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Preface

Among the titles of the several class-tested versions of this book were the
alliterative sounding Counting: A College Course in Combinatorics and
the descriptive Counting as a First Course in Discrete Mathematics: An
Introduction to Enumerative Combinatorics, which sounded like something
from the nineteenth century. These titles and the final selection cxplain the
intent of the text. The details follow. Chapters 1 and 2 cover the elements,
including the principle of inclusion and exclusion. Chapter 3 deals with
generating functions. These three chapters form the core. The dependency
of the chapters is as follows.

Chapters 1, 2, 3

l \
Chapter 4 Chapter 6 Chapter 7

Chapter 5 Chapter 8

Chapters 4 (Groups) and 5 (Actions) take us through the Polya pattern
inventory theory. The chapter on groups introduces symmetry groups, per-
mutation groups, and what is necessary and sufficient for the practical
applications of group theory used in the next chapter. (I have not noticed
that those who have already had abstract algebra have a distinct advantage
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over those who have not. On the contrary. T have been told that this mate-
rial has helped those students who have gone on to take abstract algebra.
It there is a small overlap with other courses. it appears to be a beneficial
overlap.) Applications of Burnside's lemma and the Pélya theory constitute
Chapter 5. This is a nontrivial picce of mathematics that students scem to
enjoy thoroughly. The topic of Chapter 6 is recurrence relations. Chapter 7
deals with mathematical induction. and Chapter 8 is a brief introduction
to graph theory.

I have used preliminary versions of this text for a scmester course at the
sophomore level called An Introduction to Discrete Mathematics for the
Department of Computer Science and for the Department of Mathematics
and Statistics. This course usunally concentrated on Chapters 1, 2, 3, and 6,
with bits of 7 and 8 thrown in. T have used the first five chapters as a grad-
uate course for in-service teachers under the rubric Algebra for Teachers.
Altogether, there is enough material for a year course.

Beginning cnumerative combinatorics necessarily requires a problem-
solving approach. In the heginning, there is little theory but a lot of math-
ematical maturity to be learned. An instructor should not be upset that
there arc very few problems that do not have answers given in the part that
is called The Back of the Book. Both student and instructor will find this
important part of the book very useful. 1 have found that fair but tough
exams can be constructed on cxactly the same questions that are assigned
for homework.

What is a geometer doing writing a book on combinatorics? Actually,
I started out doing mathematical research in the area of finite projective
planes, which is combinatorics in geometric language. Such planes are sets
of mutually orthogonal latin squares in disguise. Although I next turned
to foundations of geometry. in recent years T have come to tiling the plane
as my principle interest. However, in addition to geometry courses. I have
cnjoyed teaching the content of this text for many, many years.

George E. Martin
martin@math.albany.edu
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1

Elementary Enumeration

§1. Counting Is Hard

Yes, counting s hard. We may as well get that out and understood right
at the top. “Counting” is short for “enumerative combinatorics,” which
certainly doesn’t sound easy. This is a course in discrete mathematics that
addresses questions that begin, How maeny ways are there to ... . For
example, we shall soon know the answer to questions such as, How many
ways are there to order 12 icc cream cones if 8 flavors are available? At
the end of the course we should be able to answer such nontrivial counting
questions as, How many ways are there to color the faces of a cube if k
colors are available, with each face having exactly 1 color? or How many
ways are there to stack n poker chips, each of which can be red, white,
blue, or green, such that each red chip is adjacent to at least 1 green chip?

There are no prerequisites for this course beyond mathematical maturity.
Of course, one gets mathematical maturity by taking mathematics courses.
This is as good a place to start as any other part of mathematics. One of
the things that make elementary counting difficult is that we will encounter
very few algorithms. You will have to think. There are few formulas and
each problem seems to be different. Unfortunately, the only way to learn
to do elementary counting problems is to do a lot of elementary counting
problems. Fortunately, this pays off for most people. Mastering the ways
of looking at a counting problem comes only with practice, practice, and
more practice.

Also, counting can be fun.

G. E. Martin, Counting: The Art of Enumerative Combinatorics
© Springer Science+Business Media New York 2001
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§2. Conventions

In order to shorten descriptions as much as possible, we will adopt some
conventions that will hold throughout the book. Persons are always dis-
tinguishable, one from another. For our purposcs, oranges arc indistin-
guishable, one from another. The same can be said for apples, A's, red
balls, and, unless otherwise specified, even dimes. You are encouraged to
generalize and apply the conventions to peaches, D’s, and green balls, for
example. Order within a choice is not to be considered unless specifically
mentioned. There are 26 letters in the English alphabet; we ignore such
words as “rhythm” and “cwm” and boldly declare that there arc 5 vowels
(a,e,i,0,u) and 21 consonants. The word “word” is used much as it is in
computer scicnce; here, a word is just a string of symbols, which, unless
otherwise specified, are assumed to be letters of the alphabet. We certainly
do not expect to find most such words in an English dictionary. Coins are
American coins and come in the denominations: peuny (1¢), nickel (5¢),
dime (10¢), quarter (25¢), half dollar (50¢), and dollar ($1 = 100¢).

For nonnegative integer n. the symbol n! is not shouted but rcad “n
factorial.” Factorials are defined recursively by 0! = 1 and n! = [n][{(n — 1)}]
for positive integers n. So. for example, 5! = [5][4] =5 x4 x 3 x 2 x 1.

A deck of cards consists of 52 cards, 13 in each of 4 suits: spades &,
clubs &, hearts O, and diamonds <. Spades and clubs are black; hearts
and diamonds are red. Each suit has a card of each of the face values 2, 3,
4, ..., 10, jack. queen, king, ace. Cards of the same face valuc are said to
be of the same kind. A bridge hand contains 13 cards, while a poker hand
contains 5 cards. A die is a cube with the sides numbered from 1 to 6.

How many months have 28 days? The answer to this old riddle is, of
course, All of them. Usually, in mathematics and logic, to say that there
are 10 balls in the box means that there are at least 10 balls in the box.
If there are 12 balls in the box, then there are certainly 10 balls in the
box. However, in combinatorics and probability, as well as “on the street.”
to say that there are 10 balls in the box means that there are exactly 10
balls in the box. When we talk about distributing 10 balls into 5 boxes,
we mean exactly 10 balls are to be put into the 5 boxes. This prompts the
admission that we realize that most of us will not spend large amounts of
our life putting balls into boxes, although we spend a lot. of time in this text
talking about putting balls into boxes. We are happy to abstract placement
problems to balls and boxes. This does not diminish the seriousness of the
mathematical applications.

Ten Quickies.

Answer the following 10 questions. Then check in The Back of the Book,
which begins on page 183, to see how well you have done.

1. How many ways are there to pick 1 student from 6 boys and 8 girls?
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2. How many ways are there to pick 1 piece of fruit from 6 oranges and 8
apples?

3. How many ways are there to pick 1 letter from 3 A’s, 5 B’s, and 7 C’s?

o

How many ways are there to pick 2 letters from 3 B’s and 3 G’s?

oy 4

. How many ways are there to pick 2 students from 3 boys and 3 girls?
How many ways are there to pick 5 oranges from 6 oranges?

. How many ways are there to pick 5 girls from 6 girls?

. How many ways are there to pick 1 girl from 6 girls?

9. How many ways are there to pick b pieces of fruit from 7 oranges and 8
apples?

10. How many ways are there to pick some pieces of fruit from 9 oranges
and 6 apples if at least 1 piece is picked?

§3. Permutations

More Quickies.

1. How many ways are there to pick a Latin book and a Greek book from
5 distinguishable Latin books and 7 distinguishable Greek books?

2. How many ways are there to make a 2-letter word?

3. How many ways are there to make a 2-letter word if the letters must be
different?

4. How many ways are there to make a 2-letter word with a consonant
followed by a vowel?

5. How many ways are there to pick a boy and a girl from 3 boys and 8
girls?

6. How many ways are there for 2 persons to sit in 5 chairs that are in a
row?

7. How many ways are there to pick 2 of 5 chairs that are in a row?

8. How many ways are there to make a 4-letter word?

9. How many ways are there to pick an element from the 5-by-7 matrix
(aij)?

10. How many ways are there to pick an element from the m-by-n matrix
((11]‘)?

Observation. The Multiplication Principle: If one thing can be done in
m ways and a second thing can be done in n ways independent of how the

first thing is done, then the 2 things can be done in mn ways.

11. How many ways are there to flip a coin and toss a die?
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12. How many ways are there to flip a coin, toss a die, and pick a card from
a deck of cards?

13. How many ways are there to arrange the aces from a deck of cards in
a row?

14. How many ways arc there to arrange the spades from a deck of cards
in a row?

15. How many ways arc there to arrange (in a row) all n elements of the set
{aj.ay.as. ... a,}? Each of these arrangements is called a permutation
of the elements in the set. An arrangement using exactly r of the n elements
is called an r-permutation of the elements in the set. It follows that there
are

(n—=0)(n-1)n-2)--(n-(r—1))

r-permutations of n distinguishable objects.

Observation. The number of permutations of n distinguishable objects is
n!. The number of r-permutations of n distinguishable objects is n!/(n—r)!.

§4. A Discussion Question

How many ways can a pair of dice fall?

§5.  The Pigconhole Principle

If there are more pigeons than pigeonholes, then some pigeonhole must
contain at least 2 pigeons. To be more specific, if n+ 1 or more pigeons are
assigned to n pigeonholes, then at least 2 pigeons are assigned to the same
pigeonhole. To be more general, if there are more than k times as many
pigeons as pigeonholes, then some pigeonhole must contain at least k + 1
pigeons. This doesn’t seem like advanced mathematics at first. Actually,
most generalizations of the Pigeonhole Principle are beyond our goal of
studying elementary combinatorics. We will follow an example by some
pigeonhole problems that are fun but not exactly trivial.

For a nontrivial example, consider 6 points in the plane with no 3 collinear.
Suppose each pair of these points is joined by either a red segment or a
green segment. Show that at least 3 of the points are joined by seginents
of the same color. You may wish to put the book down and try this rather
hard problem before reading about the solution. Now, at least 3 of the 5
segments joining point A in the set to the other 5 points must be of the
same color by the Pigeonhole Principle. We call these point D, E. and F,
and, without loss of generality. we may suppose the color is red. If 1 of the
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segments DE, EF, or FD is also red, then the problem is solved; and, on
the other hand, if all 3 of these segments are green, the problem is also
solved.

Pigeonhole Problems.

1. We have 10 indistinguishable white socks and 10 indistinguishable
black socks in our sock drawer. How many socks must we withdraw
from our sock drawer, without seeing the socks, in order to be sure
that we have a matching pair?

2. How many cards must we draw from a deck of cards to be sure of
getting at least 2 from the same suit?

3. How many people must be in a room in order to be sure that at least
3 have the samc birthday?

4. How many balls must be chosen from 12 red balls, 20 white balls, 7
blue balls, and 8 green balls to be assured that there are 10 balls of
the same color?

5. How many persons must be chosen from n couples in order to be sure
that 1 couple is included?

6. Show that in a room of 20 persons there are at least 2 persons who
have the same number of mutual friends in the room.

7. Consider the points in the plane that have integer coordinates. Show
that at least 1 of the 10 segrnents joining any 5 of these points contains
another such point.

8. Show that at any party of at least 6 persons there is a set of 3 that
are mutual acquaintances or a set of 3 that are mutual strangers.

§6. n Choose r by Way of MISSISSIPPI

As we will frequently do, we state a sequence of problems, cach of which
leads to the next. We may not have been able to answer the last question
in the first place, but the answer to the last question becomes “obvious”
after going through the other questions. In the following we assume that
Ay, A, and Ajg are letters. It might help to think of them first as 3 A’s
having 3 different colors and later as indistinguishable A’s. Likewise, first
think of E; and E5 as different colored E’s.

1. How many ways are there to arrange the 6 letters of the word
ABCDEF?
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2. Ilow many ways are there to arrange the 6 letters of the word
Ay AL ASE4EST?

3. How many ways are there to arrange the 6 letters of the word
A] AgAgEEF ?

4. How many ways are there to arrange the 6 letters of the word
AAAE E;F?

5. How many ways are there to arrange the 6 letters of the word
AAAEEF?

6. How many ways are there to arrange the letters of the word
BANANAY

7. How many ways arc there to arrange the letters of the word
AAABBCCCCD?

8. How many ways are there to arrange the letters of the word
MATHEMATICS

9. How many ways are there to arrange the letters of the word
MISSISSIPPIT?
In doing this problem, the first thing to do is make the figure

M

bk b
wmwnnw
jaelavl

formed by spelling out the word letter by letter, starting a new column with
each new letter encountered. (You will use this very figure many times in
the sequel.) We may want to add an “117 to the bottom right to keep track
of the total number of letters. Seeing that there are 1,4, 4, 2 letters in the
respective columns, we calculate the answer 111/[114!4!12!] to our question,
where the “1!" in the denominator is completely optional.

Problems like #5, 6, 7, 8, and 9 will be called Mississippi problems.
Such problems are frequently part of a larger problem. We suppose now
that we are quite capable of answering any Mississippi problem, regardless
of the word given.

10. How many ways are there to arrange 4 A’s, 3 G’s, and the 6 letters U,
V. W, X, Y. and Z7

11. How many ways are there to arrange on a shelf 4 copies of an algebra
book, 3 copies of a geometry book, and 6 different trashy novels?

12. How many ways are there to arrange on a shelf 4 different algebra
books. 3 different geometry books, aud 6 different calculus books such that
the books on each subject are grouped together?

13. How many n-letter words have r C’s and n — r R’s?

Apply the solution of #13 to #14 where C stands for “choose” and R
stands for “reject” for the individuals considered 1 at a time and standing
in a row.
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14. How many ways can we select r persons from n persons when n > r?7

15. How many ways can we select r distinguishable objects from n distin-
guishable objects when n > r?

Each of the selections in #15 is called an r-combination of the n el-
ements. An r-permutation is ordered, and an r-combination is unordered.
Note that cach r-combination corresponds to exactly r! of the r-permuta-
tions. So, if we let (f) denote the number of r-combinations of n objects,
then (7)#! must be n!/(n—r)!, the number of r-permutations of n objects.
Sometimes (7) is read as “(the number of ) combinations of n things taken
r at a time” and sometimes as “n above r.” Note that “n over r” denotes
n/r and is different from n above r. In any case, we recommend always
reading (") as “n choose r.”

Observation. The number of r-combinations of n objects is
n!/r!(n — r)!. That is,

() =y oo () =(.2)

Can you think of a story that proves the following relationship for 0 <

e ()=o)

How about the following story, which also introduces our very handy friend
Lucky Pierre? We are to select a committee of » persons from a group of n
persons, 1 of whom is Lucky Pierre. Now, there are (7::11) ways to choose
the committee with Lucky Pierre on the committee, and there are (n;l)
ways to choose the committee with Lucky Pierre not on the committee.
The sum of these 2 numbers must be (Z) the number of ways of selecting
the committee. (Of course, we can also prove the relation by expanding
and simplifying both sides.)

Use the equation displayed above to continue, for at least 1 more line,
the array that is called Pascal’s Triangle and is illustrated in Table 1.1.
Except for the 1’s in Pascal’s Triangle, cach entry is the sum of the 2
integers that are to the right and left of it in the line above it.

§7. The Round Table

Our convention for counting the number of seatings at a round table is
that seatings s1 and s are considered the same seating iff (if and only if)
everyonc at the table has the same right-hand neighbor in s; as in s5. That
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1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1
1 11 55 165 330 462 462 330 165 55 11 1

1 12 66 220 495 792 924 792 495 220 66 12 1
TABLE 1.1. Pascal’s Triangle

is, if each person at a round table moves to the seat at their right, then we
count this as the same seating arrangement. All rotations of a particular
arrangement are considered the same. The chairs are evenly distributed,
and no one takes a chair until all persons have been placed around the
table.

1. How many ways can 8 persons be seated at a round table?

It is quite handy to consider Lucky Pierre as 1 of the persons that is
to be seated and place him first. Since this is a round table, it makes no
difference which chair he sits in. So put Lucky Pierre at the table. Now,
there is an order established for the remaining places, say, to Lucky Pierre’s
right. The remaining 7 persons can be seated then in 7! ways. The answer
is 71
2. How many ways can 12 of King Arthur’s knights be seated at a round
table?

The answer is 111, (Who knew that Lancelot was really Lucky Lancelot
Pierre?) We can easily generalize to the following observation.

Observation. The number of ways of seating n persons at a round table
is (n— 1)L

3. How many ways can 8 couples be seated in a row if each couple is seated
together?

The persons in each couple can be arranged in 2! ways. Then the couples
can be arranged in a row in 8! ways. The answer is 28 x 8!.

4. How many ways can 8 couples be seated at a round table if each couple
is seated together?

The persons in each couple can be arranged in 2! ways. Then the couples,
including, of course, the Pierres, can be arranged at the round table in 7!
ways. The answer is 2% x 7.

It is a considerable help in doing most counting problems to mentally
perform the physical actions that arc necessary to accomplish some desired
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result. In thinking about #4 above, for example, our good friends Lucy
and Lucky Pierre are a convenient construct. We ask ourself, in placing the
Pierres at the round table, Do T seat Lucky to the right or to the left of
Lucy? Likewise for each of the other couples, Which member sits on the
right of the other? Now, with the Picrres already at the round table, we
ask, In what order can we place the remaining ordered couples to the right
of the Pierres? Answering these easy questions, we get to the final answer.
On the other hand, if we think of putting 1 place card down for each couple
first and then permuting the 2 members of each couple, we get the answer
7! x 218,

5. How many ways can 4 Americans, 7 Belgians, and 10 Canadians be
seated at a round table?

Is the answer 20! obvious?

6. How many ways are there to arrange 4 C’s and 8 R’s such that no 2 C’s
arc adjacent?

We first put down the 8 R’s in a row. There is only 1 way to do this.
Then, from the diagram ARARARARARARARARA, we see that there are
9 spaces into each of which we can insert at most 1 of the 4 C's. We can
choose these 4 spaces in (Z) ways and, of course, insert the C’s into these
spaces in 1 way. Thus, there are (2) words with 4 C’s and 8 R’s such that
no 2 C's are adjacent. We will find that the wedge A is an invaluable tool
to be used to indicate places for spaces in many counting problems.

Homework.

1. How many ways are there to select a committee of 5 from 11 teachers?
2. How many poker hands (5 cards) are there?

3. How many bridge hands (13 cards) are there?

4. How many full houses (three-of-a-kind and a pair) are there in poker?

5. How many ways are there for John to invite some of his 10 friends to
dinner, if at least 1 of the friends is invited?

6. How many ways are there to arrange the letters of the word
DABBADABBADOQO?

7. There are 5 algebra books, 7 geometry books, and 4 calculus books.
The books are distinguishable. How many ways are there to pick 2
books not both on the same subject?

8. How many different selections can be made from 5 apples and 7 or-
anges if at least 1 piece of fruit is chosen?

9. How many of the 26-letter permutations of the alphabet have no 2
vowels together?
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10. How many 10-letter words are there with no 2 adjacent letters the
same?

11. How many 10-element subsets of the alphabet have a pair of consec-
utive letters?

12. How many ways can 5 men and 7 women be seated in a row with no
2 men next to each other?

13. How many ways can 5 men and 7 women be seated at a round table
with no 2 men next to cach other?

Which of these questions can we answer now?
1. With repetition not allowed and order counting, how many ways arc
there to select r things from n distinguishable things?

2. With repetition allowed and order counting, how many ways are there
to select r things from n distinguishable things?

3. With repetition not allowed and order not counting, how many ways are
there to select  things from n distinguishable things?

4. With repetition allowed and order not counting, how many ways are
there to select r things from n distinguishable things?

§8.  The Birthday Problem

This optional section presents a result that is interesting but nonintuitive.

=1 20=2 31'=6
41=24 5!'=120 6! =720
7! = 5040 8! =40, 320 9! = 362, 880

The approximation

n!l =~ n"e "V2rn where e & 2.718281828459045 ...

is called Stirling’s Formula. Stirling’s approximation for n! is off by less than
1% for n > 8. For example, Stirling’s Formula can be used to approximate
just how big (58) is—it’s about thirty million. An exercise in elementary
algebra shows that 4%/\/7n i3 a good approximation to (Qr'bl)

The result of the following application of Stirling’s Formula should be
part of cveryone’s mathematical baggage. Let p,, be the probability that
some 2 of n persons picked at random have the same birthday. The ques-
tions is, What is the smallest valuc of n for which p, > 1/27 Tt is easier

to first compute the probability that no 2 of the n persons have the same
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birthday. Here, we think of a list of the n persons. We then ask, How many
ways can each in turn, have a birthday that is different from those above
them on the list? We assume that the total number of possible birthdays
is 365™; you may very well make a different assumption.

P(no 2 of n persons picked at random have the same birthday)

_ 365x364x363x362X---X(366—n)
- 365x365x365x365x%---x365

= 365!/[(365 — n)! 365"]
—~ 3653656—365\/m

T (365—n)365-ne—(365 ). /ar (365-1n) 365"

_ 365365 =365 /G 365.5
(365—n)365—n—(365—n) /27 (365--n)-5 365"

365/ (365 — n)]3655-ne-n,

Since (365/342)312-5¢72% ~ 493 and (365/343)343%¢ =22 ~ 524, then we
have the surprising result that the probability that at least 2 of 23 persons
picked at random have the same birthday is greater than 1/2. The same
formula shows that if there are 41 persons, then there is more than a 90%
probability that at least 2 share a birthday.

|

§9. n Choose r with Repetition

We will use Mississippi problems to find the number of ways to choose r
things from n distinguishable things when repetition is allowed. First, he
sure that you can answer the following special basic problems.

e How many fence posts in a row arc needed if adjacent posts are 2
yards apart and the end posts are 20 yards apart?

¢ How many dividers are necessary to separate 10 things in a row from
one another?

These “bullet problems” appear over and over again in different disguises.
There is no reasonable answer to the question, When do I add 1 and when
do T subtract 17

As we consider the following 10 questions, the important thing to notice
is that each, after the first, has the same answer as the question above it.
Thus we know that the difficult last question has the same answer as the
easy first question.

1. How many words are there consisting of 3 D’s and 7 U’s? (Dividers and
Units)

2. How many sequences are there consisting of 3 |’s and 7 %’s? (Bars and
Stars)
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3. How many sequences are there consisting of 3 +’s and 7 1's?

4. How many nonnegative integer solutions are there to the equation
&I + Lo -+ I3 + xTrq = 77

The sequence 111+ + 11+ 11 in #3 corresponds to the solution 3+ 0+
2+ 2 = 7 in #4. Likewise, the solution 04+ 0+ 2+ 5 = 7 in #4 corresponds
to the sequence + + 11 + 11111 in #3. This correspondence shows that
the answer to #4 is the same as the answer to #3.

By thinking of the variables x, x2, 3, and 14 as a row of boxes into which
we are dropping the 7 1's, we see that #4 and #5 have the same answer.
We probably could not have answered #5 without this observation. The
important thing to note is that all these questions have the same answer.

5. How many ways arc there to put 7 indistinguishable balls into 4 boxes
in a row?

6. How many ways are there to put 7 indistinguishable balls into 4 distin-
guishable boxes?

7. How many ways are there to pass out 7 oranges to 4 children?

8. How many ways are there to pass out 7 indistinguishable cards that say
“I CHOOSE YOU” to 4 persons?

9. How many ways are there to choosc 7 picces of fruit from 4 different
types available?

10. How many ways are there to choose, with repetition allowed, 7 objects
from 4 distinguishable objects?

Now consider the following 10 questions. These are the same questions as

above but with “n” and “r” replacing “4” and “77. Again, the important,

thing to notice is that adjacent questions have the same answer. We get to
our goal by starting with a trivial Mississippi problem.

1. How many words are there consisting of (n — 1) D’s and r U’s?

2. How many sequences are there consisting of (n — 1) |'s and r *’s?

3. How many sequences arc there consisting of (n — 1) +’s and r 1's?

4. How many nonnegative integer solutions are there to the equation
Ty Faptazt o+ Taor i, =17

5. How many ways arc there to put r indistinguishable balls into n boxes
in a row?

6. How many ways are there to put r indistinguishable balls into n distin-
guishable boxes?

7. How many ways arc there to pass out r oranges to n children?

8. How many ways are there to put r indistinguishable cards that say “I
CHOOSE YOU” into n distinguishable boxes?
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9. How many ways are there to choose r pieces of fruit from n different
types available?

10. How many ways arc there to choose, with repetition allowed, r objects
from n distinguishable objects?

The solution to #10 is the same as the solution to #1, which is a very

n—1 oy
(=141) on be

easy Mississippi problem. We notice that the the solution =; o))

written ("’+,’T__1) and thus we have the following.

Observation. With repetition allowed, the number of ways to choose r
objects from n distinguishable objects is

n+r—1
, .

The formula in the observation above is well worth remembering, assum-
ing that you know the meaning of ("Jr:*l). With this observation, we have
the contents of Table 1.2.

Ordered Selections Unordered Selections
(Permutations) (Combinations)
Without n! n
Repetition (n—r)! r
With
. -1
Repetition n’ (71 - ’r )
(allowed) "

TABLE 1.2. Selecting r from n Distinguishable Things.

1]

Some comments about notation are in order. We read “( as “n
choose r with repetition.” Let’s be quite clear that in “selecting with repe-
tition” we mean that repetition is allowed in making the selection and not
that a repetition is required in the choice. If we select with repetition 3
picces of fruit from oranges, bananas, peaches, and apples, we could select
3 oranges or we could select 1 orange, 1 banana, and 1 peach. How many
possible possible choices are there in this case? Although cach of the an-
swers 20, (g), and (4+§”1) is correct, we prefer, for pedagogical reasons, the
last form since this form carries the most information. We also note that,
although the language is different, “picking with replacement” is mathe-
matically the same thing as “picking with repetition.” Surely, the number
of ways to pick 5 cards from a deck, if after each pick the card is replaced
in the deck, is (***>7!). The language for picking ice cream cones seems to

5
require “with repetition” and not “with replacement.”

77,+77"—'l),7
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We have noted that the wedge  is an invaluable tool in doing counting
problems. We further illustrate the use of wedges in the following problem.

How many ways are there to arrange the letters in
NASHVILLETENNESSEE
with the first N preceding the the first S and with the first E preceding the
T?
There are many reasonable ways to attack the problem, depending on

what order we put the letters down to form an arrangement. In any case,
we begin by making the figure

NASHVILET

N S LE
N S E
E
kB

Let’s first consider the problem of arranging only the 3 N’s and the 3 S’s.
Suppose we choose {o begin by putting down the 3 S’s. We can do this
in 1 way. One attack continues with the diagram ASASASs, where the 4
wedges indicate possible spaces for the 3 N’s under the condition that the
left space is chosen at least once. Another attack continues by putting the
required N down with the 3 S’s to get the diagram NASASASa, with the
wedges representing the possible spaces for the 2 remaining N’s. (Observe
there is no wedge before the N as it would be the same as the wedge after
the N, as far as inserting more N’s is concerned.) In either case, we see that
there are (4+§4) ways to pick the spaces for the remaining N’s and, of
course, 1 way to place the N’s in these spaces. On the other hand, suppose
we choose to begin by putting down the 3 N's first. We can do this in
1 way. This approach continues with the diagram N,NsN,. where the 3
wedges indicate possible spaces for the 3 S’s. Thus, there are (3+3_]) ways
to pick the spaces for the S’s and, of course, 1 way to place the S’s in these
spaces. For a totally different approach, we note that the first letter must
be an N and be followed by any arrangement of 2 more N's and 3 S’s. This
Mississippi problem has the solution 2‘,)—;’, Whether our approach produces
(4+§—1)7 (3+123~1 2%”
N’s and 3 S’s.

At this point, we have a typical word that, together with wedges, has the
diagram ANANASASASANA. There are 6 letters and 7 available spaces for
the T and E’s. We can choose the spaces for the T and 5 E’s in (7+g" 1) ways,
and, then, put in the letters in these spaces in (‘;)) ways. as determined by
selecting the position of the T in the diagram EAEAEAEAEA. We are now
in the position of having a typical 12-letter word, together with wedges. as
in the diagram ANANASATASAEAEASANAEAEAEA. The 13 wedges here
indicate the possible spaces for the remaining 6 letters. We can pick the 6

), or we see that there are 10 ways to put down the 3
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spaces in (]3+:"1) ways, and, then, putting the letters in these spaces is a

simple Mississippi problem that can be done in g—: ways. The answer to our

question is
1 3+3-1 ) 74+6 -1\ /5 . 13+6-1 6_'
2 6 1 6 2!

Problems for Class.

1. How many possible outcomes are there if k dice are tossed?
2. How many 4-letter words are there with the letters in alphabetical order?

3. How many ways can 10 men and 7 women sit in a row so that no 2
women are next to each other?

4. How many ways can 10 men and 7 women sit at a round table so that
no 2 women are next to each other?

5. How many arrangements of the letters of RECURRENCERELATION
have no 2 vowels adjacent?

6. How many arrangements of the letters of RECURRENCERELATION
have the vowels in alphabetical order?

7. How many 5-letter words using only A’s; B’s, C’s, and D’s are there that
do not contain the word BAD?

8. How many ways can 8 persons, including Peter and Paul, sit in a row
with Peter and Paul not sitting next to each other?

9. How many ways can 8 persons, including Peter and Paul, sit at a round
table with Peter and Paul sitting next to each other?

10. How many ways can 4 persons of each of n nationalities stand in a row
with each person standing next to a fellow national?

11. How many ways are there to give each of 5 children 4 of 20 distinguish-
able toys?

12. How many ways can we partitiont 18 persons into study groups of 3, 6,
and 77

13. How many ways can we partition 18 persons into 3 study groups of 67

14. How many arrangements of 7 R’s and 11 B’s are there such that no 2
R’s are adjacent?

15. How many arrangements of the letters in MISSISSIPPI have no 2 I's
adjacent?

16. How many nonnegative integer solutions are there to the equation
Ty + X2+ 3+ x4 + x5 = 677

17. How many ways are there to distribute 30 green balls to 4 persons if
Alice and Eve together get no more than 20 and Lucky gets at least 77
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18. How many ways can we pick 18 letters from 7 A’s, 8 B’s, and 9 C's?

Ten Problems for Homework.

1. How many 4-letter words are there with the letters in alphabetical
order?

2. How many 4-letter words are there with no letter repeated and the
letters in alphabetical order?

3. How many 5-card poker hands are there with 2 pairs?

4. How many 3-letter words are there with no repeated letter if the
middle letter is a vowel?

5. How many arrangements of the letters in MISSISSIPPI have at least
2 adjacent I's?

6. How many possible outcomes are there if a pair of dodecahiedral dice,
with sides numbered 1 through 12, are tossed?

7. How many ways can we partition 18 persous into study groups of 5,

5. 4. and 47

8. How many ways can we partition mn distinguishable objects into m
piles of n objects each?

9. How many different selections of fruit can be made from 5 oranges
and 7 apples?

10. How many different words of at least 1 letter can be made from 3 A's
and 3 B’s?

You may feel that we should have some special symbol for “n choose r
with repetition,” as there is for “n choose r.” Well, we do. This symbol was
not immediately introduced so that we would get into the habit of thinking
of “("4':71)” whenever we said “n choose r with repetition.” It would be a
good exercise to give the answers to the 5 questions below both with and
without the new notation. We define the symbol “<:f‘>,” which we read as
“n choose r with repetition,” by

0=

Five Problems for Homework.

1. How many arrangements of the letters in MISSISSIPPI have no P
adjacent to an S?7 (Hint: Although it is the same problem, it is very
much easier to consider no S adjacent to a P.)
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2. How many nonnegative integer solutions are there to the equation

r1 +xe+ a3+ g+ x5+ 16 = 327

3. How many positive integer solutions are there to the equation

11 + 2+ X3+ x4 + 5 + 26 = 327

4. How many positive integer solutions are there to the inequality
21+ X2 + a3+ 24 + x5 + g < 327
(Hint: Consider x1 + x2 + o3 + x4 + &5 + 6 + z7 = 32.)
5. How many nonnegative integer solutions are therce to the inequality

$1+I2+$3+174+I5+I6<32?

§10. Ice Cream Cones—The Double Dip

We know that 5 single dip ice cream cones can be ordered without repetition
from 12 available flavors in (1:) ways. We also know that 5 single dip ice
cream cones can be ordered with repetition allowed from 12 available flavors
in (12+55_]) ways. We now face the complications presented by considering
the double dip, where 2 flavors may be ordered for 1 cone. We will have to
concern ourselves with the true ice cream aficionado who asserts that the
order of the scoops on the cone must be considered, as well as those less
discerning who consider the order of the scoops to be irrelevant. Instead of
counting double dip cones where the order of the scoops is irrelevant, we
could alternately count the number of dishes with 2 scoops of ice cream.

1. How many ways can we order with repetition of cones allowed 5
double dip ice cream cones from 12 available flavors when the order
of the scoops is taken into consideration?

2. How many ways can we order without repetition of cones 5 double
dip ice cream cones from 12 available flavors when the order of the
scoops is taken into consideration?

3. How many ways can we order without repetition of cones 5 double
dip ice cream cones from 12 available flavors when the order of the
scoops is considered irrelevant?

4. How many ways can we order with repetition of cones allowed 5
double dip ice cream cones from 12 available flavors when the order
of the scoops is considered irrelevant?
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§11. Block Walking

1. How maiy ways arc there to arrange 10 R’s and 6 U’s? (Right and Up)

2. How many shortest paths, consisting only of nonoverlapping (cxcept at
endpoints) unit segments that are parallel to an axis, are there from the
origin in the plane to the point (10,6)7 See Figure 1.1, where 2 such paths
are shown.

(10,6)

(0.0)

FIGURE 1.1. Block Walking.

3. How many words are there consisting of 3 X's, 6 Y’s, and 7 Z's?

4. How many shortest paths, consisting only of nonoverlapping unit seg-
ments that are parallel to an axis, are there from the origin in 3-space to
the point (3,6,7)7

5. How many words are there consisting of z X's and y Y’s?

6. How many shortest paths, consisting only of nonoverlapping unit seg-
ments that are parallel to an axis, are there from the origin in the plane
to the point (x,y) with nonnegative integer coordinates? If we mark each
such point with the answer, then we should see a definite pattern. If we
are doing this on a sheet of paper and if we first rotate our grid so that
the origin is at the top before marking the points, then we cannot help but
recognize Pascal’s Triangle.

7. How many words are there consisting of x X's, y Y's, and z Z's?

8. How many shortest paths, consisting only of nonoverlapping unit seg-
ments that arc parallel to an axis, are there from the origin in 3-space to
the point (x,y, z) with nonnegative integer coordinates?

9. How many rectangles are there in Figure 1.17

10. How many squares arc there in Figure 1.17
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Quickies and Knights

Quickies. It undoubtedly pays off to do this very important exercise more
than twice, on different days, until you can zip right through the questions.
You should be able to answer these quickies almost in the time it takes to
read the questions.

1.

10.

11.

12.

13.
14.

15.
16.

How many ways are there to select 5 women from 16 husband-wife
couples?

How many ways are there to arrange the 7 letters AAABBBB 7

How many ways arc there to arrange, without having 2 C’s together,
the 12 letters of AAABBBBCCCCC?

How many ways are there to seat 10 people in a row?

. How many ways are there to scat 10 people at a round table?

How many distinguishable dominoes are there, (each of the 2 ends of
a domino has 0 to 6 dots carved ou it)?

How many ways can 14 men and 9 women be seated in a row so that
no 2 women sit next to each other?

. How many ways are there to select 10 cans of soda from 4 different

brands?

. How many ways can 22 cans of beer be handed out to 4 people if

everyone must get at least 1 can?

How many ways are there to pick 9 cans from among 8 cans of each
of 57 varieties?

How many ways are there to distribute 5 apples and 8 oranges to 6
children?

How many ways are there to select some fruit from 5 apples and 8
oranges, taking at least 1 piece?

How many nonnegative integers less than a billion have 5 7's7

How many 5-letter words can be formed from the alphabet without
repeating any letter?

How many ways are there to pair oflf 8 men with 8 women at a dance?

How many positive integer solutions are there to the equation w +
r4y+z=247

. How many ways are there to pick 12 letters from 12 A’s and 12 B’s?
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18. How many ways are there to pick 18 letters from 12 A's and 12 B’s?

19. How many ways arc there to pick 25 letters from 12 A’s, 12 B’s and
12 Cs?

20. How many ways are therc to select a dozen doughnuts chosen from 7
varieties with the restriction that at least 1 doughnut of cach variety
must be chosen?

21. How many ways are there to assign 50 agents to 5 different countries
so that each country get 10 agents?

22. How many ways arc there to put 17 red balls into 12 distinguishable
boxes with at least 1 ball in cach box?

23. How many ways can 9 dice fall?

24. How many ways can 12 pixies (distinguishable, of course) sit at a
round table?

25. How many ways are there to arrange 5 C’s and 15 R’s such that there
are al least 2 R’s between any 2 C’s?

Consider the following problem.

How many ways are there to select 5 integers from {1.2, ... ,20} such
that the (positive) difference between any 2 of the 5 is at least 37

This may be a dilficult problem until we think of either choosing or
rejecting each integer in turn and associate our selection of the 5 integers
with a word consisting of 5 (s (for “Choose”) and 15 R’s (for “Reject™)
such that there are at least 2 R’s between any 2 C’s? Aha! This problem
is only the last quickie in disguise. To compute the solution, we start with
the diagram ,CACACACACh, with the 6 wedges indicating places for the
ingertion of the 15 R’s. Each of the inner 4 places must be chosen at least
twice, leaving 15 — 8 arbitrary choices among the 6 places. Thus, we get
<(7’.> as our answer. We have changed a fairly hard problem into an easy
problem. Once scen, such problems now become quickics.

We will use the same technique in a generalization of a classic problem,
which is not a quickie and which you might enjoy trying before reading its
solution.

The Knights’ Quest. How many ways arc there to select 4 knights-
just the right number for a quest to rescue a fair maiden -- from 15 knights
sitting at a round table if no adjacent knights can be chosen?

We assume that Lucky Lancelot Pierre is 1 of the knights at the round
table. There are 2 cases: either Lancelot goes on the quest or he does not.
First, suppose Lancelot goes on the quest. Now. with Lancelot and hence
the 2 knights adjacent to Lancelot climminated from further consideration
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in this case, we have 12 knights remaining from which to select 3 with no 2
adjacent. We want to count the number of words consisting of 3 C’s {again
for “Choose”) and 9 R’s (again for “Reject”) but with no 2 adjacent C’s.
Putting down the 9 R’s first, we see that there are 10 places into which we
can insert at most 1 C. There are (150 ) such words and an equal number of
quests having Lancelot as a member. Without Lancelot on the quest, we
are looking for the 14-letter words with 4 C’s and 10 R’s but no adjacent
(’s. In this case we have (141) possibilities. Hence, our final answer is 450

from
10 11
() (5)

Let’s generalize the problem and suppose that there are k knights and
that ¢ are to be chosen for the quest with no adjacent knights chosen.
If we calculate the number of quests that have Lancelot as a member and
multiply this number by k. then this product equals ¢ times the number that
we are seeking. (Not that we are interested, but the product is the number
of quests with a designated leader.) Now, with Lancelot and hence the 2
knights adjacent to Lancelot climinated, we have k& — 3 knights remaining
from which to select ¢ — 1 with no 2 adjacent. We want to count the number
of words consisting of ¢ — 1 C’s and (k —3) — (¢ — 1) R’s but with no 2
adjacent C’s. There are (k;qzl) such words and an equal number of quests
having Lancelot as a member. The number we are looking for is f‘;(}‘;fil)

or ﬁ(k;q), or

k{k —q—1)!
q!(k = 2q)!

Let’s generalize the problem even further. Instead of insisting on only
1 knight between any 2 chosen knights, suppose that there is a minimum
number g (for gap) of knights that must be between any 2 chosen knights in
the problem. This time, we want to multiply k/¢ times the number of words
with g — 1 Cs and (k— (29 + 1)) — (¢ — 1) R’s but with any 2 C’s having
at least g R’s between them. In this case, it is much easier to put down the
q—1 C’s first. The (g —1}+1 wedges in the diagram ,C ChCx ... ACACa
indicate the places available for inserting R’s. We must choose each of the
inner (¢ — 1) — 1 places at lcast g times to meet the condition of having
g R’s between any 2 C’s. This leaves k — (29 + 1) — (¢ — 1) — y(g — 2)

arbitrary choices for as many R's in the ¢ places. Hence, we have a solution
}‘4

k(k—gqg—1
E<A~7<2n+1>—<3 D) aa-2)) 0 (), or
k(k —gq—1)!

k= (g+ gt
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§13. The Binomial Theorem

What is the cocfficient of @'’ in the expansion of the product (a + b)"?
We write the product (a + b)™ as the product

[a +blla + blla+blla+b]--[a+blja+b].

consisting of n identical binomial factors a+b, each within a pair of brackets.
In expanding this product, we see that each of the factors within brackets
must contribute cither an a or a b to each term in the expansion. Collecting
like terms, we see that the sum ¢ + j of the exponents of the term ¢;;a’b/
in the expansion must be n and that ¢;; must be just the number of ways
of picking the 4 factors within brackets that contribute an a. So ¢;; = (’;)
Likewise, ¢;; = ('f‘), since this is the number of ways of picking the j factors
within brackets that contribute a b. Since 7 + j = n. this merely says that

(7) = (")

Observation. For positive integer n.,

(a+b)" = Z (7) b

r—0

This result is called the Binomial Theorem and is why the numbers
of the form ( :’) are frequently called binomial coefficients.
Set a = b =1 in the Binomial Theorem to get the result

- n n
; (1) =2

Set a = —1 and b =1 in the Binomial Theorem to get the result

-6~ ()-6)-()

There are literally thousands of equations involving the binomial coefhi-
cients. We state only 1 more here; as is shown in The Back of the Book,
this equality can be proved using a block walking argument:

2 2 2 2
n n n i n R n\" _ 2n
0 1 2 T n/)
Also, by counting the number of ways to select n persons by picking & of

m men and n — k of w women, we see that 37, (7)(,“,) = (™). The
special case m = w = n gives the desired equation.
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§14. Homework for a Week

1.

10.

11.

12.

13.

14.

How many ways are there to put 24 distinguishable flags on 18 dis-
tinguishable flagpoles? (Our flagpoles can hold any number of flags.
Actually, flagpole problems are only balls-into-boxes problems where
order within the boxes is considered.)

. How many ways arc there to put 24 distinguishable flags on 18 dis-

tinguishable flagpoles if cach flagpole must have at least 1 flag?

ITow many ways can we put r indistinguishable balls into n distin-
guishable boxes with exactly m of the boxes empty?

How many ways are there to distribute 20 oranges to 8 children if the
youngest 2 children get the same number of oranges?

How many ways are there to distribute 20 distinguishable books to 8
children if the youngest 2 children get the same number of hooks?

How many arrangements of the letters in WISCONSIN have a W
adjacent to an I but no 2 consecutive vowels?

How many ways are there to distribute 62 indistinguishable white
balls and 8 distinguishable numbered balls into 10 distinguishable
boxes?

How many nonempty collections of balls can be formed frem 8 red
balls, 9 white balls, and 10 blue balls?

How many arrangements of MISSISSIPPI are there in which there is
an I adjacent on each side of each P?

How many arrangements of MISSISSIPPI are there in which the first
I precedes the first S and the first S precedes the first P?

In how many arrangements of MISSISSIPPI do both P’s precede all
the S’s?

How many ways are there to put 5 indistinguishable red flags, 7 in-
distinguishable blue flags, and 11 different, distinguishable flags onto
15 distinguishable flagpoles?

How many ways are there to seat 8 boys and 13 girls at a round table
with no 2 boys adjacent and each girl sitting next to at least 1 boy?

How many ways are there to make 95 cents change in 1943 pennies,
1998 pennies, and 2001 quarters?

. How many clection outcomes are there such that exactly 3 of the 5

candidates tie for the most votes from 38 voters?
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16. How many ways arc there to put n distinguishable balls into n dis-
tinguishable boxes so that cxactly 2 boxes are empty?

17. How many ways arc there to put 8 indistinguishable balls into 6
distinguishable boxes if the first 2 boxes together have at most 4
balls?

18. How many ways are there to put 8 distinguishable balls into 6 distin-
guishable boxes if the first 2 boxes together have at most 4 balls?

Four Questions for Thought.

Half of the following questions are easy and half are, at this point, nearly
impossible. With experience, we will be able to recognize a very hard prob-
lemn. What is it that makes half of the following very hard?

e How many ways can we put r distinguishable balls into n distinguish-
able boxes?

e How many ways can we put 7 indistinguishable balls into n distin-
guishable boxes?

e How many ways can we put r distinguishable balls into n indistin-
guishable boxes?

e How many ways can we put 7 indistinguishable balls into n indistin-
guishable boxes?

§15. Three Hour Exams

Practice Exam #1. (Do NOT simplify your answers. You may omit or
miss 3 questions without penalty.) 1. How many 4-letter words arc there?
2. How many 4-letter words have the last letter repeat an earlier letter?
3. How many ways can 8 individuals sit at a round table? 4. How many
ways can 7 boys and 5 girls line up with all the girls together? 5. How
many ways can 5 1-scoop dishes of ice cream be ordered with repetition if
7 flavors are available? 6. How many ways can 5 3-scoop dishes of ice cream
be ordered with repetition if cach scoop can be any 1 of 7 available flavors?
7. How many ways can 7 oranges and 5 distinguishable toys be distributed
to 4 children? 8. IHow many ways can 4 A’s, 5 B’s, and 6 C’s be arranged
with no B directly following an A? 9. How many poker hands contain at
least 1 card in each suite? 10. How many ways arc there to pick 20 letters
from 10 A’s. 10 B’s, and 10 C’s? 11. How many integer solutions arc there
to the system 0 <z < y < z < 257 12. How many positive integer solutions
are there to the system = + y + = < 257 13. How many positive integer
solutions are there to the system x+y+2z = 257 14. How many ways can we
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put 7 indistinguishable balls into s distinguishable boxes? 15. How many
7 element subsets of the letters of the alphabet have a pair of consecutive
letters? 16. How many arrangements of MISSISSIPPT are there? 17. How
many arrangements of MISSISSIPPI have an S adjacent on each side of the
M? 18. How many arrangements of MISSISSIPPI have both P’s precede
all the S§’s? 19. How many arrangements of MISSISSIPPI have the first S
precede the first I and the first T precede the first P? 20. How many ways
can 5 indistinguishable red flags, 7 indistinguishable blue flags, and 11
different, distinct national flags be flown from 14 distinguishable flagpoles?

Practice Exam #2. (Do NOT simplify your answers. You may omit or
miss 3 questions without penalty.) 1. How many ways are there to arrange
the letters of MISSISSIPPI? 2. How many balls must be chosen from 12
red balls, 20 white balls, 7 blue balls, and 8 green balls to be assured
that there are 10 balls of the same color? 3. How many of the 26-letter
permutations of the alphabet have no 2 vowels together? 4. How many
9-element subsets of the letters of the alphabet have no pair of consecu-
tive letters? 5. How many ways can 6 men and 8 women be seated at a
round table with no 2 men next to each other? 6. How many ways can 9
persons, including Peter and Paul, sit in a row with Peter and Paul not
sitting next to each other? 7. How many 5 letter words arc there with no
repeated letter if the middle letter is a vowel? 8. How many arrangements
of the letters in MISSISSIPPI have at least 2 adjacent S’s? 9. How many
different selections of fruit (including none) can be made from 5 oranges
and 7 apples? 10. How many ways can some (including none and all) of
32 indistinguishable balls be put into 6 distinguishable boxes? 11. How
many ways can we order with repetition of cones allowed 7 double dip ice
cream cones from 15 available flavors when the order of the scoops is taken
into consideration? 12. How many ways can we order with repetition of
cones allowed 7 double dip ice cream cones from 15 available flavors when
the order of the scoops is considered irrelevant? 13. How many ways are
there to distribute 6 apples and 9 oranges to 5 children? 14, How many
ways are there to pick 20 letters from 14 A’s and 14 B’s? 15. How many
ways are there to put 26 distinguishable flags on 14 distinguishable flag-
poles if each flagpole must have at least 1 flag? 16. How many ways can we
put 32 red balls into 12 distinguishable boxes with exactly 3 of the boxes
empty? 17. How many ways are there to distribute 62 indistinguishable
white balls and 8 distinguishable numbered balls into 10 distinguishable
boxes? 18. How many ways are there to put 6 indistinguishable red flags,
8 indistinguishable blue flags, and 13 different, distinguishable flags onto
15 distinguishable flagpoles? 19. How many 10-letter words are there with
no 2 adjacent letters the same? 20. How many arrangements of the word
MASSACHUSETTS without any consecutive vowels have an H adjacent
to an A?
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Practice Exam #3. (Do NOT simplify your answers. You may omit or
miss 5 questions without penalty.) 1. How many ways are there to arrange
the letters of MISSISSIPPI? 2. How many balls must be chosen from 12
red balls, 20 white balls, 7 blue balls, and 8 green balls to be assured
that there are 10 balls of the same color? 3. How many of the 26-letter
permutations of the alphabet have no 2 vowels adjacent? 4. How many ways
can 7 distinguishable lions and 4 distinguishable tigers be paraded in line
into an arena if no tiger follows directly behind another tiger? 5. How many
ways can 6 men and & women be seated at a round table with no 2 men next
to cach other”? 6. How many ways can 9 persons, including Peter and Paul,
sit. in a row with Peter and Paul not sitting next to cach other? 7. How
many 5-letter words arc there in which every 3-letter subword cousists of 3
distinguishable letters? 8. ITow many arrangements of MISSISSIPPI have
the first I precede the first S?7 9. How many different selections of fruit
(including none) can be made from 5 oranges and 7 apples? 10. How many
ways can 10 passengers sit in a 10-scat train compartment with 5 scats
facing forward and 5 seats facing backward, accommodating 4 who want
to face forward and 3 who want to face backward? 11. How many ways
can we order with repetition of cones allowed 7 double dip ice cream cones
from 9 available flavors when the order of the scoops is not taken into
consideration? 12. How many ways can 6 speakers be ordered if speaker
A must not precede speaker B? 13. How many ways are there to form
G-clement subsets of {1.2, ... .25} such that the largest element is 207
14. How many ways are there to form 6-element subsets of {1.2, ..., 25}
such that the largest element is greater than 207 15. How many ways are
there to form 6G-element subsets of {1.2, ..., 25} having no 2 consccutive
integers? 16. How many ways are there to arrange 4 A’s, 5 B’s, 6 (s, and
7 D’s with no consccutive B's? 17. How many ways are there to arrange 4
A's, 5 B's, 6 C's, and 7 D’s with no substring AB occeurring? 18. How many
ways arc there to seat 7 men and 7 women in a row with men and women
alternating? 19. How many ways are there to seat 7 men and 7 women
at a round table with men and women alternating” 20. How many ways
are there to seat 7 inseparable couples at a round table? 21. How many
ways are there to walk a total of 7 blocks north and 4 blocks west while
stopping at the shop that is 3 blocks north and 2 blocks west? 22. How
many ways are there to put m distinguishable flags on n indistinguishable
flagpoles so that each flagpole has at least 1 flag? 23. How many ways can 8
indistinguishable red flags. 9 indistinguishable blue flags, and 10 different,
distinct national flags be flown from 11 distinguishable flagpoles? 24. How
many ways can 8 indistinguishable red flags, 9 indistinguishable blue flags,
and 10 different, distinet national flags be flown from 11 distinguishable
flagpoles if each flagpole has at least 1 flag? 25. How many ways can 8
indistinguishable red flags, 9 indistinguishable blue flags. and 10 different,
distinct national flags be flown from 11 distinguishable flagpoles if cach
flagpole has at least 2 flags?
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The Principle of Inclusion and
Exclusion

§16. Introduction to PIE

Let’s begin with some comments about Figure 2.1, which is on the next
page. We are looking at properties of subsets A, B, C' of some universal set
that has ¢ elements. The universal set in the figure is represented by the
rectangles. For each set S, we let |S| denote the number of elements in S
and say that |S| is the size of S. Looking at the top third of the figure, we
see a trivial result that is tremendously important. Frequently it is much
easier to count the elements in a set by first counting the elements not in
the set. For example, counting the 5-letter words that have a vowel is very
difficult without first counting the number of 5-letter words that have no
vowel. The number of 5-letter words that have a vowel is 26° — 215,

Although the middle third of Figure 2.1 may be considered common
sense that follows simply from the use of language or is easily proved, the
bottom third probably needs some argument. In order to count the number
of clements in none of A, B, (', we begin by putting a +1 in each of the
8 regions in the figure. Continue by putting a —1 in each of the 4 regions
that are within A, then within B, and then within C. Next, we put a +1
in each region that lies within at least 2 of the 3 sets. Finally, we put a —1
in the region that lies within all 3 of A, B, C'. We should end up with only
the region having no elements of A, B, (' having a sum of +1, with all the
others 7 regions having a sum of 0.

We can now understand where the name for PIE comes from. For cxam-
ple, following the procedure given above, we see that an element in ANBNC

G. E. Martin, Counting: The Art of Enumerative Combinatorics
© Springer Science+Business Media New York 2001
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A The number of elements
not in A is

I — Al

The number of elements
in neither 4 nor B is

B t—(lAl+[B]) + AN B
So. [AUB| = (JA| + |B|) - |AN B

The number of elements
in none of A, B, is
t
= ([A[+ B[+ |C])
+{(|[ANB|+|ANC|+|BNC|)
- |[AnBnNCY|.

So, [AUBUC|
— (JA|+ B+ |C]) = JANB|+|ANC|+|BNC|) +|ANBNC|.

FIGURE 2.1. Venn Diagrams for PIE.
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is included once in ¢, excluded 3 times in | 4] + |B| 4 |C], included 3 times
in |JANB| +]|ANC|+|BnNC|, and finally excluded once in [AN BN C|.
The total here is 0, as it should be. All this is a bit tedious and it is appar-
ent that using diagrams to go to 5 or more sets is a frightening idea. You
may be able to see a pattern emerging and guess the arithmetic result of
starting with 4 or more subscts. We will prove this general pattern in the
next section. The following problem set is based on only the results stated
in Figure 2.1.

PIE Problems I.

1. How many 9-digit (ideal) Social Security numbers are there with re-
peated digits?

2. How many 4-letter words begin or end with a vowel?
3. How many 4-letter words ncither begin nor end with a vowel?

4. How many ways can 25 red balls be put into 3 distinguishable boxes
if no box is to contain more than 15 balls?

(44

. How many ways can 25 red balls be put into 3 distinguishable boxes
if no box is to contain more than 10 balls?

6. How many arrangements of the letters in COMBINATORICS have
both (s preceding both I’s or both O’s preceding both I's?

7. How many integer solutions are there to the system

T4z +x3 =18, 0<x; <97

8. How many permutations of the 10 digits contain the sequence 024 or
the sequence 4567

9. How many permutations of the 10 digits contain at least 1 of the 3
sequences 123, 345, 5677

10. How many ways are there to roll a die 7 times in a row such that the
5" number shown equals an earlier number?
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§17.  Proof of PIE

Lemma for PIE. The number of elements in a given set of ¢ elements
that are in none of the subsets A, B,C, ..., Z of the given set is

t
(Al Bl +[C]+ -+ 1))
+([ANB|+[ANC|+ - +|Y NZ|)
—([ANBNC|+[ANBND|+---+|XNYNZ|)
+(ANBNCAD/ +-- +|WnNnXNYnNZ|)

Ll ANBNCN---NYNZ|.

Proof. Consider an element of the given set that is in exactly k of the
subsets A, B,C', ..., Z. The number of times this element is counted in
the expression in the lemma is, with line by line above corresponding to
term by term below, given by

k k k k
1- — o (=1)F .
(1))~ () =)
By the Binomial Theorem, this quantity is (1 —1)¥, which is 0 if & > 0 and
1if k = 0, which is exactly what is required to prove the lemma. g

The theorem PIE, stated below, is an immediate corollary of the lemma.
The lemmma and the theorem are essentially 2 ways of saying the same thing.
In fact, some refer to our lemma as the Principle of Inclusion and Exclusion
and call our theorem a corollary.

PIE (The Theorem). The number of clements in 1 or more of the finite
sets A, B,C, ..., Zis

+(A[+ Bl +C]+--- +|Z])
-(JANB|+|ANC|+---+ YN Z|)
+([ANBNC|+|[AnBND|+---+]|XNYNZ|)
- (ANBNCND[+---+WnNnXNYNZ|)

£t AnBNnCNn---NYNZ|.

We restate PIE in a different notation that is sometimes useful. For
reference, a couple generalizations of PIE are stated without proof below.
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Let Sk denote the sum of the sizes of all k-tuple intersections of given
sets Ay, As, As, ..., A,. Note that in many problems S} is the sum of (:)
identical terms. We have

St = [A1| + [Az| + [As] + -+ [Ap],

So =AM A+ A N Az + -+ A N AL

Ss = |A1 M Ao mAg‘ + 14, N A mAALﬂ + -4+ ‘An,,z NA,_1MNA,
Si=]A1NMANAzNAy+ -+ A, 3NA,_oNA, 1 NA,

1

Sp=lA1NANAzN---NA, 1 NA,.

PIE and Two Generalizations. Let S;. denote the sum of the sizes of
all k-tuple intersections of given sets Ay, Ag, Ay, ..., A,. The number of
elements in at least 1 of the given sets is

S~ Sy + 83— Syt A+ (—DF IS+ (D)L,

The number of elements in exactly r of the n given sets is
ril 2 (r+k ,
e ( : )5 ! ( . )S - ) ( . >5 e (1) “)S,,
T r r \r

The number of elements in at least + of the n given sets is

. r ) r+1 wfr+Ek—-1 _(n—1
L s, ST k(1)
5, <r‘~1>'7+‘+<r7])5+2 +(=1) < r 1 )b 4t (0D (r~l)b

PIE Problems II.
1. How many 10-letter words do not contain all the vowels?

