










Preface

Mathematics majors at Michigan State University take a “Capstone”
course near the end of their undergraduate careers. The content
of this course varies with each offering. Its purpose is to bring
together different topics from the undergraduate curriculum and
introduce students to a developing area in mathematics. This text
was originally written for a Capstone course.

Basic wavelet theory is a natural topic for such a course. By name,
wavelets date back only to the 1980s. On the boundary between
mathematics and engineering, wavelet theory shows students that
mathematics research is still thriving, with important applications
in areas such as image compression and the numerical solution
of differential equations. The author believes that the essentials of
wavelet theory are sufficiently elementary to be taught successfully
to advanced undergraduates.

This text is intended for undergraduates, so only a basic
background in linear algebra and analysis is assumed. We do not
require familiarity with complex numbers and the roots of unity.
These are introduced in the first two sections of chapter 1. In the
remainder of chapter 1 we review linear algebra. Students should be
familiar with the basic definitions in sections 1.3 and 1.4. From our
viewpoint, linear transformations are the primary object of study;
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a matrix arises as a realization of a linear transformation. Many
students may have been exposed to the material on change of basis
in section 1.4, but may benefit from seeing it again. In section 1.5,
we ask how to pick a basis to simplify the matrix representation of
a given linear transformation as much as possible. We then focus on
the simplest case, when the linear transformation is diagonalizable.
In section 1.6, we discuss inner products and orthonormal bases. We
end with a statement of the spectral theorem for matrices, whose
proof is outlined in the exercises. This is beyond the experience of
most undergraduates.

Chapter 1 is intended as reference material. Depending on
background, many readers and instructors will be able to skip or
quickly review much of this material. The treatment in chapter 1 is
relatively thorough, however, to make the text as self-contained as
possible, provide a logically ordered context for the subject matter,
and motivate later developments.

The author believes that students should be introduced to Fourier
analysis in the finite dimensional context, where everything can be
explained in terms of linear algebra. The key ideas can be exhibited
in this setting without the distraction of technicalities relating to
convergence. We start by introducing the Discrete Fourier Transform
(DFT) in section 2.1. The DFT of a vector consists of its components
with respect to a certain orthogonal basis of complex exponentials.
The key point, that all translation-invariant linear transformations
are diagonalized by this basis, is proved in section 2.2. We turn to
computational issues in section 2.3, where we see that the DFT can
be computed rapidly via the Fast Fourier Transform (FFT).

It is not so well known that the basics of wavelet theory can
also be introduced in the finite dimensional context. This is done
in chapter 3. The material here is not entirely standard; it is an
adaptation of wavelet theory to the finite dimensional setting. It has
the advantage that it requires only linear algebra as background. In
section 3.1, we search for orthonormal bases with both space and
frequency localization, which can be computed rapidly. We are led
to consider the even integer translates of two vectors, the mother and
father wavelets in this context. The filter bank arrangement for the
computation of wavelets arises naturally here. By iterating this filter
bank structure, we arrive in section 3.2 at a multilevel wavelet basis.
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Examples and applications are discussed in section 3.3. Daubechies’s
wavelets are presented in this context, and elementary compression
examples are considered. A student familiar with MatLab, Maple, or
Mathematica should be able to carry out similar examples if desired.

In section 4.1 we change to the infinite dimensional but discrete
setting �2(Z), the square summable sequences on the integers.
General properties of complete orthonormal sets in inner product
spaces are discussed in section 4.2. This is first point where analysis
enters our picture in a serious way. Square integrable functions
on the interval [−π, π) and their Fourier series are developed in
section 4.3. Here we have to cheat a little bit: we note that we
are using the Lebesgue integral but we don’t define it, and we
ask students to accept certain of its properties. We arrive again at
the key principle that the Fourier system diagonalizes translation-
invariant linear operators. The relevant version of the Fourier
transform in this setting is the map taking a sequence in �2(Z)
to a function in L2([−π, π)) whose Fourier coefficients make up
the original sequence. Its properties are presented in section 4.4.
Given this preparation, the construction of first stage wavelets on
the integers (section 4.5) and the iteration step yielding a multilevel
basis (section 4.6) are carried out in close analogy to the methods
in chapter 3. The computation of wavelets in the context of �2(Z)
is discussed in section 4.7, which includes the construction of
Daubechies’s wavelets on Z. The generators u and v of a wavelet
system for �2(Z) reappear in chapter 5 as the scaling sequence and
its companion.

