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Preface

It is safe to say that for every student of calculus the first encounter
with integration involves the idea of approximating an area by sum-
ming rectangular strips, then using some kind of limit process to
obtain the exact area required. Later the details are made more
precise, and the formal theory of the Riemann integral is introduced.

The budding pure mathematician will in due course top this off
with a course on measure and integration, discovering in the process
that the Riemann integral, natural though it is, has been superseded
by the Lebesgue integral and other more recent theories of integra-
tion. However, those whose interests lie more in the direction of
applied mathematics will in all probability find themselves needing
to use the Lebesgue or Lebesgue-Stieltjes integral without having
the necessary theoretical background. Those who try to fill this gap
by doing some reading are all too often put off by having to plough
through many pages of preliminary measure theory.

It is to such readers that this book is addressed. Our aim is to
introduce the Lebesgue-Stieltjes integral on the real line in a nat-
ural way as an extension of the Riemann integral. We have tried
to make the treatment as practical as possible. The evaluation of
Lebesgue-Stieltjes integrals is discussed in detail, as are the key the-
orems of integral calculus such as integration by parts and change of

\'%




Vi Preface

variable, as well as the standard convergence theorems. Multivariate
integrals are discussed briefly, and practical results such as Fubini’s
theorem are highlighted. The final chapters of the book are devoted
to the Lebesgue integral and its role in analysis. Specifically, func-
tion spaces based on the Lebesgue integral are discussed along with
some elementary results.

While we have developed the theory rigorously, we have not
striven for completeness. Where a rigorous proof would require
lengthy preparation, we have not hesitated to state important theo-
rems without proof in order to keep the book reasonably brief and
accessible. There are many excellent treatises on integration that
provide complete treatments for those who are interested.

The book could also be used as a textbook for a course on in-
tegration for nonspecialists. Indeed, it began life as a set of notes
for just such a course. We have included a number of exercises that
extend and illustrate the theory and provide practice in the tech-
niques. Hints and answers to these problems are given at the end of
the book.

We have assumed that the reader has a reasonable knowledge of
calculus techniques and some acquaintance with basic real analy-
sis. The early chapters deal with the additional specialized concepts
from analysis that we need. The later chapters discuss results from
functional analysis. It is intended that these chapters be essen-
tially self-contained; no attempt is made to be comprehensive, and
numerous references are given for specific results.

Michael Carter
Bruce van Brunt
Palmerston North, New Zealand
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~ Real Numbers

CHAPTER

The field of mathematics known as analysis, of which integration is
a part, is characterized by the frequent appeal to limiting processes.
The properties of real numbers play a fundamental role in analysis.
Indeed, it is through a limiting process that the real number system
is formally constructed. It isbeyond the scope of this book to recount
this construction. We shall, however, discuss some of the properties

of real numbers that are of immediate importance to the material
that will follow in later chapters.

1.1 Rational and Irrational Numbers

The number systems of importance in real analysis include the nat-
ural numbers (N), the integers (Z), the rational numbers (Q), and
the real numbers (R). The reader is assumed to have some famil-
iarity with these number systems. In this section we highlight some
of the properties of the rational and irrational numbers that will be
used later.

The set of real numbers can be partitioned into the subsets of
rational and irrational numbers. Recall that rational numbers are

1




2 1. Real Numbers

numbers that can be expressed in the form m/n, where m and n
are integers with n # 0 (for example 3, & —3(= 22), 15(= L),
0(= %)). Irrational numbers are characterized by the property that
they cannot be expressed as the quotient of two integers. Numbers
such as e, 7, and +/2 are familiar examples of irrational numbers.

It follows at once from the ordinary arithmetic of fractions that
if r; and r; are rational numbers, then so are r; + 12, 11 — 13, 173,
and r;/r; (in the last case, provided that r, # 0). Using these facts
we can prove the following theorem:

Theorem 1.1.1 ,
If v is a rational number and x is an irrational number, then
(i) r + x is irrational;
(ii) rx is irrational, provided that r # 0.

Proof See Exercises 1-1, No. 1. O

A fundamental property of irrational and rational numbers is that
they are both “dense” on the real line. The precise meaning of this
is given by the following theorem:

Theorem 1.1.2

If a and b are real numbers with a < b, then there exist both a rational
number and an irrational number between a and b.

Proof Leta and bbe real numbers such thata < b. Thenb—a > 0,
so +/2/(b — @) > 0. Let k be an integer less than a, and let n be an
integer such that n > +/2/(b — &). Then

1 2
0<—< -£ < b-a,
n n
and so the succesive terms of each of the sequences

1 2 3
k+=, k+= k+-,...
n n n

2 2
k+l/——, k+2£, k+3£,...
n n n

differ by less than the distance between a and b. Thus at least one
term of each sequence must lie beween a and b. But the terms of
the first sequence are all rational, while (by Theorem 1.1.1) those of
the second are all irrational, so the theorem is proved. O
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FIGURE 1.1 Counting the integers

a

Corollary 1.1.3

If a and b are real numbers with a < b, then between a and b there

exist infinitely many rational numbers and infinitely many irrational
numbers.

Proof This follows immediately by repeated application of Theo-
rem 1.1.2. O

An infinite set S is said to be countable if there is a one-to-one
correspondence between the elements of S and the natural num-

bers. In other words, § is countable if its elements can be listed as a
sequence

S={a,aza3,...}.

For example, the set Z is countable because its elements can be listed
as a sequence {aj, az, az, . ..} by using the rule

0 ifn=1
a,=4¢{ m ifn=2m m >0
-m ifn=2m+1,m>0

sothata; = 0, a; = 1, az = —1, as = 2, and so on. The process of
listing the elements of Z as a sequence can be visualized by following
the arrows in Figure 1.1 starting at 0. Much less obvious is the fact
that the set Q is also countable. Figure 1.2 depicts a scheme for
counting the rationals. To list the rationals as a sequence we can
just follow the arrowed path in Figure 1.2 starting at 0/1 = 0, and
omitting any rational number that has already been listed. The set




4 1. Real Numbers

A
33 213 €= —1/3 €= 03 «—1/3 «— 23 3/3
32 212 12 02 <« 1P 2w 3n

| r 1

=3/1 =2/1 -1/ 01 — 1/1 2/1 3/1

L 1

e =3/-1 =2/-1  -1/-1 = 0/~1 = /-1 —> 2/-1 3/~1 ---

|

=3/~2 22 -1/2-—>0-2 =»1/2 — 2/-2 —> 3/-2

-3/-3 2/-3 -1/3 0/-3 1/-3 2/-3 3/-3

FIGURE 1.2 Counting the rationals

Q can thus be written as

o=lo1 1 1 . ,21 1 2 3 33
- ’ 727 2) ) ) ;3;3; 3; 3) 2; Yy e f
The infinite sets N, Z, and Q are all countable, and one may won-

der whether in fact there are any infinite sets that are not countable.
The next theorem settles that question:

Theorem 1.1.4
The set S of all real numbers x such that 0 < x < 1 is not countable.

Proof We use without proof here the well-known fact that any real
number can be represented in decimal form. This representation
is not unique, because N.mnyng...nx9999...and Nnyngng ... (nx +
1)0000. .. are the same number (e.g. 2.349999... = 2.35); likewise
N.999... and N + 1 are the same number. We can make the repre-
sentation unique by choosing the second of these representations in
all such cases, so that none of our decimal expressions will end with
recurring 9’s.

We will use a proof by contradiction to establish the theorem.

Suppose S is countable, so that we can list all the elements of S as a
sequence:

S= {a1; az,as, .. ‘}‘
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Now, each element of this sequence can be represented in decimal
form, say

an = O.Xn1XnZXn3Xn4 vy

where for all n,j € N, x, is one of the digits 0,1,2,...,9. The
elements of S can thus be written in the form

a) = O.X11X12X13X14 cee
az = 0.X31X22X23%04 . . .
» az = O.X31X32X33X34 .o

as = O.X41X42X43X44 cen

We define a real number b = 0.mymymzmy. .., where for eachj € N,

_ 1 if Xjj '7'é 1,
= { 2 le]J = 1.
Suppose, for example, that our listing of elements of § begins
a, = 0.837124...,
a; = 0.112563.. .,
az = 0.333333...,
aq = 0.258614. . .,

Then:

X11=8#1 som1=1,
X =1 som2=2,
x33=3¢1 somz =1,
X44=6¢1 somy =1,

and so on. The decimal expansion of b therefore begins 0.1211....
It is clear that 0 < b < 1, so that b € S, and therefore we must have
b = ay for some N € N. But by definition, the decimal expansion of
b differs from that of ay at the Nth decimal place, so b # ay and we
have a contradiction. We thus conclude that our original assumption
must be false, and S cannot be countable. O
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It follows at once from this theorem that the set R is not count-
able. In fact, it is also not hard to deduce that the set of all real

numbers belonging to any interval of nonzero length (however
small) is not countable.

Exercises 1-1:
1. Use the method of proof by contradiction to prove Theorem 1.1.1.

2. Give examples to show that if x; and x; are irrational numbers,
then x; + x; and x;x; may be rational or irrational.

3. Since the set of all rational numbers is countable, it follows easily
thatthe set 8* = {x : 0 < x < 1 and x rational} is countable. Thus,
if we apply the argument used in the proof of Theorem 1.1.4 to
§* instead of §, something must go wrong with the argument.
What goes wrong?

4. (a) Prove that the union of two countable sets is countable.

(b) Use a proof by contradiction to prove that the set of all
irrational numbers is not countable.

1.2 The Extended Real Number System

It is convenient to introduce at this point a notation that is useful in
many parts of analysis; care, however, should be taken not to read
too much into it.

The extended real number system is defined to be the set R,
consisting of all the real numbers together with the symbols co and
—o0, in which the operations of addition, subtraction, multiplication,
and division between real numbers are as in the real number system,
and the symbols co and —oo have the following properties for any
xeR:

(i) —00 < ¥ <

(i) co+x =x+00=00and —00 + x = x+ (—00) = —OQ;
(iif) 00 + 00 = 00 and —00 + (—00) = —00;
(iv) 00 - x = x - 00 = 00 and (—00) - ¥ = x - (—00) = —oo for any

x > 0;
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(V) 00-x=x-00 = —00 and (—o0) - ¥ = x - (—00) = oo for any
x < 0;

(vi) 00-00 = 00, 00+ (—00) = (—00)-00 = —00, and (—00)-(—00) =
00.

The reader is warned that the new symbols 0o and —oo are defined
only in terms of the above properties and cannot be used except as
prescribed by these conventions. In particular, expressions such as
00 + (—00), (=00) + 00,000,000, 0-(—00), and (—00) - 0 are
meaningless.

Anumbera € R, is said tobe finiteifa € R, i.e. ifa is an ordinary
real number.

In all that follows, when we say that I is an interval with endpoints
a, b we mean that a and b are elements of R, (unless specifically
restricted to finite values) with a < b, and I is one of the following
subsets of R:

(i) the open interval {x € R:a < x < b}, denoted by (a, b);

(ii) the closed interval {x € R : a < x < b}, denoted by [a, b],
where a and b must be finite;

(iii) the closed-open interval {x € R : a < x < b}, denoted by
[a, D), where a must be finite;

(iv) the open-closed interval {x € R : a < x < b}, denoted by
(a, b], where b must be finite.

Note that although the endpoints of an interval may not be finite,
the actual elements of the interval are finite. Note also that for any
a € R, the set [a, a] consists of the single point a, whereas the sets
[a,a) and (a, a] are both empty. The interval (a, a) is empty for all
a € R.,.

The only change from standard interval notation is that intervals
such as (—00, —3], (—00,00), (—2,00), etc. are defined. (Intervals
such as [—00, 3], [-00, 0], (—2, 00], etc. are not.)
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1.3 Bounds

Let S be any nonempty subset of R,. A number ¢ € R, is called an
upper bound of S if x < ¢ for all x € S. Similarly, a number d € R,
is called a lower bound of Sif x > d for all x € S.

Evidently, oo is an upper bound and —o¢ is a lower bound for
any nonempty subset of R,. In general, most subsets will have many
upper and lower bounds. For example, consider the set §; = (=3, 2].
Any number ¢ € R, such that ¢ > 2 is an upper bound of §;, and any
number d € R, such that d < —3 is a lower bound of S;. Note that
there is a least upper bound for §; (namely 2) and that in fact it is
also an element of §;. Note also that there is a greatest lower bound
(namely —3), which is not a member of ;.

As another example, consider the set

1 11
Sz={—:7’l€N}={1,—,—,...}.
n 23

Here any ¢ > 1 is an upper bound of §;, while any d < 0 is a
lower bound. Note that no positive number can be a lower bound of
8z, because for any d > 0 we can always find a positive integer n
sufficiently large so that 1/n < d, and therefore d cannot be a lower
bound of S;. Thus §; has a least upper bound 1 and a greatest lower
bound 0. ’

As a final example, let S3 = Q. Then oo is the only upper bound
of 83 and —o¢ is the only lower bound. Thus S3 has a least upper
bound oo and a greatest lower bound —oo.

The following result (often taken as an axiom), which we state
without proof, expresses a fundamental property of the extended
real number system: ‘

Theorem 1.3.1
Any nonempty subset of R, has both a least upper bound and a greatest
lower bound in R,.

The least upper bound of a nonempty set S C R, is often called
the supremum of S and is denoted by supS; the greatest lower
bound of S is often called the infimum of S and denoted by inf S.
The examples given above indicate that sup § and inf § may or may
not be elements of S; however, in the case where sup § or inf § is
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finite, although sup S and inf § need not be in §, they must at any

rate be “close” to § in a sense that is made precise by the following
theorem:

Theorem 1.3.2
Let S € R, be nonempty.

(1) If M € R, is finite, then M = sup S if and only if M is an upper
bound of S and for each real number € > 0 (however small) there
exists a number x € S (depending on €) such that M — e < x < M.

(it) If m is finite, then m = inf § if and only if m is a lower bound of
8 and for each veal number € > 0 (however small) there exists a
number x € S (depending on €) such that m < x < m + €.

Proof We shall prove part (i) and leave part (ii) as an exercise. Sup-
pose M = supS, where M is finite. Then M, being the least upper
bound of §, is certainly an upper bound of S. Let € be any positive
real number. Then M — € < M, and so M — € cannot be an upper
bound of §, since M is the least upper bound. Thus there must exist
a number x € 8§ such that x > M — ¢, and since we know that M is
an upper bound of S, we have M — € < x < M.

Conversely, suppose that M is finite, M is an upper bound of S,
and that for any real number € > 0 there exists a number x € S such
that M — € < x < M. Let K be any finite element of R, with K < M.
Then M — K > 0, so taking € = M — K we have that there exists an
x € Ssuchthat M- (M —-K) < x < M,ie, K < x <M. Thus K
cannot be an upper bound of §, and since —o0 is obviously not an
upper bound of §, it follows that M must be the least upper bound
of 8. O

Exercises 1-3:

1. Give the least upper and greatest lower bounds of each of the
following subsets of R,, and state in each case whether or not
they are elements of the set in question:

(@) {x:0=<x<5} (b) {x:0 < x<5}
(c) {x:x* > 3} (@ fx:%>2}

(e) {x:xisrationaland#® <2} (f) {x:x=3+;, neN}
(g) {x: xisrational and positive}




10

1. Real Numbers

IfS C R, has only finitely many elements, say S = {x1, x5, . . ., x,,},
then clearly Shasboth a greatest element and a least element, de-

noted by max{x;, x;, ..., x,} and min{x;, x;, ..., x,}, respectively.
Prove:
' Sup{xl)XZ; cet xn} = maX{Xl, xz; ct xn};
inf{x;,xz,..., %} =min{x, x;, ..., x,}.

Prove that if § and §; are nonempty subsets of R, such that
81 € 8y, then sup§; < sup§; and inf §; > inf S;.

Let S be a nonempty subset of R,, and ¢ a nonzero real number.
Define §* by §* = {cx : x € §}.
(a) Prove that if ¢ is positive, then supS* = c¢(supS) and
inf(8*) = ¢(inf S).
(b) Prove that if ¢ is negative, then supS8* = c¢(infS) and
inf(8*) = c(sup ).
Prove part (ii) of Theorem 1.3.2.



~ Some Analytic
~ Preliminaries

CHAPTER

Before we can develop the theory of integration, we need to re-
visit the concept of a sequence and deal with a number of topics
in analysis involving sequences, series, and functions.

2.1 Monotone Sequences

Convergence of a sequence on R, can be defined in a manner anal-
ogous to the usual definition for sequences on R. Specifically, a
sequence {a,} on R, is said to converge to a finite limit if there
is a finite number a € R, having the property that given any posi-
tive real number € (however small) there is a number N € N such
that |a, — al < € whenever n > N. This relationship is expressed
by a, = a asn — 00, or simply a, — a. The number a is called the
limit of the sequence.

If for any finite number M € R, there exists an N € N such
that a, > M whenever n > N, then we write a, — o0 asn — o
or simply a, — 00, and the limit of the sequence is said to be o0;
similarly, if for any finite number M € R, there exists an N € Nsuch

11
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that a, < M whenever n > N, then we write a, — —00 as n = 0
or simply a,, = —o00, and the limit of the sequence is said to be —oo.

Let {a,} be a sequence of real numbers. The sequence {a,,)} is said
to be monotone increasing if a, < a,,; for all n € N, and mono-
tone decreasing if a, > a,4; for all n € N. For example:

The sequence 1,
The sequence 1,
The sequence 1,
The sequence 1,
decreasing.

The sequence 1,0,1,0,... is neither monotone increasing nor
monotone decreasing.

. is monotone increasing.
.. is monotone decreasing,
2, 3, 3, ... 1s monotone increasing.
1, ... 18 monotone increasing and monotone

If a sequence {a,} is monotone increasing with limit £ € R,, we
write a, 1 £ (read “a, increases to £”). If the sequence is monotone
decreasing with limit £ € R,, we write a, | £ (read “a, decreases to
.

We shall frequently be studying sequences of functions. Let {f;,}
denote a sequence of functions f,, : I — R defined on some interval
I € R. The sequence {f,,} is said to converge on I to a function f
if for each x € I the sequence {f,(x)} converges to f(x), i.e., if the
sequence is pointwise convergent. The notation used for sequences
of functions is similar to that used for sequences of numbers: specif-
ically,

fn = f on I means that for each x € I, f,(x) = f(x).
fn 1 f on I means that for each x € I, f,(x) 1 f(%). )
fn 1 f on I means that for each x € I, f,(x) | f(x).

The fundamental theorem concerning monotone sequences is
the following:

Theorem 2.1.1

Let {an} be a sequence on R.
(i) If the sequence {ay,} is monotone increasing, then a, 1 sup{an}.
(i) If the sequence {a,} is monotone decreasing, then a, | inf{a,}.
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Proof We shall prove part (i) of the theorem, leaving the second
part as an exercise. Let M = sup{a,}. The proof of part (i) can be
partitioned into two cases depending on whether or not M is finite.

Case 1: If M = o0, then for any positive real number K, we know
that K cannot be an upper bound of {a,}, so there exists a positive
integer N such that ay > K. Since the sequence is monotone
increasing, it follows that a, > ay > K for all n > N, and thus
a, 1 0o(= M) by definition.

Case 2: Suppose M finite and let ebe any positive real number. Then
by Theorem 1.3.2 there exists a positive integer N such that

M—e€e < ay <M.

Since the sequence is monotone increasing and has M as an
upper bound, it follows that

M—e<ay<a, <M< M+e¢€
for all n > N. This implies that for alln > N,
lan — M| < €

and consequently a, — M by definition. Since the sequence is
monotone increasing, this means that a,, t M as required. a

Exercises 2-1:

1. Let S be a nonempty subset of R, with sup§ = M and inf § = m.
Show that there exist sequences {a,} and {b,} of elements of §
such that a,, 4 M and b,, | m.

2. Prove part (ii) of Theorem 2.1.1.

2.2 Double Series

Let {a,} be a sequence on R,. Recall that the infinite series Y . _; am
is said to converge if the sequence of partial sums {s,}, where s, =
Y 1 am, converges to a finite number. If s, — oo, then the series
is said to diverge to oo; if s, — —00, then the series is said to diverge

to —oo. Often, questions concerning the convergence of an infinite
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series involve considering sequences {a,} of nonnegative terms (e.g.,
absolute convergence). If the terms of the sequence {a,} consist of
nonnegative numbers, then the resulting sequence of partial sums is
monotone increasing. Theorem 2.1.1 thus implies that s, 1 sup{s,}
and therefore that either the series Y o, a,, converges or it diverges
to 00, according as sup{sy} is finite or co.

Consider the array of real numbers depicted in Figure 2.1. This
array can be written as a (single) sequence in many ways. One way
is to follow the arrowed path in the diagram. This gives the sequence

{an, a1z, an, an, azz, a1, a14, az3, - - .},

but this is obviously not the only way. Another scheme for
constructing a sequence is given in Figure 2.2.
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For any way of writing this array as a single sequence Ay, A,
Az, ... we can form the corresponding infinite series Z —14;. We
know from Riemann’s theorem on the derangement of series [6]
that in general, the convergence and limit of the series depends on
the particular sequence {A,} used, but there are some situations in
which every possible sequence leads to the same answer. When this
is the case, it is sensible to introduce the notion of a “double series”
Zf: .1 @mn and consider questions such as convergence. This leads
us to the following definition: If for all possible ways of writing the
array {amn} as a single sequence the corresponding series has the
finite sum £, then the double series > o> _ amn is said to converge to
£. If for all possible ways of writing the érray as a single sequence the
corresponding series either always diverges to co or always diverges
to —o0, then the double series is said to be properly divergent (to
00 or —oo as the case may be). In all other circumstances the double
series is simply said to be divergent, and its sum does not exist as an
element of R,.

Aswell as “summing” the array by writing it as a single sequence,
we can “sum” it by first summing the rows and then adding the sums
of the rows, giving the repeated series Y o, (D oo Gmn). Alterna-
tively, we can first sum the columns and then add the sums of the
columns, giving the repeated series ) oo (D o Amn).

The relationship between convergence for a double series

fn°n _; amn and for the two related repeated series is, in general,
comphcated For our purposes, however, we can focus on the par-
ticularly simple case where all of the entries in the array are
nonnegative, i.e., a,,, = 0 for all n,m € N. In this case we have
the following result, which is stated without proof:

Theorem 2.2.1

Suppose that for alln, m € Nwe have ap, > 0, where amy, € R,. Thenthe
double series Y ., Gmn and the two repeated series 3_,_1 (2 =1 Gmn)
and Zm_l(zn_l ann) €ither all converge to the same finite sum or are
all properly divergent to 0.

More details on double series can be found in [6].
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2.3 One-Sided Limits

Let f : R — R be a function, and t and £ real numbers. Recall that
limx_: f(x) = £ if and only if for any positive real number €, however
small, there exists a positive real number § such that

0<lx—tl<d=>|f(X) —{| < e.

We say that lim,_,; f(x¥) = oo if for any number M there exists a
8 > 0 such that f(x) > M whenever 0 < |x —t| < 4. A similar
definition can be made for lim,_,,f(¥) = —oco. In these definitions
x can be either to the left or the right of ¢, i.e., x is free to approach
t from the left or right (or for that matter oscillate on either side of
t). Often it is of use to restrict the manner in which, x approaches
t, particularly if no information about f is available on one side of
t ort lies at the end of the interval under consideration. For these
situations it is useful to introduce the notion of limits from the left
and from the right. Such limits are referred to as one-sided limits.

The limit from the left is defined as follows: lim,,.- f(x) = £
if and only if for any positive real number € there exists a positive
real number § such that

t—d<x<t = |[f(X)—£|l <€
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(cf. Figure 2.3). In this case we say that f(x) tends to £ as x tends
to t from the left. Similarly, the limit from the right is defined as
lim,,+ f(x) = £ if and only if for any positive real number ¢ there
exists a positive real number § such that

t<x<t+d=|f(x)—~] < €

(cf. Figure 2.4). In this case we say that f(x) tends to £ as x tends to
t from the right.