2. How many ways can 40 red balls be put into 4 distinguishable boxes
with at most 15 balls in each box?

3. How many ways can 11 distinguishable balls be put into 6 distin-
guishable boxes with at least 1 box empty?

4. How many integer solutions are there to the system
oy +ao+ a3 +xe =100, 0<a; <307

5. How many ways can 10 coins be selected from a bag of 7 pennies, 8
nickels, and 7 quarters?

6. How many ways can r distinguishable balls be placed in n distin-
guishable boxes with no box empty?
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§18.  Derangements

The Hatcheck Problem. How many ways can a hatcheck girl hand back
the n hats of n gentlemen, 1 to each gentleman. with no man getting his
own hat?

We can tell from the language of the Hatcheck Problem that it is a very
old problem. It may be old, but it is great. In any case, an arrangement of
the first n positive integers in which no integer is in its “natural” position
is called a derangement of the n integers. The number of derangements
of {1.2.3.... . n} is denoted by D,. In general, the derangement of a
string of distinct clements is an arrangement of the the elements such that
no element appears in its original position. The solution to the Hatcheck
Problem is D,,. We wish to find a formula for D,,.

We let 4; be the set of arrangements of {1.2.3,... .n} for which i is in
the i "' position. We need to count the arrangements that are in none of
the scts A;. By the Lemima for PIE, we then calculate that

D,
=l (”’) (n— 1)+ (”)(n . (;’*)(n S (1) (”)ov
: n
| 1 1 1 1 1
=l =+~ L g1\~
- {] TR TR TP TR TR n'}
Recalling (or taking it as a definition) that e* = Sreo %J,I‘ for real
number z, then
P R S I S B | p 1
A B TR I Rl il R St

kO

We see that 1,,/n!is very close to the number 1 /e. In fact. D,, is the integer
closest to n!/e for all n. So D,, = n! x 0.367879441171442 . ...

If letters, 1 addressed to cach of some people, are passed out at randor.,
1 to each of these people, what is the probability that no person gets the
letter addresses to them? This is. of course, the Hatcheck Problem, except
that the number of persons is not given. What is absolutely astounding
is that the probability is approximately 1/e—no matter how many people
there are!

We compare D, /n! and D,,_1/(n — 1)! to see how little the difference is.
From

D, 1 1 1 1 1 v 1 1
774:17_ - - o —1)n T~ )=
n! 1! - 21 3! - 4! 5! ot (=) (n—1)! (=D 7!
we subtract
D1 1 1 1 1 1 1

5! e () (n—1)!
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to get

Dn Dn,—l 1

= (-0

n! (n—1)

This is all very interesting. However, somewhat serendipitiously, we have
stumbled on something even more interesting. We multiply both sides of
our last cquation by n! to get a wonderful recurrence relation:

D, =nD, 1+ (-1)" forn > 2.

The following bit of trivia may be of interest. Occasionally one sees the
symbol “nj”, which is read “n subfactorial” and is defined by

n n n _ k
nj = Z(vl)k (k) (n—Ek)l=n! Z (—»]}‘L

k=0 k=0

In other words, we have nj = D,.

PIE Problems III.

1. How many ways can 20 balls be chosen from 12 black balls, 12 white
balls, 8 orange balls, and 8 green balls?

2. How many 12-term sequences of digits do not contain all of the 10
digits?

3. How many ways can 3 couples sit at a round table with no 2 from
any couple sitting next to cach other?

4. How many arrangements of the letters in COMBINATORICS have
both C’s preceding both O’s, both O’s preceding both I's, or both I's
preceding both C’s?

5. How many arrangements of the letters in COMBINATORICS have
both (s preceding both O’s, both O’s preceding both I's, or both I's
preceding the 57

PIE Problems IV.

1. How many ways can the 8 integers 1,2,3, ... ,8 be rearranged with i
never immediately followed by 7 -+ 17

2. How many ways are there for 8 children on & merry-go-round to
change places so that somebody new is in front of each child? (The
horses are indistinguishable and in a circle.)

3. How many ways are there to distribute 37 distinguishable books to
23 boys if each boy must get at least 1 book?
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4. How many integer solutions are there to the system

X1 4 29 + a3 + g = 40,
1<r <5, 2<a, <7, 3<r3<9, 5<u,?

5. How many ways can 10 distinguishable balls be put into 3 indistin-
guishable boxes?

6. What percentage of the randomly arranged 26 letters of the alphabet
have at least | letter in its natural position?

7. Prove the recurrence relation

D, = (n—-1)[Dy—1+ D, o] ifn>2.

§19. Partitions

A partition of a positive integer r is a collection of positive integers whose
sum is r. If there are n terms in the sum, then r is said to be partitioned
into n parts. For example, 5 has 7 partitions:

904+, 3+203+141 24241 2414141 1+1+141+1.

Note that 3+ 2 and 2+ 3 are not considered different partitions of 5. Also,
5 can be partitioned into 1 part in 1 way; 5 can be partitioned into 2 parts
in 2 ways: 5 can be partitioned into 3 parts in 2 ways; 5 can be partitioned
into 4 parts in 1 way: and 5 can be partitioned into 5 parts in 1 way. We
let II(r.n) denote the number of partitions of r into n parts. So II(r,n)
is the number of ways of putting r indistinguishable balls (or 1’s) into n
indistinguishable boxes with no box empty. We will be using this balls-and-
boxes idea below. We let TI(r) denote the total number of partitions of r.
Hence. I1(r) is the number of ways of of putting r indistinguishable balls
into r indistinguishable boxes. So,

H(r) = ZH(IJ) =II(r+r.r) =T(2r,7),

J=1

where the middle cqual sign comes from thinking of running to the nearest
hardware store and borrowing 1 additional balls, each indistinguishable
from the + that we have already put into the boxes. We then put 1 of the
borrowed r balls iuto each of the r boxes. Now we are sure that no box is
empty. We thus have a partition of 2r into r parts. Conversely, if we have
27 red balls in r indistinguishable boxes, with no box empty, then we can
take 1 ball from each box to obtain a partition of r and to return the r
borrowed balls to the hardware store.
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™n |1l 2 3 4 3 6 7 8 9 10 11 12
1 1
2 1 1
3 1 1 1
4 1 2 1 1
5 1 2 2 1 1
6 1 3 3 2 1 1
7 1 3 4 3 2 i 1
8 1 4 5 5 3 2 1 1
9 1 4 7 6 5 3 2 1 1
10 1 D 8 9 7 5 3 2 1 1
11 1 5 10 11 10 7 5} 3 2 1 1
12 1 6 12 15 13 11 7 5 3 2 1 1
13 1 6 14 18 18 14 11 7 5 3 2 i
14 1 7 16 23 23 20 15 11 7 5 3 2
15 1 7 19 27 30 26 21 15 11 7 5 3
16 1 & 21 34 37 35 28 22 15 11 7 5
17 1 8 24 39 47 44 38 29 22 15 11 7
18 1 9 27 47 57 58 49 40 30 22 15 11
19 1 9 30 54 70 71 65 52 41 30 22 15
20 1 10 33 64 84 90 82 70 54 42 30 22

TABLE 2.1. II(r, n): Partitions of r into n Parts.

We observe that II(r,n) is defined by
M{r,n)=0ifn>r, Hlrr)=10(r1)=1, and

n
IM(r,n) = ZH(T —n.k)=1{r—-1,n—-1)+1(r - n,n),
k=1

where the last equal sign follows by considering the 2 cases of whether there
is a box with exactly 1 ball or there is no box with exactly 1 ball.

Although neither of the 2 recurrence relations given above is snywhere
as nice as that for building Pascal’'s Triangle, we can still use either to
compute the entries of the table for II(r,n) that are shown in Table 2.1.
For example, from the formula TI(r,n) = Il{r — L,n — 1) + [I(r — n,n) we
calculate I1{20,6) = 90 from II(19, 5) +1I(14, 6) = 70 + 20; in the table the
90 in the bottom row is the sum of the 70 immediately above to the left
and the 20 above the 90 in the same column.

If you want a nice closed formula for II(r, n) you will have to do something
that has not been done before.

§20. Balls into Boxes

We are now prepared to answer the basic questions concerning putting balls
into boxes. We shall consider 8 cases, depending on whether the balls are
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distinguishable or indistinguishable, whether the boxes are distinguishable
or indistinguishable, and whether some of the boxes can be empty or not.
The order in which we consider these is as follows:

1. How many ways can » indistinguishable balls be put into n indistin-
guishable boxes with no box empty?

This is easy, in a sense, but only because we have just been considering
this sort of thing in the previous section. The best answer we can give is
H(r.n).

2. How many ways can r indistinguishable balls be put into n indistin-
guishable hoxes?
By borrowing n balls (again). we see that the solution is II(r + n, n).

3. How many ways can - indistinguishable balls be put into n distinguish-
able boxes?
This we know well: <']l>

4. How many ways can r indistinguishable balls be put into n distinguish-
able boxes with no box empty?
s n . e (=1
This is just (" ). which equals (/7).
5. How many ways can r distinguishable balls be put into n distinguishable
boxes?
This is the one we could do in high school: n'”.

6. How many ways can r distinguishable balls be put into n distinguishable
boxes with no box empty?

Let A; denote those placements of r distinguishable balls into n distin-
guishable boxes such that the i' box is empty. Since we want to count the
number of placements that are in none of the A;, we use the Lemma for
PIE to get

gm)’f(’;) (n— k)

(Those who have studied series in calculus will be able to expand (e* — 1)
into a power series in z, after first using the Binominal Theorem, to see that
our solution is the coeflicient of 2" /7! in the series expansion of (e — 1)".)

7. How many ways can r distinguishable balls be put into n indistinguish-
able boxes with no box empty?

Once the balls are in the boxes, the boxes become distinguishable by
their contents. (Hey! That’s a neat trick!) Hence, we need only divide the
previous auswer by n! to get the solution

,Z (- wr

k=0
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This number is denoted by {"} and is called a Stirling number of the
second kind. Note that {'1} ={"} =1and for 1 <n <r we have

I R

This last equality comes from considering the 2 cases of whether the r*®
ball is in a box by itself or not. This recurrence relation can be used to form
a table of Stirling numbers of the second kind or to compute a particular
value with a computer.

We digress only because inquiring minds want to know about the implied
Stirling numbers of the first kind. Stirling number {7’;} counts the number
of ways to partition a set of r things into n nonempty subsets. Stirling
number of the first kind [/| counts the number of of ways to partition
a set of r things into n nonempty subsets and then arrange each subset
around a circle. That is, [ﬂ answers the question, How many ways are
there to seat r persons at n indistinguishable round tables with at least 1
person at each table? We can read {;} as “r subset n” and we can read

“[T}” as “r cycle n.” Evidently m ={r—1 [T] =l,andforl<n<r

n T

we have
= e

This last equation comes from considering the 2 cases of whether Lucky
Pierre sits at a table alone or not. (If not, he can be squeezed to the right
of any of the other r — 1 persons.) Now you know.

8. How many ways can r distingunishable balls be put into n indistinguish-
able boxes?

The best we can do here is consider all the cases of how many boxes have
at least | ball in them. So we get

S}

k=1

Our results are summarized in 2 tables. Results #6, 7, 4, and 1 form
Table 2.2, while results #5, 8, 3, and 2 form Table 2.3.

Optional Problem.
How many ways can 6 persons sit at 3 indistinguishable round tables if

1. there is at least 1 person at cach table?

2. empty tables are allowed?
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Boxes L. . L
Balls oxes Distinguishable Indistinguishable
2 (=D (Y (= BT -
Distinguishable Zl‘fﬂ(l, ) ("')(” ) {"}1 " s ]
=n! {'n} = 2ol 1) (A:)('” = k)
| U {r.n} where II(r,n) — 0 if n > r,
Indistinguishable (; B 1) H(r.r) =I{r.1) =1, and
L
O(r.n) =3, I(r — n.k)

TABLE 2.2. Put » Balls into n Boxes with No Box Empty.

Boxes e e
Balls Distinguishable  Indistinguishable
Distinguishable n” w1 {0t
.. . n+r—1
Indistinguishable (r +n,n)
.

TABLE 2.3. Put r Balls into n Boxes.

§21. A Plethora of Problems

1. How many ways are there to map a set M of m elements into a set
N of n elements such that each element of NV is the image of at least

1 clement of M7 (Such mappings arc said to be onto.)

2. How many ways can a coin be flipped 25 times to get only 8 tails but
) 3 P g 3

no run of 5 or more heads?

3. How many ways are there to arrange the 12 integers 1, 2, 3, ..., 12

such that none of 1, 2, 3, 4, 5, and 6 is in its natural position?

4. How many ways are there to seat the persons in 12 couples at a round

table such that no 2 of any couple sit next to each other?

1

maintained?

How many ways can 5 pairs of persons be repaired so that no pair is

6. How many ways can each of 5 persons be given a right glove and a
left glove from 6 distinguishable pairs of gloves but with no person

getting a pair of gloves?

7. How many ways can each of 5 persons be given 2 gloves from 6 distin-
guishable pairs of gloves— that’s 12 distinguishable gloves but with

no person getting a pair of gloves?



10.
11.
12.
13.

14.

16.

17.

18.

§22.
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. How many ways are there to rearrange the 8 camels behind the lead

camel in a caravan so that each of the 8 camels has a different camel
in front of it?

How many arrangements of RECURRENCERELATION have the
first R preceding the first C or the first E preceding the first N?

How many arrangements of RECURRENCERELATION have either
the first R preceding the first C or the first E preceding the first N7

How many arrangements of RECURRENCERELATION have neither
the first R preceding the first C nor the first E preceding the first N?

How many arrangements of RECURRENCERELATION have the
first R preceding the first C and the first E preceding the first C?

How many arrangements of RECURRENCERELATION have the
first R preceding the first C and the first R preceding the first E?

How many arrangements of RECURRENCERELATION have all R’s
preceding all I’s, all E’s preceding all C's, and all C’s preceding all
N’s?

. How many arrangements of RECURRENCERELATION have all R’s

preceding all E’s, all E’s preceding all Cs, or all C’s preceding all N’s?

How many arrangements of RECURRENCERELATION have neither
all R’s preceding all E’s, all E’s preceding all C’s, nor all C’s preceding
all N’s?

How many arrangements of RECURRENCERELATION have the
first R preceding the first E, the first E preceding the first C, and
the first N preceding the first C?7

How many arrangements of RECURRENCERELATION have the
first R preceding the first E, the first E preceding the first C, or
the first N preceding the first C?7

Eating Out

The Ménage Problem (Probleme des Ménages) asks, How many ways
can n hushand-wife couples be seated at a round dinner table with men
and women alternating but no one sits next to their spouse?

You may wish to try this nontrivial problem for yourself before reading
any further.
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We consider only seatings where husbands and wives alternate. Let A,
be seatings with couple ¢ sitting together. We want to count the seatings
that are in none of the A;. So, we want

t—58+ 5, — 53 + 54+ F (*I)A:Sk + -+ (—1)”571,

from the Lemma for PIE, with { = (n — 1)!n!. The ( ') terms in S, are all
equal. We suppose Adam and Eve are the first couple. We compute

|A1mAgﬂA3ﬂ--~ﬁAkf

by placing persons around the table but, as usual, nobody sitting down
until all are at the table as follows:

(1) We place Adam and Eve at the table. 2 ways
There are & — 1 additional couples. n — & additional

males, and n — k& additional females to place.

(2) We place the n — k additional males and the (n — k)12 ways
n — k additional females, realizing that

sexes must alternate here if they are to
alternate after the couples are inserted.

(3) Since Adam and Eve may not be split, there
are 2(n — k) + 1 spaces for the & — 1 couples

to fit into. We choose the spaces.

(25 ways

(4) We place the k — 1 couples in the spaces, (k= 1)! ways
remembering that the sexes alternate.
So Sk =

Evaluating the right-hand side when & = 0, we get (n — 1)! n!, which is ¢.
Hence, our solution to the Ménage Problem is

o\ YAaw L (2n—k—1)!
2 ;)(—1)’(}{)(” - A,)!QW’

or

2n! Z( 1)k ‘)n_? (2”]: k).

k=0

If the chairs are not all indistinguishable from one another, as is some-
times the case in the statement of the Ménage Problem, then we must
multiply the solution above by 2n to account for rotations of our seatings.

Related Problem.

How many ways are there to permute {1, 2, ..., n} such that nonc of
the following 2n conditions is satisfied?
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1is 180 s 2nd,

2is 2nd. 2 4g 3d;

3is 3 3is 4th;
n—1is(n-1°%" n—1isnth

nisnth;  nis 15,

Eating Out Problems.

1. Suppose n persons have both lunch and dinner together. For a given
seating arrangement at lunch, verify the displayed solution to the
question, How many ways are there to seat these persons for dinner
such that no one has the same neighbor on the right at both meals,
under the specified condition?

(a) Both meals are at a counter.
D,+D,,
(b) Both meals are at a round table.
D,  —D, 2+Dy 3—Dy_ 4+ ---£ Dy

(c) Lunch is at a round table and dinner is at a counter.
nD,_

{d) Lunch is at a counter and dinner is at a round table.
D;,q

2. How many ways are there to seat n wife-husband couples in the
manner specified?

{(a) At a round table with no husband and wife diametrically oppo-
site each other.

(b) At a round table with no wife next to her husband on his right.

(c) At a round table with no wife next to her husband.

(d) At a round table with no wife sitting next to her husband on his
right if men and women alternate.

(e) At alunch counter with no wife next to her husband ou his right.
(f) At a lunch counter with no wife next to her husband.

(g) At alunch counter with no wife next to her husband on his right
if men and women alternate.
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(h) At alunch counter with no wife next to her husband if men and
women alternate.

(i) At a lunch counter with no wife anywhere to the right of her
husband.

(j) At a lunch counter with no wife anywhere to the right of her
husband if men and women alternate.

3. The following 2 problems are presented for reading only. Although
they differ from problems in #1 above only by the deletion of “on
the right,” they are of a totally different order of difficulty.

(a) Suppose n persons have both lunch and dinner together at a
counter. For a given seating arrangement at lunch, how many
ways are there to scat these persons for dinner such that no one
has the same neighbor at both meals?

(b) Suppose n persons have both lunch and dinner together at a
round table. For a given seating arrangement at lunch, how many
ways are there to seat these persons for dinner such that no one
has the same neighbor at both meals?
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Generating Functions

§23. What Is 27

We are familiar with polynomial equations such as 22 — 4z +3 = 0. Here, x
is a symbol denoting some real number, called an unknown, and our task
is usually to try to find its value.

We are familiar with equations for pelynomial functions such as f where
f(z) = 3 — 4z + 2%. The equation tells us how f acts on z where z is a
variable, a symbol denoting an arbitrary real number. So 3 — 42 + 22 is the
image of x under f for each real number z.

We are probably, perhaps unknowingly, also familiar with polynomials
in x such as 3 — 4r + 22. Here, z is an element not in the set R of real
numbers and is called an indeterminate. In this context, x is simply z;
and “z = 27 is as absurd as “3 = 2.” The set of all real polynormials in
z forms what algebraists call a commutative ring and is denoted hy R[z].
This is a subset of R[[x]], which consists of all real formal power series in
the indeterminate z. (We read “R[[z]]” as “R double square brackets x.”)
The elements of R[x]] look like

fe. o}
E a.x" with a, € R, where
r=0
o0
ro__ 2 3 4
a,r —ag+ a1xr + axx” +azx” +aqx” + -
r=0

G. E. Martin, Counting: The Art of Enumerative Combinatorics

© Springer Science+Business Media New York 2001
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Note that we have already implicitly declared that 2% = 1 and 2! = 2.
Addition in R[[«]] is defined, as expected, by

E aq‘l‘t
1=0

Multiplication is also defined as cxpected by what is usually called the
Cauchy product

liaiwi} ibj’xj = [icwk] where ¢, = Z azb;.

=0 J=0 k=0 itj=k

+ Z bxd | = [Z ckm"‘"] where ¢ = ap. + by.
=0

k=0

This is, after all, how we have always multiplied polynomials and series
before we thought decply about them. For our purposes, the fantastically
wonderful thing about formal power series as opposed to the power series
we may have seen in calculus is that we never have to worry about whether
a formal series converges or not, since the question of convergence does
not make any sense because x is an indeterminate and not a variable. For
example, the existence of the clement Y7 (2" in R[[z]] does not disturb
us at all-—we don’t carc how big those coefficients get. To ask whether
this clement converges or not makes as much sense as asking whether the
element 10 converges. Although R[z] and R[[x]] have all kinds of interesting
properties that are studied in advanced algebra classes, about all we are
going to need to know is how to add and multiply their elements.

This introduction to R[[z]] has been intuitive. There is some polishing
that needs to be done in order to be rigorous. We are repeating history here.
If you are happy with the introduction, then you can skip the next section.
If you see some of the problems or have had your curiosity piqued, then
continue on to the next section. There, an outline of a rigorous development
of R|[x]] is given in a journey that will comfortably return us to this point.

§24. An Algebraic Excursion to R[[z]]

A critical eye might notice an immediate problem with our intuitive in-
troduction of R[[x]] in the previous section. In the first place, the notation
Yoo arx” for the clements in R{[z]] already involves addition and multi-
plication of elements in R[[z]], even before the addition and multiplication
are defined by the expected formulas. Even so, the notation forces us to
make correct conclusions, whose only basis is intuition. The rest of this
section is devoted to an outline of a rigorous development of R[[z]].

We begin at the beginning, all over again. The clements of R[[z]] are
defined to be the infinite sequences (ag, ai. a2, as, ...) of elements from
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R. So
((lo, a1, as, as, ) = (bo bl, bg, bg, .. ) iff a; = b-i for all 7.

(Not to worry, = will appear latter.) We define addition & coordinatewise
on R[[x]] by

(au, ai, a2, a3, ) D (bo, b1, bo, b3, )

= ((/'(]., C1, C2, C3, .. ) where ¢; = a; + b; for all i,

distinguishing the addition in R[[z]] by @ from the garden variety of addi-
tion on real numbecrs denoted by +. We define multiplication ® on R[[z]]
by

(a(]., ay, g, asz, ) x (bo, b1, bg, bg. )

= (¢g, 1. €2, €3, ... ) where ¢ = 2: a;b; for all k,
i+j=k

with the Cauchy product in mind. The summation sign refers to addition
in R and causes no problem. Because addition and multiplication are com-
mutative in R, it follows that addition and multiplication are commutative
in R[z]]. That is, if f and g are elements of R[[x]], then g @ f = f &g
and g @ f = f ® g. Next, an algebraists would prove all the other proper-
ties of a commutative ring: for example, that addition and multiplication
are assoclative and that the distributive laws hold. This is tedious but
straightforward. Next we define z to be (0,1,0,0,0,...). Why on earth
would we do such a thing as introduce 7 Well, the only honest answer is
that, frankly, we like 2. We want to get back to the familiar notation at the
beginning of the first section of this chapter. So, 2 = (0,0,1.0,0,0,...),
«® = (0,0,0,1,0,0,0,...), etc. Then we embed R in R[] with a —
(a,0,0,0,...), and we write a in place of (2,0,0,0,... . (This is like em-
bedding R into C, the set of complex numbers, with @ — a + 0i.) This is
reasonable since the power series 0 and 1 are the zero and unity of R{[z]],
meaning that g0 = 0@ g = gand g®1 = 1® g = g for all g in R][[x]]. Fur-
ther, it is customary to write 1 for 2% and to write z* for z@z®z - - Qz Rz
when there are k factors in the product. Since

(ao, a1, az, as, ...) = (ag @ 2")B(a; ® 1) B (a2 ® 22) ® (a3 ® 2.
and since
(2:6;,0,0,0,.. )@ 2" = (a; ® 2%) © (a; @ 7).

where the a; and b; on the left side of the equations are real numbers
and on the right are power series, we feel free to change the notation for
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addition and multiplication and write ag + a2z + aax? + aga® + - - - in place
of (ag, a1. ag, ag. ...). If a; = 0 for all but a finite number of i, then we
call the series a polynomial and denote the set of polynomials by Rixz].
Finally, we usually omit writing down terms of the form 0z with i > (0. We
are back to the familiar notation for Rz] and R][z]], but with everything
on a rigorous basis.

§25. Introducing Generating Functions

Mostly for pedagogical reasons, we are now going to abandon x as our
favorite indeterminate, giving preference to the indeterminate z in R[[z]].
This may help us remember that the indeterminate is not an unknown real
number or a variable real number.

This short section consists of only 1 example. It will be easy to generalize
this example only if you completely understand the example. You are urged
to reread this important section until you have mastered its content.

We consider only the question, How many nonnegative integer solutions
(e1. €2, ey, e4) are there to the system

€] +ey+e3+cg =71

such that e; < 4, eo is odd and less than 9, and both es and ¢4 arc even
and each is less than 107

We could do this problem by PIE but it would be an absolute bear. There
are just so many conditions that complicate things. We now illustrate a
technique that allows algebra to do a lot of our thinking and complicated
counting for us. We change the problem above to one that is readily done
by computing machines.

For any given nonnegative integer r, let ¢, be the answer to our problem.
Then a, is the coefficient of z” in the polynomial ¢(z) in indeterminate z
where g(z) is

(Z()+Zl+Z‘Z+ZS+Z4)(ZI+Z.’{+25+z7)(30+22+Z4+26+28>2'

Why? Because to get the terms in the expansion of g(z) that involve 2",
we take z% from the first factor, we take z°2 from the second factor, and,
counting the square as 2 factors, we take 2% from the third factor and we
take 2% from the fourth factor. So

Zﬁl Zé’g Zf%;; Z{M — Z€1+62+63 tes ZT
Hence,

e +exg+e3teg=r
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with exactly the same restrictions as given by the system above, namely,
e1 < 4, ez is odd and less than 9, and both e3 and es are even and each
is less than 10. We have changed our original question to one concerning
the computation of a coefficient in a formal power series. The latter is the
kind of thing computer algebra systems are extremely good at. This is a
very clever trick!

We call the expression ¢(z) above a “generating function” only for his-
torical reasons. Rather than think of g(z) as a mapping or function, think
of g(z) simply as an element of R[[z]]. As a mental crutch, here and usu-
ally in the first step in writing down a generating function, we resist the
conventions of writing 2" as 1 and of writing 2! as z. It is the exponents
that have our full attention; and if it is hard to to write z and think 1, it
is even harder to write 1 and think 0.

§26. Clotheslines

For formal power scries f and g in R[[z]], we allow ourselves to write f/g
iff there exists a power series h in R[[z]] such that hg = f, even though ¢
may not itself have a reciprocal (multiplicative inverse). So, if ¢ is defined
to be > 2%/l in R[[2]], then (e* — 1)/z and 1/(1 — z) make sense, even
though 5z/0 and 1/z are just nonsense.

The Definition. For a given sequence {a,|r = 0,1,2,3,...}, with the a,
in R, the generating function for the sequence is the power series g(z)
in indeterminate z such that

g(z) = Z arz".

Remember that in spite of the historical use of “function” in the definition
above, we should think of z as an indeterminate and not as a real variable.
Thus, our generating functions are elements of R[[2]]. Only custom has
prevented us from calling these power series “generating series” or simply
“generators,” rather than “generating functions.”

We might think of a generating function as a clothesline onto which we
have pinned the elements of a given sequence of real numbers. Of course,
generating functions are more than a showcase for sequences. As we will sec,
it is the addition and multiplication of gencrating functions that make them
so valuable. Although generating functions themselves have infinitely many
terms, the definition of addition and multiplication given at the beginning
of this chapter do not involve infinite sums of real numbers, as, for example,
the coefficient of z™ in f(z)g(z) is a finite sum of n + 1 terms in R.

We observe that it is easy to show that in R[[z]] the element 32 a;2°
has an inverse iff ap # 0, that is, given Y .2 a;z°, there exists > o bi?
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such that

1= [z aizi] Zb]-zj
=0 7=0

iff ap # 0. This comes from looking at the product of the generating func-
tions on the right side of the equation above and obscrving that we must
have

1 = agbg

0= apby +a1hp

0 = agby + ar1b1 + azby

0 = agbs + arbs + a2by; + aszbo

0 = agbs + a1bs + asba + azb; + asbg

The b; are successively defined, in order, by the lines above when and only
when ay # 0.

We now consider some illustrations of the definition of a generating func-
tion. For fixed positive integer n, what is the generating function for the
sequence {a,} with a, = (:f)? With the usual convention that () = 0
for » > n > 0, this one is easy. After thinking about whether the following
makes sense and checking our proof of the Binomial Theorem (or more real-
istically, not even thinking about it at all), we replace a by z and replace b by
1 in the our statement of the Binomial Theorem (a-+b)" = 3 ""_, (M)a"b" "

to get -
(g 2]
n n
1 z T — T — r .
( + ) Z (r) : Z (7'> :

=0 r=0
So, the generating function for {a,} with a, = (") is (14 z)".
Reinterpreting the formula for the sum of a finite geometric series, we
can answer the following question. For a given fixed positive integer 72, what

is the generating function for {a,} with a, = 1 for 0 < r < n and with
a, =0 for r > n? The answer is ¢g(z) where

g(z):1+2‘1’22+23+Z4+...+2n:
Likewise, reinterpreting the formula for the sum of an infinite geometric

series, we see that the generating function for {a,} with a, =1 for 0 <r
is y(z) where

glz)=l+ze+22+20 420+ 42 4 =
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Each of the last 2 generating functions can be proved very easily by
checking the equality simply by multiplying both sides of the equation by
1 — 2z, without any recourse to real geometric series. We will see that the
last is a special case, when we answer the question, What is the coefficient
of 2" in the expansion of (1+ z+ 22+ 2%+ 2%+ ... )"? Before that, however,
we will generalize the last in a different way. If V' is any element in R][[z]]
except 1, then by expanding the product of 1=V and 14-V+ V24 V3 4...
we see that

) 1
1+V+V2+V“+V4+---+VT+-~:j_V.
A particularly useful case of this equation is when V = z* for positive
integer k. which produces

1

T ah g2 h gt b o —

The given product (1 + z + 2% + 2% + 24 +-..)” can be written as
Oz 2 R St e A 2 B,

where there are n factors, each enclosed in a pair of brackets. As usual, we
have written 1 as 2% and 2 as 2! to help us concentrate on the exponents. For
an easy illustration, we find the coefficient of 22 in this product. We see that
z? can be obtained in the n ways of multiplying together 22 from 1 factor
within brackets and the 2° from each of the remaining n — 1 factors within
brackets; otherwise, z? can be obtained only from multiplying together z!
from 2 of the factors within brackets and 2? from each of the remaining n—2
factors within brackets. Since, for this second way of obtaining 22 in the
product, we can choose the 2 factors that contribute the 21 in (3‘) ways, then
the cocflicient of 2% must be n + (}), which is (7). In the general case, we
see that z” is obtained in the product by choosing z¢' from the first factor,
choosing z°? from the second factor, choosing 2% from the third factor,
and so on, until choosing z¢» from the last factor under the condition that
e1+egstez+- - +e, = r. Therefore, the number we are seeking is the number
of nonnegative integer solutions to the equation e; + ey 4-e3+---+e, = r,
which we know to be (7). Also, since (1 + 2422+ 2% 424 +...)(1~2) =1,

- n
we can write (142422423424 +.. )" = {11—:} . The generating function

n
for the sequence {a,} with a, = <’:> for a given n is (1—%;) .

Observation.
0 ) ’ 1 NN
Z<:>2T:(1+z+22+z3+z4+---)"’: (ﬁ) =(1-2z)""
r=0 e
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We collect the 3 basic formulas to have them in 1 place for easy reference.

Three Basic Formulas.

o= (1)

—o
; 4 [ — il
1+fz+z2—|—23+3”+...+5n:ﬁ_
o0 T r 9 3 4 " 1 n
Z 7,22(1-1-2—%—2 +24+ 4+ ) = )
r=0 Z

We will use these formulas when we briefly look at the problem of com-
puting, by hand, coefficients of a given generating function. Much more
important is the modeling of problems. That is. modeling hard problems
by reducing them to the algebraic problem of finding the coefficient of some
power of z in a product of gencrating functions. The basic idea is to let
the algebra consider all the cases for us. Therce is the paradox that in find-
ing ay for a particular value of k& essentially requires finding an expressiou
giving a, for all nonnegative values of 7. Nevertheless, we are grateful for
a method that reduces a hard problem to an algorithm. We will consider
some more examples.

How many ways are there to select 25 balls from unlimited supplies of
red. white, and blue balls provided that at least 3 red balls are selected and
at most 4 white balls arc selected? The gencrating function for selecting
red balls is 2% + z* + 2° 4+ ... The generating function for selecting white
balls is 20 + 21 + 22 + 2% + 2. The generating function for selecting blue
balls is z° + z' + 22 4 - - -. Thus, the generating function g(z) for sclecting
r balls is

(Z:5+Z4+25+"')(20+Zl+Z‘Z+ZS+Z4)(ZO+21+22+23+"').

Hence, the answer to our question is the coefficient of 2% in g(z2).

How many ways are there to sclect r balls from 3 red balls, 4 white balls,
and 3 blue balls? In this case, the generating [unction for selecting red
balls is 2% + z! + 22 + z%. The generating function for selecting white balls
is 29 + 21 + 22 + 23 + 2%, The generating function for selecting blue balls is
29 4 2! 4+ 22 + 23, Thus, the generating function for selecting r balls is

(ZO+2’1 +22+23)(20+21 +Z2+Z3+Z4)(ZO+ZI+22+23).

Our answer is the coefficient of of z” in (1+2z+22 +2%)2(1+z 427+ 27+ 2%).
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How many positive integer solutions of 21 + x4 + 23 + 24 = 25 are such
that 2; <4 for 7 = 1 and i = 2? The generating function for the number of
solutions is 2! + 22 + 23 + 2% for 2, and for x5 and is 2! + 22 + 23 244+ ...
for x5 and for ;. So the answer to our question is the coefficient of 22 in
g(z) where

9(2) =+ 2+ P+ + P S )2
=(z+22+ 242+ 2B )
:22(1+Z+2’2+23)222(1+Z+22+23+---)2

(7 ()
e (L)

How many ways are there to distribute 5 red balls, 6 white balls, and 7
blue balls to Peter and Paul so that each gets 9 balls and at least 1 ball
of each color? We can model the problem by considering what balls Peter
gets, since Paul gets whatever Peter does not. The generating functions for
distributing, in turn, red, white, and blue balls to Peter are 2"+ 22 + 23 + 24,
42+ 42 425 and 2t 4 22 + 28 4 2t + 2% + 25, (Note, for example,
that Peter can not get all 5 red balls since Paul must get at least 1.) So
our answer is the coefficient of 29 in

(42223 M+ 2By A [P L R R R 2%,

Another way to model the same problem is to first give each of Peter
and Paul a ball of each color, and then pose the question, How many ways
are there to select 6 balls (for Peter) from 3 red balls, 4 white balls, and 5
bluze balls? This time the answer is the coefficient of z% in

(ZO+Z'1+ZQ+ZB)(Z()+ZI+22+Z3+24)(20+21 +22+23+Z4+25),
or

(I4+2+22+22) 0+ 2+ 22+ 22 121+ 2422+ 28 4+ 24 4+ 25).

Homework.
If “Zfio a,z"" is the answer, what is the question? Now, use a generating
function to model each of the following problems.

1. How many ways are there to distribute r red balls to 6 persons such
that each person gets k balls where 3 < k < 5?
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2. How many ways can r ice cream cones (single-dip) be ordered, with
repetition, from 8 available flavors?

3. How many ways arc there to put + red balls into n distinguishable
hoxes if at most 2 red balls are distributed to each of the first 2 boxes?

4. How many ways are there to put » red balls into n distinguishable
boxes if at most 2 red balls are distributed between the first 2 boxes?

How many 10-combinations of the letters A,B.C.D.E arc possible if
A can be used any number of times, B must be used at least once, C
can be used at most once, D is used exactly twice or not at all, and
E is used an even number of times?

(W3]

§27. Examples and Homework

How many ways are therc to make » cents change from unlimited amounts
Y Y 128
of pennies, nickels, and dimes? The generating function for selecting the
pennies is z¥ + 21+ 22 + 2%+ z*+- - - . No problem there. Now, the generating
function for selecting the nickels is 20 + z° + 210 4 21 4+ 229 4 ... because
we are calculating cverything in cents; the z!'® here means that we have
selected 3 nickels and so 15 cents in change. It is instructive to think of
this generating function for the nickels as (2*)? + (z°)! + (2°)? + ()7 +
25)4 L ... because we can see the number of nickels as an exponent to z°.
I
where each nickel is 5 cents in change. Likewise the generating function for
selecting the dimes is (z'9)% + (219 + (2192 + "0 + (1) + .-+, or
V2104 2204 280 4 404 o The answer to our question is the coefficient
of 2" in the generating function g(z) for making r cents in change with
pennies nickels, and dimes, where
gz) ="+ 22+t
) () () ()]
% [(210)0 + (210)1 + (210)2 + (ZIO)S T }
=(l+z+22 42"+
X (1422420420 42204
w (14 210 4 220 4 30 4 40 4
1 1 1

12z 1-20 1- 210

It should be casy to extend this resull to answer the question, How many
ways are there to make r cents change using American coins?

How many nonnegative integer solutions are there for the equation

a1 + bxo + 10z = r?



§27. Examples and Homework 53

As Yogi Berra said, “It's déja vu all over again.” In other words, this
question has the same generating function, and therefore the same answer,
as the previous question. To see this, interpret 1 as the number of pennies,
9 as the number of nickels, and z3 as the number of dimes in the previous
problem. It cannot be mentioned too often that translating one problem to
another that is familiar is a most important technique in combinatorics.

What is the generating function for the sequence {a,} where a, is the
number of solutions in nonnegative integers to z1 +axo+ o3 +r4+r5+18 =7
where either all z; are even or else all z; are odd? Confirm that the answer
is g(z) where

g(z) = (1522>6+ (1 f32>6 — (142" (-! _122)6.

Find the generating function g(z) for the sequence {a,} where a, is the
number of ways 2 indistinguishable dice can show a sum of +. Here, we have
to calculate each coefficient individually. From Table 1 of The Back of the
Book on page 184, we have the solution

g(z) = 22+ 2% 122 1227 + 328 4327 £ 328 4+ 22° 42210 ¢ 2 g 212

Homework.

Use a generating function to model each of the first 7 problems (and, for
the courageous, also #8).

1. How many ways can 10 balls be sclected from a bag of 7 red balls, 8
white balls, and 7 blue balls?

2. How many ways can r coins be sclected from unlimited supplies of
nickels, dimes, and quarters?

3. How many ways arc there to distribute n indistinguishable balls to
10 persons with each receiving 0, 5, or 9 balls?

4. How many nonnegative integer solutions are there to the equation
2x1 4+ 3xo + 4y = 667

5. How many ways are there to distribute n balls to 1 persons if red and
blue balls are available such that each receives at least 2 balls of cach
color?

6. How many ways are there to distribute n balls to 5 persons if red and
blue balls are available?

7. How many ways are there to obtain a sum of 35 when 10 distinguish-
able dice are rolled?
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8. How many ways are there to obtain an even sum when 10 indistin-
guishable dice are rolled? (Hint: Let x; be the number of dice showing
the number 1.)

Find the generating function g(z) for the sequence {a,} where a, is the
number of integer solutions to

yi+ g2 +ys +ya =1 such that 0 <y < g < gy < g

The solution requires some ingenuity. Let y; = 2y, y2 = y1+22. Y3 = ya+a3,
and ys = y3 + z4. Then

Y =2 =TI,

Y2 = Y1 +x2 = &y + X2,

Y3 = Yo + &3 = Xy + X2 + w3, and
Ys =Ys3 t+axy =x) +To + I3+ 4.

It follows that

~

=Y 4+ Yo + ys +ys = dy + 3we + 2u3 + x4 with x; > 0.

Therefore we have

1 1 1 1

.(1(5):172'1ﬁ22'1_23'1_z4'

Thinking of black and white, we let b and w be indeterminates and
extend the idea of a generating function to an array {a,,} where is a,
is the coeflicient of d"w® in g(b, w). To be formal, we would say ¢(b, w)
is in R[[b, w]], which is defined by R[[b, w]] = (R[[b]])[[w]]. and show that
wb = bw: we shall be informal and accept the “obvious.” The purpose of
these power series in 2 indeterminates is to have a nice place to hang the
numbers a, 5. We will have no qualms about using power series in several
indeterminates.

For example, the generating function for the array {a,;} where a,; is
the number of ways to distribute r black balls and s white balls to 6 persons
is g(b,w) where

glbyw) =[0° + 0" + 02 + 0%+ ) +w! Fw? F e )]

B <1lz)>6 (11 w)“»

Of course, we know, without using generating functions, that a,. , = <2><?>
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The generating function for the array {a, ,} where a. s is the number of
ways to “paint” all the vertices of a fixed square such that r vertices are
black and s vertices are white and such that the vertices on a diagonal have
the same color is g(b, w) where g(h.w) = (b% + w?)?. This follows from the
fact that the generating function for the pair of vertices on each of the 2
diagonals is b + w? because these 2 vertices arc either both black or clse
both white. Here, we have g(b, w) = (b +w?)? = b* +2b*w? + w?. In total,
there are exactly 4 ways to paint the vertices, as expected. The 1 +2 +1
ways are 1 way all black, 2 ways with 2 black and 2 white, and 1 way all
white.

More Homework.

Model cach of the following 7 problems with a generating function.

1.

o)

How many ways arc there to solve 2y + 329 4 4a; = 66 with positive
integers?

. How many ways are there to obtain a sum of 40 when 10 distinguish-

able dice are rolled?

How many ways are there to distribute 20 red balls to 4 persons
provided Jack and Jill together get no mare than 5 balls and 1 of
Peter and Paul gets an odd number while the other gets an cven
number?

How many ways are there to spend 25 dollars if each day for a week
we spend 2 dollars for a red hall, a white ball, or a blue ball, spend 3
dollars for a black ball, or else spend 4 dollars for a green ball or an
orange ball?

. How many ways are there to distribute 20 of 32 red balls to 5 persons

provided Adam, Eve, and Steve together get no more than 5 balls,
while Lucky and Lucy together get at least 4 balls.

Argue that replacing the dice in a crap game by a pair of dice where 1
die has sides numbered 1, 2,2, 3, 3, 4 and the other dic has sides num-
bered 1,3.4,5, 6.8 should not change the game in any way becausc
of the identity

(2! 4222+ 223+ 2D + 23 420 4+ 25 4 2+ 29
S e N 4292,

How many ways can we paint the vertices of a fixed square such that
cach vertex is either black or white and therc are the same number
black as white? (Of course the answer is 6, but remember that we are
after the model.)
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Depending on interests, it is possible to skip the rest of this section and
also all except the first 2 paragraphs of the next section.

How many ways are there to distribute r red balls into 4 distinguishable
boxes such that the second box has more balls than the first box? Here, we
want the number of nonnegative integer solutions to

&1+ 29+ 3+ x4 =7 where 0 < 27 < 9.

Let 29 = &1 +1+x0. So xg > 0, and now we want the number of nonnegative
integer solutions to 1 +xg+2x1 +x3+ x4 = r. Our answer is the coefficient
of 2" in g(z) where

() = 2 1 1 1 1z 1\*
=TT 21 212 1-2\1-2) "

The number 11(r) of partitions of r is the same as the number of integer
solutions e; to the system

ler +2e0+3e3 4+ -+ +re, =r with 0 < e;.
The generating function for TI(r) is seen to be g(z) where

9(z) = [(2")"+ ) + G2+ P+ () ]
<G+ ()" + PP+ @)+ () ]
v [(23)0—6—(,23)] +(23)2+(23)3+"'

<D+ EDTH DT
x ()4 )+ P EE o ]

1
1-2)1=-22)1 =21 —2%) - (1= 2F)-.~

In evaluating a cocfficient for a particular value of r, we would let (1 — z")
be the last factor in the denominator in the quotient above when turning
to the computer for a calculation. Why?

In our last example, we will use the following, which is easily proved by
multiplying both sides of the equation in the conclusion by 1 - z.

Observation.

If g(z) = Z(quz’i, then Z ( (lk) ST = 19(2)~~
k=0 <

i=0 r=0
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We began this section by finding the number of nonnegative integer solu-
tions to the equation x1 +5x9+ 1023 = r. We found the generating function
here to be g(z) where g(z) = 1~ - 125 - 7. Taking g(z) = Szt
we end the section by finding the number of nonnegative integer solutions

for the system
z1 + 5z + 1023 < r with x; > 0.

Let h(z) denote the generating function for this problem. Then

(s r_9(2) _ 1
—Z(;%)Z T 1—z  (1-2)2(1-25)(1—219)

where the first equality may require some thought, the second follows from
the observation above, and the last follows from our previous result. Our
answer is the coefficient of 2" in h(z).

§28. Computations

We will do 2 different types of computation here. The second is hand calcu-

lation of answers to a couple problems that are like the ones we have done

above. The first is an algebraic computation that involves e*, for real num-

ber a, and is defined to be an abbreviation for >~ (a—:,’— in R[[z]]. We want

to prove the law of exponents: e**eb* = elatb)z for real numbers a and b.
Now, in general,

. o0 B i .
DI UEIES Sl pagtert
r=0 _i+j:'r
[ ! ]

> _ (i+7) =
; ig;“lb] Wl i+ )
-
>

Il

r r ’ '
Z <k> akbr—k] %

r=0 Lk=0

and so, in particular,
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as desired.

Now for something completely different. How many ways are there to
express r as a sum of distinct positive integers, with the terms in increasing
order? The generating function for this problem is g(z) where

g(z) = (1+ )1+ 251+ 2+ 28 (14 2%

T

So we want the cocfficient of z” in g(z). Now, for a particular value of r, to
be practical we drop all the factors in g(z) that have exponent greater than r
since these will contribute nothing to our answer. Even so, the calculation
is horrendons. This is exactly the kind of thing best left to computers.
Certainly, with computers available, knowing how to model problems with
generating functions is much more valuable than knowing how to calculate
by hand the coefficients of given power series. However, some familiarity
of this process will do no harm, as long as we keep away from calculations
that are too long. A couple examples follow.

How many ways can 40 voters cast their 40 votes for 5 candidates such
that no candidate gets more than 10 votes?

First, note that this problem is equivalent to asking, How many integer
solutions are there to the system e; +es+es+eqg+e5 = 40 with 0 < e; < 107
Thinking of the variables e, as exponents, we see that we are asking for the
coefficient a4 of 2%° in the product

Mzt 42344219 =
O+t +2% 4 b 20 2 e 20 O 21

S (1A= )P = 1= P [ ! JS ~S

1—=z .
=0

We know that with

(=)= i(_l)ic))zl” and

ol £

=0

Na
0

N,
Il

<
Il
=}

i
(=]

g
the answer to our question is a4y where

ag0 = bpcgo + biicag + bagcyg + bazcr

= () () G) o - GG

Think about the form of this answer. Interpret each of the terms in the
answer.
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Finally, we consider the following 5 equivalent problems, where we sup-
pose that 2n <r < 4n.

1. How many ways are there to put r indistinguishable balls into n distin-
guishable boxes with 2, 3, or 4 balls in each box?

2. How many integer solutions are there to the system
e +es+ - +e, =rwith2 <e <47

3. What is the coefficient of 2" in the product [2% + 23 + 24|™?

4. What is the coefficient of z” in the product z?"[1 — 23" [ L ] "

5. What is the coefficient of z” in the product

7=0

To get the terms in the product that contribute to the coefficient of z" in
the product of the 3 scries within brackets, we necessarily take 22" from the
first series, then a term of the form (—1)° (’:)231 from the second series, and
finally the term from the third series so that the sum of all the exponents of
z is r. Hence, the last term must be of the form ¢; 2J, where j = r —2n — 3i
and ¢; = <T_QZ_31.>. With it understood that <,,_~2,Z_31> =0if 3i > r — 2n,
we see that the answer to each of our 5 questions is

g(l)i<fib><'r-~223q;>= or g(—n(:l)c;fi—l%)

Again, we should think about the form of the answer and be able to in-
terpret each of the terms in this answer. It might be clear that generating
functions are handy for PIE problems, especially when there are many
complicated conditions.

§29. The Greater Mississippi Problem; A Look at
Exponential Generating Functions

The generating functions that we have studied are also called ordinary
generating functions when other forms are in evidence. The one of these
other forms that is of interest here is called an exponential generating
function. After the formal definition below, we shall give 2 problems that
are paradigms for the application of exponential generating functions.

For the sequence {a.|r = 0,1,2,3,...} with a, € R, the exponential
generating function for the sequence is the power series h(z) in indeter-
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minate z wherce

o 2 2 43 3 M g A,
hz) =y + a1z + 3¢ a1t + Nk +ok it +
.2 3 4 2" X7
:U‘()+(1/1~ (],22'+a,}3 +U44 ++(L777+:ZCLTT_’

Since (14+2)" =30 (M=, (1) =32, UTLL‘W - £ then the
exponential generating function (egf) for the sequence {a,} where a, =
nl/(n —r)lis (14 z)". Thus, for a given fixed n, the ordinary generating
function for the sequence {( ;l)} that counts the munber of r-combinations

of n things is exactly the same as the cgf for the sequence { I i!rﬂ} that

counts the number of r-permutations of n things.

Paradigm #1. How many 5-letter words can be formed from the 11 letters
of MISSISSIPPI?

Since we can choose the \[ LXdCtly 0 times or 1 time,

2!

the cgf for selecting M’s is & + 7.

Since we can choose an | ex&cth 0, , 3, or 4 times,

the cgf for selecting I's is 6, + 5+ *2—; + % + i—

Since we can choose an S eXdctly 0.1, 2, 3 or 4 times,
~ —12 -~

the egf for sclecting S's is ;7 + £ ﬁ + 5+ 3— + %—

Since we can choose a P exac ‘rly 1, or 2 times,

the egf for sclecting P’s is 3], + 5 +

Now. as with the ordinary geners ‘Itlllg functions, we consider the product
h(z) of these individual egf, even though this does not look very promising
at first. So h(z) is

:lJ :1 :0 :l :2 ::5 :4 (.',(D :1 :2 33 :4 ZU :l :2
[a+iHa+ﬁ+§+5+1Ha*ﬁ*ﬁ*ﬁ*ﬁ“ﬁ+u*a}

Suppose we take t'ho term

it factor above to form the product

61 gem ey
= F 77 This conebponds t() counting all the words that have

exactly e; M’s, ea I's, e3 S’s, and ¢4 P’s. Certainly we already know how
Y

many such words there arc. This is our basic Mississippi problem and we
t (e1teatezteq)!

. Now watch and be amazed as this number
€1 '02'03'94
zC1Teategteay

m7 in the calculation

get the resul

magically appears as the coefficient, of

€n ~€3 ~C4 1 ~e1test+ezteq
Es < £

(’1.’ (2’ (33! 64! - 6’1!652!6’3!6.1! 1
C{er Tes ey ey zértextestey
eqlealesley! (e +ea+es+eq))
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For our particular problem, we sce that we want the sum of all Coefﬁcients

of (e—llr—:zfe?—% in the produ(t h(z) where €1 + €2 + e3 + e4 = 5. That

is, the coefficient of z°/5! in A(z) is the number of 5-letter words that can
be formed from the letters of MISSISSIPPI. Is it clear that the number of
r-letter words that can be formed from the letters in MISSISSIPPT is the co-
efficient of z”/r! in h(z)? We observe that the egf are precisely constructed
so that we can multiply the individual egl together to get the egf for the
entire process. The multiplication of series does all the algebraic thinking
and calculating for us. Again we have reduced a complicated problem to
an algorithm of computing the proper coefficient in a product of series. A
computer algebra system tells us that the desired coefficient that answers
the question posed in the first paradigm is 550. We can hope that we are
not asked to hand calculate the solution to the question, How marny words
of at least 1 letter can be formed from the 11 letters of MISSISSIPPI?

We can follow the paradigm to use egf to solve problems modeled on
arranging r letters from an “alphabet” of n symbols, in particular where
there are limitations on the availability of the different letters.

There are some special egf that are very useful: With unlimited repetition
allowed in selecting a letter or any object for an arrangement, the egf for
that object is E—‘;+%+§ +%§+%+-~-. which is e®.

The egf for sclecting at least 1 of an object is ¢® — 1.
The egf for selecting at least 2 of an object is ¢* — 1 — 2.

[~

The egf for selecting at least 3 of an object is ¢ —1 — 2z — 3—
4

o=

The egf for selecting at least 4 of an object is ¢* — 1 — 2z — & — ;—, ete.

. . . z =
The egf for selecting an even number of some object is * +2‘: since

0+22+Z4+26 ~,N,S_I- et e
o2t 46 8 2

The egf for selecting an odd number of some object is ez‘;ﬂ since
21+23+z5+z7+79+ ez_e—z
1! 3! 7! 9! 2

Some examples using these identities follow.

How many ways are there to formn sequences of r letters from an alphabet
of 5 letters?

The egf here is (e*)?. The coefficient of 2”/r! in €°* is 5”. There are 5"
ways, which, of course, is no surprise.

How many ways are there to form sequences of r letters from an alphabet
of 5 letters if each letter must be used at least once?
This time the egf is (e* — 1)®. Since, by the Binomial Theorem.

(€* —1)° = € — 5?4 106% — 10e** + 5e* — 1.
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the answer to the question is 5”7 — 5 -4" + 103" — 10 - 2" + 5, which we
could have calculated by PIE.

How many ways are there to form n-digit ternary sequences, which are
words of n letters from the alphabet {0, 1, 2}, such that the sequence con-
tains an odd number of 0’s and an even number of 1's? Our solution is the
coeflicient of 2" /n! in the egf

P.i

Since the egf is ’fc then the answer to this nontrivial problem is

Three Exercises.

Model the following with egf.

1. How many r-letter words containing only vowels are there such that
A is used at least once, E is used an even number of times, I is used
an odd number of times, and each of O and U is used exactly twice
or not at all?

2. Ilow many r-letter words containing only vowels are there such that
no vowel appears exactly once?

3. How many ways arc there to pile red, white, blue, and green poker
chips in a stack r high such that the stack has an even number of red
chips and at least 1 white chip?

Paradigm #2. How many ways are there to put 8 distinguishable balls
into 3 distinguishable boxes such that no box has more that 4 balls?

Using Figure 3.1, we see that there is a one-to-one correspondence be-
tween putting 8 distinguishable balls, numbered from 1 to 8, into 3 dis-
tinguishable boxes, labeled A, B, C, and forming 8-letter words from the
3-letter alphabet {A, B, C}. This result easily generalizes to the following.

Observation. There is a one-to-one correspondence between the place-
ments of r distinguishable balls into n distinguishable boxes and r-letter
words using an n-letter alphabet.

The solution to Paradigm #2 is then the same as the solution to the
problem, How many 8-letter words can be formed from 4 A’s, 4 B's, and 4

‘ . 3
. .. Q ey . L0 P! L2 .3 4
C’s? Our answer is the coefficient of z8/8! in (ﬁ +tH5+ 5+ 5+ ZT,) .
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(2) (1) (Dc>
o) Lo log

BAACCBCC

FIGURE 3.1. A Useful Correspondence.

Exponential generating functions provide the ideal model for putting
distinguishable balls into distinguishable boxes, especially so when there
are complicated restrictions on the number of balls that can go into the
particular boxes. The conditions on the boxes correspond to the conditions
on the letters. In passing, we also note that if computers are useful for
calculating with ordinary generating functions, they are even more useful
with egf.

How many ways are there to distribute 5 distinguishable balls into 4
distinguishable boxes such that the first box has at most 1 ball, each of the
second and third boxes has at most 4 balls, and the fourth box has at most
2 balls?

Labeling the 4 boxes M, I, S, P, in turn, and considering the correspon-
dence given by Figure 3.1, we see that we arc back to Paradigm #1.

How many ways are there to distribute r distinguishable balls into 5
distinguishable boxes if the first box has an even number of balls, the
second box has an odd number of balls, the third box has at most 2 balls,
the fourth box has at least 1 ball, and there is no restriction on the number
of balls in the fifth box?

Since the egf is h(z) where

0 1 2

ef+eF ef—eF |z 2 z . B
h(z): 2 : 9 {W‘FT"—FE:l[C *1]‘6.

our answer is the coefficient of =7 /7! in h(z).
Four Exercises.
Model the following with egf.

1. How many ways are there to assign each of 7 persons to 1 of 6 dis-
tinguishable rooms with between 2 and 4 assigned to each room?
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How many ways can r distinguishable balls be put into 6 distinguish-
able boxes with at least 1 box empty?

. How many ways arc there to distribute r distinguishable balls into

5 distinguishable boxes such that the fifth box has a positive even
number of balls?

. How many ways arc there to distribute 25 distinguishable balls into

5 distinguishable boxes if the first box has at least 2 balls, the sccond
box has at most 3 balls, the third box has has an odd number of balls,
there is no restriction on the number of balls in the fourth box, but
the fifth box contains between 7 and 11 balls?

Five Review Exercises.

Model the following problems with generating functions, ordinary or ex-
ponential.

<

§30.

How many 5-letter words can be made from the 12 letters AAA BB
C D EE FFF?

How many ways are there to distribute 26 of 34 distinguishable balls
to 5 persons if Lucy gets at most 4 balls?

How many ways are there to distribute 35 orange balls to 6 persons if
Adam and Eve together get at least 7 balls while Lucky gets at least
4 balls?

. How many ways can 25 distinguishable balls be put in 5 distinguish-

able boxes if each box receives an odd number of balls?

