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Preface 

This book is an introduction to Einstein's theories of special and 
general relativity. 1b read it, you need only a first course in lin­
ear algebra and multivariable calculus and a familiarity with the 
physical applications of calculus. Because the general theory is 
more advanced than the special, most books limit themselves 
to one or the other. However, I have tried to encompass both 
by using the geometry of spacetime as the unifying theme. Of 
course, we still have large mathematical bridges to cross. Special 
relativity is just linear algebra, but general relativity is differ­
ential geometry-specifically, the curvature of four-dimensional 
spacetime. 

Einstein's theory of special relativity solved a problem that 
was baffling physicists at the start of the twentieth century. It 
concerns what happens when different observers measure the 
speed of light. Suppose, for example, that one observer moves 
past a second (stationary) observer at one-tenth the speed oflight. 
We would then expect a light beam moving in the same direction 
to overtake the moving observer at only nine-tenths of the speed 
it passes a stationary observer. In fact, careful measurements 
(the Michelson-Morley experiments in the 1880s) contradict this: 

Overview 

Origins of the 
special theory 

.. 
Vll 
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The principle of 
relativity 

Light moves past all observers at the same speed, independent of 
their own motion. 

1b account for this, it was proposed that measuring rods con­
tract slightly when they move and clocks slow down -just enough 
to make the velocity calculations come out right. In 1895, the 
Dutch physicist H. A. Lorentz even wrote down the equations 
that describe how lengths and times must be altered for a mov­
ing observer. But these hypotheses were ad hoc and just as baffling 
as the phenomenon they were meant to explain. 

A decade later, Einstein proposed a solution that was both 
more radical and more satisfactory. It was built on two assump­
tions. The first was Galileo's principle of relativity: 

1Wo observers moving uniformly relative to one another 
must formulate the laws of nature in exactly the same 
way. In particular, no observer can distinguish between 
absolute rest and absolute motion by appealing to any law 
of nature; hence, there is no such thing as absolute motion, 
but only relative motion (of one observer with respect to 
another). 

Relativity had long lain at the heart of mechanics, but Einstein 
made it a universal principle that applies to all physical phe­
nomena, including electricity, magnetism, and light. His second 
assumption was more surprising: Rather than try to explain the 
invariance of the speed of light, he just accepted it as one of 
those laws of nature that moving observers must agree upon. 
From this stance, Einstein then deduced the transformation equa­
tions of Lorentz and the length contraction and time dilation they 
entailed. In this new theory of relativity (the adjective "special" 
came only later, when Einstein introduced a more general the­
ory), the time coordinate is on the same relative footing as the spa­
tial coordinates; furthermore, space and time no longer have sep­
arate existences but are fused into a single structure-spacetime. 
Then, in 1907, the mathematician H. Minkowski showed that 
Einstein's ideas could be interpreted as a new geometry of space­
time. 
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In Chapter 1 we review the physical problems that prompted 
the special theory and begin to develop the questions about co­
ordinate transformations that lie at the heart of relativity. Be­
cause we assume that observers are in uniform relative motion, 
the Lorentz transformations that relate their coordinate frames 
are linear. Geometrically, these transformations are just like spa­
tial rotations, except that their invariant sets are hyperbolas in­
stead of circles. Chapter 2 describes how Einstein made Lorentz 
transformations the core of a comprehensive theory. We take 
the geometric viewpoint proposed by Minkowski and develop 
the Minkowski geometry of spacetime as the invariant theory of 
Lorentz transformations, making constant comparisons with the 
familiar Euclidean geometry of ordinary space as the invariant 
theory of rotations. 

We complete the study of special relativity in Chapter 3 by 
analyzing how objects accelerate in response to imposed forces. 
Motion here is still governed by Newton's laws, which carry over 
into spacetime in a straightforward way. We look at the geomet­
ric manifestation of acceleration as curvature-in this case, cur­
vature of the curves that objects trace out through spacetime. 
The chapter also introduces the important principle of covariance, 
which says that physical laws must transform the same way as 
coordinates. 

Special relativity is special because it restricts itself to a small 
class of observers-those undergoing uniform motion with no 
acceleration. Their coordinate frames are inertial; that is, Galileo's 
law of inertia holds in them without qualification. The law of 
inertia is Newton's first law of motion; it says that, in the absence 
of forces, a body at rest will remain at rest and one in motion will 
continue to move with constant velocity. The now familiar scenes 
of astronauts and their equipment floating freely in an orbiting 
spacecraft show that a frame bound to the spacecraft is inertial. 
Is the frame of an earthbound laboratory inertial? Objects left 
to themselves certainly do not float freely, but we explain the 
motions we see by the force of gravity. 

Our lifelong experience to the contrary notwithstanding, we 
must regard gravity as a rather peculiar force. It follows from New­
ton's second law that a given force will impart less acceleration to 

Linear spacetime 
geometry 

Origins of the 
general theory 

Gravity and 
general relativity 
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Gravity and 
special relativity 
are incompatible 

a large mass than to a small one. But the acceleration of gravity is 
the same for all masses, so the gravitational force must somehow 
adjust itself to the mass of each object it pulls. This remarkable 
property makes it possible to create an artificial gravitational field 
in space. If we subject a spacecraft far from gravitating masses to 
constant linear acceleration, then objects inside will "fall down" 
just as they do on earth. And just as on earth, this artificial force 
adjusts its strength to give all objects the same downward ac­
celeration. In fact, in any sufficiently small region of spacetime 
there is no way to distinguish between simple linear acceleration 
and gravitational acceleration caused by a massive body like the 
earth. This is Einstein's principle of equivalence; he made it the 
basis of a revolutionary new theory of gravity. 

For Einstein, an observer in a gravitational field is simply op­
erating in a certain kind of noninertial frame. If a physical theory 
is to account for gravity, he reasoned, it must allow noninertial 
frames on the same footing as inertial ones, and physical laws 
must take the same form for all observers. This is the familiar 
principle of relativity, but now it is being asserted in its most 
general form. A successful theory of gravity must be built on 
general relativity. 1b help us make the transition from special 
to general relativity, Chapter 4 considers two kinds of noniner­
tial frames- those that rotate uniformly and those that undergo 
uniform linear acceleration, from the point of view of an inertial 
frame. We also survey Newton's theory of gravity and establish 
both the ordinary differential equations that tell us how a par­
ticle moves in a gravitational field and the partial differential 
equation that tells us how gravitating masses determine the field 
itself. 

The critical discovery in Chapter 4 is that we cannot provide 
a noninertial frame with the elegant and simple Minkowski ge­
ometry we find in a linear spacetime; distances are necessarily 
distorted. The distortions are the same sort we see in a flat map 
of a portion of the surface of the earth. Maps distort distances 
because the earth is curved, so a natural way to explain the dis­
tortions that appear when a frame contains a gravitational field 
is that spacetime is curved. This means that we cannot build an 
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adequate theory of gravity out of Newtonian mechanics and spe­
cial relativity, because the inertial frames of special relativity are 
flat. 

Curvature is the key to Einstein's theory of gravity, and it is 
the central topic of Chapters 5 and 6. The simplest circumstance 
where we can see the essential nature of curvature is in the 
differential geometry of ordinary surfaces in three-dimensional 
space-the subject of Chapter 5. At each point a surface has a tan­
gent plane, and each tangent plane has a metric-that is, a way to 
measure lengths and angles-induced by distance-measurement 
in the ambient space. With calculus techniques we can then use 
the metric to do geometric calculations in the surface itself. In this 
setting, it appears that curvature is an extrinsic feature of a sur­
face's geometry, a manifestation of the way the surface bends in 
its ambient space. But this setting is both physically and psycho­
logically unsatisfactory, because the four-dimensional spacetime 
in which we live does not appear to be contained in any larger 
space that we can perceive. Fortunately, the great nineteenth­
century mathematician K. F. Gauss proved that curvature is actu­
ally an intrinsic feature of the surface, that is, it can be deduced 
directly from the metric without reference to the embedding. 
This opens the way for a more abstract theory of intrinsic dif­
ferential geometry in which a surface patch-and, likewise, the 
spacetime frame of an arbitrary observer-is simply an open set 
provided with a suitable metric. 

Chapter 6 is about the intrinsic geometry of curved space­
time. It begins with a proof of Gauss's theorem and then goes on 
to develop the ideas about geodesics and tensors that we need 
to formulate Einstein's general theory. It explores the fundamen­
tal question of relativity: If any two observers describe the same 
region of curved spacetime, how must their charts G and R be 
related? The answer is that there is a smooth map M : G -+ R 
whose differential dMp : TGp -+ TRM(P) is a Lorentz map (that 
is, a metric-preserving linear map of the tangent spaces) at every 
point P of G. In other words, special relativity is general relativ­
ity "in the small:' The nonlinear geometry of spacetime extends 
the Minkowski geometry of Chapters 2 and 3 in the same way 

Intrinsic differential 
geometry 
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Geodesics and the 
field equations 

The evidence for 
general relativity 

that the nonlinear geometry of surfaces extends Euclidean plane 
geometry. 

In Chapter 7 we take up general relativity proper. From the 
principle of general covariance, Einstein argues that the laws 
of physics should be expressed as tensor equations if they are 
to transform properly. Now consider a coordinate frame falling 
freely in a gravitational field; such a frame is inertial, so an ob­
ject falling with it moves linearly and thus along a geodesic in 
that frame. Since geodesics are defined by tensor equations, gen­
eral covariance guarantees that all observers will say that freely 
falling objects move on geodesics. Thus, the equations of motion 
in a gravitational field are the geodesic equations; moreover, the 
metric in any coordinate frame defines the gravitational field in 
that frame. The rest of the chapter is devoted to the field equa­
tions; these are derived, as they are in the Newtonian theory, 
from an analysis of tidal forces. Because of the connection be­
tween the field and the metric, the field equations tell us not 
only how the gravitational sources determine the field but how 
they determine the curvature of spacetime. They summarize Ein­
stein's remarkable conclusion: Gravity is geometry. 

In the final chapter we review the three major pieces of evi­
dence Einstein put forward in support of his theory in the 1916 
paper in which he introduced general relativity. First, Einstein 
demonstrated that general relativity reduces to Newtonian me­
chanics when the gravitational field is weak and when objects 
move slowly in relation to the speed of light. The second piece 
of evidence has to do with the assertion that gravity is curvature. 
If that is so, a massive object must deflect the path of anything 
passing it-including a beam of light. Einstein predicted that it 
should be possible to detect the bending of starlight by the sun 
during an eclipse; his predictions were fully confirmed in 1919. 
The third piece of evidence is the precession of the perihelion of 
Mercury. It was known from the 1860s that the observed value is 
larger than the value predicted by Newtonian theory; Einstein's 
theory predicted the observed value with no discrepancy. We 
follow Einstein's arguments and deduce the metric-that is, the 
gravitational field-associated with a spherically symmetric mass 
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distribution. This involves solving the field equations in two set­
tings; one is the famous Schwarz schild solution and the other is 
Einstein's own weak-field solution. 

My fundamental aim has been to explore the wayan indi­
vidual observer views the world and how my pair of observers 
collaborate to gain objective knowledge of the world. In the sim­
plest case, an observer's coordinate patch is homeomorphic to a 
ball in R4 , and the tensors the observer uses to formulate phys­
ical laws are naturally expressed in terms of the coordinates in 
that patch. This means that it is not appropriate-at least at the 
introductory level-to start with a coordinate-free treatment of 
tensors or to assume that spacetime is a manifold with a poten­
tially complex topology. Indeed, it is by analyzing how any pair 
of observers must reconcile their individual coordinate descrip­
tions of the physical world that we can see the value and the 
purpose of these more sophisticated geometric ideas. 1b keep 
the text accessible to a reasonably large audience I have also 
avoided variational methods, even though this has meant using 
only analogy to justify fundamental results like the relativistic 
field equations. 

The idea for this book originated in a series of three lectures 
John Milnor gave at the Universiy of Warwick in the spring of 
1978. He showed that it is possible to give a unified picture of 
relativity in geometric terms for a mathematical audience. His 
approach was more advanced than the one I have taken here-he 
used variational methods to formulate some of his key concepts 
and results-but it began with a development of Minkowski ge­
ometry in parallel with Euclidean geometry that was elegant and 
irresistible. Nearly everything in the lectures was accessible to an 
undergraduate. For example, Milnor argued that when the rela­
tivistic tidal equations are expressed in terms of a Fermi coordi­
nate frame, a symmetric 3 x 3 matrix appears that corresponds 
exactly to the matrix used to express the Newtonian tidal equa­
tions. The case for the relativistic equations is thereby made by 
analogy, without recourse to variational arguments. 

I have used many other sources as well, but I single out four 
for particular mention. The first is Einstein's own papers; they 

The road not taken 

Sources 
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appear in English translation along with other valuable papers 
by Lorentz and Minkowski in The Principle of Relativity [20]. Ein­
stein's writing is eminently accessible, and anyone who wants 
a complete picture of relativity should read his 1916 paper [10]. 
The other three are more focused on special topicSi they are the 
paper by F. K. Manasse and C. W. Misner on Fermi normal coordi­
nates [21], the treatment of parallel transport in Geometry from a 
Differentiable Viewpoint by John McCleary [22], and the weak-field 
analysis in Modem Geometry, Part I by B. A. Dubrovnin et al. [7]. 

Since the early 1980s I have taught material in this book in an 
undergraduate course in either geometry or applied mathematics 
half a dozen times. My students have always covered Chapters 1-
3 and 5 and 6 in some detail and parts of Chapters 4 and 7i we have 
never had the time to do Chapter 7 thoroughly or Chapter 8 at all. 
While the text makes progressively greater demands on the reader 
and the material in the later chapters is more difficult, it is no 
more difficult than a traditional advanced calculus course. There 
are points, however, where I have taken advantage of the greater 
emphasis on differential equations, numerical integration, and 
computer algebra systems found in the contemporary calculus 
course. 

It would not have been possible for me to write this book 
without a sabbatical leave and also without the supportive climate 
over many years that enabled me to develop this material into a 
coursei I am grateful to Smith College and to my colleagues for 
both. And I particularly want to thank Michael Callahan, whose 
modern perspective and incisive questions and comments about 
a number of topics sharpened my thinking about relativity. 

James J. Callahan 
Smith College 
Northampton, MA 
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CHAPTER 

Relativity Before 
1905 

In 1905, Albert Einstein offered a revolutionary theory-special 
relativity - to explain some of the most troubling problems about 
electromagnetism and motion in the physics of the day. Soon af­
terwards, the mathematician Hermann Minkowski recast special 
relativity essentially as a new geometric structure for spacetime. 
The ideas of Einstein and Minkowski are the subject of the next 
two chapters; here we look at the physical questions that stimu­
lated them, as well as partial solutions offered by others. 

1.1 Spacetime 

Spacetime itself is quite familiar: A spacetime diagram is a device 
you have long used to describe and analyze motion. For example, 
suppose a particle moves upward along the z-axis with constant 
velocity v meters per second. Then, if we photograph the scene 
using a strobe light that flashes once each second, we will see the 
picture on the left at the top of the next page. 

Often, though, we choose to represent the motion in a diagram 
like the one on the right. This is a picture of spacetime, because 
it has a coordinate axis for time. (It should therefore have four 

Ways to describe 
motion 

Spacetime and 
worldlines 

1 
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z 
meters Z 

1 sec apart:::::: t v meters 

----:l---_y 

x 

SPACE 
(with strobe light) 

SPACETIME 
(with two space dimensions suppressed) 

Spacetime is 
4-dimensional 

Points are events 

Example: different 
constant velocities 

axes, but since x and y do not change as the particle moves, we 
have left out their axes to make the diagram simpler.) The motion 
of the particle is then represented by a straight line with slope 
v (or, better, v meters per second). We call this the history, or 
worldline, of the particle. 

When all motion is along the z-axis, we can take space­
time to be the (t, z)-plane as we have here. When the motion 
ranges over a 3-dimensional region, though, spacetime is the 
(1 + 3)-dimensional (t, x, y, z)-hyperspace. Obviously, the (1 + 1)­
dimensional spacetime is easier to visualize, and we will use it as 
much as we can. We call a point (t, z) or (t, x, y, z) in spacetime 
an event, because an event always happens somewhere at some 
time. 

Shown below is the worldline in a simple (1 + I)-dimensional 
spacetime of a "courier" traveling along the z-axis: 

El: left home at time tl 
E2: arrived at ZI at time t2 

E3: set off for Z2 at time t3 
E4: arrived at Z2 at time t4 

E5: set off for home at time t5 
E6: arrived home at time t6 

} traveled with velocity VI 

} traveled with velocity V2 

} traveled with velocity V3 

Note that the events E2 and E3 happen at the same place (and 
so do E4 and E5); the courier is stationary when the worldline is 
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z 

horizontal. Keep in mind that the worldline itself is not the path 
of the courier through space; on the contrary, the courier travels 
straight up and down the z-axis. 

The next example can be found in The Visual Display of Q]1an­
titative Information, by Edward R. TUfte [29]. It is a picture of the 
schedule of trains running on the French main railway line be­
tween Paris and Lyon in the 1880s, and is thus, in effect, many 
instances of the previous example plotted together. The vertical 
axis marks distances from Paris to Lyon, and the horizontal axis 
is time, so it is indeed a spacetime diagram. The slanting lines are 

PARIS ... , 
I 

I 

M~" 
MONTER tAU 

L~d>6 

TONNERRE 

fl~w.. 

I.",J.~ 

DIJON 

i:Mg,,!! 

"'""""'-

MACON 

""""",,,,_ . 
• )(.~dXJ1. 

1Y01'tP~ 
($I'l~j.I • 

Example: 
French trains 
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Example: nonuniform 
velocities 

Worldlines are graphs 

Example: a photo 
finish 

the worldlines of various trains. Those with negative slope run 
toward Lyon, those with positive slope toward Paris. The express 
trains have steeper slopes, and their horizontal segments, which 
represent stops along the way, are briefer and fewer in number. 

An object that moves with nonuniform velocity -like a falling 
body - must have a curved world1ine. The spacetime diagram be­
low shows two balls A and B that fall to the ground (z = 0) from 
a height z = h. Notice that B is thrown straight up with an initial 
velocity Vo > 0, while A is just dropped (vo = 0). The two balls are 
launched at the same moment (t = 0); A hits the ground when 
t = tA, and B hits later, when t = tB. The world1ines continue as 
horizontal lines because the balls are motionless once they hit 
the ground. 

z 

h 

t 

Once again, note that although the worldlines include para­
bolic arcs, the actual paths of A and B in space are vertical; A goes 
straight down, and B goes straight up, stops, then goes straight 
down. This example should be very familiar to you: Whenever 
z = f (t) gives the position z of an object as a function of the time 
t, then the graph for f in the (t, z)-plane is precisely the world1ine 
of the object. See the exercises. 

In the picture below (a photo finish of the 1997 Preakness), 
the winner has won libya head!' But which horse came in second? 
At first glance, it would appear to be the pale horse in the back, 
but couldn't the dark horse in the front overtake it before the two 
cross the finish line? 

In fact, the pale horse in back did come in second, and this 
photo does prove it, because this is not an ordinary photo. An 
ordinary photo is a "snapshot"-a picture of space at a single 
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Photo courtesy of Maryland Jockey Club. Reproduced with the permission of 
Pimlico Racetrack. 

moment in time; the camera projects a full 3-dimensional view 
onto a motionless piece of film. In a photo-finish camera, though, 
the film moves past a narrow slit that can view only the plane of 
the finish line. As the film is drawn past the slit at a steady rate, 
it records along its length the events that happen in the plane. 

time . 
Q) 

[ \ r 
.. ;:;: 

CIJ 

',L 

_ same place, 
different times 

same time, 
different places 

So a photo finish is a spacetime diagram. Events, like A, B, and 
C, that happen at the same spot on the finish line but at different 
times appear spread out along a horizontal line on the film, with 
the earliest event farthest to the right. The photo shows an entire 
horse because the entire horse eventually moves past the finish 
line. Events, like A and D, that happen at the same time but in 
different places on the finish line will appear on the same vertical 
line in the film. Thus, every vertical line is the finish line! Vertical 
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Spacetime with two 
space dimensions 

Worldlines lie on 
cylinders 

lines further to the left show what happens at the finish line at 
successively later times. That is why we can be certain that the 
pale horse came in second. 

If an object moves in a 2-dimensional plane, then we can draw 
its worldline in a (1 + 2)-dimensional spacetime. For example, if 
the object moves with uniform angular velocity around the circle 
y2 + z2 = const in the (y, z)-plane, then its worldline is a helix in 
(t, x, y)-spacetime. The "tighter" the helix, the greater the angu­
lar velocity. Different helices of the same pitch (or "tightness") 
correspond to motions starting at different points on the circle. 

t 

Notice that all the helical worldlines lie on cylinders of the 
formy2+z2 = const in the (1 +2)-dimensional (t, y, z)-spacetime. 
This reflects something that is true more generally: If an object 
moves along a curve V in the (y, z)-plane, then its worldline lies 
on the cylinder 

C(V) = {(t, y, z) : (y, z) in V} 

obtained by translating that curve through (t, y, z)-space parallel 
to the t-axis. Thus C(V) is the surface made up of all straight lines 
parallel to the t-axis that pass through the curve V. These lines 
are called the generators of the cylinder. We call C(V) a cylinder 
because, if V is a circle, then C(V) is the usual circular cylinder. 
Different parametrizations 

V : y = f (t), z = get) 

of the same curve V yield different worldlines on C(V). 
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Our final spacetime pictures represent a momentary flash of 
light from a point source. The flash spreads out light particles, or 
photons, from the source with speed c (~ 3 X 108 m/sec). First 
constder only the photons that move along the z-axis; one photon 
travels up the z-axis with velocity c and another travels down with 
velocity -c. If we use ordinary scales, these worldlines will have 
enormously steep slopes. However, in the picture below we have 
made the slopes manageable by changing the unit of distance. 
Instead of using the meter, we use the second (or light-second), 
which is the distance light travels in one second (about 3 x 108 

meters). We call this measure of distance a geometric unit, to 
distinguish it from the conventional ones. 

z 

1 sec 

In geometric units, c is 1 second per second, or just I, so 
the worldlines of the two photons have slopes ±1. For any other 
motion, the numerical value ofv is just a percentage of the speed 
of light. 'TYPically, v is nearer to 0 than to I, so the worldlines 
of ordinary motions have extremely small slopes in geometric 
units. 

Worldline of a photon 

Geometric units: 
measure distance in 

seconds 
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Light cones 

Expanding wave 
in space 

In the full 3-dimensional space, the photons from the flash 
spread out in all directions and occupy the spherical shell x2 + 
y2 + z2 = (ct)2 of radius ct after t seconds have passed. In a 2-

dimensional slice, the sphere becomes a circle y2 + z2 = (ct)2, 
also of radius ct. If we now plot this circle in (t, y, z)-spacetime 
as a function of t, we get an ordinary cone. The worldlines of all 
the photons moving in the (y, z)-plane lie on this cone, which is 
called a light cone. Note that when we take the slice y = 0 to get 
the simple (l + I)-dimensional (t, z)-spacetime, we get the pair of 
photon worldlines we drew earlier. We also call this figure a light 
cone. 

z 

y 

x 

A slice of space 

-t 

A slice of spacetime 

z 

/ 
A thinner slice 
of spacetime 

Exercises 

l. (a) Sketch the worldline of an object whose position is given 
by z = t2 - t3 , 0 ~ t ~ 1. 

(b) How far does this object get from z = O? When does that 
happen? 

(c) With what velocity does the object depart from z = O? With 
what velocity does it return? 

(d) Sketch a worldline that goes from z = 0 to z = 1 and 
back again to z = 0 in such a way that both its departure 
and arrival velocities are O. Give a formula z = f (t) that 
describes this motion. 
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2. (a) Suppose an object falls with no air resistance, so it expe­
riences constant acceleration z"(t) = -g, where g is the 
acceleration due to gravity (g ~ 9.8 m/sec2). If its initial 
velocity is z' (0) = Vo and its initial position is z(O) = h, find 
the formula z(t) that gives its position at any time t. 

(b) Using your formula, sketch the worldlines of three objects 
for which Vo takes the three values 0 m/sec, +10 m/sec, 
- 2 m/ sec. Use h = +60 m for all three objects. 

(c) Determine when the three objects hit the ground z = O. 
Are they in the order you expect? 

3. 1'W"O objects G and M move along the z-axis with a constant 
positive velocity v that is much smaller than 1 (written v « 1), 
separated by a distance A; see the following figure. A signal is 
emitted at the event O. It travels with velocity 1 until it reaches 
M at the event E1; it is then reflected back with velocity -I, 
reaching G at the event E2. Express the times t1 and t2 in terms 
of A and v. 

z L-__ --~E~I~------~~v~--M 

G 

o v 

1.2 Galilean Transformations 

The aim of science is to describe and interpret objective reality. 
But the starting point of science is individual observation, and 
this is inherently subjective. Nevertheless, when individual ob­
servers compare notes, they find points of common agreement, 
and these ultimately constitute what is physically, or objectively, 
real. ("Do my calculations agree with yours?" "Can I reproduce 
your experiment?") 

The problem of 
objectivity 
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Galileo's principle 
of relativity 

Spacetime diagrams 
of two different 
observers 

The question of objectivity has always been part of modern 
science. Galileo took it up in connection with motion, and was 
led to formulate this principle of relativity: 

'TWo observers moving uniformly relative to one another 
must formulate the laws of nature in exactly the same 
way. In particular, no observer can distinguish between 
absolute rest and absolute motion by appealing to any law 
of nature; hence, there is no such thing as absolute motion, 
but only motion in relation to an observer. 

We shall read this both ways: 

• Any physical law must be formulated the same way by all 
observers . 

• Anything formulated the same way by all observers is a phys­
icallaw. 

As we shall see, scientists at the end of the nineteenth century 
were tempted to ignore Galileo's principle in order to deal with 
some particularly baffling problems. That didn't help, though, 
and when Einstein eventually solved the problems, he did so by 
firmly reestablishing the principle of relativity. 1b distinguish this 
from the more sweeping generalization he was to make a decade 
later, we call this special relativity. 

The first step to understanding what Einstein did is to make 
a careful analysis of the situation that Gali1eo addresses: two ob­
servers moving uniformly relative to one another. For us this 
means looking at their spacetime diagrams. We shall call these 
"Galilean" observers Rand G; G will use Greek letters Cl', ~, 11, n 
for coordinates, and R will use Roman (t, x, y, z). We assume that 
Rand G approach and then move past each other with uniform 
velocity v. They meet at an event 0, which they define to happen 
at time t = r = O. In other words, they use this event to synchro­
nize their clocks. For the sake of definiteness, we assume that 
corresponding axes (that is, ~ and x, 11 and y, ~ and z) of the two 
observers point in the same direction. Moreover, we assume that 
G moves up along R's z-axis and R moves down along G's ~-axis. 
Their spacetime diagrams then look like this: 
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z 
z 

R 
z ." ...... . 
r ........... E 
~ '. 

G _____ ~:::--__ r!--_--.. r R ---------...0=--------'--------
o 

Greek 

r=t 

~=z-vt 

G 

Roman 

t= r 

z=~+vr 

The equations tell us the Roman coordinates (t, z) of an event 
E when we know the Greek (r, n, and vice versa. We note the 
following: 

• A time axis is just the worldline of an observer. 

• A right angle between the time and space axes means that the 
observer whose worldline is that time axis is stationary with 
respect to that space coordinate. 

• If the angle between the time and space axes is 900 - 0, then 
that observer has velocity v = tan 0 with respect to that space 
coordinate. 

• For a given event E, t = r because observers measure time 
the same way. 

• For a given event E, z 1= ~ in general because observers mea­
sure distances from themselves. The difference z-~ = vt = vr 
is the distance between the two observers at the moment z and 
~ are measured. 

Notice that we make no assumption about which observer 
is really moving, or which spacetime diagram is really correct. 
According to the principle of relativity, there'S simply no way to 
determine this. From R's point of view, only G is moving, and vice 
versa. The two spacetime diagrams are equally valid descriptions 
of reality. It is by comparing the diagrams that we discover which 

Coordinates of two 
observers compared 

All spacetime 
diagrams are equally 

valid 
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Galilean 
transformations 

An analogy with 
languages and 
translation dictionaries 

of their elements do reflect physical reality and which do not. 
Thus, time-or more precisely, the time interval between two 
events-is objectively real, because observers report the same 
values. By contrast, the spatial distance between two events is 
not. See Exercise 1. 

Since we want to focus on the elements of a spacetime 
diagram that don't change when we go from one diagram to 
another, we must study the details of this transformation. The 
equations that convert G's coordinates to R's define a linear map 
Sv : R2 --+ R2, 

Sv: (;) --+ G) = (~ ~) (;). 

Because Sv connects the spacetime diagrams of two Galilean ob­
servers (that is, observers considered by Galileo's principle of 
relativity), it is commonly called a Galilean transformation. 
When we think of Sv as the matrix, we shall call it a Galilean 
matrix. 

Geometrically, the transformation is a shear. It slides vertical 
lines up or down in proportion to their distance from the vertical 
axis. In fact, since the vertical line t" = 1 slides by the amount v, 
the constant of proportionality is v and horizontal lines become 
parallel lines of slope v. 

We can think of the Greek coordinate frame and the Roman 
coordinate frame as two languages for describing events in space­
time. In the spirit of this analogy, the matrix Sv is the dictio-
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nary that translates "Greek" into "Roman". But translation dic­
tionaries come in pairs: Besides a Greek-Roman dictionary, we 
need a Roman-Greek dictionary. Obviously, the inverse matrix 
s; 1 = S-v plays this role. 

GREEK 
Sv 
~ 
+--
S-v 

ROMAN 

We can illustrate this with a simple example. Suppose a new 
particle moves uniformly with respect to Rand G. Then its world­
line is straight in each spacetime. If that worldline consists of the 
events (r,O in the Greek coordinate system, then the velocity 
of the particle is (J = !1s /!1 r, according to G. Since t = rand 
z = s + vr (by our Iitranslation dictionary"), R will calculate the 
velocity to be 

!1z !1s + v!1r !1s 
5 = - = = - + v = (J + v. 

!1t !1r !1r 

z 
z -------R --_~(J 

---- Particle _ ------
G ----~::__-----_r o R -----------:~==_------------ t 

G 

1b move to the full (1 + 3)-dimensional version, we assume 
that the spatial axes of G and R remain parallel as G and R move. 
The velocity of G relative to R is a spatial vector v = (vx , vy, vz). 

In the exercises you will show that the Galilean transformation 
is now accomplished by the 4 x 4 matrix 

(

1 0 

S = Vx 1 
v v 0 y 

Vz 0 

o 0) o 0 
1 0 ' 
o 1 

(1 + 3)-dimensional 
transformations 



14 _____________ C=ha~p~re=r~1~R=e=m~ti=·n=·~q~B=e=~=ore~1=9~O=5 ________________________ __ 

in coordinates of: 

speed of: GREEK ROMAN 

G 0 v 

R -v 0 

any particle (J' (J' + v 

s-v s 

furthermore, S;l = S-v. In our earlier work, we assumed that 
motion was along the vertical axis alone and hence Vx = Vy = O. 
In this case multiplication by the 4 x 4 matrix Sv gives x = ~ and 
y = 'f}. This explains why we could suppress those coordinates 
(and work with the simpler 2 x 2 matrix): They had the same 
values in the two frames. 

Exercises 

1. Suppose the events E1 and E2 have the coordinates (1,0 and 
(2, 0) in R. What is the spatial distance between them, accord­
ing to R? What is the spatial distance, according to G? 

2. Let A(X, Y) denote the area of the parallelogram spanned by 
two vectors X and Y in the plane R2. If L : R2 -+ R2 is a 
linear map, show that A(L(X) , L(Y» = detL· A(X, Y). What 
does this mean when detL is negative? What does this mean 
when detL = O? 

3. Show that every Galilean transformation Sv : R2 -+ R2 pre­
serves areas. 

4. (a) Show that S;-l = S-v and SvSw = Sv+w when Sv : R2 -+ R2. 

(b) These facts imply that the set of Galilean transformations 
forms a group g2 using matrix multiplication. Show that 
this group is commutative, that is, that SySw = SwSy. (In 
fact, g2 is isomorphic to the real numbers R regarded as 
a group using addition. Prove this if you are familiar with 
group theory.) 
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5. (a) Write the Galilean transformation 5v matrix when space­
time has two space dimensions and relative velocity is 
given by the 2-dimensional vector v = (vy, vz). 

(b) Show that 5;1 = 5-v and 5v 5w = 5v+w . Here v + w is 
ordinary vector addition. 

(c) The collection 93 ofthese matrices 5v is also a group. Show 
that 93 is commutative, too. (In fact, 93 is isomorphic to 
the additive group R2.) 

6. Repeat the previous exercise with the full 4 x 4 Galilean trans­
formations. (94 is isomorphic to the additive group R3.) 

1.3 The Michelson-Morley Experiment 

Light doesn't transform properly under Galilean transformations. 
In the late nineteenth century, this problem manifested itself in 
several ways. We'll look at two: the Michelson-Morley experiment 
and Maxwell's equations. Even before we take them up in detail 
below, we can describe their essential implications quite simply 
by considering how two observers describe the motion of photons. 

We assume that a momentary flash oflight occurs at the event 
o when Rand G meet, and we plot the worldlines of the photons 
U and D that go up and down the vertical axis. Th keep the slopes 
reasonable, Rand G will both use geometric units and measure 
distance in seconds (see Section l.1). If R measures the velocity 
of U to be 1 and that of D to be -I, then G must measure them 

r; z U z U 

Before 
Michelson-Morley 

R 'r 

G 'r R t 
0 

G 

D 
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After 
Michelson-Morley 

The ether 

to be 1 - v and -1 - v, respectively. 
It should, therefore, be possible to measure differences in 

the speed of light for two Galilean observers. But the results of 
the Michelson-Morley experiment imply that there are no differ­
ences! In effect, G gets the same value as R, so their spacetime 
diagrams look like this: 

u 

R 
G----=~=~---'r 

'----==--. t 

D 

z u 

r'= ........... 'r 
R----~~~~~----t 

G 

D 

We can summarize the paradoxical conclusions of the Michelson­
Morley experiment (M-M) in the following table. 

in coordinates of: 

speed of: GREEK I ROMAN 

ordinary particle 
(]' (]'+v 

s-v s 

before M-M 1 l+v 
photon I-v 1 

after M-M 1 1 

The Experiment 

Light is considered to be a wave as well as a particle. The wave 
theory explains many aspects oflight, such as colors, interference 
and diffraction patterns Oike those we see on the surface of a 
compact disk), and refraction (the bending oflight rays by lenses). 
But iflight is a wave, there should be some medium that is doing 
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the waving. Since light travels readily through the vacuum of 
empty space, that medium - which came to be called the "ether"­
must permeate the entire universe. The earth must fly through 
it like a plane through the air. Michelson and Morley sought to 
measure the velocity of the earth through the ether in a series of 
ever more refined experiments between 1881 and 1887. 

In principle, it would seem simple enough to make the mea­
surement. Let the observer R be stationary with respect to the 
ether and let G be on the earth. Then measure the velocity of a 
beam of light emitted in the direction of G's motion with respect 
to R. According to the Galilean picture, the velocity of the beam 
will be w = 1 - v, where 1 is the standard speed of light in a 
vacuum (as measured by R) and v is the unknown velocity of G. 
But we have just measured w, so v = 1 - w. 

This simple approach falters for two reasons. First, we have 
no direct awareness of the ether, so we don't know where to 
put R and hence which way to aim the beam of light. However, 
we can deal with this by sending out beams in many different 
directions. A more serious problem has to do with the techniques 
that are used to determine the speed of light. They depend on 
reflecting a light beam off a distant mirror and comparing the 
returning beam with the outgoing one. Exactly how this is done 
is not so important as the fact that the light ray travels at two 
different speeds while it is being analyzed: 1 - v on the outward 
journey and 1 + v on the return. Instruments can measure only 
the average speed for the round trip. It appears, at first glance, 
that the average speed is 1, and we therefore lose all evidence of 
the variable speed v that we are trying to determine. 

In fact, the average is not 1, and the evidence does not get 
lost. The Michelson-Morley experiment is designed to overcome 
all our objections and to capture the elusive value v. The Dutch 
physicist H. A. Lorentz gives this contemporary (1895) descrip­
tion of the experiment in the opening paragraph of [19]: 

As Maxwell first remarked and as follows from a very sim­
ple calculation, the time required by a ray oflight to travel 
from a point A to a point B and back to A must vary when 
the two points together undergo a displacement without 

Measuring velocity 
relative to the ether 
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The difference is 
proportional to V2 

carrying the ether with them. The difference is, certainly, 
a magnitude ofthe second order; but it is sufficiently great 
to be detected by a sensitive interference method. 

1b see what Lorentz means, let us do that calculation. In the 
experiment, the observer G (who is moving with an unknown 
velocity v) sends out a light pulse that is reflected back to G by a 
mirror M that is firmly attached to G's frame at a fixed distance 
of ).., light-seconds. The apparatus allows the direction from G to 
M to vary arbitrarily, though. 

A diagram of SPACE, 
not SPACETIME 

LLLLLL M 

The exercises ask you to confirm that the travel time T for a 
light ray depends on the direction of the ray in the following way: 

2)", 
TII(v) = -- parallel to G's motion; 

1 - v2 

2)", 
T.l(v) = J1=V2 perpendicular to G's motion. 

1- v2 

You can also show that the average speed oflight for round trips in 
the two directions is not 1; instead, cil = 1- v2 and C.l = ,Jl - v2 . 

In fact, what the experiment actually measures is the difference 
between Til and T.l. 1b see how this is connected to v, first look 
at the Thylor expansions of Til and T.l: 

Til (v) = 2)", + 2)"'v2 + O(v4 ), 

T.l(v) = 2)", + )..,v2 + O(v4). 

Hence the leading term in the difference is indeed proportional 
to v2; this is the II magnitude of second order" that Lorentz refers 
to: 
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1b get some idea how large v2 might be, let us calculate the 
velocity of the earth in its annual orbit around the sun. The orbit 
is roughly a circle with a circumference of about 9 x 1011 meters. 
Since a year is about 3 x 107 seconds, the orbital speed is about 
3 x 104 m/sec. In geometric units (where c = 3 X 108 m/sec = 1) 
we get v ~ 10-4 , v2 ~ 10-8 . Of course, if there is an "ether wind," 
v may be much less if the earth happens to be moving in the 
same direction as the "wind!' However, six months later it will be 
heading in the opposite direction, so then v should be even larger 
than our estimate. In any event, the apparatus Michelson and 
Morley used was certainly sensitive enough to detect velocities 
of this order of magnitude, so a series of experiments conducted 
at different times and in different directions should therefore 
eventually reveal the motion of the earth through the ether. 

But the experiment had a null outcome: it showed that Til = 
T 1.. always. This implied that light moves past all Galilean ob­
servers at the same speed, no matter what their relative motion. 
Light doesn't transform properly under Galilean transformations. 

The Fitzgerald Contraction Hypothesis 

The experimental results contradict common sense and some 
very persuasive arguments. What could be wrong? Michelson 
himself concluded that v = 0 always-that is, the ether moved 
with the earth. Lorentz found this unsatisfactory, and in his ar­
ticle offered another way to remove the contradiction. His idea 
is more commonly know as the Fitzgerald contraction hypothe­
sis, after the British physicist G. F. Fitzgerald, who introduced it 
independently. 

Noting that the travel times Til and T 1.. depend upon the dis­
tance A to the mirror, Fitzgerald and Lorentz give a simple-but 
nonetheless astonishing-explanation for the fact that Til is not 
larger than T i.: They say that the distance A varies with the di­
rection. 1b make this distinction, let us write 

2A1.. 
T 1.. = --:::== 

Jl-v2 

Estimating v2 

Facing the 
contradiction 

Contraction in the 
direction of motion 
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The contraction 
cannot be measured 
directly 

Then if we set 

we get 

2AII 2JI - V2 • A.l 2A.l 
Til = -- = = = T.l. 

1 - v2 1 - v2 JI - v2 

Since JI - v2 < I, All is smaller than A.l. This is usually translated 
as saying that the apparatus (which was was supposed to keep A 
fixed) must have contracted in the direction of motion-but not 
in any perpendicular direction. 

There is no way to measure the contraction directly, because 
every measuring instrument participates in the motion and 
hence in the contraction. In other words, a meter stick will say 
that A does not vary. The only way to measure the contrac­
tion is indirectly, by the Michelson-Morley experiment or its 
equivalent. 

With the Fitzgerald contraction, the transformation between 
coordinate frames takes a new form. The new relation (which we 
could call the Fitzgerald transformation) is 

Pv: {
t = r, 

z= JI-v2~ +vr, 

1b see why this is so, set r = a and note that when G measures 
a distance of ~ = I, Fitzgerald contraction implies that R will say 
that the distance is only JI - v2 < 1. It is not true that P; 1 = P-v 
as it is for Galilean transformations; instead, 

( 1 0) p-l _ -v 1 

v - JI _ v2 JI _ v2 ' 
{

r = t, 
p-1 : z vt 

v ~_--===_--=== -./f=V2 JI - v2 • 

Besides being subject to the criticism that they have been 
constructed after the fact merely to "preserve appearances," Pv 

and p;l are not symmetric, nor do they transform the world1ines 
of light photons properly. You can explore this in the exercises. 
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Exercises 

1. ( a) Show that the travel time T 1.. for a light ray bouncing off 
a mirror perpendicular to the direction of motion of an 
observer G is 

21.. 
T1..(v) = ~ 

V'1 - v2 

when G moves with velocity v and the mirror is A light­
seconds away. What is the average velocity of light in a 
perpendicular direction? 

(b) Show that the travel time Til when the light ray moves in 
the same direction as G is 

21.. 
Til (v) = 1 _ v2' 

What is the average velocity oflight in the direction of G's 
motion? 

( c) Determine the third-order Thylor expansions of T 1.. (v) and 
Til (v) and show thereby that 

Til - Tl.. = v2 (A + O(v2)). 

2. (a) The linear map Cv : R2 -+ R2 that performs simple com­
pression by the factor J1 - v2 in the direction of motion 
is 

Cv = (~ J1 ~ v2 ) . 

Indicate the effect of Cv by sketching the image of a grid 
of unit squares in the target; describe the image grid in 
words. 

(b) Let Fv be the "Fitzgerald transformation" defined in the 
text. Show that Fv = Sv 0 Cv = Cv 0 Sv, where Sv is the 
Galilean shear of velocity v. 

3. Sketch the image of a grid of unit squares under the linear 
map Fv. How is this image related to the images produced by 
Cv and Sv? In particular, how are the images of vertical lines 
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Electric and magnetic 
fields satisfy Maxwell's 
equations 

Light is 
electromagnetic 

under Fv and Sv related, and how are the images of horizontal 
lines related? 

4. (a) Consider upward and downward moving photons in G 
whose worldlines have equations ~ = ±r and hence slopes 
± l. Express the slopes m± of the image worldlines in R 
under the map Fv : G ---+ R as functions of the relative 
velocity v. 

(b) Show that m+ > +1 and m_ > -1 whenever 0 < v < 1. 
For which v does m+ attain its maximum value? 

5. Explain why Fv cannot be a valid description of the relation 
between the coordinates of G and R. 

1.4 Maxwell's Equations 

Th explain why one magnet can act upon another "at a distance"­
that is, without touching it or anything connected to it-we say 
that the magnet is surrounded by a force field; it is this magnetic 
field that acts on the other magnet. Electric charges also act on 
one another at a distance, and we explain this by the intervention 
of an electric field. These fields permeate space and vary from 
place to place and from moment to moment. But not all variations 
are possible; the functions defining the fields must satisfY the 
partial differential equations given by James Clerk Maxwell in 
1864. 

One consequence of these "field equations" is that a distur­
bance in the field (caused, for example, by a vibrating electric 
charge) will propagate through space and time in a recognizable 
way and with a definite velocity that depends on the medium. 
In other words, there are electromagnetic waves. Moreover, the 
velocity of an electromagnetic wave turns out to be the same as 
the velocity of light. The natural conclusion is that light must be 
electromagnetic in nature and that the ether must carry the elec­
tric and magnetic fields. This leads us back to the earth's motion, 
but now the question is, How does that motion affect Maxwell's 
equations? 
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The Equations 

Maxwell's equations (in R's coordinate frame) concern: 

• electric forces, described by an electric vector E varying over 
space and time: 

E(t, x, y, z) = (El (t, X, y, z), Ez(t, x, y, z), E3(t, x, y, z)) --..- --..- --..­
x component y component z component 

• magnetic forces, likewise described by a varying vector: 

H(t, x, y, z) = (HI (t, x, y, z), Hz(t, x, y, z), H3(t' x, y, z)) 

• a scalar function p(t, x, y, z), electric charge density 

• a vector function J(t, x, y, z), electric current density 

These functions are not independent of one another, but must 
together satisfy the following partial differential equations­
Maxwell's equations-which summarize all the observed facts 
about electricity and magnetism. We write them here in geomet­
ric units, where c = 1. 

". E = p, ". H = 0, 
aH aE 

" x E = --, " x H = - + J, at at 

( a a a) ,,= ax' ay' az . 

Everything is written in R's frame; how would it look in G's 
frame? Rather than answer this question in full, we focus on one 
important consequence arrived at by the following series of steps. 

1. Assume that we are in empty space, so p = ° and J = O. 

2. Consider the following derivation (where subscripts denote 
partial derivatives): 

a 
Ett = - (" x H) 

at 

=" x H t 

( " x H = ~~ + J, but J = 0 ) 

Maxwell's equations 

Change to G's frame 
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The Galilean 
transformation of 
Ett - Ezz 

= -V x (V x E) 

= -'1('1 . E) + '12E 

='12E 

( a2 a2 a2 ) 
= ax2 + ay2 + az2 E. 

(V x E = - aa~) 
(calculus identity) 

(V· E = p = 0) 

3. The second-order partial differential equation E tt = '12E is 
called the wave equation; it must hold for each component 
E = Ei of the electric vector E: 

Ett = Exx + Eyy + Ezz . 

4. Assume that the electric field depends only on t and z: E = 
E(t, z). For example, a plane wave parallel to the (x, y)-plane 
will satisfy this condition. The wave equation for each compo­
nent then takes the simple form 

or Ett - Ezz = o. 
We now ask, What does this simple wave equation become in G's 
frame of reference, when G moves along R's z-axis with velocity 
v? 

The appropriate Galilean transformation is Sv : t = t', Z = 
~ + vt'. The following equations convert the components of the 
electric vector to G's coordinates: 

E(t, z) = E(t', ~ + vt') = £(t', n. 
In other words, we use the "dictionary" Sv to convert E (in R's 
frame) to £ (in G's frame) by composing E with Sv: 

SV 
GREEK ~ ROMAN 

S-l 
£~ v /E 

R 

Using the multivariable chain rule, we could then express the 
derivatives of £ with respect to t' and ~ in terms of the derivatives 
of E with respect to t and z. 
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But this is the wrong way round: 1b see how Ett - Ezz trans­
forms, we want the derivatives of E with respect to t and Z in 
terms of the derivatives of & with respect to l' and ~. The solution 
is to use the inverse "dictionary" S;l: l' = t, ~ = Z - vt: 

&(l', n = &(t, z - vt) = E(t, z). 

Now the chain rule works the right way. Here is one derivative 
calculated in detail: 

aE a& al' a& a~ 
Et = -- = -- -- + -- -- = & - v&~. 

at al' at a~ at r 

The others are 

Thus in G's coordinate frame the simple wave equation Ett - Ezz = 
o transforms into 

The two extra terms mean that the wave equation has a different 
form in G's frame (if v =1= 0, which we are certainly assuming). 

According to Galileo's principle of relativity, this shouldn't 
happen: Observers in uniform motion relative to each other must 
formulate and express physical laws in the same way. Maxwell's 
equations and the wave equation are physical laws, so they can't 
have different forms for different observers. 

Does Fitzgerald contraction help? If we replace ~ = z - vt 
(which comes from S;l) by 

z vt 
~ = JI - v2 - -";-I-_-V""""2 

( z vt) E(t,z)=& t, ~- ~ 
'\f 1 - v2 '\f 1 - v2 

and 

The "Fitzgerald" 
transformation of 

Ett - Ezz 



26 _____________ C~ha~p~re~r_l __ R_e~m~ti_·n_·~~~B_e_£~ore __ l_9_0_5 ________________________ __ 

The Lorentz 
transformation of 
En - Ezz 

Therefore, 

2v v2 -I 
Ett - Ezz = err - J1=V2er:~ + --2e~~ 

I-v2 I-v 
2v 

= err - e~~ - r;---::Jer:~; 
'\fI-v2 

the Fitzgerald transformation got rid of one of the two extra terms! 
1b get rid of the other, Lorentz proposed a further alteration 

of the Galilean transformation that has come to be known as the 
Lorentz transformation. 

The Lorentz 'Ii'ansformation 

Since a modification of the equation connecting space coordi­
nates got rid of one of the extra tenus in the transformed wave 
equation, perhaps a similar modification on the time coordinates 
will get rid of the other. Here is the matrix for Lorentz's proposed 
transformation with the Fitzgerald matrix for comparison: 

-1 _ (.vI ~ v2 .vI-~ V2) 
Lv - -v 1 ' 

.vI - v2 .vI - v2 

( 1 0) 
F;;l = -v 1 . 

.vI - v2 .vI - v2 

Even before we see whether it solves our problem, we can see 
that the Lorentz matrix has an aesthetic appeal that the Fitzgerald 
matrix lacks: It is a symmetric matrix -a reflection of the sym­
metric treatment of time and space variables that was designed 
into the transformation. Furthermore, L;;l = L-v, the same sim­
ple relation enjoyed by the Galilean transformations. 

The Lorentz transformation does indeed make the wave equa­
tion transform properly. If we write the transformation in the 
form 
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then 

and 

Thus 

t-vz z- vt 
r= , 

-""1 - v2 
~= , -""1 - v2 

( 
t - vz z - vt ) 

B(t, z) = £ .J1=V2'.J1=V2 
1-v2 1-v2 

Lorentz introduced these ideas in the 1895 article [19] that we 
cited in the previous section. He called the new expression for 
r-certainly an odd mixture of R's space and time coordinates-a 
I/local time," but he never gave it a good a priori physical explana­
tion. When Einstein eventually did offer an explanation a decade 
later, Lorentz never completely accepted it! (See Pais [26], pages 
166 ff.). 

Exercises 

1. (a) Show that A x (B x C) = (A· C)B - (A· B)C, where A, B, 
and C are any vectors in R 3 . 

(b) Deduce the corollary V x (V x F) = V(V· F) - V2F, where 
F is any smooth vector function. (Note: Since the vector 
V is an operator, we must write it to the left of the scalar 
VoF.) 

2. Show that V· (V x F) = 0 for any smooth vector function F. 

3. From Maxwell's equations deduce the conservation of charge: 
ap =-v.J. 
at 
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4. Assume that &(r, n = &(t, z - vt) = E(t, z) and verify that 

5. Assume that & and E are related by the Lorentz transformation 

and verify that 

&r; - v&~ 
Et = , 

~h -v2 

( 
t - vz z - vt ) 

E(t,z) = & J1=V2' J1=V2 
I-v2 1-v2 

&r:r; - 2v&r;~ + v2&~~ 
Ett = 1 2 ' -v 

6. (a) When we revert to conventional units, the simple wave 
equation derived from Maxwell's equations has the form 
Ett = e2 Ezz . Show that the function 

E(t, z) = f (z - et) + g(z + et) 

solves the wave equation, for any functions f (u), g(u). 
Note that f and g are functions of a single variable. 

(b) Suppose w = f (u) has a spike at the origin (a "soliton"), 
as shown in the graph below. Let E(t, z) = f (z - et). Show 
that the graph of w = E(to, z), for a fixed to, is the translate 
of w = E(O, z) by the amount eto. In particular, the trans­
lation puts the spike at z = eto. Use the graphs to explain 
that E(t, z) represents a spike traveling in the direction of 
positive z with velocity e. 

• u 

(c) Give the corresponding interpretation for E(t, z) = f(z + 
et). 



____________________________ ~§~1_.4 __ M __ axw __ e_n_'8_E~q~u~ati~·o~n~8 ____________ 29 

Further Reading for Chapter 1 

The biography of Einstein by Pais [26] deals extensively with 
Einstein's scientific work and places him in the scientific context 
of his times. In his definitive 1905 paper on special relativity [11 ], 
Einstein himself discusses the physical problems he sought to 
address. The Feynman Lectures [13] give clear discussions of all 
the physical issues on which special relativity is based. 



Special Relativity­
Kinematics 

CHAPTER 

Material objects have mass and move in response to forces; kine­
matics is that part of the study of motion that does not take force 
and mass into account. Since kinematics is the simplest part of 
dynamics, and since some of the most basic ideas of special rela­
tivity are kinematic in nature, we look at them first. 

2.1 Einstein's Solution 

According to the Michelson-Morley experiment and to Maxwell's 
equations, the speed of light is constant, independent of the mo­
tion of the observer measuring it. Instead of considering this a 
troubling contradiction, Einstein argued from Galileo's principle 
of relativity that it must simply be a law of physics. He then 
considered what this new law must imply. 

In geometric terms, the contradiction arises because we use 
the Galilean transformation Sv, which alters the light cone. Ein­
stein reasoned that the way out is to construct a new transforma­
tion Bv : G -+ R that preserves the light cone. (Henceforward, we 
shall use G and R as a shorthand for the spacetimes of G and R, 
respectively.) How should Bv be defined? 

Accept the constancy 
of the speed of light 
as a law of physics 

31 
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Bv is linear 

Map the light cone 
to itself 

Slide points 
along the cone 

• The transformation is linear. Suppose an object A has a 
straight worldline in G's spacetime. Then A has a constant ve­
locity with respect to G. But then A will have a constant velocity 
with respect to R, because Rand G are in uniform motion with 
respect to one another. Hence A must have a straight worldline 
in R's frame, too. So Bv must map straight lines to straight lines. 
Since we implicitly assume that Bv is invertible and carries the 
origin to the origin, it follows that Bv is linear. (While this result is 
part oflinear algebra, it is not part ofthe usual first linear algebra 
course. The exercises will guide you through a proof.) 

• The transformation has the same form for all pairs of ob­
servers. Galilean relativity stresses that there should be no essen­
tial distinction between uniformly moving observers. Therefore, 
G and R should use the same transformation when they convert 
from their own spacetime to the other's. When G's velocity with 
respect to R is V, R's velocity with respect to G is -v. Therefore, 
since Bv : G --+ R, we must have B-v : R --+ G. But the map 
R --+ G must at the same time be the inverse of the map G --+ R, 
so B-v = B;;l. 

The Graphical Solution 

Assume, as we have before, that R sets off a spark of light at the 
event O. Then one photon travels up the vertical axis; another 
travels down. In G's spacetime, below, we see the situation at 
time T = TO: G is at Go, one photon is at U, and one photon is at D. 
Because the speed oflight is I, U and D are both TO light-seconds 
from Go. 

Consider now what the map Bv has to accomplish. In R, the 
images of U and D must lie on the light cone, and Go must lie on 
G's worldline. Because Bv is linear and D, Go, and U are equally 
spaced along a line in G, their images must be equally spaced 
along another line in R. This is where the problem lies: If we 
map D, Go, and U to a vertical line in R (which is what the 
Galilean transformation does), the three points are no longer 
equally spaced; Go will be closer to the upward light cone. But 
this is easy to fix: Just rotate the line clockwise around Go, letting 
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G----~---¢-.::-..­
't' 

D and U slide along the light cone. The lower segment will get 
shorter and the upper one longer; at some point the two will be 
the same length. 

We have suddenly stumbled upon the heart of Einstein's rev­
olution: From G's point of view, D, Go, and U happen at the same 
time, because they lie on a vertical line (r = La). But from R's 
point of view, they happen at different times: first D, then Go, 
then U. The transformation Bv preserves the light cone, but at 
the cost of losing simultaneity. We do not even know whether 
to = La, that is, whether Rand G agree about the time of the event 
Go . (As we shall see, they don't!) 

If' 
:I' 

U/ 
,f' 

:I' 

G 
v 
1,\ 't' 

1'\ 
'\, 
T)'\, 

I I I 1'\ 
I I I I I ~ 

Even without the quantitative details we have a good qual­
itative picture. Because Bv is linear, it maps the ~ -axis and all 
the vertical lines L = const to lines that are parallel to the line 

Simultaneity is lost 

Map is like a 
"collapsing crate" 
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The inverse map 

Connecting 
Bv and B-v 

containing D and U. It is not a shear; it is more like the partial 
collapse of a grid of interlocking cardboard spacers that separate 
the bottles in a case of wine. Notice that, in this collapse, grid 
points that lie along the ±4S0 lines (the light cone) are shifted in 
or out but stay at ±4S0: The light cone is preserved. 

t 

The inverse map, shown above going right to left, must undo 
the effect of Bv. It must take the collapsed grid in R (shown in 
light gray) and map it back to an orthogonal grid in G. In doing 
so, the orthogonal grid in R (shown in black) will map to a grid 
in G that is collapsed in the opposite direction. In fact, this is the 
same as B-v. 'Ib see why, look back at the figure showing Bv and 
change v to -v. The time axis will then slope downward rather 
than upward, and the space axis will tilt backward rather than 
forward-exactly like B;;l. 

There is one more connection between Bv and B-v that we 
need when we compute the coefficients of Bv. Suppose G and R 
flip their vertical axes: 

{
f1 = f, 

F: 
~1 = -~, Zl = -z. 

In terms of the new coordinates, the velocity of G relative to R 
is now !::.zI/ !::.t1 = -!::.z/!::.t = -v. Thus, if G1 and R1 denote the 
"flipped" versions of G and R, then the map G1 ~ R1 must be 
given by B-v when the map G ~ R is given by Bv. That is what 
the following diagram says. 
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kf' 
kf' 

G 

~ 
~ 

kf 

~ 

r 
Bv -

Start at G in the upper left; then a vertical flip followed by B-v 

produces the same result as Bv followed by a vertical flip: B-vF = 
PBv. We solve for B-v, 

B-v = PBvP-1 = FBvF, 

to get the relation we need. The last equality holds because F is 
its own inverse. Because the equation B-vF = FBv tells us how 
F commutes with the Bs, the diagram above (and more typically 
its abstract form, shown in the margin) is called a commutative 
diagram. 

Eigenvectors and Eigenvalues 

Because each part of the light cone is invariant, the vectors 

(and any scalar multiples of them) that lie on the light cone are 
special: Bv merely expands or contracts them without altering 

Commutative 
diagrams 

Vectors that Bv 
simply stretches 
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Simple description 
of Bv 

expand 

~
")'~YAU 

/;/.: .. /./ 
\'" ./. compress 

',' by AD 

Eigenvectors and 
eigenvalues 

their direction. That is, there are positive numbers Au and AD for 
which BvU = AuU and BvD = ADD. A square grid in G parallel to 
U and D (rather than to the coordinate axes) will be stretched by 
the factor Au in the direction of U and compressed by the factor 
AD in the direction of D. The sides of the grid will remain parallel 
to the U and D vectors. 

Linearity guarantees that Bv acts in a consistent way on the 
two grids. For example, consider the point P in G. On the upright 
gray grid, Pis 2 grid units west of the origin and 4 units south. Its 
image is in the same relative position in the gray image grid. On 
the diagonal black grid, it is 1 grid unit southeast of the origin and 
3 units southwest. Its image in these coordinates is in the same 
relative position in the black image grid. 

We can therefore use either grid to define Bv. However, Bv has 
a simple and elegant geometric description if we use the (U, D)­
grid: Stretch by the factor Au in the U direction and by AD in the 
D direction. Here "stretch by A" is meant to include the possibility 
of a contraction when IAI :::: I, a flip when A < 0, and a complete 
collapse when A = O. 

In fact, the directions of the vectors U and D and the corre­
sponding stretch factors Au and AD completely characterize Bv. 
For this reason U and D are called characteristic vectors, or eigen­
vectors, and Au and AD are called the corresponding character­
istic values, or eigenvalues. (The names come from German, 
where eigen means "of one's own!' In French, the same idea is 
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conveyed by the word pro pre, so characteristic values and vectors 
are also called proper values and vectors.) 

Definition 2.1 Let M be an n x n matrix; A column vector X is 
an eigenvector of M with corresponding eigenvalue A if X f= 0 and 
MX=AX. 

Note that any nonzero scalar multiple of an eigenvector is also 
an eigenvector with the same eigenvalue. The eigenvalues of M 
are the roots of the function peA) = det(M - AI)i peA) is a poly­
nomial of degree n, so M has exactly n eigenvalues (counting re­
peated roots as many times as they appear). Since the polynomial 
may have complex roots, M may have complex eigenvalues­
even when all of its coefficients are real. However, it can be 
shown that the eigenvalues of a symmetric matrix (one equal to 
its own transpose: Mt = M) are real, and the eigenvectors corre­
sponding to different eigenvalues are orthogonal to one another. 

Suppose {Xl, Xz, ... , Xn} is a basis for Rn consisting of eigen­
vectors of M, and suppose the corresponding eigenvalues A}, Az, 
. .. , An are all real. Then, in terms of this basis, the action of 
M: Rn ~ Rn becomes transparently simple: 

Y = alXl + ... + anXn ===} MY = AlalXl + ... + AnanXn. 

Thus, if we build a grid parallel to the eigenvectors, M will simply 
stretch the grid in different directions by the value of the corre­
sponding eigenvalue. Conversely, this action defines M because 
{Xl,XZ, ... ,Xn} is a basis, so the eigenvalues and the directions 
of the eigenvectors characterize M completely. 

Unfortunately, not every matrix has a basis of eigenvectors. 
Furthermore, some or all of the eigenvalues may be complexi 
in these cases the geometric description is more complicated, 
but eigenvectors and eigenvalues still provide the clearest path 
to a geometric understanding of the action of the matrix. The 
exercises explore some of these issues for 2 x 2 matrices. The fol­
lowing is a result we need immediately to compute Bvi it concerns 
a general 2 x 2 matrix, its determinant, and its trace: 

M=(~ ~), det(M) = ad - be, tr(M) = a + d. 

An n x n matrix has 
n eigenvalues 

USing eigenvectors 
to describe 

the action of M 
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Condition: the light 
cone is invariant 

Proposition 2.1 If Al and A2 are the eigenvalues of a 2 x 2 matrix 
M, then det(M) = AIA2 and tr(M) = Al + A2. 

The Computational Solution 

Theorem 2.1 Bv is the Lorentz matrix: Bv = ~ (1 VI)' 
1- v2 V 

PROOF: Let Bv = (: ~} we must find a, b, c, and d in terms of v. 

We start by noting that G's worldline in R - which is the image 
of the r-axis-must have slope v = /).zl/).t. But 

(: ~)(~)=(::)=G), 
so v = cia, or c = av. Thus a =1= 0, for otherwise G's velocity would 
be ±OO. 

The next step is to use the invariance of the light cone, that 
is, to use the fact that 

u=c) and 

are eigenvectors of Bv. The equation BvU = AuUbecomes 

The last equality requires that c + d = a + b = Au. Similarly, 

BvD = (a b) ( 1 ) = (a - b) = AD ( 1 ) c d -1 c - d -1 

requires that -(c - d) = a - b = AD. This gives us two equations 

a + b = c + d, a - b = -c +d 

that then imply d = a, c = b. Since we already know that c = av, 
at this stage we have 

B = (a b) = (a av) = a (1 v). 
v b a av a v 1 
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1b determine the remaining coefficient, a, we use the condi- Condition: Bv "flipped" 

tion B;;l = B-v = FBvF. First rewrite this as Bv = FB;;l F and then is B-v 

calculate the determinant: 

det(Bv) = det(FB; 1 F) = det(F) det(B; 1) det(F) 

= -1 . det(B;l) . -1 = det(B;l) = det(Bv)-l. 

Thus det2 (Bv) = I, implying det(Bv) = ±1. But det(Bv) = AUAD > 
0, so det(Bv) = +1, and hence 

det(Bv) = a2 - b2 = a2 - (av)2 = a2(1 - v2) = 1. 

We solve this for a (and choose the positive square root because 
2a = tr(Bv) = Au + AD > 0): 

1 
a= . 

JI-v2 
END OF PROOF 

For future reference we note this alternative expression for 
Bv: 

The matrix Bv is the Lorentz matrix for the transformation 
G --+ R. However, instead of creating it after the fact to fit the 
facts (as Lorentz had done), Einstein has deduced it from a sim­
ple hypothesis: The speed of light is constant for all Galilean 
observers. 

In the setting Einstein created, the Lorentz transformation 
must replace the classical Galilean transformation. The Galilean 
transformation has a clear and relatively simple geometric 
interpretation -as a shear. Is there something similar for the 
Lorentz transformation? 

In the next section we shall introduce the hyperbolic functions 
in order to recast the Lorentz matrix in a more geometric form. 
We will then be able to see a striking and valuable similarity with 
ordinary Euclidean geometry. 

Condition: 
eigenvalues are 

positive 
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Exercises 

1. Suppose that L : R2 -+ R2 is a linear map. Using the fact that L 
is additive (L(X + Y) = L(X) + L(Y) for all vectors X and Y) and 
homogeneous (L(rX) = rL(X) for all vectors X and real numbers 
r), show the following: 

• L maps straight lines to straight lines. 

• L maps parallel lines to parallel lines. 

• L maps equally spaced points on a line to equally spaced 
points on the image (but the spacing may be different). 

2. The purpose of this exercise is to prove that if M : R2 -+ R2 is 
continuous and invertible, maps straight lines to straight lines, 
and maps the origin to the origin, then M is linear-that is, it is 
additive (for all vectors X and Y, M(X + Y) = M(X) + M(Y») and 
homogeneous (for all vectors X and real numbers r, M(rX) = 
rM(X»). Homogeneity is the more complicated of the two to 
prove. 

(a) Show that M maps parallel lines to parallel lines. (Hint: If 
the lines ex. and fJ are parallel but M(ex.) and M(fJ) intersect, 
then M is not invertible at the intersection point.) 

(b) Use part (a) to show thatM is additive. (Consider the image 
of the parallelogram spanned by any pair of vectors X and 
Y; your proof should also make explicit use of the fact that 
M maps the origin to the origin.) 

(c) Let the vector X be given and suppose Yj -+ X as j -+ 
00. Then M(Yj) -+ M(X); why? Explain why this implies 
M(X + Yj) -+ M(2X) and, using the fact that M is additive, 
M(X + Yj) -+ 2M(X) as well. Conclude M(2X) = 2M(X). 

(d) Prove, by induction on the positive integer k, that M«k­
l)X + Yj) -+ M(kX) and M«k - l)X + Yj) -+ kM(X). Con­
clude M(kX) = kM(X) for any positive integer k. 

(e) Use the fact that M is additive to show M( -kX) = -M(kX) 
and hence that M( -kX) = -kM(X) for any negative integer 
-k. Thus M(pX) = pM(X) for any integer p. 
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(t) Now prove that M(qX) = qM(X) for any rational number 
q = p / n. Suggestion: let X = nZ and consider nM (pZ) = 
pM(nZ). 

(g) Now let r be any real number and qj a sequence of rational 
numbers converging to r. Use M(qjX) = qjM(X) to prove 
M(rX) = rM(X). This shows that M is homogeneous and 
hence linear. 

3. Ignoring the results of Theorem 2.1 and using only the condi­
tion B-v = FBvF, prove that a is an even function of v, while b 
is an odd function. In other words, if we write 

B = (a (v) b(V)) 
v b(v) a(v) 

to indicate that a and b are functions of v, then a( -v) = a(v) 
and b( -v) = -b(v). 

4. Eigenvalues and eigenvectors. Suppose 

X = (;) ;f O. 

Then X is an eigenvector of M with eigenvalue A if MX = AX. 
(We require X ;f 0 because X = 0 satisfies the equation for 
every A.) 

( a) Using the fact that the equation (M - AI)X = 0 has a 
nonzero solution, deduce that det(M - AI) = 0 and that 
A is a root of the equation 

A 2 - tr(M)A + det(M) = o. 

Conclude that M has two eigenvalues AI, A2; they may be 
equal or they may be complex. 

(b) Prove that det(M) = A1A2 and tr(M) = Al + A2. 

(c) Suppose Xl and X2 are eigenvectors corresponding to Al 
and A2, and Al ;f A2. Prove that Xl and X2 are linearly 
independent. 

(d) Suppose M is symmetric; that is, c = b. Prove that its 
eigenvalues must be real. Prove that the eigenvectors Xl, 
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X2 corresponding to Al and A2 are orthogonal (that is, 
Xl . X2 = 0) if Al -=1= A2. Prove that every nonzero vector 
is an eigenvector if Al = A2 = A, and show that this im­
pliesM = Al. 

5. Determine the eigenvalues and eigenvectors of the flip F : 
R 2 -+ R 2 defined in the text. 

6. Suppose M is a 2 x 2 symmetric matrix whose eigenvalues are 
equal. Prove that M must be a multiple of the identity matrix. 

7. Suppose M is a 2 x 2 invertible matrix. Show that the eigen­
values of M-1 are the inverses of the eigenvalues of M; in 
particular, the eigenvalues of M must be nonzero. How are the 
eigenvectors of M-1 and M related? 

8. (a) Determine the eigenvalues and eigenvectors of the follow­
ing matrices and verify that the eigenvectors are orthogo­
nal when the matrix is symmetric: 

(~ ~), (6 -2) 
-2 3 ' 

(b) Consider each matrix M in part (a) as a linear map M : 
R2 -+ R2. Sketch the image under M of a grid of unit 
squares. 

( c) For each matrix M in part ( a), construct a grid in R 2 based 
on the eigenvectors of M and sketch the image of that grid 
under M. Compare your results with the grids for the map 
Bv sketched in the text. 

9. Determine the eigenvalues and eigenvectors of the circular 
and hyperbolic rotation matrices 

( COS 0 - sin 0) 
Ro = sinO cosO ' 

H _ (COSh U sinh u) 
U - sinhu coshu . 

(These linear maps are discussed in the following sections of 
this chapter.) 
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2.2 Hyperbolic Functions 

Definitions 

eU - e-U 

sinhu= ---
2 

eU + e-u 
coshu= ---

2 

h sinhu 
tan u= --h-' 

cos u 
coshu 

coth u = - '-h-' sm u 

1 
sech u = --h-' 

cos u 
1 

csch u = --=--h . 
sm u 

The functions sinh and tanh are often pronounced "cinch" and 
"tanch"; cosh and sech are pronounced as they are spelled; and 
coth and csch are usually just called the hyperbolic cotangent 
and the hyperbolic cosecant. 

The two functions on the left satisfy the fundamental identity 

cosh2 u - sinh2 u = 1 for all u. 

It follows that the point (x, y) = (cosh u, sinh u) lies on the unit 
hyperbola x2 - y2 = 1 (on the branch where x > 0). This is 
analogous to the way the point (x, y) = (cos u, sin u) is found on 
the unit circle x2 + y2 = 1 because of the familiar trigonometric 
identity 

cos2 U + sin2 u = 1 

x 

for all u. 

area A = ul2 
in both figures 

y 

But the point (cos u, sin u) doesn't merely lie on the circle; 
it is exactly u radians around the circle from the point (1,0). 
This means that we can use the circle x2 + y2 = 1 to define 
cos u and sin u-and thus call them circular functions. Can we do 
the same for cosh u and sinh u? Unfortunately, the distance from 

Pronunciation 

Why hyperbolic? 
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Why hyperbolic 
functions? 

Hyperbolic identities 

(cosh u, sinh u) to (1,0) along the hyperbola is not equal to u-at 
least not if we use the Euclidean arc length along the hyperbola. 

However, if we switch to areas, then the analogy works per­
fectly. The circular arc from (1, 0) to (cos u, sin u) cuts off a sector 
A whose area is exactly u/2 square units. (If u is negative, the 
sector runs clockwise from (1,0).) As it happens, the hyperbolic 
arc from (1,0) to (cosh u, sinh u) also cuts off a sector A of area 
u/2 square units. See the exercises. In this way we can use the 
hyperbola x2 - y2 = 1 to give a new definition of cosh u and 
sinh u-explaining why they are called hyperbolic functions. 

As the original definitions suggest, there are indeed extensive 
parallels between the hyperbolic and the circular functions. The 
following table is a list of identities you should verify, noting 
whether and how each identity differs from its circular analogue. 

Addition Formulas 

sinh(u ± v) = sinh u cosh v ± cosh u sinh v, 

cosh(u ± v) = cosh u cosh v ± sinh u sinh v, 

h tanh u ± tanh v 
tan (u ± v) = , 

1 ± tanh u tanh v 

h 1 ± coth u coth v 
cot (u ± v) = h h' cot u ± cot v 

Double and Half Angles 

sinh(2u) = 2 sinh u cosh u, cosh(2u) = cosh2 u + sinh2 u, 

. h (!:!.) - J cosh u - 1 SIn - , 
2 2 

h ( !:!.) _ JCOShU + 1 cos - . 
2 2 

Algebraic Relations 

cosh2 U - sinh2 u = 1, 

Calculus 

1 - tanh2 u = sech2 u, coth2 U - 1 = csch2 U. 

d . 
du smh u = cosh u, 

d 
du tanh u = sech2 u, 

d 
du sech u = - sech u tanh u, 

:u cosh u = sinh u, 
d 

du coth u = - csch2 U, 
d 

du csch u = - csch u coth u, 
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f 2 sinh2u u 
sinh (u) du = - -, 

4 2 
f 2 sinh2u u 

cosh (u) du = + -. 
4 2 

The graphs of w = cosh u and w = sinh u are shown with the 
exponential functions w = ~eu, w = ~e-u, and w = -~e-u. Note 
that cosh u is the sum of the first and the second of these, while 
sinh u is the sum of the first and the third. 

w=cosh u w 

u 

Notice that w = sinh u is one-to-one and maps the u-axis onto 
the w-axis. This means that given any real number wo, there is 
a unique Uo for which Wo = sinh Uo. We say that the hyperbolic 
sine is invertible and we write the inverse as sinh -I, so Uo = 
sinh-I (wo). 

Proposition 2.2 If (x, y) is any point on the hyperbola x2 - y2 = 1 
and x > 0, then there is a unique u for which 

x = coshu, y = sinhu. 

PROOF: Thke u = sinh-I(y). The result also follows from the ge­
ometric connection between cosh u and sinh u: Draw the hyper­
bolic sector A defined by the three points (0,0), (1,0), and (x, y); 
then u = 2· areaA. END OF PROOF 

This proposition gives us a useful parametrization of that 
branch of the hyperbola x2 - y2 = 1 where x > O. In fact, this is 
just what we need for the Lorentz matrix. 

The hyperbolic sine is 
invertible 

Parametrizing a 
branch of a hyperbola 
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Boosts and 
hyperbolic rotations 

Corollary 2.1 We can write the Lorentz matrix Bv in the alternative 
form 

H = (COSh U sinh u) 
u sinh U cosh U ' 

where u = tanh -1 V, or V = tanh u. 

PROOF: While computing the formula for Bv we derived the alter­
native form 

The proposition provides a unique u for which a = cosh u, b = 
sinh u. Futhermore, V = b j a = sinh uj cosh u = tanh u. 

END OF PROOF 

We now have two ways to describe the Lorentz transformation­
physically and geometrically. When we use matrix BVI we call 
the transformation a boost (or a boost by velocity v). This is 
a physical description; it is expressed in terms of the physical 
velocity parameter v. By contrast, the matrix Hu gives us a geo­
metric description; in the next section we shall see that u can be 
thought of as a "hyperbolic angle" and Hu as a hyperbolic rota­
tion. There are direct analogues with ordinary Euclidean angles 
and rotations. The two forms of the Lorentz transformation are 
related as follows: 

Hu = Btanhu and 

Exercises 

1. Deduce from the definitions of sinh u and cosh u that cosh2 u -
sinh2 u = 1 for all u. Do the same with the other two algebraic 
identities. 

2. Verify all the addition formulas for the hyperbolic functions 
and note whether and how they differ from the corresponding 
addition formulas for the circular functions. Do the same for 
the double and half angle formulas and the calculus identities. 
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3. Prove that cosh u ± sinh u = e±u. 

4. Show that HUl • HUl = HUl +U2 = HU2 • H Ul , where 

H = (C?Sh u sinh u) . 
U smhu coshu 

S. (a) Suppose v = tanh u; show that 

. v 
smh u = .J1=V2' 

1 -v2 

1 
coshu= ~. 

vl-v2 

(b) Conclude that Hu = ~ (1 vI) = Bv. 
1- v2 V 

(c) Using this expression for B v , calculate BVl • BV2 and show 
that there is some V3 for which BV3 = BVl • BV2 = BV2 • B Vl ' 

Express V3 in terms of VI and V2; prove that IV31 < 1 when 
IVII < 1 and IV21 < 1. 

6. (a) Sketch on the same axes the graphs of w = tanh u, w = 
coth u, w = sech u, and w = csch u. 

(b) Your sketches should show that 0 < sechu :::: 1 and -1 < 
tanh u < 1. Prove these statements analytically. 

7. (a) Using the parametrization x = cosh u, Y = sinh u of x2 -

y2 = I, x > 0, as a model, construct parametrizations of 
these curves: 

x2 - i = 1, x < 0; i - ~ = 1, Y > 0; y2 - ~ = 1, Y < O. 

(b) Sketch each curve and mark on it the location of the points 
where u = -1,0,1. Put an arrow on each curve that shows 
the direction in which u increases. 

8. Make a careful sketch ofthe parametrized curve Pu = (cosh u, 
sinh u) with -1 :::: u :::: 2. On your sketch draw the three 
line segments that connect the pairs of points {P-I, P2}, 
{P -1/2, P3/2}, {Po, PIl. These lines should be parallel and paral­
lel to the tangent to the curve at u = !; are they? 

9. Give a simple argument that explains why the circular sector 
A at the beginning of the section has area uj2, given that the 
circle has radius 1 and the defining arc has length u. 
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y 
f-----iJ (cosh u, sinh u) 

x 

10. Prove that areaA = u/2 in the hyperbolic sector above. Here 
is one approach you can take. 

(a) Explain why the right branch of the hyperbola is the graph 
x = }1 + y2. Then show that 

l sinhu ~ u sinhucoshu 
area(A + B) = V 1 + y2 dy = - + . 

o 2 2 

(One way to evaluate the integral is via the substitution 
y = sinh 5.) 

(b) Find areaB and subtract it from area(A + B). 

11. Find the area of the circular sector by an integral argument 
similar to the one you used for the hyperbolic sector in the 
previous exercise. Note the similarities. 

12. (a) Obtain the Thylor series for eU , cosh u, and sinh u. 

(b) Obtain the third-order Thylor polynomial for tanh u. 

13. Calculate the derivatives ofthe three inverse functions sinh-1 u = 
arcsinh u, cosh-1 u = arccosh u, and tanh-1 u = arctanh u. 

14. (a) Show that arcsin(tanh u) = arctan(sinh u). 

(b) Show that tanh-1 w = arctanh w = ~ In (1 + W). 
2 l-w 

15. Pronunciation lesson (from Bill Watson); identify the cuisine: 

e2r + 1 2e 
(a) 2er (b) e2 + 1 
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2.3 Minkowski Geometry 

Rotations and the Euclidean Norm 

In analytic plane geometry, the basic tasks are measuring lengths 
and angles; everything else depends on them. The tool for these 
tasks is an inner product in R 2. The standard Euclidean inner 
product is 

Xl . X2 = xixz = (Xl. YI) (;~) = XIXZ + YIYZ· 

Here we write an element X ofRz in the usual way as a column 
vector; the transpose Xt is the corresponding row vector. By using 
the transpose of the vector on the left, we make the inner product 
into an ordinary matrix multiplication. This will be useful later 
on. From the inner product we get the length, or Euclidean norm, 
of a vector, 

IIXII =,JX ·X = JxZ + yZ. 

We can now make the basic measurements. For two points, or 
vectors, Xl and Xz in R z, they are 

distance from Xl to Xz = IIXz - XIII = J(xz - XI)Z + (Yz - YI)Z, 

angle between Xl and Xz = ex = arccos ( Xl' Xz ). 
IIXIlIlIXzlI 

It is a fundamental geometric principle that lengths and an­
gles do not change when the plane undergoes a rotation. Coun­
terclockwise rotation by 0 radians is given by the matrix 

Re = (C?S 0 - sin 0) . 
smO cosO 

(See the exercises.) We prove that rotations, as defined here, do 
indeed preserve lengths and angles by proving that they preserve 
the norm and inner product. In fact, it is sufficient to prove just 
the second, because the norm is defined in terms of the inner 
product. However, before giving that proofwe look first at a direct 
computational proof for the norm. 

The norm and 
inner product 

Rotations preserve 
lengths and angles 
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Absolute quantities 
have geometric 
meaning 

Proposition 2.3 IIRoXIl = IIXII for every X in R2. 

PROOF: Let (~) = (~~:: -~~~:) (;). We must show that p2+ 

q2 = x2 + y2: 

p2 + q2 = (xcosO - y sinO)2 + (x sin 0 + y cosO)2 

= ~ cos2 0 - 2xy cosO sinO + y2 sin20 

+ ~ sin2 0 + 2xy sinO cosO + y2 cos2 0 

= ~(COS2 0 + sin2 0) + l(sin2 0 + cos2 0) 

= ~ + l. END OF PROOF 

Corollary 2.2 The rotation Ro maps each circle x2 + y2 = .,z to itself 

Proposition 2.4 RoXI . ROX2 = Xl . X2. 

PROOF: Write the inner product as a matrix multiplication: 

RoXI . ROX2 = (RoXI) tROX2 = xiR~Rox2 

= xi R-oRoX2 = xi 1X2 = Xl . X2 

See the exercises to verify that R~ = R; I = R-o. END OF PROOF 

Corollary 2.3 The distance from ROXI to RoX2 is the same as the 
distance from Xl to X2. The angle between RoXI and RoX2 is the same 
as the angle between Xl and X2. 

PROOF: The distance from ROXI to ROX2 is 

II RoX2 - ROXIII = II Ro(X2 - XI)II = IIX2 - XIII, 

the distance from Xl to X2. The angle between RoXI and ROX2 is 

arccos ( 11::~11l'1~~211) = arccos ( 11~111'1~211) , 
the angle between Xl and X2. END OF PROOF 

Thus, even though the coordinates of a point change under 
rotations, its norm does not. In other words, coordinates are rel­
ative to a coordinate frame, but the norm is absolute: It has the 
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same value in all frames (obtained from one another by rotation). 
Because the norm is absolute, it has a true geometric meaning. 
Likewise, the inner product of two vectors is absolute, not relative, 
so it also has a true geometric meaning. 

One practical consequence of an absolute norm is that we can 
now calibrate coordinate frames-that is, we can transfer units 
of measurement from one frame to another. In the figure below, 
points on the different axes that intersect the same circle must 
be the same number of units from the origin. Furthermore, a 90° 
rotation even allows us to calibrate the x- and y-axes of the same 
frame. 

y 

..... 3 ....... ~alibration circles 
........... .. ............... \ 

\, \\ 
J ! x 

Proposition 2.5 The product of two rotations is another rotation; 
specifically, R(} . Rq; = RHq;. In other words, to multiply two rotations, 
add their angles. Furthermore, Ro = I, the identity matrix, and R; 1 = 
R_(}. 

PROOF: Exercises. 

This proposition says that the set 0+(2, R) of rotations is a 
group. This group is commutative, essentially because addition 
of angles is commutative: 

The Minkowski Norm 

The Lorentz transformation Hu is designed to preserve the light 
cone, which is the set t2 - z2 = O. In fact, Hu does much more; 

Calibration 

Hu preserves every 
i2-z2=k 
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t2 - z2 corresponds 
to x2 + y2 

The light cone 
separates spacetime 

according to the following theorem, it preserves each of the hy­
perbolas t2 - z2 = k, for all k. (The common asymptote of these 
hyperbolas is the light cone.) 

z 

Theorem 2.2 Ifr2 - ~2 = k and 

G) = Hu (;) = (~~:~~ ~~~~~) (;), 

then t2 - z2 = k. The parameter u can have any real value. 

PROOF: We calculate 

t2 - z2 = (r cosh u + S sinh u)2 - (r sinh u + S cosh u)2 

= r2 cosh2 u + 2r S cosh u sinh u + S2 sinh2 u 

- r2 sinh2 u - 2r s sinh u cosh u - ~2 cosh2 U 

= r2(cosh2 u - sinh2 u) - ~2(cosh2 U - sinh2 u) 

END OF PROOF 

This proof is a direct translation of the proof that a rotation 
preserves the norm: IIR9XII = IIXII (Proposition 2.3). All that is 
involved is converting the circular identities to their hyperbolic 
counterparts. Since t2 - z2 corresponds to the norm IIX 112 = x2 + y2 

that we use for measuring distance in the Euclidean plane, the 
correspondence suggests that we should treat t2 - z2 as a norm 
for measuring Iidistance" in spacetime. This is the approach that 
Hermann Minkowski took in 1907. 

The approach is complicated by the fact that t2 - z2 can be 
negative as well as positive or zero. Th see what this implies, let 
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us work with events E = (t, x, y, z) in the full (1 + 3)-dimensional 
spacetime. We define 

Q(E) = t 2 - x 2 - i - z2, 

or Q(E) = t2 - z2 if E = (t, z) . The set Q(E) = 0 is a cone that 
separates spacetime into two regions: Q is positive in one and 
negative in the other. 

Q(E) > 0 
timelike 

lightlike spacelike 

timelike 

lightlike/ pacelike 

We see that Q(E) > 0 for all points inside the cone (shown 
shaded in the figure above). Since the image of any observer's 
time axis under a Lorentz map Hu will lie in the interior of the 
cone, we say that events E in the interior are timelike. The 
exterior of the cone (where Q(E) < 0) will contain the images of 
other observers' space axes, so we say that events E in this region 
are spacelike. Finally, we say that events on the light cone itself 
are lightlike. 

Definition 2.2 The Minkowski nonn of an event E = (t, x, y, z) in 
spacetime is 

{
,.jQ(E) if E is timelike: Q(E) > 0; 

IIEII = ,J -Q(E) if E is spacelike: Q(E) < 0; 

o if E is lightlike: Q(E) = O. 

ti mel ike 

" lightlike 

Timelike, spacelike, 
and lightlike events 

Since we are using geometric units, in which length has the The Minkowski norm 

dimensions of time, the Minkowski norm also has the dimensions is a time 

oftime. Thus, for example, if E = (5 sec, 3 sec), then IIEII = 4 sec. 
This is not an error: Minkowski geometry has a 3-5-4 triangle 
where Euclidean geometry has a 3-4-5 triangle. 
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A nonintuitive length 
and "unit circle" 

Calibration 

sec Z 
4 

E 

When we use this norm to measure lengths in spacetime, we 
get results that are, at first, surprising and nonintuitive. For a 
start, the "unit circle" in this geometry is the pair of hyperbolas 
t 2 _z2 = ±l. Thus, all the vectors below are unitvectors-timelike 
on the left, spacelike on the right. Of course, if we were to mea­
sure them instead with the Euclidean norm (which our eyes do 
instinctively), then they get longer the nearer they are to the 
asymptotes z = ±t. 

