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Preface

This book is an introduction to Einstein’s theories of special and
general relativity. To read it, you need only a first course in lin-
ear algebra and multivariable calculus and a familiarity with the
physical applications of calculus. Because the general theory is
more advanced than the special, most books limit themselves
to one or the other. However, I have tried to encompass both
by using the geometry of spacetime as the unifying theme. Of
course, we still have large mathematical bridges to cross. Special
relativity is just linear algebra, but general relativity is differ-
ential geometry—specifically, the curvature of four-dimensional
spacetime.

Einstein’s theory of special relativity solved a problem that
was baffling physicists at the start of the twentieth century. It
concerns what happens when different observers measure the
speed of light. Suppose, for example, that one observer moves
past a second (stationary) observer at one-tenth the speed of light.
We would then expect a light beam moving in the same direction
to overtake the moving observer at only nine-tenths of the speed
it passes a stationary observer. In fact, careful measurements
(the Michelson-Morley experiments in the 1880s) contradict this:

Overview

Origins of the
special theory

vii
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Preface

The principle of
relativity

Light moves past all observers at the same speed, independent of
their own motion.

To account for this, it was proposed that measuring rods con-
tract slightly when they move and clocks slow down—just enough
to make the velocity calculations come out right. In 1895, the
Dutch physicist H. A. Lorentz even wrote down the equations
that describe how lengths and times must be altered for a mov-
ing observer. But these hypotheses were ad hoc and just as baftling
as the phenomenon they were meant to explain.

A decade later, Einstein proposed a solution that was both
more radical and more satisfactory. It was built on two assump-
tions. The first was Galileo’s principle of relativity:

Two observers moving uniformly relative to one another
must formulate the laws of nature in exactly the same
way. In particular, no observer can distinguish between
absolute rest and absolute motion by appealing to any law
of nature; hence, there is no such thing as absolute motion,
but only relative motion (of one observer with respect to
another).

Relativity had long lain at the heart of mechanics, but Einstein
made it a universal principle that applies to all physical phe-
nomena, including electricity, magnetism, and light. His second
assumption was more surprising: Rather than try to explain the
invariance of the speed of light, he just accepted it as one of
those laws of nature that moving observers must agree upon.
From this stance, Einstein then deduced the transformation equa-
tions of Lorentz and the length contraction and time dilation they
entailed. In this new theory of relativity (the adjective “special”
came only later, when Einstein introduced a more general the-
ory), the time coordinate is on the same relative footing as the spa-
tial coordinates; furthermore, space and time no longer have sep-
arate existences but are fused into a single structure—spacetime.
Then, in 1907, the mathematician H. Minkowski showed that
Einstein’s ideas could be interpreted as a new geometry of space-
time.



Preface

In Chapter 1 we review the physical problems that prompted
the special theory and begin to develop the questions about co-
ordinate transformations that lie at the heart of relativity. Be-
cause we assume that observers are in uniform relative motion,
the Lorentz transformations that relate their coordinate frames
are linear. Geometrically, these transformations are just like spa-
tial rotations, except that their invariant sets are hyperbolas in-
stead of circles. Chapter 2 describes how Einstein made Lorentz
transformations the core of a comprehensive theory. We take
the geometric viewpoint proposed by Minkowski and develop
the Minkowski geometry of spacetime as the invariant theory of
Lorentz transformations, making constant comparisons with the
familiar Euclidean geometry of ordinary space as the invariant
theory of rotations.

We complete the study of special relativity in Chapter 3 by
analyzing how objects accelerate in response to imposed forces.
Motion here is still governed by Newton’s laws, which carry over
into spacetime in a straightforward way. We look at the geomet-
ric manifestation of acceleration as curvature—in this case, cur-
vature of the curves that objects trace out through spacetime.
The chapter also introduces the important principle of covariance,
which says that physical laws must transform the same way as
coordinates.

Special relativity is special because it restricts itself to a small
class of observers—those undergoing uniform motion with no
acceleration. Their coordinate frames are inertial; that is, Galileo’s
law of inertia holds in them without qualification. The law of
inertia is Newton'’s first law of motion; it says that, in the absence
of forces, a body at rest will remain at rest and one in motion will
continue to move with constant velocity. The now familiar scenes
of astronauts and their equipment floating freely in an orbiting
spacecraft show that a frame bound to the spacecraft is inertial.
Is the frame of an earthbound laboratory inertial? Objects left
to themselves certainly do not float freely, but we explain the
motions we see by the force of gravity.

Our lifelong experience to the contrary notwithstanding, we
must regard gravity as a rather peculiar force. It follows from New-
ton’s second law that a given force will impart less acceleration to

Linear spacetime
geometry

Origins of the
general theory

Gravity and
general relativity
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Gravity and
special relativity
are incompatible

a large mass than to a small one. But the acceleration of gravity is
the same for all masses, so the gravitational force must somehow
adjust itself to the mass of each object it pulls. This remarkable
property makes it possible to create an artificial gravitational field
in space. If we subject a spacecraft far from gravitating masses to
constant linear acceleration, then objects inside will “fall down”
just as they do on earth. And just as on earth, this artificial force
adjusts its strength to give all objects the same downward ac-
celeration. In fact, in any sufficiently small region of spacetime
there is no way to distinguish between simple linear acceleration
and gravitational acceleration caused by a massive body like the
earth. This is Einstein's principle of equivalence; he made it the
basis of a revolutionary new theory of gravity.

For Einstein, an observer in a gravitational field is simply op-
erating in a certain kind of noninertial frame. If a physical theory
is to account for gravity, he reasoned, it must allow noninertial
frames on the same footing as inertial ones, and physical laws
must take the same form for all observers. This is the familiar
principle of relativity, but now it is being asserted in its most
general form. A successful theory of gravity must be built on
general relativity. To help us make the transition from special
to general relativity, Chapter 4 considers two kinds of noniner-
tial frames—those that rotate uniformly and those that undergo
uniform linear acceleration, from the point of view of an inertial
frame. We also survey Newton’s theory of gravity and establish
both the ordinary differential equations that tell us how a par-
ticle moves in a gravitational field and the partial differential
equation that tells us how gravitating masses determine the field
itself.

The critical discovery in Chapter 4 is that we cannot provide
a noninertial frame with the elegant and simple Minkowski ge-
ometry we find in a linear spacetime; distances are necessarily
distorted. The distortions are the same sort we see in a flat map
of a portion of the surface of the earth. Maps distort distances
because the earth is curved, so a natural way to explain the dis-
tortions that appear when a frame contains a gravitational field
is that spacetime is curved. This means that we cannot build an
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xi

adequate theory of gravity out of Newtonian mechanics and spe-
cial relativity, because the inertial frames of special relativity are
flat.

Curvature is the key to Einstein’s theory of gravity, and it is
the central topic of Chapters 5 and 6. The simplest circumstance
where we can see the essential nature of curvature is in the
differential geometry of ordinary surfaces in three-dimensional
space—the subject of Chapter 5. At each point a surface has a tan-
gent plane, and each tangent plane has a metric—that is, a way to
measure lengths and angles—induced by distance-measurement
in the ambient space. With calculus techniques we can then use
the metric to do geometric calculations in the surface itself. In this
setting, it appears that curvature is an extrinsic feature of a sur-
face’s geometry, a manifestation of the way the surface bends in
its ambient space. But this setting is both physically and psycho-
logically unsatisfactory, because the four-dimensional spacetime
in which we live does not appear to be contained in any larger
space that we can perceive. Fortunately, the great nineteenth-
century mathematician K. F. Gauss proved that curvature is actu-
ally an intrinsic feature of the surface, that is, it can be deduced
directly from the metric without reference to the embedding.
This opens the way for a more abstract theory of intrinsic dif-
ferential geometry in which a surface patch—and, likewise, the
spacetime frame of an arbitrary observer—is simply an open set
provided with a suitable metric.

Chapter 6 is about the intrinsic geometry of curved space-
time. It begins with a proof of Gauss’s theorem and then goes on
to develop the ideas about geodesics and tensors that we need
to formulate Einstein’s general theory. It explores the fundamen-
tal question of relativity: If any two observers describe the same
region of curved spacetime, how must their charts G and R be
related? The answer is that there is a smooth map M : G — R
whose differential dMp : TGp — TRum(p) is a Lorentz map (that
is, a metric-preserving linear map of the tangent spaces) at every
point P of G. In other words, special relativity is general relativ-
ity “in the small” The nonlinear geometry of spacetime extends
the Minkowski geometry of Chapters 2 and 3 in the same way

Intrinsic differential
geometry
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Geodesics and the
field equations

The evidence for
general relativity

that the nonlinear geometry of surfaces extends Euclidean plane
geometry.

In Chapter 7 we take up general relativity proper. From the
principle of general covariance, Einstein argues that the laws
of physics should be expressed as tensor equations if they are
to transform properly. Now consider a coordinate frame falling
freely in a gravitational field; such a frame is inertial, so an ob-
ject falling with it moves linearly and thus along a geodesic in
that frame. Since geodesics are defined by tensor equations, gen-
eral covariance guarantees that all observers will say that freely
falling objects move on geodesics. Thus, the equations of motion
in a gravitational field are the geodesic equations; moreover, the
metric in any coordinate frame defines the gravitational field in
that frame. The rest of the chapter is devoted to the field equa-
tions; these are derived, as they are in the Newtonian theory,
from an analysis of tidal forces. Because of the connection be-
tween the field and the metric, the field equations tell us not
only how the gravitational sources determine the field but how
they determine the curvature of spacetime. They summarize Ein-
stein’s remarkable conclusion: Gravity is geometry.

In the final chapter we review the three major pieces of evi-
dence Einstein put forward in support of his theory in the 1916
paper in which he introduced general relativity. First, Einstein
demonstrated that general relativity reduces to Newtonian me-
chanics when the gravitational field is weak and when objects
move slowly in relation to the speed of light. The second piece
of evidence has to do with the assertion that gravity is curvature.
If that is so, a massive object must deflect the path of anything
passing it—including a beam of light. Einstein predicted that it
should be possible to detect the bending of starlight by the sun
during an eclipse; his predictions were fully confirmed in 1919.
The third piece of evidence is the precession of the perihelion of
Mercury. It was known from the 1860s that the observed value is
larger than the value predicted by Newtonian theory; Einstein’s
theory predicted the observed value with no discrepancy. We
follow Einstein’s arguments and deduce the metric—that is, the
gravitational field—associated with a spherically symmetric mass
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distribution. This involves solving the field equations in two set-
tings; one is the famous Schwarzschild solution and the other is
Einstein’s own weak-field solution.

My fundamental aim has been to explore the way an indi-
vidual observer views the world and how 1ny pair of observers
collaborate to gain objective knowledge of the world. In the sim-
plest case, an observer’s coordinate patch is homeomorphic to a
ball in R%, and the tensors the observer uses to formulate phys-
ical laws are naturally expressed in terms of the coordinates in
that patch. This means that it is not appropriate—at least at the
introductory level—to start with a coordinate-free treatment of
tensors or to assume that spacetime is a manifold with a poten-
tially complex topology. Indeed, it is by analyzing how any pair
of observers must reconcile their individual coordinate descrip-
tions of the physical world that we can see the value and the
purpose of these more sophisticated geometric ideas. To keep
the text accessible to a reasonably large audience I have also
avoided variational methods, even though this has meant using
only analogy to justify fundamental results like the relativistic
field equations.

The idea for this book originated in a series of three lectures
John Milnor gave at the Universiy of Warwick in the spring of
1978. He showed that it is possible to give a unified picture of
relativity in geometric terms for a mathematical audience. His
approach was more advanced than the one I have taken here—he
used variational methods to formulate some of his key concepts
and results—but it began with a development of Minkowski ge-
ometry in parallel with Euclidean geometry that was elegant and
irresistible. Nearly everything in the lectures was accessible to an
undergraduate. For example, Milnor argued that when the rela-
tivistic tidal equations are expressed in terms of a Fermi coordi-
nate frame, a symmetric 3 x 3 matrix appears that corresponds
exactly to the matrix used to express the Newtonian tidal equa-
tions. The case for the relativistic equations is thereby made by
analogy, without recourse to variational arguments.

I have used many other sources as well, but I single out four
for particular mention. The first is Einstein’s own papers; they

The road not taken

Sources
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appear in English translation along with other valuable papers
by Lorentz and Minkowski in The Principle of Relativity [20]. Ein-
stein’s writing is eminently accessible, and anyone who wants
a complete picture of relativity should read his 1916 paper [10].
The other three are more focused on special topics; they are the
paper by F. K. Manasse and C. W. Misner on Fermi normal coordi-
nates [21], the treatment of parallel transport in Geometry from a
Differentiable Viewpoint by John McCleary [22], and the weak-field
analysis in Modern Geometry, Part I by B. A. Dubrovnin et al. [7].

Since the early 1980s I have taught material in this book in an
undergraduate course in either geometry or applied mathematics
half a dozen times. My students have always covered Chapters 1-
3 and 5 and 6 in some detail and parts of Chapters 4 and 7; we have
never had the time to do Chapter 7 thoroughly or Chapter 8 at all.
While the text makes progressively greater demands on the reader
and the material in the later chapters is more difficult, it is no
more difficult than a traditional advanced calculus course. There
are points, however, where I have taken advantage of the greater
emphasis on differential equations, numerical integration, and
computer algebra systems found in the contemporary calculus
course.

It would not have been possible for me to write this book
without a sabbatical leave and also without the supportive climate
over many years that enabled me to develop this material into a
course; I am grateful to Smith College and to my colleagues for
both. And I particularly want to thank Michael Callahan, whose
modern perspective and incisive questions and comments about
a number of topics sharpened my thinking about relativity.

James J. Callahan
Smith College
Northampton, MA



Contents

Preface

1 Relativity Before 1905
1.1 Spacetime . ... ... ... ... .. ... .. ...
1.2 Galilean Transformations . . . . ... ... ... ..
1.3 The Michelson-Morley Experiment . . . . . . . ..
1.4 Maxwell's Equations . .. ... ...........

2 Special Relativity —Kinematics
2.1 Einstein's Solution . .. ...............
2.2 Hyperbolic Functions . . . . .. ... ... .....
2.3 Minkowski Geometry . . . ... ... ... ... ..
2.4 Physical Consequences . . . . . . ... .......

3 Special Relativity —Kinetics
3.1 Newton'sLawsofMotion . . . .. ... .......
3.2 Curvesand Curvature . ... .. ..........
3.3 Accelerated Motion . . . .. ... ... ... ..

vii

15
22

31
31
43
49
73

XV



Xvi

Contents

4 Arbitrary Frames
4.1 Uniform Rotation . . .. ... ............
4.2 Linear Acceleration . . . . ... ... ... .....
4.3 Newtonian Gravity . . ... ... ..........
4.4 Gravity in Special Relativity . . . . ... ... ...

5 Surfaces and Curvature
51 TheMetric . . . . . ... .. .. ... ...
5.2 Intrinsic Geometry on the Sphere . . . . . . .. ..
5.3 De Sitter Spacetime . . . . . ... ... .. ...,
5.4 Curvature ofa Surface . ...............

6 Intrinsic Geometry
6.1 Theorema Egregium . ... .............
6.2 GeodesiCs . . . . ... ...
6.3 Curved Spacetime . . . . ... ............
6.4 Mappings. . . . . . . ... e
6.5 Tensors . . .. .. .. ... oo

7 General Relativity
7.1 The Equations of Motion . . . . .. ... ......
7.2 The Vacuum Field Equations . .. ... ... ...
7.3 The Matter Field Equations . . . .. ... ... ..

8 Consequences
- 8.1 The Newtonian Approximation . .. .. ... ...
8.2 Spherically Symmetric Fields . . .. ... .....
8.3 The BendingofLight . ... .............
8.4 Perihelion Drift . ... ... ... ... .......

Bibliography

Index

143
144
155
167
188

203
203
221
230
241

257
257
268
277
292
307

329
330
344
366

385
386
396
413
421

435

439



Relativity Before
1905

CHAPTER

In 1905, Albert Einstein offered a revolutionary theory—special
relativity—to explain some of the most troubling problems about
electromagnetism and motion in the physics of the day. Soon af-
terwards, the mathematician Hermann Minkowski recast special
relativity essentially as a new geometric structure for spacetime.
The ideas of Einstein and Minkowski are the subject of the next
two chapters; here we look at the physical questions that stimu-
lated them, as well as partial solutions offered by others.

1.1 Spacetime

Spacetime itself is quite familiar: A spacetime diagram is a device Ways to describe
you have long used to describe and analyze motion. For example, motion
suppose a particle moves upward along the z-axis with constant
velocity v meters per second. Then, if we photograph the scene
using a strobe light that flashes once each second, we will see the
picture on the left at the top of the next page.

Often, though, we choose to represent the motion in a diagram Spacetime and
like the one on the right. This is a picture of spacetime, because worldlines
it has a coordinate axis for time. (It should therefore have four

J. J. Callahan, The Geometry of Spacetime
© Springer Science+Business Media New York 2000



2 Chapter 1 Relativity Before 1905

meters j
1 sec apart < | }v meters ?
1 V meters
1 sec
t
3 ) -1 7z 1 2 3 4 sec
-1
slopeisv _,
SPACE SPACETIME
(with strobe light) (with two space dimensions suppressed)

axes, but since x and y do not change as the particle moves, we
have left out their axes to make the diagram simpler.) The motion
of the particle is then represented by a straight line with slope
v (o1, better, v meters per second). We call this the history, or
worldline, of the particle.

Spacetime is When all motion is along the z-axis, we can take space-

4-dimensional time to be the (t, z)-plane as we have here. When the motion
ranges over a 3-dimensional region, though, spacetime is the
(1 + 3)-dimensional (t, x, y, z)-hyperspace. Obviously, the (1 + 1)-
dimensional spacetime is easier to visualize, and we will use it as

Points are events much as we can. We call a point (t, z) or (t, x, y, z) in spacetime
an event, because an event always happens somewhere at some
time.

Example: different Shown below is the worldline in a simple (1 + 1)-dimensional

constant velocities spacetime of a “courier” traveling along the z-axis:

E;p: left home at time #

i : t led with veloci
Ey: arrived at z; at time } raveled with velocity v

Es: set off for z; at time t3

. , traveled with velocity v
E,: arrived at z; at time t4 } y vz

Es: set off for home at time t5

. . traveled with velocity v
Eg: arrived home at time tg ] yvs

Note that the events E; and E3 happen at the same place (and
so do E4 and Es); the courier is stationary when the worldline is
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horizontal. Keep in mind that the worldline itself is not the path
of the courier through space; on the contrary, the courier travels
straight up and down the z-axis.
The next example can be found in The Visual Display of Quan- Example:

titative Information, by Edward R. Tufte [29]. It is a picture of the
schedule of trains running on the French main railway line be-
tween Paris and Lyon in the 1880s, and is thus, in effect, many
instances of the previous example plotted together. The vertical
axis marks distances from Paris to Lyon, and the horizontal axis
is time, so it is indeed a spacetime diagram. The slanting lines are
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Chapter 1 Relativity Before 1905

Example: nonuniform
velocities

Worldlines are graphs

Example: a photo
finish

the worldlines of various trains. Those with negative slope run
toward Lyon, those with positive slope toward Paris. The express
trains have steeper slopes, and their horizontal segments, which
represent stops along the way, are briefer and fewer in number.