How many ways are there to solve the system consisting of the equa-
tion @y + 222 4+ 323 + 24 + x5 = 28 and the inequality 1 + z9 < 6 in
positive integers?

Comprehensive Exams

A Warm-up Exercise.

1.

How many 4-letter words consisting only of A’s, B’s, (s, and D’s
have the first letter not A, the second letter not B, the third letter
not C, and the fourth letter not D?

. How many arrangements of 1,2, 3,4 are there such that 1 is not in

position 3, 2 is not in position 1, 3 is not in position 2, and 4 is not
in position 47
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3. How many ways are there to distribute 14 distinguishable balls to 8
persons if the first 3 together get 5 balls?

4. How many ways are there to distribute 14 red balls to 8 persons if
the first 3 together get 5 balls?

5. How many ways are there to distribute 14 balls to 8 persons if red
and blue balls are available and the first 3 together get 5 balls?

Two Core Exams.

Core Exam #1.

Please read “;” as “How many ways are there to”. Do NOT simplify
your answers. Questions #1-19, worth 4% each; questions #20-22, worth
10% each; questions #2325, worth 8% each. Total 130%.

1. ; pick 2 books, not both on the same subject, from 5 algebra books,
7 geometry books, and 4 calculus books, where the books are distinguish-
able? 2. ; select pieces of fruit from 5 apples and 7 oranges if at least 1
piece of fruit is chosen? 3. ; scat b men and 9 women at a round table with
no 2 men next to each other? 4. ; form 5-letter words with the letters in
alphabetical order? 5. ; partition 18 persons into study groups of 3, 5, 4,
and 47 6. ; arrange the letters in MISSISSIPPI with at least 2 I’s adjacent?
7. ¢ permute the first 20 positive integers? 8. ; arrange the 13 letters of
ALBANYNEWYORK with the consonants in alphabetical order? 9. ; have
9 persons, including Peter and Paul, sit in a row with Peter and Paul not
sitting next to each other? 10. ; form 10-letter words from the alphabet
without repeating any letter? 11. ; fly 7 red flags and 20 blue flags on 10
distinguishable flag poles? 12. ; fly 7 red flags, 20 blue flags, and the flags
of 12 different nations on 10 distinguishable flag poles if each flagpole must
have at least 1 flag? 13. j pick 28 letters from 14 A’s, 14 B’s and 14 C's?
14. ; have 9 dice fall? 15. ; pass out some (including all and none) of 12
oranges and 13 distinguishable books to 8 girls? 16. ; seat 11 persons at a
round table? 17. ; put 12 pennies, 12 dimes, 12 quarters, and 12 Anthony
dollars into 5 distinguishable boxes? 18. ; put 25 indistinguishable balls
in 9 distinguishable boxes if each box must have an odd number of balls?
19. ; select 5 of the first 20 positive integers such that the difference of any
2 is greater than 1?7 20. ; arrange the letters of ALBANYNEWYORK with
both A’s preceding both N’s or both Y's preceding the K? 21. ; arrange the
letters of ALBANYNEWYORK with no double letter? 22. ; put 20 distin-
guishable balls in 4 distinguishable boxes with no box empty? 23. ; arrange
n letters selected from SUNYATALBANY ? 24. ; have 10 distinguishable
dicc show a sum of 307 25. ; distribute 20 red balls to 4 persons provided
Jack and Jill together get no more than 5 balls and 1 of Peter and Paul
gets an odd number while the other gets an even number?
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Core Exam #2.

Please read “;” as “How many ways are there to”. Do NOT simplify
your answers. Questions #1-20, worth 3% each; questions #21-24, worth
10% each: questions #25-27, worth 6% each. Total 118%.

1. ; arrange the consonants of the alphabet? 2. ; form 5-digit positive
integers having the last digit a repeat? 3. ; form 3-digit positive integers
having exactly one 87 4. ; form 5-element subsets of {1, 2, 3, ... . 30} such
that the largest is 207 5. ; form 5-element subsets of {1, 2. 3, ..., 25} such
that the largest is greater than 207 6. ; select 5 of the letters of the alpha-
bet. having no consecutive pair? 7. ; arrange the letters in MISSISSIPPI
with the M preceding all §'s7 8. ; arrange the letters in MISSISSIPPI with
no adjacent S’s? 9. ; arrange the letters in MISSISSIPPI with adjacent
P's? 10 ; arrange the letters in MISSISSIPPI? 11. ; put 20 distinguish-
able balls into 7 distinguishable boxes? 12. ; pick at least 2 pieces of fruit
from 7 apples and 11 oranges? 13. ; put 30 red balls into 7 distinguishable
boxes with exactly 2 boxes empty? 14. ; put 30 red balls into 7 distinguish-
able boxes? 15. ; distribute some (including nuone and all) of 7 apples and
11 oranges to 8 children? 16. ; seat 6 men and 8 women at a round table
with 1o 2 men next to cach other? 17. ; invite at least 1 of 12 friends to
dinner? 18. ; select 6 of 14 knights seated at a round table (to rclease the
enchanted princess) such that no 2 sitting adjacent are selected. 19. ; fly 15
indistinguishable flags and 17 dilferent, distinguishable flags from 12 flag-
poles? 20. ; fly 15 indistinguishable flags and 17 different, distinguishable
flags from 12 flagpoles if cach flagpole has at least 1 flag? 21. ; distribute
7 red balls, 8 white balls, and 9 blue balls to 2 persons if each receives
12 balls? 22. ; distribute 5 pennies. 5 nickels, 5 dimes, and 5 quarters to
1 persons so that cach person receives at least 1 coin? 23. ; arrange the
letters of COMBINATORICS so that the arrangement contains 2 adjacent
letters that arc the same? 24. ; select 10 coins from 9 pennies. 6 nickels,
4 dimes, and 3 quarters? 25. ; solve the equation 2z + 3y + 4z = 66 with
positive integers? 26. |, obtain a sum of 40 when 10 distinguishable dice
arc rolled? 27. ; distribute 30 red balls to 4 persons provided Jack and Jill
together get no more than 10 balls. Peter gets an odd number, and Paul
gets an even number?
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§31. Symmetry Groups

Let p be a rotation of 90" about the origin O in the plane. (Remember that
convention dictates that p is then a counterclockwise rotation of 90°.) So,
p? denotes the rotation of 180" about O, and p* denotes the rotation of 270"
about O, that is, p* denotes 3 successive rotations of 90° about O. Let ¢
be the reflection in the X-axis and ¢ = ¢2. Then ¢ is the identity mapping
on the plane, sending each point of the plane to itself, and ¢ maps the
point (x,y) to the point (x, —y). We write o((x,y)) = (z, —y). Mappings,
like these, that fix distance are called isometries and are multiplied under
composition. This means, for example, that op, which is usually read
“sigma rho,” can be more completely read “sigma following rho” and is
defined by the formula

op(P) = o(p(P)) for any point P.

Hence, to find the image of point P under the mapping op? we first see
where P goes under p?, say to point @, and then see where @ goes under
o. Therefore, if we have o(Q) = R, then we have op?(P) = o(p*(P)) =
o(Q) = R. (You may very well agree with the author and think that this
convention for composition is backwards because we read English from left
to right, while composition is performed from right to left. We bow to this
convention, since it is the the convention always used in calculus, where
gf(x) = g(f(x)) for functions f and g and rcal number x. Howcver, we

G. E. Martin, Counting: The Art of Enumerative Combinatorics
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FIGURE 4.1. Marking a Square.

will usually ignore those that think we should write op as “o o p” to avoid
confusion with something that we are not even going to mention.)

A symmetry for a set of points is an isometry that sends the set to
itgelf. Considering the symmetries of a square in the standard position of
having (1,0) as a vertex and the center of the square at O, we see that
there are exactly 8 symmetries. (Any of the 1 vertices can go to {1,0);
next, either of the 2 vertices adjacent to the first can go to (0,1); and this
then automatically determines the position of the other vertices.) Since the
following 8 syminetries of the square are distinct, they must, in fact. be
exactly the 8 symmetries of the square:

t.op. p?optoand o op. op?. op’.

Is it clear that the product of 2 symunetries of a set of points is a sym-

metry of that sct, as is the inverse of a symmetry?

Exercise 1. Rip off an end of a sheet of regular paper to form a square.
With the square oriented as in Figure 4.1, mark an ¢ at the top. Rotate
the square 90 and label the top p. Rotate another 90° and label the top
p?. Finally, another 90° and labcl the top p?. Now, with the squarc in its
original position with the ¢« at the top. reflect the square in its horizontal
axis. This represents the isometry o that is defined by o((z.y)) = (x, —y)
(and is physically achieved in 3-space by rotating the square about its hori-
zontal axis). Doing the reflections after the rotations again, we end up with
the squarc marked as in Figure 1.1. It should be very clear that op # po.
With the aid of this marked square, actually carry out the physical mo-
tions necessary to determine the Cayley table (multiplication table under
composition) for the symmetry group Dy of the square. That is, fill in a
copy of Table 4.1. Remember that the entry for (op)(o) goes in the row
headed op and column headed o.

Exercise 2. Show that composition of mappings is always associative: give
the rcasons for the following steps in proving that ~(3a) = (v7)a, where
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(Di « T » T p? P> | o | op [ o | opt ]

TABLE 4.1. Cayley Table for Djy.

a, 3, v are any mappings for which the compositions are defined. For any
point P, we have:

(v(Ba))(P) = ~((Ba)(P

In general, C), denotes the cyclic group of order n generated by p where
p is the rotation po 360/ of (360/n)" about the origin. Thus, the elements
of C,, are ¢, p, p%,... . p"~ ', with multiplication given by p'p? = ptJ and
p" = 1. Let o be the rcflection in the X axis. The dihedral group I,
which is the symmetry group of a regular n~-gon when n > 2, has the 2n
clements:

n—-1

top, P2 o and o, op, o, ..., op

The group multiplication table for D,, is actually very easy to compute
once we know that pfo = op~* = gp"~*. (It was Leonardo da Vinci who
first observed that any finite syminetry group in the plane is (conjugate to)
cither a C,, or a D,,.)

In applications later, we will be content to “describe” the 8 elements of
D, in a more robust manner as:

1 identity,

2 rotations of + 90°,

1 rotation of 180°,

2 reflections in diagonals,

2 reflections in perpendicular bisectors of sides.
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FIGURE 4.2. Dodecahedron and lcosahedron.

Later we will be precise about what we mean by a robust manner; for now,
use the description above as a model and you will not go far wrong.

Exercise 3. The equations 24 = 8 x 3 = 12 x 2 = 6 x 41 might suggest that
there are 3 ways to show that there arc 24 rotation symmetries of a cube.
Describe in a robust manner these symmetries of a cube. (Obviously, this
exercise is best done with a cube in hand. We will be using the cube so much
that it will pay to actually have a cube available. In a pinch, you can use a
die or cven use a cube that you have made from paper and tape. You should
become very familiar with the rotation symmetrics of the cube.) We will
not be concerned with any symmetries that cannot be physically achicved
in 3-space. For example, although the reflection in the plane containing a
pair of opposite edges of the cube is an isometry of the cube, this motion
is impossible in 3-spacc with a rigid cube.

Exercise 4. Describe in a robust maunner the rotation symmetries of a
regular dodecahedron and a regular icosahedron. (The dodecahedron has
12 sides that are congruent regular pentagons. The icosahedron has 20
sides that are congruent equilateral triangles. These solids have the same
syimmetries because joining the centers of adjacent faces of one produces
the edges of one of the other.) See Figure 41.2.

The group of rotation symmetries of the regular dodecahedron and the
regular icosahedron is called the icosahedral group. The group of the
rotation symmetries of the cube is called the octahedral group. This
is because the cube and the regular octahedron have the same rotation
symuetries. Joining the centers of adjacent faces of one produces the edges
of one of the other. Each of the 8 faces of the regular octahedron is an
cquilateral triangle.
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§32. Legendre’s Theorem

Mathematicians have the peculiar propensity to use everyday words for
technical mathematical purposes. The list of technical words adopted by
mathematicians could start off with rational, irrational, real, imaginary,
complex, map, series, graph, field, ring, and group. We do not neced to define
these here, except for the last of these words. Mathematicians studying
various systems realized that they were duplicating their efforts and that
the proof over here in one system was pretty much the same as the proof
over there in another system. They began to abstract what was common to
many of these systems in order to form a general theory. The most useful
basic system involves a set and 1 binary operation (there is another word: an
operation in mathematics has nothing to do with hospitals or the military).
By a binary operation on set S, we mean a mapping of all the ordered
pairs of elements from S into some set. For example, addition + on the
set of integers. We put the operation symbol between the first and second
arguments of a binary operation. So. we do not write “+(3,4) = 7.” but
rather “34+4 = 7.7 After all, people used “3+4” long before there was the
abstract idea of a binary operation. In general, we call the binary operation
multiplication, although in some instances, depending on the notation, we
call the operation addition. If that sounds indecisive, it is. The properties
in the following list are those that are deemed most important for a set S
together with a binary operation © on S.

Closure Property. When we combine 2 elements of .5 we should get an
element of S. In this case, we say that S is closed under the binary
operation. So, if @ and 3 are in S and if S is closed under &, then
o & 3 is an element of S.

Associative Property. Most nice binary systems satisfy the associative
law: if «r, 3, and v are elements in S, then

yo(@ea)y=wHeH) oa

Actually, life gets very dillicult studying systems that do not have
this property.

Identity Property. There is be a unique element ¢ in & such that for each
o in S we have

LtOa=a®i=a.

This unique element is called an identity. The most familiar iden-
tities are O for addition on the real numbers, 1 for multiplication on
the nonzero real numbers, and the identity mapping on any particu-
lar set. If S is a set of mappings, we will usually denote the identity
mapping on S by . (Note that the meaning + changes as we change
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S. Most of us have the bad habit of talking about the identity, when
we rcally mean the relevant identity of the moment. Somehow, we get
used to 1 being the identity one minute and 0 the identity the next. )

Inverse Property. If o is in S, then there is a unique element o' in
such that

altca=asat= L,
where ¢ is the identity. This unique element o™ ! is called the inverse
of element o,

Observe that we have not mentioned the popular commutative law:
O a=a@3, forall o and 3 in S. Although the associative law is pretty
much a necessity, the “law” in “commutative law” is frequently flaunted.
If a binary operation does satisfy the commutative law, then the operation
is said to be commutative or abelian.

The triple (5., ¢) such that S is a set containing the clement ¢ and &
Is a binary operation on S satisfying all the 4 properties above is a group.
The properties can be weakened somewhat. but we are more interested
in what a group 4s than how most economically to define a group. Since
“group” is a technical word, mathematicians shouldn’t use the word to
refer to a general collection or set. (That’s “shouldn’t” and not “don’t.”)
Just to make matters worse, unfortunately we often refer to the set of a
group as the group itself when it is clear what the binary operation on
the set is. For example, we feel safe in mentioning “the group of integers,”
because we know that everyone will understand that the binary operation
here is garden variety addition and that the identity is (. Understanding
the jargon and using the jargon is part of mastering any ficld.

Besides those groups that come from the arithmetic of real numbers, we
have the symmetry groups (,, and D,, from the previous section as cxamn-
ples of groups where the binary operation is composition and the group
identity is the identity map on a set of clements. Those who encountered
formal power series in the previous chapter will see that the set of series
with nonzero constant term form a group under Cayley multiplication &
with 1 as the ideuntity.

Exercise 1. Prove the cancellation laws for a group. That is, prove that
if a, 8, and v are in group G, then

v a =573 implics o = 3,
and

a Gy =35y implies o = 3.
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Exercise 2. Show: In any group, the inverse of a product is the product
of the inverses in reverse order.

Another place where mathematicians intentionally allow themselves to
be sloppy is in a statement such as “H is a subgroup of G.” We suppose
that H is a subset of G. If © is a binary operation on G and if H # G,
then @ is not really a binary relation on H. Admittedly, the difference is
subtle. There is a restriction [ of & to H defined by a1 =a® 3 for all
a and 5 in H. However, nothing is gained by being too precise. We don't
think many of us are upset in reading “3 + 47 at not becing told if that
“ 17 means addition on the sct of integers or addition on the set of real
numbers. So, we tacitly agree that to say H is a subgroup of group &
when we formally mean, given group (G.@.t) and a subset H of G, that
(H,,¢) is a group with O defined by « 13 = o © 3 for all @ and 2 in
H. Of course, we then immediately drop the [ and ¢ and use - for the
operations in both ¢ and H. (Paradoxically, it is only the best students
that are annoyed by the relentless abuse of notation mathematicians allow
themselves.) For an easy cxample of a subgroup. the set of even integers
forms a group under addition of the group of all integers under addition.
Enough of this diddling; let’s move on. (Somebody has to do the diddling,
of course, but it does not have to be us.)

If H is a subgroup of group G and g is an element of G, then we define
the coset gH to be {yh | h € H}. In other words, we take the set of all
the elements of H and multiply each on the left by ¢; the resulting set
is gII. You probably did not even notice that we have fallen into another
convention and used juxtaposition to denote our binary operation. Thus,
we write “a/3” in place of “a-3.” We have suppressed the symbol denoting
the binary operation, but it will not be missed. (It must be mentioned that
vou might recognize from some other life that this definition of a coset is
a left coset, might know that there are right cosets, and might know that
much of the first course in abstract algebra has to do with when left cosets
and right cosets are equal and the conscquences when this is the case. We
can get by very well without all that.)

In general, |S| denotes the the number of elements in set S and is called
the size of S or the order of S. The order of group G is the order of its
set of elements and is denoted by |G|. The empty set is the set having no
clements and is denoted by @. So. [@] = 0.

Lemma. Suppose that H is a subgroup of group G, that G has identity ¢,
and that x and y are in G. Then

1. z is in 2 H. (Every element of G is in at least 1 coset of H.)
2. hH = H for every h in H.

3. xH =yH iff y "2 isin H.
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4. Either zH = yH or else tH NyH = (. (Every element of G is in at
most 1 coset of H.)

5. |¢H| = |H]| for every z in G.

Proof. (1) Since e € H, then xe € zH. Since ¢ is the identity, then ze = .
Sox€xH.

(2) Suppose h € H. Then hH C H because H is closed. Also, if z € H,
then h='z € H and we have x = h(h~'x) € hH. So, H C hH. Hence,
hH = H.

(3) Suppose xH —= yH. Then there is an & in H such that 2 = ze = yh.
So, y~'a = h ¢ H. Conversely, suppose y~ 'z = h € H. Then y 2l = H
and so oH = yH.

(4) Suppose z € xH M yH. Then there are h; and hs in H such that
z=uxhy = yhs. So, y "'z = h,zh,fl € H and, hence, «H = yH.

(5) This follows from the definition of a coset and the cancellation laws. g

If H is a subgroup of group G, then the number of different cosets H
has is called the index of H in G and is denoted by |G : H|. By (1) and
(4) above, we see that every element of G is in exactly 1 coset of H. From
(5) it then follows that |G : H| - [II] = |G]. This relation is usually stated
as follows.

Lagrange’s Theorem. The order of a subgroup divides the order of the
group.

The hallmark of twentieth-century mathematics was the extensive blos-
soming of abstract mathematics. There is great economy in a proof in an
abstract system such as a groups. We have just proved that the statement
of Lagrange’s Theorem holds not only for every group that has been con-
ceived but also holds for any group that cver will be conceived. Now that
1s power.

§33.  Advanced Gozintas (Permutation Groups)

A permutation on a set is simply a bijection on that set, i.e., a one-to-
one mapping of the set onto itself. In other words, a permutation on S is a
one-to-one correspondence of S with itself. Often the word “permutation”
is restricted to finite sets, as it will be here. Unless otherwise indicated, the
sct is usually supposed to be {1,2,3,... ,n}. Since all defined mappings are
associative and a bijection automatically has an inverse, the permutations
on any given set form a group. The group of permutations on {1,2,3,... ,n}
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TABLE 4.2. Cayley Table for Ss.

is denoted as S,, and is called the symmetric group on n elements. Where
x goes into «(x) under permutation «, we can write o as

1 — afl)
2 = al2)

n —> a(n)

but this takes up too much room. It is much more convenient to use the
following notation.

1 2 3 n |
a:<a(1) a(2) a@3) - aln) >

It is evident that there are exactly n! elements in S, and that the inverse
of any particular element in S, is easily obtained by reading “up” instead of
“down” in the array displayed above. Since permutations are mappings we
shall follow the (stupid?) conventional left-handed notation for functions:
(Ba)(x) = B(a(x)). So, for example, we must read from right to left in the
product on the left side of the equation to get the correct result on the
right side of the cquation

1 2 3y/1 2 3\ (1 2 3

1 3 2/\2 3 1) \3 2 1)°
Here, we have 1 goes into 2 under «, and 2 goes into 3 under /3. Hence, 1
goes into 3 under the product Sa. Next, 2 goes into 3 under «, and 3 goes
into 2 under 3. Hence, 2 goes into 2 under the product Sa. Finally, 3 goes

into 1 under «, and 1 goes into 1 under /3. Hence, 3 goes into 1 under the
product Fao.

Exercise 1. Compute the Cayley table for S3 by filling in Table 4.2.
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The notation for elements in S,, is still rather cumbersome. We shall
streamline the notation with the cycle notation. The cycle notation is
very much like what it sounds like. Tf « is in Sy, (1) = 6, a(6) = 2, and
«(2) = 1, then the clements 1,6,2 cycle in that order and we write this
cycle as (1,6.2). The cycles (1.6,2), (6.2,1), and (2,1,6) are exactly the
same and differ from (1,2.6). Conventionally we start with the smallest
integer in the cycle. We can write each element in S, as a product of
disjoint cycles. We start with 1 and capture the cycle containing 1, then
start with the smallest integer not in any cycle yet obtained and determine
the cycle that this element is in, and continue in this way until all the »
integers have appeared. Since n is finite, this process will come to an end.
For example, if

/1 23456 789
““\6 1 5 47 28 3 9/

we get the cycles (1,6,2), (3,5,7,8), (4), and (9), in turn. Now we write
o= (1,6,2)(3.5.7,8)(1)(9).

Algebraists further streamline the notation by dropping all the cycles
containing just 1 clement and suppose that if an element is not mentioned
it goes to itself: there is necessarily 1 exception to this: we write (1) for the
identity permutation. For n < 10, we can also omit the commas without
confusion. Thus, we now write o« = (162)(3578).

If you are compulsive about sticking with left-handed notation you could
write v = (3578)(162). The result is the same precisely because the cycles
are disjoint. Of course, a product of cycles that are not disjoint is gencrally
not commutative, as (132) = (12)(13) # (13)(12) = (123).

A cycle (e1eq. .. er) is said to be of length k; a cycle of length 2 is called
a transposition. An element in S, is even or odd as the permutation is
a product of an even or an odd number of transpositions. We will not show
here that every permutation is either even or odd hut not both.

Exercise 2. Rewrite, in cycle notation, the row and column headings from
Table 4.2 for S3 and recompute the Cayley table using the cycle notation.

Exercise 3. Show that in S, with n > 2, an n-cycle is a product of n — 1
transpositions and that any product of 2 transpositions is a product of
3-cycles.

Exercise 4. List all the even elements of S,; list all the odd elements
of Ss. Show that the set of even elements of S,, forms a subgroup of S,,.
This group is denoted by A, and is called the alternating group on n
elements. What is the order of A4,,7
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Group G with identity e always has subgroups G and {e}. These subgroups
are called trivial subgroups; a proper subgroup is a subgroup that is not
trivial.

Suppose g is an element of group G. The product ggg---gg, having r
factors, is denoted by g”. For positive integer r, we define g=" to be (g71)".
So g"g" = ¢Y that is, g7 = (g")"!. For integer n, the element g" is
called a power of g. With Z denoting the set of integers, as usual, the set
{g™ | n € Z}, consisting of all the powers of g, is easily seen to be a subgroup
of G. For example, the set {2" | n € Z}, which is {1, 2, %, 4, %, 8, -;’§, b
forms a subgroup of the positive rationals under muitiplication. If there is
a smallest positive integer r such that ¢" is the identity element of (7, then
the set {g, ¢°. ..., ¢"} forms a finite subgroup of G.

If all the elements of a group G are powers of some element g in &, then
we say G is cyclic and call g a generator of G. We abbreviate {g™ | n € Z}
to (g), which is read “the (cyclic) subgroup generated by g.” So, if element
h is in group H, then (h) is a cyclic subgroup of H. Thus (2) is a cyclic
subgroup of the positive rationals under multiplication. The set of integers
under addition is a cyclic group having each of +1 and —1 as a generator.
If g is a generator of group G, then the inverse of g is necessarily also a
generator of GG. The integers mod 12 under addition, i.e., “clock arithmetic,”
form a cyclic group where each of 1, 5, 7, and 11 is a generator of the group.
Let’s check below that 5 is a generator.

First, we note that the notation for the group binary operation is ad-
dition rather than multiplication and so we have ng in place of g™ in the
above, where ng is the sum g + g + - - + g with n terins. Thus, with ad-
ditive notation, (g) = {ng | n € Z}. Under “clock arithmetic,” we “add” 2
elements by doing the usual addition but then add or subtract 12 repeat-
edly until we get to an integer (inclusive) between 0 and 11. The group
properties are quickly proved. (Here, 0 is the identity. The additive inverse
of 5 is 7 since 5 + (12 — 5) = 0. This group is denoted by Z;5. Of course,
there is nothing special about 12, and we have the analogous groups Z,, for
positive integer n, which we read as “integers mod n.” We want to check
that 5 is a generator in Zj. So we need look at {5n | n € Z}, which is
{5,10.3.8,1,6,11,4, 9, 2, 7, 0}. Therefore, 5 generates all the elements
of Z12. So, the group Z;», under addition, has 5 as a generator. Note, for
example, that 9 is not a gencrator of Z, since {9n | n € Z} is {9, 6, 3, 0},
which is a proper subgroup of Z5. Since {(9) # G then 9 is not a generator
of G.

The order of element g in group G is the order of (g). (Note the 2
meanings of the 1 word.) As a consequence of Lagrange’s Theorem, we
have the following corollary.
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Corollary. The order of an element in a group divides the order of the
group.

The converse of the corollary states that if d divides the order of group G
then there is an element of order d in the group. This is immediately seen
to be false since not every group is cyclic. In fact, every proper subgroup of
S3 is cyclic but Sy is not cyclic. That A4 has no element of order 6 provides
another counterexample. Does A, have any subgroup of order 67 Does the
converse of Lagrange’s Theorem hold?

The converse of Lagrange’s Theorem does not hold. Assume A; has a
subgroup K of order 6. (Certainly, 6 divides 12.) Let « be any element
of order 3 in A4. Since K has 6 clements in Ay, then at most 2 of the
cosets K, wK. and «2K are distinct. However, the equality of any 2 of the
cosets implies that x is in K. Hence, K contains all 8 elements of order 3,
a contradiction to |K| = 6. The Cayley table for A4 is given in Table 4.3.

Exercise. List all the proper subgroups of As. Next. take 1 proper sub-
group of each possible order and calculate all the cosets for that subgroup.
(For example. there are 3 subgroups of order 2. Take only 1 of these, say
H = {(1). (12)(34)}, and calculate all the cosets of H. Do the same for
I = {(123)) and for the subgroup of order 4.)

The notation above can be generalized. If X = {g;, g2, ...} and cach
clement of group 7 is a product of a finite number of powers of the g;, where
powers of an element of X may occur more than once in a product, then
we say (G is generated by X and write G = {¢1, ¢2, ...). For example,
D, is generated by a rotation p of order n and a reflection ¢ of order 2.
The equations D,, = {p. ¢) with p” = ¢? = 1 and op = p~'o completely
describe the dihedral group D, for any positive integer n. For another
example, consider (a. b) where a is of order 6, b is of order 4, b* = «*, and
ba = ¢~ *bh. This group of order 12 has no noncyclic proper subgroups but
is not cyclic. We can express this group as a permutation group on twelve
symbols by taking a = (123456)(abede f) and b = (1f4c)(2e5b)(3d6a).

A permutation that is a cycle of length & has order k. A product of
disjoint (1) eycles has order that is the least common multiple of the lengths
of the cycles. For example, (12345) has order 5, and (1234)(56)(789) has
order 12.

A permutation in S,, has cycle type z,f“ 3,[:'2 z[f" -« if the disjoint cycle
decomposition of the permutation has, for 1 < i, exactly k; cycles of length
I;. The z;’s are indeterminates, onto which we hang the exponents, and we
omit all factors having exponent 0. We suppose that 1 < [; <ly < --- and,
for our purposes, suggest that we resist the usual convention of omitting to
write 1 as an exponent. Already the bad habit of omitting cycles of length
1 in writing the elements of S, can cause us to forget them here. A few
examples should make it all clear. In Sy, permutation (1) has cycle type
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(ve1) (eer)  (¥2)(€D) (1) (ev1) (rez)  (ve)zn) (e2)(¥D)  (¥2D) (ev2) (g¥1) (g21)
(zb1) (ev1)  (e0)(¥1)  (pe)(21)  (ce1) (vz1) (1) Fe)en)  (vg0) (g21) (7e1) (eve)
(ver)  (peMzT)  (£21) (ev2)  (ro)(en) (1) (ge1) (pe1)  (ea)(¥D)  (¥82) (ze1) (ev1)
(ee1)  (vel(er)  (ve1) (ev1)  (Fe)ED  (e2)(31)  (e¥2) (e21) (1) (ev1) (¥21) (ve2)
(gz1) (re1)  (be)2) (e2)(p1)  (3e2) (ev1)  (vo)(en) (1) (ze1) (zv1) (eve) (7e1)

(ea)r1)  (2¥D) (evD) (vez) (gz1) (ev2) {zeT) (¥21) (¥e1) (n) (re)(z1)  (¥2)(en)
Fo)er)  (pe1) {zen) {ve1) (ev2) (¢21) {er1) (ve2) (er1)  (38)zD) () (£2)(¥1)
(re)er)  (sz1) (¥z1) {ze1) (zv1) (Fen) {vee) (ev1) (evz)  (v2)(e1)  (€2)(31) ()

(1) (¢¥2) (¥¢2) (e¥1) (Fe1) (evD) {ve1) (ze1) (eg1)  (ee)(vr) (p2)(e1)  (#E)CD)

TABLE 4.3. Cayley Table for A4.
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2P, permutation (12)(34)(567)(89) has cycle type z3'z3, and permutation
(23)(5678) has cycle type z{z4z}. Group Ay has 1 permutation of cycle
type z;'. has 3 of cycle type 24, and 8 of cycle type z/z4. Further. S
has 6 additional permutations of cycle type z} and 6 of cycle type z7z3.
You have no doubt noticed that, in the notation at the beginning of this
paragraph, we can use the equation Y ;_, k;l; = n as a check on the cycle
type. Although it is probably difficult to imagine now, the cycle type of a
permutation will turn out to be extremely useful.

§35.  Cyclic Groups

Cyclic groups arc very special and we will briefly look at them.

Theorem. A cyclic group is abelian. Any subgroup of a cyclic group is
cyclic.
Proof. Suppose G is a cyclic group generated by element g. So G = {g) for
some element ¢ in G and the identity element of G is ¢". Commutativity
of G is obvious, following from the commutativity of the integers under
addition:
g9 =9""=9""=g'g".

Let H be a subgroup of group G. If H = {g"}, then H = (¢°). Suppose
H # (¢"). Then there exists a smallest positive integer m such that ¢" is
in H. We shall show that H = (™). Suppose g* is in H. Then there exist
integers g and r such that s = mq+7r where 0 < r < m. (We divide s by m
to get quotient ¢ with remainder r.) Thus, g" = g°~ " = (g°)(¢™) 9. Since
the right-hand side of this equation is in H, then ¢" is in H. However, by the
minimality of m, we see that r must be 0 and s = mqg. Thus, ¢° = (§™)".
Therefore, every clement of H is a power of ¢, as desired. g

If d is the largest positive integer that divides each of the positive integers
n and s, then we say d is the greatest common divisor of n and s and
we write d = ged(n, s). If ged(n, s) = 1. then we say n and s are relatively
prime. For example, ged(4,15) = 1, ged(4, 12) = 4, and ged(4.30) = 2.
We introduce the standard notation ¢(n) to denote the number of positive
integers less than or equal to n that are relatively prime to n. The function
¢, which is defined on the positive integers, is called Euler’s phi function.
Thus ¢(1) = ¢(2) = 1, ¢(6) = 2, and for prime p we have ¢(p) = p —1 and
o(p”) = p" — p"~*. Evaluation of ¢(n) for large values of n follows from the
equation ¢(ab) = ¢(a)¢(b) if ged(a.b) = 1, which we will not prove here.
We write “d|n” as an abbreviation for “d divides n.” which means that for
integers d and n there is an integer m such that n = md.

Theorem. If G is a cyclic group of order n with gencrator g, 1 < k < n,
and ged(n, k) = m, then (g*) has order n/m.



§33. Cyclic Groups 81

Proof. Let H = (g*). There exist integers s and ¢ such that n = sm,
k = tin, and ged(s,t) = L. So (gF)* = ¢F = ¢i™= = ¢ = (g") = ¢°.
In other words, the order of g* divides s and thus is less than or equal to
s. So H contains the elements g%, g?*, g% ... ¢°%. We need to show these
s elements are distinct to prove the theorem. Assume that g* = g7 for
some i and j such that 1 < j < i < s. So gt 9% = ¢° This means that n
divides (¢ — )k, which means that sm divides (i — 7)tm. which mecans that
s divides (i — j)t, which, since s and ¢ are relatively prime, means that s
divides ¢ — j, which is impossible since 1 < j < i < s. Therefore, H has
order s where s = n/m. g

Since any subgroup of a cyclic group is cyclic, the theorem has some
immediate corollaries. The first follows from the special case m = 1 in the
theorem. The second is the special casc k = m = n/d in the theorem,
so that d = n/m. The remaining 2 corollaries follow from the first 2 and
Lagrange’s Theorem

Corollary 1. If GG is a cyclic group of order n with generator g, then
G = {g*) iff integers n and k are relatively prime.

Corollary 2. If G is a cyclic group of order n with generator ¢ and d|n,
then (g™/?) has order d.

Corollary 3. Group C, has ¢(n) generators.
Corollary 4. Group (', has a subgroup of order d iff d|n.

Theorem. Group ), has exactly 1 subgroup of each order d such that d
divides n, and these are the only subgroups of C,,.

Proof. We already know that, every subgroup is cyclic and that (p™/¢) is
a subgroup of order d. We need to show that this is the only subgroup of
order d. So suppose H is a subgroup of order d. Then there exists s such
that / = (p*). From the previous theorem, we have d = H| = n/ ged(n, s).
Thus, ged(n, 5) = n/d and n/d must divide s. Hence, p* = (p™/*)* for some
integer ¢. Since the generator of H is in (p"/?), then H is a subset of (p*/7).
However, since H and {p"/?) have the same order, then the subgroups must
be equal. g

This thcorem has 2 corollaries that follow from the 3 statements: Each
element of a group generates a cyclic subgroup C;. All the elements in C,
that are of order d are in this unique cyclic subgroup of order d. A cyclic
group of order d has ¢(d) generators.

Corollary 1. If d|n, then C), has ¢(d) elements of order d.

Corollary 2. For positive integer n,
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Homework. Let G = C2 = {p). So p is the rotation of 30" about the origin
in the planc. Calculate the order of (p¥) for each k such that 1 < k < 12.
Use G to illustrate the last theorem and all of the last 6 corollaries. (If you
need more exercises to understand the theorems and their corollaries, use

G = Cz.)

§36. Equivalence and [somorphism

This scction could be called “The Same and More of the Same.” Actually,
these need some qualification such as “with respect to ... 7. Of course,
same brings to mind equal. Note that ¢« = b means that ¢ and b arc names
for the same thing. If we give this some thought, we might conclude that
mathematics is probably the only place where equality exists. In the phys-
ical world-—at least at the normal scale-- we see that 2 things cannot be
equal because they are different and, even if indistinguishable, arc neces-
sarily in different places. We want to make precise the idea of things being
equal with respect to some particular property.

To say ~ is a relation on set S means only that ~ is a subset of § xS,
the set of ordered pairs of clements from S. We write a ~ b iff (a,b) €
~. We say the relation ~ is an equivalence relation iff the following
3 properties hold: the reflexive law, the symmetric low and the transitive
law. See Figure 4.3. These 3 properties go back to Aristotle’s description
of equality, the mother of all equivalence relations.

R: «w~ a.

S: a ~ b implies b ~ a.

T: a ~ b and b ~ ¢ implies a ~ c.
FIGURE 4.3. Laws for an Equivalence Relation.

We can think of a lot of examples from plane euclidean geometry. An
equivalence relation on the lines is defined by a ~ b iff a || b. Segments
under congruence, angles under congruence, and triangles under congruence
provide further examples. (There is a very good reason to use the same
word congruence here to describe the 3 different equivalence relations, but
to cxplain would be too much of a digression. Although Euclid did use
1 word for equal and equivalent, there is no reason we should. It is. at
best, old-fashioned to say that 2 triangles are equal when they are ouly
congruent. )
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For a given equivalence relation ~, the equivalence class of a with
acSis{reS|z~a}.

Exercise 1. Prove that, for a given equivalence relation, equivalence classes
and [¢| are identical or else disjoint. So, [a]=[c]iff a ~ c.

Recall that a partition of a set S is a set of nonempty subsets of .S such
that each element of S is in exactly 1 of the subsets. By the exercise above,
the equivalence classes of equivalence relation ~ form a partition of S.
Conversely, any partition of S defines the equivalence relation ~ on S that
is defined by a ~ b iff @ and b are in the same subset of the partition.

We will look at an another example by looking seriously at Z;, under
“addition.” (There is nothing special about 12. The sequel applies to any
positive integer.) Rather than our notation ~ for a general rclation, here
we will use the standard notation = and define a = b (mod 12) iff 12
divides @ — b. We read @ = b (mod 12) as “a is congruent to b mod 12,”
where “modulo” frequently replaces “mod.” This is quickly seen to be an
equivalence relation on the set Z of integers. Here, there are 11 equivalence
classes. A couple examples are

[0]={.... =36, —24, —12,0, 12. 24, 36, 43. ...}
= {122 | z € Z},

[1]=1{.., 35 23, —11,1, 13, 25. 37, 49, ... }
={12:+1|2€Z},

[5]=1{... =31, -19. =7. 5,17, 29, 41, 53. . ..}
={12:+5|z€Z}.

We next define an addition € on the equivalence classes as follows

[a]efe]=[a+c]

We are obligated to show that this definition is well defined. That is. we
must argue that if ¢ and o’ are in the same equivalence class and if ¢ and
¢’ are in the same cquivalence class, then a + ¢ and a’ + ¢ are in the same
equivalence class. (Otherwise, “(:B” doesn’t make any sense. However,
we omit the details.) Being totally lazy, of course, we write a + ¢ in place
of ® [¢] (This undoubtedly upsets your nonmathematical friends and
neighbors who see you write 3 + 4 = 2, not realizing that you know that
the 3 is not really 3 but is the equivalence class in Zs and that the
plus sign indicates addition @ on equivalence classes and is not addition on
integers.)

If p is a prime, then we can define a multiplication on the equivalence
classes of the “nonzero” elements of Z, by ® = [ac] Can you see

why a prime is necessary if we are to have a group?

Now, for “More of the Same.” Let’s motivate this topic by asking, How
many groups of order 2 are there?
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Everyonc know that there are infinitely many. Any set with 2 clements
a and b forms a group by defining the binary operation by aa = bb = a
and ab = ba = b. However, an algebraist will quickly say that these are all
the samc and say that there is only 1 group of order 2. To be correct, the
algebraist should add “up to isomorphism.” It is this idea of sameness that
we want to approach next.

Because multiplication of powers of a rotation in the plane is achicved
simply by adding the exponents of the powers. the group ), and the group
Z.,, the group of the integers under addition mod n, arc “the samc” as
abstract groups. In this case, we say that the groups are “isomorphic.”
which literally means that they have the same shape. Formally. group G
with binary operation * is isomorphic to group H with binary operation
= if there exist a one-to-one mapping 7 from ¢ onto H such that

wlaxb) =7m(a)*w(b)

for all @ and b in G. The inapping 7. which is called an isomorphism, gives
us the correspondence between the clements of one group with the elements
of the other. (It is nice to think of this mapping as a Rosctta Stone.) The
equation 7(a * b) = w(a) = 7(b) tells us that 7 translates the Cayley table
for G to the Cayley table for H. In other words, the groups are the same
except, for notation. The mapping 7= given by Tl'(pk ) = k gives all isomor-
phism from ', to Z,. An isomorphism from a group ¢ onto G is called an
automorphism. We may as well mention in passing that group & with
binary operation * is homomorphic to group H with binary operation *
if there exist a mapping 7 from G into H such that w(a * b} = n(a) = 7(b)
for all @ and b in G. To say that G and H are homomorphic is to say that
they have “like” Cayley tables. So an isomorphism is a homomorphism that
gives a one-to-one correspondence between the elements of one group and
the clements of the other group.

How many groups of order 2 are there? A geoweter has an answer differ-
ent from the algebraist. For instance, there are 2 groups of order 2 among
the isometries of the plane. The geometer says that groups are the same
iff they are conjugate. (Details and delinitions arc given in The Back of
the Book.) All the groups consisting of the identity ¢ and 1 rotation of
180" arc conjugate to (' and are the same; all the groups consisting ol ¢
and 1 reflection are conjugate to Dy, consisting of ¢ and the reflection in
the X-axis, are the same. However, Cs and D; are not conjugate and are
deemed to be different, although isomorphic.

Homework.

1. Give 2 mappings such that each is an isomorphisms from Dy to Sy.

2. Show that mapping 7 defined on €15 by 7(p*) = p®* is an automorphism
on Chs.

3. Show that mapping 7 defined on C'15 by 7(p*) = p** is a homomorphism
on C'y.
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Actions

§37. The Definition

Group G with identity e acts on set X if for each elernent ¢ in G there is
an associated map 7, from X into X such that

1. me(x) =x for every z in X.

2. Thy(x) = mp(my(z)) for every g and h in G and for every z in X.

The second axiom can be restated as w4, = m,7my. Some immediate con-
sequence of this short definition are explored in Exercise 1.

Exercise 1. With the notation in the definition above, show that

1. m, is a permutation on X, and 7, ' =7

g—l.

2. mg(x) =y iff x = 7,1 (y).

3. {ny | g € G} is a group, which we denote by IIL.
Note: Do not assume that 7, # 7, just because g # h.

Those and, perhaps, only those who enjoy extremely concise definitions
will appreciate observing that an action w of group G acting on set X
could have been defined as a homomorphism from (7 into the group of
all permutations on set X. In our notation, we would have w(g) = 7.

Surely, it is from the examples and problems below that we will gain an
understanding of actions.

G. E. Martin, Counting: The Art of Enumerative Combinatorics
© Springer Science+Business Media New York 2001
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Most often, in our applications, group & acts on set X in a natural way,
as follows. If G is a group of symmetries of a euclidean space E and X is
a set of points or subscts of E, then we can define the natural action of
G on X by the following:

For each g in G, let m4(z) = g(z) for each z in X.

Thus, in this case, 7, and IT are just the restrictions of g and G. respectively,
to the set X. It is this restriction II that is a permutation group on X, as
in the examples below. If X is a finite set. then 7y has a cycle type: if ¢
is an isometry of euclidean space, then it doesn’t make much sense to talk
about the cycle type of g. We probably should verify that what we called
the natural action above is truly an action of G on X according to our 2
axioms. This is easy since for each x in X we have (1) 7.(z) = e(z) =
and (2) mhg(x) = hg(x) = h(g(x)) = mp(mg(x)) = mumgy(x).

We introduce the standard notation o; for the reflection in line [. Gener-
ally, we will take i to be the X—axis, take v the to be the Y axis, take p to
be the line with equation Y = X, and take m to be the line with equation
Y = —X. Thus, the 8 elements of Dy are then the 4 rotations ¢, p, p?, p°
and the 4 reflections o, 0., ¢p, 7,,. This notation is easy to use and easy
to remember. (To tie this to the previous notation for Dy, with o = oy, we
have op = 0y, 0p° = 0. and op® = p.)

Let G = Dy, and let X be the set of the 4 quadrants 1,2.3,4 of the
2-by—2 checkerboard Hi centered at the origin. We take 7 to be the natural
action of G on X. Then 7, = (1)(2)(3)(4) and 7, has cycle type z!. Since
7, = (1234) and 7,1 = (1432), then each of 7, and 7,— has cycle type z; .
Since 7,2 = (13)(24) then 7,2 has cycle type z5. Each of 7, and 7., has
cycle type z5 ., since 7, = (14)(23) and 7, = (12)(34). Finally, cach of 7,
and 7, hds cycle type zi'z) since 7, = (1)(3)(24) and m, = (13)(2)(4 )
The action is given by the m,’s. It is reasonable to ask, Why are all thesc
cycle types given here? Alas, the answer is, That’s not clear now, but be
assured that whenever we compute elements of I1 we will always want to
have their cycle types.

Example. Let G = Dy, and let X be the set of edges of an equilateral
triangle in standard position (the vertices arce (cos 27k/3. sin 27k /3)), which
are labeled counterclockwise from (1.0): a, b, ¢. Then G acts on X in the
natural way, as shown in Table 5.1. In passing, we note that for this example
the 3 groups I, S3, and Dy are isomorphic. Since |Dy| = 2n and |S,| = n!,
then D, =2 5, implies n = 3.

Homework.

1. Using the example above as a model, make a table similar to Table 5.1
for the group D3 acting naturally on the set {A, B, C, D, E, F'} of
vertices of a regular hexagon in standard position, where the vertices
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Isometry g | m, in cycle notation | Cycle type of m,
L (a) 28
P {abc) zd
p? (ach) 23
o {ac) 2tz
ap (ab) 22y
op? (be) e

TABLE 5.1. D3 Acting on Edges of an Equilateral Triangle.

2

4

FIGURE 5.1. Notation for Square in Standard Position.

are listed counterclockwise around the hexagon with A = (1,0). (Yes,
the hexagon does have (full) symmetry group Dg; however, here it is
the group D3 that is acting on the hexagon.)

. Using the example above as a model, make similar tables for the
group D, acting naturally on

(a) the set {1, 2, 3, 4} of the vertices of the square in Figure 5.1.

(b) the set {a, b, ¢, d} of the edges of the square in Figure 5.1.

{c) the set {z,y} of the diagonals of the square in Figure 5.1.

(d) the set {a, b, ¢, d, z, y} of diagonals and edges of the square in
Figure 5.1.

. Using the example above as a model, make a table similar to Table 5.1
for the group D, acting naturally on the set of the 16 colorings of
the 2-by-2 checkerboard in Figure 5.2, where we suppose the checker-
boards are centered at the origin. (Depending on how you think about
the set X of colorings, the action here may or may not be technically



88 5. Actions

9 10 11 12 13 14 15 16

FIGURE 5.2. Colorings of the 2-by—2 Checkerboard.

natural by our definition: however, the “induced action” should be
“obvious” in any casc.)

We give 2 more examples of group actions that are important to alge-
braists. Both are of the form of group G acting on set X where X = G.

Example. Group G acts on set X where X = G and 7 (x) = gzg~"'. (The
right side of the equation makes sense since x € G.) We call 7, an wnner
automorphism of G.

Example. Group GG acts on set X where X = G, and for each g in G we
have 7, (x) = gx for each = in X. In this case, m, = m, iff g = h. and so the
permutation group I, where Il = {r, | g € G}, is isomorphic to G. Thus,
we have the following observation.

Cayley’s Theorem. Every group is isomorphic to a permutation group.
In particular, a finite group with n elements is isomorphic to a subgroup
of S,.

Although Cayley’s Theorem is a beautiful result, we will not need the
theorem in the sequel.

Exercise 2. In Table 5.2, fill in the Cayley table for the permutation group
II that is isomorphic to the group G, whose Cayley table is given in the
table, and where the action is given by w,(h) = gh, as in the example
preceding Cayley’s Theorem. (This is easy to do if you know what to do.)
Also, argue that there are only 2 groups of order 4, up to isomorphism. The
group G in Table 5.2 is called Klein’s Vierergruppe or Klein’s four group.

638. Burnside’s Lemma

We declare that 2-colorings of the 2 by--2 checkerboard arc “the same”
if one can be obtained from the other by the action of D4 on the set of
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I |

>R o)
D o R afa
T o 9|9
Q a o oo
3 I~ N N Ko

TABLE 5.2. Cayley Tables for G and II.

colorings in Figure 5.2. We partition these 16 colorings into 6 sets, where
the 2-colorings are in the same set iff they are “the same,” as defined above:

{1}, {2, 3, 4,5}, {6,8,9, 11}, {7, 10}, {12, 13, 14, 15}, {16}.

We conclude that there are exactly 6 ways to 2-color the vertices of a square
that is “free in space.” We found the 6 sets above easily by hunting them
out from our homework. These 6 equivalence classes determined by the
partition and displayed above are more obvious if we replace the numerals
by pictures to get

B EBEE. MBS S &0 &EET, (Wl

However, for the 2-colorings of a regular 8-by-8 checkerboard, we would
have to look at 254 colorings. That’s a bit much. We need to develop some
theory to handle such problems, including the special problem, How many
ways are there to 2-color the 64 squares in an 8-by—8 checkerboard? Of
course, before an answer can be given, we must agree on when colorings
are “the same.” Here, there are at least 2 reasonable answers. We consider
it reasonable to have Dy acting on the colorings, while at other times we
might consider only Cy.

Lemma 1. Suppose group G acts on set X. If relation ~ is defined on X
by z ~ y iff there exists ¢ in G such that m,(z) = y, then this relation is
an equivalence relation.

Proof. We suppose G has identity e. We have
~={(x,y) | z,y € X and 3g € G 3 my(x) = y}.

We verify the 3 properties defining an equivalence relation. (R): 2 ~ z
because 7.(x) = z. (S): Suppose x ~ y. Then there is a ¢ in G such that
Tg(x) = y. So, & = 7, ' my(a) = my-1mg(x) = Ty-1(y), proving that y ~ z.
(T): Suppose that  ~ y and y ~ z. Then there are ¢ and h in G such that
mg(z) = y and 7 (y) = z. Then, since mpy(x) = mmy(x) = Ta(y) = 2, we
havex ~ z. g

The equivalence classes of the equivalence relation in the lemma are
called the orbits of the group action. For z in X, denote the orbit of z by
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O.. Hence, Oy = Oy iff & ~ y and

0, = {y ] &€~ y}
={y |y = m,(z) for some g in G}
= {my(z) | g € G}.

Note that “Q,” is a more suggestive notation than our former, generic
4 ; 8
notation “[«x]” from the previous chapter. For each z in X, let

S, ={g € G|mylx)=ux}

We call S, the stabilizer of x in X. It is very important to note that O,
is a subset of X, while S, is a subset of G.

Lemma 2. If group G acts on set X, then the stabilizer of z in X is a
subgroup of G

Proof. We suppose G has identity ¢ and = is in X. We want to show that
S, is a subgroup of (G. We verify the axioms for a group. If g and & are in
Sy, then mp4(2) = mumg(x) = ma(7y(x)) = mp(x) = z, proving that hg is in
S.. So, S, is closed. Also, S, is associative since G is associative. Further,
e is in S, because 7.(x) = x. Finally, since ny(x) = z iff x = 7, 1(z), then
g € S, iff mg-1 € Sy. Hence, S; has the inverse property. m

Exercise. For each of the 4 actions from Exercise 2 on page 87, form the
table with columns headed by elements in X and 3 rows headed by z, |O.|.
|S:|. Also, form a similar table for the action from Exercise 3 on page 87.

Lemma 3. With the notation above, for a fixed x in X there is a one-to-
one correspondence between the elements of O, and the set of all cosets of
S, in G.

Proof. If G is finite, we want to show that there is a one-to-one correspon-
dence between the elements

7o, (T), Ty, (2), Tg (), ... . g, (T)
of O, and the set of all cosets

ngI', gQS.rs 935'.'51 s qkSr

of S, in G. Whether G is finite or not, let f be the mapping from O, to
the set of cosets of S, that is defined by f(w,(z)) = ¢g5.. Mapping [ is
clearly onto, since the cosct gS, is the image of my(z). To show that [ is
one-to-one, suppose ¢S, = hS;. Then h='gS, = S, and so h~lgisin S,.
Hence m,-1,(z) = x and 7,(x) = mn(2), as desired. m

Lemma 4. With the notation above, if z is in X then

|Ozzl : Isw‘ = |G|
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Proof. |G| =

S,

' |G : S:1:| -

S| - 104 by the preceding lemma. g

Lemma 5. With the notation above, if ¢ is in X, then O, = O; for every
z in Oy.

Proof. O, = O, becausc cquivalence classes having an element in common
are identical. g

Lemma 6. With the notation above, if £ is in X then
S 18, = (G,
€Oy
Proof. If x € Oy, then O, = O,. So, by the preceding 2 lemmas, wc have

G| [l lél
S 1Sl = Y =3 2 =0 =[Gl
5] 0.1 ~ £5 104 Ol 15, = 1€ m

€0, z€0;

Lemma 7. With the notation above, if w is the number of orbits of group
G acting on set X | then

1
w = T ‘S:l/'1'
ol 2
Proof. By the preceding lemma, we have
> 1S =w- Gl
reX
since each x is in exactly 1 orbit, which is the desired formula. g

Applying this lemma to our 2-coloring of a 2-by-2 checkerboard, we
have ‘—Cl” Seex 192 = £ = 6. Although the answer is correct of course,
this formula is not good enough to be useful because, in general, X is too
large. For example, suppose X is the sct of the 254 possible 2-colorings of
an 8-by—8 checkerboard in a fixed position. Since G is usually much smaller
than X, it would be nice to have a count based on G rather than X.

We introduce the fix of each element g in G by

F, = {z € X | my(a) = a}.
Note that Fy is a subset of X, while 5, is a subgroup of G.
Lemma 8. With the notation above,
Do IEL= 3" 1S
geG 2EX

Proof. Here, we use the very valuable technique of counting something in
2 ways and setting the calculations equal to each other. We are counting
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the number of elements in the sct of all ordered pairs (x,g) with z € X
and g € G such that 7,(x) = z. First, for cach x in X, we have |S,]
ordered pairs. So. all together, we must have > [S,| pairs. On the
other hand, for each g in G we have |F| pairs. So, all together, we must
have }° . |Fy| ordered pairs. Setting the 2 calculations equal to cach other
gives the desired cquation. g

Our important theorem now follows directly from the last 2 lemmas.
Yes, Burnside's Lemma was anticipated by other mathematicians. How-
ever, since most mathematical names applied to mathematical results are
questionable, we will stick with the traditional name.

Theorem Burnside’s Lemma. If group G act on set X, then the number
of orbits is

1
@ DI

geG

where F, = {z € X | my(x) = x}.

Let's apply Burnside’s Lemma to Figure 5.2 and our 2-coloring of the
2-by-2 checkerboard. We compute the following array, where the top row
lists all the elements of Dy and the bottom row is determined by placing
under isometry g in the top row the number of the 16 colorings in Figure 5.2
that are fixed (left unchanged) by permutation m,. That is, underneath
g in the top row we enter |F,| in the bottom row. For example, since
the permutation w2 fixes exactly the 4 colorings tH, . &8, W, which are
numbered 1.7, 10. 16 in Figure 5.2, then under p? in the array we have the
entry 4. The complete array is

t PP ? P s Th Ov OTp Om
16 2 4 2 4 4 8 8 ’

By Burnside’s Lemma, it follows that

16+2+4+2+44+44+8+8
w: =
8

6,

as expected. If we consider only € acting on the set of colorings, we will
get the same result, w = 6. It would not be wise to generalize, however.
The first problem in the homework below asks about 2-coloring the
8-by—8 checkerboard. See Figure 5.3. We can hardly apply the technique
that we just used above for the 2-by--2 checkerboard to this problem. Here
there are 2% possible colorings to consider. We will take another pass at
the 2-by -2 checkerboard problem, but this timme we will suppose that we
do not have Figure 5.2 available. For each ¢ in G, we should be able to
calculate the value of |F,| by considering only the figure HH. That is, we



§38. Burnside’s Lemma 93

FIGURE 5.3. The 8-hy—8 Checkerboard.

ask ourself for each g in G, How many ways are there to 2-color the 2 by 2
checkerboard H, such that the resulting pattern has g as a symmetry? For
example, suppose g = p°. In this case, the 2 squares in the first and third
quadrants must be the same color, since these 2 squares are interchanged
by p?. Likewise, the 2 squares in the second and fourth quadrants must
also be the same color. So, we have 2 - 2 ways to color the squares so that
the coloring is fixed by p?. Another possible way to count these is to see
that the top 2 squares can be colored in 2 -2 ways and then the coloring of
the hottom 2 squares is determined by p?. For another example, suppose
g = op. In this case, since o, interchanges the 2 squares in the second and
fourth quadrants, these squarcs must be the same color. Illowever the other
2 squares can each be colored in 2 ways since each is fixed by o,. Hence,
here we have 2 colorings that are fixed by ,,. For another view, each of the
3 squares marked with a dot in the figure B can be colored in 2 ways and
the color of the others {only 1 square here) is determined by the symmetry.
Of all possible 2 colorings of B, permutation 7, fixes exactly these 23
colorings and permutes the other colorings among themsclves. Without any
reference to Figurc 5.2, this time we get the array

( eop Pt PP o oy oy om )

24 21 22 21 22 22 23 23 -

Of course, w = 6, as before. This technique will be very helpful in homework
problems below. We will generally use w to denote the number of orbits of
G acting on X.

Our 2 computations of the result w = 6 are based on different views.
In the first, we found F, and then calculated |F};|. The shift in the second
calculation allows us to count the number of elements in Fy without ever
listing them. For cxample, we calculated that there are 2* colorings that are
fixed by m,, without explicitly determining these colorings. In the second
view, we compute |F,| without computing F,. That saves a lot of work.