We can easily extend these definitions for cases where the limit
is not finite, e.g., lim,—,+ f(x) = oo if and only if for any positive real
number M there exists a positive real number § such that

t—d<x <t==f(x) > M.

Example 2-3-1:
Letf : R — R be defined as

-1 ifx <1,
fGKy=10 ifx=1,
x/2 ifx > 1.

Then lim,_, ;- f(x) = —1 and lim,,;+ f(¥) = 1/2. This function is
depicted in Figure 2.5.
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Example 2-3-2:
Let f(x) = 1/(x — 1) (cf. Figure 2.6). Then lim,,;- f(x) = —o0 and
lim,—, 1+ f (%) = 0.

The definition of a limit can be extended further to consider
cases where x — 00 or x — —oo. For example, let a € R. Then
liMy— o0 f(¥) = a if and only if for any positive real number € there
exists a number X such that

x> X = |f(x)—a| < e

Definitions similar to the finite case can also be framed for
liMyes —00 f(%) = @, liMy— 00 f(¥) = 00, and limy— oo f(¥) = 00, etc.
The usual elementary rules for limits of sums, differences, products,
and quotients of functions hold for one-sided limits just as for ordi-
nary limits. For example, if lim,_,.- f(¥) = a and lim,_,~ g(x) = b,
then lim,_, - (f(¥) +2(*)) = a+Db, lim,, (f(¥)g(x)) = ab, etc. These
relations are proved the same way as for the ordinary limit case. It is
also easy to prove that lim,_,. f(¥) = £ if and only if limy,+- f(x) = €
and lim,_.+ f(x) = £.

For succinctness, we shall often denote lim,_..- f(¥) by f(t™) and
lim,_,+f(¥) by f("). In some circumstances we will denote
lim,—s o0 f (%) by £(007) and lim,, —0 f(¥) by f((—00)™).
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One-sided continuity for a function f at finite points t is defined
in terms of one-sided limits in the obvious way. We say that f is
continuous on the left at t if f(¢) is defined and finite, f(¢™) exists,
and f(t7) = f(t), and continuous on the right at ¢ if f(¢) is defined
and finite, f(t1) exists, and f(tt) = f(t). Evidently, f is continuous
at t if and only if it is both continuous on the left and continuous on
the right at ¢, i.e., if and only if f(t7) = f () = f(t).

There are several different ways in which a function can fail to
be continuous at a point. If f(t7), f(t), f(tT) all exist but are not all
equal, then f is said to have a jump discontinuity at ¢t. Thus, the
function in Example 2-3-1 has a jump discontinuity at 1. A function
may fail to be continuous at a point because the limit is not finite.
The function of Example 2-3-2 is discontinuous at 1 not only because
the limit is not finite but also because f(17) # f(11) and f(¢) has not
been defined. Yet another way in which a function can fail to be
continuous at a point is when the right or left limits fail to exist. The
next example illustrates this.

Example 2-3-3:
Consider the function f : R — R defined by

__ | sin(1/x%), ifx#0,
f(")_{ 0, if x = 0.

Figure 2.7 illustrates this function. Now, |sin(1/x)] < 1 and
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sin(1/x) = 0 if and only if 1/x = nx, where n € Z — {0}, i.e., when
x = 1/(nm). Moreover, sin(1/x) = 1 ifand only if 1/x = (4n+1)7/2,
wheren € Z, i.e., x = 2/((4n+1)x), and sin(1/x) = —1 if and only if
1/x = (4n+ 3)n/2, where n € Z, i.e., x = 2/((4n+ 3)7). Near x = 0,
x attains the values 1/(nx), 2/((4n + 1)x), 2/((4n + 3)7) infinitely
many times (for different n € Z), and thus it can be shown that nei-
ther f(0™) nor f(0™) exists, so f is discontinuous at 0. The function
oscillates infinitely often in any interval (-4, ), 6 > 0.

2.4 Monotone Functions

Let f : R — R be a function. We say that f is monotone increas-
ing if f(x)) < f(xz) whenever x; < x,. The function f is said to be
monotone decreasing if f(x;) > f(xz) whenever x; < xp. If f is
either monotone increasing or monotone decreasing, then it is said
to be monotone. Some examples are:

(i) The function in Example 2-3-1 is monotone increasing.

(ii) The function |x| is neither monotone increasing nor monotone
decreasing.
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(iif) Constant functions are both monotone increasing and mono-
tone decreasing.

One can also speak of functions being monotone increasing or
monotone decreasing on a particular interval rather than the en-
tire real line. For example, the function |x| is monotone decreasing
on (—00, 0] and monotone increasing on the interval [0, 00). In this
section, however, we will restrict the discussion to functions that are
monotone on the entire real line. The general case will be discussed
in Section 2.7.

The most important theorem on monotone functions is the
following:

Theorem 2.4.1
Let f : R — R be a monotone function. Then, for allt € R, f(t™) and
f(tT) exist and are finite, and also f(00™) and f((—o0)1) exist, but are
not necessarily finite. Furthermore, for allt € R,

(i) if f is monotone increasing, then f(t7) < f(t) < f(t1);

(i) if f is monotone decreasing, then f(t™) > f(t) = f(t).

Proof Suppose f is monotone increasing, and let t be any real num-
ber. Let m = inf{f(x) : t < x} and M = sup{f(x) : x < t}. Now, f(¢) is
finite, and since f is monotone increasing, f(t) is a lower bound of
{f(x) : t < x} and an upper bound of {f(x) : x < t}. It follows that m

and M are finite, and also
M<f(t)<m 2.1)

Now take any ¢ > 0. By Theorem 1.3.2, there exist x; and x;, with
t < xpandt > x, suchthat m < f(xy) < m+eand M — ¢ <
f(x2) < M. Since f is monotone increasing and m is a lower bound
of {f(x) : t < x}, it follows that

t<x<x=m<fH)<f(x) <mt+e=|f(X)—m| < €
and similarly
Xy <x<t=>M-—-€<f(x)<f(X)<M=I|f(x) —M| <e.

Thus, by definition, f(t7) = m and f(t7) = M. Also, statement (i)
follows from equation (2.1).

Next, let A = inf{f(x) : x € R}; here, A may be finite, or equal
to —oo. If A is finite, an argument similar to that used previously
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shows that f((—o0)™) = A. If A is —00, let K be any negative real
number. Then K is not a lower bound of {f(¥) : x € R}, so there exists

an x; € R such that f(x) < K. Since f is monotone increasing, it
follows that

x<x = f(x) <f(u) <K

and so f((—00)*) = —oo0 = A in this case also. A similar argument
shows that f(c0™) = sup{f(¥) : x € R}.
The case where f is monotone decreasing can be proved in a

similar way, or by considering the function —f (see Exercises 2-4,
No. 1). O

Corollary 2.4.2 ' ‘
() Iff is monotone increasing, and a, b are elements of R, with a < b,
then f(a*) < f(b7).
(i) Iff is monotone decreasing, and a, b are elements of Rewitha < b,

then f(a*) > f(b).

Proof We will prove part (i) of this theorem and leave the other
part as an exercise. Let f be monotone increasing. From the proof of
Theorem 2.4.1 we know that f(a™) = inf{f(¥) : a < x} and f(b7) =
sup{f(x) : x < b}. Since a < b, there exists a y € R such thata <
y < b, and so f(a™) < f(y) and f () < f(b™), whence f(a*) < f(b)
as required. g

If f is monotone, then for any real t we have by Theorem 2.4.1
that f(t7),f(t), and f(t") all exist. It follows at once that the
only discontinuities that a monotone function can-have are jump
discontinuities.

In general, a function f : R — R may have any number of points
of discontinuity. Indeed, the function f defined by

F0) = 0, if xis rational,
()= 1, ifxis irrational,

is discontinuous at every real number. However, for monotone
functions we have the following theorem:
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Theorem 2.4.3

If f : R — R is monotone, then the set of points at which f is
discontinuous 1s either empty, finite, or countably infinite.

Proof 1If f is monotone decreasing, then —f is monotone increasing
(see Exercises 2-4, No. 1)) and has the same points of discontinuity
as f, so it is sufficient to prove the theorem for the case where f is
monotone increasing.

Let E'be the set of points at which f is discontinuous, and suppose
Eisnotempty:Then for eachx € Ewehavef(x™) < f(x"), and so by
Theorem 1.1.2 there exists a rational number 7, such that f(x™) <
rx < f(x"). Now by Corollary 2.4.2 we have x; < x; = f(x) <
f(x7), and it follows that if x;,x; € E are such that x; < x;, then
Tw < T, thus, we have associated with each x € E a distinct rational
number. ‘

Since the set of all rational numbers can be listed as a sequence,
it follows that the set {r, : x € E} can also be listed as a (finite or
infinite) sequence. We can then list the elements of E in the same
order as their associated rational numbers. Thus E (if not empty) is
either finite or countably infinite. O

Although Theorem 2.4.3 places restrictions on the possible set of
discontinuities of a monotone function, this set can nevertheless be
quite complicated, and one must be careful not to make unjustified
assumptions about it. For example, one might guess that the discon-
tinuities of a monotone function must be some minimum distance
apart, but the following example shows that this need not be so.

Example 2-4-1:
Letf : R — R be defined as follows:

0, ifx <0,
fy=4{ 1/(n+1), f1/(n+1)<x<1/n,n=1,2,3,...,
1, ifx > 1.

Figure 2.8 illustrates this function. Clearly, f is monotone increas-
ing. It can be shown that f(0%) = 0 (see Exercises 2-4, No. 3), so
f has jump discontinuities at the countably infinite set of points
{1,1,1,1 ...} and is continuous at all other points. In fact, unlikely
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as it may seem, it is possible to construct a monotone increasing
function that is discontinuous at every rational number!

Exercises 2-4:

1. Prove part (ii) of Theorem 2.4.1, by showing that if f is monotone
decreasing, then —f is monotone increasing, and then applying

part ().
2. Prove part (ii) of Corollary 2.4.2.
3. Prove that f(07) = 0 in Example 2-4-1.

2.5 Step Functions

Let I be any interval. A function 6 : I — R is called a step func-
tion if there is a finite collection {I1, Iz, - - -, I,} of pairwise disjoint
intervals such that S=I, UL, U---UI, €I and a set {c1,¢2, ..., Cn}
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of finite, nonzero real numbers such that

_Jg ifxel,j=12...,n,
6’(")_{o, ifxel—S.

In other words, 6 is constant and nonzero on each interval I;, and zero
elsewhere in I. The set S on which 6 is nonzero is called the support
of 6. Note that S may be empty, so that the zero function on I is also
a step function. Figure 2.9 illustrates some possible step-function
configurations.

NN a e e
Y T




26 2. Some Analytic Preliminaries

If the support of a step function 6 has finite total length, then we
associate with 6 the area A(0) between the graph of § and the x-axis,
with the usual convention that areas below the x-axis have negative
sign (we often refer to A(0) as the “area under the graph” of ). Thus
A(6) exists for the step function 6 in Figure 2.9-2, but not for that in
Figure 2.9-1.

If 61,6, ...,6, are step functions on the same interval I, all with
supports of finite total length, and if a;,ay, ..., an are finite real
numbers, then the function 6 defined by

m

0(x) = Z 26;(%)

j=1
for x € I is also a step function on I. The support of 6 has finite
length, and

m

A) =Y %A®).

j=1

The fact that 0 is also a step function is a rather tedious and messy
thing to prove in detail, but an example should be sufficient to
indicate why it is true.

Example 2-5-1:
Let 61, 6; : [0, 3) — R be defined by

1, if0<x< 2, ] -1, ifosx<1,
6)1(96)_{2, if2<x< 3, Gz(x)_{l, ifl <x<3

(cf. Figure 2.10). Let 6 = 26, — 02.‘Then

3, f0<x<1,
0x)=41 1, ifl <x<?2,
3, if2<x< 3.

(cf. Figure 2.11). Clearly, 6 is a step function. Note also that

A(6) =2(1)+1(2) = 4,
A6) =—-1(1)+2() =1,
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If g : I - R are such that f(x) < g(x) for all x € I, we write
simply “f < g on I’ The following properties of areas under graphs
of step functions are geometrically obvious and straightforward to

prove:
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(i) If 8 = 0 on I, and the support of 6 has finite total length, then
A(6) = 0. Also, A(0) = 0.

(i) If6; and 6; both have supports of finite total length, and 6, < 6,
on I, then A(6,) < A(62).

Exercises 2-5:
1. Let 61,6, : [0,3] - R be defined by

1, if0<x<]1, D 0<x<1
O(x)=3 -1, ifl<x<2 gz(x)={3—, ;f1_x23’
4, if2 <x<3, : < x<3.

Sketch the graphs of 6;, 6;, and 6, — 26,, and verify by direct
calculation that A(6; — 26;) = A(61) — 2A(62).

2. Let 61,6, : R — R be defined by
0, ifx<-1, 0, ifx<0,
(x)=3 1, if-1<x<2, 6Gx=41 -1, if0<x<3,
0, ifx > 2, 0, ifx>3.

Sketch the graphs of 6, 6,, and 6; + 6, and verify by direct
calculation that A(6; + 6;) = A(61) + A(62).

2.6 Positive and Negative Parts of a
Function

Let I be any interval. For any function f : I — R we define the
functions f* : I — Rand f~ : I = R, called the positive part and
the negative part of f, respectively, as follows:

f1 (%) = max{f(x),0} forallx €I,
f~(¥) = min{f(x),0} forall x € I.

We also define the function [f| : I — Rby

FIG) = IfF (A,

for all x € I. These definitions are depicted graphically in Figure
2.12. It is clear that for any function f : I — R, we have f = fr4f-
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and [f| = fT —f~.Itisalsoclearthat 0 < f* < |f|and —|f| <f~ <0
onl.

Exercises 2-6: If f, g : I — R, prove the following inequalities:
1. If* —g*l<|f —glonl.
2. f~—g I <If —glonT.
3. lIfl —lgll =If —glonl.

2.7 Bounded Variation and Absolute
Continuity

For any (nonempty) interval I, a partial subdivision of I is a
collection S = {I1, Iz, . . ., I.} of clpsed intervals such that:
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() LULU---UI, CI;

(if) for any j,k = 1,2,...,n with j # k, either I N J; is empty or
Ix N I; consists of a single point that is an endpoint of both J;
and Iy.

For example, if I = [0,3), then § = {[0,1],[1, 3],[2, 2]} is a partial
subdivision of I.

Letf : I — Rbe afunction, andlet S = {I}, I, ..., I,} be a partial
subdivision of I. For each j =1, 2,...,n, let J; have endpoints g;, b;.
We can associate with f, I, and S the quantity Vy(f, I) defined by

Vs(f, D)= ) If (B) — f(@)l.
j=1

Consider now the set A(f,I) = {Vs(f,I): S is a partial subdivision
of I}. Obviously Vs(f, I) cannot be negative, so 0 is a lower bound of
A(f, I). The least upper bound of A(f, I) is called the total variation
of f over I, and denoted by V(f, I); and we have 0 < V(f,I) < oo for
any f and I.

Example 2-7-1:

Let f : I — R be any step function. If f is constant on I, then
evidently V(f,I) = 0. If not, then as x increases through I, f(x) has
a finite number of changes in value. Let the absolute magnitudes of
these changes be ki, kz, . . ., k.

Now take any closed interval I; = [a;,b5] € I. If none of the
changes in the value of f(x) occur within J;, then f(x) is constant on
Iy and [f (b)) — f(&)| = 0. If the changes numbered r1, 72, . .., 7p OCCur
within I;, then [f (b)) — f(a)| < Zf___l ky,.

If S is a partial subdivision of I, then since a given change in the
value of f(x) can occur within at most one of the intervals Iy, I, . . ., I,
that make up S, it follows that Vg(f, I) < > - k,. Furthermore, if we
choose S such that each change in the value of f(x) occurs within
one of the intervals comprising S, and no interval has more than one
change occurring within it, then 3Vs(f, N =3 k.It follows that f
has finite total variation given by

V() = Em: Ky,
r=1
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where ) 0, k, is the sum of absolute values of all changes in the
value of f(x).

For instance, let 6 : [0, 4) — R be defined by

, if0<x <1,
, ifl<x< 2,
, ifx=2,

, if2 <x<3,
| -1, if3<x<4.

01 (X) = 4

= I Njw =

(cf. Figure 2.13). Numbering the changes in value of 6(x) from left
to right, their absolute magnitudes are k; = %, k; = 3, ky = 2,
ky = 2, respectively, and the sum of the absolute magnitudes of all
the changes is therefore 3 +_ k, = 6.

Let $ = {[3,3).(3,2).(2,3].[3, }))- Then

Vs(6.0,4)) = 165) — 6G;)] + 16 — 63)

+|0(§) —6(2)] + |0(§) —6(3)|
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U+ B =2+ 1 =3+]—1-1
T2 2 -3l |

=42 4242
202 ’

and so Vs(6,[0,4)) = Y., k. Note that exactly one of the four
changes in the value of 6(x) occurs within each of the four intervals
making up S.

Example 2-7-2:

Let f : (0,1) = R be defined by f(x) = sin(1/x) for all x € (0, 1).
(The graph of this function is depicted in Figure 2.7.) For each j =
1,2,...,n, let

2 2
-Z-]. = [ ' ‘ , .'—-—] .
G+ Dx jm
Then § = {I1, I, . . ., I,} is a partial subdivision of (0, 1), and we have

n 1 . 1

Vs(f, (0,1)) = ; sin (L;_r_) — sin ((J +2 )n) :
Now, if j is even, then

sin (]—n—) —sin ((J + l)n)
2 2
while if j is odd,

sin (]—Z—) —sin ((j+21)n)‘ =|(x1)—-0]=1.

Vst (0, 1)) =) 1=n,
j=1

=l0-@&EDI=1,

Therefore,

and so for § of this form we have Vg(f, (0,1)) = oo as n — 00. It
follows that V(f, (0, 1)) = oc.

If V(f, I) is finite for a particular function f : I — R, we say that f
has bounded variation (or is a function of bounded variation)
on I. Example 2-7-1 shows that all step functions on I have bounded
variation on I, while Example 2-7-2 is an example of a function that
does not have bounded variation.
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There is a very important connection between functions of
bounded variation and monotone functions, which we must now
discuss. Recall first that f : I — R is monotone increasing on I if
f(x1) < f(x2) whenever x; < x; (x1,%, € I), and monotone decreas-
ing on I if f(x1) > f(x2) whenever x; < x, (x1,%; € I); in either
case we say that f is monotone on I. A very slight modification of
the appropriate part of the proof of Theorem 2.4.1 shows that if f is
monotone onI, where I is an interval with endpoints a, b, then f(t ™)
and f(t1) exist and are finite for all t such thata < t < b, and also
f(a™) and f(b7) exist (but are not necessarily finite). Furthermore,
f(a*) and f(b™) are both finite if and only if sup{f(¥) : x € I} and
inf{f (%) : x € I} are both finite.

Lemma 2.7.1
Let I be an interval, and f : I — R a function of bounded variation on
I. For any x € I, denote by I, the interval {t : t € I,t < x} CI. Then
@) O<VEL)<VED forallx eI;
(ii) the function g : I — R defined by g(x) = V(f, L) forallx € I is
monotone increasing on I. |

Proof Part (i) follows at once from the result proved in Exercises
1-3, No. 3, and the fact that any partial subdivision of I, is also a
partial subdivision of I. To prove part (ii), let x;,x, € I be such that
X1 < x3. Then I, C I, so any partial subdivision of I, is also a
partial subdivision of I,. Thus V(f, I,) < V(f, I,), which proves that
g is monotone increasing on I. O

Theorem 2.7.2
Let I be any interval. Then a function f : I — R has bounded variation
on I if and only if f can be expressed as a difference

f=h1_h2)

where the functions hy, hy : I — R are both monotone increasing on
I, and sup{hi(x) : x € I}, inf{h;(x) : x € I}, sup{hz(x) : x € I},
inf{h,(x) : x € I} are dll finite.

Proof We prove first that iff hasbounded variation on I, then it can
be represented by the difference hy —hy, where the hy are as claimed
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inthe theorem. Suppose f hasbounded variation onI. Foreach x € I,

define I, as in Lemma 2.7.1. Define hy, hy : I — Rby hy(¥) = V(f, L)

and hy(x) = V(f, I) — f (%) for each x € I. Then certainly f = h; — h;,

and Lemma 2.7.1 shows that h; has all the required properties.
Also, if %3, %, € I are such that x; < x,, then

ha(x2) — ha(%1) = V(f, I,) — V(f, Ly) — [f (x2) — f (x1)]. (2.2)

Now, if § is any partial subdivision of I, then §* = SU {[x;, x;]} is a
partial subdivision of I,, and

Vs(f, Iy) + If (2) — f(x)| = Ve (f I,) < V(f, I,)-

Thus, Vs(f, I,) < V(f, I,) — If (x2) — f (%1)| for all partial subdivisions
S of I, and so

V(f, I,) = sup{Vs(f, I,) : S a partial subdivision of I, }
= V(i L) — If (x2) = f(x)l.
Hence V(f,I,) — V(f, L) > If(x2) — f(a)l = f(x2) — f(x1), and it

follows from equation (2.2) that hy(x;)—hz(x1) > 0, so h, is monotone
increasing on I.

Finally, it can be shown (see Exercises 2-7, No. 1) that M =
sup{f(x) : x € I} and m = inf{f(x) : x € I} are finite, and so by
virtue of Lemma 2.7.1(i) we have that foranyx e I, m < f(x) < M
and 0 < V(f,L,) < V(f,I), ie, - M < —f(x) < —m and 0 <
V(f, ) < V(f,I), and therefore —M < V(f,L,) — f(x) < V(f,]) — m,
ie., =M < hy(x) < V(f,I) — m, where —M and V(f,I) — m are both
finite. It follows that sup{h,(x) : x € I} and inf{h,(x) : x € I'} are both
finite as required.

It remains to show that if f = H; — hy, where h; and h; satisfy the
conditions prescribed in the theorem then f has bounded variation
on I. We leave the proof of this as an exercise. a

Corollary 2.7.3

If I is an interval with endpomts a,b and f : I — R has bounded
variation on I, then f(t™) and f (t 1) exist and are finite for all t such that
a < t < b, and also f(a™) and f(b™) exist and are finite.

Proof This follows at once from Theorem 2.7.2, the corresponding
properties of monotone functions, and the basic rules for limits. O
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Example 2-7-3:
Let f(¥) = +/2x —x? on the interval [0, 2]. Define the functions
hi,hy : [0,2] = Rby

2x—x%, if0<x<1,
, ifl <x=<2,

) = { )

0 ifo<x<1
h — ? — — ?
2(%) {1— 2x—x2 ifl < x<2.

Then f = h; — hy on I, and the conditions prescribed in Theo-
rem 2.7.2 are certainly satisfied by h; and h,, so f has bounded
variation on [0, 2] (cf. Figure 2.14).

Note that the expression of a particular function of bounded
variation as a difference of monotone increasing functions is by no
means unique. For instance, just replacing h; and h; by h; 4+ k and
hz + k, where k is a constant, gives an infinite number of different
expressions of this kind; there are other possibilities as well.

There is no necessary connection between continuity of a func-
tion and the property of having bounded variation. Since all step
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functions have bounded variation (see Example 2-7-1), functions of
bounded variation need notbe continuous. Conversely, a continuous
function need not have bounded variation. For instance, the function
tan(x) is monotone increasing and continuous on (—n/2, n/2), but
since its set of values does not have finite upper and lower bounds,
it does not have bounded variation on this interval (See Exercises
2-7, No. 3). Indeed, Example 2-7-2 shows that even if the set of val-
ues of a continuous function has finite upper and lower bounds, the
function need not have bounded variation (see also Exercises 2-7,
No. 5).