An object that moves with nonuniform velocity—like a falling
body—must have a curved worldline. The spacetime diagram be-
low shows two balls A and B that fall to the ground (z = 0) from
a height z = h. Notice that B is thrown straight up with an initial
velocity vp > 0, while A is just dropped (vp = 0). The two balls are
launched at the same moment (¢t = 0); A hits the ground when
t = t4, and B hits later, when t = t3. The worldlines continue as
horizontal lines because the balls are motionless once they hit
the ground.

Vo

Once again, note that although the worldlines include para-
bolic arcs, the actual paths of A and B in space are vertical; A goes
straight down, and B goes straight up, stops, then goes straight
down. This example should be very familiar to you: Whenever
z = f (¢) gives the position z of an object as a function of the time
t, then the graph for f in the (¢, z)-plane is precisely the worldline
of the object. See the exercises.

In the picture below (a photo finish of the 1997 Preakness),
the winner has won “by a head” But which horse came in second?
At first glance, it would appear to be the pale horse in the back,
but couldn’t the dark horse in the front overtake it before the two
cross the finish line?

In fact, the pale horse in back did come in second, and this
photo does prove it, because this is not an ordinary photo. An
ordinary photo is a “snapshot”—a picture of space at a single
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Photo courtesy of Maryland Jockey Club. Reproduced with the permission of
Pimlico Racetrack.

moment in time; the camera projects a full 3-dimensional view
onto a motionless piece of film. In a photo-finish camera, though,
the film moves past a narrow slit that can view only the plane of
the finish line. As the film is drawn past the slit at a steady rate,
it records along its length the events that happen in the plane.

time
o . same place,
g different times
o o
=
same time,
different places

So a photo finish is a spacetime diagram. Events, like A, B, and
C, that happen at the same spot on the finish line but at different
times appear spread out along a horizontal line on the film, with
the earliest event farthest to the right. The photo shows an entire
horse because the entire horse eventually moves past the finish
line. Events, like A and D, that happen at the same time but in
different places on the finish line will appear on the same vertical
line in the film. Thus, every vertical line is the finish line! Vertical
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Spacetime with two
space dimensions

Worldlines lie on
cylinders

lines further to the left show what happens at the finish line at
successively later times. That is why we can be certain that the
pale horse came in second.

If an object moves in a 2-dimensional plane, then we can draw
its worldline in a (1 + 2)-dimensional spacetime. For example, if
the object moves with uniform angular velocity around the circle
y2 + 72 = const in the (y, z)-plane, then its worldline is a helix in
(t, x, y)-spacetime. The “tighter” the helix, the greater the angu-
lar velocity. Different helices of the same pitch (or “tightness”)
correspond to motions starting at different points on the circle.

¥*+ 72 = const

Notice that all the helical worldlines lie on cylinders of the
form y2 + 2% = const in the (1 +2)-dimensional (¢, y, z)-spacetime.
This reflects something that is true more generally: If an object
moves along a curve V in the (y, z)-plane, then its worldline lies
on the cylinder

CV)={(t,y,2) : (y,2) in V}

obtained by translating that curve through (t, y, z)-space parallel
to the t-axis. Thus C(V) is the surface made up of all straight lines
parallel to the t-axis that pass through the curve V. These lines
are called the generators of the cylinder. We call C(V) a cylinder
because, if V is a circle, then C(V) is the usual circular cylinder.
Different parametrizations

Viy=f@®, z=g®)
of the same curve V yield different worldlines on C(V).
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worldline 1
worldline 2

cw)

Our final spacetime pictures represent a momentary flash of
light from a point source. The flash spreads out light particles, or
photons, from the source with speed ¢ (& 3 x 108 m/sec). First
consider only the photons that move along the z-axis; one photon
travels up the z-axis with velocity ¢ and another travels down with
velocity —c. If we use ordinary scales, these worldlines will have
enormously steep slopes. However, in the picture below we have
made the slopes manageable by changing the unit of distance.
Instead of using the meter, we use the second (or light-second),
which is the distance light travels in one second (about 3 x 108
meters). We call this measure of distance a geometric unit, to
distinguish it from the conventional ones.

Z

1 sec

1 sec t

In geometric units, ¢ is 1 second per second, or just 1, so
the worldlines of the two photons have slopes £1. For any other
motion, the numerical value of v is just a percentage of the speed
of light. Typically, v is nearer to 0 than to 1, so the worldlines
of ordinary motions have extremely small slopes in geometric
units.

Worldline of a photon

Geometric units:
measure distance in
seconds
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Light cones In the full 3-dimensional space, the photons from the flash
spread out in all directions and occupy the spherical shell x? +
y? + 722 = (ct)? of radius ct after ¢ seconds have passed. In a 2-
dimensional slice, the sphere becomes a circle y? + z2 = (ct)?,
also of radius ct. If we now plot this circle in (¢, y, z)-spacetime
as a function of t, we get an ordinary cone. The worldlines of all
the photons moving in the (y, z)-plane lie on this cone, which is
called a light cone. Note that when we take the slice y = 0 to get
the simple (1 4+ 1)-dimensional (¢, z)-spacetime, we get the pair of
photon worldlines we drew earlier. We also call this figure a light
cone.

Exercises

1. (a) Sketch the worldline of an object whose position is given

byz=t>?—t3,0<t<1.

(b) How far does this object get from z = 0? When does that
happen?

(c) With what velocity does the object depart from z = 0? With
what velocity does it return?

(d) Sketch a worldline that goes from z = 0 to z = 1 and
back again to z = 0 in such a way that both its departure

and arrival velocities are 0. Give a formula z = f(¢) that
describes this motion.
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2. (a) Suppose an object falls with no air resistance, so it expe-
riences constant acceleration z”(t) = —g, where g is the
acceleration due to gravity (g &~ 9.8 m/sec?). If its initial
velocity is z/(0) = v and its initial position is z(0) = h, find
the formula z(t) that gives its position at any time ¢.

(b) Using your formula, sketch the worldlines of three objects
for which v takes the three values 0 m/sec, +10 m/sec,
—2 m/sec. Use h = +60 m for all three objects.

(c) Determine when the three objects hit the ground z = 0.
Are they in the order you expect?

3. Two objects G and M move along the z-axis with a constant
positive velocity v that is much smaller than 1 (written v « 1),
separated by a distance A; see the following figure. A signal is
emitted at the event O. It travels with velocity 1 until it reaches
M at the event Ej; it is then reflected back with velocity —1,
reaching G at the event E,. Express the times t; and t; in terms
of A and v.

1.2 Galilean Transformations

The aim of science is to describe and interpret objective reality. The problem of
But the starting point of science is individual observation, and objectivity
this is inherently subjective. Nevertheless, when individual ob-

servers compare notes, they find points of common agreement,

and these ultimately constitute what is physically, or objectively,

real. (“Do my calculations agree with yours?” “Can I reproduce

your experiment?”)
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Galileo’s principle
of relativity

Spacetime diagrams
of two different
observers

Rol

GOT

The question of objectivity has always been part of modern
science. Galileo took it up in connection with motion, and was
led to formulate this principle of relativity:

Two observers moving uniformly relative to one another
must formulate the laws of nature in exactly the same
way. In particular, no observer can distinguish between
absolute rest and absolute motion by appealing to any law
of nature; hence, there is no such thing as absolute motion,
but only motion in relation to an observer.

We shall read this both ways:

e Any physical law must be formulated the same way by all
observers.

e Anything formulated the same way by all observers is a phys-
ical law.

As we shall see, scientists at the end of the nineteenth century
were tempted to ignore Galileo’s principle in order to deal with
some particularly baffling problems. That didn't help, though,
and when Einstein eventually solved the problems, he did so by
firmly reestablishing the principle of relativity. To distinguish this
from the more sweeping generalization he was to make a decade
later, we call this special relativity.

The first step to understanding what Einstein did is to make
a careful analysis of the situation that Galileo addresses: two ob-
servers moving uniformly relative to one another. For us this
means looking at their spacetime diagrams. We shall call these
“Galilean” observers R and G; G will use Greek letters (7, §, 1, )
for coordinates, and R will use Roman (¢, x, y, z). We assume that
R and G approach and then move past each other with uniform
velocity v. They meet at an event O, which they define to happen
at time t = t = 0. In other words, they use this event to synchro-
nize their clocks. For the sake of definiteness, we assume that
corresponding axes (that is, £ and x, n and y, ¢ and z) of the two
observers point in the same direction. Moreover, we assume that
G moves up along R’s z-axis and R moves down along G's ¢-axis.
Their spacetime diagrams then look like this:
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¢
z
z]..
R
Ti
G >
Greek Roman
T=t t=1
{=z—ut z=¢+vT

The equations tell us the Roman coordinates (¢, z) of an event
E when we know the Greek (t, ¢), and vice versa. We note the
following:

e A time axis is just the worldline of an observer.

e A right angle between the time and space axes means that the
observer whose worldline is that time axis is stationary with
respect to that space coordinate.

¢ If the angle between the time and space axes is 90° — 6, then
that observer has velocity v = tan 6 with respect to that space
coordinate.

e For a given event E, t = t because observers measure time
the same way.

e For a given event E, z # ¢ in general because observers mea-
sure distances from themselves. The difference z—¢ = vt = vt
is the distance between the two observers at the moment z and
¢ are measured.

Notice that we make no assumption about which observer
is really moving, or which spacetime diagram is really correct.
According to the principle of relativity, there’s simply no way to
determine this. From R’s point of view, only G is moving, and vice
versa. The two spacetime diagrams are equally valid descriptions
of reality. It is by comparing the diagrams that we discover which

Coordinates of two
observers compared

All spacetime
diagrams are equally
valid
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Galilean
transformations

of their elements do reflect physical reality and which do not.
Thus, time—or more precisely, the time interval between two
events—is objectively real, because observers report the same
values. By contrast, the spatial distance between two events is
not. See Exercise 1.

Since we want to focus on the elements of a spacetime
diagram that don't change when we go from one diagram to
another, we must study the details of this transformation. The
equations that convert G’s coordinates to R’s define a linear map

S, R — R?,
w(0)=0)-0 1))

A AR
<
<«

A\

AN RN

AV RN

ANV A

VAL WAV VATAY

ANANANE WA WAV NANAY

AN AN

An analogy with
languages and

N YWY

ARV W VAR

ANAVAVANA WAV ANRNAY

Q
NEUEURVA URUR VR
AN A AN

Because S, connects the spacetime diagrams of two Galilean ob-
servers (that is, observers considered by Galileo’s principle of
relativity), it is commonly called a Galilean transformation.
When we think of S, as the matrix, we shall call it a Galilean
matrix.

Geometrically, the transformation is a shear. It slides vertical
lines up or down in proportion to their distance from the vertical
axis. In fact, since the vertical line 7 = 1 slides by the amount v,
the constant of proportionality is v and horizontal lines become
parallel lines of slope v.

We can think of the Greek coordinate frame and the Roman
coordinate frame as two languages for describing events in space-

translation dictionaries  time. In the spirit of this analogy, the matrix S, is the dictio-
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nary that translates “Greek” into “Roman”. But translation dic-
tionaries come in pairs: Besides a Greek-Roman dictionary, we
need a Roman-Greek dictionary. Obviously, the inverse matrix
S;1 = S_, plays this role.

Sy

GREEK <« ROMAN

S—v

We can illustrate this with a simple example. Suppose a new
particle moves uniformly with respect to R and G. Then its world-
line is straight in each spacetime. If that worldline consists of the
events (t, ¢) in the Greek coordinate system, then the velocity
of the particle is 0 = A¢/At, according to G. Since t = 7 and
z = ¢ + vt (by our “translation dictionary”), R will calculate the
velocity to be

Az Af+vAT Ag

SA T T Ar A TUTOTY

To move to the full (1 + 3)-dimensional version, we assume (1 + 3)-dimensional
that the spatial axes of G and R remain parallel as G and R move. transformations
The velocity of G relative to R is a spatial vector v = (vy, vy, v;).

In the exercises you will show that the Galilean transformation
is now accomplished by the 4 x 4 matrix

1 00 0
v 1
vy 0O
v, O

SV=

o = O

0 .
0 ’
1
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in coordinates of:

speed of: GREEK ROMAN
G 0 v
R —v 0

any particle o otv
s—v s

furthermore, S;! = S_y. In our earlier work, we assumed that
motion was along the vertical axis alone and hence v, = v, = 0.
In this case multiplication by the 4 x 4 matrix Sy gives x = & and
y = n. This explains why we could suppress those coordinates
(and work with the simpler 2 x 2 matrix): They had the same
values in the two frames.

Exercises

1.

Suppose the events E; and E; have the coordinates (1, 0 and
(2, 0) in R. What is the spatial distance between them, accord-
ing to R? What is the spatial distance, according to G?

. Let A(X,Y) denote the area of the parallelogram spanned by

two vectors X and Y in the plane R2. If L : R? > R?is a
linear map, show that A(L(X),L(Y)) = detL - A(X,Y). What
does this mean when detL is negative? What does this mean
when detL = 0?

. Show that every Galilean transformation S, : R? — R? pre-

serves areas.
(a) Show that S;! =S_, and S, S,y = Sp4+w When S, : R? —> RZ.

(b) These facts imply that the set of Galilean transformations
forms a group G, using matrix multiplication. Show that
this group is commutative, that is, that S,S, = SyS,. (In
fact, G, is isomorphic to the real numbers R regarded as
a group using addition. Prove this if you are familiar with

group theory.)
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5. (a) Write the Galilean transformation Sy matrix when space-
time has two space dimensions and relative velocity is
given by the 2-dimensional vector v = (v, v,).

(b) Show that S;! = S_y and SySy = Sy+w. Here v + w is
ordinary vector addition.

(c) The collection G3 of these matrices Sy is also a group. Show
that G3 is commutative, too. (In fact, G3 is isomorphic to
the additive group R?.)

6. Repeat the previous exercise with the full 4 x 4 Galilean trans-
formations. (G4 is isomorphic to the additive group R3.)

1.3 The Michelson-Morley Experiment

Light doesn't transform properly under Galilean transformations.
In the late nineteenth century, this problem manifested itself in
several ways. We'll look at two: the Michelson-Morley experiment
and Maxwell’s equations. Even before we take them up in detail
below, we can describe their essential implications quite simply
by considering how two observers describe the motion of photons.

We assume that a momentary flash of light occurs at the event
O when R and G meet, and we plot the worldlines of the photons
U and D that go up and down the vertical axis. To keep the slopes
reasonable, R and G will both use geometric units and measure
distance in seconds (see Section 1.1). If R measures the velocity
of U to be 1 and that of D to be —1, then G must measure them

Before
Michelson—Morley
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tobe 1 — v and —1 — v, respectively.
Atter It should, therefore, be possible to measure differences in

Michelson-Morley

The ether

the speed of light for two Galilean observers. But the results of
the Michelson-Morley experiment imply that there are no differ-
ences! In effect, G gets the same value as R, so their spacetime
diagrams look like this:

Z
g“z U ¢ U
i 1
R v T
G
-1
D

We can summarize the paradoxical conclusions of the Michelson-
Morley experiment (M-M) in the following table.

in coordinates of:

speed of: | GREEK ROMAN J
ordinary particle g otv
s—v s
before M-M 1 1+
photon 1—v 1
after M-M 1 1

The Experiment

Light is considered to be a wave as well as a particle. The wave
theory explains many aspects of light, such as colors, interference
and diffraction patterns (like those we see on the surface of a
compact disk), and refraction (the bending oflight rays by lenses).
But if light is a wave, there should be some medium that is doing
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the waving. Since light travels readily through the vacuum of
empty space, that medium—which came to be called the “ether”—
must permeate the entire universe. The earth must fly through
it like a plane through the air. Michelson and Morley sought to
measure the velocity of the earth through the ether in a series of
ever more refined experiments between 1881 and 1887.

In principle, it would seem simple enough to make the mea-
surement. Let the observer R be stationary with respect to the
ether and let G be on the earth. Then measure the velocity of a
beam of light emitted in the direction of G’s motion with respect
to R. According to the Galilean picture, the velocity of the beam
will be w = 1 — v, where 1 is the standard speed of light in a
vacuum (as measured by R) and v is the unknown velocity of G.
But we have just measured w, sov=1—w.

This simple approach falters for two reasons. First, we have
no direct awareness of the ether, so we don't know where to
put R and hence which way to aim the beam of light. However,
we can deal with this by sending out beams in many different
directions. A more serious problem has to do with the techniques
that are used to determine the speed of light. They depend on
reflecting a light beam off a distant mirror and comparing the
returning beam with the outgoing one. Exactly how this is done
is not so important as the fact that the light ray travels at two
different speeds while it is being analyzed: 1 — v on the outward
journey and 1 + v on the return. Instruments can measure only
the average speed for the round trip. It appears, at first glance,
that the average speed is 1, and we therefore lose all evidence of
the variable speed v that we are trying to determine.

In fact, the average is not 1, and the evidence does not get
lost. The Michelson-Morley experiment is designed to overcome
all our objections and to capture the elusive value v. The Dutch
physicist H. A. Lorentz gives this contemporary (1895) descrip-
tion of the experiment in the opening paragraph of [19]:

As Maxwell first remarked and as follows from a very sim-
ple calculation, the time required by a ray of light to travel
from a point A to a point B and back to A must vary when
the two points together undergo a displacement without

Measuring velocity
relative to the ether
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The difference is
proportional to »2

carrying the ether with them. The difference is, certainly,
a magnitude of the second order; but it is sufficiently great
to be detected by a sensitive interference method.

To see what Lorentz means, let us do that calculation. In the
experiment, the observer G (who is moving with an unknown
velocity v) sends out a light pulse that is reflected back to G by a
mirror M that is firmly attached to G's frame at a fixed distance
of A light-seconds. The apparatus allows the direction from G to
M to vary arbitrarily, though.

L2224 M
A diagram of SPACE,
not SPACETIME ~ ,,, |4
M
A
O——=—F——
G

The exercises ask you to confirm that the travel time T for a
light ray depends on the direction of the ray in the following way:

hw=1— parallel to G's motion;
21 _ , ,
T, (v) = ﬁ perpendicular to G's motion.

You can also show that the average speed of light for round trips in
the two directions is not 1; instead, ¢f = 1 —v% and ¢} = +/1 — 2.

In fact, what the experiment actually measures is the difference
between T and T, . To see how this is connected to v, first look
at the Taylor expansions of T and T :

Ty (v) = 21 + 2402 + O@?),
Ti(v) = 21 + A% + O@W?).

Hence the leading term in the difference is indeed proportional
to v?; this is the “magnitude of second order” that Lorentz refers
to:

Ty — T1 = W%+ O@?) = V(A + O(?)).
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To get some idea how large v? might be, let us calculate the
velocity of the earth in its annual orbit around the sun. The orbit
is roughly a circle with a circumference of about 9 x 10! meters.
Since a year is about 3 x 107 seconds, the orbital speed is about
3 x 10* m/sec. In geometric units (where ¢ = 3 x 108 m/sec = 1)
we get v ~ 1074, v? ~ 1078, Of course, if there is an “ether wind,’
v may be much less if the earth happens to be moving in the
same direction as the “wind” However, six months later it will be
heading in the opposite direction, so then v should be even larger
than our estimate. In any event, the apparatus Michelson and
Morley used was certainly sensitive enough to detect velocities
of this order of magnitude, so a series of experiments conducted
at different times and in different directions should therefore
eventually reveal the motion of the earth through the ether.