Homework.

1. How many ways can we 2-color the 64 squares in the 8-by—8 checker-
board, with C4 acting on the colorings? Sce Figure 5.3.
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2. How many ways can we 2-color the 64 squarcs in the 8 by 8 checker-
board, with Dy acting on the colorings? See Figure 5.3.

3. How many ways can we 3-color the 64 squares in the 8-by--8 checker-
board, with Dy acting on the colorings? See Figure 5.3.

4. How many ways can we m-color the 64 squares in the 8-hy 8 checker-
board, with D, acting on the colorings? See Figure 5.3.

. How many ways can we m-color the 49 squares in the 7 by-7 checker-
board, with D, acting on the colorings? See Figure 5.4.

(3]

FIGURE 5.4. The 7-by-7 Checkerboard.

6. How many necklaces of 6 stones (use Dg) can be made from rubies,
diamonds, and emeralds? (For a less romantic version of the problem,
consider counting the 6-bead necklaces that can be made with spheri-
cal beads, each having 1 of 3 possible colors. At least in mathematics,
all necklaces can be turned over and have no clasp. In other words,
we can consider a necklace problem as coloring the vertices of a
regular n-gon and use D,, as the group of the action.)

7. How many ways, under Dg, can we paint the 8 spokes of a whecl with
4 available colors if each spoke is all 1 color?

§39. Applications of Burnside’s Lemma

Burnside’s Lemma is a very powerful theorem. This section consists mainly
of problems, most of which can not be done without the investment of some
time.

We have been calculating the cycle types for various permutations in IT
without having any particular use for the result. We now introduce their
mean for a given action. It is still not evident why we should be interested
in this average: however, we are.

The cycle index, traditionally denoted as I’;, for group G acting on set
X is the average (mean) of the |G| cycle types of 74 for g in G. So, if group
G acts on set X, to get the cycle index we sum the cycle types, 1 for each
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element in G, and then divide the sum by |G|. For example, for D3 acting
on the edges of an equilateral triangle, we compute the cycle index to get
2P 4 zd b2 t2lag Falzd 4 2ted

6

Pe =
directly from Table 5.1 on page 87.

Example. We turn to a completely nontrivial problem that illustrates the
power of our theory. How many ways are there to m-color the faces of a
regular dodecahedron?

We suppose 7 is the natural action of the icosahedral group G of all 60
rotation symmetries of the dodecahedron acting on the set X of the 12
faces. Recall that a regular dodecahedron has 12 faces, 30 edges, and 20
vertices. As will now be our customary notation, X* then denotes the set of
m-colorings of X and 7* is the natural action of G on X*. We are looking
for w*.

Study Table 5.3 until you completely understand each and every entry.
Do not fool yourself; this will take some time. Note that the footnotes at the
bottom of the table makes sense only for the action 7 of G acting on the set
of faces, numbered 1 12. Our initial task is to compute |Fy|, the number
of elements in the fix of g in the action 7* of the group G acting on the set
of colorings of the faces, for each ¢ in ;. Then we compute the cycle type
for each g in G for G acting on the faces. (Here, | X| = 12 and {X*| = m!?.
Note that for G acting on the faces we have w = 1, since any face can be
brought to any other by a rotation. So, w is not very interesting. We are,
however, interested in w*, the number of equivalence classes for G acting
on the set of colorings. It is w* that is the number of different colorings of
the faces of the dodecahedron.)

After studying Table 5.3, we see that

. 1m'2?4+24-m*+15-mf +20.m*
B 60

by Burnside’s Lemma. The cycle index for the action on the faces is given
by

w

1-2/2 4242222 +15- 28 +20- 24
60 -

It has probably not escaped your attention that

Pg(z1, 22, 23, 24, 25) =

w* = Pg(m,m, m,m,m).

Since the z;’s are indeterminates, it makes absolutely no sense to say, for
example, “let zo = m,” but it does makc sense to say “replace zz in Pg
by m.” The difference is subtle but necessary. Thus, we understand what
“Pg(m,m,m,m,m)” means.
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# # #
|Fy| for G acting Cycle type of 7,
a. e on the colorings for G acting
Synunetry g in G of the faces on the faces
1 1 1
identity™ iz 22
6-4 24 21
rotations of
order 5 (about the
join of centers of m? 2222
opposite faces)*”
15-1 15 15
rotations of 180"
(about join of centers mb 6
of opposite edges)*** ) 2
10-2 20 20
rotations of 120°
(about join of centers mh o
of opposite vertices)**** ) -3
* So = (1)(2)(3)()(5)(6)(7)(B}(9)(10)(11)(12).
o E.g: . = (1)(2.3.4.5.6)(7.8,9. 10, 11)(12).
* Hok E.g: my=(1,2)(3,4)(5,6)(7,8)(9, 10)(11,12).
* Kk K E.g.:m, =(1,2,3)(4,7.5)(6,8,9)(10, 11, 12).

TABLE 5.3. Coloring the Faces of a Dodecahedron.
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How do we explain this marvelous coincidence? Let’s consider the entry
m?* for « in Table 5.3. We take face 1 as the top face and face 12 as the
bottom face of the dodecahedron. Under 7, the top face goes to itself and
the bottom face goes to itsclf. So cach of these 2 faces can be any of the m
colors. That is. we can color these 2 faces in m? ways. The 5 faces adjacent
to the top face cycle among themselves under m,. Hence, all these faces
must be colored with the same color if the coloring of the dodecahedron
is left unchanged; we have m choices for this color. Likewise, the 5 faces
adjacent to the bottom side must be of the same color, and we have m
choices for this color. All together, we have m? choices for each of the 24
rotations of order 5 in G. Comparing the columns of Table 5.3, we see that
the middle column is obtained by replacing each z; in the right column
by m. In fact, 2 faces must be of the same color if they are in the same
cycle of m,. Since 7, is the product of 4 disjoint cycles, then |Fx| = m*.
In general the cycle type allows us to find |F|, withour having to compute
Fy. Apparently, the cycle types are a very useful tool to have on a picnic.

You might object and say that we do not need all these indeterminates
because we use only the exponents and do nothing with the subscripts.
The cxponents count the number of cycles and that is all we really need
to know. That is true, for now, but rest assured, we will have a use for
the subscripts as well as the exponents. In any case, if we know the cycle
structure of 7, then it easy to calculate |F7|, the number of elements in
the fix of g, when the action is on the colorings. In summary, our very
important equation

w* = Pg{m,m,m,m,m)

is an immediate consequence of Burnside’s Lemma and the following.

Observation. With all our previous notation, if permutation 7 is a prod-
uct of k disjoint cycles, then |Fy| = mk.

Homework 1.

Recall that the octahedral group is the rotation group of the cube. In
the 3 figures in Figure 5.5, typical rotations arc indicated by their axes. In
particular, o is a rotation of order 4 about a join of 2 centers of opposite
faces, 3 is a rotation of order 2 about the join of 2 midpoints of opposite
edges, and v is a rotation of order 3 about the join of 2 opposite vertices.
As for Figure 5.5, it helps to know that the sum of the numbers on opposite
faces of a die is always 7. So 75 iuterchanges faces 1 and 4. These figures
are given so that a class will all be using the same notation. Of course, the
cycle index will be the same whatever notation is chosen.

1. Under the octahedral group, how many ways are there to m-color the
faces of the cube? (Use the notation in Figure 5.5.)
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« 3 vy

FIGURE 5.5. Symmetries of a Cube Acting on Faces.

o I5)

FIGURE 5.6. Symmetries of a Cube Acting on Edges.

E| | E E
C C C
- T~
H D H D H D
« 3 Y

FIGURE 5.7. Symmetries of a Cube Acting on Vertices.
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. Under the octahedral group, how many ways are there to m-color the

edges of the cube? (Use the notation in Figure 5.6.)

Under the octahedral group, how many ways are there to m-color the
vertices of the cube? (Use the notation in Figure 5.7.)

Homework 2.

1.

5.

6.

How many different 2--by-2--by—2 cubes can be constructed from 8 of
an unlimited number of unit cubes of 5 different colors?

. How many ways are there to arrange 2 M’s, 4 A’s, 5 T’s and 6 H’s

under the condition that any arrangement and its reverse order are
considered the same?

How many ways can the faces of a cube be colored if each face is
colored 1 of 6 colors and each color is used?

. How many ways can each of the 2 figures in Figure 5.8 be m-colored?

(Obviously, each disk is to be colored with exactly 1 of the m colors.
Not obviously, consider colorings to be the same if one can be obtained
from the other by the action on the colorings induced by Dy.)

FIGURE 5.8. Billiard Balls.

How many ways, under Dy, are there to 3-color the 60 edges in Fig-
ure 5.9,

FIGURE 5.9. 5 by 5 Checkerboard.

How many ways are there to 5-color the 18 edges in Figure 5.10 under
the rotation group of the figure?
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FIGURE 5.10. Marked Cube,
§40. Polya’s Pattern Inventory

Let’s begin by formalizing something that we know implicitly from the
very beginning of our study of counting. Suppose that i, j,..., k, and n are
nonnegative integers and that i + j + - -+ + k = n. From the expression

n factors
A

(A+B+ - +Z)A+B+-+2) (A+ B+ + 2),

we see that in the expansion of (A4 B+ -+ Z)™ without collecting terms
there are just as many terms A*B7 - - Z¥ as there are arrangements of 7 A’s,
J B’s, ... and k Z’s, since each term in the expansion is formed by selecting
1 term from cach of the n factors. We know the number of arrangements,
as a Mississippi problem, is n!/(ilj!- - k!). Another approach has us first
selecting i of the factors to contribute an A4 in (?) ways. Then, we select j
of the remaining n — 7 factors to contribute a B in (";l) ways. ... Finally,

we sclect k of the remaining k factors to contribute a Z in (}) ways. The
product of all these binomial coefficients gives the same n!/(ilj!- - k!). In
either case, we have the following.

Observation. Suppose i, j. ..., k and n are nonncgative integers. Then
the coefficient of A'B7---Z¥ in (A+ B+ -4+ Z)" is

n!
ik

ifti+j+---+k=nand0 otherwise.

The observation above or the equivalent equation

! S
(A+Bt+-+2n= 3 ,“.—n'—k'AlBJ...Z‘“

is called the Multinomial Theorem. The Binomial Theorem is a special
case of the Multinomial Theorem.
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Let’s return to our example of coloring the faces of a dodecahedron and
Table 5.3 on page 96, but now suppose that m = 3 and that the 3 colors
are, what else?: red, white, and blue. No problem so far. However, suppose
we are interested in finding the number of colorings (under the icosahedral
group) of the faces of the dodecahedron with the restriction that there
are 2 red faces, 4 white faces, and 6 blue faces. This restriction is a big
problem, but nothing we cannot handle. We add a new column at the right
of Table 5.3, with the heading |F'| for g in group G acting on the set
X' of our restricted colorings, that is, the set of those colorings with the
restriction that there are 2 red faces, 4 white faces, and 6 blue faces. We
will stick with our basic notation but add a prime to distinguish this action
on the restricted colorings. So G is the icosahedral group, 7 is the natural
action of G on the set X of the faces of the docecahedron, and 7’ is the
natural action of G on the set X’ of colorings of the dodecahedron that
have 2 red faces, 4 white faces, and 6 blue faces. We will look at the 4
representative rotations ¢, o, 3, 7y, one at a time, and recall a little of what
we know about generating functions. (Surprise!) As we go along, compare
the cycle type column in Table 5.3 with our new column.

Given the rotation ¢ where m, = (1)(2)(3)(4)(5)(6)(7){(8)(9)(10)(11){12),
how many of the restricted colorings are fixed by 7/, ? The generating func-
tion for coloring any 1 of the 12 faces is 7! +w! 4+ b! and so the generating
function for coloring all 12 of the faces is (r! + w! + b!)'2, where you can
guess the reason for the choice of indeterminates r, w, . Therefore, we are
looking for the coefficient of r2w*b% in (r +w+5)'2, which is 12!/(2!4!6!), or
13860, and which we knew as the answer in the first place without invoking
generation functious. This is, after all, only a simple Mississippi Problem;
is it not? (How many 12-letter words can be made from 2 r’s, 4 w’s, and 6
b’s?) However, generating functions will be useful in the less obvious cases
considered next.

Given the rotation & where m, = (1)(2,3.,4,5,6)(7,8,9,10,11)(12), how
many of the restricted colorings are fixed by 7,7 The generating function
for coloring face 1 is #! 4+ w! + b'. The cycle (2,3,4,5,6) in 7, tells us
that face 3 must have the same color as face 2, that face 4 must have the
same color as face 3, that face 5 must have the same color as face 4, that
face 6 must have the same color as face 2, and that face 2 must have the
same color as face 6. Since these 5 faces must all have the same color, the
generating function for coloring the set of these 5 faces is r® + w® + b°.
Likewise, the colorings of the individual faces in the cycle (7,8,9,10,11)
are not. independent. We must again consider the set of all 5 faces at once,
and again we have the generating function r®+w®+5°. The coloring of face
12 is independent of all previous colorings, and the generating function for
coloring this face is simply r! +w' +b'. Therefore, the generating function
for coloring all the faces here is (r + w + 8)2(r® + w® + 4°)2. Thus, our
entry, in our new column, that is to the right of z2z2 in Table 5.3 is the
coefficient of r2wb® in (r + w + b)2(r® + w® + )2, This coefficient is 0.
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Given the rotation 3 where 75 = (1,2)(3.4)(5,6)(7.8)(9,10)(11, 12), how
many of the restricted colorings are fixed by 7/57 In order to get independent
generating functions, we must consider the faces in the pairs that are deter-
mined by the cycles in 7. For each of the 6 transpositions, the generating
function is 72 +w?+?. In this case, the generating function is (r2-+w?+b?)0
and we are looking for the coefficient of 72w*b% in (r? + w? + %)%, which
we may think of as the coefficient of [r?]'[w?]?[b?]? in ([r?] + [w®] + [b?])®
and which is 6!/(1!2!3!), or 60.

Given the rotation v where 7, = (1,2.3)(4.7,5)(6,8,9)(10,11,12), how
many of the restricted colorings are tixed by 7/, ? For each of the 4 3-cycles
in 7., the generating function is r? + w® + b%. In this casc, the generating
function is (r® +w* +5%)*, and we are looking for the coefficient of r2w*p®
in (r* + w® + %)%, This coefficient is 0.

Now, the answer to our specific problem with 2 red faces, 4 white faces.
and 6 blue faces is, by Burnside’s Lemma,

1(13860) + 24(0) + 15(60) + 20(0)
60 ’

which is 246. However. much more important is the technique that we have
observed and which we can apply to other problems. Comparing the cycle
type for each of the representative permutations and the corresponding
generating functions, we sce that all the information that we needed is in
the cycle type of the action of the group on the faces. In each case, the
generating function is obtained by replacing each z; in the cycle type by
i+ w' + bt (At last, we begin to fully understand the importance of the
cycle types.) Thus, by Burnside’s Lemina. we want the coefficient of r2w?*b8
in the right-hand side of

1224242222 +15- 28 +20- 2
60

Pa(z1, 20, 23. 24, 25) =

after each z; has been replaced by 7' + w® + b'. The answer to our specific
problem is then the coefficient of r2w?b® in the expression

Po(r+w+br? +w? +02.0% 4+ w0 + 0%t w? + 00" + 0’ +0°),

or

W(r +w+0)2 + [24){r + w 4+ b)? (7 + w® + §°)? + [15](r2w?b*)° + [20](1 + w® + b%)*
60 '

In general, for i red faces, j white faces, and & blue faces, where i+j+k = 12,
we want the coefficient of r'w’/b¥ in the expression above. Conversely, we
have a generating function for the number of colorings with i red faces,
j white faces, and k blue faces because the coefficient of r*wb* in the
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expression above is precisely the number of different colorings (under the
icosahedral group) having ¢ red faces, j white faces, and k blue faces. For
this reason, this generating function is called a pattern inventory or
Pdlya’s pattern inventory.

Suppose the 2 colors b (for black) and w (for white) are available for
coloring the vertices A, BB, C, D of a square. Let X = {4, B,C, D}. “To
color X” means that we assign to each element in X an element of {b, w}.
Conversely, any mapping p from X into {b,w} is a “coloring” of X. For
example, suppose p(A) = band p(B) = p(C) = p(D) = w. This mapping p,
which we can write as (4 ? ¢ D) essentially says “paint A black and paint
each of B, C, D white.” Our next definition generalizes and formalizes this
simple idea.

An m-coloring of set X is a map from X into a nonempty set C' where
C = {c1,¢2,... ,¢m} and the elements of C' are called colors. With C
fixed, we generally let X* denote the the set of all colorings of X with C.
Rather than assign each color an indeterminate, it simplifies the notation
if we suppose that the colors are themselves indeterminates, and we will do
S0.

With this notation and our usual notation for action 7 of group ¢ on set
X, we say that colorings p and ¢ in X* arec equivalent under G (acting
on X) and write p X g iff there exists a g in G such that p = gmy. (Pause
and think about this. It is what we want. Note that gm, is defined but that
myq is not.) In order to use our theory, we need an action 7* of G on X*

such that ~ =~. Then < is an equivalence relation and the number w* of
equivalence classes is the number of ways to color X with C under G. We
claim the following does the job. For each ¢ in G, define an associated map
7y from X* into X* by

y(p) =y

for every p in X*. As we will see, the bothersome —1 in our definition of 77
is necessary to get things in the right order, since the inverse of a product
in a group is the product of the inverses in reverse order.

We interrupt the development of our theory for an illustration. We return
to 2-coloring the 2-by—2 checkerboard HH. Here, group Dy is acting on the
set X of the 4 squares of the checkerboard, named 1, 2,3, 4 after the quad-
rants. So, X = {1, 2, 3, 4}, and the set of colors is given by C' = {b, w}.
We will use boldface numerals for the colorings suggested by Table 5.2.
So, for example, the coloring 6 of the 2-by—2 checkerboard is the mapping
(12343 which corresponds to the picture ™. Coloring 6 should be “the
same” as coloring 8, which is the mapping (! 2% 2) that corresponds to
the picture H. For the rotation p of 90°, we have 7, is (1234), or (333 4).
We do indeed have 6 X 8 since

. 1 1 2 3 4 1 2 3 4 1 2 3 4

Tp(6) =67, = (b b w w) (4 1 2 3) - (uv b b w) =8
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(Perhaps we should have previously called a picture such as M a colored
checkerboard rather than a coloring of the checkerboard. We doubt that
this has lead to any confusion though. Supposedly, now that a coloring has
been formally defined as a mapping, we should use the term only with its

technical meaning.)

We now prove that 7%, which maps g to 77, is an action of G' on X~
by checking the 2 axioms at the beginning of the chapter. Certainly, with
e the identity of G, we have 7%(p) = pr. ! = p for every p in X*. Also,
for every g and h in G and for every p in X*, we have 77, (p) = p7r,;gl =
p(mnmg) ™" = pr,tw, = w5 (prg ') = (% (0). = 7w, (p), as desired.
We have the cquivalence relation ~ for the action 7* of G on X*. Since,
for any colorings p and ¢q of X,

P x g iff 77 (p) = q for some g in G
if p71'g'1 = ¢ for some ¢ in G
iff p=gmy for some g in G

it p g,

* * . . . .
then ~ =<, as desired. The number of different (under G) colorings is the
number of equivalence classes, which is, by Burnside’s Lemma,

1

@ > |Fy| where F = {p e X* | 7%(p) = p}

geG
={pe X" |p=pny} for gin G.

The result below then follows from the very important observation that
p = prg iff all the elements of X in each one of the cycles of 7, get assigned
the same color by p.

Pélya’s Pattern Theorem. If action 7 of group GG on set X has cycle
index Pg(z1,29....,2,), if X* is the set of m-colorings of X with set C'
of colors where C' = {¢1.¢2,... ¢}, and if the action 7% of G on X* is
defined by 77%(p) = pﬂ'g*' for p in X* and ¢ in G, then the number of
different (under GG) m-colorings of X is

Pe(m,m,....m)

and the pattern inventory of the m-colorings of X under ¢ with colors C
is
Poleg+e+ 4o d+d+ -+ 3+d + -+ 3 et b i ).

It can be mentioned in passing that Pélya was neither the first nor the
last to develop this theory.
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Example. How many ways are there to 5-color the edges of a regular
dodecahedron? How many ways are there to 5-color the edges of a regular
dodccahedron if exactly 5 edges are green?

We first compute the cycle index

230 + 1522254 + 20240 4 2425
60

for the icosahedral group acting on the set of edges of the regular dodeca-
hedron.
Replacing each z; in the cycle index by 5 then gives us the humongous
number 15,522,042,948,408,209,375 as the answer to the first question.
For the second question we need the pattern inventory, which is

[(r+w+b+uv+g)*
+15(r +w4+b+v+ )2+ w + b 40 gH)M
+20(r® +w? + 85+ 03 + ¢*)'10 + 24 (r® + w® + b° + 0° + ¢°)%] /60,

if the colors are r, w, b, v, g. We desire the sum of all the coefficients in the
expansion of the pattern inventory that are of the form ¢° times a product
of powers of the other 4 colors. Let’s look at one term at a timc in the
numerator of the pattern inventory. In the product of 30 of the factors
(r+w+ b+ v+ g), we must pick 5 of the factors to contribute a g in
(350) ways; and from each of the remaining 25 factors, we must select 1 of

r,w, b, v in 4 ways. In the product
(r+w+b+v+ g2 r? +w? + 8+ 0%+ )

of 16 factors, we must pick ¢ from exactly 1 of the first 2 factors and we
must pick a g? from 2 of the the last 14 factors; from each of the remaining
13 factors, we have 4 ways to pick a power of r, w, b, or v. The exponent
5 in ¢° is impossible to achieve by adding the multiples of 3 obtained from
(r2+ w3+ + 03 +¢3)!0. Finally, in the last term of the numerator, we must
pick ¢° from exactly 1 of the 6 factors, and we must pick 1 of 72, w®, b, v°
from each of the remaining 5 factors. Thus we have our computation

()47 +15- () ()41 + 200+ 24 - (3)4°]
60 ’
which is 2,674,124,871,795,372,032, only slightly less humongous than the
humongous number above.

Example. The octahedral group acting on the vertices of the cube has
cycle index
2P+ 924 + 82222 + 627
24 )
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So the number of 2-colorings of the vertices of the cube is

[1]28 4 [9]2" + [8]2222 + [6]2°
24 '

or 24.
The pattern inventory of the black and white colorings of the vertices of
a cube is
(b+ w)® +9(b* + w) ' +8(b+w)?(b* + w?)? + 6(b" +w*)*
24 B
Pt + 67wt + 365w + 365w + 7wt + 363w’ + 307w’ 4+ btw” + pow®.

Homework.

1. How many ways are there to color the vertices of a cube so that there
are 4 green vertices and 4 orange vertices? (Hint: No calculation is
required.)

2. Find and then expand the pattern inventory under Dy for the 2-color-
ings (black and white) of the 2-by-2 checkerboard.

3. Find and then expand the pattern inventory under the octahedral
group for the 2-colorings (black and white) of the faces of a cube.

4. Find the pattern inventory under the octahedral group for the 3-color-
ings (red, white, and blue) of the edges of a cube.

5. How many ways under the octahedral group are there to color the
edges of a cube such that 4 are red, 4 are white, and 4 are blue?

At first we might think that the next problem is misplaced; the problem
should appear in the first half of the book where we were busy putting
balls into boxes. Yet, the problem is here. In putting balls into boxes,
we learned from experience that the word indistinguishable in front of the
word bozes brings fear to the hearts of the bravest. However, if necessary,
there is a technique that can help us solve such problems. We change the
n given indistinguishable boxes to n distinguishable boxes and then use
S,, acting on the distributions of balls into boxes to permute the boxes. In
other words, any permutation of the boxes is considered to be the same
distribution. Of course |S,| gets large with n and the problem is never
trivial. We now give an example that uses this method.

Example. How many ways are there to put 50 black balls and 50 white
balls into 4 indistinguishable boxes?

We begin with 4 boxes distinguished by the labels 1, 2, 3, 4. We let X
be the set of all distributions of all the balls into the 4 labeled boxes. We
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want to be able to say that a distribution is “the same” as another if the
second can be obtained from the first by permuting the labels on the boxes.
This defines an equivalence relation, and we want to count the number
of equivalence classes. (The permutations of the labels have the effect of
making the boxes indistinguishable.) The group that is relevant here is the
symmetric group Sy of all permutations on {1, 2, 3, 4}. Specifically, if D is
the distribution such that box i has &; black balls and w; white balls, for
i=1,2,3,4, and if g is in Sy, then 74(L)) is the distribution such that box
g(7) has b; black balls and w; white balls. The mapping 7 : ¢ — 7, is an
action of S4 on X with the desired equivalence classes.

Table 5.4 does not explicitly give the cycle type for each element in the
group Sy but exhibits the cycle structure even more clearly so that we
can more easily count the number of elements that have the same type.
We should be able to give a simple argument for each entry in the middle

Element of S5 | # of that type | Black balls
(OO 1 %0/
() ) 262
(36) 12 17
() ; (2
(- ) 3! 0

TABLE 5.4, Balls into 4 Distinguishable Boxes.

column of the table. For example, there are 3 permutations in Sy that are
the product of 2 transpositions, since such a permutation is determined
by which of 2, 3, 4 is interchanged with 1. (Note that (g) is not correct
here, although (g)/2 is.) Since the sum of the middle column is 4!, we are
confident that we have omitted none. Since the column entries for the white
balls would be the same as those for the black balls in Table 5.4, the column
for white balls is omitted. We now come to the third column of the table.
We should be able to readily provide all the entries, except perhaps the
second. In this case, if we put i black balls into each of the 2 boxes whose
labels are interchanged, then we have left 50 — 2i black balls to put into
the other 2 boxes. We can do this in 50 — 2¢ + 1 ways. It then follows that
we can distribute all 50 black balls in 51 +494+47+45+43+---+5+3+1
ways. We want the sum of the first 26 odd integers. This is 262. In general,

Z(Qr —1) = n?
r=1

since )i (2r—1)=2>"_ 7~ I_ 1] =n(n+1)—n=n? Putting

r=1

all the information from Table 5.4 together, we apply Burnside’s Lemma
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to get the solution

(A" 46-26* +8- 172 + 3. 262
1l ’

or 22,980, 153.

Homework for a Week.

1. Find the pattern inventory under the octahedral group for the 3-color-
ings (red, white, and blue) of the vertices of a cube.

2. How many ways can we 2-color (black and white) the 64 squares
in the 8-by-8 checkerboard, with D4 acting on the colorings, such
that the number of white squares is greater than the number of black
squares?

3. How many ways can the vertices of a cube be colored with 4 colors if
each color is used twice?

4. For k = 2 and then for k = 3, find the pattern inventory for k-color-
ings (b& w or r,w, & b) under D,, of the beads of an n-bead necklace
where n =7, n =9, and n = 11. For each of these 6 cases, find the
number of necklaces with exactly 3 white beads.

. How many ways are there to 3-color a 4-by—4 checkerboard, under
Cy, if each color is used at least once?

[V}

6. How many ways are there to put 12 indistinguishable balls into 3
indistinguishable boxes? How many ways are there to put 14 red
balls, 4 white balls, and 4 blue balls into 3 indistinguishable boxes?

841. Necklaces

Problems. How many ways are there to m-color the vertices of a regular
n-gon under C,7 How many ways are there to m-color the vertices of a
regular ni-gon under D, 7

These problems are right up our alley. For small values of n, we can find
the solution by Burnside’s Lemma. For general values of n the procedure is
the same but it gets a bit messy. If you have read §35, then we can answer
the questions in general. Recall that if d|n then C, has ¢(d) elements of
order d. If o in C,, is of order d and if 7 is the natural action on the set
of vertices of a regular n-gon, then m, has n/d cycles of length d and so
has cycle type z:/ ¢ When the problem involves D,,. there are 2 cases,
depending on the parity of n. If n is odd, then every line of symmetry is
a perpendicular bisector of a side of the n-gon. However, when 7 is even,
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then n/2 of the lines of symmetry are the perpendicular bisectors of the
sides and n/2 are diagonals. Thus, we have the following as a corollary of
Burnside's Lemma.

Theorem. The number of ways to k-color the vertices of a regular n-gon
under C, is

> g SR

n

The number of ways to k-color the vertices of a regular n-gon under D, is

(S o@)k/] + k(072
2n

if n is odd and is

| SR+ 2 hn/2 4 (22
2n

if n is even.

The nontrivial problems above are, of course, necklace problems. Now,
we want to m-color the vertices of a regular n-gon with the restriction
that no 2 adjacent vertices have the same color. In addition to Burnside’s
Lemma, we will need the following lemma. In the statement of the lemma,
fized means stationary, as opposed to free. (A free object can be moved
about in space. For example, there are (g) ways ways to color the faces of
a fixed cube such that 2 are white and 4 are black, while there are only 2
ways to color the faces of a free cube such that 2 are white and 4 are black.

The 2 white faces are either adjacent or else opposite.)

Lemma. The number of ways to m-color the vertices of a fixed regular
n-gon such that no 2 adjacent vertices have the same color is

(m~—-1)"+(—=1)"(m —1).

Proof. Since m will be constant throughout, we let F'(n) denote the number
of ways to m-color the vertices of a fixed regular n-gon such that no 2
adjacent vertices have the same color. We easily sce from Figure 5.11 that

FB3)=m(m—-1)(m~-2)

and that a fixed linear string of n beads can be m-colored such that no 2
adjacent beads have the same color in m(m — 1)"~! ways.
From Figure 5.12, we deduce the equation

F(n)=m{(m-1""' = F(n-1)
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m

m m-Ilmc-1lm=1 m=1m=1

m— 2 m— 1

FIGURE 5.11. Triangles and Strings.

n-string =  n-gon  + (n — 1)-gon
m( ot (n—1)

FIGURE 5.12. Necklaces and Strings.

for n > 1 as follows. We consider all the m-colorings of a fixed n-string.
Those for which the ends have different colors are in one-to-one correspon-
dence with the desired m-colorings of a fixed n-gon, while those m-colorings
of the fixed n-string having the ends the same color are in one-to-one corre-
spondence with the m-colorings of a fixed (n — 1)-gon having no 2 adjacent
colors the same.

A voice from the sky tells us to subtract (/m — 1)" from both sides of this
equation and to go on to find a formula for F(n). We could ask the voice
for the formula and then, provided we get a response, prove that the given
formula is correct simply by substituting the formula in the equation above,
after checking that the formula is correct when n = 3. Not wishing to push
it however, we are satisfied with the hint and do the following calculation.

Fn)—(m—-1)"=m(m—-1""~(m-1)"—F(n-1)
=(m-1"1=Fn-1)
~D'E(@n — 1) = (m - 1"
VIF(n—2) = (m—1)""?
~1P[F(n—3)—(m—-1)""%
YAHF(n —4) = (m — )"

_ (‘1)1173[17( ) _ (’I’l’? — ])3]
= (-1 3[m —1)(m—=2) - (m—1)3
= (=1)"(m — 1),

which proves the lemma. g
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Example. How many ways can an 8-bead necklace be 3-colored under Dg
such that no 2 adjacent beads have the same color?

We are 3-coloring the vertices of a regular octagon under Dg such that
no 2 adjacent vertices have the same color. For each element g in Dg, we
will compute |#7| and then use Burnside’s Lemma. We will need the lemma
directly above more than once in the computation. First, that [F*| == 2842
comes directly from the lemma with 1 = 3 and n = 8.

We next look at |F7%;|. Now, p! is a rotation of 180°. Let A = (1,0),
B=(1/v2,1/v2),C = (0,1), D = (-1/v2,1/+/2), and E = (~1,0). The
coloring of A, B, C, D determines the colors of the remaining vertices in
this case and, since 7,1 takes A to E, then A and E musr then be the same
color. So we identify A and F to form the “loop” ABCD, which we may as
well consider a fixed 4-bead necklace. Thus, |F7,| = 2% 2 from the lemma

with m = 3 and n = 4. Likewise, each of the fix of p? and the fix of p°
has 22 + 2 clements by a similar application of the lemma or else is seen to
be 3 -2 by direct counting. Of course, the number of elements in the fix of
each of p, p?, p°, p" is 0.

By counting the number of 3-colorings of a 5-string, we see that the
number of elements in the fix of each of the reflections oy, 0y, 0p, O/ is 324
For each of the other 4 reflections, which are reflections in the perpendicular
bisectors of the sides of the octagon, the number of elements in the fix is
necessarily 0.

Our final answer to the posed question is, by Burnside’s Lemma,

[1(28 +2) + [1)(2* + 2) + [2)(22 + 2) + [4]0 + [4](3 - 2*) + [4]0
16 ‘

or 30.

Exercises.

1. How many 4-bead necklaces made from ruby red, diamond white, and
emerald green beads (use r, w, g) are there if no 2 adjacent beads can
have the same color?

2. How many 28-bead necklaces can be made from beads of 3 colors
with the restriction that no 2 adjacent beads have the same color?

3. How many ways are there to 5-color the 9 vertices in the figure below
provided that no 2 adjacent (connected) vertices can have the same
color? Assume that the figure is free to rotate and turn over.
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4. How many ways are there to 5-color the 9 vertices in the figure below
provided that no 2 adjacent (connected) vertices can have the same
color? Assume that the figure is frec to rotate and turn over.

Practice Exam.

Before you begin, you should have a cut-out equilateral triangle that
you can fold (along the 3 joins of the midpoints of the sides) to produce
a tetrahedron that is sufficient to help determine the tetrahedral group,
the group of all rotation symmetries of the regular tetrahedron.

1. Under the tetrahedral group. how many ways are there to m-color
the faces of a regular tetrahedron?

2. Under the tetrahedral group, how many ways are there to m-color
the vertices of a regular tetrahedron?

3. Under the icosahedral group., how many ways are there to color the
faces of a regular dodecahedron such that there are 5 red faces, 2
white faces, and 5 blue faces?

4. Under the dihedral group Dj», how many ways are there to 5-color a
12 bead necklace such that no 2 adjacent beads have the same color?
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Recurrence Relations

§42. Examples of Recurrence Relations

A recurrence relation for a sequence {a;}, which usually begins with ag
or a1, is a formula that defines a., in terms of ag, a1, a2, as, ... ,dn_1,and n
for all n greater than some particular integer k, with the terms ag, a1, ...,
a called initial conditions or boundary conditions. Together with the
initial conditions, the recurrence relation provides a recursive definition for
the elements of the sequence. This allows us to compute the unique value
of a,, for each integer n such that n > k. Many examples follow. We are
already familiar with several recurrence relations.

Example 1. Factorials. Let ag = 1 and a, = na,_1 for n > 0. We imme-
diately recognize this recurrence relation with its initial condition as the
recursive definition of n! We have a,, = n! for integer n such that n > 0.

Example 2. Interest. Let r denote the interest rate paid for the time
period of compounding; let P be the initial payment; and let A, be the
amount accumulated after n time periods. We have 4, = 4,1 + 74,1
with Ag = P. This, of course, gives A,, = P(1 + r)" for all n. Much of the
business of the world is based on the application of compound interest.

Example 3. A chess story. Let a, = 2a, 1 for n > 1 with a; = 1. This
comes with a story about the invention of the game of chess and the number
18,446,744,073,709,551,615, which is 264~ 1. Legend has it that the inventor
of chess was rewarded by the king for this marvelous game by having any
wish granted. The king was at first pleased that the inventor merely asked

G. E. Martin, Counting: The Art of Enumerative Combinatorics
© Springer Science+Business Media New York 2001
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for 1 grain of wheat for the first square of the chess board, 2 grains of
wheat for the second square, 4 grains for the third, and each successive
square was to have twice the number of grains as the previous square.
However, when it became evident that there has never been enough wheat
grown throughout history to come even close to accomplishing this, the
king simply beheaded the inventor. As in Examples 1 and 2, the formula
a, = 2*7! for a, is obtained by “unwinding.” (Actually, Example 3 is
Example 2 with an astonishing interest rate.)

This unwinding in Example 3 might proceed {rom the bottom up as
follows: a1 = 1, ay = 2a; = 2, a3 = 2as = 22, a4 = 2a3 = 23, a5 = 2a4 = 2%,
ag = 2a5 = 2°, ... . ap = 20,1 = 2"~ L. An alternative unwinding might
proceed from the top down as follows: da,, = 2au_1 = 2- 20y = 220,y =
22 . 20p3 = 220p.5 = 2% 2ap_4 = 2%an_4 = 2% 20,_5 = Pap_5 =--- =
2”"2(1‘”4” gy = 202,y == 2722 =27 gy = 27T,

Example 4. Bell numbers. The word “partition” is used in more than 1
way in mathematics. Earlier, in Chapter 2, we talked about the number
II(r) of partitions of a positive inleger r. Now, we want to talk about the
number of partitions of a set S. A partition of a sct S is a set of disjoint
nonetpty subsets of S whose union is §. So, every element of §' is in exactly
1 of the subsets. In particular, we want to count the number of partitions
of the set {1, 2, 3, 4,... ., n}. We will denote this number by B,. These
numbers are called Bell numbers, after Eric Temple Bell (1883-1960).
Every mathematician has read Bell's Men of Mathematics, a history of
mathematics that may not always be accurate but which never fails to be
entertaining. For example, By = 5:

(12,3}, {1L.2)u{3}. {L3}u{2). {2310{1}, {1}u{2lu{s).

The number B, also counts the number of different equivalence relations
that can be defined on a set of n elements. (Elements in the set are equiv-
alent iff they are in the same subsct.) We take By = B; = 1 and derive a
recurrence relation for calculating B,,1 for n > 0 as follows. In a partition
of the first n + 1 positive integers, the number n + 1 lies in some subset
of size k + 1 where 0 < k < n. There are (Z) choices for the k elements
that are in the same subset as n + 1, and the remaining (n + 1) — (k + 1)
elements can be partitioned into subsets in B, 1) (k+1) ways. So

r n
By = Z (k) Bt —(k+1)
k=0
T n n n
- B’I~ — BTL— -
S () =2 () B
k=0 k=0

£

k=0
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Thus the Bell numbers are determined by the recurrence relation

Bo=1 and Byi=) (Z) By for n > 0.
k=0 '

The Bell numbers are actually not that new to us. How many ways are
there to put n distinguishable balls into n indistinguishable boxes?

k=1

for n > 0, where { Z} is a Stirling number of the second kind. Also,

1 20
P

Example 5. Derangements.

D, =nD, 1+ (-1)" for n > 1 with Dy = 0.

Example 6. Subfactorials. We also know that
Dy =n[Dy+ Dy_y] for n > 2 with Dy =0 and Dy = 1.

Note that a,41 = nla, + a,—1], the same recurrence relation as that for
D,,, but with the boundary conditions ag = a; = 1, is not the sequence
{D,,} shifted but rather the more familiar sequence {n!}. Thus, using the
subfactorial notation nj for D,,, wc see that both nj and n! satisfy this
recurrence relation but, necessarily, with different initial conditions.

The definition of a recurrence relation can be generalized to include ar-
rays {d, 1}, as in the next 3 examples.

Example 7. Binomial cocfficients. Let a, , = @n_i k-1 + @n-1.x for 0 <
k < n, with boundary conditions a, o = a,,, = 1. This recurrence relation
gives an g = (2) since the recurrence relation is the familiar relation

n\y (n-1 N n—1
k) \k-1 k)’
which, together with the boundary conditions (“) = (2) =1 for n > 0,

0
defines Pascal’s Triangle.

Example 8. Partition of an integer. For positive integers r and n, define
I{r,n) by O(r,r) =1(r,1) = 1, I{r,n) = 0 if n > r, and otherwise by

H(r.n) =11(r —1,n— 1) + II{r — n, n).
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We do not know a closed form for 1I(r,n), the number of ways to par-
tition integer r into n parts, which is also the number of ways to put r
indistinguishable balls into n indistinguishable boxes with no box empty.

Example 9. Stirling numbers. Define {;} by {:} = {’1} =1, {;} =0 if
n > r, and otherwise by

RS T E

We do know a closed form for {,'L} the number of ways to put r distin-
guishable balls into n indistinguishable boxes with no box cmpty.

Example 10. Unwinding. Suppose a,, is defined by a,, = a,,_1+n forn > 1
with a; = 1. We again illustrate the important technigue of “unwinding.”
The bottom-up attack proceeds as [ollows:

a; =1,

ay=a1+2=(1)+2=1+2,
az=ax+3=01+2)+3=1+2+3.
ag=a3+4=(1+2+3)+4=1+2+3+4,

p =y +1n=(1+2+34+ - +n—-1))+n=14+2+3+ - +n.

So,

The top-down attack proceeds as follows:

p =dp-1+Nn=[a, 2+ (n—1]+n
=dayo+[(n—1)+n=a,3+n-=2)+[n-1)+n]
= Q-3+ [(n—=2)+(n—1)+n]

=lap-s+n-3)]+[(n—2)+(n—1)+n|
=ana+t[(n—=3)+(n—-2)+(n-1)+n]

:”'nv(n—l) +[(n_ (n_Q))++(n’-2)+(n— 1) +’)’L]
= +2+3+4+- -+ —2)+(n—1)+n]
=14243+4+---+n—-2)+(n—-1)+n,

as before.
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FIGURE 6.1. Tower of Hanoi.

Example 11. The Tower of Hanoi. We have another story about 254 — 1,
this time concerning the end of the world. In the beginning, God placed
64 gold disks of different diameters on the first of 3 diamond needles so
that each disk was above only larger ones and ordered the priests of the
Tower of Brahma to move them to the third needle with the stipulation
that a larger disk was never to be placed on top of a smaller disk and that
only 1 disk could be moved to 1 of the needles at a time. When the priests
finish this task the Tower of Brahma will crumble and the world will end.
This tale accompanied a toy puzzle called the Tower of Hanoi, which was
invented by the French mathematician Edouard Lucas in 1883. The original
toy had 8 disks. The general problem is to find the minimum number of
moves required to complete the task if we start with n disks.

From Figure 6.1, it is scen that the recurrence relation for the Tower
of Hanoi is a,, = an_1 + 1+ a, 1 = 2a,_; + 1. We may take ag = 0
(or a; = 1). Unwinding, we get a, = 20,1 + 1 = 220,02+ 1] +1 =
220, o +214+20=22[2a, 5+1]+2"+20=23q, _3+22+21 420 = ... =
2nan~n + 2n—1 + 2n~2 S 22 4 21 + 20 —on _ 1.

Exercise.

Unwind the recurrence relation a,, = 2a,_1 + 2 with the boundary con-
dition ag = 0 both from the bottom up and from the top down.

§43. The Fibonacci Numbers

Example 12. The Fibonacei numbers. The Fibonacci recurrence relation
F,, is the granddaddy of them all. In 1202 Leonardo of Pisa, who is known
as Fibonacci, posed the problem below in his book Liber Abaci. The story
this time concerns rabbits. We suppose that a pair of adult rabbits produces
1 pair of young rabbits of opposite sex each month, that newborn rabbits
produce their first offspring at the end of 2 months, and that rabbits never
die. We begin with 1 newborn pair of rabbits at the beginning of month 1,
having 0 pairs of rabbits at the beginning of month 0, and let F} denote
the number of pairs of rabbits on hand at the beginning of the k" month.
So F, = 0 and Fy = 1. At the beginning of any month after that, we
have all the pairs of rabbits that were alive at the beginning of last mouth,
since rabbits never die, and the newborn pairs whose number equals the
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number of pairs alive 2 month ago, since this is the amazing frequency with
which rabbits reproduce. Therefore. we have a recurrence relation for the
Fibonacei numbers:

Fo=F, | +F, oforn>1with Fp, =0 and F; = 1.
The Fibonacci sequence beging
0, 1. 1.2, 3,5, 8, 13, 21. 34, 55. 89, 144, 233, 377, 610, 987. 1597, ...

We note that the first and sometimes even the second of the terms above
are omitted from the sequence. There is much written about this sequence
and its generalizations. The interesting sequence {G,}, defined by G, =
Fo1/F, for n > 0, describes the growth rate of the Fibonacci sequence
and begins: 1, 2, 1.5, 1.66..., 1.6, 1.625, 1.615..., 1.619..., 1.617....
1.6181..., 1.6179..., 1.61805.... 1.61802..., 1.618037..., 1.618032...,
1.618034.... 1.6180338.... Tt looks like this sequence approaches some
constant g. Assuming that this is the case, we can casily find g. Since
Fn+1 - F,+F,_| F,, 1 1

—1+ —1+

G" - Fn Fn Fn anl ‘

in the limit we have g =1 + 1/gor ¢ —~ g — 1 =10. So

1+Vh
9= —5

A calculator approximates the golden ratio g as 1.6180339. Note that we
have not proved that the sequence {G,} actually approaches g. We have
proved that if the sequence {G,} does have a limit, then this limit must
be g. We do not yet have a formula for F},, which would settle the matter.
However, it appears that, when we find a formula, such a formula must
be somewhat complicated in order to have F, | /F,, approach (1 + \/5) /2.
What has /5 to do with rabbits? We could prove the correctness of the
formula if it were presented now, but we prefer to derive the formula later.

We can easily find the generating function F(z) for the Fibonacci se-
quence. Subtracting the second and third equations from the first in

F(z) = FotFiz+Foz? + Byt 4 Fuzt + F52
2F(z) — Foz+Fi2% 4+ [z + Fyzt + Fu2® + -
2F(z) = Foz* + Fy2° + For' + F2” 40

we get F(z) — 2F(z) — 22F(2) = Fy + (Fy — Fy)z = z. Thus,

FE&) =

< — Z
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4 4 4 1 1 1 1
-3
2 2 1 4 4 2 2
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— — -
3 3 3 3 3 3 4

FIGURE 6.2. Bubble Sort.

MORE PIE PROBLEMS? (This time it is a Pizza Pie!)

Without what follows, we would probably not think to make the obser-
vation that 0 planes separate space into 1 region. However, we can go on
to say that 1 plane separates space into 2 regions; 2 planes separate space
into at most 4 regions; and 3 planes separate space into at most 8 regions.
Into at most how many regions do 4 planes separate space? Model the 3
following related problems with a recurrence relation and solve each with
a formula. A version of the second has been called the Pizza Problem, as
instead of the plane the problem is to cut up a pizza. Hint: Do the problems
in reverse order, using each to help solve the next.

Space Pizza Find a,,, the maximum number of 3-dimensional regions in
the separation of space by n planes.

Plane Pizza Find b,, the maximum number of 2-dimensional regions in
the separation of the plane by n lines.

Line Pizza Find c,, the maximum number of 1-dimensional regions in
the separation of a line by n points.

Example 13. Bubble sort. Given a list of n numbers, we wish to place them
in order. Starting at the bottom of the list we successively compare each
item with the number above it, interchanging the pair iff the bottom one is
smaller than the top one. The smallest number on our list has bubbled to
the top after n — 1 comparisons. We are then faced with the same problem
with a shorter list of n — 1 numbers. Hence, we have a recurrence relation
for a,, the number of necessary comparisons: a,, = a1 +{n—1) forn > 1
with a; = 0. For example, a4 = 6, as we see from Figure 6.2, where we start
with the left column and progress to the right column making interchanges
as necessary. It follows by unwinding that a,, =a; +1+2+-.- 4 (n—-2) +
(n—1)=n(n-1)/2.

Sequences such that every term is 0 or 1 arc called binary sequences.
Sequences such that every term is 0, 1, or 2 are called ternary sequences.
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Sequences such that every term is 0. 1. 2, or 3 are called quaternary
sequences. In general, sequences such that every term is one of n symbols
are called n-ary sequences.

Example 14. Let a,, be the number of binary sequences of length n that
have no consecutive 0°s. Considering how such sequences could begin under
our requirement, we have 10..., 11... or Ol .... Is it clear that we must
have a 1 followed by such a binary sequence of length n — 1 or else a
01 followed by such a binary sequence of length n — 27 Conversely, every
such binary sequence constructed in this fashion satisfies our requirements.
So a, = ay_; + an_z. We have seen this recurrence relation before. Our
boundary conditions here are a; = 2 and ay = 3. This gives the Fibonacci
sequence with a couple terms chopped off. Therefore, we have the somewhat
surprising result that a, = F,,+2 for n > 0.

We could have used ag = 1 and a; = 2 as the boundary conditions
above. This necessitates introducing the sequence of length 0. This empty
sequence is traditionally denoted by A and can be very handy. After all, if
we can have a set with no elements, why can we not have a sequence with
no terms?

Example 15. How many ternary sequences are there with no 0’s appearing
to the right of some 2?7 We are looking at sequences that have the form

< anything > 2 < mno 0’ >.

We will model the problem with a recurrence relation in 3 different ways.

We first consider the beginning of these sequences. Suppose that there
are b,, such sequences. There are b, of these that begin with a 0 and the
same number that begin with a 1. In counting these sequences that begin
with a 2, we see that this 2 can be followed by any such sequence of length
n — 1 or else by the sequence of all 1’s. We have the figure

0. b1
T bn—1
2o bn_1+1

Sob, =3b,_1 +1 with b = 1.

Now we model the same problem but this time consider the end of these
sequences. We suppose that there are ¢, such sequences. None of these
sequences can end with a 0. There are ¢,_; that end with a 1. Finally,
there are 3"~ ! that end with a 2. Here, we have the figure
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S0 ¢, =cCpo1 + 3% with e; = 1.

Of course the recurrence relation b, = 3b,_1 + 1 with b; = 1 and the
recurrence relation ¢, = ¢,—1 +377" with ¢; = 1 must necessarily have the
same solution. They do; we can check that

n

for all n

bn =Cp =

by substituting in each recurrence relation and also checking that the for-
mula gives the correct initial conditions. For example, in order to check for
the second recurrence relation we need to verify that

3"-1 31 -1 3 -1

_ n—1
5 = 5 +3 and

=1

We will soon learn how to find such solutions, at least in nice cases. In this
example, however, by considering what comes before and after the last 2,
we might be able to see immediately that a, = Z;& 3k = (3" - 1)/2 for
n > 0.

§44. A Dozen Recurrence Problems

The Dozen. Model each of the following problems with a recurrence rcla-
tion and its initial conditions.

1. Let a, be the number of regions formed in the plane hy n mutually
overlapping circles, no 3 intersecting at a common point.

2. Cars are parked in line as they come off 3 different assembly lines,
ready for later road testing. Today’s production produces 3 models,
each of a single color. Each red car takes 2 spaces and each blue car
takes 2 spaces, while the green cars take only 1 space each. Let a,, be
the number of ways of filling the first n parking spaces.

3. We can climb n stairs in a,, ways where cach step we take consists of
either 1 stair or 2 stairs and the order of the steps is considered.

4. Let a, be the number of ternary scquences of length n that have no
consecutive 0’s.

5. Let @, be the number of subsets of {1, 2, 3, ..., n} that contain no
consecutive integers.

6. Let a, be the number of ways to arrange n feet of flags from the top
of a flagpole if the flags available are 1-foot red flags, 2-foot white
flags, and 1-foot blue flags.
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7. This year’s change in a, is always twice last year’s change, where
ap=2and a, =7.

8. Where the order of purchase is considered, let a, be the number of
ways to spend n dollars if for $1 we can buy either a red ball or a
white ball and for $2 we can buy either a blue, green, or black ball.

9. Let a,, be the number of ways to stack n poker chips, each of which
is red, white, blue, or green, with no consecutive green chips.

10. Let a,, be the number of ways a coin can be flipped n times such that
the second head appears on or beforc the n' flip.

11. Let a, be the number of comparisons that must be made between
pairs of numbers in order to determine the maximum and minimum
of a set of 2™ distinct real numbers.

12. Let a,, be the number of ways to distribute r balls into n distin-
guishable boxes with 2, 3, or 4 balls in each box if there are at least
4n red balls, 4n white balls, and 4n blue balls available.

§45. Solving Recurrence Relations
Suppose p is a positive integer and we have the recurrence relation
Ay = Clp—1 +C20y—2 +C30n_3+ -+ Cp_1Qn—pt1 T Cpln-p

for n > p, with given constants ¢;. We shall call this recurrence relation (x)
for convenience. We suppose ¢, # 0. If we replace ay by «* throughout (x),
we have the polynomial equation

2" = e P ez i 4+ cp_l.r'”"“f1 + TP

Now, it is easy to see that if r is one of the roots of this polynomial equation,
then a,, = r™ is a solution to (x). We factor out the n — p zero roots of the
polynomial by dividing both sides of the equation by z"7? to get

) 1. p-2 -3
P =P F e T et T o 4oy,

which is called the characteristic equation of ().

We now show that a linear combination of solutions to (x) is a solution to
(%). Specifically, we want to show that if a,, = a}, and a,, = a, are solutions
to (x), then a,, = bial, + bga’l is a solution to (%) for arbitrary constants by
and by. So, assuming

;o ’ ' ’
Oy = C10,_ 1 +C20y 5+ -+ Cply_p
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and

"o 1 1
Ay = €104y, + C2ly, o + -+ CpQy,_ I

then

1 "o
bia, + baa,, =

crlbrag,_y + boal, 1]+ calbray, o + boay o] + -+ eplbual,_, + baa;_ ]

follows by multiplying both sides of the first equation by b;, multiplying
both sides of the second equation by by, and then adding the columns. So
an = bial, + baal is a solution to (%), as desired.

Applying this to our comments about the roots of the characteristic
equation of (*), we have an important result.

Observation. If the characteristic equation of the recurrence relation
QAp = C10p—1 + C20p-2 + C3Ap_3 +++ + Cp—1Un—p+1 + Cplp - p,

for n > p, has nonzero roots ry, ra, ..., rp, then the recurrence relation
has solutions

p = b17|" + barg' + barg’ + o+ b1t

where the b; are arbitrary constants.

The p boundary conditions that are necessary to determine the a, for all
n given by (x) will uniquely determine the constants b;. provided that the
roots are all different. In this casc, we have p equations with p unknowns.
It is not altogether obvious that there will always be a unique solution.
Although this will be the case. we need not worry about it because we
know there is a unique solution to the recurrence relation together with its
boundary conditions and this process always provides us with a solution,
which must necessarily then be the unique solution. A couple examples will
illustrate the process.

Example 16. Suppose a, = 2a,,_| — 2a,_5 for n > 2, with ag = 0 and
a; = —2. Here, p = 2. We replace a; by z* in the recurrence to get
the polynomial equation z” = 22"~ ! — 222, Dividing both sides of the

equation by 272, we get the characteristic equation x? = 2z — 2. This has

roots z = 1 4+ 4, where i? = —1. So our recurrence has general solution
an = b{L 4+ )™+ ¢(1 — )™ with arbitrary constants b and ¢. Now, from the
boundary conditions we have the 2 equations 0 = ay = b(1 +14)" +¢(1 - )"
and —2 = a; = b(1 + i)' + ¢(1 —i)!. That is,

0=b+c,
—2=0(1+1%) + (1l —14),
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which has the unique solution b = i. ¢ = —i. Hence. we have our final
formula for our given recurrence relation with its boundary conditions:

a, = i(L+0)" —i(l—4)" for n > 0.

We may be somewhat surprised that complex numbers have come into play
in dealing with a recurrence relation that has only integer values.

Example 17. We return to the Fibonacel recurrence relation

F,— Fy 1+ F, s forn>2with Fy =0 and F; = 1.

Here, we get the characteristic equation 22 = x + 1, which has the roots
(1+£v5)/2. S0 F, = al(14+/5)/2]" +b[(1 —v/5)/2]" for arbitrary constants
a and b is a general solution to the recurrence F,, = F,_| + F,,_2. The
boundary conditions give the equations 0 = Fyp = a+ band | = F| =
a(l +v/5)/2+0b(1 - v/5)/2. These have the solution a = 1/v/5. b = —1//5
and we have our desired formula for the Fibonacci sequence:
{H\/'S]” _ ['I -V

2 2

F, = ] for n > 0.

5
Needless to say. it is easier to calculate [y in standard decimal notation by
using the recurrence relation than by substituting 20 in the formula above.

What happens if the roots to the characteristic equation are not distinct?
That is, what happens when the characteristic equation has multiple roots?
Suppose r is a root of multiplicity m. This means that exactly m of the
roots are r, which is equivalent to saying that m is the highest power of
(z —r) that divides the characteristic equation. We suppose m > 1. In this
case,

dir™ + donr™ + dsn®r" 4 -+ dpn™ " with arbitrary d;

replaces the redundant dyr™ + dor™ + -+ -+ d,,r™ in our Observation above.
Again, this will always work if all multiple roots are handled in this man-
ner. (Students of calculus will understand that if » is a double root of the
characteristic equation, then 7 is a root of the derivative and, so. nr” is
a solution to the recurrence. With a triple root, we can play this game
again and get that n?r™ is another solution, and so on. See the following
example.)

Example 18. Consider a,, = 3a,,..1 —4a,,_3 for n > 3 with ag = 0. a; = 2,
as = —1. The characteristic equation z? = 32? — 4 has roots 2, 2. —1. Tn
other words, 2% — 322 +4 = (x — 2)3(x + 1). Not only is a,, = 2" a solution
to the recurrence but a, = n2" is also a solution: we know a,, = (—1)" is
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another solution to the recurrence. (For calculus students only: From “z" =
32"~ —42™ 3 has double root 27 to “na"! = 3(n—1)z" 2 —4(n—3)z" 4
has root 2”7 by calculus to “[nz"] = 3[(n — 1)2" '] — 4[(n — 3)z" 3] has
root 27 by simple algebra to “[n2"] = 3[(n — 1)2"1] — 4[(n — 3)2" 3] by
simple algebra to “a, = n2" is a solution to a, = 3a,_; — la,_3.”) We
have the general solution

an = a2" + bn2" 4 ¢(—1)" with a, b, ¢ arbitrary.
We take the boundary conditions into consideration to get

():(I() =a +C,
2=a; =2a+2b—c,
—1 =a9 =4a+ 8 +c.