We say that a function f :— R is absolutely continuous on I
if given any € > 0, there exists a § > 0 (depending on €) such that
Vs(f,I) < € for all partial subdivisions § of I for which the sum of
the lengths of all the constituent intervals is less than 3. It follows
easily, by considering only partial subdivisions consisting of a single
interval, that if a function is absolutely continuous on I, it is also
continuous on I. We have also the following theorem:

Theorem 2.7.4
If I is an interval with finite endpoints a, b and f : I — R is absolutely
continuous on I, then f has bounded variation on I.

Proof LetS={h, I, ..., I,}be any partial subdivision of I such that
I =[a;bjlforj=1,2,...,n Let e = 1 in the definition of absolute
continuity. Then there exists a §; > 0 such that Vu(f,I) < 1 for all
partial subdivisions §* of I for which the sum of the lengths of all the
constituent intervals is less than 8;. Let N be the smallest positive
integer greater than (b — a)/8;. Then 1/N < &,/(b — a).

Now take anyj = 1, 2, ..., n. Divide J; into N subintervals of equal
length,

In = [a;(= %0), %1), Ip = [%1,%2), - .., Iv = [¥v—1), bi(= %)),
and denote the length of I, by & = 1,2,...,mr = 1,2,...,N).
Then
bi—a _ &b —a)

N b—a
Foreachr =1,2,...,N, letS, = {Ii, Iy, . .., Ins}. Then S, is a partial
subdivision of I, and the sum of the lengths of all its constituent

4 =
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intervals is

n 81 n
L, < C—
]'=Zl 4 b—a ];(b] a]) <1,

since 3 1", (bj — @) is the sum of the lengths of all the intervals that
make up the partial subdivision § of I, and is therefore no greater
than the length b — a of I. Therefore, Vg (f,I) < 1 for each r =
1,2,...,N.

Now

Vs(f,I) = 2 IF () — f(@)l
j=1
= Z If () — f (1)) + F v—1)) — - + F(%2) — f (%1)
j=1

+ f(*1) — f(%0)]

3

M=

A

f() — f (—1y)| (b the triangle inequality)

S
I
—t
~
Il

ot

3

If (%) — F (Xi—1))I

I
M=

~
I
—t

S
il
ot

N
Vs(fD)<) 1=N.

r=1

Il
M=

~
I
=t

Since N is finite and independent of S, it follows that V(f,I) < N and
f has bounded variation on I. O

Note that the converse of this theorem does not hold; as we have seen
earlier, a function ofbounded variation need not even be continuous,
let alone absolutely continuous.

Note also that we have seen examples of continuous functions on
finite intervals that do not have bounded variation, and therefore (by
Theorem 2.7.4) are not absolutely continuous. Thus absolute conti-
nuity, as the name suggests, is a stronger condition than continuity,
in the sense that the set of absolutely continuous functions on an
interval is a proper subset of the set of continuous functions on that
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interval. Some examples of functions that are absolutely continuous
are given in Exercises 2-7, No. 6.

Exercises 2-7:

1. Provethatiff : I - Rhasbounded variation on I, then sup{f(x) :
x € I} and inf{f(x) : x € I} are both finite.

2. Prove thatif f, g : I — R have bounded variation on I, then so do
kf (where k is a real number), f 4+ g, and fg.

3. Prove that a function f : I — R that is monotone on I has
bounded variation on I if and only if sup{f(x) : ¥ € I} and
inf{f(x) : x € I} are both finite. Use this, together with the
results proved in the preceding exercise, to prove part (b) of
Theorem 2.7.2.

4. Express the step function 0 defined in Example 2-7-1 as a dif-
ference of two monotone increasing functions, and sketch the
graphs of the two functions.

5. Letf : [—n/2,n/2] = R be defined by

xsin(%), ifx #0,

f(x)={o ifx = 0.

(a) Prove thatf is continuous on [—n/2, 7/2}; you may assume
that xsin(1/x) is continuous for all x # 0, so all that has to
be proved is that f is continuous at x = 0.

)

(b) Use a method similar to that used in Example 2-7-2 to show
that f does not have bounded variation on [—n/2, 7/2].

6. A function f : I — R is said to be a Lipschitz function on I if there
exists a real number L such that |[f(x1) — f (x2)| < L|x; — x| for all
Xx1,% €1. .

(a) Prove that any Lipschitz function on I is absolutely
continuous on I.

(b) Use this result to show that any linear function is abso-
lutely continuous on any interval and that the function x%is
absolutely continuous on any interval with finite endpoints.

(c) Use a proofby contradiction to show that x? is not absolutely
continuous on (—00, 00).




The Riemann
 Integral

CHAPTER

The development of a rigorous theory of the definite integral in
the nineteenth century is associated particularly with the work of
Augustin-Louis Cauchy (1789-1857) in France, and Bernhard Rie-
mann (1826-1866) in Germany. In order to give some background
to the modern theory, we will describe briefly a definition of an inte-
gral equivalent to that introduced by Riemann in 1854, and discuss
some of the weaknesses in this definition that suggest the need for
a more general theory.

3.1 Definition of the Integral

Let [a, b] be any closed interval. A function f : [a, b] — R is said to be
Riemann integrable over [q, b] if and only if for any number € > 0,
there exist step functions g¢, G : [a, b] = R such that

@ g =f =G

(i) A(G) —A(g) =€
(cf. Figure 3.1). A function f : I — R for which the set {f(x) : x € I}
has finite upper and lower bounds will be called bounded on I.

39
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From condition (i) it is clear that any Riemann integrable function
over [a, b] must be bounded on [a, b], and that

A(f) = sup{A(g):g: [a,b] = R is a step function and g < f on [a, b]}

is finite. We call A(f) the Riemann integral of f over [a, b], and it is

usually denoted by [ ab f (%) dx. Note that if a function f : [a,b] - R
is Riemann integrable, then condition (ii) implies that

A(f)= inf{A(G):G: [a,b] — R is a step function and G>f on [, b]}.

Riemann'’s definition extends the concept of the “area under the
graph” of f to a wider class of functions than step functions by using
step functions to approximate f. This is essentially the definition of
the integral that is used in elementary calculus, and its properties
are familiar to all students of the calculus.

The main focus of our study will be the Lebesgue-Stieltjes inte-
gral, which is a generalization of the Riemann integral. The Riemann
integral, however, is still important, because many calculations
involving the Lebesgue-Stieltjes integral involve the Riemann in-
tegral. Moreover, one must understand some basic facts about the
Riemann integral in order to understand the relationship between
the two integrals and appreciate the need for a more general theory.
We will not embark on a detailed account of the Riemann integral.
Instead, we will limit ourselves to a brief discussion of the integral,
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highlighting any properties that are of use later in establishing the
relationship between the Riemann and Lebesgue-Stieltjes integrals.

Given abounded function f : I — R, candidates for the step func-
tions g€, G¢ in the above definition can be constucted by partitioning
the interval and defining step functions based on the maximum and
minimum values the functions assume in the subintervals. By a par-
tition P of an interval I = [a,b] we mean a finite set of numbers
Xp, X1, *,X,, Where

a=2xy< X < -+ < X,=Dh.

LetI; = [xo,x], and for 1 < k < nlet Iy = (-1, %] denote the kth
subinterval of I associated with the partition P. Let Ax = xx — Xk—1
denote the length of the subinterval. If f : I — R is bounded on I,
then given any partition P of I, step functions gp, Gp : I — R such
that grp < f < Gp on I can readily be constructed. Let

My = supf(x), mp =inff(),
x€lx x€l

and define gp, Gp as follows:

r r

ma, ifXEIl, Ml, ifXEIl,
ma, ifx €I, M, ifXEIz,

gp(¥) = | : : Gp(x) = 1 : : (3.1)
| M, ifx € I, | My, ifxel,

(cf. Figure 3.2). Let Sp(f) = A(Gp) = Xiei MiAx and Sp(f) =
A(gp) = D pey MiAy; evidently, Sp(f) = Sp(f) for any partition P
of I. A partition P’ of I is called a refinement of the partition P of I
if every x in P corresponds to some ¥ in P'. Thus a refinement P’
of P can be constructed from P by distributing additional partition
points between those already occurring in P.

Lemma 3.1.1
Iff : [a,b] > R is bounded onI = [a, b] and if P is a partition of I, then
for any refinement P’ of P,

8w (f) < Se(f)

and

_S_P’ (f) = .S_P(f)
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Lemma 3.1.2

Suppose that f : [a, b] — R is bounded on I = [a, b] and that P and P’
are any two partitions of I. Then

Sp(f) = Sp(f)-

Let IT denote the set of all partitions of I = [a, é]. From Lem-
mas 3.1.1 and 3.1.2 the set S = {Sp(f) : P € IT} is bounded below by
S,(f), where I is the partition corresponding to Xy = a, x; = b. The
set S must therefore have a finite lower bound if f is bounded on-I.
Similarly, if f is bounded on I, then the set S = {S,(f) : P € IT} must
have a finite upper bound, because it is bounded above by S;(f). The
quantities infpey Sp(f) and supp.p Sp(f) are finite and are called the
upper and lower Riemann-Darboux integrals of f over I, respec-
tively. If, in addition, it is assumed that f is Riemann integrable over
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I, then it can be shown that
A(f) = inf Sp(f) = iggg%p(f)-

Indeed, the condition infpen Sp(f) = suppy Sp(f) is commonly used
in the definition of a Riemann integrable function.

Iff : [a, b] — R is Riemann integrable on I = [q, b], then there is
a sequence of partitions {P;}, P; € I, such that limj_, SP ) =A()
and a sequence {P;}, P, € II, such that limy_, Sp p () = A(f) Now,
for any two partitions P and P/, the set PUP’ yields a partltion Q thatis
the common refinement of P and P’. Lemma 3.1.1 and the definitions
of infimum and supremum thus indicate that we can always find a
sequence {Px} such that limy_, o, §Pk(f) = limy_ oo Sp.(f) = A(f), and
moreover, we can assume that Py, is arefinementof P,k =1,2,....

Theorem 3.1.3

Iff : [a,b] — R is Riemann integrable over I = [a, b], then there exists
a sequence of partitions {Py}, Px € I1, such that Py,; iS a refinement of
P,k=12 ..., and

lim Sp,(f) = hm SPk(f) A(N).

k—>00

Let P = {xg, %1, ..., X,} be a partition of the interval I = [a, b]. The
norm of P, denoted by ||P|, is defined as

IPll = max Ag.
k=1,2,...n

The norm of P is thus the maximum of all the lengths of all the
subintervals formed by the partition P. It can be shown that if f :
I — Ris Riemann integrable over I, then any sequence of partitions
{15j} such that ||13j|| — 0 asj — oo will produce the Riemann integral
of f over I, i.e.,

lim S; 5 (f) = lim S5 (f) = /fdx

j=>00 J—=>0

In general, it is not particularly convenient to prove that a given
function is Riemann integrable directly from the definition. The
following theorems are thus useful in this regard:
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Theorem 3.1.4
Iff : [a,b] = R is monotone on I = [a, b], then it is Riemann integrable
over I.

Theorem 3.1.5

Iff : [a,b] = Ris continuous on I = [a, b}, then it is Riemann integrable
over I.

Exercises 3-1:

1. Let f : [a,b] = R be a bounded function on I = [a,b] and let P/
be a refinement of the partition P of I. Prove that gp < gpr and
Gp = Gp, where the step functions g and G are as defined in
equation (3.1).

2. Use Lemma 3.1.1 and the fact that Q = P U P’ is a com-
mon refinement for any two partitions P and P’ of I to prove
Lemma 3.1.2.

3.2 Improper Integrals

The Riemann integral as defined in Section 3-1 is over closed inter-
vals. The defintion of the integral can be extended to other intervals
by using a limiting process leading to the theory of what are usu-
ally called “improper integrals” We eschew a detailed account of
improper integrals; instead, we give a brief description of the basic
idea with examples.

Suppose that f is a continuous function on the interval (a, b].
By Theorem 3.1.5 the function f is Riemann integrable over any
interval of the form [c, b], where a < ¢ < b, and we can enquire
about the existence of lim,_, 4+ fcb f(%) dx. If this limit'is finite, then
we say that it defines the improper integral of f from a to b. The im-
proper integral is denoted in the same way as the Riemann integral,
ie., by [ : f(x)dx. If an improper integral exists, we also say that it
converges. Improper integrals over other intervals such as [a, b),
[a, 00), (—00, b], etc. are defined in a similar way.

Example 3-2-1:
The function f defined by f(x) = 1/4/xis continuous for all x € (0, 1].
By Theorem 3.1.5 f is Riemann integrable in any closed subset of
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(0,1]. In fact, forany 0 < ¢ < 1,

1
/ f(x) dx = [2v/x], = 2(1 - V/2).

Now, lim,_,q+ fcl f(x)dx = 2(1 — lim,_,¢+ 4/¢) = 2, and therefore the
improper integral fol f(x) dx exists.

Example 3-2-2:

The function f defined by f(x) = 1/x* does not have an improper
integral from 0 to 1. The function f is Riemann integrable over any
interval [c, 1], 0 < ¢ < 1, because it is continuous there, but

L[]
. x| x|l ¢

c

and thus lim,-, ¢+ fcl f(x) dx is not finite.

Example 3-2-3:
Let f be the function defined in Example 3-2-2 and consider the in-

terval[1, 00). The function f is Riemann integrable over any interval
of the form [1, ¢], where 1 < ¢ < co, and since

. €1 ) 17° . 1
lim —-z-dx=11m —— | =lim{l1—-=-})=1,
C—>00 1 X c~>00 X 1 C~>00 C

the improper integral f1°° 1/x2dx converges.

Example 3-2-4:
Letf : [1,00) = R be defined by f(x) = 1/x. In any closed interval
[1,¢c], ¢ > 1, we have that

4
1
= dx = [logx]; = logc.
1 X
Since logc — oo as ¢ — 00, the improper integral f1°° 1/x dx does
not exist, i.e., it diverges.

Although the definition of the Riemann integral can be extended
to open or semiopen intervals, many of the results concerning the
Riemann integral over a closed interval do not carry over in the
extension. Example 3-2-2 indicates that continuity on a semiopen
interval does not guarantee the existence of the improper integral.
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Examples 3-2-2 and 3-2-4 show that monotonicity does not imply
Riemann integrability when the interval is not closed.

If f : [a,b] = R is Riemann integrable over [a, b], then it can
be shown that [f| is also Riemann integrable over [a, b]. For im-
proper integrals, this is no longer true, i.e., [ ab f(x) dx may converge
but [ : If (®)| dx may diverge. If [ ab f(x)dx and [ : If (x)] dx both con-
verge, then the improper integral is called absolutely convergent.
If [ f(x)dx converges but [ ab If (x)| dx diverges, then the improper
integral is called conditionally convergent. The integral in Exam-
ple 3-2-3 is absolutely convergent. The next example requires more
familiarity with improper integrals than assumed heretofore, but it
provides a specific example of a conditionally convergent integral.

Example 3-2-5:

Letf : [r, 00) = Rbe defined by f(x) = (sinx)/x. Over any closed in-
terval of the form [, c], ¢ > =, the function f is Riemann integrable,
and (anticipating integration by parts) we have

¢sinx cos x¢ ¢ cosx
/ dx = [— ] + / -2 .
T X X b 4 i X
Now, |cosx/x*| < 1/x* for all x € [r,¢], and it can be shown
that lim, o0 f; COs /%% dx exists, since limg_,o [, 1/x* dx exists (the

comparison test). On the other hand, it can be shown that
lim;—o0 f; |sinx/x|dx does not exist.

The definition of the Riemann integral can thus be extended to
intervals of integration other than closed intervals by using improper
integrals. The modern approach, to be described in the next chapter,
works with arbitrary intervals from the start, leading to a tidier the-
ory, but this is a relatively minor improvement. A more fundamental
weakness of Riemann’s approach is revealed in the next section.

3.3 A Nonintegrable Function

Theorems 3.1.4 and 3.1.5 indicate that the class of Riemann in-
tegrable functions is a large one. In fact, it can be proved that if
f : [a,b] = R is bounded on [4, b] and the set of all points of dis-
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continuity of f in [a, b] is either empty, finite, or countably infinite,
then f is Riemann integrable over [a, b]. However, if the set of points
of discontinuity of f is infinite but not countable, then f may not be
Riemann integrable, as the following example illustrates.

Example 3-3-1:
Letf : [0, 1] — R be defined by

) = 1, ifxisrational, x £ 0, 1,
.| 0, ifxisirrationalorx=0orx=1.

Suppose that f were Riemann integrable over [0,1]. Then taking
€ = % in the definition of Riemann integrability, there must exist
step functions g,G : [0,1] — R such that g < f < G on[0,1] and
AG)— A(g) < 4.

Now, we have seen that any interval of nonzero length contains
infinitely many rational numbers and infinitely many irrational
numbers. Thus we must have g(x) < 0 and G(x) > 1 for all but a
finite number (possibly zero) of points x € [0, 1]. The values of g(x)
and G(x) at a finite number of values of x do not affect the values of
the areas A(g) and A(G), so we must have A(g) < 0 and A(G) > 1.
Thus A(G) — A(g) = 1, which contradicts A(G) — A(g) < %, andso f
cannotbe Riemann integrable over [0, 1]. Note that f is discontinuous
at every point in the interval [0, 1].

The reader might rightly ask why we should be concerned that
this rather peculiar function does not have an integral in the Rie-
mann sense. The reason is connected with the following concern:
Suppose the functions f, : [a,b] - R are Riemann integrable over
[a,b] foralln = 1,2,... and f, — f on [a, b]. It is natural to hope
that the property of integrability “carries over to the limit” so that we
canbe sure that f is also Riemann integrable over [a, b] (and that the
integral of f,, tends to the integral of f as n tends to 00), but this may
not be the case. This concern is important, because the solutions to
many problems in the calculus such as differential equations are of-
ten obtained as the limit of a sequence of successive approximations.
Unfortunately, there are sequences of functions that are Riemann
integrable but that converge to a function that is not. It is necessary
to find only one counterexample to destroy our hopes.
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We will now show that the nonintegrable function defined in
the previous example is the limit of a sequence of Riemann inte-
grable functions. We know that the rational numbers in (0, 1) form
a countably infinite set, so we can write the set of rationals in (0, 1)
as {r1,72,73,...}. For each j = 1, 2,... we subdivide [0, 1] into three
subintervals: I;; = [0,7;), I = [}, 7;], and I;3 = (r;, 1]. We then define
6;:[0,1] = Rby

0, ifxel,
gix)=1 1, ifxely,
0, if x EI]'3.

Now, 6; is a step function for eachj =1, 2,.... Define f, : [0,1] - R
by

n
fa=Y_6.
j=1

Now, each f, is also a step function, and is therefore Riemann
integrable over [0, 1]. Furthermore, it is evident that

£a09) = 0, ifxisirrationalorx € {0,1, 741, n42--.},
M1, ifxe{r,r, ..., 1),

Thus if x € [0, 1] is irrational or x = 0 or x = 1, then f,(¥) = 0 = f (%)
foralln = 1,2,..., and so fy(x) — f(¥) asn — oo. If x € [0,1]
is rational, say x = (N = 1,2,...), then f,(x) = 1 = f(x) for
all n > N, so again f,(x) = f(x) as n — oo. We have therefore
established that the Riemann integrable sequence of functions f,
converges to the nonintegrable function f on [0, 1].

This example shows that integrability in the Riemann sense does
not always carry over in the limit. It can be shown that it does under
certain conditions, but these conditions are rather complicated. Be-
cause the modern theory (as we shall see) allows for a wider class of
integrable functions, the conditions under which integrability car-
ries over to the limit are much simpler and easier to use. This is
one of the most important ways in which the modern theory is an
improvement over the older one.
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CHAPTER Integral
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We now proceed to formulate the definition of the integral that we
are going to study. It results from combining the ideas of two people.
The French mathematician Henri Lebesgue (1875-1941), building
on earlier work by Emile Borel (1871-1956) on the measure of a set,
succeeded in defining an integral (the Lebesgue integral) that ap-
plied to a wider class of functions than did the Riemann integral, and
for which the convergence theorems were much simpler. The Dutch
mathematician Thomas Stieltjes (1856-1894) was responsible for the
notion of integrating one function with respect to another function.
His ideas were originally developed as an extension of the Riemann
integral, known as the Riemann-Stieltjes integral. The subsequent
combination of his ideas with the measure-theoretic approach of
Lebesgue has resulted in a very powerful and flexible concept of
integration.

4.1 The Measure of an Interval

Let  : R = R be a monotone increasing function, and let I be an
interval with endpoints a, b. We define the a-measure of I, denoted

49
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by me(I), as follows:

to([a, b)) = a(b™) — a(a),
ta((a b)) = a(b™) —a(a™),
H’“([ar b)) = Ol(b_) - a(a"),

andifa < b,

Ha((a, b)) = a(b™) — a(a™).

The “open interval” (a,a) is of course the empty set, and we
define uq((a, a)) to be zero for any a € R,. The intervals (a, a] and
[a, a) are also empty, but in those cases the fact that their a-measure
is zero follows from the general definition, and need not be specified
separately.

It follows easily from Theorem 2.4.1(i) and Corollary 2.4.2(i) that
te(I) = O0for any interval I, and thatif I and J are intervalswithI C J,
then po(I) < pa(J)-

If a and b are finite, and « is continuous at both a and b, then
we have a(a”) = a(at) = a(a) and a(b™) = o(b*) = a(b), and so
to(I) = a(b) — a(a) in all four cases. In particular, if a(x) = x for
all x € R, then pe(I) = b — a is the ordinary length of the interval
I. In general, the a-measure of an interval is just the change in the
value of o over the interval in question; it can be thought of as a
generalization of the notion of length.

Example 4-1-1:
Let @ : R — R be defined by

0, ifx < 1,
x2—2x+4+2 ifl<x<?2,

o(x) = 3, ifx =2,
x+ 2, ifx > 2

(cf. Figure 4.1). Then:
wa([1,2) =2 —a(17)=4-0=4
ne((1,2) =N —a(1™)=4-1=3,
we(1,2) =) —(17)=2-0=2,
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wo((1L,2) =a2)~e(1M)=2-1=1,
pe([2,3) =aB) —a(27)=5—-2=3,
#o((2,3) =@ ) ~a(2N)=5-4=1,
#o([2,2) =a(@) —a(2)=4-2=2,
Ho((-1,3) =eB7) —a(-1")=5-0=5,
uo([-8,3]) =e(}") —e(-8)=0-0=0.

It can be seen from these examples that the a-measure of an interval
takes account of a jump in the value of o at an endpoint if and only
if that endpoint is included in the interval. Note also that it is the
left- and right-hand limits of @ at the endpoints that determine the
measure, not the value of a at the endpoints. Note finally that, as
the following examples illustrate, an interval that has one or both
endpoints infinite may have, but does not necessarily have, infinite

measure:

Ha([2, 00)) = #(007) — a(27) = 00 — 2 = 00,

Ha((—00, 00)) = a(00™) — &((—00) ") = 00 — 0 = 00,

pa((—00,2]) = a(2t) —a((—o0)) =4 -0 =4.
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Exercises 4-1:
1. Let o : R — R be defined by
X, ifx < 0,

a(x) =13 1, ifx =0,
3—-¢7* ifx > 0.

(a) Sketch the graph of a.

(b) Find p14((0, 1)), #a([0, 1]), #a((—1,1)), 4e([0, O]),
Mo ((—00, 1)): Me((O, 00), “‘d([ol OO))

2. Leta : R — Rbe defined by

0, ifx<0,

a(x) = 1, if0<x<1,
4, ifl<x<?2
6, ifx>2.

(a) Sketch the graph of «.

