


Undergraduate Texts in Mathematics 

Editors 

F. W. Gehring 
P. R. Halmos 

Advisory Board 

C. DePrima 
I. Herstein 

J. Kiefer 
W. LeVeque 



L. E. Sigler 

Algebra 

Springer Science+Business Media, LLC 



L. E. Sigler 
Bucknell University 
Department of Mathematics 
Lewisburg, Pennsylvania 17837 

Editorial Board 

F. W. Gehring 
University of Michigan 
Department of Mathematics 
Ann Arbor, Michigan 48104 

AMS Subject Classifications: 13-01, 15-01 

P. R. Halmos 
University of California 
Department of Mathematics 
Santa Barbara, California 93106 

Library of Congress Cataloging in Publication Data 

Sigler, L(aurence) E(dward) 
Algebra. 
(Undergraduate texts in mathematics) 
Bibliography: p. 409 
Includes index. 
I. Algebra. I. Title. 

QA152.2.S56 512'.02 76-21337 

The cover design is based on John Croker's medal of Newton. 
The figure is that of winged Science holding a tablet upon which 
appears the solar system. More about it in D. E. Smith, 
History of Mathematics, Vol. I, (Dover). 

All rights reserved. 

No part of this book may be translated or reproduced in any form 
without written permission from Springer-Verlag. 

© 1976 by Springer Science+Business Media New York 
Originally published by Springer-Verlag, Inc. in 1976 
Softcover reprint of the hardcover edition 1976 

ISBN 978-3-540-90195-2 ISBN 978-3-662-26738-7 (eBook) 
DOI 10.1007/978-3-662-26738-7 

1st 



Preface 

There is no one best way for an undergraduate student to learn elementary 
algebra. Some kinds of presentations will please some learners and will 
disenchant others. This text presents elementary algebra organized accord­
ing to some principles of universal algebra. Many students find such a 
presentation of algebra appealing and easier to comprehend. The approach 
emphasizes the similarities and common concepts of the many algebraic 
structures. Such an approach to learning algebra must necessarily have its 
formal aspects, but we have tried in this presentation not to make abstraction 
a goal in itself. We have made great efforts to render the algebraic concepts 
intuitive and understandable. We have not hesitated to deviate from the 
form of the text when we feel it advisable for the learner. Often the presenta­
tions are concrete and may be regarded by some as out of fashion. How to 
present a particular topic is a subjective one dictated by the author's estima­
tion of what the student can best handle at this level. We do strive for 
consistent unifying terminology and notation. This means abandoning terms 
peculiar to one branch of algebra when there is available a more general 
term applicable to all of algebra. We hope that this text is readable by the 
student as well as the instructor. It is a goal of ours to free the instructor 
for more creative endeavors than reading the text to the students. 

We would have preferred to call this book College Algebra because this 
was the name of the standard algebra course for undergraduate students in 
the United States for many years. Unfortunately, the name "College 
Algebra" now seems firmly attached to a body of material taught in the 
1930's. Perhaps in time the name "College Algebra" will once again describe 
the algebra studied by college students. Meanwhile we have names like 
"Modern Algebra" and "Abstract Algebra" using inappropriate modifiers. 
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Preface 

Included in the first half\\)f the text and providing a secondary theme are 
a development and construC,tion of the number systems: natural numbers 
(Sections 3.1-3.4), integers (Sections 3.5-3.6), fractions or rational numbers 
(Section 4.5), and complex numbers (Section 5.8). The construction of the 
real number system is properly a topic in analysis; we refer the reader to 
reference [10, p. 234] for an algebraically oriented presentation. The use of 
the integers as exponents and multiples as in secondary school algebra is 
covered in detail (Section 4.4). All of the material on number systems can 
be stressed advantageously by those students preparing for school teaching. 

As in all texts, size considerations eventually begin to exercise influence. 
Group theory is not stressed in this text although there is a respectable 
amount of material for an elementary text in Chapter 9. There is no Galois 
theory in this text. Although lattice theory is a central concept for universal 
algebra we have pretty well omitted study of that area. For that reason and 
others, this cannot be considered to be an elementary text in universal 
algebra. 

Considerable attention has been paid to the algebraic properties of func­
tions and spaces of functions. One of the primary uses of algebra for an 
undergraduate is in his analysis courses. We hope that the attention we have 
paid to functions will be found rewarding by the student in his analysis 
courses and in turn we hope that the somewhat concrete nature of spaces 
of functions helps illuminate some of the algebraic structures by being 
tangible examples of those structures. 

Chapters 1-5 are devoted to rings, Chapters 6, 7, and 10 to linear algebra, 
Chapter 9 to monoids and groups, and Chapter 8 to algebraic systems in 
general. We envision the text being used for a year's course in algebra, for 
a one semester course not including linear algebra, or for a linear algebra 
course. A shorter course in algebra might consist of Chapters 1-5, omitting 
possibly Section 3.8, Section 4.6, and parts of Chapter 5, supplemented by 
Sections 9.1-9.4. A course in linear algebra for students already familiar 
with some of the topics included in the first five chapters could concentrate 
on Chapters 6, 7, and 10 after reviewing Sections 5.1-5.6. Ideally we envision 
the book for a one-year course covering all the chapters. 

The questions at the end of each section are to help the reader test his 
reading of the section. Certainly the section ought be read carefully before 
attempting to answer the questions. Many of the questions are tricky and 
hang upon small points; more than one of the answers may be correct. The 
exercises provide for practice and gaining a better knowledge of the material 
of the section. It is our practice to use in examples and in the exercises 
some material on an intuitive bases before the material is treated in the text 
more formally. Provided one guards against circular reasoning this provides 
for a more immediate illustration of the principles the student is trying to 
understand. 

Algebra as an undergraduate course is frequently the subject in which a 
student learns a more formal structure of definitions, theorems, and proofs. 
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Preface 

The elementary calculus is often a more intuitively presented course and it 
is left to the algebra course to institute the more formal approach to mathe­
matics. For this reason the student should be very aware of what are defini­
tions, what are theorems, and what is the difference between them. 

We now make several comments on style. In this text sentences are 
frequently begun with symbols which may happen to be small letters. e is a 
transcendental number. We consider such symbols proper nouns and beg 
forgiveness; we have found the practice of avoiding such sentences too 
limiting. Secondly, we use a number of run-on sentences connected with 
if and only if. They are too logically appealing to avoid. We leave to the 
reader without comment all other perversions of the queen's English. 

It is our opinion that one of the most rewarding things a student of 
mathematics can learn is some of the history of the subject. Through such 
knowledge it is possible to gain some appreciation of the growth of the 
subject, its extent, and the relationships between its various parts. We 
cannot think of any other area where such a little effort will reap such a 
bountiful harvest. For reasons of length and cost we have not included 
historical material in this text despite the opinion just expressed. We recom­
mend the purchase, reading, and rereading of at least one mathematical 
history book: see the references for suggestions. 

The author wishes to thank Bucknell University for a sabbatical leave to 
work on the manuscript for this book, the editors of Springer-Verlag for 
their encouragement and advice, and several readers for their suggestions. 
All errors I claim for myself. 

Lewisburg 
March, 1976 

L.E.S. 
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Set theory 1 

This chapter on sets establishes the language of set theory in which this 
book on algebra is written. The elerv-entary operations on sets such as subset, 
union, and intersection may well be familiar to the reader. In this case he 
should certainly move on to matters which are new. We suggest that this 
chapter first be read hurriedly to see what topics are familiar and what topics 
are new. The reader can then spend the time necessary to master whatever is 
new for him and can avoid spending time on material he knows. 

Concepts of this chapter such as set, subset, quotient set, function, and the 
fundamental isomorphism theorem will be used repeatedly for each separate 
algebraic structure in later chapters. 

Since this is not a textbook for a course in set theory the treatment of sets 
is abbreviated. We have tried, as do all authors of elementary texts in algebra, 
to compromise between too much material on sets and too little. The goal 
is to give the necessary amount to support the algebra presented later. Certain 
other concepts of set theory not included in Chapter 1 will be presented 
later in the text as needed. 

In Section 1.8, after a discussion of composition of functions, we introduce 
the algebraic concept of group by example. Commutative groups occur again 
in Chapter 6 as modules; groups not necessarily commutative are treated in 
detail in Chapter 9. 

1.1 Sets 

In this first section we discuss the fundamental concepts of set member­
ship, the relations of equality and subset. 

A set is a collection of objects. Some examples of sets are 

the set of all letters of the English alphabet, 
the set of letters a, b, and c, 



1. Set theory 

the set of states of the USA, 
the set of all teams of the National Basketball Association, 
the set of numbers -2, 0, 2, 4. 

We use x E S as an abbreviation for xis a member of the setS. Some alternate 
expressions are xis an element of S, x belongs to S, xis in SandS contains x. 

A set can be denoted by listing its members between a pair of braces: 

{a,b,c}, 
{ -2, 0, 2, 4}. 

Several true statements about these two examples are: a E {a, b, c}, 2 E { - 2, 
0, 2, 4}. 

We use the symbolism x ifS to mean xis not a member of the setS. For 
example, d if {a, b, c}, 1 if { -2, 0,2, 4}. 

We also denote sets by means of some defining property: 

the set of all letters of the English alphabet. 

In order to work principally with numbers we now name five sets: 

r\1 = the set of natural numbers, 
Z = the set of integers, 

11) = the set of rational numbers, 
IR = the set of real numbers, 
IC = the set of complex numbers. 

These symbols will be used consistently throughout the entire text for the 
sets indicated. By the natural numbers we mean all positive whole numbers 
and zero. By the integers we mean all whole numbers, positive, negative, and 
zero. By rational numbers we mean all fractions, quotients of integers with 
nonzero denominator. By real number we mean any number representable 
by a decimal, terminating or non terminating. Examples of real numbers are 
2, 3.00000 ... , 3.14159 ... , 0.33333 .... At this point we are relying upon 
previous knowledge and acquaintance with these concepts. We will develop 
these number systems more fully later in this text. Finally a complex number 
is a number of the form a + bi where a and bare real numbers and i = p. 

The symbol {xlx is an integer} is read "the set of all x such that xis an 
integer." This is a stilted way of saying "the set of integers," but what is lost in 
euphony is more than compensated for by the gain in utility. The symbol is 
called a classifier. For example, r\1 = {xlx is a natural number} = {xlx E Z 
andxisnonnegative}. { -2,0,2,4} = {xlxEZandxisevenand -3 < x < 5}. 
In general if p(x) is some statement involving the letter x and if there is a set 
consisting precisely of all objects x such that p(x) is true then we denote that 
set by {xlp(x)}. 

We shall consider two sets to be equal when they have the same members: 

Definition. X =TU and only if every member of X is a member of Y and 
every member of Y is a member of X. 

2 



1.1 Sets 

The definition of equality makes irrelevant the order of listing of members 
in any set: {a, b, c} = {b, c, a}. Given an object and a set, the object is either 
a member of the set or it is not a member of the set. There is no question of 
duplicate membership. We must regard the sets {2, 8, 8} and {2, 8} as equal; 
2 and 8 are members of the sets and no other objects are. If we consider the 
set { x, y, z} and it is given that x, y, and z are integers we have many pos­
sibilities. Some possibilities are {1, 0, 3}, {0, 4, 2}, {7, 12, 13}. Another possi­
bility, however, is { 5} which is obtained by setting x = 5, y = 5, and z = 5. 

Equality of sets enjoys the three properties of reflexivity, symmetry, and 
transitivity which are listed in order in the next theorem. 

Theorem. X = X for all sets X. X = Y implies Y = X for all sets X, Y. 
X = Y and Y = Z imply X = Z for all sets X, Y, Z. 

PRooF. X has the same members as X. Every member of X is a member of 
X and vice versa. X = X. 

If every member of X is a member of Y and every member of Y is a 
member of X then Y = X as well as X = Y. 

If X and Y have the same members and Y and Z have the same members 
then X and Z have the same members. 0 

We now take up the concept of subset. 

Definition. X ~ Y if and only if every member of X is a member of Y. 
X ~ Y is read "X is a subset of Y." 

EXAMPLES. {a, b} ~ {a, b, c}. N ~ Z. Z ~ Q. Q ~ iht !R ~ C. {a, b, c} ~ 
{a, b, c}. { -2, 0, 2, 4} ~ Z. 

A '/:. B means A is not a subset of B. A c B means A ~ B and A =1- B. 
For A not to be a subset of B there must be some member of A which is not 
contained in B. For A to be a proper subset of B (A c B) we must have A be 
a subset of Band also there must be some member of B which is not a member 
of A. 

Theorem. X ~ X for all sets X. X ~ Y and Y ~ X imply X = Y for all 
sets X, Y. X ~ Y and Y ~ Z imply X ~ Z for all sets X, Y, Z. 

These three properties are called respectively: reflexivity, antisymmetry 
and transitivity. 

PRooF. Every member of X is a member of X and therefore X ~ X. Because 
X ~ Y every member of X is a member of Y. Because Y ~ X every member 
of Y is a member of X. We have X = Y. 

Let a be a member of X. Because X ~ Y we have a E Y. Because Y ~ Z 
it follows that a E Z. Thus X ~ Z. 0 

3 



1. Set theory 

We must distinguish carefully between the two symbols E and s;;. Here 
are some examples which require this. We denote the set of teams of the 
National Basketball Association by N, the Boston Celtics team by C and 
a player Bill Russell of the Boston Celtics by R. All of these statements are 
true: CeN.R~N. {C} s;; N.ReC. {R} s;; C.N~C. {R} et N.N et C. 

1.2 Operations on sets 

In this section we find the operations of union and intersection defined, 
the empty set introduced and the complement defined. 

We now give means of producing a set from two given sets. 

Definition. The union of the sets X and Y, written X u Y, is defined to be 
the set {xI x E X or x E Y} . The intersection of the sets X and Y, written 
X n Y, is defined to be the set {xlx EX and x E Y}. 

EXAMPLES. {a,b} U {b,c,d} = {a,b,c,d} . {a,b} n {b,c,d} = {b}. N n 7!.. = 
N. N u 7!.. = 7!.. . The two Venn diagrams in Figure 1.1 illustrate the inter­
section (a) and union (b). 

(a) (b) 

Figure 1.1 (a) X n Y is shaded. (b) X u Y is shaded. 

The following theorem states that both union and intersection of sets are 
commutative. 

Theorem. X u Y = Y u X for all sets X, Y. X n Y = Y n X for all sets 
X, Y. 

PRooF. If x belongs to X u Y then x belongs to X or x belongs to Y. If x 
belongs to X or x belongs to Y then x belongs to Y or x belongs to X . Then 
x is a member of Y u X . Likewise, every member of Y u X is a member of 
X u Y. X u Y = Y u X . The proof for intersection is entirely similar. 0 

The next theorem states that both union and intersection of sets are 
associative. 

Theorem. X u (Y u Z) =(X u Y) u Z for all X, Y, Z. X n (Y n Z) = 
(X n Y) n Z for all X, Y, Z. 

4 



1.2 Operations on sets 

PRooF. Let x EX u (Y u Z). Then x EX or x E Y u Z. x EX or (x E Y 
or x E Z). This means the same as (x E X or x E Y) or x E Z. This is to say 
the word "or" is associative. x E X u Y or x E Z. x E (X u Y) u Z. This 
demonstrates that X u (Y u Z) ~ (X u Y) u Z. In like manner we can 
show (X u Y) u Z c;; X u (Y u Z). Therefore (X u Y) u Z =X u (Y u Z). 
The second equation for intersection is proved by substituting the word "and" 
for the word "or" in the proof just given. D 

If the intersection of two sets is always to be a set, such as in the case 
{a, b} n { c, d, e} then the need for a set with no members is clear. 

Definition. We use the symbol 0 to represent the empty set, a set with no 
members. 

EXAMPLES. {a, b} u 0 = {a, b}. (a, b} n {c, d, e} = 0. 0 n {a, b} = 0. 
0 u 0 = 0. 0 n 0 = 0. 0 ~{a, b}. 

Theorem. X u 0 =X for any set X. X n 0 = 0 for any set X. 

PROOF. We show X u 0 c;; X and X ~ X u 0. Let x EX u 0. x EX 
or x E 0. Since x cannot belong to the empty set then x must belong to X. 
X u 0 ~ X. On the other hand, if x E X then certainly the statement x E X 
or x E 0 is true. Therefore, x E X u 0. X c;; X u 0. X u 0 = X. The 
second statement of the theorem is proved using similar techniques. D 

Theorem. X ~ (X u Y) for any sets X, Y. (X n Y) ~ X for any sets X, Y. 

PROOF. Again we prove only the first statement leaving the second as an 
exercise. If x E X then the statement x E X or x E Y is true. Therefore x E 
X u Y. X c;; (X u Y). D 

Theorem. 0 c;; X for any set X. 

PROOF. Suppose the empty set were not a subset of some set X. Then there 
would be some element c of the empty set which failed to belong to the set X. 
But this cannot be since the empty set cannot contain any element c. We 
conclude 0 ~ X. D 

When we prove 0 c;; X we prove the statement "every member of the 
empty set is a member of the set X" to be true. This argument is often a bit 
tricky for the reader unaccustomed to arguing vacuous cases. In order for 
the statement to be false there would have to exist some member Qf the 0 
which was at the same time not a member of X. For another example of this 
kind of reasoning take the statement "every pink hippo in this room weighs 
precisely 47 grams." This statement does not assert the existence of any pink 

5 



1. Set theory 

hippos ; the statement merely asserts that if there are any then they weigh 
47 grams. If there are no pink hippos at all in the room then the statement is 
true. For the statement to be false one must demonstrate the existence of at 
least one pink hippo in the room which does not weigh 47 grams. In mathe­
matical usage a universal statement never asserts existence. 

For a bit more practice with proving theorems about sets: 

Theorem. X = X u Y if and only if Y ~ X (for all sets X, Y). X = X 11 Y 
if and only if X ~ Y (for all sets X , Y). 

PRooF. First assume Y ~X. We must prove X= X u Y. From an earlier 
theorem we know X ~ X u Y. To show X u Y ~ X let x E X u Y. Then 
x E X or x E Y. If x E Y then x E X because Y is a subset of X. Therefore in 
either case x E X. X u Y ~ X . Both subset relations imply X u Y = X . 

For the converse begin with X = X u Y. Now we must prove Y ~X. 
Let x E Y. If x E Y then x EX u Y. Since X u Y = X we have x EX. 

y~ X. 
The second statement involving intersection can be proved in a similar 

manner. 0 

Definition. We define the relative complement X - Y to be the set {xJx EX 

and x ~ Y}. 

The Venn diagram of Figure 1.2 illustrates the relative complement. 

Figure 1.2 X- Y is the shaded area. 

ExAMPLES. {a, b, c} - {a, b} = {c}. {a, b, c} - {c, d} = {a, b}. N - 7L = 0 . 
7L - N = {xJx is a negative integer}. When the first set X in the relative 
complement X - Y is understood from context then the set is often indicated 
by y- and is simply called the complement of Y. 

Theorem. LetS be a given set and let x- denoteS - X where X ~ S. Then 

x-- = x, Xux- = s, X nx- = 0 . 

PROOF. x Ex-- if and only if (x E S and x$X-) if and only if (x E S and 
not (x Ex-)) if and only if(x E Sand not not (x EX)) if and only if(x E Sand 

6 



1.2 Operations on sets 

x E X) if and only if x E X. The proofs of the remaining parts can be supplied 
by the reader. 0 

The following results are usually called De M organ's identities. 

Theorem. Let X and Y be subsets of some set S. 

(X u Yf = x- n y-. (X n Yf = x- u y-. 

PROOF. Let x E (X u Yf. Then x E S and x is not a member of X u Y. 
x is not a member of X and x is not a member of Y. x E x- and x E y-. 
x Ex- n Y-. This proves (X u Yf s;; x- n y-_ We reverse the steps to 
prove the other inclusion and have (X u Yf = x- n y-. The proof of the 
second De Morgan identity is left entirely for the reader. 0 

QUESTIONS 

1. Which of these statements are true? 
(A) iiJ ,; 7l. 
(B) IR ,; (7!. n IR) 
(C) 7l. ,; (IR n N) 
(D) N ,; 7l. 

(E) None of the four statements is true. 

2. X ,; Y and Y ,; X fail to imply 
(A) X= Y 
(B) Y contains some member that X does not contain 
(C) X,; y 
(D) X and Y have the same members. 

(E) X ,; Y and Y,; X imply all four statements. 

3. Which of the following is not a subset of A = {a, b, c}? 
(A) 0 
(B) a 
(C) A 
(D) {a, b} 

(E) All four listed sets are subsets of {a, b, c}. 

4. Which of these statements are false? 
(A) 0 E X for all sets X 
(B) 0 ,; X for some set X 
(C) (0 n X) ,; X for all sets X 
(D) X ,; (0 u X) for all sets X. 

(E) All four statements are true. 

5. Which ofthese sets have no proper subset? 
(A) IR 
(B) 1R n 7l. 
(C) (N u IR) n 0 
(D) N n N 

(E) All four listed sets have at least one proper subset. 

7 



1. Set theory 

6. If A is a nonempty set and B is any set whatsoever then the union of A and B 
(A) may be empty 
(B) must be nonempty 
(C) may strike for higher pay 
(D) is a subset of B. 

(E) None of the four possibilities completes a true sentence. 

7. Equality of sets is not 
(A) symmetric 
(B) reflexive 
(C) antisymmetric 
(D) transitive. 

(E) Equality of sets has all four listed properties. 

8. Which of these statements are true? 
(A) (X n Y) u Z = X n (Y u Z) for all sets X, Y, Z 
(B) (X n Y n Zf = x- u y- u z- for all sets X, Y, Z 
(C) {x, y} <:t {x} for all x, yE IR 
(D) (X n Y) u Y £; X for all sets X, Y, Z. 

(E) None of the four statements is true. 

9. Which of these statements are true? 
(A) 9 E Z 
(B) 9 E {xJx E Z and x ,;; 0} 
(C) {a, b} E {a, b, {a, b}, d} 
(D) {a, b} E {a, b} 
(E) {a, b} £; {a, b} 
(F) ({a,b} n {b,c}) £; ({a,b} u {b,c}). 

ExERCISES 

1. Prove X u X = X for all sets X. 

2. Prove X n X = X for all sets X. 

3. Prove (A n B n C) £; (A n B) £; A for all sets A, B, C. 

4. Show that A n (B - C) = (A n B) - (A n B n C). 

5. Show: If A £; C and B £; D then (An B) £; (C n D) and (A u B) £; (CuD). 

6. Is it true that A <:t Band B <:t C imply A <:t C? (You should either prove the state-

ment true or give an example illustrating that the statement is false.) 

7. Is it true that A c B and B c C imply A c C? 

8. Prove A £; 0 implies A = 0. 

9. Letting x- = Z - X find x- in all these examples. 
(a) X = {xJx E Z and x ;;:. 0} 
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(b) X= {xjxEZand(x;;:. 4orx,;; -3)} 
(c) X = {xJx E Z and 0 ,;; x ,;; 1} 
(d) X= {xjxEZandx = 2nforsomenEZ}. 



1.3 Relations 

1.3 Relations 

In this section we treat Cartesian products and relations: equivalence 
relations and orders. 

Definition. X x Y, the Cartesian product of X and Y, is defined to be the 
set {(x, y)jx EX and yE Y}. 

The Cartesian product of two sets, X and Y, is the set of all ordered pairs 
(x, y) in which the left member of the pair is selected from X and the right 
member from Y. 

ExAMPLE. {a, b} x {c, d, e} = {(a, c), (a, d), (a, e), (b, c), (b, d), (b, e)}. 

The following chart gives some intuition for the Cartesian product. 

X 
a 
b 

c 

(a, c) 

(b, c) 

y 

d 

(a, d) 

(b, d) 

e 

(a, e) 
(b, e) 

It is to be understood that two ordered pairs (r, s) and (u, v) are equal if 
and only if r = u and s = v. (2, 1) =f. (1, 2). It is quite possible to have an 
ordered pair with left and right side equal: (2, 2). 

EXAMPLES. IR x IR = {(x, y)jx E IR and yE IR} is the set of all ordered pairs 
of real numbers. This is a model for the Euclidean plane.£' x IR = {(n, y)jnE l' 
and yE IR} is the set of all ordered pairs with left side an integer and right 
side a real number. This is a subset of the Euclidean plane consisting of all 
lines parallel to the Y-axis and having integral abscissae. 

It was seen earlier that equality of sets enjoyed the properties of reflexivity, 
symmetry, and transitivity. Starting with these properties we define any 
relation which is reflexive, symmetric, and transitive to be an equivalence 
relation. Equality of sets is one such relation. Before we investigate more 
formally the concept of relation we offer one more example of an equivalence 
relation. This example depends upon the reader's prior knowledge of 7l. and 
arithmetic. 

Beginning with 7l. we define xRy if and only if x - y is divisible by 2. For 
x - y to be divisible by 2 simply means x - y is an even number. This is to 
say, x- y = 2n for some nE7l.. 5R7 because 5-7= -2 = 2·(-1). 
12R2 because 12 - 2 = 10 = 2(5). 8R8 because 8 - 8 = 0 = 2(0). Clearly 
all odd numbers are equivalent to each other and all even numbers are 
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1. Set theory 

equivalent to each other. We now argue that the R in this example is reflexive, 
symmetric, and transitive. xRx because x - x = 0 = 2(0). Suppose xRy. 
x - y = 2n for some n E 7!... y - x = 2(- n). yRx. Finally suppose xRy 
and yRz. x - y = 2n for some nE 7L and y - z = 2m for some m E 7!... 
x - z = x - y + y - z = 2n + 2m = 2(n + m). xRz. R is transitive. 

In fixing a formal definition of a relation what is essential is that given 
any two members x, y of the setS on which the relation is defined we must be 
able to decide whether or not the relation holds. This can be done precisely 
by means of a set of ordered pairs. We simply assemble into a set all those 
ordered pairs (x, y) for which the desired relation holds. 

Definition. R is a relation on a setS if and only if R s;; S x S. We say xRy 
(x is related to y) if and only if (x, y) E R. 

Referring back to the equivalence relation example on 7L given before we 
see that the relation R is the set {(x, y)ix E Z and yE 7L and x - y is even}. 
It contains the pairs (5, 7), (12, 2), (8, 8), among others. 

Definition. R is a reflexive relation on a set S if and only if (x, x) E R for all 
x E S. R is a symmetric relation on a set S if and only if (x, y) E R implies 
(y, x) ER. R is a transitive relation on a set S if and only if (x, y) E R and 
(y, z) E R imply (x, z) E R. R is an equivalence relation on a set S if and 
only if R is a reflexive, symmetric, and transitive relation on S. 

An order is another example of a relation. For example, let us take the 
set {0, 1, 2, 3} and consider the elements related (ordered) as follows: 0 ~ 0, 
0 ~ 1, 0 ~ 2, 0 ~ 3, 1 ~ 1, 1 ~ 2, 1 ~ 3, 2 ~ 2, 2 ~ 3, 3 ~ 3. We would 
then say that the order is the following set of pairs: {(0, 0), (0, 1), (0, 2), (0, 3), 
(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}. 

Definition. R is an antisymmetric relation on a setS if and only if R is a relation 
and (x, y) E R and (y, x) ER imply x = y. A relation R on a set S is an 
order on S if and only if R is a reflexive, antisymmetric, and transitive 
relation. 

An equivalent condition to (x, y) ER and (y, x) ER imply x = y is the 
contrapositive statement x =1= y implies not both (x, y) and (y, x) belong toR. 

QUESTIONS 

11. The relation {(0, 0), (1, 2), (2, 2)} on the set {0, 1, 2} is 
(A) reflexive 
(B) transitive 
(C) symmetric 
(D) antisymmetric. 

(E) The relation has none of the listed properties. 
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12. A x B 
(A) always contains more members than A does 
(B) contains at least one ordered pair if B does 
(C) contains a pair (a, b) if a e Band be A 
(D) always has an empty intersection with B x A. 

(E) None of the four possibilities completes a true sentence. 

· 3. The Cartesian product of X and Y 
(A) contains all the members of X and all the members of Y 
(B) has the same number of members as Y x X 
(C) is a subset of any relation on X if X = Y 
(D) is commutative. 

(E) None of the four possibilities completes a true sentence. 

J4. Which of these alternatives complete a false sentence? On any set X 

(A) 0 is a symmetric relation 
(B) 0 is a transitive relation 
(C) 0 is an antisymmetric relation 
(D) 0 is a reflexive relation. 

(E) All four statements are true. 

5. We define on l. the following relation: xRy if and only if x - y is divisible by 5. 
Which of the following are true? 

(A) R is an order on l.. 
(B) The relation R fails to be symmetric. 
(C) -7, -2, 2, 7, 12 are all related to each other. 
(D) Although R fails to be an order it is reflexive and transitive. 

(E) None of the four statements is true. 

ExERCISES 

1. Prove this statement false: X x Y = Y x X for all sets X, Y. Do this by giving 
an example of two sets A, B such that A x B =F B x A. 

2. Describe these subsets of the Cartesian plane IR x IR: 

(a) N x N (b) IR x N (c) l. x l.. 

3. Is it ever the case that X x Y = Y x X? 

4. We define the disjoint union of sets X and Y to be X u Y = (X x { 1}) u ( Y x { 2 }). 
Construct both X u Yand X u Y for the sets X= {a, b, c} ~ Y = {a, d}. Com­
pare the results. What can you say in general about the sizes of the sets X u Y and 
Xu Y? 

5. Let U be the set of all undergraduate students at Bucknell University. In each of 
the following examples decide whether or not the relation given is an equivalence 
relation. Interpretations may vary from reader to reader! 
(a) xRy if and only if x and y have family names beginning with the same letter. 
(b) xRy if and only if xis the same sex as y. 
(c) xRy if and only if x is a sibling of y. 
(d) xRy if and only if x and y are taking a course together. 
(e) xRy if and only if x and y are engaged to be married. 
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(f) xRy if and only if x and y are roommates. 
(g) xRy if and only if x is not younger than y. 

6. Give an example of 
(a) a relation which is symmetric and transitive but not reflexive, 
(b) a relation which is reflexive and symmetric but not transitive, 
(c) a relation which is transitive and reflexive but not symmetric. 

7. Construct all equivalence relations on {0, 1, 2}. 

8. Match each one of these names (nonequality, less than or equal to, less than, equality, 
succession, parity) to one of the relations on {0, 1, 2} following: 
(a) {(0, 0), (1, 1~ (2, 2)}, 
(b) {(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2)} 
(c) {(0, 1), (1, 2)} 
(d) {(0, 1), (1, 0), (0, 2), (2, 0), (1, 2), (2, 1)} 
(e) {(0, 0), (1, 1), (2, 2), (0, 2), (2, 0)} 
(f) {(0, 1), (0, 2), (1, 2)}. 

1.4 Quotient sets 

In this section are defined quotient set and power set; the fundamental 
relation between equivalence relations and quotient sets is established. 

A quotient set or a partition of a set is a division of the set into disjoint 
subsets. An example of a partition of the integers, Z, is its separation into two 
sets, the even integers in one subset and the odd integers in the other. Another 
partition of the integers is to place each integer and its negative into a subset 
by themselves (see Figure 1.3). 

Figure 1.3 

We now give a formal definition of partition. 

Definition. A partition or quotient set Q of a given set X is a collection of 
nonempty subsets of X such that every member of X is in some member 
of Q and the members of Q have no members in common. 

The conditions of the formal definition are met by the above example of 
partitioning the integers into evens and odds. There is at least one even integer 
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and at least one odd integer. Every integer is either even or odd. No integer 
is both even and odd. 

There is a natural correspondence between the equivalence relations on 
a set X and the quotient sets of X. 

Definition. Let R be a given equivalence relation on a set X. For any x EX 
define xjR = {YiY EX and yRx}. Define X/R = {x/Rix EX}. 

xjR is simply the subset of X of all members of X which are equivalent to 
the given element x. X/R is the collection of all such subsets which we will 
demonstrate to be a quotient set of X. 

Theorem. Let R be an equivalence relation on a set X. Then X/R is a quotient 
set of X. 

PRooF. We first show that two subsets of the form xjR and yjR are either 
disjoint or equal. If xjR and y/R fail to be disjoint then xjR n yjR =f. 0. 
There exists z EX such that z Ex/Rand z E y/R. zRx and zRy. xRz and zRy, 
xRy. We hold this result for a moment. We now propose to show xjR = yjR. 
Suppose r is any member of xjR. rRx. Now using xRy we get rRy. rE yjR. 
xjR £ yjR. In the same manner we show yjR £ xjR. This gives xjR = yjR. 

If x EX then we note the reflexivity of R implies x E xjR. xjR E X/R. For 
the same reason no subset xjR is empty. This completes proving X/R to be 
a quotient set. 0 

Corollary. Given an equivalence relation R on a set X 

xjR = yjR if and only if xRy. 

PROOF. If xRy then X E yfR. But x E xfR. xfR n yfR =f. 0. xfR = yfR. 
Conversely, if xjR = yjR then yE x/R yielding yRx and xRy. 0 

It is convenient to have a name for the set of all subsets of a given set. 

Definition. &'X, the power set of X, is defined to be the set of all subsets of X. 

EXAMPLE. If X = {a, b} then &'X = {0, {a}, {b}, {a, b} }. If X = 0 then 
&'X= {0}. 

Using the definition and notation of the power set we can restate the 
definition of a quotient set of X: Q is a quotient set of X if and only if 

Qs;;;&JX, 
A E Q implies A =f. 0, 
x E X implies x E A for some A E Q, 
A, B E Q imply A = B or A n B = 0. 
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QUESTIONS 

1. Given an equivalence relation R on X it follows that 
(A) X/R has fewer members than X 
(B) xfR = yfR implies x = y 
(C) x = y implies xfR = yfR 
(D) any member of X is a member of X/R. 

(E) None of the possibilities is true. 

f 2. Equality is an equivalence relation on 11\J. Which of the following is a member of 
Nf=? 

(A) -2 
(B) 5 

(C) "' 
(D) {6.02 · 1023}. 

(E) None in the list is a member of N/ =. 

, 3. For all x, ye 0 define xRy if and only if x - ye 7i.. R is an equivalence relation 
on 0. Which of these statements are true? 

(A) 7i.e0/R 
(B) (2/3)R(3/2) 
(C) -1/3 e (1/3)/R 
(D) {mfnln e 11\J and n ¥- 0 and me 11\J and m < n} e 0/R. 

(E) None of the statements is true. 

4. Which of these statements are true? 
(A) &'0 = 0 
(B) X £ &'Y implies Ye X 
(C) &'(X u Y) £ &'X u &'Y 
(D) o- e &'llit 

(E) None of the statements is true. 

5. Let X be a finite, nonempty set and define on &'X this relation: ARB if and only 
if A = B or A = B-. Which statements are true? 

(A) R fails to be an equivalence relation on &'X. 
(B) There are exactly two members of(&'X)/R. 
(C) If X has n members then (&'X)/R will have 2n-l members. 
(D) Members of(&'X)/R are subsets of X. 

(E) No statement given is true. 

EXERCISES 

1. Describe the quotient sets defined by each of the equivalence relations found in 
exercises 5 and 7 of Section 1.3. 

2. Find &'{0, 1, 2}. 

3. We define on 7i. the following relation: x ~ y if and only if x - y is divisible by 3. 
Is ~ an equivalence relation? Show that 1/~ = {xlx = 3n + 1 for some ne 7i.}. 

4. We define T to be a relation on R as follows: xTy if and only if x - ye 0. Prove 
T is an equivalence relation. Prove OfT = 0. Prove n/T ¥- 0. 
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1.5 Functions 

1.5 Functions 

In this section the ubiquitous mathematical concept of function is given 
a set meaning and special types of functions are considered. 

Intuitively, a function is a rule that assigns to every member of a first set 
some member of a second set. For example, if we use as the first set 7L and as 
the second set N we can assign to every member of 7L its square in N. To 3 
is assigned 9, to 4 is assigned 16, to -2 is assigned 4, and so forth. If we plot 
these assignments on 7L x N as ordered pairs (3, 9), (4, 16,) (- 2, 4), etc., we 
have a graph of the function. It is this collection of ordered pairs that is the 
basis for a set theoretic definition of a function. 

Definition. f: X --. Y is a function from the set X to the set Y if and only if 

0. f s;; X X Y; 
1. for each x eX there exists ye Y such that (x, y) e f; and 
2. if (x, y1) E f and (x, Y2) E f then Y1 = Y2· 

Condition 0 establishes the function as a set of ordered pairs selected from 
X x Y. Condition 1 assures the existence of at least one ordered pair in the 
function containing any given member of the first set in the left side. Condi­
tion 2 assures that there can be at most one ordered pair with any given 
member of X in the left side. By abuse of language we frequently call f itself 
the function instead off: X --. Y. 

Definition. If f: X --. Y is a function then X is called the domain off and Y 
is called the codomain of f. If (x, y) belongs to the function f then we 
write y = f(x) and call y the value of the function fat the argument x. 
"W_e also, at times, express this in the symbolism x fh y. 

We distinguish between the different arrows. In X --. Y the straight arrow 
goes from the domain to the codomain of f. In x H y the curly arrow goes 
from an argument x to a value of the function. The set of all values of the 
function f:X --. Y is the set {J(x)jx eX} and is called the range of the 
function. It is also written f(X). 

EXAMPLE. Let X = {a, b, c} and Y = {d, e}. There are eight possible func­
tions from X to Y in this example. Each function contains exactly three pairs. 

f.= {(a, d), (b, d), (c, d)} 
g = {(a, d), (b, d), (c, e)} 

h = {(a, d), (b, e), (c, d)} 

i = {(a, d), (b, e), (c, e)} 
j = {(a, e), (b, d), (c, d)} 
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k = {(a, e), (b, d), (c, e)} 

l = {{a, e), (b, e), (c, d)} 

m = {(a, e), (b, e), (c, e)} 

All of the following statements are true about the above examples. g: X --+ Y. 
Yis the codomain of k. X is notthe codomain of j. e = h(b). Range m = { e}. 
Range h = Y. (b, e)~ k. k # l. k(a) = l(a). g(a) = g(b). i ~ X x Y. 

We now wish to single out certain special kinds of functions. First there 
are those functions which take all members of the codomain as values. 

Definition. f: X --+ Y is a surjection if and only if 

3. for each y e Y there is an x e X such that (x, y) e f. 

This is to say, for a surjection f we have for every ye Y some x e X such 
that y = f(x). In other words, range f = codomain f. An older terminology 
still popular is to say that the function f is onto Y. 

Second, there are those functions which do not duplicate values. This is 
to say, there are not two different ordered pairs (x1, y) and (x2, y) in the 
function. 

Definition. f: X --+ Y is an injection if and only if 

4. (x1, y) e f and (x2, y) e f imply x1 = x2 • 

Condition 4 may be alternately stated as f(x 1) = f(x2 ) implies x1 = x 2 • An 
injection is also called a one-to-one function. 

Finally, a function with both the above delineated properties has its own 
name. 

Definition. f: X --+ Y is a bijection if and only if f is both a surjection and 
an injection. 

EXAMPLES. f: {a, b} --+ { c, d} such that f(a) = c and f(b) = d is a bijection. 
g: {a, b} --+ { c, d} such that g(a) = c and g(b) = cis not Q,n injection because 
both (a, c) and (b, c) belong to g. g is also not a surjection because d ~ range g. 
Let~+= {xjxe~andx > O}.Definef:~+--+ ~+suchthatf(x) = x2• 

f(xl) = f(x2) implies Xt = X~ which implies X1 = X2 when both X1 and X2 

are positive. f is therefore an injection. Because every positive real number 
has a positive square root, f is a surjection. 

Let (0, oo) = {xjx e ~ and x ~ 0}. Define f:~--+ (0, oo) such that 
f(x) = x 2• This function is a surjection but not an injection. 

Definition. Let f: X --+ Y be a function. If A ~ X then we define the image 
of A under f to be the subset of Y. 

f(A) = {f(x)jx eA}. 
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If B s Y then we define the inverse image of B under f to be the subset of X, 

f- 1(B) = {xif(x) E B}. 

We note that the image of the domain of j, f(X), is the range of f. We can 
also observe that the inverse image of the codomain Y,j- 1(Y), is necessarily 
the domain X. 

EXAMPLE. Ifj:Z ~ Z such thatf(x) = 9x + 2 thenf({O, 1, 2}) = {2, 11, 20} 
andf- 1({1,2,3}) = {0}. 

QUESTIONS 

tl. X X y 
(A) is always a function 
(B) is sometimes a function 
(C) never can be a function 
(D) is always nonempty. 

(E) None of the alternatives completes a true sentence. 

( 2. f:X-+ Yimplies 
(A) Y is the range off 
(B) f is a proper subset of X x Y 
(C) if(x1 , y) e f and (x2 , y) e f then x1 = x 2 

(D) f i' 0. 
(E) None ofthe possibilities completes a true sentence. 

1 3. Let f be a function with real arguments and real values given by the rule f(x) = 

Fx + x2 • Which ofthe following are true? 
(A) f = 0 
(B) The largest possible domain is~+. 
(C) f is surjective with codomain IR. 
(D) f(O) = 0. 

(E) None of the statements is true. 

!4. The functionf:~+-+ ~+such thatf(x) = x2 • 

(A) is not an injection 
(B) has a set of ordered pairs, f, which contains (0, 0) 
(C) hasr 1(~+) = ~+ 

(D) is not a surjection because the set of numbers of the form x2 is properly 
smaller than the set of numbers of the form x. 

(E) None of the possibilities completes a true sentence. 

EXERCISES 

11. Which of the following are injections? Which are surjections? 
(a) f:7L-+ 7L such thatf(x) = x + 2 
(b) f:N-+ N such thatf(x) = x + 2 
(c) f:lL-+ 7L such thatf(x) = 2x 
(d) f: ~-+ ~such that f(x) = 2x 
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(e) f: IR --+ IR such that f(x) = sin x 
(f) f: IR --+ IR such that f(x) = e". 

!2. Consider the function f: IR --+ IR such that f(x) = ax + b. For what real numbers 
~· b isf:IR--+ IR a surjection? an injection? 

I 3. Given f: X --+ Y prove .f(X) = Y if and only if f is a surjection. 

4. Given f: IR --+ IR such that f(x) = x2 verify all these results. 

f(IR) = [0, oo ). 

!([2, 6]) = [ 4, 36]. 

r 1([ -2, -1J) = 0. 
r 1(1R) = IR. 

z ~ r 1(N). 

r 1((-1, 1)) = (-1, 1). 

f([O, 1 ]) = [0, 1]. 

f([ -1, 1]) = [0, 1]. 

r 1([4, 36J) = [2, 6J u [ -6, -2J. 

r 1([o, 1 J) = [ -1, 1 J. 

f(N) ~N. 

\5. Given f: X --+ Y prove f - 1(B) = X if and only if range f ~ B. 

6. Given f:X--+ Y prove f(A 1 u A2 ) = f(A 1) u f(A 2). 

7. Given f:X --+ Y prove f(A 1 n A2 ) ~ f(A 1) n f(A 2). 

8. Give an example of a function f:X--+ Y and two subsets A 1, A 2 of X so that 
j(A1) n j(A2) '/= j(A1 n A2). 

9. Givenf:X--+ Yprovej- 1(B1 u B2 ) = f- 1(Bd u f- 1(B2 ). 

10. Givenf:X--+ Yprovej- 1(B1 n B2 ) = j- 1(B1) nj- 1(B2). 

11. Show that X x (Y x Z) is not equal to (X x Y) x Z if X, Y and Z are non­
empty. Show, however, there exists a bijection <l>:(X x Y) x Z--+ X x (Y x Z). 

1.6 Composition of functions 

In this section the operation of composition of functions is defined; the 
identity function and results on functional inverses are established. 

Definition. Given functions f: X -+ Y and g: Y -+ Z we define a function 
go f:X-+ Z such that (go f)(x) = g(f(x)) for all x EX. 
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The diagram shows how the composition is a chaining together of the two 
given functions. It can be seen that the set of ordered pairs g o f is 
{(x, z)l(x, y) E f and (y, z) E g for some yE Y}. We note that in the com­
position g o f it is the function f which is applied to the argument first. 



1.6 Composition of functions 

EXAMPLE. If f:Z --+ Z such that f(x) = 2x + 1 and g:Z --+ Z such that 
g(x) = -3y + 6 then g(f(x)) = -3(f(x)) + 6 = -3(2x + 1) + 6 = 
-6x + 3. go f:Z--+ Z such that (go f)(x) = -6x + 3. 

Composition preserves both injective and surjective properties of 
functions. 

Theorem. If f:X --+ Y and g: Y--+ Z are surjections then go f:X --+ Z is a 

surjection. If f:X --+ Y and g: Y--+ Z are injections then go f:X--+ Z is 

an injection. 

PROOF. Let z E Z. There is an element yE Y such that g(y) = z. For yE Y 
there is an x E X such that f(x) = y. Therefore, given z E Z there exists 
an x E X such that g(f(x)) = g(y) = z. g of is a surjection. 

Let (go f)(x 1 ) = (go f)(x2 ). g(f(xd) = g(f(x2 ) ). Because g is an injec­
tion we have f(x 1) = f(x 2 ). Because f is an injection it follows that x 1 = x2 . 

This proves g o f is an injection. 0 

Corollary. If f:X --+ Y and g: Y--+ Z are bijections then go f:X--+ Z is a 

bijection. 

PROOF. Combine the two results in the theorem. 0 

Theorem. Composition of functions is associative. 

PROOF. Let f:X--+ Y, g: Y--+ Z, h:Z --+ W be given functions. (h o 

(go f) ):X --+ W and ((hog) o f):X--+ W are both functions defined by 
repeated composition and have the same domains and the same codomains. 
(h o (g o f)(x) = h( (g o f)(x)) = h(g(f(x))) = (h o g)(f(x)) = ( (h o g) o f)(x) 

forallxEX. 0 

We now explore the role of the identity function in the operation of com­
position of functions. 

Definition. Ix:X --+X such that Ix(x) = x for all x EX is called the identity 
function on the set X. 

Theorem. If f:X --+ Y then Ir of = f and f o Ix =f. 

PRooF. The following diagrams illustrate the functions involved. 

x---'-~--~ 

y X 
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Clearly, ly o f:X--. Y and f o Ix:X--. Y. It is easy to verify the equality of 
values. (Iy o f)(x) = ly(f(x)) = f(x) for all x EX. (f o lx)(x) = f(Ix(x)) = 
f(x) for all x E X. D 

We consider finally in this section the more difficult problem of finding 
inverse functions. Given f: X --. Y to find the inverse off is to find a function 
g: Y --. X so that the composition off with g is the identity function. 

X~ 
lx Y go f = lx. 

X~ 
Analogously, given f:X--. Y we look for an h: Y--. X to precede f so that 
foh = fy. 

~y 

X~YI, 

We will call g the left inverse off and call h the right inverse of f. If, indeed, 
we can find some one function playing both roles (g = h) then we will call 
sucq a function an inverse of f. 

EXAMPLE. Let f: IHl --. IHl such that f(x) = 2x - 3. We define g: IHl --. IHl such 
that g(x) = tx + l Then (go f)(x) = g(f(x)) = tf(x) + ! = !(2x - 3) + 
! = x. g of = JrR. g is therefore a left inverse of f. The reader can verify 
that the given g is also a right inverse of f. We now proceed to the solution 
of the proposed problem. 

Theorem. Let f:X --. Y and X =F 0. Then 
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(a) there exists g: Y--. X such that go f = Ix if and only if f is an 
injection; 

(b) there exists h: Y--. X such that fah = ly if and only if f is a surjec­
tion; and 

(c) there exists k: Y--. X such that k of = Ix and f o k = ly if and only 
if f is a bijection. 



1.6 Composition of functions 

PROOF. Suppose f is not an injection. Then there exist x1, x2 EX such that 
x1 =I= x2 and f(x 1) = f(x2). If there were a function g: Y--+ X such that 
go f = Ix then (go f)(x 1) = x1 and (go f)(x2) = x2. This means g(f(x1)) =I= 
g(f(x2) ). But f(x 1) = f(x2). This contradicts condition 2 in the definition 
of a function for g. There can be therefore no function g: Y --+ X such that 
gof = Ix. 

Next suppose f is not a surjection. There exists yE Y such that f(x) =I= y 
for any x E X. If there were a function h: Y --+ X such that f o h = I y we 
would have (f o h)(y) = y. But then h(y) is an element of X such that 
f(h(y)) = y. This contradicts the second sentence of this paragraph. There 
can be no function h: Y--+ X such that f oh = Iy. 

Suppose f is not a bijection. Then either f is not an injection or f is not 
a surjection. The statement that there exists k: Y--+ X such that f o k = ly 
and k o f = I x is impossible. 

We begin now the proofs of the three converses by assuming f to be an 
injection. We form the set {(y, x)j(x, y) E f} by reversing each of the pairs in 
f. Calling this setf' we notice that if(y, xd Er and(y, x2) Er then xl = x2 
because f is an injection. Furthermore, for each y E range f there exists 
X EX such that (y, x) E f'. We have f': range f--+ X. r will not, in general, 
qualify as a function with domain Y because range f does not, in general, 
equal Y. We must therefore enlarge the set of ordered pairs f' to include 
pairs with members of Y in the left side for every member of Y. For each 
yE Y - range f adjoin the pair (y, a) to the set j' and call the result g, 
where a is some fixed member of X. 

g = f' u {(y, a)jy E (Y - range f)}. 

Now g is a function like r yet has domain y and g(f(x)) = X for all X EX. 
We now begin with a surjection f: X --+ Y and demonstrate the existence 

of a right inverse for f. We again form f' from f by assembling all the 
reversed ordered pairs from f. For each yE Y there is at least one ordered 
pair in f' with y in the left side because f is a surjection. There may be, 
however, several such ordered pairs for some y E Y SO that j' may not 
satisfy the condition 2 of uniqueness of value to be a function. We must then 
delete from r all pairs except for one pair containing a given y in the left side. 
We denote the resulting set of ordered pairs by h. his a function from Y to X. 
Furthermore, (f o h)(y) = f(h(y)) = y for all yE Y. 

Finally, we begin with a bijection f: X --+ Y. Looking back to the part of 
this proof dealing with the injection we are dealing with the situation where 
Y = range f. Y - range f = 0. The function g is therefore simply f' 
which serves as the left inverse. Looking at the part of this proof dealing 
with the surjection again r is a function without any necessity of deleting 
ordered pairs to produce h. This is true, of course, because if f is an injection 
then (y, xl) Er and (y, x2) Er imply xl = x2. Thus r is a right inverse 
off.fof' = Iyandf'af = Ix. 0 
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In the interest of simplicity we have avoided any detailed discussion in 
the previous proof of the mechanism of deleting pairs from the set f'. 

QUESTIONS 

1. Which of the following alternatives complete a false sentence? If f:X-+ Y and 
g: Y-+ Z are functions then the composite function go f 

(A) has domain X 
(B) has codomain Z 
(C) has range a subset of range g 
(D) has domain a subset of domain f. 

(E) All of the alternatives make true sentences. 

2. If f:X-+ Y and g: Y-+ Z are given then the composite function go f 
(A) has domain X and codomain Z 
(B) contains the same number of ordered pairs as f 
(C) has range a subset of Z 
(D) can be empty. 

(E) None of the alternatives completes a true sentence. 

3. If f: [0, oo) -+ IR such that f(x) = (x)114 and g: IR -+ [0, oo) such that g(x) = x4 then 
(A) g is a left inverse off but not a right inverse 
(B) g is a right inverse off but not a left inverse 
(C) g is the inverse off 
(D) go f exists but is not the identity. 

(E) None of the alternatives completes a true sentence. 

4. If f(x) = x 2 - 3x and g(x) = ..(X then the largest possible subset of the reals which 
can serve for domain f and have the composite g o f defined is 

(A) IR 
(B) [0, oo) 
(C) (- oo, 0] u [3, oo) 
(D) IR+. 

(E) No choice completes a true sentence. 

5. g is the inverse of f:X-+ Y 
(A) if and only if g o f = I x 
(B) implies X and Y have the same number of elements 
(C) implies g o f = 0 
(D) if and only if go f =X. 

(E) None of the choices completes a true sentence. 

EXERCISES 

1. Find two functions f: IR -+ IR, g: IR -+ IR such that fog # go f. 

2. Find two distinct functions f: IR -+ IR, g: IR -+ IR such that f o g = g o f. 

3. Let f: IR -+ IR such that f(x) = 5x - 3. Apply the theorem of this section to prove 
there exists g:IR-+ IR such that go f =JR. Is it also true that fog= IR? Find g. 
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1. 7 A factorization of a function 

4. Let f: R --+ R such that f(x) = x3 • Does there exist g or h such that g of = I R or 
f o h = I R? Which theorem applies? Find g or h if it exists. 

5. Let f:Z--+ Z such that f(n) = 2n. Does there exist g or h such that go f = Iz or 
f o h = I z? Which theorem applies? Find g or h if it exists. 

6. Using the definition go f = {(x, z)J(x, y) E f and (y, z) E g for some yE Y} for the 
composition of functions f:X--+ Y and g: Y--+ Z prove 
(a) go f ~X x Z 
(b) for each x E X there exists z E Z such that (x, z) E g of 
(c) if(x, z1) Ego f and (x, z2 ) Ego f then z1 = z2 . 

What do you conclude from these three conditions? 

7. Using the definition of composition given in exercise 6 prove the two sets of ordered 
pairs (hog) of and h o (go f) are equal for any givenf:X--+ Y, g: Y--+ Z, h:Z--+ W. 

8. Prove this degenerate case of a theorem found in this section. Let f: X --+ Y and 
X = 0. Prove there exists k: Y--+ X such that k of = Ix and f o k = /y if and 
only if f is a bijection. 

1. 7 A factorization of a function 

In this section we make some observations about relationships between 
injections and subsets and between surjections and quotient sets. We prove 
a factorization theorem for functions and entitle it the fundamental mor­
phism theorem for sets. 

Given any injection q: A ~ X there is defined a subset q(A) of X which is 
the range of Q. This subset q(A) of X and the set A are in one-to-one cor­
respondence; this is to say, q:A ~ q(A) is a bijection (see Figure 1.4). 
Conversely, if we are given a set X and a subset A of X, then the identity 
function I A: A ~ X is an injection from A to X. 

Figure 1.4 

Definition. An injection q: A ~ X is sometimes called an embedding of A 
into X. 

Given any surjection cp:X ~ B there is defined a quotient set X/R of X 
as follows: 

1. (x1 Rx2 if and only if cp(x1) = cp(x2 )) defines an equivalence relation R 
on X 

2. the equivalence relation R yields a quotient set XjR such that xjR = 
{ zlcp(z) = cp(x)}. 
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1. Set theory 

In other words, the equivalence set xjR of the quotient set X /R consists of 
all those arguments in X which have the same value by the function cp. 

Definition. By the equivalence relation and quotient set associated with a 
surjection cp:X- B we mean the relation R = {(xt> x2 )icp(x1) = cp(x2 )} 

and the quotient set X/R (see Figure 1.5). 

B 

Figure 1.5 

Conversely, associated with each quotient set there is a surjection. If a 
quotient set Q of a set X be given we can define a function <p: X - Q in which 
cp(x) is the nonempty subset in Q which contains x. Since every x must belong 
to some subset, cp(x) always exists. Since each subset is nonempty <p must be 
surjective, we call such a surjection a quotient map. 

Definition. A surjection <p: X - Q such that Q is a quotient set of X and 
such that x E cp(x) for all x E X is called a quotient map from X to Q (see 
Figure 1.6). 

Figure 1.6 

EXAMPLE. Let the set 7l. be given and Q be the partition of 7l. into two subsets, 
the odds and the evens. A quotient map <p: 7l. - Q is then the surjection that 
takes any integer into the subset of all odds if it is odd and into the subset of 
all evens if it is even. 

We now prove the theorem which is the main result of this section, that 
any function whatsoever can be facto red into the composition of a surjection 
and an injection. 

Theorem. Given a function f : X - Y there exist 

an equivalence relation y on X; 
a surjection <p: X - X jy ; and 
an injection f': X jy - Y such that f = f' o <p. 
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1. 7 A factorization of a function 

PROOF 

X/y 

In terms of the function f we define a relation y on X: x 1 yx2 if and only if 
f(x1) = f(x2 ). As discussed earlier in this section, such a relation is an 
equivalence relation on X. Associated with the equivalence relation y is the 
quotient set Xjy = {x/ylx EX} in which x/y = {ziz EX and zyx}. We now 
define qJ:X-+ Xjy such that qJ(x) = xjy. This function qJ is a surjection 
because if wE X/y then w = x/y for some x EX. Then qJ(x) = xjy = w. 
The surjection qJ is a quotient map. 

We next define f':Xjy-+ Y such that f'(xjy) = f(x). f' is a well-defined 
function and an injection because x1/y = x2 jy if and only if x 1yx2 if and 
only if f(x1) = f(x2 ) if and only if f'(xtfy) = f'(x2 /y). Finally, we verify 
the equation f = f' o qJ. (f' o ({J)(x) = f'(qJ(x)) = f'(xjy) = f(x) for all 
xEX. D 

Corollary. Given a function f: X -+ Y there exists a bijection from a quotient 
set of X to the set f(X). 

PROOF. The theorem asserts the existence of a quotient set of X and an 
injection f': X jy -+ Y. If the same set of ordered pairs f' is regarded as a 
function from X jy to f(X) then f' becomes a surjection as well as an injection. 
Thus we have a bijectionf':X/y-+ f(X). D 

EXAMPLE. Suppose we consider the function f: 7l. -+ 7l. such that f(x) = the 
remainder upon dividing x by 3 (see Figure 1.7). Then x 1yx2 if and only if 
f(x1) = f(x2 ) if and only if x 1 and x 2 have the same remainder upon dividing 
by 3 if and only ifx1 - x 2 is a multiple of3. Any integer x will bey-equivalent 
to precisely one of the three numbers 0, 1, and 2. This is to say Xjy = {0/y, 
1/y, 2/y}. ({J(x) = xjy. f':Xjy-+ 7l. such that f'(O/y) = f(O) = 0, /'(1/y) = 
f(1) = 1, and /'(2/y) = f(2) = 2. f' is an injection from {0/y, 1/y, 2/y} to 7l.. 
According to the corollary, f' is a bijection from {0/y, 1/y, 2/y} to range 
f = {0, 1, 2}. 

The analogue of the previous theorem will reappear later with various 
algebraic structures such as rings, groups, and vector spaces. When presented 
in an algebraic setting, the theorem-or more especially, the corollary-is 
sometimes called the fundamental theorem of (homo)morphisms or the law 
of (homo)morphism. We shall refer to the theorem of this section as the 
fundamental morphism theorem for sets. 
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1. Set theory 

f 

~ 

QUESTIONS 

1. Which of these alternatives are false? 
A quotient map qJ:X--+ Q 

(A) has codomain Q a quotient set of X 
(B) has range ({J = codomain ({J 

(C) is not necessarily an injection 
(D) is necessarily a surjection. 

(E) None of the alternatives make a false sentence. 

2. Given a function f: X --+ Y 
(A) there exists a surjection qJ:X--+ Y 
(B) there exist an injection f':Xjy--+ Y and surjection qJ:X--+ X/y such that 

f o ({J = f' for some equivalence relation y on X 

(C) there exists an injection f':Xjy--+ Y for some equivalence relation y on X 
(D) there exists an injection g:X --+ Y. 

(E) All of the alternatives complete a false sentence. 

3. J: 1\1 --+ Z such that l(x) = x for all x E 1\1 
(A) is called an embedding 
(B) is called a quotient map 
(C) is not an injection 
(D) impliesr 1(-12) = {12}. 

(E) None ofthe alternative completes a true sentence. 

4. Let B be the set of all Bucknell University undergraduate students and A be the set 

of all letters of the English alphabet. Let f:B--+ A such that f(x) = the initial letter 

of x's last name. Furthermore, assume there are Bucknell undergraduate students 

named Leslie Jones and Dane Johnson. Which of the following statements are true? 
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(A) f' (Leslie Jones) = f' (Dane Johnson) 
(B) f (Leslie Jones) E J 
(C) Leslie Jones e ({J - 1(J) 
(D) Leslie Jones E f'- 1(J). 

(E) None of the statements is true. 



1.8 The symmetric group 

1.8 The symmetric group 

In this section we consider the collection of all functions on a set X and 
as a special case, the collection of all bijections on a set X, the symmetric 
group of X. 

We begin with a class of functions. 

Definition. If X and Y are sets we denote the collection of all functions from 
X to Yby yx_ 

yx = {flf:X ~ Y}. 

We now collect some earlier results that apply to xx, the set of all functions 
on the set X. 

Theorem. Composition is an associative operation on xx. 
PROOF. The composition of two functions f:X ~X and g:X ~X is a 
function go f:X ~X which again is a member of xx. The composition of 
two functions is associative. D 

EXAMPLE. Composition is not necessarily commutative. f: IR ~ IR such that 
f(x) = x + 1 and g: IR ~ IR such that g(x) = 2x are both members of IRR. 
(g o f)(x) = 2x + 2 whereas (f o g)(x) = 2x + 1. g o f =f. f o g. 

Theorem. Ix, the identity function on X, satisfies the equations Ix of = 
f o Ix = f for all functions f E xx. f E xx is invertible if and only if f is 
a bijection. 

PROOF. These results are established in Section 1.6. D 

We describe the property Ix of = f o Ix = f for all f E xx by saying 
I x is a neutral element for composition of functions. The result on invertibility 
of functions shows us that if we desire to have all functions have in verses we 
must limit ourselves to bijections. We now do just that. We use the symbol 
6(X), an upper case German ess, for the set of all bijections of the set X. 

Definition. 6(X) = Ulf E xx andf is a bijection}. 

Because the composition of two bijections is a bijection, I x is a bijection, 
and the inverse of a bijection is a bijection, we have this theorem: 

Theorem. Composition is an associative operation on 6(X), I x is a neutral 
element for composition on 6(X), and every f in 6(X) is invertible. 

A set with the properties listed in the theorem is called a group. 
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Definition. A group is a set G together with an associative operation for 
which there exists a neutral element and every element of G is invertible. 

6(X) with the operation of composition is called the symmetric group 
of the set X. 

The elements of the symmetric group are functions; in particular, they are 
bijections. Frequently, and especially if X is finite, bijections are called per­
mutations. Not all groups are constructed with functions and composition 
as in the symmetric group. For example, the integers 7L together with the 
operation of addition make a group with neutral element 0. We have been 
led to the concept of group at this time through our discussions of functions. 
We will later return to a study of groups in the broader sense. 

ExAMPLE. We work out here the example of the symmetric group on the set 
{1, 2, 3}. We abbreviate 6({1, 2, 3}) with 6 3. The set {1, 2, 3} has the fol­
lowing bijections 

0"1 such that 0"1(1) = 1, 0"1(2) = 2, 0"1(3) = 3, 

O"z such that u2(1) = 1, u2(2) = 3, u2(3) = 2, 

0"3 such that 0"3(1) = 2, 0"3(2) = 3, 0"3(3) = 1, 

0"4 such that 0"4(1) = 3, 0"4(2) = 2, ui3) = 1, 

O"s such that u5(1) = 3, u5(2) = 1, u5(3) = 2, 

0"6 such that 0"6(1) = 2, 0"6(2) = 1, 0"6(3) = 3. 

6 3 = {ut> u 2 , u3, u4, u 5 , u6}. The operation is composition. We verify, for 
example, that u 3 o u 2 = u 6: 

(u3 o O"z)(1) = u3(uz(1)) = 0"3(1) = 2. 

(u3 o O"z)(2) = u3(0"z(2)) = 0"3(3) = 1. 

(u3 o O"z)(3) = u3(0"z(3}) = 0"3(2) = 3. 

We tabulate all possible compositions in a composition table. The answers 
are worked out just as we found u3 o u2 = u6 • 

0 0"1 O"z 0"3 0"4 O"s 0"6 

0"1 0"1 O"z 0"3 0"4 O"s 0"6 
O"z O"z 0"1 0"4 0"3 0"6 O"s 
0"3 0"3 0"6 O"s O"z 0"1 0"4 
0"4 0"4 O"s 0"6 0"1 O"z 0"3 
O"s O"s 0"4 0"1 0"6 0"3 O"z 

0"6 0"6 0"3 O"z O"s 0"4 0" 1• 

Note that the neutral element for the set 6 3 is u 1, the identity function on 
the set {1, 2, 3}. 
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QUESTIONS 

1. For a given set X we construct the power set fl/'X. Union (v) is an operation on 
fl/'X. Which of the following statements are true? 

(A) There is no neutral element in fl/'X. 
(B) Union fails to be associative. 
(C) Some elements of fl/'X have no inverses in fl/'X. 
(D) X is a neutral element. 

(E) None of the four statements is correct. 

2. Let L be the following set of functions: {flf:IR-> IR and f(x) = ax + b for some 
a, b E IR, a # 0}. Which of the following statements are correct? 

(A) L together with composition is a group with neutral element /~>.. 

(B) L together with composition is not a group because g: IR -> IR such that 
g(x) = x3 is a bijection and is not in L. 

(C) L together with composition is not a group because h:IR-> IR such that 
h(x) = 5 is not a member of L. 

(D) L together with composition is not a group because there exist functions 
f, gEL such that go f #fog. 

(E) None of the statements is correct. 

3. Which of the following statements about 6 3 are correct? 
(A) a4 o a3 = a6. 
(B) a 3 is the inverse of a 5 . 

(C) a4 is its own inverse. 
(D) U" 1 has no inverse. 

(E) None of the statements is correct. 

4. 2 - {0} together with multiplication is not a group because 
(A) 0 is absent 
(B) the product of odd numbers is always odd 
(C) the product of even numbers is not always even 
(D) inverses with respect to multiplication are not present. 

(E) 2 - {0} is a group. 

EXERCISES 

1. In the symmetric group 6 3 find the inverse of a 3 . 

2. In the symmetric group 6 3 solve these equations for r: 

3. Verify that each of the following subsets of the symmetric group 6 3 are themselves 
groups (see that the composition of two elements in the subset is again in the subset, 
the subset contains in verses of each element in the subset, and the subset contains 
the neutral element): 

{ub 0"3, as}, 
{al, a4}, 
{a I}, 

{ab a6}, 
{ab az}, 
{at, Uz, o-3, a4, as, a6}· 
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1. Set theory 

4. Analyze the group 6 2 as 6 3 is done in the text. 

5. If X = {1, 2, 3} and Y = {1, 2} construct xr. 
6. Show that all functions j:Q--> Q of the form f(x) = ax + b, a, bE Q, a#- 0, 

make a group which is a subset of the group 6(Q). Prove there exists a member 
of 6(Q) which is not in the subset. 
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Rings : Basic theory 2 

Chapters 2, 3, 4, and 5 compose the part of the book devoted to rings. 
In Chapter 2 the basic structure of the ring is explored using set theoretic 
concepts in such a manner that we can stress analogies when developing 
other algebraic structures. In Chapter 3 we develop the natural number 
system and the integers, and in Chapter 4 we use the natural number system 
and the integers in a further study of rings including a development of the 
rational numbers. Chapter 5 treats the ring of polynomials, some special 
rings, and factorization, field extensions, and complex numbers. 

We begin this chapter with a discussion of operations, neutral elements, 
and other fundamental concepts of algebra. In this chapter we develop the 
concepts of ring, subring, quotient ring, and morphism based upon the 
corresponding set structures of set, subset, quotient set, and function. This 
organization holds throughout this book for the purpose of easing the 
learning for the student. Also included in this chapter are descriptions of 
special rings such as integral domains and fields. 

A ring is defined in Section 2.1 as a listing (R, +, ·, fJ) in which R is a 
set, + and · are binary operations, and f) is a neutral element for addition. 
Some students and practitioners of algebra may find our use of this listing 
too formal, too repetitious, or simply too much bother to write. Our advice 
in this regard is not to write the full listing (R, +, ·, fJ) but simply to write, 
"R is a ring," letting + and · and f) be understood from context. It is an 
advantage for the author to be specific about the ring being a set together 
with the operations, and a necessity for the student to understand this, but 
certainly a person should not feel obligated to write out such an expression 
every time he wishes to discuss a ring. There are times in this text when it 
is important to be quite specific about the involved operations in an algebraic 
system; by having the notation and hopefully by having the reader prepared 
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fo-r such a point of view we hope to make our points better. The longer 
notation does make clearer to the learner the true nature of the ring. 

2.1 Binary operations 

We have, through the composition of functions, introduced in Section 
1.8 the concept of a group. Rather than discuss the group more fully at this 
time, we move to the more familiar: the algebraic system with two binary 
operations. Our number systems, the natural numbers, the integers, the 
rational numbers, the real numbers, and the complex numbers are all 
examples of sets with two binary operations consistently called addition 
and multiplication. These operations enjoy various properties such as asso­
ciativity and commutativity. There are other properties to be considered 
such as the existence of neutral elements and inverses. We will begin our 
study of algebraic systems by analyzing the familiar, gradually increasing 
our level of abstraction and sharpening our tools of analysis. It is through 
higher levels of abstraction that we find the most aesthetically satisfying 
organization of mathematics. A great strength of mathematics is its ability 
to cast aside the irrelevant and concentrate upon the very essence of any 
phenomenon. That the symmetries of art, the permutations of gamblers, 
and the behavior of quanta have identical aspects is one of the surprises of 
modem algebra. 

We begin now with a study of the set of integers, 7L. We do this because of 
its present and historical importance, its central location in group and ring 
theory, and its relative simplicity for beginners. 

We make some observations about the integers and their two familiar 
binary operations, addition and multiplication. 

Addition. For any x, yE 7L there exists a unique z E 7L such that x + y = z. 
Multiplication. For any x, yE 7L there exists a unique z E 7L such that 

x· y = z. 
Addition and multiplication are binary operations on the set 7L and are 
therefore functions 

a.:7L x 7L--+ 7L such that a.(x, y) = x + y 
JJ.:7L x 7L--+ 7L such that JJ.(x, y) = x · y (or xy). 

For example, a.(3, 4) = 7 and JJ.(3, 4) = 12. The customary way of denoting 
a value of the addition function is to place the sign + between the two argu­
ments giving x + y. If we wish, however, to emphasize that we are dealing 
with a function and wish to disassociate ourselves from our prejudices 
concerning the behavior of + we use a.. 

By way of recapitulation we state 

Definition. A binary operation f3 on a set S is a function f3: S x S --+ S. The 
value of f3 is written xf3y or f3(x, y). 
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Definition. A binary operation [3: S x S ~ S is associative if and only if 
x[J(y[Jz) = (x[Jy)[Jz for all x, y, z E S. 

Definition. A binary operation [3: S x S ~ S is commutative if and only if 
x[Jy = y[Jx for all x, yE S. 

These last two conditions written as functions of two variables, as in calculus 
courses, are 

[J(x, [J(y, z)) = [3([3(x, y), z) for all x, y, z E S, 
[J(x, y) = [J(y, x) for all x, yES. 

We proceed with other properties. 

Definition. The binary operation [J:S x S ~ S has a neutral element v inS 
if and only if x[Jv = v[Jx = x for all x E S. 

EXAMPLES. For 7L both r:1. and J1 are associative and commutative. 0 is a 
neutral element for r:1. on 7L. 1 is a neutral element for J1 on 7L. In the set xx, 
the collection of all functions from a given set X to itself, composition is 
associative, but not commutative, and I x is the neutral element. 

In some specific situations neutral elements will have special names such 
as zero, one, unity, identity. 

Theorem. There can be at most one neutral element for any binary operation 
on a setS. 

PROOF. Suppose v' and v" are both neutral elements for some [3: S x S ~ S. 
v' [Jx = x for all x E S and therefore in particular v' [Jv" = v". x[Jv" = x for 
all x E S and in particular v'[Jv" = v'. Comparing the two results we have 
~=~ 0 

A neutral element for any operation called addition is usually called a 
zero element. A neutral element for an operation called multiplication we 
shall call a unity. The word identity is used by many authors for this neutral 
element but we shall reserve the term identity for the identity function. Even 
though the usage of these terms varies considerably from author to author, 
it is usually evident from context what is meant. 

Definition. Given a set S and a binary operation [3: S x S ~ S with neutral 
element v we say that an element x of S is invertible if and only if there 
exists an element y of S such that x[Jy = y[Jx = v. Moreover, if there is 
such an element y it is called the inverse of x. 
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EXAMPLES. For 7L, +, 0 we see -2 to be the inverse of2. For IQ,·, 1 we see 
! to be the inverse of2. For 10°, o, I0 we seef such thatf(x) = 2x - 3 to be 
the inverse of g such that g(x) = !x + l 

Theorem. Let P: S x S --+ S be an associative binary operation on a set S 
with neutral element v. If x is an invertible element of S then its inverse is 
unique. 

PROOF. We let both y' and y" be inverses ofx inS. y' = y'pv = y'p(xpy") = 
(y'Px)py" = vPy'' = y". 0 

The inverse of any element x with respect to the operation of addition is 
called its negative and denoted by - x. - x means the negative of x. The 
symbol can be repeated; -( -x) means the negative of the negative ofx. The 
inverse of x with respect to multiplication we shall denote by x-. We shall 
also use x- to denote the inverse of x with respect to general operations 
such asp. The notation x- will eventually yield to x- 1 but this will await the 
introduction of exponents. 

Theorem. If x is any invertible element of a set S with a binary associative 
operation p with neutral element v then (x_)_ = x. 

PRooF. xis invertible means there exists y inS such that xpy = ypx = v. 
It is clear from the symmetry of the equations that anytime y is the inverse 
of x then x is also the inverse of y. Since y is the inverse of x we have x is 
the inverse ofthe inverse of x. x = (x_)_. We have from an earlier theorem 
that the inverse of the inverse of x is unique. D 

We observe that if the binary operation is addition and v is the neutral 
element 0 then the theorem states -( -x) = x. 

Theorem. If x and y are both invertible elements of a setS with an associative 
binary operation p having a neutral element v then xpy is also invertible 
and its inverse is y- px-. 

PRooF. Since it is given that both x and y are invertible the element 
y-px- belongs to S. (xpy)p(y- px-) = ((xpy)py-)px- = (xp(ypy-))px- = 
(xpv)px- = xpx- = v. We can likewise show (y- px-)P(xpy) = v. y- px­
is therefore the unique inverse of xpy. 0 

We point out that the commutativity of P is not used in the previous 
theorem. In additive notation the previous theorem states -(x + y) = 
(- y) + ( -x) and in multiplicative notation the theorem reads (xy)- = 
y-x-. In the conventional use of addition it is assumed to be a commutative 
operation which permits the result -(x + y) = (- y) + ( -x) = ( -x) + 
(-y). 

The existence of an inverse for an element x implies that element x is 
cancellable. 
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2.1 Binary operations 

Theorem. Let p be an associative operation on a setS with a neutral element v. 
If x is an invertible element of S then 

xpy = xPz implies y = z 
ypx = zPx implies y = z 

for any y, z E S. 

PRooF. We prove only one of the statements leaving the other to the reader. 
Suppose xpy = xpz. x-P(xpy) = x-P(xPz). (x- Px)py = (x- Px)pz. vPy = 
vpz. y = z. 0 

It is completely possible to have a cancellation theorem for a set and 
binary operation without the existence of inverses. For example, in Z and 
multiplication we have 2y = 2z implies y = z yet 2 is not an invertible 
element of Z. 

In the integers the two operations of addition and multiplication are 
interrelated by means of a condition called distributivity: 

x(y + z) = xy + xz for all x, y, z E Z 

(y + z)x = yx + zx for all x, y, z E Z. 

We actually call the first left distributivity and the second right distributivity. 
For a commutative multiplication each implies the other. We say in the case 
of the integers that multiplication is distributive with respect to addition. 
Note that the relation between addition and multiplication is not a symmetric 
one; addition fails to be distributive with respect to multiplication. 3 + 
(2 · 1) = 5 whereas (3 + 2) · (3 + 1) = 20. 

QUESTIONS 

11. The fact that x · 1 = x and 1 · x = x for all x E R means 
(A) x is invertible in R 
(B) · is a commutative operation 
(C) xis a binary operation on R 
(D) 1 is a neutral element of multiplication in R. 

(E) None of the four answers is correct. 

12. v' and v" are both neutral elements of multiplication in some set R implies 
(A) xv'x = v"xv" for all x ER 
(B) v' = v" 
(C) v'xv" = xv'v" for all x ER 
(D) v' 'I 0. 

(E) None of the four answers is correct. 

/3. A binary operation on the natural numbers, ~. is given by xpy = lx - yl, the 
absolute value of the difference of x and y. Which of the following statements are 
true? 

(A) There is a unique neutral element for p. 
(B) p is associative. 
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(C) Pis commutative. 
(D) Every element of 1\1 has a unique inverse. 

(E) All four statements are false. 

4. We giVe a binary operation • on the set S = {a, b, c, d} by means of this table: 

a 
b 
c 
d 

Which of the following are true? 
(A) • is commutative. 
(B) • is associative. 

a 

a 
b 
c 
d 

b 

b 
c 
a 
a 

(C) • has a unique neutral element. 
(D) Every element of S has an inverse. 

c 

c 
a 
d 
b 

d 

d 
a 
b 
b. 

(E) All invertible elements of S have unique inverses. 

5. Let p be a binary operation on a set S. Then v is a neutral element of p if and only if 
(A) v{Jx = x for some x e S 
(B) x{Jv = x for all x e S 
(C) x{Jv - x = 0 and v{Jx - x = 0 for all x e S 
(D) f:S-+ S such that f(x) = x{Jv and g:S-+ S such that g(x) = v{Jx are both 

the identity function 15 • 

(E) None of the four alternatives completes a true sentence. 

6. p is a binary operation on S implies 
(A) fJ !;;;; (S X S) X s 
(B) fJ is associative 
(C) range fJ = S 
(D) fJ has values 0 and 1 only. 

(E) None of the four alternatives completes a true sentence. 

7. Given a binary operation fJ on a setS with neutral element v, the element x inS 
is invertible if and only if 

(A) v belongs to the range of the function fx:S-+ S such that f:x;(y) = xfJy 
(B) x{Jy = v for ally e S 
(C) fJ is commutative and there exists y e S such that xfJy = v 
(D} x is the inverse of the inverse of x. 

(E) None of the four alternatives completes a true sentence. 

EXERCISES 

1. Let the set be 0°, the binary operation be composition of functions, and the neutral 
element be the identity function, 10 • 

lsf:Q-+ Q such thatf(x) = 27x- 7 invertible? 
Is g: Q -+ Q such that g(x) = x2 + 2 invertible? 
Is h:Q-+ Q such that h(x) = x 3 - 6 invertible? 

2. Give an example of a nonassociative binary operation on a set. 
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3. Give three examples of binary operations with neutral elements. 

4. Give an example of a binary operation which has no neutral element. 

5. On N, the set of natural numbers, we define a binary operation such that x A y = 

min{x, y}, the smaller of the two numbers. Show that the operation A is associative, 
commutative and has no neutral element. 

6. On N we define the binary operation v such that x v y = max{x, y}, the larger 
ofthe two numbers. Show that v is associative, commutative, has a neutral element, 
and only 0 is invertible. 

7. v1 iscalledaleftneutralelementforanoperationp:S x S--+ Sifandonlyifv1Px = 

x for all x E S. v, is a right neutral element for an operation p:S x S--+ S if and 
only if xpv, = x for all x E S. Prove that if a binary operation p on S has both a 
left and a right neutral element then p has a neutral element. 

8. On the set N we define a binary operation • such that x • y = x for all x, yE N. 
Prove that • is associative, noncommutative, has no left neutral element, but has 
an infinite number of right neutral elements. 

9. Let X be a given set. On &X = {SIS ,; X}, the set of all subsets of X, we define a 
binary operation +, called symmetric difference, such that A + B = (A u B) -
(A n B). Prove that + is associative, commutative, has neutral element 0, and 
every element of [l}J X is invertible. 

2.2 The ring 

In this section we extend the concept of an operation, define a ring, and 
derive several elementary properties of a ring. 

In Section 2.1 we used the concept of an operation as a function assigning 
a value in a setS to two given elements inS. This operation we called a binary 
operation. By increasing the number of arguments to three we can speak of 
ternary operations on a set. A ternary operation -r on a set S is a function 
-r: S x S x S --+ S. An example of such a ternary operation on the set N is 
to set -r(x, y, z) = min{x, y, z}, the minimum of the three numbers x, y, z. 
With examples of binary operations and ternary operations behind him the 
reader should be quite prepared to have an n-ary operation, for any non­
negative integer n, defined for him. We prepare with Cartesian products of 
different sizes. 

Definition. Let S be a set and n a positive integer. The nth Cartesian product 
is sn = {(xl, Xz, ... 'Xn)lxt, ... 'Xn E S}. We further define S0 to be the 
set {0}. 

In this definition S2 = {(x1, x 2 )lxt. x2 E S} coincides with the earlier 
definition of the Cartesian product of two sets. S1 = {(x1)lx1 E S} we will 
identify with S itself by ignoring the pair of parentheses. S0 we have simply 
defined to be the set with the one element 0 (the natural number 0). Having 
defined Cartesian products of various sizes we can now define operations of 
various sizes. 
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Definition. Let n be a nonnegative integer and Sa set. By an n-ary operation p 
on the set S we mean a function p: S" -+ S. An 0-ary operation is called a 
nullary operation. A 1-ary operation is called a unary operation. A 2-ary 
operation is called a binary operation. 

EXAMPLES. P(x, y) = x + y yields a binary operation p on 1\J. -r(x, y, z) = 
xy - z defines a ternary operation -r on 7!... v(x) = - x defines a unary opera­
tion v on 7!... An example of a nullary operation on 1\J is v: I\J 0 -+ 1\J so that 
v(O) = 67. Since I\J 0 = {0}, a function that is a nullary operation on 1\J has 
but one argument, namely 0. The value of v for that one argument 0 must be 
in 1\J. When we know the one value, v(O) = 67, we know the entire function, 
the entire nullary operation. 

We have seen in the previous example, following the consequences ofthe 
definition, that knowing a nullary operation v: S0 -+ S is simply knowing one 
value, v(O). A nullary operation, in effect, picks from S one element, the value 
of v(O). Conversely, any choice of a single element from a set, or any designa­
tion of a single element from a set can be expressed in the form of a nullary 
operation on the set. We can, for example, designate the number 1 in the 
set of natural numbers, 1\J, by giving a nullary operation v: I\J 0 -+ 1\J such 
that v(O) = 1. Or as another instance one might distinguish the neutral 
element of composition in S(X) with a nullary operation j: 6(X)0 -+ S(X) 
such that j(O) = lx. The logical advantage this use of nullary operations 
gives us is to allow us to give information about a set and a single element of 
that set in the form of an operation. This is an appealing esthetic consideration 
in this section; in Chapter 8 the use ofnullary operations will be an integral 
and essential part of the study of general algebraic systems. 

We now move toward a definition of the ring utilizing the material just 
outlined on operations. By analogy with the integers it is conventional to 
use the symbols + and · for binary operations on many different sets even 
though the members ofthe set may not be numbers. In such cases, the opera­
tions must be clearly defined. By custom, + is used only for commutative 
operations whereas · may or may not represent a commutative operation. 

We now introduce the ring, of which the integers are the motivating 
example. 

Definition. ( R, + , ·, 8) is a ring if and only if 

R is a set; 
+ is a binary operation on R; 
· is a binary operation on R; and 
8 is a nullary operation on R such that 

+ is associative and commutative, 
· is associative, 
8(0) is a neutral element for +, 
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x · (y + z) = x · y + x · z for all x, y, z eR, and 
(y + z) · x = y · x + z · x for all x, y, z eR. 

2.2 The ring 

(R, +, ·, fJ) is a commutative ring if and only if (R, +, ·, fJ) is a ring, and 
· is commutative. 

A certain amount of abuse of language is not uncommon. We frequently 
speak of the ring R, mentioning only the set R and leaving the operations to 
be understood by the reader. We also will use(} both as a symbol for the 
nullary operation and for the neutral element in its range. Both of these 
practices are abuses because a set, in and of itself, is not a ring and there is 
a difference between a function and the range of a function. Nevertheless, 
the first practice is universal. The second will save us from some cumbersome 
expressions. 

Our principal example of a ring is (7l., +, ·, 0) which has inspired our 
definition. (7l., +, ·, 0) is, moreover, a commutative ring. We now prove some 
beginning results that apply to all rings, commutative or not. 

Theorem. Let (R, +, ·, fJ) be a ring. Then (} · x = x · (} = (}for all x e R. 

PRooF. This result follows from distributivity and the neutral property of fJ. 
(} · x + (} · x = (fJ + fJ) · x = (} · x = (} · x + fJ. From both sides of(}· x + 
(} · x = (} · x + (}cancel(} · x yielding(} · x = fJ. To prove x · (} = (}we repeat 
the proof from the right instead of the left. The cancellation is possible 
because every element of R is additively invertible; every element which is 
additively invertible is additively cancellable. 0 

Theorem. Let (R, +, ·, fJ) be a ring. Then x(- y) = ( -x)y = -(xy) for 
all X, yE R. 

PROOF. We have followed the usual custom of omitting the symbol for 
multiplication when no confusion can occur. x(- y) + xy = x[(- y) + y] = 
xfJ = fJ. Because + is commutative xy + x(- y) = (} also. We conclude 
x(- y) is the unique negative of xy which is written - (xy). This is to say, 
x(- y) = -(xy). In a symmetric manner we prove ( -x)y = -(xy). 0 

Theorem. Let (R, +, ·, fJ) be a ring. Then (-x)(- y) = xy for all x, y e R. 

PRooF. Using the previous theorem twice: ( -x)(- y) = - [x(- y)] = 
- [- (xy)]. But - (- (xy)) = xy because the inverse of the inverse of any 
element is the element itself. o 

The previous theorems demonstrate how some of the frequently performed 
manipulations of school algebra are valid in rings in general. We also can 
observe as we develop the theory of rings for what reasons our manipulations 
of school algebra are valid. 

Theorem. Let (R, +, ·, fJ) be a ring. Let the operation of multiplication have 
a neutral element v in R. Then ( -v)x = x( -v) = -x for all x ER. 
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PROOF. We notice that our ring in this theorem is not assumed to be a com­
mutative ring so that (- v)x = x(- v) does not follow from commutativity. 
However,(-v)x = -(vx) = -xandx(-v) = -(xv) = -xforallxeR. 0 

In the case of (7!.., +, ·, 0) (the integers have neutral element of multipli­
cation 1) the theorem tells us ( -1)x = x( -1) = -x for all x E 7!... In words, 
to find the negative of an integer x multiply that integer by the integer -1, 
the negative of 1. Our familiarity with these results should not be allowed to 
prevent our gaining a deeper understanding for why they are true. 

QUESTIONS 

11. Let (R, +,·,B) be a ring. 
Bx = x for all x E R implies 

(A) R = {B} 
(B) B is the neutral element of multiplication for R 
(C) R is a commutative ring 
(D) there is an element of R which is invertible with respect to multiplication 

and is nonzero. 
(E) None of the possibilities completes a true sentence. 

!2. A ring (R, +,·,B) 
(A) must contain a neutral element of addition 
(B) must contain a neutral element of multiplication 
(C) must have its addition commutative 
(D) must have its multiplication commutative. 

(E) None of the four alternatives completes a true sentence. 

jJ, In a ring (R, +,·,B) 
(A) every element must have an additive inverse in R 
(B) every element must have a multiplicative inverse in R 
(C) a negative of an element must itself have a negative in R 
(D) a multiplicative inverse of an element must itself have a multiplicative inverse 

in R. 
(E) None of the alternatives completes a true sentence. 

J4. Let (R, +, ·, B) be a ring with a neutral element of multiplication, v. Which of 
these statements are true? 

(A) (R, +, B) is a commutative group. 
(B) (R, ·, v) is a group. 
(C) (R- {8}, ·, v) is a group. 
(D) v is also a neutral element of addition. 

(E) None of the four statements is true. 

EXERCISES 

l. Which of the following examples are rings and which are not rings? You must, 
in each case, supply the understood operations. 
(a) The set of all even integers 
(b) The set of all odd integers 
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(c) The set of all nonnegative integers 
(d) The set of all polynomials with real coefficients which have degree two or less: 

{Ax2 + Bx + qA, B, C E IR} 
(e) The set of all polynomials of degree two or less with even integer coefficients 
(f) The set of all fractions which when reduced to lowest terms have even integer 

denominators 
(g) The set of all expressions ofthe form a + b.fi, a, b E 7L. 

2. We define on the set {a, b} two operations •, t, by means of these operation tables: 

t 

a 
b 

a 

a 
a 

b 

a 
b. 

Verify that< {a, b}, •, t, a) is a ring, but< {a, b}, t, •, b) is not a ring. 

3. In what ways does (!PX, u, n, 0) fail to be a ring? 

4. Using the definition of + given in Exercise 9, Section 2.1, show that (!PX, +, 
n, 0) is a ring. Is there a neutral element of multiplication (n)? Which elements 
are n-invertible? 

5. Show that left distributivity and commutativity of multiplication imply right 
distributivity. 

6. Let (R, +, ·, 8) be a ring with a neutral element of multiplication v. Prove v = 8 
if and only if R = {8}. 

7. Let (R, +, ·, 8) be a ring. The set of two by two matrices over R is the set R2 x 2 = 

{(; ~)I a, b, c, dE R}. On this set we define+ and· as follows: 

( a b)+ (e !) =(a+ e b + !), (a b). (e !) = (ae + bg af + bh). 
cd gh c+gd+h cd gh ce+dgcf+dh 

Prove that (R2 x 2, +, ·, (: :)) is a ring. Show that this is a noncommutative 

ring. Is there a neutral element of multiplication in this ring? 
We will be studying matrices in considerable detail in later chapters, but we 

do wish to use this simple case at this time as a valuable example of a noncommuta­
tive ring. 

8. Which of the following sets are rings? 
(a) The set of all two by two matrices with values in 7L 
(b) The set of all two by two matrices with values in 7L but always with 0 in the 

lower right corner of the matrix 
(c) The set of all two by two matrices with even integer values. 

9. Let (R, +, ·, 8) be a ring such that xx = x for all x E R. Prove x + x = 8 for all 
x E R. Prove the ring is commutative. 

10. Give an example of a noncommutative ring obeying the condition x + x = 8 
for all x in the ring. 
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11. Let (R, +, ·, 8) be a ring and Sa nonempty set. Prove (Rs, +, ·, z) is a ring in 
which 

Rs is the set of all functions with domain S and codomain R, 
(f + g):S--> R such that (f + g)(x) = f(x) + g(x) for all x E S, 
(f · g):S--> R such that (f · g)(x) = f(x) · g(x) for all x E S, and 
z: s --> R such that z(x) = e for all X E S. 

12. From calculus we borrow the definition of a continuous function. A function 
f: [0, 1] --> IR is continuous on [0, 1] if and only if for each a in the closed unit 
interval [0, 1 ], limx~. f(x) = f(a). Let C0[0, 1] = {!If E ~R[o, 11 and f is con­
tinuous on [0, 1 ]}. Show that C0 [0, 1 ], the set of all functions continuous on [0, 1 ], 
is a ring. 

2.3 Special rings 

In this section are defined some special rings: unitary ring, product ring, 
integral domain, division ring, and field. 

A formalization of the existence of a neutral element for ring multiplica­
tion produces this definition: 

Definition. (R, +, ·, e, v) is a unitary ring if and only if (R, +, ·, 0) is a 
ring, v is a nullary operation on R such that v(O) is a neutral element 
for ·. We shall call the neutral element of multiplication a unity of the ring. 

We note that ( 7l., +, ·, 0, 1) is a unitary ring with unity 1. 
Prior to the formal definition of the product ring we construct an example. 

This example makes a ring of the set 7l. x 7l. of all pairs of integers. 7l. x 7l. = 

{(x, y)ix E 7l. and yE 7l.}. We must define two binary operations on the set 
7l. x 7l., calling the first addition and the second multiplication. 

(s, t) + (u, v) = (s + u, t + v), 

(s, t) · (u, v) = (su, tv). 

The operation + is an associative and commutative operation with a neutral 
element (0, 0). We verify these assertions. 

{s, t) + [(u, v) + (w, x)] = (s, t) + (u + w, v + x) 

= (s + (u + w), t + (v + x)) 

= ( (s + u) + w, (t + v) + x) 

= (s + u, t + v) + (w, x) 

= [(s, t) + (u, v)] + (w, x). 

(s, t) + (u, v) = (s + u, t + v) = (u + s, v + t) = (u, v) + (s, t). 

{0, 0) + {s, t) = (0 + s, 0 + t) = (s, t). 

(s, t) + {0, 0) = (s + 0, t + 0) = (s, t). 

With respect to +, every element of 7l. x 7l. is invertible. 

(s, t) + (- s, - t) = (0, 0); ( -s, -t) + (s, t) = (0, 0). 
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In these proofs the properties of + for 7l. x 7l. depend upon the underlying 
properties of + in 71.. That · on 7L x 7l. is also commutative and associative 
may be proved easily by the reader. (1, 1) is furthermore a neutral element 
for multiplication. Left distributivity holds. 

(s, t)[(u, v) + (w, x)] = (s, t)(u + w, v + x) 
= (s(u + w), t(v + x)) 

= (su + sw, tv + tx) 

= (su, tv) + (sw, tx) 

= (s, t)(u, v) + (s, t)(w, x). 

The right distributive theorem is verified similarly. This completes the veri­
fication that (71. x 71., +, ·, (0, 0), (1, 1)) is a unitary commutative ring. 

The construction in the previous example motivates the following defini­
tion of a product ring. 

Definition. Given rings (R', + ', ·', e') and (R", + ", ·", e") we define the 
product of the two rings to be ( R' x R", +, ·, ( e', e")) in which + and 
·are defined by 

(x', x") + (y', y") = (x' +' y', x" +" y") 
(x', x") · (y', y") = (x' ·' y', x" ·" y"). 

It is not difficult to prove the product is a ring; the proof is like the example 
verification preceding the definition. 

Returning to the integers we notice the integers enjoy the following 
property: 

uv = 0 implies u = 0 or v = 0. 

One says, to describe this property, that the integers have no nontrivial 
divisors of zero. This property is used to define a special kind of ring. 

Definition. < R, +, . , e, V) is an integral domain if and only if < R, +, . , e, V) 
is a commutative unitary ring, e =F v, and xy = e implies x = e or y = e 
for all x, y E R. 

71., Q, and IR are all integral domains, but the product ring 7l. x 7l. is not 
an integral domain: (1, 0)(0, 1) = (0, 0). 

The condition xy = e implies x = e or y = e is equivalent in a ring to 
cancellation, which we now prove. 

Theorem. A commutative unitary ring (R, +, ·, e, v) with e =F vis an integral 
domain if and only if nonzero multiplicative cancellation is always possible. 

PROOF. Suppose multiplicative cancellation is always possible for nonzero 
elements. Let xy = e. xy = xe because xe = e. If X =F e then cancel X to 
get y = e. Therefore either X = e or y = e. 
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For the converse, assume R is an integral domain and let xy = xz with 
x =1= 9. xy + ( -(xz)) = 9. xy + x( -z) = 0. x(y + ( -z)) = 9. Since x =I= 9 
we must have y + (- z) = 9. y = z. D 

We finish this section with several more definitions. 

Definition. (R, +, ·, 9, v) is a division ring if and only if (R, +, ·, 9, v) is 
a unitary ring, 9 =1= v, and every nonzero element of R is multiplicatively 
invertible. 

Definition. (R, +, ·, 9, v) isa.fieldifand only if (R, +, ·, 9, v) is a commuta­
tive division ring. 

We observe that every field is an integral domain. Q, IR, and C are all 
fields while 7L is not a field. 

QUESTIONS 

11. Which of the following statements are true? 
(A) Some integral domains are fields. 
(B) Some division rings are fields. 
(C) Some fields are division rings. 
(D) Some integral domains are not fields. 
(E) Some division rings are not integral domains. 

1 2. The set of even integers with the usual sum and product 
(A) is an integral domain 
(B) has no nontrivial divisors of zero 
(C) is a field 
(D) is a commutative ring 
(E) is a division ring. 

13. The product ring Z x Z 
(A) is a commutative ring 
(B) is a commutative unitary ring 
(C) is an integral domain 
(D) is a field 

(E) None of the alternatives completes a true sentence. 

I 4. The natural number system (1\1, +, ·, 8) is a 
(A) ring 
(B) unitary ring 
(C) integral domain 
(D) field. 

(E) None of the possibilities completes a satisfactory sentence. 

t 5. In any unitary ring 
(A) some elements have inverses 
(B) there are multiplicatively cancellable elements 
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(C) 8 never has a multiplicative inverse 
(D) there are elements which commute with all other elements. 

(E) None of the four alternatives completes a satisfactory sentence. 

EXERCISES 

1. Prove that the product of two rings is itself a ring. 

2. Show that no product ring of non trivial rings can be an integral domain. 

3. Give an example of a ring without a unity. 

4. Does the ring <&>X, +, n, 0) have non trivial divisors of zero? Is it an integral 
domain? 

5. On the set 7L x 7L we define the following two operations: 

(s, t) + (u, v) = (s + u, t + v) 

(s, t) D (u, v) = (su + tv, sv + tu). 

Show that <7L x 7L, +, 0, (0, 0)) is a ring. Is the ring commutative? Does the ring 
have a unity? Is the ring an integral domain? Which elements of the ring are D­
invertible? 

6. Is 0 2 x 2 an integral domain? Which elements of the ring 0 2 x 2 are invertible? 

7. Let <R, +, ·, 8) be a ring with unity v. Show that every nonzero element of R is 
multiplicatively invertible if and only if the equations 

ax+b=8 

XC + d = 8 a, b, c, d E R, a # 8, b # 8 

always have unique solutions (for x) in R. 

8. Show that the commutativity of addition is derivable from the other statements 
in the definition of a unitary ring. 

9. Let <R, +, ·, 8, v) be a commutative unitary ring. Prove that the set of all multi­
plicatively invertible elements of R is a group under multiplication. 

10. LetS be a subset of a field <K, +, ·, 8, v) closed under addition, multiplication, 
negatives, and reciprocals (of nonzero members). Prove S contains 8 and v if and 
only if S contains at least two members. 

11. Let <R, +, ·, 8, v) be an integral domain. LetS be a subset of R such that <S, +, 
·, 8) is itself a ring with a unity and such that S contains more than one element. 
Prove that the unity of S is v. 

12. Let <R, +, ·, 8) be a ring without nontrivial divisors of zero. Suppose there exists 
an element a ER, a # 8, such that aa = a. Prove R has a unity. Beware of assuming 
the existence of a unity. 

13. Prove that if a ring <R, +, ·, 8) has a left unity which is unique then the ring has 
a unity. 

14. Let <R, +, ·, 8, v) be a unitary ring. Let x be an element of R which has at least 
one left multiplicative inverse and at least one right multiplicative inverse. Prove 
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that x has a unique multiplicative inverse in R. Prove furthermore that x has only 
one left multiplicative inverse and only one right multiplicative inverse. 

15. Beginners in school algebra often write (x + y)2 = x 2 + y2• Give an example 
of a ring (R, +, ·, 8) for which this statement is true: (x + y)(x + y) = xx + yy 
for all x, y e R. Give an example of a ring in which the statement is false. 

16. Suppose (R, +, ·, 8) is a ring such that (x + y)(x + y) = xx + yy for all x, 
ye R. Prove 
(a) xy = - yx for all x, y E R 
(b) XX+ XX for all X ER 
(c) x + x = 8 for all x eR if R has a unity. 

17. Give an example of a ring ( R, +, ·, 8) such that xy = - yx for all x, y e R yet 
it is false that x + x = 8 for all x e R. 

18. Give an example of a ring (R, +, ·, 8) such that x + x = 8 for all x e R yet it 
is false that xx = x for all x e R. 

19. Let (R, +, ·. 8, v) be a unitary ring. Let x be an element of R with a unique left 
multiplicative inverse. Prove x has an inverse in R. 

20. An important example of a division ring which is not a field is given by the set 
of quaternions, {a + bi + cj + dkia, b, c, de IR}. Addition of two quaternions is 
definedbytherule(a1 + b1 i + c1 j :t d1k) + (a2 + b2 i + c2 j + d2k) = (a1 + a2) + 
(b1 + b2 )i + (c1 + c2)j + (d1 + d2 )k. This addition is commutative and associa­
tive, there is a neutral element 0 = 0 + Oi + Oj + Ok and every quaternion has a 
negative. Multiplication is defined using these reduction rules: 

ij = - ji = k, jk = - kj = ~ ki = - ik = j. 

(a1 + b1i + c1 j + d1k)(a2 + b2 i + c2 j + d2k) 

= a1a2 + a1b2 i + a 1c2 j + a1d2k + b1a2i + b1b2i2 + b1c2 ij + b1d2ik + c1a2 j 

+ c1b2 ji + c1c2/ + c1d2 jk + d1a2k + d1b2ki + d1c2kj + d1d2k2 

= (a1a2 - b1b2 - c1c2 - d1d2 ) + (a1b2 + b1a2 + c1d2 - d1c2 )i 

+ (a1c2 + c1a2 + d1b2 - b1d2)j + (a 1d2 + d1a2 + b1c2 - c1b2 )k. 

The multiplication is noncommutative since, for example, ij #' ji. The multiplica­
tion is associative. Show that 

(l/(a2 + b2 + c2 + d2) )(a - bi - cj - dk) 

is the inverse of a + bi + cj + dk to prove that the quaternions are a division ring. 

2.4 Subrings 

In this section we define a subring, derive necessary and sufficient condi­
tions for a subset to be a subring, and define the subring generated by a 
subset of a ring. 

We begin with the subring. 

Definition. S, a subset of the set R, is a sub ring of the ring ( R, +, ·, 0) if and 
only if (S, +, ·, 0) is a ring. 
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It is to be understood in this definition that + and ·,the binary operations 
on the subset S, are to have the same values on S that they have on the 
including set R. It is necessary, therefore, in order that + and · be binary 
operations on S, that x, yES imply x + y and xy belongs to S. We speak 
then of + and · as being closed on S. 

ExAMPLE. We denote the even integers by 27L = {2xlx E 7L}. (27!_, +, ·, 0) 
is a subring of (7!_, +, ·, 0). Note that the subring must contain 0 to be a ring. 
In this example the subring 27L fails to contain a unity although the original 
ring 7L does. 

The odd integers, 27L + 1 = {2x + 1lx E 7L} do not form a subring. 0 fails 
to be a member. Furthermore, 3 + 7 = 10, not an odd integer. 

We now develop necessary and sufficient conditions for a given subset of 
a ring to be a subring. 

Theorem. S, a subset of R, is a subring of (R, +, ·, 0) if and only if 

S =f. 0 and 

x, yES imply x + y, xy, and -x are inS. 

PROOF. First assume S is a subring. S is itself a ring. S =f. 0 because S must 
contain e, the neutral element of addition. Let x and y E S. x + y and xy 
must belong to S because the addition and multiplication are binary opera­
tions on S. -xis in S because every element of S is +-invertible ifS is a ring. 

Secondly, to prove the converse, assume S is a subset of R such that 
S =f. 0 and x, yES imply x + y, xy, and -x are in S. We must prove 
(S, +, ·, 0) is a ring. The operations + and· are binary operations on S. 
Given s =f. 0 let a E S. Then -a E S. (a) + (-a) E S. e E s. Every X E s is 
+-invertible since - x E S. Both + and · are associative operations on R 
and therefore certainly on S. Addition is commutative on R and therefore 
also commutative on S. Thus (S, +, ·, 0) is a ring, a subring of (R, +, ·, 
~- D 

Every ring contains as subrings the trivial subring { 0} and the entire ring 
itself. Given an arbitrary subset A of a ring (R, +, ·, 0) we ask the question 
whether or not there exist subrings of R which contain the given A as a 
subset. The answer is yes, there always exists at least one subring of R 
containing A, namely R itself. The following theorem proves a stronger 
result; there exists a smallest subring of R containing A. 

Theorem. Let A be any subset of a ring (R, +, ·, 0). Then there exists a 
smallest subring of R which contains the set A as a subset. 
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PRooF. We define a collection~ ofsubrings of R as follows: 

~ = {SIA !';;;;; SandS is a subring of R}. 

R e ~ and therefore ~ =I= 0. 
We now form the intersection of the collection~- The intersection of the 

collection ~ is the set of all elements belonging to every subring in the 
collection ~-

n~ = {xlx E S for every SE~}. 

We now demonstrate that this subset of R is actually a subring of R. Let x 
and y belong to n~. By the definition of the intersection X E S for all S E ~ 
and y e S for all S e ~- Then x + y, xy, and - x belong to S for all S e ~­
x + y, xy, and -X belong to n~. Furthermore, () E S for all S E ~. () E n~. 
n~ is a subring of R. 

Let us now show A !';;;;; n~. Choose any X E A. Then X E s for every 
S E ~ because A !';;;;; S for every S E ~- X E n~. 

It remains to show that n~ is the smallest subring of R containing A as 
a subset. We observe first that n~ !';;;;; s for every sE~- This is to say that 
the intersection of a collection of sets is a subset of every set in the collection. 
Thus n~ is smaller than any other subring of R containing A. D 

Definition. Given any subset A of a ring (R, +, ·, 8) we define the subring 
of R generated by the set A to be the smallest subring of R containing A. 
We denote the subring of R generated by A by [A]. 

It is to be observed that the theorem preceding makes the definition 
possible. 

EXAMPLES. {0, 1} generates the entire ring 7L. As a subset of 7L we have 
[27L + 1] = 7L.In7L,[{3,6}] = 37L.AsasubsetofQ,[7L] = 7L.Ifwedenote 
the positive fractions by a+ then [Q+] = Q. 

For a finite set such as {a, b, c} we frequently abbreviate [{a, b, c}] with 
[a, b, c] if there is no danger of error. 

QUESTIONS 

1. Let CIJ be the collection of all subrings of a given ring (R, +, ·, 9). Which of these 
statements are false? 

(A) { 9} E CIJ. 
(B) nCIJ E CIJ. 
(C) RE CIJ. 
(D) UC~J E CIJ. 

(E) All four statements are true. 

2. Let CIJ be the collection of all subrings containing some given subset A of the ring 
(R, +, ·, 9). Which of these statements are true? 
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(A) {0} E ~­
(B) RE~­
(C) u~ ere. 
(D) A E~. 

(E) None of the statements is true. 

3. Given that ~ is a collection of subrings of a ring < R, +, ·, 0) which of these state-
ments are true? 

(A) {0} E ~­
(B) RE~­
(C) u~E~. 
(D) n~E~. 

(E) All four statements are false. 

4. In the product ring 7L x 7L the subset {(x', x")ix', x" E 7L and x' = 2x"} 
(A) is a subring of 7L x 7L 
(B) fails to be closed under negation 
(C) fails to be closed under addition 
(D) fails to be closed under multiplication. 

(E) None ofthe four alternatives completes a true sentence. 

5. Given the subsetS={(: !)I ad- be~ o} of7L2 x 2 we can say that S is 

(A) a subring of 7L 2 x 2 

(B) not a subring of 7L2 x 2 because S = 0 
(C) not a subring of 7L 2 x 2 because S is not closed under multiplication 
(D) not a subring of 7L 2 x 2 because S is not closed under negation. 

(E) None of the four choices satisfactorily completes the sentence. 

EXERCISES 

1. Given the ring (7L, +, ·, 0) find [0], [1 ], [2], [7]. 

2. Given the ring (IR, +, ·, 0) find [0], [1], [n], [1, 2]. 

3. Giventhering\7L2
x

2, +,·,(~ ~))find[(~ ~)].[(~ ~)J.[G ~)]. 
4. Given the ring (Q, +, ·, 0) find [t], [{1/nln E 7L - {0} }], [1, t. n 
5. Find the collection of all subrings of 7L containing the set {12}. What is the inter­

section of this collection? 

6. Given the ring (&'(1\1), +, n, 0) find [{0, 1}]. Let s(n) = {xlx E 1\1 and 0 ~ x < n}, 
the open segment of 1\1 determined by n. Find [{s(n)ln EN}]. 

7. An expression such as 2 + 5X + 9X2 or t + tX + 1/X5 is known as a polynomial. 
While we shall study polynomial rings in detail in Chapter 5 many aspects of poly­
nomials are familiar and intuitive enough we can use them now as examples. The 
set of all polynomials of all degrees with rational coefficients, {a0 + a1X + · · · + 
a,X"Ia0 , a1, ..• , a. E Q, nE N}, is a ring with the usual school algebra way of adding 
and multiplying polynomials. Find (t], [X], [Q u {X}]. 

49 



2. Rings: Basic theory 

2.5 Morphisms 

In this section the structure-preserving functions, morphisms, are defined 
and investigated. 

Let (R, +, ·, f.J) and (R', +', ·', f.J') be two rings andf:R--+ R' a function. 

Consider the situation suggested by Figure 2.1. We might well obtain differ­

ent results upon calculating f(x + y) and calculating f(x) +' f( y). Whether 

we first find the sum of x and y in R and second find the image in R' or 

whether we first find the images of x and y in R' and then add in R' may 

affect the outcome. If, however, the function f is of such a character that 

f(x + y) = f(x) +' f(y) for all x, yE R we say that f preserves the first 

operation + in the second + '. When f preserves all the operations of one 

mathematical system in the respective ones of the second then we call f a 

morph ism. 

f -

Figure 2.1 

Definition. Given rings (R, +, ·, f.J), (R', +', -', f.J') and a functionf:R--+ R' 
we say f is a ring morphism if and only if 

f(x + y) = f(x) +' f(y) for all x, yE R; 

f(xy) = f(x)-' f(y) for all x, yE R; and 

f(f.J) = f.J'. 

We shall later consider morphisms of other algebraic systems such as 

groups and vector spaces. Only when there is a possibility of confusion need 

one say ring morphism rather than just morphism. An older term with the 

same meaning as morphism is homomorphism. We use the shorter term 

morphism and reserve the use of prefixes for special kinds of morphisms. 

We now prove a theorem about morphisms which shows the condition 

f(f.J) = f.J' to be superfluous for rings. 

Theorem. Given rings (R, +, ·, ()), (R', +', -',()')and afunctionf:R--+ R', 

f is a morphism if and only if 
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PRooF. Obviously if f is amorphism then the two statements are true. It is 
the converse that requires the discussion. We must prove that if f(x + y) = 
f(x) +' f(y) and f(xy) = f(x)f(y) for all x, yE R then f(8) = 8'. 

f(8) = f(8 + 8) = f(8) +' f(8). 

f(8) +' 8' = f(8) +' f(8). 

Because f(8) is an element of R' and therefore has an additive inverse we can 
cancel f( 8) yielding 8' = f( 8). D 

Depending upon special properties of the function we have special names 
for morphisms which we now introduce. 

Definition. Let f:R--+ R' be a morphism of the rings (R, +, ·, 8) and 
(R', + ', -', 8'). 

If f is an injection then we call f a monomorphism. 
If f is a surjection then we call f an epimorphism. 
If f is a bijection then we call f an isomorphism. 

EXAMPLES. LetS be a subring ofthe ring (R, +, ·, 8). The identity injection 
j:S--+ R such that j(x) = xis a monomorphism. 

Let Z x Z be the product ring of Z with itself. The function p1 : Z x Z --+ Z 
such that p1(x, y) = xis an epimorphism but not a monomorphism. 

The function q1 :Z--+ Z x Z such that q1(x) = (x, 0) is a monomorphism 
but not an epimorphism. 

The range, f(R), of a morphism f: R --+ R' has many of the properties of 
the domain R. We list some of these in a theorem. 

Theorem. Let f:R--+ R' be amorphism of the rings (R, +, ·,(})and (R', 
+', -', 8'). Then 

(a) f( -x) = -f(x) for all x ER 
(b) f(R) is a subring of R' 
(c) (R, +, ·, 8) is a commutative ring implies (f(R), +', ·', 8') is a commuta­

tive ring 
(d) v is a unity for R implies f(v) is a unity for f(R) 
(e) if both Rand R' are unitary rings and f(v) = v' and xis multiplicatively 

invertible in R, then f(x-) = f(x)-. 

PROOF 
(a) f(x) + 'f(- x) = f(x + (- x)) = f(8) = 8'. Likewise,!(- x) + 'f(x) = 

8' for all x ER. f( -x) = - f(x) the unique negative of f(x) in R'. 
(b) f(R) = {f(x)lx ER}. We must show f(R) nonempty and closed under 

addition, multiplication, and negatives. 8' belongs to f(R) because f(8) = 8'. 
f(R) =F 0. Let Y~> Yz E f(R). Y1 = f(x 1) and Yz = f(x2 ) for some x~> 
x2 ER. Y1 +' Yz = f(x 1) +' f(x2 ) = f(x 1 + x2 ). x1 + x2 ER implies 
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f(x1 + Xz) E f(R). Y1 ·' Yz = f(x1) -' f(x 2 ) = f(x1x2 ). x1x2 ER implies 
f(x1xz) E f(R). - Y1 = -f(x1) = f( -x1). -x1 ER implies f( -x1) E f(R). 

(d) We suppose R to have a unity v. Thenf(v) E f(R). Any element yE f(R) 

is f(x) for some x ER. y-' f(v) = f(x)-' f(v) = f(xv) = f(x) = y. f(v)-' y = 
f(v) ·' f(x) = f(vx) = f(x) = y.f(v) is a neutral element for-' onf(R), a unity 
for the subring f(R). 

(e) Let x- represent the multiplicative inverse of x in R. f(x-)f(x) = 
f(x-x) = f(v) = v'andf(x)f(x-) = f(xx-) = f(v) = v'.f(x-)istheunique 
inverse of f(x); f(x-) = f(x)-. D 

Several comments are in order at this point. In part (c) of the preceding 
theorem we have not asserted that the codomain R' is a commutative ring, 
only the range f(R). In part (d), f(v) is not necessarily a unity for R' even if 
R' has a unity; f(v) is only a unity for f(R). 

Finally we prove that the inverse of an isomorphism is also an 
isomorphism. 

Theorem. If f:R-+ R' is an isomorphism of rings (R, +, ·, fJ) and (R', + ', 
·', fJ') then f- 1 :R'-+ R is an isomorphism. 

PROOF. Since f is a bijection R -+ R' then there exists a bijection f - 1: R' -+ R 

such thatf- 1 of= /Randfof- 1 = IR'· y = f(x)ifandonlyifx = f- 1(y). 
f- 1(Y1 +' Yz) = f- 1(f(x1) +' f(xz)) = f- 1(f(x1 + Xz)) = X1 + Xz = 
f- 1(y1) + f- 1(y2 ). We use the fact thatf is a surjection to find x1 and x2 

in R so that f(x1) = y1 and f(x2 ) = y2 • A parallel argument proves the 
formula for multiplication. f - 1 is a morphism. D 

QUESTIONS 

1. Let f: Z -> Z such that f(x) = 2x. Which of these statements are false? 
(A) f is a monomorphism. 
(B) f(O) = 0. 
(C) {xlf(x) = 0} = {0}. 
(D) f(Z) is a subring of Z. 

(E) All four statements are true. 

2. The image f(A) of a subring A under a ring morphism f:R-> R' is 
(A) a subring of R' 
(B) a subring of R 
(C) a subset of R 
(D) nonempty. 

(E) None of the four possibilities completes a true sentence. 

3. The preimage f- 1(B) of a subring B by a ring morphism f:R-> R' is 
(A) a subring of R' 
(B) a subring of R 
(C) a subset of R 
(D) nonempty. 

(E) None of the four alternatives completes a true sentence. 
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4. If f: R ~ R' is a ring morphism then 
(A) r 1(8) may be empty 
(B) r 1(8) is never empty 
(C) f- 1(8) always contains exactly one member 
(D) f- 1(8) may contain more than one member 
(E) f- 1(8} always contains more than one member. 

ExERCISES 

1. Let (R, +, ·, 8) and (R', +', -', 8') be rings andf:R ~ R' be amorphism. Prove 
A is a subring of R implies f(A) is a subring of R'. Prove B is a sub ring of R' implies 
f - 1(B) is a subring of R. 

2. Let (R, +, ·, 8) and (R', +', -', 8') be rings and f:R ~ R' be amorphism. Can 
R be commutative and R' be not commutative? Can R' be commutative and R 
be not commutative? Can R be commutative and f(R) be not commutative? 
Can f(R) be commutative and R be not commutative? In each case support your 
answer. 

3. Define new operations on 7L as follows: 
X o y = X + y - xy, X • y = X + y - 1. 

Using the two new binary operations and 7L create a new ring. Show that the new 
ring is isomorphic to (Z, +, ·, 0). Warning: it is not specified which of the two 
new operations plays the role of addition. 

4. Let (R, +, ·, 8) be a ring, R' be a set with binary operations +' and -', and 
f:R ~ R' be a surjection preserving + in +'and preserving· in-'. Prove there 
exists a neutral element 8' in R' such that (R', +', -', 8') is a ring and f:R ~ R' 
is an epimorphism. 

5. Let (R, +, ·, 8) be a ring with neutral element v. For a, any multiplicatively in­
vertible element of R, we define qJ.:R ~ R such that ({J.(x) = a-xa for all x ER. 
Prove that qJ.:R ~ R is an isomorphism. qJ. is called an inner automorphism of 
R and the set of all inner automorphisms of R will be denoted by .f(R). 

6. Giventherings(Q, +,·,O)and (ozxz, +,·,(~ ~)) wedefinef:O~Q2 x 2 

such that f(x) = (~ ~). Prove (a) f is a monomorphism; (b) both rings have 

unities; (c)f(l) is not the unity ofQ2 x 2 ; (d)f(x-) ¥- f(x)- for all xE Q. 

7. Given S ¥- 0 prove that any ring (R, +, ·, 8) is isomorphic with a subring of 
the ring ( R8, +, ·, z) (cf. Exercise 11, Section 2.2). 

8. Given rings (R', +', -', 8') and (R", +", -'', 8") prove that the projections 

p1 :R' x R" ~ R' such that p1(x1, x2 ) = x1 

p2 :R' x R" ~ R" such that p2(x1, x2 ) = x2 

of the product ring into R' and the product ring into R" are epimorphisms. 

9. Given rings (R, +, ·, 8), (R', +', -', 8'), (R", +", ·", 8") and morphismsf:R ~ R', 
g:R ~ R" prove there exists a morphism lP:R ~ R' x R" such that p1 o lP = f 
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and p2 o lP = g where p1 and p2 are the projections of the product R' x R" (cf. 
Exercise 8). 

___.-~R' 

R"~ 
R" 

10. Let (R, +, ·, 8) be a ring. Prove (RR, +, o, z) is not a ring (the second binary 

operation is composition and z is the function with zero for all its values). Which 

distributive law fails? 

11. Let (R, +, ·, 8) and (R', + ', -', 8') be rings. We denote the set of all morphisms 

from R toR' by Mor(R, R'). Is Mor(R, R') closed under the functional addition: 

(f + g)(x) = f(x) + g(x)? We call a morphism of a ring R into R, itself, an en­
domorphism and denote Mor(R, R) with .g'(R). Show that (.g'(R), +, o, z) is a ring. 

12. If (R, +, ·, 8) is a commutative ring then (RR, +, ·, z) is also a commutative ring. 

Why? Is (.g'(R), +, o, z) also a commutative ring? Again note that the second 

binary operation is now functional composition. 

13. Given a unitary ring (R, +, ·, 8, v) prove there exists a subring of .g'(R) isomorphic 

toR. [Hint: J.(x) = ax.] 

14. How many possible nonisomorphic rings are there with two elements? three ele­

ments? four elements? [Hint: Study all possible binary operation tables.] 

15. In this example we construct IC, the complex numbers, from 1Ji11, the real numbers. 
The construction closely resembles the product ring construction but has a different 
multiplication. 
(a) Prove (1Ji11 x 1Ji11, +, 0, (0, 0), (1, 0)) is a field in which + is the product ring 

addition and 0 is defined as follows: (x1, x2 ) 0 (y1, y2 ) = (x 1y1 - x 2y2 , 

XlYz + XzYl). [Hint: The multiplicative inverse of (xl, Xz) is (xd(xi + xn, 
- Xz/(XI + xn ).] 

(b) Prove that if (x1, x2 ) is a member of 1Ji11 x 1Ji11 then (x1, x2 ) = (x1, 0) + 
(0, 1)(x2 , 0). 

