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Preface

There is no one best way for an undergraduate student to learn elementary
algebra. Some kinds of presentations will please some learners and will
disenchant others. This text presents elementary algebra organized accord-
ing to some principles of universal algebra. Many students find such a
presentation of algebra appealing and easier to comprehend. The approach
emphasizes the similarities and common concepts of the many algebraic
structures. Such an approach to learning algebra must necessarily have its
formal aspects, but we have tried in this presentation not to make abstraction
a goal in itself. We have made great efforts to render the algebraic concepts
intuitive and understandable. We have not hesitated to deviate from the
form of the text when we feel it advisable for the learner. Often the presenta-
tions are concrete and may be regarded by some as out of fashion. How to
present a particular topic is a subjective one dictated by the author’s estima-
tion of what the student can best handle at this level. We do strive for
consistent unifying terminology and notation. This means abandoning terms
peculiar to one branch of algebra when there is available a more general
term applicable to all of algebra. We hope that this text is readable by the
student as well as the instructor. It is a goal of ours to free the instructor
for more creative endeavors than reading the text to the students.

We would have preferred to call this book College Algebra because this
was the name of the standard algebra course for undergraduate students in
the United States for many years. Unfortunately, the name “College
Algebra’” now seems firmly attached to a body of material taught in the
1930’s. Perhaps in time the name ““College Algebra” will once again describe
the algebra studied by college students. Meanwhile we have names like
“Modern Algebra’ and “Abstract Algebra” using inappropriate modifiers.



Preface

Included in the first half'of the text and providing a secondary theme are
a development and construction of the number systems: natural numbers
(Sections 3.1-3.4), integers (Sections 3.5-3.6), fractions or rational numbers
(Section 4.5), and complex numbers (Section 5.8). The construction of the
real number system is properly a topic in analysis; we refer the reader to
reference [10, p. 234] for an algebraically oriented presentation. The use of
the integers as exponents and multiples as in secondary school algebra is
covered in detail (Section 4.4). All of the material on number systems can
be stressed advantageously by those students preparing for school teaching.

As in all texts, size considerations eventually begin to exercise influence.
Group theory is not stressed in this text although there is a respectable
amount of material for an elementary text in Chapter 9. There is no Galois
theory in this text. Although lattice theory is a central concept for universal
algebra we have pretty well omitted study of that area. For that reason and
others, this cannot be considered to be an elementary text in universal
algebra.

Considerable attention has been paid to the algebraic properties of func-
tions and spaces of functions. One of the primary uses of algebra for an
undergraduate is in his analysis courses. We hope that the attention we have
paid to functions will be found rewarding by the student in his analysis
courses and in turn we hope that the somewhat concrete nature of spaces
of functions helps illuminate some of the algebraic structures by being
tangible examples of those structures.

Chapters 1-5 are devoted to rings, Chapters 6, 7, and 10 to linear algebra,
Chapter 9 to monoids and groups, and Chapter 8 to algebraic systems in
general. We envision the text being used for a year’s course in algebra, for
a one semester course not including linear algebra, or for a linear algebra
course. A shorter course in algebra might consist of Chapters 1-5, omitting
possibly Section 3.8, Section 4.6, and parts of Chapter 5, supplemented by
Sections 9.1-9.4. A course in linear algebra for students already familiar
with some of the topics included in the first five chapters could concentrate
on Chapters 6, 7, and 10 after reviewing Sections 5.1-5.6. Ideally we envision
the book for a one-year course covering all the chapters.

The questions at the end of each section are to help the reader test his
reading of the section. Certainly the section ought be read carefully before
attempting to answer the questions. Many of the questions are tricky and
hang upon small points; more than one of the answers may be correct. The
exercises provide for practice and gaining a better knowledge of the material
of the section. It is our practice to use in examples and in the exercises
some material on an intuitive bases before the material is treated in the text
more formally. Provided one guards against circular reasoning this provides
for a more immediate illustration of the principles the student is trying to
understand.

Algebra as an undergraduate course is frequently the subject in which a
student learns a more formal structure of definitions, theorems, and proofs.

vi



Preface

The elementary calculus is often a more intuitively presented course and it
is left to the algebra course to institute the more formal approach to mathe-
matics. For this reason the student should be very aware of what are defini-
tions, what are theorems, and what is the difference between them.

We now make several comments on style. In this text sentences are
frequently begun with symbols which may happen to be small letters. e is a
transcendental number. We consider such symbols proper nouns and beg
forgiveness; we have found the practice of avoiding such sentences too
limiting. Secondly, we use a number of run-on sentences connected with
if and only if. They are too logically appealing to avoid. We leave to the
reader without comment all other perversions of the queen’s English.

It is our opinion that one of the most rewarding things a student of
mathematics can learn is some of the history of the subject. Through such
knowledge it is possible to gain some appreciation of the growth of the
subject, its extent, and the relationships between its various parts. We
cannot think of any other area where such a little effort will reap such a
bountiful harvest. For reasons of length and cost we have not included
historical material in this text despite the opinion just expressed. We recom-
mend the purchase, reading, and rereading of at least one mathematical
history book: see the references for suggestions.

The author wishes to thank Bucknell University for a sabbatical leave to
work on the manuscript for this book, the editors of Springer-Verlag for
their encouragement and advice, and several readers for their suggestions.
All errors I claim for myself.

Lewisburg L.E.S.
March, 1976
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Set theory

This chapter on sets establishes the language of set theory in which this
book on algebra is written. The elementary operations on sets such as subset,
union, and intersection may well be familiar to the reader. In this case he
should certainly move on to matters which are new. We suggest that this
chapter first be read hurriedly to see what topics are familiar and what topics
are new. The reader can then spend the time necessary to master whatever is
new for him and can avoid spending time on material he knows.

Concepts of this chapter such as set, subset, quotient set, function, and the
fundamental isomorphism theorem will be used repeatedly for each separate
algebraic structure in later chapters.

Since this is not a textbook for a course in set theory the treatment of sets
is abbreviated. We have tried, as do all authors of elementary texts in algebra,
to compromise between too much material on sets and too little. The goal
is to give the necessary amount to support the algebra presented later. Certain
other concepts of set theory not included in Chapter 1 will be presented
later in the text as needed.

In Section 1.8, after a discussion of composition of functions, we introduce
the algebraic concept of group by example. Commutative groups occur again
in Chapter 6 as modules; groups not necessarily commutative are treated in
detail in Chapter 9.

1.1 Sets

In this first section we discuss the fundamental concepts of set member-
ship, the relations of equality and subset.
A set is a collection of objects. Some examples of sets are

the set of all letters of the English alphabet,
the set of letters a, b, and c,



1. Set theory

the set of states of the USA,
the set of all teams of the National Basketball Association,
the set of numbers —2, 0, 2, 4.

We use x € S as an abbreviation for x is a member of the set S. Some alternate
expressions are x is an element of S, x belongs to S, x is in § and S contains x.
A set can be denoted by listing its members between a pair of braces:

{a, b, c},
{=2,0,2,4).

Several true statements about these two examples are: a € {a, b, c},2 € {2,
0,2,4}.

We use the symbolism x ¢ S to mean x is not a member of the set S. For
example, d ¢ {a, b, c}, 1 ¢ {—2,0,2,4}.

We also denote sets by means of some defining property:

the set of all letters of the English alphabet.
In order to work principally with numbers we now name five sets:

N = the set of natural numbers,

Z = the set of integers,

Q = the set of rational numbers,
R = the set of real numbers,

C = the set of complex numbers.

These symbols will be used consistently throughout the entire text for the
sets indicated. By the natural numbers we mean all positive whole numbers
and zero. By the integers we mean all whole numbers, positive, negative, and
zero. By rational numbers we mean all fractions, quotients of integers with
nonzero denominator. By real number we mean any number representable
by a decimal, terminating or nonterminating. Examples of real numbers are
2, 3.00000. .., 3.14159..., 0.33333 . ... At this point we are relying upon
previous knowledge and acquaintance with these concepts. We will develop
these number systems more fully later in this text. Finally a complex number
isa number of the form a + bi where a and b are real numbersand i = /- 1.

The symbol {x|x is an integer} is read “the set of all x such that x is an
integer.” This is a stilted way of saying “the set of integers,” but what is lost in
euphony is more than compensated for by the gain in utility. The symbol is
called a classifier. For-example, N = {x|x is a natural number} = {x|xe Z
and x is nonnegative}. {—2,0,2,4} = {x|xeZand xisevenand —3 < x < 5}.
In general if p(x) is some statement involving the letter x and if there is a set
consisting precisely of all objects x such that p(x) is true then we denote that

set by {x|p(x)}.
We shall consider two sets to be equal when they have the same members:

Definition. X = Y if and only if every member of X is a member of Y and
every member of Y is a member of X.



1.1 Sets

The definition of equality makes irrelevant the order of listing of members
in any set: {a, b, ¢} = {b, ¢, a}. Given an object and a set, the object is either
a member of the set or it is not a member of the set. There is no question of
duplicate membership. We must regard the sets {2, 8, 8} and {2, 8} as equal;
2 and 8 are members of the sets and no other objects are. If we consider the
set {x, y, z} and it is given that x, y, and z are integers we have many pos-
sibilities. Some possibilities are {1, 0, 3}, {0, 4, 2}, {7, 12, 13}. Another possi-
bility, however, is {5} which is obtained by setting x = 5, y = 5,and z = 5.

Equality of sets enjoys the three properties of reflexivity, symmetry, and
transitivity which are listed in order in the next theorem.

Theorem. X = X for all sets X. X = Y implies Y = X for all sets X, Y.
X=YandY = Zimply X = Z forallsets X, Y, Z.

Proor. X has the same members as X. Every member of X is a member of
X and vice versa. X = X.

If every member of X is a member of Y and every member of Y is a
member of X then Y = X aswellas X = Y.

If X and Y have the same members and Y and Z have the same members
then X and Z have the same members. O

We now take up the concept of subset.

Definition. X = Y if and only if every member of X is a member of Y.
X < Yisread “X is a subset of ¥.”

ExampLEs. {a, b} € {a,b, ¢}, NcZ Z= Q. Q=R R<cC.{a, b c} =
{a,b, c}. {—2,0,2,4} = Z. )

A ¢ B means A is not a subset of B. A ¢ Bmeans A < Band 4 # B.
For A not to be a subset of B there must be some member of A which is not
contained in B. For A4 to be a proper subset of B(4 < B) we must have 4 be
a subset of B and also there must be some member of B which is not a member
of A.

Theorem. X < X forall sets X. X = Yand Y < X imply X = Y for all
sets X, YX<c YandY = Zimply X < Z forallsets X, Y, Z.
These three properties are called respectively: reflexivity, antisymmetry
and transitivity.

ProOOF. Every member of X is a member of X and therefore X < X. Because
X < Y every member of X is a member of Y. Because Y = X every member
of Y is a member of X. We have X =Y.

Let a be a member of X. Because X < Y wehavea €Y. Because Y = Z
it follows that ae Z. Thus X < Z. O

3



1. Set theory

We must distinguish carefully between the two symbols € and =. Here
are some examples which require this. We denote the set of teams of the
National Basketball Association by N, the Boston Celtics team by C and
a player Bill Russell of the Boston Celtics by R. All of these statements are
true:CeN.R¢ N.{C} c NReC.{R}cCN¢C.{R} ¢ NN¢EC.

1.2 Operations on sets

In this section we find the operations of union and intersection defined,
the empty set introduced and the complement defined.
We now give means of producing a set from two given sets.

Definition. The union of the sets X and Y, written X U Y, is defined to be
the set {x|x € X or x € Y}. The intersection of the sets X and Y, written
X N Y, is defined to be the set {x|x € X and xe Y}.

ExampLEs. {a,b} U {b,c,d} = {a,b,c,d}.{a,b} N {b,c,d} = {b} NN Z =
N. N U Z = Z. The two Venn diagrams in Figure 1.1 illustrate the inter-
section (a) and union (b).

Figure 1.1 (a) X n Y is shaded. (b) X U Y is shaded.

The following theorem states that both union and intersection of sets are
commutative.

Theorem. X Y =Y U X forallsets X, Y. X nY =Y n X for all sets
X,Y.

Proor. If x belongs to X u Y then x belongs to X or x belongs to Y. If x
belongs to X or x belongs to Y then x belongs to Y or x belongs to X. Then
x is a member of Y U X. Likewise, every member of Y U X is a member of
XuY. XuY =Y uX. The proof for intersection is entirely similar. O

The next theorem states that both union and intersection of sets are
associative.

Theorem. X U(Y U Z)=(X UV Y)UZ forall X, Y, Z Xn(YnZ)=
XnY)YnZforadlX,Y,Z.



1.2 Operations on sets

Proor. Let xe X U(YU Z). Then xe X or xe YU Z xeX or (xeY
or x € Z). This means the same as (x € X or xe Y) or x € Z. This is to say
the word “or” is associative. xe X U Y or xeZ. xe(X u Y)u Z. This
demonstrates that X U (Y U Z) =€ (X U Y) U Z. In like manner we can
show(XuY)uZ < Xu(YuZ).Therefore(X U Y)uZ =X u(Y uZ).
The second equation for intersection is proved by substituting the word “and”
for the word “or” in the proof just given. O

If the intersection of two sets is always to be a set, such as in the case
{a, b} N {c, d, e} then the need for a set with no members is clear.

Definition. We use the symbol (& to represent the empty set, a set with no
members.

ExampLEs. {a, b} U @& = {a, b}. (@, b} n{c,d, e} = F. & n{a b} = .
G =3.Fnd =0 &< {ab}

Theorem. X U (J = X forany set X. X n (J = J for any set X.

ProOF. Weshow Xu@dc X and X e Xu @ let xeXu F. xeX
or x € . Since x cannot belong to the empty set then x must belong to X.
X U & < X. On the other hand, if x € X then certainly the statement x € X
or x e (J is true. Therefore, xe X U . X c X u . X u g = X. The
second statement of the theorem is proved using similar techniques. O

Theorem. X = (X v Y) foranysets X, Y. (X n'Y) < X for any sets X, Y.

PrOOF. Again we prove only the first statement leaving the second as an

exercise. If x € X then the statement x € X or x € Y is true. Therefore x e
XuY.XcsXuY) d

Theorem. J = X for any set X.

PrOOF. Suppose the empty set were not a subset of some set X. Then there
would be some element ¢ of the empty set which failed to belong to the set X.
But this cannot be since the empty set cannot contain any element c¢. We
conclude J = X. O

When we prove J = X we prove the statement “every member of the
empty set is a member of the set X™ to be true. This argument is often a bit
tricky for the reader unaccustomed to arguing vacuous cases. In order for
the statement to be false there would have to exist some member of the ¢f
which was at the same time not a member of X. For another example of this
kind of reasoning take the statement “every pink hippo in this room weighs
precisely 47 grams.” This statement does not assert the existence of any pink

5



1. Set theory

hippos; the statement merely asserts that if there are any then they weigh
47 grams. If there are no pink hippos at all in the room then the statement is
true. For the statement to be false one must demonstrate the existence of at
least one pink hippo in the room which does not weigh 47 grams. In mathe-
matical usage a universal statement never asserts existence.

For a bit more practice with proving theorems about sets:

Theorem. X = X U Yifandonlyif Y < X (forallsets X,Y). X =XnY
if and only if X = Y (for all sets X, Y).

Proor. First assume Y < X. We must prove X = X u Y. From an earlier
theorem we know X € X U Y. Toshow X uY < Xlet xe X U Y. Then
xeXorxeY.If xe Y then x € X because Y is a subset of X. Therefore in
either case x € X. X U Y = X. Both subset relations imply X v ¥ = X.

For the converse begin with X = X u Y. Now we must prove Y c X.
Let xeY. If xeY then xeX u Y. Since X UY = X we have x € X.
Yec X.

The second statement involving intersection can be proved in a similar
manner. O

Definition. We define the relative complement X — Y to be the set {x|x € X
and x ¢ Y}.

The Venn diagram of Figure 1.2 illustrates the relative complement.

Figure 1.2 X-Y is the shaded area.

ExampLes. {a,b,c} — {a,b} = {c}.{a,b,c} — {¢,d} = {a,b}. N — Z = (.
Z — N = {x|x is a negative integer}. When the first set X in the relative
complement X — Y is understood from context then the set is often indicated
by Y~ and is simply called the complement of Y.

Theorem. Let S be a given set and let X~ denote S — X where X < S. Then

X" =X, S =g, g~ =85, XuX =S, XnX =¢g.
PrOOF. x € X~ if and only if (x€ S and x¢X") if and only if (x € S and
not (x € X~))ifand only if (x € S and not not (x € X)) ifand only if(x € S and

6



1.2 Operations on sets

x € X) ifand only if x € X. The proofs of the remaining parts can be supplied
by the reader. O

The following results are usually called De Morgan’s identities.

Theorem. Let X and Y be subsets of some set S.
XuY)y=X"nY" XnYy =X 0Y"

ProOOF. Let xe (X U Y). Then xe S and x is not a member of X U Y.
x is not a member of X and x is not a member of Y. xe X~ and xe Y.
x€e X~ n Y. This proves (X U Y)” < X~ n Y". We reverse the steps to
prove the other inclusion and have (X U Y)™ = X~ n Y". The proof of the
second De Morgan identity is left entirely for the reader. O

QUESTIONS

1. Which of these statements are true?
A)Qcz
B)Rcs(ZnR)
O ZcsRnN)
D) NcZ
(E) None of the four statements is true.

2. X c€ Yand Y € X fail to imply
A X=Y
(B) Y contains some member that X does not contain
Cy)XxXcyY
(D) X and Y have the same members.
(E) X < Y and Y< X imply all four statements.

3. Which of the following is not a subset of 4 = {a, b, ¢}?
A g
(B) a
© 4
(D) {a, b}
(E) All four listed sets are subsets of {a, b, c}.

4. Which of these statements are false?
(A) J e X for all sets X
(B) & < X for some set X
(O (¥ nX) c X for all sets X
(D) X = (J v X) for all sets X.
(E) All four statements are true.

5. Which of these sets have no proper subset?
(A R
B)yRNZ
© NUR NG
(D) NN N
(E) All four listed sets have at least one proper subset.
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. If A is a nonempty set and B is any set whatsoever then the union of 4 and B

(A) may be empty
(B) must be nonempty
(C) may strike for higher pay
(D) is a subset of B.
(E) None of the four possibilities completes a true sentence.

. Equality of sets is not

(A) symmetric
(B) reflexive
(C) antisymmetric
(D) transitive.
(E) Equality of sets has all four listed properties.

. Which of these statements are true?

A XnYYuZ=Xn(YuZ)forallsets X, Y, Z
B (XnYnZy =X"uvY uZ forallsets X, Y, Z
(C) {x,y} € {x}forallx,yeR
D) XnY)uYc Xforallsets X, Y, Z.

(E) None of the four statements is true.

. Which of these statements are true?

(A) 9eZ

(B) 9€ {x|xeZand x < 0}

(C) {a,b} € {a, b, {a, b}, d}

(D) {a, b} € {a, b}

(E) {a, b} < {a, b}

(F) ({a,b} n {b, c}) = ({a, b} L {b, c}).

EXERCISES

1. Prove X U X = X for all sets X.

2. Prove X n X = X for all sets X.

3. Prove(AnBn C) = (A n B) < Aforallsets 4, B, C.

4. Showthat An(B—C)=(AnB)—(AnBnC().

5. Show:If A < Cand B < Dthen (4 n B) = (Cn D)and (4 v B) = (C v D).

6. Isittrue that A € Band B € Cimply 4 ¢ C? (You should either prove the state-

~3

ment true or give an example illustrating that the statement is false.)

. Isit true that 4 <« Band B < Cimply A < C?
. Prove A = (J implies A = (.
. Letting X~ = Z — X find X~ in all these examples.

(8) X = {x]xeZand x > 0}

(b) X = {xjxeZand (x > 4orx < -3)}
(© X ={xjxeZand0 < x < 1}

(d) X = {x|xe Z and x = 2n for some n e Z}.



1.3 Relations

1.3 Relations

In this section we treat Cartesian products and relations: equivalence
relations and orders.

Definition. X x Y, the Cartesian product of X and Y, is defined to be the
set {(x, y)jxe X and ye Y}.

The Cartesian product of two sets, X and Y, is the set of all ordered pairs
(x, y) in which the left member of the pair is selected from X and the right
member from Y.

EXAMPLE. {a, b} x {c,d, e} = {(a, ¢), (a, d), (a, e), (b, ¢), (b, d), (b, €)}.
The following chart gives some intuition for the Cartesian product.

Y
‘ c d e

x 9| @d (@d (ae
b | (b (bd) (be)
It is to be understood that two ordered pairs (r, s) and (u, v) are equal if
and only if r = u and s = v. (2, 1) # (1, 2). It is quite possible to have an
ordered pair with left and right side equal: (2, 2).

ExaMPLES. R x R = {(x, y)|x € R and y € R} is the set of all ordered pairs
of real numbers. This is a model for the Euclidean plane. Z x R = {(n, y)|neZ
and y € R} is the set of all ordered pairs with left side an integer and right
side a real number. This is a subset of the Euclidean plane consisting of all
lines parallel to the Y-axis and having integral abscissae.

It was seen earlier that equality of sets enjoyed the properties of reflexivity,
symmetry, and transitivity. Starting with these properties we define any
relation which is reflexive, symmetric, and transitive to be an equivalence
relation. Equality of sets is one such relation. Before we investigate more
formally the concept of relation we offer one more example of an equivalence
relation. This example depends upon the reader’s prior knowledge of Z and
arithmetic.

Beginning with Z we define xRy if and only if x — y is divisible by 2. For
x — y to be divisible by 2 simply means x — y is an even number. This is to
say, x — y = 2n for some ne Z. 5R7 because 5 — 7= —2 =2-(-1).
12R2 because 12 — 2 = 10 = 2(5). 8R8 because 8§ — 8 = 0 = 2(0). Clearly
all odd numbers are equivalent to each other and all even numbers are

9



1. Set theory

equivalent to each other. We now argue that the R in this example is reflexive,
symmetric, and transitive. xRx because x — x = 0 = 2(0). Suppose xRy.
x — y = 2n for some neZ. y — x = 2(~n). yRx. Finally suppose xRy
and yRz. x — y = 2n for some ne Z and y — z = 2m for some me Z.
Xx—z=x—y+ y—z=2n+ 2m = 2(n + m). xRz. R is transitive.

In fixing a formal definition of a relation what is essential is that given
any two members X, y of the set S on which the relation is defined we must be
able to decide whether or not the relation holds. This can be done precisely
by means of a set of ordered pairs. We simply assemble into a set all those
ordered pairs (x, y) for which the desired relation holds.

Definition. R is a relation on a set S ifand only if R = S x S. We say xRy
(x is related to y) if and only if (x, y) € R.

Referring back to the equivalence relation example on Z given before we
see that the relation R is the set {(x, y)|x € Z and y € Z and x — yis even}.
It contains the pairs (5, 7), (12, 2), (8, 8), among others.

Definition. R is a reflexive relation on a set S if and only if (x, x) € R for all
x € S. R is a symmetric relation on a set S if and only if (x, y) € R implies
(y, x) € R. R is a transitive relation on a set S if and only if (x, y) € R and
(y, z) e R imply (x, z) € R. R is an equivalence relation on a set S if and
only if R is a reflexive, symmetric, and transitive relation on S.

An order is another example of a relation. For example, let us take the
set {0, 1, 2, 3} and consider the elements related (ordered) as follows: 0 < 0,
0<1,0<20<31<1,1<21<32<22x<3,3< 3 Wewould
then say that the order is the following set of pairs: {(0, 0), (0, 1), (0, 2), (0, 3),
1,1),(1,2), (1L 3),(2,2),(2,3),3, 3)}-

Definition. R is an antisymmetric relation onaset S ifand only if R is a relation
and (x, y) € R and (y, x) € R imply x = y. A relation R on a set S is an
order on S if and only if R is a reflexive, antisymmetric, and transitive
relation.

An equivalent condition to (x, y) € R and (y, x) € R imply x = y is the
contrapositive statement x # y implies not both (x, y) and (y, x) belong to R.

QUESTIONS

[1. The relation {(0, 0), (1, 2), (2, 2)} on the set {0, 1, 2} is
(A) reflexive
(B) transitive
(C) symmetric
(D) antisymmetric.
(E) The relation has none of the listed properties.

10
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5.

1.3 Relations

. Ax B

(A) always contains more members than 4 does
(B) contains at least one ordered pair if B does
(C) contains a pair (a, b)ifae Band be A
(D) always has an empty intersection with B x A.
(E) None of the four possibilities completes a true sentence.

. The Cartesian product of X and Y

(A) contains all the members of X and all the members of Y
(B) has the same number of membersas ¥ x X
(C) is a subset of any relationon X if X = Y
(D) is commutative.
(E) None of the four possibilities completes a true sentence.

Which of these alternatives complete a false sentence? On any set X
(A) & is a symmetric relation
(B) & is a transitive relation
(C) & is an antisymmetric relation
(D) & is a reflexive relation.
(E) All four statements are true.

We define on Z the following relation: xRy if and only if x — y is divisible by 5.
Which of the following are true?

(A) Ris an order on Z.

(B) The relation R fails to be symmetric.

(C) —17, —2,2,7, 12 are all related to each other.

(D) Although R fails to be an order it is reflexive and transitive.
(E) None of the four statements is true.

EXERCISES

1.

Prove this statement false: X x Y = Y x X for all sets X, Y. Do this by giving
an example of two sets A, B such that 4 x B # B x A.

. Describe these subsets of the Cartesian plane R x R:

@ N x N (b) R x N (€) Z x Z.

. Isiteverthecasethat X x Y =Y x X?
. We define the disjoint union of sets X and Ytobe X 10 Y = (X x {1}) u (Y x {2}).

Construct both X Ly Yand X U Y for the sets X = {a,b,c} and Y = {q, d}. Com-
pare the results. What can you say in general about the sizes of the sets X 1 Y and
XuY?

. Let U be the set of all undergraduate students at Bucknell University. In each of

the following examples decide whether or not the relation given is an equivalence
relation. Interpretations may vary from reader to reader!

(a) xRy if and only if x and y have family names beginning with the same letter.
(b) xRy if and only if x is the same sex as y.

(¢) xRy if and only if x is a sibling of y.

(d) xRy if and only if x and y are taking a course together.

(e) xRy if and only if x and y are engaged to be married.

11



1. Set theory

(f) xRy if and only if x and y are roommates.
(2) xRy if and only if x is not younger than y.

6. Give an example of
(a) a relation which is symmetric and transitive but not reflexive,
(b) a relation which is reflexive and symmetric but not transitive,
(c) arelation which is transitive and reflexive but not symmetric.

7. Construct all equivalence relations on {0, 1, 2}.

8. Match each one of these names (nonequality, less than or equal to, less than, equality,
succession, parity) to one of the relations on {0, 1, 2} following:
() {(0,0),(1,1),(22)},
(b) {(0,0),(0,1),(0,2),(1,1),(1,2),(2,2)}
© {0, 1),(1,2)}
(d {0,1),(,0),(0,2)
(e) {(0,0),(1,1),(2,2)
(f) {(0,1),(0,2),(1,2)

,(2,0),(1,2), (2, 1)}
,} 0,2),(2,0)}

>

1.4 Quotient sets

In this section are defined quotient set and power set; the fundamental
relation between equivalence relations and quotient sets is established.

A quotient set or a partition of a set is a division of the set into disjoint
subsets. An example of a partition of the integers, Z, is its separation into two
sets, the even integers in one subset and the odd integers in the other. Another
partition of the integers is to place each integer and its negative into a subset
by themselves (see Figure 1.3).

Figure 1.3

We now give a formal definition of partition.

Definition. A partition or quotient set Q of a given set X is a collection of
nonempty subsets of X such that every member of X is in some member
of @ and the members of Q have no members in common.

The conditions of the formal definition are met by the above example of
partitioning the integers into evens and odds. There is at least one even integer

12



1.4 Quotient sets

and at least one odd integer. Every integer is either even or odd. No integer
is both even and odd.

There is a natural correspondence between the equivalence relations on
a set X and the quotient sets of X.

Definition. Let R be a given equivalence relation on a set X. For any x € X
define x/R = {y|y € X and yRx}. Define X/R = {x/R|x € X }.

x/R is simply the subset of X of all members of X which are equivalent to
the given element x. X/R is the collection of all such subsets which we will
demonstrate to be a quotient set of X.

Theorem. Let R be an equivalence relation on a set X. Then X/R is a quotient
set of X.

ProOF. We first show that two subsets of the form x/R and y/R are either
disjoint or equal. If x/R and y/R fail to be disjoint then x/R n y/R # (.
There exists ze X such that ze x/R and ze€ y/R. zRx and zRy. xRz and zRy,
XRy. We hold this result for a moment. We now propose to show x/R = y/R.
Suppose r is any member of x/R. rRx. Now using xRy we get rRy. re y/R.
x/R < y/R. In the same manner we show y/R = x/R. This gives x/R = y/R.

If x € X then we note the reflexivity of R implies x € x/R. x/R € X/R. For
the same reason no subset x/R is empty. This completes proving X/R to be
a quotient set. O

Corollary. Given an equivalence relation R on a set X

x/R = y/R if and only if xRy.

Proor. If xRy then x e y/R. But xe x/R. x/R n y/R # . x/R = y/R.
Conversely, if x/R = y/R then y € x/R yielding yRx and xRy. O

It is convenient to have a name for the set of all subsets of a given set.
Definition. 2 X, the power set of X, is defined to be the set of all subsets of X.

ExampLE. If X = {q, b} then 2X = {7, {a}, {b}, {a,b} }. If X = & then
)

Using the definition and notation of the power set we can restate the
definition of a quotient set of X : Q is a quotient set of X if and only if

Q< 2X,

A€ Q implies 4 # &,

x € X implies x € A for some 4 € Q,
A, BeQimplyA = BorAn B = (.

13
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QUESTIONS

1.

Given an equivalence relation R on X it follows that
(A) X/R has fewer members than X
(B) x/R = y/R implies x = y
(C) x = y implies x/R = y/R
(D) any member of X is a member of X/R.
(E) None of the possibilities is true.

. Equality is an equivalence relation on N. Which of the following is a member of

N/=1?
A) -2
B) 5
C) N
(D) {6.02-10%3}.
(E) None in the list is a member of N/=.

;3. For all x, ye Q define xRy if and only if x — y € Z. R is an equivalence relation

on Q. Which of these statements are true?

(A) Ze Q/R

(B) (2/3)R(3/2)

(€C) —1/3e(1/3))R

(D) {m/nneNandn # 0Oandme N andm < n} € Q/R.
(E) None of the statements is true.

. Which of these statements are true?

A) 20 =&
(B) X < 2Y implies Ye X
C)2P2XuY)cP2XUuPY
(D) Q" e 2R.

(E) None of the statements is true.

. Let X be a finite, nonempty set and define on #X this relation: ARB if and only

if A = Bor A = B~. Which statements are true?
(A) R fails to be an equivalence relation on 2X.
(B) There are exactly two members of (?X)/R.
(C) If X has n members then (#X)/R will have 2"~ ! members.
(D) Members of (ZX)/R are subsets of X.
(E) No statement given is true.

EXERCISES

1.

14

Describe the quotient sets defined by each of the equivalence relations found in
exercises 5 and 7 of Section 1.3.

. Find 2{0, 1, 2}.
. We define on Z the following relation: x ~ y if and only if x — y is divisible by 3.

Is ~ an equivalence relation? Show that 1/~ = {x|x = 3n + 1 for some ne Z}.

. We define T to be a relation on R as follows: xTy if and only if x — y € Q. Prove

T is an equivalence relation. Prove 0/T = Q. Prove n/T # Q.



1.5 Functions

1.5 Functions

In this section the ubiquitous mathematical concept of function is given
a set meaning and special types of functions are considered.

Intuitively, a function is a rule that assigns to every member of a first set
some member of a second set. For example, if we use as the first set Z and as
the second set N we can assign to every member of Z its square in N. To 3
is assigned 9, to 4 is assigned 16, to —2 is assigned 4, and so forth. If we plot
these assignments on Z x N as ordered pairs (3, 9), (4, 16,) (-2, 4), etc., we
have a graph of the function. It is this collection of ordered pairs that is the
basis for a set theoretic definition of a function.

Definition. f:X — Y is a function from the set X to the set Y if and only if

0. fcX xY;
1. for each x € X there exists y € Y such that (x, y) € f; and
2. if(x, y;)e fand (x, y,) € f then y, = y,.

Condition 0 establishes the function as a set of ordered pairs selected from
X x Y. Condition 1 assures the existence of at least one ordered pair in the
function containing any given member of the first set in the left side. Condi-
tion 2 assures that there can be at most one ordered pair with any given
member of X in the left side. By abuse of language we frequently call f itself
the function instead of f: X — Y.

Definition. If f: X — Y is a function then X is called the domain of f and Y
is called the codomain of f. If (x, y) belongs to the function f then we
write y = f(x) and call y the value of the function f at the argument x.
We also, at times, express this in the symbolism x W y.

We distinguish between the different arrows. In X — Y the straight arrow
goes from the domain to the codomain of f. In x t y the curly arrow goes
from an argument x to a value of the function. The set of all values of the
function f:X — Y is the set {f(x)|x € X} and is called the range of the
function. It is also written f(X).

ExaMpLE. Let X = {a,b, ¢} and Y = {d, e}. There are eight possible func-
tions from X to Y in this example. Each function contains exactly three pairs.

f={@ d),(b,d),(c,d)}
g = {(a a), (b, d),(c )}
h = {(a, d), (b, e), (c, d)}
i = {(a,d),be),(ce)}
j={@e),(ba),(cd)}

15



1. Set theory

k = {(a, e), (b, d), (c, e)}
I={ace),be),ld )}
m = {(a, e), (b, e), (c, &)}

All of the following statements are true about the above examples. g: X — Y.
Y is the codomain of k. X is not the codomain of j. e = h(b). Rangem = {e}.
Rangeh = Y.(b,e)é k. k # L. k(a) = l(a). g(a) = g(b).i = X x Y.

We now wish to single out certain special kinds of functions. First there
are those functions which take all members of the codomain as values.

Definition. f:X — Y is a surjection if and only if

3. for each y € Y there is an x € X such that (x, y) € f.

This is to say, for a surjection f we have for every y € Y some x € X such
that y = f(x). In other words, range f = codomain f. An older terminology
still popular is to say that the function f is onto Y.

Second, there are those functions which do not duplicate values. This is
to say, there are not two different ordered pairs (x;, y) and (x,, y) in the
function.

Definition. f: X — Y is an injection if and only if
4. (xy, y) € f and (x,, y) € f imply x; = x,.

Condition 4 may be alternately stated as f(x;) = f(x,) implies x; = x,. An
injection is also called a one-to-one function.

Finally, a function with both the above delineated properties has its own
name.

Definition. f:X — Y is a bijection if and only if f is both a surjection and
an injection.

ExampLEs. f:{a, b} — {c, d} such that f(a) = c and f(b) = d is a bijection.
g:{a, b} — {c, d} such that g(a) = c and g(b) = cis not an injection because
both (g, ¢) and (b, c) belong to g. g is also not a surjection because d ¢ range g.

Let R* = {x|x € Rand x > 0}. Define f:R* — R* such that f(x) = x.
f(x;) = f(x,) implies x? = x2 which implies x, = x, when both x, and x,
are positive. f is therefore an injection. Because every positive real number
has a positive square root, f is a surjection.

Let [0, 0) = {x|xeR and x > 0}. Define f:R — [0, o) such that
f(x) = x2. This function is a surjection but not an injection.