(b) Find pa([~1,2)), a((1, 09)), 1a((—00, 4)), 1a((0, 2],
1a((1/2,3/2)), ta([L, 3], Ha((1, 3))-

4.2 Probability Measures

A particularly important type of measure arises when the function
a is a probability distribution function. In this case, the variable x is
referred to as a random variable, and for each real number X, the
value o(X) is the probability that the random variable x has a value
no greater than X:

a(X) = P(x < X).

The corresponding a-measure is then called a probability measure,
and has the property that for any interval I,

mo(I) = P(x € I).

Any probability distribution function must necessarily satisfy the
conditions a((—00)*t) = 0 and a(co™) = 1, and it follows from this
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that if u, is a probability measure, then u,(I) <1 for any interval I.

Example 4-2-1:
The uniform distribution on the interval [A, B] (A and B finite,
A < B) is the probability distribution a defined by

0, ifx < A,
a(x) =3 &4, ifA<x<B,
1, ifx > B

(cf. Figure 4.2). Since « is continuous, we can say that if I is an
interval with finite endpoints a, b, then py(I) = a(b) — a(a), so that
if A <a <b <B,then

b—A a—-A b—a _ lengthofl

B—A B—A B-—A lengthof[A,B]

Me(l) =

Since the only changes in the value of o occur within the interval
[A, B], it follows that for any interval I,
length of I N[A, B]
length of [A, B]
In this case u,(I) can be interpreted as the probability that a random

number generator, programmed to select a random number in the
interval [A, B], will in fact select a number in I.

Ma(l) =

Example 4-2-2:
A discrete distribution is a probability distribution that is con-
stant except for jump discontinuities at a finite or countably infinite
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number of points. An example is the function « defined by

0, ifx < —1,
a@)={ 3, f-1<x<1,
1, ifx>1

(cf. Figure 4.3). In this case we have

0, ifI contains neither 1 nor —1,
po(®) = 1 3, ifI contains 1 or —1 but not both,
: 1, ifI contains both 1 and —1.

This corresponds to a random variable x such that

Px=-1)=Pkx=1)= %

For example, x might be the outcome of tossing a coin if “heads” is

scored as 1 and “tails” as —1.

Exercises 4-2:

1. If x is a random variable that can take only one value A (with
probability 1), what is the corresponding probability distribution

function a?

2. If x is a random variable that can take exactly n values
A, A2, ..., An(where Ay < Ay < -+ < Ap), each with a probability
| /n, what is the corresponding probability distribution function

?
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4.3 Simple Sets

A simple set is a subset of R that can be expressed as the union
of a finite collection of disjoint intervals. If S is a simple set, say
S = Uj”_ile where I1, I, . . ., I,, are disjoint intervals, and if : R — R
is amonotone increasing function, then the a-measure of § is defined
by

Ka(S) = Z o (L).
j=1

2

A given simple set can, of course, be subdivided into disjoint in-
tervals in many different ways, but the value of its a-measure is
independent of the way in which it is subdivided. Note also that

(1) ne(S) = 0 for any simple set S;
(ii) if S and T are simple sets such that § C T, then w©q(S) < ua(T).
Some other elementary propertiés of simple sets are explored in the

exercises. Note finally that a simple set is said to be a-finite if it has
finite a-measure.

Exercises 4-3:

1. It is true (though rather tedious and unenlightening to prove in
general) that if S and T are simple sets, so are SUT, SN T, and
S—T = {x:x € Sand x € T}. Verify this for each of the following
cases:

(@) §=[1,3)U(4,8), T=(25]Y(7];
() §=(2,3)U[57], T=[14]U[6,8)
(©) §=(1,2]U[56), T =[2,4]U(57).

2. Prove that if § and T are disjoint simple sets, then p,(SUT) =
wo(S) + uo(T) for any monotone increasing function a : R —
R. Give examples to show that if § and T are not disjoint, then
Uo(S U T) may or may not equal uq(S) + me(T).

3. Use what was proved in the preceding exercise to show that if
S and T are simple sets such that T € S and T is a-finite, then

Uo(S—T) = puyu(S)— pe(T) for any monotone increasing function
o : R — R. (Note that T is required to be a-finite in order to avoid
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having the meaningless expression co — oo on the right-hand
side.)

4. Give examples to show that if T is not a subset of S, then e (S—T)
may or may not equal py(S) — wo(T).

4.4 Step Functions Revisited

Let @ : R = R be a monotone increasing function. Let I be any
interval, and let 8 : I — R be a step function. It is clear from the
relevant definitions that the support of 8 is a simple set. We say
that 0 is a-summable if the support of 6 is a-finite. In that case we
associate with 0 a real number A,(f) defined by

n
Ao(6) = ) citta(D)
j=1
using the notation introduced in Section 2-5.

If a(x) = x for all x € R, so that u(J) is just the ordinary length
of the interval I;, then A, (6) is just the area A(6) under the graph of
9, as defined in Section 2.5. In general, A,(#) can be thought of as a
generalized “area’ for which “lengths” along the x-axis are measured
by a-measure rather than by ordinary length.

Note that if the endpoints of I are both finite, then any step func-

tion 6 : I — R is a-summable for all monotone increasing functions
a:R—> R.

Example 4-4-1:
Let « be defined as in Example 4-1-1, and let 6, = [0,3] — R be
defined by

1, f0<x<1,
ifl<x<3

61() = { )

)

(cf. Figure 4.4). Then

He((0,1) =a(17) —a(07)=0-0=0,
(1,3 =B —a(17)=5-0=>5,




4.4. Step Functions Revisited

ALGI (x)

|

L N B
\J
=

> X

0O bdd — e

and so
Aqg(6)) = (—1)0+ 2(5) = 10.
Suppose we modify the definition of 6, very slightly, to give

1, ifo<x<1,
92(")*{ 2, ifl<x<3

(cf. Figure 4.5). In this case

([0, 1D =a(1M) ~a(07)=1-0=1,
Ho((1,3) = (8 —a(1T) =5-1=4,

and so

Ag(8) = (D1 +2(4) =7.

57




58 4. The Lebesgue-Stieltjes Integral

f)(x)

2

. B

0 > X

FIGURE 4.6

Note that while the area A(6) under the graph is the same for
these two functions, the values of A,(6:) and A,(6:) are different.
This is because at the single point where 6, and 6, have different
values, o has a discontinuity, and so the interval consisting of that
single point has positive a-measure. Clearly, discontinuities in o«
complicate matters!

Example 4-4-2:
Let a be the discrete distribution function defined in Example 4-2-2,
and let 6 : R — R be defined by

1, ifx<0,
0(x)_{ 2, ifx>0
(cf. Figure 4.6). Then
1 1
Ha((—00, 0] = (0%) — a((—00)") = 5 —0 =2,
1

al(0,00)) = a(007) a0 =1 = > = 2,

Ay(6) =1 1 21 _3
=1(3)+2(3) =3

We conclude this section by listing a number of basic properties
that are straightforward to prove and intuitively reasonable, so we
will omit the proofs.

and so

(i) If@is a nonnegative a-summable step function, then A4(6) = 0;
also, A,(0) = 0.
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(ii) If6; and 6, are a-summable step functions on the same interval
I such that 6, < 6, on I, then Aq(61) < A,,(Bz).

(iii) If 6 is an a-summable step function, then so are |9|, 8+, and 6~
and we have A,(0) = Ax(07) + Ax(67) and Ay(10]) = Ax(61) —
Aq(67).

(iv) 1f 6y, 0, . .., 6, are a-summable step functions on the same in-

tervalI, 4y, ay, ..., a, are finite real numbers, and 8 : I — Ris
defined by

0(x) =Y a6(x)
j=1

forallx € I (i.e, 8 = 3 ", @), then 6 is also an a-summable
step function on I, and

Au(8) = aAu(8).
j=1

Exercises 4-4:
Let o : R — R be defined by

iy, ifx <0
— 2°7 )
“(")_{ 1, ifx>0
(cf. Figure 4.7). For each of the following step functions 6:
(a) sketch the graph of 6;

(b) determine whether or not 6 is a-summable, and if it is, find
Ay(6).
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1. 8:(—2,1) — R defined by

3 if-2<x< -1
0 — ) )
*) { —1, if-1<x<1.

2. 6:[—1,1] = R defined by

-2, if-1<x<0,
9(")_{ 1, f0<x<1.

3. 6:[—1,00) = R defined by

2, if—1<x<3,
o) = { 1, ifx > 3.
4, 6 : (—00,0) — R defined by
0, ifx < —1,
9(")_{ 1, if-1<x<0.

5. 8 : R — R defined by

-1, ifx <0,
900:{1, if % > 0.

4.5 Definition of the Integral

We are now in a position to set up the necessary machinery for
defining the Lebesgue-Stieltjes integral. Throughout this section we
take I to be a given interval with endpoints a,b, and @ : R — R to
be a given monotone increasing function.

Let f : I — R be a function that is nonnegative on I. A se-
quence 61,8,,6s, ... is said to be admissible for f if it satisfies all
the following conditions:

(a) 6; is an a-summable step function on I, for eachj=1,23,...
(b) 6;(x) > 0foreachx eI andeachj=1,23,...;
(©) 0 <f(x) <22, 6;(x) foreachx € I.

Theorem 4.5.1

An admissible sequence exists for any nonnegative function f : I — R.

Proof There are two cases to consider.
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Case 1. The endpoints a, b of I are finite. In this case we define the
function 6, : I - Rby gi(x) =1forallx €I (j=1,2,3...). Then §
is nonnegative, and since the endpoints of I are finite, ¢, is certainly
a-summable for eachj =1,2,3.... Since 32, 6,(x) = 1= 00,
condition (c) above is also satisfied for any nonnegative function
f : I - R, and so the sequence 6, 6, 65, ... is admissible for f.

Case 2. Either a = —o0 or b = oo or both. In this case we define the
subinterval I; of I as follows:

If I is (—oo, b), D finite, then J; is (b —j, b).
If I is (—oo, b}, b finite, then I; is (b — j, b].
If I is (a, o©), a finite, then I; is (a, a + j).
If I is [a, 00), a finite, then I; is [a, a + ).
If I is (—o0, 00), then I; is (—j, ).
For eachj=1,2,3,... we then define ; : I - R by

11, ifxel,
91(")_{0, ifxel—1I

Then 6; is nonnegative on I and is a-summable, since its support
I; is an interval with finite endpoints. Further, for each x € I we
have that 6;(x) = 1 for all sufficiently large values of j, and so again
Z;:l 0;(x) = oo for each x € I. Thus the sequence 61,6;,63, ... is
admissible for any nonnegative function f : I — R. O

We associate with any nonnegative function f : I — R an
extended real number L,(f) defined by

Lo(f) = inf {iA,,(ej)} ,
j=1

where the greatest lower bound is taken over all sequences
6:,0,, 6, ... that are admissible for f. Since the set of all such sums
> 21 Ae(6)) is non-empty (by Theorem 4.5.1) and has 0 as a lower
bound, it follows by Theorem 1.3.1 that L,(f) exists and L(f) > 0
for any nonnegative function f : I — R. Note that L,(f) = oo is a
possibility. Note also that it follows easily from the definition that
L,(0) =0.

Example 4-5-1:
Letf : [0,1] = Rbe the function discussed in Section 3.3, and let the
functions 6; be as defined in that section. For eachj =1, 2,3,...,6;1s
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a nonnegative ¢-summable step function on [0, 1], and Z;:l 0;i(x) =
f(x) for each x € I, so the sequence 6;,6,,6s, ... is admissible for f.
In particular, let o* be defined by o*(x) = x for all x € R. Then for
eachj=1,2,3,...we have

Aer(0) = per([r5, 5D =13 —13=0,

and so Y2, Agx(6)) = 0. It follows that Ly« (f) = 0.

Note that although each §; is a step function, f = 32, §; is not a
step function, since it is not possible to describe it by taking constant
values on any finite set of subintervals of [0, 1].

Theorem 4.5.2
For any function f : I — R we have:

(@) Lo(f) < Lo(If ) and Lo(—f7) < Lo(If1);
(i) Le(laf]) = lalLe(If1) for any finite nonzero real number a (and for
a = 0, provided that Ly(|f ) is finite).

Proof (i) Clearly, any sequence 61,6,6s, ... that is admissible for
If| is also admissible for f* and —f~. Thus the set of admissible
sequences for |f| is a subset of the set of admissible sequences for
f+ and of the set of admissible sequences for —f~. Part (i) follows at
once from Exercises 1-3, No. 3. O

(ii) It is obvious that both sides are zero if @ = 0 and Ly(|f]) is finite,
so suppose a # 0. Let 61, 65, 65, . .. be an admissible sequence for |f|,
so that forallx € I,

o0
0 <If() <D 6.
j=1
Then «
o0 o0
0 < laf(®)| < lal Y_6() =D _lal®)
j=1 j=1
for all x € I, and also

Y Ad(lal8) =Y lalAa(®) = lal ) Ad(8),
j=1 j=1

=1

and so |al6:, |a|6, |a|6s, . . . is an admissible sequence for |af|.
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Conversely, if 6,,6,,6,... is an admissible sequence for |af],
then (1/]al)6y, (1/]al)6,, (1/]al)bs, . .. is an admissible sequence for
If]. Thus, if S is the set of admissible sequences for |f|. Then from
above and Exercises 1-3, No. 4(a), we have

Le(laf]) = inf {ZAa(lal%)} = it {Z IalA«(Gﬂ}
j=1

= lal inf {ZAQ(GJ-)}

2

Jj=1
j=1

= lalLs(IfD.

Theorem 4.5.3
Iff,g : I - R are such that 0 < f(x) < g(x) for all x € I, then
Lo(f) = La(8).

Proof This result follows at once, since any sequence 6y, 6;,6s, ..
that is admissible for g is also admissible for f. O

Theorem 4.5.4
Iffi,f2,f3, ... is a sequence of functions such that f; : I — R for each
j=1,2,3,...and Y 2, fi(x) converges for each x € I, then

Lq ( >5 ) < Y La(IfD.
j=1

j=1
[Note that is it possible to have Z;:l Le(If;]) = 00 under the condi-
tions of the theorem. Note also that when the sequence fi,f2,f3, . .-
is such that f; = 0 for all j > n, we obtain the important special case

Lo(l 20 fiD) < 25 La(IfD1]

Proof The result is evidently true if Zfil Le(If;]) = 00, so assume
that ) o, Ly(|f]) is finite. Then certainly Lo(|f;]) is finite for each
j=1,2,3,.... Take any € > 0. By part (ii) of Theorem 1.3.2 and the
definition of Ly(|f;|), we have that for eachj = 1,2,3,... there is a
sequence 6;1, 0j, 633, . .. admissible for |f;| and such that

Y Au(6m) < Lo(IfiD) + 27
m=1
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It follows from the properties of double series of positive terms
(Section 2-2) that

Z Ad(elm) - Z <Z Aoz(ejm))
m=1

jm=1

< Z(La(lﬁl) +27¢)

- ZLaum +eZ( )

j=1

1/2
B ;L"‘UED Te (1 - 1/2)

= ZLa(lﬁD + €.

But since 0 < [fi(®)| < Yo, 6m(x) for all x € I and each j =
1,2,3,..., we have

Zf(x)

If we write the double sequence 6, (jm = 1,2,3,...) as a sin-
gle sequence (in any way we choose), the result is a sequence
Y1, ¥2, ¥3, - . . that is admissible for | Z ~, fil, and so

Lo ( ) = ZAa(‘pz) = Z Aa(Om) = ZLanD T €
j=1

2%
jm=1
thus, Le(| Yooy () — 1 Le(Ifjl) < € for any € > 0, and it follows

that
o0
o (
=1

La< og)) < D La(IfD,
j=1

as required. a

0<

< Z cal= Z (Z @m(x)) Z Bim(%).

m=1 jm=1

; ) — Y L(fN =0,
j=1

ie.,

o0

2

=1
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Theorem 4.5.5

If fi,f2,f3, ... is a sequence of functions such that f, : I — R and
Lo(Ifnl) is finite for each n = 1,2,3,..., and if f : I — R is such
that Lo(If — fal) = 0 (as n — o0) then:
() Lo(If D, La(f 1) and Lo(—f ™) are all finite;
(ii) La(|f+ _fr?-D - O;La(lf_ _fn_D — 0 and th(”fl - |fn|D - 0,'
(iii) La(|fn D - La(|f|)»La(f:—) - La(f+) and La(_fn_) - La(_f_)'

Proof (i) Since Ly(If — fal) — 0, there certainly exists a positive
integer N such that L,(|f — fy|) is finite. Then

Lo(IfD) = La(lfiv +f — fiv]) < La(lfivl) + La(If — fivl),

by Theorem 4.5.4, and so Lq(|f]) is finite, since Ly(|fy|) and Lyo(|f —
fn|) areboth finite. The fact that L, (f ) and L,(—f ™) are finite follows
at once from Theorem 4.5.2(i).

(ii) From Exercises 2-6 we have that on I,
=S =Rl =TI < If = fal,
and

[FI = Ifull < If = fal-

Since Ly(|f — ful) = 0 by hypothesis, part (ii) follows at once using
Theorem 4.5.3.
(iii) We have, using Theorem 4.5.4:

Lo(lfnl) = La(lf + fn — f1) < Le(If ) + Le(lfn — f1)
= La(lfl) + La(lf - fnl) (4'1)
Also,

La(lfl) = La(lf —fn +an = La(lf _fnl) +La(|fn|):

and so

Lo(Ifa]) = La(If D) — La(lf — fuD)- (4.2)

From equations ( 4.1) and ( 4.2) we have

Lo(If ) = La(If = fal) < La(Ifnl) < La(If) + La(If = fuD),

ie.,

_La(lf _an < ch(lfnl) _La(lfl) < La(lf _an;
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i.e.,

|Loz(|fn|) - La(lfl)l =< La(lf _fnl)'

Since Ly(lf — ful) — 0 by hypothesis, it follows that L,(|f,) —
Lo(If ). We have also

=T+ 0 - and fr=@F-£H+£7
~fo =T+ (S —(=f) and —fT =(—f = (=L N+ (),
and since Lo(If* — f;F1) = 0 and Ly,(| — f~ — (—=f;)[) = 0 by part

(ii), the rest of part (iii) can be proved by an argument similar to the
preceding one. a

Now let @ : R — R be a monotone increasing function, and let
f : I = R be a function with the property that there is a sequence
61,02, 03, ... of a-summable step functions defined on I such that
Lo (lf —6n]) — 0. It follows from part (i) of Theorem 4.5.5 that L, (|f|),
Lo(fT) and Ly(—f ) are all finite. Under these conditions we write

fI fdor = Ly(F*) = La(~f")

and call this quantity the (Lebesgue-Stieltjes) integral of f over I
with respect to a. If a(x) = x for all x € R, we write [, f dx instead of
[, f da; this special case is called the Lebesgue integral of f over I.

It is important to be sure that [, 6 do = A,(6) for any a-summable
step function 8 : I — R, because only then can the integral justifi-
ably be regarded as an extension of the concept of the “area under
a graph” as defined for step functions. This is, in fact, true, but the
proof is surprisingly hard, so we shall just state the result without
proof:

Theorem 4.5.6 )
For any a-summable step function 6 : I — R, we have [, 6 do = A4(6).

Exercises 4-5:

1. Complete the proof of part (iii) of Theorem 4.5.5 by showing that
Lo(f)) = Lo(fY) and Lo(—f) = Lo(—f7).

2. Let f be the function discussed in Section 3.3 and Example 4-5-1,
and let o* be defined by a*(x) = x for all x € R. Since f* = f and
f~ = 0, and we have shown in Example 4-5-1 that Ln(f) = 0,
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it follows that Lo«(ft) — Lo=(—f~) = 0. Complete the proof of
the fact that f[o,1] f dx = 0, by showing that there is a sequence
61,62,63,... of a*-summable step functions on [0, 1] such that
Ly+(If —6,]) = 0. (This example shows that [, f dx may exist in the
Lebesgue-Stieltjes sense in some cases where f is not Riemann
integrable over I).

3. Use Theorem 4.5.6 to show that if 6 : I — R is a nonnegative
a-summable step function, then A,(6) = Ly(6).

2

4.6 The Lebesgue Integral

The mathematical machinery required to define the Lebesgue-
Stieltjes integral is notably more complex than that needed for the
Riemann integral. Here, we pause to discuss informally the defini-
tion of the Lebesgue integral and contrast it with that of the Riemann
integral.

Let I be an interval and f : I — R be some function, which for
simplicity we assume to be nonnegative. If f is Lebesgue integrable
over I, then L,(f) < co and

[f =1

Recall that

o0
Li(f) = inf ) _ 4;(6),

=0
where the greatest lower bound is taken over all the sequences {6;}
that are admissible for f. If {§;} is an admissible sequence, then in
particular, 0 < f(x) < Zfil 6;(%). For a given admissible sequence {6}
the quantity Z]?'io A(8) is thus an upper bound for the “area under
the graph of f and the quantity L(f) plays a role in the Lebesgue
theory analogous to that of the upper Riemann-Darboux integral in
the Riemann theory. Suppose now we consider sequences {¢;} that
satisfy conditions (a) and (b) for an admissible sequence (see p. 60),
but satisfy the inequality
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() 0= T2 Al < ()

for all x € I instead of condition (c). Let

£(f) = sup > A(4y),
j=1

where the least upper bound is taken over all sequences satisfying

conditions (a), (b), and (c*). If £,(f) < oo, we could define another
integral by

_f_ Ifdx = £,(f).

The quantity £,(f) is analogous to the lower Riemann-Darboux
integral. Note that in the Riemann theory the upper and lower
Riemann-Darboux integrals are always finite even if f is not
Riemann integrable. This is because the definition of Riemann in-
tegrability is framed in terms of closed intervals on which f must
be bounded. In the Lebesgue theory, no restrictions are placed on
I, and f need not be bounded; consequently, neither £,(f) nor L,(f)
need be finite.

If f is Riemann integrable, then condition (ii) of the definition
requires that the upper and lower Riemann-Darboux integrals be
equal. There is no analogue to this condition in the Lebesgue theory:
It is not required that £,(f) = L(f) for the Lebesgue integral to exist,
only that L,(f) < oo. Prima facie, this may seem a weakness in the
theory, as there is no particular reason to choose Ly(f) over £,(f) to
define an integral, but it can be shown that the relationship £,(f) =
L,(f) is in fact a consequence of the condition L,(f) < oo together
with measurability of f (see p. 82). In other words, if Ly(f) < o0
and f is measurable, then £,(f) < 0o and £,(f) = Lx(f). A similar
statement can be made if £,(f) < oo, and in this sense £, and L, are
always on the same mathematical “footing” in the Lebesgue theory.

The definitions of the Riemann and Lebesgue integrals differ
fundamentally in the functions used to approximate the “area under
the graph,” and it is this difference that affords greater generality for
the Lebesgue integral. Recall that a function f is Riemann integrable
on a closed interval I if for any € > 0 there are step functions g¢, G*
such that g¢ < f < G® and A(G®) — A(g®) < €. The definition of the
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Lebesgue integral also uses step functions but in a different way. For
example, if {6;} is an admissible sequence, then the inequality in the
Lebesgue definition analogous to the inequality f < G¢ in the Rie-
mann definition is f < ) 2, 6,. Although each 6 is a step function,
the sum Zﬁl 6, need not be a step function. A more general class
of functions is thus allowed into the “approximation” Coupled with
this increased generality is the notion of measure, which is in itself a
generalization of length. The generality is enough to make functions
such as that described in Section 3.3 integrable under the Lebesgue
definition (cf. Exercises 4-5, No. 2). The real value of the general-
ization, however, lies in results such as the dominated convergence
theorem (Theorem 5.3.3), which resolve some of the problems with
the Riemann integral discussed at the end of Section 3.3.

The Lebesgue integral is a generalization of the Riemann
integral. We state the following result without proof:

Theorem 4.6.1

If a function f : [a,b] = R is Riemann integrable over the interval
I = [a, b), then it is also Lebesgue integrable over I, and the two integrals
are equal.