(c) Prove IJil1 and IJil1 x {0} are isomorphic; i.e., show that l/J: IJil1 ---+ IJil1 x IJil1 such that 

l/J(x) = (x, 0) is a monomorphism with range IJil1 x {0}. 
(d) We denote the number (0, 1) by i and note i 2 = ( -1, 0). 

(e) We use the isomorphism lP to identify IJil1 with the subset IJil1 x {0} of IJil1 x IJil1 

so that we write (x, 0) simply as the real x. Show that any (x1, x2 ) in IJil1 x IJil1 

can thus be written as x1 + x2 i. We call the set {x1 + x2 ilx 1, x2 E 1Ji11} the 
complex numbers and use the symboliC for the set. 

2.6 Quotient rings 

In this section we extend the concept of quotient set to quotient ring and 
thereby introduce ideals. 

Preliminary to new material of substance we set out a useful notation. 
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Definition. If + is a binary operation on a set R, and A and B are subsets of 
R and x is an element of R then 

X + A = {X + aja E A} 
A + B = {a + bja EA and bE B}. 

Similarly, if· is a binary operation on a set R, A and Bare subsets of Rand 
x is an element of R then 

xA = {xaja EA} 
AB= {abJaeAandbeB}. 

ExAMPLE. If A = {1, 3, 5}, B = {2, 5, 6} are subsets of 7L and x = 7 is an 
element of 7L then x + A = {8, 10, 12}, A + B = {3, 5, 6, 7, 8, 9, 10, 11 }, xA = 
{7, 21, 35} and AB = {2, 5, 6, 10, 12, 15, 18, 25, 30}. 

We recommend at this point a review of equivalence relations, quotient 
sets and quotient maps of Chapter 1. Forearmed, we begin the process of 
constructing the quotient ring. 

Definition. If < R, +, ·, fJ) is a ring and A is a subset of R then we define 
RIA = {x + AjxeR}. 

Theorem. If (R, +, ·, fJ) is a ring and A is a subring of R then RI A is a quo-
tient set of R. 

PROOF. In terms of the given subring A we define the following relation on 
R:x "" y if and only if x - yE A. This relation on R is an equivalence 
relation which we now verify: 

Given any x E R, x - x = (} E A because A is a subring of R. Let x "" y. 
x - y E A. - (x - y) E A. y - x E A. y "" x. Finally, let x "" y and y "" z. 
x- yE A and y - z EA. x - z = (x - y) + (y- z) EA. x ""z. 

Associated with any equivalence relation is a quotient set, RI"" = 
{ xl"" Jx ER}. Each equivalence set in the quotient set RI"" is in the form 
xl"" = {zjz ER and z "" x}. We wish now to demonstrate that RI"" = RI A, 
or in other words, that any equivalence set xl"" in RI"" is equal to x + A. 
xl- = {zjz"" x} = {zjz- xeA}.Butz- xeAifandonlyifz- x =a 
for some ae A if and only if z = x +a for some a EA if and only if ze x +A. 
We conclude xl"" = x +A. D 

Members of the quotient set RIA are to be called cosets as well as equiva­
lence classes. We wish now to prove that every coset in RI A has the same 
number of members an any other coset in RI A. This result is not true for 
quotient sets in general which may partition a set into subsets of varying 
sizes. We begin by introducing a term for sets of equal size. 

Definition. Sets A and B are called equipotent if and only if there exists a 
bijection f: A --+ B. 
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Theorem. Let (R, +, ·, 0) be a ring and A be a subring of R. Then any two 
cosets of the quotient set R/ A are equipotent. 

PRooF. Letb + Aandc +A bemembersofR/A. Wedefinef:b +A-+ c +A 
such thatf(b + x) = c + x. b + x1 = b + x2 if and only ifx1 = x2 if and 
only if c + x1 = c + x2 using cancellation and the uniqueness of addition. 
This shows b + x1 = b + x2 if and only if f(b + x1) = f(b + x2 ): f is a 
well-defined function and an injection. f is also a surjection because given 
any c + x e c + A there exists an b + x e b + A such that f(b + x) = 
c +X. D 

EXAMPLE. 3Z, the set of all integral multiples of 3, is a subring of Z. In the 
quotient set Z/3Z two integers are equivalent if and only if their difference is 
a multiple of 3. 1 ,..., 4, 7 ,..., 10, -2 ,..., 4, 0 ,..., 6, etc. Z/3Z = {3Z, 1 + 3Z, 
2 + 3Z}. We observe 1 + 3Z = 4 + 3Z = 1/,..., = 4/,...,. 7 + 3Z = 10 + 
3Z = 1 + 3Z. In this example each of the three cosets is an infinite set (see 
Figure 2.2). 

Figure 2.2 

Having constructed a quotient set R/ A from a given subring A we now 
move to make R/ A into a ring by introducing operations on the set R/ A. As 
we shall later show it is not sufficient for A to be a subring to accomplish this 
construction. We therefore introduce a new concept at this stage and use 
this new concept to construct the quotient ring R/A. 

Definition. Let (R, +, ·, 0) be a ring. A is an ideal or normal subring of R 
if and only if A is a subring of R and r e R, x e A imply rx and xr belong 
to A. 

EXAMPLES. The set {(r, 2s)ir e Z and se Z} is an ideal of the product ring 
(Z x Z, + ,-, (0, 0)). The set 3Z is an ideal of the ring Z. The set Z is a subring 
of the ring Q but not an ideal of Q. 

The condition r e R and x e A imply rx and xr e A can be equivalently 
stated as RA £ A and AR £ A. 
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Theorem. Let A be an ideal of the ring (R, +, ·, (J). Then (R/A, +, 7 , A) 
is a ring in which + and 7 are defined by 

(x + A) =t (y + A) = x + y + A 

(x + A)-:- (y + A) = xy + A. 

PRooF. The definitions given for + and 7 are both definitions which depend 
upon particular representatives of the coset x + A and y + A. Before we 
know the operations to be well defined we must show that the definitions 
are actually independent of the representatives x and y. We must show the 
following: if x + A = x' + A and y + A = y' +A then x + y + A = 
x' + y' + A and xy + A = x' y' + A. x + A = x' + A implies x - x' E A. 
y + A = y' + A implies y - y' EA. (x - x') + (y- y') EA. (x + y) -
(x' + y') E A. x + y + A = x' + y' + A. This proves the sum to be well 
defined. The product is more difficult and uses the ideal properties. x - x' E A 
and y - y' E A. (x - x')(y - y') E A because A is a subring. 

(x - x')(y - y') = a for some a E A. 
xy = xy' + x'(y - y') + a 

xy - x'y' = xy' - x'y' + x'(y - y') + a 

= (x - x')y' + x'(y - y') + a. 

(x - x')y' belongs to A because AR £;;;; A. x'(y - y') belongs to A because 
RA £;;;; A. a EA. The sum of all three terms belongs to A. xy - x'y' EA. 
xy + A = x'y' + A. Multiplication on RjA is well defined. 

We now verify that + is associative and commutative. 

(x + A) =t (y + A) = x + y + A = y + x + A = (y + A) =t (x + A). 
(x + A) + [(y + A) + (z + A)] = (x + A) + (y + z + A) 

= x + (y + z) +A 
= (x + y) + z +A 

= (x + y + A) + (z + A) 
= [(x + A) + (y + A)] + (z + A). 

We now show that 7 is also associative. (x + A) 7 [(y + A) 7 (z + A)] = 
(x + A) 7 (yz + A) = x(yz) + A = (xy)z + A = (xy + A) 7 (z + A) = 
[(x + A) 7 (y + A)] 7 (z + A). The distributive equations can be verified in 
a similar manner. 

The neutral element for + is (J + A which is equal to A. A + (x + A) = 
((J + A) + (x + A) = (J + x + A = x + A. (x + A) + A = x + A also. 
We next show every element of RjA is +-invertible. (x + A) + ( -x + A) = 
x + ( -x) +A= (J +A= A. And because+ is commutative ( -x +A)+ 
( -x + A) = A also. -(x + A)= -x + A. D 

Corollary. If (R, +, ·, (J) is a ring with unity v and A is an ideal of R then 
v + A is a unity for the quotient ring (R/ A, +, 7 , A). 
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PRooF. (x + A)(v + A) = xv + A = x + A. (v + A)(x + A) = vx + A = 
x +A. D 

Corollary. If (R, +,·,e) is a ring which is commutative and A is an ideal of R 
then (RI A, +, 7 , A) is a commutative ring. 

PRooF. Left to the reader. 0 

Having constructed the quotient ring we now wish to make good our claim 
that it is necessary to take A to be an ideal for the construction. 

Theorem. Any quotient ring of a given ring (R, +, ·, e) in which the binary 
operations are defined by representatives, i.e., 

xl"' + yl"' = (x + y)l"' 

xl"' 7 Yl"' = (xy)l"' 

must be (RI A, +, 7 , A) for some ideal A of R. 

PROOF. Let RI"' be a quotient set of R which is a ring with respect to the 
binary operations +, 7 as defined in the hypothesis. Because the binary 
operations are well defined the following two statements hold: 

x "' x' and y "' y' imply x + y "' x' + y' 

x "' x' and y "' y' imply xy "' x'y' for all x, y, x', y' ER. 

We will use the hypothesis in this form. 
e1"' is clearly the neutral element of addition for the given quotient ring 

RI"'. We proceed to show that the set e1"' is an ideal of R. Let x, yE e1"'. 
X "' e and y "' e. X + y "' e + e = e. X + yE e1"'. e1"' is closed under 
addition in R. Let xeel-. X"' e. -X"' -X. X+ (-x)"' e + (-x). 
e "' (- x). - x e e1"'. e1"' is closed under negation. Next we consider prod­
uct closure. Let X, yE e1"'. X "' e and y "' e. xy "' ee = e. xy E e1"'. This 
shows so far that e1"' is a subring of R. Now let rE R and x E e1"'. x "' e 
and r "' r. xr "' er and rx "' re. xr "' e and rx "' e. xr E e I"' and rx E e I"' . 
We have showed that e1"' is an ideal of R. Denote this ideal with the letter B. 

x "' y if and only if x + (- y) "' y + (- y) if and only if x - y "' e if 
and only if x - ye e1"' if and only if x - ye B. The given equivalence 
relation "' defining the quotient set RI- is exactly the same as the equiva­
lence relation generated by the ideal B. It follows that the quotient set Rl­
is identical with the quotient set RIB. Thus the quotient ring (RI-, +, 7 , 

e1-) = (RIB, +, 7 , B). D 

EXAMPLE. n7L. is an ideal of (7L., +, ·, 0) and therefore (7Lin7L, +, 7 , n7L.) is a 
quotient ring. We abbreviate lln7L with 7L.n, which is general usage. The 
quotient ring Zn has exactly n members. 1Ln = { nl, 1 + n7L., 2 + n7L., ... , 
n - 1 + nl}. In the theory of numbers 7L.n is called the residue class ring of 
integers modulo n or simply the integers modulo n. The equivalence relation 
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defining the quotient ring Zn is called Congruence and written X = y modulo 
n meaning x - y E nZ. We shall also denote Zn by {0, I, 2, ... , 11=1} to 
give a shorter notation for the cosets. 

QUESTIONS 

1. Let 7l.6 be denoted by {0, I, 2, 3, 4, 5} in which m = m + 67l.. Which of these state-
ments are true? 

(A) The multiplicative inverse of4 is 3. 
(B) The multiplicative inverse of 5 is I. 
(C) The additive inverse of2 is 3. 
(D) The multiplicative inverse of5 is 2 + 3. 

(E) None of the four statements is true. 

2. Let <R, +,·,e) be a ring. S is a subring of R implies 
(A) SuR= S 
(B) e E S n R 
(C) ss<;; s 
(D) S + S = S. 

(E) None of the four choices completes a true sentence. 

3. Let S be a subring of the ring <R, +, ·, e, v), a unitary ring. If the multiplicative 
unity v belongs to S then 

(A) SS= S 
(B) RS c;; S 
(C) R + R c;; S 
(D) R + S c;; S. 

(E) None of the four alternatives completes a true sentence. 

4. In the ring 7l. 12 the equation 4x = 3 has 
(A) no solution 
(B) one solution 
(C) two solutions 
(D) three solutions 
(E) four solutions. 

5. In the ring 7i. 12 the equation 4x = 4 has 
(A) no solution 
(B) one solution 
(C) two solutions 
(D) three solutions 
(E) four solutions. 

EXERCISES 

1. Give an example of a subring of a ring which fails to be an ideal. 

2. In 7l.6 which elements have multiplicative inverses and which do not? 

3. In 7l. 5 which elements have multiplicative inverses and which do not? 
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4. Find all solutions to these equations in 7..6 : 

(2 + 6Z)x = 4 + 67.. 
(2 + 6Z)x = 3 + 67... 

5. Find all solutions to these equations in 7..5 : 

(2 + 5Z)x = 4 + 57.. 
(2 + 5Z)x = 3 + 57... 

6. Prove that a field has but two ideals. Does a division ring have only two ideals? 

7. Give an example of a ring Rand a quotient ring R/A and an element rE R such that 
r is a nontrivial divisor of zero in R yet r + A is not a non trivial divisor of zero 
in RfA. 

8. Give an example of a ring Rand a quotient ring R/A and an element rE R such 
that r is not a nontrivial divisor of zero in R yet r + A is a nontrivial divisor of 
zero in R/A. 

9. Let Z[X] stand for the set of all polynomials with integer coefficients (cf. Exercise 7 
of Section 2.4). Show that the subset of all polynomials with even coefficients is a 
subring of the ring of all polynomials with integral coefficients. 

2.7 Morphisms and quotient rings 

In this section we prove the fundamental morphism theorem for rings and 
define kernel of a morphism. 

We will, in this section, be extending a number of theorems we proved 
for sets to rings. 

Theorem. Let (R, +, ·, (}) be a ring and A an ideal of R. Then the quotient 
map cp: R -+ R/ A is an epimorphism. 

PRooF. The quotient map of a set into its quotient set is a function which 
sends each element of R into its containing coset. cp:R-+ RfA is a surjection 
such that cp(x) = x + A. cp(x + y) = x + y + A = (x + A) + (y + A) = 
cp(x) + cp(y). cp(xy) = xy + A = (x + A) 7 (y + A) = cp(x) 7 cp(y). D 

Associated with every morphism f: R -+ R' are two distinguished sets. the 
kernel off and the range off. We have previously defined the range off and 
proved it to be a subring of R'. We now define the kernel of f. 

Definition. Let f:R-+ R' be a morphism of the rings (R, +, ·, (}) and 
(R', + ', ·', (}'). By definition kernel f = {xlx eR and f(x) = 0'}. 

Theorem. Let f:R-+ R' be amorphism of the rings (R, +, ·,(})and (R', +', 
·', 0'). Then kernel f is an ideal of R. 

PROOF. Letx,yekerf.f(x) = O'andf(y) = O'.f(xy) = f(x)f(y) = 9'0' = 0'. 
xyekerf. f(x + y) = f(x) +' f(y) = 0' + 0' = 0'. x + yekerf. f(-x) = 
- f(x) = - (}' = (}'. - x e ker f. f(9) = 0'. (} e ker f. ker f =ft 0. Let re R 
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and x E ker f. f(rx) = f(r)f(x) = f(r)() 1 = () 1
• rx E ker f. f(xr) = f(x)f(r) = 

()'j(r) = () 1
• xr E ker f. D 

ExAMPLE. The quotient map qJ:?l..--+ 7!.. 7 is ({J(x) = x + 77!... The morphism 
f:?l.. --+ 7l.. such thatf(x) is the remainder upon dividing x by 7 has as its kernel 
the ideal 77!... 

We now prove the fundamental morphism theorem for rings which extends 
the results on set theory of Section 1.7 to the ring operations. 

Theorem. Let (R, +, ·, ()) and (R 1
, + 1

, ' 1, ()
1

) be rings and f:R--+ RI a 
morphism. Then there exist 

an ideal A; 
a quotient ring R/ A; 
an epimorphism ({J: R --+ R/ A; and 
a monomorphism f': R/ A --+ R 1

, such that f 1 o ({J = f. 

PROOF. From the fundamental morphism theorem for sets found in Section 
1.7 we can assert the existence of an equivalence relation y on R (xyy if and 
only if f(x) = f(y) ), a quotient set Rjy, a surjection ({J: R --+ Rjy such that 
({J(x) = xjy, and an injection f': Rjy --+ R 1 such that f'(xjy) = f(x) and with 
f' o ({J = f. What remains to prove or establish are the various algebraic or 
operational properties claimed in the conclusion of the theorem. 

We define A to be {xjx ER and f(x) = ()1}. A is therefore the kernel off 
and an ideal of R. This ideal defines a quotient ring R/A. xyy if and only if 
f(x) = f(y) if and only iff(x) - f(y) = () 1 if and only iff(x - y) = () 1 if and 
only if x - y E A. Thus the quotient ring R/ A is identical with the quotient 
set Rjy with xjy = x + A for all x E R. Writing the defining equations for ({J 

and f' in algebraic notation we have qJ:R--+ R/A such that ({J(x) = x + A 
and f':R/A--+ R 1 such that f'(x + A)= f(x). We have previously verified 
that the quotient map is amorphism and now we verify that f' is amorphism. 
f'( (x + A) + ( y + A)) = f'(x + y + A) = f(x + y) = f(x) + 1 f( y) = 
f'(x + A) + 1 f'(y + A). f'( (x + A) 7 (y + A)) = f'(xy + A) = f(xy) = 
f(x) ,I f(y) = f'(x + A) , f'(y + A). 0 

Corollary. Letf:R--+ RI be amorphism of the rings (R, +, ·,())and (R 1, + 1, 

,, ()
1
). Then there exists an isomorphism f': R/(ker f) --+ range f. 

PROOF. By restricting the codomain of f':R/A--+ RI from RI to f(R), the 
range off, the monomorphism f' will become a surjection also, making it 
an isomorphism. The ideal A is the kernel of f. 0 

QUESTIONS 

1. For a morphismf:R-> R' of rings (R, +, ·, 8) and (R', +', ,, 8') which of these 
statements are true? 

(A) ker f s; range f. 
(B) R/ker f = {x + ker fixER}. 
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(C) { 0} ~ ker f ~ R. 
(D) f(ker f) = {0'}. 
(E) r 1(R') = r 1(range f). 

2. The function f: .Z --+ z. such that f(x) = x + n.Z 
(A) is an epimorphism 
(B) has kernel equal to n.Z 
(C) is a quotient map 
(D) is a monomorphism 
(E) is identical with the function g:.Z--+ z. such that g(x) = nx + n.Z. 

3. Which of the following are subrings of the ring 21':? 
(A) 1':2 
(B) 1':4 
(C) 1':3 
(D) 61':. 

(E) None of the four is a subring of 21':. 

4. If R, R', R" are rings and f:R--+ R', g:R'--+ R" then 
(A) f and g monomorphic imply g of monomorphic 
(B) f and g epimorphic imply g o f epimorphic 
(C) g of epimorphic implies g epimorphic 
(D) g of monomorphic implies g monomorphic 
(E) g o f epimorphic implies f epimorphic 
(F) g o f monomorphic implies f monomorphic. 

5. According to the fundamental morphism theorem if we have given a morphism 
p1: .Z x .Z --+ .Z such that p1 (xi> x2 ) = x1 then there exist morphisms <p and PI 
such that 

(A) ker p1 = {0} x .Z 
(B) PI : (.Z X .Z)/( { 0} X .Z) --+ .z 
(C) pl((xl>x2 ) + {0} x .Z) = x1 

(D) PI o cp = P1 
(E) cp( (xi> x2 ) + {0} x .Z) = (x1 , x2 ). 

EXERCISES 

1. Let f:R--+ R' be a ring morphism. Prove f is a monomorphism if and only if 
ker f = {0}. 

2. Show that the only morphisms .Z --+ 1':4 are f(x) = 0 and g(x) = x. 

3. Show that the only morphisms .Z --+ 1':6 are f(x) = 0, g(x) = x and h(x) = 3x. 

4. Let m be different from 0 and 1 and belong to N. Show that f:.Z--+ z. such that 
f(x) = mx is amorphism if and only if n = m(m - 1). 

5. Let f: R --+ R' and g: R' --+ R" be ring morphisms. Prove ker f ~ ker(g o f) and 
range(g of) ~ range g. 

6. Given f:R--+ R' and g:R--+ R', both ring morphisms, we define f x g:R x R --+ 
R' x R' such that (f x g)(x1, x2 ) = (f(x1), g(x2 ) ). 

(a) Prove f x g is a morphism. 
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(b) Prove ker(f x g) = ker f x ker g. 

(c) Prove range(f x g) = range f x range g. 

(d) Prove f x g is a monomorphism if and only if f and g are morphisms. 
(e) Prove f x g is an epimorphism if and only if f and g are epimorphisms. 
(f) Prove (R x R)/(ker f x ker g) is isomorphic with (R/ker f) x (R/ker g). [Hint: 

Define a function F:R x R--+ (Rjker f) x (Rjker g) such that F(x1, x2 ) = 

(x1 + ker f, x2 + ker g) and use the fundamental morphism theorem. 

7. Show that Z6 and Z2 x Z3 are isomorphic rings. 

8. Show that Z4 and Z2 x Z2 are not isomorphic rings. 

9. Find all morphisms Z --+ Z x Z. 

10. Find all morphisms Z x Z --+ Z. 

2.8 Ideals 

In this section we develop relationships between special kinds of ideals and 
special kinds of quotient rings. 

We call any ideal which is not the entire ring itself a proper ideal of the 
ring and we call any ideal which is not the ideal consisting exactly of zero, 
{ 8}, a non trivial ideal. Alternatively, we call R the improper ideal of R and 
call { 8} the trivial ideal of R. 

We notice there is an order on any collection of ideals, the order of set 
inclusion that exists on any collection of sets. 

ExAMPLE. The following statements of order about the set of ideals ofZ: are all 
true. 4Z: s; 2Z:. 2Z: 't 3Z. 3Z: 't 2Z. One moral here is that not every pair 
of ideals are comparable with respect to inclusion; this order is often called 
partial for this reason. 

Definition. An element M of an ordered set ({5 is a maximal element of ({5 if 
and only if no other element of ({5 is strictly larger than M. 

ExAMPLE. Both 2Z: and 3Z: are maximal ideals in the set of all proper ideals 
of Z:. 2Z: is not called a maximum ideal because there are ideals, namely 3Z:, 
which it does not surpass. The noncomparability of certain pairs permits 
this differentiation between the terms maximum and maximal. 

Lemma. An ideal A of a unitary commutative ring (R, +, ·, 8, v) is proper if 
and only if v rJ A. 

PROOF. Suppose v rJ A. Then clearly A =1= R and A is proper. For the con­
verse suppose v E A. A s; R. We now prove A = R by proving R s; A. 
Suppose r E R. Then rv E A. r E A. D 

Theorem. Let A be an ideal of a unitary commutative ring (R, +, ·, 8, v). 
Then A is a maximal proper ideal of R if and only if Rj A is a field. 
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PRooF. First, we assume A is an ideal of Rand that R/A is a field. We wish 
to demonstrate that A is a maximal proper ideal of R. Let B be any ideal of 
R strictly larger than A: A c B £ R. There exists an element b E B such that 
b ~ A. There is an element c ER such that (b + A)(c + A) = v + A because 
R/ A is a field and b + A # A. be - v E A. be - v = a for some a E A. 
v =be- a. Since beE B andaEBwehave vE B. B = R. Thus A is a maximal 
ideal of R. A is proper because R/ A must have a unity v + A different from 
A implying v ~ A. 

For the converse, assume A is a maximal proper ideal of R. A # R implies 
v ~ A which implies v + A # A. The unity ofthe quotient ring R/ A is different 
from the zero. We now demonstrate the existence of multiplicative inverses in 
R/ A. Let x + A E R/ A and x + A # A. x ~ A. Consider the set { rx + aJr E R 
and a EA}. This set is an ideal of R containing A yet not equal to A. It is, 
therefore, R itself. Hence v E {rx + aJr ER and a EA}. v = r'x + a' for some 
r' ER, a' EA. r'x - v EA. (r' + A)(x + A) = r'x + A = v + A. This, with 
commutativity, proves r' + A to be the multiplicative inverse of x + A in 
the quotient ring R/ A. R/ A is a field. 0 

EXAMPLES. Both 7L 2 = 7L/27L and 7L 3 = 7Lj37L are fields and 27L and 37L are 
maximal ideals of 7L. 7Lj47L is not a field and 47L is not a proper maximal ideal 
of 7L. 47L c 27L c 7L. 

We now introduce another special ideal. 

Definition. An ideal A of a ring (R, +, ·, fJ) is prime if and only if xy EA 
implies x E A or y E A. 

Theorem. Let (R, +, ·, fJ, v) be a unitary commutative ring and A be a proper 
ideal of R. Then A is prime if and only if R/ A is an integral domain. 

PROOF. Assume A is a proper prime ideal of R. We can furthermore take 
v # fJ because R = {fJ} has no proper ideals. Let (x + A)(y + A) = A. 
xy + A = A. xy E A. x E A or y E A. x + A = A or y + A = A. Further­
more since A is proper, v ~ A implyin& v + A # A. R/ A is an integral domain. 

To prove the converse assume R/A is an integral domain. Let xy EA. 
xy + A = A. (x + A)(y + A) = A. x + A = A or y + A = A. x E A or 
y E A. A is a prime ideal. 0 

Theorem. Let (R, +, ·, fJ, v) be a commutative ring with unity. Then every 
maximal proper ideal of R is a prime ideal. 

PRooF. If A is a maximal proper ideal of R then R/ A is a field. If R/ A is a 
field then R/ A is an integral domain. If R/ A is an integral domain then A is 
a prime ideal. 0 

We will now define the ideal (S) generated by a setS in a way analogous 
to the way the subring [S] generated by a setS was defined. 
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Theorem. Let (R, +, ·, 0) be a ring and Sa subset of R. Then (S) = n {AlA 
is an ideal of R and S s;;; A} is an ideal of R and is the smallest ideal of R 
containing S. 

PROOF. The proof is left to the reader. 0 

Definition. Let (R, +, ·, 0) be a ring and Sa subset of R. We define (S) to 
be the ideal generated by the set S. 

EXAMPLE. In 7!.., (2) = 27!.. and (2, 3) = 7!... In 7!.., (27!.. u 37!..) = 7!... In IQ, 
(7!..) = IQ whereas [7!..] = 7!... 

QUESTIONS 

1. 27L and 37L are noncomparable with respect to inclusion because 
(A) 27L n 37L = 0 
(B) 27L v 37L = 7L 
(C) 21 E 37L and 21 ~ 27L and 8 ~ 37L and 8 E 27L 
(D) both ideals are maximal proper ideals of 7L. 

(E) None of the four conditions are relevant. 

2. m7L s;; nlL if and only if 
(A) m = kn for some k E 7L 
(B) n = km for some k E 7L 
(C) mn = 1 
(D) mlL v nlL = nlL. 

(E) None of the four possibilities completes a true sentence. 

3. Which of the following imply 67L is a prime ideal of lL? 
(A) 3 · 2 E 67L and 3 ~ 67L and 2 ~ 67L. 
(B) 67L c 27L c lL. 
(C) 67L c 37L c lL. 
(D) 127L c 67L c lL. 

(E) None of the four imply 67L is a prime ideal of 7L. 

4. Which of these statements are true? 
(A) 67L is a prime ideal of the ring 27L. 
(B) 67L is a maximal ideal of the ring 27L. 
(C) There are ideals strictly between (c) 67L and 27L. 
(D) 2 is a unity for 27L. 

(E) None of the four statements is true. 

5. Which of the following statements are true? 
(A) A trivial ideal is impro{ler. 
(B) An improper ideal is trivial. 
(C) A proper ideal is not trivial. 
(D) There exist nontrivial ideals which are proper. 

(E) None of the four statements is true. 
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EXERCISES 

1. Give an example of a ring other than Z and a proper non trivial ideal of that ring. 

2. Show { m2 + n6jm, n E Z} to be an ideal of Z. 

3. Show that 3Z is a maximal proper ideal of Z. 

4. If A and B are ideals of ( R, +, ·, 6) prove A n B and A + B are ideals of R. Prove 
A + B is the smallest ideal containing both A and B. Prove A n B is the largest 
ideal contained in both A and B. 

5. If K and L are fields prove that the product ring K x L cannot be a field. Find all 
the ideals of K x L. 

6. Prove that if (R, +, ·, 6, v) is a unitary commutative ring with exactly two ideals 
then R is a field. 

7. Show that the ring (ozxz, +, ·, (~ ~)) has exactly two ideals but is not a field 

nor a division ring. 

8. Prove that if (R, +, ·, 6, v) is a commutative unitary ring then Ra = {rajreR} 
is an ideal of R for all a ER; moreover, (a) = Ra. 

9. Give an example of a ring (R, +, ·, 6) (noncommutative) with a set Ra which is 
not an ideal of R. 

10. Give an example of a commutative ring Rand an element a ER such that (a) # 
Ra. 

11. Let a1, a2 , ••• , an be a finite number of elements in a commutative ring (R, +, 
·, 6). Show that Ra1 + Ra2 + · · · +Ran = {r1a1 + rza2 + · · · + rnanh• ... , 
rn ER} is an ideal of R. Need a1 belong to the ideal? 

12. Find all the ideals of Z x Z. 

13. An ideal that is generated by a single elen/tent of a ring is called a principal ideal; 
i.e., A is principal if and only if A = (a) for some a ER. 
(a) Show that the image of any ideal under amorphism is an ideal. 
(b) Show that the preimage of an ideal under amorphism is an ideal. 
(c) Show that the image of a principal ideal under amorphism is a principal ideal. 
(d) Show that the preimage of a principal ideal under amorphism is not necessarily 

principal. 

14. Let (R, +, ·, 6) be a ring. Prove that C = { xjx ER and xy = yx for all yE R} 
is a subring of R. Prove that C is not necessarily an ideal by considering the example 
R = z_2x2. 
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Rings: 
Natural numbers 

and integers 3 

The positive whole numbers are undoubtedly the oldest and most primitive 
objects of all mathematics. They formed, and still form, the basis from which 
all other mathematics sprang. Zero appeared upon the mathematical scene 
later. The natural numbers are so much the genesis of all mathematics that 
the 19th century mathematician Leopold Kronecker was led to say that God 
created the natural numbers and man created everything else in mathematics. 
The axiomization presented in this chapter ofthe natural numbers is credited 
to Giuseppe Peano, another of the great 19th century mathematicians who 
reworked and solidified the foundations of our number systems. The whole 
numbers as a key and insight to the nature of the universe were recognized 
by the Pythagoreans in the 6th centuryB.C. When Pythagoras said, "All is 
number," he meant the positive integers. 

The Peano development of the natural numbers (we include zero with 
the positive whole numbers in our set N) is a grand sequence of exercises in 
mathematical induction. Mathematical induction and the natural numbers 
are inseparable. A student of mathematics needs to master the technique of 
mathematical induction and feel perfectly comfortable with it. Mathematical 
induction to the student of mathematics should be as intuitively evident as 
the most obvious theorems of geometry or manipulations of algebra. 

From the foundation of the natural number system we move in Section 3.5 
to a construction of the integers. We adjoin the negative whole numbers to 
the natural numbers and build of the union the integers. Historically the 
negative numbers were nowhere so obvious to mankind as the positive ones. 
The name, negative, hardly indicates an affirmative attitude towards such 
numbers. Negative numbers as solutions to equations were still being rejected 
at the time of the Renaissance and even Rem~ Descartes in his analytical 
geometry did not see fit to accord negative numbers full status. By the time 
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ofKarl Friedrich Gauss, however, the integers as a number system including 
the negatives were fully established. Gauss called the study of the integers, 
or number theory as it is now known, the queen of mathematics. We construct 
in this chapter the integers from the natural numbers and then study the 
ring and order properties of the integers. 

If the reader wishes to know the content of the chapter without engaging 
fully the details it is quite possible to read and understand the statements of 
the theorems; they are intuitively evident; they deal with familiar properties 
of familiar objects. 

3.1 The Peano axioms 
In this section are presented the Peano axioms for the natural numbers 

and definition by induction is discussed. 
The set of natural numbers is the set we intuitively know as { 0, 1, 2, 3, 4, ... } , 

the set of positive whole numbers and zero. Our aim is to analyze and to 
describe more precisely this set. We shall utilize the very important concept 
of mathematical induction. 

Starting with a knowledge of set theory it is possible (with appropriate 
axioms) to construct a model of the natural numbers. This is to say, certain 
sets are generated which, for all intents and purposes, can be used as natural 
numbers after operations are appropriately defined for them. This construc­
tion of the natural numbers in set theory begins with the empty set 0 as a 
model for the number zero and then proceeds to define 1 to be {0} = {0}. 
One must note that 0 and {0} are different sets because the first has no 
members and the second does have a member. The construction for 0, 1, 2, 3, 4 
proceeds as follows: 0 = 0, 1 = {0}, 2 = {0, 1 }, 3 = {0, 1, 2}, 4 = {0, 1, 2, 3}. 
Notice how these sets increase in size; 4 is not only fourth after zero but also 
contains 4 elements. 

So far the construction has produced only 0, 1, 2, 3, and 4. If we continue 
in this manner we can produce quite a few more natural numbers. We will 
never, however, succeed in completing the project by this means. We must 
find a means of describing the totality of all natural numbers by finite means. 
The process of description must terminate even though the set being described 
be infinite. 

We continue to analyze the construction. What is involved in this con­
struction is a starting set 0 and a mode of producing a successor which is 
repeated over and over. If we denote the successor of n by s(n) we may discover 
that the operation is s(n) = nu {n}. A computational check for 1, 2, and 3 
verifies the definition for those cases: 

1 = s(O) = 0 u {0} = 0 u {0} = {0}. 
2 = s(l) = 1 u {1} = {0} u {1} = {0, 1}. 
3 = s(2) = 2 u {2} = {0, 1} u {2} = {0, 1, 2}. 

The successor operation produces 1 from 0, 2 from 1, and 3 from 2. The 
successor of any number always contains some member that the number 
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3.1 The Peano axioms 

does not. The set of all the natural numbers, N, must not only contain 0, 1, 2, 
and 3 but also the successor of 3, and the successor of the successor of 3, and 
so forth. N must contain the starting set 0 and all of its successors. 

Oe N. 
If nE N then s(n) E N. 

These two conditions are a way of ensuring that all natural numbers are in 
N. There could be (and are), however, sets which satisfy both of these con­
ditions, contain all natural numbers, yet are too big because they contain 
other things besides natural numbers. This is to say that they are too large, 
yet satisfy the two conditions stated. We seek the natural numbers as the 
smallest set satisfying the two conditions. We achieve this end by saying that 
any subset S of N which satisfies (0 E S) and (n E S implies s(n) E S) must be 
all of N. This says that no setS smaller than N can satisfy the two conditions. 
This characterizes N as the smallest set containing 0 and all of its successors. 

In a formal exposition of set theory the general order of procedure is to 
assume (along with previously assumed axioms) some axiom of infinity 
strong enough to produce a set containing 0 and all of its successors and then 
to prove the existence of N. In summary, then, there exists a set N such that 

OeN 
n E N implies s(n) E N 

IfS £;;; Nand 0 E Sand (nE S implies s(n) E S) then S = N. 

It is then not difficult to prove that N also has the properties: 

s(m) = s(n) implies m = n 
s(n) =I= 0 for all n E N. 

The five conditions we have now listed are called Peano's axioms for the 
natural numbers. This completes our motivational sketch of how the natural 
numbers can be constructed within set theory. 

We reword the previously given Peano axioms so that they do not depend 
upon the particular set constructions used above. 

Axiom. There exist a set N; a member of N called 0; and an injections: N -+ N 
such that 0 (: range s and no proper subset S of N may have the properties 
0 E Sand (nE S implies s(n) E S). 

We comment on how the previously given set theoretic model of S satisfies 
this axiom. 0 is, of course, 0. The operation of taking set successors is the 
injection s. No set successor is 0 is equivalent to 0 (:range s. s(m) = s(n) 
implies m = n is the injective property of s. The statement that no proper 
subset S of N may have the properties 0 E S and (n E S implies s(n) E S) is 
known as the principle of mathematical induction. 

Working now from our axiom we intend to construct addition and 
multiplication on N by means of definition by induction, sometimes called 
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definition by recursion. Addition of natural numbers will be defined by this 
scheme: 

m+O=m 

m + s(k) = s(m + k). 

This is a two-step definition; it involves first defining the result of adding 
zero to a natural number m and second defining the result of adding the 
successor of k in terms of the result of adding k to m. This procedure for 
definition strongly resembles the principle of mathematical induction in 
starting the definition with 0 and then moving the definition along from k 
to the successor s(k). Some analysis of the situation reveals that we are in fact 
attempting to define a function from 1\1 to N. Let us denote the result of adding 
ntom(findingm + n)bya,(n).Thenwhatwerequireisafunctionocm:!\1 ~ 1\1 
such that a,(O) = m and a,(s(k)) = s(a,(k) ). This statement in terms of 1Xm 
is merely a notational change, but it makes it much clearer that we are trying 
to find a function with certain properties when we are trying to define addi­
tion. Is it possible to define a function with domain 1\1 merely by defining 
what is the image ofO and by defining the image of s(k) in terms of the image 
of k? Moreover, is the result unique when possible? Within set theory it can 
be established that the answer is yes in both parts. The proof utilizes the 
principle of mathematical induction but is quite involved. It suits our pur­
poses to take such a definition scheme as an axiom. 

Axiom. Let some set X be given as well as some element a of X and a function 
f:X ~ X. Then there exists one and only one function t: 1\1 ~ X such that 
t(O) = a and t(s(k)) = f(t(k) ). (Figure 3.1 may help in picturing the 
situation.) 

X 

f 

Figure3.1 

QUESTIONS 

1. Considering the model of the natural numbers discussed in this section, 0 = 0, 
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1 = {0}, 2 = {0, 1 }, 3 = {0, 1, 2}, we have 2 i' 1 because 
(A) 1 E 2 and 1 j 1 
(B) 1 s;;; 2 
(C) 2 cJ. 1 
(D) s(2) = 1. 

(E) None of the alternatives completes a true sentence. 



3.2 Addition of natural numbers 

2. Every natural number can be the successor of at most one natural number because 
(A) s: 1\1 -+ 1\1 is not a surjection 
(B) s: 1\1 -+ 1\1 is an injection 
(C) 0 is a member of every natural number 
(D) natural numbers are sometimes unnatural. 

(E) None ofthe choices completes a satisfactory sentence. 

3. 0 is not the successor of any natural number because 
(A) n E 1\1 implies s(n) E 1\1 
(B) 0 rf: range s 
(C) s is an injection 
(D) s(N) v 1\1 = 1\1. 

(E) None of the choices completes a satisfactory sentence. 

4. Let t be a function from 1\1 to 1\1 such that t(O) = 4 and t(s(k)) = t(k) + 3. Which 
of these statements are correct? 

(A) t(l) = 0. 
(B) t(2) = 5. 
(C) t(t(O)) = 16. 
(D) t(4) = 0. 

(E) None of the statements is correct. 

3.2 Addition of natural numbers 

This section treats addition of natural numbers and its properties. 
This first theorem amounts to a definition of addition of natural numbers. 

Theorem. For each m E N there exists a unique function a,: N ~ N such that 
QCm(O) = m and QCm(s(k)) = s(a,(k) ). 

PRooF. We apply the axiom for definition by induction of Section 3.1. The 
role of f in the general statement is played by the succession function 
s:N ~N. D 

As defined for each m E N the function QCm: N ~ N is a unary operation on 
N. We use all these unary operations, one for each me N, to define one binary 
operation QC: N ~ N. 

Definition. We define addition on the natural numbers to be the binary opera­
tion QC: N x N ~ N such that QC(m, n) = QCm(n). 

Once having defined QC we now return to the conventional notation for 
addition; we denote QC(m, n) by m + n and s(O) by 1. The statements in the 
following theorem will be a translation into conventional notation of the 
facts we have at hand. 

Theorem. + is a binary operation on N. m + 0 = m for all mE N. s(n) = 

n + 1 for all nE N. m + (n + 1) = (m + n) + 1 for all m, ne N. 
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PRooF. cx,.(O) = m translates into m + 0 = m. cx,.(s(O)) = s((l(m(O)) translates 
into m + s(O) = s(m + 0). Using the symbol1 for s(O) and replacing m + 0 
by m we have m + 1 = s(m). cx,.(s(n)) = s(cx,.(n)) is true for all m, ne ~.This 
translates into m + (n + 1) = (m + n) + 1. D 

It should be observed that the use of m + 1 for s(m) is only possible after 
the addition is defined. 

We turn now to the usual theorems on binary operations. 

Theorem. Addition of natural numbers is. associative. 

PRooF. We must demonstrate that (m + n) + p = m + (n + p) for all m, 
n,p E ~. WeletSbethesubsetofallnaturalnumberspforwhich the equation 
(m + n) + p = m + (n + p) for all m, n E ~ is true. S = {PIP E ~ and 
(m + n) + p = m + (n + p) for all m, nE ~}. Our procedure is to use the 
principle of mathematical induction to show that S = ~. We do this by 
showing that 0 e Sand k e S implies s(k) e S. For s(k) we can use k + 1. 

(m + n) + 0 = (m + n) = m + n = m + (n + 0) using the already estab­
lished result that when 0 is added on the right to any natural number the 
number itself is the sum (0 is a right neutral element of addition). We conclude 
OeS. 

It will be of use to us to refer to the equation 

(m + n) + 1 = m + (n + 1) for all m, nE ~ (*) 

which we established earlier. We now assume k E S, that is to say, (m + n) + 
k = m + (n + k) for all m, ne N. We proceed to prove the appropriate 
equation for k + 1. 

(m+ n) + (k + 1) =(m+ n) + [k + 1] = [(m+ n) + k] + 1 

= [m+ (n + k)] + 1 = m+ [(n + k) + 1] 
= m + [n + (k + 1)] for all m, nE~. 

The second, fourth, and fifth equality are because of equation (*). Thus 
k + 1 E S. Upon an assumption of k E S we have proved k + 1 E S. k E S 
implies k + 1 E S. S = ~ and the theorem is proved. 0 

It is important to remember that in a proof by mathematical induction that 
it is implication k E S implies k + 1 E S that must be proved and not k E S 
or k + 1.e S separately. 

In order to demonstrate the commutativity of addition it is efficient to 
prove first several lemmas. 

Lemma. 0 + m = m for all mE ~. 

PRooF. Let S = {miO +m= m}. 0 E S because 0 + 0 = 0. We assume 
k e S; 0 + k = k. Then 0 + (k + 1) = (0 + k) + 1 = k + 1. k + 1 E S. 
S = ~. D 
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The previous lemma together with the definition of addition establishes 
0 as the neutral element of addition. 

Lemma. 1 + m = m + 1 for all m E N. 

PROOF. LetS= {ml1 +m= m+ 1}.0eSbecause 1 + 0 = 1 andO + 1 = 1. 
Assume k E S. 1 + k = k + 1. 1 + (k + 1) = (1 + k) + 1 = (k + 1) + 1. 
k + 1 E S. s = N. 0 

With these two preliminary results out of the way we can take on the 
general theorem on commutativity. 

Theorem. n + m= m+ nfor all m, nE N. 

PROOF. LetS= {nln +m= m+ nforallmE N}.OeSbecauseO +m= 
m+ OforallmE N.AssumekeS.k +m= m+ kforallmE N.(k + 1) + 
m = k + (1 + m) = k + (m + 1) = (k + m) + 1 = (m + k) + 1 
m + (k + 1) for all mE N. k + 1 E S. S = N. 0 

QUESTIONS 

1. Which of these statements are correct? 
(A) 1Xm(s(k)) = s(1Xm(k) ). 
(B) 1Xm(O) = m. 
(C) 1X(m, n) = a:m(n). 
(D) IX(O, n) = n. 

(E) None of the statements is correct. 

2. The statement 1Xm(s(n)) = s(CXm(n)) for all nE N means 
(A) IX is an injection 
(B) s is an injection 
(C) m + (n + 1) = (m + n) + 1 for all nE N 
(D) addition of natural numbers is commutative. 

(E) None of the alternatives completes a satisfactory sentence. 

3. Addition of natural numbers is commutative is equivalent to 
(A) 1X(m, n) = IX(n, m) for all m, nE N 
(B) 1Xm(n) = IX.(m) for all m, nE N 
(C) 1Xm(s(n)) = s(1Xm(n)) for all m, nE N 
(D) 1Xm(1X.(p)) = 1Xm(1Xp(q)) for all p, q E N. 

(E) None of the choices completes a true sentence. 

4. In this list of results from Section 3.2, which result is out of the order of presentation? 
(One answer only.) 

(A) Definition of 1Xm. 
(B) Definition of IX. 
(C) Commutativity of addition. 
(D) Associativity of addition. 
(E) 0 is a left neutral element of addition. 
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3.3 Multiplication of natural numbers 

In this section the definition of multiplication is given and its important 
properties are proved. 

Having defined addition for N and having proved it associative and com­
mutative and having established the existence of a neutral element of addition, 
0, we now turn our attention to multiplication. The guiding equations for 
the definition will be 

m·O = 0 

m· (n + 1) = m· n + m. 

These equations give sufficient information to use in the axiom for definition 
by mathematical induction. We use a function construction like the one used 
for addition. We let f.lm(n) represent the product (not yet defined) of m by n. 

Theorem. For each m E N there exists a unique function f.1m: N --+ N such that 

f.lm(O) = 0 

f.lm(s(k)) = f.lm(k) + m. 

PROOF. This is an application of the axiom of definition by induction in 
which X = N, t = f.1m, and f(x) = x + m. D 

Definition. We define multiplication of natural numbers to be the binary 
operation 11: N x N --+ N such that f.1(m, n) = f.lm(n). 

By discarding f.1 and replacing it with the conventional notation m · n or 
mn for product we get the following results. 

Theorem. m· 0 = 0 for all mE N. m(n + 1) = mn + m for all m, nE N. 
m · 1 = m for all m E N. 

PROOF. The equation f.lm(O) = 0 translates into m· 0 = 0. The equation 
f.lm(s(n)) = f.lm(n) + m translates into m(n + 1) = mn + m. When n = 0 this 
reduces to m 1 = m. D 

The first theorem in developing the properties of multiplication is the left 
distributive law. 

Theorem. m(n + p) = mn + mp for all m, n, p E N. 

PROOF. Let S = {plm(n + p) = mn + mp for all m, nE N}. m(n + 0) = 
mn = mn + 0 = mn + m · 0 for all m, n E N proves 0 E S. Now assume 
k E S. m(n + (k + 1)) = m( (n + k) + 1) = m(n + k) + m = (mn + mk) + 
m = mn + (mk + m) = mn + m(k + 1). k + 1 E S. S = N. D 

We continue with the associative law for multiplication. 
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3.3 Multiplication of natural numbers 

Theorem. m(np) = (mn)p for all m, n, p E N. 

PROOF. LetS = {pim(np) = (mn)p for all m, nE N}. m(n · 0) = m· 0 = 0 = 
(mn)O establishes 0 E S. Let k E S. (mn)(k + 1) = (mn)k + mn = m(nk) + 
mn = m(nk + n) = m(n(k + 1) ). k + 1 E S. S = N. 0 

We have thus far proved multiplication of natural numbers to be asso­
ciative and that the left distributive relation holds. We now begin work on 
the right distributive law. 

Lemma. 0 ·m = Ofor all mE N. 

PROOF. LetS = {miO ·m = 0}. 0 E S because 0 · 0 = 0. Assume k E S; that 
is, assume 0 · k = 0. O(k + 1) = 0 · k + 0 · 1 = 0 + 0 = 0. k + 1 E S. 
S =N. o 

Lemma. 1 · m = m for all mE N. 

PROOF. Let S = {ml1 ·m= m}. 1 · 0 = 0 implies 0 E S. Assume k E S. 
1 . (k + 1) = 1 . k + 1 = k + 1. k + 1 E S. s = N. 

Theorem. (m + n)p = mp + np for all m, n, p E N. 

PROOF. Let S = {Pi(m + n)p = mp + np for all m, nE N}. (m + n)O = 
0 = 0 + 0 = m· 0 + n · 0 implies 0 E S. Assume k E S; that is, assume 
(m + n)k = mk + nk for all m, n E N. (m + n)(k + 1) = (m + n)k + 
(m + n) = (mk + nk) + (m + n) = (mk + m) + (nk + n) = m(k + 1) + 
n(k + 1) for all m, nE N. k + 1 E S. S = N. 0 

Finally we establish the commutativity of multiplication. 

Theorem. mn = nm for all m, n E N. 

PROOF. Let S = {mimn = nm for all nE N}. 0 · n = 0 = n · 0 yields 0 E S. 
Assume kn = nk for all nE N, which is to say, k E S. n(k + 1) = nk + n = 
kn + 1 · n = (k + 1)n. k + 1 E S. S = N. 0 

In summary, we have defined N, the set of natural numbers, two binary 
operations on N called addition and multiplication, proved both associative 
and commutative, proved that multiplication is distributive with respect to 
addition, and proved that 0 and 1 are respectively neutral elements of addi­
tion and multiplication. 

QUESTIONS 

1. Which of the following statements are correct? 
(A) Jlm(O) = 0. 
(B) Jlm(s(k)) = Jlm(k) + m. 
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(C) p(m, n) = Jtm(n). 
(D) Jtm(s(k)) = ll(Jtm(k), m). 

(E) None of the statements is correct. 

2. m(n + p) = mn + mp for all m, n, p E N 
(A) is the left distributive law for natural numbers 
(B) is the right distributive law for natural numbers 
(C) has a proof which depends upon the commutative law of multiplication 
(D) is the associative law for multiplication. 

(E) None of the alternatives completes a true sentence. 

3.4 Further properties of N 

In this section we complete our natural number constructions with some 
cancellation laws and related properties. 

We begin by showing additive cancellation to be always possible in N. 

Theorem. m + p = n + p implies m = n for all m, n, peN. 

PRooF. LetS= {vim+ p = n + pfor all m, ne N}. Oe Sbecause m+ 0 = 
n + 0 implies m = n. m + 1 = n + 1 implies m = n because the successor 
functionisaninjection.NowassumekeS.m + (k + 1) = n + (k +!)implies 
(m + k) + 1 = (n + k) + 1 which implies m + k = n + k which in turn 
implies m = n. k + 1 e S. S = N. D 

Although additive cancellation is always possible most natural numbers 
do not have negatives (cf. Exercise 3 of this section). 

Our axiom for N contains the information that 0 is the successor of no 
natural number. We now prove every nonzero natural number is the suc­
cessor of some (other) natural number. 

Theorem. If m # 0 and m e N then m = p + 1 for some p e N. 

PROOF. In order to use induction a little twist is needed in the setting of S. 
LetS = {mlm = p + 1 for some peN or m = 0}. 0 e S because S is defined 
in such a manner to contain 0. Now assume k e S. k = p + 1 for some 
p e N or k = 0. If k = p + 1 then k + 1 = (p + 1) + 1. Since p + 1 e N 
we have written k + 1 as some natural number plus one. If, on the other hand, 
k = 0 then k + 1 = 0 + 1 which again is a natural number plus one. 
k + 1 e S in both cases. S = N. Our conclusion is that m = p + 1 for some 
p e N or m = 0 for all m e N. Since m # 0 is given in the hypothesis we 
conclude m = p + 1 for some p e N. D 

This result allows us to handle the proof on zero divisors to come without 
using induction again. 

Theorem. mn = 0 implies m= 0 or n = 0 for all m, ne N. 
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PROOF. The contrapositive of the statement to be proved is m =F 0 and 
n =F 0 imply mn =F 0. We prove this instead. Since m =F 0 and n =F 0 there 
existp,qENsuchthatm=p+ 1andn=q+ l.Thenmn=(p+ 1)(q+ 1)= 
(pq + p + q) + 1. mn is the successor of pq + p + q and therefore cannot 
be zero. D 

It was proved in Section 2.3 that in a ring multiplicative cancellation and 
no nontrivial zero divisors were equivalent conditions. That proof is inap­
plicable to N because N with its operations does not make a ring; the proof 
requires the existence of negatives. We must, therefore, produce a different 
proof for nonzero multiplicative cancellation for N. 

Theorem. mp = np and p =F 0 imply m = n for all m, n, p E N. 

PROOF. The setting of S requires the proper variable choice. LetS = { nimp = 
np and p =F 0 imply m = n for all m, pEN}. 0 E S because mp = 0 · p 
implies mp = 0. By the previous theorem m = 0 or p = 0. But p =F 0. There­
fore m = 0. 0 E S. 

Now let k E S. mp = kp and p =F 0 imply m = k for all m, p E N. Suppose 
mp = (k + 1)p and p =F 0. If m were 0 then (k + 1)p = 0 which is impossibk 
because neither k + 1 nor p is 0. Thus m cannot be zero. m = l + 1 for 
some lE N. (l + 1)p = (k + 1)p. lp + p = kp + p. Additive cancellation 
gives us lp = kp. Since k E S we have l = k. But then l + 1 = k + 1. 
m = k + 1. This is the result we desired. k + 1 E S. S = N. D 

QUESTIONS 

1. Which of the following statements are true? 
(A) If a product of natural numbers is zero then one of the factors is zero. 
(B) Every natural number has a negative which is a natural number. 
(C) Multiplicative cancellation ofnonzero natural numbers is valid. 
(D) Every natural number is the successor of some natural number. 

(E) None of the statements is true. 

2. Which of the following statements are true? 
(A) For every nE N there exists mEN such that n = m + 1. 
(B) For every nE N there exists mE N such that m = n + 1. 
(C) For every nE N, n =I n + 1. 
(D) (u = s(p) for some pEN) and (uv = 0) imply v = 0. 
(E) m + p = n + p and p =1 0 imply m = n. 

EXERCISES 

1. Prove that N + = N - {0} is closed under addition; i.e., x, yE N +imply x + yE N +. 

2. Prove m + n = 0 implies m = 0 and n = 0 for all m, n E N. 

3. Prove that no natural number except 0 has a negative in N. 
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4. Prove 1\1 + is closed under multiplication. 

5. Prove that every natural number excepting 0 and 1 is p + 1 for some p E 1\1 +. 

6. Prove that mn = 1 implies m = 1 and n = 1 for all m, n E 1\1. 

7. Prove that no natural number except 1 has a reciprocal (multiplicative inverse) 
in 1\1. 

8. Find all functions f: 1\1 -+ 1\1 which preserve both addition and multiplication; i.e., 
f(x + y) = f(x) + f(y) and f(xy) = f(x)f(y) for all x, yE 1\1. 

9. A small study of additive functions on 1\1: 
(a) Find all f: 1\1 -+ 1\1 such that f(x + y) = f(x) + f(y). 
(b) Let E = {!Jf: 1\1 -+ 1\1 and f preserves + }. Show that there exists a bijection 

tp:J\1-+E. 

(c) Define for E an addition and multiplication so that tp preserves + and pre­
serves·. 

3.5 Construction of the integers 

In this section we construct the integers and prove they form an integral 
domain. 

Our intuitive knowledge ofthe integers as natural numbers together with 
their negatives makes it seem we can somehow adjoin the negatives of 
natural numbers to the natural numbers and extend the operations of addi­
tion and multiplication from the natural numbers to all cases of "positives" 
and "negatives." Such a straightforward approach is possible but leads to 
awkward proofs because one must constantly refer back to definitions by 
cases. The approach we actually use is less direct but we are more than 
compensated by the resulting ease of proof. We also win, in the bargain, a new 
mathematical technique with applications elsewhere. 

We begin with the set 1\J x 1\J with + and 0 defined as follows: 

(r, s) + (u, v) = (r + u, s + v) 

(r, s) 0 (u, v) = (ru + sv, rv + su). 

This construction was previously discussed in Exercise 5 of Section 2.3. 
The two binary operations are associative and commutative and 0 is distri­
butive with respect to +. (0, 0) is the neutral element of addition and (1, 0) 
is the neutral element of multiplication. (1\J x 1\J, +, 0, (0, 0)) fails to be a 
ring because only (0, 0) has a negative in 1\J x 1\J. We shall not go through 
the details of supporting these claims and refer the reader to Exercise 1. 

On the set 1\J x 1\J we define a relation y such that (x, y)y (u, v) if and only 
if x + v = y + u. That this relation y is an equivalence relation follows 
without difficulty. We propose, by making appropriate definitions of binary 
operations, to make 1\J x Njy into a ring much as was done with the quotient 
ring in Section 2.6. This construction differs from the construction of Rjy 
from R in that this time 1\J x 1\J is not a ring. 
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Our tack now is to drop temporarily our specific problem with N x N 
and to take a more general view of procedure. 

Definition. Given a set S and a binary operation f3 on S we say an equiva­
lence relation 1: on S is compatible with f3 if and only if xcx' and y~:y' 
imply (xf3y)~:(x'f3y') for all x, y, x', y' E S. 

Theorem. LetS be a set with a binary operation f3 and an equivalence relation 1:. 

Eis compatible with f3 if and only if 7J: (S/e) x (S/e)-+ Sje such that xje7Jyje = 
(xf3y)je is a binary operation on Sje. 

PROOF. xje7Jyje = (xf3y)je is well defined provided and only provided the 
definition is independent of the representatives chosen from the equivalence 
classes or cosets. In other words, 7J is well defined if and only if xj~: = x'je 
and yje = y' je imply (xf3y)je = (x' f3y')je. This condition is in turn equivalent 
to xex' and yey' imply (xf3y)e(x' f3y'). D 

EXAMPLE. In Section 2.6 the equivalence relation "' on R in the first theorem 
is compatible with both + and ·. 

We now apply the concept of compatible equivalence relation to our 
specific problem with y and <N x N, +, 0, (0, 0)). 

Theorem. The equivalence relation y on N x N, (x, y)y(u, v) if and only if 
x + v = y + u, is compatible with the binary operations + and D on 
N X N. 

PROOF. Suppose (r, s)y(r', s') and (u, v)y(u', v'), all members of N x N. Then 
r + s' = s + r' and u + v' = v + u'. (r + s') + (u + v') = (s + r') + (v + u'). 
(r + u) + (s' + v') = (s + v) + (r' + u'). (r + u, s + v)y(r' + u', s' + v'). 
[(r, s) + (u, v)]y[(r', s') + (u', v')]. y is compatible with +. 

For multiplication we suggest proving [(r, s) D (u, v)]y[(r', s') D (u, v)] and 
[(r', s') D (u, v)]y[(r', s') D (u', v')] and using the transitivity ofy for the result. 
For one, (r + s')u + (r' + s)v = (r' + s)u + (r + s')v. ru + sv + r'v + s'u = 
rv + su + r'u + s'v. (ru + sv, rv + su)y(r'u + s'v, r'v + s'u). [(r, s) D 
(u, v)]y[(r', s') D (u, v)]. D 

Corollary. + and 0 are binary operations on (N x N)jy where (r, s)jy + 
(u, v)jy = (r + u, s + v)jy and (r, s)jy 0 (u, v)jy = (ru + sv, rv + su)jy. 

Having established our binary operations for (N x N)/y we move to 
prove this theorem: 

Theorem. <(N x N)jy, +, [], (0, 0)/y, (1, 0)/y) is a commutative unitary ring. 
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PRooF. It remains to verify that every member of (N x N)/y has a negative 
in (N x N)jy. Let (x, y)jy e (N x N)/y. Then (x, y)jy + (y, x)jy = 
(x + y, y + x)jy = (0, 0)/y. 0 

Our next theorem utilizes a double induction. 

Theorem. ((N x N)/y, +. 0, (0, 0)/y, (1, 0)/y) is an integral domain. 

PRooF. Let (x, y)jy 0 (u, v)jy = (0, 0)/y. We must show (x, y)jy = (0, 0)/y 
or (u, v)jy = (0, 0)/y. In other words we must show xu + yv = xv + yu 
implies x = y or u = v for all x, y, u, v e N. 

LetS= {yixu + yv = xv + yu implies x = y or u = v for all x, u, v eN}. 
xu + yv = xv + yu implies xu + 0 = xv + 0 which implies x = 0 or 
u = v. x = y or u = v. The statement is true for y = 0. 0 e S. We now 
assume k e S. We intend to show that k + 1 e S; that is, xu + (k + 1)v = 
xv + (k + 1)u implies x = k + 1 or u = v for all u, v, x e N. In order to do 
this let T = {xixu + (k + 1)v = xv + (k + 1)uimpliesx = k + 1 oru = v 
for all u, v e N}. 0 e T since xu + (k + 1)v = xv + (k + 1)u implies 
0 + (k + 1)v = (k + 1)u which implies u = v. Assume le T. Suppose 
(l + 1)u + (k + 1)v = (l + 1)v + (k + 1)u.lu + u + kv + v = lv + v + ku + u. 
lu + kv = lv + ku. Since we have assumed k e S we have u = v or k = l. 
Thus u = v or k + 1 = l + 1. l + 1 e T. T = N. k + 1 e S. S = N. 0 

This completes the construction of the integral domain which will be the 
integers. 

QUESTIONS 

1. In the system ((N x 1\1)/y, +. [], (0, 0)/y, (1, 0)/y) constructed in this section 
(A) (x, y)fy + (u, v)fy = (x + u, y + v)fy 
(B) xu + yv = xv + yu implies x = y or u = v for all natural numbers x, y, 

U, V. 

(C) ( (x, y)fy)2 = (0, 0)/y implies (x, y)fy = (0, 0)/y 
(D) (x, y)fy = (u, v)fy implies x = u and y = v. 

(E) None of the alternatives completes a true sentence. 

2. If + is a binary operation on S and p is an equivalence relation compatible with 
+then 

(A) xfp + yfp = (x + y)fp 
(B) x + ( -x) = (}implies xfp + -xfp = 0/p 
(C) xf p = yf p if and only if xpy 
(D) there exists a yfp such that xfp + yfp = xfp. 

(E) None of the choices is satisfactory. 

3. An equivalence relation p on a set S 
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(B) partitions a setS into a collection Sfp of cosets 
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(C) is a subset of S x S 
(D) is compatible with a binary operation· if and only if x 1px2 and y 1pY2 imply 

(xlydp(x2y2). 
(E) None of the alternatives completes a true sentence. 

EXERCISES 

1. Prove that for (N x N, +, [], (0, 0)) 
(a) + and [::J are associative and commutative; 
(b) (0, 0) is a neutral element for +; 
(c) (1, 0) is a neutral element for [::J; and 
(d) [::J is distributive with respect to +. 

2. Show that y, the relation defined on N x N such that (x, y)y(u, v) if and only if 
x + v = y + u, is an equivalence relation. 

3.6 Embedding N in the integers 

In this section we show how we can regard (N x N)jy as an extension of N. 
Having constructed the integral domain (N x N)jy from N we proceed to 

show how we can regard (N x N)jy to be the integers. There are many ways 
of writing the same equivalence class in (N x N)jy:(O, 0)/y = (1, 1)/y = 
(2, 2)/y = · · ·and (1, 0)/y = (2, 1)/y = (3, 2)/y = · · · . We now look for some 
unique representation of a member of (N x N)jy. 

Lemma. For any pair (m, n) E N x N there is a pair (x, y) E (m, n)jy such 
that x = 0 or y = 0. 

PRooF. We use induction. LetS= {nlfor all mEN, (m, n)jy contains a pair 
(x, y) in which x = 0 or y = 0}. 0 E S because (m, 0)/y contains the pair 
(m, 0). Suppose k E S. Now consider (m, k + 1)/y for any mE N. If m = 0 
then the pair (0, k + 1) E (m, k + 1)/y. If m "# 0 then m = p + 1 for some 
p E N. We are then considering the equivalence class (p + 1, k + 1)/y. This 
is the same set as (p, k)jy because (p, k)y(p + 1, k + 1). Because k E S we 
know (p, k)jy contains some pair (x, y) with x = 0 or y = 0. This same pair 
belongs to (p + 1, k + 1)/y = (m, k + 1)/y. k + 1 E S. S = N. 0 

Theorem. (N x N)jy = {(m,O)/ylmEN} u {(O,n)/ylnE N+}. 

PROOF. Let (p, q)jy E (N x N)jy. (p, q)y(m, 0) for some mE N or (p, q)y(O, n) 
for some nE N +. Note (p, q)y(O, 0) is included in the first alternative. 
(p, q)jy = (m, 0)/y for some mE N or (p, q)/y = (0, n)/y for some nE N +. 0 

We now show that (N x N)jy consists exactly of the members (0, O)jy, 
(1, 0)/y, (0, 1)/y, (2, 0)/y, (0, 2)/y, .... 

Theorem. (m, 0)/y = (n, O)jy if and only if m = n. (0, m)jy = (0, n)jy if and 
only if m = n. (m, 0)/y "# (0, n)jy for any mE N, nE N +. 
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PRooF. (m, 0)/y = (n, 0)/y if and only if m + 0 = 0 + n. Similarly for the 
second statement. (m, 0)/y = (0, n)/y if and only if m + n = 0 + 0. But this 
cannot be for n =F 0. D 

We proceed to identify those members ofthe form (m, 0)/y with the natural 
numbers. 

Theorem. j: 1\J -+ (1\J x N)/y such that j(m) = (m, 0)/y is an injection and 
preserves both binary operations of N. 

PRooF. j(m + n) = (m + n, 0)/y = (m, 0)/y + (n, 0)/y = j(m) + j(n). j(mn) = 

(mn, 0)/y = (m, 0)/y rJ (n, 0)/y = j(m) rJ j(n). j(m) = j(n) implies (m, 0)/y = 

(n, 0)/y which implies m = n. D 

Theorem. (1\J x N)/y = j(N) u - j(N +). 

PROOF. Those members of (1\J x 1\J)/y of the form (m, 0)/y = j(m) form the 
set j(N). By - j(N +) we mean the set {- j(n)ln E 1\J +} which is the set 
{ -(n, O)!Yin E 1\J +} = {(0,1 n)!Yin E 1\J + }. D 

We now follow the practice of writing n for j(n) and - n for - j(n). This is 
to say we no longer distinguish between the natural number n and the 
integer j(n). We denote the resulting integral domain of integers with 
(71.., +, ·, 0, 1). 

QUESTIONS 

1. Which of the following statements are true of ((1\\J x 1\\J)/y, +, 8, (0, 0)/y, (1, 0)/y)? 
(A) (0, 3)/y = (7, 10)/y. 
(B) (0, 3) E (4, 7)/y. 
(C) (a + k, b + k)y(a, b). 
(D) (1, 4)/y n (7, 10)/y = (6, 6)/y. 

(E) None ofthe statements is true. 

2. j: 1\\J -+ (1\\J x 1\\J)/y such that j(n) = (0, n)/y 
(A) preserves + in + 
(B) preserves · in El 
(C) hasj(O) = (0, 0)/y 
(D) hasj(1) = (1, 0)/y. 

(E) None of the alternatives completes a true sentence. 

EXERCISES 

1. Prove (m + k, n + k)/y = (m, n)/y. 

2. Prove (m, n)jy = (u, v)jy if and only if m + v = n + u. 

3. Solve this equation: [(5, 3)/y 8 (x, y)/y] + (2, 8)/y = (6, 4)/y. 

4. Are there solutions to this equation? (3, 6)/y 8 (x, y)/y = (2, 4)/y. 
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3.7 Ordered integral domains 

In this section order is developed for integral domains. 
Regarding the natural numbers 1'\\J as a subset ofthe integers 7l.. we call the 

set 1'\\J + of all nonzero natural numbers the positive subset of 7l.. and denote it 
also by 7l.. +. From our earlier results we can summarize our knowledge of 7l.. +. 

Theorem. 7!..+ £;; 7l...Ort7l..+.x,yE7l..+implyx + yandxyE7l..+.x =F Oimplies 
X E 7l.. + or -X E 7l.. +. 

PROOF. We have noted in Section 3.4 that 1'\\J+ is closed under addition and 
multiplication. Since (1'\\J x N)/y = j(N) u - j(N +) we have the fourth 
property. D 

Rather than just develop order for the integers we develop order for 
integral domains in general; it is no more difficult. 

Definition. Let (R, +, ·, e, v) be a commutative unitary ring with v =F e. A 
subset R + of R is called a positive subset of R if and only if 

ertR+, 
x, y E R + imply x + y and xy E R +, 
x E R and x =F e imply x E R + or - x E R +. 

The existence of a positive subset in a commutative unitary ring is enough 
to make the ring an integral domain. 

Theorem. If a commutative unitary ring < R, + , ·, e, v) with e =F v has a 
positive subset R + then R is an integral domain. 

PRooF. Suppose that x and y are both elements of R and are both nonzero. 
Wethenhavefour cases: x ER+ and yE R+, x ER+ and-yE R+, -x ER+ 
and y E R +, - x E R + and - y E R +. The four cases yield the following pos­
sibilities: xy ER+, -xy ER+, -xy ER+, xy ER+. In no case does xy = e. 
We have therefore proved x =F e and y =F e imply xy =F e. This is the contra­
positive of xy = e implies X = e or y = e. D 

In view of this fact that every commutative unitary ring (e =F v) with a 
positive subset is an integral domain we shall refer to such rings as integral 
domains with positive subsets. 

Theorem. If (R, +, ·, e, v) is an integral domain with a positive subset then 
{ R +, - R +, { e} } is a partition of R. 

PROOF. We show first that R+ u -R+ u {e} = R. Let X ER and X =F e. 
Then x E R + or - x E R +. If - x E R + then - x = y for some y E R +. x = - y 
for y E R +. x E - R +. 
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We next show that the three subsets are disjoint (have an empty inter­
section in pairs). OifR+ and Oif -R+. Suppose xER+ n -R+. xER+ 

and X= -y for some yER+. -X= yER+. X+ (-x)ER+. 8ER+. 

This contradiction shows that no x can belong to both R + and - R +. 

R+ n -R+ = 0. D 

We <:all the set - R + the set of negative elements of the integral domain. 
The previous theorem shows that all elements are either positive or negative 
or zero but never simultaneously more than one of these. 

We now move to show how the existence of a positive subset of an integral 
domain allows the construction of an order on the integral domain. An 
order on a set S is called a total order if and only if every two elements of S 

are comparable: i.e., x E S and yES imply x ~ y or y ~ x. We note, for 
example, that inclusion on the set of all subsets of a given set (with at least 
two elements) is not a total order. 

Definition. An integral domain (R, +, ·, 8, v) is an ordered integral domain 

if and only if there exists a total order ( ~) on R such that 

x ~ y implies x + z ~ y + z 
X ~ y and Z ~ () implies XZ ~ yz. 

Theorem. Let (R, +, ·, 8, v) be an integral domain with a positive subset R +. 

Then (R, +, ·, 8, v) is an ordered integral domain with the order defined 

by(x ~ yifandonlyify- xER+ ory = x). 

PROOF. We must first show that the order in question is actually a total 
ordering of R. x ~ x for all x E R because x = x. x ~ y and y ~ x imply 
(y - x ER+ or y = x) and (x - yE R+ or x = y). There are four cases 
here, three of which lead to the conclusion x = y. We show that the fourth 
case y - x E R + and x - y E R + is impossible. This case is impossible 
because the sum (y - x) + (x - y) is () which cannot belong to R +. We 
conclude x = y and have antisymmetry. 

Now assume x ~ y and y ~ z which gives (y - x ER+ or y = x) and 
(z- yE R+ or z = y). We follow the four possibilities. y- x ER+ and 
z - y E R + imply z - X E R +. X ~ z. y - X E R + and z = y imply 
z - x E R +. x ~ z. y = x and z - y E R + imply z - x E R +. x ~ z. 

y = x and z = y imply z = x. x ~ z. Now that we have proved ~ to be 
reflexive, antisymmetric and transitive we know ~ to be an order on R. 
We now prove the order to be total. Let x, yE R. x - yE R. x - yE R+ 

or X - y E - R + or X - y = e because { R +' - R +' { e} } is a partition of R. 
x - y E R + or y - x E R + or x = y. y ~ x or x ~ y. 

We now prove the order to be compatible with the binary operations of 
the integral domain. If x ~ y then y - x E R + or y = x. If x = y then 
x + z = y + z. On the other hand if y - x E R + then y + z - x - z E R +. 

(y + z) - (x + z) ER+. x + z ~ y + z. For multiplication let x ~ y and 
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e ~ z. (y- x ER+ or x = y) and (z ER+ or z = e). The four possibilities 
go as follows. Case 1: y - x E R + and z E R +. ( y - x )z E R +. yz - xz E R +. 

xz < yz. Case 2: y - X ER+ and z = e. (y - x)z = e. xz = yz. Case 3: 
y - X = e and z E R +. (y - x)z = e. xz = yz. Case 4: y - X = e and 
z = e. (y - x)z = e. xz = yz. Thus in all four cases xz ~ yz. D 

We shall use x ~ y and y ~ x interchangeably. It is sometimes con­
venient to use the concept of strict order (x < y) instead of order (x ~ y). 
Either can be defined in terms of the other. Strict order can also be defined 
directly from the positive subset R + : x < y if and only if y - x E R +. See 
the exercises for details on this possibility. 

We have showed how one can begin with a positive subset of an integral 
domain and then define an ordered integral domain. We complete a cycle 
and show that any ordered integral domain has a positive subset. 

Theorem. Let < R, +, ·, e, v) be an ordered integral domain with total order ~. 
Then the subset of R, {xix ~ e and x =I= e}, is a positive subset of R. 

PROOF. Suppose x and y are both members of the subset {tit ~ e and t =1= e}. 
Then x ~ e, y ~ e, x =1= e, y =1= e. Using the compatibility of the order 
X + y ~ X + e ~ e + e. X + y ~ e. Suppose X + y were zero. X + y = e. 
Since x + y ~ x we would have e ~ x. x ~ e and e ~ x yields x = 8. 
But X =I= e. X + yE {tit ~ e and t =I= e}. For closure under multiplication 
we have xy ~ x · 8. xy ~ 8. xy =1= e because R is an integral domain. 
xy E {tit~ e and t =I= e}. We finally prove that if X ER and X =I= e then 
X ~ e or -X ~ e. Because any two elements of the totally ordered R are 
comparable either x ~ e or e ~ x. To both sides of the second inequality 
we add -X getting -X ~ e. 0 

We end this section with several brief results. 

Theorem. Let <R, +, ·, e, v) be an ordered integral domain. If x ER then 
x 2 ~ e. 

PROOF. By x2 we mean, of course, xx. x E R means x ~ e or x ~ e. If x ~ e 
then XX ~ e. If X ~ 8 then -X~ 8. XX = (-X)( -X)~ 8. 0 

Theorem. Let <R, +, ·, e, v) be an ordered integral domain. Then v > 8 
and -v < e. 

PROOF. V = VV ~ e. V =/= e. V ~ 8 implies -V ~ e. D 

QUESTIONS 

1. Which of the following are not part of a definition of positive subset R + of a commuta­
tive unitary ring R. 

(A) (} $ R+. 
(B) x E R implies x E R + or - x E R +. 
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(C) x, y E R + imply xy E R +. 
(D) x,yER+ implyx + yER+. 

(E) None of the statements fails to be part of the definition. 

2. Which of the following statements are correct for the ordered integral domain 
(R, +, ·, 0, v)? 

(A) x -:1- Oimplies -xE -R+. 
(B) X, yE -R+ imply x +yE -R+. 
(C) R+ n -R+ = {0}. 
(D) (-R+)(-R+) s;;; R+. 

(E) None of the statements is correct. 

3. Which of the following statements are true? 
(A) Every integral domain has a positive subset. 
(B) Every integral domain with a positive subset is a ordered integral domain. 
(C) In an ordered integral domain every square is greater than or equal to zero. 
(D) In an ordered integral domain V ~ e. 

(E) None of the statements is true. 

4. Let ~ be an order on a set R. The order is total if and only if 
(A) x ~ x for all x E R 
(B) x ~ y or y ~ x for all x, y E R 
(C) X ~ y and y ~ Z imply X ~ Z for all X, y, Z E R 
(D) X ~ y and y ~ X imply X = y for all X, y E R. 

(E) None of the alternatives completes a true sentence. 

EXERCISES 

1. Does the relation XKY if and only if x - yE {3, 4, 5, ... } make Z into an ordered 
integral domain? 

2. Is < Q, +, ·, 0, 1) with the usual ordering an ordered integral domain? 

3. Show that the following statements are true in an ordered integral domain (R, 
+, ·, 0, v) 
(a) x 2 + y2 ~ 2xy 
(b) x ~ y ~ 0 implies x2 ~ y2• 

4. We remember that a binary operation fJ and an order ~ are compatible if and 
only if x1 ~ x 2 and y1 ~ y2 imply x 1{Jy1 ~ x 2{Jy2 • Show that if (R, +, ·, 0, v) 
is an ordered integral domain it is impossible for both + and · to be compatible 
with the order. 

3.8 A characterization of the integers 

In this section we characterize the integers as an ordered integral domain 
with a well-ordered set ofnonnegative elements. We also introduce a second 
form of mathematical induction. 

We recall first that m is a minimum (or smallest) element of an ordered 
set if and only if mE S and m ~ x for all x E S. 
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Definition. An ordered set S is well-ordered if and only if every nonempty 
subset of S has a minimum element. 
We now prove that the subset of nonnegative elements of 7L is a well­

ordered set (under the order of 7L). 

Theorem. N is a well-ordered set. 

PROOF. We must show that every nonempty subset of N has a minimum. 
Let S be any nonempty subset. Since S =I= 0 we may choose an element 
from S, say n. We partition S into two subsets: S = { xJx E S and x ::::; n} u 
{xJx E Sand x > n}. No x can simultaneously be ::::; and > n. The two 
subsets are disjoint. Because the order on 7L (and therefore on N) is total 
every x E S must belong to at least one of the two subsets. The first subset 
must be nonempty because it must contain n. The second subset could 
possibly be empty and in that case there is but one subset. It is clear, however, 
that if we find an element m ofthe first set which is a minimum for the first 
set then it-will be smaller than any member of the second set and therefore 
a minimum for all of S. We therefore content ourselves with the proving 
of this proposition. Any nonempty subset of N with elements not exceeding 
the natural number n has a minimum. We use induction on n. Let n = 0. 
The subset must then be {0} which has a minimum 0. Assume the result 
true for k. Let A be any nonempty subset of N with elements not exceeding 
k + 1. If A consists exactly of { k + 1} then k + 1 is the minimum. If not, 
then there are elements of A strictly smaller than k + 1. Let A' be the 
subset of A with members not exceeding k. This subset must have a min­
imum m by the inductive hypothesis. m is also a minimum for A because 
m::::;k<k+l. D 

We remark here that IQ) and lffi, two other ordered integral domains, do 
not have well-ordered nonnegative elements. The set {(!)"In E N}, for 
example, is a nonempty subset of both IQ) and IR of nonnegative elements 
which has no minimum. Again, of course, we are relying upon the readers 
previous knowledge at this point because we have not yet formally con­
structed (J) or IR. 

The following theorem proves there is no integer between 0 and 1. 

Theorem. Let (R, +, ·, (}, v) be an ordered integral domain with the set of 
nonnegative elements well ordered. Then there is no y E R such that 
(} < y < V. 

PROOF. Suppose that {xJx ER and(} < x < v} is a nonempty set. It is a 
nonempty set of nonnegative elements of R, a nonempty subset of a well­
ordered set and therefore has a minimum member, say, m. m < v implies 
mm < vm. mm < m. On the other hand, (} < m implies (} < mm. Thus mm 
is between (} and v and is properly smaller than the minimum such element, m. 
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This is a contradiction and this shows that { xlx E R and e < x < v} 
~em~~ D 

We have demonstrated that 7L is an ordered integral domain and that 
its set of nonnegative elements, N, is well-ordered. Now let us begin with 
any ordered integral domain with well-ordered nonnegative elements and 
conversely prove that the nonnegative elements obey the principle of 
mathematical induction. 

Theorem. Let < R, +, ·, e, v) be an ordered integral domain such that N = 
{xlx ER and x ~ e} is well ordered. If S s N and 0 E S and (x E S 
implies x + v E S) then S = N. 

PROOF. Consider the set N - S, the relative complement of S in N. We 
wish to prove this set to be the empty set. Suppose N - S -=!= 0. Let r be 
the minimum of the set N - S. There is an element r - v in Rand certainly 
r - v < r. Since r -=1= e we know r > e. Since there are no elements of R 
between e and V we know r ~ v. Thus we have r - V ~ e. r - V E N. 
Since r is the smallest element of N - S and r - v is properly smaller than 
r we must have r - v E N - S. r - vis therefore in S. But then (r - v) + v 
also belongs to S. rES. This contradiction means N - S = 0. S = N. D 

This theorem establishing the principle of mathematical induction for 
any ordered integral domain with a subset of nonnegative well-ordered 
elements leads one to suspect that such an integral domain does not differ 
markedly from the integers. Such an integral domain is, in fact, isomorphic 
with the integers. We put this result into a theorem. 

Theorem. If (R, +, ·, e, v) is an ordered integral domain with N = 

{xlx ER and x ~ e} well ordered then there exists an isomorphism 
f:7L-+ R. Moreover, x ~ y implies f(x) ~ f(y), the isomorphism pre­
serves order. 

PROOF. We definef': N-+ N such thatf'(O) = e andf'(n + 1) = f'(n) + v. 
Such a function exists by our axiom of definition by induction. We now 
prove f' to be a surjection. e E f'(N) because f'(O) = e. If k E f'(N) then 
k = f'(a) for some a E N. f'(a + 1) = f'(a) + v = k + v. k + v E f'(N). 
f'(N) = N. This has been an application of the previous theorem, induction 
on the nonnegative elements of R. 

We now prove that the surjection f': N -+ N is also an injection. Let 
S = { nif'(m) = f'(n) implies m = n for all mE N }. Suppose f'(m) = f'(O). 
f'(O) = e. f'(m) = e. m must be 0 for otherwise m = p + 1 for some p E N. 
We would then have f'(m) = f'(p + 1) = f'(p) + V = e. But this is im­
possible because e is not the sum of v and any member of N. 0 E S. To 
complete this induction we must prove k E S implies k + 1 E S. Suppose 
k E S. f'(m) = f'(k) implies m = k for all mE N. Now if f'(m) = f'(k + 1) 
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we have f'(m) = f'(k) + v. m is not 0 because f'(m) # 0. m = q + 1 for 
some q E N. f'(m) = f'(q + 1). We have therefore f'(q + 1) = f'(q) + v = 
f'(k) + v. f'(q) = f'(k). q = k. q + 1 = k + 1. m = k + 1. k + 1 E S. The 
induction is complete proving f' to be a bijection. 

Wenowshowthatf':N-+ Npreserves + and·.LetS = {nlf'(m + n) = 
f'(m) + f'(n) for all mE N }. 0 E S because f'(m + 0) = f'(m) = f'(m) + f} = 
f'(m) + f'(O). To prove k E S implies k + 1 E S let f'(m + k) = f'(m) + f'(k) 
for all m E N. f'(m + k + 1) = f'(m + k) + v = f'(m) + f'(k) + v = 
f'(m) + f'(k + 1). S = N. This shows f' preserves +. 

To demonstrate that f' preserves ·, let S = { nlf'(mn) = f'(m)f'(n) for 
all mE N }. 0 E S for f'(m · 0) = f'(O) = f} = f'(m)O = f'(m)f'(O) for all 
mE N. To prove k E S implies k + 1 E S letf'(mk) = f'(m)f'(k) for all mE N. 
Then f'(m(k + 1)) = f'(mk + m) = f'(mk) + f'(m) = f'(m)f'(k) + f'(m) = 
f'(m)[f'(k) + v] = f'(m)f'(k + 1). S = N. 

The next part of the theorem proof is to extend f': N -+ N to a function 
f:Z -+ R. The extension f must agree with f' on N. We define f:Z -+ R 
as follows: f(x) = f'(x) for all x E N, f(x) = - f'(- x) for x E -N. This 
function f is a bijection from N to N, a bijection from - N to - N and 
therefore is a bijection from Z to R. 

We now intend to demonstrate that f preserves + and ·. Case 1: x E N 
and yE N. x + yE N. f(x) = f'(x). f(y) = f'(y). f(x + y) = f'(x + y) = 
f'(x) + f'(y) = f(x) + f(y). Case 2: x E N and yE -N. x + yE -N. 
f(x + y) = -f'(-(x + y)) = -f'(-x + (-y)) = -[f'(-x) + f'(-y)] = 
- f'(- x) - f'(- y) = f(x) + f(y). We remark that these two cases are not 
mutually exclusive but overlap at 0 just as the definition of f. Case 3a: x E N 
and y E - N and x + yE N. x = (- y) + (x + y) with -yE N, x + yE N, 
x E N. f'(x) = f'( (- y) + (x + y)) = f'(- y) + f'(x + y). Solving for 
f'(x + y) we have f'(x + y) = f'(x) - f'(- y). f(x + y) = f(x) + f(y). 
Case 3b: XE Nand yE-N and x +yE -N. -y = -(x + y) + x with 
-yEN, -(x + y) EN, and x EN. f'(-y) = f'(-(x + y) + x) = 
f'( -(x + y)) + f'(x). Solving for - f'( -(x + y)) we have - f'( -(x + y)) = 
f'(x) - f'(- y). f(x + y) = f(x) + f(y). Cases 4a, (x E - N and yE N 
and x +yEN), and 4b, (xE -Nand yEN and x +yE-N), can be 
proved by interchanging the role of x and y in Cases 3a and 3b. This con­
cludes the demonstration that f preserves +. 

We now show how f preserves·. Case 1: x EN and yE N. Then xy EN. 
f(xy) = f'(xy) = f'(x)f'(y) = f(x)f(y). Case 2: x E - N and yE -N. Then 
xy EN. f(xy) = f'(xy) = f'((-x)(-y)) = f'(-x)f'(-y) = (-f'(-x)) · 
(-f'(- y)) = f(x)f(y). Case 3: x E N and yE -N. Then xy E -N. f(xy) = 
- f'(- xy) = - f'(x(- y)) = - f'(x)f'(- y) = f'(x)( -f'(- y)) = f(x)f(y). 
Case 4, (x E -Nand yEN), is similar to Case 3. 

Finally in this lengthy proof we wish to prove x ~ y if and only if 
f(x) ~ f(y). This is equivalent to x - yE N if and only if f(x - y) EN. 
But this statement is clearly true from the construction of f. This completes 
the proof of the theorem. o 
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We complete this section with an alternate form of mathematical in­
duction. This form is sometimes referred to as the second principle of 
mathematical induction. It is essentially a proof scheme based upon the 
well-ordering of N. 

Theorem. Let S be a subset of N such that { klk < n} s:; S implies n E S. 
Then S =N. 

PRooF. In alternate words, we wish to show that if n belongs to S every 
time all elements smaller than n belong to S then S must be N. 

We must prove that the subsetS mentioned in the hypothesis is all of N. 
We do this by mathematical induction (the mathematical induction we have 
been consistently applying in this chapter). It is given that if {klk < 0} s S 
then 0 E S. But {klk < 0} is a subset of S because {klk < 0} is the empty set. 
Therefore 0 E S. 

Suppose mE S. We must show that m + 1 E S. Assume there is some 
smallest number j, 0 < j < m, which does not belong to S. j cannot be zero 
since 0 E S. Then all the numbers before j do belong to S. { xlx < j} s S. 
Using the hypothesis for the theorem j E S. This contradicts j rj; S. There 
can be no integers smaller than m which fail to belong to S. {xlx ~ m} s S. 
{ xlx < m + 1} s S. Again using the hypothesis we have m + 1 E S. 
S =N. D 

Observe that the hypothesis of the theorem does not require proving 
0 E S separately. It should be clear from the theorem that once { klk < n} s S 
implies n E S is proved then 0 E S is a consequence. 

QUESTIONS 

1. Which of the following statements are true? 
(A) If (R, +, ·, (}, v) is an ordered integral domain then there is no yE R such 

that 0 < y < v. 
(B) If (R, +, ·, e, v) is an ordered integral domain then(}< V. 

(C) An ordered integral domain with well-ordered nonnegative subset is order 
and ring isomorphic to the integers. 

(D) IfS ~ Nand nE S implies n + 1 E S then S = N. 
(E) None of the statements is true. 

2. Which of the following statements are true? 
(A) 0 is a minimum element of {xlx ): 0 and x E Q} shows that {xlx ): 0 and 

x E Q} is well ordered. 
(B) 0 is a well-ordered subset of 7L. 
(C) {1 - (f)" In EN} is a well ordered subset of Q. 

(D) {(t}"ln E N} is a well ordered subset of Q. 
(E) None of the statements is true. 

3. Let f:R-+ R' be a function from the ordered integral domain (R, +, ·, (}, v) to 
the ordered integral domain (R', + ', -', (}', v'). Which of the following conditions 
are not necessary for f to be an isomorphism and to preserve order? 
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(A) x ~ y implies f(x) ~ f(y) for all x, yE R. 
(B) f(v) = v'. 
(C) f(xy) = f(x)f(y) for all x, yE R. 
(D) f(O) = 0'. 

(E) All of the conditions are necessary. 

4. Which of the following statements are correct? 
(A) (S ~ f\J and {0, 1, ... , k - 1} ~ S implies k E S) imply S = f\J. 
(B) - f\J is well-ordered. 
(C) Every subset of a well ordered set is also well ordered. 
(D) Every nonempty subset of f\J has a maximum element. 

(E) None of the statements is correct. 

EXERCISES 

1. Let (R, +, ·, (}, v) be an ordered integral domain with well-ordered nonnegative 
subset. Let f: R -+ R be a morphism which also preserves order. Show that ifS # 0 
and S ~ {xlx ;;:: 0 and x ER} then f(min S) = min f(S). 

2. Show that if (R, +, ·, (}, v) is an ordered integral domain with well-ordered non­
negative subset and x, r, s E R + and x = rs then r ~ x. 

3. Let (R, +, ·, (}, v) be an ordered integral domain. Show that if x > v + v then 
X 2 ;;:: X+ V. 

4. Show that in any ordered integral domain there can be no maximum element. 

5. Show that ifS is a subset of the nonnegative integers and for all n, {xlx < n} ~ S 
implies n E S, then 0 E S. 
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4 Rings: 
Applications 
of the integers 

In this chapter we assemble some results on rings which we obtain by 
using a specific knowledge of the natural numbers and the integers. We 
begin the chapter with some work refining our knowledge of finite and 
infinite sets. We then routinely study some theorems extending the associa­
tive, commutative, and distributive laws to any finite number of elements 
of a ring. We then extend to the integers the division algorithm earlier 
established for the natural numbers and discuss briefly prime numbers. 
After this we study the use in rings of the integers to indicate repeated 
additions and repeated multiplications: multiples and exponents. We con­
sider in Section 4.5 the important result that every integral domain is included 
in some field. We show the existence of such a field and call it the field of 
fractions of the given integral domain. We specifically apply the theorem 
to the integers to construct the ordinary fractions or rational numbers. 
We finally, in Section 4.6, study the characteristic of a ring. 

4.1 Finite sets 

We have previously used the following criterion for two sets to be the 
same size: S and T are equipotent if and only if there exists a bijection 
f:S-+ T. For example, {a, b, c} and {0, 1, 2} are the same size because 
f = {(a, 0), (b, 1), (c, 2)} is one possible bijection between the two sets. A 
further example was contained in Section 2.6 where we defined equipotent 
and proved two cosets of R/A have the same number of members. We shall 
now use the term cardinal number of a set to mean the number of members 
of the set. We speak of two equipotent sets as having the same cardinal 
number. We abbreviate cardinal number of the setS with crd S. 

Definition. crd S = crd T if and only if there exists a bijection f: S -+ T. 
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One can verify that the following equivalence properties hold for the con­
cept of equality of cardinal numbers. 

Theorem. crd S = crd S. crd S = crd T implies crd T = crd S. crd S = 
crd T and crd T = crd U imply crd S = crd U. 

It is possible to give crd S a specific identity as a set. The equality in the 
theorem and definition then becomes equality of sets. In particular when a 
set has the same cardinal number as some natural number then we define 
that natural number to be the cardinal number of the set. 

Definition. Let ne 1\J. crd S = n if and only if there exists a bijection 
f:n-s. 

To realize this bijection we use the set model for the natural number 
as described in Section 3.1: 0 = 0, 1 = {0}, 2 = {0, 1 }, 3 = {0, 1, 2}, ... , 
n = {0, 1, 2, ... , n- 1}, .... For example, crd{a, b, c} = 3 by the bijec­
tion given in the first paragraph of this section. To legitimize this definition 
we now establish that a set can have at most one natural number as its 
cardinal number. 

Theorem. Given m, n E 1\J, f: m - n is a bijection implies m = n. 

PROOF. We give a proof by induction on the first number m. If m = 0, the 
empty set, and f: 0 - n is a bijection then y E n implies there exists an 
x E 0 such that (x, y) E f. But there is no x E 0 and so can be no y in n. 
n = 0. 

Assume the result is true for m = k. Let f: k + 1 - n be a bijection. 
n # 0 for otherwise f is not a function unless k + 1 = 0, which it is not. 
Because n =F 0 it is I + 1 for some I E 1\J. We now investigate the bijection 
f:k + 1 -1 + l.Ifj(k)happenstobelthenf -{(k,l)}: {0, 1,2, ... ,k- 1}­
{0, 1, ... , I - 1} is a bijection k- I. By induction hypothesis k = I. There­
fore k + 1 = I + 1 = n. If f(k) happens not to be I then f(k) = j for some 
j E {0, 1, ... , l},j =F l.f- {(k,j)}: {0, 1, ... , k - 1} - {0, 1, ... ,j- 1,j + 1, ... , I} 
is still a bijection. There exists an i e {0, 1, ... , k - 1} such that f(i) = I. 
f- {(k,j),(i, 1)}: {0, 1, ... ' i -1, i + 1, ... ' k-1}- {0, 1, ... ,j -1,j + 1, ... ' l-1} 
is also a bijection. If we adjoin to this function the ordered pair (i,j) we have 
yet another bijection (f- {(k,j), (i, I)}) u {(i,j)}:{O, 1, ... , k- 1}­
{0, 1, ... , l - 1 }. We have therefore a bijection from k to I. k = l. Therefore 
k+1=1+1=~ D 

Corollary. Given any set S there is at most one natural number n for which 
there exists a bijection f: n - S. 

PRooF. Suppose f:m- S and g:n- S are both bijections of natural 
numbers into S. Then g- 1 o f:m- n is a bijection. m= n. D 
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There are, of course, sets which do not have any natural number as their 
cardinal number. Two such sets are N and ~- Any such set not equipotent 
with some natural number will be called an infinite set. It can, incidently, 
be shown that N and ~ are not equipotent. 

Definition. A set equipotent with some natural number is called a finite set. 
All other sets are called infinite sets. 

It is possible to define certain sets to be cardinal numbers for infinite 
sets much as we have done for finite sets. 

IfS is a set with cardinal number n, a natural number, because of the 
existence of some bijection f: n --+ S it is possible and convenient to denote 
the members of S by a notation such as x0 , x1, x 2 , ••• , Xn- 1 where xi = f(i) 
for all i E N. An alternate equivalent notation preferred by some is x1, 

x2 , .•• , xn. Using this indexed notation we develop a property peculiar to 
finite sets. 

Theorem. If crd S = crd T = n for some nE N and f:S--+ T is either an 
injection or a surjection then f: S --+ T is a bijection. 

PROOF. The proof is by induction on n. If crd S = crd T = 0 then both S 
and Tare equal to 0 and any function f: 0 --+ 0 must be a bijection. 

Assume the theorem to be true for the natural number k. Now let crd S = 
crd T = k + 1. Case 1: f: {x0 , x1, .•• , xk} --+ {y0 , y1, ..• , yk} is an in­
jection. f(xk) = Yi for some j. f- {(xk, Yi)}:{x0 , x1, ... , xk-d--+ 
{ Yo. Y1o ... , Yi- 1, Yi+ 1, •.. , Yk} is also an injection, but on sets which 
have k elements. By the induction hypothesis f - {(xk, yj)} is a bijection. 
f is then also a bijection. Case 2: f:{x0 , x1, ... , xk} --+ {y0 , Ji, ... , yk} is 
a surjection. There exists an xi such that f(xi) = Yk· 

f- {(xi, Yk)}:{xo, ... , xi-1> xi+l> ... , xk}--+ {Yo. Y1o. ·., Yk-d 

is also a surjection, but on sets with k elements. By the induction hypothesis 
f - {(xi, yk)} is a bijection. Then f is also. D 

We now prove a theorem about integral domains which shows some of 
the power of the previous theorem. 

Theorem. Any integral domain which is finite is afield. 

PROOF. Let (R, +, ·, e, v) be an integral domain in which crd R = n, a 
natural number. We note that n ~ 2 because e and v must be distinct 
elements in an integral domain. To show that R must be a field let a E R 
and a =F e. Define <p :R --+ R such that <p(x) = ax. <pis an injection. <p(x1) = 
<p(x2 ) implies ax1 = ax2 which implies x 1 = x 2 • Since R is finite <p must 
be a bijection. Thus given v ER there exists bE R such that <p(b) = v. ab = v. 
By commutativity ba = v also. b is the inverse of a. D 
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QUESTIONS 

1. Set A has the same cardinal number as set B 
(A) implies there exists an injection from A to B 
(B) means A has the same size as B 
(C) only if there exists a bijection from B to A 
(D) implies there exists a surjection from A to B. 

(E) None of the choices completes a true sentence. 

2. Which of the following statements are true? 

4.1 Finite sets 

(A) If there is a bijection from natural number m to natural number n then 
m= n. 

(B) If f:m-+ n and g:n-+ p are bijections and m, n, p are natural numbers 
then m= p. 

(C) If m and n are natural numbers and m ~ n then there exists an injection 
from m into n. 

(D) A set is finite or infinite. 
(E) None of the statements is true. 

3. Which of the following statements are true? 
(A) If there is a bijection from A to B then there is also a bijection from B to A. 
(B) There exists at least one surjection from {0, 1, 2} to {0, 1, 2} which is not 

an injection. 
(C) Every finite field is an integral domain. 
(D) Integral domains which are finite have at least one element which is not 

multiplicatively invertible. 
(E) None of the statements is true. 

4. Which of the following statements are true? 
(A) crd{O, 2, 4, 6, ... } = crd{l, 3, 5, 7, ... }. 
(B) crd 1\1 x 1\1 = crd 1\1. 
(C) crd{O, 2, 4, 6, ... } = crd 1\1. 
(D) crd{1, 2, 3, 4, ... } = crd 1\1. 

(E) None of the statements is true. 

5. The sum of two finite numbers is finite is another way of saying 
(A) the natural numbers are closed under addition 
(B) infinite numbers do not really exist 
(C) the range of a bijection is the same as the codomain 
(D) natural numbers, excepting zero, have no negatives. 

(E) None of the listed possibilities is an equivalent statement. 

6. f:i\1-+ 21\1 such thatf(x) = 2x 
(A) is a bijection 
(B) implies there are the same number of even natural numbers as natural 

numbers 
(C) shows that infinite sets may have proper subsets with the same cardinal 

number as the entire set 
(D) shows that odd natural numbers cannot be in the range of any bijection. 

(E) None of the alternatives completes a true sentence. 
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EXERCISES 

1. Prove crd N = crd 2N. 

2. Prove crd N = crd 7L. 

3. Prove crd 7L = crd Q. 

4. If (0, 1) is the open unit interval of IR prove crd(O, 1) = crd IR. 

5. Prove crd IR # crd N. [Hint: Use Exercise 4.] Suppose there is a function f: N -> 

(0, 1) such that f(n) = O.a.0a. 1a.2 ••• (decimal notation). Show that there exists 
a number O.b1b2b3 ••• between 0 and 1 and not in the range of f. Conclude f 
cannot be a surjection. 

6. Show that if nE N and S £; n then crd SE N. 

7. Show that every subset of a finite set is finite. 

8. Show that if n E N and S c n then crd S # crd n. 

9. Show that no finite set is equipotent with a proper subset of itself. 

10. Show that N is not finite. 

11. Show that N is equipotent with a proper subset of itself. 

12. Show that every infinite set contains a subset equipotent with N. 

13. Show that every infinite set is equipotent with a proper subset of itself. 

14. Show that every unitary ring (with v # 8) with no divisors of zero (other than 
zero itself) is a division ring. 

15. The order on cardinal numbers as natural numbers can be extended to cardinal 
numbers of infinite sets as follows: crd S ~ crd T if and only if there exists an 
injection f: S -> T. Prove crd S ~ crd S. Prove crd S ~ crd T and crd T ~ crd U 
imply crd S ~ crd U. We have not listed antisymmetry because the proof is quite 
difficult. An intuitively appealing proof can be found on p. 340 of [1]. 

16. Prove that the order relation defined in Exercise 15 agrees with the order definition 
for natural numbers given in Section 3.4. This is to say, prove the following 
statement: there exists a natural number p such that m + p = n if and only if 
there exists an injection f: m -> n. 

17. ProveS £; T implies crd S ~ crd T. 

18. Prove crd N < crd IR. 

19. Addition of cardinal numbers (infinite or finite) can be defined by the following 
equation: ifS n T = 0 then crd S + crd T = crd(S u T). Show that this defini­
tion does not depend upon the particular sets S and T chosen. 

20. Show that ifS and T are both finite sets then the definition given in Exercise 19 
agrees with the definition of addition of natural numbers given in Section 3.2. 
Use induction on crd T for the proof. We notice that this proves that the union 
of two finite sets is finite. 

21. Prove crd S + crd T = crd(S u T) + crd(S n T). 
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4.2 Generalized associative, commutative, and distributive theorems 

4.2 Generalized associative, commutative, 
and distributive theorems 

Theorems of associativity, commutativity, and distributivity, true for two 
and three variables, can be extended to any finite number of variables. 
The proofs are by induction on the number of terms, a natural number. 
We also review the sigma and pi notation for products and sums. 

Let {3 be an associative binary operation on any set S. We know that 
a1{3(a2{3a3) = (a 1{3a2){3a3 for all a1, a2, a3 E S. This permits in practice the 
use of the symbol a1{3a2{3a3 without parentheses because either way paren­
theses are inserted the two results are equal. We wish now to extend this 
principle to expressions of greater length. 

Definition. We define a1{3a2{3 · · · f3an for all n E N + by defining (for any 
binary operation {3 on a set S) 

a1{3a2{3 · · · f3an = a 1 for n = 1, and 

a1{3a2{3 · · · f3akf3ak+ 1 = (a1{3a2!3 · · · f3adf3ak+ 1· 

This is, of course, a definition by induction on the length of the expression. 
It yields, for example, for n = 3 

a1{3a2{3a3 = (a1{3a2){3a3 
and for n = 4 

a1{3a2{3a3{3a4 = ( (a1{3a2){3a3){3a4. 

In this definition we designate the expression without parentheses to be one 
of the possible expressions containing parentheses. We now prove a theorem 
which demonstrates that if the operation is associative all of the expressions 
formed by inserting parentheses in different ways are equal. 

Theorem. Let {3 be an associative binary operation on a set S. Let n and k be 
natural numbers, n ;;::: 2, 1 ::::;; k < n. If b = (a1{3a2{3 · · · {3ak) and c = 
(ak+ 1{3 · · · f3an) then bf3c = a1{3a2{3 · · · {3akf3ak+ 1[3 · · · f3an. 

PROOF. We are trying to prove 

(a1{3a2{3 ... {3ak)f3(ak+ 1{3 ... f3an) = a1{3a2{3 ... f3an. 

We give a proof by induction on the length n of the expression beginning 
our induction with n = 2. If n = 2 then k = 1 and we have as the only way 
the given expression can be split is (a1){3(a2 ). (a1){3(a2 ) = a1{3a2. We now 
assume the theorem to be true for expressions of length m and we wish to 
demonstrate that the result is true for expressions of length m + 1. Let 
(a 1{3a2{3 · · · f3av)f3(ap+ 1{3 · · · f3amf3am+ 1) be any expression of length m + 1 
which is split after the first p factors, 1 ::::;; p < m + 1. Using associativity 
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(expressions of length 3) and the inductive assumption we have 

(a1Pa2P · · · /Jap)p(ap+ 1P · · · fJamfJa,+ 1) 

= ( (a1/J · · · Pap)/J(ap+ 1P · · · Pa,) )/Jam+ 1 

= (alp · · · Pa,)Pam+ 1 

= a1Pa2P · · · Pa,Pa,+ 1· D 

We remark at this point that if the operation p has a neutral element v 
in S then one can define a1fJa2fJ · · · Pan = v for n = 0 (an empty product) 
and achieve consistency with the theorems. 

We now consider a generalized commutativity theorem for an operation 
which is given associative. 

Theorem. Let S be a set with an associative, commutative binary operation p. 
Then if (a(1), a(2), ... , a(n)) is any permutation of (1, 2, ... , n) we have 
aa(1)Paa(2)p ... Paa(n) = a1pa2P ... Pan for any n E N +. 

PRooF. We give a proof by induction on n, the length of the expression. 
There is only one permutation on { 1 }, namely, a(1) = 1. Therefore, aa<1> = a1. 

Assuming the result true for the natural number k we demonstrate the 
result fork + 1. Case 1: a(k + 1) = k + 1. (aa(1)Paa(l)p · · · Paa(k))Paa(k+ 1) = 
(aa(1)p . .. Paa(k))pak+ 1 = (a1pa2P . .. fJak)pak+ 1 using first aa(k+ 1) = ak+ 1 

and then the inductive assumption. Case 2: a(k + 1) # k + 1. Suppose 
a(k + 1) = j for some j, 1 ~ j < k + 1. 

(aa(1)Paa(2)p · · · Paa(k))/Jaa(k+ 1) 

= (aa(1)f3aa(2)p · · · f3aa(k))f3ai 

= (a1Pa2P · · · Paj-1Pai+ 1P · · · fJak+ 1)/Jai 

= (a1Pa2P · · · fJai_1pai+ 1P · · · Pak)f3(ak+ 1Pa) 

= (a1Pa2P · · · Pai-1Pai+ 1P · · · fJadf3(aipak+ 1) 
= (a1Pa2P · · · fJai_1pai+ 1P · · · f3akPa)f3ak+ 1 

= (a1/Ja2/J · · · Pai- 1Paipai+ 1P · · · fJak)fJak+ 1- D 

For notational simplicity we consider a generalized distributive theorem 
in a ring setting. 

Theorem. Let (R, + ,-, fJ) be a ring. Then a(b1 + · · · + bn) = ab1 + · · · + abn 
for all a, bl> .. . , bn ER, nE N +. 

PROOF. The proof is by induction on n. a(b1) = ab1. Suppose 

a(b1 + · · · + bk) = ab1 + · · · + abk. 
Then 

a(b1 + · · · + bk + bk+ 1) = a(b1 + · · · + bk) + abk+1 

= ab1 + · · · + abk + abk+ 1 

using distributivity in the ring (case n = 2) and the inductive assumption. D 
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For repeated additions and multiplications we remind the reader of the 
compact summation and product notation. This notation, at least the 
summation one, is usually encountered by calculus students. 

m 

a 1 + a2 + · · · + am = L a; = L a;. 
i=1 ie{l.2, ... ,m) 

m 

a1a2 ... am= n a;= n a;. 
i=1 ie{1,2, ... ,m} 

By L'f=p a;, 1 < p :( q we mean L'f= 1 a; - l:f,:l a;. It is convenient to have 
a notation for the set { 1, 2, ... , n} just as n stands for the set { 0, 1, ... , n - 1}. 
We use fi for {1, 2, ... , n}. 2::7!: 1 a; = Lie m a;. 

The summation notation is used in calculus for infinite series. We illustrate 
its use here as an example of definition by induction. Given a sequence 
a: N + --+ IR, i.e., (ab a2, ... ), there is defined by induction a sequence of 
partial sums, s: N + --+ IR, such that s1 = a 1, s2 = a 1 + a2, . .. , sk+ 1 = 
sk + ak+ 1 , .... (s1 , s2, s3 , ... ) = (a1, a 1 + a2, a 1 + a2 + a3 , . .. ). Any par-
ticular partial sum sn is written L?= 1 a;. If the sequence of partial sums has 
a limit (in the real numbers) then the series is convergent and the limit of 
the sequence of partial sums is called the sum of the series. That limit is 
often denoted by l:r; 1 a; which is not really an infinite sum but rather a 
limit of a sequence of finite sums. 

EXERCISES 

1. Prove Lien i = !n(n + 1) for all nE N. 

2. Prove Lien 1 = n for all nE N. 

3. n! is read nfactorial. A mathematical induction definition ofn! is 0! = 1, (k + 1)! = 
(k + 1)k!. Proven! > nn for all n ;;. 4, nE N. 

4. Let m, n be natural numbers and a;i belong to a ring R for all i E m, j E fi. Prove 
Lie m Ljeii aij = Ljen Lie m aij· 

5. Let m, n be natural numbers and a;, bi, cii be members of a commutative ring R 
for all i Em, j E fi. Prove Lie m a; Lien bjcij = Lien bj Lie m a;Cij. 

4.3 The division algorithm for the integers 

We develop in this section the division algorithm for natural numbers 
and integers and present some elementary facts on factorization. 

Theorem. The division algorithm for natural numbers. If a, b E N and a =F 
0 then there exist unique natural numbers q, r with a > r ~ 0 such that 
that b = qa + r. 

Comments. In a > r ~ 0 the order being used is the order induced upon 
N by the order on 2. As an example of the division algorithm, 13 = (4)(3) + 1. 
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In words, 13 divided by 3 goes 4 times with a remainder of 1. In arithmetic 
b, q, a, r in the equation b = qa + r are called, respectively, dividend, 
quotient, divisor, remainder. Further examples are 1 = 0 · 3 + 1; 1 divided 
by 3 goes 0 times with a remainder ofO. Later we shall extend the algorithm 
to 7L giving such examples as -11 = (- 4)3 + 1. 

We now offer two existence proofs, one based upon the well-ordering of 
N and the other a direct induction proof. 

PROOF 1. S = {b - xalx E 7L and b - xa ~ 0} is a subset of N. S includes 
the integer b - Oa = b ~ 0 and is therefore nonempty. Let r be the first or 
smallest element of the set S. Since r E S, r = b - qa for some element 
qE7L. We now show 0 ~ r <a. Suppose r ~a. Then r- a= r' ~ 0. 
r' = r - a = b - qa - a = b - (q + 1)a. r' E S and r' < r and 0 ~ r' 
contradicts the minimality of r. We have therefore r < a and since r E N 
we have 0 ~ r. 

We must now show q ~ 0. If q ~ -1 then qa + r ~ ( -1)a + r < 0 
which cannot be because b is given ~ 0. Therefore q > -1, which is to 
say, q ~ 0. q E N. o 

PROOF 2. Let a > 0 be a given natural number. Let S = { nlthere exist q, r 
such that n = qa + r with r, q EN and 0 ~ r < a}. 0 E S because 0 = 
Oa + 0. Assume k E S. k = q1a + r1 for some qt. r1 EN and 0 ~ r1 < a. 

Then k + 1 = q1a + r1 + 1. If r1 + 1 < a then k + 1 = q1a + (r1 + 1) 
and the conclusion holds. If r1 + 1 = a then k + 1 = (q1 + 1)a + 0 and 
again the conclusion holds. k + 1 E S. 0 

We now give a proof ofthe uniqueness of q and r assuming their existence. 
Supposewehaveb = q"a + r"aswellasqa + r.O = (q- q")a + (r- r"). 
r" - r = (q - q")a. Use of the two inequalities 0 ~ r" < a and 0 ~ r < a 
shows -a < r - r" < a. This is impossible unless the integer q - q" is zero. 
But then r" - r = 0 also. The integers q and r are therefore unique. 0 

We extend the division algorithm for natural numbers to the integers, 
first defining absolute value. 

Definition. If a E 7L and a ~ 0 then la I = a. If a E 7L and a < 0 then la I = -a. 

EXAMPLE. 1-31 = -(- 3) = 3.131 = 3. 

Theorem. The division algorithm for integers. If a, b E 7L and a # 0 then 

there exist unique integers Q, R E 7L such that b = Qa + R and 0 ~ R < I al. 

PRooF 
Case 1: a > 0 and b ~ 0. We may use the previous theorem for natural 

numbers yielding b = qa + r with 0 ~ r < a. We let Q = q and R = r. 
Since lal = a the conclusion follows. 
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Case 2: a > 0 and b < 0. We apply the natural number result to a and 
- b, both natural numbers. This yields q, r E N such that - b = qa + r 
with 0 ::::; r < a. Again lal = a. If r = 0 then we have b = (- q)a + 0 so 
that Q = - q and R = 0. If r -=1= 0 then we have b = (- q)a + (- r), but - r 
is not between 0 and I al. We rewrite the equation as b = (- q - 1)a + (a - r). 
WenowletQ = -q- 1 andR =a- r.O < r < ayieldsO > -r >-a 
which in turn gives a > a - r > 0. Thus lal > R > 0. 

Case 3: a < 0 and b < 0. Using the natural number result on -a and 
-b we have q, re N so that -b = q( -a) + r with 0 ::::; r < -a. Therefore 
b = qa + (- r). If r = 0 set Q = q and R = 0. If r =F 0 then rewrite b = 
(q + 1)a + (-a- r). 0 < r < -a implies 0 > -r >a. -a> -a- r > 0. 
Set Q = q + 1, R = -a - r. Since a < 0, lal = -a. lal > R > 0. 

Case 4: a < 0 and b :;?; 0. There are q, rE N such that b = q( -a) + r. 
0::::; r < -a. b = ( -q)a + r. Set Q = -q and R = r. 0::::; R < lal. D 

In the case when the remainder is zero upon dividing b by a, a is said to 
divide b, to be a divisor of b. Thus the word divisor has several different 
meanings. We make a fresh definition to include the possibility of 0. 

Definition. Given a, b E 71., a is a factor (divisor) of b if and only if b = ea 
for some c E 71.. b is a multiple of a if and only if b = ea for some c E 71.. 

EXAMPLES. 3 is a factor of21 and 21 is a multiple of3. 0 is a factor ofO and 0 
is a factor of no other integer than 0. That the only factors of 1 and -1 are 
1 and -1 follows from the next theorem. 

Theorem. 1 and - 1 are the only integers with multiplicative inverses. 

PROOF. Both 1 and -1 dohaveinverses because(1)(1) = 1 and( -1)( -1) = 1. 
We now prove that if n > 1 then n has no inverse in the integers. Exercise 6 
of Section 3.4 with some additional argument gives the result. We offer here, 
however, a different proof using the order on 71.. Suppose n has an inverse u. 
Then nu = un = 1. Since the product is positive then u > 0 if n > 1 > 0. 
There are no positive integers between 0 and 1. u :;?; 1. But u :;?; 1 yields 
nu :;?; n > 1 so that u cannot be the inverse ofn. We conclude n cannot have 
an inverse if n > 1. On the other hand, if -m is an integer < -1 and v is its 
inverse it is clear that - v would be an inverse for m > 1. Therefore no 
integer strictly less than -1 can have an inverse either. 1 and -1 are the only 
integers with multiplicative inverses. D 

Factorization will be studied in detail later for principal ideal domains, 
a generalization of the integers, rather than for the integers alone. We will 
now, however, give a few results for the integers which may assist with an 
understanding ofthe more general results later. 
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Definition. The multiplicatively invertible integers, 1 and - 1, are called 
units of the ring Z. Any integer p, not zero and not a unit, is called a prime 
of Z if and only if p = qr implies q or r is a unit. Any integer, not zero, not 
a unit and not a prime is called a composite. 

EXAMPLES. Some of the primes are 2, 3, 5, 7, 11, 13, 17, 19, 23. Some of the 
composites are 4, 6, 8, 9, 10, 12, 14, 15, 16. -2, -3, -5, ... are also primes. 
-3 is a prime because the only factorizations of -3 are ( -1)(3), (3)( -1), 
(1)(- 3), (- 3)(1), and in each case one factor is a unit. 

Theorem. Every integer not zero and not a unit must have at least one prime 
factor. 

PROOF. We use the second principle of induction. Assume all natural num­
bers strictly less than k and not zero have at least one prime factor. Consider 
the natural number k itself. If k is prime then k has at least one prime factor, 
namely, k. If k is a composite (not 0 or 1) then k = rs for some r, s neither 
zero or a unit. r < k or s < k for otherwise r ;;::: k and s ;;::: k which would 
imply rs ;;::: kk > k. If r < k then r has a prime factor by the inductive as­
sumption and this prime factor of r is a prime factor of k. Ifs < k then s has 
a prime factor by the inductive assumption and this prime factor of s is a 
prime factor of k. Finally if n is a negative integer then - n is a natural number 
and a prime factor of - n is a prime factor of n. 0 

Finally for this section we have this marvelous theorem dating from 
classical times. 

Theorem. There are an infinite number of primes in N. 

PROOF. Let {p1, p2 , . .• , Pd be the set of the first k primes in N. For example, 
if k = 5 then we are talking about the set {2, 3, 5, 7, 11 }. Set q = p 1p2 • • • 

Pk + 1. None of the primes Pt. p2 , • •• , Pk is a factor of q because the re­
mainder upon dividing is always 1. But q must have a prime factor. There 
must exist then a prime other than Pt. p2 , . .. , Pk· It is not possible that 
there exists only a finite number of primes. 0 

QUESTIONS 

1. {14- x3JxE 7l. and 14- x3 ~ 0} 
(A) has minimum element 4 
(B) is a subset of N 
(C) has maximum element 4 
(D) has minimum element 2. 

(E) None of the alternatives completes a true sentence. 

2. Which of the following statements are true? 
(A) 0 is a divisor of 3. 
(B) 3 is a divisor of 0. 
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(C) 0 is a divisor of 0. 
(D) 1 is a divisor of 1. 

(E) None of the statements is true. 

3. Which of the following statements are true? 
(A) 1 is a prime integer. 
(B) - 3 is a prime integer. 
(C) Every integer has at least one prime factor. 
(D) 0 is a prime integer. 

(E) None of the statements is true. 

4. Which of the following statements are true? 
(A) 1-xl = x ifx > 0. 
(B) 1-xl = -ximpliesx ~ 0. 
(C) lxl + x = 0 implies x ~ 0. 
(D) lx - Yl = IY - xl implies x = y. 

(E) None of the statements is true. 

EXERCISES 

1. A common factor of a and b is also a factor of the remainder upon dividing b by 
a, a =/= 0. Prove. 

2. Prove that 0 is a factor of no integer except 0. 

3. Every integer is a factor of zero. Prove. 

4. Prove: If a, bEll., a =1= b, a > 0, b > 0 and a is a factor of b then a < b. 

5. Prove that the only factors of 1 and - 1 are 1 and - 1. 

6. Prove that if a is a factor of b and b is a factor of a then a = b or a = -b. 
Be certain that your argument is complete. 

4.4 Multiples and exponents in a ring 

In this section we describe the use of integers as multiples and exponents 
to represent repeated sums and products in a ring. 

If S is a set on which an associative binary operation is defined and 
represented by + we wish to analyze the use of natural numbers to represent 
repetitive addition, such as x = lx, x + x = 2x, and x + x + x = 3x. 3x 
is not to be thought of as a product of 3 and x in the usual sense of multi­
plication in a ring (3 may not be a member of the set S). 3x may be thought 
of as an abbreviation for x + x + x. We now define multiples inductively. 

Definition. Let S be a set on which an associative binary operation is defined 
and represented by +. Let also + have a neutral element e in S. We 
then define for any x E S 

Ox = e 
(k + l)x = kx + x. 
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In a perfectly analogous manner we may define exponents for an as­
sociative binary operation on a set S where the operation is represented 
multiplicatively. For example, x = xl, x · x = x 2 , x · x · x = x3 • 

Definition. Let S be a set on which an associative binary operation is defined 
and represented by·. Let also· have a neutral element v. We then define 
for any x inS 

x0 =V 

xk+l = xk. x. 

The assumption that the binary operation has a neutral element is not a 
necessary one for the use of multiples and exponents. The induction defi­
nitions can be begun with 1 · x = x and x1 = x. The exponential notation 
is also used for operations other than multiplicatively represented ones. 
xf3xf3x = x3. 3x seems always to mean x + x + x. 

Theorem. Let + be an associative binary operation on a set S with neutral 

element e. Then if m, n E N and X E s 
(m + n)x = mx + nx. 