The usual version of wavelet theory on the real line is presented
in chapter 5. The preliminaries regarding square integrable func-
tions and the Fourier transform are discussed in sections 5.1 and 5.2.
The facts regarding Fourier inversion in L2(R) are proved in detail,
although many instructors may prefer to assume these results. The
Fourier inversion formula is analogous to an orthonormal basis rep-
resentation, using an integral rather than a sum. Again we see that
the Fourier system diagonalizes translation-invariant operators. Mal-
lat’s theorem that a multiresolution analysis yields an orthonormal
wavelet basis is proved in section 5.3. The aformentioned relation
between the scaling sequence and wavelets on �2(Z) allows us to
make direct use of the results of chapter 4. The conditions under
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which wavelets on �2(Z) can be used to generate a multiresolution
analysis, and hence wavelets on R, are considered in section 5.4.
In section 5.5, we construct Daubechies’s wavelets of compact sup-
port, and show how the wavelet transform is implemented using
filter banks.

We briefly consider the application of these results to numerical
differential equations in chapter 6. We begin in section 6.1 with
a discussion of the condition number of a matrix. In section
6.2, we present a simple example of the numerical solution of a
constant coefficient ordinary differential equation on [0, 1] using
finite differences. We see that although the resulting matrix is
sparse, which is convenient, it has a condition number that grows
quadratically with the size of the matrix. By comparison, in section
6.3, we see that for a wavelet-Galerkin discretization of a uniformly
elliptic, possibly variable-coefficient, differential equation, the
matrix of the associated linear system can be preconditioned to be
sparse and to have bounded condition number. The boundedness
of the condition number comes from a norm equivalence property
of wavelets that we state without proof. The sparseness of the
associated matrix comes from the localization of the wavelet system.
A large proportion of the time, the orthogonality of wavelet basis
members comes from their supports not overlapping (using wavelets
of compact support, say). This is a much more robust property,
for example with respect to multiplying by a variable coefficient
function, than the delicate cancellation underlying the orthogonality
of the Fourier system. Thus, although the wavelet system may not
exactly diagonalize any natural operator, it nearly diagonalizes (in
the sense of the matrix being sparse) a much larger class of operators
than the Fourier basis.

Basic wavelet theory includes aspects of linear algebra, real
and complex analysis, numerical analysis, and engineering. In
this respect it mimics modern mathematics, which is becoming
increasingly interdisciplinary.

This text is relatively elementary at the start, but the level
of difficulty increases steadily. It can be used in different ways
depending on the preparation level of the class. If a long time is
required for chapter 1, then the more difficult proofs in the later
chapters may have to be only briefly outlined. For a more advanced
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group, most or all of chapter 1 could be skipped, which would leave
time for a relatively thorough treatment of the remainder. A shorter
course for a more sophisticated audience could start in chapter
4 because the main material in chapters 4 and 5 is technically,
although not conceptually, independent of the content of chapters
2 and 3. An individual with a solid background in Fourier analysis
could learn the basics of wavelet theory from sections 4.5, 4.7, 5.3,
5.4, 5.5, and 6.3 with only occasional references to the remainder of
the text.

This volume is intended as an introduction to wavelet theory
that is as elementary as possible. It is not designed to be a thorough
reference. We refer the reader interested in additional information
to the Bibliography at the end of the text.

Michigan State University M. Frazier

April 1999
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Prologue: Compression of

the FBI Fingerprint Files

When your local police arrest somebody on a minor charge, they
would like to check whether that person has an outstanding warrant,
possibly in another state, for a more serious crime. To check, they
can send his or her fingerprints to the FBI fingerprint archive
in Washington, D.C. Unfortunately, the FBI cannot compare the
received fingerprints with their records rapidly enough to make
an identification before the suspect must be released. A criminal
wanted on a serious charge will most likely have vacated the area
by the time the FBI has provided the necessary identification.

Why does it take so long? The FBI fingerprint files are stored
on fingerprint cards in filing cabinets in a warehouse that occupies
about an acre of floor space. The logistics of the search procedure
make it impossible to proceed sufficiently rapidly.

The solution to this seems obvious—the FBI fingerprint data
should be computerized and searched electronically. After all, this
is the computer age. Why hasn’t this been done long ago?