Solving these 3 equations, we get a = 1, b = —1/2, and ¢ = —1. Therefore,
we have the formula for our recurrence

ay =27 —n27 L 4 (—1)ntt = on—t (2—=n)+ (=)™ for n > 0.

Mathematical limitations on solving polynomial equations imply that,
in general, it is impossible to find a closed formula to solve a recurrence
relation. Nevertheless, in the age of the computer, modeling by recurrence
relations is much more that an academic exercise. Computers are a natural
when it comes to many recursive computations to get at a desired particular
solution.

Homework.

Solve, with a closed formula, the first 8 of the dozen problems of the
previous section.

§46. The Catalan Numbers

Example 19. How many ways can n + 1 numbers be multiplied together?
Let’s be more precise. Let C, be the number of ways we can insert paren-
theses in the product

T KXy % T3 % Ty * T * T * L7 %k Ty % Ty

so that we have n successive multiplications, each involving 2 factors. Be-
cause of the associative law, the product is the same for each final product.
So the question is really how many ways can we associate a product of
n + 1 numbers, with the numbers in a given order. Since division is not
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associative, (), is also the answer to the question, How many ways can the
n + 1 nonzero numbers 2; in the otherwise meaningless form

L] =T+ X3 +Lyg+ X5 ~Tg~ Ly — -~ Tp v Tyl

be grouped so that the n division sigus give a well-defined number?
For example, Cy = 2 from a x (b ¢) and (a xb) * ¢, and C3 = 5 from

ax(bx(cxd). ax((bxe)xd), (a*x(bxc))*d
((axb)*xc)xd. and (a#*b)x*(c*d).

Now, (7 = | and we accept Cy = 1. Let’s look at a computation for Ch 4.
Since the last of the n + 1 multiplications is a product of 2 factors such
that the first factor involves the first i + 1 of the n + 2 numbers, which
can be associated in C; ways, and the second factor involves the remaining
n+2—(i+1), or (n— 1)+ 1, numbers, which can be associated in C;
ways, we have the recurrence relation

Cn+1 = C/VOCH + Cl Cnfl + C2Cn,-2 + C’Y,‘icnf‘? + -+ Onflcl + C171(}0

for n > 0 with Cy = 1.

This is a solution, but we can do better if we also consider a related
problem. Let A, be the answer to the same problem as above, except this
time allowing oursclves the possibility of reordering the given numbers in
the product. So A, is the number of ways to form and associate a product
of n + 1 distinct given factors. Obviously, 4,, = (n + )!C,,. If this doesn’t
seem to be making any progress, be patient. We have 41 = 2 and we accept
Ag = L. From a product p of 21. 2y, w3, ..., Tn, we get a product of the
numbers 1. To, T3, ..., &n, Tni1, cither by multiplying p by 2,41 on
cither side of p or else by multiplying either of the 2 factors of 1 of the
n — 1 nmltiplications in p on either side of the factor by z,41. Thus we
obtain a total of 24+ 4(n — 1), or 4n — 2, products, and since every product
of the n + 1 numbers can be obtained in this way, we have the recurrence
relation

A, = (dn — 2)A, 1 for n > 0 with Ay = 1.
Have we made progress? Yes. Unwinding this recurrence relation, we get
A, = (4n — 2)(4n — 6)(4n — 10)--- (10)(6)(2)
=2"2n — 1)(2n - 3)(2n —5) --- (5)(3)(1)
= 2"(2n)!/[(2n)(2n — 2)(2n — 6) - - (6)(4)(2)]

=2"(2n)!/[2"n!]
= (2n)!/nl.
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Thus,
(2n)!

A, =
n!

forn>0

(and we can see why we accepted Ag as 1). Further, we then have C, =
An/(n+ 1) = (2n)!/[nin!(n + 1)]. Thus,

Cn = L (271) for n > 0.
n+1\n

The numbers C,, are called Catalan numbers.

n. 0 1 2 3 4 5 6 7 8 9 10
Cp: 1 1 2 5 14 42 132 429 1430 4862 16796

From the formula above, we can easily derive another recurrence relation
for computing successive Catalan numbers.

2(2n + 1)

C, for n > 0 with Cg = 1.
n+2

C1n+1 =
The Catalan numbers pop up here and there. Given a convex polygon
having n +2 sides, suppose that there are ¢, ways to join the vertices to tri-
angulate the polygon by nonintersecting diagonals. So, ¢; = 1, and we take
¢o = 1. Let the vertices of the polygon be Vy, Vi, Va,... ,V,41. The side
with endpoints V5 and V,,11 belongs to some triangle with third vertex, say
Vi such that 1 < k£ < n. The convex polygon with vertices Vi, Vi,... .,V
has & + 1 sides and can be triangulated in ¢;_; ways. The convex polygon
with vertices Vi, Vit1.... . Voy1 has n—k+2 sides and can be triangulated
in ¢, ways. Thus, there are ¢g_jc,_x possible triangulations when one
of the triangles has vertices Vj, Vi, Vi..1 Hence, ¢, = ZZ=1 Cl—1Cp—k for
n > 1 with ¢g = 1. Since {c,} satisfies a Catalan recurrence relation and
its initial condition, then ¢, = C,. That is, ¢, = 7;]3 (2:) Euler found
this formula in 1758. The number of ways to draw n nonintersecting cords
whose endpoints are 2n given poinis on a circle is also seen to be C,,.
Perhaps the most interesting occurrence of the Catalan numbers is in
finding the number of ways to flip a coin 2n times to get n heads and n
tails with the number of heads flipped at any time not exceeded by the
number of tails flipped at that time. (This is, admittedly, a digression from
our topic of recurrence relations, to which we will return with Example 20.)
We generalize the problem to count the number of ways to toss h heads
and t tails with the number of tails tossed never exceeding the number of
heads tossed. Possibly we are thinking of a “head” as a score for the Home
Team in a game or maybe a vote coming in for the candidate Honest Helen
in the election returns.
In any case, our model is a sequence of h H’s and £ T’s. For our immediate
purpose, here and below, we will call a sequence of H’s and T’s “desirable”
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h1l's ind t T's
H’s never behind first time H’s behind
’ rHs & rT’s IT_ h—rHs & t—r—1T%
! Switch H’s & T’s ! Copy H's & T’s
’ rHs & rT’s IHT h—rH’s &At —r—1Ts |

T’s never bechind first time T’s behind

A

and

h+11Ds t—1T’s

FIGURE 6.3. The Switch and Copy Trick.

if at every point in the sequence the number of H’s is not exceeded by the
number of T’s up to that point. For example, HHHTTT is desirable but
HTTHHH is not. It is the desirable sequences that we want to count. We
assume h > t > 0. Of the possible (h;;t) sequences having h H's and ¢ T’s,
we count those for which our condition fails. We can then subtract to obtain
the number of desirable sequences. Even these “undesirable” sequences arc
not easy to count. We change them into somecthing else that is easy to
count. Taking an undesirable sequence, where the first time the number of
T’s exceeds the number of H’s is in the (2r + 1)* spot, with 0 < r, we
switch all the H's and T’s in the first 27 + 1 spots and copy the rest of the
sequence. We now have a sequence of h + 1 H’s and ¢ — 1 T’s. Of course,
this does no good if we cannot go backwards from such a sequence to one
of our undesirable sequences. We can: sce Figure 6.3. Since h +1 > { — 1,
at some point in any sequence of h + 1 H’s and ¢ — 1 T’s the number of
H’s must first exceed the number of T's. Let this be at the (2r 4+ 1)** spot.
The switch and copy trick of switching the first 27 + 1 spots and copying
the rest brings us to one of our undesirable sequences—that is, a sequence
of h H's and t T”s such that at some point the number of 1"s exceeds the
number of H’s. We have a one-to-one correspondence between the set of
our undesirable sequences, which we want to count, and the set of our new
sequences, which is the set of all sequences consisting of h+1 H's and t -1

T’s. There are obviously (;fﬁ) of these new sequences. Thus, the number

of desirable sequences here is the difference between (h,f t) and (Zi;) The
most interesting case is when h = t.
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Observation. The number of sequences of h H's and t T’s such that h >
t > 0 and such that the number of H’s is not exceeded by the number of
T’s at any point in the sequence is

h—t+1/h+t
h+1 h )’
When h = t = n, this number is C,,.

In blockwalking from (0, 0) to (n,n), with a step in the z-direction equally
as likely as a step in the y-direction, what is the probability of never crossing
above the line with equation ¥ = X7 Our desirable sequences above model
the problem with H interpreted as a step in the a-direction and a T as a
step in the y-direction. Therefore, there are C,, paths that are never above
Y = X. We know that there are (Z:) blockwalking paths from (0,0) to
{(n,n). Hence, the desired probability is ﬁ?

Suppose h > t. Drop the mandatory initial H from a sequence of i H's
and ¢ T’s with the property that in front of each letter except the first the
number of H’s exceeds the number of T’s. We then have a sequence of h— 1
H’s and ¢ T’s such that at each point in the sequence the number of H's is
not exceeded by the number of T’s. These are our desirable sequences from
above. Conversely inserting an H in front of a desirable sequence from above
producces a sequence with the property that in front of any letter except the

first there are more H’s than T’s. So, by the Observation above, there are
(h=1)—t+1 ((h—1)+t

(h—1)+1 h—1
we can drop the mandatory initial H and the mandatory terminal T to get
one of the desirable sequences from above consisting of h — 1 H's and ¢t — 1

T’s. Again, we can reverse the process. Here, the count of sequences with
(n—=1)—(n—1)+1 ((n—l)—t—(n~]))
(n—1)+1 n—1 :

) sequences with the new property. In the case h =t = n,

the new property is

Corollary. If h > ¢, then the number of sequences of h H’s and ¢ T’s such
that in front of each letter except the first the number of H’s exceeds the

number of T’s is
h—t/h+t-1
h { ’

If & = t = n, then the number of sequences of n H's and n T’s such that in
front of each letter except the first the number of H’s exceeds the number
of T'sis C),_1.

We now want to count the set of sequences of h H's and ¢ T’s that are
attached to the end of a sequence of ¢ H's such that at every point in the
total sequence of length 1 + ¢ + ¢ the number of H’s is never exceeded by
the number of T’s. We are Jooking at the desirable sequences of h + g H’s
and ¢ T’s that begin with at least ¢ H’s. The number of all sequences of
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h 4+ q H’s and ¢ T’s that begin with at least ¢ H's is (h:’) We supposc
that ¢ > 0. We assume that h+ g > ¢, as otherwise the count is 0, and also
assume that [ > ¢, as otherwise the count is clearly (h;;i). This time an
undesirable sequence has the form

[ gHs [r—qHs & v Ts [T h—r+qll's & t—r-1T’s ]

with the lone “T™ being the first occurrence where the number of H's trails
the number of T’s. Use a trick often enough and it becomes a method. The
switch and copy trick gives a sequence of the form

CqTs [ rHs & 1—qTs H h—r+gHs & t—r—1Ts |

consisting of h + ¢+ 1 H's and £ — 1 T’s and beginning with at least q
T’s. Conversely, each such sequence is the result of a switch and copy trick
applicd to an undesirable sequence that begins with at least ¢ H's. The
number of undesirable sequences this time is the same as the number of all
sequences of h +¢+1Hsandt-1—¢ T's.

Observation. With h + ¢ > t > ¢ > 0, the number of sequences of length
h + g +t consisting of h H’s and ¢ T’s attached to the end of a sequence of
q H’s with the number of H’s at cvery point never exceeded by the number
of T’s up to that point is

h+t _ h+t
h h+qg+1)

Example 20. How many ternary sequences of length n have no 0 and 1
adjacent?

We let a,, be the number of the desired sequences of length 7. We are in
trouble from the beginning, when we consider counting the sequences that
begin with a 0. The next digit could be a 0 or a 2, but then we are back
to considering those that begin with 00. Now we are going in circles. The
trick here is to let 2, denote the number of such sequences of length n that
begin with a 0, which is also the number of such sequences of length n that
begin with a 1. This last observation is true by the symmetry of 0 and 1 in
the problem. In other words, we could interchange all the 0’s with all the
1’s and accomplish nothing. We now have the following figures to consider.

0.eees Zn 00........ Zn—1
1o Zn Ol........ 0
2, An—1 02........ a, 2

So ap =2z, + tp_1- SO 2z = 2pn—1 + Qp—2.

We have 2 recurrence relations but we want to eliminate the z's. We rewrite
the first as 22, = a, — an_1 and substitute this relation in our second
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2z, = 2zp-1 + 2ay, 4, which was multiplied by 2 only to avoid fractions, to
get

[an - an—l] - [an—l - Qn—?} + 2ay,—2.
This last equation simplifies to
ap = 20n1 + Gy 2.

We calculate the initial conditions ag = 1 and a7 = 3 to finish the problem.
We can use as = 32 — 2 as a check.

Example 21. How many ternary sequences of length n have neither con-
secutive (I’s nor consecutive 1's?

We let a, be the number of ternary sequences of length n that have
neither consccutive 0’s nor consecutive 1’s. We let b, ¢,.. d,,, be the number
of such sequences that end in 0, 1, 2. respectively. If we consider the last 2
terms of such sequences, the figure

...00 0 ... 10 Cr—1 ... 20 dn—l
.01 by, .11 0 21 dpog
...02 bn—l 12 Cp—1 LL.22 dn_1

together with the observation that d,, = a,, 1 leads us to

y = 2by,_1 +2¢n_1 + 3dn_1
=2[by—1 + cp-1] + 3ds1
=2[ap_1 —dp_1] + 3d,, 1
=20, 1+ dn_1

- 2(]-77.71 + an_2.

We calculate the initial conditions ag = 1 and a; = 3 to finish the problem.
We can use ap = 32 — 2 as a check.

You may want to explain why Example 20 and Example 21 have the
same solution.

Modeling Problems.
Model each of the following problems with a recurrence relation and its
initial conditions.

1. Let a, be the number of ternary sequences of length n that have no
consecutive digits equal.

2. Let a, be the number of ternary sequences of length n that have an
even number of 0’s.
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6.

11.

12.

13.

14.

15.

6. Recurrence Relations

There are a, ways of selecting n 2-person committees from 2n per-
sons.

. There are a,, ways of selecting n 4-person committees from 4n per-

sons.

. Let a,, be the number of ways to stack n poker chips, each of which

can be red. white, blue, or green, such that there is a green chip
immediately on top of each red chip.

An experiment consists of flipping a coin until the second head ap-
pears. Let a, be the number of experiments that require at most n
flips.

. Let a,, be the number of quaternary sequences of length n that have

an even number of 0's.

. How many ternary sequences of length n have no 1 immediately to

the right of any 07

. How many ternary sequences of length n have no double zero?

. How many ternary sequences of length n have no 1 anywhere to the

right of any 07

How many ternary sequences of length n have no 1 appearing imme-
diately to the right of some 07

How many quaternary sequences of length n have a 1 and are such
that the first 1 precedes any 07

How many ways can a 2-by-n rectangular board be tiled with 1 by 2
and 2 by 2 rectangular picces?

How many ways are there to stack n poker chips, each of which can
be red. white, blue, or green, under the following condition?

{a) No green chip is (directly) on top of any red chip.

(b) No green chip is (directly) on top of some red chip.

(¢) A green chip is always (somewhere) above some red chip.

(d) A green chip is always (somewhere) above any red chip.

(e) A green chip is never (anywhere) above some red chip.

How many ways are there to arrange 2n persons of different heights

into an array of 2 rows and n columns such that heights increase in
each row and in cach column?
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Practice Exam.

You have 2 hours. You may omit or miss 3 questions without penalty.
For each of the following 10 conditions, give a recurrence relation with
initial conditions that models the solution to the question, How many ways
are there to form an n-digit quaternary sequence that satisfies the given
condition?

1. No 1 precedes any 0.

2. Any 1 is followed immediately by a 0.

@

There is a subsequence 00.

=

There are no adjacent 0’s and no adjacent 1’s.

<

No 1 is adjacent to any (0.
Any 0 is adjacent to another 0.
Any 1 is adjacent to at least onc 0.

There is no subsequence 000.

L ®» N o

There is no subsequence 001.

10. There is no subsequence 010.

We end the section with a mystery. Assume ¢ is the generating function
for {Cn}. So, g = 372, Crz”. Now, since Cppy = 3.1 C;Cpp—y for n > 0

with Cp = 1, we have

=%} oc o
g—Co= Z C,z" = Z Cri12" =2 Z
r=1

n=0 n=0

i3
Z CiCn_l] 2" = zg2.
=0

So, g — 1 = zg% or zg?> — g+ 1 = 0. Solving this quadratic equation in g,
we get,

1—+v1—4z

9= 2z

Everything is straightforward up to the last step. Can a quadratic in g be
solved in this way? Does /1 — 42 even make sense? What does it all mean?
§47. Nonhomogeneous Recurrence Relations

Occasionally one needs to solve a recurrence relation of the form

Gn = C1Qp—1 + C20p—2 + €30n 3+ -+ + Cpln—p =+ g(n)
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for n > p, with given constants ¢;. where g(n) is a given function of n. If
g(n) is zero, the recurrence relation is called homogeneous, and, other-
wise, nonhomogeneous. Our approach here will be a cookbook approach
and be explained mostly by doing an example. We will call the recurrence
relation a, = ¢1a, 1 + €2y 2 + €3Gy _3 + + - + Cpay,—, “the homogencous
part” of the nonhomogencous recurrence relation above.

The principal observation is that the difference of 2 solutions to the gen-
cral nonhomogeneous recurrence relation is a solution to the homogencous
part of the recurrence relation. The application of this is that if we can find
the general solution to the homogencous part and a particular solution to
the nonhomogeneous recurrence relation, then we can combine these to get
a general solution to the nonhomogencous recurrence relation.

As our illustrative example, we take
W, = 2an 1+ 3p_o— 802 +9.277!

for n > 1 with ag = «y = 1.
We first find a general solution to the homogeneous part. In our example,
we want the general solution to

y = 20pn_1 + 3, 9.

Since the roots of the characteristic equation are —1 and 3, we have the
general solution

an =b(—1)" +¢(3)"

to the homogeneous part, with b and ¢ arbitrary constants.

To make the algebra a little easier, we separate the polynomial part and
the exponential part of g(n) in our example. We turn to finding a particular
solution of

. 2
Uy, = 2Up—1 + 30,2 — 30"

If g(n) is a polynomial of degree m. then we should try a polynomial of
degree m for a particular solution; although, if the recurrence relation is of
the form a, = a, 1+ g(n), a polynomial of degree n 1 will be necessary.
In our case, —8n? is a polynomial of degree 2 and so we try [or a particular
solution of the form dn? + en + f. We nced to determine the constants
d, e, f such that

[dn? +en + f]
=2[d(n - 12 +e(n— 1)+ fl+3[dn—2)"+eln—2)+ f] - &n.
This reduces to the equation

0= (4d — 8)n? + (e — 16d)n + (14d — 8e + 4f).
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Since this last equation is to hold for all values of », then the 3 coefficients
must each be 0. So, we get d = 2, e = &, and f = 9. Thus,

an =2n° +8n+9

is a particular solution to a, = 26,1 + 3a,_o — 8n°.
We next turn to finding a particular solution to

Qn =20p_1 +3an_o+9-2""1,

If g(n) is a multiple of t™ for some constant t, then we try k- t*, with k a
constant that determines a particular solution. This usually works, but, if
t is already a root with multiplicity r of the characteristic equation of the
homogeneous part, then we try kn"t". In our example, 9-2" ! is a multiple
of 2™ and we try a, = k2™ as a particular solution. So, take

(k2] = 2[k2" 7] + 3[k2"7%] 4 9. 2"
to get k = —6. Hence,
Gy = -3. 2n+l

is a particular solution to @, = 20,1 + 30,2 +9- 271,
Putting all this together, we sec that

a, =b(-1)" + 3"+ 2n* + 8n+9 — 3. 27!

is a gencral solution to our original nonhomogeneous recurrence relation.
Tinally, we use the given initial conditions ap = a; = 1 to determine that
b= 0 and ¢ = —2. Therefore, our final solution is the equation

a, =2 +8n+9—3.2""1 _92.3" for n > 0.

We finish with 1 more example, which will provide a useful formula.
Consider the recurrence relation a, = a, 1 + n? for n > 0 with ag = 0.
Unwinding this when n > 0 shows that a,, is the sum of the first n squares.
In other words, a,, = > p_, k% for n > 0. Applying the suggested techniques
above, we expect that this recurrence relation has a general solution that
is a cubic in n. So we try a, = bn® +cn? 4 dn + e to get

[bn® + en® +dn+e] = [b(n — 1) + ¢(n — 1)? +d(n — 1) + e] +n?,
which, in turn, gives us
0= (1-3bn+ (3b—2c)n+ (c — b—d).

So, b= 1/3, ¢ = 1/2, and d = 1/6, with e arbitrary. Thus, we have the
general solution a, = (2n® 4 3n? + n)/6 + ¢. The initial condition ag = 0
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implies e = 0. We have solved our recurrence relation and have the following
formula.

Observation.

i 2 nin+1)(2n+1)
k=1 6

Homework.

1. Give a closed formula for each of the following recurrence relations
with their initial conditions.
(a) Solve a,, = ap—1 + 6a,—3 + 3n when ap = a; = 0.
(b) Solve a,, = a1 + 6a,—2 + 2" when ag = a; = 0.
(c) Solve a,, = ap—1 + 2an—2 + 2n when ay = ay = 0.
(d) Solve a,, = tp—1 + 2a,-2 + 2™ when ay = a; = 0.
(e) Solve a, = dan_1 —4a,_2+ 2" when ag = a; = 1.

2. Show that the total number of triangles in an equilateral triangle of
side n tiled by equilateral triangles of side 1 is given by the formula

4n® +10n% +4n— 1+ (-1)"
16 '
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Mathematical Induction

§48. The Principle of Mathematical Induction

A very powerful method of proof for a statement involving integers is anal-
ogous to climbing a ladder. If we (1) can get on the first rung of the ladder
and (2) if we can get from each rung to the next higher rung, then we
claim that we can get to every rung of the ladder. This may seem like com-
mon sense. It is, and this common sense is codified as follows, where by a
“proposition” we mean any statement that makes sense.

The Principle of Mathematical Induction. For cach positive integer
n, suppose that P(n) is a proposition. If

e P(1) is true and
e P(k) is true implies P(k + 1) is true, for each & > 1,

then P(n) is truc for each positive integer n,

We do not prove the Principle of Mathematical Induction. 1t is essentially
an axiom of mathematics. Specifically, it is an immediate consequence of
Peano’s axioms for the definition positive integers. The application of the
Principle of Mathematical Induction is called mathematical induction and
is a 3-step process: Given statement P(n), the first step is to prove that
P(1) is true. This is often called the basis step. The second step is to prove
that P(k) implies P(k + 1) whenever k > 1. The second step is called the
induction step, and P(k) in this step is called the induction hypothesis.

G. E. Martin, Counting: The Art of Enumerative Combinatorics
© Springer Science+Business Media New York 2001
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The third step is the appeal to the Principle of Mathematical Induction in
order to conclude that P(n) is true for all positive integers n. Since there is
“nothing to compute” for the third step, this essential step is too frequently
overlooked. We will not follow those who ignore this last step because they
think that it is so obvious that it nced not be mentioned.

The induction step can also be stated as “P(k — 1) is true implies P(k)
is true, for each & > 1.” This is a change in notation only, and is not a
change in content.

The name of mathematical induction is unfortunate because the name
is misleading. Since induction is a process of forming generalizations ex-
trapolated from some examples, we avoid the jargon that uses “induction”
in place of “mathematical induction,” based on the premisc that “cvery-
body kuows” the intended meaning. Mathematical induction has little to
do with induction. We might use induction, as in our first example, to guess
a proposition that we then prove by mathematical induction. Such guesses
arc propositions and, when we fecl they are correct, we call them conjec-
tures. Our first example arises from the pattern that results from sumnming
the first n odd integers. We observe that

1=1%

1+3=2%

1+345=3%

143 +5+7=4%

1+3+5+74+9=5"
and by induction guess that Z?Zl (2j — 1) = n? for each positive integer n.
We see a pattern and conjecture that the pattern holds for all the positive
integers. OQur proposition may be truc or our proposition may be false. We
prove that our conjecture is actually true by mathematical induction. Our
proposition P(n) is the statement: 37, (2j —1) = n®. First we must prove
the basis step that P(1) is true. This is easy enough, since 2 — 1 = 12, For
the induction step, we assume that Z;ll(Qj — 1) = k? for some arbitrary
integer k such that k& > 1. In other words, we have assumed that P(k) is

truc and we must now argue that P(k + 1) is true. The calculation

k1 k
DRi-) =D @D +REF) =R+ 2k 1) = (k4 1)

7=1

proves the induction step. Note that proving the induction step is actually
a deduction. From the assumption

143454+ (2k—1) =k
for some k > 1 and the incontestable cquation

2k +1) =1 = (k+1)% — k%,
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we deduce that

14+3+5+ - +2k—1+[20k+1) - 1] = (k+ 1)
We therelore conclude by the Principle of Mathematical Induction that
P(n) is true for each positive integer n. Thus, we have proved

n

> (2i-1)=

=1

for each positive integer n. A direct proof of this formula follows from
knowing the formula for the sum of the first n positive integers. For each
n, with n > 1,

Yi(Qj—U:Qij-—il:Qﬁ(”Q—H) —n =n>

j=1 =1 j=1

We give 3 examples illustrating that induction by itself is not a proof
at all. Given the formula f(n) = n® + n + 41, if we compute f(1), f(2),
F(3), F(d), f(3), ..., f(39), we always get a prime number. It is certainly
reasonable to assume that this pattern will continue. Reasonable, yes; but
also incorrect. In fact, f(40) = 412 and 412 is obviously not a prime. Our
favorite example is next. From the equations

ot l=a-1,
2 —1=(x—1)(x+1),
'3—]~(T—1)($2+.L+1)
)@ + 1) (2?4 1),
P l=(@-a*+22 +2? +a+1),
2l =(r—D+D?+r+1)(2? —T+1)
)
)
e
) +

1= -1)(z
4

x—l;(r—lr—{—x tat 4t i+ +1),
—1=(z—- 1)z +1)(=>+ D'+ 1),
a2 1= (2 (@ +a+1)@%+2%+1),

Cl=(z-Da+ D)z v+t + ) -3 2 x4+ 1),

it looks like all the coeflicients of the real factors of ™ — 1 are +1. This
is indeed the case for each of the first 104 positive integers. However, a
factor of 1% — 1 has a —2 as a coefficient. The third and last exarple
is even more extraordinary. If we start calculating the values of 991n? + 1
for the positive integers, we seem not to ever get a square number. We can
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gather a lot of convincing evidence that this will always be the casc. A lot.
Actually, this will be true until our numnber n reaches

12,055,735, 790, 331, 359. 147, 442, 538, 767

when we do get a square. Even very much larger examples are available, but
we get the idea. Induction does usually work but not always. It is the un-
certainty that requires us to produce deductive proofs for our conjectures.

As an easy illustration, let’s use mathematical induction to prove the
proposition P(n) that states that the sum of the first n positive integers is
n(n+1)/2. Certainly 1 = 1(2)/2. So P(1) is true. We then show that P(k)
implies P(k + 1) for &£ > 1 by the calculation

k+1 k

o /, L k(k+1) o (k+D(k+2)
di= ZJ thtl= g k)=

Hence, by mathematical induction, the formula holds for all n.
Now let’s “prove” that the sum of the first n positive integers is also
(n — 1)(n + 2)/2. This time we have

ket 1 k .
S = S| ey 2 D 1)2(k+2)+[k+1]
j=1 j=1

k(k+3) [+ 1) —1[(k+1)+72]

2 2

So, P(k) does imply P(k+1). What is going on here? You may have noticed
that we did not prove the basis step. In this case it is impossible to prove
P(1), because P(1) is false. Without the basis step, the induction step is
useless. Needless to say, our proposition is itself false.

Here is another flimflam argument. We will “prove” that all balls are the
same color- and thus simplify most of the problems we have encountered
in this text. Certainly, the balls in any set consisting of exactly 1 ball are
all the same color. We assume that the balls in any set of & balls are all
the same color. Now, suppose a set of k + 1 balls is produced. We argue
that we can line them up and the first k& must be all the same color by
our induction hypothesis; the last k& must also be all the same color by our
induction hypothesis. Tt follows that all the k& + 1 balls must be of the same
color. We claim (with our fingers crossed) that we have proved that all balls
are the same color by mathematical induction.

Proving the basis step in a proof by mathematical induction is frequently
trivial. This is not always the casc, however. For example given n + 1
arbitrary squares, we want to prove it is possible to cut the squares into
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m

1 y

m

/
/[

T

FIGURE 7.1. Dissection of 2 Squares to Form 1 Square.

pieces that can be arranged to form a new square. (For the case n = 0,
there is nothing to prove. As Gertrude Stein probably never said, A square
is a square is a square.) The induction step in a mathematical induction
argument is to show that P(k) is true implies P(k + 1) is true for each
k > 1. The argument that if we are given k + 1 squares we can take the
first k£ to form a new square by the induction hypothesis and then combine
this square with the k' square to form a new square is valid as long as
we can take 2 squares and combine them into 1 square. In other words,
it is the case of 2 squares, when n = 1, that requires some nontrivial
proof. The rest follows rather easily by mathematical induction. (It is the
case of 2 balls that was not proved in the flimflam argument above. If the
balls in every set of 2 balls actually have the same color, then it would,
in fact, correctly follow that all balls have the same color.) Here, the case
for n = 1 is true as can be gleaned from Figure 7.1, where we have 2
given squares of sides @ and y with 2 > y. We let m = (z + y)/2. So
m = (x —m) + y. We mark off segments of length m on the sides of the
larger (or congruent) square as in the figure. The joins of these points on
opposite sides of this square are necessarily perpendicular and dissect the
square into 4 congruent quadrilaterals (or triangles if @ = y). (The rotation
of 90 degrees about the intersection of these joins permutes the segments
of length m and so permutes the quadrilaterals.) After translating each of
the quadrilaterals to attach them to the sides of the smaller square in the
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manner indicated in the figure, we see that the pieces fit together (this is
where we need m = (x —m) + y) to form the desired new squarc.

Homework MI 1.

1. Prove by mathematical induction that for each positive integer n

"L, onn+1)(2n+1)
Zj = 6 !
=1

2. Prove by mathematical induction that for each positive integer n

3. Prove by mathematical induction that for each positive integer n

Z(2j e n(2n — 1;(271, + l).

j=1

4. Prove by mathematical induction that for each positive integer n

n
> (25— 1) =20’ - 1),
Jj=1
5. Guess and prove a formula for Z;lzl 4lj for positive integer .

6. Prove that when n dice are rolled the number of possible outcomes
having an even sum equals the number of possible outcomes having
an odd sum. (This is a tricky question.)

§49. The Strong Form of Mathematical Induction

We next use mathematical induction to prove the validity of the follow-
ing argument, which is called the strong form of mathematical induction
because the induction hypothesis here has stronger requirements.

Strong Form of Mathematical Induction. For each positive integer n,
suppose that P(n) is a proposition. If

e (1) is true and
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e P(1),P(2), ..., P(k) are true implies P(k + 1} is true, for each k > 1,

then P(n) is true for each positive integer n.

To prove the strong form of mathematical induction, we let Q(n) be the
proposition, “P(m) is true for every positive integer m such that 1 < m <
n.” Let’s be clear what we have to do. We suppose {1] the ordinary Principle
of Mathematical Induction, [2] P(1) is true, and [3] P(1), P(2}, ..., P(k)
are true implies P(k+1) is true, for cach & > 1. We must show that Q(n) is
true for each positive integer n. Now, Q(1) is true because P(1) is true by
[2]. We assume Q(k) is truc for some arbitrary k such that & > 1. Hence,
P(m) is true for m such that 1 <m < k. Therefore, P(1), P(2), ..., P(k),
and P(k + 1) are true by [3]. That is, Q(k + 1) is true. This compleres the
induction step showing that Q(k) implies Q(k + 1) for & > 1. Therefore,
by [1], Q(n) is true for all positive integers n. Hence, P(n) is true for all
positive integers n, as desired.

In the next section we will use the strong form to prove the principal
theorem of the chapter. The usual example that is used to show the strength
of the strong form of mathematical induction over ordinary mathematical
induction is the proof that each integer greater than 1 can be factored into
a product of primes. First, note that ordinary induction here is of little
use since knowing how to factor k& does not usually help at all in trying to
factor k + 1. (For example, take k& = 24.) To fit the form above exactly,
we need to state our proposition P(n) as “n + 1 is a product of primes for
positive integer n.” Anyway, 2 is a prime and so is a product of primes. (In
this case the product has only 1 factor.) So, P(1) is true. For the induction
step, we assume P(1), P(2), ..., and P(k) are true for some k such that
k > 1. Thus, if 2 < r < k + 1, then r is a product of primes. We need to
show that k + 2 is a product of primes. If k£ + 2 is itself a prime, then we arc
done. Suppose k + 2 is not a prime. Then, there are integers s and ¢ such
that k4+2 = st with 2 < s < k+2and 2 < t < k+2. Since both s and ¢ are
products of primes by the induction hypothesis, then their product is also a
product of primes. Thus, by the strong form of mathematical induction, we
conclude that every positive integer greater than 1 is a product of primes.
(If we go on to show that the primes are necessarily unique, up to order of
the factors, the result is called the Fundamental Theorem of Arithmetic.)

The example above already touches on an adjustment that can be made
to mathematical induction. We really want to start counting with 2 in the
example above. If we are talking about properties of polygons, we usually
want to start with the case n = 3 for obvious reasons. It is also evident that
we very frequently want to start with the case n = 0. Thus, without proof,
we state that the following are valid arguments for proving propositions
concerning integers. The first merely shifts what is called the base of the
mathematical induction from 1 to & and is the special case r = 1 of the
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second. In each case, we still call the first requirement the basis step and
the second the induction step.

Mathematical Induction. Suppose b is an integer. Suppose, for each
integer n. such that n > b, that P(n) is a proposition. If

e P(b) is true and
e P(k) is true implies P(k + 1) is true, for each k > b,
then P(n) is true for each integer n such that n > b.
Complete Mathematical Induction. Suppose that b is an integer, that

r is a positive integer, and. for each integer n such that n > b, that P(n) is
a proposition. If

e P(b), P(b+ 1), ..., P(b+ (r — 1)) are truc and

o P(k—r), ..., P(k—2), P(k—1) are true implies P(k) is true whenever
k—-r>b,

then P(n) is true for each integer n such that n > b.

There are many forms of mathematical induction. The form that we
have called Cowmplete Mathematical Induction is especially applicable to
recurrcence relations. As an example, we prove that the recurrence relation

apy=a1=1 and a, =a,_1+2a,_s forn>2

has the solution

2n+] + (‘1)11

forn > 0.
3

Ay =
We use Complete Mathematical Induction with the base b where b = 0.
Here, r = 2. The basis step requires showing that ay and a, are correctly
given by the formula. This is easily verified:
2+1 22 -1

apy=1=—— and a;=1= T

For the induction step, we must show that P(k — 2) is true and P(k — 1)
is true implies P(k) is true for £ > 2. That is, our formula satisfies the
equation

ar = ax—1 + 2ap_o for k > 2.
This is an easy algebraic calculation; all we have to do is check that

2k+l + (_1)k _ 2k + (*1>k‘,71 +22k#1 + (_1>k:~2
3 B 3 3
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for k& > 2. Therefore, the formula for the solution is valid for all nonnegative
integers 7.

Homework MI I1.

1.

Prove that n concurrent plancs, with no line on any 3 of the planes,
divide space into n(n—1)+2 regions, for each positive integer n. (That
the planes are concurrent means that they pass through a common
point. Note that the sequence 2!, 22, 23 gets things off to a roaring
start but, alas, then drops dead. The fourth plane does not intersect
all of the regions created by the first 3 planes, except at the point of
concurrency. Playing with some more values of n should produce a
picture that motivates the induction step of a proof by mathematical
induction, if not the formula itself.)

Show that postage stamps of value 3 cents and 5 cents are sufficient
to post any letter requiring more that 7 cents in postage.

Prove DeMoivre’s Theorem: If n is a nonnegative integer, then

(cosar + isina)™ = cosna + isinno.

If n is an integer such that n > 4, then

n? < 2" < nl.

Let b is any positive integer greater than 1. Prove that every positive
integer can be uniquely represented in the forin

rob? + 710t 4 rab® F BT bR,
wherer, #0and 0 <r; <bforj=1,2,..., n (Assume—or, if you
insist, prove by mathematical induction—the Division Algorithm: If a
and b are positive integers, then there exist an integer ¢ (the quotient)
and an integer r (the remainder) such that @ = ¢b+r and 0 < r < b.

The quotient and remainder are unique.)

Prove that every positive integer can be uniquely expressed as a sum
of the form

all+ a2+ e8!+ -+ ep1(n— 1D+ ¢,n!

where ¢; is an integer such that 0 <¢; <jforj=1,2,..., n
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§50. Hall’s Marriage Theorem

We suppose that we have been cast in the roll of matchmaker. We are to
match cach of the 7 boys in column 1 of Table 7.1, with 1 of the girls he
knows, given that the girls known to boy ¢ are listed in the set in the i*®
row of column 2 in the table. For example, boy 2 knows the girls d, e, and
f. In this case we sec that our task is impossible. The 4 boys 2, 4, 5, and 6
collectively know only the 3 girls d, e, and f. We are not allowed to match
a girl with more than 1 boy. Indeed, if we are to have any hope of success
in matching, it is certainly necessary that any collection of & of the boys
must collectively know at least k of the girls. What is surprising is that
this necessary condition is also a sufficient condition. We will refer to the
condition that cach collection of k boys must collectively know at least k
girls as the marriage condition.

We will use the strong form of mathematical induction to prove the
sufficiency of the marriage condition. This time our induction step will
have the form

P(1), P(2), ..., P(m — 1) are true implies P(m) is true, for m > 1,

where P(k) denotes the proposition that there is a matching for & boys
iff the marriage condition for & boys holds. Before giving the proof, we
mention that our subject is not totally frivolous. We could talk about the
personnel assignment problem, where we match applicants with positions
for which they are variously qualified, or vice versa. One of our exercises
will suggest applications to transportation networks.

Hall’s Marriage Theorem. Each of n given boys can be matched with a
different girl he knows iff, for each & such that for 1 < k < n, each collection
of k boys collectively know at least k girls.

Proof of Hall’s Marriage Theorem. We have mentioned that the necessity
of the marriage condition is obvious. If there are some particular k boys
that collectively know less than k girls, then a matching of these & boys, in

Boys | Column 2 Column 3 | Column 4 Column 5
1 {a, b, ¢, d} {1,2,3} | {d.e f, g} | {®, 0, ¢}
2 {d, e, f} {2, 5} {d, e, h} {®, d}

3 | {bd g} {2, 5} {d, g, h} {©, d}

4 {d, e} {2, 3, 4} {a. b, ¢, f} | {b,@, e}

5 {d f} {17 27 5} {b7 ¢, g, h} {bva fﬂ g}
6 {d. e, f} {6, 7} {b, ¢}

7 {a, b, ¢, d. g} {g}

TABLE 7.1. Boys and Girls That Boys Know.
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particular, is impossible and, hence, a matching for all the boys is impos-
sible.

The proof of the sufficiency of the condition is by the strong form of
mathematical induction on 72, the number of boys. For the basis step (n =
1), if there is only 1 boy who knows at least 1 girl then a matching is
clearly possible. For the induction step, we assume that the proposition is
true for n = 1, 2, ..., m — 1 and then prove that the proposition is true
for n = . Thus, we suppose that each set of & boys ccllectively know at
least & girls for 1 < k& < m. Further (and this is our induction hypothesis),
if 1 <k < m, then there is a desired matching of the & boys. We consider
2 cases.

1. Suppose every k boys, with 1 < &k < m, collectively know at least
k + 1 girls (which is more than required by the marriage condition).
In this case, we first match some arbitrary boy with some girl he
knows. Then we are left with m — 1 boys, each k of which collectively
know at least k of the remaining girls. There is a matching of these
remaining m — 1 boys by the induction hypothesis. So cach of the m
boys is matched with a different girl he knows.

2. Suppose the case above does not hold. Then, there is some k& with
1 < k& < m such that there is a set of k boys who collectively know
exactly & girls. These & boys can be matched with these k girls by the
induction hypothesis. We have left n—k& boys to be matched. Consider
any sct of h of these m — k boys, where 1 < A < m — k < m. Now,
these h boys must collectively know at least h of the remaining girls,
since, otherwise, the h boys together with the & already matched boys
would have collectively known fewer than h + k girls, contradicting
our assumption. Thus, the remaining m — & boys can be matched
by the induction hypothesis. Therefore, each of the m boys can be
matched with a girl he knows, as desired.

It follows by the strong form of mathematical induction that the proposition
is true for each positive integer n. m

This elegant proof and, apparently, the marriage metaphor are due to
Halmos and Vaughan (1950). The theorem itself is due to P. Hall (1935).
We next state Hall’s theorem without the marriage metaphor. Interpret
the A; as the set of acquaintances (girls) that boy ¢ knows and x; as the
girl matched with boy i.

Hall’s Theorem (set form). Let Ay, As, ..., A, be subsets of set X.
Then a necessary and sufficient condition that there exist distinct elements
T1, Lo, ... . I, such that x; € A; is that each union of k of the subsets
from among the A; contain at least k eclements, for 1 < & < n.

A transversal to a list Ay, Ay, ..., 4, of sets is a set of distinct rep-
resentatives of the sets, that is, a set of n distinct elements a; such that
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a; € A; for i =1, 2. ... . n. Note that the elements a, are distinct although
this may not be the case for the sets A;, which are distinguished by their
subscripts. For example, {1, 2, 3. 4, 5. 7} is a transversal for the 6 sets in
column 3 of Table 7.1. We have yet another form of Hall’s theorem.

Hall’s Theorem (transversal form). Finite scts Ay, Ay, ... . A4, have
a transversal iff

UAi > I

il

for all I such that I C{1.2.....n}.

Word has just come down to the matchimaker from the general that the
daughters of the general must be among those girls that are matched with
the given boys (or heads will roll). Supposc that there is a set D, the
daughters of the general. of girls that must be included in the matching of
n boys. For each subset I of these boys, the number of girls in D not known
by any boy in I cannot exceed the number of boys not included in 1. After
figuring out that this condition is obviously necessary-—and this may take
some time—-we will show that, again surprisingly, this additional condition
along with the marriage condition is sufficient for including the daughters
of the general in our matchmaking. First, let’s consider an example. In
column 4 of Table 7.1, we have the sets A; of girls known to boy i in
row i. There are 5 boys. The daughters of the general are girls a, b. c.
and d. The A; have transversal {b. ¢, d. ¢, f}, which we can see by picking
these clements in reverse order from the 5 sets. The question is, Can the
daughters of the gencral be included in a matching? Now, the 3 boys 1.
2. and 3 collectively know the 5 girls d. e. f, g and h. necessarily leaving
the 2 boys 4 and 5 to be matched with the 3 girls a, b, and ¢. Here, 3, the
number of the daughters of the general not known by the 3 boys, exceeds
2, the numnber of the other boys. The task is impossible in this example.
Since we value our heads, we had better prove to the general exactly when
the task is impossible.

The Daughters-of-the-General Theorem. Suppose n boys collectively
know m girls, including the daughters of the general. Each of the n boys
can be matched with a different girl he knows such that all the daughters
of the general arc included in the matching iff, for 1 <r <mn,

L. each set of r boys collectively know r girls and

2. for each set of r boys, the number of daughters of the general not
known to any of these r boys does not exceed n — r.

Proof. Condition 1 is the marriage condition and is necessary for any match-
ing. Condition 2 is necessary if all the daughters of the gencral are to be
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Al As, o A, G\D. G\D, - G\D
O 1 ! 1
ag. az. T an Up41, Ap42, o am

n girls matched with the m — n girls matched with the
original n boys m — n invented boys

FIGURE 7.2. Matching with Daughters of the General.

G

FIGURE 7.3. Daughters of the General.

included in the matching. Our main task is to prove the converse: the 2
conditions together are sufficient.

We introduce the following notation. Let G be the set of all girls. Let D
be the set of the daughters of the general. Let A; be the set of girls known
to boy 4, for 1 < ¢ < n. So, G\ D is the set of all girls who are not daughters
of the general. (In general, if S and T are sets, then S\ 7' is the set of all
elements in S that are not in 7. In particular, if T is a subset of S, then
[S\T| =S| = |T|. The symbol “\” can be read “setminus.”).

We invent m — n additional boys; each of these invented boys knows no
daughter of the general but does know all the other girls. We now have m
boys and m girls. If we can match all m boys with the 7 girls, we claim we
will have succeeded in matching the original n boys with girls they know
such that the daughters of the general are included in this matching. See
Figure 7.2. This must be so, since all the m girls are matched but nonec
of the invented boys is matched with a daughter of the gencral. For our
desired matching, all we have to do is ignore the matching of the invented
boys.

Suppose we have a set of k of the m boys where 1 < k < m. Our theorem
will follow from Hall’s Marriage Theorem if we can show that these k boys
collectively know at least k girls. Of the k boys, we suppose that h are
from the original n boys and that i are from the m — n invented boys.
So, k = h +i. We may as well assume that ¢ > 0, as otherwise we are
done by condition 1 in the theorem. Let H be the set of girls collectively
known by the i boys. Now, the &k boys collectively know the girls in the set
HU(G\ D), which is the set G\ (D\ H). Figure 7.3 may help. Condition 2
in the statement of the theorem translates as the inequality |D\ H| < n—h.
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Since D\ H is a subset of G, then

HU(G\ D) =

G\N(D\H)=m=-|D\H|>
m—(n—h)=h+(m—-n)>h+i=k

Hence. the &k boys collectively know at least & girls, as desired. Therefore,
there is a matching of the m boys with the e girls. m

Our proof of Hall's Marriage Theorem is clegant but does not provide
an algorithm for finding a possible matching. We end this section by giving
an example that can be generalized to a constructive proof of the theorem.
The language is due to Bryant (1993) and fits the marriage metaphor ex-
ceedingly well. Refer to column 5 of Table 7.1. In the process of forming
a matching for 7 bovs. we have so far announced 5 tentative cngagements,
as denoted by the circled names of the girls in the respective rows. How-
ever, when we now come to boy 6 we sce that the girls he knows have
alrcady been engaged. What arc we to do? We throw a party! We invite
boy G because the party is for him. Boy 6 invites all the girls he knows.
These girls invite their fiancés. These boys invite all the girls they know
who haven’t already been invited. Those girls invite their fiancés. These
boys invite all the girls they know who haven't alrcady been invited. ...
This process continues until some girl that is not engaged is invited. (The
prool of the algorithm hinges on using the marriage condition to argue that
there is always such a girl as long as the matching is not complete.) In our
example, where we read “—7 as “invites.” we have

16} — {b. ¢} — {2, 3} = {d} — {4} = {¢} = {6} = {[. 9}

We stop because girl g. for example, is not engaged. (We ignore that our
example is so simple that we sce that we should leave girl g for the oblig-
atory match with boy 7 and pick girl f at this point.) Everybody invited
to the party comes. Girl g dances with a boy she knows who invited her
(hoy 5). His fiancée (girl ¢) is a bit anuoyed and so dances with a hoy who
invited her (boy 1). His fiancde (girl d) is a bit annoyed and so dances with
a bov who invited her (boy 2, there is a choice). His fiancée (girl b) is a bit
milfed and so dances with a boy who invited her (boy 6). In general, we
continue backward through the scts as displayed above until we arrive at
the boy who has vet to be matched. In our cxample. there are 4 couples

(6.5). (2.d). (4.¢). (5.9)

on the dance floor. The dance is so very successful that the dancing couples
break ofl any former cngagements and get engaged to their dancing part-
ners. The engagements of the other couples are not affected. So, we have
now matched the pairs

(L.a), (2.d). (3,¢). (4.e). (B.g). (6.0).
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We have gone from matching the first 5 boys to matching the first 6 boys.
Looking at the last row of column 5 in the table, we se2 that boy 7 knows
only girls who are presently engaged. We throw another party, which results
in the engagement of each of the 7 boys to a girl he knows. In general, we
keep throwing parties until all the boys are engaged.

Homework MI III.

1.

If there are n boys and n girls and each collection of k boys collectively
know at least k girls, then each collection of k girls collectively know
at least k boys.

. One globber is produced at tremendous cost in each of p distinct

origins and 1 globber is in great demand at d distinct destinations.
If it is possible to ship a globber from origin z to destination y, then
we say that locations x and y are connected to each other. Under
what circumstances is it possible to ship a globber to each of the d
destinations?

Deal a shuffled deck of cards into a 4-by-13 array. Now, try to select
1 card from each of the 13 columns to get 1 card of cach of the 13
denominations. Is this a good game of solitaire or not?

Show that if for a given collection of boys and girls there is a positive
integer r such that each boy knows at least r girls and such that each
girl knows at most r boys, then there is a matching for the given
boys.

The Harem Problem or “the celebrated problem of the monks.” For
each of n boys, suppose that boy ¢ wishes to be matched with g; girls
he knows. (Unfairly, each girl can be matched with at most 1 boy.)
Find a necessary and sufficient condition for there to be a solution in
this case.

Prove the following, given n boys and 0 < r < n. There exist some
r of the n boys that can be matched with different girls they know
iff each subset of k of the n boys collectively know at least k +r —n
girls. (Hint: Invent n — r additional girls such that each individually
knows all the boys.)

Suppose that each subset of k from a given set of n boys collectively
know at least r girls, with r > 0. Show that there are at least r!
matchings for the given boys if r < n. Show that there are at least
(7%'”), matchings for the given boys if r > n.



Graphs

§51. The Vocabulary of Graph Theory

In an undergraduate mathematics curriculum, graphs are traditionally in-
troduced in a course on discrete mathematics, if at all. The theory of graphs
is a recent and growing branch of mathematics. The topic is well worth a
semester course. However, time is short and our goal here is only to intro-
duce the elementary terminology so that we will have some idea of what
“graph theory” means. Of course the first question has to be, What is a
graph? As we will see, that is not an easy question to answer; not because
the question is so difficult, but because the terminology is not only not
standard, it is all over the place. It is easy to say a couple things about
what we arc not going to talk about. We are not talking about bar graphs
or pic charts. We are also not talking about the graphs of functions. For
example, parabolas and hyperbolas are not at all what we have in mind.
The best way to see what graphs—or at least diagrams of graphs—are
is to look at Figure 8.1 and subsequent figures in this chapter. Having
thumbed through the chapter, you probably have a good intuitive idea
of what a graph is. Whatever the type of graph G, there are always a
nonempty set Vi of elements called vertices of G and a set Eg of elements
called edges of G. We will deal only with finite graphs, meaning the sets Vg
and Eg are finite. In the diagrams, the vertices are represented by points
and the edges are represented by segments or any other curve connecting
the vertices. If G is a simple graph, then we can say that the set of edges
is a subset of all the unordered pairs of vertices. So, given any 2 different

G. E. Martin, Counting: The Art of Enumerative Combinatorics
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FIGURE 8.1. Diagrams of Graphs.
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vertices = and y in Vi, then the set {x, y} either is in Fg or is not. If
{«, y} is in E¢, then we say that the edge {, ¥} has ends x and y, that
the edge {z, y} joins x and y, that o and y are adjacent, that x and y
are neighbors, and that the edge {, y} is incident to x and to y. Edges
sharing a vertex are also said to be adjacent. None of this language should
be surprising.

If, for simple graph G, we have |V;| = n and |Eg| = ('2') meaning there
are n vertices and that all (g) possible edges arc edges of G, then we call G
a complete graph and denote this graph by K,,. See diagrams for K, and
K5 in Figure 8.1. In the figure, graph K, is represented by 3 different dia-
grams. In the first of these, the 4 vertices are represented by the 4 corners
of a square and the 6 edges are represented by the 4 sides and 2 diagonals
of the square. That the diagonals of the square intersect in the planc has
nothing to do with the complete graph consisting of 4 vertices and 6 edges.
Also, it does not matter which curves we usc to represent an edge joining
2 vertices, although common sense tells us that no curve representing an
cdge should be drawn to pass through a point representing a vertex other
than its ends. For example, cach of the following 5 figures is a diagram for

R N S

Our language for graphs easily slides over into that describing the dia-
grams. Formally, graph K, is given by

Vo ={p. q.r. s} and E¢ = {{p. ¢}. {p, 7}. {p. s}. {q. v}. {q. s}.{r. 5} }

However, graphs are frequently “given” by their diagrams, because the
diagrams make so much more information visually available. The diagram

*—4

m conveys information more easily than the display above, even in this
very simple example. We already have enough language to understand that
it might be exceedingly difficult to tell whether 2 given diagrams or graphs
are actually “the same” graph. Simple graphs G and G’ arc isomorphic
if therce is a one-to-one correspondence r — 1’ between the set Vi of
vertices of (G and the set Vi of vertices of G’ and if there is a one-to-one
correspondence between the set £¢ of edges of G and the set Egr of edges
of G’ such that {x, y} is an edge of G iff {2/, y'} is an edge of G'. Any
2 complete graphs having the sanie number of vertices are isomorphic. A
simple graph usually has many diagrams. In general, it is very, very difficult
to tell whether 2 graphs arc isomorphic or not.

Graphs GG and G’ are certainly not isomorphic unless V| = |Ve| and
|Ee| = |Eev|. Although each of these 2 conditions holds for the graphs in
Figure 8.2, these 2 graphs are essentially different. In Figure 8.2, we sec
(knowing nothing about organic chemistry, we ignore the caption) that in
cach of the graphs there are 4 vertices (carbon) that are adjacent to 4 other
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FIGURE 8&.2. Butane and Isobutanc.

vertices and that there are 10 other vertices (hydrogen) that are adjacent
to only 1 other vertex. We observe that in the graph on the right there
is a vertex that is adjacent to 3 vertices which are, in turn, adjacent to
4 vertices, while the graph on the left has no such vertex. We need more
language to more easily express this situation. If a vertex v is adjacent to
exactly d(v) edges. then we say v has degree d(v). Thus, each of the 2
graphs in Figure 8.2 has 1 vertices of degree 4 and 10 vertices of degree
1. However, since the graph on the right has a vertex that is adjacent to
3 vertices of degree 4, while no vertex of the graph on the left has this
property. the graphs cannot be isomorphic.

If the degree d(v) of vertex v is even, then v is said to be even; if the
degree d(v) of vertex v is odd. then v is said to be odd.

Observation. For a siiuple graph G

Z d(v) =2

veVe

Fa

In words, the observation says that if we sum the degrees of all the
vertices, then we get twice the number of edges. This must be so because
each cdge has 2 ends. Further, since 2|F¢| is obviously cven, then the left
side of the equation above must be cven. So, since the sum of an odd
number of odd integers is odd, the number of odd terins added on the left
must be even.

Corollary. Every simple graph has an even number of odd vertices.

A simple graph is planar if the graph has a diagram that can be drawn
in the plane in such a way that no 2 of the curves representing the edges
intersect, except at vertices. For example, K is planar as scen by 2 of the
3 diagrams representing the graph in the top row of Figure 8.1. The graph
having the diagram on the left in Figure 8.3 is also planar, as can be scen in
the 3 steps shown in the figure. It has been shown that cach planar graph
has a diagram where all its cdges arc represented by (straight) segments
that intersect only at their ends.
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FIGURE 8.3. Diagrams of a Planar Graph.

The simple graph K3 3 in the center of Figure 8.1 has a story behind it.
We have 3 new houses in a row on the left and 3 utilities in a row on the
right (say: power, water, and gas) and the problem is to draw utility lines
from each utility to each of the houses without any of these 9 lines crossing.
It might be fun to try doing this for a while, and, if you happen to know
about something called the Jordan Curve Theorem, convince yourself that
it cannot be done. You may cven want to try to determine whether Ky
is planar or not. Before we state that neither graph is planar. we want to
introduce some more terminology.

Simple graph H is a subgraph of simple graph G if Vj is a subset of
Ve and if Ey is a subset of Fg. Note that since H is itself a simple graph
the ends of an edge of H are automatically in Vg, as well as in Viz. So, a
subgraph is just what the name suggests.

A subdivision of a simple graph is obtained by inserting (a finite num-
ber, possibly 0) vertices of degree 2 into the edges, making the proper
replacement of edges indicated by the new diagram. This idea is one of
the many in graph theory are made completely clear by a few pictures and
whose description in words requires the diagrams in order to understand
what is being said anyway. For example, o 4. 15 & subdivision of o _,, and

B;I is a subdivision of ISI . However, &, is not a subdivision of k

Is it clear that the planarity of a graph cannot be affected by a subdivision?
This leads to a theorem that is neat, although not very useful. We state,
without proof, this elegant result, which can be rudely paraphrased, If a
graph is not planar, then there is a K5 or a K3 5 hidden in there somewhere.

Kuratowski’s Theorem. A simple graph is planar iff the graph has no
subgraph isomorphic to a subdivision of K5 or K3 3.

The graph K3 3 is an example of a special type of graph. A simple graph
G is bipartite (rhymes with kite; ends in tight) if the set Vi of vertices is
the union of 2 disjoint sets X and Y such that each edge in G has 1 end
in X and 1 end in Y. The sets X and Y are called the bipartite parts
of G. In K3 3, we can take X to be the set of houses, Y is then the set of
utilities, and cach edge joins a house and a utility. In fact, each house is
joined to each utility in this example of a bipartite graph. Tn general, if X
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has r clements. Y has s elements, and cach vertex in X is adjacent to each
vertex in Y, then the bipartite graph is said to be a complete bipartite
graph and is denoted by K, ;. So, K, ¢ has » + s vertices and rs edges. Note
that a complete bipartite graph with at least 2 edges is a simple graph but
is not a complete simple graph, since. in the notation above, no 2 vertices
in X are adjacent and no 2 vertices in Y are adjacent.