Let · be an associative binary operation on a set S with neutral element v. 
Then if m, n E N and x E S 

PRooF. We first give the proof in additive notation. Let x E S. Let T = 

{ni(m + n)x = mx + nx for all mEN}. OE T because (m+ O)x = mx = 
mx + e = mx + Ox.SupposekE T;(m + k)x = mx + kx.(m + (k + 1))x = 
((m + k) + 1)x = (m + k)x + x = (mx + kx) + x = mx + (kx + x) = 
mx + (k + 1)x. k + 1 E T. T = 1\1. 0 

In order to assist understanding we give the same proof in multiplicative 
notation. Let x E S. Let U = {nixm+n = ~x" for all mEN}. 0 E U because 
xm+O = xm = ~V = xmx0• Suppose k E U; xm+k = xmxk. xm+(k+l) = 
x<m+k)+l = ~+kx = xmxkx = ~xk+l. k + 1 E u. u = N. 0 

It is clear both theorems are the same except for notation. We could 
express the theorem in such a manner that both statements are included in 
a general one, but we will not do this. 

Continuing with the laws of multiples and exponents we have the next 
result. 

Theorem. Let + be an associative binary operation on a set S with neutral 

element e. Then if m, n E N and X E s 
n(mx) = (nm)x. 
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Let · be an associative binary operation on a set S with a neutral element. 
Then if m, n E N and x E S 

PRooF. We prove only the first result. Let T = {njn(mx) = (nm)x for all 
mE N }. 0 E T because O(mx) = (} = Ox = (Om)x for all mE N. Suppose 
k(mx) = (km)x for all m E N; k E T. (k + 1)(mx) = k(mx) + mx = 
(km)x + (m)x = (km + m)x = ( (k + 1)m)x. k + 1 E T. T = N. D 

Theorem. If + is an associative binary operation on a set S with neutral 
element (} and x and y are members of S which commute (x + y = y + x) 
then n(x + y) = nx + ny for all nE N. If · is an associative binary 
operation on a set S with neutral element v and x and y are members of S 
which commute (xy = yx) then (xy)" = x"y" for all n E N. 

PROOF. We first prove x and ny commute. Let T = {njx + ny = ny + x 
and nE N }. 0 E T because x + Oy = x + (} = (} + x = Oy + x. If k E T 
then X + (k + 1)y = X + ky + y = ky + X + y = ky + y + X = (k + 1)y + X 

yielding k + 1 ET. T = N. x and ny commute for all nE N. Now let U = 

{njn(x + y) = nx + ny}. O(x + y) = (} = (} + (} = Ox + Oy implies 0 E U. 
Assume ke U. Then (k + 1)(x + y) = k(x + y) + (x + y) = kx + ky + x + y = 
kx + x + ky + y = (k + 1)x + (k + 1)y. k + 1 E U. U = N. D 

Whenever a given element of a set with an associative binary operation 
with a neutral element has an inverse we can then define negative multiples 
or negative exponents. 

Definition. Let S be a set with an associative binary operation + and a 
neutral element (}. If the negative of x, the additive inverse, exists then 
we define (- n)x = n(- x) for all n E N. Let SOe a set with an associative 
binary operation · and a neutral element v. If the multiplicative inverse 
of any element x exists then we define x-n = (x-)" for all nE N. 

We note in particular that (-1)x = 1(-x) = -x and that (x)- 1 = 
( x- ) 1 = x-. This justifies the use of x- 1 for the inverse of x. 

We now have the project of proving the theorems which extend the laws 
of exponents and multiples from natural numbers to integers. 

Theorem. Let S be a set with an associative binary operation + with neutral 
element 0. Let x be any element of S which has a negative in S. Then 
(m + n)x = mx + nx for all m, nE 7!... LetS be a set with an associative 
binary operation · with neutral element v. Let x be any element of S with 
multiplicative inverse. Then xm+n = xmx" for all m, nE 7!... 

PROOF. We offer a proof only of the exponential result. The proof is by cases. 
Case I: m, nE N. This is our earlier theorem for natural number exponents. 

105 



4. Rings: Applications of the integers 

Case 2: m < 0 and n < 0. Let y be the inverse of x. xm+n = y-<m+n) = 
y-m-n = y-my-n = xmx". Case 3a: m ;:::: 0 and n < 0 and m + n ;:::: 0. 
Let y be the inverse of X. xm+n = xn+nv-n = xm+n(xy)-n = xm+nx-ny-n = 
xmy-n = xmxn. Case 3b: m ;:::: 0 and n < 0 and m + n < 0. Again V is the 
neutral element and y is the inverse of x. xm+n = y-<m+n) = y-m-n = 
vmy-m-n = (xyty-m-n = xm~y-m-n = xmy-n = xmx". Case a: m < 0 

and n;:::: 0 and m+ n ;:::: 0. Case 4b: m < 0 and n;:::: 0 and m+ n < 0. 
Cases 4a and 4b are similar to Cases 3a and 3b. In all cases the gist of the 
argument is to arrange to have nonnegative exponents so that the theorems 
already proved for N are applicable. D 

Theorem. Let S be a set on which + is an associative binary operation with a 
neutral element e. Let x be an element of S which has a negative. Then 
n(mx) = (nm)x for all m, n E 7L. Let S be a set on which · is an associative 
binary operation with a neutral element v. Let x be an element of S which 
has a multiplicative inverse. Then (~)" = xmn for all m, nE 7L. 

PROOF. We prove only the exponential version. Let y be the inverse of x. 
Case 1: m ;:::: 0 and n ;:::: 0. This the theorem for natural numbers. Case 2: 
m ;:::: 0 and n < 0. ym is the inverse of Xm because Xm~ = (xy)m = Vm = V 

and ymxm = (yx)m = vm = V. We have (xm)" = (ym)-n = ~(-n) = y-mn = 
xmn. Case 3: m < 0 and n ;:::: 0. (xm)" = (y-m)" = y<-mln = y-mn = xmn. 
Case 4: m < 0 and n < 0. x-m and y-m are inverses because x-my-n = 
(xy)-m = v-m = v.Alsoy-mx-m = v.(xm)" = (y-m)n = (x-m)-n = x<-mJ<-nl = 
~ D 

Theorem. Let S be a set upon which + is an associative binary operation 
with neutral element e. Let x and y be elements of S which have negatives 
and which commute. Then m(x + y) = mx + my for all m E 7L. Let S be a 
set upon which · is an associative binary operation with neutral element v. 
Let x and y be elements of S which have multiplicative inverses and which 
commute. Then (xyt = xmym for all m E 7L. 

PROOF. We prove the exponential version. Let us represent the inverse of x 
by u and the inverse of y by v. We first prove that xy = yx implies uv = vu. 
Suppose xy = yx. Then vyxu = v. vxyu = v. The inverse of vxyu, namely 
xvuy, is also equaLto v. Multiplying xvuy = v on the right by v and on the 
left by u we get vu = uv. 

Knowing already that if two elements commute then all positive powers 
of the two elements commute we combine this with the result just proved 
and we then have proved that all integral powers commute. To demonstrate 
the conclusion of the theorem for n < 0, consider (xy)". (xy)" = (vu)-n = 
v-nu-n = y"xn = x"y". We are, as we said, assuming the theorem proved 
for natural number exponents. D 

Finally we have a theorem about multiples of elements in a ring and 
multiplication in the ring. 
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Theorem. Let <R, +, ·, 8) be a ring. Let x, yE R. Then for any nE Z we 
have n(xy) = (nx)y = x(ny). 

PROOF. The proof is by induction for n ~ 0. O(xy) = 8 = 8y = (Ox)y. 
Assume the result true for k. (k + 1)(xy) = k(xy) + xy = (kx)y + xy = 
(kx + x)y = ( (k + 1)x)y. The conclusion holds for all nE N. For mE Z 
and m<O let n= -m. n(xy)=(-m)(xy)=m(-(xy))=m((-x)y)= 
(m(- x) )y = ( (- m)x)y = (nx)y. The other equation is proved similarly. D 

We have seen how the integers can be used to indicate multiples of ring 
elements. We have indicated this with juxtaposing the integer n and the 
ring element x: nx. In the case where the ring under consideration is Z 
itself we have a problem of ambiguity because we have sometimes indicated 
the product in this manner also. Suppose for the rest of this discussion we 
indicate the product in Z exclusively with the raised dot (never omitting it): 
n · m means the product in Z and nm is the nth multiple of the ring element 
m in Z. We propose to show that the two are identical. 

If we consider first n and m in N and compare the two definitions we 
find agreement: 

Om = 0 O·m = 0 
(k + 1)m = km + m (k + 1) ·m = k ·m + m. 

Because of the uniqueness provided by definition by mathematical induction 
we have nm = n · m for all n, m E N. 

We secondly pass tonE Nand mE Z. In particular, we wish to compare 
nm and n · m where nE N and m < 0. For multiples we had 0(- p) = 0 
and (k + 1)(- p) = k(- p) + (- p) with p > 0. However, for multiplication 
in Z the procedure was different. The natural number system was extended 
by means of an equivalence class construction and multiplication was 
defined on the quotient set preserving the original multiplication on N. 
We did prove, however, that in any ring, ( -x) · y = x · (- y) = -(x · y). 
We have, therefore, for multiplication in Z 

0. (- p) = ( -0). p = 0. p = 0 
(k + 1)·(-p) = -((k + 1)·p) = -(k·p + p) 

= - (k . p) + (- p) = k . (- p) + (- p). 

This agrees with the definition of multiples for all n E N, m E Z. 
It remains to check agreement of nm and n · m for n E Z, m E Z, in par­

ticular for the case n < 0. Let n = - q. nm = (- q)m = q(- m) according 
to the definition of negative multiples. On the other hand, for any ring, 
n · m = (- q) · m = q · (-m). But q(- m) = q · (-m) for q E N, -m E Z by 
our previous result. We have now proved nm = n ·m for all n, m in Z. In 
view of this it is not necessary for us to distinguish between multiples and 
multiplication when we work entirely in z. This result also embodies the 
intuitive concept of multiplication as repeated addition in Z. 
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QUESTIONS 

1. Let <R, +, ·, e, v) be a unitary ring. Which of the following four are not the zero 
of R? 

(A) (1)(e). 
(B) (O)(v). 
(C) (e)(v). 
(D) (0)(1). 

(E) All four are e. 

2. Let <R, +,·,e) be a ring and let x ER such that 3x =e. We can conclude 
(A) x = e 
(B) 51x = e 
(C) 3 ER 

(D) 2x =e. 
(E) None of the four conclusions follow. 

3. Let <R, +,·,e) be a ring and let x ER. We can conclude x0 belongs toR provided 
(A) x ¥- e 
(B) x = e 
(C) there exists ayE R such that yz = zy = z for all z E R 
(D) x 2 = x. 

(E) None of the four conditions is sufficient. 

4. Given a ring <R, +, ·, e, v) with unity v and an invertible element x ER, the function 
fx:7L-+ R such thatfx(z) = xz 

(A) is a morphism of rings 
(B) preserves addition in multiplication 
(C) is a monomorphism 
(D) obeys the relation fx(z)fx(- z) = v. 

(E) None of the alternatives completes a true sentence. 

5. Let <R, +,·,e) be a ring and x an element of R. Then 
(A) nx = e implies (mn)x = e 
(B) Ox= e 
(C) mx = e and nx = e imply (m - n)x = e 
(D) {njnx = e} is an ideal of 7L 
(E) 7Lj{njnx = e} is isomorphic with [x]. 

ExERCISES 

1. For a commutative ring <R, +, ·, e) prove <a)= Ra + 7La. [Hint: Review 
Exercises 8, 9, and 10 of Section 2.8.] 

2. For a commutative ring <R, +, ·, e) prove Ra = <a> if and only if there exists 
an r E R such that a = ra. 

3. Let <R, +,·,e) be a ring. On the set P = 7L x R define operations: 

(m, x) + (n, y) = (m + n, x + y) 

(m, x) · (n, y) = (mn, my + nx + xy). 
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Show that (P, +, ·, (0, 0)) is a ring. Moreover, show that P has a unity and that 
R is isomorphic with an ideal of P. 

4. For a ring (R, +, ·, 0) prove that (mx)(ny) = (mn)xy for any x, yE Rand m, nE 71.. 

5. Let (R, +, ·, 0, v) be a unitary ring. Prove (nx)m = nmxm for any x ER and all 
n Ell., mE N. 

6. Let (R, +, ·, 0) and (R', +', ·', 0') be rings and f:R-> R' be amorphism. Prove 
f(nx) = nf(x) for all x ER and nE 71.. 

7. Let (R, +, ·, 0, v) and (R', +', ·', 0', v') be unitary rings andf:R-> R' a unitary 
ring morphism (f(v) = v' and f is a morphism). Prove f(x") = (f(x) )" for all 
invertible x in R and all n in 71.. Prove that the hypothesis f is a unitary ring morph ism 
can be replaced by f is a ring epimorphism. 

8. By C) we mean n!/(n - j)!j! for natural n~;~mbers n, j with j ~ n. Prove(~) = 

(:) = 1. Show that(;) is always a natural number; the denominator is always a 

factor of the numerator. [Hint: Use induction on n; prove and use the formula 

C)+ c ~ 1) = e; 1).J 
9. Let (R, +, ·, 0, v) be a commutative unitary ring. Prove (x + y)" = I (~) x•-iyi 

j=O } 

for all nE N. This is, of course, the binomial theorem from which one obtains the 

name binomial coefficients for the natural numbers(;). Use induction and Exer­

cise 8 to prove the result. 

10. Study the three examples given below and then find a formula for nk as a sum of 
lesser powers. 

n 

n = I u - u - 1l l I L 
j= 1 j= 1 

n n 

nz = I V - u - ozl = I (2j - 1). 
j= 1 j=1 

n 

n3 = I (/ - u - 03l = I (3l - 3j + 1J. 
j= I j=l 

11. Find a, bE N such that 

a(J1 (2j- 1~+ b(t
1 

1) = J
1
j. 

Use this principle to derive the formula in Exercise 1, Section 4.2. 

12. Derive a formula for I l. 
j=1 

13. Derive a formula for I/ in terms of sums of lesser powers. 
j=1 
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4.5 The field of fractions 

In this section we embed a commutative unitary ring R in a larger ring R 
so that every cancellable element in R becomes an invertible element in 
R; we embed an integral domain in a field and thereby construct the rational 
numbers from the integers. 

If a ring does not contain multiplicative inverses we raise the question 
of whether or not it might be possible to adjoin elements to the commutative 
ring in some way so as to provide inverses. This is analogous to adjoining 
negatives to the natural numbers to construct the integers. In posing this 
problem we should remember we have proved that any element which is 
invertible in a ring is also multiplicatively cancellable. There is, therefore, 
no hope for adjoining inverses for those elements which do not cancel and 
are divisors of zero. If we deal with the special case of an integral domain 
so that no nonzero element can be a divisor of zero we might hope to adjoin 
inverses for every nonzero element in such a manner to produce a field. 
In fact, the hope is not in vain; the field exists and is called the field of frac­
tions of the integral domain. The following theorem deals with the problem 
of adjoining in verses for cancellable elements in a ring not specialized to an 
integral domain. The enlarged ring will be called the ring of fractions. 

Theorem. Let <R, +, ·, e, v) be a commutative unitary ring. Let R* denote 
the set of multiplicatively cancel/able elements of R. Then there exists a 
ring <R, +, ·, e, v) and a monomorphism q>:R-+ R such that q>(v) = v' 
and the image of every member of R* is invertible in R. Moreover, if yE R 
then y = q>(a)q>(b)- for some a ER, bE R*. 

PROOF. We begin the proof by defining on R x R* a relation ,....., such that 
(x, y) ,....., (u, v) if and only if xv = yu. We verify that ,....., is an equivalence 
relation. (x, y) ,....., (x, y) because xy = yx. (x, y) ,....., (u, v) implies xv = yu. 
Then uy = vx which yields (u, v) ,....., (x, y) proving symmetry. For tran­
sitivity assume (x, y) ,....., (u, v) and (u, v) ,....., (r, s). xv = yu and us = vr. 
xvs = yus; yus = yvr. xvs = yvr. xsv = yrv. xs = yr because v ER* and 
is a cancellable element of R. (x, y) ,....., (r, s). 

On the quotient set R x R*/,....., define two operations: 

(x, y)j,....., + (u, v)j,....., = (xv + yu, yv)j,....., 
and 

(x, y)j,....., · (u, v)j,....., = (xu, yv)j,.....,. 

Both pairs (xv + yu, yv), (xu, yv) belong to R x R* because the product yv 
of cancellable elements of R is itself cancellable. We comment that these 
operation definitions are simply the conventional rules for adding and 
multiplying fractions in somewhat disguised form. We now demonstrate 
the definition of addition to be independent of the representative chosen 
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from the coset by proving (u, v) ~ (u', v') and (x, y) ~ (x', y') imply (x, y)/ ~ + 
(u, v)/ ~ = (x, y)/ ~ + (u', v')/ ~ and (x, y)/ ~ + (u', v')/ ~ = (x', y')/ ~ + 
(u', v')/ ~. As the two statements are quite similar we prove only the first. 
(u, v) ~ (u', v') implies uv' =vu'. xyvv' + yyu'v = xyvv' + yyuv'. (xv' + yu')yv = 
yv'(xv + yu). (xv' + yu', yv') ~ (xv + yu, yv), which was to be proved. 

We demonstrate that the definition of multiplication is also independent 
of the representative pair chosen by proving (x, y)/ ~ (u, v)/ ~ = (x, y)/ ~ 
(u', v')/ ~ whenever (u, v) ~ (u', v') and that (x, y)/ ~ (u', v')/ ~ = (x', y')/ ~ 
(u', v')/ ~ whenever (x, y) ~ (x', y'). Again we prove only the first of the 
two assertions. Let (u, v) ~ (u', v'). uv' = vu'. xuyv' = xu'yv. (xu, yv) ~ 
(xu', yv'). 

R = R x R* is a commutative ring with zero (8, v)/ ~.The commutative, 
associative and distributive properties can be routinely verified. To embed 
R into R define cp: R --+ R such that cp(x) = (x, v)/ ~. R is a unitary ring 
with unity cp(v) = (v, v)/ ~. cp is easily seen to be a morphism. Let cp(x) = 

cp(y). (x, v)/ ~ = (y, v)/ ~. xv = vy. x = y. cp is a monomorphism. 
Any element x ER* has image (x, v)/ ~ under the monomorphism cp. 

(v, x) E R x R* because x E R*. (v, x)/ ~ is the inverse of (x, v)/ ~ m 
R:(v, x)/~ (x, v)/~ = (x, x)/~ = (v, v)/~, the unity of R. 

Finally let yE R. y = (a, b)/~ for some a ER, bE R*. (a, b)/~ 
(a, v)/ ~ (v, b)/~ = (a, v)/ ~ [(b, v)/ ~]- = cp(a)cp(b)-. 0 

It is interesting to note what the proof produces when an element x 
already has an inverse in R. Let x ER* and yE R* such that xy = yx = v. 
The images under cp remain inverses in R. (x, v)/~ (y, v)/~ = (xy, v)/~ = 
(v, v)/ ~. Furthermore the newly created inverse in R becomes identified 
with the image of the original inverse in R. (v, x)/ ~ = (y, v)/ ~ and 
(v, y)/~ = (x, v)/~. 

Corollary. Every integral domain is contained in a field. 

PRooF. As we have stated before if an integral domain is given then R* = 
R - { 8} and the image of every nonzero element of R becomes invertible 
in R. That R is a field is seen as follows. Let (a, b)/~ ER and (a, b)/~ =J 
(8, v)/ ~. av =J be. a =J e. Because R is an integral domain, a E R*. (b, a) E 

R x R*. (b, a)/~ E R and is the inverse of (a, b)/~. 0 

We will now discuss the construction of the rational numbers, QJ. We 
take the integral domain, Z, of integers and apply the theorem to obtain £'., 
a field, and a monomorphism cp: Z --+ £'.. Every member of£'. can be written 
as cp(a)cp(b)- for some a, bEZ, b =J e, or as (a, b)/-. We write (JJ for£'.. 
The conventional way to write the coset (a, b)/~ in (JJ is as the fraction ajb. 
We now summarize some of our results in the conventional fractional 
notation. 

xjy = ujv if and only if xv = yu, y, v =J 0. 
xjy + ujv = (xv + yu)jyv, y, v =J 0. 
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xjy · ujv = (xu)j(yv), y, v =f. 0. 
cp(x) = xjl. 
0/1 is the zero of IIJ. 
1/1 is the unity of IIJ. 

We emphasize we have merely copied material from the theorem, changing 
notation to the conventional fractions. The fractions, -l and t which stand 
for (3, 4)/"' and (6, 8)/"' actually are symbols which stand for the same 
equivalence class or coset in 2 ( = IIJ). By identifying the integer x E 7L with 
the fraction x/1 = cp(x) in iiJ we embed the integers in the field iiJ of rational 
numbers. 

QUESTIONS 

1. Which of the following has a as a field of fractions? 
(A) IR 
(B) Z 
(C) 21' 
(D) a 
(E) N. 

2. {m/2"jm E 1', nE N} 
(A) is a subring of a 
(B) is an integral domain 
(C) is a field 
(D) has a as its field of fractions. 

(E) None of the four alternatives completes a true sentence. 

3. S = {m + ny'Sjm, n E Z} is a subring of IR. The field of fractions of S 

(A) contains 1/JS 
(B) is a+ ay'S 
(C) is IR 
(D) is a. 

(E) None of the four alternatives completes a true sentence. 

4. z + zy'S 
(A) is a field 
(B) is an integral domain 
(C) is its own ring of fractions 
(D) has as its ring of fractions, a + ay'S. 

(E) None of the four alternatives is true. 

ExERCISES 

1. Show that any field containing a given integral domain also contains a subfield 
isomorphic to the field of fractions of the integral domain. Use the procedure out­
lined below in (a), (b), and (c). 
(a) Let (R, +, ·, 8, v) be the given integral domain and K the enclosing field. Let 

qJ: R -+ R. be the monomorphism of the integral domain onto the constructed 
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field of fractions of R described in the text of this section. Show that R' = { m/nlm, 
nE R, n #- !1} is a subfield of K. 

(b) Show that the function cf>:R'---+ R such that cf>(m/n) = cp(m)cp(n)- is well-defined 
and agrees with cp on R. 

(c) Show that cf>:R'---+ R is an isomorphism. 

2. Show that R' in Exercise 1 is the intersection of all subfields of K containing R 
and is therefore the smallest subfield of K containing R. 

3. The subset 7L + 7Li = {m + nilm, nE 7L} of the complex numbers is called the set 
of Gaussian integers. Show that 7L + 7Li is a ring with field of fractions equal to 
Q + Qi. 

4. Show if R is a finite ring then its ring of fractions is also finite. [Hint: If crd R = n 
then crd R :S.; n2 - n. 

5. What is the field of fractions of the integral domain 7L + 7LJ2? 

6. What is the ring of fractions of the ring 7L x 7L? 

7. Fractional exponents in Ill For each positive a E IR and each positive integer n 
there exists a unique positive x E IR such that x" = a. This x (the nth root of a) 
is denoted by a11". By ami• is meant (a11•t for all mE 7L. Show that the following 
exponential laws are valid: (a1i")" = a; aml•aPiq = am/n+pfq; (aml•y/q = a<m!n)(p/ql; 
(ab)Piq = aPiqbpfq. 

4.6 Characteristic of a ring 

In this section we assign to each ring a natural number called the char­
acteristic of the ring and explore its properties. 

If we observe multiples of the elements of the ring z4, denoted here by 
0, I, 2, 1, where n is the coset n + 4Z, we see that the fourth multiple of 
every element of the ring is zero and no smaller multiple has that property. 

4(0) = 0 3(0) = 0 2(0) = 0 1(0) = 0 
4(I) = 0 3(I) = 1 2(I) = 2 1(I) =I 
4(L) = 0 3(2) = 2 2(2) = 0 1(L) = 2 
4(1) = 0 3(1) =I 2(1) = 2 1(1) = 1. 

We say that the natural number 4 is the characteristic of the ring Z4 . If we 
look at the ring z2 X z2 = {(0, 0), (0, I), (I, 0), (I, I)} which also has four 
elements we find the characteristic to be 2. 

2(0, 0) = (0, 0) 
2(0, I) = (0, 0) 
2(I, 0) = (0, 0) 
2(I, I) = (0, 0) 

1(0, 0) = (0, 0) 
1(0, I) = (0, I) 
1(I, 0) = (I, 0) 
1 (I, I) = (I, I). 

The second multiple is always zero whereas the first is not. For convenience 
of language we shall say that the natural number n annihilates the element 
x when the nth multiple of x is zero. 
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Definition. Let (R, +,·,e) be a ring. The natural number n annihilates x if 
and only if nx = e. The natural number n annihilates R if and only if 
nx = e for all x E R. The characteristic of a ring is the smallest positive 
natural number which annihilates R in the case that some positive natural 
number annihilates R and is the natural number 0 if no positive natural 
number annihilates R. 

The rings 7!.., Q, and ~ all have characteristic 0 for there is no one positive 
multiple of every element which is zero. We remind the reader that n in the 
above definition is an integer and not a member of the ring R in general. The 
fact that 7!.., Q, and ~ all have characteristic zero shows that rings need not be 
isomorphic to share characteristic. We proceed then to explore what rings 
with the same characteristic have in common. The next theorem simplifies 
the procedure in finding the characteristic of a unitary ring. 

Theorem. Let < R, + ' . ' e' V> be a unitary ring. If m is the smallest positive 
multiple of v which is e then chr R = m. If no positive multiple of v is e 
then chr R = 0. 

PROOF. If positive, chr R can be no smaller than m since (chr R)v = e. Let 
X be any element of R. mx = m(vx) = (mv)x = ex = e. From this equation 
we conclude chr R is at least as small as m. Therefore chr R = m. If chr R = 0 
then no positive multiple of V is e provided V is distinct from e because if 
e = v we are dealing with the ring { e} which is easily seen to have character­
istic 1. o 

A fruitful approach to these concepts is to consider all multiples of the 
ring which are zero rather than just the minimum one. 

Definition. Let (R, +, ·, e) be a ring. The annihilating ideal of an element x 
in R is the set of all integers which annihilate x. The annihilating ideal of 
R is the set of all integers which annihilate R. 

It must be verified that the set described in the definition is indeed an 
ideal of 7!... 

Theorem. Let (R, +,·,e) be a ring. The annihilating ideal of an element x 
in R is an ideal of 7!.. and the annihilating ideal of R is also an ideal of 7!... 

PROOF. If m, n annihilate x then m + n, -m, and km (for any k E 7!..) all 
annihilate x. 0 

We will need the following lemma about ideals in 7!... 

Lemma. If A is an ideal of (7!.., +, ·, 0, 1) then A is generated by a single 
natural number J.l: A = ( J.l) = l!..f..l. 
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PROOF. If A = {0} then A = ZO = (0). If A =J {0} then A contains some 
positive integer (Why?). Let A+ be the positive members of A. A+, a non­
empty subset of 1\J, contains a minimum member we call Jl.· Let a be any 
element of A. a = qJl. + r with 0 ~ r < Jl.· a, J1. E A. a - qJl. = r E A. r 
must be 0 for otherwise r is a positive element of A smaller than Jl.· a = qJl.. 
A £; 1':J1.. But 1':J1. £; A. A = ZJJ.. D 

Theorem. Let (R, +,·,e) be a ring. Then chr R = J1. if and only if (JJ.) is 
the annihilating ideal of R. 

PRooF. If chr R = J1. then (JJ.) annihilates R. If nE Z and annihilates R 
then by an argument similar to one in the lemma n = qJl. for some q E Z. 
(JJ.) is the annihilating ideal of R. Conversely, if A is the annihilating ideal 
of R then A = ( J1.) for some J1. in 1\J. If nonzero, J1. will be the smallest positive 
integer annihilating R. If zero no positive integer will annihilate R. D 

We continue with this structural theorem. 

Theorem. If (R, +, ·, e, v) is a unitary ring with characteristic J1. then there 
exists a subring of R isomorphic to 1':11 (including case 1':0 = Z). 

PRooF. The morphism f:Z ~ R such that f(n) = nv has for its kernel 1':J1., 
the annihilating ideal of R. By the fundamental morphism theorem Zjker f 
is isomorphic with f(Z), a subring of R. Z/ZJ1. = 1':11 is isomorphic to a subring 
ofR. D 

The integers, rational numbers, real numbers, and complex numbers all 
contain a subring isomorphic with Z and are rings of characteristic zero. 
The product ring Z x £:2 is a ring of characteristic zero because there is no 
mE 1\J + such that m(1, I) = (m, m) = (0, 0). The subring of Z x £:2 iden­
tified by the theorem which is isomorphic to Z is f(Z) = {m(l, I)lm E Z}. It 
is interesting to note that there are some elements of Z x 1':2 such as (0, I) 
which have finite multiples equal to zero: 2(0, I) = (0, 0). 

The theorem just considered allows us to show that integral domains 
cannot have some integers as their characteristics. 

Theorem. If (R, +, ·, (}, v) is an integral domain then chr R = 0 or chr R is 
a prime. 

PROOF. R contains a subring which is isomorphic with 1':11 where J1. = chr R. 
Suppose J1. = 1. Then 1 V = e yielding V = e. This is impossible in an integral 
domain. Therefore J1. =J 1. Suppose now J1. = a.p where a. and p are not 1 and 
are positive natural numbers. (a.v)(pv) = (a.p)v = Jl.V = e. a.v and Pv are 
therefore nontrivial divisors of zero in R, another contradiction. The only 
posibilities left for J1. are that J1. is prime or zero. D 

Corollary. If (R, +, ·, e, v) is a field then R has either prime or zero 
characteristic. 
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Theorem. Let (R, +, ·, (), v) be afield. If chr R = 0 then there is a subfield 
of R isomorphic to 0! ; if chr R is a prime p then there is a subfield of R 
isomorphic to zp. 

PRooF. If chr R is the prime p then there is a subfield of R isomorphic to ZP 
which is a field as well as a ring. If chr R is zero then there is a subring iso­
morphic with Z. Because R is a field every image of an element in Z must 
have an inverse in R. If f:Z-+ R is the ring isomorphism such that f(n) = 
nv, then we definef:O!-+ R so thatf(m/n) = f(m)f(n)-,J(O) is a subfield of 
R isomorphic to 0!. This technique resembles the one described in Exercise 1, 
Section 4.5. D 

QUESTIONS 

1. The characteristic of 7L4 x 7L4 is 
(A) 0 
(B) 1 
(C) 4 
(D) 8 
(E) 16. 

2. Which of the following are possible? 
(A) A field with characteristic 4 
(B) An integral domain with characteristic 4 
(C) An infinite field with nonzero characteristic 
(D) A finite field with characteristic 0. 

(E) All four are impossible. 

3. The characteristic of 7L6 x 7L4 is 
(A) 0 
(B) 4 
(C) 6 
(D) 24. 

(E) None of the four numbers is the characteristic. 

4. The characteristic of 7L8 x 7L4 is 
(A) 0 
(B) 4 
(C) 8 
(D) 32. 

(E) None of the four numbers is the characteristic. 

5. The multiples of the unity map (f:li. --+ 7L x 7L2 such that f(n) = nv) of 7L into 
7L x 7L 2 has range 

(A) 7L x 27L 
(B) {(2n, O)ln E li.} v {(2n + 1, I)ln E li.} 
(C) { n(1, I) In E 7L} 
(D) lL. 

(E) None of the four sets is the range. 
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6. If the characteristic of a ring R is zero then 
(A) R is an integral domain 
(B) nx = (} is impossible for nonzero x in R and positive n in 7L 
(C) R has a unity 
(D) R cannot be the zero ring, {0}. 

(E) None of the alternatives makes a true sentence. 

EXERCISES 

1. Let f:R-+ R' be a ring epimorphism. Let anh R stand for the annihilating ideal 
of the ring R. Prove 
(a) anh R s;; anh R'; 
(b) chr R is a multiple of chr R'; 
(c) chr R = chr R' if f is an isomorphism. 

2. Find the characteristic of 7L2 x 7L3 • Prove 7L2 x 7L 3 is isomorphic to 7L6 • 

3. Give an example of a ring with prime characteristic yet not an integral domain. 

4. Let (R, +, ·, (}, v) be a unitary commutative ring. If chr R is the prime p prove 
(X + y)P = XP + yP for all X, y E R. 

5. Find a noncommutative unitary ring R and a prime p such that chr R = p and the 
equation (x + y)P = xP + yP fails for some x and y. 

6. Find all morphisms of 7L into an integral domain R. 

7. Find a ring Rand amorphism f:lL-+ R which is not the zero morphism nor of 
the type f(n) = nv. 

8. Show that the only morphism of the ring Q into the ring 7L is the zero morphism. 

9. We define the additive order of an element x in a ring R to be min{nlnx = (}and 
n e 1\J +} if the set is nonempty and 0 otherwise. 
(a) Show that the order of an element is the natural number generator of the 

annihilating ideal of x. 
(b) If A is the annihilating ideal of Rand A" is the annihilating ideal of the element 

x in R show that A = n{A.xlx ER}. 
(c) Let R be a ring. Show chr R = 0 if any element of R has order 0. Show chr R = 

lcm { n.xlx e R} if every x e R has order n" e 1\J +. The notation lcm means least 
common multiple. 

(d) Are there elements of 7L 2 x 7L3 with positive order smaller than the char­
acteristic? 

10. Let V be the set of all sequences (a2 , a3 , a4 , ••• ) where ai E 7Li and all but a finite 
number of the ai equal 0. Verify that V is a commutative ring without unity under 
the operations (a;) + (hi) = (ai + hi), (ai)(h;) = (aih;). Show that every element of 
V has finite order yet chr V = 0. 

11. Show that the field of fractions of an integral domain has the same characteristic 
as the integral domain. 
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5 Rings: 
Polynomials 
and factorization 

We begin with the properties of polynomials found in school algebra and 
then move in Section 5.2 to a relatively formal construction of the polynomial 
ring. Particularly interesting to students ought to be the altered properties of 
polynomials when the ring of coefficients is not a field. Section 5.3 deals with 
polynomial functions arising from polynomials emphasizing the distinction 
between these two concepts. Although this is a small point to a professional 
mathematician, an understanding of such distinctions helps mature the 
student of mathematics. The matters at stake in the factor theorem are then 
clearer. We are then led to the important results counting the number of 
roots of a polynomial and the concept of multiplicity of roots. 

We now make a change of subject and discuss rings enjoying the division 
algorithm. We study factorization of these rings having both the polynomials 
and integers as examples. A distinction is made between irreducible element 
and prime element which becomes active in the more general examples. We 
prove the fundamental theorem of arithmetic for principal ideal domains. 
We then introduce greatest common divisors. Greatest common divisor as 
we use it is not unique; any unit multiple of a greatest common divisor is also 
a greatest common divisor. We have chosen not to formalize the equivalence 
of all greatest common divisors of a pair of elements. We do connect the 
greatest common divisor study with the use of partial fractions in finding 
antiderivatives in elementary calculus. Unique factorization is studied for 
its own sake with unique factorization seen as the distinction between irre­
ducible and prime elements. We use again polynomials this time to study 
field extensions and in turn we apply field extensions to construct the complex 
numbers. 
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5.1 The ring of polynomials 

5.1 The ring of polynomials 

In this section we review formal properties of polynomials and their 
operations. We assume some previous familiarity with polynomials. 

By a polynomial in X with coefficients in a ring R we shall mean any 
expression of the form anxn + an_ 1xn- 1 + · · · + a2 X 2 + a1X + a0 

in which a0 , al> . .. , an ER and an "I= (} or the expression (}which is the 
zero element of R. a"' an_ 1, ••• , a2 , a1, a0 are called the coefficients ofthe 
polynomial. (} is called the zero polynomial. The natural number n is 
called the degree of the polynomial and an is called the leading coefficient. 
The zero polynomial has no leading coefficient and no degree. 

EXAMPLES. 3X2 + X + 1 (or 1 + X + 3X2) has leading coefficient 3 and 
degree 2. X64 + 12 is a polynomial with leading coefficient 1 and degree 64. 
All coefficients a1, a2 , ••• , a63 are zero. 5 is a polynomial with leading 
coefficient 5 and degree 0. 

The definition of polynomial is provisional; it is somewhat unsatisfactory 
until the meaning of the symbol X is resolved. A more abstract formulation 
will come up later, but we have chosen to begin with the familiar. 

It is often convenient to regard a nonzero polynomial as having an infinite 
number of coefficients, all zero beyond a certain one. In this vein a0 + 
a1 X + a2 X 2 + · · · + anxn with an "I= (} (the leading coefficient) may be 
regarded as a0 + a1 X + a2 X 2 + · · · + anxn + exn+ 1 + (}X"+ 2 + · · ·. 
In summation notation Li=o aiXi = L:r;.o aiXi in which ai = (}for i > n. 
We also can regard(} = (} + (}X + (}X2 + ···as having all coefficients zero. 

We denote the set of all polynomials with coefficients in the ring (R, +, 
, ())by the symbol R[X] and define operations for the set as follows. 

Addition 

Li=o aiXi + Li=o biXi = Lf=o (ai + bi)Xi. m is the degree of the first 
polynomial and n is the degree of the second polynomial; a,. "I= ()and bn "I= (). 
ai = () for i > m and bi = (} for i > n. p denotes the maximum of the two 
natural numbers, m and n. 

EXAMPLES. (6X3 + 4X2 + 5) + (X2 + 4X) = (6X3 + 4X2 + OX + 5) + 
(OX3 + 1X2 + 4X + 0) = 6X3 + 5X2 + 4X + 5. (X2 + 2X + 5) + 
(- X 2 + X + 2) = 3X + 7. This second example shows that pis not neces­
sarily the degree of the sum. 

Multiplication 

(Li=o aiXi)(Lj=o biXi) = l:'t:~o (Li+ i=k aibi)Xk. m is the degree of the 
first polynomial and n is the degree of the second polynomial; am f= (} and 
bn "I= e. aj = (} for i > m and bj = (} for i > n. 
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EXAMPLES. (5X4 + 6X3 - 4X2 + 3X + 2)(2X3 - 3X2 + 6X - 7) = 
(5·2)X7 + (5(-3) + 6·2)X6 + (5·6 + 6(-3) + (-4)2)X5 + (5(-7) + 
6(6) + (-4)(-3) + 3(2))X4 + (6(-7) + (-4)6 + (-3)3 + 2(2))X3 + 
((-4)(-7) + 3(6) + 2(-3))X2 + (3(-7) + 2(6))X + 2(-7) = 10X7 + 
(-3)X6 + 4X5 + 19X4 + (-7l)X3 + 40X2 + (-9)X + (-14). The 
degree of the product is not necessarily m + n in general. 

Utilizing these definitions of addition and multiplication of polynomials 
with coefficients in a ring we state a theorem. 

Theorem. If (R, +,·,8) is a ring then (R[X], +,·,8) is a ring. If 

(R, +, ·, 8, v) is a unitary ring then (R[X], +, ·, 8, v) is a unitary ring. 

If (R, +, ·, 8) is a commutative ring then (R [X], +, ·, 8) is also a 

commutative ring. 

We do not prove these theorems but rather leave proofs to the reader. 
The proofs are routine. Relevant to the last statement in the theorem we 
point out that even if R is not a commutative ring the definition of multi­
plication for R[X] implies that the symbol X must at least commute ,With 
every member of R; Xa = (vX + O)(a) = (va)X + 8 = aX. If there is no 
unity in R we can still be assured that (eX)( a) = (eX + O)(a) = (ca)X + 8 = 
(ca)X for all a, c ER. 

We give one more theorem of the same type and do prove this one. 

Theorem. (R, +, ·, 8, v) is an integral domain if and only if (R[X], +, ·,8, v) 
is an integral domain. 

PROOF. Let R be an integral domain and let p(X)q(X) be a product of 
polynomials in R[X] which is zero. Then all of the coefficients of the product 
are zero including that formed from the leading coefficients of p(X) and 
q(X), namely ambn. But if ambn = 8 and R is an integral domain we have 
~ = 8 or bn = 8, which is a contradiction. The only alternative to the 
contradiction is that either p(X) or q(X) is the zero polynomial. 

To prove the converse assume R[X] is an integral domain. Let ab be a 
product in R which is zero. Consider the polynomial a of degree zero with 
leading coefficient a and the polynomial b of degree zero with leading 
coefficient b assuming both a and b are different from zero. The product of 
the two polynomials is the polynomial ab also of degree zero. But this 
polynomial is the zero polynomial. Therefore either a or b must be the 
zero polynomial. This contradicts both a and b being different from zero. 
Either a = 8 or b = 8. D 

We summarize in a theorem some facts about degree that are hinted in 
the previous theorem. We will leave the proofs to the reader. 
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5.1 The ring of polynomials 

Theorem. If (R, +, ·, e, v) is an integral domain and p(X), q(X) are nonzero 
polynomials of R[X] then deg(p(X) + q(x))::::; max{degp(X), degq(X)}, 
deg(p(X)q(X)) = deg p(X) + deg q(X), deg(p(X)q(X)) ~ deg q(X). 

We now establish a division algorithm for polynomials with coefficients 
in a field. 

Theorem. Let (K, +, ·, e, v) be a field. If a(X) and b(X) belong to K[X] 
with a(X) =F e then there exist q(X), r(X) in K[X] such that b(X) = 
q(X)a(X) + r(X) and 0 ::::; deg r(X) < deg a( X) or r(X) = e. 

PROOF. The proof is by induction on the degree of b(X). Assume the theorem 
to be true for all polynomials of degree < k. Let b(X) be of degree k. 

Case I: deg a( X) > deg b(X) = k. Then b(X) = ea( X) + b(X). This 
satisfies the conclusion of the theorem with q(X) = e and r(X) = b(X). 

Case 2: deg a(X) ::::; deg b(X) = k. b0 + b1X + · · · + bkXk - (bk/a,.) · 
(a,X"' + · · · + a1X + a0 )Xk-m = ck_ 1Xk-l + · · · + c1X + c0 , some 
polynomial of degree smaller than k or possibly zero. The values of the 
c0 , Cto ••• , ck-l are determined by comparing coefficients. We have, however, 
no interest in their actual values in terms of the a;'s and b/s because it is 
sufficient for our purposes to know deg c(X) ::::; k - 1 or c(X) = e. Applying 
the induction hypothesis to c(X) we have ck_ 1xk-l + ck_ 2xk- 2 + · · · + 
c1X + c0 = q*(X)a(X) + r(X) for some q*(X), r(X) in K[X] with deg 
r(X) < deg a(X) or r(X) = e. Substituting this back for c(X) we have 
b(X) - (bk/a,.)a(X)Xk-m = q*(X)a(X) + r(X). Rearrangement yields b(X) = 
(q*(X) + (bk/a,.)xk-m)a(X) + r(X) with deg r(X) < deg a(X) or r(X) = e. 
The second case is now proved and the induction is complete. The con­
clusion is true for polynomials b(X) of all degrees. The theorem is also true 
for polynomials of no degree, namely, the zero polynomial, because if 
b(X) = e then ea(X) + e = e. o 

EXAMPLE. 2X5 + !X3 + X2 + iX + 5 = (2X3 +!X+ l)(X2 + 2) + 
!X+ 3. 

QUESTIONS 

1. In the ring Z4 [X] the polynomial (2X2 + 3X + 2)(2X3 + 3) has degree 
(A) 6 
(B) 5 
(C) 4 
(D) 3. 

(E) None of the listed numbers is the degree. 

2. With dividend X 3 + X + 1 and divisor 2X + 1 the division algorithm in Z3 [X] 
yields a remainder 

(A) 0 
(B) 1 
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(C) 2 
(D) X. 

(E) None ofthe listed alternatives is the remainder. 

3. The degree of f(X) + g(X), the sum of two polynomials, is 
(A) ~ deg f(X) + deg g(X) 
(B) = deg f(X) + deg g(X) 
(C) ~ max { deg f(X), deg g(X)} 
(D) ~ min{degf(X), deg g(X)}. 

(E) None of the alternatives completes a true sentence. 

4. How many different polynomials of degree ~ 1000 are there in £'4 (X]? 
(A) 3 . 4tooo 

(B) 4000 
(C) 1004 
(D) 1000!/4! 

(E) None of the above numbers is correct. 

5. The product (2X + 2)(2X + 1) in £'4 (X] is 
(A) a second degree polynomial 
(B) not the only possible factorization of 2X + 2 
(C) equal to 2(X + 1) 
(D) equal to (2X + 1)(2X + 3). 

(E) None of the four alternatives is acceptable. 

6. The product of two even degree polynomials with integral coefficients 
(A) always has even degree also 
(B) may in some cases have odd degree 
(C) can be zero 
(D) is sometimes not defined. 

(E) None of the alternatives makes a true sentence. 

EXERCISES 

1. We define a polynomial to be monic if and only if its leading coefficient is unity. 
Let (R, +, ·, (), v) be a commutative unitary ring. Given a(X), b(X) in R[X] with 
a( X) a monic polynomial, prove there exist polynomials q(X), r(X) such that b(X) = 

q(X)a(X) + r(X) with deg r(X) < deg a(X) or r(X) = 0. Moreover, q(X) and r(X) 
are unique. 

2. Let (R, +, ·, 8, v) be a unitary ring, not necessarily commutative. Given a(X), 
b(X) in R[X] with a(X) a monic polynomial (leading coefficient unity), prove there 
exist q1(X), r 1(X), q2 (X), r2 (X) such that b(X) = q1(X)a(X) + r 1(X) and b(X) = 

a(X)qz(X) + r 2(X) with deg r 1(X) < deg a(X) or r 1(X) = 8, deg r 2 (X) < deg a(X) 
or r2 (X) = e. 

3. Is the ideal of £' [X] generated by 2 and X a principal ideal? [Hint: cf. Exercise 13, 
Section 2.8.] 

4. Show that if the elements of Q[ X] are ordered in a manner extending the ordering 
on Q, i.e., p(x) < q(x) if and only if q(x) - p(x) has positive leading coefficient, 
then the result is an ordered integral domain (cf. Section 3.7). 
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5. lsQ[X] an ideal of IR[X]? 

6. If A is an ideal of a ring <R, +, ·, e, v) which is commutative and has a unity, is 
A[ X] an ideal of R[ X]? Are all ideals of R[ X] of this form? 

7. Let <K, +, ·, 8, v) be a field. Show that all ideals of <K[X], +, ·, 8, v) are simply 
generated (principal) ideals. [Hint: Reread the lemma proof in Section 4.6 which 
shows that all ideals of 7l. are principal and build a similar proof for K[X].] 

8. Prove the following proposition or find a counterexample. No polynomial of odd 
degree can be the square of another polynomial. 

5.2 A formal definition of a polynomial ring 

In this section we reconstruct the polynomial ring. We wish to give a 
definition which dispenses with the convenient, but somewhat mysterious 
symbol X. The construction is more abstract; the original conventional 
notation just used should be kept in mind as guidance. 

Our aim is to take an approach utilizing the coefficients, but deleting 
the X. It is clear enough that in a polynomial it is the coefficients which 
convey the information; the powers of X serve as placeholders for the 
coefficients. One can, for instance, write 9X3 + 2X + 3 as (9, 0, 2, 3) and 
convey the same information. The sum of9X3 + 2X + 3 and 2X2 +?X+ 1 
can be computed as (9, 0, 2, 3) + (0, 2, 7, 1) = (9, 2, 9, 4). As polynomials 
may be of arbitrarily high degree we cannot be satisfied with finite n-ples 
of one given length. Infinite sequences of coefficients are therefore to be used. 
We recall the notation RN, meaning the set of all infinite sequences with 
values in R, or, equivalently, the set of all functions with domain r\1 and 
with values in R. Because polynomials all have leading coefficients (unless 
the polynomial is zero) we introduce the next definition. 

Definition. Let (R, +, ·, fJ) be a ring. We define (RN)w to be the set {PIP= r\1 --+ 

Rand there exists mE r\1 such that p(n) = fJ for all n > m}. 

We shall refer to (RN)w as the weak power to distinguish it from the regular 
power RN. The set, (RN)w, is the set of all functions defined on the natural 
numbers with values in the ring R which, except for a finite number of 
them, are all zero. (RNt is the set of all infinite sequences with values in R 
in which all but a finite number of the values are zero. On this set offunctions 
we define the operations + and · as follows: 

p + q: r\1 --+ R such that (p + q)(n) = p(n) + q(n), 

p · q: r\1 --+ R such that (p · q)(n) = L+k=n p(j)q(k). 

The set and addition here are those found in Exercise 11 of Section 2.2. The 
multiplication is different from that found in Exercise 11 ; several examples 
should be tried to verify for oneself that this definition is the same as that 
used for polynomials in Section 5.1. 
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5. Rings: Polynomials and factorization 

We identify z: N --+ R as the mapping z(n) = ()for all nE N. 

Theorem. If (R, +, ·, ()) is a ring then ((RN)w, +, ·, z) is a ring. 

We leave the proof as an exercise. 

Definition. ((RN)w, +, ·, z) is defined to be the polynomial ring over the 
given ring (R, +, ·, ()). 

Having constructed the polynomial ring by the use of sequences of 
coefficients we now move to connect the new formulation with the con­
ventional notation for polynomials reviewed in Section 5.1. We do this by 
identifying each member of (RN)w with a member of R[X]. The sequence 
(ao, al, a2, ... ' am, e, e, e, ... ), am =f. e, is identified with the expression 
a0 + a1X + a2X 2 + · · · + amxm. In other words a function p: N --+ R is 
identified with the polynomial p(O) + p(l)X + p(2)X2 + · · · + p(m)Xm 
where p(n) = () for all n > m. Let us call this identification G. 

Definition. G:(RN)w--+ R[X] such that G(p) = Li=o p(i)Xi where m is an 
integer such that p(n) = e for all n > m. 

Theorem. G: (R N)w --+ R[ X] is an isomorphism for all rings R. 

PROOF. Given any a0 + a1X + · · · + ~Xm in R[X], am =f. (),choose pin 
(RN)w such that p(n) = an for all n ~ m and p(n) = () for all n > m. Then 
G(p) = a0 + a1 X + · · · + amxm. G is a surjection. To verify that G is a 
bijection let G(p) = G(q). Since the two polynomials are equal then all 
their coefficients are equal in respective pairs. p(n) = q(n) for all n E N. 
Thenp = q. 

We now check the morphism properties. 

m n max(m,n) 

G(p) + G(q) = L PiXi + L qiXi = L (Pi + qi)Xi = G(p + q). 
i=O i=O i=O 

G(p)G(q) = (.f Pixi) (t qiXi) = min (. ~ piqi) Xk = G(pq). D 
•=0 J=O k=O <+J=k 

These previous arguments have established (RNt to be a ring isomorphic 
with R[X]. As the symbol X does not occur in the construction of (RN)w 
we have therefore succeeded in our task. Before seeing where the X has 
gone we notice that the constants occur in (RNr as a subring. 

Theorem. If (R, +, ·, ()) is a ring then there is a monomorphism 1/J:R --+ (RN)w 
such that 1/J(x) = (x, e, e, ... ). 

PRooF. t/J(x + y) = (x + y, e, e, .. . ) = (x, e, e, .. . ) + (y, e, e, .. . ) = 
1/J(x) + 1/J(y). 1/J(xy) = (xy, e, e, ... ) = (x, e, e, ... )(y, e, e, ... ) = 1/J(x)l/J(y). 
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5.2 A formal definition of a polynomial ring 

1/J(x) = t/J(y) implies (x, (), (), ... ) = (y, (), (), ... ), which m turn implies 
X=~ D 

We have showed that the ring R, called the constants, is isomorphic 
with the subring of(RN)w denoted by {(ao, e, (), .. . )lao ER}. These sequences 
are simply the ones corresponding by G to the polynomials of R[ X] of 
degree zero and the zero polynomial. 

The sequence((),(), ... ,(), ai, (), . .. ) of (RN)w corresponds under G to the 
polynomial aiXi. If j is, in particular, 1, then ((), a1, (), (), ... ) is identified 
with a1X. If there is a unity in the ring R we see by letting a 1 = v that 
((), v, (), (), ... ) corresponds to vX. If we consider vX and X to be one and 
the same then we have identified the sequence ((), v, (), (), ... ) with X. Thus 
X is the function from N to R which is () for all n E N save 1 where it has 
the value v. 

Having demonstrated that it is possible to construct the polynomial 
ring free of the symbol X we return from here on to the conventional nota­
tion for the polynomial. 

QUESTIONS 

1. Which of the following are true? 
(A) (R")w <;::; R" for all rings R. 
(B) R" = (R")w for all rings R. 
(C) R" <;::; (R")w for all rings R. 
(D) R" =1- (R")w for all rings R. 

(E) None of the four is true. 

2. Under the correspondence G between the ring of functions, (R")w, and the poly-
nomial ring, R[X], the polynomial 3X2 + 2 is the image of 

(A) (3, 0, 2) 
(B) (2, 3) 
(C) (2, 0, 3, 0, 0, ... ) 
(D) 3X2 + OX + 2. 

(E) None of the four answers is the preimage. 

3. The existence of the function (1, 1, 1, ... ) in Z" shows that 
(A) Z"is not isomorphic to Z[X] 
(B) zr. =I- (Zr.t 
(C) the square of a polynomial is not necessarily a polynomial 
(D) Q" = Z". 

(E) None of the four answers follows. 

4. In the ring (Z")w which functions (a0 , a1 , a2 , • .• ) satisfy the equation a2 = a? 
(A) all functions with a square root in (ZNt 
(B) (1, 0, 0, ... ) 
(C) (0, 0, 0, ... ) 
(D) (0, 1, 0, ... ). 

(E) No functions in (ZN)w satisfy the equation. 
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ExERCISES 

1. In proving (RN)w to be a ring it must be demonstrated that if p and q both belong 
to (RN)w then the product pq is also in (RN)w. Since (pq)(k) = L+ i=k p(i)q(j) it is 
clear enough that pq is defined for all k E 1'\J. It is not so clear that there exists m E 1'\J 
such that for all n > m we have (pq)(n) = 8. Prove this. 

2. Prove chr R[X] = chr R for any ring R. 

3. Prove there exist rings which are infinite yet have characteristic not equal to zero. 

4. Is (RN)w an ideal of RN as well as a subring? Are the constants an ideal of (RN)w? 

5. Find the fields of fractions of the rings Z[X] and Q[X]. 

5.3 Polynomial functions 

In this section we see how a polynomial defines a function in a natural 
way and we investigate the correspondence between polynomials and 
polynomial functions. Finally we use polynomials to analyze field extensions 
and the complex numbers in particular. 

Replacement of the symbol X in a polynomial of R[X], a,.Xm + 
am_ 1xm- 1 + · · · + a2 X 2 + a1X + a0 , a,. =F lJ, by any element x of R 
yields a member amxm,._+ am_ 1xm- 1 + · · · + a2 x2 + a1x + a0 of R. For 
example, if we replace X in X 2 - 2X + 4 by 3 in 7!. we obtain 32 - 2(3) + 4 
or 7, a member of 7!.. We wish now to discuss this substitution phenomenon 
at some length. We will denote a polynomial in R[X] by p(X) and denote 
the function from R to R with p(x) as its value with the letter p. This function 
is called a polynomial function and is a different function from that dis­
cussed in Section 5.2. Because the operation of multiplication requires that 
the coefficients of the polynomials commute with the symbol X and there­
fore with the substituted x of R we limit our discussion to commutative rings. 

Definition. Let (R, +, ·, lJ) be a commutative ring. If p~X) belongs to R[X] 
and we denote p(X) by a,.Xm + · · · + a1X + a0 , a,. =F lJ, then the func­
tion p:R -.. R such that p(x) = a,.xm + · · · + a1x + a0 is called the 
polynomial function corresponding to the polynomial p(X). The zero 
function R-.. R will correspond to the zero polynomial. We denote the 
correspondence taking polynomials into polynomial functions by 
4>:R[X]-.. RR such that 4>(p(X)) = p. (RR is a previously used notation 
meaning the set of all functions with domain R and codomain R.) Range 
4> is the set of all polynomial functions from R to R and we denote this 
set by fi(R, R). 

Theorem. Let (R, +, ·, lJ) be a commutative ring. Then 4>:R[X]-.. RR 
such that 4>(p(X)) = p is a morphism. 
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5.3 Polynomial functions 

PROOF. The values of cP are uniquely determined; therefore cP is a function. 
To demonstrate the morphism properties, cP(p(X) + q(X)) = cP(p(X)) + 
cP(q(X)) and cP(p(X)q(X)) = cP(p(X) )cP(q(X) ), we show the following 
equations hold for all x E R: 

cP(p(X) + q(X) )(x) = cP(p(X) )(x) + cP(q(X) )(x), 

cP(p(X)q(X) )(x) = cP(p(X) )(x) · cP(q(X) )(x). 

cP(p(X)+q(X) )(x)= cP(a,X"'+ · · · + a1X +a0 + bnX"+ · · · + b1X +b0 )(x) 

=iP((a~<+bll)X~'+· · ·+(a1 +b1)X +(a0 +b0 ))(x) 

=(all+b~<)x~'+· · ·+(a1 +b1)x+(a0 +b0 ) 

=a,.x"' + · · · +a1x +a0 +bnx"+ · · · + b1x+ b0 

= cP(a,.Xm + · · · + a1 X+ a0 )(x) 

+iP(bnX"+· · ·+b1X +b0 )(x) 

= cP(p(X) )(x) + cP(q(X) )(x). 

In the equation Jl. = max{m, n} and we include the possibility of all coef­
ficients zero to avoid handling the zero case separately. 

cP(p(X)q(X) )(x) = cP( (a,.Xm + · · · + a1 X+ ao)(bnX" + · · · + b1 X+ bo) )(x) 

=iP et: C+t=k aibj) xk) (x) 

= min ( L aibj) Xk 

k=O i+j=k 

=(amxm+ · · · +a1x +a0 )(bnx"+ · · · +b1x+bo) 
=iP(a,.Xm+. · ·+a1X +a0 )(x)cP(bnX"+· · ·+b1X +b0 )(x) 
= cP(p(X) )(x)cP(q(X) )(x). D 

EXAMPLE. The polynomial p(X) = X 2 + 2X - 3 belongs to .Z[XJ. p(x) = 
x 2 + 2x - 3 is the value of the function p: Z --+ Z for any x E Z. p(O) = - 3. 
p(4) = 21. 

EXAMPLE. The polynomials p(X) = X + I and q(X) = 2X3 + 2X + I 
are distinct polynomials in Z3 [X]. The coefficients 2 and I really stand, 
of course, for equivalence classes in Z3 with representatives 2 and 1 respec­
tively. The two polynomial functions, p:Z3 --+ Z3 and q:Z3 --+ Z3 , are, 
however, identical. Check this by noting that p(O) = q(O), p(I) = q(I) and 
p(2) = q(2}. 

In general the polynomials R[X] and the polynomial functions jt(R, R) 
are not in one-to-one correspondence; cP is not a monomorphism. An 
instance of this is seen in the previous example. For another example, 
consider in Z2 [X] all of the following distinct polynomials: 0, I, X, X + I, 
X 2, X 2 + X+ I, X 2 +X, X 2 +I. There are eight polynomials in Z2 [X] 
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of degree two or less (and the polynomial 0). There are, however, only four 
possible functions 7!.. 2 --+ 7!.. 2 which we denote by a, b, c and d. 

X 

0 
I 

a(x) 

0 
0 

b(x) 

I 
I 

c(x) 

0 
I 

d(x) 

I 
0. 

We can represent a, b, c, and d by the following formulas: a(x) = 0, b(x) = I, 
c(x) = x, d(x) = x + I. We note 

<P(O) = a, <P(I) = b, <P(X) = c, <P(X + I) = d, 

<P(X2 + X) = a, <P(X2 + X + I) = b, <P(X2 ) = c, <P(X2 + I) = d. 

Furthermore, if we continue into third- and higher-degree polynomials they 

will all correspond or give rise to one or more of the four functions a, b, c, 
or d. The number of polynomials in 7!.. 2 [X] is infinite yet the number of 
functions in ft(R, R) is 4. 

We now establish some results important for themselves and then even­
tually use them to cast some light upon the relative sizes of R [X] and 
ft(R, R). We begin with a theorem usually seen by elementary algebra 
students called the factor theorem. 

Definition. Let (R, +, ·, e) be a ring. An element r in R is a root of a poly­
nomial p(X) in R[ X] if and only if p(r) = e. 

ExAMPLE. 2 is a root of the polynomial X 2 - 4 in the ring 7L. The polynomial 
4X2 - 1 has no roots in the ring 7!... Notice how r is a root of the polynomial 
p(X) is really a statement about the polynomial function p; p:R --+ R is 
zero at the argument r. 

Theorem. Let (R, +' . ' e, V> be a unitary commutative ring. X - r is a factor 
of p(X) in R[X] if and only if r is a root of p(X) in R. 

PROOF. Suppose X - r is a factor of p(X). Then in R[X] the polynomial 
p(X) has a factorization 

p(X) = q(X)(X - r) for some q(X) in R[X]. 

<P(p(X)) = <P(q(X)(X - r) ). 

<P(p(X)) = <P(q(X) )<I>( X - r). Why? 

p(x) = q(x)(x - r) for all x E R. Why? 

p(r) = q(r)(r - r). 

p(r) = e. 
r is a root of p(X). 

Now in order to prove the converse assume r to be a root of p(X). Use the 
division algorithm in R[X] for monic polynomials (cf. Exercise 1 of Section 
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5.1) to obtain 

p(X) = q(X)(X - r) + s(X) with deg s(X) = 0 or s(X) = e. 
Applying the morphism tP which takes polynomials into polynomial func­
tions we get 

tP(p(X)) = tP(q(X)(X - r) + s(X) ). 
tP(p(X)) = tP(q(X) )tP(X - r) + tP(s(X) ). 

p(x) = q(x)(x - r) + s(x) for every x E R. 

p(r) = q(r)(r - r) + s(r). 

But since r is a root of p(X) we know p(r) = e. 

e = q(r)e + s(r). 

e = s(r). 

s(X) is a polynomial of degree less than 1 which is zero at r or s(X) is the 
zero polynomial. But polynomials of degree less than 1, namely degree 0, 
are constants and a nonzero constant cannot be zero at r. Ruling out the 
first alternative we therefore know s(X) to be the zero polynomial. p(X) = 
q(X)(X - r). This completes the proof of the factor theorem. 0 

We now use the factor theorem to place an upper bound on the number 
of roots of a polynomial. 

Theorem. Let (R, +, ·, e, v) be an integral domain. Then any polynomial in 
R [X] of degree n can have at most n distinct roots. 

PROOF. Suppose p(X) E R[X] and deg p(X) = n. We shall assume p(X) 
has more than n distinct roots and obtain a contradiction. Let rh r2 , ••• , rm 
rn+ 1 be n + 1 of the distinct roots. p(rt) = e implies X - r1 is a factor of 
p(X). p(X) = q1(X)(X - rt) for some q1(X) E R[X]. Evaluating at r2 gives 
p(r2 ) = q1(r2 )(r2 - rt). The left side is zero and therefore the product on the 
right is zero. (r2 - r1) is not zero and therefore q1(r2 ) is zero because of 
the integral domain hypothesis. r 2 is a root of q1(X). q1(X) = q2(X)(X - r 2 ) 

for some q2(X) in R[X]. We have then p(X) = q2(X)(X - r2 )(X - r 1) 

with degree q2(X) = n - 2. Using induction we arrive at p(X) = c(X - rn) · · · 
(X - r2)(X - rd for some c E R[X] and deg c = 0. Evaluating at rn+ 1 

we obtain a contradiction. 0 

EXAMPLE. X3 - 6X2 + 11X - 6 has roots 1, 2, and 3 and factored form 
(X - 1)(X - 2)(X - 3). The polynomial is a member of Z[X] and Z is 
an integral domain. If we choose a ring which fails to be an integral domain 
such as Z12_then a polynomial such as X 2 - 4 turns out to have roots 2, -2, 
4, -4, 8, -8, IO, -10 with the number of roots greater than two. Actually 
2 and -TO represent the same equivalence class in Z12 so that a complete 
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list of distinct roots is 2, 4, 8, 10. The number of roots is larger than two. The 
possible factorizations of X 2 - 4 are (X - 2)(X - TO) and (X - 4)(X - 8). 

Corollary. Let (R, +, ·, e, v) be an integral domain. Let p(X) and q(X) 
be polynomials both of degree strictly smaller than n and let p and q agree 
for n distinct values of R: p(x;) = q(xi) for x1, x2 , .•• , Xn in Rand distinct. 
Then p(X) = q(X). 

PROOF. Show that the polynomial p(X) - q(X) will have n roots and use 
the theorem. 0 

We return now to the correspondence tP between polynomials and 
polynomial functions to show a case in which every polynomial must give 
rise to a distinct polynomial function. 

Theorem. Let (R, +, ·, (), v) be a nonjinite integral domain. Then tP:R[X] --+ 

ft(R, R) is an isomorphism. 

PROOF. As ft(R, R) is by definition the range of tP we only need to show tP 
to be a monomorphism. tP is an injection if and only if kernel tP = {8}. 
We now show the kernel to the zero polynomial alone. Suppose p(X) 
belongs to kernel tP. Then p = tP(p(X)) must be the constantly zero function 
of RR. p(x) = ()for all x ER. Suppose the polynomial p(X) has some degree, 
say n. Since R is not finite there are in R more than n distinct values, each 
of which makes p be zero. This is to say the polynomial p(X) of degree n 
has strictly more than n roots in R. This contradicts our theorem on the 
number of distinct roots and means p(X) can have no degree. p(X) is therefore 
the zero polynomial. Kernel tP = {e}. o 

We can push the techniques of this theorem somewhat further to give 
some information even for finite integral domains. 

Theorem. Let (R, +, ·, e, v) be a finite integral domain. Then the ring of 
all polynomial functions ft(R, R) is isomorphic with R[X]/(<p(X)) where 
(<p(X)) is an ideal generated by some polynomial in R[X]. 

PROOF. tP:R[X] --+ ft(R, R) is an epimorphism. There exists by the theory 
of Section 2. 7 an isomorphism f': R [ X]/ker tP --+ range tP such that 
f'(ker tP + p(X)) = p. Kernel tP is an ideal of R [X], a principal ideal, 
and therefore is generated by some polynomial <p(X). (cf. Exercise 7 of 
Section 5.1). Remember that all finite integral domains are fields. 0 

EXAMPLE. Since 7L is an infinite integral domain the polynomial ring 7L[X] 
and the set of polynomial functions ft(7L, 7L) are isomorphic; each polynomial 
gives rise to a distinct polynomial function. We remark that not all functions 
in 7l_Z are polynomial functions; for example, the function f:7L--+ 7L such 
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that f(2n) = 0 and f(2n + 1) = 1 for all nE 7L cannot be a polynomial 
function because the number of roots would be infinite. 

If we look now at the example 7L2 [X] we are dealing with the case of a 
finite integral domain 7L 2 • X 2 + X gives rise to the zero polynomial function 
and is the polynomial of smallest degree with that property. 7L 2 [ X]/(X2 +X) 
is isomorphic with ft(7L2, lL2). 

QUESTIONS 

1. The polynomial function p:lL-> 7L defined by the polynomial p(X) = X 2 - X is 
(A) an injection 
(B) a surjection 
(C) a bijection 
(D) a different function than that defined by the polynomial q(X) = X 3 - X. 

(E) None of the alternatives is correct. 

2. The polynomial function p:7L3 -> 7L 3 defined by the polynomial p(X) = X 2 + 2X 
has a range with 

(A) 0 members 
(B) 1 member 
(C) 2 members 
(D) 3 members. 

(E) None of the numbers is correct. 

3. The number of members in ft(7L 3, 7L3 ) is 
(A) 0 
(B) 3 
(C) 6 
(D) 9. 

(E) None of the alternatives is correct. 

4. The number of roots of X 2 + I in 7L4 is 
(A) 0 
(B) 1 
(C) 2 
(D) 3 
(E) 4. 

5. The number of real polynomials and the number of polynomial functions in ft(IR, IR) 
is 

(A) the same 
(B) different. 

6. Which of the following statements are true? 
(A) X 2 + 2X has two roots in 7L3 . 

(B) X 3 + 2X = X(X - I)(X - 2) in 7L 3 [X]. 
(C) X 3 + 2X corresponds to the zero function in ft(7L 3, 7L 3 ). 

(D) ft(7L3, 1L3) = lL3 z,_ 
(E) None of the statements is true. 
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EXERCISES 

1. The following theorem occurs in college algebra texts along with the factor theorem 
and is called the remainder theorem. If (R, +, ·, (}, v) is an integral domain and 
p(X) belongs to R[X] then p(c) = a if and only if p(X) = q(X)(X - c) + a for 
some q(X) in R[ X]. In other words, the value of a polynomial function p at c is 
the remainder upon dividing p(X) by X - c. In the special case the remainder is 
zero then one has the factor theorem. Prove the remainder theorem. 

2. Prove that if (R, +, ·, (}, v) is an integral domain then the only invertible elements 
of R[ X] are those of R. 

3. Give an example of a polynomial ring with invertible elements of positive degree. 

4. What is the field of fractions of K[ X] where K is a given field? 

5. From calculus we recall that the derivative of a function p(x) = a.X' + a._ 1x"- 1 + 
· · · + a2x2 + a1x + a0 is the function p'(x) = na,.x•-l + (n- l)a._ 1x"- 2 + · · · + 
2a2x + a1. If we deal only with polynomials we can forget all about limits and 
make the previous equation be our definition of p'(x). Given a polynomial p(X) = 

a.x• + · · · + a1X + a0 we define p'(X) = na.x"- 1 + (n- l)a._ 1X"- 2 + · · · + 
2a2X + a1 • With this definition prove the following result. Let (R, +, ·, 0, v) be 
an integral domain. Then p(r) and p'(r) are both zero if and only if (X - r)2 is a 
factor of p(X). 

6. Prove that the sine function is not a polynomial function (not in p(IR, IR) ). 

7. Lagrange interpolation formula. Show that 

f(X) =,f. (X- a1) ···(X- ai_ 1)(X- ai+ 1) ···(X- a.) bi 
i= 1 (ai - a1) • • • (ai - ai_ d(ai - ai+ 1) • • • (ai - a.) 

is a polynomial of degree ~ n such that f(a;) = b;, i = 1, 2, ... , n. 

5.4 Euclidean and principal ideal domains 

As a prelude to the study of factorization the division algorithm property 
is abstracted from the integers and the polynomial ring in order to define a 
special ring: the Euclidean ring. 

Definition. (E, +, ·, (}, v) is a Euclidean domain if and only if (E, +, ·, (}, v) 
is an integral domain and there exists a gauge g:E - {0} -+ 1\1 such that 
g(ab) ~ g(a) for all a, beE - {0} and a, beE, a =1= (}imply there exist 
q, r e E such that b = qa + r with 0 ~ g(r) < g(a) or r = 0. 

EXAMPLES. Since we are generalizing another property of the integers we 
note that 7l. with g(x) = lxl is a Euclidean domain. Note that even though 101 
exists g is only defined for nonzero integers. If K is any field then K[X] with 
g(p(X)) = deg p(X) is a Euclidean domain. 

We now wish to expand on a notion introduced in Exercise 7 of Section 5.1. 

132 



5.4 Euclidean and principal ideal domains 

Definition. Let (R, +, ·, e) be a ring. An ideal of R is called principal if and 
only if the ideal is generated by a single element. A principal ideal ring is 
a ring in which every ideal is principal. We shorten "principal ideal inte­
gral domain" to "principal ideal domain" or "principal domain." 

We next compare principal ideal rings with Euclidean rings. 

Theorem. If (R, +, ·, e, v) is a Euclidean domain then R is a principal ideal 
domain. Moreover, if A is some ideal of R then A = Ra for some a E R. 

PRooF. Let A be any ideal of R. If A = {e} then A is principal for it is the 
smallest ideal containing e, its generator. Furthermore, { e} = Re, the set of 
multiples of fJ. If A =F { fJ} then let a =F () be a member of A which has mini­
mum g value: g(a) ~ g(x) for all x EA, x =F e. Such an a exists because 
{g(x)lx e A, x =F e} is a subset of N, a well-ordered set. Now let b be any 
member whatsoever of A. b = qa + r for some q, r E R with 0 ~ g(r) < g(a) 
or r = e. b, a e A imply r = b - qa is in A also. Since it is impossible for r 
to be in A and g(r) < g(a) we must have r = e. b = qa. Thus the ideal Ra is 
A itself and A is the ideal simply generated by the single element a. 

We now classify the elements of an integral domain according to fac­
torization properties. 

Definition. Let (R, +, ·, e, v) be an integral domain. x ER is a unit if and 
only if x is multiplicatively invertible. x E R is an irreducible element if 
and only if x is not zero and not a unit and x = ab implies a or b is a unit. 
x E R is a reducible element if and only if x is not zero and not a unit and x 
is not an irreducible element. 

Some further terminology well known to students of elementary alge­
bra: If x = ab then a and b are called factors or divisors of x. On the 
other hand x is called a multiple of a or b. If x = ab and a and b are not 
units then a and b are called proper divisors or proper factors of x. We 
also say a divides x. 

ExAMPLES. 1 and - 1 are units of 71.. and the only units of 71... 2 is an irreducible 
element of 71.. while 6 is a reducible element. 2 and 3 are proper divisors of 6 
in 71... - 1 is a divisor of 6, but not a proper divisor of 6 in 71... X 2 + 1 is an 
irreducible element of 0 [X]. 2 and X - 1 are proper divisors of 2X2 - 2 
in 71.. [X]. X - 1 is a proper divisor of 2X2 - 2 but 2 is a unit in 0 [X]. 

We now investigate some relationships between ideals and elements of an 
integral domain. The definitions of prime and maximal ideals were introduced 
in Section 2.8. We recall now that an ideal A is prime if and only if ab e A 
implies a E A or b E A. 
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Definition. Let (R, +, ·, (), v) be an integral domain. A nonzero, nonunit 
element p of R is called a prime if and only if p is a divisor of ab implies p 
is a divisor of a or p is a divisor of b. 

We now match the definition of prime element to prime ideal. 

Theorem. Let (R, +, ·, e, v) be an integral domain. A nonzero, nonunit 
element p of R is prime if and only if the ideal (p) is prime. 

PROOF. p is prime if and only if (p is a divisor of ab implies p is a divisor of a 
or pis a divisor of b). Equivalent to this is: ab is a multiple of p implies (a is 
a multiple of p orb is a multiple of p). This is true if and only if ab E (p) 
implies (a E (p) orb E (p)). But this is the definition of prime ideal. That 
< p) = Rp is assured by Exercise 8 of Section 2.8. D 

The property of primeness has been introduced primarily for its use in 
proving the unique factorization theorem in the next section. Of the two 
properties, primeness and irreducibility, primeness is the stronger in an 
arbitrary domain. The two concepts coincide in the integers. 

Theorem. Let (R, +' . ' e, V> be an integral domain. Any prime element is an 
irreducible element. 

PROOF. Suppose p is a prime element and p = ab. Since p = ab, p is, a 
fortiori, a divisor of ab. It follows that p is a divisor of a or p is a divisor of b. 
If p is a divisor of a then a = rp for some r E R. Substituting into equation 
p = ab we have p = rpb, yielding v = rb because R is an integral domain. 
b is then a unit. On the other hand, if p is a divisor of b then by symmetric 
reasoning a is a unit. We have showed that either a or b is a unit proving p is 
irreducible. D 

We pause before the next theorem in order to give an example of an 
integral domain which has irreducible elements which fail to be prime. It is 
also an integral domain in which factorization is not unique. The integral 
domain we have in mind is the set {a + bJ=Sia, b E Z} with addition and 
multiplication defined in the obvious way: 

(a + bj=5) + (c + dJ="S) = (a + c) + (b + d)J="S, 

(a+ bJ="S)(c + dJ="S) = ac + adJ="S + bcJ="S + bd(-5) 

= (ac - 5bd) + (ad + bc)J="S. 

The reader can assure himself that the set is a ring. If one realizes the set to be 
a subset of the field of complex numbers then it follows there can be no 
divisors of zero. We will, however, verify this property anew in a different 
manner. It is convenient to define a norm of each element of the domain as 
follows: N(a + bJ="S) = a2 + 5b2 • This is the square of the modulus of 
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the complex number a + b.j=5, if the reader happens to be familiar with 
the modulus of a complex number. It is easily seen that 

and 

Now suppose 

N(a + bJ=S) = 0 if and only if a = b = 0, 

(a + b.j=5)(c + d.j=5) = 0. 

N((a + b.j=5)(c + d.j=5)) = 0. 
N(a + b.j=5)N(c + d.j=5) = 0. 

N(a + b.j=5) = 0 or N(c + d.j=5) = 0. 
a + bJ=S = 0 or c + d.j=5 = 0. 

This shows that 7L + 7L.j=5 has no divisors of zero (other than zero itself). 
We now use the norm to find the units of the integral domain 7L + 1Lh. 

Clearly 1 and -1 are both in 7L + 1Lh and both are units. We now show 
that they are the only units. Suppose (a + bh)(c + dh) = 1. Then 
N(a + b.j=5)N(c + d.j=5) = 1. The only nonnegative integers which 
can have product 1 are 1 and 1. Thus any unit of 7L + 7LJ=S must have 
norm 1. If N(a + bh) = 1 we have a2 + 5b2 = 1. If lbl ~ 1 then a2 + 
5b2 ~ 5. b must be 0. a2 = 1 has two solutions a = 1 and a = -1. The only 
units of 7L + 7LB are 1 + Oh = 1 and -1 + ON = -1. Further­
more, N(a + b.j=5) = 1 if and only if a + bh is a unit. 

We continue the exploration of 7L + 1Lh by showing 3 is an irreducible 
element. If 3 has some factors, 

3 = (a + bh)(c + dh), 

then 9 = N(3) = N(a + bh)N(c + dh). The positive integer 
N(a + bh) must be a factor of 9, other than 1 or 9, if the factor (a+ bh) 
is to be proper. We have, therefore, N(a + bh) = 3. a2 + 5b2 = 3. b 
must be zero for if lbl ~ 1 then a2 + 5b2 ~ 5. Setting b = 0 we have a2 = 3. 
However, the equation a2 = 3 has no solution in integers. We conclude there 
can be no proper factors of 3 and it is irreducible in 7L + 1Lh. By similar 
arguments the reader can show that 2 + h and 2 - J=5 are also 
irreducible. 

An examination of the following equations will convince one that 3 is not 
a prime. 

9 = 3 . 3. 9 = (2 + .j=5)(2 - .;=5). 
3 is a factor of 9 and therefore of the product (2 + h)(2 - h). 3 is 
not a factor of either 2 + h or 2 - h· In other words, 3 does not 
satisfy the definition of a prime element: 3 is a factor of ab implies 3 is a 
factor of a or 3 is a factor of b. Finally, we note the two factorizations given 
of 9 are quite different factorizations of 9. 7L + 7Lh is not an integral 
domain in which we can expect unique factorization. 
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We now show that in a principal ideal domain the concept of primeness 
and the concept of irreducibility coincide just as in 71... 

Theorem. If (R, +, ·, 0, v) is a principal ideal domain then every irreducible 
element of R is prime. 

PRooF. Let p be an irreducible element of R. We proceed to show the ideal 
(p) is a maximal ideal of R. Let A be any ideal of R such that (p) c A £ R. 
All ideals of Rare principal and we can therefore write (p) c (a) £ R for 
some a E R. p E (a) giving p = ra for some r E R. r cannot be a unit because 
if it were we would have a= r- 1p E (p) and then (a)= (p). Ifr is not a 
unit then a is because pis irreducible. But then v = a- 1a E (a) and (a) = R. 
This proves the ideal (p) to be maximal. (p) is therefore also a prime ideal 
(cf. Section 2.8). (p) is generated by a nonzero, nonunit element p · p is 
therefore a prime element. D 

QUFSTIONS 

1. Which of these statements are true? 
(A) Every Euclidean domain is a principal ideal domain. 
(B) Every prime element in an integral domain is an irreducible element. 
(C) Every irreducible element in an integral domain is a prime element. 
(D) Every unit in an integral domain is irreducible. 

(E) None of the four statements is true. 

2. Which of these statements are true? 
(A) Z[X] is an integral domain. 
(B) l[X] is a subring of IR(X]. 
(C) l[X] contains an irreducible element 2 + 2X. 
(D) IR[X] contains an irreducible element 2 + 2X. 

(E) None of the four statements is true. 

3. IfS is a subdomain of the integral domain R then 
(A) an irreducible element of S is an irreducible element of R 
(B) an irreducible element of R is an irreducible element of S 
(C) a unit of S is a unit of R 
(D) a unit of R is a unit of S. 

(E) None of the four alternatives completes a true sentence. 

4. In an integral domain R, element a is a factor of element b implies 
(A) (b) s;; (a) 
(B) (a, b) = (a) 
(C) (a)# R 
(D) a# 8. 

(E) None of the four alternatives completes a true sentence. 

5. In an integral domain R 
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(A) no element except v can generate the ideal R 
(B) an ideal A equals R if and only if v e A 
(C) an ideal containing no prime is {8} 
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(D) an ideal containing a composite cannot contain a prime. 
(E) None of the four alternatives completes a true sentence. 

6. The number 2 is 
(A) an irreducible element of Z 
(B) a unit of Z 
(C) a proper divisor of X 2 - 16 in Z[X] 
(D) an irreducible element of Z5 • 

(E) None of the four alternatives completes a true sentence. 

7. Z5(X] 
(A) is an integral domain 
(B) is a Euclidean domain 
(C) is a principal ideal domain 
(D) contains an irreducible element X 2 + 1. 

(E) None of the alternatives completes a true sentence. 

s. X 2 - 2 
(A) is irreducible in Q[X] 
(B) is irreducible in IR[X] 
(C) is irreducible in Z[X] 
(D) is irreducible in Z7 [X]. 

(E) None of the alternatives completes a true sentence. 

9. Factors of X 2 + 4 in Z7 [X] are 
(A) (X + 2)(X - 2) 
(B) (X + 5)(X + 2) 
(C) (X + 2)(X + 3) 
(D) (X + 3)(X + 5). 

(E) None of the alternatives completes a true sentence. 

10. Factors of X 2 + 4 in Z5 [X] are 
(A) (X + 4)(X + I) 
(B) (X + 2)(X + 2) 
(C) (X - 4)(X - I) 
(D) (X - Z)(X + 2). 

(E) None of the four possibilities is satisfactory. 

EXERCISES 

1. Show that z6 with g(x) = X is not a Euclidean domain. 

2. Show that if x is a unit in a Euclidean domain ·with gauge g then g(x) = g(v). 

3. Show that if a Euclidean domain is finite then the gauge g must be a constant 
function. 

4. If a and b are nonzero members of a Euclidean domain and b is a proper divisor 
of a then g(b) < g(a). 

5. Give a direct proof by induction that every nonzero, nonunit element of a Euclidean 
domain is a product of irreducible elements. [Hint: the induction should be on 
the value of g(x).] 
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6. Show that the existence of a unity follows from the others statements in the defini­
tion of a Euclidean domain. 

7. Find two distinct irreducible factorizations of9 in 7L + 7LJ=l. 

8. Make a list of all polynomials of 7L2 [X] of degree ~ 3. Mark each as unit, zero, 
irreducible, or reducible element. Give a factorization into irreducible elements 
of each reducible element. 

9. Do reducible elements in integral domains generate nonprime, nonmaximal ideals? 

10. Prove every field is a principal ideal domain. 

11. Show that 7L[X] is not a principal ideal domain. 

12. Let (R, +, ·,(})be a given ring. Let R[X, Y] be the ring of all polynomials in 
two indeterminants X and Y. 7L[X, Y] contains for example, X + Y and X 2 + 
2XY + Y3. R[X, Y] is simply R[X][Y]. Show that even if R is a field R[X, Y] 
is not a principal ideal domain. 

13. Show that (X), (X, Y), (X, Y, 2) are all prime ideals in 7L[X, Y] but only 
(X, Y, 2) is maximal. 

14. Show by example that there exist principal ideal domains with subdomains which 
are not principal ideal domains. 

15. If every ideal of an integral domain is finitely generated then every nonzero, non­
unit element is the product of irreducible elements. Show this to be true. 

5.5 Factorization in principal ideal domains 

In this section we establish the existence and uniqueness of an irreducible 
factorization for elements of a principal ideal domain which are nonzero and 
not invertible. The result applies also to Euclidean domains and to the inte­
gers in particular, since they are both principal ideal domains. The result 
for the integers is called the fundamental theorem of arithmetic. 

We begin with a lemma showing the nonexistence of an infinite sequence 
of properly increasing ideals. 

Lemma. Let (R, +, ·, (}, v) be a principal ideal domain. If Ab A2 , A 3 , ••• is 
an increasing sequence of ideals of R, each ideal included in the next, then 
there exists a k E 1\1 + such that Ak = Ak+ 1 = · · · . 

PROOF. U{Adi E 1\1 +} is an ideal. It is (a) for some a ER. a E Ak for some 
kE 1\1+. Hence, U{A;jiE 1\1+} s; Ak. But Ak s; U{A;jiE 1\1+}. Therefore 

Ak = U{Adi E 1\1+}. 
Ak s; Ak+l s; Ak+2 s; ... s; U{A;ji E 1\1+}. 

D 

This lemma will be used to prove the next theorem. 
Before reading the next theorem we wish the reader to observe the fol­

lowing diagrammatic examples of step by step factorization of some integers. 
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The factorization proceeds from one step to the next by writing each reducible 
integer as the product of a pair of non units of 7l.. The procedure is not unique. 

14 

/ " 7 2 

24 

/ " 8 3 

24 
/""-. 

4 6 

/ " / " / " 4 2 2 2 3 2 

27 

/ " 9 3 

/ " 3 3 

/ " 2 2 

~576~ 
8............._ 72 

/ "" / 
2 4 6 

/ " / " 2 2 3 2 

""' 12 

/ " 3 4 

/ " 2 2 

14 = 7. 2. 

24 = 8 . 3 = (4. 2)3 = ( (2 . 2)2)3. 24 = 4. 6 = (2 . 2)(3 . 2). 

27 = 9 . 3 = (3 . 3)3. 

576 = 8. 72 = (2. 4)(6. 12) = (2(2. 2))((3. 2)(3. 4)) 

= (2(2 . 2) )( (3 . 2)(3(2 . 2)) ). 

We now prove the existence of an irreducible factorization. 

Theorem. Let (R, +, ·, (}, v) be a principal ideal domain. If x is a nonzero, 
nonunit member of R then x is a product of irreducible elements of R. 

PROOF. If x is irreducible the theorem is proven. If x belongs to R and is 
reducible then x can be written as a product of a pair of non unit members 
of R. Each reducible component of the pair producing the product can then 
be written as a product of a pair of nonunit members of R. If any factor is 
irreducible then the factoring process ceases for that factor. After k steps each 
factor which is reducible can be written as the product of a pair of non unit 
elements of R. There are possibly as many as 2k factors which have product x 
after k steps. There may be fewer than 2k factors if any irreducible elements 
are produced before the kth step. If, after some finite number of steps, all 
factors are irreducible then x is the product of irreducible elements. If not, 
then it is always possible to find still more nonunit factors after any finite 
number of steps. In this case there would exist a sequence of non units of R, 
x, x 1, x2 , x3 , ... , such that each term of the sequence is a proper factor of 
the preceding element. The principal ideals generated by the sequence terms 
are then properly included as follows: (x) c (x1 ) c (x2 ) c (x3 ) c · · ·. 
This result contradicts the lemma. We must then conclude that no such 
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nonterminating factorization sequence exists. After some finite number of 
steps x must be the product of irreducible elements. 0 

We now argue the uniqueness of the irreducible factorization. It will not 
be claimed that all factorizations are exactly the same. For example, 24 can 
be written several ways as the product of irreducibles: 24 = 3 · 2 · 2 · 2 = 
2 · 2 · 3 · 2 = (- 2)(- 2) · 3 · 2. What we wish to claim is that any irreducible 
factorization is merely a rearrangement of unit multiples of any other 
factorization. 

Theorem. Let (R, +, ·, 8, v) be a principal ideal domain. If p1p2 · · · p;;, and 
q1q2 • • • qn are any two irreducible factorizations of the same element of R 
then m = n and there exist units et> e2 , ••. , en and a permutation a of 
1, 2, ... , n such that q 1 = e 1Pu<1J' qz = e2Pu<2J' ... , qn = enPu<nJ· 

PROOF. We prove the theorem by induction. Suppose the result is true for 
all n < k where k is the number of irreducible factors qto q2 , • •• , qk. We note 
that in a principal ideal domain primes and irreducible elements are the 
same. p1p2 ···Pm = q1q2 • • • qk. q1 is a factor of p1p2 ···Pm and therefore 
is a factor of one of the p;'s. q1 = e1pu(lJ for some unit e1 and some number 
a(1) between 1 and m. By cancellation p1p2 · · · p-;;;-lJ ···Pm = etqzq3 · · · qk 
where the circumflex indicates the deleted prime. We note that the product 
e1q2 of a unit and a prime is itself a prime. We can therefore apply the induc­
tion hypothesis and conclude m - 1 = k - 1 and there exist units e~, e3 , ... , 

/'o.. 

ek and a permutation of the numbers 1, 2, ... , a(1), ... , k which we denote 
by a(2), ... , CJ(k) such that (e1 q2) = e~Pu(z), q3 = e3Pu(3J' ... , qk = ekPu(k)· 
We need only to let e2 = e;:- 1 e~ to complete the proof. 0 

For future convenience we introduce a name for a concept found in the 
previous theorem. 

Definition. Two elements of an integral domain (R, +, ·, 8, v) which are 
unit multiples of each other are called associates. 

For example, in 7L the elements -2 and 2 are associates. In Q[ X], 2X + 9 
and X + ~ are associates. 

QUESTIONS 

1. X 2 + 1 
(A) is an irreducible polynomial in IR[X] 
(B) is an irreducible polynomial in Q[X] 
(C) factors uniquely in C[X] (up to unit multiples) 
(D) is irreducible in Z10 [X]. 

(E) None of the above completes a true sentence. 
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2. Which of the following statements are true? 
(A) In a principal ideal domain any two irreducible factorizations of an element 

must have the same factors although possibly permuted in order. 
(B) 7l. + 7l.i cannot be a principal ideal domain because 7 - i has two distinct 

factorizations (2 - i)(3 + i) and (1 - 3i)(1 + 2i). 
(C) Every principal ideal domain is a Euclidean domain. 
(D) In a principal ideal domain all ideals are generated by a single element 

and are therefore maximal ideals. 
(E) None of the alternatives is true. 

3. The ideal <21, 56, 147) in 7l. 
(A) contains the ideal <14) 
(B) is contained in the ideal <28) 
(C) is equal to the ideal< 49, 14) 
(D) is an improper ideal. 

(E) None of the alternatives completes a true sentence. 

4. Which of the following sentences are true? 
(A) The existence of the infinite sequence of ideals (2) c < 4) c <8) c · · · 

shows that 7l. is not a principal ideal domain. 
(B) 7l. is not a prime ideal of 71.. 
(C) The ideal (2, 4, 8, ... ) is not principal. 
(D) In the sequence <24) c <8) c <2) c 7l. more ideals of 7l. than the two 

given ones cannot be properly inserted between (24) and 71.. 
(E) None of the statements is true. 

EXERCISES 

1. Prove that 71.2 x 2, the noncommutative unitary ring of two by two matrices with 
integral entries, is a principal ideal ring. Prove that every ideal of 71. 2 x 2 consists of 
left multiples of its generator or of right multiples of its generator (cf. Exercise 7 
of Section 2.2). 

2. Since 7l. + 71.0 is not a unique factorization domain it cannot be a principal 
ideal domain. Give an example of an ideal which fails to be simply generated in 
71.+71.0. 

3. Prove that every element x in R, a principal ideal domain, can be expressed in the 
form x = pJ.'p;' · · · p~· in which p1, p2 , •.. , Ps are nonassociated primes and ex 1, 

ex2 , ... , ex. are positive integers. Further, if x = q1'q~' · · · qf' then t = sand there 
exists a permutation (J of {1, 2, ... , s} such that q1 = u1pa(Il• q2 = u2pa(2), ... , 

qs = UsPa(s) and fJ1 = exa(l)• {32 = exa(2)• •.. , f3s = exa(s) for SOme units U1, U2, . .. , U5 • 

5.6 Greatest common divisor 

In this section we define a greatest common divisor of two elements, find 
a representation of a greatest common divisor as a linear combination of the 
two elements, and establish an algorithm for finding the greatest common 
divisor. We then study partial fractions. 
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We begin this section with a definition of greatest common divisor. 

Definition. Let ( R, +, ·, (), v) be an integral domain. Given a, b E R we 
define d to be a greatest common divisor of a and b if and only if 

1. d is a divisor of a and b, and 
2. If e is any divisor of a and b then e is a divisor of d. 

Also, a and b are said to be relatively prime if and only if v is a greatest 
common divisor of a and b. 

We will abbreviate greatest common divisor of a and b with gcd(a, b). 
We now have a theorem on the linear representation of the greatest common 
divisor. 

Theorem. Let (R, +, ·, (), v) be a principal ideal domain and let d be a divisor 
of a and b. Then d is a greatest common divisor of a and b if and only if 
there exist x, y E R such that xa + yb = d. 

PROOF. If there exist an x and y such that xa + yb = d and e is a divisor of 
both a and b then e is a divisor of d. d is therefore greater than every divisor of 
a and b. To prove the converse assume d is a greatest common divisor of a 

and b. Let A = {o:a + fJblo:, fJ ER}. This set is easily seen to be an ideal of R. 
By hypothesis every ideal of R is principal. Let A be generated by c E R; 
A = (c). a and b both belong to the ideal A because a = va + ()b and 
b = ()a + vb. As members of the ideal, (c), both a and b are multiples of c. 
As a common divisor of a and b, the element c must be a divisor of d, the 
given greatest common divisor. Because c EA there exist x', y' ER such 
that c = x'a + y'b. d is a divisor of c. c and dare associates and (d) = 
(c) = A. There exist x, yE R such that xa + yb = d. 0 

The next theorem, which presents a procedure for finding greatest common 
divisors, is called the Euclidean algorithm. 

Theorem. Let (R, +, ·, (), v) be a Euclidean domain with gauge g. Let a and b 
be two nonzero members of R. Then either there exists q ER such that 
b = qaandgcd(a, b)= aorthereexisttwo(finite)sequencesq0 ,q1, ... ,qk+ 1 
of Rand r0 , r1, ... , rk> nonzero elements of R, 0 ~ k ~ g(a) such that 

b = q0 a + r0 , 0 ~ g(r0 ) < g(a); 

a = q1r0 + r1,- 0 ~ g(r1) < g(r0 ); 

r0 = qzr1 + rz, 0 ~ g(rz) < g(r1); 
r1 = q3r2 + r3 , 0 ~ gh) < g(r2); 

rk-2 = qkrk-1 + rk> 0 ~ g(rk) < g(rk-1); 

rk-1 = qk+1rk + (); 
and gcd(a, b) = rk. 
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PROOF. Since each division lowers the gauge value of the remainder by at 
least one there can be only a finite number of repeated divisions as described; 
the process must terminate after a finite number of steps not exceeding 
g(a) + 1. The process actually terminates when a remainder of() is obtained. 
As rk is a divisor ofrk-l (from the last equation) and also is a divisor ofrk-z 

(from the next to last equation) one can prove inductively that rk is a divisor 
of both a and b. On the other hand, any divisor of both a and b is a divisor of 
r0 (using the first equation) and a divisor of r1 (using the second equation). 
Continuing we conclude that any divisor of both a and b is a divisor or rk. 

rk is a gcd(a, b). D 

The theorem demonstrating the existence of x, y in R such that xa + yb = 
gcd(a, b) can be constructively affirmed by the Euclidean algorithm. By using 
the procedure of the theorem, solving the first equation for r0 , substituting 
in the second, solving the second for r 1, substituting in the third, etc., we can 
obtain rb gcd(a, b), as a linear combination of a and b. 

ExAMPLE. In 7!.., the integers, a greatest common divisor of 576 and 243 is 9. 

576 = (2)(243) + 90. 

243 = (2)(90) + 63. 

90 = (1)(63) + 27. 

63 = (2)(27) + 9. 

27 = (3)(9) + 0. 

To represent the greatest common divisor 9 as a linear combination of the 
two integers 576 and 243 we begin with the first equation and substitute in 
the second, and so forth. 

90 = 576 - (2)(243). 
63 = 243 - (2)(576 - (2)(243)) 

= (5)(243) - (2)(576). 
27 = 90 - (1)(63) = (576 - (2)(243)) - ( (5)(243) - (2)(576)) 

= (- 7)(243) + (3)(576). 

9 = 63 - (2)(27) 
= (5)(243) - (2)(576) - (2)( (3)(576) + (- 7)(243)) 

= (19)(243) + (-8)(576). 

EXAMPLE. Find a greatest common divisor of the polynomials X 3 + 2X2 + 
3X + 2 and X2 + 4 in the Euclidean domain 7!.. 5 [X]. 

X 3 + 2X2 + 3X + 2 = (X + 2)(X2 + 4) + (4X + 4). 

X 2 + 4 = (4X + T)(4X + 4) + 0. 

A greatest common divisor is 4X + 4. One can notice that 2 is a unit in 
7!.. 5 [X] and therefore 2(4X + 4) = 3X + 3 is another greatest common 
divisor of the two given polynomials. 
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In calculus courses a technique for finding antiderivatives of rational 
functions involves finding partial fractions. The method generally used for 
resolving a fraction into its component additive parts involves comparing 
undetermined coefficients and solving linear equations. The Euclidean algo­
rithm is perhaps a simpler method. 

Given polynomials a(X), b(X) in IR[X] which are relatively prime there 
exist polynomials x(X), y(X) such that x(X)b(X) + y(X)a(X) = 1. In frac­
tional form this becomes x(X)/a(X) + y(X)/b(X) = 1/(a(X)b(X) ). The 
polynomials x(X) and y(X) can be found using the Euclidean algorithm. 

ExAMPLES. Resolve (X2 + 2X + 3)/{X2 + 1)(X -'- 1) into partial fractions. 
By the division algorithm X 2 + 1 = (X + 1)(X - 1) + 2. Thus 

-(X + 1)(X - 1) + 1{X2 + 1) = 2 
or 

-t(X + 1) t 1 
X 2 + 1 + X - 1 = (X2 + 1)(X - 1)' 