But the experiment had a null outcome: it showed that T =
T, always. This implied that light moves past all Galilean ob-
servers at the same speed, no matter what their relative motion.
Light doesn’t transform properly under Galilean transformations.

The Fitzgerald Contraction Hypothesis

The experimental results contradict common sense and some
very persuasive arguments. What could be wrong? Michelson
himself concluded that v = 0 always—that is, the ether moved
with the earth. Lorentz found this unsatisfactory, and in his ar-
ticle offered another way to remove the contradiction. His idea
is more commonly know as the Fitzgerald contraction hypothe-
sis, after the British physicist G. F. Fitzgerald, who introduced it
independently.

Noting that the travel times T and T, depend upon the dis-
tance A to the mirror, Fitzgerald and Lorentz give a simple—but
nonetheless astonishing—explanation for the fact that T) is not
larger than T, : They say that the distance A varies with the di-
rection. To make this distinction, let us write

2 . 21

1—v?’ sz/l—vz.

Estimating v2

Facing the
contradiction

Contraction in the
direction of motion
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The contraction
cannot be measured
directly

Then if we set
Ap=+v1 —v2. A,

we get

2A _ZVI—UZ-)»_L_ 2A1

T, = = —
=102 1— 02 =12

Since ¥/1 — v? < 1, A is smaller than A ; . This is usually translated
as saying that the apparatus (which was was supposed to keep A
fixed) must have contracted in the direction of motion—but not
in any perpendicular direction.

There is no way to measure the contraction directly, because
every measuring instrument participates in the motion and
hence in the contraction. In other words, a meter stick will say
that A does not vary. The only way to measure the contrac-
tion is indirectly, by the Michelson-Morley experiment or its
equivalent.

With the Fitzgerald contraction, the transformation between
coordinate frames takes a new form. The new relation (which we
could call the Fitzgerald transformation) is

T,.

t=r1, 1 0
EF,: F, = .
v [z=v1—vzf+vr, v (U Vl—Uz)

To see why this is so, set t = 0 and note that when G measures
a distance of ¢ = 1, Fitzgerald contraction implies that R will say
that the distance is only v/1 — v2 < 1. It is not true that F, ! = F_,
as it is for Galilean transformations; instead,

1 0 T = t,
Fv_1 = —v 1 F1. z vt

J1=12 J1-12 §=~/1—1/2_x/1—v2.

Besides being subject to the criticism that they have been
constructed after the fact merely to “preserve appearances,” F,
and F,’! are not symmetric, nor do they transform the worldlines
of light photons properly. You can explore this in the exercises.
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Exercises

1. (a) Show that the travel time T, for a light ray bouncing off
a mirror perpendicular to the direction of motion of an
observer G is

2\
V1 =12

when G moves with velocity v and the mirror is A light-
seconds away. What is the average velocity of light in a
perpendicular direction?

T,(v) =

(b) Show that the travel time T when the light ray moves in
the same direction as G is

2\
T (v) = .
1) 1—12
What is the average velocity of light in the direction of G's

motion?

(c) Determine the third-order Taylor expansions of T| (v) and
T (v) and show thereby that

Ty — T =v? (A + 0@?).

2. (a) The linear map C, : R> — R? that performs simple com-
pression by the factor +/1 — 2 in the direction of motion
is

b i)

Indicate the effect of C, by sketching the image of a grid
of unit squares in the target; describe the image grid in
words.

(b) Let F, be the ‘Fitzgerald transformation” defined in the
text. Show that F, = S, o C, = C, o S,, where S, is the
Galilean shear of velocity v.

3. Sketch the image of a grid of unit squares under the linear
map F,. How is this image related to the images produced by
C, and S,? In particular, how are the images of vertical lines

21
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Electric and magnetic
fields satisfy Maxwell's
equations

Light is
electromagnetic

under F, and S, related, and how are the images of horizontal
lines related?

4. (a) Consider upward and downward moving photons in G
whose worldlines have equations { = +t and hence slopes
+1. Express the slopes my of the image worldlines in R
under the map F, : G — R as functions of the relative
velocity v.

(b) Show that m; > +1 and m_ > —1 whenever 0 < v < 1.
For which v does m attain its maximum value?

5. Explain why F, cannot be a valid description of the relation
between the coordinates of G and R.

1.4 Maxwell’s Equations

To explain why one magnet can act upon another “at a distance”—
that is, without touching it or anything connected to it—we say
that the magnet is surrounded by a force field; it is this magnetic
field that acts on the other magnet. Electric charges also act on
one another at a distance, and we explain this by the intervention
of an electric field. These fields permeate space and vary from
place to place and from moment to moment. But not all variations
are possible; the functions defining the fields must satisfy the
partial differential equations given by James Clerk Maxwell in
1864.

One consequence of these “field equations” is that a distur-
bance in the field (caused, for example, by a vibrating electric
charge) will propagate through space and time in a recognizable
way and with a definite velocity that depends on the medium.
In other words, there are electromagnetic waves. Moreover, the
velocity of an electromagnetic wave turns out to be the same as
the velocity of light. The natural conclusion is that light must be
electromagnetic in nature and that the ether must carry the elec-
tric and magnetic fields. This leads us back to the earth’s motion,
but now the question is, How does that motion affect Maxwell’s
equations?
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The Equations
Maxwell's equations (in R’s coordinate frame) concern:

e electric forces, described by an electric vector E varying over
space and time:

E(t,x,y,2) = (E1(t, %, ,2), E2(8, %, , 2), E3(¢, X, ¥, 2))

x component y component zcomponent
e magnetic forces, likewise described by a varying vector:
H(t,x,y,2) = (Hi(t, %, y,2), Ha(t, x, y, 2), H3(¢, %, y, 2))

e ascalar function p(t, x, y, z), electric charge density

e avector function J(t, x, y, z), electric current density
These functions are not independent of one another, but must
together satisfy the following partial differential equations—
Maxwell’s equations—which summarize all the observed facts

about electricity and magnetism. We write them here in geomet-
ric units, where ¢ = 1.

V.E=p, V-H=0,

JE
VXE=——, VXH==8—t+J,

a ad 0
V={—,—,— .
(ax ay 82)
Everything is written in R’s frame; how would it look in G's

frame? Rather than answer this question in full, we focus on one
important consequence arrived at by the following series of steps.

1. Assume that we are in empty space, so p = 0 and J = 0.

2. Consider the following derivation (where subscripts denote
partial derivatives):

9 ) 3
Eq = (V x H) VxH=_—+J, butJ=0

=VXHt

Maxwell's equations

Change to G's frame
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The Galilean
transformation of
Ett - Ezz

H
= -V x (V xE) (VXE:_aB_t>

= —V(V.-E) + V’E (calculus identity)
= V2E (V-E=p=0)

¢ 9% 92
=l —=+—+—|E
(3x2 + dy? + 822)
3. The second-order partial differential equation E; = V2E is

called the wave equation; it must hold for each component
E = E; of the electric vector E:

Ett = Exx + Eyy + Ezz.

4. Assume that the electric field depends only on ¢ and z: E =
E(t, z). For example, a plane wave parallel to the (x, y)-plane
will satisfy this condition. The wave equation for each compo-
nent then takes the simple form

Eyt = E, or Ey — E;; = 0.

We now ask, What does this simple wave equation become in G's
frame of reference, when G moves along R’s z-axis with velocity
v?

The appropriate Galilean transformation is S, : t = 7, z =
¢ + vt. The following equations convert the components of the
electric vector to G’s coordinates:

E(t,z) = E(t, ¢ +vr) = &E(1, ¢).
In other words, we use the “dictionary” S, to convert E (in R’s
frame) to £ (in G’s frame) by composing E with S,:

S
GREEK ._ ROMAN

e\ /E

Using the multivariable chain rule, we could then express the
derivatives of £ with respect to T and ¢ in terms of the derivatives
of E with respect to t and z.
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But this is the wrong way round: To see how E;; — E,, trans-
forms, we want the derivatives of E with respect to ¢t and z in
terms of the derivatives of £ with respect to t and ¢. The solution
is to use the inverse “dictionary” S;}: 1 =t¢, { =z —vt:

E(r,t) =&(t,z—vt) = E(t, 2).

Now the chain rule works the right way. Here is one derivative
calculated in detail:

0E 30T  IEDL _

E=—=— — = =
3t ot ot 9C ot

g-[ - Ugg'.

The others are
Ez = 5{, Ett = S.” - 21/5-;; + UZE;;-, Ezz = 5;;.

Thus in G's coordinate frame the simple wave equation E; —E,, =
0 transforms into

grr - gg'g' + Uz(c:;g' - ZUE:-[; = 0.

The two extra terms mean that the wave equation has a different
form in G's frame (if v # 0, which we are certainly assuming).

According to Galileo’s principle of relativity, this shouldn't
happen: Observers in uniform motion relative to each other must
formulate and express physical laws in the same way. Maxwell’s
equations and the wave equation are physical laws, so they can't
have different forms for different observers.

Does Fitzgerald contraction help? If we replace ¢ = z — vt
(which comes from S, 1) by

z vt

T -2 12

¢

from F;’!, then

Z vt
E(t,z)—-€<t,~/1_uz—\/1_v2)

and

The “Fitzgerald”
transformation of
Ey — Ez,
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The Lorentz
transformation of
Eyt — Ez,

E=¢ ~_¢ B=——¢
SRV e RV
Ex=& 2 ¢ " ¢ E ! ¢
tt = C17 Y r§+1_ 5C88s 2z = 2 ¢¢-
Therefore,
2v -1
Eyt —Epp =&t 25T;+1 &t
_—U _
2v
_Sfr—ggg—ﬁgrg;

the Fitzgerald transformation got rid of orie of the two extra terms!

To get rid of the other, Lorentz proposed a further alteration
of the Galilean transformation that has come to be known as the
Lorentz transformation.

The Lorentz Transformation

Since a modification of the equation connecting space coordi-
nates got rid of one of the extra terms in the transformed wave
equation, perhaps a similar modification on the time coordinates
will get rid of the other. Here is the matrix for Lorentz’s proposed
transformation with the Fitzgerald matrix for comparison:

1 —v

1 M1 =12 1 =12 -1
L= = —v 1 ’ F==

12 42
Ao A2 J1=12 J1-v

1 0
—v 1

Even before we see whether it solves our problem, we can see
that the Lorentz matrix has an aesthetic appeal that the Fitzgerald
matrix lacks: It is a symmetric matrix—a reflection of the sym-
metric treatment of time and space variables that was designed
into the transformation. Furthermore, L;! = L_,, the same sim-
ple relation enjoyed by the Galilean transformations.

The Lorentz transformation does indeed make the wave equa-
tion transform properly. If we write the transformation in the
form
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t—vz z—ut
TVme T
then
t—vz z—ut
Eh2) =£(¢1 — 2 V1 —v2>
and
g EmvE g o EtE
N Nl
B, = Err — 20Er + Uzggg’ - V2 — € + 8;;.
1 -2 1—12
Thus
E4—E,, = (1= UZ)g” L (UZ — 1)5“ =Cr7r — 5{{.

1—12

Lorentz introduced these ideas in the 1895 article [19] that we
cited in the previous section. He called the new expression for
7 —certainly an odd mixture of R’s space and time coordinates—a
“local time,” but he never gave it a good a priori physical explana-
tion. When Einstein eventually did offer an explanation a decade
later, Lorentz never completely accepted it! (See Pais [26], pages
166 ff.).

Exercises

1. (a) Show that A x (B x C) = (A -C)B — (A -B)C, where A, B,
and C are any vectors in R3.

(b) Deduce the corollary V x (V x F) = V(V - F) — V2F, where
F is any smooth vector function. (Note: Since the vector
V is an operator, we must write it to the left of the scalar
V.F)

2. Show that V - (V x F) = 0 for any smooth vector function F.

3. From Maxwell’s equations deduce the conservation of charge:

9
% _ _v.3.
ot
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4. Assume that £(t, ¢) = £(t, z — vt) = E(t, z) and verify that
Ez = 5;-, Ett = 8nr - 21/8-,_—; + 1/28;;, EZZ = 8{;.

5. Assume that £ and E are related by the Lorentz transformation

E(t,z):é’(t_vz z—vt)

VI=02 V1T =12
and verify that
E _51;—1/5;- E, — —1/5-;+5§
Ere — 20E0 +V2Ep¢ V2Erc — Wiy + &gy
Ett == 2 ’ EZZ = 2 N
1—-v 1-v

6. (a) When we revert to conventional units, the simple wave
equation derived from Maxwell’s equations has the form
E; = c2E,,. Show that the function

Et,2) = f(z—ct)+ g(z+ct)

solves the wave equation, for any functions f(u), g(u).
Note that f and g are functions of a single variable.

(b) Suppose w = f(u) has a spike at the origin (a “soliton”),
as shown in the graph below. Let E(t, z) = f (z — ct). Show
that the graph of w = E(ty, 2), for a fixed 1y, is the translate
of w = E(0, z) by the amount c#y. In particular, the trans-
lation puts the spike at z = cty. Use the graphs to explain
that E(t, z) represents a spike traveling in the direction of
positive z with velocity c.

w

(c) Give the corresponding interpretation for E(t,z) = f(z +
ct).
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Further Reading for Chapter 1

The biography of Einstein by Pais [26] deals extensively with
Einstein’s scientific work and places him in the scientific context
of his times. In his definitive 1905 paper on special relativity [11],
Einstein himself discusses the physical problems he sought to
address. The Feynman Lectures [13] give clear discussions of all
the physical issues on which special relativity is based.

29



Special Relativity—

~ Kinematics

CHAPTER

Material objects have mass and move in response to forces; kine-
matics is that part of the study of motion that does not take force
and mass into account. Since kinematics is the simplest part of
dynamics, and since some of the most basic ideas of special rela-
tivity are kinematic in nature, we look at them first.

2.1 Einstein’s Solution

According to the Michelson-Morley experiment and to Maxwell’s
equations, the speed of light is constant, independent of the mo-
tion of the observer measuring it. Instead of considering this a
troubling contradiction, Einstein argued from Galileo’s principle
of relativity that it must simply be a law of physics. He then
considered what this new law must imply.

In geometric terms, the contradiction arises because we use
the Galilean transformation S,, which alters the light cone. Ein-
stein reasoned that the way out is to construct a new transforma-
tion B, : G — R that preserves the light cone. (Henceforward, we
shall use G and R as a shorthand for the spacetimes of G and R,
respectively.) How should B, be defined?

J. J. Callahan, The Geometry of Spacetime
© Springer Science+Business Media New York 2000

Accept the constancy
of the speed of light
as a law of physics

31
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32
By is linear
3171 =B_y

Map the light cone
to itself

Slide points
along the cone

e The transformation is linear. Suppose an object A has a
straight worldline in G’s spacetime. Then A has a constant ve-
locity with respect to G. But then A will have a constant velocity
with respect to R, because R and G are in uniform motion with
respect to one another. Hence A must have a straight worldline
in R's frame, too. So B, must map straight lines to straight lines.
Since we implicitly assume that B, is invertible and carries the
origin to the origin, it follows that B,, is linear. (While this result is
part of linear algebra, it is not part of the usual first linear algebra
course. The exercises will guide you through a proof.)

e The transformation has the same form for all pairs of ob-
servers. Galilean relativity stresses that there should be no essen-
tial distinction between uniformly moving observers. Therefore,
G and R should use the same transformation when they convert
from their own spacetime to the other’s. When G's velocity with
respect to R is v, R’s velocity with respect to G is —v. Therefore,
since B, : G - R, we must have B_, : R - G. But the map
R — G must at the same time be the inverse of the map G — R,
so B_, = B, 1.

The Graphical Solution

Assume, as we have before, that R sets off a spark of light at the
event O. Then one photon travels up the vertical axis; another
travels down. In G's spacetime, below, we see the situation at
time t = 19: G is at Gy, one photon is at U, and one photon is at D.
Because the speed of light is 1, U and D are both 1y light-seconds
from Gy.

Consider now what the map B, has to accomplish. In R, the
images of U and D must lie on the light cone, and Gy must lie on
G's worldline. Because B, is linear and D, Gy, and U are equally
spaced along a line in G, their images must be equally spaced
along another line in R. This is where the problem lies: If we
map D, Gy, and U to a vertical line in R (which is what the
Galilean transformation does), the three points are no longer
equally spaced; Gy will be closer to the upward light cone. But
this is easy to fix: Just rotate the line clockwise around Gy, letting
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D and U slide along the light cone. The lower segment will get
shorter and the upper one longer; at some point the two will be
the same length.

We have suddenly stumbled upon the heart of Einstein’s rev-
olution: From G's point of view, D, Gy, and U happen at the same
time, because they lie on a vertical line (t = 1p). But from R’s
point of view, they happen at different times: first D, then Gy,
then U. The transformation B, preserves the light cone, but at Simultaneity is lost
the cost of losing simultaneity. We do not even know whether
to = 1o, that is, whether R and G agree about the time of the event
Go. (As we shall see, they don't!)

¢
U
B
/ v
G T -
D
Even without the quantitative details we have a good qual- Map is like a
itative picture. Because B, is linear, it maps the ¢-axis and all “collapsing crate”

the vertical lines T = const to lines that are parallel to the line
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containing D and U. It is not a shear; it is more like the partial
collapse of a grid of interlocking cardboard spacers that separate
the bottles in a case of wine. Notice that, in this collapse, grid
points that lie along the +£45° lines (the light cone) are shifted in
or out but stay at +45°: The light cone is preserved.
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The inverse map The inverse map, shown above going right to left, must undo
the effect of B,. It must take the collapsed grid in R (shown in
light gray) and map it back to an orthogonal grid in G. In doing
so, the orthogonal grid in R (shown in black) will map to a grid
in G that is collapsed in the opposite direction. In fact, this is the
same as B_,. To see why, look back at the figure showing B, and
change v to —v. The time axis will then slope downward rather
than upward, and the space axis will tilt backward rather than
forward—exactly like B, !.

Connecting There is one more connection between B, and B_, that we

By and B—y need when we compute the coefficients of B,. Suppose G and R
flip their vertical axes:

71 =71, t]=t,

F:
Clz—;’ Z]Z—Z.

In terms of the new coordinates, the velocity of G relative to R
is now Az /Aty = —Az/At = —v. Thus, if G; and R; denote the
“flipped” versions of G and R, then the map G; — R; must be
given by B_, when the map G — R is given by B,. That is what
the following diagram says.
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4
74
B
G —_—
T
F
Ci
G, ——
T=1 B,
X
¢

Start at G in the upper left; then a vertical flip followed by B_,
produces the same result as B, followed by a vertical flip: B_,F =
FB,. We solve for B_,,

B_, = FB,F~! = FB,F,

to get the relation we need. The last equality holds because F is
its own inverse. Because the equation B_,F = FB, tells us how
F commutes with the Bs, the diagram above (and more typically
its abstract form, shown in the margin) is called a commutative
diagram.