Definition. Let f:X — Y be a function. If A = X then we define the image
of A under f to be the subset of Y.

fld) = {fx)|x e 4}.
16



1.5 Functions

If B = Y then we define the inverse image of B under f to be the subset of X,
f7YB) = {x|f(x) e B}.

We note that the image of the domain of f, f(X), is the range of f. We can
also observe that the inverse image of the codomain Y, f ~}(Y), is necessarily
the domain X.

ExampLe. If f:Z — Z such that f(x) = 9x + 2 then ({0, 1,2}) = {2, 11,20}
and /~({1,2,3)) = {0},

QUESTIONS

1. X x Y
(A) is always a function
(B) is sometimes a function
(C) never can be a function
(D) is always nonempty.
(E) None of the alternatives completes a true sentence.

{2. f:X — Y implies
(A) Y is the range of f
(B) fis a proper subset of X x Y
(C) if (x4, y) € f and (x,, y) € f then x; = x,
D) f# .

(E) None of the possibilities completes a true sentence.

{3. Let f be a function with real arguments and real values given by the rule f(x) =
—Xx + x* Which of the following are true?
A =g
(B) The largest possible domain is R*.
(C) f is surjective with codomain R.
(D) f(0) = 0.

(E) None of the statements is true.

| 4. The function f:R* — R™* such that f(x) = x2.
(A) is not an injection
(B) has a set of ordered pairs, f, which contains (0, 0)
(C) has f"{(R*) = R*
(D) is not a surjection because the set of numbers of the form x? is properly
smaller than the set of numbers of the form x.
(E) None of the possibilities completes a true sentence.

EXERCISES

1. Which of the following are injections? Which are surjections?
(@) f:Z - Z such that f(x) = x + 2
(b) f:N — N such that f(x) = x + 2
(¢) f:Z - Z such that f(x) = 2x
(d) f:R — R such that f(x) = 2x

17
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(e) f:R — R such that f(x) = sin x
(f) f:R - R such that f(x) = €*.

{2. Consider the function f:R — R such that f(x) = ax + b. For what real numbers
a,bis f:R — R a surjection? an injection?

13, Given f:X — Y prove .f(X) = Y if and only if f is a surjection.
4, Given f:R — R such that f(x) = x2 verify all these results.

f(R) = [0, o0). f([0,1]) = [0, 1].
f[2,6]) = [4,36]. f-1,1]) = [0, 1].
-2 -1=g. f7Y[4,36]) = [2.6] u[—6, —2].
TR =R fo, 1) = [-11].
Z < f~YN). f(N) € N.

THU=1L1))=(-11)

|5. Given f:X - Y prove f'(B) = X if and only if range f < B.

6. Given f: X — Y prove f(4; U 4,) = f(4,) v f(4,).

7. Given f:X — Y prove f(4; N A4,) € f(4,) N f(4,).

8. Give an example of a function f:X — Y and two subsets 4,, 4, of X so that
f(41) 0 f(4,) & f(Ay 0 Ay).

9. Given f:X — Y prove f (B, U B,) = f~YB,) u f1(B,).

10. Given f:X — Y prove f "(B; " B,) = f~Y(B,)) n f~(B,).

11. Show that X x (Y x Z) is not equal to (X x Y) x Z if X, Y and Z are non-
empty. Show, however, there exists a bijection #:(X x Y) x Z - X x (Y x 2Z).

1.6 Composition of functions

In this section the operation of composition of functions is defined; the
identity function and results on functional inverses are established.

Definition. Given functions /:X — Y and g:Y —» Z we define a function
go f:X — Z such that (g o f)(x) = g(f(x)) for all x € X.

gof .
X ?Z

Y

The diagram shows how the composition is a chaining together of the two
given functions. It can be seen that the set of ordered pairs go f is
{(x, 2)|(x, y) € f and (y, z) € g for some y € Y }. We note that in the com-
position g ¢ f it is the function f which is applied to the argument first.

18
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ExAMPLE. If f:Z — Z such that f(x) = 2x + 1 and g:Z — Z such that
g(x) = =3y + 6 then g(f(x)) = =3(f(x)) + 6 = -32x + 1) + 6 =
—6x + 3.go f:Z - Zsuch that (go f)(x) = —6x + 3.

Composition preserves both injective and surjective properties of
functions.

Theorem. If f:X — Y and g:Y — Z are surjections then go f:X — Z is a
surjection. If f:X — Y and g:Y — Z are injections then g o f:X — Z is
an injection.

PrOOF. Let z € Z. There is an element y € Y such that g(y) = z. For ye Y
there is an x € X such that f(x) = y. Therefore, given z € Z there exists
an x € X such that g(f(x)) = g(y) = z. g o f is a surjection.

Let (g © f)(x;1) = (g ° )(x2). 9(f(x1)) = g(f(x;)). Because g is an injec-
tion we have f(x;) = f(x,). Because f is an injection it follows that x; = x,.
This proves g o f is an injection. O

Corollary. If f:X — Y and g:Y — Z are bijections then go f:X — Z is a
bijection.

Proor. Combine the two results in the theorem. a

Theorem. Composition of functions is associative.

PrOOF. Let f:X - Y, g:Y > Z, h:Z - W be given functions. (ho
(gof)):X > W and ((hog)o f):X - W are both functions defined by
repeated composition and have the same domains and the same codomains.

(ho(go f)x) = h((ge f)x) = hg(f(x))) = (ho g(f(x)) = ((heg)e f)x)
for all xe X. O

We now explore the role of the identity function in the operation of com-
position of functions.

Definition. I,:X — X such that I,(x) = x for all x € X is called the identity
function on the set X.

Theorem. If f:X — Yithenlyo f = fand fo Iy = f.

ProOOF. The following diagrams illustrate the functions involved.

S/ S
X >Y 3{ > Y
Iy Iy
Iy°f fOIX
v
Y X
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Clearly, Iy o f:X — Yand f o Ix: X — Y. It is easy to verify the equality of

values. (Iy o f)(x) = Iy(f(x)) = f(x) for all xe X. (fe Ix)(x) = fUx(x)) =
f(x) forall xe X. O

We consider finally in this section the more difficult problem of finding
inverse functions. Given f: X — Y to find the inverse of f is to find a function
g:Y — X so that the composition of f with g is the identity function.

X

\
Y

A4 g

X

Iy gof =Iy.

Analogously, given f: X — Y we look for an h:Y — X to precede f so that
f o h = Iy.

Y

/A
X

\

Iy

Y

We will call g the left inverse of f and call h the right inverse of f. If, indeed,
we can find some one function playing both roles (g = h) then we will call
such a function an inverse of f.

ExamMpLE. Let f:R — R such that f(x) = 2x — 3. We define g:R — R such
that g(x) = 3x + 3. Then(g > /)(x) = g(f(x)) = 3f(x) + 3 = 3(2x — 3) +
2 = x.gof = I. g is therefore a left inverse of f. The reader can verify
that the given g is also a right inverse of f. We now proceed to the solution
of the proposed problem.

Theorem. Let f:X — Y and X # (J. Then

(a) there exists g:Y — X such that go f = Iy if and only if f is an
injection;

(b) there exists h:Y — X such that f - h = I if and only if f is a surjec-
tion; and

(c) there existsk:Y — X suchthatko f = Iy and f o k = Iy if and only
if f is a bijection.
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1.6 Composition of functions

PRrROOF. Suppose f is not an injection. Then there exist x;, x, € X such that
X, # X, and f(x;) = f(x,). If there were a function g:Y — X such that
gof = Ixthen(g> f)(x;) = x; and (g > f)(x;) = x,. This means g(f(x,)) #
g(f(x3)). But f(x;) = f(x,). This contradicts condition 2 in the definition
of a function for g. There can be therefore no function g: Y — X such that
gof =1Ix

Next suppose f is not a surjection. There exists y € Y such that f(x) # y
for any x € X. If there were a function h:Y — X such that foh = I, we
would have (f o h)(y) = y. But then h(y) is an element of X such that
f(h{y)) = y. This contradicts the second sentence of this paragraph. There
can be no function h:Y — X such that f o h = I,.

Suppose f is not a bijection. Then either f is not an injection or f is not
a surjection. The statement that there exists k:Y — X such that f o k = I,
and ko f = Iy is impossible.

We begin now the proofs of the three converses by assuming f to be an
injection. We form the set {(y, x)](x, y) € f} by reversing each of the pairs in
f. Calling this set /" we notice that if(y, x,) € f"and(y, x,) € f"thenx, = x,
because f is an injection. Furthermore, for each y e range f there exists
x € X such that (y, x) € f*. We have f": range f — X. f” will not, in general,
qualify as a function with domain Y because range f does not, in general,
equal Y. We must therefore enlarge the set of ordered pairs f* to include
pairs with members of Y in the left side for every member of Y. For each
ye Y — range f adjoin the pair (y, a) to the set f" and call the result g,
where a is some fixed member of X.

g =r"u{(yalye(¥ - range f)}.

Now g is a function like f” yet has domain Y and g(f(x)) = x for all x € X.

We now begin with a surjection f: X — Y and demonstrate the existence
of a right inverse for f. We again form f* from f by assembling all the
reversed ordered pairs from f. For each y e Y there is at least one ordered
pair in f" with y in the left side because f is a surjection. There may be,
however, several such ordered pairs for some ye Y so that f* may not
satisfy the condition 2 of uniqueness of value to be a function. We must then
delete from f™ all pairs except for one pair containing a given y in the left side.
We denote the resulting set of ordered pairs by h. h is a function from Y to X.
Furthermore, (f o h)(y) = f(h(y)) = yforall ye Y.

Finally, we begin with a bijection f:X — Y. Looking back to the part of
this proof dealing with the injection we are dealing with the situation where
Y = range f. Y — range f = (J. The function g is therefore simply f”
which serves as the left inverse. Looking at the part of this proof dealing
with the surjection again f" is a function without any necessity of deleting
ordered pairs to produce h. This is true, of course, because if f is an injection
then (y, x;) € f" and (y, x,) € f" imply x; = x,. Thus f* is a right inverse
of f.foff=1Iyand f7o f = I4. O
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1. Set theory

In the interest of simplicity we have avoided any detailed discussion in
the previous proof of the mechanism of deleting pairs from the set f”.

QUESTIONS

1. Which of the following alternatives complete a false sentence? If f:X — Y and
g:Y — Z are functions then the composite function g o f
(A) has domain X
(B) has codomain Z
(C) has range a subset of range g
(D) has domain a subset of domain f.
(E) All of the alternatives make true sentences.

2. If f:X —» Y and ¢:Y — Z are given then the composite function g o f
(A) has domain X and codomain Z
(B) contains the same number of ordered pairs as f
(C) has range a subset of Z
(D) can be empty.
(E) None of the alternatives completes a true sentence.

3. If £:[0, c0) » R such that f(x) = (x)/* and g:R — [0, o) such that g(x) = x* then
(A) g is a left inverse of f but not a right inverse
(B) g is a right inverse of f but not a left inverse
(C) g is the inverse of f
(D) g ° f exists but is not the identity.
(E) None of the alternatives completes a true sentence.

4. If f(x) = x* — 3x and g(x) = +/x then the largest possible subset of the reals which
can serve for domain f and have the composite g - f defined is
A) R
(B) [0, )
(C) (_007 O] Y [3a OO)
(D) R*.
(E) No choice completes a true sentence.

5. gistheinverseof f: X —» Y
(A) ifand only ifg o f = Iy
(B) implies X and Y have the same number of elements
(C) impliesgo f = &
(D) ifand only ifg - f = X.
(E) None of the choices completes a true sentence.

EXERCISES
1. Find two functions f:R - R, g:R — R such that fog # go f.
2. Find two distinct functions f:R - R, g:R —» R such that fog = go f.

3. Let f:R — R such that f(x) = 5Sx — 3. Apply the theorem of this section to prove
there exists g:R — R such that g o f = I. Is it also true that f o g = I3? Find g.
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1.7 A factorization of a function

4. Let f:R — R such that f(x) = x*. Does there exist g or h such that go f = I, or
J o h = I;? Which theorem applies? Find g or h if it exists.

5. Let f:Z — Z such that f(n) = 2n. Does there exist g or h such that go f = I, or
J o h = I,? Which theorem applies? Find g or h if it exists.

6. Using the definition g o f = {(x, z)|(x, y)€ fand (y, z) € g for some y € Y} for the
composition of functions f:X — Y and g:Y — Z prove
@gefesXxZ
(b) for each x € X there exists z € Z such that (x, z)ego f
(¢) if(x,zy)ego fand(x,z,)ego f thenz; = z,.
What do you conclude from these three conditions?

7. Using the definition of composition given in exercise 6 prove the two sets of ordered
pairs(ho g)o fand ho (g o f)areequal forany given f:X - Y,9:Y - Z,h:Z - W.

8. Prove this degenerate case of a theorem found in this section. Let f:X — Y and
X = . Prove there exists k: Y — X such that ko f = Iy and f ok = I if and
only if f is a bijection.

1.7 A factorization of a function

In this section we make some observations about relationships between
injections and subsets and between surjections and quotient sets. We prove
a factorization theorem for functions and entitle it the fundamental mor-
phism theorem for sets.

Given any injection g: 4 — X there is defined a subset g(A4) of X which is
the range of Q. This subset gq(4) of X and the set A are in one-to-one cor-
respondence; this is to say, q:4 — g(4) is a bijection (see Figure 1.4).
Conversely, if we are given a set X and a subset 4 of X, then the identity
function I,: A - X is an injection from A4 to X.

X X
A A
IA

Figure 1.4

Definition. An injection q: 4 — X is sometimes called an embedding of A
into X.

Given any surjection ¢:X — B there is defined a quotient set X/R of X
as follows:

1. (x;Rx, if and only if ¢(x,) = ¢(x,)) defines an equivalence relation R
on X
2. the equivalence relation R yields a quotient set X/R such that x/R =

{zlo(2) = o(x)}.
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1. Set theory

In other words, the equivalence set x/R of the quotient set X/R consists of
all those arguments in X which have the same value by the function ¢.

Definition. By the equivalence relation and quotient set associated with a
surjection ¢:X — B we mean the relation R = {(x;, x,)|@(x;) = ¢(x2)}
and the quotient set X/R (see Figure 1.5).

X

' :
Figure 1.5

Conversely, associated with each quotient set there is a surjection. If a
quotient set Q of a set X be given we can define a function ¢: X — Q in which
¢(x) is the nonempty subset in Q which contains x. Since every x must belong
to some subset, ¢(x) always exists. Since each subset is nonempty ¢ must be
surjective, we call such a surjection a quotient map.

Definition. A surjection ¢:X — Q such that @ is a quotient set of X and
such that x € @(x) for all x € X is called a quotient map from X to Q (see
Figure 1.6).

ExampPLE. Let the set Z be given and Q be the partition of Z into two subsets,
the odds and the evens. A quotient map ¢:Z — @ is then the surjection that
takes any integer into the subset of all odds if it is odd and into the subset of
all evens if it is even.

We now prove the theorem which is the main result of this section, that
any function whatsoever can be factored into the composition of a surjection
and an injection.

Theorem. Given a function f:X — Y there exist

an equivalence relationy on X
a surjection : X — X/y;and
an injection f':X/y —» Y such that f = f' o ¢.
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1.7 A factorization of a function

Proor

Xy

In terms of the function f we define a relation y on X:x,yx, if and only if
f(x;) = f(x,). As discussed earlier in this section, such a relation is an
equivalence relation on X. Associated with the equivalence relation y is the
quotient set X/y = {x/y|x € X} in which x/y = {z|z € X and zyx}. We now
define ¢:X — X/y such that ¢(x) = x/y. This function ¢ is a surjection
because if we X/y then w = x/y for some x € X. Then ¢(x) = x/y = w.
The surjection ¢ is a quotient map.

We next define f': X/y — Y such that f'(x/y) = f(x). f’ is a well-defined
function and an injection because x,/y = X,/y if and only if x,yx, if and
only if f(x;) = f(x,) if and only if f'(x,/y) = f'(x,/y). Finally, we verify
the equation [ = f"°@. (f"°¢)(x) = f(e(x)) = f'(x/y) = f(x) for all
xe X. O

Corollary. Given a function f:X — Y there exists a bijection from a quotient
set of X to the set f(X).

Proor. The theorem asserts the existence of a quotient set of X and an
injection f":X/y — Y. If the same set of ordered pairs f’ is regarded as a
function from X /y to f(X) then f’ becomes a surjection as well as an injection.
Thus we have a bijection f': X /y — f(X). O

ExaMpLE. Suppose we consider the function f:Z — Z such that f(x) = the
remainder upon dividing x by 3 (see Figure 1.7). Then x,yx, if and only if
f(x;) = f(x,)ifand only if x, and x, have the same remainder upon dividing
by 3ifand onlyifx; — x,is a multiple of 3. Any integer x will be y-equivalent
to precisely one of the three numbers 0, 1, and 2. This is to say X/y = {0/y,
1/y, 2/y}. @(x) = x/y. f":X/y > Z such that f'(0/y) = f(0) = 0, f'(1/y) =
f() = 1,and f'(2/y) = f(2) = 2. f’ is an injection from {0/y, 1/y, 2/y} to Z.
According to the corollary, f’ is a bijection from {0/y, 1/y, 2/y} to range
f=1{0,1,2}

The analogue of the previous theorem will reappear later with various
algebraic structures such as rings, groups, and vector spaces. When presented
in an algebraic setting, the theorem—or more especially, the corollary—is
sometimes called the fundamental theorem of (homo)morphisms or the law
of (homo)morphism. We shall refer to the theorem of this section as the
fundamental morphism theorem for sets.
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1. Set theory

Figure 1.7

QUESTIONS

1. Which of these alternatives are false?
A quotient map ¢: X — Q
(A) has codomain Q a quotient set of X
(B) has range ¢ = codomain ¢
(C) is not necessarily an injection
(D) is necessarily a surjection.
(E) None of the alternatives make a false sentence.

2. Given a function f:X - Y
(A) there exists a surjection ¢: X — Y
(B) there exist an injection f:X/y — Y and surjection ¢:X — X/y such that
f o @ = f'for some equivalence relation y on X
(C) there exists an injection f':X/y — Y for some equivalence relation y on X
(D) there exists an injection g: X — Y.
(E) All of the alternatives complete a false sentence.

3. I:N - Zsuch that I(x) = xforall xe N
(A) is called an embedding
(B) is called a quotient map
(C) is not an injection
(D) implies 17(—12) = {12}.
(E) None of the alternative completes a true sentence.

4. Let B be the set of all Bucknell University undergraduate students and A4 be the set
of all letters of the English alphabet. Let f:B — A such that f(x) = the initial letter
of x’s last name. Furthermore, assume there are Bucknell undergraduate students
named Leslie Jones and Dane Johnson. Which of the following statements are true?

(A) f' (Leslie Jones) = f’ (Dane Johnson)
(B) f (Leslie Jones) e J
(C) Leslie Jones € ¢ ~(J)
(D) Leslie Jones € f'~1(J).
(E) None of the statements is true.
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1.8 The symmetric group

1.8 The symmetric group

In this section we consider the collection of all functions on a set X and
as a special case, the collection of all bijections on a set X, the symmetric
group of X.

We begin with a class of functions.

Definition. If X and Y are sets we denote the collection of all functions from
X to Y by Y*.
Y¥ = {f]f:X—» Y}

We now collect some earlier results that apply to X*, the set of all functions
on the set X.

Theorem. Composition is an associative operation on X*.

ProOOF. The composition of two functions f:X — X and g: X - X is a
function g o f:X — X which again is a member of X*. The composition of
two functions is associative. O

ExaMpLE. Composition is not necessarily commutative. f:R — R such that
f(x) = x + 1 and ¢g:R — R such that g(x) = 2x are both members of R¥.
(gof)x) =2x + 2whereas (fog)(x) =2x + l.go f # fog.

Theorem. Iy, the identity function on X, satisfies the equations Iy o f =
foIx = f for all functions f € X*. f € X* is invertible if and only if f is
a bijection.

Proor. These results are established in Section 1.6. ]

We describe the property Ixo f = fo I, = f for all f e X* by saying
Iy is a neutral element for composition of functions. The result on invertibility
of functions shows us that if we desire to have all functions have inverses we
must limit ourselves to bijections. We now do just that. We use the symbol
S(X), an upper case German ess, for the set of all bijections of the set X.

Definition. S(X) = {f|f € X* and f is a bijection}.

Because the composition of two bijections is a bijection, Iy is a bijection,
and the inverse of a bijection is a bijection, we have this theorem:

Theorem. Composition is an associative operation on S(X), Iy is a neutral
element for composition on &(X), and every f in &(X) is invertible.

A set with the properties listed in the theorem is called a group.
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1. Set theory

Definition. A group is a set G together with an associative operation for
which there exists a neutral element and every element of G is invertible.
&(X) with the operation of composition is called the symmetric group

of the set X.

The elements of the symmetric group are functions; in particular, they are
bijections. Frequently, and especially if X is finite, bijections are called per-
mutations. Not all groups are constructed with functions and composition
as in the symmetric group. For example, the integers Z together with the
operation of addition make a group with neutral element 0. We have been
led to the concept of group at this time through our discussions of functions.
We will later return to a study of groups in the broader sense.

ExampLE. We work out here the example of the symmetric group on the set
{1, 2, 3}. We abbreviate ({1, 2, 3}) with S;. The set {1, 2, 3} has the fol-
lowing bijections

o, suchthat o¢,(1)=1, 0,(2) =2, 0,3) =3
g, suchthat og,(1) =1, 0,2) =3, 0,3) =2,
65 suchthat o3(1) =2, 03(2) =3, 033) =1,
6, suchthat o,(1) =3, 042) =2, 043) =1,
os suchthat os5(1) =3, 052) =1, 053) =2,
og¢ suchthat o4(l) =2, 06(2) =1, 06(3) = 3.

S;3 = {04, 03, 03, 04, 05, 06 }. The operation is composition. We verify, for
example, that g3 - 6, = 04:

(05 ° 02)(1) = 03(02(1)) = a5(1) = 2.

(030 62)(2) = 03(05(2)) = 05(3) = 1.

(03 © 0,)(3) = 03(0,(3)) = 03(2) = 3.

We tabulate all possible compositions in a composition table. The answers
are worked out just as we found 65 - 0, = 0.

° 0y () 3 () Os 06
o4 0y 0, O3 o4 Os Oe
oy o, 0 o4 O3 U6 Os
O3 O3 Og Os () 04 O4
Oy Og4 Os Gg 04 (0 O3
Os Os o4 0y G¢ O3 D)
Oe Oe o3 oy Os 04 0.

Note that the neutral element for the set &, is g,, the identity function on
the set {1, 2, 3}.
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1.8 The symmetric group

QUESTIONS

1. For a given set X we construct the power set £X. Union (U) is an operation on
2X. Which of the following statements are true?
(A) There is no neutral element in 2X.
(B) Union fails to be associative.
(C) Some elements of 2X have no inverses in 2X.
(D) X is a neutral element.
(E) None of the four statements is correct.

2. Let L be the following set of functions: {f|f:R —» R and f(x) = ax + b for some
a,be R, a # 0}. Which of the following statements are correct?
(A) L together with composition is a group with neutral element I.
(B) L together with composition is not a group because g:R — R such that
g(x) = x3 is a bijection and is not in L.
(C) L together with composition is not a group because h:R — R such that
h(x) = 5is not a member of L.
(D) L together with composition is not a group because there exist functions
f,geLsuchthatgo f # fog.
(E) None of the statements is correct.

3. Which of the following statements about S, are correct?
(A) 04005 = 0.
(B) o5 is the inverse of 7.
(C) o, is its own inverse.
(D) v, has no inverse.
(E) None of the statements is correct.

4. Z — {0} together with multiplication is not a group because
(A) Ois absent
(B) the product of odd numbers is always odd
(C) the product of even numbers is not always even

(D) inverses with respect to multiplication are not present.
(E) Z — {0} is a group.

EXERCISES
1. In the symmetric group ; find the inverse of 5.

2. In the symmetric group €5 solve these equations for 7:
G50T =0;, To0s5 =0, 03°T0°05=0400g, 0goToT =0, ToT= 0,

3. Verify that each of the following subsets of the symmetric group S, are themselves
groups (see that the composition of two elements in the subset is again in the subset,
the subset contains inverses of each element in the subset, and the subset contains
the neutral element):

{0'1, g3, 0-5}9 {019 0-6}9
{019 0-4}5 {0-1, 0'2},
{o1}s {61,02, 03,04, 05, O}
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. Analyze the group &, as &, is done in the text.
IfX = {1,2,3} and Y = {1, 2} construct X*.
. Show that all functions f:Q — Q of the form f(x) =ax + b, a, be Q, a # 0,

make a group which is a subset of the group S(Q). Prove there exists a member
of S(Q) which is not in the subset.



Rings: Basic theory

Chapters 2, 3, 4, and 5 compose the part of the book devoted to rings.
In Chapter 2 the basic structure of the ring is explored using set theoretic
concepts in such a manner that we can stress analogies when developing
other algebraic structures. In Chapter 3 we develop the natural number
system and the integers, and in Chapter 4 we use the natural number system
and the integers in a further study of rings including a development of the
rational numbers. Chapter 5 treats the ring of polynomials, some special
rings, and factorization, field extensions, and complex numbers.

We begin this chapter with a discussion of operations, neutral elements,
and other fundamental concepts of algebra. In this chapter we develop the
concepts of ring, subring, quotient ring, and morphism based upon the
corresponding set structures of set, subset, quotient set, and function. This
organization holds throughout this book for the purpose of easing the
learning for the student. Also included in this chapter are descriptions of
special rings such as integral domains and fields.

A ring is defined in Section 2.1 as a listing (R, +, -, ) in which R is a
set, + and - are binary operations, and 0 is a neutral element for addition.
Some students and practitioners of algebra may find our use of this listing
too formal, too repetitious, or simply too much bother to write. Our advice
in this regard is not to write the full listing (R, +, -, 8> but simply to write,
“R is a ring,” letting + and - and 0 be understood from context. It is an
advantage for the author to be specific about the ring being a set together
with the operations, and a necessity for the student to understand this, but
certainly a person should not feel obligated to write out such an expression
every time he wishes to discuss a ring. There are times in this text when it
isimportant to be quite specific about the involved operations in an algebraic
system; by having the notation and hopefully by having the reader prepared
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2. Rings: Basic theory

for such a point of view we hope to make our points better. The longer
notation does make clearer to the learner the true nature of the ring.

2.1 Binary operations

We have, through the composition of functions, introduced in Section
1.8 the concept of a group. Rather than discuss the group more fully at this
time, we move to the more familiar: the algebraic system with two binary
operations. Our number systems, the natural numbers, the integers, the
rational numbers, the real numbers, and the complex numbers are all
examples of sets with two binary operations consistently called addition
and multiplication. These operations enjoy various properties such as asso-
ciativity and commutativity. There are other properties to be considered
such as the existence of neutral elements and inverses. We will begin our
study of algebraic systems by analyzing the familiar, gradually increasing
our level of abstraction and sharpening our tools of analysis. It is through
higher levels of abstraction that we find the most aesthetically satisfying
organization of mathematics. A great strength of mathematics is its ability
to cast aside the irrelevant and concentrate upon the very essence of any
phenomenon. That the symmetries of art, the permutations of gamblers,
and the behavior of quanta have identical aspects is one of the surprises of
modern algebra.

We begin now with a study of the set of integers, Z. We do this because of
its present and historical importance, its central location in group and ring
theory, and its relative simplicity for beginners.

We make some observations about the integers and their two familiar
binary operations, addition and multiplication.

Addition. For any x, y € Z there exists a unique ze Z such that x + y = z.

Multiplication. For any x, y € Z there exists a unique z € Z such that
X y=z
Addition and multiplication are binary operations on the set Z and are
therefore functions

o:Z x Z > Z suchthat a(x,y)=x+y
w2 x Z - Z suchthat pu(x, y) = x- y(or xy).

For example, a(3, 4) = 7 and u(3, 4) = 12. The customary way of denoting
a value of the addition function is to place the sign + between the two argu-
ments giving x + y. If we wish, however, to emphasize that we are dealing
with a function and wish to disassociate ourselves from our prejudices
concerning the behavior of + we use a.

By way of recapitulation we state

Definition. A binary operation  on a set S is a function :S x S — S. The
value of f is written xfy or B(x, ).
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2.1 Binary operations

Definition. A binary operation f:S x S — S is associative if and only if
xB(yBz) = (xBy)Bzforall x, y,z€ S.

Definition. A binary operation :S x S — S is commutative if and only if
xBy = yBxforall x, yeS.

These last two conditions written as functions of two variables, as in calculus
courses, are

B(x, B(y, 2)) = B(B(x, y),z) forallx, y,z€S,
B(x, y) = B(y,x) forallx, yeS.

We proceed with other properties.

Definition. The binary operation 8:S x S — S has a neutral element vin S
ifand only if xfv = vBx = x forall x e §.

ExampLEs. For Z both a and p are associative and commutative. 0 is a
neutral element for « on Z. 1 is a neutral element for u on Z. In the set X*,
the collection of all functions from a given set X to itself, composition is
associative, but not commutative, and I is the neutral element.

In some specific situations neutral elements will have special names such
as zero, one, unity, identity.

Theorem. There can be at most one neutral element for any binary operation
on a set S.

PROOF. Suppose v’ and v’ are both neutral elements for some 8:S x § — S.
V'Bx = x for all x € § and therefore in particular v'v’ = v". xpv"’ = x for
all x € § and in particular v'fv” = v'. Comparing the two results we have
vV = O

A neutral element for any operation called addition is usually called a
zero element. A neutral element for an operation called multiplication we
shall call a unity. The word identity is used by many authors for this neutral
element but we shall reserve the term identity for the identity function. Even
though the usage of these terms varies considerably from author to author,
it is usually evident from context what is meant.

Definition. Given a set S and a binary operation 8:S x § — S with neutral
element v we say that an element x of S is invertible if and only if there
exists an element y of S such that xfy = yfx = v. Moreover, if there is
such an element y it is called the inverse of x.
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ExaMmpLEs. For Z, +, 0 we see —2 to be the inverse of 2. For Q, -, 1 we see
1 to be the inverse of 2. For Q9, o, I, we see f such that f(x) = 2x — 3 to be
the inverse of g such that g(x) = ix + 3.

Theorem. Let B:S x S — S be an associative binary operation on a set S
with neutral element v. If x is an invertible element of S then its inverse is
unique.

Proor. Welet both )’ and y” be inversesof xin S. y' = y'fv = y'B(xBy") =
(YBx)By” = vBy” = y". o

The inverse of any element x with respect to the operation of addition is
called its negative and denoted by —x. —x means the negative of x. The
symbol can be repeated; —(— x) means the negative of the negative of x. The
inverse of x with respect to multiplication we shall denote by x~. We shall
also use x~ to denote the inverse of x with respect to general operations
such as . The notation x~ will eventually yield to x ! but this will await the
introduction of exponents.

Theorem. If x is any invertible element of a set S with a binary associative
operation f with neutral element v then (x™)” = x.

PROOF. x is invertible means there exists y in S such that xfy = yfx = v.
It is clear from the symmetry of the equations that anytime y is the inverse
of x then x is also the inverse of y. Since y is the inverse of x we have x is
the inverse of the inverse of x. x = (x7)”. We have from an earlier theorem
that the inverse of the inverse of x is unique. !

We observe that if the binary operation is addition and v is the neutral
element O then the theorem states —(—x) = x.

Theorem. If x and y are both invertible elements of a set S with an associative
binary operation B having a neutral element v then xfy is also invertible
and its inverse is y~ fx”.

PrOOF. Since it is given that both x and y are invertible the element
y~Bx” belongs to S. (xBy)B(y~Bx") = ((xBy)By~)Bx~ = (xB(yBy™))Bx~ =
(xpv)fx~ = xfx~ = v. We can likewise show (y~ fx7)B(xBy) = v. y™ Bx~
is therefore the unique inverse of xfy. O

We point out that the commutativity of 8 is not used in the previous
theorem. In additive notation the previous theorem states —(x + y) =
(=y) + (—x) and in multiplicative notation the theorem reads (xy)™ =
y~x~. In the conventional use of addition it is assumed to be a commutative
operation which permits the result —(x + y) = (—y) + (—x) = (—x) +
(=)

The existence of an inverse for an element x implies that element x is
cancellable.
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Theorem. Let f§ be an associative operation on a set S with a neutral element v.
If x is an invertible element of S then

xBy = xPz impliesy = z
yBx = zfx impliesy = z

forany y, z€ S.

PrOOF. We prove only one of the statements leaving the other to the reader.
Suppose xBy = xBz. x~B(xBy) = x~B(xBz). (x™ px)By = (x~x)Bz. vBy =
vBz. y = z O

It is completely possible to have a cancellation theorem for a set and
binary operation without the existence of inverses. For example, in Z and
multiplication we have 2y = 2z implies y = z yet 2 is not an invertible
element of Z.

In the integers the two operations of addition and multiplication are
interrelated by means of a condition called distributivity:

x(y+z)=xy+ xz forallx, y,zeZ
(y + 2)x =yx+ zx forallx, y,ze Z.

We actually call the first left distributivity and the second right distributivity.
For a commutative multiplication each implies the other. We say in the case
of the integers that multiplication is distributive with respect to addition.
Note that the relation between addition and multiplication is not a symmetric
one; addition fails to be distributive with respect to multiplication. 3 +
(2-1) = 5whereas(3 + 2)- 3 + 1) = 20.

QUESTIONS

|1. The fact that x-1 = x and 1 - x = x for all x € R means
(A) x is invertible in R
(B) - is a commutative operation
(C) x is a binary operation on R
(D) 1is a neutral element of multiplication in R.
(E) None of the four answers is correct.

{2, v and v" are both neutral elements of multiplication in some set R implies
(A) xv'x = v'xv" for all xe R
(B) v/ =v"
(C) vxv'" = xv'v' forall xe R
D) v #0.
(E) None of the four answers is correct.

13. A binary operation on the natural numbers, N, is given by xfy = |x — y|, the
absolute value of the difference of x and y. Which of the following statements are
true?

(A) There is a unique neutral element for f.
(B) B is associative.
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(C) B is commutative.
(D) Every element of N has a unique inverse.
(E) All four statements are false.

. We give a binary operation = on the set S = {q, b, ¢, d} by means of this table:

* a b c d

a a b ¢ d
b b c a a
c c a d b
d d a b b.

Which of the following are true?
(A) = is commutative.
(B) + is associative.
(C) » has a unique neutral element.
(D) Every element of S has an inverse.
(E) Allinvertible elements of S have unique inverses.

. Let f be a binary operation on a set S. Then v is a neutral element of § if and only if

(A) vfx = xforsome xe §
(B) xBv = xforall xe S
(C) xpy — x =0and vfx — x = Oforallxe S
(D) f:S — S such that f(x) = xfv and ¢:S — S such that g(x) = vfx are both
the identity function I5.
(E) None of the four alternatives completes a true sentence.

. B is a binary operation on S implies

A s (S x8) xS
(B) B is associative
(C) range f = S
(D) p has values 0 and 1 only.
(E) None of the four alternatives completes a true sentence.

. Given a binary operation § on a set S with neutral element v, the element x in S

is invertible if and only if
(A) v belongs to the range of the function f:S — S such that f(y) = xfBy
(B) xBy = vforallye S
(C) B is commutative and there exists y € S such that xfy = v
(D) x is the inverse of the inverse of x.
(E) None of the four alternatives completes a true sentence.

EXERCISES

1.

Let the set be Q%, the binary operation be composition of functions, and the neutral
element be the identity function, I,.

Is f:Q — @ such that f{x) = 27x — 7 invertible?

Is g: @ — Q such that g(x) = x> + 2 invertible?

Is h:Q — Q@ such that h(x) = x> ~ 6 invertible?