Data representing a fingerprint image can be stored on a
computer in such a way that the image can be reconstructed with
sufficient accuracy to allow positive identification. To do this, the
fingerprint image is scanned and digitized. Each square inch of the
fingerprint image is broken into a 500 by 500 grid of small boxes,
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FIGURE 1 Original fingerprint image (Courtesy of Chris Brislawn, Los
Alamos National Laboratory)

called pixels. Each pixel is given a gray-scale value corresponding to
its darkness, on a scale from 0 to 255. Because the integers from 0
to 255 can be represented in base 2 using eight places (that is, each
integer between 0 and 255 corresponds to an 8-digit sequence of
zeros and ones), it takes eight binary data bits to specify the darkness
of one pixel. (One digit in base 2 represents a single data bit, which
electronically corresponds to the difference between a switch being
on or off.) A portion of a fingerprint scanned in this way is exhibited
in Figure ??.
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Consider the amount of data required for a single fingerprint
card. Each rolled fingerprint is about 1.5 inches by 1.6 inches, with
5002 � 250,000 pixels per square inch, each requiring eight data bits
(one data byte). So each fingerprint requires about 600,000 data bytes.
A card includes all 10 rolled fingerprints, plus 2 unrolled thumb
impressions and 2 impressions of all 5 fingers on a hand. The result
is that each card requires about 10 megabytes of data (a megabyte is
one million bytes). This is still manageable for modern computers,
which frequently have several gigabytes of memory (a gigabyte is a
billion, or 109, bytes). Electronic transmission of the data on a card
is feasible, although slow. So it is possible for the police to send the
necessary data electronically to the FBI while the suspect is still in
custody.

However, the FBI has about 200 million fingerprint cards in its
archive. (Many are for deceased individuals, and there are some
duplications—apparently the FBI is not good at throwing things
away.) Hence digitizing the entire archive would require roughly 2
× 1015 data bytes, or about 2,000 terabytes (a terabyte is 1012 bytes)
of memory. This represents more data than current computers can
store. Even if we restrict to cards corresponding to current criminal
suspects, we are dealing with about 29 million cards (with some
duplications due to aliases), or roughly 2 × 1014 data bytes. Thus it
would require about 60,000 3-gigabyte hard drives to store. This is
too much, even for the FBI. Even if this large of a data base could be
stored, it could not be rapidly searched. Yet it is not astronomically
too large. If the amount of data could be cut by a factor of about 20, it
could be stored on roughly 3,000 3-gigabyte hard drives. This is still a
lot, but not an unimaginable amount for a government agency. Thus
what is needed is a method to compress the data, that is, to represent
the information using less data while retaining enough accuracy to
allow positive identification.

Data compression is a major field in signal analysis, with a long
history. The current industry standard for image compression was
written by the Joint Photographic Experts Group, known as JPEG.
Many, perhaps most, of the image files that are downloaded on the
Internet are compressed with this standard, which is why they end
in the suffix “jpg.” The FBI solicitated proposals for compressing
their fingerprint files a few years ago. Different groups proposing
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different methods responded to the FBI solicitation. The contract
was awarded to a group at the Los Alamos National Laboratory,
headed by Jonathan Bradley and Christopher Brislawn; the project
leader was Tom Hopper from the FBI. They proposed compression
using the recently developed theory of wavelets. An account of this
project can be found in Brislawn (1995).

To see the reason the wavelet proposal was accepted instead of
proposals based on JPEG, consider the images in Figures ?? and ??.
Both contain compressions by a factor of about 13 of the fingerprint
image in Figure ??. Figure ?? shows the compression using JPEG,
and Figure ?? exhibits the wavelet compression. One feature of JPEG
is that it first divides a large image into smaller boxes, and then
compresses in these smaller boxes independently. This provides
some advantages due to local homogeneities in the image, but the
disadvantage is that the subimages may not align well at the edges of
the smaller boxes. This causes the regular pattern of horizontal and
vertical lines seen in Figure ??. These are called block artifacts, or
block lines for short. These are not just a visual annoyance, they also
are an impediment to machine recognition of fingerprints. Wavelet
compression methods do not require dividing the image into smaller
blocks because the desired localization properties are naturally built
into the wavelet system. Hence the wavelet compression in Figure
?? does not show block lines. This is one of the main reasons
that the FBI fingerprint compression contract was awarded to the
wavelet group. We introduce both Fourier compression and wavelet
compression in section 3.3 of this text.

The examples of fingerprint file compression in Figures ?? and
?? show that mathematics that has been developed recently (within
the last 10 or 12 years) has important practical applications.
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FIGURE 2 JPEG compression (Courtesy of Chris Brislawn, Los Alamos
National Laboratory)
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FIGURE 3 Wavelet compression (Courtesy of Chris Brislawn, Los
Alamos National Laboratory)



1
C H A P T E R

...........................................