Eigenvectors and Eigenvalues

Because each part of the light cone is invariant, the vectors

U= G) and D= (_11)

(and any scalar multiples of them) that lie on the light cone are
special: B, merely expands or contracts them without altering

Commutative
diagrams

Vectors that B,
simply stretches
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their direction. That is, there are positive numbers Ay and Ap for
which B,U = AyU and B,D = ApD. A square grid in G parallel to
U and D (rather than to the coordinate axes) will be stretched by
the factor Ay in the direction of U and compressed by the factor
Ap in the direction of D. The sides of the grid will remain parallel
to the U and D vectors.

4

Simple description
of B,

expand
~"'.‘.by lu
A

compress
by /11)

Eigenvectors and

eigenvalues

Linearity guarantees that B, acts in a consistent way on the
two grids. For example, consider the point P in G. On the upright
gray grid, P is 2 grid units west of the origin and 4 units south. Its
image is in the same relative position in the gray image grid. On
the diagonal black grid, it is 1 grid unit southeast of the origin and
3 units southwest. Its image in these coordinates is in the same
relative position in the black image grid.

We can therefore use either grid to define B,. However, B, has
a simple and elegant geometric description if we use the (U, D)-
grid: Stretch by the factor Ay in the U direction and by Ap in the
D direction. Here “stretch by A” is meant to include the possibility
of a contraction when |A| < 1, a flip when A < 0, and a complete
collapse when A = 0.

In fact, the directions of the vectors U and D and the corre-
sponding stretch factors Ay and Ap completely characterize B,.
For this reason U and D are called characteristic vectors, or eigen-
vectors, and Ay and Ap are called the corresponding character-
istic values, or eigenvalues. (The names come from German,
where eigen means “of one’s own! In French, the same idea is
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conveyed by the word propre, so characteristic values and vectors
are also called proper values and vectors.)

Definition 2.1 Let M be an n x n matrix; A column vector X is
an eigenvector of M with corresponding eigenvalue ) if X # 0 and
MX = \X.

Note that any nonzero scalar multiple of an eigenvector is also
an eigenvector with the same eigenvalue. The eigenvalues of M
are the roots of the function p(A) = det(M — AI); p(X) is a poly-
nomial of degree n, so M has exactly n eigenvalues (counting re-
peated roots as many times as they appear). Since the polynomial
may have complex roots, M may have complex eigenvalues—
even when all of its coefficients are real. However, it can be
shown that the eigenvalues of a symmetric matrix (one equal to
its own transpose: M* = M) are real, and the eigenvectors corre-
sponding to different eigenvalues are orthogonal to one another.

Suppose {Xi, Xy, ..., X,} is a basis for R” consisting of eigen-
vectors of M, and suppose the corresponding eigenvalues Aj, Az,
..., Ay are all real. Then, in terms of this basis, the action of
M : R" — R" becomes transparently simple:

Y=g Xi+ - -4+a, Xy, = MY=AM©a1X;+- -+ AnanX,.

Thus, if we build a grid parallel to the eigenvectors, M will simply
stretch the grid in different directions by the value of the corre-
sponding eigenvalue. Conversely, this action defines M because
{X1,Xs, ..., Xy} is a basis, so the eigenvalues and the directions
of the eigenvectors characterize M completely.

Unfortunately, not every matrix has a basis of eigenvectors.
Furthermore, some or all of the eigenvalues may be complex;
in these cases the geometric description is more complicated,
but eigenvectors and eigenvalues still provide the clearest path
to a geometric understanding of the action of the matrix. The
exercises explore some of these issues for 2 x 2 matrices. The fol-
lowing is a result we need immediately to compute B,; it concerns
a general 2 x 2 matrix, its determinant, and its trace:

M=(j Z) det(M) = ad — be, tr(M) = a+d.

An n x n matrix has
n eigenvalues

Using eigenvectors
to describe
the action of M
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Condition: the light
cone is invariant

Proposition 2.1 If A; and A; are the eigenvalues of a 2 x 2 matrix
M, then det(M) = A1 Ay and tr(M) = A1 + Ao,

The Computational Solution

1
Theorem 2.1 B, is the Lorentz matrix: By = ——— (1 V).

'/1—-1/2 v 1

d )
We start by noting that G's worldline in R—which is the image
of the r-axis—must have slope v = Az/At. But

¢ 90)=()=0)

sov =c/a, orc = av. Thus a # 0, for otherwise G's velocity would
be +o00.

The next step is to use the invariance of the light cone, that
is, to use the fact that

U= G) and D= (_11)

are eigenvectors of B,. The equation B,U = AyU becomes

= ()= (¢ )

The last equality requires that ¢ +d = a+ b = Ay. Similarly,

mo= (¢ 2)(4)=(28)=»(5)

requires that —(c — d) = a — b = Ap. This gives us two equations

b .
PROOF: Let B, = (: ) we must find g, b, ¢, and d in terms of v.

a+b=c+d, a—b=—-c+d

that then imply d = 4, ¢ = b. Since we already know that ¢ = av,
at this stage we have

= ()= )= 3)
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To determine the remaining coefficient, a, we use the condi-
tion B, 1 = B_, = FB,F. First rewrite this as B, = FB; 1F and then
calculate the determinant:

det(B,) = det(FB,'F) = det(F) det(B; ') det(F)
= —1-det(B;") - ~1 = det(B; ') = det(B,) .

Thus det?(B,) = 1, implying det(B,) = £1. But det(B,) = AyAp >
0, so det(B,) = +1, and hence

det(By) = e (al/)2 = az(l — 1/2) =1.

We solve this for a (and choose the positive square root because
2a =tr(By) = Ay +Ap > 0):

1
a=— END OF PROOF

V1 =12

For future reference we note this alternative expression for
B,:

BUZ(Z Z), - =1, a>0.

The matrix B, is the Lorentz matrix for the transformation
G — R. However, instead of creating it after the fact to fit the
facts (as Lorentz had done), Einstein has deduced it from a sim-
ple hypothesis: The speed of light is constant for all Galilean
observers.

In the setting Einstein created, the Lorentz transformation
must replace the classical Galilean transformation. The Galilean
transformation has a clear and relatively simple geometric
interpretation—as a shear. Is there something similar for the
Lorentz transformation?

In the next section we shall introduce the hyperbolic functions
in order to recast the Lorentz matrix in a more geometric form.
We will then be able to see a striking and valuable similarity with
ordinary Euclidean geometry.

Condition: B, “flipped”
is B_,

Condition:
eigenvalues are
positive
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Exercises

1. Suppose that L : R> — R? is a linear map. Using the fact that L
is additive (L(X + Y) = L(X) + L(Y) for all vectors X and Y) and
homogeneous (L(rX) = rL(X) for all vectors X and real numbers
r), show the following:

e L maps straight lines to straight lines.
e L maps parallel lines to parallel lines.

e L maps equally spaced points on a line to equally spaced
points on the image (but the spacing may be different).

2. The purpose of this exercise is to prove that if M : R? — R? is
continuous and invertible, maps straight lines to straight lines,
and maps the origin to the origin, then M is linear—that is, it is
additive (for all vectors X and Y, M(X+Y) = M(X) + M(Y)) and
homogeneous (for all vectors X and real numbers r, M(rX) =
rM(X)). Homogeneity is the more complicated of the two to
prove.

(a) Show that M maps parallel lines to parallel lines. (Hint: If
the lines a and B are parallel but M(«) and M(8) intersect,
then M is not invertible at the intersection point.)

(b) Use part (a) to show that M is additive. (Consider the image
of the parallelogram spanned by any pair of vectors X and
Y; your proof should also make explicit use of the fact that
M maps the origin to the origin.)

(c) Let the vector X be given and suppose Y; - X as j —
o0. Then M(Y;) — M(X); why? Explain why this implies
M(X +Y;) - M(2X) and, using the fact that M is additive,
MX +Y;) > 2M(X) as well. Conclude M(2X) = 2M(X).

(d) Prove, by induction on the positive integer k, that M((k —
DX +Y;) - M(kX) and M((k — 1)X + Y;) - kM(X). Con-
clude M(kX) = kM(X) for any positive integer k.

(e) Use the fact that M is additive to show M(—kX) = —M(kX)

and hence that M(—kX) = —kM(X) for any negative integer
—k. Thus M(pX) = pM(X) for any integer p.



§2.1 Einstein’s Solution

(f) Now prove that M(gX) = qM(X) for any rational number
q = p/n. Suggestion: let X = nZ and consider nM(pZ) =
pPM(nZ).

(g) Now let r be any real number and g; a sequence of rational
numbers converging to r. Use M(g;X) = q;M(X) to prove
M(rX) = rM(X). This shows that M is homogeneous and
hence linear.

. Ignoring the results of Theorem 2.1 and using only the condi-
tion B_, = FB,F, prove that a is an even function of v, while b
is an odd function. In other words, if we write

B — a(v) b)
VT \b() a(v)
to indicate that a and b are functions of v, then a(—v) = a(v)

and b(—v) = —b(v).

. Eigenvalues and eigenvectors. Suppose

() x-(en

Then X is an eigenvector of M with eigenvalue A if MX = AX.

(We require X # 0 because X = 0 satisfies the equation for

every A.)

(a) Using the fact that the equation (M — AI)X = 0 has a
nonzero solution, deduce that det(M — AI) = 0 and that
A is a root of the equation

A2 —tr(M)A + det(M) = 0.
Conclude that M has two eigenvalues A1, Ay; they may be
equal or they may be complex.
(b) Prove that det(M) = A1A; and tr(M) = A1 + A;.
(c) Suppose X; and X; are eigenvectors corresponding to A

and Az, and A1 # Ap. Prove that Xj and X; are linearly
independent.

(d) Suppose M is symmetric; that is, ¢ = b. Prove that its
eigenvalues must be real. Prove that the eigenvectors Xj,

4]
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X, corresponding to A; and Ay are orthogonal (that is,
X1+ Xo = 0) if Ay # Ay. Prove that every nonzero vector
is an eigenvector if Ay = Ay = A, and show that this im-
plies M = Al

. Determine the eigenvalues and eigenvectors of the flip F :

R? - R? defined in the text.

. Suppose M is a 2 x 2 symmetric matrix whose eigenvalues are

equal. Prove that M must be a multiple of the identity matrix.

. Suppose M is a 2 x 2 invertible matrix. Show that the eigen-

values of M~! are the inverses of the eigenvalues of M; in
particular, the eigenvalues of M must be nonzero. How are the
eigenvectors of M~! and M related?

. (a) Determine the eigenvalues and eigenvectors of the follow-

ing matrices and verify that the eigenvectors are orthogo-
nal when the matrix is symmetric:

G (G5 GA) 6 ()

(b) Consider each matrix M in part (a) as a linear map M :
R? — RZ. Sketch the image under M of a grid of unit
squares.

(c) For each matrix M in part (a), construct a grid in R? based
on the eigenvectors of M and sketch the image of that grid
under M. Compare your results with the grids for the map
B, sketched in the text.

. Determine the eigenvalues and eigenvectors of the circular

and hyperbolic rotation matrices
cosf —sind coshu sinhu
Ry=1{_. , H,=1|". .
sin@ cosé sinhu coshu

(These linear maps are discussed in the following sections of
this chapter.)
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2.2 Hyperbolic Functions
Definitions
et —e sinhu 1
sinhy = ————, tanhu = , sechu = ,
2 cosh u coshu
e +e cosh u 1
coshu= —, cothu = — , cschu = — .
2 sinh u sinhu
The functions sinh and tanh are often pronounced “cinch” and Pronunciation

“tanch”; cosh and sech are pronounced as they are spelled; and
coth and csch are usually just called the hyperbolic cotangent
and the hyperbolic cosecant.

The two functions on the left satisfy the fundamental identity

cosh?u — sinh?u =1 for all u.

It follows that the point (x, y) = (coshu, sinhu) lies on the unit
hyperbola x> — y> = 1 (on the branch where x > 0). This is
analogous to the way the point (x, y) = (cosu, sinu) is found on
the unit circle x2 4+ y? = 1 because of the familiar trigonometric
identity

cosu+sinu=1 for all u.

But the point (cosu, sinu) doesn’t merely lie on the circle;
it is exactly u radians around the circle from the point (1, 0).
This means that we can use the circle x* + y> = 1 to define
cos u and sin u—and thus call them circular functions. Can we do
the same for cosh u and sinh u? Unfortunately, the distance from

Why hyperbolic?
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Why hyperbolic
functions?

Hyperbolic identities

(coshu, sinh u) to (1, 0) along the hyperbola is not equal to u—at
least not if we use the Euclidean arc length along the hyperbola.
However, if we switch to areas, then the analogy works per-
fectly. The circular arc from (1, 0) to (cos u, sin u) cuts off a sector
A whose area is exactly u/2 square units. (If u is negative, the
sector runs clockwise from (1, 0).) As it happens, the hyperbolic
arc from (1, 0) to (coshu, sinhu) also cuts off a sector A of area
u/2 square units. See the exercises. In this way we can use the
hyperbola x2 — y2 = 1 to give a new definition of coshu and
sinh u—explaining why they are called hyperbolic functions.

As the original definitions suggest, there are indeed extensive
parallels between the hyperbolic and the circular functions. The
following table is a list of identities you should verify, noting
whether and how each identity differs from its circular analogue.

Addition Formulas

sinh(u £ v) = sinhu coshv + cosh usinhwv,
cosh(u £ v) = coshucoshv £ sinhusinhv,
tanh u & tanh v
1+ tanhutanhv’
1 £ cothucothv

cothu £ cothv
Double and Half Angles

tanh(u +v) =

coth(utv) =

sinh(2u) = 2 sinh ucosh u, cosh(2u) = cosh? u + sinh? u,

fcoshu—1 {cosh 1
sinh (E) = costu - , cosh (E) = cosuuT 2 ur .
2 2 2 2

Algebraic Relations

cosh? u — sinh? u = 1, 1 — tanh? u = sech? u, coth?u — 1 = csch? u.
Calculus

d | d 2 d

—sinhu = coshu, — tanhu = sech”u, — sechu = —sechutanh u,
du du du

d . d 2 d
— coshu =sinhu, —cothu=—csch®u, — cschu = —cschucothu,
du du du
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sinh2u u sinh2u u

/ sinh?(u) du = -5 / cosh?(u) du = 7
The graphs of w = coshu and w = sinh u are shown with the
exponential functions w = %e", w= %e_“, and w = —%e_“. Note

that cosh u is the sum of the first and the second of these, while
sinh u is the sum of the first and the third.

w = cosh u w

W= je““

W=t

w =sinh u

Notice that w = sinh u is one-to-one and maps the u-axis onto
the w-axis. This means that given any real number wy, there is
a unique ug for which wy = sinh uy. We say that the hyperbolic
sine is invertible and we write the inverse as sinh™!, so uy =
sinh™! (wp).

Proposition 2.2 If (x, y) is any point on the hyperbola x* — y* = 1
and x > 0, then there is a unique u for which

x = coshu, y = sinhu.

PROOF: Take u = sinh_l(y). The result also follows from the ge-
ometric connection between cosh u and sinh u: Draw the hyper-
bolic sector A defined by the three points (0, 0), (1, 0), and (x, y);
then u = 2 - area A. END OF PROOF

This proposition gives us a useful parametrization of that
branch of the hyperbola x> — y? = 1 where x > 0. In fact, this is
just what we need for the Lorentz matrix.

The hyperbolic sine is
invertible

Parametrizing a
branch of a hyperbola
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Corollary 2.1 We can write the Lorentz matrix B, in the alternative
form
_ (coshu sinhu
“ 7 \sinhu coshu/’
where u =tanh™! v, or v = tanh u.
PROOF: While computing the formula for B, we derived the alter-
native form
a b 2 2
B, = , a—-b"=1, a>0.
The proposition provides a unique u for which a = coshu, b =
sinh u. Futhermore, v = b/a = sinh u/ coshu = tanh u.
END OF PROOF
Boosts and We now have two ways to describe the Lorentz transformation—

hyperbolic rotations

physically and geometrically. When we use matrix B,, we call
the transformation a boost (or a boost by velocity v). This is
a physical description; it is expressed in terms of the physical
velocity parameter v. By contrast, the matrix H, gives us a geo-
metric description; in the next section we shall see that u can be
thought of as a “hyperbolic angle” and H, as a hyperbolic rota-
tion. There are direct analogues with ordinary Euclidean angles
and rotations. The two forms of the Lorentz transformation are
related as follows:

Hy, = Bianhu and B, = H,

anh™ ! v-

Exercises

1. Deduce from the definitions of sinh 4 and cosh u that cosh? u —
sinh?u =1 for all u. Do the same with the other two algebraic
identities.

2. Verify all the addition formulas for the hyperbolic functions
and note whether and how they differ from the corresponding
addition formulas for the circular functions. Do the same for
the double and half angle formulas and the calculus identities.
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3. Prove that coshu +sinhu=c¢e
4. ShOW that Hul . Hul = Hu1+u2 = Huz . Hul, Whel‘e

tu

H. = coshu sinhu
¥ 7 \sinhu coshu/"

. (@) Suppose v = tanh u; show that

sinh id cosh !
U= —, U= —.
1— 12 V1 —v?
(b) Conclude that H, S =B
) V= 2\ 1)

(c) Using this expression for By, calculate By, - By, and show
that there is some v3 for which By, = By, - By, = By, - By,.
Express v3 in terms of v; and v;; prove that |v3| < 1 when
1] < 1 and |vp| < 1.

. (a) Sketch on the same axes the graphs of w = tanhu, w =
cothu, w = sechu, and w = csch u.

(b) Your sketches should show that 0 < sechu <1 and -1 <
tanhu < 1. Prove these statements analytically.

. (a) Using the parametrization x = coshu, y = sinhu of x* —
y2 =1, x > 0, as a model, construct parametrizations of
these curves:

xZ_y2=1,x<O; yz—xzzl,y>0; yz—x2=1,y<0.

(b) Sketch each curve and mark on it the location of the points
where u = —1, 0, 1. Put an arrow on each curve that shows
the direction in which u increases.

. Make a careful sketch of the parametrized curve P, = (cosh u,
sinhu) with —1 < u < 2. On your sketch draw the three
line segments that connect the pairs of points {P_j, P},
{P_1/2, P32}, {Po, P1}. These lines should be parallel and paral-
lel to the tangent to the curve at u = %; are they?

. Give a simple argument that explains why the circular sector
A at the beginning of the section has area u/2, given that the
circle has radius 1 and the defining arc has length u.

47
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10. Prove that areaA = u/2 in the hyperbolic sector above. Here

11.

12.

13.

14.

15.

is one approach you can take.

(a) Explain why the right branch of the hyperbola is the graph
x = /1 + y%. Then show that

sinh u inh h
area(A+B)=/ 1+y2dy=§+§£1_”2_co.s_”
0

(One way to evaluate the integral is via the substitution
y = sinhs.)
(b) Find area B and subtract it from area(A + B).

Find the area of the circular sector by an integral argument
similar to the one you used for the hyperbolic sector in the
previous exercise. Note the similarities.

(a) Obtain the Taylor series for e¥, cosh u, and sinh u.
(b) Obtain the third-order Taylor polynomial for tanh u.