. Give an example of a nonassociative binary operation on a set.
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3. Give three examples of binary operations with neutral elements.
4. Give an example of a binary operation which has no neutral element.

5. On N, the set of natural numbers, we define a binary operation such that x A y =
min{x, y}, the smaller of the two numbers. Show that the operation A is associative,
commutative and has no neutral element.

6. On N we define the binary operation v such that x v y = max{x, y}, the larger
of the two numbers. Show that v is associative, commutative, has a neutral element,
and only 0 is invertible.

7. v, is called a left neutral element for an operation :S x S — Sifand only if v,fx =
x for all x € S. v, is a right neutral element for an operation §:S x S — S if and
only if xfv, = x for all x € S. Prove that if a binary operation B on S has both a
left and a right neutral element then B has a neutral element.

8. On the set N we define a binary operation + such that x » y = x for all x, ye N.
Prove that « is associative, noncommutative, has no left neutral element, but has
an infinite number of right neutral elements.

9. Let X be a given set. On X = {S|S = X}, the set of all subsets of X, we define a
binary operation +, called symmetric difference, such that 4 + B = (4 u B) —
(4 n B). Prove that + is associative, commutative, has neutral element ¢, and
every element of ZX is invertible.

2.2 The ring

In this section we extend the concept of an operation, define a ring, and
derive several elementary properties of a ring.

In Section 2.1 we used the concept of an operation as a function assigning
a value in a set S to two given elements in S. This operation we called a binary
operation. By increasing the number of arguments to three we can speak of
ternary operations on a set. A ternary operation 7 on a set S is a function
7:5 x § x § — 8. An example of such a ternary operation on the set N is
to set 7(x, y, z) = min{x, y, z}, the minimum of the three numbers x, y, z.
With examples of binary operations and ternary operations behind him the
reader should be quite prepared to have an n-ary operation, for any non-
negative integer n, defined for him. We prepare with Cartesian products of
different sizes.

Definition. Let S be a set and n a positive integer. The nth Cartesian product
is 8" = {(x;, X3, ..., %,)|x1, . .., X, € S}. We further define S° to be the
set {0}.

In this definition S% = {(x;, x,)|x;, x, € S} coincides with the earlier
definition of the Cartesian product of two sets. S* = {(x,)|x; € S} we will
identify with S itself by ignoring the pair of parentheses. S° we have simply
defined to be the set with the one element 0 (the natural number 0). Having
defined Cartesian products of various sizes we can now define operations of
various sizes.
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Definition. Let n be a nonnegative integer and S a set. By an n-ary operation f
on the set S we mean a function f:S" — S. An O-ary operation is called a
nullary operation. A 1-ary operation is called a unary operation. A 2-ary
operation is called a binary operation.

ExaMmpLES. B(x, y) = x + y yields a binary operation § on N. t(x, y, z) =
xy — z defines a ternary operation t on Z. v(x) = — x defines a unary opera-
tion v on Z. An example of a nullary operation on N is v:N® — N so that
v(0) = 67. Since N® = {0}, a function that is a nullary operation on N has
but one argument, namely 0. The value of v for that one argument 0 must be
in N. When we know the one value, v(0) = 67, we know the entire function,
the entire nullary operation.

We have seen in the previous example, following the consequences of the
definition, that knowing a nullary operation v:S° — §is simply knowing one
value, v(0). A nullary operation, in effect, picks from S one element, the value
of v(0). Conversely, any choice of a single element from a set, or any designa-
tion of a single element from a set can be expressed in the form of a nullary
operation on the set. We can, for example, designate the number 1 in the
set of natural numbers, N, by giving a nullary operation v:N°® - N such
that v(0) = 1. Or as another instance one might distinguish the neutral
element of composition in S(X) with a nullary operation j: $(X)° - G(X)
such that j(0) = Iy. The logical advantage this use of nullary operations
gives us is to allow us to give information about a set and a single element of
that set in the form of an operation. This is an appealing esthetic consideration
in this section; in Chapter 8 the use of nullary operations will be an integral
and essential part of the study of general algebraic systems.

We now move toward a definition of the ring utilizing the material just
outlined on operations. By analogy with the integers it is conventional to
use the symbols + and - for binary operations on many different sets even
though the members of the set may not be numbers. In such cases, the opera-
tions must be clearly defined. By custom, + is used only for commutative
operations whereas - may or may not represent a commutative operation.

We now introduce the ring, of which the integers are the motivating
example.

Definition. {R, +, -, 8) is a ring if and only if

R is a set;

+ is a binary operation on R;

- is a binary operation on R; and

0 is a nullary operation on R such that

+ i1s associative and commutative,
- is associative,
0(0) is a neutral element for +,
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2.2 The ring

x(y+z2=x-y+ x-zforallx,y,zeR, and
(y+z-x=y-x+z xforallx,yzeR.

il

{R, +, -, 6) is a commutative ring if and only if (R, +, -, 0) is a ririg, and
- is commutative.

A certain amount of abuse of language is not uncommon. We frequently
speak of the ring R, mentioning only the set R and leaving the operations to
be understood by the reader. We also will use 6 both as a symbol for the
nullary operation and for the neutral element in its range. Both of these
practices are abuses because a set, in and of itself, is not a ring and there is
a difference between a function and the range of a function. Nevertheless,
the first practice is universal. The second will save us from some cumbersome
expressions.

Our principal example of a ring is (Z, +, -, 0> which has inspired our
definition. {Z, +, -, 0> is, moreover, a commutative ring. We now prove some
beginning results that apply to all rings, commutative or not.

Theorem. Let (R, +,-,0> bearing. Then®-x = x-60 = 0 for all x e R.

ProoF. This result follows from distributivity and the neutral property of 6.
0-x+0-x=0+0)-x=0-x=0-x+ 0. From both sides of - x +
0-x =0 x + Ocancel § - xyielding § - x = 0. Toprove x - § = 0 we repeat
the proof from the right instead of the left. The cancellation is possible
because every element of R is additively invertible; every element which is
additively invertible is additively cancellable. O

Theorem. Let <R, +, -, 0> be a ring. Then x(—y) = (—x)y = —(xy) for
allx, ye R.

ProoF. We have followed the usual custom of omitting the symbol for
multiplication when no confusion can occur. x(—y) + xy = x[(—)) + y] =
x0 = 0. Because + is commutative xy + x(—y) = 6 also. We conclude
x(—y) is the unique negative of xy which is written —(xy). This is to say,
x(—y) = —(xy). In a symmetric manner we prove (—x)y = —(xy). O

Theorem. Let (R, +, -, 0) be a ring. Then (—x)(—y) = xy forall x, ye R.

Proor. Using the previous theorem twice: (—x)(—y) = —[x(—y)] =
—[—(xp)]. But —(—(xy)) = xy because the inverse of the inverse of any
element is the element itself. O

The previous theorems demonstrate how some of the frequently performed
manipulations of school algebra are valid in rings in general. We also can
observe as we develop the theory of rings for what reasons our manipulations
of school algebra are valid.

Theorem. Let (R, +, -, 0 be a ring. Let the operation of multiplication have
a neutral element vin R. Then (—v)x = x(—v) = —x forall xe R.
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2. Rings: Basic theory

Proor. We notice that our ring in this theorem is not assumed to be a com-
mutative ring so that (—v)x = x(—v) does not follow from commutativity.
However, (—v)x = —(vx) = —xand x(—v) = —(xv) = —xforallxeR. O

In the case of (Z, +, -, 0) (the integers have neutral element of multipli-
cation 1) the theorem tells us (—1)x = x(—1) = —x for all x € Z. In words,
to find the negative of an integer x multiply that integer by the integer —1,
the negative of 1. Qur familiarity with these results should not be allowed to
prevent our gaining a deeper understanding for why they are true.

QUESTIONS

1. Let (R, +,, 0) be aring.

0x = x for all x € R implies
(A) R = {0}
(B) 0 is the neutral element of multiplication for R
(C) R is a commutative ring
(D) there is an element of R which is invertible with respect to multiplication

and is nonzero.
(E) None of the possibilities completes a true sentence.

2. Aring (R, +,-, 0>
(A) must contain a neutral element of addition
(B) must contain a neutral element of multiplication
(C) must have its addition commutative
(D) must have its multiplication commutative.
(E) None of the four alternatives completes a true sentence.

;3. Inaring <R, +,-,0)
(A) every element must have an additive inverse in R
(B) every element must have a multiplicative inverse in R
(C) a negative of an element must itself have a negative in R
(D) amultiplicative inverse of an element must itself have a multiplicative inverse
in R.
(E) None of the alternatives completes a true sentence.

4. Let (R, +, -, 6> be a ring with a neutral element of multiplication, v. Which of
these statements are true?
(A) <R, +, 8 is a commutative group.
(B) <R, -, v) is a group.
(C) <R — {8},-, v) is a group.
(D) v is also a neutral element of addition.
(E) None of the four statements is true.

EXERCISES

1. Which of the following examples are rings and which are not rings? You must,
in each case, supply the understood operations.
{a) The set of all even integers
(b) The set of all odd integers
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2.2 Thering

(c) The set of alt nonnegative integers

(d) The set of all polynomials with real coefficients which have degree two or less:
{4x* + Bx + C|4,B,CeR}

(e) The set of all polynomials of degree two or less with even integer coefficients

(f) The set of all fractions which when reduced to lowest terms have even integer
denominators

(g) The set of all expressions of the form a + b\/z a,beZ.

. We define on the set {g, b} two operations +, T, by means of these operation tables:

* a b + a b
a a b a a a
b b a b a b

Verify that ({q, b}, +, t, a) is a ring, but {{g, b}, T, », b) is not a ring.

. In what ways does (2X, U, n, &) fail to be a ring?

. Using the definition of + given in Exercise 9, Section 2.1, show that (2X, +,

N, &> is a ring. Is there a neutral element of multiplication (n)? Which elements
are N-invertible?

. Show that left distributivity and commutativity of multiplication imply right

distributivity.

. Let (R, +, -, 6) be a ring with a neutral element of multiplication v. Prove v = 8

ifand only if R = {6}.

. Let (R, +, -, 0) be a ring. The set of two by two matrices over R is the set R2*2 =

¢ d
(a b> (e f>_<a+e b+f> (a b)(e f>_<ae+bg af+bh>
cd+gh_c+gd+h’ c d) \g n) \ce+dg o +dn)

0
0 0
ring. Is there a neutral element of multiplication in this ring?

We will be studying matrices in considerable detail in later chapters, but we

do wish to use this simple case at this time as a valuable example of a noncommuta-
tive ring.

ab,c,de R}. On this set we define + and - as follows:

Prove that <R2x2, +,, < )> is a ring. Show that this is a noncommutative

. Which of the following sets are rings?

(a) The set of all two by two matrices with values in Z

(b) The set of all two by two matrices with values in Z but always with 0 in the
lower right corner of the matrix

(c) The set of all two by two matrices with even integer values.

. Let (R, +, -, 0> be a ring such that xx = x for all x € R. Prove x + x = 0 for all

x € R. Prove the ring is commutative.

Give an example of a noncommutative ring obeying the condition x + x = 6
for all x in the ring.
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11. Let (R, +, -, #) be a ring and S a nonempty set. Prove (RS, +, -, z) is a ring in
which
RS is the set of all functions with domain S and codomain R,
(f + 9):S = Rsuch that (f + g)(x) = f(x) + g(x)forall xe S,
(f - 9):S = Rsuch that (f - g)(x) = f(x) - g(x) for all x € S, and
z:S — R such that z(x) = fforall xe S.

12. From calculus we borrow the definition of a continuous function. A function
f:[0, 1] > R is continuous on [0, 1] if and only if for each a in the closed unit
interval [0, 1], lim,_, f(x) = f(a). Let C°[0, 1] = {f|f € R " and f is con-
tinuous on [0, 1]}. Show that C°[0, 1], the set of all functions continuous on [0, 1],
is a ring.

2.3 Special rings

In this section are defined some special rings: unitary ring, product ring,
integral domain, division ring, and field.

A formalization of the existence of a neutral element for ring multiplica-
tion produces this definition:

Definition. (R, +, -, 0, v)> is a unitary ring if and only if (R, +, -, 0> is a
ring, v is a nullary operation on R such that v(0) is a neutral element
for -. We shall call the neutral element of multiplication a unity of the ring.

We note that {Z, +, -, 0, 1) is a unitary ring with unity 1.

Prior to the formal definition of the product ring we construct an example.
This example makes a ring of the set Z x Z of all pairs of integers. Z x Z =
{(x, y)|x€ Z and y € Z}. We must define two binary operations on the set
Z x Z, calling the first addition and the second multiplication.

(D) + wv)=(+ut+uv),
(s, 1) (u, v) = (su, tv).

The operation + is an associative and commutative operation with a neutral
element (0, 0). We verify these assertions.

0+ [wo) + W, )] =(s0) + @+ w0+ X)
=@+ W+ w,t+ @+ x)
=((s+uw+w(+0v+x
=@ +ut+ov)+ wx
= [(s, ) + (w, v)] + (W, x).
D+ wv)y=6+ut+v)=w+sv+1=uwv)+(s?.
0,00+ (5,) =0 + 5,0 + 1) = (s 0).
5D +0,0=(E+01t+0=(s1).
With respect to +, every element of Z x Z is invertible.
G, 8) + (—s, —t) = (0,0); (=s, —=t) + (s, t) = (0, 0).
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In these proofs the properties of + for Z x Z depend upon the underlying
properties of + in Z. That - on Z x Z is also commutative and associative
may be proved easily by the reader. (1, 1) is furthermore a neutral element
for multiplication. Left distributivity holds.

(s, )W v) + W, x)] = (5, )+ w, v+ x)
= (s(u + w), t(v + x))
= (su + sw, tv + tx)
= (su, tv) + (sw, tx)
= (s, )(u, v) + (s, t)(w, x).
The right distributive theorem is verified similarly. This completes the veri-
fication that (Z x Z, +,-,(0, 0), (1, 1)} is a unitary commutative ring.

The construction in the previous example motivates the following defini-
tion of a product ring.

Definition. Given rings (R, +', 7, 8'> and {R", +", -", 8”> we define the
product of the two rings to be (R’ x R”, +, -, (#, ")) in which + and
- are defined by

(x/, x//) + (y/’ yu) — (x/ +/ y/, X'’ +// yn)
(x/, xn) . (y/’ y//) — (x/ ./ y/, X" y//).

It is not difficult to prove the product is a ring; the proofiis like the example
verification preceding the definition.
Returning to the integers we notice the integers enjoy the following
property:
uv = O impliesu = Oorv = 0.
One says, to describe this property, that the integers have no nontrivial
divisors of zero. This property is used to define a special kind of ring,

Definition. (R, +, -, 6, v) is an integral domain if and only if (R, +, -, 0, v)>
is a commutative unitary ring, # # v,and xy = @ impliesx = for y = 0
for all x, ye R.

Z, Q, and R are all integral domains, but the product ring Z x Z is not
an integral domain: (1, 0)(0, 1) = (0, 0).

The condition xy = 0 implies x = 0 or y = @ is equivalent in a ring to
cancellation, which we now prove.

Theorem. A commutative unitary ring (R, +,-, 8, v) with 8 # v is an integral
domain if and only if nonzero multiplicative cancellation is always possible.

PRrOOF. Suppose multiplicative cancellation is always possible for nonzero
elements. Let xy = 6. xy = x0 because xf = 8. If x # 0 then cancel x to
get y = 0. Therefore either x = for y = 6.
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For the converse, assume R is an integral domain and let xy = xz with
x#0.xy +(—(x2)) =0.xy + x(—2) =0.x(y + (—z)) = 6. Since x # 0
wemusthave y + (—2) = 0. y = z. a

We finish this section with several more definitions.

Definition. <R, +, -, 6, v) is a division ring if and only if <R, +, -, 0, vD is
a unitary ring, 8 # v, and every nonzero element of R is multiplicatively
invertible.

Definition. (R, +,-, 0, v) is a field if and only if (R, +, -, 6, v) is a commuta-
tive division ring.

We observe that every field is an integral domain. @, R, and C are all
fields while Z is not a field.

QUESTIONS

{1. Which of the following statements are true?
(A) Some integral domains are fields.
(B) Some division rings are fields.
(C) Some fields are division rings.
(D) Some integral domains are not fields.
(E) Some division rings are not integral domains.

|2. The set of even integers with the usual sum and product
(A) is an integral domain
(B) has no nontrivial divisors of zero
(C) is a field
(D) is a commutative ring
(E) is a division ring.

3. The product ring Z x Z
(A) is a commutative ring
(B) is a commutative unitary ring
(C) is an integral domain
(D) is a field.
(E) None of the alternatives completes a true sentence.

{4, The natural number system <N, +,-, 0> isa
(A) ring
(B) unitary ring
(C) integral domain
(D) field.
(E) None of the possibilities completes a satisfactory sentence.

t 5. In any unitary ring
(A) some elements have inverses
(B) there are multiplicatively cancellable elements
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(C) 6 never has a multiplicative inverse
(D) there are elements which commute with all other elements.
(E) None of the four alternatives completes a satisfactory sentence.

EXERCISES

10.

11.

12.

13.

14.

. Prove that the product of two rings is itself a ring.
. Show that no product ring of nontrivial rings can be an integral domain.

1
2
3.
4

Give an example of a ring without a unity.

. Does the ring {2X, +, N, J) have nontrivial divisors of zero? Is it an integral

domain?

. On the set Z x Z we define the following two operations:

8+ Wwv)=(+ut+ )
(s, ) C1(u, v) = (su + tv, sv + tu).
Show that {Z x Z, +, [, (0, 0)) is a ring. Is the ring commutative? Does the ring

have a unity? Is the ring an integral domain? Which elements of the ring are [J-
invertible?

. Is @**2 an integral domain? Which elements of the ring ©2*? are invertible?

. Let (R, +, -, 6) be a ring with unity v. Show that every nonzero element of R is

multiplicatively invertible if and only if the equations

ax+b=20
xc+d=0 abc,deRa#0,b#0

always have unique solutions (for x) in R.

. Show that the commutativity of addition is derivable from the other statements

in the definition of a unitary ring.

. Let (R, +, -, 0, v) be a commutative unitary ring. Prove that the set of all multi-

plicatively invertible elements of R is a group under multiplication.

Let S be a subset of a field (K, +, -, 0, v) closed under addition, multiplication,
negatives, and reciprocals (of nonzero members). Prove S contains 8 and v if and
only if § contains at least two members.

Let (R, +, -, 8, v) be an integral domain. Let S be a subset of R such that {8, +,
-, @ is itself a ring with a unity and such that S contains more than one element.
Prove that the unity of S is v.

Let (R, +, -, 8) be a ring without nontrivial divisors of zero. Suppose there exists
anelementa € R, a # 0, such that aa = a. Prove R has a unity. Beware of assuming
the existence of a unity.

Prove that if a ring (R, +, *, 6) has a left unity which is unique then the ring has
a unity.

Let (R, +, -, 6, v)> be a unitary ring. Let x be an element of R which has at least
one left multiplicative inverse and at least one right multiplicative inverse. Prove
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that x has a unique multiplicative inverse in R. Prove furthermore that x has only
one left multiplicative inverse and only one right multiplicative inverse.

15. Beginners in school algebra often write (x + y)> = x*> + y2. Give an example
of a ring (R, +, -, ) for which this statement is true: (x + y)(x + y) = xx + yy
for all x, y € R. Give an example of a ring in which the statement is false.

16. Suppose <R, +, -, 8) is a ring such that (x + y)(x + y) = xx + yy for all x,
y € R. Prove
(@ xy = —yxforallx,yeR
(b) xx + xxforall xe R
(¢) x + x = @ for all x € R if R has a unity.

17. Give an example of a ring <R, +, -, 8) such that xy = —yx for all x, ye R yet
it is false that x + x = 0 for all xe R.

18. Give an example of a ring (R, +, -, 8) such that x + x = 0 for all xe R yet it
is false that xx = x for all x € R.

19. Let <R, +, -. 0, v> be a unitary ring. Let x be an element of R with a unique left
multiplicative inverse. Prove x has an inverse in R.

20. An important example of a division ring which is not a field is given by the set
of quaternions, {a + bi + ¢j + dk|a, b, ¢, d € R}. Addition of two quaternions is
defined by the rule (a, + byi + ¢, j + dik) + (a; + byi + ¢,j + dyk) = (a; + a,) +
(by + by)i + (¢y + ¢3)j + (d, + d,)k. This addition is commutative and associa-
tive, there is a neutral element 0 = 0 + 0i + 0j + Ok and every quaternion has a
negative. Multiplication is defined using these reduction rules:

P==k>=—-1, i=—ji=k jk=—-ki=iki= —ik=]j.
(a; + byi + c,j + dik)ay + byi + c,j + dyk)
= @18y + arbyi + a;¢3j + aydok + biazi + bibyi? + bicyij + bidyik + 10,
+ 1byji + ¢16,5% + ¢ydyjk + diazk + dibyki + dicykj + didyk?
= (a10, — biby — c1c; — dydy) + (a1b; + bia; + ¢dy — dycy)i
+ (a,¢, + cia, + diby — bydy)j + (ad, + dia; + bicy, — cyby)k
The multiplication is noncommutative since, for example, ij # ji. The multiplica-
tion is associative. Show that
(1/(@® + b% + ¢ + d?)a — bi — ¢j — dk)

is the inverse of a + bi + ¢j + dk to prove that the quaternions are a division ring,

2.4 Subrings

In this section we define a subring, derive necessary and sufficient condi-
tions for a subset to be a subring, and define the subring generated by a
subset of a ring.

We begin with the subring.

Definition. S, a subset of the set R, is a subring of the ring (R, +, -, 6) if and
only if S, +, -, 8> is a ring.
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2.4 Subrings

It is to be understood in this definition that + and -, the binary operations
on the subset S, are to have the same values on S that they have on the
including set R. It is necessary, therefore, in order that + and - be binary
operations on S, that x, y € S imply x + y and xy belongs to S. We speak
then of + and - as being closed on S.

ExaMpLE. We denote the even integers by 27 = {2x|x €Z}.2Z, +,-,0)
is a subring of (Z, +, -, 0). Note that the subring must contain 0 to be a ring.
In this example the subring 27 fails to contain a unity although the original
ring Z does.

The odd integers, 2Z + 1 = {2x + 1|x € Z} do not form a subring. 0 fails
to be a member. Furthermore, 3 + 7 = 10, not an odd integer.

We now develop necessary and sufficient conditions for a given subset of
a ring to be a subring.

Theorem. S, a subset of R, is a subring of (R, +, -, 0 if and only if

S # & and
X, yeS implyx + y, xy,and —x are in S.

Proor. First assume S is a subring. S is itself a ring. S # J because S must
contain 6, the neutral element of addition. Let x and ye S. x + y and xy
must belong to S because the addition and multiplication are binary opera-
tions on S. — x is in S because every element of S is +-invertible if S is a ring.

Secondly, to prove the converse, assume S is a subset of R such that
S# ¢ and x, ye S imply x + y, xy, and —x are in S. We must prove
{S, +, -, 8 is a ring. The operations + and - are binary operations on S.
Given S # F letae S. Then —aeS. (@) + (—a)e S. 0 S. Every xe S is
+-invertible since —x € S. Both + and - are associative operations on R
and therefore certainly on S. Addition is commutative on R and therefore
also commutative on S. Thus ¢S, +, -, 8> is a ring, a subring of (R, +, -,
0>. O

Every ring contains as subrings the trivial subring {6} and the entire ring
itself. Given an arbitrary subset 4 of a ring (R, +, -, 8> we ask the question
whether or not there exist subrings of R which contain the given 4 as a
subset. The answer is yes, there always exists at least one subring of R
containing A, namely R itself. The following theorem proves a stronger
result; there exists a smallest subring of R containing A.

Theorem. Let A be any subset of a ring {R, +, -, 0. Then there exists a
smallest subring of R which contains the set A as a subset.
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PrOOF. We define a collection ¥ of subrings of R as follows:
% = {S|A = S and S is a subring of R}.

R € ¥ and therefore ¥ # .

We now form the intersection of the collection €. The intersection of the
collection ¥ is the set of all elements belonging to every subring in the
collection %.

(¥ = {x|x € S for every S € }.

We now demonstrate that this subset of R is actually a subring of R. Let x
and y belong to (). By the definition of the intersection x € S for all Se ¥
and ye S for all Se €. Then x + y, xy, and —x belong to S for all S€ %.
x + ,xy, and —x belong to (4. Furthermore, § € Sforall Se €. 0 € (\%.
(¥ is a subring of R.

Let us now show A < ()%. Choose any x € A. Then x e S for every
S e € because A < S for every Se €. x € ()%.

It remains to show that () is the smallest subring of R containing 4 as
a subset. We observe first that ()¢ < S for every S € %. This is to say that
the intersection of a collection of sets is a subset of every set in the collection.
Thus (% is smaller than any other subring of R containing A. O

Definition. Given any subset A of a ring (R, +, -, 8> we define the subring
of R generated by the set 4 to be the smallest subring of R containing A.
We denote the subring of R generated by 4 by [A4].

It is to be observed that the theorem preceding makes the definition
possible.

ExampLES. {0, 1} generates the entire ring Z. As a subset of Z we have
[2Z + 1] = Z.1In Z,[{3, 6}] = 3Z. As asubset of Q,[Z] = Z.If we denote
the positive fractions by Q* then [Q*] = Q.

For a finite set such as {a, b, ¢} we frequently abbreviate [{a, b, c}] with
[a, b, c] if there is no danger of error.

QUESTIONS

1. Let % be the collection of all subrings of a given ring (R, +, -, ). Which of these
statements are false?
(A) {0} e%.
(B) ¢e%.
(C) Re®.
(D) Y e
(E) All four statements are true.

2. Let % be the collection of all subrings containing some given subset A of the ring
{R, +,+, 8). Which of these statements are true?
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(A) {8} e%.
(B) Re¥.
© g e
(D) Ae¥.
(E) None of the statements is true.

. Given that & is a collection of subrings of a ring (R, +, -, > which of these state-

ments are true?
(A) {0} € @.
(B) Re%.
€) Uges.
D) (¢ e
(E) All four statements are false.

. In the product ring Z x Z the subset {(x, x")|x, x" € Z and x’ = 2x"}

(A) isasubringof Z x Z
(B) fails to be closed under negation
(C) fails to be closed under addition
(D) fails to be closed under multiplication.
(E) None of the four alternatives completes a true sentence.

A

ad — bc > 0} of Z2*2 we can say that S is

A) a subring of Z%*2

B) not a subring of Z2*2 because S =

C) not a subring of Z%>*2 because S is not closed under multiplication
D) not a subring of Z2*2 because S is not closed under negation.

(E) None of the four choices satisfactorily completes the sentence.

—_——

— —

EXERCISES

1.
2.

ommmen ()8 e[ G HE )

. Given the ring <Q, +, -, 0 find [3], [{1/njne Z — {0} }],[1, %, 5].

Given the ring <Z, +, +, 0> find [0], [1], [2], [7].
Given the ring <R, +, -, 0> find [0], [1], [x], [1, 2].

. Find the collection of all subrings of Z containing the set {12}. What is the inter-

section of this collection?

. Given the ring <2(N), +, N, &> find [{0, 1}]. Let s(n) = {x|x e Nand 0 < x < n},

the open segment of N determined by n. Find [{s(n)|n € N}].

. Anexpressionsuchas2 + 5X + 9X%or} + $X + 22X5 is known as a polynomial,

While we shall study polynomial rings in detail in Chapter 5 many aspects of poly-
nomials are familiar and intuitive enough we can use them now as examples. The
set of all polynomials of all degrees with rational coefficients, {a, + a; X + -+ +
a,X "Iao, ay,...,a,€ Q,ne N}, is a ring with the usual school algebra way of adding
and multiplying polynomials. Find 1], [X], [Q u {X}].

49



2. Rings: Basic theory

2.5 Morphisms

In this section the structure-preserving functions, morphisms, are defined
and investigated.

Let (R, +,-,0>and R/, +',*,0") be two rings and f:R — R’ a function.
Consider the situation suggested by Figure 2.1. We might well obtain differ-
ent results upon calculating f(x + y) and calculating f(x) +’ f(y). Whether
we first find the sum of x and y in R and second find the image in R’ or
whether we first find the images of x and y in R’ and then add in R’ may
affect the outcome. If, however, the function f is of such a character that
fix + y) = f(x) +' f(y) for all x, y€ R we say that f preserves the first
operation + in the second +'. When f preserves all the operations of one
mathematical system in the respective ones of the second then we call f a
morphism.

Figure 2.1

Definition. Given rings (R, +, -, 0), (R, +/,”, 0> and a function f:R — R’
we say f is a ring morphism if and only if

fx+ y) = f(x) +' f(y) forallx, yeR;
f(xy) = f(x)* f(y) forallx, ye R;and
fle)=1¢6.

We shall later consider morphisms of other algebraic systems such as
groups and vector spaces. Only when there is a possibility of confusion need
one say ring morphism rather than just morphism. An older term with the
same meaning as morphism is homomorphism. We use the shorter term
morphism and reserve the use of prefixes for special kinds of morphisms.

We now prove a theorem about morphisms which shows the condition
f(0) = @ to be superfluous for rings.

Theorem. Given rings (R, +,-, 8>, (R, +',~, 8’ and a function f:R — R/,
f is a morphism if and only if

fix + y) = f(x) +' f(y) forallx, yeR,and
flx-y)=f(x)" f(y) forallx, yeR.

50



2.5 Morphisms

PrOOF. Obviously if f is a morphism then the two statements are true. It is
the converse that requires the discussion. We must prove that if f(x + y) =

f(x) +" f(y) and f(xy) = f(x)f(y) for all x, y € R then f(6) = 6.

f6) = f(6 + 60) = f(6) +" 10).
fO) +7 6 = f6) +' f(0).

Because f(6) is an element of R’ and therefore has an additive inverse we can
cancel f(0) yielding 6’ = f(6). O

Depending upon special properties of the function we have special names
for morphisms which we now introduce.

Definition. Let f:R — R’ be a morphism of the rings (R, +, -, §> and
(R +1,, 8.
If f is an injection then we call f' a monomorphism.

If f is a surjection then we call f an epimorphism.
If f is a bijection then we call f an isomorphism.

ExaMPLEs. Let S be a subring of the ring (R, +, -, 8. The identity injection
j:S = R such that j(x) = x is a monomorphism.

Let Z x Z be the product ring of Z with itself. The functionp,:Z x Z —» Z
such that p(x, y) = x is an epimorphism but not a monomorphism.

The function q,:Z — Z x Z such that g,(x) = (x, 0) is a monomorphism
but not an epimorphism.

The range, f(R), of a morphism f:R — R’ has many of the properties of
the domain R. We list some of these in a theorem.

Theorem. Let f:R — R’ be a morphism of the rings <R, +, -, 0> and (R,
+',7,0). Then

(@ f(—x) = —f(x) forallxe R

(b) f(R) is a subring of R’

(©) <R, +,-,0) is a commutative ring implies { f(R), +',", 0> is a commuta-
tive ring

(d) v is a unity for R implies f(v) is a unity for f(R)

(¢) if both R and R’ are unitary rings and f(v) = V' and x is multiplicatively
invertible in R, then f(x™) = f(x)".

PROOF

(@) f(x) +'f(=x) = f(x + (=x)) = f(6) = 0. Likewise, f(—x) + f(x) =
¢ for all x € R. f(—x) = —f(x) the unique negative of f(x) in R'.

(b) f(R) = {f(x)|x € R}. We must show f(R) nonempty and closed under
addition, multiplication, and negatives. 8" belongs to f(R) because f(§) = 6.

f(R) # &. Let y,, y, € f(R). y1 = f(xy) and y, = f(x,) for some X1s
x2€ Ry, +"y; = flx) +' f(x;) = f(x; + x;3). x; + x, € R implies
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fxy + x3) € f(R). yy 7y, = f(x1) ' f(xz) = f(x1%3). x;%, € R implies
f(x1x3) € f(R). —y; = —f(x;) = f(—x,). —x, € R implies f(—x,) € f(R).

(d) We suppose R to have a unity v. Then f(v) € f(R). Any element y € f(R)
is f(x) for some xe R. y ' f(v) = f(x) 7 f(v) = flxv) = f(x) = y. f()) " y =
0 f(x) = f(vx) = f(x) = y. f(v)is a neutral element for -~ on f(R), a unity
for the subring f(R).

(e) Let x~ represent the multiplicative inverse of x in R. f(x7)f(x) =
f(x™x) = f(v) = vV and f(x)f(x ") = f(xx™) = f(v) = V. f(x7)is the unique
inverse of f(x); f(x™) = f(x)~. O

Several comments are in order at this point. In part (c) of the preceding
theorem we have not asserted that the codomain R’ is a commutative ring,
only the range f(R). In part (d), f(v) is not necessarily a unity for R even if
R’ has a unity; f(v) is only a unity for f(R).

Finally we prove that the inverse of an isomorphism is also an
isomorphism.

Theorem. If f:R — R’ is an isomorphism of rings (R, +, -, 0> and (R, +/,
/0> then f ~*:R’ — R is an isomorphism.

PROOF. Since f is a bijection R — R’ then there exists a bijection f "!:R’ — R
suchthat f~'of = Igand fo f! = Ix. y = f(x)ifand only if x = f ().
F7My +' ) = 7)) + f(x2)) = 7 + x2)) = % + %, =
£~ Yy1) + f~X(y,)- We use the fact that f is a surjection to find x; and x,
in R so that f(x,) = y, and f(x,) = y,. A parallel argument proves the
formula for multiplication. f ~! is a morphism. O

QUESTIONS

1. Let f:Z — Z such that f(x) = 2x. Which of these statements are false?
(A) fisa monomorphlsm
B) 100 =
(©) {XIf(x = 0} = {0}.
(D) f(2) is a subring of Z.
(E) All four statements are true.

2. The image f(A) of a subring A under a ring morphism f:R — R’ is
(A) a subring of R’
(B) a subring of R
(C) a subset of R

(D) nonempty.

(E) None of the four possibilities completes a true sentence.

3. The preimage f ™ *(B) of a subring B by a ring morphism f:R — R’is
(A) a subring of R’
(B) a subring of R
(C) a subset of R
(D) nonempty.
(E) None of the four alternatives completes a true sentence.
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4. If f:R — R'is a ring morphism then

(A) f~1(0) may be empty

(B) f~1(6) is never empty

(C) f~1(6) always contains exactly one member
(D) f~(6) may contain more than one member

(E) f~Y(0) always contains more than one member.

EXERCISES

1.

. Given the rings {Q, +, -, 0> and <@2’<2, +,, (

Let <R, +,-, 6> and (R, +', -, §') be rings and f:R — R’ be a morphism. Prove
A is a subring of R implies f(A) is a subring of R’. Prove B is a subring of R’ implies
f~!(B) is a subring of R.

. Let (R, +, -, 0) and (R, +',/, &) be rings and f:R — R’ be a morphism. Can

R be commutative and R’ be not commutative? Can R’ be commutative and R
be not commutative? Can R be commutative and f(R) be not commutative?
Can f(R) be commutative and R be not commutative? In each case support your
answer.

. Define new operations on Z as follows:

Xoy=Xx+4+y — Xy, x*y=x+y— L
Using the two new binary operations and Z create a new ring. Show that the new
ring is isomorphic to {Z, +, -, 0). Warning: it is not specified which of the two
new operations plays the role of addition.

. Let <R, +, -, 8) be a ring, R’ be a set with binary operations +’ and -, and

f:R — R’ be a surjection preserving + in +' and preserving - in . Prove there
exists a neutral element 6" in R’ such that {R’, +’,~, §'> is a ring and f:R — R’
is an epimorphism.