We can use the Minkowski norm to calibrate spacetime coordi­
nate frames the same way we used the ordinary norm to calibrate 
Euclidean frames. Thus, in the figure below, the spacing of units 
along the r- and s-axes must be exactly as they appear, even 
though it looks too large to our Euclidean eyes. 
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Since the physical distinction between past and future is im­
portant, we now refine our partition of spacetime to take this into 
account. 

Definition 2.3 Spacetime consists of the following six mutually ex­
clusive sets of events, or vectors, E = (t, x, y, z) (or just E = (t, z)): 

T+ : the future timelike set Q(E) > 0, t > 0; 

T_ : the past time like set Q(E) > 0, t < 0; 

S : the spacelike set Q(E) < 0; 

£+ : the future lightlike set Q(E) = 0, t > 0; 

£_ : the past lightlike set Q(E) = 0, t < 0; 

o : the origin. 

Theorem 2.3 Each Hu maps each of the six regions of spacetime to 
itself 

PROOF: Since Theorem 2.2 says that Q(Hu(E)) = Q(E) , the only 
thing left to prove is that the future and past sets are individually 
preserved. So suppose E is in T+: 

(t') t' > 0', H (E) = (C?Sh U sinh u) (t') = (t) . 
E = ~ , u smh U cosh U ~ z 

We must show that t > O. Since E is in T+, t' > 0 and -t' < ~ < t'. 

Therefore, 

t = t' cosh U + ~ sinh U > t' cosh u - t' sinh u = re-u > O. 

The other three results are obtained in a similar way. END OF PROOF 

Past and future in 
spacetime 
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The interval between Definition 2.4 The separation between two the events E1 and Ez 
events in spacetime is the vector Ez - E1, and the interval between them 

is IIEz - E111. We say that the interval is timelike, spacelike, or light­
like if the corresponding separation is timelike, spacelike, or lightlike, 
respectively. 

The norm and the 
interval have physical 
meaning 

A timelike interval 
measures ordinary 
time 

The interval, like the norm, is measured in seconds. Note that 
the interval between two events does not have to be of the same 
type as the events themselves. For example, in the figure on the 
left below, the interval between 51 and 5z is timelike, and the 
interval between T1 and Tz is spacelike. 

R ---~------ t 

Theorem 2.2 implies that IIHuEIl = IIEII for every event E and 
every real number u. Hence the Minkowski norm of an event, 
and the interval between two events, are absolute quantities: All 
uniformly moving observers assign them the same values. Thus, 
by Galileo's principle ofrelativity, they are objectively real-they 
have a physical meaning that all observers will agree on. 

1b see what this means concretely, consider the following. In 
the figure on the right above, the interval between 51 and 5z is 
timelike, so the separation 5z - 51 has slope v with Ivl < 1. Since 
Ivl < I, we can introduce an observer G who travels with velocity 
v relative to R. Then 51 and 5z will lie on a line ~ = ~o parallel 
to G's time axis. From G's point of view, 51 and 5z happen at the 
same place but at different times 'l'1 and 'l'z. According to G, what 
separates 51 and 5z is a pure time interval of duration 'l'z - 'l'1; the 
separation vector has the simple form 5z - 51 = ('l'z - 'l'1. 0). 

Of course, R considers that 51 and 5z happen at different places 
Zl and Zz as well as different times t1 and tz; 5z - 51 = (tz - t1. 

Zz - Zl). Nevertheless, by Theorem 2.2 the norms 115z - 5111R and 
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1152 - 5111G must be equal. Thus 

J(t2 - td2 - (Z2 - ZI)2 = 1152 - 5111R = 1152 - 5I11G = r2 - rl. 

In other words, when 52 - 51 is timelike, every observer's calcu­
lation of the interval 1152 - 5111 yields the ordinary time interval 
between 51 and 52 as calculated by an observer "traveling with" 
those events. In this sense the interval between 51 and 52 is ob­
jective. 

In a similar way, if the interval between two events is space­
like, there will be an observer who says that they happen at the 
same time but at different places. For that observer, the separa­
tion is purely spatial. Consequently, the interval between those 
events, as calculated by any observer whomsoever, will give that 
spatial separation-the ordinary distance-as measured by an ob­
server for whom the events happen simultaneously. 

Hyperbolic Angles and Rotations 

In the analogy we are developing between Re and Hu , u corre­
sponds to the Euclidean angle e, so we have to be able to interpret 
u somehow as a "hyperbolic angle" and Hu as a rotation through 
that angle. The connection between the hyperbolic functions and 
the unit hyperbola will give us just what we need. But before we 
pursue this, we have to reckon with the fact that Hu acts sep­
arately on each of the six distinct regions of spacetime. Since 
worldlines of different observers correspond to future timelike 
vectors, we focus on the future timelike set T+, which we will 
henceforth describe more briefly as the future set F. 

Theorem 2.4 For every real number u, Hu maps:F one-to-one onto 
itself 

PROOF: We already know that Hu maps :F into itself. But so does 
its inverse H;;l = H-u. It follows that Hu is one-to-one and onto. 
END OF PROOF 

Proposition 2.6 The set :F is closed under additon and multiplica­
tion by positive scalars. 

A spacelike interval 
measures ordinary 

distance 

Focus on 
the future set F 
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Future rays 

PROOF: The second statement is clear. 1b prove the first, suppose 

and 

are future vectors. Then 

-tl < Zl < tl, 

-t2 < Z2 < t2. 

Therefore, 0 < tl + t2 and -(tl + t2) < Zl + Z2 < tl + t2, so the sum 
EI + E2 is also a future vector. END OF PROOF 

The map No changes the angle of any ray through the origin in 
the Euclidean plane by () radians. We will therefore be interested 
in what Hu does to a future ray, which we define to be a ray 
through the spacetime origin that lies in the future set F. 

Definition 2.5 7Wo future rays PI and P2 determine the hyperbolic 
angle LPIP2 from PI to P2· If PI and P2 intersect the unit hyperbola 
t2 - z2 = 1 at the points (cosh a}, sinhal) and (cosha2, sinh(2), 
respectively, then LPIP2 measures a2 - al hyperbolic radians. 

Proposition 2.2 guarantees that al and a2 are uniquely de­
fined. Notice that the hyperbolic angle has a sign, and LP2PI = 
-LpIP2. When confusion is unlikely, we drop the adjective hy­
perbolic. 

Theorem 2.5 Let P be a future ray; then the hyperbolic angle from 
P to Hu(p) measures u hyperbolic radians. 
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PROOF: Suppose P intersects the unit hyperbola in the point 
(cosh a, sinha). Then the ray Hu(p) contains the point 

H (C?Sha) = (C?Sh U sinh u) (C?Sha) = (C?Sh(U + a») 
u smha smh U cosh U smha smh(u + a) 

that lies on the unit hyperbola. (JVe used the addition formulas 
for the hyperbolic sine and cosine). By definition, the hyperbolic 
angle from P to Hu(p) is U + a - a = U. END OF PROOF 

Corollary 2.4 If the hyperbolic angle from PI to pz is f3, then pz = 
Hf3(pd. 

PROOF: This is the converse of the theorem; it is true because 
there is a unique ray that lies f3 hyperbolic radians from Pl. 

END OF PROOF 

Corollary 2.5 Hu presen;es the hyperbolic angle between future 
rays. 

PROOF: Suppose the hyperbolic angle from PI to pz is f3 . Then, by 
the previous corollary, pz = Hf3(PI). But then 

Hu(Pz) = Hu(Hf3(PI» = Hu+f3(pd = Hf3(Hu(PI». 

By Theorem 2.5, the hyperbolic angle from Hu(PI) to Hu(Pz) is f3. 
END OF PROOF 

Corollary 2.6 If LPIPZ = f3, then the signed area of the sector on 
the unit hyperbola cut off from PI to pz is f3 /2 . 

PROOF: Let P3 be the positive t-axis; choose u such that Hu(PI) = 
P3 . Then LHu(PI)Hu(Pz) is also f3 , by the previous corollary. 
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Hu isa 
hyperbolic rotation 

Hyperbolic rotations 
form a group 

The matrices Jp,q 

Therefore, Hu (pz) intersects the unit hyperbola in the point 
(coshP, sinhp). By Exercise 10 of Section 2.2, the signed area 
of the new sector is P12. But det(Hu) = I, so Hu is an area- and 
orientation-preserving map. Thus the two sectors have the same 
signed area, namely P12. END OF PROOF 

With these results we have the complete analogy between 
Ro and Hu; they explain the statement "Hu rotates points in the 
future set :F by the hyperbolic angle u!' The last corollary even 
gives us an alternative definition of the measure of the hyperbolic 
angle as twice the ordinary signed area of the sector on the unit 
hyperbola cut offby the two rays. 

1b prove the corollaries, we used the following theorem; it 
states that hyperbolic rotations form a commutative group with 
the same properties as the group of circular rotations. 

Theorem 2.6 The product of two hyperbolic rotations is another 
hyperbolic rotation; specifically, Hu . Hw = Hu+w. In other words, to 
multiply two rotations, add their angles. Furthermore, Ho = I, the 
identity map, H;;l = H-u, and HuHw = HwHu. 

The Minkowski Inner Product 

The standard Euclidean inner product of two vectors Xl and Xz is 

Xl . Xz = xiIxz = (Xl, Yl) (~ ~) (;~) = XlXZ + YlYZ· 

Since X . X = x2 + yZ = IIXll z, the analogy between the Euclidean 
and the Minkowski norms suggests that we should define the 
Minkowski inner product of two events El and Ez to be 

El . Ez = EihlEZ = (t}, Zl) (~ _~) G~) = tltZ - ZlZZ· 

By writing the inner products this way, we see that they obey 
all the usual rules of matrix multiplication. We also see that the 
difference between the Euclidean and Minkowski inner products 
lies only in the defining matrix-the identity matrix I in one case 
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and the matrix h,l in the other. 1b define the Minkowski inner 
product in the full (1 + 3)-dimensional spacetime, just use the 
matrix 

h,3 = (~ - ~ J ~) . 
o 0 0-1 

Then E· E = Eth,3 E = t2 - x!- - y2 - z2 = Q(E) , so 

{
-IIEII2 if E is spacelike, 

E·E= 
IIEI12 otherwise. 

Theorem 2.7 Hyperbolic rotations preserve the Minkowski inner 
product. 

PROOF: Hu(El) . Hu(E2) = (HuEl)th,lHuE2 = EiH~Jl,lHuE2 
_ Et (COSh U sinh u) (1 0) (COSh U sinh u) E 
- 1 sinh U cosh U 0 -1 sinh U cosh U 2 

= Et (COSh U - sinh u) (COSh U sinh u) E 
1 sinh U - cosh U sinh U cosh U 2 

= Ei (~ _~) E2 

END OF PROOF 

If El and E2 are future vectors that lie on the future rays PI 
and P2, respectively, we define LElE2 = LplP2. The next result is 
analogous to Xl . X2 = IIXlIIIIX211 cos 9 for two vectors Xl and X2 in 
the Euclidean plane that subtend the angle 9. 

Theorem 2.8 If El and E2 are arbitrary future vectors and LElE2 = 

fJ, then El·E2 = IIEIIIIIE211coshfJ· 

PROOF: We prove the result first for the unit vectors in the direc­
tions of El and E2; these are Ui = E;/IIEill, i = 1,2. The vector Ui 
lies on the same ray as Ei, so LUI U2 = LElE2 = fJ. Because Ul is 
a unit vector, we can choose Hu such that 

Hu(Ul) = (~) . 

The angle between 
future vectors 
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E Ez 

~ 

Then 

H (U ) = (C~Shf3) 
u 2 smhf3 

by the proof of Corollary 2.6. Consequently, 

H u (U1)· H u (U2) = (~) . G~~~;) = coshf3. 

Since Hu preserves the Minkowski inner product, U1 . U2 = cosh f3. 
Finally, 

E1 . E2 = (IIE111 U1) . (11E211 U2) = IIE1 II IIE211 (U1 . U2) 

= IIE11111E211 coshf3. END OF PROOF 

The first of the two following corollaries of Theorem 2.8 is 
a direct analogue of the Euclidean law of cosines-but notice 
the difference in sign. The second is particularly intriguing, as 
it goes completely in the opposite direction from its Euclidean 
analogue; it can be paraphrased as saying Ita straight line is the 
longest distance between two points;' 

Corollary 2.7 The law of hyperbolic cosines. If E1 and E2 are 
future vectors and 1.E1E2 = f3, then 

IIE1 +E2112 = IIE1II2 + IIE2112 + 211E11111E1II coshf3. 

PROOF: We know that E1 + E2 is a future vector. Therefore, since 
LE1E2 = f3, we have 

IIE1 + E2112 = (E1 + E2) . (E1 + E2) = (E1 . E1) + 2(E1 . E2) + (E2 . E2) 

= IIE1II2 + 211E11111E211 coshf3 + IIE2112. END OF PROOF 

Corollary 2.8 The reverse triangle inequality. If E1 and E2 are 
future vectors, then IIE1 + E211 ~ IIE111 + IIE211· 

PROOF: Suppose LE1E2 = f3; since coshf3 ~ I, we have 

IIE1 +E211 = JIIEl 11 2 + 211E1IIIIE211 coshf3 + IIE2112 

~ JIIEl112 + 211E1 II IIE211 + IIE2112 
= IIE111 + IIE211. END OF PROOF 
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The Pythagorean Theorem 

There is no reasonable way to talk about the hyperbolic angle 
between a timelike and a spacelike vector; for example, no hy­
perbolic rotation can map one to the other. However, by analogy 
with Euclidean geometry we can say that two vectors E1 and E2 are 
perpendicular, or orthogonal, and write E1 1. E2, if E1 . E2 = O. 
Apart from lightlike vectors, which are orthogonal to themselves, 
orthogonal vectors must be of different types-one timelike and 
one spacelike. Since we use the same units on the space and 
time axes (so the light cone has slope ±1), orthogonal vectors in 
Minkowski geometry make equal Euclidean angles with the light 
cone. In Euclidean geometry, the slopes of perpendicular lines 
are m and -11m; in Minkowski geometry, they are m and +l/m. 

z 

t 

Suppose the timelike vector Eti and the spacelike vector Esp 

are orthogonal: Eti 1. Esp. Then these vectors form the sides of 
two different right triangles; the hypotenuse of one is Bti + Esp 

and of the other is Eti - Esp. The hypotenuses can be of any 
type-timelike, spacelike, or lightlike-but the two possibilities 
are always of the same type. 

Proposition 2.7 If Eti 1. Esp where Eti is timelike and Esp is space­
like, then the vectors Eti ± Esp are always of the same type. 

PROOF: Since Eti is timelike, we can choose a hyperbolic rotation 
Hu that puts Hu(Eti) on R's time axis, so Hu(Eti) = (a, O)t for some 

Orthogonal vectors 

Right triangles 
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Rigid motions 

Reflections 

a f= o. Since Hu preserves the Minkowski inner product, Hu(Eti) . 
Hu(Esp) = 0, so Hu(Esp) = (0, b)t for some b. Therefore, 

Hu(Eti ± Esp) = Hu(Eti) ± Hu(Esp) = (:b) 
and 

Q(Eti ± Esp) = Q(Hu(Eti ± Esp» = a2 - b2, 

so Eti ± Esp are of the same type. END OF PROOF 

Theorem 2.9 (The Pythagorean theorem) Suppose Eti .1 Esp 
where Bti is time like and Esp is spacelike. Then 

±IIEti ± Esp 112 = IIEtil12 - II Esp 112 , 

where we take the leading sign to be a minus if the vectors Bti ± Esp 
are spacelike and a plus otherwise. 

PROOF: Recall that E· E = ±IIEII2 and we use the minus sign if and 
only if E is spacelike. Therefore, 

±IIBti ± Esp 112 = (Eti ± Esp) . (Eti ± Esp) 

= (Eti . Eti) ± 2(Eti . Esp) + (Esp· Esp) 

= IIEtill2 - IIEsp1l2. END OF PROOF 

Congruence 

In Euclidean geometry, rotation is a rigid motion: When we rotate 
the plane about the origin, the rotated image of a figure is congru­
ent to the original. We declare the same to be true in Minkowski 
geometry: The image of a figure in the future set F under a 
hyperbolic rotation is congruent to the original. While it is not 
immediately obvious to our Euclidean eyes, all the rectangles on 
the right in the figure below are congruent to one another. They 
are, in Minkowski geometry, the "same" rectangle. 

There are two other kinds of rigid motion: reflection and trans­
lation. Every reflection in the Euclidean plane can be shown to 
be equal to the product of an ordinary rotation and the particular 
reflection across the x-axis. 
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Minkowski 

o o 

'0 ". 

Proposition 2.8 If Fe : R Z --+ R Z is reflection across the line that 
makes an angle of 0 with the x-axis, then Fe = RzeFo. 

Proposition 2.9 Each Fe preserves the Euclidean inner product: 
F~IFe = 1. Conversely, if a matrix M preserves the Euclidean inner 
product, it is either a rotation or a reflection. 

Proofs are in the exercises. How might we define a reflection 
in Minkowski geometry? The Euclidean reflection Fe fixes points 
on the line that makes an angle of 0 with the x-axis and flips the 
orthogonal1ine on itself. Since we have a notion of orthogonality 
in the Minkowski plane, we can use the same idea to define a 
hyperbolic reflection. 

Definition 2.6 Let Au be the line through the origin that makes 
an angle of u hyperbolic radians with the t-axis, and let At be the 
orthogonal line. The hyperbolic reflection across Au is the linear 
map Ku that fixes points on the line Au and flips the line At on itself 

We can translate the definition into the language of eigenval­
ues and eigenvectors: Ku is the linear map whose (unit) eigen­
vectors are 

and ( sinhU) , 
coshu 

and its corresponding eigenvalues are +1 and -1. Thus det Ku = 
+ 1 . -1 = -1. The analogy with Euclidean reflections suggests 
the following theorem. 
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Theorem 2.10 Ku = HzuKo. 

PROOF: Consider the matrix 

M = H ~ = (COSh 2u sinh 2U) (1 0) = (COSh 2u - sinh 2U) . 
Zu 0 sinh 2u cosh 2u 0 -1 sinh 2u - cosh 2u 

We show that M = Ku by showing that M has the same eigenvec­
tors and eigenvalues as Ku. The addition formulas for the hyper­
bolic sine and cosine give 

M (COSh u) = (COSh 2u cosh U - sinh 2u sinh u) = (COSh(2U - U») 
sinh U sinh 2u cosh U - cosh 2u sinh U sinh(2u - u) , 

so 

In a similar way, 

M (sinh u) _ (COSh 2u sinh U - sinh 2u cosh u) _ (- sinh u) 
cosh u - sinh 2u sinh u - cosh 2u cosh u - - cosh u ' 

so 

M (Sinhu) = -1 . (Sinhu). 
coshu coshu 

END OF PROOF 

Corollary 2.9 Each Ku preserves the Minkowski inner product: 
K!Jl,lKu = hI. Conversely, if M preserves the Minkowski inner 
product and maps F to itself, it is either a hyperbolic rotation or a 
hyperbolic reflection. 

PROOF: The first statement follows from the fact that Ku can be 
written as a product of matrices that individually preserve the 
Minkowski norm. 1b prove the second, let 

Since M maps F to itself, the vector 

(~ ~) (~) = (~) 
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must lie in F; in particular, a > O. The condition MtJl,lM = hI 
translates to 

( a c) (1 0) (a b) (a2 - c2 ab - Cd) (1 0) 
b d 0 -1 c d = ab - cd b2 - d2 = 0 -1 . 

The conditions a2 - c2 = 1 and b2 - d2 = -1 imply that the 
columns of M, 

C = (a) = (C?Sh u) 
1 c slnhu' 

C = (b) = ± (sinh v) 
2 d coshv ' 

lie on the timelike and spacelike unit circles, respectively, and 
thus can be parametrized as shown, for appropriate hyperbolic 
angles u and v. Since a > 0, there is only one choice for the sign 
of CI, but there is no similar restriction on the sign of C2. 

Finally, the equation ab - cd = 0 implies CI 1.. C2 and trans­
lates to 

cosh u sinh v - sinh u cosh v = sinh(v - u) = O. 

This implies v - u = sinh-I (0) = 0, so M is either 

( cosh u sinh u) = H 
sinh u cosh u U 

or ( cosh u - sinh u) = K . 
sinh u - cosh U u/2 

END OF PROOF 

Clearly, hyperbolic reflections help make Minkowski geom­
etry a full and complete theory. But what role do they play in 
the physics of spacetime? The answer has to do with an assump­
tion we first made in Section 1.2 and have carried with us. There 
we assumed that two Galilean observers will orient their spatial 
axes the same way: G's positive ~ -axis will point the same way as 
R's positive z-axis. This assumption kept our calculations simple; 
it wasn't essential. If we abandon it now and allow G and R to 
give their spatial axes opposite orientations, then we will need a 
hyperbolic reflection to map G's spacetime to R's. 

1b see why this is true, suppose X is an object that is stationary 
with respect to G and is located at ~ = +1. Then the worldline 
of X lies parallel to the 7:-axis in the view of both G and R, but R 
will put the worldline below the 7:-axis. If the slope ofthe 7:-axis 
in R is v = tanh u, then we can map G to R by first reflecting G on 

The phYSical need for 
hyperbolic reflections 

Reversing spatial 
orientation 
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itself by Ko and then performing the hyperbolic rotation Hu. The 
result is the hyperbolic reflection HuKo = Ku/2. 

x----...,..----­
G--------~--------~r 

Enlarging the 
Lorentz group 

Multiplication rules 
in .c 

By assuming that observers gave the same orientation to their 
spatial axes, we were inadvertently overlooking certain genuine 
Lorentz transformations. Now that we allow observers to orient 
their spatial axes arbitrarily, we must enlarge the class of Lorentz 
transformations to include hyperbolic reflections. Of course, we 
continue to assume that all observers see time flowing in the 
same direction, so we will still require Lorentz transformations 
to preserve the future set F. 

Definition 2.7 The orthochronous Lorentz group C is the set of 
all linear maps L : R 2 -+ R 2 that preserve the Minkowski inner 
product and the future set F. The group operation is composition of 
maps or, equivalently, multiplication of matrices. 

The adjective orthochronous here means roughly "does the 
right thing to time!' For us, it means that the image of the positive 
time axis will lie in F. Since we shall never have a reason to use 
maps that do otherwise, we shall usually drop the adjective and 
refer to C simply as the Lorentz group. 

The definition includes the assertion that C is a group, which 
means that the product of two Lorentz maps is another Lorentz 
map. We already know that the product of two rotations is a 
rotation. In the exercises you are asked to verify that the product 
of two reflections is also a rotation and the product of a reflection 
and a rotation is another reflection. In fact, you can reduce any 
product of rotations and reflections to a single map. If the original 
product involves an even number of reflections, the result is a 
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rotation; otherwise, the result is a single reflection. One way to 
demonstrate this is to commute the factors in a product until all 
the reflections are together on one end. The commutation rules 
in [, are given in the following commutative diagrams, in which 
the sources and targets are represented simply by dots in order 
to focus attention on the maps themselves. 

K2v-u 
) 

Kv- u 
~ 

For example, the first diagram asserts that HuKv = KvH-u. This 
can be written in the alternative form 

K;;lHuKv = KvHuKv = H-u, 

and when we take v = 0, this becomes H-u = KoHuKo, which 
is identical to the result B-v = FBvF extracted from the first 
commutative diagram in Section 2.1. 

Let us derive the assertion in the second diagram, which can 
be expressed as K2v-u = KvKuKv. Since Kp = H2pKO, we have 

KvKuKv = H2v KoH2uKO H2vKO = H2vH_2uH2vKO = H2(2v-u)Ko = K2v-u. 
~ 

H-2u 

Derivations of the other diagrams are in the exercises. 

The last kind of rigid motion is translation: T(X) = X + C for 
some fixed vector C. This has the same effect in Minkowski and 
Euclidean geometry: It shifts the origin. 

Definition 2.8 A rigid motion in the Minkowski plane is an inho­
mogeneous Lorentz map, that is, a Lorentz map L from [, followed by 
a translation: M(E) = LX + c. 

Definition 2.9 Suppose A and B are two geometric figures in the 
Minkowski plane; A is congruent to B, A "V B, if there is a rigid 
motion M that maps A onto B: M(A) = B. 

Translations 
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Proposition 2.10 The interval between two events El and E2 is 
preserved by any rigid motion M. 

PROOF: It is enough to show that Q(M(E2) - M(El)) = Q(E2 - El). 
But 

M(E2) - M(El) = LE2 + C - (LE2 + C) = L(E2 - El), 

and since L preserves the Minkowski inner product, 

END OF PROOF 

Proposition 2.11 Congruent figures have the same (Euclidean) 
area, up to sign. 

PROOF: Suppose A '" Band M(A) = L(A) + C = B. Then area(B) = 
area(L(A) + C) = area(L(A)) because translation preserves area. 
Therefore, 

area(B) = area(L(A)) = det(L) . area(A) = ±1 . area(A), 

so the result follows. END OF PROOF 

Exercises 

In these exercises, Re : R 2 ~ R 2 is the linear map defined by the 
matrix multiplication 

Re (;) = (~~:: -~~~:) (;). 
1. Show that Re rotates the plane R 2 by () radians. (Suggestion: 

Since a linear map is completely determined by its action on 
a basis, just show that the basis vectors (1,0) and (0,1) are 
rotated () radians.) 

2. Exercise 1 immediately implies that the inverse of Re is R-e; 
why? Prove that R;1 = R-e also by direct computation. 

3. Exercise 1 also implies that ReRp = RHrp; why? Give a second 
proof by direct computation using the addition formulas for 
the sine and the cosine functions. This result implies that the 
set 0+(2, R) of rotation matrices forms a group. 
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4. Prove that a hyperbolic rotation Hu preserves each of the sets 
T_, £+, and £_. 

S. Suppose El and E2 are future vectors and LElE2 = {3. Then 
El . E2 = IIE1IIIIE211 cosh{3, and since cosh{3 ~ I, it follows that 
El . E2 ~ IIEIIIIIE211. This is the reverse Cauchy-Schwarz 
inequality. Prove it from first principles, using only the 
definitions of the inner product and the norm in a (1 + 1)­
dimensional spacetime. 

6. (a) Explain why the reflection Fe : R2 -+ R2 across the line 
through the origin that makes an angle B with the positive 
x-axis has the following eigenvalues and eigenvectors: 

)q = +1, Xl = (~~::), A2 = -1, X2 = (~~~nBB). 
(b) Show that R2eFo has the same eigenvalues and eigen­

vectors, and deduce that Fe = R2eFo. Write the matrix 
representation of Fe. 

(c) Verify that F~IFe = F~Fe = I. 

7. Show that the product of two reflections is a rotation: FaFfJ = 

R2(a-fJ)' 
8. The aim of this exercise is to prove that if the matrix M = 

(~ ~) preserves the Euclidean inner product, MtM = I, 

then M is either a rotation or a reflection. 

(a) Show that MtM = I implies that the columns of Mare 
vectors that lie on the unit circle and are orthogonal to 
each other. 

(b) Deduce that there is a B for which 

(a) = (C~SB) , (b) = ± (- sin B) . 
c smB d cosB 

Explain why this implies that M is either a rotation or 
a reflection. Note: The orthogonal group 0(2, R) is the 
set of all 2 x 2 matrices M that preserve the Euclidean 
inner product MtM = I. This exercise shows that every 
orthogonal matrix is either a rotation or a reflection. 
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9. Let Hu be the hyperbolic rotation through the hyperbolic an­
gle u, and let Kv be the hyperbolic reflection across the line Av 
that makes an angle of v hyperbolic radians with the positive 
t-axis. Prove the following commutation relations: 

10. (a) Prove that the product of any two hyperbolic reflections 
is a hyperbolic rotation: KVl KV2 = Hu . Express U in terms 
OfVl and Vz. 

(b) Prove that the product of a hyperbolic rotation and a 
hyperbolic reflection is another hyperbolic reflection: 
HuJ Ku2 = Kv. Express v in terms OfUl and uz. 

11. Construct a nonorthochronous Lorentz map-that is, a linear 
map M that preserves the Minkowski inner product but does 
not preserve the future set :F. 

12. (a) Consider the parametrized curve Pu = (cosh u, sinh u) 
and the three line segments that connect the pairs of 
points {P-3/Z,P3/Z}, {P-l,Pd, and {P-l/Z,Pl/z}. Explain 
why these are parallel, and parallel to the tangent to the 
curve at the point Po. 

(b) Now consider the three line segments that connect the 
pairs of points {P -1, Pz}, {P -liZ, P3/Z}, {Po, Pd . Prove that 
these are also parallel, and parallel to the tangent to the 
curve at Pl/Z. Suggestion: Consider the hyperbolic rota­
tion Hl/Z . 

13. (a) Let A be a rectangle in F whose sides are parallel to the 
lines z = ±t, and suppose the Euclidean lengths of the 
sides are a and b, as shown in the figure below. 
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Let Hu : :F -+ :F be hyperbolic rotation by the hyperbolic 
angle u. Show that A' = Hu(A) is another rectangle whose 
sides are likewise parallel to the lines z = ±t, and their 
Euclidean lengths are 

a' = eUa, 

(b) Describe the image of a Euclidean circle S of radius r in 
:F under the hyperbolic rotation Hu. Along the way you 
will need the result of the following exercise. 1b describe 
the ellipse Hu(S) you will need to give the lengths and 
directions of its semimajor and semiminor axes. 

14. Show that the image of a circle under an invertible linear 
map L : R2 -+ R2 is an ellipse. Show, furthermore, that if 
the matrix of L is symmetric, then the major and minor axes 
of the image ellipse are in the directions of the eigenvectors 
of that matrix. If the eigenvalues are ).,1 ~ ).,2 and the circle 
has radius r, then the semimajor and semiminor axes of the 
image ellipse are ).,2r and ).,lr. 

2.4 Physical Consequences 

Length and Time 

On the face of it, length, time, and mass are independent quan­
tities. However, once all Galilean observers agree that a certain 
ratio oflength to time-namely" the speed of light-is a physi­
cal constant, that fixed ratio ties one of those units to the other. 
So one of the first consequences of Einstein's relativity theory 
is that length and time are no longer independent. We can, for 
example, express time in meters. However, we choose to make 
time primary and express length in seconds. We take time as the 
primary unit because it is the natural one to use along an ob­
server's world1ine: For that observer, all events on the worldline 
differ only in the time they happen, not the place. 

We could set the ratio , to any value, but the most practical 
choice is , = 1. Since 

Calibrating 
length to time 
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"Geometrized" units 

The time axis must be 
inside the light cone 

meters 
c = 2.9979246 X lOB d 

secon 

in conventional units, the calibration sets 2.9979246 x lOB meters 
equal to 1 second, or 1 meter equal to 3.3356409 x 10-9 seconds. 
In visual terms, we make the light cone have slope ±1 and use it 
to map units along the time axis to any space axis. 

sec Z 
2 

: calibration grid 
i t 

sec 

By applying the same idea to other physical constants we can 
"geometrize" additional units. For example, the constant G that 
appears in Newton's law of universal gravitation has the value 

m3 
G = 6.67 X 1O-11 ---=:­

kgsec2 

in conventional units. Therefore, by setting G = 1 we can cali­
brate mass to time: 

-11 (3.3356409 X 10-9 sec)3 -36 
1 kg = 6.67 x 10 x 1 sec2 = 2.48 x 10 sec. 

When we use geometric units, velocity becomes dimensionless, 
energy and momentum both have the dimensions of mass and 
thus of time, and acceleration has the dimensions of time-I. 

Velocity Limit 

No Galilean observer G can travel faster than the speed of light 
relative to another Galilean observer R. This is an assumption we 
have already used frequently-for example, to derive the form of 
the Lorentz transformation-but we haven't proven that it must 
be true. However, it follows directly from the constancy of the 
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speed of light. In G's own coordinate frame, the time axis (which 
is that observer's worldline) must be the central axis of symmetry 
of the light cone. In particular, G's worldline must lie inside the 
light cone, and this must still be true when we map G --+ R. But 
if the velocity v of G relative to R were greater than c, then G's 
worldline would have a slope greater than the slope of the light 
cone and thus would lie outside the light cone. This is impossible. 

G-_.If R-_-K 

possible: G 

Simultaneity 

Proposition 2.12 Given any spacelike event E whatsoever, there is 
an observer who says that E and a are simultaneous. 

PROOF: Because E is spacelike, there is a real number k for which 
E = (t, z) = (ksinh u, kcosh u) in R's coordinate frame. Let Ghave 
velocity v = tanh u relative to R. Then E will lie on G's s -axis; G 
will say that E and a both happen at time i = O. END OF PROOF 

Since Galilean observers need not agree that two events hap­
pened at the same time, the principle of relativity implies that 
the notion of simultaneity is not physically meaningful. In effect, 
we replace it with the constancy of the speed of light. 

The Objective Future 

According to R, the events that happen after a lie in the half­
plane t > 0; according to G, they lie in the half-plane i > O. But 
these are different sets, so Rand G disagree about what consti­
tutes the future. However, they do agree about the events in the 
intersection, which we can call the common future of Rand G. 

The common future 
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-G'sfuture 

~ the common future 
m§ ofGandR 

z 4 

the oommon future 
of all observers 

The common future of When a third observer comes in, the common future grows 
all observers smaller, and when we consider all possible Galilean observers, 

their common future reduces to the union of F and the future 
light cone L+. This is because no space like event E can be in the 
intersection, because we saw already that there is some observer 
who considers E to have happened at the same time as O. We 
call the common future of all observers the objective future of O. 
If P is any event whatsoever, we can translate the origin to P 
and define, in the same way, the objective future of P. We can 
define the objective past of P in a similar way. 

The principle of 
causality 

Three causal regions 

Causality 

Definition 2.10 The causal future of an event A is the set of all 
events that A can infiuence. The causal past of A is the set of all 
events that can infiuence A. 

We start with the principle that causes happen before effects: 
If the event A causes, or influences, the event B, then A must 
happen before B. Since we want this principle of causality to be 
a physical law, A must happen before B for all Galilean observers. 
Thus B must be in the objective future of A, and the causal future 
of A is identical with the objective future of A. 

Likewise, A must be in the objective past of B. Each event 
P thus divides spacetime into three regions: Besides the causal 
future and causal past of P, there is a region consisting of events 
that can neither influence nor be influenced by P. In fact, these 
are the events Q for which the separation Q - P is spacelike. 
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events that can influence P events that P can influence 

the causal past of P the causal future of P 

events that can neither 
influence, nor be influenced by, P 

All the events that P can influence lie on worldlines that have 
slope v where Ivl .::s 1: Causality cannot travel faster than the 
speed of light. Thus, immediate action at a distance is impossible. 

Rigidity 

One of the intriguing consequences of the causal structure of 
spacetime is that no physical object is completely rigid. Here is 
a specific example to illustrate. Suppose R takes a rod lying on 
the positive z-axis between z = 0 and z = 1 and hits the end 
at the origin with a hammer at time t = 0 in such a way as to 
send the rod up the z-axis with velocity v. In the figure below, the 
worldlines of five equally-spaced points on the rod are plotted. 
The plot on the left shows what happens if the whole rod were 
to move rigidly-that is, without altering the distances between 
points. In this scenario, the far end moves immediately, but the 
principle of causality rules out immediate action at a distance. 

z 

No object is 
completely rigid 

z ..shockwave 
.. Ap 

........... 

a 

t 

The picture on the right is better; it takes causality into ac­
count. Notice that the point on the rod at z = a does not begin 
to move at t = 0; its worldline stays horizontal until some later 
time t = tao The simplest assumption we can make is that ta is 
proportional to a: ta = ka, or a = (1/ k)ta = pta. The line z = pt in 

v 

t 

A shock wave travels 
through the rod 
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Can galaxies move 
faster than the speed 
of light? 

Combining boosts 

spacetime marks a "shock wave" that propagates thtough the rod 
with velocity p, where Ivl < Ipl < I, imparting motion to points 
in the rod as it propagates. The entire rod is in motion only after 
the wave reaches its far end, which happens at time t = tl. 

This is not the whole story. Notice that the worldlines on the 
right are closer together than those on the left: The shock wave 
has compressed the rod. If the rod is elastic, it will rebound and 
expand back to its original size. This will involve further shocks 
traveling through the rod-none of which we describe here. 

Addition of Velocities 

Distant galaxies are traveling away from the earth at enormous 
speeds, the farthest ones at speeds close to the speed of light. 
Consider two galaxies at opposite ends of the sky each moving 
away from the earth at two-thirds the speed of light. Ordinary 
reasoning (as framed by Galilean transformations) says that an 
observer on one of the galaxies would see the other galaxy moving 
at four-thirds the speed of light, which is impossible. 

v= -2/3 v=2/3 -
o 

galaxy C earthR galaxy G 

Let us consider this in general terms. Suppose G has velocity 
VI relative to R, and R has velocity Vz relative to a third observer 
C. Then we can map one frame to another by appropriate veloc­
ity boosts (that is, Lorentz transformations expressed directly in 
terms of the velocity parameter): 

BV2 : R -+ C. 

We want to know the velocity V associated with the boost Bv = 
BV2Bvl that maps G directly to C: Bv : G -+ C. 

The addition formula Since the rule for combining hyperbolic rotations is simpler, 
we convert the boosts to hyperbolic rotations by the relation Hu = 
Bv, where v = tanh u and u = tanh- I v. If Hu = HU2 Hu}l then 
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z 
r 

BVl BV2 
G R C - -r 

HUl G HU2 
R 
G 

U = UI + Uz , and thus 

tanh UI + tanh Uz 
v = tanh U = tanh(ul + uz) = h 

1 + tan Ul tanh Uz 

For example I in the case of the two galaxies, VI = Vz = ~ and each 
galaxy sees the other receding from it with velocity 

~ + ~ 1 12 
v=--4 =13=-<l. 

1 +"9 "9 13 

Since Ivi = I tanh ul < 1 for all u, no combination of boosts can 
ever make the velocity of one observer relative to another exceed 
the speed of light. 

Moving Clocks Run Slow 

Z r 

R---'-------'-"pc:--'---'---L----L.----L_ 

G 

Suppose G is carrying a clock and moving with velocity v 
relative to R. That clock marks G'S proper time t" in R's frame. 
(Here again proper means Ilof one's own:' as it does in the term 
proper value I or eigenvalue.) How does R measure G'S proper 
time? 

Let E = (~t", 0) be the event that happens at time ~t" on G'S 
worldline. We want to know what time R thinks that E occurs. We 

Proper time 

Calculate the rate 
of a moving clock 
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Time dilation is 
recalibration 

can get the coordinates of E in R's frame by using the velocity 
boost Bv: 

(~t)=BV(~r)= ~(~ ~)(~r)=(~r/~, 
where * stands for a quantity whose value we don't need to know. 
Thus ~t = ~r/J1 - v2 > ~r, or ~r = ~tJ1 - v2. In other 
words, R says that G's clock runs slow by the factor J1 - v2. 

For example, when v = ~, the factor is J1 - 0.25 = JO.75 ~ 
0.866, so when R says an hour has passed, G's clock will have 
advanced slightly less than 52 minutes. Ifv = 0.9, then the factor 
is J1 - 0.81 = JO.19 ~ 0.436: A clock moving at nine-tenths the 
speed of light runs less than half as fast as a stationary clock. 

Geometrically, time dilation is just a consequence of the cal­
ibration of different time axes by hyperbolic rotations, and thus 
has to do with the preservation of the Minkowski norm. The 
Minkowski-Pythagorean 3-5-4 triangle provides a particularly 
simple and lucid example. If a clock is moving with velocity 
v = ~, then it ticks at only 4/5 the rate of a stationary clock. 

sec Z 
4 

3 · .. ············ .. · .. ·· .. ·3·········! 

2 I 
t 

4 5 6 7 sec 

Moving Rulers Contract in Length 

Suppose G carries a ruler that is A seconds in length. 1b be definite 
we suppose it lies along the ~-axis from ~ = 0 to ~ = A. In G the 
worldline of the ruler is a horizontal band A seconds wide. 

Let G and the ruler move with velocity v relative to R along 
their common ~ / z-axis. In R's frame the worldline of the ruler 
is a 1:>and with slope v. The z-coordinate of the event E gives the 

Obtain E coordinates length 1 of the ruler as R sees it. How is 1 connected to A? 1b 
in G two ways make the connection, we shall obtain the ~ -coordinate of E in 

G's frame in two different ways and compare them. On the one 
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, 
E A 

Bv --G -- R 
0 r B_v 

G 

hand, the ~-coordinate of E must be A; on the other, we can get 
the ~-coordinate by mapping E from R back to G using B-v: 

where * stands for a quantity whose value we don't need to know. 
From these equations we obtain 

1 = Jl- v2 A; 

R considers that the ruler has shrunk by the factor Jl - v2 . 

This is precisely the Fitzgerald contraction. Of course, it had 
to be, because that is the only result consistent with experience. 
However, it appears here as a consequence, ultimately, of Ein­
stein's simple postulate that the speed oflight is the same for all 
Galilean observers. 

The Doppler Effect 

Although the speed of a light signal does not depend on whether 
the source is moving, its frequency does. This is the Doppler effect. 
If the source is approaching an observer, the frequency increases; 
visible light is shifted toward the violet. If the source is receding, 
the frequency decreases; visible light is shifted toward the red. 
The Doppler effect is part of classical physics, but the size of the 
shift is different in special relativity. 

1b calculate the shift, let us suppose that G is steadily emitting 
light of frequency v (this is the Greek letter nu). Think ofthis as an 
oscillation that reaches peak amplitude once every Ijv seconds. 
In G these peaks appear as light cones spaced ~'l' = Ijv seconds 
apart along the 'l'-axis. 

The Fitzgerald 
contraction 

Light from a moving 
source changes 

frequency 
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G -4---r -
G 

As G moves with velocity v past another observer R, the source 
is first advancing toward R, then receding. The spacing D.t of the 
light cones along the t-axis determines the frequency n of the 
light as R sees it: n = 1/ D. t. The figure suggests that the advancing 
frequency nadv is greater than v, while the receding frequency nree 
is less than v. 1b determine the values, look at the enlargement 
of R near the origin. 

R--~-~~-~-~~--------~~ 

G 

On both sides we have D. r2 = a2 - a2v2 , so a = D. r /,Jl - v2 . 

On the advancing side, the time separation between successive 
advancing peaks is 

I-v 
D.tadv = a - av = D.r r,--::}' 

vl- v2 

On the receding side, 

l+v 
D. tree = a + av = D. r r,--::}' 

vl- v2 

so nadv = _1_ = vJl + v > v. 
D.tadv 1 - v 

1 ~-v so nree = --- = v --.- < v. 
D.tree 1 + v 

These calculations are done in R, where the source moves. We 
get the same result by doing the calculations in G, where the 
observer moves. See the exercises. It doesn't matter whether we 



§2.4 Physical Consequences 83 
--------------------~~--~----~------------

assume that the source or the observer does the moving; it is the 
relative motion that creates the Doppler effect. 

We can even collapse the two formulas to a single one-and 
abandon the distinction between nadv and nrec - if we take v to be 
the time rate of change of distance between source and observer, 
rather than time rate of change of the displacement z. Then v is 
positive when the source and observer are separating and nega­
tive when they are approaching one another. 1b the observer R, 
the frequency is just 

n=vJ~~~. 
As in many other areas, the classical theory here approximates 

the relativistic theory for small velocities. When Ivl « I, Thylor's 
theorem gives 

J~ ~~ ~ I-v, 

so we have the approximate formula n ~ v(1 - v). In classical 
dynamics, this is the exact formula. The difference between the 
two becomes most striking when v = -1 = -c, that is, when 
the source and observer approach each other at the speed of 
light. The classical frequency simply doubles, but the relativistic 
frequency is infinite. 

Exercises 

1. Suppose galaxies C and G are moving away from the earth 
with velocities -v and v, respectively. That is, they move with 
the same speed but in opposite directions. Then G is moving 
away from C with velocity 

2v 
I(v) = 1 + v2' 

(a) Sketch the graph of I (v) for 0 ~ v ~ 1. Show that, for v 
small, I (v) ~ 2v, while for v ~ I, I (v) ~ 1. 

(b) At what speed must C and G be receding from the earth 
if C considers that G is moving away from C at half the 
velocity of light? 

A single formula 

The classical 
approximation 
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2. Suppose a subatomic particle that moves at 99% ofthe speed 
of light has a lifetime of 10-10 seconds in a laboratory frame 
ofreference. That is, after 10-10 seconds, it decays into other 
particles. What is the lifetime of the particle from the particle's 
own frame of reference? 

3. (a) If G moves with velocity v with respect to R, then R says 
that G's clock runs slow by the factor Jl - v2• But then R 
moves with velocity -v with respect to G, so G will say R's 
clock runs slow by the same factor \-11 - (-v)2 = Jl - v2. 
Explain this paradox; that is, explain how the two observers 
can have symmetric viewpoints. Furthermore, indicate 
how the figure below both demonstrates and explains this 
paradox. 

R 

G ---"1<::--""""00-- R --"""71"'--+-¢-­

G 

t 

(b) There is a similar paradox about Fitzgerald contraction. 
If G moves with velocity v relative to R, then R says that 
G's length contracts by the factor Jl - v2 in the direction 
of motion. However, from G's point of view, R's length 
contracts by this factor. Draw a diagram that demonstrates 
and explains this paradox. 

4. Determine the first-order Taylor polynomial of f (v) = /1 - v. 
l+v 

5. Show that the classical Doppler effect, under a Galilean trans­
formation, is n = vel - v). Here n is frequency recorded by an 
observer R when an oscillator G of proper frequency v moves 
with velocity v with respect to R. 
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6. Use the figure below to calculate the Doppler effect on the 
moving observer R in the frame G in which a steady signal 
of frequency v is emitted. The spacing between light cones is 
llf = l/v seconds on G's worldline. 

t 

7. Three observers, T, G, and V, are traveling on a high-speed 
train. Observer T is at the back, G is in the middle, and V is in 
the front; T and V are each a seconds from G, measured when 
the train is at rest. They and the train are moving with velocity 
v with respect to a fourth observer R standing beside the train 
tracks. (All measurements are made in geometric units.) 

At the instant G passes R, they see momentary bright 
flashes oflight from both T and V. 

T G V 

1~i~~-------o----------~~~~, ~ 
oR 

(a) Draw the worldlines of T, G, V, and R and the light cones 
from T and V in G's frame and again in R's frame. 

(b) According to G, were the flashes from T and V simulta­
neous, or did one happen before the other? If the latter, 
by how much time does G consider those events to be 
separated? 

( c) According to R, were the flashes from T and V simulta­
neous, or did one happen before the other? If the latter, 
by how much time does R consider those events to be 
separated? 
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Cd) When were the flashes emitted according to G, and when 
were they emitted according to R? 

Further Reading for Chapter 2 

The linear algebra needed here can be found in many texts, but 
the classic by Birkhoff and MacLane [3] has a perspective that 
is particularly appropriate. Lorentz introduces Lorentz transfor­
mations in [19], and Einstein makes them the basis of special 
relativity in [11]. Minkowski's recasting of Einstein's ideas in ge­
ometric terms is described in [23], and a rich and full exposition 
of Minkowski geometry can be found in the book by Yaglom [30]. 



CHAPTER 

Special Relativity­
Kinetics 

Kinetics is the study of the motion of material objects under the 
action of forces. Forces cause objects to accelerate, that is, to 
change their velocity. In spacetime, acceleration makes world­
lines curve. In this way the physics of forces is tied to the geom­
etry of spacetime. The starting point is Newton's three laws of 
motion. 

3.1 Newton's Laws of Motion 

One of the great scientific problems of the seventeenth century 
was to understand the motion of the planets and the moon. New­
ton solved the problem and presented his solution in the Principia 
(Philosophia Naturalis Principia Mathematica, 1687). Written in the 
didactic style of a text on Euclidean geometry, it begins with defi­
nitions and axioms upon which all the later arguments are based. 
The axioms are the three laws of motion: 

1. "Everybody continues in its state of rest, or of uniform motion 
in a straight line, unless it is compelled to change that state by 
forces impressed upon it:' 
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The first law defines 
inertia 

Inertial mass 

Momentum and the 
second law 

If mass is constant, 
then f = rna 

2. "The change of motion is proportional to the motive force 
impressed; and is made in the direction of the straight line in 
which that force is impressed:' 

3. "Th every action there is always opposed an equal reaction; or, 
the mutual actions of two bodies upon each other are always 
equal, and directed to contrary parts." 

The first law was actually discovered by Galileo and is called 
the principle of inertia. The law says that every body has inertia, 
which is the power to resist any change in its velocity. Notice 
that rest and uniform motion have the same status, as they must 
according to Galileo's principle of relativity. 

Since a body has inertia, it makes sense to ask how much; that 
is, how much effort must be expended to change its velocity? Your 
intuition is helpful here. Imagine a small rowboat tied up beside 
a 30-foot cabin cruiser at a dock, both of them motionless. By 
pushing, you can get each boat to move, but the same push will 
have a much greater effect on the rowboat. The rowboat has less 
inertia, and this is precisely because it has less mass. The "inertia 
content" of a body is its mass, sometimes called its inertial mass 
to emphasize the connection between the two. 

Newton uses inertial mass in the second law. He defines the 
term "motion" that appears in the law as mass m times velocity 
v; this is the vector quantity we today call momentum: p = mv. 
Furthermore, we take "change in motion" to mean the rate of 
change of momentum with respect to time: dp/dt. According to 
the second law, this is proportional to the impressed force f. If 
we choose units such that the constant of proportionality is I, the 
law takes the form 

f = dp = d(mv) . 
dt dt 

If m is constant, then d(mv)/dt = m dv/dt = ma, and the 
second law takes its more familiar form f = ma. We shall soon 
see that the inertia content m must increase with velocity-and 
thus is not constant; nevertheless, m is essentially constant for 
small velocities, so in that case we can write the second law in 
the convenient form f = ma. 
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The third law concerns a pair of bodies G1 and G2. It says that 
if G1 imposes a force f1 on G2, then G2 imposes a force f2 on 
G1, and f2 = -fl. For example, when you push on the rowboat, 
it pushes back at you with the same strength. Now consider the 
total momentum PI + P2 of the system consisting of G1 and G2 
together. Since 

d(P1 + P2) = dPl + P2 = f + f = 0, 
dt dt dt 1 2 

the total momentum does not change over time: According to the 
third law, total momentum is conserved. 

Difficulties 

Newton's laws do not always correspond to reality. For example, 
an object near the surface of the earth that has no visible forces 
pushing it accelerates downward: When we let go of things, they 
fall. A more subtle example is a Foucault pendulum. It swings in a 
vertical plane, but that plane rotates slowly around a vertical axis, 
instead of staying fixed. (All rotational motion is accelerated.) 

There are at least two ways to resolve such conflicts between 
theory and reality. The first is to ascribe an invisible force to each 
unexplained acceleration. Thus, we say that gravity causes things 
to accelerate downward, and the Coriolis force causes the plane of 
the pendulum to rotate. 

The second way is to choose a coordinate system in which the 
acceleration disappears. For example, imagine a Foucault pendu­
lum at the North Pole. It is easy to see then that with respect to 
the fixed stars, the earth is doing the rotating, not the plane of the 
pendulum's motion. In a coordinate frame in which the stars do 
not move, the pendulum's plane does not move either, and there 
is no Coriolis force. 

Are there coordinate systems that can eliminate gravity in the 
same way? An earth-orbiting spaceship seems to be gravity-free: 
Objects just float about when they are released in the cabin. An 
object initially at rest remains at rest, and one that is set moving 
with a certain velocity maintains that velocity until it collides 

The third law says 
that total momentum 

is conserved 

Newton's laws need to 
be qualified 
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Inertial frames 

Special relativity 
is limited to 
inertial frames 

Inertial mass 
cannot be constant 

v 

Mass increases with 
velocity 

t 

with a wall or other obstruction. The law of inertia holds without 
qualification. 

Thus, whether or not Newton's laws hold depends on the 
coordinate frame. We single out those in which Newton's laws 
do hold and call them inertial frames. Physics is simpler in an 
inertial frame. The frames we are most familiar with -defined 
by the walls of an earth-bound laboratory, for example-are not 
inertial. 

Henceforth, we assume that the spacetime coordinate sys­
tems associated with our observers are inertial. In fact, what 
makes special relativity special is that it is restricted to inertial 
coordinate frames. So long as our observers are in uniform mo­
tion with respect to one another, it is enough to assume that one 
of them has an inertial frame. By Galileo's principle of relativity, 
they must all formulate physics the same way, and thus must 
all see Newton's laws as holding in their systems because one of 
them does. 

The second difficulty concerns our intuition that the inertial 
mass of a body is constant. The velocity limitation If this were so, 
then a constant force would eventually push the body beyond the 
speed oflight. Th see this, suppose a constant force of magnitude 
k is applied to an object G in the direction of R's positive z-axis. Let 
v be the (scalar) velocity of G along the z-axis. If the inertial mass 
m of G were constant, then R could apply Newton's second law to 
G and write k = mdvjdt, or dvjdt = kjm. Since the acceleration 
kjm is a constant, velocity is just a linear function oftime: 

k 
v(t) = -t+ b. 

m 

Choose T such that v(D = I, the speed of light. Then applying 
the force k for T seconds will push G past the speed of light. This 
contradicts the velocity limitations of special relativity (Section 
2.4). 

How can we correct this problem? The velocity limitation 
implies that as G's velocity grows larger and larger, it must get 
harder and harder to increase that velocity still further. But that 
effort is a measure of G's inertia content, so G's inertial mass must 



§3.1 Newton's Laws of Motion 91 
--------------------~------------------------

increase with velocity and, a fortiori, be a function of velocity: 
m = m(v). 

In fact, the mass must become infinite as v -+ 1. If not, there 
will be an upper bound m(v) ~ M for all v. Then when R invokes 
the second law in the form k = d(m(v)v)/dt, we will still obtain 

kt+c k c 
kt + c = m(v)v ~ Mv(t), implying ~ = Mt + M ~ vet). 

In other words, vet) will be bounded below by a linear function 
(rather than simply be equal to one, as above). If we choose T 
such that (k/ m) T + c / M = I, then we will again have v ~ 1 when 
t ~ T. Thus the graph of m as a function of v must look something 
like this: 

m 

Notice that while R says that G's mass is increasing, G does 
not. In other words, we must give up the idea that mass is an 
absolute quantity; we have no way of saying what the mass really 
is. All we can say is what a given observer measures it to be. 
Mass is relative, just like length or the rate at which a clock ticks. 
Nonetheless, it is helpful to single out the value ma = m(O), which 
we call G's rest mass, or proper mass. (This is yet another place 
where we use proper to mean "of one's own:') 

We still have to determine exactly how m depends on v. Th 
this end we take a further look at the third law. The issue for 
us is Newton's assertion that this is a physical law. By Galilean 
relativity, if one observer sees an interaction in which momentum 
is conserved, then all other observers must agree. If not, then 
conservation of momentum is not a physical law. Consider the 
following example in which we assume, for the moment, that 
mass does not depend on velocity. 

Let Xl have mass 1 and travel with G, and let X2 have mass 
2 and travel with R. Suppose they collide at the event 0 and 

Mass is relative 

Is conservation 
of momentum 

a physical law? 

Example: an inelastic 
collision 
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Transform with a 
Galilean shear 

Transform with a 
Lorentz boost 

stick together, forming a new body X of mass 3. (This is called 
a completely inelastic collision.) We assume that total momentum 
is conserved in G's frame, and we ask whether the same is true 
inR's. 

Suppose, as usual, that G has velocity v with respect to R, and 
consider the collision in G's frame. In G's frame Xl is motionless 
and therefore has zero momentum, while Xz moves with velocity 
-v and has momentum -2v. The total momentum before the 
collision is therefore p = -2v. After the collision, X moves with 
some velocity V, so its momentum is p = 3v. Since G considers 
that p = p, it follows that -2v = 3v, or v = -~v. 

z 

How does R view all this? We answer this question by trans­
forming G's frame to R's. Let us do it first with the Galilean shear 
Sv : G --+ R; to get the velocity of an object in R, just add v to its ve­
locity in G. In R, Xz is motionless and has zero momentum, while 
Xl has velocity v and momentum 1 . v = v. According to R, the to­
tal momentum before the collision is p = v. After the collision, X 
has velocity w = v+v = lv and momentum p = 3w = v. R agrees 
with G that total momentum is conserved. (Notice that Rand G 
do not agree on the value of the conserved momentum. This is 
only to be expected, because momentum depends on velocity­
and is therefore a relative quantity-even before we take special 
relativity into account.) 

Ifwe use the Lorentz transformation Bv : G --+ R, the outcome 
is different. Before the collision the picture is unchanged; you 
should check that the total momentum is still p = v. After the 
collision, X has a velocity w that we must find using the addition 
formula for Lorentz boosts: 
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The momentum is 

lv v 
p = 3w = 3 3 2 = 2 i= v = p. 

1 - -v2 1 - -v2 
3 3 

Thus, in R's view, momentum is not conserved; Rand G now dis­
agree, so conservation of momentum loses its status as a physical 
law. 

What we have learned is that momentum does not trans­
form properly under Lorentz maps-at least when we assume 
that mass is constant. (For example, we assigned X2 the mass 2 
whether it was at rest or moving with velocity -v.) In our search 
for the function m(v), we will now make it our goal to define m(v) 

so that momentum does transform properly under Lorentz maps. 
In that way we will preserve conservation of momentum as a 
physical law. 

Relativistic Mass and Momentum 

Lorentz maps act on vectors in spacetime, so if we want momen­
tum to transform properly, we shall first have to express it as a 
spacetime vector. There is a natural way to do this, starting with 
velocity in the full (1 + 3)-dimensional spacetime. 

p~th of G 
m space z v = (1, v), the 4-velocity of G 

\L=;;;:::~~C::-Tv~-;w;o~r1dline of G 
in spacetime 

Suppose G's velocity in R's (x, y, z)-coordinates is given by the 
spatial vector v = (vx , vy, vz). Then V = (1, v) is a vector in 

Goal: Preserve 
conservation of 

momentum 

4-velocity 
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4-momentum 

m(v)= ~ 
,,1 - v2 

spacetime that points in the direction of G's worldline in R. We 
call V the 4-velocity of G with respect to R. If G moves parallel 
to the z-axis-as we usually assume-then Vx = Vy = 0, and the 
velocity reduces to a scalar v = Vz . In this case we write V = (1, v) 
(a vector in R2) but still call V the 4-velocity of G to emphasize 
that it is a spacetime vector. 

Now suppose that G has mass m according to R, where m = 
m(v) is the relativistic mass of G when its speed is 

v = IIvll = Jv; + v; + v:. 

We define the 4-momentum of G with respect to R to be the 4-
vector lP = mV = (m, my) = (m, p). In a (1 + I)-dimensional slice 
of spacetime, the 4-momentum is simply lP = (m, mv) = (m, p). 

In G's own frame, the 4-velocity is just V = (1, 0), and the 4-
momentum is lP = /-tV = (/-t, 0), where /-t is G's proper mass m(O). 
If the 4-momentum we have just defined is to transform properly 
under all Lorentz transformations, then it must at least transform 
properly under Bv : G ~ R. That is, we must have Bv(lPG) = lPR, 
where subscripts identify the two 4-momentum vectors: 

~(6) 
G----~o~----.---~r R--~~----------

G 

Notice that the last equation gives us a formula for relativistic 
mass: 

m = m(v) = -==/-t= 
JI-v2 

Henceforward we use this as the mass function because it has 
the features we need: m(O) = /-t (the rest mass), m(v) ~ 00 as 
v ~ ±l, and its graph has the right symmetry. 
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m 

the relativistic mass function 

We must now check whether the 4-momentum that incorpo­
rates our new mass function transforms propedy for all pairs of 
frames. Since we are already using G as the rest frame of the 
moving body of rest mass 11-, we need a new frame in addition 
to R. Call it C (or /lCap," for Capital letters); its coordinates are 
(T, X, Y, Z). If the velocity of G is v in R's frame and V in Os 
frame, then the 4-momentum vectors are 

and JIDe = 11- (VI) . 
JI- V2 

The following proposition tells us that 4-momentum does indeed 
transform properly for all pairs of coordinate frames. 

Proposition 3.1 IfBw : R --+ C, where w is the velocity ofR relative 
to C, then Bw(JIDR) = JIDe. 

PROOF: Here are two proofs. The first links JIDR to JID e by going 
through JIDG; the second is a brute-force calculation. 

Check al/ pairs of 
frames 
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PROOF 1: By definition, each 4-momentum vector is the image of 
G's own 4-momentum lPG = JL(l, 0) under the appropriate Lorentz 
map: 

lP'c = Bv(lP'G)' 

In fact, G, R, and C are connected by the commutative dia­
gram shown above, so BwBv = Bv and Bw(lPR) = Bw(Bv(lPG» = 
BwBv(lPG) = Bv(lPG) = lPc. 

PROOF 2: We must evaluate 

Bw(lPR) = -;==::;;: -== 1 JL (1 WI) (vI) 
Jl - w2 Jl - v2 W 

_ JL (1 + vw) _ JL(l + vw) ( w ~ v ) 
- J1 - w 2Jl - v2 w + V - Jl - w2Jl - v2 

1 +vw 

and show that this vector is equal to lPc. Consider the second 
component of the vector: Since Bv = BwBv, the addition formula 
for velocity boosts gives us 

w+v v= . 
1 +vw 

Now consider the coefficient of the vector; first write it as 

Then 

1 +wv 1 
-

J1 - w 2J1 - v2 (1 _ w2)(1 _ v2) 

(1 - w2)(1 - v2) 

(1 + WV)2 
-

(1 + wv)2 

1 - w2 - v2 + w2v2 

(1 + wv)2 

1 + 2wv + w2v2 - w2 - 2wv - v2 

(1 + wv)2 

(1 + wv)2 - (w + v)2 

(1 + wv)2 

= 1 _ (w + v)2 = 1 _ V2. 
(1 + wv)2 
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It follows that 

B ro) _ JL(l +vw) ( +1 ) _ JL (1)_lP' 
W\J1R - w V - - c 

J1 - w2J1 - v2 J1 - V2 V . 
1 +vw 

END OF PROOF 

Covariance 

In Chapter 1 we introduced the viewpoint that coordinates like 
(t, x, y, z) and (T, X, Y, Z) are the "names" that different observers 
give to events, and that the maps 

and 

are pairs of "dictionaries" that allow us to translate one "name" 
to the other. Thus, as soon we know R's name for an event E, we 
can find C's name for the same event by using the dictionary Bw. 

Proposition 3.1 is really about names and dictionaries, too. 
What is says is that if we know R's "name" for the 4-momentum 
ofa moving body G, then we can use it to find C's name; moreover, 
the same Iltranslation dictionary" Bw that we used for coordinates 
does the job here, too. In other words, the coordinates of a 4-
momentum vector vary from one observer to another in exactly 
the same way that the coordinates of an event do; we say that 
4-momentum is covariant. 

Since lP' = m(v) (1 , v), it follows that the components m(v) 
and v are covariant; since V = m(v)-llP', 4-velocity must also 
be covariant. You can check that time, length, and speed are 
likewise covariant. That is, if we know the value of any of these 
in R's frame, we can deduce the value in C's frame by using the 
map Bw : R -+ C that transforms coordinates. It is impossible 
to formulate meaningful physical laws without using covariant 
quantities. This is called the principle of covariance. Because 
we are working now only with inertial frames, this is called special 
covariance. Later on, we will look at Einstein's general theory of 
relativity, in which all coordinate frames are put on an equal 
footing. 

In Chapter 1 we saw that part of the crisis that led to Einstein's 
theory of special relativity was the observation that Maxwell's 

Bw is a dictionary to 
translate coordinates 

4-momentum is 
covariant 

Principle of 
covariance 
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Example 1: 
an elastic collision 

equations fail to be covariant under Galilean shears but are covari­
ant under Lorentz transformations. Since the validity of Maxwell's 
laws was not in doubt, the principle of special covariance meant 
that Galilean shears could not be the correct maps for connecting 
the spacetime frames of different observers. 

Conservation of 4-Momentum 

Now that we know that 4-momentum is covariant, it is easy to 
confirm that conservation of momentum regains its status as a 
physical law. Thke two bodies GI and Gz whose rest masses are 
/kI and /kz, respectively, and have them collide elastically at the 
event O. (In an elastic collision the bodies bounce off each other 
with no loss of energy.) We shall assume that R says that total 
4-momentum is conserved and test to see whether C agrees. 

Consider first what happens in R's frame. Suppose the 4-
momenta of GI and Gz before the collision are lPI and lPz, respec­
tively, while afterwards they are PI and Pz. According to R, total 
momentum is conserved through the collision: lPI + lPz = PI + Pz. 
Does C agree? 

Suppose C is connected to R by the Lorentz map Bw : R -+ C. 
Then, since 4-momentum is covariant, each 4-momentum vector 
in C is the image of the corresponding one in R under the map 
Bw. 

z 

BEFORE 

QI = Bw(lPI) 

Qz = Bw(lPz) 

AFTER 

QI = Bw(PI ) 

Qz = Bw(Pz) 

z 
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Proposition 3.2 Ql + Q2 = Ql + Q2-

PROOF: This is a straightforward consequence of the fact that Bw 
is linear and that lPl + lP2 = WI + W2: 

Ql + Q2 = Bw(lPl) + Bw(lP2) = Bw(lPl + lP2) = Bw (W1 + W2) 

= Bw (W1 ) + Bw (W2 ) = Ql + Q2· END OF PROOF 

Thus, as soon as one Galilean observer determines that 4-
momentum is conserved in a particular collision, all other ob­
servers agree. We have therefore reestablished Newton's third 
law in special relativity as the conservation of 4-momentum. 

Here is another example; it is a purely inelastic collision in­
volving two identical objects traveling with equal but opposite ve­
locities. The objects are two 10-ton trucks traveling toward each 
other at about 60 miles per hoUT. After the collision they stick 
together; by symmetry, they are also at rest. 

VI = +60 mph 
Gl--­

/1-1 = 10 tons 

V2 = -60 mph 
---G2 

/1-2 = 10 tons 

The rest masses are /1-1 = /1-2 = 10 tons ~ 104 kg = 107 gm. The 
speed is 

60 mph ~ 88 feet/sec ~ 30 m/sec ~ 10-7 X ,3 X 108• m/se~, 
speed of light 

so VI = -V2 = 10-7 in geometrized units. By Thylor's theorem we 
have 

1 1 1 2 1 -14 r:--:i = r:--:i ~ 1 + :zVl = 1 + :z10 . 
'II-vI V1-V~ 

Before the collision the 4-momenta of the two trucks are 

lPl = ( /1-1 , /1-1 VI ) ~ (107 + ~1O-7, 1) gm, 
J1-VI J1-VI 

Example 2: 
an inelastic collision 
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Energy is converted 
to mass 

iP -- °t 

IfiP is the 4-momentum of the two trucks stuck together after the 
collision, then, by the conservation of 4-momentum, 

- (7 7) lP' = lP'1 + lP'z ~ 2 x 10 + 10- ,0 gm. 

The second component tells us that the velocity after the collision 
is zero, so the first component, which is the mass, must be the 
rest mass of the two trucks together. But 

combined rest mass = sum of individual rest masses + 10-7 gm. 

The extra 10-7 grams means that rest mass is created in the colli-
sion, not conserved. Where has that extra mass come from? 

The answer is that the kinetic energy of the moving trucks 
was converted to mass when the trucks came to rest. 1b see why 
this is so, consider the relativistic mass of one of the moving 
trucks. By Thylor's theorem we can write it in the form 

JJ. = JJ. (1 + !VZ + O(v4») ~ JJ. + !JJ.vZ = 107 +! X 107 X 10-14 • 
.Jl - vZ rest mass kinetic energy 

Thus, the main contributions to relativistic mass when v is small 
are rest mass and the classical kinetic energy based on rest mass. 
The extra mass that shows up in the collided trucks is the sum of 
the two equal kinetic energies 

!JJ.vz = ! x 10-7 gm; 

this energy has been converted directly into mass. Nothing like 
this is contemplated in Newtonian physics; it is a consequence of 
the fact that relativistic mass increases with velocity. 



§3.1 Newton's Laws of Motion 101 

Now imagine what happens when we reverse the direction Fission: mass is 
of time in the last example. At the start there is a single object converted into energy 

at rest. Then, at the event 0, the object bursts into two equal 
fragments that speed away from each other. The rest masses of 
the fragments will add up to less than the original mass; the dif-
ference is the kinetic energy of the fragments. In this process, 
called fission, some mass is converted directly into energy. If 
the velocity of the fragments is large-as it is, for example, in 
the fission of uranium or plutonium nuclei-then the amount of 
energy released can be substantial. Because of the interconvert-
ibility of matter and energy, we sometimes use the single term 
matter-energy to refer to either. 

lP -
Conventional Units 

The geometric units that we have been using can mask impor­
tant information. For example, the famous equation E = mc 2 col­
lapses to the rather cryptic E = m in geometric units. But we can 
still recover the conventional equation by noticing that E = m 
is out of balance dimensionally: Energy has the dimensions of 
mass x velocity2. By attaching a factor of c2 to the mass term on 
the right we restore the balance and get the correct equation in 
conventional units. 

This method will always convert an equation properly, but it 
does not solve all our problems. For example, when we switch to 
conventional units, the last three components of 4-velocity V = 
(1, v) acquire the appropriate dimensions of meters per second, 
but the first remains dimensionless. This confuses the physics 
and compounds the mathematical difficulties we face, especially 
when we take up general relativity in the later chapters. 

But here, too, we have a simple remedy: Just give an event 
E = (t, x, y, z) new coordinates (xo, Xl, X2, X3) that have the same 
dimensions. By using the method of attaching an appropriate 

Converting equations 
to conventional units 

Dimensionally 
homogeneous 

coordinates 
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factor of c, we can do this two different ways. One is to divide 
the three spatial coordinates by c; then all components of the 
4-vector of position will be measured in seconds. A better way, 
though, is to multiply the time coordinate by c; then 4-velocity 
and 4-momentum have the right physical units: 

X = (xo, Xl, X2, X3) = (ct, X, y, z) = (ct, x) meters, 

'1= ~X = (~Xo ~XI ~X2 ~X3) = C v m/sec, 
~t ~t' ~t' ~t' ~t (,) 

lJ:D = mV = (mc, my) = (mc, p) kg-m/sec. 

We shall call (ct, X, y, z) the dimensionally homogeneous co­
ordinates for the frame Rand (t, X, y, z) its traditional coordi­
nates. 

Dimensional homogeneity has some inevitable consequences. 
When we use dimensionally homogeneous coordinates in R, R's 
own 4-velocity is V = (c, 0, 0, 0) rather than (1,0,0,0). Further­
more, the first component of the 4-momentum of an observer 
G is no longer simply the relativistic mass of G but is the mass 
multiplied by c. 

The Minkowski norm The Minkowski norm in dimensionally homogeneous coordi-

Hyperbolic rotations 
and velocity boosts 

nates is determined, as it was in traditional coordinates, by the 
equation of the light cone, 

X6 - X~ - ~ - ~ = c2t2 - ~ - i - z2 = O. 

Hence Q(X) = x6 - ~ - ~ - ~ (and Q(X) has the dimensions of 
meters2), so the Minkowski inner product matrix is the familiar 

(
1 0 0 0) o -1 0 0 

h,3 = 0 0 -1 0' 

o 0 0-1 

and its entries are all dimensionless. With this inner product the 
4-speed also has the right units: 

11'111 = -JV . V = Jc 2 - v2 = cJ1 - (v/c)2 m/sec. 

Hyperbolic rotations are those linear transformations M that 
leave the Minkowski inner product invariant: Mth,3M = h,3. 
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Since h,3 is unchanged when we switch from traditional to di­
mensionally homogeneous coordinates, hyperbolic rotation by u 
hyperbolic radians in a (1 + I)-dimensional spacetime (where we 
use II, 1) is likewise unchanged: 

H _ (COSh U sinh u) 
u - sinh U cosh U • 

Suppose Hu : G --+ R, where G and R have dimensionally homo­
geneous coordinates. Let us derive the connection between the 
hyperbolic angle u and G's velocity v relative to R. That velocity 
is 

fl.z fl.x3 fl.XO fl.x3 
v=-=--=c-. 

fl. t fl.xo fl. t fl.xo 

R------.~~----

G 

The fraction fl.x3/ fl.xo is the slope of G's worldline in R. That 
worldline contains the event 

( fl.xo) (COSh U sinh u) (1) (COSh u) 
fl.x3 - sinh U cosh U 0 - sinh U ' 

so we can take fl.x3/ fl.xo = sinh u/ cosh u = tanh u. Hence v = 
c tanh u. Incidentally, since v = tanh u in geometric units and 
tanh u is dimensionless, our method for converting expressions 
already dictates that we attach a factor of c to tanh u to get v in 
conventional units. From here it is possible to see that the velocity 
boost corresponding to Hu is 

B _ 1 (1 VIc) 
v - ./1 _ (v/c)2 vic 1 . 

The time dilation factor fl.t/ fl.-c that relates the proper times 
of Rand G emerges when we apply the velocity boost Bv to the 

Time dilation 
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Proper 4-velocity 

Summary data 

event (~o, ~3) = (cLh, 0): 

( xo) (Cl1t) 1 (1 Vjc) (cl11') cl11' (1) 
* - * - Jl - (vjc)2 vjc 1 . 0 - Jl - (vjc)2 * ' 

time dilation factor: 
I1t 

111' 
1 

VI - (vjc)2 

Because of the connection between t and l' provided by time 
dilation, we can regard G's position vector X in R as a function of 
G's proper time 1'. This then gives us a second covariant way to 
describe G's velocity, as the rate of change of X with respect to 1': 

I1X I1X I1t 1 1 
V= -- = --- = V= (e,v). 111' I1t 111' Jl - (vjc)2 Jl - (vjc)2 

We call this the proper 4-velocity of G in R. Note that the norm 
of proper 4-velocity is always c: 

IIVII= IIVII 
Jl - (vjc)2 

..Je2 - v2 

Jl - (vjc)2 

eJl - (vje)2 
-r-===::;:-=e. 
Jl - (vjc)2 

In traditional coordinates V is therefore a unit 4-vector. 
If /-t is G's proper mass, then its relativistic mass is m = 

/-tjvl - (vjc)2 in conventional units. This leads to a particularly 
simple and elegant formula for G's 4-momentum: 

/-t 
JP> = mV = V = /-tV. 

Jl - (vje)2 

By expressing JP> in terms of two manifestly covariant objects­
G's proper mass and proper 4-velocity - we see once again that 
4-momentum is covariant. 

Here is a summary of the data we have about an observer G 
whose proper mass is /-t and proper time is l' when viewed in R's 
(1 + 3)-dimensional spacetime with dimensionally homogeneous 
coordinates: 

4-position: X = (ct, x, y, z) = (ct, x), 

4-velocity: V = I1X = (c, I1x, l1y, I1Z) = (c, v), 
I1t I1t I1t I1t 
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4-speed: IIVII = Jc2 - v2 = cJl - (vjc)2, 

ilt 1 
-= , 
ilr Jl - (vjc)2 

time dilation : 

proper 4-velocity : 1U = ilX = il t ilX = 1 V 
ilr ilr ilt Jl - (vjc)2 ' 

f.1, 
lP' = mV = V = f.1,1U. 

Jl - (vjc)2 
4-momentum : 

Sometimes, the change from geometric to conventional units 
does more than alter the formulas; it can help clarify the physics. 
For example, in our discussion of the colliding trucks, we looked 
at the relativistic mass of a truck and noted that part of the 
mass was kinetic energy. However, since energy has dimensions 
mass x velocity2, mass and energy are dimensionally unequal 
in conventional units (though they are equal in geometric). It is 
therefore incorrect to say "part of the mass was kinetic energy!' 
But suppose we convert the original expression for mass into an 
energy in the usual way, by multiplying by the velocity-squared 
factor c2: 

JJ,C2 (1 v2 3 v4 ) E = = f.1,C 2 1 + -- + -- + ... 
Jl - (vjc)2 2 c2 8 c4 

2 12 3v4 
= f.1,c + - f.1,v + - - + .... 

2 8 c2 

y 

rest energy kinetic energy 

Now all the terms are energies, so the equation makes sense di­
mensionally. Since f.1, is the rest mass, we call f.1,C 2 the rest energy. 
Since the second term is the classical kinetic energy, and since all 
terms from the second onward are Ilkinetic" (because they involve 
v and thus concern motion), we refer to them collectively as the 
relativistic kinetic energy. Thus, in conventional terms we say 
that the combined rest energy of the two trucks is more than the 
sum of their individual rest energies; the excess is the kinetic 
energy they had when they were moving. If we call the entire 
expression E the total energy, then we see that total energy is 
conserved in the collision. 

Mass-to-energy 
conversion in 

conventional units 

Rest energy and 
kinetic energy 
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The 
energy-momentum 
vector 

Since relativistic mass is m = IL//I - (v/c)Z, total energy 
is E = mcz in conventional units. Therefore, we can write 4-
momentum in dimensionally homogeneous coordinates as 

JP>= (mc,p) = (~,p). 
For this reason JP> is often called the energy-momentum vector. 

Exercises 

1. Suppose p = Vz z; show that p = v(I + ~vz + ... ) ~ v when 
1- '3v 

v is small. 

2. (a) Show that if v = c tanh u, then cosh U = 1//1 - (v/c)z. 

(b) Determine sinh u in terms of v and show that the velocity 
boost Bv has the following form in dimensionally homoge­
neous coordinates: 

B _ 1 (1 VIc) 
v - /1 _ (v/c)Z vic 1 . 

3. In geometric units, successive boosts by the velocities v and 
w is a single boost of velocity V = (v + w)/(I + vw). Find the 
formula for V in conventional units. 

4. Let dimensionally homogeneous coordinates for the event E = 
(t, x, y, z) be defined using the alternative approach where 

X = (t, x/c, y/c, z/c) seconds. 

Determine the 4-velocity V = I::1X/l::1t, the Minkowski norm, 
the 4-speed, the proper 4-velocity, and the 4-momentum. How 
do these compare to the same quantities constructed with the 
dimensionally homogeneous coordinates X = (ct, x, y, z)? 

It is a relatively common practice to continue to use tradi­
tional coordinates (t, x, y, z) after converting from geometric to 
conventional units. This means that the components of 4-vectors 
have different dimensions; for example, 

X = (t sec,xm,y m,zm). 
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In the remaining exercises use conventional units with traditional 
coordinates. 

5. (a) Following the rules for converting any expression from 
geometric to conventional units, obtain the following for­
mula for hyperbolic rotation Hu : G -+ R in a (1 + 1)­
dimensional spacetime: 

H _ (COShU ~ sinhU) 
u - C , 

c sinh U cosh U 
(t) = ( c~sh U ~ sinh u) (r) . 

z c smhu coshu ~ 

(b) Determine the relation between u and G's velocity v rela­
tive to R. 

(c) Obtain the formula for the velocity boost Bv that corre­
sponds to Hu. 

6. (a) Define the Minkowski quadratic form Q(X) so that it has 
the dimensions seconds2. 

(b) Write the Minkowski inner product matrix h3 that corre­
sponds to this choice of Q(X). What are the dimensions 
of the components of h3? In particular, are the dimen­
sions all the same or do they depend on the component 
considered? 

(c) Derive the formula for Hu in Exercise 5 directly from the 
relation 

hI = (1 01) . o --
c2 

7. (a) Using the conventional form of Bv : Cr,~) -+ Ct, z) from 
Exercise 5, calculate the velocity boost Bv when v = 30 
meters per second (and c = 3 X 108 m/sec). 

(b) Calculate the Galilean shear Sv : Cr, ~) -+ Ct, z) in conven­
tional units when v = 30 m/ sec. Compare the matrices Bv 
and Sv and show that Bv -+ Sv if c -+ 00. 
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3.2 Curves and Curvature 

Parametrized Curves and Arc Length 

Bodies that move under the influence of forces experience 
acceleration-that is, changes in velocity. Since velocity is, in 
the simplest circumstances, the slope of a world1ine, this chang­
ing slope means that the world1ine will be curved. Thus, to 
deal with forces and accelerations, we must use the differential 
geometry of curves that is developed in multivariable calculus. 

A parametrized curve Let us first consider curves in the ordinary Euclidean plane. 

The tangent vector 

We start with a parametrized path, which is a smooth map of a 
closed interval to the plane: 

a q b 
a 

x: q f-+ x(q) = (x(q) , y(q)). 

.. 
q 

x - x 

As q moves from a to b, the point x(q) traces out a path in the plane. 
We can think of q as providing a Ilcoordinate" that allows us to label 
points along the path. For this reason q is called a parameter; the 
word comes from para- C'beside") and meter C1measure"). 

The parametrization is smooth, which means that we can 
calculate derivatives of x(q) of all orders. The first derivative 
dx/dq = x'(q) = (x'(q), y'(q)) is a vector tangent to the path at the 
point x(q), at least when x'(q) i= O. If we think of q as a time vari­
able, then dx/ dq gives the rate of change of position with respect 
to time and is thus a velocity, called the tangent velocity vector 
of the curve. 
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The tangent vector gives us valuable information. Consider 
the image under x of a small segment [qO, qo + ~q] ofthe interval 
[a, b]. According to Taylor's theorem, 

x(qO + ~q) ~ x(qo) + x' (qo)~q. 

If x' (qo) #- 0, then the point x(qO + ~q) will be very near the 
continuation of x(qo) a distance of II x' (qo) II ~q along the tangent 
vector. In particular, the map x will be one-to-one in a sufficiently 
small neighborhood of qo. 

By contrast, if x'(qo) = 0, then x may fail to be one-to-one 
on any neighborhood of qo. Here is an example to illustrate. Let 
x(q) = (q2, q2) for -e :::: q :::: e, where e is any positive number. 
Notice that x'(q) = (2q,2q), so x'(O) = 0. In fact, x behaves in 
a singular way when q = 0: The interval [-e, e] is folded dou­
ble there, and is then mapped two-to-one onto the straight-line 
segment in R2 from (0,0) to (e2 , e2 ). 

-e e 
: o II 

q 

x -
y 

x 

1b ensure that our parametrizations x(q) are locally one-to­
one (that is, one-to-one on a sufficiently small neighborhood of 
each point), we henceforth require that Ilx' (q) II > 0 for all q in 
[a, b]. We say then that x is nonsingular. This is usually not 
a severe limitation, because a given path has infinitely many 
different parametrizations; they differ from one another in the 
speed with which the parameter moves along the curve. For ex­
ample, any function f(q) that maps [a, b] onto [0,1] can be used 
to parametrize the straight line segment from (0, 0) to (1, 1) in the 
plane: Just let x(q) = (f(q), f(q)). If f'(q) #- 0 on [a, b], then x(q) 
satisfies our new criterion. A more interesting example is the unit 
circle. Besides the familiar x(q) = (cos(aq), sin(aq)), in which the 
parameter moves around the circle with constant speed II x' II = a, 

Singular 
parametrizations 

Require x to be 
nonsingular (1Ix'll > 0) 
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/).q 

II x' II isa 
local stretch factor 

Arc length of 
an entire curve 

there is 

( 2q 1 _ q2) 
X(q) = 1 + q2' 1 + q2 ' -00 < q < 00. 

This maps the entire real line in a one-to-one fashion to the circle 
minus the point (x, y) = (0, -1). The parameter moves clockwise 

-q nonuniformly around the circle and has its greatest speed IIX'II 
whenq=O. 

Let us return to the image of the interval [qO, qo + ~q] by the 
map x. Since x' (qo) 1= 0, the equation 

x(qO + ~q) ~ x(qo) + x' (qo)~q 

tells us that the straight-line distance II ~xll = IIx(qo + ~q) - x(qo) II 
between x(qo) and x(qO + ~q) is well approximated by the length 
IIx'(qo)lI~q of the vector x'(qo)~q. Furthermore, if ~q is suffi-
ciently small, this length is a good approximation to the length of 
the curved arc from x(qo) to x(qO + ~q) along the curve itself. 

Since the original segment [qO, qo+~q] on the q-axis has length 
~q, and since its image has approximate length II x' (qo) II ~q on 
the curve, we can say that the segment is stretched by the ap­
proximate factor IIx'(qo)1I as it is mapped to the curve. (As we did 
with eigenvalues, we understand "stretch" to be a compression 
when IIx'(qo)1I < 1.) Short segments near a different point ql are 
stretched by IIx'(ql)11. so the "stretch factor" varies from point to 
point. We say that 1Ix'(q)1I is the local stretch factor for the map x 
near the point q. 

1b measure the length of the entire curve C, we partition the 
interval [a, b], 

a = ql < q2 < ... < qn < qn+l = b, 

in such a way that each segment ~qj = qj+ 1 - qj is small enough 
for 

IIx(%+l) - x(qj) II ~ IIx'(qj)lI~qj 

to be a good approximation. Then the length of the entire curve 
is approximately 

n 

L IIx'(%)II~qj. 
j=l 
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This is a Riemann sum; as the partition a = ql < ... < qn+1 = b 
becomes finer and finer while n -+ 00, the sum approaches the 
integral 

lb Ilx' (q) II dq. 

We summarize these findings in the following definition. 

Definition 3.1 Let x : [a, b] -+ R2 be a parametrization of a 
curve C. Then the arc length of C is 

Lx = lb Ilx' (q) II dq. 

Arc length depends on the parametrization chosen, and it is 
not obvious that the arc lengths computed from two different 
parametrizations of the same path must agree. In fact, there is 
a pitfall here. Consider these two parametrizations of the unit 
circle: 

x(q) = (cos(q), sin(q)), X(Q) = (cos(2Q), sin(2Q)), 

both defined on [0, 2n]. Then Lx = 2n but Lx = 4n. Although 
both maps are locally one-to-one, X is globally two-to-one, so Lx 
is twice the true circumference because X goes twice around the 
circle. If we avoid this pitfall, then arc length is independent of 
the parametrization, as the following theorem asserts. 

Theorem 3.1 Suppose x(q), a ::; q ::; b, and X(Q), A ::; Q ::; B, 
are one-to-one parametrizations of the same curve C. Then the two 
parametrizations give the same value for the length of C: Lx = Lx. 