The above result is used frequently to calculate Lebesgue in-
tegrals. Note that the generalization breaks down if the integral is
improper. For example, the conditionally convergent integral in Ex-
ample 3-2-5 is not Lebesgue integrable. (In fact, Theorem 5.1.1 in
the next chapter indicates that if a Lebesgue integral exists, it is al-
ways absolutely convergent.) If an improper integral is absolutely
convergent, however, then it can be shown that it is also Lebesgue
integrable and the integrals are equal.

Exercise 4-6:

Let f : [0, 00) = Rbe defined by

1 ifn-1<x<n-3 n=12..,

f(x)z{Z% ifn_%5x<n, n=1,2,.--

)

(Figure 4.8).
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(a) Evaluate f[o a f dx for c a positive real number. (Since f is a step
function on [0, ¢], this integral exists in both the Riemann and
Lebesgue senses.)

(b) Show that f0°° f dx exists in the Riemann sense, as lime_, 0 f; fdx.

(¢) Show that lim, e f; If|dx does not exist; this shows that
f[o,oo))f dx does not exist in the Lebesgue sense (cf. Theorem
5.1.1).




~ Properties of
 the Integral

CHAPTER

In this chapter we will examine some of the essential properties of
the Lebesgue-Stieltjes integral, culminating in the convergence the-
orems that (as remarked in Chapter 3) are among the most important
features of the Lebesgue-Stieltjes theory.

5.1 Basic Properties

Theorem 5.1.1
Iff : I — R is integrable over I with respect to a, then so are f*, f~,
and |f|, and we have

[raa= [r*da+ [-aa ana [ifda= [fraa [5an

Proof Since f is integrable over I with respect to «, there is a se-
quence 6y, 6, 63, . .. of a-summable functions on I such that Ly(|f —
6,]) — 0. Since 6, is a-summable for eachj=1,2,3,..., s0 is |6y],
and it follows from Exercises 4-5, No. 3, that L,(|6,|) is finite for each
j=1,2,3,.... It then follows from part (ii) of Theorem 4.5.5 that

71
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Lo(If ¥ = 651) = 0, Lo(If ~ — 6, 1) = 0 and Lo(|If| — 16x11) = 0, so by
definition T, 7, and |f| are all integrable over I with respect to .
By definition, [} f*doa = Ly(f*)and [, f~ do = —Lo(—f "), and so

[fda =1~ Lat-) = [+ aa+ [ an

I I I

Also, we have by property (iii) (at the end of Section 5-4) that
Au(16n]) = Aa(ejz—) — Au(0,) = Aa(ejz—) + Ao(—6)).

Thus Ly(16x]) = Le(6)) + Lo(—6;) by Exercises 4-5, No. 3. Letting n
tend to 0o, we have by Theorem 4.5.5 part (iii) that

Lo(fD) = Lo(f ) + La(—f ) = f £ o — f o,

But since |f|* = |f|, we have [, |f|dae = Ly(|f]), which proves the
last part of the theorem. O

Theorem 5.1.2

Ifforeachn =1,2,3,..., f, : I = Ris integrable over I with respect to
o, and if f : I — Ris such that Lo(|f — ful) = 0, then f is integrable
over I with respect to o, and we have

[frda— [t [rraa— [£ram
[rraa— [ran, [ip1aa~ [ir1de

Proof Take any positive integer n. We know that f, is integrable,
so by definition there is a sequence ¥, ¥, . .. of a-summable step
functions such that Ly(|f, — ¢j]) — 0 as j — oo. Thus, for some
k=1,2,3,... we must have Ly(|f, — ¥x|) < 1/n. Choose such a k
and denote Y by 6,. In this way we obtain a sequence 6;,6;, ... of
a-summable step functions such that

La(lfn_ nD < %: (5'1)

for eachn = 1,2,.... Now take any € > 0. Since Ly(|If — fal) = O,
there exists a positive integer N(¢) such that

nzN© = Lo(f —fi) < - (5.2)
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Also, from equation (5.1), we have that
2 1 €

n>-=-<-

€ n- 2

By Theorem 4.5.4 we have that foreachn =1,2, ...,

La(lf - enD = La(lf _fn +fn - enD = La(lf _an + La(lfn - enD-
Thus, if n > max{N(e), 2/¢€} then equations (5.2) and (5.3) imply that

= La(lfa = 6al) < = (5.3)

€ €
. Ldv—%D<§+E=Q

and so Ly(lf — 6,]) — 0, and f is integrable over I with respect to o
by definition.

The rest of the theorem follows from Theorem 5.1.1, Theo-
rem 4.5.5(iii), and the definition of the integral (see Exercises 5-1,
No. 1). O

Theorem 5.1.3
Iff : I — R is integrable over I with respect to «, then

I/Ifdalsfllflda-

Proof By definition,

/I 7 da} = |La(f) — La(—F )

thus,

/I 7 da} < Lo(F) + La(—F)

= [rraa— [ aa= [ i1

by Theorem 5.1.1. O

Theorem 5.1.4 (Linearity of the Integral)
Ifforeachj=1,2,...,m, f;: I - Risintegrable over I with respect to
o, and g; is a finite real number, then } ", ajf; is integrable over I with
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respect to o, and
f(}:%) dor = Zajffjda-
T'\j=1 j=1 I

Proof Foreachj=1,2,..., mweknow that there exists a sequence
61,632, . .. of a-summable step functions such that Ly(|f; — 6in|) = 0
as n — 00. By Theorem 4.5.6 we have that foreachn=1,2,...,

f (o) o= (£

m m
= GAOn) =) & / Onda.  (5.4)
j=1 j=1 I
Now foreachn=1,2,...

o< ) = 1x ([t - a0))

> (5 — 6m)
m
< D 1alLa(If; — 6),
j=1
by Theorems 4.5.4 and 4.5.2(ii). Since Ly(|f; — 6in|) — 0 for each
j=1,2,...,m, it follows that
) - 0,

( Za]f Zajejn

j=1
and so Y7, af; is integrable over I with respect to a-by definition.
It follows also by Theorem 5.1.2, that [, 6, do — [, fjde as n — 00,
foreachj=1,2,...,m, and that fI(Z ™ | 40 dot — fI(Z]_l af;) do.
Letting n tend to o0 in equation (5.4) gives the result. O

m m

Y oafi— ) b

j=1 j=1

Theorem 5.1.5

Let f, g : I = R be functions integrable over I with respect to a.
(i) Iff = 0 on I, then [, fdo > 0.
(i) Ifg <fonl, then [,gda < [,f de.




5.2. Null Functions and Null Sets 75

Proof Part (i) follows at once, since if f > 0 on I, then [, fda =
Ly(f) = 0. For part (ii) we need only observe that

/Ifda=/1{g+0f—g)}da=/Igda+f1(f—g)da,

by Theorem 5.1.4. Part (i) implies that [,(f —g)da > 0, and therefore
fifda = [ gda. O
Exercises 5-1:

1. Complete the proof of Theorem 5.1.2.

2. For any functionsf, g : I — R we define the functions max{f, g} :
I - R and min{f, g} : I - R by

(max{f, g)(x) = max{f(x), g(x)} foreachx €I,
(min{f, g))(x¥) = min{f(x), g(x)} for eachx e I.

Prove that max{f,g} =f+ (g — )T and minf{f, g} =f+ (g - )",
and deduce that if f and g are both integrable over I with respect

to «, then so are max{f, g} and minff, g}.

3. Prove the “first mean value theorem for integrals”: If f : I — R
is integrable over I with respect to ¢, and if uy(I) is finite, and if
¢, and ¢, are finite real numbers such that¢; < f < ¢, on I, then

Cilta(l) < /1 fdo < capa(l).

4. Prove that if for eachj = 1,2,... ,m the function f; : I — R is
integrable over I with respect to ¢, then

[(£5) &) <55 ( ).

5.2 Null Functions and Null Sets

If f : I — Ris such that Ly(|f|) = 0, we call f a null function (with
respect to a).
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Theorem 5.2.1
Iff : I — R is a null function with respect to a, then f is integrable over

I with respect to o and
[ia= [if1da=o0.
I I

Proof The sequence 6y,6;,... definedby 6, =0foralln=1,2,...
is a sequence of a-summable functions such that Lo(lf — 6x]) =
Lo(If) = 0 for all n = 1,2,..., and so f is integrable. By Theo-
rem 4.5.3(i) we have Ly(f) = Lo(—f ") = 0, and therefore [, fdx =
f; If| dee = 0 by definition of these integrals. O

Corollary 5.2.2
A function f : I — Ris null with respect to a if and only if f is integrable
over I with respect to o, and {; |f| de = 0.

Now let S be any subset of R. We define the characteristic
function of S to be the function xs(x) : R — R defined by

1, ifxes,
0= 3 itres ©9

We say that S is a null set (with respect to @) if xs is a null
function (with respect to ). Since xs is nonnegative, it follows at
once from Corollary 5.2.2 that xs is null if and only if fp xsde = 0.1t
also follows from Theorem 4.5.3 and the definition of a null function
that any subset of a null set is a null set.

Iff : I — R is a function, and P is some property of f that holds
everywhere in I except possibly on some null subset of I, we say that
P holds almost everywhere on I (abbreviated to a.e.), For example,
iff,(m=1,2,...)and f are functions defined onI, then “f, — f a.e’
means that f,,(x) — f(¥) for all x € I except possibly for values of x
belonging to some null subset of I.

Theorem 5.2.3
@) Iff : 1 —> Risnull thenf =0a.e
(i) Iff : I = Ris such thatf =0 a.e, then f is null.
(iii) Iff,g : I - Rare such that f = g a.e., and if f is integrable over
I, then g is also integrable over I, and [, f da = [, g dat.
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Proof (i) Assume that f : I — R is null, so that L,(|f]) = 0. We
define the sequence of sets A;, A, ... as follows:

Ar={:xel|f(®)| =1},

1 1
Ap=1x:x€l - <|f(®)| <
" [ ~ < If() n_l},

forn=23,....Clearly, x € A, = 1 <n|f(x)|(n=1,2,...), and so
foreachn =1,2,... we have 0 < x4, < n|f| on I, and therefore
0 < Lo(Xa,) < Lo(nif]) by Theorem 4.5.3
=nLy(If]) by Theorem 4.5.2(ii).
Since f is null, it follows that L,(x4,) =0foralln=1,2,....

Now let § = {x : x € I,f(x) # 0}. For any x € S there exists a
unique positive integer N such that x € Ay, and therefore

%) = 1, ifn=N,
)=V 0 ifnN.
Thus xs(¥) = 1 = Y oo, Xa,(x) for each x € 8. On the other hand,

ifx ¢ §, thenx € A, foreachn = 1,2,..., and so xs(¥) = 0 =
3 o2 1 Xa,(%). Therefore, xs = > o, Xa,, and so by Theorem 4.5.4 we
have

o0 o0
0 < La(xs) < ) La(Xa,) =D 0=0,
n=1

n=1

and so xs is null, which proves part (i).
(ii) Assumethatf = Oa.e. LetS = {x : x € I, f(x) # 0}. Then Sisa
null set. Foreachn=1,2,...defineB, ={x:xeIn—1 < |[f(x)| <

n}. Since B,, C §, it follows that B, is null foreachn =1, 2,.... Now
define f, = nxg, foreachn =1, 2,....For any x € Sthere is a unique
positive integer N such that x € By, and therefore

N, ifn=N,
f"(")={o, ifn £ N,

Hence Y oo, fu(®*) = N = |f(x)| (since x € By), and so we can
say that [f(x)] < Y oo, fa(¥) for all x € S. On the other hand, if
x€I—8 thenx & B, foreachn =1,2,...,and s0 Y o fu(¥) =
0 = f(x). Thus Y o, f, converges on I, and |f| < Y -, f, onI. By
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Theorems 4.5.2(ii), 4.5.3, and 4.5.4 we then have
o0
0 < Lo(If ) < La()_ fr)
n=1
o0
<) La(f)
n=1

= ZLa(ann) = ZnLa(XBn)
n=1 ‘n=1

o0
= 0=0,

n=1

since By is null for eachn =1, 2,.... Thus, Ly(|f|) = 0, and f is null
as required.

(iii) Since f = g a.e., we have g — f = 0 a.e., so by part (ii),
g —f is null. By Theorem 5.2.1 it follows that g — f is integrable and
f,(g —f)de =0.Butg =f + (g — f) on I, so by Theorem 5.1.4, g is
integrable and

/Igda=/1fda+/ltg—f)da=/lfda,

as required. O

Part (iii) of the preceding theorem is particularly important. It shows
that changing the values of a function on a null set does not affect
the integral of the function. Two functions that are equal almost
everywhere can be regarded as identical in the context of integration
theory. .

Exercises 5-2:

1. Let a* : R > Rbe defined by o*(x) = x for all x € R: Prove that
any finite or countably infinite subset of R is null with respect
to o*.

2. Give an example of a finite subset S € R and a monotone in-
creasing function & : R — R such that § is not null with respect
to a.
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3. Let g : [0,1] = R be defined by

() = 0, ifxisrational, x #0,1,
X = 1, ifxisirrationalorx =0orx =1.

Find f[O,l] g dx, explaining your reasoning in full.

4. Generalize Theorem 5.1.5(ii) by proving that if f g : I — R are
integrable over I with respect to @, andg < f a.e., then f, gdo <
[, f da.

5. Prove that,the union of two null sets is a null set.

5.3 Convergence Theorems

We now state the main convergence theorems for the Lebesgue-
Stieltjes integral. The proofs are, regrettably, too long and technically
difficult to include here. The reader is referred to [31], [32], or [38]
for the details.

Theorem 5.3.1 (Monotone Convergence Theorem)

Let fi, f2, . . . be a monotone sequence of functions that are all integrable
over I with respect to a, and are such that 1im,,_, o ( fI fn dor) is finite. Let
f :I — R be such that f, — f a.e. Then f is also integrable over I with
respect to o, and [, f, do — [, f de.

Suppose that {a,} is a sequence of real numbers bounded below.
Let k,, = inf >y, a,. Then by Exercises 1-3, No. 3, the sequence {k,}
is monotone increasing, and so by Theorem 2.1.1,

lim k, = lim (inf a,)

n—>o0 n—>00 m>n
exists in R,. A consequence of the monotone convergence theorem
is the following technical result, which we shall use in Chapter 8:

Lemma 5.3.2 (Fatou’s Lemma)

Let fi, f, . . . be a sequence of nonnegative functions that are all integrable
over the interval I with respect to o and suppose that f,(x) = f(x) for
all x € I except perhaps in a null set of I. Then f is integrable over I with
respect to o if and only if liMy—sco (iNfmsn J} fin(x) der) is finite, and in




80 5. Properties of the Integral

that case

fae< tim (1nf i)

I

Theorem 5.3.3 (Dominated Convergence Theorem)

Let f1,f2, . . . be a monotone sequence of functions that are all integrable
over I with respect to o and are such that foreachn=1,2,..., |[fl <A
onlI, where X : I — Risintegrable over I with respecttow. Letf : I — R
be such that f, — f a.e. Then f is also integrable over I with respect to
a, and we have

‘/I‘fnda-»‘/;fda and ‘/I‘Ifn—flda-» 0.

As immediate consequences of Theorems 5.3.1 and 5.3.3, obtained
by applying these theorems to the sequence of partial sums of a
series (see Exercises 5-3, No. 1), we obtain the following important
results on the integration of series term by term.

Theorem 5.3.4

Letay, az, . . . be a sequence of functions that are all integrable over I with
respect to a, all have the same sign (i.e., either a; > 0 forallj =1,2,. ..
ora; < Oforallj =1,2,...), andaresuchthat 3 2, (f; aj dor) converges.
Lets:I — Rbesuchthaty ;o) a; = s a.e. Then s is also integrable over
I with respect to a, and

[sd:x = g(/Iajda).

Theorem 5.3.5
Let ay,az, . .. be a sequence of functions that are all integrable over I
with respect to a, and are such that foreachn =1,2, ...,

n
>
=1

onI, where ) : I — Risintegrable over I with respecttoa. Lets : I — R
be such that Z]of_il a; = s a.e. Then s is also integrable over I with respect

<A
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FIGURE 5.1

to a, and

o0
/ sdo = Z ( f a; da) .
I j=1 I
Exercises 5-3:

1. (a) Deduce Theorem 5.3.4 from Theorem 5.3.1.
(b) Deduce Theorem 5.3.5 from Theorem 5.3.3.
2. Foreachn=1,2,...1let f; : R — R be defined by
n®) = { (1) Ziﬁefé; "
(Figure 5.1).
(a) Find the function f = limy, o fn.
(b) Show that limp,_,oo(fg fudx) # Ji f dx.

81

(c) State which hypothesis of the monotone convergence theo-
rem is not satisfied in this case, and explain in detail why it
is not satisfied. Do the same for the dominated convergence

theorem.

5.4 Extensions of the Theory

In this section we describe briefly two important ways in which the
definition of f, fdo can be extended: (1) by allowing integration over
sets other than intervals, and (2) by allowing « to be a function of

bounded variation.
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(1) We say that a function f : I — R is a-measurable if there
is a sequence 61, 6, . .. of a-summable step functions on I such that
lim,,« 6r = f a.e. Any a-summable step function is obviously a-
measurable, and so is the unit function 1, which takes the value 1
for each x € R (see Exercises 5-4, No. 1). From the properties of step
functions and the elementary rules for limits, it follows easily that:

(i) the modulus and the positive and negative parts of an
a-measurable function are a-measurable;

(ii) iff,g : I — R are a-measurable, then so are f + g, fg, max{f, g},
and minff, g}. It is also true that f/g is a-measurable, provided
that g # 0 a.e., but this is a little harder to prove.

It can be proved that a function f : I — R is integrable over I with
respect to « if and only if it is a-measurable and Lq(|f]) is finite.

A set X C R is said to be a-measurable if its characteristic func-
tion xx is a-measurable. If X is a-measurable and L,(xx) is finite,
then xx is integrable over R with respect to «, and we define the
a-measure u,(X) of X by

o) = [ e

If X is a-measurable and L,(xx) = 00, we say that X has infinite
a-measure and write uy(X) = 0.

This definition of measure is easily seen to be consistent with
our previous definition of measure for simple sets. Note also that
a set is null with respect to « if and only if it has a-measure zero.
The concept of the measure of a set is of considerable importance
in itself, quite apart from its connection with integration.

If a function f : R — R is integrable over R with respect to «,
and X € R is a-measurable, then fxx is a-measurable, and since
Ifxx| < If] on R, we can say that L,(|fxx|) is finite and so fxx is
integrable over R with respect to &. We can then define the integral
of f over X with respect to o by

ﬁﬂw=4ﬁﬂh
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(2) Suppose a : I — Ris a function of bounded variation. If I is
a proper subset of R with endpoints a, b, then we have by Corollary
2.7.3 that a(at) and «a(b™) exist and are finite. We extend « to a
function of bounded variation on R in the following way: (i) If a is
finite, then define «(x) to be equal to a(a™) for all x < a in the case
where a € I, and equal to a(a) for all x < a in the case where a € I
(Figure 5.2). (ii) If b is finite, then define «a(x) to be equal to a(b™)
for allx > b in the case where b € I, and equal to a(b) forallx > bin
the case b € I (Figure 5.3). By Theorem 2.7.4, we can then express
o as a difference

o =0 — oy,

where a1, a3 : R = R are both monotone increasing.
Now let ] be any subinterval of I. If a function f : ] = Ris
integrable over J with respect to both a; and a,, we say that f is
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integrable over J with respect to o, and make the natural definition

f}fm:fffdal—fffdaz.

It can be proved that the value of fI f da does not depend on the
particular way in which « is expressed as a difference of monotone
increasing functions.

In the same spirit, we define the a-measure of an interval ] S I
to be

Pa(J) = Moy (J) — My (1)

From the elementary rules for limits, it is easy to see that uq(J) can
be described in terms of the one-sided limits of & at the endpoints of
J in precisely the same way as was done for monotone increasing o
(Section 4-1). Of course, when « is a function of bounded variation,
we must allow for the possibility that intervals may have negative
a-measure. Note also (and particularly) that the theory of null sets
and null functions, as developed in Section 5-2, is no longer valid in
this more general setting.

For the most part we will continue to restrict ourselves to integra-
tion with respect to monotone increasing functions, but we will need
the extension to functions of bounded variation when we discuss
integration by parts in the next chapter.

Exercises 5-4:

1. Prove that the unit function 1 : R — R is e-measurable for any
monotone increasing function o : R — R.

2. Define the functions f,« : [0,2) — R as follows:

L4

1, ifo<x<]1,
f(x)—{ —1, ifl1<x<2,

| oA if0<x=<1,
(%) = 1—% ifl<x<?2
(Figure 5.4).
(a) Extend ato a function on R as specified in Section 5-4. Show
that «, so extended, is a function of bounded variation on R,
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a

by expressing « as a difference of two monotone increasing
functions a;,a; : R — R that satisfy the hypotheses of
Theorem 2.7.2.

(b) Find ua([0, 2)), #a([0, 1], ta((1, 1]) 2nd pa((1, 2)).

(c) Evaluate f[o o f dor.




Integral
Calculus

CHAPTER

Having worked through the basic theory of the integral we now
turn to the actual techniques of integral calculus, that is, the practi-
calities of evaluating and manipulating Lebesgue-Stieltjes integrals.
The emphasis here will be on understanding and applying the re-
sults. For this reason, the proofs of most the results stated in this
chapter will be suppressed. The results are standard to the theory,
and their proofs can be found in most texts on integration (e.g., [31],
[32], [38]). It should be noted, however, that many of these proofs
pose a technical demand on the reader greater than what has been
expected so far in this text.

6.1 Evaluation of Integrals

The actual evaluation of Lebesgue-Stieltjes integrals takes as its
starting point the fact that for a closed interval [4, b] the ordinary

Riemann integral fab f(x)dx (if it exists) has the same value as the
Lebesgue integral [, f dx (cf. Theorem 4.6.1). The same holds for

improper Riemann integrals, provided that they are absolutely con-

87
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vergent (as discussed at the end of Chapter 4). Lebesgue integrals
that correspond to Riemann integrals can therefore be evaluated
using all the elementary techniques with which you are presumed
familiar. More general Lebesgue-Stieltjes integrals can usually be
dealt with by reducing them to combinations of integrals that either
are equivalent to Riemann integrals or are easy to evaluate. The
theorems that follow provide the necessary tools. In all of them, we
assume that o : R — R is a monotone increasing function.

Theorem 6.1.1
Ifthe interval I is a union of a finite number of pairwise disjoint intervals

I=LULU---UI,
then

[faa=) [ ra
I j=1"}

in the sense that if one side exists, then so does the other, and the two are
equal.

Theorem 6.1.2
Leta =) _, cjoy, where for eachj =1,2,. : R = Risamonotone
increasing function and ¢; is a nonnegative ﬁmte real number. If a func-
tion f : I — R is integrable over I with respect to each of ay, @z, . . ., Om,

then it is integrable over I with respect to a, and

m
ffda => g ffda,-.
I j=1 I
Theorem 6.1.3

(i) If a is continuous at a, then

/ fda = / fda and fdo = f da

[a,b] (a,b] [a,b) (a,b)
in the sense that if one side of the equation exists, then so does the
other, and the two are equal.

(ii) If a is continuous at b, then

f fda= | fda and fda=| fd
a, b a b) (arb] (a'b)
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in the sense that if one side of the equation exists, then so does the
other, and the two are equal.

Theorem 6.1.4
For any interval I, [, 1da = pu(D).

Theorem 6.1.5
If a is constant on an open interval I, then fI fda=0.

Theorem 6.1.6
For any function f defined at a, f[a’a] f do = f(a)[a(a™) — a(a™)].

Theorem 6.1.7
If a is differentiable at all points in an open interval I, then

[fda=[fa’dx

in the sense that if one side exists, then so does the other, and the two are
equall.