Calculate the derivatives of the three inverse functions sinh ™! u =

arcsinh u, cosh™ u = arccosh u, and tanh™! u = arctanh u.

(a) Show that arcsin(tanh u) = arctan(sinh u).
1 1+w
(b) Show that tanh™ w = arctanhw = 3 In (%)
—-w
Pronunciation lesson (from Bill Watson); identify the cuisine:

2r
e“"+1 2e
2e’ ®) e2+1

@
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2.3 Minkowski Geometry

Rotations and the Euclidean Norm

In analytic plane geometry, the basic tasks are measuring lengths
and angles; everything else depends on them. The tool for these
tasks is an inner product in R%. The standard Euclidean inner
product is

X!
X1-X2 =X Xy = (x1, 1) (}'2) = x1x2 + y152.

Here we write an element X of R? in the usual way as a column
vector; the transpose X' is the corresponding row vector. By using
the transpose of the vector on the left, we make the inner product
into an ordinary matrix multiplication. This will be useful later
on. From the inner product we get the length, or Euclidean norm,

of a vector,
Xl = VX - X = /x% + y2.

We can now make the basic measurements. For two points, or
vectors, X; and X, in R?, they are

distance from X; to X3 = | X2 — Xj|| = \/(xz —x1)2+ (y2 — )2,

X1-X )
IXull 11Xzl )

It is a fundamental geometric principle that lengths and an-
gles do not change when the plane undergoes a rotation. Coun-
terclockwise rotation by 6 radians is given by the matrix

Ry — (cos@ —sine)
sin @ cosb /)’
(See the exercises.) We prove that rotations, as defined here, do
indeed preserve lengths and angles by proving that they preserve
the norm and inner product. In fact, it is sufficient to prove just
the second, because the norm is defined in terms of the inner

product. However, before giving that proof we look first at a direct
computational proof for the norm.

angle between X; and X; = o = arccos (

The norm and
inner product

Rotations preserve
lengths and angles
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X,

RyX,
Ry X,

Absolute quantities
have geometric
meaning

Proposition 2.3 ||RgX|| = || X| for every X in R2.

PROOF: Let (p ) = (cgs@ B sm@) <x> . We must show that p? +
q sin6 cosf ) \y

P =22+ 2
p* + % = (xcos® — ysin@)? + (xsinb + y cosh)>
= x% cos?0 — 2xy cos O sin@ + y sin? 4
+ x% sin% 6 + 2xy sinf cosf + y% cos? §

= x%(cos® 0 + sin6) + yz(sin2 6 + cos? 0)

=x% 4 y2. END OF PROOF
Corollary 2.2 The rotation Ry maps each circle x*> + y* = 2 to itself.
Proposition 2.4 RyX; - RgXp; = X; - X5,

PROOF: Write the inner product as a matrix multiplication:
RoX1 - RgXy = (RgX1)'Re Xy = X{RERQXZ
= X'R_gRoXy = X:IX, = X1 - X
See the exercises to verify that R = R;' =R_s.  END OF PROOF

Corollary 2.3 The distance from RgX; to RgXy is the same as the
distance from X; to X. The angle between Ry X1 and RgX» is the same
as the angle between X; and X».

PROOF: The distance from RyXj to RyX> is
[RoX2 — RoXill = |[Rg(X2 — X1)|| = |1 X2 — Xall,

the distance from Xj to X;. The angle between RyX; and RgXj is
arccos (M) = arccos <X—1X2—) ,
[RoX1 |l IRg Xzl 1 X2 [l ([ Xzl
the angle between X; and X;. END OF PROOF

Thus, even though the coordinates of a point change under
rotations, its norm does not. In other words, coordinates are rel-
ative to a coordinate frame, but the norm is absolute: It has the
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same value in all frames (obtained from one another by rotation).
Because the norm is absolute, it has a true geometric meaning.
Likewise, the inner product of two vectors is absolute, not relative,
so it also has a true geometric meaning.

One practical consequence of an absolute norm is that we can
now calibrate coordinate frames—that is, we can transfer units
of measurement from one frame to another. In the figure below,
points on the different axes that intersect the same circle must
be the same number of units from the origin. Furthermore, a 90°
rotation even allows us to calibrate the x- and y-axes of the same
frame.

y
_____ 3 }...... calibration circles
AN T
PN e 2f ' “

Proposition 2.5 The product of two rotations is another rotation;
specifically, Rg - Ry, = Rg1y. In other words, to multiply two rotations,
add their angles. Furthermore, Ry = I, the identity matrix, and Ry 1=
R_y.

PROOF: Exercises.

This proposition says that the set O4+(2, R) of rotations is a
group. This group is commutative, essentially because addition
of angles is commutative:

The Minkowski Norm

The Lorentz transformation H, is designed to preserve the light
cone, which is the set t — z2 = 0. In fact, H, does much more;

Calibration

H, preserves every
222 =k
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t2 — z2 corresponds
tox? + yz

The light cone
separates spacetime

according to the following theorem, it preserves each of the hy-
perbolas 2 — z? = k, for all k. (The common asymptote of these
hyperbolas is the light cone.)

~

k<0 k=0

Theorem 2.2 Ift? — ¢? =k and

AT LAY coshu sinhu) (7
z) ~ *\¢) \sinhu coshu)\¢)’
then t? — z2 = k. The parameter u can have any real value.

PROOF: We calculate
2 — 22 = (r coshu + ¢ sinh u)? — (z sinh u + ¢ cosh u)?
= 1% cosh? u + 21¢ coshusinh u + ¢ sinh? u
— 2 sinh® u — 2t¢ sinhucoshu — ¢2 cosh? u
= t2(cosh? u — sinh? u) — ¢%(cosh? u — sinh? u)
=12 -2 END OF PROOF

This proof is a direct translation of the proof that a rotation
preserves the norm: [|[ReX]| = || X| (Proposition 2.3). All that is
involved is converting the circular identities to their hyperbolic
counterparts. Since 2 —z? corresponds to the norm || X||? = x?+ y?
that we use for measuring distance in the Euclidean plane, the
correspondence suggests that we should treat t? — z2 as a norm
for measuring “distance” in spacetime. This is the approach that
Hermann Minkowski took in 1907.

The approach is complicated by the fact that t* — z2 can be
negative as well as positive or zero. To see what this implies, let
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us work with events E = (t, x, y, z) in the full (1 + 3)-dimensional
spacetime. We define

Q(E):tz_xz_yz_zz’

or QE) = t? — z2 if E = (t,2). The set Q(E) = 0 is a cone that
separates spacetime into two regions: Q is positive in one and
negative in the other.

We see that Q(E) > 0 for all points inside the cone (shown
shaded in the figure above). Since the image of any observer’s
time axis under a Lorentz map H, will lie in the interior of the
cone, we say that events E in the interior are timelike. The
exterior of the cone (where Q(E) < 0) will contain the images of
other observers’ space axes, so we say that events E in this region
are spacelike. Finally, we say that events on the light cone itself
are lightlike.

Definition 2.2 The Minkowski norm of an event E = (t, x, y, z) in
spacetime is

~Q(E)  ifEis timelike: Q(E) > 0;
|EIl = § +/—Q(E) if E is spacelike: Q(E) < 0;
0 if E is lightlike: Q(E) = 0.

Since we are using geometric units, in which length has the
dimensions of time, the Minkowski norm also has the dimensions
of time. Thus, for example, if E = (5 sec, 3 sec), then ||E|| = 4 sec.
This is not an error: Minkowski geometry has a 3-5-4 triangle
where Euclidean geometry has a 3-4-5 triangle.

Timelike, spacelike,
and lightlike events

The Minkowski norm
is a time
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sech
4t
1R\
S e i - i t
1 2 3 4 5 6 se
A nonintuitive length When we use this norm to measure lengths in spacetime, we
and “unit circle” get results that are, at first, surprising and nonintuitive. For a

start, the “unit circle” in this geometry is the pair of hyperbolas
t? —z% = 41. Thus, all the vectors below are unit vectors—timelike
on the left, spacelike on the right. Of course, if we were to mea-
sure them instead with the Euclidean norm (which our eyes do
instinctively), then they get longer the nearer they are to the
asymptotes z = xt.

N Z

Q(E) = +1 Q(E)=-1

N

Calibration We can use the Minkowski norm to calibrate spacetime coordi-
nate frames the same way we used the ordinary norm to calibrate
Euclidean frames. Thus, in the figure below, the spacing of units
along the 7- and ¢-axes must be exactly as they appear, even
though it looks too large to our Euclidean eyes.

- calibration "circles"
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Since the physical distinction between past and future is im- Past and future in
portant, we now refine our partition of spacetime to take this into spacetime
account.

Definition 2.3 Spacetime consists of the following six mutually ex-
clusive sets of events, or vectors, E = (t,x, y, z) (or just E = (¢, 2)):

: the future timelike set Q(E) > 0, t > 0;

: the past timelike set Q(E) > 0, t < 0;

: the spacelike set Q(E) < 0;

Ly : the future lightlike set Q(E) =0, t > 0;

L_ : the past lightlike set Q(E) =0, t < 0;

O : the origin.

e

Theorem 2.3 Each H, maps each of the six regions of spacetime to
itself.

PROOF: Since Theorem 2.2 says that Q(H,(E)) = Q(E), the only
thing left to prove is that the future and past sets are individually
preserved. So suppose E is in 75 :

T _ _ (coshu sinhu) (7) _ (¢
E= <§) » >0 Hu(®) = (sinhu coshu) (;) - (z) '
We must show thatt > 0. Since Eisin 7,7 >0and -t <¢{ < 1.
Therefore,

t =tcoshu+ ¢sinhu > tcoshu — rsinhu=1te™ > 0.

The other three results are obtained in a similar way. END OF PROOF



56

Chapter 2 Special Relativity—Kinematics

The interval between
events

The norm and the
interval have physical
meaning

A timelike interval
measures ordinary
time

Definition 2.4 The separation between two the events E; and E,
in spacetime is the vector E; — E;, and the interval between them
is ||[E; — E1||. We say that the interval is timelike, spacelike, or light-
like if the corresponding separation is timelike, spacelike, or lightlike,
respectively.

The interval, like the norm, is measured in seconds. Note that
the interval between two events does not have to be of the same
type as the events themselves. For example, in the figure on the
left below, the interval between S; and S, is timelike, and the
interval between T; and T is spacelike.

Z z§
/

oT,
?/}5/'7

R t R

T t
N
A S, S
Sl Sl

Theorem 2.2 implies that |[H,E| = ||E|| for every event E and
every real number u. Hence the Minkowski norm of an event,
and the interval between two events, are absolute quantities: All
uniformly moving observers assign them the same values. Thus,
by Galileo’s principle of relativity, they are objectively real—they
have a physical meaning that all observers will agree on.

To see what this means concretely, consider the following. In
the figure on the right above, the interval between $; and S, is
timelike, so the separation S; — $; has slope v with |v| < 1. Since
lv| < 1, we can introduce an observer G who travels with velocity
v relative to R. Then S; and S; will lie on a line ¢ = ¢ parallel
to G's time axis. From G's point of view, $; and S; happen at the
same place but at different times 7; and 1. According to G, what
separates S; and S, is a pure time interval of duration 7, — 71; the
separation vector has the simple form S, — §; = (72 — 11, 0).

Of course, R considers that S; and S happen at different places
z1 and z; as well as different times #; and tp; S; — S; = (f2 — 11,
zy — z1). Nevertheless, by Theorem 2.2 the norms ||S; — S1||r and
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IS2 — S1llg must be equal. Thus

Vi —1)2—(zz—21)2= 12— Sillr = IS2 = Sillg = 12 — 1.

In other words, when S; — §; is timelike, every observer’s calcu-
lation of the interval ||S; — S| yields the ordinary time interval
between S; and S; as calculated by an observer “traveling with”
those events. In this sense the interval between S; and S; is ob-
jective.

In a similar way, if the interval between two events is space-
like, there will be an observer who says that they happen at the
same time but at different places. For that observer, the separa-
tion is purely spatial. Consequently, the interval between those
events, as calculated by any observer whomsoever, will give that
spatial separation—the ordinary distance—as measured by an ob-
server for whom the events happen simultaneously.

Hyperbolic Angles and Rotations

In the analogy we are developing between Ry and H,, u corre-
sponds to the Euclidean angle 6, so we have to be able to interpret
u somehow as a “hyperbolic angle” and H, as a rotation through
that angle. The connection between the hyperbolic functions and
the unit hyperbola will give us just what we need. But before we
pursue this, we have to reckon with the fact that H, acts sep-
arately on each of the six distinct regions of spacetime. Since
worldlines of different observers correspond to future timelike
vectors, we focus on the future timelike set 7, which we will
henceforth describe more briefly as the future set F.

Theorem 2.4 For every real number u, H, maps F one-to-one onto
itself.

PROOF: We already know that H, maps F into itself. But so does
its inverse H,; 1 = H_,. It follows that H, is one-to-one and onto.
END OF PROOF

Proposition 2.6 The set F is closed under additon and multiplica-
tion by positive scalars.

A spacelike interval
measures ordinary
distance

Focus on
the future set F
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Future rays

Hy(p)

PROOF: The second statement is clear. To prove the first, suppose

are future vectors. Then

0<mt, -t <2z1 <1,

0 <1y, —t <27 <ty

Therefore, 0 < t; +t, and —(t; + 1) < 21 + 2, < t; + 1, so the sum
E;, + E, is also a future vector. END OF PROOF

The map Ry changes the angle of any ray through the origin in
the Euclidean plane by 6 radians. We will therefore be interested
in what H, does to a future ray, which we define to be a ray
through the spacetime origin that lies in the future set F.

Definition 2.5 Two future rays p1 and p; determine the hyperbolic
angle Lp,py from p; to py. If p1 and p, intersect the unit hyperbola
t2 — z2 = 1 at the points (coshay, sinha) and (coshay, sinhay),
respectively, then L p) p; measures ay — a1 hyperbolic radians.

Sl

?
2
=2
R
2.
E-
5
N’

Lpipy=0,— 0y

Proposition 2.2 guarantees that «; and «; are uniquely de-
fined. Notice that the hyperbolic angle has a sign, and Zpp =
—/p1p2. When confusion is unlikely, we drop the adjective hy-
perbolic.

Theorem 2.5 Let p be a future ray; then the hyperbolic angle from
p to H,(p) measures u hyperbolic radians.
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PROOF: Suppose p intersects the unit hyperbola in the point
(cosha, sinh ). Then the ray H,(p) contains the point

H cosha) (coshu sinhu) (cosha) _ (cosh(u+a)
“\sinha /)~ \sinhu coshu/ \sinha /)  \sinh(u+ )
that lies on the unit hyperbola. (We used the addition formulas

for the hyperbolic sine and cosine). By definition, the hyperbolic
angle from p to Hy(p) isu+ o —a = u. END OF PROOF

Corollary 2.4 If the hyperbolic angle from p; to py is B, then p; =
Hg(p1).

PROOF: This is the converse of the theorem; it is true because
there is a unique ray that lies g hyperbolic radians from p;.
END OF PROOF

Corollary 2.5 H, preserves the hyperbolic angle between future
rays.

PROOF: Suppose the hyperbolic angle from p; to p; is 8. Then, by
the previous corollary, p; = Hg(p1). But then

H,(p2) = Hu(Hg(p1)) = Hy1p(p1) = Hp(Hu(p1)).

By Theorem 2.5, the hyperbolic angle from H,(p;) to H,(p2) is B.
END OF PROOF

Corollary 2.6 If Lpyp; = B, then the signed area of the sector on
the unit hyperbola cut off from p1 to py is B/2.

PROOF: Let p3 be the positive t-axis; choose u such that H,(p1) =
p3. Then /H,(p1)H,(p3) is also B, by the previous corollary.

59
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Hyisa
hyperbolic rotation

Hyperbolic rotations
form a group

The matrices J 4

Therefore, H,(p2) intersects the unit hyperbola in the point
(cosh B, sinh 8). By Exercise 10 of Section 2.2, the signed area
of the new sector is /2. But det(H,) = 1, so H, is an area- and
orientation-preserving map. Thus the two sectors have the same
signed area, namely 8/2. END OF PROOF

With these results we have the complete analogy between
Ry and H,; they explain the statement “H, rotates points in the
future set F by the hyperbolic angle u.” The last corollary even
gives us an alternative definition of the measure of the hyperbolic
angle as twice the ordinary signed area of the sector on the unit
hyperbola cut off by the two rays.

To prove the corollaries, we used the following theorem; it
states that hyperbolic rotations form a commutative group with
the same properties as the group of circular rotations.

Theorem 2.6 The product of two hyperbolic rotations is another
hyperbolic rotation; specifically, H, - H,, = Hy4+y. In other words, to
multiply two rotations, add their angles. Furthermore, Hy = I, the
identity map, H;! = H_,, and H,H,, = H,H,,.

The Minkowski Inner Product

The standard Euclidean inner product of two vectors X; and X; is
1 0\ /x
. =X = 2 =
X1 - Xo = X1IXp = (x1, y1) (O 1) (yz) x1%2 + Y152

Since X - X = x? + y? = || X||, the analogy between the Euclidean
and the Minkowski norms suggests that we should define the
Minkowski inner product of two events E; and E; to be

1 0 t;
E-E;=Eih1E = (h,21) (O _1> (;) =ttty —2122.

By writing the inner products this way, we see that they obey
all the usual rules of matrix multiplication. We also see that the
difference between the Euclidean and Minkowski inner products
lies only in the defining matrix—the identity matrix I in one case
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and the matrix J; 1 in the other. To define the Minkowski inner
product in the full (1 + 3)-dimensional spacetime, just use the
matrix

1 0 0 O
~]o -1 0 o
Ta=1lo 0 -1 o
0 0 0 -1

Then E-E=E'[; 3E=1> —x? — y* — 22 = Q(E), s0
Eo —||E||* if E is spacelike,
| IEI?* otherwise.

Theorem 2.7 Hyperbolic rotations preserve the Minkowski inner
product.

PROOF: Hy(E1) - Hy(Ez) = (HuE1)'11HuE2 = E{H.J1,1H,E;
_ K coshu sinhu)\ /1 0\ /coshu sinhu E
=" \sinhu coshu/\0 —1)\sinhu coshu) 2

_F coshu —sinhu) (coshu sinhu E
~ "1 \sinhu —coshu/ \sinhu coshu)?

1 0
=5 (0 —1) E
= E;j - E;.

If E; and E; are future vectors that lie on the future rays p;
and py, respectively, we define ZE1E; = /p; p2. The next result is
analogous to Xj - X = || X1 ||| X2 || cos 8 for two vectors X; and X3 in
the Euclidean plane that subtend the angle 6.

END OF PROOF

Theorem 2.8 If E; and E; are arbitrary future vectors and LE1E; =
B, then E; - E; = ||E1||||Ez|| cosh B.