PROOF: Th be definite, let us suppose x(a) = X(A) (rather than 
x(a) = X(B), which would mean that the parameters traverse C in 
opposite directions). The crucial step in the proof is to construct 
the smooth function Q = cp(q) that makes the diagram on the 
following page commutative: x(q) = X(cp(q)). In fact, since X is 
one-to-one, it has an inverse X-I defined on the curve, so we can 
take cp(q) = X-I (x(q)) , or x(q) = X(cp(q)). If cp is smooth, then 
x'(q) = X'(cp(q))cp'(q) by the chain rule, so 
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a 

A 
: 

b 
Y x(b) = X(B) 

q 
a : iii X 

\cp 
............... 

X(q) =X(Q) 

X X 

Q B ~ 
: : • X-I 

IIx(q) II dq = II X' (cp (q)) II Icp'(q) I dq = II X' (cp (q)) II cp'(q) dq 

= 1Ix'(Q) II dQ. 

The second equality in the sequence holds because cp is an in­
creasing function of q, so qJ'(q) ::: 0 and IqJ'(q)1 = qJ'(q). Finally, 
since qJ(a) = A, cp(b) = B, the formula for the change of variable 
in an integral gives 

Lx = lb Ilx'(q)II dq = iB 
1Ix'(Q)II dQ = Lx, 

so the two parametrizations produce the same value for the length 
of the curve. 

The key to finishing the proof is to show that the inverse 
X-I is differentiable on C, for then qJ(q) = X-I(x(q)) will be 
differentiable, by the chain rule. The arguments are technical 
and not essential for the material that follows, so you can skip 
them without loss of understanding. 

Suppose, for the moment, that we already knew that X-I was 
differentiable and we wanted to know what form the derivative 
had. If we write X(Q) = (X(Q), Y(Q)), then the fact that X-I is 
the inverse of X implies 

Q = X-I (X(Q)) = X-I (X(Q) , Y(Q)). 

In particular, X-I is defined on a subset of R 2, so its derivative is 
given by the gradient vector 

( aX-I aX-I) 
V'x-I(X, Y) = ax' 8Y . 

Furthermore, since X-I is defined only along the curve, it is 
reasonable to conjecture that the gradient V'X- I points in the di­
rection of the curve. The tangent vector X' specifies this direction, 
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SO Y'X-I must be a multiple of X' : 

Y'X-I (X(Q» = m(Q)X' (Q), 

for some function m(Q). If we now differentiate the equation 
Q = X-I(X(Q» with respect to Q using the multivariable chain 
rule, we get 

dQ ax- I dX ax- I dY 
1 = -- = ---- + ---- = Y'X-I(X(Q»' X(Q). 

dQ ax dQ ay dQ 

But since Y'X-I (X( Q» = m( Q)X' (Q), we now have 

1 = m(Q)X'(Q)' X'(Q) = m(Q)IIX'(Q)11 2. 

Since IIX'(Q)II > 0 for all Q, we can solve for m(Q): m(Q) 
1/ II X' (Q) 112. Thus, if X-I is differentiable, its derivative ought to 
be 

1 
Y'X-I(X(Q» = IIX'(Q)1I2X'(Q). 

1b prove that X-I is indeed differentiable, let 

r(~P) = X-I (P + ~P) - X-I (~P) - Y'X-I (P) . ~P, 

where the gradient VX-I has the form we just deduced. Then, by 
definition, X-I is differentiable at P, and its derivative is Y'X-I , if 

r(~P) 
-- -+ 0 as ~P -+ o. 
II~PII 

1b calculate r(~P) we make use of the fact the X is a one-to-one 
map onto the curve; thus there are unique values Q and Q + ~Q 
for which 

P = X(Q) and P+ ~P = X(Q+ ~Q), 

and ~P -+ 0 if and only if ~Q -+ O. Thus 

1 
r(~P) = Q + ~Q - Q - Y'X-I(X(Q»' ~P = ~Q - IIX'(Q)1I2X'(Q)' ~P. 

Since X is differentiable at Q, Taylor's theorem implies that when 
we write 

~P = X(Q + ~Q) - X(Q) = X' (Q)~Q + R(~Q), 
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it follows that 
R(~Q) 
-I-~-Q-I ---+ 0 as ~ Q ---+ O. 

So if we take ~P = X'(Q)~Q + R(~Q), then r(~P) reduces to 

r(~P) = ~Q - IIX'(~)IIZX'(Q)' (X'(Q)~Q + R(~Q)) 

= ~Q - IIX'(~)IIZ (x'(Q). X'(Q)~Q + X'(Q). R(~Q)) 
X'(Q)· R(~Q) 

=----,,---
IIX'(Q)liZ . 

Th see what happens when we divide this by II ~PII, first note that 

II~PII = IIX'(Q)~Q+R(~Q)II = IIX'(Q) ~Q + R(~) II 
I~QI I~QI I~QI I~QI 

= II±X'(Q) + ~~~) 11---+ IIX'(Q)II as ~Q ---+ O. 

Thus 

r(~P) r(~P) I~QI 1 [, R(~Q)] I~QI 
II~PII = I~QI II~PII = -IIX'(Q)IIZ X (Q). I~QI II~PII' 

Since tlP ---+ 0 if and only if ~Q ---+ 0, 

lim r(~P) = _ 1 [x'(Q)' (lim R(~Q))] lim I~QI 
~p~o II~PII II X, (Q)liZ ~Q~O I~QI ~Q~O II~PII 

X'(Q)·O 1 
- -0 
- -IIX'(Q)IIZ IIX'(Q)II - . 

This completes the proof that X-I is differentiable. We have also 
proven that the derivative is 

1 
VX-I(X(Q)) = IIX'(Q) liZ X'(Q) , 

independently of the conjecture we made earlier about the form 
that it must take. END OF PROOF 

Definition 3.2 Let x: [a, b] ---+ R Z be a parametrization of a curve 
C. Then the arc-length function on C is 

seq) = l q IIx' (q) II dq. 
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Note that s(a) = 0 and s(b) = L, the arc length of C. If we 
write x(q) = (x(q), y(q)), we have another way to express the arc­
length function that suggests a more direct connection with the 
Pythagorean theorem: 

s(q) = l q 
ds = l q J dx2 + dy2. 

1b see how this follows from the definition, first obtain the deriva­
tive 5' (q). By the fundamental theorem of calculus this is just the 
integrand of the integral that defines 5: 

The differential ds is therefore 

d,= ((:r + (:r)'~q = Jdx' +dy', 

and the integral form follows. 
Every curve C has a special parametrization y(s) that uses arc 

length 5 itself as the parameter. What makes y special is that it is 
a unit speed parametrization: lIy'(s)1I == Ii thus the point y(s) will 
be exactly 5 units from the beginning of the curve. 

We will use the original map x to construct Yi the idea is to 
alter the speed of the parameter. Since s'(q) = IIx'(q)II and since 
IIx'(q)II > 0, it follows that s'(q) > o. Thus 5 : [a, b] ~ [0, L] 
is a smooth monotone increasing function and therefore has a 
smooth inverse. Let q = <p(s) be the inverse of 5 = s(q). Then 

d<p 1 1 

ds ds/dq Ilx'(q)II 

s 

L ................................ : s= s(q) 

o 
b a q 

1 
---->0. 
II x' (<p (5)) II 

q 

b················· q = q>(s) 

a 

o s 

y 

x 

Arc-length 
parametrization 
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Example: arc length 
of an ellipse 

y 
b 

a x 

Elliptic integrals 

The function q = cp(s) gives us the speed-altered parameter that 
we need. Define y(s) = x(cp(s» as in the diagram below. Then y 
has the same image as x. Moreover, by the chain rule, 

, dy dx dcp x' (q) 
Y (5) = - = -- = , 

ds dq ds Ilx'(q)II 

so 1Iy' (5) II = 1 for all 5 in [0, L]. 

<p(s) b Y x(b) a q x : c : III --- X(<p~Y(L) 

/({J -y x(a) y(s) 
y(O) 

-: : : • 0 s L s 
x 

Let us construct the arc-length parametrization of the ellipse 

x2 y2 
a2 + b2 = 1, 0< b < a. 

We can start with x(q) = (a sin q, bcosq). The parameter runs 
clockwise around the ellipse, and the parameter origin q = 0 is 
on the positive y-axis. The arc-length function is 

s(q) = fo q II x' (q) II dq = fo q J a2 cos2 q + b2 sin2 q dq 

= fo q J a2 (1 - sin2 q) + b2 sin2 q dq = a fo q J~1---k-2-s-in-2-q dq, 

where k = J a2 - b2 / a and 0 < k < 1. (Ellipses have different 
proportions, and k is an index, or modulus, of shape. If k = 0, then 
a = b, so the ellipse would be a circle. As k increases, the ellipse 
deviates more and more from a circular shape; for this reason k 
is called the eccentricity of the ellipse.) 

The integral s(q) is not one ofthe elementary function of calcu­
lus. However, it appears frequently, along with similar integrals, 
in a great variety of important problems-for example, in the 
motion of a pendulum. Such integrals are known collectively as 
elliptic integrals; they get their name from the problem we are 
considering now. Elliptic integrals and their inverses-which are 
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called elliptic functions-have been studied extensively since the 
eighteenth century. Their values are given in tables and, more 
recently, by computer algebra systems. 

The inverse q = q;(s) gives us the arc length parametrization 
y(s) = x(q;(s)). This is plotted below for a = 6, b = 4. As you can 
see, the arc length of a quarter-cycle is just slightly less than 8 
units; the total length of a complete cycle is about 31.73 units. 

y 

24 8 X 
8 

Curvature of a Curve 

Intuitively, curvature is the rate at which a curve changes di­
rection, that is, the rate at which its tangent vector changes­
assuming, of course, that we move along the curve at a steady 
speed. We can shape these ideas into a precise definition. 

small change in direction ~ 
small curvature ---....:: '\ ~o--~ 

c 
-~ 

\ large change in direction 
large curvature 

Definition 3.3 Let y(s) be the arc-length parametrization of the 
curve C. Then we define: 

Curvature is a rate 
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Example 

unit tangent vector along C : 

curvature vector along C : 

curvature at s : 

dy 
u(s) =-; 

ds 

du d2y 
k(s) = as = ds2; 

K(S) = Ilk(s)lI. 

Theorem 3.2 k(s) ~ u(s) at every point s along C. 

PROOF: Since u(s) is a unit vector, 1 = u(s) . u(s) for all s in [0, L]. 
Therefore, 

d du du 
0= -Cues) . u(s» = - . u + u· - = 2k· u for all s, 

ds ds ds 

so k(s) ~ u(s), as claimed. END OF PROOF 

1b get a better idea of what k tells us about a curve, let us look 
at an example that we understand well-a circle of radius r: 

x(q) = r(cos(q), sin(q», x' (q) = r( - sin(q), cos(q». 

1b get a complete circle, we take 0 ~ q ~ 2n. The parameter 
speed is II x' (q) II = r, so the arc length function is 

s= foqrdq=rq, 

and the speed correction is q = cp(s) = sj r. Thus 

yes) = x(sjr) = r(cos(sjr), sin(sjr», 0 ~ s ~ 2nr, 

u(s) = (-sin(sjr), cos(sjr», 

1 1 
k(s) = --(cos(sjr), sin(sjr» = -zy(s), 

r r 
1 

K(S) = -. 
r 

Notice that the curvature vector k points toward the center of 
the circle, and the center itself is at yes) + ,zk(s). Because the 
curvature K is the reciprocal of the radius in this example, we 
make the following definitions for an arbitrary smooth curve C: 
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y 

Definition 3.4 The radius of curvature ofC at sis pes) = l/K(s). 
The center of curvature ofC at s is the point c(s) = yes) + p2(s)k(s). 

The center of curvature c(s) is itself a curve, called the evolute 
of C. However, s is not, in general, the arc-length parameter for 
c(s). 

A circle has constant curvature, and conversely, any curve of 
constant curvature is a (portion of a) circle. This is the content of 
the next theorem. 

Theorem 3.3 The arc-length parametrization of a curve of constant 
curvature K is yes) = (p COS(KS + w) + a, p sin(Ks + w) + b), where 
p = 11K. 

PROOF: Let yes) = (x(s) , yes»~ be the arc-length parametrization of 
the curve. Then 

lIu(s)1I = 1, (X)2 + (y')2 = 1, 

IIk(s) II = K, (x")2 + (y")2 = K2. 

The first condition implies that the point u(s) = (x'(s), y'(s» lies 
on a circle of radius I, for every s; hence there is a function ({J(s) 
for which 

x (s) = cos ({J(s) , y' (s) = sin ({J(s). 

Then x" (s) = -({J' sin ({J and y" (s) = ({J' cos ({J, so the condition on k 
gives us 
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Hence q;'(s) = K, q;(s) = KS+CUO, where CUo is a constant of integra­
tion. Thus 

i = COS(KS + cuo), 

1 . 
x = - sm(Ks + cuo) + a, 

K 

y' = sin(Ks + cuo), 

1 
Y = -- COS(KS + cuo) + b, 

K 

where a and b are constants of integration. The change of phase 
cu = CUo - 7f /2 gives 

1 
x = - COS(K S + cu) + a, 

K 

1 . 
Y = - sm(Ks + cu) + b. 

K 

This is a circle of radius p = 1/ K. The constants of integration­
which are arbitrary-determine the position of the center and the 
phase cu of the parameter origin S = O. END OF PROOF 

y 

Higher Dimensions 

Everything we have done carries over to higher dimensions. A 
parametrized curve in R n is a smooth map 

x : q 1-+ x(q) = (Xl (q), ... ,xn(q». 

The tangent vector to x(q) is x'(q). A given curve C can have 
different parametrizations x; the arc length of C is 

S(q) = l q
IIx'(q)lIdq = lqJdxr+· .. +dX~, L = s(b). 

When II x' (q) II > 0 for all qin [a, b], seq) is invertible. Ifwe write the 
inverse as q = q;(s), then we can make the following definitions 
for 0:::: s:::: L: 
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arc-length parametrization of c: yes) = x(cp(s», 

unit tangent vector along C: u(s) = y' (s), 

curvature vector along C: k(s) = u'(s) = y"(s), 

curvature at s: K(S) = Ilk(s)ll, 
radius of curvature at s: pes) = lIK(s), 

center of curvature at s: c(s) = yes) + p2(s)k(s). 

We will still have k(s) .1 u(s), but these two vectors can no longer 
form a basis at yes) if n > 2. 

In Section 5.4 we will take a further look at the curvature 
of a curve. We will prove there that curvature can be calculated 
directly from the original parametrization, as 

(x' . x')(x" . x") - (x' . x")2 
K= 

(x' . x')3 

without first obtaining the arc-length parametrization. 

Exercises 

1. For each of the following curves C : x(q), a :::: q :::: h, 

• obtain the formula for arc length s in terms of q: s = seq); 

• obtain the arc-length parametrization; 

• compute the curvature vector and the radius of curvature 
function; 

• make a sketch. 

(a) x(q)=(3q-2,4q+3), O::::q::::5. 

(b) x(q) = (3 cos 2q, 3 sin2q), 0:::: q :::: rr. 

(c) x(q) = (3 + cosq, 2 + sinq), 0:::: q:::: 2rr. 

(d) x(q) = (cos3 q, sin3 q), 0:::: q :::: rr/2. 

(e) x(q) = (~q3, h2), 0:::: q:::: 2. 

(f) x(q) = (eq cosq, eq sinq), 0:::: q:::: rr/2. 

2. (a) Sketch the tangent and acceleration vectors, X'(q) and 
X"(q), of the curve 

An alternative 
curvature formula 
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( 2q 1 _ q2) 
X(q) = 1 + q2' 1 + q2 ' -00 < q < 00, 

at the points q = -2, -1,0,1,2. (Recall that X is the cir­
cle of radius 1 centered at the origin.) Note the relation 
between the acceleration X" and the parameter speed at 
each of these points. Describe how X" (q) is related to X' (q) 
when the parameter point is "speeding up" and when it is 
"slowing down!' 

(b) Use the alternative curvature formula to show that the 
curvature of X is 1 everywhere. 

(c) Determine, directly from the formula, the arc-length func­
tion seq) of X. 

(d) Since X is a circle of radius 1, its total arc length is 2rr. 
Deduce this directly from seq). 

(e) Using the inverse q(s) of the arc-length function, construct 
the arc-length parametrization yes) = X(q(s». Indicate 
clearly the domain a < 5 < b. 

(f) Compute the curvature vector K(s) = yll (5) and compare 
it to the original acceleration vector X". 

3. Describe how the proof of Theorem 3.1 must be modified if 
x(a) = X(B) (so that ((J(q) is a decreasing function). 

4. Determine the circumference of each ofthe following ellipses: 

5. (a) Sketch the space curve xa(q) = (cosq, sinq, aq). Describe 
its shape in words, and describe what influence the param­
eter a ~ 0 has on the shape. In particular, indicate what 
happens to the shape when a -+ 0 and when a -+ 00. 

(b) Determine the arc-length function sa(q) for x and the in­
verse function qa(s). Use this to construct the arc-length 
parametrization Ya(s) = xa(q(s» and the curvature vector 
ka(s). 
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(c) Determine the curvature Ka two ways: from ka, and di­
rectly from Xa and its derivatives, using the alternative 
formula for the curvature. 

(d) Your calculation should make it evident that Ka is constant 
on a given curve (i.e., for a given a). Sketch Ka as a function 
of a for a 2: 0 and determine the limiting value of Ka as 
a ~ 00. Explain the connection between the shape of Xa 

and its curvature Ka. 

6. (a) The curve xa(q) = (eaq cos q, eaq sin q) is called an equian­
gular spiral because there is a constant angle between the 
tangent x~(q) and the "radius vector" xa(q). Prove this and 
determine the measure of the angle as a function of the 
parameter a. 

(b) Determine the arc length of xa(q) on the infinite interval 
-00 < q ~ 0, assuming a > O. 

7. (a) Show that the curve x(q) = (cos2 q, cos q sin q, sin q) lies on 
the unit sphere 

x2 +l+z2 =1. 

(b) Sketch x(q) over the interval -rr/2 ~ q ~ rr/2. At what 
point does it start; at what point does it end? For which 
values of the parameter q, if any, does it cross the equator 
(where z = O)? 

( c) In what direction is the curve heading at its starting point 
and at its ending point? Sketch these direction vectors on 
the curve. 

(d) Determine the length of the curve. (Note: You can do this 
either as a numerical integration or as an elliptic integral.) 

3.3 Accelerated Motion 

Worldcurves and Proper Time 

We are now ready to consiq.er the motion of an accelerated ob­
server G in an inertial frame R. The worldline of G will, in general, 
be curved. If G's spatial position at time t is given by the smooth 

Worldlines as 
graphs of motion 
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3-vector function x(t) = (x(t), yet), z(t)), then G's worldline is the 
graph of x in R's spacetime. This is a special kind of parametrized 
curve in which the first component is just the parameter: 

X(t) = (t, x(t), yet), z(t)). 

The velocity 4-vector has the special form 

Vet) = X' (t) = (1, x' (t), y' (t), z' (t)) = (1, vet)). 

In fact, this is a future vector, as the following argument shows. 
The velocity limitation requires v2 (t) = IIv(t)11 2 < 1 for all t, so 
Q(V(t)) = 1 - v2(t) > O. Thus Vet) is timelikei it is a future vector 
because its first component is a positive number. 

Worldlines as But G's worldline may not be given simply as a graph, even 
parametrized curves if we restrict ourselves to a (1 + I)-dimensional spacetime. For 

example, suppose C : (T, Z) is another inertial frame related to R 
by the hyperbolic rotation Hu : R ~ C. If G's worldline in R is the 
graph X(t) = (t, z(t)), then in C it becomes 

...... Wet) .. {T(t) = t cosh u + z(t) sinh u, 
X(t) = Hu(X(t)), h 

Z(t) = t sinh u + z(t) cosh u. 

This is not in the simple form Z = Z(T), so i is not given as 
a graph. However, it is a parametrized curvei t is the parameter. 
Furthermore, since X' (t) is a future vector and Hu preserves future 
vectors, i'(t) = Hu(X'(t)) is also a future vector. In other words, 
C still sees G moving steadily into the future. These observations 
lead to the following definitions. 

Definition 3.5 A worldcu.rve G is a set of events in spacetime that 
can be described in any inertial frame R by a smooth parametrized 

curve 

X: [a, b] ~ R, q 1-+ X(q) = (t(q), x(q) , y(q), z(q)) , 

in which X' (q) is a future vector; for every q in [a, b]. 

Since X' (q) is a future vector, X is nonsingular. That is, it 
satisfies the technical requirement II~'II > 0 that we imposed on 
parametrized curves to make them locally one-to-one. In fact, the 
following proposition shows that worldcurves are globally one-to­
one. 
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Proposition 3.3 If X(q) = (t(q), x(q), y(q), z(q» parametrizes the 
worldcurve G, then t(q) is a strictly monotonic increasing function. 
Consequently, X(q) is globally one-to-one. 

PROOF: Since X'(q) = (t'(q) , x'(q) , y'(q), i(q» is a future timelike 
vector, 

t'(q) > J(x'(q»2 + (y'(q»2 + (z'(q»2 ~ o. 
Thus the slope of the graph of t(q) is positive everywhere, so t(q) 
is strictly monotonic increasing. This means that if q1 < q2, then 
t(q1) < t(q2). In particular, X(q1) ¥= X(q2), so different parameter 
values can never be mapped to the same point by X. END OF PROOF 

At the heart of special relativity is the observation that ob­
servers in motion relative to one another measure time differ­
ently. When G moves uniformly in R's frame, elapsed proper 
time for G is given by the Minkowski-Pythagorean theorem (The­
orem 2.9) along G's straight worldcurve: 

~r = J ~t2 - (~x2 + ~y2 + ~z2). 

Proper time 

z 

G 
R --+---------

Now that we permit G to move nonuniformly in R's frame, how t 
should R measure elapsed proper time along G's worldcurve? 

Proper time in relativity corresponds to arc length in Eu­
clidean geometry, and arc length along a curve is the integral 
of the differential ds = J dx2 + dy2 + dz2. This suggests that we 
turn to the differential form of ~ r: 

dr = J dt2 - (dx2 + dy2 + dz2). 

z 

G 

Then, if E1 and E2 are two events on the worldcurve G, and R R -+----_ 
t parametrizes Gas X(q), with X(qj) = Ej, i = 1,2, the proper-time 

interval between E1 and E2 is 

~r = f E
2 dr = l q2 J dt2 - (dx2 + dy2 + dz2) 

lEI ql 
z 

G 

R--+-----
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As the following theorem shows, elapsed proper time defined this 
way is physically meaningful; that is, it has the same value in all 
inertial frames. 

Theorem 3.4 Let Rand C be two inertial frames, and suppose G 
has the parametrization X(q) in Rand X(Q) in C. Suppose also that 
Ej = X(qj) = X(Qj), i = 1,2. Then 

G 

G~f 

/ \ 
G z 

Q 
R -----+-----+- t C -----+-----+- T 

PROOF: This is essentially the same as Theorem 3.l. Its proof is 
left to the exercises. 

Definition 3.6 If X(q) = (t(q), x(q) , y(q), z(q)), a ::: q ::: b, is a 
worldcurve G in R, then the proper-time parameter on G is the 
function 

r(q) = l q 
IIX'(q) II dq = l q 

Jt'(q)2 - (x'(q)2 + y'(q)2 +z'(q)2) dq. 

Ifwe use this function, then the elapsed time between two events 
X(ql) and X(q2) on G's worldcurve is just ~r = r(q2) - r(q}). 

Theorem 3.5 In an inertial frame R, any worldcurve G can be 
parametrized by proper time r. In the proper-time parametrization 
G(r), velocity is a unit 4-vector: IIG'(r)1I == l. 
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PROOF: This is entirely analogous to the theorem about the arc­
length parametrization of a Euclidean curve. Suppose we obtain 
the proper time on G from the parametrization X(q): 

r(q) = lq IIX'(q)II dq. 

Since dr/dq = IIX'(q)1I > 0, the function r = r(q) is invertible. 
Let q = q>(r) be the inverse, and set G(r) = X(q>(r». This is the 
proper-time parametrization, and the following calculation shows 
that IIG'(r)1I == 1: 

dG dX dq> dX 1 X' 
-=---=---=--; 
dr dq dr dq dr/dq IIX'II Il dGII=~==l dr IIX'II . 

END OF PROOF 

We construct the proper-time parametrization when G oscil­
lates sinusoidally on the z-axis. In our first attempt, the compu­
tations are simple but involve a worldcurve on which G attains 
the speed of light momentarily in each oscillation. The second 
attempt removes this defect but at the cost of complicating the 
computations. 

Let G's worldcurve be the graph of z = 1 - cos t: X(t) = (t, 1 -
cost). ThenX'(t) = (l,sint) and IIX'(t)1I = Jl-sin2 t = I cost!, 
so G's speed is less than 1 except when t = (2n + 1)rr/2, n an 
integer (at the points marked). A complete cycle consists of four 
portions, each congruent to the segment 0 ~ t ~ rr /2. If we 
restrict ourselves to this interval, then II X' (t) II = cos t, and the 
proper-time function is 

ret) = lot IIX'(t)II dt = lot costdt = sint, 0 ~ t ~ rr/2. 

The inverse function is t = q>(r) = arcsin r, 0 ~ r ~ I, so the 
proper-time parametrization is 

Examples: proper time 
for oscillatory motion 

Example 1 
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z 

Example 2 

G(r) = X(arcsin r) = (arcsin r, 1 - cos (arcsin r)) 

= (arcsin r, 1 - ~). 

Note how proper time varies along G(r) in the figure below. We 
have placed ticks every 0.1 seconds along both G's worldcurve and 
the t-axis (which is R's worldline). For comparison, we also show 
how proper time is marked along worldline segments at three 
fixed velocities. We have also taken the pattern that appears for 
o :::: r :::: 1 on G and reflected it symmetrically to the interval 
1 :::: r :::: 2. Notice that proper-time intervals for the two observers 
are nearly the same when G's speed is small, but they become 
very different when G's speed is large. 

2 ........ _ ......... r 1 v=.8 

o 

2 3 4 5 t 

In the larger scale picture below, we see that a full cycle take 
4 seconds according to G but 2rr ~ 6~ seconds according to R. 
Thus, on average, G's clock runs at only about two-thirds the rate 
ofR's. 

Th reduce G's top speed, we can just "scale back" the entire 
motion by a factor k < 1. That is, let G move along the curve 
z = k(l - cos t); then G accelerates only to k times the speed of 
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light before decelerating. The initial parametrization is X(t) = 
(t, k(l- cos t», and II X' (t) II = .Jl - k2 sin2 t. We can now see how 
k complicates things: The proper-time function 

ret) = lot Jl - k2 sin2 t dt 

becomes an elliptic integral-exactly the same sort we encoun­
tered in calculating the Euclidean arc length of an ellipse. If 
t = fP(r) denotes its inverse, then the proper-time parametriza­
tion takes the form 

G(r) = (fP(r), k(l - cosfP(r»). 

In the following plot of G(r) we have taken k = 0.8. You can 
see that there is still considerable time expansion at the steepest 
part of the worldcurve, where v ~ 0.8, but not as much as in the 
first example. 

z 

2 3 

A complete cycle now takes slightly more than 5 seconds accord­
ing to G. According to R, it still takes 2n seconds. On average, G's 
clock runs at about five-sixths the rate of R's. 

Imagine G and R in the second example are twins, and that 
the time unit is a year rather than a second. Imagine also that G 

The moving twin 
ages less 
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The paradox 

leaves R on a spaceship that accelerates to 80 % of the speed of 
light before turning around and returning. During one complete 
journey, R ages about /).t = 6~ years. But G ages only about 
/).r = 5 years. The twins are no longer the same age! This is a 
real physical difference: Even the atoms in G's body have gone 
through fewer oscillations than those in R's. 

G ages less because G moves. However, we know that mo­
tion is relative, so why don't we reverse the roles of G and R? If 
we view everything in G's frame, then R will age less. This is a 
paradox: From apparently equally valid assumptions, we reach 
contradictory conclusions. The paradox vanishes once we realize 
that the apparent symmetry between G and R is an illusion: G 
accelerates and R does not. Therefore, R has an inertial frame 
but G does not. In special relativity we still restrict our analysis 
to inertial frames, so we cannot interchange Rand G; there is no 
symmetry. 

The following theorem shows that the twin paradox is not 
limited to our example. Elapsed proper time along any worldcurve 
connecting two events is less than along the straight worldline 
connecting those events. Incidentally, the twin paradox is just 
the continuous version of the reverse triangle inequality. 

Theorem 3.6 t'IWin paradox") Suppose the separation between two 
events 0 and E is timelike. Then, among all worldcurves joining 0 
and E, the straight worldline has the longest elapsed proper time. 

PROOF: Because the separation between 0 and E is timelike, we 
can choose an inertial frame R : (t, x, y, z) in which these events 
are on the t-axis at 0 : (0,0,0,0) and E : (t, 0, 0, 0). This is 
the straight worldline, and t is the proper-time parameter. The 
elapsed proper time between 0 and E is just t. 

z 

o 
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Suppose G is another worldcurve connecting 0 and E, and sup­
pose the elapsed proper time fl r between 0 and E along Gis 'f. Let 
G(r) = (t(r), x(r), y(r), z(r» be the proper-time parametrization 
of Gin R's frame; then 

( dt)2 (dx)2 (dy )2 (dz)2 (dt)2 
1 = IIG'(r)1I 2 = dr - dr - dr - dr ~ dr ' 

and the i.nequality is strict at any point where G'S velocity is 
nonzero. Thus 

'f = {f" dr < {f" dt dr = {t dt = t; 
10 10 dr 10 

the key step is the change of variable r 1-+ t in the integration 
and the changes 0 1-+ 0 and 'f 1-+ t to the limits of integration. 

END OF PROOF 

Newton's Second Law 

Suppose G is an observer with proper mass J-L and proper time 
r. In any inertial frame R : (t, x, y, z) we have the following data 
associated with G: 

worldcurve of G: G(r), 

proper 4-velocity of G: 1U (r) = G' (r), 

4-momentum of G: JP'(r) = JL1U(r), 

4-acceleration of G: A( r) = 1U' (r) = G" (r). 

Keep in mind the similarities between worldcurves in spacetime 
and ordinary curves in Euclidean space. Proper 4-velocity 1U = 
G' corresponds to the unit-speed tangent vector u = y' and 4-
acceleration A = G" to the curvature vector k = y". We can also 
introduce the scalar acceleration a(r) = IIA(r)11 to correspond to 
the curvature function K(S). 

If we write G(r) = (t(r), x(r», then 

( dt dX) (dt dx dt) dt 
1U(r) = dr' dr = dr' dt dr = dr (1, v), 

1 == 111U(r)1I 2 = (::) 2 (1 _ Ilvll2) = (::) 2 (1 _ v2). 
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Local time dilation 

4-momentum 

IF= /-LA 

Therefore, 

dt 1 

d.,; Jl - v2 
and 

1 
1IJ(.,;) = .J1=V2(I, v). 

1 -v2 

The derivative dt/d.,; tells us the rate of change of local time t 
with respect to proper time.,; and is thus the smooth analogue of 
the time dilation factor !l. t / !l. .,;. We call it the local time dilation 
factor to emphasize that it varies from point to point along G's 
worldcurve. 

The 4-momentum vector JP>(.,;) = p,1IJ(.,;) has a norm that is 
constant and equal to G's rest mass: IIJP>(.,;)II == p,. Moreover, its 
components are mass and 3-momentum in their covariant, rela­
tivistic form: 

JP>(.,;) = h(1, v) = (h' h) = (m, mv) = (m, p). 
I-v2 I-v2 1-v2 

The various 4-vectors we have just defined are essentially the 
same as their linear counterparts summarized near the end of 
Section 3.1. We get new information, however, when we differen­
tiate JP>(.,;) with respect to .,;: 

dJP> dt dJP> dt (dm dP ) 1 (dm dP) 
d.,; = d.,; dt = d.,; at' dt = Jl - v2 at' dt . 

According to Newton's second law of motion, the classical 3-force 
vector acting on G is f = dp/dt. We write 

dJP> 1 (dm f) ( 1 dm f ) IF 
d.,; = Jl - v2 dt' = .J1=V2dt' Jl _ v2 = (.,;) 

to define the 4-vector IF. Since the 3-vector f/Jl - v2 that forms 
the last three components oflF is the covariant form ofthe 3-force 
on G, it is reasonable to calllF the 4-force acting on G. Then (by 
definition!) 

dJP> 
IF = - = p,A, 

d.,; 

the relativistic 4-vector form of Newton's second law. We have 
recovered the classical statement: Force equals mass times accel­
eration. 
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Theorem 3.7 A(1') ..L lU(1') and IF(1') ..L lU(1') at all points G(1') on 
G'S worldcurve. 

PROOF: Since A and lU are spacetime vectors, orthogonality is in 
the sense of Minkowski geometry. Differentiate 1 == lU(1') . lU(1') 
by the product rule to get 

dlU o == 2- . lU = 2A . lU, 
d1' 

so A ..L lU. Since IF = /-LA, IF ..L lU as well. END OF PROOF 

This corresponds to the result k(s) ..L u(s) for ordinary curves. 
Since the curvature function K(S) in geometry corresponds to the 
scalar acceleration function ex (1') here, we can expect that the size 
of ex will be reflected in the curvature of G's worldcurve. 

1b see what this means concretely, let us plot the acceleration 
4-vector of an observer G undergoing the oscillatory motion z = 
k(l - cos t). The proper-time parametrization of G's worldcurve is 

G(1') = (q>(1'), k(l - cosq>(1'»), 

where t = cp(1') is the inverse ofthe elliptic integral 

l' = it J1 - k2 sin2 t dt. 

Then A(1') = (q>", k(q>" sinq> + (q>')2 cosq»), and some further cal­
culations (see the exercises) show that 

k cos q>. k cos t . 
A(1') = k2 ' 2 2 (ksmq>, 1) = k2 ' 2 2 (ksmt, 1). 

(1 - sm q» (1 - sm t) 

The two forms are equivalent because t = q>(1'). However, if we 
use the second form, then we can plot the vectors directly on 
the curve z = k(1 - cos t). We do that in the figure below, which 
shows what it means for vectors to be everywhere orthogonal to 
the curve in the sense of the Minkowski inner product. Compare 
this with the figure in Section 2.3 that shows several pairs of 
Minkowski-orthogonal vectors. 

Example: oscillatory 
motion 
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Example: constant 
scalar acceleration 

nl2 3n12 21r: 

At first glance, it looks as if the acceleration 4-vector A may be 
discontinuous at t = Jr /2. However, a detailed view shows that 
this is not the case. 

z 

k 

.4n .5n .6n 

Moreover, the Minkowski norm IIAII = kl cos tl/(l - k2 sin2 t) is 
continuous everywhere and equals 0 when t = n /2. Note that the 
norm has this form because A is a spacelike 4-vector. 

In the example we have just considered, the scalar accelera­
tion a(r) = IIA(r) II varies periodically over time. Suppose instead 
that G is subjected to constant scalar acceleration in R's frame. 
How will G move then? 

Recall that scalar acceleration in Minkowski geometry corre­
sponds to curvature in Euclidean geometry. We have seen that 
a Euclidean plane curve of constant curvature is a portion of a 
circle, so it is natural to think that a worldcurve of constant accel­
eration will be a Minkowskian "circle"-that is, a hyperbola. This 
is established in the following theorem, whose proof carries over 
directly from the Euclidean analogue. 

Theorem 3.8 The proper-time parametrization of a worldcurve of 
constant nonzero acceleration a in a (1 + 1 )-dimensional spacetime 
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is 

G(r) = (~sinh(ar + rO) + to, ±~ cosh(ar + rO) + zo) . 

PROOF: IfG(r) = (t(r), z(r» is the proper-time parametrization of 
the worldcurve we seek, then 

111IJ(r)1I = 1, 

IIA(r)1I = a, 

(t')2 - (z')2 = 1, 

(z")2 _ (t")2 = a 2. 

The first condition implies that the point 1IJ(r) lies on the unit hy­
perbola in the future set F, for every r; hence there is a function 
I(r) for which 

t' (r) = cosh I (r), z' (r) = sinh I (r). 
Then t" (r) = I' sinh I and z" = I' cosh I, so the condition on A 
implies 

(1')2 = (z")2 _ (t")2 = a 2. 

Hence f' = ±a, I (r) = ±a(r + rl), where rl is a constant of 
integration. Thus 

t' = cosh(a(r + rl», :z! = ± sinh(a(r + r}», 
1 1 

t = - sinh(a(r + rl» + to z = ±- cosh(a(r + rl» + Zo 
a a 
1 1 

= - sinh(ar + ro) + to, = ±- cosh(ar + ro) + zo, 
a a 

where ro = arl, to andzo are constants of integration, and we have 
used the fact that sinh(±u) = ± sinh(u) and cosh(±u) = cosh(u). 

END OF PROOF 

The constant-acceleration worldcurves are the upper and Acceleration is linked 

lower branches of hyperbolas centered at an arbitrary point to curvature 

(t, z) = (to, zo) in R's frame. They can be written as the graphs 

1 
z = Zo ± -)1 + a 2(t - to)2. 

a 

As t ---+ 00, the velocity :z! ---+ ±l. Plotted below are the world­
curves of two objects with different accelerations lall < la21; the 
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Hyperbolas versus 
parabolas 

larger acceleration occurs on the hyperbola that is more sharply 
curved. 

Z 

/ 
/ 

/ 

small acceleration lad 
/ 

/ 

/.L1 v = 1 

/ l/al 

Zo 

t 
large acceleration la21 

In Newtonian mechanics, the worldcurve of an object that ex­
periences a constant (nonrelativistic) acceleration is a parabola, 
not a hyperbola. But parabolas violate the velocity limitation of 
special relativity because their slopes increase without bound. By 
contrast, the slope of a hyperbola cannot exceed the slope of its 
asymptotes. Nevertheless, there is a nice connection between the 
two, provided by Ta.ylor's theorem; for t - to small, the equation 
of the hyperbola is approximated by the equation of a parabola: 

1 
z = Zo ± -)1 + 0:2(t - to)2 0: 

1 (0:2 2) 1 0: 2 ~ Zo ± - 1 + -(t - to) = Zo ± - ± -(t - to) . 0: 2 0: 2 

The last equation is the familiar one for motion of an object under 
constant acceleration in Newtonian physics-for example, under 
the force of gravity near the surface of the earth. 

Mass and Energy 

Let us return to the equation IF· U = 0 and look at it in terms ofthe 
components of IF and U. These are circumstances where dimen­
sionally homogeneous coordinates (ct, x, y, z) will bring added 
clarity, so we write 
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c dm/dt c 2dm 

Jl - (V/c)2 Jl - (v/c)2 
c - -f·v 

JF. U = 
dt 

f = 1 - (V/c)2 . V 

Jl - (v/c)2 Jl - (v/c)2 

Here f . v is the ordinary Euclidean inner product of 3-vectors. 
The equation JF . U = 0 thus becomes the scalar equation 

dm 
c2 dt = f· v. 

It is evident that the left-hand side-and thus the right-has the 
dimensions of a rate of change of energy with respect to time. 
The following proposition will lead us to a physical interpretation 
for f· v. 

Proposition 3.4 If K(t) = h.w2(t) is the classical kinetic energy of 

G in R's frame and f = fJ,a is the classical 3-force acting on G, then 

dK -
-=f·v. 
dt 

PROOF: Since v2 = v . VI we can write K(t) = !:!:..v. v. Therefore l 

2 

dK fJ, ,fJ,v" -- = -(v·v) = -(2 ·v) =fJ,V ,v=fJ,a·v=f.v. 
dt 2 2 

END OF PROOF 

Let us therefore interpret f· v (which involves the relativistic 
3-force f) as the time rate of change of relativistic kinetic energy 
K of G in Rls frame. Thus JF . U = 0 becomes 

C2 dm _ dK implying c2m = K + const. dt - dt' 
If we further require that K = 0 when v = 01 as in the classical 
case I then we can determine the constant of integration in the 
last equation: Since m = fJ, and K = 0 when v = 01 it follows 
that const = fJ,C 2

1 the rest energy of G. We can summarize the 
previous discussion in the following definition and corollary. 

Definition 3.7 The total energy of G in R's frame is the sum of its 
kinetic and rest energies: E = K + fJ,C 2. 

dK 
-=f·v 
dt 



138 Chapter 3 Special Relativity - Kinetics 
----------~--~----~~-------------------

Energy-momentum 
vector 

The energy of light 

Corollary 3.1 E = mc2, where m is the relativistic mass ofG in R's 
frame. 

We also have an expression for the relativistic kinetic en­
ergy K that agrees with the one we used in Section 3.1 for non­
accelerated motion: 

K = mc2 - 1),(2 = 1),(2 ( 1 -1) 
J1 - (V/c)2 

= 1),(2 1 + - + - + -- + ... - 1 ( v2 3v4 5vfi ) 

2c2 8c4 16c fi 

1 2 3v4 5vfi 

= "2J1.V + J1. 8c2 + J1. 16c4 + .... 
classical 

When v « c, the largest term in K is the first, and this is the 
classical kinetic energy. 

As in Section 3.1, the relation E = mc2 allows us to write 
JID = (me, p) in the alternative form JID = (E/c, p) that justifies our 
calling JID the energy-momentum vector. The following theorem 
makes use of this relation between energy and momentum. 

Theorem 3.9 E = cJp2 + J1.2C2, where p = IIpll, the Euclidean 
length. 

PROOF: Just calculate IIJIDII 2 using dimensionally homogeneous co­
ordinates (ct, x, y, z) and solve for E: 

END OF PROOF 

It is especially useful to express the first component of JID as 
an energy rather than a mass, because objects that move at the 
speed of light have rest mass 0; see the exercises. However, they 
do have energy. 

The energy oflight was determined by the photoelectric effect 
(which was first explained by Einstein in 1905, the year of special 
relativity). Light shining on a metal surface causes electrons to 
be ejected with a certain velocity, and thus a certain energy. The 
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only possible source of this energy is the light photons that strike 
the metal. 

It was noticed that the energy of the electrons did not de­
pend on the intensity of the light, but only on its frequency (i.e., 
color). The electrons ejected by a bright light have no more en­
ergy than those ejected by a dim light of the same frequency; 
they are simply more numerous. After accounting for the fact 
that electrons had to expend some of the energy imparted to 
them by light in becoming lIunstuck" from the metal, it was de­
termined that the energy of the electrons-and thus the energy 
of the photons-was simply proportional to the frequency of the 
light. If v denotes the frequency of a light photon, in cycles per 
second, then its energy is E = hv, where the proportionality con­
stant h = 6.625 X 10-34 kgm2/sec is called Planck's constant. 

Photons also have momentum. From Theorem 3.9 and the 
fact that J-t = 0 it follows that p = E Ie = hv Ie. This is often 
written in terms of the wavelength A of the light photon. For any 
wave motion, the wavelength A, in meters per wave, times the 
frequency v, in waves per second, gives the velocity of the wave, 
in meters per second. For light waves this is A v = c, so v I c = 1 I A. 
In terms of its wavelength, the momentum of a light photon is 
therefore p = hiA. 

Exercises 

l. (a) Describe the shape of the worldcurve X(t) = (t, rcoswt, 
r sin wt) in terms of the parameters rand w. 

(b) Calculate the proper time function ret) for x. Compare 
proper time r to coordinate time t. 

2. Show that any worldcurve X(q) = (t(q), x(q), y(q), z(q» can be 
given a new parametrization as a graph: X(t) = (t, x(t) , y(t),z(t». 

3. Prove Theorem 3.4 assuming the results of Theorem 3.l. That 
is, show that different parametrizations of the same world­
curve yield the same measure of proper time along the world­
curve. 

E=hv 

The momentum 
of light 
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y 

4. Suppose t = (/I(r) is the inverse of the elliptic integral 

r(t) = fat -/1 - k2 sin2 t dt. 

Show that 

, 1 
(/I = ---;:::========= 

-/1 - k2 sin2 (/I 
and 

Hence show that A( r) = ((/I", k( (/I" sin (/I + «(/1')2 cos (/I») reduces 
to 

kcos(/l . 
A(r) = k2 • 2 2 (k sm (/I, 1). 

(1 - sm (/I) 

5. The curve X(q) = (t(q), z(q», a ~ q ~ b is said to be spacelike 
if X'(q) is a spacelike vector for all q in [a, b]. We define the 
Minkowski length of X as 

1= lb IIX(q)lIdq = lb (~:) 2 
_ (~:) 2 dq. 

(a) Construct a parametrization of the branch of the hyperbola 
t2 - z2 = 1 that lies in the half plane t > 0 and use it to 
prove that the hyperbola is a spacelike curve. 

(b) Show that the Minkowski length of the arc of the hyperbola 
from (1,0) to (coshq, sinhq) is exactly q. 

z 

Minkowski length allows us to construct a definition of 
the hyperbolic functions that runs parallel to the usual 
definition of the circular functions. The circular functions 
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give the coordinates of the point (cosq, sinq) that lies 
at the distance q from the point (1, 0) on the unit circle 
x2 + y2 = 1. See the diagram above. By the previous ex­
ercise, we can now say that the hyperbolic functions give 
the coordinates ofthe point (coshq, sinhq) that lies at the 
Minkowski distance q from the point (1,0) on the unit hy­
perbola t2 - z2 = 1. 

6. Show that pc = Ev/c, where p = Ilpl!' v = IIvll. 
7. Photons move at the speed of light, v = c, with finite energy 

and momentum. Show that the rest mass f.-L of such bodies 
must be O. (Suggestion: Consider IllPI12.) 

Further Reading for Chapter 3 

Newtonian mechanics is part of the core of physics and is dis­
cussed in many textsi The Feynman Lectures [13] and Spacetime 
Physics [28] have the advantage of working in the context of spe­
cial relativity. Einstein introduces relativistic mass in a very brief 
and readable paper [9]. 



Arbitrary Frames 
CHAPTER 

How can the inherent subjectivity ofindividual observations lead 
to conclusions that are objectively real, that is, to conclusions that 
become physical laws? Our answer is the principle of relativity: 
Any physical law must be formulated the same way by all ob­
servers. So far, though, "all observers" has been limited to Galilean 
observers in inertial frames. Why, Einstein asked, should there 
be such a limitation? In particular, can it be justified objectively, 
on physical grounds? In the decade following 1905 he found that 
gravity could not be described using only the inertial frames of 
special relativity; he became convinced that "there is nothing for 
it but to regard all imaginable systems of coordinates, on princi­
ple, as equally suitable for the description of nature" ([10], page 
117). This is the principle of general relativity. Using it as a founda­
tion, Einstein was able to create a new and revolutionary theory 
of gravity. 

In this chapter we first consider two common types of nonin­
ertial frames and explore their properties. Next, we survey New­
tonian gravity briefly and then see why it fails to be compatible 
with special relativity. The remaining chapters then show how 
Einstein builds a new theory of gravity. 

Admit accelerating 
observers 
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A rotating frame is 
noninertial 

The spacetime map 
is nonlinear 

4.1 Uniform Rotation 

We begin, as always, with two observers Rand G whose frames 
are in relative motion. This time, though, the motion is rotational 
rather than linear. We assume that Rand G remain at the same 
place with their x- and ~ -axes coinciding for all time. We assume 
also that R's frame is inertial but that G's (T/, {}-plane rotates at a 
steady angular velocity around the ~-axis. Now consider an object 
that moves freely (that is, obeying Galileo's law of inertia) in the 
spatial plane defined by x = ~ = O. In R's (1 + 2)-dimensional 
spacetime with coordinates (t, y, z), the worldcurve of this object 
will be a straight line because R is inertial. However, in G's (1 + 2)­
dimensional spacetime with coordinates ('t', T/, {}, the worldcurve 
will be a spiral-not a straight line. Thus G's frame is noninertial. 

1b compare the two frames we must determine the map M : 
G --+ R that assigns to the Greek coordinates ('t', T/, ~) of an event 
E the Roman coordinates (t, y, z) of the same event. Since the 
observer G is stationary in relation to R, there is no time dilation, 
so we can write t = 't'. 1b determine y and z, we shall assume 
that the T/-axis coincides with the y-axis when 't' = t = 0 and 
the (T/, {}-plane rotates at an angular velocity of w radians per 
second. Then, after't' seconds, the position ofthe (T/, {}-plane in 
the (y, z)-plane is given by the rotation RWT : 

(y) = R (T/) = (C?sw't' - sinw't') (T/) . 
z WT ~ sm w't' cos w't' ~ 

z 

7J 
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Therefore, M : G -+ R is the nonlinear map 

{

t = r, 
M: y = 1} coswr - S sinwr, 

z = 1} sin wr + S cos wr . 

M 
~ 

Since M is nonlinear, it is certainly not a Lorentz map. However, 
the "wire-frame" model of G makes the geometric action clear: 
M twists the (r, 1}, s )-space around the r -axis in mapping it to the 
(t, y, z)-space R. 

Now suppose C is an observer who lies at a distance r = 
JTJ2 + S2 from G and is fixed with respect to G's frame. In G, Os 
worldcurve is a straight line parallel to the r-axis. In R, however, 
C has a nonzero speed and has a spiral worldcurve. 1b be definite, 
we place C at the point (TJ, n = (0, r); then Os worldcurve in R 
can be parametrized as 

X(r) = (t, y, z) = (r, -rsinwr, rcoswr). 

T M 
------

z 
C r 

Speed depends on 
radius 

T 
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The non inertial frame 
has a bounded 
domain 

The linear velocity of C in R's frame is then 

( dY dZ) v = dt' dt = (-rw cos wt, -rw sin wt) 

(recall r = t), so speed is proportional to the radius: v = Ilvll = rw. 
The velocity limitation of special relativity requires that rw < 

I, implying r < 1/ w. Thus GiS noninertial frame has a spatial bound­
ary: It can describe only those events E = (r, TJ, n that lie inside 
the circular cylinder r = .JTJ2 + ~2 = l/w whose axis is G's world­
line. An inertial frame has no boundary; it extends to infinity in 
all directions. This is the first of several important differences 
between inertial and noninertial frames. 

The next difference will appear when we calculate Os proper 
time T. We must, as always, carry out the calculation in an inertial 
frame; in this case, we use R. Since 

X'(r) = (1, -rwcoswr, -rwsinwr) = (1, v), 

the proper-time function is 

Proper time depends In particular, r is not the proper time on C, though it is propor-
on radius tional to the true proper time T. The proportionality constant 

.vI - r2w2 is always less than I, so Os clock runs more slowly 
than G's. We know that moving clocks run slow; this shows that 
rotational motion is no exception. Furthermore, since speed in­
creases with r, so does time dilation. This is illustrated in the 
figure on the left below, which shows the worldlines of several ob­
servers at successively greater distances from G. Precisely when 
a fixed proper time To occurs on the worldline that lies a distance 
r from G is given by the function 

To 
r - -;===;;=~ 

- .vI - r2w2 ' 

whose graph is shown on the right. Note that r --+ 00 as r --+ l/w. 
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r 
1/m .................................... . 

G+---~--------------_ 

The Meaning of Coordinates 

We are faced with an unprecedented development: Clocks that 
are stationary in G's frame are generating a multiplicity of time 
variables T that compete with G's own time variable r. Th un­
derstand this development, we need to pa\1se and make explicit 
some of our assumptions about coordinates in inertial frames. For 
simplicity we work with (1 + I)-dimensional spacetime. 

So suppose G is a Galilean observer whose inertial frame has Coordinates as labels 
coordinates (r, ~). These coordinates have always served two pur-
poses. First, they provide a system of labels, or names, by which 
we can distinguish one event from another. For example, when 
we regard a Lorentz transformation Hu : G ---+ R as a dictionary 
that translates from one system of names to another, we are 
thinking of coordinates in this sense. Indeed, if we carry out the 
transformation and set 

G) = (~~:~~ ~~:~~) (;), 
then the coordinates (t, z) would serve G equally well as a means 
of distinguishing between events. 

But we don't use coordinates simply as labels. The second Coordinates as 
purpose they serve is to provide a system of measurements. That measurements 
is, if E1 is the event with coordinates (r}, ~1), then G considers 
that E1 actually happened r1 seconds after the event 0 = (0,0). 
Similarly, ~1 is the distance from G to E1. Here r1 and ~1 are 
more than labels; they report the result of measurements that 
G makes. The coordinates (r, ~) are, in this sense, natural; G 
will usually prefer them to other coordinates-like (t, z)-that 
are merely labels in G. (Of course, back in R, (t, z) are natural 
coordinates that measure time and distance for R) 
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Timing by radar 

Timing by a grid 
of clocks 

Measuring distances 

Radar and clocks 
disagree in a 
noninertial frame 

There are at least two ways for G to measure the time of the 
event E1. The first works like radar: G sends out a succession 
of light signals and waits for one to be reflected back from E1. 
Suppose that signal is emitted at the event E' = (r', 0) and returns 
at the event E" = (r",O), where G's own clock determines the 
values of r' and r". Then r1 = (r' + r")/2. The important thing 
here is that the times of all events are related back to the times 
of events that happen on G's worldline. 

G 
'Z"l 

RADAR GRID OF CLOCKS 

The second way is to put a string of clocks, all identical to G's 
own, at fixed locations along the ~ -axis, and synchronize them. 
Since the clocks are stationary in relation to G, synchronization 
will present no theoretical difficulties. When E1 occurs, just check 
the time on the clock located at the place ~ = ~1 where E1 occurs; 
that will be the time coordinate r1. For this to work, all clocks in 
the grid must continue to stay synchronized with G's own clock. 
That is, all the clocks on a vertical line r = constant must agree. 
We know that this happens in an inertial frame. 

Similarly, there are two ways for G to measure distances. One 
is radar. If the event E1 = (r1, ~1) is detected by the signal emitted 
at the event E' = (r',O) and returned at E" = (r", 0), then ~1 = 
(r" - r')/2 (if ~1 > 0; otherwise, ~1 = -(r" - r')/2). The second 
way is to install a grid of rulers along the ~ -axis. Since the rulers 
are stationary in G, they do not contract, and the grid remains 
unchanged over time. 1b determine ~1, just note the mark on the 
ruler at the place where E1 occurs. 

It is clear now what happens when we move back to the 
rotating, noninertial frame G: the two ways of measuring time 
give different results! On the one hand, the grid of clocks gives us 
the T variables of the various observers C who occupy different 
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places along the s -axis. On the other, radar gives us the i variable, 
because it relates the time of an event anywhere in spacetime 
back to events along the i-axis. 

The observers C collectively define a set of coordinates (T, Z) 
that are related to G's original coordinates by the map F : C -+ 
G: (T,Z) -+ (i, S), 

z ....... \ 
Z 

/ 

'" \ \ II 
F 

\ 

- G 
/ 

/ / / 1\ 
./ / \ 

This is a nonlinear map, but notice that it is the identity on the 
T-axis itself. Here the two times T and i agree. Away from the 
T-axis the image "flares out"; as IZI increases, T time runs more 
and more slowly in relation to i time. 

Which is right, C or G? Since both are valid extensions of 
correct procedures for marking coordinates in an inertial frame, 
we have no grounds for preferring one to the other. And in fact, 
we do not have to choose between them. Our experience with 
ordinary maps of the world will show us how to reconcile the two 
frames. There is a nice analogy between the two ways we measure 
time here and the two ways we measure east-west position on a 
map: by longitude and by mileage along parallels of latitude. 

Latitude and Longitude 

Every map is equipped with a scale that tells you how a given 
length on the map translates to a distance on the ground. But 
traditional maps that cover nearly the whole world are noticeably 

V 

/ L 
II 

T r 

\ "'- i'.. 

Both times are valid 

Maps and scales 
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A grid of scales 

distorted toward the poles-Greenland and Antarctica look much 
too large. What has happened to the scale? 

The distortions occur because these projections show merid­
ians of longitude as parallel lines, implying that a degree of lon­
gitude represents a fixed distance on the ground. But this is just 
not so: At 60° north latitude, one degree of longitude covers an 
east-west distance of about 35 miles; at the equator, the distance 
is twice that. Thus a single scale is inadequate; these projections 
need a multiplicity of scales-one for each latitude. In fact, you 
can sometimes find them on such a map; five or six scales are 
stacked into a curved grid, which is then tucked away in an empty 
spot somewhere. In the map below (a Miller cylindrical projec­
tion), you can see the grid in the South Atlantic, just above an 
oversized Antarctica. The six scales cover 1000 miles of east­
west distance, and the grid flares out at higher latitudes because 
you have to traverse more of the map-cross more longitude 
meridians-to cover those 1000 miles. 

A a n 

C"pI>lc U..., Sale 

~"""Il""'~O , 'JrL . 
taI_._ ..... ........... 

A 
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1b understand the grid better, let us construct it ourselves. 
Along the parallel at latitude ({J, an east-west distance of d miles 
spans a longitudinal arc (). We want to determine () as a function of 
d and ({J. For ease of calculation we measure () and ({J in radians, and 
we suppose the earth to be a sphere whose radius is R miles. The 
equator (({J = 0) is therefore a circle of radius R, so a longitudinal 
arc B along the equator covers a distance of d = B R miles (by 
definition of radian measure!). Thus B = d/R when ({J = o. 

~- ponI1el"_.-
IL...J _ equator _ 

R 

Now consider the circle that is parallel to the equator at lati­
tude ({J i=- 0; it has radius r= Rcos({J. The longitudinal arc B along 
this circle covers a distance of d = B r = B R cos ({J miles. Therefore, 

d d 
() = B(d, ({J) = = - sec({J. 

Rcos({J R 

Notice that B is defined only for I({JI < rr/2, and () -+ 00 as ({J -+ 
±rr/2. The grid itself is the image of the map F* : (d, ({J) -+ (B, ({J) 
given by 

qJ 

{
B = !!.. sec m 

F*: R T' 

({J = ({J. 

60° 

45° 

30" 

IS° 

IS° 

30° 

45° 

60° 

F* 
d-

---

---

qJ 

r--...----"'~ 

'" \ \ \ I 
\ \ 

\ 

j / 
/ / / \ 

v ....... / 

Calculate the grid 

/1-"'/ ....... / V 

I / 
/ II 

d () 

\ 1\ 
\ "-

r--.. 
--------

........ 
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Is spacetime curved? Even though the functions defining F* and F are not the same, 

The ratio of 
circumference to 
diameter 

Rulers contract along 
the circumference 

The (1], ~)-plane is 
non-Euclidean 

they look remarkably similar. Could this similarity spring from 
a common cause? The reason for the F* grid is intuitively clear: 
It is impossible to make a flat map of the curved earth without 
distortion, that is, without using different scale factors in different 
places. The F* grid tells us, ultimately, that the earth is curved. 
Does the F grid tell us that spacetime is curved? What, indeed, 
can this mean? We move on now to gather more evidence. 

Circumferential Distances 

Return to the (t, T/, ~) frame of G that we assume to be rotating in 
relation to the inertial (t, y, z) frame of R. 1b measure distance, 
let us install a grid of rulers in the (T/, n-plane, arranging them on 
radial lines and concentric circles like polar coordinates. We shall 
assume that the rulers lying on a given circle are much shorter 
than the radius, so that they can follow the circle closely and 
measure its length accurately. Now use this grid to measure the 
circumference and the diameter of a circle, and then calculate 
the ratio. 

We look at all this from the inertial frame R. All the rulers 
are moving, so they contract in the direction of motion. This has 
no effect on the radial rulers, but it makes the circumferential 
rulers shorter because they are aligned in the direction of motion. 
Specifically, on the circle of radius r, the circumferential rulers 
are moving with speed v = rw, so they contract in length by the 
factor .J1 - v2 = .J1 - r2w2 < 1. 

Consider the circle of radius r > 0 centered at the origin. 
There is no ambiguity here; Rand G agree on radial lengths. From 
the point of view of R's own (fixed) rulers, the circumference has 
length 2rrr. But R considers the circumferential rulers in G's frame 
to be shorter by the factor .J1 - r2w2. Therefore, with these rulers 
we obtain the ratio 

circumference 
P = diameter 
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In other words, if we just count the rulers, we find there are p > rr 
times as many around the circumference as across the diameter. 
Initially, this is R's count, but it is clear that G's count must be 
the same. Since these are the rulers that G uses for measuring 
(because they are at rest in G's frame), there are distance mea­
surements that G makes in the (1], n-plane that do not obey the 
laws of Euclidean geometry. 

Once again, a map of the earth can help us understand what is 
happening in G. Consider a map of the north polar region: What 
is the circumference C of the latitude circle that lies at a distance 
d miles from the North Pole? On the flat map, the distance will 
appear to be 2rr d miles, but the actual distance on the earth is 
less. 1b calculate C, note that the latitude circle lies in a plane, 
and the center of the circle lies where that plane intersects the 
polar axis. Let the radius measured from this center be r miles. 
If the radial arc of length d miles (from the pole to the circle) 
subtends an angle of 1/1 radians from the center of the earth and 
the radius of the earth is R miles, then d = R1/I, r = R sin 1/1, and 
therefore 

C = 2rr r = 2rr R sin 1/1. 

The ratio we want is 
C 2rr R sin 1/1 sin 1/1 
2d - 2R1/I = ---:v;- rr. 

Since sin 1/1/1/1 < 1 when 1/1 > 0, this ratio is always less than rr. 
Thus, distance measurements in the polar map do not obey the 
laws of Euclidean geometry. 

Here the reason is obvious: Euclidean geometry applies to flat 
planes, and the earth is curved. The evidence therefore suggests 
that the (1], n-plane is curved, too-but perhaps in a different 
way: While the ratio of circumference to diameter is less than rr 
on a sphere, it is greater than rr on the rotating plane. 

Exercises 

1. (a) Consider the function r - To/.Jl - r2w2 that gives the 
proper time of an observer at a distance r from the center 

Polar maps are 
non-Euclidean, too 
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Hyperbolic and elliptic 
geometries 

of a coordinate frame rotating with angular velocity w with 
respect to an inertial frame. Find the inverse r = r( r) that 
expresses r in terms of r. 

(b) Confirm that r(r) is defined only for r ~ To and that r ~ 
l/w as r ~ 00. 

(c) Determine r'(r) and show that r' ~ 00 as r ~ To, while 
r' ~ 0 as r ~ 00. Plot the graph r = r(r) and confirm that 
it agrees with the graph in the text. 

2 . (a) Confirm that the function 

F: {r = Jl _TZ2w2 ' 

~=Z 

maps a rectangular grid in the (T, Z)-plane in the way 
shown in the text. 

(b) Carry out a similar analysis to confirm that the map 

{
o = ~ sec({" 

F: R 

({'=({' 

that scales longitude at different latitudes has the form 
indicated for it in the text. 

3. Show that for small r, we can write 

7r 7rW2 
---;:::=~ = 7r + -,z + 0(r4). 
Jl - r2w2 2 

This is the ratio of the circumference to the diameter of a 
circle of radius r in a rotating coordinate frame. Since the ratio 
exceeds 7r, the non-Euclidean geometry that prevails in the 
rotating frame is said to be hyperbolic. By contrast, the non­
Euclidean geometry of the sphere is said to be elliptic because 
the ratio is less than 7r . 

4. Areas on a sphere give a further indication that the geometry 
on a sphere is elliptic. Consider the spherical cap bounded by 
the circle that lies at distance d from the north pole on a sphere 
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of radius R. It can be shown (see the exercises in Section 5.2) 
that the area of the cap is equal to 

A = 21fRz (1 -cos ~) . 
Use Taylor's theorem to show that 

A dZ 

dZ = 1 - -z + O(d4), 
1f 12R 

and hence conclude that, for small d, the area ofthe cap is less 
than it would be in Euclidean geometry. 

5. While the geometries of the sphere and of the rotating frame 
are both non-Euclidean, they are nonetheless "infinitesimally 
Euclidean" in the following sense. 

( a) Show that if we take a circle of radius r as measured on the 
surface of a sphere, then the ratios 

circumference area 
and 

21fr 1frz 

both approach 1 as r --* O. Thus a sufficiently small portion 
of a sphere is indistinguishable from a flat Euclidean plane. 

(b) Show that a sufficiently small portion of a rotating co­
ordinate frame is likewise indistinguishable from a flat 
Euclidean plane. 

4.2 Linear Acceleration 

In this section we explore some of the properties of a coordinate 
frame that undergoes constant linear acceleration with respect to 
an inertial frame. 

Let R : (t, z) be the inertial frame of a Galilean observer and 
suppose that a second observer G moves with a constant accel­
eration a with respect to R in the direction of the positive z-axis. 
We saw in Section 3.3 that the worldcurve of G is the graph of the 
function 

Equation of linear 
acceleration 
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This is a hyperbola whose asymptotes are the lines z - Zo = 
±(t - to); G has velocity 0 with respect to R at the event (t, z) = 
(to, Zo + l/a). 

The Radar Frame 

R 

/ 
A 

~ no signal §§:§ toG 

K~t 

~ 
Coordinates by radar What can we say about G's noninertial frame, and how is 

it connected with R's frame? We shall use radar to determine 
the (r, s)-coordinates of an event in G's frame. According to the 
discussion in the previous section, if G sends out a light signal 
at proper time r' that is reflected from the event E and received 
back by G at the proper time r", then G's coordinates for E are 

( r' + r" r" - r') 
E± = 2 ,± 2 . 

Two possibilities arise, as we indicate here, when we ignore the di­
rection from which the reflected signal returns: E+ lies on the pos­
itive side of the s -axis and E_ on the negative. The S -coordinates 
±( r" - r') /2 are the negatives of each other. If we take into ac­
count the direction of the reflected signal, E is not ambiguous. 

The limits of G's There are some events that G will never detect by radar. No 
coordinate frame signal from G can reach the region below the asymptote that runs 

from upper left to lower right, no matter how far back in time 
we push G's worldcurve. Furthermore, no signal reflected from 
a point in the lower right region will ever reach G, no matter 
how far into the future G's worldcurve extends. Therefore G can 
assign coordinates only to those events in the unshaded region: 
G's coordinate frame covers only a portion of spacetime. Exactly 
the same was true for the rotating noninertial frame we studied in 
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the previous section; the details were different, however. We are 
seeing further evidence that noninertial frames are necessarily 
limited in scope. 

Th understand how G describes events, we want to connect 
G's frame to R's as we always have, by an appropriate map M : 
G ~ R. Th simplify our analysis, we move the point (to, zo) to 
the origin. Then G's worldcurve in R has following proper-time 
parametrization: 

G(r) = (~sinha-r, ~ coshar). 

Theorem 4.1 The map M: G ~ R is given by the equations 

{ 

ea~ 
t = - sinha-r, 

M: a 
ea~ 

Z= -coshar. 
a 

PROOF: Suppose the event E has coordinates (r*, {*) in G and 
(t*, z*) in R. We must determine how t* and z* depend on -r* 
and {*. There are two steps: First, we use radar to connect E to 
the emission and reception events E' and E" along G's worldline; 
second, we use the parametrization G to connect the Greek and 
Roman coordinates along G's worldcurve. 

G 

M 
E' E" 

G ----O'--t-----"~-. 1" -

Find G'S grid in R 

R--------~~--------. 
t 

In G we first connect the coordinates of E to the emission and 
reception times r' and -r": 

-r' + -r" 
-r* = , 

2 

r" - r' 
{*=---

2 

Step 1: connect E 
to E' and E" 
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Step 2: connect 
Greek and Roman 
coordinates along 
G'S worldcurve 

Note that for the sake of definiteness we have taken E above G's 
worldline, so ~* > O. In step 2 we will need r' and r" in terms of 
r* and ~*: 

r' = r* - ~*, r" = r* + ~*. 

In R there is a corresponding connection between the coordi­
nates of E and those of the emission and reception events. Since 
E' and E lie on a line of slope I, while E and E" lie on a line of 
slope -I, we have 

z* - z' 
--=1, 
t* - t' 

z* - z" 
---- =-1. 
t* - t" 

Now solve these equation for t* and z*: 

t" + t' + z" - z' 
t* = , 

2 

t" - t' + z" + z' 
z* = . 

2 

On G's worldcurve we have the following connection between 
the Greek and Roman coordinates of E' and E": 

Therefore, 

, 1. , 
t = -smhar, 

a 

,1 , 
z = - coshar, 

a 

1 
t" = - sinhar", 

a 

1 
z" = - coshar". 

a 

t" + t' + z" - z' sinhar" + sinhar' + coshar" - coshar' 
t* = = -------------------------------

2 2a 

-----------------------------------------
2a 2a 2a 

a{* 
e . h * = ---sm ar . 

a 

In going from the first line to the second we use the fact that 

sinhA + coshA = ~ and sinhA - coshA = _e-A . 
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An entirely similar argument shows that 

ea~* 
z* = - coshar*. 

a 

This establishes the formulas for M : G -+ R. END OF PROOF 

The map M is nonlinear, but its image has a form that is easy 
to visualize. The vertical grid lines r = k are mapped to rays 
through the origin: 

where Kl = sinhakla and Kz = coshakla. Notice that Kz > 0, so 
z > 0, and the rays all lie in the upper half plane. In fact, since 
z = KztlKl and IKz/Kll = I cothakl ~ 1, the rays all lie inside the 
region bounded by the lines z = ±t. 

The horizontal grid lines ~ = k are mapped to hyperbolas: 

t = Ksinhar, z = Kcoshar, 

where K = eak I a. Since zZ - tZ = KZ, these are concentric hyper­
bolas that have the same asymptotes z = ±t. Kinematically, these 
are the worldcurves of observers who experience a fixed acceler­
ation 11K = ae-ak from the point of view of R and, consequently, 
any inertial observer. 

S 

G 
I 

The image of M 

R----------r---------~t 

However, the amount of acceleration depends on the param­
eter k; the observer with the larger value of k experiences the 
smaller acceleration. Consequently, a fixed value of ~ does not 
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Worldcurves at fixed 
distances from G 

represent a fixed distance from G from R's point of view. This 
is essentially Fitzgerald contraction; the amount of contraction 
increases over time because the observers collectively speed up 
in R's frame. 

Where are the worldcurves that experience zero acceleration 
in relation to G? In R, they appear as the hyperbolas that are par­
allel to G's hyperbola; they are the family given by the equation 

a2(z - zO)2 - a2t2 = 1 

that is parametrized by the constant Zoo 1b find the equation of 
the family in G, we just use the values of t and Z given by the map 
M. Thus, 

( as )2 ( as )2 
a2 ~ coshar - Zo - a 2 ~ sinhar = 1. 

This reduces to 

e2as (cosh2 ar - sinh2 ar) - 2azoeas coshar + a2z6 - 1 = O. 

Now let u = ea{ and use the fact that cosh2 ar - sinh2 ar = 1 to 
get the ordinary quadratic equation 

u2 - 2(azo coshar)u + a2z5 - 1 = O. 

Because the worldcurves are the upper branches of hyperbolas in 
R, we choose the positive square root in the quadratic formula in 
G: 

2azo cosh ar + j 4a2z5 cosh2 ar - 4a2z5 + 4 
u= ------------~--------------------

2 

= azo coshar + ja2z5(COSh2 ar - 1) + 1 

= azo coshar + Ja2z5 sinh2 ar + 1. 

We now have the equation of the family of worldcurves in G: 

~ = ~ In (azo coshar + ja2z5 sinh2 ar + 1). 
These are shown below as the dark overlay. 
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M ---.. G -H-+--H-++-H-· 

R t 

Now suppose we have objects at rest in R's frame; their world- Bodies motionless in R 
curves are the horizontal lines z = b. Since G accelerates past accelerate downward 

them, in G's frame they should appear to be accelerating down- in G 

ward. Th show this, we determine their worldcurves in G. They 
will be defined by the equation 

ea~ 
- coshexr = b, 

ex 

which implies ea~ = exbsechexr and thus 

1 1 In (ex b) 
~ = -In(exbsechexr) = -In(sechexr) + --. 

ex ex ex 

The second term, In(exb)/ex, is a constant, so these curves are 
all vertical translates of the particular curve ~ = In(sechexr)/ex. 
Since 

d~ 
dr = - tanh exr -+ =t=l as r -+ ±oo, 

the curves have slopes that approach -1 as r -+ +00 and + 1 as 
r -+ -00. For r small, however, Thylor's theorem shows that 

ex 2 In(exb) 
r~--r +-_. 
~ 2 ex' 

therefore, in G these objects look like bodies falling vertically 
downward with the same acceleration -ex. They are at rest when 
r = 0, which is when G is at rest relative to R. 
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, 
V 

/ V 
// V 

// v 
// /' 

G 

// v 
// v 
// v 
/ 

The inverse map M-1 

Light cones under M 
andM-1 

Coordinates by rulers 
and clocks 

" " i'--

" 1'-..' 

" 1'--' 

" 1'-..' 

" i'--' 

" 1'-..' 

" t"-,.' 

" R--------~~--------.t 

These curves in G come, in effect, from the inverse map M-1 

that is defined on the region V where z > Itl. The exercises ask 
you to verify that M-1 : V -+ G is given there by the formulas 

1 {r = ~tanh-l (;), 
M- : S = ~ In (a2(z2 _ t2)) . 

2a 

Even though M and M-1 are nonlinear, they preserve the form 
ofthe light cones. In particular, M maps straight lines of slope ±1 
to straight lines of slope ±1. For suppose S = ±r + k; then 

e±a-reak 
t = sinhar, 

a 
e±a-reak 

z = coshar, 
a 

so 
e±a-r eak e±a-r eakeTa-r eak 

z =f t = (coshar =f sinhar) = ---- -
a a 

ak 
In other words, z = ±t + ~, a straight line of slope ±1 in the 

a 
(t, z)-plane. 

A Frame of Rulers and Clocks 

Suppose we use a grid of rulers and clocks instead of radar to 
specify the coordinates of G's linearly accelerating frame. When 



§4.2 Linear Acceleration 163 
----------------------~--------------------

we made this change in the rotating frame, we saw that the "clock" 
time at each place ~ ¥= 0 is different from its "radar" time-which 
always relates back to G's own time on the r-axis. Exactly the 
same thing happens here; Einstein demonstrated this using the 
Doppler effect. 

Th carry out this demonstration, place clocks at certain fixed 
distances along the ~ -axis. Th the clock at the location ~ = h we 
associate the observer C; let T be the proper time for C, as kept 
by this clock. Quick calculations (cf. Theorem 3.8) show that the 
worldcurves of G and C are the graphs of 

and 

respectively. These are concentric, rather than parallel, hyperbolas The worldcurves are 
in R. In the form they are written we can see that the accelerations concentric hyperbolas 

of G and Care l/a and eah fa, respectively. When t = 0, their 
separation on the z-axis is 

eah - 1 2 
Zc - ZG = = h + O(h ). 

a 

In other words, their separation in R agrees with their separation 
in G, at least to first order in h. 

z 

S signal C 

C T 
M -G r 

R 

So suppose G emits a light signal of frequency vat the event 
o (which is the origin in G's frame but not R's). In the inertial 
frame R, G's velocity is 0, so there is no shift at time of emission. 
At the time of arrival, however, C has a positive velocity Vh in R's 

The Doppler effect 
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Comparing proper 
times of C and G 

Time dilation and 
compression 

frame, so the frequency will be red-shifted by the Doppler effect. 
According to C the frequency will be (cf. Section 2.4) 

N= v)I-V'. 
1 +Vh 

1b determine Vh, note first that the signal has the worldline ~ = t' 

in G, so the arrival time is just t' = h in G's frame. Let t = th be the 
arrival time in R's frame; in the exercises you are asked to show 
that 

eah 
th = - sinhah, 

a 
Vh = tanhah, 

1 
N=-v. 

eah 

In fact, the time interval between the peaks of oscillation (the 
period) gives us a way to compare the rates of the two clocks, that 
is, the proper times of C and G. At emission G's clock says that 
the period is 

1 
!1t' = - sec; 

v 

at reception, Os clock says that the period is 

1 ah 
!1 T = N = e !1 r sec. 

When we worked in the rotating frame we expressed G's time in 
terms of Os; to make comparisons easier, we do the same here: 

!1t' = F(h)!1T, F(h) = e-ah . 

F(h) tells us how the two time scales compare on the line ~ -
h, which is Os worldline: G's clock runs more slowly than Os 
precisely when F(h) < I, that is, when h > O. The factor F here 
is completely analogous to the map F in the rotating frame that 
showed how the time T measured by a grid of identical clocks 
was related to the time t' measured by G using radar. 

As in the rotating frame, the gray vertical lines t' = const in 
the figure below represent radar measurements made by G, while 
the curved lines T = const of the dark overlay represent mea­
surements made by various observers C using identical clocks at 
different locations along the ~ -axis. As we would expect, the two 
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/ I J I 

agree on the r-axisi but they disagree everywhere else. In the 
rotating frame, the dark grid was symmetric across the r-axis, but 
not here. C's clock runs faster than G's when h > 0 but slower 
when h < O. In terms of frequencies, the Doppler effect causes 
a red shift for observers C positioned above G (h > 0) but a violet 
shift for those below G. 

Once again we find that the radar grid and the rulers-and­
clocks grid disagree. We have further evidence that in the non­
inertial frame of an accelerated observer G, no coordinates si­
multaneously give measurements of a single ruler and clock-as 
they naturally do in an inertial frame. A map of the earth suf­
fers the same defect: Measurements on the map cannot all be 
made proportional to measurements on the surface of the earth. 
No accurate map of (a substantial portion of) the earth can be 
made with just a single scale. On the earth we ascribe this de­
fect to curvature-more precisely, to the fact that the earth is 
curved but the map is not. By analogy, we consider that the same 
may be true for spacetime: Since measurements within the ac­
celerated frames that we have considered are not proportional to 
measurements of the corresponding spacetime intervals, perhaps 
spacetime itself is curved. Our speculations can be summarized 
this way: 

accelerated noninertial curved 
motions ==* frames ==* spacetime 

1\ 
1\ 

\\ T 
i\l\ 

1\ 
\ 

1\ 1\ 

Further evidence 
for curvature 
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Exercises 
1 ex . 

1. Confirm that ~ = -In(sechexr) = __ r2 + O(r4), as claImed 
ex 2 

in the text. 

2. (a) Verify that the following maps are inverses; assume ex > O. 

M: 

ea~ 
t = -sinhexr, 

ex 

ea~ 
Z= -coshexr, 

ex 

(b) Sketch in the (t, z)-plane the image of the full (r, n-plane 
under the map M. 

( c) Determine the image of the straight line z = vt + Zo un­
der the map M-1. Indicate how the parameters v and Zo 

influence the image. 

(d) Consider the grid in R shown on the right in the figure 
below. It is formed by the vertical lines t = to and the 
hyperbolas ex 2(z - zO)2 - ex2t2 = 1 parallel to the image 
of the r -axis. Determine the equations of the curves in 
the image of this grid under that map M-1 . Confirm that 
the image grid has the form shown on the left below by 
making an accurate sketch of it. 

z 
S 

G 

R -----I------+-

3. ( a) Show that in the discussion in the text of the Doppler effect 
on the observer C, the coordinates ofthe event represent-
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ing the arrival of the signal in R's frame are 

eah 
th = -- sinhah, 

a 
eah 

Zh = -- coshah. 
a 

(b) Show that C's velocity at this event is Vh = tanhah and 
show that this implies 

F(h) ~)1 -Vh ~ e~h. 
1 + vh 

(c) Consider the map (T, h) ~ ('t', n given by 

't' = F(h)T, 

~ =h. 

Verify that the image of the (T, h) grid under this map has 
the form shown in the text. 

4.3 Newtonian Gravity 

The Equivalence Principle 

In Newtonian mechanics, mass appears in two different-and 
conceptually distinct-contexts. The first is inertia. In Newton's 
second law of motion, force is proportional to acceleration, and 
the constant of proportionality is the body's inertial mass. The 
other context is gravity. Tb help us understand this, let us look 
first at electricity. 

Any two electrically charged bodies exert an electric force on 
each other; its magnitude F is proportional to the electric charges 
ql and qz of the two bodies and inversely proportional to the 
square of the distance , between them: 

F - k qlqZ 
- ,z· 

But some bodies have no electric charge, so the electric force 
can be zero. Furthermore, the electric force can attract or repel, 
depending on the signs of the two charges. By contrast, the grav-

Inertial mass 

Electrical and 
gravitational forces 
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Newton's law of 
universal gravitation 

Gravitational mass 

Is gravitational 
acceleration constant? 

Artificial gravity 

itational force applies to all bodies, and it is always attractive. 
The formula, Newton's law of universal gravitation, is exactly 
analogous to the formula for the electric force: 

mgM 
F=G-, 

r2 

3 
-11 m 

G=6.67xlO k 2· 
gsec 

In this formula the role of the "gravitational" charge of a body 
is taken over by its gravitational mass. There is no reason, on the 
face of it, why gravitational mass should be the same as inertial 
mass. 'Ib compare the two notions of mass, consider how gravity 
acts on a body at the surface of the earth. Then r, which is the 
distance from the body to the center of the earth, is constant; the 
gravitational mass M of the earth is also constant. It follows that 
the gravitational force on the body is simply proportional to its 
gravitational mass mg: 

F=Kmg, 
GM 

K = -2- = constant. 
r 

Now, Newton's second law of motion tells us that the same force 
F is also mig, where mi is the body's inertial mass and g is the 
acceleration due to gravity. Thus 

so 

If there are two bodies for which the ratio mg/ mi is different, then 
g will be, too, and the bodies will have different accelerations as 
they fall. But this has never been observed; all bodies experience 
the same acceleration due to gravity at the earth's surface. So we take 
mg = mi = m. 

Bodies that are freely moving-that is, subject to no forces other 
than gravitation-will therefore fall straight down at the same 
rate. But exactly the same thing can be made to happen, for ex­
ample, in a spaceship that is far from gravitational influences if 
its rocket motors drive it with constant acceleration in a fixed di­
rection. Freely moving bodies inside the ship will then all appear 
to undergo identical acceleration in the opposite direction. Thus, 
in a coordinate frame that is fixed inside the spaceship, we have 
created a gravitational field. 
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We can make a gravitational field go away, too. This is what 
happens in airplanes that are used as labs to study weightlessness. 
For 20 or 30 seconds at a time, they are flown ballistically, that 
is, along the path of a projectile that is shot upward and then 
drops in the earth's gravity. Inside, freely moving objects fall at 
the same rate as the planei therefore, with respect to a coordinate 
frame fixed inside the plane, they exhibit no acceleration. They 
float. The earth's gravitational field has been "canceled out." For 
the same reason, the usual gravitational field is missing from a 
spacecraft orbiting the earth. It is perpetually dropping in the 
earth's gravity but has been given a sufficient sideways push to 
keep it orbiting. 

The conclusion is that we cannot readily distinguish between 
the gravitational field in a coordinate frame K that is fixed on 
the earth (a laboratory frame) and the gravitational field that is 
created in another coordinate frame K' undergoing constant lin­
ear acceleration. In 1911 ([12], page 100), Einstein turned this 
conclusion into a physical law-the equivalence principle: 

But we arrive at a very satisfactory interpretation of this 
law of experience, if we assume that the systems K and 
K' are physically exactly equivalent, that is, if we assume 
that we may just as well regard the system K as being in a 
space free from gravitational fields, if we then regard K as 
uniformly accelerated. This assumption of exact physical 
equivalence makes it impossible for us to speak of the 
absolute acceleration of a system of reference, just as the 
usual theory of relativity forbids us to talk of the absolute 
velocity of a systemi and it makes the equal falling of all 
bodies in a gravitational field seem a matter of course. 

The equivalence principle is based on the assumption that the 
gravitational acceleration is constant, but this really is not so: It is 
weaker at higher altitudes, and it points in different directions at 
different places on the earth. Th conceal these differences-and 
thus make acceleration essentially constant-we must put strict 
limits on the size of the laboratory frame K. In other words, K and 

Eliminating a 
gravitational field 

Gravity and 
acceleration are 

equivalent 

Local frames 
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z 

K' must be local frames that describe only a small portion of space. 
The equivalence principle really holds only in local frames. 

The frames must be limited in time, as well. 1b see why, 
consider a spacecraft in a low circular earth orbit. A complete 
circuit takes about 90 minutes. The physical dimensions of the 
craft are certainly small enough for the gravitational field to be 
essentially constant inside it; in fact, the field should be zero in 
a coordinate frame fixed to the spacecraft. Nevertheless, we can 
detect an effect of gravity in the following way. Hold two small 
objects A and B motionless on a line (the z-axis) perpendicular to 
the plane of the spacecraft's orbit, and then release them. 

z 

:16......---I~ ---~ 25 min 

-- tidal effect not evident during this interval 

Tidal effects They do not remain motionless. Instead, they slowly drift toward 
each other, and meet after about 22 minutes. This is easy to 
understand once we recognize that the objects themselves orbit 
the earth on separate great circles of the same radius. The objects 
come together because their orbits intersect. They start at points 
where the circles have their widest separation and travel one­
quarter of a full orbit, or about 22 minutes, to the first intersection 
point. This slow drift is a tidal effect; it is due, ultimately, to the 
fact that the gravitational field is slightly different along the paths 
of A andB. 

Tidal effects give us a way to distinguish between gravity and 
linear acceleration-but only if we allow enough time for the 
effects to become apparent. Therefore, if we limit the length of 
the time axis in our spacetime coordinate frame-to 2 minutes 
instead of 22 minutes, for example-we will not perceive the 
tidal effect. In these circumstances, the equivalence principle 
will continue to hold. 
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The Gravitational Potential 

Suppose we fix a mass M at the point Xo = (xo, Yo, zo). Then, 
according to Newton's law of gravitation, this mass exerts a force 
on a "test particle" of mass m that is placed at any point x = 
(x, y, z) in R3. Ifwe let r = x - Xo be the vector that points from 
M to m, then the gravitational force that M exerts on m is given 
by the vector 

GM 
F=mA=m-u. 

r2 

Here G = 6.67 X 10-11 m3 Ikg sec2 is the gravitational constant, 
r = IIrll, and u = -r/llril = -r/r is the unit vector that points 
from m back to M. 

The vectors F and A vary from point to point; they are vector 
fields. While F depends on the test mass m, A does not; it depends 
only on the attracting mass M and the position x. We call A the 
gravitational field determined by M. It has the dimensions of 
an acceleration. 

Among the simplest vector fields studied in multivariable cal­
culus are the gradient vector fields V' f. Indeed, we can write 
A = -V'<t> where 

GM 
<I> (x, y, z) = --. 

r 

(The reason for the minus sign in A = - V' <I> will become clear 
later, when we consider the work done by the gravitational field.) 
1b verify that A = - V' <I> , you should first check that 

o <I> x - Xo 
-=GM--, 
ox r3 

and similarly for y and z. Then 

-V'<I> = _ (O<I>, o <I> , O<I» 
ox oy oz 

= _ GM (x - Xo Y - yo z - zo) = GM u = A. 
r2 r' r 'r r2 

The function <I> (x, y, z) is called the gravitational potential of 
the field. It has the dimensions of a velocity squared. 

