = 2 and b = 7. (In order to fit with our usage of "N-gon" we make a
slight adaptation ofthe Coxeter notation for star polygons (see [1] ), so that

30f course, in many cases, such as when N = 2c (with c ::: 2), we can give exact constructions.
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when we refer to a quasi-regular {~}-gon we mean a connected sequence
of edges that visits every ath vertex of a quasi-regular b-gon. Thus our
N -gon is the special star {~}-gon. When labeling a convex polygon this
way we may weIl use a lower case letter instead of N.)

Figure 3 illustrates how a suitably creased strip of paper may be folded
by the FAT-algorithm to produce a quasi-regular p-gon, (or {f}-gon) . In
Figure 3 we have written Vk instead of All b since it is more natural in this
particular context.

Let us now illustrate how the FAT-algorithm may be used to fold a
regular convex 8-gon. Figure 4(a) shows a straight strip of paper on which
the dotted lines indicate certain special exact crease lines. In fact, these
crease lines occur at equally spaced intervals along the top of the tape,
so that the angles occurring at the top of each vertical line are (from left
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to right) i, ~' ~' ~ . Figuring out how to fold a strip of tape to obtain
this arrangement of crease lines is very unlikely to cause the reader any
difficulty, but complete instructions are given in [8]. Our immediate interest
is focused on the observation that this tape has, at equally spaced intervals
along the top edge, adjacent angles each measuring ~' and we can therefore
execute the FAT-algorithm at 8 consecutive vertices along the top of the
tape to produce an exact regular convex 8-gon, as shown in Figure 4(b).
(Of course, in constructing the model, one would cut the tape on the first
verticalline and glue a section at the end to the beginning so that the model
would form a elosed polygon.)

Notice that the tape shown in Figure 4(a) also has suitable crease lines
that make it possible to use the FAT-algorithm to fold a regular convex
4-gon. We leave this as an exercise for the reader and turn to a more
challenging construction, the regular convex 7-gon.

Now, since the 7-gon is the first regular polygon that we encounter for
which there does not exist a Euclidean construction, we are faced with
areal difficulty in creating acrease line making an angle of ~ with the
top edge of the tape. We proceed by adopting a general policy we call our
optimistic strategy. Assume that we can crease an angle of 2; (certainly we
can come elose) as shown in Figure 5(a). Given that we have the angle 2; ,
it is then a trivial matter to fold the top edge of the strip DOWN to bisect
this angle, producing two adjacent angles of ~ at the top edge as shown
in Figure 5(b). (We say that ~ is the putative angle on this tape.) Then,
since we are content with this arrangement, we go to the bottom of the
tape, where we observe that the angle to the right of the last crease line
is 6; - and we decide , as paper folders, that we will always avoid leaving
even multiples of n in the numerator of any angle next to the edge of the
tape, so we bisect this angle of 6; , by bringing the bottom edge of the
tape UP to coincide with the last crease line and creating the new crease
line sloping up shown in Figure 5(c). We settle for this (because we are
content with an odd multiple of n in the numerator) and go to the top of
the tape , where we observe that the angle to the right of the last crease
line is 4; - and, since we have decided against leaving an even multiple
of Jr in any angle next to an edge of the tape, we are forced to bisect
this angle twice, each time bringing the top edge of the tape DOWN to
coincide with the last crease line, obtaining the arrangement of crease lines
shown in Figure 5(d). But now we notice that something miraculous has
occurred! Ifwe had really started with an angle of exactly 2; , and ifwe now
continue introducing crease lines by repeatedly folding the tape DOWN
TWICE at the top and UP ONCE at the bottom, we get precisely what
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we want, namely, pairs of adjacent angles, measuring ~, at equally spaced
intervals along the top edge of the tape. Let us call this folding procedure
the D2U1-folding procedure (or, more simply-and especially when we
are concemed merely with the related number theory - the (2,1)-folding
procedure) and call the strip of creased paper it produces D2U 1-tape (or,
again more simply, (2, l)-tape). The crease lines on this tape are called the
primary crease lines .

• •• BREAK2

(1) We suggest that before reading further you get a piece of paper
and fold an acute angle which you call an approximation to 2; .
Then fold about 40 triangles using the D2U I-folding procedure
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as shown in Figures 5 and 6(a) and described above, throw away
the first 10 triangles, and see if you can tell that the first angle you
get between the top edge ofthe tape and the adjacent crease line is
not~. Then try to construct the FAT7-gon shown in Figure 6(b).
You may then believe that the D2U I-folding procedure produces
tape on which the smallest angle does approach ~, in fact rather
rapidly.

(2) Try executing the FAT-algorithm at every other vertex along the
top of this tape to produce a quasi-regular n}-gon. (Hint: Look
at Figure 6(c).)

How do we prove that this evident convergence actually takes place? A
very direct approach is to admit that the first angle folded down from the
top of the tape in Figure 5(a) might not have been precisely 2; .Then the
bisection forming the next crease would make the two acute angles nearest
the top edge in Figure 5(b) only approximately ~; let us call them ~ + E

(where the error E may be either positive or negative). Consequently, the
angle to the right of this crease, at the bottom of the tape, would measure
6; _ E. When this angle is bisected, by folding up, the resulting acute
angles nearest the bottom of the tape, labeled 3; in Figure 5(c), would in
fact measure 3; - ~, forcing the angle to the right of this crease line at the
top of the tape to have measure 4; + ~. When this last angle is bisected
twice by folding the tape down, the two acute angles nearest the top edge
of the tape will measure ~ + {J. This makes it clear that every time we
repeat a D2U 1_folding on the tape the error is reduced by a factor of 23 •

We see that our optimistic strategy has paid off - by blandly assuming
we have an angle of ~ at the top of the tape to begin with, and folding
accordingly, we get what we want - successive angles at the top of the
tape that, as we fold, rapidly get closer and closer to ~, whatever angle we
had, in fact, started with!

In practice, the approximations we obtain by folding paper are quite
as accurate as the real world constructions with a straight edge and com
pass - for the latter are only perfect in the mind. In both cases the real
world result is a function of human skill, but our procedure, unlike the
Euclidean procedure, is very forgiving in that it tends to reduce the effects
of human error-and, for many people (even the not so young), it is far
easier to bisect an angle by folding paper than it is with a straight edge and
compass.
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Figures 6(e), 6(d) show the regular {~}- and {D-gons that are produeed
from the D2U 1-tape by exeeuting the FAT-algorithm on the erease lines
that make angles of 2; and 3; ,respeetively, with an edge of the tape (if the
angle needed is at the bottom of the tape, as with 3; ,simply turn the tape
over so that the required angle appears on the top). In Figures 6(e), 6(d)
the FAT-algorithm was exeeuted on every other suitable vertex along the
edge of the tape so that, in (e), the resulting figure, or its flipped version,
eould be woven together in a more symmetrie way and, in (d), the exeess
eould be folded neatly around the points.

It is now natural to ask:

1. Can we use the same general approach used for folding a eonvex 7-gon
to fold a eonvex N -gon with N odd, at least for eertain specified values
of N? If so, ean we always prove that the aetual angles on the tape really
eonverge to the putative angle we originally sought?

2. Do we always get a quasi-regular {~}-gon with any general folding
proeedure, perhaps with other periods, such as those represented by

D3U3
, D4U 2

, or D3U 1D1U3 D1U1?

How does the folding procedure determine ~?

(The period is determined by the repeat of the exponents, so these examples
have periods 1,2, and 3, respectively.)

The answer to (1) is yes, and we will soon show you an algorithm for
determining the folding procedure that produces tape from whieh you can
construet any given quasi-regular {~}-gon, if a, b are odd with a < ~. The
complete answer to (2) appears in [2], but here we will simply note that an
iterative folding procedure of this type will always produee one and only
one quasi-regular {t}-gon (see page 135 of [2]).

a
Let us now look at the general i-period folding procedure D" U", A

typical portion of the tape would appear as illustrated in Figure 7(a).
It turns out that the smallest angle ü, at the top, or bottom, of this tape

approaches 2n: 1 ; that is,

(1)

A proof of (1) similar to the one provided above for the tape whose
smallest angle approached ~ may be given. In fact, we can see that, if
the original fold down (supposedly making an angle of 2;:' with the top
of the tape) were such that it produced an angle that differed from the
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Fold down n times Fold down m times

Fold up n times
kth stage (l-period folding)

(a)

Fold up n times
kth stage (2-period folding)

(b)

FIGURE7

(2)

putative angle 2'':' by an error Eo, then the error Ek at the kth stage of the
Dnun-folding procedure would be given by

IEol
IEkl = 2nk

Hence we see that the Dnun-folding procedure produces tape from
which we may construct quasi-regular (2n + l)-gons-and, of course,
these include those N -gons for which N is a Fermat number, prime or
not. We would like to believe that the ancient Greeks and Gauss would
have appreciated the fact that, when n = 1, 2, 4, 8, and 16, the D'U"»
folding procedure produces tape from which we can obtain, by means
of the FAT-algorithm, a quasi-regular 3-, 5-, 17-, 257-, and 65537-gon,
respectively. What's more, if n = 3, we approximate the regular 9-gon,
whose non-constructibility by Euclidean tools is very closely related to the
non-trisectibility of an arbitrary angle.

The case N = 2n + 1 is atypical, since we may construct (2n + 1)
gons from our folded tape by special methods (not involving the FAT
algorithm), in which, however, the top edge does not describe the polygon,
as it does in the FAT-algorithm. Figure 8 shows how the D 2U2-tape shown
in part (a) may be folded along just the short lines of the creased tape to
form the outline of a quasi-regular pentagon shown in (b), and along just
the long lines of the creased tape to form the outline of the slightly larger
quasi-regular pentagon shown in (c); and, finally, we show in (d) the quasi
regular pentagon formed by an edge of the tape when the FAT-algorithm
is executed.

• •• BREAK3

Fold a length of Dnun-tape, for various values of n, and experi
ment with the folded tape to see how many differently-sized regular
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(2" + l)-gons you can create from eaeh tape. You will need the
D1U I

- and the D 2U 2-tape in the section on building models, so be
sure to include n = 1 and 2 in your experiments. Figure 9 shows three
possibilities for constructing a quasi-regular 9-gon from D 3 U3-tape,
without using the FAT algorithm. (The shaded portion of the figure
indicates that the reverse side of the tape is visible .)

We next demonstrate how we construct quasi-regular polygons with
2c N sides, N odd, if we already know how to construct quasi-regular N
gons. If, for example, we wished to eonstruct a quasi-regular lO-gon, then
we take the D 2U2-tape (which, as you may recall, produced FAT 5-gons)
and introduce a secondary crease line by bisecting each of the angles
of ~ next to the top (or bottom) edge of the tape. The FAT-algorithm may
be used on the resulting tape to produce the quasi-regular convex FAT
lO-gon, as illustrated in Figure 10. It should now be clear how to construct
a quasi-regular 20-gon , 40-gon, 80-gon, .. -,

This argument shows that we only need construct quasi-regular N -gons
for N odd in order to be able to construct quasi-regular N -gons for any N.

Now we turn to the general 2-period folding procedure, D'"U", which
we may abbreviate to (m, n). (Recall that the tape that produced the quasi-
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(a) (b)

(e)

FIGURE 9 (a) A lang-line 9·gon. (b) A medium -liDe 9-gon. (e) A shart· line 9·gon.
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regular 7-gon was a 2-period tape employing the (2, 1) procedure.) A
typical portion of the 2-period tape, in the general case, may be illustrated
as shown in Figure 7(b).lfthe folding procedure had been started with an
arbitrary angle Uo at the top of the tape, and continued producing angles
UI, Uz,'" at the top and vo, VI,'" at the bottom, we would have, at the
kth stage,

Uk + 2nVk = n ,

Vk + 2mUk+1 = n ;

and it is shown in [2] that then

2n - 1
Uk -----+ tt as k -+ 00

2m+n - 1
(3)

so that Z;:;;-~I Jr is the putative angle. Thus the FAT-algorithmwill produce,
from this tape, a star {!!. }-gon, where the fraction !!. may turn out not

a a
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to be reduced (for example, when n = 2, m = 4), with b = 2m+n
- 1,

a = 2n
- 1. By symmetry we infer that

2m - 1
Vk --+ tt as k ----+ 00

2m+n - 1

Furthermore, if we assume an initial error of Eo, then it can be shown
(see [2]) that the error at the kth stage (when the folding D'"U" has been
done exactly k times) will be given by"

EO
E --

k - 2(m+n)k
(5)

Hence, we see that in the case of our D 2U 1-folding (Figures 5, 6(a»
any initial error Eo is, as we already saw from our other argument, reduced
by a factor 8 between consecutive stages. It should now be clear why we
advised throwing away the first part of the tape - but, likewise, it should
also be clear that it is never necessary to throw away very much of the tape.
In practice, convergence is very rapid indeed, and if one made it a rule of
thumb to always throw away the first 20 crease lines on the tape for any
iterative folding procedure, it would turn out to be a very conservative rule.

We see that, however wonderful these results may be, they haven't
completely solved our problem. For example, as we will have you show
in the next break, we would be unable to fold a quasi-regular l I-gon with
either the 1- or 2-period folding procedure. So the question remains: how
do we know which sequence ofJolds to make in order to produce a
particular quasi-regular polygon with the FAT-algorithm?

• • • BREAK4

(1) Show that 2;:~~1 will be an integer if and only if nlm. (Hint:

Write the top and bottom of 2;:~~1 in base 2 and carry out the
division.. Try some examples and pay particular attention to the
form the remainder takes.)

(2) Show that, even if nJm, the number 2;:~~1 is never equal to 11.
(Hint: In the same division, pay special attention to the quotient.)

We now show, with a particular but not special case, how to determine
the folding instructions for producing tape from which we can construct a
quasi-regular {~}-gon, with a, b odd and a < ~.

4The discrepancy between formulae (2) and (5) is due to the fact that the D"U" folding procedure is
really aperiod I procedure.
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Thus, suppose we want to construct a quasi-regular {lf }-gon. Then,
of course, b = 11, a = 3, and we proceed precisely as we did when
we wished to construct the regular convex 7-gon; that is, we adopt our
optimistic strategy which, as you recall, means that we assume that we've
got what we want, and, as we will show, we then actually get an arbitrarily
good approximation to what we want! This time we assume that we can
fold the desired putative angle of ~~ at A, (see Figure l lfaj), and we adhere
to the same principles that we used in constructing the quasi-regular 7-gon,
namely, we adopt the following rules.

1. Each new crease line goes in the forward (left to right) direction along
the strip of paper.

2. Each new crease line always bisects the angle between the last crease
line and the edge of the tape from which it emanates.

3. The bisection of angles at any vertex continues until acrease line
produces an angle of the form a~Jr where a' is an odd number; then the
folding stops at that vertex and commences at the intersection point of
the last crease line with the other edge of the tape.

Once again the optimistic strategy works; and following this procedure
results in tape whose angles converge to those shown in Figure 11(b). We
could denote this folding procedure by D1U3D1U1D3Ul, interpreted in
the obvious way on the tape - that is, the first exponent"1" refers to the
one bisection (producing a line in a downward direction) at the vertices A 6n

(for n = 0, 1,2, ...) on the top ofthe tape; similarly, the "3" refers to the 3

" 3" rr1T
,,,,,,-- (a)

--

(h)

FIGURE 11 (Note that the indexing of the vertices is not the same as that in Figure 3.)
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bisections (producing creases in an upward direction) made at the bottom
of the tape through the vertices A6n+ 1; etc. However, since the folding
procedure is duplicated halfway through , we can abbreviate the notation
and write simply {I , 3, I}, with the understanding that we altemately fold
from the top and bottom of the tape as described, with the number of
bisections at each vertex running , in order, through the values I , 3, I , .. -,
We call this aprimaryjolding procedure ojperiod 3 or a 3-periodjolding.

To prove the convergence we can use an error-correction type of proof
like that given earlier in this section for the 7-gon. We leave the details
to the reader, and explore here what we can do with this (l, 3, 1)-tape.
First , note that, starting with the putative angle ~7 at the top of the tape,
we produce a putative angle of Ti at the bottom of the tape, then a putative
angle of ~7 at the top of the tape, then a putative angle of ~7 at the bottom
of the tape, and so on. A careful inspection of this tape shows that we
could use the FAT algorithm on it to fold quasi-regular {lf}-gons, when
a = I, 2, 3, 4, 5. To put the result in a form that suggests the generalization,
we may say that if there are crease lines enabling us to fold a star {lf I-gon ,
there will be crease lines enabling us to fold star {;k~ I-gons, where k :::: 0
takes any value such that 2k+1a < 11. These features, described for b = 11,
would be found with any odd number b. However, this tape has a special

(a) (b)

FIGURE 12
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symmetry as a consequence of its odd period; namely, if it is "flipped"
about the horizontalline halfway between its parallel edges, the result is a
translate of the original tape. As a practical matter this special symmetry of
the tape means that we can use either the top edge or the bottom edge of the
tape to construct our polygons. On tapes with an even period the top edge
and the bottom edge of the tape are not translates of each other (under the
horizontal flip), which simply means that care must be taken in choosing
the edge ofthe tape used to construct a specific polygon. Figures 12(a, b)
show the completed {lf}-, {*}-gons, respectively.

Now, to set the scene for the number theory of Section 5, and to enable
us to systematically determine the folding procedure for any given a and b,
let us look at the patterns in the arithmetic of the computations when a = 3
and b = 11. Referring to Figure 1O(b) we observe that

the smallest angle to
the right of An, where

n=O

1

2

3

4

5

is of the form
fIrr, where

a=3

1

5

3

1

5

and the number of bisections
at the next vertex"

=3

1

1

3

1

1

We could write this in shorthand form as follows:

(b =)11 (a =)3

3

1 5

1 1
(6)

Observe that, had we started with the putative angle of fi-, then the
symbol (6) would have taken the form

(b =)11 (a =)1 5 3

1 1 3
(6')

In fact, it should be clear that we can start anywhere (with a 1, 3,
or 5), and the resulting symbol, analogous to (6), will be obtained by cyclic

5Notice that, referring to Figure IOCb), to obtain an angle of *at AQ, A6, AJ2,"" the folding
instructions would more precisely be V 3D 1VI D3V J D J ., -. But we don't have to worry about this
distinction.
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permutation of the matrix component of the symbol, placing our choice of
a in the first position along the top row.

In general, suppose we wish to fold a {~}-gon, with b, a odd and a < ~.

Then we may construct a symbol" as folIows. Let us write

ar

kr

(7)

where b, a, (ai = a) are odd, a, < ~, and

b - a, = 2kiai+i, i = 1,2, "', r, ar+i = ai (8)

We proved in Chapter 4 of [2], that, given any two odd numbers a and b,
with a < ~, there is always a completely determined unique symbol (7)
with ai = a. At this stage, we do not assume that gcd(b, a) = 1, but
we have assumed that the list aJ, az, ... , a, is without repeats. Indeed, if
gcd(b, a) = 1, we say that the symbol (7) is reduced, and, if there are no
repeats among the a, 's, we say that the symbol (7) is contracted. (11 is, of
course, theoretically possible to consider symbols (7) in which repetitions
among the a, are allowed.) We regard (7) as encoding the general folding
procedure to which we have referred.

Example 1 If we wish to fold a 31-gon we may start with b = 31, a = 1
and construct the symbol

(b =)31 (a =)1 15

1 4

which tells us that folding D i U4 will produce tape (usually called (l, 4)
tape) that can be used to construct a FAT31-gon. In fact, this tape can also
be used to construct FAT

{ 3
21

} -, {3
41}

-, and {3
81}

-gons.

However, if we wish to fold a {~}-gon, we start with b = 31, a = 3
and construct the symbol

(b =)31 (a =)3 7

2 3

"More exactly, a 2-symbol. Later on, we introduce a more general r-symbol, t :::: 2.
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which teUs us to fold D 2U 3
- or, more simply, to use the (2, 3)-folding

proeedure - to produee (2, 3)-tape from which we ean fold the FAT {~ }
gon. Again, we get more than we initiaUy sought, sinee we ean also use
the (2, 3)-tape to eonstruet FAT

{3
6l

} -, {~~} -, {3
7l}

-, and {~~ } -gons.

However, we don't have a folding proeedure that produees the {lf }-gon.
Thus we eonstruet another symbol, this time with b = 31, a = 5. We get

(b =)31 (a =)5 13 9 11

1 1 1 2

whieh teUs us to fold D I U I D I U 2
- or, more simply, to use the 4-period

(1,1,1, 2)-folding proeedure-to produee (1,1,1, 2)-tape from whieh
we ean fold the FAT {lf }-gon. Onee again, we get more than we asked for;
we ean also use the (1, 1, 1, 2)-tape to eonstruet FAT

{~~}-, {~~}-, {391}_, and {~~}-gons.

We ean eombine all the possible symbols for b = 31 into one complete
symbol, adopting the notation

31 1

1

15 3 7 5 13 9 11

4231112
(9)

Notiee in (9) that the total amount of folding would be the same to
produee any quasi-regular (eonvex or star) 31-gon. Sinee it is very diffieult
to biseet an angle 4 times, you may prefer to use the seeond or third parts of
this symbol to produee the tape. Even if you reaUy want a eonvex 31-gon
it may be easier, in praetiee, to produee the star polygon first and then use
the vertices of that polygon to determine the eonvex polygon.

• •• BREAKS

(1) Show that the tape folded in aeeordanee with the folding instrue
tion, or symbol,
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contains fold lines allowing us, by means of the FAT-algorithm,
to fold any quasi-regular {2:ai }-gon, where 2n+1a i < b.

Show that the complete symbol for b = 31 gives us, in this
sense, folding instructions for folding a11 possible quasi-regular
star 3 I-gons. Give an argument for why this must happen for any
odd b. (Note that we are only considering star {~}-gons where a
is prime to b.)

(2) Check your understanding of the complete symbol by doing the
calculations to fi11 in the blanks below for b = 91:

9114523173727311543941253329311519

112116 3??4 I???????

(Notice that no multiples of 7 or 13 appear in the top row. Why
do you suppose this is so?)

(3) Calculate other complete symbols for odd b and look for patterns
in them.

(4) Calculate the symbol with b = 33, a = 9. Compare with item (6).
What part of this symbol te11s you that the rational number ~
is equal to lf? (You should now see why it is pointless to a110w
unreduced symbols.)

(5) Guess what the values of k, would be for the symbol with b = 91,
a = 13. Construct the symbol to see if your guess was correct.

More forma11y, we can say that given positive odd integers b, a with
a < ~, there is always a unique contracted symbol (the proofis in [2])

b al a2 ar
al =a, a, =I aj if i =I j, (10)

kl k2 kr

where each a, is odd, a, < ~, and

b - a, = 2kiai+l' i = 1,2, "', r, ar+1 = al (11)

The proof involves fixing band letting 5 be the set of positive odd numbers
a < ~. Given a E 5, then a' is defined by the rule

b - a = »«, k maximal; (12)

that is, we take as many factors of 2 as we can out of b - a. Then (12)
describes a function W : 5 ----+ 5 such that W(a) = a', In [2] we show
that W is apermutation of the finite set 5.
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The permutation \IJ has the important property

gcd(b, a) = gcd(b, a'). (13)

For it is clear from (12) that if d I band dia', then d I band dia.
Conversely, if d I band dia, then d is odd and d I 2ka', so d I b
and dia'. Thus if aj in (10) is prime to b, so are az, a-, ... .a-, and we
may, if we wish, confine our choices of a, to those odd numbers such that
gcd(ai' b) = 1; that is, we may confine ourselves to reduced symbols, now
to be defined as those symbols in which each a, is prime to b. Moreover,
given any odd numbers b, a with a < ~, we may construct the symbol (10)
and then reduce the symbol by dividing band each a, by gcd(b, a); the
bottorn row will be unaffected.

4.3 CONSTRUCTING ALL QUASI-REGULAR POLYGONS

We have described procedures for folding any quasi-regular convex poly
gon and for folding any quasi-regular star {Iz. }-gon if a, bare both odd with,

a

of course, a < ~. To complete our program we must show how to fold any
quasi-regular star {~}-gon, where a < ~ and (i) b is odd, a is even or (ii) b
is even, ais odd (for we may, of course, assume a, b coprime).

The case where b is odd and a is even is quickly dealt with. Let a = 2ka'
with a' odd, and suppose we have tape creased to fold a {~}-gon. We claim
that this tape already has acrease line making an angle a; with the forward
direction of the top of the tape, with another crease line making an angle a;
with it. Für, if gis minimal such that 2ia' > ~,then g :::: 1 and the tape has

acrease line making an angle of z/;a' with the forward direction ofthe top
of the tape, appropriately bisected by crease lines g times. (See Figure 13
for a typical example, with g = 2.) Now 2i a' > ~,so -e > k; thus the stated
crease lines appear on the tape, and the FAT algorithm may be applied

FIGURE 13 a = 6, a' = 3, k = 1, b = 13
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using these two crease lines to fold a {!!. }-gon. No further crease lines are
a

necessary.
The situation is very different, however, when b is even and a is odd

of course, we have already seen this on page 101 of Chapter 4 of [2] when
a = 1. We now assume that b = 2k b', with b' odd. We write a in base 2 as

a = EoEI .,. En , Eo = En = 1, Ei = 0 or 1, 1 ~ i ~ n - 1. (14)

We now describe the initial conjiguration of our tape. It will consist of
two crease lines, the first making an angle of Clo = 2k:b' with the top of the
tape, the second making an angle of (To = /r~nb' with the first. To explain
how we achieve this initial configuration, we must consider 3 cases.

Case 1: b' = 1, so that b = 2k
• Then 2n < a < 2k

-
l

, so n ~ k - 2.
We can then certainly achieve our initial configuration exactly.

Case 2: b' > 1, k > n. Start with the b'-tape and create the initial
configuration by introducing (k - n) secondary crease lines by
successively bisecting the top angle on the tape.

Case 3: b' > 1, k ~ n. Now the b'-tape will itself already have the
initial configuration on it - the argument is exactly like that above
(when bis odd and ais even).

Thus we can suppose the initial configuration achieved. We are now
going to define inductively the ith proximand a, and the ith support (Ti,

o~ i ~ n, and explain how they are achieved by folding the tape. We claim
that on achieving the nth proximand we will have acrease line making an
angle of rrba with the forward direction of the tape. Obviously, we can then
duplicate this angle under this crease line and then apply the FATalgorithm
to complete the construction of the {~}-gon.

Thus we suppose a., (Ti already defined and achieved, 0 ~ i < n, with
acrease line making an angle of a, with the top of the tape and another
crease line making an angle of (Ti with it; see Figure 14. Bisect (Ti by a
new crease line into two (equal) angles Ai, Pi, with Ai to the left of Pi' If
Ei+1 = 0, define Cli+1 = a., (Ti+1 = Pi; if Ei+1 = 1, define Cli+1 = a, U Pi,

(Ti+1 = Ai'
We now prove our claim that a; = rr:. In fact, we prove inductively that

tt
(T. = ----:-----,--

I 2k- n+ib"
(15)

where

a, = EoEI •.. EiO· . ·0, with (n - i) zeros. (16)
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ith stage (i + l)st stage, EH1 = 0

FIGURE 14

(i + l)st stage, Ei+1 = 1

Then the equations (15) hold if i = O. Given (15) for a fixed i,
assume first that Ei+l = O. Then ai+l = a, = Tr2~;I, since ai+l = a., and

1 Tr
O"i+l = ZO"i - 2'-n+;+'b'·

Assume instead that EHl = 1. Then

Again O"i+l = 40"i = 2'-n~H'b'. This establishes the inductive step and
hence (15). Thus an = ;,ab', = Trba, and our construction has been vindicated.

Of course, what we have given above are algorithms for producing any
quasi- regular star polygon by folding paper. Thus it is not to be expected
that our recipes will give you the simplest procedures in all cases. Indeed,
as you will see, they do not.

••• BREAK6

(1) Give an algorithm that works if b = 2kb', a < ~,b' odd, which

is simpler than that given in the absence of the condition a < ~.

(2) Compare the algorithm in the text with the one you discovered
in tackling problem (1) above, when a = 1.

4.4 HOW TO BUILD SOME POLYHEDRA (HANDS-ON ACTIVITIES)

In this section we give you explicit instructions for using the DlUl-tape
to construct regular pentagonal (and triangular) dipyramids, tetrahedra,
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octahedra, and icosahedra. We also show you how to make exact folds
on the tape in order to be able to construct two different kinds of cube.
Finally, we will show you how to use the D2U 2-tape to construct two kinds
of regular dodecahedron. All of these models may be taken apart and stored
ftat.

The models described in this section are referred to in Chapter 8, where
some of the mathematics connected with their symmetries is discussed.

First we will tell you what you need. After you have assembled the
materials you should choose which model you wish to make and then
carefully read, and execute, the instructions for preparing the pattern pieces.
Then we suggest that, after a rest, you read the assembly instructions.

What you will need

• A 75 ft (or more) roll of2-in gummed mailing tape (or a wider and longer
roll if you want larger models ). The glue on the tape should be the type
that needs to be moistened to become sticky. Caution: Don ' t try to use
tape that is sticky to the touch when it is dry - you would find it very
frustrating.

• Scissors
• Sponge (or washcloth)
• Shallow bowl
• Water
• Hand towel (or rag)
• Some books
• Colored paper of your choosing. Construction paper works well , but

it may need to be cut into strips and glued together to get long enough
pieces. Gift wrapping or butcher paper that comes in rolls are particularly
easy to use for these models. The Sunday funnies also work.

• Bobby pins

General instructions for preparing pattern pieces
For each of the models described in this section you will need to glue the

pattern piece (or pieces) onto colored paper. Of course, if a model involves
more than one piece , the finished model will be more interesting if you
use a different color for each piece. In each case, to accomplish the gluing,
first prepare the pieces of paper onto which you plan to glue the prepared
pattern piece. Make certain that each piece is long enough for the pattern
piece and that it all lies on a ftat surface.



4.4 Row to Build Some Polyhedra (Hands-On Activities)

Place a sponge (or washcloth) in a bowl. Add water to the bowl so
that the top of the sponge is very moist indeed.? Moisten one end of the
pattern piece by pressing it onto the sponge; then, holding that end (yes,
it's messy!), pull the rest of the strip across the sponge. Make certain the
entire strip gets wet and then place it on the colored paper. Use a hand
towel (or rag) to wipe up the excess moisture while smoothing the tape
into contact with the colored paper.

Put some books on top of the pieces so that they will dry flat. When the
tape is dry, cut out the pattern pieces, trimming offa small amount of the
gummed tape (about -&, of an inch or 1.5mm will do) from the edge as you
do so (this serves to make the model look neater and, more importantly,
allows for the increased thickness produced by gluing the strip to another
piece of paper). Refold the piece firmlyon all the fold lines that are going
to be fold lines on the finished model. This should be done so that the
raised ridges, called mountain folds, are on the colored side of the pattern
piece. You will now be ready to construct your model.

We now describe the specific details for each model:

Pentagonal Dipyramid constructedfrom one strip
Begin by folding the gummed mailing tape to produce D I UI-tape (see

Break 3). Continue folding until you have 50, or more, triangles. Throw
away the first 10 triangles, and then cut off a strip containing 31 triangles."
This is the pattern piece you need for this model. Prepare it as described
above and then place your strip so that the left-hand end appears as shown in
Figure 15(a) with the colored side visible. Mark the first and eighth triangles
exactly as shown (note the orientation of the various letters within their
respective triangles).

Begin by placing the first triangle over the eighth triangle so that the
corner labeled 0 is over the corner labeled A, ® is over the corner
labeled B, and © is over the corner labeled C. Hold these two triangles
together, in that position, and observe that you have the beginning of
a double pyramid for which there will be five triangles above and five
triangles below the horizontal plane of symmetry, as shown in Figure 15(b).
Now you can hold the model up and let the long strip oftriangles fall around
this frame. If the strip is folded weIl, the remaining triangles will simply
fall into place. When you get to the last triangle, there will be a crossing of

7Perhaps we should have told you to wear some very old, or at least washable, clothes while doing this.

8you can now continue folding triangles on this piece of tape to produce triangles for building other
models.
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FIGURE 15

the strip that the last triangle can tuck into, and your pentagonal dipyramid
is complete! It should look like Figure 15(b)

If you have trouble because the strip doesn't seem to fall into place,
there are two most likely explanations. The first (and more likely) is that
you haven't folded the crease lines firmly enough. This situation is easily
remedied by refolding each crease line with more conviction. The second
common difficulty occurs when the tape seems too short to reach around
the model and tuck in. This problem can be remedied by trimming off a
tiny amount more from each edge of the tape.

Triangular dipyramid constructed from one strip
You may wish to figure out how to make the analogous construction of a

triangular dipyramid from a strip of 19 equilateral triangles. Of course, you
prepare the pattern strip exactly the same way, and then knowing that the
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FIGURE 16

finished model should appear as shown in Figure 16 and that you should
begin by forming the top three faces with one end of the strip should get
you off to a good start.

Experiment and see if you can construct either of the above dipyramids
with fewer than the number of triangles specified here. This can, in fact, be
done, but the real question is: Will they be balanced, in the sense that every
face is covered by the same number of triangles? This is not a difficult
question to answer - and it is therefore left to the reader.

The rest of the models for which we will describe constructions are each
braided from two or more straight strips of paper, and each of them is a
regular convex polyhedron; that is, each is a model of a polyhedron known
as a Platonic Solid. 9 We give one construction here for the tetrahedron,
octahedron, and icosahedron (and suggest another, more complicated, but
arguably more symmetrie, construction in Chapter 8). We give two con
structions here for the cube and the dodecahedron. Here are the details.

Tetrahedron constructedfrom 2 strips
Prepare two strips of 5 triangles each, as shown in Figure l7(b). Then,

on a flat surface, with the colored surfaces down so that they are not
visible, lay one strip over the other strip exactly as shown in Figure l7(c).
Think of triangle ABC as the base of the tetrahedron being formed; for the
moment, triangle ABC remains on the table. Then fold the bottom strip
into a tetrahedron by lifting up the two triangles labeled X and overlapping

"One, non-technical, way of characterizing a Platonic solid is to say that it is a convex polyhedron
having the property that it appears the same when it is viewed looking straight on at any vertex, or
looking straight on at any edge, or looking straight on at any face. You can easily see that although the
pentagonal and triagonal dipyramids are convex, they do not satisfy the rest of the conditions.
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Tetrahedron
(2 strips)
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one of the 2 strips

(b)

(e)

FIGURE 17

them, so that C' meets C, B' meets B, and D' meets D. Don't worry
about what is happening to the top strip, as long as it stays in eontaet with
the bottom strip where the two triangles originally overlapped. Now you
will have a tetrahedron, with three triangles sticking out from one edge.
Complete the model by earefully picking up the whole eonfiguration,
holding the overlapping triangles X in position, wrapping the protruding
strip around two faees of the tetrahedron and tueking the Y triangle into
the open slot along the edge Be. Your model should have 4 triangular faees
and look like Figure 17(a), with 2 triangles from eaeh strip visible on its
surfaee.

A suggestion for how to build a "more symmetrie" tetrahedron with
three strips appears in Chapter 8.

Octahedron constructedfrom 4 strips
Prepare four strips of 7 triangles eaeh, as shown in Figure 18(b).
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To construct the octahedron, begin with a pair of overlapping strips
held together with a paper clip with the colored side visible, as indicated
in Figure 19(a). Fold these two strips into a double pyramid by placing

Octahedron
(4 strips)

(a)

(b)

I

one of the 4 strips

(b)

FIGURE 18

(a) (a)

~

I

FlGURE 19
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triangle al under triangle AI. and triangle b under triangle B. The over
lapping triangle s band B are secured with another paper clip, so that the
configuration looks like Figure 19(b). Repeat this process with the second
pair of strips, and place the second pair of braided strips over the first pair,
as shown in Figure 19(c). When doing this, make certain the flaps with
the paper clips are oriented exactly as shown. Complete the octahedron by
following the steps indicated by the arrows in Figure 19(c). You will note
that after step I you have formed an octahedron; performing step 2 simply
places the flap with the paper clip on it against a face of the octahedron; in
step 3 you should tuck the flap inside the model.

When you become adept at this process you will be able to slip the paper
clips off as you perform these last three steps - but they won't show, so
this is only an aesthetic consideration. Your finished model should have 8
triangular faces and look like Figure 18(a), with 2 triangles from each strip
visible on its surface.

A suggestion for how to build a "more symmetric" octahedron, by
putting slits in the triangles of each strip, is given in Chapter 8.

Icosahedron
(5 strips)

(a)

\ "\ I \ '\ / ' I
\ I \ I \ I \ I \ I

\ I \ I \ I \ I \ I
\ I \ I \ I \ I \ I

\ I \ I \ I \ I \ I
\ I \ I \ I \ I \ I

\ I \ I ' e' \ I \ I
\ I \ I \ I \ I \ I

one of the 5 strips
(b)

FIGURE20
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Icosahedron constructedfrom 5 strips10

Prepare five strips of 11 triangles each, as shown in Figure 20(b). Lay
the pieces down so that the colors are not visible and mark a heavy dot on
the center triangle of each strip, as shown in Figure 20(b).

Then (without moving the pattern pieces) label one of the 5 strips with
a "1" on each of its 11 triangles (make sure you are writing on the surface
that will be on the inside of the finished model). Then label the next strip

....................

FIGURE21

lOOfall the models described in this section, this is, by far, the most difficult to build. So tackle this
one only when you have plenty of time and patience available.
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(a) (b)

FIGURE 22

with a "2" on each of its triangles, the next with a "3", the next with a "4",
and, finally, the last with a "5" .

Now lay the five strips out so that they overlap each other precisely
as shown in Figure 21, making sure that the center five triangles form a
shallow cup that points away from you. If you do this correctly, all five
dots will be hidden. You may wish to use some transparent tape to hold the
strips in this position. If you do need the tape, it works best to put a small
strip along the middle of each of the five lines coming from the center of
the configuration (this tape won't show when the model is finished) .

Now study the situation carefully before making your next move. You
must bring the ten ends up so that the part of the strip at the tail of the
arrow goes under the part of the strip at the head of the arrow (this means
"under" as you look down on the diagram; it is reallyon the outside of
the model you are creating, because we are looking at the inside of the
model). Half the strips wrap in a clockwise direction, and the other end
of each of those strips wraps in a counterclockwise direction. What finally
happens is that each strip overlaps itself at the top of the model. But, in
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FIGURE23

the intermediate stage, the model will look like Figure 22(a). At this point
it may be useful to slide a rubber band, from the bottom, up around the
emerging polyhedron to just below where the flaps are sticking out from
the open pentagon (be careful not to use a rubber band that fits too tightly).
Then lift the flaps as indicated by the arrows and bring them toward the
center so that they tuck in, as shown in Figure 22(b).

Now simply lift flap 1 and smooth it into position. Do the same with
flaps 2, 3, and 4. Complete the model by tucking flap 5 into the obvious
slot. The vertex of the icosahedron nearest you will look like Figure 23.

Your finished model should have 20 triangular faces and look like Fig
ure 20(a), with 4 triangles from each strip visible on its surface.

Congratulations! You have completed the most difficult model in this
seetion.

A suggestion for how to build a "more symmetrie" icosahedron with 6
strips appears in Chapter 8.

Cube constructedfrom 3 strips
Prepare three strips of 5 squares each, as shown in Figure 24(b). Fig

ure 24(c) shows one possible set of exact fold lines that produces the
desired 5 squares. Be sure only to fold on the short lines of the tape after
you cut out the pattern piece.

The construction may be accomplished by first taking one strip and
clipping the end squares together with a paper clip. Then take a second
strip and wrap it around the outside of the "cube" so that one square covers
the clipped squares from the first strip and the end squares cover one of
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Hexahedron (Cube)~
(3 strips) ~ one of the 3 strips

(a) (b)

(e)

FIGURE24

the square holes . Secure this second strip with a paper clip. Make certain
that the overlapping squares of the second strip do not cover any squares
from the first strip and that the first paper clip is covered. The pieces should
now appear as shown in Figure 25(a). Now slide the third strip under the
top square so that two squares of the third strip stick out on both the right
and left sides of the cube. Tuck the end squares of this third strip inside
the model through the slits along the bottom of the cube , as indicated in
Figure 25(b). When the completed cube of Figure 25(b) is turned upside
down, it may be opened by pulling up on the strip that covers the top face
(this square will be attached inside the model by a paper clip, so you may
have to pull firmly) and folding back the flaps that were the last to be tucked

(a) 'c::==::::C:.~

FIGURE25
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FIGURE26

inside the model. You can remove the paper clips and put the model back
together. Friction should hold the strips in place.

The cube, constructed as described above, will have 6 square faces, with
opposite faces of the same color. Furthermore, if you remove any one of
the strips, the other two will fall free - this is just the situation with the
well-known Borromean rings, shown in Figure 26. It is also possible to
construct a cube so that there are three pairs of adjacent faces having the
same color. We leave this as an exercise for the interested reader.

Cube constructedfrom 4 strips
Prepare four strips of7 right isosceles triangles as shown in Figure 27(a).

Consult Figure 24(c) to see how to make exact folds on the tape in order
to produce the pattern pieces. This time, however, you will need a longer
piece of the tape, and you will only fold on the long lines after you cut out
each pattern piece.

Begin the construction by laying the 4 strips on a table with the colored
side down, exactly as shown in Figure 27(b). The first time you do this it
may be helpful to secure the center (where the 4 strips cross each other)
with some transparent tape. It is sometimes useful to put a can of unopened
soda pop on this square to hold the arrangement in place and allow you to
work on the vertical faces. (Remove the can before you complete the top
face!) Now think of the center square in Figure 27(b) as the base of the
cube you are constructing and note that the strip near the tail of each arrow
should go under the strip at the head of the arrow (thus the strip near the tail
will be on the outside of the model when it crosses the vertical edge of the
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FIGURE 27

cube). The procedure for completing the cube is now almost self-evident,
especially if you remember that every strip must go altemately over and
under the other strips on the model. It may help to secure the centers of
the vertical faces with transparent tape as you complete them, but as you
become experienced at this construction, you will soon abandon such aids.
The final triangles will tuck in to produce the cube of Figure 27(c).

This cube, which we naturally call the diagonal cube, has some re
markable combinatorial properties. For example, how many ways can you
arrange 4 colors in a circle? Look at the faces of this cube. How many
ways can you take 3 of 4 colors and arrange them in a circle? Look at the
vertices of this cube. How many ways can you take 4 colors 2 at a time?
Look at the edges of the cube that are opposite each other, with respect to
the center of the cube.

There are other remarkable facts connected with the diagonal cube that
are discussed in Chapter 8.

Dodecahedron constructedfrom 6 strips
Prepare 6 strips from the D2U2_ tape so that you have 3 pairs of strips

like the pair shown in Figure 28(b).
Notice that in preparing the pattern pieces for the dodecahedron shown

in Figure 28(a) we only need to use the short lines on the D2U2-tape, but
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Dodecahedron
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the gummed tape will look like that shown in Figure 28(c). Thus, after you
glue the gummed tape to the colored paper you should only refold on the
short lines after you cut out the pieces.

To construct this model take one pair of the strips and cross them with
the colors visible as shown in Figure 29.

Secure the overlapping edge with a bobby pin (a paper clip will NOT
work) or stick some transparent tape along each of the edges that are within
the two center pentagons. Then make a bracelet out of each of the strips in
such a way that

1. four sections of each strip overlap, and
2. the strip that is under on one side of the bracelet is over on the other

side of the bracelet. (This will be true for both strips.)

/
/

/, /

'/, /
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FIGURE29

Use another bobby pin to hold all four thicknesses of tape together on
the edge that is opposite the one already secured by a bobby pin.

Repeat the above steps with another pair of strips. You now have two
identical bracelet-like arrangements. Slip one inside the other one as il
lustrated in Figure 30, so that it looks like a dodecahedron with triangular
holes in four faces .

Take the last two strips and cross them precisely as you did earlier
(reversing the crossing would destroy some ofthe symmetry on the finished
model) ; then secure them with a bobby pin. Carefully put two of the loose
ends (either the top two or the bottom two) through the top hole and pull
them out the other side so that the bobby pin lands on CD. Then put the
other two ends through the bottom hole and pull them out the other side
(see Figure 31(a)). Now you can tuck in the loose flaps, but make certain
to reverse the order on the strips - that is, whichever one was under at CD
should be on top when you do the final tucking (and, of course, the top
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B

Turn and slide inside
so that AB coincides
withA'B'

FIGURE30

strip at CD will be the bottom strip when you do the tucking). Your model
should look like Figure 28(a), with each face having two colors on it.