PROOF: We prove the result first for the unit vectors in the direc-
tions of E; and Ej; these are U; = E;/||E;||, i = 1, 2. The vector U;
lies on the same ray as E;, so LUjU, = LE1E; = B. Because Uj is
a unit vector, we can choose H, such that

Hy(Up) = ((1))

The angle between
future vectors
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E1:' >
E1 +E

Then

Huv) = (o)

sinh B8
by the proof of Corollary 2.6. Consequently,
(1 coshpB)
Hy(Ur) - Hu(Uz) = (0) . (sinhﬁ) = cosh B.
Since H, preserves the Minkowski inner product, U; - U, = cosh 8.
Finally,
Ey - E; = (IE1[1U1) - (IE2[1U2) = ||Ex[ll|E2ll (U - Ua)
= ||E1||||E2]| cosh B. END OF PROOF

The first of the two following corollaries of Theorem 2.8 is
a direct analogue of the Euclidean law of cosines—but notice
the difference in sign. The second is particularly intriguing, as
it goes completely in the opposite direction from its Euclidean
analogue; it can be paraphrased as saying “a straight line is the
longest distance between two points.

Corollary 2.7 The law of hyperbolic cosines. If E; and E, are
future vectors and /E1Ey = B, then

IEx + E2ll* = |IE1||> + |IE2/I* + 2||Ex |l||E1 || cosh B.

PROOF: We know that E; + E; is a future vector. Therefore, since

/E1E; = 8, we have

I|E1 + E2||* = (E1 + E2) - (E1 + E2) = (E1 - E1) + 2(E1 - E3) + (Ez - Ep)
= |E1||* + 2||E1 || |E2|| cosh B + |[Ez[|>.  END OF PROOF

Corollary 2.8 The reverse triangle inequality. If E, and E, are
future vectors, then |E; + Ez|| > ||E1]| + ||E2]|.

PROOF: Suppose LE1E; = B; since cosh 8 > 1, we have

IE1 + E2ll = v/IIE1 (12 + 2||E1 [[I|Ez]l cosh B + || Ez |12

> VIE1|I% + 2||E1 [ B2l + || E2l2
= || E1|| + ||E2]l. END OF PROOF
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The Pythagorean Theorem

There is no reasonable way to talk about the hyperbolic angle
between a timelike and a spacelike vector; for example, no hy-
perbolic rotation can map one to the other. However, by analogy
with Euclidean geometry we can say that two vectors E; and E; are
perpendicular, or orthogonal, and write E; L E;, if E; - E; = 0.
Apart from lightlike vectors, which are orthogonal to themselves,
orthogonal vectors must be of different types—one timelike and
one spacelike. Since we use the same units on the space and
time axes (so the light cone has slope £1), orthogonal vectors in
Minkowski geometry make equal Euclidean angles with the light
cone. In Euclidean geometry, the slopes of perpendicular lines
are m and —1/m; in Minkowski geometry, they are m and +1/m.

Mk LA

| t

Z

Suppose the timelike vector Ey and the spacelike vector Egp
are orthogonal: Ey L Egsp. Then these vectors form the sides of
two different right triangles; the hypotenuse of one is Ey + Egp
and of the other is Ey — Esp. The hypotenuses can be of any
type—timelike, spacelike, or lightlike—but the two possibilities
are always of the same type.

E,+E,

sp

E;

Proposition 2.7 If Ey 1 Esp where Ey; is timelike and Egp is space-
like, then the vectors Ey; £ Esp are always of the same type.

PROOF: Since Ey is timelike, we can choose a hyperbolic rotation
H, that puts H,(Ey) on R’s time axis, so H,(E) = (a, 0)' for some

Orthogonal vectors

Right triangles
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Rigid motions

Reflections

a # 0. Since H, preserves the Minkowski inner product, H,(Ey) -
H,(Esp) = 0, s0 Hy(Esp) = (0, b)* for some b. Therefore,

H,(E; + Esp) = H,(Ey) £ Hu(Esp) = (::b)

and
Q(Ey + Esp) = Q(Hy(Eyi + Egp)) = a* — b2,
so Ey * Egp are of the same type. END OF PROOF

Theorem 2.9 (The Pythagorean theorem) Suppose Ey; L Egp
where Ey is timelike and Egp, is spacelike. Then

+||Eyi £ Espll® = | Eall* — | Espll?,

where we take the leading sign to be a minus if the vectors Ey £ Egp
are spacelike and a plus otherwise.

PROOF: Recall that E- E = +||E||? and we use the minus sign if and
only if E is spacelike. Therefore,

+|[Eyi % Espll® = (Exi % Esp) - (B £ Esp)
= (Eti : Eti) + Z(Eti : ESp) + (Esp . Esp)
= ||Esll® — || Espll®. END OF PROOF

Congruence

In Euclidean geometry, rotation is a rigid motion: When we rotate
the plane about the origin, the rotated image of a figure is congru-
ent to the original. We declare the same to be true in Minkowski
geometry: The image of a figure in the future set F under a
hyperbolic rotation is congruent to the original. While it is not
immediately obvious to our Euclidean eyes, all the rectangles on
the right in the figure below are congruent to one another. They
are, in Minkowski geometry, the “same” rectangle.

There are two other kinds of rigid motion: reflection and trans-
lation. Every reflection in the Euclidean plane can be shown to
be equal to the product of an ordinary rotation and the particular
reflection across the x-axis.
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Proposition 2.8 If Fy : R? — R? is reflection across the line that
makes an angle of 6 with the x-axis, then Fyg = RygFy.

Proposition 2.9 Each Fy preserves the Euclidean inner product:
F}IFy = 1. Conversely, if a matrix M preserves the Euclidean inner
product, it is either a rotation or a reflection.

Proofs are in the exercises. How might we define a reflection
in Minkowski geometry? The Euclidean reflection Fy fixes points
on the line that makes an angle of 8 with the x-axis and flips the
orthogonal line on itself. Since we have a notion of orthogonality
in the Minkowski plane, we can use the same idea to define a
hyperbolic reflection.

Definition 2.6 Let A, be the line through the origin that makes
an angle of u hyperbolic radians with the t-axis, and let A" be the
orthogonal line. The hyperbolic reflection across 1, is the linear
map K, that fixes points on the line A, and flips the line A} on itself

We can translate the definition into the language of eigenval-
ues and eigenvectors: K, is the linear map whose (unit) eigen-

vectors are
coshu sinh u
) and ,
sinh u coshu

and its corresponding eigenvalues are +1 and —1. Thus detK, =
+1- -1 = —1. The analogy with Euclidean reflections suggests
the following theorem.

il
Av o
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Theorem 2.10 K, = H,,Kj.

PROOF: Consider the matrix

sinh2u cosh2u/ \0 -1 sinh2u —cosh2u

M = Hy,Ko = <cosh 2u sinh Zu) (1 O) _ (cosh 2u —sinh Zu) .

We show that M = K, by showing that M has the same eigenvec-
tors and eigenvalues as K. The addition formulas for the hyper-
bolic sine and cosine give

M coshu)  (cosh2ucoshu —sinh2usinhu\  (cosh(2u — u)
sinhu )~ \sinh2ucoshu — cosh2usinhu/ =~ \sinhQu —u) /)’

SO
coshu coshu
M (sinh u) =+l (sinh u) )

In a similar way,

M sinhu\  (cosh2usinhu — sinh2ucoshu\ (—sinhu
coshu/ — \sinh2usinhu — cosh2ucoshu) ~ \—coshu)’

SO
sinh u sinh u

M =-1- . END OF PROOF
coshu coshu

Corollary 2.9 Each K, preserves the Minkowski inner product:
K,ih,lKu = J1,1. Conversely, if M preserves the Minkowski inner
product and maps F to itself, it is either a hyperbolic rotation or a
hyperbolic reflection.

PROOF: The first statement follows from the fact that K, can be
written as a product of matrices that individually preserve the
Minkowski norm. To prove the second, let

M=(g g).

Since M maps F to itself, the vector

6=
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must lie in F; in particular, a > 0. The condition M*J; 1M = J; 1
translates to

a c\(1 O0\[(a b\ _ (a>—c* ab—cdy (1 0O
b dJ\0 —=1)\c d) \ab—cd bv>—-ad?)  \0o -1/

The conditions > — ¢ = 1 and ¥* — d*> = —1 imply that the
columns of M,

a coshu _(b\ _ /sinhv
G = (c) - (sinh u) ’ G = (d) =% \coshv) ’

lie on the timelike and spacelike unit circles, respectively, and
thus can be parametrized as shown, for appropriate hyperbolic
angles u and v. Since a > 0, there is only one choice for the sign
of C;, but there is no similar restriction on the sign of C,.

Finally, the equation ab — ¢d = 0 implies C; L C; and trans-
lates to

cosh usinhv — sinh u coshv = sinh(v — u) = 0.

This implies v — u = sinh™1(0) = 0, so M is either

coshu sinhu _H or coshu —sinhu K
sinhu coshu) 7% sinhu —coshu/ — /%

END OF PROOF

Clearly, hyperbolic reflections help make Minkowski geom-
etry a full and complete theory. But what role do they play in
the physics of spacetime? The answer has to do with an assump-
tion we first made in Section 1.2 and have carried with us. There
we assumed that two Galilean observers will orient their spatial
axes the same way: G's positive ¢-axis will point the same way as
R’s positive z-axis. This assumption kept our calculations simple;
it wasn't essential. If we abandon it now and allow G and R to
give their spatial axes opposite orientations, then we will need a
hyperbolic reflection to map G's spacetime to R’s.

To see why this is true, suppose X is an object that is stationary
with respect to G and is located at { = +1. Then the worldline
of X lies parallel to the t-axis in the view of both G and R, but R
will put the worldline below the t-axis. If the slope of the r-axis
in R is v = tanh 4, then we can map G to R by first reflecting G on

The physical need for
hyperbolic reflections

Reversing spatial
orientation
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itself by Ky and then performing the hyperbolic rotation H,. The
result is the hyperbolic reflection H,Kg = Ky/2.
¢ z
X L T
K
G T = R // t
G
X
¢
Enlarging the By assuming that observers gave the same orientation to their

Lorentz group

Multiplication rules
in L

spatial axes, we were inadvertently overlooking certain genuine
Lorentz transformations. Now that we allow observers to orient
their spatial axes arbitrarily, we must enlarge the class of Lorentz
transformations to include hyperbolic reflections. Of course, we
continue to assume that all observers see time flowing in the
same direction, so we will still require Lorentz transformations
to preserve the future set F.

Definition 2.7 The orthochronous Lorentz group L is the set of
all linear maps L : R? — R? that preserve the Minkowski inner
product and the future set F. The group operation is composition of
maps or, equivalently, multiplication of matrices.

The adjective orthochronous here means roughly “does the
right thing to time” For us, it means that the image of the positive
time axis will lie in F. Since we shall never have a reason to use
maps that do otherwise, we shall usually drop the adjective and
refer to £ simply as the Lorentz group.

The definition includes the assertion that £ is a group, which
means that the product of two Lorentz maps is another Lorentz
map. We already know that the product of two rotations is a
rotation. In the exercises you are asked to verify that the product
of two reflections is also a rotation and the product of a reflection
and a rotation is another reflection. In fact, you can reduce any
product of rotations and reflections to a single map. If the original
product involves an even number of reflections, the result is a
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rotation; otherwise, the result is a single reflection. One way to
demonstrate this is to commute the factors in a product until all
the reflections are together on one end. The commutation rules
in £ are given in the following commutative diagrams, in which
the sources and targets are represented simply by dots in order
to focus attention on the maps themselves.

H—u KZu—u KU—u

H, K.y Ky

For example, the first diagram asserts that H,K, = K,H_,. This
can be written in the alternative form

K;'H,K, = K,H,K, = H_,,

and when we take v = 0, this becomes H_, = KoH,Ky, which
is identical to the result B., = FB,F extracted from the first
commutative diagram in Section 2.1.

Let us derive the assertion in the second diagram, which can
be expressed as Kzy—y, = KyK,Ky. Since K, = Hz,Kp, we have

KvKuKu = HZU KOHZuKO HyyKy = HZvH—ZuHZUKO = HZ(ZU—u)KO = KZv—u-
[t

H_z,
Derivations of the other diagrams are in the exercises.

The last kind of rigid motion is translation: T(X) = X + C for
some fixed vector C. This has the same effect in Minkowski and
Euclidean geometry: It shifts the origin.

Definition 2.8 A rigid motion in the Minkowski plane is an inho-
mogeneous Lorentz map, that is, a Lorentz map L from L followed by
a translation: M(E) = LX + C.

Definition 2.9 Suppose A and B are two geometric figures in the
Minkowski plane; A is congruent to B, A ~ B, if there is a rigid
motion M that maps A onto B. M(A) = B.

Translations
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Proposition 2.10 The interval between two events E, and E, is
preserved by any rigid motion M.

PROOF: It is enough to show that Q(M(E;) — M(E1)) = Q(E; — Ey).
But
M(Ez) — M(E1) = LE; + C— (LEz + C) = L(E2 — Ey),
and since L preserves the Minkowski inner product,
QM(Ez) — M(E1)) = QL(E; — E1)) = L(E2 — E1) - L(E2 — E1)
= (Ey — Ey) - (E; — E1) = Q(Ey — Ey). END OF PROOF

Proposition 2.11 Congruent figures have the same (Euclidean)
area, up to sign.

PROOF: Suppose A ~ B and M(A) = L(A) + C = B. Then area(B) =
area(L(A) + C) = area(L(A)) because translation preserves area.
Therefore,

area(B) = area(L(A)) = det(L) - area(A) = £1 - area(A),

so the result follows. END OF PROOF

Exercises

In these exercises, Ry : R? — R? is the linear map defined by the
matrix multiplication

R (%) = cosf —sinf) (x
9\y) = \sin6  coso)\y)

1. Show that Ry rotates the plane R? by @ radians. (Suggestion:
Since a linear map is completely determined by its action on
a basis, just show that the basis vectors (1,0) and (0, 1) are
rotated 0 radians.)

2. Exercise 1 immediately implies that the inverse of Rg is R_g;
why? Prove that Ry 1 — R 4 also by direct computation.

3. Exercise 1 also implies that RsRy, = Rg4¢; why? Give a second
proof by direct computation using the addition formulas for
the sine and the cosine functions. This result implies that the
set O, (2, R) of rotation matrices forms a group.
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4. Prove that a hyperbolic rotation H, preserves each of the sets

T_,L4+,and L_.

. Suppose E; and E; are future vectors and ZE;E; = B. Then
E; - E; = ||E1 ||| E2]| cosh B, and since cosh B > 1, it follows that
E; - E; > ||E1||l|E2]|. This is the reverse Cauchy-Schwarz
inequality. Prove it from first principles, using only the
definitions of the inner product and the norm in a (1 + 1)-
dimensional spacetime.

. (a) Explain why the reflection Fy : R? — R? across the line
through the origin that makes an angle 6 with the positive
x-axis has the following eigenvalues and eigenvectors:

cos6 —sinf
A=+, Xl_(sinf))’ A2 =1, Xz_(cose )

(b) Show that RygFy has the same eigenvalues and eigen-
vectors, and deduce that Fy = RygFy. Write the matrix
representation of Fp.

(c) Verify that FiIFy = FiFp = I.

. Show that the product of two reflections is a rotation: FyFg =

Ra(a-p)-

. The aim of this exercise is to prove that if the matrix M =

(Z Z) preserves the Euclidean inner product, M'M = I,

then M is either a rotation or a reflection.

() Show that M'M = I implies that the columns of M are
vectors that lie on the unit circle and are orthogonal to
each other.

(b) Deduce that there is a 6 for which

O-() ()-=()

Explain why this implies that M is either a rotation or
a reflection. Note: The orthogonal group O(2, R) is the
set of all 2 x 2 matrices M that preserve the Euclidean
inner product MM = I. This exercise shows that every
orthogonal matrix is either a rotation or a reflection.

71
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10.

11.

12.

13.

Let H, be the hyperbolic rotation through the hyperbolic an-
gle u, and let K, be the hyperbolic reflection across the line A,
that makes an angle of v hyperbolic radians with the positive
t-axis. Prove the following commutation relations:

H_, = KoH,Kjy, H_, = K,H,Ky, Ky—y = H_,KyH,.

(a) Prove that the product of any two hyperbolic reflections
is a hyperbolic rotation: Ky, Ky, = H,. Express u in terms
of 11 and vy.

(b) Prove that the product of a hyperbolic rotation and a
hyperbolic reflection is another hyperbolic reflection:
H,, K,, = K,. Express v in terms of u; and uy.

Construct a nonorthochronous Lorentz map—that is, a linear
map M that preserves the Minkowski inner product but does
not preserve the future set F.

(a) Consider the parametrized curve P, = (coshu, sinhu)
and the three line segments that connect the pairs of
points {P_3/2, P32}, {P-1,P1}, and {P-1/2, P12} Explain
why these are parallel, and parallel to the tangent to the
curve at the point Py.

(b) Now consider the three line segments that connect the
pairs of points {P_1, P2}, {P-1,2, P3,2}, {Po, P1}. Prove that
these are also parallel, and parallel to the tangent to the
curve at Py/p. Suggestion: Consider the hyperbolic rota-
tion Hy ;.

(a) Let A be a rectangle in F whose sides are parallel to the
lines z = +t, and suppose the Euclidean lengths of the
sides are a and b, as shown in the figure below.
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Let H, : F — F be hyperbolic rotation by the hyperbolic
angle u. Show that A’ = H,(A) is another rectangle whose
sides are likewise parallel to the lines z = £t¢, and their
Euclidean lengths are

a = éa, b =e ¥

(b) Describe the image of a Euclidean circle S of radius r in
F under the hyperbolic rotation H,. Along the way you
will need the result of the following exercise. To describe
the ellipse H,(S) you will need to give the lengths and
directions of its semimajor and semiminor axes.

14. Show that the image of a circle under an invertible linear
map L : R> - R? is an ellipse. Show, furthermore, that if
the matrix of L is symmetric, then the major and minor axes
of the image ellipse are in the directions of the eigenvectors
of that matrix. If the eigenvalues are A; < Az and the circle
has radius r, then the semimajor and semiminor axes of the
image ellipse are Apr and Ajr.

2.4 Physical Consequences

Length and Time

On the face of it, length, time, and mass are independent quan-
tities. However, once all Galilean observers agree that a certain
ratio of length to time—namely ¢, the speed of light—is a physi-
cal constant, that fixed ratio ties one of those units to the other.
So one of the first consequences of Einstein’s relativity theory
is that length and time are no longer independent. We can, for
example, express time in meters. However, we choose to make
time primary and express length in seconds. We take time as the
primary unit because it is the natural one to use along an ob-
server’s worldline: For that observer, all events on the worldline
differ only in the time they happen, not the place.

We could set the ratio ¢ to any value, but the most practical
choice is ¢ = 1. Since

Calibrating
length to time
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“Geometrized” units

The time axis must be
inside the light cone

meters

¢ = 2.9979246 x 10°
second
in conventional units, the calibration sets 2.9979246 x 10% meters
equal to 1 second, or 1 meter equal to 3.3356409 x 10~ seconds.
In visual terms, we make the light cone have slope 1 and use it
to map units along the time axis to any space axis.

1hg écalibration grid
Pt

—1F N

7 ) AR {

By applying the same idea to other physical constants we can
“geometrize” additional units. For example, the constant G that
appears in Newton’s law of universal gravitation has the value

m3

G=6.67x10"1 ——
kg sec?

in conventional units. Therefore, by setting G = 1 we can cali-
brate mass to time:

(3.3356409 x 1079 sec)?