The gravitational field 

The gravitational 
potential 
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The gravitational law 
is linear 

The geometric 
connection between 
the potential and field 

Example 1: 
two sources 

A crucial feature of Newton's law of gravitation is linearity: The 
potential created by several point masses is just the sum of the 
potentials of the individual masses. Since the field is essentially 
the derivative of the potential, and since differentiation is also 
linear, the field also depends linearly on the masses. Specifically, 
consider several masses Ml, ... , Mk. If Mj is at Xj, then 

GM· <1>. - ___ 1 
1 - T' 

1 

and 

where rj = x - Xj, Tj = IIrj II, and Uj = -rj / Tj. If <l>total and Atotal 

are the potential and the field of these masses acting together, 
then 

The point masses Mj are called the sources of the field. Later 
we shall see that we can even define the gravitational potential 
when the sources form a continuous distribution of matter. 

Essentially, the potential is the integral of the field, and for 
this reason it is not unique: <I> (x, y, z) + e would serve equally 
well, for any constant e (since ve == 0). It is a standard result 
of multivariable calculus that the level sets <I> (x, y, z) = constant 
are surfaces that are everywhere orthogonal to the gradient field 
A = -v <1>. Furthermore, - V <I> points in the direction in which <I> 
decreases, and paths that follow this field lead toward the minima 
of <1>, which therefore determine the positions of the sources of 
the field. 

Here is an example with two point sources whose relative 
strengths are 5 and 1; the larger mass is at (0, 0, 0), the smaller at 
(1,0,0): 

5 1 
<I>(x,y,z)=- - . 

..jx2 + y2 + z2 ..j(x - 1)2 + y2 + z2 

The figures below show <I> restricted to the (x, y)-plane, that is, to 
the 2-dimensional slice z = 0 of R 3. On the left is the graph of 
rp = <I> (x, y, 0); note that the sources are at the bottom ofinfinitely 
deep wells: <1>(0,0,0) = <1>(1,0,0) = -00. The curves in the figure 
on the right are the level sets <I> (x, y, 0) = constant. Shown with 
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these curves are the vectors of the gravitational field A = - V <I> 
(although the vectors are not drawn to scale). The full level sets 
<I> (x, y, z) = constant in R3 are the surfaces obtained by rotating 
the curves <I> (x, y, 0) = constant around the x-axis. 

y 

y rp 

x 

Let x(q), a ~ q ~ b, be a smooth parametrization of a path P in 
R3 that avoids the sources. Then the work done by the field A in 
moving a test particle of mass m along this path is given by the 
line integral 

w= m t A·dx. 

The basic idea is that work is the product of force (mA) times 
distance (dx). Since A = -V <1>, another standard result of multi­
variable calculus allows us to write 

W = -m r V<I> . dx = - m<l>I XCb
) = -m(<I>(x(b)) - <I>(x(a))) = -m.6.<I>. 

}p x(a) 

Here .6. <I> is the difference in the values of <I> at the two ends 
of the path. Hence, the work done is path-independent; only the 
endpoints matter. Furthermore, the field is conservative: The work 
done around a closed loop is zero. 

Let U(x, y, z) = m<l>(x, y, z); since <I> has the dimensions of a 
velocity squared, U has the dimensions of an energy. We call U the 
potential energy ofthe particle m in the field. In these terms, the 
work done equals the drop in potential energy: W = -.6.U. The 
potential energy is constant on a level set <I> = constant, and it 

Gravitational work 

Potential energy 
and work 
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Example 2: 
a constant field 

Tidal forces 

increases as the test particle moves away from the sources. Thus, 
if a path takes the particle closer to the sources ("downhill" in our 
two-source example), the potential energy decreases. Therefore, 
the gravitational field does positive work. If the particle moves 
away from the sources, the field does negative work. What this 
means is that some other energy source must do an equal amount 
of positive work against gravity to "lift" the particle out of the 
gravitational well. The original choice of the sign of <I> was made 
to yield this relation between work and energy. For a second 
example consider gravity in a small laboratory frame on earth. 
The field is constant; if we choose coordinates (x, y, z) in the usual 
way so the positive z-axis points "up!' then 

A(x, y, z) = g(O, 0, -1), <I> (x, y, z) = gz, 

where g = 9.8 m/sec2 is the acceleration due to gravity at the 
surface of the earth. Note the signs of both A and <1>. In this field 
the potential energy of a test particle of mass m is U(x, y, z) = 
mgz; but of course, <I> and U are determined only up to additive 
constants. 

Tides 

We are now in a position to analyze tidal forces. We were able to 
see tidal effects in the spacecraft because it was "falling" in the 
earth's gravitational field; the effect was manifested by motions 
relative to that falling frame. This suggests that we look at the 
field of a single source, make a translation that cancels out the 
acceleration at one point, and then see what accelerations remain 
at nearby points. 

Place the source M at the point (k, 0, 0) on the x-axis, and 
suppose units have been chosen such that GM = 1. The field is 
then 

A(x, y, z) = - :3 (x - k, y, z), r = J (x - k)2 + y2 + z2. 

The figure below is the 2-dimensional slice z = ° of a neighbor­
hood of (0, 0, 0). On the left is the original field A; on the right 
is the tidal field obtained by translating away the acceleration 
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A(O, 0, 0) at the origin: 

T(x, y, z) = A(x, y, z) - A(O, 0, 0). 

Notice that the tidal acceleration T is attractive along the y-axis 
but repulsive along the x-axis. In view of the symmetric rela­
tion between y and z in A and T, the tidal acceleration will be 
attractive everywhere in the (y, z)-plane. 

-8 x 

A(x, y, Z) 

-8 

Y 
8 

-8 

T(x, y, z) = A(x, y, z) - A(o, 0, 0) 

x 

We can use Taylor's theorem to estimate T at points e units 
from the origin on each of the axes. Along the y-axis we have 

8A 
T(O, e, 0) = A(O, e, 0) - A(O, 0, 0) ~ --(0,0,0) e, 

8y 

so by the product rule, 

T along the axes 

8A 3y 1 
--(x, y, z) = s(x - k, y, z) - .. ~ (0,1,0) 8y , , 

8A 1 
and --(0,0,0) = - L~ (0,1,0). 

8y 1(.-

Thus 
e 

T(O, e, 0) ~ - k3 (0,1,0) 

causes an acceleration toward the origin that is proportional to 
the displacement e and inversely proportional to the cube of the 
distance k to the source of the gravitational field. 

Along the z-axis the result is the same, but along the x-axis it 
is different. We have 

8A 3(x - k) 1 a; (x, y, z) = ,5 (x - k, y, z) - r3 (1,0,0), 

8A -3k 1 2 a; (0, 0, 0) = 7(-k, 0, 0) - k3 (1,0,0) = k.3 (1,0,0). 
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Therefore, 

28 
T(O, 0, 8) ~ k3 (1, 0, 0) 

causes an acceleration away from the origin that is likewise pro­
portional to the displacement and inversely proportional to the 
cube of the distance to the source. However, the repulsion along 
the x-axis is twice as strong as the attraction in the (y, z)-plane at 
the same distance from the origin. 

T at an arbitrary point More generally, to see what T looks like at an arbitrary point, 

Earth tides 

suppose (a, {3, y) is a unit vector. Then we can approximate 
T(8a, 8{3, 8y) using the directional derivative of A in the direction 
(a, {3, y): 

T(8a, 8{3, 8y) = A(sa, s{3, sy) - A(O, 0, 0) 

oA oA oA 
~ sVA(O, 0, 0)· (a, {3, y) = sa- + s{3- + sy-. ox oy OZ 

In the slice z = 0 we can find T for points on the circle 

(x, y, 0) = (s cosq, s sinq, 0). 

The result is 
oA oA 

T(s cosq, s sinq, 0) ~ s cosq -(0,0,0) + s sinq -(0,0,0) ox oy 
2s cosq s sinq 

= k3 (1,0,0) - ---V-(O, 1,0) 

s . 
= k3 (2 cosq, - smq, 0), 

which is itself a vector that lies in the same slice z = O. Here is a 
sketch of the tidal acceleration field along such a circle. Because 
ofthe symmetric way in which y and z appear, you can rotate this 
figure around the x-axis to see the tidal acceleration on an entire 
sphere. 

This should remind you of pictures of the earth's tides. The 
moon is off to the right, the gray circle is the theoretical level of 
the earth's oceans, and the arrows indicate how the water is drawn 
to its tidal level. As we have just seen, the outward bulge is twice 
the size of the inward one. (Of course, the tide is enormously 
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y 
(feos q, fsin q) 

/ (2fk-3eos q, -fk-3sin q) 

x 

exaggerated.) The sun also causes tides, but the effect is less. The 
moon dominates because the tides depend on the inverse cube of 
the distance to the gravitational source, not the inverse square of 
gravity itself. The relative masses and distances to the sun and 
the moon are as follows: 

Msun = 2.7 X 107 Mmoon, 

rsun = 4 x 102 rmoon. 

Therefore, the relative magnitudes of the gravitational and tidal 
accelerations are 

Msun 2.7 X 107 Mmoon 
IIAsunll = G-2- = G (4 102 )2 = 170 IIAmoonll, 

rsun x rmoon 

Msun 2.7 X 107 Mmoon 2 
II TsunII = sG~ = sG (4 102 )3 = -5 IITmoonll· 

'sun X rmoon 

The tidal accelerations T depend on the additional parameter s, 
which here represents the radius of the earth. 

The inverse cube appears in the tides because the tidal ac­
celeration is the difference between nearby gravitational accel­
erations. By Thylor's theorem, that difference is approximated by 
the derivative of the gravitational acceleration; since the gravita­
tional acceleration is an inverse square, its derivative will be an 
inverse cube. 

Our example illustrates one of the remarkable properties of 
the tidal acceleration: It is attractive in some directions but re­
pulsive in others. In fact, the net acceleration is exactly zero in a 
sense that we will now make precise. In our example of a single 

The tides "balance 
ouf' 
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The Laplacian 

V2 c:I> (x, y, z) = 0 
in empty space 

gravitating mass at a point on the x-axis, the potential is 

1 
<l>(x, y, z) = --, 

r 
r = J (x - k)2 + y2 + z2, 

and A = -V <l>, as usual. We found that the tidal acceleration 
created by this source at (0,0,0) is attractive along the y- and 
z-axes but repulsive along the x-axis. We deduced these facts from 
the value of the derivatives of A(O, 0, 0): 

oA (2) ~(O, 0, 0) = +k3' 0, 0 , 

aA (1) ay (0, 0, 0) = 0, - k3 ,0 , 

aA (1) a;-(O,O,O)= 0,0'-k3 . 

Now, first derivatives of A are second derivatives of the potential; 
for example, 

aA (a2 <l> a2 <l> a2 <l» 
~ = - ax2 ' axay' oxaz . 

Consequently, the 3 x 3 matrix d2 <l> of second derivatives of <l> at 
the origin is therefore 

2 
+- 0 0 

k3 
1 

d2<l>(0, 0, 0) = - 0 
k3 

0 
1 

0 0 
k3 

We can now describe, in terms of the potential <l>, in what sense 
the tidal accelerations balance out: The trace of the matrix d2<l> 
is zero. The terms in the trace are the second derivatives that 
appear in the Laplacian of <l>: 

a2 <l> a2 <l> a2 <l> 2 1 1 
V2<l>(0, 0, 0) = - + - + - = - - - - - = o. 

ax2 ay2 az2 k3 k3 k3 

Th this point, all our analysis of this gravitational field has 
been carried out at the origin. However, you can check that the 
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trace of the matrix of second derivatives is zero at every point in 
R3 away from the gravitational source: 

v2 <I> (x, y, z) == 0, (x, y, z) =1= (k, 0, 0). 

This means that the net tidal acceleration is zero at every point 
in space away from the gravitational source. 

What can we say about tidal accelerations in other gravita- The tides created by 
tional fields? The gravitational potential defined by k masses Mj several point sources 

at the points (Xj, Yj, Zj) has the form 

Since 

~ (~) = _~ + 3(x-Xj)2 
a~ f J' ~ ~ 

J J 

and similarly for the second partial derivatives with respect to Y 
and z, it follows that 

(1) 3 3(x-x·)2+3(y-y·)2+3(z-z ·)2 
V2 _ = __ + J 5 J J = 0 

f J' ~ r · 
J J 

at every point (x, y, z) =1= (Xj, Yj, Zj) . Hence, by linearity of differ­
entiation, V2<1> = 0 at all points in empty space. Because V2<1> = 0 
characterizes the gravitational field in empty space, we call it the 
vacuum field equation. 

The Gravitational Field Equations 

We can deal with continuous distributions of matter as well as The potential of a 
point sources. A continuous distribution is defined by a function continuous distribution 

p(x, y, z) kg/m3 that tells us the density of matter at the point y 

(x, y, z). Suppose that all the matter is concentrated in a bounded 
region R in space; in other words, p == 0 outside R.Then we can 
subdivide R into a collection of small boxes (rectangular paral- D.Vj 

lelepipeds) Pj,j,k, where Pj,j,k is centered at the point (Uj, Vj, Wk) 

•

CU;'R
V

) x 

and has sides whose dimensions are iluj, ilvj, and ilWk meters, f:..u; 
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respectively. (For clarity the illustration shows only two dimen­
sions instead of three-rectangles instead of boxes.) The total 
mass in Pj,j,k is approximately 