Background:
Complex
Numbers and
Linear Algebra

1.1 Real Numbers and Complex
Numbers

We start by setting some notation. The natural numbers {1, 2, 3, 4, . . .}
will be denoted by N, and the integers {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}
by Z. Complex numbers will be introduced later. We assume
familiarity with the real numbers R and their properties, which we
briefly summarize here. The basic algebraic properties of R follow
from the fact that R is a field.

Definition 1.1 A field (F,+, ·) is a set F with operations +
(called addition) and · (called multiplication) satisfying the following
properties:

A1. (Closure for addition) For all x, y ∈ F, x + y is defined and is an
element of F.

A2. (Commutativity for addition) x + y � y+ x, for all x, y ∈ F.

A3. (Associativity for addition) x + (y + z) � (x + y) + z, for all
x, y, z ∈ F.

A4. (Existence of additive identity) There exists an element in F,
denoted 0, such that x + 0 � x for all x ∈ F.

7
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A5. (Existence of additive inverse) For each x ∈ F, there exists an
element in F, denoted −x, such that x + (−x) � 0.

M1. (Closure for multiplication) For all x, y ∈ F, x · y is defined and is
an element of F.

M2. (Commutativity for multiplication) x · y � y · x, for all x, y ∈ F.

M3. (Associativity for multiplication) x · (y · z) � (x · y) · z, for all
x, y, z ∈ F.

M4. (Existence of multiplicative identity) There exists an element in
F, denoted 1, such that 1 	� 0 and x · 1 � x for all x ∈ F.

M5. (Existence of multiplicative inverse) For each x ∈ F such that
x 	� 0, there exists an element in F, denoted x−1 (or 1/x), such
that x · (x−1) � 1.

D. (Distributive law) x · (y+ z) � (x · y)+ (x · z), for all x, y, z ∈ F.

We emphasize that in principle the operations + and · in
Definition 1.1 could be any operations satisfying the required
properties. However, in our main examples R and C, these are
the usual addition and multiplication. In particular, with the usual
meanings of + and · , (R,+, ·) forms a field. We usually omit · and
write xy in place of x · y. All of the usual basic algebraic properties
(such as −(−x) � x) of R follow from the field properties. This
is shown in most introductory analysis texts. We assume all these
familiar properties in this text.

An ordered field is a field F with a relation < satisfying properties
O1–O4. The first two properties state that F is an ordered set.

O1. (Comparison principle) If x, y ∈ F, then one and only one of the
following holds:

x < y, y < x, y � x.

O2. (Transitivity) If x, y, z ∈ F, with x < y and y < z, then x < z.

The remaining two properties state that the operations + and ·
defined on F are consistent with the ordering <:

O3. (Consistency of + with <) If x, y, z ∈ F and y < z, then
x + y < x + z.

O4. (Consistency of · with<) If x, y ∈ F, with 0 < x and 0 < y, then
0 < xy.
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We assume the fact that R with the usual relation < forms an
ordered field. All of the standard order properties of R (such as, if
0 < x then −x < 0) follow from O1–O4. We assume such basic
facts as needed. We use the standard notations x > y, with the same
meaning as y < x, and x ≤ y (equivalently y ≥ x), meaning that
either x < y or x � y.

For x ∈ R, we denote the absolute value, or magnitude, of x by
|x|, where |x| � x if x ≥ 0 and |x| � −x if x < 0. Then |x| ≥ 0 for all
x ∈ R, and |x| � 0 if and only if x � 0.

Lemma 1.2 (Triangle inequality in R) If x, y ∈ R, then

|x + y| ≤ |x| + |y|.
Proof
Exercise 1.1.1

We interpret |x−y| as the distance between the points x and y in
R. (See Exercise 1.1.2). This leads to the notion of the convergence
of a sequence.

Definition 1.3 Let M ∈ Z and x ∈ R. A sequence {xn}∞n�M of real
numbers converges to x if, for all ε > 0, there exists N ∈ N such that
|xn−x| < ε for all n > N . A sequence {xn}∞n�M converges if it converges
to some x ∈ R.

Definition 1.4 A sequence {xn}∞n�M of real numbers is a Cauchy
sequence if, for all ε > 0, there exists N ∈ N such that |xn − xm| < ε

for all n,m > N .