After you have mastered this construction you may wish to try to con
struct the model with tricolored faces, shown in Figure 31(b). This con
struction and the one just described are both very similar to the construction
for the cube with 3 strips. The difference is that in the case of the dodecahe
dron, the three "bracelets" that are braided together are each composed of
two strips. This illustrates, rather vividly, exactly how to inscribe the cube
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(a)

(b)

FIGURE31

symmetrically inside the dodecahedron. To put it another way, it shows
how the dodecahedron may be constructed form the cube by placing a
"hip roof" on each of the 6 faces of the cube. You should be able to see
exactly what the hip roof looks like by examining the dodecahedron with
two colors on each face.
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Golden Dodecahedron constructedfrom 6 strips
Prepare 6 strips from the D 2U2_ tape so that each strip has 22 triangles,

exactly as shown in Figure 32.
When you have cut out the pattern pieces remember that, this time, you

should refold each piece only on the long fold lines, so that the mountain
fold is on the colored side of the strip. Leave the short lines uncreased, so
that each of your 6 strips looks like Figure 33(a).

To complete the construction, begin by taking five of the strips and
arranging them, with the colors visible, as shown in Figure 33(b). Secure
this arrangement with paper clips at the points marked with arrows. View
the center of the configuration as the North Pole. Lift this arrangement
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and slide the even-numbered ends clockwise over the odd-numbered ends
to form the five edges coming south from the arctic pentagon. Secure the
strips with paper clips at the points indicated by dots (notice where these
dots are located on the finished model in Figure 33(c)). Now weave in
the sixth (equatorial) strip, shown shaded in Figure 33(c), and continue
braiding and clipping, where necessary, until the ends of the first five strips
are tucked in securely around the South Pole. During this last phase of
the construction, keep calm and take your time! Just make certain that
every strip goes alternately over and under every other strip all the way
around the model. When the model is complete, all the paper clips may be
removed, and the model will remain stable.

We think this model is remarkably elegant, and it has lovely symmetry.
We have named it the Golden Dodecahedron because the ratio of the length
of the long line to the length of the short line on the D 2U2-tape is, in fact,
the golden ratio. See Chapter 8 for more discussion about this model and
its symmetry.

* 4.5 THE GENERAL QUASI-ORDER THEOREM

Now, back to mathematics! In Seetion 2 we obtained a universal algorithm
for folding a {~}-gon, where a, bare coprime odd integers with a < ~. But,
from the number-theoretic point of view, it turns out that we have much
more. For, from our definition of the symbol (10) associated with a given
set of folding instructions for our tape, we were able (in [2]) to state and
prove

Theorem 2 (The Quasi-Order Theorem in base 2) Ifa, bare coprime
integers with a < ~, and if

ar

kr

with b - a, = 2kiai+b i = 1,2, ... .r, (ar+1 = al) is a reduced and
contracted symbol, and if k = 2:;=1 k., then k is the quasi-order
of2 mod band, indeed,

2k == (-1Y mod b (18)
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Here the quasi-order of t mod b, where t, bare coprime, is the smallest
positive integer k such that!'

tk == ±1 mod b (19)

Before we pursue the genera1ization of this theorem to a general base t
we will give you an example and let you experiment with some particularly
interesting numbers in a break.

Example 1 (continued) Notice that we could find k = 5 from any
part of the complete symbol for 31 (see item (9)). Also note that r is an
even number in each of the three parts of the symbol. Thus the Quasi
Order Theorem tells us that k = 5 is the smallest positive integer such that
2k == ± 1 mod 31 and, moreover, that

2k == 1 mod 31

It is certain1y easy to confirm, in this case, that this is true.

• •• BREAK7

(1) Use your result from Break 5 (2) to find out what the Quasi-Order
Theorem tells you when b = 91.

(2) A number of the form 2P - 1, where p is prime, is called a
Mersenne number because Abbe Mersenne studied these num
bers in his search for primes. Construct the symbol (17) for
b = 23 (with a = 1) and see what this tells you about one of
the Mersenne numbers. How do you think Mersenne would have
liked this result?

(3) Recall that Fermat expected that all numbers of the form
F; = 22

" + 1 would be prime. Construct the symbol (17) for
b = 641 (with a = 1) and see what this tells you about Fs.
Notice that this result is achieved without ever calcu1ating with
numbers greater than 641.

You may have inferred from the above examples that the symbol (17)
gives us, in each case, only one factor of 2k ± 1. However, we described
in Section 4.6 of [2] how the symbol could be used to obtain the comple
mentary factor. (It is just Al as in item (38), p. 135 of [2], since a = 1.)

Now we return to our main question: how do we generalize the Quasi
Order Theorem? It is interesting, and not altogether surprising, that our
main difficulty in generalizing this theorem to a general base t lies not in
proving the generalization but in stating it. For generalization is an art, not

11It is not very difficult to prove that such a number k always exists.
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an algorithrnic procedure, so judicious choices must be made in formulating
the generalization. Let us therefore first recall how the symbol (17) was
constructed.

We start with an odd positive integer band an odd positive integer
a < ~; at this stage we do not insist that ais prime to b. We then execute
the lJI-algorithm as folIows. We choose k to be maximal such that 2k Ib - a,
so that k ~ 1, and set \I1(a) = a', where b = a + 2ka'. We then show
that \11 is a permutation of the set Sb of odd positive integers a < ~ which
preserves gcd(a, b); that is, gcd(a', b) = gcd(a, b) if \I1(a) = a', As a tool
in proving that \11 is a permutation, we introduce the reversealgorithm t).

Thus, given e E Sb, we proceed as folIows: we choose l minimal such that
2fe > ~, so that l ~ 1, and we set e' = b - 2fe. Then <t>(e) = e'. We
may then prove that <t> is the inverse of \11; that is, <t>(a') = a if and only
if \11 (a) = a', Do you see why e' belongs to Sb?

Now, given b, a we construct (17) by setting \11 (a, ) = ai+h i = 1, ... , r,
where ar+l = al = a; more precisely,

(20)

(21)

Note that, since \11 is a permutation of Sb, we must eventually find r such
that ar+l = al; at that point we stop.

It is thus the \11 - and <t>-algorithms that must be generalized. We describe
how this is done so that you may see that we are indeed generalizing to
a general base t ::: 2 from the special case t = 2, although the choice of
generalization is not always obvious. It turns out to be easier to generalize
the <t>-algorithm than the \I1-algorithm, so we tadele that first.

We start with a positive integer b prime to t and we choose a positive
integer e < ~ such that ttc. (Notice that the original restriction that e
be odd generalizes differently from the condition that b be odd; and that
the "generalization" of the condition e < ~ is precisely e < ~.) We write
e E Sb,where now Sb stands for the set of integers < ~ that are not divisible
by t, and define l to be minimal for the property

b
t'c » 

2

Notice that l ~ 1. We now define qb to be the integer multiple of b
nearest to t'c. Notice that

(i) when t = 2 we always have q = 1 and 2f e < b;
(ii) there is a unique such multiple. For t'c cannot be a multiple of~, be

cause this would imply that t'«: = ~,for some s, so sb = 2t fe, bl2tfe.

But b, t are coprime, so bl2e, contradicting e < ~.
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We now introduce a quantity E such that E = 0 or E = 1. If t'c > qb,
then E = 0; and if t'c < qb, then E = 1. In any case, we define c' > 0 by

tfc-qb=(-I)'c', (22)

and set

<I>(c) = c'. (23)

Notice that, as stated earlier, with t = 2, we always have q = 1, 2ec < b,
so E = 1. We now claim

Theorem 3 The algorithm <1>, dejined above, is apermutation 01Sb such
that gcd(c, b) = gcd(c', b), where <I>(c) = c'.

Proof First we must show that c' E Sb. It is obvious from the definition
of<l> that c' < ~. Now te-Je < ~, so t'c < ~. Thus (see Figure 34)

if t is odd, 2q + 1 :s t; if t is even, 2q:s t. (24)

In either case, (24) shows that ttq, But if tlc' then, from (22), t Iqb,
so that t, b being coprime, tlq. Hence, as required, ttc', so c' E Sb,
and <I> maps Sb to itself.

• • • BREAKS

Draw the figure corresponding to Figure 34 for t even.

It remains to show that <I> is apermutation of Sb. Thus we seek
another function \IJ : Sb ---+ Sb, inverse to <1>, that is, such that

<I> \IJ = Id, \IJ <I> = Id, (25)

where Id represents the appropriate identity function.
However, it is of great practical importance to point out that each

of the relations in (25) implies the other (after all, mathematicians
strongly dislike doing unnecessary work!). For if, say, <I>\IJ = Id, then

.:\
I I I I I
0 b b 3b 2b qb-~ qb qb+~ !..=lb tb

2" T 2 2"

FIGURE 34 The 4»-algorithm with t odd,
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<P maps Sb onto itself. But Sb is afinite set, so <P must be a one-one
correspondence, with inverse 'IJ.

We now proceed to define 'IJ. Here we must distinguish between
the two cases (i) t odd, (ii) t even.

(i) t odd. Let a E Sb. We claim that, among the (t - 1) positive
integers

{qb - a, qb + a, t - I}l<q<-- - 2

there is exactly one divisible by t. For, trivially, the tintegers
- I;1 :::: r :::: I;1run through all residue classes modt. There
fore, since b is prime to t, so do the tintegers rb with r in the
given range; and so too, therefore, do the tintegers rb + a with
r in the given range. However, r = 0 does not yield the residue
class 0, since tta. Thus, to obtain rb + a == 0 mod t, we must
take r strictly positive or negative. If r > 0, set r = q. Then, for
one value of q in 1 :::: q :::: 1;1, we have qb + a == 0 mod t. If
r < 0, set r = -q. Then, for one value of q in 1 :::: q :::: 1;1,
we have qb - a == 0 mod t. Moreover, if there is a value of q
yielding qb + a == 0 mod t, there is no value of q yielding
qb - a == 0 mod t, and conversely. This establishes our claim.

(ii) t even. Let a E Sb. We claim that, among the (t - 1) positive
integers

t
l<q<--l'- - 2 ' qb - a, 1 < q < ~}- -2

there is exactly one divisible by t. Now we start with the range
- & :::: r :::: &- 1 and proceed just as in the case when t is odd.
We confidently leave the details to the reader.

We now complete the definition of 'IJ, but will be content to de
scribe 'IJexplicitly only when t is odd. We expect the reader to supply
the modification needed when t is even.P We choose q as explained
above, and define a' by the rule

k maximal (so that k i: 1) (26)

]2This is an important exercise, since we would wish to be sure that we are generalizing the case t = 2.



4.5 The General Quasi-Order Theorem

We claim that a' E Sb. Now obviously, tta ' , by the maxirnality
of k. Also

, k .» t - I tb
ta < t a = qb ± a < --b ± a < - (27)- - 2 2

so that a' < ~ . We set \IJ(a) = a' ,
We now prove that <1>\IJ = Id; recall that this will establish that

<1> , \IJ are mutually inverse permutations of Sb. Assume t odd, and let
\IJ(a) = a' , We want to show that <1>(a') = a. Now, from (27), we
easily see that tk-1a ' < ~, and from (26) we easily see that

This establishes that <1>(a' ) = a , so <1>\IJ = Id as claimed. The proof
of Theorem 3 will be cornplete (but, of course, we have proved much
more) if we show that gcd (e, b) = gcd(e' , b) , or, equivalently, that
gcd(a , b) = gcd(a' , b), where \IJ (a ) = a', We choose to prove the
former.

Nowwehavetke-qb = (-I Ye'. Thus,ifdle,dlb, thendle',dlb.
Conversely, if die' , dib , then dltke, dlb. But, since t, bare coprime,
it follow s that if dlb, then d is prime to t, so die. We have thus
establi shed that gcd(c, b) = gcd(c' , b). D

In describing the <1>-algorithm, we introduced the quantity E, which
takes the value 0 or I according to whether tkc - qb is positive or negative
(see (22» . For consistency we must introduce it again in (26), where we
must choose between qb +a or qb - a, when seeking the allowed number
divisible by t . Thus we refine (26) to

(28)

We are now in a position to define at-symbol, which we will still just
call a symbol if there is no doubt what base t is being used. However, we
will add an extra row to the symbol, by comparison with the case t = 2, to
incorporate the quantity E (recall that if t = 2, we always have E = I). On
the other hand, we will not need to include the quantity q from (28) in the
symbol if our purpose is just to state and prove the general Quasi-Order
Theorem.
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We suppose that b, a are coprime, with b prime to t, t ja, and al = a < ~.

We proceed to obtain a contracted, reduced symbol

al a2 ar
b

(29)k l k2 kr

EI E2 Er t

where

q.b + (-I)'i a; = tkia;+I, i = 1,2, "',r (ar+1 = ar) (30)

and there are no repeats among the a., i = I, 2, ... , r; recall that we know
that each a, is prime to b, tta., and a, < ~. Our symbol (29) is, of course,
based on the \I1-algorithm.

Notice that, if we use the <t>-algorithm instead of the \I1-algorithm, we
get the reverse symbol, incorporating the same r facts (30); thus, we may
replace (29) by

b (al a, ar-I

k; kr-I kr-2

Er Er-I Er-2

For neatness, we rewrite (31) as

(31)

C2 ••. cr)
-e 2 • •. -er

'f/2 •.. n, t

(32)

so that CI = a" Cj = ar+2-j, 2 ~ j ~ r, -e j = kr+ l- j, 'f/j = Er+l-j, and
(30) is to be rewritten as

(33)

(where, in fact, q; = qr+l-j)'

We set L = L -ei» E = L 'f/j from (32); of course, it is equally true that
L = L k., E = L E; from the symbol (29).

Example 4 Form the symbol (29) with b = 19, al = 6, t = 4.



1

o 1 5
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Solution From the following calculations we obtain the symbol below:

2.19-6=42.2

2.19-2=41.9

19+9=41.7

19-7=41 .3

19-3=42.1

19+1=41.5

19+5=41.6

19 6 2 9 7 3 1 5

2111211

1101100 4

Example 5 Form the symbol (29) with b = 19, al = 6, t = 5.

Solution From the following calculations we obtain the symbol below:

19 + 6 = 52.1

19 +1=51.4

19 - 4 = 51.3

2 · 19 - 3 = 51 ·7

2·19+7 =51.9

19-9=51.2

2 .19+2=51.8

2.19-8=51.6

19 6 1 4 3 7 9 2 8

2 1 1 111

o 0 1 1 0 1

Now, let's take a break so you can get some practice!

••• BREAK9

(1) Form the symbol with b = 13, al = 6, t = 4, using the \11
algorithm. (Hint: In calculating \I1(a) we must find out which of
b - a, b +a, 2b - ais divisible by 4.)
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(2) Form the symbol with b = 17, al = 3, t = 5, using the \11
algorithm. (Hint: In calculating \II(a) we must find out which of
b - a, b + a, 2b - a, 2b + a is divisible by 5.)

We are now ready to prove the general Quasi-Order Theorem. We sup
pose given a <p-symbol (32); of course, we might also suppose given the
associated \li-symbol (29), so that the quantities L, E may be read offfrom
either symbol as the sum of the second row and the sum of the third row,
respectively. Our theorem is then the following.

Theorem 6 (The General Quasi-Order Theorem) Given a (con
tracted, reduced) <P-symbol (32), then the quasi-order of t mod b
is L = I:.ej' Indeed,

t L == (_I)E mod b, where E = ~::>lj.

Proof We consider the sequence of L + 1 integers

Cl. tcl. ••. , t1;-ICl, C2, tC2, .•• , tl2-IC2, C3, ..• , c" tc., ... , t1,-IC" Cl

(34)
We say that a switch takes place when we pass from t1;-ICi to Ci+l,

i = 1,2, "', r (Cr+l = cd. We also write (34) as

We note that, following rule (21) for defining the <P-algorithm,

b
Uj < 2' 1:S j :S L + 1

We also note from (33) that

(35)

(36)

{

UH I = tUj ifno switch occurs,
(37)

UHI == (-I)ry;tuj modb if a switch occurs to c.r..

It follows that

or
Cl == (-I)E tL CI modb

But Cl. b are coprime, so t L == (_I)E mod b, as claimed.
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It remains to show that L is indeed the quasi-order of t mod b.
Suppose not; then there exists an M, where 1 ::: M < L , with
t M == ±1 mod b. Thus, from (37),

(38)

We first show that UM+l t= U1 mod b. For, by (36) , if UM+I == U1 mod
b, then UM+l = Ul' If UM+l arose at a switch , then, remember
ing that M + 1 < L + 1, we see that UM+I = UI contradicts the
fact that the symbol (32) is contracted. If UM+I did not arise at
a switch, then tIUM+1> tlul ' again contradicting UM+I = UI. Hence
UM+I t= UI mod b.

Finally, we show that UM+I t= -UI mod b. For if

UM+I == -U] mod b,

thenbl (UM+\+UI ).But,by(36),U M+1 + Ul < b,sothis is impossible.
Thus (38) is false, and L is, as claimed, the quasi -order of t mod b. D

Corollary 7 (Alternative form of the General Quasi-Order Theorem)
Given a (contracted, reduced) \V-symbol (29 ), then the quasi-order
oft mod b is K = L k.. lndeed,

t K == (_1)E mod b

where E = LEi.

Remark Recall our claim that the proof of Theorem 3 is scarcely more
difficult in the general case than the special case t = 2; the only
(slight) complication arises from the fact that ru in (32), (33) may
be 0 or I in the general case, whereas we always have 1}j = 1 if t = 2.
On the other hand, we do not expect you to doubt that preparing the
ground for Theorem 3, that is, defining the <1>- and \V-algorithms, was
much more difficult in the general case!

Example 4 (revisited) From the symbol we created in Example 4 we
see that, referring to Corollary 7, K = 9, E = 4, so that the quasi-order
of 4 mod 19 is 9, and indeed

49 == (_1 )4 mod 19 = 1 mod 19
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Example 5 (revisited) From the symbol we created in Example 5 we
see that, referring to Corollary 7, K = 9, E = 4, so that the quasi-order of
5 mod 19 is 9, and indeed

59 == (_1)4 mod 19 = 1 mod 19

(Why do you think the values of Kare the same in these two examples?)

• • • BREAK 10

(1) Refer to the \li-symbol you constructed in Break 9(1) and write
down the <t>-symbol for b = 13, Cl = 6, t = 4. From either
symbol obtain the quasi-order L of 4 mod 13, and determine
whether 4L == +1 or -1 mod 13.

(2) Refer to the \11 -symbol you constructed in Break 9(2) and write
down the <t>-symbol for b = 17, Cl = 3, t = 5. From either
symbol obtain the quasi-order L of 5 mod 17, and determine
whether 5L == +1 or -1 mod 17.

(3) (Harder) Show that the quasi-order of t mod b, where bis an odd
prime, is always a factor of ! (b - 1). (Hint: Use Fermat's Little
Theorem (Ch. 2 of [2].))

(4) Answer the question following Example 5 using the hint given
* for solving question (3).
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Are Four Colors
Really Enough?

CHAPTER

5.1 INTRODUCTION: A SCHOOLBOY INVENTION

There have been few problems in mathematics over the centuries that
have taken the popular imagination as much as the Four Color Problem.
Probably the main reason for this is that it is something that can be explained
to anybody in only aminute or two. Perhaps the most surprising thing
about this problem is that it was invented by a schoolboy and not by a
mathematician at all. It's a very human story - we'll mention honeymoons,
school challenges, and a popularmagazine later. We'll also mention its 124
year history and why some people are still working on it even after it's
been solved. And then there is the famous link between this problem and
Lewis Carroll's poem, "The Hunting of the Snark," We'll get to that too.
After reading this chapter you might like to look at the overview [1], by
Appel and Haken, of their proof of the Four Color Theorem, or, for a more
complete treatment, see [6], [7], or [9].

5.2 THE FOUR-COLOR PROBLEM

In 1852, a young student in England, Frederick Guthrie, was doing his
geography homework. Correction: he was supposed to be doing his ge
ography homework. Instead, he started doodling with a map of England
which had all the counties marked on it. He started to color them in. He

127
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decided it was worth coloring the counties so that any two counties that
had a common border were given a different color. So counties like Kent
and Sussex, which are next to each other in the south of England, always
had to be colored differently.

Frederick was able to color his map with justfour colors. And this gave
rise to the problem: is it possible to color any map in four or fewer colors
so that regions with a common boundary have different colors?

This is the famous Four Color Problem. It is an unusual problem in that
it was discovered by a school student and yet has caused mathematicians
so much trouble. It was a problem that was to haunt mathematicians for
weIl over 100 years, and some of them are still worried by it today, even
though it has been proved that the answer is yes.

• •• BREAK 1

(1) We have reproduced a map of the counties of England for you
below; repeat Fred Guthrie's experiment.

(2) Invent your own set of countries by dividing a piece of paper into
a finite set of regions (counties or countries). Will four colors
suffice for your map? (Remember that no two adjacent regions
can have the same color.)

Now it turns out that Fred had a brother called Frank, who was studying
mathematics at University College, London, England. Fred told Frank,
and Frank told his professor, the well-known Augustus de Morgan. No, de
Morgan hadn't seen this problem before. And no, after doodling with it
hirnself, he couldn't explain why you only needed four colors. However,
he was pretty sure that you never needed a fifth color. All de Morgan's
experimenting led hirn to the conclusion that four colors sufficed. But the
fact that he couldn't justify it perplexed hirn somewhat. So he did what
many a mathematician before and since has done, he got in touch with
another mathematician. Unfortunately, he didn't have e-mail, so he wrote
off to Sir William Rowan Hamilton. In that letter de Morgan gave an
example of a map that actually needed four colors.

Hamilton, the Irish mathematician, who was responsible for some fine
mathematics, including the invention of quaternions, was one of the few
people who seemed not to get interested in the idea. He gave de Morgan
a curt reply and got back to his research on trying to generalize complex
numbers.



5.2 The Four-Color Problem

A map of the counties of England

• • • BREAK2

(1) Can you find a simple map that has to have four colors ?
(2) What are quatemions? Where are they written on a bridge and

why?'

ISee http ://www.maths.tcd.ie/p ub/HistMath/People/Hamilton
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At this stage the Four Color Problem can really only be thought of as
the Four Color Conjecture. The work on the Four Color Problem had now
spread, and pretty weIl everyone was beginning to believe that maps only
needed four colors. So the conjecture they all subscribed to was

Tbe Four-Color Conjecture In coloring any map so that no two neigh
boring regions have the same color, at mostJour colors are needed.

Despite his rebuffby Hamilton, de Morgan became the Four Color Con
jecture's publicist. He even mentioned it in 1860 in the popular magazine,
The Athenaeum. The farne of the problem had spread so far by 1886 that
the headmaster of the English private school, Clifton College, issued the
problem as achallenge to the school. He gave the boys a deadline by which
time they should produce a solution of no more than one page of writing
and one page of diagrams.

Now it is not clear whether the headmaster did this because he knew
that the lawyer/mathematician Kempe had a proof, or because he knew that
the proof was wrong. Kempe's "proof" is probably the most famous false
proof in mathematical history. But we need adetour in order to be able to
sneak up on it. Alfred Bray Kempe will reappear in Section 8.

5.3 GRAPHS

So what is a graph? In a way, it is unfortunate that in this chapter (and in
Chapter 9, for that matter) a graph is not the thing that you are familiar
with, something with x- and y-axes. We're interested in quite a different
animal here, and, apparently, a somewhat simpler animal, too. The graphs
we have to deal with have vertices, some or all of which may be joined by
edges, which may be curved. But no vertex is joined to itself by an edge,
and no pair of vertices is joined by more than one edge.

Have a look at Figure 1. This shows three graphs each with four vertices
and five edges. Our convention is that these three graphs are the same graph
in three different guises. In each case the vertices are shown as dots and
the edges as lines joining the dots.

As we are going to consider all three graphs of Figure 1 to be the same,
you can see that we don't worry about where we put the dots, or how
plain or fancy the lines are that represent the edges. The way we'll decide
whether two graphs are the same is if we can put the vertices on top of each
other so that pairs of vertices that are joined by an edge always sit on top of
corresponding pairs of vertices that are joined by an edge, and, moreover,
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b

(a) (b) (c)

FIGURE 1 Three identical graphs

pairs of vertiees that are not joined by an edge sit on top of eorresponding
pairs of vertiees that are not joined by an edge.

Figures l(a) and leb) represent the same graph beeause we ean put the
vertiees 1 and b together, 2 and d together, 3 and e together, and 4 and a
together. When we've done that, we ean treat the edges as if they were
made of e1astie, and the edges 12, 13, 14, 23, and 24 sit on top of the
edges bd, be, ba, de, and da.

In a similar way Figures l(a) and l(e) and Figures leb) and l(e) are the
same, too. We say that graphs that are the same in this way are isomorphie.
If A and B are isomorphie graphs, we write A ~ B. So we are regarding
isomorphie graphs as the same, or identieal.

• • • BREAK3

(1) Show that all the graphs of Figure 1 are isomorphie.
(2) Show that there is only one graph with one vertex, that there

are two different graphs with two vertiees, and four different
graphs with three vertiees. (Remember that you can't have an
edge between avertex and itself, and you ean't have two or more
edges between any two given vertiees.)

(3) Use the last problem to form a eonjeeture about the number of
graphs with n vertiees. Justify the eonjeeture or find a eounter
example.

Now,just as sets have subsets, so graphs havesubgraphs. If Gis agraph,
then H is a subgraph if (i) the vertiees of H are a subset of the vertiees
of G and (ii) the edges of H are a subset of the edges of G. Clearly, the
edges in (ii) must join vertiees from (i). So the graph on vertiees 1, 2, 3
with edges 12,23 is a subgraph ofthe graph in Figure l(a).
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One useful eoneept relating to graphs is the degree of avertex. This is
simply the number of edges that go into that vertex. In Figure 1(b), vertex a
has degree 2, vertex b has degree 3, vertex c has degree 2, and vertex d has
degree 3. We write deg a = 2, deg b = 3, and so on. Notiee that if H is a
subgraph of G and a is avertex of H, then the degree of a as avertex of
H may be smaller than its degree as avertex of G.

It's also useful to deseribe a graph as connected if you ean go between
any two vertiees by a sequenee of vertiees and edges with the edges joining
eonseeutive vertiees. Henee the graph in Figure 2(a) is eonneeted, while
the one in Figure 2(b) is not. There is no way of getting from u to v in
Figure 2(b) using edges ofthat graph. The eonneeted pieees ofdiseonneeted
graphs are ealled components.

By a cycle, we mean a eonneeted graph where eaeh vertex has degree 2.
Cycles ean exist as subgraphs in whieh every vertex of the subgraph has
degree 2. If a eycle has n vertiees, then it is denoted by Cn. So in Figure 1(a),
1,2,3 form a eycle, but 1,3,4 don't. There are no eycles in Figure 2(a),
but there are four eycles in Figure 2(b). Two of these eycles are isomorphie
to C3, and two are isomorphie to C4• A eycle is sometimes ealled a circuit
(see Chapter 7, Seetion 1.)

Now a eonneeted graph whieh has no subgraphs whieh are eycles is
ealled a tree. The graph in Figure 2(a) is a tree on nine vertiees .

• •• BREAK4

(1) Show that no two of the following three graphs are isomorphie:
Cs; the graph on eight vertiees made up of two eopies of C4 ; the

a connectedgraph
(a)

a disconnected graph
(b)

FIGURE2
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graph on eight vertiees made up of one eopy of Cs and one eopy
ofC3 .

(2) Find all trees with six vertiees.

Showing that two graphs are isomorphie is a bit of a problem. In fact,
the "isomorphism problem", that is, finding a general method of effieiently
deciding when two graphs are isomorphie, is an unsolved problem in graph
theory. We ean eertainly formalize the idea of putting vertiees on top of
one another so that edges go on top of edges and non-edges go on top of
non-edges. However, it's not really worth giving a formal definition here.
(See [4], [6], [9], [10], or any other graph theory book ifyou want to pursue
this line.) It is useful to have a look at a few graphs, though, to see what
makes them different. That way we'll be able to piek out graphs that are
obviously not isomorphie. And that will be enough for us at this stage.

So have a look at the two graphs G and H in Figure 3. Are they the
same, isomorphie? Probably not. They don't look very mueh alike. In what
way do they differ, though?

• • • BREAKS

(1) Give a number of reasons why you think G and H might not be
isomorphie.

(2) The graphs G and H in Figure 3 are fairly easy to sort out. But
how about the graphs K and L of Figure 4. Are they isomorphie
or not? What do you think?

w
u

G H

FIGURE3

x
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K L

FIGURE4

One of the things that distinguishes G from H is the number of edges.
Plainly, G has only 6 edges . On the other hand, His eomparative1y edge
rieh with 12 edges.

In the same vein, G has some vertices of degree one. (It has six such
vertiees.) In fact, deg II = 1 and deg v = 6. It should be clear from Figure 3
and the "putting vertices on top of eaeh other" definition of isomorphism
that isomorphie graphs have eorresponding vertiees with the same degree.

Sinee G has six vertices of degree land one vertex of degree 6, then
any graph isomorphie to G also has to have six vertices of degree 1 and
one vertex of degree 6. The graph H obviously is not one of these graphs.
Hence G ~ H .

So let's apply the degree test to the two graphs K and L of Figure 4.
In this ease, the test fails to distinguish between the graphs. Every vertex
in K has degree 3, and so does every vertex in L. But is K ~ L? They
don 't look alike, or do they? Is there any way to distinguish them from
eaeh other? We'H go back to this question later, but first let's take a break .

• •• ßREAK6

In Figure 5, is M ~ N?

Let's go back to graphs K, L, M, and N for a moment. You've probably
noticed that every vertex in these graphs has degree 3. Because of this they
are usually said to be regular 0/ degree 3. In fact, a graph is regular if
every vertex has the same degree.

You may have realized by now that regular graphs of the same degree
with the same number of vertiees are not necessarily isomorphie. In fact,
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M

a

b
N

FIGURE5

K and L are not isomorphie, although they are both regular of degree 3.
One of the things that distinguishes K from L is that L has a cycle C3 ,

while the smallest cycle in K is C4 • So K ~ L.
On the other hand, this "cycles test" will not distinguish M from N.

Aetually, M and N each have one 6-cycle with all other cycles 4-eycles, so
they can't be distinguished that way. In fact, there is no way to distinguish
them because they are isomorphie. It's not obvious, though,just by looking
at them. (But try moving vertex a of N to the bottom in Figure 5 and vertex b
of N to the top.)

Among regular graphs, one important class is that of complete graphs,
K n . These are the graphs on n vertiees in whieh every vertex is joined to
every other vertex. We show K z, K 3 , K 4 , K«, and K 6 in Figure 6.

It's worth noting that all of them from K 3 onwards have triangles (C3 )

and that all of them from K 4 onwards have 4-cycles (C4) ; and so on. The
other thing worth noting is that the degree of regularity of K z is 1, of K 3

is 2, of K4 is 3, of Ks is 4, and of K 6 is 5. It ought to be reasonably clear
what the degree of K; is.

I!i
FIGURE6
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••• BREAK7

That reminds us, the notion of degree came in earlier on because of its
relation to edges . How many edges has K n ? And how is the number
of edges related to the degree in Kn ? Is there any relation between
degrees and the number of edges in an arbitrary graph G?

5.4 TOURING WITH EULER

The very first problem to be tackled with the use of graphs was first
discussed in the mid 1730's. That problem is the Euler Tour Problem. l and
it all started with people walking over bridges in a place called Königsberg
in what in the 1730's was Prussia (see [3]). The city is today in Russia, it's
called Kaliningrad, and they've built another bridge since then.

Königsberg was a city on the banks of the river Pregel and one of its
tributaries. Its approximate layout in the 1730's is shown in Figure 7.

The problem is this: Is it possible to plan a walk in which one goes
over each bridge exactly once? Euler looked at the problem and modeled
Figure 7 with a multigraph: this is a graph is which pairs of vertices may
be joined by more than one edge. He constructed his model by placing
avertex on each separate land mass and joining two land masses by an
edge for each bridge between them. Hence he produced the multigraph of
Figure 8 and, in 1736, graph theory was born.

He then set to work to reason this way. If the multigraph of Figure 8 had
a route that would take you across every edge (bridge) once and only once,

FIGURE7

2This is popularly known, for obvious reaso ns, as The Königsberg Bridge Problem.
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FIGURE8

then most vertiees of the graph would have to have even degree. After all,
when you eome to a new vertex (exeept possibly the last) you go into it
and then out of it. So almost every time you use avertex x (land mass),
you use two edges ineident with x. In your walk around Königsberg, then,
using all the bridges, you have shown that every vertex exeept at most two
has to have even degree. But none of the vertiees of Figure 8 has even
degree. There was therefore no way for the Königsbergians to walk over
eaeh bridge exaetly onee.

• •• BREAKS

(1) What is the least number of edges that you need to add to the
graph of Figure 8 so that there is a route around the graph that
starts and ends at different vertices but uses every edge?

(2) If you want to start and finish at the same vertex, what is the
minimum number of edges that must be added.

Being the good mathematician that he was, Euler generalized his
Königsberg bridge problem to any multigraph. Let's say that a graph
has an Euler tour if there is a way of going over every edge onee and only
onee and returning to the starting point. Then Euler claimed the following
result.

Theorem (Euler, 1736) A connected multigraph has an Euler tour ifand
only ifevery vertex has even degree.
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Euler proved part of this but didn't prove it all. Using the argument we
used above, he showed that if a multigraph has an Euler tour, then every
vertex has to have even degree. But he didn't quite manage the converse.
This is not too difficult. It can be done several ways, but we outline a proof
by induction on the number of edges in a multigraph.

To get the induction step to work we need to show that a multigraph G in
which every vertex has even (non-zero) degree has a cycle. That argument
goes like this. First, if G has a multiple edge, it has a cycle C2 , so we
exclude multiple edges from here on. So let us start with any vertex VI.

Then VI has even degree, so VI is adjacent to some vertex V2. Similarly, V2

has even degree, so there is avertex V3 =F VI that is adjacent to V2. Then V3

is adjacent to V4 =F V2. If V4 = VI, we have a cycle. If not, continue. SO V4

is adjacent to Vs =F V3. If Vs = VI or V2 we have a cycle. If not, continue.
Since we are dealing with a finite number of vertices, we will eventually
have to use one of the vertices we have already used. Hence we have a
cycle.

Suppose then that we have a cycle C in G. Every vertex in C has
degree 2. Remove C from G. By induction, there is an Euler tour in each of
the components of the multigraph we have left. We can then patch together
these Euler tours and C to give a tour of G.

• •• BREAK9

Suppose we want to start and end at different vertices of a multigraph
and pass over every edge once and only once. Find necessary and
sufficient conditions for this to be possible. Prove this.

5.5 WHY GRAPHS?

We started out worrying about ways to color the counties of England, and
then we sidetracked you into thinking about graphs. Presumably, there's
some relation here. What is it?

To see the advantage of graphs, we need to turn our maps "inside out."
To see how to do this, look at Figure 9(a). Here we have a fairly simple
map. It only has six regions (or faces), counties, or countries. They are
labeled A, B, C, D, E, F.

Suppose the regions are countries. Then mark the capital city of coun
try X with a dot labeled x and join up two capital cities if and only if their
countries have a common border. This leads to the picture in Figure 9(b).
Note that we always think ofthe "outside" region Aas being a country, too.
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E

ABC D

F

amap

(a)

the same map with the
eapitalsjoined where appropriate

(b)

FIG URE9

the dual graph
ofthe map

(e)

Now extract from Figure 9(b) the diagram consisting of capital cities
and joins. This gives us Figure 9(c), which is a graph . Actually we call it
the dual graph of the map.

But what has the dual graph got to do with coloring maps? Suppose
our map in Figure 9(a) can be 4-colored. What does this tell us about the
dual graph in Figure 9(c)? Since the vertices in some sense stand for the
countries or regions, why not color the vertices of the dual graph ? And
we need to color them so that two adjacent vertices have different colors ,
because that corresponds to two countries with a common border having
different colors .

Hence if we can color the regions of the map with four or fewer colors,
we can color the vertices of the dual graph with four or fewer colors. Is the
converse true? That is, is it true that if we can color the vertices of the dual
graph in four or fewer colors , then we can color the map in the same way?

Yes, of course , this is quite straightforward. Whatever color we have on
vertex a, we use over the whole of region A. Whatever color we have on
vertex b, we use over the whole of region B, and so on. Now if vertex u is
adjacent to vertex v they will have different colors. In that case , adjacent
regions U and V will have different colors.

We've just discovered that the regions of the map can be colored in
k colors so that no two neighboring regions have the same color if and
only if the vertices of the dual graph can be colored in k colors so that no
two adjacent vertices have the same color. Hence we've transformed the
map-coloring problem into a graph-coloring problem . But of what value
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is that? Have we really made any progress? Is graph-coloring somehow
easier to understand than map-coloring?

But maybe we're running a little ahead of ourselves. It's just possible
that the map of Figure 9(a) isn't 4-colorable. Let's check it and see.

Without loss of generality let region A be colored red. Then B, D, E,
and F can't be red, and since B and E are neighbors they have to have
different colors. So let's assurne that B is colored blue and E green.

It ought to be clear that we can save colors by letting F be colored green,
too. After all, Fand E are not neighbors. Now C can't be blue or green,
but since it's not adjacent to A, it can be red. Then we can finish off the
map by coloring D the same color as B, namely blue. It looks as if we can
color this map in only three colors. And we can shift these colors over to
the dual graph of Figure 9(c) by coloring a and c red, e and f green, and
band d blue .

• •• BREAKIO

(1) All the vertices in the dual graph of Figure 9(c) have degree 4.
Do all dual graphs have this property?

(2) Can the graph ofFigure 9 be colored in fewer than 3 colors? How
low can you go?

So how low can graph-colorings go? Can we color a graph in one color
or two colors? We know that we can do some in three (see Figure 9(c)).

Just so that we know precisely what we are talking about, we'll say that
a graph is k-colorable if its vertices can be colored in k colors so that no
two adjacent vertices have the same color.

Going back to Figure 9(c), that graph can be colored in 6 colors. We
can always give each vertex a different color so that it is 6-colorable. But
we know that it can also be colored in 3 colors, so it is also 3-colorable.
On the other hand, it can't be colored in 2 colors, because a, b, and e are
mutually adjacent. So the graph of Figure 9(c) is not 2-colorable.

Fine, but are there l-colorable or 2-colorable graphs? What would a
l-colorable graph look like? Surely, as soon as a graph has an edge it has to
have at least 2 colors. So a l-colorable graph is just a collection of isolated
vertices.

So let's try for 2-colorable graphs. Suppose the vertices are colored red
and blue. If we started off from a blue vertex, we'd have to move to a red
vertex. In fact, all the vertices adjacent to a blue vertex would have to be
red vertices. And in the same way, all the red vertices would have to be
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c ~ SeI I. red vertices

...--- the only edges go between
the two setsc ~ Sel2 blue vertices

FIGURE 10 Schema for a 2-colorable graph

adjacent to blue vertices. So a 2-coloring divides the vertices into two sets,
the red vertices and the blue vertices. What's more, no two red vertices
are adjacent, and no two blue vertices are adjacent. The schematic picture
of such a graph is shown in Figure 10. Such graphs are called bipartite
graphs.

The first two graphs in Figure 11 are familiar. Figure ll(a) is es, while
Figure 11(b) is the graph N from Figure 5. As far as Figure l1(c) is
concemed, it may not be obvious at first that it is bipartite. You may want
to check that out. Remember, all you need to do is to show that it's 2
colorable. But one thing also worth noting is that the graph ofFigure 11(c)
is a tree. This is because it is connected and has no cycles.

If you go back to Figure 10 for aminute, suppose we have abipartite
graph with r red vertices and b blue ones. If it has as many edges as
possible, it has b edges coming out of each red vertex and r edges coming
out of each blue vertex. We call such a graph a complete bipartite graph

(a) (b)

FIGURE 11 Bipartite graphs

(c)
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with parts of size r and b. We denote that graph by Kr,h. So the graph of
Figure 11(b) is actually K 3,3, as are the graphs M and N of Figure 5.

• •• BREAK 11

(1) What does a map look like that has abipartite graph as its dual
graph?

(2) Show that all trees are bipartite graphs.

5.6 ANOTHER CONCEPT

So if we start off with a map, we can produce a graph (the dual graph)
from it. And coloring the faces of the map gives a coloring of the vertices
of the graph. Now if all maps are 4-colorable, are all graphs 4-colorable
too? Surely this can't be true. If avertex has 4 neighbors, then won't the
graph need 5 colors, one color for the vertex and one for each neighboring
vertex? No. We've seen that this isn't the case in Figure 9. The graph there
is shown again in Figure 12. Here v has degree 4, but the graph can be
colored using only three colors!

Hang on! If all the vertices other than v were joined to each other, then
we would need more than four colors. Look at the graph in Figure 13.

If v is colored 1, then a could be colored 2. But no other vertex can be
colored 1 or 2 because every other vertex is joined both to v and to a. This
means that b has to have a new color, 3 say. Arguing in this way we see
that each new vertex we look at in Figure 13 has to have a new color. So
we need five colors altogether.

Isn't this a difficulty for us? Surely the map we get from the graph in
Figure 13 has to have five colors, too. What is that map? How do we get

FIGURE 12
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FIGURE 13 A graph that needs 5 colors

it from the graph? Let's try to get the map from the graph and see what it
looks like.

The diagram in Figure 14 tells the story. You might as well put V as the
middle region, which has to be surrounded by A, B, C, and D. Since A is
already touching Band D, it has to be made to touch C. This accounts for
the "handle" that goes across between A and C. But then look at B. It's
already next to A and C, so how can we make sure that Band D have a
common boundary? We obviously need a "handle" between them.

At this stage, there's clearly a problem. The two "handles" have to
overlap. So how can we produce a map corresponding to the graph of
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I
I
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to makeA
adjacent to C

FIGURE 14 To find the map in the graph of Figure 13
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Figure 13? It doesn't look as if we can. Maps can't have regions that cross
each other.

This obviously raises the question of which graphs are dual graphs of a
map? When they are, we say that the graph has a dual map.

• •• BREAK12

(1) Are there some graphs that are 6-colorable? Can you find a graph
that is n-colorable for any n?

(2) What graphs have dual maps and why?

5.7 PLANARITY

What essential properties do dual graphs have? We know that the degrees
of the vertices are not restricted because we can surround a country by as
many countries as we like. But we also know that not all graphs can be
dual graphs. Figure 13 is an example of a graph that turns out not to have a
corresponding map. So how do we know when the graph we have is a dual
graph? One very simple property of a dual graph is that, when we draw
the graph on top of its corresponding map so that vertex x lies in X, then
none of the edges cross. This is because we only join vertices in regions
that have a common boundary. We will say that graphs that can be drawn
so that no two edges cross are planar. In Figure 15 we give some examples
of planar graphs. Of course, all dual graphs are planar.

(a) (b) (e)

FIGURE 15 Examples of planar graphs
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• • • BREAK 13

(1) If you have a graph drawn so that its edges da cross , does that
necessarily mean that it is not planar?

(2) The Hiltons , the Holtons , and the Pedersens have bought three
neighboring houses. They all want to have gas, electricity, and
water connected from the three main points for these utilities.
Can the pipes be laid in such a way that no two cross over each
other at any point?

Now it's easy to see that dual graphs are planar, but it's another matter
to decide, in general, whether or not a given graph is planar. After all, for a
graph with a large number ofvertices, you might take ages trying to draw it
so that no two edges cross. Even if you couldn 't find a planar drawing, how
would you know that no such drawing existed? You might have missed it
somehow.

Let's go back for a moment to the graph in Figure 13. We've drawn it
again in Figure 16(a), along with another graph (Figure l6(b». Now, of
course , from what we've said before , Figure 16(a) is the complete graph K«,
and Figure l6(b) is the complete bipartite graph K 3,3 '

Now we have essentially shown that K, is non-planar in the discussion
relating to Figure 13. Meanwhile, you have considered the planarity of K 3,3

under another guise in BREAK 13. But we'll now outline an argument that
shows that K 3•3 is not planar.