Theorem 6.1.8
Let I be an open interval, and let B : I — R be a monotone increasing
function on I such that a(x) = B(x) for all x € I. Then

fIfda=fIfdﬂ

(note that since I is open, the integral on the right is defined even if the
domain of B does not extend beyond I).

A few examples should be sufficient to show how these theorems
are applied. The most important thing to note is that points of dis-
continuity of & must be dealt with separately, by treating them as
single-point closed intervals and using Theorem 6.1.6.

Example 6-1-1:
Let ¢ : R = Rbe defined by

_ 10, ifx<2
(%) = 1, ifx>2

(cf. Figure 6.1).
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Then [, X do = Jom x? do + Jaa x? da by Theorem 6.1.1 (note
that « is discontinuous at 2). Now, Theorem 6.1.6 implies that

f X do = 2%(@(2Y) —a(27)) = 4(1 — 0) =4,
2.2]

and Theorem 6.1.3(ii) implies that

f X doa = X% da.
(2,3] 2,3)

The above equation and Theorem 6.1.5 indicate that

f x*do =0,
(23]

and thus
/‘x%h=4+0=4
(23]

Note that Theorem 6.1.5 requires the interval to be open, and we
used Theorem 6.1.3(ii) to change the interval of integration to the
open interval (2, 3). The main feature to note from this example is
that although « is constant on the closed interval [2, 3], we cannot
conclude that f[2'3] x? do = 0, because of the discontinuity in o.

Example 6-1-2:
Leta : R — R be defined by

10, ifx < 0,
o(x) = 3—e¢ % ifx>0

(Figure 6.2).
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FIGURE 6.2

Then,
f e do = e do + e"do (by Theorem 6.1.1)
[0,00) [0,0] (0,00)

= €%(@(0T) — a(07)) + € d(3 — e %)
(0,00)

(by Theorems 6.1.6 and 6.1.8).

Applying Theorem 6.1.7 to the second integral gives

f € da=1(2—-0)+ €*(2e™ %) dx
[0,00) (0,00)

=2+ f 2¢ " dx (by Theorem 6.1.3(i))
[0,00)

o0
=2+ f 2¢™"dx (an improper Riemann integral)
0

=2+ lim [ - 2¢7*]

c—>00 0

=2+(0—(-2) =4.

Note again that although a(x) = 3 —e™% for all x € [0, 00), we cannot
conclude that f, ., €*da = Jio,00) € 4(3 — €7%). Again, the disconti-
nuity in o at the endpoint of the interval is crucial; the condition in
Theorem 6.1.8 that I must be open cannot be disregarded.
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Example 6-1-3:
Let @ : R — R be defined by

a(x) = X, ifx < 0,
] x+1, ifx>0

(Figure 6.3).
Let fi, f2 : R &> R be defined by

x, ifx#2, x, ifx#0,
fl("‘)={1 ifxiz fz(x)={1 ifxio

(Figure 6.4). Now, the set {2} has zero a-measure, and Theorem 5.2.3

implies that f[l,s] fi do = f[l,B] x do. Thus,

fida = xd(x+1) (by Theorems 6.1.3 and 6.1.8)

[1,3] (1,3)
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=f x(1)dx (by Theorem 6.1.7)
1,3

3
= f xdx (a Riemann integral) by Theorem 6.1.3
1

_ x23_9 1_4
L2, 2 27 °

However, we cannot say that f[_l yf2da = f[_l ;¥ de, because the
set {0} does not have zero a-measure. Instead, we proceed thus:

fodo = feda+ | frda+ | frdo
[-1,1] [-1,0) [0,0 0,1]

(by Theorem 6.1.1)
0 1

= [ xar+pOEOD - a@ D+ [ xa
1 0

(by Theorem 6.1.6)

(using reasoning similar to that used in the first part to deal with the
first and third integrals). Therefore,

$2 0 x2 1
fzda=[—-] +1(1—0)+[-—] =1.
[—1,1] 21, 2 o
Note that in contrast, f[_l 1 xdo = 0, the calculation being the same

as the preceding one except that £,(0) is replaced by 0, the value of
the integrand at 0.

Example 6-1-4:
Let @ : R — R be defined by

0, ifx <1,

X —2x+2 ifl<x<2,
=9 3 ifx =2,

X+ 2, ifx > 2

(Figure 6.5). Then,

/ X% do = xzda+/ xzda+f X% do
[0,3) [0,1) [1,1] (1,2)

+f xzda+f x* do (by Theorem 6.1.1)
2.2] 23
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> X

=f xzda+12(oz(1+)—oz(1_))+/ XA —2x+2)
1)

(1,2)

+ 2%(a(2M) — a(27) + f X d(x+ 2)
23)
(by Theorems 6.1.3 (i), 6.1.6, and 6.1.8)

=0+ 1(1 —0)+f X2(2x — 2)dx +4(4 — 2)
(172)

+ f x*1dx (by Theorems 6.1.5 and 6.1.7)
23)

=1 +f (2x3—2x2)dx+8+f X2 dx
[1,2] [2,3]

(by Theorem 6.1.3)

=9+ f 2(2x3 — 2x%)dx + f 3 x?dx (Riemann integrals)
1x4 2237 4 3
=9+[T?]ﬁ[“s‘]z

109
=—
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Exercises 6-1:
1. Let o : R — R be defined by
e ifx <0,
alx) =14 2, if0 <x <1,
2x+1, ifx>1

(cf. Figure 6.6).
Let f : R — Rbe defined by

e ifx<l1,
X, ifx >1

fe) = {
(cf. Figure 6.7). Evaluate fI f da for each of the following intervals
I
@ (-1,0) G [-1,0] (i) (-1,1)
v (=111 ™ [L,3] (vD) (=00, 0)

2. Let [x] denote the integer part of ¥, i.e., the largest integer n such
that n < x; for example, [2.71] = 2, [3] = 3, [-1.82] = —2.

(a) Sketch the graph of the function [x] : R — R.
(b) Evaluate the following integrals:
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> X

@ fog@@+DdH D) fo5€ A+ [x])

(ii1) f[1/4,5/4][x] d[2x] (iv) f[1/4,5/4][zx] dx]

3. Leta : R — R be a probability distribution function correspond-
ing to a random variable x. We define the mean of x (also called
the expectation or the expected value) to be

E(x) = f xdo.
(—00,00)

(a) Calculate the mean of the uniformly dlstrl'buted random
variable defined in Example 4-2-1.

(b) Calculate the means of the random variables defined in
Example 4-2-2 and Exercises 4-2, No. 2.

(c) If x is a random variable that can take exactly n values
A1, A2,...,Ap (Where A; < A3 < --- < A, ) with probabil-
ities p1, P2, ..., Pn, respectively (where Y -, p; = 1), find
the corresponding probability distribution function ¢, and
the mean of this random variable.
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6.2 'Two Theorems of Integral Calculus

In this section we will look at the form taken in the Lebesgue-
Stieltjes theory by two theorems that are familiar to you in the
context of elementary integral calculus.

An important aid in evaluating elementary integrals is the
“change of variable” theorem

b u(b)
[ fuewod= [ sea
s a u(a)
where we have made the substitution x = u(t) in order to simplify
the integral on the left. The same thing can be done within the
Lebesgue-Stieltjes theory.

First we need a definition. We say that a function u : R - R is
strictly increasing on an interval I if u(x;) < u(x;) for all x;,x; € I
such that x; < x;. Suppose now that u : R — R is continuous and
strictly increasing on I, and write

u(l) = {u(x): x € I}.

Then it is easy to see that u(I) is an interval. For example, if u(x) =
x® + 1 for all x € R, then u((—2,1)) = (-7, 2), u([3, 0)) = [28, 00),
u((—o0, —1)) = (—00, 0), and so on.

We can now state the “change of variable” theorem for the
Lebesgue-Stieltjes integral.

Theorem 6.2.1 (Change of Variable)
Let I be any interval, and u : R — R be a function that is continuous
and strictly increasing on the interval I. Then

-/I(fou)duzfumfdx,

where f o u denotes the composition of f and u, defined by (f o u)(x) =
flu(x)] for all x € I. If, in addition, u is differentiable on I, then this
result can be written in the form

/I(fou)u’dxzfumfdx.
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Finally, if o : R — R is monotone increasing, then

‘/I‘(fou)d(ozou)=v/‘umfda.

All three results hold in the sense that if one side exists, then so does the
other, and the two are equal.

The condition that u should be strictly increasing on I is not really
a restriction in practice. If u is not strictly increasing, the interval
of integration can usually be split up into subintervals on which u
is either strictly increasing or strictly decreasing, or constant, and
each of these can be dealt with separately (note that if u is strictly
decreasing then —u is strictly increasing, so the theorem can still be
used with the obvious modifications). When evaluating integrals in
practice, therefore, one is usually safe, provided that u is continuous
(and for the most part u is also differentiable).

The second matter we will consider here is integration by parts.
Recall that for the Riemann integral, the technique of integration by
parts centers on the formula

b b
b
[ frdr [ rea=[g]
a a
For the Lebesgue-Stieltjes integral, this result takes the basic form
[£ae+ [ear = mp

where f and g can be allowed to be functions of bounded variation,
using the approach outlined in Chapter 5. However, a correction
term is needed in order to take account of cases where f and g have
points of discontinuity in common. )

In order to understand the need for a correction term, it is suf-
ficient to consider the simplest case, where I is the closed interval
[a, a] = {a} consisting of a single point. We then have

f{ e = F(@la@) ~ (a7 = Fams(la),

f{ 84 = 5@ (") = ()] = s@pyC(a),
ugla)) = @)@ — () (a") = FaHe(a™) — fa g ).
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Thus,

da ar | —
( [ rag+ f{a}g f) ()

= f(@ug({a}) + g(@us({ad) — [f(ah)g(@™) — f(a)g(a )]
= f(@ug({a}) + g(@us({a))
= [fa™)g(@™) = f(@Dg@) + faT)g(a™) - f(a)eg(@)]
= f(@ug({ad) + g(@us({a)) — [f (@ ({ah) — glaus({a))]
= (f(@) = F@Nrg({ah) + (8(@) — g(@ N ({a}) = A(a), say.
Then also
A@ = [f(@ = f@) +f@) — f@)]ug(fah)
+[g(a) — g(a™) +g(a™) — g(a™)]us({ad)
= [f(@) — f@)]ug({a}) — nr(fad)pg({ad)
+[g(@) — g(@]us((ad) + m({aDus((ah)
= [f(@) = f(a)]ue(a]) + [g(a) — g(@D)]us({a)).

Adding gives
24(@)=[2f (D~f(@H)~f (@ )]ug({aD+[28(@)—g(a)—g(@)]us({a}),
and so finally,

A@) = [f(@) — 5@ +F@)]uglal)
+Ha(@ — 5@ + 8@ )us(la)).
We then have
[ rae+ | gdr = mptia + aca)

Note first that if f is continuous at 4, then f(a) = 3 (f(at)+f(a™))
and us({a}) = 0, and so A(a) = 0; similarly if g is continuous at
a. Thus it is possible for A to be nonzero only if both f and g are
discontinuous at a. Three important special cases are:

@ Iff(a) = 3(f(@) +f(@)) and g(a) = 3(g(a™) +g(a™)), then
A(@) = 0.
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(if) Iff and g are both continuous on the right at a, so that f(a™) =
f(a) and g(a™) = g(a), then

1
A@) = S((a") = F@ D[ + 5(&@) — gl Niy(lal)
= sl sg(a)).

(iii) Iff and g are both continuous on the left at a, so that f(a™) =
f(@) and g(a™) = g(a), then

1 _ + 1 — +
A(@ = 5(fl@) = f@Nue(ah) + S8@) — @ Nur({ah)
= —ps({a)ug({a}).
It is now easy to see why the general theorem for integration by
parts takes the form given below. Note that if f and g are functions of

bounded variation, thenby Theorems 2.7.2 and 2.4.3 the set of points
of discontinuity of f and g is either empty or countably infinite.

Theorem 6.2.2 (Integration by Parts)
Let f,g : I — R be functions of bounded variation, and let S denote the
set of points at which f and g are both discontinuous. Then

fffdg + flgdf =D+ _A@),

o
where
A@) = [f@) — 5 (@) + )] gl
+Ha@ - 5@ + @ N]ps(la
In particular,

(i) If Sisempty, orif f(a) = 3(f(a™)+f(a7)) andg(a) = 3(g(a*)+
g(a™)) foralla € S, then

[£a5+ [ea = ns>

(i) If f and g are continuous on the right at all points of S, then

/z fae+t fI gdf = ug(D+ Y ur(tahug({a)).

acs
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(i) If f and g are continuous on the left at all points of S, then

Example 6-2-1:

ff g + f gdf = ng(D) = Y ur(laDug((al).

acs

Consider the integral [, , x* do that was discussed in Example 6-1-4.

Using integration by parts, bearing in mind that ¥* has no points of
discontinuity, we have

f 2 dlot + f 0 d(¥) = ([0, 3))
[0,3) [0,3)

Thus,

= (Pa)(37) — (FPa)(07)
= 9a(37) — 0 = 9(5) = 45.

f X do = 45 —/ ad(x?)
[0,3) [0,3)

=45 — f ad(x¥*) by Theorem 6.1.3
0.3)

as before.

= 45 — f «(2x) dx by Theorem 6.1.7
0.3

3
=45 — f 2xa dx by Theorem 6.1.3 (a Riemann integral)
0

=45 —

= 45 —

=45 —

2 3
fZX(x2—2x+2)dx+f 2x(x+2)dx]
| J1 2

EA 2 2 3
ANy ) I W
..2 3 1 3 2

5_32 g (L_4.,
MR 2 3

[rorre-(5+9)
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Exercises 6-2:

1. Use integration by parts to evaluate the integrals in Example 6-1-1
and Exercises 6-1, No. 2(b)(i).

2. (a) Investigate what happens when integration by parts is tried
as a method for evaluating the integral in Example 6-1-2.
Which hypothesis of Theorem 6.2.2 does not hold in this
case?

(b) Use integration by parts to evaluate f[o,oo) e *da, where
a is as defined in Example 6-1-2. Check your answer by

evaluating the integral directly.

6.3 Integration and Differentiation

We now examine some connections between differentiation and in-
tegration. Here we restrict ourselves to the Lebesgue rather than the
Lebesgue-Stieltjes integral; that is to say, integration is with respect
to x throughout.

For the first theorem, we need some notation. Let I be any in-
terval with endpoints a,b and let t be any real number such that
a < t < b. We denote by I, J; the intervals defined by I; = {x : x €
ILx <t}, J; ={x:xelt <x} (cf. Figure 6.8).

Theorem 6.3.1 (Fundamental Theorem of Calculus)

@ Iff : I — R is integrable over I, then both F(t) = [, f dx and
G(t) = f/.' f dx are absolutely continuous on I and differentiable
a.e.on I, and F'(t) = f(t), G'(t) = —f(t) a.e. on I. If, in addition,
f is continuous on I, then ‘a.e’ can be replaced by ‘everywhere” in
the preceding statement.
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(t) If F : I — R is absolutely continuous on I, then it is differentiable
a.e. on I, F' is integrable over I, and F(t) = [, F'dx + C for all
t € I, where C is constant on I.

Example 6-3-1:
The ervor function erf(t) is defined as an ordinary Riemann integral

2 t 2
erf(t) = ﬁ ; € dx

for allt > 0. It is important in statistics (in connection with the nor-
mal distributipn), and it also arises in the context of certain partial
differential equations connected with heat flow. The complementary
ervor function erfc(t) is defined by

2 o0 _2
erfc (t) = ﬁ € ax
t

for all t > 0. It follows at once from Theorem 6.3.1(a) that for all
t>0,

d 2 d 2 _
a—;[erf(t)] = ﬁe and a—;[erfc(t)] = —ﬁe e,

Example 6-3-2:
Let o : R — R be a probability distribution function. If there exists
a function f : R — R such that f > 0 on R and a(t) = [_, 4f &
for allt € R, then f is call a density of . From Theorem 6.3.1, we
know that this happens if and only if « is absolutely continuous, and
that in this case & = f a.e. on R. Clearly, discrete distributions, as
defined in Section 4-2, do not have densities, since their distribution
functions are discontinuous.
If the functions f and g are both densities of ¢, then f = g a.e., so
in this sense we can say that the density of «, if it exists, is unique.
As an example, take the case of the uniform distribution defined
in Example 4-2-1:

0, ifx <A,
a(x) =1 =%, ifA<x<B,
1, ifx > B

(Figure 6.9). Here we can take the density f of « to be the derivative
of @ where it exists (which is everwhere except at A and B), and
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define f (arbitrarily) to be zero at A and B, giving

0, ifx < Aorx>B,
f(x)—{ L ifA<x<B

B—A’
(Figure 6.10).
The previous theorem dealt with differentiation of an integral

that has a variable interval of integration. It is also important to be
able to differentiate functions of the form ’

g(t) = /I £, %) d,

where the variable t appears in the integrand, not in the interval of
integration. It is natural to ask whether we can find g'(t) by inter-
changing the order of the differentiation and integration operations.
Thus

o _[2
¢ =5 [fena|= [Zrenn
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where in the right-hand integral, x is held constant while differenti-
ation is carried out with respect to t. Simple examples suggest that
this is correct. Consider, for example,

x=1

! 1
gt) = / sin(2t + 3x) dx = [—— cos(2t + Bx)]
0 3

x=0

1 1
=-3 cos(2t + 3) + 3 cos 2t.

By direct differentiation, g'(t) =  sin(2t +3) — £ sin 2¢. On the other
hand, s

15 1
/ % sin(2t + 3x) dx = / 2 cos(2t + 3x)dx
0 0

x=1

—_— 2 3
= [§ sin(2t + 3x)]

x=0

2 2
=3 sin(2t + 3) — 3 sin 2t,
=g'(t)

as expected. The general theorem, which tells us that this process,
called “differentiation under the integral? is legitimate, is as follows:

Theorem 6.3.2 (Differentiation Under the Integral)
Let I and ] be any intervals. Let the real-valued function f(t, x) be such
that
() f(t,x)is defined for allt € ], x € I;
(i) f(t, x) is integrable with respect to x over I;
(iii) For eacht €], f(t, %) exists a.e. on I,
(iv) For each closed subinterval J* C ], there exists a function A : I —
R such that 1 is integrable over I, and |2f(t,%)| < A(x) for all
xelandte]J*
Then for each t € ], 3/0tf (t, X) is integrable with respect to x over I, and

d 0
2| [rona| = [Zrena

Example 6-3-3:
Consider the function g(t) = f; In(1 +tcosx)dx, where —1 < t < 1.
Note that since | cosx| < 1 for all x, we have that [tcosx| < [t| < 1
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for allt € (—1,1). Thus 1 +tcosx > O for all x and all t € (—1,1),
and so both In(1 + t cosx) and

COS X
1+tcosx

are continuous for all x and all t € (-1, 1).

Take any closed subinterval [a,b] € (—1,1), and let k =
max{|al, |b|}. We have that for all xand all t € [a, D], [tcosx| <k < 1,
and so

a1n 1+t =
" ( COSX) =

[14+tcosx|>1—|tcosx|>1—k > 0.

Thus

1
<
—1—-k

for all x and all t € [a, b]. Hence all the conditions of Theorem 6.3.2
are satisfied in this case, where f(t,x) = In(1 + tcosx), I = [0, n],
J = (-1,1), and A(x) = 1/(1 — k) for each J* = [a,b] € ]. By
Theorem 6.3.2 we have therefore

4 a 4
g = f — In(1 + tcosx) dx = f
o Ot 0

for all t € (—1, 1). Note first that

CcCoSsXx
1+tcosx

COS X
1+tcosx

b4
g'(0) = f cosxdx = [sinx]; = 0.
0

If t € (—1,1) is not zero, then
T1(1+4+tcosx—1
o= ["3(5 ) &
0 +tcosx
1 " 1 ‘
[ (et
t Jo 1+4+tcosx

1 2 ta (1—1) tan(x/Z))]"=”>
—?(Jr—li——————,____l_tzarc n( ,____l_tz - .

(The final equality is not obvious, but it can be verified using any
reasonably comprehensive table of integrals.) Now, as x — n~,
tan(x/2) — o0, and so

(1 —t)tan(x/2) = oo

V1 —t2
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asx — m, and thus

NS

arctan ((1 —t)tan(x/ 2)) N

A1 — 12

asx — ™. Also, arctan(0) = 0, and so

, _1 b4
¢0=3 (- 7)

fort #0,t € (—1,1). Thus we have finally

o~ | F1—7=), ifte(-1,Dandt 0,
g(x)= .
0, ift =0.

107

Sinceg(0) = f; (In1)dx = f; 0dx = 0, we have thatforallt € (—1,1)

2(0) = g(t) — 2(0) = fo ¢/ () d

by the fundamental theorem of calculus; thus,

a4 1
g(f)=‘/0 ;(1— f-————l_xz) dax

Now (using a table of integrals) we have that

1 1 14+ 4/1—x2
/(--—————)dx:lnlxl+ln T “l+c
X x4/1—x2 X
1 2
—In X(1++/1—x%) e
p%
=1n(1+\/1—x2>+c

(note that 1 + +/1 — x2 > 0 for |x| < 1). Hence,

g(0) = n[In(1 + VI =), =7 (In(1 + V1 - ) —In 2),

and so finally

4 1+4/1—1¢2
/ 1n(1+tcosx)dx=7rln( L 5 )
0

for—1 <t < 1.
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In the most general case, a function defined by an integral may
have the variable appearing both in the limits of integration and in
the integrand, for example

gt) = ft ’ e dx.

Such a function can be differentiated by using a combination of
the fundamental theorem of calculus and differentiation under the
integral.

Consider an integral of the form

gt)= [ fw®x)d,
I(5)
where I(1) is the closed interval [u(t), v(t)]. Here we assume that for
some interval Iy, u,v,w : Iy — R are differentiable functions of ¢
such that for some interval I; we have w(t) € I for all t € Io. We
assume also that for each t € I, f(w, x) satisfies the conditions of
Theorem 6.3.2 forw € I; andx € I(t). Let h(u, v, w) = f[u’v]f(w, x) dx.

Then g(t) = h(u(t), v(t), w(t)), so by the chain rule

8hdu+ 8hdv+ oh dw
oudt odvdt ow dt

d d d
= —f(w, u)é;—‘ + f(w, U)El—t) + (‘/[uv] a—f(w x)dx) dL:

g =

where the fundamental theorem of calculus has been used to find
oh/0du and oh/dv, and differentiation under the integral to find 9h/dw.
In particular, if we take w(t) =t for t € Iy, then dw/dt = 1, and we
obtain the following result, often referred to as Leibniz’s rule:

d du dv
gl [, [0a]=~feuF 16y

+ f —-f(t x) dx. (6.1)
pue) () Ot

If f happens to be independent of ¢, then we obtain the important

special case

d au dav ,
EE [ —/[u(t),v(t)] f(X) dx] - _f(u(t))-gt. + f(v(t))E . (6.2)
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Comnsider the function g(t) = fttz ¢*dx for t > 1. Here I = [1, 00),
and since w(t) =t, we have also I} =[1, 00). Take any t > 1, and let
[a, b] be any subinterval of [1, 00). Then

9
ow

= Xewx < Xebx

for all w € [a,b] and x € [t,t%], so we can apply Leibniz’s rule to
obtain

2
— — t(t) t(thy 4
g =—e 7 —() te dt(t)+/ xe™ dx

) t2 et
= —¢ +2te +{ t - / ——dx} integrating by parts
tx
tZ
—e +2te" +{ tz] }
et
= —¢' +2te + te —e — ?2——?2—
— 3t — 2¢
= 3te tz )

In this particular case we can check by evaluating g(t) directly:

g(t) = [?—]tz = % (69 _ e#) ;

t

thus,

g = (St Ztet2> - ;15 (er" _ 6tz>

1
— 3te’’ — 2" — 5 (et3 — et2> ,

as before.