. Let (R, +, -, 8) be a ring with neutral element v. For a, any multiplicatively in-

vertible element of R, we define ¢,:R — R such that ¢,(x) = a”xa for all x € R.
Prove that ¢,:R — R is an isomorphism. ¢, is called an inner automorphism of
R and the set of all inner automorphisms of R will be denoted by #(R).

0
0 g>> we define f:Q — Q%*2

0
such that f(x) = (;)C 0). Prove (a) f is a monomorphism; (b) both rings have
unities; (c) f(1) is not the unity of @2*?; (d) f(x™) # f(x)~ for all x € Q.

. Given § # (& prove that any ring <R, +, -, 6) is isomorphic with a subring of

the ring (RS, +, -, z) (cf. Exercise 11, Section 2.2).

. Given rings (R’, +', /, 6> and <R”, +", ", 8" prove that the projections

p1:R" x R" > R’ such that p,(x;, x,) = x;
p2:R’ x R" - R” such that p,(xq, x,) = x,

of the product ring into R’ and the product ring into R” are epimorphisms.

. Givenrings (R, +,-,6>, (R, +',7,8,(R", +",-", 8" and morphisms f:R — R,

g:R — R” prove there exists a morphism @:R — R’ x R” such that p, o ® = f
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10.

11.

12.

13.

14.

15.

and p, o ® = g where p, and p, are the projections of the product R' x R"” (cf.
Exercise 8).

f :
/
R=—2 R xR
N
g RN

Let (R, +, -, ) be a ring. Prove (R, +, o, z) is not a ring (the second binary
operation is composition and z is the function with zero for all its values). Which
distributive law fails?

Let (R, +,, 0) and (R, +', *, &> be rings. We denote the set of all morphisms
from R to R’ by Mor(R, R’). Is Mor(R, R’) closed under the functional addition:
(f + 9)(x) = f(x) + g(x)? We call a morphism of a ring R into R, itself, an en-
domorphism and denote Mor(R, R) with &(R). Show that (&(R), +, o, z) is a ring.

If (R, +, -, 8 is a commutative ring then (R®, +, -, z) is also a commutative ring.
Why? Is {&(R), +, ¢, z) also a commutative ring? Again note that the second
binary operation is now functional composition.

Given a unitary ring {R, +, -, 8, v) prove there exists a subring of £(R) isomorphic
to R. [Hint: f,(x) = ax.]

How many possible nonisomorphic rings are there with two elements? three ele-
ments? four elements? [Hint: Study all possible binary operation tables.]

In this example we construct C, the complex numbers, from R, the real numbers.
The construction closely resembles the product ring construction but has a different
multiplication.

(a) Prove (R x R, +, ®, (0, 0), (1, 0)) is a field in which + is the product ring
addition and © is defined as follows: (x{, X3) © (¥1, ¥2) = (X1¥1 — X2V,
X1V, + X,y1). [Hint: The multiplicative inverse of (x;, x,) is (1 /(x? + x3),
—x/(x} + x3)).]

(b) Prove that if (x;, x,) is a member of R x R then (x;, x;) = (x;, 0) +
(0, 1)(x2, 0).

(c) Prove Rand R x {0} are isomorphic; ie., show that #:R — R x R such that
@(x) = (x, 0) is a monomorphism with range R x {0}.

(d) We denote the number (0, 1) by i and note i =(-1,0).

(¢) We use the isomorphism @ to identify R with the subset R x {0} of R x R
so that we write (x, 0) simply as the real x. Show that any (x;, x,) in R x R
can thus be written as x; + x,i. We call the set {x; + X,i|x;, x, € R} the
complex numbers and use the symbol C for the set.

2.6 Quotient rings

In this section we extend the concept of quotient set to quotient ring and

thereby introduce ideals.
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2.6 Quotient rings

Definition. If + is a binary operation on a set R, and A and B are subsets of
R and x is an element of R then

x+ A= {x+ aae 4}
A+ B={a+baecAandbe B}.

Similarly, if - is a binary operation on a set R, A and B are subsets of R and
x is an element of R then

xA = {xala € A}
AB = {ablae A and b € B}.

ExampLE. If 4 = {1, 3,5}, B = {2, 5, 6} are subsets of Z and x = 7 is an
elementof Zthenx + A = {8,10,12}, 4 + B = {3,5,6,7,8,9,10,11},x4 =
{7,21,35} and AB = {2, 5,6, 10, 12, 15, 18, 25, 30}.

We recommend at this point a review of equivalence relations, quotient
sets and quotient maps of Chapter 1. Forearmed, we begin the process of
constructing the quotient ring.

Definition. If <R, +, -, 6> is a ring and A is a subset of R then we define
R/A = {x + A|xe R}.

Theorem. If (R, +, -, 8) is a ring and A is a subring of R then R/A is a quo-
tient set of R.

ProOOF. In terms of the given subring A we define the following relation on
R:x ~ y if and only if x — y € A. This relation on R is an equivalence
relation which we now verify:

Given any x € R, x — x = 0 € A because A is a subring of R. Let x ~ y.
x—yedA —(x — yyeAd y —xeA. y ~ x.Finally,let x ~ yand y ~ z.
x—yeAandy —zed x—z=(x—y)+(y—z)ed x~z

Associated with any equivalence relation is a quotient set, R/~ =
{x/~|x € R}. Each equivalence set in the quotient set R/~ is in the form
x/~ = {z]ze Rand z ~ x}. We wish now to demonstrate that R/~ = R/A,
or in other words, that any equivalence set x/~ in R/~ is equal to x + A.
x/~ ={zz ~x} ={zlz— xeAd}.Butz — xeAdifandonlyifz — x = a
forsomeae Aifand onlyifz = x + aforsomeae A ifandonlyifze x + A.
We conclude x/~ = x + A. O

Members of the quotient set R/A4 are to be called cosets as well as equiva-
lence classes. We wish now to prove that every coset in R/4 has the same
number of members an any other coset in R/A. This result is not true for
quotient sets in general which may partition a set into subsets of varying
sizes. We begin by introducing a term for sets of equal size.

Definition. Sets A and B are called equipotent if and only if there exists a
bijection f: 4 — B.
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Theorem. Let (R, +, -, 8) be a ring and A be a subring of R. Then any two
cosets of the quotient set R/A are equipotent.

PRrROOF. Letb + Aand ¢ + Abemembersof R/A. Wedefine f:b + A—>c+ A
such that f(b + x) = c + x.b + x; = b + x, ifand only if x; = x, if and
only if ¢ + x; = ¢ + x, using cancellation and the uniqueness of addition.
This shows b + x; = b + x, if and only if f(b + x;) = f(b + x,): fisa
well-defined function and an injection. f is also a surjection because given
any ¢ + xec + A there exists an b + xe b + A such that f(b + x) =
c+ x. O

ExAMPLE. 3Z, the set of all integral multiples of 3, is a subring of Z. In the
quotient set Z/3Z two integers are equivalent if and only if their difference is
a multiple of 3. 1 ~ 4,7 ~ 10, —2 ~ 4,0 ~ 6, etc. Z/3Z = {3Z, 1 + 3Z,
2 +3Z}. We observe 1 + 3Z =4 +3Z =1/~ =4/~. 7 + 3Z = 10 +
37 = 1 + 3Z. In this example each of the three cosets is an infinite set (see
Figure 2.2).

2+37[1+3Z

Figure 2.2

Having constructed a quotient set R/A from a given subring A we now
move to make R/A into a ring by introducing operations on the set R/A4. As
we shall later show it is not sufficient for A to be a subring to accomplish this
construction. We therefore introduce a new concept at this stage and use
this new concept to construct the quotient ring R/A.

Definition. Let (R, +,-, 0> be a ring. A is an ideal or normal subring of R
if and only if A is a subring of R and r € R, x € A imply rx and xr belong
to 4.

ExampLes. The set {(r, 2s)|r € Z and se Z} is an ideal of the product ring
{Z x Z,+,",(0,0)). The set 3Z is an ideal of the ring Z. The set Z is a subring
of the ring @ but not an ideal of Q.

The condition r € R and x € 4 imply rx and xr € A can be equivalently
stated as RA = 4 and AR < A
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Theorem. Let A be an ideal of the ring (R, +, -, ). Then {R/A, F, ~, A>
is a ring in which T and ~ are defined by
x+AAFy+AH=x+y+ 4
x+A (y+A4)=xy+ A
Proor. The definitions given for F and ~ are both definitions which depend
upon particular representatives of the coset x + 4 and y + A. Before we
know the operations to be well defined we must show that the definitions
are actually independent of the representatives x and y. We must show the
following: if x + A=x'+ Aand y+ A=) + Athen x4+ y+ A =
X+ y +Adandxy + A =x'y + A.x + A= x + Aimpliesx — x' € A.
y+A=y + Aimplies y — yYeA. (x —x) + (y — yY)eA (x + y) —
(x+ y)ed. x+ y+ A=x"+ y + A. This proves the sum to be well
defined. The product is more difficult and uses the ideal properties. x — x' € 4
and y — y' e A.(x — X')(y — y') € A because 4 is a subring.
(x —x)Ny —y)=a forsomeac A.
xy=xy' +x(y—y)+a
xy=xy =xy —xy +x(y—-y)+a
=x—-x) +x(y-y)+a
(x — x')y’ belongs to A because AR = A. x'(y — y’) belongs to A because
RA = A. ae A. The sum of all three terms belongs to 4. xy — x'y’ € A.

xy + A = X'y’ + A. Multiplication on R/A is well defined.
We now verify that F is associative and commutative.

x+AF+A)=x+y+A=y+x+A4=(y+ A F (x+ A.
X+ ADF+DFC+A]=x+AFT(+z+ A
x+(y+2+ 4
=(x+)y+z+4
=(x+y+ATF(z+ A
=[x+ADF Y+ D] F(+ A

We now show that ~ is also associative. (x + A) " [(y + A) " (z + 4A)] =
x+ A (yz+A=x(2)+ A=)z +A=(xy+ A~ (z+ A4 =
[(x + A) 7 (y + 4)] = (z + A). The distributive equations can be verified in
a similar manner.

The neutral element for F is 6 + A whichisequalto 4. 4 F (x + A) =
O@+AFx+A)=0+x+A=x+A(x+ A FA=x+ Aalso.
We next show every element of R/A is F-invertible. (x + 4) F (—x + A) =
x+(-x)+ A=0+ A = A And because F is commutative (—x + A) F
(—x+ A)=Aalso. —(x + A) = —x + A. O

Corollary. If (R, +, -, 0) is a ring with unity v and A is an ideal of R then
v + A is a unity for the quotient ring (R/A, F,~, AD.
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PROOF. (x + A) v+ A)=xv+ A=x+ A+ Ax+ A =vw+ 4=
x + A O

Corollary. If (R, +,-, 0) is a ring which is commutative and A is an ideal of R
then {R/A, F,~, A) is a commutative ring.

PrOOF. Left to the reader. O

Having constructed the quotient ring we now wish to make good our claim
that it is necessary to take A4 to be an ideal for the construction.
Theorem. Any quotient ring of a given ring {R, +, -, 8) in which the binary
operations are defined by representatives, i.e.,

X/~ F y/~ =+ y/~
X/~ y[~ = (xy)/~
must be {R/A, F,~, A for some ideal A of R.

Proor. Let R/~ be a quotient set of R which is a ring with respect to the
binary operations F, ~ as defined in the hypothesis. Because the binary
operations are well defined the following two statements hold:

x~xandy~y implyx+ y~x' + )
x~x"and y ~ y imply xy ~ X'y’ forallx, y,x’, y € R.

We will use the hypothesis in this form.

0/ ~ is clearly the neutral element of addition for the given quotient ring
R/~. We proceed to show that the set 6/~ is an ideal of R. Let x, y € 8/ ~.
x~fand y~60.x+ y~0+0=0 x4+ yeb/~. 68/~ is closed under
addition in R. Let xef/~. x ~0. —x ~ —x. x + (—=x) ~ 0 + (—x).
0 ~ (—x). —x e 6/ ~. 0/~ is closed under negation. Next we consider prod-
uct closure. Let x, ye /~.x ~fand y ~ 6. xy ~ 00 = 6. xy € 8/ ~. This
shows so far that 8/~ is a subring of R. Now let re Rand xe 8/~.x ~ 0
andr ~ r.xr ~ Orandrx ~ rf.xr ~ fandrx ~ 6. xre 0/~ andrx € 6/ ~.
We have showed that 6/ ~ is an ideal of R. Denote this ideal with the letter B.

x~ yifand onlyif x + (—y) ~ y + (—y) ifand only if x — y ~ 6 if
and only if x — ye 0/~ if and only if x — ye B. The given equivalence
relation ~ defining the quotient set R/~ is exactly the same as the equiva-
lence relation generated by the ideal B. It follows that the quotient set R/~
is identical with the quotient set R/B. Thus the quotient ring (R/~, F,~,
8/~> = <{R/B, F,~, B). )

ExaMPLE. nZ is an ideal of (Z, +, -, 0) and therefore {Z/nZ, F¥,~,nZy is a
quotient ring. We abbreviate Z/nZ with Z,, which is general usage. The
quotient ring Z, has exactly n members. Z, = {nZ,1 + nZ,2 + nZ,...,
n — 1 + nZ}. In the theory of numbers Z, is called the residue class ring of
integers modulo n or simply the integers modulo n. The equivalence relation
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defining the quotient ring Z,, is called congruence and written x = y modulo
nmeaning x — y € nZ. We shall also denote Z, by {0, T, 2,...,n — 1} to
give a shorter notation for the cosets.

QUESTIONS

1. Let Z be denoted by {0, 1, 2, 3, 4, 5} in which = m + 6Z. Which of these state-
ments are true?
(A) The multiplicative inverse of 4 is 3.
(B) The multiplicative inverse of 5 is 1.
(C) The additive inverse of 2 is 3.
(D) The multiplicative inverse of 3is 2 + 3.
(E) None of the four statements is true.

2. Let (R, +, -, > be a ring. S is a subring of R implies
(A) SUR=S
(B)f8eSnR
(C)SScs
D)S+S=3.
(E) None of the four choices completes a true sentence.

3. Let S be a subring of the ring <R, +, -, 6, v}, a unitary ring. If the multiplicative
unity v belongs to S then
(A) SS =S
(B)RSc S
C)R+RcS
D)R+ScS
(E) None of the four alternatives completes a true sentence.

4. In the ring Z,, the equation 4x = 3 has
(A) no solution
(B) one solution
(C) two solutions
(D) three solutions
(E) four solutions.

5. In the ring Z,, the equation 4x = 4 has
(A) no solution
(B) one solution
(C) two solutions
(D) three solutions
(E) four solutions.

EXERCISES
1. Give an example of a subring of a ring which fails to be an ideal.
2. In Z¢ which elements have multiplicative inverses and which do not?

3. In Z; which elements have multiplicative inverses and which do not?
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4. Find all solutions to these equations in Zg:

@+ 6D)x =4+ 6Z
@+ 62Z)x = 3 + 6Z.

5. Find all solutions to these equations in Z5:

2+ 52)x =4+ 52
2+ 52)x =3 + 52

6. Prove that a field has but two ideals. Does a division ring have only two ideals?

7. Give an example of a ring R and a quotient ring R/A4 and an element r € R such that
r is a nontrivial divisor of zero in R yet r + A4 is not a nontrivial divisor of zero
in R/A.

8. Give an example of a ring R and a quotient ring R/A and an element r € R such
that r is not a nontrivial divisor of zero in R yet r + A is a nontrivial divisor of
zero in R/A.

9. Let Z[ X] stand for the set of all polynomials with integer coefficients (cf. Exercise 7
of Section 2.4). Show that the subset of all polynomials with even coefficients is a
subring of the ring of all polynomials with integral coefficients.

2.7 Morphisms and quotient rings

In this section we prove the fundamental morphism theorem for rings and
define kernel of a morphism.

We will, in this section, be extending a number of theorems we proved
for sets to rings.

Theorem. Let (R, +, ", 0) be a ring and A an ideal of R. Then the quotient
map @:R — R/A is an epimorphism.

Proor. The quotient map of a set into its quotient set is a function which
sends each element of R into its containing coset. ¢ :R — R/A is a surjection
suchthatp(x) =x + A ox+ ) =x+y+A=x+A4A)F(y+ 4=
o(x) F o(y)-o(xy) = xy + A =(x + A~ (y + 4) = o(x) ~ o(y). a

Associated with every morphism f:R — R’ are two distinguished sets, the

kernel of f and the range of f. We have previously defined the range of f and
proved it to be a subring of R'. We now define the kernel of f.

Definition. Let f:R — R’ be a morphism of the rings <R, +,-, 8> and
(R, +',*, 8. By definition kernel f = {x|x € R and f(x) = ¢'}.

Theorem. Let f:R — R’ be a morphism of the rings <R, +, -, 8> and (R', +/,
/, 8">. Then kernel f is an ideal of R.

PrOOF. Letx,yeker f. f(x) = 6'and f(y) = 0. f(xy) = f(x)f(y) = 06 =6
xyekerf. fx+ = )+ f(N=0+6 =80 x+ yekerf. f(—x) =
—f(x)= —0 =0. —xekerf. f() = 0. 0ekerf.ker f # . LetreR
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and x € ker f. f(rx) = f(r)f(x) = f(N0 = 0. rxeker f. f(xr) = f(x)f(r) =
0f(r) = 6. xreker f. O

ExampLE. The quotient map ¢:Z — Z, is ¢(x) = x + 7Z. The morphism
f:Z — Z such that f(x) is the remainder upon dividing x by 7 has as its kernel
the ideal 7Z.

We now prove the fundamental morphism theorem for rings which extends
the results on set theory of Section 1.7 to the ring operations.

Theorem. Let (R, +,-,0) and (R, +',, 8> be rings and f:R - R’ a
morphism. Then there exist

an ideal A;

a quotient ring R/A;

an epimorphism ¢:R — R/A; and

a monomorphism f':R/A — R', such that f'o ¢ = f.

Proor. From the fundamental morphism theorem for sets found in Section
1.7 we can assert the existence of an equivalence relation y on R (xyy if and
only if f(x) = f()), a quotient set R/y, a surjection ¢:R — R/y such that
@(x) = x/y, and an injection f':R/y — R’ such that f’(x/y) = f(x) and with
f' o ¢ = f. What remains to prove or establish are the various algebraic or
operational properties claimed in the conclusion of the theorem.

We define 4 to be {x|x € R and f(x) = 0'}. 4 is therefore the kernel of f
and an ideal of R. This ideal defines a quotient ring R/A4. xyy if and only if
f(x) = f(y)ifand only if f(x) — f(y) = & ifand only if f(x — y) = ¢ ifand
only if x — y € A. Thus the quotient ring R/A is identical with the quotient
set R/y with x/y = x + A for all x € R. Writing the defining equations for ¢
and f’ in algebraic notation we have ¢:R — R/A such that ¢(x) = x + 4
and f':R/A — R’ such that f'(x + 4) = f(x). We have previously verified
that the quotient map is a morphism and now we verify that f’ is a morphism.
J(x+A4)F (+4)=[ x+y+A4)=[fx+)y =flx)+ f)) =
S+ +" f(y+ A f(x+ A7 (y+4)=flxy+ A= flxy) =
S =fx+ 4" f(y+ A o

Corollary. Let f:R — R’ be a morphism of the rings {R, +, -, 08> and (R, +',
', &). Then there exists an isomorphism f':R/(ker f) — range f.

ProoOF. By restricting the codomain of f':R/4 —» R’ from R’ to f(R), the
range of f, the monomorphism f’ will become a surjection also, making it
an isomorphism. The ideal A is the kernel of f. O

QUESTIONS

1. For a morphism f:R — R’ of rings (R, +, -, 8> and (R’, +', -/, @) which of these
statements are true?
(A) ker f < range f.
(B) R/ker f = {x + ker f|x e R}.
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(C) {} = kerf = R.
(D) flker f) = {0'}.
(E) fY(R') = f ™ }(range f).

2. The function f:Z — Z, such that f(x) = x + nZ
(A) is an epimorphism
(B) has kernel equal to nZ
(C) is a quotient map
(D) is a monomorphism
(E) is identical with the function g:Z — Z, such that g(x) = nx + nZ.

3. Which of the following are subrings of the ring 27?
) 7,
(B) 24
(€) Z,4
(D) 62.
(E) None of the four is a subring of 27.

4. If R, R, R” are rings and f:R - R’, g:R" > R" then
(A) f and g monomorphic imply g o f monomorphic
(B) f and g epimorphic imply g o f epimorphic
(C) g o f epimorphic implies g epimorphic
(D) g o f monomorphic implies g monomorphic
(E) g o f epimorphic implies f epimorphic
(F) g o f monomorphic implies f monomorphic.

5. According to the fundamental morphism theorem if we have given a morphism
p1:Z x Z - 7 such that p,(x,, x,) = x, then there exist morphisms ¢ and p}
such that

(A) ker p, = {0} x Z

(B) Pi:(Z x D)/({0} x 2) > Z

(©) i1 x2) + {0} x 2) = x,

D) pieo=p

(B) o((xy, x3) + {0} x Z) = (x,, x3).

EXERCISES

1. Let f:R - R’ be a ring morphism. Prove f is a monomorphism if and only if
ker f = {6}.

2. Show that the only morphisms Z — Z, are f(x) = 0 and g(x) = X.

3. Show that the only morphisms Z — Z¢ are f(x) = 0, g(x) = % and h(x) = 3x.

4. Let m be different from 0 and 1 and belong to N. Show that f:Z — Z, such that
f(x) = mx is a morphism if and only if n = m(m — 1).

5. Let f:R — R’ and g:R’ —» R” be ring morphisms. Prove ker f < ker(g - f) and
range(g o f) < range g.

6. Given f:R — R’ and g:R — R/, both ring morphisms, we define f x g:R x R -

R’ x R'such that (f x g)(xy, x;) = (f(xy), g(x3)).
(a) Prove f x g is a morphism.
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(b) Prove ker(f x g) = ker f x kerg.

(c) Prove range(f x g) = range f x range g.

(d) Prove f x g is a monomorphism if and only if f and g are morphisms.

(e) Prove f x g is an epimorphism if and only if f and g are epimorphisms.

(f) Prove (R x R)/(ker f x ker g) is isomorphic with (R/ker f) x (R/ker g). [Hint:
Define a function F:R x R — (R/ker f) x (R/ker g) such that F(x,, x,) =
(x; + ker f, x, + ker g) and use the fundamental morphism theorem.

7. Show that Z,; and Z, x Z; are isomorphic rings.
8. Show that Z, and Z, x Z, are not isomorphic rings.
9. Find all morphisms Z —» Z x Z.

10. Find all morphisms Z x Z — Z.

2.8 Ideals

In this section we develop relationships between special kinds of ideals and
special kinds of quotient rings.

We call any ideal which is not the entire ring itself a proper ideal of the
ring and we call any ideal which is not the ideal consisting exactly of zero,
{6}, a nontrivial ideal. Alternatively, we call R the improper ideal of R and
call {6} the trivial ideal of R.

We notice there is an order on any collection of ideals, the order of set
inclusion that exists on any collection of sets.

ExampLE. The following statements of order about the set of ideals of Z are all
true. 4Z < 27. 27 ¢ 37. 3Z ¢ 2Z. One moral here is that not every pair
of ideals are comparable with respect to inclusion; this order is often called
partial for this reason.

Definition. An element M of an ordered set ¥ is a maximal element of ¥ if
and only if no other element of € is strictly larger than M.

ExAMPLE. Both 27 and 3Z are maximal ideals in the set of all proper ideals
of Z. 27 is not called a maximum ideal because there are ideals, namely 37,
which it does not surpass. The noncomparability of certain pairs permits
this differentiation between the terms maximum and maximal.

Lemma. An ideal A of a unitary commutative ring <R, +, -, 8, v) is proper if
and only if v ¢ A.

ProoF. Suppose v ¢ A. Then clearly A # R and A is proper. For the con-
verse suppose ve A. A = R. We now prove 4 = R by proving R = A.
Suppose re R. Then rve A. r e A. O

Theorem. Let A be an ideal of a unitary commutative ring <R, +,-, 6, v).
Then A is a maximal proper ideal of R if and only if R/A is a field.
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PrOOF. First, we assume A is an ideal of R and that R/A is a field. We wish
to demonstrate that A is a maximal proper ideal of R. Let B be any ideal of
R strictly larger than 4: A = B < R. There exists an element b € B such that
b ¢ A. There is an element ¢ € R such that (b + A)(c + A) = v + A because
R/A is a field and b + A # A. bc — ve A. bc — v = a for some g€ A.
v = bc — a.Since bce Band ae Bwe haveve B. B = R. Thus A4 is a maximal
ideal of R. A4 is proper because R/A must have a unity v + A different from
A implying v ¢ A.

For the converse, assume A is a maximal proper ideal of R. 4 # R implies
v¢ Awhichimpliesv + A # A. The unity of the quotient ring R/A is different
from the zero. We now demonstrate the existence of multiplicative inverses in
R/A.Letx + Ae R/Aandx + A # A.x ¢ A.Consider theset {rx + alre R
and a € A}. This set is an ideal of R containing 4 yet not equal to A. It is,
therefore, Ritself. Hence ve {rx + ajre Randae A}.v = r'x + a for some
reRdedrx —veA (r + A)x + A) = r¥x + A = v + A. This, with
commutativity, proves r' + A to be the multiplicative inverse of x + A in
the quotient ring R/A. R/A is a field. O

ExaMpLES. Both Z, = Z/2Z and Z; = Z/3Z are fields and 2Z and 37 are
maximal ideals of Z. Z/4Z is not a field and 4Z is not a proper maximal ideal
of Z. 47 <« 27 < Z.

We now introduce another special ideal.

Definition. An ideal 4 of a ring (R, +, -, 8) is prime if and only if xy € 4
implies x€ A or ye A.

Theorem. Let (R, +, -, 0,v) be a unitary commutative ring and A be a proper
ideal of R. Then A is prime if and only if R/ A is an integral domain.

PrROOF. Assume A is a proper prime ideal of R. We can furthermore take
v # 0 because R = {#} has no proper ideals. Let (x + A)(y + A4) = A.
xy+ A=A xyeA. xeAoryeA.x+ A= Aory+ A = A. Further-
more since 4 is proper, v ¢ Aimplyingv + 4 # A. R/Ais anintegral domain.

To prove the converse assume R/A is an integral domain. Let xy € A.
xy+ A=A (x+A)(y+A)=A x+A=Aory+ A=A xeAor
y € A. A is a prime ideal. O

Theorem. Let {R, +, -, 0, v) be a commutative ring with unity. Then every
maximal proper ideal of R is a prime ideal.

Proor. If A is a maximal proper ideal of R then R/A is a field. If R/A is a
field then R/A is an integral domain. If R/A is an integral domain then A is
a prime ideal. O

We will now define the ideal {S) generated by a set S in a way analogous
to the way the subring [ S] generated by a set S was defined.
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Theorem. Let (R, +,-,0) be aringand S a subset of R. Then{S) = (\{A|4
is an ideal of R and S = A} is an ideal of R and is the smallest ideal of R
containing §.

Proor. The proofis left to the reader. O

Definition. Let (R, +, -, 6> be a ring and S a subset of R. We define (S to
be the ideal generated by the set S.

ExampLE. In Z, (2) = 2Z and {2,3> = Z. In Z, 2Z v 3Z) = Z. In Q,
{Z) = Q whereas [Z] = Z.

QUESTIONS

1. 27 and 3Z are noncomparable with respect to inclusion because
A)2Zn3Z2=yg
B)2Z2u3zZ=12
{C) 21e3Zand21¢2Zand 8¢ 3Z and 8 € 2Z
(D) both ideals are maximal proper ideals of Z.
(E) None of the four conditions are relevant.

2. mZ < nZ if and only if
(A) m = knfor some ke Z
(B) n = kmforsomeke”Z
(C) mn=1
(D) mZ v nZ = nZ.
(E) None of the four possibilities completes a true sentence.

3. Which of the following imply 6Z is a prime ideal of Z?
(A) 3-2e€6Zand 3¢ 6Z and 2 ¢ 6Z.
(B) 6Z < 2Z < Z.
(C) 6Z < 3Z < 7.
(D) 12Z c 6Z < Z.
(E) None of the four imply 6Z is a prime ideal of Z.

4. Which of these statements are true?
(A) 6Z is a prime ideal of the ring 2Z.
(B) 6Z is a maximal ideal of the ring 27Z.
(C) There are ideals strictly between (<) 6Z and 2Z.
(D) 2 is a unity for 2Z.
(E) None of the four statements is true.

5. Which of the following statements are true?
(A) A trivial ideal is improper.
(B) An improper ideal is trivial.
(C) A proper ideal is not trivial.
(D) There exist nontrivial ideals which are proper.
(E) None of the four statements is true.
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EXERCISES

1
2
3.
4

10.

11.

12.
13.

14.

66

. Give an example of a ring other than Z and a proper nontrivial ideal of that ring.

. Show {m2 + n6|m, n e Z} to be an ideal of Z.

Show that 3Z is a maximal proper ideal of Z.

. If 4 and B are ideals of (R, +, -, 8) prove A n Band 4 + B are ideals of R. Prove

A + B is the smallest ideal containing both 4 and B. Prove A n B is the largest
ideal contained in both 4 and B.

. If K and L are fields prove that the product ring K x L cannot be a field. Find all

the ideals of K x L.

. Prove that if (R, +, -, 6, v is a unitary commutative ring with exactly two ideals

then R is a field.

00
Show that the ring <@2 24, ( 0 0>> has exactly two ideals but is not a field

nor a division ring.

Prove that if <R, +, -, 6, v) is a commutative unitary ring then Ra = {ra|r € R}
is an ideal of R for all a € R; moreover, (a) = Ra.

Give an example of a ring (R, +, -, 8) (noncommutative) with a set Ra which is
not an ideal of R.

Give an example of a commutative ring R and an element a € R such that {a) #
Ra.

Let a,, a,, ..., a, be a finite number of elements in a commutative ring {R, +,
-, 0>. Show that Ra; + Ra, + - + Ra, = {rya; + rpay + - + r,afry, ...,
r, € R} is an ideal of R. Need a; belong to the ideal?

Find all the ideals of Z x Z.

An ideal that is generated by a single eleuﬁent of a ring is called a principal ideal;

i.e, A is principal if and only if A = {a) for some ae R.

(a) Show that the image of any ideal under a morphism is an ideal.

(b) Show that the preimage of an ideal under a morphism is an ideal.

(c) Show that the image of a principal ideal under a morphism is a principal ideal.

(d) Show that the preimage of a principal ideal under a morphism is not necessarily
principal.

Let (R, +, -, 0> be a ring. Prove that C = {x|x € R and xy = yx for all y e R}
is a subring of R. Prove that C is not necessarily an ideal by considering the example
R = 7%*2,



Rings:
Natural numbers
and integers

The positive whole numbers are undoubtedly the oldest and most primitive
objects of all mathematics. They formed, and still form, the basis from which
all other mathematics sprang. Zero appeared upon the mathematical scene
later. The natural numbers are so much the genesis of all mathematics that
the 19th century mathematician Leopold Kronecker was led to say that God
created the natural numbers and man created everything else in mathematics.
The axiomization presented in this chapter of the natural numbers is credited
to Giuseppe Peano, another of the great 19th century mathematicians who
reworked and solidified the foundations of our number systems. The whole
numbers as a key and insight to the nature of the universe were recognized
by the Pythagoreans in the 6th century B.c. When Pythagoras said, “All is
number,” he meant the positive integers.

The Peano development of the natural numbers (we include zero with
the positive whole numbers in our set N) is a grand sequence of exercises in
mathematical induction. Mathematical induction and the natural numbers
are inseparable. A student of mathematics needs to master the technique of
mathematical induction and feel perfectly comfortable with it. Mathematical
induction to the student of mathematics should be as intuitively evident as
the most obvious theorems of geometry or manipulations of algebra.

From the foundation of the natural number system we move in Section 3.5
to a construction of the integers. We adjoin the negative whole numbers to
the natural numbers and build of the union the integers. Historically the
negative numbers were nowhere so obvious to mankind as the positive ones.
The name, negative, hardly indicates an affirmative attitude towards such
numbers. Negative numbers as solutions to equations were still being rejected
at the time of the Renaissance and even René Descartes in his analytical
geometry did not see fit to accord negative numbers full status. By the time
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of Karl Friedrich Gauss, however, the integers as a number system including
the negatives were fully established. Gauss called the study of the integers,
or number theory as it is now known, the queen of mathematics. We construct
in this chapter the integers from the natural numbers and then study the
ring and order properties of the integers.

If the reader wishes to know the content of the chapter without engaging
fully the details it is quite possible to read and understand the statements of
the theorems; they are intuitively evident; they deal with familiar properties
of familiar objects.

3.1 The Peano axioms

In this section are presented the Peano axioms for the natural numbers
and definition by induction is discussed.

The set of natural numbers is the set we intuitively know as {0, 1,2,3,4,.. .},
the set of positive whole numbers and zero. Our aim is to analyze and to
describe more precisely this set. We shall utilize the very important concept
of mathematical induction.

Starting with a knowledge of set theory it is possible (with appropriate
axioms) to construct a model of the natural numbers. This is to say, certain
sets are generated which, for all intents and purposes, can be used as natural
numbers after operations are appropriately defined for them. This construc-
tion of the natural numbers in set theory begins with the empty set ¢§ as a
model for the number zero and then proceeds to define 1 to be {F} = {0}.
One must note that J and {(F} are different sets because the first has no
members and the second does have a member. The construction for 0,1, 2, 3, 4
proceeds as follows: 0 = &, 1 = {0},2 = {0,1},3 = {0,1,2},4 = {0,1,2,3}.
Notice how these sets increase in size; 4 is not only fourth after zero but also
contains 4 elements.

So far the construction has produced only 0, 1, 2, 3, and 4. If we continue
in this manner we can produce quite a few more natural numbers. We will
never, however, succeed in completing the project by this means. We must
find a means of describing the totality of all natural numbers by finite means.
The process of description must terminate even though the set being described
be infinite.

We continue to analyze the construction. What is involved in this con-
struction is a starting set ¢J and a mode of producing a successor which is
repeated over and over. If we denote the successor of n by s(n) we may discover
that the operation is s(n) = n U {n}. A computational check for 1, 2, and 3
verifies the definition for those cases:

1=50)=0u {0} = gu{d} = {0}
2=s5) =10 {1} ={0}u {1} ={0,1}.
3=52)=20{2} ={0,1} U {2} ={0,1,2}.
The successor operation produces 1 from 0, 2 from 1, and 3 from 2. The
successor of any number always contains some member that the number

i
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does not. The set of all the natural numbers, N, must not only contain 0, 1, 2,
and 3 but also the successor of 3, and the successor of the successor of 3, and
so forth. N must contain the starting set 0 and all of its successors.

0eN.
If n e N then s(n) € N.

These two conditions are a way of ensuring that all natural numbers are in
N. There could be (and are), however, sets which satisfy both of these con-
ditions, contain all natural numbers, yet are too big because they contain
other things besides natural numbers. This is to say that they are too large,
yet satisfy the two conditions stated. We seek the natural numbers as the
smallest set satisfying the two conditions. We achieve this end by saying that
any subset S of N which satisfies (0 € S) and (n € S implies s(n) € S) must be
all of N. This says that no set S smaller than N can satisfy the two conditions.
This characterizes N as the smallest set containing 0 and all of its successors.

In a formal exposition of set theory the general order of procedure is to
assume (along with previously assumed axioms) some axiom of infinity
strong enough to produce a set containing 0 and all of its successors and then
to prove the existence of N. In summary, then, there exists a set N such that

0eN
ne N implies s(n) e N
If S = Nand O € S and (n € S implies s(n) € S) then § = N.
It is then not difficult to prove that N also has the properties:

s(m) = s(n) impliesm = n
s(n) # 0 forallne N.