Let's assurne that K 3,3 is planar. In the final "planar" drawing of K 3,3

we will have to have the cycle (a, d, b, e, C, f) as shown in Figure 16(c).
The question then is, where are the three remaining edges?

v a b c

f d

d a

c b

b
e fc

Ks K3 3

(a) (b) (e)

FIGURE 16
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Now, at the moment, there is a symmetry between the edges ae, bJ,
and cd and so we can first think about the edge ae without any loss of
generality. This edge is either drawn inside the cycle or outside. But if the
edge is actually outside, we can interchange the inside and outside of the
cycle, so we can assume that ae is inside. This forces cd to be outside the
cycle; otherwise, it would have to cross ae. This gives us the situation of
Figure 17.

The problem is where to put the edge bf"t If it is inside the cycle, it
has to cross the edge ae. If it is outside the cycle, it has to cross the edge
cd. These both contradict the assumption that K3,3 is planar. Hence that
assumption is false. So K 3,3 is not planar!

Discovering that K s and K 3,3 are not planar is no big deal. However, the
Polish topologist Kazimierz Kuratowski was able to show that, in asense,
these are the only non-planar graphs. Kuratowski's Theorem says that a
graph G is non-planar if and only if, in a special sense to be explained, it
contains K s or K 3,3 as a subgraph.

To explain to you this special sense, let's see why the graph ofFigure 18,
the so-called Petersen graph, is non-planar. The highlighted edges in Fig
ure 18 form the subgraph K 3,3 , "in a special sense." Hence, by Kuratowski's
Theorem, this graph is non-planar.

Let's think about this special sense. If we take the highlighted subgraph
of Figure 18, we get the graph of Figure 19(a). This can be rearranged (see
Figure 19(b)) so that it looks more like K 3,3 '

The graph in Figure 19(b) clearly shows K 3,3 with a small case of
measles. To four edges of K 3,3 have been added vertices of degree 2.
Intuitively, it's clearthat adding vertices of degree 2 to K 3,3 cannot suddenly

f

c

FIGURE 17 K3,3 without the edge bf
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make it planar. There is no way that adding vertices of degree 2 can undo
a crossing of edges.

Now the same thing can be said of Ks; too. If K, sprouts measles in
the form of an arbitrary number of vertices of degree 2, then the resulting
graph is still non-planar. Thus Kuratowski's Theorem says that G is non
planar if and only if it contains a subgraph that is either K, with measles
or K3.3 with measles. (Of course, as in much of mathematical language,
"with measles" includes the possibility of no measles.)
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••• BREAK 14

(1) Show that K, is non-planar, using an argument similar to the one
we used on K 3,3 .

(2) Show, in three ways, that the graph in Figure 20 is non-planar.

5.8 THEEND

We started out with a map. We turned that into a dual graph. We noticed
that dual graphs are planar. If we could prove that all planar graphs could
be colored with four (or fewer) colors, then, of course, so could all dual
graphs. But then all maps would be 4-colorable because dual graphs are.
How might we prove that all planar graphs are 4-colorable?

Let' s not worry about that for a moment. In 1879, the Englishman Kempe
proved that the Four Color Conjecture is true! As areward for this and
other work, Kempe was made a Fellow of the Royal Society. The Royal
Society is a body that was set up for the promotion of science in Britain
under the Royal Charter of King Charles 11 in 1662. Only a limited number
of Fellows exist at any one time. Existing Fellows elect new Fellows on
the basis of their contribution to science. To become an ER.S. is a singular
honor.

Kempe's proof therefore was generally applauded and certainly was
widely accepted. However, the story wasn't over. In 1890 another English
mathematician, Percy John Heawood, found an error in Kempe's proof!
Heawood was, however, able to salvage an important idea, that of Kempe
chains (see [6] or [8]), from Kempe's proof. Using Kempe's work, Hea
wood was able to prove that every map is 5-colorable. (See [2], [3], [4],
[6], [8], or [9].)

FIGURE20
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For nearly 90 more years mathematicians, both amateur and profes
sional, tried to solve the Four Color Conjecture. Some progress was made.
For instance, a group of people concentrated on the number of regions in
the map. One mathematician provided his new wife with maps for her to
color on their honeymoon! By the mid-1970's it was known that every map
with at most 99 regions is 4-colorable.

Then in 1976, Appel and Haken [1] completed the proofusing a method
strongly based on Kempe's ideas. The major tool that Appel and Haken
used that wasn't available to Kempe was a computer. Before they used it,
though, they had to exploit certain carefully chosen mathematical reduc
tions to make the problem finite; otherwise, the computer would have been
of no use. But, even so, they had to run their machine for 3 months in order
to cover all the cases required by their approach.

The nature of this proof raised certain mathematicians' hackles. Up to
this time, it had been possible for mathematicians to check every line of a
proof and, consequently, to accept the proof or reject it. Here was a proof
by computer that, if written out in full, could not have been checked even if
all of the world's mathematicians and their apprentices had given the task
all the years they had at their disposal. In many quarters this "new" proof
took some time to be accepted.

In the meantime, various mathematicians completed computer proofs
similar to that of Appel and Haken. To date the nicest attempt at tidying
up a computer proof has come from Robertson, Sanders, Seymour, and
Thomas (see [8]). But there are still mathematicians who would like an
elegant proof without recourse to a computer. A "traditional" proof would
make many people happy.

• •• BREAK 15

Find, and check, a proof of the Five Color Theorem.

5.9 COLORING EDGES

The Scottish mathematician P.G. Tait had some crazy ideas, but in 1880 he
had an idea that might just work. There is still a long way to go, but here
is the idea, and here is how things stand up to the publication of this book.

Instead of looking at the dual graph of a map, we'lllook at its under
lying graph. In other words, we'lllook at the graph whose edges are the
boundaries of the regions and whose vertices are the points where three or
more boundaries meet.
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The first thing to notice is that we may assume that precisely three
boundaries meet at every vertex of the underlying graph. We show how to
do this in Figure 21. We put a new "polygonal" region at every vertex to
give an underlying graph all of whose vertices are of degree 3. We call the
corresponding map a trivalent map.

Suppose the trivalent map is 4-colored. Then regions A, B, C, D, E are
colored such that A and B have different colors, B and C have different
colors, C and D have different colors, D and E have different colors,
and E and A have different colors. Hence the 4-coloring of the trivalent
map leads to a 4-coloring ofthe map without region X. This means that we
only have to worry about coloring trivalent maps.

So now let's concentrate on trivalent maps. And let's turn to looking at
edge-coloring their underlying graphs, each vertex of which has degree 3.
(By an edge-coloring we mean a coloring of the edges so that edges that
meet at a common vertex have different colors.) What we want to show
is that 4-coloring the regions of the map is equivalent to 3-coloring the
edges of the underlying graph. This was Tait's idea, and there's a rather
nice proof.

Before we can examine the proof, though, we need to restriet the kind
of map we are dealing with. In Figure 22 we have a map where the same
region lies on two sides of the edge e.

Remove e and the regions on the right. Suppose the left regions plus the
outside face are 4-colorable. Remove e and the regions on the left. Suppose
the right regions plus the outside face are 4-colorable. Let the outside face
in each case have the same color. Then putting the two colorings back
together gives a 4-coloring of the original map. The Four Color Conjecture
now depends on coloring the left and right submaps. So we'll assume from

D c D c

map trivalent map

FIGURE21
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e

FIGURE22

now on that we are dealing with the smallest map that is not 4-colorable.
Such a map will not have a boundary like e in Figure 22.

To show that a 4-face coloring supplies a 3-edge coloring, we need to
take another small detour. We ask for the reader's patience .

Consider the set W = {CO, 0), (0, 1), 0, 0), 0, 1)}. We'll define the
addition of elements of W according to the table below; and we'll write $

for this addition. '

$ (0, 0) (0, I) (1,0) 0 ,1)

(0,0) (0, 0) (0, 1) 0,0) 0 , I)

(0,1) (0, I) (0, 0) 0,1) 0 ,0)

0 ,0) 0 ,0) 0 ,1) (0,0) (0, I)

0, I) 0, I) (1, 0) (0, 1) (0,0)

Table 1. Addition in W

There are three very useful properties of the set Wunder the operation $.

First of all, Cl $ C2 = C2 $ C l for all CI, C2 E W. You should be able to see,
too, that if Cl $ C2 = (0, 0), then Cl = C2, and vice versa. Finally, you can
check that if CI $ C2 = CI $ C3, then C2 = C3. We'll find these properties
useful in a moment.

Now suppose that we have colored all the faces of a map using four
colors represented by the elements of W. We then color the edges of the
underlying graph by the sum ofthe colors on the faces on either side ofthe
edges (see Figure 23).

The thing to note here is that the edge receiving the color Cl $ C2 is not
an edge like the edge e in Figure 22. Hence the faces on either side of the
edge are different. This means that CI i= C2. From what we said above, we

J W is a well-known object in linear algebra, a vector space of dimension 2 over the field with 2
elements, that is to say, the pairs are added componentwise mod 2.
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FIGURE 23 Coloring edges using face coloring

now know that Cl EB C2 i= (0, 0). This argument is true for all edges, and so
the colors on the edges of the underlying map must therefore come from
the set {CO, 1), (1,0), (1, I)}.

Now, can two adjacent edges have the same color? Suppose Cl EB C2 =
Cl EB C3. From what we know of W, C2 = C3' Hence we have an edge that
has the same face on either side of it. We know that this is not possible.
So adjacent edges have different colors. This strange method of coloring
edges, given the colors on the faces, has led to a 3-coloring of the edges.
The edge colors come from {(O, 1), (1, 0), (1, 1)}. So we see that a 4-face
coloring implies a 3-edge coloring.

How can we go the other way? We now want to 3-edge color the
underlying graph of a trivalent map and produce a 4-coloring of its faces.
So we can assurne that we have the 3-coloring of the edges. Suppose the
colors are r, s, and t. The trick here is to pick two colors rand s, and to
look first at the edges colored r or s. By themselves, what sort of a graph
do they form? Because every vertex of the underlying graph is of degree
three, and because we have three colors, all three colors have to be present
on the three edges around each vertex. So ignoring edges with color t is
like throwing those edges away. What that does is to leave us with a graph,
all of whose vertices have degree 2. Such a graph has to be a cycle or a
collection of cycles. A map consisting of cycles can be face colored with
just two colors. Let these two colors be a and b.
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FIGURE25

Now repeat the process by looking just at the edge colors rand t. Again
these produce a graph that is a co11ection of cycles. These can be face
colored using colors C and d.

The final trick is to notice that any region in the original map is the
intersection of faces from the two lots of cycle maps that we have just
described. So color a face ac if it is the intersection of an a-colored face and
a c-colored face, or color it ad, bc, bd for the various other intersections.
Hence we've used at most four colors. By the method of coloring the cycle
graphs, no two faces colored ac, ad, bc, or bd can be adjacent. So a 3-edge
coloring gives us a 4-face coloring.

This shows the equivalence of the 4-face coloring problem and the
3-edge coloring problem.

• •• BREAK 16

(1) Show that Cl EI1 C2 = C2 EI1 Cl'

Show that Cl EI1 C2 = (0,0) implies that Cl = C2.

Show that Cl EI1 C2 = Cl EI1 C3 implies that C2 = C3'

(2) Show that the edges of the map-graph in Figure 24 are 3-edge
colorable by first finding a 4-face coloring.

(3) In the graph ofFigure 25 produce a 4-face coloring from a 3-edge
coloring.

5.10 A BEGINNING?

Suppose we have an arbitrary planar graph a11 of whose vertices have
degree 3. How can we show that it is 3-edge colorable? If we can find
a way to do this, we will have found a way of proving the Four Color
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Conjecture. If we can find a method that does not require the use of a
computer, that would be a bonus.

Of course, we don't know how to do this ... yet. But there might be a
possible approach hidden in what we do next. Maybe you'll see how to do
it. Let us know if and when you do.

There are two key steps in the plan. The first comes from a theorem due
to the Russian mathematician V.G. Vizing. He proved that the graphs we
are looking at need only three or four colors in order to color their edges!
That cuts down the whole business considerably. We don't have to worry
about these graphs having to be 5- or 500-edge colored.

Suppose we take one of OUf planar graphs of degree 3. If it's 3-edge
colored, we're finished by what we did in the last section. If it's 4-edge
colored ... ? Ay, there's the rub! So let us assurne that it's 4-edge colored.
What do 4-edge colored graphs of degree 3 look like? If we knew the
answer to that, we might be finished.

Actually, by various tricks we can reduce the kind of 4-edge colored
graphs of degree 3 we need to look for. Surprisingly, they turn out to be
hard to find. At one stage in the 1970s only five of them were known!
Martin Gardner, who wrote a column in Scientific American for many
years, suggested that searching for these graphs was like hunting for snarks,
referring to a poem by Lewis Carroll. Hence the restricted graphs we are
looking for came to be known as snarks.

The smallest snark is the graph ofFigure 18, which we showed to be non
planar. This graph, as you know, is called the Petersen graph; it is named
after the Scandinavian mathematician Julius Peter Christian Petersen, who
did some early work with it. We show the Petersen graph again in Figure 26.

FIGURE 26 The Petersen graph
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• •• BREAK 17

Show that the Petersen graph is 4-edge colorable but not 3-edge
colorable.

Perhaps by giving snarks some publicity in Scientific American, Gardner
prompted the mathematical community into action. Relatively soon after
his column appeared, more snarks were discovered. In fact, it was soon
established that there is an infinite number of them. This was done by
showing how to construct new snarks from old ones. We give such a
construction below.

This construction is called the dot product of two graphs and was
produced by R. Isaacs [5] in 1975. He first took two snarks, any two
snarks, L and R. Then he

1. removed a pair of adjacent vertices x and y from L;
2. removed a pair of independent edges ab and cd from R;
3. joined vertices between Land R by means ofnew edges ra, sb, tc, ud,

as shown in Figure 27, to produce a graph, L.R, which is regular of
degree 3.

It turns out that L. R is a snark.
In Figure 27 we have chosen to join r to a, s to b, t to c, and u to d,

but we would have obtained a snark, which we would still refer to as L. R,
if instead of joining the vertices of {r, s} to the vertices of {a, b} and the
vertices of {t, u} to the vertices of {c, d} we had joined the vertices of {r, s}
to the vertices of {c, d}, and the vertices of {t , u} to the vertices of {a, b}.

L R

FIGURE27

L.R
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To see how this works out in praetiee, let' s eonstruet an example of P. P,
where P is the Petersen graph. The graph shown in Figure 28 is one of the
Blanusa snarks, named after the Croatian mathematician Danila Blanusa.
This graph is one of the five first-known snarks we mentioned above.

Using P alone as the starting snark we ean produee an infinite eolleetion
of snarks via P.P, P.(P.P), P.(P.(P.P)), . , -, But these are not the only
snarks known. For many more examples see [7],

••• BREAK 18

Find another snark of the form P, P that is not isomorphie to the
graph in Figure 28.

The surprising thing about all the snarks that we know today is that, in
some sense, they alt eontain the Petersen graph! Here we have to be vague
about what "in some sense" means. Roughly, it means that the Petersen
graph is a subgraph of them all.

This led the British mathematieian W.T. (Bill) Tutte, who spent mueh of
his working life at Waterloo University in Canada, to make the following
eonjeeture.

Thtte's Conjecture Every snark contains a copy 0/ the Petersen graph.

This is our seeond key step, If this is true, then our imagined 4-edge
eolorable, planar graph of degree 3 has the Petersen graph inside it some
where. If it does, then, by Figure 18, the graph eontains a eopy of K 3,3 .

Henee the graph is non-planar. But this eontradicts the assumption that
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FIGURE28
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FIGURE29

it was planar! Hence it can't be 4-edge colorable. And we've proved the
Four-Color Theorem by another route!

• • • BREAK 19

(I) Find all graphs on n vertices that are regular of degree I.
(2) Find all graphs on n vertices that are regular of degree 2.
(3) Find all graphs on n vertices that are regular of degree 3. (If this

is too hard, try it for n = 4 and n = 6.)
(4) Show that the "dodecahedron'" in Figure 29 is Hamiltonian.

That is, show that there is a cycle in the graph that passes through
all the vertices of the graph.

(5) Use Kuratowski's theorem to show that K; is non-planar for all
n :::: 5. Which complete bipartite graphs are planar?

(6) Find all connected graphs on 5 vertices that have no cycles.
(7) What is the smallest number of colors that can be used to edge

color K 3,3?

(8) Show that if every planar graph that is regular of degree 3 were
Hamiltonian, then the Four-Color Theorem would follow. (See
question (4) for adefinition of Hamiltonian.)
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CHAPTER

From Binomial
to Trinomial
Coefficients
and Beyond

6.1 INTRODUCTION AND WARM·UP

In [3 (Chapter 6, Part I), 5, and 6] we presented the binomial coeffi
eients C) in a geometrie, an algebraie, and a eombinatorial framework,
being much eoneemed with establishing interesting connections between
their algebraic properties and geometrie features of the Pascal Triangle.

We also introduced in [3], but did not exploit to its fullest, a far more
revealing notation for a binomial coefficient than C), namely, t nJ, where'
r + s = n. This notation emphasizes the symmetry of the binomial co
efficient, so that we have the Symmetry Identity, expressed in symmetrie
form as

(1)

(see Figures 1,2).

I The eminent French mathematician Henri Cartan goes one step further than us down the road of
notational innovation and writes (r, s) instead of Cn,). Of course, we are not recommending abandoning

the notation C).

159
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It also brings out the symmetrie nature of the Pascal Identity

(2)(n) (n-l) (n-l)
r s = r-l s + r s-1

Notice how rnuch less revealing (1) and (2) would be if s were suppressed.
Notice, too, that in Figure l(a) the Pascal Identity rnay be expressed by
saying that the surn of the two nurnbers in the hexagons that touch the

n=5~

n=l~

n=2~

\
s=2

\
s = 1

\
s=O

(a)

•

. ( ) .
n constant

(b)

FIGURE 1 Note that Vs),r +s = n, isjustthe usual G).
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2

4

3 3

6 4

5 10 10 5

(3)

(4)

FIGURE2

"roof" of any hexagon of entries equals the number in the center of that
hexagon. ' Of course, the hexagons may be continued to the right and left
of the array in Figure l(a), but all of these further hexagons would have
O's in their centers (see the Vanishing Identity (7)) . Figure 2 gives the
numerical value of VJ in the part ofthe Pascal Triangle corresponding to
Figure l(a).

In this chapter we will be using the more explicit notation almost
exclusively. ' and we begin by recalling some of the facts developed in [3],
presenting them in this notation.

From the combinatorial interpretation of the binomial coefficient, that
is, as the number of ways of choosing r objects from n objects, we see that

(
n ) = n(n - 1) (n - 2) . .. (n - r+ 1)

r s r!

We also adopt the natural convention

(onn) - (nn o) - 1

Remembering that r + s = n, we see that (3) may be written neatly, by
multiplying the top and bottom by s!, as

( n) n!
r s = r!s!'

if n ~ 0, r ~ 0, s ~ 0 (5)

2We talk of the roof of a hexagon to prepare for the analogy with the Pascal Identity for trinornial
coefficients (compare Figure 14(c» .

3We do this in order to farniliarize the reader with the new notation, not because we believe (in fact
we don'rl ) that it always confers an advantage. You will find that, as a general rule, we do not use this
expanded notation in Chapter 7.
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Notice that, although we have lost the symmetry in (3), we compensate
by having a formula that is far more suitable for computation than (5),
especially if we avail ourselves of the symmetry property (1) at the same
time.

We call (5) the arithmetical interpretation of VJ Of course, (5) is
valid for either r = 0 (and s = n) or s = 0 (and r = n), provided that we
interpret O! in the standard way as 1. For binomial coefficients we would
not, as we have said, normally use (5) to calculate their value, but, as
you will see, when we calculate multinomial coefficients - in particular
trinomial coefficients - it is natural to rely on a form similar to (5), since
we do not have a convenient form generalizing (3).

A second interpretation of the binomial coefficient is obtained by ob
serving that algebraically CnJmay be thought of as the coefficient 01a'b'
in the expansion 01 (a + b)"; with r + s = n. Thus

(6)

n~O

/
/

/
/

/ n < 0
/

/ r<O
/

/ s ~ 0
/

/
/

/

\
\

\
\ r<O

\
\ s ~ 0

\
\

\
\

\
\

o

\
\

\
\

n<O\
r~O \

\
s<o \

\
\

\
\

/

o n~O /
r~O /
s < 0 /

/
/

/
/

/
/

FIGURE 3 Remember, r + s = n,
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n ~-II

n~-IO -10

n ~-9 45 -9
'"II

n =-8 -120 36 -8 <

".
II

n ::::-7 210 -84 28 -7 I -7 28 -84 210 <
\0

II
n ~-6 -252 126 -56 21 -6 -6 21 -56 126• -252. <

"-
!I

n ~-5 210 -126 70 -35 15 -5 -5 15 -35 70• -126. 210 <. '"II
n =-4 -120 84. -56 35 -20 10 -4 -4 10 -20 35 -56 84. -120 < o,

II
n =-3 45 -36 28 -21 15 -10 -3 -3 6 -10 15 -21 28 -36 45 <

~
II

n =-2 -10 -8 -6 -4 3 -4 5 -6 7 -8. 9 -10 <

n =-1 -1 -I -I -I 1. -I -1 1 ·1 ·1

n=O

n=l ~
\.,
~

n:::: 2 \\
\

-p -0
n:::: 3 \\

\.a
n=4 4 6 4 \\

\
<P

n > 5 5 10 10 5 ~

if_ '-'
n~6 6 15 20 15 6

\\
\
(J'

n=7 7 21 35 35 21 7
\\

\
U'

n:::: 8 8 28 56 70 56 28 8

n:::: 9 9 36 84 126 126 84 36 9

n ~ 10 1 10 45 120 210 252 210 120 45

p ., p p if_ p

\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\

-0 .!) <P -' (J' U' s- -y -> .-' 0

FIGURE 4 The Pascal Hexagon for -11 :::: n,r,s :::: 10. Note that we have slightly displaced the frontier lines between

sextants in order to be able to display the nen-zero values along these lines.

(7)r<O or s<Oand

From (6) we immediately obtain the" Vanishing Identity

Cns) = 0 for n >0

which explains the two lower zero triangular sextants in the Pascal hexagon
in Figures 3 and 4. (In Figure 4 each unadomed dot stands for a 0 entry.)

4 Although it would be equivalent to state the conditions on (7) as "for n 2: 0 and r > n or S > n, this
would not suggest the analogous conditions for trinomial coefficients.
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Before considering what happens when n < 0, let us take a break and
look at some patterns in the Pascal triangle.

• •• BREAK 1

(I) Make yourself a Pascal Triangle with °::::: n ::::: 10 and, for the
following identity, circle the values involved in the identity for
n = 3, k = 5:

(8)t (n +.i) = (n +k+ I)
i=O n I n + I k

You may then see why (8) is sometimes called the Christmas
Stocking Theorem (with the stocking hanging on one of the I 's
along the right-hand side ofthe Pascal Triangle).

By symmetry you will then see that the statement ofthe Christ
mas Stocking Theorem where the stocking hangs on one of the
I 's along the left-hand side of the Pascal Triangle is

(9)t (n. + i) = (n + k + I)
i=O I n k n + I

(2) Prove either (8) or (9). (Hint: Use the Pascal Identity to sub
tract G+:) from G+:::)· What happens?) Use the same type of
argument to prove that

( n ) t( n+i) (n+k+l)
r - 1 s + 1 + i=O r + i s = r + k s + 1

[Hint: Notice that this coincides with (9) above if s = n, by
the Vanishing Identity.]

(3) A few years ago, one of the authors (DH) was working with
a child with autism who enjoyed playing with baked-bean and
spaghetti cans." In an effort to use this interest to understand
what mathematics the child could do, DH brought hirn the cans
to work with. The first thing the child became interested in doing
with the cans was making towers. Eventually, no doubt with some
prodding from DH, he tried to see how many different kinds of
towers he could make with 2 cans of baked beans and 2 cans

5We even published a paper on this whole story; see [I].



E
'-v-'

B 5
'-v-' '-v-'

B B 5 5

B 5 B 5
'-v-' '-v-" '-v-'
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B 5 B 5 B S

B B 5 S 5 B
'-,-' '-.-'

B 5 B 5 5 B

B B 5 5 B S

5 B B B 5 5

,5 5 5 B B B

Notice how many towers are atop each brace in this diagram
and how these numbers are related to the binomial coefficients.
Use (8) and then (9) to show that the sum of all these numbers is
just (363) -1. Figure 5 may suggest how to do this. The underlined
entry in Figure 5(a) is the result of adding all the entries along
a line inside the parallelogram (including the endpoints) where
r is fixed. The doubly-underlined entry in Figure 5(b) is the
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FIGURES

result of adding all the underlined entries on the boundary of the
parallelogram where s is fixed at s = k, starting with the entry
(0\)' Notice that this means that (0\) gets added twice.

(4) Show, by first applying (8) as shown in Figure 5(a), then apply
ing (9) as shown in Figure 5(b), that the number of towers you
can construct, including the empty tower, with k baked beans
cans and k spaghetti cans is (k+21(k+~+J - 1.

(5) Use the same reasoning to show that the number of towers you
can construct, including the empty tower, with k baked bean cans
and espaghetti cans available is C:1H+e

2+1) - 1 (see Figure 6).
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/
/

/
/

/
/

/

FIGURE6

(6) Use the result of part (5) to show that the surn of the binornial
coefficients on the boundary and interior of the parallelograrn
having vertices located at the binomial coefficients (see Figure 7)

is

(
n +k )

r + k s ' (
n+k+.e )

r+k s+e

(
n+k+e+2 ) (n+k+l)

r+k+l s+.e+l r+k+l s

( n + e + l ) (n)
- r s+e+l + r s

We now return to our extension of the Pascal Triangle, already started
with the vanishing identity (7), and ask what happens when n is a negative
integer. There are then, in fact, two possible power series expansions of
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FIGURE7

(a + b)", one valid if lai< Ibl and the other valid if lai> Ibl. By Taylor
series arguments" we obtain, with n < 0, (see [4, 7]),

6We might also use the convergent infinite series 1 + x + x 2 + ... = l~x' valid if lxi< 1, and
differentiate (-n - 1) times (provided that we can justify the term-by-term differentiation!).



Thus we are led to define
n!

r!s! '
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n :::: 0, r >: 0, s:::: °
cns)=(-lrC -~~~l). n<O, r::::O, s<O (12)

(_1)5( _~~~ 1 s). n < 0, r < 0, s:::: °
We complete the Pascal Hexagon in the obvious way by setting

if n < 0, r < 0, S < ° (13)

We note that, with VJ so defined, we have extended (I) and (2) so that
they are now valid for all integers n.

Symmetry Identity

Pascal Identity

except that

( n) (n-l) (n-l)
r s = r-I s + r s-l

(14)

(15)

(16)

However, if you examine (10) and (11) you will see that we should not
expect the Pascal Identity to be valid in this one exceptional case , as the
binomial coefficients L~IO) and (0-~J arise in confticting situations. Thus
(16) serves as a warning rather than an exception!

Certain qualitative features ofthe Pascal Hexagon are shown in Figure 3.
Notice that the directions in which n, r , and s are constant are just as
shown in Figure 1(b). Also observe the natural division of the hexagon
into six triangular sextants. Three ofthese are non-zero sextants, or blades,
labeled I , II , III, in which every entry is non-zero; and three are zero
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sextants, labeled Z,, Z2, Z3, in which every entry is zero.? Note that the
frontier lines between sextants are all regarded as belonging to the non-zero
blades they abut, except that the center point belongs to I.

Notice, in Figure 4, how the absolute values of the numerical values
of the entries in the northwest and northeast blades of the Windmill are
simply the values in the southern blade rotated through ± 120°. Observe,
too, how the signs alternate in successive rows of r, s in the northeast and
northwest blades, respectively.

All these facts were presented in [3], but their symmetric aspect may
not have caught the reader's attention because we did not always insert the
s in the symbol for the binomial coefficient.

In this chapter we are concerned in the first instance with the natural
extension of the ideas on binomial coefficients presented in [3] - for ex
ample, the generalized Star of David Theorem (which we will discuss in
the next break) - from binomial to trinomial coefficients. Once again, our
new notation is admirably suited to the passage from 2 dimensions to 3
dimensions. Specifically, a trinomial coefficient ( n ), r + s + t = n, is

r s r
first defined for n a non-negative integer. Then r, s , t are also non-negative
integers, and we interpret the trinomial coefficient (, : I) algebraicallyas
the coefficient of a'b' Cl in the trinomial expansion of (a + b + c)", It is
then easy to show that, in this positive sector, which we naturally call the
Pascal Tetrahedron, the value of the trinomial coefficient is given by

( n) n!
r s t = r !s!t!

(17)

Of course, the symmetry of the trinomial coefficient is now expressed by
the fact that the value of (, : I) is unchanged by any permutation of r, s, t
(there are 6 such permutations, including the identity permutation); and
the Pascal Identity, in the case r, s, t ::: I, takes the form

n-l

s - I
n ) (18)

s t - I

Just like the binomial coefficient, the trinomial coefficient also has a
combinatorial interpretation. It is then to be understood as the number of
ways of partitioning a set of n objects into 3 disjoint subsets, of r, s , t
objects, respectively.

Since we, and our readers, would wish to be able to generalize beyond
trinomial coefficients to multinomial coefficients , we introduce in Section 2

7We often refer to the Pascal Windmill if we wantto concentrate attention on the 3 non-zero triangular
sextant s of the Pascal Hexagon . These sextant s may then be called blades.
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a notation suitable for such a generalization. Thus we use, as an alternative
to the notation (, : J, the notation Cl ;2 kJ; after all, everybody knows
how to write the mth term of the sequence (k1, k2 , k-; .. '), but nobody
knows how to write the mth term of the sequence (r, s, t, ... )! This gives
us the opportunity to make the point that different notations have different
advantages in different contexts.

The actual content of Section 2 is concerned with the effect of sliding
parallelepipeds, the exact analogy of the sliding of parallelograms in [3,
Section 6.4], and we deduce, as in that reference, a (generalized) Star of
David Theorem. However, this 3-dimensional version is far richer than
the 2-dimensional original because of the wider scope of the symmetry
concept in 3 dimensions, as indieated above. Thus (compare (1))

C: t)=C ~ s)=C: t)=C ~ r)=C ~ s)=C; r)
(19)

If you are unfamiliar with the idea of a symmetry group, we recommend
you, at this point, to glance at the material on symmetry groups in Chapter 8,
especially the definition of the symmetrie group Sn, to see that it is the
symmetric group S3, with 3! = 6 elements, that acts on the triple (r, s, t)
and under which, as (19) states, ( n ) is invariant.

r s I

In Section 3 we will extend the definition of ( n ) to allow n, r, s, t to
r s I

take as values any integers - positive, zero, or negative- subject only to
the condition r + S + t = n. We will also show how to generalize this
development to multinomial coefficients (k

l
ki n kJ. In Section 4 we will

discuss variants and other generalizations of our theorems in Section 2 and
then, in Section 5, we explore the geometry of the 3-dimensional analog
of the Pascal Hexagon.

However, two final, related points should be made. First, when we
talk, in Section 2, of the edges of the parallelepiped p(n) having lengths
al, a2, a-; we are referring not to a metric valid over the whole of
three-dimensional space, but to a distance measured along the lines
k2 = constant, k3 = constant (i.e., measured by the change in k1) , or to
a distance measured along the lines k, = constant, k3 = constant (i.e.,
measured by the change in k2) ; or to a distance measured along the lines
k, = constant, k2 = constant (i.e., measured by the change in k3) .8 Re
member that, from the strict point of view of coordinate geometry, we are

8Notice our use here of k I, kz, k3 rather than r, s, t. The point we are making readily generalizes to m

dimensions and is not at all contined to the case m = 3. Indeed, a similar remark would appropriately
have accompanied Chapter 6 of [3], with m = 2.
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looking at the hyperplane n = k, + k2 + k3 in 4-dimensional space - but
this pedantic interpretation is not helpful to our algebraic purposes.

Second, in keeping with the convention explained above, we have often
drawn, e.g., in Figure 15, a reetangular box instead of a more general
parallelepiped. We have feIt justified in stylizing in this way, since the
angles ofthe parallelepiped play no role in the argument and the lengths we
refer to are merely distances measured along the given edges . Neverthele ss,
our colleague Hans Walser was kind enough to provide figures which
more truly reflect the positions of the parallelepipeds in question in the
hyperplane n = k, + k2 + k3 (or n = r + s + t) in 4-dimensional space!
These lovely diagrams are Figures ISA, 16A, 17A.

••• BREAK2

(This break is designed to prepare you for Section 2.)
Suppose you have a parallelogram whose vertices are entries in

the Pascal Triangle and whose sides run in two of the three possible
directions n = constant; r = constant; s = constant. Suppose,
further, that the lengths of the sides of this parallelogram are k and e
(see Figure 8). Suppose also that each parallelogram has an anchor (ßl

given by the binomial coefficient V'), and define the cross-product,
or weight, ofthe parallelogram to be the product ofthe anchor and the

(
n-k-l )

r- l s- k

( n-e )
r- e s

•

f.... ~~ %§ ~,G %

. ( ) .
n constant

FIGURE 8 A fundamental parallelegram p<n ) with the sliding direction shown by arrows,
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binomial coefficient opposite it, divided by the product of the other
two binomial coefficients (at the ends of the shorter diagonal) of the
parallelogram.

Thus the parallelogram p(n) shown in Figure 8 has sides running in the
directions where rand s are constant, and its weight w(p(n») is given by?

W (p(n») =
( n ) ( n-k-e)
rs r-e s-k

( n-k )( n-e )
r s-k r-e s

where all binomial coefficients on the right must, of course, have all entries
non-negative.

(1) Simplify w(p(n») to show that, for fixed k and e, w(p(n») is inde
pendent of rand sand thus does not change as we move p(n) in the
horizontal direction (i.e., the direction in which n remains constant).!"

(2) Observe, from what you did in part (1), that W (p(n») is invariant under
*the interchange of k and e. Thus, in Figure 9, w(p(n») = w(p(n»).

Use this fact to show that

C~~k:~k)C~~k s)C n:~e)

( n- k- r ) ( n- e ) ( n- k ) (20)
= r-k s-e r-e s r s-k

(3) Identify the 6 binomial coefficients appearing in (20) in Figure 10.
Describe a geometrie way of stating (20).

(4) Repeat (with the obvious changes) part (1) for the parallelograms p(s) ,

p(r) shown in Figure 11 and hence establish the three Star 0/ Davit!

9We can, of course replace k or € by -k or -l, respectively. When both are replaced the weight takes

the form

( n ) ( n+k+€)
W (p(n)) = r s r + € s + k ,

( n+ k ) ( n+ € )
r s+k r+l s

which simplifies easily to

n!(n + k + €)!

(n + k)!(n + €)!

10This explains why we call this parallelogram p(n).
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FIGURE 11 The Pascal F1ower.

(
n-k-e )

r-k s- e (
n-k-e )

r- e s- k

(
n-k )
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FIGURE 12 The three Stars of David (our picture shows genuine stars (k = U) but that isn't necessary for the

argument),
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FIGURE 13 Showing how the stars of Figure 12 (even when k ::f:. U) could have come from

either of two equilateral triangles, one pointing up and the other pointing down. Notice that

when k ::f:. U the original triangle, and the triangles cut off, are each of different sizes in the two

cases.

theorems shown in Figure 12. Notice in the process that W(p(s) does
not change as we move the vertices of P in the direction in which s
remains constant;" and similarly that W(p(r) does not change as we
move the vertices of P in the direction in which r remains constant.

(5) Compare the expressions for the three weights w(p(n), W(p(s), and
W(p(r), noting the symmetry.

(6) Choose, in any non-zero blade ofthe Pascal Windmill, three binomial
coefficients that form an equilateral triangle (pointing either up or
down). Then cut off from that triangle three identical smaller equilat
eral triangles, one from each vertex, so that you obtain a semi-regular

11Notice here that we have placed the "(s)" as a subscript rather than a superscript. This is because s
plays a different role from n in the binomial coefficient - as is reflected by its different position in
the symbol VJ



(21)

(23)

hexagon with binomial coefficients located at points A, B, C, D, E, F,
as shown in Figure 13. Then verify that, in your example,

A x C x E = B x D x F.

6.2 ANALOGUES OF THE GENERALIZED
STAR OF DAVID THEOREMS

First we define the trinomial coefficient as the eoefficient ofa' b' er in the
expansion of(a + b + c)", with r + s + t = n :::: O. Thus

(a + b + et = r+~=n C: t)arbse
r

From (21) we immediately obtain the

Vanishing Identity

C: t) = 0 for n >: 0 and r < 0 or s < 0 or t < 0

(22)

(compare with (7)), which explains why the non-zero trinomial coefficients
form triangular layers in the Pascal Tetrahedron (see Figures 14(a), (b)
and (c)).

Now the coefficient t : r) in (21) above may be thought of as the number
of ways of choosing r of the n factors from which you select a, namely,
t .,» and then choosing s of the remaining s + t factors from which
you select b, namely, (:+;). Thus, we see that, multiplying these binomial
coefficients together, we have

and this simplifies to

(
n) n! (s + t)! n!

r s t = r!(s + t)!' s!t! = r!s!t!

From (23), or from the algebraic or combinatorial" interpretation, it is
obvious that we have the

12Recall the combinatorial interpretation following (12).
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Level n = 0
--1 X

Level n = 1

2 2

--1 X

--I X

2 1 --1 X 1 2

Leveln = 3
--I X 1

1 3 3

3 6 3 2 1

1

3 3

--3 X33

•••

(a)

FIGURE 14 The Pascal Tetrahedron.



(b) (c)

FIGURE 14 icontinuedi
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Symmetry Identity

We also have the

Pascal Identity

n - 1

5 - I
n -1 )
5 t - I

(25)
where n , r, 5 , t ::: 1.

Figure 14(b) shows layers of polyhedra, well-known as regular rhom
bic dodecahedra , stacking up to form the Pascal Tetrahedron, just as Fig
ure 1(a) shows regular hexagons stacking up to form the Pascal Triangle."
Hence the Pascal Identity may be expressed by saying that the sum of the
three numbers identified with the rhombic dodecahedra touch ing the "roof'
of a rhombic dodecahedron equals the number assigned to that rhombic
dodecahedron. (Remember our remark relating to the Pascal Identity for
binomial coefficients.)

••• BREAK3

( I) Prove (25) by means of a combinatorial argument. (Hint: Think of
putting n students into three classrooms so that the first, second,
and third classrooms contain r, 5, t students, respectively. Then
do the same thing, but with exactly one student wearing a hat!)

(2) Give either an arithmetic proof (this can be quite neat!) or an
algebraic proof of (25).

(3) What do you notice about the numbers on the slanted faces of
the Pascal Tetrahedron?

When we display the numerical values of (, : t) it is most natural to
place them in a tetrahedral array, with triangular cross sections, as shown
in Figure 14(a). You will then notice that there are planes in each of which
one of the four variables n, r, 5 , t is constant. Of course, for an expansion
of (a + b + c)" in a particular case, we would actually prefer to use the
numerical values that appear at the appropriate level of an extended version
of Figure 14(a). The clever layout inside the bubble of Figure 14(a) was

13A particularly satisfying part of our analogy is the fact that regular hexagon s fill the plane and regular
rhombic dodecahedra fill space.



discovered and shown to us by Larry Pierce II, at that time a sophomore
student at the University of Toledo. To see why it is true, consider a
particular but not special case, say (a + b + C)3. Then observe that, using
the binomial expansion, we have

(a + (b + C))3 = a3+ 3a2(b + c) + 3a(b + C)2 + (b + C)3.

Compare this with the diagram inside the bubble for level 3 in Fig
ure l4(a). The models shown in Figures l4(b) and (c) may be constructed
using rhombic dodecahedra. A 3-dimensional model and the illustrations in
Figures l4(b) and (c) were created for us by our colleague Hans Walser. He
is currently preparing an article on the Pascal Tetrahedron, which involves,
among other things, some of the geometric properties of the rhombic do
decahedron, and describes how to build this particular model of the Pascal
Tetrahedron (which he calls the Pascal Pyramid) using a collection of
rhombic dodecahedra.

• •• BREAK4

(1) Use the values at level n = 4 in the Pascal Tetrahedron to fill in
the coefficients for the expansion of (2x - y +3Z)4. (Hint: It may
be helpful to write out the following array:

_(2X)4

+ _(2x)\-y) + _(2X)3(3z)

+ _(2X)2(_y)2 + _(2X)2(_y)(3z) + _(2X)2(3z)2

+ _ (2x)( _y)3 + _ (2x)( -y)2(3z) + _ (2x)( _y)(3Z)2 + _ (2x)(3z)3

+ _ (_y)4 + _ (-y)\3z) + _ (_y)2(3z)2 + _ (-y)(3Z)3 + _ (3Z)4

(2) What is the coefficient of a3b4c2d 5 in the expansion of
(a + 2b - 3c + d)14?

Figure 14 suggests that there may be numerical patterns that are linked
with the geometry of this array of numbers that are analogous to our
Generalized Star of David Theorems for binomial coefficients. Since we
are certain that many of our readers will want to look at the generalization
to multinomial(m-nomial) coefficients, m :::: 3, we will use a notation for
the trinomial coefficients that sets the scene for such a generalization.

Thus, anticipating the more general case, we will write Cl :2 kJ instead

of the more usual C: J Now, how do we know which geometrie con
figuration will be of interest to us in finding analogues to our results for
binomial coefficients? Actually we don't know for sure, but since the gen
esis of our Star of David theorems was a parallelogram whose sides were
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drawn in certain specific directions, we hope it will be fruitful to consider
a fundamental parallelepiped'" r», with vertices

(26)

as shown in Figure 15 (where we assume that each of the three axes points
in the positive direction). We refer to al, a-; a3 as the lengths of the edges
of the parallelepiped. Notice that each of the faces of this parallelepiped
lies in a plane for which one of k l , kz, k3 is a constant.

We describe the vertices A, C, E, G as the even vertices, and B, D, F, H
as the odd vertices, because the number of different edges traversed be
tween the anchor A and the vertex in question (regardless ofthe length ofthe
edge) isan evennumberfor A, C, E, G andan oddnumberfor B, D, F, H.
This fact may be seen by counting the number of edges between the anchor
and the vertex in question in Figure 15 (or the Walser model 15A). Equiv
alently, the parity may be determined by counting the number of k, 's that
are changed (by the addition of a suitable ai) in the bottom of the symbol
t

1
~ kJ to achieve the multinomial coefficient in question. This method is

consistent with what we have already done with binomial coefficients; and
will certainly be applicable to the general m-nomial (kl ki n .. kJ.

Retuming to trinomial coefficients, the weight of p(n) is given by

( ) product of even vertices A x C x E x Gw(pn)= = _
product of odd vertices B x D x F x H

so that, by a straightforward calculation,

( ) n!(n + al +az)l(n +az +a3)!(n + al + a3)!
W(p n ) = (27)

(n +ad!(n + az)!(n + a3)!(n + al + az + a3)!

14A parallelepiped is JUS! a squashed reetangular box.



FIGURE15A

FIGURE 15 The Fundamental Parallelepiped r».
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(Compare the form of (27) with the form of the weight in the binomial case ,
given in the footnote accompanying BREAK 2.) Thus , for fixed al , az, a3,

W(p (n)) is independent of k], kz, k3 and is therefore invariant under the
action of sliding p (n ) in the plane n = constant. Further, we can permute
the tripie (al , az, a3) in any way we wish and the weight will remain
unchanged; that is, W ( p(n» ) is invariant under the action of the symmetric
group 53 on the set of coordinate directions (or, equivalently, on the set
{al, az, a3}) ' Thus, with m = 3, we have 5(= 3! - 1) other parallelepipeds
having the same weight as r».

Notice that we could have taken some of a l, ai, a3 to be negative, but
we would have had to ensure that, in every factorial on the right of (27),
we were dealing with non-negative numbers. In particular, if all a l , az, a3

are replaced by their negatives, we get

which would then look completely analogous to the answer for w(p (n ))
in the binomial case (see BREAK 2).