Example 6-3-4:
Consider the differential equation

d*y

@ &
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with initial conditions y(0) = ¢;, ¥(0) = c¢,. Assume that g is
continuous on the interval [0, 00). For all t > 0, define

Yy@) =c +ct + /o (t — x)g(x)dx.

Clearly, y(0) = ¢;. The function f(w,%) = (W — X)g(¥) certainly
satisties conditions (i) and (ii) of Theorem 6.3.2, for w € [0, o0) and
x €[0,t] (t = 0). Further, for each t € [0, 00) we have that

8 [
7 w0 = gl

(independent of w) is continuous and therefore integrable over [0, t].
It follows by Leibniz’s rule that

ym=@+a—%m+ﬂg®w

=y +/(; g(x)dx.

Thus y'(0) = c; also, we have by the fundamental theorem of
calculus that

y'(t) =g,

and so the function y(t) defined above is the solution of the given
initial value problem.

As a final comment on the relationship between the integral and
the derivative, we point out a serious gap in the Lebesgue theory.
Recall that an antiderivative (sometimes called an indefinite inte-
gral) of a function f is a function F such that F’ = f. It turns out that
there exist functions that are “integrable” in the sense of having an
antiderivative at all points of a certain interval but are not Lebesgue
integrable on that interval. An example of such a function is given
in Section 10.1, where we revisit this matter.

Exercises 6-3:

1. Use LHospital’s rule to find
f(t
(a) lim ert(t)

t—>0+ t

and (b) t1_1>r£10 t erfc(t).
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. By writing erf(¥) as 1 x erf(x) and integrating by parts, show that

t 1 L
/o erf(X)dx =t erf(t) — 7..;(1 —e ).

. Use a table of integrals to show that

r 1 T
/ _‘-————dxz
o t—cCosx 2 -1

for all t > 1. By differentiating both sides of this equation with
respect to t, evaluate

d 1
[
o (t—cosx)?

. Giventhatg(t) = |, ; sin(x—t) dx, find g’(t) by using Leibniz’s rule.
Check by evaluating g(t) directly and then differentiating.
. Find g/(t) if

e = | " Leine

where t > 1.
. Assuming that g is continuous on the interval [0, 00), show that
the function

yit) = %cz sin(kt) + ¢; cos(kt) + % / t g(¥)sin {k(t — x)} dx,
0

for t > 0, satisfies the differential equation

Ay
T Ky =g(t),

where k > 0, together with the initial conditions y(0) = ¢,

¥ (0) = ca.

. Assuming that g is continuous on the interval [0, 00), show that

the function
1 t
v =5 [ e
n! Jo

satisfies the differential equation
n-+1
Yy _
am+l ()

together with the initial conditions
y(0) =0, yD©0) =0,...,y"™0)=0.




~ Double and
~ Repeated
cusrree INtegrals

Lebesgue-Stieltjes integrals of functions of more than one variable
canbe defined using the same approach as was used in Section 4.5 for
functions of one variable. For the sake of simplicity we will discuss
only functions of two variables. The process for functions of more
than two variables is completely analogous.

7.1 Measure of a Rectangle

We define a rectangle tobe a set of the form I; xI, € R?, where I; and
L, are intervals. For monotone increasing functions a;,a; : R - R
we define the o; X ay-measure of I; x I;, denoted by ey xay (11 X I2),
by

/'Lalxaz(Il X IZ) = U, (Il) X /'Laz(IZ)‘

For example, if @; and o, are the functions defined in Exercises 4-1,
problems 1 and 2, respectively, then

Ho((0,1)=1—¢!, pe,(0,1)=3—-¢",
1y ((0,1)) = 0, Moy ([0, 1)) = 1,

113
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and therefore

u‘a’l XG’Z((O’ 1) X (0! 1)) = Or u‘a’lxa’z((or 1) X [Or 1)) = 1 - e—lr
My xay([0,1) X [0,1)) =3 — ¢,

7.2 Simple Sets and Simple Functions
in Two Dimensions

A simple set in R? is a subset of R? that can be expressed as the union
of a finite collection of disjoint rectangles. Just as for simple sets in
R, we can define the measure of a simple set in R2. If oy, a5 : R > R
are monotone increasing functions and S is a simple set of the form

m

S= U(Iu X I2),
j=1
where Iy X Ipy, iz X Iog,...,im X Im are pairwise disjoint
rectangles, then the «; X ay-measure of S is defined by

m
Moy xaz(S) = Zﬂal xaz(Il,j X IZ,j)-
j=1
The properties of simple sets in R? and their measures are the same
as those described in Section 5-3 for simple sets in R.

We can now define simple functions of two variables by analogy
with step functions of one variable (see Sections 2-5 and 4-4). We
could continue to use the term “step functions,” but customary usage
restricts this term to functions of one variable. )

A function 6 : R> — R is a simple function if there is a simple
set

n
§= U(Il.j X Iz;)
=1
and a list (¢1, ¢z, - . -, Cn) Of finite, nonzero real numbers such that

G, if(x,y) € Il,j X IZJ', (j= 1,2,...,n),

0%, y) =
0, if(x,y)eR*-S.
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The set S is called the support of 6. The properties of step functions
given in Section 2-5 carry over without difficulty to simple functions.
If a1, 3 : R — R are monotone increasing functions, we define the

generalized “volume” Ay, xq,(0) in a way exactly analogous to the
definition of A,(6) in Section 4-4.

7.3 The Lebesgue-Stieltjes Double
Inteégral

Let S be a subset of R? and let f : S — R be a function. We extend
the definition of f to R? by defining f(x,y) to be zero if (x,y) €
R? — 8. Let @1, a; : R = R be monotone increasing functions. The
Lebesgue-Stieltjes double integral of f, denoted by

/RZ/fd(al X of2),

is defined by a process that is almost word-for-word the same as
that used for the single-variable integral in Section 4-5. The only
change is that a-summable step functions on I are replaced by oy X -
summable simple functions on R2. All the elementary properties
analogous to those proved in Sections 5-1 and 5-2 carry over and
are proved in the same way, and the same goes for the convergence
theorems of Section 5-3 and the definitions of measurable functions
and measurable sets given in Section 5-4.

In practice, the evaluation of double integrals is invariably done,
as in elementary calculus, by converting them to repeated integrals.

7.4 Repeated Integrals and Fubini’s
Theorem
Let f : R? — R be a function. For any y € R we define the single-

variable function f(-,y) : x = f(¥,y), and for any x € R we likewise
define the function f(x,-) : y = f(x,y). Let 1,2 be monotone
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increasing functions. If for eachy € R, fR f(:,y) da; exists, then this
defines a function f; : y = [, f(-,y)de;. If Jg f2 det; exists, we call
this a repeated integral of f and write it as [ fi f doy da. If for
each x € R, [;f(, -)da, exists, we define i : x = [ f(%,-)de,
and if [ fi da; exists, it gives us the repeated integral of f with the
opposite order of integration, written f; fp f dorz dery. In most cases
calculation shows that [ [ f don doy and Jg Jg f oz doy have the
same value, but this is not always the case. Consider, for example,
the improper Riemann repeated integrals

/ ./o (X+y)3dXdy and ././o (x+y)3 Ay

We have

/o1 /o1 (?::y)3

2y
((x+y)2 (x+y)3) xdy

- [ 2
/[ x+y) (xfy)Z]— W
- (-

1 1
+-—=)dy
1+y (1+y)2 Y y)

./o (1 +y)2 Y

(v~
However,

1 p1
y—x . .
dydx = / / dx dy (interchanging x and
// (x+y)3 0o Jo x+y)° ( SHETe 2
1,1, _
= — / / X Y 3 dXdy
0o Jo (x+Y)
1
=2
and so the two repeated integrals have different values.
It turns out, though we shall not prove it, that this cannot hap-

pen if either repeated integral is absolutely convergent. We can
easily verify that this condition does not hold in our example. We
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0 1

FIGURE 7.1

investigate

/ / Plr-ul

o (x+ y)3
by splitting the region of integration into two parts, one wherey < x
and one where y > x (cf. Figure 7.1). Then,

o k—yl .
./o./o (x+y)3 //(+y)3 y+/ ./o (X+y)3
—_— -_ dx
./o {/y ((X+y)2 (X+y)3)
Y 1 2y
_ _ d
/0 ((X+y)2 (X+y)3) dx} Y
3 1 1 y x=1
~./o {[ x+y+(X+y)2]x=y
l: x+y+(x+y)2]x=0 dy
[
Do l+y  Q+y)? 2
RER e T
4y 2y 4y Y Yy Y

_ 1 1 1 P
_/o (_(1+y)2+§§) Y
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yA y=x
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FIGURE 7.2

and so this integral (and likewise fol fol % dydx) does not
converge.

The fundamental theorem that relates double and repeated in-
tegrals using the absolute convergence condition is called Fubini’s
theorem:

Theorem 7.4.1 (Fubini's Theorem)
If ay, a3 : R — R are monotone increasing functions and f : R? - Ris
oy X ap-measurable, then the existence of any one of the integrals

/R/ Flaen x o) /R /R [f| der deez, /R /R [f | dexz da,

implies the existence and equality of the integrals

/RZ/fd(alxaz), ./R./Rfdaldaz’ /R/Rfdazdal.

In practice, the functions that arise are almost always measurable,
so Fubini’s theorem justifies the use of repeated integrals to evaluate
double integrals, provided that one of the repeated integrals is abso-

lutely convergent. The details can be very messy, so we will confine

ourselves to one example.

Example 7-4-1:
Let S = {(x,y) : 0 < x <2, 0 <y < x} (see Figure 7.2) and let
f : R? > R be defined by

14y, if(xy) €S,
f("’y)_{ 0, if (%,y) € R2 — &.
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Let ; and «; be the functions defined in Exercises 4-1, problems
1 and 2, respectively. We will evaluate [, [fd(a; x ;) by evalu-
ating the repeated integral f; fi f doy daz, and check by evaluating
Jg Jg f ez da;. Since the integrand is nonnegative, our procedure

will be justified (by Fubini's theorem) if one of the repeated integrals
exists.

Evaluation of [ fg f de day:

We have that ’

1+xy, f0<y=<x=<2,
G =

0, otherwise;

hence,

W) = /R £ ) dan
([ fyn( ) den, if0<y<2,

il

0, otherwise

1(1(0Y) =1 (0 ) + fy 143 —e ) dx, ify =0,
= | fy2(1 +xy) £(3 — ) dx, if0 <y <2,

0, otherwise

2+ [Ze*dx, ify =0,
— fyz(l +xy)e*dx, if0<y=<2,

0, otherwise
3 - 6_2, ify = Or

={ —e?-3ye?+e¥+yle¥+ye?, if0<y=<2,

| 0, otherwise.
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Therefore,

fdoyday = | £ de,
R JR R

= (3 — € ) (@2(0") — 22(07))
/(62— +6y+yey+y6y) (1)dy
+(—4e% 4+ 3¢ (@ (11) — a(17))
/(62— +ey+yey+yey) (4)dy

+ 0(2(2™) — @2(27))
=B —eH) + (472 + 3¢ H(3)
=349 ! —-13¢72

Evaluation of [, [ f dory day:
We have that

14+xy, if0<y<x<2

0, otherwise;

fx )W) = [

hence,

A = /R £(x, ) der

— JoyQ +x)doz, f0<x<2,
0, otherwise
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[ 1(@2(07) ~ (07 + fF + WEDdy, ifo<x<1,
1(@2(07) — a2 (07) + fy U + ) E (D) dy
+ (1 +0(@0) -0+ [ +x)E @) dy,

ifl <x< 2,
1(@2(0%) — ea(07) + f; (1 +x) (D) dy
+ (1 + 9217 -2+ A+ E@) dy
+(1+ Zx)(a2(2+) —a2(27)), ifx=2,

L 0, otherwise

[ 1, ifo<x<1,

44 3x, ifl <x< 2,

{l

6+7x, ifx=2,

| O, otherwise.
Therefore,
[ [ £ dazday = [ fi
R JR R
|
= 1(1(01) — a1 (07)) + / 1—(3 — e ¥)dx
o adx
2 d
—(@B8—e)dx
+‘/1 (4+3x)dx( e™)

1 2
= 2+/ e"‘dx+/ (4 4 3x)e™™ dx
0 1
=2+ [—e"‘]é + [—4e™* — 3xe™* — 36""]?

=3+96_1—136_2=//fda1da2.
RJR
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Exercise 7-4:
LetS ={(%y):0<x<2 0<y<2-—x}andletf: R2 - Rbe
defined by
_J €siny, if(x,y) €S,
f(x’y)_{ 0, if (%, y) € R? — S.
Let ; and a3 be the functions defined in Exercises 4-1, problems 1
and 2, respectively. Verify that

/R/RfdaldaF/R/Rfdazdal.




The Lebesgue
~ Spaces I

CHAPTER

There are many mathematical problems for which the solution is a
function of some kind, and it is often both possible and convenient
to specify in advance the set of functions within which the solution
is to be sought. For example, the solution to a first-order differential
equation mightbe specified as being differentiable on the whole real
line. The set of functions differentiable on the whole real line has
the useful property that sums and constant multiples of functions
in the set are also in the set. In fact, this set of functions has the
structure of a vector space, where the “vectors” are functions.

Beyond the algebraic properties associated with vector spaces,
many problems are solved by use of series or sequences of functions,
and it is desirable that any “limits” also be in the set. Some of the most
useful sets of functions have this property. We have seen in Section
3-3 that the limit of a sequence of Riemann integrable functions does
not necessarily yield a Riemann integrable function, and this signals
that the sets defined using the Riemann integral may not be suitable
for many applications. In contrast, sets defined using the Lebesgue
integral have the desirable “limit properties.

There are a number of sets of functions that are vector spaces
that are of importance in subjects such as differential and integral
equations, real and complex function theory, and probability theory,

123
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along with the fields of applied mathematics where these subjects
play a significant role. Some of the most important of these function
sets make use of the Lebesgue integral in their definitions, and so it
is appropriate to discuss them here.

In this chapter we aim to give the reader an overview of some of
these function sets. We neither go into all the technical details nor
attempt a comprehensive survey. References are given where more
detail can be found if desired. |

8.1 Normed Spaces

The reader has probably encountered the concept of a finite-
dimensional vector space. These spaces are modeled after the set
of vectors in R". Vector spaces, however, can be defined more gen-
erally and need not be finite-dimensional. Indeed, most the vector
spaces of interest in analysis are not finite-dimensional. Recall that
a vector space is a nonempty set X equipped with the operations of
addition ‘4’ and scalar multiplication. For any elements f,g, h in X
and any scalars «, § these operations have the following properties:

@O ft+teeX;
(i) f+e=g+f;
) f+E+mN=>F+)+h
(iv) thereisaunique element 0 (called zero)in X suchthat f+0 =

fforall f € X;

(v) for each element f € X there is a unique element (—f) € X
such that f + (—f) = 0; .

(vi) of € X;

(vil) a(f +g) = of +ag;
(viil) («+ B)f = of + Bf;
(x) (@B)f = a(Bf);
® 1-f=f.
For our purposes, the scalars will be either real or complex numbers.

We shall use the term complex vector space if the scalars are complex
numbers when there is some danger of confusion.
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Example 8-1-1:
The set of vectors {(x1,x2,...,%,) :xx € R,k =1,2,...,n}is denoted

by R™. Let x = (x1,%;,...,%,) and y = (y1,Ya, . .., Yn) be vectors in
R". If addition is defined by

X+y=® +ty,x2+tY2 ..., %+ Yn)
and scalar multiplication by
ax = (axy,0xy, ..., 0xy,)

for any o € R,.then R" is a vector space.

Similarly, the set C" = {(z1,23,...,20) : zx € C,k=1,2,...,n} of
complex vectors is a complex vector space when addition is defined
by

z+w= (21 tw,z2twy,..., 2, +wy)
for any vectors z = (21,23, ..., 2,), W = (W1, Wy, ..., Wy), and scalar
multiplication by
ax = (axy, axy, ..., 0Xy),

where o € C. The vector spaces R" and C" are essentially the
prototypes for more abstract vector spaces.

Example 8-1-2:

Let C[a, b] denote the set of all functions f : [a,b] — R that are
continuous on the interval [a, b]. If for any f, g € C[a, b], addition is
defined by

F+2)x) =f(x) +8x),
and scalar multiplication by
(af )(x) = of (%)
for ¢ € R, then it is not difficult to see that C[a, b] is a vector space.
Example 8-1-3:
Let €' denote the set of sequences {a,} in R such that the series

> 1 lan| is convergent, and define addition so that for any two
elements A = {a,}, B = {b,},

A+B:{an+bn},
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and scalar multiplication so that
aA = {aa,}.
Then ¢! is also a vector space.

The above examples show that the elements in different vector
spaces can be very different in nature. More importantly, however,
there is a significant difference between a vector space such as R"
and one such as C[a, b] having to do with “dimension.” The space R"
has a basis: Any set of n linearly independent vectors in R" such
ase; = (1,0,...,0),e; = (0,1,...,0)...,e, = (0,0,...,1) forms a
basis. The concept of dimension is tied to the number of elements
in a basis for spaces such as R"”, but what would be a basis for a
space like C[a, b]? In order to make some progress on this question
we need first to define what is meant by a linearly independent set
when the set itself might contain an infinite number of elements.
We say that a set is linearly independent if every finite subset is
linearly independent; otherwise, it is called linearly dependent.
If there exists a positive integer n such that a vector space X has n
linearly independent vectors but any set of n + 1 vectors is linearly
dependent, then X is called finite-dimensional. If no such integer
exists, then X is called infinite-dimensional. We will return to the
question of bases for certain infinite-dimensional vector spaces in
Chapter 9.

A subspace of a vector space X is a subset of X that is itself
a vector space under the same operations of addition and scalar
multiplication. For example, the set of functions f : [a, b] = R such
that f is differentiable on [a, D] is a subspace of C[a, b]. Given any
vectors x1, X2, ..., X, in a vector space X, a subspace can always be
formed by generating all the linear combinations involving the x,
i.e., all the vectors of the form aix; + azx; + - - - + anx,, where the
ay's are scalars. Given any finite set S C X the subspace of X formed
in this manner is called the span of S and denoted by [S]. If S C X
has an infinite number of elements, then the span of § is defined to
be the set of all finite linear combinations of elements of S.

Vector spaces of functions such as C[a, D] are often referred
to simply as function spaces. After the next section we shall be
concerned almost exclusively with function spaces, and to avoid rep-
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etition we shall agree here that for any function space the operations
of addition and scalar multiplication will be defined pointwise as was
done for the space C[a, b] in Example 8-1-2.

Vector spaces are purely algebraic objects, and in order to do
any analysis we need to further specialize. In particular, basic con-
cepts such as convergence require some means of measuring the
“distance” between objects in the vector space. This leads us to the
concept of a norm. A norm on a vector space X is a real-valued func-
tion on X whose value at f € X is denoted by ||f|| and that has the
following properties:

@ lIfll = o
(i) |If|l = 0if and only if f = 0;
(iii) llaf |l = lellfll;

(iv) If +gll = lIfll + ligll (the triangle inequality).

Here, f and g are arbitrary elements in X, and « is any scalar. A
vector space X equipped with a norm || - || is called a normed vector
space.

Example 8-1-4:
For any x € R" let || - ||, be defined by

x|l = {(X% + (xz)z 4+ 4 (Xn)z}l/z,

Then || - ||, is a norm on R". This function is called the Euclidean
norm on R". Another norm on R" is given by

Ixllr = x| + |22l + - - - + [%0].

Example 8-1-5:
The function | - ||« given by

Ifllec = sup If(X)I

x€[a,b)

is well-defined for any f € C[a, b}, and it can be shown that || - ||« is
a norm for C[a, b]. Alternatively, since any function f in this vector
space is continuous, the function |f| is Riemann integrable, and thus
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the function || - ||z given by

b
Iflx = / £ o)l dx

is well-defined on CJ[a, b]. It is left as an exercise to show that || - ||z
is a norm on C[a, b].

The above examples indicate that a given vector space may have
several norms leading to different normed vector spaces. For this
reason, the notation (X, || - ||) is often used to denote the vector space
X equipped with the norm || - ||

Once a vector space is equipped with a norm || - ||, a generalized
distance function (called the metric induced by the norm || - ||) can
be readily defined. The distance d(f, g) of an element f € X from
another element g € X is defined to be .

d(f,e) = If —gl.

The distance function for the normed vector space (R”, || - ||¢) cor-
responds to the ordinary notion of Euclidean distance. The distance
function for the normed vector space (C[a, b, || - |lco) measures the
maximum vertical separation of the graph of f from the graph of g
(Figure 8.1).

Convergence can be defined for sequences in a normed vector
space in a manner that mimics the familiar definition in real anal-




8.1. Normed Spaces 129

ysis. Let (X, || - ) be a normed vector space and let {f,} denote an
infinite sequence in X. The sequence {f,} is said to converge in the
norm if there exists an f € X such that for every € > 0 an integer N
can be found with the property that ||f, — f|| < € whenevern > N.
The element f is called the limit of the sequence {f;,}, and the re-
lationship is denoted by lim,,_, « f, = f or simply f,, — f. Note that
convergence depends on the choice of norm: A sequence may con-
verge in one norm and diverge in another. Note also that the limit f
must also be an element in X.

In a similar spirit, we can define Cauchy sequences for a normed
vector space. A sequence {f,} in X is a Cauchy sequence (in the
norm || - ||) if for any € > 0 there is an integer N such that

fm = full < €

whenever m > N and n > N. Cauchy sequences play a vital role
in the theory of normed vector spaces. As with convergence, a se-
quence {f,} in X may be a Cauchy sequence for one choice of norm
but not a Cauchy sequence for another choice.

It may be possible to define any number of norms on a given
vector space X. Two different norms, however, may yield exactly the
same results concerning convergence and Cauchy sequences. Two
norms | - | and || - || on a vector space X are said to be equivalent
if there exists positive numbers & and § such that for all f € X,

a|flla = Iflle < BlIf lla-

If the norms || - ||z and || - ||, are equivalent, then it is straightforward
to show that convergence in one norm implies convergence in the
other, and that the set of Cauchy sequences in (X, | - ||4) is the same
as the set of Cauchy sequences in (X, || - ||). Equivalent norms lead
to the same analytical results.

Identifying norms as equivalent can be an involved process. In
finite-dimensional vector spaces, however, the situation is simple:
All norms defined on a finite-dimensional vector space are equiva-
lent. Thus the two norms defined in Example 8-1-4 are equivalent.
The situation is different for infinite-dimensional spaces. For exam-
ple, the norms |||z and || - || defined on the space C[a, b]in Example
8-1-5 are not equivalent. We elucidate further this comment in the
next section, when we discuss completeness.
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Exercises 8-1:

1. Let Q denote the set of rational numbers. Show that Q is a vector
space, provided that the scalar field is the rational numbers.

2. (a) Prove that the function | - || defined on C[a, b] in Example
8-1-5 satisfies the conditions of a norm.

(b) Suppose that the set C[a,b] is extended to R[a, b], the set
of all functions f : [a,b] = R such that |f| is Riemann
integrable. Show that || - ||z is not a norm on R[a, b).

3. Let C"[a, b] denote the set of functions f : [a, b] — R with at least
n continuous derivatives on [a, b]. Show that the functions | - |1
and | - ||l1,1 defined by

Ifll1,c0 = sup If(x)| + sup If'(*),

x€[a,b) x€la,b)

T ][ RUSEYACIES

are norms on the space C'[a, b].