The five conditions we have now listed are called Peano’s axioms for the
natural numbers. This completes our motivational sketch of how the natural
numbers can be constructed within set theory.

We reword the previously given Peano axioms so that they do not depend
upon the particular set constructions used above.

Axiom. There exist aset N;amember of N called 0; and an injection s:N — N
such that 0 ¢ range s and no proper subset S of N may have the properties
0 € S and (n € S implies s(n) € S).

We comment on how the previously given set theoretic model of S satisfies
this axiom. (J is, of course, 0. The operation of taking set successors is the
injection s. No set successor is ¢ is equivalent to 0 ¢ range s. s(m) = s(n)
implies m = n is the injective property of s. The statement that no proper
subset S of N may have the properties 0 € S and (n € S implies s(n) € S) is
known as the principle of mathematical induction.

Working now from our axiom we intend to construct addition and
multiplication on N by means of definition by induction, sometimes called
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definition by recursion. Addition of natural numbers will be defined by this
scheme:
m+0=m
m + s(k) = s(m + k).

This is a two-step definition; it involves first defining the result of adding
zero to a natural number m and second defining the result of adding the
successor of k in terms of the result of adding k to m. This procedure for
definition strongly resembles the principle of mathematical induction in
starting the definition with 0 and then moving the definition along from k
to the successor s(k). Some analysis of the situation reveals that we are in fact
attempting to define a function from N to N. Let us denote the result of adding
ntom(findingm + n) by a,,(n). Then what we require is a function «,,: N —» N
such that «,(0) = m and a,,(s(k)) = s(a,(k)). This statement in terms of a,,
is merely a notational change, but it makes it much clearer that we are trying
to find a function with certain properties when we are trying to define addi-
tion. Is it possible to define a function with domain N merely by defining
what is the image of 0 and by defining the image of s(k) in terms of the image
of k? Moreover, is the result unique when possible? Within set theory it can
be established that the answer is yes in both parts. The proof utilizes the
principle of mathematical induction but is quite involved. It suits our pur-
poses to take such a definition scheme as an axiom.

Axiom. Let some set X be given as well as some element a of X and a function
f:X — X. Then there exists one and only one function t:N — X such that
t(0) = a and t(s(k)) = f(t(k)). (Figure 3.1 may help in picturing the
situation.)

L]
1(s(k)) = fle(k))

Figure 3.1
QUESTIONS

1. Considering the model of the natural numbers discussed in this section, 0 = (&,
1 =1{0},2=1{0,1},3 = {0, 1,2}, we have 2 # 1 because
(A) 1e2and 1¢1
B)1c?2
©2¢1
(D) sQ2) = 1.
(E) None of the alternatives completes a true sentence.
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3.2 Addition of natural numbers

2. Every natural number can be the successor of at most one natural number because
(A) s:N — N is not a surjection
(B) s:N — N is an injection
(C) & is a member of every natural number
(D) natural numbers are sometimes unnatural.
(E) None of the choices completes a satisfactory sentence.

3. 0is not the successor of any natural number because
(A) ne N implies s(n) € N
(B) 0 ¢ ranges
(C) sis an injection
D) s(N)u N = N.
(E) None of the choices completes a satisfactory sentence.

4. Let t be a function from N to N such that ¢(0) = 4 and t(s(k)) = t(k) + 3. Which
of these statements are correct?

A) 1)) = &.
(B) t2) = 5.
(C) t(t(0)) = 16.
(D) t(4) = 0.

(E) None of the statements is correct.

3.2 Addition of natural numbers

This section treats addition of natural numbers and its properties.
This first theorem amounts to a definition of addition of natural numbers.

Theorem. For each m € N there exists a unique function o,,: N — N such that
%n(0) = m and a,,(s(k)) = s(a,(k)).

ProOF. We apply the axiom for definition by induction of Section 3.1. The
role of f in the general statement is played by the succession function
s:N - N. O

As defined for each m € N the function o,,,: N — N is a unary operation on
N. We use all these unary operations, one for each m € N, to define one binary
operation a:N — N,

Definition. We define addition on the natural numbers to be the binary opera-
tion a:N x N — N such that a(m, n) = a,,(n).

Once having defined o« we now return to the conventional notation for
addition; we denote a(m, n) by m + n and s(0) by 1. The statements in the
following theorem will be a translation into conventional notation of the
facts we have at hand.

Theorem. + is a binary operation on N. m + 0 = m for all me N. s(n) =
n+1lforalneNm+m+1)=m+n + 1foralm neN.

71



3. Rings: Natural numbers and integers

PROOF. o,(0) = m translates intom + 0 = m. a,,(s(0)) = s(a,,(0)) translates
into m + s(0) = s(m + 0). Using the symbol 1 for s(0) and replacing m + 0
by mwe have m + 1 = s(m). a,(s(n)) = s(a,(n)) is true for all m, n € N. This
translates intom + (n + 1) = (m + n) + L. O

It should be observed that the use of m + 1 for s(m) is only possible after
the addition is defined.
We turn now to the usual theorems on binary operations.

Theorem. Addition of natural numbers is associative.

PrROOF. We must demonstrate that (m + n) + p = m + (n + p) for all m,
n,p € N. We let S be the subset of all natural numbers p for which the equation
(m+n+p=m+(n+p) for all m neN is true. S = {plpeN and
(m+n)+ p=m+ (n+ p)for all m, ne N}. Our procedure is to use the
principle of mathematical induction to show that S = N. We do this by
showing that O € S and k € S implies s(k) € S. For s(k) we can use k + 1.

m+n+0=m+n =m+n=m+ (n+ 0) using the already estab-
lished result that when 0 is added on the right to any natural number the
number itself is the sum (0 is a right neutral element of addition). We conclude
OeS.

It will be of use to us to refer to the equation

m+n+1l=m+{m+1) forallmneN ™

which we established earlier. We now assume k € S, that is to say, (m + n) +
k=m+ (n + k) for all m, ne N. We proceed to prove the appropriate
equation for k + 1.

(m+n)+(k+1)=(m+n)+[k'+1]=[(m+n)+k]+1
=m+m+]+1=m+[(n+k +1]
=m+[n+(k+1)] forallmneN.

The second, fourth, and fifth equality are because of equation (*). Thus
k + 1€ S. Upon an assumption of k€ S we have proved k + 1€ S. ke S
impliesk + 1€ 5.5 = N and the theorem is proved. O

It is important to remember that in a proof by mathematical induction that
it is implication k € S implies k + 1 € S that must be proved and not ke S
or k + 1€ § separately.

In order to demonstrate the commutativity of addition it is efficient to
prove first several lemmas.

Lemma. 0 + m = mfor allme N.

PrOOF. Let $ = {m0 + m = m}. 0e S because 0 + 0 = 0. We assume
keS; 0+k=%k Then 0+ (k+1)=0+k+1=k+1 k+1€S.
§=N. O
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3.2 Addition of natural numbers

The previous lemma together with the definition of addition establishes
0 as the neutral element of addition.

Lemma. 1 + m=m + 1forallme N.

ProOF. LetS = {m|l + m=m + 1}.0eSbecause1 + 0 = land0 + 1 = 1.
Assume keS. 1+ k=k+ 1L 1+ k+1)=0+k+1=(k+1) + 1
k+1e8. 5 =N. O

With these two preliminary results out of the way we can take on the
general theorem on commutativity.

Theorem. n + m = m + nfor allm,ne N.

PrOOF. Let S = {njn + m = m + nforall me N}. 0 e S because 0 + m
m + Oforallme N. AssumekeS. k + m =m + kforallme N.(k + 1)
m=k+(0+m=k+m+1) =k+m+1=m+k+1
m+(k+ forallmeN.k+ 1€S.S = N.

o+

QUESTIONS

1. Which of these statements are correct?

(A) oy(s(k)) = s(atm(k)).

(B) ,(0) = m.
(C) a(m, n) = a,(n).
(D) a0, n) = n.

(E) None of the statements is correct.

2. The statement a,(s(n)) = s(a,(n)) for all n € N means
(A) ais an injection
(B) sis an injection
Com+mn+1)=m+n + 1forallneN
(D) addition of natural numbers is commutative.
(E) None of the alternatives completes a satisfactory sentence.

3. Addition of natural numbers is commutative is equivalent to
(A) a(m,n) = a(n,m)forallm,ne N
(B) o(n) = a,(m) for allm,ne N
(C) o, (s(n)) = s(a,(n)) forallm,ne N
(D) tm((p)) = om(ay(q)) for all p,g € N.
(E) None of the choices completes a true sentence.

4. In this list of results from Section 3.2, which result is out of the order of presentation?
(One answer only.)
(A) Definition of a,,.
(B) Definition of a.
(C) Commutativity of addition.
(D) Associativity of addition.
(E) 0is a left neutral element of addition.
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3.3 Multiplication of natural numbers

In this section the definition of multiplication is given and its important
properties are proved.

Having defined addition for N and having proved it associative and com-
mutative and having established the existence of a neutral element of addition,
0, we now turn our attention to multiplication. The guiding equations for
the definition will be

m-0=0
m-(n+1)=m-n+m

These equations give sufficient information to use in the axiom for definition
by mathematical induction. We use a function construction like the one used
for addition. We let u,(n) represent the product (not yet defined) of m by n.

Theorem. For each m e N there exists a unique function p,,:N — N such that
Hn(0) = 0
tm(S(k)) = pn(k) + m.

ProOF. This is an application of the axiom of definition by induction in
which X = N, t = pu,, and f(x) = x + m. O

Definition. We define multiplication of natural numbers to be the binary
operation x:N x N — N such that u(m, n) = p,(n).

By discarding u and replacing it with the conventional notation m - n or
mn for product we get the following results.

Theorem. m-0 = 0 for all me N. m(n + 1) = mn + m for all m, ne N.
m-1=mforallme N.

Proor. The equation u,(0) = O translates into m-0 = 0. The equation
Un(8(n)) = u,(n) + m translates into m(n + 1) =mn + m. When n = 0 this
reducestom 1 = m. O

The first theorem in developing the properties of multiplication is the left
distributive law.
Theorem. m(n + p) = mn + mp for allm,n,pe N.

Proor. Let S = {plm(n + p) = mn + mp for all m, ne N}. m(n + 0) =
mn=mn+ 0=mn+ m-0 for all m, ne N proves 0 S. Now assume
keSmn+(k+1))=m((n+k +1)=mn+ k) + m= (mn + mk) +
m=mn+ (mk+m)=mn+mk+ 1.k +1e€S.5=N. O

We continue with the associative law for multiplication.
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Theorem. m(np) = (mn)p for allm,n, p e N.

ProOF. Let S = {p|m(np) = (mn)p forallm,ne N}. m(n-0) =m-0 =10 =
(mn)0 establishes 0e S. Let ke S. (mn)(k + 1) = (mn)k + mn = m(nk) +
mn = m(nk + n) = mnk + 1)). k+1€85.5=N. O

We have thus far proved multiplication of natural numbers to be asso-
ciative and that the left distributive relation holds. We now begin work on
the right distributive law.

Lemma. O-m = 0 forallme N.

PrOOF. Let S = {m|0-m = 0}. 0 € S because 0 -0 = 0. Assume k € S; that
is, assume 0-k=0. Ok +1)=0-k+0:-1=04+0=0. k+1€eS.
S=N. a

Lemma. 1-m = mforallme N.

ProoF. Let S = {m|l - m=m}. 1-0 =0 implies 0 e S. Assume ke S.
1-k+1)=1-k+1=k+1k+1eS55=N.

Theorem. (m + n)p = mp + np for allm, n, pe N.

Proor. Let S = {p|(m + n)p = mp + np for all m, ne N}. (m + n)0 =
0=0+0=m-0+ n-0 implies 0 S. Assume ke S; that is, assume
(m + nk = mk + nkforallmne N.(m + n)(k + 1) = (m + nk +
(m+n =@mk +nk)+ (m+n =(mk +m+ (nk+n =mk+ 1) +
nk + 1)forallmneN.k + 1eS.5 = N. O

Finally we establish the commutativity of multiplication.

Theorem. mn = nm for all m, n e N.

Proo¥. Let S = {mjmn = nm for all ne N}. 0-n =0 = n-0 yields O € S.
Assume kn = nk for all n e N, which is to say, ke S.n(k + 1) = nk + n =
kn+1-n=(k+ 1nk+1eS.S=N. O

In summary, we have defined N, the set of natural numbers, two binary
operations on N called addition and multiplication, proved both associative
and commutative, proved that multiplication is distributive with respect to
addition, and proved that 0 and 1 are respectively neutral elements of addi-
tion and multiplication.

QUESTIONS

1. Which of the following statements are correct?
(A) p(0) = 0.
(B) pn(s(k)) = pm(k) + m.
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(C) plm, n) = pp(n).
(D) pmls(k)) = alum(k), m).
(E) None of the statements is correct.

2. m(n + p) =mn + mpforallm n,peN
(A) is the left distributive law for natural numbers
(B) is the right distributive law for natural numbers
(C) has a proof which depends upon the commutative law of multiplication
(D) is the associative law for multiplication.
(E) None of the alternatives completes a true sentence.

3.4 Further properties of N

In this section we complete our natural number constructions with some
cancellation laws and related properties.
We begin by showing additive cancellation to be always possible in N.

Theorem. m + p = n + p impliesm = n for allm, n, pe N.

PROOF. Let S = {pjm + p=n + pforallm neN}.0e S becausem + 0 =
n + Oimpliesm = n.m + 1 = n + 1 implies m = n because the successor
function is an injection. Now assume ke S.m + (k + 1) = n + (k + 1) implies
(m+ k) + 1 = (n + k) + 1 which implies m + k = n + k which in turn
impliesm =nk + 1€S§8. 5 = N. O

Although additive cancellation is always possible most natural numbers
do not have negatives (cf. Exercise 3 of this section).

Our axiom for N contains the information that 0 is the successor of no
natural number. We now prove every nonzero natural number is the suc-
cessor of some (other) natural number.

Theorem. If m # Oand me N thenm = p + 1 for some p € N.

ProOOF. In order to use induction a little twist is needed in the setting of S.
Let S = {mjm = p + 1 for some pe N or m = 0}. 0 € S because $ is defined
in such a manner to contain 0. Now assume k€ S. k = p + 1 for some
peNork=0.Ifk=p+1thenk+1=(p+ 1)+ 1.Sincep + 1eN
we have written k + 1 as some natural number plus one. If, on the other hand,
k=0 then k+ 1 =0 + 1 which again is a natural number plus one.
k + 1 € S in both cases. S = N. Our conclusion is that m = p + 1 for some
peN or m = 0 for all me N. Since m # 0 is given in the hypothesis we
conclude m = p + 1 for some p e N. O

This result allows us to handle the proof on zero divisors to come without
using induction again.

Theorem. mn = 0 impliesm = 0 orn = 0 for allm,ne N.
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Proor. The contrapositive of the statement to be proved is m # 0 and
n # 0 imply mn # 0. We prove this instead. Since m # 0 and n # 0 there
existp,geNsuchthatm=p + landn=q + 1.Thenmn=(p + 1)(g + 1) =
(pg + p + ¢) + 1. mn is the successor of pg + p + g and therefore cannot
be zero. O

It was proved in Section 2.3 that in a ring multiplicative cancellation and
no nontrivial zero divisors were equivalent conditions. That proof is inap-
plicable to N because N with its operations does not make a ring; the proof
requires the existence of negatives. We must, therefore, produce a different
proof for nonzero multiplicative cancellation for N.

Theorem. mp = np and p # 0 imply m = n for allm, n, p e N.

PrOOF. The setting of S requires the proper variable choice. Let S = {n|mp =
np and p # 0 imply m = n for all m, pe N}. 0€ S because mp = 0-p
implies mp = 0. By the previous theorem m = Qor p = 0. But p # 0. There-
forem = 0.0€eS.

Now let ke S.mp = kp and p # 0 imply m = k for all m, p € N. Suppose
mp = (k + 1)p and p # 0. If m were O then (k + 1)p = 0 which is impossible.
because neither k + 1 nor p is 0. Thus m cannot be zero. m = [ + 1 for
some leN. (I + 1)p =(k + Dp. Ip + p = kp + p. Additive cancellation
gives us Ip = kp. Since ke S we have ] = k. But then I + 1=k + 1.
m = k + 1. This is the result we desired. k + 1€ S. S = N. 0

QUESTIONS

1. Which of the following statements are true?
(A) If a product of natural numbers is zero then one of the factors is zero.
(B) Every natural number has a negative which is a natural number.
(C) Muitiplicative cancellation of nonzero natural numbers is valid.
(D) Every natural number is the successor of some natural number.
(E) None of the statements is true.

2. Which of the following statements are true?
(A) For every ne N there exists me N such thatn = m + 1.
(B) For every n e N there exists me N such that m = n + 1.
(C) Foreveryne N,n # n + 1.
(D) (u = s(p) for some p € N) and (uv = 0) imply v = 0.
(Eym+p=n+pandp s Oimplym = n.

EXERCISES
1. ProvethatN* = N — {0} is closed under addition;ie., x,y € N* implyx + ye N*.
2. Provem + n = Oimpliesm = Oand n = Ofor all m,ne N.

3. Prove that no natural number except 0 has a negative in N.
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. Prove N* is closed under multiplication.
. Prove that every natural number excepting 0 and 1 is p + 1 for some pe N*,

. Prove that mn = 1 implies m = 1 and n = 1 for all m, ne N.

N N A

. Prove that no natural number except 1 has a reciprocal (multiplicative inverse)
in N.

8. Find all functions f:N — N which preserve both addition and multiplication; i.e.,
J(x +y) = f(x) + f(y)and f(xy) = f(x)f(y) forall x, ye N.

9. A small study of additive functions on N:
(a) Find all f:N — N such that f(x + y) = f(x) + f(y).
(b) Let E = {f|f:N - N and f preserves +}. Show that there exists a bijection
¢:N — E.
(c) Define for E an addition and multiplication so that ¢ preserves + and pre-
serves -.

3.5 Construction of the integers

In this section we construct the integers and prove they form an integral
domain.

Our intuitive knowledge of the integers as natural numbers together with
their negatives makes it seem we can somehow adjoin the negatives of
natural numbers to the natural numbers and extend the operations of addi-
tion and multiplication from the natural numbers to all cases of “positives”
and “negatives.” Such a straightforward approach is possible but leads to
awkward proofs because one must constantly refer back to definitions by
cases. The approach we actually use is less direct but we are more than
compensated by the resulting ease of proof. We also win, in the bargain, a new
mathematical technique with applications elsewhere.

We begin with the set N x N with + and [] defined as follows:

r,s) + (u,v)=(r+u,s + v
(r, s) I (u, v) = (ru + sv, rv + su).

This construction was previously discussed in Exercise 5 of Section 2.3.
The two binary operations are associative and commutative and [ is distri-
butive with respect to -+. (0, 0) is the neutral element of addition and (1, 0)
is the neutral element of multiplication. (N x N, +, [, (0, 0)) fails to be a
ring because only (0, 0) has a negative in N x N. We shall not go through
the details of supporting these claims and refer the reader to Exercise 1.

On theset N x N we define a relation y such that (x, y)y (, v) if and only
if x + v = y + u. That this relation y is an equivalence relation follows
without difficulty. We propose, by making appropriate definitions of binary
operations, to make N x N/y into a ring much as was done with the quotient
ring in Section 2.6. This construction differs from the construction of R/y
from R in that this time N x N is not a ring,
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Our tack now is to drop temporarily our specific problem with N x N
and to take a more general view of procedure.

Definition. Given a set S and a binary operation § on S we say an equiva-
lence relation ¢ on S is compatible with f if and only if xex’ and yey’
imply (xBy)e(x'By) for all x, y, x, y' € S.

Theorem. Let S be a set with a binary operation  and an equivalence relation e.
¢ is compatible with B if and only if $:(S/e) x (S/e) — S/e such that x/efy/e =
(xBy)/e is a binary operation on S/s.

PROOF. x/¢By/e = (xBy)/e is well defined provided and only provided the
definition is independent of the representatives chosen from the equivalence
classes or cosets. In other words, f§ is well defined if and only if x/e = x'/e
and y/e = y'/e imply (xfy)/e = (x'By’)/e. This condition is in turn equivalent
to xex’ and yey’ imply (xBy)e(x'By). O

ExaMmpLE. In Section 2.6 the equivalence relation ~ on R in the first theorem
is compatible with both + and -.

We now apply the concept of compatible equivalence relation to our
specific problem with y and (N x N, +, [, (0, 0)>.

Theorem. The equivalence relation y on N x N, (x, y)y(u, v) if and only if
X 4+ v =y + u, is compatible with the binary operations + and [ on
N x N.

Proor. Suppose (r, s)y(r', s') and (u, v)y(u, v'), all members of N x N. Then
r+s=s+randu+v=v+u.r+5)+U+0)=(+7¥)+ (v + u).
r+uw+E+)=6+v)+EF + ) +us+ o)y +u,s + )
[(r,s) + (w, v)]y[(+, s) + (W, v)]. y is compatible with +.

For multiplication we suggest proving [(r, s) [ (4, v)]y[(¥, s') . (4, v)] and
[, s) O (u, v)]y[(r, s') [T (&, v')] and using the transitivity of y for the result.
Forone,(r + sYu + (¥ + sjo=(F + s)ju+ (r + shv.ru + sv + rv + su =
o+ su+ ru+ sv. (ru + sv, ro + su)y(ru + s'v, r'v + su). [(r,s) O
(w, 0]3[(, ) & (, )], D

Corollary. F and [3] are binary operations on (N x N)/y where (r, s)/y F
W)y = @+ u, s + v)fyand (r, s)ly O (4, v)/y = (ru + sv, rv + su)/y.

Having established our binary operations for (N x N)/y we move to
prove this theorem:

Theorem. {(N x N)/y, F, [, (0, 0)/y, (1, 0)/y> is a commutative unitary ring.
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PRrROOF. It remains to verify that every member of (N x N)/y has a negative
in (N x N)fy. Let (x,y)ye(N x N)/y. Then (x, y)/y ¥ (y,x)fy =
x4+ yy+ %)/ =(0,0). m

Our next theorem utilizes a double induction.

Theorem. {(N x N)/y, F, [, (0, 0)/y, (1, 0)/y> is an integral domain.

ProoF. Let (x, y)/y & (u, v)/y = (0, 0)/y. We must show (x, y)/y = (0, 0)/y
or (u, v)/y = (0, 0)/y. In other words we must show xu + yv = xv + yu
implies x = yoru = vforall x, y,u,ve N.

Let S = {y|xu + yv = xv + yuimplies x = y or u=v for all x, u, v e N}.
xu + yv = xv + yu implies xu + 0 = xv + 0 which implies x = 0 or
u=v. x =y or u= v The statement is true for y = 0. 0 € S. We now
assume k € S. We intend to show that k + 1€ S; that is, xu + (k + v =
xv + (k + Duimplies x = k + 1 oru = v for all u, v, x € N. In order to do
thislet T = {x|xu + (k + 1)v = xv + (k + luimpliesx = k + loru = v
for all 4, veN}. 0e T since xu + (k + 1)v = xv + (k + 1)u implies
0+ (k + v = (k + 1)u which implies u = v. Assume [e T. Suppose
(+Du+k+Do=0+Do+k+Dulu+u+kvo+v=lb+ov+ku+u
Iu + kv = lv + ku. Since we have assumed k€ S we have u = vor k = L
Thusu =vork+1=1+114+1eT. T=N.k+1eS8.S=N. O

This completes the construction of the integral domain which will be the
integers.

QUESTIONS

1. In the system (N x N)/y, F, [, (0, 0)/y, (1, 0)/y)> constructed in this section
A) 0, 0y F o)y =(x +uy+ v)fy
(B) xu + yv = xv + yu implies x = y or u = v for all natural numbers x, y,
u, v.
(©) ((x, »)/7)* = (0, 0)/y implies (x, y)/y = (0, 0)/y
(D) (x, y)/y = (u, v)/y implies x = uand y = v.
(E) None of the alternatives completes a true sentence.

2. If + is a binary operation on S and p is an equivalence relation compatible with
+ then
(A) x/p + ylp = (x + y)p
(B) x + (—x) = 0 implies x/p + —x/p = 0/p
(C) x/p = y/p if and only if xpy
(D) there exists a y/p such that x/p + y/p = x/p.
(E) None of the choices is satisfactory.

3. An equivalence relation p on a set S
(A) is compatible with a binary operation + if and only if x;px, and y,py,
imply (x; + y1)p(xz + 2)
(B) partitions a set S into a collection S/p of cosets
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(C) isasubset of S x S
(D) is compatible with a binary operation - if and only if x, px, and y,py, imply

(x1y1)p(x2y)-
(E) None of the alternatives completes a true sentence.

EXERCISES

1. Prove that for <N x N, +, [, (0, 0)>
(a) + and [] are associative and commutative;
(b) (0, 0) is a neutral element for + ;
(c) (1, 0) is a neutral element for [[]; and
(d) [ is distributive with respect to +.

2. Show that y, the relation defined on N x N such that (x, y)y(u, v) if and only if
X + v = y + u, is an equivalence relation.

3.6 Embedding N in the integers

In this section we show how we can regard (N x N)/y as an extension of N.

Having constructed the integral domain (N x N)/y from N we proceed to
show how we can regard (N x N)/y to be the integers. There are many ways
of writing the same equivalence class in (N x N)/y:(0,0)/y = (1, 1))y =
(2,2)y =---and (1, 0)/y = (2, )}y = (3,2)/y = - -. We now look for some
unique representation of a member of (N x N)/y.

Lemma. For any pair (m,n)e N x N there is a pair (x, y) € (m, n)/y such
that x = 0or y = 0.

ProoF. We use induction. Let S = {n|for all m € N, (m, n)/y contains a pair
(x, y) in which x = 0 or y = 0}. 0 € S because (m, 0)/y contains the pair
(m, 0). Suppose k € S. Now consider (m, k + 1)/y for any me N. If m = 0
then the pair (0, k + 1)e(m, k + 1)/y. If m # 0 then m = p + 1 for some
p € N. We are then considering the equivalence class (p + 1, k + 1)/y. This
is the same set as (p, k)/y because (p, k)y(p + 1, k + 1). Because ke S we
know (p, k)/y contains some pair (x, y) with x = 0 or y = 0. This same pair
belongsto(p + 1,k + 1)/y = (mk + 1)/y. k + 1eS.§ = N. a

Theorem. (N x N)/y = {(m, 0)/yjmeN} U {(0, n)/yjne N*}.

ProoF. Let (p, g)/y € (N x N)/y. (p, g)y(m, 0) for some m € N or (p, q)y(0, n)
for some ne N*. Note (p, q)7(0,0) is included in the first alternative.
(p, 9)/y = (m, 0)/y for some me N or (p, g)/y = (0, n)/y forsomene N*. O

We now show that (N x N)/y consists exactly of the members (0, 0)/y,
(1, 0)/7, (0, 1)/y, (2, 0)/y, (0, 2)/y, . . ...

Theorem. (m, 0)/y = (n, 0)/y if and only if m = n. (0, m)/y = (0, n)/y if and
onlyif m = n.(m,0)/y # (0, n)/y foranyme N,ne N*.
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PROOF. (m, 0)/y = (n, 0)/y if and only if m + 0 = 0 + n. Similarly for the
second statement. (m, 0)/y = (0, n)/y if and only if m + n = 0 + 0. But this
cannot be for n # 0. O

We proceed to identify those members of the form (m, 0)/y with the natural
numbers.

Theorem. j:N — (N x N)/y such that j(m) = (m,0)/y is an injection and
preserves both binary operations of N.

PROOF. j(m + n) = (m + n,0)/y = (m,0)/y F (n, 0)/y = j(m) F j(n). j(mn) =
(mn, 0)/y = (m, 0)/y 1 (n, 0)/y = j(m) 13 j(n). j(m) = j(n) implies (m, 0)/y =
(n, 0)/y which implies m = n. O

Theorem. (N x N)/y = j(N) u —j(N¥).

ProoF. Those members of (N x N)/y of the form (m, 0)/y = j(m) form the
set j(N). By —j(N™) we mean the set {—j(m)|ne N*} which is the set
{—(n,0)/ylneN"} = {(0,n)/ylne N*}. O

We now follow the practice of writing n for j(n) and —n for —j(n). This is
to say we no longer distinguish between the natural number n and the
integer j(n). We denote the resulting integral domain of integers with
<, +,-,0,1>.

QUESTIONS

1. Which of the following statements are true of (N x N)/y, F, [, (0, 0)/y, (1, 0)/y>?
(A) (0,3)/y = (7, 10)/y.
(B) (0,3) e 4, 7)/y.
(C) (a + k, b + k)y(a, b).
(D) (1, 4y n (7, 10)/y = (6, 6)/y.
(E) None of the statements is true.
2. j:N — (N x N)/y such that j(n) = (0, n)/y
(A) preserves + in F
(B) preserves - in {]
(C) has j(0) = (0, 0)/y
(D) has j(1) = (1, 0)/y.
(E) None of the alternatives completes a true sentence.

EXERCISES

1. Prove (m + k, n + k)/y = (m, n)/y.

2. Prove (m, n)/y = (u, v)/yifand onlyif m + v = n + u.

3. Solve this equation: [(5, 3)/y (1 (x, »)/y] F 2, 8)/y = (6, 9/y.

4. Are there solutions to this equation? (3, 6)/y T (x, y)/y = (2, 4)/y.
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3.7 Ordered integral domains

In this section order is developed for integral domains.

Regarding the natural numbers N as a subset of the integers Z we call the
set N of all nonzero natural numbers the positive subset of Z and denote it
also by Z*. From our earlier results we can summarize our knowledge of Z™*.

Theorem. Z* < Z.0¢Z* . x,ye Z* implyx + yandxye Z*. x # 0implies
xeZ* or —xeZ”.

PrOOF. We have noted in Section 3.4 that N* is closed under addition and
multiplication. Since (N x N)/y = j(N) u —j(N") we have the fourth
property. a

Rather than just develop order for the integers we develop order for
integral domains in general; it is no more difficult.

Definition. Let (R, +, -, 6, v> be a commutative unitary ring with v # 6. A
subset R™ of R is called a positive subset of R if and only if

0¢ R,
x, ye R* imply x + yand xye R™,
xeRand x # 60 imply xe R* or —xe R*.

The existence of a positive subset in a commutative unitary ring is enough
to make the ring an integral domain.

Theorem. If a commutative unitary ring (R, +, -, 8, v> with 8 # v has a
positive subset R* then R is an integral domain.

PrROOF. Suppose that x and y are both elements of R and are both nonzero.
We then have four cases: xe R*and ye R*, xe R* and —ye R*, —xeR*
and ye R*, —xe R* and —y e R". The four cases yield the following pos-
sibilities: xy e R*, —xy e R*, —xy e R*, xy € R*. In no case does xy = 0.
We have therefore proved x # #and y # 6imply xy # 6. This is the contra-
positive of xy = 0 implies x = for y = 6. O

In view of this fact that every commutative unitary ring (6 # v) with a
positive subset is an integral domain we shall refer to such rings as integral
domains with positive subsets.

Theorem. If (R, +, -, 6, v) is an integral domain with a positive subset then
{R*, —R*, {6} } is a partition of R.

PrOOF. We show first that R* U —R* U {#} = R. Let xe R and x # 0.
Thenxe R" or —xe R*.If —xe R" then —x = yforsomeyeR*.x = —y
forye R*.xe —R*,
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We next show that the three subsets are disjoint (have an empty inter-
section in pairs). 8¢ R* and 8¢ —R*. Suppose xe R* n —R*. xe R

and x = —y for some yeR*. —x = yeR*. x + (—x)e R*. e R".
This contradiction shows that no x can belong to both R* and —R™*.
R*n —R* =¢. o

We call the set —R™ the set of negative elements of the integral domain.
The previous theorem shows that all elements are either positive or negative
or zero but never simultaneously more than one of these.

We now move to show how the existence of a positive subset of an integral
domain allows the construction of an order on the integral domain. An
order on a set S is called a total order if and only if every two elements of S
are comparable: ie, xe S and ye S imply x < y or y < x. We note, for
example, that inclusion on the set of all subsets of a given set (with at least
two elements) is not a total order.

Definition. An integral domain {R, +,*, 6, v is an ordered integral domain
if and only if there exists a total order (<) on R such that

x<y impliesx +z<y+z
x < yand z > 6 implies xz < yz.

Theorem. Let <R, +, -, 0, v> be an integral domain with a positive subset R .
Then (R, +,+, 0, v) is an ordered integral domain with the order defined
by(x < yifandonlyify — xe R" ory = x).

ProOF. We must first show that the order in question is actually a total
ordering of R. x < x for all x € R because x = x. x < y and y < x imply
(y —xeR* or y=x) and (x — ye R* or x = y). There are four cases
here, three of which lead to the conclusion x = y. We show that the fourth
case y — xe R* and x — ye R" is impossible. This case is impossible
because the sum (y — x) + (x — y) is § which cannot belong to R*. We
conclude x = y and have antisymmetry.

Now assume x < y and y < z which gives (y — xe R" or y = x) and
(z — ye R* or z = y). We follow the four possibilities. y — xe R* and
z—yeR* imply z — xeR*. x<z y—xeR" and z=y imply
z—xeR*. x<z y=x and z— yeR" imply z— xeR". x<z
y =x and z = y imply z = x. x < z. Now that we have proved < to be
reflexive, antisymmetric and transitive we know < to be an order on R.
We now prove the order to be total. Let x, ye R. x — ye R. x — ye R*
orx — ye —R* orx — y = fbecause {R*, —R™, {0} } is a partition of R.
x —yeRtory—xeR"orx=y.y<xorx <y.

We now prove the order to be compatible with the binary operations of
the integral domain. If x < y then y — xe R™ or y = x. If x = y then
X + z = y + z.Ontheotherhandify — xe R*theny + z — x — ze R™.
(y +2 — (x + )€ R*. x + z < y + z For multiplication let x < y and
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0 <z (y—xeR"orx=y)and (ze R* or z = ). The four possibilities
go as follows. Case I: y — xe R* andze R*.(y —x)ze R*. yz — xze R™.
xz < yz.Case 2:y — xeR* and z = 0. (y — x)z = 0. xz = yz. Case 3:
y—x=0and zeR*. (y — X)z = 0. xz = yz. Case 4: y — x = 0 and
z=0.(y — x)z = 6. xz = yz. Thus in all four cases xz < yz. m|

We shall use x < y and y > x interchangeably. It is sometimes con-
venient to use the concept of strict order (x < y) instead of order (x < y).
Either can be defined in terms of the other. Strict order can also be defined
directly from the positive subset R*:x < y if and only if y — x € R*. See
the exercises for details on this possibility.

We have showed how one can begin with a positive subset of an integral
domain and then define an ordered integral domain. We complete a cycle
and show that any ordered integral domain has a positive subset.

Theorem. Let {R, +, -, 6, v) be an ordered integral domain with total order <.
Then the subset of R, {x|x = 0 and x # 0}, is a positive subset of R.

PROOF. Suppose x and y are both members of the subset {t|t > @andt # 6}.
Then x >0, y > 6, x # 0, y # 6. Using the compatibility of the order
X+y=2x+020+0.x+ y> 0.Supposex + ywerezero.x + y = 0.
Since x + y = x we would have 0 > x. x > 0 and 6 > x yields x = 0.
But x # 0. x + ye {t|t > 0 and t 5 0}. For closure under multiplication
we have xy > x-0. xy > 6. xy # 0 because R is an integral domain.
xy€ {t|t > 0 and ¢ # 0}. We finally prove that if x € R and x # 6 then
x 2 6 or —x > 0. Because any two elements of the totally ordered R are
comparable either x > 0 or 6 > x. To both sides of the second inequality
we add —x getting —x > 6. O

We end this section with several brief results.