Figure 16 illustrates the case where we consider the cyclic permutation n
in which al , a- , a3 go to a3, a lt az, respectively. Let p (n) be the zr-image"
of p (n ), with its vertices labeled in the obvious way (as shown in Figure 16).
Then A is invariant under the permutation tt , and we get a Hyperstar 0/
David Theorem of the form

B* x C x D* x E x F * x G x H * = B x C* x D x E* x F x G* x H (29)

Since n is a cyclic permutation of length 3 (as illustrated in Figure 16 and
the Walser model Figure 16A), then (29) is a genuinely new identity.

However, if we choose a permutation n that leaves some aj fixed, then
(29) degenerates to a disguised form of (20). Thus if J'( simply exchanges al

and az, then J'( leaves both the anchor A and the vertex F fixed (F* = F);
and then (29) becomes a simple consequence of the two binomial Star of
David identities

B x C* x D = B* x C x D* and E x G x H* = E* x G* x H (30)

at levels k3 and k3 + a3, respectively (see Figure 17).
What we have said about the parallelepiped p (n) may be modified to

deal with parallelepipeds P (kJJ ' P (k" ) , P (k3)' The next break will give you the
opportunity to see how this is carried out.

15Thus p (n ) is one of the 5 other parallelepipeds referred 10 above.



FIGURE 16A

F* GI
a3 ~E*

G*~ F/
p(n)

~

I

G2< F E

/ /G~ H/

a~
A A* D* D

./
C~~/S*B GI

C

p(n)~

FIGURE 16 p(n) and its image p(n) for the cyclic permutation al,a2,a3 .... a3,aJ, a2.
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FIGURE 17A

FIGURE 17 pn) and its image p<n) for the permutation that exchanges 01 and 02.



• •• BREAKS

(1) Let Cl ~ kJ be the anchor of a parallelepiped with edge lengths
a" a-, a3 in the hyperplanes where n, k2, k3, respectively, are
constant. Show that

(Hint: Use Figure 15, but replace the kl-axis with n, running in
the negative direction. Leave the k2- and k3-axes running in the
positive direction. Thus,

(2) Find W(P(k 2») and W(P(k 3 »)'

(3) Compare the forms for these three weights with each other and
with (27) or (28).

(4) Guess what w(p(n») and W(P(k
l
») would be for tetranomial co

efficients (m = 4).

Of course, we can generalize the material of this chapter to m
multinomial'" coefficients. That would be a story weIl worth pursuing,
but, instead, we will take up the problem of extending the trinomial coef
ficients beyond the Pascal Tetrahedron.

16Already in the ease m = 4 two additional features, very different in nature, make their appearanee.
First, there are permutations 11' in 54, for example GI, Gz, G3, G4 '""-* GZ, GI, G4, G3, that are neither eyclie
nor sueh that some a, is fixed. Seeond, we ean no longer draw pietures to interrelate the geometry and
the algebra. Thus, as the situation to be explored gets rieher, our available tools get poorer!
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6.3 EXTENDING THE PASCAL TETRAHEDRON
AND THE PASCAL rn-SIMPLEX

We will argue in this seetion that the rule for defining trinomial coefficients

where n is a negative integer, should be as folIows:

( n ) _ ° unlessr s t - ,

r ~ 0, s ~ 0,

or r ~ 0, t ~ 0,

when C: t) = (_l)n-tC

when C: t) = (_l)n-sC

-t -I )
s -n-I'

-s - 1

-n-I

when C:or s ~ 0, t ~ 0, ) (
-r - 1 )- (_l)n-r

t - -n - 1 s t .

(31)
We base this claim on the observation that, if (a + b + c)", with n

negative, is to be represented by a convergent power series, then there are
only 3 possibilities (compare [4, 5] and rule (10) above). We will have

or

or

(a+b+e)n = ~C: t)arbse
t

(a+b+e)n=~C: t)arbse
t

(a + b + e)n = s~C: t)arbse
t

(32)

(33)

(34)

where the coefficients ( n ) are given by the appropriate formulae in (31).
r s t

We will be content to show that the formula (32) yields a convergent power
series in the open subset of 1R3 given by la + bl < e, lai< [c], Ibl < lei.



6.3 Extending the Pascal Tetrahedron and the Pascal rn-simplex

For, if la + bl < c, then, by the rule given in [4,5,6, 7], which coinc ides
with rule (10 ), we have

(a+b+ct = L (n )(a+b)UCI,
u>O u 1

u+t=n
where

(
n ) (-1 -1 )- (_I)U

u1 - u -n-1'

Now we may expand (a + b)U by the binomial theorem and obtain a
convergent double power series

(a + b + c)n =

and

L (u) ( n)a'bS
Cl

r. s ~O r s u 1
r+s=u
U+I=n

Thus we obtain formula (32).

-1 - I )
s -n-l

* Obviously, the rules (31) through (34) extend to rn-multinomial coef
ficients. We start, of course, with the rn-dimensional analogue of the tri
angle and tetrahedron, namely, the rn-dimensional simplex, or rn-simplex
(see [8]). In the Pascal rn-simplex , with n, ki, k2 , •.• , km non-negative and
Lik, = n, we have, as expected ,

(35)

. Now let n be a negative integer. Then, without going into details, we
obtain the following rule: With n a negative integer,
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unless exactly one of kl, kz, "' , km is negative. If k, is negative, then

-k· - 1 )
(_n' - 1) ki+l .. . km

(36)
It is interesting to remark that (36) generalizes the rule for defining VJ
in the part of the Pascal Hexagon given by n < 0, r ::: 0, S < 0, (see
Figure 4), namely,

(
n ) ( -s - I )- (-1)'

rs r -n-I

However, to construct the generalization, notice that we must replace (-1Y
above by the equivalent (-1 )n-s. Of course, (36) also generalizes (31) and
is used in the same way - to calculate the LHS by means of the known

* arithmetic value of the RHS (see (35)).

6.4 SOME VARIANTS AND GENERALIZATIONS

* In [9] Hoggatt and Alexanderson give an interesting algorithm relating
to the multinomial coefficients. We again take an anchor (k

J
k

2
n... kJ and

consider its nearest neighbors. Precisely, we have, at level (n + 1), the m
mult inomial coefficients

n+l

kz + 1

at level n we have the m (m - I) multinomial coefficients

n

k; +E
1 .:::: i < j .:::: m, E = ± 1



6.4 Some Variants and Generalizations

and at level (n - 1) we have the m multinomial coefficients

(
n -1 )

k, - 1 kz ... km '

n-1

kz - 1 ...

n -1 )
kz ... km - 1

These m(m + 1) coefficients, as Hoggatt and Alexanderson prove, may
then be partitioned into m sets, each containing (m + I) coefficients, in such
a way that the product of the coefficients in each set is a given number N,
narnely'?

(n - 1)!(n!)m-l(n + 1)!
N = ----------;-----

TI (k; - 1)! (TI k, !r-
1 TI tk, + 1)!

(37)

which is thereby seen to be an integer. The method of partitioning is not
claimed to be unique. This theorem may, in the case m = 2, be regarded
as arestatement of the Star of David Theorem (20), in the special case
k = 1, e = -1, which is the original case of the Star of David Theorem
discussed by Gould [2]; notice, again, that we may certainly allow negative
values for k and ein the Star of David Theorem, so long as all entries in the
binomial coefficients in (20) remain non-negative. However, for m :::: 3,
the Hoggatt-Alexanderson Theorem [9] diverges from what we have called
the Hyperstar of David Theorem.

On the other hand, we may generalize the Hoggatt-Alexanderson The
orem in the following direction. We regard the theorem we have described
as the case (l, -1) ofthe following theorem.

Theorem 1 Given the multinomial anchor Cl k: n .. kJ, we define its set
of (p, q 'y-satellitesv: to consist at level (n + p) of the m coefficients

n+p )
k, + P ... km '

(
n+ p )

k1 kz ... km + p

17Here, and in (38), TI ri! is an abbreviation for TI (ri !), and, of course, TI means the product over all
values of i.

1811ms, what we calJed nearest neighbors are the (I, -i)-satellites.
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at level (n + q) of the m coefficients

n+q )
kz .. . km + q

and at level (n + p + q ) ofthe m(m - 1) coefficients

n+p+q

ki +l ... kj - 1

1 ::: i < j ::: m ,

k, + 1] kj+l ... km),

(E, 1]) = (p , q) or (q , p) .

(38)

Then these m (m + 1) coefficients may be partitioned into m sets, each
containing (m + 1) coefficients, in such a way that the product ofthe
coefficients in each set is the number N(p , q) given by

(n + p)!(n + q)! « n + p + q)!)m-I
N(p, q) = ( rIl(k; + p)! Il(k; + q)! Il k, !

Corollary 2 The number N(p , q) is an integer.

Proof N(p , q) is a rational number whose mth power is an integer. 0

Note that p, q may take any integer values such that the factorial func
tions in (38) are applied to non-negative integers.

Of course , the partitioning function is exactly that used by the authors
of [9]; theirs is the hard work!

We now discuss an entire1y different variant of our earlier resu1ts. In
this variant we generalize the content of Section 2 substantially beyond
the domain of multinomial coefficients. Indeed, all we required in that
section of the multinomial coefficient, as a function of n, k1, kz, .. . , km, is
that it be a separable function of its variables ; that is, we may replace the
multinomial coefficient by any such function :

An example of such a separable function is the q-analogue of the multi
nomial coefficient. This is the Gaussian polynomiaI (see [10]), obtainable
from the multinomial coefficient (k

1
k: n .. kJ by replacing each occurrence

of r! by (q' -l) (q;q-~~)~) ...(q-l); of course, Ol, isjust I. The Gaussian polynomiaI
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CI k2n .. kJq may be regarded as the coefficient of a~ 1 a;2... a~m in the ex

pansion of (a, + a2 + ... + am Y' in the algebra (over IR) generated by
(a" a2,"' , am; q), subject to ajaj = qa jaj, i < j, qa, = a.q, Notice
that , in this generalization of the material of Section 2, it is not necessary
that the functions 11 , 12, ... , I m be the same ; however, if F in (39) is
(as in the special case of the multinomial coefficients and in the example
of the Gaussian polynomials) invariant under the action of the symmetric
group Sm on the m-tuple (k l , k-, . .. , km), then the function s 11, 12, ... , Im
in (39) may be chosen to be the same.

The material of Section 3 makes it obvious how we would extend
the definition of F, given by (39), to the domain of arbitrary integers
n, k" k2, ... , km. The formula (35) is easily generalized by replacing the
multinornial coefficient by F; indeed, the generalization does not even
require that F be separable. However, one has to be careful in assigning
a value to F in the regions in which the multinomial coefficient takes
the value 0; this problem was first encountered in extending the harmonic
triangle in [4, 7]. We do not want to put any stress on this technical point
here , since it is in the regions where formula (35) holds that the real interest
lies.

Finally, we may obviously generalize Theorem I, in Section 4, provided
that we insist in (39) that F be invariant under the action of Sm' We leave
the details to the reader.

Another direction to take, starting from the Star of David Theorem is
* suggested in [l l ].

6.5 THE GEOMETRY OF THE 3-DIMENSIONAL
ANALOGUE OF THE PASCAL HEXAGON

We revert here to the notation (, ~ J for the trinomial coefficient, so that
we can compare the analogue more easily with the Pascal Hexagon'? in
Figure I. To see how we might find the appropriate polyhedron to accom
modate the trinomial coefficients, when n , r, S, t are any integers subject
to r + S + t = n, we make the following observations about the Pascal
Hexagon in two dimensions (see Figures 18 and 19, which are reproduc
tions of Figures 3 and 4, respectively, with some subtle embellishments):

1. There are precisely 23
- 2 = 6 regions in the plane, since it is possible

to have all combinations of assignments of signs to n , r, S except n :::: 0,
r < 0, S < °and n < 0, r :::: 0, S :::: 0.

19It is also the case that we do not know the rn-dimensional analogue of the Pascal Hexagon for m > 3.



6 From Binomial to Trinomial Coefficients and Beyond194 ---'- ---'-'----__---'----'-'----_---'-'------"--------"'-----'- _

n<O
r<O
s;;.O

o

n<O
r<O
s< O

o

o

FIGURE 18 Notice that precisely one inequality changes whenever a line between sextants of

the hexagon is crossed.

2. The lirresseparatirrg the six sextants may be thought of as the extensions
of the sides of an equilateral triangle having Ts at each of its vertices,
as shown in Figure 19.

3. The three non-zero sextants are arranged as symmetrically as possible,
and each one contains two boundaries emanating from the center.

4. Precisely one of the three inequalities changes whenever a line separat
ing sextants of the hexagon is crossed (see Figure 18).

So we begin our search for the 3-dimensional analogue by observing
that, for the trinomial coefficients (, ~ J we have, by analogy with obser
vation (1) above, the property: There are precisely 24 - 2 = 14 regions in
space, since it is possible to have all combinations of assignments of sign
to n , r, S, t except n ::: 0, r < 0, S < 0, t < °and n < 0, r ::: 0, S ::: 0,
t ::: 0.

Now, what we need is a symmetrie polyhedron whose extended face
planes produce 14 distinct regions in space satisfying the analogue of
observation (2) above in a satisfactory way. So we ask first, what is the 3
dimensional analogue of an equilateral triangle? The natural answer is the
regular tetrahedron (and we know that, when n, r, S, t ::: 0, the trinomial
coefficients can be arranged in a regular tetrahedral region as illustrated in
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r = -5 r= - 4 r= - 3 r= - 2 r= - 1 r =O

r = I

o
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- 3

o

III

o
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o
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3

o
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n =3 ----7

\ '
\ '

/I = - 5 ----7 1 \ 0 0 0 0 /
\ '

\ '
n = - 4 ----7 -4 1 \ 0 0 0 /

\ '
\ '
1\ 0 0 / 1

\ '
\ '
1\ 0 / 1 -2

\ '
\ '

----7 1 - 1 1 - 1 1\ / 1 - 1 1 -1 1
-- -- -------- -------- -- ~~7 ------- - -------- -------

'\ \' \o / \ 0 0 ·' = - 5, \, \

0 , / \ \ 0 \ , ~ -4
I \

o / 2 \ 0 \
I \

I \ S = - 3

/ 1 3 3 \ 0 \
I \

I \ .{ = - 2

/1=4----7 /1 4 6 4 1 \ \' \
I \ S = -1

\= 4\ =3\ =2\ = I \ =0

n= - 3 ----7 6

n =1 ~

/I = -2 ----7 - 4

n = -r- l

FIGURE 19 The Pascal Hexagon, showing values of V s)' with r + s = n, for -5.::: n,r,s .::: 4.

Figure 1). Now if we extend the face planes of a regular tetrahedron we
obtain

1. 4 trihedral region s off the vertices,
2. 4 truncated trihedral regions off the faces, and
3. 6 wedges off the edges (with reetangular cross sections, tending to

square cross sections in the limit).

Yoila! It turns out that, when a centrally symmetric boundary is placed
around the configuration with f1at faces covering each region, the extended
face planes of the regular tetrahedron tend" to produce a polyhedron with
eight equilateral triangular faces and six square faces. This is, in fact, the
cuboctahedron. Can the cuboctahedron satisfy the rest of our conditions?
We begin OUT answer by conjecturing that the four non-zero regions are
trihedral regions off the vertices of a regular tetrahedron with 1's at each
vertex and the other regions are the zero regions. We check to see if this is so

20Here, j ust as in the original case of the hexagon, one moves towards perfect regularity as the values
of n ,r, s , I tend to ± oo.
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and to see if we get an arrangement offaces (representing regions) that gives
situations consistent with the analogous statements of (3) and (4). The net
diagram ofthe cuboctahedron in Figure 20 shows that it is, indeed, possible
to arrange the 14 sets of inequalities so that precisely one inequality changes
whenever an edge of the polyhedron is crossed.

By copying the diagram in Figure 20 and actually constructing the model
(it is advisable to draw a tab on every other edge on the exterior boundary

o
n<O
r<O
s;;.o

t<O

FIGURE 20 Net diagram for the Pascal Cuboctahedron. Notice that precisely one inequality

changes whenever an edge of the polyhedron is crossed.



t ~ 3 t ~ 2 t » 1 t > 0
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r= ~4 ~-1 -3 -3 -1

r ~ -3 ~O 2 0

r= -2 ~ 0 0 -1

r~-I ~ 0 0 0

-1 0

o 0

t ~-I

!
t ~ -2

!
t =-3

0 !
t ~ -4

0 !
r=O ~ -1 -1 -1 1 -1

r~l ~ -3 2 -1 0 -1 2 -3 \~3

r~2 ~ -3 0 0 -3 \~2

r~3 ~ -1 0 0 0 -1 \~ 1

\S~-4 \S~ -3 \S~-2 \S~-I \s~o

FIGURE 21 Hexagonal cross-section of the Pascal Cuboctahedron when n = -1 and

-4:::: r,s,t :::: 3.

before cutting the pattern out), one sees that the non-zero regions are located
so that they may be thought of as occupying the four trihedral regions off
the vertices of the central tetrahedron. But there is even more confirmation
that this is the right polyhedron. By examining the fOUf hexagonal cross
sections of this model one sees that when t = 0 the cross-section actually
is the Pascal Hexagon! Moreover, the two other hexagons, obtained when
s = 0 or when r = 0, have the identical numerical values. A fourth non
zero hexagonal cross-section occurs when n = -1, and some of its values
are shown in Figure 21.

This is certainly the polyhedron we seek. We call it the Pascal Cubocta
hedron." We rest OUf case!

21A clever pop-up model of the Pascal Cuboctahedron was very kindly and very ingeniously invented
by Hans Walser, at the request of PH and Jp, to enable them to lecture on this topic when away from
their horne bases. In addition to the article [13] about the Pascal Tetrahedron (which he calls the Pascal
Pyramid), referred to in Section 2, he has also written an article [12] with instructions on how to build
this pop-up model.
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Catalan Numbers

CHAPTER

7.1 INTRODUCTION: TUREE IDEAS
ABOUT TUE SAME MATUEMATICS

The classical Catalan numbers, rediscovered by the Belgian mathemati
cian Eugene Charles Catalan (1814-1894) seem to have been first studied
by the famous Swiss mathematician Leonhard Euler (1707-1783). Euler
considered the problem of counting the number of ways a given convex
polygon I can be divided into triangles by drawing non-intersecting diag
onals (a diagonal is a line segment joining non-adjacent vertices, and two
diagonals are considered to be non-intersecting if they intersect only in
avertex of the polygon). Obviously, this number depends only on n, the
number of sides of the polygon; obviously, too, (n - 3) diagonals will
be drawn, creating (n - 2) triangles. We will call the number? Cn-l, thus
putting emphasis on the number of triangles; this accords with standard
practice. It is easy to see that, for polygons with 3,4,5 sides, we have
Cl = 1, Cl = 2, C3 = 5, respectively (see Figure 1). Even Euler, however,
found it difficult to obtain a general formula for ci,

1Although we will always draw our polygons as regular polygons, this is not necessary. All that is
necessary is that the polygons be convex. We also assume that the given polygon cannot be rotated or
reflected - otherwise all the polygons, for a given value of n, in Figure 1 would be equivalent to each
other.

2We will write Ck for Cn-2, and, conventionally, set Co = 1.

199
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n = 3, cl = 1

n = 4, c2 = 2

n = 5, c3 = 5

FIGURE 1

• • • BREAK 1

Draw some hexagons and divide them into triangles by non-intersecting
diagonals to determine the value of C4.

Today, we know many different interpretations of the classical Catalan
numbers. Henry Gould, a mathematician at the University ofWest Virginia,
has available a huge bibliography containing 450 references to Catalan
numbers (see [2]) and involving a very large number of interpretations of
the sequence of (classical) Catal an numbers. See also [8, 9].

We plan in this chapter to give you four interpretations (each preceded
by abullet (e), so that they stand out on the page). You have one already ;
let us repeat it in more convenient form:
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• Co = 1; ci, k :::: 1, is defined to be the number of ways of partitioning
a (k + 2)-gon into k triangles by means of (k - 1) non-intersecting
diagonals.

Our second interpretation of the classical Catalan numbers is concerned
with a given binary operation on a set - we will simply write the operation
as juxtaposition. Then

• bo = 1; bi ; k :::: 1, is defined to be the number of ways of introduc
ing parentheses into (or, as we may say, parenthesizing) the symbol
SIS2 .•• Sk+1 so that it makes sense.

Plainly, b, = 1, since the only possibility is (SIS2). Then b2 = 2, since
we may have «SIS2)S3) or (SI (S2S3)).

• •• BREAK2

(1) Write out an the ways of parenthesizing the symbol SIS2S3S4 to
determine the value of b.;

(2) Write out an the ways of parenthesizing the symbol SlS2S3S4SS to
determine the value of bs,

(3) Do you see a systematic way of going fram bk- 1 to bk ?

Your answers to BREAKS 1 and 2 should convince you of two things:
first, that it is a reasonable conjecture that, since we set bo = 1,

(1)

and, second, that we want to find a better way to do the counting.
In fact, it turns out that there is a neat way of calculating bi, For we see,

by considering the last pair of parentheses, that

b, = L bi s; k >: 1
i+j=k-l

(2)

For the last pair ofparentheses must enclose two expressions, one involving
i + 1 symbols and the other involving j + 1 symbols, for some numbers
i, j satisfying i + 1 + j + 1 = k + 1, or i + j = k - 1.

Of course, we can use (2) to calculate b, for k = 1,2,3,···. For
example,

b, = bsb: + bi + b2bo = 2 + 1 + 2 = 5

as claimed. However, our more ambitious plan is to use (2) to find aformula
for bb for an k :::: O.
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To this end, we construct the generating function L::o bix": Then if we
write j (x) for this function, the recurrence relation (2) tells us that

j(x)' ~ t, (~, b'bj ) x' ~ t, bk+1x'

It follows that
00

xj(X)2 = LbkXk = j(x) - 1, or xf" - j + 1 = 0
k=l

where we write j for j(x). Solving for j gives us j = l±~. But notice

that 1+~ ---+ 00 as x ---+ O. Since j is apower series in x and j (0) = 1,
it must be the case that

(3)
1 - J1 - 4x

j=----
2x

We now expand the RHS (right-hand side) of (3) as apower series in x.
We obtairr'

so

J1-4x=(l-4x)~

4x 2 1 ·3· .. (2k - 1)2k+l
= 1 - 2x - - - ... - X k+1 - •••

2! (k + I)!

1- J1- 4x
j=----

2x

2x 1 ·3" . (2k - 1)2k k
=1+-+,,·+ x + ...

2! (k+l)!

However, since j
that

L::o bix", we conclude, by equating coefficients,

1 ·3 .. · (2k - 1)
b = 2k

k (k+l)!

1.3 ... (2k-l)2k _ (2k)! 2k _ (2k)! _ 1 (2k) h
But (k+l)! - (k+l)!(2.4 ...2k) - (k+l)!k! - k+l k ,so t at

1 (2k)b ---
k- k+1 k

(4)

1
30ur series L~o bkXk is really a formal power series, but the power series expansion of (I - 4x)2

is, in fact, valid for any real number x such that lxi< ±. See Section 4, item (21).
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Notice that (4) even holds for k = 0; on the other hand, an alternative form,
often used and quoted, is

1 ( 2k )b --
k-k k-l (5)

which only holds if k ::: 1.
We move now to a third interpretation of the classical Catalan numbers.

We consider binary trees. A tree is a graph with no circuits; and the tree
is said to be binary if two branches emerge from each source node. The
nodes from which no branches emerge (downwards!) are said to be end
nodes. Our trees are rooted (though we draw the root at the top!), so that
each edge has a preferred direction, away from the root. Then

• ao = 1; ai, k ::: 1, is defined to be the number of rooted binary trees with
k source nodes (such a tree has (k + 1) end nodes, thus (2k + 1) nodes
altogether). See Figure 2 for examples of binary trees.

Two trees are regarded as equivalent if and only if one may be obtained
from the other by pairing off nodes and (directed) edges so that the inci
dence relation of an edge having anode is preserved; and left and right are

(a)

(e)

(b)

(d)

FIGURE2
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preserved. Thus Figure 2(a) and Figure 2(e) are eonsidered different trees,
but Figure 2(a) and Figure 2(d) are eonsidered to be the same tree.

• •• BREAK3

(1) Draw all the binary trees with 3 souree nodes to determine the
value of a3.

(2) Draw all the binary trees with 4 souree nodes to determine the
value of a4.

(3) Compare your answers to those you obtained for bk and ci,

It turns out to be relatively simple to see that

ak = b, (6)

Indeed, Figure 3 suggests how to associate rooted binary trees and
parenthesized expressions in one-to-one eorrespondenee by illustrating a
particular but not special ease.

(a)

(b)

FIGURE 3 The binary tree (a) corresponding to the parenthesized expression (b).
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••• BREAK4

Try to give a description of this one-to-one correspondence.

We elose this introduction by sketching an argument that shows that

(7)

Of course, we then also know that (1) is true, so that

a, = »: = c, = k ~ 1C:), k ~ 0 (8)

We now illustrate how to prove (7) by means of a particular but not special
case. Let us consider the convex hexagon of Figure 4(a) divided into 4
triangles by means of 3 non-intersecting diagonals.

(a) (b)

(e)

FIGURE4
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We orient our hexagon with the topmost edge horizontal, and we enter
the hexagon from the outside by crossing that edge. This establishes a
source node in one of the triangles. We then leave the triangle by either
of the other two edges of that triangle. If we again reach the outside, we
set up an end node there. If we enter a second triangle of the subdivided
hexagon, we establish a source node there and repeat the process, carrying
on as long as we can. The result is Figure 4(b). Figure 4(c) shows how the
rooted tree of Figure 4(b) may be represented in our more usual format,
but it is obvious that these are the same rooted trees.

Thus we have associated a rooted binary tree with our subdivided
hexagon. Conversely, given any rooted binary tree with 5 end nodes, we
construct a convex hexagon by making sure that all the end nodes are out
side and that the initial node is inside (of course, we may have to distort the
tree in order to construct the hexagon with straight sides; then the diagonals
are inserted to cross the branches of the tree.

We will now take you through a fairly straightforward argument to
show that b, = ci, Again, we will look at a particular but not special case.
Figure 5(a) shows a dissected hexagon. Think of the top side as preferred
and label the remaining sides in order in a counterclockwise direction as
shown. Then think in terms of vector addition. The only triangle where
two sides are known has sides labeled 3 and 4. Label the other side of that
triangle (34). Then the next triangle where two sides are known involves
sides labeled 2 and (34). Label the third side of this triangle (2(34)).
Continue this process as shown in Figure 5(a) until you have the top side
labeled; the label will be (1(2(34))5). This teIls you how the parentheses
should go in the expression involving SIS2S3S4S5, namely, (SI (S2(S3S4))S5).

Going in the reverse direction involves beginning with a polygon with
one more side than the number of symbols you are parenthesizing. For
example, to convert the parenthesized symbol ((SIS2)((S3S4)S5)) into a dis
sected polygon you first observe that there are 5 symbols and draw a regular
hexagon, labeling its sides as shown in the first part of Figure 5(b). Then,
suppressing the s's and looking just at the subscripts ((12)((34)5)), you
start with any pair of parentheses that encloses just two digits, that is, in our
case, (12) and (34), and draw the lines that connect their endpoints (both
diagonals in this case) as shown by the dotted lines in the second part of
Figure 5(b). Label these diagonals as shown in the third part of the figure.
At this point there is only one triangle with two sides labeled; it has sides
labeled (34) and 5. Connect the ends of those line segments as shown in
the fourth part of Figure 5(b) and label it ((34)5) as shown in the last part
of Figure 5(b). You then know two sides of the triangle whose third side
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(a)

(l« 2(34) )5))

« !2)« ~)5» ((12)((34)5»
(b)

Cl « 2(34))5»

FIGURES

is the top edge, so you may label the top edge ((12)((34)5». The label for
the top edge will always reproduce the parenthesized expression.

• •• BREAKS

(1) Start with the parenthesized expression (s, ( S2(S3 S4»S5 ) and carry
out this procedure to show that you get the dissected polygon
shown in the first part of Figure 5(a).
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FIGURE6

(2) Starting with the dissected polygon in the last part of Figure 5(b)
with labels only on its sides, show that you get the parenthesized
expression « SIS2 )( (S3S4)SS)).

(3) What is the parenthesized expression associated with the dis
sected polygon shown in Figure 6?

(4) Draw the dissected 7-gon associated with the parenthesized ex
pression « (SlS2)(S3S4 ))(SSS6))'

(5) Draw the tree associated with the parenthesized expression of
part (4).

7.2 A FOURTH INTERPRETATION

We now give a fourth interpretation ofthe classical Catalan numbers which
plays a role in the sequel (see [5, 6]). We define

• d« = I ; dk , k :::: I, is the number of paths on the integrallattice in the
plane, proceeding from the point (0, -1) to the point (k, k - 1), that
always stay below the line Y = x.

Let us explain what this means. The integral lattice in the plane is
the collection of points (x , y) in the coordinate plane such that x and y
are both integers . Apath on the integrallattice from P(a , b) to Q( c, d ),
where a :::: c, b :::: d, is a sequence ofpoints POPl • • • Pn , n :::: 0, such that
Po = P, P; = Q, and Pi+l is obtained from Pi by moving one step to the
right (east) or one step up (north) , 0 :::: i :::: n - 1. Thus if Pi = (Xi , Yi),
then P HI = (x, + 1, Yi ) or (x., Yi + 1). Then dk is the number of such
paths from (0, -1) to (k, k - 1) that never meet the line Y = x. It will be
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useful to designate such paths as good, and to refer to those paths that do
meet the line y = x as bad."

Obviously, do = 1; obviously, too, if k :::: 1, then a good path from
(0, -1) to (k, k - 1) must proceed first to 0, -1) (why?), so, for k :::: 1,
we may replace (0, -1) by (1, -1) in the definition of dk • It is also obvious
that the penultimate stop on a good path to (k, k - 1) must be at (k, k - 2),
so we may replace (k, k - 1) by (k, k - 2) in the definition of d.,

How should we count the number of good paths? In fact, it turns out to
be just as easy to count the number of good paths between any two integral
points (a, b) and (c, d). First, we note that, to ensure that there are any
good paths at all, we require

a > b, c > d, a:::: c, b:::: d (9)

Second, we observe that it is easy to count all the paths from (a, b) to
(c, d). For it is easy to see that the number ofpaths from (0,0) to (c, d) is
just the binomial coefficient" e:d

) . Thus the number of paths from (a, b)
to (c, d), which must be the same as the number of paths from (0,0) to
(c-a,d-b),is

or (
(c + d ) - (a + b))

c-a d-b
(0)

It follows that we can count the good paths if we can count the bad paths.
Now a bad path from P(a, b) to Q(c, d) must meet the line y = x, for the
first time, at some point R. Let us reflect the portion PR of the path PRQ
in the line y = x, obtaining a path PR. Then PRQ is a path from P(b, a)
to Q(c, d). Moreover, every path from P to Q must cross the line y = x
somewhere, since P is above the line and Q below it. Hence this reflection
procedure sets up a one-to-one correspondence between bad paths from P
to Q and paths from P to Q. It thus follows from formula (l0) that the
number of bad paths from P to Q is

(
(c + d ) - (a + b))

c-b

4An interesting history of the classical Catalan numbers is given in [7]. But notice that their interpre
tation by means of lattice paths is not quite the same as OUfS.

5We often Iike to write C"s)' where r + s = n, instead of C), especially to bring out the symmetry.

Thus e;d) would be written (~+;). See Chapter 6.
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P(a,b)

FIGURE 7 Andre Reflection Method.

so that the number of good paths from P(a, b) to Q(c, d) is

(
(C+ d) - (a + b)) _ ((C + d) - (a + b)) (11)

c-a c-b

• • • BREAK6

Calculate the number of paths from (3, 1) to (7,6) that never cross
the line y = x, though they may touch it. [Hint: What happens to a
good path from (4, 1) to (8,6) if you shift it one place to the left?]
Calculate the number of paths from (3, 1) to (7, 6) that touch the line
y = x without crossing it.

Our method of calculating the number of good paths by means of (11)
is called the Andre Reflection Method, discovered in the late 19th century
by the Belgian-born mathematician Desire Andre. We will describe the
context in which he discovered the method at the end of this section, but
first we use (11) to calculate di, the number of good paths from (0, -1) to
(k, k - 1); according to (11) we have
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thus obtaining the claimed equality

(13)

We will now show you how to set up a one-to-one correspondence"
between the set of parenthesized expressions of SlS2 ... Sk+1 and the set of
good paths from (0, -1) to (k, k - 1). Such a parenthesized expression is
a sequence of symbols, where each symbol is (i) a left parenthesis, (ii) an
element s, or (iii) a right parenthesis. We first point out an interesting fact.

Proposition 1 The right parentheses are logically superfiuous in a paren
thesized expression.

Proof We prove this by induction on k. If k = 1, we certainly don't
need the right parenthesis to attach a unique meaning to (SIS2). Now
suppose we don't need the right parentheses when we make k appli
cations of our binary operation, and suppose we have an expression

(- .. (... (- ..

involving (k + 1) applications of the operation, in which we have
only inserted the (correet) left parentheses, not the right parentheses.
We look along the expression, from left to right, until we reach
our last left parenthesis (it is, of course, the (k + 1)st). It must be
followed by two element symbols, say SiSi+1 and, in principle, a right
parenthesis. We replace (S;Si+1 by S and thus produce an expression
involving only k applications of our binary operation and suitable
left parentheses, which therefore, by the inductive hypothesis, has a
unique meaning. D

Armed with this proposition, we represent a parenthesized expression
as a sequence of (i) left parentheses, and (ii) s-symbols, We now start at
(0, -1) as OUf initial integrallattice point and interpret a left parenthesis as
an instruction to move right (east) and an s-symbol as an instruction to move
up (north); notice that the final term of OUf parenthesized expression must
by an s-symbol- so, too, must the penultimate term. There are (k + 1) s
symbols and k left parentheses, so OUf path takes us from (0, -1) to (k, k);

6The proved relation (13) does not make this superfluous, since it is necessary to set up a similar
correspondence when we come to study, in the next section, Catalan numbers in a broader sense.
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but it terminates by visiting (k, k - 2), (k, k - 1), (k, k), so we may regard
it as a path from (0, -1) to (k, k - 1). We claim it is a good path.

This, again, we must prove by induction on k. Ifk = 1, our parenthesized
expression is (SIS2, yielding the path

(0, -1) -+ (1, -1) -+ (1,0) -+ (1,1)

which (ignoring the last step) is obviously good. To carry out the inductive
step, suppose a parenthesized expression involving k applications corre
sponds to a good path, and suppose we are given a parenthesized expression
involving (k + 1) applications. Let· .. (SiSi+1 ... mark the last appearance
of a left parenthesis. Ifwe replace (SiSi+1 by S we get an expression involv
ing k applications,? which thus corresponds to a good path, except that it
ends at (k, k). There are now 2 possibilities. If the k-expression ended in s,
then the corresponding path ended in (k, k), so its penultimate vertex was
(k, k - 1), and thus our (k + 1)-expression corresponds to a path that was
good up to (k, k - 1) and then continued

(k, k - 1) -+ (k + 1, k - 1) -+ (k + 1, k) -+ (k + 1, k + 1)

and thus stayed good. If the k-expression does not end in s, then the path
corresponding to the k-expression as far as S is entirely below the line
y = x, with S corresponding to some point (u, v), with u > v. Thus in our
original (k + 1)-expression we move

(u, v - 1) -+ (u + 1, v - 1) -+ (u + 1, v) -+ (u + 1, v + 1)

and then continue as for the k-expression except that both coordinates are
increased by 1. This obviously creates a good path. This completes the
inductive step.

It is not hard to believe that, conversely, every good path from (0, -1) to
(k, k -1), completed by the vertical step (k, k - 1) -+ (k, k), corresponds
to a meaningful sequence of left parentheses and s-symbols. Try it with
some examples if you don't feel you could formulate a precise proof by
induction on k. Such a proof would then show that bi = dk without invoking
any calculation of either.

We close this section by describing, as promised, the context in which
Andre first exploited his reflection method. It was to give a solution of
the celebrated Ballot Problem, which had exercised the minds of many
experts in prob ability theory in the late 19th century. In fact, a solution
of the problem had been given by a French mathematician, Joseph Louis
Franccis Bertrand, but his method of solution was very complicated and
provided little insight. Andre wrote a paper [1] entitled "Solution directe

7For brevity we call the expression a k-expression.
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du problerne resolu par M. Bertrand" (Direct solution of the problem
solved by M. Bertrand), which , by contrast, gave a wonderfully concise
and insightful- though we would not say "direct" - solution to the Ballot
Problem.

What , then , was the Ballot Problem? We suppose there is an election with
just two candidates, with the uninteresting names X and Y . We suppose
further that, in fact, X wins the election with a votes against b votes for
candidate Y. There is just one teller who counts the votes, one by one, and
who records the number of votes for X and Y after each vote is counted. The
Ballot Problem seeks an answer to the question, "What is the probability
that, throughout the counting of the votes, X is always ahead of y?"g

Andre represented the process of counting the votes as a path, in our
sense , from (0,0) to (a, b). Since X won, we know that a > b, so that
(a , b) is below the line y = x, and the Ballot Problem simply asks for the
probability that the path from 0(0,0) to Q(a, b) is, except at its initial
point 0, a good path (see Figure 8). Here, in its essence, is Andres solution.

Let us consider a path f from (0,0) to (a , b).

Let p = prob(f is a good path)

q = probiz is a bad path)

qN = probiz is a bad path and starts north)

qE = prob(f is a bad path and starts east )

y

y=x

2--"

eQ(a,b)

-~>------------~x

0(0,0)
I

FIGURE8

8This is really a general type of problem in sampling theory.
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Obviously, p + q = 1, qN + qE = q. Also, if estarts north, it is certainly
a bad path, so qN = prob(estarts north) = a~b' since etakes b steps north
and a steps east. Now we use the Andre reflection method to show that
qN = qE· For, given a bad path e starting east, let R be the first place
(after 0) where emeets the line y = x. Thus we may regard eas the union
e' U t", where e' is the part from 0 to Rand eil is the part from R to Q.
We reflect e' in the line y = x to get i' and let i = i' U eil. Then i is a
path from 0 to Q that starts north. Conversely, we may, in a similar way,
associate, with every path from 0 to Q starting north, a bad path from 0
to Q starting east. Thus, as claimed, qN = qE.

The rest is easy: q = qN + qE = 2qN = a~b' so p = 1 - q = :~:.
We hope you agree that the method of proof is quite beautiful, but notice
that the solution has some surprising features. Prominent among them is
the conclusion that the required probability p depends only on the ratio
of a to b. If there are 100 votes, and X gets 60 while Y gets 40, the
probability p is ~. Ifthere are 1000 votes and X gets 600 while Y gets 400,
the probability p is still ~ .

• •• BREAK7

(1) Can we conclude that the probability p is unchanged if we only
record the situation after each batch of 10 votes has been counted?

5

p=3
k=2

43

2 3

FIGURE 9 At Jeft, a binary (or 2-ary) tree with 3 source nodes (e) and 4 endnodes (0) and, at

right, a ternary (or 3-ary) tree with 2 source nodes (e) and 5 endnodes (0).



7.3 Catalan Numbers

(2) Count the good paths from 0 to Q(12, 5). Count aIl paths from 0
to Q(12,5) and thus give a somewhat different proof of the
Benrand-Andre result.

(3) Calculate dk up to k = 10.
(4) Calculate Ck up to k = 10.

7.3 CATALAN NUMBERS

You may weIl have been wondering why we have insisted till now on
referring to the classical Catalan numbers. The reason is that it is now
standard practice to refer to the Catalan numbers as numbers (in any of the
interpretations we have given you) that depend not only on a parameter k
which is a non-negative integer but also on a second parameter p which is
a positive integer ~ 2, such that the classical Catalan numbers are given by
taking p = 2. We will write the "p" as a subscript preceding the letter a,
b, c, or d, omitting it only if it is safe to do so - that is, if there is no fear
of ambiguity or misunderstanding. We will always have

(14)

Then

• pak is the number ofrooted p-ary trees with k source nodes (see Figure 9);
• pbk is the number of ways of intraducing parentheses into an expression

involving k applications of a p-ary operation (see Figure 10);
• pCk is the number of ways of subdividing a convex polygon into (p + 1)

gons by means of k non-intersecting diagonals (see Figure 11);
• pdk is the number of paths on the integrallattice in the plane from (0, -1)

to the point (k, (p - l)k - 1) that stay below the line? y = (p - l)x
(see Figure 12).

p=2
k=3

(sI ((S2 S3)S4))

p=3
k=2

(SI s2(s3s4s5))

FIGURE 10 At left, an expression involving 3 applications of a binary operation applied to 4

symbols; and, at right, an expression involving 2 applications of a ternary operation applied to

5 symbols,

9We call a path that stays below the line y = (p - l)x p-good.
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p=2
k=3

(a)

p=3
k=2

p=2
k=3

(b)

(12(345))

3

p=3
k=2

FIGURE 11 (a) At left, a 5-gon subdivided into three 3-gons by 2 diagonals and, at right, a

6-gon subdivided into two 4-gons by 1 diagonal. (b) The dissected polygons ofFigure l1(a), with

diagonals and last side labeled.

y
y = 2x

(1(23(4(567)8))9)

9

p=3
k=4

p=3
k=4

(23(4(567)8))

2

4 6

-----+---.----JL-----------I~X

5
(a) (b)

FIGURE 12 (a) The polygonal dissection associated with the expression (SI(S2S3(S4(SSS6S7)sg))S9). (b) The path asso

ciated with the expression (SI (S2S3(S4(SSS6S7 )sg))S9)
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• • • BREAKS

(1) How many nodes does a rooted p-ary tree with k source nodes
possess?

(2) How long is the string StS2S3 . •• such that it may be parenthesized
to yield k applications of a p-ary operation?

(3) How many vertices must a convex polygon have so that it can be
subdivided into k polygons, each having (p + 1) sides , by non
intersecting diagonals? How many diagonals will be needed ?

That the four interpretations of the Catalan numbers are equivalent, that
is, that

(15)

is proved just as in the special case p = 2; if you need further clarification
on this point , consult [5]. However, it turns out to be a very different matter
to calculate the Catalan numbers for a general value of p. Recall that we
used two methods if p = 2. First we calculated b, from the recurrence
relation (with p = 2),

b, = L b;bj (bk = 2bk)
i+j=k-l

Now there is an analogue of this relation for general p , namely,

(16)

From (16) we may calculate successive values of bko knowing that
bo = I, b2 = p , b3 = P(P

2-1
) , •. '. However, if we want to use our generating

function method to find a formula for pbk, we set f (x) = L:o bix", Then
(16) tells us that fP = L:o bk+1X

k
, so that

xf" - f + 1= 0 (17)

Now, however, by contrast with the case p = 2, we have an equation we
cannot solve by elementary methods. There is a very sophisticated method,
known as the Bürmann-Lagrange inversion formula (see [5]), to obtain a
power series for f from (17), but it would take us quite beyond the scope
and level of this book. So we turn to our second method of calculating the
classical Catalan numbers, given by p = 2 - using the interpretation dk

and the Andre reflection method. But now we want to reflect in the line
y = (p - l)x; and it is not difficult to see that the reflection of (0, -1) in
this line is not a lattice point if p ~ 3. Moreover, a path on the integral
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lattice from a lattice point above y = (p - l)x to a lattice point below
y = (p - l)x need not cross the line y = (p - l)x at a lattice point. So
the Andre reflection method does not extend beyond p = 2, and we are in
real trouble!

However, we do want to calculate the Catalan numbers by a method
understandable by undergraduate students. We will describe such a method
in Seetion 5, but first we describe the idea we are going to use.

7.4 EXTENDING THE BINOMIAL COEFFICIENTS

We first meet the binomial theorem in elementary mathematics when we
wish to expand the expression (a +bt as a polynomial in a and b; here
n is an arbitrary non-negative integer. Thus (a + b)n = 2::;=0 C)arb":',
where

(
n ) = n! =n(n-l) ... (n-r+1) (18)
r r!(n - r)! r!

The second form of (18) does not apply if n = 0; the first does if we
interpret the factorial O! as 1. We prefer here simply to specify the binomial
coefficient C), where n is a non-negative integer, and r is a non-negative
integer such that 0 ~ r ~ n, by the rule

(19)
if r > 0

if r = 0
(~) = {~(n - 1) ... (n - r+ 1)

r!