We might want to consider the definition of the word graph to be such
that what we have been calling diagrams for simple graphs are graphs.
This is perfectly reasonable. It is, after all, the diagrams that arc driving
the show. We could allow the edges to be anyvthing thinking of curves
in the planc or space  but we need something that answers the question,
What are the ends of a given edge? This is an easy adjustment. We simply
think of a graph G as a triple (Vi Fe. ha ). where he answers the question.
Of course, Vi is the set of vertices and E; is the sct of edges, as before, but
how should we describe h? In order to regain our idea of a simple graph we
need he: to be a mapping from the set of edges to the sets of sets {w. y} with
r and y distinet vertices. But this is not enough: the mapping A must also
he one-to-one. That is, if he(er) = {2, y} and he(e2) = {x. y}, then we
must have the edges e and e, equal. Now, we are indeed back to our simple
graphs. but is this where we now want to be? We have been exposed to a
different idea. Why should h¢; be one-to-one? Why can’t we allow for more
than 1 edge to join 2 vertices? If we do make this allowance, such edges are
said to be parallel. Beware, parallel edges always intersect at their ends.
in spite of the conventional use of the word in euclidean geometry. So the

graph & has 2 vertices and 2 edges, which are parallel. The bottom left
graph, which is labeled K, in Figure 8.1 has 2 pairs of parallel edges. We
will get back to this famous graph later. In the definition of a subgraph H
of graph G. we now need Vi; C Vo, Ky C E¢ and also hg(e) = ha(e) for
every cdge e in E'y.

Well. the floodgate is open. We notice that we have. so far, not allowed
the ends of an edge to be cqual? Why not? If such an edge is allowed, then

the edge is called a loop. The graphs & and €0 cach have | vertex and 1
edge, which is a loop. The bottom-center graph in Figure 8.1 has 2 vertices
and 2 cdges, | of which is a loop. A vertex having no adjacent edge is an
isolated vertex. The null graph N, has p isolated vertices and no edges.
The null graph N, is the bottom-right graph in Figure 8.1. (Those who
allow a graph not to have any vertices call this graph the empty graph.)

Some graph theorists use multigraph to describe what we get by allow-
ing parallel edges but not loops. We will follow this usage, knowing that
others use the word to allow both parallel edges and loops. (Note that
the definition of degree of a vertex will have to be altered il loops are al-
lowed.) And. what does the single word “graph” mean? The problem is
that there is no standard usage. Who knows what a graph is? Each graph
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theorist does, taking their lead from a famous character that was created
by a mathematician:

“When [ use a word,” Humpty Dumpty said in a rather scornful
tone, “it means just what I choose it to mean—neither more nor
less.”

One definition that is not in question is that of the n-cube, which is de-
noted by Q. For nonnegative integer n, the n-cube @,, is the graph whose
vertices are the n-digit binary sequences, with 2 of the vertices adjacent
iff their sequences differ in exactly 1 position. Since (g consists of only
1 vertex, which is the empty sequence, and no edges, then @y, @1, and

Q2 have the diagrams ., ., and I:I, respectively. One of the exercises
below and some in later sections explore the properties of @,,.

Homework Graphs 1.
1. Give diagrams for the 11 nonisomorphic graphs having 4 vertices.

2. Show that the graphs with the diagrams labeled K33 in the second
row of Figure 8.1 are actually isomorphic.

3. Prove that the number of people from Kansas who have met an odd
number of other people from Kansas is even.

4. Answer the following questions concerning n-cubes .

{a) Draw a diagram of the 3-cube with the vertices labeled as the
sequences.

How many vertices does @,, have?

)
¢) What is the degree of each vertex of Q,,7
) How many edges does @, have?

)

Show that @, is bipartite.

14

. Show that there are 2("z ") simmple graphs having {1, 2, 3,... ,n} as
its set of vertices and such that each vertex has even degree. (Note
that the number itself should suggest a method of proof. The number

is 2("2") and not 2- "3

6. Is the graph below planar?
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7. How many ways can 7 students go on vacation with cach sending
a postcard to 3 of the others and each receiving a post card from
precisely the 3 to whom they sent cards? (Substantiate your answer.)

8. Suppose bipartite graph GG has bipartite parts X and Y. A complete
matching from X to Y is a one-to-one correspondence between the
vertices of X and a subset of the vertices of Y such that corresponding
vertices are adjacent. Use Hall’s Marriage Theorem to show that if
the degree of each vertex in X is greater than or equal to the degree
of each vertex in Y, then therc is a complete matching from X to Y.

§52.  Walks, Trails, Circuits, Paths, and Cycles

Throughout this scetion, we suppose G is a simple graph (Vo, E¢).
We begin with a lot of language, most of which describes Figure 8.4.

; i Trail Circuit
m Cycle

FIGURE 8.4. Special Walks.

A walk in G of length k, for £ > 0, is a sequence
Vg, €1.01.€2,V2,€3,03,... . Vk—1,€k, Vg

of length 2k+1 that alternates between vertices of G and edges of G, whose
initial term is a vertex vy called the initial end, whosc terminal term is
a vertex v called the terminal end, and is such that for 1 < i < &k we
have e¢; = {v;_, v;}. This walk is also called a walk from vy to v;. It
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requires only a little imagination to picture ourself walking along the edges
of a graph. A walk in G is closed if its ends are equal. (So, a closed walk
brings us back to where we started.) A trail in G is a walk in G whose
edges are distinct. A circuit in G is a trail in G that is a closed walk in G.
(We get back to our starting point without traversing any edge twice.) A
path in G is a trail in G with distinct vertices. So, a path is a walk with
distinct vertices and distinct edges. A cycle in G is a circuit in G such
that no 2 vertices other than the ends are equal. A cycle of length k& has &
distinct vertices and k distinct edges, is called k-cycle, and is denoted by
Ck. Again, we warn the reader that the terminology is not standardized.

A path is maximal if it is not possible to insert vertices and edges into
the sequence to obtain a longer path. Since our graphs are finite, there are
only a finite number of edges and so every path is itself maximal or can be
extended to a maximal path. We can define dg(u,v), the distance from
vertex u to vertex v to be 0 if u = v, the length of a shortest path from u
to v if such a path exists, and, otherwise, to be oo if no such path exists.
If there is a path from each vertex to each other vertex, then we say that
G is connected, otherwise the graph is disconnected and is made up of
several connected components. In a connected graph there are no vertices
u,v in G for which dg(u,v) = .

Supposc every vertex in (G is of degree at least 2. There is a maximal
path in G with initial end, say v. Since the degree of end v is at least 2,
then v has a neighbor on the path and has another neighbor w that is not
on the path. Let e be the edge in G that joins neighboring vertices v and
w. However, since we cannot extend that path to reach any new vertex
from v because the path is maximal, then w must already be on the path.
Therefore, we can attach the sequence e,v to the end of that part of the

maximal path that is a path from v to w and so obtain a cycle.
v w

Observation. If each vertex of a simple graph has degree at least 2, then
the graph has a cycle.

An euler walk, trail, circuit, path, cycle in G is, respectively, a walk,
trail, circuit, path, cycle in graph G that contains all the edges and all the
vertices. (Some graph theorists prefer “Eulerian” as the adjective, but, in
any case, Euler’s Swiss name is pronounce oiler in English. Euler is the
first modern giant of mathematics.) A graph having an euler trail must be
connected, because an euler trail contains all the vertices. In an euier trail,
each edge appears exactly once but a vertex may appear more than once.

Suppose a connected simuple graph G has an euler circuit. Identifying
the initial points in our mind, we see that the edges adjacent to a vertex
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come in pairs as determined by the euler circuit. Any circuit leading into
a vertex by an adjacent edge must also depart to an adjacent vertex by
another adjacent edge. Since all the edges appear in the euler circuit, then
there are an even number of edges adjacent to any vertex on the euler
circuit. Since all the vertices appear in an euler circuit, every vertex of G
is even.

Conversely, now suppose that each vertex of connected simple graph G
with at least 2 vertices has all vertices of even degree. We intend to form
an euler circuit. We begin with an arbitrary vertex v and arbitrarily form
a trail from v until we get back to v, forming a circuit. This is not only
possible but mandatory; since each vertex is of even degree our departure
from any vertex in this process is assured if we can get there in the first
place, no matter how many times we have already passed through the
vertex before. (We “use” exactly 2 edges every time we pass through a
vertex.) Since the graph has a finite number of edges. we eventually have
to get back to v. We have made a circuit, and, if we have been exceptionally
lucky, we have an euler circuit. Chances are, however, we have not traversed
all the edges, as required. In this case, we need to arrange some side trips
to our grand tour. Suppose some vertex u that we have already visited
has an edge, and, hence, an even number of them, that have not vet been
traversed. We start out from « on a trail that traverses only edges that
have not previously been traversed. We must eventually get back to u to
complete a circuit. (Even if we pass through v, we keep going until we get
back to u, which we must be able to do.) Now, we simply insert at u this
circuit into our first circuit from v to form a longer circuit from v. If our
luck has been bad and we still have edges not traversed, then we play the
side trip game again, and again, and again, until therc are no more edges
left with which to play. Since G is connected, we must have a circuit that
traverses all the edges and all the vertices. We have proved the following
theorem. The proof of the corollary is left as an exercise, with the hint that
a temporary edge might bridge the odd vertices.

Theorem. A connected simple graph with at least 2 vertices has an euler
circuit iff all vertices are of even degree.

Corollary. A connected simple graph has an euler trail but no euler circuit
iff there are exactly 2 odd vertices.

One way to think of this theorem and its corollary is that together they
tell us when we can trace a diagram with a pencil while traversing each
edge exactly once but never lifting the pencil off the paper.

It is not often that we can give an exact date when a branch of math-
ematics began. However, graph theory is an exception. In 1736, Leonhard
FEuler published a paper that grew out of the now famous Konigsberg bridge
problem. At the time there were 7 bridges over the branches of the Pregel
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River that connected the 4 scctions of the city, as shown in Figure 8.5.
Supposedly the citizens spent Sundays trying to find a way to walk about
the city by crossing each of the 7 bridges exactly once. They must have
eventually realized that they could not do so. Anyway, Euler represented
the bridges by edges and bits of land by vertices and graph theory was born.
The result of Euler’s model is the multigraph labeled K in Figure 8.1. Euler
proved, in particular, the theorem above and its corollary.

FIGURE 8.5. The Seven Bridges of Kénigsberg

A hamilton path in G is a path in G that contains each vertex exactly
once; a hamilton cycle in (G is a cycle in G that contains each vertex exactly
once, with the ends identified as 1 vertex. So, a graph having a hamilton
path or a hamilton cycle must be connected. Although each vertex appears
in a hamilton path and in a hamilton cycle, there may be edges that do not
appear in such a sequence. The hamilton paths are named after Sir Rowan
Hamilton, who proposed the puzzle of finding what we call a hamilton
cycle along the edges of a dodecahedron that visits all the 20 cities (say,
starting from and returning to Dublin) that named the 20 vertices of the
dodecahedron. The puzzle is included in the exercises and might best be
attacked at this time.

Euler circuits visit each edge only once; hamilton cycles visit each vertex
only once if we identify the ends. Surprisingly, there seems to be no helpful
connection between these concepts. Knowing whether euler circuits exist in
a given graph and finding them when they do is not a difficult problem, as
we have seen. However, this is not at all the case with hamilton cycles. Even
the fastest camputers can be swamped by the task of finding a hamilton
cycle in a graph.

We respectively define a walk, trail, circuit, path, cycle to be either odd
or else even as its length is either odd or clse even. We will examine the
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relation of among simple graphs being partite, having odd circuits, and
having odd cycles.

Suppose that graph G is bipartite. The set of vertices is then the union
of disjoint sets X and Y of vertices such that cach edge in G has an end
in X and another in Y. No vertices in X arc adjacent; no vertices in Y
are adjacent. Any circuit or cycle must alternate between the vertices of X
and Y and so have an equal number of vertices in each of X and Y when
we identify the equal ends. Hence, each circuit (if there are any) and each
cyele (if there are any) must have even length. The same argument with a
bit more color requires painting all the vertices in X red and painting all
the vertices in Y green. Then the vertices of a circuit or of a cycle must
alternate between red and green vertices. With the ends identified, we see
that there must be the same number of red vertices as green vertices in a
circuit or cycle. The circuit or cycle must be even. That was the easy part.

Suppose G has no odd cycle. If ¢ is not connected. it is sufficient to
show that each component of (¢ is bipartite. Hence. we may as well assune
that G is connected. Let v be an arbitrary vertex. We partition the sct of
vertices into 2 disjoint sets by their distance from v, as follows.

X={a]dw.r)iseven } and Y = {y|d(v.y)is odd }.

If we show that no 2 vertices of X are adjacent and that no 2 vertices of
Y arc adjacent, then we have proved that the graph is bipartite. Suppose
that vertices u and w arc distinet vertices in the same set, either X or
Y. Thus, a shortest path P from v to u and shortest path Q from v to
w are either both of odd length or both of even length. Let v/ be the last
vertex that P and () have in common. See Figure 8.6. If v/ # v, then the

FIGURE &.6. Shortest Paths from v to u and to w.

parts of paths P and @ that are paths from v to v/ must have the same
length, since since neither can be shorter than the other. Whether v’ = v
or not, this means that the path form v’ to v and the path from v’ to w
arc either both of odd length or else both of even length. Further, » is the
only vertex that appears in both of these paths. We concatenate the first
path written backwards (and so is a shortest path from u to @) and the
second path (from @' to w) to obtain a path of cven length from w to w.
Attaching the cdge joining « and w, if it existed, would create a cycle of
odd length. Since, by our hypothesis such a cycle does not exist, vertices u
and w canuot be adjacent, as desired. Therefore, (G is bipartite.
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If we assume that G contains no odd circuit, we have only to simplify the
proof above by not worrying about v/. Since a circuit can have repeating
vertices, we need only concatenate a shortest path from u to v and a shortest
path from v to w to get a trail of even length from u to w. Assuming u
and w adjacent would imply the existence of an odd circuit. Again, G is
bipartite.

Since we have shown that G is bipartite iff G has no odd cycle and that
G is bipartite iff G has no odd circuit, it follows that G has no odd circuit
iff G has no odd cycle. We throw all this together as a theorem.

Theorem. For a simple graph G, the following are equivalent.
1. ( is bipartite.
2. (G has no odd circuit.

3. (& has no odd cycle.

From the diagrams, it seems clear that a circuit contains (as a subse-
quence) a cycle. To give an argument for this, we suppose simple graph
G has a circuit C, which is a trail from v to v for some vertex v. (The
edges of a trail are distinct. If the vertices of C are also distinct with the
ends identified as 1 vertex, then we have a cycle and we are done.) Circuit
(' contains a (thcre may be more than 1) shortest circuit S from w to w
where w is a term in C. Circuit S exists because we know there is at least
1 circuit from v to v and because there are only a finite number of vertices.
Except for the initial end w, no vertex term in S appears morc than once,
as otherwise there is a shorter circuit. So, this circuit is a cycle.

Theorem. In a simple graph, cach circuit contains a cycle.

The converse of this theorem 1s true and trivial.

Sone comments about notation and definitions are in order. Since a
simple graph has no loops or parallel edges, the notation for a walk can
be greatly simplified by ignoring the edges without any possible confusion.
So, the 3-cycle a{a,b}b{b,c}e{c,ala can just as well be written “abca.”
Note that we have already dropped the commas, using them only when
their absence would cause confusion. This convention for simple graphs
does make life easier. Further, our cycles presently have distinguished ends.
Generally, we want to identify the 6 3-cycles

abea, beab, cabe,

acha, bach, chac,

as being equivalent. We want to be able to start the cycle with any of its
vertices and take either of its adjacent vertices on the cycle as the second
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term. Hence, in general, we want to identify the 2n cycles equivalent to
a given n-cycle. Frequently it is necessary to discern whether the word
“cycle” refers to a walk (with ends) or to a class of equivalent cycles from
the context. One convention is to drop the repeated vertex when referring
to an equivalence class. For example, “cycle abe” refers to the class of 6
cycles displayed above.

Similar comments refer to circuits. For an example of the difference, in
the proot above that a circuit contains a cycle, we would have the circuit (as
a sequence) abede fgea contain the shortest circuit (as a sequence) cde fge.
although as an equivalence class the circuit contains the shorter cycle abe.

We associate an isolated vertex e with the O-cube Qy. As the point
moves a unit length in a given direction, the point sweeps out a segment.
e, which we associate with the 1-cube . As the segment moves a unit

length in a perpendicular dircction, the scgment sweeps out a square I:I,
which we associate with the 2-cube Qu. As the square moves a unit length in

a third perpendicular direction, the square sweeps out a cube , which
we associate with the 3-cube Q3. As the cube moves a unit length in a
fourth perpendicular direction, the cube sweeps out a tesseract. So, a
tesseract is a 4-dimensional figure, which we associate with the 4-cube ;.
Of course, showing 4 dimensions on a 2-dimensional page has its difficulties.
One representation ol a tesseract is shown in Figure 8.7.

FIGURE 8.7. The Tesseract.

Homework Graphs 2.

1. Prove that a connected simple graph has an euler trail but no culer
circuit iff there are exactly 2 odd vertices.

2. Prove that the citizens of Konigsberg were doomed in their effort to
walk about the city. crossing each of the 7 bridges exactly once.
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3. Give examples, where they exist, of simple graphs G such that

(a) there is an euler circuit and a hamilton cycle.
(b) there is an euler circuit but no hamilton cycle.
{c) there is a hamilton cycle but no euler circuit.

(d) there is neither a hamilton cycle nor an euler circuit.
4. Give a simple graph that has an euler trail but no euler circuit.

5. Show the graph below has a hamilton path but no hamilton cycle.

6. Solve Hamilton’s original problem about traversing the vertices on a
dodecahedron in a cycle, using the following graph as a model of the
dodecahedron.

7. Which n-cubes have an euler circuit?

8. A drawing of a tesseract that has more symmetry than Figure 8.7 is
given below. (It is easier to find the 8 cubes that are the “faces” of
the tesseract in this drawing.) Find an euler circuit in this diagram.
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9. Each different representation of (04 provides further insight into the
4-dimensional tesseract. An informative diagram of a tesseract is
given below. (Think of the fourth dimension as “out.” So, the in-
ner cube is the 3-cube consisting of the vertices ending in 0, the outer
cube is the 3-cube consisting of the vertices ending in 1, and edges
join these vertices differing only in the last digit.) Find a hamilton
circuit in the diagram, considered as the graph Q4.

10. Show that the n-cube has a hamilton cycle when n > 1.

§53. Trees

Throughout this section we suppose G is a simple graph (Vz, Eg).

A tree is a connected simple graph that has no cycles. See Figure 8.8.
A vertex of degree 1 in a tree is called a leaf. If the components of a
disconnected simple graph are trees, that is, if the disconnected graph has
no cycles, then the graph is called a forest. A spanning subgraph of
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graph G is a subgraph of GG that contains all the vertices of G. A spanning
tree of graph (& is a tree that is a spanning subgraph of G.

ST

FIGURE 8.8. The Smallest Trees.

We begin our short study of trees with an easy observation. Since a
tree is connected, the degree of cach vertex of a tree is positive. Since we
know that a graph for which each vertex has degree greater than 1 must
have a cycle, then a tree must have at least 1 vertex of degree less than 2.
Suppose a tree has at least 2 vertices and has a vertex v as a leaf. Consider
a maximal path with end v, say from » to w. So, w is adjacent to a vertex
on the maximal path, but w cannot be adjacent to any other vertex on
the maximal path, as otherwise there would be a circuit and hence a cycle.
Further, w cannot be adjacent to any vertex not on the maximal path since
the path is maximal. Thus the degree of w is 1, and w is a leaf.

Theorem. A tree with at least 2 vertices has at least 2 leaves.

We next show that a simple graph G is connected iff G has a spanning
tree. If G has a spanning tree then the graph is clearly connected since
the tree is connected and contains all the vertices. Conversely, suppose G
is connected and not a tree. Then G contains a cycle. We form a graph
(1 by deleting only 1 edge of this cycle from G. Graph G4 is connected.
If G is not a tree, then there is a cycle in G, which is also a cycle in G.
We form a graph Gy by deleting only 1 edge of this cycle from G;. Graph
G is connected. If G is not a tree, then there is a cycle in Go, which is
also a cycle in G. We continue in this fashion, obtaining a connected graph
at each step, until we reach a connected graph that has no cycles, a tree.
Since all the points of G are in this tree, the tree is a spanning tree. We
have proved the first of the following 2 theorems.

Theorem. A simple graph G is connected iff G has a spanning tree.

Theorem. If G is a simple graph having n vertices with n > 2 and having
m edges, then the following are equivalent.
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1. G is a tree.

[N}

. For each 2 vertices v and w, there is a unique path from v to w.
3. G is connected and n = m + 1.

4. (G has no cycle and n =m + 1.

We will prove each of the 4 implications (1) = (2) = (3) = (4) = (1), in
turn. It will then follow that each 2 of the the 4 statements are cquivalent
to each other.

(1) = (2). Since G is a tree, then G is connected. Hence, given 2 vertices
v and w, there is a path from v to w. Assuming that therc are 2 such paths
implies there is a cycle, as follows. Forming the walks from the first vertex
after which the 2 paths differ to the next vertex that the remaining parts
of the 2 paths have in common (which could be w), we have 2 paths with
the same ends but are otherwise disjoint. Concatenating one of these with
the reverse of the other produces a cycle in G, a contradiction. So, the path
from v to w is unique.

(2) = (3). First, the existence of the paths means that G is connected.
We will prove the desired formula by mathematical induction on n, the
number of vertices. For the basis step, if n = 2, there is 1 edge and the
result is trivial: 2 = 1 + 1. For the induction step, we assume that (2) =
(3) for graphs having k vertices for some k with k > 2 and then prove the
implication for graphs having k + 1 vertices. Suppose G is a graph with
k + 1 vertices and m edges. Since d(v) > 2 for cach vertex would imply
the existence of a cycle, which would contradict the uniqueness of paths
between each 2 vertices, then there must be at least 1 vertex in G, say w, of
degree 1. Consider the graph H formed by deleting w and its adjacent edge
from G. So H is a graph with k vertices and m — 1 edges and is such that
there is a path from cach vertex to any other vertex in H. By the induction
hypothesis, then k = (m — 1) + 1. So, (k+ 1) = (m) + 1, as desired. The
implication follows by mathematical induction.

(3) = (4). We must show that if G is connected and n = m + 1, then &
has no cycles. Again, we usc mathematical induction on n. If n = 2, then
there are no cycles and the basis step is trivial. For the induction step,
we assume (3) = (4) if n = k for some k with & > 2 and then prove the
implication if n = k + 1. So, suppose G has k + 1 vertices and m cdges
with & 4+ 1 = m + 1. Now, d(v) > 2 for each vertex would imply at least
k + 1 edges, since the sum of all degrees is twice the number of edges.
So. there is at least 1 vertex, say w, of degree 1. Consider the graph H
formed by deleting w and its adjacent edge from G. So H is a connected
graph with k vertices and k — 1 edges and does not have any cycles, by the
induction hypothesis. Any cycle in G must then contain w. However, this
is impossible since w has degree only 1 in G. Hence, G has no cycles, as
desired. The implication follows by mathematical induction.
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(4) = (1). We must show that G is connected. Again, we use mathe-
matical induction on n. Again the basis step is easy. For n = 2, we have
m =mn—1=1. S0 G is a tree consisting of 2 vertices and 1 edge joining
them. For the induction step, we assume (4) = (1) for graphs with k ver-
tices for some k£ with k£ > 2 and let G be a graph with k 4 1 vertices and
k edges. As in the previous argument, there must be a vertex w such that
d(w) < 2. If G has no vertex of degree 1, then by deleting all the vertices of
degrec 0, we have a subgraph with all degrees at lcast 2 and so must have a
cycle, contradicting (4). Thus we may suppose d(w) = 1. Graph H formed
by deleting w and its adjacent edge from (7, has no cycles, has k — 1 edges,
and, hy the induction hypothesis, is connected. In this case, then G must
also be connected, as desired. The implication follows by mathematical in-
duction. This finishes the long proof of the equivalence of the 4 properties
in the theorem stated above.

Theorem. Every tree is bipartite.

Our proof uses mathematical induction on the number n of vertices in a
tree. We need to show that the set of vertices is the union of disjoint sets
X and Y, where each cdge in the tree has 1 end in X and 1 end in Y. For
the basis step, we consider the tree with 1 vertex v. Here X = {v} and
Y = 0. (You may want to start with trees having at least 1 edge; for the
case n = 2, each of X and Y contains 1 vertex.) For the induction step,
we assume the proposition is true for trees having k vertices and prove
that the proposition is true for trees having k + 1 vertices when & > L.
Suppose tree T has k4 1 vertices and that z is a leaf of 7' adjacent to edge
¢ and vertex y. We form tree H by deleting exactly z and ¢ from T. By the
induction hypothesis, there are disjoint sets X’ and Y’ whose union is the
set of vertices in H with each edge in H having ends in both X’ and Y. We
may suppose that y is in ¥’ without loss of generality. Then X = X’ U {z}
and Y =Y’ show that T' is bipartite, since the only new edge is {z, y}.
which has 1 end in X and 1 end in Y. So, that the proposition holds for
the case of k vertices imuplies that the proposition holds for the case of
k + 1 vertices. Hence, the proposition holds for all trees by mathematical
induction.

Cayley’s Theorem. The number of spanuing trees of the complete graph
K, with vertices {1, 2, 3, ..., n} is n" 72

If nis 1, 2, or 3, then Cayley’s Theorem is obvious. We need n > 1 for
the following argument but can suppose n > 2 to make things easier. We
develop a one-to-one correspondence between the spanning trees and the
set of sequences of length n — 2 whose terms are vertices. The sequence is
called the Priifer code for the spanning tree.

Given a spanning trec T, we calculate the Priifer code viva...v,_9 as
follows. Let I; be the leaf that is the smallest integer; let v1 be the vertex
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$10 11
53 9 8 7 6
3 2 1 4 12
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L3 4 5 6 9 10 11 12 7 8 13 1
1 2 78 8 7 7 8 1 1 2

FIGURE 8.9. Tree with Priifer Code 212788778112,

adjacent to I,. (Remember that the vertices are integers.) Delete from T
the vertex [; and the edge adjacent to I}, producing a subtree 1. Let [ be
the leaf of T} that is the smallest integer; let vy be the vertex adjacent to
I5. Delete from Ty the vertex I3 and the edge adjacent to l2, producing a
subtree T5. We continue in this fashion until only 2 vertices and the 1 edge
joining these 2 vertices remain; 1 of these 2 remaining vertices is the last
term added to our sequence of length n — 2 and the other is the vertex n.
For example, the code 2332 is derived for the given tree as follows.

4 ’_é 4 3 5 3 5 3

* 2 ’_I: 23 I : 233 2332

* —o—o *—e
12 6 2 6 2 6 2 6 2 6

Again, the code is derived by iteratively deleting the leaf with the smallest
label and appending the label of its neighbor to the code. After performing
n — 2 iterations, we have a sequence of length n — 2, with a single edge and
its ends remaining. Observe that a vertex that is not a leaf of T' is listed
once in the sequence for each vertex, except 1, to which it is adjacent.
Hence, cach vertex of T is listed d(v) — 1 times in the Priifer code for T
The leaves of T are absent from the sequence. A more complicated example
is given in Figure 8.9.

In order for there to be a one-to-one correspondence, we must be able to
recapture the same tree, given the sequence. We do that next.

Given a sequence v{vs . .. v, 2 of length n — 2 whose terms arc from the
first n positive integers, we define a graph having {1, 2, ..., n} as its set
of vertices and its set of edges given as follows. We let L,, be a list of the
n vertices. Let {; be the smallest integer on list L,, that is not in the given
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Lists L | Priifer Code l Growing a Tree

1234567 24724 | ¢ 2 3 e o o

0234567 @472 | oo 0 o o o o
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24®)7 @4 | o oo e e
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Join 4&7 Tree — ._C._Q.\y.
Scorecard 6 3
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2

2
v [2 0407 4 12475

FIGURE 8&.10. Tree for Priifer Code 24724.

sequence v1vz . .. v,_2. For our first edge, we take {I;, v1}. We cross [, off
our list L, to get a new list L, 1. Let {5 be the smallest integer on list

L, that is not in the sequence vg v3 . . . v, 2. For our second edge, we take
{lz, v2}. We cross I3 off our list L,,.1 to get new list L,,_» and continue as
before. Our i** edge will be {I;, v;} for i =1, 2, ..., n — 2. Our last edge,

the (n—1)** edge, will be the edge having the 2 integers that remain on list
Lo as ends. This process reverses the process of forming the Priifer code
from the tree. For the example in Figure 8.9, given the Prier code of v;’s,
we have an algorithm for finding the [;’s such the the sets {l;, v;} are the
edges. We have recaptured all the edges of the tree.

Let’s recap. We started with a spanning tree and developed a sequence.
In the previous paragraph, we developed an algorithm that recaptures the
tree from the sequence. However, we are not done yet. In order to establish
the desired one-to-one correspondence, we must show that if we apply the
algorithm to an arbitrary vertex sequence of length n—2 then we get a tree.
It is evident that the algorithm produces a graph G that has the desired n
vertices and that has the desired number n — 1 of edges. By our theorem
on page 169, if G is connected then we do have a spanning tree.

For an example, follow the algorithm of finding the tree for the given
sequence 24724 that is shown in Figure 8.10. In general, we begin with the
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set of n isolated vertices | n. This is a graph with n components. We join
pairs of vertices in n — 1 steps. At each step, the last being a special case,
we add an cdge {/;. v;} joining vertex l;, which will not appear again in
subsequent edges. and vertex v;, which will appear again in a subscquent
edge. Thus, at each step we reduce the number of components by 1. The last
edge joins the 2 remaining components to form a graph with 1 component.
The graph is connected and G is a tree, as desired. This ends the proof of
Cayley’s Theorem.

From our observation that cach vertex ¢ of tree T is listed d(v) — 1
times in the Priifer code for T, we have the following corollary given by
the solution to an easy Mississippi problem. We are counting sequences of
length n — 2 having d;, — 1 copies of 7 for each 1.

Corollary. The number of trees with n vertices 1, 2, 3, ... . n with n > 2
n
i

such that vertex ¢ has degree d;, where d; > L and >\, d; =2(n—1). is

(n—2)!

[T (di = DY
Homework Graphs 3.
1. Give diagrams for the nonisomorphic trees that have 6 vertices.
2. Find all nonisomorphic spanning trees of Ky 3.

3. The serious study of trees began with Arthur Cayley’s study of the
different isomers of C,Hy, 2. In tree langnuage for the case n = 6,
give diagramns for all the nonisomorphic trees having 14 leaves and 6
vertices of degree 4.

4. Give all the spanning trees for K.

5. Find the Priifer code for each of the following trees.

2 1 8 4 5 6 8 9 10 11 12
é ¢ é 2 ; 231456 g
3 9 7 0 23 1 31456 .
1 5 6 7T 89 17 16 15 14 13
6. Find the trees having the following Priifer codes.

666666 123123 9191919

7. Show that K5, has n2? ! spanning trees. (This is a special case of
2,n g

the theorem: K,, ., has m™ 'n™ ! spanning trces.)
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§54. Degree Sequences

Sequence di, da, ..., d, of nonnegative integers is graphic if there is a
simple graph G with n vertices v; such that d(v;) =d; for i =1,2,... ,n.
The degree sequence for simple graph (' is the unique sequence ormed
by arranging a graphic sequence for G in nondecreasing order. So, if the
sequence dj, da, ..., d, is a degree sequence, then we know that the se-
quence is graphic and that dy > ds > ... > d,,. Again, these definitions are
not standard.

The theorem that we prove below provides an answer to the question
of whether a given sequence is graphic or not. The theorem provides an
algorithm that produces shorter and shorter sequences until we get to a
sequence we recoghize as graphic or not. The original sequence is graphic
iff the derived sequences are graphic. For example, we might end up with

=

-
11110, which we recognize as the degree sequence for the graph ,*,. Se-

7

quence 22211 is both the degree sequence for the tree ¥, and the degree
sequence for the disconnected graph VH The sequence 222222 is graphic

for the hexagon B and for a graph V,ﬁ, consisting of 2 triangles as its
components. Although a graph has a unique degree sequence, a degree
sequence can be graphic for nonisomorphic graphs.

On the other hand, none of sequences 622222, 54322, and 44440 can be a
degree sequence dy, ds. ..., d,. We can exclude the first 2 of these because
they violate the condition d; < n. (A vertex can be adjacent to at most
n—1 vertices if there only n— 1 other vertices.) The third of these sequences
is not a degree sequence for essentially the same reason, since we cau ignore
0’s, which must correspond to to isolated vertices, in determining whether a
sequence is graphic or not. Using a different criterion, we see immediately
that neither sequence 544321 nor sequence 33311 can be graphic. This
follows because we know that the number of odd vertices in a simple graph
must be even.

Theorem. If the sequence
T, 81, 82, ., Sro b1, o, oL Ty
is a degree sequence, then the sequence
sp—1,8—1,..., 8. —1,%,t2, ..., 1y

is graphic. Conversely, if the second sequence is graphic, then the first
sequence is graphic.

Proving the converse is the easy part of the proof of the theorem. If the
second sequence is graphic for simple graph G, then we construct simple
graph H by adding to G a new vertex z and r edges such that z is adjacent
to precisely each of the r vertices in G having degree s;,—1fori =1,2,... ,r.
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The first sequence is then graphic for H. (The first sequence may not be a
degree sequence since the terms may not be in the right order. However, if
the second sequence is a degree sequence and r > sy, then the first sequence
is a degree sequence.)

To prove the first part of the theorem, now suppose that the first sequence
is the degree sequence for graph Hy. Let w, v;, and w; be the corresponding
vertices such that d(u) = r, d(v;) = s, and d(w;) = t;. We want to
construct a graph G such that the second sequence is graphic for G. If
vertex u is adjacent to each of the r vertices v;, then this is our lucky day.
In this case, we construct graph G by deleting from Hy the vertex u and
each edge adjacent to u. The second sequence is then graphic for G. (The
graphic sequence may need to be rearranged to form the degree sequence
for GG.)

We now assumme that we were unlucky enough to have some h with 1 <
h < r such that vertex u is not adjacent to vertex v, but is adjacent to
to vertex wy for some k. So, h and k are fixed. We want eventually to
get to a graph having the same vertices and the same degree sequence but
with u adjacent to each v;. Since the terms of the degree sequence are
nondecreasing, then s, > t3. In case s, = t, we {orm graph H, simply by
interchanging v, and wy in Hy. Otherwise., we must have s, > t;. Then,
since vy, has more neighbors than wy, there exists a vertex z that is adjacent
to vy, but not adjacent to wy.

U \ U W

\¥

In this case, we replace the edges {u, wy} and {vp, 2z} by the edges {u,vp}
and {z,wy} to obtain a new graph H;. In either case, graph II; has the
same degree sequence as Hy and the same set of vertices. Further, vertex
u is now adjacent to vertex vy, as desired. We repeat this process at most
r times until we have graph H with vertex u adjacent to each of the r
vertices v;. Finally, the desired graph G is obtained from H by deleting «
and all r edges adjacent to u. The second sequence is graphic for G, and
we have finished proving the theorem.

We use sequences 655532 and 444444444 as an illustration. We apply
the algorithm of the theorem, where we have underlined the *s,” below.
For the right example only, we must rearrange the derived sequences to
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nondecreasing sequences before applying the algorithm again.

6655532 444444444
544421 33334444
33310 44443333
2200 3332333
3334332

222332

332222

21122

22211

Since 2200 is not graphic, then 655532 is not a degree sequence. However,
since 22211 is graphic, the sequence of 9 4’s is a degree sequence. By working
our way up the column on the right, it is very easy to produce a graph
having 9 4’s as its degree sequence.

Homework Graphs 4.

1.
2.
3.

§55.

Show that any simple graph has at least 2 vertices of the same degree.
Show that neither 6664422 nor 66665421 is graphic.
Give a diagram for a graph having degree sequence 6664433.

Show that 544421 is not graphic. Find another nondecreasing se-
quence di, ds, ..., dg of positive integers such that the number of
odd terms is even, d; < 6, but the sequence is not graphic.

For n > 4, show that there are graphs with n vertices, each of degree
4.

If n > 2, show that there are graphs with n vertices, each of degree
2.

If £ > 1, show that there are graphs with 2k vertices, each of degree
3.

Euler’s Formula

Throughout this section we suppose G is a planar graph (Vg, Fg). Recall
that a planar graph is a simple graph. Further, when we mention a dia-
gram for a planar graph we suppose that the diagram is one with no edge
crossings. The existence of such a diagram is, after all, the distinguishing
property that makes a simple graph planar.

Euler is arguably the greatest mathematician of modern times and is
certainly the most productive of all time. We can never be sure what is
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FIGURE 8.11. Planar Graphs for Three Solids.

meant by “Euler’'s Theorem” out of context. There are so many of them.
Even “Euler’s Formula” needs some explaining. We might guess that the
latter means the beautiful equation ¢ + 1 = 0 involving 5 fundamental
constants. This equation is a special case of Euler’'s more general formula
e = cosx + isinxz. However, we have a totally different result in mind
here.

Euler’s 1758 Polyhedral Formula states that if a convex polyhedral solid
has v vertices, e edges, and f faces, then

v—e+ [ =2

Check out this formula for a regular tetrahedron, a cube, and a regular
dodecahedron. We will prove a slight generalization of this formula in the
context of connected planar graphs.

Imagine a convex polyhedral surface that is made from a very stretchable
substance. Pierce a hole in one face and stretch the surface flat. The result
is a diagram for a connected planar simple graph. For example, see Fig-
ure 8.11 where the diagrams represent a tetrahedron, a cube, and a regular
dodecahedron. The faces of the polyhedral surface are now represented by
connected regions of the plane. The pierced face is represented by an un-
bounded region that is called the infinite region. In considering the regions
determined by a diagram for a planar graph, we always include the infinite
region as a region. These graphs also have the property that every edge
borders 2 regions. This is not required of planar graphs in general. Does it
make a difference which face is pierced? More generally, does each diagram
for a given connected planar graph have the same number of regions? That
would be surprising. However surprising it may be, it turns out to be true.
For example, the 2 diagrams in Figure 8.12 are for the same graph. Each
diagram does determine 9 regions, as numbered in the figure. (It is not
necessary for us to prove here the isomorphism of the graphs determined
by the 2 diagrams, although the task is not that hard in this case because
the numbering of the regions is not random.)
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FIGURE 8.12. One Graph, Two Diagrams.

Euler’s Polygonal Formula follows if we can show that any diagram with
no edge crossings for a connected planar graph GG with p vertices and g¢
edges must have r regions where r = 2 + ¢ — p. Equation p —g+r = 2
is the graph analogue of the polyhedral formula v — e + f = 2. The graph

V.ZI consisting of 2 triangles shows the necessity of having the given graph
connected, since here p —qg+r=6-64+3 =3 # 2.

What happens to the diagram with r regions if we remove an edge from
the associated connected planar graph having p vertices, ¢ edges, and n
cycles? For an illustration. consider the graph

where p = 10, ¢ = 15, r = 7, and n = (;) = 21. Removing an edge could
result in a disconnected graph. For example, if the “tail edge” is removed
from the illustrated graph, then the “tail vertex” is no longer connected
to the larger component. If we want to have a connected graph remaining,
the edge we remove must be from a cycle. If the edge removed is from a
cycle, then the diagram loses 1 region as 2 former adjacent regions melt

into 1. Of course, we lose at least 1 cycle. However, we could lose more than



180 8. Graphs

1 cycle, because that edge could be an cedge of many cyeles. For example,
removing any | of the 11 edges other than the tail edge from the illustrated
graph above, we lose 6 of the former 21 cycles. (Contewmplate the difficulty
of finding the number of cycles that contain the right edge of the right
diagram in Figure 8.12.) We make a final obscrvation hefore turning to the
statement and proof of the graph form of Kuler's Formula. The number of
cycles for a graph is a function of the graph alone and is independent of
any diagram for the graph.

Euler’s Formula. If a diagram with no edge crossings for a connected
planar graph has p vertices, g edges, and r regions (including the infinite
region), then

p—qg+r=2.
The value of r is independent of the diagram for the graph.

Proof. We prove the {ollowing statement using the strong forin of math-
cmatical induction on n: Any diagram with no edge crossings for a con-
nected planar graph G having p vertices. ¢ edges, and n cycles has r re-
gions, where r = 2 — p + ¢. For the basis step. if G has no cycles, then
the graph is a tree. Since we have p = ¢+ 1 and » = 1 in this case, then
r=1=2-(¢g+1)+qg =2—p+ q. proving the formula for the case
n = 0. For the induction step, we assume that the formula for r holds for
connected planar graphs with at most & cycles for some & such that & > 0.
Suppose we have a connected planar graph G with &k + 1 cycles, p vertices,
g edges, and r regions. We form a new graph H by removing exactly 1
edge from G such that this edge is in a cycle of G. This edge must be ou a
border between 2 regions of (. Thus, H is a connected planar graph with
p vertices, ¢ — 1 edges. r — 1 regions, and at most k cycles. Applying the
induction hypothesis to H, we then have (r — 1) =2 - p+ (¢ — 1). Heunce,
r =2 —p+q, as desired. So, that the formula holds for such graphs with
at most k cycles implies the formula holds for such graphs with &+ 1 cy-
cles. Therefore, the equation r = 2 — p+ ¢ holds for all n by mathematical
induction. We rewrite this equation as Euler’s Formula p — g +1r = 2 for
the diagram of any connected planar graph. g

Several corollaries follow from Euler's Formula. The cxercises below ask
for proofs of the following 5 corollaries. The first step in proving the first
of these is to show that 3r < 2q. As a further hint, Corollaries 2 and 5
are actually corollaries of Corollary 1. and Corollary 4 is a corollary of
Corollary 3.

Corollary 1. If a connected planar graph has p vertices and g edges. then

q < 3p—06.
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X X,

*
\

FIGURE 8.13. Different Duals.

Corollary 2. Graph Kj is not planar.

Corollary 3. If a connected planar graph has p vertices and g edges and
if the graph has no triangles, then

qg<2p—4.
Corollary 4. Graph K33 is not planar.

Corollary 5. A connected planar graph has a vertex of degree at most 5.

Corollary 5 is the first step in the proof of the 5-color theorem. That
is, any map—in the geographic sense of the word of connected countries
can be colored with 5 colors such that no adjacent countries have the same
color. This is not terribly hard to prove. Changing “5” to “4.” we get the
famous 4-color theorem, which is only recently known to be true and is
very, very difficult to prove.

A geographic map can be considered as a diagram D for a planar graph
G in an obvious way. Associated with D is another graph H, which we
call a dual of G, defined as follows. The vertices of H are the regions
(countries or a possible surrounding sea) of D, and 2 vertices of H are
adjacent iff the corresponding countries share a border (not at a vertex
only). So coloring the original map (diagram D) with adjacent countries
having different colors is the same as coloring the vertices of the dual graph
H such that no 2 adjacent vertices have the same color. This is what it
means to color a graph. (Other definitions for the dual of a planar graph
produce a planar multigraph, where H has the same number of edges as
G.) Some observations are in order. First, a dual is defined only for planar
graphs. Note that diagram D determines unique graphs (G and H. However,
given planar graph G, a diagram for G is not necessarily unique and so a
dual of (i is not necessarily unique. However, starting with a map and
its interpretation as a diagram D for a planar graph G, we see that—
even if ¢ is not connected — the dual H is a connected planar graph. For
example, in Figure 8.13 we have 2 diagrams (right and left; edges solid) for
a disconnected planar graph . The duals (vertices stared; edges dotted)
determined by the diagrams are not isomorphic graphs, although the duals
must have the same number of vertices by Euler’s Formula. Whole books
are written on coloring maps and graphs. We will not go there since our
goal is more modest. Chapter 5 is a beginning in this direction.
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Homework Graphs 5.
1. Prove Corollary 1.
2. Prove Corollary 2.
3. Prove Corollary 3.
4. Prove Corollary 4.

Prove Corollary 5.

<t

Postscript.

Applications of graph theory frequently require weighted graphs, where
the edges are labeled with numbers, indicating distance, cost, time, etc.
There is no known algorithm for finding the most efficient hamilton cycle,
where “efficient™ means minimizing (or maximizing) the sum of the weights
of the edges in the cycle. This is a major unsolved problem in graph theory.

Even more useful for many applications are digraphs. short for directed
graphs. Here we have a set of vertices and an edge is an ordered pair of
vertices. So the dirccted edge (a, b) is distinct from the directed edge (b, a).
In a diagram for a digraph, each edge has an arrow to indicate its direction.
Digraphs are especially amenable to computation since a digraph can be
represented by a square matrix each of whose entries is either +1 or 0.
If there are n vertices vy.....v,. then the graph is given by the n-by n
matrix [a; ;] where a; ; is 1 if (v;,v;) is a directed edge and is 0 otherwisc.
This is a whole new world, which we will not explore.



The Back of the Book

It is hoped that you will wisely use the hints and solutions that
are given here. It is foolish to look here immediately after reading a
question to see how it is done; you learn next to nothing that way.
You will gain more by trying to solve a problem first, even if you
get the problem wrong—perhaps especially if you get the problem
wrong.

Chapter 1. Elementary Enumeration

§2. Conventions.

Ten Quickies. 1. There are 14 ways to pick 1 person from 14
persons because persons are always distinguishable. 2. Since pieces
of a type of fruit are indistinguishable, there are 2 ways: pick an
orange or pick an apple. No, we are not concerned with the manner
in which you make your choices; whether you shout, whisper, or
write your choice does not concern us. 3. 3. 4. 3, since order within
the choice was not mentioned. 5. 15. 6. 1. 7 & 8. These are 2 ways
of stating the same question and this is a very important principle:
Whenever you select r from n distinguishable objects, you are
automatically selecting n — r of the objects as well. 9. 6, which
answers the question, How many ways are there to select oranges?
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If you select k oranges, then you must take 5—Fk apples. 10. Since 0
is a possibility for oranges and for apples but not for both, we have
(9+1)(6+1) —1 ways.

§3. Permutations.

More Quickies. Since a word is a list, the order of the letters in a
word must be taken into consideration. So the word “word”
specifically, if implicitly, mentions order. 1. 5 x 7. 2. 262.

3. 26 x 25. 4. 21 x 5. 5. 3 x 8. 6. 5 x 4; yes, we assume that one
person picks 1 chair and the remaining person picks exactly 1 of
the remaining unoccupied chairs. 7. Half as many ways as the
answer to #6. 8. 261. 9. 5x 7. 10. m xn. 11. 2 x 6. 12. 2 x 6 x 52.
13. 4!. 14. 13!. 15. nl.

84. A Discussion Question.

A Discussion Question. The answer probably is not 11; not 36;

but 21. Of the students that the author has asked the question on

the first day of class over the years, 73% said 36, 26% said 21, but,
surprisingly, no one has said 11. See Table 1. The dice in a pair of

dice are indistinguishable, although in studying probability we use

differently colored dice to find equally likely possibilities. For many
games, only the sum matters and so 11 is a reasonable answer. On
the other hand, should “doubles” be considered different?

“Sum outcomes” “Visual outcomes”™ “Elementary events” in probability,

11 ways 21 ways (dice are 36 equally likely ways.

(with prob.) indistinguishable) with distinguishable dice

2 (1/36) 1&1 (1.1)

3 (2/36) 1&2 (1.2), (2.1)

4 (3/36) 1&3, 2&2 (1,3), (2,2). (3.1)

5  (4/36) 1&4, 2&3 (1.4). (2,3). (3.2). (4.1)

6 (5/36) 1&5, 2&4. 3&3 (1,5), (2.4). (3.3), (4.2), (5.1)

7 (6/36) 1&6, 2&5, 3&4 (1,6). (2.5), (3.4), (4,3), (5.2), (6,1)

8 (5/36) 286, 3&5, &4 (2,6). (3.5), (4.4), (5.3). (6,2)

9 (1/36) 3&6. 4&5 (3.6). (4.5), (5.4), (6,3)

10 (3/36) 1&6. 5&5 (4.6). (5.5). (6.4)

11 (2/36) 5&6 (5.6). (6.5)

12 (1/36) 6&:6 (6.6)

TABLE 1. How Many Ways Can a Pair of Dice Fall?
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§5. The Pigeonhole Principle.

Pigeonhole Problems. 6. Every person has from 0 to 19 friends,
but 0 and 19 together are impossible. So there are 20 persons
(pigeons) and at most 19 possibly different numbers (pigeonholes).
7. We can partition all such points into 4 classes, where 2 points
are in the same class iff their abscissas have the same parity, i.e.,
are both odd or both even, and their ordinates have the same
parity. Since 2 of the 5 points must be in the same class, the
midpoint of these 2 points will have integer coordinates. 8. We
have already done this problem. When last seen in the example
before this set of problems, this problem was in the disguise of a
problem concerning points in the plane. Points correspond to
persons and the different colors correspond to the relationships of
friends or strangers. Problem solvers often tumble a given problem
around to see if restating the problem in a different context throws
some light on an attack that leads to a solution.

What is the smallest party of persons for which it is guaranteed
that a specific number r of the guests will either all know each
other or all will be mutual strangers? This party problem seems
like a harmless question, does it not? For the case r = 3, problem
#8 shows that a party of 6 is sufficient and it is easy to argue that
a party of 6 is also necessary. It is known that for r = 4, a party of
18 is necessary and sufficient. At present, the answers for larger
vales of r are not known. It has been conjectured that the solution
for the case r = 5 won’t be found for at least a century. In
combinatorics, it is not too difficult to ask questions that no one
can answer.

§7. The Round Table.

Homework. 1. (151). 2. (552). 3. (?i) 4. (113) (3) (112) (‘21) 5. 210 1,

We can put YES or NO before each name on the list of friends in 29
ways. The only exclusion is having all NO’s. 6. 12!/[3!414!].
T.5xT)+(7Tx4)+ (B x4) or 7T~ [6) + (D) + ()]

8.6 x 8 —1.9.211(F)5!. 10. 26 x 25, 11. (33) — (17) because the
number of words consisting of 10 C’s and 16 R’s that have no 2 (s
adjacent is (16131). 12. Seat the women 7! ways; select 5 of the 8
spaces into which the men will go in (2) ways; and put the men in

those spaces in 5! ways to get a final answer of 7!(2)5!. 18. Seat the
g 5
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woren 6! ways; select 5 of the 7 spaces into which the men will go
in (Z’) ways; and put the men in those spaces in 5! ways to get a

final answer of 6!(5) 5!,

Which of the these questions can you answer now? The first
3 answers are n!/(n —r)!, n”, and (7). It is the fourth question that
is troublesome and must be our next principal goal.

§9. n Choose r with Repetition.

Problems for Class. 1. ((“Jr’i ) Note that for 2 dice we count
the 21 visual outcomes of Table 1. 2. (%ff_l) % 1, since there is
only 1 way to put 4 given letters in alphabetical order. 3. 10!(171)7!.
Since there are more men than women, first line up the 10 men in
10! ways. There are 11 spaces into which we can squeeze a woman;
pick 7 of these in (171) ways. Put the women in the selected paces in
7! ways. If we line up the women first the problem is harder and we
get the answer 7!(8+(i8:2)_])10!, 4. 9!(170) 7!. 5. After putting down
the 10 consonants in 1 of the #%! possible ways, we have a typical
diagram such as ANAR\CARARANACACAL,TA. We now have to
choose 8 of the 11 spaces for the vowels and then insert the vowels.
We get the solution 4!120!!2, (]8])2; 6. 4,120,'2, (ll) 7. 4% — 3[4?] by
considering the 3 cases: BAD__, _BAD_, and __BAD. 8. Seating all but
Paul first, we get 7! (8;2)1 Other approaches give 6!(;)2! or

6!(?) (?)1. 9. 6!(%), or, if we glue Peter and Paul together
side-by-side in 1 of the 2! possible ways, we can then treat the
glued guys as 1 entity and get 2!6!. Don’t knock it, glue can be a
very helpful aid in solving many problems. Also, using the answer
to #8, we have 8! — 7!6. 10. Since groupings of exactly 3 or 1 of the
same nationality are impossible, we have the nationalities in 2n
pairs. (The 2 pairs of one nationality may be adjacent.) For each of
the n nations, there are 2 place cards with the name of the nation
and blanks for 2 names. For each of the n nations, the 4 blanks can
be filled in 4! ways. The answer is ¢ 2,5 (4‘)" 11. By lining up the
toys first, but the first 4 can be permuted, as can each next 4 in
turn, we get the answer 20!/4!°. A longer approach that is not as
elegant but gets the job done yields (20) (16) (f ) (i) (j)

12. 181/[516!7!). 13. 18!/[6!6!6!3!]. 14. (}3). 15. ;% (1.

16. (5+67 1) 17. Supposc Alice and Eve together get k balls. This
can be done in k& + 1 ways. That leaves 30 — k balls for the other 2
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persons, but Lucky must get at least 7 of these. So, there are

30 — k — 7 additional balls to distribute to the Lucky and the
fourth person. This can be done in (30 — k& — 7) + 1 ways. Hence,
our answer is Ziozo(k +1)(24 — k). 18. There are <g> ways to pick
7+ 8+9— 18 letters from 7 A’s, 8 B's, and 9 C’s?
Ten Problems for Homework. 1. (26+44_1). 2. (*9).
3. () () 44 or 222 ad or () (3)(12) () (1)/2. 4. 5 x 25 x 24,
where we consider the middle letter before the first and last letters.
5. gt — a3 or (4 = ()] 6. (2). 7. ol o
or (HY('2) (D) (5)/12121. 8. (mn)!/[n!™m)]. 9. 6 x 8. 10. One

5 5 4
solution is 2 + 22 + 2% + (24 -2)+ 2(;) + (3)

Five Problems for Homework. 1. Either the 2 P’s are together
or not. We have Z—:<Z> + %(g) <i> from

6 (T2 +4-1) 5L (6) (8- 4)+4-1
Al 4 a1 \2 4 '
~— —~— N

' e

M,I's,PP g% MI's po G

2. <362> from (6+§§71). 3. (266> from (6+2671). 4, <7> from (7+§§1)
5.

7 74+31-1 20 25
(51) from ("7 7).

§10. Ice Cream Cones— The Double Dip.

12

L2120 (1312) 3, (@). a. ()

§11. Block Walking.

9. Consider the possible horizontal and vertical lines that
determine the sides of the rectangles. So the answer is (121) (;)
10. This is harder than #9 because width and height are not
independent here. One technique is to consider where the upper left
hand corner of a k-by-k square can go. We then have

(10X 6) +(9x5)+ (8 x4)+(Tx3)+ (6 x2)+ (5 x1).
§13. The Binomial Theorem.

The cquality that ends the section can be proved with a block
walking argument. The key is to observe that in going from (0,0)
to (n,n) we must pass through exactly 1 point on the line with
equation X +Y = n, say at (¢,n — 7). Therefore, we nced to count
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the nuinber of possible paths from (0,0) to (z,n — i) and the
number of possible paths from (i,n — i) to (n.n). We should find
that there are (';)2 paths from (0,0) to (n,n) by way of (i,n — ).

§14. Homcwork for a Week.

1. Think of piling the flags along with the required number of
dividers to indicate where the flags go. (Our assistant will actually
be putting up the flags, moving to the next pole after encountering
a divider.) It is important to note that the dividers are not the
flagpoles themselves but separate the flagpoles from one another.
Adja(cnt dividers mean that a flagpole gets no fags. We have
“H?) . or, permuting the flags and then inserting the dividers, we
get ‘24’(” - 1) Also, put the 17 dividers down, choose 24 spaces
for the ﬂdgs, and then put the flags in the spaces to end up with
1(]8+2244‘1)24I. 2. 241(32) or (]8?'])24!. 3. After choosing the
boxes that are to be empty, be sure first to put 1 ball into each of
the remaining boxes so that none is onlpty
()=, 4 S (S or 12, ()
5. Z ( )(20 l)bz( —2k_ Note that (52) (ZI‘) equals (Zf)) (2(",;/%). 6.:

With TWI Without TWT
6! 2\ (T2, (2 (T2 (3-8 \
212! 2 1 1 1 1
S S,I\'STC,\'\ I's O I 1 O

You might think about why the following answer is wrong:

2?;, X ((;) G) X (i‘) arrived at by first putting down S,S,N,N,C, W
together, then the I's and the O, leaving the W for last. 7. (“’)1()8
8.9-10-11-1.9. 7!/4! + 7!/(4!2!). 10. Tt seems reasonable to
begin with the diagram InIAIAIx and then calculate that there are
<i> ways to chose the spaces for the 4 S's. So far, so good. However,
it makes a difference where we put the S’s in the previous step when
we come to count the number of available places for the P’s. For
example, in the diagrams ITIS\SASASAIA and ISASASAIASATAIA, we
have a different number of places available for inserting P’s. We
abandon this disastrous attempt and start all over from the other
end. We first put down the 2 P’s in 1 way. From the diagram
SAPAP A, we see that we have <§> ways to choose spaces for the 3
remaining S’s after placing the first S before the 2 P’s. Then from a
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diagram likc [\SASAPAPASASA, we see that we have <§> ways to
place the 3 remaining I’'s. Note that this last count is independent
of where we put the S’s in the previous steps; in all cases, there are
7 places available to insert the remaining 3 T's. Finally, with 10
letters now placed, we have 11 available spaces for inserting the
only M. In summary, by considering the P’s. S’s, I’s, and the M, in
turn, we get 1<§><§> (111). 11. By putting down the P’s and S’s first,
then selecting places for the remaining letters hefore putting then
down, we get 1<g> (‘;’) or doing that the other way around, we get
5<2>1 12, This is a Mississippi problem; think of lining up the flags
and the 14 dividers. (5 +7+11+ 14)'/( 17114!). Another approach
gives 1 - <(7’> : <3>11! . > 13. 7'( )13' 14. With 0.1, 2, 3 quarters,
we arrive at 96 + 71 + 46 +21. 15.:

3 S~~~

5 .
( ) 3+ 6+ 9 +(12-6)+ _1
31242 31145 31048  3g971;  3-8+14

16. After picking the 2 boxes to be empty, we have 2 cases: There
is a box with 3 balls or not. We might think of gluing together 3
balls or else gluing together each 2 of 2 sets of 2 balls to get

([ 25201

Without the glue, we probably have the computation

B )E)- o= () C) oo

17. () +2(7) +3(g) +4(5) + 5(3) or Tk + 1My "”)
18. 48 + ()2147 ()224()+ )23 ()2444 2\31 0( 9165

815. Three Hour Exams.

N
(5

Practice Hour Exam #2. 1. 11!/(4!4!2!). 2. 9494+ 7+8)+1.
3. 211(F)5 4. (). 5. 11(%)6!. 6. 817. 7. 52524 - 23 22

8. 4v14lvy2' _4'21(') 9.6-8.10. < 5 1 <15X15> 12. <

13. (5)(})- 14. 9. 15. 26!(33) or <14>26' 16. () (5 17 (})3)10&

(6+8+13)! 5 B
18. 645+ 13-+ 140514 o S92 or (i) el
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19. 26 - 25%. 20.:

ol With AHA Without AHA
STl 8 - T 42 - 8 - 8 - T
A's U E A A U E

Practice Hour Exam #3. 1. 4,141,'2, 2. (9+94+7+8)+1.