-t(X + 1)(X2 + 2X + 3) t(X2 + 2X + 3) X 2 + 2X + 3 
~~~~~--------~+ = . 

X 2 + 1 X - 1 {X2 + 1)(X - 1) 

-t {(x + 3) + x;: 1} + t {(x + 3) + (X ~ 1)} = x;: 1 + x ~ 1· 

And as we learn in calculus, an antiderivative of the sum is lniX2 + 11 + 
3lniX - 11. 

Resolve into partial fractions the rational fraction X 2 /(X - 2)2(X + 3). 
X 2 - 4X + 4 = (X - 7)(X + 3) + 25 using the division algorithm. 

-(X - 7)X2/25 X2/25 X 2 

X 2 - 4X + 4 + X + 3 = (X - 2)2(X + 3). 

ls {(-X+ 3) + ~~x_-2;22} + ls {(x- 3) +X-: 3} 

1 { 1 [ 20 ]} 1 -9 
= 25 X - 2 16 + X - 2 + 25 X + 3 

i~ 1 -is 
= X - 2 + (X - 2)2 + X + 3 

This function has antiderivative 

i~ lniX - 21 - !(X - 2)- 1 - is lniX + 31. 

QUESTIONS 

1. Which of the following are greatest common divisors of X 2 - 3X + 2 and X 2 -

X- 2in Q[X]? 
(A) X 2. 

(B) X+ 1. 
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(C) 10- 2X. 
(D) (X - 2)/3. 

(E) None of the four is a greatest common divisor. 

2. The ideal D generated by the greatest common divisor d of a and b in a principal 
ideal domain R is related to the ideal A generated by a and the ideal B generated 
by b by which of the following? 

(A) A n B = D. 
(B) B s;; D. 
(C) As;; D. 
(D) (A u B) = D. 

(E) None of the alternatives is correct. 

3. A least common multiple of a and b is m if and only if (a is a divisor of m and 
b is a divisor of m) and (a is a divisor ofn, b is a divisor ofn imply m is a divisor ofn). 
Denoting the ideals generated by m, a, and b by M, A, and B, respectively, which 
of the following are correct? 

(A) A n B = M. 
(B) B s;; M. 
(C) A£ M. 
(D) (A u B) = M. 

(E) None of the alternatives is correct. 

4. The equation 2x + 4y = 1 
(A) has an infinite number of solutions in integers 
(B) has unique integral solution 
(C) cannot be solved because there are two unknowns and only one equation 
(D) has no solution in integers because 1 is not a multiple of gcd(2, 4). 

(E) None of the alternatives is correct. 

EXERCISES 

1. Find a greatest common divisor of 54 and 102 using the Euclidean algorithm in Z. 

2. Find a generator of the ideal (576, 48, 27, 54, 60) in Z. 

3. Find a greatest common divisor of 1617 and 1683 using the Euclidean algorithm 
in Z. Find the greatest common divisor as a linear combination of 1617 and 1683; 
that is, find x, y in Z such that x(1617) + y(1683) = gcd. 

4. Resolve X/(X - 2)(X - 3) into partial fractions in O[X]. 

5. Resolve each of the following into partial fractions in Q [X] : 
(a) (X - 1)/X(X + 3) (b) X/(X2 + X + 1)(X - 3)2 

(c) 1/(X3 + 1) (d) (X3 + 1)/(X - 1)(X - 2)(X2 + X + 2). 

6. The equation mx + ny = p has solution in integers if and only if p is a multiple of 
a greatest common divisor of m and n. Euler used an interesting method for solving 
this equation. We demonstrate Euler's method through an example: 216x + 270y = 
108. 

108 - 270y 
X= 

216 

108 - 54y 
216 - y. 
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In order that there be a solution for x and y in integers one must have 

108 - 54y 
216 = w for some integer w. 

Solving for y: 

108 - 216w 
y = = 2- 4w 

54 

Substituting back for x: 

108 - 270y 108 - 270(2 - 4w) 
X= 

216 216 
-2 + Sw. 

The solution in parametric form is 

x = -2 + Sw y = 2- 4w. 

Solve this equation using Euler's method: 222x + 246y = 24. [Hint: The process 
must be continued one step further than in the example.] 

5.7 Unique factorization domains 

We have previously established the existence and uniqueness of factor­
izations in Euclidean and principal ideal domains. We now look at some 
results about factorization with weaker hypotheses. 

Definition. (R, +, ·, e, v), an integral domain, is a unique factorization 
domain or Gaussian domain if and only if every nonzero, non unit element 
of R is the product of irreducible elements of R and given any two irre­
ducible factorizations of a nonzero, nonunit x of R, x = p 1p2 • • • Pm and 
x = q1q2 · · · qn, it follows that n = m, there exist a permutation (J of 
{1, 2, ... , n} and units Ut. u2 , ... , urn of R such that p1 = u1qa(l)• p2 = 
Uzqa(2)• ... 'Pm = umqa(m)· 

This definition is, of course, the conclusion of the principal theorem of 
Section 5.5, the fundamental theorem of arithmetic. Our first result of this 
section will show that when factorization exists then uniqueness of factoriza­
tion will eliminate the distinction between prime and irreducible elements in 
an integral domain. We remember that prime elements are always irreducible, 
but not conversely, in an arbitrary integral domain. 

Theorem. If (R, +, ·, e, v) is an integral domain such that every nonunit, 
nonzero element has an irreducible factorization then the irreducible fac­
torization is unique if and only if every irreducible element is prime. 

PROOF. First let unique factorization be given and suppose x to be an irre­
ducible element of R. Let x divide a product ab. ab = xy for some y in R. 
y can be expressed as the product of irreducible elements of R yielding the 
factorization xp 1p2 · · · Pk of ab. On the other hand, both a and b each have 
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irreducible factorizations giving a factorization q1q2 ... qmr1r2 ... rn of ab 
with q1, q2, ... , qm, r 1, r2, ... , rn all irreducible elements of R. By the as­
sumption of unique factorization x is a unit multiple of some qi or some ri 
and therefore divides either a or b. 

To prove the converse assume every irreducible element to be prime and 
consider two irreducible factorizations of an element x. The proof is exactly 
that given in the last theorem of Section 5.5. D 

We saw in Section 5.5 that an integral domain with ideals generated by a 
single element is a unique factorization domain. An integral domain with 
ideals generated by a finite number of elements does not necessarily have 
unique factorization. It does, however, have irreducible factorizations. 

We now proceed towards the basic theorem that the polynomial ring of a 
unique factorization domain is itself a unique factorization domain. This 
result will prove Z[ X] to be a unique factorization domain. We recall that 
Z[ X] is not a principal ideal domain. 

Lemma. Let <R, +' . ' e, V> be a unique factorization domain. An irreducible 
element p of R divides the product of polynomials f(X)g(X) if and only if p 
divides f(X) or p divides g(X). 

PROOF. We prove p divides all the coefficients of f(X)g(X) if and only if p 
divides all the coefficients of f(X) or p divides all the coefficients of g(X). If 
each coefficient ai of the polynomial f(X) = a0 + a1X + · · · + amxm is a 
multiple of p then clearly each coefficient ck = Li+ i=k aibi of the polynomial 
f(X)g(X) = Ir:; ckXk is also a multiple of p where g(X) is denoted by 
b0 + b1X + · · · + bnX". By the same reasoning if each coefficient of g(X) 
is a multiple of p then each coefficient of f(X)g(X) is also. 

The converse requires somewhat more care. Suppose the irreducible 
element p does not divide f(X) and does not divide g(X). Let a, be the first 
(smallest power of X) coefficient of f(X) which p does not divide and let b. be 
the first coefficient of g(X) which p does not divide. The coefficient of the 
power r + s of X in f(X)g(X) is a0 br+s + a1br+s-t + · · · + a,b. + · · · + 
a,+.bo with the understanding some of the coefficients may be zero. Or in 
summation notation the coefficient of xr+s in f(X)g(X) is Li+ i=r+s aibi with 
0 ~ i ~ m, 0 ~ j ~ n. In this sum a,b. fails to be divisible by p. Any terms 
a0b,+., a1br+s-t' ... , a,_ 1bs+ 1 will be divisible by p because a0 , a 1, .•• , a,_ 1 

are all divisible by p. Likewise, any of the terms ar+ 1 b._ 1, a,+ 2b._ 2 , ... , a,+sbo 
will all be divisible by p because b0 , b1, ... , b._ 1 are all divisible by p. The 
sum Li+ i=r+s aibi fails to be a multiple of p. p does not divide the coefficient 
of xr+s in f(X)g(X). D 

Definition. Let <R, +'.' e, V> be a unique factorization domain. A polynomial 
f(X) in R [X] is called primitive if and only if the greatest common divisors 
of the coefficients of f(X) are units. Denote any greatest common divisor 
of the coefficients of f(X) by c(f(X) ). 
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Lemma. Let (R, +, ·, (}, v) be a unique factorization domain. f(X)g(X) is 
primitive if and only if f(X) and g(X) are primitive. c(f(X)g(X)) = 
uc(f(X) )c(g(X)) for some unit u E R. 

PROOF. The proofs here are consequences of the previous lemma. 0 

We now relate factorization in R[X] to factorization in the polynomial 
ring of the field of fractions of R. 

Lemma. Let (R, +, ·, 0, v) be a unique factorization domain and R' its field 
of fractions. Then a nonconstant polynomial f(X) in R[X] reducible in 
R'[X] is also reducible in R[X]. 

PRooF. Every polynomial g(X) in R'[X] can be expressed uniquely as 
rg1(X) where rE R' and g1(X) is primitive in R[X]. We express f(X) as 
af1(X) where a is a greatest common divisor of the coefficients of f(X) in R 
and f 1 (X) is a primitive polynomial in R [X]. f(X) in R [X] and of degree one 
or higher is reducible in R'[X] if and only if f 1(X) is also. Now suppose 
f 1(X) = g(X)h(X), each polynomial g(X) and h(X) in R'[X]. f 1(X) = 
sg1(X)th 1(X) with g1(X), h1(X) primitive in R[X], s, t ER'. Lets= stfs2 , 

t = tdt2 , gcd(s1, s2 ) = gcd(t1, t2 ) = v, s1o s2 , t 1, t2 ER. We have s2td1(X) = 
s1t1g1(X)h1(X). Then s2 t2 divides s1t1 ; s1t1 divides s2 t2 • s1t1 = us2t2 • 

f 1(X) = ug1(X)h1(X). f 1(X) is reducible. Likewise, f(X) is reducible. 0 

Theorem. If (R, +, ·, 0, v) is a unique factorization domain then (R[X], 
+, ·, 0, v) is also. 

PROOF. A polynomial of degree zero is reducible in R [X] if and only if it is 
reducible in R. Its factorization into irreducibles in R and in R[ X] are 
identical. 

Denote again the field of fractions of R by R'. A polynomial f(X) of 
degree one or greater can be factored uniquely in R'[X] into irreducibles 
because R'[ X] is a unique factorization domain. But an irreducible factoriza­
tion of an element of R [X] in R'[ X] implies a factorization in R [X]. Each 
factor in R[X] can be factored into a primitive polynomial and an element 
of R. Thus every polynomial in R [X] is the product of irreducibles in R and 
primitive polynomials which are also irreducible in R[X]. Any other irre­
ducible factorization in R[X] must be an irreducible factorization in R'[X]. 
Each factor is a rational multiple of some factor in the original factorization. 
But the only rational multiple of a primitive polynomial in R[X] is a unit 
multiple. The zero degree irreducibles must be unit multiples because irre­
ducible factorizations in R are unique. 0 

QUESTIONS 

1. In the ring of Gaussian integers, 7L + 7Li, the equation 5 = (1 + 2i)(l - 2i) 
(A) implies 7L + 7Li is not a unique factorization domain 
(B) implies 5 is reducible 

148 



5.7 Unique factorization domains 

(C) implies 5 is a unit 
(D) implies 5 has a square root in Z + Zi 

(E) None of the four alternatives completes a true sentence. 

2. LetS be an integral subdomain of the integral domain R.lf an element xis irreducible 
inS then 

(A) x is irreducible in R 
(B) x is a nonzero element of R 
(C) xis not a unit of R 
(D) x is not reducible in R. 

(E) None of the four sentence completions is correct. 

3. Let S be an integral subdomain of the integral domain R. A unit element of S is 
(A) a unit element of R 
(B) never irreducible in R 
(C) possible reducible in R 
(D) never zero in R. 

(E) None of the four alternatives is satisfactory. 

4. Z is a subdomain of Z[tJ, also an integral domain. Which of these statements 
are true? 

(A) 6 is irreducible in Z[tJ. 
(B) 3 is irreducible in Z[t]. 
(C) 6 · 1 = 3 · 2 implies irreducible factorizations are not necessarily unique in 

Z[t]. 
(D) 3 = [tJ · 6 indicates 3 is reducible in Z[t]. 

(E) None of the four statements is true. 

EXERCISES 

1. Let R be a commutative, unitary ring in which every ideal is finitely generated. 
Prove that it is not possible to have a strictly increasing sequence (infinite) of ideals 
from R. [Hint: Examine the proof for principal ideal rings given in Section 5.5.] 

2. Let R be an integral domain in which every ideal is finitely generated. Prove that 
every nonzero, nonunit is the product of irreducible elements. 

3. The following result is known as Eisenstein's irreducibility criterion. Let f(X) = 

a.x• + · · · + a1X + a0 be a polynomial such that a. is not a multiple of some 
prime p in Z; a.- 1, a.- 1, .•• , a1, a0 are all in Z and are multiples of p, and a0 is 
not a multiple of p2 • Then prove f(X) is irreducible in Q[X] (and Z[X]). [Hint: 
Suppose f(X) reducible and use a coefficient argument to get a contradiction.] 

4. Prove xr 1 + XP- 2 + · · · +X+ 1 irreducible in Q[X]. [Hint: XP- 1 + · · · + 
X + 1 = (XP - 1)/(X - 1) = [(Y + l)P- 1 - 1]/[(Y + 1) - 1] = yp- 1 + 

pp-2 + ... + C) y + ... + p. 

5. X 2 + 1 is irreducible in Z3[X]. Prove. 

6. Let P be the set of all infinite series with coefficients in Q. P = {a0 + a1X + 
a2X 2 + · · ·ia0 , a1, a2 , ••. E Q }. It is not assumed that the series converge in any 
sense. Prove that P is an integral domain with sums and products defined in the 
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usual way (as with polynomials). Show that a0 + a1X + ···is invertible if and only 
if a0 =f. 0. Show that every element of P can be written as u(X)X" for some n E N 
where u(X) is a unit in P. Show that X is the only irreducible element of P (up to 
unit multiples). Show that P is a unique factorization domain. Show that the only 
ideals of P are P, (X), (X2), (X3), ... , (0) and therefore P is a principal ideal 
domain. Show that P is a Euclidean domain (in a rather trivial way). Show that 
(X) is a maximal ideal, the only maximal ideal of P, and that P/(X) is isomorphic 
to Q. 

7. Which of the following polynomials are irreducible in Q[XJ? 
(a) 2X3 + 3X2 + 27X + 3 
(b) X 9 + 121x + 55 
(c) X 9 + 10!X8 + 8!X6 + 6!X4 + 4!X2 + 2! 
(d) 2X3 + 4X2 + 20X + 4 
(e) (X + 3)5 - 35 . 

5.8 Field extensions and complex numbers 

We now use our knowledge of polynomials to analyze field extensions 
and in particular to construct again the complex numbers from the real 
numbers. 

We begin by classifying elements outside a given field K into two types 
according to whether or not they satisfy a polynomial equation with coef­
ficients in K. 

Definition. Let K be a field included in a commutative ring L (K is a subring 
of L and K is a field). An element a in L is called algebraic over K if and 
only if rx is the root of some nonzero polynomial in K[X]. If rx is not 
algebraic over K then a is called transcendental over K. 

ExAMPLES. J2 is a root of X 2 - 2 in IQ [X] and is therefore algebraic 
over IQ. The base for the natural logarithms, e, is not a root of any polynomial 
except zero and is therefore transcendental over IQ. (This fact is nontrivial; 
one must consult works in analysis for the proof.) The square root of negative 
one, i, is a root of X 2 + 1, a polynomial in IQ [X], and is therefore algebraic 
over IQ. 

It may be intuitively useful to think of algebraic elements as closer to 
the original field K than transcendental elements. Whereas an algebraic 
element is not itself necessarily a member of K, some sum of multiples of 
powers of the algebraic element does lie in K. 

Definition. If K is a field included in a commutative ring L and a EL we 
define K [ rx] to be the smallest subring of L which includes K u { rx}. 
If Lis more especially a field and rx EL we further define K(rx) to be the 
smallest subfield of L including K u {rx}. 
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We notice that the possibly ambiguous notation K [ rx] could be construed 
to mean the set of all polynomials in rx with coefficients in K. This inter­
pretation is consistent with the new definition, because any ring containing 
K and rx must also contain any polynomial in rx. Furthermore, the set of 
all polynomials in rx clearly. is a subring of L. 

We now wish to discuss the structure of the ring K [ rx]. The discussion 
falls naturally into the two cases: algebraic and transcendental. The sub­
stitution morphism introduced in Section 5.3 is now utilized to analyze the 
structure of K[rx]. The morphism <Pil:K[X]--+ L replaces each polynomial 
anX" + an_ 1xn-l + · · · + a1X + a0 by the value ana"+ an_ 1rx"- 1 + 
· · · + a1 rx + a0 in L obtained by substituting rx for X. <Pil(p(X)) = p(rx). 
For convenience we shall diminish what we regard as the codomain of 
<Pil from L to coincide with the range K[rx]. The mapping <Pil:K[X] --+ 
K[rx] is then a surjection, an epimorphism of rings. 

Theorem. If K is a field and rx EL, a ring including K, then there exists a 
principal ideal <f(X)) of K[X] such that K[rx] is isomorphic with K[X]/ 
<f(X)), a quotient ring of K[ X]. 

PROOF. <Pil:K[X]--+ K[rx] such that <Pil(p(X)) = p(rx) is a ring morphism. 
The kernel of the epimorphism <Pil is an ideal of the principal ideal domain 
K[X]. Let f(X) be a generator of the principal ideal, kernel <Pil. Kernel 
<Pil = <f(X)). By the fundamental morphism theorem for rings (Section 2.7) 
there exists an isomorphism <P~:K[X]/(f(X))--+ K[rx]. This proves the 
theorem. D 

We make a few remarks about the theorem and its proof. The ideal, 
kernel <Pil( =(/(X))), consists precisely of those polynomials in K[X] which 
have rx as a root. There are two cases: (/(X)) = {8} and <f(X)) #- {8}. 
If (f(X)) = {8} then kernel <Pil is trivial, <Pil is already an isomorphism, 
and the only polynomial with rx as a root is the zero polynomial. rx is tran­
scendental. If (f(X)) #- { 8} then the kernel is not trivial, the generator 
f(X) is nonzero, and rx is an algebraic element. 

EXAMPLES. For the transcendental element e over IQ the subring IQ[ e] of~ 
is simply the set of all polynomials in e with rational coefficients. This ring 
of polynomials in e is isomorphic to IQ[ X]. If, alternatively, we consider 
the algebraic element .J2 over IQ, a generator of the kernel <1> ft is X 2 - 2. 
The ring IQ[.j2] is isomorphic to IQ[X]/(X2 - 2). 

For a further example we let K be the field 2 3 . We let L = {m + nrxlm, 
n E 2 3 } with operations defined by 

(m + nrx) + (p + qrx) = (m + p) + (n + q)rx 

(m + nrx) · (p + qrx) = mp + (mq + np)rx. 

K is a subfield of the ring L. Since rx2 = 0 we notice this ring L is not an 
integral domain. We consider 2 3[1X] by considering <Pil:23[X]- Z3[rx]. 
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Kernel iPa. is generated by some polynomial f(X) in Z3 [X] which cannot 
be of degree zero or one because m + nex = 0 implies m = n = 0. X 2 is in 
kernel iPa. and must therefore be a generator. iP~:Z3 [X]/(X2 )-+ Z3 [ex] is 
the isomorphism. 

We now consider the more important case in which Lis assumed to be a 
field. The previously developed machinery is adequate to the purpose. 

Theorem. If K is a field included in a field Land ex EL then K(ex) is isomorphic 
to K[X]/(f(X)) for some irreducible f(X) in K[X] and ex is algebraic 
over K or K(ex) is isomorphic to K(X) and ex is transcendental over K. 

PRooF. Ifexisalgebraicover KtheisomorphismiP~:K[X]/(f(X))-+ K[ex], 
derivable from the substitution morphism iPa., has range K[ex], a subring of 
the field L. K[ex] must therefore be an integral domain. Its isomorphic 
preimage K[X]/(f(X)) is also an integral domain. The ideal (f(X)) is 
proper and prime. In a principal ideal domain prime ideals are maximal 
ideals. (f(X)) is then proper and maximal. K[X]/(f(X)) is therefore a 
field. Its isomorphic image K[ex] is also a field and may be written K(ex). 
(f(X))'s being a maximal ideal also implies f(X) is irreducible. 

Alternately, if ex is transcendental over K then iPa.:K[X] -+ K[ex] is an 
isomorphism of two integral domains which are not fields. Each integral 
domain can be embedded in its field of fractions and these fields of fractions 
are isomorphic also. This is to say, the isomorphism iPa. can be extended to an 
isomorphism IJ'a.:K(X)-+ K(ex) such that IJ'a.(p(X)/q(X)) = p(ex)/q(ex). D 

ExAMPLES. The transcendental element e over Q gives rise to the field 
extension Q(e) inside ~. Q(e) is the field of all rational functions of e with 
coefficients in Q. O(e~= {p(e)/q(e)jp(X) and q(X) are polynomials with 
rational coefficients an q(X) is not the zero polynomial}. The algebraic 
element J2 is a root f X 2 - 2, a polynomial with rational coefficients. 
O(J2) is a field isomorphic to Q[X]/(X2 - 2) and is the set {m + nJ2jm, 
nE 0} with operations (m+ nJ2) + (p + qJ2) =m+ p + (n + q)J2 
and (m+ nJ2)(p + qJ2) = mp + 2nq + (mq + np)J2. 

We offer one more example in detail, that of extending the real number 
system, ~. to the complex number system, C. This is one more step in the 
chain constructing the number systems: 1\1, Z, 0, ~. and C. This construction 
is an alternative to the brief one offered in Exercise 15, Section 2.5 and offers 
a different kind of insight. We are acquainted with the fact that X 2 + 1 = 0 
has no solution in the field ~ of real numbers because the square of every 
real number is nonnegative (~ is an ordered field). X 2 + 1 has no root in 
~and can therefore have no linear factor. If X 2 + 1 can have no first degree 
factors then it is irreducible for it is only of second degree. A root to X 2 + 1 
contained in C and represented by i is an algebraic element over ~. The 
field extension ~(i) is a subfield of the field C. iPj:~[X]/(X2 + 1)-+ ~(i) 
is the derived isomorphism from the substitution morphism iP;. A complete 
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set of representatives for ~[X]/(X2 + 1) will be the set of all real poly­
nomials of degree zero and one and the zero polynomial. 

~[X]/(X:.I. + 1) = {a0 + a1X + (X2 + 1)la0 , a1 E ~}. 

Under the isomorphism <Pi, a0 + a 1 X + (X2 + 1) corresponds to a0 + a1 i 
in ~(i). We can determine the operations in the field R(i) by noting the 
corresponding operations in ~[X]/(X2 + 1). 

ao + a1X + (X2 + 1) + b0 + b1X + (X2 + 1) 

= ao + bo + (a1 + bt)X + (X2 + 1). 
(ao + a1X + (X2 + 1))(b0 + b1X + (X2 + 1)) 

= aobo + (aobl + a1b0 )X + a1b1X 2 + (X2 + 1) 

= (aobo - a1b1) + (a0b1 + a1b0)X + (X2 + 1). 

Thus in ~(i) we have 

a0 + a1i + b0 + b1i = a0 + b0 + (a1 + b1)i and 
(a0 + a1i)(b0 + b1 i) = (a0b0 - a1bd + (a0 b1 + a1b0 )i. 

The reciprocal of any nonzero element b0 + b1 i is easily found by equating 
a product to 1. (a0b0 - a1b1) + (a0b1 + a 1bo)i = 1. 

a0b0 - a1b1 = 1 and a0b1 + a1b0 = 0. 

We solve the two equations for a0 and a1. 

aobob1 = (1 + a1b1)b1 and a0 b0 b1 = -a1b~. 
b1 + a1b~ = -alb~. 

a1 = (- b1)/(b~ + bi}. a0 = b0/(b~ + bi}. 

(b0 + b1i)- 1 = b0/(b~ + bi} + [ -btf(b~ + bi}]i. 

We delineate a few more properties of complex numbers in the exercises, 
but a complete discussion of complex numbers and real numbers belongs 
in the field of analysis. There the concepts of limit are developed. The reader 
who wishes to see a construction of the real numbers using an algebraic 
setting should consult reference [10, p. 234]. 

Some more remarks concerning the existence of the field ~(i) are in order. 
The theorem we have applied begins with assuming the existence of an 
extension L of~ containing a root i of the polynomial X 2 + 1 and concludes 
with the isomorphism of ~(i) and ~[X]/(X2 + 1). Whether or not the 
extension L of ~ containing i actually exists can be handled as follows. 
~[X]/(X2 + 1) isitselfamodelfieldextensionof~containingX + (X2 + 1) 
which is a root of X 2 + 1. At least one such extension L of lffi containing a 
root of X 2 + 1 does therefore exist. Furthermore, our theorem tells us 
that any extension ~(i) containing a root of X 2 + 1 will be isomorphic to 
~[X]/(X2 + 1). 

That our simple extension lffi(i) of ~ is actually all of C, the complex 
numbers, is in fact the case. We cannot, however, prove such an assertion 
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without first having some definition of IC for comparison. But a full descrip­
tion of IC would presumably involve its analytical properties. We shall simply 
take the position that we have defined IC and leave the verification of its 
analytical properties to texts on analysis. Of course then we are unable to 
prove the outstanding theorems about complex numbers which are con­
sequences oflimit properties. Such an important theorem is the one perhaps 
inappropriately called the fundamental theorem of algebra: Given any 
polynomial f(X) in IC[ X] there exists an r in IC such that f(r) = 0. This 
theorem, requiring deep analytic properties of complex numbers to prove, 
was first correctly proved by C. F. Gauss in his doctoral thesis for the 
University of Helmstedt. Gauss himself used the name "fundamental 
theorem of algebra" (or more precisely, he used the German equivalent). 

QUESTIONS 

1. The product of the two complex numbers 2 + 3i and 7 - i is 
(A) 11 - 19i 
(B) 17 + 19i 
(C) 9 + 2i 
(D) 14- 3i. 

(E) None of the suggested answers is the correct product. 

2. The equation (2 + 3i)x = 4 - 3i has solution 
(A) (4 - 3i)/(2 + 3i) 
(B) 0 
(C)-/3-g; 
(D) (2 - 3i)/(4 + 3i). 

(E) None of the four previous answers is a solution. 

3. The equation x2 + ( -6 + i)x + 14- Si= 0 has solution 
(A) 2- 3i 
(B) 4 + 2i 
(C) 3 + t(- i + .J- 21 + 20i) 
(D) 3 + t(- i - .J- 21 + 20i). 

(E) None of the four answers is a solution. 

4 . .J2 + .J3 is 
(A) algebraic over 1()1 

(B) algebraic over I(JI(.J2) 
(C) transcendental over 1()1 

(D) a root of an irreducible polynomial in 1()1 [X] of degree 6 
(E) algebraic over R 

5. 1()1({/2 + .J3) is isomorphic to 
(A) I(JI[XJ/<X3 + 6X + 2) 
(B) I(JI[XJ/<X6 - 9X4 - 4X3 + 27X2 - 36X - 23) 

(C) I(JI[XJ/<X3 + X 2 ) 

(D) I(JI(X). 

(E) None of the answers completes a true sentence. 
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6. 2 = J4 = y'(-2)(-2) = JPijy'(-2) = -2. 
The statement given 

(A) is correct because 2 and - 2 belong to the same coset of the quotient field 
defined by the ideal (X2 + 1) 

(B) is correct because there are two square roots of 4 
(C) is correct but neither reason offered in (A) and (B) is relevant 
(D) is simply incorrect 
(E) illustrates the unreliability of mathematics. 

7. The mapping f:lL-+ C such that f(m) = (a + bit with a + bi #- 0 
(A) is a morphism of the additive group 7L to the multiplicative group C - {0} 
(B) is an injection 
(C) is a surjection 
(D) is a ring morphism. 

(E) None of the choices completes a true sentence. 

EXERCISES 

1. Argue the case that {a + b.J2ia, b E Q} is a field. What is the inverse of a nonzero 
a+ b.J2? 

2. For a0 + a1i in C the nonnegative real numbery'(a~ + ai) is called the modulus 
or absolute value and written la0 + a1il. Show the following to be true: izl = 0 
if and only if z = 0; iYzi = IYIIzl, IY + zi ~ IYI + lzl. 

3. The conjugate of a complex number a0 + a1i is defined to be a0 - a1i and is 
written (a0 + a1 i)*. Prove these results: 

(y + z)* = y* + z*, (yz)* = y*z*, 

y = y* if and only if y E ~. 

yy* = IYI 2• Y- 1 = y*!IYI 2• y #- 0. 

4. Show that k:C-+ C such that k(z) = z* is a (ring) automorphism of C. 

5. Let p(X) be in ~[X]. Show that if z is a root of p(X) then z* is also a root. 

6. Prove that every cubic real polynomial has either one or three real roots, never 
exactly two. To get the correct number each root's multiplicity must be counted; 
for example, X 3 has roots 0, 0, 0. 

7. Show that every real polynomial can be factored into real polynomials of degree 
two or less. Assume the fundamental theorem of algebra. 

8. Is the ideal (X4 + X 2 + 1) maximal or prime in Q[X]? 

9. Find a smallest field extension of Q in which 1 + .Jf7 is a member; write as 
Q[X]/(f(X)) for somef(X). 

10. Find a smallest field extension of Q such that X 2 + 3X + 2 is reducible. 

11. For any field of characteristic p show that f:K-+ K such that f(x) = xP is a 
monomorphism. [Hint: Use the binomial theorem and the kernel.] Further prove 
that if K is finite then f is an automorphism. Demonstrate by example that f need 
not be an epimorphism if K is not finite. 
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12. Show that if R is a principal ideal domain then every irreducible element of R 
generates a nontrivial, maximal proper ideal. 

13. Show that if a simply generated ideal is a nontrivial, proper maximal ideal of a 
commutative unitary ring R then the generator of the ideal is an irreducible element 
of R. 

14. What has <X) c <X, 2) c Z[X] to say about the converse of Exercise 13? 

15. X 2 + I is irreducible in Z3 [X]. Obtain a field extension Z3 (i) by adjoining i, a 
root of X 2 + I. Are there any second degree irreducible polynomials in Z3 (i)[X]? 

16. Let T be an extension of 0) containing all the rational powers of 2. Show that 
T is an algebraic extension of 0); i.e., show T contains only elements algebraic 
over Q. Show that Tis not OJ[XJ/<f(X)) for any f(X). 

17. Solve the equation x2 = c + di, c, dE IR, for x and put the solution in the form 
a + bi with a, b E IR. 

18. Prove that the set of all complex numbers which are algebraic over 0) is a field. 
[Hint: Iflx, {3 E A work with 0) c OJ((J(, {3) c A where A is the subset of IC algebraic 
over OJ.] 

19. Prove that the set of all real numbers algebraic over 0) is a field. 

20. Prove that the field A, of Exercise 18, is an algebraically closed field; that is, A 
contains any complex number algebraic over A (The fundamental theorem of 
algebra states that IC is algebraically closed). [Hint: Let (J( be a root of a.X" + · · · + 
a1X + a0 and consider OJ(a0 , at. ... , a.).] 
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Linear algebra: 
Modules 6 

Chapters 6, 7, and 10 are devoted to material mathematicians call linear 
algebra. Here are developed the elementary properties of modules over rings 
and modules over fields (vector spaces). This includes a study of matrices 
as they arise in linear algebra. We use at the beginning for examples and 
motivation spaces of functions. We feel it is a natural intuitive way of ap­
proaching the vector space concept for beginners and ties in neatly with 
coordinate ideas. We have not treated modules over division rings which 
are not commutative but the experience gained here by the reader should 
allow him to handle that variation should he meet it. We have interpolated 
in Section 6.2 and later in the chapter discussions relating vector spaces and 
modules on the abstract level with vector spaces as directed line segments 
as used on the more intuitive level in engineering and physics classes. Hope­
fully this will assist the beginning student in seeing that the subjects are 
the same. 

Following Section 6.2 is Appendix 6A placed out of logical sequence. The 
purpose of the appendix is to give the reader a modus operandi so that he can 
solve the exercises efficiently and in the proper form. The results of the 
appendix are not used in the logical development of the text until justified 
in Section 7.6. Our apology, if one is necessary, for the use in exercises of 
material not yet developed formally is a plea that people do not always 
learn best by taking everything is strict logical order. Linear equations are 
studied in Appendix 6A, Section 7.6, and again in Section 10.3. Again with 
the goal of connecting the beginner's intuition with the abstract, we connect 
ordinary analytical geometry, lines and planes, with the concepts of sub­
spaces and quotient spaces. 

The concept of independence dominates linear algebra and leads to the 
study ofbases. We have used the device of coordinate morphism to tie together 
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the concepts oflinear combinations, bases, coordinates, and the isomorphism 
between spaces of the same dimension. The coordinate morphism will be 
found throughout our treatment of linear algebra both in theorems and 
diagrams. Along with this device we employ family notation (Section 6.6) 
for the dual purpose of handling matrices and linear combinations. We 
wish to avoid the often erroneous formulation of linear dependence (e.g., if 
two vectors in a set {x1, x2 , ••• , xn} are equal then the set is linearly de­
pendent) and have therefore used linear combinations of families. We hasten 
to add that there are equally viable alternatives to the one we chose. Family 
notation of functions is used throughout mathematics and it is important 
that a student realize that family and function are the same. 

In Section 6.10 we treat and carry through some more special properties 
and techniques available for vector spaces and not for modules in general. 
A basis for a vector subspaces can always be extended to a basis for the 
entire vector space and bases for vector spaces always exist. 

Appendices 6B and 6C contain material that is above the general level 
of the text but that is included for completeness. They form a kind of a 
justification for a number of assumed statements in the text proper. 

6.1 Function spaces, modules, and 
vector spaces 

In this section we define module and vector space, prove a few basic 
theorems, and explore examples. 

We shall introduce the module and vector space through some examples. 
These examples are in all cases sets of functions. We begin by noticing that 
all of the following objects are functions: 

(a) an ordered pair (a1, a2 ) 

(b) an ordered n-ple (a1, a2, ... , an) 

(c) a two-rowed, two-columned matrix (au a12) 
a21 a22 

(d) an m-rowed, n-columned matrix(~;; :~: ::: :~:) 
aml am2 ° 0 0 amn 

(e) a sequence (at. a2 , a3 , .•• ) 

(f) a real-valued function defined on the real unit interval [0, 1]. 

We notice this in the following ways. 

(a) An ordered pair is a function f:{1, 2} ~ E where E is some set con­
taining the values f(1) = a1 and f(2) = a2 • 

(b) Assuming E is some set containing all the values ab a2, a3 , •.. , a"' the 
n-ple is a functionf:{1, 2, ... , n} ~E. 
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(c) Again assume E is some set large enough to contain all the values of 
our function. We note {1, 2} x {1, 2} = {(1, 1), (1, 2), (2, 1), (2, 2)}. The 
2 by 2 matrix is a function/: {1, 2} x {1, 2} -+ E such that/(1, 1) = a11 , 

/(1, 2) = a12 , f(2, 1) = a2 t. /(2, 2) = a22· 

(d) The m-rowed, n-columned matrix is a function f: {1, 2, ... , m} x 
{1, 2, ... , n}-+ E such that f(i,j) = aii for all i = 1, 2, ... , m; j = 
1, 2, ... , nand Eisa set containing the values. 

(e) The sequence (a1, a2 , a3 , ..• ) is a function f: N -+ E or f: N + -+ E such 
that f(i) = ai and E is a set containing the values of f. 

(f) f: [0, 1] -+ IR has domain the real unit interval and codomain the set 
of real numbers. 

We recall from Section 1.8 that if E and S are sets then the notation E8 

stands for the set of all functions from domain S to codomain E 

E8 = {fif:S-+ E}. 

Again in parallel with the earlier given examples of functions we list now 
the encompassing collections. 

(a) El1 , 2l is the set of all ordered pairs with values in E. We usually ab­
breviate this with E 2 • 

2 can be used to stand for the set { 0, 1} consistent with the discussion of 
Section 3.1. Ordered pairs are then numbered (a0 , a1) instead of (a1, a2 ). 

Infinite sequences can begin with index 0 instead of 1 :(a0 , a1, a2 , •• • ). All 
this is acceptable notation. The consistent beginning with 0 becomes not 
totally desirable when we must begin all of our matrices with row number 0 
instead of row number 1. An alternative which we employ is to define also 
sets 1 = {1, 2}, 3 = {11 2, 3}, etc. The set of ordered pairs fndexed with 1 
and 2 is then written E2 instead of E2 . However, we pull the usual gambit of 
simply not writing symbols which prove too tedious. On must often find 
out from context when E2 means E2 or E2 • Of course, if the distinction is 
important we will use the extra notation. 

(b) E" is the set of all n-ples with values in E. 
(c) E 2 x 2 is the set of all 2-rowed, 2-columned matrices with entries in E. 
(d) E"'xn is the set of all m-rowed, n-columned matrices with entries in E. 
(e) EN is the set of all sequences with values in E. 
(f) IR[o, 11 is the set of all functions with domain [0, 1] and codomain IR. 

If addition is possible in E then there is a natural way to add functions with 
values in E. 
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Iff(x) = 3xandg(x) = x2 arethevaluesoff:[O, 1]-+ ~andg:[O, 1]-+ 
~then (f + g):[O, 1]-+ ~has the value (f + g)(x) = 3x + x 2. These are 
examples of pointwise or placewise addition of functions. 

We now formalize in a definition what has just been demonstrated in 
examples. 

Definition. Let S be a set and (E, +) a set with an associative binary 
operation. Given f:S-+ E and g:S-+ Ewe define (f + g):S-+ E such 
that (f + g)(x) = f(x) + g(x) for all x in S. 

It follows that the + just defined is a binary operation on E8• We have 
used the same symbol + both for an operation onE and the new operation on 
Es; even though the second arises from the first they are different operations. 

Theorem. IfS is a set and (E, +) is a set together with an associative binary 
operation then (E8, +) is a set together with an associative binary operation. 
If (} is a neutral element for (E, +) then z:S-+ E such that z(x) = (} 
for all x in S is a neutral element for (E8, + ). If (E, +, (}) is a com­
mutative group then (Es, +, z) is also a commutative group. 

PRooF. To demonstrate that + is an associative operation on E8 let f, g, h 
belong to E8 • Both (f + g) + h and f + (g + h) are functions with domain 
S and codomain E. Furthermore, ( (f + g) + h)(x) = (f + g)(x) + h(x) = 
(f(x) + g(x)) + h(x) = f(x) + (g(x) + h(x)) = f(x) + (g + h)(x) = (f + (g +h) )(x). 
In a similar fashion we can prove commutativity. Let z:S-+ E such that 
z(x) = (} for all x in S. (f + z)(x) = f(x) + z(x) = f(x) + (} = f(x). Sim­
ilarly, z + f = f. To complete the demonstration of the group proper­
ties let f be in E". Define g:S-+ E such that g(x) = -f(x) for all x in S. 
(f + g)(x) = f(x) + g(x) = f(x) - f(x) = (J.f + g = z. Hence, g = -f. D 

This theorem applies to all the given examples; it is only the set S that 
changes the character of the examples. 

If the set E has a second binary operation besides the original + we have 
discussed we can define multiplication of a function in E8 by a member of E. 
For example, 

a(al> a2) = (aal> aa2). 

a (a11 a12) = (aa11 aa12)· 
a21 a22 aa21 aa22 

a(al> a2, a3 , ..• ) = (aa1, aa2, aa3 , ••• ). 

The kind of multiplication illustrated in these examples is usually called 
multiplication by a number or scalar. Because the operation multiplies a 
member of Es by a member of E outside of E8 it is a function E x E8 -+ Es. 
We shall refer to this type of operation as an exterior multiplication onEs 
by E or more briefly as an E-exterior multiplication on Es. 
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Definition. If S is a set and ( R, + , · , (}) is a ring then we define R -exterior 
multiplication on the set R5 to be the binary operation c::J : R x R5 -+ R5 

such that (a c::J f)(x) = a · f(x) for all x in S. 

The box about the · is temporary. It, as well as the dot itself, are most 
frequently omitted as with multiplication. Note that c::J is not a binary 
operation on R nor on R5 alone but is a "mixed" binary operation defined 
on R x R5• 

We now summarize in a theorem results with the new operation together 
with the previous results. 

Theorem. IfS is a set and (R, +, ·, (}, v) is a unitary ring then 

(R5, +, z) is a commutative group 
c::J : E x E5 -+ E5 is an E-exterior multiplication on E5 such that 

(a · b) c::J f = a c::J (b c::J f) 
(a + b) c::J f = (a c::J f) + (b c::J f) 
a c::J (f + g) = (a c::J f) + (a c::J g) 

vc:Jf=f 

for all a, beE; f, g e E5 . 

PROOF. The temporary symbolism with c::J allows us to see how the new 
operation is involved with the old: 

((a · b) c::J f)(x) = (a · b) · f(x) = a · (b · f(x)) = a · ( (b c::J f)(x)) = 
(a c::J (b c::J f) )(x). ((a + b) c::J f)(x) = (a + b)· f(x) = (a· f(x)) + (b · f(x)) = 
(a c::J f)(x) + (b c::J f)(x) = (a c::J f + b c::J f)(x). (a c::J (f + g) )(x) = a · 
(f + g)(x) = a· (f(x) + g(x)) = a· f(x) + a· g(x) = (a c::J f)(x) + (a c::J g)(x) = 
(a c::J f + a c::J g)(x). (v c::J f)(x) = v· · f(x) = f(x). D 

The properties listed in the previous theorem form the basis for a definition 
of a module. Once we have made this definition it will immediately follow that 
R5 is a module. 

We now make the principal definition after our long preliminaries. 

Definition. (M, +, '; c::J) is a module over the ring (R, +, ·, (}, v) if and 
only if 

(M, +, 0 is a commutative group 
(R, +, ·, 9, v) is a unitary ring 
c::J: R x M -+ M is an R-exterior multiplication on M such that 

(r + s) c::J x = (r c::J x) + (s c::J x) 

r c::J (x + y) = r c::J x + r c::J y 
r c::J (s c::J x) = (r · s) c::J x 

vc::Jx=x 
for all r, s e R, x, y e M. 

For brevity we shall most often simply say M is an R-module. 
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The elements of the ring R are called scalars or numbers while the 
elements of the module M are called vectors or module elements. When 
we follow the usual practice of omitting product symbols the four prop­
erties above read 

(r + s)x = rx + sx 

r(x + y) = rx + ry 

r(sx) = (rs)x 

VX =X. 

In the case when R is a division ring or field we use the name vector 
space instead of module. 

Definition. An R-module is called a vector space if R is a division ring or 
field. 

The theorem previous to the definition of module demonstrated that if R 
is a ring and S is a set then R8 is an R-module. If K is a field then K 8 

is a vector space. 
A very simple example of a module is the £'-module given by any com­

mutative group <G, +,e). For any n in Z and x in G we define nx to be 
the nth multiple of x. The taking of multiples can be envisioned as a £'­
exterior operation ·: Z x G -+ G with the value nx. It is furthermore true 
that 

m(x + y) = mx + my 

m(nx) = (mn)x 

(m + n)x = mx + nx 

lx = x for all m, n E Z and x, y E G. 

Thus we may take any commutative group, regard multiples as £'-exterior 
multiplication, and have a £'-module. The theory of commutative groups is 
thereby subsumed within the theory of modules. 

Another somewhat trivial but important example is to notice that any 
unitary ring <R, +, ·, e, v) is an R-module. The R-exterior multiplication is 
simply the ring multiplication. Any ring R is a module over itself. 

An alternative that should be mentioned is the possibility of using ex­
terior right multiplication in place of left multiplication: 

·:M x R -+ M with xr E M for each x E M, r E R. 

In our elementary work we will avoid this second possibility. 
To complete this introductory section we prove some elementary results 

about modules. 

Theorem. Let M be an R-module. Then ex = ' and (- v)x = - x for all x 

in M. 

PROOF. ex = (e + e)x = ex + ex. ex + ' = ex + ex. It follows by can­
cellation (possible because of the existence of additive in verses) that ex = '· 
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Secondly,x + (-v)x = vx + (-v)x = (v + (-v))x =ex= (.Withanas­
sociative binary operation there can be at most one inverse. (- v)x = - x. D 

QUESTIONS 

1. llm x" is the module of all m-rowed, n-columned matrices with integer entries. Which 
of these statements are true? 

(A) ll_m x" is a vector space. 
(B) Each x in ll_m x" is a function with mn arguments. 
(C) z, the zero function or zero vector of ll_m x ", is the m by n matrix of all zero 

entries. 
(D) The negative of a module element x in 7Lm x" is not necessarily an integer. 

(E) None of the alternatives is true. 

f 2. O~'~ is a vector space over the field 0 with 
(A) (0, 0, 0 ... ) as zero vector 
(B) no negative vector for (0, 0, 0, ... ) 
(C) more than a finite number of vectors 
(D) no zero vector. 

(E) None of the alternatives completes a true sentence. 

3. ~ [X], the ring of polynomials with coefficients in ~. is 
(A) a vector space over the field 0 
(B) a vector space over the field ~ 
(C) a module over the ring 7L 
(D) a module over the ring N. 

(E) None of the possibilities completes a satisfactory sentence. 

4, om X n with appropriate operations is 
(A) a vector space over the field 0 
(B) a module over the ring 0 
(C) a group 
(D) a commutative group. 

(E) None of the possibilities completes a true sentence. 

5. Which of the following sentences are true? 
(A) 7L is an ~-module. 
(B) ~is a 7L-module. 
(C) ~ is an ~-module. 
(D) 7L is a 0-module. 
(E) 0 is a 7L-module. 

6. In the 7L-module 7L4 

(A) mx = 0 implies m = 0 or x = 0 
(B) 2 + 2 = 0 
(C) 8x = 0 for all x E 7L4 

(D) {nln2 = 0} = 27L. 
(E) None of the alternatives completes a true sentence. 

7. Which of the following statements are not true for a vector space M over a field K? 
(A) vx = x for all x E M. 
(B) ax = ( implies a = (}for all a E K, x E M. 
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(C) (-a)( -x) = ax for all a E K, x EM. 
(D) ax = y and x ¥- ' imply a = yjx for all a E K, x, yE M. 

(E) All of the statements are true. 

8. Which of the following statements do not appear among the axioms (definition) 
for a vector space M over a field K? 

(A) r(x + y) = rx + ry for all r E K, x, y E M. 
(B) Ox=' for all x EM. 
(C) r(xy) = (rx)y for all rE K, x, yE M. 
(D) (r + s)x = rx + sx for all r, s E K, x E M. 

(E) All of the statements appear in the definition of a vector space. 

EXERCISES 

1. What is the neutral element z in the commutative group 

(6 -2) (-1 (7L2 x 2, +, z)? Solve the equation X+ 4 1 = 4 

2. Let M be an R-module. Prove r' = ' for all rE R. Prove sx = ' for all s E R implies 

X='· 
3. Give an example of an R-module M, a nonzero rE R, a nonzero x in M so that 

rx = '· 

4. Show that if M is an R-vector space then rx = ' and r ¥- (} imply x = '· 

5. Let (R, +, ·, (}, v) be a unitary ring. Prove that any ideal A of R is an R-module. 
Give an example to show that it is not sufficient for A to ~e a subring of R in order 
that A be an R-module. 

6. ( 7L 2 x 2, +, (~ ~)) is a 7L-module, one of our earlier examples. Show that 7L2 x 2 x 

7L 2 x 2 , the set of all ordered pairs of2-rowed, 2-columned matrices, is also a 7L-module. 

7. <~N+, +, z), as we have seen earlier, is an ~-vector space. Relying on our calculus 
background we let !l' be the subset of ~N+ of all those sequences which have real 
finite limits. For example, (1, !, t, ... ) E !l' yet (1, 2, 3, ... ) 1$ !l'. Show that !l' is a 
submodule of ~N+; that is, show that !l' is itself an ~-module. 

8. A module which contains only one element is called a trivial module. What must 
the one module element be? Show that (R0 , +, z) is a trivial R-module regardless 
of the nature of the ring R. 

6.2 Submodules 

In this section we define submodules, develop necessary and sufficient con­
ditions for a subset to be a submodule and discuss the submodule generated 
by a given subset. 

Definition. Let (M,+, 0 be a module over the unitary ring (R, +, ·, 0, v). 
A subset N of M is a submodule if and only if the operations of the module 
M when restricted toN make N be an R-module. 
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6.2 Submodules 

ExAMPLES. The subset lR x {0} = {(x, O)ix E IR} of IR x IRis a submodule. 
It is easily seen that the sum of two members of the subset is again in the 
subset and that any scalar multiple of a member of the subset is again in the 
subset. Furthermore, the entire list of properties of a module are trivially 
satisfied. A different submodule of the same module IR x IR is the subset 
Ll = {(s, s)is E IR}. It is easy to visualize these two submodules as collections 
of points in IR x IR (see Figure 6.1). 

IR X {0} 

Figure 6.1 

We now develop a simpler criterion for a subset to be a submodule. 

Theorem. Let (M, +, 0 be an R-module. A subset N of M is a submodule if 
and only if N -=!- 0; x, yEN imply x + yEN; and rE R, x EN imply 
rxEN. 

PROOF. If N is a submodule then N contains ,, the zero vector, and N is 
therefore nonempty. N is also closed under addition and R-exterior multi­
plication. Thus the conditions hold if N is a submodule. 

For the converse, if N is nonempty then there is some vector x in N. 
Since N is closed under multiplication - x = (- v)x is in N. The sum 
x + (- x) = 'must be in N. This shows that N contains the zero vector. The 
argument -x = ( -v)x EN whenever x does belong toN shows that N is 
closed under negatives. The associativity and commutativity of addition in N 
follows immediately from the associativity and commutativity in M. N is 
therefore a commutative group with respect to addition. The closure of R­
exterior multiplication is given. The distributive laws and other properties 
are true in N because they are true in M. N is a submodule. D 

EXAMPLE. To verify that Ll = {(s, s)is E IR} is a submodule of IR x IR it is 
enough to verify that (1, 1) E Ll, (s, s) E Ll and (t, t) E Ll imply (s + t, s + t) E Ll, 
(s, s) E Ll implies r(s, s) = (rs, rs) for all rE IR. 

For a subset of M which fails to be a submodule one can construct a 
smallest possible submodule of the given module which contains the given 
subset. 
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Theorem. Let <M, +, 0 be an R-module and S any subset of M. Then there 
exists a submodule [S] of M such that S ~ [S] and if N is any submodule 
of M including S then [ S] ~ N. 

PROOF. Alternatively put, the theorem states that there is a smallest sub­
module of M which includes S. We begin the proof by letting Y be the set 
of all submodules of M which have S as a subset. 

Y = {NIS ~ Nand N is a submodule of M}. 

Note that each element of Y is a submodule of M; Y is a collection of sub­
modules of M and is not itself a subset of M. Y is nonempty because it 
contains at least M itself. The intersection of the collection is then well defined. 

ny = {xlx EN for all NE Y}. 

By its definition ny is a subset of M. It is furthermore a superset of S, for let 
X E S. Then X EN for all NE Y. X E nY. One may readily prove ny is a 
submodule of M. Finally, if N is any submodule of M which has S as a subset 
then N E Y showing ny ~ N. D 

Definition. Let <M, +, 0 be an R-module and S any subset of M. We define 
[ SJ to be the submodule of M generated by the subset S. 

ExAMPLES. The set {(2, 0), (3, 0)} generates the submodule Z x {0} of the 
£'-module Z x Z. The set {(1, 0), (0, 1)} generates the entire £'-module Z x Z. 
The set {(2, 2)} generates the submodule {n(2, 2)ln E Z} of the £'-module 
Z x Z. The set {a} generates the entire IQ-module IQ if a # 0. The set 0 
generates the space {(}, the trivial submodule. 

ExAMPLE. This example we call ::» 0 , the vector space of directed line segments 
in IR 3 . This set provides a good intuitive example of a vector space and is 
often used in calculus and physics books. We define f» 0 to be the set of all 
directed line segments emanating from the origin in IR 3 . Corresponding to 
each point q = (qt. q2 , q3) of!R3 there exists a directed line segment (or arrow, 
if you will) from (0, 0, 0) to (q 1, q2 , q3 ). This directed line segment we call 
Oq (see Figure 6.2). There is a one-to-one correspondence between the terminal 

Figure 6.2 
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points ofthe line segments and the set of all points in ~3 • We call this bijection 
~0 --+ ~3 by the name F and set F(Oq) = q. 

Corresponding to the operations of ~3 there are operations in ~0 . The 
sum of (pl, P2, P3) and (ql, q2, q3) in ~3 yields (Pt + ql> P2 + q2, P3 + q3). 
By taking differences in coordinates we see that the line through (p1, p2 , p3 ) 

and (p1 + q1, p2 + q2 , p3 + q3 ) is parallel to the line passing through 
(0, 0, 0) and (q1, q2 , q3). So also is the line passing through (q~> q2 , q3) and 
(p1 + q1, p2 + q2 , p3 + q3 ) parallel to the line passing through (0, 0, 0) and 
(p1, p2 , p3 ). The plane containing the four lines contains the parallelogram 
determined by the four points. The sum of the arrows Op and Oq is the arrow 
O(p + q) (see Figure 6.3). 

p 

Figure 6.3 

Concerning exterior multiplication we see that the points (0, 0, 0), 
(p1, P2, p3 ), and (apt> ap2, ap3 ) all lie on the same line. The length of the 
segment from (0, 0, 0) to (apl> ap2 , qp3 ) is lal times the length from (0, 0, 0) to 
(Pt> p2, p3 ). Multiplying an arrow Op by a scalar a produces an arrow ter­
minating on the same line but longer (or shorter) by a factor la I (see Figure 6.4). 

ap 

Figure 6.4 
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If a > 0 the arrow terminates on the same side of the line as does Op. If a < 0 
the direction is reversed. 

A subspace of IR 3 such as { t(a1, a2, a3)it E IR} for some nonzero (a1, a2, a3 ) 

consists of all possible scalar multiples of a single vector. The arrows of the 
subspace all terminate on a single line through the origin (see Figure 6.5). 

Figure 6.5 

A subspace of!R3 such as {t(ab a2, a3) + u(b1, b2, b3)it, u E IR}, given that 
a and b are not on the same line, consists of all possible arrows terminating 
in a plane containing (0, 0, 0), (a1, a2 , a3 ) and (b1, b2 , b3 ) (see Figure 6.6). 
The discussion in this example is an intuitive one and is based upon a previous 
knowledge of geometry. The axioms or definitions used as starting points for 
lines, planes, parallelism are not made clear. For this reason nothing is really 
proved in this example. Nevertheless, it should be helpful to the reader, 
especially when he is familiar with the use of arrows as vectors. 

Figure 6.6 
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QUESTIONS 

1. Which of the following subsets generate proper submodules of the entire module? 
(A) The subset {7, 13} of the Z-module Z 
(B) The subset {2, 4, 8, 16, 32, ... } of the £'-module (JI 
(C) The subset {4, 8, 12, 16, 20, ... } of the (Ji-module (JI 
(D) The subset((JI x {0}) v ( {0} x (JI) of the £'-module (Ji x (Ji. 

(E) None generates a proper submodule. 

2. Which of these statements are true? 
(A) If a subset of a module generates the entire module then the subset cannot 

be empty. 
(B) Every submodule S of a module M satisfies the inequality { (} ~ S ~ M. 

(C) Two distinct subsets of M must generate two distinct submodules of M. 

(D) IfS generates a submodule N of a module M then M n N includes S. 

(E) None of the statements is true. 

3. Which of the following are submodules of the (Ji-module IR? 
(A) l' 
(B) (JI 
(C) {a + bnja, bE (JI} 
(D) {p(n)jp(X) E (JI[X]}. 

(E) None is a submodule. 

4. Which of the following are submodules of the IR-module IR"? 
(A) (JI" 
(B) { (x1, x2, x3, ... )jx. E (Ji for all nE N + and x. = 0 for all but a finite number 

ofn} 
(C) IR X IR 
(D) IR(X). 

(E) None is a submodule of IR". 

5. The set of all even degree polynomials with real coefficients together with the zero 

polynomial fails to be a vector space because 
(A) multiplication by a scalar (exterior multiplication) is not well defined (fails 

to be closed) 
(B) addition is not well defined (fails to be closed) 
(C) multiplication of polynomials is not well defined (fails to be closed) 
(D) negation is not well defined (fails to be closed). 

(E) The set of polynomials as described is a vector space. 

6. Which of the following sets are submodules of the IR-module [Rl0· 11? 

(A) The constant functions: {!if E [R[o, 11 and f(x) = c for some c E IR and all 

xe[0,1]} 
(B) The polynomial functions: {!if E fRlO. 11 and f(x) = a0 + a1 x + · · · + a.x• 

for some a0 , ab . .. , a. E IR} 
(C) All polynomial functions of even degree and the zero function 
(D) All functions in [R[o, 11 such that f(x) = f(1 - x) for all x E [0, 1]. 

(E) None of the sets is a submodule of [Rl0 · 11. . 

7. Which of the following sets are submodules of the IR-module [R[o, 11? 

(A) All polynomial functions of degree one or less and the zero function. 
(B) All functions fin [Rlo. 11 such that f(O) = f(1) = 0 
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(C) All functions fin IR10•11 such that f(O) + /(1) = 0 
(D) All polynomial functions of degree two. 

(E) None of the sets is a submodule of the given module. 

8. The set of all real-valued sequences with real limits 
(A) is a vector space over the field IR 
(B) has a subspace of all rational-valued sequences with limits 
(C) has a subspace of all real-valued sequences with limits 
(D) has a subspace of all real-valued sequences with constant values (i.e., s. = c 

for all n E N and some c E IR). 
(E) None of the alternatives completes a true sentence. 

EXERCISES 

1. Let (G, +, 8) be a commutative group aJd H a subgroup of G. Prove that H 
is a submodule of the £:-module G. ' 

2. IR 3 is an IR-module. Describe [ { (1, 0, 0)} ], [ { (1, 0, 0), (0, 1, 0)} ], [ { (1, 0, 0), (0, 1, 0), 
(0, 0, 1)}]. 

3. For the £:-module IR and separately for the IR-module IR describe each of the 
following submodules: [ { 1} ], [Z], [ Q ], [IR - Q]. 

4. Give an example of a subset of a module which is a subgroup but fails to be a 
submodule. 

5. £:4 is both a £:4-module and a £:-module. Describe how the two modules differ 
because of the different exterior multiplication. Is {4£:, 2 + 4£:} a submodule in 
both cases? 

6. jRI•.bl is an IR-module, the set of all real-valued functions defined on the closed 
unit interval [a, b]. Is {fifE IR1a,bJ andf is continuous on [a, b]} a submodule? 
You must use some basic calculus to answer this question. Is {!If E jRI•.bl and 
f is differentiable on [a, b]} a submodule? How do the two submodules compare? 

7. Let p0 , p1 , ... , P.- 1 belong to IR1a,bJ and be continuous there. Define p(x, y) = 

y<•J + p._ 1(x)y<•- 1J + · · · + p1(x)yUl + p0 (x)y, a polynomial of degree one in y 
and its derivatives y<1J, yC2l, ... , y<•l. A solution f(x) of the equation p(x, y) = 0 
is a function f defined and n times differentiable on [a, b] such that p(x, f(x)) = 0 
for all x E [a, b]. Let S be the set of all solutions to the equation p(x, y) = 0. Prove 
that S is a submodule of jRI•,bl. S is called the solution space of the linear homo­
geneous differential equation p(x, y) = 0. 

8. Let (M, +,·)be an R-module with submodules Land N. Show that L + N = 

{x + ylx EL, yEN} is the smallest submodule of M containing both Land N; 
i.e., show L + N = [L u N]. 

9. Let M be and R-module with submodules L and N. Prove that if L u N is a sub­
module then L £ N or N £ L. 

10. Let M be an R-module with subsets Sand T. ProveS £ T implies [S] £ [T]. 
Prove [[S]] = [S]. 

11. Show that any R-module M has a proper nontrivial submodule or is generated by 
a single element. 
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Appendix 6A A method for solution of linear equations 

Appendix 6A A method for solution of 
linear equations 

In order to assist the solution of various problems that will arise in sections 
that follow we propose now a system of solving simultaneous linear equa­
tions. Our goal now is not a complete treatment of the solution of linear 
equations but only enough knowledge to proceed with the exercises. The 
exercises are designed, of course, to assist in understanding the text. 

Rather than beginning with an abstract description of the process for 
solving we illustrate the method in use on several examples. The equations 

X 1 + X 2 + X 3 = 3 
X 1 - X 3 =1 

X 2 + 2X3 = 2 

can be written in tabular form for brevity. 

1 1 1 3 

1 0 -1 1 

0 1 2 2. 

We propose to replace this system oflinear equations by an equivalent system. 
An equivalent system of equations is one with precisely the same solutions 
as the former. Our first equivalent system for this example is obtained by 
multiplying the first equation through by -1 

-1 -1 -1 -3 

and adding the result to the second equation. The first and third equations 
are left unchanged. The new system is 

1 1 1 3 
0 -1 -2 -2 
0 1 2 2. 

Any solution of the old system will be a solution of this new system. The new 
system consists merely ofthe same equations, sums or multiples of equations 
in the old system. On the other hand, we can, in reverse, produce the old 
system from the new by adding the first equation to the second. Any solution 
of the new system must then be a solution of the old. The two systems are 
therefore equivalent. 

We continue now to obtain a sequence of equivalent systems until we 
ultimately arrive at a system for which the solutions will be obvious. At each 
step we must take care to use only alterations that produce equivalent systems, 
operations that are reversible. 

We now add 1 times equation two to equation three and leave equations 
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one and two unchanged 
1 1 1 3 

0 -1 -2 -2 
0 0 0 0. 

And then add 1 times equation two to equation one. 

1 0 -1 1 
0 -1 -2 -2 
0 0 0 0. 

Finally, we multiply equation two by -1. 

1 

0 

0 

0 -1 
1 2 
0 0 

1 

2 

0. 

This is our final form, called row-reduced echelon form. We observe the fol­
lowing things about the left side of the equations (to the left of the line): 

All rows consisting entirely of zeros are at the bottom. 
The first nonzero entry in any row is a 1, which we call an intitiall. 
Above and below in the same column as an initial1 there are only zeros. 
An initial1 in any row must be further to the right than any initial1 in a row 

above. 

This constitutes a description of the row-reduced echelon form. 
The system we have obtained in this example is 

xl - x3 = 1 

X2 + 2x3 = 2 
0 = 0 

when written with the unknowns. Since the third equation is always satisfied 
an equivalent system is 

X1 = 1 + x3 
X 2 = 2- 2X3 . 

It is clear that we can obtain solutions for X 1 and X 2 for any value of X 3 

whatsoever. Working with real numbers, for any tin IR 

xl = 1 + t 

X2 = 2- 2t 

X3= 

will be a solution and all solutions will be of this form. The set of solutions is 

{(1 + t, 2- 2t, t)Jt E IR} or (1, 2, 0) + {t(1, -2, l)Jt E IR}. 

There is a strong connection between the form of this solution, the procedures 
we have used, and the module theory we are developing. We will in time 
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develop these connections fully. Our goal at this moment, however, is merely 
to be able to solve simple equations that arise in the exercises. Besides listing 
when the equations are in row-reduced form we also list now the three ele­
mentary operations we have used to transform systems to equivalent systems: 

Interchanging two equations 
Adding a multiple of one equation to another equation 
Multiplying one equation by a unit (an invertible element) of the ring con­

taining the coefficients. 

All of these elementary operations are reversible ones which lead to equivalent 
linear systems. 

1 
2 
1 

1 
0 
1 

1 
0 
0 

1 
0 
0 

1 
0 
0 

1 
0 
0 

1 
0 
0 

1 
0 
0 

We now give a second example: 

1 -1 
-1 3 

2 -2 

1 -1 
-3 5 

2 -2 

1 -1 
-3 5 

1 -1 

1 -1 
1 -1 

-3 5 

1 -1 
1 -1 
0 2 

0 0 
1 -1 
0 2 

0 0 
1 -1 
0 1 

0 0 
1 0 
0 1 

1 
3 
2 

1 
1 
2 

1 
1 
1 

1 
1 
1 

1 
1 
4 

0 
1 
4 

0 
1 
2 

0 
3 
2 

X1 + X 2 - X 3 = 1 

2X 1 - X 2 + 3X 3 = 3 

X 1 + 2X 2 - 2X 3 = 2. 

(- 2) times the first equation added to the second 

( -1) times the first equation added to the third 

interchange equation two and equation three 

(3) times equation two added to equation three 

( -1) times equation two added to equation one 

multiply equation three by! 

(1) times equation three added to equation two 

The equations are now in row-reduced echelon form. 
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Writing the equations in full with the unknowns 

X1 = o 
X 2 = 3 

X 3 = 2. 

The set of solutions is the singleton set { (0, 3, 2)}. 

An example in which the number of equations does not coincide with the 
number of unknowns is the following system: 

X 1 + 2X 2 + X 3 + 5X 4 = 5 
-2X1 - 4X2 - X 3 - 8X4 = -8 

X 1 + 2X2 + 2X3 + 7X4 = 7. 

1 2 1 5 5 
-2 -4 -1 -8 -8 

1 2 2 7 7 

1 2 1 5 5 
0 0 1 2 2 
1 2 2 7 7 

1 2 1 5 5 
0 0 1 2 2 
0 0 1 2 2 

1 2 1 5 5 
0 0 1 2 2 
0 0 0 0 0 

1 2 0 3 3 
0 0 1 2 2 
0 0 0 0 0 

This is row-reduced echelon form. Written in full we have 

+ 3X4 = 3 

x3 + 2x4 = 2 
0 = 0. 

This in turn can be written 

X1 = 3- 2Xz- 3X4 
X 3 = 2 - 2x4. 

For any arbitrary values t, u assigned to-X 2 and X 4 values of X 1 and values 
of X 3 are determined to provide a solution. 
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x1 = 3- 2t- 3u 

X2= 
x3 = 2 - 2u 

X4 = u. 

The solution set is {(3 - 2t - 3u, t, 2 - 2u, u)lt, u E ~} = (3, 0, 2, 0) + 
{t( -2, 1, 0, 0) + u( -3, 0, -2, 1)lt, u E ~}. 

Another example is the set of equations 

X 1 + 3X 2 - X 3 = 4 
X 1 +2X2 +X3 =2 

3X1 + 7X2 + X3 = 9. 

1 3 -1 4 1 3 ....:..1 4 1 3 -1 4 
1 2 1 2 0 -1 2 -2 0 1 -2 2 
3 7 1 9 0 -2 4 -3 0 0 0 1 

1 3 -1 4 1 3 -1 4 1 0 5 -2 
0 -1 2 -2 0 1 -2 2 0 1 -2 2 
3 7 1 9 0 -2 4 -3 0 0 0 1. 

The final list is in row-reduced echelon form. The equations are 

X1 + 5X3 = -2 
X2- 2X3 = 2 

0 1. 

It is evident that regardless of what values are assigned to X 1, X 2 , and X 3 

the third equation and the system will never be satisfied. The set of solutions 
is the empty set. 

We have, we hope, achieved here in this discussion our limited objective 
of assisting the reader to solve linear equations for the exercises. We have 
described the process and the end form to be found, the row-reduced echelon 
form. We have not formally demonstrated the achieveability of the row­
reduced echelon form. In a later section we shall discuss again more fully the 
solution of linear equations on a more formal basis. 

EXERCISES 

1. Solve these equations using the method outlined in this section, finding an equivalent 
system in row-reduced echelon form. 
(a) X 1 + X 2 - X3 = 4 (b) X1- X 2 + X3- X4 = 1 

X 2 - X 3 = 2 X 1 + X 2 + X 3 + X4 = 2. 
X 3 = 2. 

(c) 2x1 - X 2 + X 3 = 1 (d) 3X1 + X 2 - 4X3 = 5. 
3X 1 + X 2 + 2X 3 = 4 
xl- 3Xz = 2. 
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2. Each of the following two sets are submodules of the IR-module !R3• Verify this. 

{t(1, 1, 2) + u( -1, 1, 2)lt, u E IR} 

{ v(2, 1, -1) + w(2, -1, - 2)lv, we IR} 

Find the intersection of the two submodules expressing the set in the same manner 
as the two given sets. [Hint: Set the two expressions equal, extract linear equations 
in t, u, v, w, and then solve the equations in the manner explained in the section.] 

6.3 Quotient modules 

In this section we see how, as with rings, it is possible to define a quotient 
structure of a module. 

Before reading this section it is advisable to review the construction of the 
quotient ring in Section 2.6.1f (M, +, 0 is a given R-module and A is a sub­
module of M then the cosets {x + Alx EM} form a quotient set M/A of M. 
The verification here closely follows that in Section 2.6 and is based upon the 
equivalence relation on M: x "' y if and only if x - y E A. On this quotient 
set M/A the addition of cosets is defined according to the rule (x + A) + 
(y + A) = x + y + A. A, itself, is the neutral element for M/A and each 
coset x + A has a negative - x + A. At this point the construction parts 
company with the ring construction of Section 2.6. Instead of a multiplication 
of cosets as we had in the ring construction we must define an exterior mul­
tiplication for the quotient module: R x M/A-+ M/A. We define r(x +A) = 
rx + A. It is trivial to confirm that this multiplication is independent of the 
representative x of the coset x + A. It also holds that 

(r + s)(x + A) = (r + s)x + A 

r(x + A + y + A) = r(x + A) + r(y + A) 
(rs)(x + A) = r(s(x + A)) 

v(x + A) = x + A. 

In summary we have 

Theorem. If (M, +, 0 is an R-module and A is a submodule then there exists 
a quotient module (M/A, +, A) with operations (x + A) + (y + A) = 

x + y + A and r(x + A) = rx + A. 

The cosets of quotient modules are often called linear varieties. 

EXAMPLES. We take the Q-module Q x Q and consider the submodule 
A = {(s, s)is E Q}. (Q x Q)/A = {(a, b) + Ai(a, b) E Q x Q}. Two cosets 
(a, b)+ Aand(c,d) + Aareequalifandonlyif(a,b)- (c,d)EAifandonly 
if (a - c, b - d) EA if and only if a - c = b - d. For example, (2, 1) and 
(4, 3) determine the same coset. Representing Q x Q with a plane diagram 
each coset is a line parallel to A (see Figure 6.7). 
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Figure 6.7 

Another example is given by the submodule 3£: of the £:-module Z. Z/3Z 
has three members 3£:, 1 + 3£:, 2 + 3£:. 

A third example is to take as defining submodule the submodule A = 
{t(l, 2, 3)lt E IR} of IR3. The quotient module is the collection of cosets 
{(a1, a 2 , a 3 ) + Ai(a1, a2 , a 3 ) E IR 3 } (see Figure 6.8). Other examples will be 
given in the exercises. 

Figure 6.8 

QUESTIONS 

1. The quotient module M/A of the R-module M 
(A) is defined by any submodule A of M 
(B) contains an infinite number of vectors 
(C) has A as a submodule 
(D) is a submodule of M. 

(3, 0, 0) +A 

(E) None of the alternatives completes a true sentence. 
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2. The 1[]1-module IR differs from the IR-module IR in that 
(A) the former has a nontrivial proper submodule while the latter does not 
(B) the latter is a vector space while the former is not 
(C) { 1} generates the latter module while not the former 
(D) 7L is a submodule of the latter but not the former. 

(E) None of the comparisons is true. 

3. The quotient IR-module IR 3 /[(1, 1, 1)] 
(A) has only a finite number of cosets 
(B) has finite cosets 
(C) contains (2, 2, 2) 
(D) contains { (s, s, s)is E IR}. 

(E) None of the alternatives completes a true sentence. 

4. Let A be a submodule of the R-module M. Which are true? 
(A) x + A = y + A implies x = y. 

(B) x +A =M for some x in M implies M/A = {M}. 
(C) A = g} implies M/A is equal to M. 

(D) R(M/A) = M/A. 
(E) None of the statements is true. 

5. Let N and P be submodules of an R-module M. Then the linear varieties x + N 
and y + P are equal if and only if 

(A) x = y and N = P 
(B) x E N and y E P and N = P 

(C) x - yE Nand N = P 
(D) (x + N) n (y + P) # 0 and N = P. 

(E) None of the four alternatives completes a true sentence. 

6. Which of the following are linear varieties of an R-module M? 

(A) {x + N} where N is a submodule of M 
(B) x + sa + tb where x, a, b belong to M and s, t E R 

(C) {x} where x EM 
(D) x +{sa} wheresER,aEM,xEM. 

(E) None is a linear variety of M. 

EXERCISES 

1. Show that 27L, the set of all even integers, is a submodule of the 7L-module lL. Describe 
the quotient module 7Lj27L including exterior multiplication. 

2. 7L is a submodule of the 7L-module IR. Describe IRjlL. Prove that if x E IR then there 
exists x' in [0, 1) such that x + 7L = x' + lL. 

3. Describe the 7L-module IRjl[]l. How many cosets are there? 

4. Show that if a linear variety (or coset) of a vector space contains two distinct multiples 
of the same vector then that variety is a subspace. 

5. Let .P stand for the IR-module of all real-valued sequences with real limits. Let 
% stand for all those members of .P with limit equal to 0. We call% the set of 
null sequences. Prove that % is a submodule of .P. What equivalence relation on 
.Pis associated with the quotient module .P j%? 
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6. Let a = (a1, a2 , a3 ) E IR 3 and be nonzero. Show that [{a}] = {ta/t E IR}. Show that 
(Xl, x2, X3) E [{a}] if and only if 

for some t E IR. Now let c = (c1, c2 , c3) E IR 3. Show that (X1, X 2 , X 3) E c +[{a}] E 

!R3 /[{a}] if and only if 

for some t E IR. The coset c + [ {a}] is interpreted geometrically as the line through 
the point (c1, c2 , c3 ) with direction vector (a1, a2 , a3 ) (see Figure 6.9). 

b 

Figure 6.9 

7. Let a = (a 1, a2 , a3) and b = (b1, b2 , b3 ) belong to IR3. Suppose also ta + ub =1-
(0, 0, 0) except for t = u = 0. This assumption means that vectors a and b do not 
have the same direction. Show that [ {a, b }] = { ta + ubJt, u E IR}. Show that (X t. X 2 , 

X 3) E [ {a, b}] if and only if 

for some t, u E IR. Now let (c1, c2 , c3) E IR3. Show that (Xt. X 2 , X 3) E c +[{a, b}] E 

!R3 /[{a, b}] if and only if 

for some t, u E IR. The coset c + [ {a, b}] is interpreted geometrically as the plane 
through the point (c1, c2 , c3) with vectors (a1, a2 , a3 ) and (bt. b2 , b3) parallel to the 
plane (see Figure 6.10). 

b 

Figure 6.10 

8. Using the results of Exercises 7 and 8 write the equations of a line containing the 
point (1, 2, 3) and having direction vector (7, 2, 1). Write the equations of a plane 
containing the point (1, 2, 3) and with direction given by the two vectors (6, 2, 1) 
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and (4, -1, 2). Write the equations of a plane containing the points (0, 1, -1), (4, 2, 

- 3), (7, 2, 1). [Hint: One vector parallel to the plane is the vector (3, 0, 4) = (7, 2, 1) -

(4, 2, - 3) which joins the point (4, 2, - 3) to (7, 2, 1). Use this as one of the 

direction vectors. J 

6.4 Morphisms 

In this section we define morphisms for modules, define kernel and range 
of a morphism, and explore structure-preserving properties of morphisms. 

Definition. Let <M, +, 0 and <M', +',(')be two modules over a unitary 
ring R. We represent exterior multiplication on M and M' by [J and[]', 
respectively. f: M --+ M' is a morph ism of modules if and only if f pre­
serves the operations: 

1. f(x + y) = f(x) +' f(y) for all x, yE M 
2. f(r [J x) = r [J' f(x) for all rE R, x EM 

3. f(O ="" 
The three properties in the definition are not independent. The third 
equation is implied by the second upon substituting r = e. It is therefore 
necessary and sufficient for f: M --+ M' to be a morphism that properties 
1 and 2 hold. Property 1 is called additivity and property 2 is called homo­

geneity. A function which is both additive and homogeneous is called 
linear; the morphisms of modules are frequently called linear transforma­
tions (transformation, along with mapping and family, is merely another 
name for function). 

Definition. As a morphism is injective, surjective, or bijective it is called 
respectively a monomorphism, an epimorphism, or an isomorphism. As with 
other structures a morphism of a module M into itself is called an endo­
morphism and an isomorphism of a module into itself is called an 
automorphism. 

EXAMPLES. f:Z x Z--+ Z such that f(r 1, r2 ) = r 1 + r2 is a morphism of 
the Z-modules Z x Z and Z. The verification goes as follows. f( (r 1, r2 ) + 

(s 1, s2 )) = f(r 1 + s1, r2 + s2 ) = r1 + s1 + r2 + s2 = r1 + r2 + s1 + s2 = 
f(r 1, r2 ) + f(s 1, s2 ). f(r(r 1, r2 )) = f(rr 1, rr2 ) = rr 1 + rr2 = r(r 1 + r2 ) = 
rf(r 1, r2 ). Moreover, this f is an epimorphism since for any v E Z, the eo­
domain, there is a (v, 0) E Z x Z such that f(v, 0) = v + 0 = v. This f is 
not, however, a monomorphism because /(2, 1) = /(1, 2). 

Associated with every morphismf:M--+ M' of two R-modules <M,+, 0 
and <M', + ', C) are two distinguished submodules. 

Definition. Kernel f = {xlx EM and f(x) = ('}.Range f = {f(x)lx EM}. 

Since kernel f = f- 1( { ('}) and range f = f(M) we can demonstrate that 
kernel f and range f are submodules by proving this more general result. 
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Theorem. Let f:M--+ M' be a morphism of R-modules <M, +, 0 and 
<M',+',''). Then 

N is a submodule of M implies f(N) is a submodule of M'; 
N' is a submodule of M' implies f- 1(N') is a submodule of M. 

PRooF. If N is a submodule of M then' EN and so f(') E f(N). This proves 
f(N) # 0. Let y1, y2 E f(N). y1 = f(x1), y2 = f(x 2 ) for some x1, x 2 EN. 
Y1 +' Yz = f(x1) +' f(x 2 ) = f(x1 + x2). But x1 + x2 EN since N is a 
submodule. Therefore y1 +' y2 Ef(N). Let rE R, yEf(N). y = f(x) for x EN. 
ry = rf(x) = f(rx) with rx EN. f(N) is a submodule of M'. 

Now assume N' is a submodule of M'. We consider f- 1(N'). Let x1, x 2 E 
f- 1(N'). f(x 1),f(xz) EN'. f(x1) +' f(x 2 ) EN'. f(x1 + Xz) = f(x1) +' f(xz). 
f(x1 + x2 ) EN'. x1 + x 2 E f- 1(N') provingf- 1(N') closed under addition. 
Let x E f- 1(N'), rE R. f(x) EN'. rf(x) EN'. f(rx) EN'. rx E f- 1(N') proving 
f - 1(N') closed under scalar multiplication. ' will belong to f - 1(N') and 
f- 1(N') will be nonempty if we can show f(') EN'. But f(') = f((m = 
OJm = ,, EN'. D 

ExAMPLE. f:?L x 7L--+ 7L such that f(x, y) = x + y is an epimorphism of 
the ?L-modules. Kernel f = {(x, y)lx + y = 0} = {(x, y)iY = -x} = 
{(x, -x)lx E ?L} = {x(l, -l)lx E 7L}. The range off is all of the codomain 
7L since f is an epimorphism. 

We now discuss the inverse function problem. We know that a function 
f: M --+ M' has an inverse function f- 1 :M' --+ M if and only if f is a bijection. 
The question to be settled is whether or not f - 1 is itself a morphism. 

Theorem. If f: M --+ M' is an isomorphism of the modules <M, +, 0 and 
<M', + ', '') then f- 1 :M' --+ M is an isomorphism. 

PROOF. If f: M --+ M' is a bijection then the inverse function f -t: M' --+ M 
exists and also is a bijection. We must merely show that it is amorphism. 
Let y', y" EM'. There exist x', x" EM such that f(x') = y' and f(x") = y". 
f(x' + x") = f(:x') +' f(x") = y' +' y". This shows x' + x" Ef- 1(y' +' y"). 
Thusf- 1(y' +' y") = x' + x" = f- 1(y') + f- 1(y"). 

Now let rE Rand y' EM'. f(x') = y' for some x' EM. ry' = rf(x') = f(rx'). 
Therefore f- 1(ry') = rx' = rf- 1(y'). f- 1 is therefore amorphism. D 

Again we warn of the necessity for distinguishing between the inverse 
function f -l: M' --+ M off: M --+ M' and the inverse image f - 1(B) of some 
subset B of M'. The inverse image is always defined whether f:M--+ M' is a 
bijection or not. The arguments for the inverse function f- 1 :M' --+ M are 
members of M'. The arguments for the inverse image function f- 1 : f'(M') --+ 

9(M) are subsets of M'. 

EXAMPLES. With 7L as a ?L-module, f:?L--+ 7L such that f(x) = 4x defines a 
morphism with kernel f = {0} and range f = {4xlx E 7L} = 47L, a proper 
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submodule of 7L. There is no inverse function f- 1 but the inverse image of 
87L,f - 1(87L), for example, is 27L. 

We define g: ~~~~ ~ ~~~~ such that g(x0 , xl> x 2 , •. . ) = (xl> x2 , x3, ... ). The 
effect of the function on a sequence is to shift values one place to the left 
dropping the first term. One can verify that this function is a morphism of 
the ~-modules of infinite sequences. The kernel of g is {(x0 , 0, 0, ... )lx0 E ~} 
whereas the range is~~~~. This example is interesting because it shows that an 
endomorphism can be an epimorphism without being a monomorphism. 
The inverse function does not exist. 

We now move to the fundamental morphism theorem for modules. 

Theorem. Let (M, +, 0 and (M', +','')be R-modules and f:M ~M' a 
morphism. Then there exist 

an epimorphism qJ: M ~ M jker f 
a monomorphism f': M jker f ~ M' such that f' o qJ = f. 

PRooF. The submodule kernel f of M defines a quotient module Mjker f 
and the surjection qJ:M ~ Mjker f, taking each element x of M into the 
containing coset x + ker f, is a morphism. 

qJ(x + y) = x + y + ker f = x + ker f + y + ker f 
= ({J(X) + qJ(y). 

qJ(rx) = rx + ker f = r(x + ker f) = rqJ(x). 

Likewise, the injection f':Mjker f--+ M' such that f'(x + ker f) = f(x) 
is amorphism. These maps are all defined in Section 1.7; it is their mor­
phism properties that need checking. 

f'(x + ker f + y + ker f) = f'(x + y + ker f) 
= f(x + y) = f(x) + f(y) 
= f'(x + ker f) + f'(y + ker f). 

f'(r(x + ker f)) = f'(rx + ker f) = f(rx) = rf(x) = rf'(x + ker f). The 
reader should also consult the proof in Section 2. 7 of the analogous theorem 
for rings. 0 

Corollary. If f:M ~ M'isanR-modulemorphismthenMjkerfisisomorphic 
with range f. 

EXAMPLES. For the morphism f:?L x 7L ~ 7L such that f(x, y) = x + y we 
can conclude (7L x 7L)/{n(l, -l)ln E 7L} is isomorphic with 7L. 

From f:?L ~ 7L such that f(n) = 4n we can conclude that ?L/{0} is iso­
morphic with 47L. 

From themorphismf:~N ~ ~N such thatf(x0 , x1, •.• ) = (x1, Xz, x3, ... ) 
we conclude ~~'~~/{(x, 0, 0, ... )lx E ~}is isomorphic with~~'~~. 
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6.4 Morphisms 

We can characterize monomorphisms and epimorphisms in terms of 
kernel and range. 

Theorem. Let f:M--. M' be a morphism of R-modules (M,+, 0 and 
(M', + ', ('). Then 

f is a monomorphism if and only if kernel f = {(}; 
f is an epimorphism if and only if range f = M'. 

PROOF. We must show first that injectivity off is equivalent to kernel f 
being trivial. Suppose f to be injective. Let x E kernel f. f(x) = ('. So also 
does f(() = ('. f(x) = f((). x = (. Since ( E kernel f we have kernel f = 
{(}. Conversely, let kernel f = {(}. If f(x) = f(y) then f(x - y) = ('. 

X - yE kernel f. X - y = (. X = y. 
For the second part of the theorem f is a surjection if and only if y E M' 

implies there exists an x E M such that f(x) = y. However this must mean 
f(M) =M'. 0 

We continue our study ofmorphisms with a few special theorems. 

Theorem. Let (M, +, 0 be an R-module and Land N be two submodules so 
that L ~ N. Then MINis isomorphic with (MIL)I(NIL). 

PROOF. The proof of this theorem relies upon the fundamental morphism 
theorem and shows some of the power of this theorem. From MIL to MIN 
we define a function f taking each eo set of M I L into the coset which contains 
it. f:MIL --. MIN such that f(x + L) = x + N. Since L ~ N we have 
x + L ~ x + N. f is an epimorphism. The kernel off is { x + LJf(x + L) = 
N} = {x + LJx + N = N} = {x + Ljx EN} = NIL. By the fundamental 
morphism theorem there exists an isomorphism f': (M I L)I(N I L) --. M I N. o 

Theorem. Let (M, +, 0 be an R-module with submodules L, N. Then 
LI(L n N) is isomorphic with (L + N)IN. 

PROOF. We define f:L--. (L + N)IN such that f(x) = x + N. x + NE 
(L + N)IN for each x EL and f is surjective. N is a submodule ofthe mod­
ule L + N (consult Exercise 8 of Section 6.2). f(x + y) = x + y + N = 

x + N + y + N = f(x) + f(y).f(rx) = rx + N = r(x + N) = rf(x). Kernel 
f = { xJx E L and f(x) = N} = {xJx E L and x + N = N} = { xjx E L 
and x E N} = L n N. The isomorphism follows from an application of the 
fundamental morphism theorem. 0 

QUESTIONS 

1. Let f:M-+ M' be a mapping of Z-modules. Which of these statements are true? 
(A) If f(x + y) = f(x) + f(y) then f is amorphism. 
(B) If f is a morphism and n e ker f then n.l ~ ker f. 
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(C) If f is an epimorphism then f(M) is isomorphic with 7L. 
(D) If f is a monomorphism then f(x) = f(- x) for all x e M. 

(E) None of the statements is true. 

2. Which of these mappings are monomorphisms? 
(A) f:O x 0--+ 0 x 0 such that f(rl> r2 ) = (2r1 - r2 , 4r1 - 2r2 ) where 

Q x 0 is a 7L-module 
(B) f:IR--+ IR such that f(r) = 3r + 2 where IRis a 0-module 
(C) f:O--+ IR such that f(r) = r where 0, IR are 0-modules 
(D) f:IR x IR--+ IR3 such thatf(rl> r2 ) = (r2 , r1o 0), IR-modules. 

(E) None of the mappings is a monomorphism. 

3. Which of the following are true for an endomorphism f? 
(A) kernel f £ range f. 
(B) range f £ domain f. 
(C) kernel!£ kernel(! of). 
(D) range f £ range(! o f). 

(E) None of the statements is true. 

4. Which of the following statements are correct? 
(A) Every epimorphism is additive, homogeneous, and surjective. 
(B) Some injections are not monomorphisms. 
(C) Every bijection is a monomorphism. 
(D) No isomorphism is surjective. 

(E) None of the statements is true. 

5. Given that f:M--+ M' is a morphism of R-modules, which of the following sets 
fail to be submodules. 

(A) /- 1(0 
(B) f(M) 
<C) r 1<M') 
(D) f(C). 

(E) All four of the sets are submodules. 

EXERCISES 

1. Let f: IR2 --+ IR2 such that f(r1, r2 ) = (r1 + 2r2 , 3r1 + 6r2 ). Show that f is an 
IR-module morphism. Show that the kernel off is {t( -2, l)Jt e IR}. 

2. Let f: IR2 --+ IR2 such that f(r1, r2 ) = (r1 + 2r2 , 3r1 - 6r2). Show that f is an 
IR-module morphism. Show that f is a monomorphism by showing kernel f = 

{(0, 0)}. Show that range f = IR2• Conclude that f is an isomorphism. 

3. Let f:M--+ M' be a morphism of R-modules. Show f(O = C'. Show f( -x) = 

- f(x) for all x e M. 

4. Let f: M --+ M' be a function from one R-module to another. Show if f(rx + sy) = 

rf(x) + sf(y) for all r, se R, x, ye M then f is amorphism. Show also the converse. 

5. Let S be a set with precisely one element. Let R be a unitary ring. Show that the 
R-modules Rs and Rare isomorphic. 
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6. Let R be a commutative unitary ring. Argue in favor of RR being an R-module. 
Let tS'(R) be the set of all ring endomorphisms of R. Show that tS'(R) is a submodule 
of the R-module RR. 

7. Let !I! be the IR-submodule of !RN of all infinite sequences with real limits. Let 
.AI be the IR-submodule of !RN of all infinite sequences with limit equal to zero. 
Show that !1!/.AI is isomorphic to IR. 

8. Let M, M' be isomorphic R-modules. Let N be a submodule of M which is iso­
morphic with a submodule N' of M'. Construct an isomorphism from M/N to 
M'/N'. 

9. A member of the quotient module M/N of an R-module M by a submodule N 
we have called a coset or sometimes a linear variety. Let f: M -+ M' be amorphism. 
Show that if a + N is a linear variety of M then f(a + N) is a linear variety of 
M'. Show also that if b + N' is a linear variety of M' then f - 1(b + N') is a linear 
variety of M. [Hint: Do not reprove the first theorem of this section.] 

10. Which of the following are morphisms, monomorphisms, epimorphisms, iso­
morphisms? 
(a) f: IR" -+ 1R such that f(rt. r2, ... , r.) = hi + hi + · · · + ir.i. 
(b) f: IR" -+ IR such that f(r 1, r2, ... , r.) = r1 + r2 + · · · + r •. 
(c) f:IR"-+ 1R such thatf(r~> r2 , ••• , r.) = ri + r~ + · · · + r;. 
(d) f: IR" -+ IR such that f(rh r2, ... , r.) = r1 + r2 + · · · + r. + 2. 
(e) f: !RN+ -+ IR such that f(r1, r2, .. . ) = r1 + r2 + · · ·. 
(f) C[a, b]-+ R such thatf(<p) = J: <p(t)e-• dt where C[a, b] is the space ofreal­

valued continuous functions defined on the closed interval [a, b]. 

11. Let G = 7L + 7Li = {x + yiix, yE 7l.}, i = ..;-::I. G is called the set of Gaussian 
integers. Show that G is a 7l.-module. Find all morphisms f:G-+ G such that 
f(lL) ~ 7L and f(7l.i) ~ 7l.i. 

12. Let M, M' be R-modules. We define a function g:M-+ M' to be an affine mapping 
if and only if there exist bE M' and a morphism f:M-+ M' such that g(x) = 

f(x) + b for all x EM. Now let g be such an affine mapping. Show that if V is a 
linear variety of M then g(V) is a linear variety of M'. Show that if W is a linear 
variety of M then g(V) is a linear variety of M'. Show that if W is a linear variety 
of M' then g- 1(W) is a linear variety of M or the empty set. 

6.5 Products and direct sums 

We discuss the Cartesian product of modules, the direct sum of sub­
modules, and the relationship between these two concepts. 

From two given modules, as with rings, we can construct a new module 
by using the Cartesian product. 

Theorem. If (M',+',(') and (M", +", (") are two given R-modules then 
(M' x M", +, ((', (")) is an R-module with binary operations 

(xb Xz) + (yl, Yz) = (xl +' Yt. Xz +" Yz) 
r(x~> x2 ) = (rx1, rx2 ). 
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PROOF. The exterior multiplication of the Cartesian product is achieved 
by using the exterior multiplication of M' in the first component and the 
exterior multiplication of M" in the second component. The addition of the 
product is commutative and associative which follows from the commu­
tativity and associativity of the addition in each component. 

(x1, x2) + (Yto Y2) = (x1 +' Y1• X2 +" Y2) 

= (Y1 +' x1, Y2 +" x2) 
= (Yto Y2) + (x1, x2). 

(x1, x2) + [(y1, Y2) + (z1, z2)] = (x1, x2) + (Y1 +' Z1, Y2 +" z2) 

= (x1 +' (Y1 +' Z1), X2 +" (Y2 +" z2)) 

= ((x1 +' Y1) +' Zto (x2 +" Y2) +" z2) 
= (x1 +' Y1• X2 +" Y2) + (z1, Z2) 
= [(x1, Y1) + (x2, Y2)] + (z1, z2). 

It is very easy to verify similarly the other laws in the definition ofthe module; 
for example, (rs)(x1, x 2) = ( (rs)x1, (rs)x2) = (r(sx1), r(sx2)) = r(sx1, sx2) = 

r(s(xto x 2) ). D 

EXAMPLE. (ll. x ll.2 , +, (0, 27l.)) is the Cartesian product ofthe ll.-modules 
(ll., +, 0) and (7l.2 , +, 27l.). Some sample calculations are (2, 1 + 27l.) + 
(3, 1 + 27l.) = (5, 27l.) and 4(3, 1 + 27l.) = (12, 27l.). 

The Cartesian product constructs a larger module from two given 
modules. Each of the two given modules is isomorphic to a submodule of 
the Cartesian product: M' x {("} and {0 x M". We now ask a reverse 
question. When is a given module the Cartesian product of two modules? 
Phrased in this manner the question is too restrictive. We introduce a new 
concept, the direct sum, to answer the question and show that the direct 
sum shares properties with the Cartesian product. 

Definition. An R-module (M, +, 0 is the direct sum of two submodules 
M 1 and M 2 if and only if M = M 1 + M 2 and M 1 n M 2 = { 0. If M is 
the direct sum of M 1 and M 2 then we write M = M 1 EB M 2 • 

ExAMPLE. The ll.-module ll.6 is the direct sum of two submodules: {61l., 
2 + 61l., 4 + 61l.} and {61l., 3 + 61l.}. Using the notation 0, I, 2, 3, 4, 5 for 
the six cosets of ll. 6 we have 1l.6 = {0, 2, 4} + {0, 3} because every element 
of 1l.6 can be written in the form x1 + x 2 with x1 E {0, 2, 4} and x 2 E {0, 3}. 
o = o + 0; I = 4 + 3; 2 = 2 + 0; 3 = o + 3; 4 = 4 + 0; 5 = 2 +I 
Furthermore, {0, 2, 4} n {0, 3} = {0}. Thus 1l.6 = {0, 2, 4} EB {0, 3}. 

EXAMPLE. 1l. X 7l. = 7l. X {0} EB {0} X 1l.. 

Another criterion for a module to be a direct sum is contained in this 
theorem. 
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Theorem. An R -module M is the direct sum of two sub modules M 1 and M 2 

if and only if each element of M is uniquely expressible as a sum of an 
element in M 1 and an element in M 2 • 

PRooF. We know, of course, that a module is a sum of M 1 and M 2 (not 
necessarily direct) if and only if every member of the module is expressible 
(not necessarily uniquely) as a sum of an element in M 1 and an element in 
M 2. We have therefore left to show that the directness of the sum is equivalent 
to the uniqueness of the expression. First, suppose there are two expressions 
for some element x EM. x = x1 + x2 and x = y 1 + y2 with x1, y 1 in M 1 
and X2, Y2 in M2. X1 + X2 = Y1 + Y2· X1 - Y1 = Y2 - X2. X1 - Y1 EM 1 
and so does y2 - x 2 , its equal. But it is clear that Y2 - x 2 also belongs to 
M 2. Thus y2 - x 2 belongs to M 1 n M 2. But assuming the sum to be direct 
we have Y2 - x2 = C. y2 = x2. So also does x1 = y1. This proves that if 
the sum is direct then the expression is unique. Conversely, we now suppose 
that the expression is unique. Let x be in M 1 n M 2. x = x + C and x = 

C + x are two sum expressions for x. By uniqueness, x = C and C = x. 
M 1 n M 2 = {C}. D 

We now proceed to compare the Cartesian product with the direct sum. 
By M ~ N we mean M is isomorphic with N. 

Theorem. Let the R-module (M, +, 0 be the direct sum of two submodules 
M 1 and M 2. Then M is isomorphic with M 1 x M 2; i.e., M 1 EB M 2 ~ 
M 1 x M 2 • 

PROOF. To demonstrate that M 1 EB M 2 and M 1 x M 2 are isomorphic we 
construct an isomorphism. Let f: M 1 x M 2 --+ M 1 EB M 2 such that 
f(x 1, x2) = x1 + x 2. First we verify that f is a morphism. f( (x1, x2) + 
(Yt> Y2)) = f(xl + Y1• X2 + Y2) = X1 + Y1 + X2 + Y2 = X1 + X2 + 
Y1 + Y2 = f(x1, x2) + f(y1, Yz). f(r(x1, x2)) = f(rxh rx2) = rx1 + rx2 = 
r(x1 + x2) = rf(x 1, x2). We now verify that f is surjective. Let x EM. 
x = x1 + x2 forsomex1 inM1 andsomex2 inM2.Ifwetakef(x1,x2) = 
x1 + x 2 = x with (x1, x2) in M 1 x M 2 we see that the mapping is a surjec­
tion. To see that the mapping is injective we look at the kernel. Kernel f = 

{(xhx2)ix1 + x2 = 0. Knowing M 1 + M 2 to be a direct sum and com­
paring x1 + x2 = C with C + C = C we conclude x1 = C and x2 = C. Thus 
kernel f = {(C, C)}. D 

In this last theorem M is not the Cartesian product of M 1 and M 2 but 
merely isomorphic with the Cartesian product. The elements ofthe Cartesian 
product must be ordered pairs of elements of M and therefore M is not 
the Cartesian product. 

EXAMPLE. As before, 71.6 = {0, 2, 4} EB {0, 3}. The Cartesian product of 
{0, 2, 4} and {0, 3} is {(0, 0),(0, 3),(2, 0),(2, 1},(4, 0),(4, 3)}. The isomorphism 
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described in the previous theorem, f: {0, 2, 4} X {0, 3} ~ &:. 6 , has the 
following images: 

(0, 0) fvvt 0 + 0 = 0 
(0, 3) fvvt 0 + 3 = 3 
(2, 0) fvvt 2 + 0 = 2 

(2, 3) fvvt 2 + 3 = 5 
(4, 0) fvvt 4 + 0 = 4 
(4, 3) fvvt 4 + 3 = T. 

Since {0, 2, 4} ~ Z3 and {0, 3} ~ Z 2 we assert that &:. 6 ~ Z3 x Z 2 (consult 
Exercise 2). 

We continue with a theorem showing some more of the nature of the 
direct sum. 

Theorem. Let M 1 , M 2 be submodules of an R-module M such that M = 

M 1 EB M 2 . Then M 2 ~ M/M1• 

PRooF. We show the existence of an isomorphism g:M2 ~ M/M1. We 
define g(x2 ) = x 2 + M 1. Each x 2 in M 2 has a uniquely defined coset in 
M/M 1 as its g image. We show g to be a morphism. g(x2 + y2 ) = 
x 2 + Yz + M 1 = x 2 + M 1 + Yz + M 1 = g(x2 ) + g(y2 ). g(rx2 ) = 
rx2 + M 1 = r(x2 + M 1) = rg(x2 ). Kernel g = { x2 lx2 E M 2 and g(x2 ) = 
Md = {x2 lx E M 2 and x 2 + M 1 = Md = {x2 lx2 E M 2 and x 2 E Md = 
M 1 n M 2 = {0. Finally, let x + M 1 E M/M1. x = x1 + x2 for some 
x 1 E M 1, x 2 E M 2 . g(x2 ) = x 2 + M 1 = x 1 + x2 + M 1 = x + M 1. We 
have showed g to be a surjection, an injection and a morphism. 0 

EXAMPLE. As before 7L 6 = {0, 2, 4} E!;l {0, 3}. 7L6/{0, 2, 4} ~ {0, 3} ~ 7L 2 . 

A word of caution is in order. If M 2 = M I M 1 it is not necessarily the 
case that M~ M 1 EB M 2 . For example, &:.4 /{0, 2} ~ Z2 , but ""£.4 is not the 
direct sum of proper submodules. The next theorem pins down this lack of 
a direct converse more precisely. 

Theorem. Let M be an R-module and P a submodule of M. Then there exists 
a submodule N of M such that P EB N = M if and only if there exists a 
morph ism f: M ~ P which is an extension of the identity P ~ P. 

PRooF. First, suppose there is a submodule N such that P EB N = M. 
Every element of x of M can be uniquely expressed as a sum xP + xn with 
xP E P, Xn EN. We define f:P EB N ~ P such that f(xp + xn) = xP" f is 
an epimorphism which is the identity when restricted toP. By way of motiva­
tion we can notice that f is like the projection p1 :P x N ~ P for f is 
really the composite of the natural isomorphism P EB N ~ P x N and 
the projection P x N ~ P. 

Conversely, suppose there exists a morphism f:M ~ P which extends 
the identity. It is then an epimorphism. Since f':Mjker f ~ P is an iso­
morphism we propose to show that M = P + ker f. Given x in M we 
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have x = f(x) + (x - f(x) ),J(x) E P. Since f is the identity on P,J(f(x)) = 
f(x) yielding f(f(x) - x) = ( for all x EM. Thus x - f(x) belongs to 
kernel f. This shows x is the sum of f(x) in P and a member of kernel f. 
M = P + ker f. To show that the sum is direct let x E P n ker f. x E 

impliesf(x) = xandxekernelfimpliesf(x) = (.x =(.M= PEBkerf. 0 

QUESTIONS 

1. If (M', + ', 0 and (M", + ", C") are R-modules then which of the following state­
ments are true? 

(A) M' is a submodule of the Cartesian product M' x M". 
(B) M' is not a submodule of the Cartesian product M' x M" but is isomorphic 

to a submodule of M' x M". 
(C) M' is not, in general, isomorphic to a submodule of M' x M". 
(D) M' is never isomorphic to a submodule of M' x M". 

(E) None is true. 

2. The £:-module £:8 is which of the following direct sums? 
(A) £:2 E9 £:4 
(B) (£:2 E9 £:2) E9 £:2 
(C) £:3 E9 £:3 
(D) ( (£:2 E9 £:2) E9 £:2) E9 £:2 

(E) £:8 is none of the direct sums listed. 

3. If M 1 and M 2 are submodules of an R-module (M, +, 0 then which ofthe following 
are true? 

(A) M 1 E9 M 2 =M implies there exists an epimorphismf:M1 x M2 --+ M. 
(B) M 1 11M2 = {0 implies there exists a monomorphism f:M 1 x M 2 --+ M. 
(C) There exists x E M with two distinct representations in M 1 + M 2 (i.e., x = 

x 1 + x2 = y 1 + y2 with x 1, y 1 E M 1 and x2, y2 E M2 and (x1 #- y1 or 
x2 #- y2 )Jmplies every x in M has two distinct representations in M 1 + M 2 • 

(D) M 1 c;:; M 2 implies M 1 + M 2 #- M. 
(E) None of the statements is true. 

4. Given M= M 1 + M 2 , M 1 and M 2 submodules of an R-module M, the map 
g:M2 --+ M/M1 such thatg(x2 ) = x2 + M 1 

(A) maps each element of M 2 into its containing coset 
(B) is an epimorphism 
(C) is a monomorphism if and only if M 1 11 M 2 = { C} 
(D) is the identity if M 2 c;:; M 1. 

(E) None of the alternatives completes a true sentence. 

EXERCISES 

1. Show that the R-modules R3 and R2 x R are isomorphic. 

2. Show that if M 1, M2, Nh N 2 are all R-modules and M 1 ~ N 1 and M2 ~ N 2 

thenM1 x M2 ~ N 1 x N 2 • 

3. If M and N are R-modules prove that (M X N)/( m X N) ~ M. 
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4. Let R be a unitary ring. Show that R x R is isomorphic (as an R-module) with 
R8 ifS is a set with precisely two members. 

5. Show that R 2 = {(r~> 8)h ER} Et> {(8, r2)h ER} for any unitary ring R. The 
sum, of course, is an R-module direct sum. 

6. Let M 1, M 2 be R-modules with submodules N 1, N 2 respectively. Show that 
(M1 X M2)/(N1 X N2):::::; (M1/N1) X (M2/N2). 

7. Given R-modules M 1, M 2 show that the two projection functions p1 :M1 x M 2 --+ 

M 1 such that p1(x~> x2) = x1 and p2:M1 x M 2 --+ M 2 such that p2(x1, x2) = x 2 

are epimorphisms. 

8. If M 1, M 2 are submodules of an R-module M such that M= M 1 Et> M 2 show 
thatthetwoembeddingmappingsq1:M1 --+ Msuchthatq1(x1) = x1andq2:M2 --+ 

M such that q2(x2) = x 2 are monomorphisms. 

9. Let S, T be disjoint sets and R a unitary ring. Prove that there is an isomorphism 
between the two R-modules R8 x RT and Rsur. 

10. Let N 1 and N 2 be submodules of some given module over a commutative unitary 
ring R. For any rE R, show that rN1 is also a submodule of M. Show that r(N1 Et> 
N2) = rN 1 Et> rN2 for each rE R. 

11. Let M be a module over a commutative unitary ring R. Let rE R. Show that the 
function r·:M--+ M such that r·(x) = rx is an endomorphism of M. r·:M--+ M 
is, of course, simply exterior multiplication by the ring element r. 

12. Let M be a module over a commutative unitary ring R. Let r E R. Denote the 
kernel of r·:M--+ M by M,. Show that if M= N 1 Et> N 2 then (N1 Et> N2), = 

(N 1), Et> (N z),. 

13. Let M and M' be modules over an integral domain R. An element x in M has a 
nontrivial annihilator r E R if and only if r # 8 and rx = (. Show that if M and 
M' both have elements with nontrivial annihilators then the Cartesian product 
module M x M' also has an element with a nontrivial annihilator. 

6.6 Families and matrices 

In this section we develop family notation and discuss multiplication of 
matrices and the algebra of square matrices. 

We introduce family notation to have a more unified view of matrices, 
sequences, and other functions; the family notation gives us an alternate 
way of writing functions. We also have in mind some notational problems 
with linear combinations of vectors which will occur in Section 6.7. The 
family notation will allow us to handle these accurately. 

'1 We have earlier seen in Section 6.1 that various function spaces form 
/modules. we now talk about these spaces with theJamily notation. 

Definition. A family (xdi E I) is a function with domain I and value X; for 
each i E I. I is called the index set of the family. (xdi E I) is also frequently 
written (x;);EI· 
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EXAMPLES. 

(x;ji E N +)is the sequence (xb x2 , x 3 , ... ). 

(x;ji E 3) is the triple (x 1, x2 , x 3 ). 

(x;ji E IR) is the function f: IR -> IR such that f(i) = X;. 
(1/nln E N +) is the sequence (1, t, t, ... ). 
(1/n2 ln E 3) is the triple (1, ±, ~). 
(n2 ln E IR) is the function f: IR -> IR such that f(n) = n2 . 

One should distinguish carefully between the family (x;ji E I) and the 
range of the family, {x;ji E 1}. The first is the function itself and the second 
is the set of all values of the function. ( ( -1tln EN) is the sequence (1, -1, 
1, -1, ... ) whereas {( -1)nln EN} is the set {1, -1}. 

We now list some of the collections of families we have considered. For a 
unitary ring Rand a set I we have the R-module of all functions from I toR, 

R1 = {(x;ji E I)lx; ER}. 

This R-module can be made up from sequences, n-ples, or m-rowed, n­

columned matrices. 

RN = {(x;li E N)lx; ER}. 

Rii = {(x;ji E n)lx; ER} = {(xl, Xz, ... 'Xn)lx; ER}. 

Rmxfi = {(xijl(i,j)Em X nlxijER}. 

{(
Xu X12 ::: X1n) } 
Xzt Xzz Xzn 

= . . . xii ER , m, nE N. 

Xml Xmz · · · Xmn 

We also find the family notation useful for families of sets: 

(A;ji E I), (A;ji E N), (A;ji E 3). 

We can define for such families of sets the union and the intersection. 
U<A;\i E I) = uiEl A; = U{xlx E A; for some i E I} = U{A;ji E 1}. 
n(A;Ii E I) = niEl A; = n {xlx EA; for all i E I} = n {A;Ii E 1}. For the 
intersection we must assume I =I 0. 

The R-module of m-rowed, n-columned matrices with entries in R, R"'xn, 
has its operations expressed as follows in family notation: (xiil(i,j) E 
m X fi) + (yijl(i, j) E m X fi) = (xij + Yiil(i, j) m X fi). r(xijl(i, j) E m X fi) = 
(rx;il(i,j) Em x fi). With the number of rows and columns understood 
from context one frequently abbreviates to (x;) + (yii) = (xii + yii) and 
r(x;) = (rxii). 

EXAMPLES. (1, -3, 4) + (2, 7, 3) = (3, 4, 7). 2(1, 2) = (2, 4). (1/nln E N +) + 
((rljln E N') ~ ((n - 1)/n'ln E N'). (2/(m + nJI(m, n) E j X 2) ~ 
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We propose now to introduce another operation on matrices, called 
multiplication. We precede the formal definition with a few examples of 
multiplication. 

( 1 2 6) (- ~) = ((1)(1) + (2)( -1) + (6)(2)) = (11) 
0 4 7 2 (0)(1) + (4)( -1) + (7)(2) 10 . 

G ~) (~ ~) = G ~). (~ ~) G ~) = G ~). 
Definition. We let R be a unitary ring. For (xii)eRmxn and (Yik)eR"xP, 

m, n, p e 1\J, we define 

n 

(xii)(Yik) = (u;k) where u;k = L XiiYik· 
j= 1 

In order for the product to be defined the number of columns of the 
first matrix must be the same as the number of rows of the second matrix. 
The entry in row p and column q of the product is computed using row p 
of the first matrix and column q of the second matrix. Two examples given 
before the definition show tha~ matrix multiplication is noncommutative. 
Some properties of matrix multiplication are now listed. 

Theorem. Let R be a unitary ring. Matrix multiplication is associative. Matrix 
multiplication is left and right distributive with respect to matrix addition. 
If R is a commutative ring then 

for all r e R and matrices of the appropriate size with entries in R. 

PRooF. We show the associativity and leave the rest to the reader. 

(xii)[(Yik)(zkz)J = (xii) (t1 Yikzkz) = (t1 xii kt1 YikZkz) 

= (J1 kt1 xii(Yikzkz)) = Ct it1 (xiiYik)Zkz) 

= ( .f XiiYik) (zkz) = [(xii)(Yik)](zkz). D 
j= 1 

In order to have a structure closed under matrix multiplication it is 
necessary that the matrices be square: the number of rows and the number 
of columns of the matrices are equal. We now introduce a new name for a 
structure describing the properties of square matrices. 
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Definition. Let (M, +, 0 be a module over a commutative unitary ring 
(R, +, ·, (}, v). Let there also be given an associative product M x M--+ 
M. Furthermore, let 

x(y + z) = xy + xz for all x, y, z E M 
(y + z)x = yx + zx for all x, y, z EM 

r(xy) = (rx)y = x(ry) for all r E R, x, y E M. 

Then we call (M, +, ·, 0 an R-algebra over the commutative unitary 
ring (R, +, ·, (}, v). 

It immediately follows that 

Theorem. For any unitary commutative ring (R, +, ·, (}, v), the R-module 
of square matrices R" x" is an R-algebra. 

Definition. If every element of an R-algebra (M, +, ·, 0 except ' has a 
multiplicative inverse then M is called a division algebra. 

There are fascinating results that the only division algebras over the 
ring of real numbers consist of the real numbers themselves, the complex 
numbers, and an algebra called the quaternions. If one drops the require­
ment that the multiplication be associative then there is one more called the 
Cayley algebra. These results are beyond the scope of this book. 

QUESTIONS 

1. Which of the following statements are true? 
(A) Range(x;li E I) = {x;li E I}. 
(B) Domain(x;ji E I) = I. 
(C) X; = xi and i #- j; i, j E I imply the family (x;li E I) is not an injection. 
(D) Codomain(x;ji E I) = I. 

(E) None of the statements is true. 

2. Which of the following statements are true? 
(A) (n2 ln E 1\1) £ (n2 ln E 0). 
(B) Index(n2ln E 1\1) £ 0. 
(C) n<Adi E 1\1) £ U<Adi E 1\1). 
(D) U<Adi E 1\1) = U range(A;ji e,i\1). 

(E) None of the statements is true. 

3. Which of these statements are true if m #- n? 
(A) omxn is a 0-module. 
(B) om X. is a 0-vector space. 
(C) om X n is a 0-algebra. 
(D) omxn is a 0-division algebra. 

(E) None of the statements is true. 
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4. Which of these statements are true of the complex numbers, C? (Cf. Section 2.5, 
Exercise 15.) 

(A) C is an IR-module. 
(B) C is an IR-vector space. 
(C) C is an IR-algebra. 
(D) C is an IR-division algebra. 

(E) None of the statements is true. 

5. Which of these statements are true? R is a unitary commutative ring. 
(A) Rnxn is a unitary algebra over R. 
(B) Rn x n is not a division algebra over R if n > 1. 
(C) Rnxn is a division algebra over R if n = 1 and R is a field. 
(D) Rnxn is a noncommutative algebra over R ifn > 1. 

(E) None of the statements is true. 

EXERCISES 

1. Compute these products: 

(I 0 2) (; 

(2 6 3) 
(x y z) 5 0 4 . 

4 2 1 

2. Show that matrix multiplication is left distributive with respect to matrix addition. 

3. Show that both of the following matrix equations are equivalent to the same 
simultaneous linear equations. 

( 2 6 3) 
(x y z) -1 0 -2 = (7 1 2). 

4 2 1 

4. Let O;i be the Kronecker delta symbol: oii = 1 if i = j and O;i = 0 if i #- j. Let R 
be a commutative unitary ring. For a matrix (xiil(i, j) Em x n) with entries in 
R show that (bh;vi(h, i) Em x m) is a left neutral element of multiplication and 
(oikvl(j, k) En x n) is a right neutral element of multiplication. For example, 

(~ ~ ~)(~ ~ ~) ~ (~ ~ ~)· 
5. Find in Q 2 x 2 the multiplicative inverse ofthe matrix G ~). 
6. Let R be a unitary ring and I be an infinite set. Define M = {(x;ji E J)!x; ER and 

X; = (}for all except for a finite number of i}. Show that M is a submodule of the 
R-module R1• 
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7. Show that R[X] is an R-algebra for any commutative unitary ring R. 

8. FindA2 - lOA+ 24whenA = G !)andb = (~ 0) 1 . 

9. Find (A - 6b)(A - 4b) when A = G !) . 

10. A generalization of the Cartesian product of two modules is the Cartesian product 
of any family of R-modules, (M;ji E 1). X(M;ji E J) = Xiei Mi = {(x;ji E J)lxi E Mi 
for all i E I}. With an addition, (xili E I) + (Yili E I) = (xi + y;ji E 1), and an ex­
terior multiplication, r(x;ji E I) = (rx;ji E 1), the Cartesian product of R-modules 
is itself an R-module. Verify this result. An important submodule of X(M;ji E I) 
is Xw (M;ji E 1), the weak Cartesian product, consisting of all families which have 
the value 'except for a finite number of values. Xw (M;ji E I) = { (xili E J)lxi E Mi 
and xi= ,, except for a finite number of values}. Show that Xw (M;ji E J) is a 
submodule of X (M;ji E I). 

11. The direct sum of a family (M;ji E I) of submodules of an R-module M is defined 
as follows: M= ffi(M;ji E I) if and only if M= Iw (Mili E I)= D'e1 Mi and 
Min [Ui"iM;] = {0. Show that ffi(M;jiEJ)and Xw(MdiEJ)areisomorphic. 

12. Given a matrix A = (Aiil(i, j) E m x n) with m rows and n columns, the matrix 
obtained from this given matrix by interchanging rows for columns and columns 
for rows is called the transpose of A and is written A*. A* = (Aiil(i,j) Em x n)* = 

(B1,1(j, i) E"' m) Mth B1, ~ A;;. Fo< arunplo, (: ! !)" ~ (~ !)-Show that 

(A+ B)*= A*+ B*;(AB)* = B*A*. 

6.7 Bases 

In this section we discuss families of vectors which are linearly inde­
pendent, which generate submodules and which are bases. We also give a 
function space model for a module with a basis. 

A linear combination of vectors is a finite sum of multiples of the vectors; 
for example, 7(1, 3, - 5) + 2(1, 4, 2) - 3(2, 0, 4) is a linear combination of 
the vectors (1, 3, - 5), (1, 4, 2), (2, 0, 4). For a given family of vectors 
( (1, 3, - 5), (1, 4, 2), (2, 0, 4)) there are many linear combinations 

r1(1,3, -5) + rz(1,4,2) + r3(2,0,4) 

depending upon which ring scalars r1, r2 , r3 are chosen. We can form linear 
combinations also from infinite families provided we use only a finite number 
of vectors in any one sum. 

Definition. A linear combination of a family (x;ji E I) of vectors or elements 
of an R-module <M, +, 0 is a sum L7e1 r;X; in which r; ER and all but a 
finite number of the coefficients r; are zero. 
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It will be understood that if r; = ()then the term r;X; will not appear in 
the sum. If all r; are zero then the sum is taken by definition to be (. In any 
sum there are only a finite number of nonzero terms and therefore the sum 
is finite and well defined. This understanding for sums of infinite families 
will save us complication of notation. We have included the superscript w 
on the sum to remind us that the sum is finite and all but a finite number of 
the terms are zero. The symbol stands for the word weak and the sum is 
called a weak sum. 

ExAMPLE. Let e1 = (1, 0, 0, ... ), e2 = (0, 1, 0, 0, ... ), e3 = (0, 0, 1, 0, ... ), .... 
(ej/j E N +) is an infinite family of infinite sequences. Some linear combina­
tions are, for example, 6(0, 1,0,0, ... )+3(0,0, 1,0,0, ... )-2(0,0,0,0, 1,0, ... ) 
and 2(1, 0, 0, ... ) + 4(0, 0, 0, 0, 0, 0, 0, 1, 0, ... ). A linear combination of the 
family (e;jiE N+), LJEN+ rjej, always has all save a finite number of terms 
equal to zero; rj = () for all but a finite number of j E N +. 

We can and do consider the set of all linear combinations of a given 
family of vectors (x;ji E I) of a module M 

This set is a submodule of M. 

Theorem. Let (M, +, 0 be an R-module and (x;ji E I) be a family of vectors 
in M. Then the set of all linear combinations of the given family is a sub­
module of M and is the submodule generated by the set {x;ji E I}. 

PROOF. The choice r; = () for all i E I produces the linear combination 
LiEI 8x; = (. The sum of two linear combinations Li'E1 r;x; and LiEI s;x; 
is the vector LiEI (r; + s;)x;, another linear combination. If s E R and 
Li'EI r;x; is a linear combination then so also is s(Li'EI r;x;) = LiEI (sr;)x;. 
Thus the set of linear combinations is a submodule of M. Since one possible 
choice of scalars is rk = v and rj = () for all j ¥- k we must have xk in the 
submodule for every k E J. The submodule then contains all vectors in the 
given family. On the other hand, if any submodule of M contains the vectors 
{x;li E I} it must contain every linear combination of those vectors. The 
set of linear combinations is { x;ji E I}. D 

We are then led to this natural definition. 

Definition. We define the submodule generated by a family (x;li E I) to be 
the submodule generated by the range of the family: {x;ji E I}. 

We note that the use of families permits repetitions of a vector while in a 
set there can be no repetitions of vectors. This is to say, in a given set a vector 
cannot belong twice. It is either a member of a set or it is not a member of 
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the set. On the other hand, a family may have the same value for several 
different arguments. The question of repeated vectors becomes important 
when we discuss linear independence. 

Definition. A family (xili E J) of vectors in an R-module M is linearly de­
pendent if and only if there exists a family of scalars (rdr E I) in R, not 
all zero, such that Liei rixi = C. It is equivalent that a family is linearly 
independent (not linearly dependent) if and only if for every family of 
scalars (rdi E J) in R, Liei rixi = C implies ri = e for all i E J. 

EXAMPLES. In ~3, ( (1, 1, 0), (0, 1, 0), (0, 1, 1)) is a linearly independent 
family because r1(1, 1, 0) + r 2(0, 1, 0) + r3(0, 1, 1) = (0, 0, 0) implies 

(r 1, r1 + r2 , r3 ) = (0, 0, 0). 

This implies r1 = 0, r1 + r2 = 0, r3 = 0 which implies r1 = 0, r2 = 0, 
r 3 = 0. 

lnRN+,(eiV E N+)isalinearlyindependentfamily. Suppose Liei riei =C. 
All but a finite number of ri = e. Let ri,, ri2 , ••• , rik be the finite number of 
coefficients not known to be zero. ri,ei, + rheh + · · · + rikeik = (e, e, . .. ). 
Since ei! has a v in place number i and elsewhere zero we get ri, = e. Sim­
ilarly, ri2 = e, ... , rik = e. Hence all ri = e. This establishes the linear 
independence. 

An example of a dependent family is ( (1, 2), (3, 4), ( -1, 5)) in ~2• Assuming 
r1(1, 2) + r2(3, 4) + r3( -1, 5) = (0, 0) in ~2 yields (r 1 + 3r2 - r3 , 2r1 + 
4r2 + 5r3} = (0, 0). This yields r1 + 3r2 - r3 = 0 and 2r1 + 4r2 + 5r3 = 
0. If we can prove r 1, r 2 , r3 must all be zero then the family is linearly inde­
pendent. On the other hand, if we can find nonzero solutions for rl> r 2 , r3 

then the family is linearly dependent. Leaving all details to the reader we 
simply note one nonzero solution is r1 = - 1{, r2 = t, r3 = 1. 

- 1{(1, 2) + t(3, 4) + (1)( -1, 5) = (0, 0). 

ExAMPLE. We now return to and examine the example ~0 of directed line 
segments emanating from the origin for the intuitive meaning of linear 
independence. ~0 is the example discussed in Section 6.2. We offer in this 
discussion only intuitive geometrical arguments; our goal here is an intuitive 
one and the discussion is not meant to be part of the logical structure of 
the section' 

A family of a single vector is linearly independent if and only if the vector 
is not the zero vector 00. This is true because multiplying any nonzero arrow 
by a nonzero scalar produces an arrow of nonzero length. Two distinct 
nonzero arrows are linearly independent if and only if they do not terminate 
on the same line. This is true because they terminate on the same line if 
and only if their coordinates (projections on the axes) are proportional. 
oa = rOb for some nonzero rE~- This is equivalent to (1)0Q - (r)Ob = 00 
and linear dependence (see Figure 6.9). 
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A family of three distinct nonzero vectors (arrows) is linearly independent 
if and only if the three directed line segments are not contained in the same 
plane. First assume the three arrows are dependent. rOa + sOb + iOC = 00 
with at least one of the numbers r, s, t being nonzero. For convenience, we 
assume it is the t #- 0. Then OC = (- rjt)OQ + (- sjt)Ob. Multiples of Oii lie 
on the line containing Oa; multiples of Ob lie on the line containing Ob. Sums 
ofoa and Ob or multiples ofoa and multiples of Ob lie in the plane determined 
by 0, a, and b. OC lies in the plane determined by 0, a, and b (see Figure 6.10). 

Conversely, assume OC lies in the plane of Oa and Ob. Construct in this 
plane parallels through c to Ob and to oa. (We assume Ob and Oa are not 
themselves collinear for in that case obviously the three arrows are linearly 
dependent.) The parallels intersect the lines through Oii and through Ob 
respectively at a' and b'. Ob' is a multiple of Ob, say, tOb, and Oii' is a multiple 
ofOa, say soa. We then have OC = Oa' + Ob' = sOli + tab. This immediately 
yields linear dependence (see Figure 6.11). 

Figure 6.11 

As a final part of this intuitive example we show how any four vectors 
are linearly dependent. Let Oa, Ob, Oc, Od be any four distinct arrows, no 
two lying in the same line and no three lying in the same plane. By what we 
have argued earlier we now need consider only this most general situation. 
Through d construct a line parallel to the line of OC. Let this line intersect 
the plane Oab in d'. Parallel to the plane of 0, a, and b construct a plane 
through d. Let c' be the intersection of this plane with the line containing OC. 
{)d = OC' + Od'. Oc' = tOC for some t E IR. Od' = rOa + sOb for some r, s E IR. 
Thus Od = rOa + sOb + tOC (see Figure 6.12). 

Now we prove a theorem about linear independence. 

Theorem. Let (M, +, 0 be an R-module. Let (xdi E I) be a family of M 
and let J s;;; I. If the family (xdi E I) is linearly independent then the sub-
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Figure 6.12 

family (x;ji e J) is also linearly independent. If the subfamily (x;ji e J) is 
linearly dependent then the entire family (x;ji e I) is linearly dependent. 

PRooF. The two statements to be proved are equivalent. We prove the 
second. Suppose there exist scalars (r;ji e J), not all zero, so that Li"eJ rixi = 
C. l:r:.r-J Oxi = C. l:i:, 1 rixi + l:r:.r-J Oxi = C. Thus (xili E /) is linearly 
dependent. D 

For some similar theorems we refer the reader to Exercises 20 and 21. 

Definition. A family (x;ji e /) of an R-module M which is both linearly 
independent and generates M is a basis for M. One also calls the set 
{xdi e I} a basis as well as the family (xdi e J). 

EXAMPLES. A basis for lffi3 is ( (1, 0, 0), (0, 1, 0), (0, 0, 1) ). Another basis for 
!ffi3 is ( (1, 1,0), (0, 1,0), (0, 1, 1) ). A basis for lffi[X] is the family(1,X,X2,X3, .•• ). 

A basis for Q as a Q-module consists of any nonzero element. However, 
a basis for Q as a £:-module does not exist. In order for a set to generate 
Q it must generate (at least) all fractions of the form 1/2", n = 1, 2, 3, .... 
No multiple or linear combination of 1/2m will produce 1/2m+ 1, yet 1/2m 
and 1/2m+ 1 are linearly dependent. Hence it is not possible to find a linearly 
independent family from Q which generat<;s Q. 

No finite nontrivial commutative group ( G, +, 0 conceived of as a 
£:-module can have a basis. For, if x e G and x =F C then nx = C if n = 
crd G (the number of elements in the set G). This result is proved in the chapter 
on groups. We actually can give a brief argument here to establish that 
some multiple of x must be zero. If all multiples of x were distinct then the 
group would be infinite, a contradiction. There must be, therefore, two 
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distinct multiples of x which are equal, say, mx = px. Then (m - p)x = ( 

and m - p =1- 0. Thus every singleton subset of G is linearly dependent. 
Any larger family must be linearly dependent also. The only linearly inde­
pendent family is 0. But this cannot generate a group of two or more 
elements. 

We now move towards proving that every module with a basis is iso­
morphic to a function space. 

Definition. A module with a basis is called a free module. 

We again turn to that submodule of R1 consisting of all functions which 
have all but a finite number of values zero. (R1 )w = {fjf:I--+ R andf(i) = () 

for all but a finite number of i} = {(x;ji E I)jxi ER and xi = ()for all except 
a finite number of i in I}. 

Theorem. Let R be a unitary ring and I an arbitrary set. Then (R1 )w is a 
free module. 

PROOF. The basis for (R1 )w is simply the family (e;ji E I) we have considered 
before. ei: I --+ R such that ei(n) = () if n =1- i and = v if n = i. We begin by 
proving the family to be linearly independent. Suppose Li'e 1 riei = z. 

Lw riei(n) = z(n) = () for any n E J. 
iel 

i=Fn 

Lw ri() + r n = () 
i=Fn 

r" = () for any nE J. 

To show that (e;ji E J) generates (R1 )w let f E (R1)w. f(n) = () for all save a 
finite number of nE J. The sum Ltei f(i)ei is a finite linear combination 
in (R1t. But 

= Lw f(i)() + f(n)v 
i=Fn 

= f(n) for each n E I. 

Hence, f = Lie~ f(i)ei. 0 

ExAMPLES. In these examples we choose several different index sets I, look 
at the module (R1)w, and see what is the basis (e;ji E I). If I = 3 then (~3 )w = 
~3 = {(r~> r2 , r3 )jr~> r2 , r3 E ~}. e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1). 
If I = N+ then (~ 111 +)w = {(r1, r2 , r3 , ••• )jri E ~for all i E I and all but a 
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finite number of r; = 0}. e1 = (1, 0, 0, ... ), e2 = (0, 1, 0, 0, ... ), e3 = 
(0, 0, 1, 0, 0, ... ), etc. 

Definition. The basis (e;ji E I) for the function space (R1)w such that e; :J -+ R 
such that 

·( ) { = () if n =F i 
e, n "f . =v tn=z 

we call the standard basis for the space. 

We shall defer until the next section showing that every free module is 
isomorphic to a function space module of the form (R1 )w. The theorem falls 
naturally into the material of the next section and serves to illustrate that 
material. 

QUESTIONS 

1. Which of the following completes a true sentence? A family (x;li E I) of a module 
M is linearly independent if and only if 

(A) there exist scalars (r;li E I) such that Ll"er r;X; = C 
(B) for all ring elements (r;ji E I) we have Ll"er r;X; = C 
(C) all scalars are zero (r; = (} for all i E I) implies Ll"er r;X; = C 
(D) there are no scalars (r;ji E I) such that Ll"er r;X; = (. 

(E) None of the alternatives is true. 

2. Which ofthese are true? 
(A) If a subfamily (x;ji E J) of a family (x;ji E I), J £;; I, is linearly independent 

then the entire family is linearly independent. 
(B) A linearly dependent family contains at least one value. 
(C) Every family contains at least one linearly independent subfamily. 
(D) Every linearly dependent family contains a finite linearly dependent sub­

family. 
(E) None of the sentences is true. 

3. Which of these statements are true? 
(A) If (x;li E J) is a subfamily of the family (x;ji E I), J £;; I, then the submodule 

[(x;li E J)] generated by (x;li E J) is included in the submodule [(x;ji E I)] 
generated by (x;ji E I). 

(B) If (x;ji E I) is a nonempty family (I =F 0) then [(x;ji E I)] =F {0. 
(C) If J is a proper subset of I and [(x;li E I)] = [(x;ji E J)] then (x;li E I) is a 

linearly dependent family. 
(D) Every linearly independent family (x;li E I) has a finite subfamily. 

(E) None of the statements is true. 

4. Which of these statements are true? 
(A) For any unitary ring R, R is a freeR-module. 
(B) IfS is any subring of R, a unitary ring, then S is an R-module. 
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(C) O[X] is a free £:-module. 
(D) Z[X] is a free £:-module. 

(E) None of the statements is true. 

5. LetS be a subset of a K-vector space M. 
(A) [[S]] = [S]. 
(B) [S] = fD=l r;x;h •... , r. E K; x 1, .•. , x. EM} whenever S is nonempty. 
(C) [S] = M implies S is a basis of M. 
(D) [S] = {NIN is a subspace of M and Ss;; N}. 

(E) None of the statements is true. 

EXERCISES 

1. Prove that the family ( (1, 1, 0), (1, 0, 1), (0, 1, 1)) is a basis for the IR-module IR3• 

2. Prove that the family ( (1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1)) is a linearly independent 
family of the £:-module 1:4 . Prove that the family is not a basis for 1:4 . 

3. Prove that ( (1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1), (1, 0, 0, 1)) is not a basis for the 
£:-module 1:4• 

4. Prove that ( (1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1), (0, 0, 0, 1)) is a basis for the £:­
module 1:4 • 

5. Prove that ( (2, 2, 0, 0), (0, 2, 2, 0), (0, 0, 2, 2), (0, 0, 0, 2)) is a basis for the 0-
module 0 4 but not for the £:-module 1:4• 

6. Prove that the Z -module Z has a basis. 

7. Prove that in the £:-module 1:6 there are no linearly independent families except 
the empty one and therefore 1:6 has no basis. 

8. Let 

{
= 1 if x = i or x = i + 1 

d;(x) . 
= 0 tf x '# i and x '# i + 1 for all x E 1\1. 

Does (d;ji E 1\1) generate the £:-module (ZN)w? Is the family linearly independent? 

9. Does the £:-module 1:4 have a basis? 

10. Let S be the set of all polynomials with real coefficients with degree less than or 
equal to three and also the zero polynomial. Show that {X - 1, X 2 + 1, 2} is a 
linearly independent set. Adjoin one more polynomial to the set to produce a 
basis. 

11. Is the family ( (2, 1, 0), (4, 2, 1), (3, 3, 0)) linearly independent in the £:-module 1:3 ? 
Does it generate 1:3 ? Is it a basis? 

12. If any family (x;ji E I) in an R-module M is linearly dependent then there exists 
a finite subfamily of (x;li E I) which is linearly dependent. Prove. 

13. If (u 1, u2 , ••• , u.), n ~ 3, is a basis for an R-module M which of the following 
are also bases? 
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(c) (u 1 + u2 , u2 + u3 , u3 + u4 , ... , u.- 1 + u., u. + u1) 

In case (c) is the family a basis if R is a field (M is a vector space)? 

14. Prove that a family (x;li E 1) of and R-module M is linearly independent if and 
only if every permutation of the family is also linearly independent. 

15. Let (x;ji E 1) be a given family in an R-module M. Suppose there exists in M a 
vector a such that a = Ll"er r;X; and a = Ll"er S;X; with (r;ji E I) =f. (s;ji E 1). Prove 
that the family is linearly dependent. 

16. We have seen that (e;ji E ~'>!+)is a basis for (RN+)w and have called it the standard 
basis. Prove that (e;ji E N +) fails to be a basis for jRN+. 

17. Let the family (x;li E 1) generate the module M. Suppose each element X;, i E 1, 
can be expressed as a linear combination of the family (Yilj E J). Show that M 
is generated by (yijj E J). 

18. Let (x1, x 2 , ••• , x.) be a finite basis for the R-module M. Prove M = [x1] Et> 
[ x2] Et> · · · Et> [ x.] (cf. Section 6.6, Exercise 11). 

19. Let (x;li E I) be a basis for the R-module M. Prove M= ffi;er [x;]. 

20. Show that if any family (x;ji E 1) of an R-module M has two values identical (say, 
xi = xk for j =f. k) then the family is linearly dependent. 

21. Show that if any value of the family (x;li E 1) is zero (say, xk = C for some k E I) 
then the family is linearly dependent in the R-module M. 

6.8 The coordinate morphism 

We define coordinates, the coordinate morphism and use this function 
to characterize R-modules in terms of function spaces. 

We begin with the definition of coordinate morphism. 

Definition. Given a family (xdi E /) of vectors in an R-module M we define 
the coordinate morphism to be the mapping 

L:(R1t-+ M such that L(rili E /) = Lw rixi. 
iel 

Each value of the coordinate morphism is a linear combination of the 
given family (xdi E /). Each argument is the family of coefficients, scalars, 
which appear in the linear combination yielding the value of the function. 
Since we have showed in the last section that (R1t is an R-module and M 
is given to be an R-module then we have a map from one R-module to 
another R-module. The map L depends, of course, upon which given family 
(xili E /)is used to compute the linear combinations. In cases where several 
families are used to define coordinate morphisms we shall use subscripts 
to distinguish between the two morphisms: a family (xdi E /) defines 
Lx(rdi E /) = Lier rixi, the family (Yili E /) defines Ly(rdi E /) = Lie I riYi· 
The families might also differ in their index sets. 
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But we have not yet justified the use of the word morph ism. 

Theorem. Given a family (x;i E I) of vectors or elements in an R-module M 
the coordinate mapping L:(R1 )w ~M such that L(rdi E I) = Li'er r;X; is 
amorphism. 

PROOF. L( (r;ji E I) + (s;ji E I)) = L(r; + s;ji E I) = Li'er (r; + sJx; = 

L/':;r r;X; + Lie I S;X; = L(r;ji E I) + L(s;ji E I). L(s(r;ji E I)) = L(sr;ji E I) = 

Li'er (sr;)X; = s(Li'er r;X;) = sL(r;ji E I). D 

EXAMPLES. The family ( (1, 0, 0), (0, 1, 0), (0, 0, 1)) defines a morphism 

L:(~3t ~ ~3 such that L(r1o r2 , r3 ) = r1(1, 0, 0) + r2 (0, 1, 0) + r3 (0, 0, 1). 

The family ( (1, 1, 0), (1, 0, 1), (0, 1, 1)) defines another coordinate mor­
phism L(~3t ~ ~3 such that L(r1, r 2 , r3 ) = r 1(1, 1, 0) + r2 (1, 0, 1) + 
r3 (0, 1, 1). It is a different example from the first. 

The family (e;li EN+) defines amorphism L:(~""+)w ~ ~""+ such that 

L(r;ji EN+)= LieN+ r;e;. In the family of coefficients (r;ji EN+) all save a 
finite number of values must be zero. 

We now wish to move on to understand better the properties of the 
coordinate morphism. That the map L:(R1 )w ~M is a surjection means 

that for every x EM there exists a family of coefficients (r;ji E I) such that 
L(r;li E I) = x. The mapping L:(R1t ~M is an injection if and only if 
L(r;ji E I) = L(s;ji E I) implies (r;ji E I) = (s;ji E I). We move from these 
facts to a theorem. 

Theorem. Let M be a module over a unitary ring R. The family (x;ji E I) is 
linearly independent if and only if the associated coordinate morphism L is 
a monomorphism. The family (x;ji E I) generates M if and only if the 
associated coordinate morphism L is an epimorphism. 

PROOF. (x;ji E I) is linearly independent if and only if Li'er r;X; = C implies 
(r;ji E I) = (Oii E I) if and only if L(r;li E I) = C implies (r;ji E I) = (Oii E I) 
if and only if kernel L = {(Oii E I)} if and only if L is a monomorphism. 
(x;ji E I) generates M if and only if x EM implies Li'er r;x; = x for some 
(r;ji E I) in (R1)"' if and only if x EM implies L(r;li E I) = x for some 

(r;ji E I) in (R1 )w if and only if L is an epimorphism. D 

Corollary. The family (x;ji E I) is a basis for M if and only if the coordinate 
morphism L:(R1 )w ~M is an isomorphism. 

Corollary. Every free R-module M is isomorphic to (R1 )w for some set I. 
A module isomorphic to some function space (R1 )w is free. 

PRooF. If M is a free R-module then there exists a basis (x;ji E I). The 
coordinate morphism is an isomorphism between (R1t and M. On the 
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other hand, if (R1 )w is isomorphic to M then the family of images of the 
standard basis (edi e I) in (R1 )w is a basis in M. 

We now investigate the relationships among morphism, generation, and 
linear independence, and how the properties of generation and linear 
independence are preserved by morphisms. 

Theorem. Let f:M-+ M' be an epimorphism between R-modules (M, +, 0 
and (M', +',(').Then: 

(a) (x;ji E I) generates M implies (f(xi)ii E I) generates M'. 
(b) If (y;ji e I) is a linearly independent family of M' then there exists a 

linearly independent family (x;ji E I) of M such that Yi = f(xi) for 
all i e I. 

Let f:M-+ M' be a monomorphism between R-modules (M, +, 0 and 
(M',+',('). Then: 

(a) If (xili E I) is a linearly independent family of M then (f(xi)ji e I) is a 
linearly independent family of M'. 

(b) If (x;ji e I) is a family of M such that (f(xi)ji E I) generates M' then 
(x;ji e I) generates M. 

PROOF. We offer a proof of part (a) of the second statement We leave the 
the other parts to the reader. Let f:M-+ M' be a monomorphism and 
(xdi e I) a linearly independent family of M. We must show that (f(xi)ji e I) 
is a linearly independent family. Suppose Li'e 1 rJ(xi) = ('. f(Liei rixi) = 
('. Li'e1 rixi E kernel f. Liei rixi = ( since kernel f = {(}. But (xdi E I) 
linearly independent implies all ri = e. 0 

Corollary. The image or preimage of a basis under an isomorphism is also 
a basis. 

PROOF. This result follows from combining the parts of the theorem. 0 

We have previously demonstrated that every free R-module, that is, 
every module with a basis, is isomorphic to (R1)w for some set I, the index 
set of the basis. Every R-module with a basis is essentially a space offunctions 
taking values in the ring R. The character of this function space depends 
only upon the index set or size of the basis and not upon the basis itself. 
A consequence of this is that any two modules over the same ring R are 
isomorphic when they have bases of the same size. There is essentially only 
one freeR-module of a given size. 

Theorem. If (M, +, 0 and (M', +',(')are freeR-modules with bases of 
the same size then M and M' are isomorphic. 
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PROOF. Let (x;ji E I) be a basis for M and let (yijj E J) be a basis for M'. 
We express the fact that the bases have the same size by postulating that 
there exists a bijection cp:I--+ J, a one-to-one correspondence between the 
index sets. This bijection cp defines in a natural way an isomorphism 
IP:(R1 )w --+ (R1 )w such that IP(f) = f o cp. 

I, 

...... 
...... 

~~R 
J 

We verify that lP is an isomorphism. <P(f + g) = (f + g) o cp = f o cp + 
go cp = <P(f) + IP(g). <P(rf) = (rf) o cp = r(f o cp) = r<P(f). Let IP(f) = 
IP(g). f o cp =go cp. f o cp o cp- 1 =go cp o cp- 1. f =g. Let g E (R1)w. Then 
<P(g o cp - 1) = g o cp - 1 o cp = g. lP is a morphism which is injective and 
surjective and is therefore an isomorphism. 

Ly "' 
(R1 )w --------+M' 

To show that M and M' are isomorphic we compose three isomorphisms. 
Ly o IP- 1 o L; 1 :M--+ M'. Consult the accompanying diagram. 0 

We will later have something to say about the possibility of a module's 
having bases of different size. We turn now to the possibility of a module's 
having no basis at all. What can be said about such modules and their 
representations as function spaces? Certainly every module has a generating 
family, the module itself at worst. We now show that every module with a 
generating family is isomorphic to a quotient module of a function space. 

Theorem. If M is an R-module with a generating family (x;ji E I) then there 
exists a submodule N of (R1 )w such that M is isomorphic with (R1)w/N. 

PROOF. The coordinate morphism associated with the generating family 
(x;ji E I), namely, L:(R1)w--+ M is an epimorphism. Using the fundamental 
morphism theorem there exists an isomorphism L': (R1 )w --+ M where 
N = kernel L. o 
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In general when L is not a monomorphism the kernel N will be non­
trivial. Cosets of (R1 )w will then be involved. 

EXAMPLE. (Xnln e f\1) is a family of polynomials which generates the poly­
nomial ring Z4 [X], a £:-module. L(r;li e f\1) = Ltelll r;Xi is the coordinate 
morphism. It is an epimorphism. Kernel L = {(rdi e f\I)ILi'e 111 r;X; = 0} = 
{(rdi E f\l)lr; e 4£: for all i e f\1} = ((4Z)111 )w. Then Z4 [X], a £:-module 
without a basis, is isomorphic to a quotient module of the function space 
(Z111 )w, namely the quotient module (Z 111 )w/( (4Z)111 )w. 

To each basis for a given module M will be associated a different co­
ordinate morphism. We can actually relate two bases, (xdi e J) and (xjlj e J), 
for the same R-module M by a set of equations. We can do this because 
each basis element of one basis is necessarily expressible as a linear com­
bination of the members of the other basis. For one, 

xi = Lw Eiix; for eachj e J. 
iel 

Since the linear combinations are unique, to know each family of scalars 
(Eiili e J) is to know each xi and vice versa. Each family (Eiili e J) of scalars 
is zero for all but a finite number of i in J. 

We now categorize three particularly simple relationships between pairs 
of bases. We call these three simple relationships elementary change of 
bases. We assume each basis has the same number of elements and we 
therefore index by the same set. 

I. The interchange of two basis elements. Let p, q be two indices in I, 
p =I= q. Let (xdi e I) be the first basis and (uilj e I) be the second. 

u; = x; for i E I, i =1= p, i =1= q 

uP= Xq 

Uq = XP" 

II. The adding of a multiple of one basis element to another. Let p, q 
be two indices in J, p =I= q. Let re R. We define a basis (uilj e I) in terms of 
a basis (xdi e J). 

u; = X; for all i e I, i =I= q 

uq = Xq- rxP. 

Ill. The multiplying of one basis element by a nonzero invertible constant. 
Let p be an index in I. Assume s e R and s- 1 is also in R. We define a basis 
(ui~ e I) in terms of a basis (xdi e I). 

U; = X; for i E I, i =/= p 
-1 

uP = s xP" 

We must verify that the transitions described do define new bases. 
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Theorem. Let M be an R-module. Let (x;li e I) be a given basis. Then 
(udi E J) as described in (I), (11}, and (Ill} above is a basis. 

PRooF. For part I suppose 'Li:, 1 r;u; = C. Li"tp,q r;u; + rPuP + rquq = C. 
Li"tp,q r;x; + rpxq + rqxp = C. r; = (} for all i e J. (u;li e J) is linearly 
independent. Now suppose x eM. x = 'Li:, 1 r;x; for some r; eR. Therefore, 
x = Li"tp.q r;u; + rpuq + rqur (u;li E J) generates M. The other two parts 
are proved similarly. D 

Corollary. Let M be an R-module. The inverses of the three changes of 
bases described above are 

I. X; = U;, i E J, i # p, i # q 
Xp = Uq 

11. X; = U;, i E J, i # q 
Xq = uq + ruP 

Ill. X; = U;, i E J, i # p 
Xp =SUP" 

QUESTIONS 

1. If the coordinate morphism L defined by a family (x;ji e J) of an R-module M is 
an epimorphism then 

(A) there may be two distinct linear combinations of (x;ji e I) yielding a given 
vector x in M 

(B) there may be no linear combination of (x;li e I) yielding a given vector 
xinM 

(C) kernel L consists of the set of all coordinates of C 
(D) L is an injection. 

(E) None of the alternatives completes a true sentence. 

2. Which of the following are true? 
(A) If the coordinate morphism Lx defined by the family (x;li e I) is an iso­

morphism then L; 1 is also an isomorphism. 
(B) If Lx and Ly are two coordinate morphisms for M defined by bases (x;ji e I) 

and (Y;Ii e /) then Ly o L; 1 is an automorphism of M. 
(C) If f is an automorphism of M and Lis a coordinate isomorphism for M 

then f o L is another coordinate isomorphism. 
(D) If Lx and Ly are two coordinate epimorphisms for M then Ly o Lx is another 

coordinate epimorphism for M. 
(E) None of the sentences is true. 

3. Which of these statements are true? 
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(A) The image (f(x;)li e I) of a linearly independent family (x;ji e I) under an 
injectionf:M-+ M' of R-modules is linearly independent. 

(B) The image (f(x;)li e J) of a basis (x;li e J) under a monomorphism f:M-+ 
·M' of R-modules is a generating family for M'. 

(C) Any preimage (x;li e I) of a basis (Y;Ii e I), Y; = f(x;), under an epimorphism 
f:M-+ M' of R-modules is a linearly independent family of M. 
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(D) If (x;ji E I) is a basis of M and f:M--> M' is an epimorphism of R-modules 
then (f(x;)ji E I) is a basis for M'. 

(E) None of the sentences is true. 

4. Which of these sentences are true? 
(A) The function space (Rit is a proper submodule of RI whenever I is in­

finite and R is a unitary ring. 
(B) (e;ji E I), the standard basis, is a basis for (Rit, but not for RI, for every 

index set I. 
(C) The vector (vji E I) is a member of RI, but is not a member of (RI)w. 
(D) No linear combination of (e;ji E I), the standard basis, will yield (vji E I). 

(E) None of the sentences is true. 