Tz = 2.48 x 107° sec.

1kg=6.67 x 1071 x

When we use geometric units, velocity becomes dimensionless,
energy and momentum both have the dimensions of mass and

thus of time, and acceleration has the dimensions of time™!.

Velocity Limit

No Galilean observer G can travel faster than the speed of light
relative to another Galilean observer R. This is an assumption we
have already used frequently—for example, to derive the form of
the Lorentz transformation—but we haven’t proven that it must
be true. However, it follows directly from the constancy of the
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speed of light. In G’s own coordinate frame, the time axis (which
is that observer’s worldline) must be the central axis of symmetry
of the light cone. In particular, G's worldline must lie inside the
light cone, and this must still be true when we map G — R. But
if the velocity v of G relative to R were greater than ¢, then G's
worldline would have a slope greater than the slope of the light
cone and thus would lie outside the light cone. This is impossible.

R

possible: G
impossible: G

Simultaneity

Proposition 2.12 Given any spacelike event E whatsoever, there is
an observer who says that E and O are simultaneous.

PROOF: Because E is spacelike, there is a real number k for which
E = (¢, z2) = (ksinh u, kcosh u) in R’s coordinate frame. Let G have
velocity v = tanh u relative to R. Then E will lie on G's {-axis; G
will say that E and O both happen at time t = 0. END OF PROOF

Since Galilean observers need not agree that two events hap-
pened at the same time, the principle of relativity implies that
the notion of simultaneity is not physically meaningful. In effect,
we replace it with the constancy of the speed of light.

The Objective Future

According to R, the events that happen after O lie in the half-
plane t > 0; according to G, they lie in the half-plane 7 > 0. But
these are different sets, so R and G disagree about what consti-
tutes the future. However, they do agree about the events in the
intersection, which we can call the common future of R and G.

The common future
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The common future of
all observers

The principle of
causality

Three causal regions

When a third observer comes in, the common future grows
smaller, and when we consider all possible Galilean observers,
their common future reduces to the union of F and the future
light cone L. This is because no spacelike event E can be in the
intersection, because we saw already that there is some observer
who considers E to have happened at the same time as O. We
call the common future of all observers the objective future of O.
If P is any event whatsoever, we can translate the origin to P
and define, in the same way, the objective future of P. We can
define the objective past of P in a similar way.

Causality

Definition 2.10 The causal future of an event A is the set of all
events that A can influence. The causal past of A is the set of all
events that can influence A.

We start with the principle that causes happen before effects:
If the event A causes, or influences, the event B, then A must
happen before B. Since we want this principle of causality to be
a physical law, A must happen before B for all Galilean observers.
Thus B must be in the objective future of A, and the causal future
of A is identical with the objective future of A.

Likewise, A must be in the objective past of B. Each event
P thus divides spacetime into three regions: Besides the causal
future and causal past of P, there is a region consisting of events
that can neither influence nor be influenced by P. In fact, these
are the events Q for which the separation Q — P is spacelike.
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events that can influence P /

the causal past of P

events that can neither
influence, nor be influenced by, P

All the events that P can influence lie on worldlines that have
slope v where |v| < 1: Causality cannot travel faster than the
speed of light. Thus, immediate action at a distance is impossible.

Rigidity

One of the intriguing consequences of the causal structure of
spacetime is that no physical object is completely rigid. Here is
a specific example to illustrate. Suppose R takes a rod lying on
the positive z-axis between z = 0 and z = 1 and hits the end
at the origin with a hammer at time ¢ = 0 in such a way as to
send the rod up the z-axis with velocity v. In the figure below, the
worldlines of five equally-spaced points on the rod are plotted.
The plot on the left shows what happens if the whole rod were
to move rigidly—that is, without altering the distances between
points. In this scenario, the far end moves immediately, but the
principle of causality rules out immediate action at a distance.

events that P can influence

the causal future of P

No object is
completely rigid

_.shock wave

The picture on the right is better; it takes causality into ac-
count. Notice that the point on the rod at z = a does not begin
to move at t = 0; its worldline stays horizontal until some later
time t = t,. The simplest assumption we can make is that ¢, is
proportional to a: t, = ka, or a = (1/k)t, = pt,. The line z = pt in

A shock wave travels
through the rod
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Can galaxies move
faster than the speed
of light?

Combining boosts

The addition formula

spacetime marks a “shock wave” that propagates through the rod
with velocity p, where |v| < |p| < 1, imparting motion to points
in the rod as it propagates. The entire rod is in motion only after
the wave reaches its far end, which happens at time ¢t = t;.

This is not the whole story. Notice that the worldlines on the
right are closer together than those on the left: The shock wave
has compressed the rod. If the rod is elastic, it will rebound and
expand back to its original size. This will involve further shocks
traveling through the rod—none of which we describe here.

Addition of Velocities

Distant galaxies are traveling away from the earth at enormous
speeds, the farthest ones at speeds close to the speed of light.
Consider two galaxies at opposite ends of the sky each moving
away from the earth at two-thirds the speed of light. Ordinary
reasoning (as framed by Galilean transformations) says that an
observer on one of the galaxies would see the other galaxy moving
at four-thirds the speed of light, which is impossible.

v=-2/3 v=2/3
() O ()
galaxy C earth R galaxy G

Let us consider this in general terms. Suppose G has velocity
v relative to R, and R has velocity v, relative to a third observer
C. Then we can map one frame to another by appropriate veloc-
ity boosts (that is, Lorentz transformations expressed directly in
terms of the velocity parameter):

By, : G—= R, By, :R— C.

We want to know the velocity v associated with the boost B, =
By,By, that maps G directly to C: B, : G — C.

Since the rule for combining hyperbolic rotations is simpler,
we convert the boosts to hyperbolic rotations by the relation H, =
By, where v = tanhu and u = tanh~'v. If H, = H,,H, , then
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¢ Z Z T
v ! > t
1
Bv1 / sz . -
G T ~ R i T
H, G H,, Ié

u = u; + uy, and thus

tanh u; + tanh up vty
1+tanhu; tanhuy 1+viv9

v =tanhu = tanh(u; + up) =

For example, in the case of the two galaxies, v, = v = % and each
galaxy sees the other receding from it with velocity

2 2 4
—§+§=i=l—2-<1.
1+% 2 13

Since |v| = |tanhu| < 1 for all 4, no combination of boosts can
ever make the velocity of one observer relative to another exceed
the speed of light.

Moving Clocks Run Slow

Suppose G is carrying a clock and moving with velocity v Proper time
relative to R. That clock marks G’s proper time t in R's frame.
(Here again proper means “of one’s own,” as it does in the term
proper value, or eigenvalue.) How does R measure G's proper
time?

Let E = (A1, 0) be the event that happens at time At on G’s Calculate the rate
worldline. We want to know what time R thinks that E occurs. We of a moving clock
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Time dilation is
recalibration

Obtain E coordinates
in G two ways

can get the coordinates of E in R's frame by using the velocity
boost By:

(£)-+(5)-z25(t )(3)- (7T

where x stands for a quantity whose value we don’t need to know.
Thus At = At/v/1-v2 > At, or At = AtJ1— 1% In other
words, R says that G's clock runs slow by the factor /1 — v2.

For example, when v = %, the factor is 4/1 — 0.25 = 4/0.75 ~
0.866, so when R says an hour has passed, G’s clock will have
advanced slightly less than 52 minutes. If v = 0.9, then the factor
is 4/1 — 0.81 = 4/0.19 ~ 0.436: A clock moving at nine-tenths the
speed of light runs less than half as fast as a stationary clock.

Geometrically, time dilation is just a consequence of the cal-
ibration of different time axes by hyperbolic rotations, and thus
has to do with the preservation of the Minkowski norm. The
Minkowski-Pythagorean 3-5-4 triangle provides a particularly
simple and lucid example. If a clock is moving with velocity
v= %, then it ticks at only 4/5 the rate of a stationary clock.

RS S
11 2 3 4 5 6 7 sec

Moving Rulers Contract in Length

Suppose G carries a ruler that is A seconds in length. To be definite
we suppose it lies along the ¢-axis from ¢ = 0to ¢ = A. In G the
worldline of the ruler is a horizontal band A seconds wide.

Let G and the ruler move with velocity v relative to R along
their common ¢/z-axis. In R's frame the worldline of the ruler
is a band with slope v. The z-coordinate of the event E gives the
length I of the ruler as R sees it. How is I connected to A? To
make the connection, we shall obtain the ¢-coordinate of E in
G’s frame in two different ways and compare them. On the one
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hand, the ¢-coordinate of E must be A; on the other, we can get
the ¢-coordinate by mapping E from R back to G using B_,:

()= ()= 7= (& ) 0)=wr==)

where x stands for a quantity whose value we don’t need to know.
From these equations we obtain

I=+v1—0v2A;

R considers that the ruler has shrunk by the factor +/1 — 22,

This is precisely the Fitzgerald contraction. Of course, it had
to be, because that is the only result consistent with experience.
However, it appears here as a consequence, ultimately, of Ein-
stein’s simple postulate that the speed of light is the same for all
Galilean observers.

The Doppler Effect

Although the speed of a light signal does not depend on whether
the source is moving, its frequency does. This is the Doppler effect.
If the source is approaching an observer, the frequency increases;
visible light is shifted toward the violet. If the source is receding,
the frequency decreases; visible light is shifted toward the red.
The Doppler effect is part of classical physics, but the size of the
shift is different in special relativity.

To calculate the shift, let us suppose that G is steadily emitting
light of frequency v (this is the Greek letter nu). Think of this as an
oscillation that reaches peak amplitude once every 1/v seconds.
In G these peaks appear as light cones spaced At = 1/v seconds
apart along the r-axis.

The Fitzgerald
contraction

Light from a moving
source changes
frequency
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As G moves with velocity v past another observer R, the source
is first advancing toward R, then receding. The spacing At of the
light cones along the t-axis determines the frequency n of the
light as R sees it: n = 1/At. The figure suggests that the advancing
frequency n,qy is greater than v, while the receding frequency nyec
is less than v. To determine the values, look at the enlargement
of R near the origin.

R av Atg,

Y

G

On both sides we have At? = a? — a®v?, s0 a = At//1 — 2.
On the advancing side, the time separation between successive
advancing peaks is

At A 1—-v 1 14+v
=ad—aV = AT————, SO Hygy = =v,/ > v,
adv m adv Atz 1—v

On the receding side,

14v 1 1—-v
————, SO0 Mfgg=—— =1V
V1=1? e Atrec 1+v
These calculations are done in R, where the source moves. We
get the same result by doing the calculations in G, where the

observer moves. See the exercises. It doesn’t matter whether we

Atrec =a+av = At

< V.
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assume that the source or the observer does the moving; it is the
relative motion that creates the Doppler effect.

We can even collapse the two formulas to a single one—and
abandon the distinction between n,4, and ne—if we take v to be
the time rate of change of distance between source and observer,
rather than time rate of change of the displacement z. Then v is
positive when the source and observer are separating and nega-
tive when they are approaching one another. To the observer R,

the frequency is just
1—v
n=v,/ .
14v

As in many other areas, the classical theory here approximates
the relativistic theory for small velocities. When |v| < 1, Taylor's
theorem gives

~1-—v,
1+v

so we have the approximate formula n =~ v(1 — v). In classical
dynamics, this is the exact formula. The difference between the
two becomes most striking when v = —1 = —c, that is, when
the source and observer approach each other at the speed of
light. The classical frequency simply doubles, but the relativistic
frequency is infinite.

Exercises

1. Suppose galaxies C and G are moving away from the earth
with velocities —v and v, respectively. That is, they move with
the same speed but in opposite directions. Then G is moving
away from C with velocity

2v

f) = m
(a) Sketch the graph of f (v) for 0 < v < 1. Show that, for v
small, f (v) = 2v, while forv =~ 1, f(v) ~ 1.

(b) At what speed must C and G be receding from the earth
if C considers that G is moving away from C at half the
velocity of light?

A single formula

The classical
approximation
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2. Suppose a subatomic particle that moves at 99% of the speed
of light has a lifetime of 107! seconds in a laboratory frame
of reference. That is, after 10710 seconds, it decays into other
particles. What is the lifetime of the particle from the particle’s
own frame of reference?

3. (a) If G moves with velocity v with respect to R, then R says
that G's clock runs slow by the factor +/1 — v2. But then R
moves with velocity —v with respect to G, so G will say R's
clock runs slow by the same factor /1 — (—v)2 = v/1 — 12,
Explain this paradox; that is, explain how the two observers
can have symmetric viewpoints. Furthermore, indicate
how the figure below both demonstrates and explains this
paradox.

(b) There is a similar paradox about Fitzgerald contraction.
If G moves with velocity v relative to R, then R says that
G's length contracts by the factor +/1 — v2 in the direction
of motion. However, from G's point of view, R's length
contracts by this factor. Draw a diagram that demonstrates
and explains this paradox.

1-—-v
4. Determine the first-order Taylor polynomial of f (v) = , | T

5. Show that the classical Doppler effect, under a Galilean trans-
formation, is n = v(1 — v). Here n is frequency recorded by an
observer R when an oscillator G of proper frequency v moves
with velocity v with respect to R.
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6. Use the figure below to calculate the Doppler effect on the

moving observer R in the frame G in which a steady signal
of frequency v is emitted. The spacing between light cones is
At =1/v seconds on G’s worldline.

~1

. Three observers, T, G, and V, are traveling on a high-speed
train. Observer T is at the back, G is in the middle, and V is in
the front; T and V are each a seconds from G, measured when
the train is at rest. They and the train are moving with velocity
v with respect to a fourth observer R standing beside the train
tracks. (All measurements are made in geometric units.)

At the instant G passes R, they see momentary bright
flashes of light from both T and V.

T G \%4
102 ° o8 -
oR

(a) Draw the worldlines of T, G, V, and R and the light cones
from T and V in G's frame and again in R’s frame.

(b) According to G, were the flashes from T and V simulta-
neous, or did one happen before the other? If the latter,
by how much time does G consider those events to be
separated?

(c) According to R, were the flashes from T and V simulta-
neous, or did one happen before the other? If the latter,
by how much time does R consider those events to be
separated?

85
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(d) When were the flashes emitted according to G, and when
were they emitted according to R?

Further Reading for Chapter 2

The linear algebra needed here can be found in many texts, but
the classic by Birkhoff and MacLane [3] has a perspective that
is particularly appropriate. Lorentz introduces Lorentz transfor-
mations in [19], and Einstein makes them the basis of special
relativity in [11]. Minkowski's recasting of Einstein’s ideas in ge-
ometric terms is described in [23], and a rich and full exposition
of Minkowski geometry can be found in the book by Yaglom [30].



Special Relativity—

~ Kinetics

CHAPTER

Kinetics is the study of the motion of material objects under the
action of forces. Forces cause objects to accelerate, that is, to
change their velocity. In spacetime, acceleration makes world-
lines curve. In this way the physics of forces is tied to the geom-
etry of spacetime. The starting point is Newton’s three laws of
motion.

3.1 Newton’s Laws of Motion

One of the great scientific problems of the seventeenth century
was to understand the motion of the planets and the moon. New-
ton solved the problem and presented his solution in the Principia
(Philosophice Naturalis Principia Mathematica, 1687). Written in the
didactic style of a text on Euclidean geometry, it begins with defi-
nitions and axioms upon which all the later arguments are based.
The axioms are the three laws of motion:

1. “Every body continues in its state of rest, or of uniform motion
in a straight line, unless it is compelled to change that state by
forces impressed upon it

J. J. Callahan, The Geometry of Spacetime
© Springer Science+Business Media New York 2000
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The first law defines
inertia

Inertial mass

Momentum and the
second law

If mass is constant,
then f = ma

2. “The change of motion is proportional to the motive force
impressed; and is made in the direction of the straight line in
which that force is impressed.

3. “To every action there is always opposed an equal reaction; or,
the mutual actions of two bodies upon each other are always
equal, and directed to contrary parts”

The first law was actually discovered by Galileo and is called
the principle of inertia. The law says that every body has inertia,
which is the power to resist any change in its velocity. Notice
that rest and uniform motion have the same status, as they must
according to Galileo’s principle of relativity.

Since a body has inertia, it makes sense to ask how much; that
is, how much effort must be expended to change its velocity? Your
intuition is helpful here. Imagine a small rowboat tied up beside
a 30-foot cabin cruiser at a dock, both of them motionless. By
pushing, you can get each boat to move, but the same push will
have a much greater effect on the rowboat. The rowboat has less
inertia, and this is precisely because it has less mass. The “inertia
content” of a body is its mass, sometimes called its inertial mass
to emphasize the connection between the two.

Newton uses inertial mass in the second law. He defines the
term “motion” that appears in the law as mass m times velocity
v; this is the vector quantity we today call momentum: p = mv.
Furthermore, we take “change in motion” to mean the rate of
change of momentum with respect to time: dp/dt. According to
the second law, this is proportional to the impressed force f. If
we choose units such that the constant of proportionality is 1, the
law takes the form

£ dp d(mv)
Cdt o dr

If m is constant, then d(mv)/dt = mdv/dt = ma, and the
second law takes its more familiar form f = ma. We shall soon
see that the inertia content m must increase with velocity—and
thus is not constant; nevertheless, m is essentially constant for
small velocities, so in that case we can write the second law in
the convenient form f = ma.
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The third law concerns a pair of bodies G; and G;. It says that
if G; imposes a force f; on Gy, then G, imposes a force f; on
Gy, and f, = —f;. For example, when you push on the rowboat,
it pushes back at you with the same strength. Now consider the
total momentum p; + p; of the system consisting of G; and G;
together. Since

dpi+p2) _dp1 | P2
= —=f+£,=0,
dt dt + ! Th
the total momentum does not change over time: According to the

third law, total momentum is conserved.

Difficulties

Newton's laws do not always correspond to reality. For example,
an object near the surface of the earth that has no visible forces
pushing it accelerates downward: When we let go of things, they
fall. A more subtle example is a Foucault pendulum. It swings in a
vertical plane, but that plane rotates slowly around a vertical axis,
instead of staying fixed. (All rotational motion is accelerated.)

There are at least two ways to resolve such conflicts between
theory and reality. The first is to ascribe an invisible force to each
unexplained acceleration. Thus, we say that gravity causes things
to accelerate downward, and the Coriolis force causes the plane of
the pendulum to rotate.

The second way is to choose a coordinate system in which the
acceleration disappears. For example, imagine a Foucault pendu-
lum at the North Pole. It is easy to see then that with respect to
the fixed stars, the earth is doing the rotating, not the plane of the
pendulum’s motion. In a coordinate frame in which the stars do
not move, the pendulum'’s plane does not move either, and there
is no Coriolis force.

Are there coordinate systems that can eliminate gravity in the
same way? An earth-orbiting spaceship seems to be gravity-free:
Objects just float about when they are released in the cabin. An
object initially at rest remains at rest, and one that is set moving
with a certain velocity maintains that velocity until it collides

The third law says
that total momentum
is conserved

Newton’s laws need to
be qualified
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Inertial frames

Special relativity
is limited to
inertial frames

Inertial mass
cannot be constant

Mass increases with
velocity

with a wall or other obstruction. The law of inertia holds without
qualification.