We can make a further improvement, however; for it is plain from the
interpretation of the binomial coefficients in terms of the expansion of
(a + b)n that we would want to define C) = 0 if r > n. Thus we have C)
defined for any n, r non-negative integers by the same rule

(20)
if r > 0

if r = 0G) = {~(n - 1) ... (n - r+ 1)

r!

So far, we have only been applying the binomial theorem in its most
elementary form. Now, however, we take a giant step into the unknown!
We allow n to be any real number and define the generalized binomial
coefficient for any non-negative integer r by the rule (20).

In fact, it turns out that the binomial theorem does itself generalize.
Precisely, with our extended definition (20) of the binomial coefficients, it
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is a theorem provable by the differential calculus, that, if lai< Ibl, then, 10

for any real number n,

where, as before,

(21)
if r > 0

if r = 0C) = {~(n - 1) ... (n - r+ 1)

r!

Actually, we will not need the full force of this theorem here.!' We
will need to know that there is a polynomial C) in the real variable n,
of degree r, with rational coefficients, that coincides with the binomial
coefficient C) when n is a non-negative integer. It will also be useful to us
to evaluate C) when n is a negative integer. Of course,

(~) = 1 if n is a negative integer. (22)

Now let us suppose r ::: 1 and let n = -m, where m is a positive integer.
Then

(-m)(-m - 1) ... (-m - r + 1)

r!

(m + r - 1)(m + r - 2) ... (m + 1)m
= (-1r , ' so that

r.

Notice that, in (23), (m+;-l) is an ordinary binomial coefficient, since
m + r - 1 > 0; indeed, m + r - 1 ::: r. We will certainly be making use
of formula (23) - see Section 7.

With this (probably very unexpected!) preparation, we are ready to
calculate pdk •

IOWe invoked this in Section 1 in our expansion of ""'1 - 4x.

11Here we are repeating some arguments made in Chapter 6 and [4], so that the reader may have a
self-contained treatment.
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• • • BREAK9

(1) Use the formula in (21) to calculate C) when n = -!.
(2) Is the Pascal Identity C) + t:l) = (n;l), r ~ 1, still true if n is

a negative integer? [Hint: Use formula (23).]

7.5 CALCULATING GENERALIZED CATALAN NUMBERS

Indeed, we are ready to calculate a generalization of pdk ; since we will
hold p fixed throughout this section, we will suppress p from the notation
and simply write di. Thus we know that do = 1, and we wish to calculate
the number of good paths from (0, -1) to (k, (p - l)k - 1), k ~ 1. As
remarked in the case p = 2, this is equivalent to calculating the number
of good paths from (1, -1) to (k, (p - 1)k - 1); we designate this latter
point P, and call the point immediately above it, on the line y = (p - l)x,
Qk. We will eventually want to calculate the number of good paths between
any two points below the line y = (p - l)x, and to do so we need to
generalize our problem now and seek to calculate dqk , the number of good
paths from the integrallattice point (1, q - 1) to Pb so that dk = dOk (see
Figure 13). Of course, we insist that q < p, so that (1, q - 1) is below
the line y = (p - l)x; but we allow q to take any integer value subject
to this condition. It turns out to be 00 more difficult to calculate dqk than

y

_--+-----.--'-- x

(l,q-l)

FIGURE 13
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to calculate di, But we have to face the fact that we cannot use the Andre
Reflection Method if p > 2.

We first obtain what we call a (generalized) Ionah formula, since
the mathematician David Jonah was the first to obtain a special case of
this formula. Consider a lattice point N (k, n - k) above (or on) the line
y = (p - l)x. Then we may partition the set of paths from (1, q - 1) to N
according to where they first meet the line y = (p - l)x. Consider the
set I', of paths from (1, q - 1) to N that first meet y = (p - l)x at the
point Qj(i, (p - l)i). Then the number ofpaths in I', is obviously given by
the product dq i ek~/); for dq j is the number of good paths from (1, q - 1)

to Pi(i, (p - l)i - 1) and ek~j) is the number ofpaths from Qj to N (see

Figure 14). Moreover, plainly, 1 ::: i ::: k. Since there are G=n paths from
(1, q - 1) to N, we arrive at the key formula

(n- q) = ~d.(n - Pi).
k - 1 L..J qt k - i

1=1

(24)

We propose to use formula (24) to calculate dqk - how can we do this? It
is here that we exploit the point of view ofSection 4. For we must emphasize
that formula (24) has so far only been established when N(k, n - k) lies
above (or on) the line y = (p - 1)x, that is, when n ::: pk. However, by

Nik, n-k)

Y =(p-l)x

2.
Qj (i. (P-l)i)

P; (i. (p-l)i-l)

(I. q-l)

FIGURE 14 Partitioning of paths from (I,q - I) to N(k,n - k) according to where they first

meet the line y = (p - l)x.
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generalizing the meaning of C) by means of formula (21), to allow n to
be any real number, (24) becomes an equality between two polynomials in
the indeterminate n, with rational coefficients, which we know holds for
infinitely many values of n, namely, for all integers n ::: pk. But then the
two polynomials must be identically equal, so that, in fact, equality (24)
must hold for all real values of n, and, in particular, for all integer values
of n. In fact, we will only be substituting integers for n, but we will often
substitute for n an integer « pk.

To sum up, we now know that we can safely substitute any integer for n
into (24) and not only the integers n satisfying n ::: pk.

We immediately exploit this new freedom by taking n = pk - 1. We
conclude that

(
Pk - q - 1) = ~ d (Pk - pi - 1)

k - 1 ~ qt k - i
1=1

(25)

Now, if i = k, then (Pk~~~-I) = (~I) = 1, so that (25) may be written

(
Pk - q - 1) = ~ d .(Pk - pi - 1) d

k - 1 ~ qi k - i + qk
1=1

(26)

We now substitute n = pk - 1 in (24) as before, but we also replace k by
(k - 1). This yields

(
Pk - q - 1) = I:d

qi
(Pk - ~i - 1)

k-2 . k-z-l
1=1

(27)

At this stage we note that we had better suppose k ::: 2; but this is not
troublesome, for there is no problem in calculating dq l . After all, dq l is the
number of good paths from (1, q - 1) to PI (1, p - 2), and so, clearly,

dq l = 1 (28)

We now observe that (26) and (27) together do enable us to calculate dqb

k ::: 2. For we always have C) = n-;+I (,:J, r ::: 1, so

(
Pk - pi - 1) = (p - l)(k - i) (Pk - pi - 1)

k-i k-i k-i-l

_ _ 1 (Pk - pi - 1)
- (p ) k - i-I ' i ~ k - 1
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Thus we conclude from (26) and (27) that

d = (Pk - q - 1) _ _ 1 (Pk - q - 1)
qk k - 1 (p) k - 2

= (Pk - q) {Pk - q - k + 1 _ (p - l)(k - 1) }
k - 1 pk - q pk - q

= (Pk - q) P - q, k >: 2
k - 1 pk - q

Finally, we have shown that

_ P - q (Pk - q)dqk - ,
pk - q k - 1

(29)

since the RHS of (29) gives the va1ue 1 if k = 1; as remarked, there is
only one path from (1, q - 1) to (1, P - 2), and it is good! Of course, we
shou1d notice that (29) gives us the correct value for d, by setting q = 0,
namely, d, = dOk = i (:~l)' We announce this as a corollary.

Corollary 2 The Catalan numbers pCk are given by

Here we have written C, for the kth Catalan number, in any of its
interpretations. It is intriguing that the formula for pCk is a very natural
generalization of that for the classical Cata1an number 2Ck; but we were
not able to generalize Andre's lovely reflection method. Have we missed
something?

7.6 COUNTING p-GOOD PATHS

In this section we will justify OUf claim that we can now calculate the
number of p-good paths between any two points (a, b) and (c, d) below
the line y = (p - l)x.

We first point out that we may always assurne that OUf ini
tial point has the form (1, q - 1). For let us slide the point (a, b)
along the line parallel to y = (p - l)x through (a, b) until the x
coordinate reaches the value 1. It is clear that the y-coordinate then
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y

y

• (8, 10)

·(4, 5)

(a) (b)

FIGURE 15 (a) Counting the 3-good paths from (4,5) to (8, 10). (b) After sliding: counting the

3-good paths from (1, -1) to (5,4).

reaches the value q - 1, where q - 1 = b - (p - l)(a - 1), that is,
q = b - (p - l)a + p. Moreover, the point (c, d) reaches the point
(c', d') = (c - a + 1, d - (p - l)(a - 1)), so that the set of good" paths
from (a, b) to (c, d) is in one-to-one correspondence with the set of good
paths from (1, q - 1) to (c', d'), where q has the value above. Finally, we
may, of course, write (k, n - k) for (c', d'), where k = c', n = c' + d',
Thus we have to count the good paths from (1, q - 1) to N(k, n - k). See
Figure 15 for an example of the sliding procedure.P

12Wesuppress the symbol p.

13you will not understand all ofFigure IS(b) until you have read further.
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••• BREAK 10

Choose a fixed integer r with 1 ::: r ::: p. If k ::: 1 and q +r ::: p - 1,
show that

d qk = L dp-r,idq+r,i

i,i?1
i+i=k+1

[Hint: Partition the p-good paths from (1, q - 1) to Pk according to
where they first meet the line y = (p - 1)x - r.]

We have now put OUf problem in a form which allows us to exploit the
key formula (24), which we repeat here for the reader's convenience:

(n- q) = ~d.(n - Pi)
k - 1 ~ qt k - i

1=1

(30)

(31)

Note that the formula is still valid even if the point (k, n - k) lies below the
line y = (p - l)x, as we will henceforth assume; and that the LHS, that
is, G=n, still represents the number ofpaths from (1, q - 1) to (k, n - k).
Thus we now proceed to count the bad paths from (1, q - 1) to (k, n - k).
We claim that a bad path from (1, q - 1) to (k, n - k) first meets the
line y = (p - l)x at a point Qi, where 1 ::: i ::: f, and f is the largest
integer S ;::::~; we may write this integer

f=[~]p-l

Figure 16 shows the rationale for this claim- Qi can't be further north
than N(k, n - k). Of course, if f = 0, this simply means that there are no
bad paths from (1, q - 1) to N(k, n - k), so there are (~=n good paths.

In general, we conclude that the number of good paths form (1, q - 1)
to N(k, n - k) is

c-q) _~d (n - Pi)
k -1 ~ qt k - i '

.=1
[

n -k]where z = --
p-l

(32)

Example 3 Use formula (32) to count the 3-good paths between (5,0)
and (7, 10).
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y = n-k

-I-
" X

' ,J..
-, ~

',~,
Q ' ,--Mm , ,,

L "
\ "'"

ii~---------~·N(k, n-k)

FIGURE 16

Solution First let us simply use the formula given in the text. We have

a = 5,

so c' = 3,

b =0,

d' =2,

p = 3 so q = -7,

k = 3, n = 5,

c =7, d = 10,

and we are counting 3-good paths from (I , -8) to (3, 2), Notice that since
p - I = 2, our rule is: if x comes down by h, then y comes down by 2h.
Since 5 goes to I in the slide, x comes down by 4, so y comes down by 8.
Hence (5, 0) slides to (I, -8), and (7, 10) slides to (3, 2).

Our formula (32) gives us for the number of 3-good paths,

(12)_~ d: .(5-3i)
2 c: 7,1 3 _'

;= 1 I

since ;=~ = 1. Thus we have C~) - G) = 65. (A picture makes it obvious
that there is only one bad path.)

(33)

Of course, we can use (30) to obtain a second formula for the number
of good paths from (I , q - 1) to (k, n - k) , namely,

k (') [k]n - pi n-L dq i . ' where f = --
i = (+ 1 k - I P - 1
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However, we may improve on formula (33) in a rather interesting way. We
remarked, following (19), that the (generalized) binomial coefficient C) is
zero if n, r are non-negative integers with r > n. Now, in (33), i :::: l + 1, so
i > ;=~, whence k - i > n - pi, Thus, in the summation (33), the (gener-

alized) binomial coefficient (nk~i) is zero so long as n - pi :::: O. Let us set
m = [!!.]. Then !!. > n-kl, since (k, n - k) is below the line y = (p - l)x,

p p p-

so m :::: l, and, as we have argued, ek~;) = 0 if l + 1 :'S i :'S m. We con
clude that the number of good paths from (1, q - 1) to (k, n - k) is

k ( ')
n - pi

L dq; k - i '
l=m+1

wherem = [~] (34)

(You should now fully understand the presence of the dashed lines on
Figures 15(b) and 16.)

It is a matter of choice whether we use (32) or (34) to calculate the
number of good paths. In any particular case, one will probably be more
convenient than the other. Where good paths predominate, (32) is to be
preferred; where bad paths predominate, (34) is to be preferred.

• •• BREAK 11

(1) Use (34) to compute the number of 4-good paths from (1,2)
to (4,10).

(2) Show that the number of p-good paths from (1, q - 1) to
(k, (p - l)k - r), 1 ~ r ~ p, is independent of r (a) by us
ing formula (34), and (b) by means of a picture. What is the
number?

7.7 A FANTASY-AND THE AWAKENING

Let us write ng(k, n) for the number of p-good paths from (1, q - 1) to
(k, n - k); notice that we suppress p and q from the notation, since we
will not vary them in our discussion in this section. Thus 14

k ( ')
n - pi

ng(k,n) = L dq; _"
;=m+1 k I

wherem = [~] (35)

Let us recall, from our proof of formula (24), how we first obtained the
individual terms dq; (nk~;)' The factor dq ; came from counting the good

14The subscript g denotes "good,"
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paths from (1, q - 1) to Pi, and the factor ek~i) came from counting the
paths from Qi to N (k, n - k). Thus we may imagine that, to obtain a count
of the good paths from (1, q - 1) to N, we partition them according to
the lattice points Qi on the line y = (p - 1)x, m + 1 :::: i :::: k, and then
the contribution from Qi is the product dqiek~i). The formalism is right;
but the interpretation is sheer fantasy! For a good path from (1, q - 1)
to N does not meet the line y = (p - l)x; the binomial coefficient ek~i)

doesn 't count the number of paths from Qi to N, since there are no paths
from Qi to N when m +1 :::: i :::: k (since then Qi is above N); and dqiek~i)
doesn 't count anything, since its values in the range m + 1 :::: i :::: k are
altemately positive and negative, ending with the positive value dqk when
i = k.

Nevertheless, formula (35) is perfectly correct, and our bizarre inter
pretation of it, completely consistent with our valid interpretation of the
corresponding formula15

l ( ')
n - p1

n,«, n) = Ldqi .'
i=1 k r-] [

n - k]where f = --
p-l

(36)

for the count nb(k, n) of the bad paths from (l, q - 1) to N(k, n - k), is
surely helpful, even if absurd (see Figure 17). However, we should perhaps
offer a more prosaic explanation of formula (35).16

To do so, we recall from Seetion 4 the rule

(
n
r
) __ (_1)' (r - n

r
- 1), where n is negative. (37)

Thus we may rewrite (35) as

L
k (p - l)i - n + k - 1)n(k)- (_I)k- i d ·g ,n - qt k-«! ,

-1
i=m+1

wherem = [~]
(38)

We are going to interpret (38) as the formula we get from the initial
conditions

ng(k, n) = dqb n = pk - 1, pk - 2, "', pk - p (39)

15The subscript b denotes "bad".

16Weare grateful to OUf colleague Tamsen Whitehead for her essential contribution to this demystifi
cation. See [6].
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y
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x+ y=n

y = n-k

,
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" Qm+ 2
Qm+l
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\ "'"
- - - Qi----- - ---:c· N(k, n-k)

FIGURE 17

and the recurrence relation, valid when n + 1 < pk, Le., n < pk - 1,

(40)

For (40) holds, since a good path from (1, q - 1) to (k, n - k + 1) must
make its penultimate stop either at (k , n - k) or at (k - 1, n - k + 1) (see
Figure 18).

We establish (38) by a downward induction on n - k, applying the
recurrence relation (40) in the form

(41)

Notice that (39) and (41) explain why n g(k , n) is a linear combination of
the generalized Catalan numbers dq; , and why the actuallinear combination
has altemating signs. Let us show just how we get the precise formula (38)
by this argument.17

17 We emphasize that we have already proved (38) by a totally different argument.
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t(k, n-k)

0(1, q-l)

FIGURE 18 Il g{k,n) represents the number of p-good paths from (l,q - 1) to the point

N{k,n - k). Thus Il g(k,n + 1) = Il g(k,n) + Ilg{k -I,n).

Gur inductive argument is that if the two terms on the right of (41) are
given by (38), then so is the term on the left. Thus we substitute from (38)
into the right of (4 1), getting

t (-l)k-idq;CP - l)ik~ni+ k - 2)
i=[nt1] +1

+ I: (-I)k-idq;Cp-~~-ln_~k-2) (42)

i =[~ ]+1
and we want to show that this is just

(43)

All would be weIl if all summations went from [!!.] + 1 to k - we wouldp

simply apply the famous Pascalldentity (see Chapter 6). However, there
are two apparent snags, namely,
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(i) in the first summand in (42) we start with i = [n+l] + 1; and
p

(ii) in the second summand in (42) we end with i = k - 1.

To deal with (i), notice that [ n+l] + 1 differs from [ !!.] + 1 only when
p p

n has the form n = pj - 1, in which case we start the first summation at
i = j + 1 instead of i = i -But when we substitute i = j, n = pj - 1 into
the binomial coefficient in the first summation we get

(
p - l)j - (pj ~ 1) +k- 2) = (k - j -. 1) =0;

k-J k-J

remember that n < pk - 1, so j < k.
To deal with (ii), notice that if i = k, the binomial coefficient in the

second summand is

( p- l)k - n + k - 2) = (p - 1)k - n + k - 2) =0;
-1 (p - 1)k - n + k - 1

here we use the symmetry condition (;) = (n~J to define owhen r is a
negative integer, remarking that this is consistent with the Pascal Identity
when n ::: 0, yielding in this case (;) = 0,

This completes our combinatorial interpretation offormula (38) (or (35)),
Finally, we give a geometrical background for the counting of paths (see

Figure 19 for a typical example). We have the formula (with fixed p , q and
n < pk)

c-q) = nb(k, n) + ng(k, n)
k-l

where n b(k, n), the number ofbad paths from (1, q - 1) to N(k, n - k),
is given by

l ( ')
n - pl

n b(k,n) = Ldq; .'
;=1 k-«!

f=[~]p-l

and ng , the number of good paths from (1, q - 1) to N (k , n - k), is
given by

k ( ' )
n - pln,«,n) = L dq; "

;=m+ 1 k-«! m = [~]
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FIGURE 19 Herep =3, q =-1, and we adopt the notational simplification zf ford_IJ ' Recall

that n g(k,n) here represents the number of3-good paths from (l ,q -1) to the point N( k, n - k ).

We draw a horizontalline through N meeting the line y = (p - I )x in L,
and Qe is the last lattice point on y = (p - l )x on the way to L. We
then draw a line through N with slope -1 meeting the line y = (p - 1)x
in M, and Qm is the last lattice point on y = (p - 1)x on the way to M .
The count of paths from (1, q - 1) to N(k, n - k) is "partitioned" by
the 1attice points Ql, Q2,"', Qk. The points Q1, Q2,"', Qe provide a
genuine partitioning ofthe set ofbad paths; the 1attice points Q!+h ... , Qm
provide a zero count; and the points Qm+1 , .. , , Qk provide, as explained,
a pseudo-partitioning ofthe set of good paths. Figure 16 show s the general
case ; and Figure 19 shows how formula (38) actually arises from the initial
conditions (39) and the recurrence formula (41).

• •• BREAK 12

Study Figure 19 carefully and make sure you understand what it
signifies.
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Symmetry

CHAPTER

8.1 INTRODUCTION: A REALLY BIG IDEA

The concept of symmetry plays a strong role today in many of the exact
sciences. Thus, for example, theoretical physicists, in searching for a uni
fied field theory, have been led to the notion of supersymmetry, applied
to the (super)strings, which, as some believe, are the fundamental build
ing blocks of the universe. Perhaps the foremost exponent of this position
is the American physicist Edward Witten, of the Princeton Institute for
Advanced Study, who, a few years ago, won a Fields Medal- the most
prestigious award that can be given to a mathematician' -for his funda
mental theoretical contributions to superstring theory. Even more recently
(August 1998, at the International Congress of Mathematicians held in
Berlin), the Cambridge mathematician Richard Boreherds was awarded a
Fields Medal for his contribution to the development of symmetry theory,
especially with respect to Witten theory and its relation to the advanced
mathematical theory of sporadic finite groups.

What, then, is symmetry? In this chapter we attempt to make the idea
precise, keeping OUT applications of the concept at a level where, as we
hope, they will be appreciated by OUT readers. Nevertheless, there is much

1It is a curious fact that the only mathematician to receive a Nobel Prize for mathematical work was
lohn Nash, whose work on equilibrium had highly significant consequences in the study of economics.
So lohn Nash was awarded a Nobel Prize as an economist; there is no Nobel Prize for mathematics.

235
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intrinsic diffieulty in the mathematics of this ehapter, so do not expeet to
be able to understand it without eareful attention to the arguments and the
examples.'

We will eonfine ourselves to the use of the symmetry eoneept within
mathematies; and we must first of all emphasize that notions of symmetry,
while fundamental to geometry, are eertainly, and importantly, to be found
in mathematies outside geometry. Thus, for example, any funetion of two
variables f t», y) may be deseribed as symmetrie if f tx , y) = f(y, x);
for example, f t», y) = X

Z + yZ or f t», y) = 5xy. Similarly, any func
tion of three variables f (x, y, z) may be deseribed as symmetrie if its
value remains unehanged under any permutation (there are 6 if one in
cludes the identity permutation) of the variables x, y, z: for example,
f t», y, z) = x 4 + y4 + Z4 - 3xyz. As you will have seen in Chapter 6,
the binomial eoeffieient C) beeomes asymmetrie funetion if one regards
it as a funetion of rand s, where r + s = n. Thus the relation C) = C~r)

takes the symmetrie form

if one writes VJ, with r + s = n, instead ofthe (apparently) simpler C).
Similarly, the trinomial eoefficient (, ~ ,), r + s + t = n, is asymmetrie
funetion of the variables' r, s, t.

As another example, symmetrie funetions of the roots of polynomial
equations

play an essential role in the algebra of polynomials. We know that a
polynomial equation of degree n over the eomplex numbers has n roots.
A erucial theorem states that if 0(\, O(z, ... .tx; are the roots, then any
symmetrie polynomial in 0(\, O(z, "', O(n, with integer eoeffieients may
be expressed, uniquely, as a polynomial in a\, az, ... .a; with integer
eoefficients. Thus, for example, with n = 3, we have

2We advise you to read Chapter 4 before studying this chapter systematically. We have found that many
students - but not all - understand the arguments about symmetry much better when they have a
concrete geometrical model actually in their hands.

3In order to stress the symmetry, the eminent French mathematician Henri Cartan employs the simple,
but revealing, notation (r s), (r s t) for binomial and trinomial coefficients, respectively. Here the n

is suppressed. Why is this legitimate ?
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• • • BREAK 1

(1) Check the above formulae, using the identity

x 3+ a\xz + azx + a3 = (x - a\)(x - az)(x - (3)

(You may like to check them first in a simple particular case like
al = 1, az = 2, a3 = 3.)

(2) Continue the sequence above by expressing ai +ai+aj in terms
of aJ, az, a3; remember that n = 3.

(3) Use the crucial theorem quoted to prove that, if F; is the nth
Fibonaeci number, then FmlFn if mln; and that, if Ln is the nth
Lueas number, then L m IL n if m In with odd quotient (we say that
mJn oddly). [Hint: Reeall the Binet formulae from Chapter 3,

an - ßn
F; = ,Ln = an + ß"

a-ß

where a, ß are the roots of X
Z

- x - I = 0.]

However, while symmetry is valuable outside geometry, our main pur
pose in this chapter will, in fact, be to explain the nature and role of
symmetry within geometry. It is our belief that its role in other parts of
mathematics will then become easier to understand. Interestingly, it turns
out that, in order to describe the nature of symmetry in geometry, it is nec
essary to introduce some basic coneepts in a very important part of algebra
known as group theory. Thus, in Section 2, we deseribe these concepts and
explain how they enable us to define the key notion of the symmetry group
of a geometrie configuration A. Let us add that it is not at all surprising
that we need basic coneepts from group theory in geometry. For the distin
guished German mathematician Felix Klein (1849-1925), in his famous
manifesto, ealled (in German) the Klein Erlanger Programm, defined ge
ometry in terms of the group of allowed transformations of a given set of
points. We will be adopting Klein's point of view. For example, from this
point of view, the Euclidean Geometry of the plane [Rz is to be understood
as the set of properties of configurations in [Rz invariant under the group of
transformations of [Rz generated by translations, rotations, and reflections.

In Seetion 3, we use the group theory presented in Section 2 to introduce
the concept of homologue, due to the great mathematician and expositor
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George P61ya (1887-1985). P61ya never wrote this idea down , but asked
two of us (PH and JP), near the end of his life, to do so on his behalf,
so we take this chance to do so. In fact , our interpretation of P ölya's idea
makes that idea applicable in a more general situation, namely, whenever
one considers groups acting on sets - though the most vivid examples are
going to come from geometry.

The precise details of our presentation of homologues are to be found at
the end of Seetion 4, where we describe a very important theorem of com
binatorics, the Polya Enumeration Theorem. This theorem is described,
with justification, in the Handbook ofApplicable Mathematics [3] as the
Redfield-Polya Theorem.' It is very often applied in a geometrie context
(our own applications will be geometrie); however, onee again, it is not in
essenee a theorem ofgeometry at all, but rests on the foundations of the idea
of a (finite) group aeting on a finite set - a basic idea of combinatories.

Seetion 5 is a treatment of the idea of odd and even permutations. Those
who would have preferred to get their group theory in one pieee rather than
two may, of course, read this seetion immediately after they have studied

4To see why, consult the article by E. Keith Lloyd, J. Howard Redfield 1879-1944, J. Graph The
ory, 8 (1984) , 195-203. There is a poem "Enumerational" in C. Berge's Principles of Combin atorics
(Academic Press, 1971) that, somewhat amusingly, refers to the history of this part of mathematics.

Poiyahad a theorem
(Which Redjield proved of old}.
What Seerets sought by graphmen
Whereby the theorem told!

So P älya countedfinite trees
(As Redjield did befor e}.
Their number is exactly such.
And not a seedling more.

Harary eountedfinite graphs
(Like Redjield, long ago).
And pointed out how very much
To Polya 's work we owe.

And Read piled graph on graph on graph
(Which is what Redfield did).
So numberin g the graphie world
That nothing eould be hid.

Then hail, Harary, Polya, Read,
Who taught us graphic lore,
And spare a thought fo r Redjield too,
Who went too long before.

Blanche Descarte s
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Seetion 2; but we thought that, though the basic idea of the seetion plays
an important role in the study of polyhedral symmetry, it might be rather
indigestible if offered to the reader before much of the geometry had been
treated.

8.2 SYMMETRY IN GEOMETRY

Although, as we have said, the concept of symmetry may be found in an
parts of mathematics, and in an those areas of science to which mathe
matics makes an essential contribution, it remains true that its best known
applications are in geometry. One finds the idea of symmetry frequently
referred to in good elementary treatments of geometry (e.g., [8]), and also
in good treatments of geometry suitable for those making a serious study of
mathematics at the university level (e.g., [7]). But many elementary treat
ments of the symmetry of geometrie figures are confusing and misleading,
largely because those treatments never make it clear what geometry is (nor
what symmetry is).

So we want to give a precise definition of geometry. Of course, we are not
advocating that this be done the way we are doing it here ifyou are teaching
elementary students, but it does seem to us appropriate to introduce these
fundamental mathematical ideas to the readers of our book. We maintain,
with Klein, that no treatment of geometry is complete without the idea of
symmetry; and that no clear idea of symmetry is possible without the basic
notion of a group.

Thus we start this section with the definition of a group.

Definition 1 Let G be a set and let * be a binary operation on G; that is,
given two elements g, h of G, then g *h is itself an element of G. We then
say that (G, *) is a group (often abbreviated to "G is a group" if * may be
understood) if it satisfies the following 3 axioms:

I (associative law) for an g, h, k in G, (g *h) * k = g * (h * k);
11 (existence of two-sided identity) there exists an element e in G such

that

g * e = e * g = g, for an g in G;

III (existence oftwo-sided inverses) there exists, to each g in G, an element
g in G such that
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Let us immediately give two examples.

Example 2 Let G be the set of integers (positive, negative, and zero) and
let g *h mean g +h, the ordinary addition of integers. Then G is a group,
withe = Oandg = -g.Noticethatthesetofintegersdoesnotformagroup
under multiplication, since there are, in general, no multiplicative inverses,
hence the introduction of rational numbers, represented by fractions.

Example 3 Consider the set S of permutations of the set {I, 2, 3}. There
are 6 such permutations; we specify each permutation S by saying where S

sends 1, 2, 3. Thus

SI : 1 ---+ 1, 2 ---+ 2, 3 ---+ 3; Sz : 1 ---+ 1, 2 ---+ 3, 3 ---+ 2;

S3 : 1 ---+ 2, 2 ---+ 1, 3 ---+ 3; S4 : 1 ---+ 2, 2 ---+ 3, 3 ---+ 1;

Ss : 1 ---+ 3, 2 ---+ 1, 3 ---+ 2; S6 : 1 ---+ 3, 2 ---+ 2, 3 ---+ 1.

The binary operation Si * Sj (l ::::: i, j ::::: 6) simply produces the permu
tation Si followed by the permutation Sj. It is obvious that the associative
law is satisfied. S The identity permutation is SI. Finally, the inverses are as
follows:

The inverse of SI is SI

The inverse of Sz is Sz

The inverse of S3 is S3

The inverse of S4 is Ss

The inverse of Ss is S4

The inverse of S6 is S6

1 . . (I Z3) (I Z3).c h .t IS customary to wnte, e.g., Z I 3 ' 3 I Z ror t e perrnutations S3, Ss·

There is also a convenient shorthand notation for a cycle like G~ D, in
which 1 ---+ 2, 2 ---+ 3, 3 ---+ 1. (We feel sure you will understand why it's
called a cycle.) This shorthand notation is simply (l 2 3); of course, this
is the same permutation as (2 3 1) or (3 1 2).

If it is clear from the context that our permutation is operating on the
set {l, 2, 3}, it is convenient to write (l 2) for the permutation S3, which is
a cycle of length 2. Of course, very strictly speaking - and sometimes we
have to speak strictly - S3 is the composition of a cycle of length 2 and a
cycle of length 1.

5When the binary operation g *h says, "Do g, then do h," it is always associative. (Do you understand?)
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Notiee what these two examples have in eommon, and where they differ.
Example 2 is an infinite group, and the group operation is commutative,
that is,

g * h = h * g, for all g, h in G.

Example 3 is afinite group, and the group operation is not eommutative,
thus

In both eases, the group has only one identity element, and eaeh element
has only one inverse; moreover, ifg is the inverse of g, then gis the inverse
ofg.

• •• BREAK2

(1) Prove that in both of the above examples
(a) There is only one identity element.
(b) Eaeh element has only one inverse.
(e) If g is the inverse of g, then g is the inverse of g.

(2) Try to prove (a), (b), (e) for any group G.

Where the group is finite, we ean display the entire group law by a
square group table. Thus, for our seeond example, the group table is

* SI S2 S3 S4 Ss S6

SI SI S2 S3 S4 Ss S6

S2 S2 SI S4 S3 S6 Ss

S3 S3 Ss SI S6 S2 S4

S4 S4 S6 S2 Ss SI S3

Ss Ss S3 S6 SI S4 S2

S6 S6 S4 Ss S2 S3 SI

(We read off Si * Sj by looking in row i and eolumn j.) Notiee that
eaeh row and eaeh eolumn is apermutation of the list of group elements.
This is so for any finite group (sometimes this information ean be used to
eomplete a table without working out all the individual eases). The order
of a group is the number of elements in the group, so the order is infinite
(Example 2) or some finite number (in the ease of Example 3 the order
is 6).
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Just so that you will feel reassured that we have not forgotten our purpose
in introducing you to the idea of a group, let us tell you that the group of
Example 3 is called the symmetrie group on 3 symbols, and written S3.
It will certainly reappear - for example, you williater recognize it as the
group of symmetries of an equilateral triangle.

But before we turn to geometry, we require one more result from group
theory. This result, due to the great French mathematician Joseph-Louis
Lagrange (1736-1813), relates the order of a finite group G and the order
of a subgroup H 01 G.

If (G, *) is a group and H is a subset of G, we say that H is a subgroup
of G if g\ *gz belongs to H whenever g\, gz belong to H, and ifthe induced
binary operation on H is a group operation. For this last requirement to be
satisfied, it is necessary and sufficient for the identity element to belong
to H, and for the inverse of any element in H to belong to H.

Example 2 (revisited) We have the additive group 71. of integers. The
subset consisting of even integers is a subgroup, usually written 271.. The
subset consisting of non-negative integers is closed under addition, but is
not a subgroup because the additive inverse of a positive integer is negative.

Before stating Lagrange's Theorem, we introduce some important stan
dard notation. It is customary to write a group G multiplicatively, especially
if it is not commutative. That is, we write the group operation as multipli
cation and even (as in ordinary algebra) suppress the product symbol, so
that gl * gz is simply written as g\gz. Sometimes we may even go further
and write the identity element as 1 instead of e; but we will not adopt
this notation unless we judge there is no risk at all of confusion. We will,
however, always write g-\ for the inverse of g. Notice that, since the asso
ciative law holds, the positive powers of g, that is, g, s', g3, ... , have an
unambiguous meaning, and so, indeed, do the negative powers if we define

(1)

Of course, (1) then also holds for n negative (just as in ordinary algebra).
Notice, too, that the inverse satisfies the basic law

(2)

Here in (2) we have been careful to state the law so that we do not require
commutativity.
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Now let G be a finite group of order n and let H be a subgroup of G.
Of course, H is also a finite group; let its order be m. Then Lagrange's
Theorem is this:

Theorem 4 The order of H divides the order ofG, that is, mln.

Proof" Let g be an element of G (we write g E G), and let g H be the
set of all elements gh, as h ranges over the elements of H. We call
the set g H a (left) coset of H in G, and g a representative of the
coset gH.

We now prove that, if g\ H, g2H are two (left) cosets, then either
they are disjoint or they coincide. For if g E g\ H, then g = g\ho for
some ho E H, so, for all h E H,

gh = g\hoh, with hoh E H

so gh E gsH, and thus gH ~ gsH, But g\ = sb;', with hOl E H,
so we may repeat the argument with the roles of g and g\ exchanged
(and hOl replacing ho), concluding that gsH ~ gH, so that, finally,?
g\H = gH. Thus if g E g\H n g2H, then g\H = gH = g2H,
establishing that g\ Hand g2H coincide if they are not disjoint.

We have next to prove that every coset g H has exactly the
same number of elements as Hitself. For consider the function
cp from H to g H that sends h to gh. This function certainly maps H
onto g H; for the elements of g H are exactly the elements gh,
as h ranges over H. Moreover, cp is one-to-one; for if gh\ = sh«.
then h, = g-\(gh\) = g-1(gh2) = h-, Thus cp sets up a one-to-one
correspondence" between H and gH.

Now suppose that H has m elements. Then every (left) coset has
m elements, and G, as a set, is the disjoint union of a certain number
of cosets. If, then, G is the disjoint union of k cosets, we have proved
that

n =km

establishing Lagrange's Theorem.

6We advise you to read this argument carefully. It is really subtle.

7We have given you here an argument that does not depend on G or H being finite.

8See previous footnote.

(3)

D
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Remarks

(i) The number k that appears in (3) is called the index of H in G.
(ii) Notice that we could have argued with right cosets Hg. Obvi

ously, we would have arrived at the same relationship (3), so the
index is also the number of disjoint right cosets . This is signifi
cant because it is by no means true in general that a left coset is
a right coset.

• • • BREAK3

(1) Let G be the additive group of remainders modulo 12 (think of
a 12-hour clock). What is the order of G? Find all the subgroups
of G and list their orders.

(2) Set up a one-to-one correspondence between the set of left cosets
of H in G and the set of right cosets of H in G. (Be careful
there is no well-defined function sending the coset gH to the
coset Hg.)

This is as far as we need to take the group theory in order to be precise
as to what we mean by a geometry on a configuration A, and the symmetry
of the resulting geometrie figure. However, some further (and obviously
relevant) group theory will be found in Section 5.

We have been guided in our definitions by the approach of the Ger
man mathematician Felix Klein (1849-1925) to explaining the nature of
geometry. Consider, for example, the usual plane Euclidean geometry, in
which we study the properties of planar figures that are invariant under
certain Euclidean motions. These motions certainly include translation
and rotation in the plane of the figure, but it is a matter of choice whether
they include reflection. For example, the elaborate 7-gon9 of Figure 1(a) is
invariant under rotations through 2; about its center, but, unlike the ordi
nary regular 7-gon, not under reflection about any axis through its center.
Thus , to define our geometry, we must decide whether we allow Euclidean
motions that reverse orientation. Of course, if we allow certain Euclidean
motions, we must also allow compositions and inverses of such motions,
so we postulate a certain group G of allowed motions of the ambient plane ,
the plane containing our planar figure. If A is such a planar figure, then,

9Those of you who are interested in knowing how 10 construct this figure (by simply folding paper)
may wish to consult Chapter 4.
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(a)

A A'

~ may be transformed by a~
~otation in 3 dimensions intoJ

B C C' B'

reversing the orientation of the triangle.

(b)

FIGURE t

for any g E G, Ag is again a planar figure.'? In the G-geometry 0/ A,
we study the properties of the figure A that it shares with all the figures
Ag as g varies over G. Such properties are called the G-invariants of A,
abbreviated to invariants if, but only if, the group G may be understood.
It is thus the group G that, according to Klein, determines the geometrical
nature of A .

Example 5 Let G be the group of motions of the plane generated by
translations , rotations, and reflections (in a line); we call this theEuclidean

IOWe prefer to write Ag for the image of A under the motion g, rather than gA. This is bec ause , in the
group G, gh means "first g, then h"
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group in 2 dimensions and write it E2• Then the Euclidean geometry ofthe
plane is the study of the properties of subsets of the plane that are invariant
under the motions in E 2• For example, the property of being a polygon is
a Euclidean property; the number of vertices and sides of a polygon is a
Euclidean invariant. On the other hand, as we have hinted, orientation is
not invariant with respect to this group, though it would be if we disallowed
reflections. Thus, by means of a motion in E2 the triangle ABC may be
turned over (flipped) to form the triangle A'B'C' as shown in Figure l(b).
But the orientation ABC is counterclockwise, while the orientation A'B'cl
is clockwise.

Example 6 We may step up a dimension, passing to the group E 3 of
Euclidean motions in 3-dimensional space. Notice that it is natural to think
of reflections in a line (of a planar figure) as a motion in space, since it can
be achieved by a rotation in some suitable ambient 3-dimensional space
containing the plane figure - you will surely see this by looking again at
Figure 1(b). However, it requires a greater intellectual effort to think of
reflection in a plane (of a spatial figure) as a motion in some ambient 4
dimensional space! Who would think of turning the golden dodecahedron11

(see Figure 2(c» inside out? Thus it is common not to include such reflec
tions in defining 3-dimensional geometry. This preference is, of course,
a consequence of our experience of living in a 3-dimensional world and
has no mathematical basis. However, whenever we are highlighting the
construction of actual physical models of geometrical configurations, it is
entirely reasonable to omit motions to which the models themselves cannot
be subjected.

We now move to a precise definition of symmetry. Let a geometry be
defined on the ambient space of a configuration A by means of the group
of motions G. Then the symmetry group of A, relative to the geometry
defined by G, is the subgroup GA of G consisting of those motions g E G
such that Ag = A, that is, those motions that map A onto itself, or, as
we say, under which A is invariant. Thus, for example, if our geometry is
defined by rotations and translations in the plane, and if A is an equilateral
triangle, then its symmetry group GA consists of rotations about its center
through 0°, 120°, and 240°; if, in our geometry, we also allow reflections,
then the symmetry group has 6 elements instead of 3, and is, in fact, the

IIWe have included Figures 2(a), 2(b) as weil for the benefit of those readers who might wish to
construct the golden dodecahedron. See Figure 33 of Chapter 4.
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FIGURE 2 The golden dodecahedron. This extraordinarily beautiful model may be made by braiding together six

colored strips like the one shown in Figure 2(a). Begin by laying out five of the strips as shown in Figure 2(b) and then

attach paper clips at the places marked by the arrows. Next continue to braid these strips together, remembering what

the finished model will look like (attaching paper clips, in the middle of the faces-uot at the vertices-wherever needed

to hold everything in position). At a certain stage you will need to insert the sixth strip about the "equator." When you

are finished, every strip should go over and under the strips it meets aIl the way around the model, and there should be

no loose ends sticking out. For more detailed information about how to prepare the strips, consult Chapter 4.

very well-known group 53 (recall Example 3), called the symmetrie group
on 3 symbols - the symbols may be thought of in this case as the vertices
of the triangle. We repeat, for emphasis, that the symmetry group GA
of the configuration A is a relative notion, depending on the choice of
geometry G.

It is plain that no compact (bounded) configuration can possibly be
invariant under a non-zero translation. Thus when we are considering the
symmetry group of such a figure we may suppose G to be generated by
rotations and, perhaps, reflections. Moreover, any such motion in the plane
is determined by its effect on 3 independent points, and any such motion
in 3-dimensional space is determined by its effect on 4 independent points.
Since a (plane) polygon has at least 3 vertices and a polyhedron has at least
4 vertices, and since any element of the symmetry group of a polygon or
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a polyhedron must map vertice s to vertices, it follows that the symmetry
group of a polygon or a polyhedron isfinite (compare the symmetry groups
of a cireIe or a sphere).

The symmetry group of any polygon with n sides is, by the argument
above , a subgroup of SII ' the group of permutations of n symbols, also called
the symmetrie group on n symbols. If G is generated by rotations alone, and
the polygon is regular, its symmetry group is the cyeIic group'? of order n,
often written CII , generated by a rotation through an angle of 2". radians

n
about the center of the polygonal region. If G also ineIudes reflections,
then the symmetry group has 2n elements and ineIudes n reflections; this
group is called the dihedral group of order 2n and is usually written Dn •

In diseussing the symmetry group s of polyhedra, however, we will, as
indicated earlier, always assurne that the geometry is given by the group G
generated by rotations in 3-dimensional space. Then the symmetry group
of the regular tetrahedron is the so-called alternating group A4 • In general,
An is the subgroup of Sneonsisting of the even permutations13 of n symbols;
it is of index 2 in Sn, whose order is n! , so that its order is 4(n !). Thus the
order of A 4 is 12.

The cube and the regular octahedron have the same symmetry group,
namely S4. It is easy to see why the symmetry groups are the same; for
the centers of the faces of a cube are the vertiees of a regular inscribed
oetahedron, and the centers of the faees of a regular oetahedron are the
vertiee s of an inscribed eube . Likewise, and for the same reason, the regular
dodecahedron and the regular ieosahedron have the same symmetry group ,
whieh is As. It is a matter of interest and relevanee here that the elements of
the symmetry group of the diagonal eube (Figure 3, whieh is Figure 27 of
Chapter 4) perrnute the four braided strips from whieh the model is made,
and thus the symmetry group is S4' (We'll have you study this eIoser in
Break 6.)

We are now in a position to give at least one possible preeise meaning
to the statement "Figure A is more symmetrie than Figure B." We assurne
that A and B are defined as geometrie figures by the same group of mo
tions G. If it happens that the symmetry group GA of A strietly contains
the symmetry group Ge of B, then we are surely entitled to say that Ais
"more symmetrie" than B. Notiee that the situation deseribed may, in fact ,
oecur beeause B is obtained from A by adding features that destroy some

12A cyclic group of order n is a group of order n, all of whose elements are powers of a given element
g . called a generator of the group.