EXERCISES 

1. Let L be the coordinate morphism defined by the basis ( (1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 
1, 1), (0, 0, 0, 1)) of the £:-module 1:4 . What is L(rl> r 2 , r3 , r 4 )? L(2, 4, -1, 3)? 
L - 1(1, 2, 3, 4)? What vector has coordinates (rl> r 2 , r3 , r4 )? What vector has coordi­
nates (2, 4, -1, 3)? What are the coordinates of the vector (1, 2, 3, 4)? 

2. Show that (sine, cosine) is a linearly independent family of two functions in the 
IR-vector space [RIO, ~1 . If f is a member of the space [ {sine, cosine}] and f(n/4) = 
f(n/6) = 1 then find L - 1(!). 

3. Let p be a prime natural number. Show that the £:-module ZP is not free. Find a 
generating family (x;ji E I) for ZP' Find the submodule N of (ZI)w so that zp is 
isomorphic to (Zit/N. 

4. Give an example of amorphism f:M--> M' and a family (x;ji E I) of M such that 
(x;ji E I) generates M and (f(x;)ji E I) fails to generate M'. 

5. Give an example of a morphism f:M--> M' and a linearly independent family 
(x;ji E I) such that (f(x;)ji E I) is linearly dependent. 

6. Let M be the IR-module IR12 and (x;ji E 3) be the family ( (1, 0), (1, 1), (0, 1) ). What 
is L with respect to this family? Find kernel L. Find L - 1(2, 3). 

7. Show that the £:-module I(JI has no basis. Find a nontrivial (not I(JI itself) family 
which generates I(JI. 

8. Consider the family ((2, 1, 0), (4, 2, 1), (3, 3, 0)) in the £:-module 1: 3 • What is L for 
this family? Is La monomorphism? an epimorphism? 

9. Prove that if any family (x;ji E I) of an R-module M is linearly dependent then there 
exists a finite subfamily of (x;ji E I) which is also linearly dependent. 

10. Let ( (1, 0), (1, 1), (0, 1)) be a family in IR12 • Find L for this family. Find kernel L 
and also find L- 1(2, 3). 

6.9 Morphisms and bases, kernel, and range 

We show that amorphism is completely determined by its behavior on the 
basis elements of the domain and prove theorems relating to the size of the 
kernel, range, and domain of a morphism. 
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Theorem. Let M, M' be R-modules. Let (x;li E I) be a basis for M and 
(Y;Ii E I) be an arbitrary family of M' of the same size as the basis of M. 
Then there is one and only one morphism f: M -+ M' with values f(x;) = Y;, 
i E I. 

PROOF. Every vector in M is uniquely representable as a linear combination 
of the basis elements (x;li E I). We define a mapping f:M-+ M' such that 
f(f.l'e 1 r;x;) = Li"e1 r;Y;· Since for any x E M the family (rdi E I) is uniquely 
determined then the mapping f is uniquely determined also. It is clear that 
f(x;) = Y; for every i E /. That f is a morphism is easily verified; we leave 
this verification to the reader. We show f is unique. Let g:M -+ M' be any 
(other) morphism such that g(x;) = Y; for all i E I. f(x;) = g(x;) for all i E I. 
rJ(x;) = r;g(xJ for any i E I, r; ER. Li"ei rJ(x;) = Li':.1 r;g(xJ Li"e1 f(r;x;) = 
Li':.I g(r;x;). f(Li"e 1 r;x;) = g(Li"e1 r;xJ f(x) = g(x) for all x EM. f = g. D 

EXAMPLE. We let I = 3 and M= M' = !Rj. (x;li E 3) = ((1, 0, 0), (0, 1, 0), 
(0,0,1)). (ydie3)=((2,1,2), (1,1,0), (1,0,2)). f:!R 3 -+IR3 such that 
f(1, 0, 0) = (2, 1, 2), f(O, 1, 0) = (1, 1, 0), f(O, 0, 1) = (1, 0, 2). f(r1(1, 0, 0) + 
r2(0, 1, 0) + r3(0, 0, 1)) = r1(2, 1, 2) + r2(1, 1, 0) + r3(1, 0, 2). f(rl> r2 , r3 ) = 
(2r1 + r2 + r3 , r1 + r2 , 2r1 + 2r3 ). 

To determine the behavior of a morphism of modules it is only necessary 
to know the behavior of the morphism on the basis elements of the domain. 

We now begin theorems which relate the size of the kernel with the size of 
the range of a morphism. 

Lemma. Let f:M-+ M' be amorphism of R-modules. Let (xdi E J) generate 
kernel f. Then there exists a superfamily (xdi E I), J ~ I, such that (xdi E I) 
generates M. 

PROOF. Let/' = M - kernel f. The family (xdi E J u I') generates M where 
X; = i if i E /'. 0 

In this proof the elements of the complement of [{x;li E J}] in M are 
adjoined to (x;ji E J) to produce a family generating all of M. Of course, this 
generation of M is done inefficiently; many fewer elements would, in general, 
suffice. The point is that it can be done. Having showed that it is possible to 
extend any family generating the kernel to a family generating all of M we 
now discuss generating the range. 

Lemma. Let f:M-+ M' be amorphism of R-modules. Let (x;ji E J) generate 
kernel! and (x;ji E I) generate M and suppose J ~ I. Then (f(x;)li E I - J) 
generates range f. 

PROOF. Let ybeinrangef. y = f(x)forsomexinM.x = Li"ei r;x;forsome 
r; in R. x = Li':.I-J r;X; + Li"eJ r;X;. f(x) = Li"ei-J rJ(x;) + Li"eJ rJ(x;) = 
Li':.I-J rJ(x;) + ('. y = Li"ei-J rJ(xJ D 
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We now include linear independence in our hypothesis for our main 
theorem. 

Theorem. Let f:M--+ M' be amorphism of R-modules. Let (xdi E J) be a 
basis for kernel f and (xdi E I) be a basis for M with J £:: I. Then 
(f(x;)li E I - J) is a basis for range f. 

PROOF. Because of the lemmas we need only prove (f(x;)li E I - J) is 
linearly independent. Suppose Li'ei-J rJ(x;) = ('. f(Liei-J r;x;) = ('. 
Li'e 1 - 1 r;X;Ekernelf.l:i'ei-Jr;X; = LieJsixi·Li'ei-Jr;X; + Li'eJ(-s;)x; = (. 
By linear independence of (xdi E I) we have r; = fJ for all i E I - J and 
- s; = f) for all i E J. Hence r; = fJ for all i E I - J. D 

This theorem shows that the number of elements in the basis for the 
domain (index set I) equals the number of elements in the basis for the kernel 
(index set J) plus the number of elements in the basis for the range (index 
set I - J). It is not always possible, having found a basis for the kernel of a 
morphism, to extend this basis to a basis for the entire space, at least for 
modules. For vector spaces it is always possible to make such an extension. 
An example of the former is the following. Let g: 7L --+ 7Lj27L where g(n) = 0 
or I according to whether the remainder upon dividing n by 2 is 0 or 1. g is a 
morphism with kernel 27L. 27L has a basis consisting of the singleton 2. The 
basis (2) for 27L cannot be extended to a basis for the entire module 7L since 
the only bases for 7L are the singletons (1) and ( -1). 

EXAMPLE. We consider the morphism f: IR 3 --+ IR 2 such that f(ri> r2 , r3 ) = 
(r1 + r2 , 2r1 - r3 ). The kernel off is {(rl> r2 , r3 )l(r1 + r2 , 2r1 - r3 ) = 
(0, 0)} = {(r1 , r2 , r3)h = -r1 and r3 = 2rt} = {(t, -t, 2t)lt ER} = 

{(t(1, -1, 2)lt E R }. A basis for the kernel is the singleton family ( (1, -1, 2) ). 
A superfamily of it is the family ( (1, 0, 0), (0, 1, 0), (1, -1, 2)) which is a 
basis for IR 3, the domain of the morphism. The family (f(1, 0, 0), f(O, 1, 0) 
must therefore be a basis for the range of f. The family is ( (1, 1), (2, 0) ). 
The number of members of the basis for the domain is 3, the number of 
members of the basis for the kernel is 1 and the number of members of the 
basis for the range is 2. 

QUESTIONS 

1. Which of the following statements are true? 
(A) If a vector belongs to the kernel of a module morphism f: M -+ M' then 

the vector is(. 
(B) The morphism z:M-+ M' such that z(x) = ('for all x EM can never have 

kernel equaling g}. 
(C) Kernel f ~ range f if f:M-+ M is an endomorphism. 
(D) Kernel f n range f = 0 if and only if f:M-+ M' is a monomorphism. 

(E) None of the statements is true. 
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2. Let f:M--+ M' be amorphism of R-modules. Which of the following are true? 
(A) If (x1, x2 , •. • , x.) is a basis of M and (y1, y2 , . .• , y.) is a basis for M' and 

f(x;) = Y;, i = 1, 2, ... , n, then f is an isomorphism. 
(B) If (x1, x2 , . .• , x.) is a basis of M and (f(xt), f(x 2 ), . .. , f(x.)) is a basis of 

M' then f is an isomorphism. 
(C) If (x1, x2 , •.. , x.) is a basis of M and f(xt) = f(x 2 ) then kernel f =I= g} 

and x 2 - x1 E kernel f. 
(D) If (x1, x2 , .•. , x.) is a basis for M and x1, x2 , ... , x. E kernel f then f(x) = 

C for all x E M. 
(E) None of the statements is true. 

3. Let f:M--+ M' be a morphism of R-modules. Which of the following statements 
are true? 

(A) If (x1, x 2 , ••. , x.) is a basis for M and x1 E kernel f then a basis for range 
f must have strictly fewer than n members. 

(B) If (x1, x 2 , ..• , x.) is a basis for M then (f(x1), f(x 2 ), .•• , f(x.)) generates 
range f. 

(C) If (x1 , x2 , •.. , x.) is a basis for M and kernel f =I= { 0 then (f(xt), f(x 2 ), ••. , 

f(x.)) cannot be a basis for range f. 
(D) If (xi> x 2 , ••• , x.) is a basis for M and (f(xd, f(x 2 ), ••• , f(x.)) is linearly 

dependent then kernel f =1= {(}. 

(E) None of the statements is true. 

4. Let f:M--+ M' be amorphism of R-modules. Which of these statements are true? 
(A) If(x1 , x2 , ... , x.) is a basis for M and g:M'--+ M such that g(f(x;)) =X;, 

i = 1, 2, ... , n, then f is an isomorphism. 
(B) If (x1, x 2 , .•• , x.) is a basis for M and (y1, y2 , •.• , y.) is a basis for M' and 

g:M' --+M such that g(y;) = X;, i = 1, 2, ... , n, then kernel f = {(}. 
(C) If (x1 , x2 , .. . , xk) is a basis for kernel f and (x1 , x2 , . .. , xk, xk+ 1> ••. , x.) 

is a basis for M and k < n then range f =1= {C}. 
(D) Range f =I= 0. 

(E) None of the statements is true. 

EXERCISES 

1. Let f: IR 3 --> IR3 such that f(r 1, r2 , r3 ) = (r1 + 2r2 , 3r1 + 6r2 , 7r2 + 14r3 ). Find 
the kernel off and a basis for the kernel off, given that one exists. Find a basis 
for the range of f. Is f a monomorphism? If f an epimorphism? 

2. For the function g: IR 3 -+ IR2 such that g(s1, s2 , s3 ) = (s1 + s2 + s3 , s1 - Sz + s3 ) 

follow the instructions of Exercise 1. 

3. For the function h: IR3 -+ IR4 such that h(r1, r2 , r3 ) = (3r1 + r2 - r3 , r1 + 5r2 + 
2r3 , 2'r1 + 12r2 + 5r3 , ...:. r1 + r2 + r3 ) follow the instructions of Exercise 1. 

4. Find a morphism f: IR 3 --+ IR!2 such that (1, 1, 1) E kernel f and (1, 1) E range f. 
Is this morphism unique? 

5. Show that {t(1, 2)Jt E Z} is a submodule of 1:2, a £:-module. What is a basis for 
this submoduie? Can you find amorphism from 1:2 to 1:2 having precisely this 
submodule as its kernel? 
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6. ( (1, 1, 0), (1, 0, 1), (0, 1, 1)) is a basis for 7L3 and ( (1, 0), (1, 1), (0, 1)) is a family in 
7L 2 with the same index set l According to the first theorem of this section there 
is one and only one morphism f:7L3 -+ 7L 2 such that f(1, 1, 0) = (1, 0),!(1, 0, 1) = 
(1, 1), f(O, 1, 1) = (0, 1). Find f(s1, s2 , s3 ) for an arbitrary (sh s2 , s3 ) in 7L3• Find 
kernel f. Find range f. 

7. Let f:M-+ M' be amorphism of R-modules. Let (xdi E J) be a basis for kernel f 
and (x;li E J) also be given as a basis for M so that J s;; I. Show that the following 
three R-modules are isomorphic: M, ker f x range f, ker f x (Mjk:er f). 

8. Let R be a nontrivial commutative unitary ring. Show that the R-modules R 
and R x R cannot be isomorphic. 

9. If(x1, x2, ... , x.) and (yh y2, ... , y.) are bases of R-modules M and M', respec­
tively, prove that any morphism f:M-+ M' such that f(x;) = y;, i = 1, 2, ... , n, 
is an isomorphism. Is f unique? 

10. What is the inverse of the morphism in problem 9? Is the inverse an isomorphism? 

11. Let f:M-+ M' be amorphism of R-modules. Let (xdi E J) be a basis for kernel f 
and (xdi E K), J s;; K, be a linearly independent family of M. Show (f(x;)li E 

K - J) is a linearly independent family of M'. 

6.10 Vector spaces 

In this section we discuss results on bases and dimension that are especially 
available to vector spaces. 

By restricting our attention to vector spaces, modules over division rings, 
and fields, we can demonstrate some rather strong results. We will give our 
proofs for commutative division rings, i.e., fields. The first result is that 
every vector space has a basis, a fact not true of modules in general. 

Theorem. Let M beaK-vector space. Let (x;ji E J) be a linearly family of M. 
Then there exists a superfamily (xili E I), J £ I, of the given family which 
is a basis for M. 

PROOF. The proof of this theorem requires some techniques of set theory 
more profound than those used in chapter one. For this reason we place a 
proof in Appendix 6B at the end of this section. We suggest that the reader 
accept the theorem as an axiom and defer the proof; it is common in under­
graduate texts to assume the equivalent of this result. We have included the 
proof for the sake of the reader who wishes to pursue the matter further. D 

Corollary. If M is a K-vector space then M has a basis. 

PRooF. The empty set is a linearly independent family of M and by the 
theorem 0 can be extended to a basis for M. This extension is the required 
basis of M. D 
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Corollary. If M is a K-vector space and N is a subspace of M then there 
exists a basis (x;ji E J) for N and a superfamily (x;ji E I), J ~ I, which is 
a basis for all of M. 

PROOF. As a vector space N has a basis. This basis of N can, as a linearly 
independent family of M, be extended to a basis for M. 0 

It is important to note that a basis for M, the entire space, does not 
necessarily have a subfamily which is a basis for the subspace N. For example, 
( (1, 0), (0, 1)) is a basis for IR2 yet the subspace { t(1, l)lt E IR} has neither 
( (1, 0)) nor ( (0, 1)) as a basis. One can, however, begin with the basis ( (1, 1)) 
for the subspace and extend this basis to ( (1, 1), (1, 0) ), a basis for the entire 
space. 

We now prove a sequence of results about vector spaces and finite bases 
which do not depend upon the general theorem just discussed. 

Theorem. Let M be a K-vector space where K is a field. A finite family 
(xb x2 , ... , xn), n ~ 1, is linearly dependent if and only if some xk, k ~ 2, 
is a linear combination of (xto x2 , ... , xk_ 1) or x1 = (. 

PROOF. Suppose first that (x1, Xz, . .. 'xn) is linearly dependent. Then there 
exist rb r2 , ••• , rn inK, not all zero, such that r1x1 + r2x 2 + · · · + rnxn = 
(. Let rk be the nonzero coefficient with largest subscript. r1x1 + r2 x 2 + 
· · · + rkxk = ( with rk # (}. If k > 1 then Xk = -rj; 1r1X1 - rj; 1rzXz -
· · · - rj; 1rk_ 1xk_ 1 is a solution of the equation for xk. Since K is a field 
the inverse r;; 1 belongs to K and xk is a linear combination of the preceding 
xb Xz, ... 'Xk-1• If k = 1 we have r1x1 = 'with r1 # e. Again the existence 
of the inverse r1 1 inK proves x1 = (. 

For the converse, if x1 = C then certainly the family is dependent. If 
xk = s1x1 + s2 x 2 + · · · + sk_ 1xk- 1 with 1 < k ~ n then s1x1 + s2 x2 + 
··· + sk_ 1xk- 1 + (-v)xk = (proves(x1ox2 , ••• ,xk)islinearlydependent. 
(xb x2 , ... , xn) is also linearly dependent. 0 

Theorem. Let M be a K-vector space. If M has a finite, nonempty basis 
(x1, x2 , ... , Xn) and (Yto Yz, . .. , Ym) is a linearly independent family then 
there exist Ym+b Ym+Z• ... , Ym+p• 0 ~ p ~ n, such that (yb Yz, ... , Ym, 
Ym+ 1o ... , Ym+ p) is a basis for M. 

PROOF. Consider the family (Yto y2 , . .. , Ym, X to x2 , ... , xn). It certainly gen­
erates M. If this family is linearly dependent either y 1 = ( or some vector 
in the family is a linear combination of the preceding vectors. As y1 # ( 
and no "y" can be a linear combination of preceding y's we have that some 
xk is a linear combination of the preceding vectors Yto Yz, ... , Ym, X to ... , 
Xk- 1 • The family (Yto Yz, ... , Ym, Xto ... , xk-b xk+b ... , xn) still generates 
M. If this family is linearly independent then the theorem is proved. If not 
then the deletion process is repeated. After at most n steps the process must 
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terminate because the y's alone are linearly independent. Denote the final 
linearly independent family which generates M by (y1, y2 , ••. , Ym• Ym+ 1o ... , 
Ym+p) in which Ym+l> ... , Ym+p stand for the nondeleted x's. 0 

This previous theorem tells us that if a vector space is known to have a 
finite basis then any linearly independent family can be extended to a basis 
which is also finite. This result is similar to the previously expounded 
theorem that every linearly independent family in a vector space c!m be 
extended to a basis. The proof here, however, assumes the existence of a 
finite basis for the space. We now move towards proving that every basis 
has the same number of elements. 

Theorem. Let M be a K-vector space. If the finite family (xb x 2 , •.• , xn) 
generates M and the finite family (y1, Yz, ... , Yn) is linearly independent 
in M then m ~ n. 

PROOF. Consider (yn, x1o x 2 , ••• , xm). This family generates M because 
(xb x2 , ••• , xm) generates M. The augmented family is linearly dependent 
because Yn is a linear combination of x1o x2 , ••• , xm. There is a first X; 
which is a linear combination of the previous Yn, x 1, x 2 , ••• , X;- 1• Note 
Yn i= '·We obtain (y"' x 1, x 2 , ... , X;- 1o xi+ 1 , ... , xm) which again generates 
M. In essence, we have replaced an "x" by a "y". For this reason this is 
often called the replacement or exchange theorem. 

Now consider (Yn-1> Yn• xb x 2 , ••. , X;- 1 , xi+l> ... , xm) which must be 
linearly dependent. There is a first "x" which is a linear combination of the 
preceding vectors. Delete this vector and continue the argument as before. 
By this process the x's cannot be used up before the y's because otherwise 
some smaller subfamily of the y's than (Yt> y2 , ••. , Yn) would generate M 
making (y1 , y 2 , ••• , Yn) a linearly dependent family. The number of x's is 
the same as or exceeds the number of y's. m ~ n. o 

Corollary. Let M beaK-vector space. If (x1, x 2 , •.• , xm) and (y1, y2 , ••• , Yn) 
are finite bases for M then m = n. 

PROOF. (xb x2 , ••. , xm) generates M and (Yt, Yz, ... , Yn) is linearly inde­
pendent show m ~ n. (y1, y2 , ••• , Yn) generates M and (xb x 2 , ... , Xm) 
linearly independent show n ~ m. m = n. o 

Corollary. Let M be a K-vector space with a finite basis (xb x 2 , ••• , xm) 
and let (Yilj E J) be another basis. Then J cannot be infinite. 

PROOF. If (yijj E J) were an infinite family it would contain a finite sub­
family with m + 1 members which is linearly independent. The m members 
of the given finite basis (xb x 2 , ••. , xm) generate M. m ~ m + 1 is a 
contradiction. o 
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Since a vector space cannot have at the same time a finite basis and an 
infinite basis the only remaining comparison is between two infinite bases. 

Theorem. Let M be a K-vector space. Then any two bases have the same 
number of members. 

PROOF. We leave this remaining comparison between two infinite bases to 
Appendix 6C at the end of this section. It is entirely appropriate to accept 
the result as an axiom. 0 

Because every basis for a given vector space has the same size we can 
assign to each vector space a number, the number·of elements in any basis. 
We call this number the dimension of the vector space. 

Definition. The dimension of a vector space is the number of elements in 
any basis of the vector space. 

We will also use the word dimension for the number of elements in a 
basis of an R-module over a commutative unitary ring when that R-module 
has a basis. Since not every R-module has a basis not every R-module will 
have a dimension. Every vector space does have a dimension. We give a 
proof in Appendix 6D at the end of this section that the number of elements 
in a basis of a free module over a commutative unitary ring is also an in­
variant; each basis has the same number of elements as any other basis. 
This justifies the use of the word dimension for free modules over commuta­
tive unitary rings. 

EXAMPLE. IR 3 has the standard basis (et. e2 , e3 ) = ( (1, 0, 0), (0, 1, 0), (0, 0, 1) ). 
Other bases such as ( (1, 1, 0), (1, 0, 1), (0, 1, 1)) also have three members. 
IR 3 is an IR-vector space of dimension 3. Q[X] is a Q-vector space with 
basis (1, X, X 2 , .. . ) = (Xilj E N). This basis has the same number of 
elements as N, an infinite set. We denote the number of members of N with 
the symbol w. The vector space (IRN)w has the basis (edi E N) which has w 
members also. R, itself, as a vector space over the field R has a basis (1) 
and therefore has dimension 1. The trivial vector space { (} over any field has 
0 as its basis. The dimension of the trivial vector space is therefore 0. 

For finite dimensional vector spaces we have some more particular results. 

Theorem. Any family with n + 1 or more vectors in a finite n-dimensional 
vector space must be linearly dependent. 

PROOF. The number of vectors in a generating family must equal or exceed 
the number of vectors in a linearly independent family. If a family of n + 1 
vectors were linearly independent we would have n + 1 ~ n, manifestly 
false. 0 
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Theorem. In ann-dimensional vector space, n finite, any linearly independent 
family (xt. x2 , ... , xn) is a basis. 

PROOF. An n-dimensional vector space M has a basis of n members. We 
must show that the family (xt. x2 , ... , x") generates the vector space. Let x 
be in M and consider the family (xt. x 2 , ••• , xn, x). Since this family has 
n + 1 members it must be linearly dependent. There must be a first value 
which is a linear combination of the preceding vectors. This first value must 
be x because of the linear independence of (x t. x 2 , ••. , xn). 0 

Theorem. Any finite generating family of n members must be a basis in an 
n-dimensional vector space. 

PROOF. Let (xt. x2 , ••• , x") be any generating family. If this set is not 
linearly independent there is a subfamily of n - 1 members which still 
generates M. A generating family of n - 1 members and a linearly inde­
pendent family (the given basis) in the same space of n members is a contra­
diction. The generating family is therefore also linearly independent. 0 

ExAMPLE. Any family of three members which generates IR 3 must be a basis 
for the IR-vector space IR 3 . Any family of three members which is linearly 
independent is also a basis for IR 3 • It is only necessary to establish one of 
the two conditions (linear independence and generation) once the finite 
dimension of the space is known. 

We now return to some earlier material on kernel and range and strengthen 
the theory with our vector space results. 

Theorem. Let f:M ~M' be amorphism of K-vector spaces. Then dim M = 
dim kernel f + dim range f. 

PROOF. This is the theorem of the previous section restated in terms of 
dimension. We know there exists a basis (xdi E J) for the subspace, kernel f, 
of M. This basis can be extended to a superfamily (xdi E I) of M, J s; I. 
By the theorem of Section 6.9 (f(x;)li E I - J) is a basis for range f. Since 
I= J u (I- J) we have crd I =crd J + crd(J- J). But crd I= dim M. 
Crd J = dim ker f. Crd(J - J) = dim range f. (Crd in this theorem is an 
abbreviation for cardinal number. The cardinal number of a set, we recall 
from Section 4.1, is the number of members in the set.) o 

Definition. If f:M ~M' is amorphism of K-vector spaces then rank f = 
dim range f and nullity f = dim kernel f. · 

The previous theorem can be stated as 

dim domain f = nullity f + rank f. 
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EXAMPLE. f:~3 ~ ~3 such that f(rb r2, r3) = (r1 + r2, r2 + r3, 0) has 
kernel f = {(rb r2, r3)irt + r2 = 0 and r2 + r3 = 0} = {(rb r2, r3)irt = 
-t,r2 = t,r3 = -t} = {(-t,t, -t)ltE~} = {t(-1,1, -1)ltE~}.Abasis 
for kernel f is ( ( -1, 1, -1) ). Nullity f = 1. Dimension domain f = 3. 
Therefore rank f must be 2. 

EXAMPLE. In ~3 the subspaces of dimension 0 are only {(0, 0, 0)}. The sub­
spaces of dimension 1 are {t(a1, a2, a3)it E ~} where (a1, a2, a3 ) is a non­
zero vector. These subspaces of dimension 1 are lines through the origin. 
(See Figure 6.13). The subspaces of dimension 2 are {t(ab a2, a3 ) + 
u(b~> b2 , b3 )it, u E ~} where a and b are linearly independent vectors. 
These subspaces of dimension 2 are planes through the origin. (See Figure 
6.14). The only subspace of dimension 3 is the entire space ~3 . Linear vari­
eties of dimension 0 are (c~> c2, c3) + {(0, 0, 0)} = {(c~> c2 , c3)}, singleton 
points. Linear varieties of dimension 1 are (cb c2, c3) + {t(ab a2, a3)it E ~}, 

(0, 0, 0) 

Figure 6.13 

Figure 6.14 

218 



6.10 Vector spaces 

(0, 0, Ol~t---------

Figure 6.15 

Figure 6.16 

lines translated from the origin by (cl> c2 , c3 ) (see Figure 6.15). Linear 
varieties of dimension 2 are of the form (cl> c2 , c3 ) + {t(al> a2 , a3 ) + 
u(bt. b2 , b3 )lt, u E IR}, planes translated from the origin by (cl> c2 , c3 ) 

(see Figure 6.16). 

QUESTIONS 

1. Which of these modules are vector spaces? 
(A) the .Z-module ()I 
(B) the ()~-module IR 
(C) the ()~-module ()I[X] 
(D) the .Z-module (()IN)w. 

(E) None of the listed modules is a vector space. 

2. Which of these statements are true? 
(A) If a module has a basis then it is a vector space. 
(B) If a module is a vector space then it has a basis. 
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(C) Every module has a generating family. 
(D) For every module there is at least one linearly independent set or family. 

(E) None of the statements is true. 

3. Which of the statements about modules are true? 
(A) If a family is linearly dependent then at least one vector in the family can 

be expressed as a linear combination of the others. 
(B) If a subfamily of a given family of vectors is linearly dependent then the 

entire family is linearly dependent. 
(C) A singleton family, a family with one member, can be linearly dependent 

without necessarily being the zero vector. 
(D) Every vector space is a module. 

(E) None of the statements is true. 

4. The set Ll = {(t, t)lt E ~}is a subspace of the ~-vector space ~2 • The family (el> e2 ) 

is the standard basis for ~2, yet no subfamily of (e1, e2 ) is a basis for the subspace 
Ll. Which of these statements are true? 

(A) Not every subspace of ~2 need have a basis. 
(B) Ll is not really a subspace of ~2 . 
(C) The entire family ( (1, 0), (0, 1)) is a basis for Ll as well as ~2 • 
(D) A basis for ~2 need not have a subfamily which is a basis for Ll. 

(E) None of the statements is true. 

5. Which of these statements are true? 
(A) The number of linearly independent vectors in a vector space must exceed 

or equal the number of vectors in a generating family. 
(B) A generating family in a module must be either linearly independent or 

linearly dependent. 
(C) If a basis for a vector space is infinite then every finite family in the space 

is linearly independent. 
(D) No family in a module can be linearly dependent unless some finite sub­

family of the given family is linearly dependent. 
(E) None of the statements is true. 

6. Let us say that a vector space allows home runs if one can find at least four distinct 
bases for the space. How many different (nonisomorphic) vector spaces over ~. 
the real numbers, do not allow home runs? 

(A) 0 
(B) 1 
(C) 4 
(D) 24 

(E) an infinite number. 

7. If M is a vector space generated by n vectors, nE N, which are linearly independent 
then 

(A) dim M:::; n 
(B) dim M< n 
(C) n > 0 
(D) n = 0. 

(E) None of the alternatives completes a true sentence. 
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8. If N and P are distinct subspaces of a vector space M over a field K then 
(A) dim N + dim P = dim(N + P) 
(B) dim N + dim P < dim(N + P) 
(C) dim(N x P) = (dim N)(dim P) 
(D) dim N + dim P ;;:. 1. 

(E) None of the alternatives completes a true sentence. 

EXERCISES 

1. Letj:Q3 -+ 0 3 such thatf(r1, r2 , r3) = (r1 + 2r2 , r1 + r2 , 2r1 + 3r2 + r3). Find 
kernel f and range f and bases for each subspace. 

2. Find a morphism from ~2 to ~2 with the smallest possible kernel containing the 
set { (!, 3), (2, 12)}. 

3. Find amorphism f from ~3 to ~3 which has range precisely the space [(2, 1, 1), 
(3, 2, 0)]. f(s 1, s2, s3) = ?. 

4. Show that a morphism f: ~3 -+ ~3 with trivial kernel must be an epimorphism. 

5. Let C[a, b] be the set of all real-valued functions defined and continuous on the 
real closed interval [a, b]. Verify that C[a, b] is a submodule of the ~-module 
~[a,bl. Consider the integral as a function C[a, b] -+ ~with value J~ f(t) dt. Prove 
that J~:C[a, b]-+ ~is amorphism. Prove J~ is not a monomorphism by showing 
that the kernel is nontrivial. [Hint: Construct a nontrivial member of the kernel. 
Prove that J~ is an epimorphism.] 

6. Denote the derivative of a function f by DJ. The derivative of a polynomial p(X) = 
a0 + a1X + ··· + a.X"isDp(X) = a1 + 2a2X + ··· + na.x•- 1.ProveD:~[X]-+ 

~[X] is amorphism. Find kernel D. Is D a monomorphism? Is D an epimorphism? 

7. Show that if N is a subspace of a vector space M and the subspace has the same 
dimension as M then N = M. Show also that if N is a submodule of a module 
M that the same result may not hold. 

8. Let M' and M" be subspaces of a K-vector space. Show that dim(M' +M")+ 
dim(M' 11 M")= dim M'+ dim M". [Hint: Choose first a basis for M' 11 M" 
and extend separately to obtain bases for M' and for M".] 

9. Let f: M -+ M' be amorphism of K -vector spaces. Prove that these three conditions 
are equivalent: f is a monomorphism, nullity off is zero, rank f = dim M. 

10. Let M' and M" be K-vector spaces. Prove dim(M' x M")= dim M'+ dim M". 

11. Let N be a subspace of a K-vector space M. Prove dim M = dim M/N + dim N. 

12. Let (x 1, x 2 , ••• , x.), a finite family of vectors, generate a K-vector space M. Prove 
that there exists a subfamily of (x1, x 2 , ••• , x.) which is a basis of M. 

13. Letf: ~3 -+ ~4 such thatf(s1, s2, s3) = (s2 + 2s3, s1 - s2, s1 + 3s2 - s3, s1 + s3). 
Find a basis for kernel f, extend to a basis for domain f and find a basis for range 
f. Verify dim domain f = nullity f + rank f. 

14. The family ( (39, 51, 3), (13, 17, 1), (26, 34, 2), (52, 68, 4)) is linearly dependent. In 
any linearly dependent family either the first vector is zero or there is a first vector 

221 



6. Linear algebra: Modules 

in the family which is a linear combination of the preceding ones. Apply this theorem 
to this example. 

15. Show that if one value of a family (xdi E I) is a multiple of another value (say xi = 

rxk for some rE K, j, k E I) in a K-vector space M then the family is linearly 
dependent. 

16. Find all the morphisms f:IR 3 --> IR 3 such that (1, 1, 1) and (1, 2, 3) both belong to 
the kernel of f. What are the ranks of these morphisms? 

17. Let f:M--> M' be a vector space morphism. Show that dim kernel f ~ dim 
domain f and dim range f ~ min{dim domain f, dim codomain f}. 

18. Let M, M' be K-vector spaces of the same finite dimension. Let f:M--> M' be a 
monomorphism. Prove f is an isomorphism. 

19. Let M, M' be K-vector spaces of the same finite dimension. Let f:M--> M' be an 
epimorphism. Prove f is an isomorphism. 

20. Let M, M' be K-vector spaces and let f:M--> M' be an isomorphism. Prove M 
and M' must have the same dimension. 

21. Give a K-vector space M and a subspace N find a vector space M' and amorphism 
f: M --> M' such that kernel f = N. 

22. Given a K-vector space M' and a subspace N' find a vector space M and amorphism 
f:M--> M' such that rangef = N'. 

23. Let M = {t(1, 1, 2, 2) + u(O, 2, 1, O)lt, UE IR} and N = { v(l, 0, 2, 2) + w(2, 1, 3, 4)lv, 
wEIR} be two subspaces of IR4 • Find a basis for M n N. Extend this basis to a 
basis for M. Also extend the basis of M n N to a basis for N. Verify the equation 
dim(M + N) + dim(M n N) = dim M + dim N. 

24. If (ab a2 , . •• , a.) is any nonzero vector in IR", n ~ 2, prove there is a nontrivial 
morphism f: IR" --> IR such that f(ab a2 , •.. , a.) = 0. 

25. The dimension of a coset or linear variety a + N of a K-vector space M is defined 
to be the dimension of the subspace N. An affine mapping, we recall, is a mapping 
taking linear varieties into linear varieties. If g: M --> M' is an affine mapping of 
the K-vector spaces M, M' show that dim(a + N) = dim g(a + N) whenever g 

is injective. Show that if g is also a bijection then dim(b + N') = dim g- 1(b + N') 

for any variety b + N' in M'. 

26. This is a long exercise in which some of the more obvious geometrical results of 
!R3 are given vector space definitions. 
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Definitions 
A line is a one dimensional linear variety of !R3. 

A plane is a two dimensional linear variety of IR 3. 

Lines are parallel if and only if they are linear varieties with the same subspace. 
Planes are parallel if and only if they are linear varieties with the same subspace. 

Prove these theorems: 
Two planes are parallel or intersect in a line. 

Two lines are disjoint or intersect in a point or are identical. 



Appendix 6B The existence of a basis for a vector space 

Two parallel lines cannot intersect in a single point. 
Two lines parallel to a third line are parallel to each other. 
Through a given point there is one and only one line parallel to a given line. 
A line and a plane are disjoint or intersect in a single point or the line lies in the 
plane. 

27. We now define the term independent which is similar to, but not the same as linear 
independent. Let M be an R-module. A subset A of M is independent if and only 
if [A] =F [A - { x}] for all x in A. In other words, a subset is independent if and 
only if no proper subset generates the same subspace: it is a minimal generating 
set. Prove that a subset A of a K-vector space is independent if and only if A is 
linearly independent. 

28. Show that in the £:-module £:2 the set { (3, 0), (2, 0), (0, 1)} is independent yet not 
linearly independent. 

29. Show that a setS is a basis for a K-vector space M if and only ifS is a maximal 
linearly independent set (S is linearly independent and S u { x} is linearly dependent 
for any x E M - S). 

Appendix 6B The existence of a basis 
for a vector space 

Demonstrating that every vector space has at least one basis requires 
the use of somewhat advanced techniques from set theory. In an under­
graduate course one can reasonably take the existence of a basis for a 
vector space as an axiom leaving for another day the question of whether 
there exist vector spaces without bases. The techniques used here can also 
be used to pursue details of the theorem at the end of Section 1.6. We intend 
here to give a proof of the existence of a basis using Zorn's lemma, a theorem 
of set theory equivalent to the axiom of choice and to the well-ordering 
theorem. The theorem we intend to prove is simple in conception; consider 
the set of all linearly independent families in the vector space, find a maximal 
one and prove it generates the entire space. The use of the set theoretic 
technique is to assert the existence of the maximal linearly independent 
family. 

Definition. A collection of families, ~. is a chain provided the collection is 
totally ordered; that is, given any two families in the collection one is a 
subfamily of the other. 

Definition. A family B is maximal in a collection !!( if and only if there is 
no family D in !!( which properly extends B. 

Zom's lemma. If !!( is a nonempty collection of families such that every 
nonempty chain ~ of families from !!( has the property u~ E !!( then !!( 

contains a maximal family. 
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Theorem. If M is a K-vector space over a field (or division ring) K and 
(x;ji E I) is any linearly independent family of M then there exists a basis 
of M which extends (x;ji E I). 

PROOF. Denote by f!C the set of all linearly independent families of M which 
have (x;ji E I) as a subfamily. The collection is nonempty for it includes 
(x;ji E I) itself. Let C(J be any nonempty chain of sets in f!l". We now show 
UC(J is a linearly independent family of M, i.e., belongs to f!C. Suppose 
r1 x! + r2 x2 + · · · + rnx~ is a linear combination of elements x!, x2, ... , x~ 
which are values of the family UC(J and is equal to (. x1 E UC(J implies x1 is 
a value in C1 for some family C1 in C(J. x2 is a value in C2 for some C2 in C(J. 

Since the collection C(J is a chain either C1 £ C2 or C2 £ C1 • Thus both x1 
and x2 are values in the bigger of C1 and C2 . Inductively, there is a set 
C = max{C1, C2 , ••• , Cn} in C(J in which all the x!, x2, ... , x~ are values. 
As C is a linearly independent family r1x1 + r2 x2 + · · · + rnx~ = (implies 
all r1o r2 , •. . , rn are zero. UC(J is a linearly independent family. Since C(J is 
not empty there is at least one family D in C(J. (x;ji E I) £ D £ uC(J. We 
conclude UC(J E f!l". 

Having fulfilled the hypothesis-of Zorn's lemma we may conclude f!C, 
the collection of all linearly independent families of M which extend (xi liE I), 
contains a maximal family B. By Exercise 29 of Section 6.10 this maximal 
linearly independent family generates M. 0 

Appendix 6C Equicardinality of infinite bases 
of a vector space 

We wish to argue that if (x;ji E I) and (Yilj E J) are both infinite bases of 
a vector space <M, +, 0 over a field K then crd I = crd J. This is to say that 
the bases have the same number of elements. 

Each basis element Yi can be expressed as a linear combination of the 
basis family (x;ji E I). Since the family (Yilj E J) is linearly independent we 
wish to count the number of linearly independent combinations of the family 
(x;ji E 1). The actual number of yi, the cardinality of J, must be smaller than 
or equal to the number of linearly independent combinations of (x;ji E I) 
we can form which result in a linearly independent set. We count the number 
oflinear combinations we can form so that the collection of linear combina­
tions remains linearly independent. Of linear combinations of length 1 we 
can choose any one of the vectors xi, i E I, making n choices where n = crd I. 
We cannot choose two multiples of the same xi for then our collection would 
be linearly dependent. Oflength 2 there are at most two linear combinations 
of a given two vectors which are linearly independent. We can choose a pair 
of vectors from (xi li E I) in fewer than n2 ways. Thus of length 2 one has at 
most 2n2 linearly independent linear combinations. Considering all possible 
finite lengths we can have at most n + 2n2 + 3n3 + 4n4 + · · · linearly 
independent combinations of(x;ji E I). Now n is an infinite cardinal number 
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so that any finite power of n or finite multiple of n is again simply n. Thus the 
number oflinearly independent combinations of(x;ji E I) we can form is less 
than or equal to n. Since the number is clearly at least as large as nit must be 
exactly n. We have showed that if crd I = n then crd J = n also. 

Appendix 6D Dimension of a module over a 
commutative unitary ring 

The assignment of a dimension to a vector space was possible because the 
number of elements in any basis was the same as the number of elements in 
any other basis. We now prove a theorem that shows that the size of bases 
for modules over commutative unitary rings is also invariant. This makes it 
possible to define a dimension for free modules over commutative unitary 
rings. Of course, not every module has a basis and these modules will have 
no dimension. The £'-module Q, for example, is without dimension. 

Theorem. Let M be a module over a commutative unitary ring R with bases 
(x;ji E I) and (Yilj E J). Then crd I = crd J. 

PRooF. With an ideal A of R we shall also consider the submodule [AM] 
generated by all ideal multiples of M and the corresponding quotient R­

module M/[ AM]. We see that M/[ AM] is not only an R-module but is also 
an (R/ A)-module with the following definition of exterior multiplication: 
(r/A) xj[AM] = rx/[AM], r/A ER/A, xj[AM] E M/[AM]. We verify that 
the exterior multiplication is well-defined. Let r/ A = sj A. r - s E A. 
(r- s)x E [AM]. rx - sx E [AM]. rxj[AM] = sxj[AM]. (r/A) xj[AM] = 

(s/A)x/[AM]. 
The next stage in this proof is to show that (xd[ AMJii E I) is a basis for 

the (R/ A)-module M/[ AM]. Let Ll"EI (rd A)xd[ AM] be a linear combination 
of the family and set it equal to the zero, (/[AM]. Then Lid r;x)[ AM] = 
(/[AM]. (LiEI r;x;)/[ AM] = (/[AM]. LiEI r;X; E [AM]. There exist s; in A 
such that Lid r;X; = LiEI S;X;. LiEI (r; - s;)x; = (. r; - S; = fJ for all i E I. 
r; = s; for all i E I. Since s; EA we must also haver; EA. r)A = 8/A for all 
i E I. Thus the family is linearly independent. 

To show that the family generates the module let x/[AM] EM/[ AM]. 

ThenxEMandx = LiEir;x;forsomer;ER.xj[AM] = (LiE 1 r;x;)j[AM] = 

LiEI r;x)[AM] = LiEI (r)A)xd[AM]. Therefore (xd[AMJii E I) generates 
the (R/A)-module M/[ AM]. 

Having established the previous results for an arbitrary ideal A of R 
we now choose a maximal ideal A of the commutative unitary ring R (cf. 
Section 2.8). R/A is then a field. The R/A-module M/[ AM] is a vector space 
with a basis, the family (xd[ AMJii E J). So also is the family (yd[ AM]Ii E J), 
as (ydi E J) is also a given basis family for M. We then have two bases for the 
vector space M/[ AM] over the field R/ A. The cardinality or size of I and J 
must be the same. 0 
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One easily establishes that a proper subspace of a vector space has smaller 
dimension than the entire space. However, 2Z is a proper submodule of the 
Z-module Z. The submodule has the basis (2) and the entire module has the 
basis (1). The dimension of the proper submodule and the dimension of the 
entire module are both 1. The basis for the submodule cannot be extended 
to a basis for the entire space. We offer the following theorem. 

Theorem. Let M be a module over a principal ideal domain R and let M have 
a finite basis. If N is a submodule of M then N also has a basis and dim N ::::::; 
dim M. 

PROOF. Let M have the basis (xdi Em). Let Ni = N n [(x1, x2 , ..• , xi)], 
j = 0, 1, ... , m. N 0 = {(}and Nm = N. N 1 = N n [x1] is a submodule of 
x1• Every member of N 1 is a multiple of x1. The multiples themselves (mem­
bers of R) form an ideal of R of which a 1 is the generator. Thus N 1 = [a1x1] 

for some a1 in R. N 1 is either { (} or has a basis of one element. To run an 
induction assume Nk has a basis and the dimension of Nk is ::::::; k. Let A = 
{alaE Rand there exist x EN, bl> b2 , •.• , bk ER such that x = b1x1 + · · · + 
bkxk + axk+ t}. A is an ideal of R. Let ak+ 1 be a generator of A. If ak+ 1 = (} 
then Nk+ 1 = Nk and the induction is complete. If ak+ 1- =I= (}then let wE Nk+ 1 

suchthatw = a 1x1 + ... + akxk + ak+ 1xk+ 1.IfxisanymemberofNk+ 1 

there exists cER such thatx- cwENk. N = Nk + [w]. But Nk n [w] = {C}. 
N = N k $ [ w]. w is an additional basis element and the induction is 
complete. D 

The previous theorem can also be proved for nonfinite bases. 
For modules without bases it becomes important to assign them a finite 

quality whenever possible, that of being finitely generated. A module is 
finitely generated if it is generated by a finite family. 

Corollary. Let M be a .finitely generated module over a principal ideal domain 
R. If N is a submodule of M then N is also finitely generated. 

PRooF. Let M be generated by the finite family (y 1> y2 , • •• , Ym). Let<'p: Rm -+ M 
such that q>(ei) = yi, j = 1, 2, ... , m, and (eilj Em) is the standard basis. 
q> is an epimorphism. The preimage q> - 1(N) is a submodule of Rm, the free 
module, and therefore q> - 1(N) must also have a finite basis (dl> d2 , ••• , dk), 
k ::::::; m. [ q>(d1), q>(d2 ), ••• , q>(dk)] = N. D 
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The module of morphisms 

In this chapter we continue our development of linear algebra. We study 
the module of morphisms, the module made from collecting together all the 
morphisms from one module to another. The coordinate morphism provides 
the tie between the module of morphisms and the module of m by n matrices. 
The collective structure of the module of morphisms is further extended 
through composition to produce the algebra of endomorphisms and the 
corresponding algebra of square matrices. Through the use of the matrix of a 
morphism and the coordinates of a vector we calculate the images of mor­
phisms in the traditional way. 

Through change of basis we explore the relation of equivalence of matrices 
and search for bases which produce exceptionally simple matrix representa­
tion of morphisms: canonical forms. We further link the transpose of a 
matrix to the dual of a morphism and use this tool in the study of the rank of 
a matrix. 

In the section on linear equations we study the complete solution oflinear 
equations justifying the earlier methods introduced in Appendix 6A. We 
show that every matrix with entries in a field is row equivalent to a unique 
matrix in row-reduced echelon form. 

The section on determinants is highly detailed and is based upon permuta­
tions. It is the traditional constructive approach to determinants. A reader 
preferring perhaps a more elegant approach can consult [3, p. 98]. One of 
our motives here is to give the student a working knowledge of permutations 
and the associated kinds of manipulative mathematics. 

7.1 .P(M, M'), the module ofmorphisms 

In this section we investigate the module structure of the set of all mor­
phisms from one module M to another module M', both over a commutative 
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unitary ring R. We define the matrix of amorphism and set up the fundamen­
tal correspondence between morphisms and matrices. 

Definition. Let M, M' be modules over R, a commutative unitary ring. By 
!l'(M, M') we mean the set of all morphisms from M to M'. 

!l'(M, M') is a set of functions, a subset of the set M'M of all functions 
from M to M'. The additive group structure, (M',+,('), immediately 
gives us an additive group of functions, (M'M, +, z), with operations 

(f + g)(x) = f(x) + g(x) for all x EM, 
z(x) = (' for all x EM. 

We do not repeat details here of this construction; consult Section 6.1 for 
a similar discussion in detail. The exterior multiplication on M' from the 
ring R induces an exterior multiplication on M'M, 

(rf)(x) = rf(x) for all r E R, x E M. 

In summary, (M'M, +, z) is an R-module. It is not, however, the module of 
our principal interest. This is the submodule !l'(M, M'). 

Theorem. Let M, M' be modules over a commutative unitary ring R. 
(!l'(M, M'), +, z) is an R-module. 

PROOF. We must establish closure of addition, exterior multiplication. We 
must show !l'(M, M') is nonempty. This will show !l'(M, M') is a submodule. 

Letf, g belong to !l'(M, M'). Both functions are then linear. We now show 
f + g is also linear. (f + g)(u + v) = f(u + v) + g(u + v) = f(u) + f(v) + 
g(u) + g(v) = f(u) + g(u) + f(v) + g(v) = (f + g)(u) + (f + g)(v). 
(f + g)(ru) = f(ru) + g(ru) = rf(u) + rg(u) = r(f(u) + g(u)) = r(f + g)(u). 
f + g E !l'(M, M'). 

Let s E R, f E !l'(M, M'). (sf)(u + v) = sf(u + v) = s(f(u) + f(v)) = 
sf(u) + sf(v) = (sf)(u) + (sf)(v). To prove the homogeneity of sf we must use 
the commutativity of R. (sf)(ru) = sf(ru) = s(rf(u)) = (sr)f(u) = (rs)f(u) = 

r(sf(u)) = r(sf)(u). sf E !l'(M, M'). 
Finally, z belongs to !l'(M, M'). z(u + v) = (' = (' + (' = z(u) + z(v). 

z(ru) = (' = r(' = rz(u). (!l'(M, M'), +, z) is an R-module. 

Having established the module status of !l'(M, M') we begin a discussion 
which will lead ultimately to finding the dimension of !l'(M, M') when M 
and M' are free. We accomplish this aim by the construction of a basis for 
!l'(M, M'). We restrict our attention to modules which have finite bases. 

Theorem. Let M, M' be modules over a commutative unitary ring R. Let 
(xilj E n) be a basis for M and (y;ji Em) be a basis for M'. The family of 
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morphisms (eiiji Em, j En) such that 

e;i(xq) = (' if q # j 

= Y; if q = j, q = 1, 2, ... , n, 

is a basis for .!l'(M, M'). 

PRooF. Since a morphism is uniquely defined by its behavior on the basis 
elements of its domain, each e;i is completely and uniquely defined: 

eii(x) = e;i (I Xkxk) = f Xkeii(xk) 
k= 1 k= 1 

= L Xk(' + Xjyi = XiYi· 
k'f-j 

To complete the theorem we must show (eiili E m, j E n) is a linearly inde­
pendent family which generates .!l'(M, M'). We begin by letting L<i,j)emxn 

r;ieii = z. 

( L riieii) (xq) = z(x4) for any q = 1, 2, ... , n. 
(i,j)em x n 

L r;ieii(xq) = C. 
(i,j)emxn 

Since eii(xq) = (' for all j # q we drop from the sum all terms with j # q. 

L r;qe;q(xq) = (' for any q = 1, 2, ... , n. 
iem 

L r;qYi = ('. 
iem 

We know (y;ji Em) to be a linearly independent family of M'. 

r;q = (} for all i Em and all q En. 

(eiiji Em, j En) is therefore a linearly independent family. 
To show that (eiili E m, j E n) generates .!l'(M, M') we must show that any 

morphism f: M ~ M' can be written as a linear combination of the eii· The 
coefficients will, naturally, depend upon f. For each j En we have f(xi) an 
element of M'. As a member of M', f(x) can be expressed as a linear combi­
nation ofthe family (ydi Em). There exist coefficients in R, Jl(f)1i, Jl(f)2i, ... , 

Jl(f)mi such that 
m 

f(xi) = L Jl(f)iiyi, j = 1, 2, ... , n. 
i=1 

These equations are the defining equations for the matrix off with respect to 
the bases (xijj En), (y;ji Em). The use of the notation Jl(f);i indicates the 
dependence of the coefficients upon f and stands for the matrix of f. The 
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matrix off is the family of coefficients (,u(f)iili Em, j En) = ,u(f). We now 
propose to show that f = L(i,j)emxn ,u(f)iieii; the matrix off provides the 
coefficients for the expression off in terms of the basis family (e;ili E m,j En). 
Both f and Lie m, jen ,u(f)iieii are morphisms in !l'(M, M'). We wish to show 
that they are equal. Two morphisms in !l'(M, M') are equal, of course, if 
they agree upon the basis elements (xilj E n) of the domain. For any q En, 

(. L. .u(f)iieii) (xq) = . L. .u(f);Ai(xq) 
lem,Jen IEm,Jen 

= L ,u(f);qe;q(xq) 
iem 

= L ,u(f);qYi = f(xq). 
iem 

The last equality follows from the defining equations of ,u(f). D 

The proof of the theorem is complete but we repeat now for emphasis the 
definition of the matrix off which occurred naturally in the theorem. 

Definition. Let M, M' be modules over a commutative unitary ring R. Let 
(xiU E n), (y;ji Em) be bases for M, M' respectively. ,u(f), the matrix off, 
is the family (,u(f);ili E m,j En) defined by the equations 

f(xi) = L ,u(f)iiyi, j En. 
iem 

We refer to these equations as the defining equations of the matrix of f. 

We have showed that !l'(M, M') will have a basis (e;ili Em, j E n) of mn 
members when M has a basis of n members and M' has a basis of m members. 
If M is of dimension n and M' is of dimension m then !l'(M, M') is of dimen­
sion mn. In proving the theorem we have linked a matrix from R to every 
morphism of !l'(M, M') and every choice of bases. The matrix, ,u(f), as­
sociated with f depends very much upon the bases chosen in M and M'. 
A change of bases, as we shall see, affects the matrix. 

Before continuing with the development of these concepts we show an 
example. 

EXAMPLE. f: IR1 3 -+ IR1 2 such that f(r 1, r2 , r3 ) = (r1 + 2r2 + 3r3 , r1 - r2 ) is 
a morphism in !l'(IR13, IR12 ). A basis for IR1 3 is the standard one ( (1, 0, 0), 
(0, 1, 0), (0, 0, 1)) and for IR12 also the standard one ( (1, 0), (0, 1) ). The defining 
equations for the matrix off are 
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f(1, 0, 0) = (1, 1) = 1(1, 0) + 1(0, 1) 

f(O, 1, 0) = (2, -1) = 2(1, 0) + ( -1)(0, 1) 

f(O, 0, 1) = (3, 0) = 3(1, 0) + 0(0, 1). 



7.1 !l'(M, M'), the module of morphisms 

The matrix off with respect to the given bases is 

G 
2 

-1 

Since the matrix values yield the coefficients in the linear combination off 

in terms of the family (e;ili E 2, j E 3) we can write f = e11 + 2e12 + 3e13 + 
e21 - e22 . The dimension of £'(1R3, IR 2 ) is 2 · 3 = 6. 

It is to be noticed that when the defining equations for the matrix are 

written the rows and columns are transposed in the array. 

f(xl) = 11(f)uY1 + 11Uh1Yz + · · · + Jl(f)mlYm 

f(xz) = J1(f)12Yl + Jl(fhzyz + · · · + Jl(f)mzYm 

It will be necessary then when extracting the coefficients from the defining 

equations to interchange the positions of rows and columns to obtain the 

matrix Jl(f) = 

( 

Jl(/)u Jl(/)12 · · · Jl(f)ln) 
Jl(/)21 Jl(fhz ' ' ' Jl{J)zn 

Jl(f)ml Jl(f)mz · · · Jl(f)mn 

A morphism from a module of dimension n to a module of dimension m 

leads to a matrix which has m rows and n columns. 

A further example and an observation of interest is to find the matrices 

that correspond to the e;i themselves. 

eij(xl) = eyl + eyz + ... + 8y; + ... + 8ym 

eu(xz) = eyl + eYz + ... + eyi + ... + eym 

eij(x3) = eyl + eyz + ... + eyi + ... + eym 

eii(xn) = eYl + eYz + · · · + ey; + · · · + eYm· 

e e e e 

e e e e 

V e +--row i 

e e .. · e .. · e 

t 
columnj 
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To show how the matrix off depends upon the choice of bases for M and 
M' we calculate the matrix off, the same morphism as before in the example, 
f(r 1, r2 , r3 ) = (r1 + 2r2 + 3r3 , r1 - r2 ), with different bases. We let the bases 
be ( (1, 1, 0), (1, 0, 1), (0, 1, 1)) for ~3 and ( (1, 1), (0, 1)) for ~2 . Any two bases 
could serve as an example. We now calculate the defining equations for the 
matrix for these bases. We know from substitution 

f(1, 1, 0) = (3, 0) 

f(1, 0, 1) = (4, 1) 
f(O, 1, 1) = (5, -1). 

To complete the calculation we must express each of these elements as a 
linear combination of the basis elements ( (1, 1), (0, 1) ). We look for coefficients 
such that 

(3, 0) = r11(1, 1) + r21(0, 1) 

(4, 1) = ru(1, 1) + r 22(0, 1) 

(5, -1) = r13(1, 1) + r23(0, 1). 

Solutions for these equations are 

r 11 = 3 

r 12 = 4 

r 13 = 5 

r21 

r22 

r23 

= -3 
= -3 
= -6. 

The matrix off with respect to this pair of bases is 

The appearance of a basis (eiiJi Em, j En) for the R-module !l'(M, M') 
allows us to speak of the coordinate isomorphism L:Rmxn-+ !l'(M, M') 
associated with this basis. We wish to compare this mapping with the just 
defined matrix mapping .u:!l'(M, M')-+ Rmxn which assigns to each mor­
phism f its matrix .u(f). 

Theorem. Let M, M' be modules over a commutative unitary ring R. Let 
(xJ; E n) be a basis for M and (y;Ji Em) be a basis for M'. Then the co­
ordinate isomorphism L:Rmxn-+ !l'(M, M') and the matrix mapping 
.u:!l'(M, M')-+ Rmxn are inverse functions. 1he matrix mapping is also an 
isomorphism. 

PROOF. ,u(L(rijJi Em, j E n)) = .U(Liem,jen rijeij) = (rijJi Em, j En) . .U 0 L = I, 
the identity. L(,u(f)) = L(,uii(f)Ji Em, j En) where f = Liem,jen .u(f);ieii· 
L(.u(f)) = f. L o .u = I. L and .u are inverse functions. Since L is an iso­
morphism so also is J.l.· D 
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Establishing that J.l is an isomorphism yields for us standard rules about 
matrices such as the matrix of the sum of two morphisms is the sum of the 
matrices and the matrix of the scalar multiple of a morphism is the scalar 
times the matrix of the morphism. 

QUESTIONS 

1. Let R be a commutative unitary ring and M, M' be modules with finite bases. Which 
of the following statements are true? 

(A) Jl(f + g) = Jl(f) + Jl(g) for all f, g E 2'(M, M'). 
(B) Jl(rf) = rJl(f) for all rE R, f E 2'(M, M'). 
(C) Jl(f) = Jl(g) implies f = g for all f, g E 2'(M, M'). 
(D) For each (rijli Em, j En) in Rm x" there exists an f in 2'(M, M') such that 

Jl(f) = (rijli E m,j En). 
(E) None of the statements is true. 

2. 2'(M, M') is not an R-module for noncommutative rings R because 
(A) 2'(M, M') is not closed under addition 
(B) the function rf for rE R, f E 2'(M, M') is not well defined 
(C) the function rf fails to be additive in some cases 
(D) f + g is not necessarily homogeneous. 

(E) None of the alternatives completes a true sentence. 

3. If the finite dimension of a module M is n and that of M' is m, both over a com­
mutative unitary ring R, then 

(A) 2'(M, M') may fail to have a basis, but if 2'(M, M') does have a basis it is 
finite 

(B) 2'(M, M') may have an infinite basis because there is no guarantee that 
all sums are finite 

(C) 2'(M, M') has dimension mn, but 2'(M, M') does not necessarily have a 
basis 

(D) 2'(M, M') has finite dimension. 
(E) None of the alternatives completes a true sentence. 

4. Which of the following are the defining equations for the matrix of a morphism? 
(A) (rijli Em, j En) E Rm x" if and only if rij ER for all i Em, j En. 
(B) (rijli E m,j En) + (sijli E m,j En) = (rij + sijli E m,j En). 
(C) Jl(rf + sg) = rJl(f) + SJl(g) for all r, sE R, f, g E 2'(M, M'). 
(D) f(x) = Ir~l Jl(f)ijY;,} = 1, 2, ... , n. 

(E) None of the above equations is the defining equations for the matrix of a 
morphism. 

EXERCISES 

1. Let f: IR 3 --+ IR 3 such that f(s 1, s2 , s3 ) = (2s1 + s2 + s3 , s1 + s2 , 2s1 + 2s3 ). Find 
the matrix, Jl{f), associated with the standard bases in both domain and codomain. 
Express f as a linear combination of the family of morphisms ( eij I i E 3, j E 3). 

2. Let g: IR 3 --+ IR 3 such that g = - 2e11 + 4e12 - e13 + 19e22 + 7e31 - 4e33 • 

What is g(s 1, s2 , s3 )? Find Jl(g). 
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3. Let /:02 -> 0 3 such that f(s~> s2 ) = (2s1 + s2 , St. s1 - 3s2 ), g:02 -> 0 3 such 
that g(s1, s2 ) = (3sl> 4s1 + 3s2 , s1). Using the standard bases for both 0 2 and 
0 3 find ,u(f) and ,u(g). Findf + gin 9'(02, 0 3). Find ,u(f + g). Verify ,u(f + g) = 

.u(f) + .u(g ). 

4. Using the same functions defined in Exercise 3 find the matrices off and g with 
respect to bases ( (1, 2), ( -1, 3)) and ( (1, 1, 0), (0, 1, 1), (2, 1, 4) ). 

5. Let f: IR2 -> IR3 be a morphism and have matrix 

(H) 
with respect to the standard bases. Find bases for IR2 and !R3 so that the matrix 
of f with respect to these bases is 

6. Let the standard bases be given for the vector spaces IR 3 and IR2• Find the matrix 
of e12 , amorphism of !l'(IR3, !R2). 

7. Let M, M' be vector spaces over a field K. Let M have a finite basis of n members 
and M' have a finite basis of m members. Prove K(f) + K(g) ::::;; n + K(f + g) 
and p(f + g) ::::;; p(f) + p(g) where K stands for nullity and p stands for rank. 

8. In the text we have discussed the matrix of a morphism when each module has 
a finite basis. The defining equations for the matrix of a morphism are f(x1) = 

Liem ,u(f);1y;,j en. Correspondingly for infinite bases the defining equations for a 
(infinite) matrix would be f(x1) = Li.r ,u(f)iiy;,j e J. 
(a) Let f:(IRN+)w-+ (IRN+r such that f(skrk e 1\J+) = (sk + sH 1 Ik e 1\J+). With re­

spect to the standard basis (e;ji e 1\J +) in both domain and codomain find 
.u(f), the matrix of f. 

(b) Letg:(IRN+)w-> (IRN+rsuch thatg(sklke 1\J+) = (sk + sH 1 + sk+ 2 + · · ·lke 1\J+). 
Find ,u(g) with respect to the standard bases in both domain and codomain. 
Notice that in every column of ,u(g) there are only a finite number of non­
zero entries. Contrast this with the rows of ,u(g). What can you say of the sum 
L!i.JleixJ .u(f)iieii and of the family (e;1li, j) e I x J) as a basis for !l'(M, M')? 

9. Let the £:-modules z• and zm be given andf:Z"-> zm such thatf(sl> s2 , ••• , s.) = 

(L:J= 1 a11s1, D= 1 a2p1, •.. , D= 1 ~1s1) where aii are constants, members of Z. 
Find the matrix off with respect to the standard bases. 

10. Give an example of a vector space endomorphism which is a monomorphism 
but not an epimorphism. Give an example of a vector space endomorphism which 
is an epimorphism but not a monomorphism. 

11. Let g be a given endomorphism of a vector space M. Define a function qJ: !l'(M, 
M) -> !l'(M, M) such that qJ(f) = g a f. Prove that qJ is itself a morphism. Can 
every member of !l'(M, M) be obtained as an image of qJ? 
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7.2 Composition of morphisms, 
the endomorphism algebra l&"(M) 

In this section we consider composition of morphisms and its relation to 
multiplication of matrices. We construct the algebra of endomorphisms of 
a module. 

We begin with a theorem on composition. 

Theorem. Let M, M', M" be modules over a commutative unitary ring R. 
Let (xklk E p), (Yilj E n), (zdi Em) be finite bases for M, M', M", respec­
tively. Let f E .!l'{M, M'), g E .!l'{M', M"). Then g of E .!l'{M, M") and 
Jl(g 0 f) = Jl(g)Jl{f). 

PROOF. It is quite routine to verify that the composition of two morphisms 
is amorphism. We turn therefore to the more difficult part of the conclusion, 
computing the matrix. The defining equations of the matrices Jl{f) and 
Jl(g) are 

f(xk) = L Jl{j)ikYi• k E p, 
jen 

g(yi) = L Jl(g)iiz;, j E n. 
iem 

To find the matrix of g o f we compute its defining equations 

(go f)(xk) = g(f(xk)) = g ( ~ Jl(f)ikYi) 
)en 

= :L JlU)jkg(yj) 
jen 

= :L JlU)jk :L Jl(g)ijzi 
jen iem 

= .L [ ~ Jl(g)ijJl{f)jk] Z;. 
1em ]En 

Comparing this result with the defining equations of Jl(g of), 

(g o f)(xk) = L Jl(g o f);kz;, 
iem 

we have, because coefficients are unique, 

Jl(g o nik = :L Jl(g)ijJlU)jk· 
jen 

This, however, is a matrix product {cf. Section 6.6), 

(Jl(g 0 f)ikli Em, k E p) = (Jl(g)ijli E m,j E n)(Jl{f)jklj En, k E p). 

Jl(g 0 f) = Jl(9)Jl{f). 

The matrix of the composition of two morphisms is the product of the 
matrices. o 
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We now give an example to illustrate the previous theorem. 

ExAMPLE. Let IR 3, IR 2, IR4 be given with the standard bases. Let f: !R3 --+ !R2 

such that f(r 1 , r2 , r3 ) = (r1 + r2 , r 1 + r 3 ) and g: IR 2 --+ IR4 such that 
g(st. s2 ) = (s1 + s2 , 2s1 + 4s2 , s1 - s2 , 2s1 + s2 ). The matrices off and 
g are found from the defining equations of the matrices. 

f(1, 0, 0) = (1, 1) = 1(1, 0) + 1(0, 1), 

f(O, 1, 0) = (1, 0) = 1(1, 0) + 0(0, 1), 

f(O, 0, 1) = (0, 1) = 0(1, 0) + 1(0, 1). 

g(1, 0) = (1, 2, 1, 2) = 1(1, 0, 0, 0) + 2(0, 1, 0, 0) + 1(0, 0, 1, 0) + 2(0, 0, 0, 1), 

g(O, 1) = (1, 4, -1, 1) = 1(1, 0, 0, 0) + 4(0, 1, 0, 0) - 1(0, 0, 1, 0) + 1(0, 0, 0, 1). 

(1 1 0) 
Jl(f) = 1 0 1 . 

1 

2 
Jl(g) = 1 

2 -t) 
The composition off and g, go f: IR 3 --+ IR4 is g(s 1, s2 ) = g(f(rt. r2 , r3 )) = 
(r1 + r2 + r1 + r 3 , 2(r1 + r2 ) + 4(r1 + r3 ), r 1 + r2 - (r1 + r3 ), 2(r1 + r2 ) + 
r1 + r 3 ) = (2r1 + r2 + r3 , 6r1 + 2r2 + 4r3 , r2 - r 3 , 3r1 + 2r2 + r3 ). 

The defining equations for the matrix of g of are 

(g 0 f)(1, 0, 0) = 2(1, 0, 0, 0) + 6(0, 1, 0, 0) + 0(0, 0, 1, 0) + 3(0, 0, 0, 1), 

(go f)(O, 1, 0) = 1(1, 0, 0, 0) + 2(0, 1, 0, 0) + 1(0, 0, 1, 0) + 2(0, 0, 0, 1), 
(go f)(O, 0, 1) = 1(1, 0, 0, 0) + 4(0, 1, 0, 0) - 1(0, 0, 1, 0) + 1(0, 0, 0, 1). 

Jl(g 0 f) = ( ~ ~ -; ) . 

3 2 1 

In accordance with the theorem 

Given f, g E !£(M, M') it is not possible to compose f and g to produce 
go f unless domain g equals codomain f. If we desire !£(M, M') to be 
closed under composition then we must have M = M'. We are led to 
consider !£(M, M), the set of endomorphisms of the module M, in order 
to have a structure closed under addition, R-exterior multiplication, and 
composition. We denote the module of endomorphisms of M by lff(M); 
lff(M) = !£(M, M). 
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Theorem. Let R be a commutative unitary ring and M an R-module. Then 
(rff(M), +, o, z, I) is a unitary R-algebra. 

PROOF. We know that rff(M) = !l'(M, M) is an R-module. The second binary 
operation for rff(M) is composition. The composition of two morphisms is 
another morphism. With respect to composition on rff(M), the neutral 
element is I, the identity function on M. The following properties will 
establish rff(M) to be an R-algebra: 

h o (g of) = (h o g) of for all f, g, h E rff(M), 

(g + h) of = g of + h of for all f, g, h E rff(M), 

h o (g + f) = h o g + h o f for all f, g, h E rff(M). 

r(f o g) = (rf) o g = f o (rg) for all rE R, f, g E rff(M), 

f o I = I o f = f for all f E rff(M). 

We discuss now the verification of these properties. That composition of 
functions of any kind is associative we established in chapter one. The 
next equation follows simply from the definition of addition of functions. 
( (g + h) o f)(x) = (g + h)(f(x)) = g(f(x)) + h(f(x)) = (g o f)(x) + (h of) 
(x) = ( (g of) + (h of) )(x). The left distributive law, unlike the right, 
depends upon morphism properties as well as function properties. 
(h o (f + g) )(x) = h( (f + g)(x)) = h(f(x) + g(x)) = h(f(x)) + h(g(x)) = 
(h o f)(x) + (h o g)(x) = ( (h of) + (h o g) )(x). The next property relates R­
exterior multiplication to the composition. (r(f o g) )(x) = r(f(g(x))) = 

rf(g(x)) = (rf)(g(x)) = ( (rf) o g)(x) and (r(f o g) )(x) = r(f(g(x))) = 
f(rg(x)) = f( (rg)(x)) = (f o (rg) )(x). The property of the identity function 
we have used often before. D 

Because (rff(M), +, o, z, /)is a ring of vectors (not the ring R) it is often 
called the ring of endomorphisms of M. Ring, however, does not completely 
describe the situation because it makes no mention of the R-exterior multi­
plication. An algebra is a ring, but with another ring (of scalars) "behind" 
the ring of vectors. 

ExAMPLE. rff(IR 2), the ring of endomorphisms of the IR-vector space IR 2 

includes f and g such that f(rb r2 ) = (r1 + r2 , r1 - r2 ) and g(sb s2 ) = 
(2s1 - s2 , s1 + 2s2 ). Then (f + g)(rb r2 ) =(3rt> 2r1 + r2 ), (go f)(rb r2 ) = 

(r1 + 3r2 , 3rd, (f o g)(r1, r2 ) = (3r1 + r2 , r 1 + r2 ). 

The isomorphisms of M into M are called, as usual, automorphisms. 
We represent the set of automorphisms of M with the symbol d(M). 

Theorem. Let M be a module over a commutative unitary ring R. (d(M), o, I) 
is a group. 
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PRooF. The composition of two automorphisms is also an automorphism. 
I is an automorphism and every automorphism has an inverse which is 
also an automorphism. D 

We now show how the extra properties of the structure of S(M) carry 
over to the matrices. 

Theorem. Let M be a module over a commutative unitary ring R and let 
(xdi En) be a finite basis for M. Then the endomorphism algebra S(M) 
and the matrix algebra Rn x n are isomorphic. 

PRooF. With respect to the basis (x;ji En), used for both domain and eo­
domain, we have already showed that the matrix mapping p.:.P(M, M)~ 
Rn xn is a module isomorphism. We have also proved that p.(g of) = p.(g)p.(f). 
This additional formula shows that the composition of the algebra S(M) 
is preserved in the matrix multiplication of Rn x n. The matrix mapping 
p.:S(M) ~ Rnxn is an algebra isomorphism. This isomorphism does depend 
upon the basis choice. D 

Because the algebra of square matrices and the algebra of endomorphisms 
are isomorphic the invertible matrices are simply the matrices of invertible 
morphisms under the matrix mapping. But we know that an endomorphism 
is invertible if and only if it is an automorphism. A matrix is invertible if 
and only if it is the matrix of an automorphism. 

Detailed examples of calculations with matrices and their inverses 
related to automorphisms will be given in the exercises. 

QUESTIONS 

1. The equation p(g of) = p(g)p(f) ofthis section 
(A) shows that matrices can be multiplicatively cancelled 
(B) shows that composition of morphisms is preserved in multiplication of 

matrices 
(C) will show that p(jl) = p(f)2 by setting g = f 
(D) shows that the matrix of z, the zero morphism, cannot have a multiplicative 

inverse. 
(E) None of the alternatives completes a true sentence. 

2. Which of the following are true? 
(A) An epimorphism of a finite dimensional module into itself is an auto­

morphism. 
(B) A monomorphism of a finite dimensional module into itself is an auto­

morphism. 
(C) Every isomorphism of a finite dimensional module into itself is an 

automorphism. 
(D) Any endomorphism f of a module M satisfies the relation f(kernel f) ~ 

kernel f. 
(E) None ofthe sentences is true. 
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3. Which of the following are true? 
(A) (aiili E m,j E n)(b;kli En, k Em) = (Liem a;jbkilj En, kEn). 
(B) (a;ili E m,j E n)(bjlj En) = (Lien aiibili Em). 
(C) (aiili E m,j E n)(biklj En, kEn) = (a;kli Em, kEn). 
(D) (aiili E m,j E n)(biklj En, k E p) = (Lien aiibikli Em, k E p). 

(E) None of the products is correct. 

4. Which of these statements are true? 
(A) It is possible to compose two nonzero endomorphisms of a module M to 

produce the zero endomorphism, z. 
(B) It is possible to multiply two nonzero matrices to produce the zero matrix. 
(C) Every nonzero endomorphism of a vector space M has an inverse. 
(D) If f o g = f o h for endomorphisms f, g, h of a vector space M and f has 

no inverse then g #- h. 

(E) None of the statements is true. 

EXERCISES 

1. Prove that the composition of two morphisms is a morphism. 

2. Prove that the composition of two automorphisms is an automorphism. 

3. Let M be a free module over a commutative unitary ring R and (xilj En) a finite 
basis for M. Prove the following: 
(a) f-!(f) has an inverse in R" x • if and only if f has an inverse in .C(M) if and only 

ifjE d(M). 
(b) If r 1 exists then f-!(f) - 1 = /-l(r 1 ). 

(c) f-!(1} = b = (biili E n,j En). Recall bii = e if i #- j and equals v if i = j. 

4. Let f, g E .C(~ 3) such that f(r 1, r2 , r3 ) = (2r1 - r2 , 2r1 + r2 , r1 + r2 ) and g(s1, 

s2 , s3 ) = (s1 + s2 + s3 , s1 - s2 + 2s3 , 3s1 - s2 + 5s3 ). Using the standard basis 
for ~3 find f-!(f), f-!(g), f-t(g of) and verify that f-t(g of) = J-l(g)f-l(f). Prove f is an 
automorphism. Find f- 1 . Find f-!(f- 1). Verify that f-!(f)Jl(f- 1) = Jl(f- 1)J1(f) = b. 

Show that g is not an automorphism. Is g o f an automorphism? 

5. Given the matrix 

(
1 2 

3 0 

1 -1 ~) 
use the following procedure to find its inverse. Regard the matrix as the matrix of 
an endomorphism f of ~3 with respect to the standard basis. Determine the formula 
for the endomorphism f. See whether f is an automorphism. If f is an automorphism 
find its inverse automorphism f - 1. Find the matrix off - 1• Verify that the matrix 
found is indeed the inverse matrix of the given matrix. 

6. Let M, M', M" be finite dimensional vector spaces over a field K. Let dim M = p, 

dim M' = n, dim M" = m. Let f E !l'(M, M'), g E !l'(M', M"). Let p stand for rank 
and K stand for nullity. Show 
(a) p(g of) ~ min{p(f), p(g)} 
(b) K(g of);;:, max{K(f), K(g)} if p = n 

(c) ker(g of) = ker f EB [ker(g of) - ker f] 
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(d) K(g of) ~ K{f) + K(g) 
(e) p(f) + p(g) ~ p(g of) + n. 

7. Let f be a nonzero endomorphism of a vector space M. Let there exist a number 
n such that f" is the zero morphism (f 2 = f of, Ji+ 1 = Ji of). Show 
(a) there exists a smallest natural number m so that fm = z 
(b) there exists an a E M such that fm- 1(a) # C 
(c) (a,!( a), ... , r- 1(a)) is a linearly independent family of M 
(d) f([a,f(a), ... • r- 1(a)]) ~ [a,f(a), ...• r- 1(a)]. 

7.3 Matrix calculation of morphisms 

In this section we calculate morphisms by matrix multiplication. 
We will be able to calculate the values of a morphisms by multiplying the 

coordinates of a vector by the matrix of the morphism. 

(
Jl{f)u Jl{j)12 · · · Jl{f)ln) (X1) 
Jl{Jhl Jl{fb · · · Jl{Jhn X 2 

. . . . .. 

Jl(f)m1 Jl{f)m2 . . . Jl(f)mn xn 

Before stating precisely our theorem we repeat a definition from Section 7.1. 
For a morphismf:M-+ M' and finite bases (xili En) for M, (ydi Em) for M' 
the defining equations of the matrix Jl{j) are 

f(xi) = L Jl(f)iiyi, j En. 
iem 

In finding the values of a morphism in matrix form we shall use these 
equations. 

Theorem. Let M, M' be modules over a commutative unitary ring R. Let 
f:M-+ M' be amorphism. If f(LJ= 1 Xixi) = Li= 1 YiYi then 

( ~~~:: ~~~:: ::: ~~~::) (~:) = (i). 
Jl{f)m! Jl{f)m2 · · · Jl{f)mn X n Ym 

In more abbreviated form the last equation is Jl{j)X = Y. 

PROOF. f(Lj=l Xixi) = Lj=l XJ(xi) = Lj=l XiLl=l Jl(f)iiYi = Li'=l 
(Lj= 1 Jl(f)iiXi)Yi· A comparison with Li'= 1 YiYi yields Y; = LJ= 1 Jl{f)iiXi 
for each i Em because representations in terms of the basis (ydi Em) must be 
unique. Y = (Y;Iiem) = (LienJl{f)iiXiliem) = (Jl{f)iiliem,jen)(Xiljen) = 
Jl{f)X by the rule for multiplication of matrices. D 

We wish now to observe that this theorem makes correspond two func­
tions, one, the morphism f from M to M' and, two, the multiplication by 
the matrix Jl(f) taking R" to Rm, the domains for the coordinates of M and M'. 
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We locate these two functions on a diagram. 

f 
M-------~ M' 

Lx and LY are the coordinate morphisms, now hopefully quite familiar. We 
have denoted the function left multiplication by the matrix Jl(f) with the 
symbol Jl{J)·. We here are making a distinction between the matrix Jl{f) 
and the function of left multiplication by Jl{J). The diagram leads one to 
investigate the equation Jl(f)· = L; 1 of o Lx. This assertion is correct and 
is essentially the content of the theorem. 

(L; 1 of o LJ(X) = L; 1(f(Lx(Xijj E n))) = L; 1 (1 Ct
1 
Xix)) 

= L; 1 Ct1 Xjf(xj)) = L; 1 Ctl xi it1 Jl(f)ijYi) 

= L; 1 (t1 (J1 Jl(f)ijxj) Y;) = Ct1 Jl(f)iiXili Em) 
= Jl{J)(Xjlj En) = Jl(f)X. 

Therefore, L; 1 a f o Lx = Jl(f)·. 

EXAMPLE. Let/:~3 -+ ~ 3 such thatf(rt. r2, r3) = (2r1 + r2 + r3 , r1 + r2, 
2r1 + 2r3 ). Using the standard bases in both domain and codomain Jl(f) is 

G i ~) 
The equation relating the coordinates is 

If we wish, for example, to find the coordinates off(x) when x has coordinates 
( -1, 6, 3) then we calculate 
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which is 

Left multiplication by the matrix off, J.l(f), to compute the coordinate 
image off could have been as well right multiplication. For example, in the 
calculation of the previous example we can write 

(7 5 4) = ( -1 

More generally, 

if and only if 

(
2 1 

6 3) 1 1 
1 0 

f1.(f)m1) 
f1.(f)m2 

''' J.l(f)mn 

(Y1 Y2 ''' Ym) = (t1 XjJ.l(fhj, • • •' jt1 XiJ.l(f)mj) 

if and only if 

if and only if 

n 

Y1 I Jl.(f)1jxj 
j= 1 

n 

y2 L Jl.UhjXj 
j= 1 

n 

Ym L J.l(f)mjX j 
j= 1 

( 
Y1) ( Jl.U)u y2 = Jl.(fh1 
. . . . .. 
Ym Jl.(f)m1 

J.l(f)l2 ' ' ' Jl.(f)1n) (X 1) 
J.l(fh2 · · ' J.l(fhn X 2 

f1.(f)m2 ' ' ' J.l(f)mn X n 

And more briefly from the two ends of the equation sequence, Y* = X* J.l(f)* 
if and only if Y* = (Jl.(f)X)* if and only if Y = J.l(f)X. 

The decision to use left multiplication of matrices or right multiplication 
of matrices is a matter of taste. It is also a matter for choice whether to write 
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function values f(x) as we have done or to write xf as do many linear algebra 
texts. A reader of mathematics must be prepared for and accept many 
notational variations. 

Since we shall use the transpose matrix J.L(f)* again we now note some of 
its properties in a theorem. The transpose A* of a matrix A is a matrix C where 
cji = Aij for all j En, i Em. 

Theorem. Let R be a commutative unitary ring. The transpose function 
- *: Rm X n ---> R" X m with value A* for each A E Rm X n enjoys these properties: 
(A + B)* = A* + B*, e* = 8, (rA)* = rA* for rE R, A, BE Rmxn. More­
over, when a product AB is defined then also is defined B* A* and (AB)* = 
B*A*. The function -*:Rnxn---> Rnxn is an algebra isomorphism (actually 
anti-isomorphism). 

PROOF. The easy verifications here are left to the reader. The order of matrix 
multiplication is reversed under transposition; hence, we have called trans­
position an anti-isomorphism. D 

In Section 7.2 we showed that J.L(g of) = Jl(g)Jl(f). We now offer a diagram 
of the involved functions including the matrix multiplication of coordinates. 
We hope the diagrams facilitate a better understanding of the functions 
involved. 

gof 

I f " \ M---------+ M'-------- M" 

RP---------+R"---------+Rm 
\ p(f)· p(g)· I 

Jl(g 0 f)· = Jl(g)Jl(f)· 

For the diagram it is understood that we are assuming the existence of bases 
for M, M' and M" which are respectively (xklk E p), (yjlj En) and (zdi Em). 
The diagram illustrates the equation Jl(g o f)· = L; 1 o (g o f) o Lx = 
L; 1 0 g 0 Ly 0 L; 1 0 g 0 LX = Jl(g)· 0 Jl(f)·. 

The matrix of a morphism depends, of course, upon the bases used in M 
and M' to compute the matrix. A different basis choice will result in a different 
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matrix. So also does the choice of basis affect the isomorphism L between 
the space of coordinates and the module. We put again the question about 
how to choose bases in M and M' to produce a simple matrix. We offer one 
answer in the form of a theorem based upon the fundamental theorem of 
Section 6.9. 

Theorem. Let M, M' be finite dimensional K-vector spaces and f:M--+ M' 
amorphism. Then there exist bases (xili En) and (Yil Em) for M and M' 
with n = dim M, m = dim M' such that J.l(f)ii = !Jii for i ~ rank f, 
j ~ rank f and J.l{f)ii = () otherwise. ' 

PROOF. In less compact notation the matrix J.l(f) described in the conclusion 
of the theorem is 

V () () () () () 

() V () () () () 

() () V () () () 

f.l(f) = with precisely rank f entries 
() () () V () () equal to v. 
() () () () () () 

() () () () () () 

The theorem is a simple consequence of the theorem proving n = nullity f + 
rank f. A basis (xp+ 1, xp+ 2, ... , xn) is chosen for kernel/, a subspace of M, 
where p = rank f. These basis elements for the kernel are numbered at the 
end so that columns of all zeros will be located on the extreme right of the 
matrix. The basis (xp+ h xp+ 2, ... , xn) for the subspace is extended to a basis 
{x1, x2, ... , xP, xp+l• xp+ 2, ... , xn) for all of the space M. The extendj.ng 
basis elements are listed first, remembering that any permutation of a basis ~f 
also a basis. For M' we first choose (f(x1), f(x2), ... , f(xp)) which is a has~ 
for range f, a subspace of M'. This basis is then extended, if necessary, to ra 
basis {f{x1),f(x2 ), •.• ,f(xp), Yp+ 1, ... , Ym) of M' in a purely arbitrary manner. 
The defining equations of the matrix off are then 

f(x1) = vf(xd + 8f(x2) + · · · + 8f(xp) + ()yP + 1 + · · · + ()ym 
f(x2) = 8f(xl) + vj(x2) + · · · + 8f(xp) + ()yp+ 1 + · · · + ()ym 

f(xp) = ()j(x1) + ()j(x2) + ... + vf(xp) + ()yP + 1 + ... + ()ym 

f(xp+ 1) = 8f(x1) + 8f(x2) + ... + ()j(xp) + ()yp+ 1 + ... + ()ym 

f(xn) = ()j(xl) + ()j(x2) + · · · + ()j(xp) + ()yP + 1 + · · · + ()Ym· 

The matrix is now read off the defining equations. 
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The simplicity of this matrix comes from the fact that f takes the first 
basis element of M into the first basis element of M', the second basis element 
of M into the second basis element of M', and so forth until the rank is 
exhausted, then the rest of the basis elements of M into the zero vector of M'. 
Thus by choosing precisely the right bases the morphism has become par­
ticularly simple viewed in matrix form. One could say that if a morphism of 
vector spaces looks complicated then one must have basically the wrong 
point of view. The problem of choosing bases to produce a simple matrix 
will be revisited in Chapter 10. This last theorem leads us naturally into the 
next section for a complete discussion of change of basis. 

QUESTIONS 

1. Let M, M' be modules over a commutative unitary ring R. Let (xijj En) and (y;ji Em) 
be finite bases for M and M'. Letf:M--> M' be amorphism. Which of the following 
statements are true? 

(A) f: M --> M' is an isomorphism if and only if JI(f)·: R" --> Rm is an isomorphism. 
(B) f:M--> M' is an isomorphism if and only if dim M= dim M'. 
(C) Dim M= dim M' only if Lx and Ly are both isomorphisms. 
(D) If r 1 exists (as a function) then r 1 = LX 0 JI(f)- 1· 0 L; 1. 

(E) None of the statements is true. 

2. Let M, M' be modules over a commutative unitary ring R. Let (xilj En) and (y;ji Em) 
be finite bases for M and M'. Let f: M --> M' be a morphism. Which of the following 
are true? 

(A) If f(x) = Le m Aijy;,j En, then A = ji(f). 
(B) If Jl(f);i = ~ii for all i, j and n ,-:;; m then f is a monomorphism. 
(C) If Jl(f)ii = ~ii and m < n then f is an epimorphism. 
(D) If Jl(f)ii = ~ii and m = n then f is an isomorphism. 

(E) None of the statements is true. 

3. Which of these sentences are true? 
(A) (Jl(f)*) - 1 = (Jl(f) - 1 )* for all isomorphisms f. 
(B) (Jl(g)Jl(f) )* = Jl(g)* Jl(f)* when both products are defined. 
(C) Jl(g of)* = p,(g)* Jl(f)* when the composition and product are defined. 
(D) ~· = ~ for the n by n identity matrix ~-

(E) None of the statements is true. 

4. Let f:M--> M' be a morphism of finite dimensional K-vector spaces. Which of 
these statements are true? 

(A) If a basis element xi belongs to kernel f then the column (J1(f) 1i, J1Ulzi, . .. , 
J1Ulmil of Jl(f) consists entirely of zeros. 

(B) The morphism f cannot have a matrix with more than n - p columns 
entirely zero (n = dim domain, p = rank f). 

(C) 11U - g) = Jl(f) - Jl(g) for any morphism g:M--> M'. 

(D) a.-:;; mandp .-:;; nwherep = rankf,n = dimdomainf,m = dimcodomainf. 
(E) None of the statements is satisfactory. 
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ExERCISES 

1. Let f: IR3 --+ IR2 be given such that f(r~> r2 , r3 ) = h - r2 , r3 ). Find Jl(f) with 
respect to the standard bases for IR3 and IR2 . Calculate directly f(1, 2, 3) from the 
given formula for f. Calculate f(1, 2, 3) by matrix multiplication. Compare the 
two results. 

2. Using the same formula for f as given in Exercise 1 compute the matrix off with 
respect to the bases ( (1, 1, 0), (1, 0, 1), (0, 1, 1)) and ( (1, 1), (0, 1) ). Calculate the 
coordinates of (1, 2, 3) with respect to the new bases (requires solving some linear 
equations). Multiply by the matrix off to obtain the coordinates of f(1, 2, 3). 
Verify that these are the coordinates of f(1, 2, 3). 

3. Let f: CP. 2 --+ Q3 such that f(r 1, r2 ) = (2r1 + r2 , r1, r1 - 3r2 ) and g: CP. 2 --+ Q3 

such that g(r~> r2 ) = (3r1, 4r1 + 3r2 , rt). Find with respect to the standard bases, 
Jl(f) and Jl(g). Calculate using Jl(f) and Jl(g) the values of f(1, 2) and g(1, 2). Find 
Jl(f + g) and calculate the value of (f + g)(1, 2). 

4. Let f:CP. 6 --+ Q3 such that f(r1, r2 , r3 , r4 , r5 , r6 ) = (r1 + r2 , r3 + r4 , r5 + r6 ). 

Find Jl(f) with respect to the standard bases. Find Jl(f)*, the transpose of Jl(f). 

Find f(- 5, 5, 1, 2, -1, 2) first using left multiplication by Jl(f) and then by using 
right multiplication by Jl(f)*. 

5. Let f: IR2 --+ IR3 such that fh, r2 ) = (r1 + r2 , r1 - r2 , 2r1 + r2 ) and g: IR3 --+ IR2 

such that g(s~> s2 , s3 ) = (2s1 - s2 , 3s3 - s2 ). Find go f. Find with respect to the 
standard bases the matrices Jl(f), Jl(g), Jl(g of). Verify Jl(g of) = Jl(g)Jl(f). 

6. Let f:IR2 --+ IR3 such that f(r~> r2 ) = (r1 + r2 , r1 - r2 , 2r1 + r2 ). Find bases for 
the domain and the codomain off so that the matrix off is a matrix of only O's 
and l's and the number of l's denotes the rank of f. 

7. Give examples from some tff(M) to show that there exist endomorphisms f, g 

such that f o g = g o f and there also exist endomorphisms f, g such that f o g # 
go f. [Hint: Use tff(IR2) and look at matrices.] 

8. Let M beaK-vector space. For endomorphisms f, g E tff(M) show that this im­
plication is not always true 

f o g = z implies g o f = z. 

9. Suppose it be given that f:IR 3 --+ IR3 is an endomorphism and that f(1, 1, 1) = 
(0, 1, 0), f(2, 1, 0) = (2, 1, 1), f(3, 1, 0) = (3, 0, 1). Find the matrix off with respect 
to the standard basis of !R3• 

10. Let f: IR3 --+ IR3 be given such that f(O, 0, 2) = (0, 0, - 2), f(t, t, 1) = (0, 1, -1 ), 
f(O, -1, 3) = (t, - t, 3). What is the matrix off with respect to the standard bases? 
What is the rank off? 

11. Prove directly from the definition of matrix transpose that (BA)* = A*B*. Prove 
that A is nonsingular (has an inverse) if and only if A* is nonsingular. 

12. Show that the set of matrices { ( _ ~ :)1 a, bE IR} is a field. Shorten your argu­

ment as much as possible by using the results from the text. 
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13. Let A, B be matrices with entries in a field K. Show that rank (A + B) ~ rank A + 
rank B when the sum is defined. 

14. Let A, B be matrices with entries in a field K and let the product BA be defined. 
Show that rank A + rank B - n ~ rank BA ~ min {rank A, rank B} where n = 

number of rows of A. 

7.4 Change of basis 

In this section we discuss change of basis in a module, computation with 
the change of basis matrix, elementary changes of basis, and a connection 
of change of basis with solving linear equations. 

The point of view used to find the matrix of a morphism can be turned to 
find the matrix of change of basis. The change of basis matJ:ix is that matrix 
by which one multiplies the coordinates with respect to one basis of a vector 
to produce the coordinates with respect to a different basis. We find this 
matrix by finding the matrix of the identity morphism with respect to the 
two bases in question. 

Theorem. Let M be a module over a commutative unitary ring R. Let (xili En) 
and (uili E n) be two finite bases for M. Then the coordinates U of a vector x 
with respect to the basis (uili En) are related to the coordinates X with 
respect to the basis (xili E n) by the equation 

U = J.lxu(J)X. 

Moreover, the change of basis matrix J.lxuU) is an invertible matrix. 

PRooF. J.lxuU) is the change of basis matrix because multiplying the (xiU En) 
coordinates of a vector by 1-lxuU) produces the (uili En) coordinates. 

We consider the identity isomorphism J:M-+ M using the basis (xili En) 
for the domain and the basis (uiii En) for the codomain. The situation is 
summarized in this diagram. 

I 
M -----=-----+M 

Rn--------~Rn 

Jlxu(I)· 

The matrix J.lxuU) has defining equations 

I(xj) = L Jlxu(I);iu;, i E n. 
ien 
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But since J(xi) = xi these equations are simply 

xi = L Jlxu(l)ijui> i En. 
ien 

By the principal theorem of Section 7.3 the coordinates X of the vector x are 
related to the coordinates U of x = J(x) by the equation 

U = Jlxu(l)X. 

As Jlxu(l) is the matrix of an isomorphism it is invertible. 0 

Every change of basis matrix is invertible and conversely every invertible n 
by n matrix can define a change of basis on an n-dimensional free module. 
For simplicity we let Jlxu(l) = P and make our diagram of change of basis as 
follows. 

As shown in the diagram, to change the "old" coordinates X to the "new" 
coordinates U we multiply X by an invertible n by n matrix P on the left. 

U=PX. 

P·: R" -+ R" is, of course, an isomorphism. 

ExAMPLE. Two basis for 0 3 are x = ( (1, 0, 0), (0, 1, 0), (0, 0, 1)) and u = 
( (1, 1, 0), (1, 0, 1), (0, 1, 1) ). 

(1, 0, 0) = P11(1, 1, 0) + P21(1, 0, 1) + P 31(0, 1, 1) 
(0, 1, 0) = Pu(1, 1, 0) + P22(1, 0, 1) + Pn{O, 1, 1) 
(0, 0, 1) = P13(1, 1, 0) + P23(1, 0, 1) + P33(0, 1, 1) 

are the defining equations for the change of basis matrix, Jlxu(l) = P. We 
must solve for the various entries, P11 , P12 , ••• , P33, to know the matrix P. 
This requires solution oflinear equations, for example, 
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Pu + P21 = 1 
Pu + P31 = 0 
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These equations are solved by reduction to echelon form. 

1 1 0 1 1 0 1 0 1 0 1 0 
1 0 1 0 0 -1 1 -1 0 1 0 .!. 

2 
0 1 1 0 0 0 2 -1 0 0 1 1 -2 

1 1 0 1 1 0 1 0 1 0 0 t 
0 -1 1 -1 0 1 -1 1 0 1 0 t 
0 1 1 0 0 0 2 -1 0 0 1 1 -2 

1 1 0 1 1 0 1 0 Pu = t 
0 -1 1 -1 0 1 -1 1 p21 = t 
0 0 2 -1 0 0 1 1 

p31 = 1 -2 -2· 

Thus, 
(1, 0, 0) = !(1, 1, 0) + !(1, 0, 1) - t(O, 1, 1). 

In a similar manner one can find 

(0, 1, 0) = t(l, 1, 0) - t(l, 0, 1) + t(O, 1, 1) 
(0, 0, 1) = -t(l, 1, 0) + t(l, 0, 1) + t(O, 1, 1). 

The matrix Jlxil) = P is then 

u 1 

-~) 2 
1 -2 2 . 

t .!. 
2 

On the other hand the matrix taking u coordinates to x coordinates is gotten 
from the defining equations, 

(1, 1, 0) = 1(1, 0, 0) + 1(0, 1, 0) + 0(0, 0, 1), 
(1, 0, 1) = 1(1, 0, 0) + 0(0, 1, 0) + 1(0, 0, 1), 
(0, 1, 1) = 0(1, 0, 0) + 1(0, 1, 0) + 1(0, 0, 1). 

~J)~G ~ D 
The two matrices, 

( ; -! -;) and (~ ~ ~), 
-2 t 2 0 1 l 

are inverses of each other. The two change of basis equations are U = PX 
and X= p- 1 u, 

249 



7. Linear algebra: The module of morphisms 

Having seen the change of basis matrix we now observe how the matrix of 
a morphism is altered by changes of basis in the modules. 

Theorem. Let M and M' be modules over a commutative unitary ring R. Let 
(xilj En) and (uilj E n) be finite bases for M and let (ydi Em) and (vdi Em) 
be finite bases for M'. Then the matrices off and the change of basis 
matrices are related by the equation 

PROOF. The following diagram illustrates the mappings involved. 

We know from our earlier theorems: 

J.Luv{f)· = L;; 1 o f o Lu; 

JLx,(f)" = L; 1 0 f 0 Lx; 

P· = JLxu(/M)· = L;; 1 o Lx; 
Q· = JLyv(IM')· = L;;1 o Ly. 

We combine these equations. 

f.Luv(f)· = L;; 1 o f o Lu = L;; 1 o (Ly o JLxy(f)· o L; 1) o Lu 

= (L;; 1 o Ly) o JLxy(f)· o (L; 1 o Lu) 

= Jlyv(I M')" 0 JLxy(f)· 0 JLxu(I M)- 1 " 

= Q· o JLxy(f)· o p-1. = QJLxy(f)P-1·. 

It is to be carefully noticed that the change of basis matrices P and Q are 
always invertible. The matrices off are invertible if and only if f happens 
to be an isomorphism. D 

EXAMPLE. Letf:Q3 -+ 0 2 such thatf(r1, r2 , r3) = (r1 + 2rz + r3, r1 - rz + 
r3). For Q3 we use the two bases ( (1, 0, 0), (0, 1, 0), (0, 0, 1)) = x and ( (1, 1, 0), 
(1, 0, 1), (0, 1, 1)) = u. For Q2, the codomain, we use the bases y = ((1, 0), 
(0, 1)) and v = ( (1, 1), (0, 1) ). From the defining equations 
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(1, 0) = 1(1, 1) + ( -1)(0, 1), 
(0, 1) = 0(1, 1) + 1(0, 1), 
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we have the coordinate equation with matrix Q, V = Q Y, 

(~) = (- ~ ~) (i} 
We have the matrix P from the previous example all worked out. 

Jlxy(f) = G 2 1) 
-1 1 . 

J.luv{J} = /1yv(I M' )Jlxy(f)Jlxu(I M) - 1 = QJixy(f)P- 1• 

= (-~ ~)G 

t -t) 1 1 
-2 2 

1 1 
2 2 

We now discuss elementary change of basis matrices. In Section 6.8 we 
discussed three elementary changes of basis: 

I. The interchange of two basis elements 
11. The adding of a multiple of one basis element to another basis element 

Ill. The multiplying of one basis element by an invertible scalar. 

Each of these changes has a corresponding change of basis matrix which we 
find from the defining equations of the change of basis matrix. Noting care­
fully the form of these defining equations, already written out for us in 
Section 6.8, we recopy them here in detail for clarity in all three cases.·· 

I. 
X; = U;, i "# p, q 

Xp = Uq 

Xq =uP 

becomes in detail to show all the coefficients 

x 1 = vu1 + Ou2 + · · · + OuP + · · · + Ouq + · · · + Oun 
x2 = Ou1 + vu2 + · · · + OuP + · · · + Ouq + · · · + Oun 
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From these equations we obtain the matrix J.lxu(J) which we call in this case 
E(p, q). 

V () 

() V 

() () 
E(p, q) = 

(i 

() 

() 

() 

() 

V 

() 

() 

9 row p 

() () V () () +-row q 

() () O···v 

t t 
column p column q 

This matrix E(p, q) looks just like the n by n identity matrix {> except for 
having rows p and q interchanged. The inverse of E(p, q) found from the 
inverse equations is also E(p, q). 

II. 
X;= U;, i "# q 

Xq = Uq + ruP" 

x 1 = vu1 + Ou2 + · · · + OuP + · · · + 9uq + · · · + Ou, 
X2 = 9u1 + vu2 + · · · + ()uP + · · · + Ouq + · · · + Ou, 

xP = Ou1 + Ou2 + · · · + vuP + · · · + Ouq + · · · + Ou, 

x, = Ou1 + Ou2 + · · · + (}uP + · · · + Ouq + · · · + vu,. 

These defining equations yield the matrix J.lxu(J), which we name in this case 
E(r, q; p). 

V () 

() V 

() () 
E(r, q; p) = 

() () 

() 

() 

V 

() 

() 

() 

r 

V 

() 

() 

() +-row p 

() +-row q 

()() () O···v 

t t 
column p column q 

This elementary change of basis matrix differs from the identity matrix in 
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having r times row q added to row p. From the equations of u in terms of x 
the inverse can be determined to beE( -r, q; p). 

Ill. 
X;= U;, i # p 

xP = suP, s invertible. 
Xt = vul + Ou2 + ... + OuP + ... + Oun 
x2 = Oul + VUz + ... + OuP + ... + Oun 

These defining equations yield a change of basis matrix we call E(s; p). 

V 0 
0 V 

E(s; p) = 0 0 

0 

0 

s 

0 
0 

0 . +-row p 

0 0 ... 0 ... V 

t 
column p 

This matrix differs from the identity matrix in having row p multiplied by 
the scalars, a unit of R. The inverse of E(s; p) can be found from the inverse 
equations to be E(s -l; p). 

In all three cases E(p, q), E(r, q; p), E(s; p), of the elementary change of 
basis matrices, the "new" coordinates U with respect to the new basis u are 
related to the "old" coordinates X with respect to the old basis x by the 
matrix equations 

I. U = E(p, q)X 
11. U = E(r, q; p)X 

Ill. U = E(s; p)X. 

An application of such elementary change of basis matrices can be made 
to the problem of solving linear equations. We illustrate this for the case 
when the coefficients of the equations lie in a field. We have earlier illustrated 
the method of solving simultaneous linear equations by reduction to row­
reduced echelon form. Three elementary operations on linear equations 
were presented at that time. 

I. Interchange of two equations 
Il. Adding a multiple of one equation to another 

Ill. Multiplying an equation by an invertible constant. 
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Beginning with a system of m linear equations in n unknowns with coefficients 
in a field 

AuXt + A12X2 + · · · + AtnXn = B1 
A21X1 + A22X2 + · · · + A2nXn = B2 

Am1X1 + Am2X2 + · · · + AmnXn = Bm 
we put the equations in matrix form. 

L Aljxj 
jen 

L A2jxj 
jen 

The left side factors yielding 

A21 : : : A1n) (X 1) ( B1 ) A22 A2n X2 B2 
= . . . . . .. 

Am2 · · · Amn X" Bm 

The system of m linear equations in m unknowns is equivalent to the matrix 
equation AX = B as written above. Each of the three elementary trans­
formations or operations on the system of linear equations can be ac­
complished by left multiplication on both sides of the matrix equation by 
elementary change of basis matrices of types I, 11, Ill. A matrix is in row­
reduced echelon form if and only if 

i. rows entirely zero are below any row with some nonzero entries 
2. the first nonzero entry in any row is a v, called an initial v 
3. above and below every initial v occur only zeros 
4. any initial v in any row must be to the right of any initial v in any row above. 

Thus by procedures like those outlined in our earlier presentation on linear 
equations matrices can be reduced to row-reduced echelon form by left 
multiplication by elementary change of basis matrices of types I, 11, and Ill. 
In both equivalent situations we have, however, only given informal direc­
tions on reducing to the row-reduced echelon form. That we can always 
obtain such a form and that it is unique will be settled in Section 7.6 later. 
We wish also in this later section to explain more fully the relationship be­
tween the linear equations and the vector spaces. 

ExAMPLE. The equations 
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X1 + X2 + x3 = 3 
X1 - X3 = 1 

X2 + 2x3 = 2 
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are put into matrix form 

We multiply on the left by E(- 1, 1; 2). 

(- ~ ~ ~) (~ ~ - ~) (~ :) (- ~ ~ ~) (~) . 
o o 1 o 1 2 X3 o o 1 2 

(~ -: -~) (~;) H) 
We then multiply byE( -1, 2; 3) to get 

Then by E( -1; 2) yielding 

Next by E( -1, 2; 1) yielding 

(1 0 -1) (X 1) _ (1) o 1 2 X 2 - 2 . 
o o o X 3 o 

This is equivalent to the system 

X 1 - X3=1 

X2 + 2x3 = 2 
0 = 0. 

This example was also worked out in the earlier section on linear equation 
solutions. The reader should assure himself that the same work is performed 
in both cases. 
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QUESTIONS 

1. Which of the following statements are true? 
(A) Every change of basis matrix is invertible. 
(B) Every change of basis matrix is square. 
(C) Every square invertible matrix is a change of basis matrix for some pair 

of bases. 
(D) Every square invertible matrix is the matrix of some automorphism. 

(E) None of the sentences is true. 

2. Which of the following equations are true? We presume the notation of this section. 
(A) U = PX and V= QYand Y = AX imply V= QAPU. 
(B) Jl-uv(f) = Jl-ux(J)P,xy(/)JJ-yv(J). 
(C) L;; 1 o Lx = JJ.x(/). 
(D) L; 1 o L. = Jl-ux(J). 

(E) None of the statements is true. 

3. ~= o(rl'"r)wing ;·(·r-~ ~)in co:::d(rrr)lon '::'(~ ~ 0~)· 
000 001 000 00 

(E) None of the matrices is in row-reduced echelon form. 

4. Which of the following matrices can be change of basis matrices? 

(A) G ~) (B) G ~) (C) G ~) (D) G !). 
(E) None can be change of basis matrices. 

EXERCISES 

1. Write down the defining equations for each of the three elementary change ofbasis 
matrices E(p, q), E(r, q; p), E(s; p). Find the defining equations and the matrices of the 
in verses of each of the three elementary changes of basis. 

2. Given the vector spaces 0 2 and 0 3 first with the standard bases and then with the 
new bases ( (1, 2), ( -1, 3)) and ( (1, 1, 0), (0, 1, 1), (2, 1, 4) ), find the change of basis 
matrices Jl-x.(J) and P,y.(J) for both spaces. For the morphism f:02 -+ 0 3 such that 
f(r 1, r2 ) = (2r1 + r2 , rh r1 - 3r2 ) find Jl-xy(f) and p,..(f) verifying the theorem 
of this section. 

3. Let f: IR 3 -+ IR2 such that f(r 1, r2 , r3 ) = (r1 + r2 + r3 , r1 - r2 + r3 ). Find the 
matrix off, JJ-xy(f), using the standard bases in both spaces. Find J.L.J.f) using for 
u the basis ( (1, 1, 0), (1, 0, 1), (0, 1, 1)) and for v the basis ( (1, 1), (0, 1)). Find both 
change of basis matrices and check the equation p,..(f) = Jl-yv(J)p,xy(f)p:xJ..I)- 1• 

4. Let R be a field. We define two matrices A and B in Rm x • to be equivalent matrices 
if and only if A and Bare both matrices of some one morphism f:R•-+ R•. Note 
that the choice of bases to produce A and B will usually be different. Prove that this 
relation is an equivalence relation on Rm x •. Show that any matrix A is equivalent 
to some matrix C where C;j = ()ii, for 1 ~ i, j ~ p and Cii = (} otherwise. p is 
the rank of the morphism of which A is the matrix. [Hint: See Section 7.3.] 
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5. Let g:Br-+ IR3 such that g(r1, r2 , r3 , r4 ) = (r1 - r2 , r2 - r3 , r3 - r4 ). Find bases 
for R4 and IR3 such that the matrix of g has the form of C described in Exercise 4. 

6. Let (xh x2 , x 3) be a given basis for IR3. Show that (x1 + x2, x2 + x 3, x3 + xd 
is also a basis for IR3• What is the change of basis matrix? 

7. Let R be a field We define A, Bin R"x" to be similar matrices if and only if they 
are both matrices for some one endomorphism f in ..s'(R"). This is to say A will be 
the matrix off for some basis choice and B will be the matrix off for some other 
basis choice for R". The same basis must be used for both domain and codomain. 
Prove that this relation of similarity is an equivalence relation on R" x ". 

8. Let f:M-+ M' be amorphism of the free modules M, M' over a commutative 
unitary ring R. Let (xijj En) and (y;ji Em) be bases for M and M' respectively. 
We do not assume the bases to be finite. Show that the equation Y = Jlxy(f)X still 
holds where X and Y are the coordinates of x e M and f(x) e M'. 

9. If the matrix off: 0 3 -+ 0 2 with respect to the bases ( (1, 1, 0), (1, 0, 1), (0, 1, 1)) 
and ( (2, 1~ (1, 2)) is 

(1 2 4) 
3 1 1 

then what is the matrix of the morph ism f with respect to the standard bases? 

7.5 The dual space 

The dual of a module is defined and the dual of a morphism is defined 
and correlated with the transpose of a matrix. The rank of a matrix is de­
fined, characterized, and correlated with the rank of a morphism. 

Definition. Let M be a module over a commutative unitary ring R. The 
R-module !l'(M, R) is called the dual module or dual space of M and is 
denoted by M*. 

We now find a basis for M* in terms of a given basis for M. 

Theorem. Let M be a module over a commutative unitary ring R. If (xijj En) 
is a finite basis for M then there exists a basis (xiji En) for M* such that 
xi(xi) = buv for all i, j E n. 

PRooF. (v), the singleton family of the unity of R, is a basis for the ring R 
considered as a module over itself. For the space !l'(M, R) we have the 
basis (e1ijj En) such that e1i(xq) = v if q = j and = () if q =1: j. We simply 
rename this basis so that we write e1i as xi. We note that the superscript is 
not a power of x, obviously. Each xi belongs to !l'(M, R) = M* and the 
family (xiji En) is a basis for M*. The basis has 1 · n = n members. D 

For the finite dimensional module, the dual module M* has the dimension 
of M. M and M* are therefore isomorphic modules. Once again we remind 
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the reader that not all modules have bases and the theorem only concerns 
modules with given finite bases. 

As well as the dual of a module we have also the dual of a morphism. 

Definition. Given that M, M' are modules over a commutative unitary 
ring R and that f: M --+ M' is a morphism we define the dual morphism 
off to be the mappingj*:(M')*--+ M* such thatf*(y) = y of. 

Whereas the original morphism f is directed from M to M', the dual 
morphism f* is directed from the dual, M'*, to the dual, M*. One might 
write the dual morphism f* as the function - of understanding the nota­
tion to mean the function with value y o f at y. This diagram may help in 
remembering the definition of the dual morphism. 

M f M' 

j>(y)~y~ / 

R 

We must now verify that the dual "morphism" is indeed amorphism. 

Theorem. Let M and M' be modules over a commutative unitary ring R and 
f:M--+ M' amorphism. Then f*:M'*--+ M* is also amorphism. More­
over, if f is an isomorphism so also is f* an isomorphism. 

PROOF. f*(x + y) = (x + y) o f = X of + y of = j*(x) + j*(y). j*(ry) = 
(ry) of = r(y of) = rf*(y). f* is a morphism. If f is an isomorphism so 
also is f- 1 :M' --+ M an isomorphism. Given y E M* there exists in M'* 
the linear mapping y o f- 1 . f*(y o f- 1) = y o f- 1 of= y proves f* is 
surjective. If f*(x) = f*(y) then we have x of = y of. Composing on the 
right with f - 1 yields x = y proving f* injective. D 

Notationally, we can represent the operation of taking duals of modules 
and morphisms as (f: M --+ M')* = (f*: M'* --+ M*). In the exercises of 
this section we shall develop some further properties of the dual. Now, 
however, we move immediately to the very important fundamental relation­
ship between the matrix of amorphism and the matrix of the dual morphism. 

Theorem. Let M and M' be modules over a commutative unitary ring R and 
f:M--+ M' be amorphism. Let (xili En) and (ydi Em) be finite bases for 
M and M', respectively. Then J.l.{j*), the matrix of the dual off with 
respect to the dual bases (y;li Em) of M'* and (xili En) of M*, is the 
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transpose of the matrix J.l(f) with respect to the bases (xj\j En) of M and 
(y;\i E m) of M'. 

PROOF. !E(M, M') has the basis (eij\i E m,j En) where ei}xq) = DiqYi· 
!E(M'*, M*) has a basis we denote by (e1k\l E n, k Em) with e1k(yp) = Dkpx1• 

Bothf andj* are expressible as unique linear combinations of basis elements. 

J = L J.lxy{f)iAj; f* = L J.ly•x·U*he1k· 
iem,jen len,kem 

The definition of j* asserts j*(y) = y of for all yE M'*. In particular, 
j*(yP) = yP of for all p Em. Into this last equation we substitute both of the 

sums for j* and f. 
L J.ly•x·U*)zkelk(yP) = yP 0 L J.lxy(f)ijeij for all p Em. 

(l, k)en x m (i,j)em x n 

L J.ly•Af*)lk DkpX1 = L J.lxy(f)ijyP o eij• pEm. 
(!,k)enxm (i,j)emxn 

Applying both functions to the basis element xq we have 

L J.ly·x·U*)1k Dkpx1(xq) = L J.lxif'}ijyP(eij(xq)) for all q En, p Em. 
(!, k)en x m (i,j)em x n 

L J.ly•x•U)zk Dkp DzqV = L J.lxy(f)ijyP(<)jqy;) for all q En, p Em. 
(l,k)enxm (i,j)emxn 

Remembering the Kronecker delta to be 1 when the subscripts coincide and 
zero otherwise we begin dropping terms from the sums in zero cases. 

J.ly•x•(f*)qp = L J.lxy(f)ij Djq Dpiv for all q En, p Em, 
(i, j)em x n 

= J.lxy(f)pq for all p E m, q E n. 

This proves J.ly•x·(f*) = J.lxy(f)*. The matrix of j* is the transpose of the 
matrix of f. o 

ExAMPLE. The morphism f: IR 3 --+ IR 2 such that f(rb r2 , r3 ) = (2r1 + r2 , 

r1 + r3 ) has J.l.(f) = G ~ _~)with respect to the standard bases in IR 3 

and IR 2• The matrix of j*:(IR2 )*--+ (IR3)* with respect to the standard dual 
bases is 

(~ ~). 
0 -1 

A sample member of (IR2 )* is the mapping y: IR2 --+ IR such that y(r1, r2 ) = 
2r1 + 3r2 • y = 2e1 + 3e2 where e1 and e2 are the members of the standard 
dual basis. The coordinates of y are then 
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The coordinates of f*(y) are 

(~ ~)G) = ( ~)-
0 -1 -3 

EXAMPLE. The element y: ~3 - ~ of (~3 )* with values y(rt> r2 , r3) = 
2r1 - 3r2 + r3 is, of course, a morphism. With respect to the standard 
bases (eb e2 , e3 ) and (1) the morphism has a matrix (2 -3 1). The co­
ordinate equation is 

In the same manner that the dual M* of a given module M exists, so also 
does M* itself have a dual M**. And M** has a dual, M***. The process 
continues inductively. We are able, however, to show that for finite dimen­
sional modules M and M** can be identified. 

Theorem. Let M be a module over a commutative unitary ring R and (xijj en) 
a finite basis for M. Then cp: M - M** such that cp(x) is the following 
member of M**, 

<p(x):M* -+ R with <p(x}(f) = f(x) 

is an isomorphism. 

PRooF. We first show cp to be additive. (cp(x + u) - cp(x) - q>(u))(f) = 

cp(x + u)(f) - cp(x)(f) - cp(u)(f) = f(x + u) - f(x) - f(u) = (} for all 
f eM* and x, u eM. cp(x + u) - cp(x) - cp(u) is the zero map of M**. 
cp(x + u) = cp(x) + cp(u). (cp(rx) - rcp(x) )(f) = cp(rx)(f) - rq>(x)(f) = 
f(rx) - rf(x) = ()for all f eM*, re R, x eM. cp(rx) = rcp(x). 

Suppose now cp(x) = cp(u). cp(x)(f) = cp(u)(f) for all f eM*. f(x) = f(u) 
for all f eM*. In particular, xi(x) = xi(u),for all j en. xi(Li=t X;x;) = 
xi(Li=1 U;x;). Li= 1 X;xi(x;) = Li= 1 U;xi(x;). Ll=1 X; fJi;v = Ll=1 UJJi;v. 
Xi = Ui for allj en. Lj= 1 Xixi = Lj= 1 Uixi. x = u. cp is a monomorphism. 

The dimensions of M, M*, M** are all equal to n. Range q> is also of 
dimension n since nullity cp = 0 and range cp is a submodule.of M**. In 
case M and M** are vector spaces this is enough to prove range q> =M**. 
For modules, however, we argue as follows. Let the basis of M** which is 
dual to the basis (x;li en) of M* be denoted by (x;ji en) . .X1(xi) = t5kiv by 
the dual basis definition. To show that cp is surjective let u e M** and be 
expressed in terms of the basis for M**:u = Lk=1 Ukxk for some uh 
U2 , ••• , Un eR. We are prepared now to show that q>(Lk=t U1x1) = u. 
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(q>(Ll=t U"x,.)- u)(xi) = <D=t U"q>(x")- Lk=t U"x")(xi) 
= Lk=l Uk[q>(xk)(xi)- xk(xi)] 

= Lk=l U"[xi(x,.) - .X"(xi)] 

= Lk=l Uk(bjk - Jkj)v = e. 

Since q>(Li:= 1 U"x") - u is amorphism from M* to R which is zero on all 
the basis elements of M* it must be the zero function from M* to R. 0 

The next definitions and theorems are for the purpose of comparing the 
sizes. of the ranges and kernels. off and f*. This will give valuable informa­
tion about the matrix off and the matrix off*. 

Definition. The annihilator of a submodule A of a module M over a com­
mutative unitary ring R is the following subset of M*. Anh A = { Y!Y eM* 
and y(x) = e for all X EA}. 

Theorem. Let M be a module over a commutative unitary ring R and A a 
submodule of M. Then anh A is a submodule of M*. 

PROOF. Let y, V E anh A. y(x) = e, v(x) = e for all X E A. (y + v)(x) = e 
for all x e A. y + v e anh A. Let re Rand y e anh A. (ry)(x) = ry(x) = re = 
e for all x e A. ry e anh A. Also clearly z, the zero mapping, belongs to 
anh A. Anh A is a submodule of M*. 0 

Theorem. If M is a finite dimensional vector space over a field K and A is 
any subspace of M then 

dim A + dim anh A = dim M. 

PRooF. Let (x1, x2 , ••• , x,.) be a basis for A and extend this to a basis 
(x1, .•• , x", xk+ 1> ••• , x,) for M. This is to include the possibilities of k = 0 
with a basis 0 for A and also of k = n with basis (x1o ... , x,) for A. We 
wish now to establish for the cases k =f. n that (x"+ 1, xk+ 2 , ••• , x") is a 
basis for anh A. The family, as a subfamily of the dual basis, is linearly 
independent. We now show that it generates anh A. Let yE anh A. Be­
cause yE M* we have y = Len cjxi for some cj E K. But e = y(xp) = 
Len cixi(xp) = Len ci biPv = cP for all p = 1, 2, ... , k because Xp EA 
when p = 1, 2, ... , k. Since all coefficients c1, c2, ••• , c" are zero y = 
ck+lxk+l + · · · + c,x". 0 

This theorem was proved only for vector spaces and the results will 
apply only to matrices with entries in a field. 

In a symmetrical manner to the annihilator of a subspace of M if we 
begin with a subspace B of the dual space M* we have a subspace anh B 
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of M**, {uiu EM** and u(y) = e for all yE M*}. Furthermore, dim B + 
dim anh B = dim M**. Using the natural isomorphism <p:M ~M** dis­
cussed in an earlier theorem for finite dimensional spaces we may take 
anh B to be identified with a subspace of M. 

Anh B = {<p(x)lx EM and <p(x)(y) = e for ally EM*} 

= {xlx EM and y(x) = e for ally EM*}. 

We now prove the theorem which shows that rank f = rank f*. 

Theorem. Let M and M' be finite dimensional vector spaces over a field K 
and let f:M ~M' be amorphism. Then 

kernel f* = anh range f 
range f* = anh kernel f 
rank f* = rank f. 

PROOF. Kernel f* = { YIY E M'* and f*(y) = C} = { YIY EM'* and y of = 
(*}. But y o f is the zero vector of M* if and only if (y o f)(x) = y(f(x)) = e 
for all x E M if and only if y annihilates the range of f. Kernel f* = anh 
range f. Now let dim M = n and dim M' = m, rank f = dim range f = p. 

Then dim anh range f = dim M' - dim range f = n - p. By part one of 
this theorem dim kernel f* = n - p also. Dim range f* = dim M'* -
dim kernel f* = n - (n - p) = p which proves part three. To prove part 
twobeginwithuErangef*.u = f*(y)forsomeyEM'*.u(x) = (f*(y))(x) = 
(y 0 f)(x) = y(f(x)) = y((') = e for all X E kernel f. We have therefore, 
range f* ~ anh kernel f. Since dim range f* = dim range f = n - dim 
kernel f = dim anh kernel f we have range f* = anh kernel f. D 

The next theorem applies the result to matrices. 

Theorem. Let (aijli E m,j En) be a matrix with entries in a field K. Then 
there exists a natural number p such that p ~ m and p ~ n and p is the 
maximum number of linearly independent rows of the matrix inK" and p 
is the maximum number of linearly independent columns of the matrix in Km. 

PROOF. Choose K-vector spaces M and M' and bases (xjlj En) and (ydi Em) 
for M and M' respectively. There always exist such spaces, K" and Km, 
for example. Let f be the unique morphism M ~ M' such that Jl(f) = a, 
the given matrix. Let p be the rank of f. p is then ~m because rank f = 
dim range f ~ dim M' = m. p is also the maximum number of linearly 
independent vectors in the family (f(xj)U E n), a generating family for 
range f. Because of the equation dim ker f + dim range f = dim M = n 
we have p = dim range f ~ n. 

f(xj) = Liem Jl(f)ijYi = Liem aijyi implies each f(xj) has coordinates 
(a1j, a2j, ... , am) in M' with respect to the basis (ydi Em). This family of 
coordinates is column number j in the matrix (aijli E m,j En) and is a vector 
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in Km. The maximum number of linearly independent columns of matrix a 
in Km is the same asp, the maximum number oflinearly independent vectors 
in the family (f(xi)Jj En) because the coordinate isomorphism Ly preserves 
linear independence. 

Alternatively, p is also the dimension of the range of j* which has matrix 
a*, the transpose of a. The maximum number of linearly independent 
columns of a* must be p which is dim range j*. However, the columns of a* 
are the rows of a. Hence the maximum number of linearly independent 
rows in K" of a is also p. D 

We are now in a position to define the rank of a matrix. 

Definition. The rank of a matrix with entries in a field K is the maximum 
number oflinearly independent rows or the maximum number oflinearly 
independent columns. 

We will deal with the rank of a matrix with entries in a ring in Chapter 10. 

QUESTIONS 

1. Which of the following statements are true? 
(A) Every member of the dual R-module M* is a morphism. 
(B) Dim M* = n, finite, implies the K-vector space M has dimension n. 
(C) No member of the dual module M* can be a constant function. 
(D) For every module M, M # M*. 

(E) None of the statements is true. 

2. Which of the following statements about the dual morphism f*: M'* --+ M* of R-
modules are true? 

(A) J*(y) = f o y. 
(B) If f - 1 is the inverse off then (f - 1 )* is the inverse off*. 
(C) f is an isomorphism implies f* is also an isomorphism. 
(D) J* E .!l'(M, R). 

(E) None of the statements is true. 

3. Which of the following statements are true? 
(A) The annihilator of a subspace has the same dimension as the subspace. 
(B) The intersection of a subspace and its annihilator is sometimes a zero 

dimensional subspace. 
(C) Kernel f = anh range f for every morphism f. 
(D) yE anh A implies y(x) = lJ for all x EM. 

(E) None of the alternatives is true. 

4. Which of the following statements are true? 
(A) The maximum number of linearly independent columns of a matrix (with 

entries in a field) is the same as the rank of its morphism. 
(B) The maximum number oflinearly independent rows of a matrix (with entries 

in a field) is the same as the maximum number of linearly independent 
columns. 
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(C) If f:M--+ M' is a vector space morphism then rank f = the minimum 
number of generating vectors for range f in the family (f(x 1), .•• , f(x.)) 
where (x1, ... , x.) is a basis of M. 

(D) If f: M --+ M' is a vector space isomorphism then the columns of the matrix 
off form a linearly independent family in Km. 

(E) None of the statements is true. 

EXERCISES 

1. Let ye (IR 3)*, the dual of the IR-module IR3• Suppose the values of y are given by 
y(r1, r2 , r3 ) = 5r1 - 2r2 + r3 . Using the standard bases for IR3 and IR find the 
matrix of the morphism y. Write the matrix equation for computing values of y. 
Write y in terms of the dual basis. 

2. For module M with any infinite basis (xilj e J) show that the dual family (x;li e J) 
is a linearly independent family. Show that the family fails to generate M*. 

3. For any morphisms f, g in !l'(M, M') show that (f + g)* = f* + g*. For any 
morphism fin !l'(M, M') and re R show that (rf)* = rf*. 

4. If f e !l'(M, M') and g e !l'(M', M") then show that (g of)* = f* o g*. 

5. If M and M' have finite bases then !l'(M, M') and !l'(M'*, M*) are isomorphic. 
What is the dimension of the spaces? 

6. Let M, M' be R-modules with finite bases, R a commutative unitary ring. For 
M'* and M* we use the dual bases of the given finite bases. Let f, g e !l'(M, M') 
and re R. Prove these formulas: 

(J..t(f) + J..t(g) )* = J..t(f + g)* = J..l(f* + g*) = J..l(f)* + J..l(g)*. 
J..l(rf)* = J..l( (rf)*) = J..l(rf*) = rJ..l(f*). 

7. Let M, M', and M" be R-modules with finite bases and utilize the appropriate dual 
bases in the dual spaces. Let f e !l'(M, M') and g e !l'(M', M"). Prove (J..l(g)J..l(f) )* = 
J..l(f)* J..l(g)*. 

8. The taking of the transpose of a matrix is a mapping from Rm x • to R" x m. What can 
you say about this mapping with respect to the module structure of Rmxn? What 
of the algebra structure of R" x" in case m = n? 

9. Discuss this diagram: 

!l'(M, M') -----~ !l'(M'*, M*) 

10. Let M be a module over a commutative unitary ring R with finite basis (xiU e n). 
Let (xilj en) be the dual basis for M*. Prove (cp(xi)lj e n) is the basis for M** which 
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is dual to (xili en). [Note: cp:M-+ M** is the mapping defined in a theorem 
of this section.] 

11. Show that in case the module M has an infinite basis then the mapping cp (see 
Exercise 10) is still a monomorphism. 

12. Find the dual basis in (IR3)* of the basis ( (1, 1, 0), (1, 0, 1), (0, 1, 1)) of IR3• 

13. Find all the linear functionals (morphisms) y in (IR3)* which agree in value on the 
vectors (2, 1, 4), (0, 6, 2), and (1, 0, 1). 

14. Given the linear functional y in (IR 3)* such that y(rh r2 , r3 ) = 3r1 - 2r2 + r3 , 

find a basis for the annihilator of [y]. 

15. Let A and C be subspaces of a finite dimensional vector space M. Prove A 5;;; C 
if and only if anh C 5;;; anh A. 

16. Let x and x' be members of the K-vector space M such that y(x) = (} implies 
y(x') = 8 for all y e M*. Show that x' is a multiple of x. 

17. The set of all functions, real-valued, continuous on the real unit interval [0, 1] 
is an IR-vector space. Show that the function y:C[O, 1] -+ IR such that y(f) = 
JA f(t) dt is a member of C(O, 1 ]*. 

18. If M is a nontrivial vector space then M* is also nontrivial. 

19. The subspace { t(1, 2, 3)lt eR} of IR3 has a single vector (1, 2, 3) as a basis. Find the 
subspace of (IR3)* which is the annihilator of the given subspace. Find a basis 
for the annihilator. 

20. If x e IR" and x #- (0, 0, ... , 0) find a member of (IR")* such that f(x) #- 0. 

ll. Let M be a finite dimensional vector space and y be a member of M*. What is the 
dimension of the subspace { xlx e M and y(x) = 8} of M? If y is a nonzero linear 
functional (a member of M*) and k an arbitrary member of the field K is there 
a vector x such that y(x) = k? 

22. Let ( (1, 1, 1), (0, 1, 1), (1, 1, 0)) be a basis for IR3• Find the dual basis in (IR3)*. Find a 
basis for the annihilator of the subspace [(1, 1, 1), (0, 1, 1)]. 

7.6 Linear equations 

In this section we prove theorems on the existence and uniqueness of 
solutions of systems of linear equations. We show that every matrix is row 
equivalent to a unique matrix in row-reduced echelon form. 

Earlier in A~ndix 6A we have discussed the solution oflinear equations. 
We wish now to return to the subject and to use our knowledge of vector 
spaces as an aid to a deeper understanding. It is in this vector space setting 
that we are able to discuss efficiently the existence and nature of solutions. 

The system of m linear equations in n unknowns 

A11X 1 + A12X2 + · · · + A1,X, = Y1 

A21X 1 + A22 X 2 + · · · + A2,X, = Y2 
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with coefficients in a field K is entirely equivalent to the matrix equation 

: : : A1n) ( X 1) ( Y1 ) Azn Xz = Yz . 
. . . . .. 

Amn X" Ym 
A solution 

(::) 
to the matrix equation is a solution X 1> X 2 , ... , X" to the m linear equations 
and vice versa. We abbreviate, as usual, the matrix with A and the matrices 
of X's and Y's with X and Y. We also indicate the matrix A augmented 
with the column matrix Y by A: Y. This is to say 

First we treat existence. 

Theorem. Let A be an m by n matrix with entries in a field K. Let Yb Y2 , . .. , 

Ym E K. The equation AX = Y has at least one solution if and only if 
rank A: Y = rank A. 

PROOF. Choose K-vector spaces M and M' with finite bases of n and m 
members, respectively, say (xjjj En) and (ydi Em). There exists a unique 
morphism f:M--+ M' with matrix p.(f) = A (with respect to the chosen 
bases). The equation AX = Y has a solution if and only if there exists a 
vector x EM, x = IjEn Xjxj, such that f(x) = y, y = LiE m Y;y;, if and only 
if yE range f. We continue with a list of equivalent conditions. yE range f. 
y belongs to the subspace generated by (f(xj)jj En). Dim[f(xd, f(x2), ... , 
f(xn), y] = dim[f(x1), ... , f(xn)J. The maximum number of linearly inde­
pendent vectors in the family (f(x1), ... , f(xn), y) equals the maximum 
number of linearly independent vectors in the family (f(x1), ... , f(xn) ). The 
maximum number of linearly independent columns (in Km) of A: Y equals 
the maximum number of linearly independent columns (in Km) of A. Rank 
A: Y = rank A (Rank A is, of course, equal top, the rank of the morphism 
f} D 

A system oflinear equations with at least one solution is called consistent 
while a system with no solution is called inconsistent. The just proven 
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theorem says that a system is consistent if and only if rank A = rank A: Y. 
We are able to say with this theorem which systems have solutions and 
which do not. For example, a system of homogeneous equations, i.e., equa­
tions for which Y1 = Y2 = · · · = Y, = 8, must have at least one solution 
because rank A = rank A: e. Of course, this is hardly startling news, since 
it is obvious that X 1 = X 2 = · · · = X n = (} is a solution for a homo­
geneous system. 

We now state and prove a theorem about uniqueness of solutions. 

Theorem. Let A be an m by n matrix with entries in a field K. Let Y~> Y2 , • •• , 

Ym belong to K. There is at most one solution for AX = Y if and only 
if rank A= n. 

PROOF. As with the previous theorem we place the problem in a vector 
space setting by choosing K-vector spaces M and M' with finite bases 
(xi\j En) and (y;\i Em). We wish to show there cannot be two distinct 
solutions X, X' such that AX = Y and AX' = Y. It is enough to show 
AX = AX' implies X= X'. But AX = AX' implies X= X' if and only 
if f(x) = f(x') implies x = x' (x and x' are the vectors for which X and X' 
are the coordinates; x = LiEn Xixi, x' = LiEn XjxJ f(x) = f(x') implies 
X = X' if and only if j is a monomorphism if and only if kernel j = { (} if 
andonlyifnullityf = Oifandonlyifrankf = nifandonlyifrankA = n. 0 

ExAMPLES. The system 

X 1 + X 2 + 2X 3 + 2X 4 = 0 
2X 1 + X 2 + 3X 4 = 0 
3X1 + 2X2 + 2X3 + 5X4 = 1 

has a matrix of rank 2 because the rows (1, 1, 2, 2), (2, 1, 0, 3), (3, 2, 2, 5) are 
linearly dependent vectors in IR4 whereas (1, 1, 2, 2), (2, 1, 0, 3) are linearly 
independent. When augmented by the column 

the resulting 3 by 5 matrix has rank 3. Using the notation of the theorem 
rank A = 2, rank A: Y = 3, n = 4. Because rank A: Y -=f. rank A there are 
no solutions. Because rank A -=f. 4 even if there were solutions they would 
not be unique (! ?). 

The system 
X1 + X2 + 2x3 = o 

2x1 + X2 = o 
3X 1 + 2X 2 + 2X 3 = 0 

267 



7. Linear algebra: The module of morphisms 

must have solutions because augmenting the matrix A by a column of zeros 
cannot change the rank. The solutions are not unique because rank A = 2 
and n = 3. 

In general we can note that if m < n, the number of equations is smaller 
than the number of unknowns, then the solutions cannot be unique because 
p~m<n. 

We have now answered the question of existence and uniqueness of 
solutions for AX = Y in terms of the rank of the matrices A: Y and A. 
We turn to explore the nature of these solutions. 

Theorem. Let A be an m by n matrix with entries in a field K. Then the 
solutions of the homogeneous equation AX = 9 form a subspace -of K• 
of dimension n - p, where p = rank A. 

PRooF. Let M and M' be K-vector spaces of dimension n and m, finite, 
with bases (xijj en) and (ydi em). Let f:M-+ M' be the morphism with 
matrix A. X is a solution of the equation AX = 9 if and only if f(x) = C' 
(x = Len Xixi) if and only if x belongs to kernel f. Hence the solutions 
X to AX = 0 form the kernel of the mapping A·. We denote this subspace 
by N. Dim N = nullity A· = nullity f = n - rank f = n - rank A. 0 

For consistent systems, that is, linear systems of equations with a least 
one solution, we have this result. 

Theorem. Suppose A is an m by n matrix with coefficients in a field K and 
Ye K"'. Suppose in addition the equation AX = Y has at least one solution 
X. Then the set of all solutions to AX = Y is a coset X + N of K 11/N 
where N is the n - rank A dimensional subspace of K" which is the set 
of solutions to AX = 0. 

PRooF. We again choose vector spaces M, M' offinite dimension n, m with 
bases (xijj en), (ydi em). Corresponding under the coordinate morphism 
to the set of solutions {XjAX = Y and X e K"} is the set {xjf(x) = y 
and x EM} = /- 1(y). /- 1(y) =F 0 since x e /- 1(y); x = Len Xixi. /- 1(y) 
is the inverse image under a morphism of the coset y + { ('} of M' and must 
itself be a coset of M with respect to some subspace. In fact, the following 
equation holds: 

We leave the proof of this equation to the reader. We denote by N the co­
ordinates of the vectors in kernel J, that is, {XJAX = 0}. Corresponding 
to the set x + kernel f is the set of coordinate X + N. Dimension N = 
dimkerf = n- rank/= n- rank A. 0 
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-1 

1 
0 

7.6 Linear equations 

has rank A = 2, rank A: Y = 2 and n = 3. There exist solutions and they 
are not unique. Actually solving the equations by finding row-reduced 
echelon form gives the solutions X 1 = ( -i)t + 3, X 2 = ( -i)t, X 3 = t. 
In set form we find {((-i)t + 3, (-i)t,t)ltEIR} = (3,0,0) + {t(-i, 
-i, 1)lt E IR}, a coset of IR3 determined by a dimension 1 subspace (see 
Figure 7.1). 

A· 

\ (6, 3, 9) 

Figure 7.1 

In our earlier intuitive introduction to the solution of linear equation 
in Appendix 6A we introduced the method of reducing to row-reduced 
echelon form. We put this method on an intuitive basis in order to enable 
us to be able to solve simple equations as we moved through a study of 
modules and vector spaces. We now return to this problem to show that 
every matrix can be reduced to row-reduced echelon form. We first give a 
slightly more formal definition of the row-reduced echelon form. 

Definition. A matrix A with m rows and n columns with entries in a field 
K is in row-reduced echelon form if and only if 

1. If row i is not all zeros then the first nonzero entry in row i is in column 
k; and is the value v (i = 1, 2, ... , m) 
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2. There is an integer p, 0 ~ p ~ m, such that rows p + 1, p + 2, ... , m 
are all zeros, rows 1, 2, ... , p are not all zeros and k1 < k2 < · · · < kP 

3. The only nonzero entry in column k; is the v in place (i, k;), i = 1, 2, ... , p. 

We follow this definition with a definition of when two matrices are 
row equivalent. 

Definition. m by n matrices, A and B, with entries in a field K are row equiv­
alent if and only if there exists an invertible m by m matrix Q with entries 
in K such that B = QA. 

The elementary row transformations or operations used earlier in the 
solution of linear equations are all equivalent to left multiplication by 
elementary change of basis matrices of type I, 11, or Ill. All three are in­
vertible square matrices. This definition of row equivalence thus includes 
multiplication by one or any finite number of such change of basis matrices. 

We now show that every matrix can be reduced to a matrix in row­
reduced echelon form. More precisely, 

Theorem. Every m by n matrix with entries in a field K is row equivalent 
to a matrix in row-reduced echelon form. 

PROOF. If a matrix has all entries zero then it is already in row-reduced 
echelon form. If not all entries are zero then denote with k1 the column 
number of the first column which is not zero in every row 1, 2, ... , m. By 
interchanging rows (multiplying on the left by an elementary change of 
basis matrix of type I) we can produce a row equivalent matrix with a 
nonzero entry in place (1, k1). By multiplication by a change of basis matrix 
of type Ill we produce a row equivalent matrix with v in place (1, k1). We 
then use elementary change of basis matrices of type 11 to produce a matrix 
with v in place (1, kd and zeros in the rest of column k1• By use of elementary 
change of basis matrices of type I any all zero rows can be placed below 
any row not entirely zero. This begins our induction. 

We now assume that our result holds up to and including row I. 
We then consider row I, 1 ~ I ~ m. If there are v's in places (1, k1),(2, k2 ), ••• , 

(p, kp), p ~ I and k1 < k2 < · · · < kP, zeros in column k; except at place 
(i, k;), i = 1, 2, ... , p and rows p + 1, p + 2, ... , I, I + 1, ... , m are 
entirely zero then the matrix is in row-reduced echelon form. The other 
alternative is that there are v's in places (1, k1), (2, k2 ), ••• , (1, k1) and 
k1 < k2 < · · · < k~o zeros in column k; except at place (i, k;), i = 1, ... , I 
and all rows entirely zero are below any rows not all zeros. Let k1 + 1 be 
the number of the first column with a nonzero entry in any row numbered 
I + 1, I + 2, ... , m. Shift, using an elementary change of basis matrix of 
type I, the nonzero entry to place (I + 1, k1+ 1). Obtain an entry v in place 
(I + 1, k1+ 1) using an elementary change of basis matrix oftype Ill. Produce 
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a matrix with zeros in column k1+ 1 except at place (l + 1, k1+ 1) by repeated 
use of elementary change of basis matrices of type II. Shift all completely 
zero rows below any rows not completely zero by using elementary change 
of basis matrices of type I. This completes the induction. o 

Having showed that every matrix is row equivalent to a matrix in row­
reduced echelon form we show that the rank of a matrix in row-reduced 
echelon form is precisely the number of initial v's that occur in the form. 
Since matrices that are row equivalent necessarily have the same rank, 
reducing a matrix to row-reduced echelon form will provide an efficient 
way of finding its rank. 

Theorem. An m by n matrix in row-reduced echelon form with v's in places 
(1, k1), (2, k2 ), ••. , (p, kp) has rank p. 

PRooF. Regarding the matrix as the matrix of a morphism between two 
vector spaces we note all of the matrices for the same morphism have the 
same rank regardless of basis changes. Multiplication by change of basis 
matrices on the left are due to change of bases in the codomain (second) 
vector space. Hence all row equivalent matrices have the same rank. So 
also do all equivalent matrices produced by changes of basis in the domain 
vector space. Beginning with a matrix in row-reduced echelon form and 
using changes of basis in the domain space, multiplying on the right by 
change of basis matrices, we can produce a matrix with v's in places (1, k1), 

(2, k2 ), .•. , (p, kp) and zeros elsewhere. This is easily accomplished by use 
of elementary change of basis matrices of type II on the columns (right 
multiplication). The remaining matrix is obviously of rank p. The original 
row-reduced echelon matrix must also have been of rank p. 0 

We have showed that every matrix is row equivalent to a matrix in row­
reduced echelon form and consequently every system of linear equations 

A11X1 + A12X2 + · · · + A1nXn = Y1 

A21X1 + A22X2 + · · · + A2nXn = ¥2 

Am1X1 + Am2X2 + · · · + AmnXn = Ym 

with coefficients in a field K can be replaced by an equivalent system 

Xk1 + A!k1+1Xk1+1 + ··· + 8Xk2 + A!k2+1Xk2+1 + ··· + 8Xk + ··· = Y! p 

xk2 + A~Zk2+1xk2+1 + ·· · + oxk + ·· · = Y~ p 

X +···= Y' kp p 

(} = y~+1 
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in which we can solve for p of the unknowns, namely xk,, xkz• ... 'xk 
in terms of the remaining unknowns and Y1, Y2, ... , Y;,.. That Y~ + 1, •.. : 

Y;,. are zero is a necessary and sufficient condition for the consistency of 
the system. The remaining n - p unknowns may be assigned arbitrary 
values yielding a set of solutions which is a coset of Kn/N formed by a 
subspace N of Kn of dimensional n - p. 

Once we know every matrix is row equivalent to a matrix in row-reduced 
echelon form, that every system of linear equations with coefficients in a 
field can be solved by using the row-reduced echelon form, there remains 
the problem of uniqueness of the form. We wish then to show there is only 
one matrix in row-reduced echelon form to which a matrix is row equivalent. 

Theorem. Two row-reduced echelon matrices which are row equivalent are 
identical. 

PROOF. This theorem shows that a matrix can be reduced to a unique 
row-reduced echelon matrix, that variations in procedure will not result 
in producing a different row-reduced echelon matrix. Assume then that 
there are two matrices V' and V" both in row-reduced echelon form and 
both row equivalent to a matrix A. Q' A = V' and Q" A = V" for some 
invertible, change of basis matrices Q', Q". A is an m by n matrix representing 
some morphismfwith respect to some choice ofbases(xilj En) and(y;ji Em) 
for an n dimensional vector space domain and an m dimensional vector 
space codomain. Now let (vili Em) be a basis for the codomain so that V' 
is the matrix off with respect to the pair of bases (xilj En) and (vili Em). 
Let (vi'li Em) be a basis for the codomain so that V" is the matrix off with 
respect to the pair of bases (xilj En) and (vi'li Em). 

The finite sequence of places for the first nonzero entry, v, in each row 
of V' is (1, k!), (2, k2), ... , (p, k~) and for V" is (1, kD, (2, k2), ... , (p, k~). 
The number p must be the same in both cases because p is the rank of the 
matrix and the ranks of row equivalent matrices are the same. It further 
follows that the sequence of places for the two matrices V' and V" must be 
identical. Otherwise, let them differ first in row i:(i, ki) '# (i, ki'). For nota­
tional convenience, assume ki < kj'. Then according to matrix V', dim[f(x1), 

f(x 2 ), •• • ,f(xt;}] = i yet according to matrix V", dim[f(x1),f(x2 ), ... , 

f(xkr)] = i - 1. This contradiction show that the two sequences of places 
are identical. 

By use of the matrices V' and V" we see thatf(xk1) = v; fori = 1, 2, ... , p 
and f(xk,.) = vi' for i = 1, 2, ... , p. Hence v; = vi' fori = l, 2, ... , p. We 
know furthermore that rows p + 1, p + 2, ... , m of both V' and V" are 
all entirely zero from the definition of row-reduced echelon form. The 
defining equations for the matrices V' and V" are then 

f(xi) = V1iv1 + V2iv2 + · · · + V~iv~ + 8v~+ 1 + · · · + Ov;,. 
f( X·) = V".v" + V".v" + · · · + V".v" + 8v" + · · · + 8v" 1 1) 1 2J 2 PJ p p + 1 m 
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with j = 1, 2, ... , n. We know v;i = V;j, i = 1, 2, ... , p, j = 1, 2, ... , n 
because v; = v;', i = 1, 2, ... , p, and because linear combinations in terms 
of basis elements are unique. Thus we know V' = V". D 

QUESTIONS 

1. Let A be an m by n matrix with entries in a field K. Let Y be an m by 1 matrix with 
entries in K. The matrix equation AX = Y has a solution 

(A) if and only if A is an invertible matrix 
(B) if Y has all zero entries 
(C) if Y belongs to the range of the matrix mapping A· 
(D) if the matrix mapping A·:K"-+ Km is an epimorphism. 

(E) None of the alternatives completes a true sentence. 

2. Let A be an m by n matrix with entries in a field K. Let Y be an m by 1 matrix with 
entries in K. The matrix equation AX = Y 

(A) has at most one solution if A·:K"-+ Km is a monomorphism 
(B) has at least one solution if m < n 
(C) has no solutions if the number m > n 
(D) has solutions implies rank A: Y = rank A. 

(E) None of the alternatives completes a true sentence. 

3. Let A be an m by n matrix with entries in a field K. Let Y be an m by 1 matrix with 
entries in K. Which of these statements are true? 

(A) AX = 9 has at least one solution implies AX = Y has a solution. 
(B) AX = 9 has more than one solution implies AX = Y has more than one 

solution. 
(C) AX = Y has more than one solution implies AX = 9 has more than one 

solution. 
(D) If rank A = n then AX = 9 has only trivial solutions (X = 9). 

(E) None of the statements is true. 

4. Let A be an m by n matrix with entries in a field K. Let Y be an m by 1 matrix with 
entries in K. Which of these statements are true? 

(A) The set of solutions for AX = Y is a subspace of Km. 
(B) The set of solutions for AX = 9 is a subspace of K". 
(C) The set of solutions for AX = Y is the set(A·)- 1(Y). 
(D) The set of solutions for AX = Y is a coset X + N where X is a solution 

and N is a subs pace of K". 
(E) None of the statements is true. 

5. Let A be an m by n matrix with entries in a field K. Which of the following statements 
are correct? 

(A) A is row equivalent to some matrix containing only 9's and v's. 
(B) Any matrix row equivalent to A has the same rank as A. 
(C) Any m by n matrix with entries inK with the same rank as A must be row 

equivalent to A. 
(D) AX = Y and BX = Y have the same solution if and only if A and B are 

row equivalent. 
(E) None of the alternatives is true. 
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6. The subset {(X1, X 2 , X3)IA1X1 + A 2X 2 + A 3X 3 = B} of IR3 is 
(A) a linear variety of IR3 for any choice of A~> A 2, A 3, B 
(B) a linear variety of dimension two, if some A~> A 2, A 3, is not 0 
(C) a linear variety of dimension 1 for some possible choices of A~> A 2, A 3, B 
(D) a linear variety of dimension 3 for some possible choices of A1, A2 , A 3 , B. 

(E) None of the alternatives completes a true sentence. 

7. Thesubset{(Xl>X2,X3)IA11X1 + A 12X 2 + A 13X 3 = B1andA21 X1 + A 22X 2 + 
A23X 3 = B2 } of IR3 is 

(A) a linear variety of dimension 1 for all possible choices of A11, A12, ... , 
A23• B1, B2 

(B) a linear variety of dimension 2 for some possible choices of A11 , A12, ... , 
A23, B1, B2 

(C) a subspace of dimension 1 if B1 = B2 = 0 and rank (Au 
A21 

(D) possibly empty. 
(E) None of the alternatives completes a true sentence. 

8. In the IR-vector space IR4 

(A) two planes (2 dimensional linear varieties) may be disjoint yet not parallel 
(B) two hyperplanes (3 dimensional linear varieties) are either parallel or inter­

sect in a line 
(C) two planes can be parallel to the same hyperplane yet not parallel to each 

other 
(D) Sixteen lines can be parallel to the same hyperplane yet no two parallel. 

(E) None of the alternatives completes a true sentence. 

EXERCISES 

1. Solve each of the following systems of linear equations using the row-reduced 
echelon form. The coefficients are presumed in Q. 

(a) 

(b) 

(c) 

(d) 
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x3- 2X4 = -5 

X1 + 6X2 + 4X3 + 6X4 = -15 

X1 + 6X2 + 2X3- 3X4 = -7. 

X1 + X2 = o 
X 2 + X 3 = o 
x3 + x4 = o 
X 4 + X 1 = o. 

2X1 + 5X3 = 4X2 + 2X4 

X1 + 3X3 = X2- x4. 



(e) 

XI = 5+ t 

x2 = -1 + 3t 

X3= 2t 

XI = -3- u 

x2 = -5 + u 

X3= 4 + 2u. 

[Hint for (e): The five unknowns are X 1 , X 2 , X 3 , t, u.] 
(f) 

X1- X2 + X 3 = 4 

-x~ + X2 - X 3 = 1 

2X I - X 2 + X 3 = 3. 

7.6 Linear equations 

2. Prove that an n by n matrix with entries in a field K is invertible if and only if it 
is row equivalent to the n by n identity matrix. 