Thus, whether or not Newton’s laws hold depends on the
coordinate frame. We single out those in which Newton's laws
do hold and call them inertial frames. Physics is simpler in an
inertial frame. The frames we are most familiar with—defined
by the walls of an earth-bound laboratory, for example—are not
inertial.

Henceforth, we assume that the spacetime coordinate sys-
tems associated with our observers are inertial. In fact, what
makes special relativity special is that it is restricted to inertial
coordinate frames. So long as our observers are in uniform mo-
tion with respect to one another, it is enough to assume that one
of them has an inertial frame. By Galileo’s principle of relativity,
they must all formulate physics the same way, and thus must
all see Newton'’s laws as holding in their systems because one of
them does.

The second difficulty concerns our intuition that the inertial
mass of a body is constant. The velocity limitation If this were so,
then a constant force would eventually push the body beyond the
speed of light. To see this, suppose a constant force of magnitude
kis applied to an object G in the direction of R’s positive z-axis. Let
v be the (scalar) velocity of G along the z-axis. If the inertial mass
m of G were constant, then R could apply Newton's second law to
G and write k = mdv/dt, or dv/dt = k/m. Since the acceleration
k/m is a constant, velocity is just a linear function of time:

v(t) = £t+ b.
m

Choose T such that v(T) = 1, the speed of light. Then applying
the force k for T seconds will push G past the speed of light. This
contradicts the velocity limitations of special relativity (Section
2.4).

How can we correct this problem? The velocity limitation
implies that as G's velocity grows larger and larger, it must get
harder and harder to increase that velocity still further. But that
effort is a measure of G's inertia content, so G's inertial mass must
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increase with velocity and, a fortiori, be a function of velocity:
m = m(v).

In fact, the mass must become infinite as v — 1. If not, there
will be an upper bound m(v) < M for all v. Then when R invokes
the second law in the form k = d(m(v)v)/dt, we will still obtain

kt+c_ kt+ c <o)
M M M- 7

In other words, v(¢) will be bounded below by a linear function
(rather than simply be equal to one, as above). If we choose T
such that (k/m)T + ¢/M = 1, then we will again have v > 1 when
t > T. Thus the graph of m as a function of v must look something
like this:

kt + ¢ = m(v)v < Mu(t), implying

m
Mo ;
-1 ' 1 v
Notice that while R says that G's mass is increasing, G does Mass is relative

not. In other words, we must give up the idea that mass is an
absolute quantity; we have no way of saying what the mass really
is. All we can say is what a given observer measures it to be.
Mass is relative, just like length or the rate at which a clock ticks.
Nonetheless, it is helpful to single out the value my = m(0), which
we call G's rest mass, or proper mass. (This is yet another place
where we use proper to mean “of one’s own!)

We still have to determine exactly how m depends on v. To Is conservation
this end we take a further look at the third law. The issue for of momentum
us is Newton’s assertion that this is a physical law. By Galilean a physical law?

relativity, if one observer sees an interaction in which momentum
is conserved, then all other observers must agree. If not, then
conservation of momentum is not a physical law. Consider the
following example in which we assume, for the moment, that
mass does not depend on velocity.
Let X; have mass 1 and travel with G, and let X, have mass  Example: an inelastic
2 and travel with R. Suppose they collide at the event O and collision
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stick together, forming a new body X of mass 3. (This is called
a completely inelastic collision.) We assume that total momentum
is conserved in G’s frame, and we ask whether the same is true
in R’s.

Suppose, as usual, that G has velocity v with respect to R, and
consider the collision in G's frame. In G's frame X; is motionless
and therefore has zero momentum, while X, moves with velocity
—v and has momentum —2v. The total momentum before the
collision is therefore p = —2v. After the collision, X moves with
some velocity 7, so its momentum is p = 3v. Since G considers

that p = p, it follows that —2v = 37, or v = —%v.

Transform with a
Galilean shear

Transform with a
Lorentz boost

T
. Sy or By, R As
0 v 2 0 t
t

How does R view all this? We answer this question by trans-
forming G's frame to R’s. Let us do it first with the Galilean shear
Sy : G > R; to get the velocity of an object in R, just add v to its ve-
locity in G. In R, X3 is motionless and has zero momentum, while
Xj has velocity v and momentum 1 -v = v. According to R, the to-
tal momentum before the collision is p = v. After the collision, X
has velocityw =v+v = %v and momentum p = 3w = v. R agrees
with G that total momentum is conserved. (Notice that R and G
do not agree on the value of the conserved momentum. This is
only to be expected, because momentum depends on velocity—
and is therefore a relative quantity—even before we take special
relativity into account.)

If we use the Lorentz transformation B, : G — R, the outcome
is different. Before the collision the picture is unchanged; you
should check that the total momentum is still p = v. After the
collision, X has a velocity w that we must find using the addition
formula for Lorentz boosts:
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v+v —%v+v %v

1+ov 1—%1}2 —1—%1/2'

W=

The momentum is

_ 2,2 q1_2
1 14 1 3V

Thus, in R’s view, momentum is not conserved; R and G now dis-
agree, so conservation of momentum loses its status as a physical
law.

What we have learned is that momentum does not trans-
form properly under Lorentz maps—at least when we assume
that mass is constant. (For example, we assigned X; the mass 2
whether it was at rest or moving with velocity —v.) In our search
for the function m(v), we will now make it our goal to define m(v)
so that momentum does transform properly under Lorentz maps.
In that way we will preserve conservation of momentum as a
physical law.

Relativistic Mass and Momentum

Lorentz maps act on vectors in spacetime, so if we want momen-
tum to transform properly, we shall first have to express it as a
spacetime vector. There is a natural way to do this, starting with
velocity in the full (1 + 3)-dimensional spacetime.

n space | VY=(1, v), the 4-velocity of G

_ M .
v, worldline of G

in spacetime
vy, v)=v p

Suppose G's velocity in R’s (x, y, z)-coordinates is given by the
spatial vector v = (vx,vy,v;). Then V = (1,v) is a vector in

Goal: Preserve
conservation of
momentum

4-velocity
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4-momentum
I
mv) =
V12

spacetime that points in the direction of G's worldline in R. We
call V the 4-velocity of G with respect to R. If G moves parallel
to the z-axis—as we usually assume—then v, = v, = 0, and the
velocity reduces to a scalar v = v,. In this case we write V = (1, v)
(a vector in R?) but still call V the 4-velocity of G to emphasize
that it is a spacetime vector.

Now suppose that G has mass m according to R, where m =
m(v) is the relativistic mass of G when its speed is

u=]|v||=\/v,2c+v}2,+v§.

We define the 4-momentum of G with respect to R to be the 4-
vector P = mV = (m, mv) = (m, p). In a (1 + 1)-dimensional slice
of spacetime, the 4-momentum is simply P = (m, mv) = (m, p).

In G’s own frame, the 4-velocity is just V = (1, 0), and the 4-
momentum is P = uV = (u, 0), where p is G’s proper mass m(0).
If the 4-momentum we have just defined is to transform properly
under all Lorentz transformations, then it must at least transform
properly under B, : G — R. That is, we must have B,(Pg) = Pg,
where subscripts identify the two 4-momentum vectors:

o= s (0= ()=o) =
4 7y ( -

“@ B, ’”m
¢ o g T 2/7’0 t

Notice that the last equation gives us a formula for relativistic

mass:
m=mv) = s .
1—192

Henceforward we use this as the mass function because it has
the features we need: m(0) = u (the rest mass), m(v) — oo as
v — =1, and its graph has the right symmetry.
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m
the relativistic mass function
z H ;
-1 ' 1 v
We must now check whether the 4-momentum that incorpo- Check all pairs of
rates our new mass function transforms properly for all pairs of frames

frames. Since we are already using G as the rest frame of the
moving body of rest mass u, we need a new frame in addition
to R. Call it C (or “Cap, for Capital letters); its coordinates are
(T, X, Y, Z). If the velocity of G is v in R’s frame and V in C's
frame, then the 4-momentum vectors are

P “ (1) and P a (1)
R= —(— = — .
V1—02\V T Viowvz\V

The following proposition tells us that 4-momentum does indeed
transform properly for all pairs of coordinate frames.

Proposition 3.1 If B, : R — C, where w is the velocity of R relative
to C, then B,,(Pr) = Pc.

PROOF: Here are two proofs. The first links Pr to P¢c by going
through Pg; the second is a brute-force calculation.

G T
Pe
v N
c Z

Pr B
R t L

=T

QN

S
'_.»-MO’F\"T
w
t
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PROOF 1: By definition, each 4-momentum vector is the image of
G'sown 4-momentum Pg = u(1, 0) under the appropriate Lorentz
map:

Pr = B,(Pc), Pc = By (Pg).

In fact, G, R, and C are connected by the commutative dia-
gram shown above, so ByB, = By and B, (Pr) = B, (B,(Pg)) =
ByBy(Pg) = By (Pg) = Pc.

PROOF 2: We must evaluate

1 i 1 w 1
B = = T (W 1) (U)

_ U <1+vw)_ w(l + vw) w-ll—v
VI—wi/1 -2 \w+v VI—wil-v: \T -
and show that this vector is equal to Pc. Consider the second

component of the vector: Since By = By B,, the addition formula
for velocity boosts gives us

_ w+v
T l4uw

Now consider the coefficient of the vector; first write it as

14+ wv 1

\/1—W2~/1—112= (1_W2)(1_U2)
(1 + wv)?

Then
A-wHA-v)  1-w?—v? 4+ w??
Q+wv)2 (1 + wv)?
14 2wr 4w —w? — 2wy —v
- 1 + wo)?
(1 +w)t—(w+v)?
N 1 + wv)?
(w + v)?
T 1+ wr)? -

2

1-V2



§3.1 Newton’s Laws of Motion

97

It follows that

11+ vw) 1 n (1)
B, (Pg) = tv )= L = Pc.
) V1 —wiJ/1 =12 (1W+UW) Vi-vz\V ¢

END OF PROOF

Covariance

In Chapter 1 we introduced the viewpoint that coordinates like
(t,x,y,2) and (T, X, Y, Z) are the “names” that different observers
give to events, and that the maps

By:R—-C and B;':C—>R

are pairs of “dictionaries” that allow us to translate one “name’
to the other. Thus, as soon we know R’s name for an event E, we
can find C's name for the same event by using the dictionary B,,.

Proposition 3.1 is really about names and dictionaries, too.
What is says is that if we know R’s “name” for the 4-momentum
of a moving body G, then we can use it to find C's name; moreover,
the same “translation dictionary” B,, that we used for coordinates
does the job here, too. In other words, the coordinates of a 4-
momentum vector vary from one observer to another in exactly
the same way that the coordinates of an event do; we say that
4-momentum is covariant.

Since P = m(v)(1, v), it follows that the components m(v)
and v are covariant; since V = m(v)"!P, 4-velocity must also
be covariant. You can check that time, length, and speed are
likewise covariant. That is, if we know the value of any of these
in R's frame, we can deduce the value in C's frame by using the
map B, : R — C that transforms coordinates. It is impossible
to formulate meaningful physical laws without using covariant
quantities. This is called the principle of covariance. Because
we are working now only with inertial frames, this is called special
covariance. Later on, we will look at Einstein’s general theory of
relativity, in which all coordinate frames are put on an equal
footing.

In Chapter 1 we saw that part of the crisis that led to Einstein’s
theory of special relativity was the observation that Maxwell's

B, is a dictionary to
translate coordinates

4-momentum is
covariant

Principle of
covariance
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Example 1:
an elastic collision

equations fail to be covariant under Galilean shears but are covari-
ant under Lorentz transformations. Since the validity of Maxwell’s
laws was not in doubt, the principle of special covariance meant
that Galilean shears could not be the correct maps for connecting
the spacetime frames of different observers.

Conservation of 4-Momentum

Now that we know that 4-momentum is covariant, it is easy to
confirm that conservation of momentum regains its status as a
physical law. Take two bodies G; and G; whose rest masses are
w1 and uz, respectively, and have them collide elastically at the
event O. (In an elastic collision the bodies bounce off each other
with no loss of energy.) We shall assume that R says that total
4-momentum is conserved and test to see whether C agrees.

Consider first what happens in R's frame. Suppose the 4-
momenta of G; and G, before the collision are P; and P;, respec-
tively, while afterwards they are P; and P,. According to R, total
momentum is conserved through the collision: P; +P; = P; +P;.
Does C agree?

Suppose C is connected to R by the Lorentz map B,, : R — C.
Then, since 4-momentum is covariant, each 4-momentum vector
in C is the image of the corresponding one in R under the map
B,.

BEFORE . AFTER_
Gr: Qi1 = B, (Py) Q; =By (Py)
Gz: Q2 = B, (P2) Q; = By (P)

Z

B Q .
~ =
P

Q.
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Proposition 3.2 Q; + Q; = Q; + Q..

PROOF: This is a straightforward consequence of the fact that By,
is linear and that Py + Py = Py + P5:

Q1 + Q2 = B, (P1) + B, (P2) = B, (P, +P;) = B, (P; + Py)
= B, (P1) + B,(P2) = Q; + Q,. END OF PROOF

Thus, as soon as one Galilean observer determines that 4-
momentum is conserved in a particular collision, all other ob-
servers agree. We have therefore reestablished Newton's third
law in special relativity as the conservation of 4-momentum.

Here is another example; it is a purely inelastic collision in-
volving two identical objects traveling with equal but opposite ve-
locities. The objects are two 10-ton trucks traveling toward each
other at about 60 miles per hour. After the collision they stick
together; by symmetry, they are also at rest.

v] = 460 mph vy = —60 mph
G1 G
n1 = 10 tons U2 = 10 tons

The rest masses are u; = puy = 10 tons ~ 10* kg = 107 gm. The
speed is

60 mph ~ 88 feet/sec ~ 30 m/sec ~ 1077 x 3 x 10% m/sec,
—_———
speed of light

sov] = —vy = 1077 in geometrized units. By Taylor’s theorem we
have

1 1
= ~1+ vl =1+11071
J1=v2  J1-12
Before the collision the 4-momenta of the two trucks are

H1V1

_ Hn1
\/1—1/% \/1—1/%

P ~ (107 +11077,1) gm,

Example 2:
an inelastic collision
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Energy is converted
to mass

u

v
P, = | 22—, 2| ~ (107 + 11077, 1) gm.
\/1—1/% \/l—v%
Z
]P)\ —
g P
—r
0 :
B, =

If P is the 4-momentum of the two trucks stuck together after the
collision, then, by the conservation of 4-momentum,

P=P +P;~ (2x 10" +1077,0) gm.

The second component tells us that the velocity after the collision
is zero, so the first component, which is the mass, must be the
rest mass of the two trucks together. But

combined rest mass = sum of individual rest masses + 10~7 gm.

The extra 10~/ grams means that rest mass is created in the colli-
sion, not conserved. Where has that extra mass come from?

The answer is that the kinetic energy of the moving trucks
was converted to mass when the trucks came to rest. To see why
this is so, consider the relativistic mass of one of the moving
trucks. By Taylor’s theorem we can write it in the form

=u(1l+i?+0wH)~pu+iw?= 100 +1x10"x107

—— =
Vv1—v rest mass kinetic energy

Thus, the main contributions to relativistic mass when v is small
are rest mass and the classical kinetic energy based on rest mass.
The extra mass that shows up in the collided trucks is the sum of
the two equal kinetic energies

%;wz = % x 1077 gm;

this energy has been converted directly into mass. Nothing like
this is contemplated in Newtonian physics; it is a consequence of
the fact that relativistic mass increases with velocity.
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Now imagine what happens when we reverse the direction
of time in the last example. At the start there is a single object
at rest. Then, at the event O, the object bursts into two equal
fragments that speed away from each other. The rest masses of
the fragments will add up to less than the original mass; the dif-
ference is the kinetic energy of the fragments. In this process,
called fission, some mass is converted directly into energy. If
the velocity of the fragments is large—as it is, for example, in
the fission of uranium or plutonium nuclei—then the amount of
energy released can be substantial. Because of the interconvert-
ibility of matter and energy, we sometimes use the single term
matter-energy to refer to either.

s

Conventional Units

The geometric units that we have been using can mask impor-
tant information. For example, the famous equation E = mc? col-
lapses to the rather cryptic E = m in geometric units. But we can
still recover the conventional equation by noticing that E = m
is out of balance dimensionally: Energy has the dimensions of
mass x velocity?. By attaching a factor of ¢? to the mass term on
the right we restore the balance and get the correct equation in
conventional units.

This method will always convert an equation properly, but it
does not solve all our problems. For example, when we switch to
conventional units, the last three components of 4-velocity V =
(1, v) acquire the appropriate dimensions of meters per second,
but the first remains dimensionless. This confuses the physics
and compounds the mathematical difficulties we face, especially
when we take up general relativity in the later chapters.

But here, too, we have a simple remedy: Just give an event
E = (t, x, y,z) new coordinates (xg, X1, X2, x3) that have the same
dimensions. By using the method of attaching an appropriate

Fission: mass is
converted into energy

Converting equations
to conventional units

Dimensionally
homogeneous
coordinates
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The Minkowski norm

Hyperbolic rotations
and velocity boosts

factor of ¢, we can do this two different ways. One is to divide
the three spatial coordinates by c; then all components of the
4-vector of position will be measured in seconds. A better way,
though, is to multiply the time coordinate by c; then 4-velocity
and 4-momentum have the right physical units:

X = (xg, x1, X2, x3) = (ct, x, ¥, 2) = (ct,X) meters,
V= é?_g_ _ (Axo Ax1 sz Ax3

At At’ At’ At At
P =mV = (mc, mv) = (mc,p) kg-m/sec.

) =(c,v) m/sec,

We shall call (c¢t, x, y, z) the dimensionally homogeneous co-
ordinates for the frame R and (t, x, y, z) its traditional coordi-
nates.

Dimensional homogeneity has some inevitable consequences.
When we use dimensionally homogeneous coordinates in R, R’s
own 4-velocity is V = (c, 0, 0, 0) rather than (1,0, 0, 0). Further-
more, the first component of the 4-momentum of an observer
G is no longer simply the relativistic mass of G but is the mass
multiplied by c.

The Minkowski norm in dimensionally homogeneous coordi-
nates is determined, as it was in traditional coordinates, by the
equation of the light cone,

xg-—x%——x%—xg=czt2—x2—y2—zz=0.

Hence Q(X) = x5 — x7 — x4 — x} (and Q(X) has the dimensions of
meters?), so the Minkowski inner product matrix is the familiar

1 0 0 0
lo -1 0o o
s=1o o 21 of

0 0 0 -1

and its entries are all dimensionless. With this inner product the
4-speed also has the right units:

IVIi=vV-V=+vc2-1v2=cy1-(v/c)? m/sec.

Hyperbolic rotations are those linear transformations M that
leave the Minkowski inner product invariant: M'J; sM = ]; 3.
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Since J;,3 is unchanged when we switch from traditional to di-
mensionally homogeneous coordinates, hyperbolic rotation by u
hyperbolic radians in a (1 4+ 1)-dimensional spacetime (where we
use J1,1) is likewise unchanged:

H. = coshu sinhu
¥~ \sinhu coshu/"

Suppose H, : G — R, where G and R have dimensionally homo-
geneous coordinates. Let us derive the connec<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>