13See Seetion 5 of this chapter for a careful treatment of even and odd permutations.
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(a)

FIGURE 3 To construct this model, begin with four strips, each one consisting of 7 isosceles right triangles as shown

in Figure 3(a). Each strip should be of a different color. Then fold the strips so that there are ''mountain'' folds on the

colored side of the paper. With the mountain folds down, lay the strips out as shown in Figure 3(b). Secure the center of

the configuration with a small piece of tape and then continue to "braid" the strips together to form the diagonal cube

shown in Figure 3(c). Every face should have four colors visible, and every strip should go over and under the strips it

meets as it goes around the cube. Finally, all the ends should be tucked in.

of the symmetry of A. For example, Figure 4(a) shows a typical strip that
may be used to braid eaeh of the Platonic solids. (Precise details about the
eonstruetion of these models appear in Chapter 4.) However, the resulting
braided Platonic solids of Figure 4(b) will all have their symmetry redueed
if we braid them from strips of different eolors (or different patterns). It is
natural to ask whether it is possible to braid the tetrahedron, oetahedron,
and ieosahedron in such a way as to retain all the symmetry of the original
polyhedron." We will address this question in the next break.

Meanwhile, returning to the diseussion of symmetry, we note that the
notion "more symmetric" above is really too restrietive. For we would
like to be able to say that the regular n-gon beeomes more symmetrie as
n inereases. We are thus led to a weaker notion that will be useful if we

14Notice that we already know how to do this for the cube (Figure 3) and the dodecahedron (Figure 2).
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Tetrahedron
(2 strips)

\ I \ I
\ I \ I

\ / \ I
\ I \ I

\ I \ I

\ / \ /

Hexahedron (Cube)
(3 strips)

Octahedron
(4 strips)

\ I \ 1\
\ I \ I \

\ I \ I \
\ I \ I \

\ I \ I \

\ / \ / \

I
I

I
I

I
I

Icosahedron
(6 strips)

\ 1\ 1\ I \ 1\ I
\ I \ I \ I \ I \ I

\ I \ I \ I \ I \ I
\ I \ I \ I \ I \ I

\ / \ I \ I \ I \ I
\ / \ / \ I \ / \ I

Dodecahedron
(6 strips, 3 of each kind)

\ I \ I \ I \ I \
\ I \ I \ I \ I \
\ I \ I \ I \ I \
\ I \ I \ I \ I \

I \ I \ I \ I \ I
I \ I \ I \ I \ I

I \ I \ I \ I \ I
I \ I \ I \ I \ I

FIGURE4 (a) Pattern pieces for constructing the Platonic solids.
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FIGURE 4 (b) The completed Platonic solids.

are dealing with figures with finite symmetry groups (e.g., polygons and
polyhedra). We eould then say - and do say - that A is more symmetrie
than B if GA has more elements than GB. Thus we have, in fact, two
notions whereby we may eompare symmetry - and they have the merit of
being consistent. Indeed, if A is more symmetrie than B in the first sense,
it is more symmetrie than B in the second sense - but not eonversely.

Notiee that we deliberately avoid the statement - often to be found in
popular writing - "A is asymmetrie figure." We regard this statement as
having no precise meaning!

• • • BREAK4

(l) Why should we wish to say that the regular n-gon beeomes more
symmetrie as n inereases? What happens to the regular n-gon as
n inereases indefinitely?

(2) Figure 5(b) shows a typical straight strip of 5 equilateral triangles
with a slit in eaeh triangle from the top (or bottom) edge to (just



8 Symmetry252 -'-"------'.:.=c....:.::.i...- _

(a)

(b)

FIGURE5

past) the center," A tetrahedron with symmetry group A4 may
be constructed out ofthree ofthese strips. Figure 5(a) shows how
the three strips are interlaced initially. We leave the completion
of the model as achallenge to you.

15Theoretically, the slit could go ju stto the center, butthe model is then impossible to assemble. You
need to havc some leeway for the pieces to be free to move during the proces s of construction 
although they will finally land in a symmetrie position, so that it looks as though the slit need not have
gone past the center.
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(3) Harder. Figure 6(a) shows the layout of three strips for the
beginning of the construction of an octahedron with symmetry
group 54. Can you build it? We'll give you one more hint. When
you use the layout of Figure 6(a) remember that the strip shown
below it in Figure 6(b) has to be braided into the figure above it.

(4) Muchharder. An icosahedron with symmetry group As may be
constructed from 6 strips of the type shown in Figures 5 and 6,
where each strip has 11 equilateral triangles. Over to you! But

(b)

FIGURE6
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FIGURE6 (e)

take heart - these models take several hours to construct. Just
to prove that they really do exist we show a photo of them in
Figure 6(c).

8.3 HOMOLOGUES

George P6lya, who made great contributions not only to mathematics itself,
but also to the understanding of how and why we do mathematics - or
perhaps one should say, "how and why we should do mathematics" - was
particularly fascinated by the Platonic solids and first introduced his notion
of homologues (orally) in connection with the study oftheir symmetry. We
know that the idea of homologues played a key role in his thinking about
one of his greatest contributions to the branch of mathematics known
as combinatorics, namely, the Polya Enumeration Theorem (see [5] for
an intuitive account and [3] for a detailed account). Let us describe this
notion of homologues in terms of symmetry groups. We believe that we
are thereby increasing the scope of the notion while entirely maintaining
the spirit of P6lya's original idea."

Let A be a geometrical configuration in a geometry given by a group I',
and let the symmetry group of A with respect to this geometry be r A ; and

16We will ourselves be discussing the P61ya Enumeration Theorem in the next section.
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let B be a subset of A. Thus, for example, A may be a polyhedron and B
a face of that polyhedron. We consider the subgroup I'AB of r A consisting
of those motions in the symmetry group rA of A that map B to itself. We
consider a right coset of F AB in rA , that is, a set FAB g, gErA. (Be sure you
understand what I'AB and I'ABg mean before you read on.) Every element
in I'AB g sends B to the same subset Bg of A. The collection of these
subsets is what P61ya called the collection of homologues of B in A. We
see that the set of homologues of B in A is in one-to-one correspondence
with the set of right cosets of I'AB in r A •

Example 7 Consider the pentagonal dipyramid A of Figure 7(b). We
may specify any motion in the symmetry group of A by the resulting
permutation of its vertices 1,2,3,4,5,6, 7; note that the polar vertices
are 6 and 7. In fact, r A is the dihedral group D«, with 10 elements, given
by the following permutations:

(identity)

(rotation through 2; about axis 67)

(rotation through 4; about axis 67)

•
•

-+ (3 2 1 5 4 7 6)

(interchanging the poles)
(interchange plus rotation
through 2;)

(interchange plus rotation
through 4;)

-+ (2 1 5 4 3 7 6) •

-+ (1 5 4 3 2 7 6) •

-+ (1 2 3 4 5 6 7)

-+ (2 3 4 5 1 6 7)

-+ (3 4 5 1 2 6 7)

-+ (45 1 2 3 67)

-+ (5 1 2 3 4 6 7)

(1 2 3 4 5 67) -+ (5 4 3 2 1 7 6)
-+ (4 3 2 1 5 7 6)

First, let B be the edge 16. Then I'AB = {Id}, since only the identity
sends the subset (1, 6) to itself. Thus the index of I'AB in r A is ten, and
there are ten homologues of the edge 16; these are the ten "spines" of the
dipyramid (i.e., we exclude the edges around the equator). Second, let B
be the edge 12. Then I'AB has two elements, since there are two elements
of I'A, namely the identity and (1 2345 67) -+ (2 1 5 4 3 7 6), which
send the subset {I, 2} to itself. Thus the index of r AB in r A is five, and
there are five homologues of the edge 12; these are the five edges around
the equator.



8 Symmetry256 -"-_---"- _

\
\

\

Left hand end of pattern piece
(a)

5
7

6

f--1----::;::>13

Pentagonal dipyramid
(b)

4

Triangular dipyramid
(c)

FIGURE 7 The pentagonal dipyramid may be made from a strip of 31 equilateral triangles.

You begin the constructions by placing the first triangle over the eighth triangle as shown in

Figure 7(a). At that point just let the rest of the strip fall around the model, remembering what

it should look like when you are finished. The last triangle will tuck into a slot produced by an

edge of the tape from a previous crossing of the last face. A similar construction of the triangular

dipyramid exists, beginning with a strip of 19 equilateral triangles. More detailed instructions

for preparing the strips may be found in Chapter 4.

Third, let B be the face 126. Then TAB = {Id}, so that, as in the first case,
there are 10 homologues of the face 126; in other words, all the (triangular)
faces are homologues of each other.

• •• BREAKS

(1) Consider the triangular dipyramid P of Figure 7(b). Specify the
motions of the symmetry group by writing down the resulting
permutations of its vertices 1, 2, 3, 4, 5; note that the polar
vertices are 4 and 5. In fact, I'p is the dihedral group D3 , with 6
elements.



(4)

8.4 The P61ya Enumeration Theorem

(2) How many homologues does the edge 12 have? How many ho
mologues does the vertex 4 have? How man y hornologues does
the face 124 have?

Let us now explain the P61ya Enumeration Theorem - actually, there
are two theorems - and see how the notion of homologue fits into the
story.

8.4 THE POLYA ENUMERATION THEOREM

Let 5 be a finite set; the reader might like to keep in mind the set of
vertices (or edges, or faces) of a polygon or polyhedron. Let G be a finite
(symmetry) group acting on 5. Suppose 5 has n elements, and that G
has m elements; we write 151 = n, IGI = m. We may represent the
elernents of the set 5 by the integers 1, 2, . . . , n . If g E G, then g acts
as a permutation of {I , 2, ·· · , n}. Now every permutation is uniquely
expressible as a composition of cyclic permutations on mutually exclusive
sub sets of the elements of 5. For exarnple, the permutation

(
1 2345 6 7 89 10 11)
247131156810 9

of the set 5 of integers {1, 2, .. " 11} is the composite

(1 24)(375)(61198)(10)

where, e .g., (I 24) denotes the cyclic permutation

(
1 2 4)
241

Thus the permutation (4) is the composite of one cyclic permutation of
length 1, two cyclic permutations of length 3, and one cyclic permuta
tion of length 4, the cyclic permutations acting on disjoint subsets of the
set 5.ln general, a permutation of 5 has the type {al. a2," ', an} ifit con
sists of al permutations of length 1, a2 permutations of length 2, .. . , a;
permutations of length n, the permutations having disjoint domains of ac
tion; notice that L~=l ia, = n. For example, the permutation (4) has type
{I , 0 , 2, 1,0,0,0,0,0,0, O}. If g has type {al. a2,"' , all }, we define the
cycle index of g to be the monomial

Z(g) = Z (g; Xl , X2 , "', XII) = X~'X~2 ... x~"

The cyc/e index 0/ Gis Z (G) = Z (G ; Xl. X2, . . . , XII) = ~ L gEG Z (g) .
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1

024 3

FIGURE 8 We denote this labeling of the vertices of the square by ~~.

We give an example that we will revisit periodically throughout this
section.

Example 8 We consider the symmetries 17 of the square that is shown in
Figure 8.

The group G of symmetries is the group D4 of order 8, which we here
describe as a group of permutations of the set S of vertices {I, 2, 3, 4}.
Thus n = 4, m = 8, and the elements of Gare

gl (identity) (1) (2)(3)(4) cycle index x 4
1

gz (1 234) cycle index X4

g3 (1 3)(24) cycle index XZ
z

g4 (l 432) cycle index X4

gs (1 3)(2)(4) cycle index zx1xz

(24)(1)(3) cycle index ?
g6 XjXz

g7 (l 2)(34) cycle index xi

gs (1 4)(23) cycle index XZ
z

Thus the cycle index of G, obtained from the calculations above, is

We leave the example temporarily and return to the general case. Sup
pose we want to color the elements of S. That is, we have a finite set Y
of colors, IYI = r, and then a coloring of S is a function" f : S -+ Y.
For any g E G, we regard the colorings fand f g as indistinguishable or

17Recall that, in cons idering the syrnmetries of a polygon, we permit reflection s in three-dimensional
space about a line.

18We speak of a colaring of S; this may be literally true , or it may merely be a metaphor for a rule for
dividing the elements of S into disjoint classes.
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equivalent; and a pattern is an equivalence dass of colorings. Then Pölya's
first theorem is as follows.

Theorem 9 Fora given group ofsymmetries G and a given set ofcolors Y
with IYI = r, the numberofpatterns is Z(G; r, r,···, r).

Example 8 (continued) Suppose the vertices of the square are to be col
ored using r colors. Then the number of patterns is ~ (r4+ 2r 3 + 3r2+ 2r).
If, in particular, the vertices are to be colored red or blue, then r = 2, and
the number of patterns is ~ (16 + 16 + 12 + 4) = 6. In fact, the patterns
are represented by the 6 colorings

Notice that we regard the colorings ~.~ and ~.~' for example, as indistin
guishable or equivalent; we are sure you see why.

We now describe P6lya's second theorem. This is really the big theorem,
and the first theorem is, in fact, deducible from it. Let us enumerate the
elements of Y (the colors) as YI, Y2, ... , Yr.

Theorem 10 (The P6lya Enumeration Theorem) Evaluate the cycle
index

r

Z(G;XJ, X2,··.,Xn ) at Xi = LY;' i = 1,2, ... ,n.
j=1

Then the coefficient ofy~l y;2 ... y;' is the number ofpatterns assign
ing the color Yj to nj elements'? of s.

Example 8 (continued) For the symmetries ofthe square we know that

1 4 2 2
Z(G) = S(x1 +2XIX2+3x2 +2X4)

Let Y = {R, B}; then theevaluation of Z(G) at X; = Ri+Bi, i = 1,2,3,4,
yields

~ (R + B)4 + 2(R + B)2(R2+ B2) + 3(R2+ B2)2 + 2(R4+ B4»)
8

= R4+ R 3 B + 2R 2B2+ R B 3 + B4
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(It is, of course, no coincidence that this polynomial is homogeneous, of
degree 151 , and symmetrie; and has integer coefficients.)

Thus the P6lya Enumeration Theorem tells us that there is one pattern
with 4 red vertices (obvious); one pattern with 3 red vertices and I blue
vertex (represented by the coloring ~.~) ; 2 patterns with 2 red vertices and 2
blue vertices (represented by the colorings ~.~ and ~.~); and the remaining
possibilities are most easily analyzed by considering the symmetrie roles
of Rand B.

Consider the various coloring functions 5 -+ Y representing a given
pattern. These functions all have the form 1g : 5 -+ Y, where 1 is a
fixed coloring and g ranges over the elements of G. It will turn out that the
colorings 1g are essentially the homologues 011. Let us first revert to our
example.

Example 8 (continued) As we have seen, there is one coloring in which
all vertices of the square are colored red. There is only one homologue,
namely, ~.~ .

There is one coloring in which 3 vertices are colored red and one blue.
There are 4 homologues, namely,

There are two colorings in which 2 vertices are colored red and 2 blue.
In the first there are 4 homologues, namely,

~.~ ~·Z ~.~ Z·~
In the second there are 2 homologues, namely,

~.~ ~.~
You may complete the analysis by considerations of symmetry.

Let us now show how this concept of homologues agrees with our
earlier definition. We are given the group G of permutations'" of 5. Given
a coloring 1 : 5 -+ Y, we consider the subset Go of G consisting of
those g such that 1g = 1, that is, those movements of 5 that preserve the
coloring. It is easy to see (just as easy as in our earlier, simpler situation)
that Go is a subgroup of G. Corresponding to each coset Gog of Go in G
we have a coloring 19 of 5, and these colorings run through the pattern
determined by 1. We describe the set of colorings {fg} in this pattern as
the set of homologues ofthe coloring 1; just as in our geometrie definition

20Recall, from Seetion 3, the group r Aof symmetries of the configuration A.
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in Section 3, they are in one-to-one correspondence with the set of right
cosets of Go in G .

• •• BREAK6

(1) Construct the diagonal cube" shown in Figure 3.
(2) Use this cube to fill in the following table :

Description of rotation The number of
about the axis through The amount rotations of
the centers of ofrotation this type

Opposite faces ± ± turn 6

Opposite faces ! turn
2

Opposite vertices ±~turn

Opposite edges ! turn
2

Identity 0
Total number -
of rotations -

(3) Fill in the following table about the permutations of four objects,
and make the obvious compari son of the two tables.

The number of
permutations of this

Description of the type of permutation type

( ) ene cycle o~ 6- - - - length 4

( )( ) cwocycles, eaCh)
- - - - of length 2

( )( ) ( one cycle of length 3 )
- - - - and one cycle of length I

( )()() ( one cycle of length 2 )
- - - - and two cycles of length I

( )( )( )( ) (foU~ CYcles oflength I.)
- - - - I.e.• the identity

Total
number of --

permutations

21Notice that the diagonal cube is so-called because of the appearance of the diagonals on each of its
faces. We are not referring to the interior diagonals of the cube.
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(4) Notice anything? (Hint: Think of the strips of your cube as being
numbered 1,2,3,4 and observe what happens to the strips when
you perform the rotations in part (2). This is one very vivid way
to see why the symmetry group of the cube is 54. Of course,
there are other ways, too. For example, the interior diagonals of
the cube might be labeled 1,2,3,4, and you would see that the
rotations of the cube simply permute these diagonals. It is just
a little harder to "see" the interior diagonals than it is to see the
strips of the diagonal cube.

(5) Write the cycle index for the 4 strips of the diagonal cube.
(6) Use the P6lya Enumeration Theorem to determine how many

different diagonal cubes can be made with four strips if you may
choose any one of four colors for each strip.

(7) Write the cycle index for the 6 strips of the Golden Dodecahedron.
(8) Use the P6lya Enumeration Theorem to determine how many

different Golden Dodecahedra can be made with six strips, each
a different color.

* We are now prepared to offer our general definition of a homologue. To
help you to follow this, we first repeat briefly the two contexts in which
this notion has already arisen in this chapter.

First, consider a geometrie configuration Z with respect to a geometry
given by the group I'. Let G be the subgroup of I' consisting of those gEr
such that Zg = Z. So G is the symmetry group of Z in the geometry given
by I': G acts on Z.

Set X = 22 = set of subsets of Z.

Now G acts on X. Then x E Xis a subset of Z, and G, is the subgroup
of G consisting of those g that map x to itself.22 Hence we obtain the set of
homologues of x; and the homologues are in one-to-one correspondence
with the cosets of Gx in G.

Second, recall that, in this seetion, we have discussed the set of functions
f : 5 -+ Y, or colorings of 5, and a group G acting on 5.

Let X = yS = set of colorings of 5, i.e., functions from 5 to Y

Then G acts on X by the rule

fg(s) = f(sg), g E G, f: 5 -+ Y, s E 5

22In Seetion 3 we had Z = A, G = r A, x = B, G, = r AB.
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Now, for any f, Gf = {g If g = f} , and we get a one-to-one correspon
dence between the homologues of f, as described in this section, and the
cosets of Gf in Go The homologues of f are the colorings of S determining
the same pattern as f 0

Thus the common description, covering both applications, is this: A
group G acts on a set So Let Y be a fixed set and consider the induced
action of Gon ySo If f E y s, that is, if fis a function from S to Y, let Gf
be the subgroup of G consisting of those g E G that fix f, that is, such that
fg = j . Then the homologues of f (with respect to G) are the functions
fg, as g ranges over G; and they are in one-to-one correspondence with
the cosets of Gf in G, under the rule Gf g~ f go In OUf first example
above, we had S = Z, Y = {O, I} (so that Ys is the set of subsets of Z),
and f = x.

This fulfills our promise to George P6lya to write up his idea of homo
logues.

We will give you a further example of homologues in Break 10; but
before we can make that example clear we need to describe even and odd

* permutations and the alternating group.

8.5 EVEN AND ODD PERMUTATIONS

Wedescribed the symmetry group of a regular tetrahedron as the altemating
group A4 consisting of even permutations of the set (1,2,3,4). We owe
you at the very least adefinition ofthis concept! The reason we postponed
giving you this is that the precise definition is difficult to understand. See
if you agree with uso

Let A be the alternating form in n variables, that is, the expression

A = n (x, - Xj)

l:::i<j:::n

(5)

Then any permutation p in Sn acts on A by permuting the suffixes i, j, 0 • 0

appearing in (5) by means of p; thus

Ap = n (XiP - Xjp)

J:::;<j:::n

(6)

We claim that Ap is either A or -Ao For, given any factor x, - Xj of Ap,
then i = hp, j = kp, for some (unique) h, k between land n, and either
Xh - Xk or Xk - Xh occurred in A. Thus we are led to the following crucial
definition:
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Definition 11 The permutation p is even if Ap
Ap = -A.

A; it is odd if

We call the evenness or oddness of a permutation its parity.

Example 12 Consider the cyclic permutation (l 23), that is, p(l) = 2,
p(2) = 3, p(3) = 1. Then if A = (Xl - X2)(XI - X3)(X2 - X3),

Ap = (X2 - X3)(X2 - XI)(X3 - Xl) = A

Thus p is even. On the other hand, if 0' is the permutation (l 3), that is,
O'(l) = 3,0'(2) = 2,0'(3) = 1, then

AO' = (X3 - X2)(X3 - Xd(X2 - Xl) = -A,

so 0' is odd.

Now in the next break you will see that every permutation may be
expressed as a composition of transpositions, that is, of cycles that (like
(l 3) above) merely interchange two numbers. Granted this, one may show
the following:

Theorem 13 Apermutation is even if and only if it may be expressed as
a composition 01an even number 01 transpositions.

You may ask-why don't we simply define an even permutation as
one that may be expressed as a composition of an even number of trans
positions? For that is surely the reason for the use of the name "even."
The answer is that it is by no means obvious that, if a permutation can be
expressed as a composition of an even number of transpositions, it cannot
also be expressed as a composition of an odd number of transpositions. It
is, indeed, Theorem 13 that makes that fact clear.

However, before we prove Theorem 13, we'll take the promised break
and put you to work seeing why every permutation may be expressed as a
composition of transpositions. 23

• • • BREAK 7

(1) Satisfy yourselves, by looking at a particular but not special case,
that every permutation of a set of numbers may be expressed as
a composition of cycles acting on disjoint sets of numbers. (See
our example (4).)

23We adopt the usual convention that the identity permutation is the empty composition of
transpositions.
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(2) We now need to show thatevery cycle (lll2 .. ·lr)is acomposition
of transpositions. Of course, this ho1ds if r = 2. Now, if r ~ 3,
show that

(recall that f g means "do f, then do g") and hence deduce, by
induction on r, that the cycle (li tz ... lr) is a composition of
transpositions.

(3) Find an explicit expression for (li tz ... lr) as a composition of
transpositions.

Now we return to the proof of Theorem 13. It is obvious that even and
odd permutations under composition * act 1ike ordinary integers under
addition, that is,

even * even = even,

odd *odd = even,

even *odd = odd,

odd * even = odd.

It therefore follows immediately that, if we can show that every transpo
sition is odd, then it must be true that any permutation expressib1e as a
composition of an even number of transpositions is even, and any permu
tation expressib1e as a composition of an odd number of transpositions is
odd - and this will prove Theorem 13. Thus we are 1eftto prove that every
transposition is odd.

First, we claim that the transposition (1 2) is odd. For if we app1y (1 2) to
the form A = fll::Oi<j::on (x, - Xj), then the factor (XI - X2) is transformed
into its negative, whi1e all the other factors are mere1y permuted among
themse1ves with no change of sign. Thus (1 2) is an odd permutation.
Second, consider the transposition (i j), i < j. We claim that

(2 j)(1 2)(2 j) = (1 j),

(1 j)(1 2)(1 j) = (2 j),

(1 i)(2 j)(1 2)(1 i)(2 j) = (i j),

j ~ 3,

j ~ 3,

i ~ 3, j ~ 3.

Thus, since (1 2) is odd, so is every (i j), and Theorem 13 is comp1ete1y
proved.i"

24Notice that the parity of a permutation is unaffected by the choice of n in Definition 11.
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• •• BREAKS

Let a be an arbitrary element of Sn and let p be the cycle (li lz ... lr)
in Sn' Show that a- I po is the cycle (lla lza ... lra), where mo is
the effect of the permutation a on m.

Now it is plain that the set of even permutations of n objects is a subgroup
of Sn; it is called the alternating group on n objects and written An.
Moreover, if n 2: 2 and p is any odd permutation, then AnP is the set of
all odd permutations. For certainly every permutation in AnP is odd; and,
conversely, if o is odd, then op :' is even, oo:' E An, and a = (ap-I)p.
Thus Sn is the disjoint union of the two cosets An and AnP, consisting of
the even and odd permutations, respectively, and hence An is a subgroup
of Sn of index 2, as claimed in Section 2.

Notice that we could have argued above using pAn instead of AnP;
indeed, and remarkably, pAn = Anp. It is a special, and very important,
property of some subgroups H of a group G that gH = Hg for all
g E G. We call such subgroups normal. Our argument above can easily be
generalized to show that every subgroup of index 2 of an arbitrary group G
is normal.

• •• BREAK9

(1) Let P be a subgroup of Sn and let Q be the subset of P consisting
of the even permutations in P. Show that Q is a subgroup of P
of index 1 or 2. Give an example of each possibility.

(2) Show that, if H is a subgroup of G of index 2, then, for any
g ~ H, we have gH = Hg.

Finally, let us remark here that the reason that even permutations figure
so prominently in the discussion of symmetry in geometry is this: any
symmetry of a polyhedron, and any orientation-preserving symmetry of a
polygon, will induce an even permutation of the vertices. Try it and see!

• •• BREAK 10

(l) It is a fact that the regular tetrahedron (T) may be inscribed in the
regular hexahedron or cube (H), as shown in Figure 9. Look at
the rotations of the cube (from Break 6) that leave T occupying



FIGURE9

8.5 Even and Odd Permutations

T H 0 D I

F 4 6 8 12 20

V 4 8 6 20 12

E 6 12 12 30 30

Axes 2Jr ? 6 ?2

of 2Jr ? 4 ?3

sym- 2Jr 34

metry 2Jr ?
5

Planes of 6 ?
symmetry 3

Face angles ? 24 ?

Diagonals 4 3 60 ?
(interior) 30 ?

10

FIGURE 10 Here T is ''tetrahedron,'' H is "hexahedron" (or

"eube"), ete.

its original position within the cube. You should see that these
rotations are simply the even permutations of the four strips of
the diagonal cube (and that all the odd permutations move the
tetrahedron from its original position to the same new position).
Thus you have a dramatic confirmation that the symmetry group
of T is A4 , the altemating subgroup of 54, the symmetry group
of H.

(2) Figures 10 and 11, which are about the Platonic solids (see Fig
ure 4), were copied by JP from Pölya's personal notebook. Fig
ure 11 is even in Pölya's own handwriting. See if you can fill in
the blanks in Figure 10; and try to work out what Pölya means in
Figure 11.
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FIGURE 11 As before, T is "tetrahedron," His "hexahedron" (or "cube"), etc,
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Parties

CHAPTER

9.1 INTRODUCTION: CLIQUES AND ANTICLIQUES

We've probably all been to a party of some sort. And it always happens at a
party that there are some people we know and some people we don't know.
What's more, some of the people we know, know some of the people we
know. Sometimes there's a group that goes around together. They all know
each other. Such a group is often called a clique.

On the other hand, among the people we don't know there are people
who don 't know the people we don 't know. In fact, there could be a group of
people none of whom knows any of the others. This is a sort of anticlique.
Of course, anticliques don't last for long. As soon as someone introduces
himself or herself the anticlique gets broken up.

It may not have occurred to you, but there's a good chance that at any
party you've been to there's been a clique or an anticlique of some size.
What's the likelihood of this happening? Well, naturally, it all depends on
the sizes of the cliques or anticliques. Perhaps once enough people get to
the party you're bound to get any size clique or anticlique that you want.

Let's think about that for aminute. It might help if we call a clique that
has r members who mutually know each other an r-clique. Similarly, an
anticlique involving s people who all don't know each other we'll call an
s-anticlique.

271



9 Parties272 --"---'::....::::.=--:=..::.c::.- _

So how big does your party have to be in order for there to be an r
clique? You only need r people, provided they all know each other, so
that's not much of a question. So how big does the party have to be to be
sure that you absolutely have to have an r-clique? No, that's not a very
good question either. If you keep inviting to the party people who don't
know each other, you'll never get a clique at all. So let's try to rephrase the
question. How big must the party be so that there is either an r-clique or
an s-anticlique? That's not such a trivial question, is it?

• • • BREAK 1

How big does your party have to be to guarantee a 3-clique or a
3-anticlique?

Clearly, if you think about it, it makes sense to assume that rand s are at
least 2. So what sort of a party has either a 2-clique or a 2-anticlique? Isn't
2 people enough to guarantee that? If you turn up at dinner with someone
you know, there's a 2-clique. On the other hand, if it's a blind date, then
there's a 2-anticlique.

Maybe this problem isn't going anywhere. What if we insist on either
a 3-clique or a 2-anticlique? Will that produce a more interesting party?
If we are going to have the ghost of a chance of getting a 3-clique there
have to be at least three people at the party. So let's look at a party of
three. If they all know each other, we have a 3-clique and we're finished.
If there's not a 3-clique, then it's because at least two people don't know
each other; and they then form a 2-anticlique. So then a three-person party
forces either a 3-clique or a 2-anticlique.

• •• BREAK2

How big is the party that forces either an r-clique or a 2-anticlique?

It may be a good idea to put this into graph-theoreticallanguage. (Recall
what we did in Chapter 5.) Suppose that we represent the people at the
party by vertices. We'll join two vertices if the people they represent know
each other. We won't join two vertices if the corresponding people don't
know each other. An r-clique in this graph is a complete subgraph Kr>
while an s-anticlique is a K" the complement of K" that is, just s vertices.
What we're trying to find is a number n such that every graph (party) on
n vertices either has Kr as a subgraph or a set of S vertices with no edge
joining them.



9.1 Introduction: Cliques and Anticliques

Actually we talked about coloring edges in Chapter 5. In terms of edge
coloring what we're saying is this. Take Ki; Color its edges either red or
blue, but don't worry if two red edges or two blue edges meet. How big
does n have to be to ensure that K; contains either a subgraph Kr with all
red edges or a subgraph K, with all blue edges? You can think of the red
edges as joining pairs that know each other and the blue edges as joining
pairs who don't know each other.

We know from Break 2 that if r = 3 and s = 2, then n = 3. A little bit
of work will show that if s = 2 and r is any number (remember r ~ 2),
then n = r .

• •• BREAK3

What is the smallest value of n if r = 2 and s ~ 2?

Perhaps we can get somewhere by looking at r = s = 3. After all, if
r = 2 or s = 2, then it's easy to find n. So now we're looking for the
smallest value of n such that, however we color the edges of K; red and
blue, we always have to have either a red-edged K 3 or a blue-edged K 3 •

That is, however we color the edges, we have to have a monochromatic
triangle.

The only way we have of tackling these problems at the moment is to
try some numbers and see what works. It's no good starting at n = 3,
though. If we don't have a red K3, we don't necessarily have a blue K3•

For instance, we might have two red edges and one blue one.
What about n = 4? Figure 1 shows a coloring that doesn't produce a

monochromatic triangle. Maybe that's not the only way either.
So let's try n = 5. Ah, that looks a little more promising. We've tried

several edge colorings and they all give either a red or blue triangle. But
how do we know we've covered all cases?

red edges

blue edges

FIGURE 1 No monochromatic triangle.
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• • • BREAK4

Does n = 5 for r
counterexample?

s 3? Can you prove it? Can you find a

Of course, the degree of every vertex in K 5 is four. So let's suppose
that one of the vertices gets three red edges. (It looks as if, because of the
symmetry between red and blue, we can start the argument with red edges
without losing any generality. We'Il come back to this in a moment.) So
assume that VI is joined to V2, V3, and V4 by red edges. If we have a red
edge between any two of V2, V3, V4, then we'Il have a red triangle. If all of
the edges between V2, V3, and V4 are blue, then we'Il have a blue triangle.
So if any vertex has three red edges (or three blue edges), then we get a
monochromatic triangle.

Unfortunately we are not done . It may be the case that every vertex has
precisely two red edges. In this situation, we can break our K 5 up into
two cycles e5, one red and one blue (for the definition of a cycle , see
Section 5.3). So there would be no red K 3 and no blue K 3 , and so n has to
be bigger than 5.

WeIl, try n = 6. Now the argument that we used when n = 5 may weIl
be useful again. In K6, every vertex has degree 5. This means that, at any
vertex, there must be at least three red edges or at least three blue edges.
(This is a very simple application of the pigeonhole principle.)! But now
we are in business ! Suppose VI is joined to V2 , V3 , V4 with red edges. Then
just one red edge between V2 , V3, and V4 will give our red K 3• On the other
hand , if there are no red edges there, they must all be blue. In that case we
are forced into a blue K 3 • So the smallest n when r = s = 3 is given by
n = 6.

• •• BREAKS

Does n = 6 force only one monochromatic triangle?

In this last argument it' s easy to see that we can choose red edges at V I

without any realloss of generality. If we had chosen blue edges, we would
simply have had to interchange red and blue throughout the argument.

1If you want to read more about the pigeonhole principle see [I , p. 251].
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• • • BREAK6

(1) So what is the smallest value of n if r = 3 and s = 4?
(2) How about when r = s = 4?

9.2 RAMSEY AND ERDÖS

The number n that we have been talking about is generally known as a
Ramsey number. We define the Ramsey number, N (r, s), to be the smallest
value of n such that if the edges of K; are arbitrarily colored red and blue,
then K; contains either a red Kr or a blue K; So far, then, we've managed
to determine a few of the smaller Ramsey numbers. That is, we know that

N(2, s) = N(s, 2) = sand N(3, 3) = 6.

It should also be clear by symmetry that

N(r, s) = N(s, r).

What perhaps is not so clear is that N (r, s) exists at all. We'll move towards
that as we go through this chapter.

But who was Ramsey, and why was he interested in his numbers?
EP. Ramsey was a logician who probably wasn't all that concerned about
coloring the edges of graphs. It just so happened that some logical questions
he was interested in could be interpreted combinatorially as we have done
here. Unfortunately, he died at the young age of 26, of jaundice.

Ramsey was able to show in 1930 (see [8]) that his numbers actually do
exist no matter what values rand s have. Indeed, we'll see later that the
idea can be extended and the extended numbers will still exist.

In 1935, Ramsey numbers appeared again in quite a different setting in
a paper by Paul Erdös and George Szekeres [3J. Szekeres was later to find
one of the first few snarks (before Martin Gardner made them popular; see
Section 5.9). He also went on to do a great deal of important work in his
adopted Australia.

Let's digress now to talk about Erdös. Erdös, like Szekeres, was born
in Hungary in 1913. (For more details on Erdös' life, see [6].) He went to
university in Budapest, where he set out on a Ph.D. while still completing
his undergraduate degree. From there he went on to make contributions to
number theory and geometry, while virtually inventing combinatorial set
theory by himself. His mathematical contribution of 1500 or more papers,
results on various aspects of mathematics published in journals devoted to
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specialist mathematical areas, far exceeds that of any other mathematician
alive or dead. Most of us are happy to publish 100 papers; 150 is quite an
achievement, but 1500 is unparalleled.

Many of these publications had joint authorships with other mathe
maticians.i and this has precipitated the idea of a mathematician's Erdös
number. You have an Erdös number of one if you have written a paper with
Erdfis. Anyone who hasn't written a paper with Erdös but who has written
a paper with someone with an Erdös number of one, has an Erdös number
of two; and so on. Another unique fact of Erdös's life was his wandering.
He rarely stayed in any place for more than a month or so. In fact, his
peripatetic nature may have contributed to mathematics more than his
actual publications. As he moved from university to university, he carried
unsolved problems with hirn and encouraged all whom he met to tackle
them with hirn, sometimes offering monetary rewards for their solution. In
this way he kept the mathematical cauldron boiling and influenced many
young mathematicians to fly higher than they might otherwise have flown.

On his joumeys around the world he often stayed with local hosts. Now,
Erdös appeared to require little sleep, though it has to be said he took
catnaps when the opportunity arose during the day. It was not unusual,
though, for hirn to be up and thinking and working at two o'clock in the
moming. This could be a difficulty for a host, who might suddenly awake
in the middle of the night to find Erdös announcing that he had an idea that
might solve the problem they had been working on a few hours ago.

Erdös' unworldly, naive, even childish manner could be a problem in
the middle of the night, but it also fostered an extraordinary capacity
for intellectual friendship. Many mathematicians had been helped by hirn
during the course of his life, and there were those who were financially
supported by hirn through difficult periods.

Another aspect of his naivere was the language that he created. The
connections are obvious when you think of "Sam" used for the United
States and "Joe" for the USSR. But perhaps "slaves" for men and "bosses"
for women are not as P.c. as they might have been, while "epsilons" for
children may be a mystery to you if you haven't done any mathematical
analysis yet. That he had strong opinions outside mathematics may be
inferred from his use of the term "Supreme Fascist" for God.

Paul Erdös died in September 1996, a very well-loved and respected man
whose family consisted of a significant portion ofthe world's mathematical
research community. One of the important methods developed by Erdös

2Indeed, almost all - and almost all were actually drafted by his collaborators. This does not, however,
by any means fully explain his prolific output.
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was the probabilistic method. This proves that certain things exist by
showing that the probability of them not existing is zero. It's actually an
unusual approach to proving things.

To give some idea of how the method works suppose that 12% of a
sphere is painted red and 88% is painted blue. Is it possible to find 8 blue
points on the sphere that are the vertices of a cube? Now, the probability
of any vertex of a cube being red is 0.12. The probability that, of any two
vertices of a cube, at least one is red, is approximately 0.12 +0.12 = 0.24.
Continuing on like that, we see that the probability that, of all eight vertices
of a cube, at least one is red, is 8 x 0.12 = 0.96. But 0.96 is less than one.
So there must be a set of vertices of a cube that consists totally of blue
points.

Naturally, the argument that N (r, s) exists is more complex than this,
but it follows the same line. The probability of the existence of various
entities is established. Then we show that together the probability of the
collection of all these entities is less than one. Hence the complement of
the collection has to exist. We'll come back to this in Section 4.

9.3 FURTHER PROGRESS

So far we have discovered only that

N(2, s) = sand N(3, 3) = 6

Can we find other values of N(r, s)? What about NO, 4), for instance?
How big does n have to be so that, when we arbitrarily color the edges
of K; red or blue, we either have a red triangle or a blue K 4 .

Suppose N(3, 4) = m. Now choose an arbitrary vertex v in Km and
color r edges adjacent to v red, and the remaining b edges adjacent to v
blue. We show this situation in Figure 2. Since deg v = r +band v belongs
to Km, we have r + b = m - 1. So m = r + b + 1.

Assume r ::: 2, b ::: 3. Now the r red edges coming out of v are adjacent
to a set of vertices. Let these vertices generate a subgraph R. If we could
guarantee a red edge in R or even a blue K4 , then we would have our red
triangle or blue K4 • The blue K4 is obvious. The red triangle is made up
of two red edges coming from v and the one red edge in R. It's clear that,
if r ::: N(2, 4), we are sure to have either the red edge or the blue K 4 we
need. Not to be sure is equivalent to r :::: N(2, 4) - 1.

Let's park that for a moment and let's look at the blue side of Figure 2.
We define B in a similar way to that in which we defined R above. To
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v

FIGURE2

get a red triangle on the blue side would mean having a red triangle
in B, whose vertices are adjacent to the blue edges coming from v. To
get a blue K4 in the graph, we'd only need a blue triangle in B. That
triangle along with v and three edges coming out of v would give us
the 4-clique we're after. To be sure that we have a red or blue triangle
in B, it would be enough to require that b :::: N(3, 3). Not to be sure
is equivalent to b .:s N (3 , 3) - 1. The question now is, how can we
arrange things so that either r :::: N(2,4) or b :::: N(3, 3)? This fails if
r ::::: N(2, 4) -1 andb ::::: N(3, 3) -1. Butm = r+b+ 1, so we musthave
m > N(2 , 4) - 1 + N(3, 3) - 1 + 1 = N(2 , 4) + N(3, 3) - 1 to use our
argument. This shows that N(3, 4) ::::: N(2, 4) + N(3, 3) = 4 + 6 = 10.
But is N(3, 4) = 10,9,8,7, 6?

• • • BREAK7

Is it possible that N(3, 4) < 9?

What to da? When we were finding N(3 , 3), we worked upwards. We
found a red/blue edge coloring of K s, for instance, that had no monochro
matic triangles. Can we find a red/blue coloring of K7, Kg, or K9 that has
no red K3 and no blue K4?

To save a somewhat tedious search, look at the graph of Figure 3 (note
that the only vertices are those around the outside marked with solid
circles). This graph contains no triangles; hence there is no red K 3•
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FIGURE 3 The red edges in Kg.

What happens if we color the remaining edges of K s in blue? Will we
get a blue K4? No. Any four vertices we choose already have at least one
red edge between them. This means that N(3, 4) > 8. So

9::: N(3, 4)::: 10.

But is N(3, 4) equal to 9 or is it equal to 10?
Could N(3, 4) possibly equal 9? Suppose not. Then we could color the

edges of K 9 so that there is no red K 3 and no blue K 4 • Suppose that we can
color the edges of K 9 so that one vertex b, say, is adjacent to four edges
colored in red and those four edges are adjacent to a set of vertices of size
4 = N (2, 4) . Let this set generate the subgraph R. Now we're guaranteed
to have a red edge in R or a blue K4 • We assumed that N(3 , 4) > 9, so
every vertex in K 9 cannot have more than 3 red edges.

On the other hand, if we have six blue edges adjacent to v, these six
edges are adjacent to a set of vertices of size 6 = N (3, 3). Let this set
generate the subgraph B. And now we're guaranteed to have a red triangle
in B or a blue triangle in B. Either way we get our red K 3 or blue K 4 in K 9 •
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However, we assumed that N(3, 4) > 9, so every vertex in K9 has to have
at most 5 blue edges.

Now every vertex in K 9 has degree 8. To have at most 3 red edges, K 9

has to have at least 5 blue edges. But we know K9 has to have at most 5
blue edges. Hence there are exactly 5 blue edges incident with each vertex
of the graph K 9 •

Actually that's something of a problem. This would mean that the graph
on the blue edges would be regular of degree 5. We would have a graph on
9 vertices that is regular of degree 5. But no graph has an odd number of
vertices of odd degree (see Chapter 5). Hence we have a contradiction. So
N(3, 4) = 9.

• •• BREAKS

So now try N(3, 5) or perhaps N(4, 4).

Armed with that success you might want to charge off and tackle
N(3,5), N(3,6), or even N(3, s). But before you do, think a bit. Can
we generalize our earlier argument that N(3, 4) ::::: N(2,4) + N(3, 3)7
With a little bit of care can we show that

N(r, s) ::::: N(r - 1, s) + N(r, s - 1)7 (1)

Of course! The argument is exactly the same. Youjust have to work with r
and s rather than with 3 and 4. Apart from that the idea is exactly the same.

Now not only can therelation (1) give us upperbounds for Ntr, s), given
particular values of rand s, it can also prove the existence of N (r, s). This
existence is simply the result of double induction on rand s.

Right; so armed with the relation (1), it's clear that

N(3,5)::::: N(2,5) +N(3,4) =5+9= 14

At this stage we have the same problem that we had when we discovered
that N(3, 4) ::::: 10. How much less than 14 is N(3, 5)7 We adopt the same
approach. Can we find a redlblue coloring of K13 or K 12 or Ku or ... that
yields no red 3-clique or blue 5-clique7 If we can, then we can sandwich
N(3, 5) between this value and 14. Then with some subtle argument, we
may be able to close up the gap.

Of course, all this is getting harder and harder. It turns out that
N(3, 5) = 14. So, if you work hard, you can find a redlblue coloring
of K13 such that there is no red K 3 or blue K s.
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Working on N(3, 6) gives

N(3, 6) S N(2, 6) + N(3, 5) = 6 + 14 = 20

NowinthiscaseittumsoutthatN(3, 6) = 18. Togetthisfaryou'llneed
to show that K 17 won't play ball but K 18 will. This all requires some effort,
and the bigger the complete graph we have to work with, the greater the
effort required. However, all Ramsey numbers that have been discovered
so far have been found using the process we've talked about above. First
find some upper bound for the number. Then stalk up on that number
from below. This is generally done these days using a computer. Once
your computer is having no luck producing the appropriately colored and
sized cliques, then a more subtle argument has to be used to show that the
Ramsey number is what you hoped it would be.