3. Prove that an n by n matrix with entries in a field K is invertible if and only if it 
is the product of elementary change of basis matrices. 

4. Prove that two m by n matrices with entries in a field K are equivalent if and only 
if they have the same rank. 

5. Solve the following equations in the field of real numbers. 
(a) (b) 

X I + 3X 2 - X 3 = 4 

xl + 2X2 + X3 = 2 

3X1 + 7X2 + X 3 = 9. 

6. Find all solutions of 

2x1 + X2- x3 = 3 

xl + X2 = 2 

xl - x3 = 1. 

2X I - 3X 2 + X 3 = 5 

X I + 2X 2 + 3X 3 = 1. 

Assume the coefficients in Q. 

7. Solve for X~> X 2 , X 3 using the row reduction method over the field R The answer 
will depend on a in IR. 

aX 1 +aX3 =4a 

X 2 + 2X3 = -2 

aX 1 + 6X 2 + 3X 3 = 1. 

8. Is the set {(X~> X 2 , X 3)IX1 + 2X2 + X 3 = 6 and 7X1 + 3X2 - X 3 = 4 and 
4X 1 - 3X 2 - 4X 3 = -14} a subspace or a coset of a subspace of IR1 3? If so 
what is its dimension? 

9. Is there a matrix A such that 

(3 -1) 
A ~ ~ = G 

Is such an A unique if it exists? 
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10. Write {(X1, X 2 , X 3 )jX1 - 2X2 + X 3 = 5} as a coset of a subspace of !R3 • 

11. Solve the equations 
2X 1 - 3X 2 + X 3 = 9 

x, + X 2 - X 3 = 4 

in the field IQ. Also solve these equations 

5X 1 - 2X 2 + 3X 3 = 3 

x, + 4X2 - X 3 = 9 

4X 1 + 5X2 = 15. 

12. For what real values of Y1, Y2 , Y3 do the following equations have a solution and 
what is the solution? 

x, - 2x2 + x3 = Y1 
2X1 + X 2 + X 3 = Y2 

5X2 - X 3 = Y3 . 

13. For what real values of c do the following equations have a real solution? 

X 1 + 2X2 = 1 

2X 1 + (1 + c)X 2 = -1 

(1 - c)X 1 + 3X2 = 2. 

14. If a square matrix A with entries in a field K has a left inverse or a right inverse 
then that left inverse or that right inverse is an inverse of A. Prove. 

15. Write an alternative proof to that given in Section 7.5 for the equality of row rank 
and column rank of a matrix A with the following argument. Let A' be the row­
reduced echelon form for A. Column rank of A = dim of subspace generated by 
the columns of A = dim range A· = n - dim ker A· = n - dim{XjAX = 0} = 
n- dim{XjA'X = 0} = n- (n- numberofinitialonesinA') = numberofini­
tial ones in A' = dim of subspace generated by the rows of A' = dim subspace 
generated by the rows of A = row rank of A. 

7.7 Determinants 

In this section we explore some further properties of permutations then 
define the determinant. We discuss the relationship between the determinant 
and the rank ~f a matrix. 

We begin by classifying all permutations either even or odd according to 
the number of inversions produced by the permutation in an original arrange­
ment of a set. This we do by defining the sign of a permutation in 6m n ;;::: 2, 
as 

e(a) = n 
l:<S;,i<j~n 

Xa(j) - Xa(i) 

xi- X; · 

This somewhat complicated looking symbol is called an alternator; its 
meaning will become clearer in the examples which follow. The upper case 
pi is the product symbol. The purpose of the alternator is to count the number 
of inversions of order between pairs of arguments produced by a permuta­
tion. Such a count can be accomplished without the use of this symbol if one 
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prefers. For n = 2, the alternator is 

( ) Xa(2) - Xa(l) 
ea = . 

x2- xl 

For n = 3, the alternator is 

e(a) = (Xa<3>- Xa<z>)(Xa<3>- Xa<l>)(Xa<z>- Xa<l>). 
(X3 - X2)(X3 - X 1)(X2 - X 1) 

And for n = 4, the alternator is 

( ) (Xa<4> - Xa<3>)(Xa<4> - Xa(2)HXa<4> - Xa<l>) 
ea = 

(X4 - X3)(X4 - X2)(X4- X 1) 

(Xa<3> - x .. (2))(X .. <3> - X .. o>)(X .. <z> - Xa<l>) 
(X3 - X2)(X3 - Xt)(X2 - Xd 

EXAMPLES. In Section 1.8 we worked out the six permutations of 6 3 . For 
several of these six permutations we now compute their sign. We use the 
notation of Section 1.8. 

( ) (Xa.<3> - x ... <z>)(Xa.<3> - x ... o>HXa.<2> - x ... o>) 
e a4 = 

(X3 - X2)(X3 - Xt)(X2 - X 1) 

(Xl - Xz)(Xl - X3)(X2 - X3) 
(X3 - X2)(X3 - Xt)(X2 - X 1 ) 

= ( -1)( -1)( -1) = -1. 

( ) (Xas(3) - Xas(2))(Xas(3) - Xas(l))(Xas(2) - Xas(l)) 
e as = 

(X3 - X 2)(X3 - X 1)(X2 - X 1) 

(X2 - X 1)(X2 - X 3)(X1 - X3) 
(X3 - X 2)(X3 - Xt)(X2 - X 1) 

= (-1)(-1) = 1. 

One can continue and verify that of the six permutations in 6 3 , a 1 , a 3 , as 
have sign 1, and a2 , a4 , a6 have sign -1. Permutations with sign 1 are 
called even permutations (ignore the nonmatching subscripts) and permuta­
tions with sign - 1 are called odd permutations. If we were more committed 
to this notation we would arrange for the even permutations to have even 
subscripts. We intend, however, to introduce soon a different notation for 
permutations. · 

We now show that e preserves the composition of 6n in the multiplication 
of {1, -1}. 

Theorem. e(r o a) = e(r)e(a) for any a, r in 6n, n ~ 2. 

PROOF. Given any pair of natural numbers i,j such that 1 ~ i < j ~ n there 
exist i', j' in {1, 2, ... , n} such that a(i') = i and a(j') = j because a is a 
surjection. i' of j' because a is an injection. Therefore, in the alternator there 
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is a term Xi- Xi = Xau'> - Xa(i'l or a term Xi -Xi= Xa(i'l - Xau'> in 
the numerator. The term Xi -Xi in the denominator cancels into the 
numerator leaving 1 or - 1 in place of the two terms. On the other hand, 
given any Xa<i> - Xa(i) in the numerator there exist i",j" e {1, 2, ... , n}such 
that a(i) = i" and aU) = j". If i" < j" then Xa<i'l - Xa(i) is cancelled by 
Xr - Xi" yielding the factor 1. If i" > j" then Xa<i> - Xa<i> is cancelled by 
Xi" - Xr leaving the factor -1. e(a) is then the product of members of 
{1, -1} and is therefore 1 or -1. 

n 
1::!'iiti<j~n 

X,,au> - X,,a<i> 
xi- xi 

0 

Definition. A permutation of a set which leaves all elements of the set fixt 
except for two which it interchanges we cell a transposition. 

Theorem. The sign e(t) of a transposition tin 6" is -1. 

PROOF. To compute the sign of the transposition we count the number of 
- 1 's in the alternator. Let a transposition t interchange the indices k and I 
and leave all others fixt. For convenience we take k < I. For indices i such 
that k < I < i we have terms in the alternator 

(X,<il - X,(I))(X,<i> - X,<">) = (Xi - X")(Xi - Xz) = 1. 
(Xi- Xz)(Xi- X") (Xi- Xz)(Xi- X") 

For indices i such that k < i < I we have factors in the alternator 

(X,0> - X,<i>)(X,<i> - X,<">) = (X" - Xi)(Xi - Xz) = 1 
(X1 - Xi)(Xi- X") (X1 - xa(Xi- X") . 

For indices i such that i < k < I we have terms 

(X,<z> - X,<i>)(X,<"> - X,<i>) = (X" - Xi)(Xz - Xi) = 1. 
(X1 - Xi)(X" - Xi) (X1 - Xi)(X" - xa 

For pairs of indices not involving k or I there are also terms in the alternator 
which simply cancel directly. 

x•<i> - x.<i> = xi - xi = 1. 
xi- xi xi- xi 
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Finally there is {)ne term involving both k and l. 

x,<,,- xt("> _ x"- x, _ -1. 
x, - x" - x, - x" -

The product of all terms is - 1. 

7. 7 Determinants 

0 

By combining the two previous theorems we see that a permutation com­
posed of an odd number of transpositions is odd and that a permutation 
composed of an even number of transpositions is even. 

Computations with permutations are greatly facilitated by use of cyclic 
notation. We introduce this now, first with two examples and then with a 
definition. 

EXAMPLFS. (1 2 3) is a permutation u of {1, 2, 3} such that u(1) = 2, u(2) = 3, 
and u(3) = 1. In other words, (1 2 3) sends 1 into 2, 2 into 3, and 3 into 1. 

Secondly, (2 5) 

1~2 
2~3 

3~1. 

2~5 
5~2. 

We now make a definition of cycle. 

Definition. Let i1, i2 , • •• , i" all be distinct and belong to {1, 2, ... , n}. By 
-{i1i2 • • • ~)we shall mean the permutation u such that u(i1) = i 2 , u(i2) = 
i3 , ••• , u(i"_ 1) = i"' u(i") = i 1• u holds all other members of {1, 2, ... , n} 
fixt. We call the permutation (i1 i2i3 • • • i") a cycle. 

The six members of 6 3 which we tabulated in Section 1.8 are, in cyclic 
notation, u1 = I, u2 = (2 3), u3 = (12 3), u4 = (1 3), u5 = (1 3 2), u6 = (12). 
Pwducts such as u3 o a 4 = (1 2 3) o (1 3) are easily computed by composi­
tion of the cycles. From right to left with the composition of the cycles{they 
are functions) and from left to right within the cycles we see 

1~3~1 
2~2~3 

3~1~2 

1~1 
2~3 

3~2. 

Thus (1 2 3) o (1 3) = (2 3). From now on we shall usually omit the composi­
tion sign between cycles. Another example of a composition of cycles is 
(1 3 4 2)(2 3 4)(1 3). 

2tvvt2tvvt3tvvt4 
4tvvt4tvvt2tvvtl 
3 +vt 1 tvvt 1 tvvt 3. 
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We conclude that the composition is (1 2 4). We give one more example 
to assure the method is understood. Find (2 5 7)(2 5 6)(3 5 1). 

1~3~3~3 

3~5~6~6 

6~6~2~5 

5~1~1~1 

2~2~5~7 

7 ~7~7~ 2. 

The product is (2 7)(1 3 6 5). 

Theorem. Each composition of cycles or permutations can be written as a 
product of disjoint cycles 

PROOF. If (j is a permutation (j(1) E {1, 2, ... , n}. If (j(1) =1= 1 we write 
(1(j(1) which begins a cycle. If (j((j(1)) =1= 1 we continue the cycle (1(j(1)(j((j(1) ). 
Since {1, 2, ... , n} is a finite set some application of (j must eventually pro­
duce a repetition. (ji(1) = (jj(1) for some i, j, i < j. But permutations are 
invertible. We see (jj-i(1) = 1 showing that 1 must be reached first. The 
cycle is then closed at this point (1(j(1)(j2(1) · · · (jj-i(1) ). One then chooses 
the first number in { 1, 2, ... , n} not mentioned in the cycle already produced 
and begins a second cycle (m(j(m)(j 2(m) · · ·). In this manner one eventually 
places all members of {1, 2, ... , n} in some cycle. One cannot produce in 
any cycle a number found in a preceding cycle for then one would have 
(jP(l) = aq(m) for some p, q indicating that m belongs to the preceding cycle 
or 1 to the following. If at any time one has (j(1) = 1 or (j(m) = m then such 
a number is held fixt by (j and need not be mentioned in a cycle. If all members 
of { 1, 2, ... , n} are held fixt then (j = I. The produced cycle product is equal 
~~ D 

It is a simple matter to write down all the members of 6 1, 6 2 , 6 3 , and 6 4 • 

Since 6n has n! members we know that these groups have 1, 2, 6, and 24 
members respectively. 

61 ={I}. 
62 = {I, (1 2)}. 
6 3 = {I, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}. 
64 = {I, (1 2), (1 3), (1 4), (2 3), (2 4), (3 4), 

(1 2 3), (1 2 4), (1 3 4), (2 3 4), (1 3 2)1 (1 4 2), (1 4 3), (2 4 3), 

(1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2), 
(1 2)(3 4), (1 3)(2 4), (1 4)(2 3}}. 

We now finish up this discussion of permutations with these two theorems. 

Theorem. Each permutation in 6n can be written as a product of transpositions. 
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PROOF. A cycle (i1 i2 • • • ik) is equal to the composition (i1 ik)(i1 ik_ 1) · · · 
(i1 i3)(i1 i2 ) as may be readily checked. o 

Theorem. Each permutation in 6" can be written as a product of the trans­
positions (1 2), (1 3), ... , (1 n). 

PROOF. Using the previous theorem and the factorization (i1 ij) = (1ii)(li1) 

the result immediately follows. o 

Because of sign considerations it follows that every even permutation can 
be written as the product of an even number of transpositions. 

We now begin our discussion of determinants by giving a definition of 
the determinant of a square matrix. 

Definition. If A is an n by n matrix with entries in a commutative, unitary 
ring R then the determinant of A is 

det A = L e(o)Ala(l)A2a(2) ... Ana(n)· 

The determinant, det A, is often written IAI. From this value for det A 
there exists a mapping det: R" x " -+ R. 

EXAMPLE. If A is a 2 by 2 matrix then 

det A = L e(u)A1.,.c1>A2.,.c2l = A 11 A22 - A 12A21 . 
ae$2 

det(! =D =I! =~l = (2)(-1) _ (-3)(4) = 10. 

If A is a 3 by 3 matrix det A = Laes3 e(u)A1.,.c1>A2.,.c2>A3.,.c3>. There are six 
permutations in 6 3 , three with positive sign and three with negative sign. 
The sum for det A then has six terms. Det A = A11A22A33 - A11A23A32 + 
A13A21A32 - A13A22A31 + A12A23A31 - A12A21A33. For a matrix with 
entries in 7L such as 

(-~ ~ ~) 
4 1 -6 

the determinant is (2)(0)(- 6) - (2)(2)(1) + (5)( -1)(1) - (5)(0)(4) + 
(3)(2)( 4) - (3)(- 1 )(- 6) = - 3. There are in existence several schemes for 
remembering these six terms, one being the following illustration. 
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We now move on to develop some ofthe basic properties of determinants. 
We consider first some of the more manipulative aspects. These properties 
will facilitate calculation and prepare the ground for a vector space setting. 

Theorem. Let R be a commutative unitary ring and A be an n by n matrix with 
entries in R. Then det A = det A*. 

PRooF. In the sum given in the definition of the determinant of A we re­
arrange each term so that the column numbers appear in increasing order 
instead of the row numbers. The term A1a(1)A2a(2l · · · Ana(nl is written 
Aa-1(1)1Aa-1(2l2 · · · Aa-1(n)n· This is possible because if the subscript 1, for 
example, is found coupled with k, a(k) = 1, Akl, then we know, because a is 
abijectionthata- 1(1) = k.Ak1 becomesAa-1(1l1.Furthermore,e(a) = e(a- 1). 

Det A = L e(a- 1)Aa-1(1)1Aa-1(2)2 ... Aa-1(n)n· 
ae6n 

Now as a runs through all permutations of 6" so also does a- 1. 

Det A = L e('r)A,(1)1A,(2)2 · · · A,(n)n· 
TE6n 

But this sum is the definition of the determinant of A*. 0 

Before proving a most important theorem we demonstrate a lemma which 
gives the value of sums with duplications in the terms. 

Lemma. Let R be a commutative unitary ring and let A be an n by n matrix 
with values in R. Then if k; = ki for some i -:1= j 

L e(a)Ak1a(1)Ak2a(2) ... Akna(n) = e. 
ae6n 

PROOF. Given any term .e(a) Ak 1a(1)Ak2a(2) · · · Akna(n) in the sum there is an­
other term arising from the permutation a o -r where -r is the transposition 
interchanging i and j and leaving the other integers fixt. This term is 

e(a o -r)Ak1aot(1JAk2aot(2J · · · Ak,ao•(il · · · Akja'•U> · · · Ak"'"'(nl 

= - e(a)Ak1a(1JAk2a(2l · · · Ak,aU> · · · Akja(il · · · Akna(nJ· 

The two terms cancel exactly since k; = ki. o 
We now prove probably the most important theorem for determinants. 

Theorem. Let R be a commutative unitary ring. Let A and B be n by n matrices 

with entries in R. Then 

det AB = det A det B. 
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PROOF 

DetAB 

= L e(a)(AB)1a(1)(ABha(2) 0 0 0 (AB)na(n) 

= L e(a) ( ± Alk!Bk!a(1)) ( ± A2k2Bk2a(2)) 0 0 0 

( ± AnknBkna(n)) 
a E 6n k 1 = 1 k2 = 1 kn = 1 

n n n 
= L L 0 0 0 L A1k1A2k2 ° 0 0 Ankn L e(a)Bk1a(1)Bk2a(2) 0 0 0 Bkna(n) 

k 1 = 1 k2 = 1 kn = 1 a E 6n 

= L A1t(1)A2t(2) 0 0 0 Ant(n) L e(a)Bt(1)a(1)Bt(2)a(2) 0 0 0 Bt(n)a(n) 
tE6n GE6n 

= L A1t(1)A2t(2) 0 0 0 An<(n) L e(a)B1at-1(1)B2at-1(2) 0 0 0 Bnat-l(n) 
tE6n ae6n 

= L e(r)A1t(1)A2t(2) 0 0 0 Ant(n) L e(CT!- 1)B1at-1(1)B2at-1(2) 0 0 0 Bnat-l(n) 
t E 6n at- 1 E 6n 

= det A det B. D 

To determine the effect of the elementary change of basis matrices upon 
the determinant of a matrix we first calculate the determinant of each of the 
three elementary change of basis matrices (see Section 7.4 for notation). 

Theorem. Let R be a commutative unitary ring. Then 

I. det E(p, q) = -v 
11. det E(r, q; p) = v, rE R 

Ill. det E(s; p) = s, sa unit in R. 

PROOF 
Type I. Det E(p, q) = Lae6n e(a)E1a(1)E2a(2) 0 0 0 Epa(p) 0 0 0 Eqa(q) 0 0 0 Ena(n)· 

In this sum all terms are zero save for that one permutation a such that 
a(1) = 1, a(2) = 2, ... , a(p) = q, ... , a(q) = p, ... , a(n) = n. This permutation 
is a transposition and has sign -1. Det E(p, q) = a(r)v · v · · · v = - v. 

Type II. DetE(r,q;p) = Lae6n e(a)E1a(1)E2a(2) 0 0 0 Epa(p) 0 0 0 Eqa(q) 0 0 0 Ena(n)· 
In this sum all terms are zero except for those arising from some permutation 
such that a(1) = 1, a(2) = 2, ... , a(p) = p, ... , a(q) = q, ... , a(n) = n or 
a(1) = 1, a(2) = 2, ... , a(p) = q, . .. , a(n) = n. The latter choice fails to be 
a permutation (is not actually a term) and the first is the identity. 

Det E(r, q; p) = a(I)v · v · · · v = v. 

Type Ill. Det E(s; p) = Lae6n e(a)E1a(1)E2a(2) 0 0 0 Epa(p) 0
• 

0 Ena(n)· In this 
sum all terms are zero except that arising from the identity permutation. 
Det E(s; p) = a(I)v · v · · · s · · · v = s. For all three types to see the proof it 
is helpful to write out fully the elementary matrix in block form. D 

The coupling of the product theorem with the results just computed 
yields a corollary. 
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Corollary. Let R be a commutative unitary ring. Let r E R and s be a unit in R. 
Then 

I. det E(p, q)A = det AE(p, q) = - det A 
11. det E(r, q; p)A = det AE(r, q; p) = det A 

Ill. det E(s; p)A = det AE(s; p) = s det A. 

In words, performing an elementary row (or column) operation of type I 
to a matrix changes the determinant by a factor - v. A type 11 operation 
leaves the determinant unchanged, and a type Ill operation multiplies the 
determinant by the factor involved. 

EXAMPLE 

N(~ 
1 

~) = -det ( ! 7 2) ( 1 7 

~) 4 2 6 = 2 det 2 1 
-3 1 -3 5 1 -3 5 

= 2det ( ~ 7 2) (1 7 

-D -13 -~ = 2 det ~ -13 
-3 5 26 

= 2detG 
0 

-D = 2 ~G 
0 

-!) -13 -13 
26 0 

= 2detG 
0 D = (2)( -13)(5) det G 0 

D -13 1 
0 0 

= -130. 

Theorem. Let R be a commutative unitary ring. Then the determinant is a 
linear function of any row or column of a matrix. Typically, row p, 

Au Al2 Aln 

det rAP1 + sA~1 rAP2 + sA~2 rApn + sA~n 

Anl An2 Ann 

Au A12 Aln Au Al2 Aln 

= r det Apt Ap2 Apn + s det A~t A~2 A' pn 

Anl An2 0 0 0 Ann Anl An2 Ann 
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PROOF. Because of our ability to interchange rows, interchange columns, 
transpose the matrix, it is sufficient to prove this result for row number one. 

L e(u)(rA + sA')1a(1)A2a(2) ... Ana(n) 

= L e(u)(rA)1a(l)A2a(2) ••• Ana(n) + L e(u)(sA'ha(l)A2a(2) ••• Ana(n) 
ae5n cre6n 

= r L e(u)A1a(l)A2a(2) •.• Ana(n) + s L e(u)A1a(1)A2a(2) ••• A,.a(n)· D 
ae5n ae5n 

In any treatment of determinants one finds evaluation of determinants by 
expansion of row or column. By this means one can express a determinant of 
an n by n matrix as a sum of determinants of n - 1 by n - 1 matrices. We 
first define these n - 1 by n - 1 matrices, or at least their determinants. 

Definition. Let R be a commutative unitary ring. Let A be an n by n matrix 
with entries in R. For each i andj in {1, 2, ... , n} the following is called 
a cofactor of A: 

Au A12 A1i-1 A1i+1 A1,. 

A21 A22 A2i-1 A2i+1 A2,. 

~ "+" 
A;i = ( - 1 )' 1 det A;-11 A;-12 Ai-1j-1 Ai-1i+ 1 A;-111 

Ai+11 Ai+12 A;+ 1i-1 A;+ 1i+ 1 Ai+1n 

A,.1 A,.2 A,.i-1 Anj+1 A,.,. 

We note that the cofactor is obtained from A by omitting the ith row and 
the jth column of A, taking the determinant of the resulting n - 1 by n - 1 
matrix, and then affixing a sign. Without the affixed sign the determinant is 
called a minor. 

Theorem. Let R be a commutative unitary ring. Let A be ann by n matrix with 
entries in R. Then 

det A = Ail Ail + A;2A;2 + · · · + A;,.A;,. for any row i 

det A = A 1iAli + A 2iA2i + · · · + A,.iAni for any columnj. 

PRooF. Because of our ability to interchange rows, to interchange columns 
and to take the transpose it is sufficient to prove the theorem for an expansion 
by the first row. 
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Det A = L e(a)Ala(l)A2a(2) ... Ana(n) 
aeiSin 

= Au L e(a)A2a(2~ ... Ana(n) 

a(P="l 
+ Al2 L e(a)A2a(2) ... Ana(n) + ... 

ae6n a(l)=2 
+ Alii L e(a)A2a(2) ... Ana(ll) 

aeSn a(l)=n 
= Au L e(r)A2<(2)A3t(3) ... Ant(n) 

<e<S(2, ... , n) 
+ ( -1)A12 L e(r)A2,<2>A3,<3> · · · A11,<11> 

<e<S(l,3, ... ,11) 

+ ( -1)2 A13 L e(r)A2,<2>A3,<3> · · · A11,(11) 

<e<S(l,2,4, ... ,n) 

+ ( -l)n-l Alii L e(r)A2t(2)A3t(3) ... Ant(n) 
te<S(l, 2, ... ,n-1) 

= A11A11 + A 12A12 + · · · + A1,A1n. o 
EXAMPLES. An expansion by row number 1. 

Det(~ -~ ;)=3detG -D-(-1)detG -D+4det(~ D 
7 1 -2 

= -108. 
An expansion of the same determinant by column number 2: 

Det(~ -~ ;) = -(-1)detG -~) + (3)detG -~) 
7 1 -2 . 

- (1) det G ;) 
= [(2)(- 2) - (7)(1)] + 3[(3)(- 2) - (7)(4)] 

- [(3)(1) - (2)(4)] 
= -108. 

Another example: 

(" b 0) (" + b b +a b +a) ( 1 
Det 0 a b = det 0 a : = (a + b) det ~ a 

b 0 a b 0 0 

~ (a + b) det (~ 0 

a~ J a 
-b 

=(a+ b) det ( _: a: b) 

= (a + b)(a2 - ab + b2 ). 
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In order to produce a relationship between determinants and the inverse 
of a matrix we now define the adjoint of a matrix. 

Definition. Let B be a commutative unitary ring and let A be an n by n 
matrix with entries in R. We define the adjoint of A, 

adj A = (Aiili E n,j En)*. 

In words, the ad joint of A is the transpose of the matrix of cofactors of A. 

EXAMPLE. Let A be the matrix 

( ~ -~ ~)-
-1 2 1 

A11 = =-1 ~ 13 21 2 1 . ~ I 4 21 ~ 1 4 31 A 12 =- -l l = -6. A13 = -l 2 =11. 

~ 1-7 11 A2t = - 2 1. ~ I 2 11 ~ I 2 -71 A22 = -1 1 = 3. A23 = - -1 2 = 3. 

~ 1 - 7 ll ~ 12 11 ~ 12 - 71 A31 = 3 2 = -17. A 32 = - 4 2 = 0. A33 = 4 3 = 34. 

Adj A= ( -~ -~ l~)* = (=~ ~ -l~)· 
- 17 0 34 11 3 34 

The product of this ad joint with the original matrix A encourages testing the 
general case. 

( 2 -7 1) (-1 9 
4 3 2 -6 3 

-1 2 1 11 3 

-17) (51 0 0) 
0 = 0 51 0 . 

34 0 0 51 

Theorem. Let R be a commutative unitary ring. Let A be ann by n matrix 
with entries in R. Then A (adj A) = (adj A) A = (det A)~-

PROOF. In the product of A with the adjoint of A the entry in row i and 
columnj is produced using row i of A and columnj ofadjoint A:Ai1Ai1 + 
A;2Ai2 + A;nAin· This sum, when i = j, is simply an expansion of det A by 
row number i. Alternatively, when i =F j, the sum is an expansion of a deter­
minant of a matrix different from A, one in which the jth row of A is replaced 
by the ith row. The value is then the determinant of a matrix with two rows 
alike, the ith row of A, and must therefore be zero. The product reversed 
has a similar proof. 0 

We can now calculate directly the inverse of a matrix in terms of 
determinants. 
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Theorem. Let R be a commutative unitary ring. Let A be an n by n matrix 
with entries in R. Then A has an inverse if and only if det A is a unit in R. 
In case A - 1 exists, A- 1 = (1/det A) adj A. 

PROOF. Suppose first that A has an inverse. AA - 1 = 15, the identity matrix. 
Det(AA- 1) = det 15. Det A det A - 1 = 1. Both det A and det A- 1 are mem­
bers of R and therefore must be multiplicative inverses in R. Det A is a 
unit of R. 

Now for the converse assume det A is a unit of R. (det A)- 1 is also in R. 
(A) [(det A)- 1 adj A] = (det A)- 1 A adj A = (det A)- 1(det A)l5 = 15. So also 
does (det A) - 1 adj A left multiply A to give 15 and is therefore the inverse 
ofA. D 

If the given ring R is a field, then the only nonunit of R is 0. The condition 
that det A be a unit then simply means det A =1= 0. 

EXAMPLE. For the matrix 

we previously used in computation 

c 9 -1} (-~ !1 ") -n 
(det A)- 1 adj A = 5\ -6 3 3 0 . 0 - -51 5T 

11 3 34 ~} 3 34 
5T 51 

We now prove Cramer's Rule for solution of n equations inn unknowns 
by use of determinants. The proof given is interesting and simple. 

Theorem. Let A be an n by n matrix with entries in a commutative unitary 
ring R and let det A be a unit in R. Then the equations 

A 11 X 1 + A 12X 2 + · · · + A 1nXn = Y1 

A21X1 + A22X2 + · · · + A2nXn = Y2 

An1X1 + An2X2 + ... + AnnXn = Y,. 

have unique solutions 

Y,. An2 Ann 
Au y1 A13 A.ln 

X 2 = (1/det A) 
A2l y2 Az3 A2n 

' ... ' 

An1 Y,. An3 Ann 
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Au A12 

Xn = (1/det A) ~2. 1 A22 

PROOF. Beginning with the equation AX = Y with the usual matrix meaning 
we multiply on the left with adj A. (adj A)AX = (adj A)Y. This yields 
(det A) fJX = (adj A)Y. Using the fact that det A is a unit we have the solu­
tion X = (1/det A)(adj A)Y. (Adj A)Y = 

(~11 ~21 · · · ~n1) (Y1) (~11 Y1 + ~21 Y2 + · · · + ~n1 Y,) 
A12 A22 · · · An2 Y2 _ A12 Y1 + A22 Y2 + · · · + An2 Y, 

- . 
• 0 0 • • • • 0 0 

A1n A2n Ann Y, A1nY1 + A2nY2 + · · · + Ann¥.. 

Each entry in the column matrix is the numerator of the fraction given in 
the conclusion of the theorem. D 

ExAMPLE. The standard solution in terms of determinants for two equations 
in two unknowns is given by the theorem. The equations 

AllX1 + A12X2 = y1 
A21X 1 + A 22X 2 = Y2 

have solutions 

whenever the determinant in the denominator is a unit. The equations 

have the solution 

X1= 

A 11X 1 + A 12X 2 + A 13X 3 = Y1 

A21X1 + A22X2 + A23X3 = Y2 
A31X1 + A32X2 + A33X3 = Y3 

y1 A12 A13 All 
y2 A22 A23 A21 
y3 A32 A33 

x2 = 
All A12 A13 

A31 
All 

A21 A22 A23 A21 
A31 A32 A33 A31 

y1 A13 
y2 A23 
y3 A33 

A12 A13 

A22 A23 
A32 A33 
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All Au y1 

A21 A22 y2 

A31 A32 y3 

All Au A13 
A21 A22 A23 

A31 A32 A33 

when the determinant in the denominator is a unit. 

We now connect to a modest extent (not nearly to the extent that is 
possible) some of our results on determinants with our module theory. Our 
n by n matrices arise, of course, also as matrices of endomorphisms of finite 
dimensional mo'dules over commutative unitary rings. The determinant of 
the matrix is computed from the entries of the matrices. From each matrix 
of a given endomorphism can be computed a separate determinant. Our 
next theorem shows that regardless of which basis one chooses for the 
module, which matrix one chooses to represent the endomorphism, the 
determinant remains the same. 

Theorem. Let M be a finite dimensional free module over a commutative 
unitary ring R. Let A and B be any two matrices representing the endo­
morphism f of M. Then det A = det B. 

PROOF. The two matrices A and B are matrices of the endomorphism f 
with respect to two finite bases. The matrices are related by means of the 
formula B = PAP- 1 (cf. Section 7.4). Det B = det PAP- 1 = det P det A 
det p- 1 = det A det P det p- 1 = det A det pp- 1 = det A. 0 

Definition. If f E S(M), the module of endomorphisms of a finite dimen­
sional module M over a commutative unitary ring R, we define det f = 
det A, where A is any matrix of the endomorphism f. 

Some quick results follow from connecting results on determinants to 
the definition. 

Theorem. Let M be a finite dimensional module over a commutative unitary 
ring R. Then det:S(M)-+ R preserves the composition of (S(M), o, J) in 
the multiplication of R. f is an automorphism of M if and only if det f 
is a unit of R. 

PRooF. Det(g o f) = det Jl(g o f) = det(Jl(g)Ji(f)) = det Jl(g) det Jl(f) = 
det g det f. Det Jl(f) is a unit if and only if Jl(f) is invertible if and only if 
f is an automorphism. 0 

We remark again that if the ring is a field every nonzero element in the 
field is a unit. Thus if M is a vector space an endomorphism f is an auto­
morphism if and only if det f =I= 8. 
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We now characterize matrices over fields which have possibly lesser rank. 

Theorem. Let K be a field and A an m by n (not necessarily square) matrix 
with entries in K. 

1. If there exists a k by k submatrix of A with determinant value nonzero 
then rank A ~ k. 

2. If all k by k submatrices of A have determinant values zero then 
rank A< k. 

PROOF. Assume first there exists a k by k submatrix of A with nonzero 
determinant. Using left and right multiplication on A by change of basis 
(invertible) matrices we can produce a matrix in which the k by k submatrix 
with nonzero determinant appears in rows 1, 2, ... , k and columns 1, 2, ... , k. 
The rank of the resultant matrix is the same as the original matrix. The 
first k columns are linearly independent because if they were dependent then 
so also would be the first k columns terminating with k rows making the k 
by k determinant zero. This would contradict our hypothesis. Knowing that 
the first k columns are linearly independent tells us the rank of the matrix 
is at least k. So also has A rank at least k. To prove part 2 of the theorem 
we prove this equivalent statement: if the rank of A is at least k then there 
exists some k by k submatrix with determinant value nonzero. We begin 
with A having rank at least k. There exist k (at least) linearly independent 
columns of A. These k linearly independent columns make an m by k sub­
matrix of A. k is certainly less than or equal to m since the rank of a matrix 
cannot exceed the number of rows or the number of columns. In this m by 
k submatrix of rank k there must exist k linearly independent rows. Ex­
tracting these k linearly independent rows we have a k by k submatrix of A 
with rank k. This k by k submatrix with rank k has nonzero determinant. D 

EXAMPLE. The 3 by 4 matrix 

(1 1 3 2) 
5 3 7 4 
3 2 5 3 

with entries in Q must have rank at least 2 because the submatrix 

G ~) 
has determinant - 2. On the other hand it can be computed that every 3 by 
3 submatrix has determinant 0. The rank of the matrix is 2. 

QUESTIONS 

1. Which of these statements are true? 
(A) The composition of even permutations is even. 
(B) The composition of odd permutations is odd. 
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(C) A permutation and its inverse have the same sign. 
(D) The identity mapping is an odd permutation. 

(E) None of the statements is true. 

2. Which of the alternatives complete a true sentence? Composition of permutations 
(A) is commutative 
(B) is associative 
(C) has a neutral element 
(D) is such that every permutation has an inverse permutation. 

(E) None of the alternatives completes a true sentence. 

3. Which of these sentences are true? 
(A) A transposition is an even permutation. 
(B) An even permutation is the product of an even number of transpositions. 
(C) An odd permutation cannot be the product of transpositions. 
(D) The identity function is a transposition. 

(E) None of the sentences is true. 

4. The permutation u E 6 4 such that u(1) = 4, u(2) = 3, u(3) = 1, u(4) = 2 expressed 
in cyclic notation is 

(A) (1 4)(2 3)(3 1)(4 2) 
(B) (1 4 2 3) 
(C) (1 3)(2 4)(1 2) 
(D) (4 3 1 2). 

(E) None of the cyclic expressions is correct. 

5. Which of the following statements are true? 
(A) (i1 i2 • • • ik) = (i2 i3 • • • ik-!iki1). 

(B) (i1i2 · · · ik)(jJ2 · · · j 1) = (jJ2 • • • j 1)(i1i2 · · · ik) if all symbols i~> i2, ... , 
iko j 1 , jz, ... , j 1 are distinct. 

(C) (i1i2 ···id = I. 
(D) (1 2 3)(2 3 4) · · · (n - 2 n - 1 n) = I. 

(E) None of the statements is true. 

6. Given the equations 
2X1 + X 2 + X 3 = 1 

X 1 - X 2 + X 3 = 2 

3X1 + 2X3 = 0 

with entries in Q which of the following statements are true? 
(A) There are no solutions. 
(B) There is a solution and it is unique. 
(C) There are an infinite number of solutions; the set of solutions is of dimension 

1. 
(D) There are an infinite number of solutions; the set of solutions is of dimension 

2. 
(E) None of the alternatives is correct. 

7. Which of these statements are correct for a 3 by 3 matrix with entries in Q? 
(A) 2 det A = det 8A. 
(B) 8 det A = det 2A. 
(C) det A = t adj A. 

292 



(D) 9 det A= A- 1 . 

(E) None of the alternatives is correct. 

8. Let 

A= ( ~ ~ ~)· 
-1 4 -1 

Which ofthese statements are not correct? 
(A) 121 = -8. 
(B) Det A = 15. 
(C) 132 = 3. 
(D) 112 = 0. 

(E) All of the statements are correct. 

9. Which of the following determinants are not equal to 

2 3 

2 1? 

2 0 6 

2 3 2 1 3 

(A) 0 0 -2 (B) 2 1 1 

2 0 6 0 2 6 

2 3 1 1 3 

(C) 2 1 (D) 4 1 1 1 . 

4 0 6 1 0 3 

(E) All of the determinants are equal to the given one. 

10. A square matrix A with entries in a field K has an inverse 
(A) if and only if det A = e 
(B) only if the matrix equation AX = B has a solution 
(C) if A adj A = (det A) b 
(D) if A has all nonzero cofactors. 

(E) None of the alternatives is true. 

7.7 Determinants 

11. Given the matrices A, X with entries in a field K and the equation AX = -(A + A)X 
which line contains the first error? 

(A) AX + (A + A)X = e. 
(B) 3AX = e. 
(C) AX =e. 
(D) X =e. 

(E) There is no error. 

12. Which ofthe following are incorrect? 
(A) A determinant of a square matrix A is zero if two rows of A are alike. 
(B) A determinant of a square matrix A is zero if one column contains all 

zeros. 
(C) A 3 by 3 determinant must be zero if 6 entries are zero. 
(D) A determinant of a matrix with integer entries never has a proper fraction 

for its value. 
(E) All statements are correct. 
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13. Let A be an n by n matrix with entries in a field K. 
(A) AX = B has the trivial solution X= B; i.e., X 1 = B, X 2 = B, ... , X. = B. 
(B) AX = B has only the trivial solution X = B if det A = B. 
(C) AX = B has a solution if det A = B. 
(D) The solutions of AX = B are arbitrary if det A = B. 

(E) None of the four statements is correct. 

EXERCISES 

1. Write each of these permutations as the composition of disjoint cycles. 
(a) u such that u(1) = 3, u(2) = 4, u(3) = 1, u(4) = 2. 
(b) T such that T(1) = 4, T(2) = 3, T(3) = 1, i"(4) = 2. 
(c) (2 1 3 4)(3 5 1 2)(1 2)(4 6 1). 
(d) (6 1 2 3)(6 1 2 4)(3 4 2)(5 1 2)(3 1). 

2. Compute each of these compositions; write each as a product of disjoint cycles. 
Observe each example for the information it contains. 
(a) (1 2)(1 2). 
(b) (1 2)(2 1). 
(c) (1 2 3)(3 2 1). 
(d) (1 2 3)(1 3 2). 
(e) (1 2 3 4)(4 3 2 1). 
(f) (1 2 3)(1 2 3). 
(g) (1 2 3)(1 2 3)(1 2 3). 
(h) (1 2 3 4)(1 2 3 4)(1 2 3 4)(1 2 3 4). 
(i) (il iz · · · ikt 
(j) (il iz · · · ik)(ikik- 1 · · · i2it}. 

3. Verify each of these compositions. Observe each example. 
(a) (1 2)(1 7) = (1 7 2). 
(b) (1 7)(1 2) = (1 2 7). 
(c) (3 1 2 4) = (3 4)(3 2)(3 1). 
(d) (1 7)(1 3) = (1 7)(1 2)(1 2)(1 3) = (1 2 7)(1 3 2). 
(e) (1 3 2) = (1 2 3)(1 2 3). 
(f) (5 6) = (1 5)(1 6)(1 5) = (1 6)(1 5)(1 6). 

4. Show that every permutation is the composition of 2-cycles. If a permutation is 
even then the number of 2-cycles is even. If a permutation is odd then the number 
of 2-cycles is odd. Is {i1 i2 · • • i2d an even permutation or an odd permutation? 
What of the sign of the permutation (i1 i2 · · · i2kizk+ t)? 

5. Show that every permutation in 6. can be written as a product of (1 2), (1 3), ... , 
(1n). Repetitions are allowed. 

6. Show that every even permutation in 6. can be written as a product of (1 2 3), 
(1 2 4), ... , (1 2 n), repetitions allowed. [Hint: Exercise 3.] 

7. Show that the product of any two members of the subset {I, (1 2 3), (1 3 2)} of 
6 3 is again a member of the subset. 

8. Show that the product of any two members of the subset {I, (1 2)(3 4), (1 3)(2 4), 
(1 4)(2 3)} of 6 4 is again a member of the subset. 
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9. Fifteen men sit in a row and wish to reverse the order in which they sit. Can they 
do this switching seats in pairs? Can they do this switching seats in triples (3 at 
a time)? 

10. Show that the matrix 

has determinant (a - b)(b - c)(c - a) by using the theorems on determinants of 
elementary change of basis matrices and det b = 1. 

11. For what values of a in ~ will 

have a unique solution? 

aX 1 +aX3 =4 

X2 + 2X3 = -2 

aX 1 + 6X 2 + 3X 3 = 1 

12. Show that if the rows (or columns) of ann by n matrix are linearly dependent then 
the determinant is zero. 

13. Show that if two rows (or columns) of an n by n matrix are alike then the deter­
minant is zero. 

14. What is the rank of the matrix 

(! ~ i :)? 
3 6 4 14 

Is the family ( (2, 0, 1, 2), (1, 2, 1, 4), (0, 4, 2, 8), (3, 6, 4, 14)) linearly dependent in 
IR14 ? What is the ad joint ofthe given matrix? What is the product of the given matrix 
with its adjoint? Does the matrix have an inverse? 

15. Are there matrices A such that 

If so, what are they? 

16. Express the following system as a matrix equation and solve by multiplying by 
the matrix inverse. 

X1 +2X3 =1 
3X2 = 0 

-2x1- x3 = o. 

17. Show that ifrank (b1 - a1 b2 - a2 ) = 1 then 

det (~: ~: ~) = 0 
b1 b2 1 
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is the equation of a line in IR2 containing the noncollinear points (ab a2 ) and 
(bl, b2). 

18. Show that if 

then 

(
xl X2 x3 1) 

d a 1 a2 a3 1 
et = 0 

bl b2 b3 1 
c1 c2 c3 1 

is the equation of a plane in IR3 containing the noncollinear points (ab a2, a3 ), 

(bl> b2 , b3 ), (cl> c2 , c3 ). 

19. Let 

(1 2 1) 
A= 3 7 4 . 

2 -1 3 

Find A -l by solving the equation BA = (j for B using linear equations and the 
row-reduced echelon matrix. Compare with the adjoint computation. 

20. Show that 

det(~: ~ :) 
c d a b 

b c d a 

has a factor a + b + c + d. 

21. Let A(x) be an n by n square matrix in which each entry Aii(x) is a real-valued 
differentiable function defined on the real interval [a, b]. Denote by Ak the matrix 
obtained from A by replacing the kth row of functions Akl Ak2 · · · A"" by their 
derivatives DAklDAk2 · · · DA"". Show that D det A(x) = Lk=l det Ak(x). 
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Abstract systems 8 

This chapter is more abstract than the other chapters in this book because 
it discusses algebraic systems in general and not just particular systems such 
as vector space or ring. The aim of this chapter on structure is to reveal some 
of the organization given to the algebraic concepts we have been implicitly 
using in the rest of the book. It formalizes the material of the other chapters 
and is the organizational spirit of this book. Despite the fact that it is here 
that the organization is laid bare we do not feel a study of this chapter is 
necessary for a productive use of this text. Analogously, one can become a 
very good mathematician without being a professional logician even though 
logical thought is central to mathematics. 

The general study of algebraic systems lies in a branch of mathematics 
called universal algebra. We will touch in this chapter on only some of the 
fundamentals of the subject. Our purpose is not a study of universal algebra 
per se but rather to use some of its elementary principles as a basis on which 
to organize our study of elementary algebra. 

For intuitive purposes we split our study of algebraic systems into opera­
tional systems and relational systems. We study independence (so important 
in modules) and closure classes. We define morphisms in terms of the opera­
tions that they preserve and not in terms of the axioms satisfied by the domain 
or codomain. Some concise formulations are given as necessary and sufficient 
conditions for a function to be amorphism. We give a presentation of quotient 
systems that is independent of normal subsystem and then in turn define 
normal subsystem from quotient system. We speak of kernels and then close 
with products and sums. 

8.1 Algebraic systems 

In this section we lay down the definitions of algebraic systems, operational 
and relational, and give examples of algebraic systems. 
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8. Abstract systems 

The common property of systems such as groups, rings, vector spaces, and 
natural numbers is a set with operations. We will call a set with operations 
an algebraic system. Because we wish also to be able to speak of ordered 
integral domains and the like, we include the possibility of having relations 
given on the set as well as operations. 

Definition. An algebraic system (M, (P;li e J); (uili e J)) is a set M together 
with a family of operations <Pdi e J) and a family of relations (uilj e J) 
on the set M. The set M together with the family of operations is called an 
operational system while the set M together with the family of relations is 
called a relational system. 

Definitions of operations, relations, and closure can be found in Sec­
tion 2.1. For definiteness we repeat some~efinitions here. An n-ary operation 
p on the set M is a function p:M"-+ M. This includes the special case of a 
nullary operation v: {0} -+ M. We speak of an n-ary operation as having 
size n. A subsetS of M is closed under the n-ary operation p if(x .. x2 , •• ... x,.) e 
S" implies p(xh x2, ... , x,.) e S. An n-ary relation on M is a subset of M". 
Orders and equivalence relations on M are binary relations on M. An n-ary 
relation has size n. 

Definition. The type of an algebraic system is a listing of the sizes of the 
operations and relations on the set. Algebraic systems of the same type 
are called similar. 

In the type we shall count the set itself as having size 1 ; this is reasonable 
because the set can be thought of as the identity operation, a unary operation. 

We now list examples of algebraic systems. Most of these systems we have 
already studied. 

EXAMPLES 

1. A group (G, p, v) is a set M, a binary operation p, a nullary operation v 
such that p is associative, v is a neutral element for p, and for each x in G 
there exists ye G such that p(x, y) = p(y, x) = v. The group has type 
(1, 2, {)). 

2 An ordered group (G, p, v; u) is a set M, a binary operation p, a nullary 
operation l4 a binary relation u such that (G, p, v) is a group and u is an 
order compatible with the binary operation p, ((a, b) e u implies (p(a, x), 
p(b, x)) € u and (fj(x, a), p(x, b)) e u for all a, b, x in G). The ordered 
group has type (1, 2, 0; 2). 

3. A monoid (M, P> is a set M, a binary operation p which is associative. 
The monoid has type (1, 2). 
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4. A unitary monoid (M, /3, v) is a set M, a binary operation /3, a nullary 
operation v such that f3 is associative and v is the neutral element for /3. 
The unitary monoid has type (1, 2, 0). 

5. A cancellative unitary monoid (M, /3, v) is a set M, a binary operation /3, 
a nullary operation v such that (M, f3, v) is a unitary monoid and 
f3(x, a) = f3(x, b) or f3(a, x) = f3(b, x) implies a = b. The cancellative unitary 
monoid has type (1, 2, 0). 

It should be noted that unitary monoids, cancellative unitary monoids, 
and groups are algebraic systems with the same type (1, 2, 0). There are many 
possible algebraic systems with the type (1, 2, 0). Only those satisfying the 
axioms for a group are groups. We will also take note of the fact that there 
are different equivalent axiomatizations of a group. Several alternatives to 
the one given are 

lB. A group < G, /3) is a set G, a binary operation f3 such that f3 is associative 
and the equations f3(a, x) = b and f3(y, c) = d are always uniquely 
solvable for x and y in G. The type here for the group is (1, 2). 

1 C. A group < G, /3, v, y) is a set G, a binary operation /3, a nullary operation 
v, a unary operation y such that f3 is associative, v is a neutral element 
for /3, y(x) is the /3-inverse of x in G. The type here for the group is 
(1, 2, 0, 1). In Section 8.2 we shall see that the operations in (1C) more 
completely characterize the group in that every algebraic subsystem 
will be a subgroup. 

6. A ring (R, +, ·, ()) is a set R, a binary operation +, a binary operation·, 
a nullary operation () such that (R, +, ()) is a group, + is commutative, 
and · is distributive with respect to +. The ring has type (1, 2, 2, 0). 

7. A unitary ring < R, +, ·, (), v) is a set R, a binary operation +, a binary 
operation ·, a nullary operation (), a nullary operation v, such that 
(R, +, ·, 8) is a ring and v is a neutral element for ·. The unitary ring 
has type (1, 2, 2, 0, 0). 

8. An integral domain (R, +, ·, (), v) is a set R, a binary operation +,a 
binary operation ·, a nullary operation (), a nullary operation v such that 
(R, +, ·, (), v) is a unitary ring,· is commutative, e ¥= v, xa = ya and 
a ¥= () imply x = y. The integral domain has type (1, 2, 2, 0, 0). 

9. A field (R, +, ·, (), v) is a set R, a binary operation +, a binary operation ·, 
a nullary operation(), a nullary operation v such that (R, +, ·, (), v) is an 
integral domain and for each x E R, x i= () there exists y E R such that 
xy = v. The field has type (1, 2, 2, 0, 0). 

In order to define a module or a vector space and fit within the definition 
of algebraic system we reinterpret the scalar multiplication R x M --+ M 
with value rx for each r in R, x E M, as a family of unary operations on M, 
one for each rE R. For each rE M, define y,:M--+ M such that y,(x) = rx. 

10. A module (M, +, (, (y,lr ER)) over a ring R is a set M, a binary operation 
+,a nullary operation(, a family of unary operations (y,lr ER) such that 
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(M, +, 0 is a commutative group,'}', is additive for each r in R, y, a Ys = 

y,., l'r+s = y, + y., y1 = I. The module over a ring R has type (1, 2, 0, 
(lire R)). 

11. An ordered set (S; a) is a setS with binary relation a on S which is an 
order. The ordered set has type (1; 2). 

12. An ordered integral domain (R, +, ·, e, v; a) is a set R, a binary operation 
+, a binary operation ·, a nullary operation e, a nullary operation v; a 
binary relation a such that (R, +, ·, e, v) is an integral domain, a is a 
total order, (x, y) E a implies (x + a, y + a) E a, (0, a) E a and (x, y) E a 
imply (xa, ya) Ea. The ordered integral domain has type (1, 2, 2, 0, 0; 2). 

13. A vector space (M, +, (, (y,ir E K)) over a field K is a set M, a binary 
operation +,a nullary operation(, a family (y,ir E K) of unary operations 
such that (M, +, (, (y,ir E K)) is a module. The type of the vector space 
is (1, 2, 0,~1ir E K)). 

14. A Boolean algebra (S, v, 1\, ', 0, 1; a) is a setS, a binary operation v, 
a binary operation 1\, a unary operation' (complement), a nullary oper­
ation 0, a nullary operation 1, a binary relation a such that v and 1\ are 
associative, commutative, and distributive each to the other, a v a = a" 
a 1\ a = a, 0 1\ a = 0, 0 v a = a, 1 1\ a = a, 1 v a = 1, a is an order on 
S such that (a, b) Ea if and only if a 1\ b = a if and only if a v b = b. 
Also (a v b)' = a' 1\ b', (a 1\ b)' = a' v b', a 1\ a' = 0, a v a' = 1, a" = a. 
The Boolean algebra has type (1, 2, 2, 1, 0, 0; 2). 

QUESTIONS 

1. Let S represent the binary operation of subtraction and 
Which of the following are operational systems? 

(A) (7!._, +, 0, S) 
(B) (7!._, +, 0, 1) 
(C) (1!.., +, ·, 0, 1, -7- > 
(D) (I[JI, ·, 1,--;- ). 

(E) None of the options is an operational system. 

2. Which of these statements are true? 
(A) There can be two groups with the same type. 
(B) Similar algebraic systems can have different types. 
(C) An integral domain has the same type as a field. 
(D) Similar groups are isomorphic. 

(E) None of the statements is true. 

3. Which of these statements are true? 

represent division. 

(A) The natural numbers (f\1, +, ·, 0, 1) have type (1, 2, 2, 0, 0). 
(B) A unitary ring has type (1, 2, 2, 0, 0). 
(C) The natural number system is a unitary ring. 
(D) The natural number system and a unitary ring are similar operational 

systems. 
(E) None of the statements is true. 
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EXERCISES 

1. Prove that Definitions 1 and lC of a group are equivalent. 

2. Let < G, +, 0) be a commutative group. Let S be the binary operation of subtraction 
on G:S(a, b) = a - b = a + (-b). Formulate a definition of the group using the 
operational system <G, S, 0). 

3. Give a definition of the natural numbers as an operational system using the Peano 
axioms. 

8.2 Algebraic subsystems 

In this section we discuss algebraic subsystems, closure systems, genera­
tion of subsystems, and independent subsystems. 

We give first the very obvious definition of a subsystem. 

Definition. A subset S of an operational system (M, (,Bdi E J)) is a opera­
tional subsystem if and only if each operation ,8;, i E J, is closed on S; 
that is, ,B;(Xl, Xz, . .. 'xnJ E s whenever (xl, Xz, .. . 'xnJ E S"' for all i E J. 

We make the observation that the subsystem requires only closure under 
the operations and not satisfaction of any further conditions. Under the 
definition of group given in Example 1, Section 8.1, a subset may well be 
closed under the operations ,B and v without being a subgroup, although 
the subset will be a subsystem. Such a subsystem could fail to contain some 
inverses. The set of all subgroups of a given group (G, ,8, v) is, in general, 
a proper subset of the set of all operational subsystems of the operational 
system (G, ,8, v). The class of all groups is a proper subclass of the class 
of all algebraic systems of type (1, 2, 0). The class of all groups consists 
precisely of those operational systems of type (1, 2, 0) which also satisfy 
the conditions for a group. 

With the goal of treating the disparities just alluded to, we make the 
following definition. 

Definition. A collection ~ of subsets of M is called a closure class if and 
only if given f!) s;;; ~ and f!) # 0 it follows that nf!) E ~ and M E ~-

EXAMPLE. The set of all subgroups of a given group is a closure class. This 
follows from the intersection of a collection of subgroups' being a subgroup. 

Theorem. The set of all operational subsystems of a given operational system 
(M, (,B;ji E I)) is a closure class. 

PROOF. Let ~ be the set of all operational subsystems of (M, (,Bdi E /)). 
Let f!) s;;; ~- Let ,8; be an operation on M and suppose ,8; is an n;-ary operation. 
To avoid excessive use of subscripts we omit the subscript when it is un­
essential to the argument. Consider xl, Xz, . .. 'Xn in nf!). ,B(xl> Xz, . .. ' 
Xn) E D for every D in f/). Therefore, ,B(xl> Xz, .. . 'Xn) E nf!) and nf!) is 

301 



8. Abstract systems 

closed under the operation {3. This is true for all {3;, i E /. n.@ is therefore 
an operational subsystem of M. o 

We now treat relational subsystems. 

Definition. (N; ('riJj E J)) is a relational subsystem of the relational system 
(M; (O"iJj E J)) if and only if N s;;; M and ri s;;; O"i for all j E J. 

Given any relational system (M; (O"ilj E J)) and any subset N of M the 
restrictions of the relations O"i to N always produce a relational subsystem 
on N:(N; (O"i n N"i!j E J)). This is the largest relational system possible 
on N which is a relational subsystem of (M; (O"ilj E J)). This relational 
subsystem on N is called the full relational subsystem of (M; (O"jJj E J)) 
on the subset N. 

EXAMPLE. Given the integers with their usual order, (Z; ~ ), the set of 
even integers, 2Z, can be given two different orders. The first (2Z; p) is 
the full relational subsystem in which even integers are ordered just as they 
are in Z. In a second relational subsystem (2Z; ·t) we order only the multiples 
of 4: r = {(4m, 4n)lm ~ n}. (2Z; r) is a relational subsystem of (Z; ~),but 
not a full relational subsystem. 

We now discuss the interaction of relations and operations of an algebraic 
system. An ordered group (G, ·, v; ~) is a group (G, ·, v) and a totally 
ordered set (G; ~) such that x1 ~ y1 implies ax1 ~ ay1 and x 1a ~ y1a 
for all a in G. These conditions involving both the order and the multipli­
cation are equivalent to the single condition x1 ~ y1 and x2 ~ y2 imply 
x1x2 ~ y1Y2 as one can easily verify. We restate this condition for an 
arbitrary binary relation O" and G. (x1, y1) EO" and (x2, y2) EO" imply (x1x2, 
y1y2) EO". We now frame a definition for an n-ary operation. 

Definition. An r7ary relation O" is compatible with an n-ary operation {3 if 
and only if (x 11 , x12 , ... , x 1,) EO", (x21 , x22 , ... , x2,) E 0", •.• , (x"" Xn2, 
... , Xn,) E 0" imply ({3(x 11 , x21 , ... , Xnd• ... , {3(x1., x 2.,: .. , Xn,)) E 0". 

The notation can be made more compact for this definition. We define 
the power of a relation O" as follows: ((x11 , x2" ... , xnd, (x12 , x22 , ... , 
xn2), ... , {x1., x2., ... , xn,)) EO"" if and only if (x11 , x12 , ••. , x1,) E 0" and 
(x2b x22• 0 0 0' X2r) E (1 and 0 0 0 and (Xnb Xn2• 0 0 0 'Xnr) E (1. This allows re­
statingtheconditionofcompatibility:((xll, Xzh ... , Xnl), ... , (x,., Xz., ••• , 

Xnr)) E O"" implies {{3(x11 , x2" ... , Xn1), ... , {3(x1., x 2., ••• , Xnr)) E 0". We 
also write ({3(x11 , x2" ... , Xn1), ... , {3(x1., x2., ••• , Xn,)) as /3'( (x11 , x2" ... , 
xn1), ••. , (x1., x2., ... , xn,)). Again we restate the compatibility condition: 
((x11 , x21, ... , Xn1), ... , (x1., x2., ... , x",)) E 0"" implies {3'((x11 , x21 , ... , 
x"d' ... , (x1., x2., ... , x",)) EO". Finally, we state the most compact formu-
lation as a definition. 

302 



8.2 Algebraic subsystems 

Definition. An r-ary relation a is compatible with an n-ary operation fJ if 
and only if {J'( er") s; a. 

In this presentation of algebraic systems we have treated operations and 
relations separately. They are not actually independent of each other. An 
n-ary operation {J:M"-+ M expressed as a set of ordered pairs, {((xh 
x2, ... , Xn), {J(x1, x2, ... , xn) )l(x1, x2, ... , xn) eM"} is a subset of M" x M 
or M"+ 1• {J is then an (n + 1)-ary relation on M. It is sufficient then to 
consider only relational systems expressing all operational concepts in terms 
of relations. This would, however, be more artificial and nonintuitive. Never­
theless, it is an interesting observation that it can be done. In the reverse 
direction it is possible to reformulate relations in terms of operations if 
we give up the requirement that the operation be defined over all of M; 
that is, we permit partial operations. For an n-ary relation a = {(x1, x2 , ••. , 

xn)l(xh x2 , ••• , xn) ea} we define iT(xh x2 , •.. , Xn) = x 1 for each (xh 
x2 , ••• , xn) e a. iT is then an n-ary operation defined on a subset a of M" 
which takes values in M. The relation a is recoverable from iT as the domain 
of iT. The study of partial algebras considers algebraic systems constructed 
from partial operations. 

Our next topic for this section is the finding of a general context for the 
idea of algebraic generation; for example, the subspace of a vector space 
generated by a given subset of the vector space. We return to the closure 
class. 

Theorem. Let (M, (fJdi e J)) be an operational system and CC a closure class 
of M. Then given any subsetS of M there exists a smallest member [S] 
of CC which includes S. 

PRooF. Let 9) be the set of all members of the closure class CC which have S 
as a subset. Ss; n~. Moreover, n~ e CC. We denote n.@ as [S]. Then 
if De~ we have [S] = n~ s; D proving [S] is the smallest subset of CC 
having S as a subset. Note 9) =I= 0 because Me~- D 

The previous theorem suggests a definition. 

Definition. Given an operational system (M, (fJili e J)) and a closure class 
CC, for any subsetS of M we define [S] to be the member of the closure 
class generated by S. 

EXAMPLE. The set of all subgroups CC of a given group (G, {J, v) is a closure 
class. Given any subset S of G, [S] denotes the smallest member of the 
closure class containing S, the smallest subgroup of G containing S. We 
call this the subgroup generated by S. We note that in looking for the sub­
group generated by S we choose the smallest member of the closure class 
(subgroups) containing S and not the smallest operational subsystem 
containing S. 
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In terms of the concept of generation we make the following definition 
of an algebraic closure class. 

Definition. A closure class Cif is an algebraic closure class if and only if 
[A] = U{[FJIF is a finite subset of A} for all sets A. 

This condition means that if x E [A] then x E [at> a2 , ••• , an] for some 
at> a2 , ••. , an in A; this to say, each element of a closure is finitely generated. 

ExAMPLE. The set of all subgroups of a given group is an algebraic closure 
class. We demonstrate. this fact. Let A be an arbitrary subset of the group G. 
We show that U{[FJIF is a finite subset of A} is a subgroup of G. Let 
x, yE U{[FJIF is a finite subset of A}. x E [at> a2 , ••• , a,], a1, a2 , •.• , 

am EA. yE [a~, a2, ... , a~], a~, a2, ... , a~ EA. Then x, y, and xy belong 
to [a1, a2 , .•. , a,, a~, a2, ... , a~] s U{[FJIF is a finite subset of A}. The 
union is also closed under the neutral element and inverses. Since the 
union contains every element of A it must contain the smallest subgroup 
containing A, namely, [A]. For the reverse inclusion we notice [ F] s [A J 
for every finite subset of A so that the union is also a subset of [A]. [A J = 
U{[FJIF is a finite subset of A}. 

Theorem. The set of all operational subsystems of a given operational system 
(M, ({J;ji E J)) is an algebraic closure class. 

PROOF. We have earlier proven the collection to be a closure class. To 
prove the closure class algebraic we need only repeat the argument given 
in the previous example. We consider the operational system [A] generated 
by the arbitrary set A. We wish to show U = U{[FJIF is a finite subset 
of A} is closed under all operations. Let fJ be any n-ary operation of the 
system and Xt. x2 , ••• , Xn E U. x1 E [F1], x2 E [F2 ], ••• , Xn E [Fn] for some 
finite subsets F 1, F2 , ••• , Fn of A. Thenxl>x2 , ... , XnE [F1 u F2 u · · · u FnJ. 
{J(xt> x 2 , ••• , xn) E [F1 u F2 u · · · u Fn] £:::: U. U is an operational sub­
system. U = [A] by the same argument given given in the example. 0 

If we now consider a group < G, p, v, y) according to the definition of 
group located in Example 1 C of Section 8.1, an operational system of type 
(1, 2, 0, 1), we arrive at the interesting situation where the set of all subgroups 
and the set of all operational subsystems coincide. The closure class of sub­
groups and the closure class of all operational subsystems are the same. To 
verify this situation we have only to show that every operational subsys­
tem is a subgroup; for, certainly every subgroup is an operational subsystem. 
Let H be a subset of G which is closed under {J, v, and y. fJ is associative 
on H, v is a neutral element for H and a member of H, and y(x) is the P­
inverse of x in H. H is a subgroup. 

We now raise the following question. Is it always possible to define 
operations on a set in such a manner that the operational subsystems 
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coincide with some given subclass of the system? An answer lies in the 
following theorem. 

Theorem. Let M be a set. Let ((/ be an algebraic closure class on M. Then 
there exist operations (/3;li E J) on M such that the set of all operational 
subsystems of <M, (f3di E J)) coincide with the given subclass ((/. 

PROOF. The proof consists in defining operations for M and in this sense 
is constructive. Each subset S of M generates a member of the closure 
class denoted by [ S]. 

For each a E [0] define Pa: {0} ~M such that f3a(O) = a. This gives a 
set of nullary operations, one for each member of the closure class generated 
by the empty set. Let n be a positive integer. For each (a1, a2 , ..• , an) E Mn 
and bE [ab a2 , ••• , an] define . 

P(a~oa>,····"")(X X X)= {b 
b 1• 2• · · ·' n , xl 

We consider the operational system 

if (x1, x2 , ••• , xn) =f. (a1, a2 , ••• , an), 
if (xb x2 , ••• , Xn) = (ab a2, ... , an). 

We must now show that the set of all operational subsystems of this opera­
tional system coincides with the given algebraic closure system ((/. 

We begin by showing every member of the closure class is an algebraic 
subsystem of M. Let C E ((/. If C = 0 then there are no nullary operations. 
If C =f. 0 then because 0 s; C we have [0] s; [ C] = C. If a E [0] 
then a E C and Pa(O} = a E C. Thus every nullary operation is closed in C. 
Now let Pb"', ... ,a"> be an n-ary operation on M. For simplicity abbreviate 
the operation with f3 alone. Let c1 , c2 , .•. , en E C. The value of f3 is given 
in two cases. If (cb ... , en) =f. (ab .. . , an) then f3(cb .. . , en) = c1 which 
belongs to C. If(cl, ... , en) = (ab ... , an) then f3(cb ... , Cn) = bE [ab ... , 
an] = [ c b ... , en] s; C. In either case the value of P lies in C. C is closed 
under all the constructed operations and is thereforf' an operational 
subsystem. 

Secondly, we wish to show that any operational subsystem is a member 
of the given algebraic closure class ((/. Let· B be an operational subsystem 
of M according to the defined operations. We wish to show now that B 
is a member of the closure class, i.e., [ B] = B,. Let b E [B]. Then b E [ab 
a2 , ... , an] for some a1, a2 , ... , an E B. Range Pb"'·">· ... ,an) includes b. 
Since a1, a2 , .•. , an E B and B is closed under all operations, bE B. Thus, 
[B] s; B. Clearly, B s; [B]. B = [B]. D 

We define next a concept, with respect to a given closure class, called 
independence. It is a generalization of the linear independence found in 
vector spaces. 
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Definition. Let M be a set and rt be a closure class on M. A subset A of M 
is independent if and only if [A - { x}] ¥- [A] for every x e A. 

In other words, we can say that an independent set is a minimal member 
among those sets which generate a given member of the closure class. 

EXAMPLE. As we mentioned, any linearly independent set of a vector space 
is an example of an independent set. In the group 6 3 of permutations the 
sets {(1 2 3)}, {(1 2)}, {(1 2 3), (1 2)} of cycles are independent sets. On the 
other hand, the set {(1 2 3), (1 2), (1 3)} fails to be independent. 

We now prove a number of results that show some of the properties of 
independent sets. 

Theorem. Let M be a set and rt be a closure class on M. Then A is an inde-
pendent set if and only if {x} n [A - {x}] = 0 for every x EA. 

PROOF. If there exists ye {x} n [A ~ {x}] then x e [A - {x}] for some 
x EA. A - {x} s;; [A - {x}] and x E (A - {x}] imply A s;; [A - {x}]. 
[A] s;; [A- {x}]. [A]= [A- {x}]. Conversely, if[A] ={A- {x}] for 
some x eA, then x e (A]. x e [A - {x}]. {x} n [A - {x}] ¥- 0. This 
proves the result. Some easy properties of [A] are found in Exercise 2. 
Some of them are used in this proof. 0 

Theorem. Let M be a set and~ a closure class on M. 

1. If A is an independent set and B s;; A then B is an independent set. 
2. If A is an independent set and B c: A then [B] c: [A]. 
3. If B is an independent set then no proper subset of B generates ( B]. 
4. If B is a dependent set then some proper subset of B generates [ B]. 

PROOF. {x} n [B - {x}] s;; {x} n [A - {x}] = 0 for each x e B proves 
part 1. For part 2, let ae A- B. {a} n [A- {a}]= 0 because A is 
assumed to be independent. Suppose [B] = [A]. {a} n [A - {a}] 2 
{a} n [B] = {a} n (A] = {a} ¥- 0. This contradicts the independence 
of A. [A] ¥- [ B]. For part 3, let C be any proper subset of B, an independent 
set. Let x e B - C. (C] f; [B - {x}] c: [B] if B is independent. For 
part 4, if B is dependent then there exists x in B such that [ B - { x}] = 
{B]. B - {x} is a proper subset of B. o 

QUESTIONS 

l. Which of the following are dosure classes? 

306 

(A) The set of all subsets ofan operational system (S, y) of type (1, 0) 
(B) The set of all subrings of the ring (R, +, ·, 6), an operational system of 

type (1, 2, 2, 0) 
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(C) The set of all subsets of a given set S containing some one fixt subset A of S 
(D) The set of all commutative subgroups of a given group. 

(E) None of the collections is a closure class. 

2. Which of the following statements are true? 
(A) A binary relation p is compatible with a unary operation y if and only if 

(x, y) E p implies (y(x), y(y)) E p. 
(B) A binary relation p is compatible with a binary operation f3 if and only 

if f3 2(p) ~ p. 
(C) A binary relation p is compatible with a unary operation y if and only if 

xyy implies y(x)py(y). 
(D) A binary relation p is compatible with a unary operation y if and only if 

y2(p) ~ p. 
(E) None of the statements is correct. 

3. Let M have a closure class re. Then U{[FJIF ~A, F is finite} 
(A) is a member of the closure class 
(B) is a subset of [A] 
(C) equals [A] if CC is an algebraic closure class 
(D) includes [A]. 

(E) None of the alternatives completes a true sentence. 

4. Which of the following statements are true? 
(A) If A is independent then so also is [A]. 
(B) If A is independent then so also is A - { x} for some x in A. 
(C) If A is independent then A u {x} is not independent for some x in A. 
(D) If A and B are independent then so also is A u B. 

(E) None of the statements is true. 

EXERCISES 

1. If (M, (/J;ji E J)) is an operational system then there is at least one equivalence 
relation which is compatible with every operation. 

2. Prove the following three elementary properties of any closure class on a set M. 
(a) For any subsetS, S ~ [S]. 
(b) S ~ T implies [SJ ~ [T] for any subsets S, T. 
(c) [[S]] = [S] for any subsetS. 

3. Show that N is an operational subsystem of (7!., +, 0), yet N is not a subgroup 
of£'. 

4. Show that the set of all subrings of a given ring (R, +, ·, fJ) is an algebraic closure 
class. 

5. Show that the set of all ideals of a given commutative unitary ring (R, +, ·, fJ, v) 
is an algebraic closure class. 

6. Show that the set of all closed intervals of the real numbers (and include 0, IR, 
and single points) is a closure class. Show that it is not algebraic. 

7. For any closure class prove: [C u DJ = [[C] u [DJ], [Uiei A;] = [Uiei [A;]], 
[niei A;] ~ niei [A;]. 
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8. Show that in a group (G, ·, v) in which the elements are totally ordered (every 
pair of elements are comparable) the following two conditions are equivalent: 

x1 :E;; y 1 implies ax1 :E;; aYl and x 1a :E;; y1a, 

x1 :E;; y1 and x2 :E;; y2 imply x1x2 :E;; y1y2 • 

9. An r-ary relation a is defined on 0 as follows: (xto x2 , ••• , x,) ea if and only if 
x1x2 • · • x, = 1. Is a compatible with multiplication? 

10. Show that if every nonempty subclass !iJ of an algebraic closure class CC has a 
maximal element then every member of CC is finitely generated. 

11. Find an operational system for a ring R for which the set of operational subsystems 
and the set of subrings is the same. 

12. Consider the closure class of all operational subsystems of an operational system 
containing at least one nullary operation. Show that no subsystem can be 
independent. 

8.3 Morphisms 

In this section we discuss morphisms of operational and relational 
systems. 

Definition. Let p be an n-ary operation on a set M and P' be an n-ary opera­
tion on a set M'. We say that a function f:M-+ M' preserves the opera­
tion p in the operation P' if and only if f(P(x 1, x 2 , ••• , xn)) = P'(f(x1), 
f(x2), ... , f(xn)) for all x1, x 2 , ••• , Xn in M. 

Instances of this property are such equations as f(x 1 + x2) = f(x1) +' 
f(x2), j(X1X2) = f(xl)f(x2), C 1 +x2 = tr 1C 2 , log X1X2 = log X1 + log X2, 

f(fJ) = fJ',f( -x) = -f(x),f(x-) = f(x)-. 
If we denote the mapping (x1o x2 , • •• , xn) ~ (f(x1), f(x2), ... , f(xn)) by 

f":M"-+ M'" then the equation given in the definition above can be written 
as f(P(xl> x 2 , ••• , Xn)) = P'(f"(xl> x 2 , ••• , Xn)) for all (x 1, x 2 , ••• , Xn) EM". 
This equation asserts the equality of the two functions fa p and P' a r 
illustrated in this diagram. 

P'oj" 
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The function f: M --+ M' preserves the operation p in the operation P' 
if and only if f 0 p = P' 0 r. 

With this brief preparation we define morphism. 

Definition. Let (M, (Pili E I)) and (M', (Pjlj E J) be operational systems. 
Let pi and Pi both be operations of the same type ni for each i E K, some 
subset of both I and J. We say that f:M--+ M' is a type (1, (ndi E K)) 
morphism if and only if f preserves Pi in Pi for each i in K. 

EXAMPLE. The mapping N --+ R such that f(m) = d" for some nonzero 
a E R is a type (1, 2) morphism preserving the operation + of the natural 
numbers (N, +, ·, 0, 1) in the operation · of the ring (R, +, ·, 0). 
f(m + n) = f(m)f(n). 

It is to be noticed that the quantities determining a morphism are the 
operations and their sizes, not which axioms are satisfied by the domain 
and codomain. In many cases of interest the two operational systems and 
the morphism all have the same type. One then has f: M --+ M' preserving 
pi in Pi for each i E I giving a morphism from the system (M, (Pdi E I)) 
to the system (M, (Pili E I)). 

EXAMPLE. A mapping f:R--+ R' such that f(x1 + x2) = f(x1) +' f(x2), 
f(xtx2) = f(x1)f(x2), f(O) = 0', is a type (1, 2, 2, 0) morphism from the ring 
(R, +, ·, 0) to the ring (R', +', ·', 0'). That the domain and codomain are 
rings is not necessary for f to be amorphism. The operational type determines 
the type of the morphism. 

EXAMPLE. A mapping f:R--+ R' such that f(x1 + x2) = f(x1) +' f(x2), 
f(xlx2) = f(xt)f(x2 ), f(O) = (}', f(v) = v', is a type (1, 2, 2, 0, 0) morphism 
from the unitary ring (R, +, ·, 0, v) to the unitary ring (R', + ', ·', 0', v'). 
Notice that the zero mapping is a type (1, 2, 2, 0) morphism, but not a 
type (1, 2, 2, 0, 0) morphism. 

With our definitions well established we can now prove the expected 
theorem on images and preimages of subsystems. 

Theorem. If f:M --+ M' is a type (1, (ndi E I)) morphism of the operational 
system (M, (Pdi E /)) into the operational system (M', (Pili E I)) then 

N is a subsystem of M implies f(N) is a subsystem of M', 
N' is a subsystem of M' implies f- 1(N') is a subsystem of M. 

PROOF. Let p be any operation on M and P' be the corresponding operation 
on M'; we otpit the subscript for brevity. Let x~, x2, ... , x~ E f(N). There 
exist x1, x 2, . ' .. , Xn in N such that f(x1) = x~, f(x2) = x2, ... , f(xn) = x~. 
p(xt. X2, ... , xn) E N. f(p(x 1 , X2, ... , Xn)) E f(N). But f o p = P' o r. P' o 
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f"(xl> X2, ... , Xn) E f(N). {J'(f(x1), f(x2 ), .•. , f(xn)) E f(N). {J'(xJ., x2, ... , 
x~) e f(N). As fJ stood for any operation, f(N) is closed under all operations 
and is therefore a subsystem. 

For the second part we again use a typical operation p and the corre­
sponding {J'. Let xl> x 2, ... , Xn E f- 1(N'). f(xt), f(x2), ... , f(xn) E N'. 
{J'(f(xl), f(x2), ... , f(xn)) EN'. P' o f"(xl> X2, ... , Xn) EN'. fa {J(xl> X2, ... , 
Xn) EN'. {J(xl, X2, ... , Xn) E f- 1(N'). D 

We also have a theorem on morphisms and closure systems. 

Theorem. Let f: M - M' be a (1, (n;ji E J)) type morphism of the operational 
system (M, ({J;ji e /)) into the operational system (M, (Pili e /)). Let C(f' 

be a closure system of M'. Then C(j = u- 1(C')IC' E C(f'} is a closure 
system of M. 

PRooF. The sizes of the morphism and the operations are really irrelevant. 
This is really a theorem about functions. Let !!A be a collection of sets in 
C(/. Then !!A = { f -l(B')IB' E !!A'} for some subcollection !!A' of C(f'. n!!J = 

n{BIB E !!A} = nu- 1(B')IB' E !!A'} = f- 1(n !!A') E C(j since n !!A' E C(/'. D 

We now turn to the interaction of functions with relational systems. 

Definition. A function f: M - M' preserves an r-ary relation u on M in 
an r-ary relation u' on M' if and only if (x1, x 2 , •• • , x,) e u implies 
(f(x1), f(x2 ), ... , f(x,)) E u'. Or more briefly, f'(u) ~ u'. 

If f'(u) = u', i.e., (xl> x 2, ... , x,) e u if and only if (f(x1 ), f(x2), ... , 
fx,)) E u', then we say f fully preserves u in u'. 

A function f:M- M' of relational systems (M; (u;li E /)) and 
(M'; (uiij E J)) is a type (rkik E K) relation preserving morphism if and 
only if f preserves relation uk in u/, for all k E K, a subset of J and K. 
If, moreover, f fully preserves relation uk in relation u/, for each k E K 
then f is called a relation fully preserving morph ism. 

!' 
M'-------+ (M')' 

\)\ 

Ul 

Ut 

!' 
u ------~ f'(u) 

Theorem. Let (M; (uilj E J)) and (M'; (u]ij e J)) be similar relational 
systems. Let f:M- M' be a relation preserving morphism. 

1. If (N; ('rilj e J)) is a relational subsystem of M then (f(N); (f'(t)jj E 
J)) is a subsystem of M'. 
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2. If (N; ('rilj E J)) is a full relational subsystem of M and f is a full 
relation preserving morphism then (f(N); {f'(r)ij E J)) is a full sub­
system of M'. 

3. If (N'; (rilj E J)) is a subsystem of M' and f is a full relation preserving 
morphism then (f- 1(N'); ( {f')- 1(-rj)lj E J)) is a relational subsystem 
of M. 

PRooF 
1. N ~ M and r ~ er imply f(N) ~ f(M) ~ M' and f'(r) ~ f'(er) ~ er'. 

Hence (f(N); (f'(ri)ij E J)) is a relational subsystem of M'. 
2. For (xt> x 2, ... , x,) EN' we have (xh x 2, ... , x,) Er if and only if 

(xt> x 2, ... , x,) E er if and only if {f(x1), f(x 2), ... , f(x,)) E er'. Therefore, 
f'(r) = er' n f(N)', proving (f(N); {f'(ri)lj E J)) to be a full subsystem 
of M'. 

3. {f')- 1(-ri) = {(x1, x2 , ••. , x,)i(xh x2 , ••. , x,) EM' and {f(x1),/(x2 ), ..• , 

f(x,)) Er'}. Since r' ~ er' and (xt> x 2, . .. , x,) E er if and only if {f(x1), 

f(x2 ), •.. ,f(x,))Eer'. (f')- 1(-r') ~er proving (/- 1(N');(f')- 1(rj)ljEJ) 
to be a subsystem of M. 0 

EXAMPLE. A full order preserving of ordered integral domains (R, +, ·, (), 
v; ~) and (R', +', ·', ()', v'; ~') preserves the algebraic operations and 
order relation so that f(x 1 + x2 ) = f(x1) +' j(x2), j(x1x2) = f(xt)f(x2), 
f(()) = ()', f(v) = v'; x1 ~ x 2 if and only if f(xt) ~' f(x 2). In terms of the 
notation of this section we have f o ( +) = ( + ') o jl, f o (·) = (·') o jl, 
Jo() = ()'of0,Jov = v'of0 ;j2(~) = (~'). 

QUESTIONS 

1. Which of these statements are true? 
(A) f o p• = P' of implies f preserves Pin fi'. 
(B) u n S x S is an equivalence relation on a subset S of M if u is an equivalence 

relation on M. 
(C) f'(u) = u' implies the r-ary relation u is preserved by fin the r-ary relation 

u'. 
(D) f: N -+ N such that f(x) = xP is a type (1, 2) morphism. 

(E) None of the statements is correct. 

2. Which of these statements are true? 
(A) (IR+, ·, 1) and (IR, +, 0) are commutative groups. 
(B) log:IR+ -+ IR preserves· in+. 
(C) log: IR+ -+ IRis a type (1, 2, 0) morphism. 
(D) log a- 1 = -log a for all a e IR+. 

(E) None of the statements is correct. 

3. Let y stand for the unary operation of taking reciprocals and n for the operation 
of taking negatives. Which of these statements are true? 

(A) o+ isasubgroupof(IR+,., 1,y). 
(B) logo+ is a subgroup of (IR, +. 0, n). 
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(C) log(n(l)) = 0. 
(D) log- 1 Q is a subgroup of <IR+, ·, 1, y). 

(E) None of the statements is true. 

4. Which ofthese statements are true? 
(A) log:IR+ --+ IR fully preserves~ in~­
(B) log: IR+ --+ IR preserves ~ in ~. 
(C) ~ is compatible with· of <IR+, ·, 1). 
(D) ~ is compatible with + of <IR, +, 0). 

(E) None of the statements is true. 

EXERCISES 

1. Show that there are an infinite number of morphisms of 71.. into 71.. preserving addition 
and zero, two morphisms preserving addition and zero and multiplication, and only 
one morphism preserving addition, zero, multiplication, and the unity. 

8.4 Congruences and quotient systems 

In this section we have congruences, quotient systems, and isomorphism 
theorems. 

From our earlier definition of the compatibility of an r-ary relation with 
an n-ary operation (Section 8.2) we specialize now for the binary relation. 

Definition. A binary relation p on a set M is compatible with an n-ary 
operation fJ if and only if x 1pYt, x 2py2, ... , XnPYn imply {J(x1, x 2, ... , 
Xn)p{J(yl, Y2, · · ·, Yn). 

In more compact form (Section 8.2), a relation p on a set M is compatible 
with an operation f3 if and only if f3 2(p") s;;; p. We now give equivalence 
relations which are compatible with all operations of an operational system 
a special name. 

Definition. A relation p on a set M of an operational system (M, ({3;i e /)) 
is a congruence if and only if p is an equivalence relation compatible 
with every {3;, i e I. 

ExAMPLE. (7L, +, 0) has an equivalence relation p such that xpy if and 
only if x - ye 37L. Since x 1py1 and x2 py2 imply (x1 + x2)p(y1 + Y2), the 
equivalence relation p is compatible with the binary operation +. p is 
compatible with any nullary operation. p is therefore a congruence. 

We now have the theorem showing that any morphism introduces a 
congruence upon its domain. 
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Theorem. L~t f:M ~M' be a morphism of the operational systems (M, 
(Pdi E J)), (M', (Pili E J)). The relation p = {(x, y)l(x, y) E M 2 and f(x) = 
f(y)} is a congruence of M. 

PROOF. That p is an equivalence relation was proved in Section 1.7. Now 
let p be any operation on M. Let (p(xl> x2, ... , xn), p(y1, y2, ... , Yn)) E 

P2(p"). ( (xl> X2, ... , Xn), (Yl> Y2, ... , Yn)) E p". (f(xl), f(x2), · · · , f(xn)) = 

(f(yl), f(x2), · · · , f(yn) ). P'(f(xl), f(x2), · · · , f(xn)) = P'(f(yl), f(Y2), · · · , 
f(Yn) ). (p' 0 f")(xl, X2, · · · , Xn) = (p' 0 f")(Yl> Y2, · · · , Yn). (f 0 P)(xl, X2, · · · , 
Xn) = (f' 0 p)(yl, Y2> ... ' Yn). (p(xl> x2, ... ' Xn), P(Yl> Y2> ... ' Yn)) E p. 
p2(p") ~ p. p is therefore a congruence. D 

Associated with every congruence on an operational system there is a 
quotient system, a partition of the original set with well-defined operations 
derived representatively from the original operations. As throughout this 
book, monomorphisms are injective morphisms and epimorphisms are 
surjective morphisms. 

Theorem. Let (M, (Pdi E J)) be an operational system and p a congruence 
on M. Then (M/p, UJdi E J)) is an operational system where "Pi(xtfp, 
x2/p, ... , xn/P) = Pi(x1, x2, ... , xn)/P for each i E J. 

PRooF. An equivalence relation p defined a partition {xfplx EM} of M. 
That each Pi is compatible with this equivalence relation will mean that 
the operation "Pi is well defined, independent of the representative used in 
the definition. Suppose (xtfp, x2/p, ... , xn/P) = (Yt/p, Y2/P, ... , Yn/p). 
( (xl, x2, ... ' Xn), (Yt, Y2, ... ' Yn)) E p". (p(xl, x2, ... ' Xn), p(yl, Y2• ... ' 
Yn)) E p. P(xl> X2, ... 'Xn)/P = p(yl> Y2• ... 'Yn)/p. "P(xtfp, x2/p, ... 'Xn/P) = 
"P(ytfp, Y2/P, · · ·, Yn/p). D 

Corollary. If p is a congruence on the operational system (M, (Pdi E J)) 
then the quotient map cp: M ~ M/ p such that cp(x) = xj pis an epimorphism. 

We now prove our fundamental morphism theorem on the factorization 
of a morphism into an epimorphism and a monomorphism. 

Theorem. Given a morphism f:M ~M' of the operational systems (M, 
(Pdi E J)) and (M', (Pili E I)) there exist a congruence p on M, an epi­
morphism cp:M ~ M/p and a monomorphism f':Mjp ~M' such that 
f' 0 (/) =f. 

PROOF. The morphism f defines the congruence p and the epimorphism 
as already proved. The mapping f' is defined by f'(x/p) = f(x) which was 
shown in Section 1. 7 to be well defined as a function. That f' is a morphism 
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is verified as follows.f'(JI(xifp, x 2 /p, ... , xn/P)) = f'(f3(x 1, x2 , ... , ~n)/p) = 
f({3(xb Xz, · · · , Xn)) = {3' 0 r(xb Xz, · · · , Xn) = /3'(/(xl), f(Xz), · · · , f(xn)) = 
f3'(f'(xdp), f'(xz/p), ... , f'(xn/P)) = {3' o (f')n(xifp, x 2 /p, ... , Xn/p). There­
fore, f' o 7I = {3' o (f't. This shows that f' preserves 7I in {3' for every operation 
7I of the operational system. o 

We have considered the compatibility of operations with an equivalence 
relation in order to construct quotient operational systems. We now con­
sider compatibility of r-ary relations with an equivalence relation in order 
to construct quotient relational systems. 

Definition. An r-ary relation u is compatible with an equivalence relation p 
if and only if x 1py1, x 2 py2 , ••. , x,py, and (xi> x2 , ... , x,) E u imply 
(Yt. Yz, · · . , y,) E 0'. 

In essence, this definition means that whenever an r-ple is related by u 
then all equivalent r-ples are also related by u. 

Definition. Let <M; (uilj E J)) be a relational system. Let p be an equiv­
alence relation on M and let every ui, j E J, be compatible with p. Then 
we call p a relational congruence for the relational system. 

After these preliminary definitions we prove a theorem which shows the 
existence of the quotient relational system. 

Theorem. Let <M; (uilj E J)) be a relational system and a relational con­
gruence for the relational system. Then <MJp; (uilj E J)) is a relational 
system where (xdp, x 2 jp, ... , x,jp) E O'i if and only if (xt. x2, ... , x,) E ui 
for all j E J. We call <MJp; (uijj E J)) the quotient relational system. 

PROOF. That p is a congruence ensures that the new quotient relation u is 
well defined (for every ui; we drop the subscript for brevity). (xifp, x 2 jp, ... , 
x,/p) = (yifp, y2 /p, ... , y,jp) if and only if(xt. x2 , .•. , x,)p'(y1, y2 , ••• , y,). 
(xdp, x 2 jp, ... , x,jp) E 0' if and only if (x1, x2 , .•. , x,) E u if and only if 
(Yt, y2 , ••• , y,) E u if and only if (ydp, y2 jp, ... , y,jp) E 0'. 0 

Theorem. The quotient function <p:M ~ M/p such that <p(x) = xjp mapping 
the relational system <M; (uilj E J)) into the quotient relational system 
(defined by a congruence p) <MJp; (uilj E J)) is a full relation preserving 
morph ism. 

PROOF. <p'(u) = {(<p(x1), <p(x2), ... , <p(x,))i(x1, x2 , ••. , x,) E u} = {(xtfp, 
x 2 /p, ... , x,/p)l(xt. x2, ... , x,) E u} = 0' for each relation u of the rela­
tional system. 0 

The apparent need for separate theorems for operations and relations is 
not totally real. The important question is whether an operation or relation 

314 



8.4 Congruences and quotient systems 

is totally or partially defined. In operations we are treating the totally defined 
case and in relations the partially defined case. 

We now offer a few examples to show some possibilities for interac­
tion between subsystems and quotient systems. In the first example every 
equivalence class or coset in the quotient system is itself a subsystem. 
Let (N, {3) be such that {3 is a unary operation on N :{3(2n) = 2n + 1, 
{3(2n + 1) = 2n. Define p, a relation on N, such that (2n + 1, 2n) and 
(2n, 2n + 1) belong to p for every n in N and also include (m, m) for every 
m E N so that p is reflexive. This relation is an equivalence relation on N 
which produces a partition { {0, 1 }, {2, 3}, {4, 5}, ... } of N. pis a congruence 
and Njp is a quotient system because xpy implies {3(x)p{3(y). It is easily 
verified that each coset of the partition is a subsystem of (N, {3). 

In our second example we shall construct a quotient system in which no 
coset is an operational subsystem. Let (N, y) be such that y is a unary 
operation on N :y(n) = n + 2. Let p be defined such that (2n + 1, 2n), 
(2n, 2n + 1), (m, m) E p for every m, nE N. N/p is the same set as in example 1. 
Again xpy implies y(x)py(y). p is a congruence. In this example no equiva­
lence class is closed under y and is therefore not an operational subsystem. 

In our third example let (N, 15) be such that 15(0) = 1, 15(1) = 0, 15(m) = 
m + 2 for m =1- 0, m =1- 1. We introduce two different equivalence relations 
for this operational system. We let p be as in the two previous examples 
leading to the partition N/p = { {0, 1}, {2, 3}, {4, 5}, ... }. We let a be 
{(n, n)Jn EN} u {(0, 1), (1, 0)} leading to the partition N/a = { {0, 1 }, {2}, {3}, 
{4}, ... }. Both panda are congruences and both N/p and N/a contain the 
operational subsystem {0, 1} as a member. The moral of this third example 
is that one cannot always construct the quotient system by knowing that 
some subsystem is a member of the quotient operational system. For some 
special operational systems such a procedure is possible; for example, from 
a given ideal of a ring one can construct the quotient ring. 

The following theorem is a version of what is sometimes known as the 
second isomorphism theorem. 

Theorem. Let panda be congruences of the operational system (M, (f3;Ji E J)) 
such that p ~ a. Then there exists a congruence -r of M/p such that 
(M/p)/-r is isomorphic to M/a. 

PRooF. Define f:Mjp-+ M/a such that f(xjp) = xja. xjp = yjp implies 
(x, y) E p which implies (x, y) Ea, which implies xja = yja, which in turn 
implies f(x/p) = f(y/p). Note in particular that xjp ~ xja. We now verify 
thatf is amorphism. P o f"(xtfp, x 2/p, ... , Xn/P) = P(f(x1/p), f(x 2/p), ... , 
f(xn/ p)) = P(xtfa, Xz/a, ... , Xn/a) = {3(x1, Xz, ... , xn)/a = f({3(x 1, Xz, ... , 
xn)/p) =r= f({J(x 1/p, x2 /p, ... , Xn/P)). By the fundamental morphism theorem 
there e~ist a-rand mappings cp and f' such that f':(M/p)/-r-+ M/a is an 
isomorphism. D 
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In the usual notation of rings and groups, vector spaces, this theorem is 
not stated in terms of congruences but rather in terms of ideals, normal 
subgroups, and subspaces which define congruences. We now make a 
generalization of these theorems in the latter form for operational systems. 

Definition. A subsystem N of an operational system (M, (/J;Ii E /))is called 
a normal subsystem if and only if N is a member of M/p for some con­
gruence p. 

From the third example we just gave before the previous theorem we see 
that the normal operational subsystem does not, in general, completely 
determine the congruence. Nevertheless, we shall normally denote M/p by 
M/N; we shall leave to context the full meaning of M/N. We give now the 
altered form of the theorem. 

Theorem. Let K and L be normal operational subsystems of the operational 
system (M, <Pdi E /))such that K ~ L. Then (M/K)/(L/K) is isomorphic 
with M/L. 

PRooF. That K and L are normal subsystems means there exist congruences 
panda of M such that K E M/p and LE M/a. From the previous theorem 
we have that there exists an isomorphism f': (M I K)/r: - M I L. We complete 
the proof by showing that L/K E (M/K)/r:. Let x/K E L/K and y/K E M/K. 
xjKr:y/K if and only if f(x/K) = f(y/K) if and only if x/L = y/L if and 
only if xay if1fnd only if yE x/a = L. {y/Kiy/Kr:x/K} = {y/Kiy EL} = 
L/K. Therefore, L/K E (M/K)/r: and we can denote (M/K)/r: by (M/K)/ 
(L/K). D 

We prove now one theorem typical of a number of possibilities which 
discuss closure classes of congruences, normal subsystems and generation. 

Theorem. Any nonempty subset of an operational system (M, (/J;Ii E I)) is 
contained in some smallest normal operational subsystem N. 

PRooF. We obtain a smallest normal subsystem by choosing or constructing 
the smallest possible congruence in the class of all congruences which have 
the given property. This is equivalent to our problem because the fewer 
elements congruent to a given element then the fewer the members of the 
coset containing that member. 

Let P = {plthere exists x E M such that S s;;; x/ p and x/ p is an opera­
tional subsystem of M}. Pis nonempty because M x M is a congruence 
yielding the partition {M}; M is a subsystem containing S. The remainder 
of the proof consists in showing that np has all the desired properties. It is 
obviously the smallest member of P if it belongs to P. It is clear how to show 
that np is an equivalence relation. We continue the proof by showing it 
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to be a congruence. Let ( (x1, x2 , ••. , x"), (Yt. Yz, ... , Yn)) E (nP)". Then 
( (x1 , X 2 , •.• , Xn), (y1, y 2 , ••• , Yn)) E p" for all p in P. (p(xl> X 2 , ••• , Xn), 
p(y1, Yz, ... , Yn)) E p for all p in P. (p(xl, Xz, ... , Xn), P(Yt. Yz, ... , Yn)) E 

nP. 
We now show that S is a subset of some coset of MjnP. By the definition 

of P we have S £ xj p for some x E M for every p in P. Let a E S. Then 
Ss; ajp for every pEP. We wish to showS s; ajnP. Let yES. yE ajp for 
every pin P. (y, a) E p for each pin P. (y, a) E nP. yE ajnP. 

Finally, we show that ajnP is an operational subsystem. Let x~> x2 , ••• , 

Xn E ajnP. (xl, a), (Xz, a), ... , (xn, a) E nP. (xl, a), (xz, a), ... , (xn, a) E p 
for each pin P. xl> x2 , ••• , Xn E ajp for each pin P. P(x1, x 2 , ••• , Xn) E ajp 
for each pin P because aj pis an operational subsystem. (p(x1, x2 , ••• , xn), a) 
for each pin P. (p(xl, Xz, ... , Xn), a) E nP. p(xl, Xz, ... , Xn) E ajnP. ajnP 
is the desired normal operational subsystem with S as subset. 0 

We now introduce the necessary definitions in order to be able to have 
I 

the kernel of a morphism. 

Definition. An operational system (M, (P;ji E J)) is a zero system if and 
only if the operational system has a nullary operation 0 such that { 0(0)} 
is an operational subsystem of M. 

We note that in a zero system we have [0] = {0(0)}. 

ExAMPLE. In the ring (R, +, ·, 0) we have { 0} is closed under + and · and 
therefore (R, +, ·, 0) is a zero system. 

Definition. For any morphism between zero systems (M, (Pilj E J), 0) and 
(M', (P]Ij E J), 0'), f:M --t M', we define the kernel off to be the set 
f- 1({0'(0)}). 

Theorem. Let f:M --t M' be amorphism between zero systems (M, (Pilj E J), 
0) and (M', (PJij E J), 0'). Then kernel f is a normal subsystem of M. 

PROOF. Since the preimage of an operational subsystem is an operational 
subsystem we know kernel f is an operational subsystem. The relation p is 
defined so that xpy if and only ifj(x) = f(y) and is a congruence. x E kernel! 
if and only if f(x) = 0'(0) if and only if f(x) = f(O(O)) if and only if xpO(O) 
if and only if x E 0(0)/ p. Kernel f E M I p proves kernel f is normal. We then 
write the quotient system as M /ker f. o 

Corollary. M/ker f is isomorphic to f(M). 

We note that a unitary ring is not a zero system because {0} is not closed 
under the nullary operation v and is therefore not an operational subsystem. 
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We do not define kernel f for a type (1, 2, 2, 0, 0) morphism between unitary 
rings (R, +, ·, (), v) and (R', + ', ·', ()', v'). If we work with a kernel in this 
case we work with the unitary ring merely as a ring and consider type 
(1, 2, 2, 0) morphisms. 

QUESTIONS 

1. Let (M, (p;ji E /)) be an operational system. Which of these statements are true? 
(A) An equivalence relation is compatible with every operation of M. 
(B) A relation pis a congruence if and only if pis compatible with every operation 

of M. 
(C) A quotient system of M is a subsystem which is normal. 
(D) There exists at least one quotient system of M. 

(E) None of the four statements is true. 

2. Let (M, (p;ji E /)) be an operational system. Which of these statements are true? 
(A) A partition of M may fail to be a quotient system. 
(B) A quotient system of M must contain some subsystem of M. 
(C) Any subsystem of M is a member of some quotient system of M. 
(D) Any morphism of M into M has a kernel. 

(E) None of the statements is true. 

3. Define xpy if and only if x - yE Q on the operational system (IR, +, ·, 0, n) where 
n stands for negation. Which of these statements are true? 

(A) p is a congruence. 
(B) Q is a normal subsystem of IR. 
(C) (IR, +, ·, 0, n) is a zero system. 
(D) (x, y) E p implies (n(x), n(y)) E p. 

(E) None of the statements is true. 

4. Let A and B be ideals of the ring (R, +, ·, (), n), an operational system, such that 
A ~ Band n stands for negation. Which ofthe following statements are true? 

(A) B/A ~ RjA. 
(B) R/B ~ (R/A)/(B/A). 
(C) R/B ~ RjA. 
(D) R/BeR/A. 

(E) None of the statements is true. 

EXERCISES 

1. Let (R, +, ·, (), n) be a ring in which n stands for negation. Show that every opera­
tional subsystem is a subring and vice versa. Show that any subset A of R is a normal 
operational subsystem if and only if A is an ideal of R as a ring. 

2. Let (M, (Pili E /); a) be an algebraic system. Let the relation a be compatible 
with every operation P;, i E /. Let p be an equivalence relation compatible with every 
operation P;, i E /, and also compatible with the relation a. Show that (M/p, 
(J1ili E /); 0') is an algebraic system in which a is compatible with every ]1i, i E /, 

and therefore is a quotient algebraic system. 
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8.5 Products and sums 

In this section we place constructions of Cartesian products, weak 
Cartesian products, and powers. 

From two given operational systems of the same type we can construct 
a new operational system of the same type including the given operational 
systems. 

Definition. Let (M, (IJ;ji E I)) and (N, (y;ji E I)) be similar operational sys­
tems. For each i in I we define an n-ary operation /3; x Y; on M x N 
such that (/3; x y;)( (xl> y1), (x2, y2 ), ••• , (xn, Yn)) = (/3;(xl> X2 , ••. , xn), 
y;(Yt, y2 , • •• , Yn) ). The operational system (M x N, (/3; x y;ji E I)) is 
defined to be the Cartesian product and has the same type as both the given 
systems. 

We note that the mapping or operation f3 x y:(M x N)R--+ M x N 
arises from f3: M" --+ M and y: N" --+ N which yield, strictly speaking, 
f3 x y:M" x N"--+ M x N from pairing. We choose to identify (M x N)R 
and M" x N" by their obvious isomorphism. 

The original operational systems are included in the Cartesian product 
system in a sense illustrated by this diagram and lemma. 

M 

MxN 

~ N 

Lemma. The projections p1 : M x N --+ M and p2 : M x N --+ N of the 
Cartesian product into its components are epimorphisms. 

PROOF. We assume both M and N are nonempty, for otherwise, the statement 
may be false. Let bE N. Then for any x EM we have p1(x, b) = x proving 
p1 to be a surjection. To show that p1 is amorphism we show that it preserve,s 
the operation f3 x y of M x N in the corresponding operation f3 of M. 
(Pl 0 (/3 X y) )( (xl> Yt), (xz, Yz), · · ·, (xn, Yn)) 

= P1(f3(x1> Xz, · · ·, xn), Y(Yl> Yz, · · ·, Yn)) 
= f3(xl> Xz, ... , Xn) 

= f3(p1(X1, Y1), Pl(Xz, Yz), · · ·, P1(xn, Yn)) 
= (/3 ° P1)( (xl> Y1), (Xz, Yz), · · · , (xn, Yn) ). 

P1 o (/3 X Y) = f3 o P1· 

Likewise p2 is an epimorphism. D 
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The following theorem shows how it is possible to combine two separate 
morphisms through the Cartesian product. 

Theorem. Let (M, (/J;Ii E /))and (N, (y;ji E /))be similar operational systems. 
Then for any operational system (A, (rx;li E /)) of the same type and mor­
phisms f: A --+ M, g: A --+ N there exists a unique morphism fP: A --+ M x N 
such that f = p1 o fP and g = p2 o fP. 

PRooF Define fP(u) = (f(u), g(u) ). Then fP(rx(xl> x2 , ..• , Xn) = (f(rx(xl> 
x2 , ••• , Xn), g(rx(xl> x2 , ••• , Xn))) = (fJ o f"(xl> x2 , ... , Xn), y o g"(xl> 
x2 , ••• , Xn)) = (fJ X y)(f"(xl> x2 , ••• , Xn), g"(xl> x2 , ••• , Xn)) = (fJ X y) o 
fP"(x 1, x2 , ..• , xn)· 0 

EXAMPLE. The rings (Z..2, +, ·, 0) and (Z..3 , +, ·, 0) have a Cartesian prod­
uct which is the ring (Z..2 x Z.. 3 , + x +, · x ·, (0, 0)). 

The definition given for the Cartesian product of two systems can be 
extended to any number of operational systems. Let ((Mi, (/3;ili E I))lj E J) 
be a family of similar operational systems, indexed by the set J. The Cartesian 
product Xie 1 Mi of the sets consists of all families of the form (xilj E J) in 
which xi E Mi for eachj E J~ An operation XieJ /J;i on the Cartesian product 
is defined from the operations (Piilj E J) so that <XieJ /J;)( (x1ilj E J), 
(x 1ilj E J), ... , (xnilj E J)) = ({Jii(x 1i, x2i, ... , Xni)lj E J). This gives us the 
operational system <XieJ Mi, <XieJ Piili E /)). 

If all the component systems are identical, say Mi = M for all j E J and 
pii = {J; for all j E J, then we call the Cartesian product a power and write 
the system (M1, (fJfli E /)).We have associated with each Cartesian product 
a collection of projections which are epimorphisms. pk:XieJ Mi--+ Mk such 
that Pk(xilj E J) = xk. 

For the case when J is infinite we can define a proper subsystem of the 
Cartesian product called the weak Cartesian product. We briefly discuss this 
only for the power case. Let a be some fixt element of M (for example, it 
could be the neutral element of a group). We define (M1 )w = {(xilj E 

J)!(xilj E J) E M1 and xi = a for all but a finite number ofj}. 

EXAMPLE. We form of(~, +, 0) the power ~~'~~. ~N consists of all infinite 
sequences. Addition in ~N is coordinatewise, (x;ji E N) + (y;ji E N) = 

(x; + y;ji E N), and the zero element is (Oii E N). The weak Cartesian power 

320 



8.5 Products and sums 

is the subset (!RN)w of all sequences which have all save a finite number of 
entries equal to zero. 

Relational systems also admit a natural Cartesian product construction 
not unlike the operational systems. 

Definition. If (M; (a i I j E J)) and ( N; (r i I j E J)) are relational systems then 
(M x N; (ai x -rili E J)) is a relational system and is called the Cartesian 
product. O"j X "t"i = {( (xl, Y1), (Xz, Jl), ... , (xno YnDI(xb Xz, . .. , Xn) E O"j 
and (Yl, Yz, ... , Yn) E -ri}· 

This relational product ai x -ri is an abuse of notation as a rearrangement 
of ordered pairs must take place. 

Theorem. Let (M; (aiJj E J)) and (N; (-rili E J)) be relational systems. Then 
the projections p1 : M x N --+ M and p2 : M x N --+ N are relation pre­
serving morphisms from the Cartesian product relational system to the 
component relational systems. 

PROOF ( (xb J!), (x2 , y2 ), ••• , (xn, Yn)) Ea x -r if and only if(x1, x2, ... , Xn) Ea 

and (Yl, y2 , ••• , Yn) E-r if and only if(p1(x1, y1), p1(x2, Jl), ... , p1(xno Yn)) Ea 

and (p2(x 1, y1), p2(x2 , y2 ), ••. , p2(xn, Yn)) E-r if and only if p~( (x1, J!), 
(x2, y2), ••• , (xn, Yn)) E a and p~( (xb Y1), (xz, Jl), ... , (xn, Yn)) E -r. Thus 
p~(a x -r) s;; a and p~(a x -r) s;; -r. D 

For the case of an arbitrary number of relational systems ( (Mk: (aikli E 
J))ik E K) has a Cartesian product relational system <XkeK Mk; <XkeK 
aikli E J)). The Cartesian product relation is defined by this statement: 
( (xlklk E K), (x2klk E K), ... , (xnklk E K)) E XkeK aik if and only if (xlk, 
Xzk• ... , xnd E O"jk for all k E K. 

By analogy with the theorem characterizing the Cartesian product opera­
tional system in terms of morphisms we use the dual characterization to 
define the coproduct of two operational systems. 

A 

Definition. Let (M, (/J;Ii E /)) and (N, (y;ji E /)) be similar operational sys­
tems. If there exists a similar operation system (S, (<5;ji E /)) and mono­
morphisms q1 :M--+ S, q2 :M--+ S such that if (A, (e;ji E I)) is any similar 
operational system and f: M --+ A and g: N --+ A are morphisms implies 
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there exists a unique morphism 'P: S --+ A such that 'P o q 1 = f and 
'P o q2 = g then we call the operational system (S, (<5di E /)) a coproduct 
of M and N and we write S = M v N. 

EXAMPLE. Let (M, fJ) and (N, 1'/) be operational systems with one nullary 
operation. The type is (1, 0). The coproduct exists for these systems and is the 
disjoint union with identified special points. In detail, S = {(x, O)lx EM -
{fJ(O)}} u {(x, l)lx EN - {'1(0)}} u {P} with nullary operation' on S such 
that '(0) = P. q1 :M--+ S such that q1(x) = x for x # fJ(O), q1(x) = P for 
x = fJ(O). q2 : N --+ S such that q2(x) = x for x # 1'/(0), q2(x) = P for x = 1'/(0). 
Define for f:M--+ A and g:N--+ A the function 'P so that 'P(y) = f(x) if 
y = q1(x) for some x EM and 'P(y) = g(x) if y = q2(x) for some x EN. 
Then 'P(q1(x)) = f(x) for x EM and 'P(q2(x)) = g(x) for x EN. 'P(P) = 
j(fJ(O)) = g(l'/(0)) = '(0). 

ExAMPLE. The commutative groups (M,·, v, y) and (M',·', v', y') have a 
coproduct (M x M',· x -', v x v', y x y'). In this instance, the coproduct 
is also the Cartesian product, an unusual event. We briefly illustrate how the 
Cartesian product is also the coproduct. M x M' = {(x, x')lx EM, x' EM'}. 
Define q1 :M--+ M x M' such that q1(x) = (x, v'(O)) and q2 :M'--+ M x M' 
such that q2(x') = (v(O), x'). If f:M--+ A and g:M'--+ A are morphisms into 
some commutative group A then we define 'P:M x M'--+ A such that 
'P(x, x') = f(q1 1(x) )g(q2 1(x') ). 

QUESTIONS 

1. Which of the following complete a true sentence? The Cartesian product of the 
integers, (7L, +, ·, 0, n), with themselves is 

(A) an integral domain 
(B) a ring 
(C) a field 
(D) not defined. 

(E) None of the alternatives completes a true sentence. 

2. The weak power, (ll_N)w, of the integers, (7L, +, ·, 0, n) 
(A) is a ring 
(B) is an integral domain 
(C) contains sequences of integers 
(D) contains a neutral element of multiplication. 

(E) None of the choices completes a true sentence. 

3. In the Cartesian product X.= 2, 3, ... lL. of rings (7L., +, ·, 0, n) 
(A) there are an infinite number of elements 
(B) some elements have reciprocals 
(C) there are subfields isomorphic to lLP for every prime p 
(D) each element is a sequence. 

(E) None of the choices completes a true sentence. 
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Monoids and groups 9 

This chapter is devoted to algebraic systems of one binary operation. 
Groups have been used many times before in the text, as permutations, as 
modules (a commutative group with an exterior ring multiplication), and 
elsewhere, but here we organize the systems of one binary operation into one 
chapter and give some additional specialized results. The most general 
algebraic system we consider in this chapter is the monoid, a set with one 
associative binary operation. Some special monoids discussed are unitary 
monoids, cancellative monoids, and groups. We discuss subsystems, quotient 
systems, morphisms, and the fundamental morphism theorem. In Sections 9.4 
and 9.5 we study more specialized results available for groups alone. We 
study cyclic groups and connect the order of an element with this concept. 
Several topics such as center, normalizer, conjugacy classes are all organized 
around inner automorphisms (cpa(x) = a- xa). We then apply these results 
to answer some questions about elements of prime order. We offer some 
standard theorems relating direct products and Cartesian products of groups. 
We define simple groups and solvable groups. We give an inductive proof of 
the fundamental theory of Abelian groups which is subsumed in Chapter 10 
by the direct sum resolution of a finitely generated module. 

9.1 Monoids, unitary monoids, 
cancellative monoids, and groups 

In this section we give the basic definitions for algebraic systems having 
one binary operation. Although some of the systems have been previously 
defined we will repeat the definitions here. 
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Definitions. A monoid (M,") is a set M together with an associative binary 
operation·. 

A unitary mono id (M, ·, v) is a set M together with an associative 
binary operation · and a nullary operation v such that v(O) is a neutral 
element for the binary operation. 

A cancellative monoid (M,") is a set together with an associative binary 
operation · for which the cancellative properties holds: xy = xz implies 
y = z and yx = zx implies y = z. One might also consider monoids with 
only left cancellation or only right cancellation. 

A group < G, ·, v) is a set G, an associative binary operation ·, and a 
nullary operation v such that v(O) is a neutral element for · and every x in 
G has an inverse with respect to the binary operation. An equivalent 
definition is that a group (G, ·, v, y) is a set G, an associative binary 
operation ·, a nullary operation v, a unary operation y such that v(O) is 
the neutral element for multiplication, and y(x) is the multiplicative inverse 
ofx. 

If the binary operation of a mono id is commutative then the mono id is 
called a commutative monoid. A commutative group is frequently called 
an Abelian group (from Niels Abel, a principal worker in early group 
theory). 

ExAMPLES. (N, +, 0) is a unitary commutativecancellationmonoid. (N, ·, 1) 
is a unitary commutative mono id. < N +, ·, 1) is a unitary commutative can­
cellation monoid. If 7!..* = 7!.. - {0} then (7!..*, ·, 1) is a unitary commutative 
cancellation monoid. (7!.., +, 0) is a commutative group. (QJ*, ·, 1) is a com­
mutative group. (6(X), a,/), the set of all bijections on a set X together with 
composition and the identity function, is a group. The group is noncommuta­
tive if X contains more than two members. (7!.. 5 , +, 0) is a commutative 
group. (7!..4 , ·, T) is a unitary commutative mono id. (21\J, +, 0) is a unitary 
commutative monoid. For any set X, (Xx, o, /) is a unitary monoid. If 
Sur( X) stands for the set of all surjections on a set X then (Sur( X), o, /) is a 
unitary right cancellative monoid. 

We now simply list, without proof, necessary and sufficient conditions for 
a subset of an algebraic system to be a subsystem. 

Theorem. F is a submonoid of a mono id (E, ·) if and only if x, y E F imply 

xy E F. F is a unitary submonoid of a unitary monoid (E, ·, v) if and only 

if v E F and x, yE F imply xy E F. F is a subgroup of a group (G, ·, v) if 
and only if x, yE F imply xy E F, x E F implies x- E F, and v E F (or 

F =f 0). 

ExAMPLES. 21\J is a submonoid of the monoid (N, ·)but not a unitary sub­
monoid of the unitary monoid (N, ·, 1). 7!..* is a unitary submonoid of the 
unitary monoid (QJ*, ·, 1) but not a subgroup of the group (QJ*, ·, 1). We 
also recall a result from the chapter on integers: the only subgroups of 
(7!.., +, 0) are of the form n7l.. for some nE N. 
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On the generation of subsystems we have these results. 

Theorem. If (M,·) is a monoid and S is a subset of M then there exists a 
smallest submonoid [SJ of M including S. If (M,·, v) is a unitary monoid 
and S is a subset of M then there exists a smallest unitary submonoid [S] 
of M including S. If (M,·, v) is a unitary cancellative monoid and S is a 
subset of M then there exists a smallest unitary cancellative submonoid 
[S] of M including S. If (G, ·, v) is a group and S is a subset of G then 
there exists a smallest subgroup [ SJ of G including S. 

PRooF. In each case from the set C(f of all subsystems which include the given 
set S, prove that the class is nonempty, and show that the intersection of the 
class is itself a member of the class. D 

Definition. If there exists a finite subset S of M such that [ S] = M then we 
say that the monoid (M,") is .finitely generated. 

EXAMPLE. < N, +)is generated by {0, 1} and is therefore a finitely generated 
monoid. The group (7L, +, 0) is generated by the subset {1}. The monoid 
(N, ·)is not finitely generated. The monoid (N, ·)is generated by the subset 
consisting of 0, 1, and all prime numbers. 

Definition. A subset S of a monoid (M, ·) is independent if and only if no 
proper subset of S generates [ SJ. An independent generating subset of a 
monoid is called a basis. 

EXAMPLE. {0, 1} is a basis for the monoid (N, + ). {0, 1, 2} generates the 
monoid (N, +) but fails to be an independent set. {2, 3} and {1} are both 
bases for the group (7L, +, 0). 

QUESTIONS 

1. If <M, ") is a monoid then 
(A) there cannot be a neutral element for M 
(B) there cannot be two distinct neutral elements for M 
(C) there cannot be two distinct inverses for any element of M 
(D) a cancellation law cannot hold. 

(E) None of the alternatives completes a Jatisfactory sentence. 

2. A unitary monoid <M,·, v) which fails to be a group 
(A) cannot contain a subgroup other than { v} 
(B) cannot be a cancellative monoid 
(C) contains at least two elements 
(D) must be infinite. 

(E) None of the alternatives completes a satisfactory sentence. 

3. Which of the following statements are correct? 
(A) The natural numbers, <N, +, ·, 0, 1), do not make a ring. 
(B) <N, +, 0) is a commutative cancellative unitary monoid. 
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(C) <N, ·, 1) is a commutative cancellative unitary monoid. 
(D) The monoid <N, + > has an infinite number of submonoids. 

(E) None of the statements is true. 

4. Let X be a given set. Which of these statements are true? 
(A) The set Sur( X) of all surjections of X onto X is a right cancellative unitary 

monoid under composition. 
(B) The set lnj(X) of all injections of X into X is a left cancellative unitary 

monoid under composition. 
(C) The set 6(X) of all bijections of X onto X is a unitary submonoid of both 

Sur(X) and lnj(X). 
(D) Some member of lnj(X) can have two distinct left inverses in the monoid 

lnj(X). 
(E) None of the sentences is true. 

5. Which of the following statements are true? 
(A) {1}generatesthemonoid<N, +). 
(B) The set of all prime numbers generates < 1\1, · ). 
(C) The set of all prime numbers generates the unitary monoid <N+, ·, 1). 
(D) {p/qlp and q are prime numbers} generates the unitary monoid <O*, ·, 1). 

(E) None of the statements is true. 

6. Which of the following statements are true? 
(A) Q generates the group <IR, +, 0). 
(B) {2, 5} generates the group (7L, +, 0). 
(C) {2, 5} generates the monoid <N, + ). 
(D) {0, 1, 2} generates the monoid <N, + ). 

(E) None of the statements is true. 

7. The elements of the group < 6 3 , o, /) in this question are written in cyclic notation 
(cf. Section 7.7). Which of the following sets generate 6 3 ? 

(A) { (1 2), (1 3)} 
(B) {(1 2 3)} 
(C) {(1 2 3), (1 3 2)} 
(D) {(1 2 3),(1 2)}. 

(E) None of the sets generates 6 3. 

8. Which of the following statements are true? 
(A) { (1 2), (1 3)} is a basis for < 6 3 , o, /). 
(B) {2, 3} is a basis for <7L4 , +, 0). 
(C) { -1} is a basis for <lL, +, 0). 
(D) {2, 7} is a basis for <7L, +, 0). 

(E) None of the statements is true. 

EXERCISES 

1. Construct a multiplication table for a group with elements v, a, b, c such that 
ab = c, ea = b, be = a, aa = v, bb = v, cc = v, assuming the group to be com­
mutative. What are the subgroups of this group? This group of four elements is 
called Klein's four group. 
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2. Construct the multiplication table for the monoid <Z4 , + ). Is there a neutral 
element? Is the monoid a group? Are there subgroups? 

3. Verify that <Xx, o, /) is a unitary monoid where X is a given set. 

4. Let U be the subset of xx of all functions which leave all but a finite number of 
members of X fixt. A member c of X is left fixt by a function f if and only if f(c) = 

c. Prove U is a unitary submonoid of xx. 

5. Let V be the subset of xx of all bijections of X which leave all but a finite number 
of elements fixt. Prove that V is a submonoid of both U (of Exercise 4) and 6(X). 
Prove V is a subgroup of 6(X). 

6. Let T be the subset of V (of Exercise 5) of all transpositions. T = {!if E V and 
f(x) = y, f(y) = x for some x, yE X, x =1 y and otherwise f is the identity on X}. 
Show that the subgroup of 6(X) generated by T is V. Show furthermore that 
T is a minimal generating set for V. 

7. Find all groups of cardinality 1, 2, 3, 4, 5, and 6. Hint: Construct all possible multi­
plication tables keeping in mind the definition of a group. 

8. Prove there is at least one group of cardinality n for every positive integer n. 

9. For the group 6 4 find the subgroup generated by { (1 2), (1 3), (1 4) }. Find also 
the subgroup generated by { (1 2)(3 4), (1 3)(2 4), (1 4)(2 3) }. These elements are 
written in cyclic notation. 

10. Show that 6. is not commutative if n ;,: 3. 

11. Let {a1o a2 , ••• , a.} be a set of n (;, 1) distinct symbols. Let M be the set of all 
strings of symbols obtained by placing any finite number of symbols adjacent to 
each other. Any symbol can be repeated any finite number of times in a string. 
For example, a1a1a3a2a4 a4 a4 , a2a3a5a3a3alo and a2a2 are all three strings, mem­
bers of M. We introduce an operation on M which is simply the juxtaposition 
of two strings to form one new string. a2a3a5a3a3a1 is juxtaposed with a2a2 to 
form a2a3a5a3a3a1a2a2 • Show that M is a monoid with cancellation. If we include 
in M an empty string then M is a cancellative unitary monoid. Show that {1, a1o 

a2 , . •• , a.} is a basis for M. 

12. We let {a1 , a2 , ••• , a., a!, a2, ... , a;} be a set of 2n distinct symbols and form 
G, the set of all finite strings, and include the empty string. We further stipulate 
that ai juxtaposed with ai- in either order contracts to the empty string, j = 1, 
2, ... , n. Prove that G is a group. 

13. Give an example of a group: (a) with exactly two subgroups; (b) with exactly 
three subgroups; (c) with exactly four subgroups. 

14. If <G.·, v) is a group prove that the equations ax = band ye= d have solutions 
in G for x and y and that the solutions are unique (given a, b, c, dE G). 

15. Let <R. +, ·, 0) be a ring. Verify that <R,-) is a monoid. If <R, +, ·, 0, v) is an 
integral domain what kind ofmonoid is <R*, ·, v)? If <R, +. ·, 0, v) is a field then 
what kind of monoid is <R*, ·, v)? 
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16. Let < G, +, 0) be a commutative group and define another operation on G, a 
multiplication, such that xy = 0 for all x, y e G. Is < G, +, ·, 0) a ring? Is there a 
unity in the ring? 

17. Let (G, ·, v) be a group. Prove that G is commutative if and only if (xy)2 = x 2y2 

for all x, y e G. 

18. Let (G, ·, v) be a group. Prove that S, a nonempty subset of G, is a subgroup if 
and only if x, yeS imply xy- e S. 

19. Let (G, ·, v) be a group in which every element is its own inverse. Prove that G 
is commutative. 

20. Let < G, ·, v) be a unitary cancellative mono id with only a finite number of elements. 
Prove that G is a group. Do not assume G to be commutative. 

21. By example show that the union oftwo subgroups of a given group is not necessarily 
a subgroup. 

22. Prove that if H and K are subgroups of a given group < G, ·, v) and H u K is also 
a subgroup of G then H s;; K or K s;; H. 

23. Let < G, ·) be a monoid. Suppose further that the equations ax = b and ye = d 
always have unique solutions for x and y in G. Prove that G is a group. [Hint: 
This problem must be done in several steps. Begin by proving the existence of 
left and right neutral elements for G. Do not assume that "neutral behavior" for 
one element is "neutral behavior" for all elements.] 

24. Let (G, ·)be a monoid. Let v be a right neutral element for G. Suppose also that 
for each x in G there exists y in G so that xy = n for some right neutral element 
n in G (Do not assume n = v). Prove G is a group. Hint: x E G and xx = x imply 
x = v. n e G and n is a right neutral element imply n = v. If uv = v then vu = v 
also. vx = x for all x in G. If x e G and y, z e G such that xy = v and xz = v then 
y = z. 

9.2 Congruences and quotient systems 
In this section we discuss equivalence relations and quotient systems 

for monoids. 
We remind ourselves that an equivalence relation ,..., is compatible with a 

binary relation · if and only if x 1 "' y1 and x2 "' Y2 imply x 1x2 "' Y1Y2. 
An equivalence relation ,..., is compatible with a unary operation y if and 
only ifx "' y implies y(x) "' y(y). An equivalence relation is always com­
patible with a nullary relation. A congruence is, by definition, an equivalence 
relation compatible with all the operations of a system. 

Theorem. Let (M, ·) be a monoid and "' a congruence. Then 7 such that 
xj"' 7 yj"' = xyj"' is a well-defined binary operation on the quotient set 
M/"' and (M/"', 7 ) is a monoid (the quotient monoid of M). 

PRooF. The compatibility of the congruence ensures that the operation on 
the quotient set is well-defined. D 
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For groups a little compatibility leads to a lot of compatibility. 

Theorem. Let ( G, ·, v, y) be a group. Let "' be an equivalence relation on G 
compatible with the binary operation of multiplication. Then "' is a con­
gruence for the group defining a quotient group ( G /"', 7 , v /"', y). 

PRooF. We show that an equivalence compatible with multiplication must 
also be compatible with the neutral element and with the inverse. An equiv­
alence relation is compatible with any nullary operation vacuously. Denote 
y(x) with x-. Suppose x"' y. Then x-xy = x-yy- yielding y- "'x-. The 
equivalence relation is therefore also compatible with the taking of inverses. 
"' is a congruence for the group. The neutral element of G/"' must be v/"' 
and the inverse of xf"' must be x -;"'. D 

For both unitary monoids and groups the neutral element in the quotient 
system is a subsystem. 

Theorem. Let (M,·, v) be a unitary monoid (group) and "' a congruence. 
Then v/"' is a unitary submonoid (group). 

PROOF. Let x and y be in v/"'. x "' v and y "' v. xy "' v. xy E v/"'. v/"' is 
a unitary submonoid. 

If, moreover, M is a group then let x E v/"'. x "' v. x- x "' x-v. v "' x-. 
x- E v/"'. v/"' is a subgroup of M. D 

As a partial converse we now prove that the only coset of the quotient 
unitary monoid which is a subsystem is the coset containing the neutral 
element. 

Theorem. Let (M, ·, v) be a unitary monoid (group) and N a unitary sub­
monoid (subgroup) of M which belongs to M/"' for some congruence "'. 
Then N = vf"'. 

PRooF. If NE M/"' then N = aj"' for some a in M. But if N is a unitary 
submonoid then v E N. v "' a. v/"' = af"' = N. D 

The combination of the two theorems tells us that a subgroup is a member 
ofa quotient group if and only if it is the coset defined by the neutral element. 

Definition. We define a submonoid, unitary monoid, or subgroup to be 
normal if and only if it is a member of the appropriate quotient system. 

This definition is actually given in Chapter 8 for algebraic systems in 
general. It is here specialized to systems with one binary operation. For 
groups, we immediately derive the following equivalent condition often used 
as a definition for a normal or invariant subgroup. 

Theorem. If N is a subgroup of a group < G, ·, v) then N is normal if and 
only if x- Nx s;; N for all x E G. 
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PRooF. Suppose first N to be a normal subgroup of G according to our 
definition. Then N = vI"' for some congruence "'. Let y E x- N x. y = x- nx 
for some n in N. n "' v. x-nx "' x-vx = v. y "' v. yE N. Thus x-Nx s; N. 

Now suppose N to be a subgroup of G such that x-Nx s; N for all x 
in G. We must define a congruence on G so that N is a member of the cor­
responding quotient group. We define x "' y if and only if xy- EN. It 
follows from the subgroup properties of N that "' is an equivalence relation 
on G. Let x1 "' y1 and x2 "' y2. x1y1 EN. x2y2 EN. (x1x2)(y1y2)- = 
X1X2YiY1 = X1YIY1X2YiY1 = (xly1)Yl(x2y2)Y1 = (xly1)(y1)-(x2y2) · 
(yl) EN. Thus x 1x 2 "' y1y2 proving "' to be a congruence. Letting y = v 
in the definition of the relation "' we see that x "' v if and only if x E N 
proving N = vf"'. N is normal according to our definition. 0 

Consistent with the use of notation in earlier chapters we denote the 
quotient group or quotient unitary monoid in terms of its associated normal 
subsystem which we have proved unique. If N is the normal subgroup as­
sociated with the quotient group (G/ "', 7 , v/"') then we write (G/N, ·, N) 
to denote the quotient group. 

It is interesting to look at the equivalence relation defined by a subgroup 
S of a group ( G, ·, v) even if the subgroup is not normal. 

Theorem. For any subgroup Sofa group ( G, ·, v) there exist two equivalence 
relations p and a on G as follows: xpy if and only if xy- E S, xay if and 
only if x-y E S. Furthermore, Gfp = {Saia E G} and Gfa = {aSia E G}. 

PRooF. It is routine to verify that p and a are both equivalence relations 
on G. Furthermore, Sa = {sais E S} = {xlx = sa, sE S} = {xixa- = s, 
sE S} = {xixa- E S} = {xlxpa} = afp. afp E Gfp. aS= {xlx = as, sE S} = 
{xia-x E S} = {xiaax} = {xixaa} = afa. afa E Gfa. 0 

We have therefore defined two partitions of G by means ofthe subgroups 
S: the set of right cosets of S, {Saia E G}, and the set of left cosets of S, 
{aSia E G}. That the right coset Sa be equal to the left coset aS for every a 
in G, Sa = aS for every a in G, is equivalent to the condition that S be a 
normal subgroup of G. The argument in detail is as follows. Suppose Sa = 
aS for every a in G. Consider x-Sx for x in G. The set Sx equals xS. Hence 
x-sx = x-xs s; S. This proves S is normal. Now assume x-sx s; S for 
every x in S. Let yE Sa. y = sa for some s in S. y = aa- sa = as' E aS. 
Similarly, aS s; Sa. aS = Sa. Thus we have seen that if the subgroup S is 
normal then the two partitions of left cosets and right cosets coincide and 
make a quotient group. IfS is not normal then neither equivalence relation 
is a congruence and there is no quotient group for that subgroup. 

We have, even in the case that there is no quotient group, the very impor­
tant Lagrange theorem showing that the cosets of the quotient set are equal 
in size. 
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Theorem. In the partitions of a group (G, ·, v) produced by a subgroup S 
each coset, left or right, has the same number of members asS itself. Crd G = 
crd S · crd GjS. 

PRooF. Let cp:S-+ aS such that q>(x) = ax. We show q> to be a bijection. 
Let q>(x) = q>(y). ax = ay. a-ax = a-ay. x = y. For any y in aS, q>(a- y) = 
a( a-y) = y. This bijection's existence shows that every left coset has the 
same number of elements as does S. The total number of elements in the 
group is the sum of the number of elements in all the cosets of Gja. The 
number of elements in the group equals then the number of elements in S 
times the number of cosets in Gja. The result naturally holds also for right 
cosets. D 

There will be later several important applications of this theorem. For 
the time being, however, we are content to note that the number of elements 
in any subgroup is a factor of the number of elements in the entire group. 
Concerning the two partitions defined by a subgroup S which is not a 
normal subgroup of G, we will occasionally denote both of them by GjS 
leaving it to context to determine whether we are writing of left or right 
cosets. 

QUESTIONS 

1. Which of the following relations are congruences? 
(A) x ~ y if and only if x - yE 4Z on the group (Z, +, 0). 
(B) x ~ y if and only if x = 2y or y = 2x or x = y on the monoid (N, ·). 
(C) x ~ y if and only if x2 = y2 on the group (Z, +, 0). 
(D) x ~ y if and only if x - yE IQ on the group (IR, +, 0). 

(E) None of the relations is a congruence. 

2. Which of the following statements are true? 
(A) Some equivalence relations are not congruences. 
(B) Every congruence is an equivalence relation. 
(C) Not every equivalence relation is not a congruence. 
(D) Some relations are not equivalence relations. 

(E) None of the statements is true. 

3. Define a relation on 6 3 such that x ~ y if and only if x o y- 1 E {(1), (1 2)}. Which 
of the following are true? 

(A) ~ is a congruence on 6 3 . 

(B) { (1), (1 2)} is a subgroup of 6 3 • 

(C) {(1), (1 2)} generates 6 3 . 

(D) ~ is an equivalence relation on 6 3 . 

(E) None of the statements is true. 

4. Which of these statements are true? 
(A) On a commutative group every equivalence relation is a congruence. 
(B) If aS = Sa for every a in G, a group, then the subgroup S is a normal 

subgroup. 
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(C) If the number of elements in each coset aS of a subgroup S is the same as 
the number of elements in S then S is a normal subgroup. 

(D) If (J is a congruence for the monoid (M,·) then (J is also a congruence for 
any unitary monoid (M,·, v) with the same set M and binary operation ·. 

(E) None of the statements is true. 

5. The set of all functions f such that f(x) = ax + b, a =1- 0, a, bE 0, is a group under 
composition. Which of these statements are true? 

(A) The set of all f with a = 1 is a subgroup. 
(B) The set of all f with a = 1 is a normal subgroup. 
(C) "(f(x) = ax + b) ~ (g(x) = ex + d) if and only if a = e" is a congruence. 
(D) "(f(x) = ax + b) ~ (g(x) = ex + d) if and only if ad - be = 0" is a 

congruence. 
(E) None of the statements is true. 

6. The number of cosets defined by the subgroup {I, (1 2)} of 6 3 is 
(A) 12 
(B) 1 
(C) 3 
(D) 2 
(E) 6. 

7. The number of elements in the quotient group 6 4 /V4 is (V4 is the normal subgroup 
{ (1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} of 6 4 ) 

(A) 12 
(B) 1 
(C) 3 
(D) 2 
(E) 6. 

8. The theorem on groups proving that the number of elements in each coset is the 
same as the number of elements in the defining subgroup is named for 

(A) Bolzano 
(B) Weierstrass 
(C) Mozart 
(D) Lagrange 
(E) Euclid. 

EXERCISES 

1. Give examples whenever possible of a group G and non trivial normal subgroup N 
such that 
(a) G is commutative and GjN is commutative 
(b) G is commutative and GjN is noncommutative 
(c) G is noncommutative and G/N is commutative 
(d) G is noncommutative and G/N is noncommutative. 

2. Give an example of a group and a subgroup which defines a left coset different 
from its right coset: find G, H, a E G such that aH =1- Ha. 

3. Prove that if a group has 2m elements (some even number) then any subgroup 
of order m is a normal subgroup. 
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4. Prove that if M and N are normal subgroups of a group < G, ·, v) then both M N 
and M n N are normal subgroups of G. 

5. Which subgroups of 6 3 are normal and which are not normal? 

6. A group is defined to be simple if it has no normal subgroups except G itself and 
the singleton neutral element. Give examples of a commutative and a noncommuta­
tive simple group. Give an example of a nonsimple group. 

7. Find all normal subgroups of V4 , Klein's four group, and find their quotient groups. 

8. Let < G, ·, v) be a group. The set Corn( G) = { xyx- y -lx, y E G} is called the set of 
commutators of the group G. Prove that the set of commutators generates 
a normal subgroup of G: i.e., [Com(G)] is a normal subgroup of G. [Hint: 
a-(xyx-y-)a = (a-xa)(a-ya)(a-xana-ya)-.] 

9. Prove that a group G is a commutative group if and only ifCom(G) = {v}. Prove 
that if His a subgroup of G and Corn( G) ~ H then His a normal subgroup of G. 

10. For any group G prove that G/[Com(G)] is a commutative group. Show that if 
N is a normal subgroup such that G/N is commutative then Corn( G) ~ N. 

9.3 Morphisms 

In this section we list theorems on morphisms of monoids, prove the 
Cayley representation theorem for groups, and investigate some function 
spaces with values in monoid and groups. 

A morphism is a function that preserves operations from one algebraic 
system to another. In our study of monoids, unitary monoids and groups 
the relevant operations are the binary one called multiplication, the nullary 
one which chooses the neutral element and the unary one which denotes 
inverses. We now list some easy results, but do not prove them. The reader 
should consider the proofs to be exercises. 

Theorem. Let (M,-) and (M',·') be monoids and f:M -+ M' be amorphism 
(preserving · in -'). If A is a submonoid of M then f(A) is a submonoid of 
M' and if B is a submonoid of M' then f- 1(B) is a submonoid of M. 

Let (M,·, v, y) and (M',·', v', y') be groups and f:M-+ M' be a 
morphism (preserving ·, v, y in ·', v', y' respectively). If A is a subgroup of 
M thenf(A) is a subgroup of M' and if B is a subgroup of M' thenf- 1(B) 
is a subgroup of M. 

The preservations of the three operations of a group by a function are 
not independent of one another. 

Theorem. Let f: M -+ M' preserve the binary operation of multiplication. 
If (M,·, v) and (M',·', v') are unitary cancellative monoids then f is a 
morphism. If (M,·, v, y) and (M',-', v', y') are groups thenf is amorphism. 
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PROOF. f(v) = f(vv) = f(v)f(v). f(v)v' = f(v)f(v). Cancelling from both sides 
the element f(v) we have v' = f(v). f(x)f(x-) = f(xx-) = f(v) = v'. Since 
inverses are uniquef(x-) = (f(x))-. 0 

The fundamental morphism theorem appears just as with sets and rings. 

Theorem. Let (M,·) and (M',-') be monoids and f:M--+ M' amorphism. 
The relation "' on M defined by (x "' y if and only if f(x) = f(y)) is a 
congruence. The quotient mapping qJ:M--+ M/"' is an epimorphism. There 
exists a monomorphism f': M/"' --+ M' such that f = f' o qJ. 

We again leave the details of the proof to the reader. The theorem also 
holds true for unitary monoids (M,·, v) and (M',·', v') and for groups 
(M,·, v, y) and (M',-', v', y'). In the case of the unitary monoid and group 
the subset { v'} of M' is a unitary submonoid or subgroup implying f - 1{ v') 
is a unitary submonoid or subgroup of M. It is furthermore normal and by 
definition the kernel of f. In this case M/"' can be written Mjker f. 

We now follow with some special isomorphism theorems for groups. 

Theorem. Let K and L be normal subgroups of a group (G, ·, v, y) and let 
K 5; L. Then there is an isomorphism from (G/K)/(L/K) to G/L. 

PROOF. This theorem is proved more generally for operational systems in 
Section 8.4 but we summarize a proof here. From G/K to G/L we define 
a function f taking each coset of G/K into the coset of G/L which contains 
it:f(xK) = xL. Thisfunctionf:G/K--+ G/Lisanepimorphism. The kernel 
off is {xKjxL = L} which is {xKjx EL} = L/K. There exists an iso­
morphism f':(G/K)/(L/K)--+ G/L. 0 

Theorem. Let H and L be subgroups of a group < G, ·, v, y) with N a normal 
subgroup. Then there exists an isomorphism from H/(H n N) to HN/N. 

PROOF. Define f:H--+ HN/N such that f(h) = hN. hN E HN/N for each 
h in H and furthermore the mapping is surjective. It is not difficult to see 
that N is a normal subgroup of the subgroup HN of G. f(h 1h2 ) = h1h2 N = 
h1 Nh2 N = f(h 1)f(h2 ). Kernel f = {hjh EH and hN = N} = {hjh EH and 
hEN}= H n N. Thereexistsanisomorphismf':H/(H n N)--+ HN/N. o 

Our final isomorphism theorem travels under the name of Zassenhaus. 
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Theorem. Let Ht. H 2 , K 1, K 2 be subgroups of a group (G, ·, v, y). Let K1 
be a normal subgroup of Ht. K 2 a normal subgroup of H 2 • Then 

(H1 n H2)K1 . . h. H 1 n H 2 
zs zsomorp zc to 

(H1 n K2)K1 (H1 n K 2)(K1 n H 2) 

PROOF. The second isomorphism theorem we have just proved establishes 
the isomorphism between 

H 1 n H 2 d (H1 n H 2)(H1 n K 2)K1 
an 

[(H1 n K 2)K1] n (H1 n H 2) (H1 n K 2)K1 

and the theorem is proved after we have established the following three 
statements: 

1. (H 1 n K2)K 1 is a normal subgroup of H 1 n H 2 
2. (H1 n H 2)(H1 n K 2)K1 = (H1 n H 2)K1 
3. [(H1 n K 2)K1] n (H1 n H 2) = (H1 n K2)(K1 n H2). 

Each of these three statements is left as an exercise. D 

We include now a theorem due to Arthur Cayley. This theorem is a 
spectacular result although it does not solve all problems of group theory. 
In the first chapter we introduced the group through permutations. We 
found that for a given set S, the set of all bijections of that set, together with 
the operation of composition and the identity function constitute a group, 
which we called the symmetric group (6(S), o, I). The following theorem 
demonstra~es that not only are symmetric groups excellent examples of 
groups, they typify groups. Every group whatsoever is isomorphic to some 
subgroup of some symmetric group. 

Lemma. If (G, ·, v) is a group then left (or right) multiplication by a fixt 
element of the group is a bijection of G. 

PROOF. Let fa:G--+ G such that fa(x) = ax. The cancellative property of a 
in G proves fa to be an injection. That a has an inverse in G proves fa to be 
a surjection. fa E 6(G). o 

We denote {!alaE G} by ff(G), meaning the set of left translations of G. 

Theorem. If ( G, ·, v) is a group then G is isomorphic to some subgroup of 
(6(G), o, I). 

PROOF. We define c.P:G--+ 6(G) such that c.P(a) =fa. c.P(ab) =!ab =fah = 
c.P(a)c.P(b). The interior equation is checked by elements as follows: fab(x) = 

(ab)x = a(bx) = fa(bx) = fa(fh(x)) = (fa o fh)(x). cp is amorphism. 
Let c.P(a) = c.P(b). fa = k fa(x) = fh(x) for all x in G. ax = bx for all x 

in G, including v. av = bv. a = b. cp is a monomorphism and G and c.P(G) 
are isomorphic groups. c.P(G) = {!alaE G} = ff(G). D 
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After this taste of functional representation of G by ff (G) we move more 
deeply into a discussion of functional representation of structures. The 
structure of the monoid carries over to functions having their values in 
the monoid. 

Theorem. If (M, ·) is a given monoid and S is a nonempty set then (Ms, ·) 
is a monoid. Moreover, if (M,·, v) is a unitary monoid so also is (Ms, ·, 
u). If (M,·, v) is a group so also is (Ms, ·, u) a group. u denotes the unity 
function. 

PROOF. Similar results have been treated in earlier chapters. Given f: S --+ M 
and g:S--+ M we define (f · g):S--+ M such that (f · g)(x) = f(x)g(x). Let 
v be the neutral element of M. Define u:S--+ M such that u(x) = v for all x 
inS.ForthefunctionfinMsdefinef-:S--+ Msuchthatf- 1(x) = (f(x))- 1 . 

Then (f · f-)(x) = f(x)(f(x))- 1 = v. f · f- = u. Also f- · f = u. Note 
carefully that f- in this situation is not the compositional inverse of f. 0 

The original monoid can be embedded within the function space. 

Theorem. (M, ") is isomorphic to the submonoid of (Ms, ·) consisting of the 
constant functions. 

PRooF. Define x:M--+ Ms such that x(a) has constant value a. x(ab)(x) = 

ab = x(a)(x)x(b)(x) = [x(a)x(b)](x). Let x(a) = x(b). Then a = b. X is a 
monomorphism. o 

By restricting attention to those functions which are morphiSIIiJ.S between 
two monoids we obtain a submonoid of the entire function space'. 

Theorem. Mor(M, M'), the set of morphisms between two monoids (M,·) 
and (M',·'), is a submonoid of ((M')M, ") when M' is commutative. 
Mor(M, M') is also commutative. If M' is a commutative group then so 
also is Mor(M, M'). 

PROOF. We show that the product of two morphisms is again amorphism. 
(fg)(xy) = f(xy)g(xy) = f(x)f(y)g(x)g(y) = f(x)g(x)f(y)g(y) = (fg)(x) · 
(fg)(y). (fu)(x) = f(x)u(x) = f(x)v = f(x). fu =f. u(xy) = v = vv = u(x)u(y). 
f-(xy) = f(xy)- 1 = f(y)- 1f(x)- 1 = f-(y)f-(x) = f-(x)f-(y). Again 
here f- represents the inverse with respect to the binary operation of 
multiplication and not the compositional inverse. o 

For the case of amorphism of a given monoid into itself, we use, as usual, 
the name endomorphism and abbreviate Mor(M, M) by tf(M). We know 
by our previous theorems that if (M, ·) is a commutative monoid then 
(tf(M), ") is a commutative monoid. We now move into the composition 
structure made possible by the identification of domain and codomain. 
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Theorem. For any set M, (MM, a, I) is a unitary monoid. If (M, +, ()) 
is a commutative monoid then (S(M), a, I) is a unitary submonoid of 
(MM, a, I). 

PRooF. Given f:M-+ M and g:M-+ M then g a f:M-+ M. fa I= 
I a f = f for any f:M-+ M. That S(M) is a submonoid is ensured by the 
fact that the composition of two endomorphisms is another endomorphism. 
The identity function is obviously an endomorphism. (g a f)(x + y) = 
g(f(x + y)) = g(f(x) + f(y)) = g(f(x)) + g(f(y)) = (g a f)(x) + (g a f)(y). 
I(x + y) = x + y = I(x) + I(y). 0 

We note that even if (M,·, v) is a group (S(M), a, I) will not usually 
be a group. The composition structure is quite different from the original 
binary operation. lnverses in the composition structure are found in bi­
jections. As usual we call an endomorphism which is also a bijection an 
automorphism. 

Theorem. If (M,") is a monoid then (d(M), a, I), the set of all auto­
morphisms of (M,"), is a group and a unitary submonoid of (S(M), a, I) 
and (MM, a , I). 

PROOF. The composition of two bijections is a bijection and the composi­
tional inverse of an automorphism is also an automorphism. 0 

EXAMPLE. The unitary monoid (N, +, 0) generates the functional monoid 
of sequences (NN, +, z). The neutral element is (0, 0, 0, ... ). The endo­
morphisms of< N, +, 0) are all of the form f,.: N -+ N such that f,.(n) = kn 
for some kin N. Thus S(N) = {f,.Jk EN}. (S(N), a, I) is a monoid under 
composition. The only automorphism in S(N) is I = f1. d(N) = {I} is 
the trivial group. 

Of particular interest among the automorphisms of a group (G, ·, v) 
are the inner automorphisms cpa:G-+ G such that cpa(x) = a-xa. For a com­
mutative group they are all the identity. We denote the set of all inner 
automorphisms of G by ..F(G). 

Theorem. Let (G, ·, v) be a group. Then the inner automorphisms, ..F(G), 
form a normal subgroup of (d(G), a, I). 

PRooF. It can be verified that (/Jb a (/Ja = (/Jba and (cpa) -l = (/Ja- 1 by eval­
uatingthefunctions.Also(gacpaag-1)(x) = g(cpa(g- 1(x))) = g(a-g- 1(x)a) = 
(g(a))- 1xg(a) = (/Jg(a)(x). 0 

d(M), the group of automorphisms of a monoid (M, ") is a subgroup of 
6(M), the symmetric group for the set M. A member of 6(M) is merely a 
bijection of M and not in general a morphism of the monoid structure. 
d(M) is therefore, in general, a proper subgroup of 6(M). The before 
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mentioned left translations ff(M), are also bijections of interest when M 
is a group. 

Monoids 

MM 

/"'-
rff(M) 6(M) 

"'-/ d(M) 

Groups 

GG 

/~ 
C(G) 6(G) 

~(G) ~ 
~ ff(G) 

f(G) \ 

---{I} 

For the case of the commutative group (G, +,e) we can combine the 
group's binary operation with the functional composition to produce the 
ring of endomorphisms. 

Theorem. If (G, +,e) is a commutative group then (rff(G), +, o, z, J) is a 
unitary ring and the invertible elements of rff(G) are precisely the members 
of d(G). 

PROOF. (C(G), +, z) is a commutative group with operations based upon 
those of (G, +,e). (rff(G), o, J) is a unitary monoid. We have left to verify 
the composition distributivity with respect to the addition.[! o (g + h)] (x) = 
f( (g + h)(x)) = f(g(x) + h(x)) = f(g(x)) + f(h(x)) = (f o g)(x) + (f o h)(x) = 
((fog) + (f o h)(x). The morphism property off has been used for this left 
distributivity. ( (g + h) o f)(x) = (g + h)(f(x)) = g(f(x)) + h(f(x)) = 
(go f)(x) + (h o f)(x) =((go f)+ (h o f))(x). D 

ExAMPLE. The endomorphisms of (7l., +,e) are precisely {f,Jk E 7l.} where 
,h(x) = kx. Two of these endomorphisms are automorphisms: d(7l.) = 
{f1,f_ r}. The addition of the endomorphisms obeys the rule fm + J,. = 
fm+n· Composition obeys the rule Urn o J,.)(x) = fm(fn(x)) = mnx = fmn(x). 

QUESTIONS 

1. Let (G, ·, v) and (G', -', v') be groups and f:G--> G' be a function preserving the 
binary operation of multiplication. Which of these statements are true? 

(A) f(v) is a neutral element for f(G), the range of f. 
(B) f(v) is a neutral element for G', the codomain of f. 
(C) f(v) = v'. 
(D) rW) = v. 

(E) None of the statements is true. 

2. Let f:M--> M' be amorphism of the monoids (M,") and (M', -'). Which of the 
following statements are true? 
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(B) If v' is a neutral element for (M', -') then f- 1(v') is a submonoid of M. 
(C) If (M',·') is a cancellative monoid and f is an injection then (M,·) is also 

a cancellative monoid. 
(D) If (M, ·) is a commutative monoid then (M', -') is also a commutative 

monoid. 
(E) None of the statements is true. 

3. Let f: N -+ {0, 1} be defined such that f(n) = 0 if n is even and f(n) = 1 if n is odd. 
Which of these statements are true? 

(A) f is amorphism of the unitary monoids (N, +, 0) and ({0, 1}, ·, 1). 
(B) Kernel!= 21\\J. 
(C) Nfk:er f = 21\\J. 
(D) ~p(N) = {21\\J, 21\\J + 1} where <P is the quotient mapping. 

(E) None of the statements is true. 