3. 211(%)50 4. 11(5)4L 5. 71 (E )6' 6. 817 or 7!(5)2! or 9! — 8121,
7.26-25-24-24-24. 8. 3,4,< D) or (HE(E). 9.6-8.10. (})5!5!
or ()ar- (3)31-31 11 ('), 12, (D4l or 61/2. 13 1- (¥).

14. (7) = (§). 15 (7). 16. “ZE#" (%) 17. St ().
18. 2717, 19. 6!71. 20. 276! 21. (3)(5). 22. Pick the n top flags
for the n poles in (") ways. We have m — n remaining
distinguishable flags to put on the n flagpoles, which are now
distinguishable by their top flags. Altogether, we have

(’”)Km il DI gg (B+9H10410)! or, for comparison with the next

e (n—1)! . BEN

. e (840+10)! /28 (849+10)! (8+9-+10)! /26

2 qu(e;t;oriz)'——w 20>9 10)€7> sor - 24 (10) or
11\ (B+9+ 849+

<16> BI01 25. <)> jOT

Chapter 2. Principle of Inclusion and Exclusion

§16. Introduction to PIE.

PIE Problems I. 1. 10° — 10- 9% 2. 5-26% +5 - 26% — 526>,

3. 21226%. We can also subtract the answer to #2 from 26%. 4. Here
the universal set is all the placements of the 25 red balls into 3
distinguishable boxes without restriction. We want to count those
placements in none of the sets of all placements where a particular
box gets more than 15 balls. (Set A; is the set of placements where
box i is “overloaded,” that is, has at least 16 balls.) Our answer is
<;.)> — (13)< > Be surc that you can explain the “<9>” in the
solution; the most common mistake here is to ha,ve “<g>” in place of

(5 ()~ (05 + (D) 6 (5)F + O3~ ()1 or
50+ 500 - 1O 7 () - (). 8.8 8 a1
9. [3-8!] — [6! + 6! + 6!] + [4!]. 10. 67 —51-6-6%

§17. Proof of PIE.

PIE Problems II. 1. TFor each letter Z, let Az be the set of
10-letter words without a Z. We want |[Ax U Ap U AU Ap U Ayl. So
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we get (92510 — (3)241° 4 (32310 (3)2210 4 (32110 or
22:1(—1)"'“(2)(26 — Kk)!0. 2. Let A; be unrestricted placements
such that box ¢ gets more that 15 balls. We count the placements
that are in none of the A; to get <440> — (411) <244> + (3} <g>. 3. Let A;
consist of the unrestricted placements such that box 7 remains
empty. We want |A; U A2 U A3 U A4 U A5 U Agl, and so we get
(7)51 = (5)41" + (5)3" = (P2" + (5)1" or

ZZZI(—I)A’“ (2)(6 ~ k)!. 4. For each j, let A; be the solutions we
get by ignoring all the restrictions z; < 30 such that z; > 30. We
count the solutions that are in none of the A; to get

(o) = (1) oo + (2)(a) = ()(2) or Zioo(=1F () (10510

5. <130> - [<g> + <“I’> + <;’>} + 0. Think of an unlimited supply
(actually, 10 of each will do) of each type of coin and let A, for
example, be the selections of 10 coins that have at least 8 pennies.
The number of these selections is <3> and is the first term within
the square brackets. 6. Let A; be the set of unrestricted
distributions that have box i empty. We count the distributions
that are in none of the 4; to get Y7 _o(—=1)F(})(n — k).

§18. Derangements.

PIE Problems III. 1. <240> ~[2- <[¢> +2- <141>] + (). 2. We use
PIE with A; denoting the 12-term sequences of digits that are
missing digit 7. We want to count the elements in

AgU AU U Ag. We get D75, (=1)FF(32) (10 — k)L

3.50— (N2-41+ (3)22- 31— (2% 2. 4.3- (DL - (3)- (D71 40 0r
3- g—;<140>1 -3. 7!<g>1 + 0. 5. See Figure 1; also,

(53D + 50 + 35 (D] = [ME) + §E) + 61D EDT + [81(D)]-
PIE Problems IV. 1. We line up the 8 integers and consider
dropping some glue in the spaces between some of the integers. We
look at the diagram 1V2V3V4V5Y6Y7V8 and let A; be the set of
permutations in which ¢ is immediately followed by 7 + 1 for
i=1,2,3,4,5,6,7, which corresponds to having glue in the ith
wedge. (The wedges are inverted to our usual position only because
our glue does not run uphill.) The 7 A; are the sets of permutations
that contain, respectively, the 7 strings 12, 23, 34, 45, 56, 67, 78.
Each time wc put glue in a new spot we have a net loss of 1
symbol; with glue in & spots, we are permuting 8 — & symbols. We
want to count the permutations that can be achieved without any
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5\ 9! N 5\ 9! n 4\ 10!
9/ 2! 9/ 2! 10/ 212!
—— —— ——
C.C.0,0 0,0,11 LLS

LIS  the rest
C,C,0,0 A~ —"—

7 6\ 8! —~~ /5 8

_ | _ . . |
<7>7. + <8>2! + 71 <3>1 <6>6.
S’ N—— ~

C.C,0.0,11 0,0.IL,S C.C,0,0 & LIS
8
+ . )0!
6
N—
C,C,0,0,L1,5

FIGURE 1.

glue, that is, permutations in none of the A;. So, by the Lemma for
PIE, we obtain ZZ:()(—l)’“(Z) (8 — k)!. 2. Now there are 8 glue

spots. This time we get [Z;;O(Al)’“(f)ﬁ - k)!} + 1.

3. Zfio(—l)]‘(zki)(% — k)37 by thinking of the A; being the
unrestricted distributions where boy i gets no book. 4. We change
the form of the problem in order to simplify it. Let 1 =14 y; so
0<y; <4 Let 29 =2+ y2;50 0 < yg £5. Let x3 =3+ y3; s0

0 <ys <6.Let x4 =5+ yq; s0 0 < yy. Thus, we are looking at
solutions for the system

YL+ y2 +ys +ya =29,
0<y1 <4, 0<y2 <3, 0<y3<6, 0<ya

So, <249> - [<244> + <21z> + <242>] + [<148> + <147> + <146>} - <141> is the
desired number. Here, the <£§> comes from first putting 6 1’s in the
1o box and then putting, with repetition allowed, the remaining 23
1’s into the 4 boxes. Note that it is <243> and not <233> because more
than 6 1’s can go into the yo box altogether. 5. We consider the
cases with no box empty, with exactly 1 box empty, and with 2
boxes empty, in turn, to get 310733';21(43 + 21;!’2 +1.6.1—(1/e)is
about 63%.
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7. Dy =nDp 1+ (—1)" = (n— 1)Dy_y + D1 + (—1)" =
(n=1)Dy-1+[(n=1)Dp2+(=1)"]+(=1)" = (n—1)[Dr—1+Dn—2].

§21. A Plethora of Problems.

1. The question is, How many ways are there to put m
distinguishable balls into n distinguishable boxes with no box
empty? Thinking of &£ as the number of excluded boxes, we have
the answer Y _o(—1)¥(})(n — k)™. 2. Considering the diagram
ATATATATATATATATA, we want to put 17 indistinguishable balls
(H’s) into 9 distinguishable boxes with the restriction of at most 4
balls in each box. Without the restriction, suppose at least k
particular boxes get at least 5 balls. We get 22:0(—1)k(2)<1725k>-
3. Thinking of at least some particular & of the given 6 numbers in
their natural position, we use the Lemma for PIE to get

S o(-DR(Q) (12— B 4 SH2 (DR () (29 (24 k- 1)

5. Supposing that at least k particular pairs arc maintained, we get
Zk:() 1)k (2)5% 6. We pass out 5 right gloves in 6! ways,
keeping 1 for ourself. In passing out the left gloves to the 5 persons
and ourself, either we get a matching pair or not. The solution is
6![Ds + Dgl. 7. Thinking of at least k particular persons getting a
matching pair, we have 37 _(=1)%(2) - (8)&! - (122.0 *)! 8. We can
consider glue in at least k particular spots of the 8 spots in the
diagram 0V1V2V3V4V5Y6Y7Y8 but remember that each arrangement
must begin with 0. We have 22:0(—1)k(2)(8 — k).

9. 2[5 (1) 3] = [373 ()3 (58!

10. 2 [3VQ'< >i'22|¥] - [3'2' '<6>3'2' '<163>6!]'

11. Subtract the answer to #9 from ﬁ%!m. 12. The 2 cases of first
R before first E and first E before first R are symmetric. So,
putting the R’s, E’s, and C’s down first, we calculate

2 [ (D] ()5 18 4 ()3 14 1 (B

15. [l <1()> 1'(;' +1- < >41'22|' +1- <154>i!;‘21!!] N

LG (6 +1- (DB + 161,

16. Subtract the answer to #15 from mlg—@.

17. The 3 terms in the first factor are motivated by first putting
down the N’s; C’s, and E’s before putting in the R’s in the 3
diagrams AE... and ANAE... and ANANAE...  respectively. In
each diagram, at least 1 R must go into at least 1 of the spaces
indicated by the wedges. We get
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(=1} - (e

§22. Eating Out.

Related Problem. For a subset of ¢ of the 2n conditions, how
many of all n! permutations satisfy these ¢ conditions? The answer
to this question is either (n — ¢)! or 0, depending on whether the ¢
conditions are compatible or not. However, we notice that it is
exactly the pairs of consecutive conditions that are incompatible,
taking “1 is 15%” to follow “n is 15" in cyclic order. We have
encountered this situation before. This is analogous to choosing ¢
of 2n knights sitting at a round table without selecting any pair of
adjacent knights. See §12. From page 21, we know that this can be

donc in % (2"(;‘1) ways. Hence, the solution to our related

problem is >0 (~1)7 {%’iq (2"(;")] (n—q)!, or

St (=),

q=0

Perhaps we can sec why this answer can be obtained simply by
dividing the solution to the Ménage Problem by (n — 1)!. Consider
the diagram

: /\VV?)/\W2/\W1/\W71/\W71,—1 A
4 3 2 1 n n—1

formed into a loop as representing the situation in placing the
persons in the Ménage Problem, where the n numbered wives have
already been placed at the round table in (n — 1)! ways and there
remains only the placing of the n correspondingly numbered
husbands into the numbered available spaces. The forbidden
placements of the husbands are the 2n conditions of the Related
Problem. Tt follows that the solution to the Ménage Problem is

(n — 1)! times the solution to the Related Problem.

Eating Out Problems.
la. 32320 (— DR (") (n — k)l = Dy + Dpoy.
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1b. Let the solution { Z;(l,(fl)}‘(}f)(n — k- 1)!} + (—1)" be
denoted by A,,, and show that 4, + A,,_1 = D, _1.
[ZA«O (i) (n - k)!} +0="Dp—(-1)" =nDpn_1.

1d. Z” 1 ) (nk1>(n—k—1)!:Dn71‘
2a. Select k pairs, pair the rest, and seat all in
(%) - S22k (n — 1)12!"~1 ways. The solution is

k/ o 2in—k(n—k)!
n n\ 2
LS (2R R (20 — 28)),

and, if we assume TT°_ (27 — 1) = 1, then our solution becomes

(n—1)12" 1Y [(—wk(n)H?*{“(w - 1)].

2b. > i (=D () (2n -k - 1)L reo(—DE() 2% (2n — k= 1)L,
2d. Seatincr men first, then women, we get (n — DD,
2e. Y (=1} )(2n—k) 2f. 30 (DR ()2F(2n — k).

2g. W 1th the dlagram HWHW ... HWHW and the diagram
WHWH ... WHWH to help answer the where-question, we have
the direct calculation

R 9 ) 85 R

~ how
who where

A different approach begins by considering the 3 possible diagrams:
first H...W ,sccond W;...H; with¢# j, and third W;... H;
For each of the n! permutations of the n husbands that fill in the
diagrams, we then have the following number of ways to fill in the
wives. For the first diagram, we have D,, ways. For the second
diagram we have D), ways again because there isa 1 1
correspondence with the first diagram (move the H; to the front of
W;). For the third diagram, we have D,,_1 ways, as follows from
the first diagram after ignoring the W; and H;. So, our solution can
be simplified to the expression n![2D,, + D, _1].

Setting our 2 solutions equal to each other may be the easiest
way to prove the equation stated in #1a above.
2h. Analogous to the solution of the Ménage Problem—but here
the “2” comes from the 2 cases of whether a wife or a husband is in
the first seat—we calculate Sy = (}) [Q(n - k)!2<2(n’_kk)+1>k!il to get

the solution 2n! 3"7_q(—=1)*(*", *)(n — k)L.
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2i. For a given permutation HiHs...H, of the n husbands,
where, in turn, can wives Wy, Wo, ..., and W,, be placed? We get
[n!][1-3-5---(2n —1)], or (2n)!/2™.

2j. For a given permissible arrangement _H; Ho Hs..._H, of the
n husbands, where, in turn, can wives Wy, Wy, ... and W,, be
placed? Our solution is n!.

Chapter 3. Generating Functions

§26. Clotheslines.

Homework. The relevant question is, What is the generating
function for the sequence {a,}? 1. Coeflicient of 2" in
234+ 24 4 250 or in 218(1 4 2 + 22)8. 2. Coefficient of 2" in

. C 8
Oty 224 22+ orin [wl—] . Of course. the coefficient is

1—z
~3. 3. The generating function for the first 2 boxes together is
'+ 21+ 22)% The solution is the coefficient of 2™ in

A0 22+ 4 )2 orin
n—2

SIS

<
+

e T N N
- N LW
fan Ny

1+ 2+ 22)2 []iz} 7. 4. Coefficient of 2" in
0 1 1 ) 2 20l a2 B 2
[z +(= 4+ )+ +2 + 2R+ 2t ]2
0,0 Lo 01 20 1.1 0.2
. n—2
or [1+ 2z + 327 []%} . 5. Cocfficient of 2! in g(z) where g(z) =
[0zt 4224 [ 22424 ][04 2 ][04 22] [0 22 226 ]
L )
— . . z) - = N -
l1—2 1—=2 1—22
I >
3 3 k
=(z+z = + z
e+ (1) =X ()

The desired coeflicient turns out to be <3> + <;>

$27. Examples and Homework.
Homework. 1. Cocfficient of z'" in g(2) where

1—2% 1—-29 1-28

T—2z 1-—2 1-z

(1—28)2(1—39)
(1_2)3

g(z) =
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1
coins and not r cents. 3. Coefficient of 2" in (1 + 2% + 29)10.
4. g(z) = 1_122 . 1_123 . 1_124. 5. For Lucky Pierre, and for each of the
other 3 persons as well, the generating function for selecting balls is
within the square hrackets of the following, with the exponent 4

3
2. Coefficient of 2" in (%Z) . Note that the question concerns r

accounting for Lucky and the other 3 persons.

4
2+ )@ A )
Lucky’s red balls Lucky’s blue balls
. . . . ! 16
We want the coefficient of z™ in the generating function (fﬁzr

Rather than first focusing on Lucky, we might first focus on
distributing the red balls and then the blue balls. From this

z

N AN _
approach we get the generating function (%) (1—_2—) . The form

, 8
216 (1—_1;) of the generating function tells us that the desired

coefficient is <n_816>. Now, if not before, we see from the answer that
we should have been able to answer the given question immediately.

5 10
= |1 . 1| (1 ;i oficient is (1Y
6. g(z) = [1_2 1—4 = (1_2) . The desired coeflicient is <”>.
Can you give an elementary explanation for this answer?

7. g(z):(21+32+23+"'+36)10:Zlo(l+z+23+...+z5)10:

210 (%)10 = 21001 — 2510 (ﬁ—;)lo. 8. Guided by the hint, we
want to count the number of nonnegative integer solutions to

r1+ 1o+ a3+ 24 + x5 + x5 = r, where r = 10, under the condition
that 1oy + 2w + 313 + 44 + Sx5 + 66 i even. Since each of 2z,
4x4, and 6x¢ is obviously even, the condition reduces to

r1 + 3x3 + bxs is even. Hence, either exactly 1 of x-, x3, and x5 is
even or else all 3 are even. We want the coefficient of 219 in

) O ) )+ ()]

More Homework. 1. The coefficient of 2" in g(z) where

22 23

9(z) == 5 124 is the number of positive integer solutions
to the equation 221 + 3z + 43 = r. We want the coefficient of 256
in g(2). 2. Coefficient of z4% in (2! + 22 +--- + 25)10. 3. Coefficient
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of 22 in [1 4 2z + 322 + 423 +oz —l—()z)][() =l

4. Coefficient of 2% in (322 + 2% + 22%)7. 5. Coeﬁi(:lent of 220
[22:“ <Z>z/‘} [>oh 4 (k+1)2*]. 6. Why would these dice change a
game of Monopoly? 7. We want the coefficient of b2w? in (b4 w)?,

or we want the coefficient of 22 in (1 + 2)*.

£29. Exponential Generating Functions.

Three Exercises. 1. Cocfficient of 2" /rtin egf
(¢* —1). “Hn . & B (1 + 3?) 2. Coeflicient of z"/r! in

2
(e* — 2)°. 8. Coefficient of 2" /7! in egf ‘*T‘“(e —1)e?.

Four Exercises. 1. Coefficient of z"/r! in egf (Zz—f + f;: + ‘Z—:)b

2. Coefficient of 2" /r! in egf €% — (e* — 1)8. 3. Cocfficient of 2" /r!
in egf e!* (% — 1) which is the coefficient of =" /r! in

(€7 + €37 — 2e4%) /2 which is (5" + 3" — 22 t1) /2. 4. Coefficient of
225 /25! in cgf

(-1-2)(14z+5+5) Fe (+5+5+5+ )
Five Review Exercises. 1. Coefficient of 2°/5! in

(I+z+%5 32 . :3) (1424 Zz)‘ (1+ 2)%. 2. Cocfficient of 23 /34! in
(L4 2+ %5 i 3, + 1,)( )& ) or coefficient of 220/26! in

( )( Z_)—Z,—I-%—f—i—) 12 3. Coefficient of 2% in

> 7(A':—|— 1)z* [ E ] ! ] . 4. Coefficient of 2%°/25! in

= 1—z

z -z i . B
(““‘; ) . 5. Coefficient of 10 in

2
(23 + 21 4225 4220 4227 28 4 q)l ~‘<1 ﬂ) .

§30. Comprehensive Exams.

A Warm-up Exercise. 1. 3*. 2. D,. 3. (”)3”9 4, <é><3>

5. ({4

Core Exam #1.1.5-7+5-4+7-4.0r(Y) = [() + (O) + (3)].
2.6-8—1.3. 8'(‘))” 4 (%Y. 5. 18‘/(5"‘2’4'4"7')

6. 4!]4]!12! - 412! (8)’ or 4!2! [<4> ()] - 20.8.1- <10>

9. 9! — 28!, or 817. 10. 26!/16!. 11. W;!ggg;” 12 W*ﬁ?;”” (3.

13. (3). 14, (8). 15, (200" 16. 101 17. ()", 18. (2). 19. (19).
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0. (5 >9' (10)7m1] — (5){6)6L 21 iy — (D)o + (2) 57 — 101
22. Zk o(—1 k(i) 4 — k)?°. 23. The coefficient of 2" /n! in
(m+T+—2—,+23) (0. +E 4 2.) (1+ 2)°.
24. The coefficient of 23V in (z + 22 4 28 4 2% 4 25 4 26)10,
25. The coefficient of z?° in
[1+ 22+ 322 + 423 + 524 + 62°) (}) Lr 20

Chapter 4. Groups

§31. Symmetry Groups.

Exercise 1. Filling in the table by columns is much easier than by
rows. For each column after the first, except the o-column, all we
have to do is multiply the entries in the immediate left column by p
on the right, which is easy. Your paper square will help you get the
og-column. See Table 2

(BT [ 717 o Los [e7 o7
c e e P[] o [oploir]op
p e PP 1P ¢ o] o [op]|ap?
P> PP e | p|ap]ap’] o | op
Pl e e PP op|ap|a] o
o | o loplop|lop®| v | p | ¥ |5
ap | op [ap®|ap | o | PP | ¢« | p |0
op> [op* [ap® | o [ap [ PP | 0 [ ¢« | b
ap* op* [ o [oplap® | p | PP [P ] ¢

TABLE 2. Cayley Table for D,.

Exercise 2. We have

(vo(Bo)(P)=~{(Boa)(P)) (by the definition of the
composition of v following 5 o «)
= v(8(a(P))) (by the definition of the
composition of & following «)
= (vo B)(a(P)) (by the definition of the
composition of v following 3)
= ((yoB)oa)(P) (by the definition of the

composition of v o 3 following «).
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Since the mappings v(B«a) and (y3)a act on each point in the same
way, then the mappings are equal. This completes the proof. Note
that the associative law was not used in this proof; of course, this
must be so since that is exactly what we were trying to prove in
the first placc. Now, after the proof, we can write a3y without fcar
of confusion, since either way of associating the factors gives the
same result. Generalizing, we can associate in any way any product,
of elements in a group (The generalization is obvious, but its proof
is a bother.)

Exercise 3. Since there are 8 vertices from which to hang a cube;
since then 1 of 3 of the vertices adjacent to the top vertex can be
pointed toward yourself; and since this determines the position of
all the vertices of the cube, then we see that there are 24 rotation
symmetries of the cube. Similar arguments can be made using
either the 12 edges or else the 6 faces. The following list has 24
different rotation symmetries; the list must contain all the rotation
symmetrics of the cube. (It is always nice to know when we can
stop looking.)

1 identity,

6 rotations of £90° about the axes that join centers of opposite
faces,

3 rotations of 180" about the axes that join centers of opposite
faces,

6 rotations of 180" about the axes that join centers of opposite
edges,

8 rotations of £120° about the axes that join opposite vertices.

Tt is the rotations of £120° that are evasive. Without holding a
cube in your hand with the cube in the position described above as
hanging, it is difficult to see that a cube has a three-fold symmetry.
For most of us, this is hard to discern with the cube in “normal”
position, sitting on a face. With the cube in the unlikely position of
being balanced on 1 vertex, the three-fold symmetry is evident.

Exercise 4. The regular dodecahedron has 12 - 5 rotation
syvmmetries. Thus, when we find 60 symmetries, we can stop
looking for more.
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1 identity,

6-4 rotations of £72° or £144° about the axes that join centers of
opposite faces,

15-1 rotations of 180" about the axes that join centers of opposite
edges,

10-2 rotations £120° about the axes that join opposite vertices.

§32. Legendre’s Theorem.

Exercise 1. Suppose o, 3, and ¥ are in group G and yOa =~y G [.
Then, by the inverse property, v ! ® (v®a) =~y 1 © (y® 8). Next,
by the associative property, (v ' ®~v)®a = (v~ ®@v) ® 3. By the
inverse property again, : ® @ = ¢t ® . Finally, by the identity
property, a = 3, as desired. Whether we just proved the left
cancellation law or the right cancellation law depends on what
country you come from. Amcricans call this onc the left
cancellation law. The proof of the other cancellation law is similar.

Exercise 2. The cxpressions
(z Yy et d e W a ) (abed - - -y 2)
and
(abed - zyz)(z ty tem o d7 e e Y
can be rewritten, after innumerable uses of the associative law, as
My Ha e (e (@ a)b)e) - )x)y)z)
and
a(blel- - (e(y(z=" Yy D) - e,

each of which implodes to the identity. Hence, by the definition of
an inverse element, we have

(abed - xyz) ="ty et d e p e
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TABLE 4. Cayley Table for S3, Redux.
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§33. Permutation Groups.

Exercise 1. See Table 3.
Exercise 2. See Table 4.

Exercise 3. (abed...yz) = (az)(ay) ... (ad)(ac)(ab); and

(ab)(ab) = (abc)(ach), (ab)(ac) = (ach), and otherwise

(ab)(ed) = (cad)(abc).

Exercise 4. Even: (1), (12)(34), (13)(24), (14)(23), (123), (132),
(124), (142), (134), (143), (234), (243). Multiply each of these on
the left by any odd permutation in S, say (12), to get the odd
elements: (12), (34), (1324), (1423), (23), (13), (24), (14), (1342),
(1432), (1234), (1243). Since we have 4! clements, we must have all
of them. Also, |A4,| = n!/2 since half the elements in S, are even
and half are odd. (It follows that if a permutation group has any
odd elements then half of the permutations arc odd.) Now we show
that A, is a subgroup of S,,. Since mappings are associative, A,, has
the associative property. Since the sum of 2 even integers is an even
integer, then A, is closed. Since (12)(12) = (1), then the identity is
even and A, has the identity property. Since a transposition is its
own inverse and since the inverse of product is the product of the
inverses in reverse order, then A, has the inverse property.

§34. Generators.

Exercise. Group Ay, as does every group, has 1 subgroup of
order 1: ((1)). The cosets here are just the 12 1-element subsets.
The other trivial subgroup is A4, which has 1 coset, itself.

Group Ay has 3 subgroups of order 2: ((12)(34)), ((13)(24)), and
((14)(23)). With H = {(12)(34)), then the 6 cosets of H are given
by H = {(1), (12)(34)}, (13)(24)H = {(13)(24), (14)(23)},

(123)H = {(123). (134)}, (132)H = {(132), (234)},

(124)H = {(124), (143)}, and (142)H = {(142), (243)}.

Group Ay has 1 subgroup of order 4: If

H = {(1). (12)(34), (13)(24), (14)(23)}, then the 3 cosets of H are
given by H, (123)H = {(123), (134), (243), (142)} and

(132)H = {(132), (234), (124), (143)}. Here, for example, note that
(132)H = (234)H = (124)H = (143)H.

Group Ay has 4 subgroups of order 3: ((123)), ((124)), {(134)). and
((234)). With H = {(123)), the 4 cosets of H are given by

H = {(1), (123), (132)}, (124)H = {(124), (14)(23). (134)},
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(142)H = {(142), (234), (13)(24)}, and
(243)H = {(243), (143), (12)(34)}.
Group A4 has no subgroup of order 6.

§35. Cyclic Groups.

Homework. We have G = C1o, with n = 12 = 223 and ¢ = p,
where Cio = (p).

k g(‘,d(’ﬂ/, k) gl\> has order gcd?ﬁ,k‘) :
p) has order 12.
2

p°) has order 6.
e
ot

5

)

) has order 4.

) has order 3.
p°) has order 12.
p%) has order 2.
p’) has order 12.
p®) has order 3.
p”) has order 4.
p'% has order 6.
p') has order 12.
p'?) has order 1.

DD © X u s w—
— N W o = O = R W

{
(
(
(
(
(
(
(
(
(
(
(
(

—t
[\]
[a—
[N

Further:

Divisor d of 12 ¢(d)  Subgroup of order d
L) = (o)
1 (0°) = {p° o}
2 (o= (p*‘> = {p*. p°, 0"}
2 (p)= < >—{p,p,p,p°}
2 > _ 2 8
4

sum: 12

§36. Equivalence and Isomorphism.

Exercise 1. [a]= {z € § |z ~ a}. Suppose s € [a]N[c]. Then,
s~aand s~ ¢ So, a~ sand s ~ c. Hence, a ~ ¢ and, likewisc,
¢ ~ a. Thus, x ~ a implies © ~ ¢. Likewise, x ~ ¢ implies © ~ a.

Therefore, [a]=[c].
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Homework. 1. Since D3 = (p, o), it follows that we know where
every element of Dj goes if we know where each of p and o goes
under the mapping. Four isomorphisms, w7, A, g, and v, are
determined by Table 5. (Can you find the other 2 isomorphisms?)

Lo [ () [ Mo) | ple) | v(a) |
. L @ | @ @
p |l (123) | (123) | (132) | (132)
p? | (132) | (132) | (123) | (123)
o || (12) | (23) | (12) | (13)
op | (23) | (13) | (13) | (12)
op® || (13) | (12) | (23) | (23)

TABLE 5. Isomorphisms from D3 to Ss.

2. Since C2 = {p) = (p°), the mapping 7 determines a one-to-one
correspondence. In particular, p° is mapped to p”, since
(p5'r)5 — p25r — p12-2r+7' _ (p12)2'rpr — pr_ Also

ﬂ_(ptpS) _ ,n,(pH-s) _ p5(t+s) _ p5t+53 _ p5tp55 — T(pt)ﬂ'(ps)
as desired. 3. Since,
ﬂ_(ptps) — 7_[_(pt—f-s) — p4(t+s) — p4t+45 — p4tp4s — W(pt)’ﬂ'(ps),

then 7 is a homomorphism. We know that 7 is not an isomorphism
because there is no k for which p* = p.

How many groups of order 2 are there?
If G is a subgroup of group I and « is in I, then {aga™!| g € G} is
easily checked to be a subgroup of I. This subgroup is denoted by
aGa~! and is called the conjugate of G by a. If G and H are
subgroups of group I, then H is conjugate to G in [ if there is
an element « is in I such that H = aGa™'. Conjugation is an
equivalence relation on the subgroups of /.

For the plane, lct p be the 180" rotation about the origin O, and
let o be the reflection in h, the X-axis. So, Cy = {¢, p} and
D) = {1, 0}. Now, it turns out that the conjugate of p by isometry
o is the 180" rotation about the point «(O). Further, the conjugate
of o by isometry « is the reflection in the line a(h). Therefore, all
the groups of order 2 consisting of the identity and a 180" rotation
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Isometry g | m, in cycle notation | Cycle type of 7,
[ (A) 2P
i (ACE)(BDF) zi
p? (AEC)(BFD) 22
T4 (BEF)(CE) 2izd
Oip (AC)(DF) 2f2d
Ot (AE)(BD) zEzd

TABLE 6. D3 Acting on Vertices of a Hexagon.

arc conjugate to each other, and all the groups of order 2 consisting
of the identity and a reflection in a line are conjugate to each other.
These are the only subgroups or order 2. Since the conjugate of a
reflection is always a reflection and never a rotation of 180", it
follows that the groups Cy and D; cannot be conjugate. The
geometer wants to distinguish these 2 groups as different since they
have very different geometric properties, even though they are
isomorphic as abstract groups. For this reason, the geometer says
that there are 2 plane isometry groups of order 2. In the isometries
of 3-space, there are 3 groups of order 2 (up to conjugation).

Chapter 5. Actions

§37. The Definition.

Exercise 1. We first observe that, in the group of all permutations
on X, mapping 7 is the identity mapping on X, by axiom 1 in the
definition. Mapping =, is onto since my(7,-1(x)) = x and is 1-to-1
since my(x) = my(y) implies

T = me(x) = w41 (my(x)) = Ty (my(y)) = 7me(y) = y. So. 7y is a

permutation on X. Then, since mym,-1 = 7y, + = 7 and
Tg-1Tg = Ty 14 = e, We have
-1
7Tg - 7Tg—1 .

All other parts of the exercise follow from this immportant equation.

Homework. 1. See Table 6, where, in general. if [ is a linc then o
is the reflection in /. 2. See Table 7. 3. See Table 8.

Exercise 2. See Table 9 for the first part of the exercise. One
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Part (a) Part (b) Part (c) Part (d)
9€Da g & type 7y & type 7y & type g & type
‘ (1) & = (a) & zf (x) & 2£ (a) & =P
P (1234) & 2 (abed) & 2z (xy) & 29 | (abed)(zy) & 2524
p? (13)(24) & 22 | (ac)(bd) & 2 (x) & 2¢ (ab)(cd) & 2323
p° (1423) & 2} (adeb) & z} (xy) & 23 | (abed)(zy) & 25 2}
o (24) & 2223 | (ad)(be) & 23 (z) & 2P (ad)(bc) & 222¢
Ty (13) & 2324 | (ab)(cd) & 22 | (o) & 2 (ab)(cd) & 2225
op (12)(34) & =2 | (bd) & 222 | (zy) & 2z (bd)(zy) & zizg
Om (14)(23) & 22 | (ac) & 282} (zy) & 24 (ac)(zy) & zfzd
TABLE 7. D, Acting on Various Sets.
ge Dy Tg Cycle type
t (1) 2
P (1)(2,5,4,3)(6,8,11,9)(7.10,)(12,15,14.13)(16) lezzlzf
0? (1)(2,4)(3,5)(6,11)(7)(8,9)(10)(12, 14)(13, 15)(16) ztzd
o (1)(2,3.4,5)(6,9,11,8)(7,10)(12, 13, 14, 15) 2izg 2}
o (1)(2,5)(3,4)(6,11)(7.10)(8)(9)(12, 15)(13, 14)(16) 2izd
Ty (1)(2,3)(4,5)(6)(7, 10)(8.9)(11)(12, 13)(14, 15)(16) 2pzd
op | (1)(2,:4)(3)(5)(6,9)(7)(8,11)(10)(12, 14)(13)(15)(1 6‘ 5z
om | (1)(2)(3,5)(4)(6.8)(7)(9,11)(10)(12)(13, 15)(14)(16; e

TABLE 8. D4 Acting on Colorings of the 2-by-2 Checkerboard.

G|e a b ¢

ele a b c

alja e ¢ b

blb ¢ e a

clec b a e
m | (e (ea)(bc) (eb)(ac) (ec)(ad)
(e) (e) (ea)(bc) (eb)(ac) (ec)(ab)
(ea)(be) | (ea)(be) (e) (ec)(ab) (eb)(ac)
(eb)(ac) | (eb)(ac) (ec)(ab) (e) (ea)(be)
(ec)(ab) | (ec)(ab) (eb){ac) (ea)(bc) (e)

TABLE 9. Cayley Tables for G and II.
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G'P a b ¢
cle a b c
a|la e
b e
¢ e

TABLE 10. Cayley Table for Noncyclic Group of Order 4.

X ” {1, 2, 3, 4} | {a, b, ¢, d} | {z, y} | {a, b, e, d z, y}
x

1,2,3,4 a,b,c.d T,y |abed xy

N—— N—— ~ N—— N~
IO:I:I 4 4 2 4 2
1S, | 2 2 4 2 4

TABLE 11.

possibility for a group of order 4 is a cyclic group, generated by an
element of order 4. All such groups are isomorphic to C4. On the
other hand, if therc are no elements of order 4, then every element
except the identity must be of order 2. If we assume that the
elements are e, a, b, ¢ with e the identity, then the Cayley table
must have the structure exhibited in Table 10. However, neither of
the products ab nor ba can be equal to any of e, a, or b, and so in
each case the product must be ¢. Then, the rest of the table is also
uniquely determined.

§38. Burnside’s Lemma.

Exercise. See Tables 11 and 12.

Homework.

1. w = (204 4 216 1 932 | 916) /g

2. w = (200 4 210 4 232 4 910 4 932 4 932 4 936 4 936 /8,

3. w = (361 £ 316 4 332 1 316 4 332 | 332 | 336 4 336) /g

4. w=(m¥ 4+ m £ m3? 1+ m - m3?2 L 32 4 M3 L m39)/8.

X “ 2-Colorings of Fixed 2-by-2 Checkerboard
€ 1 2,3,4,5 6,8 9,11 7,10 12,13,14,15 _16
N e e o e ——
{O,] 1 4 4 2 4 1
|S: 8 2 2 4 2 8

TABLE 12.
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6. Note that it does not hurt to write the coefficient 1 in a cycle
index. This may make it easier to check that all the coefficients in
the numerator add up to |G|, the denominator. Here

0’ +60" +120° 180" diag. other

e S e N N S N
1-3°4+2-3'42-3°+1-3°43-3+3.3°
w = =

12

92.

7. The first 5 of the terms in the numerator below come from
consideration of the rotations of 0°, £457, £90°, £135", and 180",
respectively. The last 2 terms are from reflections in a diagonal and
the reflections in the perpendicular bisector of an “edge.” We have

1-43 42414242424 +1-44 4445+ 4.4 2435
— = 4409.
16

w

§39. Applications of Burnside’s Lemma.

Homework 1.
1. Cycle index for the rotations of a cube acting on the faces:
The identity rotation ¢ with

7. = ()(2)(3)(4)(5)(6) = 1),
6 rotations of order 4, like « with

7o = (1265)(3)(4) = 6[z224).
3 rotations of order 2, like a® with

ma2 = (16)(25)(3)(4) = 3[zfz3].
6 rotations of order 2, like 3 with

75 = (14)(25)(36) = 6[z]].
8 rotations of order 3, like v with

my = (124)(365) = 8[z4].

We have considered all 24 rotations of the cube and have cycle
index

2 4 32223 + 62224 + 623 + 827

24
2. Cycle index for the rotations of a cube acting on the edges: Here
7. = (a)(b)(e)(d)(e) (/) (9) () (D) (4) (k)(1) = 1[%?).
7o = (abed)(efgh)(ijkl) = 6[2]].

To2 = (ac)(bd)(eg) (fh)(ik) (1) = 3[zf].
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73 = (af)(b)(ce)(dj)(g2)(hk)(1) = 6[z{2].
my = (ajg)(bfc)(dek)(hil) = 8[zf].
We have considered all 24 rotations of the cube and have cycle
index

212+ 329 + 62820 + 824 + 62
24 '

3. Cycle index for the rotations of a cube acting on the vertices:
Here

m, = (A)(B)(C)(D)E)F)G)(H) S 1),
e = (ABCD)(EFGH) = 6[22].
72 = (AC)(BD)(EG)(FH) = 3[2].
75 = (AG)(BC)(DF)(EH) > 6z,
7y = (AFH)(BGD)(C)(E) = 8[zfz].

We have considered all 24 rotations of the cube and have cycle
index
2P+ 925 + 82827 + 627
24 '

Homework 2.
1. “It’s déja vu all over again.” Let m be 5 in #3 above.
2. Since this particular choice of letters allows a reflection through
the middle letter of the 17-letter word to produce a word in these
letters, we can think of the group as D; containing the identity
isometry and a reflection. However, the solution is independent of
the letters given. If the given letters were A, B, C, D, for example,
then the action is still a group of order 2. Here, X is the set of
17-letter words containing the given letters and G consisting of the
identity mapping on all words and the mapping that reverses the
spelling of each word. Earlier in our study, to solve this problem, we
would simply have added the number of palindromes (words whose
reverse spelling is the same as the word) to the number of ordered
words and divided the sum by 2. We would unknowingly have been
using an elementary application of Burnside’s Lemma to get

5 .
3. We could do this problem the first week, if not before. We
suppose that red, orange, and yellow are among the colors. We
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place the face of the cube that is to be red flat on the table. There
are b ways to color the top face. If the top face is orange, then color
the front face yellow; if the top face is not orange, then color the
front face orange. In each of the 5 cases case, we have 3 ordered
faces remaining and 3 colors not yet used. There are 3! ways to
color these faces with the colors. Thus, there are 5 - 3! ways to color
the cube as required.

From another view, there arc 6! ways to color the faces of a fixed
cube with the 6 colors, if each color is used, and there are 24 ways
of rotating the cube, since 24 is the order of the octahedral group.
Thus, there are 6!/24 ways to color the cube as required. This
solution is tantamount to using Burnside’s Lemma, which gives us

([1]6! + [23]0
24 '

4. Considering the 6 elements in Dy, from the array

L (1 20 [ 2/
P 0 2] 2z 2] 2y .
o1, 02, 03 (3] z2z) (3] 232
we get our solutions
miY + 3mb 4+ 2m m + 3mY + 2mP°
an
6 6
5. We have
0" +90° 180° h,v p.m

. 1. 36() 492, 31‘) +1. 330 9. 333 +92. 3.‘5()
B 8

w

Not that anybody asked, but w = 9 here.

6. If the figure consisting of the 18 edges is fixed by a rotation,
then the cube itself is fixed by the rotation. (We should not expect
the converse, however.) So we run through the elements of the
octahedral group to see which of these rotations actually fix the
marked cube. Of course, there is the identity rotation ¢ and n, has
type z!®. Since the rotations of 290° about the join of centers of
opposite faces do not fix the marked cube, they are irrelevant.
However, each of the 3 rotations of 180" about the joins of the
centers of opposite faces is associated with a permutation of type
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2229, Rotations of 180 about the joins of the centers of opposite
edges do not fix the marked cube. The 4 - 2 rotations of £120°
about the join of opposite vertices have an associated permutation
of type 29. We have

[1]51% 4 [3]5% + [8]5"
12

wr =

as our answer.

The 12 elements of the group of rotations of the marked cube
are those of the tetrahedral group, which is the group of all
rotations, including the identity, that fix a given regular
tetrahedron. To check this out, while holding a cube by 2 opposite
vertices, on each of 3 faces mark a diagonal emanating from the top
vertex. Then join the other ends of these diagonals in pairs. We
now have each face of the cube marked with a diagonal. These
marked diagouals are the edges of a regular tetrahedron, and this
regular tetrahedron is inscribed in the cube.

§40. Pdlya’s Pattern Inventory.

Homework.

1. The pattern inventory of the black and white colorings of the
vertices of a cube is given in the text immediately before this
problem as

B + b7t + 36%w? + 30°w” + 7wt + 363w + 307w £ blw” + p0ud.

We see that b*w? has coefficient 7, which is the answer to our
question.

2. The cycle index for Dy acting on the 4 squares of the 2 -by-2
checkerboard is

[z + [2)z] + [UzF + [2)25 + [2)2729
. .

The pattern inventory for the 2-coloring is then

(b+w)* +2(b* +wh) +3(b2 + w?)? +2(b + w)?(? + w?)
2 .

which 1s

bt + B3w + 20%w? + b’ + w?,
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which should be no surprise.
3. From the cycle index above (§39, Homework 1, #1, page 209),
we compute the pattern inventory

[(b+ w) + 3(b+w)*(b* + w?)?
+6(b+ w)?(b* + wh) + 6(b + w?)?
+8(b" + w?)?] /24,

which is
165 + 16%w + 26%? + 203w + 262w + 1bw® + 1S,

If we think about it, we could have written down the simplified
pattern inventory without the first form above, since each of the
coefficients in the simplified form is easy to obtain by elementary
counting.

4. From the cycle index above (§39, Homework 1, #2, page 209) we
get the pattern inventory

[(r+w+5)"2+3(r? + w® + b?)°
+6(r +w + b)2(r? + w? 4+ 2% + 803 + w4 b3)*
+6(r! +u? +5%)°] /24

5. We want the coefficient of r#w*b? in the expansion of the
pattern inventory in #4 above. The coefficient of rtw*b* in

(r? + w? + %)% is the coefficient of (r2)%(w?)2(b?)? in

((r?) + (w?) + (b2))8. The calculation of the coefficient of r*w*w? in
(r 4+ w + b)%(r? + w? + b%)°® is more formidable. Think of selecting 1
term from each of the 7 factors to get a term in the expansion. We
must pick 1 of the 3 choices r, w, b from the first factor. Say, r.
Then we are forced to pick r again from the second factor, since we
can pick up only even exponents from the remaining 5 factors. So,
we now have r? accounted for and need to select another 72 from 1
of the 5 last factors. Next, we must pick w? from each of 2 of the
remaining 4 factors, and, finally, we must pick 5* from each of the
remaining 2 factors. Thus, as a final answer, we get

atit + 3o + 63 (1) (5) )] +8-0+6fm
24 ’

or 1479.
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For a slightly different approach to the calculation of the quantity
in the square brackets above, we expand (r + w + b)? as

r? +w? + b2 + J, where, here, J is the junk 2rw + 2rb+ 2br. (There
is danger in discarding the wrong thing in the junk. If we were
looking for the coefficient of r3w®b?, then this junk would be a
jewel.) However, it is evident that our junk can make no
contribution to the coefficient of r*w*w?*. In fact, the junk can be
ignored here, and we are essentially looking for the coefficient of
rdwtwt in (r? + w? + %)5, which is 90.

Homework for a Week.
1. By now, it should almost be as easy to compute the cycle index
284622 4+ 325 + 624 + 82727
24

as it is to look it up in the text. Thus, the pattern inventory is

[(r +w + b)®
+6(r* + w! + 61+ 9(r? + w? + b%)!
+ 8 (r+w+b)*(r* + w® + b*)?] /24.

2. The cycle index is, in this case,

2164 + 2241b + 3252 + 2z182228
8

and so the pattern inventory here is

[(0+w)® +2(6* + w")'® +3(6* + w?)*
+ 2 (b+w)B(b? + w?)*] /8.

We first find s, the number of colorings where there are an equal
number of black and white squares. The first 3 terms in the
numerator above should not be a problem. For example, the
coefficient of 32w in (b* 4+ w*)!® is the coefficient of (b*)3(w*)® in
((b*) + (w*))18. This coefficient is 16!/(8!8!). However, the last term
in the numerator might give us a problem. Now, from (b + w)® we
can get any one of b3uw?, BOw?, btwt, H2wh, or bOw®, if we ignore the
irrelevant terms having an odd power of . Thus, respectively, we
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must g‘(}t b24’LU32, b26w30, b28’LU28, b301l)26, and b32w24 from

(b2 4 w?)?8. Therefore, we have a calculation for s.
1 /64 + 216 n 3732 n
§== - =
8\32 8\ 8 8\ 16
2828+828+828+828+828
8 1\8/\12 6/ \13 4/\14 2/\13 0/\12/|"
Next, we compute ¢, the total number of 2-colorings. But that is

easy. We get

-264+217+3_232+237

t
8

The solution to our problem is

t—s
2

3. The cycle index appears in #1 above. We want the coefficient of
r?w?b%g? in the related pattern inventory. The solution is

8-0 ,

1 8! 41
nonn o

= 16.0
51 | o129 TO-0+9

or 114.

4. In cach of the cases below, we let w3 denote the number of
necklaces with exactly 3 white beads.

Case n = 7. The cycle index is

2 + 6z + Tzl
14

Case n = 7 and k = 2. The pattern inventory is
[(b4+w)" +6(b" +w™) +7(b+ w)(b? + w22)3] /14

and so

r

7
wy = K3> +0+7(1- 3)] /14 = 4.
Case n =7 and k = 3. The pattern inventory is

[(r +w+ )T +6(r" +w +67) +7(r +w+b)(r* +w’ +°)%] /14
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w3 = KQ 240+ 7 (1 - (‘f) 22)] /14 = 46.

Case n = 9. The cycle index is

and so

2) + 223 + 624 + 9z 25
18 '

Case n = 9 and k = 2. The pattern inventory is

[(b+w)? +2(° + w?)* + 6(b” +w”)
+9(b + w)(®* + w?)*] /18

and so
9 .
w3 = 3 +2-34+0+9-4|/18=T.
Case n = 9 and £ = 3. The pattern inventory is

[(r+w+b) +20° + w® +%)°
+6(r" +u? + )+ 9 (r+w+b) (1 +w? + 1)2)4] /18

and so

w3 = Kg)zﬁ +2(3-29)40+9 ((?)23” /18 = 316.

Case n = 11. The cycle index is

2V 4+ 102 + 112/ 2]
22 '

Case n =11 and k = 2. The pattern inventory is

[(b+w)'! + 100" + w') + 11(b + w)(b* + w?)?] /22

wy = K?) FO04+11-1- (‘;’)] /22 = 10.

and so
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Case n = 11 and k = 3. The pattern inventory is

[(r+w+ byt
+ 10(r + 20! 4 1)
+11(r +w + b)(r* + w® + b%)?] /22

].]. 8 '5 4
wy= |5 )28 +0+ 111 ()2 /22 = 1960.

If we had a choice, would we rather do a necklace problem that had
36 beads or one that had 37 beads? No contest. Actually, for any
odd prime p we should be able to write down the cycle index for
Dy, acting on the regular p-gon without much hesitation.

and so

5. The cycle index here is
2116 + 22:51 + 228
—
By using the Lemma to PIE, we have our solution
31642.34 438 /3\216 4 2.9 408 L (3 LE2+t
4 2 4 1 4 )

6. From the computations in the last 2 columns of

Type of g in S3 I # of type I Part a ‘ Part b
3\ /3\2
z 1 (12) (D)
2129 3 7 8-3-3
23 2 1 0

we have the solutions

() +3-7+2-1 _

19
6

and

(23D +3(8-3-3)+2-0
6

= 4536

for the first and second questions, respectively.
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. g, for cycle
order d | # = 6(d) example type of 7, !F;|
1 1 228 2% 12
9 1 ol M 9l1 | 9
4 2 p’ 2 27 —2
7 6 p? z 21 +2
14 6 p? 2 3.2
28 12 p' Zog 0
14 refleetions in diagonals 22243 3-2M
14 other reflections zg 0

TABLE 13. Dy Acting on Necklace.

§41. Necklaces.

Homework.

1. We use the lemma. The first 4 of the terms in the numerator
below come from consideration of the rotations of (0", 90°, 180°, and
2707, respectively. The last 2 terms are from reflections in the 2
diagonals and the reflections in the 2 perpendicular bisectors of the

edges. We have

= '+ 2) + 0+ (224+2) +0+2(3-2%) +2(0) i

Without the lemma, we can consider the number of necklaces with
exactly 0 red, 1 red, or 2 red beads. These are easy to count
directly: we get 1, 2, 3, respectively.

2. From Table 13, where p is a rotation of order 28, we get the
computation

7

(2% +2) + (27 +2) +2(27T = 2) + 62 +2) +6(3-2) 1 12(0) 1 14(3-2") + 14(0)

56

L.
W=

= 4.806.078.

3. First note that the center vertex can be any 1 of the 5 colors.
Since this vertex is adjacent to all others, we are then reduced to
4-coloring an octagon with 4 colors such that no 2 adjacent vertices
have the same color. From a table similar to Table 13, we get the
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computation
wh =
0 180° +90° +45 135" diag. other
- 1(3%+3)+1(3* +3) +2(4-3)+ 4(0) +4(4-3%Y)+4(0)
16
= 2490.

Practice Exam. 1. 75. 2. 75. It is no accident that the answers to
#1 and #2 are the same. If we join the centers of adjacent faces of
a tetrahedron, we get another tetrahedron. 3. 278. 4. 704,370.

Tidbit. Stirling number of the first kind m which counts the
number of ways to seat n persons at k indistinguishable round
tables with at least 1 person at each table, is the number of

permutations in S, with exactly k cycles.
Chapter 6. Recurrence Relations

§42. Examples of Recurrence Relations.

Exercise. From the bottom up: ay =0, a1 = 2ag + 2 = 2,
ag=2a1+2=22+2a3=2a0+2=2(22+2)+2=234+22 42
ag=2a3+2=2442% 12249 .

ay = 2" 42771 4o 423 4 924 9 = 9ontl 9 From the top down:
Un =201 +2=22ay,_2+2]+2=2%, 14+224+2=
22[2ap_3+2]+22+2=2%20a, 34+224+2242=...=

2120, (2" 42242 = 2P g 40249 — ontl g

§43. The Fibonacci Numbers.

MORE PIE PROBLEMS?
Line Pizza. No problem here.

cn =n+1forn>0.

Plane Pizza. The maximality property requires that every 2 lines
intersect in a point but no 3 lines intersect at 1 point. Since n — 1
lines cut the plane into b, 1 regions and an n'® line will intersect
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FIGURE 2. Pizza Slices.

the n — 1 lines in n — 1 different points, then this n'® line will create
an_1 new regions, as is seen in Figure 2. That is, b, = by—1 +an
for n > 0 with bg = 1. So b,, = b,,_| + n and, unwinding, we get
bn =by+ [l +2+ 43+ -+ (n— 1)+ n]. Therefore,

b, = &i—n_ﬂ for n > 0.

2

Space Pizza. The maximality property requires that every 2
planes intersect in a line but no 3 planes intersect at 1 line. An nth
plane will intersect n — 1 planes in n — 1 lines such that each 2 of
these lines intersect in a point in the nt plane but no 3 of these
lines intersect at 1 point in the n*" plane. We can now view
Figure 2 as the cross section determined by the n'™ plane cutting
the space pizza slices determined by n — 1 planes. Since n — 1
planes cut space into a,-1 regions and the nth plane creates b, 1
new regions, we have a, = a,,—1 + bp_1 for n > 0 with ap = 1.
Using the fact that Z: 012 =r(r+1)(2r+1)/6 and unwinding, we
get Gn~<L0+E;, Obk =1+>7, 1ﬁﬂ+—2
Ry ST s SRS WP
— 14+ ! |:(n 1 r:;)(Zn 1) + (n— ;)(n) + 271]
_ (7’L+1)(77§7n+6)' So

3 =
n 6
Cp = ;%TL for n > 0.
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It is interesting that

= (e ()
=+ (0 (),
an = (o) + (1) + () + ().

§44. A Dozen Recurrence Problems.

f

The Dozen. 1. The n'! circle intersects the other n — 1 circles in
2(n — 1) points that determine 2(n — 1) arcs on the n*! circle and
each arc increases the number of regions by 1. So,

anp = ap—1+2(n — 1) for n > 1 with a; = 2. If we want to declare
that ag = 1, then we must do so separately because the recurrence
rclation fails for n = 1. 2. If there are k spaces left after parking the
first car, then we can fill the remaining spaces with the cars in ay
ways. (That’s what “a;” means!) Thus, considering the color of the
first car that is parked and how much room is left for the remaining
cars, we get ap, = an_| + 2a,_ 5 for n > 2 with a1 = 1 and a9 = 3.
(Perhaps you would like to include ag = 17) 3. If there are k stairs
left to climb, then we can climb these stairs in a; ways. Considering
the number of stairs taken in the first step and how many stairs are
left for the remaining steps, we get a, = an_1 + an—s for n > 2 with
a1 = 1 and as = 2. 4. The sequence can begin 01... in a, o ways,
begin 02... in a,_2 ways, begin 1... in a,_; ways, and begin 2. ..
in a,_1 ways. So, ap, = 2a,_| + 2a,,_2 for n > 1 with ag = 1 and

a; = 3. (Check ay = 3% — 1.) 5. Considering whether n is in the
subset or not, we get a, = anp_1 + an_s for n > 2 with a; = 2 and
as = 3. Can you explain why this is the same problem as

Example 147 6. Considering the color of the top flag, we get

ap = 20p-1 + an_o for n > 1 with ag = 1 and a1 = 2. 7. We have
ap — p—1 = 2[an_1 — an_2}, or ap = 3an_1 — 2a,_2, for n > 1 with
ag = 2 and a; = 7. 8. Remember that n is the dollar amount. For
each purchase, we spend either $1 in 1 of 2 ways or else $2 in 1 of 3
ways. Hence, an, = 2a,_y + 30,5 for n > 1 with ¢y = 1 and a; = 2.
(Check as = 7.) 9. From the figure

R....... An—1 GR........ An_9
W...... Ap 1 GW........ Ay —9
B..... 4799 GB..... Ay 9

we see that a, = 3an_1 + 3a,_2 for n > 0 with ag = 1 and a; = 4.
(Check as = 4% — 1.) 10. The second head can appear on the nt®
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flip in n — 1 ways. Otherwise, the n'" flip can be either heads or

tails together with the second head appearing on or before the
(n — 1)** flip in 2a,—1 ways. So a, = 2a,—1 +n — 1 for n > 0 with
o = 0. Unwinding here would be difficult. A better approach is to
consider all possibilities for the n flips. We get 0 heads, 1 head, or
at least 2 heads. So. 1 +n + a, = 2", and we therefore have
a, =2" —n—1for n > 0. 11. We find the maximum M and
minimum mq among half of the 2" reals in a,, ; ways. Likewise, we
find the maximum A/5 and minimum my among the other 2 !
reals in a,_1 ways. It is necessary and sufficient to compare A,
with Ay and to comparce my with me. So, a, = 2a,_1 + 2 for n > 1
with a1 = 1. II' we want to declare that ay = 0, we have to do so
separately because the argument here fails for n = 0. Unwinding
produces a, = 3 - 27=L _ 9 for n > 0. 12. We have apy = 0if r < 2n
or v >4n, ax1 = 6, a3 = 10, ag 1 = 15, and ag» = 36. Otherwise
we have a,, = <3>G/r—2,n,—1 + <§>a,4,3_”,1 + <Z>ar,4_’n,], from
considering how many balls we put in the first box.