In this way the following N(3, s) numbers have been determined:

N(3, 3) = 6

N(3, 6) = 18

N(3,9) = 36

N(3,4) = 9

N(3, 7) = 23

N(3, 5) = 14

N(3, 8) = 28

The only other Ramsey numbers that are known are

* 9.4 N(r,r)

N(4, 4) = 18 N(4,5) = 25

In this section we give a probabilistic argument to show that N (r, r) > n,

provided that (;)21
- G) < 1. You may find this a little more difficult than

the arguments of previous sections. The idea behind this method is to prove
the existence of an object with a desired property by looking at the suitably
defined random object. We then show that it has the required property with
positive probability. Sometimes, the object itself is not actually presented.

To illustrate this method we present a result that Paul Erdös first proved
in 1947. This result is the following theorem.

Theorem (Erdös, 1947): Suppose (;)21
- G) < 1. Then N(r, r) > n.

Proof First of all, color the edges of K; randomly in red and blue. This
is done randomly by tossing a fair coin. As we move around K; and
meet an uncolored edge, we toss the coin. If the coin comes up heads,
we color that edge red; otherwise, we color it blue.
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Take any set S of r vertices. Let A s be the event that the edges
of S form a monochromatic Kr. Now the probability that one edge is
red is ~. The probability that two edges are red is ~ x ~ = ~. The
prob ability that t edges are red is t. But Kr has G) edges. So the

prob ability that all the edges of S are colored red is 1/2(;) = 2-(;).
Clearly we get the same probability if we're to have the edges of S

form a blue Kr. Hence

(2)

But S was just one set of r vertices. We need to sum Pr(A s) over
all possible sets of size r. What is Pr(A), where A is the set of
all possible events like A s? Finding an exact formula for Pr(A) is
extremely difficult. However, we do know that

Pr(A) s L Pr (A s) ,

where the sum is taken over all possible sets S of r vertices. But
Pr(A s) takes the same value 2'-(;) for each of these sets. Moreover,
there are plainly (;) such sets S. Thus

So

Pr(A) :::: (~) 2'-(;)

Now by the hypothesis of the theorem, (;)2'-(;) < 1. Hence
Pr(A) < 1.

Now consider A, the complement of A. Since Pr(A) < 1,
Pr(A) > 0. And what is A? WeIl, A is the event that there is some
monochromatic Kr. so A is the event that there is no monochro
matic Kr. Since Pr(A) > 0, there is an element in A. This element
is a coloring of K; that has no monochromatic r-clique. We showed
that Pr(A) was strictly positive by showing that, when we randomly
colored K n , Pr(A) < 1. Since Pr(A) > 0, we got what we wanted,
namely that N(r, r) > n. However, at no stage did we actually
construct any redlblue colorings that have no red or blue r-cliques.

o



*

9.5 Even More Ramsey

Just to see how good this bound is, let r = 2. We know that
N(2, 2) = 2. But, by Erdös' Theorem, N(2,2) > n if (;)21-(;) < 1.

Now (;)21-(;) = (;). Since G) = 1, we need n < 2 to satisfy the Erdös
condition. But does (;) exist for n < 2? (See [5] or Chapter 6 for a positive
answer.) So N(2, 2) > 1; hence N(2, 2) 2: 2.

What about N(3, 3)? We know that N(3, 3) = 6. What value do we get
for n that ensures that the expression (~)21-(D is less than I?

Now

Can we solve the inequality i4n(n - l)(n - 2) < I? Consider Table 1.
Unfortunately, when n = 4 this expression equals 1. So Erdös' Theorem
onlytellsusthatN(3,3) > 3.

n= 1 2 3 4 5 6

1
-n(n - l)(n - 2) 0 0 0.25 1 2.5 5
24

Table 1

Do we do any better for N(4,4)? When is G)2 1- G) < I? This is

equivalent to asking, for what n is G) < 32? The best we can do here is
n = 6, so N(4, 4) > 6. Again this is a long way away from the 18 that
we know is the best possible. The result does, however, give us a lower
bound. The proof of the theorem also gives us a nice application of the
probabilistic method.

• •• BREAK9

Graph the function y = i4x(x - l)(x - 2) for -1 :5 x :5 3.

9.5 EVEN MORE RAMSEY

Mathematicians like to look for general patterns, so why stop with just
2 colors? What happens to K; if we arbitrarily color its edges red, blue,
and green? When can we guarantee a monochromatic triangle? When can
we guarantee cliques of any size we happen to fancy. Just like N(r, s),
N(r, s, t) exists. Coloring complete graphs in red, blue, and green, there
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is a smallest n such that K; is forced to have a red Kr or a blue K, or a
green Kr. Let's see how this game is played for small values of r, s, and t.

Is it obvious that the game is easy for r = s = t = 2? In fact, it only
starts to become interesting when r = s = t = 3, so we'll have a look at
N(3, 3, 3) and see what progress we can make.

From what we've done in Section 3, it might seem that N(3, 3) is going
to be a significant number in calculating N (3, 3, 3). Look at Figure 4, where
the vertex v is in some K; and has N(3, 3) edges colored red adjacent to it.
These red edges meet a set of N(3, 3) vertices, generating a subgraph R.
(Does this ring any beHs?) Now, if R contains a single red edge, then we
have a red triangle, and we 're finished. ütherwise, all of the edges between
vertices in R are blue or green. Since R has N (3, 3) vertices, we have to
have a blue or a green triangle. So we're done!

But are we? If we are coloring the edges of K; in red, blue, or green,
how can we be sure that we have 6 red edges at v? WeH, of course, we
don't have to rely on red coming up 6 times. Any ofthe three colors would
do. The argument would be the same regardless of the color.

In that case, how can we be sure that there are 6 edges at v of the same
color? Perhaps if deg v = 16 we'Il be horne. We're applying the pigeonhole
principle again. If we have 16 pigeons and three pigeonholes, aren't we
forced to have one pigeonhole with 6 pigeons in it? And if deg v = 16,
then v must be in K 17• So we have shown that N(3, 3, 3) :::s 17.

So what about K 16? Surprisingly, K 16 can be colored in three colors with
no monochromatic triangle in sight. Hence N(3, 3, 3) = 17.

v

red edges

FIGURE 4 IRI = N(3,3)
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But now we're on a roll. Surely the argument above (which is similar
to the one that produced N(r, s) ::::: N(r - 1, s) + N(r, s - 1)) can now
be extended to N(3, 3, 3, 3) and N(3, 3, 3, 3, 3) and so on. We need a new
notation to be able to write this easily. Let N (3, ... , 3) with k threes, be
written N(3k ) . Then, in view ofthe case k = 2, we would expect that

But why stick with threes? Surely, we can think ofthe Ramsey numbers
N (rl' rz, ... , rk). The only problem is that they are impossibly difficult
to calculate. Mathematicians are having enough trouble with k = 2. Only
fairly recently was it shown that N(4, 5) = 25, and we only have bounds
for N(5, 5) and N(4, 6). It turns out that 30 ::::: N(3, 3,4) .s 31, but we
haven't got much further than that. Indeed, N(3, 3, 3) = 17 is the best
result on Ramsey numbers with more than two colorings that we have.

To make more progress it appears that we need a new idea. Currently,
we can find upper and lower bounds for the Ramsey numbers. Then the
work is largely up to the computer to show that colorings don't exist from
the lower bound up. And this requires an enormous amount of computer
time.

There's plenty of room for new ideas here. Why don't you have a go?

9.6 BIRTHDAYS AND COINCIDENCES

You may not have noticed that 23 occurs all over the place. In basketball
it was Michael Jordan's number as weIl as being the number of people on
the soccer field when agame is in play. Twenty-three is also the number of
problems that David Hilbert (1862-1943) proposed in his famous address
in 1900. Hilbert was a very important mathematician of the period. Through
his 23 problems he hoped to signpost the important areas of mathematical
research in the twentieth century" (see [4]). And 23 is the number of letters
in "Hilton, Holton, and Pedersen," but, much more importantly, it has to
do with coincidental birthdays. What is the smallest number of people you
have to have at a party in order that it's more likely than not that two of
you have the same birthday? We will show that the answer to that question
is 23. Of course, to show this, we'll have to prove that, with 23 people, the

3The Clay Mathematics Institute (CMI), of Cambridge, Mass., has issued a corresponding list of 7
problems for the new century, and has offered $1,000,000 for the solution of any one of them (see
http://www .claymath .org),
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probability of two having the same birthday is greater than ~, while for a
party with 22 peop1e, the prob ability is 1ess than ~.

If you think about it very briefly, 23 seems awfully sma11. We suspect
that most peop1e wou1d guess at a number more like 50 or 100. It shou1d be
clear that, if the party is big enough, then there must be two peop1e present
with the same birthday. We know that, forgetting about 1eap years, there
are 365 days in a year. So a group of 366 has to have two peop1e with the
same birthday by the pigeonho1e princip1e. How can we demonstrate that
23 is the magie number?

The first thing to notiee is that the probability of event A, two peop1e
in a given group have the same birthday, and the prob ability of event B,
no two peop1e in the group have the same birthday, add up to 1. This is
obvious, so

Pr(A) + Pr(B) = 1

It turns out that Pr(B) is easier to calcu1ate than Pr(A). So we rearrange
to get

Pr(A) = 1 - Pr(B).

The problem now" is to calcu1ate Pr(B), the prob ability of event B. To
do this we first suppose that there are 365 days in a year. Then person PI
has her birthday on some given day, and, if B occurs, person Pz has her
birthday on one of the other 364 days. So the probability that PI and Pz
have different birthdays is ;~. For a two-person group, then, Pr(B) = ;~.

What about a three-person group? Suppose P3 doesn't have her birthday
on the same day as either PI or Pz. There are 363 days avai1ab1e for P3 's
birthday. So the probability of that happening is ;~;.

This means that if the group size is three,

364 363
Pr(B) = - x-.

365 365

Continuing with this argument, the probability that no two peop1e in a
group of size n have a common birthday is given by

364 363 362 365 - n + 1
Pr(B) = - x - x - x ... x .

365 365 365 365

4To avoid the ugly his/her, let's suppose we're talking about groups of wornen.
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So then we have

364 363 362 366 - n
Pr(A) = 1 - -36-5 x -36-5 x -36-5 x ... x -3-65-

If n = 23, Pr(A) ~ 1 - 0.4927 = 0.5173. If n = 22,

Pr(A) ~ 1 - 0.5243 = 0.4757

So for n = 22, Pr( A) < ~ and for n = 23, Pr(A) > ~. So parties of size 23
are the turning point. Once your party gets to this size it is more likely than
not that there are two people with a common birthday.

• •• BREAK 10

(1) What is the probability that in a group of six, there are two people
having their birthday on the same day of the week?

(2) Find some more occurrences of the number 23. Are there more
of those than you would expect?

9.7 COME TO THE DANCE

We began to look at Ramsey numbers because we wanted to know how big
a party we'd need to have to be sure that there was either an r-clique or an
s-anticlique. Well now, everyone's arrived at the party, the carpet has been
rolled up, the music's on, and it's dancing time. But wait! How can we be
sure that everyone gets to dance? That's no problem. If there are an equal
number of girls and boys, they'll all just pair up and away we go.

But what if girls decide that they'll only dance with a boy they already
know? Can we still get everyone dancing?

Is that condition likely to cause problems? It doesn't seem much of a
restriction. Oh, but what if 15 boys and 15 girls came to the party and what
if the 15 girls altogether only knew 11 of the boys. Then not all the girls
would get to dance - unless they decided that they would dance with a
boy they didn't know after all.

But is that the only problem they could run into? In the same way, let's
assume that you find 8 girls who together only know 6 boys. The other
7 girls might know 9 boys. They would be OK. But you wouldn't be able
to pair up the 8 girls with guys they knew.

So in order for there to be a chance to get the dancing going, any subset
of the girls needs to know at least the same number of boys. But does it
work the other way round? If every subset of girls knows at least the same
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number of boys, will we be able to pair all of the girls off with boys they
know?

Apart from being a problem that can be solved by looking at graphs,
this problem has another connection with Ramsey numbers. The result
we are about to produce was proved in 1936 when Erdös and Szekeres
were having their success. But while Erdös and Szekeres were working in
Hungary, the person who was worrying about the dancing problem was in
England, at Cambridge University to be precise. And his name was Philip
Hall.

The first question that we want to tackle is how to translate boys and girls
into graphs and what kind of a graph do they make? This isn't too difficult.
Here we're worried about boys and girls dancing and girls knowing boys.
So we'll let the girls form a subset G of the vertices, and we'll let the
boys correspond to the remaining vertices B. In this graph with vertex set
G U B, we'll only join avertex representing a particular girl, g, to avertex
representing a particular boy, b, if the girl g knows the boy b.

Let's have a look at the graph of Figure 5. This graph represents the
following situation:

Girls Boys they know

gl »; b2, bs

g2 s.. s.
g3 b«, bs, bs

g4 b2, i-: s; b6

gs »; s; b6

Right from the start it's clear that one boy is about to sit this one out.
But can we get a dance for all the girls, always assuming that they dance

B

G

FIGURE5
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with boys they know? Let's try to do some pairing. So we see that we can
pair gl and bJ, gz and bz. g3 and bs, g4 and b., and gs and be-

As far as the graph is concemed what's going on? WeIl, first of aIl, what
sort of graph have we got? Graphs in which the vertex set can be divided
into two sets X and Y so that the only edges in the graph are between
vertices in X and vertices in Y are caIledbipartite graphs (see Section 5.7).
The sets X and Y are caIled the parts of the vertex set. The graph in Figure 5
is bipartite, and the parts are Band G. All girl-boy graphs of the type we
are considering are bipartite. We only have edges between G and B.

So how can we describe the pairing? In the bipartite graphs, we are
interested in sets of distinct edges which have no end vertices in common.
They are called sets of independent edges. We don't want a boy or a girl
to be dancing with two partners simultaneously.

Such a set of independent edges is usually called a matching. But we
really want a special type of matching. We want a matehing such that every
girl belongs to one end of an edge in the matching. We say that such a
matehing saturates the set G.

Let's be more formal with our statement that "every subset of girls
knows at least the same number of boys." Let H be a graph and let u be
avertex of H. Write N(u) for the set of vertices of H adjacent to u. We
call N(u) the neighborhood 0/ the vertex u. Extending our notation to
subsets S ofthe set ofvertices of H, let" N(S) = UUES N(u). Then N(S)
is called the neighborhood 0/ the set S.

Now let IN(S)I denote the size of the neighborhood of S. Für ex
ample, in Figure 5, let S = {gi, gz, g4}. Since N(gd = {bI. bz, bs},
N(gz) = {bI. bz}, and N(g4) = {bz, b3, »; b6 }, then

and IN(S)I = 5.
If S is a set of girls, then surely the set of boys they know is precisely

N (S). So if the girls know at least as many boys, 1N (S) I ::: 1S I. What we
are beginning to conjecture is the following:

Conjecture There is a matehing that saturates the set ofgirls in a bipar
tite graph if and only if IN(S)I ::: ISI for every subset Softhe set G
ofgirls.

5The symbol U means the union (ofthe sets N(u)).
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••• BREAK 11

( I) Check the conjecture for the following party:

Girls Boys they know

gl b], b2 , b3

g2 b" s; b4, bs

g3 b4, bs

(2) Check the conjecture for the following party:

Girls Boys they know

g, b, b- , bs, bs

g2 b" b- , b3

g3 bs, bs

g4 »; bs

gs bs, bs

9.8 PHILIP HALL

There is a lovely proof of the correctness of the conjecture, due to the
eminent Cambridge group theorist Philip Hall . We are now going to give
you that proof in a particular but not special case.

Often one part of the proof of an "if and only if' statement is quite
straightforward. Such is the case here . Clearly, if there is a matehing that
saturates the set of girls, then any subset of the girls, no matter of what
size, must know that many boys. In fact , it's possible that those girls know
more boys. So, ISI::: IN(S) I for every subset S of girls.

So it's the other way round that's a problem. How can we show that, if
IN(S)I 2: ISI for every subset S of G, then we can arrange the appropriate
dancing partners? Of course, when you think about it, this is a very unad
venturous group of girls who are not going to meet any nice new fellows
ifthey stick to their guns and won 't dance with any boys they don 't know.
But that's irrelevant right now.

If we can't see how to settle this half of the conjecture directly, maybe
we can sneak up on it. WeIl, perhaps we can do it ifthere is only one girl?
Oh yes, that's not too bad. If S = {g}, then ISI = land IN(S)I 2: 1. So
there is at least one boy that young g knows, and they can go off and dance.
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With that little success we can try ISI = 2. Let S = {gi, gz}, say. Now
IN(S)I ::: 2. Surely, then, we can pairup gi and gz? But what if IN(S)I ::: 2
because gi knows two boys? Maybe gz doesn't know any? No, that can't
be. After aB, l{gz}1 ::: IN({gz})l, so gz has to know at least one chap.

It's beginning to look as ifwe might be able to get through this. However,
by the time we get to 15 girls, there might be a large number of subcases
to check, subcases like that of gz above, and worse!

Let's take a big jump. Let's try to do it for a set G of 15 girls, using the
assumptions of the conjecture, and let us assurne that we can do it for all
sets of 14 girls or fewer.

Now it's just possible that not only is IN(S)I::: ISI but that
IN(S)I ::: ISI + 1 for every subset S of G here. The reason we've
added that 1 above is to make it easy to do this next step. That step is to
pair up some girl, any girl, with a boy b, that she's happy to dance with.
As the result of this we may reduce N(S) for any S we choose now, but
we will only reduce N(S) by l-the boy b. So among the 14 girls still
looking for a dancing partner, we'Il still have IN(S)I ::: ISI. A little while
ago we assumed that this would give us dancing partners for 14 of the
girls. So then we pair up the remaining girls and give a sigh of relief.

That is, until we realize that up above we added a very strong condition,
IN(S)I ::: ISI + 1, for all subsets S of G. Unfortunately, it might be the
case that, for some number n < 15, there is a subset S' of G such that
IN(S')I = IS'I = n. What to do then? Suppose, for example, we have
S' such that IN(S')I = IS'I = 6. WeB, the first thing to note is that the
criticalIN(T)1 ::: ITI condition will hold for all subsets T of our S'. So we
can pair up the members of S' with 6 boys of their choice. Now remove
S' and their chosen partners from the graph and look at what is left. So
we still have 9 girls not paired. To make things quite clear let us use the
notation N(S) for the neighborhood of S in the deletedgraph. Naturally, if
the IN (S) I ::: ISI condition holds for all S in the graph we have left, then
they can go off and dance. But does that condition hold?

Suppose it doesn't. Suppose somewhere, after pairing up the 6 girls of S'
and removing them from the graph, there is a subset V of the 9 remaining
girls, where IN(V)I < lVI. What then? Here's an idea. What does that teB
us about S' and V? If we put them together,

IN(S' U V)I ::: IN(S')I + IN(U)I < IS'I + lVI = IS' U VI

since S' and V have no girls in common. So here we have a set V = S' U V
forwhich IN(V)I < IVI. Butthatcan'tbe! It's against our original assump
tion. Hence every subset V of the 9 girls has the property 1N(U) I ::: IU I.
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Since 9 < 14, we know that we can pair up the 9 girls with the remaining
boys.

We paired up the 9 girls, we'd already paired up the 6 girls, so all 15
have a partner! When you look at all that more closely you might see that
15 was really a red herring. It could just have easily been 150, 1500, or
15 million. The principle would have been the same. Doesn't that sound
like a proof by induction?

Notice that what we have done above is to adopt an expository procedure
that we recommend in [5] (see p. 327). We have applied the principle of
considering a Particular but not Special Case.

• •• BREAK 12

Prove the difficult part of the dancing conjecture.

And that gives you Hall's Theorem.

Hall's Theorem Suppose the girls at a party know some boys and will
only dance with boys they know. Then the girls can be paired up to
dance with boys of their choice if and only if, for any subset of the
girls, the number of boys they know is at least as big as the number
ofgirls in the subset.

9.9 BACK TO GRAPHS

In terms of graphs, Hall's Theorem can be restated as folIows.

Hall's Theorem Let Q be abipartite graph with bipartition VQ = XUY,
where VQ is the set of vertices of Q. Then Q contains a matehing
that saturates X if and only if IN(S)I ::: 151 for every subset 5 ofX.

If we go back to Figure 5 and look at all possible 32 subsets of
{gI, g2, g3, g4, gs}, we can check the IN(5)1 ::: 151 condition. It might
take a bit oftime, but we can do it. On the other hand, we can see that glbl,
g2b2, g3b3, gsb«, and gsb4 gives us a saturated mapping.

This rather suggests that the IN (5) I ::: 151 condition is pretty hard to
apply in practice. As it turns out, however, it does have its uses. Let's look
at one of these in particular. Suppose Q is an r-regular bipartite graph. That
is, suppose every girl is prepared to dance with any one of exactly r boys
and every boy is on r ofthe girls' dance lists. The graph K 3,3 is a 3-regular
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FIGURE6

complete bipartite graph, K m•m is an rn-regular complete bipartite graph ,
and C2n is a 2-regular bipartite graph .

Fine, so Q is r-regular and bipartite. It turns out that not only can every
girl get her dance with a boy of her choice, but every boy also gets to
dance . That's some sort of bonus , at least for the host and hostess, who
don 't want the odd dance-less boy attacking the supper before eating time.
This kind of matching, where every vertex gets saturated, is called aperfeet
matching. In Figure 6 we show a perfect matehing in Ks.s. Indeed, gib],
g2b2, g3b3, gsb«, gsbs is one of many perfect matchings in Ks,s,

The first thing to notice about r-regular graphs is that in the bipartition
X U Y ofthe vertices , lXI = IYI.

• •• BREAK 13

Can you show that lXI = IYI in an r-regular bipartite graph with
parts X and Y?

So can we show that Hall's crucial condition, namely that IN (S)I :::: ISI
for every subset S of X, holds in an r-regular bipartite graph 8 ? Take some
subset S ~ X. Let E be the set of edges coming out of S. (See Figure 7.)
Because every vertex of Q has degree r , IEI = r ISI.On the other hand, let
E' be the set of edges incident to N (S). We now have two things to report.
The first ofthese is that IE'I = rIN (S)I. That follows in the same way that
we got lEI = rlSI. And the second thing is that E ~ E', as we can see
from Figure 7. So lEI ~ jE'I .
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y

x

FIGURE7

So putting all that together we get

IN(S)I = ~IE'I 2: ~IEI = ISI
r r

This holds for every subset of X. Hence, by Hall's Theorem, we have a
perfect matehing in B.

• •• BREAK 14

Show that this goes even further. An r-regular bipartite graph not only
has a perfect matching, but it has r perfect matchings. What's more,
these r perfect matchings are all disjoint, but together they include
all the edges of the graph.

At this point you might be wondering, why bother? And you might be
wondering this for two reasons. First, if the girls can't sort out their own
dancing partners, then perhaps they don't deserve to be saved by a 1935
theorem. Second, why should we worry about matehing things up anyway?

There's not much point in fussing over the first reason, but, as to our
second question, it turns out that matehing is important in some industrial
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applications. For instance, suppose you have a work force and a collection
of jobs to be done. Maybe not all of the workforce can do all of the jobs.
So you might want to check out the matehing business either to make sure
that all your workforce is employed at ajob or even that every job is being
done by someone. This is a matehing problem of the type that Philip Hall
was good at.

Actually you can take this even further if you know how long each
person takes to do eachjob. In that case you not only want a matehing but a
most efficient matching. But we'llleave you to chase that up for yourself.

9.10 EPILOGUE

In this chapter we've climbed some of the high points of graph theory. We
stopped as the mists started to swirl in. As far as Ramsey Theory goes,
it's clear that we've still got a long way to go. All of the last Ramsey
numbers to be found required a considerable amount of computer time
to produce. We could get more numbers if we had faster computers. For
mathematicians, as we said in Chapter 5, that's a sorry state of affairs.
We'd very much like to find some "nice" approach. It would be good ifwe
could find some better approximations so that we would not need so much
number-crunching.

In the meantime, in the traditional way of mathematicians when they
hit a virtual brick wall, extensions of the problem have been made. Instead
of asking for monochromatic cliques they have tried more modest goals.
If we color the edges of K; arbitrarily in red and blue, how big must n be
in order to get a monochromatic cycle? How big must n be to have a red
triangle and a blue K 1,3? About now you should be able to see that you can
invent your own problems. You might even be able to solve some of them.

So Ramsey Theory is looking for some new ideas. Maybe they'll come
through looking at things other than monochromatic cliques. In the mean
time, the calculation of Ramsey numbers is in a similar state to that of
the attempted proof of the Four Color Conjecture in the 1960s. Gradu
ally, maps with an increasing number of countries were being shown to
be 4-colorable. Now, year by year, someone manages to find yet another
Ramsey number. But progress is slow and hard won.

Our other problem of the chapter, looking for matchings, preferably
perfect matchings, in graphs is also receiving attention. There are some
big results in the field such as Hall's Theorem, a theorem of Tutte, more
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recently the Edmonds-Gallai Theorem (see [7]), and so on. Where are
people heading in this area of mathematics?

A number of things are on the go. For instance, for a long time people
have been thinking about matchings with cycles. These are called 2-factors.
They are subgraphs of degree 2 (hence cycles) that include all the vertices of
the graph under consideration. (When you think about it, perfect matchings
are subgraphs of degree 1 that include all the vertices of the graph.) Once
you've started to think about matchings that way, you soon come up with
k-factors - subgraphs of degree k that cover the graph. As long aga as
1898, Petersen (his graph has a central place in Section 5.10) came up with
a fundamental result in this area.

Theorem (Petersen) Let G be a connected graph that is regular of
degree 3. Suppose G has at most two bridges. Then G has a 2-factor.

Here a bridge is an edge whose removal disconnects the graph. Note that,
because the graphs of the theorem are regular of degree 3, the existence of
a 2-factor is equivalent to the existence of a perfect matching. Hence this
theorem also explains why the graph of Figure 8 doesn't have a perfect
matching: it has three bridges, 12, 13, 14.

There are many other areas of matehing theory, and areas related to
matehing theory, that we haven't been able to mention here. An interesting
and valuable introduction to the subject can be found in the preface of [7].
If you become interested in this topic you should, of course, read further
than just the preface.

FIGURE8
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• • • BREAK 15

(1) Find N (2, 2, 2), N (2, 2, 3), and N(2, 3, 3) .
(2) Prove that N (m , n ) ::: (m;:~2), m , n :::: 2. (Hint: See item (1) of

Section 3.)
(3) Let G be a graph that is regular of degree 4 and has an even

number of vertices. Let G - {v} be the graph obtained from G
by deleting the vertex v and all edges incident with it. Show that,
for any v, G - {v} contains at most one component with an odd
number of vertices. Must such a graph have a perfect matching?
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Selected Answers to
Breaks

NOTE: Where the symbol [YI appears before an answer it indicates that
answers may vary.

CHAPTERI

1. The answers are ~; ~; yes. We are dealing here with infinite sets, so
the probability of an integer belonging to some subset depends on the
density of that subset and not merely on its cardinality. After all, what
is the probability that an integer chosen at random is divisible by I?
But there are as many even integers as integers.

3.[YI(l) A 5 5 5 5 I I

B 4 4 4 4 4 4

C 4 4 4 4 3 3

D 6 6 2 2 2 2

[YI(2) A is best in our example. Just calculate the expectations of A
and B, the only two serious contenders.

299
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lY](3) A 5 5 5 5 1 1

B 5 5 5 4 1 1

C 4 4 4 4 4 4

D 4 4 4 4 3 3

E 6 6 2 2 2 2

5. (1) The "effective monkey count" is now L:7=1 nj instead of m. The
problem is the same.

(2) Here d plays the role of s~l, s = l~d' S - 1 = l~d" Thus Vo = '!J;,
d' + dm d' ( + dm)Vi = VO, Ui I-d = Uo I-d'

. dm. . di - l
Ui = d'uo + --Cd' - 1) = d'tu, - -- dm.

I-d d-l

CHAPTER2

1. Let f be the number of 4{t stamps and t the number of 10{t stamps.
Then

4f + 20f + lOt = 200.

So
24f + lOt = 200,

24f = 10(20 - t),

12f = 5(20 - t).

Since 5 is a prime that divides the RHS, it must divide the LHS.
Since 5 does not divide 12, it must divide f. Hence f = 5]. Then

12J = 20 - t.

The only possible value of J is 1. So J = 1, f = 5, and t = 8. This
means that Dennis bought five 4{t stamps, fifty 2{t stamps, and eight
10{t stamps.

3. The most likely solution is x = 5, y = 3. (See Section 8.)

5. (u2 - V2)2 + (2UV)2 = u4
_ 2U2V2+ v4 + 4U 2V2

= u4 + 2U 2
V

2 + v4

= (u2+ V2)2

SO (u2 - v2, 2uv, u2+ v2) is indeed a Pythagorean triple,
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7. For any number n, n == 0, 1, 2, or 3 (mod 4), so n2 == 0, 1, 4, or
9 (mod 4). But this means that n == 0, 1,0, or 1 (mod 4).

9. (1) Let p , g, and 5 be the number of pigs, goats, and sheep, respectively.
Then

p + g +5 = 100

21p + 8g + 35 = 600

Eliminating 5 gives l8p + 5g = 300. Since 5 and 300 have a
factor of 5 and 18 doesn 't , 5 is a factor of p. Let p = 5a. Then

l8a + g = 60

Similarly, 6 divides g. Let g = 6b. Then

3a + b = 10

But p has to be even, so a is even. lf a = 4, b is negative. So a = 2,
b = 4. Hence p = 10, g = 24, and 5 = 66.

(2) Work modulo 5 here (see table below).

m (mod 5) 0 1 2 3 4

m2 (mod 5) 0 1 4 4 1

m4 (mod 5) 0 1 1 1 1

Hence the only fourth powers modulo 5 are 0, 1.
Now, 251 == 1 (mod 5). Hence x 4 + 251 == 1 or 2 (mod 5). On

the other hand, 5y4 == °(mod 5). Hence x4+ 251 can never equal
5y4 if x and y are required to be integers.

[For what va1ues of k does x 4 + 251 = ky" have solutions?]
(3) Approach this in a similar way to the Pythagorean triple argument.

Case 1. Suppose x and y are both even. Then x 2 and y2 are
both divisible by 4. C1early, 80z + 102 is not divisible by 4.

Case 2. Suppose x is even and y is odd. (A similar argument
applies for x odd and y even.) Then y2 is odd. So x 2+ y2 is
also odd. Clearly, 80z + 102 is even.

Case 3. Suppose x and y are both odd. Now, the square of
an odd number is congruent to 1 (mod 8). This is because
(2n + If = 4n (n + 1) + l ,andn(n + 1)isobviouslyeven.
Thus x 2 + y2 == 2 (mod 8). But 80z + 102 == 6 (mod 8).
Hence x 2 + y 2 = 80z + 102 has no integral solutions .
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(4) Suppose that Diophantus lived to be d years old. Then he
d

was a boy for "6 years;

d
had to shave after 12 more years;

. d
was mamed after a further "7 years;

had a son 5 years later;

his son died ~ years later; and

then he died 4 years later.
d d d d

So d = "6 + 12 + "7 + 5 +"2 + 4

75
= 84d + 9

9d d
Thus 84 = 9, so 84 = 1.

Hence d = 84. Diophantus lived to the very good age of 84 years.
abc. .

(5) If x = -, y = -, z = - 1S a solution (we can always represent the
N N N

three rational numbers as fractions with a common denominator),
then so is x = a, y = b, z = c.

(6) Let n t= I, 2, 4. If n is even, then we know by FLT that there is
no solution in positive integers. So suppose n is an odd integer,
n ~ 3, and suppose x n/2+ yn/2 = zn/2 has a solution. Let (x, y, z)
be a solution with minimum z. Now, x" + 2xn/2yn/2 + yn = z", so
2xn/2yn/2 is an integer. 'Since its square is even, it must be even,
so x n/2yn/2 is an integer. We prove that x, y are coprime. For if
not, let p be a prime such that plx, plY. Then p2lxnyn; but xnyn
is a square, so plxn/2yn/2. But then plzn, so piz. We would have
x = px«, y = py" z = pz«, and (x" Yl, Zl) would be a solution
with Zl < z. contradicting the minimality. Hence x, y are coprime,
so x", v" are coprime. Thus, since x" yn is a square, each of x", yn
is a square. But since n is odd, this means that x, y are squares, say
x = a2, y = b2. It follows that zn/2 = an + b", so zn/2 is an integer,
so zn is a square. Again it follows that z is itself a square, say z = c2,

and an + b" = c", contradicting FLT.
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CHAPTER3

1. (1) L n+1Ln = (a n+1+ ßn+l)(an + ßn)

= a 2n+ 1 + a n+ 1ß" + an ßn+l + ß2n+l

= (a 2n+1 + ß2n+l) + an ßn(a + ß)

= L2n+1 + (-lt, since ' aß = -1 and a + ß = 1.

a 2n+1 _ an ßn+l + a n+1ßn _ ß2n+l

a-ß

a 2n+1 _ ß2n+l an ßn(a - ß)
= +-----

a-ß a-ß

= F2n+1+(-lt, since aß=-1.

(2) Since the Fibonacci and Lucas sequences start the same mod 2, they
are the same mod 2. Thus we need on1y look at the one sequence
mod 2; it starts

01101·· .

Since 01 has repeated, it repeats 011 (with period 3).
Thus

F; == 0 mod 2 {=::} Ln == 0 mod 2 {=::} 31n

3. (1) (i) L 18 = 5778 == 2 mod 16, or, calculating mod 16, we have

L l2 L 13 L 14 L 15 L 16 LI? L 18

2 9 11 4 15 3 2

(ii) Calcu1ating mod 49,

L l2 L 13 L 14 L 15 L 16 LI? L 18 L 19 L 20 L 21 L 22 L 23 L 24

28 31 10 41 2 43 45 39 35 25 11 36 47

so

L 24 == -2 mod L~
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(2)
L L - (a Z(k-l)r + ßZ(k-l)r) (a Zr + ßZr)Z(k-I)r Zr-

= a Zkr + ß Zkr + a" ßZr (aZ(k-Z)r + ßZ(k-Z)r)

= L Zkr + LZ(k-Z)r, since aß = -1.

5. Let Fl(a) =q, Fl(b) =r, lcm(q,r) =l.
Then alFqlFe, bIFrlFe, so lcm(a, b)IFe.
Now suppose Fl(1cm(a, b» = m. Then rnlz.
On the other hand, allcm(a, b), so qlm. Similarly, rlm, so llm.
Thus f = m.

7. (1) We claim that 5Fn = L n+ 1 + Ln-I.

Set n = 1. Then 5 = L z + Lo( = 3 + 2).
Set n = 2. Then 5 = L 3 + LI ( = 4 + 1).

(2) F_I = 1, L_ I = -1.
Set n = O. Then Fo = 0 = -Fo; and Lo = 2 = Li;
Set n = 1. Then F_I = 1 = FI ; and L_ I = -1 = -LI.

[YI(3) As an example, let us look at the particular case

If we know that, for some n,

and

then, adding

and, subtracting,

Thus we may proceed forwards or backwards indefinitely, to
establish the identity for any value of n.

This argument works for any collection of sequences {un } satisfy
ing a (second order) linearrecurrence relation Un+Z = qUn+1 + pu;

CHAPTER4

1. A {b~a }-gon is just a {~}-gon described in the opposite sense. Since we

cannot have a = ~' because a, b are coprime, we must have a < ~ or

a > ~. But a > ~ if and only if b - a < ~.
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3. You can use the FAT algorithm; or you can just fold on any of the n
crease lines systernatically. (See Figure 8 for the case n = 2; 8(d) is, of
course, the FAT pentagon.)

S. (l) The tape has (at the top or bottom) fold lines making angles

n a, 2rra, 2nrra,
b ' -b-"" , -b-

so long as these angle s are acute, i.e., 2
n;ai < i or 2n+1a; < b. The

biggest angle will be followed by an angle of the same size.
In item (9) we have every odd number < kx 31 along the top,

so we get folding instructions from the complete symbol for every
{ ~}-gon with a < k x 31. But this includes all star { ~} -gons (see
answer to BREAK 1). There is nothing special in this argument
about 31- any odd number would work, but, of course if b is not
prime one must be careful to take a prime to b.

91 3 11 5 43 9 4 1 25 33 29 31 15 19
(2)

2 33 4 1 4 1 1 1 1 1 2

(Only odd numbers prime to 91 appear in the top row.)
[Yl (3) Answers will vary, of course.

33 9 3 15 11 3 1 5
(4) , the bottom row is as in . Thus

3 1 1 3 1 1

33 11 33 11 33 11
- 3 '

- - - 5 '9 3 1 ' 15

the reduction factor 3 being the same in all cases.

7 1 3 91 13 39
(5) , so we expect (and get !)

1 2 1 2

7. (1) It tells us that the quasi-order of 2 mod 91 is 12 and that, in fact,

212 == 1 mod 91

(2)
23 11 3 5 9 7

, so 211 == 1 mod 23; hence 2" - 1,
2 2 1 1 4

which is obviously bigger than 23, is not a prime, destroying
Mersenne 's hope. (On the other hand, the formula 2P - 1 will
produce many primes.)
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64 1 1 5 159 241 25 77 141 125 129
(3) , so

7 2 1 4 3 2 2 2 9

232 == -1 mod 641

hence 225 + 1, whieh is obviously bigger than 641, is not prime.

13 6 5 2

9. (1) I 1 1

1 1 1 4

17 3 4 6 8 1 7 2

(2) 1 1 1 2 1 1 1

0 1 0 0 0 1 1 5

CHAPTER5

I.[YJ(1) You are on your own here .
(2) You should find that you never need more than four colors.

3.[YJ(1) To show that the graph of Figure 1(b) is isomorphie to the graph
of Figure 1(a), put a on top of 3, c on top of 4, b on top of 1, and
d on top of2.

To show that the graph of Figure 1(c) is isomorphie to the graph
of Figure 1(a) put v on top of 3, x on top of 4, u on top of 1, and
w on top of2.

(2) Under the conditions given, the required graphs are:
one vertex • one graph

two vertices

three vertices

• •
•

• •
•

two graphs

L four graph s

(3) One obvious conje cture is that the number of graphs doubles as
you add one more vertex. Hence the number ofgraph s on n vertices
is 2n

-
l

. Unfortunately, this is not true. We show the eleven graphs
on four vertiees below. It turns out that there is a complicated
formula for the number of graphs on n vertices that uses Pölya
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enumeration techniques (see Section 4 of Chapter 8). This is
somewhat difficult to use in practice.

• •no edges
• •

one edge • •

-----
two edges ----- L-----
three edges C ~ ~
four edges D ~
five edges r-:
six edges rgJ

(The symmetry of this list should give you cause to pause.)
5. (1) Look at the degrees of the vertices. Look at the cyc1es.

(2) K :F L. The graph L has two 3-cyc1es, whereas K has no 3-cyc1es.
7. Every vertex in K; has degree n - 1. Hence the number of edges in

K; is n(n;1). This comes about because there are n vertices (hence
n(n - 1)), but in this count we have counted every edge twice (hence
~n(n - 1)).

This result can be generalized. For any graph G,

L degv = 2E
VEV(G)

where E is the number of edges of the graph G. This comes about in
the same way. If we add all the degrees of G, we are adding all the
edges, but each is counted twice. SO LVEV(G) deg v = 2E.

9. Theorem Let G be a connected multigraph. Then there exists a
route covering all 01the edges and starting at u and ending at v
ifand only if the degrees 01u and v are odd and all other vertices
have even degree.

Proof Suppose there is such a route starting at u and ending at v.
Then Euler's argument, counting the number of edges as you go
through a given vertex, shows that u and v have odd degrees and
every other vertex has even degree. Suppose u and v have odd
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degrees and all the rest have even degrees. Add an edge to G
linking u and v. Then the multigraph G + uv satisfies Euler's
Theorem from the text. Hence there is an Euler tour in G + uv.
Removing uv from this tour gives the route we want for this
theorem. D

11. (1) Let M be amap and D(M) its dual. Assurne that D(M) is bipartite.
Then every face of D(M) has an even number of edges because
every cycle in abipartite graph is even. But every face of D(M)
corresponds to avertex in M. Hence every vertex in M has even
degree. Does the converse hold?

(2) Start at any vertex v and color it white. Now color all the neighbors
N; of v black. Next color all the neighbors ofthe vertices N; white.
Continue until all vertices are either white or black. Then you have
your bipartition.

If at some stage you should try to color a white vertex black
or a black vertex white, then this can only be because the graph
has an odd cycle. But trees have no cycles. So you won't ever be
trying to color a white vertex black, or vice versa.

13. (1) No. In Figure 6, K 4 is drawn with two edges crossing. But K 4 is
planar, as the drawing ofFigure l5(a) shows.

(2) No. The graph you get is shown below.

Hiltons Holtons Pedersens

gas electricity water

This graph is K 3,3 .

We show in the next piece of text that this graph is non-planar.
15. See [6] or [8].
17. Suppose the Petersen graph is 3-edge colorable. Color its edges in

red, white, and blue. Now look at the subgraph consisting of just the
red and white edges. This will be regular of degree 2. So it must be
an even cycle or a collection of even cycles. Now the Petersen graph
has no 4-cycles. Hence the red-white graph has to be a lO-cycle.
This is impossible, since the Petersen graph isn't Hamiltonian. So no
red-white graph exists. So we can't 3-edge color the Petersen graph.
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We show a 4-edge coloring below.

1

19. (1) This is only possible for even values of n. In that case the graph
is a collection of disconnected edges.

(2) This is only possible for n 2: 3. These graphs are various combi
nations of cycles.

(3) This is definitely too hard! No one has been able to characterize
all graphs that are regular of degree 3.

We can do the problem for n = 4 and n = 6, though. n = 4.
Here every vertex has to be joined to every other vertex. So
G = K 4 • n = 6. The easiest way to do this is to first find G,
the complement! of G. Now G is regular of degree 2. Hence G is
C6 or two C3 'so If G = C6 , then G is the graph below.

If G = two C3's, then G = K 3,3 .

I The complement of a graph G is the graph Gwith the same vertices as G and having an edge joining
the vertices v and w precisely if G doesnit.
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(4) 2

20 18

c

b

e

f

19

Just follow the numbers from 1 to 20 and back to l.
(5) Since K 5 is a subgraph of all K; for n 2: 5, we don 't even have to

sprout measles to use Kuratowski's Theorem.
Ks; is planar because it clearly doesn't contain K 5 or K 3,3 '

Similarly, K z.n is planar for n 2: 2. All other complete bipartite

(6) =Fffin

K':" . L . . . . .

These, of course, are all the trees on 5 vertices.
a

~(7)

d

By Vizing's Theorem we know we need three or four colors. So
suppose we can do it in three. We have to use all three at a, so
color ab in red, ad in green, and af in black.

Suppose be is colored in green and be in black. Then Je is
colored in red, and soJe is colored in green. This forces us to color
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de in red and then cd in black. Hence we have a 3-edge coloring
of K 3,3 .

(8) If G is regular of degree 3, then LVEVG deg v = 2e gives us
3n = 2e, where G has n vertices. But 2e is even. Hence n is
even.

Now suppose G is Hamiltonian. If H is a Hamiltonian cycle
in G, it has an even number of vertices and hence an even number
of edges. Color the edges of H altemately 1 and 2.

Since G is regular of degree 3, then the edges in G but not in H
are just a collection of independent edges. Color these edges 3.

We have now 3-edge colored G. Hence, if all planar graphs of
degree 3 are Hamiltonian, the Four-Color Theorem must be true.
(Clearly, there must be some non-Hamiltonian planar graphs of
degree 3. Try to find one. You shouldn't bother with any graph
with fewer than 38 vertices!)

CHAPTER6

1. (1) 1

1

2

5

6

1 7 21

9

8 1

1

7 1

36

1

369

1 8 28

1

10 45 120 210 252 210 120 45 10 1
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(2) If we subtract (:+:) , the last summand on the left, from both sides,
the assertion is converted into the equivalent assertion

k-\ (n + i) ( n+ k )
~ i n = k-l n+l

This has exactly the same form as the original assertion, but k is
replaced by (k - 1). Thus we may continue in this way, eventually
reaching the equivalent assertion

or

But this is palpably true!
If we argue similarly to prove

( n ) t(n+i) (n+k+l)
r - 1 s + 1 + ;=0 r + i s = r + k s + 1

we keep subtracting until we reach

But this is just the Pascal Identity.
(3), (4), (5) are explained in the text.
(6) When parallelograms are mentioned below they will always refer

to a parallelogram with two sides running parallel to the direction
in which r is constant and the other two sides running parallel to
the direction in which s is constant. If you think of Figure 7 as it
sits within the Pascal Triangle, the following should be clear.