Theorem. Let (R, +,-, 0, v) be an ordered integral domain. If x € R then
x? > 6.

ProoF. By x? we mean, of course, xx. x € Rmeans x > forx < 0.Ifx > 0

then xx > 6. If x < Othen —x > 0. xx = (—x)(~x) = 6. O

Theorem. Let {R, +,-, 8, v) be an ordered integral domain. Then v > 0
and —v < 0.

PROOF. v =vw 2 0.v # 0.v > 0 implies —v < 6. O

QUESTIONS

1. Which of the following are not part of a definition of positive subset R* of a commuta-
tive unitary ring R.
(A) 0¢R™.
(B) xe R implies xe R* or —xe R™.
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(C) x,ye R* imply xye R*.
(D) x,ye R imply x + yeR™.
(E) None of the statements fails to be part of the definition.

2. Which of the following statements are correct for the ordered integral domain
(R, +,-,0,v>?
(A) x # 0 implies —xe —R*.
(B) x,ye —R* imply x + ye —R™.
(C) R* n —R* = {6}.
(D) (-R*}(—R*) = R™.
(E) None of the statements is correct.

3. Which of the following statements are true?
(A) Every integral domain has a positive subset.
(B) Every integral domain with a positive subset is a ordered integral domain.
(C) In an ordered integral domain every square is greater than or equal to zero.
(D) In an ordered integral domain v > 6.
(E) None of the statements is true.

4. Let < be an order on a set R. The order is total if and only if
(A) x < xforall xeR
(B) x < yory< xforallx,yeR
C)x<yandy<zimply x < zforall x,y,ze R
(D) x<yandy < ximply x = yforall x, ye R.
(E) None of the alternatives completes a true sentence.

EXERCISES

1. Does the relation xky if and only if x — ye {3, 4, 5, ...} make Z into an ordered
integral domain?

2. Is <Q, +, -, 0, 1> with the usual ordering an ordered integral domain?

3. Show that the following statements are true in an ordered integral domain (R,
+,,0,v)
(@) x2 + y* = 2xy
(b) x > y > 0implies x* > y2.
4. We remember that a binary operation § and an order < are compatible if and
only if x, < x, and y, < y, imply x,fy, < x,By,. Show that if (R, +, -, 6, v
is an ordered integral domain it is impossible for both + and - to be compatible
with the order.

3.8 A characterization of the integers

In this section we characterize the integers as an ordered integral domain
with a well-ordered set of nonnegative elements. We also introduce a second
form of mathematical induction.

We recall first that m is a minimum (or smallest) element of an ordered
set if and only if me Sand m < x for all x € S.

86



3.8 A characterization of the integers

Definition. An ordered set S is well-ordered if and only if every nonempty
subset of S has a minimum element.
We now prove that the subset of nonnegative elements of Z is a well-
ordered set (under the order of 7).

Theorem. N is a well-ordered set.

Proor. We must show that every nonempty subset of N has a minimum.
Let S be any nonempty subset. Since § # ¢ we may choose an element
from S, say n. We partition S into two subsets: § = {x|xe Sand x < n} U
{x|x € Sand x > n}. No x can simultaneously be < and > n. The two
subsets are disjoint. Because the order on Z (and therefore on N) is total
every x € S must belong to at least one of the two subsets. The first subset
must be nonempty because it must contain n. The second subset could
possibly be empty and in that case there is but one subset. It is clear, however,
that if we find an element m of the first set which is a minimum for the first
set then it will be smaller than any member of the second set and therefore
a minimum for all of S. We therefore content ourselves with the proving
of this proposition. Any nonempty subset of N with elements not exceeding
the natural number » has a minimum. We use induction on n. Let n = 0.
The subset must then be {0} which has a minimum 0. Assume the result
true for k. Let A be any nonempty subset of N with elements not exceeding
k + 1. If A consists exactly of {k + 1} then k + 1 is the minimum. If not,
then there are elements of A strictly smaller than k + 1. Let A" be the
subset of A with members not exceeding k. This subset must have a min-
imum m by the inductive hypothesis. m is also a minimum for A because
m<k<k+ 1 i

We remark here that @ and R, two other ordered integral domains, do
not have well-ordered nonnegative elements. The set {(3)"|ne N}, for
example, is a nonempty subset of both Q and R of nonnegative elements
which has no minimum. Again, of course, we are relying upon the readers
previous knowledge at this point because we have not yet formally con-
structed Q or R.

The following theorem proves there is no integer between 0 and 1.

Theorem. Let (R, +,-, 0, v) be an ordered integral domain with the set of
nonnegative elements well ordered. Then there is no y e R such that
f<y<w

PrOOF. Suppose that {x|x e Rand § < x < v} is a nonempty set. It is a
nonempty set of nonnegative elements of R, a nonempty subset of a well-
ordered set and therefore has a minimum member, say, m. m < v implies
mm < vm. mm < m. On the other hand, § < m implies 6 < mm. Thus mm
is between 6 and v and is properly smaller than the minimum such element, m.
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This is a contradiction and this shows that {x|xe R and 6 < x < v}
is empty. O

We have demonstrated that Z is an ordered integral domain and that
its set of nonnegative elements, N, is well-ordered. Now let us begin with
any ordered integral domain with well-ordered nonnegative elements and
conversely prove that the nonnegative elements obey the principle of
mathematical induction.

Theorem. Let (R, +,-, 0, v> be an ordered integral domain such that N =
{x|xe Rand x > 0} is well ordered. If S< N and 0€S and (xeS$
implies x + ve S) then S = N.

ProoF. Consider the set N — S, the relative complement of S in N. We
wish to prove this set to be the empty set. Suppose N — S # . Let r be
the minimum of the set N — S. There is an element r — v in R and certainly
r — v <r. Since r # 0 we know r > 0. Since there are no elements of R
between 6 and v we know r > v. Thus we have r —v > 0. r — ve N.
Since r is the smallest element of N — S and r — v is properly smaller than
rwemust haver — ve N — S.r — vis therefore in S. But then (r — v) + v
also belongs to S. r € S. This contradiction means N — S = J. S = N. O

This theorem establishing the principle of mathematical induction for
any ordered integral domain with a subset of nonnegative well-ordered
elements leads one to suspect that such an integral domain does not differ
markedly from the integers. Such an integral domain is, in fact, isomorphic
with the integers. We put this result into a theorem.

Theorem. If <R, +,-,0,v) is an ordered integral domain with N =
{x|x€ Rand x > 0} well ordered then there exists an isomorphism
f:Z - R. Moreover, x = y implies f(x) = f(y), the isomorphism pre-
serves order.

ProoF. We define f':N — N such that f'(0) = fand f'(n + 1) = f'(n) + v.
Such a function exists by our axiom of definition by induction. We now
prove f' to be a surjection. 0 € f'(N) because f'(0) = 6. If ke f'(N) then
k = f'(a) for some aeN. fla+ 1)=f@+v=k+v. k+vef(N)
f'(N) = N. This has been an application of the previous theorem, induction
on the nonnegative elements of R.

We now prove that the surjection f:N — N is also an injection. Let
S = {n|f"(m) = f'(n) implies m = n for all me N}. Suppose f'(m) = f'(0).
f(0) = 0. f'(m) = 6. m must be 0 for otherwise m = p + 1 for some p e N.
We would then have f'(m) = f'(p + 1) = f'(p) + v = 0. But this is im-
possible because 6 is not the sum of v and any member of N. 0€ §. To
complete this induction we must prove k € S implies k + 1 € S. Suppose
ke S. f'(m) = f'(k) implies m = k for all me N. Now if f'(m) = f'(k + 1)
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we have f'(m) = f'(k) + v. m is not 0 because f'(m) # 0. m = q + 1 for
some g€ N. f'(m) = f'(q + 1). We have therefore f'(g + 1) = f(q) + v =
SE +v.fl@g=fkg=kq+1=k+1lm=k+ 1.k+ 1€S.The
induction is complete proving f’ to be a bijection.

We now show that f":N — N preserves + and . Let S = {n|f"(m + n) =
Sf'(m) + f'(n) for all me N}. 0e S because f'(m + 0) = f'(m) = f'(m) + 0 =
f'(m) + f'(0).Toprovek € Simpliesk + 1€ Sletf'(m + k) = f'(m) + f'(k)
for all meN. fm+k+1)=fm+k+v=f(m+ f'k +v=
f'm) + f'(k + 1). S = N. This shows f” preserves +.

To demonstrate that f’ preserves -, let S = {n|f'(mn) = f'(m)f'(n) for
all meN}. 0€S§ for f'(m-0) = f'(0) =0 = f'(m)0 = f'(m)f'(0) for all
me N. Toprove k € Simplies k + 1 € Slet f'(mk) = f'(m)f'(k) for all m € N.
Then f'(m(k + 1)) = f'(mk + m) = f'(mk) + f'(m) = f'(m)f'(k) + f'(m) =
f ML) +v] = fmfk+1.8S=N

The next part of the theorem proof is to extend f':N — N to a function
f:Z - R. The extension f must agree with /' on N. We define f:Z — R
as follows: f(x) = f'(x) for all xe N, f(x) = —f'(—x) for xe —N. This
function f is a bijection from N to N, a bijection from —N to —N and
therefore is a bijection from Z to R.

We now intend to demonstrate that f preserves + and -. Case I: x e N
and yeN. x + ye N. f(x) = f'(x). f(3) = f'()). fx + ) =fx +y) =
f'x)+ f'(y) = f(x) + f(y). Case 2: xeN and ye —N. x + ye —N.
S+ 1) = —f (=& + D) = —f(=x + (=) = ~[f(=0) + f{=y)] =
—f'(—x) — f'(—y) = f(x) + f(y). We remark that these two cases are not
mutually exclusive but overlap at 0 just as the definition of f. Case 3a:x € N
andye —Nandx + yeN.x =(—y) + (x + y)with —ye N, x + ye N,
xeN. f'(x) = f((=y) + (x + ) = f(~y) + f(x + y). Solving for
f'(x +y) we have f'(x + y) = f'(x) — f(=y). flx +y) = fx) + f(»)
Case 3b: xeN and ye —Nand x + ye —N. —y = —(x + y) + x with
—yeN, —(x+yeN, and xeN. f(—=y) = f(~(x +y) + x) =
f(—=(x 4+ y)) + f'(x). Solving for —f'(—(x + y)) wehave —f'(—(x + y)) =
f'x) =f'(=y). f(x+y) = fx) + f(y). Cases 4a, (xe —N and yeN
and x + ye N), and 4b, (xe —N and ye N and x + ye —N), can be
proved by interchanging the role of x and y in Cases 3a and 3b. This con-
cludes the demonstration that f preserves +.

We now show how f preserves . Case I: x e N and y e N. Then xy e N.

Sxy) = f'(xy) = f'x)f"(y) = f(x)f(y). Case 2: xe —N and y e —N. Then
xy € N. fxy) = f'(xy) = f((=x)=1)) = f(=)f(=y) = (=f(=X)) -
(=f'(=y) = f(x)f(y). Case 3: xe Nand ye —N. Then xy e —N. f(xy) =
—f(=xy) = =fx(=y) = = (=) = f)=f(=y) = fXRf(.
Case 4, (x e —N and y € N), is similar to Case 3.

Finally in this lengthy proof we wish to prove x > y if and only if
f(x) = f(y). This is equivalent to x — ye N if and only if f(x — y)e N.
But this statement is clearly true from the construction of f. This completes
the proof of the theorem. O
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3. Rings: Natural numbers and integers

We complete this section with an alternate form of mathematical in-
duction. This form is sometimes referred to as the second principle of
mathematical induction. It is essentially a proof scheme based upon the
well-ordering of N.

Theorem. Let S be a subset of N such that {klk < n} = S implies ne§.
Then S = N.

Proor. In alternate words, we wish to show that if n belongs to S every
time all elements smaller than n belong to S then S must be N.

We must prove that the subset S mentioned in the hypothesis is all of N.
We do this by mathematical induction (the mathematical induction we have
been consistently applying in this chapter). It is given that if {k|k < 0} = S
then 0 € S. But {k|k < 0} is a subset of S because {k|k < 0} is the empty set.
Therefore 0 € S.

Suppose me S. We must show that m + 1€ S. Assume there is some
smallest number j, 0 < j < m, which does not belong to S. j cannot be zero
since 0 € S. Then all the numbers before j do belong to S. {x|x < j} < S.
Using the hypothesis for the theorem je S. This contradicts j ¢ S. There
can be no integers smaller than m which fail to belong to S. {x|x < m} < §.
{x]x <m+ 1} = S. Again using the hypothesis we have m + 1 €S.
S =N. O

Observe that the hypothesis of the theorem does not require proving
0 € S separately. It should be clear from the theorem that once {k|k < n} = §
implies n € S is proved then 0 € S is a consequence.

QUESTIONS

1. Which of the following statements are true?

(A) If (R, +, -, 8, v> is an ordered integral domain then there is no y € R such
that 0 < y < v.

(B) If (R, +,, 6, v> is an ordered integral domain then 8 < v.

(C) An ordered integral domain with well-ordered nonnegative subset is order
and ring isomorphic to the integers.

(D) If S = Nand ne S impliesn + 1€ S then S = N.

(E) None of the statements is true.

2. Which of the following statements are true?
(A) 0 is a minimum element of {x|x > 0 and x € Q} shows that {x|x > 0 and
x € @} is well ordered.
(B) ¥ is a well-ordered subset of Z.
(O {1 — @)y'|ne N} is a well ordered subset of Q.
(D) {(3)"|n € N} is a well ordered subset of Q.
(E) None of the statements is true.

3. Let f:R — R’ be a function from the ordered integral domain {R, +, -, 6, v) to
the ordered integral domain {R’, +’, -, &, v'>. Which of the following conditions
are not necessary for f to be an isomorphism and to preserve order?
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3.8 A characterization of the integers

(A) x < yimplies f(x) < f(y)forall x, ye R.

(B) f(v) = .
(©) f(xy) = f(¥)f(y) forall x, y € R.
(D) f(0) = 0.

(E) All of the conditions are necessary.

4. Which of the following statements are correct?
(A SeNand {0,1,..., k — 1} < S implies k € S) imply § = N.
(B) —N is well-ordered.
(C) Every subset of a well ordered set is also well ordered.
(D) Every nonempty subset of N has a maximum element.
(E) None of the statements is correct.

EXERCISES

1. Let (R, +, -, 6, v)> be an ordered integral domain with well-ordered nonnegative
subset. Let f:R — R be a morphism which also preserves order. Show that if S # &
and § = {x|x > 0 and x € R} then f(min S) = min f(S).

2. Show that if (R, +, -, 8, v) is an ordered integral domain with well-ordered non-
negative subset and x, r, se R™ and x = rsthenr < x.

3. Let <R, +, -, 6, v> be an ordered integral domain. Show that if x > v + v then
X2z x4+

4. Show that in any ordered integral domain there can be no maximum element.

5. Show that if § is a subset of the nonnegative integers and for all n, {x|x < n} = §
implies ne S, then 0 € S.
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Rings:
Applications
of the integers

In this chapter we assemble some results on rings which we obtain by
using a specific knowledge of the natural numbers and the integers. We
begin the chapter with some work refining our knowledge of finite and
infinite sets. We then routinely study some theorems extending the associa-
tive, commutative, and distributive laws to any finite number of elements
of a ring. We then extend to the integers the division algorithm earlier
established for the natural numbers and discuss briefly prime numbers.
After this we study the use in rings of the integers to indicate repeated
additions and repeated multiplications: multiples and exponents. We con-
sider in Section 4.5 the important result that every integral domain is included
in some field. We show the existence of such a field and call it the field of
fractions of the given integral domain. We specifically apply the theorem
to the integers to construct the ordinary fractions or rational numbers.
We finally, in Section 4.6, study the characteristic of a ring.

4.1 Finite sets

We have previously used the following criterion for two sets to be the
same size: S and T are equipotent if and only if there exists a bijection
f:8 - T. For example, {a, b, c} and {0, 1,2} are the same size because
f =1{a0), (b, 1), (c,2)} is one possible bijection between the two sets. A
further example was contained in Section 2.6 where we defined equipotent
and proved two cosets of R/A4 have the same number of members. We shall
now use the term cardinal number of a set to mean the number of members
of the set. We speak of two equipotent sets as having the same cardinal
number. We abbreviate cardinal number of the set S with crd S.

Definition. crd S = crd T if and only if there exists a bijection f:S —» T.
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4.1 Finite sets

One can verify that the following equivalence properties hold for the con-
cept of equality of cardinal numbers.

Theorem. crd S = crd S. crd S = crd T implies ccd T = crd S. crd S =
crd Tand crd T = crd U imply crd S = crd U.

It is possible to give crd S a specific identity as a set. The equality in the
theorem and definition then becomes equality of sets. In particular when a
set has the same cardinal number as some natural number then we define
that natural number to be the cardinal number of the set.

Definition. Let ne N. crd S = n if and only if there exists a bijection
fin— S,

To realize this bijection we use the set model for the natural number
as described in Section 3.1: 0 = @&, 1 = {0},2 = {0,1},3 ={0,1,2},...,
n=1{0,1,2...,n— 1},.... For example, crd{a, b, ¢} = 3 by the bijec-
tion given in the first paragraph of this section. To legitimize this definition
we now establish that a set can have at most one natural number as its
cardinal number.

Theorem. Givenm,ne N, f:m — n is a bijection implies m = n.

ProOr. We give a proof by induction on the first number m. If m = 0, the
empty set, and f:(F — n is a bijection then y € n implies there exists an
x € ¥ such that (x, y) € f. But there is no x € & and so can be no y in n.
n=.

Assume the result is true for m = k. Let f:k + 1 — n be a bijection.
n # 0 for otherwise f is not a function unless k + 1 = 0, which it is not.
Because n # 0 it is | + 1 for some /€ N. We now investigate the bijection
f:k+1 -1+ 1.If f(k)happenstobelthen f —{(k,1)}:{0,1,2,... ,k— 1} —
{0,1,...,1 — 1} is a bijection k — . By induction hypothesis k = I. There-
fore k + 1 =1 + 1 = n. If f(k) happens not to be [ then f(k) = j for some
je{0,1,...,1}j# Lf —{(k,))}:{0,1,...,k =1} - {0,1,...,j — L,j+ 1,...,1}
is still a bijection. There exists an i€ {0, 1, ..., k — 1} such that f(i) = L
f={k)),GD}:{0,1,...,i—Li+1,...,k—1} > {0,1,...,j—1,j+1,...,1—-1}
is also a bijection. If we adjoin to this function the ordered pair (i, j) we have
yet another bijection (f — {(k,j), (G, D}) v {GH}:{0, L, ....,k—1} >
{0,1,...,1 — 1}. We have therefore a bijection from k to I. k = I. Therefore
k+1=1+1=n O

Corollary. Given any set S there is at most one natural number n for which
there exists a bijection f:n — S.

PrROOF. Suppose f:m — S and g:n — S are both bijections of natural
numbers into S. Then g~* o f:m — n is a bijection. m = n. O
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4. Rings: Applications of the integers

There are, of course, sets which do not have any natural number as their
cardinal number. Two such sets are N and R. Any such set not equipotent
with some natural number will be called an infinite set. It can, incidently,
be shown that N and R are not equipotent.

Definition. A set equipotent with some natural number is called a finite set.
All other sets are called infinite sets.

It is possible to define certain sets to be cardinal numbers for infinite
sets much as we have done for finite sets.

If S is a set with cardinal number n, a natural number, because of the
existence of some bijection f:n — § it is possible and convenient to denote
the members of S by a notation such as x,, x4, X5, . . ., x,_; Where x; = f{(i)
for all ie N. An alternate equivalent notation preferred by some is x;,
X, .- ., X,. Using this indexed notation we develop a property peculiar to
finite sets.

Theorem. If crd S = crd T = n for some ne N and f:S — T is either an
injection or a surjection then f:S — T is a bijection.

PrOOF. The proof is by induction on n. If crd § = crd T = 0 then both S
and T are equal to ¢J and any function f: @ — ¢ must be a bijection.

Assume the theorem to be true for the natural number k. Now let crd § =
cd T =k + 1. Case 1: f:{xg,X1,..., X} = {¥o» V1> ---» i} i an in-
jection. f(x;) = y; for some j. f — {(x, yj)}:{x0» X1, ., Xk—1} —
{Yo>V15-++>Yj=1,Vj+1>---» Yy is also an injection, but on sets which
have k elements. By the induction hypothesis f — {(x;, y;)} is a bijection.
f is then also a bijection. Case 2: f:{x¢, X1, ..., %)} = {Vo» V1s---> Vi} IS
a surjection. There exists an x; such that f(x;) = y;.

f = {(-xb yk)}:{XOa---,xi—laxH-la--',xk} - {J’o,)’1,--~,Yk—1}

is also a surjection, but on sets with k elements. By the induction hypothesis
f — {(x;, )} is a bijection. Then f is also. O

We now prove a theorem about integral domains which shows some of
the power of the previous theorem.

Theorem. Any integral domain which is finite is a field.

Proor. Let <R, +,-,6,v> be an integral domain in which crd R = n, a
natural number. We note that n > 2 because 6 and v must be distinct
elements in an integral domain. To show that R must be a field let ae R
and'a # 6. Define ¢:R — R such that ¢(x) = ax. ¢ is an injection. ¢(x,) =
o(x,) implies ax; = ax, which implies x; = x,. Since R is finite ¢ must
be a bijection. Thus given v € R there exists b € R such that ¢(b) = v.ab = v.
By commutativity ba = v also. b is the inverse of a. O
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4.1 Finite sets

QUESTIONS

1. Set A has the same cardinal number as set B
(A) implies there exists an injection from 4 to B
(B) means A has the same size as B
(C) only if there exists a bijection from B to A
(D) implies there exists a surjection from A to B.
(E) None of the choices completes a true sentence.

2. Which of the following statements are true?
(A) If there is a bijection from natural number m to natural number n then

m=n.
(B) If f:m — n and g:n — p are bijections and m, n, p are natural numbers
thenm = p.

(C) If m and n are natural numbers and m < n then there exists an injection
from m into n.
(D) A set is finite or infinite.
(E) None of the statements is true.

3. Which of the following statements are true?

(A) If there is a bijection from A to B then there is also a bijection from B to A.

(B) There exists at least one surjection from {0, 1, 2} to {0, 1, 2} which is not
an injection.

(C) Every finite field is an integral domain.

(D) Integral domains which are finite have at least one element which is not
multiplicatively invertible.

(E) None of the statements is true.

4. Which of the following statements are true?
(A) crd{0,2,4,6,...} = crd{1,3,5,7,...}.
(B) ccd N x N = crd N.
(C) crd{0,2,4,6,...} = crd N.
(D) crd{1,2,3,4,...} = crd N.
(E) None of the statements is true.

5. The sum of two finite numbers is finite is another way of saying
(A) the natural numbers are closed under addition
(B) infinite numbers do not really exist
(C) the range of a bijection is the same as the codomain
(D) natural numbers, excepting zero, have no negatives.
(E) None of the listed possibilities is an equivalent statement.

6. f:N — 2N such that f(x) = 2x

(A) is a bijection

(B) implies there are the same number of even natural numbers as natural
numbers

(C) shows that infinite sets may have proper subsets with the same cardinal
number as the entire set

(D) shows that odd natural numbers cannot be in the range of any bijection.

(E) None of the alternatives completes a true sentence.
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4. Rings: Applications of the integers

EXERCISES

o 0 N &

10.
11.
12.
13.
14.

15.

16.

17.
18.
19.

21.
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1. Provecrd N = crd 2N.
2. Provecrd N = crd Z.

3.
4
5

Prove crd Z = crd Q.

. If (0, 1) is the open unit interval of R prove crd(0, 1) = crd R.
. Prove crd R # crd N. [Hint: Use Exercise 4.] Suppose there is a function f:N —

(0, 1) such that f(n) = 0.a,0a,,4,; . . . (decimal notation). Show that there exists
a number 0.b;b,b; ... between 0 and 1 and not in the range of f. Conclude f
cannot be a surjection.

. Show thatifne Nand S < nthencrd Se N.
. Show that every subset of a finite set is finite.
. Show thatifneNand S < nthencrd S # crd n.

. Show that no finite set is equipotent with a proper subset of itself.

Show that N is not finite.

Show that N is equipotent with a proper subset of itself.

Show that every infinite set contains a subset equipotent with N.

Show that every infinite set is equipotent with a proper subset of itself.

Show that every unitary ring (with v # ) with no divisors of zero (other than
zero itself) is a division ring.

The order on cardinal numbers as natural numbers can be extended to cardinal
numbers of infinite sets as follows: crd S < crd T if and only if there exists an
injection f:S — T. Provecrd S < crd S. Provecrd S < crd Tanderd T < crd U
imply crd S < crd U. We have not listed antisymmetry because the proof is quite
difficult. An intuitively appealing proof can be found on p. 340 of [1].

Prove that the order relation defined in Exercise 15 agrees with the order definition
for natural numbers given in Section 3.4. This is to say, prove the following
statement: there exists a natural number p such that m + p = n if and only if
there exists an injection f:m — n.

Prove S < Timpliescrd S < crd T.
Provecrd N < crd R.

Addition of cardinal numbers (infinite or finite) can be defined by the following
equation: if SN T = Fthencrd S + crd T = crd(S w T). Show that this defini-
tion does not depend upon the particular sets S and T chosen.

. Show that if S and T are both finite sets then the definition given in Exercise 19

agrees with the definition of addition of natural numbers given in Section 3.2.
Use induction on crd T for the proof. We notice that this proves that the union
of two finite sets is finite.

ProvecrdS + crd T = crd(S U T) + crd(S n T).



4.2 Generalized associative, commutative, and distributive theorems

4.2 Generalized associative, commutative,
and distributive theorems

Theorems of associativity, commutativity, and distributivity, true for two
and three variables, can be extended to any finite number of variables.
The proofs are by induction on the number of terms, a natural number.
We also review the sigma and pi notation for products and sums.

Let f be an associative binary operation on any set S. We know that
a,f(a,fas) = (a,fa,)Ba; for all ay, a,, a; € S. This permits in practice the
use of the symbol a,fa,fa; without parentheses because either way paren-
theses are inserted the two results are equal. We wish now to extend this
principle to expressions of greater length.

Definition. We define a,fa,f - - - Ba, for all ne N* by defining (for any
binary operation § on a set S)

afaf---Ba, = a, forn =1,and

afasB - - BaBar., = (afayf - - - Ba)Bay. ;.

This is, of course, a definition by induction on the length of the expression.
It yields, for example, forn = 3

a,BaBas = (a,fa,)fas
aiBaBazfa, = ((a,Bay)Bas)fa,.

In this definition we designate the expression without parentheses to be one
of the possible expressions containing parentheses. We now prove a theorem
which demonstrates that if the operation is associative all of the expressions
formed by inserting parentheses in different ways are equal.

and forn = 4

Theorem. Let f be an associative binary operation on a set S. Let n and k be
natural numbers, n 2 2, 1 < k <n. If b = (a,fa,B - Pa) and c =

(ax+1B - Pay) then bBc = a,Ba,B - - - BarPay B - - - Pay.

Proor. We are trying to prove

(aiBazB - - - Ba)B(ax+1B -~ - Ba,) = afayf - - - fa,.

We give a proof by induction on the length n of the expression beginning
our induction with n = 2. If n = 2 then k = 1 and we have as the only way
the given expression can be split is (a,)B(a,). (a,)B(a,) = a,Pa,. We now
assume the theorem to be true for expressions of length m and we wish to
demonstrate that the result is true for expressions of length m + 1. Let
(aiBap - - - Ba,)Bla, 1P - - - PanPan.,) be any expression of length m + 1
which is split after the first p factors, 1 < p < m + 1. Using associativity
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4. Rings: Applications of the integers

(expressions of length 3) and the inductive assumption we have

(aiBayB- - ﬁap)ﬂ(ap'F 1B Bapfay 1)
= ((@1f -~ Bay)(aps1f - Pam))Bme1
= (a18 " Baw)Bam+1

afa f - - BapPam+ 1 a

We remark at this point that if the operation § has a neutral element v
in S then one can define a,fa,f - - - fa, = v for n = 0 (an empty product)
and achieve consistency with the theorems.

We now consider a generalized commutativity theorem for an operation
which is given associative.

Theorem. Let S be a set with an associative, commutative binary operation .
Then if (0(1), 6(2), ..., a(n)) is any permutation of (1,2, ..., n) we have
A(1)Bag2)B * - Bagwmy = a1Barp - - - Pa, for anyne N*.

Proor. We give a proof by induction on n, the length of the expression.

There is only one permutation on {1}, namely, o(1) = 1. Therefore, a,;) = a;.
Assuming the result true for the natural number k we demonstrate the

result for k + 1. Case I: a(k + 1) = k + 1.(a51)Bas 2B * * * BB+ 1) =

(aa(l)ﬁ T ﬂaa(k))ﬂakﬂ = (a;pa,B - - - Bay)Pay., using first Aok+1) = k+1
and then the inductive assumption. Case 2: a(k + 1) # k + 1. Suppose
ok + 1) = jforsomej, 1 <j<k+ L

(s1)Bas)B " * * Baga)Basy+ 1)
= (a5(1)Bas2)B "~ Baswy)Ba;
= (afap - - ﬂaj—lﬂaj+ B ﬁak+1)ﬂaj
= (a1BaxB - - ﬂaj—lﬁaj+ B .Bak)ﬁ(ak+1ﬂaj)
= (a1BayB - - - Ba;—1Baj+ 1B - - - Ba)B(a;Bay+ )
= (a;Bap - ﬁaj—lﬁaj+ B ﬂakﬁaj)ﬂak+1
= (a1fazB - - - Ba;_,Ba;Ba; 1B - - - Bay)Bay.,. O

For notational simplicity we consider a generalized distributive theorem

in a ring setting.

Theorem. Let {R, +,-,0) bearing. Thena(b, + --- + b,) = ab; + -+ - + ab,
foralla,b,,...,be R,neN",
Proor. The proof is by induction on n. a(b,) = ab;. Suppose

aby + -+ + b)) = ab; + -+ + ab,.
Then
alb; + - -+ by + by ) =alb; + - + by) + abyy,
=ab, + -+ + ab, + ab;

using distributivity in the ring (case n = 2) and the inductive assumption. O
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4.3 The division algorithm for the integers

For repeated additions and multiplications we remind the reader of the
compact summation and product notation. This notation, at least the
summation one, is usually encountered by calculus students.

.Mi
RN

a1+a2+"'+am= ;= z a;.

i=1 ie{l,2,..., m}
m
aay - dy = [ @ = I a;.
i=1 ie(1,2,..., m)
By)?% ,a,1 <p<gwemean ), a — Y ?_} a;.Itis convenient to have

anotation for theset {1,2, ..., n} just as nstands for theset {0, 1,...,n — 1}.
Weusedfor {1,2,...,n}. 30 a; = Y;cp a;

The summation notation is used in calculus for infinite series. We illustrate
its use here as an example of definition by induction. Given a sequence
a:N" > R, ie, (ay, a;,...), there is defined by induction a sequence of
partial sums, s:N* - R, such that s; = a;, s, = a; + dy,..., 84, =
Sg + Ggiqs - (81,52, 83,...) = (ag, a; + a,a; + a, + as,...). Any par-
ticular partial sum s, is written ZL 1 a;. If the sequence of partial sums has
a limit (in the real numbers) then the series is convergent and the limit of
the sequence of partial sums is called the sum of the series. That limit is
often denoted by ), a; which is not really an infinite sum but rather a
limit of a sequence of finite sums.

EXERCISES
1. Prove Y, .,i = 4n(n + 1)forallne N.
2. Prove Y, ;1 = nforallneN.

3. nlisread n factorial. A mathematical induction definition of n!is 0! = 1,(k + 1)! =
(k + 1Dk!. Proven! > nnforalln > 4, ne N.

4. Let m, n be natural numbers and a;; belong to a ring R for all i e M, j € A. Prove
Ziem Zjeﬁ ij = Zjefl Zierﬁ Aije

S. Let m, n be natural numbers and a;, b;, c;; be members of a commutative ring R
foralliem, jefi. Prove Y s @i Y jea bici; = Yjea bj Yieim %icij-

4.3 The division algorithm for the integers

We develop in this section the division algorithm for natural numbers
and integers and present some elementary facts on factorization.

Theorem. The division algorithm for natural numbers. If a, b N and a #
0 then there exist unique natural numbers q, r with a > r > 0 such that
that b = qa + r.

Comments. In a > r > 0 the order being used is the order induced upon
N by the order on Z. As an example of the division algorithm, 13 = (4)(3) + 1.
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4. Rings: Applications of the integers

In words, 13 divided by 3 goes 4 times with a remainder of 1. In arithmetic
b, g, a, r in the equation b = ga + r are called, respectively, dividend,
quotient, divisor, remainder. Further examples are 1 = 0-3 + 1; 1 divided
by 3 goes 0 times with a remainder of 0. Later we shall extend the algorithm
to Z giving such examples as —11 = (—4)3 + 1.

We now offer two existence proofs, one based upon the well-ordering of
N and the other a direct induction proof.

PrOOF 1. § = {b — xa|x € Z and b — xa > 0} is a subset of N. S includes
the integer b — Oa = b > 0 and is therefore nonempty. Let r be the first or
smallest element of the set S. Since re S, r = b — ga for some element
geZ. We now show 0 < r < a. Suppose r > a. Then r —a=1r = 0.
Fr=r—a=b-—-qgqa—a=b—-(q+1a reS and ¥ <r and 07
contradicts the minimality of . We have therefore r < a and since re N
we have 0 < 7.

We must now show g = 0. If g < —1thenga+r<(-1l)a+r<0
which cannot be because b is given > 0. Therefore ¢ > —1, which is to
say,q = 0.qe N. O

PrOOF 2. Let a > 0 be a given natural number. Let S = {n|there exist g, r
such that n = ga + r with r, ge N and 0 < r < a}. 0 € S because 0 =
Oa + 0. Assume ke S. k = ¢g,a + r, for some gq;, r;eNand 0 <r, <a
Thenk +1=qa+r, +1L.Ifr,+1<athenk+1=gqa+(r; +1)
and the conclusion holds. If r; + 1 = athenk + 1 = (¢; + 1)a + 0 and
again the conclusion holds. k + 1€ S. O

We now give a proof of the uniqueness of ¢ and r assuming their existence.
Suppose we have b = q"a + r"aswellasga + r.0 = (@ — q")a + (r — 7).
¥ —r = (q — q")a. Use of the two inequalities 0 < " <aand0 <r <a
shows —a < r — r’ < a. This is impossible unless the integer ¢ — ¢" is zero.
But then r’ — r = 0 also. The integers g and r are therefore unique. O

We extend the division algorithm for natural numbers to the integers,
first defining absolute value.

Definition. Ifa e Zanda > Othen |a| = a.]fae Zanda < Othen la| = —a

ExampLE. |-3| = —(-3) = 3.|3| = 3.
Theorem. The division algorithm for integers. If a, be Z and a # O then
there exist unique integers Q, R € Z such thatb = Qa + Rand0 < R < |a|.

ProoF

Case 1: a > 0 and b > 0. We may use the previous theorem for natural
numbers yielding b = ga + r with 0 < r <a Welet Q =qgand R =r.
Since |a| = a the conclusion follows.
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4.3 The division algorithm for the integers

Case 2: a > 0 and b < 0. We apply the natural number result to a and
—b, both natural numbers. This yields g, re N such that —b = ga + r
with 0 < r < a. Again |a| = a. If r = 0 then we have b = (—g)a + 0 so
that Q = —gand R = 0. If r # 0 then we have b = (—q)a + (—r), but —r
is not between 0 and |a|. We rewrite the equationasb = (—q — 1)a + (a — 7).
WenowletQ = —g—landR=a - r.0 <r <ayields0O> —r > —a
which in turn givesa > a — r > 0. Thus |a| > R > 0.