4. Which of these statements are true? 
(A) 7L2./(n7L/2n7L) is isomorphic to 71. •. 
(B) 71../71.2 is isomorphic to (2n)7L. 
(C) nlL/71.2 is isomorphic to 71.. 
(D) 7L.2/(n7Ljn27L) is isomorphic to 71. •. 

(E) None of the statements is true. 

5. The monoid of functions (MM, ·, u) constructed from a given unitary monoid 
(M,·,v) 

(A) is a group when (M, ·, v) is a group 
(B) contains fewer members than (M,·, v) 
(C) contains more members than (M, ·, v) if M is not trivial 
(D) cannot be a group if M is noncommutative. 

(E) None of the choices completes a satisfacotry sentence. 

6. For monoids (M,·) and (M',-') we see that (Mor(M, M'),·) 
(A) is a subgroup of (M')M if M is a group 
(B) is closed under products if (M', -') is commutative 
(C) fails to have a unity if M fails to have a unity 
(D) is a commutative group when (M', ·') is a commutative group. 

(E) None of the choices completes a true sentence. 

7. Which of the following statements are true? 
(A) [3]/[6] = [3]/([3] n [2]) is isomorphic to ([3] + [2])/[2] = 71./[2] = 71. 2 • 

(B) ff(G) is isomorphic to G for any group (G, ·, v). 
(C) G 5; ff(G) for any group (G, ·, v). 
(D) §"(G) #- 6(G) for all nontrivial groups G. 

(E) None of the statements is true. 

8. Which of the following statements are true? 
(A) The mapping ~p.: N -+ M such that ~p.(n) = a" from the natural numbers 

(N, +, 0) to any unitary monoid (M,·, v) is amorphism. 
(B) < N, ") and < 0 +, ·) are isomorphic monoids. 
(C) All automorphisms are endomorphisms. 
(D) All automorphisms are isomorphisms. 

(E) None of the statements is true. 

339 



9. Monoids and groups 

EXERCISES 

1. Let c· = c - {0}. Define f:Z ..... c· such that f(n) = i", i = R. Show that 
f is a morphism from the additive group of integers to the multiplicative group 
ofnonzero complex numbers. Find kernel f and range f. Are domain f and range 
f isomorphic? 

2. Find an isomorphism Z3 --+ Z3 not the identity isomorphism of the group (Z3 , 

+,0). 

3. Show that (Z2 , +, 0) and (62 , a,/) are isomorphic. 

4. Show that the groups (Z4 , +, 0) and (J-4,, o, /)are not isomorphic. 

5. Show that { aia e 6•+ 1 and a(n + 1) = n + 1} is a subgroup of 6•+1· Show that 
this subgroup of 6. + 1 is isomorphic with 6 •. Is this subgroup a normal subgroup 
of6n+1? 

6. If f: M --+ M and g: N --+ P are monomorphisms of unitary monoids show that 
g o f is also a monomorphism. If f and g are epimorphisms show that g o f is an 
epimorphism. 

7. For the group (Z3 , +, 0) find J(Z3 ), d(Z3 ), ff(Z3 ), 6(Z3). 

8. Prove that the subgroups ff(G) and d(G) of (6(G), o, /)have only I in common. 

9. For the group V4 find J(J-4,), d(V4 ), ff(V4 ), 6(V4 ). 

10. Let (M,·, v) be a commutative cancellative unitary monoid. Prove there exists a 
group (M, ·, v) and a monomorphism qJ: M --+ M such that for any y e M there 
exist xi> x 2 in M such that y = qJ(x1)qJ(x2)-. The gist of this result is that every 
commutative cancellative unitary monoid can be embedded in a group. Consult 
the theorems on rings of fractions and fashion a similar proof. 

11. Apply the result of Exercise 10 to the monoid (1\J, +, 0). The existence of what 
familiar set is proved by this application? 

12. Show that 6(G) is isomorphic with {.f.od(G)i.f.e.o/'(G)} for any group (G, ·, 
v). [Hint: Use one of the isomorphism theorems.] 

13. Let (G, ·, v) be a group. Show thatf:G--+ G such thatf(x) =-x-is a group auto­
morphism if and only if G is commutative. 

14. Find the endomorphisms of (Z*, ·, 1). 

15. Let (G, ·, v) be a group and N a normal subgroup of G. Denote by [I'(N) the set 
of all subgroups of G containing N and by !l(N) the set of all quotient groups 
{S/NIS e [I'(N)}. Prove that the mapping lP:[I'(N)--+ !2(N) such that lP(S) = S/N 
is a bijection. 

9.4 Cyclic groups and order 

We discuss in this section cyclic subgroups, the order of an element, the 
center and normalizer, and conjugacy classes. While some of the material 
of this section can be adapted to monoids, the section deals principally with 
groups. 
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Definition. A monoid ( G, ·) is cyclic or simply generated if and only if G is 
generated by a singleton subset: G = [a] for some a in G. 

EXAMPLES. (71.6 , +, 0) is generated by {I}. (71., +, 0) is generated by {1}. 
Both groups are cyclic. 

Definition. The order of an element of a monoid is the cardinality of the 
submonoid generated by the element. 

EXAMPLES. In (71.6 , +, 0) the order ofT is 6, the order of2 is 3. In (71., +, 0) 
the order of 0 is 1 and the order of every other element is infinite. 

In the next theorem the reader will recognize the techniques utilized 
earlier in the section on the characteristic of a ring. 

Theorem. Let ( G, ·, v) be a group. The mapping t/1 a: 71. - G such that t/1 a(n) = 
an is a morphism; kernel t/Ja = m7l. for some nonnegative integer m. The 
order of the element a is m when m is a positive integer and the order of a 
is infinite when m = 0. 

PRooF. Kernel t/Ja = {nln E 71. and t/Ja(n) = v} is a normal subgroup of the 
additive group of 71.. This subgroup must be m7l. for some nonnegative integer 
m. This includes the possibility of m = 0. By the fundamental morphism 
theorem the range of 1/Ja, t/Ja(7l.), is isomorphic with 7l.jm7l. = 7l.m for some 
nonnegative integer m. m = 0 corresponds to the case of the trivial kernel 
and t/J a being a monomorphism. t/1 a(7l.) is a subgroup of which a is a member 
and therefore includes [a]. On the other hand, t/Ja(7l.), consisting as it does 
simply of powers of a, must be included within [a]. t/1 a(7l.) = [a]. Thus [a] 
is isomorphic to 7l.m for some nonnegative integer m. If m > 0 then [a] has 
a finite number of elements, namely, m. If m = 0 then [a] is isomorphic with 
71. itself and has an infinite number of elements. Order a is then infinite. D 

EXAMPLE. In the symmetric group (63 , o, J) the permutation (1 2) is of 
order 2. In the additive group (71., +, 0) all elements are of infinite order 
except 0 which has order 1. In V4 all elements except the identity have 
order 2. 

We now use Lagrange's theorem to relate the order of an element of a 
group with the size of the group. 

Theorem. If G is group and a is an element of G then crd G is a multiple of 
ord a; crd G is a prime number implies G is a cyclic group. 

PRooF. By Lagrange's theorem the cardinality of a group is a multiple of 
the size of any subgroup. In particular, crd G is a multiple of crd[ a] for any 
a in G. Ord a = crd[a]. For the second part of the theorem assume crd G 
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is prime. Then crd G ~ 2 and there must be an element a in G different 
from the neutral element. Crd a must be a factor of crd G, a prime element. 
Hence crd[ a] = crd G. [a] is a subgroup of G with the same number of 
elements as G. [a] = G. G is a cyclic group. D 

The theorem tells us that every group of prime cardinality is cyclic. The 
converse statement is not true. 7L4 and 7L, for example, are both additive 
cyclic groups. In fact, there are cyclic groups for every positive integer m, 
namely, (7Lm, +, 0). The theorem also tells us that if a group contains an 
element of infinite order then the group has infinite cardinality. We now 
show that if a group is cyclic and infinite then it cannot have any elements 
of finite order except the neutral element. 

Theorem. Let ( G, ·, v) be an irifinite cyclic group. Then every element except 
v has irifinite order. 

PRooF. There exists a function l/la:1L ~ G such that lj!a(n) = a", an isomor­
phism for some a E G. Let x be in G. x = 1/!a(m) for some m in 7L. x = ~­
[x] = {xklk E 7L} = {amklk E 7L}. Suppose xk = x1 for some k =1= l. amk = am1, 

mk =1= ml. This contradicts 1/1 a being an injection. Therefore, each xk, k in 7L, 
is distinct and the subgroup [ x] is infinite. Ord x is infinite. D 

EXAMPLE. In the additive group of integers the subgroups [2], [3], ... , are 
all of infinite order, yet are proper subgroups of 7L. 

We relate the inner automorphism (/Ja to the center of the group. 

Theorem. Let (G, ·, v) be a group. An element a in G commutes with every 
element in G if and only if (/Ja = I. 

PRooF. An element a commutes with every element of G if and only if 
ax = xa for all x in G if and only if x = a- xa for all x in G if and only if 
(/Ja(x) = x for all x in G if and only if (/Ja = I. D 

The elements of a group which commute with every other element in the 
group are exactly those elements which define trivial inner automorphisms. 
The collection of these elements is called the center of the group. 

Definition. Let (G, ·, v) be a group. The center of the group G is the set 
Z(G) = {alax = xa for all x in G}. 

Theorem. The center, Z(G), of a group, (G, ·, v), is a normal subgroup of G 
and G/Z(G) is isomorphic to J(G). 

PROOF. cP:G ~ J(G) such that cP(a) = q>a is an epimorphism ofG onto J(G). 
There exists an isomorphism cP':Gjk:er cP ~ J(G). Kernel cP = {alq>a =I} = 
Z(G). The kernel is always a normal subgroup. D 
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We now introduce another subgroup of G associated with the inner 
automorphism. 

Definition. By the normalizer of a subset S of a group < G, ·,) we mean the 
set {alaE G and a- Sa = S}. We denote the normalizer of S by .AI'(S). 

The normalizer of a set S is the set of all a in G for which the associated 
inner automorphism (/)a leaves S invariant. 

Theorem. The normalizer .A/'(S) of a subsetS of a group (G, ·, v) is a sub-
group of G. 

PROOF. Let a and b belong to .A/'(S). a- Sa = Sand b-Sb = S. Ifs E S then 
(ab)-sab = b-a-sab = b-s1b = s2 forsomes 1,s2 inS.Thus(ab)-Sab £ S. 
Now let s3 E S. s3 = b-s4 b for some s4 E S. s4 = a-s5a for some a5 E S. 
s3 = (ab)- s5ab. S £ (ab)- Sab. This proves (ab)- Sab = S. ab E .AI'(S). 

Now let a E .AI'(S). We wish to show that a- belongs to .AI'(S) also. This 
requires demonstrating that (a_)_ sa- = S, or alternatively, asa- = S. 
First consider asa- in asa-. asa- = t commutes to a-ta = s. But from 
what is given a-ta E S implies t E S. Therefore, asa- E Sand we have proved 
asa- £ S. Now considers inS. From what is given a-sa = t also belongs 
to S. Solving we have s = ata- E asa-. S £ asa-. Finally, .AI'(S) contains 
v since v-sv = S. D 

We remark that the normalizer of a set is a group while the original set 
may not be a group. The normalizer of a set may not even include the 
original set. However, if H is a subgroup then .AI'(H) does include H. The 
normalizer .AI'( H) of a subgroup H is the largest subgroup of G of which H 
is a normal subgroup. 

Since both the center and the normalizer are defined by inner auto­
morphisms we have this theorem relating the concepts. 

Theorem. Let (G, ·, v) be a group and x be in G . .AI'(x) = G if and only if 
x E Z(G). 

PROOF . .X E Z(G) if and only if (/Jx =I if and only if x-yx = y for ally in 
G if and only if yx = xy for ally in G if and only if y- {x}y = {x} for ally 
in G if and only if {YIY- {x}y = {x}} = G if and only if .AI'(x) = G. It is to 
be understood here that the normalizer of an element x is the normalizer 
of the subset {x}. D 

We now go further in exploring the relationship between the center and 
the normalizer. 

Theorem. Let (G, ·, v) be a group. Z(G) £ .AI'(a) for any a in G. Z(G) = 
naeG .A/'(a). 
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PRooF. Suppose ye Z(G). C{Jy = I. y- {a}y = a for all a in G. ye %(a) for 
each a in"G. yE naeG %(a). Z(G) £ naeG %(a). 

Now let x e %(a) for every a in G. x-ax = a for every a in G. CfJx = I. 
X E Z(G). Z(G) = naeG ..Af(a). 0 

We now introduce the third principal concept associated with the inner 
automorphism, that of the conjugacy relation. 

Definition. Let ( G, ·, v) be a group and x, ye G. x and y are conjugate if 
and only if there exists a CfJa in J(G) such that y = cpa(x). We use the 
notation x "" y to denote x and y are conjugate. 

According to the definition x "" y if and only if there exists an a in G 
such that y = a-xa. 

Theorem. Conjugacy is an equivalence relation on the group G. 

PROOF. x "" x because x = cpv(x). If x "" y then y = a-xa for some a in G. 
Then x = (a-)-ya- with a- in G. x = CfJa-(y). y ""x. If x ""y and y ""z 
we have y = CfJa(x), z = cpb(y) for some a, be G. Then z = CfJb(cpa(x)) = CfJab(x) 
with ab in G. x "" z. 0 

The equivalence relation of conjugacy partitions the group G into equiv­
alence classes called conjugacy classes. The equivalence relation of con­
jugacy is not a congruence; it is not compatible with the binary operation 
of the group. The set of equivalence classes is not a quotient group and the 
equivalence relation does not arise from a subgroup. Let us denote the 
conjugacy class containing an element x of G by ccl(x). Ccl(x) = {YIY e G 
and y "" x}. The partition defined by conjugacy is the set of conjugacy 
classes {ccl(x)lx e G}. Since conjugacy is not defined from a subgroup we 
do not have the benefit of Lagrange's theorem yielding equivalence classes 
of the same size. The classes do, in fact, vary in size as we shall see. The 
following two conditions will prove useful in the theorems that follow. 
Ccl(x) = ccl(y) if and only if x "" y if and only if y = CfJa(x) for some a in 
G if and only if y = a-xa for some a in G. Ccl(x) = ccl(y) if and only if 
there exist b, c in G such that b-xb = c- ye. 

We continue the discussion of conjugacy classes by looking at the center 
of the group. Each element of the center is a class by itself. 

Theorem. Let (G, ·, v) be a group and let x be in G. x e Z(G) if and only if 
ccl(x) = {x}. 

PRooF. x e Z(G) if and only if CfJx = I if and only if x-ax = a for all a in 
G if and only if a-xa = x for all a in G if and only if cpa(x) = x for all a in 
G if and only if ccl(x) = { x }. 0 

344 



9.4 Cyclic groups and order 

The only conjugacy classes containing exactly one element are those 
classes containing an element from the center of G. This count result can be 
extended to give a count for each conjugacy class: crd(ccl(a)) = crd G/.Af'(a). 
This extended result agrees with the earlier result when a E Z( G) for then 
.Af'(a) = G yielding crd G/G = 1. Since .Af'(a) is not, in general, a normal 
subgroup of G, Gj.Af'(a) does not indicate a quotient group, but merely the 
Lagrange partition of G defined by the subgroup .Af'(a). We will in the next 
theorem use right cosets of .Af'(a). 

Theorem. Let (G, ·, v) be a group. Then crd(ccl(a)) = crd Gj.Af'(a) where 
ccl(a) is the conjugacy class containing a and Gj.Af'(a) is the partition of 
G consisting of right cosets defined by the normalizer subgroup .Af'(a). 

PRooF. Ccl(a) = {bib E G and b ~ a} = {y- ayly E G}. We define a func­
tion x:ccl(a)-+ G/.Af'(a) such that x(y-ay) = .Af'(a)y. We now establish 
simultaneously that the map is well defined and is injective. x-ax = y-ay 
if and only if ayx- = yx-a if and only if (yx_)_ a(yx-) = a if and only if 
yx- E .Af'(a) if and only if .Af'(a) = .Af'(a)yx- if and only if .Af'(a)x = .Af'(a)y. 
Clearly, x is surjective because given any .Af'(a)y in G/.Af'(a) there exists an 
element y-ay in ccl(a) such that x(y-ay) = .Af'(a)y. 0 

Having established this means of counting the number of members of 
any conjugacy class in terms of the normalizer we derive the class equation: 
a total count of the members of the conjugacy classes. 

Theorem. Let ( G, ·, v) be a group. Then 

crd G = crd Z(G) + L crd G/.Af'(a') 
a' eR 

a';Z(G) 

where R is a set of representative elements from the partition { ccl(a)la E G}. 

PRooF. Let R be a subset of G containing one element from each conjugacy 
class ccl(a); in other words, let R be a complete set of representatives from 
the partition {ccl(a)la E G}. 

Crd G = L crd ccl(a') = L crd G/.Af'(a') 
~eR ~eR 

L crd Gj.Af'(a') + L crd G/.Af'(a') 
~eR ~eR 

a'eZ(G) a'</;Z(G) 

L 1 + L crd G/.Af'(a') 
a' eZ(G) a' eR 

a'</;Z(G) 

= crd Z(G) + L crd Gj.Af'(a'). 0 
a' eR 

a'</;Z(G) 

The conjugacy relation is now carried over to subgroups. 
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Definition. Let (G, ·, v) be a group and Hand K subgroups. Hand K are 
conjugate subgroups if and only if there exists an element x in G such 
that x-Hx = K. 

We use the same symbol for conjugacy of subgroups as we did for ele­
ments: H "' K. Conjugacy of subgroups is, of course, a relation on the set 
of all subgroups of G and not a relation on G. 

Theorem. Conjugacy (H "' K) is an equivalence relation on the set of all 
subgroups of a group (G, ·, v). 

PROOF. H"' H because v- Hv =H. x- Hx = K implies (x_)_ Kx- =H. 
If x- Hx = K and y- Ky = L then (xy)- Hxy = L. D 

A normal subgroup of G satisfies the equation x- Hx = H for all x in G. 
This shows that a normal subgroup is conjugate only to itself; it is a singleton 
conjugacy class. For this reason normal subgroups are often called self­
conjugate subgroups. 

The counting theorem for the normalizer of a subgroup also generalizes, 

Theorem. Let < G, ·, v) be a group. The number of subgroups of G conjugate 
to a given subgroup H equals crdG/.K(H). 

PRooF. Define, as before, a mapping t/f:ccl(H) ~ {.K(H)YIY E G}, such that 
t/f(x- Hx) = .K(H)x. Ccl(H) stands for the collection of all subgroups of G 
that are conjugate to H (ccl(H) is not a subset of G). Since .K(H) is a sub­
group of G then {.K(H)yiy E G} is a partition of G. Now x-Hx = y- Hy if 
and only if (xy_)_ Hxy- = H if and only if xy- E .K(H) if and only if 
.K(H)y = .K(H)x proving t/1 to be a well-defined injection. Clearly, it is 
also a surjection. D 

We now propose to use the accumulated results of this section to produce 
some facts about finite groups. 

Theorem. If pis a prime number and (G, ·, v) is a group with crd G = pn, 
nE 1\J, then Z(G) =1= {v}. 

PROOF. We remark that in case n = 1 then crd G = p and the group is a 
cyclic one as we have seen earlier. A cyclic group is commutative and its 
center is the entire group. 

In beginning the proof of the theorem we notice x E Z( G) if and only if 
x-ax = a for all a in G if and only if .K(x) = G if and only if crd .K(x) = pn. 
We consider now the class equation 
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Each a' rt Z(G) means .K(a') =I= G and crd .K(a') is a power of p strictly 
smaller than n. p then divides crd G/.K(a') for each a' rt Z(G). p divides crd G 
on the left side of the equation by hypothesis. p must divide crd Z( G). Z( G) 
must have at least p elements. 0 

Theorem. Let p be a prime number and let ( G, ·, v) be a group with crd G = 
p2 • Then G is a commutative group. 

PROOF. By the previous theorem crd Z(G) = p or crd Z(G) = p2• We pro­
ceed to eliminate the first alternative. If crd Z( G) = p then there exists an 
x rt Z(G). Z(G) £;; .K(x) but Z(G) =1= .K(x) because x e .K(x). We then have 
Z(G) c .K(x). This requires that .K(x) have p2 elements because any sub­
group of G has 1, p, or p2 elements. Then .K(x) = G, itself. x e Z(G), a 
contradiction. 0 

Theorem. Let ( G, ·, v) be a finite commutative group and let p be a prime 
number dividing crd G. Then G contains an element of order p. 

PROOF. We have earlier seen that Lagrange's theorem requires the order of 
any element or subgroup to divide the cardinality of the group. We know 
the converse to be false (m:4 has no element of order 6). This theorem is a 
partial converse showing that, at least, for primes the converse is true for 
commutative groups. The proof is by induction on n = crd G. Assume the 
conclusion true for all groups with cardinality strictly smaller than n. If G 
has no nontrivial subgroups then G is generated by a single element of prime 
order and is cyclic. Crd G = p, since p divides n. 

Now suppose G does have a nontrivial subgroup H. If p divides crd H 
then crd H < n. H is commutative and has therefore an element of order p. 
The element of order p belongs to H and therefore to G. 

Now suppose p does not divide crd H. His a normal subgroup of com­
mutative G and crd G/H < n. Since crd G = crd(G/H) crd Hand p does 
not divide crd H, p must divide crd G/H. There exists an element aH of 
G/H of order p by the inductive hypothesis. (aH)P = Hand amH =1= H for 
m= 1, 2, ... , p- 1. Then (aP)crdH = v and furthermore (acrdH)P = v. Since 
p is prime and the order of acrd H in G must divide p we need only show that 
acrd H =I= V in order to demonstrate that ord(acrd H) = p. Suppose for the 
sake of argument that acrd H = v. acrd H H = H. (aH)crd H = H. But (aH)P = 

H. Thus p divides crd H yielding a contradiction for this part of the proof. 
acrd H E G and has order p. 0 

We now extend the result to groups that are not necessarily commutative 
by use of the class equation. 

Theorem. Let p be a prime natural number and (G, ·, v) be a finite group 
such that p divides crd G. Then G contains an element of order p. 
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PRooF. We note that we have proved the theorem for the case when G is 
given to be commutative. Assume that the result is true for all groups (not 
necessarily commutative) of cardinality < n. Suppose G has a proper sub­
group H which has its cardinality divisible by p. Since crd H < n, H contains 
by the inductive assumption an element of order p. This element of H of 
order p is an element of G of order p. In this case the theorem is trivial. 
Now assume G has no proper subgroups which have their cardinality divisi­
ble by p. If H is any subgroup of G then the equation of Lagrange, crd G = 

crd G/H crd H, tells us that p divides crd G/H for every proper subgroup H 
(under the assumption that p does not divide crd H). We look at the class 
equation 

crd G = crd Z(G) + L crd G/..!V(a'). 
a' eR 

a'j!Z(G) 

Each ..!V(a') is a subgroup of G means p divides each term of the sum, 
La'eR,a'!!Z(G) crd G/..!V(a'), as well as crd G. p then divides crd Z(G). But Z(G) 
is a commutative subgroup of G, and must by the previous theorem have an 
element of order p. This element is then an element of G of order p. D 

QUESTIONS 

1. Which of the following statements about cyclic groups are true? 
(A) No cyclic group can have more than a finite number of subgroups. 
(B) Every element in a cyclic group except the unity generates the group. 
(C) Every subgroup of a cyclic group is also cyclic. 
(D) Every element in a cyclic group generates a cyclic subgroup. 
(E) All cyclic groups of the same cardinality are isomorphic. 

2. Which of the following statements are true? 
(A) Every infinite cyclic group is isomorphic to (7L, +, 0). 
(B) There are precisely 16 nonisomorphic cyclic groups of cardinality less than 

or equal to 16. 
(C) A cyclic group of order mn has elements of order m and elements of order 

n even if m and n fail to be relatively prime. 
(D) A cyclic group cannot have cardinality n2 if n is an odd number. 

(E) None ofthe statements is true. 

3. Which of these statements are true? 
(A) A Lagrange partition of an infinite group by a finite subgroup must have an 

infinite number of distinct cosets. 
(B) A group of prime order cannot have any proper subgroups. 
(C) If a group contains an element of infinite order then the group must be 

cyclic. 
(D) If a group has a minimal generating set containing two elements then the 

group cannot be cyclic. 
(E) None of the statements is true. 

4. Which of these statements are true? 
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(B) Every commutative group is cyclic. 
(C) The number of elements in any group is always a multiple of the number 

of elements in the center of the group. 
(D) Any commutative subgroup of a group must contain the center. 

(E) None of the statements is true. 

5. Let ( G, ·, v) be a group and lfJa be the inner automorphism of G associated with the 
element a. Which of these statements are true? 

(A) If the group is noncommutative then there must be at least two elements 
not in the center. 

(B) lfJa = lfJb if and only if a = b. 
(C) a E Z(G) implies lfJa = lfJv· 
(D) lfJa = lfJb if and only if ab- e Z( G). 

(E) None ofthe statements is true. 

6. Which of the following statements are true for the group (G, ·, v)? 
(A) The normalizer of G, %(G), is a subgroup of d(G). 
(B) {ala e G and lfJa(S) ~ S} is called the normalizer of the set S. 
(C) If G is a commutative group then G is the normalizer of every nonempty 

subset of G. 
(D) {alae G and lfJa(S) = S} is the normalizer of the setS. 

(E) None of the statements is true. 

7. For the group (63 , o, I) which of the following statements are true? 
(A) (1 2) ~ (2 3). 
(B) (1 2 3) ~ (1 3 2). 
(C) I ~ (1 2 3). 
(D) I ~ (1 2). 

(E) None of the statements is true. 

8. For the group (63 , o, I) which of the following statements are true? 
(A) 6 3 has three elements of order 3. 
(B) 6 3 has three elements of order 2. 
(C) There is an element of order 2 in 6 3 and an element of order 3 in 6 3 for 

which the product has order 6. 
(D) 6 3 is a cyclic group. 

(E) None of the statements is true. 

EXERCISES 

1. Show that every cyclic group is commutative. 

2. Find all the generating subsets of (1::4 , +. 0) and (1::6 , +, 0). Find the orders 
of each of the elements of both groups. 

3. Show that every noncommutative group has a nontrivial, proper, commutative 
subgroup. 

4. Show that every nontrivial group has a nontrivial cyclic subgroup. 

5. Let ( G, ·, v) be a group and a be in G such that a" = v for some positive integer 
n. Prove ord a divides n. 
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6. Let < G, ·, v) be a commutative group and a, b E G such that ord a = m and ord 
b = n. Let m, n be relatively prime. Prove ord ab = mn. 

7. Prove that the only element is a group with order 1 is the neutral element. 

8. Show that in the symmetric group (6., o, /) there are elements of each order 
1, 2, 3, ... , n. 

9. Let (G, ·, v) be a group with pq elements where p and q are primes. Show that 
every proper subgroup is cyclic. 

10. Let (G, ·, v) be a commutative group and F be the subset ofG of all elements with 
finite order. Show that F is a normal subgroup of G. Show that the only element 
of G/F with finite order is the neutral element F. 

11. Show that if a group has no subgroups other than itself and the trivial one then it 
is a finite group. 

12. Let (G, ·, v) be a group. Show that for each a in G both a and a- have the same 
order. Show also that ab and ba have the same order for any a, b in G. 

13. Show that every finite cyclic group is isomorphic to (Z., +, 0) for some n E N +. 

14. Show that every infinite cyclic group has precisely two generators. 

15. Prove that every subgroup of an infinite cyclic group is either trivial or isomorphic 
to the entire group. 

16. Let < G, ·, v) be a group in which every element has finite order. Prove that if S 
is a nonempty subset of G closed under products then S is a subgroup. 

17. Let (G, ·, v) and (G', -', v') be groups and f:G--+ G' amorphism. Prove that 
ord x is a multiple of ord f(x). 

18. Prove that neither (IQ, +, 0) nor (IQ*, ·, 1) is a cyclic group. 

19. Let (G, ·, v) and (G', -', v') be groups. Let f:G--+ G' be amorphism. Prove that 
if G is a cyclic group then so also is f(G). 

20. Show that every subgroup of a cyclic group is cyclic. Show also that any quotient 
group of a cyclic group is cyclic. 

21. Show that two cyclic groups with the same number of elements are isomorphic. 

22. Can (IQ, +, 0) be isomorphic to (IQ*, ·, 1) or a subgroup of (IQ*, ·, 1)? 

23. Can (Z, +, 0) be isomorphic to (IQ*,·, 1) or a subgroup of (IQ*,·, 1)? 

24. Let (G, ·, v) and (H, ·, v) be groups and J:G--+ H be an isomorphism. Prove 
that if an element a generates G then f(a) generates H. Prove that H cyclic implies 
G cyclic. Prove that if {a, b} generates G then {!(a), f(b)} generates H. 

25. Let (G, ·, v) and (H, ·, v) be groups and f:G--+ H be a monomorphism. Prove 
ord a = ord f(a). 

26. How many generators does a cyclic group with n (finite) elements have? 
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27. How many isomorphisms are there between a cyclic group with m elements and 
a cyclic group with n elements? 

28. What familiar function of calculus is an isomorphism from IR to IR+ of groups 
(IR, +, 0) and (IR+, ·,1)? What is its inverse? 

29. Prove that an infinite cyclic group can form only finite quotient groups. 

30. Let (G, ·, v) be a commutative group and ga:G-> G be the mapping ga(x) = a2x. 
Show that {gala E G} £: 6(G). Define <P:G-> 6(G) such that <P(a) = ga. Prove 
that <P is a morphism with kernel consisting exactly of elements of order 2 and the 
neutral element. Can an element of Gjker <P have order 2? 

31. Let (M, ·, v) be a unitary monoid. For each invertible element a of M define the 
map qJ.,:M-> M such that (/Ja(x) = a-xa. Show that {(/)ala is an invertible element 
of M} is a subgroup of d(M). 

32. By example prove there exist groups G such that d( G) is not a normal subgroup 
of6(G). 

33. Show that (C*, ·, 1) contains elements of infinite order and also every finite order. 

34. Let (K, +, ·, 8, v) be a field with n elements. Prove that x"- 1 = v for every non­
zero x in K. Prove x" = x for every x in K. 

35. Prove Fermat's theorem: xP = x modulo p for p a prime integer. 

36. Let (K, +, ·, 8, v) be a field with n elements. Prove that every x inK is a root 
of the polynomial X" - X. Represent then elements of K by a1o a2, ... , a •. Prove 
x· - X = (X - a1)(X - a2) ... (X - a.). Prove also x·- 1 - V = OaeK" (X - a). 
Prove -v = OaeK' a for n i= 2. 

37. Prove Wilson's theorem: -1 = (p - 1)! modulo p, a prime integer. 

38. Prove .%(0) = G and .K(v) = G for any group (G, ·, v). 

39. Find for the group (63 , o, J) the normalizers .%( (1 2) ), .%(/, (1 2) ), .K(m:3 ). 

40. The following group is noncommutative and has 27 elements. It has three generators 
each with order three which we name a, b, and c. a3 = v, b3 = v, c3 = v. We 
further stipulate that ea = ac, cb = be, and bac = ab; two of the three generators 
commute with one another but the third does not. Show that {aibic"l~ j, k = 0, 
1, 2} constitutes a complete representation of the group; every product can be 
reduced to the form aibic" with i,j, k e {0, 1, 2}. Making a complete multiplication 
table for the group is unreasonably tedious. What is the inverse of aibic"? 

41. The multiplicative group generated by the two matrices (_ ~ ~) and G ~) 
is a noncommutative group of order 8. Make a multiplication table (a long project) 
for the group. Find the order of each element and find all subgroups. This group 
is known as the quaternion group. 

42. Show that the two matrices (_ ~ ~)and G ~)also generate a multiplicative 

group of order 8. Is this group isomorphic to the quaternion group? 
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43. Each e. is a subgroup of e.+ 1 in the sense that a cycle such as (1 2 · · · n) E e.+ 1 

as well as 6 •. Show that 6 = UneN+ 6. is a group and contains all e. as sub­
groups. Show that this group contains precisely one normal subgroup m: which 
is not e nor {I}. 

44. Show that any subgroup S of e. containing at least one odd permutation has a 
normal subgroup N such that crd SfN = 2. [Hint: Use an isomorphism theorem.] 

9.5 Products 

In this section we present product constructions for monoids. We also 
discuss simple groups and solvable groups and finish with a product theorem 
for commutative groups. 

The Cartesian product of two monoids, when endowed with the product 
operations, yields a monoid which is called the product monoid. 

Theorem. Given monoids (M, ·1 ) and (M2 , •2 ), the Cartesian product 
(M1 x M 2 , •1 x ·2 ) is a monoid. If (M1o ·1, v1) and (M2 , •2 , v2 ) are 
unitary monoids then (M1 x M 2 , •1 x ·2 , (v1, v2 )) is a unitary monoid. If 
both unitary monoids are groups then the product is a group. 

D 

EXAMPLE. Z2 x 7..3 = {(0, 0), (0, I), (0, 2), (I, 0), (I, I), (I, 2)} is the Cartesian 
product of (Z2 , +, 0) and (Z3 , +, 0) and is a group. This product group 
is cyclic with generator (I, I). O(I, I) = (0, 0). 1(I, I) = (I, I). 2(I, I) = (0, 2). 
3(I, I) = (I, 0). 4(I, I) = (0, I). 5(I, I) = (I, 2). 

EXAMPLE. 6 3 x 6 3 with composition in each component is the Cartesian 
product ofthe group (63 , o, I) with itself. It is a noncommutative group of 
order 36. A sample calculation, using cycles in each component, is ( (1 2 3), 
(2 3) )((1 3), (1 3 2)) = ((1 2 3)(1 3), (2 3)(1 3 2)) = ((2 3), (1 2) ). 

The Cartesian product of a finite number ofmonoids is an easy generaliza­
tion from two monoids. <Xien Mi, ')has the binary operation defined co­
ordinatewise as with two monoids. (x1o x2 , ••• , x,.)(Yl> y2 , ••• , y,.) = (x1'1Yl• 
x2•2 J2, ... , x,.·,.y,.), or alternatively expressed (xdi e n)(Yili en) = (xi'iYili en). 
Xie,.Mi = {(xiljen)lxieMi}· We also write XienMiasM1 x M 2 x · · · x 
M,.. The notation M1 x M 2 x · · · x M,. is perhaps easier to comprehend 
but adapts poorly to the infinite case. We now turn our attention briefly to 
this infinite situation. We assume we have given a family of monoids 
((Mi, ·i> lj e J), one for each member of the infinite set J. The infinite 
Cartesian product XieJ Mi = {(xilj e J)!xi e Mi}, consists of all possible 
families of elements in which the coordinate xi is chosen from the monoid 
Mi of corresponding index. The operation ofthe product is simply multipli­
cation in each coordinate j using the given multiplication in Mi. (xijj e 
J)(Yilj E J) = (x{iYi[j E J). 
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A simple example of such an infinite product is to use the rational numbers, 
0, a countable number of times. Xi eN 0 = {(xijj E N)ixi E 0}. This set is 
precisely the set of all possible sequences of rational numbers. Each compo­
nent (0, ') is a monoid and so also is the Cartesian product XieN 0. 
(0, ·)has a unity 1 and the Cartesian product has the unity (1, 1, 1, ... ). 

For unitary monoids we have another infinite product which is a proper 
subset of the full Cartesian product. This is the weak Cartesian product 
which consists of all families which have all but a finite number of coordinate 
entries equal to the unity. Given a family of unitary monoids ( (Mi, ·,vi) liE J) 
the weak Cartesian product is XieJ Mi = {(xijj E J)lxi E Mi and xi = vi for 
all but a finite number ofj in J}. It is easily verifiable that XieJ Mi is a proper 
unitary submonoid of XieJ Mi. Furthermore, if each Mi is a group then 
XieJ Mi is a normal subgroup of the group XieJ Mi. 

Associated with any Cartesian product are the projection mappings of the 
product back into one of the component monoids. 

Definition. The mapping pi:Xiei Mi-+ Mi is called the jth coordinate 
projection. 

More simply, for two monoids M 1 and M 2 we have the first projection 
p1 :M1 x M 2 -+ M 1 such that p1(xb x2 ) = x1 and the second projection 
p2 :M1 x M 2 -+ M 2 such that p2(xl> x2 ) = x 2 • It is easy to verify this 
theorem. 

Theorem. The projection mappings are epimorphisms. 

Analogously, we also have the insertion (or embedding) mappings qi: Mi -+ 
Xiei Mi such that qi(x) = (Yili E J and Y; = V; for all i exceptj and Yi = x). 
We must use here the unity elements for the monoids. For two unitary 
monoids M 1 and M2 , we haveq1 :M1 -+ M 1 x M 2 such that q1(x) = (x, v2 ) 

and q2(x) = (vl> x). Range q1 = M 1 x {v2 } and range q2 = {v1} x M 2 . 

Each component of a product of unitary monoids is isomorphic to a unitary 
submonoid of the Cartesian product. 

In the case of groups we have this theorem. 

Theorem. The range of each insertion map q/Mi-+ Xiei Mi of a group into 
the product group is a normal subgroup of the product. Furthermore, if 
x E qi(Mi) and yE qk(Mk) and j =F k then x and y commute and qi(Mi) n 
qk(Mk) = (vdi E I) for all j =F k. Xiel Mi = niel qi(MJ 

ExAMPLE. ThreegroupsG1,G2,G3 haveaCartesianproductG1 x G2 x G3 • 

The three insertion mappings are q1 :G1 -+ G1 x G2 x G3 with range G1 x 
{v2 } x {v3},q2 :G2 -+ G1 x G2 x G3 with range {vi} x G2 x {v3},q3 :G3 -+ 
G1 x G2 x G3 with range {vd x {v2 } x G3 • These ranges are all normal 
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subgroups of G1 x G2 x G3. Elements from these separate groups com­
mute with each other even though the original groups G1, G2, G3 are not 
necessarily commutative. The ranges have only the unity of G1 x G2 x G3 
in common. (x1, v2, v3)(vl> x2, v3) = (xl> x2, v3) = (vl> x2, v3)(x1, v2, v3). If 
(xl> x 2 , x3) belongs to G1 x G2 x G3 then (xl> x 2 , x3) is equal to the product 
(x1, v2, v3)(v1, x2, v3)(v1, v2, x3)showingG1 x G2 x G3 = q1(G1)q2(G2)q3(G3). 

On the basis ofthe properties exhibited by these normal subgroups defined 
by the insertion maps we frame a definition of a direct product (or direct sum 
if additive notation is employed). 

Definition. A group ( G, ·, v) is the direct product of normal subgroups H 1> 

H2, ... , Hn if and only if 

1. H ~> H 2, ... , Hn are non trivial proper normal subgroups of G, 
2. G = H1H2 · · · Hn, 
3. H; n H 1H 2 · · · H;- 1Hi+ 1 · · · Hn = {v}, 
4. x EH; and yE Hi and i # j imply xy = yx. 

For the direct product we write H 1 0 H2 0 · · · 0 Hn. If the operation is 
denoted additively then we will write H 1 Ef> H 2 Ef> · · · Ef> Hn and call it the 
direct sum. We also denote the direct product with 0?= 1 H; and the direct 
sum with EB?=1 H;. . 

ExAMPLE. The cyclic group { 1, a, a2 , a3, a4 , a 5 } of six elements generated by 
a is a direct product of the two normal subgroups {1, a3} and {1, a2 , a4 }. 

{1, a, a2, a 3, a4 , a 5 } = {1, a 3 } 0 {1, a2, a 4 }. The same example in additive 
notation is "!.. 6 = {0, 1} Ef> {0, 2, 4}. 

We have used the previous examples of Cartesian products to help moti­
vate our definition of direct product. We now show that the two concepts 
are isomorphic. 

Theorem. Let (G, ·, v) be a group and H 1, H2, ... , Hn be normal subgroups, 
nontrivial and proper. If G = H 1 0 H 2 0 · · · 0 H n then G is isomorphic 
to H 1 x H 2 x · · · x H"' the Cartesian product. 

PRooF. We define a mapping F: H 1 x H 2 x · · · x H n -t G such that 
F(xl> x2, ... , xn) = x1x2 · · · xn. F is easily seen to be amorphism. We must, 
however, use the fact that members of different normal subgroups of the di-
rect product commute with one another. F( (x1, x 2 , •.. , xn)(Yt, y2, ... , Yn)) = 

F(X1Y1• X2Y2• ... ' XnYn) = X1Y1X2Y2 ... XnYn = x1x2 ... XnY1Y2 ... Yn = 
F(x1, x2, . .. , Xn) F(yl> y2, .. . , Yn). Ker F = {(x1, x2, . .. , xn)lx1x2 · · · Xn = 

v}. Since xi= x1x2 · · · xj_ 1xi-+ 1 · · · x;; E H 1H 2 · · · Hi_ 1Hi+ 1 · • • Hn and 
xi E Hi we have xi = v. This shows F to be a monomorphism. Finally, since 
G = H 1H 2 · · · Hn we have x in G implies x = x1x2 · · · Xn = F(x 1, x2, ... , 
xn), showing F to be a surjection. D 
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EXAMPLE. z6 = {0, 1} EB {0, 2, 4}. z6 ~ {0, 1} X {0, 2, 4}. Since {0, 1} ~ 
Z2 and {0, 2, 4} ~ Z3 we can write Z6 ~ Z2 x Z3 using the isomorphism 
result that A ~ C and B ~ D imply A x B ~ C x D. 

The direct product can also be defined for an infinite number of normal 
subgroups and the isomorphism between the direct product and the weak 
Cartesian product can be established. Several exercises are devoted to this 
end. 

For groups disassembling into direct products we can use the fundamental 
isomorphism theorem to produce this theorem. 

Theorem. Let (G, ·, v) be a group. If G = H 1 8 H2 then G/H1 ~ H2. If 
G = H1 8Hz 8 · · · 8 Hn then Gj(H1H2 · · · Hi_1Hi+1 · · · H") ~Hi. 

PROOF. The projection P/ H 1 X H 2 X • . . X H n --+ Hj has kernel equal to 
H 1 x ··· x Hi_ 1 x {v} x Hi+ 1 x ··· x Hn.Gfkerpi ~Hi. D 

Groups or monoids representable as direct products are, in a sense, 
decomposed into constituent components. This is a method for analyzing a 
group. We continue our study of normal subgroups. 

Definition. A group < G, ·, v) is called simple if and only if the only normal 
subgroups of G are { v} and G itself. 

EXAMPLE. Any cyclic group of prime order is simple. It has been shown that 
all other simple groups have even order. The problem of cataloging simple 
groups is a difficult one and remains quite imcomplete. We will show later 
that m:5 , the even permutation subgroup of 6 5 , is a simple group. Meanwhile, 
we have this useful result. 

Theorem. Let < G, ·, v) be a group. N is a maximal proper normal subgroup of 
G if and only if GjN is a nontrivial simple group. 

PROOF. We first establish that for N and H normal subgroups of G that 
N ~ H implies H/N is a normal subgroup of GjN. Suppose there exists a 
normal subgroup H such that N ~ H ~ G. Let xN and yN belong to HjN. 
xN yN = xyN E HjN. (xN)- = x- NE HjN. For zN E G/N we have 
(zN)-xN(zN) = z-xzN E HjN proving H/N is normal in GjN. 

Now suppose GjN is a simple group and N ~ H, also a normal subgroup. 
N ~ H implies H/N is normal in GjN. But GjN is simple. H/N = {N} or 
H/N = GjN. If H/N = {N} then H =N. If HjN = G/N then H =G. 
Hence N is a maximal normal subgroup. 

For the converse, assume GjN has some nontrivial proper normal sub­
groupM.M consists of some, but not all, ofthecosets ofGjN. {xNixN EM} = 
M. Let S be the set of all members of G which belong to some coset in M, 
i.e., S = UM. S is a normal subgroup of G. If x, yES then xN, yN EM. 
xN(yN)- EM. xy- NE M. xy- E S. IfzE G then (zN)-xN zN = z-xzN EM. 
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z- xz E S. M =f. { N} implies there exists an x in S, x f/ N. M is proper means 
there exists xN E GjN such that xN f/ M. Therefore, x E G and x f/ S. 
N c S c G. N is not maximal. D 

We now show one of the ways normal subgroups are used to analyze the 
structure of groups. 

Definition. Let G0 , Gt> ... , Gn+ 1 be a finite number of subgroups of a group 
<G, ·, v) such that G0 = G, Gn+ 1 = {v} and Gi+ 1 is a maximal proper 
normal subgroup of Gi, j = 0, 1, ... , n. G0 , G1, ... , Gn+ 1 is then called 
a composition series for the group G. G/Gt> GtfG2 , ... , Gn/{v} are the 
factor groups or quotient groups of the composition series. The cardinality 
of these quotient groups are called the factors of the composition series 
for G. 

EXAMPLE. For the additive group Z12 two different composition series are 
Z12 , {0, 2, 4, 6, 8, 10}, {0, 4, 8}, {0} and Z12 , {0, 3, 6, 9}, {0, 6}, {0}. The quo­
tient groups for the two composition series are respectively 1::12/{0, 2, 4, 6, 8, 
10}, {0, 2, 4, 6, 8, 10}/{0, 4, 8}, {0, 4, 8}/{0} and 1:: 12/{0, 3, 6, 9}, {0, 3, 6, 9}/{0, 6}, 
{0, 6}/{0}. The factors for the two composition series are 2, 2, 3 and 3, 2, 2. 

Theorem. Any two composition series of a finite group <G, ·, v) have their 
quotient groups isomorphic in some order. 

PRooF. If the group has no nontrivial normal subgroups (is simple) then 
there is but one composition series possible: G, { v}. We proceed by induction 
on the number of prime factors in the integer n which denotes the cardinality 
of G. If n is prime, has but one prime factor, then G is cyclic and has no 
nontrivial subgroups. The theorem in this case is true. Now suppose for 
induction that the theorem is true if crd G has fewer than k prime factors. 
Let crd G now have k prime factors. Let two composition series for G be 
G0, G'1, •.. , Gl+ 1 and G0, G'{, ... , G;;,+ 1· By the definition of composition 
series G0 = G0 = G and G! + 1 = G~ + 1 = { v}. If in addition G~ = G'{ denote 
both by G1• Then G~, G2, ... , Gl+ 1 and G'{, G2, ... , G;;,+ 1 are composition 
series for G1. Since G1 is a proper normal subgroup of G we must have 
crd G1 < crd G and crd G1 a factor of crd G. Crd G1 must have fewer thank 
prime factors. By the inductive assumption G~, G2, ... , Gi+ 1 and G'{, 
G2, ... , G;;,+ 1 have their quotient groups isomorphic in some order: G'tfG2 :::::: 
G;'.fG;~, G2/G3 :::::: G;~;G;~, ... , G!/Gl+ 1 :::::: G;;;G;;+ 1• Thus l = m. Furthermore, 
G0jG~ :::::: G0/G'{ so that the original series are the same length and isomorphic 
in some order. 

If it is not the case that G~ = G'{ then a more elaborate argument is 
necessary. Suppose G~ =f. G'{ and let G~ n G'{ = H 1• By one of the iso­
morphism theorems of Section 9.3, (G'{G~)/G~ :::::: G'{/(G~ n G'{). G'{G~ = G 
because the product is a normal subgroup of G properly larger than G~. 
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Thus G/G~ ~ G~/(G~ n G~). By the same reasoning GjG~ ~ G~/(G~ n G'1). 

G'o/G~ and G'Q/G~ are both simple groups since the subgroups defining the 
quotient groups are maximal normal subgroups. As isomorphic groups 
G~/( G~ n G~) and also G'{/( G~ n G~) must be simple groups too. This shows 
(G~ n G~) is a maximal normal subgroup of both GJ. and of G'{. Using 
H 1 = G! n G~, H 1 is maximal in G! and in G~. Let H 1, H 2 , ••• , H,+ 1 be a 
composition series for H 1. Then G 1 has two composition series: G!, 
G~, ... , Gi+ 1 and GJ., H 1, H 2 , •.. , H,+ 1 · In some order their quotient 
groups must be isomorphic. GJ./Hl> H1/H2 , ••• , H,/H,+ 1 and GJ./G~, 
G~/G3, ... , Gi/Gi+ 1 are isomorphic in some order. So also are the extended 
series G0/GJ., GJ./H1, HtfH2 , ••• , H,/H,+ 1 and G'o/GJ., GJ./G~, G~/G3, ... , 
Gi/Gi+ 1 isomorphic in some order. By a symmetrical argument G0/G~, 
G'{/G1,, G'1,/G'i,, ... , G;;,;G;;,+ 1 are also isomorphic in some order to the quo­
tient groups G'o/H 1> H1/H2 , ••• , H,/H,+ 1• Thus l = r = m and the two given 
composition series have their quotient groups isomorphic in some order. o 

ExAMPLE. In the previous example of Z12 there are two composition series. 
The isomorphisms are Z12/{0, 2, 4, 6, 8, IO} ~ {0, 1, 6, 9}/{0, 6}, {0, 2, 4, 6, 
8, I0}/{0, 4, 8} ~ {0, 6}/{0}, {0, 4, 8}/{0} ~ Z12/{0, 1, 6, 9}. 

Definition. A finite group is solvable if and only if the quotient groups of the 
composition series are commutative. 

Theorem. A finite group is solvable if and only if the quotient groups of the 
composition series have prime cardinality and are cyclic. 

PROOF. This theorem amounts to proving that if N is a maximal normal 
subgroup of a finite group G then G/N is commutative if and only if G/N 
has prime cardinality and is cyclic. Certainly, every cyclic group with the 
number of elements prime is commutative. Now assume that G/N is a 
commutative group. Since N is a maximal normal subgroup we have G/N 
both simple and commutative. If G/N is not cyclic of prime size then some 
element of GjN would generate a normal subgroup which would be proper. 
But G/N is simple. G/N must be cyclic and have a prime number of 
elements. 0 

ExAMPLE. Both of these are composition series. 6 3 , ~3 , {I}. 6 4 , ~4, V4 , 

62, {I}. 

ExAMPLE. 6 1, 6 2 , 6 3 , 6 4 are all solvable groups. 

Lemma. Any normal subgroup N of ~"' n = 4, 5, ... , containing a three 
cycle must be ~" itself. 

PROOF. If(1 2 3) EN then (1 2 k) EN because [(1 2)(3 k)]-(1 2 3)2[(1'2) · 
(3 k)] = (1 2)(3 k)(1 3 2)(1 2)(3 k) = (1 2 k). From this we can conclude 
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that if (1 2 3) belongs to N then (1 2 4), (1 2 5), ... , (1 2 n) all belong to 
N. From Section 7.7 we know (1 2 3), (1 2 4), ... , (1 2 n) generate m:n. 
Thus if (1 2 3) E N then N = m:n. 

If the particular given three cycle of N is not (1 2 3) then we can by 
appropriate compositions produce (1 2 3) as a member of N. Let (i1 i2 i3 ) 

belong to N and consider the following cases. 

1. (j k l) EN implies [(k l)(j 1)] -(j k l) [(k l)(j 1)] = (1 l k) EN. (1 l k) E 
N implies (1 l k)2 = (1 k l) E N. 

2. (1 l 2) EN implies (1 l 2)2 = (1 2 l) EN. 
3. (1 k l) EN implies [(1 k)(2 l)] -(1 k l) [(1 k)(2 l)] = (1 2 k) EN. 
4. (1 2 l) EN implies [(1 2)(3 l)]-(1 2 W[(l 2)(3 l)] = (1 2 3) EN. 0 

Theorem. m:n is simple for n = 5, 6, 7, .... 

PROOF. Let N be a normal subgroup ofm:n not {I}. We wish to show that N 
is equal to m:n by showing N must contain some permutation which is a 
three cycle. 

Suppose N, a nontrivial normal subgroup, fails to contain a three cycle 
from m:n, n ~ 5. Then let a be the nonidentical permutation in N which 
disturbs(does not leavefixt) thefewest members of {1, 2, ... , n}.lfadisturbs 
4 members it cannot be in the form (1 2 3 4) which is an odd permutation, 
but must be of the form (1 2)(3 4). Then [(3 4 5)-a(3 4 5)]a- = (3 5 4) · 
(1 2)(3 4)(3 4 5)(1 2)(3 4) = (3 4 5) belongs to N also. But (3 4 5) disturbs 
only 3 members of { 1, 2, ... , n }, a contradiction. a must then disturb at 
least 5 members of {1, 2, ... , n}. a will then be of the form (1 2 3)(4 5 6) ... 
or (1 2)(3 4)(5 6)(7 8) ... or (1 2 3 4)(5 6) .... a must involve at least 5 
digits which we have for convenience chosen to call 1, 2, 3, 4, 5. If other 
numbers are involved one can change the argument accordingly. One 
can now see that r = [(3 4 5)- a(3 4 5)]a- can disturb no member of 
{ 1, 2, ... , n} not already disturbed by a. The number 2, however is held 
fixt by r. r will then disturb fewer members of {1, 2, ... , n} than does a. 
This contradicts a disturbing the fewest members. Thus N must contain 
a three cycle and by the lemma is equal to m:n. 0 

We finish this section with results on direct product resolutions of com­
mutative groups. Since the groups are commutative we use additive notation 
and speak of direct sums. 

Theorem. Let (G, +,e) be a commutative group with cardinality pi 1Pz2 • • • 

p~" with each Pi a prime natural number, all distinct. Then G = EB'i= 1 Pi 
such that order of each element in Pi is a power of Pi and crd Pi = p'ji. 

PROOF. Let x, y both be elements of order some power of p. pix = e and 
piy = e for appropriate integers i and j. Then pi+ i(x + y) = pi+ ix + 
pi+iy = pi(pix) + pi(piy) = e + e =e. pi(-x) = -pix = -e =e. Thus 
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the elements of order some power of p form a subgroup of G. Call this 
subgroup P. 

In order to distinguish between the several prime components we define 
Pi to be the subgroup of G of all elements having order some power of the 
prime Pi· We wish to demonstrate that G = P 1 EB P2 EB · · · EB Pn. Because 
the given group is commutative all pairs of elements commute and in 
particular, pairs from different Pi. Because only zero can have order 1 = p0 , 

only zero can belong to more than one of the Pi. P; n Pi = {8} fori ¥- j. 
Now let y belong to G and have some order p1'Jf5_2 • • • pe". We prove by 
induction on n that G = P 1 + P2 + · · · + Pn . . If x E G and the order of 
x has two prime components, ord x = P1'Jizo, gcd(P1', p~2) = 1. There exist 
integers m', n' such that m'p1' + n']lz2 = 1. We consider then the two ele­
ments m'p1'x and n']lz2x. x = 1x = (m'p1')x + (n']lz2 )x. Ord m'p1'x = ]lz2 

and ord n'p~>x = P1'. Thus an element of order P1'P~2 is the sum of an 
element of order ]lz> and an element of order P1'. For the induction step 
let x have order P1'IIz2 • • • pfk. Gcd(pf•, J1i) = 1 fori ¥- j. There exist m', n' 
such that m'P1'P~2 • • • pf:-1' + n'pfk = 1. Therefore, x = m'p1'P~2 • • • pf:-1 'x + 
n'pfkx belongs to B + Pk with order ofm'p1'P~2 • • • pf:-1 'x = pfk and order 
ofn'pfkx = P1'IIz2 •• ·pf:-1'.HencebyinductionG = P 1 + P2 + ·· · + Pn. D 

Having proved that every commutative group can be resolved into a 
direct sum of subgroups in which each subgroup contains elements with 
order equal to powers of some prime we now continue the resolution of 
these prime subgroups. 

Theorem. Let P be a finite commutative group with every element having order 
some power of the prime p. The P is the direct sum of cyclic subgroups. 

PROOF. Let P have cardinality p~~.. Let pP be the order of an element in P 
of greatest order. We make an induction on {3. If f3 = 1 then every non­
neutral element has order p. Let a1 E P. If P = [ a 1] then the theorem is 
proved. If not let a2 E P - [ a1]. The set { m1 a 1 + m2a2 lm1, m2 = 0, 1, ... , 
p - 1} has p2 members because if m1 a 1 + m2a2 = n1 a 1 + n2a2 then 
(m1 - n1)a1 = (n2 - m2)a2 showing a2 E [a1] unless m1 = n1o m2 = n2. 
If P = [a1 , a2 ] then the theorem is done. Otherwise continue the argument. 
Eventually, [a1o a2, ... , at] = P for some elements and P has a generating 
set. Each element is of order p and Pis the direct sum [ a1] EB [ a2 ] EB · · · EB 
[at] oft cyclic subgroups. 

Now suppose the highest order element appearing in P has order pk 

and the theorem is true for f3 < k. Construct the set Q = {paia E P}. Q is 
a group in which the maximum order element appearing has order pk- 1. 

By the inductive assumption Q = [il1] EB [il2 ] EB · · · EB [ilu], the direct 
sum of cyclic subgroups of order, respectively, p"', p"2, ••• , p""; 1 ::::; n1, ... , 

nu::::; k- 1. Let Q = [a1] EB [a2] EB · · · EB [au], where pai = ai. Q is a 
subgroup of P. The order of ail is p"i+ 1• The subgroup Q of P has p"'+ 1 · 

p"2 +l ... p"u+l members. Q = {mlal + m2a2 + ... + muaulml = 0, ... ' 
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pn,+t - 1; m2 = 0, ... , pnz+t - 1; mu= 0, ... , pnu+t - 1}. The order of 
each element of Q is strictly greater than p. If this is not all of P choose a 
nonzero element b in P - Q. pb E Q. - pb also is in Q. Suppose - pb = 
ltlit + · · · + luliu. -ph = ltPat + · · · + lupau = p(ltat + · · · + luau). 
Let au+t = b + ltat + · · · + luau. Since pau+t = p(b + ltat + · · · + luau) = 
pb - pb = ewe see au+ t has order p. bE [at, az, . .. , au, au+ t] ~ P. Also 
[ab az, ... , au] n [au+t] = {e} because if rtat + rzaz + ... + ruau = 
ru+tau+t thenp(rta1 + ··· + ruau) = Owhichimpliesr1a1 + ··· + ruau = 
e = ru+tau+t· Hence, [at] E9 [a2 ] E9 ···Et> [au] Et> [au+t] is a direct sum 
of cyclic subgroups of P. If P is not exhausted, then continue the process. 
Eventually, P =[at] Et> [a2 ] Et>··· Ef) [au] Ef) [au+t] Ef) · · · Ef) [av], where 
[ au + t ], ... , [ av] are all subgroups of order p. D 

QUESTIONS 

1. Of the Cartesian product of the two groups (7L3 , +, 0) and (7L5 , +, 0) which of 
these statements are true? 

(A) The group has 8 elements. 
(B) There are elements of order 3. 
(C) There are elements of order 6. 
(D) The product is 7L8 • 

(E) None of the statements is true. 

2. Which of these statements about groups are true? 
(A) 7L12 :=:o 7L6 x 7L 2 • ( :=:o means is isomorphic to.) 
(B) 7L12 :::0 7L3 X 7L4. 
(C) 7L 12 :::0 7L 2 X 7L 2 X 7L 3 • 

(D) 7L12 = {0, 6} E9 {0, 2, 4, 6, 8, Tii}. 
(E) None ofthe statements is true. 

3. Which of these are composition series? 
(A) 7L 12 , {0, 2, 4, 6, 8, Tii}, {0, 4, 8}. 
(B) 64, 214, {1}. 
(C) 6s, 21s, {1}. 
(D) 6 3 , 213 , { /}. 

(E) None is a composition series. 

4. Which of these groups are solvable? 
(A) 1L12 
(B) 6 4 

(C) 6 5 

(D) 6 3 . 

(E) None of the groups is solvable. 

5. The weak Cartesian product X~,. i 7Li of the family of additive groups 
(A) has only elements of finite order 
(B) has subgroups of every finite order 
(C) has an infinite number of elements 
(D) is commutative. 

(E) None of the statements completes a true sentence. 
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EXERCISES 

1. Let (Mt> ·), (M2 , ·),(M!,·), (M2, ·) bemonoids andf1 :M1 -+ M!,Ji.:M2 -+ M2 
be morphisms. By / 1 x f 2 :M 1 x M 2 -+ M! x M2 we denote the mapping such 
that (f1 x / 2)(x1, x2 ) = (f1(x1), f 2 (x2 ) ). Show that / 1 x ! 2 is also a morphism. 
Show that if / 1 and / 2 are monomorphisms then so also is f 1 x f 2 • Show that 
if / 1 and f 2 are epimorphisms then f 1 x f 2 is an epimorphism. 

2. Prove that 6 3 is not the direct product of m: 3 and {J, (1 2)}. 

3. Show that the group m:3 X {J, (1 2)} is isomorphic to z3 X z2. 

4. Show that if (Gh ·, v1) and (G2 , ·, v2 ) are groups then G1 x G2 is isomorphic 
to the group G2 x G1 (Do not assume the groups G1 and G2 are commutative.) 

5. The converse of the theorem of this section, G = H 1 0 H 2 implies G I H 1 ~ H 2 , 

is not true. Demonstrate this with an example. 

6. Show the following isomorphism result for groups: A ~ C and B ~ D imply 
A X B ~ c X D. 

7. If G1 and G2 are isomorphic groups and H 1 is a normal subgroup of G1 and H2 

is a normal subgroup ofG2 and H 1 ~ H2 then prove G1/H1 ~ G2/H 2 • 

8. We say that a group ( G, ·, v) is the direct product of a family (Hili e J) of non­
trivial proper normal subgroups of G if and only if for each x in G, x is the finite 
sum of elements from Hi, j e J, and Hi n [TI,,.i H;] = {v} and x eH;, ye Hi, 
i =1- j imply xy = yx. Show that if G = 0 ie.f Hi then G ~ XjeJ Hi. 

9. Show that EB ieN R is isomorphic with the additive group of polynomials (R[ X], 
+,8). 

10. Show that the group X::'. N" 6. has elements of every finite order, has no elements 
of infinite order, and is an infinite group. Show that the group XneN" 6. has ele­
ments of every possible order. 

11. Show that the group X:. N" 6. has a normal subgroup isomorphic to mi for every 
j = 1,2, .... 

12. Show that Z12 ~ Z4 Ef> Z3 (additive groups). Is Z12/{0, 4, g} ~ Z4 ? 

13. Give an example of a simple group of even cardinality not 2. 

14. Make two possible composition series for Z24 and show that the quotient groups 
are isomorphic in some order. 

15. Make all possible composition series for Z60. 

16. Find all possible commutative groups of cardinality 24 by expressing as direct 
products (sums). 

17. Let a group (G, ·, v) be given with a subgroup H. Define a map fx:GfH-+ G/H 
such that fx(aH) = xaH. Here G/H denotes the set of left cosets of H, a quotient 
set, but not a quotient group because H is not necessarily normal. Show that fx 
is a bijection of G/H. Let aH be a given left coset of GfH. Show that the set of all 
x such that fx leaves aH fixt, { xlx e G and fx(aH) = aH}, is exactly aHa-. Show 
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that aHa- is a subgroup of G. Define a mapping F: G --+ 6(G/H) such that F(x) = 
fx. Show that F is amorphism. Show that ker F = {xiF(x) = I} = {xl.fx = I} = 
naeG aHa-. Show that the normal subgroup naeG aHa- is a sub~rpup of Hand 
is the largest normal subgroup of G contained in H. 

18. Let G be a ~ven group with a subgroup H such that G/H has n members (finite). 
Show that there exists a normal subgroup K of H so that crd(G/K) divides n!. 

19. Show that no subgroup H of 6., n ~ 5, H # \H. or 6., can generate fewer than 
n cosets in 6.; i.e., there is no subgroup H of 6. such that crd(6./H) < n. 

362 



Linear algebra: Modules over 10 
principal domains and similarity 

This chapter treats further properties of modules over rings which are 
not fields. We have a discussion ofthe order of module elements not unlike 
the order of an element of a group or the characteristic of a ring. We resolve 
elements into sums of elements of elements of relatively prime orders. We 
introduce determinant divisors invariant under matrix equivalence. Using 
the theory developed for modules over principal ideal domains we find the 
invariant factor matrix: a canonical form for the equivalence of matrices 
over a principal domain. We solve linear equations with coefficients in a 
principal domain. We give a direct sum resolution of a finitely generated 
module over a principal domain. We consider the relation of similarity of 
matrices with entries in a field and apply the theorems of this chapter to 
yield several canonical forms. The technique is to construct, from a given 
vector space and endomorphism, a new module, resolve this module into a 
direct sum of cyclic submodules, and use this resolution to produce a basis 
for the vector space which yields for the endomorphism an especially simple 
matrix: the canonical form. We close with a study of the characteristic 
equation and characteristic values. 

10.1 Cyclic modules 

In this section we study cyclic modules in terms of annihilating ideals 
from the ring of the module. To preserve the line of thought we will repeat 
some definitions from Chapters 6 and 7. 

Definitions. A module M over a ring R is finitely generated if and only if M 
is generated by some finite subset of M. A module M that is generated 
by a singleton subset (M = [ x] for some x in M) is called a cyclic module. 
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Theorem. If M is a cyclic module over a unitary ring R with generating subset 
{x} then M= Rx. 

PRooF. Rx = {rxlr ER} is a submodule of M which contains x. On the 
other hand, any submodule of M containing x must contain Rx. D 

EXAMPLES. 71.. 5 is a cyclic module over the ring 71... A generator of the cyclic 
module is the coset 1 + (5) = I. We can then write 71.. 5 = [I]. By the 
theorem just proved 71.. 5 = 7!..I. Similarly, 71..6 is a cyclic module over the 
ring 71... 71..6 = [I] = [3]. 71..6 = 7!..I = 7!..3. None of the elements 0, 2, 3", 4 
will be generators of 71..6 . While 7!..[ X], the polynomial ring of 71.., is a 71.. -module 
it is not a cyclic module. 7!..[X] is generated by the set {1, X, X 2, •.• }. 7!..[X] 
is not generated by any finite set. 

Definition. Let M be an R-module. LetS be a subset of M. A ring element a 
of R is an annihilator of S if and only if ax = C for all x in S. 

We also shall speak of an annihilator of an element x of M and by this we 
mean simply an annihilator ofthe singleton set {x}. 

EXAMPLE. 4 annihilates the entire 7!..-module 71..4 . 2 annihilates the subset 
{0, 2} of 71..4 • The polynomial X + 1 of the 71..-module 7!..[X] is annihilated 
only by the integer 0. 

Theorem. Let M be a module over a commutative unitary ring R. The set of 
all annihilators of a given subset S of M is an ideal of R. 

PRooF. If ax = (and bx = (for any x inS then (a - b)x = ax- bx = 
( - ( = (. If ax = ( for any x in S then (ra)x = r(ax) = r( = (. There is 
always at least one annihilator of S, namely 0. D 

Definition. The set of all annihilators of a given subset S of a module over a 
commutative ring R is called the annihilating ideal of S. 

In case the ring R is a principal domain then every such annihilating ideal 
is generated by a single ring element. Such a generator of the annihilating 
ideal is called an order of the setS. We sometimes call the annihilating ideal 
an order ideal of S. Because an ideal may have several generators an order 
is not unique. However, we do observe that any generator of the annihilating 
ideal of a subset S is an associate (unit multiple) of any other generator of 
the same ideal. We include this observation in the exercises of this section. 

EXAMPLE. We return to the 71..-module 71..4 and list each vector in 71..4 with 
its annihilating ideal: 0, 71..; I, (4); 2, (2); 3", (4). The ideal (4) could also 
be written ( -4); both 4 and -4 are orders ofi. An order ofO is 1. 
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EXAMPLE. Since every commutative group G can be considered to be a 
71. -module the order of an element of the group G in the group theoretic 
sense will be an order in the 71.-module sense. 

EXAMPLE. Modules can range from two extremes in which every vector 
has nontrivial annihilating ideal to the case when only the vector C has 
nontrivial annihilating ideal. Every element of the 71.-module 71.4 has non­
trivial annihilating ideal while only 0 has nontrivial annihilating ideal in 
the 71.-module 71.. If we consider the product 71.-module 71. x 71.4 then some 
elements in addition to (0, 0) = C have nontrivial annihilating ideal and 
some elements have trivial annihilating ideal. 

EXAMPLE. A module may have trivial annihilating ideal for every single 
nonzero element yet may fail to be a free module (have a basis). For example, 
the 71.-module Q has <O) as the annihilating ideal for each of its elements 
(save zero, of course) yet is not a free module. 

The following result demonstrates how the annihilating ideal of a sub­
module can be constructed in terms of the annihilating ideals of the individual 
elements of the submodule. 

Theorem. Let M be a module over a principal domain R. Let Ax be the anni­
hilating ideal of X for each X inN, a submodule of M. Then n{Axlx EN} 
is the annihilating ideal of N. 

PRooF. If a ER annihilates every element of N then a E Ax for each x in 
N. Then a E n{Axlx EN}. The argument is reversible. D 

We can analyze the character of the cyclic submodule by studying the 
character of the annihilating ideal. 

Theorem. Let M be a module over a principal domain R. Let x E M. Then [ x] 
is isomorphic to the R-module Rf<a> where <a> is the annihilating ideal ofx. 

PRooF. x E M is a generator of the cyclic submodule [ x]. The annihilating 
ideals of { x} and [ x] are the same ideal of R. Because R is a principal domain 
this annihilating ideal is generated by some single element a of R. We define 
wx: R ~ [ x] such that wx(r) = rx. wx is an R-module morphism, preserving 
both vector addition and the R-exterior multiplication. The range of wx 
is Rx or [ x] making wx an epimorphism. There exists an isomorphism 
w~:Rjker Wx ~ [x]. Ker Wx = {rir ER and rx = 0 = <a). Thus Rf<a) is 
an R-module isomorphic with the R-module [x]. D 

One must carefully distinguish between vectors which are generators of 
submodules of M and ring elements which are generators of ideals of R. 

365 



10. Linear algebra: Modules over principal domains and similarity 

We can decompose cyclic modules with annihilating ideals which have 
reducible orders. 

Theorem. Let R be a principal domain. Let c, a, bE R with a and b relatively 
prime, c =ab. Then Rj(c) = P 1 EB P2 with P 1 ~ R/(b) and P2 ~ Rj(a). 

PROOF. R/(c) is a cyclic R-module with generator v + (c). Because a and 
b are relatively prime there exist IX and f3 in R such that IXa + f3b = v. If 
d + (c) E R/(c) then d + (c) = d(IXa + f3b) + (c) = diX(a + (c)) + 
df3(b + (c)) E [a + (c) J + [b + (c)]. [a + (c) J n [b + (c) J is anni­
hilated by both a and band therefore by v=IXa+ f3b. [a+ (c) ]n[b+ (c) J = 
{(c)}. Thus R/(c) = [a + (c) J EB [b + (c)], a direct sum. 

The annihilating ideal of a + (c) is calculated as follows: k( a + (c)) = 
(c) if and only if ka E (c) if and only if c( = ab) is a factor of ka if and only 
if b is a factor of kif and only if k E (b). (b) is therefore the annihilating 
ideal of a + (c). R/(b) is then an R-module isomorphic to [a + (c)]. 
We prove the result for the other component similarly. D 

This just established result can be extended by induction to any finite 
number of components. 

Corollary. rr c = up'i'Pz2 ••• PI/ is an irreducible factorization of c, u is a 
unit, then Rj(c) = ffi~=l Pi with Pi isomorphic to Rj(pi'), i = 1, 2, ... , k. 

PRooF. We leave this extension to the reader. D 

Finally from this section we show how it is possible to select from the 
module vectors with specified orders. 

Theorem. Let M be a module over a principal domain R. Let x 1 and x 2 be in 
M with orders a1 and a2 , nonzero and relatively prime. Then x1 + x 2 

has order a1a2 • 

PRooF. a1a2 is in the annihilating ideal ofx1 + x 2 because a1a2 (x1 + x2 ) = 

a2 (a 1x) + a1(a 2 x) = '·Now let b be any member of the annihilating ideal 
of x1 + x2 • b(x1 + x2 ) = '· Since a1 and a2 are relatively prime there 
exist IX 1, IX2 in R such that IX1a1 + IX 2a2 = v. IX2 a2 (x1 + x2 ) = IX2 a2 x 1 + 
IX 2 a2 x 2 = IX2 a2 x1 = (v - IX 1a1)x1 = x 1• x1 is a multiple of x 1 + x2 • Any 
annihilator of x 1 + x2 , namely b, must annihilate x1• bE (a1). a 1 is a factor 
of b. By a symmetrical argument a2 is also a factor of b. Because a1 and a2 

are relatively prime the product a 1 a2 divides b. Thus any member b of the 
annihilating ideal of x1 + x 2 is a multiple of a1a2 and therefore a1a2 is a 
generator of that ideal. 

Theorem. Let M be a module over a principal domain with a nontrivial anni­
hilating ideal (a). Then M has an element with order equal to a. 
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PRooF. If a is a unit of R then (a) = R. The annihilating ideal of M is R 
itself. An element of M annihilated by R is the zero vector (. The given unit 
a is an order of(. 

Now suppose that a is not a unit. a = upi 1Pz2 ···Pi/ with all P; distinct 
irreducibles, relatively prime in pairs and u is a unit. Each a/p;, i = 1, 2, ... , 
k, is not a multiple of a. Since a is a minimal annihilator of M then there 
exists X; in M such that (ajp;)x; =F (. We now consider the element 
(Pi 1Pz2 • • • Pi/!Pi')x; of M. Pi'(Pi 1Pz2 • • • P'iNPi')x; = (. Pi'- 1(Pi 1Pz2 • • • 

p~k!Pi')x; =F (. An order of the vector is p'f'. By the previous theorem an 
order of L~= 1 (Pi 1Pz2 • • • p~k!Pi')x; is the product Pi 1Pz2 • • • p~k. a = 
uPi•pz2 • • • p~k is also an order. D 

QUESTIONS 

1. Which of the following alternatives complete a true sentence? A module M over a 
ring R has a finite basis 

(A) implies M is finitely generated 
(B) implies M has nonzero elements with nonzero order 
(C) if every nonzero element has annihilating ideal (8) 
(D) provided the ring R is a field. 

(E) None ofthe alternatives completes a true statement. 

2. Let M be a module over a principal domain R. Which of these statements are true? 
(A) 8 generates the annihilating ideal of C. 
(B) Every submOdule of M is isomorphic to some module Rj(a), a ER. 
(C) Rj(ab) ~ Rj(a) + Rj(b) for all a, bE R. 
(D) [x] + [y] = [x + y] forallx,yeM. 

(E) None ofthe statements is true. 

3. Which of these statements are true? 
(A) lL/(2) x lL/(4) ~ lL/(8). 
(B) 7Lj(2) x 7Lj(3) ~ 7Lj(6). 
(C) 7Lj(1) X 7Lj( -1) ~ 7Lj(1). 
(D) 7L/(2) x 7L/(2) ~ lL/(4). 

(E) None of the statements is true. 

4. Which of these statements are true? 
(A) 7L[X] is a finitely generated 7L-module generated by {X}. 
(B) 0 is a 7L-module generated by {1, -1 }. 
(C) 7L x 7L is a finitely generated 7L-module. 
(D) IfS is a subring of a principal ring R then R is an S-module. 

(E) None of the statements is true. 

EXERCISES 

1. Show that the annihilating ideal of a cyclic submodule [ x] does not depend upon 
which generator of [ x] is chosen; that is, show that if [ x] = [ y] then the annihilating 
ideals of x and y are equal. 
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2. If M is an R-module and aM = g} (a in R annihilates M), then with the proper 
definition of R/(a)-exterior multiplication, M may be regarded an Rj(a)-module. 

3. Suppose M is an R/(a)-module. Then M is an R-module and aM = g}. 

4. Let R be a principal domain and P a cyclic R-module of order a :f. e. Let x e P 
such that bx = ' with a = be. Then there exists y in P such that x = cy. 

5. Let M be a module over a principal domain R. Let M be generated by a submodule 
Nand one additional element w. Then M/N is cyclic with generator w + N. 

6. Verify that 0 as a Z-module has every nonzero element of zero order yet is not a 
free module. 

7. Prove that a free module over a principal domain has every element except ' of 
zero order. 

8. Prove that the annihilating ideal of an element is unique. 

10.2 Invariant factors 

In this section we discuss determinant divisors and invariant factors and 
produce a canonical form under equivalence for a matrix with coefficients 
in a principal domain. 

Definition. Let A be a matrix with entries in a principal domain R. A k-minor 
of A is the determinant of a k by k submatrix preserving row and column 
order. 

EXAMPLE. Given the 4 by 3 matrix 

A~ (f ~~ ~) 
with entries in the principal domain 71... Some 2-minors are 

1; -~~ = 16 and ~-~ ~~ = 0. 

A 1-minor is -2 or 5. 

Definition. A kth determinant divisor of a matrix A is a greatest common 
divisor of all the k-minors of A. We use the notation .@k(A) for the kth 
determinant divisor of A. 

EXAMPLES. For the matrix A in the previous example we have .@1(A) = 
1, .@2(A) = 1, .@3(A) = 5. 
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We remind the reader again of our convention choosing any associate 
for a greatest common divisor when the principal domain has more than 
one unit. We also remind the reader that the greatest common divisor of a 
set of ring elements with at least one nonzero member can be computed by 
neglecting any zero members since all ring elements are divisors of zero 
((} · r = (} for all r in R). In case all k-minors of a matrix are zero then we 
adopt the convention that Edk(A) = e. 

EXAMPLE. For the matrix 

we have Ed 1 = 2 and Ed 2 = 0. 

We now show that the determinant divisors are invariant under equiv­
alence of matrices. 

Theorem. Let A, P, Q be matrices with entries in a principal domain R. Let P 
and Q be invertible matrices. Then Edk(QAP- 1) = Edk(A). 

PRooF. It is to be understood that the equality Edk(QAP- 1) = ~k(A) is 
modulo any unit of R, that the two determinant divisors are associates. 

Given two matrices B, C we show that any k-minor of BC is a linear 
combination of k-minors of C. Denoting the product BC by F we have 
typically 

Flk) 

... :: 
= L e(o)F 1a(1)F 2a(2) ••• Fka(k) 

ae6k 

= L e(u) [ .± B1itcita(1Jl. · · [. ± B1ikCika(kJJ 
ae6k 11=1 ~ Jk=1 

= ± · · · I B1h · · · Bkik [ L e(u)Cila<1l · · · Cika<k>]• 
iJ=1 ik=1 ae6k 

which is a linear combination of the k-minors of C (and zeros). Similarly 
by running the permutations on the rows we can show k-minors of BC are 
linear combinations of the k-minors of B. 

A common divisor ofthe k-minors of A will be a common divisor ofthe 
k-minors of QAP- 1 = D. Conversely, a common divisor of the k-minors 
of D will be a common divisor ofthe k-minors of Q - 1 DP .,.- A. Thus A and 
D have the same or associated greatest common divisors , · k-minors. o 
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We propose to set a canonical form for equivalence of matrices with 
entries in a principal domain. We recall that given a matrix A with entries 
in a field, A is equivalent to a matrix in which the number of unities on the 
diagonal equals the rank of A. This diagonal matrix is the canonical form 
for equivalence of matrices with entries in a field. 

V () () () () () 

() V () () () () 

() () V () () () 

() () () V () () +-- row r 
() () () () () () 

() () () () () () 

i 
column r 

Because of the absence of in verses in a principal domain it is not possible, 
in general, to obtain a canonical form with only unity on the diagonal. The 
canonical form to be described in the theorem following which can be 
obtained for the principal domain will, however, still be a diagonal matrix. 

The reader will recall our frequent earlier use of elementary transforma­
tion or change of basis matrices described in Section 7.4. These were E(p, q), 
E(r, q; p) and E(s; p) which are invertible matrices with determinants -v, 
v and s, respectively. We shall also employ a fourth transformation matrix 
which will be described in the theorem when we first use it. The proof of 
the theorem and the finding of the canonical matrix in practice will utilize 
the transformation matrices step by step to alter the given matrix to the 
desired form. 

Theorem. Let A be an m by n matrix with entries in a principal domain R. 
Then there exist matrices P, Q, D such that 

1. P and Q are invertible 
2. QAP- 1 = D 
3. All entries of D except diagonal entries are zero 
4. If we denote D;; by d; then there exists a natural number r, 0 ::::; r ::::; 

min(m, n) such that j > r implies di = () and j ::::; r implies di # () and 

1 ::::;j < rimpliesdidividesdi+l· 

PROOF. In order to proceed with the step by step reduction to D we must 
have a gauge of the size of the entries in the matrix. This gauge will be used 
much as absolute value for the integers and degree for polynomials. Such a 
gauge was necessary, for example, with the division algorithm in order to 
state that the remainder is smaller than the divisor. We have available in 
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the principal domain R the irreducible factorization of the elements. For a 
nonzero element a = upi 1pz2 • • • p~· we define the length of a, l(a), to be 
1X1 + 1X2 + · · · + IX., the number of irreducible factors of a. This irreducible 
factorization is unique up to unit multiples so that l(a) is well-defined. It is 
also clear that if b is a proper factor of a then l(b) < l(a). 

We can at any point in our reduction process by interchange of rows 
(left multiplication by E(p, q)) and by interchange of columns (right multi­
plication by E(p, q)) bring to position (1, 1) any entry of the given matrix. 
In particular, we can interchange until the entry in position (1, 1) has mini­
mum length among all the nonzero entries. If there is an entry B1i in the 
first row which is a multiple of the entry B 11 in position (1, 1) we can add 
-B1)B11 (an element of R) times the first column to the jth column to 
produce a zero in position (1, j). This transformation is achieved by right 
multiplication byE( -B1i/B11 ; 1,j). For all other entries in row 1 which 
are multiples of B11 we also add suitable multiples of column 1 to produce 
zeros in those positions in row 1. For all entries in column 1 which are 
multiples of B11 and not in position (1, 1) we can also produce zeros. 

For any entry Blk in row 1 which is not a multiple of B 11 we use right 
multiplication by an invertible matrix to produce a new matrix with 
gcd(B11, Blk) in position (1, 1). Since Blk is not a multiple of B 11 this 
gcd(B11, Blk) has strictly smaller length than does B 11 . The invertible matrix 
by which we multiply to produce this greatest common divisor in position 
(1, 1) is determined as follows. Suppose d = gcd(B11, Blk). There exist IX, p 
in R such that IXB 11 + PB 1k = d. Then right multiplication by the illustrated 
matrix produces a matrix with din position (1, 1) and () in position (1, k). 

IX () () -Blk/d () () 

() V () () () () 

() () V () () () 

p () () B 11/d () () +--row k. 

() () () () V () 

() () () () () V 

i 
column k 

This matrix is invertible because its determinant is v. 
We are now at the point where we have produced a new matrix with the 

entry din position (1, 1) and d has smaller length than the previous entry B11 

in the position (1, 1). We now return to our beginning steps to replace with 
zeros any entries of the first row or first column which are multiples of 
the entry din position (1, 1). Then any entries of the first row or first column 
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which are not zeros and are not multiples of the entry in position (1, 1) are 
replaced with zeros putting a greatest common divisor in position (1, 1). 

After a finite number of steps we obtain a matrix which has in position (1, 1) 
a nonzero entry of smallest length and all other entries of row one and 
column one are zero. Suppose that this matrix equivalent to A is 

. . . e ) 

... e2n 

emn 

If ell fails to be a factor of every nonzero entry ofthe matrix say, ell fails 
to be a factor of eij then row i is added to row 1 to produce 

ell ei2 ei3 eij ein 

e e22 e23 e2j e2n 

e ei2 ei3 eij ein <- row i. 

e em2 em3 emj 
... 

emn 

We now have a matrix in which there is in the first row in position (1, j) 
an entry eij which is not a multiple of e1 1> the entry in position (1, 1). We 
can then produce a new matrix equivalent to this matrix which has 
gcd( C ll> Cij) in position (1, 1) and a zero in position (1, j). The new entry 
in position (1, 1) has smaller length than both ell and Cij. 

We repeat all procedures until eventually after a finite number of trans­
formations we have a matrix 

e e ... 

~,.) G22 G23 ... 

Gm2 Gm3 Gmn 

in which d1 has smaller length than any other entry in the matrix and d1 

is a factor of every nonzero entry in the matrix. This matrix is equivalent 
to A. 

In the same manner that we have treated the matrix A we now treat 
the submatrix 

(G" 
G23 G,,) 

G32 G33 G3n 

Gm2 Gm3 Gmn 
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to obtain an entry d2 in position (2, 2) which has smaller length than any 
other entry and is a factor of every nonzero entry of the submatrix. The rest 
of the entries of row 2 and column 2 are zero. We actually work with the 
entire matrix 

but use transformations which leave the first row and the first column 
undisturbed. Since d1 is a factor of every entry of the submatrix then d1 

will be a factor of d2 , a linear combination of entries in the submatrix. 
The process of finding diagonal entries dl> d2 , . .• will terminate whenever 

the subscript exceeds min(m, n), or when after obtaining, say d., we discover 
that all remaining entries of the obtained matrix are zero. The matrix D 
finally obtained has the form 

d1 (} (} (} (} 

(} d2 () (} (} 

(} (} d, (} (} 

(} (} (} (} 8 

(} (} . . . (} (} ... (} 

The matrix Q is the composite of the left multiplied transformation matrices 
and the matrix p- 1 is the composite of the right multiplied transformation 
matrices. Both are invertible because they are products of invertible trans­
formation matrices. Actually, in the procedures of this theorem we have 
used only transformation matrices with determinant ± v and therefore p- 1 

and Q are matrices with determinants equal to v or -v. We have called the 
matrix on the right p- 1 instead of simply P in order to fit earlier patterns 
on change of basis we used 0 

ExAMPLE. In order to illustrate the constructure procedures and results of 
this theorem we take a simple example and perform the reductions step 
by step. We take the matrix 

with entries in the principal domain 7l.. and reduce it to canonical form. We 
do the work in tabular form keeping the products of row transformations 
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on the left and the products of column transformations on the right. The 
center column begins with A and terminates with D, the canonical form. 

1 0 0 2 3 2 1 0 0 
0 1 0 1 6 4 0 1 0 
0 0 1 3 -2 4 0 0 1 

0 1 0 1 6 4 1 0 0 
1 0 0 2 3 2 0 1 0 
0 0 1 3 -2 4 0 0 1 

0 1 0 1 6 4 1 0 0 
1 -2 0 0 -9 -6 0 1 0 
0 0 1 3 -2 4 0 0 1 

0 1 0 1 6 4 1 0 0 
1 -2 0 0 -9 -6 0 1 0 
0 -3 1 0 -20 -8 0 0 1 

0 1 0 1 0 4 1 -6 0 
1 -2 0 0 -9 -6 0 1 0 
0 -3 1 0 -20 -8 0 0 1 

0 1 0 1 0 0 1 -6 -4 
1 -2 0 0 -9 -6 0 1 0 
0 -3 1 0 -20 -8 0 0 1 

0 1 0 1 0 0 1 -4 -6 
1 -2 0 0 -6 -9 0 0 1 
0 -3 1 0 -8 -20 0 1 0 

0 1 0 1 0 0 1 -4 -6 
1 1-1 0 2 11 0 0 1 
0 -3 1 0 -8 -20 0 1 0 

0 1 0 1 0 0 1 -4 14 
1 1-1 0 2 1 0 0 1 
0 -3 1 0 -8 20 0 1 -5 

0 1 0 1 0 0 1 14 -4 
1 1-1 0 1 2 0 1 0 
0 -3 1 0 20 -8 0 -5 1 

0 1 0 1 0 0 1 14 -32 
1 1 -1 0 1 0 0 1 -2 
0 -3 l 0 20 -48 0 -5 11 

0 1 0 1 0 0 1 14 -32 
1 1-1 0 1 0 0 1 -2 
0 -23 21 -2 0 0 -48 0 -5 11 

374 



From the above procedures we conclude 

1 
1 

-23 

The matrix 

-~) (~ 
21 3 

3 2) (1 6 4 0 
-2 4 0 

10.2 Invariant factors 

1; -~~) = (~ ~ ~)· 
-5 11 0 0 -48 

G ! -4~) 
is in canonical form. 

Definition. Let A, a matrix with entries in a principal domain R, be equiv­
alent to a matrix 

dl (} (} (} (} 

(} d2 (} (} (} 

D= (} (} d, (} (} +-- row r 
(} (} (} (} (} 

(} (} (} (} (} 

t 
column r 

in which each of the nonzero d~> d2, ... , d, is a factor of the successive 
one. We then call D the invariant factor matrix of A and d1, d2, ... , d, 
the invariant factors of A. 

We would like now to show that the invariant factor matrix for A and 
the invariant factors are essentially unique. This is to say that the values 
of d1, d2 , ••• , d, do not depend upon the particular procedures chosen to 
calculate them. 

Theorem. If A is a matrix with entries in a principal domain R then the 
invariant factors are unique (modulo unit multiples). 

PRooF. We assume that D and D' are both invariant factor matrices of A. 
Since D is equivalent to A and D' is equivalent to A we have D' equivalent 
to D. Equivalent matrices have determinant divisors which are associates; 
!l)k(D) is a unit multiple of !l)k(D') for each k: 1 ~ k ~ min(m, n). !l)k(D) = 

d1d2 · · · dk for k ~ r and !~)iD) = (} for k > r. !l)k(D') = d'1d2 ···die for 
k ~ r' and !l)k(D') = (} for k > r'. All entries d1, d2, ... , d., dJ., d2, .. . , d~. 
arenonzero.Wecannowconcluder = r'andd1 = u1dl_,d1d2 = u2d'1d2, ... , 
d1d2 · · · d, = u,dJ.d2 · · · d~. for some units u~> u2, ... , u, in R. By successive 
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substitution and cancellation we have d1 = u1 d'~> d2 = u1 1u2 d'z, d3 = 

u2 1u3d3, ... , d, = u;_\ u,d~. This shows that dk is a unit multiple of d/,, 
1 :::::; k :::::; r; dk and die are associates in R. This is the qualified uniqueness 
of the invariant factors. D 

QUESTIONS 

1. Let the matrix A with entries in 7L be 

(n ~ ~) 
Which of the following statements are true? 

(A) .@4 (A) = 16. 
(B) .@3 (A) = 8. 
(C) .@ 2 (A) = 4. 
(D) .@1(A) = 2. 

(E) None of the statements is true. 

2. Which of the following matrices are invariant factor matrices with entries in ll.? 

(-1 0 0) 
(A) 0 2 0 

0 0 0 

0 0) 
16 0 
0 8 

(2 0 0) 
(C) 0 2 0 

0 0 -2 

0 0) 
2 4 . 

0 4 

(E) None ofthe matrices is an invariant factor matrix. 

3. Which of the following matrices are invariant factor matrices with entries in Q 
(a principal domain). 

(-1 0 0) 
(A) 0 2 0 

0 0 0 

0 0) 
16 0 

0 8 

(2 0 0) 
(C) 0 2 0 

0 0 -2 

0 0) 
2 0 . 

0 4 

(E) None of the matrices is an invariant factor matrix. 

4. If the entries are taken from the ring of polynomials Q [X] which of these matrices 
are invariant factor matrices? 

(
X- 1 

(A) ~ ~0) X 2 - 1 

0 

0 

(
2X- 2 

(B) 0 

0 
0~) X 2 + x- 2 

0 

0 
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(
x 2 + 2 

(C) 0 

0 

(
X+ 1 

(D) ~ 0 ) 0 . 
X 3 - 1 

(E) None of the matrices is an invariant factor matrix. 

5. Two m by n matrices A and B with entries in a principal domain R are equivalent 
if and only if 

(A) they have the same rank 
(B) they have the same or associated invariant factors 
(C) they are matrices of the same morphism R" -+ R"' 
(D) they are both triangular (Aii = 9, Bii = 9 for j < i). 

(E) None of the choices completes a true sentence. 

10.3 Linear equations in a principal domain 

In this section we discuss the solution oflinear equations with coefficients 
in a principal domain. 

We have earlier discussed the rank of a morphism and the rank of a 
matrix which represents the morphism. The rank of a morphism is the 
dimension of the range of the morphism. The matrix of a morphism is 
defined with respect to some choice of basis in the domain and codomain 
of the morphism. Given any m by n matrix A with coefficients in a principal 
domain R then we may consider the matrix to be the matrix of a morphism 
f from the free module R" to the free module Rm. Range f is a submodule 
of the free module Rm and is itself therefore a free module with dimension 
~m. Range f has a basis of r linearly independent generating vectors, where 
r stands for the rank of f. Range f is also generated by the columns of the 
matrix of f. The maximum number of linearly independent columns of the 
matrix cannot differ from r for otherwise range f would have a basis with 
dimension differing from r. 

We now establish other criteria for the rank of a matrix with entries in 
a principal domain. 

Theorem. Let D be an invariant factor matrix with nonzero entries dto d2 , ••• , 

d, in a principal domain R. Then rank D = r. 

PROOF. The first r columns of D are linearly independent and r is the maxi­
mum number of linearly independent columns of D. 0 

Theorem. Let A be an m by n matrix with entries in a principal domain R. 
Then rank A = r if and only if !')k(A) = (} for k > r and !')k(A) ::F (} for 
k ~ r. 

PROOF. Let D be an invariant factor matrix for A. !')k(A) and !')k(D) are 
associates in R for k = 1, 2, ... , min(m, n). Suppose rank A = r. D then has 
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nonzero entries d~> ... , d,. !l)k(D) = 0 fork > rand !l)k(D) = d1d2 • • • dk =F 0 
for k ~ r. !l)k(A) = 0 for k > r and ~k(A) =f:. 0 for k ~ r. The converse is 
argued in the reverse order. D 

Theorem. Let A be an m by n matrix with entries in a principal domain R. 
Then rank A = r if and only if all k-minors of A with k > rare zero and 
some r-minor is nonzero. 

PROOF. !l)k(A) = 0 if and only if all k-minors are zero. D 

We now see that the row rank and the column rank of a matrix are the 
same; the maximum number oflinearly independent rows equals the maxi­
mum number of linearly independent columns. 

Theorem. Let A be an m by n matrix with entries in a principal domain R. 
The rank of A is equal to the maximum number of linearly independent 
rows of A. 

PRooF. If we consider instead of A the transpose of A and remember that 
det B = det B* for any square submatrix B then the criterion of the previous 
theorem shows that the number of linearly independent rows is also equal 
to r, the rank of A. D 

· We now discuss the kernel of a morphism and matrix. 

Theorem. Let D be an invariant factor matrix with nonzero entries d~> d2 , • •• , 

d, in a principal domain R. Then dim{XIDX = 0} = n - r. 

PROOF. The matrix equation is equivalent to the linear equations d1 X 1 = 0, 
d2X2 = 0, ... , d,X, = (),which have set of solutions {(0, 0, ... , 0, tr+~> ... , 
tn>ltr+h ... ' tn ER}. This is a submodule of Rn with basis er+l> ... 'en 
(e1, e2 , ••• , en denote the standard basis for Rn) and thus has dimension 
n-~ D 

We now show that the kernel of a matrix mapping must have a basis 
with dimension n- r so that dim ker.A· +dim range A·= dim domain A·. 
However, we do caution that a proper submodule and the containing 
module can have the same dimension. 

Theorem. Let A be an m by n matrix of rank r with entries in a principal 
domain R. Then dim {X lAX = 0} = n - r. 

PRooF. Let D be an invariant factor matrix of A. Then D = QAP- 1 for some 
invertible matrices Q and P with determinant v or - v. { XIAX = 0} = 
{XIQ-~DPX = 0} = {XIDPX = 0}. Because P· is an isomorphism we 
have dim{XIDPX = 0} = dim{XIDX = 0} = n- r. Since (er+l> ... , en) 

378 



10.3 Linear equations in a principal domain 

is a basis for {XIDX = e} = {PXIDPX == e}, (P- 1e,+ 1, ... , p- 1en) must 
be a basis for {XiDPX = 0} = {XiAX = 0}. o 

Now we turn to the solution of linear equations with coefficients in a 
principal domain. 

Theorem. The linear equations 

AuXl + A12X2 + ... + AtnXn = yl 

A21Xl + AzzXz + ... + AznXn = Yz 

Am1X1 + Am2X2 + · · · + AmnXn = Ym 

with coefficients A 11 , ... , Amn• Yl> ... , Ym in a principal domain R have a 
solution in R if and only if rank A = rank A: Y and if rank A = r then 
~,(A) = ~,(A: Y). 

PROOF. We recall the solution of linear equations in which the coefficients 
lie in a field (cf. Section 7.6). A: Y is the matrix A augmented by the extra 
column Y. We, as before, interpret the solution of linear equations as a 
problem of whether or not the vector y with coordinates Y belongs to the 
range of the morphism f which has matrix A. We choose M, M' to be free 
R-modules with bases (e1, e2, . .. , en) and (e~, e~, . .. , e;..) and define the 
morphism f to be the morphism with matrix A with respect to these bases. 
By a change of basis in M and a change of basis in M' we can obtain the 
invariant factor matrix D for the morphism f. D is equivalent to A. We 
denote the new basis in M by (ut. u2, ... , un) and the new basis in M' by 
(v1, v2, . .. , vm) and the change of basis matrices by P and Q respectively. 
To orient the reader we offer again a diagram. 

A· 
Rn----------------------------------~Rm 

~ 7 
P· M f M' Q· 

~ D ~ 
Rn----------------------------------~Rm 

As with our discussion of linear equations with coefficients in a field the 
equation AX = Y has a solution if and only if there exists an X such that 
AX = Y if and only if Y belongs to the range of A·. In terms of M, M', and 
f, an equivalent condition is that y belongs to the range of f. Alternatively, 
we shift to u and v coordinates and use U for the u coordinates of the vector 
x and V for the v coordinates of the vector y. Then we ask whether or not 
there exists a U such that DU = V or whether V belongs to the range of D·. 

379 



10. Linear algebra: Modules over principal domains and similarity 

The equation DU = V is equivalent to the system of linear equations 

d1U1 = V1 
d2 U 2 = V2 

() = vm. 

A necessary and sufficient condition that a solution exist for these equations 
is V,.+ 1 = (), V,.+ 2 = (), ... ' vm = (} and d1 is a factor of vl, dz is a factor of 
V2 , • •• , d, is a factor of V,.. The solution set will be {(V1/d1, V2 /d2 , ••• , V,./d., 
t,+ b t,+ 2 , ... , tn)jtr+ b •.. , tn ER}, a coset of Rn of dimension n - r. This 
is the set of solutions for U which can be converted to a set of solutions for 
X by left multiplication by p- 1, the inverse of the change of basis matrix P. 
A complete set of solutions for AX = Y is 

Vtfd1 

p-1 V,./d, 
tr+ 1 

We recall that the kth determinant divisor of a matrix B is a greatest com­
mon divisor of all the k-minors of the matrix B. In terms of determinant 
divisors we rewrite the condition d1 divides V1, d2 divides V2 , • •• , d, divides 
V,. and V,.+ 1 = (), ... , Vm = (} to the condition !?),(D) = !?),(D: V) and rank 
D = rank (D: V). However, !?),(D: V) = !?),( (DP): V) = !?),(Q- 1( (DP): V)) = 
!?),(Q- 1(DP):(Q- 1 V}} = !?),(A:Y). Couple this with !?),(D)= !?),(A) and we 
can conclude !?),(A) = !?),(A: Y) is an equivalent condition. The condition for 
rank involves some r-minor's being nonzero which is given by the previous 
condition and all k-minors, k > r, being zero which follows from the in­
variancy of !?)k· D 

EXAMPLES. The equations 

2X 1 + 3X2 = 8 

2X1 + X 2 = 4 

with coefficients in Z have rank A = rank A: Y = 2. !?) 2(A) = -4 and 
!?) 2(A: YJ = gcd { -4, - 8, 4} = 4. The equations therefore have solutions. 
We carry out the reduction of A to the invariant factor matrix Din a tabular 
form. 
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1 0 2 3 1 0 
0 1 2 1 0 1 

0 1 2 1 1 0 
1 0 2 3 0 1 

0 1 1 2 0 1 
1 0 3 2 1 0 

0 1 1 2 0 1 
1 -3 0 -4 1 0 

0 1 1 0 0 1 
1 -3 0 -4 1 -2 

The equation DX = QY is 

This gives solutions X = ( ~). Then 

x = p-tx = (~ -D(~) =G). 
On the other hand if we consider the equations 

2x1 + X2 = 4 
2X1 + 3X2 = 10 

with coefficients in 7L we have rank A = rank A: Y = 2, but we have 
~2(A) = 4 and ~2(A: Y) = 1. These numbers are not associates in 7L and 
therefore there are no solutions in 71.. If, however, we ask about solutions 
in Q then 4 and 1 are associates (both units) and therefore there are solutions 
in 0. 

QUESTIONS 

1. m linear equations in n unknowns, AX = Y, with coefficients in l 
(A) have a solution in 0 whenever they have a solution in l 
(B) have a solution in l whenever they have a solution in 0 
(C) have a solution if m = n and det A is a unit 
(D) and with m = n and having a solution must have det A equal to a unit. 

(E) None of the alternatives completes a true sentence. 

2. The rank of an m by n matrix A with coefficients in a principal domain R 
(A) is <kif 2}t(A) = (} 
(B) is ~ k if there exists a nonzero k-minor 
(C) is ~ k if there exists a k-minor with value zero 

381 



10. Linear algebra: Modules over principal domains and similarity 

(D) can equal m + n. 
(E) None of the possibilities completes a true sentence. 

3. m homogeneous linear equations in n unknowns, AX = 8, with coefficients in a 
principal domain R 

(A) always have a solution 
(B) have no solution if !'}k(A) ¥- 8, k = min(m, n) 
(C) have only zero solutions if m= nand !'}m(A) ¥- (} 
(D) have nonzero solutions if m ¥- n. 

(E) None of the alternatives is satisfactory. 

4. Let there be given m linear equations in n unknowns, AX = Y, with coefficients 
in a principal domain R. Which of these statements are true? 

(A) If m = n and !'}m( A) ¥- (} then A - 1 Y is a unique solution of AX = Y. 
(B) If X and X' are solutions of AX = Y then X - X' is also a solution. 
(C) If X is a solution of AX = Y then X + ker A· is a complete set of solutions 

ofAX = Y. 
(D) If m = n and solutions exist for AX = Y then !'}m(A) is a unit. 

(E) None ofthe statements is true. 

EXERCISES 

1. Let A be an m by n matrix with entries in a principal domain R. Show that if !'}k(A) = 

(}then !'}k+ 1(A) = (}for any k = 0, 1, ... , min(m, n) - 1. 

2. Determine whether or not the following equations with coefficients in 71. have 
solutions in 71.. If they do have solutions find them. 

2X1 + X 2 + X 3 = 8 

X1 - X2 + 2x3 = 1. 

3. For what integral values of a do the equations 

aX1 + X 2 = 1 

x1 + x2 =a 

have integral solutions? What are the solutions? 

4. Using the techniques of this section show that the equation aX 1 + bX 2 = c with 
a, b, c in 71. and a, b nonzero has a solution if and only if gcd(a, b) divides c. Find 
the solution when it exists. 

5. An egg farmer needs, per year, 25 sacks of grain to feed 6 hens. From each hen he 
receives 230 eggs per year. If this farmer refuses to deal in fractions how many hens 
must he own to receive at least 20,000 eggs per year? 

10.4 A direct sum resolution of a 
finitely generated module 

In this section we prove a generalization of the fundamental theorem 
of Abelian groups, a resolution of a finitely generated module over a prin­
cipal domain into the direct sum of cyclic submodules. 
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We have earlier seen that any commutative group may be regarded as a 
module over the principal domain 7L with the integral multiples of a group 
element treated as 7L-exterior multiplication. We have given in Section 9.5 
theorems yielding direct sum resolutions of finite Abelian groups. We now 
treat the more general case of a module over a principal domain, not neces­
sarily 7L. We first show what the invariant factor theorem means in terms 
of bases. 

Theorem. Let M be a finite dimensional free module over a principal domain 
R. Let N be a submodule of M. Then there exist bases (ur. u2 , ••• , u,) 
of M and (v1, v2 , ••• , vn) of N, n ::::; m, such that vi = diui,j = 1, 2, ... , n, 
di is a divisor of di+ 1, j = 1, 2, ... , n - 1, for some dt> d2 , ••• , dn in R. 

PRooF. M is a free module and so also must N be a free module with dimen­
sion of N ::::; dimension of M. M has some basis (xt> x2, ... , xm) and N 
has some basis (Yt> y2 , ••• , Yn) and n ::::; m. Each element of N is also an 
element of M and therefore each Yi can be expressed as a linear combination 
of (x1, x2, ... , xm): Yi = Ii!=1 A;iX;, j = 1, 2, ... , n. By means of row and 
column transformations (multiplication by change of basis matrices), the 
invariant factor theorem, the matrix A can be reduced to the equivalent 
invariant factor matrix D. D = QAP- 1, where the Q and P are invertible 
change ofbasis matrices (with determinant v or - v) for Nand M respectively. 
From the matrices P and Q we can obtain the bases (v1, v2 , ••• , vn) and 
(u1, u2, ... 'um). 

n 

V1 = L Pij 1yi, l = 1, 2, ... , n. 
j= 1 

m 

uk = L Q;//xi> k = 1, 2, ... , m. 
i=l 

The bases (v1, v2 , ••• , vn) and (ut> u2 , ..• , um) are related by the matrix D. 

m 

vi = L Diiui = diui, j = 1, 2, ... , n. 
i= 1 

The invariant factors d1, d2 , ••• , dn have the property di is a divisor of 
di+t>i=1,2, ... ,n-l. 0 

We now apply the previous theorem to the finding of the direct sum 
resolution. 

Theorem. Let M be a finitely generated module over a principal domain R. 
Then M is the direct sum of cyclic submodules [<P(u1)], [<P(u2 )), ••• , 

[<P(u,)) with annihilating ideals (d1), (d2 ), .•• , (dm). Each di is a factor 
ofdi+t>i = 1, ... ,m- 1. 

383 



10. Linear algebra: Modules over principal domains and similarity 

PRooF. Let M be generated by the finite set {xl> x 2 , ••• , xm}· The mapping 
tP:Rm-+ M such that tP(rl> r2, ... , rm) = r1x1 + r2x2 + · · · + rmXm is an 
epimorphism. We denote by tP' the associated isomorphism R/ N -+ M 
where N denotes kernel tP = {(rl> r2, ... ' rm)lr1x1 + r2x2 + ... + rmXm = 
{}.Let us denote the dimension ofthe free submodule N of the free module 
Rm by n. The dimension of Rm is, of course, m and we are using the standard 
basis for Rm. We now use the preceding theorem and choose bases (ul> 
u2, ... , um) for Rm and (zl> z2, ... , z,) for N, n ~ m, such that zi = diui, 
j = 1, 2, ... , n, and each di is a factor of di+l•j = 1, 2, ... , n- 1. 

An element x of Rm belongs toN if and only if x = s1z1 + s2 z2 + · · · + 
s,z, for some sl> s2, ... , s, in R if and only if x = (s1dt)u1 + (s2d2)u2 + 
· · · + (s .. d .. )u, for some St. s2, ... , s, in R. Hence an element r1u1 + r2 u2 + 
· · · + rmUm belongs to N if and only if d1 is a factor of rto d2 is a factor of 
r2, ... ' and d, is a factor of r, and rn+ 1 = e, ... 'and rm = e. 

Corresponding to each ui, i = 1, 2, ... , m, there is an element tP(ui) in 
M. The range of tP, namely M, is generated by the set { tP(u1), tP(u2), ... , 
tP(um)}. An element r1 <P(u1) + r2 <P(u2) + · · · + rmtP(Um) is zero if and only 
if tP(r1u1 + r2u2 + · · · + rmUm) = ( if and only if r1u1 + r2u2 + · · · + 
rmum belongs to N if and only if di divides ri, j = 1, 2, ... , m, and r,+ 1 = 
· · · = r m = e. The annihilating ideals of the various submodules [ tP(u1)], 
[tP(u2)], ... , [tP(um)], are (d1), (d2), ... , (d,), (e), ... , (e). 

That M is the sum of the submodules, [ tP(u1)] + [ tP(u2)] + · · · + 
[tP(Um)], is immediate from {tP(u1), tP(u2), ... , tP(um)} generating M. If 
ye [tP(ui)] n (tP(ui)] then y = rtP(ui) and y = stP(ui) for some r, s in R. 
rtP(ui) = stP(ui) implies tP(rui - sui) = (. rui - sui e N. di divides r and 
di divides s or one or both of rand s are zero. In all cases r annihilates u1 

and s annihilates ui. y is therefore zero. M = [ <P(u1)] EB [ tP(u2)] EB · · · Ea 
[ tP(Um)]. If any of the annihilating ideals are generated by units then the 
ideal itself is the entire ring R. If, say, d1 = v, then (d1) = R. In this case 
[tP(u1)] = {(}. 0 

EXAMPLE. The purpose of this transparent example is to illustrate the 
application of the preceding theorem. We take the commutative group 
(Z-module) M = z3 X z4 X z2 which obviously is generated by the set 
{(I, 0, 0), (0, I, 0), (0, 0, I)}. We define the epimorphism tP:Z x Z x Z-+ M 
such that tP(rl> r 2 , r3) = <rto 1'2 , 1'3). For Z we use the standard basis and 
remember that Z3 is a free module. We denote kernel tP by Nand see that 
N = 3Z x 4Z x 2Z. N is a free submodule of Z3 with basis ( (3, 0, 0), 
(0, 4, 0), (0, 0, 2) ). The matrix expressing the N basis in terms of the Z3 

basis is 

(H D· 
When we reduce this matrix to the invariant factor matrix we find invertible 
P, Q such that D = QAP- 1• 
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(~ ~ ~) = ( ~ ~ ~) (~ ~ ~) (- ~ ~ - ~) . 
0 0 -12 -4 -3 0 0 0 2 0 1 0 

We also find Q- 1 to be the matrix 

(-! ~ -~)-
0 1 0 

This yields a new basis (u1, u2 , u3 ) = ( (- 3, 4, 0), (0, 0, 1), ( -1, 1, 0)) for 7L3 . 

Thus M = [ 4>(u1)] E!7 [ 4>(u2 )] E!7 [ 4>(u3 )] = [(-1, 4, 0)] E!7 [(0, 0, I)] E!7 
[(-I, I, 0)] = [(0, o, 0)] E!7 [(0, o, I)] E!7 [(-I, I, 0)] = [(0, o, I)] E!7 [(-I, I, 0)]. 
[(0, 0, 1)] ~ 7L/(2) = 7L 2 • [( -1, 1, 0)] ~ 7L/( -12) = 7L12 • This gives the 
expected result that 7L 3 x 7L4 x 7L2 ~ 7L2 x 1L12. 

ExAMPLE. We use the theorem to list all commutative groups of a given 
cardinality. Knowing that each invariant factor must be a divisor of the 
succeeding one allows us quickly to fashion all alternatives. All possible 
commutative groups of 24 elements are 7L 2 x 7L 2 x 7L6 , 7L 2 x 7L 12 , and 7L24 
(or isomorphic images). We can further use the theorem of Section 10.1 
to split factors which are relatively prime to obtain 7L2 x 7L2 x 7L2 x 7L3 , 

7L2 x 7L4 x 7L 3 and 7L8 x 7L 3 . All commutative groups of cardinality 60 are 
7L2 x 7L30 ~ 7L 2 x 7L 2 x 7L3 x 7L 5 and 7L60 ~ 7L4 x 7L3 x 7L 5 . All commuta­
tive groups of cardinality 72 are 7L 72 ~ 7L8 x 7L9 , 7L 2 x 7L 36 ~ 7L2 x 7L4 x 7Lg, 
7!_2 X 7!_2 X 7!_18 ~ 7!_2 X 7!_2 X 7!_2 X 7l_g, 7!_2 X 7!_6 X 7!_6 ~ 7!_2 X 7!_2 X 7!_3 X 

7!_2 X 7!_3, 7!_3 X 7!_24 ~ 7!_3 X 7!_3 X 7!_8, 7!_6 X 7!_12 ~ 7!_2 X 7!_3 X 7!_4 X 7!_3· 

QUESTIONS 

1. Which of the following groups are not isomorphic to &':24 ? 
(A) &':4 X &':6 

(B) &':2 X &':12 

(C) £:2 X £:2 X £:6 

(D) Z3 x Zs. 
(E) All ofthe listed groups are isomorphic to &':24 • 

2. How many different (nonisomorphic) commutative groups of 12 elements are there? 
(A) 1 
(B) 2 
(C) 3 
(D) 4 
(E) 0. 

3. Which of these statements are true? 
(A) Every commutative group of prime cardinality is cyclic. 
(B) Every finitely generated commutative group is the direct sum of cyclic 

subgroups. 
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(C) Every commutative group with cardinality the power of some prime is a 
cyclic group. 

(D) Every cyclic group has cardinality the power of some prime. 
(E) None of the statements is true. 

4. If a finite commutative group has cardinality divisible by 8 then it has a subgroup 
of order 

(A) 8 
(B) 4 
(C) 2 
(D) 1. 

(E) None ofthe numbers completes a true sentence. 

EXERCISES 

1. Find all commutative groups of cardinality 360. 

2. Find all commutative groups of cardinality 1080. 

3. Find all commutative groups of cardinality 144. 

10.5 Similarity and canonical forms 

In this section we study the matrix of an endomorphism of a vector space 
and produce by change of basis several canonical forms for the matrix. 

We carry out our analysis of the matrix of an endomorphism by utilizing 
the invariant factor matrix. The invariant factors will provide us with the 
proper bases to produce our canonical matrices. Our results are not produced 
by immediate application; we must first construct from our given vector 
space a module over a principal domain to which we apply our invariant 
factor theory. From this will flow our canonical forms of similarity. Two ma­
trices are similar if and only if they are matrices of the same endomorphism. 

Theorem. Let K be a field and M a finite m-dimensional vector space over K. 

Let f be an endomorph ism of M. Then M with K[ X]-exterior multiplication 

defined by p(X)x = p(f)(x) for all x in M is a K[X]-module. 

PROOF. By p(f)(x) we mean a0x + aJ(x) + · · · + adk(x) where p(X) is 
the polynomial a0 + a 1 X + · · · + akXk. The necessary properties for a 
module are readily verified. 0 

We point out that M as a vector space is a module over the field K. The 
theorem introduces a new module (still M) in that exterior multiplication is 
defined not just for elements of K but also for polynomials over K. With 
respect to this new exterior multiplication M is not a vector space but is a 
module. Since K[X] is a principal domain, M is a module over a principal 
domain which makes available the earlier work of this chapter. The definition 
given of K[X]-exterior multiplication depends upon the given endomor­
phism f and the character of the module will change with a change in f. 

We now apply the theorem of the last section to the K[X]-module. 
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Theorem. Let M beaK-vector space of finite dimension m and let f be an 
endomorphism of M. Then the K[X]-module defined by f is the direct sum 
of cyclic K[X]-modules, [x1] $ [x2 ] $ · · · $ [xm], which have annihi­
lating ideals (<p1(X)), (<p 2(X)), ... , (<pm(X)) in K[X]. 

PRooF. This theorem is a direct application of the fundamental resolution of 
a finitely generated module into cyclic submodules. M has a basis of m 
vectors as a K-vector space. This basis forms a generating set for the K[X]­
module. The set, while independent over K, is not linearly independent over 
K[X]. No element x in M can have annihilating ideal (()) because it is 
impossible for all the vectors x, X x, X 2x, ... to be linearly independent in M. 

Let (Y!, y2 , ••. , Ym) be the given basis for the K-vector space M. Let A be 
the matrix off with respect to this basis. We define cJ>:K[X]m--+ M such 
that cl>(r1(X), r2(X), ... , rm(X)) = r1(X)y1 + r2(X)Yz + · · · + rm(X)Ym· cP is 
clearly a K(X)-module epimorphism. We further denote the standard basis 
of K[X]m by (e1, e2 , ... , em) and the kernel of cP by N. 

We now assert that a basis for N is (z1, z2 , .•• , zm) where Z; = Xe; -
L,j= 1 A iiei. When we say basis here we are speaking of N as a K [X]-module, 
a submodule of the free K[X]-module K[X]m. We must, of course, prove 
(z1, z2 , ••• , zm) to be linearly independent and that it generates N. Suppose 
then that Li= 1 b;(X) z; = (.Note the coefficients of this arbitrary linear com­
bination lie inK[ X], not Kin general. ( = "Li= 1 b;(X)(X e; - L,j= 1 A iiei) = 
Li= 1 (Xb;(X) - Lk= 1 bk(X)A;k)e;. Therefore Xb;(X) - Lk= 1 bk(X)A;k = () 
for all i = 1, 2, ... , m. If some b;(X) fails to be zero we choose one of maxi­
mum degree, say b1(X). The degree of Xb1(X) exceeds the degree of 
Lk'= 1 bk(X)A;k making it impossible for the expression to be zero. This 
contradiction proves all b;(X), i = 1, 2, ... , m, to be zero and the family 
(z1, Zz, . .. , Zm) to be linearly independent. 

We now prove (z1, z2 , •.. , zm) generates N. cl>(z;) = cl>( X ei - L,j= 1 Aiiej) = 
Xyi - LJ=1 AjiYj = f(y;)- LJ=1 AjiYj = Lk'=1 AkiYk- LJ=1 AjiYj = (. 
zi EN for each i = 1, 2, ... , m. [z1, z2 , ... , zm] s; N. We next consider the 
set {r1e1 + rzez + 0 0 0 + rmemh, 0 0 0' rm E K} + [z1, Zz, 0 ° 0 'zml The set 
is an additive subgroup of the free module K[X]m and is closed under K­
exterior multiplication. If it is furthermore closed under K[X]-exterior 
multiplication it will be a K[X]-submodule of K[X]m. As it contains e1, 
e2 , ••• , em, it will have to be actually equal to K[X]m if it is such a K[X]­
submodule. For any z in [zl> z2 , ••• , zm] we have X(l:i'= 1 riei + z) = 
f("L,i'= 1 rie;) + Xz = Li'= 1 ri "Lk'= 1 Aiiei + Xz which is a member of 
{"L,i'= 1 rie;jr; E K} + [ z 1, z2 , ••• , zmJ. Having proved the set to be closed 
under multiplication by X we can by induction demonstrate its closure under 
multiplication by arbitrary positive integral powers of X and then finally 
by polynomials in K[X]. We then have K[X]m = {"L,i'= 1 r;edr; E K} + 
[ zl> z2 , ... , zm]. We now use this equality to prove (zl> z2 , ... , zm) generates 
N. Suppose yE N. y = z + "L,i'= 1 riei for some z E [z1, z2 , •.. , zm] and 
some r; E K. ( = cl>(y) = cl>(z) + L,i= 1 r;Y; = ( + Li= 1 r;Yi· But (y1, Yz, . .. , 
Ym) is linearly independent in the K-vector space M showing r; = () for all 
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i = 1, 2, ... , m. y = z and yE (z1, z2 , ••. , zm]. This completes showing that 
(zl> z2 , ••• , zm) generates N. 

The change of basis matrix which expresses the (et> e2 , ••• , em) co­
ordinates of a vector inN in terms of the (zt> z2 , ••• , zm) coordinates we can 
read off the defining equations 

The matrix is 

m 

zi = Xei - L Aiiei, j = 1, 2, ... , m. 
j=l 

or, more briefly, X<> - A, where <5 is the identity matrix. This matrix X<> - A 
can, step by step, be reduced to the invariant factor matrix 

( 

<P 1(X) () · · · 

D = () <Pz(X) ... 

() () 

with <P;(X) a divisor of <Pi+ 1(X), i = 1, 2, ... , m - 1. It is to be understood 
that the matrices X <5 - A and D are matrices with entries in the principal 
domain K[ X]. The elementary transformation or change of basis matrices 
used also have entries in K(X]. 

Let us denote with (u~> u2 , • •• , ~) the new basis of K[xr and by 
(vl> v2 , .•• , vm) the new basis of N producing the matrix D. We have from D 
the equations v; = <P;(X)u;, i = 1, 2, ... , m, as the relation between the new 
bases. Denoting the change of basis matrix inN by P and the change of basis 
matrix in K(X]m by Q we have the equation D = Q(Xb - A)P- 1. We offer 
the following diagram as a roadmap. 

D· = Jl.vu(J N )· N __ ____; __ ~ K[X]m 

P· = Jl.yv(/)· Q· = Jl.eu(J)· 

N K[X]m 
(Xb - A)· = Jl.ye(IN)· 

Since N is the kernel of the epimorphism <P:K[X]m-+ M we know that 
M and K[xr;N are isomorphic. M is generated by the set { <P(u1), <P(u2 ), ... , 
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IP(um)}. An element s1(X)4>(u1) + s2 (X)4>(u2 ) + · · · + sm(X)IP(um) of M is 
zero if and only if s1(X)u1 + s2 (X)u2 + · · · + sm (X)um is inN if and only 
if siX) is a multiple of cp i(X) for allj = 1, 2, ... , m. M is then isomorphic to the 
product K[X]/(cp 1(X)) x K[X]/(cp2 (X)) x · · · x K[X]/(cpm(X)). D 

Corollary. (cpm(X)) is the annihilating ideal of the module M. 

PROOF. cp 1(X), cp 2 (X), ... , cpm(X) are all factors of cpm(X) and each element 
of M is annihilated by at least one of the invariant factors. No smaller degree 
polynomial can annihilate [ IP(um)] £ M. D 

We remark that any one of the cyclic submodules in the direct sum 
resolution of M such as [IP(u;)] which is isomorphic to K[X]/(cp;(X)) 
can be further decomposed into the direct sum of cyclic submodules ac­
cording to the prime power factorization of the order cp;(X). If cp;(X) = 

Pl(X)"'pz(X)"2 • • • Pk(X)"k then 

[IP(u;)] ~ K[X]/(cp;(X)) 

~ K[X]/<Pl(X)"') x K[X]I<Pz(X)" 2 ) x · · · x K[X]I<Pk(xr>. 

Definition. Let M be a finite m-dimensional vector space over a field K and 
let f be an endormorphism of M with matrix A. Then cpm(X), the mth 
invariant factor of X[J - A, is called a minimal polynomial off or A. 
Det(X (j - A) is called the characteristic polynomial off or A. 

Theorem. Let M be a finite m-dimensional vector space over a field K and 
f be an endomorph ism of M with matrix A. Then det(X (j - A) = 
ucp 1(X)cp 2 (X) · · · cpm(X) for some u E K. Det(X[J - A) annihilates M. 

PROOF. A is the matrix off with respect to some basis of M. f»m(X(J - A) 
and f0m(D) are associates in K[X] where D is the invariant factor matrix of 
XJ -A. f»m(XJ -A)= det(XJ - A) and f0m(D) = det D = cp 1(X)cp2 (X) · · · 
cpm(X). Det D annihilates M because cpm(X) does. D 

We now wish to illustrate the preceding theorems in an example. 

ExAMPLE. Let us consider the matrix 

A~ H ~~ -~) 
as the matrix of an endomorphism of the Q-vector space (j) 3 . We will find the 
invariant factor matrix of X (j - A and simultaneously keep track of the 
transformations used to bring XJ - A to invariant factor form. We use a 
tabular form keeping record of the row transformations on the left and the 
column transformations on the right. 
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Xb- A= 2 (
X- 7 2 

X- 10 
2 

2 . 
-1 ) 

-1 X -7 

1 0 0 X- 7 2 -1 1 0 0 
0 1 0 2 X- 10 2 0 1 0 
0 0 1 -1 2 X-7 0 0 1 

0 0 1 -1 2 X -7 0 0 1 
0 1 0 2 X- 10 -1 0 1 0 
1 0 0 X- 7 2 -1 0 0 1 

0 0 1 -1 2 X -7 1 0 0 
0 1 2 0 X- 6 2X- 12 0 1 0 
1 0 0 X -7 2 -1 0 0 1 

0 0 1 -1 2 X-7 1 0 0 
0 1 2 0 X- 6 2(X- 6) 0 1 0 
1 0 X- 7 0 2(X- 6) (X- 6)(X- 8) 0 0 1 

0 0 1 -1 0 0 1 2 X- 7 
0 1 2 0 X- 6 2(X- 6) 0 1 0 
1 0 X -7 0 2(X- 6) (X- 6)(X- 8) 0 0 1 

0 0 1 -1 0 0 1 2 X -7 
0 1 2 0 X- 6 2(X- 6) 0 1 0 
1 -2 X-11 0 0 (X - 6)(X - 12) 0 0 1 

0 0 1 -1 0 0 1 2 X-11 
0 1 2 0 X- 6 0 0 1 -2 
1 -2 X-11 0 0 (X - 6)(X - 12) 0 0 1 

We can now write Q(Xb - A)P- 1 = D as 

(~1 ~ ~ )(X~7 
-2 X-11 -1 

X~10 -~)(~ 
2 X- 7 0 

2 X-11) 
1 -2 
0 1 

= (-~ X~ 6 
0 0 

0 ) 0 . 
(X - 6)(X - 12) 

From the invariant factor matrix D we read q> 1(X) = -1, q>2(X) = X - 6, 
q> 3 (X) = (X - 6)(X - 12). From this we can conclude that a minimal 
polynomial of A is (X - 6)(X - 12) and the characteristic polynomial is 
-(X - 6)2(X - 12). 

Q 3 is the direct sum of cyclic submodules 4>(u1), 4>(u2 ), 4>(u3 ) with an­
nihilating ideals< -1), (X - 6), ((X - 6)(X - 12)). In order to calculate 
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these submodules we must find the new basis (ut> u2 , u3 ). We first find the 
inverse of the change of basis matrix Q. We use tabular form again to do this. 

(
0 0 

Q = 0 1 

1 -2 

1 ) 2 . 
X-11 

0 0 1 1 0 0 
0 1 2 0 1 0 
1 -2 X-11 0 0 1 

1 -2 X-11 0 0 1 
0 1 2 0 1 0 
0 0 1 1 0 0 

1 0 X- 7 0 2 1 
0 1 2 0 1 0 
0 0 1 1 0 0 

1 0 X- 7 0 2 1 
0 1 0 -2 1 0 
0 0 1 1 0 0 

(
-(X- 7) 2 1) 

Q- 1 = -2 1 0 . 
1 0 0 

1 0 0 -(X - 7) 2 1 
0 1 0 -2 1 0 
0 0 1 1 0 0 

Fromtheequationsu; = LK= 1 Q;;/eh,i = 1,2,3wegetu1 =-(X- 7)e1 -

2e2 + e3 , u2 = 2e1 + e2 , u3 = e1. Remembering Xe1 means Ae1 we obtain 
u1 = (0, 0, 0), u2 = (2, 1, 0), u3 = (1, 0, 0). Using the standard basis we have 
cl>(u1) = (0, 0, 0), cl>(u2 ) = (2, 1, 0), cl>(u3 ) = (1, 0, 0). We have now (1) 3 = 
[(0, 0, O)] E9 [(2, 1, 0)] E9 [(1, 0, 0)] with annihilating ideals< -1), (X - 6), 
((X - 6)(X - 12)). [(0, 0, 0)] ~ Q [X]/( -1 ), [(2, 1, 0)] ~ Q[ X]/(X - 6), 
[(1, 0, 0)] ~ Q[X]/((X - 6)(X - 12)). The submodule [(1, 0, 0)] can be 
further resolved into submodules isomorphic to Q[X]/(X - 6) and 
Q[X]/(X - 12). Their generators can be calculated as (X - 12)(1, 0, 0) = 
(- 5, -2, 1) and (X - 6)(1, 0, 0) = (1, -2, 1). [(1, 0, 0)] = [(- 5, -2, 1)] E9 
[(1, -2, 1)]. 

The component [(0, 0, 0)] has annihilating ideal < -1). -1 is a unit in 
Q[X] and therefore< -1) is Q[X]. That [(0, 0, 0)] is annihilated by every­
thing is consistent with its being a trivial submodule. As a component of the 
Q[XJ-module (1) 3 it can be omitted. 

We now move on to explore how the K[XJ-module M provides us with 
a basis for the K-vector space M. Our goal is to obtain a basis for the K-vector 
space M so that the matrix of the given endomorphism f has a simple form. 

Definition. If {R~> R 2 , ... , Rd is a partition of the rows {1, 2, ... , m} of a 
matrix A and {S~> S2 , •.. , Sk} is a partition of the columns {1, 2, ... , m} 
of A and A1 = (Aiili E Rz, j E R1), l = 1, 2, ... , k and A;i = (} if(i, j) tfo R1 x S1 

for any l = 1, 2, ... , k then A is said to be the direct sum of submatrices 
A1, Az, ... ' Ak. 

391 



10. Linear algebra: Modules over principal domains and similarity 

EXAMPLE 

is the direct sum of 

6 0 0 0 0 
0 4 1 0 0 
0 3 2 0 0 
0 0 0 0 2 
0 0 0 1 0 

(6), G ~} (~ ~). 
One other direct sum possibility for this matrix is 

~ ~ ~ ). (0 2)· 
0 3 2 1 0 

We are interested only in submatrices formed from adjacent rows and col­
umns of a matrix. Symbolically we represent a direct sum of a matrix by 

A= (? :, ~) 
(} (} Ak 

where each A; is a submatrix and each (} stands for a block of (}'s. 

Theorem. Let M be an m-dimensional K -vector space and f an endomorph ism 
of M. Then there exists a basis (w1 , w2 , .•. , wm) of the K-vector space M 
such that the matrix off with respect to this basis is the direct sum of sub­

matrices AI> A 2 , • •. , Am determined by the invariant factors cp 1(X), 
<pz(X), ... , IPm(X). If <p;(X) = aw + ailX + · · · + a;n,-txn,-t + xn, 
then 

(} (} (} (} -aw 

V (} (} (} -a;t 

A;= (} V (} (} -a;z 

(} (} (} ... V - a;n,-1 

If <p;(X) is unity in K[X] then we say for counting convenience that 

the submatrix A; is empty and it contributes no entries to the matrix. 

n1 + n2 + · · · + nm = m. 

PROOF. We first notice that each invariant factor is presented with leading 
coefficient equal to unity. Since every nonzero constant is a unit in K[X] 
we can always so normalize our invariant factors. For example, invariant 
factors of degree two and degree one, a0 + a1X + X 2 , a0 + X, lead to 
submatrices 

(~ 
392 



10.5 Similarity and canonical forms 

As we state in the conclusion of the theorem a nonzero constant invariant 
factor gives rise to an empty submatrix. 

The product of the invariant factors cp 1(X)cp 2 (X) · · · cpm(X) is an associate 
in K [X] of the characteristic polynomial and is therefore of degree m. Thus 
n1 + n2 + · · · + nm = m. We have the cyclic K[X]-module direct sum of 
the cyclic submodules [ <P(u 1)], [ <l>(u 2 )], ••• , [<I>( urn)] which we now call 
[t1] Et> [t2 ] Et> · · · Et> [tmJ. If ti = ' and q>i(X) is unity then the submodule 
and corresponding submatrix is omitted. If ti =!= ' and cpi(X) is not unity 
then the vectors ti, Xti, X 2ti, ... , X"'- 1 ti, are linearly independent over K 
and form a K-basis for the submodule [t;]. The defining equations of the 
matrix off on the submodule are 

f(ti) = 
f(Xt;) = 

f(Xzt;) = 

These equations yield (remembering Xx = f(x)) a matrix Ai (as described 
in the statement of the theorem) with respect to the basis (t;, f(t;), jl(t;), ... , 
f"'- 1(t;) ). Since each submodule [ti] is closed under J, f([t;]) s [t;], the 
entire matrix A off will be the direct sum of the separate Ai, i = 1, 2, ... , m. 
The complete basis for M is t1,f(t1), ... ,f"'- 1(t1 ), t2 ,f(t2 ), •• • ,f"' - 1(t2 ), ... , 

tm,J(tm), · · · ,f""'- 1(tm)• D 

We call the entire matrix obtained by the process described in the theorem 
the first rational canonical form while each separate submatrix Ai is called 
the companion matrix of the invariant factor cpi(X). Since two matrices are 
similar if and only if they are matrices of the same endomorphism the first 
rational canonical form is a canonical form for similarity. 

ExAMPLE. We now continue the example for which we had obtained the 
direct sum [(0, 0, 0)] Et> [(2, 1, 0)] Et> [(1, 0, 0)] and invariant factors -1, 
X - 6, (X - 6)(X - 12). We rewrite the invariant factors in the normalized 
form: 1, - 6 + X, 72 - 18X + X 2• The trivial submodule [(0, 0, 0)] makes 
no contribution to the first rational canonical form. 

t 2 = (2, 1, 0) and A 2 = (6). 

(0 -72) t 3 = (1, 0, 0) and A 3 = 1 18 . 

The basis for M is (t2 , t 3 , f(t 3 )) or ( (2, 1, 0), (1, 0, 0), (7, -2, 1) ). With respect 
to this basis the matrix off is 

(
6 0 

0 0 
0 1 

-7~)· 
18 

This is the first rational canonical form which is similar to the given matrix. 
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We can use the fact that [(1, 0, 0)] splits into [(- 5, -2, 1)] E9 [(1, -2, 1)] 
to obtain a further refinement. With respect to the basis ( (2, 1, 0), (- 5, -2, 1), 
(1, -2, 1)) we will obtain a matrix 

(6 0 0) 
0 6 0 . 
0 0 12 

We now discuss, in general, how this further split can be obtained. 

Theorem. Let M be a finite dimensional vector space over a field K and f an 
endomorphism of M. Then there exists a basis for M such that the matrix 
of f is the direct sum of submatrices which are the companion matrices of 
powers of irreducible polynomials. The matrix associated with an invariant 
factor cp;(X) is the direct sum of matrices associated with the irreducible 
factors of cp;(X). If p(XY is the highest power of the irreducible factor p(X) 
found in cp;(X) then the submatrix associated with p(X)a (denoting p(X) by 
X1 + b1_ 1X1- 1 + · · · + b1X + b0 ) is 

8 8 ··· 8 -b0 8 (} (} (} (} (} 

V 8 · · · (} -b, 

(} v •·· (} -b2 

(} (} ···V -bl-1 (} (} (} (} (} (} 

(} (} ••• (} V (} (} ··· (} -bo (} (} (} (} 

8 8 ... 8 8 V 8 · · · 8 -b, 
(} (} ... (} (} (} v ··· (} -b2 

... (} 8 (} (} ···V -bl-1 (} 

(} (} (} ••• (} V 

(} (J ••• (} (} 

(} (} ... (} (} 

(} 8 ··· (} -bo 

V (} • • • 8 -b, 

(} v · · · (} - b2 

(} (} 

) 
(} 

(} (} 

(} (} (} (} ... (} (} (} (} ···V -bl-1 (} (} 

(} (} (} (} (} (} (} (} ... (} -bo 

V (} ... (} -b, 
(} V ... (} -bz 

(} (} (} (} (} (} (} (} ... V -b,_, 

where the number of diagonal blocks is oc. 

PROOF. Suppose cp;(X) = p1(X)a'p2(X)a2 • • • p,(X)ar. Then [t;], the cyclic 
submodule with annihilating ideal (cp;(X)), is equal to a direct sum [til] EB 
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[t;2 ] EEl··· EEl [t;,] where [tii] has annihilating ideal (pi(X)«i). Choose as 
a basis for [ t;J the vectors 

tii• 
Pi(X)tii• 

Xtii• ... , 
Xpi(X)tii, ... , 

(x)aj-1 X (X)«j-1 xl-1 (X)«·-1 Pi tii• Pi tii• ... ' Pi J tii, 

where we denote pj(X) by b0 + b1X + · · · + b1_ 1X1- 1 + X1• The defining 
equations for the matrix off over the submodule [t;J are 

f(t;i) = 

f(Xt1i) = 

f(X1- 1t;j) = -b0 tii - b1Xt1i- · · · - b1_ 1X1- 1tij + pj(X)tij 

f(pi(X)t;i) = Xpi(X)tii 

f(Xpi(X)tii) = X 2pi(X)tii 

f(X1- 1pi(X)t;i) = -b0pi(X)t;i- b1Xpi(X)tii 
- ... - bl-1xl-1 + Pi(X)2tii 

f(pj(X)«r 1t;i) = 
f(Xpi(X)«r 1t;i) = 

Xpj(X)«r 1t;i 

X 2pi(X)«r 1tii 

f(X1- 1pi(X)«r 1tii) = - b0pi(X)«r 1tii - b1pi(X)«r 1 Xt;i 
_ ... _ b1_ 1xl-1Pi(X)«r1tii. 

These equations yield a matrix as described in the theorem statement. D 

EXAMPLE. Let an endomorphism f have a matrix 

( ~ ~ ~ -~) 
A= 4 1 -1 -4 

-4 -2 0 -1 

with respect to the standard basis of the Q-vector space 0 4 • We begin by 
finding the invariant factors for the matrix X{J - A. We find by row and 
column transformations the invertible matrices Q and P such that Q(X {J -
A)P- 1 = D, the invariant factor matrix. We list here only the results. 

( I 

0 0 

~J~J -1 0 1 
Q = 2 

0 ~(X+ 2) -3(X- 1) 

-l5(X2 - 4X - 22) 1 ls(X2 - X- 1) 
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~5 (X2 +X+ 8) 
n(X + 12) 

1\(X - }) ) 

-/5 (X + 2) 
0 
0 

5(X + 1) 
0 

0 ) 0 
0 0 

1\(X + 1)(X2 - X - 1) 

The invariant factors are -1, -3, 5(X + 1), / 5 (X + 1)(X2 - X- 1). 
Normalized to make each leading coefficient unity the invariant factors are 
1, 1, 1 + X, -1 - 2X + X 3. In Q[X] we are simply choosing associates 
of the four polynomials. 

To compute the basis (u1, u2 , u3 , u4 ) we must first find Q- 1 . Again we do 
not show the work. 

_ 1 = (-X ~ 1 t(- X 2 ~ X + 5) ~(X 0- 3) ~) 
Q 1 1 0 0 ° 

-2 -i(X + 2) 1 0 
u1 = 1e1 + (-X + 1)e2 + 1e3 + ( -2)e4 = (0, 0, 0, 0). 

u2 = Oe1 + t( -X2 +X + 5)e2 + e3 + -i(X + 2)e4 = (0, 0, 0, 0). 

u3 = Oe1 + ~(X - 3)e2 + Oe3 + 1e4 = (~, --t ~, t). 
u4 = Oe1 + 1e2 + Oe3 + Oe4 = (0, 1, 0, 0). 

Because we are using the standard basis, <P(ui) = ti = ui> i = 1, 2, 3, 4. 
We then have our Q[X]-module ())4 expressed as a direct sum. QJ 4 = 
[(0, 0, 0, 0)] EB [(0, 0, 0, 0)] EB [(~, -t ~, !)] EB [(0, 1, 0, 0)]. [(0, 0, 0, 0)] ~ 
Q[X]I< -1), [(0, 0, 0, 0)] ~ Q[X]I< -3), [(~, -~, ~' !)] ~ Q[X]I<S(X + 
1)), [(0, 1, 0, 0)] ~ Q[X]/(l5(X3 :- 2X - 1)). Our basis choice for the Q­
vector space ())4 to produce the rational canonical form is ( (~, -~, ~' !), 
(0, 1, 0, 0), (1, 1, 1, - 2), (- 3, 10, 12, -4) ). With respect to this basis choice 
the matrix of the endomorphism is 

n r ~ ~l 
This matrix is the direct sum of the two companion matrices to the poly­
nomials X + 1 and X 3 - OX2 - 2X - 1, namely 

(-I) and ( ! ~ H 
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Now if we further split the direct summand [(0, 1, 0, O)] by means of the 
factorization X 3 - 2X - 1 = (X + 1)(X2 - X - 1) we have [(0, 1, 0, 0)] = 
[(-4, 8, 11, -2)] ~ [(1, 2, 1, -2)] ~ Q[X]I<X + 1) X Q[XJ/<X2 -

X - 1). We have obtained ( -4, 8, 11, -2) as (A 2 - A - 1)(0, 1, 0, 0) and 
(1, 2, 1, - 2) as (A + 1)(0, 1, 0, 0). With respect to the basis ( (~, -!, ~, !), 
(- 4, 8, 11, - 2), (1, 2, 1, - 2), (- 2, 11, 13, - 6)) the matrix of the endo-
morphism is 

n -~ ~ rl 
which is the direct sum of the companion matrices of X + 1, X + 1, and 
X 2 - X - 1. Since X 2 - X - 1 is an irreducible polynomial in Q[X] 
we have obtained our rational form. 

If this same problem is considered over IR4 instead of Q 4 then the poly­
nomial X 2 - X - 1 is no longer irreducible but factors in IR[X] into 
(X - 1/2 - .j5j2)(X - 1/2 + .JS/2). We then have a matrix. 

(-i -! 1/2 +~ JS/2 ~ ) 
0 0 0 1/2 - .JS/2 

for our rational canonical form. 

It can be seen from the previous example that the canonical form as 
proposed here depends upon which polynomials are irreducible over the 
field of the given vector space. If all polynomials of positive degree over a 
given field can be written as a product oflinear factors then the field is called 
algebraically closed. Alternatively said, a field K is algebraically closed if 
and only if every polynomial in K[X] has at least one root in K. C, the 
field of complex numbers, is algebraically closed while IR and Q are not. 
This deficiency can be seen in the irreducibility of polynomials like X 2 + 1 
and X 2 - 3, respectively. We now present a canonical form, called the 
Jordan canonical form, which shows what is possible when all the relevant 
polynomials split into linear factors. This Jordan form is actually a case of 
the previous theorem, but we separate it and call it the Jordan form for 
emphasis. This covers also the extreme case of an algebraically closed field 
where all polynomials completely factor into linear factors. 

Corollary. Let M be a finite dimensional vector space over a field K and 
let f be an endomorphism of M. Let A be the matrix of f with respect 
to a given basis of M and suppose all invariant factors of X b - A have 
no irreducible factors of degree exceeding one. Then there exists a basis 
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of M such that the matrix of f is the direct sum of matrices of the form 

A 0 0 0 0 

V A 0 0 0 

0 V A 0 0 

0 0 0 A 0 

0 0 0 V A 

There will be one such submatrix with a rows and a columns for each 
irreducible factor power (X - A)"' of <p;(X). 

PRooF. Suppose (X - A)"' is one of the relatively prime factors of the 

invariant factor <p;(X) which is the order of the cyclic submodule [t;J. 
A basis for the submodule is (t;i, (X - A)t;i, (X - Aftii, . .. , (X - A.)"'- 1 t;i). 

The defining equations for the matrix are just as in the theorem with Pi( X) = 
(X - A) and ai = a. D 

EXAMPLE. We begin with an endomorphism of the Q-vector space Q4 

which has a matrix 

(~ 
0 0 

-rl 2 0 
0 1 

0 -1 

with respect to the standard basis. We find the invariant factors of X (j - A 

by finding invertible matrices p-1, Q such that Q(Xc5- A)P- 1 =D. 

Q= ( _; +3 ~ ~ ~ ) 
0 1 0 0 . 

X 2 -4X +4 0 1 -X+ 1 

D=(~L~2 ~ )· 
. 0 0 0 (X -1)(X -2)2 

We can determine the canonical forms directly from D without further 

work, but to know what bases will produce these canonical matrices requires 
further computation. The canonical matrices are 

(~ ! ~ -~) (~ ~ ~ -~) (~ ~ ~ !) 
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We now show how each of these forms are produced. To compute the 
bases we first find Q- 1. 

Then 

Q -1 = ( ~ ~ ~ ~) 
-1 X-1 0 1 . 

X -3 1 0 0 

u1 = e1 - e3 + (X - 3)e4 = (0, 0, 0, 0). 
u2 = (X - 1)e3 + e4 = (0, 0, 0, 0). 

u3 = e2 = (0, 1, 0, 0). 
u4 = e3 = (0, 0, 1, 0). 

From this we have the Q(X] module ([)4 = [(0, 0, 0, 0)] E9 [(0, 0, 0, 0)] E9 
[(0, 1, 0, 0)] E9 [(0, 0, 1, 0)]. [(0, 0, 0, 0)] ~ Q[X]/(1). [(0, 1, 0, 0)] ~ 
Q[X]/(X - 2) and ((0, 0, 1, 0)] ~ Q[X]/((X - 1)(X - 2)2 ). We drop, 
of course, the trivial submodules leaving ([)4 = [(0, 1, 0, 0)] E9 [(0, 0, 1, 0)]. 
For the first submodule with annihilating ideal (X - 2) we use simply 
the basis ( (0, 1, 0, 0) ). For the second submodule with annihilating ideal 
(X3 - 5X2 + 8X- 4) we use the basis((O, 0, 1, O),f(O, 0, 1, O),j2(0, 0, 1, 0)) 
or ( (0, 0, 1, 0), (0, 0, 1, -1), (1, 0, 0, - 4) ). Altogether for the entire vector 
space we have the basis ( (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 1, -1), (1, 0, 0, - 4)) 
with respect to which f has the matrix 

This is the first rational canonical form. 
To obtain the second rational canonical form we split the submodule 

[(0, 0, 1, 0)] using the relatively prime factors of X 3 - 5X2 + 8X - 4 = 
(X - 1)(X - 2)2. We compute (X - 2f(O, 0, 1, 0) = (f - 2)2(0, 0, 1, 0) = 
(1, 0, 0, 0) and (X - 1)(0, 0, 1, 0) = (f - 1)(0, 0, 1, 0) = (0, 0, 0, -1). Then 
[(0, 0, 1, 0)] = ((1, 0, 0, 0)] E9 ((0, 0, 0, -1)] with ((1, 0, 0, 0)] ~ Q [ X]/(X -1) 
and [(0, 0, 0, -1)] ~ Q[X]/((X - 2)2 ). For the first of these we have the 
basis ( (1, 0, 0, 0)) and for the second ( (0, 0, 0, -1), X(O, 0, 0, -1)) = 

( (0, 0, 0, -1), f(O, 0, 0, -1)) = ( (0, 0, 0, -1), (1, 0, -1, - 3) ). Thus with 
respect to the basis ( (0, 1, 0, 0), (1, 0, 0, 0), (0, 0, 0, -1), (1, 0, -1, - 3)) of ([)4 

the endomorphism has the matrix 

(~ ~ ~ -~) 
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Finally we come to the Jordan canonical form. We replace the basis 
( (0, 0, 0, -1), (1, 0, -1, - 3)) of the submodule [(0, 0, 0, -1)] by the basis 
((0, 0, 0, -1), (X- 2)(0, 0, 0, -1)) = ((0, 0, 0, -1), (1, 0, -1, -1)). Thus 
with respect to the basis ( (0, 1, 0, 0), (1, 0, 0, 0), (0, 0, 0, -1), (1, 0, -1, -1)) 
we have the Jordan form 

QUESTIONS 

1. Let M be a vector space of finite dimension m over a field K and f be an endo-
morphism of M. Which of these statements are true? 

(A) The K[ X]-module M defined by f is finite dimensional. 
(B) The K[ X]-module M defined by f is finitely generated. 
(C) The K[X]-module K[X]m is finite dimensional. 
(D) The K[ X]-module K[ X]m is finitely generated. 

(E) None of the statements is true. 

2. Let M be a vector space of finite dimension m over a field K, and f be an endomor­
phism of M. Which of these are true? 

(A) An !-invariant subspace of M, f(S) c;; S, is a submodule of the K[X]­
module defined by f. 

(B) A subspace S of M is a submodule of the K[ X]-module defined by f. 
(C) If the mth invariant factor of Xo - f, <Pm(X), is the product of distinct 

linear factors then so also are q> 1(X), q>2 (X), ... , <Pm- 1(X) products of distinct 
linear factors. 

(D) If the mth invariant factor <Pm(X) is the product of distinct linear factors 
then ~m(D) is the product of distinct linear factors. 

(E) None of the statements is true. 

3. Let M be a vector space of dimension 4 over the field Q and A be the matrix of 
an endomorphism of M. The first rational canonical form of A is calculated to be 

Which of these statements are true? 
(A) The invariant factors of X8 - A are 1, 1, X 2 + 1, X 2 + 1. 
(B) The invariant factors of X(J - A are 1, X + 1, X + 1, (X + 1)2• 

(C) The invariant factors of X(J - A are 1, 1, 1, (X2 + 1)2• 

(D) The invariant factors of X(J - A are 1, X - 1, X - 1, X 2 - 1. 
(E) None of the statements is true. 
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4. Let A be the matrix of an endomorphism of 0 4 for which X f> - A has invariant 
factors 1, 1, X + 1, (X + 1)(X2 + 1). Which of the following matrices is the second 
rational canonical form for A? 

(
0 0 0 0) 1 0 0 0 

(A) 0 0 1 0 

0 0 0 1 

(

-1 0 0 

0 -1 0 
(C) 0 0 0 

0 0 1 

(E) None of the matrices is the second rational canonical form for A. 

EXERCISES 

1. A matrix and its transpose are similar. Show this. 

2. For the matrix 

find the first rational canonical form in the vector space 0 3. Find the Jordan 
canonical form in the vector space C3. Denote the three cube roots of 1 by w, w2, 

andl. 

3. For the 0-vector space 0 3 given the Jordan canonical form possible for each of 
the following characteristic polynomials. 
(a) (X - 1)(X - 2)(X - 3) 
(b) (X - 1f(X - 2) 
(c) (X - 1)3• 

4. For the matrix 

( -~ -: -~) 
3 -6 -4 

find the rational canonical forms and the Jordan canonical form over the vector 
space 0 3• Include the bases which produce the canonical forms. 

5. Suppose the endomorphism f of 0 3 has the matrix 

A= (-~ ~ ~) 
2 1 -1 

with respect to the standard basis. Find the invariant factors of X f> - A. What is 
the minimal polynomial of A? What is the characteristic polynomial of A? What 
is the second rational canonical form? 
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10.6 The characteristic polynomial and 
characteristic values 

In this section we use the canonical forms to study a few of the properties 
of characteristic polynomials and characteristic values. 

We will use the words characteristic value and characteristic root in 
preference to the word eigenvalue, which one often sees. By a characteristic 
root we mean a root of the characteristic polynomial det(Xc5 - A) obtained 
from the matrix A. Characteristic value will be defined shortly. We begin this 
section with a theorem on the coefficients of the characteristic polynomial. 

Theorem. Let A be an m by m matrix with entries in a field K. If 
m 

det(Xc5- A)= I (-lt-jcixi 
j=O 

then Ci is the sum of the principal (m -})-minors of A (a principal minor 
is the determinant of a submatrix which has its diagonal lying on the diagonal 
of A). 

PRooF. We denote the jth column of a matrix A by A*i' Det(Xc5 - A) = 

det(Xc5* 1 - A* 1, Xc5* 2 - A* 2 , ••• , Xb*m - A*m) = ( -1t det(A*1 - Xc5* 1, 
A*2 - Xc5* 2 , ... , A*m - Xb*m) = ( -1t L det(Bb B2 , .•• , Bm) where 
Bi = A*i or -X b*i for each} = 1, 2, ... , m (2m terms in the sum). Continuing, 
det(c5X - A) = ( -lt D'=o (- X)i L det(B~, B2, ... , B~) where Bj = A*i 
or (j*i and the number of /)*1, b* 2 ' ••• , b*m appearing is j. Det(bX - A) = 
( -1t Lj=o ( -1)-iCiXi where Ci = the sum of the principal (m -})-minors 
of A. Note, for example, that 

det(b*b b*2 , •• • , b*b A*k+ 1• ... , A*m) 
1 () () A1 k+1 
() 1 () Azk+1 

= det () () 1 Akk+1 
() () () Ak+1k+1 

() () ' ' ' () Am k + 1 ' ' ' Am m 

= det I ~k.+ 1 k+ 1 Ak+ 1 m)' 
\ Amk+1 ''' Am m 

a principal (m - k)-minor. 0 

We take note at this point of a theorem credited to W. R. Hamilton 
and A. Cayley. This theorem states that any matrix satisfies its own char­
acteristic equation. 
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Theorem. Let f be an endomorphism of a finite m-dimensional vector space 

M over afield K. Then 'I,j=o ( -l)m-iciji = 0, where 'I,j=o ( -lt-iCiXi 
is the characteristic polynomial of f. 

PROOF. That 'I,j=o ( -lt-iCifi is zero means that it is the zero endo­
morphism of M or the zero mapping of M into M. Such a sum is the zero 
mapping if and only if it sends all vectors of M to the zero vector of M. 
Put another way we are asking whether or not in the K[X]-module M 
defined by f the polynomial 'I,j=o ( -lt-iCiXi annihilates M. Put in this 
way the answer is obvious. We know that not only does det(XJ - A) 
annihilate M (using A as the matrix of f), but, in general, a polynomial of 
smaller degree, <Pm(X), annihilates M. Not only does every matrix or endo­
morphism satisfy its own characteristic equation, but it satisfies its own 
minimal polynomial equation. 0 

Theorem. If A and B are similar matrices with entries in a field K then A 
and B have the same characteristic polynomial. 

PROOF. B = P AP- 1 for some invertible matrix P. Det(X <5 - B) 
det(XJ - PAP- 1) = det(PXJP- 1 - PAP- 1) = det P(XJ - A)P- 1 

detPdet(XJ- A)detP- 1 = detPdetP- 1 det(X<5- A)= det(XJ- A). 0 

We single out two of the coefficients of the characteristic polynomial 
for special attention: the sum of the principal 1-minors and the sum of 
the principal m-minors. 

Definition. By the trace of the m by m matrix A we mean the sum of the 

diagonal elements of A, Lt= 1 A;;· 

Theorem. If A and B are similar matrices with entries in a field K then 
trace A = trace B and det A = det B. 

PROOF. Because the characteristic polynomial is invariant under similarity 
all of its coefficients are also. o 

Theorem. If the characteristic polynomial det(XJ - A) of the matrix A 
factors into linear factors only and A. 1, A.2 , ... , A.k are the characteristic 
roots with respective multiplicities IX1> IX2 , ••• , IXk then trace A = IX 1A. 1 + 
IX2 A2 + · · · + IXkAk and det A = A'l 1Az2 • • • A.kk· 

PROOF. (X - A.1)"1(X- A-2)"2 ···(X - A.k)"k = det(XJ - A)= q> 1(X)q>2(X) · · · 

<Pm(X) where q> 1(X), q> 2 (X), ... , <Pm(X) are the invariant factors of XJ - A 
normalized (leading coefficient unity). The factor (X - A.d appears 1X 1 times 
in the polynomials q> 1(X), q> 2 (X), ... , <Pm(X). In the Jordan canonical form 

for A, A.1 appears on the diagonaliX1 times. So also for the other roots. The 
sum of the diagonal elements in the canonical form is then IX 1A1 + IX2 A.2 + 
· · · + IXkAk. This is the trace of A. The canonical form for A contains the 
characteristic roots on the diagonal and elsewhere O's and l's. The deter­
minant of such a matrix will be the product of the diagonal elements which 
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can easily be seen from expanding the determinant first by column 1, then 
~~~~~ D 