The rational numbers Q form an ordered field. The property that
distinguishes R is its completeness. In many texts, this is formulated
as the least upper bound property, namely that every nonempty set
of real numbers that is bounded above has a least upper bound. The
least upper bound property implies the following result, which we
assume.

Theorem 1.5 (Cauchy criterion for convergence of a sequence)
Every Cauchy sequence of real numbers converges.

The Cauchy criterion allows us to prove that a sequence
converges without knowing the value of the limit. This is especially
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useful when we consider series. The converse of the Cauchy
criterion (i.e., that any convergent sequence is Cauchy) is true also
(Exercise 1.1.3).

We have seen that R (with the usual addition and multiplication)
forms a complete ordered field. This characterizes R: any other
complete ordered field is essentially the same as R except for the
choices of names or notation given to the elements and operations
(more precisely, any other complete ordered field is “isomorphic” to
R). We will not prove this.

Most of the work in this text is done over the complex numbers C.
The complex numbers also form a complete field (but not an ordered
field; see Exercise 1.1.4). One (somewhat mysterious) way to define
C is to assume the existence of some sort of generalized number (not
a real number) i that satisfies i2 � −1. Then C is defined as the set of
all numbers of the form z � x+ iy where x, y ∈ R. We then give C the
usual addition and multiplication operations: for x1, x2, y1, y2 ∈ R,

(x1 + iy1)+ (x2 + iy2) � (x1 + x2)+ i(y1 + y2) (1.1)

and

(x1 + iy1) · (x2 + iy2) � (x1x2 − y1y2)+ i(x1y2 + x2y1), (1.2)

which is what you get if you formally multiply things out and use
the relation i2 � −1. (To be precise we should emphasize that we are
defining the operations+ and · on C in the left side of equations (1.1)
and (1.2), using the usual+,−, and · defined on R on the right side.)
As before, we usually write zw instead of z ·w. The only problem is
that none of this makes sense if the hypothesized number i does not
exist.

The simplest way around this is to let

C̃ � R× R � {(x, y) : x, y ∈ R}
with operations + and · defined by

(x1, y1)+ (x2, y2) � (x1 + x2, y1 + y2) (1.3)

and

(x1, y1) · (x2, y2) � (x1x2 − y1y2, x1y2 + x2y1), (1.4)
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where the +,−, and · on the right side of equations (1.3) and (1.4)
are the standard operations on R. There is no question that these
definitions make sense. Note that equation (1.3) is essentially (1.1)
and equation (1.4) is essentially (1.2).

Observe that

R× {0} � {(x, 0) : x ∈ R}
is a copy of R; that is, the map (x, 0) → x is a one-to-one
correspondence that identifies R× {0} with R. The equations

(x1, 0)+ (x2, 0) � (x1 + x2, 0)

and

(x1, 0) · (x2, 0) � (x1x2 − 0 · 0, x1 · 0+ x2 · 0) � (x1x2, 0)

show that the restrictions of the operations (1.3) and (1.4) to R×{0}
are consistent with the usual operations on R. Thus R is imbedded in
C̃ in a way that preserves the addition and multiplication operations.

By equation (1.4),

(0, 1) · (0, 1) � (0 · 0− 1 · 1, 0 · 1+ 0 · 1) � (−1, 0).

Hence the equation z2 � (−1, 0) has a solution (0, 1) in C̃ (actually
two solutions, the other being (0,−1)), even though it has no solution
in R× {0}. Since we identify (−1, 0) ∈ C̃ with −1 ∈ R, this says that
the equation z2 � −1 has a solution in the larger set C̃ even though it
has none in R. There is nothing inconsistent or even very surprising
about this.

Now we define

i � (0, 1).

For x ∈ R, we write x in place of (x, 0). Note that for y ∈ R,

iy � yi � (y, 0) · (0, 1) � (0, y),

by equation (1.4). Thus we obtain

(x, y) � (x, 0)+ (0, y) � x + iy.

In this notation, equations (1.3) and (1.4) give us (1.1) and (1.2), and
we are back where we started, but without fear of inconsistency.
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It is important to go through this exercise in notation once.
However, in practice nobody uses the notation (x, y) for complex
numbers, preferring to keep that for the vector space R2 (see section
1.3). We follow the standard terminology here: we call the set of
complex numbers C, forgetting about C̃ forever, and we denote the
elements of C in the usual way, namely

z � x + iy, where x, y ∈ R.