Case 3: a < 0 and b < 0. Using the natural number result on —a and
—bwe have g, r € N so that —b = g(—a) + r with 0 < r < —a. Therefore
b=gqga+ (—r).Ifr=0set Q =qand R = 0. If r # 0 then rewrite b =
(g+Da+(—a—-r.0<r< —agimplies0 > —r>a. —a> —a—r>0.
SetQ =g+ 1,R= —a—r.Sincea <0,la| = —a.|a| > R>0.

Case 4: a < 0 and b > 0. There are g, r e N such that b = g(—a) + r.
0<r<-ab=(-qa+rSetQ=—gandR=r.0<R <|d O

In the case when the remainder is zero upon dividing b by q, a is said to
divide b, to be a divisor of b. Thus the word divisor has several different
meanings. We make a fresh definition to include the possibility of 0.

Definition. Given a, b € Z, a is a factor (divisor) of b if and only if b = ca
for some ¢ € Z. b is a multiple of a if and only if b = ca for some c € Z.

ExampLES. 3 is a factor of 21 and 21 is a multiple of 3. 0 is a factor of 0 and 0
is a factor of no other integer than 0. That the only factors of 1 and —1 are
1 and —1 follows from the next theorem.

Theorem. 1 and —1 are the only integers with multiplicative inverses.

Proor. Both 1and — 1dohave inverses because(1)(1) = land(—1)(—1)= 1.
We now prove that if n > 1 then n has no inverse in the integers. Exercise 6
of Section 3.4 with some additional argument gives the result. We offer here,
however, a different proof using the order on Z. Suppose n has an inverse u.
Then nu = un = 1. Since the product is positive then u > 0ifn > 1 > 0.
There are no positive integers between 0 and 1. u > 1. But u > 1 yields
nu = n > 1 so that u cannot be the inverse of n. We conclude n cannot have
an inverse if n > 1. On the other hand, if —m is an integer < —1 and v is its
inverse it is clear that —v would be an inverse for m > 1. Therefore no
integer strictly less than — 1 can have an inverse either. 1 and — 1 are the only
integers with multiplicative inverses. O

Factorization will be studied in detail later for principal ideal domains,
a generalization of the integers, rather than for the integers alone. We will
now, however, give a few results for the integers which may assist with an
understanding of the more general results later.
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Definition. The multiplicatively invertible integers, 1 and —1, are called
units of the ring Z. Any integer p, not zero and not a unit, is called a prime
of Z if and only if p = gqr implies g or r is a unit. Any integer, not zero, not
a unit and not a prime is called a composite.

ExaMpLEs. Some of the primes are 2, 3, 5, 7, 11, 13, 17, 19, 23. Some of the
composites are 4, 6, 8,9, 10, 12, 14, 15,16. —2, —3, —5, ... are also primes.
—3 is a prime because the only factorizations of —3 are (—1)(3), (3)(—1),
(D(—3), (—3)(1), and in each case one factor is a unit.

Theorem. Every integer not zero and not a unit must have at least one prime
factor.

PrOOF. We use the second principle of induction. Assume all natural num-
bers strictly less than k and not zero have at least one prime factor. Consider
the natural number k itself. If k is prime then k has at least one prime factor,
namely, k. If k is a composite (not 0 or 1) then k = rs for some r, s neither
zero or a unit. r < k or s < k for otherwise r = k and s > k which would
imply rs > kk > k. If r < k then r has a prime factor by the inductive as-
sumption and this prime factor of r is a prime factor of k. If s < k then s has
a prime factor by the inductive assumption and this prime factor of s is a
prime factor of k. Finally if n is a negative integer then — nis a natural number
and a prime factor of —n is a prime factor of n. 0

Finally for this section we have this marvelous theorem dating from
classical times.

Theorem. There are an infinite number of primes in N.

PROOF. Let {py, ps,. .., pi} be the set of the first k primes in N. For example,
if k = 5 then we are talking about the set {2, 3, 5,7, 11}. Set ¢ = p;p, - -
P« + 1. None of the primes py, p,, ..., py is a factor of g because the re-
mainder upon dividing is always 1. But ¢ must have a prime factor. There

must exist then a prime other than py, p,, ..., p.. It is not possible that
there exists only a finite number of primes. O
QUESTIONS

1. {14 — x3|xe Z and 14 — x3 > 0}
(A) has minimum element 4
(B) is a subset of N
(C) has maximum element 4
(D) has minimum element 2.
(E) None of the alternatives completes a true sentence.

2. Which of the following statements are true?
(A) 0Ois a divisor of 3.
(B) 3 is a divisor of 0.
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(C) 0is a divisor of 0.
(D) 1is a divisor of 1.
(E) None of the statements is true.

3. Which of the following statements are true?
(A) 1is a prime integer.
(B) —3is a prime integer.
(C) Every integer has at least one prime factor.
(D) 0O is a prime integer.
(E) None of the statements is true.

4. Which of the following statements are true?
(A) |-x| = xifx > 0.
(B) |-x| = —x implies x < 0.
(C) |x| + x = 0 implies x < 0.
(D) |x — y| = |y — x| implies x = .
(E) None of the statements is true.

EXERCISES

1. A common factor of a and b is also a factor of the remainder upon dividing b by
a,a # 0. Prove.

Prove that 0 is a factor of no integer except 0.

Every integer is a factor of zero. Prove.

2.
3.
4, Prove:Ifa,beZ,a # b,a > 0,b > 0 and a is a factor of b then a < b.
5. Prove that the only factors of 1 and —1 are 1 and —1.

6.

Prove that if a is a factor of b and b is a factor of a then a = b or a = —b.
Be certain that your argument is complete.

4.4 Multiples and exponents in a ring

In this section we describe the use of integers as multiples and exponents
to represent repeated sums and products in a ring.

If S is a set on which an associative binary operation is defined and
represented by 4+ we wish to analyze the use of natural numbers to represent
repetitive addition, such as x = 1x, x + x = 2x,and x + x + x = 3x. 3x
is not to be thought of as a product of 3 and x in the usual sense of multi-
plication in a ring (3 may not be a member of the set S). 3x may be thought
of as an abbreviation for x + x + x. We now define multiples inductively.

Definition. Let S be a set on which an associative binary operation is defined
and represented by +. Let also + have a neutral element § in S. We
then define for any x € S

Ox =0
(k+ )x = kx + x.
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In a perfectly analogous manner we may define exponents for an as-
sociative binary operation on a set S where the operation is represented
multiplicatively. For example, x = x*, x - x = x%, x - x - x = x°.

Definition. Let S be a set on which an associative binary operation is defined
and represented by -. Let also - have a neutral element v. We then define

forany x in §

x0 =

xk+l = Xk x,

The assumption that the binary operation has a neutral element is not a
necessary one for the use of multiples and exponents. The induction defi-
nitions can be begun with 1 - x = x and x! = x. The exponential notation
is also used for operations other than multiplicatively represented ones.
xPxPx = x3. 3x seems always to mean x + x + x.

Theorem. Let + be an associative binary operation on a set S with neutral
element 0. Thenif m,ne Nand xe S

(m + n)x = mx + nx.

Let - be an associative binary operation on a set S with neutral element v.
Thenif myne Nand xe S

m+n m

X = x"x"

X"

Proor. We first give the proof in additive notation. Let xe S. Let T =
{n|(m + n)x = mx + nx for all me N}. Oe T because (m + 0)x = mx =
mx + 0 = mx + Ox.Supposeke T;(m + k)x = mx + kx.(m + (k + 1))x =
(m+k+Dx=m+kx+x=0mx+kx)+x=mx+ (kx + x) =
mx +(k+ Dx.k+1eT.T=N. O

In order to assist understanding we give the same proof in multiplicative
notation. Let x€ S. Let U = {n|x™*" = x™x" for all me N}. 0 € U because
Xm0 = xm = x™y = x™x%. Suppose ke U; x"* = xmxk xmttD =
xmrTl — ymtky — ymxkx = x"x**1 k + 1e U.U = N. O

It is clear both theorems are the same except for notation. We could
express the theorem in such a manner that both statements are included in
a general one, but we will not do this.

Continuing with the laws of multiples and exponents we have the next
result.

Theorem. Let + be an associative binary operation on a set S with neutral
element 0. Thenif mne Nand xe S
n(mx) = (nm)Xx.
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Let - be an associative binary operation on a set S with a neutral element.
Thenif mneNandxe S

(xm)n — xmn.

PrOOF. We prove only the first result. Let T = {n|n(mx) = (nm)x for all
me N}. 0e T because O(mx) = 6 = Ox = (Om)x for all me N. Suppose
kimx) = (km)x for all meN; ke T. (k + 1)(mx) = k(mx) + mx =
(km)x + m)x = (km + m)x = ((k + )m)x. k + 1e T.T = N. O

Theorem. If + is an associative binary operation on a set S with neutral
element 0 and x and y are members of S which commute (x + y = y + X)
then n(x + y) = nx + ny for all ne N. If - is an associative binary
operation on a set S with neutral element v and x and y are members of S
which commute (xy = yx) then (xy)" = x"y" for all ne N.

ProOF. We first prove x and ny commute. Let T = {n)x +ny=ny+x
and neN}. 0e T because x + Oy =x+ 0 =0+ x=0y + x. f ke T
then x+(k+1)y=x+ky+y=ky+x+y=ky+y+x=k+1y+x
yieldingk + 1e T. T = N. x and ny commute for all ne N. Now let U =
{nln(x + y) = nx + ny}. O(x + y) = 6 = 6 + 0 = Ox + Oy implies 0 e U.
Assume keU. Then (k+ 1)(x + y)=k(x+ )+ (x+y)=kx+ky+x+y=
kx +x+ky+y=k+Dx+k+ y.k+1eU.U=N. 0

Whenever a given element of a set with an associative binary operation
with a neutral element has an inverse we can then define negative multiples
or negative exponents.

Definition. Let S be a set with an associative binary operation + and a
neutral element 6. If the negative of x, the additive inverse, exists then
we define (—n)x = n(—x) for all n e N. Let S be a set with an associative
binary operation - and a neutral element v. If the multiplicative inverse
of any element x exists then we define x™" = (x7)" for all ne N.

We note in particular that (—1)x = 1(—x) = —x and that (x)"! =
(x7)! = x~. This justifies the use of x ! for the inverse of x.

We now have the project of proving the theorems which extend the laws
of exponents and multiples from natural numbers to integers.

Theorem. Let S be a set with an associative binary operation + with neutral
element 0. Let x be any element of S which has a negative in S. Then
(m + n)x = mx + nx for all m, ne Z. Let S be a set with an associative
binary operation - with neutral element v. Let x be any element of S with
multiplicative inverse. Then x™ ™" = x™x" for allm,ne Z.

ProoF. We offer a proof only of the exponential result. The proof is by cases.
Case 1: m, n € N. This is our earlier theorem for natural number exponents.
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Case 2: m < 0 and n < 0. Let y be the inverse of x. x™*" = y~™m*m =
y "=y myT" = x"x". Case 3a: m>0 and n <0 and m+ n = 0.
Let y be the inverse of x. x™*" = x"*" ™" = x"""(xy) ™" = x"T"x"y" =
X"y " = x"x". Case 3b: m = 0 and n < 0 and m + n < 0. Again v is the
neutral element and y is the inverse of x. x™*" = y~™¥" = y=m=" =
YT = (xy)ty T = XYy T = XMy = XX Case a: m <0
andn=>0and m+n>=0. Case4b: m<Oand n>=>0and m +n <O0.
Cases 4a and 4b are similar to Cases 3a and 3b. In all cases the gist of the
argument is to arrange to have nonnegative exponents so that the theorems

already proved for N are applicable. O

Theorem. Let S be a set on which + is an associative binary operation with a
neutral element 6. Let x be an element of S which has a negative. Then
n(mx) = (nm)x for all m, ne Z. Let S be a set on which - is an associative
binary operation with a neutral element v. Let x be an element of S which
has a multiplicative inverse. Then (x™)* = x™ for all m, ne Z.

Proor. We prove only the exponential version. Let y be the inverse of x.
Case I: m = 0 and n > 0. This the theorem for natural numbers. Case 2:
m = 0 and n < 0. y™ is the inverse of x™ because x"y" = (xy)" = V" = v
and y"x™ = (yx)" = v" = v. We have (x")" = (y") "= y" TN =y ™ =
x™ Case 3: m<0 and n>0. (X" = (y ™" = y7mn = y7mn = xm™
Case 4: m < 0 and n < 0. x™™ and y™™ are inverses because x "y~ " =
() M=y "=y Alsoy "X " =v.(x") =(y ") =(x"")""=x""" =
X", O

Theorem. Let S be a set upon which + is an associative binary operation
with neutral element 0. Let x and y be elements of S which have negatives
and which commute. Then m(x + y) = mx + my forallme Z. Let S be a
set upon which - is an associative binary operation with neutral element v.
Let x and y be elements of S which have multiplicative inverses and which
commute. Then (xy)" = x™y™ forallme Z.

ProOF. We prove the exponential version. Let us represent the inverse of x
by u and the inverse of y by v. We first prove that xy = yx implies uv = vu.
Suppose xy = yx. Then vyxu = v. vxyu = v. The inverse of vxyu, namely
xvuy, is also equal to v. Multiplying xvuy = v on the right by v and on the
left by u we get vu = uv.

Knowing already that if two elements commute then all positive powers
of the two elements commute we combine this with the result just proved
and we then have proved that all integral powers commute. To demonstrate
the conclusion of the theorem for n < 0, consider (xy)". (xy)' = (vu)™" =
v ™" = y"x" = x"y". We are, as we said, assuming the theorem proved
for natural number exponents. O

Finally we have a theorem about multiples of elements in a ring and
multiplication in the ring.
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Theorem. Let (R, +,-,0) be a ring. Let x, y€ R. Then for any ne Z we
have n(xy) = (nx)y = x(ny).

Proor. The proof is by induction for n = 0. O(xy) = 6 = 0y = (0x)y.
Assume the result true for k. (k + 1)(xy) = k(xy) + xy = (kx)y + xy =
(kx + x)y = ((k + 1)x)y. The conclusion holds for all neN. For me Z
and m <0 let n = —m. n(xy) = (—m)(xy) = m(—(xy)) = m((—x)y) =
(m(—x))y = ((—m)x)y = (nx)y. The other equation is proved similarly. O

We have seen how the integers can be used to indicate multiples of ring
elements. We have indicated this with juxtaposing the integer n and the
ring element x:nx. In the case where the ring under consideration is Z
itself we have a problem of ambiguity because we have sometimes indicated
the product in this manner also. Suppose for the rest of this discussion we
indicate the product in Z exclusively with the raised dot (never omitting it):
n - m means the product in Z and nm is the nth multiple of the ring element
m in Z. We propose to show that the two are identical.

If we consider first n and m in N and compare the two definitions we
find agreement:

Om=20 O0-m=20
(k+1m=km+ m k+1l) m=k-m+m

Because of the uniqueness provided by definition by mathematical induction
we have nm = n-mfor all n, me N.

We secondly pass to ne€ N and m € Z. In particular, we wish to compare
nm and n-m where ne N and m < 0. For multiples we had 0(—p) = 0
and (k + 1)(—p) = k(—p) + (—p) with p > 0. However, for multiplication
in Z the procedure was different. The natural number system was extended
by means of an equivalence class construction and multiplication was
defined on the quotient set preserving the original multiplication on N.
We did prove, however, that in any ring, (—x) -y = x(—y) = —(x " y).
We have, therefore, for multiplication in Z

0:(=p)=(-0p=0-p=0
k+1)-(=pp=—((k+1)-p=—k-p+p
= —(k'p) +(=p)=k-(=p) + (-

This agrees with the definition of multiples for allne N, m e Z.

It remains to check agreement of nm and n-m for ne Z, me Z, in par-
ticular for the case n < 0. Let n = —q. nm = (—¢)m = q(—m) according
to the definition of negative multiples. On the other hand, for any ring,
nm=(—q)-m=gq-(—m).But g(—m) =q-(—m)for qge N, —me Z by
our previous result. We have now proved nm = n-m for all n, m in Z. In
view of this it is not necessary for us to distinguish between multiples and
multiplication when we work entirely in Z. This result also embodies the
intuitive concept of multiplication as repeated addition in Z.
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QUESTIONS

1.

4.

Let (R, +, -, 6, v) be a unitary ring. Which of the following four are not the zero
of R?

(A) (1)(9).

(B) (0)(v).

©) 6)).

(D) (O)(1D).
(E) All four are 6.

. Let (R, +, -, 8> be a ring and let x € R such that 3x = #. We can conclude

A)x=19
B) Six =0
(C) 3eR
(D) 2x = 0.
(E) None of the four conclusions follow.

. Let (R, +,-,6) be a ring and let x € R. We can conclude x° belongs to R provided

(A) x # 6
B)x=20
(C) there exists a y € R such that yz = zy = zforallze R
(D) x2 = x.
(E) None of the four conditions is sufficient.

Given aring {R, +, -, 6, v) with unity v and an invertible element x € R, the function
f:Z - R such that f (z) = X*

(A) is a morphism of rings

(B) preserves addition in multiplication

(C) is a monomorphism

(D) obeys the relation f.(z)f.(—z) = v.
(E) None of the alternatives completes a true sentence.

. Let (R, +, -, 0> be a ring and x an element of R. Then

(A) nx = 0 implies (mn)x = 6

B)Ox=10

(C) mx = Band nx = O imply (m — n)x = 6
(D) {njnx = 6} is an ideal of Z

(E) Z/{njnx = 6} is isomorphic with [x].

EXERCISES

1.

For a commutative ring (R, +, -, 8) prove {a) = Ra + Za. [Hint: Review
Exercises 8, 9, and 10 of Section 2.8.]

. For a commutative ring (R, +, -, ) prove Ra = {(a) if and only if there exists

an r € R such that a = ra.

. Let (R, +, -, 6> be a ring. On the set P = Z x R define operations:

(mx)+@ny)=m+nx+y)
(m, x)* (n, y) = (mn, my + nx + xy).

108



10.

11.

12.

13.

4.4 Multiples and exponents in a ring

Show that (P, +, -, (0, 0)) is a ring. Moreover, show that P has a unity and that
R is isomorphic with an ideal of P.

. Foraring (R, +, -, 8> prove that (mx)(ny) = (mn)xy for any x, ye Rand m, ne Z.

. Let <R, +,-,0,v) be a unitary ring. Prove (nx)" = n™x™ for any x € R and all

neZ, meN.

. Let (R, +,-, 0> and <(R’, +',”, 8') be rings and f:R — R’ be a morphism. Prove

finx) = nf(x)forall xe Rand ne Z.

. Let (R, +,,0,v) and (R, +', ", &, v'> be unitary rings and f:R — R’ a unitary

ring morphism (f(v) = v’ and f is a morphism). Prove f(x") = (f(x))" for all
invertible x in R and all nin Z. Prove that the hypothesis f is a unitary ring morphism
can be replaced by f is a ring epimorphism.

. By ( ) we mean n!/(n — j)!j! for natural numbers n, j with j < n. Prove <8) =
J

<n> = 1. Show that < ) is always a natural number; the denominator is always a
n j

factor of the numerator. [Hint: Use induction on n; prove and use the formula

0)+050)-(7)]

. . " (n -
. Let (R, +, -, 0, v)> be a commutative unitary ring. Prove (x + y)" = Y ( ) X"y

j=o
for all n e N. This is, of course, the binomial theorem from which one obtains the

. . . n . .
name binomial coefficients for the natural numbers ( ) Use induction and Exer-
J
cise 8 to prove the result.

Study the three examples given below and then find a formula for rn* as a sum of
lesser powers.

n= -G =%
=Y (G- = Y @1,

-

J j=1

x|l

=
||

3 _Z -(-1)=3Y @*-3+1.

i=1

<j=i1 - 1>+ b<§: ) B j=i1 g

Use this principle to derive the formula in Exercise 1, Section 4.2.

Find a, b € N such that

n
Derive a formula for ) 2.
i=1

n
Derive a formula for )’ j* in terms of sums of lesser powers.
j=1
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4.5 The field of fractions

In this section we embed a commutative unitary ring R in a larger ring R
so that every cancellable element in R becomes an invertible element in
R; we embed an integral domain in a field and thereby construct the rational
numbers from the integers.

If a ring does not contain multiplicative inverses we raise the question
of whether or not it might be possible to adjoin elements to the commutative
ring in some way so as to provide inverses. This is analogous to adjoining
negatives to the natural numbers to construct the integers. In posing this
problem we should remember we have proved that any element which is
invertible in a ring is also multiplicatively cancellable. There is, therefore,
no hope for adjoining inverses for those elements which do not cancel and
are divisors of zero. If we deal with the special case of an integral domain
so that no nonzero element can be a divisor of zero we might hope to adjoin
inverses for every nonzero element in such a manner to produce a field.
In fact, the hope is not in vain; the field exists and is called the field of frac-
tions of the integral domain. The following theorem deals with the problem
of adjoining inverses for cancellable elements in a ring not specialized to an
integral domain. The enlarged ring will be called the ring of fractions.

Theorem. Let (R, +,-, 0, v> be a commutative unitary ring. Let R* denote
the set of multiplicatively cancellable elements of R. Then there exists a
ring {R, +,, 0, v> and a monomorphism ¢:R — R such that ¢(v) = V'
and the image of every member of R* is invertible in R. Moreover, if y € R
theny = o(@)o(b)~ for some ae R, be R".

ProoF. We begin the proof by defining on R x R* a relation ~ such that
(x, ) ~ (u, v) if and only if xv = yu. We verify that ~ is an equivalence
relation. (x, y) ~ (x, y) because xy = yx. (x,y) ~ (u, v) implies xv = yu.
Then uy = vx which yields (u, v) ~ (x, y) proving symmetry. For tran-
sitivity assume (x, y) ~ (4, v) and (u,v) ~ (r,s). xv = yu and us = vr.
XUS = yus; yus = Yvr. xvs = yur. xsv = yrv. xs = yr because v€ R* and
is a cancellable element of R. (x, y) ~ (r, 3).
On the quotient set R x R*/~ define two operations:

(x, y)/~ + (u,v)/~ = (xv + yu, yv)/~
and
(6 )/~ - (W v)/~ = (xu, yv)/~.

Both pairs (xv + yu, yv), (xu, yv) belong to R x R* because the product yv
of cancellable elements of R is itself cancellable. We comment that these
operation definitions are simply the conventional rules for adding and
multiplying fractions in somewhat disguised form. We now demonstrate
the definition of addition to be independent of the representative chosen
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from the coset by proving (u, v) ~ (¢, v') and (x, y) ~ (x', y') imply (x, y)/~ +
W, v)/~ = (x, y)/~ + (W, V)/~ and (x, y)/~ + W, V)/~ = (X, y)/~ +
(', v')/ ~. As the two statements are quite similar we prove only the first.
(u,v) ~ (v, v') implies wv’ = vu'. xyvv' + yyu'v = xyvv’ + yyuv'. (xv' + yu')yv =
yU'(xv + yu). (xv' + yu', yv') ~ (xv + yu, yv), which was to be proved.

We demonstrate that the definition of multiplication is also independent
of the representative pair chosen by proving (x, y)/~ (1, v)/~ = (x, y)/~
(v, v')/ ~ whenever (u, v) ~ (¢, V') and that (x, y)/ ~ (/,?')/~ = (X, y')/~
(', v')/~ whenever (x, y) ~ (x', y'). Again we prove only the first of the
two assertions. Let (u, v) ~ (v, ). wv' = vu'. xuyv’ = xu'yv. (xu, yv) ~
(xu', yv').

R = R x R*is a commutative ring with zero (6, v)/ ~. The commutative,
associative and distributive properties can be routinely verified. To embed
R into R define ¢:R — R such that ¢(x) = (x, v)/~. R is a unitary ring
with unity ¢@(v) = (v, v)/~. ¢ is easily seen to be a morphism. Let ¢(x) =
oY) (x, v)/~ = (y, ¥)/~.xv = vy. x = y. ¢ is a monomorphism.

Any element x € R* has image (x, v)/~ under the monomorphism ¢.
(v, X) € R x R* because x e R*. (v, x)/~ is the inverse of (x, v)/~ in
R:(v, x)/ ~ (x,v)/~ = (x, x)/~ = (v, v)/~, the unity of R.

Finally let yeR. y = (a,b)/~ for some aeR, beR* (a, b)/~ =
@)/~ (v, b))~ = (a,v)/~ [(b,v}/~]" = p(@eb)". o

It is interesting to note what the proof produces when an element x
already has an inverse in R. Let x € R* and y € R* such that xy = yx = v.
The images under ¢ remain inverses in R. (x, v)/~ (y,v)/~ = (xy,v)/~ =
(v, v)/ ~. Furthermore the newly created inverse in R becomes identified
with the image of the original inverse in R. (v, x)/~ = (y,v)/~ and

Y/~ = (xv)/~.
Corollary. Every integral domain is contained in a field.

ProOF. As we have stated before if an integral domain is given then R* =
R — {0} and the image of every nonzero element of R becomes invertible
in R. That R is a field is seen as follows. Let (a, b)/~ € R and (a, b)/~ #
(6, v)/~. av # bO. a # 6. Because R is an integral domain, a € R*. (b, a) €
R x R*.(b, a)/~ € R and is the inverse of (a, b)/~. O

We will now discuss the construction of the rational numbers, Q. We
take the integral domain, Z, of integers and apply the theorem to obtain Z,
a field, and a monomorphism ¢:Z — Z. Every member of Z can be written
as ¢(a)e(b)” for some a, be Z, b # 0, or as (a, b)/~. We write Q for Z.
The conventional way to write the coset (g, b)/~ in Q is as the fraction a/b.
We now summarize some of our results in the conventional fractional
notation.

x/y = u/vifand only if xv = yu, y,v # 0.
x/y + u/v = (xv + yu)/yv, y,v # 0.
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4. Rings: Applications of the integers

x/y - ufv = (xu)/(yv), y,v#0.
o(x) = x/1.

0/1 is the zero of Q.

1/1 is the unity of Q.

We emphasize we have merely copied material from the theorem, changing
notation to the conventional fractions. The fractions, 2 and §, which stand
for (3,4)/~ and (6, 8)/~ actually are symbols which stand for the same
equivalence class or coset in Z (= Q). By identifying the integer x € Z with
the fraction x/1 = ¢(x) in @ we embed the integers in the field Q0 of rational

numbers.

QUESTIONS

1. Which of the following has Q as a field of fractions?
A) R
(B) z
) 2z
D) Q@
(BE) N.

2. {m/2"lme Z,ne N}
(A) is a subring of Q@
(B) is an integral domain
(C) is a field
(D) has Q as its field of fractions.
(E) None of the four alternatives completes a true sentence.

3. S = {m + n\/5|m, n e Z} is a subring of R. The field of fractions of S
(A) contains 1/\/3
(B) is Q@ + Q./5
C) isR
(D) is Q.
(E) None of the four alternatives completes a true sentence.

4.7+ 25
(A) is a field
(B) is an integral domain
(C) is its own ring of fractions
(D) has as its ring of fractions, @ + @./5.
(E) None of the four alternatives is true.

EXERCISES

1. Show that any field containing a given integral domain also contains a subfield
isomorphic to the field of fractions of the integral domain. Use the procedure out-

lined below in (a), (b), and (c).

(a) Let R, +, -, 6, v> be the given integral domain and K the enclosing field. Let
¢@:R - R be the monomorphism of the integral domain onto the constructed
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field of fractions of R described in the text of this section. Show that R’ = {m/n|m,
ne R, n # 0} is a subfield of K.

(b) Show that the function @#:R’ — R such that ®&(m/n) = @(m)p(n)~ is well-defined
and agrees with ¢ on R.

(c) Show that @:R’ — R is an isomorphism.

2. Show that R’ in Exercise 1 is the intersection of all subfields of K containing R
and is therefore the smallest subfield of K containing R.

3. The subset Z + Zi = {m + nilm, n€ Z} of the complex numbers is called the set
of Gaussian integers. Show that Z + Zi is a ring with field of fractions equal to
Q + Qi

4. Show if R is a finite ring then its ring of fractions is also finite. [Hint: Ifcrd R = n
thencrdR < n? — n.

5. What is the field of fractions of the integral domain Z + Z./2?
6. What is the ring of fractions of the ring Z x Z?

7. Fractional exponents in R. For each positive ae R and each positive integer n
there exists a unique positive x € R such that x" = a. This x (the nth root of a)
is denoted by a'™. By a™" is meant (a'/"\" for all m e Z. Show that the following
exponential laws are valid: (a'™)" = a; a™"a?/t = gmin*Pla; (grimple = gmimelD,
(ab)"/q = gPlaprla.

4.6 Characteristic of a ring

In this section we assign to each ring a natural number called the char-
acteristic of the ring and explore its properties.

If we observe multiples of the elements of the ring Z,, denoted here by
0, 1, 2, 3, where n is the coset n + 4Z, we see that the fourth multiple of
every element of the ring is zero and no smaller multiple has that property.

40) =0 300=0 200 =0 100=0
41) =0 31)=3 20) =2 1H)=1
42) =0 32) =2 22)=0 12)=2
43)=10 33)=1 2(3) =2 13) = 3.

We say that the natural number 4 is the characteristic of the ring Z,. If we
look at the ring Z, x Z, = {(0,0), (U, 1), (1, 0), (1, T)} which also has four
elements we find the characteristic to be 2.
20,00 =©,0 1(0,0) = (
20,1)=(0,00 10,) =1
21,0) = (0,0 1(1,0) = (1,0
20, =00 1I,17)=(7)
The second multiple is always zero whereas the first is not. For convenience

of language we shall say that the natural number n annihilates the element
x when the nth multiple of x is zero.
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4. Rings: Applications of the integers

Definition. Let <R, +, -, 0> be a ring. The natural number n annihilates x if
and only if nx = 6. The natural number n annihilates R if and only if
nx = 0 for all x € R. The characteristic of a ring is the smallest positive
natural number which annihilates R in the case that some positive natural
number annihilates R and is the natural number 0 if no positive natural
number annihilates R.

The rings Z, Q), and R all have characteristic O for there is no one positive
multiple of every element which is zero. We remind the reader that » in the
above definition is an integer and not a member of the ring R in general. The
fact that Z, @, and R all have characteristic zero shows that rings need not be
isomorphic to share characteristic. We proceed then to explore what rings
with the same characteristic have in common. The next theorem simplifies
the procedure in finding the characteristic of a unitary ring.

Theorem. Let (R, +, -, 0, v> be a unitary ring. If m is the smallest positive
multiple of v which is 0 then chr R = m. If no positive multiple of v is 0
thenchr R = 0.

Proor. If positive, chr R can be no smaller than m since (chr R)v = 0. Let
x be any element of R. mx = m(vx) = (mv)x = 0x = 6. From this equation
we conclude chr R is at least as small as m. Therefore chr R = m. If chr R = 0
then no positive multiple of v is § provided v is distinct from 6 because if
6 = v we are dealing with the ring {6} which is easily seen to have character-
istic 1. O

A fruitful approach to these concepts is to consider all multiples of the
ring which are zero rather than just the minimum one.

Definition. Let <R, +, -, 8> be a ring. The annihilating ideal of an element x
in R is the set of all integers which annihilate x. The annihilating ideal of
R is the set of all integers which annihilate R.

It must be verified that the set described in the definition is indeed an
ideal of Z.

Theorem. Let <R, +, -, 8> be a ring. The annihilating ideal of an element x
in R is an ideal of 7 and the annihilating ideal of R is also an ideal of Z.

PrROOF. If m, n annihilate x then m + n, —m, and km (for any k € Z) all
annihilate x. O

We will need the following lemma about ideals in Z.

Lemma. If A is an ideal of {Z, +, -, 0, 1) then A is generated by a single
natural number p:A = {u) = Zu.
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Proor. If A = {0} then A = Z0 = {0). If A # {0} then A4 contains some
positive integer (Why?). Let A* be the positive members of A. A*, a non-
empty subset of N, contains a minimum member we call x. Let a be any
element of A. a=qu +r with 0<r<pu a ped a—qu=recA r
must be 0 for otherwise r is a positive element of A smaller than u. a = qpu.
Ac ZuButZuy<c A. A = Zpu. O

Theorem. Let (R, +, -, 8> be a ring. Then chr R = u if and only if {u) is
the annihilating ideal of R.

Proor. If chr R = p then (u) annihilates R. If ne Z and annihilates R
then by an argument similar to one in the lemma n = gu for some g € Z.
{ ) is the annihilating ideal of R. Conversely, if A is the annihilating ideal
of Rthen A = (u) for some p in N. If nonzero, u will be the smallest positive
integer annihilating R. If zero no positive integer will annihilate R. O

We continue with this structural theorem.

Theorem. If (R, +, -, 0, v) is a unitary ring with characteristic j then there
exists a subring of R isomorphic to Z,, (including case Z, = Z).

ProoF. The morphism f:Z — R such that f(n) = nv has for its kernel Zu,
the annihilating ideal of R. By the fundamental morphism theorem Z/ker f
is isomorphic with f(Z), a subring of R. Z/Zp = Z,, is isomorphic to a subring
of R. O

The integers, rational numbers, real numbers, and complex numbers all
contain a subring isomorphic with Z and are rings of characteristic zero.
The product ring Z x Z, is a ring of characteristic zero because there is no
me N* such that m(1, T) = (m, m) = (0, 0). The subring of Z x Z, iden-
tified by the theorem which is isomorphic to Z is f(Z) = {m(1, T)|me Z}. 1t
is interesting to note that there are some elements of Z x Z, such as (0, 1)
which have finite multiples equal to zero: 2(0, 1) = (0, 0).

The theorem just considered allows us to show that integral domains
cannot have some integers as their characteristics.

Theorem. If <R, +, -, 0, v)> is an integral domain then chr R = 0 or chr R is
a prime.

PROOF. R contains a subring which is isomorphic with Z, where 4 = chr R.
Suppose u = 1. Then 1v = fyielding v = 6. This is impossible in an integral
domain. Therefore u # 1. Suppose now u = off where o and f§ are not 1 and
are positive natural numbers. (av)(fv) = (@f)v = uv = 0. av and Pv are
therefore nontrivial divisors of zero in R, another contradiction. The only
posibilities left for y are that u is prime or zero. O

Corollary. If <R, +,-,0,v) is a field then R has either prime or zero
characteristic.
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Theorem. Let (R, +,-, 8, v) be a field. If chr R = 0 then there is a subfield
of R isomorphic to Q; if chr R is a prime p then there is a subfield of R
isomorphic to Z,,.

PrOOF. If chr R is the prime p then there is a subfield of R isomorphic to Z,
which is a field as well as a ring. If chr R is zero then there is a subring iso-
morphic with Z. Because R is a field every image of an element in Z must
have an inverse in R. If f:Z — R is the ring isomorphism such that f(n) =
nv, then we define f:Q — R so that f(m/n) = f(m)f(n)~. f(Q) is a subfield of
R isomorphic to Q. This technique resembles the one described in Exercise 1,
Section 4.5. O

QUESTIONS

1. The characteristicof Z, x Z, is
(A) 0
(B) 1
© 4
D) 8
(E) 16.

2. Which of the following are possible?
(A) A field with characteristic 4
(B) An integral domain with characteristic 4
(C) An infinite field with nonzero characteristic
(D) A finite field with characteristic 0.
(E) All four are impossible.