Mj,j,k ~ p(Uj, Vj, Wk) ~Uj~Vj ~Wb 

and the gravitational potential induced by the entire mass dis­
tribution in R is approximately equal to that of the point masses 
Mj,j,k at (Uj, Vj, Wk): 

~~~ Gp(Uj,Vj,Wk) 
<I>(x,y,z) ~ - ~~~ ~Uj~Vj~Wk. 

k=l j=l j=l J(x - Uj)2 + (y - Vj)2 + (z - Wk)2 

The approximation is improved by taking still smaller boxes; in 
the limit as N --* 00 we have the exact value as an integral: 

Iff Gp(u, v, w) 
<I> (x, y, z) = - dudvdw . 

../(x - u)2 + (y - V)2 + (z - w)2 
R 

4> is defined and finite If (x, y, z) is not in R, then the denominator in the integrand is 
everywhere never zero, so the integral can be computed and will have a finite 

value. If (x, y, z) is in R, the integrand appears to be singular at the 
point (u, v, w) = (x, y, z). However, by changing from Cartesian 
to spherical coordinates we can remove the singularity, showing 
that the integral is actually finite. The first step is the translation 
T : R3 --* R3 defined by 

U= u-x, 

V=V-y, 

W=w-z, 

Let R* = T(R); then 

dU = du; 

dV = dv; 

dW=dw. 

<I> (x, ,z) = - Iff Gp(x+ U,y + v, z+ W) dU dV dW, 
Y ,JU2 + V2 + W2 

R* 

and the apparent singularity of the integrand is now at the ori­
gin (U, V, W) = (0,0,0). Next, introduce spherical coordinates 
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(r, cp, e) by the equations 

U = r sin cp cos e, 
V = rsincp sine, 

W = rcoscp, 

dU dV dW = r2 sin cp dr dcp de. 

w 

(U, v, W) = (T, e, q» 

v 

The fourth equation tells us how to convert the volume ele­
ment from one coordinate system to the other; it is derived in the 
exercises. In terms of spherical coordinates, JU2 + V2 + W2 = r, 
and if we write the cumbersome 

p(x + U, y + V, z + W) = p(x + rsincp cose, y + rsincp sine, Z + rcoscp) 

simply as p, the gravitational potential takes the form 

<I> (x, y, z) = - III G; r2sincpdrdcpde = - III Gprsincpdrdcpde. 

R** R** 

Here R** is R* in spherical coordinates. The integrand is no longer 
singular at the origin, proving that <I> is defined and finite every­
where. 

What can we say about V2<1> when <I> is defined by a continuous 
distribution of matter? In the integral 

Iff Gp(u, v, w) 
<I> (x, y, z) = - r dudvdw, 

R 

only the term r = J(x - u)2 + (y - V)2 + (z - w)2 involves x, y, 

v2 cp = 0 outside R 
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Determine v2 ct> 
insideR 

divA = V ·A= 0 
in empty space 

The divergence of 
an incompressible 
fluid flow 

and z. Therefore, if we carry the Laplace operator 

a2 a2 a2 
V2=_+_+_ 

ax2 ay2 az2 

through the integral sign, we get 

V2 <l> (x, y, z) = - f f f Gp(u, v, w) V2 (~ ) dudvdw. 

R 

We have already seen that V2 (1 j r) = 0 at any point (x, y, z) where 
r:j= O. Since r(x, y, z) = J(x - u)2 + (y - v)2 + (z - w)2 and since 
(u, v, w) ranges over the region R, we can be sure that r :j= 0 if we 
take (x, y, z) outside R. Then V2(ljr) == 0 over the entire region 
R, so V 2<l>(x, y, z) = O. Thus, in empty space the average tidal ac­
celeration is zero, whether the gravitational source is continuous 
or discrete. 

But <l>(x, y, z) is defined for (x, y, z) in R, so it makes sense 
to determine V2 <l> (x, y, z) inside R. Th pursue this matter, it is 
helpful to bring in the gravitational field A = -V <l> associated 
with <l> and interpret tidal acceleration in terms of A. Start with 
the definition of the differential operator V2 as the inner product 
of the vector differential operator V with itself, as follows: 

( a a a) (a a a) a2 a2 a2 
V· V = ax' ay' az . 'ax' ay' az = ax2 + ay2 + az2 = V2. 

Then V2<l> = V· V<l> = -V· A. Ifwe write A = (Ax, Ay, Az), then 

2 (a a a) aAx aAy aAz -V <l>=V·A= -,-,- .(Ax,Ay,Az)=-+-+-. 
ax ay az ax ay az 

For reasons that will emerge below, this particular sum of deriva­
tives of the components of A is called the divergence of A, and is 
written div A as well as V . A. The fact that the average tidal accel­
eration is zero at any point (x, y, z) in empty space can therefore 
be written in the form 

div A(x, y, z) = V· A(x, y, z) = O. 

We can get insight into the meaning of divergence by studying 
fluid flow. For simplicity we take an incompressible fluid and 
assume that the flow varies from point to point but at a given point 
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does not change over time. Then the fluid has constant density 
p kg/m3 , and its velocity is given by a vector field V(x, y, z) m/sec 
at each point (x, y, z) in some region in R3. The vector field 

kg/sec 
F=pV 

m2 

describes the flow that we are interested in. It tells us the how 
much matter flows across a surface of unit area in unit time. 

Consider the flow F through a small box centered at (x, y, z) 
with sides of dimension /).x, /).y, and /).z. What is the net outflow 
of matter from this box, in kilograms per second? Since the fluid 
is incompressible, we must see eventually that the net outflow is 
zero unless fluid is being created or destroyed inside the box-that 
is, unless the box contains sources or sinks. Right now, though, 
we merely want an expression that measures the net outflow, 
whatever it happens to be. 

(x, y, z)--

The net outflow is the algebraic sum of the outward flows 
across the six faces of the box. We assume that the box is so 
small that the flow vector F is essentially constant over each face. 
On each face, we can break down F into a parallel component 
and a normal one, as in the figure; only the normal component 
contributes to the sum. On the right face the normal component 
is Fx(x + /).x/2, y, z). Therefore, the flow from left to right across 
that face is approximately Fx kg/sec per unit area times the area 
/).y /).Z of the face: 

flow ~ FAx + /).x/2, y, z) /).y/).z kg/sec. 

The same argument shows that the flow from left to right on the 
left face is approximately 

Fx(x - /).x/2, y, z) /).y/).z kg/sec. 

Flow through 
a small box 

Flow across 
a single face 
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Total outflow 
is the divergence 

Meaning of 
divergence 

However, this represents an inflow, not an outflow, because the 
box lies to the right of the face; the outflow is the negative ofthis 
quantity. Therefore, the combined outflow across the left and 
right faces together is approximately 

[Fx(x + l!J.x/2, y, z) - Fx(x - l!J.x/2, y, z)] l!J.yl!J.z. 

The quantity in brackets approximates the derivative 

aFx 
-(x, y, z) l!J.x, 
ax 

so the outflow contribution itself is approximately 

aFx 
-(x, y, z) l!J.xl!J.yl!J.z. 
ax 

In a similar way we can approximate the net outflow across the 
front and back faces and the top and bottom faces, respectively, 
by 

aF 
---.L(x, y, z) l!J.xl!J.yl!J.z 
ay 

and 
aFz 
-(x, y, z) l!J.xl!J.yl!J.z. 
az 

Therefore, the total net outflow is approximately 

( aFx aFr aFz ) 
-(x, y, z) + --(x, y, z) + -(x, y, z) l!J.xl!J.yl!J.z 
ax ay az 

kg/sec. 

Note that this is the sum of derivatives of the components of F 
that we have called the divergence ofF. 

We can improve the approximation by making the box smaller; 
in the limit, the outflow over any 3-dimensional region R is given 
by the integral 

Iff a~ a~ a~ Iff ax + ay + az dxdydz = divFdxdydz. 

R R 

Suppose the scalar function div F = V . F is essentially constant 
over the region R. Then, according to the integral mean value 
theorem, 

flow out ofR= III divFdxdydz~ (divF) voIR. 

R 
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Therefore, if we let the region R shrink down to a point u = 
(u, v, w) (and we write this as R ..} u), then 

flow out of R 
lim = divF(u) = V . F(u). 
Rj,u voIR 

It is in this sense that the function V . F(u, v, w) = div F(u, v, w) is 
called the divergence ofF at the point (u, v, w). 

We can now return to the question of determining V2<1> = 
- V . A at a point u = (u, v, w) in the region R where the mass 
density p is positive. We are interested in finding the divergence 
of A at U: div A(u). 

Decompose R into Band R' = R - B, where B is the ball of 
radius b centered at u . Let AR' be the gravitational field due to 
the masses in R', and let AB be the field due to the masses in B. 
Thgether these masses constitute the entire source, so 

A=AR,+AB. 

Since u is not in R', div AR'(U) = 0, as we have already shown. 
Therefore, 

div A(u) = div AB(U), 

so we now concentrate on AB. 
Make the radius b so small that the value of p anywhere in B 

differs only very little from its value at u. Then the mass inside 
B is approximately MB = p(u)voIB, and since B is small, we can 
think of this as a point mass concentrated at u. Therefore, to a 
good approximation AB is the field of a point source and has the 
formula 

GMB Gp(u)voIB 
AB(X) = ---n= - n, 

r2 r2 

X-u 
n=--, 

r 
r= IIx-uli. 

\724> inside R 
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Outflow of AB from B If we now interpret AB as the flow field of a fluid of density 

The gravitational field 
equations 

p, then we can calculate the net outflow of AB from B two ways. 
On the surface of B, AB reduces to 

Gp(u)voIB 
AB(X) = - b2 n. 

This is a vector whose magnitude is constant and whose direction 
is everywhere normal to the surface of B. The outflow is therefore 
the product of that magnitude by the area of the surface. The 
surface is a sphere of radius b, so its area is 41l'b2 and 

Gp(u)voIB 
outflow = - b2 • 41l'b2 = -41l'Gp(u) volE. 

The second way to calculate the outflow is with the divergence: 

outflow = div AB(U) volE. 

Comparing these, we obtain 

div A(u) = div AB(U) = -41l'Gp(u). 

In fact, this is only an approximation, whose accuracy depends 
on the size of the ball B. We obtain the exact result by taking the 
limit as b -* o. 

Since V2<1> = - div A, our final result is V2<1> = 41l'Gp. Since 
V2<1> = 0 in empty space and p = 0 in empty space, the single 
equation V2<1> = 41l'Gp holds everywhere. The equations 

A = -V· <1>, 

V2<1> = 41l'Gp 

are called the gravitational field equations. The culmination 
of Newton's theory, they describe exactly how the gravitational 
field A arises from the sources p. 

Exercises 

1. There are two different ways to describe the gravitational field 
at the surface of the earth: 

GM 
A = -2-(0,0, -1) and A = g(O, 0, -1). 

r 
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Here M is the mass of the earth and r is its radius, while G is the 
gravitational constant and g is the acceleration due to gravity. 
Since the two expressions must be equal, M = gr2/ G. Using 
the known values of G and g, and taking the circumference of 
the earth to be 4 x 107 meters, determine the mass of the earth 
in kilograms. 

2. Let <I>(x,y,z) = l/r, r = J(X-xa)2 + (Y-YO)2 + (z-zO)2. 
Show that 

V 2<1>(x, y, z) = ° for every (x, y, z) :f=. (xo, Yo, zo). 

3. (a) Sketch the contours of the function <I> (x, y, 0) when <I> is 
the potential function of two equal masses M at the points 
(±1, 0, 0). Thke units in which GM = 1. 

(b) What is the work done by the field -V<I> in moving a unit 
mass from infinity to the origin along the y-axis? 

4. What is the work done by the field in Example 1 in this section 
in moving a unit mass from infinity to the point (-1,0, o)? 

5. Suppose f (x, y, z) is a smooth function, (a, p, y) is a unit vector 
(in the Euclidean sense), and e ~ 0. Explain why 

f(ea, ep, ey) - f(O, 0, 0) ~ eVf(O, 0, 0)· (a, p, y). 

6. Suppose (U, V, W) and (r, <p, 0) are related by the equations 

U = rsin<pcosO, V = rsin<psinO, W = rcos<p. 

(a) Show dU = sin<p cosO dr+ rcos<p cosO d<p - rsin<p sinO dO, 
and obtain the corresponding expressions for dV and dW 
as linear combinations of the differentials dr, d<p, and dO. 

(b) Th continue, you need to use the algebra of differential 
forms, in particular the exterior product. The exterior 
product of any number of differentials can be constructed 
according to the following rules: If dp and dq are arbitrary 
differentials and f is an arbitrary smooth function, then 
dpdp = 0, dqdp = -dpdq, and (f dp + dq)dr = f dpdr + 
dq dr. Consult a text on advanced calculus or differen­
tial forms for details. Show that dr dq dp = -dp dq dr = 
-dq dr dp = -dr dp dq. (The exterior product dp dq is often 
written dp /\ dq.) 
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Gravity causes a 
Doppler effect 

c 
h 

G:;->---__ TI 

(c) Show that dUdV = rsin2 ({Jdrde + r2 sin({Jcos({Jd({Jde 
and obtain the corresponding expressions for dV dW and 
dWdU. 

(d) Show that dU dV dW = ,z sin ({J dr d({J de. 

(e) Suppose (r, e) are polar coordinates in the (x, y)-plane; that 
is, x = r cos e and y = r sin e. Obtain dx and dy as linear 
combinations of dr and de and show that dx dy = r dr de . 

7. For each of the following 2-dimensional vector fields A(x, y), 
make a sketch and calculate the divergence function div A. 

(a) A(x, y) = (x/5, y/5). 

(b) A(x, y) = «x - 1)/5, (y - 2)/5). 

(c) A(x, y) = (y/5, 0). 

(d) A(x, y) = (y /5, x/5). 

4.4 Gravity in Special Relativity 

The Gravitational Red Shift 

According to the equivalence principle, we must expect the fea­
tures we have already identified in a linearly accelerating frame 
to carry over to a frame that is stationary in a gravitational field­
at least if the frame covers only a small region in spacetime. One 
such feature is the Doppler effect. 

Thus we take G to be stationary in a constant gravitational 
field of strength a that points in the direction of the negative s­
axis. Suppose G emits a light signal of frequency v. Let a second 
stationary observer C be positioned at the point S = h on the 
s -axis. What is the frequency of the light signal from G when C 
receives it? 

If G were instead undergoing an upward linear acceleration of 
constant magnitude a in the direction of the positive s -axis, then 
there is certainly a Doppler effect. In Section 4.2 we used argu­
ments from special relativity to show that the signal C receives 
will have frequency 

N = e-cxh v. 
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By the equivalence principle, the same equation must hold in 
the new setting, where G and C are stationary in the gravitational 
field. In other words, gravity causes a Doppler effect. But because 
we can apply the equivalence principle only in a strictly limited 
portion of spacetime, it follows that h must be small, and we 
can replace our formula for N by its linear approximation using 
Thylor's theorem: 

N = v(l - cxh). 

Einstein arrived at this point in 1911 ([12], page 105); when he 
did, he made the following comment (here adapted to our own 
notation): 

On a superficial consideration, this equation seems to as­
sert an absurdity. If there is a constant transmission of 
light from G to C, how can any other number of periods 
per second arrive in C than is emitted in G? But the answer 
is simple. We cannot regard v or N simply as frequencies 
(as the numbers of periods per second) since we have not 
yet determined the time in the frame G. What v denotes is 
the number of periods with reference to the time-unit of 
the clock r of G, while N denotes the number of periods 
per second with reference to the identical clock T of C. 
Nothing compels us to assume that the clocks ... must be 
regarded as going at the same rate. 

Indeed, we have already seen that identical clocks at different 
locations { = h in a linearly accelerating frame run at different 
rates; by the equivalence principle, the same must be true here. In 
particular, if a time interval lasts !l. T seconds according to C, then 
G will say it lasts !l.r = F(h)!l.T seconds, where F(h) = 1 - cxh. 
This has the same form as the analogous equation in Section 
4.2; we have merely replaced the compensation factor F(h) by 
its linearization. The figure below shows us how C's clock, at 
various levels { = h, runs in comparison to G's clock. Since the 
gravitational field gets stronger as h (or n decreases, what we see 
is that clocks slow down in a gravitational field. 

Time dilation and 
compression 

Clocks slow down in a 
gravitational field 
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c 

The relative red shift 

The red shift is 
an energy loss 
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Suppose we rewrite the equation for the Doppler effect by 
expressing the difference in frequencies as a fraction of the emis­
sion frequency: 

N-v 
-- = -cxh. 

v 

This gives us the relative shift, which is independent of the fre­
quency and decreases linearly with h. It says that any light climb­
ing out of the gravitational field has its frequency shifted toward 
the red in such a way that the relative shift is proportional to the 
distance climbed and to the strength of the field. 

Compare this to what happens to matter: When a mass m 
climbs out of a gravitational field, it loses potential energy in 
the amount /). U = m/). <1>, where <I> is the gravitational potential. 
Since the potential function of our gravitational field is <I>(h) = 
cxh + const, we can express the red shift of a photon in terms of 
potential differences, too: 

N = v(l - /)'<1», or 
N-v 
--- = -/),<1>. 

v 

But the energy of a photon is its frequency times Planck's con­
stant, E = hv, so we can rewrite the red shift as an energy shift: 
hN = hv - hv /). <1>. (For the rest of this paragraph, h represents 
Planck's constant, not the position of C.) If we let Ebottom = hv 
and Etop = hN be the energies of the photon at the start and end 
of the climb, we can rewrite the last equation as 

/). U = £top - Ebottom = - Ebottom /). <1>. 
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Thus, light photons (which have zero rest mass) and ordinary 
matter undergo exactly the same loss of potential energy as they 
rise in a gravitational field. 

Incidentally, if we use conventional units instead of geomet­
ric, the red shift and energy loss equations become 

d Ebottom 
an /). U = Etop - Ebottom = - 2 /). <I> . 

C 
'--.-' '-v-' 

mass velocity2 

The potential function gives us a way to express the red shift 
in any gravitational field, not just a constant one. In 1911 Ein­
stein used this approach to calculate the red shift of sunlight that 
reaches the earth. The effect is small, though; the gravitational 
potential difference between the surface of the earth and the sur­
face of the sun is only /). <I> = 2 x 10-6 in geometrical units. 

The Bending of Light Rays 

The equivalence principle also implies that a gravitational field 
bends light rays. Th see what this means, assume once again 
that G is stationary in a constant gravitational field of strength a 
that points in the direction of the negative ~-axis. Suppose that 
a photon is emitted perpendicular to the field, in the direction 
of the positive 1]-axis. We want to find the track of this photon in 
space and its worldcurve in spacetime. 

Ifwe replace the photon by a material particle that is launched 
from the origin with a certain velocity v in the direction of the 
positive 1]-axis, we know it will follow a downward parabolic track 
in the (1], n-plane. When we construct the photon track, it will be 
instructive to construct this particle track at the same time. 

Invoking the equivalence principle, we assume that G is not 
in a gravitational field but is instead undergoing an upward accel­
eration of constant magnitude a with respect to an inertial frame 
R. We also assume, as usual, that corresponding spatial axes of R 
and G have the same orientation. By Theorem 4.1, the two frames 
are related by the map M : G -+ R given by the equations 

G/=c>-__ 

phQtop. 11 
eIll1SS10n 
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Worldlines in the 
inertial frame R 

Worldcurves in the 
accelerating frame G 

eal; 
t = -sinhar, 

a 

M: x=~, 
y = 11, 

eal; 
z = - coshar . 

a 

Hereafter we can ignore x and ~ because these axes are perpen­
dicular to the motions; everything will happen in the (1 + 2)­
dimensional slices of spacetime given by x = 0 and ~ = O. Also, 
remember that the limitation built into the equivalence principle 
implies that M is valid only in some small neighborhood of the 
origin in G. 

In the inertial frame R, the photon and the particle follow the 
same perfectly straight track in the (y, z)-plane-namely, the part 
of the line z = lla where y > O. Their worldlines in the (t, y, z)­
spacetime lie in the plane z = 11 a; they are straight lines with 
slopes c = 1 and v, respectively, when viewed with respect to the 
(t, y)-axes. They are space curves that we can parametrize in the 
following way: 

(t, y , z) = (q, vq, lla). 

For the photon, v = c = 1. The figure below shows two particles 
moving at different speeds, as well as a photon. 

z 

I i a 9-_.;;.;.rnt;;.;;k..;.;of.:;;ph..;.;ot;;;;O" __ 

and obi"'ts 

-+--------y 

tracks in space 

z 

y 

worldlines in spacetime 

The corresponding worldcurves in G are the images of these 
space curves under the map M-1 : R ~ G given by 
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r = ± tanh-1 (;) , 

M-1 : rJ = y, 

1 
( = -In (a 2(z2 - t2»). 

2a 

Remember that M-1, like M, is defined only in a limited do­
main; for M-1 it is a small neighborhood of the point (t, x, y, z) = 
(0,0,0, l/a). Thus, in G the worldcurves have the parametriza­
tion 

(r, rJ, n = (.!.. tanh-l (aq), vq, ~ In (1 - a2l)). 
a 2a 

Here is the map M-1 showing the image worldcurves in G: 

G: 

M 

s= ~ In(sech(ar)) 

Note that the image worldcurves lie on a surface that is itself the 
image of the horizontal plane z = l/a under M-1. In fact, we 
can show that this surface is the graph of a function ( = 1/I(r, rJ) . 
1b determine 1/1, note first that the graph of 1/1 is a cylinder in 
the rJ-direction; this means that rJ is not explicitly involved in 1/1. 
Thus we want to see how the condition z = l/a determines ( as 
a function of T. Substitute z = 1/ a into the equations M-1; this 
gives us 

1 
r = - tanh-1 (at), 

a 

r 

photon 

The image of z = Ija 
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Tracks in the 
accelerating frame 

Newtonian formulas 
for a falling object 

Now solve the first equation for at and substitute the result into 
the equation for ~: 

at = tanh(ar), 
1 

~ = --In (1 - tanh2(ar») . 
2a 

But 1 - tanh2 ar = sech2 ar, so we can finally write 

1 1 
~ = --In (sech2(ar») = -In (sech(ar» = 1/I(r, 1]). 

2a a 

The tracks of the photon and the particles are just the projec­
tions of the worldcurves in the (r, 1], n-spacetime to the (1], n­
plane. In parametric form, the tracks are 

(1], n = (vq, 2~ In (1 - a2q2 )) . 

Since q = 1]/v, we can rewrite them as graphs of functions: 

~ = --In 1 - --1]2 . 1 ( a 2
) 

2a v2 

~.......::::----------""'1) 

1/ 

slow fast photon 
objects 

photon tracks in space 

By the equivalence principle, the worldcurves we have just 
found are those that occur when G is in a gravitational field in­
stead of accelerating linearly with respect to an inertial frame-at 
least if G's frame is small. (Remember, the equivalence principle 
is local.) But then q and 1] are small, so we can use Thylor's theo­
rem to replace our two descriptions of the worldcurves by simple 



________________________ ~§~4_.4 __ G~m~v~i~~~m~Sp~e~c~iw~R~e=m~ti=n=·~~ __________ 195 

approximations: 

These are the usual Newtonian formulas for the motion of an 
object falling in a vertical gravitational field of strength ex while 
moving sideways with velocity v. However, we have discovered 
something new: A photon moving with velocity v = c = 1 is 
governed by the same formulas as a material object. Light follows 
a curved path in a gravitational field. 

A Basic Incompatibility 

The equivalence principle has led us naturally to consider accel­
erated, noninertial frames in trying to describe gravity. But this 
does not, in itself, rule out the simpler inertial frames of special 
relativity. However, we shall now show that any attempt to in­
corporate gravity directly into special relativity will fail; the two 
are fundamentally incompatible. 

Suppose that G : (r, s) is an inertial frame in which there is 
a gravitational field. This means that Newton's laws of motion 
hold in G, and any accelerated motions that cannot be accounted 
for by obvious tangible forces are explained by the presence of a 
suitable gravitational force. We shall allow the gravitational field 
to vary from point to point, but require only that it be constant 
in time at any given point. We also assume that the gravitational 
potential function <l> takes different values at different points on 
the s-axis. 

Let C be a second observer stationary at some point s oj:. 0; 
then <l> has different values at C and G (~<l> oj:. 0). Now suppose G 
emits a light signal of period ~ r. When C receives the signal, its 
period will have been changed to 

~r 
~T = 1 _ ~<l> oj:. ~r 

by the gravitational red shift; see page 190. 

Can we include gravity 
in an inertial frame? 

The red shift and 
proper times 
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Gravity distorts 
geometry 

Bending and 
stretching 

But now consider the parallelogram-like figure formed by the 
parts of the worldlines of G and C that are bounded by the world­
curves of photons sent at two different times from G to C. The 
gravitational field causes the sides to be curved; while we do 
not know the precise form of those curves, we do know that the 
second has exactly the same shape as the first, because the grav­
itational field is invariant over time. This implies that the top 
of the parallelogram must have the same length as the bottom: 
tlT = tlr. 

This puts the incompatibility in a clear and simple form: 
Minkowski geometry requires tl T = tl r, while gravity requires 
tl T i= tl r. We cannot put a gravitational field in an inertial frame; 
distances get distorted. Spacetime with gravity does not obey the 
laws of Minkowski geometry; we shall come to regard this as a 
manifestation of the curvature of spacetime. 

The Meaning of Curvature 

If you take a portion of a plane and alter it so it takes the shape 
of a curved surface, two things happen: The plane bends up into 
the third dimension, and it stretches to fit the new shape. These 
are not the same: When you roll a piece of paper into a cylin­
der, it bends without stretching; when you pull on the edges of a 
flat rubber sheet, it stretches without bending. It is bending that 
we usually associate with curvature, but this is unfortunate, for 
bending requires that we visualize the surface in some still-larger 
space that contains it. If we try to think of the curvature of space­
time this way, we need that larger space. But none is forthcoming; 
our own work has certainly not produced it. 
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Fortunately, in mathematics and in physics we associate cur- Curvature means that 
vature with stretching rather than bending. From this point of charts contain 
view, what makes a surface curved is that it cannot be repre- distortions 

sented by a flat scale model. In other words, if we make a flat 
chart of the surface-or even just a portion of the surface-the 
chart will necessarily distort distances, because the laws of plane 
geometry hold in the chart but not in the surface. 

Here is an example. The triangle on the left, below, is a chart An example 
that represents a quarter of the northern hemisphere bounded 
by the North Pole P and two points El, Ez that are 90° apart on the 
equator. In the chart itself, these three points form an equilateral 
triangle; in fact, each side represents a distance of 10,000 kilo-
meters. (The meter was originally defined as 1/10,000,000 of the 
distance from the equator to the pole!) How long is the altitude 
A? According to Euclidean plane geometry it should be 

A = 10000 x J3 = 8660 kilometers. 
2 

p 

EIG---~---OE2 

A = 10000 

p 

equator 

But on the earth itself the altitude runs from the pole to the 
equator, just like the two sides, so it is actually 10,000 kilometers 
long, not 8,660. Since the chart represents the earth and distances 
on the earth, it must give the value of A as 10,000 kilometers, 
not 8,660. This is how the chart distorts distances. (It also distorts 
angles: The three 60° angles at the vertices of the triangle actually 
represent 90° angles on the earth.) 

The crucial point here is that we do not need to see the picture We can detect 
on the right-which shows how the surface is embedded in 3- curvature in flat charts 

dimensional space-to determine that the surface is curved. It 
is enough to see just the flat, 2-dimensional, chart on the left, 
because the metric information that the chart gives (namely, 
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z.~ 

x 

that A equals 10000 rather than 8660) already reveals that the 
surface is curved, that is, that it does not obey the laws of plane 
geometry. 

In the next two chapters we will study the differential geom­
etry of curved surfaces and develop the tools that will allow us 
to extract information about curvature directly from flat charts. 
When we do, it will become evident that there is nothing special 
about 2-dimensional surfaces or Euclidean distances; the ideas 
work in any dimension and are readily adapted to distance as 
defined in Minkowski geometry. With that perspective we will 
be able to interpret noninertial coordinate frames like those we 
have created as suitable charts for our 4-dimensional spacetime, 
and we will be able to connect the distance distortions we find in 
those charts to the curvature of spacetime. 

A New Theory of Gravity 

In his 1916 paper that introduces the world to general relativ­
ity, Einstein gives two compelling arguments for using arbitrary 
frames to model gravity. He attributes the first to the physicist 
Ernst Mach. It begins with a thought experiment: Suppose there 
are two large fluid masses Rand G that are so far from each other 
and from all other masses that the only appreciable gravitational 
effects they experience are internal. The internal field will tend 
to make the fluid a sphere. Suppose, furthermore, that in a frame 
in which R is motionless, G rotates with constant angular velocity 
()) around the line that connects the centers of the two bodies. 
Then, from a frame in which G is motionless, R rotates around 
the same axis but with constant angular velocity -()). 

So far, the relation between Rand G is symmetric. However, 
the experiment continues by assuming that the bodies have dif­
ferent shapes: R is indeed a sphere, but G has an equatorial bulge. 
What is the physical cause of this asymmetry? Einstein first brings 
forward the explanation provided by Newtonian mechanics: Cer­
tain coordinate frames-the inertial frames-are singled out as 
"privileged"; the laws of physics hold only in these frames, and 
only these frames should be used to study physics. In R's frame, 
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G spins and bulges as a result; this is consistent with physical law. 
In G's frame, R spins but does not bulge; this is contradictory, so 
we rule G's frame "out of bounds": R's frame is privileged while 
G's is not. 

But simply declaring that physical laws hold only in certain 
frames is not an explanation; in particular, it is not an explana­
tion of what causes the asymmetry. In fact, no explanation is to 
be found within the system that consists solely of the two bod­
ies: The symmetry of the situation ensures that. The explanation 
comes from outside: Only G has a bulge because only G is "re­
ally" rotating-that is, rotating with respect to the bulk of distant 
matter in the universe. It is the observable presence of this other 
matter that causes the asymmetry. There is no observable justi­
fication for asserting that the laws of physics hold only in certain 
privileged frames. 

On the contrary, Einstein asserts ([10], page 113, and the em­
phasis is his own): liThe laws of physics must be of such a nature 
that they apply to systems of reference in any kind of motion!' This 
is nothing less than a complete generalization of Galileo's prin­
ciple: liThe laws of physics must be of such a nature that they 
apply to systems of reference in uniform motion with respect 
to one another!' For this reason the conclusion of Einstein's first 
argument for arbitrary frames is called the principle of general 
relativity. 

Einstein's second argument is based on the principle of equiv­
alence. It says that we can study a local gravitational field by using 
a coordinate frame undergoing uniform linear acceleration with 
respect to an inertial frame. But Einstein does more than just 
study gravity; with arbitrary frames he gives it a fundamentally 
new theoretical foundation. In his own words ([10], page 114), 
"It will be seen from these reflections that in pursuing the gen­
eral theory of relativity we shall be led to a theory of gravitation, 
since we will be able to 'produce' a gravitational field merely by 
changing the system of coordinates!' 

The following chapters are about Einstein's theory of gravi­
tation. It is in many ways remarkably different from Newton's 
theory. For both Newton and Einstein, it is the gravitational field 

Privileged frames 
cannot be justified 

The principle of 
general relativity 

Arbitrary frames 
and gravity 

Gravity and geometry 
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the sun 

that causes objects to move the way they do. For Newton, the field 
describes a force, and the motions we see are the result of forces 
induced by gravitating masses. But Einstein takes an entirely dif­
ferent view. For Einstein, the gravitational field describes not a 
force but simply the curvature of spacetime. Gravitating masses 
induce this curvature; they alter the geometry of spacetime. The 
worldcurves that objects follow in the presence of gravitating 
masses are simply the straightest possible paths in the spacetime 
that has been curved by those masses. Gravity is no longer a 
force; it is an aspect of geometry. For Einstein, arbitrary nonin­
ertial frames are an essential link in the chain that runs from 
gravity to geometry: 

accelerated noninertial curved 
gravity ==> motions ==> frames ==> spacetime 

Exercises 

1. (a) Explain why the acceleration due to gravity at the surface 
of the sun is given by the formula 

GM 
cx = X2' 

where G is the gravitational constant, M = 2 x 1030 kilo­
grams is the mass of the sun, and X = 7 x 108 meters is its 
radius. Determine cx in m/sec2 and in geometric units (in 
which it has the dimensions sec-I). 

(b) Consider a photon that grazes the sun, moving along a ray 
that is initially perpendicular to a radius. Using the for­
mula ~ = -cx1]2/2 from the text to describe how far the 
photon drops after it has traveled the horizontal distance 
1], determine how far the photon drops after it travels the 
distance 1] = X equal to the radius of the sun. Express the 
drop inboth conventional and geometric units. Note: The 
formula derived in the text assumes that the gravitational 
field is constant in both magnitude and direction. Obvi­
ously, that is not the case when we take 1] as large as the 
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radius X of the sun; nevertheless, assume that the formula 
gives a reasonable approximation for 11]1 :::; X. 

(c) Suppose () is the change in direction that the photon under­
goes when it travels the distance 1]. Show that 

() ~ tan() = -a1] radians. 

Determine the value of () when the photon travels the 
distance 1] = X. 

(d) In 1911 Einstein calculated that a photon from a distant 
star will be deflected by about 4 x 10-6 radians if it grazes 
the sun. He assumed a Newtonian gravitational field that 
pointed toward the center of the sun and had a magnitude 
proportional to the inverse square of the distance from the 
center. Compare your result here with Einstein's; note that 
you should double your estimate of the change in direction 
(why?). 

2. (a) Why does the Doppler effect have the form N = v (1 - ~) 
in conventional units? 

(b) Determine the potential difference !l. <I> between the earth 
and the surface of the sun. 

( c) Determine the relative red shift of sunlight viewed from 
the earth. 

Further Reading for Chapter 4 

Newtonian gravity is discussed in detail in The Feynman Lec­
tures [13] and particularly in relation to general relativity by 
Berry [2]. Boas [4], Section 13.8, has a clear, accessible treatment of 
the gravitational field equation. Berry and Einstein himself [12], 
[10] deal with the complications that arise in noninertial frames. 
Our argument for the incompatibility of gravity and special rel­
ativity is adapted from Misner, Thorne, and Wheeler [24], who 
devote a chapter to the subject. 



CHAPTER 

Surfaces and 
Curvature 

This chapter is about the differential geometry of a 2-dimensional 
surface in 3-space. It involves measuring angles, lengths of 
curves, and areas of regions and ultimately finding the curvature 
at each point on the surface. Then in the following chapter we 
will see how make all this intrinsic, that is, to define a surface 
as a piece of an ordinary plane endowed with a non-Euclidean 
metric, and to determine curvature directly from that metric, 
without reference to any embedding in space. 

5.1 The Metric 

Our strategy for developing the differential geometry of a curved 
surface will come from suitable generalizations of what we have 
already done for curves. Consider, for example, how we define 
the length of a curve C: 

length ofC = lb II x' (q) II dq when C: x(q), a ~ q ~ b. 

Note that this result depends, first of all, on a parametrization 
x(q) of C; second, on a way to define and measure the length 

Elements of 
differential geometry 

203 
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of the tangent vector at points along the curve; and finally, on 
calculating an integral. Thus, the first step here will be to define 
the parametrization of a surface. From there we will consider 
the vectors in a tangent plane and establish geometric constructs 
in that plane. Since it is an ordinary Euclidean plane, the key 
will be an inner product. Finally, we will develop the tools-like 
integration - that will allow us to bring geometric features of the 
tangent planes down to the surface itself. 

Parametrizing a Surface 

We start with a map X: R2 -+ R3 : (ql, q2) -+ (x, y, z) defined by 
three smooth functions of the parameters ql and q2: 

x(ql, q2) = (x(ql, q2), y(ql , q2), z(ql , q2)) . 

x -

The surface S is the image of x, which we usually visualize as a 
grid made up of the images of vertical and horizontal lines from 
the (ql, q2)-plane. (The reason for the superscripts will become 
clear later.) Let us look at these image curves in more detail. 
The map x, restricted to the horizontal line q2 = c2, defines a 
parametrized curve 

ql 1--* x(ql, c2), 

with ql as parameter. As c2 varies the images sweep out a family 
of roughly parallel curves in space. Similarly, if we restrict x to 
the vertical lines ql = C I, 

q2 1--* x(c 1 , q2), 



____________________________________ ~§5_._1 __ Th_e __ M_e_trt_·c ___________ 205 

we get a second family of parametrized curves with q2 as param­
eter. Members of the second family cross the first, though not, 
in general, at right angles. The two families thus define a curvi­
linear coordinate grid on S in much the same way that latitude 
and longitude lines define one on the earth. Because q1 and q2 
are indeed coordinates on S, we often refer to the point x(q1 , q2) 
simply as (q1, q2). 

The coordinate curves have tangent vectors at each point, and 
these vectors lie in the tangent plane to the surface at that point. 
Consider first the "horizontal" curve x(q1, c2). It is a function 
of the single variable q1, so we can write its tangent vector as 
Xl = X' (q1, c2), where x' means the derivative with respect to q1. 
Similarly, the "vertical" curve is x(c 1, q2), so its tangent vector is 
X2 = X/(C l , q2), where x' now means the derivative with respect 
to q2. Since X is actually a function of both q1 and q2, it will be 
clearer if we use partial derivatives. Thus the tangents to S in the 
two coordinate directions at (ql, q2) = (c 1, c2) are 

ax 1 2 
Xl = -1 (c ,c ) 

aq 
and 

aX 1 2 
X2 = -2 (c ,c ). 

aq 

In the figure above, the vectors Xl and X2 are linearly inde­
pendent. But this need not always happen; one of the vectors 
could collapse to 0, or the two could point in the same direction. 
For example, the "bowtie" map 

ql and q2 define 
coordinates on 5 

Tangents to the 
coordinate curves 

Singular behavior 
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Surfaces must be 
nonsingular 

pinches the (ql, q2)-plane down to a line at the origin, and you 
should check that YI and Y2 are collinear there: YI = (1,0,0), 
Y2 = (0.9,0,0). Points like this where the tangents in the coor­
dinate directions fail to be linearly independent are said to be 
singular. 

Singular points can have various forms, but they typically are 
places where the surface is locally not 2-dimensional. 1b avoid 
this, we henceforth require that our surface parametrizations be 
nonsingular everywhere. Since the cross product of two vectors 
is nonzero precisely when they are linearly independent, we 
impose the following condition to guarantee that the surface x 
has no singular point: 

Xl x X2 = Xl (ql , q2) X X2(ql , q2) =1= 0 

for all (ql, q2). 

Definition 5.1 Let R be a region in R2; a surface S parametrized 
by R is a smooth map 

X : R ~ R3 : (ql, q2) f-+ (x(ql, q2), y(ql , q2), z(ql, q2») 

for which the cross product Xl x X2 is everywhere nonzero in R. 

The unit normals to s The cross product of two vectors is orthogonal to each of its 
factors: (v x w) . v = (v x w) . w = O. Since Xl and X2 span 
the tangent plane of the surface S parametrized by x, their cross 
product Xl x X2 is normal to the tangent plane and thus to the 
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surface. Furthermore, since x is nonsingular, we can divide by 
Ilxl x xzll to get the unit normal at each point: 

1 Z Xl X Xz 
n(q ,q ) = II II' 

Xl x Xz 

Geometry in the 'Th.ngent Plane 

Let TSp denote the set of all vectors in R3 that are tangent to 5 at 
the point P = (e l , eZ); we call TSp the tangent plane to 5 at P. 
The geometric notions we want to establish on TSp will all follow 
from the inner product defined there. Since any vectors v, W in 
TSp are vectors in R 3, we can express their inner product in terms 
ofthe R3 coordinates: lfv = (VI, Vz, V3) and W = (WI, Wz, W3), then 

While all this is true, it is not useful. Only some coordinate 
triples (VI, Vz, V3) actually represent vectors in TSp, and the triples 
that do represent tangent vectors have no connection with the 
map x(ql, qZ) that defines S. Finally, the tangent plane is only 
2-dimensional, so its vectors would be better represented by co­
ordinate pairs, rather than triples. 

TSp 
v 

A more useful approach is to use the linearly independent 
vectors Xl and Xz as a basis for TSp. Then, when we write a 
tangent vector as a linear combination of Xl and Xz, we get a pair 

The tangent plane 
at a point 

A basis for TSp 
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The inner product 
with components 

The metric 

of coordinates. We shall write these with superscripts, as follows: 

I 2 
V = V Xl +v X2, 

I 2 
W=W Xl +w X2, 

and we shall also write 

v = (~~), 
The coordinates that appear here are unrelated to the coordinates 
that v and W have as vectors in R3; the superscripts help remind 
us of the difference (but they have a more important purpose, 
too, which we shall see presently). 

We can express the inner product ofv and w directly in terms 
of these coordinates: 

v· w = (VIXI + V2X2) • (WIXI + W2X2) 

= Vlwl(XI • Xl) + vl w 2(XI • X2) + V2w l (X2' Xl) + v2w 2(X2' X2) 

_ (I 2) (Xl . Xl - V ,v 
X2' Xl 

=vtGw. 

The last step expresses v . w as a matrix multiplication of the 
same sort we found so useful with the Minkowski inner product. 
In that case the matrix was 

hI = (~ _~); 
here it is 

G = (gn gl2) = (Xl' Xl Xl' X2) = (11X1112 
g21 g22 X2 . Xl X2' X2 X2 . Xl 

Because G plays the same crucial role in TSp that hI plays in 
Minkowski geometry, we call G, or gij, the metric on TSp. Each 
tangent plane has its own metric G, which therefore is a function 
of the parameters ql and q2: G = G(ql, q2). Also, G is always a 
symmetric matrix (Gt = G) because g21 = X2 . Xl = Xl . X2 = gl2. 

The metric is also called the metric tensor, because it is "ten­
sorial"; we shall see what this means when we consider tensors 
in detail in Chapter 6. Yet another name for the metric is first 
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fundamental form, a term introduced by Gauss in his study of 
surfaces and now very commonly used. 

Proposition 5.1 The eigenvalues ofG are positive. 

PROOF: Since G is symmetric, its eigenvalues Al and A2 are real. 
Since det G = A1A2 and tr G = Al + A2, it is sufficient to show that 
the trace and determinant are both positive. 

But trG = II Xl 112 + IIX2112 > 0 is immediate.1b compute detG, 
note first that since Xl and X2 are linearly independent, the an­
gle () between them lies strictly between 0 and rr, so sin () > O. 
Therefore, 

det G = IIxIII211x2112 - (Xl' X2)2 = II xIII 2 IIX2 112 - IIxl11211x2112 cos2 () 

= IlxIII211x2112(1 - cos2 () = IIXl11211x2112 sin2 () > O. 
END OF PROOF 

We can express the inner product and the metric using sum- Basic metric quantities 

mation notation: 

v·'w= (tviXi)' (twjXj) = ttviwj(Xi'Xj) = ttviwjgij' 
i=l j=l i=l j=l i=l j=l 

In the same way, the length of a tangent vector is 

IIvll = ~ = JLi,j vivj gij. 

If 0 is the angle between two vectors v and w, then 

L" viwjgij 
cosO = I,J 

JLi,j vivj gij JLi,j wiwj gij 

These examples begin to suggest why G = (gij) is called the 
metric, but they also illustrate a tendency for formulas in differ­
ential geometry to become visually cluttered. 1b help relieve the 
clutter, Einstein proposed that summation signs could usually be 
removed and replaced by the following 

Summation convention: Whenever an index appears twice in an 
expression, once as a subscript and once as a superscript, sum over 
it. Summation is understood without a summation sign. 

Einstein summation 
convention 
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Oriented areas 

VAW 

WAV = -YAW 

Area of an arbitrary 
parallelogram 

Thus, for example, we write simply 

instead of 

and the metric quantities we have already defined become 

IIvll = J vivj gij • 

We also use the metric to calculate areas. In fact, we shall de­
fine oriented regions with areas that can have negative, as well as 
positive, values. We define v 1\ w to be the oriented parallelogram 
spanned by the vectors v and w, in that order; then W 1\ v = -v 1\ W 

is that parallelogram with the opposite orientation. Furthermore, 
it will always be true that 

area W 1\ v = - area v 1\ w. 

Finally, we require that the parallelogram U* = Xl 1\ X2 have 
a positive area; its value will be determined in the following 
proposition. For convenience in future work we define g = det G. 

Proposition 5.2 area U* = area Xl 1\ Xz = IIXI x xzll = y'g. 

PROOF: By definition, IIXI x x211 = area U*. But we also have 
area U* = IIXlllllx211 sin e, which is J det G = y'g, by Proposi­
tion 5.1. END OF PROOF 

The next proposition shows how any parallelogram v 1\ w can 
be linked to the "basic" parallelogram Xl 1\ X2. 

Proposition 5.3 v x W = (Vl w2 - v2w l )(XI x X2) = (detR)(xl x 
X2). Here (using the summation convention) 

v = ViXi. W = WjXj. and R = (~~ :~). 
Therefore, area v 1\ w = detR· area Xl 1\ X2 = y'g detR. 

PROOF: By the summation convention, 

v x w = ViXi x WjXj = ViWj(Xi x Xj). 
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But Xl X Xl = Xz X Xz = 0 and Xz X Xl = -Xl X Xz, so 

v X w = VIWZ(XI X xz) + vZwl(xz X Xl) 

= (vI wZ - vZwl )(XI X Xz) = (det R)(XI X xz). 

Therefore, area v /\ w = det R . area Xl /\ Xz = det R,,;g, as 
claimed. END OF PROOF 

Corollary 5.1 area v /\ w > 0 if and only if detR > O. 

1b understand these relations between areas, it is helpful to 
look in more detail at the way we assign coordinates in TSp. 
Recall that by definition, R Z is the set of all ordered pairs (a, b) 
of real numbers. A coordinate assignment in TSp is a linear map 
L : R Z ~ TSp defined by its effect on the standard basis: 

L: (~) ~ Xl, L : (~) ~ Xz, and L : (~~) ~ v if v = ViXi . 

TSp: w 

U 
L -(6) a 

M 

M· 

Any linear map from one 2-dimensional vector space to another 
magnifies areas by a certain fixed amount. The area magnification 
factor for L is ,,;g, which we can see by the following argument. 
Let Ube the unit square, spanned by (1, 0) and (0,1) in RZ . Then 
its image U* = L(U) is the parallelogram spanned by Xl and Xz 

in TSp. Since area U = 1, while area U* = ,,;g, the linear map L 
magnifies areas by the factor ,,;g. 

Now let M be the parallelogram 

Areas from 
coordinates 

L magnifies areas 
by the factor ,Jg 
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Connecting the 
tangent plane to the 
surface 

in R2. The exercises ask you to show that areaM = detR, where 

Therefore, the image parallelogram L(M) = M* = V 1\ W has 
area ,Jg det R, as we have already demonstrated by other means. 
Incidentally, note that detR < 0 in the figure above, so M and 
M*, as drawn, have negative area. 

Geometry on the Surface 

Geometric information from the tangent plane TSp can be trans­
ferred down to the surface S itself, at least near the point P. Thy­
lor's theorem provides the mechanism. For suppose P = (e l , e2) 

(note that this is a shorthand for P = x(e l , e2»), and suppose 
(~ql, ~q2) is near (0, 0). Then (e l + ~ql, e2 ~q2) is near P, and 

x(e l + ~ql, e2 + ~q2) ~ x(e l , e2) + ~ql Xl (e l , e2) + ~q2 x2(e l , e2). 
point on surface near P point on tangent plane to surface at P 

The point x(e l + ~ql, e2 + ~q2), which in the figure above is 
shown simply as (e l + ~ql, e2 + ~q2), has coordinates (~ql, ~q2) 
relative to (e l , e2). The point X + ~ql Xl + ~q2 X2 is the vector in 
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TSp with coordinates (~ql, ~q2) relative to the basis Xl and X2. 
Thylor's theorem says that these two points-one on the surface 
and one on the tangent plane-which have the same coordinates, 
are close in R3. The technical condition is 

(Note that where X, Xl, and X2 appear without arguments in 
this expression and in the figure above they are to be evaluated 
at (e l , e2).) We can rewrite the technical condition of Thylor's 
theorem using ''big Oh" notation as 

x(el + ~ql , e2 + ~q2) 
= x(e l , e2)+~ql Xl (e l , e2)+~q2 X2(e l , e2)+0 ((~ql)2 + (~q2)2) . 

We turn now to measuring the length of a curve on the surface Length of a curve on S 

S, where S is the image of a parametrization X : 'R -+ R3. If 
we start with a curve in the parameter plane 'R, defined by a 
parametrization 

then the composition z(t) = x(q(t» gives us a parametrized curve 
in R3 that lies on S. Thus we have two curves: one in 'R and one 
in S = x('R). 

a t b 
a 

q2 

/q 

X -
ql 
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, = (dq1 dq2 ) 
Z dt ' dt 

in TSz 

, = (dq1 , dq2 ) 
q dt dt 

inn 

It will be instructive to calculate the lengths of both curves; 
for z(t) in S we have 

length of z = lb liz' (t) II dt. 

Since z(t) = X(ql (t), q2(t)), the chain rule gives 

, dz ax dql ax dq2 dql dq2 
Z (t) = dt = aql dt + aq2 dt = dt Xl + dt X2· 

Thus z'(t), which is a vector in the tangent plane at the point 
z(t) = x(q(t)), has coordinates dql fdt and dq2 fdt with respect to 
the basis Xl and X2. We can therefore express its length in terms 
of the metric on TSz(t). If we use the summation convention but 
otherwise write out everything in detail, the formula looks like 
this: 

More briefly, the length of the curve is 

l b dqi dqj 
length of z = a gij at dt dt. 

Now consider q(t) in R. Notice that q' = (dql fdt, dq2 fdt), so 
q' and z' have the same components in their respective vector 
spaces. We have 

{b {b (ddqtl )2 + (ddqt2)2 dt. length of q = Ja Ilq' (t)ll dt = Ja 

To make this resemble the length formula for z(t) even more 
closely, observe that R uses the ordinary Euclidean inner prod­
uct, which is defined by the identity matrix. That is, V· W = v t I w, 
where 

I = (OIl 012) = (1 0). 
021 022 ° 1 
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In other words, we can take the view that R is itself a surface 
whose metric is everywhere equal to 

{
I i=j, 

0" -
IJ- 0 i=l=j. 

Then, if v = (vI, v2), you can check that OijViVj = (vl )2 + (V2)2, so 

IIvll = JOijViVj. Therefore, we finally have 

l b dqi dqj 
length of q = a Oij dt dt dt. 

Certainly the formula for the length of q(t) depends only on 
quantities defined in R. The similarity between the calculations 
for q(t) and z(t) draws attention to the fact that the length ofz(t) 
also depends only on quantities defined in R. 

Theorem 5.1 Suppose D is a region in Rand S = x(R) is a surface. 
Then 

areaD = II dqI dq2, 

D 

q 2 

b2 

'l( 

-::-
I) 

a l -

a2 

D 

b l 

area x(D) = II J g(ql, q2) dql dq2. 

x -

D 

s 

xeD) 

PROOF: This is a sketch of a proof. While the assertion about area D 
itself is immediate, we will still find it useful to start with some 
of the details in that case. 

Suppose that D lies inside the rectangle R = [aI, bl ] x [a2, b2] 

in the (ql, q2)-plane. A partition of these two intervals, 

Area of a region in S 

Area of D 
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Area of the image of a 
single'Rij 

1 1 1 1 1 b1 a = ql < q2 < q3 < ... < qm+ 1 = , 
2 2 2 2 2 b2 a = ql < q2 < q3 < ... < qn+ 1 = , 

subdivides R into small rectangles Rij = [qr, qt+l] x [qJ' qJ+l]. 

Note that area Rij = ~ql ~qJ' where ~ql = qt+ 1 - q[, ~qJ = 

qJ+l - qJ. The area of D is approximately equal to the sum of 
the areas of the various Rij that intersect D. 1b express this more 
precisely, we introduce the characteristic function of D: 

1 2 {I if (ql, q2) is in D, 
XD(q ,q ) = 0 otherwise. 

Then 
m n m n 

areaD ~ L L XD(qr, qJ) area Rij = L L XD(qr, qJ)~qr ~qJ' 
i=1 j=1 i=1 j=1 

Note that the summation convention is not appropriate here. In 
the limit as (~ql)2 + (~qJ)2 ~ 0, this sum becomes the integral 

f f XD(ql, q2) dql dq2 = f f dql dq2 . 

R D 

1b determine the area of x(D), we focus on the image of a 
single rectangle Rij. In fact, there are two images to consider: 
One is the portion X(Rij) on the surface 5, and the other is the 
parallelogram ~qlxl /\ ~qJX2 that lies in the tangent plane at 
x(ql, qJ) and is spanned by ~qlxl and ~qJX2. (In the figure below, 
the tangent plane lies transparently in front ofthe surface.) 

&J}; I 
I--------{---- ----1---- ----

x -
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By Thylor's theorem, the parallelogram ~qtx1 A ~qjx2 is in 
very close agreement with the image X(Rij), so we can write 

areax(Rij) ~ area (~qlX1 A ~qjx2) 
= ~ql ~qj . area Xl A X2 

= ~ql ~qj g(ql, qj) 

We already know that JK is the area magnification factor for the 
map from Rij into the tangent plane. This result shows that it 
is also the (approximate) local area magnification factor for the 
map X from Rij to the surface itself. 

The area of the entire image x(D) is therefore well-approximated 
by the total area of the individual images X(Rij), when we sum 
over those small rectangles Rij that intersect D: 

m n 

area x(D) ~ L L XD(ql ' qj) area x (Rij ) 
i=l j=l 

m n 

~ L L XD(qf, qJ) g(q1, qJ)~qf ~qJ. 
i=l j=l 

If we take the limit as (~qt)2 + (~qJ)2 -+ 0, then on the one hand 
this sum becomes the exact value of area x(D), while on the other 
it becomes the integral 

f f XD(q1, q2)J g(q1, q2) dq1 dq2 = f f J g(q1, q2) dq1 dq2. 

R D 
END OF PROOF 

Exercises 

1. ( a) Sketch the following surfaces in R 3 . Indicate the coordi­
nate lines q1 = constant, q2 = constant, and describe the 
surface in words, where possible. 

(b) X(q1,q2) = (q1,q2,q1 q2), -1::: q1,q2::: 1. 

Area of the entire 
image 
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(c) x(ql, q2) = (ql, q2, (ql)2 _ (q2)2), -1 ~ ql, q2 ~ 1. 

(d) x(ql, q2) = (ql, q2, J1 _ (ql)2 _ (q2)2), (ql)2 + (q2)2 ~ 1. 

(e) x(ql,q2) = (cosq2cos ql, cosq2sinql, sinq2), 0 ~ ql ~ 2rr, 
o ~ q2 ~ rr/2. 

(f) The previous surface but with the domain enlarged to 
-rr/2 ~ q2 ~ rr/2. 

(g) x(ql, q2) = (sin q2 cos ql , sin q2 sin ql, cos q2), 0 ~ ql ~ 2rr, 
0~q2~rr. 

(h) x(ql, q2) = (coshq2 cosql, coshq2 sinql, sinhq2), 0 ~ ql ~ 
2rr, -1 ~ q2 ~ 1. 

2. For each of the surfaces X(ql, q2) in the previous exercise, de­
termine Xl, X2, Xl X X2, gij, and JK. Also determine whether 
the coordinate lines on the surfaces are orthogonal. 

3. (a) Consider the ''bowtie'' surface y(ql, q2) given in the text: 

y=O, 

Calculate the tangent vectors YI and Y2 and show that they 
are collinear at (ql, q2) = (0,0). 

(b) Assume that the domain of y is the entire (ql, q2)-plane; 
show that the surface covers the entire (x, z)-plane exclud­
ing the z-axis but including the origin. 

4. Show that areaM = VI W2 - V2WI when M is the parallelogram 

5. For each of the surfaces x(ql, q2) given below, determine Xl, 
X2, Xl X X2, gij, and JK. Also determine whether the coordinate 
lines on the surfaces are orthogonal. 

(a) The plane x(ql, q2) = (ql, q2, aql + bq2 + c). 

(b) The graph of a function: X(ql, q2) = (ql, q2, f (ql, q2». 

(c) A surface of revolution: x(ql , q2) = (r(q2) cos ql , r(q2) sin ql, z(q2) 
where 0 ~ ql ~ 2rr. 
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(d) A sphere of radius R (a particular kind of surface of revo­
lution): 

X(ql, q2) = (R cos q2 cos ql, R cos q2 sin ql , R sin q2) , 

where 0 ::: ql ::: 2rr, -rr /2 ::: q2 ::: rr /2. 

(e) A torus Ta.r (a particular kind of surface of revolution): 

X(ql, l) = (a + rcosq2) cosql, (a + rcosq2) sinql, r sin q2) , 

where 0 ::: ql ::: 2rr, -rr ::: q2 ::: rr. What geometric features 
of the torus do the parameters a and r determine? Sketch 
the tori Ta.3 for a = 1, 2, 3, 4. 

6. How does the parametrized curve (r, z) = (r(q), z(q)) appear in 
the surface ofrevolution x(ql, q2) = (r(q2) cos ql, r(q2) sin ql, z(q2))? 
Illustrate your answer with the surfaces in Exercises Id, If, 
Ig, 5d, and 5e. 

7. Consider the outer and inner halves ofthe torus Ta•r, as shown 
above. Determine their areas as functions of a and r. First 
identify the sub domains of n : 0 ::: ql ::: 2rr, -rr ::: q2 ::: rr that 
determine these two portions of the torus. What is the area of 
the whole torus? 

8. (a) The coordinate lines on the torus Ta.r consist of "meridi­
ans of longitude," given by ql = constant, and "parallels of 
latitude," given by q2 = constant. Determine their lengths; 
in particular, show that the length of a latitude circle de­
pends on the value of q2 but all longitude circles have the 
same length. 
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(b) Sketch the curve qZ = ql - n on Ta,r; take 0 ::: ql ::: 2n. 
Your sketch should make it clear that the curve is closed: 
Its starting and ending points are the same. 

(c) Sketch the curve x(2t, 3t) on Ta,r; take 0 ::: t ::: 2n. Your 
sketch should make it clear that this is a closed curve that 
has the form of a trefoil knot. 

9. (a) Sketch the helix given by the arc-length parametrization 

( 
5 . 5 J3) Z(5) = cos -, sm -, -5 , 
222 

o ::: 5 ::: n. 

(b) Verify that the tangent z' (5) is indeed a unit vector for all 5. 
On your sketch of the curve draw the individual tangents 
z' (5) for 5 = 0, n /3, n /2, 2n /3, n. 

( c) For a fixed 5, consider the tangent line parametrized by t 
as 

wet) = Z(5) + tz' (5). 

Thking -1 ::: t ::: 2 and letting 5 take in turn the values 
specified in part (b), draw each of these tangent lines on 
your sketch of the helix. 

(d) Now "fill in!! the picture by drawing the family of tangent 
lines that occur when 5 is allowed to sweep out all values 
from 0 to n. This is a portion of the surface called the 
tangent developable of z. Your drawing should show two 
sheets that meet in a cusp edge along the curve z. 

10. (a) Let Z(5) be an arbitrary space curve parametrized by arc 
length and let x(ql, qZ) = z(ql) + qZz' (ql) be its tangent 
developable surface. Determine xl, Xz, Xl X Xz, gij, and y'g 
in terms of z. 

(b) At which points (ql, qZ) is the parametrization x(ql, qZ) 

singular? What is happening to the surface at the singular 
points? 

(c) Show that all points on a given tangent line (that is, on 
a coordinate line ql = constant) have the same the unit 
normal vector n = (Xl X XZ)/IIXI X xzlI. 
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(d) Determine whether the coordinate lines on the surface are 
orthogonal. 

(e) Consider the coordinate line q2 1-+ x(c 1, q2); show that the 
segment for which a :::: q2 :::: b has length b - a. 

5.2 Intrinsic Geometry on the Sphere 

Suppose the surface Sin R3 is defined by a parametrization x : 
'R- ~ R3 : q 1-+ (x(q) , y(q), z(q)). In the last section we saw that 
the metric tensor gij allows us to carry out all the basic geometric 
measurements on S without ever leaving the flat parameter plane 
'R-. We call the study of S that we can carry out in the parameter 
plane intrinsic geometry because we need not pay attention to 
the way S sits in R3. (Of course the metric gij was constructed by 
using that knowledge; the point is that once we have the metric, 
we can proceed without further reference to the map x.) 

Th illustrate how much we can learn about a surface from 
its intrinsic geometry, we take some time now to explore the 
familiar example of a sphere. We start with one of the standard 
parametrizations; ql is longitude and q2 is latitude: 

X(ql, q2) = (COS(ql) COS(q2), sin(ql) COS(q2), sin(q2)), 

1C/2 

-1C/2 
-1C 

'R- . {-7r :::: ql :::: 7r, 
. -7r/2:::: q2 :::: 7r/2. 

2 q 
2( 

x -
You should check that IIx(q)1I = 1 for all q, so x(q) does indeed 
lie on a sphere of radius 1. The basis vectors for the tangent space 

Intrinsic geometry 

Example: a sphere 

y 
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Singular points of x 

Length of a parallel of 
latitude 

are 

Xl = (- sin(ql) COS(q2), COS(ql) COS(q2), 0), 

X2 = (- COS(ql) sin(q2), - sin(ql) sin(q2), COS(q2)). 

They must satisfy the technical condition Xl x X2 f= O. In fact, 

Xl x X2 = (COS(ql) cos2(q2), sin(ql) cos2(l), sinq2 cos(q2)) 

= COS(q2) (COS(ql) cos(l), sin(ql) COS(q2), sin(q2)) 

= COS(q2) x. 

Thus Xl X X2 points in the same direction as x. This is not surpris­
ing: Xl x X2 is always perpendicular to the surface, and since X is 
the radius vector for a sphere, it is perpendicular to the surface 
as well. Since IIxll = I, IlxI x x211 = 0 precisely when cos(q2) = 0, 
that is, when q2 = ±n f2. These points, which form the top and 
bottom edges ofR, are therefore the singular points of the map x. 
The top edge is singular because it collapses to the north pole; the 
bottom edge is singular because it collapses to the south pole. The 
map is not locally one-to-one on these sets, but we can permit 
them because they are on the boundary of the domain R. 

As the figure illustrates (and you should confirm by direct 
calculation), IIx2112 = 1 always, while IIxll12 = COS2(q2), a value 
that drops to 0 as the point q approaches one of the poles. Fur­
thermore, Xl ·X2 = 0, so the coordinate grid is orthogonal (latitude 
and longitude lines are perpendicular). Thus the metric tensor G 
has the following components: 

G = (gl1 g12) = (COS2(q2) 0). 
g21 g22 0 1 

Let us begin our exploration of intrinsic geometry with this 
question: How long is a complete circuit around a parallel of 
latitude q2 = <p? We can parametrize this curve as (ql (t), q2(t)) = 
(t, <p), so (dql fdt, dq2 fdt) = (1,0). Therefore, 

I 2 dqi dqj (dql )2 (dq2 )2 
gij (q (t), q (t)) dt dt = gl1 (t, <p) dt + g22(t, <p) dt 

= cos2(<p) 
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and 

j 7f dqi dqi j7f 
length= -7f gii(ql(t),q2(t»)Tt dt dt= -7f cos(q»dt=2iTcos(q». 

Therefore, at the equator (where q> = 0 and cosq> = I), the length 
is 2iT. Halfway to the poles, where q> = ±iT/4 and cosq> = :./2/2, 
the length is only :./2 iT. At the poles, cos q> = 0, so the length is o. 

Of course, in the (ql, q2)-plane, the apparent length of each of 
these paths is 2iT: They all run from the left side of n, where 
ql = 0, to the right side, where ql = 2iT. Thus, 

apparent length 2iT 1 
---------- - = -- = sec q>. 

true length 2iT cos q> cos q> 

This is precisely the relation we noted in Section 4.1 when we 
were discussing the distortions in a Miller cylindrical projection 
of the earth. 

By contrast, vertical distances (along meridians of longitude) 
are exactly as they appear. 1b see this, fix longitude ql = e and 
consider the path q(t) = (e, t), -iT/2 ~ t ~ iT/2. In the exer­
cises you are asked to confirm that the length of this path is iT, 
independent of the value of e. 

A 
10' ...... 

I 1\ 

B 

-f- 9{ 

q 

Can A be shorter 
thanB? 

We can read the metric tensor this way: Vertical distances 
are what they appear to be, but horizontal distances are not; the 
farther we go from the ql-axis, the more severe the distortion is 
along a horizontal path. This suggests the following: Ifwe consider 
two points at the same level q2 = c, could a path between them 
that goes to more extreme q2-values-like A, above-be shorter 

Length of a meridian 
of longitude 

Can paths that appear 
longer actually be 

shorter? 
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than one that goes "straight" from one point to the other at the 
same qZ-Ievel-like B? 

1b pursue this question, first consider the family of curves Ca 

defined by the parametrizations 

qa(t) = (t, arctan(a sin t)), o ~ t ~ rr, 
All these curves have the same endpoints: They start at (ql, qZ) = 
(0,0) and end at (rr, 0), How do their lengths compare? In partic­
ular, what is the balance between additional vertical length and 
the advantage of having a greater portion of the path at "higher 
latitudes"? 

q2 
rr/2 ....................................................................... . 

nl2 

Our starting point in calculating the length is 

dql 
-=1, 
dt 

dqZ a cost 

dt - 1 + aZ sin2 t' 

Therefore, 

dqi dqj a 2 cosz t 
gij(ql(t),q2(t»)-d -d =cos2(arctan(asint»+ z' 

t t (1 + a 2 sinz t) 

Now, cos(arctany) = 1/./1 + yZ, so 

1 
cosz(arctan(a sin t» = 2 ' Z ' 

1 +a sm t 

and hence 

dqi dqj 1 + a Z sin2 t + a Z cos2 t 1 + a 2 

gij dt dt = (1 + aZ sin2 t)2 = (1 + a2 sin2 t)Z ' 
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Therefore, the length Lex of Cex is 

rr dqi dqj rr .J1 + a 2 

Lex = 10 gij dt dt dt = 10 1 + a2 sin2 t dt. 

A little rewriting and a trigonometric substitution put the inte­
grand in a standard form: 

.J1 +a2 .J1 +a2 
---~----~--~--~ 

1 + a2 sin2 t cos2 t + sin2 t + a2 sin2 t 

1 
- - -----

cos2 t + (1 + ( 2 ) sin2 t cos2 t 1 + (1 + ( 2) tan2 t· 

Let u = .J1 + a2 . tan t; then du = .J1 + a2 . sec2 t dt, so 

i t .J1 +a2 i U 1 Lex(t) = dt = ---- du 
o 1 + a2 sin2 t 0 1 + u2 

= arctan(u) = arctan (.J1 + a 2 tan t) . 
The value we want is Lex (rr). As you can see on the following 
graphs, the various Lex are different, but they all agree at rr /2 and 
rr. In fact, Lex(rr /2) = rr /2 and Lex(rr) = rr, for all a. 

La 
1r ..................................... .. 

a=0.2 

1r/2 1r 

So, all the curves Cex are the same length! They are, in fact, all Every Ca has length 1f 

as long as the direct path from (0,0) to (rr,O) along the equator. 
The arc-length function Lex tells us how length accumulates as t 
increases; it answers our question about the trade-offbetween the 
increase in vertical length and the savings by traveling horizon-
tally at higher latitudes. This is most readily seen in the graph of 
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The Ca are great 
circles 

L16(t), which has the strongest contrasts. The steep initial portion 
for t near 0 says that length accumulates quickly at first-while 
the path is climbing vertically-but then, as the graph levels off 
when t gets nearer to Jr /2, length accumulates very slowly indeed. 

I I I i 

n/2 

The figure above shows the curve C4 ; the ticks along it mark 
arc length increments of Jr /24, exactly the same as the horizontal 
and vertical increments on the background grid. Note that while 
the path is climbing steeply, the ticks match vertical grid quite 
well, but when the path is more nearly horizontal, the ticks are 
very widely spaced in comparison to the horizontal grid. This 
disparity helps us see the difference between the metric as given 
by gij and the Euclidean metric our eye assumes. You should 
compare this figure to the worldcurve plots in Section 3.3 that 
used ticks to indicate constant increments of proper time. 

Obviously, the paths Ca are quite special, and they were 
very carefully chosen. We can see how by going back to extrinsic 
geometry-that is, by considering how S sits in space. From that 
viewpoint we claim that the Ca come from great circles on the 
sphere. The points (0,0) and (Jr, 0) are antipodal points, and any 
plane z = ay passes through them. The intersection of this plane 
with the sphere is a great circle through (0,0) and (Jr,O); the 
curve Ca is just the pre image in R of this great circle. See below. 
Th determine the parametrization qa(t) of Ca, consider what the 
condition z = ay means for x(q(t»: 

sin(q2) = z = ay = a sin(ql) COS(q2). 

Hence tan(q2) = a sin(ql), so q2 = arctan(a sin(ql », which is 
equivalent to the parametrization we used. 
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2 q 
10/2 

-10/2 m 
-10 

'R.. 

V 

q! 
x -

z 

We return to the question of whether a path connecting 
two points at the same latitude can be strictly shorter than the 
"straight" path along the parallel of latitude that runs between 
them. Take the points ql = rr / 4 and ql = 3rr / 4 on the parallel 
q2 = rr/4. The distance between them along the parallel B is 
(3rr/4 - rr/4) cos(rr/4) = rrJ2/4. 

1014········ 
B 

1014 10/2 q! 

One of the great circles A = Ca also passes through these points. 
It is the one for which q2 = rr/4 when ql = rr/4. Therefore, 

1 = tan(rr/4) = a sin(rr/4) = a -12/2 
so a = J2. The entire length of C.fi is rr. The length of the initial 
segment, from ql = 0 to ql = rr / 4, is 

L.fi (:) = arctan (Jf+2 tan (:)) = arctan (J3) = ;. 
The length of the final segment, from ql = 3rr / 4 to ql = rr, is 
also rr /3, so the length of the middle segment A is rr /3. Since 
rr /3 < rr J2/4, A is indeed strictly shorter than B. 

While we have just determined that A is shorter than B by 
intrinsic means, we still do not have the intrinsic tools to prove 

Can "polar" paths be 
strictly shorter? 
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Measuring angles 

Area of the sphere 

that A is the shortest possible path that connects its endpoints. 
However, the extrinsic proof is immediate, since A is a portion of 
a great circle. 

Intrinsic geometry also determines the angles between in­
tersecting curves. Consider the line q2 = ql in n. It apparently 
makes a steady angle of 45° with the horizontal. What is the true 
angle at different points? 

We can parametrize the line as q(t) = (t, t), 0 :::s t :::s 7f /2. Then 
we want to know the angle f) between its tangent, q' = (1, 1), and 
the horizontal basis vector Xl = (1,0). We have 

q'. Xl 
cosf) = . 

./q" q'./XI . Xl 

We use the metric tensor gij(q(t» to determine these inner prod­
ucts: 

, (1 1) (COS2(t) 0) (1) 2( ) q . Xl =, 0 1 0 = cos t, 

q' . q' = (1,1) (COS02(t) 0) (1) 2( ) 1 1 1 = cos t + , 

Xl' Xl = (1, 0) (cos~(t) ~) (~) = cos2 (t). 

Therefore, 

cos(t) 
cos f) = -;===:::::::==== 

./cos2(t) + 1 

This is a monotonic decreasing function of t, so f) increases with 
t. At the start, when t = 0, f) is indeed 45°, but it rises to 90° as 
t --+ 7f /2. You should confirm that this makes sense extrinsically­
that is, by seeing that the path q(t) follows on the sphere itself 
implies that the angle increases. 

Finally, we use the metric tensor to calculate areas. The area 
of the whole sphere is 

If ...;g dql dq2 = 17r (17r/2 COS(q2) dq2) dql = 17r 2 dql = 47f. 
-7r -7r /2 -7r 

R 



___________ §~5_.2 __ In_trt_·_n_8i_c_Ge__.:..o_m....;.e_try~o~n~th:....:..:.e__=S.E.p=he=re:...:...... _____ 229 

q2 Aoo 

A3'0 
A;: 

L4~0 

[4;0 
7Cl6 7Cl3 7Cl2 q! 

By contrast, the apparent area ofR, regarded simply as a rectangle 
in the plane R2, is 2rr x rr = 2rr2. 

Exercises 

For all exercises involving a sphere of unit radius, use the 
parametrization given in the text. 

1. Adapt the parametrization of the unit sphere to a sphere of 
radius R in R 3 , and use it to determine the associated metric 
tensor gij. Compare this tensor to the one given for the unit 
sphere; compare the area magnification factors ~. 

2. (a) Show that a meridian oflongitude on the unit sphere (q2 = 
constant) has length rr. Conclude that a circle of radius d 
centered at the north pole is given by q2 = I-d. 

(b) Show that the area of a spherical cap of radius d centered 
at the north pole on the unit sphere is 2rr(1 - cos d). 

(c) Show that the area of a spherical cap of radius d on a 
sphere of radius R is 2rrR2(1 - cos(d/R)). Then explain 
why, when d is small in relation to R, the area of the cap 
is rrd2 + O(d4 /R2). 

3. Graph the function () = arccos ( cos t ) for 0 ::::; t ::::; rr /2 . 
.J1 + cos2 t 

4. Determine the length ofthe line q2 = ql, 0 ::::; ql ::::; rr /2, on the 
unit sphere. 

5. (a) A loxodrome on the sphere is a curve that makes a con­
stant angle with the parallels of latitude (or meridians of 



230 Chapter 5 Surfaces and Curvature 
----------~--------------------------------

A simple curved 
spacetime 

longitude). Show that 

q(t) = (t, arcsin(tanh t», -00 < t < 00, 

is a loxodrome on the unit sphere. Note: ql is not restricted 
to the interval [0, 2n] here but is instead allowed to take 
arbitrarily large positive and negative values. 

(b) What angle does q make with the parallels of latitude? 
Sketch q(t) on the sphere for 0 :s t:s 3n. 

(c) Obtain the parametrization of a loxodrome that makes an 
arbitrary fixed angle with the parallels of latitude. 

(d) Near one of the poles, a loxodrome looks like an equian­
gular spiral; cf. the exercises in Section 3.2. Illustrate this 
by making a sketch of q(t) for n :s t :s 4n; use a view of 
the sphere taken over the north pole. 

(e) Calculate the full length of the loxodrome q(t), -00 < t < 
00 (that is, from the south pole to the north pole). 

5.3 De Sitter Spacetime 

The de Sitter universe is perhaps the simplest curved spacetime 
possible. It is the spacelike unit sphere in a (1 + 4)-dimensional 
Minkowski space; that is, it is the set of spacelike unit vectors. 'Ib 
see what this means concretely, we will take a (1 + 2)-dimensional 
slice of the (1 + 4)-dimensional ambient space and examine the 
slice of de Sitter spacetime that appears there. Our larger purpose 
is to see how the ideas we have begun to develop about curved 
surfaces in Euclidean space can be adapted to Minkowski space. 

Let X = (t, x, y) be a point in the (1 + 2)-dimensional 
Minkowski space with the standard metric Q(X) = t2 - (x2 + y2). 
The space like unit vectors X are those that satisfy the condition 
IIXI1 2 = -Q(X) = x2 + y2 - t2 = 1. They lie on a surface S that in 
ordinary R3 forms a hyperboloid of one sheet. 

This is the de Sitter spacetime. It is (1 + 1 )-dimensional: In the 
time direction, it extends indefinitely far into the past and into 
the future; in the spatial direction, it is just a circle (albeit one that 
first contracts and then expands over time). This is new; we have 
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t 

never contemplated a spacetime in which space is finite but has 
no boundary or "edge!' When observers and objects move, they 
move on this circle. It is conceivable, therefore, that an observer, 
or a photon, could "circumnavigate" the entire space, making a 
journey that returns to the starting point without ever reversing 
direction. 

Th explore the new spacetime, we construct a parametriza­
tion. Since it is the analogue in Minkowski space of an ordinary 
Euclidean sphere, we can parametrize it simply by adapting the 
parametrization of the sphere that we used in the previous sec­
tion: 

-00 < ql < 00, -7r ~ q2 ~ 7r. As the figure shows, ql serves to 
label time and q2 to label position. 

The basis vectors in the tangent space are 

Xl = (cosh(ql), sinh(ql) COS(q2) , sinh(ql) sin(q2», 

X2 = (0, - COSh(ql) sin(q2), COSh(ql) COS(q2». 

The components of the metric tensor are 

gll = Xl . Xl = cosh2(ql) - sinh2(ql) COS2(q2) - sinh2(ql) sin2(q2) == 1, 

g12 = Xl . X2 = sinh(ql) COSh(ql) COS(q2) sin(q2) 

- sinh(ql) COSh(ql) cos(q2) sin(q2) == 0, 

Parametrization of 
de Sitter spacetime 

g22 = X2 . X2 = - coSh2(ql) sin2(q2) - cosh2(ql) COS2(q2) = - cosh2(ql). 
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Minkowski geometry 
in each tangent space 

The radius of space 

Can a photon 
circumnavigate 
space? 

The light cone at 
different points 

The minus signs occur in these expressions because we are calcu­
lating the Minkowski inner product. The values of the gij show that 
each tangent plane is, in fact, a (1 + 1 )-dimensional Minkowski 
space in which Xl is future-timelike, X2 is spacelike, and Xl and 
X2 are Minkowski-orthogonal. 

In Section 3.3 we established that any curve whose tangent is 
always a future-timelike vector can be taken as the worldcurve 
of an observer. This implies that the "horizontal" coordinate lines 
q2 = constant are worldcurves, because their tangents Xl are 
always future-timelike. In particular, we take the q1-axis to be the 
worldcurve of the observer G. In fact, q1 is G's proper time 1', as 
we can see by this calculation: 

rl (ql 
l' (ql) = J 0 II XIII dq1 = J 0 1· dq1 = q1 . 

Henceforth we will use l' and ql interchangeably. 
1b address the question of circumnavigation, let us first mea­

sure the circumference of space. At time 1', 

circumference = f~ II X211 dq2 = i: cosh(1') dq2 = 2rr cosh(1'). 

(Since X2 is a spacelike vector, IIX211 = .J -X2 . X2 = + COSh(q1) > 
0.) It is natural, then, to say that the radius of space at time l' is 
cosh( 1'), a value that grows essentially exponentially with l' when 
l' > O. 

Now consider, in the (q1, q2)-plane, a photon emitted by G at 
the event 0 in the positive q2-direction and detected later by G at 
the event E2. It might have a worldcurve like that shown below; 
EI appears twice on the worldcurve simply because the chart 
"wraps around" in the q2-direction. 

However, this does not happen. In fact, we now prove that no 
photon can travel more than halfway around the circle. 1b begin, 
consider the light cone determined in each tangent plane by the 
metric tensor 
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Is this a 
possible worldcurve 
for a photon? 

This has the essential features of the familiar metric in the ordi­
nary flat Minkowski plane. In fact, when ql = 0, it reduces to that 
metric: 

g= -1. 

You should check that the light-like vectors that separate the time­
like from the space-like vectors at the point (ql, q2) are multiples 
of 

ql=O ql=±2 

The slopes of L+ and L_ are therefore ± sech(ql), and these 
slopes rapidly approach 0 as Iqll increases. 

There is such a light cone at each point (ql, q2) in the param­
eter plane. We can think of the cone as a pair of vector fields, 
as shown below, that define the possible directions of photon 
worldcurves. 
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/ V /' 
1'\ " 

V /' 
1'\ " 

G V /' 
1,\ ...... 

V /' 
1'\ " 
V /' 

........ '" " 
-1r 

The worldcurve Now suppose that the worldcurve of a photon is the graph 
satisfies a differential of a function q2 = q>('r) in the (ql, q2)-plane. This graph must be 
equation everywhere tangent to one of the light-cone fields. For the sake 

of illustration, let us take the L+ field, with slope sech(r). Then 

dq> 
dr = sech(r), q2 = q>(r) = f sech(r) dr. 

1b integrate this, we write the integrand as 

2 2e'l" 
sech(r) = -

e'l" + e-'l" e2 'l" + 1 

and then make the substitution u = e'l", du = e'l" dr: 

q>(r) = f sech(r) dr = f ~e'l" dr 
e 'l" + 1 

f 2du 
= u2 + 1 = 2arctan(u) + C 

= 2 arctan(e'l") + c. 

When r -+ -00, then e'l" -+ 0 and q>(r) -+ C. When r -+ +00, 
then e'l" -+ +00, arctan(e'l") -+ TC/2, and q>(r) -+ TC + c. One of the 
graphs q2 = q>(r) is shown below, superimposed on the vector 
fields. The others are vertical translates of this one, obtained by 
changing the value of C. Each graph lies in a horizontal band 
whose vertical width is TC . 
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0- 0-

G ql 

0- 0- 0--0-=0« < K c-=.:o-- o--o-

-n 0- o-o-o-.:K< <0<(>00<::::;0--0--0-

The exercises ask you to show that the worldcurves tangent 
to the field L_ are just the reflections of the worldcurves tangent 
to the field L+. In fact, the symmetries of q2 = cp(r) are such 
that either of the reflections r t--+ -r or q2 t--+ _q2 will do the 
job. Since every photon worldcurve lies in a horizontal band of 
vertical width /).q2 = Jr, no photon ever travels more than halfway 
around the circle. 

The two worldcurves through the event 0 = (0,0) define the 
boundary of the future set Fa of o. 

nl2 .......... -.:.;, ... ;:.; ... ~. ===== 
'Fo 

G-:::*----------­ql 

-n12 .... ..... .. -:-:: ... ~ .. ;;o;. ====== 

Since Fa is the set of events that G can possibly influence after 
time ql = 0, it follows that points on the far side of the circle from 
G are permanently beyond the reach of G-at least by the time 
ql = o. The future set Fp of an event P that happened much ear­
lier on G's worldline reaches considerably further. Thus, as time 
passes, G's "influence horizon" steadily contracts. By contrast, G's 
"viewing horizon," defined by the set of timelike past events rel­
ative to an event on G's worldcurve, steadily increases. See the 
exercises. 

No photon travels 
more than halfway 

around the circle 

The future set :F 
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The speed of light 
is constant 

An extrinsic analysis 
of the light cones 

It appears to our eyes that the velocity of a photon, as indicated 
by the slope of q2 = qJ(r), decreases to 0 as r -+ 00. But this is not 
so; slope is Aq2/ Aql, while velocity is Adistance/ Atime. Even 
though Aql agrees with elapsed time, Aq2 does not correspond to 
distance. The velocity of a photon is the ratio of the spacelike to 
the timelike component of one of the lightlike vectors L±. Thus, 
since 

L± = = 1· Xl ± sech(r)· X2, ( 1) 
± sech(r) timelike spacelike 

we have 

1 . ± sech(r) II X211 ± sech(r) cosh(r) 
ve OClty = = = ±l. 

IIXll1 1 

So, in the de Sitter universe, the speed of light is constant after 
all: c = 1. The photon worldcurves look the way they do because 
spatial distance, as the metric gij defines it, is very different from 
the Euclidean distance that our eyes see. 

If we return to the embedding of de Sitter spacetime as a 
hyperboloid S in (t, x, y)-space, we can visualize the light cones in 
a way that is more compatible with our Euclidean/ Minkowskian 
intuitions. 1b begin, consider the worldcurves of the two photons 
emitted at the event 0 = (ql, q2) = (0,0) . You should check that 
they are the graphs of 

q2 = 2 arctan(et') - n /2, 

q2 = -2arctan(et') +n/2; 
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we can write the pair as q2 = ±2 arctan(e')=f7l'/2. In (t, x, y)-space 
they are the curves obtained by composing these functions with 
the map X. Thus they are given by r 1-+ X(r, ±2 arctan(e')=f7l'/2): 

t(r) = sinh(r), 

x(r) = cosh(r) cos (±2 arctan(e') =f 7l'/2) , 

y(r) = cosh(r) sin (±2 arctan(e') =f 7l' /2) . 

We claim that these curves are a pair of straight lines and that, in 
fact, they lie on the intersection of the hyperboloid and the plane 
x = 1. Furthermore, x = 1 is the tangent plane to the hyperboloid 
at 0: 

G 

W 1 1 
1 1 1 

-
1 1 

o I"" 

nl2 

-n12 ~ "'" 

1b prove the claim we first show that x(r) == 1 by simplifying 
the cosine expression in the formula for x(r). The relation 

cos(±A =f 7l' /2) = ± sin(±A) = sin (A) 

and the double angle formula for the sine function give us 

cos (±2 arctan(e') =f 7l' /2) = sin (2 arctan(e'») 

= 2 sin (arctan(e'») . cos (arctan(e'») . 

Now, sin (arctan (B» = B/,JB2 + 1 and co s (arctan (B» = 1/,JB2 + I, 
so the original cosine expression reduces to 

t 

fJB 
1 
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These photons stay 
on the front side of the 
hyperboloid 

and then finally, 
1 

x(t) = cosh(t) cos (±2arctan(eT ) =r= 1f/2) = cosh(t)· h == 1, 
cos (t) 

as claimed. Now, x = 1 is a plane in (t, x, y)-space, so the light 
cone is the intersection of the hyperboloid S with this plane. 
Furthermore, since x = 1 contains two different curves in S, it 
must actually be the tangent plane to S at the point where the 
curves intersect. 

Next we show that y(t) = ± sinh(t) = ±t(t). This will imply 
that the curves are the two straight lines y ± t in the plane x = 1. 
The argument is a straightforward modification of the argument 
for x(t): 

sin (±2 arctan(eT ) =r= 1f /2) = =r= cos (2 arctan(eT ») 
= =r= (cos2 (arctan(eT ») - sinz (arctan(eT »)) 

= =r= (eZ}+ 1 -ez:Z
: 1) 

e2T -1 
= ± 2 = ±tanh(t). 

e T + 1 

Therefore, y(t) = cosh(t)· ±tanh(t) = ±sinh(t) = ±t(t). In the 
plane x = 1 these curves are straight lines with slope ±1, and they 
look more like the worldlines of photons in ordinary Minkowski 
space. 

Seeing the light cone on the hyperboloid S makes it clear why 
a photon cannot circumnavigate space: If a photon were to go 
all the way around the hyperboloid, its worldcurve would have 
to take on negative x values. But these worldcurves, at least, are 
stuck in the plane x = 1. 

As the last comment indicates, we have investigated the light 
cone only at the single event O. We can, however, exploit a spe­
cial feature of the hyperboloid to determine the light cones ev­
erywhere. The first step is to note that the hyperboloid, though 
clearly curved, has a pair of straight lines embedded in it. More­
over, because the hyperboloid has rotational symmetry around 
the t-axis, the image of either of these lines under an arbitrary 
rotation around the t-axis must also lie in S. Arbitrary rotations 
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of even just one of these two lines will therefore sweep out the 
entire hyperboloid, as you can see below. 

Such a line is called a generator of the surface, the complete family 
of lines is called a ruling, and the surface itself is called a ruled 
surface. The hyperboloid has two separate rulings, and thus can 
be said to be a doubly ruled surface. 

These two separate rulings are therefore the photon world­
curves at every point of the de Sitter universe. They determine 
the light cone at every event, and in the figure below you can see 
how the apparent (Euclidean) angle between the two lines in the 
light cone decreases as It I increases-that is, as we move away 
from the narrow waist of the hyperboloid. 

Since every worldcurve is a straight line, no worldcurve loops 
around the hyperboloid, so no photon circumnavigates the cir­
cular space that underlies the de Sitter universe. The network 
of light cones also makes it clear how space can be finite in ex-

t 

The hyperboloid is a 
doubly ruled surface 

The rulings form the 
light cones 
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tent and yet not completely accessible to a single observer at any 
moment. 

Incidentally, space appears here as a I-dimensional circle xZ + 
yZ = 1 only because we are looking at a 2-dimensional slice of the 
full de Sitter universe. The full 4-dimensional de Sitter universe 
U is the set of space like unit vectors X = (t, x, y, z, w) in a (1 + 4)­
dimensional Minkowski space; U is defined by the equation 

-Q(X) = ~ + i + zZ + wZ - tZ = 1. 

In U, space is the 3-dimensional sphere xZ + yZ + zZ + wZ = 1. 

Exercises 

1. (a) For the parametrization X of de Sitter spacetime that we 
use, show that Xl x Xz = cosh(ql) X. 

(b) Show that (Xl x Xz) J.. Xl and (Xl x Xz) J.. Xz, in the sense 
of the Minkowski norm. 

(c) Show that IIXI x XzlI = A = coshql, the area magnifi­
cation factor. 

2. (a) Consider the hyperboloid 

x(ql, qZ) = (sinh(ql), cosh(ql) cos(qZ), COSh(ql) sin(qz)) 

as being an embedding in Euclidean space instead of 
Minkowski space, and calculate Xl, Xz, Xl X Xz, gij, and 
,.;g. Are the coordinate lines still orthogonal? 

(b) It is still true that q(t) = (t, 2 arctan(et ) - rr /2) is a straight 
line on the surface. Determine the normal vector n = 
(Xl x xz) / IIXI x xzlI along this line. In particular, show that 
n is not constant along the line. 

( c) At a representative collection of points on the hyperboloid, 
sketch both the Euclidean normal n and the Minkowski 
normal N = (Xl X Xz)/IIXI x XzlI; Xl x Xz is from the 
previous exercise. Compare the two normals, especially 
for It I large. 

3. Prove that cos(±A =+ rr /2) = sin (A) and sin(±A =+ rr /2) = 
=+ cos(A). 
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4. (a) Prove that q2 = 2 arctan(er ) - 7r /2 has odd symmetry, that 
is, that the substitutions r 1-+ -r and q2 1-+ _q2 have the 
same effect. 

................... 'l'Ql-'l' 
......... ~~ j Q2 r-_Q2 

····.V _ 

(b) Showthatthe reflection of any world curve q2 = 2 arctan(er )+ 
C across the q2-axis is tangent to the field L_ and is thus 
the worldcurve of a photon. 

5. Construct the past timelike sets at various points along G's 
worldcurve, and show that these sets grow and eventually 
cover the entire circle as G's proper time increases without 
limit. 

5.4 Curvature of a Surface 

Curves Reconsidered 

It is natural to try to define the curvature of a surface by analogy 
with the curvature of a curve. The basic idea is simple enough: 
Curvature is the rate at which a curve changes direction. 1b make 
the idea precise, though, we used an arc-length parametrization 
y : [0, Ll -+ R n : 5 1-+ y(5). But Y is quite special: It preserves 
distances. That is, if 51 and 52 are any two points in [0, Ll, then 
the distance between Y(5}) and Y(52), as measured along the curve, 
is the same as the distance between 51 and 52 in [0, Ll, namely 
/).5 = 52 -51. We call a distance-preserving map like y an isometry. 

But we have seen that any map from a flat plane to a curved 
surface will distort distances. In other words, we cannot expect 
to parametrize a surface with an isometry. Therefore, if we are to 
use the curvature of a curve as a guide in defining the curvature 
of a surface, we must go back and reconsider our work on curves 
in a way that will be more useful for surfaces. 

The arc-length 
parametrization is an 

isometry 

In general, surface 
parametrizations are 

not isometries 
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The unit tangent 
parametrization 

The Gauss map 
of a curve 

Fortunately, this is not difficult. For simplicity, though, we 
will consider only curves C that lie in the plane R2. We start 
with an arbitrary smooth parametrization x : [a, b] ~ R2 of C, 
and require, as always, that x have no singular points-that is, no 
points qo where x' (qo) = O. The direction of C at x(q) is given by 
the unit tangent vector 

x(q) 
t(q) = IIx'(q)1I 

Usually, we draw the tangent vector t(q) with its tail at the point 
of tangency x(q). Ifinstead, we bring all the tangents to the origin 
0, we get the parametrization t : [a, b] ~ R 2 of another curve C*. 
Since Ilt(q) II = 1 for all q in [a, b], C* lies on the unit circle Sl. 

t --a b .. 
q X ---..... 

C 

In general, the map t will have singularities even though x has 
none. At a typical singular point, C will have an inflection, while 
C* will fold back upon itself. Notice in the figure above that t has 
three such singular points. You can explore this in the exercises. 
We can now define curvature in terms of the Gauss map, which 
assigns to each point on a curve its direction as a point on Sl. 

Definition 5.2 Suppose the plane curve C is parametrized by x : 
[a, b] ~ R2. The Gauss map 9 : C ~ Sl assigns to the point 
P = x(q) the unit tangent vector 9(P) = t(q) = x'(q)/lIx'(q)II at P. 

Definition 5.3 The curvature of the curve C at the point P is 

1. length of9(a) 
K(P) = 1m , 

a -t-P length of a 
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where the limit is taken over all segments a that contain P, as the 
length of a approaches O. 

c 

0 (Q) 

(j (j(a) 

_ 0 (j(P) 

unit circle Sl 

In fact, at each point of C there are two unit tangent vectors, 
pointing in opposite directions. In terms of x, the two choices 
are ±t = ±x'/llx'll. Therefore, if a is any segment on C, there 
are two possible segments 9(a) in 51, but these are antipodal and 
thus have the same length. Ultimately, then, the curvature K(P) 
is independent of the choice of unit tangent. 

Ilt'(u)II 
Theorem 5.2 Suppose P = x(u); then K(P) = . 

IIx'(u) II 

PROOF: By the definition, 

1 length of t from u - E to U + E 1 
K(P) = im = im 

E--*O length of x from u - E to U + E E--*O 

l::E 
II t' (q) II dq 

l::E 
Ilx'(q)lldq' 

According to the integral form of the mean value theorem, each 
integral can be replaced by the product of the length of the inte­
gration interval (2E, in this case) and a suitably chosen value of 
the integrand. Thus there are numbers -1 ::::: 01, Oz ::::: 1 for which l::E 

Ilt'(q)II dq = 2E . Ilt'(u + OlE)II, l::E 
IIx'(q) II dq = 2E . Ilx'(u + OzE)II· 

Hence 

K(P) = lim 2E' IIt'(u + OlE)11 = Ilt'(u)ll. 
E--*O 2E' Ilx'(u + OZE)II Ilx'(u)11 

Corollary 5.2 K(P) = 
(x' . x')(x" . x") - (x' . x")z 

(x' . x')3 

END OF PROOF 
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The definitions are 
consistent 

Examples 

PROOF: See the exercises. 

The theorem and corollary give us a way to calculate the cur­
vature directly from any parametrization of a curve. However, 
if we use the arc-length parametrization y(s), then the unit tan­
gent vector t is y'(s) = u(s) and its derivative t' is u'(s) = k(s). 
Therefore, 

K(P) = Ilu'(s)1I = IIk(s)ll, 
Ily'(s)11 

which agrees with the original definition in Section 3.2. Our two 
definitions are consistent. 

Since Ilx'(u)1I is the length magnification factor for the map x at 
u, we have another way to view curvature: 

length magnification factor for t 
KW)= . 

length magnification factor for x 

If C is a straight line, then Q(C) is a single point, so the length 
of any segment Q(a) is 0, implying that K(P) = 0 at every point of 
C. If C is a circle of radius r and a is a segment of C, then a and 
Q(a) are similar in the sense of Euclidean geometry. Specifically, 
each segment on C is r times larger than the similar segment on 
the unit circle 51: 

(j -
Y(b 
s\J 

length of Q(a) 1 
= -. 

length ofa r 

Therefore, K (P) = 1/ r at every point P on C, so the curvature of 
a circle is the reciprocal of its radius. 
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Gaussian Curvature 

Our aim is to define the curvature of a surface as the rate at 
which it changes direction. But how do we specify the direction 
of a surface at a point? For a curve we use the tangent direction. 
This is adequately specified by a single vector, the unit tangent, 
because all the tangents to a curve at a single point lie on a 1-
dimensional line. But the tangents to a surface at a point form a 
plane, not a line. The plane is 2-dimensional, so no single tangent 
vector can give its direction. However, any plane in R 3 has a 
unique normal direction, and this is I-dimensional, so it can be 
specified by a single unit vector. Thus we use the unit normal to 
define the direction of a surface at a point. 

We can now implement this idea and define the Gauss map 
for a surface 5 given by a parametrization x : n -+ R 3 : 

x: (ql, q2) = q 1-+ (x(q) , y(q), z(q)). 

Since we require x to be nonsingular, the normal vector Xl (q) X 

X2 (q) is nonzero at every point q and the unit normal vector is 
defined: 

Xl X X2 
n(q) = . 

IIXI X x211 
The unit normals lie on the sphere 52. In fact, n : n -+ 52 is itself 
the parametrization of a surface 5* that lies in 52. 

Definition 5.4 Let 5 be a surface with the parametrization X : n -+ 

R3. The Gauss map Q : 5 -+ 52 assigns to the point P = x(q) the 
unit normal vector Q(P) = n(q) at P, making the following diagram 
commutative. 

The direction 
of a surface is given 

by its normal 

The Gauss map 

--.... S2 

9 

The figure below shows the typical relation between a surface The relative size of the 

5 and its Gaussian image 5* = Q(5). Notice that 5 curves more Gaussian image 

sharply one way than the other; specifically, the direction of the 
normal undergoes a large change as we move along 5 in the ql_ 
direction but only a small change in the q2-direction. This means 
that 5* will cover a significant portion of the sphere in the ql_ 
direction but will be quite compressed in the q2-direction. And 
this is true even though n is elongated in the q2-direction when it 
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Plane and sphere 

S* = q(S) 

(j 
• 

is mapped onto Sby x . Informally, then, we can say that the more 
sharply curved a region on the surface is, the larger its Gaussian 
image will be-in relation to the size of the region itself. 

Definition 5.5 The curvature, or Gaussian curvature, of the sur­
face S at the point P is 

1. area ofQ(Q) 
K(P) = 1m ---­

Q,l-P area ofQ 

where the limit is taken over all regions Q of 5 that contain P, as 
the diameter of Q approaches O. The diameter of a region is the 
maximum distance between any two points in the region. 

If 5 is a plane, then 9(5) is a single point on 52, so its area is 
O. This implies K(P) = 0 at every point P in 5-exactly what we 
would expect. If 5 is a sphere of radius " then Q and 9(Q) are 
similar figures. Linear dimensions on 5 are, times what they are 
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on the unit sphere S2, so 

area of Q(O) 1 
area of 0 - r2' 

a constant ratio, independent of O. Therefore, K(P) = 1/r2 at 
every point P of S. The curvature of a given sphere is constant; if 
its radius increases, its curvature decreases. 

Cyl 

(j ~(cone) - -(j(Cyl) (j 

More surprising, perhaps, are the results for a cylinder or 
cone. Since the normal vectors along a generator of a cylinder or 
cone are parallel, all the points on that generator have the same 
image under the Gauss map. Points on different generators do 
have different images, but those different images fill only a circle 
in the target sphere S2. Thus areaQ(Cyl) = areaQ(Cone) = 0, so 
K(P) = 0 at every point P on either surface. 

Theorem 5.3 Suppose x parametrizes the surface Sand P = x(q); 
then 

PROOF: The theorem is analogous to the one for curves, and so is 
the proof. Let DE be the square of side 2E centered at the point 
q in the parameter plane R. Then OE = x(DE) is a region in S 
containing P, and Q(OE) = n(DE) is its Gaussian image. Therefore, 

f f IInl x n211 dq1dq2 

K(P) - l' area of Q(OE) _ l' D€ 
- 1m - 1m --=--=------------. 

E-+O area ofOE E-+O f f IIXI x x211 dq1dq2 

D€ 

Cylinder and cone 
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K is a ratio of 
oriented areas 

Expressing nl and nz 
in terms of Xl and Xz 

By the mean value theorem for double integrals, each integral is 
equal to the area of D€ times the value of the integrand at some 
point inside D€. Thus there are points ql and qz in D€ for which 

K(P) = lim 4Ez llnl(ql) x nz(ql)lI. 
€~O 4Ez lixI (qz) x Xz(qz)II 

In the limit as E -+ 0, the square D€ shrinks down to the point q, 
forcing ql -+ q and qz -+ q. This establishes the theorem. 

END OF PROOF 

The theorem gives us a concrete way to calculate the Gaussian 
curvature K(P) in terms of the areas of two parallelograms: 

( area nl /\ nz 
K P) = . 

areaXI /\ Xz 

These parallelograms lie in different tangent planes (Xl /\xz in TSp 
and nl /\ nz in TQ(S)g(P»), but in fact, the two planes are parallel. 
That is proven in the following proposition. As a consequence, 
we can compare the orientations of the two parallelograms-as 
we did in Section S.I-and thus reinterpret Gaussian curvature 
in terms of oriented areas. Since oriented areas can be negative as 
well as positive, the Gaussian curvature can then take on negative, 
as well as positive, values. 

Proposition 5.4 For each q in R, the vectors nl(q) and nz(q) lie 
in the tangent plane TSx(q) whose basis is Xl (q) and Xz(q). 

PROOF: It is sufficient to show nl ..L nand nz ..L n, because n 
is normal to the plane spanned by Xl and xz. Since n· n = I, 
differentiation gives 

a an an 
-. (n· n) = - .. n + n . -, = 2ni . n = O. END OF PROOF 