We call x the real part of z, and y the imaginary part (a particularly
poor name, undoubtedly coming from a failure on somebody’s
part to understand the construction we have just considered). We
sometimes write

Re z and Im z

to denote the real and imaginary parts of z, respectively.
We regard points z � x+ iy as points in the plane, where one axis

(the real axis) contains the points x ∈ R, and the perpendicular axis
(the imaginary axis) contains the points iy, for y ∈ R. In this plane
(the complex plane), the point x+ iy occupies the same position that
(x, y) holds in R2.

Definition 1.6 Let z � x+ iy ∈ C. Define the complex conjugate z

of z by

z � x − iy,

the modulus squared of z by

|z|2 � zz � (x + iy)(x − iy) � x2 + y2,

and the modulus or magnitude |z| of z by

|z| �
√
|z|2 �

√
x2 + y2.

These definitions yield the following properties.

Lemma 1.7 Suppose z, w ∈ C. Then

z � z,

Re z � z+z
2 , Im z � z−z

2i ,

z +w � z +w, z ·w � z ·w,
|z| � |z|, |zw| � |z||w|,



1.1. Real Numbers and Complex Numbers 13

|Re z| ≤ |z|, and | Im z| ≤ |z|.
Proof
Exercise 1.1.5.

When proving statements about complex numbers, students
often first reformulate these statements in terms of real numbers.
This temptation should usually be avoided because the proof in
complex notation is often simpler.

Lemma 1.8 (Triangle inequality for C) Suppose z, w ∈ C. Then

|z +w| ≤ |z| + |w|.
Proof
Exercise 1.1.6.

Similarly to the case for R above, we think of |z−w| as the distance
in the complex plane between the points z andw (see Exercise 1.1.7).
Note that if z1 � x1 + iy1 and z2 � x2 + iy2, then

|z1 − z2| � |x1 − x2 + i(y1 − y2)| �
√

(x1 − x2)2 + (y1 − y2)2,

which is the same as the usual distance in R2 between the points
(x1, y1) and (x2, y2).

We can now check that (C,+, ·) is a field (Exercise 1.1.8). The
additive identity is 0 � 0 + i0, and the multiplicative identity is
1 � 1+ i0. The additive inverse of z � x+ iy is −z � −x− iy. To find
the multiplicative inverse of a nonzero z � x + iy, we guess

1
z
� 1

z
· z
z
� z

|z|2 �
x − iy

x2 + y2
� x

x2 + y2
+ i

−y
x2 + y2

.

This does not make sense yet because we have not defined the
division of two complex numbers, but we can check that the complex
number

x

x2 + y2
+ i

−y
x2 + y2

is in fact the multiplicative inverse of x + iy (assuming x + iy 	� 0).
This determines z−1 for nonzero z ∈ C, and we define

z

w
� z ·w−1 for z, w ∈ C with w 	� 0.
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Lemma 1.9 Suppose z, w ∈ C with w 	� 0. Then( z
w

)
� z

w
,

and ∣∣∣ z
w

∣∣∣ � |z||w| .
Proof
Exercise 1.1.9.

The definitions relating to the convergence of a sequence of
complex numbers are formally the same as Definitions 1.3 and 1.4.

Definition 1.10 Let M ∈ N and z ∈ C. A sequence {zn}∞n�M of
complex numbers converges to z if, for all ε > 0, there exists N ∈ N

such that |zn − z| < ε for all n > N . We say {zn}∞n�M converges if it
converges to some z ∈ C.

The notations limn→+∞ zn � z and zn → z are used to indicate
that {zn}∞n�M converges to z.

Definition 1.11 A sequence {zn}∞n�M of complex numbers is aCauchy
sequence if, for all ε > 0, there exists N ∈ N such that |zn − zm| < ε

for all n,m > N .

This leads to the Cauchy criterion for the convergence of a
sequence of complex numbers.

Theorem 1.12 (Completeness of C)A sequence of complex numbers
converges if and only if it is a Cauchy sequence.

Proof
Exercise 1.1.10.