3. The characteristic of Zg x Z, is
(A) O
(B) 4
(C) 6
(D) 24.
(E) None of the four numbers is the characteristic.

4. The characteristic of Zg x Z, is
A) 0
(B) 4
C) 8
(D) 32.
(E) None of the four numbers is the characteristic.

5. The multiples of the unity map (f:Z — Z x Z, such that f(n) = nv) of Z into
Z x Z, has range
(A) Z x 27
B) {2n,O)|nez} v {@2n + 1,N|nez}
©) {n1,T)nez}
(D) Z.
(E) None of the four sets is the range.

116



6.

4.6 Characteristic of a ring

If the characteristic of a ring R is zero then
(A) R is an integral domain
(B) nx = 6 is impossible for nonzero x in R and positive n in Z
(C) R has a unity
(D) R cannot be the zero ring, {8}.
(E) None of the alternatives makes a true sentence.

EXERCISES

1.

10.

11.

Let f:R — R’ be a ring epimorphism. Let anh R stand for the annihilating ideal
of the ring R. Prove

(@) anh R < anh R’;

(b) chr R is a multiple of chr R’;

(¢) chr R = chr R’ if f is an isomorphism.

. Find the characteristic of Z, x Z,. Prove Z, x Z, is isomorphic to Zg.
. Give an example of a ring with prime characteristic yet not an integral domain.

. Let (R, +, -, 0, v> be a unitary commutative ring. If chr R is the prime p prove

(x + y)P =xP + yPforallx,ye R

. Find a noncommutative unitary ring R and a prime p such that chr R = p and the

equation (x + y)’ = xP + y” fails for some x and y.

. Find all morphisms of Z into an integral domain R.

. Find a ring R and a morphism f:Z — R which is not the zero morphism nor of

the type f(n) = nv.

. Show that the only morphism of the ring Q into the ring Z is the zero morphism.

. We define the additive order of an element x in a ring R to be min{njnx = 6 and

n e N*} if the set is nonempty and 0 otherwise.

(a) Show that the order of an element is the natural number generator of the
annihilating ideal of x.

(b) If A is the annihilating ideal of R and A, is the annihilating ideal of the element
x in R show that 4 = (){4,|x e R}.

(c) Let R be a ring. Show chr R = 0 if any element of R has order 0. Show chr R =
lem{n,|x € R} if every x € R has order n, € N*. The notation lcm means least
common multiple.

(d) Are there elements of Z, x Z, with positive order smaller than the char-
acteristic?

Let V be the set of all sequences (a,, as, g, . . .) where g; € Z; and all but a finite
number of the a; equal 0. Verify that V is a commutative ring without unity under
the operations (a;) + (b;) = (a; + b;), (a;)(b;) = (a;b;). Show that every element of
V has finite order yet chr V' = 0.

Show that the field of fractions of an integral domain has the same characteristic
as the integral domain.
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Rings:
Polynomials
and factorization

We begin with the properties of polynomials found in school algebra and
then move in Section 5.2 to a relatively formal construction of the polynomial
ring. Particularly interesting to students ought to be the altered properties of
polynomials when the ring of coefficients is not a field. Section 5.3 deals with
polynomial functions arising from polynomials emphasizing the distinction
between these two concepts. Although this is a small point to a professional
mathematician, an understanding of such distinctions helps mature the
student of mathematics. The matters at stake in the factor theorem are then
clearer. We are then led to the important results counting the number of
roots of a polynomial and the concept of multiplicity of roots.

We now make a change of subject and discuss rings enjoying the division
algorithm. We study factorization of these rings having both the polynomials
and integers as examples. A distinction is made between irreducible element
and prime element which becomes active in the more general examples. We
prove the fundamental theorem of arithmetic for principal ideal domains.
We then introduce greatest common divisors. Greatest common divisor as
we use it is not unique; any unit multiple of a greatest common divisor is also
a greatest common divisor. We have chosen not to formalize the equivalence
of all greatest common divisors of a pair of elements. We do connect the
greatest common divisor study with the use of partial fractions in finding
antiderivatives in elementary calculus. Unique factorization is studied for
its own sake with unique factorization seen as the distinction between irre-
ducible and prime elements. We use again polynomials this time to study
field extensions and in turn we apply field extensions to construct the complex
numbers.
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5.1 The ring of polynomials

5.1 The ring of polynomials

In this section we review formal properties of polynomials and their
operations. We assume some previous familiarity with polynomials.

By a polynomial in X with coefficients in a ring R we shall mean any
expression of the form a,X" + a,_ X" ' + -+ + a,X* + a, X + q,
in which a,, ay, ..., a,€ R and a, # 0 or the expression 6 which is the
zero element of R. a,, a,_ 4, . . . , a,, ay, ag are called the coefficients of the
polynomial. 0 is called the zero polynomial. The natural number n is
called the degree of the polynomial and a, is called the leading coefficient.
The zero polynomial has no leading coefficient and no degree.

ExaMpLES. 3X? + X + 1 (or 1 + X + 3X?) has leading coefficient 3 and
degree 2. X%* + 12 is a polynomial with leading coefficient 1 and degree 64.
All coefficients a,, a,, ..., agz are zero. 5 is a polynomial with leading
coefficient 5 and degree 0.

The definition of polynomial is provisional; it is somewhat unsatisfactory
until the meaning of the symbol X is resolved. A more abstract formulation
will come up later, but we have chosen to begin with the familiar.

It is often convenient to regard a nonzero polynomial as having an infinite
number of coefficients, all zero beyond a certain one. In this vein a, +
a; X + a,X* + -+ + a,X" with a, # 0 (the leading coefficient) may be
regarded as ag + a; X + a; X* + - + a, X" + X" + OX"F2 4 -0
In summation notation Y-, a; X' = Y2 ;X" in which ¢; = 6 for i > n.
We also canregard 0 = 0 + 06X + 0X? + - - - as having all coefficients zero.

We denote the set of all polynomials with coefficients in the ring (R, +,

, 0> by the symbol R[ X] and define operations for the set as follows.

Addition

Yroa X + Y1 obX = Y7o (a; + b)X'. mis the degree of the first
polynomial and r is the degree of the second polynomial; a,, # 6 and b, # 6.
a; =0 fori>mandb;, = 0 for i > n. p denotes the maximum of the two
natural numbers, m and n.

ExAMPLES. (6X3 + 4X2 + 5) + (X2 4+ 4X) = (6X> + 4X?> + 0X + 5) +
(0X® + 1X? +4X + 0) = 6X° + 5X2 +4X + 5. (X> +2X + 5 +
(=X? 4+ X + 2) = 3X + 7. This second example shows that p is not neces-
sarily the degree of the sum.

Multiplication

Qo a X)X =0 b;X7) = Y520 Qv jor abj)X*. m is the degree of the
first polynomial and n is the degree of the second polynomial; a,, # 0 and
b,#0.a,=0fori >mandb, = 6fori> n
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EXAMPLES. (5X% + 6X3 — 4X? + 3X + 2)2X3 - 3X2 + 6X - 7) =
52X + (5(=3)+ 6-2X® + (5-6 + 6(—3) + (—42)X° + (5(-7) +
6(6) + (—4H(=3) + 32)X* + (6(=7) + (=96 + (—3)3 + 2(2)X> +
(=9H(=7 + 3(6) + 2(=3))X2 + 3(=7) + 26)X + 2(—-7) = 10X7 +
(=3)X% + 4X° + 19X* + (=71)X3® + 40X? + (—9)X + (—14). The
degree of the product is not necessarily m + n in general.

Utilizing these definitions of addition and multiplication of polynomials
with coefficients in a ring we state a theorem.

Theorem. If (R, +,-,0) is a ring then {R[X], +,-,60) is a ring. If
(R, +,-,0,v) is a unitary ring then {R[X], +, -, 0, v) is a unitary ring.
If <R, +,+,0) is a commutative ring then {R[X], +,-,0) is also a
commutative ring.

We do not prove these theorems but rather leave proofs to the reader.
The proofs are routine. Relevant to the last statement in the theorem we
point out that even if R is not a commutative ring the definition of multi-
plication for R[X ] implies that the symbol X must at least commute with
every member of R; Xa = (vX + 6)(a) = (va)X + 6 = aX. If there is no
unity in R we can still be assured that (cX)(a) = (cX + 0)(a) = (ca)X + 6 =
(ca)X for all a,c € R.

We give one more theorem of the same type and do prove this one.

Theorem. {R, +,-,0,v) is anintegral domain if and only if (R[X], +,+,0,v)
is an integral domain.

PrOOF. Let R be an integral domain and let p(X)q(X) be a product of
polynomials in R[ X ] which is zero. Then all of the coefficients of the product
are zero including that formed from the leading coefficients of p(X) and
q(X), namely a,b,. But if a,b, = 6 and R is an integral domain we have
a, = 0 or b, = 0, which is a contradiction. The only alternative to the
contradiction is that either p(X) or q(X) is the zero polynomial.

To prove the converse assume R[X] is an integral domain. Let ab be a
product in R which is zero. Consider the polynomial a of degree zero with
leading coefficient a and the polynomial b of degree zero with leading
coefficient b assuming both a and b are different from zero. The product of
the two polynomials is the polynomial ab also of degree zero. But this
polynomial is the zero polynomial. Therefore either a or b must be the
zero polynomial. This contradicts both a and b being different from zero.
Eithera = forb = 6. O

We summarize in a theorem some facts about degree that are hinted in
the previous theorem. We will leave the proofs to the reader.

120



5.1 The ring of polynomials

Theorem. If (R, +, -, 0, v) is an integral domain and p(X), q(X) are nonzero
polynomials of R[X ] then deg(p(X) + q(x)) < max{deg p(X), deg q(X)},
deg(p(X)q(X)) = deg p(X) + deg q(X), deg(p(X)q(X)) > deg q(X).

We now establish a division algorithm for polynomials with coefficients
in a field.

Theorem. Let <K, +,-,0,v) be a field. If a(X) and b(X) belong to K[X]
with a(X) # 0 then there exist q(X), r(X) in K[X] such that b(X) =
qg(X)a(X) + r(X)and 0 < degr(X) < deg a(X) or r{(X) = 0.

Proor. The proofis by induction on the degree of b(X). Assume the theorem
to be true for all polynomials of degree <k. Let b(X) be of degree k.
Case I: dega(X) > deg b(X) = k. Then b(X) = 6a(X) + b(X). This
satisfies the conclusion of the theorem with g(X) = 6 and r(X) = b(X).
Case 2: deg a(X) < deg b(X) = k. by + b, X + -+ + b X* — (b /a,) "
(@uX™ + -+ a X + a)X* ™ = X' + - + ;X + ¢y, some
polynomial of degree smaller than k or possibly zero. The values of the
Cos C15 - - - » Cx—1 are determined by comparing coefficients. We have, however,
no interest in their actual values in terms of the a;’s and b;’s because it is
sufficient for our purposes to know deg ¢(X) < k — 1 or ¢(X) = 6. Applying
the induction hypothesis to ¢(X) we have ¢, ( X* ' + ¢, X*" 2 +--- +
X + ¢o = ¢ (X)a(X) + r(X) for some ¢*(X), (X) in K[X] with deg
r(X) < deg a(X) or r(X) = 6. Substituting this back for ¢(X) we have
b(X) — (bi/am)a(X)X* ™™ = ¢*(X)a(X) + r(X). Rearrangement yields b(X) =
(@*(X) + (by/am)X* ™ a(X) + r(X) with deg r(X) < deg a(X) or r(X) = 6.
The second case is now proved and the induction is complete. The con-
clusion is true for polynomials b(X) of all degrees. The theorem is also true
for polynomials of no degree, namely, the zero polynomial, because if
b(X) = G then fa(X) + 6 = 0. 0O

EXAMPLE. 2X° + 3X3 + X2 + X + 5 =0Q2X* + X + D(X%2 + 2) +
X + 3.
4

QUESTIONS

1. In the ring Z,[ X ] the polynomial (2X? + 3X + 2)(2X3 + 3) has degree
(A) 6
®B)5
(€) 4
(D) 3.
(E) None of the listed numbers is the degree.
2. With dividend X* + X + 1 and divisor 2X + 1 the division algorithm in Z,[X]
yields a remainder
(A) 0
B 1
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(€2
(D) X.
(E) None of the listed alternatives is the remainder.

. The degree of f(X) + g(X), the sum of two polynomials, is

(A) < deg f(X) + deg g(X)
(B) = deg f(X) + degg(X)
(C) < max{deg f(X), deg g(X)}
(D) < min{deg f(X), deg g(X)}.
(E) None of the alternatives completes a true sentence.

. How many different polynomials of degree <1000 are there in Z,[ X ]?

( A) 3 . 41000
(B) 4000
(C) 1004
(D) 1000!/4!
(E) None of the above numbers is correct.

. The product 2X + 2)2X + 1)in Z,[X]is

(A) a second degree polynomial
(B) not the only possible factorization of 2X + 2
(C) equal to 2(X + 1)
(D) equal to 2X + 1)2X + 3).
(E) None of the four alternatives is acceptable.

. The product of two even degree polynomials with integral coefficients

(A) always has even degree also
(B) may in some cases have odd degree
(C) can be zero
(D) is sometimes not defined.
(E) None of the alternatives makes a true sentence.

EXERCISES

1.

We define a polynomial to be monic if and only if its leading coefficient is unity.
Let (R, +, ", 0, v> be a commutative unitary ring. Given a(X), b(X) in R[X] with
a(X) a monic polynomial, prove there exist polynomials g(X), r(X ) such that b(X) =
q(X)a(X) + r(X) with deg r(X) < deg a(X) or (X) = 6. Moreover, g(X) and r(X)
are unique.

. Let (R, +, *, 0, v> be a unitary ring, not necessarily commutative. Given a(X),

b(X) in R{X] with a(X) a monic polynomial (leading coefficient unity), prove there
exist ¢,(X), ri(X), q,(X), r,(X) such that b(X) = ¢q,(X)a(X) + r(X) and b(X) =
a(X)g,(X) + ry(X) with deg r,(X) < deg a(X) or r,(X) = 6, deg r,(X) < deg a(X)
orry(X) = 6.

. Is the ideal of Z[ X] generated by 2 and X a principal ideal? [ Hint: cf. Exercise 13,

Section 2.8.]

. Show that if the elements of Q[ X ] are ordered in a manner extending the ordering

on Q, ie., p(x) < q(x) if and only if g(x) — p(x) has positive leading coefficient,
then the result is an ordered integral domain (cf. Section 3.7).
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5.2 A formal definition of a polynomial ring

5. IsQ[X] an ideal of R[X]?

6. If A is an ideal of a ring <R, +, -, 8, v)> which is commutative and has a unity, is
A[X] an ideal of R[X]? Are all ideals of R[X] of this form?

7. Let <K, +, -, 0, v> be a field. Show that all ideals of (K[ X], +, -, 6, v) are simply
generated (principal) ideals. [ Hint: Reread the lemma proof in Section 4.6 which
shows that all ideals of Z are principal and build a similar proof for K[X].]

8. Prove the following proposition or find a counterexample. No polynomial of odd
degree can be the square of another polynomial.

5.2 A formal definition of a polynomial ring

In this section we reconstruct the polynomial ring. We wish to give a
definition which dispenses with the convenient, but somewhat mysterious
symbol X. The construction is more abstract; the original conventional
notation just used should be kept in mind as guidance.

Our aim is to take an approach utilizing the coefficients, but deleting
the X. It is clear enough that in a polynomial it is the coefficients which
convey the information; the powers of X serve as placeholders for the
coefficients. One can, for instance, write 9X> 4+ 2X + 3 as (9,0, 2, 3) and
convey the same information. The sum of 9X3 + 2X + 3and 2X? + 7X + 1
can be computed as (9,0,2,3) +(0,2,7,1) = (9, 2,9, 4. As polynomials
may be of arbitrarily high degree we cannot be satisfied with finite n-ples
of one given length. Infinite sequences of coefficients are therefore to be used.
We recall the notation RN, meaning the set of all infinite sequences with
values in R, or, equivalently, the set of all functions with domain N and
with values in R. Because polynomials all have leading coefficients (unless
the polynomial is zero) we introduce the next definition.

Definition. Let (R, +, -, 6 be a ring. We define (R)" to be the set {p|p:N —
R and there exists m € N such that p(n) = 0 for all n > m}.

We shall refer to (R)* as the weak power to distinguish it from the regular
power RN, The set, (RMN)¥, is the set of all functions defined on the natural
numbers with values in the ring R which, except for a finite number of
them, are all zero. (RN)" is the set of all infinite sequences with values in R
in which all but a finite number of the values are zero. On this set of functions
we define the operations + and - as follows:

p+ q:N > R suchthat (p + g)(n) = p(n) + q(n),
p-q:N - R suchthat (p-q)(n) = ) ;sx=n p())q(k).

The set and addition here are those found in Exercise 11 of Section 2.2. The
multiplication is different from that found in Exercise 11; several examples
should be tried to verify for oneself that this definition is the same as that
used for polynomials in Section 5.1.
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5. Rings: Polynomials and factorization

We identify z:N — R as the mapping z(n) = 0 forallne N.

Theorem. If (R, +, -, 8 is a ring then {(RN)*, +, -, z) is a ring.

We leave the proof as an exercise.

Definition. {(RN)¥, +, -, z) is defined to be the polynomial ring over the
given ring (R, +, -, 6.

Having constructed the polynomial ring by the use of sequences of
coefficients we now move to connect the new formulation with the con-
ventional notation for polynomials reviewed in Section 5.1. We do this by
identifying each member of (RM)” with a member of R[ X ]. The sequence
(ag, ay, az,...,0a,,0,0,0,..), a, # 0, is identified with the expression
ap + a; X + a,X? + -+ + a,X™ In other words a function p:N — R is
identified with the polynomial p(0) + p(1)X + p(2)X? + --- + p(m)X™
where p(n) = 0 for all n > m. Let us call this identification G.

Definition. G:(RM)” — R[X] such that G(p) = Y7o p(i)X* where m is an
integer such that p(n) = 0 for alln > m.

Theorem. G:(R“)” — R[X] is an isomorphism for all rings R.

Proor. Given any a, + a; X + - -+ + a,X™ in R[X], a,, # 0, choose p in
(RN)" such that p(n) = a, for all n < m and p(n) = 0 for all n > m. Then
G(p) =ay + a; X + - + a,X™ G is a surjection. To verify that G is a
bijection let G(p) = G(g). Since the two polynomials are equal then all
their coefficients are equal in respective pairs. p(n) = g(n) for all ne N.
Then p = q.

We now check the morphism properties.

max(m, n)

G + 6@ = 3 pX'+ T aX = 3 (i +a)X = Glp+ )

G(p)G(g) = (_ZO piX )( o qu”> =2 ( 2 p,-q,-) X*=G(pg. O
i= ji= = it+j=

3

These previous arguments have established (R")" to be a ring isomorphic
with R[X]. As the symbol X does not occur in the construction of (R™)"
we have therefore succeeded in our task. Before seeing where the X has
gone we notice that the constants occur in (R™)* as a subring.
Theorem. If (R, +, -, 0 is aring then there is a monomorphismy:R — (RM)*
such that y(x) = (x, 0,0, ...).

PROOF. Y(x + ) = (x + 3, 60,0,...) = (x,0,6,..) + (»6,0,..) =
Y(x) + ¥(»). Y(xy) = (x3,6,0,..) = (x,6,6,..)(»6,0,...) = Yx)Y(y).
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5.2 A formal definition of a polynomial ring

Y(x) = Y(y) implies (x,0,6,...) =(y,0,0,...), which in turn implies
X = ). 0

We have showed that the ring R, called the constants, is isomorphic
with the subring of (RY)* denoted by {(ay, 0, 6, . . .)]aO € R}. These sequences
are simply the ones corresponding by G to the polynomials of R[X] of
degree zero and the zero polynomial.

The sequence (6,0, ..., 0, a;0,...) of (RV)” corresponds under G to the
polynomial a;X’. If j is, in particular, 1, then (6, a,, 6, 6, . ..) is identified
with a, X. If there is a unity in the ring R we see by letting a, = v that
0,v,6,0,...) corresponds to vX. If we consider vX and X to be one and
the same then we have identified the sequence (6, v, 0, 6, . . .) with X. Thus
X is the function from N to R which is 0 for all n e N save 1 where it has
the value v.

Having demonstrated that it is possible to construct the polynomial
ring free of the symbol X we return from here on to the conventional nota-
tion for the polynomial.

QUESTIONS

1. Which of the following are true?
(A) (RY* < R"for all rings R.
(B) RY = (RY for all rings R.
(C) R" = (RY” for all rings R.
(D) RY # (RY for all rings R.
(E) None of the four is true.

2. Under the correspondence G between the ring of functions, (R%), and the poly-
nomial ring, R[X], the polynomial 3X? + 2 is the image of
(A) (3,0,2)
(B) (2,3)
©) 2,0,3,0,0,...)
(D) 3X% + 0X + 2.
(E) None of the four answers is the preimage.

3. The existence of the function (1, 1, 1,...) in ZM shows that
(A) Z"is not isomorphic to Z[X]
(B) Z% # (2"
(C) the square of a polynomial is not necessarily a polynomial
(D) Q" = 7.
(E) None of the four answers follows.

4. In the ring (Z")* which functions (ao, a;, a,, . . ) satisfy the equation a*> = q?
(A) all functions with a square root in (Z")"

B) 1,0,0,...)
© (0,0,0,...)
(D) (0,1,0,...).

(E) No functions in (ZV)* satisfy the equation.
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5. Rings: Polynomials and factorization

EXERCISES

1. In proving (RY)" to be a ring it must be demonstrated that if p and g both belong
to (R")" then the product pg is also in (RY)*. Since (pg)(k) = Y ;. j= P(i)q()) it is
clear enough that pq is defined for all k € N. It is not so clear that there exists m e N
such that for all n > m we have (pq)(n) = 6. Prove this.

. Prove chr R[X] = chr R for any ring R.
. Prove there exist rings which are infinite yet have characteristic not equal to zero.
Is (RM) an ideal of R as well as a subring? Are the constants an ideal of (RN)*?

. Find the fields of fractions of the rings Z[ X | and @[ X].

mos W N

5.3 Polynomial functions

In this section we see how a polynomial defines a function in a natural
way and we investigate the correspondence between polynomials and
polynomial functions. Finally we use polynomials to analyze field extensions
and the complex numbers in particular.

Replacement of the symbol X in a polynomial of R[X], a4,X™ +
1 X" P+ + a, X% + a1 X + ag, a, # 0, by any element x of R
yields a member a,x™+ d,_ X" ! + -+ + a,x* + a;x + a, of R. For
example, if we replace X in X2 — 2X + 4 by 3in Z we obtain 3> — 2(3) + 4
or 7, a member of Z. We wish now to discuss this substitution phenomenon
at some length. We will denote a polynomial in R[ X ] by p(X) and denote
the function from R to R with p(x) as its value with the letter p. This function
is called a polynomial function and is a different function from that dis-
cussed in Section 5.2. Because the operation of multiplication requires that
the coefficients of the polynomials commute with the symbol X and there-
fore with the substituted x of R we limit our discussion to commutative rings.

Definition. Let (R, +, -, ) be a commutative ring. If 7{X) belongs to R[ X ]
and we denote p(X) by @, X™ + -+ + a; X + ay, a,, # 0, then the func-
tion p:R — R such that p(x) = a,x™ + -+ + a;x + a, is called the
polynomial function corresponding to the polynomial p(X). The zero
function R — R will correspond to the zero polynomial. We denote the
correspondence taking polynomials into polynomial functions by
@:R[X] — RR such that &(p(X)) = p. (R® is a previously used notation
meaning the set of all functions with domain R and codomain R.) Range
@ is the set of all polynomial functions from R to R and we denote this
set by £(R, R).

Theorem. Let (R, +,-,0> be a commutative ring. Then ®:R[X] — R®
such that ®(p(X)) = p is a morphism.
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5.3 Polynomial functions

Proor. The values of @ are uniquely determined; therefore @ is a function.
To demonstrate the morphism properties, @(p(X) + q(X)) = &(p(X)) +
&(g(X)) and P (p(X)q(X)) = @(p(X))P(q(X)), we show the following
equations hold for all x € R:

P(p(X) + q(X))(x) = ¢(p(X))(x) + P(q(X))(x),
D(p(X)q(X))(x) = @(p(X))(x) - D(q(X))(x).
D(p(X)+q9(X))(xX)=P(a, X"+ +a; X +ag+b, X"+ +b; X +by)(x)

=®((a,+b,)X*+- - -+(a; +by)X +(ap+bo))(x)

=(a,+b,)x"+ - -+(a; +by)x+(ap+bo)

=a, X"+ +a;x+ag+b,x"+- -+ by x+by

=P(a, X"+ +a X +ay)x)

+ &b, X"+ -+b X +by)(x)

=P(p(X))(x)+ P(q(X) )(x).
In the equation u = max{m, n} and we include the possibility of all coef-
ficients zero to avoid handling the zero case separately.

(p(X)q(X))(x) = P((amX™ + " +a; X +a0)(ba X"+ * *+b1 X +bo) )(x)

N
k=0 \i+j=k

= (Z a,-bj>x"

k=0

i+j=k
=(apX™+" -+ a;x+ag)(b, X"+ - -+b;x+bg)
=@(a, X"+ +a; X +ag)(x)Pb, X"+ -+ b, X+ bo)(x)

=2(p(X))(x)D(q(X) )(x)- O

ExaMPLE. The polynomial p(X) = X2 + 2X — 3 belongs to Z[ X ]. p(x) =
x% + 2x — 3 is the value of the function p:Z — Z for any x € Z. p(0) = —3.
p(4) = 21.

ExampLE. The polynomials p(X) = X + T and ¢(X) =2X*> +2X + 1
are distinct polynomials in Z;[ X ]. The coefficients 2 and 1 really stand,
of course, for equivalence classes in Z; with representatives 2 and 1 respec-
tively. The two polynomial functions, p:Z; — Z; and ¢q:Z; — Z;, are,
however, identical. Check this by noting that p(0) = q(0), p(1) = ¢(I) and
p2) = q(2).

In general the polynomials R[ X ] and the polynomial functions 4(R, R)
are not in one-to-one correspondence; @ is not a monomorphism. An
instance of this is seen in the previous example. For another example,
consider in Z,[ X ] all of the following distinct polynomials: 0, 1, X, X + 1,
X%, X*+ X +1,X% + X, X% + 1. There are eight polynomials in Z,[ X ]
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5. Rings: Polynomials and factorization

of degree two or less (and the polynomial 0). There are, however, only four
possible functions Z, — Z, which we denote by a, b, ¢ and d.

x | a(x) b(x) c(x) d(x)

0 ‘ s 1 0 1

1 0 1 1 0.
We can represent g, b, ¢, and d by the following formulas: a(x) = 0, b(x) = 1,
c(x) = x,d(x) = x + 1. We note

®©0) = q, o) =b, IX)=c DX +1) =4,
X2+ X)=a IX*+X+TD=b dX)=c X +1)=d

Furthermore, if we continue into third- and higher-degree polynomials they
will all correspond or give rise to one or more of the four functions q, b, c,
or d. The number of polynomials in Z,[X] is infinite yet the number of
functions in 4(R, R) is 4.

We now establish some results important for themselves and then even-
tually use them to cast some light upon the relative sizes of R[X ] and
#(R, R). We begin with a theorem usually seen by elementary algebra
students called the factor theorem.

Definition. Let (R, +, -, §) be a ring. An element r in R is a root of a poly-
nomial p(X) in R[X] if and only if p(r) = 6.

ExaMPLE. 2 is aroot of the polynomial X2 — 4 in the ring Z. The polynomial
4X? — 1 has no roots in the ring Z. Notice how r is a root of the polynomial
p(X) is really a statement about the polynomial function p; p:R — R is
zero at the argument r.

Theorem. Let (R, +,-, 0, v) be a unitary commutative ring. X — r is a factor
of p(X) in R[X] if and only if r is a root of p(X) in R.
PrROOF. Suppose X — r is a factor of p(X). Then in R[X] the polynomial
p(X) has a factorization
p(X) = g¢(X)(X — r) for some g(X)in R[X].
P(p(X)) = P(g(X)(X — r)).
o(p(X)) = D(¢(X))P(X — r). Why?
p(x) = g(x)(x — r) forall xe R. Why?
p(r) = q()r — 7).
p(r) = 6.
r is a root of p(X).

Now in order to prove the converse assume r to be a root of p(X). Use the
division algorithm in R[ X ] for monic polynomials (cf. Exercise 1 of Section

128



5.3 Polynomial functions

5.1) to obtain
p(X) = q(X)(X — r) + s(X) with degs(X) = 0ors(X)=20.

Applying the morphism @ which takes polynomials into polynomial func-
tions we get

P(p(X)) = P(g(X)X — 1) + s(X)).

P(p(X)) = P(g(X))P(X — 1) + P(s(X)).
p(x) = q(x)(x — r) + s(x) forevery x € R.
p(r) = q((r — 1) + s(r).

But since r is a root of p(X) we know p(r) = 6.

0 = q(r)@ + s(r).
0 = s(r).

s(X) is a polynomial of degree less than 1 which is zero at r or s(X) is the
zero polynomial. But polynomials of degree less than 1, namely degree 0,
are constants and a nonzero constant cannot be zero at r. Ruling out the
first alternative we therefore know s(X) to be the zero polynomial. p(X) =
q(X)(X — r). This completes the proof of the factor theorem. O

We now use the factor theorem to place an upper bound on the number
of roots of a polynomial.

Theorem. Let <R, +, -, 0, v) be an integral domain. Then any polynomial in
R[X] of degree n can have at most n distinct roots.

ProOF. Suppose p(X)e R[X] and deg p(X) = n. We shall assume p(X)
has more than n distinct roots and obtain a contradiction. Let ry, r5, . . ., 1y,
r,+1 be n + 1 of the distinct roots. p(r,) = 6 implies X — r, is a factor of
p(X). p(X) = ¢,(X)(X — ry) for some ¢q,(X) € R[ X ]. Evaluating at r, gives
p(ry) = q.(ry)(r, — ry). The left side is zero and therefore the product on the
right is zero. (r, — ry) is not zero and therefore q,(r,) is zero because of
the integral domain hypothesis. r, is a root of ¢,(X). ¢ (X) = g,(X)(X — r,)
for some g,(X) in R[X]. We have then p(X) = q,(X)(X — r)(X — ry)
with degree ¢,(X) = n — 2. Using induction we arriveat p(X) = ¢(X — r,) - -~
(X — r)(X — ry) for some ce R[X] and deg ¢ = 0. Evaluating at r,,,
we obtain a contradiction. O

ExampLE. X3 — 6X? + 11X — 6 has roots 1, 2, and 3 and factored form
(X — 1)(X — 2)(X — 3). The polynomial is a member of Z[X ] and Z is
an integral domain. If we choose a ring which fails to be an integral domain
such as Z,, then a polynomial such as X? — 4 turns out to have roots 2, —2,
4, —4,8, —8, 10, — 10 with the number of roots greater than two. Actually
2 and —10 represent the same equivalence class in Z,, so that a complete
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list of distinct roots is 2, 4, 8, 10. The number of roots is larger than two. The
possible factorizations of X? — 4are(X — 2)(X — 10)and (X — %)(X — 3).

Corollary. Let {R, +,-,0,v) be an integral domain. Let p(X) and q(X)
be polynomials both of degree strictly smaller than n and let p and q agree
Jor ndistinct values of R: p(x;) = q(x;) for x4, X5, ..., X, in R and distinct.
Then p(X) = q(X).

ProOOF. Show that the polynomial p(X) — ¢(X) will have n roots and use
the theorem. O

We return now to the correspondence @ between polynomials and
polynomial functions to show a case in which every polynomial must give
rise to a distinct polynomial function.

Theorem. Let (R, +, -, 0, v) be a nonfinite integral domain. Then ®:R[ X | —
#(R, R) is an isomorphism.

ProOF. As 4(R, R) is by definition the range of @ we only need to show @
to be a monomorphism. @ is an injection if and only if kernel ¢ = {6}.
We now show the kernel to the zero polynomial alone. Suppose p(X)
belongs to kernel @. Then p = @(p(X)) must be the constantly zero function
of RR. p(x) = 6 for all x € R. Suppose the polynomial p(X) has some degree,
say n. Since R is not finite there are in R more than n distinct values, each
of which makes p be zero. This is to say the polynomial p(X) of degree n
has strictly more than » roots in R. This contradicts our theorem on the
number of distinct roots and means p(X) can have no degree. p(X) is therefore
the zero polynomial. Kernel ¢ = {6}. O

We can push the techniques of this theorem somewhat further to give
some information even for finite integral domains.

Theorem. Let <R, +,-, 0, v> be a finite integral domain. Then the ring of
all polynomial functions s(R, R) is isomorphic with R[ X |/{@(X)) where
{@(X)) is an ideal generated by some polynomial in R[ X ].

ProOF. @:R[X] — 4(R, R) is an epimorphism. There exists by the theory
of Section 2.7 an isomorphism f":R[X]/ker & — range & such that
f'(ker @ + p(X)) = p. Kernel @ is an ideal of R[X], a principal ideal,
and therefore is generated by some polynomial ¢(X). (cf. Exercise 7 of
Section 5.1). Remember that all finite integral domains are fields. O

ExaMPLE. Since Z is an infinite integral domain the polynomial ring Z[ X ]
and the set of polynomial functions 4(Z, Z) are isomorphic; each polynomial
gives rise to a distinct polynomial function. We remark that not all functions
in Z% are polynomial functions; for example, the function f:7Z — Z such
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that f(2n) = 0 and f(2n + 1) = 1 for all ne Z cannot be a polynomial
function because the number of roots would be infinite.

If we look now at the example Z,[ X | we are dealing with the case of a
finite integral domain Z,. X2 + X gives rise to the zero polynomial function
and is the polynomial of smallest degree with that property. Z,[ X ]/< X2+ X)
is isomorphic with 4(Z,, Z,).

QUESTIONS

1. The polynomial function p:Z — Z defined by the polynomial p(X) = X% — X is
(A) an injection
(B) a surjection
(C) a bijection
(D) a different function than that defined by the polynomial g(X) = X° — X.
(E) None of the alternatives is correct.

2. The polynomial function p:Z5 — Z defined by the polynomial p(X) = X2 + 2X
has a range with
(A) 0 members
(B) 1 member
(C) 2 members
(D) 3 members.
(E) None of the numbers is correct.

3. The number of members in 4(Z5, Z3) is
(A) O
(B) 3
) 6
(D) 9.
(E) None of the alternatives is correct.

4. The number of roots of X2 + Tin Z, is
(A) 0
(B) 1
© 2
(D) 3
(E) 4.

5. The number of real polynomials and the number of polynomial functions in 4(R, R)
is
(A) the same
(B) different.

6. Which of the following statements are true?
(A) X? + 2X has two roots in Z,.
(B) X* +2X = X(X — T)(X — 2)inZ,[X].
(C) X* + 2X corresponds to the zero function in 4(Z,, Z5).
D) AlZs, Z3) = Z4%,
(E) None of the statements is true.
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EXERCISES

1. The following theorem occurs in college algebra texts along with the factor theorem
and is called the remainder theorem. If (R, +, -, 6, v) is an integral domain and
p(X) belongs to R[X] then p(c) = a if and only if p(X) = ¢(X)(X — ¢) + a for
some ¢(X) in R[X]. In other words, the value of a polynomial function p at c is
the remainder upon dividing p(X) by X — c. In the special case the remainder is
zero then one has the factor theorem. Prove the remainder theorem.

2. Prove that if (R, +, -, 0, v) is an integral domain then the only invertible elements
of R[X] are those of R.

3. Give an example of a polynomial ring with invertible elements of positive degree.
4. Wh<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>