aq' aq' aql 

The proposition implies that for each q, nl (q) and nz(q) are 
linear combinations of the basis vectors Xl (q) and xz(q). Thus 
ilIere are scalar functions -b~(q) that are the coordinates of nl 
ap.d n2 with respect to this basis: 
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or just nj = -b~Xi, j = 1,2 (summation convention). The reason 
for the minus signs will emerge in the next section. 1b connect 
nl /\ n2 to Xl /\ X2, we use the matrix whose columns are the 
coordinates ofnl and n2 with respect to the basis {Xl, X2}: 

- (-bi -b~) B(q) = 2 2' 
-bl -b2 

The connection between the areas is then provided by Proposi­
tion 5.3: 

areanl /\ n2 = dedi. area Xl /\ X2 = detB Jg, 

where g = det gij. (Note that det( -B) = det B because B has an 
even number of rows and columns.) 

We are now in a position to reinterpret the theorem so that 
K(P) is expressed in terms of the areas of oriented parallelograms: 

area nl /\ n2 - I 2 2 I 
Theorem 5.4 K(P) = = detB = bl b2 - bl b2 • 

areaxI /\ X2 

We can even adapt our ideas about oriented areas to regions Oriented areas on S* 
in Sand S* = Q(S). Consider an arbitrary region 0 in S, where 
o = x(D). Then 

area 0 = II IIXI x x211 dq l dq2 = II Jgdq l dq2 ~ O. 

D D 

Up to this point we would calculate the area ofits Gaussian image 
Q(O) = n(D) by 

areaQ(O) = If IInl x n211 dq l dq2 ~ O. 

D 

Note that the area can never be negative because the integrand 
IInl x n211 is itself nonnegative. However, since this integrand 
represents the unoriented area of the parallelogram nl /\ n2, we 
can simply replace it by the oriented version, 

areanl /\ n2 = detB Jg, 
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in the integral: 

area9(0) = f f detBJg dq1dq2. 

D 

Now, of course, the area of 9 (0) can be negative. The new defini­
tion is a consequence of the fact that we can compare the relative 
orientations of 0 and 9(0); area9(0) will be negative precisely 
when the Gauss map 9 reverses orientation. 

Negative Curvature: An Example 

A saddle has negative Th see how a surface comes to have negative Gaussian curvature, 
curvature and to see how the Gauss map reverses orientation, we will work 

through an example in detail. Consider the graph of z = xy; this 
is a saddle-shaped surface S that we can parametrize as 

9 : S ~ S* reverses 
orientation 

1 x=q, 2 y=q, 

However, the normal map n has rotational symmetry that be­
comes more apparent when we use polar coordinates ql = r cos 8 
and q2 = r sin 8 in the (ql, q2)-plane. In terms of rand 8 the 
parametrization is now 

x(r, 8) = (rcosO, rsinO, ~,z sin 20) . 

Before we calculate K(P), first note the shape of S in the figure 
below. It curves upward in one direction (in the first and third 
quadrants, in this case) and downward in the other. This pattern 
is characteristic for a negatively curved surface. 

Next, compare the orientations of Sand S*. Viewed from 
above, the coordinate axes have a counterclockwise orientation 
on S but clockwise on S*. In particular, you should convince 
yourself that normal vectors along the positive ql-axis on S point 
roughly forward (and over your left shoulder), arranging them­
selves in S2 so that their tips will lie along the positive ql-axis as 
marked on S*. Similarly, the normal vectors along the positive 
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q2-axis on S point roughly to the left, so their tips will lie along 
the positive q2-axis on S*. The fact that 9 is orientation-reversing 
is also characteristic for a negatively curved surface. 

Finally, note the special symmetry of the normal map n : 
R --+ S2 in this example. Concentric circles in R have concentric 
images in S2, though their spacing is not uniform: As r increases, 
the circles are packed more and more closely together. We will see 
that the entire (ql, q2)-plane is compressed by n into the upper 
hemisphere of the target S2. 

We now begin the calculation of K(P). Since the summation 
convention will play no role, we abandon numerical subscripts 
and use rand e instead to denote partial derivatives. 

x, = (cos e, sin e, r sin 2e) , X(J = (-r sin e, r cos e, r2 cos 2e) , 
x, x X(J = (-? sine, -? cose, r). 

Therefore, g = Ilx, x X(J 112 = r2(1 + ~), so we require r > 0 to 

Calculating K(P) 
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make x nonsingular. Ifwe set tl. = ,.jg/r = .Jl + r2, then 

1 . 
n = tl. (-rsmO, -rcosO, 1), 

1 r 
nr = - tl.3 (sinO, cosO, r), no = tl. (- cosO, sinO, 0). 

According to the last proposition, we can express nr and no in 
terms of the basis Xr, X(}. You can check that the result is 

sin 20 cos 20 r cos 20 sin 20 
nr = ---3-xr - --3-X(}' 

tl. rtl. no = - tl. Xr + --;;:- X(}. 

Therefore, 

(

Sin20 rCOS20) 
- tl.3 tl. 
B= . 

cos 20 sin 20 
-- ---

r tl. 3 tl. 

By Theorem 5.4, 

- 1 1 
K(P) = detB = - tl.4 = - (1 + r2)2' 

Thus K(P) depends only on distance from P = x(q) to the origin 
q = O. Furthermore, K is always negative; in fact, -1 ::::: K < O. In 
particular, K = -1 only at the origin, while K ---+ 0 as P ---+ 00. 

We can now verify that the image ofn lies entirely in the upper 
hemisphere of S2; it is sufficient to note that the z-coordinate of 
n is positive for any rand 0: 

1 
z(r, 0) = ~ > O. 

'V 1 + r2 

Thus z ---+ 0 as r ---+ 00, so the entire upper hemisphere is covered 
by the map n : R ---+ S2. 

Note: Strictly speaking, the polar parametrization we have 
been using is not valid at the origin-it is singular there. In the ex­
ercises you are asked to use a Cartesian parametrization-which 
is nonsingular everywhere-and confirm that K = -1 at the ori­
gin. 
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Exercises 

l. (a) Show that the curvature K(q) of the curve x(q) can be 
expressed directly in terms ofx and its derivatives by the 
formula 

K= 
(x' . x') (x" . x") - (x' . x")2 

(x' . x')3 

Here is one approach you can take using Theorem 5.2, 
which says 

IIt'(q)II 
K(q) = IIx'(q)1I 

x'(q) 
when t(q) = . 

IIx'(q)II 

1 
(b) Show that t' = Ax" - Bx', where A = ~ and B = 

x'· x' 
x' . x" 

(x' . x')3/2 . 

(c) Now calculate Ilt'1I 2 = t' . t' and then K = 11t'(q)ll/llx'(q)lI. 

2. Calculate the unit tangent map t(q) = x'(q)/llx'(q)1I for each 
of the curves x(q). Sketch each pair of maps and note how 
the inflections of x correspond to the points where the image 
of t folds back on itself. 

(a) x(q) = (q, q3), -1 < q < 2. 

(b) x(q) = (q, sinq), 0 < q < 4rr. 

(c) x(q) = (q2, q - q3), -1 < q < l. 

3. Show that the Gauss map of a curve does not depend on 
the parametrization chosen for the curve. (However, if the 
parametrizations have opposite orientation, the Gauss maps 
"will be antipodal to each other.) 

4. Calculate K for the cylinder 

Sketch 5, the image of x, and 5*, the image of the unit normal 
mapn. 
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5. Calculate K for the "Cartesian" parametrization of the the 
saddle: 

Show that this is nonsingular everywhere (unlike the "polar" 
parametrization, which is singular at the origin), and show 
that K = -1 at the origin. 

6. (a) Let C be the plane curve defined by w(u) = (j (u), g(u», 
where f (u) = u2 , g(u) = u3 - u. Let 5 be the surface 
parametrized as 

Sketch C and 5. Make it clear that 5 is the vertical cylinder 
over C; that is, 5 is the union of vertical lines (generators) 
that pass through C. 

(b) Calculate the unit normal map n defined by x and sketch 
the image 5* of n in the unit sphere 52. Why does this 
demonstrate that the curvature of 5 is identically zero? 

( c) Calculate the matrix B( q) associated with n( q) and x( q) 
and show that the curvature of 5 is K = det B. 

7. Suppose w(u) = (f(u),g(u» is a nonsingular smooth plane 
curve; that is, w' = (f', i) is never zero. Let 5be the vertical 
cylinder over this curve: 

( a) Show that 5 is nonsingular and calculate the unit normal 
mapn. 

(b) Calculate the matrix B(q) and show that the curvature of 
5 is K = detB. 

8. Sketch by eye the Gauss map of an ellipsoid, a bell-shaped 
surface, and a torus. (For the bell, you can use the surface 
obtained by rotating the graph of z = 1/(l + x2) around the 
z-axis.) 

9. Compute the Gauss map ofthe plane x = (ql, q2, aql+bq2+c). 
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10. (a) Compute the Gauss map of the torus Ta,,; use the 
parametrization 

X(ql, q2) = ((a + rcos q2) cos ql, (a + rcosq2) sinql, r sin q2) . 

Sketch the Gauss map g, making it clear how 9 affects a 
representative collection of regions on Ta". 

(b) Determine the curvature function K(P) on Ta". 

(c) Verify that K(P) > 0 when P is on the outer half of Ta" 

while K (P) < 0 on the inner half. Confirm that the Gauss 
map 9 : Ta" -+ 52 reverses orientation on the inner half 
of Ta". 

(d) Identify the points P for which K(P) = O. Describe the 
image of these points under the Gauss map g. 

Suppose D is a region in the domain of the surface x(ql, q2). 

The total curvature over D is the integral 

f f K(ql, q2)J g(ql, q2) dql dq2, 

D 

where g(ql, q2) is the determinant of the metric tensor and 
K(ql, q2) is the curvature of the surface, both at the parameter 
point (ql, q2). 

11. (a) Determine the total curvature of the upper hemisphere 
of a sphere of radius R. Determine the total curvature of 
the whole sphere. Does either of these values depend on 
the radius R? 

(b) How are the total curvatures of the hemisphere and the 
whole sphere related to the areas of their images in 52 
under the Gauss map? Does this explain the way total 
curvature depends on R? 

12. (a) Determine the total curvature over the following three 
regions of the torus Ta,,: the inner half, the outer half, and 
the entire torus. Do the values depend on the parameters 
a or r? 
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(b) How are the total curvatures of the these three regions 
on Ta,r related to the areas of their images in S2 under 
the Gauss map? Does this explain the way total curvature 
depends on the parameters a and r? 

13. Show that the total curvature of a region D on an arbitrary 
surface is equal to the net oriented area of the image of D 
under the Gauss map of the surface. 

Further Reading for Chapter 5 

The treatment and notation we use for the differential geome­
try of surfaces follows Kreyszig [16] most closely. However, the 
subject is treated in a wide range of texts, a reasonable sample 
of which includes those by Crampin and Pirani [5], Dodson and 
Poston [6], Dubrovnin et al. [7], Klingenberg [IS], and McCleary 
[22]. Naber [25] discusses the full (1 + 3)-dimensional de Sitter 
spacetime. 



Intrinsic Geometry 
CHAPTER 

When Gauss defined the curvature of a surface as the rate of 
change of its normal direction, he made explicit use of the way 
the surface sits in space. Evidently, this is the extrinsic "curvature 
as bending" rather than the intrinsic "curvature as stretching" that 
we argued in Section 4.2 must be the basis of general relativity. It 
is altogether remarkable, then, that Gauss was able to prove that 
curvature is intrinsic. We begin this chapter by analyzing Gauss's 
famous argument, the theorema egregium, that curvature can be 
determined from a knowledge of the metric tensor alone, without 
reference to the surface's embedding in space. 

The theorema egregium is the key to intrinsic differential 
geometry. Once it is established we can focus on developing 
the tools of intrinsic geometry-geodesics, tensors, and covariant 
derivatives-that will allow us to incorporate a theory of gravity 
into relativity. 

6.1 Theorema Egregium 

A flat plane can be wrapped around a cone or cylinder without 
stretching or tearing; we say that the plane can be developed on the 

Developing one 
surface on another 
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cone or cylinder. In fact, anyone of these three surfaces can be 
developed on anyone of the others. More generally, we say that 
a surface 51 can be developed on another surface 52 if there is a 
map f : 51 --1- 52 that preserves distances. A distance-preserving 
map is called an isometry. 

Under what conditions can one surface be developed on an­
other? Gauss took up this question in his long paper "Disqui­
sitiones Generales circa Superficies Curvas" (General Investiga­
tions of Curved Surfaces, 1827) and determined that the surfaces 
must have the same curvature at corresponding points. The cru­
cial step in Gauss's proofis a formula that expresses the curvature 
function of a surface entirely in terms of the metric tensor and 
its derivatives. Gauss, who wrote in Latin, called this result the 
theorema egregium. "Egregious theorem" is not a good translation, 
because "egregious" now has a pejorative meaning. The etymo­
logical roots are e(x)- "out of' andgrex, "herd"; in Gauss's view, this 
theorem "stands out from the herd." 

The Theorem 

Theorem 6.1 (Theorema egregium) Let x : R --1- R3 be a 
parametrization of the surface 5. Then the Gaussian curvature K 
can be expressed entirely in terms of derivatives of the metric tensor 
gij = Xi . Xj and thus is an intrinsic feature of 5. 

PROOF: Our .starting point is Theor~m 5.4: K = detB = det b~, 
where the bj are defined by nj = -bjxi. Our goal is to prove that 

det B depends only on the gij and their derivatives. We do this 
in a sequence of steps that will introduce a rather bewildering 
number of new functions. After we finish the proofwe will pause 
to organize these functions and to have a systematic look at the 
process of lira ising or lowering and index" that generates a number 
of them. We begin with 
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where j = 1,2, k = 1,2. These functions are defined at each 
point q in R. Furthermore, we can carry out the differentiations 
in either order, so Xjk = Xkj. 

STEP 1. Since Xl, Xz form a basis of the tangent plane and n is a 
nonzero vector orthogonal to that plane, each Xjk can be written 
as a linear combination of Xl, xz, and n. Therefore, there are 
functions r;k and bjk for which 

Xjk = rhXi + bjkn . 

Since Xjk = Xkj, we have 

0= Xkj - Xjk = (r~j - r;k) Xi + (bkj - bjk) n, 

and since Xl, xz, and n are linearly independent, each coefficient 
on the right must be zero. This gives us the symmetries 

and 

for i = 1,2. 

STEP 2. We show that the new bjk are connected to the bj that 

appear in the matrix R. First, bjk = Xjk' n because 

Xjk . n = r;k Xi . n + bjk n . n = r;k . 0 + bjk . 1. 

Next, bjk = gjib~; this follows by differentiating Xj . n = 0: 

o .. 
o = -k (Xj . n) = Xjk . n + Xj . nk = bjk + Xj . (-b/cXi) = bjk - b/cgji. oq 

We can interpret bjk = gjib~ as a matrix product: 

B = (bll bl2 ) = (gll gl2) (b! b~) = -GR. 
bZ1 bzz gZI g2Z bl b2 

It follows that detB = detGdetR, so K = detR = detB/ detG = 
detB/g, and K will be expressible entirely in terms of the metric 
tensor and its derivatives if and only if detB = det bjk is. 

detB 
K=-­

g 
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o = Xjlk - Xjkl 

STEP 3. Let 

aXjk ar;k i abjk 
Xjkl = aql = aqz Xi + r jk Xii + aql n + bjk nl· 

This vector must also be a linear combination of Xl, xz, and n. 
'TI? find it, we substitute nl = -b;Xi in the fourth term and Xpl = 
r~IXi + bpln in the second, first changing the dummy summation 
index there from i to p: 

a~k a~k i 
Xjkl = --I Xi + r Pk Xpl + ---I n - bjkbl Xi 

aq J aq 

arh p ( i ) abjk i = --I Xi + r'k rplXi + bpln + ---I n - bjkbl Xi 
aq J aq 

J r P ri b bi J r P b (
ar

i
'k ) (ab' k ) = aql + jk pi - jk I Xi + aql + jk pi n. 

We get a similar expression for Xjlk by interchanging k and 1: 

STEP 4. Since we can carry out the differentiations in either 
order, 

aZXj aZXj 

o = aqkaql - aqlaqk = Xjlk - Xjkl 

We have written the coefficient of n simply as A because it will 
play no further role. Since Xl, xz, and n are linearly independent 
and the sum above is zero, each coefficient must equal zero. If 
we introduce the abbreviation 

i ar;1 ar;k PiP i 
Rjkl = aqk - aql + rjl pk - rjkr pi' 
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then the fact that the coefficient of Xi is 0 implies 

R~kl = bjlb~ - bjkbi· 

Note that this represents 24 = 16 equations, because each of the 
four indices i, j, k, and 1 can take two values. 

STEP 5. We define Rhjkl = gihR~kl = bjl b~ gih - bjk bi gih = bjl bkh -

bjk blh. Then 

Rl212 = bzzbll - bZ1bz1 = bzzbll - bZ1 b12 = detB, 

so we can write the curvature as 

K = RIZI Z 

g 

STEP 6. Our goal is now to show that R1212 depends only on the 
gij and their derivatives. But since 

R121Z = gllR~12 + g12R~l2 

and 

i ar;l ar;k PiP i 
Rjkl = aqk - aql + fjlf pk - rjkr pi' 

to prove the theorem it now suffices to show that each rh de­
pends only on the gij and their derivatives. 

STEP 7. Let rjk,h = Xjk' Xh. Then rjk,h = rjk gih because 

rjk,h = (rjkxi + bjkn) . Xh = r;kXi' Xh + bjk n . Xh = r;kgih. 

We would like to invert this. equation and thereby express r;k in 
terms Ofrjk,l. But rjk,h = rhgih is a matrix equation, 

rj = (rj1,1 rj1,Z) = (r{l r~l) (gll g12) = fjG, 
rjZ,l rj2,z r jZ r jZ gZl gzz 

~o it can ~e solved for f j using the inverse of G: r j G-1 

rjGG-1 = rj. Ifwe write the inverse with superscripts, 

K = R1212 

g 

r'k hand ghm J , 
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Matrix multiplication 

then the summation convention works nicely: 

hm mh m { 1, m = i, 
gih g = g ghi = 8i = 0 -'- . 

, m T' t. 

Th r hm - ri hm - ri ~m - rm 1b fi . h f us jk,hg - jkgihg - jkUi - jk' ms our proo 
of the theorem, it suffices to show that each ghm and each rjk,h 

depends only on the gij and their derivatives. 

STEP 8. Standard facts about the inverse of a 2 x 2 matrix give us 

11 g22 
g =-, 12 21 g12 g =g =--, 22 gIl 

g =-. 
g g g 

STEP 9. The proof of the theorem will be complete when we 
show 

r.. _ ~ (Ogik ogjk _ Ogij ) 
IJ,k - 2 oqj + oqi oqk' 

From gik = Xi . xk we get 

ogik 
oqj = Xij . xk + Xi' Xkj = rij,k + rjk,i. 

Similarly, 

Adding these three expressions gives the result. END OF PROOF 

Multi-index Quantities 

We can think of the summation convention essentially as a short­
hand for matrix multiplication. For example, if A is the p x n 

matrix that has the entry a! in the ith row and jth column, 
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a1 
1 a2 

1 aj 
1 

an 
1 

a1 
2 a2 

2 aj 
2 

an 
2 

A = (a{) = 
aJ a? a{ al'f t t t 

a1 p a2 p aj 
p an p 

and B is the n x q matrix that has the entry bj in the jth row and 
kth columns, then then their product C = AB is the p x q matrix 

that has the entry 4 = af bj in the ith row and kth column. 

Note that bjal = al bj, so bjaf still represents an entry in AB, 
not an entry in BA. In fact, the product BA does not exist unless 
p = q, and then the element in the lth row and mth column of 
D = BA is di = b~ak = akb~. 

The last example indicates the kind of freedom we have in 
altering index labels. In particular, a summation index is a dummy 
index: It can be replaced by any other symbol not already in use 
without altering the result; thus, for fixed i and k, 

i bk "" i bk "" lbk lbk at j = L...J at j = L...J ai 1 = ai 1· 
j I 

Since we will have further use for the multi-index quantities 
that are introduced in the proof of the theorema egregium, we 
list them now with the names they are usually given. 

They are all expressed in terms of a parametrization x(ql, q2) 
of a surface S; initially, a solitary subscript i represents partial 
differentiation with respect to qi. 

First fundamental form: gij = Xi . Xj. 

Second fundamental form: bij = Xij . n, 

b~ defined by nj = -b~Xi' 

bjk = b~gik. 

263 

Dummy index of 
summation 

Catalog of quantities 
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Lowering an index 

Raising an index 

Christoffel symbols, first kind: rjk,1 = Xjk . XI. 

Christoffel symbols, second kind: 

r;k defined by Xjk = rhXi + bjkn, 

rjk,1 = r;kgi/· 

Riemann curvature tensor, mixed: 

i or;1 orh PiP i 
Rjkl = oqk - oql + rjl pk - rjkr pl' 

Riemann curvature tensor, covariant: 

Rhjkl = R~kl gih, by definition. 

Einstein, among others, uses an older notation for the Christoffel 
symbols due to Christoffel himself: 

rjk,1 = [jk, 1], r;k = Uk, i}. 

In all cases, we call a subscript a covariant index, and a super­
script a contravariant index. The meaning of these terms, and 
the term "tensor:' will become clear in Sections 4 and 5 when we 
take up relativity on surfaces-that is, the relation between anal­
ogous multi-index quantities in two different parametrizations of 
the same surface. For the moment, just think of the terms as 
convenient labels. 

The multi-index quantities come in pairs; one of each pair is 
mixed in the sense that it has a single superscript, while the other 
is purely covariant. Moreover, the two forms are linked in exactly 
the same way; roughly speaking, this is the pattern: 

Bj* = gijB~. 
(The asterisk stands for any number of indices.) We call multi­
plication by the metric tensor, as it is done here, lowering an 
index; we shall use it often in what follows. 

By analogy, we define raising an index to be multiplication 
by the inverse gj k of the metric tensor: 

k 'k 
B* = gl Bj*. 
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Since the inverse gjk is defined by the condition 

J·k ~k {I ifi = k, 
g gr = 0· = 

g I 0 otherwise, 

we have 

Bk - gjkB . - gjk (g .. B i ) _ (gjkg .. ) Bi - ~kBi - Bk * - J* - IJ * - IJ * - °i * - *. 

Therefore, raising and lowering indices are inverse processes. We 
first used this fact in the final steps of the proof of the theorema 
egregium. We had an expression for the Christoffel symbols of 
the first kind in terms of those of the second kind, 

rjk,h = r;kgih, 

and we wanted to invert the relation, to express the symbols of 
the second kind in terms of those of the first kind. We did it like 
this: 

r m ri ~m ri hm r hm 
jk = jkOi = jkgihg = jk,hg . 

More generally, if an arbitrary multi-index quantity B~* has 
k + 1 upper indices and llower indices, we can lower an index 
to get the following new quantity with k upper indices and I + 1 
lower indices: 

B* Bi* j* = gij *. 

Likewise, we can raise an index 

Bh* - ghmB* 
* - m* 

to convert a quantity with k upper and 1 + 1 lower indices into 
one with k + 1 upper and llower indices. 

Another operation that we will carry out on multi-index quan­
tities is contraction. Computing the trace of a matrix is an ex-

ample: if A = (an, then 

tr A = ai + a~ + ... + a~ = a: = a scalar. 

We have set the upper and lower indices equal to each other and 
then added, according to the summation convention. Note that 

Contraction 
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the result in this example is a scalar; it has no indices at all. In 
general, to contract any multi-index quantity, set one upper and 
one lower index equal and sum. The result is a new quantity that 
has one index fewer in both the upper and the lower positions. 

The standard computation of the length of a vector v = vi is a 
contraction. We have 

IIvll2 = gijViVj = (gijVi) v j = Vjvj = a scalar. 

The inner product of two vectors is similar: 

v· w = gijViWj = (gijVi) w j = Vjwj = a scalar. 

Our final example is the Ricci tensor, which we will use in the 
sequel. It is obtained from the Riemann curvature tensor by con­
traction: 

Ricci tensor: Rik = R~hk' 

Exercises 

Carry out the calculations in Exercises 1-6 for each of these four 
surfaces: 

• the plane x = (ql, q2, aql + bq2 + c); 

• the cylinder x = (f (ql), g(ql), q2); 

• the sphere ofradiusR, x = (Rcosql sinq2, Rsinql sinq2, Rcosq2); 

• the torus Ta,r, x = ((a + rcosq2) cos ql, (a + rcosq2) sinql, rSinq2). 

1. Calculate the components gij of the metric tensor and the 
components gil of its inverse. 

2. Calculate the components of second fundamental forms bjk 

and b~. Verify that bjk = gikb~ and b~ = gikbkl. 

3. Calculate the Christoffel symbols ofthe second kind using both 

rj'k,l = Xj'k . Xl and r'kl _ ~ (Ogjl + ogkl _ Ogjk) 
j , - 2 oqk oqj oql . 

4. Calculate r;k = gilrjk,l and verify that Xjk = rhXi + bjkn. 
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5. Calculate the partial derivatives ar;k/aql and the mixed Rie­
mann tensor 

i ar;l ar;k PiP i 
Rjkl = aqk - aql + rjr pk - rjkr pl· 

6. Calculate Rhjkl = gihR~kl and K = R1212/ g. 

7. Consider n x n matrices r = (Ypq) , G = (gkl) , and M = (m{), 
where the first or upper index specifies the row and the second 
or lower index specifies the column. 

(a) If the transpose of Mis Mt = (a{), express a{ in terms of 
the components of M. 

(b) If r = MtGM, express the component Ypq in terms of the 
components of M and G using the summation convention. 

8. (a) Show that the mixed Riemann curvature tensor Ri·kl for 
. . J 

any surface x satisfies the condition Rj lk = - Rj kl for every 
i, j, k, 1. 

(b) Conclude that at least 8 ofthe 16 components of the mixed 
Riemann tensor R~kl must equal o. List the components 
that are automatically o. 

9. The metric tensor gij (ql , q2) of a general surface of revolution 
has the following form: 

gll = [r(q2)]2 , g12 = 0, 

g21 = 0, g22 = [r' (q2)]2 + [z' (q2)]2 . 

Note: The gij do not depend explicitly on ql, and r(q2) > 0 for 
all q2. 

(a) Using only the metric tensor, calculate gkl, rjk,l' r;k' R~kl' 
R1212, and K = R1212/g. 

(b) Show that at a point (ql, q2) where K = 0, either t(q2) = 0 
or r'(q2)t'(q2) = r"(q2)t(q2). 

(c) Determine the points where K < 0 in terms of conditions 
on rand z and their derivatives. 
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Return to 
acceleration-free 
observers 

The normal and 
tangential 
components of 
acceleration 

6.2 Geodesics 

Special relativity concerns observers who move without accel­
erating, along straight paths at constant speed. But in a curved 
space or spacetime, there may be no straight paths at all. Never­
theless, there are still paths that are "acceleration-free"; these are 
the geodesics. We will define geodesics on ordinary 2-dimensional 
surfaces and determine some of their properties. 

q 2 

q(t) 

a 

x -

b 

Let S be a surface parametrized by x : R ~ R 3 , and let q : 
[a, b] ~ R be a curve in the parameter plane. Then z(t) = x(q(t)) 
is a curve in S. The velocity and acceleration of z are 

dqi 
z'(t) = Xi-; 

dt 
velocity: 

acceleration: 
" dqi dqj d2qi 

z (t) = XijTt dt + Xi dt2 

( k ) dqi dqj d2qk 
= rijXk + bij n Tt dt + Xk dt2 

(
d2qk k dqi dqj ) dqi dqj 

= dt2 + r ijTt dt Xk + bijTt dt n. 

The last term is the normal component N of acceleration. It 
depends on the second fundamental form bij and the velocity 
components dqijdt of the curve z(t), but is in general different 
from zero. In other words, any curve z(t) has to accelerate to stay 
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on the surface. The tangential component 

(
d2l k dqi dqj ) 

T = dt2 + f ijYt dt xk 

is a different matterj it clearly depends on the curve and will 
equal zero if q(t) is properly chosen. 

s 

Definition 6.1 The curve q(t) = (ql(t), q2(t)) in 'R, is a geodesic 
on the sUrface x : 'R, --* R 3 if 

2 k . . 
d q (t) + r~ (l(t) 2(t)) dq'(t) dqJ(t) = 0 

dt2 IJ q , q dt dt ' k= 1,2. 

These are called the geodesic equations. They are second­
order nonlinear ordinary differential equations, but they depend 
only on the metric tensor gij. On an ordinary surface there are just 
two equations (k = 1,2), but in curved spacetime that number 
will become four. 

Let us determine the geodesics in some very simple cases. Example: a flat plane 

First, let S be the (x, y)-plane, parametrized by 

x(ql,q2) = (ql,q2,O). 

Then gij = 8ij = 1 if i = j and 0 otherwise. Therefore, all partial 
derivatives 8gij j8qk are identically zero, implying 

and 

for all i, j, k, and h. Therefore, the geodesic equations reduce to 
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A geodesic is more 
than a "straightesf 
path 

The solutions are the straight lines 

q(t) = (ql (t), q2(t») = (at + b, ct + d); 

a, b, c, and d are arbitrary constants ofintegration. The parameter 
moves along this line with constant speed II (a, c)1I = ,Ja2 + c2 . 

This last point is crucial. Consider, for example, the straight 
ray 

q2 = ql > 0 

with the variable-speed parametrization ql(t) = q2(t) = t2, t> O. 
Since 

d2ql d2q2 
dt2 = dt2 == 2 =1= 0, 

this is not a geodesic. Although the path itself is straight, the point 
(t2, t2) accelerates as it moves along that path. Thus, in the plane, 
every geodesic is a straight line, but not every straight line is a 
geodesic. The parametrization matters. 

This is an important lesson: We customarily think of geodesics 
as certain paths on a surface, independent of any parametrization. 
But this is untenable; only constant-speed parametrizations work, 
as the next theorem shows. 

Theorem 6.2 Ifq(t) is a geodesic, then 1Iq'(t)1I2 = constant. 

PROOF: In terms of the metric tensor, 

IIq'(t)1I2 = gij (ql(t), q2(t») d~~t) dq~;t). 
1b prove that this is constant we show that its derivative with 
respect to t is identically zero. Thus, 

d , 2 ogij dqk dqi dqj d2qi dqj dqi d2qj 
dt (11q (t)11 ) = oqk dtdtdt + gij dt2 dt + gijdt dt2 

ogij dl dqi dqj d2qi dqj 
= oqk dt dt dt + 2gij dt2 dt' 
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By assumption, q(t) is a geodesic, 

d2qi i dq1dqm 
dt2 = -f1matdt , 

so 

d , 2 8gij dqk dqi dqj i dql dqm dqj 
dt (lIq (t)11 ) = 8qk dtatdt - 2gijflmatdtdt 

8gij dqk dqi dqj dql dqm dqj 
= 8qk dt at dt - 2flm,j at dt dt 

_ 8gij dl dqi dqj ( 8glj 8gmj 8glm) dql dqm dqj -------- -+--- ------
8qk dt dt dt 8qm 8ql 8qj dt dt dt' 

Now write this as four separate terms and relabel the dummy 
summation indices in each of the last three so that that term 
becomes 

8gij dqk dqi dqj 

8qk dt at dt . 

This shows that the four terms are identical; since two occur with 
a plus sign and two with a minus, their sum is zero. END OF PROOF 

It is possible to have different parametrizations of the same 
geodesic path, but the theorem forces the parameters of any two 
to be affinely related-that is, connected by an equation of the 
form t = au + b. 

Corollary 6.1 Suppose q(t) and Q(u) = q(q;(u» are two geodesic 
parametrizations of the same path. Then t = q;(u) = au + b for some 
constants a and b. 

PROOF: By the chain rule, Q'(u) = q(q;(u»q;'(u) - q'(t)q;'(u). 
Therefore, since Q and q are geodesics, 

IIQ'(u)1I = IIq'(t)II·Iq;'(u)l, 
'-..-' "-..-' 
constant constant 

so q;'(u) = a, where a is one of the constants ±IIQ'(u)lI/llq'(t)lI. 
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Hence q;(u) = au + b for some constant of integration b. 
END OF PROOF 

Example: the sphere The sphere gives us a more complex example on which to test 
these observations. Since geodesics are determined solely by the 
metric tensor, we start there (cf. Section 5.2): 

( gl1 g12) = (coS2(q2) 0), (gl1 g12) = (cOS-2(q2) 0). 
g21 g22 ° 1 g21 g22 ° 1 

The Christoffel symbols of the first kind are sums of partial deriva­
tives of the gij. But the only nonzero derivative is 

8g1; = -2 sin(q2) cos(q2), 
8q 

so only the Christoffel symbols whose indices are {I, 1, 2} in some 
order will be nonzero: 

rl1,2 = sin(q2) COS(q2) , 

r21,1 = r12,1 = - sin(q2) cos(q2). 

For the Christoffel symbols of the second kind we have 

rf1 = g21 rl1,1 + 12rl1,2 = sin(q2) COS(q2), 

1 1 11 12 - sin(q2) cos(q2) 2 
r 21 = r 12 = g rl2,l + g r12,2 = COS2(q2) = - tan(q ). 

In all other cases rij,k = r~ == 0. The geodesic equations are 

These equations are strongly coupled-the equation for q1 in­
volves q2 and vice versa-and it is not obvious what their solutions 
might be. 

Rather than attempt to solve the differential equations, we 
shall just check whether certain familiar curves are geodesics. 
The simplest to check are the coordinate curves q1 = constant 
(the meridians of longitude) and q2 = constant (the parallels of 
latitude). 
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Meridians oflongitude: Let ql = a, q2 = t, -n /2 < t < n /2. Here a 
is the longitude, so 0 ::::: a < 2n: 

so these are all geodesics. 

Parallels of latitude: Let ql = t, qZ = b, 0 ::::: t ::::: 2n. Here b is the 
latitude, so -n /2 < b < n /2: 

d2ql dql dq2 
- - 2tan(q2)-- = 0 - 2tan(b)·1· 0 = 0 
dt2 dt dt ' 

d:~' + sin (q') cost q') ( d;:)' = 0 + sin(b) cos(b) . l' = ~ sin (2b). 

The second equation is 0 only if 2b is an integer multiple of n; in 
the allowable range for b, this happens only when b = O. This is 
the equator, so among the parallels oflatitude only the equator is 
a geodesic. 

Great circles: In Section 5.2 we defined a collection of great circles 
by the parametrizations 

ql (t) = t, q2(t) = arctan(a sin t), o ::::: t::::: n. 

Here a can take any real value. Since great circles on the sphere 
are the paradigmatic example of geodesics, it is natural to expect 
these curves to solve the geodesic equations. However, they are 
not even constant-speed parametrizations, because in Section 5.2 
we established that their speed is 

dqi dqj J1 + a Z 

gij --;it dt = 1 + a 2 sin2 t' 

Therefore, they are not geodesics. Only after we reparametrize 
them - for example, by arc length - will they prove to be geodesics. 
Arc length is given by 
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5= t Jl:~22 dt=arctan(Jl+a2 tant) 10 1 + a sm t 

(cf. Section 5.2), implying 

t = arctan ( tans ). 
Jl +a2 

The unit speed (Le., arc-length) parametrization is therefore 

1 ( tans ) 2 (a tans ) q = arctan ,q = arctan . 
Jl +a2 Ja2 +sec2s 

In the exercises you are asked to work through the details and 
verify that these are indeed geodesics. The main ingredients of 
the proof are 

2 a tans 
tan(q ) = , 

Ja2 + sec2s 

a tansJa2 + sec2 5 
sin(q2) cos(q2) = 2 2 ' 

(1 + a ) sec 5 

and 

dql 
-

J1 + a2 sec2s 
a2 + sec2 5 ' 

2a2Jl + 012 tan ssec2 s 

(a2 + sec2 s)2 

The first geodesic equation is 

dq2 a 
-= , 
ds Ja2 + sec2 5 

d2 q2 Ol tan s sec2 s 
ds2 = - (a 2 + sec2 s)3/2 . 

d2ql dql dq2 2a2J1 + a2 tan ssec2 s 
--2tan(q2)--= 2 
ds2 ds ds (a2 + sec2 5) 

a tans 

The second is 

J1 +a2 sec2 s 

a2 + sec2 5 

d2q2 + sin(q2) coS(q2) (dq1 )2 
ds2 ds 

-.;ra:::;:;2:=+=se=c:::;:;2~s == O. 

a tan 5 sec2 5 a tan s.;r-a"'2 -+-s-ec""""'2's (1 + a2) sec4 5 

= - (a2 + sec2 5)3/2 + (1 + a2) sec2 5 . (a 2 + sec2 5)2 == O. 
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Finally, given any point on a surface and given any direction 
at that point, we can construct a geodesic that passes through the 
point in the given direction. 

Theorem 6.3 Suppose P is a point on the surface 5 and v is a vector 
in the tangent plane TSp. Then there is a geodesic q(t) on 5 with 
q(O) = P and q'(O) = v. 

PROOF: Notice first that the statement of the theorem is ab­
breviated. For a more complete statement we need an explicit 
parametrization x : R -+ R 3 of S. Then, if 

and 

the theorem asserts that there is a curve q : [-8, 8] -+ R in 
the parameter plane that satisfies the geodesic equations and for 
which 

and ( d I d 2 ) 
q' (0) = it (0), it (0) = (VI, v2 ). 

The proof then follows from the general theorem on the existence 
and uniqueness of solutions to systems of ordinary differential 
equations. We have a pair of second-order differential equations 
(the geodesic equations) for the functions ql (t) and q2(t) and 
initial conditions on ql, q2, dql / dt, and dq2 / dt at t = 0 that are dis­
played above. Under the assumption that the functions rt (ql , q2) 

that appear in the geodesic equations are sufficiently differen­
tiable, the theorem guarantees that there are unique functions 
ql (t) and q2(t) defined on an interval [-8,8] containing the initial 
point t = 0 that satisfy the differential equations and all the initial 
conditions. END OF PROOF 

Exercises 

1. Obtain the geodesic equations for the plane x(ql, q2) = 
(ql, q2, aql + bq2 + c) and find all solutions to those equations. 

2. (a) Obtain the geodesic equations for the surface of revolution 

x(ql, q2) = (r(q2) cos ql , r(q2) sin ql , q2). 

Geodesics occur 
everywhere 
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(b) Show that a meridian of longitude ql = constant is a 
geodesic; you must first obtain a constant-speed parametriza­
tion for the meridian. 

( c) Show that a parallel of latitude q2 = constant is a geodesic 
if and only if r' (q2) = O. Explain this result geometrically. 

3. (a) Obtain the geodesic equations for the cylinder 

x(ql, q2) = (f (ql), g(ql), q2). 

(b) Assuming that ql is arc length on the plane curve ql 1--* 

(f (ql), g(ql )), show that any straight line (ql, q2) = (at + 
b, ct+d) in the coordinate plane is a geodesic on the cylin­
der. 

(c) Suppose instead that ql is not arc length on the curve 
(f (ql), g(ql )). Let s = s(ql) be the arc length function and 
let ql = cp(s) be its inverse. Now use cp to obtain all solutions 
to the geodesic equations. 

4. Obtain the geodesic equations for the torus Ta•r, 

X(ql, q2) = (a + rcos q2) cos ql, (a + rcos q2) sinql, r sin q2) , 

and show that the meridians of longitude ql = constant are 
geodesics. 

5. (a) Verify that each curve Ca defined by 

ql = arctan , ( tans ) 
.JI + a2 

q2 = arctan ( a tans ) 
.Ja2 + sec2 s 

is a geodesic on the unit sphere 

x = (cosql cosq2, Sinql cosq2, sinq2). 

(b) Make a careful sketchofCa in the (ql, q2)-plane fora = -2, 
0, I, 2, 25. 

(c) Let Ca./3 be the curve obtained from Ca by translating ql 
by {3: 

ql = f3 + arctan , ( tans ) 
.JI + a 2 

2 (a tans ) q = arctan . 
.Ja2 + sec2 s 
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Show that each Ca,fJ is a geodesic. What is the geometric 
relation between the various Ca,fJ and Ca on the sphere it­
self? Why does this relation immediately imply that every 
Ca,fJ is a geodesic? 

Cd) Prove that ifq(t) = (ql (t), q2(t» is a geodesic on the sphere, 
then so is ~(t) = (fJ + ql(t), q2(t)) for every fJ. 

C e) According to the existence and uniqueness theorem for so­
lutions to differential equations, there is a unique geodesic 
on the sphere passing through a given point in a given di­
rection. That is, there is a unique geodesic q(t) satisfying 

Find an explicit formula for q(t) in terms of the given aI, 

a2 , bl , and b2 . 

6. Determine which coordinate lines q(t) = (t, k2) and q(t) = 
(kl, t) are geodesics in the (1 + 1 )-dimensional de Sitter space­
time given by the metric 

6.3 Curved Spacetime 

In this section we shall define a curved spacetime to be a portion 
of R4 whose differential geometry is defined intrinsically by a 
metric in which each tangent space is a linear (1 + 3)-dimensional 
spacetime. Th see how this should be done we consider first an 
ordinary 2-dimensional surface. 

Ordinary Surfaces 

Henceforth, we consider a surface patch S to be an open set R­
in the (ql, q2)-coordinate plane supplied with a 2 x 2 matrix of 
functions 

G(ql, q2) = (gjj (ql , q2») , 

satisfying the following conditions: 

i,j=1,2, 

A surface with an 
intrinsically defined 

geometry 
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S = {R, gij} 

Geometry in S 

1. Each gij (ql , q2) is a smooth function of (ql , q2) on R; 

2. at each point (ql, q2), G is a symmetric matrix, gji = gij; 

3. at each point (ql, q2), the two eigenvalues of G are positive. 

We call G = (gij) the metric tensor, or first fundamental form, 
of S. Except that it must satisfy these three conditions, the metric 
tensor is arbitrary. In particular, it is not defined in terms of an 
embedding x: R ~ R3. Indeed, no such map is involved in the 
definition of S at all; there is no larger ambient space in which 
S resides. It is in this sense that the geometry of S is intrinsically 
defined. 1b indicate that S depends on Rand gij and on these 
ingredients alone, we write S = {R, gij }. 

The metric tensor provides a full set of geometric multi-index 
quantities defined at each point of S: 

• g = detG; 

• G-1 = (gjk); that is, gijgjk = gkj gji = ISf; 

1 (ag·k agk· ag .. ) 
• Christoffel symbols, first kind: r ij k = - --'. + -~ - 'i; 

, 2 oqJ oql oq 

• Christoffel symbols, second kind: r;k = gilrjk'/; 

or~ or~ 
. . d Ri JI Jk r P ri • Riemann curvature tensor, mlXe : J'kI = --k ---1 + jI pk 

rPri . 
jk pI' 

oq oq 

• Riemann curvature tensor, covariant: RijkI = gimRjkI; 

• Gaussian curvature: K = R1212/ g; 

With these quantities we can determine all the relevant geometric 
information about S. For example, suppose q(t) = (ql (t), q2(t)) is 
a path in S and a:::: t:::: b. Then, 
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while q(t) is a geodesic if and only if 

d2qk k 1 2 dqi dqj 
dt2 + rij (q ,q ) dtdt = O. 

The metric gij defines an inner product on each of the tangent The tangent plane TSp 

planes of S, just as it does for an embedded surface. Th make this 
point, though, we need to clarify what we mean by a tangent 
plane of a surface whose geometry is defined intrinsically rather 
than by an embedding. 

Essentially, a tangent vector is just the velocity vector of a 
curve at a particular point. Suppose P is a point in S = {R, gij }, 
with coordinates (c I , c2) in R. Let 

q: [a, b] -+ R: t 1-+ (qI(t), q2(t») 

be a smooth curve in S, and suppose q(c) = (c I, c2) = P. Then 
q' (c) is a tangent vector to Sat P. We get all the tangent vectors to S 
at Pby allowing q to vary over all smooth curves that pass through 
P. The set of all tangent vectors at P constitutes the tangent plane 
TSp. Note that we draw the tangent vectors in their own plane, 
and not in R itself. 

s 

q --
Each tangent plane inherits coordinates from S in a natural 

way. We shall write these coordinates as (qI, q2) to indicate that 
they arise from the (qI, q2)-coordinates in Sby differentiation with 
respect to a "time" parameter. (A dot is sometimes used to denote 
a time derivative.) As the following proposition asserts, qI and q2 
are the coordinates with respect to the basis {eI, e2} defined by 
the curves that trace out the horizontal and vertical coordinate 

Induced coordinates 
in TSp 
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lines through (c 1 , c2) in R: 

e1 = ch, where q1 (5) = (c1 + 5, c2) = P + 5(1,0), 

e2 = q~, where q2(S) = (c1, c2 + 5) = P + 5(0, 1). 

Proposition 6.1 The numbers 

.1 dq1 ( ) q =- c, 
dt 

d 2 il = ~(c) 
dt 

are the coordinates of the tangent vector q' (c) with respect to the basis 
leI. e2} in the tangent plane TSp. 

PROOF: Use Thylor's theorem to write 

q(t) = (q1(t), q2(t)) 

= (c1 + q1 . (t - c) + 0 (t - c)2) ,c2 + q2 . (t - c) + 0 (t - c)2)) 

= P+ (t - c) (q1, q2) + O(t _ c)2) 

for t near c. Since 

q1 (t - c) - P = (t - c)(I, 0), q2(t - c) - P = (t - c)(O, 1), 

we can at least express q itself in terms of the "basis" curves in R 
for t near c: 

q(t) - P = q1 (q1 (t - c) - P) + q2 (q2(t - c) - P) + 0 (t - c)2) . 

Now differentiate with respect to t and set t = c: 

q'(c) = q1qi + q2~ = q1e1 + q2e2 = qiei. END OF PROOF 

s 

02 

ql--+--~--
p .................. . 

2 

II q 
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Although the individual tangent planes TSp are not visually 
distinct-either from each other or from S itself-in the way that 
they are for an embedded surface, you should nonetheless think 
of them as conceptually distinct. From this point of view a surface 
S is supplied with an indexed collection of 2-dimensional inner 
product spaces TSp; the index is the point P in S, and the inner 
product is the metric gij (P). In particular, tangent vectors based 
at different points are in different vector spaces; we can, add two 
vectors or compute their inner product only if they are in the 
same space. 

The simplest example of a surface S with an intrinsically de­
fined geometry is one with a constant metric. The Christoffel 
symbols and Riemann tensors are zero everywhere, so the Gaus­
sian curvature K is identically zero. The differential equations for 
geodesics take the simple form 

d2ql d2q2 

dt2 = dt2 = 0, 

so their solutions are the straight lines 

Finally, the tangent planes all have the same inner product. 

Example: The Hyperbolic Plane 

One of the most familiar examples of a surface whose geometry 
is usually defined intrinsically by a metric-rather than by an 
embedding in space-is the hyperboiic plane H. It arises in the 
study of classical non-Euclidean geometry, which follows all the 
axioms of Euclid except the famous parallel postulate: "Given a 
line and a point not on that line, there exists precisely one line 
through the point that is parallel to the line:' In non-Euclidean 
geometry this postulate is modified in two different ways, leading 
to two different geometries: Either assume that there is no par­
allel (elliptic geometry) or assume that there are many parallels 
(hyperbolic geometry). 

The tangent planes 
TSp are distinct 

A model for 
non-Euclidean 

geometry 
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Geodesics are lines 

The metric on H 

The domain R of the hyperbolic plane H is the upper half­
plane q2 > O. The geodesics in the model H play the role of 
II straight lines" in the geometry. Once we define the metric in H 
we shall show that any vertical straight line (ofthe ordinary sort) 
is a geodesic, and so is any ordinary semicircle whose center lies 
on the q1-axis. Then the figure below illustrates how H is a model 
for non-Euclidean hyperbolic geometry. Each of the "lines" M 
passing through the point P (and shown in gray) is parallel to the 
line L because it never intersects L. 

L 

Each M is parallel to L 

Let us now analyze H and show that these lines and circles 
are indeed geodesics. The metric for H is defined by 

1 
gll = g22 = (q2)2' g12 = g21 = O. 

Thus gIl = g22 = (q2)2, g12 = g21 = 0, while 

agll ag22 -2 
--=--=--, 
aq2 aq2 (q2)3 

and all other partial derivatives are zero. This implies that the 
only nonzero Christoffel symbols of the first kind will have in­
dices {l, 1, 2} in some order or 2, 2, 2; these are 

1 1 
r12,l = r21,1 = - (q2)3' rll,2 = (q2)3' 

1 
r22,2 = - (q2)3 . 

Here is a complete reckoning of the Christoffel symbols of the 
second kind: 

ri1 = gll rll,l + g12rll,2 = 0, 

r 1 rl llr 12r (2)2 -1 1 
12 = 21 = g 12,1 + g 12,2 = q . (q2)3 = - q2' 
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r~2 = gll r 22,1 + g12r22,2 = 0, 

2 21 22 2 2 1 1 
r ll = g rll,l + g r ll ,2 = (q) . (q2)3 = q2' 

rr2 = ri1 = g21 r 12,1 + g22r12,2 = 0, 

2 21 22 2 2 -1 1 
r 22 = g r22,1 + g r22,2 = (q) . (q2)3 = - q2' 

The geodesic equations are 

d2 q1 2 dq1 dq2 
0------

- dt2 q2 dt dt' 

° = d2q2 + ~ (dq1)2 _ ~ (dq2 )2 
d~ ~ dt ~ dt 

Recall now that a path can satisfy the geodesic equations only 
if the parameter moves at a constant speed, implying that it is (a 
constant multiple of) the arc length. Therefore, if we are to show 
that vertical lines and semicircles centered on the q1-axis are 
geodesic, we must first obtain their arc-length parametrizations. 

The vertica1lines. Consider the vertical line at q1 = C i to start, 
we parametrize it as q1 (t) = c, q2(t) = t, t > 0. Its speed is then 

11q'(t)II = ( dq2 )2 rr;;. 1 g22(C, t) - = -·1 = -. 
dt t2 t 

If we measure arc length from the point where t = a, then the 
arc-length function is 

it it dt 
s(t) = Ilq'(t)11 dt = - = In t -Ina. 

a a t 

This becomes simply 5 = In t if we take a = I, so t = eS and the 
arc-length parametrization of the vertical line is 

1 q = c, 

It is now straightforward to verify that these paths satisfy the 
geodesic equations; see the exercises. 

Geodesics always 
have constant-speed 

parametrizations 
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The boundary of H is 
infinitely far from the 
interior 

Arc-length 
parametrization 

K=-lonH 

Any vertical line segment from an interior point to the bound­
ary on the ql-axis is infinitely long, as measured in H. Here is why. 
In terms of the parameter t, the boundary is at t = 0; at an inte­
rior point, t has some positive value b, for example. The length 
is therefore 5(b) - 5(0) = In b + 00 = 00, as claimed. The visible 
boundary of H (the ql-axis) is therefore infinitely far from any in­
terior point. This is one reason why H is presented intrinsically, 
rather than as an embedded surface. 

The semicircles. Suppose we want a clockwise parametriza­
tion of the semicircle of radius r centered at the point (ql, qZ) = 
(c, 0). The most common way is to use the sine and cosine func­
tions: 

1 z· q = c - rcost, q = rSlnt, 0< t < n. 

However, these are not constant-speed parametrizations on H; 
see the exercises. 

It is the identity sinz t+cosz t = 1 that leads us to use sines and 
cosines to parametrize circles. But there is an analogous identity 
for hyperbolic functions, 

tanh2 5 + sechz 5 = 1, 

so we can use them for the same purpose. In fact, you are asked 
to prove in the exercises that 

ql = c + r tanh 5, qZ = rsech5, -00 < 5 < 00, 

is the arc-length parametrization we seek, and this path satisfies 
the geodesic equations on H. Notice, in particular, that the path 
is infinitely long and that the parameter values 5 = ±oo give us 
the points ql = C ± r on the boundary qZ = O. 

Incidentally, these paths are "semicircles" only from the Eu­
clidean point of view. From the point of view of the hyperbolic 
geometry that prevails in H, they are straight. On the two geode­
sics in the figure below, the ticks mark units of arc length. 

Another aspect of H that makes it difficult to represent as a 
surface embedded in ordinary space is its Gaussian curvature; in 
the exercises you are asked to show that K = R121Z/ g == -1. 
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The nature of the geodesics and the fact that the curvature is 
negative everywhere make H very different from the Euclidean 
plane. Nevertheless, an individual tangent plane THp is remark­
ably similar to a Euclidean plane, as the following proposition 
shows. 

Proposition 6.2 The measure of an angle in H is the same as its 
Euclidean measure. 

PROOF: Let q' = (qI, q2) and r' = (;1, ;2) be two vectors tangent to 
H at the same point P = (c I , c2), and let 0 be the angle between 
them. The hyperbolic measure of 0 is 

qI;I + q2;2 

q' . r' (c I )2 + (c 2)2 
o = arccos Ilq'llllr'11 = arccos -,===::,::::::::::=,.---;====== 

(qI)2 + (q2)2 (i-I)2 + (;2)2 

(c I )2 + (c 2)2 (c I )2 + (c 2)2 

'1'1 + '2'2 
= arccos q r q r 

J (qI)2 + (q2)2y' (;1)2 + (;2)2 

The final expression is just the Euclidean measure of O. 
END OF PROOF 

The reason for this similarity between the Euclidean and hy­
perbolic planes-at the level of their tangent planes-becomes 
transparent when we write their metrics in matrix form. The 
Euclidean metric is given by I, the identity matrix, while the 
hyperbolic metric is a scalar multiple of I: 

1 
G = (q2)2I. 

Comparing THp to the 
Euclidean plane 
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Gravity curves 
spacetime 

A spacetime frame 
and its metric 

Although this scalar varies from point to point in H, at a given 
point it has a fixed value. Therefore, in the tangent plane at that 
point, every distance is that fixed multiple of its Euclidean dis­
tance, so each THp is strictly similar, in the sense of Euclidean 
geometry, to the Euclidean plane. 

Spacetime 

In Chapter 4 we saw that, in the spacetime coordinate frame of an 
accelerating observer, distances between events will inevitably be 
distorted in a way we now attribute to curvature. In other words, 
an accelerating frame is curved. Furthermore, by Einstein's prin­
ciple of equivalence, there is no difference, at least locally, be­
tween an observer who is stationary in a gravitational field and 
one undergoing acceleration with respect to an inertial frame. 
Therefore, the spacetime frame of an observer in a gravitational 
field will be curved, too: Gravity curves spacetime. 

We are now in a position to deal with an arbitrary coordinate 
frame in spacetime-in particular, one that includes a gravita­
tional field. Such a frame S consists of an open set 'R in the 
q = (ql, q2, q3, q4)-space together with a 4 x 4 matrix of functions 

i,j=1,2,3,4, 

satisfying the following conditions: 

1. Each gij (q) is a smooth function of q on 'R; 

2. at each point q, G is a symmetric matrix, gji = gij; 

3. at each point q, G has one positive and three negative eigen­
values. 

We call G = (gij) the metric tensor, or first fundamental form, 
of S. Because G is symmetric, only 10 of its 16 components gij can 
be distinct. According to the observations we made in Chapter 4, 
it is impossible to identify the quantities qi with measurements of 
space and time made by an observer using rulers and clocks. On 
the contrary, the coordinates (ql, q2, q3, q4) are merely labels an 
observer uses to distinguish one spacetime event from another. 
However, we shall be able to do more in the tangent spaces. 
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Given a point P of S, we define the tangent space of S at P to The tangent spaces 

be the set of velocity vectors of all curves in S that pass through 
P. The coordinates on S induce "dotted" coordinates (qI, qZ, q3, q4) 
on TSp the same way they do on an ordinary surface. These are 
the coordinates with respect to the basis {eI, ez, e3, e4} consisting 
of the tangent vectors of the coordinate curves. 

Since it is impossible to visualize directly these 4-dimensional Reduce the dimension 

spaces, we replace them, for the sake of illustration and for most for visual clarity 

discussion, with their 2-dimensional counterparts exactly as we 
did when we first took "slices" of spacetime in Chapter 1. Thus, 
we modify the definition of a spacetime frame S in the following 
two ways: 

• The domain R of spacetime S is an open set in R Z rather than 
R 4 . , 

• the metric tensor G(P) = gij (P) is a symmetric 2 x 2 matrix 
with one positive and one negative eigenvalue. 

As we have in the past, we shall return to the full 4-dimensional 
spacetime when it is important to do so. 

Each tangent space TSp is now 2-dimensional, with coordi­
nates (ql, q2) induced from the coordinates (qI, q2) on S. If q' is 
tangent to Sat P and q' = (ql, q2) in terms of the induced coordi­
nates in TSp, then by definition 

Theorem 6.4 We can choose a basis B = {T, X} for TSp with the 
following property: If (t, x) are the coordinates of q' with respect to 
the basis B (i. e., q' = tT + xX), then 

q'.q'=t2_~. 

PROOF: The basis B will consist of the eigenvectors of G(P), prop­
erly scaled. Let T* be an eigenvector associated with the positive 
eigenvalue (which we denote by AT), and let x* be an eigenvector 
associated with the negative eigenvalue AX. 

Each TSp is a 
(1 + I)-dimensional 

Minkowski plane 
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The Minkowski norm 
in TSp 

We claim that T* and x* are G-orthogonal. Let 

T' = qiTe" T' = (:r) , X' = q~e" X* = (~) ; 
here we take the trouble to distinguish between the abstract vec­
tors T*, x* and the columns of coordinates T*, X* because it helps 
to make clear that we are converting abstract inner products to 
matrix multiplications in the calculations that follow. We now 
calculate T* . X* two ways: 

(1) T*· X* = T*tGX* = T*t (AXX*) = AxT*tX*; 

(2) T*· X* = (T*tG)ttX* = (GtT*)tX* = (GT*)tX* 

= (ATT*)tX* = ATT*tX*. 

Therefore, (AX - AT)T*tX* = 0; since AX - AT i= 0, we have 
T*tX* = 0 and thus T* . X* = 0, proving the claim. 

Next, consider X* . X* = X*tGX* = AXX*tX*. Noting that AX is 
negative while X*tX* = (qk)2 + (qi)2 is positive, we rescale X* as 

1 * X= X. 
J-AXJX*tX* 

Then X· X = -1. Similarly, we rescale T* as 
1 

T= T*; 
J[TJT*tT* 

then T . T = 1. Since T and X are just scalar multiples of T* and 
X*, T . X = O. Therefore, if q' = tT + xX, then 

q' . q' = (tT + xX) . (tT + xX) 

= t2 T . T + 2tx T . X + x2 X . X = t2 - x2. END OF PROOF 

As we did in Chapter 2, we shall distinguish between time­
like, spacelike, and lightlike vectors q' in TSp and define the 
Minkowski norm of a vector: 

q'.q'>O q' is timelike IIq'll = Jq' . q' 

q'·q'<O q' is spacelike IIq'lI = J-q" q' 

q'·q'=O q' is lightlike Ilq'll = 0 
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The figure below illustrates how the {T, X} basis and the future 
light cone can vary from one tangent plane to another. Although 
T and X are indeed unit vectors in the G-metric, their lengths 
appear to us (from the Euclidean point of view) to be 11FT and 
1/.J -Ax. This difference is reflected, furthermore, in the slope 
of the light cone (i.e., the speed oflight). The slope is ±IIXII/IITII; 
its actual value, as determined by the G-metric, is ±1, but its 
apparent value is ±.J-AT/Ax (which explains why the sides of 
the cone do not make Euclidean 45° angles with the t- and x-axes). 

Ii x 

Since we can find, in each tangent plane, axes that record 
ordinary clock times and ruler lengths, that plane is a classical 
inertial frame. Since the tangent plane TSp provides a magnified 
version of the microscopic environments at P, roughly speaking, 
we can introduce in S itself coordinates that approximately agree 
with clock rulers and ruler lengths, at least in a sufficiently small 
neighborhood of P. Th this extent, at least, there are physically 
meaningful coordinates in S. 

We have already seen, in the de Sitter spacetime, an illustra­
tion of some aspects of the theorem. The de Sitter metric is 

G(ql, q2) = (01 0 ) _ cosh2 ql ' 

so the eigenvalues are AT = I, Ax = - cosh2 ql. Because G is 
already a diagonal matrix (in terms of the induced coordinates 
(ql, q2)), the eigenvectors lie on the the axes of those coordinates. 

The new basis in each 
tangent plane 

Each tangent plane 
carries an inertial 

frame 

Example: de Sitter 
spacetime 
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4·dimensional 
spacetime 

In terms of those coordinates, the basis eigenvectors are 

T= (~) and 

With respect to the induced coordinates, the slope of the light 
cone is 

[€T ±1 1 
± --- = = ±sechq ; 

Ax coshq1 

this is precisely what we noticed in Section 5.3. 

--/ V ",-

I I'. "-
I 

.1 V ",-

G 
~ 

I'. "-

./ V ./ 
I'. ....... q 

./ V ./ 
I'. ....... 

.. V ./ 

""I'. ....... 
-7C 

A theorem analogous to Theorem 6.4 holds in the full 4-
dimensional spacetime S. It says that in each tangent space TSp 
there are coordinates (t, x, y, z) for which 

q' .q' = t2 _x2 - i _z2. 

This is a consequence of the principal axes theorem of linear 
algebra, which says that given any quadratic form Q(y) on Rn, 

there are coordinates (Yl, 12, ... , Yn) for y for which 

Q(y) = A1yt + A2yi + ... + AnY~; 

AI. A2, ... , An are the eigenvalues of Q, listing repeated eigenval· 
ues as often as they occur. Then, if (Zl, Z2, ... ,zn) are a suitable 
rescaling of the (Y1, Y2, ... ,Yn) coordinates, then 

Q(y) = ±z? ±z~ ± ... ±z~, 
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where the sign of Z[ is chosen equal to the sign of Aj. For a proof 
of the principal axes theorem, consult a text on algebra or linear 
algebra. 

Exercises 

1. Show that the line q1 = c, q2 = eS does satisfy the geodesic 
equations for the hyperbolic plane H, while the same line 
parametrized simply as q1 = c, q2 = t does not. 

2. Compute the speed IIq'll of the curve q(t) = (c - rsint, rcost) 
in the hyperbolic plane H to show that it cannot be a geodesic. 

3. (a) Show that the path q(s) = (c+rtanhs,rsechs) satisfies the 
geodesic equations in the hyperbolic plane H, for any c 
and r > o. 

(b) Show that the length of q(s) from 5 = 51 to 5 = 52 is 152 - 511. 
Explain, then, why the whole geodesic has infinite length 
inH. 

4. Prove that if q(t) = (q1 (t), q2(t» is a geodesic on H, then so is 
Cl,8(t) = (f3 + q1(t), q2(t» for every f3. 

5. According to the existence and uniqueness theorem for solu­
tions to differential equations, there is a unique geodesic on 
H passing through a given point in a given direction. That is, 
there is a unique geodesic q(t) satisfying 

Find an explicit formula for q (t) in terms of the given aI, a2, 

bI, and b2 . 

6. (a) Calculate the mixed Riemann curvature tensor 

j ar;1 arJk p j p j 

Rjkl = aqk - aql + rjl pk - rjkr pI 

for the hyperbolic plane H, and calculate Rhjkl = gjhR~kl. 

(b) Show that the Gaussian curvature K = R1212/g is identi­
cally -Ion H. 
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A pair of observers 

7. This is an extension of Theorem 6.4 to a 4-dimensional space­
time R 4 , using the arguments found in the proof. Suppose G 
is a symmetric 4 x 4 real matrix with one positive eigenvalue 
AO and three different negative eigenvalues AI, A2, and A3. Let 
T* = x~, xr, X~, X~, respectively, be eigenvectors associated 
with these eigenvalues. Rescale the eigenvectors as follows: 

1 * 1 * 
Xo = JIOJ(X~)tx~Xo, Xa = J-AaJ(X~)tx~ Xa' ex = 1,2,3. 

Here Xj denotes the column vector of coordinates of Xj with 

respect to the standard basis in R 4 . 

( a) Show that each pair of rescaled eigenvectors is G-orthogonal 
in the sense of the proof of Theorem 6.4: Xi . Xj 

(Xir GXj = 0, i, j = 0, 1,2,3. 

(b) Show that XO' Xo = I, while Xa . Xa = -I, ex = 1,2,3. 

(c) Show that B = {Xo, Xl, X2, X3} is a basis for R4. 

(d) Suppose (yO, yl, y2, y3) are the coordinates of an arbitrary 
vector Y with respect to the basis B in R4. Show that 

y. Y = (l)2 _ (yl)2 _ (y2)2 _ (l)2. 

6.4 Mappings 

At this point we understand how an individual observer will de­
scribe and analyze events in spacetime using an arbitrary coordi­
nate frame. But relativity is about synthesizing a coherent objec­
tive reality from the views of numerous observers who have dif­
ferent views of the same events. So let us once again consider two 
observers G and R who view the same portion of spacetime. No 
longer, though, shall we assume that these are Galilean observers 
with inertial coordinate frames. Instead, we simply assume that 
each labels events using an arbitrary frame with a curved metric: 

domain 

G 

R 

coordinates 
e= (~1,~2,~3,~4) 
x = (xl, x2, x3, x4) 

metric 

Yij (e) 

gij (x) 
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In the metaphor we introduced in Chapter I, the coordinate 
frames G and R are two languages for describing events in space­
time. Because G and R describe the same events, there must be a 
pair of maps 

M: G --+ R, 

that serve as dictionaries to translate one language to the other. 
Each point e = (~i) in G labels a certain event E in spacetime. 
Let x = (.0) be the point in R that labels the same event. Then 
x = M(e) and e = M-I (x) are the two translations. 

pacetime 

.' 

G 

M 

1b make M easier to visualize, we have drawn G and R as planes 
even though they are really 4-dimensional. As the figure indi­
cates, the relation between the two frames can be quite arbitrary 
and nonlinear. 

The maps M : G -+ R 
and M-1 : R -+ G 

Under the map M, each target coordinate xk is a real-valued Coordinate functions 
function of the source coordinates (~l, ~2, ~3, ~4); likewise, under are smooth 

M-I each ~i is a function of (xl, x2, x3, x4) ; 

M: 

Xl = fl(~l, ~2, ~3, ~4), 

x2 = f2(~I, ~2, ~3, ~4), 

~ = f3(~I, ~2 , ~3, ~4) , 

x4 = f4(~I, ~2, ~3, ~4); 

~l = qJI(xl,x2,~,x4), 

~2 = qJ2(xl , x2, ~,x4) , 

~3 = qJ3(xl , x2, ~,x4), 

~4 = qJ4(xl, x2, ~,x4). 
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Coordinates of 
tangent vectors 

We can write these more compactly as 

We assume that M and M-1 are smooth maps; this means that 
each fk is a smooth function of the ~i , and each cpi is a smooth 
function of the xk. 

Thngents and Differentials 

Besides the coordinates ~i that G uses to label events, there are 
induced coordinates ~i in each tangent space that label vectors; 
similarly, the xk coordinates induce coordinates x'< in each tangent 
space in R. How do the induced coordinates get translated when 
we use M : G -+ R to translate the main coordinates? 

spacetime 

I \ 
G R 

M 

~I -

1b address this question, consider how G and R describe the same 
tangent vector V to a curve C in spacetime. Suppose C is repre­
sented in Gas 

then it can be represented in the Roman frame as 
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In G the tangent vector is 

e'=(dt), 
while in R it is 

We have used the multivariable chain rule here to differentiate 
xl< = fk(~i(t)) with respect to t. This expression represents four 
separate equations, for k = 1, 2, 3, 4; we can rewrite them as a 
single matrix multiplication 

dxl afl afl afl afl d~l 
-

a~l a~2 a~3 a~4 dt dt 
-

dx4 af4 af4 af4 af4 d~4 
-
dt a~l a~2 a~3 a~4 dt 

This equation answers our question about translating induced 
coordinates from one tangent space to the other: 'Itanslation is 
by the linear map 

dMp : TGp ~ TRM(P) 

given by the matrix 

dMP=(%:). 
The matrix is clearly related to the original map M, because its 
components are the partial derivatives of the coordinate func­
tions that define M. The components are functions of e, and the 
subscript indicates that we must evaluate these functions at the 
point where e = P in order to get the particular matrix that multi­
plies the tangent vectors in TGp. We call both the matrix and the 
linear map that it defines the differential of Mat P. 

Here is a summary of what we have found so far: 

The differential of M 
maps induced 

coordinates 

Summary 
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• Associated with each main coordinate frame G is a family of 
tangent vector spaces TGp, indexed by the points P in G. 

• The coordinates ~i in G induce new coordinates ~i in each 
tangent space TGp. 

• Any map M : G --+ R that translates coordinates between 
frames induces a family of linear maps 

dMp : TGp --+ TRM(P) 

that translate the corresponding induced coordinates. The 
family dMp is also indexed by the points P in G. 

TGp 

~ ~l xl 
G ):4 .... 

~ . 

TGQ~~4 x4 
~l ., 

xl 

~ 
TRM(p) 

dMp ----d(M-I)M(P) xl 
;4 
'::> 

R 

M 

M-I 
xl 

----

The figure above illustrates the points of the summary, and also 
indicates what is asserted by the following proposition: Each dif­
ferential of M is invertible, and its inverse is given by the differ­
ential of the inverse of M. 
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Proposition 6.3 (dMp)-l = d(M-l )M(P). 

PROOF: We shall make use of the fact that M-l (M(e)) = e. In 
coordinates, this identity becomes 

cpj (fk(~i)) = ~j. 

The partial derivative of this equation with respect to ~i is 

acpj afl acpj afl acpj afl acpj ap a~j j 

axl a~i + ax2 a~i + a.x3 a~i + a0 a~i = a~i = 81 • 

The result is 8{ (i.e., 1 or 0 depending on whether i and j are equal 
or not) because the variables ~l, ~2, ~3, and ~4 are independent. 
If we rewrite this using the summation convention, we get 

( ~:~) (~:) = 8{. 
M(P) P 

Here we have evaluated each afk /a~i at (~i) = P and each acpj /axk 
at (xk) = M(P). The result is an ordinary matrix multiplication, 
and since the numbers 81 are the entries of the identity matrix I, 
we have the matrix equation 

END OF PROOF 

Ifwe rewrite the coordinate equations that define M and M- l , 

replacing the function names (fk and cpi) by the names of the 
target variables exk and ~i, respectively), 

then the differentials become 

dMp = (a~), 
a~1 

-1 (a~j) d(M )M(P) = axl . 

By the proposition, these matrices are inverses of each other 
(when evaluated at corresponding points), so 

axk a~i _ 8k a~j axk _ 8i 
a~i axl - l' axk a~i - I' 
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Special relativity holds 
in the tangent spaces 

The inverse relations are so visually compelling when expressed 
in this form that from now on we will usually give functions 
the same names as their target variables-even at the risk of 
losing clarity. There is certainly precedent: These relations are 
the multivariable equivalents of the more familiar equation 

dxdy = 1 
dydx 

that applies to single-variable inverse functions like x = In y and 
y = eX. 

Metrics 

We begin, as always, with the map M : G -+ R that tells us how to 
translate G's coordinates of an event to R's. For each P in G, the 
differential dMp then tells us how to translate the coordinates of 
tangent vectors. According to the theorem in the previous section, 
the tangent spaces have inertial frames of the sort that appear 
in special relativity (even when G and R themselves are quite 
arbitrary). We therefore make the following assumption. 

Basic assumption: All the laws of special relativity hold for the 
inertial frames TGp and TRM(P) when they are connected by the 
linear map 

dMp : TGp -+ TRM(P). 

~4 

~l 

But all the laws of special relativity are consequences of a 
single fact: dMp preserves inner products. That is, if e' and r/ are 
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two tangent vectors in TGp, while x' = dMp~' and y' = dMp"" are 
the corresponding vectors in TRM(P), then 

~'.rl= x'.y'. 
in TGp in TRM(P) 

The inner product in TGp is defined by the metric rp = The relation between 

(Yij(P», while in TRM(P) it is defined by GM(P) = (gkl(M(P»). (yes, metrics: matrix form 

notation is bumping into itselfhere: The same letter G stands for 
the Greek coordinate frame and the Roman metric. The context 
should make it clear which is which.) Therefore, we can write 
the inner products as matrix multiplications: 

(~')t rp rl = (x')t GM(P) y' 

= (dMp ~')t GM(P) dMp rl 
= (~')t(dMp)t GM(P) dMp'11'. 

Hence 

(~')t [rp - (dMp)t GM(P) dMp] '11' = O. 

Since ~' and '11' are arbitrary, the expression in square brackets 
must be zero; thus 

rp = (dMp)t GM(P) dMp. 

This is the relation between metrics that is induced by the trans­
formation M : G --+ R. Compare this with the simple case of two 
inertial frames G and R that each use the standard Minkowski 
metric 

h.3 = (~ 
0 0 q. -1 0 
0 -1 
0 0 -1 

If L : G --+ R, then 

h,3 = Lt h,3 L. 

The equation rp = (dMp)t GM(P) dMp we just found expresses 
the metric on TGp in terms of the metric on TRM(P). This is the 
reverse of the way dMp itself acts, but it is a simple matter to 
"invert" the relation and express the metric in TRM(P) in terms of 
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The relation between 
metrics: coordinate 
form 

the one in TGp: 

GM(P) = (dMpl)t rp dMpl. 

(We have used the fact that the transpose of the inverse of a 
matrix equals the inverse of its transpose.) 

Now consider how the relation between rp and GM(P) is ex­
pressed in terms of coordinates. Suppose 

in TGp and 

f..' = d~i, 
dt 

I dYl' axk d~i 
x =-=-.-, 

dt a~l dt 

in TRM(P). (The expression for y' is derived by the multivariable 
chain rule from the equation yet) = (xl(1')j (t))); x' is similar.) Our 
basic assumption, that the inner products are equal, then takes 
this form: 

d~i d1')j axk d~i aJd d1')j 
Yij at dt = gkl a~i at a~j dt . 

By rearranging factors we get 

[ 
aYl' axl] d~i d1')j 

Yij - gkl a~i a~j at dt = O. 

Again, since the vectors d~i I dt and d1')j I dt are arbitrary, we con­
clude that the expression in square brackets must be identically 
zero; thus, 

aYl' aJd 
Yij = gkl a~i a~j . 

This is the coordinate form of r = dMt G dM; it involves the 
matrix dM = (axla~). The inverse relation involves the inverse 
matrix dM-l = (a~ lax): 



__________________________________ ~§~6_.4 __ M_a~p~p_in~~~ _________ 301 

Covariance and Contra variance 

At this point we pause to recall the principle of covariance in­
troduced in Section 3.1 as an aspect of special relativity. The 
principle says that meaningful physical laws will be expressed in 
terms of covariant quantities. The value of a covariant quantity 
depends on the coordinate frame in which it is measured, and 
when we move from one frame to another, the value transforms 
in the same way as the coordinates themselves. (Roughly speak­
ing, we can take covariant to mean "varies the same way as the 
coordinates!') 

The principle becomes even more important in general rel­
ativity, where we allow arbitrary coordinate frames. However, 
we need to explain carefully what "varies with the coordinates" 
means here, because the coordinate transformations are gener­
ally nonlinear. In fact, most of the physical quantities we shall 
consider are defined on the tangent spaces TGp and TRM(P), 

whose coordinates are related by linear transformations dMp : 
TGp -+ TRM(P). This is the key: A generally covariant quantity 
is one whose transformation law shall be expressed in terms of 
dMp. 

A full discussion of generally covariant quantities involves 
tensors, which we consider in the following section. In the mean­
time we focus on just a single aspect of what we have already 
found: the difference between the ways that vectors and metrics 
transform. One uses dMp; the other, dMp!: 

transformation of vectors: 
(::.) 

) 
dJd< 
dt' 

8xk 
( 8~i) 

transformation ofthe metric: Yij ) gk/. 

Note that we are not attempting here to indicate how Yij is trans­
formed into gkl, just that the matrix dMp! = (8~i /8xk) is involved. 

All quantities that can be expressed in terms of the induced 
coordinates in TGp and TRM(P) are ultimately expressible in terms 
ofthe induced bases for these spaces. Therefore, the most funda-

Covariant quantities 

Generally covariant 
quantities 

How do bases 
transform? 



302 Chapter 6 Intrinsic Geometry 
----------~----------~-------------------

mental transformation is the one between the bases themselves, 
so we ask, How do basis elements transform? 

We first need to make this question precise. Suppose we de­
note the bases as follows: 

spacetime W4k 
E VI 

TGp 

;t, ·'lL' TRM(p) 

e l 
dMp f • 

£ 1 • e l dM - 1 
p 

e4 
Since these bases lie in different vector spaces, we cannot connect 
them directly by a matrix. However, each ek represents some 
vector V k in spacetime, and this vector has a realization ek = 
dMpl (ek) in TGp . The vectors feI, ez, e3, e4} constitute a second 
basis for TGp (because dMpl is invertible), and they are directly 
comparable to {el' e2, e3, e4}. In other words, there is a matrix a~ 
that converts the old basis to the new: 

This is the transformation we seek. 
In preparation, it is helpful to compare the coordinates of 

an arbitrary vector e' in TGp with respect to the two bases. We 
assume that (~j) are the coordinates of e' with respect to the basis 
ej. Let x' = dMp(e'), as usual, and suppose il are the coordinates 
of x' with respect to ek. Then 

i:i C' dM-1(,) dM-1(ok) OkdM-1() ok-
'j ej =, = p x = p x·ek = x p ek = x ek. 

Therefore, the coordinates of e' with respect to ek are the same 
as the coordinates of x' = dMp(e') with respect to ek. This is not 
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surprising if we think of e' and x' as the realizations of the same 
spacetime vector X in TGp and TRM(P), respectively. 

Proposition 6.4 

PROOF: In the equation ~jej = ;deCk, use dMpl to express ~j in 
terms of ;de: 

.k o~j .k-
x· oxk ej = x·ek. 

Since the coordinates ;de are arbitrary, the result follows. 
END OF PROOF 

Ifwe blur the distinction between Ck and ek, then we can add 
a third transformation pattern to the two we already have: 

(o~) 
basis: 

oxk 
ej ) ek, 

d~j (:~) dxk 
vectors: ) 

dt' dt 

(:~) 
metric: Yij ) gkl· 

We say that the metric is covariant because it transforms in the 
same sense as the basis (that is, with the same matrix). By con­
trast, we say that the tangent vectors are contravariant because 
they transform in the opposite sense (that is, with the inverse of 
that matrix). We take the transformation of the basis as the stan­
dard; we shall call any quantity that transforms in the same sense 
as the basis covariant and any that transforms in the opposite 
sense contravariant. 

Notice that the covariant quantities have subscripts, while the 
contravariant have superscripts. This is invariably true and is a 
consequence of two things. First, we write the objects that set the 
standard-namely, basis elements ek-with subscripts. Second, 

Covariant and 
contravariant 

quantities 

Covariant and 
contravariant indices 
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the summation convention then forces the coordinates of a vector 
(the paradigmatic example of a contravariant object) to be written 
with superscripts: x' = xl'ek. 

Exercises 

1. Suppose M : G --+ R is a linear map: xl' = a~~j. Show that 
dMp = M at every point P in G. 

2. Carry out the following tasks for each of the maps M : G --+ R 
given below. The first defines polar coordinates M : (r, 0) --+ 
(x, y) in the plane, and the second defines spherical coordi­
nates M : (r, qJ, 0) --+ (x, y, z) in space. 

{
X = rcosO, 

M: 
y = rsinO; 

{

X = rsinqJ cosO, 

M: y = rsinqJ sinO, 

z = rcosqJ. 

(a) Determine the inverse M-1 : R --+ G of M explicitly, as a 
pair of functions r = r(x, y), 0 = 0 (x, y) in the first case 
and as a triple r = r(x, y, z), qJ = qJ(x, y, z), 0 = O(x, y, z) in 
the second. 

(b) Find the differential dMp of M and calculate its inverse 
(dMp)-l directly. What is detdMp? 

(c) Find the differential dMQ1 of M-1 and show that dMQ1 

equals the inverse (dMp)-l you calculated in part (b) when 
Q = M(P). (This is not immediately obvious, because the 
two matrices are expressed in terms of the two different 
sets of variables. You must use M or M-1, as appropriate, 
to convert one set of variables to the other.) 

3. Let M : G --+ R be the polar-coordinate map defined in the 
previous exercise, and let P = (r, 0) = (2, 7f /3). 

(a) Calculate dMp and sketch the image of the (r, e) grid under 
the linear map dMp : (r, e) --+ (x, y). Your sketch should 
make it clear that dMp stretches the (r, e)-plane to double 
its size in the e-direction and rotates it by 7f /3 radians. 
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s k 

(2,1m) r-l- t--

1 
h= lO-k 

T 

(b) Now consider a sequence of small squares Sk (k = 1,2,3,4) 
centered at (r, B) = (2, Jr /3) in the (r, B)-plane. Let Sk mea­
sure 8h units, where h = 1 O-k, and let it be partitioned by a 
grid ofh x h subsquares. Sketch the image M(Sk) of this grid 
in the (x, y)-plane, rescaling the various Sk so they all are 
the same size in your s~etches. Call these microscopic views 
of the action of M near P = (2, Jr /3) under the different 
magnifications 1/ h = 10k. Compare the microscopic views 
to the image of dMp; your sketches should show that the 
view of the differential resembles the microscopic view 
more and !pore closely as the magnification increases. 

4. Suppose M : G -+ R is the polar coordinate map and the point 
P = (r, B) is arbitrary. Prove that the differential dMp : (r, 0) -+ 

(x, y) stretches the (r, e)-plane by the factor r in the e-direction 
and rotates it by () radians. 

The remaining exercises concern the maps M: G -+ R, M-1 : 

R -+ G that relate G and R when G undergoes constant linear 
acceleration a in the direction of R's z-axis (cf. Section 4.2): 

M: 

ea~ 
t = -sinha1', 

a 

ea~ 
z = - cosha1'; 

a 

5. (a) Show that dMp = ea~ HaT at an arbitrary point P = (1', n; 
Hu is hyperbolic rotation by the hyperbolic angle u in the 
Minkowski plane. 

(b) Calculate detdMp and the inverse (dMp)-l. 

The differential gives 
a microscopic view 

of a map 
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( c) Calculate dMQ I and det dMQ I at an arbitrary point Q = 

(t, z). Show that dMQI = (dMp)-1 when Q = M(P). 

6 . (a) Thke a = 1 and sketch the image of the (i, t) coordinate 
grid under the map dMp : (i, t) ---+ (t,,i) when P = (r, n = 
(-2,1). 

(b) Construct the small grids Sk (k = I, 2, 3, 4) as in Exercise 
3(b), but center them at (r, n = (-2,1). Still using a = 
I, sketch the image M(Sk) of this grid in the (t, z)-plane, 
rescaling the various Sk so they all are the same size in your 
sketches. Compare these microscopic views of the action 
of M near P = (-2,1) under the different magnifications 
1/ h = 10k to the image ofthe linear map dMp. 

7. Assume that R is an inertial frame whose metric is given by the 
standard matrix 11,1; that is, gll = I, g12 = g21 = 0, g22 = -1. 
Use the map M to define the metric Yij on G; thus if r = (Yij), 

then rp = dMP1,1dMp. (Note: Define indexed coordinates as 
follows: xl = t, x 2 = Z, ~l = r, ~2 = ~.) 

8. (a) Show that the hyperbolic angle between two vectors e and 
TJ on TGp is the same whether you use the induced metric 
rp or the ordinary Minkowski metric hI. In this way G re­
sembles the hyperbolic plane (Proposition 6.2), and the ex­
planation is the same. The induced metric is a scalar multi­
ple ofthe Minkowski metric: rp = J...hl, where J... = J...(r, n 
depends on the point P = (r, ~). What is the function J...? 

(b) Use your result in part (a) to prove that the lightlike vec­
tors e = (i, t) in TGp are the same as for the Minkowski 
metric-namely, t = ±i. 

9. Using the induced metric Yij for G from the previous exercise, 
determine the inverse ykl, the Christoffel symbols rij,h and r~, 

the Riemann tensors R~jk and Rhijk. and K = R1212/Y. 

10. (a) Show that the geodesic equations in G are 

d2~ (dr)2 (d()2 _ 
du2 + a du + a du - O. 
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(b) Prove that horizontal and vertical translates of a geodesic 
are also geodesics. That is, if e(u) = (r(u), ~(u)) is a 
geodesic, then so is 

ep,q(u) = (p + r(u), q + ~(u)) for any p and q. 

(c) Explain why the image M(e(u)) of any geodesic e(u) in G 
is a geodesic in R. 

11. (a) Show that the following curves are geodesics in G. Sketch 
them and several representative horizontal and vertical 
translates: 

eti(U) = - tanh- au, --In(l - au) , ( 1 1 1 22) 
a 2a 

esp(u) = - tanh-1 --, --In(a2u2 - 1) . ( 1 1 1 ) 
a au 2a 

(b) Show that eti and esp are timelike and spacelike curves, 
respectively. Determine proper time along eti. 

(c) 1b which geodesics in R do eti and esp and their translates 
correspond? 

12. (a) Determine the arc-length parametrization of the coordi­
nate line r = k; that is, determine s(u) such that 1](s) = 
(k, s(u)) has 111]'11 == 1 in G. 

(b) Show that 1](s) is a geodesic in G. 

(c) Can the coordinate line ~ = constant be given a parame­
trization that makes it a geodesic? Explain your position. 

6.5 Thnsors 

We come back to the central question: How can observers syn­
thesize their different views of events in spacetime into a coher­
ent physical theory? Einstein says that observers should express 
themselves in terms of generally covariant quantities, which, for 
Einstein, are tensors. He devotes nearly half of his fundamental 
paper on general relativity to defining tensors and developing 

Tensors are generally 
covariant quantities 
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Language and 
notation 

their properties, in the part called "Mathematical Aids to the For­
mulation of Generally Covariant Equations" ([10], pages 120-l42). 

Basically, a tensor is a multi-index quantity that is defined 
in each coordinate frame and transforms linearly in a contra­
or covariant way as we move from one frame to another. 1b 
make this more precise, we consider in the usual way a pair of 
coordinate frames for the same portion of spacetime: 

M 
G +=! R, 

M-l 

dMp 
TGp +=! TRM(P) , 

dMpl 

Definition 6.2 A tensor of type (p, q), denoted by 

G iI ... ip Rkl ... kp 
T . . ~Tl I ]l'''Jq l'''q' 

is a multi-index quantity defined in each coordinate system that trans­
forms according to the rule 

!kl .. ·kp _ ¥iI .. ·i~ a,dcl ... axk,p a~h ... a~jq 
II "'/q - h .. · Jq a~iI a~lp axh axlq . 

This tensor is contravariant of rank p and covariant of rank q. 
'llmsors of type (1, 0) and (0, 1) are called vectors. 

We say that a multi-index quantity is tensorial if it transforms 
by this rule. The pattern is simple: For each covariant index, 
multiply by a copy of the same matrix that transforms bases; 
for each contravariant index, multiply by a copy of the inverse 
matrix. 

When we want to call attention to the fact that a tensor is 
defined on an open set and its value varies from point to point, 
we shall refer to it as a tensor field. Sometimes we shall use 
corresponding letters in the Greek and Roman alphabets for the 
names of a tensor in the two coordinate frames; other times we 
shall follow the practice shown above and use the same letter but 
put the name of the coordinate frame over it. Also, we can make 
the notation clearer by collapsing the various multi-indices into 
single capital letters. Thus let 1= {h ... ip} and similarly for I, K, 
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and L. In these terms 

GR. . RK G1 a? a~J 
TJ +---+ Tf IS a tensoYlf TL = TJ a~I axL' 

Here a? jaf denotes the product of the p matrices that involve 
the separate indices of K and I. 

We already have two familiar examples of tensors: 

d~i dxk 
• The tangents to a curve - +---+ -d form a contravariant 

dt t 
vector . 

• The metric Yij +---+ gkl forms a covariant tensor of rank 2. 

The following propositions show that many of the multi-index 
quantities we introduced in the study of surfaces are tensorial. 
There are, however, important exceptions, and we shall explore 
some of them, too. 

Proposition 6.5 A function cp +---+ f defined consistently in each 
coordinate frame is a tensor of type (0,0). 

PROOF: At the outset we know that f is a function of xk and cp is a 
function of ~i. For these to be "defined consistently," f (xk(~i)) = 
cp(~i). This is the transformation law; it involves no matrices be­
cause f and cp have no indices. END OF PROOF 

Proposition 6.6 The gradient of a function cp +---+ f is a covariant 
acp af 

vector a~i +---+ axk' 

PROOF: We know that f (xk(~i)) = cp(~i), so differentia#on with 
respect to ~i gives 

afaxk acp 
axk a~i - a~i 

or 
af acp a~i 
axk - a~i axk' 

This is precisely the tensor property for a covariant vector. 
END OF PROOF 

G R 
Proposition 6.7 The contraction of any tensor TJ +---+ Tf of type 
(p, q) is a new tensor of type (p - 1, q - 1). 

Examples 
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PROOF: Suppose we want to contract the mth upper index with the 
nth lower index. Let i = im and redefine I as {h","", ip}, where 
the carat indicates an element that is to be removed and placed 
after the rest of the indices. Define I, K, Land j, k, I similarly. We 
can then write the transformation law of the given tensor as 

1b carry out the contraction we set k = I = (X and sum over (Xi 

then 

The matrices underscored by braces are inversesi their product 
is at. If we replace this product by at, the equation becomes 

~K _ ~.i aj axK a~J _ ~.i axK a~J _ ¥I axK a~J 
L - J.j I a~I axL - J.i a~I axL - J a~I axL' 

R G 
proving that Tf +--+ TJ is a tensor. END OF PROOF 

Proposition 6.8 The inverse of the metric, r-1 = (yjm) +--+ 
(gkl) = G-1, is a contravariant tensor of rank 2. 

PROOF: In the exercises you are asked to prove this directly in 
terms of the components yij and gkl. Here is a different approach 
using matrices. In matrix form, the transformation law of the 
metric tensor r +--+ G is 

Therefore, 

G-1 = dMp r-1 dM~, 

which is sufficient to demonstrate that r-1 +--+ G-1 is a con­
travariant tensor of rank 2. However, it is instructive to see the 
matrix product in coordinate form. We have 
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gll g14 
axl axl 

yll y14 
axl 

a~l a~4 a~l 

-

g41 g44 
ax4 ax4 

y41 y44 
axl 

a~l a~4 a~4 

d th·· r kl ij axk axl END OF PROOF an IS Imp Ies g = y -. - .. 
a~'a~J 

We call G-1 ~ r-1 the contravariant metric tensor. One 
of the ways we use the two metric tensors is to raise and lower 
indices. The following propositions show that these processes 
preserve tensors; the first proposition is a simple case, and the 
second is the general result. 

Proposition 6.9 Suppose (xi ~ ak is a contravariant vector. If 
we lower indices by CXj = YijCX i and al = gklak, then CXj ~ al is a 
covariant vector. 

k .axk 
PROOF: We are given that a = a'-.. Therefore, 

a~' 

i axk axl i axl k axl 
CXj = YijCX = gkl a~i a~j cx = gkl a~j a = al a~j . END OF PROOF 

Proposition 6.10 Suppose ~:~ ~ !if.'lk is a tensor of type (p, q). 
Then the multi-index quantities 

S,ih _ yjhS,i -'--------'- glm!!x,k _ !!x,km 
1] - 1 ],j ...--------r 1 i,1 - 1 L ' 

G[ S,i !!x,k R[( 
T],jh = Yih1],j ~ gkm1i-,1 = TL,lm 

that are obtained by raising or lowering an index are tensors of type 
(p + 1, q -1) and (p - 1, q + I), respectively. 

PROOF: See the exercises. 

311 

ax4 

a~l 

ax4 

a~4 
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Tensors are not 
preserved under 
differentiation 

Differentiating the 
metric tensor 

We turn now to some examples of multi-index quantities that 
fail to transform as tensors. Many of the tensors we use involve 
derivatives of other quantities; a covariant index is frequently 
due to differentiation with respect to a coordinate variable. It is 
therefore natural to ask, Is the derivative of a tensor again a tensor? 
The answer is no, and we can see this in the simple example of 
a contravariant vector cxi +---+ ak• The transformation law of the 
vector is 

Now differentiate with respect to ~j: 

In standard form this is 

aak acx i a,de a~j i a2,de a~j 
axl = a~j a~i axl + cx a~j a~i axl ' 

tensorial nontensorial 

and we see that differentiation of the product cxi . a,de /a~i has 
created a "nontensorial" second derivative term in the transfor­
mation law. 

Of course, if the coordinate transformation,de = ,de(~i) were 
linear, then all the second derivatives would be identically zero, so 
the nontensorial part of the transformation would vanish. Hence 
aak /a,( +---+ acx i /a~j would indeed be a tensor if we considered 
only linear transformations between coordinate frames. How­
ever, general relativity requires nonlinear transformations to deal 
with gravity, so we can say definitively that tensors are not pre­
served under differentiation. 

In general, when we differentiate a tensor, each index spawns 
a separate nontensorial second derivative term in the transfor­
mation law. We illustrate this with the metric tensor Yij +---+ gkl. 

Since we are taking the Greek variables as fundamental, the cal­
culations will be clearer if we express the Greek form in terms of 
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the Roman, as follows: 

k , k axp axil 
Yij (~ ) = gpq(x (~ » a~i a~j" 

Then 
aYij agpq axp axil ax' a2xp axil a2x1l axp 

a~k = ax' a~i a~j a~k + gpq a~ka~i a~j + gpq a~ka~j a~i· 
nontensorial nontensorial 

One consequence is that the Christoffel symbols of the first kind 
are not tensors, because they are sums of derivatives ofthe metric 
tensor. Since the Christoffel symbols involve three such deriva­
tives, we might expect six nontensorial terms in their transforma­
tion law. However, there is only one, as the following proposition 
shows. 

Proposition 6.11 

PROOF: This involves a lot of "index bookkeeping," but it is worth 
going through the details to see what cancellations occur in the 
nontensorial part. 

G aYik aYjk aYij 
2rij,k = ol;j + ol;i - ol;k 

ogp, axp ax' axil a2xp ax' a2x' axp 

= ax'l al;i al;k al;j + gpr al;j al;i al;k + gpr a~ka~j a~i 
, I \ I 

yo yo 

A B 

agqr axil ax' axp a2x1l axr a2xr axil 
+ axp a~j a~k a~i + gqr a~ia~j a~k + gqr a~ia~k a~j 

l J l I 
yo Y 

A C 

agpq axp axil ax' a2xp axil a2x1l axp 

- ax' a~i a~j a~k - gpq a~ka~i a~j - gpq a~ka~j a~i 
\. I \. I 

yo yo 

C B 

( agpr agqr agpq ) axp axil ax' a2xp axil 
= ax'l + axp - ax' a~i a~j a~k + 2gpq a~ka~i a~j 

R axp aXl axr a2xp axil 
= 2r pq,r al;i al;j al;k + 2gpq al;ial;j a~k· 

Christoffel symbols 
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Geodesics are 
covariantly defined 

The two terms labeled B cancel; to see this, replace the dummy 
summation index r by q in the first term. The C terms also cancel: 
First use the symmetry of the tensor (gqr = grq) and then make 
the replacement r ~ p. Similar replacements show that the two 
A terms are equal and that their sum can be written as in the last 
two lines. END OF PROOF 

Corollary 6.2 

The following theorem and corollary show that geodesics are 
covariantly defined-in spite of the fact that the nontensorial 
Christoffel symbols appear in the geodesic differential equations. 

Theorem 6.5 Ifxr(t) = xr(~h(t» is a curve, then 

d2~h G d~i d~j d2xr R dxP d~ 
--+r~.-- ~ _+rr __ 
dt2 IJ dt dt dt2 pq dt dt 

is a tensor (viz., a contravariant vector) defined on that curve. 

PROOF: First we determine how the second derivatives transform. 
We have 

dxr axr d~h d2xr axr d2~h a2xr d~h d~j 
--=-- andthen -=---+ .--. 
dt a~h dt dt2 a~h dt2 a~ha~J dt dt 

Now solve for d2~h jdt2 (and make the replacement h ~ i in the 
dummy summation index in the last term): 

d2~h d2xr a~h a2xr d~i d~j a~h 
------ --
dt2 dt2 axr a~ia~j dt dt axr ' 

There is a nontensorial term, and it appears with a minus sign. It 
will therefore cancel the corresponding term in the transforma­
tion law for the Christoffel symbols when we add: 

d2~h Gh d~i d~j d2xr a~h a2xr d~i d~j a~h 
-+r··----=--- .. --
dt2 IJ dt dt dt2 axr a~/a~J dt dt axr 

Rr axp a~ a~h d~i d~j a2xp a~h d~i d~j 
+r -.-.----+ .. ----

pq a~' a~J axr dt dt a~/a~J axp dt dt 
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d2xr a~h Rr dxP dXl a~h 
= dt2 axr + r pq dt dt axr 

= (d2Xr + ~r dxP dXl) a~h. 
dt2 pq dt dt axr 

1b simplify the term containing the Christoffel symbol in going 
from the second line to the third we used 

axp d~i dxP 
a~i dt - dt' 

aXl d~j dXl 
a~j dt = It· END OF PROOF 

Corollary 6.3 If ~i(t) is a geodesic in G, then xr(t) = xr(~i(t)) is a 
geodesic in R. 

PROOF: If ~i(t) is a geodesic in G, then 

d2~h G d~i d~j 
-+r~.---=O 
dt2 IJ dt dt 

for all t where the curve is defined. But then 

d2xr + ~r dxP dXl = (d2~h + ~~ d~i d~j) axr == 0 
dt2 pq dt dt dt2 IJ dt dt a~h 

for all t as well, so xr(t) is a geodesic in R. END OF PROOF 

Since we can think of the expression for geodesics as ordinary Christoffel symbols as 
second derivatives modified by "correction terms" that restore correction terms 

tensoriality , 

d2~h /dt2 + correction ~ d2xr /dt2 + correction, 

can we do the same thing for differentiation of an arbitrary tensor 
(i.e., by adding Christoffel symbols)? Consider first the derivative 
of a contravariant vector a j ~ ar (so ar = a j . axr /a~j); it 
transforms as 

aar axp aa j axr . a2xr 
--.=-.-.+aJ ..• 
axp a~1 a~1 a~J a~la~J 

aa j a~k 
We want to solve for -. ; first multiply by -: 

a~1 axr 
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The covariant 
derivative 

oar oxP o~k oaj k . o2xr o~k oak . o2xr o~k 

oxP o~i oxr = o~i dj + a' o~io~j oxr = o~i + a' o~io~j oxr' 

Then 

oak oar oxP o~k . o2xr o~k 
-. =--.--a) .. -. 
o~' oxP o~' oxr O~'o~' oxr 

Since 

. Gk . R oxP ox'! o~h . o2xP o~h 
a'r.· = a' rr - - - +a' -I, pq o~i o~j oxr o~io~j oxP' 

'-v-' '-v-' 

when we add these equations the second terms on the right can­
cel. Moreover, the product of the factors underscored by braces 
equals aq by the transformation law for a j ~ aq. Therefore, 

oak . Gk (oar R) oxP o~k - +a'r .. - - +aqr r --
o~i I, - oXP pq o~i oxr' 

Definition 6.3 The covariant derivative of the contravariant vec­
tor ak is 

k oak . Gk 
a;i = o~i + aJr ij · 

We will always use a semicolon to set off the differentiation 
index in the way shown here. The argument preceding the defini­
tion shows that the covariant derivative a~ ~ a~p of ak ~ ar 

is a tensor of type (1, 1). A covariant vector also has a covariant 
derivative, but the correction term needs the opposite sign. 

Definition 6.4 The covariant derivative of the covariant vector (Xi 

is 

oai Gk 
ai;j = o~j - akrij' 

Proposition 6.12 The covariant derivative aj;j ~ ap;q of a co­
variant vector aj ~ ap is a covariant tensor of rank 2. 

PROOF: Exercise. 
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Definition 6.5 The covariant derivative of the tensor TJ of type 
(p, q) is 

There is a correction term corresponding to each index; the cor­
rection for each contravariant index has a plus sign, while that 
for each covariant index has a minus sign. 

G R 
Proposition 6.13 IfTJ +--+ TS is a tensor of type (p, q), then the 

G R 
covariant derivative T};h +--+ TS;r is a tensor of type (p, q + 1). 

PROOF: Exercise. 

The following is a quite remarkable result. It says that from 
the point of view of covariant differentiation, the metric tensor 
is constant. 

Theorem 6.6 The covariant derivative of the metric tensor is iden­
tically zero: gkl;m == O. 

PROOF: Exercise. 

We state the following results for future reference; you are 
asked to prove them in the exercises. 

Proposition 6.14 The mixed Riemann curvature tensor 

j ar}1 ar}k PiP j 

Rjkl = axk - axl + rjl pk - rjkr pI 

is a tensor of type (1,3). 

Corollary 6.4 The covariant Riemann curvature tensor Rhjkl = 
gjhR~ kl is a covariant tensor of rank 4, and the Ricci tensor Rij = R~j 
is a covariant tensor of rank 2. 
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Problems with the 
definition of the 
derivative 

Parallel 'ftansport 

Here is another approach to the differentiation of tensors that 
helps explain why correction factors are necessary in the defini­
tion of the covariant derivative. 1b be concrete, let us consider the 
contravariant vector field a(x) = a1(,(c) and its partial derivative 
with respect to Xl at a point p = (l). In the usual definition, the 
derivative is the limit of a certain quotient: 

aa () l' a(p + hXI) - a(p) 
-p=lm , 
axl h--+O h 

Xl = (1,0,0,0). 

/ "I I [ ... 
~ /'" / ....... / 

R ··· ... .(X4 

/ ............ . 

" .... 

The quotient involves the difference of the vectors a(p + hXI) 

and a(p). But these lie in two different tangent spaces and are 
therefore unrelated; in particular, we cannot calculate their sum or 
difference! 

In the usual calculus of functions and vectors on Rn this prob­
lem does not appear because there is a natural way to identify 
the vectors bound at one point with those bound at another: Iden­
tify vectors that have the same coordinates. This approach doesn't 
work for us, though, because we must allow arbitrary coordinates. 
If the components of a vector agree at two different points in one 
coordinate frame, there is no guarantee that they will agree in 
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another coordinate frame. For suppose 

al(xl, X2, x3 , x4 ) = al(yl, y2, l, l) forl= 1,2,3,4. 

Introduce new coordinates in the usual way, by a map M : G ~ 
R : e 1-+ x, and suppose that 

~i ~ x!', a j (~i) ~ al(x!'), 

lJi ~ /, aj(lJi) ~ al(/). 

Since the Roman coordinates at the two points agree, al(x!) = 
al(l), the principle of general covariance tells us that the Greek 
coordinates ought to agree as well, ai(~j) = ai(lJj). Now the ma­
trices a~i laxl = dM-1 translate the coordinates of vectors from 
Roman to Greek: 

ai(~j) = al(x!') a~li (x!'), 
ax 

.. 1 k a~i k 
al(lJJ) = a (y )-1 (y ). 

ax 

Even though the inputs al(x!) and a/(l) are equal, we cannot 
expect the outputs ai(~j) and ai(lJj) to be equal because the ma­
trices 

and 
-1 a~i k 

dM( k) = -I (y ) 
Y ax 

are generally different, because they are based at different points. 
Thus our scheme to identify spacetime vectors based at different 
points when their coordinates are equal fails to be generally co­
variant. 

Another scheme fares better. We can illustrate the ideas in R2. 
Consider two points p and q, and suppose v is a vector based at 
p. With what vector at q should we identify v? First construct a 
curve C that connects p and q, and then slide v along C keeping 
it parallel to itself. The vector w at q that results is the one we 
identify with v. We say w is produced by parallel transport of v 
along C. 

v(t) 
w 

c 

Parallel transport 
of a vector in R 2 
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Derivatives along a 
curve 

Suppose C is parametrized by x(t) and the parallel-transported 
vector at x(t) is denoted by vet). By construction all the vectors 
vet) are equal, so the derivative Vi (t) is identically zero. 

This idea, that the derivatives of a family of vectors along a 
curve equal zero, is one that we can carry over to spacetime, but 
it requires some care to get a definition of the derivative that is 
generally covariant. Suppose ~i(t) +---+ ,dc(t) is a curve C and 

cpj (t) = rpj (~i(t» +---+ fI(,!'(t» = pI(t) 

is a field of contravariant vectors defined along C in the two co­
ordinate frames G and R, respectively. (yVe work with coordinate 
descriptions in two frames to check that our results are generally 
covariant.) The transformation law is 

11k .. axi . axl 
p (t) = f (,x--(t» = rpJ (~'(t»--- = cpJ (t)--.. 

a~J a~J 

Our goal is to define the derivatives of pI(t) and cpj (t) so that 
they transform the same way-that is, so that they constitute a 
contravariant vector field on C. Ifwe use the ordinary chain rule, 
then 

dpi afl d,dc d (- axl) dCPj axi . a2xl d~h 