4. The number /2 can be approximated by a sequence {a,} of ra-
tional numbers. Let S = {1, 2, ..., 9} and choose ay as the largest
element of Sy such that a2 < 2. Since 12 = 1 < 22 = 4, we
have ag = 1. Let 8§ = {1.1,1.2,...,1.9} and choose a; as the
largest element of §; such that a? < 2. Thus, a; = 1.4. Let
Sy = {1.41,1.42,...,1.49} and choose a; as the largest element
in 8, such that a2 < 2. This gives a; = 1.41. Following this pro-
cedure for the general n show that the resulting sequence {a,}
must be a Cauchy sequence.

5. Suppose that || - || and || - ||; are equivalent norms for the vector
space X. Prove that the condition

alflla = Iflle < Bllf lla,

where a and B are positive numbers, implies that there exist
positive numbers y and § such that

YIflls < Iflla < 8lIf llo-
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8.2 Banach Spaces

The definitions for convergence and Cauchy sequences for the
normed vector space (R”, | - ||.) correspond to the familiar defini-
tions given in real analysis. Various results such as the uniqueness
of the limit can be proved in general normed vector spaces by essen-
tially the same techniques used to prove analogous results in real

analysis. The space (R", || - ||), however, has a special property not
inherent in the definition of a normed vector space. It is well known
that a sequenge in (R, || - ||,) converges if and only if it is a Cauchy

sequence. This result does not extend to the general normed vector
space. Itis left as an exercise to show that every convergent sequence
in a normed vector space must be a Cauchy sequence. The converse
is not true. The following examples illustrate the problem for finite-
and infinite-dimensional spaces.

Example 8-2-1:

The set Q of rational numbers, equipped with the Euclidean norm
| - ||z restricted to the rational numbers, is a normed vector space,
provided that the scalar field is the rational numbers (Exercises 8-1,
No. 1). It is well known that the number +/2 is not a rational number.
The sequence {a,} defined in Exercises 8-1, No. 4, is a Cauchy se-
quence, which in the normed vector space (R, || - ||;) can be shown to
converge to the limit 4/2. This sequence is also a Cauchy sequence
in Q, but it cannot converge to an element in Q and is therefore not
convergent in Q.

Example 8-2-2:
Consider the normed vector space (C[—1, 1], || - | z) and the sequence
of functions {f,,} defined by

1, if—1 <x<0,
fn(x) =143 1—2", if0<x=<1/2",
0, if1/2" < x < 1.

The function f, is depicted in Figure 8.2, and it is clear that f, €
C[—1, 1] for all positive integers n.
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therefore, for any m > N,n > N, we have that

1 1

2m+1 2n+1

1
<~2—I-\T_'

”fm _fn”R =

Given any € > 0, any positive integer N such that N > —log,e¢
suffices to ensure that ||f,, — fullr < € whenevern > N and m > N.
The sequence is thus a Cauchy sequence.

It is clear geometrically that f, approaches the function f defined
by

1, if—-1<x<0,
f(x)_{ 0, ifo<x<l1.
Indeed, for any fixed xo € [—1,1] the sequence of real numbers
{fu(x0)} converges to f(xp) (in the || - || norm), i.e., {fy} is point-

wise convergent to f. The function f, however, cannot be a limit
in C[—1, 1] for {f,} because f &€ C[—1, 1].

Although the pointwise limit function f cannot be a limit in
C[-1, 1] for {f,}, this does not extinguish the possibility that there
is some other function g € C[—1,1] that is the limit. We will
show now that no such g exists. Suppose, for a contradiction, that
fn = g € C[—1,1]in the || - ||g norm. Then

1 1
- ] F () — 2()] dx = f 107G — FaG9) + (G — 2]
-1 -1
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1 1
< ]__ 160 — F e+ f_ ()~ g

1 1
=t | 1) =~ gl

The quantity Iy can be made arbitrarily small by choosing n suffi-
ciently large. By hypothesis f, — g in the || - |r norm, so that I, can
be made arbitrarily small for n large. Now, I < Ir + I, and I does
not depend on n. This implies that I = 0. Since g € C[—1,1] and
f is continuous on the intervals [—1, 0), (0, 1], the condition I = 0
implies that f = g for all x € [-1,0) and x € (0,1]. Therefore,
lim,_,o- g(x) = 1 and lim,_, o+ g(¥) = 0, so that lim,_,( g(x) does not
exist, contradicting the assumption that g is continuous on the inter-
val [—1,1]. The Cauchy sequence {f,} therefore does not converge
in the || - ||g norm.

Suppose that the space C[—1, 1] is equipped with the || - || o norm
defined in Example 8-1-5 instead of the || - | g norm. If {h,} is a Cauchy
sequence in the || - || norm, then {h,} converges pointwise to some
limit function h. The difference here is that because {h,} is a Cauchy
sequence in the || - || norm, it can be shown that {h,} in fact con-
verges uniformly to h, and a standard result in real analysis implies
that a uniformly convergent sequence of continuous functions con-
verges to a continuous function. In other words, the limit function
h must be in C[—1,1]. It is left as an exercise to verify that the se-
quence {f,} defined in this example is not a Cauchy sequence in the
|| - llc nOTM. "

A normed vector space is called complete if every Cauchy
sequence in the vector space converges. Complete normed vec-
tor spaces are called Banach spaces. In finite-dimensional vector
spaces, completeness in one norm implies completeness in any
norm, since all norms are equivalent. Thus, spaces such as (R", || -||¢)
and (R", || - |l7) are Banach épaces. On the other hand, Example 8-
2-1 shows that no norm on the vector space Q can be defined so
that the resulting space is a Banach space. For finite-dimensional
vector spaces, completeness depends entirely on the vectbr space;
for infinite-dimensional vector spaces Example 8-2-2 shows that
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completeness depends also on the choice of norm. The space
(C[—1,1], IIlloc) is @ Banach space, whereas, the space (C[—1, 1], |- Iz)
isnot. If the norms ||-||, and ||- ||, are equivalent, then the correspond-
ing normed vector spaces are either both Banach orboth incomplete,
since the set of Cauchy sequences is the same for each space and
convergence in one norm implies convergence in the other. The two
norms || - ||z and || - |lec on C[—1, 1] are evidently not equivalent.

Given a set § C X, if (X, || - ||) is a normed vector space, a new
subset S called the closure can be formed by requiring that f € 8 if
and only if there is a sequence {f,} of vectors in S (not necessarily
distinct) such that f, — f (in the norm || - |). If S = §, then S is
called a closed set. The subset S is called complete if every Cauchy
sequence in § converges to a vector in S. For Banach spaces the
concepts of completeness and closure are linked by the following
fundamental result:

Theorem 8.2.1

Let (X, || - ) be a Banach space and S € X. The set S is closed if and
only if S is complete.

In particular, if S is a subspace, then it forms a normed vector space
(S, II-) inits own right, and if it is closed, the above theorem indicates
that (S, ||-||) is a Banach space. This observation leads to the following
corollary:

Corollary 8.2.2 .
Let (X, || - ) be a Banach space and S € X. Then ([S], || - II) is also a

Banach space.

Exercises 8-2:

1. Let (X, || - ) be a normed vector space and suppose that {a,} is
a sequence in X that converges in the norm to some element
a € X. Prove that {a,} must be a Cauchy sequence.

2. Let {f,} be the sequence defined in Example 8-2-2. Prove that
{fn} is not a Cauchy sequence in the normed vector space

(C[=1,1], I - leo)-
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8.3 Completion of Spaces

If a normed vector space is not complete, it is possible to “expand”
the vector space and suitably redefine the norm so that the resulting
space is complete. In this section we discuss this process, and in the
next section we apply the result to get a Banach space with a norm
defined by the Lebesgue integral. Before we discuss the main result,
however, we need to introduce a few terms.

In functional analysis, a function T : X — Y that maps a normed
vector space X to a normed vector space Y is called an operator.

Example 8-3-1:

Let the set C![a, b] and the norm || - ll1,00 be as defined in Exercises
8-1, No. 3. Every function in C[a, b] has a continuous derivative. If T
is the operator corresponding to differentiation d/dx, then T maps
every element in C'[a, b] to a unique function continuous on the
interval [a, b]. Thus T maps C'[a, b] into C[a, b]. The definition of an
operator is not norm dependent, but for illustration, we can regard T
as mapping the space (C'[a, b], || - ll1,00) into the space (C[a, b], || - lleo)-

Much of functional analysis is concerned with the study of oper-
ators. For a general discussion the reader can consult [25]. Here, we
limit ourselves to a special type of operator that preserves norm. An
operator T from the normed vector space (X, || - ||x) into the normed
vector space (Y, || - |ly) is called an isometry if for all x;, x; € X

%1 = %2llx = ITx1 — TRz ly.

In essence, an isometry preserves the distance between points in
X when they are mapped to Y. An isometry must be one-to-one.
If there exists an isometry T : X — Y such that T is onto (so the
inverse T~} : Y — X exists), then the normed spaces (X, || - ||lx) and
(Y, |l - lly) are called isometric. If two spaces are isometric, then
completeness in one space implies completeness in the other.

Example 8-3-2:
The differentiation operator of Example 8-3-1 is clearly not an isom-
etry from (C![a, D], || - l,00) into the space (C[a, D], || - ll), since in
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general,
If —glli,00 = sup If(x) —g(x)| + sup If'(x) — g'(¥)|
x€[a,b] x€[a,b]
> sup |f'(x) &' = If — &'lloo-
x€[a,b]

Example 8-3-3:

Let H(D(c; 1)) denote the set of all functions holomorphic (analytic)
in the closed disk D(c;7) ={z € C: |z—c| < r}, v > 0. This set forms
a complex vector space, and the function | - || defined by

Iflle="sup If(2)l

z€D(c;r)

provides a norm for the space. In fact, it can be shown that
(HD(c; 1), Il - i) is a Banach space. Let Ty » be the operator mapping
H(D(a; 1)) to H(D(a — b; r)) defined by

Tynf = €°f(z — b),

where ¢ € R is a constant. The operator Ty} is a one-to-one and
onto mapping from (H(D(a; 1)), || - lla) to (HD(@ — b;7), I - lla=s),
and since

I Tsnf — Topglla—r = sup |€¥f(z —b) —e®g(z — b)|

zeD(a—b;r)

= sup |f(z—Db)—g(z-D)l
zeD(a—b;r)

= sup [f(2)—g@)l=If —¢glla,
zeD(a;r)

the operator is also an isometry. The two normed spaces are thus
isometric.

Given an incomplete normed vector space (X, ||- ||), it is natural to
enquire whether the space can be made complete by enlarging the
vector space and extending the definition of the norm to cope with
the new elements. The paradigm for this process is the completion
of the rational number system Q to form the real number system
R. This example has two features, which, loosely speaking, are as
follows:
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(i) the completion does not change the value of the norm where

it was originally defined, i.e., ||rll; = |r|l., for any rational
number r;

(ii) the set Q is dense in the set R (cf. Section 1-1).

The first feature is obviously desirable: We wish to preserve as much
as possible the original normed vector space, and any extended defi-
nition of the norm should not change the value of the norm at points
in the original space. The second feature expresses the fact that the
extension of the set Q to the set R is a “minimal” one: Every el-
ement added to Q is required for the completion. We could have
‘completed” QQ by including all the complex numbers to form the
complex plane C, which is complete, but this is overkill.

The completion of the rational numbers serves as a model for the
general completion process. Feature (i) can be framed for general
normed vector spaces in terms of isometries. In order to discuss
feature (ii) in a general context, however, we need to introduce a
general definition of density. Let (X, || - ||) be a normed vector space
and W C X. The set W is dense in X if every element of X is the
limit of some sequence in W. Density is an important property from
a practical viewpoint. If W is dense in X, then any element in X
can be approximated by a sequence in W to any degree of accuracy.
For example, the sequence {a,} of Example 8-2-1 consists purely of
rational numbers and can be used to approximate +/2 to within any
given (nonzero) error.

A fundamental result in the theory of normed vector spaces is
that any normed vector space can be completed. Specifically, we
have the following result:

Theorem 8.3.1
Given a normed vector space (X, | - |lx), there exists a Banach space
(Y, |- |v) containing a subspace (W, || - ||v) with the following properties:
Q) (W, | - Ily) is isometric with (X, || - Ix);
(i) WisdenseinY.
The space (Y, || - |y) is unique except for isometries. In other words if
(Y, - Ils) is also a Banach space with a subspace (W, || - II3) having
properties (i) and (ii), then (Y, || - |I3) is isometric with (Y, || - |v).
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The space (Y, || lly) is called the completion of the space (X, || - Ix).
The proof of this result would lead us too far astray from our main
subject, integration. We refer the reader to [25] for the details.

Exercises 8-3:

1. (a) Suppose that Z is dense in W, and W is dense in Y. Prove
that Z is dense in Y.

(b) Suppose that the completion of (X, ||-||x)is (Y, ||-|ly) and that
P is dense in X. Prove that (Y, || - ||y) is also the completion
of (P, || - llx)-

2. Let P[a, b] denote the set of polynomials on the interval [a, b], and
let Po[a, b] denote the set of polynomials on [a, b] with rational
coefficients. Prove that Pq[a, b] is dense in P[a, b].

3. Weierstrass's theorem asserts that any function in C[a,b] can
be approximated uniformly by a sequence of polynomials, i.e.,
P[a, b] is dense in C[a, b] with repect to the || - ||c norm. Use Ex-
ercises 8-3, No. 2, to deduce that any function in C[a, b] can be
approximated uniformly by a sequence in Pq|[a, b].

8.4 The Space L'

Having made our brief foray into functional analysis, we are now
ready to return to matters directly involved with integration. Ex-
ample 8-2-2 shows that the normed vector space (C[a, b], || - |Ir) is
not complete. We know, however, that this space can be completed,
but it is not clear exactly what kinds of functions are required to
complete it. In this regard, the norm itself can be used as a rough
guide. Clearly, a function f need not be in C[a, b] for the Riemann
integral of |f| to be defined. This observation suggests that perhaps
the appropriate vector space would be R[a, b], the set of all functions
f : [a, b] = Rsuch that |f|is Riemann integrable. This “expansion” of
C[a, b] to R[a, b] solves the immediate problem, since the sequence
{fn} in Example 8-2-2 would converge to a function f € R[a, b], but
it opens the floodgates to sequences such as that defined in Section
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3-3-1 that do not converge to functions in R[a, b]. Although || - || is
not a norm on R[a, b] (Exercises 8-2, No. 2(b)), this problem can be
overcome. Any hopes of using R[a, b] to complete the space, how-
ever, are dashed by Example 3-3-1, because this example indicates
that (R[a, b], || - l|r) is not complete.

Recall that Example 4-3-1 motivated us initially to seek a more
general integral to accommodate functions such as

) = { 1, ifx isrational, x # 0,1,
’ 0, ifxisirrational orx =0, 1.
Eventually, we arrived at the Lebesgue integral. The function f plays
a role in the completion of (R[a, b], || - llz) analogous to that played
by the number +/2 in the completion of (Q, || - |lz). The Lebesgue
integral essentially leads us to the appropriate space and isometry
for the completion of (R[a, D], || - |z) (and (C[a, D], || - IIr))-

Let Al[a, b] denote the space of all functions f : [a,b] — R that
are (Lebesgue) integrable on the interval [a, b) and let || - ||; be the
function defined by

Iflh = ][ el

The set Al[a, b] forms a vector space, but || - ||; is not a norm on it
because there are nonzero functions g in A'[a, b] such that |gll; =0,
ie., ifg = 0 a.e. then ||g||; = 0. Functions that fail to be norms solely
because they cannot satisfy this condition are called seminorms,
and the resulting spaces are called seminormed vector spaces.
Notions such as convergence and Cauchy sequences are defined for
seminormed vector spaces in the same way they are defined for
normed vector spaces.

The problem with the seminorm on A'[a, b] is not insurmount-
able. The essence of the problem is that ||g|| = [If|| whenever f =g
a.e. (Theorem 5.2.3 (iii)). The set A'[a,b], however, can be parti-
tioned into equivalence classes based on equality a.e. Let L[a, b]
denote the set of equivalence classes of A'[a,b]. An element F of
L'[a, b]is thus a set of functions suchthatiffi,f, € F,thenfi = f a.e.
Since any element f of F can be used to represent the equivalence
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class, we use the notation F = [f].! Addition is defined as

[f1+el=1[f +g]

and scalar multiplication as

off]= [of ]

The set L'[a, b] forms a vector space, and if || - ||; is defined by
= [ el
[a,D]

then (L'[a, b], || - 1) is a normed vector space.

The candidate for the completion of the space (C[a, b], | - ||r) (and
the space (R[a, b], || - ||r)) is the space (L'[a, D], || - Il1). In the nota-
tion of the previous section, we have X = C[a,b], | - llx = | - lIz,
Y = L'Ya,b], and | - ly = || - lh. Let W = {[f] € L'ab] :
[f] contains a function in C[a, b]}, and let T be the operator that
maps a function f € C[a,b] to the element [f] € W. Now, every
element of C[a, b] has a corresponding element in W, and no equiv-
alence class in W contains two distinct functions in C[a, b]; therefore,
T is a one-to-one, onto operator from C[a,b] to W. Moreover,
Theorem 4.6.1 implies that

ITF I = I[f]lh = f F @)l dx

[a,b]
b
= [ r@ia=1sis

so that T is an isometry. The space W is thus isometric with C[a, b].
To establish that (L'[a, b], || - |l1) is the completion of (C[a, D], || - ||) it
remains to show that W is dense in L![a, b] and that (L'[a, b], | - |l)
is a Banach space. We will not prove that W is dense in L![a, b]. The
reader is referred to [37] for this result. We will, however, sketch a
proof that (L'[a, b], || - |l1) is complete.

Theorem 8.4.1
The normed vector space (L*[a, b], || - |l1) is a Banach space.

!Although this is standard notation, there is some danger of confusion with the
notation used for the span that takes sets as arguments
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Proof We prove that the seminormed space (A'la, b}, || - ) is
complete. The completeness of (L'[a, D], | - |l1) then follows upon
identification of the functions with their equivalence classes in
L'[a, b]. Let {f,} be a Cauchy sequence in (A'[a, b], || - [l;). Given any
€ > 0 there is thus an integer N such that ||f, — f,,]| < € whenever

m > N andn > N. In particular, there is a subsequence {f;, } of {f,,}
with the property that

1
”fnk+1 _fnkul < EI’(‘

Let

m
gm = Z lfnk+1 _fnkl;
k=1

and let g = limy,—, o gn denote the pointwise limit function. Note
that g(x) need notbe finite for all x € [a, b]. Let [a, b] = I; UI;, where
I, denotes the set of all points such that g(x) < co. We will show that
I, must be a null set.

Now, g, € Al[a, b] and

mll1 = m dax N41 I
lgmlls f[ 6 sk\; f[ ESGES OIS

m
1
= k§ “fnk+1 _fnklll < E ,Ef <L
=1

k=1

The sequence {g,,} is a monotone sequence of functions in Al[a, b},
and the above inequalities indicate that limy,— lgmlli < 1. The
monotone convergence theorem (Theorem 5.3.1) implies that g €
A'[a,b] and ligmlli — lgll; hence, llglly < 1. Since gl is finite,

g(x) < o0 a.e., and so the set I must be null. The series

f n (x) + Z(fnk+1 (x) - f Nk (x))
k=1

must therefore be absolutely convergent for almost all x. This series
thus defines a function f, the pointwise limit, almost everywhere.
Eventually, f will be identified with an equivalence class in L[a, D],
so the fact that f is defined only a.e. is not a real concern.
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We have shown that f,, — f; we need to show that f;, — f in the
|-l seminorm and thatf € A'[a, b]. Since {f,,} is a Cauchy sequence,
for any € > 0 there is an integer N such that

I — fnlly = f[ G =l <

foranym > N,n > N. Let k be sufficiently large so that ny > N and
let m = nx. Then forn > N,

0 < lim (rlnr;fk L N fn(®) —fnm(x)IdX) g
and so Fatou’s lemma (Lemma 5.3.2) implies that forn > N, |f,,—f] is
integrable over [a, b] and f[ ap) [fn(¥) —f(¥)| dx < €. Therefore, fo, —f €
Al[a, D), and so f € Al[a, b]. Moreover, ||f, — fll1 = 0asn — oo,
so that the sequence {f,} converges to f in the || - || seminorm. The
space (Al[a, D], |l - |l1) is thus complete. The completeness of this
space implies the completeness of the space (L[4, D], || - Il1), since
each Cauchy sequence in L'[a, b] can be represented by a Cauchy
sequence in Al[a, b]. O

8.5 The Lebesgue Spaces L7

The norm defined for the space L![a, b] is a “natural” choice in appli-
cations where the average magnitude of a function is of conspicuous
importance. The function

v

IFl: = /[ , el

is the continuous analogue of the norm | - ||r defined in Example 8-
1-4 for R". If we seek a continuous analogue for the Euclidean norm
in R" we are led to the function || - ||, defined by

1/2
Ifllz = { f[ . |f(x)|2dx} |
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and more generally, if we seek a continuous analogue to a general
mean norm for R",

1=l = {I21? + el + - + [P}

for p > 1, we are led to a function | - ||, defined by

1/p
T { f[ . If(x)lpdx] |

In this manner, vector spaces for which these functions define norms
or seminorms come into prominence.

The space (L} [a, D], ||-l1) serves as a prototype for all the Lebesgue
spaces. Let AP[a,b], 1 < p < oo, denote the set of measurable
functions f such that

/ If ()P dx < oo.
[ab]

Now, lIfll, = ligllp for any f,g € AP[a, b] such that f = g a.e,, so
we know that || - ||, is at best a seminorm for A?[a, b]. This problem
can be easily remedied by using equivalence classes. A more serious
concern is that AP[a, b] may not even be a vector space. In partic-
ular, if f, g € AP[a, b], it is not clear that f + g € AP[a, b]. Moreover,
it is not obvious that | - ||, will satisfy the triangle inequality. As it
turns out, the sets AP[a, b] are vector spaces and || - ||, is a seminorm
on them for 1 < p < o0. This follows from Minkowski’'s inequal-
ity, which is derived from another inequality of importance called
Holder’s inequality (versions of these results are given below for the
corresponding L? spaces).

Let L?[a, b] denote the set of the equivalence classes of AP[a, D]
modulo equivalence a.e., and for [f] € LP[a, b] define the function

-1, by
1/p
Il = { f lf(X)l”dx} |

[a,b]

Theorem 8.5.1 (Holder’s Inequality)
LetF € IP[a,bland G € L9a, b}, wherel < p < coand1/p+1/q = 1.
Then FG € L[a, b] and

IFGl: < [FlpIGllg-
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Theorem 8.5.2 (Minkowski's Inequality)

Let1 < p < oo and suppose that F, G € LP[a, b]. Then F + G € LP[a, b]
and

IF + Gl < IFll, + Gl

The proofs of these inequalities can be found in most texts on
functional analysis, e.g., [38]. In the Holder inequality, the product
is the pointwise product of functions, i.e., if F = [f], G = [g], then
FG = [fg], where (fg)(x) = f(x)g(x). That LP[a, D] is a vector space
and || - ||, defines a norm on it follows from Minkowski’s inequality.

As with the space (L'[a, D], | - |l1), the normed vector spaces
(LP[a, D), || - llp) are complete. This result is a generalized version
of the classical Riesz—Fischer theorem.

Theorem 8.5.3

The normed vector spaces (LP[a, b), || - ||,) are Banach spaces for 1 <
p < 0.

A detailed proof of this result can be found in [17] and [18]. The
proof for the case 1 < p < oo is similar to that for the case p =
1. Essentially, the civilized behavior of the Lebesgue integral (as
manifested in the monotone convergence theorem) is responsible
for completeness. The Lebesgue integral thus yields an entire family
of Banach spaces.

To simplify notation, we shall refer to the Banach space
(L[a, D), || - |lp) simply as LP[a, b] unless there is some ambiguity re-
garding the norm. These Banach spaces are collectively referred to
as the Lebesgue or L” spaces. We also follow the common (and con-
venient) practice of blurring the distinction between AP[a,b] and
LP[a, b] by treating