A sequence {xn}+∞n�M of real numbers can be regarded as a
sequence of complex numbers. However, it is easy to see that the
sequence converges in the real sense if and only if it converges
in the complex sense, with the same limit (compare with Exercise
1.1.10). Hence there is no ambiguity in the definitions, and we write
limn→∞ xn without specifying the field in which convergence takes
place.
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Exercises

1.1.1. Prove Lemma 1.2.
1.1.2. Let X be a set. A metric, or distance function, on X is a map

d : X× X→ {t ∈ R : t ≥ 0} satisfying the properties:
Me1. (Symmetry) d(x, y) � d(y, x) for all x, y ∈ X;
Me2. (Nondegeneracy) d(x, y) � 0 if and only if x � y;
Me3. (Metric triangle inequality) d(x, z) ≤ d(x, y)+ d(y, z) for

all x, y, z ∈ X.
A metric space (X, d) is a set X with a metric d.
For x, y ∈ R, define d(x, y) � |x − y|. Prove that d is a

metric on R.
1.1.3. Prove that a convergent sequence {xn}∞n�M of real numbers

is a Cauchy sequence.
1.1.4. Let F with the relation < be an ordered field.

i. Suppose x ∈ F and x 	� 0. Prove that x2 > 0.
ii. Prove that there is no ordering < on the field C that

makes C an ordered field. Hint: Suppose by contradiction
that < is such an ordering. Use part i to obtain 0 < −1.
Argue that this is a contradiction, keeping in mind that
< is not necessarily the usual ordering when restricted
to R.

1.1.5. Prove Lemma 1.7.
1.1.6. Prove Lemma 1.8. Suggestion: Do not write it out in terms

of the real and imaginary parts. Instead, prove that

|z +w|2 � (z +w)(z +w) � |z|2 + 2 Re(zw)+ |w|2

and use Lemma 1.7.
1.1.7. For z, w ∈ C, define d(z, w) � |z − w|. Prove that (C, d) is a

metric space (see Exercise 1.1.2 for the definition). Draw a
picture in the complex plane to show why condition Me3 in
Exercise 1.1.2 is called the triangle inequality.

1.1.8. Verify that C with the operations (1.1) and (1.2) is a field by
checking properties A1–A5, M1–M5, and D.

1.1.9. Prove Lemma 1.9.
1.1.10. Let {zn}∞n�M be a sequence of complex numbers. For each n,

let zn � xn + iyn, where xn, yn ∈ R.



1. Background: Complex Numbers and Linear Algebra16

i. Prove that {zn}∞n�M is a Cauchy sequence of complex
numbers (Definition 1.11) if and only if {xn}∞n�M and
{yn}∞n�M are Cauchy sequences of real numbers (Defi-
nition 1.4).

ii. Prove that {zn}∞n�M converges to some z � x + iy ∈ C

(Definition 1.10), where x, y ∈ R, if and only if {xn}∞n�M
converges to x and {yn}∞n�M converges to y (Definition
1.3).

iii. Assuming Theorem 1.5, prove Theorem 1.12.

1.2 Complex Series, Euler’s Formula,
and the Roots of Unity

We begin with series of complex numbers. Particular cases of interest
are geometric series and the power series for sin z, cos z, and ez.
Using these we establish Euler’s formula eiθ � cos θ+i sin θ. This will
lead to the polar representation of complex numbers and allow us
to calculate N th roots of complex numbers, especially the N th “roots
of unity,” the roots of the number 1. In chapter 2 we write Fourier
expansions of vectors using the complex exponentials introduced
here.

We begin with the definition of convergence of a series of
complex numbers, which is formally the same as for a series of real
numbers.

Definition 1.13 A series of complex numbers, or complex series,is
an expression of the form

∞∑
n�M

zn,

where each zn is a complex number and M ∈ Z. For k ≥ M, let

sk �
k∑

n�M
zn
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be the kth partial sum of the series. If the complex sequence {sk}∞k�M
converges to some s ∈ C (Definition 1.10), we say the series

∑∞
n�M zn

converges to s or
∑∞

n�M zn � s. If the sequence {sk}∞k�M does not
converge, we say the series diverges.

This definition together with the Cauchy criterion for conver-
gence of a complex sequence (Theorem 1.12) imply that a series
converges if and only if its partial sums form a Cauchy sequence.

Lemma 1.14 (Cauchy criterion for convergence of a series) A
series of complex numbers

∑∞
n�M zn converges if and only if for every

ε > 0, there exists an integer N such that
∣∣∑m

n�k zn
∣∣ < ε for all

m ≥ k > N .

Proof
Exercise 1.2.1.

Corollary 1.15 (nth term test) If a complex series
∑∞

n�M zn
converges, then limn→+∞ zn � 0.

Proof
Exercise 1.2.2.

Corollary 1.16 (Comparison test) Let
∑∞

n�M zn be a complex series
and

∑∞
n�M an a series of nonnegative real numbers. Suppose that there

exists an integer N such that |zn| ≤ an for all n ≥ N , and that
∑∞

n�M an
converges. Then

∑∞
n�M zn converges.