It = ax'< dt = dt <l>J (t) a~j = at a~j + <l>J a~ha~j dt . 

This is nontensorial, because the last term involves a second 
derivative. Let us instead use the covariant derivative in the chain 
rule and thereby define a new derivative of pI, which we denote 
by Dpi/dt: 

Dpi = 1 d,dc = afl d,dc + r~ j d,dc. 
dt f;k dt ax'< dt Jd dt 

If we use the ordinary chain rule to simplify the first term and 
then use the fact that f j = f j (,dc(t» = pj (t) to change the sec­
ond term, the resulting expression will involve only pI, not fl. It 
appears in the following definition. 

Definition 6.6 The covariant derivative of pI(t) along ,dc(t) is 

Dpi dpi 1 - d,dc 
dt = It +rjkPJ dt' 
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Proposition 6.15 The covariant derivative DCPj fdt ~ Dpi fdt is 
a contravariant vector field on C. 

PROOF: Since rp(j ~ f/k is a tensor of type (1, 1), we have 

f l j axl a~j 
;k = rp;j a~j axk' 

Therefore, 

Dpl dxk . axl a~j dxk . d~j axl DCPj axl 
at = f/k dt = rp:i a~j axk dt = rp:iTt a~j = at a~j , 

so DCPj fdt ~ Dpl fdt transforms properly. END OF PROOF 

If pf(t) is an arbitrary tensor defined along a curve xk(t), its 

covariant derivative along xk(t) can be constructed in a similar 
fashion. For example, the covariant derivative of the (1, 1 )-tensor 
p; (t) along xk(t) is 

DPj dPj (i h h i) dxk 
-;It = dt + rhkPj - rjkPh dt' 

The resulting object is tensorial, and you can show this by adapt­
ing the proof of the last proposition. Note that the covariant 
derivative along a curve leaves the type of a tensor unchanged, 
while the ordinary covariant derivative increases the covariant 
index by 1. 

We are finally in a position to give a generally covariant defi­
nition of parallelism for vectors and tensors in spacetime. 

Definition 6.7 The tensor field Tf(t) is parallel along xk(t) ifits 
covariant derivative is identically zero along xk(t). 

If v = vi is any vector in the tangent space TRp and xk(t) is a 
curve C that starts at p (Le., xk(O) = p), then the parallel transport 
ofv along C is the vector field Vl(t) that satisfies the initial-value 
problem 

DVI dVI I . dx!' 
- = -+r·kv'- =0, dt dt , dt 

Arbitrary tensors 

Parallel transport 
in spacetime 
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These are linear ordinary differential equations, so the solutions 
VI(t) exist on the entire curve xk(t) and are unique there. 

The parallel transport Suppose q is a second point on C: ~(h) = q for some h i= 0. 
map !p,q We can define the parallel transport map 

The derivative as the 
limit of a difference 
quotient 

The existence and uniqueness of solutions to the initial-value 
problem implies that Tp,q is invertible and that Tp,~ = Tq,p' This 
relation holds for any two points p and q on C. But r clearly 
depends on the curve C; there is no reason to think that parallel 
transport of v from p to q along a different curve would give the 
same result. 

~v~("~ 
Xl 

~P(W:) 
Tp,q - Xl 

.X4/ V(t)./ 

....... ~~~V(h) 
C P I 

X 

We can use the parallel transport maps to repair the difficulty 
we had at the outset in defining the derivative of a vector field 
al(~) = a(x) as the limit of a difference quotient. The computa­
tion 

aa _ l' a(p + hXI) - a(p) 
1 (p) - 1m h ' ax h--+O 

Xl = (1,0,0,0), 

makes no sense because the vectors a(p + hXI) and a(p) are in 
different tangent spaces. But suppose we transport a(p + hXl) 
back to TRp by 
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bh = r;,~+hXl (a(p + hXI)) 

parallel to itself along the line CI : x(t) = p + txl. 
Then there is no difficulty calculating the difference quotient, 

so we define the partial derivative of a with respect to xl as 

aa . bh - bo . r;'~+hXl (a(p + hXI)) - a(p) 
-1(p)=l1m h =l1m h ax h--+O h--+O 

We make similar definitions for the partial derivative of a with 
respect to the other variables xZ, x!3, and x4. The parallel transport 
is carried out along the line Ck parallel to the xk-axis. The lines 
are 

CI : YI(t) = (pI + t, pZ, p3, p4), 

Cz : yz(t) = (pI, pZ + t, p3, p4), 

C3 : Y3(t) = (pI, pZ, p3 + t, p4), 

C4 : Y4(t) = (pI, pZ, p3, p4 + t); 

in components, Ck is yr(t) = pm + 0rt. The vector transported 
along Ck is 

bh = r;,~k(h)(a(Yk(h))). 

The following theorem shows that the components of the partial 
derivative of a contravariant vector, computed as the limit of a 
difference quotient, are the components of the usual covariant 
derivative. 

Theorem 6.7 Suppose a = a1 is a vector field on R; then the Ith 
component of the partial derivative 
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Functions evaluated 
at different points 
can be compared 

is 

I oal i I 
a'k = -k + a r J·k· , ax 

PROOF: The vector field along Ck that determines 

T;:~k(h)(a(Yk(h»)) = Tyk(h),p(a(Yk(h») = bh = (b~) 

is the solution Bh(t) = (B~(t») to the initial-value problem 

dBI dym 
_h + r~ Bi __ k = 0 Bhl (h) = al(Ykm(h». 
dt Jm dt 

The initial condition is specified at the point yr(h) because the 
parallel transport map Tyk(h),p that defines bi originates at this 
point. In these terms, b~ = B~(O), and the difference quotient we 
seek to evaluate as h ~ 0 becomes 

By Thylor's theorem, 

B~(O) - al(yr(O» 

h 

dBI 
B~(h) = B~(O) + h dth (0) + O(h2) 

d m 
= Bl (0) - h r~ Bi (0) Yk + O(h2) 

h Jm h dt ' 

where we have used the differential equation for B~ to replace 
dBVdt. (Note: This calculation involves the values ofthe compo­
nents of the vectors Bh at different points, but the components 
are merely functions, not vectors; they are defined on the whole 
domain of R, so there is no restriction to adding or subtracting 
them.) Now solve the previous equation for B~(O): 

d m 
BI (0) = BI (h) + h r~ Bi (O)~ + O(h2) 

h h Jm h dt 

= al(yr(h)) + h r;kb{ + O(h2). 
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We have used the initial condition BVh) = al(Yk(h» and the facts 
that B~ (0) = b~ and dYk / dt = 8k. If we substitute the last expres­
sion for B~(O) into the difference quotient, we get 

al(Yk(h» - al(Yk(O» rl. bj O(h) 
h + Jk h + ' 

In the limit as h --+ 0, the first term becomes 

d oal dym oal oal 
-al(ym(O» - __ k - _8m __ 
dt k - oxm dt - oxm k - oxk ' 

Since b~ --+ al as well, we can finally conclude that 

oa _ oal I j _ I 
-k(P) - -k + rJ·ka - a'k' END OF PROOF 
oX ox ' 

All this work was precipitated by the observation that the 
difference a(Yk(h» - a(Yk(O» is not meaningful in itself. In par­
ticular, it is not true that 

a(Yk(h» - a(Yk(O» 

h 

al(Yk(h» - al(Yk(O» 

h 
The correct way to proceed is to transport the first vector to 
the same tangent space as the second by using r~~O)'Yk(h)' The 
proof just given shows that when this is done, we get the correct 
expression 

a(Yk(h» - a(Yk(O» 

h 
Thus the effect of parallel transport is to add correction terms 
involving the Christoffel symbols. If we replace the vector field 
by a tensor field of any type, we need simply add the appropriate 
correction term for each index. This leads to the following corol­
lary; the corollary and the original theorem are both generally 
covariant results. 

Corollary 6.5 Suppose T = Tf(xm) is a tensor field of type (p, q) on 
R. Then 

1, T(Yk(h» - T(Yk(O» _ TI 
1m h - ]'k' 

h---+O ' 

Correction terms in 
parallel transport 
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Exercises 

1. Suppose that rJ:; is a tensor of type (p, q). Showthatthe multi­

index quantities obtained by raising or lowering an index, rJ·ih 
and TJ,jh' are tensors of type (p + 1, q -1) and (p - 1, q + I), 
respectively. 

2. Prove that the mixed Riemann cur:vature tensor R~kl is a ten­
sor of type (1,3), that Rhjkl = ghiRjkl is a covariant tensor of 

rank 4, and that Rjl = Rjhl is a covariant tensor of rank 2. 

3. Let S~~ and Tf~ be tensors of type (PI, ql) and (P2, q2), respec­
tively. Show that 

is a tensor of type (PI + P2, qI + q2) (called the tensor product 
of Sand T). 

4. Show that the determinant of the metric tensor does not trans­
form like a tensor of type (0,0). Instead, Y = (detdMp)2 g 
when rp = dM~ GM(P) dMp. 

5. The aim of this exercise is to prove by direct calculation that 
the inverse of the metric tensor Yij +--+ gpq on an ordinary 
2-dimensional surface is a contravariant tensor of rank 2. 

(a) Suppose M : G ~ Rand dMp : TGp ~ TRM(P); let 
m = det dMp. Suppose dMp = (axp /a~i) and d(M-I )M(P) = 
(a~j /a~) in the usual way. Show that 

a~I 1 ax2 a~l 1 axl 

axl = ma~2' ax2 - ma~2' 

a~2 1 ax2 a~2 1 axI 

axI=-ma~I' ax2 - ma~I· 

Write down similar expressions for the inverses of Yij and 
gpq, starting with yll = Y22/Y. 

(b) Using the transformation law for Y +--+ g (see Exercise 4) 
and the fact that Yij +--+ gpq is a covariant tensor of 
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rank 2, show that 

a~1 a~1 a~1 a~1 a~1 a~1 21 a~1 a~1 11 yll= __ g22+ __ g12+ __ g + g 
ax2 ax2 ax1 ax2 ax2 ax1 ax1 ax1 

and similarly for y12, y21, and y22. Conclude that yij +---+ 

gpq is a contravariant tensor of rank 2. 

6. (a) Define the contravariant vector field a(ql, q2) = (aI, a2) = 
(0,1) on the sphere: 

R . {o ::: ql ::: 2Jl', 
. -Jl' /2 < q2 < Jl' /2; 

G = (gll g12) = (cos2 q2 01), 
g21 g22 0 

Compute the covariant derivative a;j' 

(b) Suppose bi = fi(ql, q2), i = 1,2 is an arbitrary contravari­
ant vector field; compute b;j' 

7. Suppose ap is a covariant vector field. Show that the covariant 
derivative 

aap r 
ap;q = a~ - arr pq 

is a covariant tensor of rank 2. 

8. Suppose ({J +---+ f is a tensor of type (0,0). Show that the 
covariant derivative is the same as the gradient: ({J;i = ({Ji. 

9. Let gij be the metric tensor of any surface. Show that gij;k = 0 

and g:{ = 0 for all i, j, k. 

10. Show that covariant differentiation commutes with raising 
indices; that is, TJ.j;1 = 1j;;. 

11. Prove the product rule: {TJsf);m = Tf:msf + TJSfm. 

12. (a) Let ah be an arbitrary contravariant vector field. Show 
that 

h i h i 
a;j;k - a;k;j = -Rijka . 

Thus covariant derivatives (in different directions) do 
not, in general, commute. Moreover, their failure to com­
mute can be attributed to the curvature ofthe underlying 
space. 



328 ____________ C_ha~p~re_r_6 __ I_n_ttUu_· __ k __ Ge_o_m_e_ny~ ________________________ __ 

(b) For an arbitrary covariant vector field bj, express bh;k;l -

bh;l;k in terms of the vector field and the Riemann curva­
ture tensor. 

13. Suppose x!'(t) is a geodesic on the surface {R, gjj}. Let l(t) = 
dx!' / dt be the tangent vector along x!'. Compute the covariant 
derivative Dl / dt along x!' to prove that yk is parallel along x!'. 

14. (a) Let {R, gjj(ql, q2)} be the sphere as defined in Exercise 6. 
Let q(t) = (t, rr /6) be the parallel of latitude at 30° N 
and let y(t) be its tangent vector. Compute the covariant 
derivative ofy along q. 

(b) Determine the parallel vector field z(t) along q(t) that 
agrees with y(O) at q(O). Sketch the vector field z(t) along 
x(t) in the (ql, q2)-plane. How much does z change in 
one circuit; that is, what is the angle f). between z(O) and 
z(2rr)? 

(c) Let ~(t) = (t, k) be the parallel at an arbitrary latitude k. 
Determine the parallel vector field Zk(t) along ~(t) that 
agrees with the tangent vector 'Ik'(0) at ~(O). Show that 
the angle f).(k) between Zk(O) and zk(2rr) is 2rr sink. 

Cd) Now take the sphere embedded in R3 and view it from 
above the north pole. Thke k very near rr /2 and sketch 
~(t) as a small circle concentric with the pole, using a 
magnified view of the polar region. Sketch the parallel 
field Zk(t) along q(t), and show that it makes nearly one 
complete circuit around the tangent vector along q(t). Ex­
plain how this is related to the result that limk~]l'/2 f).(k) = 
2rr in part (c). 

Further Reading for Chapter 6 

The material in this chapter is found in the standard texts on dif­
ferential geometry, including those mentioned at the end of the 
previous chapter ([16], [5], [6], [7], [15], [22]). For parallel transport 
we follow the treatment of McCleary [22] most closely. 



General Relativity 
CHAPTER 

While gravitational and electric fields both have physical "sources" 
-masses on the one hand and electric charges on the other­
there is a crucial distinction between them. In an electric field, 
objects accelerate differently, depending on their charge; in a 
gravitational field, all objects experience identical acceleration. 
So it is possible to "fall" along with those objects-in an orbiting 
spacecraft, for example-and if we do, the gravitational accelera­
tions will seem to disappear. Conversely, in a spaceship far from 
other matter, where there is no perceptible gravitational field, we 
can create one in the spaceship simply by making it accelerate. 
In other words, with a coordinate change we can make a gravi­
tational field appear or disappear-at least in a small region of 
space and time. 

Now, the physical effects of coordinate changes are the stuff 
of relativity. But special relativity deals only with linear transfor­
mations of inertial frames, so it is unable to handle gravity: The 
transformations that create or eliminate gravitational fields are 
nonlinear. If it is to encompass gravity, relativity must be gen­
eralized to allow arbitrary frames and transformations. In this 
chapter we see how general relativity leads to a theory of gravity. 

A theory of gravity 
based on 

coordinate changes 
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The Newtonian 
equations of motion 

Motion is independent 
of mass 

Motion viewed in a 
freely falling frame 

7.1 The Equations of Motion 

Consider the motion of a freely falling test particle, which is one 
that moves solely under the influence of a gravitational field. 
In Newtonian mechanics, the field is given by a gravitational 
potential function <I>(x) = <I> (xl , x2, x3). The gravitational force 
on a particle of mass m is -m V <I> = -m grad <l>i cf. Section 4.3. 
Therefore, if the position of the particle at time t is x(t), then 
mx" = -m V<I>, by Newton's second law of motion. Canceling m 
from both sides, we get the equation for gravitational accelera­
tion, x" = -V<I>i in terms of coordinates, this becomes the three 
equations 

d2,de a <I> 1 2.l 
dt2 (t) = - axle (x (t), x (t), x- (t)), k=1,2,3. 

Because these equations are independent of the mass m of the 
test particle, they tell us that particles of different sizes must all 
accelerate the same way. This demonstrates the distinctive fea­
ture of gravity that makes it amenable to a relativistic treatment. 

The Gravitational Field 

What are the equations of motion of a freely falling test par­
ticle from the point of view of relativity? Let us first consider 
the motion in a frame R that falls with the particle Oike an or­
biting spacecraft, for example). We saw in Section 4.3 that in a 
sufficiently small region R in spacetime, the gravitational field 
essentially disappears. Since by assumption there are no other 
forces present, all objects move in straight lines with constant 
velocity. Indeed, R is an inertial frame, and all the laws of special 
relativity hold in the region R. By an appropriate linear change 
to new coordinates (t,x,y,z) = (xo,xl ,x2,x3), we can make the 
metric for R become 

~) , 
-1 

k,1=O,1,2,3, 
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for all (XO, Xl, .x2, i3) in R. We shall use the indices 0, I, 2, 3 
henceforth because they help distinguish between timelike and 
space like coordinates. Roman letters i, j, etc. shall continue to 
refer to all four indices, but we shall often use Greek letters when 
we want to refer only to the three spacelike indices 1,2,3. Thus, 
for example, goo = +1, while gaa = -1. 

Since the gkl are constants, their derivatives are zero. Con­
sequently, the Christoffel symbols are identically zero, so the 
geodesic equations in this frame take the particularly simple form 

The solutions are straight lines. But the worldcurve of every par­
ticle is a straight line; therefore, from R's point of view, the world­
curve of a freely falling particle is a geodesic. 

Now consider an arbitrary frame G : (~O,~1,~2,~3) that is 
related to R by a smooth map M : G ~ R. How will G describe 
the same motion? The key is Einstein's principle of general 
covariance ([10], page 117): 

The general laws of nature are to be expressed by equations 
which hold good for all systems of coordinates, that is, are 
covariant with respect to any substitutions whatever. 

Because contravariant and covariant tensors transform in this 
fashion, Einstein was led to argue as follows ([10], page 121): 

If, therefore, a law of nature is expressed by equating all the 
components of a tensor to zero, it is generally covariant. By 
examining the laws of the formation of tensors, we acquire 
the means of formulating generally covariant laws. 

Since the motion of a freely falling particle should certainly 
be described by objective physical laws, and since Theorem 6.5 
assures us that the geodesic equations are tensorial, the principle 
of general covariance dictates that the worldcurve of a freely 
falling particle must be a geodesic in G's frame as well as R's. If 
the worldcurve ofthe particle is given bye = (~h(t)) in G's frame, 

For R, worldcurves 
are geodesics 

The principle of 
general covariance 

For G, worldcurves 
are geodesics, too 
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Freely falling particles 
a/ways move on 
geodesics 

The - r~ are the 
components of the 
gravitational field 

then its equations of motion are 

d2~h Gh d~i d~j 
dt2 + r ijTt dt = O. 

This holds in the small region M-1(R) in G's frame that corre­
sponds to R in R's frame. 

The argument we just used depends on starting with a space­
time region R so small that we can "transform away" gravitational 
effects and work in an inertial frame R. But this is a serious re­
striction, especially if we consider the astronomical distances and 
time scales over which relativity is usually applied. For example, 
even ifR is a ball ofradius 10,000 kilometers Oess than 1 second 
in geometric units!) concentric with the earth for a duration of 
a second, the gravitational field is nontrivial; it cannot be trans­
formed away over the entire region R. In these more general cir­
cumstances, what should the equations of motion be? Einstein's 
answer is to take what happens in a small region as a guide ([10], 
page 143): 

We now make this assumption, which readily suggests it­
self, that the geodesic equations also define the motion of 
the point in the gravitational field in the case when there 
is no system ofreference with respect to which the special 
theory of relativity holds good for a finite region. 

In other words, we assume henceforth that the worldcurve of a 
freely falling particle is a geodesic in whatever frame it is de­
scribed. 

The geodesic equations are second-order differential equa­
tions that determine the acceleration of a test particle, just like 
the Newtonian equations. If we write them side by side, we see 
remarkable similarities: 

In each case, the right-hand side gives the acceleration due to 
gravity; hence, - rj are the components of the gravitational field in 
the frame G. 
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We think of the Newtonian field -ocf>joxh = - grad cf> as be­
ing derived from a single gravitational potential function cf>. In 
a very similar way, the Christoffel symbols rt are certain com­
binations of derivatives of the metric tensor, so they are a kind 
of "gradient" of the metric Yij, which therefore plays the role of 
the gravitational potential in relativity. However, while there is 
just a single Newtonian potential, the relativistic potential con­
sists of 1 0 functions, the 10 distinct components of the symmetric 
tensor Yij: 

gravitational field 
gravitational potential 

Newton 

-Vcf> 

cf> 

Einstein 

-r~ 
IJ 

Yij 

Incidentally, a potential that is made up of several component 
functions is not without precedent: Maxwell's electromagnetic 
field can be described by a potential, but a 4-vector A(t, x) = 
(Ao,A I ,A2,A3) is needed. 

The Yij form the 
gravitational potential 

The metric tensor combines geometry and physics at a pro- The fusion of 
found level. It tells us how spacetime is curved, and it tells us geometry and physics 
how objects move. It tells us, moreover, that objects move the 
way they do because spacetime is curved, and it even says that 
their worldcurves are the "straight lines" in the geometry of that 
curved spacetime. 

A Constant Gravitational Field 

Let us go back and consider in detail the motion of a test par­
ticle in a region of spacetime that is so small that the gravita­
tional field is essentially constant. Let the frame G: (r,~, 'fI, n = 
(~o, ~l, ~2, ~3) be stationary in the field, which we suppose has 
strength a and points in the direction of the negative ~ -axis. How 
is the gravitational field expressed in this frame, and what mo­
tions does this field then define? 

Einstein says we should first answer these questions for a 
second frame R : (t, x, y, z) = (xO, xl, x2, x3) that is in free-fall, 
and then use the principle of general covariance to transfer the 
answers back to G. Now, R is an inertial frame (from R's point 

G"w-__ _ 
TJ 
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The metric in R 

, 
- f-- - _. 

G 

The metric in G 

of view, particles move uniformly in straight lines), and the laws 
of special relativity hold within it. In particular, we can take the 
metric in R to be 

(
1 0 0 0 ) 

a 1 3 0 -1 0 0 
gk/(X ,x ,Xl, x ) = 0 0 -1 0 . 

o 0 0 -1 

Let us assume that R's origin moves along the ~ -axis. Align the 
frames so that corresponding spatial axes in Rand G are parallel, 
and set t = r = 0 at the instant G is at rest relative to R. Since 
x = ~ and y = TJ for all time, we ignore these variables and work in 
the 2-dimensional (t, z)- and (r, {)-planes. We saw in Theorem 4.1 
that these variables are connected by the map 

I 

t = - sinhar, 
M: a { 

ea~ 

M -

ea~ 
z= -coshar. 

a 

R---------i----------

Because we are ignoring the x and y variables, we can write 
the metrics in G and R as 2 x 2 matrices: 

r = (YOO Y03) , 
)130 Y33 

G = (gOO g03) = (1 0) . 
g30 g33 0-1 

Since the metric tensor is covariant, we can determine Yij from 
gkl. 1b do this we need the differential of Mat P = (r, ~): 
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where Har is hyperbolic rotation by the hyperbolic angle ar. By 
the properties of hyperbolic rotations, 

rp = dM~ G dMp = e2at Har GHar = e2at G, 

or 

These equations define the gravitational potential in G. We shall 
also need 

r-1 = (YOO Y03) = (e-2at 0) (e-2a~3 0) 
p Y30 Y33 ° _e-2at = ° _e-2a~3. 

We are now in a position to determine the components - r~ The gravitational field 

of the relativistic gravitational field. You should verify that all the 
Christoffel symbols are zero except 

2a~3 r 30 0 = r 03 0 = a e ", , , 

rOO,3 = _ae2a~3, 

r33,3 = _ae2a~3, 

rgo = rg3 = ct, 

r50 = a, 

r~3 = a. 

If we assume that the geodesics are parametrized by t, then the 
geodesic differential equations are 

d2~O d~o d~3 
--=-2a--, 
dt2 dt dt 

d2~3 = -a (d~O)2 _ a (d~3)2 
dt2 dt dt 

Compare these with the Newtonian equations of motion, 

determined by the field -V<I> = (0,0, -a). 



336 Chapter 7 General Relativity 
----------~----------~--------------------

Motions in the 
gravitational field 

The worldlines of 
objects at rest in R 

: " 

/ ~ 

"/ ~ 
"/ ~ 
"/ ~ 

G 

"/ v-
"/ ~ 
"/ v-

Horizontal translates 

t; 

Free-fall motions in the gravitational field in G are the solu­
tions to these geodesic differential equations. As usual, we do 
not attempt to find analytic solutions from first principles, but 
rather simply verify that certain expressions do indeed satisfy 
the equations. In this case we expect that the images of straight 
worldlines in R under the map M-1 will be geodesics in G. (In 
fact, since the geodesic equations are covariant, we know in ad­
vance that this will be so; nevertheless, it is valuable to see the 
theory confirmed.) 

Consider first the horizontal lines z = b in R. These are the 
worldlines of objects that are at rest in R. In Section 4.2 we saw 
that their worldlines in G are the curves 

i'" 
i'" "-
i'" ,-' 
i'" ,-' 
i'" ,-' 
i'" ,-' 
i'" ,-' 
i'" ,-' 

" R----------~---------

~o = 'C = ~tanh-l (i), 
parametrized by t. We have 

d~o b 1 d~3 1 t 

dt = ~ b2 - t2' 
-=-- , 
dt Ct b2 - t 2 

d2~O b 2t d2~3 1 b2 + t2 

dt2 = ~ (b2 - t2)2 ' dt2 - -~ (b2 - t2)2' 

and you can quickly check that ~o(t) and ~3(t) satisfy the geodesic 
equations. 

These curves are vertical translates of one another in G; we 
can show that each horizontal translate 

~o 1--+ ~o + k, 
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is a geodesic, too. First, the coefficients of the geodesic equa­
tions are unchanged by horizontal translations (in fact, the coeffi­
cients are constants); second, derivatives are likewise unchanged. 
Hence the translated curves still satisfy the geodesic equations. 
By the principle of covariance, the image under M of one of these 
horizontal translates must be a geodesic-that is, a straight line­
in R. What is the equation of that line, in terms of the parameters 
band k? 

G 

R----------r----------

The translate C that has its apex at r = k, as in the figure 
above, can be described as the graph of the function 

l; = ~ In (cosh:~r _ k») . 
(We revert to the original variables rand l; because they are easier 
to write.) Now let M : G ~ R map C into R. By using the equation 

eat; b 
------

a cosha(r - k) 

(which follows immediately from the formula for n and the shift 
u = r - k, we can write the image M(C) as 

b . h bsinha(u + k) 
t = SIn ar = , 

cosha(r - k) cosh au 

Z = b coshar = bcosha(u + k). 
cosha(r - k) cosh au 

The addition formulas for the hyperbolic functions then give 
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b(sinhao- coshak + coshao- sinhak) b h k h b . 
t = h = ( cos a )tan ao- + smhak, 

cos ao-
b(coshao- coshak + sinhao- sinhak) b' h k h b k 

z = h = ( sm a) tan ao- + cosh a , 

All possible motions in 
the gravitational field 

cos ao-

and thus finally, 

z - bcoshak = tanhak(t - bsinhak). 

This is the straight line of slope v = tanhak that passes through 
the point (t, z) = (bsinhak, bcoshak). 

Since these straight lines constitute all possible worldlines of 
freely falling particles in R, the corresponding curves in G, 

11 ( ab ) ~ - - n 
- a cosha(t' - k) , 

give us the worldcurves of all possible motions under the influ­
ence of the gravitational field - rt, at least if we ignore ~ and 
'fJ. If we bring these two variables back in, then the gravitational 
potential is 

This adds no new nonzero components to the gravitational field 
-rt, so the equations of motion in the full 4-dimensional space­
time are 
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and the solutions are 

~O(t) = kl + ± tanh-I (:2) , 
~I(t) = k3t + k4, 

~2(t) = kst + k6, 
1 

~3(t) = -In(a2(k~ _ t2». 
2a 

This involves six arbitrary constants (and we have set k = kl , b = 
k2). But four second-order differential equations should involve 
eight constants, not six; we get the other two by making an affine 
change ofthe independent variable t 1-+ k7t + k8 . 

Although we have constructed a full eight-parameter family 
of solutions to the geodesic equations, we do not yet have all 
solutions. First of all, our typical solution 

~ = ~ In ( h ab k) +----+ z - bcoshak = tanhak(t - bsinhak) 
a cos a(r - ) 

is a timelike curve that describes a motion with velocity v = 
tanhak in R. Since I tanhakl < I, the moving object has posi­
tive mass. But gravity also affects the motion of objects of zero 
mass-e.g., photons-that travel at the speed of light c = I, so 
we need formulas for them, too. Those formulas will have to be 
additional solutions to the geodesic equations. Beyond that, there 
are spacelike geodesics. 

1b find the formulas for lightlike curves we look first in the 
inertial frame R. Here the worldline of a photon has the formula 
z = a ± t, where a is arbitrary. In G the worldcurve of the same 
photon will be 

~O = ~tanh-I (_t_) , 
a a±t 

We can rewrite these equations using 

1 (1 + u) tanh-I u = -In --
2 l-u 

Worldcurves of 
photons 
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and some algebra to get finally 

1 
~o = ±--In(a ± 2t) + constant, 

2a 
1 

~3 = --In(a ± 2t) + constant. 
2a 

Thus ~3 = ±~o + constant, so the worldcurve is a straight line 
of slope ±1 in G as well. Furthermore, these functions do indeed 
satisfy the geodesic differential equations, and they are clearly 
not members of the general eight-parameter family of solutions 
we just found. They are called singular solutions. 

Singular solutions to differential equations can arise in vari­
ous ways. In this case they are the common asymptotes of one­
parameter families of ordinary solutions. 1b see this, consider a 
one-parameter family of solution curves chosen so that that their 
apexes lie on a single line of slope 1. Now, the apex of the solution 

11 ( ab ) ~ - - n 
- a cosha(r - k) 

is at the point (r,~) = (k, In(ba)/a); to put this on the line ~ = r, 
for example, we should set 

k = In(ba) , 
a 

common asymptote 

or 

\ /--~----



§7.1 The Equations of Motion 341 
--------------------~----~----------------

The ordinary solutions whose apexes lie on a line of slope -1 
will also have a common asymptote that is a singular solution. 
For geodesics that are spacelike curves, see the exercises. 

Exercises 

1. The electromagnetic field potential. The purpose of this 
exercise is to see how the components of the electromag­
netic field {E, H} (cf. Section 1.4) can arise from a 4-potential 
A = (AD, Al ,A2 ,A3 ). Let ACt, x, y, z) be a 3-vector with spatial 
components A = (A I ,A2 ,A3); assume that (t,x,y,z) are coor­
dinates in an inertial frame. Define the magnetic field vector 
H=V x A. 

(a) Show that H satisfies the Maxwell equation V . H = O. 

(b) Show that if the Maxwell equation V x E = -aHjat is to 
hold, then V x (E + aAjat) = O. 

(c) According to a theorem in advanced calculus, if V x F = 0, 
then there is a scalar function 1jJ for which F = V 1jJ . Deduce 
that there is a function AD = -1jJ for which 

E=_aA_ VAD . 
at 

(d) Show that the remaining two Maxwell equations (which in­
volve electric charge density p and electric current density 
J) determine the following conditions on the 4-potential 
A = (AD, A): 

a 
p = --(V· A), 

at 
2 a2A a D 

J=V(V·A)-V A+-2 +-(VA). 
at at 

(e) Deduce the conservation of charge equation: ap = -V· J. 
at 

The next five exercises concern the metric (Yij) of a constant 
gravitational field in the frame G, as described in the text. 

2. Determine the Christoffel symbols rij,k and rt and the 
geodesic equations. 
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3. Find the ~-intercept f3 of the common asymptote ~ = r + f3 of 
the timelike geodesics 

~ = .!.In ( eak ) = k_lncosho:(r - k). 
0: cosho:(r - k) 0: 

4. Derive the formulas 
1 

~o(t) = ±-In(a ± 2t) + C1, 
20: 

1 
~3(t) = -In(a ± 2t) + C2 

20: 

(where C} and C2 are constants) from the conditions 

~o = .!. tanh-1 (_t_) , ~3 = -.!...In(0:2((a ± t)2 _ r)) 
0: a± t 20: 

and prove that the curve so defined is a lightlike geodesic, for 
anya. 

5. (a) Consider two curves e±(u) defined by the same formulas: 

~o(u) = k1 + ± tanh-1 (~ ), ~3(u) = 2~ In(0:2(u2 - ~)). 
The domain of e- is u < -k2, and the domain of e+ is 
k2 < u. Show that each is a spacelike geodesic for every k1 
and for every k2 > o. 

(b) Express the curves e± as graphs of functions ~ = f ± (r), 
analogous to the functions that describe the timelike 
geodesics in the text. 

(c) Construct a full eight-parameter family of spacelike geo­
desics when G is a (1 + 3)-dimensional spacetime. 

6. (a) Show that the curves e± from the previous exercise have 
the vertical asymptote ~o = k1 and a second asymptote 
with slope =Fl. 

(b) Find a one-parameter family of geodesics that has ~o = k1 
as a common asymptote, demonstrating that the asymp­
tote is a singular solution to the geodesic equations. Find a 
parametrization for the asymptote that makes it a geodesic. 

The following exercises concern a frame G : (r, ~, 1], n = 
(~o, ~1, ~2, ~3) in uniform rotation with angular velocity w around 
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the x-axis of an inertial frame R : (t, x, y, z). If the ~-axis coin­
cides with the x-axis, then we can take the map M : G -+ R that 
transforms coordinates (cf. Section 4.1) as 

t = r, 
x=~, 

M: 
y = 'f} cos wr - ~ sin wr , 

z = 'f} sinwr + ~ coswr. 

7. Determine the inverse M-1 : R -+ G and the linear maps dMp 
and (dMp)-l. 

8. Determine the metric (Yij) on G that is induced by the 
Minkowski metric h3 on R, and show that its inverse is 

o 
-1 
o 
o 

9. Determine the Christoffel symbols of the first kind, rij,k, on G. 
Show that the only nonzero Christoffel symbols of the second 
kind are 

r 2 2 
00 = -w 'f}, 

r 3 2 
00 = -w ~, 

r53 = r~o = -w, 

r~2 = rio = w. 

10. (a) Determine the geodesic equations on G. 

(b) Any straight line (t, x, y, z) = (aOt+bO, a1 t+b1 , a2 t+b2 , a3 t+ 
b3 ) in R is a geodesic; why? Determine the image of this 
line in G, and show that the image is a geodesic in G. 

11. Consider the following two curves in G: 

~l (t) = (t, 0, vt cos wt, -vt sin wt), 

~2(t) = (t, 0, (1 - vt) coswt, (vt - 1) sinwt). 

( a) Prove that ~l and ~2 are geodesics and sketch their paths in 
the ('f}, ~)-plane. 1b make the sketches take v = 0.1, w = I, 
and 0 :s t :s j[. 
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The Newtonian 
field equation 

(b) For j = I and 2, calculate ej(t) and e'j(t) and sketch the 
images of these vectors on the curves in the (1], n-plane 
when t = 0 and t = 1. 

Cc) The sketches should show that both el and ez turn to the 
right, in the sense that the parallelogram ej /\e'j C cf. Section 
5.1) has negative area. Prove that area ej (t) /\ e'j(t) < 0 for 
j = 1 and 2 and for all t. 

12. Now consider a curve e(t) in G of the form 

r = t, 

~ = 0, 

1] = (aZt + bZ) cos wt + (a3t + b3) sin wt, 

~ = - (aZt + bZ) sin wt + (a3t + b3) cos wt. 

Prove that this is a geodesic in the (1], n-plane and show that 
it turns to the right, in the sense that areae'(t) /\ e"(t) < 0 for 
all t. 

The gravitational force that underlies this metric and that 
causes all geodesics to turn to the right is more commonly 
known as the Corio lis force. 

7.2 The Vacuum Field Equations 

At a point x = (xl, xZ, ~) in space where the density of matter is 
p(x), the Newtonian gravitational field 

(
8<1> 8<1> 8<1» 

-V<I>(x) = -grad<l>(x) = - -, -,-
8xl 8xz 8x3 

satisfies the field equation 

This equation tells us how matter determines the gravitational 
field and, ultimately, how matter makes matter move. 
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A relativistic theory of gravity must answer the same ques­
tion: How does matter determine the gravitational field - r~ ? 

But in relativity the question has an even deeper meaning, be­
cause the field is derived from the spacetime metric and so is 
a reflection of the geometric structure of spacetime. The pres­
ence of matter alters this geometry; it introduces curvature. The 
field equations-when we find them-must therefore tell us how 
matter determines the curvature of spacetime. 

Classical Theory 

The Newtonian field equation takes its simplest form at a point 
of empty space (the "vacuum"), where p(x) = 0: 

V2<1>(x) = o. 
This is the vacuum field equation; we devote this section to deter­
mining its analogue in general relativity. We begin by reviewing 
the role it plays in classical Newtonian mechanics. 

In Section 4.3, the vacuum field equation emerged in a discus­
sion of the tidal effects of gravity. In a strictly uniform-that is, 
constant-gravitational field, there are no tides; the tides reveal 
how the field varies from point to point. Consider the gravita­
tional force acting at each point of a large body E near a massive 
gravitational source 5, as in the figure below. The force will vary 
in magnitude and direction from point to point. 

coordinate frame fixed with respect to 
gravitational source S 

coordinate frame fixed 
at center of E 

The relativistic 
field equations 

determine curvature 

The vacuum field 
equation 

Tidal forces 
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Th focus on the differences, let us subtract off the force felt at 
the center of E. This has the effect of translating us to a coordi­
nate frame that falls with the center of E. In this frame the net 
forces that appear are the tides. The tidal force draws some points 
together and pushes others apart. 

A family of trajectories Th study these differences in a precise way, consider a col-
lection of particles that start on a given curve l(q) in R3 and 
fall freely in a gravitational field - V cI>. Let the trajectory of the 
particle that started at l(q) be ,!c(t, q)i that is, ,!c(O, q) = l(q). 

~ __ ----_ trajectories of 
freely falling particles 

Each particle satisfies Newton's equations with acceleration pro­
vided solely by the gravitational potential <1>. For two particles 
that start at nearby points q and q + l1q the equations are 

d2,!c _ a<l> j 
dt2 (t, q) - - axle (x (t, q)), 

d2,!c a<l> j 
-d 2 (t, q + l1q) = ---k (x (t, q + l1q». 

t ax 

(Notice that indices do not behave well in expressions in the 
classical theoryi on one side k is a superscript, on the other it is a 
subscript.) Now take their difference and divide by l1q: 

d2,!c d2,!c 
dj2(t, q + l1q) - dj2(t, q) 

a<l> . a<l> . 
~(xJ (t, q + l1q)) - ~(xJ (t, q» 

-
l1q l1q 
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In the limit as ~q -+ 0 we obtain 

d2 ax!' a2<1>. 
dt2 aq(t, q) = - aq axk (xl (t, q», 

using d for derivatives with respect to t but a for derivatives with 
respect to q. Applying the chain rule to the right-hand side we 
get the following second-order linear differential equations for 
axi jaq: 

d2 ax!' a2<1> axi 
dt2 aq = - 4= axiaxk aq· 

J 

These are the equations of tidal acceleration we derived in 
Section 4.3, applied here to the vector axjaq = axi jaq(t, q). 

Why does the vector axjaq = axi jaq indicate tidal effects? Follow 
axjaq over time along the trajectory of a single particle. Ifaxjaq 
gets shorter, nearby particles are drawn together; if it gets longer, 
they drift apart. Thus axjaq gives the rate of separation of nearby 
trajectories-precisely the tidal effect we want to measure. 

Since tidal acceleration is a linear function of the separation 
vector axjaq, we can write it as a matrix multiplication: 

~ ax = -d2<1>x . ax, where d2<1>x = (a2~(x») . 
dt2 aq aq axl axk 

The vacuum field equation is just the statement that the trace of 
the matrix d2<1>x is zero: 

trd2<1>x = '"' a2~(x~ = o. 
~ axlaxl 

J 

The equations of 
tidal acceleration 

The separation rate 
CJx/CJq indicates the 

tides 

Vacuum field 
equation: 

trd2 <1>x = 0 
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Character of the 
tidal force 

Summary: tidal 
acceleration is a 3 x 3 
symmetric matrix with 
trace zero 

Tides alter the 
separation of 
geodesics 

Since d2 ct>x is a 3 x 3 symmetric matrix, it has three linearly in­
dependent eigenvectors with real eigenvalues. When axjaq is one 
of these eigenvectors, tidal acceleration is in a parallel direction: 

d2 ax ax . ax 
--- = -'A--, 'A the eIgenvalue for--. 
dt2 aq aq aq 

When 'A is positive, the acceleration points back toward the origin, 
so the tidal force attracts. By contrast, when 'A is negative, acceler­
ation points away from the origin, so the tidal force repels. Since 
the sum of the eigenvalues of any matrix equals its trace, and the 
trace of d2ct>xis 0, its eigenvalues have different signs. Hence the 
tidal force attracts in some directions but repels in others. 

Here is a summary of the classical theory. If x(t, q) describes 
the trajectory of a particle whose initial position varies with q, 
then the rate of separation of nearby trajectories, axjaq, is gov­
erned by the tidal acceleration law 

~ ax _ -d2 ct> • ax 
dt2 aq - x aq' 

The nature of tidal acceleration is therefore encapsulated by 
d2ct>x: It is a symmetric 3 x 3 matrix whose trace is zero. 

Separation of Geodesics 

How does general relativity describe the tidal acceleration expe­
rienced by freely falling bodies in a gravitational field? The short 
answer is this: Since free-fall occurs along geodesics, we expect 
that tidal effects will be manifested in the rate of separation of 
geodesics. 

Let us review free-fall in a spacetime coordinate frame R : 
(xO, xl, x2, x3) endowed with a gravitational potential gkl. Choose 
coordinates such that the xO -axis is timelike and the other three 
are spacelike. Suppose the observer G is falling freely along the 
worldcurve x! = .tc(r) in R, where r is G's proper time. Then G 
experiences zero acceleration by definition: The rate of change 
of the velocity vector dzk j dr is zero. Since the velocity defines a 
vector field along the worldcurve, to calculate its rate of change in 
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a generally covariant way we should use the covariant derivative 
along G. This is 

acceleration of G: 
D dzk d2 zk k dzi dzj 
--=-+r··--. 
dr dr dr2 IJ dr dr 

Therefore, the zero-acceleration condition is precisely the condi­
tion that the worldcurve of G be a geodesic: 

D dzk d2 zk dzi dzj 
--- = -+r~--- =0. 
dr dr dr2 IJ dr dr 

1b study the separation of geodesics near G, let us embed the 
worldcurve of G in a family of geodesics Yl' = Yl'(r, q). Assume 
that q = ° gives the curve G itself, so xk(r, 0) = zk(r), and assume 
that r is the proper-time parameter for each geodesic. The rate 
of separation is the vector 

aYl' 
a-q(r, q), 

which we consider to be a function of r for fixed q. The fundamen­
tal result about the rate of separation of geodesics is contained in 
the following theorem. 

Theorem 7.1 If x!' (r, q) is a family of geodesics, then 

D2 ax!' h dxi axj dYl' 
dr2 aq + Rijk dr aq dr = 0, 

where Rtk is the Riemann curvature tensor defined by the metric gkl. 

PROOF: 1b underscore the different roles of rand q, we shall use 
d to denote derivatives with respect to r when possible. We must 
calculate the first and second covariant derivatives along xh(r, q), 
for fixed q. First, 

Embed G in a family of 
geodesics 
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Next, 

DZ axh d (azxh dxi axj ) (aZxm dxi axj ) d,(c 
drz aq = dr araq + rt dr aq + r~k araq + rij dr aq dr 

A A 
a dZxh art d,(c dxi axj h dZxi axj h dxi aZxj 

=--+------+r··---+r··----
aq drZ axk dr dr aq I) drZ aq IJ dr araq 

aZxm d,(c dxi axj d,(c + rh ---- + rh r!!'-----
mk araq dr mk IJ dr aq dr . 

At this point we use the fact that each xh is a geodesic to replace 

dZxh dxi d,(c 
drz by - r~dr a; 

at the two places marked A (and making the substitution i H- m 
in the second). Then 

nZ axh a ( dxi d,(c) ar~ dxi axj dxk ( dxi d,(c) axj 
drz aq = aq -r~ dr dr + axk dr aq dr + r~j -rik dr dr aq 

dxi aZxj azxm d,(c dxi axj d,(c 
+ r~--- + rh ---- + rh r!!'-----

IJ dr araq mk araq dr mk IJ dr aq dr 

arh axj dxi dx!' a2xi dx!' ar~ dxi axj dx!' 
= ----$----- - 2r~ ---- + ---.-!L ___ __ 

ax' aq dr dr Ik aqar dr axk dr aq dr 

dxi axj d,(c aZxi d,(c dxi axj dxk 
- rh .r~----- + 2r~ ---- + rh r!!'-----

mJ Ik dr aq dr Ik aqar dr mk IJ dr aq dr 

( art ar~ h m h m) dxi axj dx!' 
= axk - axi + r mkrij - r mjrik dr aq dr 

h dxi axj d,(c h dxi axj d,(c 
-R ----- - -R ----- END OF PROOF - ikj dr aq dr - ijk dr aq dr . 

Corollary 7.1 (The tidal acceleration equations) Let zk(r) = 
xk(r, 0) be the worldline of the observer G, embedded in the family of 
geodesics ,(c(r, q). Then the rate of separation of geodesics along i(r) 
is 

DZ axh haxj 
---=-K·--, 
dr2 aq J aq 

where 
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Fermi Coordinates 

The tensor Kj plays the same role in the relativistic tidal acceler­
ation equations that the matrix 

plays in the classical equations. Indeed, the components of Kj 
involve first derivatives of the gravitational field, just like the 
components of d2cpx. However, there are some differences: Kj is 
4 x 4 matrix, not 3 x 3, and it is not obviously symmetric, either. 
By recomputing Kj in a new coordinate system-introduced by 
the physicist Enrico Fermi in 1922-we shall find that it has a 
special form that will allow us to identify it in all respects with 
the classical matrix. 

Fermi coordinates form a coordinate frame G : (~o, ~ 1 , ~2 , ~3) 
for the observer who is falling freely in the gravitational field 
defined by the metric gij in the frame R. From G's point of view, 
there is no field. Fermi coordinates are constructed to achieve 
precisely this: All the components of the gravitational field - rt 
in G's frame will vanish everywhere on G's worldline. Tb define 
the Fermi coordinates we shall describe how they are connected 
to the coordinates for R-that is, we shall describe the map M : 
G -+ R. This is best done in a number of steps. 

STEP 1. Let ~o = r, and make G's worldcurve the ~o-axis in the 
frame G. Since,de = zk(r) = i(~o) is G's worldcurve in R, this tells 
us how M maps the ~o-axis. 

~3 e3 
x 3 

~o 
M G -G 

~o R 
XO 

Comparing 
K~ and d2 <l>x 

J 

G rt must vanish along 
the worldline of G 

Image of ~o-axis 
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Orthonormal basis 
along G 

STEP 2. The velocity vector eo( r) = dzk I dr is a timelike unit vec­
tor at every point on G's world curve in R. Choose unit spacelike 
vectors el, ez, and e3 at the point i(O) so that {eo, el, ez, e3} form 
an orthonormal basis for TRz(o) . This means that in terms of the 
metric gkZ defined in TRz(r), 

eo' eo = 1, ea . ea = -1, a = 1, 2, 3, ek . ez = 0, k:f:. 1. 

Then define ei( r) to be the parallel transport of ei along the world­
curve G in R, for i = 1, 2, 3. Since parallel transport preserves 
inner products, the vectors 

form an orthonormal basis for the tangent space TRz(r) , for each r. 

Representing a point STEP 3. Now consider a point 
off the ~o-axis 

G 

~I 

in G that lies off the ~o-axis; its spatial component e = (~l, ~z, ~3) 
is nonzero. Think ofe as a vector in the tangent space TG(r,O), and 
let n be the unit vector in the direction of e, where we measure 
length with the ordinary Euclidean metric 

Therefore, n = elA = (~l lA, ~z lA, ~3 IA) = (nl, nZ, n3), and we 
can write P = (r, An) = (r, AnI, AnZ, An3). 
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STEP 4. Now move to R. Let v be the vector in the tangent space 
TRz(r) defined by the condition 

v = n1e1 ('r) + n2e2(r) + n3e3(r) = nCXecx(r). 

(Recall that we use Greek letters for the spatial indices I, 2, 3.) By 
definition, v has no component in the eo(r) direction. In terms 
of the inner product gkl on TRz(r), v is a spacelike unit vector: 

V· v = ncxnP ecx(r) . ep(r) 

= -ncxnP~cxp = _(n1)2 _ (n2)2 _ (n3)2 = -llnll 2 = -1. 

Let Yr,n(s) be the unique geodesic in R determined by the initial 
conditions 

Yr,n(O) = z(r), ir,n(O) = v. 

Since v is a unit (spacelike) vector in R, Y~,n(s) is a unit speed 
vector at 5 = O. Since Yr,n is a geodesic, Y~,n(s) is a unit speed 
vector for all 5; thus,s measures arc length along Yr,n' 

STEP 5. We define the image of the point P = (r, An) in G to be 
the point Yr,n(A) in R: 

M: G -+ R: ('r, An) t-+ Yr,n(A). 

~3 

M -
~o 

We can describe the map geometrically in the following way. 
Consider the collection oflines perpendicular to the gO-axis at the 
point r, where we mean perpendicular in the Euclidean sense. 
1Wo of these lines are shown in gray in the figure above. Each 
line will map to a geodesic in R that is perpendicular (in the sense 
of the metric in R!) to G's worldcurve at the corresponding point 

The geodesic Yr,n 

Completing the map 
M:G-+R 
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z( r). Along a given gray line, points are mapped isometrically to 
the geodesic. In other words, a point at distance A from the ~o-axis 
is mapped to a point at arc length A from G's worldline along the 
corresponding geodesic. 

Proposition 7.1 The map M : G -+ R is invertible in a neighbor­
hood of the ~o-axis. 

PROOF: According to the inverse function theorem, a map M : G -+ 
R will be invertible in a neighborhood of a point P in its domain if 
the differential dMp : TGp -+ TRM(P) is invertible. Thus, to prove 
the proposition it suffices to show that dMp is invertible at every 
point P = (r, 0, 0, 0) on the ~o-axis. 

1b prove that a given dMp is invertible it is sufficient to show 
that the image of a basis of TGp = TG(r,O,O,O) is linearly indepen­
dent in the target TRM(P) = TRz(r). We take the standard basis in 
TG(r,Q,O,O) : 

M -
~o 

NOW, M maps the ~o-axis itself to G's worldcurve in R; specifi­
cally, 

M(r, 0, 0, 0) = z(r). 

Therefore, dMp(eo) = z'(r) = eo(r). Furthermore, by definition 
of M, the vector e = ea maps to the vector v = ea(r). In other 
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words, 

showing that dM('r,Q,Q,Q) is invertible. END OF PROOF 

We use the map M : G ~ R to "pull back" the metric from R to 
G in a generally covariant way. Suppose ~ and "1 are two vectors 
in the tangent space TGp. Let x = dMp(~) and y = dMp("1) be 
their images in TRM(P). Then by definition, 

~."1 = x·y . 
in TGp in TRM(P) 

Let us see what this equation implies when we use it determine 
the components Yij of the metric tensor in G. If 

then 

d~i 
~=dt' 

dTl j 
"1 = dt' 

and 

dJ< aJ< d~i 
x-----

- dt - a~i dt' 

_ dyl _ axl dTl j 

y - dt - a~j dt ' 

Since we want these expressions to be equal for all possible vec­
tors d~i / dt and dTl j / dt, the factors underscored by braces must be 
equal, giving us the familiar coordinate transformation 

aJ< axl 
Yij = gkl a~i a~j , 

which we can take as the definition of Yij . 

Corollary 7.2 The following lines are geodesics in the Fermi coordi­
nate frame G: 

• the ~Q-axis; 

• the lines ((5) = (T, sn) orthogonal to the ~Q-axis at every point T 
on the ~ Q -axis. 

Defining the metric 
inG 

Special geodesics 
in G 
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PROOF: By design, the map M : G -+ R carries each of these 
lines to a geodesic in R. By general covariance, they are therefore 
geodesics in G. END OF PROOF 

Corollary 7.3 At every point P = (1',0,0,0) in the Fermi coordinate 
frame G, the metric is the standard Minkowski metric, 

o -1 0 0 
(

1 0 0 0 ) 

Yij (P) = 0 0 -1 0 . 

o 0 0 -1 

PROOF: The value of Yij (P) is the value of the inner product ci . C j 

as calculated in TGp. By definition of the metric in G, 

ci' Cj = dMp(ci) . dMp(cj) = ei(r) . ej(r). 
in TGp in TRM(Pl 

Since {ei(r)} is an orthonormal basis in TRM(P), by construction, 
the result follows. END OF PROOF 

The Fermi conditions Theorem 7.2 (The Fermi conditions) The gravitational field 
G 
l~(P) is zero at every point P = (1',0,0,0) on the worldline of a 
Fermi coordinate frame G. 

PROOF: Since each line (5) = (1', sn) = (1', snCX ) is a geodesic, the 
components ~h(s) satisfy the geodesic equations 

d2~h Gh d~id~j 
ds2 + lij(1', sn)Ts ds = 0 

at each point s. Since 

d~CX cx 
--=n, 
ds 

(where a, f3 = 1,2,3 and h = 0,1,2,3 as usual), the geodesic 
equations reduce to 

G 
1~1l (1', sn1 , sn2 , sn3 )nCX nil = O. 
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These hold for all 5 and all unit 3-vectors n = na. Now set 5 = 0; 
then 

Gh {3 r a{3(r,O,O,O)na n = O. 

Since the Christoffel symbols are now being evaluated on the 
~o-axis and, in particular, are independent of n, we can finally 
conclude that 

Gh r a{3(r, 0, 0, 0) = 0 

for every r and for h = 0, 1,2,3, and ex, f3 = 1,2,3. 
G G 

Tb deal with the remaining symbols, rZo = r~k' we use the 
fact that the vectors ek(r) in R are defined by parallel transport 
along G's worldline. Consequently, their preimages ek under M 
are "parallel-transported" along the ~o-axis in G. In terms of com­
ponents, 

so the parallel transport equations for ek in G are 

D h Gh i d~j _ 
dr 8k + rij(r, 0, 0, 0)8k d. - O. 

We use (r) = (.,0,0,0) to parametrize the ~o-axis; hence 
dso /dr = 1 and ds a /dr = O. Therefore, 

Gh . Gh 
riO(r, 0, 0, 0)81 = rkO(r, 0, 0, 0) = o. END OF PROOF 

Corollary 7.4 At every point P = (r, 0, 0, 0) on the ~O-axiS, 

G ay a2y" r (P) 0 -.!L(P) = 0 IJ (P) - 0 
ij,k =, a~k ' a~Oa~k -. 

PROOF: Every Christoffel symbol of the first kind is a linear com­
bination of Christoffel symbols of the second kind: 

G Gh 
rij,k(p) = Ykh(P) rij(p) = o. 

ay" G G 
Similarly, a~i (P) = r ik,j (P) + r jk,i(P) = O. Finally, 
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Kj in Gs frame 

0-0 
= lim-- =0. 
O~O () 

END OF PROOF 

The Relativistic Vacuum Field Equations 

Let us return to the tidal acceleration equations, but expressed 
now in terms of the Fermi coordinate frame of a freely falling 
observer G whose worldcurve has the simple form 

{h(r) = (r, 0, 0, 0). 

We assume that this curve is embedded in a family of geodesics 
~h(r, q), with ~h(r, 0) = {h(r). The tidal acceleration equations 
for G are 

D2 a~h Gha~j 
----K·-
dr2 aq - J aq' 

G 
but because ~h(r) is so simple, Kj is just a single term: 

. k 
Gh Gh d{' d{ Gh 
K j = Rijk dr dr = ROjo • 

G 
Let us determine Kj(P) explicitly at each point P = (r, 0, 0, 0) 

along the ~o-axis, in terms of the metric Yij. Since all calculation 
will be done in G's frame, we will stop including the super-symbol 
G in the various multi-index quantities. First of all, R3j o(P) has 
only two terms, 

arh ar3· 
R3j o(P) = a~~o (P) - a~cf (P), 

because the Christoffel symbols are all zero along the ~o-axis. 
Next, since 

for all r, 
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we have 

Therefore, 

h h argo 
KJ. (P) = RoJ'o(P) = -. (P). 

a~J 

argo 1 a2yOO 
Theorem 7.3 -. (P) = ±- . h (P). 

a~J 2 a~J a~ 

PROOF: At an arbitrary point near the ~o-axis, 

rh _ hmr _ yhm (2 a YOm _ ayOO ) 
00 - y OO.m - 2 a~o a~m' 

The terms underscored by braces vanish at the point P = 
(T, 0, 0, 0) on the ~o-axis, according to Corollary 7.4. Hence 

arh yhm(p) a2,~ 
~(P) = _ .,00 (P). 
a~J 2 a~Ja~m 

Now, yoo(P) = I, yCXCX(P) = -I, and yhm(p) = 0 ifm i= h; hence 

argo ±1 a2 yOO 
a~j (P) = -2 a~j a~h (P). END OF PROOF 

Corollary 7.5 KS(P) = K7(p) = 0 and Ke(p) = K~(P), ex, f3 = 
1,2,3. 

PROOF: By Corollary 7.4, 

arh 1 a2 
Kh(P) = ~(P) = ±- Yoo (P) = O. 

o a~o 2 a~Oa~h 
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K is a matrix of 
second partial 
derivatives 

The vacuum field 
equations: Rij = 0 

In the same way we obtain Kj(P) = o. 1b prove the last claim, 
just note that the ± sign is always a plus sign in the index range 
1,2,3: 

Kf3 P _ ~ a2yOO P _ ~ a2yOO P _ Id P 
a( ) - 2a~aa~f3( ) - 2a~fJa~a( ) - f3(). END OF PROOF 

Thus in G's special Fermi coordinate frame the tidal accelera­
tion equations are expressed in terms of the matrix defined along 
G's worldcurve: 

0 0 0 0 

0 
a2yOO a2yOO a2yOO 
a~la~l a~2a~1 a~3a~1 

G 1 
K=- a2yOO a2yOO a2yOO 2 0 

a~la~2 a~2a~2 a~3a~2 

0 
a2yOO a2yOO a2yOO 
a~la~3 a~2a~3 a~3a~3 

Therefore, in both relativity and classical mechanics, information 
about tidal acceleration is found in a symmetric 3 x 3 matrix of 
second partial derivatives. The corresponding functions are 

~YOo(~O,~\~2,~3) ~ <I>(x1,x2,.i3). 

In other words, among the 10 components of the gravitational 
potential in G's frame, Yoo/2 corresponds most closely to the scalar 
potential <I> of Newtonian theory. We cannot yet say they are 
equal, though; we shall look more closely at the correspondence 
in Sections 7.3 and 8.l. 

In the classical theory the trace ofthe tidal acceleration matrix 
is zero; by analogy we impose the same requirement on the relativistic 
matrix: 

Gh 
Kh =0. 

The super-symbol G emphasizes that our analogy is based, at the 
outset, on the special character of K in G's frame. However, by 
general covariance, what is true in G's frame must be true in any 
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other frame R: 

Rh Rh dzi di 
Kh = Rihkdr dr = O. 

Here zi( r) is the worldcurve of Gin R. This is a geodesic, and since 
G could be moving on any geodesic worldcurve, the derivatives 
dzi / dr and di / dr are arbitrary (time like ) vectors. This implies 

Rh 
Rihk = o. 

This particular contraction of the Riemann curvature tensor is 
clearly important; it is the Ricci tensor. 

Ricci tensor: Rik = R7hk· 

The relativistic vacuum field equations are expressed in terms of 
the Ricci tensor: 

The vacuum field equations: Rik = o. 
Like the classical equations, these are second-order partial dif­
ferential equations in the gravitational potentials. However, they 
also have geometric significance; they say that certain combina­
tions of the components of the curvature tensor must vanish. 
This puts constraints on the curvature of spacetime at a point in 
the vacuum, but does not say that the curvature is necessarily 
zero. 

Albert Einstein. Photo: THE GRANGER COLLECTION, New York. Reproduced 
with permission. 
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''The happiest thought 
of my life" 

1b formulate the vacuum equations we made essential use of 
a coordinate frame in which the gravitational field disappears-at 
least along a single worldcurve. In 1907, early on in his thinking 
about general relativity, Einstein described his own delight in 
realizing how important it would be to take the point of view of a 
freely falling observer in order to eliminate the gravitational field 
(quoted by Pais [26], page 178): 

Then there occurred to me the happiest thought of my 
life, in the following form. The gravitational field has only 
a relative existence in a way similar to the electric field 
generated by magnetoelectric induction. Because for an ob­
server falling freely from the room of a house there exists-at 
least in his immediate surroundings-no gravitational field. 
Indeed, if the observer drops some bodies, then these re­
main relative to him in a state of rest or of uniform mo­
tion, independent of their particular chemical or physical 
nature (in consideration of which the air resistance is, of 
course, ignored). The observer has the right to interpret 
his state as "at rest." 

Exercises 

The first three exercises concern the sphere of radius r with its 
usual metric, 

( .. ) _ (,z cos2 q2 0) 
gIl - 0 ,z' 

1. Consider the one-parameter family of geodesics xl (t, q) = q, 
x2(t, q) = t; verify directly that xh(t, q) satisfy the geodesic 
separation equations 

D2 80 h dxi d,f 8xi 
----+R.. ----=0. 
dt2 8q 11k dt dt 8q 

2. Are (ql, q2) Fermi coordinates for the equator (ql, q2) = (t, O)? 
Are they Fermi coordinates for the prime meridian (ql, q2) = 
(0, t)? 
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3. (a) 
dzi dzk 

Determine the geodesic separation matrix K~ = R~. k--
J IJ ds ds 

for the unit-speed parametrization of the equator: zl (s) = 
sir, z2(s) = o. 

D2wh . 
(b) Show that the general solution to a;z = - KjwJ is 

WI =As+B, 

4. Consider the one-parameter family of geodesics x1(r, q) = r, 
x2 (r, q) = q in the (1 + 1 )-dimensional de Sitter spacetime given 
by the metric 

(gij) = (~ _ COS~2(ql)) , -00 < ql ~ 00, 0 < q2 < 2Jr. 

dxi dxk 
( a) Determine the geodesic separation matrix Kj = Rt k dr dr . 

(b) Verify that xh(r, q) satisfy the geodesic separation equa­
tions 

D2 8xh h 8xj 
---+K·-=O. 
dr 2 8q J aq 

5. Consider the two-parameter family of geodesics q(s, c, r), 

ql (s, c, r) = c + rtanhs, q2(S, c, r) = rsechs, 

in the hyperbolic plane H, which is defined on the upper half­
plane 0 < q2 by the metric (cf. Section 6.3) 

1 
gll = g22 = (q2)2' 

(a) Show that the second covariant derivative of the con­
travariant vector field wh along q is 

D2w1 d2w1 dw1 dw2 
a;z = ds2 + 2Ts tanhs - 2Ts sechs + wI tanh2 s - w 2 tanhssechs, 

D2w2 d2w2 dw1 dw2 
a;z = ds2 + 2Ts sechs + 2Ts tanhs + wI tanhssechs + w 2 tanh2 s. 
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. k 

(b) Determine the geodesic separation matrix K~ = R~. k dql dq . 
J 1Jdsds 

(c) Fix r and let J!(s, c) be the one-parameter family of 
geodesicsdefinedbyxk(s, c) = qk(s, c, r). Verify the geodesic 
separation equations 

D2wh h· 
-- +K.wJ = 0 

ds2 J 

for wh = axh jac. 

(d) Now fix c and let J!(s, r) = qk(s, c, r). Verify the geodesic 
separation equations for wh = axh jar. 

6. Suppose AijViWj = BijViWj for all vectors vi and w j . Prove that 
Aij = Bij. This argument is frequently used to show that certain 
tensors are equal. In this section it shows that when Yij is 
defined as the "pullback" of gkl by the map M : G --+ R : ~i = 
~i(J!), then 

axk aJd 

Yij = gkl a~i a~j . 

7. ( a) Compute the Ricci tensor Rik for the sphere of radius rand 
for the hyperbolic plane H. Does the fact that the Ricci 
tensor in each case is nonzero contradict the vacuum field 
equations? 

(b) Show that the scalar curvature R = R~ of the sphere is 2j r2 I 
while that of the hyperbolic plane is -2. 

8. Compute the Ricci tensor Rik and the scalar curvature R = R~ 
of the (1 + 1 )-dimensional de Sitter spacetime. 

9. (a) Let G : (r,~, 11, n = (~o, ~l, ~2, ~3) be the frame in uni­
form rotation with angular velocity (J) around the x-axis of 
an inertial frame R, as in Exercises 7-12 of Section 7.l. 
Determine the Ricci tensor Rik on G, assuming that the 
metric (Yij) on G is induced from the Minkowski metric 
onR. 

(b) Show that the r-axis is a geodesic in G and determine 
whether G'S coordinates are Fermi coordinates along this 
geodesic. 
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10. The purpose of this exercise is to construct Fermi coordinates 
for an observer C falling freely in the field given by the metric 

( YOO Y03) = (e2a~ 0) = e2a~ (1 0) 
Y30)/33 0 _e2a~ 0 -1 

in the frame G : (r, n = (~O, ~3). In a small neighborhood of 
the origin this represents a constant gravitational acceleration 
a in the negative ~ -direction. Let the worldcurve of C be 

«n = (r(T), ~(T» = (~tanh-l (aT), ~ In(l - a2T2») . 
a 2a 

( a) Show that ( is a geodesic and T is proper time for C. Sketch 
«T) for a = 1. 

(b) Let eo = (1, 0) and e3 = (0, 1) in the tangent space TGC(O) = 
TG(o,o). Show that they are unit vectors and determine 
their parallel translates eo(n and e3(T) in the tangent 
space TGC(T)' 

(c) Fix T and consider the vector v = e3(T). Show that the 
curve 

TJTn(S) = (~tanh-l ( T ), ~ In(a2((s + 1ja)2 - T2») 
, a 5+ 1ja 2a 

is a geodesic in G and satisfies the initial conditions 

TJT,n(O) = «T), TJ~,n(O) = v. 

(At least verify that the curve is a geodesic; solve the 
geodesic differential equations ab initio if you can.) 

(d) Conclude that (T, S) are Fermi coordinates for C. Show 
that the curves S = constant are vertical translates of the 
graph ~ = -In(coshar)ja in the frame G, while the curves 
T = constant are the graphs 

r = -sinh- - . 1 l(aT) 
a ea~ 

Sketch the (T, S)-coordinate grid as it appears in G. 
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Aspects of the 
relativistic equation 

Mass and volume 
both vary in relativity 

7.3 The Matter Field Equations 

In the presence of matter whose density is P at (xl, x2, x3), the 
Newtonian gravitational field satisfies the equation 

a2 <l> a2 <l> a2 <l> 
(axl )2 + (ax2)2 + (ax3)2 = 4nGp. 

We saw in the last section that <l> is analogous to yoo/2 in a Fermi 
coordinate frame, suggesting that the relativistic field equation 
might be 

for a suitable universal constant K. 

Even though our proposed equation has only a heuristic ba­
sis, it still faces several immediate difficulties. For a start, the 
left-hand side needs to be restated in a generally covariant form. 
This brings in the Ricci tensor. But the modification Rij = Kp is 
not adequate, because mass-density p is not generally covariant, 
either. We need to replace mass-density by a suitable relativistic 
expression that is, like Rij, a rank-2 covariant tensor so that the 
equation makes sense. Finally, we need to determine the con­
stant K. 

The Energy-Momentum 'Thnsor 

In relativity, the mass-density of an object increases on two 
counts when the object is moving. If JL is its rest mass (in an iner­
tial frame G, say), then we know that its mass is m = JL/~ 
in an inertial frame R in which it moves with velocity v. It also 
undergoes Fitzgerald contraction by the factor Jl - v2 in the di­
rection it moves-but not in perpendicular directions. Therefore, 
ifits "rest volume" is ~ in G, its volume in R will be S = ~Jl - v2 . 

The values of mass-density in the two frames are thus 

m 1 JL 1 
PR= - = --- = --PG > PG· 

S 1_V2~ I-v2 
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We saw in Section 3.1 that the proper covariant way to deal 
with the relativistic mass m of an object is to make it a component 
of the 4-momentum 

lP'R = (m, p) = (m, mv) = J1-(~, ~) = J1-1UR. 
1 - v2 1 - v2 

Recall that 1U R is the proper 4-velocity of the object in R's frame; 
that is, 1UR = Xk when XR('r) is the object's worldcurve in R 
parametrized by its proper time r. If lP'e is the 4-momentum of 
the same object in another inertial frame C that is connected to 
R by the Lorentz transformation L : R -+ C, then lP'e = L(lP'R). In 
particular, the components of lP'e are linear combinations of the 
components of lP'R; the object's mass in C's frame is related to its 
mass and 3-momentum in R's frame-not to the mass alone. 

While we can incorporate relativistic mass into a generally 
covariant 4-vector, we cannot readily do the same with volume. 
However, by rethinking the whole question in the context of a 
swarm of particles we can get a good covariant treatment of mass­
density. 

Consider a swarm of identical noninteracting particles that 
are at rest in an inertial frame G. Assume that they are uniformly 
distributed over space, with v particles per unit 3-volume in G, 
and have individual rest mass J1-. The product J1-V ofthe individual 
mass by the particle density gives us the mass-density of the 
swarm in G. 

4-momentum 

Mass-density of a 
swarm of particles 

R -~~~-----.... 

G 

Let us calculate the mass-density in a second inertial frame 
R in which G and the swarm move with velocity v. It will again 
be the product mn of the individual mass m = J1- / v'1=lJ2 by the 



368 Chapter 7 General Relativity 
----------~----------~--------------------

The particle density 
4-vector 

The tensor product 
oflP'andN 

The physical meaning 
of yij 

particle density n. 1b determine n in the new frame, note that a re­
gion containing v particles occupies the smaller volume J1 - v2 

according to R; this is Fitzgerald contraction. (Note carefully the 
difference between density v and speed v.) Hence there are 

v 
n= --=== 

J1-v2 

particles per unit volume in R, and 

f.-Lv 1 
PR = mn = 1 _ v2 = 1 _ v2 PG, 

in agreement with what we found above. In the figure above, 
where v = i, we can see that particle density increases by the 
factor %. Since individual mass also increases by %, mass density 
. al h b 25 5 5 Increases toget er y 16 = '4 x '4. 

Notice that particle density transforms exactly like relativistic 
mass. This suggests that we construct a 4-vector N to carry the 
"rest density" v the same way 4-momentum carries the rest mass 
f.-L: 

NR = (n, nv) = (~, ~) = VlUR. 
I-v2 1-v2 

Then, in any frame, mass-density is the product of the first com­
ponents oflP and N. We call N the particle density 4-vector. 

Of course, the product of those first components is not itself 
a covariant quantity. However, the 4-vectors IP = (po, pI, p2, p3) 
and N = (no, n1, n2, n3) are covariant; they are tensors of type 
(1,0). Therefore, if we take all possible products of a component 
oflP and a component ofN, 

rij = pinj, 

the result is also covariant. It is a tensor of type (2,0) called the 
tensor product oflP and N; cf. Exercise 3 in Section 6.5. So mass­
density is now embedded as the rOo component of a covariant 
object. What does the whole tensor rij represent? 

Since this is a question of physics, not geometry, we will get 
the clearest answer by using dimensionally homogeneous coor-
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dinates (xO, xl, x2,.x3) = (et, X, y, z). Then 1U = (e, v) and 

p, v 
m= , JI - (vle)2 

n= , JI - (vle)2 

IP = (me, p) = (Ele, pI, p2, p3), N = (ne, nv) = (ne, nvl , nv2, nv3), 

where E = me2 is the relativistic energy of a particle in the swarm. 
Therefore, 

Since multiplication by n gives the spatial density of a quantity, 
we see that rOo = En = mne2 = pe2 is actually the density of the 
relativistic energy of the swarm. 

We can interpret the other components of the tensor rij by 
analogy with the simpler example of fluid flow that we consid­
ered in Section 4.3. We represented the flow through space of an 
incompressible fluid of density p by a 3-vector F = P V, where 
V = (V x, Vy , Vz) was its 3-velocity. Then the component Fx = p Vx 
gives the rate at which fluid mass flows across a plane perpendic­
ular to the x-direction, in kilograms per second per square meter. 
If we abbreviate this as x-flow of mass, then we have 

pVx 

F: x-flow of 
mass 

pVy 

y-flowof 
mass 

pVz 

z-flowof 
mass 

While an element of fluid is characterized by a single quantity, 
its mass, particles in the swarm need four: their energy E and 
their momentum components pi. Each of these has a density and 
a component of flow in the three spatial directions-accounting 
for the 16 quantities we find in yij. For example, pI nv2 is the 
2-flow of I-momentum, while Envl (without the factor of lie) is 
the I-flow of energy. Here is the full list: 

Energy density 

The 
energy-momentum 

tensor 
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yOO yOl yD2 y03 

density of I-flow of 2-flowof 3-flowof 
energy energy -;- c energy -;- c energy -;- c 

yI0 yll yI2 yI3 

C x density of I-flow of 2-flowof 3-flowof 
I-momentum I-momentum I-momentum I-momentum 

y20 y2I y22 y23 

C x density of I-flow of 2-flowof 3-flowof 
2-momentum 2-momentum 2-momentum 2-momentum 

y30 y3I y32 y33 

C x density of I-flow of 2-flowof 3-flowof 
3-momentum 3-momentum 3-momentum 3-momentum 

Because ofthis interpretation we call yij the energy-momentum 
tensor. In dimensionally homogeneous coordinates the compo­
nents of yij all have the same dimensions: energy per 3-volume. 
This requires the compensating factors that we see in rao and 
yOfJ. It is also true that the energy-momentum tensor is symmet­
ric: yji = yij. You are asked to verify these facts in the exercises. 

Matter and energy usually take more complicated forms than 
a swarm of identical particles moving in parallel without inter­
acting. For example, the particles may have different masses or 
velocities; they may collide; they may form a fluid that exerts 
internal pressure; and they may form a solid that has internal 
stresses. Even if there is no matter present, a region of space­
time may have energy in the form of an electromagnetic field. 
Each such manifestation of matter and energy gives rise to a fur­
ther contribution to the energy-momentum tensor that can be 
calculated using the appropriate laws of physics. However, the re­
sulting object continues to be a rank-2 symmetric tensor ykl that 
represents in a generally covariant way the matter and energy at 
any point in spacetime. 
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Conservation of Energy-Momentum 

Let Tij be the covariant version of the energy-momentum tensor, 
obtained in the usual way by lowering indices: 

Tij = gikgj 1 Tkl. 

This is the natural candidate to replace mass-density p in the field 
equations in the presence of matter-energy: Rij = K Tij. Alas, this 
equation is still not correct, but the difficulty has moved to the 
left-hand side. Energy-momentum is a conserved quantity; as 
we shall see, this implies that the energy-momentum tensor has 
divergence zero. The same is not true of the Ricci tensor, so the 
two cannot be proportional. 

We shall now analyze the energy-momentum tensor the same 
way we analyzed the fluid flow vector F in Section 4.3-and we 
shall reach the same conclusion. Consider the flow of energy­
momentum through a small 4-dimensional box in an inertial 
frame R. Suppose the box is centered at (c t, x, y, z) = (xO, xl, x2, x3) 
and has sides whose dimensions are !:l.xo, !:l.xl , !:l.x2, and !:l.x3. 
While there may be collisions and other events that transform 
matter and energy inside the box, the conservation of energy­
momentum means that the net flow is zero: What goes in must 
come out. 

slice of R with 
x l = constant 

Let 1l'k denote the kth row of the energy-momentum tensor 
1l' = Tkl. The net flow of 1l'k out of the box is the algebraic sum 
of the outflows across its eight faces. On each face, we can break 
down 1l'k into a parallel component and a normal one; only the 
normal component contributes to the sum. The figure illustrates 
the flow in the 2-direction; the normal contribution is made by 
the 2-flow component Tk2. (Because the figure is a slice of R with 

Tij replaces p in 
the field equations 

Energy-momentum 
is conserved 

Flow across 
a single face 
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Total outflow is 
the divergence 

Xl = constant, we see only a 3-dimensional slice of the box and 
slices of only six of its faces, not eight.) 

If the dimensions of the box are small enough, rk2 is essen­
tially constant on each face. The outflow on the right face is 
therefore approximately 

r k2 (xo, xl , ~ + ll.;2 , x3 ) ll.xo ll.xl ll.~ . 
In the same way, the flow from left to right on the left face is 
approximately 

r k2 (xo, xl , x2 _ ll.;2 , ~ ) ll.xo ll.xl ll.~ . 

But this is an inflow, not an outflow. The combined outflow across 
these two faces is approximately equal to the difference 

[ rk2 (xo xl x2 + ll.~ x3) _ r k2 (xo xl x2 _ ll.~ ~)] ll.xo ll.xl ll.~ 
" 2 ' "2 ' 

rk2 (xo xl x2 + ll.~ x3) _ rk2 (xo xl x2 _ ll.x2 ~) 
" 2 ' "2 ' 

- 2 ll.E, ll.x 

where ll. E = ll.xo ll.xl ll.x2 ll.~; ll.l: is the negative of the 4-volume 
of the box in the Minkowski metric. 

The expressions above involve vectors based at different 
points of R, so we cannot calculate their differences unless we 
use parallel transport in the way described in Section 6.5. In that 
case the difference quotient above is approximately equal to the 
covariant derivative of rk2 with respect to x2. Therefore, the net 
outflow across the pair of ~-faces is approximately 

r~ ll.E. 

In a similar way we can approximate the net outflow across the 
other three pairs of faces by r~ ll. E, r~l ll. E, and r~: ll. E. There­
fore, using the summation convention we have this approximate 
expression: 

total net flow out of the box = r~ ll. E. 
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This is proportional to the 4-volume of the box (ignoring the sign); 
the proportionality factor gives the outflow per unit volume: 

r~f· , 

Since this sum of derivatives is like the classical divergence of a 
vector field, we give it the same name: 

Definition 7.1 Let sJ,k be a tensor of type (p, q + 1); its divergence Divergence of a tensor 

is the tensor div S = sJ;~ of type (p, q). 

Theorem 7.4 The divergence of the energy-momentum tensor is 
identically zero: r~f = O. Moreover, rf;l = o. 

PROOF: According to our calculations, the net flow of energy­
momentum through a box of 4-volume -~L is approximately 
r~f ~ L, and the approximation becomes exact as the dimensions 

~xj --+ O. Since energy-momentum is conserved, the limiting 
net flow is zero, so r~f = O. The second statement follows from 
the product rule and the fact that gik;l = 0: 

r l (rkl) rkl rkl i;1 = gik ;1 = gik;1 + gik ;1 = O. END OF PROOF 

Divergence of the Ricci Thnsor 

We turn now to determining the divergence of the Ricci tensor. 
The first step is the following result, called the Bianchi identity. 

PROOF: We prove the result at the origin of a Fermi coordinate 
frame; by general covariance, it will then be true at any point in 
any coordinate frame. All the Christoffel symbols vanish at the 
origin, so both the Riemann tensor and its covariant derivative 
have simple forms: 

Bianchi identity 
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Scalar curvature 

h ar~ art 
Rijk = axj - axk ' 

h a2r~ a2rt 
Rijk;l - axla~ - axlaxk' 

h arJ ar~ 
R ----

h a2rJ a2r~ 
Rikl;j - a~ axk - a~ axl ' ikl - axk axl ' 

hart arJ 
R ----

h a2rt a2rJ 
Rilj;k - axkaxl - axka~ 0 ilj - axl axj , 

The six terms on the right sum to zero. END OF PROOF 

The following theorem on the divergence of the Ricci tensor 
is necessarily expressed in terms of the mixed form Rj = gih Rij. It 
also involves the scalar curvature R = R~, the contraction of the 
mixed Ricci tensor. For the scalar curvature, as for any function 
(tensor of rank 0), the covariant derivative is just the ordinary 
partial derivative. 

PROOF: In the Bianchi identity, contract on j = h: 

0= R?hk;l + R?kl;h + R?zh;k = Rik;l + R?kl;h - Ril;k. 

The third term is a result of the fact that the Riemann tensor 
is antisymmetric in its second pair of indices: R?zh' k = - R?hl' k = 
-Ril;k. Since the covariant derivative of gim is zero, we can remite 
our equation as 

0= (imRik);l + (imR?kl);h - (gimRil);k 

= Rk-l + (im R?kl) - Rfko , ;h' 

Now contract on m = 1: 

1 (ilh) 1 1 (ilh) 0= Rk'l + g Rikl - R1'k = Rk'l + g Rikl - R;k. 
, ;h" ;h 

Notice that scalar curvature appears in the last term. We can 
simplify the second term by first noting 
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ilRh il hmR g ikl = g g mikl 
il hmR = g g imlk (symmetry of Rmikz) 
hm ilR = g g imlk 
hmRI hmR Rh = g mlk = g mk = k· 

Therefore, (gi1R?kl);h = Ri;h. Ifwe change the dummy summation 
index 1 f-+ h in the first term of the equation, we get 

END OF PROOF 

Since the scalar curvature is not generally constant, the Ricci 
tensor has nonzero divergence. 

The Relativistic Field Equations 

If we write the last theorem in the form 

(Ri - ~oZR);h = 0, 

we find a tensor, namely Ri - ~oZR, that is divergence-free and 
completely determined by curvature-that is, by the gravitational 
potentials and their first and second derivatives. The covariant 
form ofthis tensor is Rij - ~gijR; using it we can finally write the 
correct relativistic equations for the gravitational field: 

Rij - ~gijR = KTij. 

We still need to determine the constant K. This is easier to do if 
we convert the equations to an equivalent form that Einstein used 
to express them. First rewrite the equations with mixed tensors, 

Ri - ~oZR = KTZ, 

and then contract on the two indices: 

R~ - ~o~R = R - 2R = KT~ = KT. 

The contraction T = T~ is called Laue's scalar. The left-hand side 
reduces the way it does because oZ is the 4 x 4 identity matrix, so 

div R~ ;6 0 

A divergence-free 
curvature tensor 

Einstein's form 
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Determine K in 
conventional units 

its trace 8~ is 4. Thus R = -KT; use this result in the covariant 
form of the field equations to solve for Rij: 

Rij = KTij + ~gijR = K(Tij - ~gijn. 

We turn now to the task of finding K; for clarity, we will use 
dimensionally homogeneous coordinates (c t, X, y, z). Our strategy 
is to solve the single equation 

Roo = K(Too - ~gOOn 

in a simple physical situation where we can determine Roo, Too, 
and T. 

The simplest possibility is a swarm of noninteracting particles 
moving together. In a Fermi coordinate system (gO, gl, g2, g3) in 
which the worldline of one of the particles is the gO-axis, the 
proper 4-velocity for the swarm is just 1U = (c, 0, 0, 0), and the 
energy-momentum tensor has only the single term 

Too = rg = yoo = pc2, 

the energy-density of the swarm. Since T is also equal to pc2 and 
since Yoo = 1 on the gO-axis, 

'T' 1 T 12 .Loo - zYoo = zpc . 

In Section 7.2 we showed that along the gO-axiS in a Fermi coor­
dinate system, 

R - Kh _ ~ ~ a2yOO 
00 - h - 2 t;} (aga)2· 

Furthermore, this corresponds to the Laplacian of the Newtonian 
potential, 

However, Roo and V2<l> have different dimensions: The units for 
Roo are 1/m2, while the units for V2<l> are 1/sec2 (exerCise). 1b 
equate the two expressions we must factor in an appropriate 
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power of e to get the dimensions to balance; thus 

1 2 
2V <l> = Roo. 
e 

(Although we got this equation only by heuristic reasoning, we 
shall justify it by other means in the next chapter.) The classical 
field equation tells us that V2<l> = 47rGp, so Roo = K(Too - ~gOOn 
becomes 

1 1 
-47rGp = K-pe 2. 
e2 2' 

hence 
87rG 43 sec2 

K = -- ~ 2 x 10- --. 
e4 kg-m 

Here, then, are the relativistic field equations in two equiv­
alent forms. The culmination of Einstein's theory of gravity, 
they describe how matter and energy determine the curvature 
of spacetime. 

Relativistic equations of the gravitational field: 

87rG ( 1 ) Rij = -4- Tij - zgij T , 
e 

These are second-order partial differential equations for the 10 
components of the gravitational potential; their solutions de­
termine the gravitational field, which, in turn, determines the 
geodesic paths that both matter and massless particles must fol­
low. 

The Cosmological Constant 

In 1917, Einstein considered an extension of the gravitational 
field equations under the assumption that the spatial universe is 
finite and has the form of a 3-dimensional sphere 53; cf. [8]. One 
way to describe the 3-sphere of radius r is as the set of points in 
R4 : (x, y, z, u) that satisfy the equation 

S3 (r): ~ + i + ~ + u2 = ,z. 
Compare this to the 2-sphere in R 3 . Like the 2-sphere, the 3-
sphere can be parametrized by angle variables, but three are 
needed now, instead of two: 

How matter-energy 
determines curvature 

A finite universe 
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Modifying the 
Newtonian field 
equation 

The cosmological 

constant 

x: 

x = r cose coscp cosw, 

y = r sin e cos cp cos w, 

z = rsincp cosw, 

u = rsinw, 

o :s e :s 2rr, 
-rr/2 < cp < rr/2, 
-rr/2 < w < rr/2. 

In the exercises you are asked to verify this claim and all the 
others to follow. Notice that we already have a new question 
about the relation between physics and geometry to consider: 
What is the radius r of the universe? 

Einstein also assumed that this universe lasts forever in essen­
tially the same form. Thus spacetime is the product E = R X S3 (r), 
and it can be described by the (1 + 3)-dimensional frame R pro­
vided with dimensionally homogeneous coordinates (ct, e, cp, w) 

and the Minkowski metric, as adapted to the 3-sphere. Because 
the spatial universe itself is finite (its volume is 2rr2r3), the total 
amount of matter-and thus its average density Po-is also finite. 
Therefore, Einstein observed, if we replace the Newtonian field 
equation V2<1> = 4rrGp by 

V2<1> - A<I> = 4rrGp, 

then the constant potential 

4rrG 
<1>0 = ---Po 

A 

is a solution to the new equation (if we set p = Po on the right­
hand side of the equation). Of course, matter is not distributed 
uniformly throughout space, so p generally differs from Po. Th 

deal with this, let <1>1 solve the equation 

V2<1> - A<I> = 4rrG(p - Po). 

Then <I> = <1>0 + <1>1 solves the field equation V2<1> = 4rrGp. If, 
by contrast, we assume that space is an ordinary Euclidean 3-
dimensional space, then it can be shown that the Newtonian 
theory requires the average density of matter to be zero and 
<I> ---+ 0 far from gravitating bodies. 

How should the modification be carried over from the New­
tonian field equations to the relativistic? We know that the "geo-
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metric" side (the one involving the Ricci tensor) must have zero 
divergence for the equations to be valid. Einstein therefore pro­
posed 

1 8nG 
Rij - zgijR - gijA = -4-Tij. 

c 
because the new term gij A has zero divergence and gij is analo­
gous to <I>. Under the assumption that the only contribution to Tij 

comes from matter of uniform spatial density p, Einstein solved 
these modified field equations (see Exercise 12) and showed that 

A = 4nGp =~. 
c 2 r2 

The total amount of matter is therefore 

2pn2c2r nc2 
p x voIS3 (r) = p. 2n2~ = =--

4nGp 2G,.{A 

Since A determines two fundamental data of the "cosmos," its ra­
dius and its total mass, it has come to be called the cosmological 
constant. 

Exercises 

The aim of the first three exercises is to show that the divergence 
of a contravariant vector field ah can be expressed in terms of the 
determinant g of the metric tensor-and without the Christoffel 
symbols-as 

. h h 1 a (ahA) 
dIva = a·h = r=;; h· , ",-g ax 

.. agij k 
1. Show that gIl axh = 2f kh. Suggestion: First show that 

agij . 
axh = fih,j + fjh,i. 

then contract with i j and use the symmetries of the Christoffel 
symbols. 

2. Suppose G = (gij) is a 2 x 2 symmetric matrix, so g = det G = 
gl1g22 - g12g21. Suppose also that g < o. 
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( a) Show by direct computation that gij = ~ ag , i, j = 1, 2. 
gagij 

(b) Justify these equalities: 

rk _ ~~~ _ ~ alnlgl _ alnA _ _ 1_aA 
kh - 2 g axh - 2 axh - axh - A axh . 

h aah ah aN 1 a (ahA) 
(c) Deduce that a'h = -h + ~--h- = ~ h 

. ax y-g ax y-g ax 

3. Now consider the general case in relativity: G = (gij) is a 4 x 4 
symmetric matrix with g = det G < O. Most of the following 
can be deduced from standard facts about determinants and 
inverses that you can find in a text on linear algebra. 

(a) Let Gij be the 3 x 3 minor obtained by deleting the ith row 
and jth column from G, and let !::J.ij = (_I)i+j det Gij be the 
corresponding cofactor. Show that 

(no sum on t), 

foranyi= 1,2,3,4. 

(b) Explain why none of !::J. il, !::J. i2, !::J. i3, !::J. i4 depend on gij and 
use this fact to conclude that agjagij = !::J. ij . 

(c) Show that gij = !::J.jijg, where gij is, as usual, the element 
in the ith row and jth column of the inverse of G. Note 
the order of the indices, which is needed for an arbitrary 
matrix but is irrelevant here because G is symmetric. 

1 ag 
(d) Deduce that gij - --, then argue as in Exercise 2 to 

g agij 
show that 

4. (a) Show that the Ricci tensor can be written in the form 

ar~ a2 lnA palnN p h 
Rik = axh - axiaxk + r ik axp - rihr pk' 
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(b) Deduce from the equation in part ( a) that Rik is symmetric. 

(c) 1b simplify calculations, Einstein frequently assumed a 
coordinate frame in which g = -1. What simple form 
does Rik take then? 

5. Suppose R is an inertial frame in which there is a swarm of non­
interacting particles with particle density 4-vector NR. Assume 
that R has traditional coordinates (t, x, y, z), so NR = (n, nv). 
Suppose C is a Galilean observer with proper 4-velocity lU R in R. 
Show that the numerical density of the swarm in Os frame is 
NR . lUR. (This is the ordinary Minkowski inner product in R.) 
Suggestion: First calculate the corresponding quantity NG . lUG 
in the inertial frame G in which the swarm is at rest. 

R --~~r?""-----------­

C 
G 

6. (a) Consider a swarm of non interacting particles of individual 
rest mass JJ, and particle density v in a rest frame. Suppose 
the swarm has proper 4-velocity lU = (uo, u1 , u2 , u3 ) in a 
frame R. Show that the energy-momentum tensor of the 
swarm in R can be written as Tij = JJ,vuiuj . Does this result 
depend on whether traditional or dimensionally homoge­
neous coordinates are used in R? 

(b) Prove that Tij is symmetric: Tji = Tij. 

7. (a) Consider the energy-momentum tensor Tij in a frame 
R provided with dimensionally homogeneous coordinates 
(ct,x,y,z) = (xO,xl,x2,~). Show that every component of 
Tij has the dimensions energy /length3 . 

(b) Show that this implies that yaO / c, rather than yaO, can be 
interpreted as density of momentum in the a-direction. 

t 



382 Chapter 7 General Relativity 
----------~----------~--------------------

Similarly, show that c T°{J, but not T°{J, can be interpreted 
as the flow of energy in the a-direction. 

8. Show that the components of the Ricci tensor all have dimen­
sions meters-2 in a frame R with dimensionally homogeneous 
coordinates (ct, x, y, z). Determine the dimensions ofthe New­
tonian potential <l> and conclude that its Laplacian V2<l> has the 
dimensions seconds-2 . 

9. Consider the relativistic equations of the gravitational field 
with the cosmological modification: 

1 8rrG 
Rij - 2 gij R - gij A = -4- Tij . 

C 

Assume, in this exercise, an arbitrary spacetime frame with 
dimensionally homogeneous coordinates. In particular, do not 
assume that the spatial universe is a 3-sphere. 

( a) Determine the dimensions of gij, Rij, R, and Tij and show 
that A must have the dimensions oflength-2 . 

(b) Show that the left-hand side has zero divergence. 

( c) Assume Tjj == 0 and show that R = -4A where R is the 
scalar curvature function R = Ri. Then show that Rij = 

-Agij. 

(d) The original matter field equations connect the curvature 
of spacetime to the presence of matter-energy; in particu­
lar, an empty universe (Tij == 0) will be flat. Show that with 
the "cosmological" term added, the empty universe can no 
longer be flat if A i= O. (This lends support to Einstein's 
proposal to consider a spatial universe of the form 53(r).) 

(e) Show that the modified equations can also be written in 
the form 

Note the change in the sign of gjjA. 

10. (a) Let r be a fixed positive number; consider the map x 
Q -+ R 4 defined by 
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x = r cos e cos g:> cos w, 

y = r sin e cos g:> cos w, 
x: 

z = r sin g:> cos w, 

u = rsinw; 

{
o < e < Zn, 

Q: -njZ S g:> S njZ, 

-njZ S w S njZ. 

Show that the image ofx is 53 (r), the 3-sphere of radius r. 

(b) Using the ordinary Euclidean dot product in R 4 , determine 
the metric aij = Xi . Xj that x induces on Q. 

(c) By analogy with the area of a surface (Section 5.1), show 
that the volume of the 3-sphere of radius r is 

v = I II .fa de dg:>dw, 
n 

where a = det(aij). Show that V = Zn 2 ,3 by computing the 
integral. 

11. (a) Let E = R x 53 (r) be Einstein's quasi-static spherical uni­
verse, described by the frame R with dimensionally ho­
mogeneous coordinates (ct, e, g:>, w) = (xO, xl, x2, ~). Show 
that the metric on E is 

(This is a diagonal matrix; the entries not printed are all 
zero.) 

(b) Compute the inverse matrix gij and the Christoffel sym­
bols of the first kind on E. Show that the only nonzero 
Christoffel symbols of the second kind are 

r 2 . 
11 = SIng:> cosg:>, 

rr I = cos2 g:> sin w cos w, 

r 3 . 
22 = Slnwcosw, 

ri2 = ril = - tang:>, 

ri3 = r~l = - tanw, 

ri3 = r~l = -tanw. 

(c) Compute the determinant g and L = In A. Show that 
the components of the Ricci tensor are 
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2 
Roo = 0, while Rij = -zgij if (i, j) i= (0,0). 

r 

(Suggestion: Use the formula for the Ricci tensor in Exer­
cise 4.) 

12. (a) Assume that all matter-energy in the Einstein universe 
E = R x 53 (r) appears only as a swarm of noninteracting 
particles of uniform density p at rest in the frame R. Thus 
TOO = pc 2, and all other components of the matter tensor 
Tij are zero. Determine the mixed and covariant tensors 
T} and Tij and determine Laue's scalar T = Ti. 

(b) Show that the 10 matter field equations 

8:rrG ( 1 ) Rij + Agij = -4- Tij - "2 gij T 
c 

reduce to the following pair of independent equations, 

4:rr Gp 2 4:rr Gp 
A=~, -r2 +A=-~, 

1 c2A 
which together imply r = fA and p = --. 

v A 4:rrG 

Further Reading for Chapter 7 

Einstein's own writing on general relativity is incomparable. The 
fundamental paper is [10]; he considers the cosmological con­
stant in a closed universe in [8]. Of the many substantial texts, 
the following provide a variety of approaches to general rela­
tivity: Adler, Bazin, and Schiffer [1]; Dubrovnin, Fomenko, and 
Novikov [7]; Frankel [14]; Landau and Lifshitz [17]; Lawden [18]; 
Misner, Thorne, and Wheeler [24]. Separation of geodesics plays a 
central role in Misner et al. [24] and is also discussed from a differ­
ential geometric point of view in [5] and [15]. Fermi coordinates 
along a geodesic are considered in detail in the paper by Manasse 
and Misner [21]. The physical basis of the energy-momentum 
(or stress-energy) tensor is carefully laid out in volume 2 of The 
Feynman Lectures [13] and developed in the context of general 
relativity in [18], [24], and [25]. 



Consequences 
CHAPTER 

In the last part of his revolutionary 1916 paper on general relativ­
ity [10], Einstein draws several conclusions from the new theory 
that lead to testable predictions. Two of the most famous are that 
a massive body will bend light rays that pass near it and that the 
point on the orbit of Mercury that is closest to the sun (the perihe­
lion point) will drift by an additional amount that the Newtonian 
theory cannot explain. Indeed, the perihelion drift was already 
known; Einstein's prediction resolved a long-standing puzzle. And 
in 1919, measurements taken during an eclipse of the sun con­
firmed that light from stars that passed near the sun was deflected 
in just the way Einstein had deduced. 

1b draw these conclusions, Einstein first demonstrated that 
Newton's theory is a "first approximation" to relativity. Then, 
from the Newtonian potential of the sun he derives a relativis­
tic gravitational field that he uses to calculate the deflection of 
light and the perihelion drift. In this chapter we shall see how 
the Newtonian approximation leads to the predictions that estab­
lished general relativity. 

Testable predictions 
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How Einstein's theory 
reduces to Newton's 

8.1 The Newtonian Approximation 

The gravitational theories ofN ewton and Einstein arise out of fun­
damentally different basic conceptions. Nevertheless, for objects 
that move at low speeds in weak gravitational fields, the two the­
ories give results that are in close agreement. This agreement oc­
curs because general relativity reduces to Newtonian mechanics­
in a sense we shall make precise-when 

• the gravitational field is weak; 

• objects move slowly in relation to the speed of light. 

Briefly stated, the reduction involves neglecting small quantities 
in the relativistic theory. In this section we shall say what makes a 
quantity "small," why that means it can be neglected, and how the 
parts that are left lead to a good approximation of the Newtonian 
theory. 

Use conventional units The standard by which we shall measure the size of a quantity 

How a Lorentz boost 
reduces to a 
Galilean shear 

is the speed of light, so it is instructive to use conventional units, 
in which c ~ 3 x 108 mjsec and velocities have the dimensions of 
meters per second, rather than geometric units, in which c = 1 
and velocities are dimensionless. 

Small Quantities 

Lorentz and Galilean transformations provide a good example of 
the way reduction works. When one observer in an inertial frame 
G moves with velocity v with respect to a second observer, R, 
then classical mechanics relates the two frames by a Galilean 
shear Sv : G ---+ R, while special relativity uses a Lorentz velocity 
boost Bv : G ---+ R: 

Bv=~l (1 :Z) . ../1 - (vjc)2 v 1 

The matrices take these forms when we use conventional units 
together with traditional coordinates (t, z). If v is small in relation 
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to e, then we can write 

-;:==1=::::;;: = 1 +o(~) 
"II - (v/e)2 e2 

and 

giving us a strikingly simple relation between the two matrices: 

Therefore, Bv reduces to Sv when we neglect terms that are of the 
same order of magnitude as l/e 2 . In ordinary terrestrial physics, 
the speed oflight has an extremely large value, and its reciprocal 
is therefore extremely small; in those circumstances the equation 
tells us that there is no practical way to distinguish between a 
boost and a shear. 

However, if v is not small in relation to e, the outcome is 
entirely different. For example, if v = 0.ge, then 

( 
1 0.9/e) 

Bv = 2.3 , 
0.ge 1 

while 

The most significant difference is the factor 

1 
2.3 = t====:::;:: 

Jl - (0.ge/e)2 

that multiplies Bv. Th see why this differs so much from I, note 
that v = 0.ge implies that we should write v = O(e), so 

!:. = 0(1) 
e 

and 1 = 1 + 0(1) :11 + o( 12) . 
Jl - (v/e)2 e 

However, if v = 0(1), then we do indeed have 

-;:==1=::::;;: = 1 + o(~) , 
Jl - (v/e)2 e2 

so our original assumption - that v is small in relation to e - means 
that v = 0(1) and not v = O(e). 
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Criterion for 
neglecting small 
quantities 

Dimensionally 
homogeneous 
coordinates 

Expand Kkl 
in powers of l/e 

From the point of view of our example, we expect that any 
quantity Q will have the same order of magnitude as one of those 
in the sequence 

112 
···«-«-«l«c«c « .... 

c2 c 

We will then ignore Q if it is of the same order of magnitude 
as a sufficiently high power of 1/ c. In practice, we will write 
each relativistic expression (e.g., metric tensor, components of 
the gravitational field, component of a worldcurve) as a Thylor 
series in powers of 1/ c (including small positive powers of c, 
as necessary), do our computations with these series, and then 
truncate the result at a point that is appropriate for the context. 

Weak Gravitational Fields 

1b explore the Newtonian approximation, we shall find it helpful 
to work with dimensionally homogeneous coordinates, so 

X = (xo, xl, x2, x3) = (ct, x, y, z) meters, 

IIXI1 2 = (xO)2 _ (xl)2 _ (x2)2 _ (~)2 meters2 

in the frame R. Let J denote the matrix that defines the Minkowski 
norm; its components hi are all dimensionless: 

(1 0 0 0) o -1 0 0 
J = Ukl) = .0 0 -1 O· 

o 0 0-1 

where 

We can now say what we mean by a weak gravitational field 
for R. The basic idea is simple. If we had gkl = hi, then R would 
be an inertial frame, and there would be no gravity. Adding small 
terms to gkl should therefore introduce weak gravitational effects 
to R. Since "small" means Ilof order of magnitude 1/ c:' we can 
do this systematically by expanding the gravitational potential 
functions gkl in powers of 1/ c : 

1 (1) 1 (2) 1 (3) ( 1 ) 
gkl = hi + - gkl + 2" gkl + 3" gkl + 0 4" . c c c c 
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Since the gravitational field - rZI involves partial derivatives of 
the potential functions, we shall also want those partial deriva­
tives to be small in the same way. Our goal is to have the classical 
equations of motion and field equations emerge from their rela­
tivistic counterparts: 

d2J!' h d:0 dJd ---r --dr2 - kl dr dr 
d2:rr a <I> 
dt2 = - axx' 

. 8nG 
Rjj = -4 (Tjj - ~gjjT) V2<1> = 4np. 

e 

In fact, the exercises show that this will not happen unless the 
terms of order lie in the metric vanish: g~i) = O. Here, then, is 
our definition of a weak field. 

Definition 8.1 A weak. gravitational field is one where the grav­
itational potential is the standard Minkowski metric plus Hcorrection" 
terms of order no greater than 1 I e2 : 

1 (2) 1 (3) ( 1 ) 
gkl = hi + 2" gkl +"3 gkl + 0 4" . e e e 

The individual components must be small and must furthermore vary 
slowly in space and time: 

Note that 

a (m) 

~=0(1), at 
a (m) 

~ =0(1). 
axx 

ag~~) = ag~~) dt = 0(1) . ~ = o(~) . 
axo at dxo e e 

Proposition 8.1 The matrix] is its own inverse: rj = Iij. If gkl is a 
weak gravitational field, then 

PROOF: Exercise. 



390 Chapter 8 Consequences 
----------~----~-------------------------

World time and 
proper time 

- =1+0 -dt ( 1 ) 
dr c2 

Equations of Motion 

1b transform the relativistic equations of motion into the classi­
cal ones, we must be able to pass between proper time-which 
is not part of the Newtonian theory-and ordinary "world time!' 
Ifx(t) = (x1(t), x2(t), x3(t)) is the trajectory of a classical parti­
cle, then X(t) = (ct, x(t)) is its worldcurve. 1b parametrize X by 
proper time, we can use the integral 

L(t) = it IIV(t) Iidt. 

But because the 4-velocity V = (c, i) is measured in meters per 
second, L is a length, not a time. However, we get proper time by 
correcting dimensions in the usual way: r(t) = L(t)/c seconds. 

The Newtonian approximation applies only to particles whose 
velocities are small, so we make the following definition. 

Definition 8.2 We say that a particle with trajectory x(t) = 
(x1(t), x2(t), x3(t)) is slow if XX = 0(1), ex = 1,2,3. 

Theorem 8.1 In a weak gravitational field the four relativistic equa­
tions of motion of a slow particle reduce to the three classical equa­
tions 

---+ 