First calculate the sum of the entries inside, or on the boundary
of, the parallelogram having the top vertex located at (000) and

the bottom vertex located at t::k:~J If we call this sum A, then,
according to the result of part (5) above,

(
n+k+e+2 )A - -1

r+k+l s+e+l
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Next, subtract the sum of all entries in the parallelogram having
the top vertex located at (000) and the bottom vertex at C:k+k-LJ
If we call this sum B, then, by part (5),

B-( n+k+1 )-1
r+k+1 s

Now subtract the sum of all entries in the parallelogram having
the top vertex located at (000) and the bottom vertex located at

C~~l~:J If we call this sum C, then, by part (5),

C-( n+f+1 )-1
r s+f+1

But we have now subtracted the entries in the parallelogram
having the top vertex located at (000) and the bottom vertex located

at C-~-:-l) twice. Hence we need to add those values back. Call
their sum D; then

D = Cn s)-I

Now we see that the answer to our question is A - B - C + D,
which simplifies to

(
n+k+f+2 ) (n+k+l)A-B-C+D= -

r+k+1 s+f+1 r+k+1 s

(
n + f + l ) (n)

- r s+f+1 + r s

3. (I) The number of ways we can put n students into 3 groups, having r,
s, t members, respectively, so that the well-dressed student (WDS)
goes into the first group, is C:l-~ t); likewise, with WDS in the

secondgroup, thenumberis C:=: .]: andin thethirdgroup C:-t~J
The identity (25) now follows immediately.

(2) To show arithmetically that

or that
n!

r!s!t!

(n-I)! (n-I)! (n-I)!
----+ +---
(r - I)lslt! rIes - I)!t! r!s!(t - I)!
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begin by using the optimistic strategy; namely, factor (nl-Il~! from
r .S.!.

each term on the RHS, obtaining the equivalent (conjectured)
statement

n! (n -- l)!
-- = (r +s +t)
r!s!t! r!s!t!

Since r + s + t = n, the last statement is true.
The algebraic proof imitates that for binomial coefficients: Write

(a + b + c)" = (a + b + c)(a + b + c)n-l

expand (a + b + c)" and (a + b + c)n-l, and then compare the
coefficients of a' b'clon the left and right of the equality.

(3) They are just the numbers in the Pascal Triangle.
5. (1) Answer given in text.

(2) (kz -- al)!(kz -- az)!(kz -- a3)!(kz -- al -- az -- a3)!
W (P(k2») = --------------

kz!(kz - al -- az)! (kz -- al -- a3)! (kz -- az -- a3)!

(k3 - al)!(k3 -- az)!(k3 -- a3)!(k3 -- al - az -- a3)!
W (P(k3») = -------------

k3!(k3 -- al -- az)! (k3 -- al -- a3)! (k3 -- az -- a3)!

(3) Clearly, W(P(k2»' W(P(k3» are deducible from W(P(k,». Indeed,
each ofthe three is deducible from w(p(n», using the "interchange
of top and bottom" that we noticed in the simpler binomial case.

(4) Since we asked for a guess, your answer can't be wrong, but here
is what these weights really turn out to be.

W (p(n») = n! fl<j(n -- ai -- aj)!(n -- al -- az -- a3 -- a4)!

fl;Cn -- ai)! fli<j<e<n - a, -- aj -- ae)!

()
fl;Ckl -- a;)! fli<j<f(k1 -- a, -- aj -- ae)!

W P(k,) = ~-=-~-----'---------
k1! fli</k1 -- ü; -- aj)!(k1 -- al - az -- a3 -- a4)!

CHAPTER7

1.
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Thus we see that C4 = 14.

3. (1) The trees below correspond to the parenthesized expressions of
BREAK 2, part (1).

(2) The trees below correspond to the parenthesized expressions of
BREAK 2, part (2), and the diagrams of BREAK 1.
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5. The answers to parts (1) and (2) are indicated in the text.

3 4
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(5)

7. (1) No, suppose there were only 10 votes. Then, since A wins, the
probability is 1.

(2) We count good paths from (1, 0) to (12,5). We get

(1
56)

- (1
46)

= 4368 - 1820 = 2548.

We count all the paths from (0,0) to (12,5). We get Cs7) , so the
probability of a good path is

2548 x 5 x 4 x 3 x 2 7

17 x 16 x 15 x 14 x 13 17

Ifwe replaced (12,5) by (a, b), we would get a proof ofthe Ballot
Problem formula.

(3) do = 1, d l = 1, d, = ~C~l)' so

d3 = H~) = 5

d4 = H~) = 14

ds = H~) = 42

d6 = ~CD = 132

d7 = ~C:) = 429

ds = 4C76) = 1430

d9 = ~ CsS) = 4862

dlO = ioC90) = 16796

(4) Co = 1
Cl = 1
C3 = 5
C4 = 14
Cs = 42
C6 = 132
C7 = 429
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Cg = 1430
C9 = 4862
CIO = 16796

9. (1) (-D(-n...(-?) = (-1)' 1 . 3 ... (2r - 1)

r! 2rr !

r 2r!
= (-1 ) 22r(r !)2

= (-1)' (2:)2-2r

(2) (n) (r -n- 1)= (_1)r
r r

( n ) = (_1)r-1 (r -n- 2)
r-l n-l

so

11. (1) p = 4, q = 3, k = 4, n = 14, m = 3, so, by (34), the required
number is

(-2) 1(13) 12· 11
d34 0 = d34 = 13 3 =~ = 22

(2) n = pk - r, so [;] = k - 1, and the required number is

A good path to (k , (p - l)k - 1) must finish by climbing vertically
from (k, (p - l)k - p) .
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1. (1) Obviously,

a\ + a2 + a3 = -al

a\a2 + a\a3 + a2a3 = a2

Thus

a~ + a~ + a; = (a\ + a2 + (3)2 - 2(a\a2 + a\a3 + a2(3)

= a~ - 2a2

ai + a~ + aj - 3a\a2a3 = (a\ + a2 + (3)

( 2 2 2 )
X a\ +a2 +a3 -a\a2 -a\a3 -a2a3

so
ai + a~ + aj = -3a3 - a\ (a~ - 3a2) = -ai + 3a\a2 - 3a3

(2) ai + ai + aj = (a~ + a~ + a;)2 - 2(a~a~ + a~a; + a~a;)

= (a~ - 2a2)2

- 2 {(a\a2 + a\a3 + a2(3)2 - 2a\a2a3(a\ + a2 + (3)}

= ai - 4a~a2 + 4a~ - 2(a~ - 2a\a3)

= ai - 4a~a2 + 4a\a3 + 2a~

(3) :: = :~=~:. If m In, then the polynomial an - ßn is divisible by

the polynomial a" - ß'", so :: is asymmetrie polynomial in a, ß
with integer eoefficients, and henee a polynomial in (1, -1) with
integer eoefficients, so eertainly an integer. (Reeall that a, ß are
the roots of x 2

- x - 1 = 0, so that a + ß = 1, aß = -1.)
L a"+ß" If I ddl h b L' .L: = am+ßm' m n 0 y, t en, as a ove, L: lS a symmetne

polynomial in a, ß with integer eoefficients, and henee a polyno
mial in (1, -1) with integer eoeffieients, so eertainly an integer.

3. (1) The order of Gis 12. The subgroups are:

G itself of order 12.
The remainders mod 6 represented by 0 2 4 6 8 10; the order is 6.
The remainders mod 4 represented by 0 3 6 9; the order is 4.
The remainders mod 3 represented by 0 48; the order is 3.
The remainders mod 2 represented by 0 6; the order is 2.
And, finally,
The remainder 0; the order is 1.
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(2)

(2) The function gH ~ Hs' between the set of left cosets and the
set of right cosets is well-defined. For if gl E g H, then gl = gh
for some h E H, so gll = h- Is:' E Hg-I. It is plainly a one-to
one correspondence between the set of left cosets and the set of
right cosets.

5. (1) (1 2 3 4 5) (identity)

(2 3 1 4 5) (rotation through 2; about axis 45)

(3 1 2 4 5) (rotation through 4; about axis 45)
(1 2 3 4 5) ---+

(3 2 1 5 4) (interchanging the poles)

(2 1 3 5 4) (interchange plus rotation through 2;)

(1 3 25 4) (interchange plus rotation through 4;)

Edge 12 has 3 homologues

Vertex 4 has 2 homologues

Face 124 has 6 homologues

7.[YI(1) As in the example

(
1 2 3 4 5 6 7 8 9 10 11)

247131156810 9

we start with 1 and continue till we get back to 1, as eventually
we must. Thus

1-+2-+4-+1

giving us the cycle (1 2 4). We then start again with the lowest
number not already reached, in this case 3, and repeat the proce
dure

Thus we eventually exhaust all the numbers being permuted, and
have expressed our permutation as a composition of cyc1esacting
on mutually disjoint sets of numbers.

(2) Explained in the text.
(3) (li (2)(ll (3)'" (li lr)

9. (1) Obviously, Q satisfies the conditions for a subgroup. If P contains
only even permutations, then Q = P, so the index of Q is 1.
Otherwise, if p is an odd permutation in P, then P consists of the
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(disjoint) cosets Q and Qp, so the index is 2. The first case occurs
if P = An, the second if P = Sn' (Of course, you could find other
examples.)

(2) Let g E G, g tf- H. Then G is the disjoint union H U gH; and it
is also the disjoint union H U Hg. Hence gH = Hg.

CHAPTER9

1. We get around to this later in the section.
3. See BREAK 2. If n < s, then we are unable to get an s-anticlique.
5. No. The argument is rather a case-by-case analysis, so we'll only

start it off. From the argument of the text we have two cases. We
assurne that there is only one monochromatic triangle. It must arise
in one of the two following ways.

Case 1

•

•

b

Case 2

red

blue

We will discuss Case 2. Then at most one of the edges from I to
{b, c, d} is blue. Hence at least two ofthese edges are red. Hence al
is blue. Similarly, ae is blue.

This forces ef to be red. But then we have a red triangle involving
e, I, and one ofthe vertices of {b, c, d}.

Now you should try to argue Case 1.
7. [YILookat the argument ofthe next piece oftext based on Figure 3. So

N(3,4) > 8. (The fact that N(3, 4) = 9 follows in the text.)
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9.

.02

y

x

y = -i4x(x - l)(x - 2)

1l.[YJ(1) This graph has a matehing that saturates G, for exarn
pIe, (g,b" g2b3, g3b4). You should have checked that, for
any S ~ G, ISI.::: IN(S)I. For instance, if S = {gI, g2},
N(S) = {bI, bi. bs. bs, bs}, and the required inequality holds.

(2) Let S = {g3, g4, gs}. Then N(S) = {b4, bs}. SO ISI > IN(S)I.
Clearly, the vertices of S cannot all be matched.

13. The number of edges leaving X is r IX I and the number leaving Y is
rlYI. Hence rlXI = rlYI, which shows that lXI = Ifl·

15. (l) N (2, 2, 2) = 2. As soon as you have an edge it must get a color.
N(2, 2,3) = 3. If there is no monochromatic triangle in K 3

in a given color, one of the edges must be colored in one of the
other colors.

N(2, 3, 3) = 6. If in K6 there is no edge of the first color,
there must be a monochromatic triangle in one of the other col
ors. For n .::: 5, K; can be colored with two colors to avoid a
monochromatic triangle.

(2) By the argument that we used to show that

N(3,4) .::: N(2, 4) + N(3, 3)

we can show that N(m, n) .::: N(m - 1, n) + N(m, n - 1). We
now proceed by induction on m + n.

Now

N(2,k)=k':::(~) for all k 2: 2

Similarly,



N(k, 2) = k ~ G)
CHAPTER9

for all k ~ 2

by the inductive hypothesis,

So assume that the result is true for all

with r + s < m + n

Now N(m , n) ~ N(m - 1, n) + N(m , n - 1).
Then

N(m, n) ~ (m + n - 3) + (m + n - 3),
m-2 m-l

= (m +n- 2) by the Pascal Identity (see Chapter 6).
m -1

This establishes the inequality.
(3) Suppose G - {v}has a component, C, that has one edge linking it

with v. Then in G - {v} this produces a single vertex of degree 3
in C. This is not possible , because every graph must have an even
number of vertices of odd degree .

Hence every component of G - {v} must be joined to v by 2
or 4 edges, so that G is as in Figure 1 (below).

c

FIGURE 1

In the graph on the left !Cl I+ IC21 is odd, since G has an even
number of vertices and v is the only vertex in neither CI nor C2•

Hence at most one of Cl , C2 is an odd component. In the graph
on the right, C is the only odd component. A graph based on
Figure 2 (on the next page) will not have perfect matching.



Selected Answers to Breaks324 ----=-=-::..::....::...:..:::.-==-.:..:..-=-=---=-=--=-===---- _

v

even

FIGURE2
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10-gon,83

I24-year history, 127

2-colorable, 140

2-factors, 296

2-period, 83

2-symbol, 90

2-value,53

2 x 2 table, 11

20-gon,83
3-edge colorable, 153

3-edge coloring, 151

3-good paths, 224 (Fig), 232 (Fig)

3-period folding, 88

3I-gon, 90

4-dimensional space, 172

4-face coloring, 151

5-colorable, 148

5-gon, 83 (Fig)

7-gon, 80 (Fig), 244

8-gon, 76 (Fig)

9-gon,82

(2, 1)-folding procedure, 78

(2, l j-tape, 78

(m, n), 83
(p + I)-gons, 215

Ais asymmetrie figure, 251

A is more symmetrie than B, 248

A4,263
altemating subgroup of 54,267

As,253
An, 248, 266
Abstract, 4, 14, 18
Accuracy,3
Adding

fractions, 9
machine tape, 74
rational numbers, 9

Advanced versions, vii
Aldred, Robert, 198
Alexanderson, G. L., 190, 198
Alexandria, 26
Algebra, 237

of polynomials, 236
Algebraic, 162
Algorithm, 81, 95, 114
Allowed transformations, 237
Altemating

form (in n variables), 263
group, 263
group A4, 248
group on n objects, 266
signs, 229

Ambient
3-dimensional space, 246
4-dimensional space, 246
plane, 244

American Mathematical Monthly, 10
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Anchor, l72
Ancient Greeks, 73
Andre, Desire. 210, 212, 233
Andre Reflection Method, 210 (Fig), 217
Annals 0/Mathematics, 45
Answers, ix

to breaks, 299ff
Anticliques, 271
Aphori sm,2
Appel , K., 127, 149, 157
Appet izers, viii
April I , 44
Arctic pentagon, 114
Arithmetica. 26, 28
Arithmetical interpretation, 162
Assoc iative law, 239
At random, 4
Athena eum, 130
Attractions of mathemati cs, viii
Averages, 8
Awakening, 227
Axiom, 2
Axiomat ic systems, 15

Babylonians, 29
Ballot problem, 212, 213, 317
Base, 99
Baseball, 3, 8
Batting averages, 3
Beckenbach, Edwin F., 20
Beineke, L. w., 157
Bekes, Robert , x
Bell, E. T., 40
Bereiter, Carl , 269
Berge, c., 238
Bertrand, Joseph Louis Francois, 212
Bibliography, 200
Biggs, N. L., 158
Binary operation , 201
Binet formulae, 52, 237
Binomi al

coefficient, 159, 209
theorem, 218

Bipartite, 289
graph, 141 (Fig)

Biparti tion, 308
Birthd ays, 285
Bisect, 87
Bisecting angles, 73
Blades , 169, 170

northeast, 170
northwe st, 170

Blanusa, Danila, 156
Bobby pin, 96, 109
Books,96
Borcherd, Richard, 235
Borgia,12
Borromean rings, 107 (Fig)
Bosses, 276
Boundaries, 194
Bracelet, 109
Braid, 149
Braided Platonic solids, 249
BREAKS, ix
Breuil, Christophe, 44
Bridge (of connected graph), 296
Bright and curious reader, viii
Building blocks, 235
Bürrnann-Lagrange inversion forrnula, 217

Cambridge University, 288
Can

ofbaked beans, 164
of spaghetti, 164

CardinaJity, 299
Carroll, Lewis, 127, 154
Cartan , Henri , 159,236
Catalan, Eugene Charle s, 199
CataJan numbers, 199ff

calculation of, 217, 223
classicaJ, 199ff
generalized, 229
generalized, calculation of, 220

Children's Television Workshop, 16
Chine se, 29
Chri stians , 27
Chri stmas Stocking Theorem, 164
Circuit, 132, 203
Clark, J., 158
Classification of finite simple groups, 42
Clay Mathematics Institute, 285
Clifton College, 130
Clockwise, 246
Clothes , 97

C", 248
Coates, lohn, 41
Coconu ts, 17
Coefficient, 162
Coincidence s, 285
Collaborators, 276
Color, 258
Colored

paper, 96
side, 97



Colori ng, 258, 262, 273
Coloring edges, 149

Combinatorial
interpretation, 161, 170
set theory, 275

Comb inatoric s, 238, 254

Comb ining fractions, 9

Common index, viii
Compact bounded configuration, 247
Comparative adjective, 6

Complete symbol, 91, 305
Complex number, 37

Comp onents, I 32
Compo sition of cycles, 264
Computer, 14,40, 281ff

Conceptual
model,15

thinking, 2

Concrete 4, 14
Concrete geometrical model , 236

Conne cted multigraph, 307
Conrad, Brian, 44

Construction

paper, 96

Euclidean, 73
exact, 74

explicit, 74
Contracted,90, 114

Contradiction, 2

Conventional
reasoning , 2
usage,5

Converge, 81
Convergence, 79, 86
Convergent infinite series, 168

Convex
8-gon, 75
hexagon , 205
polygon , 199

Coordinate geometry, 171

Correct strategy, 20

Cosets,
left, 320
right, 320

Counter-intuitive, 19

Counterclockw ise, 246

Count ies of England, 128, 129 (Fig)

Counting p-good paths, 223

Complement (of a graph), 309
Coxeter, H. S. M., 74, 124

Cox, David, 23, 46

Index

Crazy
dice, 6
ideas, 149

Crease lines, 75
Cross-produ ct, 172
Cube,99, 105, 106 (Fig) 107,248,266, 267 (Fig)
Cube , interior diagonal of, 261
Cubi c identity, 66
Cuboctahedron, 195
Cusp form , 42
Cycle, 132, 240

Cycle
index, 257ff
of length 2, 240

Cyclic
group of order n, 248
permutation, 185 (Fig)

D2U l

-folding procedure, 78
-tape, 78

D4, 258
Dm un , 83
Dn , 248
Dance, 287
Darrnon,Henri,44,46
de Morgan, Augu stus, 128
Degree (of a vertex ), 132
Demystification, 228
Density, 299
Descartes, Blanc he, 238
Diagon al cube, 108 (Fig) , 248, 249 (Fig)
Diagonals , non-intersecting, 199
Diarnond, Fred, 44
Dickson, L. Eugene, 39, 46
Difference, 9
Dihedral

group, 248
group o., 255

Diophantine
equat ions, 27
problems, 27

Diophantus, 26, 302
Dirichlet , Peter Gustav Lejeune, 37, 46
Discrepan cy, 86

Dissected
hexagon , 206
polygon , 208, 216 (Fig)

Distance, 171 , 172

Divisibilit y, 3, 52
Dodecahedron, 99 ,108, 109 (Fig)ff, 157
Dodecahedron, Golden , 113, 246, 247 (Fig), 262
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Don 't believe everything, 1

Dot product, 155
DOWNTWICE, 77
Drift, 12
Dual graph, 139 (Fig)

of two-sided inverses, 239

Expec tation, 20
Experiment, 11

Exponents, 81
Extending the binomial coefficients, 218
Extensions, 194

Economics, 235
Edge

-coloring, 150
(of a graph), 130

Edmonds-Gallai Theorem, 296
Education, 2
Efficient match ing, 295
Election, 213
Ellipt ic

curves ,41
curves, serni-stable, 44

Empt y,264
End node , 203 , 206
Epsilon , 276
Equal,4
Equality, 4, 222
Equilateral triangles, 176
Equil ibrium, 235
Equi valence relation, 5
Erd ös number, 276
Erdos, Paul , 275, 281, 288, 297
Erlanger Programm, 237
Error-correction , 88
Eucl id,26
Euclidean, 245

algorithm, 68
geometry, 237, 246
invariant, 246
moti on, 244
motion in 3-dimensional space, 246
motions that reverse orientation, 244

tool s,73
Euler, Leonh ard, 36, 37, 46, 199,307

Euler
tour , 137
tour problem, 136

Even
and odd permutations, 263ff

period , 89
permutations, 248, 267
vertices, 182

Everswear, 12
Exact sciences, 235
Exceptional case, 169
Existence

of two-sided identity, 239

Fabrice, Valognes , 20
Fair coin, 281
False proof, 130
Fantasy, 12, 227

FAT
-algorithrn, 74, 79, 305
31-gon,90

7-gon ,79
Favorable outcome, 11

Fellow of the Royal Societ y (E R.S.), 148
Fermat, 23ff, 46 , 115

Fermat 's Last Theorem (FLT), viii, 23, 28, 32

Fermat
numbe r,82

prime , 73

Fibonacci
index, 54, 63

numbe rs, 49ff
sequence, 67

Fibonacci Quarterly , 69
Fibonaccian numbers, 69
Field,151
Fields

Medal , 45, 235
l ohn Charles, 45

Finite group, 248
Finite symmetry group, 251
Fisher, David, 20

Fixed point , 18
FLT, viii, 23, 39

Fold,74

Fold
down , 82

lines,97

up,82

Folding

instructions, 305

procedures, 72ff
Formulae, 14, 201

Four-color, 127

conjecture, 130

problem, 127
theorem , 33, 127ff

Fract ion, 19,85,240



Framework
algebraie, 159
combinatorial, 159
geometrie, 159

Freneh Aeademy, 37
Frey, Gerhard, 43
Friedlander, Riehard J., 20
Fritseh, G., 158
Fritseh, R., 158
Fundamental parallelepip ed, 182, 183 (Fig)

G-geometry, 245
G-invariants, 245
Game, 5
Gardner, Mart in, 154,275
Gauss, Carl Friedrieh 73
Gaussian polynomial. 192
ged, 53,68
General

baset , 73
quasi-orde r theorem, 114, 119, 122, 123

Generalization, 73, 115
Generalized

binomial eoeffieient, 218
Catalan numb ers, 229
eomplex number, 128

Generatin g funetion, 202
Generat or, 248
Geometri e, 173

eontext, 238
praetiee, 71

Geometry, 236 , 239, 244, 262
of a 3-dimensional anal ogue, 193
plane Eucl idean, 244

Germain, Sophie, 37, 46
Glue, 96
Gödel, Kurt, 2
Golden Dode cahedron, 113,246, 247 (Fig), 262
Good paths, number of, 227
Göttingen , 39
Gould , H. W., 191, 198, 200, 233
Gouvea, Fernando Q., 23, 36
Graph, 130ff, 203, 272ff, 323
Graph

bipart ite, 141 (Fig)
eomplete 135
eomplete bipartite, 141
eonneeted, 132 (Fig)
diseonneeted, 132 (Fig)
non-planar, 148
planar, 144
regular, 134

Index

-theoretical, 272
theory, 136,295
underl ying, 149

Greeks, 27
Group , 239, 244, 246

Group ,
eommutative, 24 1

D4 , 258
finite, 24 1
r , 254

infinite, 241
of motions, 246

of permutations, 258
of permutations of n symbols, 248
of symmetries, 259
table, 241
theorist, 290

theory, 237
Group s aeting on sets, 238

Gummed
mailing tape , 96
tape, 74

Guth rie, Frank, 128
Guthrie, Frederiek, 127

E1aken, W., 127, 149, 157
Hall, Philip , 288, 290, 297

Hall 's Theorem , 292
Hamiltonian, 157, 308

Hamilton, William Rowan, 128
Handbook ofAppli cable Mathematics , 238
Hand

ealculators, 14
towel,96

Handles, 143 (Fig)
Hands-on-aetivities, 95
Harary, Frank, 238
Heawood, Perey John, 148
Hexagon, 177
Hexagonal eross-seetion, 197 (Fig)
Hexagon, regular, 180
Hexahedron, 106 (Fig), 266, 267 (Fig)
Hilbert , David , 285, 297
Hilton, Peter, 20, 46, 69, 124, 125, 198,233,269,

297
Hip roof, 112
History of the mathematieal seienees , viii
Hoffrnan, Paul, 297
Hoggatt-Alexanderson Theorem, 191
Hoggatt, V.E., Jr., 190 , 198
Holdsworth , John, x
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Holton, Derek, 20, 46, 69, 124, 158, 198,233,
269,297

Homogeneous, 260
Homologue, 237, 254ff, 320
Human

error,79
skill,79

Hunting ofthe Snark, 127
Huzita, H., 125
Hyperplane, 172
Hyperstar of David Theorem, 184

Icosahedron, 99, 102 (Fig)ff
Icosahedron with symmetry group As, 253
Identity,4
Identity element, 241
Imagination, 3
Independent

edges, 289
points, 247

Index, 244, 255
Index 2, 248
Induetive argument, 230
Industrial applieations, 294
Inequalities, 194
Infinite sets, 299
Initial

conditions, 228, 232
configuration, 94
integrallattice point, 211

Integer, 240
coefficients, 260

Integrallattiee, 208
in the plane, 208

International Congress of Mathematieians, 45,
235

International Mathematieal Union silver plaque,
45

Interpretation
algebraie, 177
combinatorial, 177

Interrelating geometry and algebra, 187
Intrigue, viii
Invariant, 246
Invariants, 245
Inverse, 241

g-I, 242

Isaae Newton Institute, 44
Isaaes, R., 155, 158
Isomorphie (graph), 131

Joe, 276

Jonah
David,221
formula, generalized, 221

Jordan, Michael, 285
Justiee, Dave, 10

k-eolorab1e, 140
k-faetors, 296
Kainen, P.c, 158
Kaliningrad, 136
Kempe, Alfred Bray, 33, 130, 148
Key formula, 59, 221
King Charles H, 148
Klein, Fe1ix, 237, 244
Königsberg, 136

bridge problem, 36, 136 (Fig)
Kummer, Ernst, 37, 39, 46
Kuratowski, Kazimierz, 146
Kuratowski's Theorem, 146,310

Label, 206, 207 (Fig)
Lagrange, Joseph Louis, 242
Lagrange's Theorem, 243
Lame, Gabriel, 37, 39, 46
Lareombe, P.J., 233
Leam, viii
Least eommon multiple (lern), 62
Ledermann, Walter, 269
Legendre, Adrien Marie, 37, 46
Lengths, 182
LHS,ix
Lindemann, Ina, x
Linear, 3
Linear

algebra, 151
identity, 64, 67
recurrenee relation, 19
relation, 65

Lively mathematiea1 topic, vii
Lloyd, EX, 158, 238
Logiea1 thinking, 3
Logically superfluous, 211
Long fold lines, 113
Loväsz, Läszlö, 297

Lucasian, 54, 62
Lueasian Numbers, 49ff, 69
LueasIndex, 54,62, 63

Maekerelroe, 12
Male barber, 1
Map ofEngland, 127, 129 (Fig)
Matching, 289, 322



Mathematical, 15
abstraction, 15
context,19
essays, viii
model, 4
reasoning, 2, 4
relation, 19
theory,71
usage,5

Mathematical Reflections, vii
Mathematicians, vii, 295
Mathematics, 14,235,236
Mazur, Barry, 23, 47
Measles, 146ff
Memory, ix
Mersenne (AbM), 115,305

number,115
Metaphor, 258
Method of infinite descent, 34
Microcomputers, 14
Misunderstanding, 14
Miyaoke, Yoichi, 44
Models, 96
Modular function, 41
Monkeys, 14, 17
Monochromatic, 273

cycle,295
triangle, 322

MordelI, Louis, 28
More

likely,5
prosaic explanation, 228

Moslems, 27
Mountain folds, 97
MR, vii
Multi-dimensional, 3
Multigraph, 136
Multinomial coefficients, 170, 181
Multiplicative (notation), 242

Nash, lohn, 235
National Health Service, 2
Nearest neighbor, 190
Negative

integer, 167,219
number, 18

Neighborhood
(of a set S of vertices), 289
(of avertex), 289

Net diagram, 196
New

century, 285
identity, 184

Index

Nobel Prize, 45, 235
Node, source, 206
Non

-constructibility, 82
-lattice point, 217
-zero blades, 170
-zero sextants, 169

North Pole, 113
Notable event, viii
Not treated, 11
Notational innovation, 159
Number

-crunching, 295
-theoretical, 26
theory,71
tricks, 49

Numbers,4
Numerical answers, 14
N(r, s), 275

Oberkfell, Ken, 10
Octahedron, 99, 100, 101 (Fig)ff
Octahedron with symmetry group 54, 253

Odd
degree (of vertex of graph), 280
Lucasian numbers, 56
period,89
permutations, 263
vertices, 182

Oddly, 53, 237

One-to-one correspondence, 4, 204, 209, 243
Operation

binary,215
temary, 215
p-ary,215

Optimistic strategy, 77, 79, 87
Ordered

pair, 5
triplc, 6

Ordering,3
Order (of a group) 241

Orientation, 246
-preserving symrnetry of a polygon, 266
reversing, 245 (Fig)

Over 100 years, 128

Paper
-folding, 71
clip, 105
folders,77

Paradox, 1ff

Parallelepiped, 171
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Parrallelogram , 172
fundame ntal, 172 (Fig) , 183 (Fig)

Parenthesis, 20 l, 211
Parenthesized

expression, 204 (Fig), 207 (Fig), 208, 211
symbol, 206

Parenthe sizing,201
Parity, 31, 264
Part ial,3
Parlicular but not special case, ix, 206 , 292
Part ies, 271ff
Partitioning, 232
Partitioning

good paths, set of, 225
of path, 221 (Fig)

Parts (of vertex set), 289
Pascal Cub octahedron , 196 (Fig)ff
Pascal

Flower, 175 (Fig)
Hexagon , 163 (Fig), 167, 169
Identit y, 160, 169, 170, 180,220,230,323
rn-simple x, 188, 189
Pyramid, 181, 197
Tetrahedron, 170, 177 (Fig)ff
Triangle , 159 (Fig)ff
Windmill, 170

Path , 208, 228
bad, 209,231
good, 209, 210 ,21 2, 231
p -good , 215 , 230 (Fig)

Pattern, 259
pieces, 96, 250 (Fig)

Pedersen , Jean, ix, 20,46,69, 124, 125, 198,
233,269,297

Pedersen, Kent, x
Penro se, Roger, 41 , 47
Pentagonal dipyramid, 97 (Fig)ff, 255 (Fig)ff
Penultimate stop, 229
Perfeet

in the mind , 79
matching, 293, 323

Period, 81
1,81
2,83

Permutation, 92, 117, 238, 240, 257
cycl ic, 257, 264
even, 238,263, 320,
exch anging a l and a2, 186 (Fig)
odd,238,263, 320

Petersen graph, 146, 154, 156,308
Petersen, Juliu s Peter Chri stian, 154
Petersen Theorem, 296

<I>-algorithm, 116
Philanthropist, 20
Ph.D .,41
Physical context, 19
Pierce, Larry Il, 181
Pigeonhole principle , 274, 284
Ping-Pong ,12
Planarity, 144
Plane 1R2, 237
PIatonie solids, 99, 250 (Fig), 251 (Fig), 254, 267
Plouffe , Simon, 233
Plummer, Michael D., 297
P61ya

Enumeration Theorem, 238 , 254 , 257
George, 198,238,254,263,269,306
's personal notebook, 267

Polygon, 247
Polygonal dissection, 216 (Fig)
Polyhedra , 71, 73, 95
Polyhedral

formula,36
symmetry, 239

Polyhedron, 247
Polynomial

equations, 236
identities, 52, 64

Polynomials
identi cally equal . 22
with rational coefficients, 219 , 222

Pop-up model, 197
Popular

imagi nation , 127
rnisconception, 2

Positive
integers,3
sector, 170

Power
series, 202
serie s expansion, 167
series, formal, 202

Precise definition, 263
Preferred side, 206
Pregel,136

Primary
crease lines , 78

fold ing procedure of period 3. 88
Primitive, 30
Princeton University, 44
Principle of Licensed Sioppiness, 16
Probabilistic

argument, 281
method,277



Probability, 5, 7, 213, 286, 299
Problem s, 19
Proof, traditional, 149
Prowess, 9
Proximand, ith, 94
Prussia, 136

Pseudo-part itionin g, 232
I/J -algorithm , 116

PT, 30
Putative ang le, 77, 81, 82
Pythagoras, 28ff
Pythagoras' Theorem, 29

Pythagorean tripIe, 30, 300

q- analogue, 192
Quadratic identities, 57, 65ff

Quasi-order, 114
Quasi-Order Theorem, 72, 115

Quasi-regular

{ ~ l-gon. 74, 75
N-gon, 72, 74
pentagon , 82

polygon, 71
polygons, 93

{~j-gon , 79
Quatern ion, 128

Ramsey numb er, 275, 288, 295
Ramsey, F. P., 275, 283, 297

Ramsey The ory, 295

Rate, 16
Ratio, 16
Rational

coefficient s, 219
number, 16, 240

Read, R. C., 238
Reader's fancy, viii
Reading proofs, ix
Real world , 4, 18

construc tions, 79

problem s, 14

situation, 15

Reasoning mathem atically, ix
Reetangular box, 172, 182

Recurrence

forrnula, 232
relation, 19,202,217,229

Redfield, 1. Howard , 238
Redfield-P ölya Theorem, 238
Reduced, 90, 93,11 4

Reflecti on , 237, 244, 246
method , 212
procedure , 209

Regions, 139
Regions with different colo rs, 128
Regular

convex 7-gon , 77
convex n-gon, 7 1
convex polyhedron, 99
dodecahedron, 248
hexagon, 206
icosahedron, 248
n-gon,251
octahedron, 248
primes, 37
star {~ j-gon, 71
tetrahedron, 194, 263

Relative notion, 247
Relevance, 19
Representative, 243
Reverse

algorithm, 116
symbol, 120

Rhombic dode cahedron, 180
Rhombic dode cahedron, regular, 180
RHS, ix
Ribenboim , Paulo, 23, 47
Ribet, Kenneth, 43
Right coset, 255
Robertson, N., 149, 158
"Roof'

(of a hexagon), 161
(of rhombic dodecahed ron), 180

Rosen, Michael, 24
RosenthaI, William, 198
Ross , Peter, x, 10
Rotation, 237, 244
r-regular bipartite graph , 292
Rubber band, 105
Rubin stein , Joseph H., 269
Rule of thumb , 86
RusselI, Bert rand , I , 15

8 3, 242, 247
54,248,262
Saari, Donald G.. 20
Saaty, T. L. , 158
Sailors, 14, 17
Sam, 276

Sampling theory, 213
Sanders, D. L., 149

Index
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Satellites, 191
Saturate, 289, 322
Scalar, 3
Schlegel diagram, 157
Scho olboyinvention, 127
Schwenk, Allen J., 20
Scientific American, 154
Scientific

hypothesis, 11
model , 15, 17

Seimemi, B., 125
Scio seia, Mike, 10
Scissors, 96
Seribbles in margins, 32
Scott , Richard, x
Secondary

crease line, 83
fold lines , 73

Self-ev ident truths , 2
Semi-regular hexagon, 176 (Fig)
Separable functions, 192
Serre, Jean-Pierre, 43

Set
of colors, 259
theory, 1,4

Seymour, P. D., 149

Shallow bowl, 96
Shaw, George Bemard, 2
Sheehan, J., 158
Shimura, Goro, 41
Shimura-Taniyama Conjecture, 42ft', 46
Short lines, 108
Sign ificant dates for FLT, 46
Simpson, E. H., 21
Sirnpson's Paradox, 9
Singh, Simon, 23, 47
Skepticism, 2

Skill ,3
Slaves , 276
Slide ,223
Sliding procedure, 224

Sloane, N. J. A., 233

Sn, 248
Snarks, 154

Somer, Larry, 69
Sophomore student, 181
Source node, 203
South Pole, 114
Speed of execution, 3
Sponge,96
Sporadic finite groups, 235
Square One , 16

Stanley, Richard P., 233
Star

b-gon,72
of David, 175 (Fig)
of David Theorem, 173
of David Theorem, original case , 191
of David Theorem, generalized, 170, 171, 177,

181
Starred (*) material, ix
Statistical signifieance, 11
Statistical test, 11
Statistics, 11, 14
Stewart, lan, 21
Strings (super), 235
Strip of paper, with parallel edges, 74
Subdivided hexagon, 206
Subgraph, 131, 147,272
Subgroup,242,255,319
Subgroup

of index 2, 266

of Sn, 266
normal, 166

Subscript, preceding, 215
Supersymmetry, 235
Support, ith, 94
Supreme Facist, 276

Surprising features, 214
Symbol, 72, 90, 114
Symbol-manipulation, 18
Syrrunetric, 160,236,260
Symmetrie

function, 236
group on n symbols, 248
group S3, 171, 184
group Sn, 171
polyhedron, 194
polynomial, 236, 319

Symmetries
of an equilateral triangle, 242
of the square, 258

Symmetry, 159, 170,209, 235ff, 239 ,
246,254

Symmetry
concept, 236

group ,171 ,237,242,255,263

group of A, 246
group on 3 symbols, 247

groups,254
groups of polyhedra, 248

Identity, 159, 169, 180
in geometry, 237, 239
of a polyhedron, 266



theory,235
Szekeres, George, 275, 288, 297

Tab, 196
Tait, P. G., 149
Taniyama, Yutaka, 41
Taylor, Richard, 44

Taylor series, 168
Teiles, Roberta, x
Term-by-term differentiation, 168
Tetrahedron, 99, 100 (Fig) 266, 267 (Fig)
Tetranomial coefficients, 187
The Hunting ofthe Snark, 127,
Theoretical physicists, 235
Think, viii
Thinking, ix
Thomas, R., 149
Tombstone symbol ([]), ix
Total,3
Totient function, 36
Towers, 164ff
Traditional education, 3
Transitive, 3
Transitive relation, 5
Translation, 237, 244
Transposition, 264, 265
Treated, 11
Tree, 132,203,315 (Fig)

2-ary, 214 (Fig)
3-ary, 214 (Fig)
binary, 203, 204 (Fig), 214 (Fig)

diagram, 5, 7
p-ary, 215
rooted, 203, 206
ternary, 2 I4 (Fig)

Triangular
dipyramid, 98, 256 (Fig)
layers, 177

Tricolored faces, 111
Trihedral regions, 195
Trimming, 97
Trinomial

coefficients, 159, 170

expansion, 170

Trivalent map, 150 (Fig)
Truncated trihedral regions, 195

t-symbol,90, 119
Tutte's

Conjecture, 156

Theorem, 295

Tutte, W. T., 156
Twist, 74

Index

Type (ofpermutation), 257

Uncreased, 113
Unfavorable outcome, 11
Unilied field theory, 235
Unique

contracted syrnbol, 92

factorization, 37, 38
Unit, 17
Universe, 235
Unlicensed sloppiness, 59
Unreliability of tests, 3
Unusual characteristics, 73

UPONCE,77
Usiskin, Zalman, 198

van der Poorten, Alf, 47
Van Slyke, Andy, 10
Vanishing Identity, 161, 163, 177

Vector
addition, 206
multidimensional, 3
space, 151

Vertex (of a graph), 130, 150
Vizing's Theorem, 310

Vizing, V. G" 154
Voles, Roger, 21

Walser, Hans, x, 172, 181, 197, ]98,269
Water,96
Webb, lohn, 21

Wedges off the edges, 195
Weight,l72
Well-dressed student, 313
Whitehead, Tamsen, 228, 233
Wild goose chase, 15
Wilde, Oscar, 2
Wiles, Andrew, viii, 23, 33, 40, 42, 44, 45
Willoughby, Stephen, 269
Wilson, P. D. C., 233
Wilson, R. 1., 157, 158
Witten, Edward, 235

Witten theory, 235
Wolfskehl, Paul, 39

Wolfskehl Prize, 45

Woman mathematician, 16
Wylie, Shaun, 198

Young student, 127

Zero sextant, 169
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Halmos: Finite-Dimensional Vector
Spaces. Second edition.

Halmos: Naive Set Theory.
HäInmerlinIHoffmann: Numerical

Mathematics.
Readings in Mathematics.

HarrisJHirstIMossinghoff:
Combinatorics and Graph Theory.

Hartshorne: Geometry: Euclid and
Beyond.

Hijab: Introduction to Calculus and
Classical Analysis.

HiltonIHoltonIPedersen: Mathematical
Reflections: Ina Room with Many
Mirrors.

HiltonIHoltonIPedersen: Mathematical
Vistas: From a Room with Many
Windows.

IoosslJoseph: Elementary Stability
and Bifurcation Theory. Second
edition.

Isaac: The Pleasures of Probability.
Readings in Mathematics.

James: Topological and Uniform
Spaces.

Jänich: Linear Algebra.
Jänich: Topology.
Jänich: Vector Analysis.
Kemeny/Snell: Finite Markov Chains.
Kinsey: Topology of Surfaces.
Klambauer: Aspects of Calculus.
Lang: A First Course in Calculus. Fifth

edition.
Lang: Calculus of Several Variables.

Third edition.
Lang: Introduction to Linear Algebra.

Second edition.
Lang: Linear Algebra. Third edition.
Lang: Short Calculus: The Original

Edition of "A First Course in
Calculus."

Lang: Undergraduate Algebra. Second
edition.

Lang: Undergraduate Analysis.
LaxIBursteinILax: Calculus with

Applications and Computing.
Volume 1.

LeCuyer: College Mathematics with
APL.

LidllPilz: Applied Abstract Algebra.
Second edition.

Logan: Applied Partial Differential
Equations.

Macki-Strauss: Introduction to Optimal
Control Theory.

Malitz: Introduction to Mathernatical
Logic.

MarsdenIWeinstein: Calculus I, H, III.
Second edition.

Martin: Counting: The Art of
Enumerative Combinatorics.

Martin: The Foundations of Geometry
and the Non-Euclidean Plane.

Martin: Geometrie Constructions.
Martin: Transformation Geometry: An

Introduction to Symmetry.
MillmanIParker: Geometry: A Metric

Approach with Models. Second
edition.

Moschovakis: Notes on Set Theory.
Owen: A First Course in the

Mathematical Foundations of
Thermodynarnics.

Palka: An Introduction to Complex
Function Theory.

Pedrick: A First Course in Analysis.
PeressinilSullivanlUhl: The Mathematics

of Nonlinear Programming.
PrenowitzlJantosciak: Join Geometries.
Priestley: Calculus: A Liberal Art.

Second edition.
ProtterlMorrey: A First Course in Real

Analysis. Second edition.
ProtterlMorrey: Intermediate Calculus.

Second edition.
Roman: An Introduction to Coding and

Information Theory.
Ross: Elementary Analysis: The Theory

of Calculus.
Samuel: Projective Geometry.

Readings in Mathematics.
Saxe: Beginning Functional Analysis
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ScharlaulOpolka: From Fermat to
Minkowski.

Schiff: The Laplace Transform: Theory
and Applications.

Sethuraman: Rings, Fields, and Vector
Spaces: An Approach to Geometrie
Constructability.

Sigler: Algebra.
SilvermanITate: Rational Points on

Elliptic Curves.
Simmonds: A Brief on Tensor Analysis.

Second edition.
Singer: Geometry: Plane and Fancy.
Singerffhorpe: Lecture Notes on

Elementary Topology and
Geometry.

Srnith: Linear Algebra. Third edition.
Srnith: Primer of Modem Analysis.

Second edition.

StantonlWhite: Constructive
Combinatorics.

StillweIl: Elements of Algebra: Geometry,
Numbers, Equations.

StillweIl: Mathematics and Its History.
Second edition.

StillweIl: Numbers and Geometry.
Readings in Mathematics.

Strayer: Linear Prograrnming and Its
Applications.

Toth: Glimpses of Algebra and Geometry.
Second Edition.
Readings in Mathematics.

Troutman: Variational Calculus and
Optimal Control, Second edition.

Valenza: Linear Algebra: An Introduction
to Abstract Mathematics.

WhyburnlDuda: Dynamic Topology.
Wilson: Much Ado About Calculus.
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