We now define characteristic value. 

Definition. Let f be an endomorphism of a K-vector space M. A. inK is a 
characteristic value and x (nonzero) in M is a characteristic vector of f 
if and only if f(x) = A.x. 

Given a finite basis of M with respect to which A is the matrix off and 
X is the family of coordinates of the vector x we speak of A. and X as being 
characteristic value and characteristic vector of the matrix A. AX = A.X. 

EXAMPLE 

2 is a characteristic value and (0, 1, 0, 0) is a characteristic vector. 

Theorem. Let A be an m by m matrix with entries in a field K. Then A. is a 
characteristic value of A if and only if A. is a characteristic root. 

PRooF. AX = A.X and X =F 0 if and only if (A.c5 - A)X = 0 and X =F 0 
if and only if nonzero X belongs to the kernel of A.c:5 - A if and only if 
det(A.c5 - A) = 0 if and only if A. is a root of det(A.c5 - A). D 

In multiplying a characteristic vector by a constant (the characteristic 
value) the matrix A sends the characteristic vector back into the vector sub­
space generated by the characteristic vector. This suggests the following 
theorem. 

Theorem. Let A be an m by m matrix with entries in a field K. Let A. be a 
characteristic value of A. Then {YIY EM and Ay = A.y} is a subspace of M 

PRooF. (A.c5 - A)(x + y) = (A.c5 - A)x + (A.c5 - A)y = (. (A.c5 - A)(kx) = 
k(A.b - A)x = k( = (. D 

For a characteristic value A. of a matrix we now make two multiplicity 
definitions: one for the role of A. as a characteristic value and one for the 
role of A. as a characteristic root. 

Definition. Let A. be a characteristic value of a matrix A with entries in a 
field K. By the geometric multiplicity of A. we mean dim {x!Ax = A.x} 
(from the characteristic value role of A.). By the algebraic multiplicity of A. 
we mean the multiplicity of A. as a root of the characteristic polynomial. 
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Theorem. Let A. be a characteristic value of a matrix A with entries in a 

field K. Then the geometric multiplicity of A. is less than or equal to the 

algebraic multiplicity of A.. 

PROOF. Let the geometric multiplicity be n. Dim{xi(A.b - A)x = 0} = n. 
Rank (A.b - A) = m - n. D, we recall, we use for the matrix with the 
invariant factors cp 1(X), cp2 (X), ... , <Pm(X) on the diagonal. By D(A.) we 
will mean the matrix D with all X's replaced by A.. Rank D(A.) = m - n. 
<Pm-n+l(A.) = · · · = <Pm(A.) = O.(X- A.)isafactorof<Pm-n+l(X), ... , <Pm(X). 
(X - A.)n is a factor of the product cp 1(X)cp 2(X) · · · <Pm(X) which is equal 
to the characteristic polynomial. A. is a root of at least multiplicity n of the 
characteristic polynomial. D 

EXAMPLE. Let the matrix A be 

( -~ ~) 
and the vector space be Q2 . The characteristic polynomial is 

det (X; 1 X~ 1) =(X- 1f 

and so 1 has algebraic multiplicity 2. 

Ker(1<5- A)= {x\(1<5- (-~ ~))x = o} 
= {x\G ~)x = o} 
= {(xb Xz)lx1 = 0} = {(0, k)lk E IQ}. 

Dim ker(1<5 - A) = 1 and therefore the geometric multiplicity is 1. 

Theorem. Let M be a K-vector space, f an endomorphism of M, and A a 

matrix of f with respect to some finite basis. The following statements 

are equivalent: 

1. A is similar to some diagonal matrix 
2. There exists a basis of characteristic vectors for M 
3. The minimal polynomial of A is a product of distinct linear factors. 

PROOF. By a diagonal matrix we mean a matrix having only zero entries 
off the principal diagonal: Bii = e if i "# j. Let A be similar to some diagonal 
matrix B. Each entry on the diagonal of B is a characteristic root with 
multiplicity equal to the number of times that root appears on the diagonal. 
Suppose A. 1, A.2 , • •• , A.k are the distinct characteristic roots of B (and A). 
Dim ker(A.jb - B) = mj, the number of zeros on the diagonal of the matrix 
A.jb - B. Let xjt> xj2 , ... , xjmj be a basis for ker(A.jb - B), j = 1, 2, ... , k. 
The vector space M is the direct sum of the subspaces ker(A.jb - B) and 

hence has a basis x1 t>···,Xtmp Xzt>···,Xzm2 , ••• ,xk1, ... ,xkmk· Each 
member of the basis is a characteristic vector of Band A. We have then a 
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basis of characteristic vectors for M. Furthermore, still assuming the exis­
tence of the diagonal matrix B we can see that the entire K[ X]-module M 
is annihilated by (X - A.1)(X - 22 ) • · ·(X - A.k) since each basis element is 
annihilated by one of the factors. This shows that the minimal polynomial 
is a product of distinct linear factors. 

Now if we assume that the minimal polynomial is a product of distinct 
linear factors then each annihilating polynomial (invariant factors of 
X() -A) q> 1(X), q> 2 (X), ... , IPm(X) can have only distinct linear factors. 
From this we can conclude that the second rational canonical form is a 
matrix with all nondiagonal entries zero. 

Assuming there exists a basis of characteristic vectors leads immediately 
to a diagonal matrix for that basis. D 

QUESTIONS 

1. The characteristic polynomial of the matrix 

is 

(A) X 3 

(B) X 3 + X 2 + X + 1 
(C) X 3 - 3X2 

(D) (X- 3)3• 

(E) The correct characteristic polynomial is not listed. 

2. Given the canonical form 

(~ ~ ~ ~) 
which one of the following choices describes the characteristic values and their 
multiplicities? 

Characteristic Geometric Algebraic 
Choice values multiplicity multiplicity 

(A) 2 
2 2 

(B) 1 2 3 
2 1 

(C) 3 2 
2 1 

(D) 1 3 3 
2 1 1 

(E) None of the choices accurately describes the matrix. 
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3. Which of the following statements are true? 
(A) If the characteristic polynomial and the minimal polynomial are equal then 

all characteristic roots have algebraic multiplicity one. 
(B) If the characteristic polynomial and the minimal polynomial are equal then 

all characteristic values have geometric multiplicity one. 
(C) If A is a characteristic root of geometric multiplicity two of a matrix A 

then A must be a root of at least two separate invariant factors of X b - A. 
(D) Every matrix has at least one characteristic root even though the root may 

have zero geometric multiplicity. 
(E) None of the sentences is true. 

EXERCISES 

1. Let M be a finite dimensional vector space with dimension m. Let f be an endo­
morphism of M with m distinct characteristic values. Show that there is a basis 
for M so that the matrix off is a diagonal matrix. 

2. Show that some characteristic value of the matrix A is zero if and only if det A = e. 

3. Show that a matrix A has all its characteristic roots in the field K if and only if A 

is similar to a matrix in triangular form (B is in triangular form if and only if Bii = 
e for all i > j). 

4. If AP = e for some square matrix A and pEN then trace A = e. 
5. For the matrix 

(; ;) 
with entries in the field Q what are the characteristic values and their geometric 
and algebraic multiplicities? 

6. Find the characteristic polynomial, the minimal polynomial, the characteristic values, 
their multiplicities, for the matrix 

with entries in C. 
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Answers to questions 

1.2 ID 2B 3B 4A 5C 6B 7C 8B 9ACEF 
1.3 lBD 2E 3B 4D 5D 
1.4 lC 2D 3A 4D 5C 
1.5 lB 2E 3D 4C 
1.6 lE 2ABCD 3C 4C 5B 
1.7 lE 2C 3A 4D 
1.8 1 C 2A 3ABC 4D 
2.1 ID 2BC 3ACD 4ACD 5D 6A 7D 
2.2 lABC 2AC 3ACD 4A 
2.3 lABCDE 2BD 3AB 4E 5ABD 
2.4 lE 2BC 3E 4A 5E 
2.5 lE 2AD 3BCD 4BD 
2.6 ID 2BCD 3A 4A 5E 
2.7 lBCDE 2ABC 3D 4ABCF 5ABCD 
2.8 lCD 2AD 3E 4AB 5D 
3.1 lAC 2B 3B 4E 
3.2 lABCD 2C 3AB 4C 
3.3 lABCD 2A 
3.4 lAC 2BCDE 
3.5 lABC 2ABC 3ABCD 
3.6 lABC 2AC 
3.7 lE 2BD 3BCD 4B 
3.8 lBC 2BC 3E 4AC 
4.1 lABCD 2ABCD 3ACD 4ABCD 5A 6ABC 
4.3 lBD 2BCD 3B 4ABC 
4.4 ID 2B 3C 4BD 5ABCD 
4.5 lBD 2ABD 3AB 4BD 
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4.6 lC 2C 3E 4C SBC 6BD 
S.l lC 2A 3AC 4E SBC 6A 
S.2 lAD 2C 3AB 4BC 
S.3 lC 2C 3E 4A SA 6ABCD 
S.4 lAB 2ABD 3C 4AB SB 6A 7ABC 8AC 9E lOAC 
S.S lABC 2E 3AC 4E 
S.6 lD 2BCD 3A 4D 
S. 7 1B 2B 3ABD 4AB SABCD 
S.8 IB 2AC 3CD 4ABE SB 6D 7AB 
6.1 lBCD 2AC 3ABC 4ABCD SBCE 6BCD 7BD 8BC 
6.2 lB 2BD 3BCD 4E SB 6ABD 7ABC 8ACD 
6.3 lA 2AC 3D 4BD SCD 6D 
6.4 lAB 2BCD 3BC 4AB SE 
6.S lB 2E 3ABC 4ABC 
6.6 lABC 2ABCD 3AB 4ABCD SABCD 
6.7 lE 2BCD 3AC 4AD SA 
6.8 lAC 2ABC 3C 4A 
6.9 lE 2ABCD 3ABCD 4BCD 

6.10 lBC 2BCD 3BCD 4D SBD 6B 7A 8CD 
7.1 lABCD 2E 3D 4D 
7.2 lBCD 2ABCD 3BCD 4AB 
7.3 lACD 2ABCD 3AD 4ABCD 
7.4 lABCD 2D 3ACD 4BD 
7.S lABD 2BC 3B 4ABCD 
7.6 lBCD 2AD 3CD 4BC SBD 6ABD 7BD 8ACD 
7.7 lAC 2BCD 3B 4BC SABC 6A 7B 8AD 9B lOB llD 12C 13A 
8.1 lAB 2AC 3ABD 
8.2 lBC 2AD 3BC 4C 
8.3 lBCD 2ABCD 3ABD 4ABCD 
8.4 lD 2A 3ABCD 4AB 
8.5 lB 2AC 3ABD 
9.1 lBC 2C 3ABD 4ABCD SCD 6BD 7AD 8ACD 
9.2 lAD 2ABCD 3BD 4BD SABC 6C 7E 8D 
9.3 lABC 2ABCD 3D 4AD SAC 6BD 7ABD 8ACD 
9.4 lCDE 2ABC 3A 4ACD SACD 6BCD 7AB 8B 
9.S lB 2B 3CD 4ABD SABCD 

10.1 lA 2E 3BC 4CD 
10.2 lBCD 2AC 3ABC 4ABC SBC 
10.3 lAC 2AB 3AC 4AC 
10.4 lABC 2B 3AB 4ABCD 
lO.S lBCD 2AC 3C 4C 
10.6 lC 2B 3E 
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d(G), d(M), 53, 237, 337 
ccl(x), 344 
E&k(A), 368 
S(R), S(M), 54, 236 
E(p, q), E(r, q; p), E(s, p), 252, 253 
(eiili E m,j En), 229 
(e;ji En), 201 
f(R), f(G), 53, 337 
I, 19 
f!'(M, M'), 228 
Mor(M, M'), 54, 336 
N,2 
%(S), 343 
&>(S), 13 
ft(R, R), 126 
IQ, 2, 111 
1!) 2 X 2, 41, 45 
IR, 2 
[R2x2, 41 

ff(G), 335 
7!.., 2 
1Ln, 58 
7!..2x2, 49 

Z(G), 342 
(jij' 194 
JL(f), 230 
V, 33 

Index of symbols 

e,39 
6(X), 27 
62, 63, ... , 6n, 28, 280 
0,5 
[0, oo), 16 
(R, +,·,e), 38 
7L[X], 60 
R[X], 120 
K[tX], K(tX), 150 
[AJ,48,303 
(S),64 
yx,27 
(!RNt, 123 
JLU) ·, 241 
JL(f)*, 243 
A: Y, 266 
x-,34 
xjR, 13 
RjA, 55 
xA, x +A, 55 
ffi, 0, 354 

"'' 344 
£;, c, 3 
u, n,4,48 
~, 15 
~A?, 15 
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A 
Abelian groups, fundamental theorem 

of, 383 
absolute value, 100 
addition of natural numbers, 71 
additivity, 180 
adjoint, 287 
algebra, 193 
algebra, fundamental theorem of, 154 
algebraic element, 150 

multiplicity, 404 
system, 298 

algebraically closed field, 397 
alternator, 276 
annihilating ideal, 364 
annihilator of a submodule, 261, 364 
antisymmetric relation, 3, 10 
argument of a function, 15 
associates, 140 
associative operation, 4, 19, 3 3 
automorphism, 53, 237, 337 

B 
basis, 199, 325 
bijection, 16 
binomial theorem, 109 
Boolean algebra, 300 

Index 

c 
cancellation, 35, 77 
canonical forms, 370, 393, 394, 397 
cardinal number, 92 
Cartesian product of modules, 185 

of monoids, 352 
of operational systems, 319, 320 
of relational systems, 321 
of sets, 9, 37 

Cayley representation theorem, 335 
center of a group, 342 
change of basis matrix, 247 
characteristic of a ring, 114 
characteristic polynomial, 389 

root, 402 
value, 404 
vector, 404 

class equation, 345 
closed subset, 47 
closure cl ass, 30 I 

algebraic, 304 
codomain of a function, 15 
cofactor, 285 
commutative operation, 4, 33 
commutator, 333 
companion matrix, 393 
compatible equivalence relation, 79 
compatible relation, 302, 314 
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Index 

complement, 6, 
relative, 6 

complex numbers, 2, 54, 152 
composite integer, 102 
composition of functions, 18 
composition series, 356 
congruence, 312, 314, 328 
conjugacy class, 344 

relation, 344 
conjugate of a complex number, 155 
consistent equations, 266 
coordinate morphism, 203 
coproduct of algebraic systems, 322 
coset, 55, 176 
Cramer's rule, 288 
cycle, 279 
cyclic group, 341 

module, 363 

D 

defining equations of the matrix of a 

morphism, 230 
degree of a polynomial, 119 
derivative of a polynomial, 132 
determinant, 281 
determinant divisor, 368 
diagonal matrix, 405 
dimension, 216 
direct product, 354 
direct sum of commutative groups, 

354 
of matrices, 391 
of modules, 186 

directed line segments, 197, 218 
distributive Jaw, 35 
division algebra, 193 

ring 44 
division algorithm, 99, 100, 121 
divisor, 10 I, 133 

greatest common, 142 
of zero, 43, 76 

domain of a function, 15 
dual basis, 257 

module, 257 
space, 257 
morphism, 258 
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E 
element of a set, 2 
elementary change of basis matrix, 

251 
elementary row transformation, 173 
embedding, 23 
empty set, 5 
endomorphism, 54, 336 
epimorphism, 51 , 180 
equality of set, 2 
equipotent sets, 55 
equivalence class, 13, 55 

relation, 10 
equivalent matrices, 256 
Euclidean algorithm, 142 

domain, 132 
gauge, 132 

exponent, I 04 
exterior multiplication, 161 

F 
factor, 101, 133 
factor theorem, 128 
factors of a composition series, 356 
family, 190 
Fermat's theorem, 351 
finite set, 94 
finitely generated submodule, 363, 

226 
fractions, ring of, 110 

field of, I I I 
free module, 200 
function, 15 

G 
Gaussian domain, 146 

integers, 113 
generated ideal, 65 

submodule, 166, 196 
submonoid, 325 
subring, 48 
subsystem, 303 

geometric multiplicity, 404 
group, 28, 324 

symmetric, 27 



H 
homogeneity, 180 

I 
ideal, 56 

trivial, 63 
proper, 63 
prime, 64, 134 
simply generated, 123 

identity function, 19 
image, 16 
independent subset, 306, 325 
index set of a family, 190 
induction, definition by, 70 

2nd principle of, 90 
infinite set, 94 · 
injection, 16 
inner automorphism, 53, 337 
integers, 2, 82 
integers modulo n, 58 
integral domain, 43 

Euclidean, 132 
Gaussian, 146 
ordered, 84 
principal, 133 
unique factorization, 146 

intersection of a set, 48 
of a family, 191 

invariant factor, 375 
invariant factor matrix, 375 
inverse element, 33 

function, 20 
image, 17 

irreducible element, 133 
isomorphism, 51, 180 
isomorphism theorem, second, 315 

J 
Jordan canonical form, 397 

K 
kernal of a morphism, 60, 180, 317 

Klein's four-group, 333 
Kronecker delta, 194 

L 

Index 

Lagrange interpolation formula, 132 
Lagrange theorem, 330 
leading coefficient, 119 
line, 179 
linear combination, 195 
linear equations, 171, 265, 377 
linear independence, 197 
linear variety, 176 

M 
matrix, 158, 191 

two-by-two, 41 
of amorphism, 230 
defining equations of, 230 

matrix equivalence, 256 
matrix multiplication, 192 
matrix multiplication morphism, 241 
matrix similarity, 257 
maximal element, 63 
member of a set, 2 
minimal polynomial, 389 
minimum element, 86 
minor, 285, 368 
module, 161 

of endomorphisms, 236 
of morphisms, 228 

modulus of a complex number, 155 
monoid, 324 
monomorphism, 51 , 180 
morphism, 50, 180, 309, 333 
morphism theorem, fundamental, 25, 

61' 182,313,334 
multiple, I 04, 133 
multiplication of natural numbers, 74 

N 

natural numbers, 2, 67 
neutral element, 33 
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Index 

nonnal subgroup, 329 
submonoid, 329 
subring, 56 
subsystem, 316 

nonnalizer, 343 
nullity, 217 

0 
operation, binary, 32 

n-ary, 38, 298 
nullary, 38, 298 
unary, 38 

operation preserving function, 308 
operational subsystem, 301 

system, 298 
order, 10 

total, 84 
order of an element, 341 

p 

partial fractions, 144 
partition of a set, 12 
Peano axioms for natural numbers, 69 
pennutation, 28, 277 
plane, 179 
polynomial, 49, 119 

function, 126 
monic, 122 
ring, 120, 124 

positive subset, 83 
power, 27 

weak, 123 
power series, 149 
power set, 13 
preservation, operation, 50 
prime, 102, 134 
prime ideal, 134 
primitive polynomial, 147 
principal domain, 133 

ideal, 123, 133 
product of rings, 42 
proper subset, 3 
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Q 
quatemion, 46 
quotient map, 24 

R 

module, 176 
monoid, 328 
operational system, 313 
ring, 57 
set, 12, 24 

range of a function, 15 
of a module morphism, 180 

rank of a matrix, 263, 377 
of amorphism, 217 

rational numbers, 2, Ill 
real numbers, 2 
reducible element, 133 
reflexive relation, 3, 10 
relation, I 0 
relation preserving function, 310 
relational subsystem, 302 

system, 298 
relatively prime, 142 
remainder theorem, 132 
residue class ring, 58 
ring, 38 

unitary, 42 
root of a polynomial, 128 
row equivalence, 270 
row-reduced echelon fonn, 172, 269 

s 
scalar, 162 
sequence, 159 
sign of a pennutation, 277 
similar algebraic systems, 298 
similar matrices, 257 
simple group, 355 
singular matrix, 257 
size of an operation, 298 

of a relation, 298 
solvable group, 357 
standard basis, 20 I 

for £'(M, M'), 229 



subgroup, 324 
submodule, 164 
submonoid, 324 
subring, 46 
subset, 3 
successor, 68 
smjection, 16 
symmetric relation, 3, 10 
symmetric difference, 37 
symmetric group, 28 

T 
trace, 403 
transcendental element, 150 
transitive relation, 3, 10 
transpose of a matrix, 195, 243 
transposition, 278 
type of an algebraic system, 298 

u 
union, 4, 48 

disjoint, 11 
of a family, 191 

unity, 42 

V 
value of a function, 15 
vector, 162 
vector space, 162, 213 

w 
weak Cartesian product, 320, 353 
weak sum, 196 
well-ordered set, 87 
Wilson's theorem, 351 

z 
Zassenhaus lemma, 334 
zero system, 317 
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