"a a <I> 
X =--

axa' 
and the Newtonian potential <I> is ~ g6~) . 
PROOF: The reduction has several stages. First, proper time r has 
to be replaced by "world time" t; second, one of the four relativistic 
equations has to vanish or at least become irrelevant; third, the 
right-hand sides of the three remaining equations have to reduce 
to the gradient of a single function. We do all this in a sequence 
of steps. 

STEP 1. In the simplest situation of uniform motion in an inertial 
frame (t, z) with Minkowski metric 11(t, z)11 2 = t2 - z2/c2, 

I:l r = J I:l t2 - c12 I:lz2 = 1 - c~ (~:) 2 I:l t = [1 + 0 (c12 ) ] I:l t, 
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at least when v = !J..z / !J.. t = 0(1). We show that the same is true for 
a slow particle in a weak gravitational field. Along the worldcurve 
X(t), the proper time function ret) satisfies 

d - IIVII d -) KJdX"X' d r - t - 2 t. 
c c 

Because the field is weak and fe° = c, XX = 0(1), we have 

gkl JckXZ XX XX feP ( 1 ) 
--=-2 - = goo + 2goa- + gap-2- = 1 + 0 2" . 

c c c c 

Therefore, 

dr = )Kklc~X' dt =)1+ 0C') dt = [1+ 0C,)] dt. 

You should show that in addition, 

-=1+0 -dt (1) 
dr c2 

and dr (1) dt = 1 + 0 c2 • 

STEP 2. We now turn to the equations themselves. If we repa­
rametrize X(t) using the proper time r, we can differentiate the 
components of X with respect to r using the chain rule. As usual, 
the first component is different from the rest: 

dxo dxOdt [(I)J (1) 
dr = dt dr = c 1 + 0 c2 = C + 0 ~ , 

so the left-hand side of the first relativistic equation of motion is 
negligible. (In the exercises you are asked to show that this would 
not be true if we abandoned the requirement gk;) = 0 for a weak 
gravitational field.) For a = 1,2,3, 

-=--=XCX 1+0 - =XCX+O - , dxIX dxIX dt . [ ( 1 )]. ( 1 ) 
dr dt dr c2 c2 

d2xIX d [-".IX ( 1 )] dt :~ ( 1 ) 
dr2 = dt x + 0 c2 dr = x + 0 c2 . 

Comparing the time 
derivatives 
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Thus, there is a negligible difference between the proper time 
derivatives and the world time derivatives ofthe spatial variables 
xl, x2, X3. (If the particle is not slow, then we cannot draw this 
conclusion; see the exercises.) 

Order of magnitude of STEP 3. We must now determine what form the right-hand sides 
the Christoffel of the relativistic equations take. The Christoffel symbols involve 
symbols partial derivatives of gkl with respect to the coordinates, and again 

we must treatxO = ct differently from XX. Since gkl = hl+0(1/c2), 

Reducing the 
geodesic equation 
for xO 

agkl = o(~) but agkl _ agkl dt _ agkl ~ - o(~) 
axa c2 axo - at dxD - at c - c3 ' 

Therefore, rkO,k = 0(1/c3), while rkl,i = 0(1/c2) in general. For 
the Christoffel symbols of the second kind we note in particular 
that 

(fJ f:. a) 

For the remaining Christoffel symbols you should prove the fol­
lowing: 

rz, = o( C12 ) , (k,1) f:. (0,0). 

STEP 4. We are now in a position to consider how the geodesic 
equations of relativity reduce to the equations of motion of the 
Newtonian theory. As always, xO is a special case. The equation 
for xO is 

d2 XO ° dxk d,e ° (dXO ) 2 ° dxo dXX ° dXX dxP 
dr2 = -rkl dr dr = -roo dr - 2rOa dr dr - raP dr dr' 
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and we have already determined that the left-hand side is O(I/c). 
For the three terms on the right-hand side we have 

r& (::)' = DC, ) (, + om)' = DC, ) (,2 + 0(1)) = om ' 
rga ~:o a;: = 0(cI2 ) (c + O(~)) (xa + 0(cI2 )) = O(~), 

r2~ a;: ~: = 0(:2) (xa + 0(cI2 )) (x~ + 0(cI2 )) = 0(cI2 )' 

In other words, the geodesic equation for xO has order 1/ c; in the 
Newtonian approximation it is entirely negligible. Note that we 
used the condition xa = 0(1) to guarantee that the second and 
third terms are negligible. 

STEP 5. We turn now to the geodesic equation for ~ , 

d2~ (dXO)2 dxo dx~ dx~ dxY 

dr2 = -rgo dr - 2rg~ dr dr - r~y dr dr' 

The left-hand side reduces very simply to 

d2~ ,,a o( 1 ) 
dr2 = x + c2 ' 

On the right-hand side, the second and third terms are negligible 
as in the case of xo: 

rg~ ~: ~: = 0(cI2 ) (c + o(~)) (xa + 0(cI2 )) = O(~), 
a dx~ dxY ( 1 ) (. ~ ( 1 )) (. Y ( 1 )) _ (1) r ~y dr dr = 0 c2 X + 0 c2 X + 0 c2 - 0 c2 • 

But the first term provides a nonnegligible contribution, 

r& e:)'= [2~2 a:; + DC,)] (,2 + 0(1» = ~ a:; +0G), 

We can therefore rewrite the geodesic equation in the form 

(2) ( 
XX = -! agoo + 0 !). 

2 axa c 
END OF PROOF 

Reducing the 
geodesic equation 

for :fl 
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The Field Equations 

Theorem 8.2 The relativistic equations of a weak gravitational field 
imply the classical field equation: 

8nG I 
Rij = -4-(Tij - zgijT) 

c 

3 a2 <1> t; (aXX)2 = 4nGp. 

PROOF: We begin with the right-hand side of the relativistic equa­
tions and make them as simple as possible by assuming that 
matter-energy consists of a swarm of identical noninteracting 
particles at rest in the frame R : (xo = ct, xl, x2, ~). Suppose the 
swarm has rest density p. Its proper 4-velocity is U = (c, 0, 0, 0), 
and its energy-momentum tensor has the single nonzero compo­
nent Too = pc2. Therefore, rg = T = pc2 , so the right-hand side 
of the relativistic field equation with i = j = 0 is 

8nG I 8nG [ 2 ( ( 1 )) pc2 ] -(Too - -gooT) = - pc - 1 + 0 - --
c4 2 c4 c2 2 

8nG [pc 2 ] 1 ( 1 ) = - -- + 0(1) = - 4nGp + 0 - . 
c4 2 c2 c4 

On the left-hand side ofthe same equation we have 

h a a r~o a r~a PaP a 
Roo = ROhO = ROaO = axa - axo + r oor pa - rOar po· 

(Note: You should check that R800 = 0, so we need only consider 
ex = 1,2,3.) In a weak gravitational field, all Christoffel symbols 
are at least 0(1/c 2), so the products in the last two terms are 
0(1/c4). Furthermore, 

and 

a 1 a<l> ( 1 ) roo=---+O - , 
c2 axa c3 
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Thus 

which gives us the classical field equation modulo terms of order 
l/e: 

3 a2 <1> (1) L --2 = 47l'Gp + 0 - . 
a=l (axa) e 

END OF PROOF 

Exercises 

1. Assume that gij is a weak gravitational field; show that 

(2) (2) (2) (2) () 
_g = 1 + goo - gIl ~ g22 - g33 + 0 e14 ' 

In;=g = goo - gIl - g22 - g33 + 0 ~ , 
(2) (2) (2) (2) () 

2e 2 e4 

gij = i j + +0(e12 ) . 

1 
2. (a) Show that = 1 + O(a) and J1 + O(a) = 1 + O(a). 

1 + O(a) 

(b) Show that dr =)1 + 0CI,) dt implies 

-=1+0 -dt ( 1 ) 
dr e2 

and 

3. Show that r~o = o( e13 ) and rrz = o( e12 ) ((k, 1) i= (0,0») in a 

weak gravitational field. 

4. What is the relation between proper time and world time for 
a "fast" particle (Le., one for which:X!" = O(e»)? 
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Solving the field 
equations 

5. Suppose we were to allow the potentials of a weak gravitational 
field to contain terms of order lie: 

(a) Show that dr = (1 +Ale + 0(l/e2») dt for a slow particle; 

express A in terms of the gi~) . 
(b) Suppose the worldcurve (xo(t),~(t» = (et,~(t» ofaslow 

particle is reparametrized using proper time r. Assuming 
that rand t are related as in part (a), show that d2xO Idr 2 = 
0(1 Ie) is no longer true. What implication does this have 
for the Newtonian approximation? 

( c) Find the terms in rgo and rg,B that are of order 1 Ie. What 
effect do these terms have on an attempt to reduce the 
relativistic geodesic equations to the classical equations of 
motion? 

6. (a) Suppose r ij is the energy-momentum tensor of a swarm 
of noninteracting particles moving slowly in the inertial 
frame R with dimensionally homogeneous coordinates 
(et, x, y, z). Show that TOO = 0(e 2) and determine the or­
der of magnitude of all the other components. Determine 
the order of magnitude of T = Tj. 

(b) Determine the order of magnitude of each component of 
the Ricci tensor Rij when gij is a weak gravitational field. 

8.2 Spherically Symmetric Fields 

This section is about finding solutions to the gravitational field 
equations. These are a system of partial differential equations for 
the components of the gravitational potential; they are generally 
intractable. We shall restrict ourselves to cases that are simple 
enough to solve. 
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The Weak Field of a Point Source 

The simplest gravitational field is produced by a single massive 
body that is concentrated in a relatively small region of space­
a "point source!' From Section 4.3 we know that the Newtonian 
potential of a single point source of mass M is 

GM 
<I>(x) = --, r= IIxll =Jx2+y2+ z2. 

r 

The mass sits motionless at the origin x = O. The Newtonian 
field it generates is spherically symmetric about this center, it is 
constant over time, and it approaches zero as r ---* 00. 

Let us construct a relativistic field for this source that has the 
same properties: spherically symmetric, independent of time, 
and tending to the Minkowski metric as r ---* 00. We shall assume 
that it is a weak field in the sense of the last section. Thus we take 
the Minkowski metric and add correction terms, starting with 

goo = 1 + 2<1> + o(~) = 1 _ 2GM + o(~) . 
c2 c3 rc 2 c3 

There are other correction terms, of course, but we don't know 
them at the outset. In fact, to determine them we shall use the 
vacuum field equations Rij = 0, which we know will hold away 
from the gravitational source. These equations are partial differ­
ential equations for the components of the gravitational metric. 
In this case we shall see that they reduce to a single ordinary 
differential equation-one that we shall be able to solve readily. 

1b construct the metric, we assume that the worldcurve of 
the mass is the t-axis in the frame R with dimensionally homo­
geneous coordinates (xo = ct, x, y, z). Furthermore, we assume, 
as in the classical case, that all the components gkl of the metric 
are independent of time and depend only on the function r of 
the spatial coordinates. The spherical symmetry of the metric 
suggests that we should convert (x, y, z) to spherical coordinates: 

x = rsinq:> cosO, 

y = rsinq:> sinO, 

z = rcosq;. 

Solve the vacuum field 
equations to 

determine the field 

Exploit the spherical 
symmetry of the field 
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This defines a map M: G ---+ R where G: (xo, r, cp, 0), and we can 
determine the new metric Yij in G from the original Minkowski 
metric gkl in R (before we add the correction terms) in the stan­
dard way described in Section 6.4: 

z 

(x, y, z) = (r, e, q» 

y 

Write the metric as a But there is another way. Since the norm is used to determine 
differential proper time by an integral, we can write it as a differential: 

If dxkdxl If) If r = - gkl-- dt = - gkldxkdxl = - ds; 
c dt dt c c 

thus ds2 = gkl dxkdxl. For the original Minkowski norm, 

ds2 = (dxO)2 - (d~ + dy2 + dz2). 

Therefore, to determine the metric ds2 in the new coordinates, 
we should express dx2, dy2, and dz2 in terms of r, cp, 0, and their 
differentials. (Note: Compute ordinary products here-not the 
exterior products defined in Exercise 6 of Section 4.4-because 
we are merely representing products of derivatives, e.g., dx2 for 
(dx/dt) 2 .) Thus, 

dx = sin cp cos 0 dr + r cos cp cos 0 dcp - r sin cp sin 0 dO, 

dy = sin cp sin 0 dr + r cos cp sin 0 dcp + r sin cp cos 0 dO, 

dz = cos cp dr - r sin cp dcp. 

Now compute the squares and show that 

d~ + dy2 + dz2 = d,z + r2 dcp2 + r2 sin2 cp d02. 
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If we let (ct, r, cp, e) = (~o, ~l, ~2, ~3) in G, then we can construct 
indexed quantities like Yij and rt while still retaining the original 
variables for visual clarity in our formulas. We note for a start 
that Yij is the diagonal matrix 

(Yij) = (1 -1 -r' ) . 
-,2 sin2 cp 

1b add the correction terms that account for the point mass at The correction terms 
the spatial origin, let us first write \II(r) = <I> (x, y, z) to express the 
Newtonian potential explicitly in terms of the distance r; thus 

2\11(r) ( 1 ) 
Yoo = 1 + ~ + 0 c3 . 

Our assumption that the perturbed field should be spherically 
symmetric means that we do not alter any terms involving dcp or 
de, and that the correction to dr2 should depend only on r: 

Yll = -1 + per) + o(~). 
c2 c3 

Thus, to determine the weak field approximation-at least to or­
der 1/c2-we need only find the function per). 

Theorem 8.3 per) = 2\11(r) + o(~). 

PROOF: The vacuum field equations Rij = 0 hold outside the mass 
M, which we assume to be concentrated at the spatial origin 
r = O. Since there is only one unknown function, it turns out to 
be sufficient to consider the single equation 

h ar~l ar~h p h P h Rll = Rlhl = a~h - a~l + rllrph - r1hrp1 = 0, 

where h, p = 0,1,2,3. We make the following general observa­
tions: 

• Since Yij is diagonal, so is its inverse ykl; thus ykl = 0 if k i= 1 

and ykk = l/Ykk. 
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• r~ = yk1rij,l (summing on 1) reduces to the single term ykkrij,k' 

• If i, j, k are all different, then r~ = O. This follows from the 
fact that 

roo = 1 (aYik aYj~ _ aYij ) = 0 
I},k 2 a~j + a~' a~k 

because Yik = Yjk = Yij = 0 when the subscripts are all differ­
ent. 

• All derivatives with respect to ~o = et are zero. 

By direct calculation we find that most terms that appear in R11 

reduce to zero; the only Christoffel symbols we need are 

o \II' ( 1 ) 1 P' ( 1 ) 2 3 1 r 01 = ~ + 0 e3 ' r 11 = - 2e 2 + 0 e3 ' r 12 = r 13 = -;: 

Therefore, 

arq1 = arf1 = _ P" + o(~) , 
a~h ar 2e2 e3 

ar~h = ar~o + arf1 + arr2 + arr3 = \II" _ P" _ ~ + o(~) , 
a~l ar ar ar ar c2 2c2 r2 c3 

PhI h 1 0 1 2 3 P' 2 (1) r11 rph = r11 r1h = r11 (rlO + r11 + r12 + r13) = 2e2 . -;: + 0 e3 ' 

rihr;l = (rr2)2 + (rr3)2 + 0(c14 ) = :z + 0(c14 ) ' 

and Rll = 0 reduces to 

- \II" _ ~ + o(~) = 0, 
e2 re2 e3 

or 

p' ,,(1) 2GM (1) = -r'l1 + 0 ~ = --;z + 0 ~ . 

Therefore, if we ignore terms of order 0(1/ e), 

2GM 
P(r) = --- +A = 2'11(r) +A, 

r 
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where A is a constant ofintegration. But since we require per) ~ 0 
as r ~ 00, A must be zero. END OF PROOF 

If we write the metric as a differential and neglect terms of The metric in 
order l/e3 in the coefficients, it has this vivid form Cartesian coordinates 

ds2 = e2 (1 + ~;) dr - (1 - ~;) d"z - "z(dqi + sin2 ({J d(2) 

( 2~) 2~ = e2 1 + ~ dt2 - d"z - "z(d({J2 + sin2 ({J d(2) + ~d"z. 

Thwritethisin the Cartesian frame R : (et, x, y, z) = (xo, xl, x2, ~), 
we need to transform the last term. Since ,z = x2 + y2 + z2, 

dr = x dx + y dy + z dz = L x'l dXX, 
r a r 

d"z = (L x'l dXX) (L xfJ dXfJ ) = L x'l:fJ dXXdxP, 
a r fJ r a,fJ r 

so the metric in the frame R is 

( 2~) 2~ x'lxfJ 
d; = e2 1 + 2" dt2 - L(dXX)2 + 2" L -2- dXXdxP 

cae a,f3 r 

= (dxO)2 _ "(dXX)2 _ 2GM (dXO)2 + "x'lxfJ dXXdXfJ ). 
L..J re2 L..J r2 a a,fJ 

In terms of components, this is 

2GMI 
goo = 1- -2--' 

e r 
gOa = 0, 

The Schwarzschild Metric 

In 1916 the physicist Karl Schwarz schild determined the relativis­
tic field outside an arbitrary spherically symmetric distribution 
of masses. A hollow spherical shell is an example. He made no 
assumption that the field should be weak-as we did in Theo­
rem 8.3-but only that it should reduce to the Minkowski metric 

An arbitrary 
spherically symmetric 

gravitational source 
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far from the masses. His solution even allowed the field to vary 
over time-while retaining the spherical symmetry-but we shall 
look only at the simpler time-invariant case. 

The form of the metric We assume that the worldline of the center of symmetry is 

The vacuum field 
equations 

the t-axis in the frame G : (ct, r, cp, 0), and we use spherical coor­
dinates (r, cp, 0) to take best advantage ofthe spherical symmetry. 
The Schwarz schild metric is a perturbation of the Minkowski 
metric that takes the following form: 

d? = eT(r) c2 dt2 - eQ(r) d,z - ,z(dq} + sin2 cp d(2). 

The perturbations depend only on r and do not affect dcp or dO at 
all. Furthermore, since ds2 must reduce to the plain Minkowski 
metric for r large, we require T ~ 0 and Q ~ 0 as r ~ 00. 

The main reason the coefficients are written as exponentials is 
to simplify later calculations, but the Thylor expansions of the 
exponentials also give us the useful form 

ds2 = (1 + T + O(T2»c2 d~ - (1 + Q + O(Q2» dr2 

- ,z(dcp2 + sin2 cp d(2). 

This shows that T and Q themselves are, in some sense, the main 
components of the perturbations. 

Th find T(r) and Q(r) we use the vacuum field equations, 
which hold outside the region containing the gravity-producing 
matter. The calculations are long and messy-patience and care­
ful writing are as important as a knowledge of the rules of 
differentiation -but we shall need only the two equations Roo = 0, 
Rn = O. 

Again let (~o, ~l, ~2, ~3) = (ct, r, cp, 0) so we can construct the 
usual indexed quantities with the more informative spherical co­
ordinates. We start with the metric tensor and its inverse: 

Yn = -eQ, 

yll = -e-Q , 

Y22 = -,z, 
y22 = _r-2, 

2 . 2 
Y33 = -r sm cp, 

y33 = _r-2 sin-2 cpo 

All off-diagonal terms are zero. This implies that the Christoffel 
symbols satisfy the same conditions we noted in the proof of 
Theorem 8.3: 
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• rt = 0 if i, j, k are all different; 

• rt is the single term ykkrij,k. 

a 1 
Theorem 8.4 eT = 1 + -, eQ = e-T = , where a is an 

r 1 + (air) 
arbitrary constant. 

PROOF: Direct calculation shows that the only nonzero Christoffel 
symbols are the following nine and the additional four obtained 
by transposing the two subscripts: 

1 T' T-Q roo = - e , 
1 q r ll =-, r 1 -Q 

22 = -re , r 1 -Q . 2 
33 = -re SIn qJ, 

2 

T' rg1 =-, 
2 

2 

2 1 r12 = -, 
r 

3 1 r13 = -, 
r 

r 2 . 
33 = - sm ({J cos ({J. 

The nonzero components of the covariant Ricci tensor are 

Roo=e Q -+-----+-T- (Til (T')2 T'Q' T') 
2 4 4 r' 

Til (T')2 T'Q' Q' 
Rll = -2 - -4- + -4- + 7' 

( Q' T') R22=1-e-Q+re-Q 2-"2 ' 

R33 = R22 sin 2 ({J. 

Now consider the two vacuum field equations Roo = 0 and Rll = 
O. Dividing Roo = 0 by eT -Q and adding the result to Rll = 0 gives 

T' Q' 
-+-=0, 
r r 

implying T + Q = k for some constant k. Thus eT = e-Qek, so the 
metric is 
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Ifwe let t = ek/ 2u then dt2 = ekdu2 and , 

ds2 = e-Qc2 du2 - eQ d,z - ,z(dq} + sin2 ({J d(2). 

In other words, by a simple rescaling of the time coordinate we 
can put the metric into a form in which k = O. Therefore, we can 
assume T = -Q without loss of generality. 

It remains to determine T. With Q = - T we can rewrite 
Rll = 0 as 

T" (T')2 (T')2 T' 1 -- - -- - -- - - = --(rT" + r(T,)2 + 2T') = o. 
2 4 4 r 2r 

Since (reT)" = eT (rT" + r(T')2 + 2T'), Rll = 0 implies (reT)" = O. 
Therefore, (reT)' = b and then reT = br + a, where b and a are 
constants of integration. We can write this as 

T a 
e = b+-, 

r 

and since we want eT -+ 1 as r -+ 00, it follows that b = l. 
Therefore, 

T a 
e = 1 +-, 

r 

Q 1 
e = --a' 

1+­
r 

END OF PROOF 

Schwarzschild metric Thus, away from the field-producing matter, the Schwarz schild 

Gravitational radius 

metric has the form 

d? = c2 (1 + ~) dt2 - 1 dr2 - ,z(d({J2 + sin2 ({J d(2). 
r 1 + (ajr) 

As r -+ 00, dsZ approaches the ordinary Minkowski metric as 
we required. This means that when r is large the Schwarz schild 
metric is a weak metric, implying 

a 2<1> 2GM 
1+;=Yoo~1+~=1-0 

and thus 
2GM 

-a~ -2- = rM· 
c 

This has the dimensions of a length (as it must for the term aj r 
in Yoo to be dimensionless). It is called the gravitational radius, or 
the Schwarzschild radius, of the mass M. If we write the metric in 
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terms ofrM, 

we can make the following observations: 

• The metric depends only on the total mass M, not on the 
details of its distribution in space, just as in the Newtonian 
theory . 

• When r < rM, Yoo is negative, so the metric has a fundamen­
tally different character. 

Asymptotic Behavior 

The Einstein weak-field metric and the Schwarzschild metric are 
both asymptotically inertial, in the sense that they approach the 
standard Minkowski metric as r -+ 00. This implies that their 
frames are nonrotating with respect to an inertial frame, so there 
are no Coriolis forces present; see Exercises 7-12 in Section 7.1. 
More important, when we measure the bending oflight and peri­
helion drift in these frames-as we do in the following sections­
the measurements are in reference to the background ofthe "fixed 
stars!' 

Gravitational Red Shift 

Gravitational red shift is the decrease in characteristic frequency Time dilation in the 
of light emitted by atoms that sit in a gravitational field. It is a Schwarzschild metric 

consequence of time dilation-gravity causes all clocks, including 
atomic clocks, to slow down. In Section 4.4 we explained time 
dilation in terms of the equivalence principle, but we can also 
detect it by direct analysis ofthe gravitational metric. Specifically, 
consider the Schwarzschild metric in the frame of an observer R 
who is far from the source, and suppose a second observer G 
is motionless with respect to R but close to the source. Then 
dr = dcp = de = 0 for both observers, so their proper times T and 
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r 

t satisfy the equation 

or r:rM dr: = VI - -;: dt < dt. 

In other words, a time interval of !:!.. r: seconds on G's clock will 
appear to be 

1 
!:!..t = !:!.. r: > !:!.. r: seconds 

Jl- rM/r 

on R's clock. If we think of G as representing observers at var­
ious distances r, then we can display the time dilation factor 
l/Jl - rM/r for each observer as a grid in the (t, r) coordinate 
frame. 

r 
R I t 

II Iii \ \ 
II \ 

r:! 't' 
II 1\ \ 

/1/ V il \ \ "-
I..- V \ --- t::-

·······················rM ......................... . rM 

Complications in 
Cartesian coordinates 

I 

Notice that from R's point of view, the ticks on G's clock become 
infinitely far apart as G approaches the gravitational radius rM. 
You should compare this grid with those we drew for accelerated 
frames and simple gravitational fields in Chapter 4. 

Isotropic Coordinates 

In our formulas for both Einstein's weak-field metric and the 
Schwarz schild metric, the spatial component is not proportional 
to the Euclidean metric 

d'? + dy2 + dz2 = d~ + r2 dq} + r2 sin2 ({J de2 , 

because the radial term dr2 has a factor not shared by the others. 
As a consequence, the Cartesian form of the metric is more com­
plicated than the spherical. For example, when we converted the 
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weak-field metric from spherical to Cartesian coordinates, many 
off-diagonal terms appeared: 

2GM XXxfJ 
gcxfJ = -8cxfJ - ~ 7' 

However, it turns out to be possible to introduce a new radial 
coordinate p in place of r so that the Schwarz schild metric takes 
the form 

Therefore, in terms of the Cartesian coordinates (~, 11, S) associ­
ated with the spherical coordinates (p, q;, e), the metric becomes 

ds2 = A(p)c2dt2 - B(p) (d~2 + d112 + d{2). 

Since the metric now involves the same factor -B(p) in every Isotropic coordinates 

spatial direction, we say that the spatial coordinates (p, q;, e) and 
(~, 11, S) are isotropic for the metric. (The Greek roots are isos, 
"equal:' and trope, Iiturn"; in effect, the metric Illooks the same no 
matter which way we turn!') 

1b find the isotropic coordinates we must determine the func­
tion r = f (p) that relates the two radial variables. By assumption, 

( 1 - rM) c2dr _ 1 dr2 _ ,z dq;2 _ r2 sin2 q; de2 
r 1 - rMlr 

=A(p)c2dt2 -B(p)dp2 _B(p)p2 dq;2 -B(p)p2 sin2q;de2, 

so we must have 

d,z 
--- = B(p) dp2 
1- rMlr 

and 

If we substitute B = ,z I p2 into the first equation and separate the 
variables, we get 

d,z dp2 
=-, 

r2 - rMr p2 
or f --;::::=d=r = = ± f _dp = ± In kp, 

Jr2 - rMr p 

where k is a constant of integration. 1b determine the integral 
involving r, first complete the square and let rM = 2a for ease of 
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calculation: 

f dr f dr f du 
Jr2-2exr - J(r-ex)2- ex2 - Ju2 -ex2' 

where u = r - ex. With the substitution u = ex cosh v we get 

f --;:.::;;d=u=~ = f dv = v = cosh-1 (_r -_ex) . 
Ju2 -ex2 ex 

Therefore, 

( r-ex) cosh-1 ~ = ±lnkp, 

or 

r - ex e±lnkp + e=flnkp kp 1 
-- = cosh(±In kp) = = - +-. 

ex 2 2 2kp 

1b specify the value of k we are free to impose a condition on rand 
p. It is reasonable to have rand p "asymptotically equal"-that is, 
to have r/ p -+ 1 as p -+ 00. This implies k = 2/ex, so solving for r 
gives 

ex2 rM r1- ( rM)2 r = p + ex + - = p + - + -- = p 1 + - = f (p). 
4p 2 16p 4p 

As the graph suggests, f : (rM/4, (0) -+ (rM, (0) : p 1---+ r is a 
valid coordinate change. The restriction rM < r is is not a serious 
limitation because we have already noted that the metric changes 
its character when r ::::: rM. 
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Using r = f (p) we find that Finding A(p) and B(p) 

r2 ( r)4 
R(p) = 2" = 1 + !:i 

p 4p 

and 

2 rM rM 
p--+-

r - rM 2 16p 
A(p) = -- = 2 

r rM rM 

( )
2 

P 1-~ =(1_~)2 
( 

rM)2 1 + rM . 
p+ 2 + 16p p 1 + 4p 4p 

The foregoing arguments have therefore proven the following 
theorem. 

Theorem 8.5 In isotropic Cartesian coordinates (t,~, rJ, n, the 
Schwarzschild metric is 

ds2 = (1 -rM/4P)2 c2dt2 _ (1 + rM)4 (d~2 + drJ2 + d~2). 
1 + rM/4p 4p 

Here p2 = ~2 + rJ2 + ~2. 

Corollary 8.1 When p is large, the Schwarzschild metric is approx­
imately 

ds2 = (1 _ r;) c2dt2 _ (1 + r;) (d~2 + drJ2 + d~2) . 

PROOF: See the exercises. 

In these statements we have transformed isotropic spherical 
to Cartesian coordinates, 

~ = p cos 0 sin cp, 

rJ = p sinO sincp, 

~ = p coscp. 

Since ~ = (p / r) x, and similarly for rJ and ~ , the new Cartesian co­
ordinates are identical nonlinear rescalings of the original Carte­
sian coordinates x, y, and z, respectively. 
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Exercises 

1. Compute dx2, dy2, and dz2 in the transformation from spher­
ical coordinates, and confirm that dx2 + dy2 + dz2 = d"z + 
r2 d({J2 + "z sin2 ({J d02. 

2. Verify that r81' r?l' rf2' and rr3 have the values given in 
the proof of Theorem 8.3, and show that these are the only 
Christoffel symbols that appear in nonzero terms in Rll. 

3. (a) Let y be the determinant of the spherical weak metric 
of Theorem 8.3, in terms of the spherical coordinates 
(~o, ~l, ~2, ~3) = (ct, r, ({J, 0). Show that 

P 'II (1) In J=Y = 2ln r + In sin ({J - -2 + 2" + 0 3" . 
2c c c 

(b) Use the formula 

arj a2 lnJ-y palnJ-y p h 
R·· = - - + r.. - r. r . 

I) a~h a~ia~j I} a~p Ih P} 

(Exercise 4, Section 7.3) to recalculate Rll for the spheri­
cal weak metric and confirm the value given in the proof 
of Theorem 8.3. 

4. Determine Christoffel symbols rj for the weak spherical met­
ric in spherical coordinates. (Note: The nonzero ones are the 
same as for the Schwarzschild metric.) 

5. Write the geodesic equations for the weak spherical metric 
up to terms of order 1/c2 . 

6. In this question, a geodesic is a solution to the geodesic equa­
tions of the weak spherical metric up to terms of order 1/c2. 

(a) Show that a radial line is a geodesic path; that is, for any 
given constants iP and 8, show that 

X(r) = (t(r), r(r), iP, 8) 

is a solution to the geodesic equations (up to order 1/c2), 

for appropriate functions t( r) and r( r). (It is not necessary 
to solve the equations for t(r) and r(r).) 
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(b) Show that a geodesic that starts in the equatorial plane 
cp = Jr /2 remains there for all time. In other words, 
show that if X(r) (t(r), r(r), cp(r), 8(r)) is a geodesic 
for which 

cp(O) = Jr /2 and 
dcp 
dr (0) = 0, 

then cp (r) = Jr / 2 for all r. Show that this is not true if the 
initial value is different, that is, if cp(O) ¥= Jr /2. 

7. The purpose of this exercise is to show that the geodesic 
equations up to order l/cz for the weak spherical metric ad­
mit circular solutions in the equatorial plane. 

(a) Assume a solution of the form r = r, cp = Jr /2, where r is a 
fixed positive number. Show that the equations for t and 
e then imply that there are constants k and w for which 

dt = k, de 
dr dr = w. 

(b) From part ( a) deduce that the period T of the circular orbit 
of radius r is T = 2Jrk/w in terms of the world time t. 

(c) Show that the equation for r requires 

GMk2 
r3 = --z- = constant x T2. 

w 

This is Kepler's third law of planetary motion: The square 
of the period of an orbit is proportional to the cube of its 
radius. 

8. Verify the expressions given for the nine Christoffel symbols 
of the Schwarzschild metric that appear in the proof of The­
orem 8.4; show that all other Christoffel symbols vanish. 

9. (a) Show that lnJ-y = 2Inr + lnsincp + T + Q when y is 
2 

the determinant of the Schwarzschild metric. 

(b) Using the formula for Rij in Exercise 3, verify the for­
mulas for Roo, Rll, Rzz, and R33 given in the proof of 
Theorem 8.4, and show that all other components of the 
Ricci tensor are zero. 
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10. In the proof of Theorem 8.4 we saw that R33 = R22 sin2 q;. 
Therefore, the conditions R22 = 0 and R33 = 0 are not in­
dependent; the second follows from the first. Show that the 
equation R22 = 0 follows from Roo = Rll = 0, thus imply­
ing that at most two of the four vacuum field equations are 
independent. 

11. (a) Show that the components of the mixed Ricci tensor Ri 
for the Schwarz schild metric are 

o _Q(TII (T')2 T'(j T') 
Ro = e 2 + -4- - -4- + -;- , 

Rll = e-Q (Til + (T')2 _ T'(j _ Q') 
2 4 4 r' 

R~ = _2. + e-Q _ e-Q ((j _ T'), 
r2 r2 r 2 2 

R~ = R~, 

and hence that the scalar curvature R is 

R = R! = _~ + e-Q (Til + (T')2 _ T'Q' + T' _ (j +~). 
I r2 2 2 r r r2 

(b) Show that the vacuum field equations in the form R{ -
i8i R = 0 also lead to the conclusions eT = 1 + air, eQ = 
e-T for the Schwarzschild metric. 

12. (a) Obtain the geodesic equations for the Schwarz schild met­
ric in terms ofthe spherical coordinates (~o, ~l, ~2, ~3) = 
(ct, r, q;, 0). 

(b) Show that a radial line is a geodesic path (as in Exercise 6). 

(c) Show that a geodesic that starts in the equatorial plane 
q; = 7r /2 remains there for all time. 

13. Explore the possibility of circular orbits for the Schwarzschild 
metric (as in Exercise 7). Is there a Kepler's law? 

14. Let r = f (p) = p (1 + :~) 2 

(a) Show that f'(rM/4) = 0 and f(rM/4) = rM. 
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(b) Show that f'(p) > 0 for p > TM/4. 

(c) Show that f(p) --+ 00 as p --+ 00 and thus conclude that 
the map f : [TM/4, (0) --+ [TM, (0) is a valid coordinate 
transformation-that is, it is one-to-one and onto. 

15. Show that 

(~1 --~) 2 = 1 __ rM + 0(--\) , 
1+- p P 

TM TM 1 
( ) 4 ( ) 1+- =1+-+0-

4p P p2 
4p 

and explain why this proves Corollary 8.1. 

8.3 The Bending of Light 

As early as 1907, Einstein observed that gravity alters the veloc­
ity of light and that this will cause light rays to bend. However, 
the effect would be too small to be detected in any terrestrial 
experiment that he contemplated at the time. He let the matter 
drop, but revived it in 1911 (in [12]) when he realized that the 
deflection of starlight grazing the sun would be detectable, and 
suggested measuring it during a solar eclipse. 

Einstein's 1911 calculations predate the general theory of rel­
ativity; they use only the familiar physical concepts and the rela­
tivistic properties of gravity we considered in Section 4.4. Einstein 
calculates that the deflection should be 4 x 10-6 radians, which 
is an angle of 0.83 seconds. In his 1916 paper he recomputes the 
deflection using the perspective of general relativity and gets a 
value that is twice as large. What changes between 1911 and 1916 
is only the way he reckons the effect of gravity; the calculation 
is the same. 1b analyze Einstein's results we look first at why the 
variation in the speed oflight from place to place causes light rays 
to bend. This is called refraction, and it is explained by classical 
physics and geometry, not relativity. 

From 1907 to 1916 
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Light bends when it 
slows down 

Huygens' principle 

How Deflection Depends on Speed 

The speed of light in a vacuum, c = 2.998 X 108 meters per 
second, is a theoretical maximum. The speed is less in air and 
in glass, and even varies from warm air to cool air, and from 
one type of glass to another. According to an argument based on 
Huygens' principle-which we shall go through-it is precisely 
the variation in speed that causes light rays to bend. Therefore, 
when we establish that a gravitational field also causes the speed 
of light to vary from place to place, we can use the same argument 
to decide how much the field bends light. 

If we think of light as a wave, then we can picture it as a 
series of surfaces, or wave fronts, that represent the position of 
the /lcrest" of the wave at different moments. Ifwe think oflight as 
a collection of photons, then we can picture the photon paths as 
light rays. In the simplest case, the wave fronts are parallel planes, 
and the light rays are straight lines orthogonal to the fronts. In 
general, though, the fronts are curved, not flati but when that 
happens, the rays curve in such a way as to remain orthogonal to 
the fronts. 

Therefore, to determine how the rays bend we can study how 
the wave fronts propagate through space. Suppose we know the 
position of a wave front at a certain moment t = to. Where will 
it be a moment later, t = to + f),.t? If the front is a plane and 
light has a constant speed y, then the new front is a parallel 
plane at distance y f),.t from the first. But if the front is curved and 
the speed of light varies from point to point, we use Huygens' 
principle: 'Iteat each point P = (x, Y I z) on the current front as 
a light source. If the speed of light at that point is y (P), then in 
the time f),.t a spherical front of radius y(P)f),.t will emanate from 

front after time !:J 
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that source. The wave front after time ll.t is the envelope of the 
spherical fronts from the individual sources. 

Now consider a light ray that passes through a region of space 
where the speed of light yep) varies smoothly with P. We want 
to determine how the ray changes direction. Draw the ray in the 
plane of the paper along with a small portion of a wave front that 
is orthogonal to it. Construct the n-axis normal to the ray, and 
suppose nand n+ ll.n are the coordinates of two nearby points on 
the wave front. The wave front after a small time increment ll.t 
will be tangent to the spheres of radius y(n)ll.t and yen + ll.n)ll.t 
centered at these two points. 

l1e deflection angle 
-).. 

Y(n)l1t 
Y(n + l1n)l1t 

current wave fron~t ===:t=~::t==--n 
n+l1n n 

light ray 

The deflection angle ll.() that the ray experiences during the 
time ll.t is the same as the change in the orientation of the wave 
front. This angle is extremely small, and for it we have 

• Ll y(n)ll.t - yen + ll.n)ll.t 
ll.() ~ sm ll.u = . 

ll.n 

Therefore, in the limit as ll.t -+ 0 and ll.n -+ 0, we get 

d() ay 
-=---
dt an 

Now, the curvature of the ray is the derivative d() / ds, where s is arc 
length along the ray. But since the deflection is always extremely 
small, arc length is essentially s = ct(1 + O(l/c)). Therefore, 
ct = s(1 + O(l/c)), and so 

curvature = dO = dO dt = ~ dO + O(~) = _~ oy + O(~) . 
ds dt ds c dt c2 c an c2 

Computing the 
deflection 



416 Chapter 8 Consequences 
----------~~--~~-------------------------

Rays turn toward the 
low-speed region 

See the exercises. Thus, the ray will curve at a rate that is pro­
portional to the rate at which the speed of light decreases in the 
direction normal to the ray. 

The result is refraction, and we can think of it this way. If n 
is any unit vector, then the rate of change of y in the direction of 
n is 

ay 
-=n · Y'y, an 

where Y' y is the gradient of y . In the figure below, we assume that 
the speed of light y is constant on each line perpendicular to the 
plane and increases from left to right as shown. Consequently, 
the gradient Y' y lies in the plane and points from left to right. If 
n is the normal to the ray that runs from front to back and lies 
in the plane, then n . Y' Y is positive, so the ray bends to the left. 
Along the other ray n · Y'y = 0, so that ray is undeflected. 

The 1911 Computation 

The speed of light at any point depends on how fast a clock runs 
at that point. In Section 4.4 we saw that if two observers G and C 
were in a gravitational field at locations where the gravitational 
potential differed by /). <1>, then when C measured a time interval 
of /). T seconds, G would measure it as 

/). r = (1 - ~;) /). T seconds. 

While this was originally derived assuming a constant gravita­
tional field, it holds quite generally. In particular, we can let <I> be 
the Newtonian gravitational potential of the sun, 

GM 
<I> = --, 

r 
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where r is the distance in meters from the center of the sun and 
M = 2 x 1030 kg is the mass of the sun. We can also assume that 
the observer C is at infinity, where <I> = 0 and the speed of light 
has its standard value c = 3 X 108 m/sec in the vacuum. Then, at 
a distance r from the center of the sun, the speed of light is 

y(r) = c = c (1 + <I> + O(~)) = c _ GM 
1 - (<I>/c 2) c2 c4 cr 

if we ignore terms of order 0(1/c3). 

Now consider a light ray in the (x, y)-plane that ifundeflected 
would be parallel to the y-axis at a distance X from the center 
of the sun. The total deflection it undergoes is the integral of its 
curvature: 

100 de 1 100 oy total deflection = -d dy = - - - dy. 
-00 S c -00 ox 

We have replaced oy /on by oy /ox because the difference between 
the normal to the curve and the x-axis is of order O(l/c). Now 

oy = GMx = GMX + O(~) 
ox cr3 cr3 c2 

along the light ray; therefore, to the precision we are considering, 

. GMXlOO dy 
total deflectIOn = --2- 2 2 3/2· 

C -00 (X + y ) 

With the substitution y = X tan u the integral becomes 

so 

17r/2 cos u du = ~, 
-7r/2 X2 X2 

2GM 
total deflection = - c2 X . 

1b make this as large as possible we choose a ray that nearly 
grazes the surface of the sun. Then 

X = radius of the sun = 7 x 108 meters. 

y 

-:---t---FX'----__ X 

sun 
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and the magnitude of the deflection is 

2GM 2(6.67 x 10-11 m3 jkg-sec2)(2 x 1030 kg) -6 d' 
c2X = (3 X 108 mjsec)2(7 x 108 m) = 4.2328 x 10 ra lans. 

In degrees, this is 

1800 60' 60" 
4.2328 x 10-6 radians x d' x d x. = 0.873". 

rr ra Ian egree mmute 

Einstein used the round number 4 x 10-6 radians and therefore 
got 0.83" for the deflection angle. 

The 1916 Computation 

Einstein's 1916 calculations (in [10D are based on his relativistic 
model of the gravitational field of the sun that we found in the 
previous section. This is a weak field with spherical symmetry. 
In the frame R: (xO,xl ,.x2,x3 ) = (ct,x,y,z) we write the metric 
for the field as 

di = (dxO)2 _ "'(dXX)2 _ 2GM (CdXO )2 + '" XXxf3 dXXdX(3 ), 
~ rc2 ~ ,2 

ex ex,f3 

ignoring terms of order 0(1 j c3 ). We must now see how this metric 
determines the speed of light y at every point in spacetime. 

Suppose X(t) = (ct, Xl (t), x2(t), x3(t» describes the worldcurve 
of an object in R, parametrized by the time t. Then, if we first use 
the Minkowski metric in R, we have 

IIX'1I2 = c2 - (a:,'y -(a:,y -(~y = c2 -if, 

where v is the ordinary velocity of the object. If the object is a 
photon, then IIX'1I2 = 0, implying v = y = c as we expect. 

Ifwe shift back to the metric that represents the gravitational 
field of the sun, then for the same worldcurve X(t) we have 

0= (ds)2 = c2 _ L (dXX)2 _ 2GM (c2 + L XXxf3 dXX dX(3 ) 
dt ex dt rc 2 ex,f3,2 dt dt 

'-,-' 
y2 
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up to terms of order 0(1/c2). Therefore, to the same order, 

Thking square roots and using J1 - 2A = 1 - A (ignoring terms 
of order A2), we obtain 

y-c 1-- 1+"------( GM ( XXxf3 dXX dXf3 )) 
- rc 2 t; r2c2 dt dt 

= c _ GM _ GM" XXxf3 dXX dxf3 . 
rc rc L...: r2c2 dt dt 

a,p 
\. I 

Y 

correction to 1911 calculation 

The first two terms are precisely the value of y that Einstein 
obtained in 1911; we can therefore consider the rest to be a cor­
rection added to reflect a fuller account of the gravitational effect. 
As we shall see, one correction term has the same order of mag­
nitude as the 1911 term GM/rc. 

Let us determine y along the worldcurve X of the photon 
that if undeflected would move in the (x, y)-plane at the fixed 
distance X from the y-axis. The undeflected worldcurve has the 
parametrization 

X(t) = (ct, X, ct, 0); 

the deflection adds only lower-order terms: 

X(t) = (ct, X + O(~) ,ct + 0(1), 0) . 
Note that we have left the .x3 = z-component as zero. In the 
exercises you are asked to show that if the .x3-components of 
X(t) and X' (t) are zero initially, they remain zero for all t. The 
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4-velocity of this photon is 

~~ = (c, O(~), c + 0(1), 0). 
That is, 

dx l = O(~), 
dt c 

dx2 
-- = C + 0(1), 
dt 

dX3 
--=0, 
dt 

and when we substitute these values into the formula for y, ig­
noring terms of order 0(1/ c2), we obtain 

GM GM(x2)2 
y=c----

cr cr3 

Exactly as in the 1911 calculations, total deflection is the inte­
gral of curvature along the worldcurve, 

1100 oy total deflection = - - --1 dx2 
C -00 ox 

to order 0(1/c2). Now 

oy GMxl 3GMxl (x2)2 GMX 3GMXy2 -- = -- + = + ------':.........,..,-
oxl cr3 c"s c(X2 + y2)3/2 c(X2 + y2)5/2 

to order 0(1/ c), and we have taken advantage of the fact that 

xl = X + O(~), ,.z = X2 + (~)2 + O(~) = X2 + y2 + O(~) 

on the worldcurve. Therefore, the total deflection is 

GMX 100 dy GMX 100 3y2 dy ( 1 ) 
-~ -00 (X2 + y2)3/2 - ~ -00 (X2 + y2)5/2 + 0 c3 . 

The first term is just the 1911 calculation. The second term is 
new, but it has the same order of magnitude as the first. With the 
substitution y = X tan u, the second integral becomes 

-----du=-. j 7f/2 3 sin2 U cos U 2 

-7f/2 X2 X2 
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This has the same value as the first integral, so the 1916 calcula­
tion equals twice the 1911 calculation: 

4GM 
total deflection = --2 - = l.75". 

cX 

Finally, note that because Einstein's weak-field metric is 
asymptotically inertial, the deflections we measure here are 
taken with respect to a frame that is anchored in the background 
of fixed stars. 

Exercises 

l. Suppose 5 = ct(l + O(l/c». Show that ct = 5(1 + O(l/c» and 
hence that 

dt = ~ (1 + o(~)) = ~ + o(~) . 
ds c c C c2 

Use this result to show that the curvature of a light ray is 

dO = ~ dO + o(~) = _~ ay + o(~). 
ds c dt c2 c an c2 

2. Suppose X(t) = (ct, x(t), y(t), z(t» is a geodesic in the weak 
spherical metric and satisfies the conditions z(O) = z'(O) = o. 
Show that z(t) = 0 for all t. 

. tx) dy roo 3y2 dy 2 
3. VerIfy that 1-00 (X2 + y2)3/2 = 1-00 (X2 + y2)5/2 = X2· 

8.4 Perihelion Drift 

Classical Newtonian mechanics predicts that the orbit of each 
planet around the sun is an ellipse-at least if we ignore the in­
fluences of other planets. Of course, we can't ignore the other 
planets; they cause deviations in the orbit that can become quite 
significant over time. The innermost planet, Mercury, is espe­
cially susceptible; its orbital period is only 88 days, and its orbit 
is relatively elongated. One deviation in the orbit is the gradual 
drift in its perihelion; as early as 1859 it was noted that the ob­
served drift exceeded the predicted value by about 43" of arc per 

Perturbations in 
planetary orbits 
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Cartesian equation 

Foci and eccentricity 

earth century. Now, a similar discrepancy between the predicted 
and observed orbits of the outer planet Uranus had led, a decade 
earlier, to the discovery of the planet Neptune, so it was natural to 
suppose that yet another undiscovered planet-given the name 
Vulcan in anticipation-would explain the unaccounted-for drift 
in Mercury's perihelion. But Vulcan has never been found, and 
the search for it was abandoned when Einstein showed in 1916 
that his new theory of gravity explained the drift. 

Ellipses 

It turns out that the natural way to describe an elliptical orbit in 
celestial mechanics is by an equation involving polar coordinates: 

k 
r=----

1 + ecosO 

We are, however, more familiar with the Cartesian equation 

(x _ p)2 (y _ q)2 
a2 + b2 = 1, 

y 

--r-----------------x 

which describes an ellipse whose center is at (x, y) = (p, q) and 
whose semimajor and semiminor axes are a and b, respectively, 
when a 2: b. We need to connect the Cartesian and polar equations 
and, at the same time, see how the geometric features of the 
ellipse can be extracted from them. 

Geometrically, an ellipse is the locus of points whose dis­
tances to two fixed points, its foci, have a fixed sum. By taking 
a point on the major axis, we see that the sum must equal the 
length 2a of the major axis. By taking a point on the minor axis, 
we see that a2 = b2 + f2, where f is the distance from the cen­
ter of the ellipse to one focus. We define the eccentricity of the 
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ellipse to be the ratio 

f Ja2 - b2 rfb\2(b) 2 
eccentricity: e = -;; = a = VI - \~) . 

If e = 0, then f = 0; the two focal points coincide, and the ellipse 
is just a circle. If e = I, then b = 0, so the ellipse has flattened to 
a line segment. Eccentricity therefore measures how much the 
ellipse differs from a circle. 

Proposition 8.2 If 0 < e < I, the polar equation r = k/(1 +e cose) 

describes an ellipse whose major axis lies along the x-axis. It has 
eccentricity e and one focus at the origin. The semiaxes have lengths 
a = k/(I - e2) and b = k/~. The least and greatest distances 
to the origin are k/(I + e) and k/(I - e). 

PROOF: Write the given equation as r + er cos e = r + ex = k, or 
r = k - ex. Square this, 

x2 + i = r2 = k2 - 2kex + e2~, 

and rewrite it, completing the square, as 

( 
2ke k2e2 ) k2e2 k2 

(1 - e2) x2 + --2 X + 2 2 + y2 = k2 + --2 = --2' 
1 - e (1 - e ) 1 - e 1 - e 

Now put it in the standard form 

Polar equation 

k2/(1 ~ e2)2 (x+ 1 ~ee2 r + P/(/_ e2) y2 = 1, 
~--~----~+--x 

so the locus is an ellipse with center (p, q) = (-ke/(I- e2), 0) and 
semiaxes a = k/ (1 - e2) and b = k/~. Furthermore, since 
b/a=~, 

eccentricity = JI - (1 - e2) = e. 

The center of the ellipse is at p = -ke/(I - e2), and since the 
distance from the center to a focus is 

k 
f = ea = e-I 2 = - p, 

-e 

k 
l+e 
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one focus is at the origin. The ellipse is closest to the origin when 
o = 0 and r = k/(l +e); it is farthest when 0 = 1r and r = k/(l- e). 

END OF PROOF 

The Classical Orbit 

We want to determine the motion of a planet according to Newto­
nian mechanics, under the assumption that the sun provides the 
sole gravitational force. If the center of the sun is at the origin and 
the planet is at position x = (x, y, z) at time t, then the equation 
of motion is 

.. GM 
x---x - r3 ' r= IIxll; 

see Section 4.3. As usual, dots denote derivatives with respect to 
t, M is the mass of the sun, and G is the gravitational constant. 
The function x(t) will give us the position of the planet at ev­
ery moment, but this is more than we need. It will be enough 
to know is the shape of orbit; for that reason, we will develop 
arguments that will allow us to replace the vector function x(t) 
by the appropriate polar equation. 

If v = i is the velocity vector, then 

d ). . GM() dt (x x v = x x v + x x v = v x v - --;::3 x x x = o. 

Hence the vector J = x x v is a constant, called the angular 
momentum of the planet. In particular, x lies in the plane or­
thogonal to J, so the planet moves in that plane. 

J 

Rotating coordinates if necessary, we can assume that the 
planet moves in the (x, y)-plane. Let (r, 0) be polar coordinates in 
this plane: 

x = rcosO, y = rsinO. 
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We want to find a description ofthe orbit as a function r = r(e). 
As a first step in this direction, we find the components of the 
angular momentum vector 

J=xxv 

= (rcose, rsine, 0) x (rcose - rO sine, rsine + rO cose, 0) 
2 • 

= (O,O,r e). 

Therefore, the magnitude of angular momentum is r20 = J = IIJII, 
and this is a constant of the motion. 

Next we write the equation of motion in terms of r. Since 
~ = x· x, we have 2rr = 2x· X, or rr = x . v. Differentiating again 
(and letting J1. = GM), we get 

.. ·2 . 2 J1. 2 J1. rr+r =v·v+x·v=v --x·x=v --
r3 r 

For any vectors p and q we have (p . q)2 + (p X q)2 = p2q2; in 
particular, 

so v2 = ;-2 + J2/ r2, and the equation of motion becomes 

.. + .2 .2 J2 J1. rr ,=,+---, 
r2 r 

or 
.. J2 J1. 

rr= - --. 
r2 r 

The solution to this equation will be more transparent if we 
first make the change of variable r = l/u. Then, keeping in mind 
that we want to convert r to a function of e, we write 

. 1 . 1 du . 2 • du du 
r = --u = ---e = -r e- = -J-

u2 u2 de de de ' 
.. d2u . d2u J 2 2 d2u 
r= -J-e = -J-- = -J u -. 

de 2 de2 r2 de2 

Therefore, in terms of u and e, the equation of motion becomes 

The equation of 
motion in polar 

coordinates 
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or just 

d2u J-l-
d(P + u = p. 

The solution to this differential equation is 

J-l-
u(9) = P + A cos(9 - a); 

the cosine term has an arbitrary amplitude A and phase shift a. 
The phase shift simply alters the position of the planet in its orbit 
at time t = 0; since we are interested only in the orbit itself, we 
can take a = O. Then, if we let e = AP / J-l-, the solution is 

J-l-u = 2(1 + e cos9), 
J 

or r=----
1 + ecos9 

This is the polar form of a conic section with a focus at the origin. 
When 0 < e < I, the conic is an ellipse with eccentricity e and 
perihelion distance J2 / J-l-(1 + e). Perihelion occurs when 9 is an 
integer multiple of 2Jl' . 

~--~----~+--x 

The Relativistic Orbit 

Schwarzschild metric We take as our relativistic model of the sun's gravitational field 
the Schwarz schild metric 

ds2 = e2 (1 _ 2J-l-) dt2 _ 1 d,z _ ,z(dcp2 + sin2 cp d(2). 
e2r 1 - (2J-l-/e 2r) 

The worldcurve of the planetary orbit is a timelike geodesic 
X(r) = (t(r), r(r), cp(r), 9(r» in which t, r, 9, and J-l- = GM have 
the same meaning they do in the classical model. 
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We look for a solution that lies in the (x, y)-plane; in spherical 
coordinates, this is cp = n /2. In the exercises you are asked to 
show that a geodesic for which cp(O) = n /2 and cp' (0) = 0 will have 
cp(r) = n /2 for all r. (Primes denote differentiation with respect 
to the proper time r.) Let us consider the geodesic equations for 
the remaining variables, beginning with e: 

We can write this as r2e" + 2rr'e' = (,ze')' = 0, implying that r2e' 
is a constant. In the classical model (where we replace r by t), 
this constant is the angular momentum]. So we set ,ze' = ]. 

The geodesic equation for t is 

2J-L 1 
t" = -2ro t'r' = -- t'r'. 

01 c2r21 - (2J-L/c 2r) 

Here again we express this as a derivative: 

(1 - 2J-L) t" + 2J-L t'r' = ((1 _ 2J-L) t')' = O. 
c2r c2r2 c2r 

Therefore, 

( 1 - 2J-L) t' = A, 
c2r 

for some constant A. 

or 
, A 

t = -----;::--
1 - (2J-L/c 2r) 

Th get the equation of motion for r we use the metric condition 
itself instead of the geodesic equation. Since dS2 = c2dr2, we have 

We have used the fact that cp(r) == n /2, so cp' = 0 and sin2 cp = 1. 
Now substitute the expression we just obtained for t' and let 

, dr, 
r = -e. 

de 

Motions in the 
equatorial plane 

Angular momentum 

The equation for r 
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Perturb the classical 
solution 

This gives 

,2 = ,2 A2 _ 1 (dr)2 (0')2 _ ,z(O,)2 
1 - (2/-t1,2r) 1 - (2/-t1,2r) dO 

_ 2 A2 1 (dr)2 J2 J2 
-, 1 - (2/-t1,2r) - 1 - (2/-t1,2r) dO r4 - r2· 

Now multiply by 1 - (2/-t1,2r) and simplify the left-hand side: 

,2 _ 2/-t = ,2A2 _ (dr)2 J2 _ J2 (1 _ 2/-t). 
r dO r4 r2 ,2r 

If we let u = 11 r as we did in the classical analysis, then this 
becomes 

2 2 2 2 (dU)2 2 2 ( 2/-t) , - 2/-tu = ,A - J dO - J u 1 -;zu • 

which can be rewritten as 

~ (du)2 u2 = ,2(A2 - 1) /-t u !!:..u3 . 
2 dO + 2 2]2 +]2 + ,2 

We can now make this look like the classical equation; first dif­
ferentiate with respect to 0, 

du d2u du /-t du /-t 2 du 
dO d02 + u dO = ]2 dO + 3 ,2 U dO' 

. . du 
and then divide by dO: 

d2u /-t /-t 2 
d02 + u = ]2 + 3 ,2 U • 

'-...-' 
correction 

Except that J has a slightly different value here, this is precisely 
the Newtonian equation of motion with a single correction term 
of order 0(1/,2). 

Since the relativistic equation differs from the Newtonian by 
a small term, we shall conjecture that the relativistic solution 
likewise differs from the Newtonian by a small term. Thus we 
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suppose that the solution has the form 

p., v(O) ( 1 ) 
u(O) = /2 (1 + e cos 0) + -;;2 + 0 c4 . 

Our goal is to confirm that u(O) has this form and to determine 
v(O). Substituting this expression into the differential equation, 
we obtain 

C12 (~;~ + v) = ~~: (1 + 2e cos 0 + e2 cos2 0) + o( c14 ) . 

Using the identity cos 20 = 2 cos2 0 - 1 we can rewrite this as 

d2v 3p.,3( e2 ) 6ep.,3 3p.,3 (1) 
d0 2 + v = Y 1 + 2 + J4 cos 0 + 2/4 cos 20 + 0 c2 . 

If we ignore terms of order 0(1/c2), this is a linear second-order 
differential equation for v of the form 

L(v) = A + B + C, 

where L(v) = v" +v. Therefore, if VA, VB, Vc are particular solutions 
to the separate equations L(v) = A, L(v) = B, L(v) = C, then 
v = VA +VB+VC is a solution to the given equation L(v) = A+B+G. 
For the separate solutions you should check that we can take 

3ep.,3 . 
VB = -4-0sm O, 

/ 

p.,3 
Vc = -- cos20 

2/4 ' 

so the general solution to the original differential equation be­
comes 

p., 3p.,3 (e2 e2 ) ( 1 ) u = 2" (1 + e cos 0) + 24 1 + - + eO sin 0 - - cos 20 + 0 4" . 
/ c/ 2 6 c 

Of the new terms, only eO sin 0 is nonperiodic (because of the 
factor 0), so only this one has a potential cumulative effect on 
u(O). 1b see that effect, let us first move the nonperiodic term to 
the Newtonian approximation: 

p., 3p., 3 ( e2 e2 
) ( 1 ) u = 2" (1 + e cos 0 + eDO sin 0) + 24 1 + - - - cos 20 + 0 4" ' 

/ c/ 2 6 c 

One non negligible 
term 
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ecos(O - De) = ecosO cos DO + esinO sinDO, 

and since cosDO = 1 + 0(D2) and sinDe = DO + 0(D3), we have 

ecos(O - De) = ecosO + eDe sinO + O(nZ) = ecosO + eDe sinO + 0(cI4 ). 

This allows us, finally, to write our solution as 

u(O) = ;Z (1 + ecos(O - De)) + :~: (1 + ~ - ~ cos 20 ) + O(c\} 
, I 

v 

negligible cumulative effect 

the relativistic effect is concentrated in the term cos(O - DO). 
Perihelion occurs when cos(O - DO) = I, and this happens 

when 0 - DO = (1 - D)O = 2mf, or 

2~ (1) o = --- = 2mf(1 + D + O(nZ)) = 2nn + 2nn D + 0 4 . 
I-D c 

Therefore, the angular position 0 of perihelion increases by the 
amount 

6n J.l2 
2n D = -----z-z 

c J 

per revolution. Since the semimajor axis of the classical orbit is 

J2 / J.l 
a=--

1- e2 

(why?), we can express the increase in these readily measured 
terms: 

6n J.l 6n GM 
2nD = - . 

c2a(1 - e2) c2a(1 - e2) 

For Mercury, a = 57.9 x 109 meters, e = 0.2056, and 1 - e2 = 
0.9577. Since there are about 36,525 earth days in an earth cen­
tury and Mercury has a period of about 88 earth days, Mercury 
executes 36525/88 = 415 orbits per century. The total increase in 
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the perihelion angle in a century is therefore 

6nGM (2490n)(6.67 x 10-11 m3 jkg-sec2)(2 x 1030 kg) 
415x =------~~----~------~--------~ 

c2a(1 - e2) (3 x 108 mjsec)2(57.9 x 109 m)(0.9577) 

= 2.09 x 10-4 radians 

= 43 seconds of arc. 

This is the last result cited in Einstein's 1916 paper on general 
relativity. Here is the final paragraph ([10], page 164): 

Calculation gives for the planet Mercury a rotation of the 
orbit of 43" per century, corresponding exactly to astro­
nomical observation (Leverrier); for the astronomers have 
discovered in the motion of the perihelion of this planet, 
after allowing for disturbances by other planets, an inex­
plicable remainder of this magnitude. 

In fact, most of the shift is due to the fact that the observations 
are made in a non-inertial frame; only about one-tenth is due 
to the Newtonian gravitational "disturbances by other planets:' 
The relativistic contribution is extremely small; even over 80 
centuries it amounts to just under 10 , but it is enough to be 
visible in the figure on the next page. By contrast, the observed 
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picture ofthe eccentricity of Mercury's orbit. The non-relativistic 
contribution (of about 5557" per century) is shown by the dashed 
ellipse, the correct (relativistic) drift by the gray ellipse. 

Exercises 

l. Prove that for any vectors p and q in R3, we have (p. q)2 + 
(p x q)2 = p2q2, where p = IIpll, q = IIqll. 

k 
2. This exercise concerns the curve r = -----

1+ ecos8 
(a) Giveacompletedescriptionofthecurvewhen-l < e < O. 

(b) Give a complete description of the curve when e = ±1. In 
particular, show that the curve is not an ellipse of eccen­
tricity 1. 

Visualizing the drift 
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relativistic contribution 

The orbit of Mercury 
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( c) Show that when e > 1 or e < -I, the curve is a hyperbola; 
determine the center of the hyperbola and the slope of its 
asymptotes. 

3. Show that the period T of the classical planetary orbit can be 
obtained by integrating the equation J = ,ze to give 

T= - = Ba3/ 2 , 
J3 i27l' d() 
/12 0 (l+ecos())2 

where a is the length of the semimajor axis and B is a constant. 
This result, which can be restated as saying that a3/ T2 has 
the same value for all orbits, is known as Kepler's third law of 
planetary motion. 

4. Show that the classical planetary orbit can be a circle and, 
if it is, that the planet moves along it with constant angular 
velocity. 

5. The differential equation for the relativistic orbit was obtained 
by dividing the equation 

du d2u du /1 du /1 2 du 
de de 2 + u de = J2 de + 3 c2 u de 

by du/d(), tacitly assuming that du/d() is not identically zero. 
But suppose du/d() is identically zero; what orbits arise then? 

6. (a) Show that the differential operator L(v) = v" + v is linear, 
that is, L(v + w) = L(v) + L(w) and L(av) = aL(v). Deduce 
that if VA is a solution to the differential equation L(v) = A 
and VB is a solution to L(v) = B, then v = VA + VB is a 
solution to L(v) = A + B. 

(b) Verify that the functions VA, VB, and Vc given in the text 
(on page 429) satisfy the individual differential equations 
L(v) = A, L(v) = B, L(v) = C, where 

6e/13 
B = -4- cos(), 

J 

3/13 
C = --4 cos2(). 

2J 

7. ( a) For the relativistic orbit, write the geodesic equation for cp 
and show that cp(r) = n/2 is a solution. 
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(b) Show that a relativistic orbit for which qJ(O) = n/2 and 
qJ'(O) = 0 has qJ(r) = n/2 for all r. 

8. (a) Consider a planet whose classical orbit is an ellipse with 
semimajor axis a and fixed eccentricity e. Suppose its pe­
riod is T earth centuries. Show that the perihelion drift of 
its orbit is 

2n D constant 
T - a5/ 2 

(b) The earth is about 2~ times as far from the sun as Mercury. 
If the earth's orbit had the same eccentricity as Mercury's, 
what would its perihelion drift be per century? Ignore the 
effect of other planets so you determine only the "rela-
tivistic correction:' 

( c) Still ignoring the effect of other planets, what would the 
eccentricity of the earth's orbit have to be in order to make 
its perihelion drift equal to that of Mercury's orbit? 

Further Reading for Chapter 8 

Einstein devotes one section of his fundamental paper on gen­
eral relativity to the weak-field approximation ([10], §21); the 
subject is covered in more detail in Dubrovnin et al. [7]. For 
the Schwarzschild solution and isotropic coordinates see Adler et 
al. [1]. The refraction of light is a standard topic in physics text­
books; see [13]. Pollard [27] has a concise and lucid introduction 
to the classical theory of planetary orbits, while Adler et al. [1] 
and Berry [2] discuss the relativistic theory. 



Errata: The Geometry of Spacetime

Corrections to 20 August 2010

I wish to express my thanks to David Griffel, University of Bristol,
John Chiasson, University of Tennessee, Joseph North, George Ma-
son University, Bill Rozzi, Alison Duren-Sutherland (Smith ’02),
Wayne Rossman, Kobe University, and members of the Kobe Uni-
versity undergraduate geometry seminar, Jan de Ruijter, David
Berkowitz, José Carlos Santos, and Grant Franks for corrections
and helpful comments about the text.

Page vii, line −2. Change “a” to “the”: “. . . passes the stationary observer.”

Page 6, line +8. “(t, x, y)” should be “(t, y, z)”.

Page 14. Exercise 1. The coordinate expression for the first event is missing
its closing parenthesis. It should read “(1, 0).”

Page 21. Exercise 2 (b). The second equality in the second sentence is
incorrect and must be deleted. The corrected sentence should read “Show
that Fv = Sv ◦ Cv, where Sv is the Galilean shear of velocity v.”

Page 47. Exercise 4. The subscript of the second matrix should be u2, not
u1. The beginning of the question should read “Show that Hu1

·Hu2
= . . ..”

Page 56, line +1. Reverse “two” and “the”; Definition 2.4 should read “The

separation between the two events . . . .

Page 65, Definition 2.6. Add the following sentence at the end of the defini-
tion. “That is, Ku(X) = −X for every vector X in λ⊥u .”

Page 70, line +5. The second occurrence of “LE2” should be “LE1”:

M(E2)−M(E1) = LE2 + C − (LE1 + C) = L(E2 − E1),

Page 73, Exercise 14. The condition λ1 ≤ λ2 should be, instead, |λ1| ≤ |λ2|.
Furthermore, the semimajor and semiminor axes of the ellipse should be |λ2|r
and |λ1|r.
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Page 89, line +7. One of the derivatives is missing a “d”:

d(p1 + p2)

dt
=
dp1

dt
+
dp2

dt
= f1 + f2 = 0,

Page 90, line +19. Replace the words “The velocity limitation If this were
so,” with “If inertial mass were constant,”

Page 91, the figure and line −13. Change the two
occurences of m0 to μ, to agree with the labelling
of G’s rest mass on subsequent pages. Line −13
should read “Nonetheless, it is helpful to single out
the value μ = m(0), . . . ”. v

m

−1 1
μ

Page 97, line +12. Change the first “is” to “it”: “What it says. . . ”

Page 97, lines −14 to −11. Replace the lines with:

“While 4-velocity V is not covariant in this sense—the Minkowski norm of
V is different in different frames, but a Lorentz transformation Bw preserves
the norm—the unit 4-velocity U = V/‖V‖ overcomes this problem and is
covariant. We can thus think of the components ofU and P = μU as covariant
themselves, in the sense that, if we know the value of all of them . . . ”

Page 99, line −6. Since 60 mph is exactly equal to 88 feet/sec, the first “≈”
should be “=”:

60 mph = 88 feet/sec ≈ · · ·

Page 105, last displayed equation. Add a factor “μ”:

= μc2︸︷︷︸
rest energy

+
1

2
μv2 +

3

8
μ
v4

c2
+ · · ·︸ ︷︷ ︸

kinetic energy

.

Page 107, Exercise 6(c). Replace the words “directly from” by “by assuming
Hu is orthochronous and satisfies”.

Page 112, figure at top of page. The curve on the right should have no self-
intersections, because it is meant to illustrate the theorem, which assumes
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the curve has one-to-one parametrizations. The following is an example of a
curve that fits the conditions.

x

ϕ

a q b

X

X−1
A Q B

x

y

x(a) = X(A)

x(b) = X(B)

x(q) = X(Q)

Page 113, line +14. In the middle of the formula for r(ΔP ), change X−1(ΔP )
to X−1(P ). The formula should read

r(ΔP ) = X−1(P +ΔP )−X−1(P )−∇X−1(P ) ·ΔP

Pge 114, line +8. Change R(Δ) to R(ΔQ). The beginning of the displayed
equations should read

‖ΔP‖
|ΔQ| =

‖X′(Q)ΔQ+R(ΔQ)‖
|ΔQ| =

∥∥∥∥X′(Q)
ΔQ

|ΔQ| +
R(ΔQ)

|ΔQ|
∥∥∥∥ = · · ·

Page 120, line +2. Insert before “Thus . . . ” the following sentence in paren-
theses: “(Note that ϕ′(s) = −κ is possible, but this also leads to a circle of
radius ρ.)”

Page 128, line −7. Add an “s” to “take”: “. . . a full cycle takes . . . ”.

Page 134. line +4. The formula for ‖A‖ needs to have the exponent 3/2
added to the denominator. The formula should read

‖A‖ = k| cos t|/(1− k2 sin2 t)3/2

Page 140. Exercise 5. The first integral in the displayed formula should
contain the derivative of X:

l =

∫ b

a

‖X′(q)‖dq =
∫ b

a

√(
dz

dq

)2

−
(
dt

dq

)2

dq.

Page 163, line +14. Replace 1/α and eαh/α by their reciprocals. The line
should read “. . . the accelerations of G and C are α and α/eαh, respectively.”
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Page 176, line +2. “T(0, 0, ε)” should be “T(ε, 0, 0).”

Page 186, line −9. There should be no dot product in the displayed equation;
it should read “A = −∇Φ”.

Page 211. At the end of the displayed formula above the figure, replace v by
v: “. . . if v = vixi.”

Page 212, line +12. Insert a “+” between c2 and Δq2: “(c1+Δq1, c2+Δq2).”

Page 213, lines +4, +5. These lines give a “little Oh” condition that is
different from the “big Oh” condition on line +9. For consistency, change
lines 4–5 to agree with the later statement by eliminating the statement that
the value of the limit is zero. Instead, the lines should read: “The technical
condition is that

lim
(Δq1,Δq2)→(0,0)

‖x(c1 +Δq1, c2 +Δq2)− (x +Δq1 x1 +Δq2 x2)‖
‖(Δq1,Δq2)‖2

exists and is finite.”

Page 258, line −2. The word “and” within the quotes should be “an”: “rais-
ing or lowering an index.”

Page 261, line −4. The Christoffel symbol Γjk,l should be Γjk,h.

Page 271, line −4. A differentiation prime is missing; the expression should
read “Q′(u) = q′(ϕ(u))ϕ′(u) = q′(t)ϕ′(u).”

Page 285. All occurrences of c1 in the large displayed formula should be
deleted (to reflect the hyperbolic metric correctly). The final result is un-
changed, but the correct formula should read

θ = arccos
q′ · r′
‖q′‖‖r′‖ = arccos

q̇1ṙ1 + q̇2ṙ2

(c2)2√
(q̇1)2 + (q̇2)2

(c2)2

√
(ṙ1)2 + (ṙ2)2

(c2)2

= arccos
q̇1ṙ1 + q̇2ṙ2√

(q̇1)2 + (q̇2)2
√

(ṙ1)2 + (ṙ2)2
.
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Page 289, line −1. Delete the repeated “the”: “. . . the eigenvectors lie on the
axes of those coordinates.”

Page 297, line +6. The superscript for f should run from 1 to 4:

∂ϕj

∂x1

∂f 1

∂ξi
+
∂ϕj

∂x2

∂f 2

∂ξi
+
∂ϕj

∂x3

∂f 3

∂ξi
+
∂ϕj

∂x4

∂f 4

∂ξi
=
∂ξj

∂ξi
= δji .

Page 297, line −6. Change the superscript of ξ from i to j in one place:

xk = xk(ξi), ξj = ξj(xl),

Page 308, line −10. Add the following sentence at the end of the paragraph.

“Note that all tensors—including those with positive contravariant rank—are
“generally covariant” when we use the term in the general sense.”

Page 313, line −2. The superscripts for the three appearances of “ξ” in the
last term must be permuted, as follows:

. . . =

(
∂gpr

∂xq
+
∂gqr

∂xp
− ∂gpq

∂xr

)
∂xp

∂ξi

∂xq

∂ξj

∂xr

∂ξk
+ 2gpq

∂2xp

∂ξi∂ξj

∂xq

∂ξk

Page 316, In the third displayed formula, the superscript “h” must be re-
placed by “k”:

αj
G

Γk
ij = αj︸︷︷︸

R

Γr
pq

∂xp

∂ξi

∂xq

∂ξj︸︷︷︸
∂ξk

∂xr
+ αj ∂

2xp

∂ξi∂ξj

∂ξk

∂xp
,

Page 331, line +11. Add the words “freely falling”: “But the worldcurve of
every freely falling particle is a straight line. . . .”

Page 335, In the fourth displayed formula, the components of Γ−1
P should

have superscripts, not subscripts:

Γ−1
P =

(
γ00 γ03

γ30 γ33

)
= . . .
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Page 350, In the last sentence of the statement of Corollary 7.1, replace “is”
by “satisfies the equations”: “Then the rate of separation of geodesics along
zk(τ) satisfies the equations

D2

dτ2

∂xh

∂q
= −Kh

j

∂xj

∂q
, where Kh

j = Rh
ijk

dzi

dτ

dzk

dτ
.”

Page 351, lines +6, +7. Add “a” in two places: “Kh
j is a 4 × 4 matrix, not

a 3× 3.”

Page 355, line +9. Add “to”: “. . . when we use it to determine . . . ”.

Page 368, line −10. Insert “. . .are covariant in the general sense (cf. page
308); they are tensors . . . ”.

Page 385, lines −5, −4. Change from present to past tense for consistency:
“. . . he derived a relativistic gravitational field that he used to calculate . . . ”.

Page 386, line −4. Insert “. . . boost Bv : G→ R (cf. Exercise 5, §3.2):”

Page 417, line +11. Change the colon to a semicolon and add the following:
“. . . curvature; the following are equal up to order O(1/c2):”

Page 425, lines +13, +15. We should use the norms of p × q and x × v:
“(p · q)2 + ‖p× q‖2 = p2q2 and

(x · v)2 + ‖x× v‖2 = (rṙ)2 + J2 = r2v2, ”

Page 429. A factor e2 is missing from terms in the third and the fifth displayed
equations. The third equation should read

d2v

dθ2
+ v =

3μ3

J4

(
1 +

e2

2

)
+

6eμ3

J4
cos θ +

3e2μ3

2J4
cos 2θ +O

(
1

c2

)
.

The fifth equation should read

vA =
3μ3

J4

(
1 +

e2

2

)
, vB =

3eμ3

J4
θ sin θ, vC = −e

2μ3

2J4
cos 2θ.
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by “satisfies the equations”: “Then the rate of separation of geodesics along
zk(τ) satisfies the equations

D2

dτ2

∂xh

∂q
= −Kh

j

∂xj

∂q
, where Kh

j = Rh
ijk

dzi

dτ

dzk

dτ
.”

Page 351, lines +6, +7. Add “a” in two places: “Kh
j is a 4 × 4 matrix, not

a 3× 3.”

Page 355, line +9. Add “to”: “. . . when we use it to determine . . . ”.

Page 368, line −10. Insert “. . .are covariant in the general sense (cf. page
308); they are tensors . . . ”.

Page 385, lines −5, −4. Change from present to past tense for consistency:
“. . . he derived a relativistic gravitational field that he used to calculate . . . ”.

Page 386, line −4. Insert “. . . boost Bv : G→ R (cf. Exercise 5, §3.2):”

Page 417, line +11. Change the colon to a semicolon and add the following:
“. . . curvature; the following are equal up to order O(1/c2):”

Page 425, lines +13, +15. We should use the norms of p × q and x × v:
“(p · q)2 + ‖p× q‖2 = p2q2 and

(x · v)2 + ‖x× v‖2 = (rṙ)2 + J2 = r2v2, ”

Page 429. A factor e2 is missing from terms in the third and the fifth displayed
equations. The third equation should read

d2v

dθ2
+ v =

3μ3

J4

(
1 +

e2

2

)
+

6eμ3

J4
cos θ +

3e2μ3

2J4
cos 2θ +O

(
1

c2

)
.

The fifth equation should read

vA =
3μ3

J4

(
1 +

e2

2

)
, vB =

3eμ3

J4
θ sin θ, vC = −e

2μ3

2J4
cos 2θ.
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Page 433, Exercise 6 (b). The error on page 429 is repeated here. The
expression C needs to have the factor e2 added:

C =
3e2μ3

2J4
cos 2θ.

Page 442, under the index item divergence: the divergence of a tensor is
defined on page 373, not 372. There are other index items with page ranges
that should end on 373, not 372.

The following errors in the first edition have been corrected in the
second printing (August 2001).

Page 27. The displayed formulas for τ and for E at the top of the page are
wrong. They should be

τ =
t− vz√
1− v2

,

E(t, z) = E
(
t− vz√
1− v2

,
z − vt√
1− v2

)
.

Page 28. Exercise 5. The formula for E(t, z) must be changed as on page 27.

Page 89, line +8. Add the word ”does”: “the total momentum does not
change over time:”

Page 137. Replace all the text from Proposition 3.4 up to, but not including,
Definition 3.7 by the following.

It is evident that the left-hand side—and thus the right—has the dimensions
of a rate of change of energy with respect to time. The following proposition
will lead us to a physical interpretation for f · v.

Proposition 3.4 If K̃(t) = 1
2
μv2(t) is the classical kinetic energy of G in

R’s frame and f̃ = μa is the classical 3-force acting on G, then

dK̃

dt
= f̃ · v.

7



Page 433, Exercise 6 (b). The error on page 429 is repeated here. The
expression C needs to have the factor e2 added:

C =
3e2μ3

2J4
cos 2θ.

Page 442, under the index item divergence: the divergence of a tensor is
defined on page 373, not 372. There are other index items with page ranges
that should end on 373, not 372.

The following errors in the first edition have been corrected in the
second printing (August 2001).

Page 27. The displayed formulas for τ and for E at the top of the page are
wrong. They should be

τ =
t− vz√
1− v2

,

E(t, z) = E
(
t− vz√
1− v2

,
z − vt√
1− v2

)
.

Page 28. Exercise 5. The formula for E(t, z) must be changed as on page 27.

Page 89, line +8. Add the word ”does”: “the total momentum does not
change over time:”

Page 137. Replace all the text from Proposition 3.4 up to, but not including,
Definition 3.7 by the following.

It is evident that the left-hand side—and thus the right—has the dimensions
of a rate of change of energy with respect to time. The following proposition
will lead us to a physical interpretation for f · v.

Proposition 3.4 If K̃(t) = 1
2
μv2(t) is the classical kinetic energy of G in

R’s frame and f̃ = μa is the classical 3-force acting on G, then

dK̃

dt
= f̃ · v.
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proof: Since v2 = v · v, we can write K̃(t) =
μ

2
v · v. Therefore,

dK̃

dt
=
μ

2
(v · v)′ = μ

2
(2v′ · v) = μv′ · v = μa · v = f̃ · v. end of proof

Let us therefore interpret f · v (which involves the relativistic 3-force f) as
the time rate of change of relativistic kinetic energy K of G in R’s frame.
Thus F · U = 0 becomes

c2
dm

dt
=
dK

dt
, implying c2m = K + const.

If we further require that K = 0 when v = 0, as in the classical case, then we
can determine the constant of integration in the last equation: Since m = μ
and K = 0 when v = 0, it follows that const = μc2, the rest energy of G.
We can summarize the previous discussion in the following definition and
corollary.

Page 138, line 4. Insert between “K” and the colon:
“We also have an expression for the relativistic kinetic energy K that agrees
with the one we used in section 3.1 for non-accelerated motion:”

Page 190, line −4. Insert the sentence: “. . .hN = hν − hνΔΦ. (For the rest
of this paragraph, h represents Planck’s constant, not the position of C.) If
we let. . . ”.

Page 244. In the figure, the Gauss image G(α) in S1 is incorrect; it should
be rotated 90◦ counterclockwise, as in the figure below.

C

r

α

G
1

G α

S1

Page 268. The statement about the normal component N of acceleration
(and the formula given in line −4) are incorrect, as is the displayed for-
mula immediately above that line. The displayed formula and the sentence
following it should read(

d2qk

dt2
+ Γk

ij

dqi

dt

dqj

dt

)
xk + bij

dqi

dt

dqj

dt
n.
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The last term is the normal component N of acceleration. It depends on the
second fundamental form bij and the velocity components dqi/dt of the curve
z(t), but is in general different from zero.

Page 375, line −1. Add a space between “δhk” and “is”.

Page 382. In exercise 9 (c), two minus signs are missing. The statement
should read:
Assume Tij ≡ 0 and show that R = −4Λ where R is the scalar curvature
function R = Ri

i. Then show that Rij = −Λgij.

Page 431, The paragraph “Visualizing the drift” states incorrectly the size of
the drift due to the other planets. Replace the paragraph with the following.

In fact, most of the shift is due to the fact that the observations are made
in a non-inertial frame; only about one-tenth is due to the Newtonian grav-
itational “disturbances by other planets.” The relativistic contribution is
extremely small; even over 80 centuries it amounts to just under 1◦, but it is
enough to be visible in the figure on the next page. By contrast, the observed
shift during the same time is enormous—a third of a complete revolution.
The figure is drawn to scale and gives an accurate picture of the eccentricity
of Mercury’s orbit. The non-relativistic contribution (of about 5557′′ per
century) is shown by the dashed ellipse, the correct (relativistic) drift by the
gray ellipse.

9



Bibliography 

[1] Ronald Adler, Maurice Bazin, and Menahem Schiffer. Intro­
duction to General Relativity. McGraw-Hill, New York, second 
edition, 1975. 

[2] Michael Berry. Principles of Cosmology and Gravitation. Cam­
bridge University Press, Cambridge, 1976. 

[3] Garrett Birkhoff and Saunders MacLane. A Survey of Modem 
Algebra. Macmillan, New York, second edition, 1953. 

[4] Mary L. Boas. Mathematical Methods in the Physical Sciences. 
John Wiley & Sons, New York, second edition, 1983. 

[5] M. Crampin and F. A. E. Pirani. Applicable Differential Geom­
etry. Cambridge University Press, Cambridge, 1986. 

[6] C. T. J. Dodson and T. Poston. Tensor Geometry: The Geometric 
viewpoint and Its Uses. Springer-Verlag, New York, 1991. 

[7] B. A. Dubrovnin, A. T. Fomenko, and S. P. Novikov. Modem 
Geometry-Methods and Applications. Springer-Verlag, New 
York, 1984. 

[8] A. Einstein. Cosmological considerations on the general the­
ory of relativity. In [20], The Principle of RelatiVity. Dover, 
1952. 

435 



436 ___________ B~ili~li~o~~~PLh~y __________________________________ ___ 

[9] A. Einstein. Does the inertia of a body depend on its energy­
content. In [20], The Principle of Relativity. Dover, 1952. 

[10] A. Einstein. The foundation of the general theory of relativ­
ity. In [20], The Principle of Relativity. Dover, 1952. 

[11] A. Einstein. On the electrodynamics of moving bodies. In 
[20], The Principle of Relativity. Dover, 1952. 

[12] A. Einstein. On the influence of gravitation on the propaga­
tion of light. In [20], The Principle of Relativity. Dover, 1952. 

[13] Richard P. Feynman, Robert B. Leighton, and Matthew Sands. 
The Feynman Lectures on Physics. Mdison-Wesley, Reading, 
MA,1963. 

[14] Theodore Frankel. Gravitational Curvature: An Introduction 
to Einstein's Theory. W. H. Freeman, San Francisco, 1979. 

[15] Wilhelm Klingenberg. A Course in Differential Geometry. 
Springer-Verlag, New York, 1978. 

[16] Erwin Kreyszig. Introduction to Differential Geometry and Rie­
mannian Geometry. University of Tbronto Press, Tbronto, 
1968. 

[17] L. D. Landau and E. M. Lifshitz. The Classical Theory of Fields. 
Pergamon Press, Oxford, 1975. 

[18] D. F. Lawden. An Introduction to 'Thnsor Calculus, Relativity 
and Cosmology. John Wiley & Sons, New York, third edition, 
1982. 

[19] H. A. Lorentz. Michelson'S interference experiment. In 
[20], The Principle of Relativity. Dover, 1952. 

[20] H. A. Lorentz, A. Einstein, H. Minkowski, and H. Weyl. The 
Principle of Relativity. Dover, New York, 1952. 

[21] F. K. Manasse and C. W. Misner. Fermi normal coordinates 
and some basic concepts in differential geometry. J. Math. 
Phys., 4(6):735-745, June 1963. 

[22] John McCleary. Geometry from a Differentiable Viewpoint. 
Cambridge University Press, Cambridge, 1994. 

[23] H. Minkowski. Space and time. In [20], The Principle of 
Relativity. Dover, 1952. 



Bibliography 437 
~------------------------------~~--------

[24] Charles W. Misner, Kip S. Thorne, and John Archibald 
Wheeler. Gravitation. W. H. Freeman, San Francisco, 1973. 

[25] Gregory 1. Naber. Spacetime and Singularities. Cambridge 
University Press, Cambridge, 1988. 

[26] Abraham Pais. 'Subtle is the Lord . .. ' The Science and the Life 
of Albert Einstein. Oxford University Press, New York, 1982. 

[27] Harry Pollard. Mathematical Introduction to Celestial Mechan­
ics. Prentice-Hall, Englewood Cliffs, NJ, 1972. 

[28] Edwin F. Taylor and John Archibald Wheeler. Spacetime 
Physics. W. H. Freeman, San Francisco, 1966. 

[29] Edward R. Thfte. The Visual Display of Quantitative Informa­
tion. Graphics Press, Cheshire, CT, 1983. 

[30] 1. M. Yaglom. A Simple Non-Euclidean Geometry and Its Phys­
ical Basis. Springer-Verlag, New York, 1979. 



Index 

c, speed oflight, 7, 74 
Djdt, covariant differential 

operator along a curve, 
320 

E = mc2 , equivalence of mass 
and energy, 138 

E, electric vector, 23 
G, gravitation constant, 74, 168 
rjk,/, rh, Christoffel symbols of 

the first and second 
kinds, 263, 278 

H, magnetic vector, 23 
h, Planck's constant, 139 
Jp,q, Minkowski inner product 

matrix, 60, 102 
J, vector of 

angular momentum, 424 
electric current density, 23 

K, Gaussian curvature, 246 
Kj, tidal acceleration tensor, 

350, 358-360 

K, curvature ofa curve, 118, 
121 

0(2, R), orthogonal group, 71 
0+(2, R), group of rotations in 

R2, 51, 70 

Rhjkl, R~kl' covariant, mixed 
Riemann curvature 
tensors, 264, 278 

Rik, Ricci tensor, 266 
p, density 

of electric charge, 23 
of matter, 179, 183 

S3, 3-sphere, 376 
Gh .. ·ip Rh .. ·ip 
Th ... jq , Th ... jq , tensor of type 

(p, q) in the coordinate 
frames of G and R, 

respectively, 308 
V, gradient operator, 23, 182 
V . A, divergence of vector field 

A,182 

439 
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v2 , the Laplace operator, 24, 
179, 182 

1\, operator defining 
exterior product dp 1\ dq of 

differentials, 188 
oriented parallelogram v 1\ w 

spanned by v and w, 210 

acceleration, 124-136 
4-acceleration, 131, 133-136 
corresponds to curvature, 

132, 134-136 
linear, 155-165 

addition of velocities, 78-79 
algebra of differential forms, 

see exterior product 
angular momentum 

classical, 424 
relativistic, 427 

arc length, 11 0-117 
arc-length 

function, 115 
parametrization, see also 

curve, parametrized by 

area 

arc length 
of great circles on sphere, 

273-274 
of lines in hyperbolic 

plane, 283-284 

magnification factor, 217 
of a spherical cap, 155 
of region on a surface, 215-217 
oriented, 210-212 

in Gauss map, 248 

Bianchi identity, 372 
boost (velocity boost), 38, 46 

addition formula, 79 

calibration 
oflength, time, and mass, 74 
of two Euclidean frames, 51 
of two spacetime frames, 54 

Cauchy-Schwarz inequality,· 71 
causal past and future of an 

event, 76 
charge density p, 23 
Christoffel symbols 

defined extrinsically, 263 
defined intrinsically, 278 
form gravitational field in 

relativity, 333 
not tensorial, 312-316 

clock, see measurement 
collision 

elastic, 98 
inelastic, 92, 99 

commutative diagram, 35 
congruence in Minkowski 

geometry, 64-70 
conservation 

of 4-momentum, 98-101 
of energy-momentum, 

370-372 
of momentum, 89, 91-93 

contraction of a tensor, 265, 309 
contravariant, see covariant 
coordinate 

frame 
asymptotically inertial, 

405 
Fermi, 351-362 
inertial, 90, 147-148, 155, 

289, 330 
limited in size when not 

inertial, 146, 156-157 
linearly accelerating, 

155-165 
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noninertial, 144 
radar, 148, 156-162 
rotating, 144-146 
rulers and clocks, 148, 

162-165, 289 
transformation 

arbitrary nonlinear, 
292-293, 331 

as dictionary, 13, 24, 147 
Galilean, 12-14 
induced on tangent plane, 

294-297 
Lorentz, 38, 46 

coordinates 
as measurements, 147-149 
as names, 13, 97, 147 
curvilinear, 205 
dimensionally 

homogeneous, 137-138, 
368, 369 

compared to traditional, 
102 

in tangent plane, induced, 
279-280, 293-296 

isotropic, 406-409, 432 
spherical, 181, 397 

Coriolis force, 89, 344, 405 
cosh (hyperbolic cosine), 43 
cosmological constant, 

376-378, 383 
coth (hyperbolic cotangent), 43 
covariance, 97, 300-303 

general, 301 
related to way a basis 

transforms, 301-303 
special, 97 

covariant 
and contravariant quantities, 

301-303 

derivative 
along a curve, 320 
as limit of a difference 

quotient, 321-325 
of a tensor, 316-317 

csch (hyperbolic cosecant), 43 
current density J, 23 
curvature 

bending versus stretching, 
196, 257 

center of, 119, 121 
Gaussian, 245-252, 278 
manifested by distortions in 

flat charts, 196-197 
negative, 250-252 

on hyperbolic plane, 284 
of a curve, 117-121, 242 
of a surface, see curvature, 

Gaussian 
of spacetime, 285-286 

determines the way 
objects move, 331-333 

evidence for, 152, 153, 165, 
196-200 

is determined by matter, 
345, 374-376 

radius of, 119, 121 
scalar, 373 
total, 255 
vector, 118, 121 

curve, parametrized, 108-121 
by arc length, 115-121 
nonsingular, 109 
of constant curvature, 119-120 
spacelike, 140 

cylinder, generalized, 6 

de Sitter spacetime, 230-240, 
256, 289 
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deflection, see light, bending of 
light rays 

determinant of a 2 x 2 matrix, 37 
develop one surface on 

another, 258 
developable, see tangent 

developable surface 
diameter of a plane region, 246 
dictionary, see coordinate 

transformation 
differential 

expression for metric, 398, 
401-409, 418, 426 

of a map, 295-297 
differentials, rules for 

multiplying, see exterior 
product 

Disquisitiones Generales (C. F. 
Gauss, "General 
Investigations of Curved 
Surfaces," 1827), 258 

div, the divergence operator, 
182 

divergence, 185 
of a tensor, 372 
of a vector field, 182 
of Ricci tensor, 373-374 

Doppler effect, 81-83, 85 
in a gravitational field, 188-191 
in a linearly accelerating 

frame, 163-165 

eccentricity of an ellipse, 117, 
422 

eigenvalue and eigenvector of 
an n x n matrix, 37 

Einstein, Albert 
"The happiest thought of my 

life", 361 

clocks slow down in a 
gravitational field, 
189-190 

cosmological constant for 
spherical universe, 
376-378 

deduces Lorentz 
transformation from 
constancy of the speed 
of light, 31 

devotes much of his 
fundamental paper on 
general relativity to 
developing tensors, 307 

explains perihelion drift of 
Mercury's orbit, 422, 
430-431 

gravity causes light rays to 
bend, 413-421 

introduces summation 
convention, 209 

laws of physics must be 
generally covariant, 331 

must use arbitrary frames to 
model gravity, 198-200 

obtains a new theory of 
gravity by abandoning 
special status of inertial 
frames, 143 

photoelectric effect, l39 
proposes special relativity to 

solve troubling problems 
in physics, 1 

treats Newtonian mechanics 
as a first approximation 
to general relativity, 
385-386 

weak field solution, 397-401 
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electric vector E, 23 
electromagnetic potential, 333, 

341 
ellipse, 116, 422-423 
elliptic integrals and functions, 

117,129 
energy 

density, 368 
equivalent to mass, 100, 138 
kinetic, 100, 138 

relativistic, lOS, 138 
oflight, 139 
potential, of gravitational 

field, 173-174 
rest, lOS, 137 
total, 106, 138 

energy-momentum 
tensor, 366-372, 383 

has zero divergence, 372 
vector, 106, 138 

equations of motion 
classical (Newtonian), 330, 

424-426 
in a weak field, 390-394 
relativistic, 332, 426-429 

equiangular spiral, 123 
ether, medium for light waves, 

17 
event 

in spacetime, 2 
time-, space-, and lightlike, 

53 
evolute of a curve, 119 
exterior product, 187 

Fermi 
conditions, 356 
coordinates, 351-358, 383 

Fermi, Enrico, 351 

first fundamental form 
(metric), 208, 263, 277, 
286 

fission, converting mass to 
energy, 100 

Fitzgerald contraction, 19-21, 
84 

applied to the wave 
equation, 25 

implied by special relativity, 
80 

in linearly accelerating 
frame, 160 

in rotating frame, 152 
of particle swarm, 367 

Fitzgerald, B. F., explained 
results of 
Michelson-Morley 
experiment, 20 

flip, as linear map, 35 
fluid flow, incompressible, 

183-185 
focus (plural foci) of an ellipse, 

422 
force 

4-force, 132-133, 137-138 
and kinetic energy, 137 
in Newton's second law, 

88-89 
in universal gravitation, 168 

Foucault pendulum, 89 
frame, see coordinate frame 
freely falling body, 191-195, 

330, 345-355 
future 

ray, 58 
set, 55, 57 

in de Sitter spacetime, 235 
vector, 57, 124 
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Galilean transformation, 12-14 

and conservation of 
momentum, 92 

applied to the wave 
equation, 24 

geometrically a shear, 13 

Galileo's law of inertia, see 
Newton's laws of motion 

Gauss map 
of a curve, 242 

of a surface, 245 

of cylinder or cone, 247 

Gauss, Carl F., 257-258 

Gaussian 
curvature, 245-252, 278 

and Riemann curvature 
tensor, 260-261 

taking sign into account, 
248-252 

image, 245 

generator 
of a cylinder, 6 

of a ruled surface, 239 
geodesic, 267-275 

differential equations, 269 
in weak field, 392 

existence and uniqueness, 
274 

has constant-speed 
parametrization, 270 

in hyperbolic plane, 281-285 

is covariant object, 313-315 

is worldcurve of freely falling 
particle, 331, 335-339 

not just "straightest path", 
270-271 

on sphere, 272-274 

separation, 347-351, 383 

connection with Riemann 
curvature tensor, 349 

indication of tidal 
acceleration, 347 

gravitational 
field, see also vacuum field 

equations; matter field 
equations 

can be produced by 
coordinate change, 199, 
329 

classical (Newtonian) 
components, 171,333 

constant, 333-341 

of a point source, 397-401, 

432 

relativistic components, 
332-333 

spherically symmetric, 
396-409 

weak, 388-395 
potential 

and red shift, 190-191, 
195-196 

classical (Newtonian), 
171-174,179-186,333 

Laplacian of, 179, 181-186 

relativistic, 333 

radius, 404 

gravity 
and curvature of spacetime, 

285-286 

classical (Newtonian), 
167-186 

comparing the theories of 
Newton and Einstein, 
199 

in special relativity, 188-196 
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incompatible with 
Minkowski geometry, 
195-196, 329 

great circle, arc-length 
parametrization, 
273-274 

history, see worldcurve 
Huygens' principle, 414 
hyperbolic 

angle, 57-60 
preserved by hyperbolic 

rotations, 59 
functions, 43-48 

algebraic and calculus 
relations, 44 

plane, 281-285 
hyperboloid (of one sheet), 230 

doubly-ruled surface, 239 

index of a tensor 
covariant, contravariant, 264, 

303 
raising and lowering, 264 

inertia, 88 
inertial frame, 90, 147-148, 

ISS, 289, 330 
inner product 

Euclidean, 49 
Minkowski, 60 

interval 
between spacetime events, 56 
timelike, spacelike, and 

lightlike, 56 
intrinsic geometry, 203, 257 

of an arbitrary 2-dimensional 
surface, 277-281 

of de Sitter spacetime, 
233-236 

of the hyperbolic plane, 
281-285 

of the sphere, 221-229 
isometry 

of curves, 241 
of surfaces, 258 

isotropic coordinates, 407 

kinematics, 31 
kinetics, 87 
kosher, 48 

Laplacian, 178, 182, see also 
gravitational field; 
Maxwell's equations 

latitude and longitude 
on earth, 149-151 
on parametrized sphere, 222, 

272-273 
Laue's scalar, 375 
law of hyperbolic cosines, 62 
length contraction, see 

Fitzgerald contraction 
Leverrier, Urbain Jean Joseph, 

430 
light 

and electromagnetism, 23 
bending of light rays, 

191-195, 413-421 
1911 computation, 

416-418 
1916 computation, 

418-421 
cone, 8, 32-35, 38 

determined by metric, 
288-289 

in de Sitter spacetime, 
233-240 

energy and frequency, 139 
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light (cant.) 
momentum and wavelength, 

139 
speed of, c, 7 
travel time, in the 

Michelson-Morley 
experiment, 18 

waves and rays, 414 
light-second, as unit of 

distance, 7 
lightlike event, 53 
linear map, geometric 

characterization 
(exercise), 40 

local time, see Lorentz, H. A. 

Lorentz 
group (orthochronous), 68 
transformation 

and hyperbolic reflection 
and rotation, 68 

as hyperbolic rotation, 46 
as velocity boost, 38, 46 
defined by Einstein to 

preserve the light cone, 
31-39 

in conventional units, 103, 
106-108 

preserves the wave 
equation, 26-27 

Lorentz, H. A. 

local time, 27 
on the Michelson-Morley 

experiment, 18 
reluctant to accept Einstein's 

special relativity, 27 
loxodrome, 230 

Mach, Ernst, 198 
magnetic vector H, 23 

map, 292-303, see also 
coordinate 
transformation 

of the earth, 149-151, 153 
mass 

gravitational, 168 
inertial, 88, 167 
proper, or rest, 91, 100 
relativistic, 91, 93-96, 104, 

138 
matter field equations 

classical (Newtonian), 
182-186, 365 

in weak field, 394-395 
relativistic, 374-376 
with cosmological constant, 

377-378 
matter-energy, 101, 370 
Maxwell's equations, 23 

covariant under Lorentz 
transformations but not 
Galilean, 97 

given by a 4-potential, 333, 
341 

Maxwell, James Clerk, 22 
measurement 

grid of rulers and clocks, 148 
timings by radar and by 

clocks, 148-149 
disagree in noninertial 

frame, 148, 162 
Mercury, 385, 421, 430-431 
metric, or metric tensor 

asymptotically inertial, 405 
contravariant, 310-311 
determines lengths and areas 

on a surface, 213-217 
forms gravitational potential, 

333 
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induced by "pull back", 354 
inner product on tangent 

plane, 208-210, 278 
Minkowski, 299, 330, 356, 

388-391, 397-405, 418 
of weak field of a point 

source, 398-401 
on de Sitter spacetime, 232, 

233 
on hyperbolic plane, 282 
on intrinsically defined 

surface, 277 
on spacetime, 286, 298-300 
on the sphere, 222 
Schwarzschild, 401-405, 432 

in isotropic coordinates, 409 
written as a differential, 398, 

401-409, 418, 426 
Michelson, Albert A., 17 
Michelson-Morley experiment, 

15-19 
Miller cylindrical projection, 

150 
Minkowski 

geometry, 49-70 
congruence in, 64-70 
in tangent plane to de 

Sitter spacetime, 232 
incompatible with gravity, 

195-196 
reflection in, 65-69 
rigid motion in, 64-70 

length of a spacelike curve, 
140 

metric, 299, 330, 356, 
388-391, 397-405, 418 

Minkowski, Hermann 
introduces a norm for 

spacetime events, 52 

places special relativity in a 
geometric context, 1 

momentum, 88 
4-momentum, 94, 102, lOS, 

131-133 
conservation of, 98-101 
covariant under Lorentz 

transformations, 95, 97 
conservation of, 89, 91-93 
of light, 139 
relativistic, 93-96 

Morley, Edward W., 17 
multi-index quantity, 262-266 

Newton's laws 
of motion, 87-93 

first law (Galileo's law of 
inertia), 87-89 

second law, 88,131-133 
third law, 88, 89, 91-93 

universal gravitation, 168 
non-Euclidean geometry 

elliptic and hyperbolic, 154, 
281 

hyperbolic plane as model 
of, 281 

in rotating frame, 152 
on sphere, 149-155 

nonsingular parametrization 
of a curve, 109 
of a surface, 206 

norm 
Euclidean, 49 
Minkowski, 51-54 

in dimensionally 
homogeneous 
coordinates, 102 

in tangent plane, 288 
normal to a surface, 207 
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objective past and future of an 
event, 75-76 

objectivity 
and relativity, 10 
obtained by using generally 

covariant quantities, 331 
observer 

Galilean, 10, 15-17, 143, 147, 
155 

has subjective view of 
spacetime, 10 

in rotating frame, 144 
linearly accelerating, 

155-165 
with arbitrary frame, 292 

orthochronous, see Lorentz 
group 

orthogonal 
group 0(2, R), 71 

vectors in spacetime, 63 
orthonormal basis, 352 
oscillatory motion, 127-130, 

133-134 

parallel 
transport, 317-325 

in Fermi coordinates, 352 
map, 321 

vectors or tensors along a 
curve, 321 

parameter, 108,204 
particle density 4-vector, 368 
past set in spacetime, 55 
perihelion, 385 

drift, 421-431 
perpendicular vectors in 

spacetime, 63 
photo finish, as spacetime 

diagram, 4 

photoelectric effect, 139 
photon 

as particle oflight, 7 
energy and frequency, 139, 

190 
has zero rest mass, 141 
momentum and wave 

length, 139 
Planck's constant, h, 139 

planetary motion, 433 
classical orbit, 423-426 
Kepler's third law, 411, 431 
relativistic orbit, 426-431 

potential, see gravitational 
potential; 
electromagnetic 
potential; energy 

Preakness (horse race), 4 
principal axes theorem, 290 
Principia (Isaac Newton, 

Philosophice Naturalis 
Principia Mathematica, 
1687), 87 

principle 
of covariance, 97, 300 
of equivalence (of gravity 

and acceleration), 169 
implies gravity bends light 

rays, 191-195 
is only local, 169 

of general covariance, 331 
of relativity, see relativity 

proper time, 79 
corresponds to arc length 

along a worldcurve, 
125-127 

in rotating frame, 146 
proper-time 

parameter, or function, 127 
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parametrization, see 
worldcurve, 
parametrized by proper 
time 

Pythagorean theorem in 
Minkowski geometry, 
63-64 

quadratic form, Minkowski, 
53-55, 240 

relation to Minkowski norm, 
53 

radar, see measurement 
radian, hyperbolic, 58 
radius of space 

in de Sitter spacetime, 232 
in Einstein's spherical 

universe, 376-378 
rank of a tensor, 308 
red shift, 81, 165 

as energy loss of a photon, 
190-191 

gravitational, 190-191, 
405-406 

reflection, hyperbolic, 65-69 
refraction oflight, 413, 415-416 
region, oriented, 210 
relativity 

Galileo's principle, 10 
general, 143, 199 
special, 10,90, 143, 298 

Ricci tensor, 266 
alternative formula, 380 
in vacuum field equations, 

361 
Riemann curvature tensors 

and Gaussian curvature, 
260-261 

defined extrinsically, 264 
defined intrinsically, 278 

in geodesic separation 
equations, 349-351 

right triangle in spacetime, 63 

rigid 
body, not physically 

meaningful in special 
relativity, 77 

motion in Minkowski 
geometry, 64-70 

rotation 
Euclidean, 49-51 

hyperbolic, 46, 57-61, 64 

uniform, of an observer, 
144-146 

ruled surface, 239 
rulers, see measurement 

scalar curvature, 373 

Schwarzschild 
metric, 401-405, 432 

in isotropic coordinates, 
409 

radius, 404 
Schwarzschild, Karl, 401 
sech (hyperbolic secant), 43 
second, see also light-second 

fundamental form, 263 

semimajor, semiminor axes of 
an ellipse, 422 

separation between spacetime 
events, 56 

shear, as linear map, 13 

shock wave, 77 
simultaneity, not physically 

meaningful in special 
relativity, 75 
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singular 
point 

of a curve, 109 
of a surface, 205 
of sphere parametrization, 

222 
solution of differential 

equations, 340 
sinh (hyperbolic sine), 43 
slice of space or spacetime, 8, 

287 
slow particle, 390 
small quantity, 386-388 
source of gravitational field 

continuous distribution, 
179-186 

discrete, 172-173 
spacelike event, 53 
spacetime, 1 

as intrinsically defined 
surface, 277 

de Sitter, 230-240, 256 
diagram, 1-8 

sphere parametrization, 
221-222, 377 

stress-energy tensor, see 
energy-momentum 
tensor 

summation convention, 209 
surface 

intrinsically defined, 
277-278 

parametrized in R3 , 204-207 
nonsingular,206-207 
singular point, 205-206 

swarm of noninteracting 
particles, 366-369, 375 

Szechuan, 48 

tangent 
developable (surface), 220 
plane, or space 

carries an inertial frame in 
spacetime, 289 

to embedded surface, 207 
to intrinsically defined 

surface, 278-281 
to spacetime, 286, 293-303 

vector, 108 
to an embedded surface, 

205, 207-208 
to intrinsically defined 

surface, 279-281 
unit (unit speed), ll8, 121 

tanh (hyperbolic tangent), 43 
converts hyperbolic rotation 

to velocity boost, 46 
tensor, 307-325 

covariant, contravariant, 308 
field, 308, 321, 325 
not preserved under 

differentiation,3ll-312 
product, 326, 368 

tensorial quantity, 308 
theorema egregium of Gauss, 

257-262 
tidal acceleration, 174-179 

classical (Newtonian) 
equations, 345-348 

follows inverse cube law, so 
lunar tides are stronger 
than solar, 177 

matrix, 351 
classical, 178, 347-348 
relativistic, 350, 358-360 

relativistic equations, 350 
shown by geodesic 

separation, 347 
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tides 
distinguish between gravity 

and linear acceleration, 
170 

effects revealed in orbiting 
spacecraft, 170 

Newtonian, 174-179 
on earth, 177 

time dilation, 79-80, 103-105, 
146, 164 

in gravitational field, 190, 
405 

local, 132 
timelike event, 53 
trace of a 2 x 2 matrix, 37 
train schedule (Paris-Lyon), as 

spacetime diagram, 3 
trefoil knot, 220 
triangle inequality, 62 
Thfte, Edward R., 3 
twin paradox, 130-131 

units 
conventional, 74, 101-106 
converting between 

conventional and 
geometric, 101, 105 

geometric, 7, 74 

vacuum field equations 
classical (Newtonian), 179, 

182, 344-348 
for Schwarz schild solution, 

402-404 

for weak field, 397-401 
relativistic, 358-362 

vector field, 17l-172, 183,233, 
317-325 

gradient, 17l 
velocity 

4-velocity, 94, 102, 105 
proper (corresponds to 

unit speed tangent 
vector), 104-105, 131 

boost, 46 
limitation, 74 

implies mass is relative, 
90-91 

in rotating frame, 146 
slope of world curve, 1-4, 

11-13 
vector, 14-15, 88, see also 

tangent vector 
Vulcan, 421 

Watson, Bill, 48 
wave equation, 24-27 
work, gravitational, 173-174 
worldcurve, or worldline, 2, 

124-131 
nonsingular, l25 
of an observer, 11 
of constant acceleration, 

134-136, 155-160, 163 
of freely falling particle is a 

geodesic, 331-332 
parametrized by proper time, 

127-131 
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