845. Solving Recurrence Relations.

Homework. 1. Unwinding, we get

an = ay + [2(1) +2(2) + - +2(n — 1)]. So, a,, = n* —n+2 for

n > 0. 2. We first substitute 2¥ for a; in the recurrence relation
Un = An_1 + 2ay_o. From 2" = 2"~ 4+ 22”2 we then get the
characteristic equation 22 — 2 — 2 = (& — 2)(x + 1) = 0, which has
roots —1 and 2. So a,, = b(—1)" 4 ¢(2)" is the general solution,
where b and ¢ are arbitrary constants. Using the initial conditions,

we have the equations 1 = a; = —b+ 2¢ and 3 = a2 = b+ 4¢. which
have solution b = 1/3 and ¢ = 2/3. So. a, = [2"'1 + (=1)"]/3 for
n>1.3.a,=F, forn> 0 4. From 2" = 22" + 22772 we get

the characteristic equation 2 — 23 — 2 = 0, which has roots 1 + V3.
So a, = b(1 + v3)" + ¢(1 — /3)" is the general solution. Using the
initial conditions, we have the equations 1 = ag = b+ ¢ and

3=a; =b(1 +3) +c(1 —/3). (In passing, we note that the
empty sequence really pays off here. The first of the 2 equations
above is fairly simple and much px(‘f(‘rabl(‘ ‘r() using the next
possibility, which is 8 = as = b(1 + v/3)? + \/g)“)) This time
we have the solutions b = (3 + Z\f 3)/6 dlld ¢ = (3—2v3)/6. So
(5+2f)(1+\/_)"+ 32V3)(1- V) forn > 0. 5. a,, = F,

n 2 for

Ap =
n > 1. 6. From 2" = 21 n=l 4 212 we get the characteristic
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equation 22 — 2z — 1 = 0, which has roots 1 + v/2. So

an = b(1 ++/2)" + ¢(1 — v/2)" is the general solution. Using the
initial conditions, we have the equations 1 = ag = b + ¢ and

2 =a1 = b(1 +v2) + ¢(1 — v/2). We have the solutions

b= (2+v2)/4and c = (2 — v2)/4. So

n = (2+v2)(1+v2)" +H2-2v2) (1 V)" for n > 0. 7. From

a
" =3z — 2x”_24 we get the characteristic equation

x? — 3z 4+ 2 = 0, which has roots 1 and 2. So a,, = b(1)" + ¢(2)" is
the general solution. Using the initial conditions, we have the
equations 2 = ap = b+ ¢ and 7 = a; = b + 2¢, which have solution
b=-3and ¢=5. So, a, =5-2" — 3 for n > 0. 8 From

2™ = 22" ! + 3272 we get the characteristic equation

x? — 27 — 3 = 0, which has roots —1 and 3. So a, = b(—1)" + ¢(3)"
is the general solution. Using the initial conditions, we have the
equations 1 =ag = b+ ¢ and 2 = a; = —b + 3¢, which have solution
b=1/4 and ¢ = 3/4. So, a, = w for n > 0.

§46. The Catalan Numbers.

Modeling Problems. 1. If we drop the first element of such a
sequence we have such a sequence. Thinking of what could come
before such a sequence of length n — 1, we see that a,, = 2a,,_1 for
n > 2 with a; = 3 and a3 = 6. So a,, = 213 for n > 0. Note that
ap = 1. 2. By considering, in turn, sequences that begin 1...,2...,
0..., we see that a, = ap—1 +ap-1+ (3" ~a, 1). So

an = ap_1 + 3" ! for n > 0 with ag = 1. By unwinding, we get

ap, = l—*;’—n forn > 0. 3. ap, = (2n — 1)ap—1 for n > 0 with ag = 1.
The 2n — 1 is the number of ways to match the tallest (say) with
someone. Unwinding here gives (2n — 1)(2n — 3)--- (5)(3)(1), or
(2n)!/[2"n}], as expected. 4. a, = (4”’:;1)%,1 for n >> 0 with

ap = 1. Unwinding here gives the expected solution (4n)!/[4!"n!].
5. Considering the piles that from bottom up begin RG ... ,
W...,B... ,and G ... | with the obvious notation, we see that
ap = 3an-1 + an—y for n > 1 with ap = 1 and a; = 3. (Check

ag = 10.) Piles of poker chips of n possible colors are n-ary
sequences in party dress. 6. Either the second head occurs before
the n'* flip in a,_; ways or else on the n'" flip in n - 1 possible
ways. S0, an, = ap_1 + (n — 1) for n > 1 with a; = 0. Therefore,
an =n(n —1)/2 for n > 0. 7. Taking into consideration whether
the sequence begins with 1, 2, 3, or 0, we see that
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n =y 1+ a, 1+a, 1+ @ —a, 1). So, a, = 2a, 1+4"71
for n > 1 with a1 = 3 or, if you prefer, a, = 2a,_1 +4""! for n > 0
with ¢y = 1. Unwinding produces a, = 2”*1(2"’ —1) for n > 0.

8. We can attach a 0 to the front of every such sequence of length
n — | except those that begin with a 1. So the number of desired
sequences that begin with 0 is @, 1 — ¢y,—2. We can attach a 1 or a
2 to the front of every such sequence of length n — 1 to obtain a
desired sequence. All desired sequences are obtained in these ways.
We have a,, = 3a,—1 — @,,—2 for n > 1 with ag = 1 and a7 = 3.
(Check ay = 8.) 9. The sequence can begin 01 ... in a,_» ways,
begin 02... in a, 3 ways, begin 1... in a,,_1 ways, and begin 2. ..
in a,_1 ways. So, a, = 2a,_1 + 2an_2 for n > 1 with ag = 1 and

a1 = 3. (Check as = 3% — 1.) 10. Taking into consideration whether
the sequence begins with 1, 2, or 0, we see that

(n = 1+ an_1 +2"7". So, an = 2an_1 + 271 for n > 0 with
ag = 1. (Check ap = 3.) 11. The sequence can begin 00. .. in 372
ways, begin 01... in a,_» ways, begin 02... in 3" 2 ways, begin
1...in a,—1 ways, and begin 2... in a,_1 ways. So,

Gp = 20p_1 + ap_o+2-3""2for n > 1 with qp = 0 and a; = 1.
(Check as = 4.) 12. The sequence can begin 0... in 0 ways, begin
1... in 4" ! ways, begin 2... in a,_; ways, and begin 3... in
Ap_1 Ways. S0, a, = 2a,_1 + 471 for n > 0 with ag = 0. The
following attack gives the solution in closed form. Each of the k
elements after the first 1 can be anything and the (n — 1) — k
elements before this 1 can be only 2’s and 3’s. So,

p = SOpT i Akgn=lok — gn=1§77 fok — on=1(9" _ 1) for n > 0. An
analogous argument gives a, in Example 15. 13. The figures [[_,
H_, and [ [ show the 3 ways that the tiles can be placed to cover
an end of the board having length 2. We therefore see that

Ay = Up_1 + 2a,._o for n > 1 with ay = a; = 1. (Check ag = 3.)
14a. From the bottom, a pile can begin with a white chip in a,_;
ways, begin with a blue chip in a,—1 ways, begin with a green chip
in a, 1 ways, but begin with a red chip in a,—1 — a,,—2 ways. We
arrive at the last count by considering all such piles of height n — 1
sitting on top of a red chip; all of these pile of height n — 1 can be
used except those that begin with a green chip. Conversely, every
such pile of height n that begins with a red chip must be of this
form. So, a, = 4a,_1 — an_o for n > 1 with ¢y = 1 and a; = 4.
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(Check ay = 2% — 1.) 14b. We resort to the figure

RR...... g2 W U —1
RW........ gn-2 B..... A1
RB........ gn—2 G...... An_1
RG........ Ap—2

S0, @y, = 3an_1 + an_o + 3 -4"2 for n > 1 with ag = 0 and a; = 1.
(Check as = 6.) 14c. The top chip can be red in a,-1 ways. The
top chip can be white in a,,_1 ways. The top chip can be blue in
a,—1 ways. The top chip can be green in 47! — 371 ways. So,

an = 3an_1 + 4" 1 — 37! for n > 0 with ag = 0. (Check a; = 0.)
On the other hand, the number of possible piles such that the
bottom red chip is the k™" from the bottom is 3571 . (4n—F — 3n—F),
SO, an = ZZ:I 3k—1(4n—k’, _ 3n—k) — 4n~1 22:1(3/4)14:—1 _

JlS e 1=4"-3"—n3"1=4"— (n-3)3""! for n > 0.

14d. The top chip can be red in 0 ways. The top chip can be white
in a,_1 ways. The top chip can be blue in a,,_; ways. The top chip
can be green in g1 ways. S50, a, = 2a,-1 + 471 for n > 0 with
ao = 1. (Check a; = 3.) 14e. The top chip can be red in 4*! ways.
The top chip can be white in a,_; ways. The top chip can be blue
in a,_1 ways. The top chip can be green in 0 ways. So,

ap = 2an_1 + 4% 1 for n > 0 with g = 0. (Check a; = 1.) 15. Given
a “desirable” sequence of n H'’s and n T”s, we index the H’s and
index the T’s, as in the example where the desirable sequence
HTHHTHTT gives the indexed scquence H1Ty Ho Hs Vo HyT57Ty.
Note that the indexed sequence not only has H;.1 following H; and
T; 1 following T; but also T; following H;. Now to our 2n persons
arranged in order of increasing heights, we first assign the terms of
the indexed sequence in order. Then we form the array such that
the persons assigned the H;'s arc in the first row in increasing order
of the index 4. Likewise, the persons assigned the 1}’s are in the
second row in increasing order of the index i. That 7; follows H; in
the sequence assures us that columns are also arranged in
increasing order of height. Conversely, for a given array, assign each
of the persons in the first row an H and each person in the second
row a T". Then form a sequence of H’s and T’s by arranging all 2n
persons in a line in increasing heights. Argue that the sequence of n
H’s and n T"s is a desirable sequence. Hence, our answer is C),.
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Practice Exam. 1. The sequence can begin 0 in a, .; ways, begin
1 in 3"~ ways, begin 2 in a, 1 ways, and begin 3 in a,_1 ways. So,
an = 3an_1 + 3! for n > 0 with ag = 1. (Check a; = 4.)

2. The sequence can begin 0 in a,—1 ways, begin 10 in a,_2 ways,
begin 2 in a,1 ways, and begin 3 in a,_; ways. So,

ay = 3an_1 + a, 2 for n > 1 with ay = 1 and a7 = 3. (Check,

as = 10.)

3. From the figure

00... 42 1. an
01... an—_2 2... Qp_1
02... an-2 3... @n-1
03... dan_o

we get, an, = 3an—1 + 3an_2 + 4" 2 {or n > 1 with ag = a1 = 0.
(Check az = 1.)

4. If the first 2 digits of a desired sequence of length n are different,
then the sequence is obtained by attaching to the front of a
sequence of length n — 1 any of 3 possible digits. On the other
hand, if the first 2 digits are the same, then they must be 2’s or 3’s
and followed by a desired sequence of length n — 2. We also note
that cutting off digits from an end of any desired sequence
produces a desired sequence. So, a, = 3an—1 + 2an_2 for n > 1 with
ap = 1 and a; = 4. (Check ay = 42 — 2.) This very clever solution is
also obtained by first producing the recurrence relations

Zn = Zp1 + 2a,_92 and a, = 22,1 + 2a,_1, where z,, counts the
number of desired scquences of length n that begin with a 0 and
thus z, also counts the number of desired sequences of length n
that begin with a 1.

5. Let z, be the number of such sequences of length n that begin
with 0. The number beginning with 1 is also z,. The number
beginning with 2 is a,—1. The number beginning with 3 is an—1- So,
(p = 225 + 2ap_1, Or 22, = a, — 2a,-1. From the figure

00.......... Zn—1
0l.......... 0
02.......... Lp—2
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we see that 2z, = 2,1 + 2a,,_9, or 22, = 2z,_1 + 4a,, .o. Hence,
substituting, we now have [a, — 2a,_1] = [an_1 — 2a,_2] + 4a, _o.
So, a, = 3an-1 + 2an_o for n > 1 with ap = 1 and a1 = 4. (Check
as = 42 — 2.) It is somewhat interesting that this problem has
exactly the same answer as the previous problem. Given a sequence
that satisfies either of the problems and interchanging 0 and 1 in
the odd numbered terms of this sequence, we obtain a sequence
that satisfies the other problem.

6. Let z, be the number of such sequences of length n that begin
with 0. So, a, = z, + 3a,_1, or z, = a, — 3a,,_1. From the figure

000.......... Zn—1
001.......... Ap—3
002.......... Ap—3
go3.......... 3

we see that 2, = z,_1 + 3a,,_3. Hence, we now have

[an - 3an—1] = [a‘-nfl - 3an——2] + 3an 3. So,

ay = 4ap_1 — 3an_2 + 3ap_3 for n > 2 with ag = 1, a1 = 3, and
az = 10. (Check a3 = 34.)

7. Let z, be the number of such sequences of length n that begin
with (. Considering the second digit of these sequences that begin
with a 0, we have a first relation z, = z,,_1 + 3a,_o. A desired
sequence can begin with a 1 (and so must begin 10) in z, | ways.
A desired sequence can begin with a 2 in a,_ ways. A desired
sequence can begin with a 3 in a,_o ways. So, we have

n = 2n + Zp—1 + 2ap—1 as a sccond relation. Subtracting our first
relation from our second, we get 2z, = a,, — 2a,_1 + 3a,_2 as a
third relation. Finally, using this to substitute back into the second
relation, we get

2a, = [an = 2ap1+ 3a‘n72] + [an—l — 2ap_2 + 3“1173} + 2an-1.

S0, @y, = @n-1 + tn—2 + 3a,_3 for n > 2 with ap = 1, a; = 3, and
ag = 11. (Check a3 = 39.)

8. We will do this problem 2 different ways and get the answer in 2
different forms. We can attach a 0 to the front of every such
sequence of length n — 1 unless that sequence begins with 00.
Hence, a desired sequence can begin with a 0 in a,, | — 3a,_4 ways.
A desired sequence can begin with each of a 1, 2, or 3 in a,_1 ways.
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So we have a,, = 4a,—1 — 3a,,_4 for n > 4 with ag =1, a; =4, and
ag = 16, ag = 63. (Check a4 = 249.) A different result comes from
the figure

001 ... p--3 01... Ap—9 1... an_—1
002... an—3y 02... Ap—2 2... An—1
003... ap—3 03... ap—2 3.0 anp-

So, an = 3an_1 + 3an_2 + 3a,_3 for n > 2 with ap = 1, a; = 4, and
as = 16. (Check ag = 63.)

9. A desired sequence that begins with a 0 can be formed by
adding a 0 to the front of every desired sequence of length n — 1
except those that begin with a 01. Thus, there are ap—1 — @, -3
sequences that begin with a 0. We have a,, = 4a,,—; — a,_3 for

n > 2 with ag = 1. a; = 4, and as = 16. (Check a3 = 63.)

10. From the recurrence relations a,, = z, + 3a, 1 and

2n = Gp-1 — Zn—2, we cnd up with a,, = 4a,,_| — ay—2 + 3a,—3 for
n > 2 with ag = 1. a1 = 4, and ay = 16. (Check a3 = 63.)

§47. Nonhomogeneous Recurrence Relations.

Homewcrk. 1a. The homogeneous part has gencral solution

an = k1(—2)" + ko(3)". Trying a, = ksn + ks implies

(6k3 + 3)n + (6kg — 13k3) = 0 for all n. So, k3 = —1/2 and

ks = —13/12, giving the general solution

an = k1(—2)" + ka2(3)" — n/2 —13/12. From the initial conditions,

VRSN _ 1 9\n 3 [ 113 ol o ‘e
we then gcjz a, = ?2(—2) +3(3)" — 3n — 15 So, our final solution
. 324 (—2)"26n—13
is a, = +( 2)1,, o for n > 0.

1b. The homogeneous part has general solution

an = k1(—2)" + ko(3)". Trying a,, = k32" implics k3 = —1, giving
the general solution a, = k1(—2)" + k2(3)™ — 2". From the initial
conditions, we get a, = w for n > 0.

lc. The homogeneous part has general solution

an = k1(2)" + ka(=1)". Trying a, = ksn + k4 implies k3 = —1 and
ks = —5/2, giving the general solution

an = k1(2)" + ko(—1)" —n — 5/2. From the initial conditions, we
then get k; = 2 and ko = 1/2. So. our final solution is

ay = 2" — (n 4+ 2) + %l)l for n > 0.

1d. Trying a, = k3n2" implies k3 = 2/3, giving the gencral
solution a, = k1(2)" + kao(=1)" + %n?”. From the initial conditions,
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VA

FIGURE 3.
we then get a, = ~%(2)” + g(—l)” + %712”. So, our final solution is
(p = QTLH(B"_?H(*U" for n > 0.

le. The honbgeneous part has general solution

an = k1(2)" + kon(2)™. Trying a,, = k3n?2™ implies k3 = 1/2, giving
the general solution a,, = k1(2)" + kon(2)"™ + n?2" !, From the
initial conditions, we then get a, = 2"~ 1(n? — 2n + 2) for n > 0.

2. The number a,, will be the sum of a,_; plus the number of
triangles that contain a triangle from the bottom row. These “new”
triangles with orientation A are easy to count because the base
determines the triangle. See Figure 3. These number

n+ (n—1)+---+ 3+ 2+ 1], having bases of length from 1 to n
respectively. The new triangles with orientation 57 have a vertex on
the bottom side. These number [1 +2+3+---4+3+2+1]. If n is

n—1 terms

n=1
odd, then n — 1 is even and this is 23,2, k, which is (n? — 1)/4.
However, if n is even, then n — 1 is odd, there is a middle term, and

n—2
we have § + 3", 2, k, which simplifies to n?/4. ’In either case, this
number is given by the expression [nz — #] /4. Hence, using

only simple unwinding and our last observation giving a formula for
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n 2
p—1 k7, we have

Uy = ap-1 +
m+n—-—1)++3+2+1+[1+2+3+---+3+2+1]

n{n+1) n? — —l_(_l)”
= ap—1 5 +
+J 2+ 1 1
=a, 1 4n rz
3 Ll — | 1|~ 1=(=DF
= (. — kz _ A _

3 {n(nqt l)(2n+ 1)} L] V(n;ﬁ)] _%

4 6 2 2
ARt 4+ 1007 +4n — 14+ (—1)"
- 16
onm+2)2n+1) 1-(-1)"
B 8 16

Chapter 7. Mathematical Induction

§48. The Principle of Mathematical Induction.

Homework MI 1.

1. The formula is true when n =1, as E}:ljz =1°=1= 1(22),(3).
For the induction step, assume that Z§’21 j? = LH_I)()(ZLU for

some k such that k& > 1. (We want to prove the formula holds for
the case n = k + 1.) Then, Zfﬂl ji= {Zle jQ} +(k+1)? =

[k(k+1021*+1)} 4 SEHD® L0k 4 1)+ 6(k + 1)] =

Bl (92 4 Tk + 6) = B (k 4 2)(2k + 3) = BHUERDHRURGIH] g,
the formula holds when n = &k + 1. Thus, by mathematical
induction, the formula holds for all n such that n > 1.

2. Since we know that ", j = "(";1), the formula that we are

X 2
trying to prove is > 7 =1 43 [ﬂ%l)} for n > 1. The formula is
true for n =1, as ZJ i 7‘ =1 = 12, For the induction step, assume

that Z'{;:l 3= [W”H)} for some k such that k > 1. (We want to
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prove the formula holds for the case n = &k + 1.) Then,
b o) 2 v 1

S = [ 5] e 1) = (M) AT

2
D22 4 gk 4+ 1)) = BED2 (4 9)2 = (——’“““(’;“)*—”) . So the
formula holds when n = k + 1. Thus, by mathematical induction,
the formula holds for all n such that n > 1.
3. The formula is true for n = 1, as 12 = 1(1)(3)/3. For the
induction step, assume that Zle(Q j—1)2 = k_(zk_—gﬁ@ for some
k such that & > 1. (We want to prove the formula holds for the case
n =k + 1.) Then,

S - 12 = [R5 - P + e+ 1) - 12 =
k(zk-1)(2k+1) 3(2k+1)2 _ 2k+l[ (2k — 1)+ 3(2k + 1)) =

2k+1 (ka + 5k + 3) 2k+1 (k + 1)(2k 4 5) [k+1]2 (k+1)31][2(k+1)+1l.
So the formula holds When n = k + 1. Thus, by mathematical
induction, the formula holds for all n such that n > 1.

4. The formula is true for n = 1, since 13 =1 = 1(2 — 1). For the
induction step, assume that Z§:1(2 j —1)% = k?(2k% — 1) for some
k such that k£ > 1. (We want to prove the formula holds for the case
n =k + 1.) Then,

SR -1 = [ - 1) 2+ ) -1 =

[R2(2k2 — )]+ (2k + 1)% = [2k* — k2] + 8k3 + 12K2 + 6k + 1 =

2k 8K+ 11k% + 6k + 1= (k2 + 2k + 1)(2k* + 4k + 1) =

(k4 1)2(2k2 + 4k + 1) = (k + 1D)?[2(k + 1)?2 — 1]. So the formula
holds when n = k + 1. Thus, by mathematical induction, the
formula holds for all n such that n» > 1. (You may well wonder how
we were clever enough to factor the quartic polynomial in k£ into 2
binomials above. We weren’t. Actually, we knew what the last line
should be and worked backwards to get to a quartic. Since it was
the desired quartic we got to, we knew we had an equality.)

5. First, we truly resort to induction—as opposed to mathematical
induction. We were not given a formula to prove and must devise
one of our own. We begin by computing a few of the sums, say for
n =1 to n = 5. There is no other reasonable way to attack the
problem. We display these computations in Table 14. On this little
evidence, we now jump to the conclusion- this is what induction
is—that the formula, which we will be able to prove by the
deductive reasoning method called mathematical induction, is

Z?Zl il = (n+ 1)! — 1. We already know from calculating the
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7 1 2 3 4 b) 6
n! 1 2 6 24 120 720
nln 1 4 18 96 600
Z?le!j 1 5 23 119 719

TABLE 14. Using Induction to Form a Hypothesis.

table that the basis step (n = 1) follows. For the induction step, we
assume that Z§:1 Jli=(k+1)! =1 for some k such that k > 1.
Then, Y3715 = [S250 34 + [0+ Dk D] = (k1)1 = 1]+
[(k+DWk+1)]=[(k+D1+ (k+1)]—L=[(k+1)+1]! = 1. So
the formula holds when n = k + 1. Thus, by mathematical
induction, the formula holds for all n such that n > 1.

6. Although there are, undoubtedly, crrors in this book, this one is
intentional. We should ask ourself if we understand the problem. It
is certainly true that if 1 die is rolled the result is either 1 of 1,3,5
or else 1 of 2,4,6. However, if there are 2 dice, then we are in
trouble. Is the outcome 3&5 the same as 2&67 This cannot be so,
since with 2 dice the 6 outcomes 2,4, 6.8, 10, 12 outnumber the 5
odd outcomes 3,5,7,9,11, if all we care about is the sum. Now, we
must ask, as would be expected in a pair of dice, Are the dice
indistinguishable? Again the answer must be that this cannot be
the intention. We know that with 2 indistinguishable dice the
number of possible outcomes is <g>, which is 21. Whatever these 21
outcomes are, we arc not about to find half of them even and half of
them odd are we? (We can look back to Table 1 on page 184 to see
the 21 outcomes.) Therefore, if the question is to make any sense,
we must assume that the dice are distinguishable and proceed from
there. Being asked to solve ambiguously stated problems is the kind
of thing that, if not expected, should not be surprising.

Now, on to solving the revised question by mathematical
induction. We conjecture that, for each positive integer n, when n
distinguishable dice are rolled, the number of possible outcomes
having an even sum is the same as the number of possible outcomes
having an odd sum. Here, we use the notation that the number of
cven outcomes from rolling » distinguishable dice is E, and that
the number of odd outcomes from rolling r distinguishable dice is
O, for each positive integer r. In particular, we have already noted
that ) = O; = 3, which proves the basis step. For the induction
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step in our proof, we assume that Ey = Oy for some k with £ > 1
and argue that Fry; = Ogs1. In order to get an even sum with
k + 1 distinguishable dice, we need to get an even sum with the
first k£ dice and a 2, 4, or 6 on the last die or else we need to get an
odd sum on the first £ dice and a 1, 3, or 5, on the last die. Thus,
Erpy =3B, + 30 = ?)(E,xv + Ok) Likewise,
Ok11 =30, + 3, = 3(Ek- + Ok) Evidently, Fpy1 == Og41, as
desired. Thus, our conjecture follows by mathematical induction.
We may not be among the princesses of Serindip, but we have
stumbled upon a rather interesting result. In the proof of the
induction step above, it does not really matter whether £} = Oy is
true or not. All that matters is that the last die has as many
distinguishable odd sides as distinguishable even sides. This alone
is sufficient to imply that Ej,; = O41. For example, the result
follows if the last die has its 6 faces numbered 1,1,1,1,1,2, regardless
of what happened with all the other dice. Since the dice are
distinguishable, any such die can be “the last die.” Thus, we end
up with the the problem that should have been asked in the first
place:

Our Serendipity Problem. Prove that when n distinguishable
dice, each of which can have any sclection of 6 (not necessarily
distinct) integers on its sides as long as there is at least 1 dic with
as many distinguishable even sides as distinguishable odd sides, are
rolled the number of possible outcomes having an even sum equals
the number of outcomes having an odd sum.

§49. The Strong Form of Mathematical Induction.

Homework MI II.

1. We want to prove that n concurrent plancs such that no 3 share
a line divide space into n{n — 1) + 2 regions for each positive integer
n. The basis step is easy as 1 plane bisects space. For the induction
hypothesis, we assume that k planes divide space into k(k — 1) + 2
regions for some k with & > 1. Now a (k + 1)*® concurrent plane
will necessarily intersect each of the &£ planes in a unique line.
These k lines will be concurrent at the point common to all the
planes. Thus, this (k + 1) plane will create as many new regions
as there are planar regions determined by the k& lines in this plane,
namely 2k. See Figure 4, where & = 5. So, using the induction
hypothesis, we have a total of [k(k — 1) + 2] + 2k regiouns in space.
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FIGURE 4. Five Concurrent Lines in a Plane.

Since [k(k—1)+2]+2k =k*+k+2= (k+ 1)[(k+1) — 1] + 2, the
number of regions in space determined by k + 1 concurrent planes
is (k4 1)[{(k+ 1) — 1] + 2, as desired. Thus, assuming the formula
holds for the case n = k implies the formula holds for the case

n = k 4+ 1, proving the induction step. Therefore, the formula holds
for all positive integers by mathematical induction.

2. We use mathematical induction with base 8 in the basis step,
which requires only observing that 8 = 3 + 5. For the induction
step, we assume that for some arbitrary integer k such that & > 8
there exist nonnegative integers p and ¢ such that k& = 3p + 5g. We
want to show that there are nonnegative integers r and s such that
k+1=3r 4+ 5s. We now have the equalities
E+1=3(p+2)+5(¢—1)=3(p—3)+5(qg+2).
Sor=p+2ands=¢g—1 will do unless ¢ = (. However, in that
casc, we must have p > 3 since k = 3p > 8 and, therefore we have
r=p—3and s = g+ 2 as a solution. Thus, when &£ > 8, a solution
for n = k implies a solution for n = k& + 1. Our result now follows
by mathematical induction.

3. Since cos 0 = 1 and sin0 = 0, the formula holds for n = 0. This
proves the basis step in a proof by mathematical induction with
base 0. (The basis step would be even easier if the base were 1.) For
the induction step, we assume that

(cos« + isin a)* = cos ka + isin ka for some k such that k > 0.
Then, (cosa + isina)f*! = [cos a + isin a]*[cos a + isina] =

[cos ke + i sin ka][cos a + isin o] = [cos ka cos a — sin kasin o] +
i[sin ko cos oo + cos kasin o] = cos(k + 1) + i sin(k + 1)a. So, if the
formula holds for n = k, then the formula holds for n = k + 1.
Hence, DeMoivre’s Theorem follows by mathematical induction.

4. We have 52 < 2% < 5!, since 25 < 32 < 120. This proves the basis
step in a proof by mathematical induction with base 5. For the
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induction step, we assume that k% < 2% < k! for some k such that
k>5 Then, (k+ 1)2 =k +2k+ 1 < k2 + k% < 2k 1 2k = ok+1 =
2.9 <2 k< (E+ DK = (k+ 1) So, (k+1)2 <281 < (B 4+ 1)L
That the inequalitics hold for the case n = k implies that the
inequalitics hold for the case n = &k + 1. Thus, by mathematical
induction, the inequalities hold for all n such that n > 5.
5. We are given a positive integer b with b > 1; in the
representations, b is called the base. For the case 0 << m < b, we
have n = 0 and ro = m. That is, m = m - b and there is little else
to say. For the case m > b, we usc the strong form of mathematical
induction with base b to prove that every positive integer m can be
uniquely represented in the form
‘T‘()b” + Y‘Ibl + 7‘2[)2 S 7.7?/_1{)11—1 + T'nbn
where 1, # 0 and 0 <r; <bfor j =1,2, ..., n. (There’s a pun
there, since “base” is used in 2 different mcanings—one relating to
the hasis step in mathematical induction and the other relating to
the basc in the representation of integers. By the way, we don’t do
the induction on n because that symbol is otherwise used.) If
m = b, then yn = 0+ 1-b and there is little to prove for the basis
step. For the induction step, we assume that, for some positive
integer k with k > b, every positive integer less than k£ has a unique
representation in the desired form. We want to prove that &k has a
unique representation in the desired form. By the so-called division
algorithm (see the comments below), there are unique integers g
and r such that k = ¢b+r with 0 <r <band 0 < ¢ < k. (We
simply divide k by b to get quotient ¢ and remainder r.) Since
0 < g < k, then by the induction hypothesis there exist uniquc s;
such that
g = sob" + s1bY + s9b? + - + s;_1bt 1 4 530t where s, # 0 and
0<s;<bforj=1,2,...,t Hence, k =1 +qb
=7+ (sgb" + 516 + 5207 4+ - + 516U 4 464D
=Y + S(V)bl + 31b2 -+ 82b3 + -+ St,1bt + Stbt'H.
We take ro = 7, and we take r; = s; 1 for i > 0. Since ry is unique,
it follows from the uniqueness of the s; that all the r; are also
unique. So, k has a unique representation of the desired form.
Therefore, our proposition follows by mathematical induction.

We have 2 comments about algorithms. First, we observe that
the division algorithm is not an algorithm. What we have is a
theorem that tells us about a quotient and a remainder but does
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not tell us how to find these. If we want to avoid misleading names,
there is a greater need to change the name of mathematical
induction than to change the name of the division algorithm. Our
second comment concerns an application of the proof above. As a
corollary of the proof we get an algorithm that tells us how to
change integers from one base to another. For example, to change
an integer representation in our normal form (base 10) to binary
representation (base 2), we repeatedly divide the integer and its
successive quotients by 2, keeping track of the remainders. It is
these remainders that are the digits of the representation in the
new base. For example, since 187 =93-2+ 1,93 =46-2 + 1,
46=23-240,23=11-24+1.11=5-2+1,5=2-2+1,
2=1-240,and 1 =0-2+ 1, then, 187(10) = 101110115y, which
means

1-10°+8-10' +7-10" =
1-2740-20+1.2541.24+1.2240.224+1.2L +1.920

The same procedure works for any base b with b > 1.

6. We take our lead from the algorithm in the problem immediately
above; instead of successively dividing by the same number b, with
each division we now increase the divisor by 1. Using the division
algorithm, we obtain unique quotients ¢; and remainders ¢; such
that for positive integer m

m=aq2+c with 0 < <1,
gt =@3+ with 0 < ey <2,
g2 = qz4 + 3 with 0 <3 <3,
g3 = qad + ¢4 with 0 < ¢y <4,

n—-2 — q.,L,1(7L) + Cn-1 with 0 <cpo1 <n—1,
Gn—1=¢qn(n+1)+cy with 0<¢, <nandgq, = 0.

Since 0 < @41 < ¢, the ¢; are decreasing and for some smallest n
we must have g, = 0. lterative substitution will now give us our
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desired representation, as follows.

m=c 1!+ ¢?2!
=c1 1!+ (cg + ¢23)2!
=11+ 2! + g23!
=c1 1!+ 2! + (c3 + g34)3!
=c1 1! + 32! + ¢33! + g34!
= ¢1 1!+ 22! + 33! + (eq + q45)4!
=11+ 92! + 33! + cud! + 45!

=11+ 2! + 33!+ -+ epnl + gu(n + 1)!
=11+ 2! + 33l + - -+ epnl,

where ¢; is an integer such that 0 <c¢; <jforj=1,2,..., n.

§50. Hall’s Marriage Theorem.

Homework MI III.

1. Use Hall’'s Marriage Theorem twice use the “if part,” switch
the sexes in the theorem, and then use the “only if part.”

2. For 1 < k < d, each k of the destinations (boys) are collectively
connected to (collectively know) at least k of the origins (girls).

3. This is a good game of solitaire if you like to be able to win
every game. There are 13 columns (boys) and 13 denominations
(girls). For example, the 4 cards 50, 5, 10{>, K& in column i are
interpreted as boy i knows the 3 girls in the set {5, 10, K'}. Each
collection of k columns has 4k cards and so at least &k different
denominations, since there are only 4 of cach denomination. This is
the marriage condition and a match is assured.

4. Suppose that each of k boys give us a list of the girls he knows.
Counting duplicate names, we have at least kr names. However,
since each name is on at most r lists, then we have at least &
diffecrent names among the & lists. So each set of k& boys collectively
knows at least & girls. The marriage condition is satisfied and a
matching is assured.

5. For each i, replace boy i with g; different new boys each of
whom knows exactly the same girls as boy ¢ and then apply Hall’s
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theorem. Let A; be the set of girls boy ¢ knows. The desired
condition is that

UAi > th

ied el

for all I such that 1 C {1, 2, ..., n}.

In their research paper with the clegant proof of Hall’s Marriage
Theorem, Halmos and Vaughan also solve this problem. They claim
this problem is a restatement in the marriage metaphor of “the
celebrated problem of the monks.” They give Balzac as the source
for this “well-known problem.” Unable to find the problem in
Balzac, this author asked Halmos about the reference. He
responded, To the best of my knowledge. Balzac never mentioned
any problem of the monks—we invented it-—made it up out of
whole cloth. Not even the American Journal of Mathemaltics is safe
from inside jokes.

6. Suppose al least 7 of the n boys can be matched with different
girls they know. We invent n — r additional girls such that cach
individually knows all n boys. In this invented situation, there is
clearly a matching for the n boys. (The remaining n — r boys can
be matched with only the invented girls, for instance.) Conversely,
after inventing such n — r girls, if there is a matching in this
invented situation, then at least r of the boys must be matched
with the original girls since at most n — r of the n boys can be
matched with invented girls. Therefore, there is a matching of r
boys in the original situation iff there is a matching of all n boys in
the invented situation.

Now, by Hall’s theorem, there is a matching in the invented
situation iff each k of the n boys collectively know at least k girls,
both original and invented. Since each boy knows all n — k of the
invented girls, the condition is that cach k of the n boys must
collectively know at least k — (n — r) of the original girls, as desired.
7. The first assumption in the problem is the marriage condition,
which assures there is always at least 1 matching. Assuming » < n,
we prove the first conclusion by using the strong form of
mathematical induction. The basis step (n = 1) is trivial (and
points out the limitation r < n). For the induction step, we assume
that the the proposition is true for n = 1.2.... ,m and prove the
proposition for n = m + 1. We suppose Lucky Pierre is 1 of the
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m + 1 boys and consider 2 cases. [Case 1.] Assume that for each girl
g that Lucky knows there is a matching of the m + 1 boys with
Lucky paired with girl ¢ and such that the remaining m boys
together with all the girls excluding girl g satisfy the marriage
condition. So, each of these m boys knows at least r — 1 girls other
than girl g. By the induction hypothesis, these m boys can be
matched in at least (r — 1)! ways. Since this is true for each of the
at least r choices for girl g, then there are at least r{r — 1)!
matchings for all the m + 1 boys in this case, as desired. [Case 2.]
Assume that the first case does not hold. Thus, there is a girl, say
Lucy, such that if Lucky is paired with Lucy then the marriage
condition fails for the remaining boys and girls. This means there
must be a set of k£ other boys that collectively know exactly k girls,
namcly Lucy and only k — 1 other girls, where £ < m. In matching
the m + 1 boys, these k boys must be matched with these k girls,
which by the induction hypothesis can be done in at least r! ways.
Hence, there are at least ! ways to match all the m + 1 boys with
different girls they know. We conclude by the strong form of
mathematical induction that the first conclusion in the problem is
true for each positive integer .

We turn to the second conclusion, now assuming r > n. It turns
out that we will need only ordinary mathematical induction here.
We begin by reproducing the proof above, making some necessary
changes. The basis step in this situation depends only on the
identity r = (ri—'l), The corresponding Casc 1 now depends on the

identity "‘((.,.(jf)l,)i”)y = (,r_(;! 7351~ We will be done when we argue

that the corresponding Case 2 cannot happen in this situation.
Since every boy knows at least r girls, then no set of k£ boys can
collectively know exactly k girls when &k <m +1 < .

Chapter 8. Graphs

§51. The Vocabulary of Graph Theory.

Homework Graphs 1.

1. We would hope that graphs isomorphic to the top 4, having 0, 1,
and 2 cdges, in Figure 5 would be immediate. Then the middle 3,
having 3 edges, would follow with just a little thought. Then, in the
best of all possible worlds, we would discover on our own the
concept of the complement of a graph. For example. in looking for
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FIGURE 5. The Nonisomorphic Graphs Having 4 Vertices.

selections of 4 of the 6 edges that produce nonisomorphic graphs,
we need only select those edges we did not select in forming each of
the diagrams in the top row. In general, the complement of
simple graph G is the simple graph having the same set of vertices
as GG but such that, for distinct vertices x and y, we have {z, y} is
an edge of the complement of G iff {x, y} is not an edge of G.

2. The vertices of the hexagon can be taken in order as Hy, U, Ho,
Ui, Hs, and Us.

3. Consider the simple graph where the people from Kansas are the
vertices and 2 vertices are adjacent iff the persons have met. The
odd vertices are those persons from Kansas that have met an odd
number of persons from Kansas and there must be an even number
of them, because there are an cven number of odd vertices in every
simple graph.

4. Since @, has 2" vertices, since each vertex in (), has degree n,
and since 2|Eq, | = X0, d(v) = 2"n, then Q, has 27 1n edges.
For the 3-cube, if we let the 3 vertices adjacent to 000 be in X, the
the other 3 vertices must be in Y. No edge of ()3 has both ends in
X or both ends in Y. We have shown that @3 is bipartite. Looking
at this example, we should guess that, in general, we can let X be
the set of vertices of (), that have an even number of 0’s and YV
must then be the set of vertices having an odd number of 0’s. (We
could switch “even” and “odd” here.) No edge can have both ends
in X; no edge can have both ends in Y. (Why?) Thus, Q,, is
bipartite. (For @, bipartite parts can be given by X = {A} and

Y =0, where X is the empty sequence and ) is the empty set.)

k
5. We arc aware that there are 2(3) simple graphs having k£ given
vertices, since cach of the (];) possible pairs of vertices either is or
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H: vertices 1, 2, ... ,n—1

odd vertices in H

NN N S el

A4

n

d(n) = # odd vertices in H.

FIGURE 6. Graphs with all Vertices Even.

is not an edge of the graph. First, given any 1 of the 2("2") simple
graphs H having {1, 2, 3,... ,n — 1} as its set of vertices, we form
a new graph GG by adding n as the new vertex and by adding all
edges such that n is now adjacent to all the odd vertices in H. So,
all the odd vertices in H become even in G. Beware, here as in
Figure 6, “even” and “odd” refer to the degree of a vertex and not
to the vertex itself. (For example, vertex 2 may be an odd vertex in
H.) The even vertices in H are still even in G. The new vertex n is
also even in G because the number of odd vertices in H is
necessarily even. (The number of odd vertices in any simple graph
is even.) So all the vertices of the new graph G are even, as desired.
(In symbols, this is Vi; = Vg U {n} and

Eg =FEgU{{n,v;}|vjisodd in H }.) Converscly, given a graph

G having {1, 2, 3,... ,n} as its set of vertices and such that each
vertex has even degree, we can easily form a simple graph H
having {1, 2, 3,... ,n — 1} as its set of vertices by deleting vertex n

and all edges adjacent to n from G. Thus, there is a one-to-one
correspondence between the set of simple graphs having

{1, 2, 3,... ,n} as its set of vertices and such that each vertex has
even degree and the set of simple graphs having {1, 2, 3,... ,n — 1}
as its set of vertices.

6. The graph is K33 and, so, is not planar. Begin by labeling, in
order, the vertices of the square as H1, Uy, Hz, and /5. This
determines Hy and Uj.
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7. Consider the simple graph formed by taking the 7 students as
vertices and defining 2 students to be adjacent iff they exchanged
postcards. To meet the condition stated, we would have a graph
with 7 vertices, each of degree 3. This is impossible since in every
simple graph the number of odd vertices is even. The answer is 0.
8. Call the elements of X boys and the elements of Y girls. Let r
be the maximum degree of the vertices in Y. We now have problem
#4 from the previous section.

§52. Walks, Trails, Circuits, Paths, and Cycles.

Homework Graphs 2.

3. Therc are lots of possibilities. For example: (a) I:I, (b) M,

(o 1 @[

4. Start drawing from a vertex and, without lifting the pencil from
the paper, wander around the page, passing through previous
intersections at will, and stop at some other vertex. Now, mark as
vertices the intersections and some additional points, as necessary,
to eliminate parallel edges and loops.

5. |_U—U and E are hamilton paths. Trying to construct a
hamilton cycle, we begin by noticing that the 4 corner vertices and
their adjacent edges must be part of any hamilton cycle. (Each
vertex of degree 2 must be part of every hamilton cycle.) Now, of
the remaining 4 edges around the outside of the figure, not all 4
can be part of the hamilton cycle. Picking any of the alternative
edges determines edges until an impasse is reached.

7. Since each vertex in (J, has degree n, then (), has an euler
circuit iff n > 2 and n is even.

9. See Figure 7.

10. Our proof that an n-cube has a hamilton cycle is by
mathematical induction on n. Follow the argument with a 3-cube
(an ordinary cube) and with the solution in Figure 7 for the
representation of a 4-cube (a tesseract) given in question #9. The
base step n = 2 is trivial, since (J2 is a cycle. For the induction
step, we assume that a k-cube has a hamilton cycle for some k& such
that k > 2 and prove that a (k 4+ 1)-cube has a hamilton cycle.
Given the (k + 1)-cube, consider the k-cube K formed by all
vertices ending in 0 and the edges of the (k -+ 1)-cube that join 2
such vertices. For each such vertex v, let v’ denote the vertex
differing only in the last digit. So, v" ends in 1 and vertices v and v/
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PN

FIGURE 7. A Hamilton Cycle on the Tesseract.

are adjacent. With K’ = {v' | v € K}, the set K’ together with the
edges of the (k + 1)-cube that join these vertices also forms a
k-cube. By the induction hypothesis, there are hamilton cycles

a{a,b}b{b,clc---z{z,ata and o'{d' W'}V I} - {Z,d'}d

in K and K’, respectively. We replace edges {a,b} and {a’, '} by
{a,a’'} and {¥,b} and arrange the terms as.

b{b,c}c---z{z,a}a{a,a'}d' {d’, 2z} .- {0} {¥ b},

which is a hamilton cycle in the (k + 1)-cube. The result follows by
mathematical induction.

§53. Trees.

Homework Graphs 3.
1. See Figure 8.

. VI VN X

There are only 6 candidatces, given in Figure 8. All trees are
bipartite. However, if we start labeling the vertices alternately R
(for red) and G (for green), then we must end with 3 R’s and 3 G’s
to have a spanning tree for K3 3. This eliminates the second, fifth,
and sixth of the trees in Figure 8, leaving the 3 possibilities.
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FIGURE 9. Spanning Trees for Ky.

3. Since there are 14 leaves, the vertices of degree 4 must be
connected by (624 — 14)/2 edges. So, the 6 (carbon) vertices of
degree 4 must be connected by 6 — 1 edges and thus must
themselves form a tree, to which the 14 (hydrogen) leaves can be
attached. We return again to Figure 8. Since there are no vertices
of degree 5, the last tree in the figure must be eliminated. However,
each of the first five trees is is a feasible tree for the the vertices of
degree 4. There are 5 solutions.

4. By Cayley’s Theorem, we expect 42 spanning trees. See Figure 9.
5. 3333999, 2112112,  2,6,2,2,4,6,6,6,6,5,4,4,3,2,2.
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7. Suppose that {a, b} and {v1, va, ..., v,} are bipartite parts for
Ks . In a spanning tree, there is a unique path from a to b, and
since {a, b} has only 2 elements, then this path must be of length
2. There are n choices for this path a{a,v; }v;{v;, b}b. Then the
remaining n — 1 vertices must be connected to exactly 1 of @ or b in
order to have a tree that spans. These choices can be made in 27!
ways. Hence, altogether, we have a total of n2"~! possible spanning
trees.

§54. Degree Sequences.

Homework Graphs 4.

1. With n vertices the possible degrees are the n possible values
0,1,2,...,n—2,n—1, but 0 and n — 1 arc impossible together.
We have n vertex pigeons and n — 1 pigeonholes.

2. Neither 42200 nor 32100 is graphic.

3. The graphic sequences in reverse order are 1100, 42211, 553322,
and 6664433.

4. Sequence 555553 is only 1 possibility.

5. Here, we let Hy denote a graph with n vertices, each of degree 4.
Clearly, H; = K5. The existence of Hg, H7, Hg, and Hg follows
from the degree sequence theorem. The rest follow by mathematical
induction. For k£ > 9, we take the union of the graphs Hs and
Hj_4. For a different attack, start with C), (an n-gon) and join
alternate vertices. Further, when n is even, say n = 2k, we can get
a planar graph by joining each vertex of a regular k-gon to the
closest 2 vertices of a smaller, concentric k-gon rotated (180/k)
For the case k = 4, we have the following graph.

a

6. An n-gon C,, will do nicely.
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7. The number of vertices must be even since cach vertex has odd
degrec. Here, we take a 2k-gon and add the k diagonals. Actually,
we can do better and find planar graphs. Graph K3 is a special
case k = 2, with 1 vertex in the interior of the triangle formed by
the other 3 vertices. For k > 2, we can take a regular k-gon with a
concentric larger k-gon and join corresponding vertices. For
example, for the case k = 1 we have the following graph.

§55. Euler’s Formula.

Homework Graphs 5.

1. Since there are neither loops nor parallel edges in a planar
graph, every region in a diagram must be bounded by at least 3
edges. Each edge is the boundary of at most 2 regions; some edges
such as the right edge in the graph m bound only 1 region. So,
summing the number of edges on the boundary for each of the r
faces, we must have 3r < 2¢. Substituting r < 2¢/3 in Euler’s
Formula, we get 2=p—q+7r <p—gq/3 or g <3p—6.

2. Assuming K5 is planar gives the following contradiction to
Corollary 1. 10= (}) =¢<3p-6=3-5-6=09.

3. If our planar graph G has no triangles, meaning that K is not a
subgraph of G, then each region in a diagram must have at least 4
edges as boundaries. Summing the number of edges on the
boundary for each of the r faces, this time we get 41 < 2q.
Substituting r < ¢/2 in Euler’s Formula, we get
2=p—qg+r<p-—q/2orq<2p—4

4. Since K33 is bipartite and so has no triangles, then assuming
K33 is planar gives the following contradiction to Corollary 3.
9=3.3=¢q<2p—4=2-6-4=8.

5. Suppose our graph G has no vertex of degree less than 6.
Summing the degree of the vertex for cach of the p vertices, we get
6p < 2¢. Hence, by Corollary 1, we then have the contradiction

3p < q < 3p — 6. Therefore, there must be at least 1 vertex having
degree less than 6.



Index

Ap, 76

Cn
graph, 161
group, 69
number, 127

D, 32, 69

Eq, 153

F,, 91

K, 155

K., 158

Np, 158

Oy, 89

Ps., 04

@n, 159

S, 75

Sz, 90

Ve, 153

Ii(r), 34

II(r,n), 34

A, 120

(9), 77
R(|z]], 43, 44
Rlz], 43, 46
Z, 77

Ly, 77

w, 91

w*, 95

@(n), 80

ay, 86

d(v), 156
d|n, 80

e®®, b7
ged(n, s), 80

n choose r, 7

n choose r with repetition, 11

n-cube, 159
r-combination, 7
r-permutation, 4

abclian, 72

act on, 85

action, 85
natural, 86

adjacent, 155



248 Index

alternating group, 76
associative law, 71
automorphism, 84

Balzac, 238

basis step, 137

Bell numbers, 114
binary operation, 71
binary sequence, 119
binomial coefficient, 22
binomial theorem, 22
bipartite graph, 157
bipartite part, 157
birthday problem, 10
block walking, 18
boundary conditions, 113
bubble sort, 119

cancellation laws, 72
Catalan numbers, 125, 127
Cayley table, 68
Cayley’s theorem
(graphs), 171
{groups), 88
characteristic equation, 122
choose with repetition, 11, 13
circuit, 161
class, equivalence, 83
closed, 71
closed walk, 161
coloring, 103
colors, 103
combination, 7
commutative law, 72
complement, 240
complete bipartite, 158
complete graph, 155
complete matching, 160
component of graph, 161
composition, 67
conjugate, 205
connected graph, 161
conventions, 2
cosel, 73
cycle, 161

cycle index, 94
cycle notation. 76
cycle type, 78
cyelic group, 77
cyclic group C),, 69

da Vinci, 69

daughters of the general, 148
degree, 156

degree sequence, 175
DeMoivre’s theorem, 145
derangement, 32
digraphs, 182

dihedral group, 69
directed graphs, 182
disconnected graph, 161
distance, 161
dodecahedron, 70
double dip, 17

dual, 181

edge, 153

cgf, 60

empty graph, 158
empty sequence, 120
empty set, 73

end, 155, 160
equivalence class, 83
equivalence relation, 82
equivalent colorings, 103
Euler, 127, 162

euler walk, 161

Euler’s formula, 177
Fuler’s phi function, 80
even degree, 156

even permutation, 76
cven walk, 163

exponential generating function,

99

Fibonacci numbers, 117
fix, 91

forest, 168

formal power series, 43

generated, 78



generating function, 43, 46, 47
exponential, 59
generator, 77
golden ratio, 118
graphic sequence, 175
graphs, 153, 158
bipartite, 157
complete, 155
complete bipartite, 158
connected, 161
cube, 159
directed, 182
dual, 181
empty, 158
isomorphic, 155
multigraphs, 158
null, 158
planar, 156
simple, 153
trees, 168
weighted, 182
greater Mississippi problem, 59
greatest common divisor, 80
group, 72
alternating , 76
cyclic, 69, 77
dihedral, 69
icosahedral, 70
octahedral, 70
symmetric, 75
tetrahedral, 112, 212

Hall's marriage theorem, 146
Hall’s theorem, 147, 148
Halmos, 238

Hamilton, 163

hamilton path, 163

harem problem, 151
hatcheck problem, 32
homogeneous, 134
homomorphism, 84

icosahedral group, 70
icosahedron, 70
identity, 71

Index 249

incident, 155
inclusion-exclusion, 30
indeterminate, 43
index, 74
induction, 138
mathematical, 137
induction hypothesis, 137
induction step, 137
initial conditions, 113
initial end, 160
inventory, 103
inverse, 72
isolated vertex, 158
isometry, 67
isomorphic groups, 84
isomorphic graphs, 155
isomorphism, 84

join, 155

Konigsberg bridge problem, 162
Klein’s Vierergruppe, 88
knights’ quest, 20

Kuratowski’s theorem, 157

leaf, 168

lemma for PIE, 30
length, 76, 160
Leonardo, 69
Leonardo of Pisa, 117
loop, 158

marriage condition, 146
marriage theorem, 146
mathematical induction, 137, 144
complete, 144
principle, 137
strong form, 142
maximal trail, 161
ménage problem, 39
Mississippi problem, 6
greater, 59
monks problem, 151, 238
multigraph, 158
multinomial theorem, 100



250 Index

multiplication principle, 3

necklace problem, 94, 108
neighbor, 155
nonhomogeneous, 134
null graph, 158

octahedral group, 70
odd degree, 156
odd permutation, 76
odd walk, 163
onto map, 38
operation
binary, 71
orbit, 89
order
element, 77
group, 73
set, 73

parallel edges, 158
partition of a
positive integer, 34
set, 114
party problem, 185
Pascal’s triangle, 7
path, 161
pattern inventory, 103
permutation, 3, 4, 74
PIE, 30
pigeonhole principle, 4
pizza, 119
planar graph, 156
Poélya’s pattern
inventory, 103
theorem, 104
polynomial, 46
power, 77
power series, 43
Priifer code, 171
proper subgroup, 77

quaternary sequence, 120
quickies, 19

recurrence relation, 113

relation, 82
equivalence, 82
recurrence, 113

relatively prime, 80

round table, 7

selections, 13
serendipity problem, 233
simple graph, 153

size of a set, 27, 73
spanning subgraph, 168
spanning tree, 169
stabilizer, 90

standard position, 68
Stirling number, 37
Stirling’s formula, 10
subdivision, 157
subgraph, 157
subgroup, 73
syminetric group, 75
symietry, 68

terminal end, 160

ternary sequence, 119
tesseract, 166 168
tetrahedral group, 112, 212
trail, 161

transposition, 76
transversal, 147

tree, 168

trivial subgroup, 77

vertex, 153
vertex degree, 156
Vierergruppe. 88

walk, 160
weighted graphs, 182



Undergraduate Texts in Mathematics

(continued from page iy

Halmos: Naive Set Theory.

Himmerlin/Hoffmann: Numerical
Mathematics.

Readings in Mathematics.

Harris/Hirst/Mossinghoff:
Combinatorics and Graph Theory.

Hartshorne: Geometry: Euclid and
Beyond.

Hijab: Introduction to Calculus and
Classical Analysis.

Hilton/Holton/Pedersen: Mathematical
Reflections: In a Room with Many
Mirrors.

Hilton/Holton/Pedersen: Mathematical
Vistas: From a Room with Many
Windows.

looss/Joseph: Elementary Stability
and Bifurcation Theory. Second
edition.

Isaac: The Pleasures of Probability.
Readings in Mathematics.

James: Topological and Uniform
Spaces.

Jinich: Linecar Algebra.

Janich: Topology.

Jinich: Vector Analysis.

Kemeny/Snell: Finite Markov Chains.

Kinsey: Topology of Surfaces.

Klambauer: Aspects of Calculus.

Lang: A First Course in Calculus. Fifth
edition,

Lang: Calculus of Several Variables.
Third edition.

Lang: Introduction to Linear Algebra.
Second edition.

Lang: Lincar Algebra. Third edition.

Lang: Undergraduate Algebra. Second
edition.

Lang: Undergraduate Analysis.

Lax/Burstein/Iax: Calculus with
Applications and Computing.
Volume 1.

LeCuyer: College Mathematics with
APL.

Lidl/Pilz: Applied Abstract Algebra.
Second edition.

Logan: Applied Partial Differential
Equations.

Macki-Strauss: Introduction to Optimal
Control Theory.

Malitz: Introduction to Mathematical
Logic.

Marsden/Weinstein: Calculus I, II, IIT.
Second edition.

Martin: Counting: The Art of
Enumerative Combinatorics.

Martin: The Foundations of Geometry
and the Non-Euclidean Plane.

Martin: Geometric Constructions.

Martin: Transformationn Geometry: An
Introduction to Symimetry.

Millman/Parker: Geometry: A Metric
Approach with Models. Second
edition.

Moschovakis: Notes on Set Theory.

Owen: A First Course in the
Mathematical Foundations of
Thermodynamics.

Palka: An Introduction to Complex
Function Theory.

Pedrick: A First Course in Analysis.

Peressini/Sullivan/Uhl: The Mathematics
of Nonlinear Programming.

Prenowitz/Jantosciak: Join Geometries.

Priestley: Calculus: A Liberal Art.
Second edition.

Protter/Morrey: A First Course in Real
Analysis. Second edition.

Protter/Morrey: Intermediate Calculus.
Second edition.

Roman: An Introduction to Coding and
Information Theory.

Ross: Elementary Analysis: The Theory
of Calculus.

Samuel: Projective Geometry.
Readings in Mathematics.

Scharlau/Opolka: From Fermat to
Minkowski.

Schiff: The Laplace Transform: Theory
and Applications.



Undergraduate Texts in Mathematics

Sethuraman: Rings, Fields, and Vector
Spaces: An Approach to Geometric
Constructability.

Sigler: Algebra.

Silverman/Tate: Rational Points on
Elliptic Curves.

Simmonds: A Brief on Tensor Analysis.
Second edition.

Singer: Geometry: Plane and Fancy.

Singer/Thorpe: Lecture Notes on
Elementary Topology and
Geometry.

Smith: Linear Algebra. Third edition.

Smith: Primer of Modern Analysis.
Second edition.

Stanton/White: Constructive
Combinatorics.

Stillwell: Elements of Algebra:

Geometry, Numbers, Equations.
Stillwell: Mathematics and Its History.
Stillwell: Numbers and Geometry.

Readings in Mathematics.

Strayer: Linear Programming and Its

Applications.

Toth: Glimpscs of Algebra and Geometry.

Readings in Mathematics.

Troutman: Variational Calculus and

Optimal Control. Second edition.
Valenza: Linear Algebra: An Introduction

to Abstract Mathematics.
Whyburn/Duda: Dynamic Topology.
Wilson: Much Ado About Calculus.