Proof
Exercise 1.2.3.

If the elements of the series are real numbers, they can be
regarded as complex and the definitions of convergence for real and
complex series are consistent. So from now on we use the term
“series” without specifying whether the terms are real or complex.

Definition 1.17 A series
∑∞

n�M zn converges absolutely if
∑∞

n�M |zn|
converges.

The comparison test shows that an absolutely convergent series
is convergent. If a series is convergent but not absolutely convergent,
reindexing the terms can yield a series converging to a different
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value (Exercise 1.2.4). This cannot happen with an absolutely
convergent series.

The Cauchy criterion and the comparison test enable us to
determine that a series converges without determining its value.
It is rare that a series can be exactly evaluated. Geometric series are
one of the exceptions.

Definition 1.18 A geometric series is a series of the form
∞∑
n�0

zn � 1+ z + z2 + z3 + · · · ,

for some z ∈ C.

Note that the partial sum of the geometric series is

sk � 1+ z + z2 + z3 + z4 + · · · + zk−1 + zk.

This is one of the few cases in which the partial sum can be evaluated
in closed form. To do this, observe that

(1− z)sk � 1+ z + z2 + · · · + zk − (z + z2 + · · · + zk + zk+1).

All terms on the right cancel out except the first and the last (this is
called a telescoping sum), so

(1− z)sk � 1− zk+1.

We can divide by 1− z (as long as it is not 0) to obtain

sk �
k∑

n�0

zn � 1+ z + z2 + · · · + zk � 1− zk+1

1− z
for z 	� 1. (1.5)

When z � 1, the definition yields sk � k+1. Using relation (1.5), we
obtain the following result.

Theorem 1.19 (Geometric series test) Let z ∈ C. The geometric
series

∑∞
n�0 z

n converges to 1/(1− z) if |z| < 1, and diverges if |z| ≥ 1.
The convergence for |z| < 1 is absolute.

Proof
Exercise 1.2.5.

We remark that relation (1.5) is a useful formula that we apply
for other purposes in chapter 2. We now consider power series.
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Definition 1.20 Fix a point z0 ∈ C. A power series about z0 is a
series of the form

∞∑
n�0

an(z − z0)n,

where an ∈ C for each integer n ≥ 0.

A power series has a radius of convergence, which is determined
by the coefficients {an} by the formula in Exercise 1.2.7. A function
f defined on an open set O ⊆ C (a set having the property that any
point in it has a ball of positive radius around it that is contained in
the set) is said to be analytic if at every point z ∈ O, f is represented
by a power series about z with a positive radius of convergence. We
barely touch the rich subject of complex analysis, the study of analytic
functions.

From calculus we recall that

sin x �
∞∑
n�0

(−1)n
x2n+1

(2n + 1)!
, cos x �

∞∑
n�0

(−1)n
x2n

(2n)!
, and ex �

∞∑
n�0

xn

n!
,

(1.6)
in the sense that these series converge absolutely to the stated
function values at every x ∈ R. Because these series converge
absolutely, the series

∞∑
n�0

r2n+1

(2n + 1)!
,

∞∑
n�0

r2n

(2n)!
, and

∞∑
n�0

rn

n!

converge for every real number r. By replacing r with |z|, we see
that the complex series

∞∑
n�0

(−1)n
z2n+1

(2n + 1)!
,

∞∑
n�0

(−1)n
z2n

(2n)!
, and

∞∑
n�0

zn

n!

converge absolutely for all complex numbers z. This can also be seen
by the ratio test (Exercise 1.2.6). In any case, the following definition
makes sense.

Definition 1.21 For all z ∈ C, let

sin z �
∞∑
n�0

(−1)n
z2n+1

(2n + 1)!
, cos z �

∞∑
n�0

(−1)n
z2n

(2n)!
, and ez �

∞∑
n�0

zn

n!
.

(1.7)
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When z is real, relations (1.6) and (1.7) agree. So Definition 1.21
extends the usual sine, cosine, and exponential functions to all of
C. Many of the key properties of the real-valued sine and cosine
functions in relation (1.6) continue to hold in the complex case. For
example, relation (1.7) implies that

cos(−z) � cos z and sin(−z) � − sin z, (1.8)

for all z ∈ C. Equation (1.7) leads to Euler’s formula, a very elegant
and useful identity.

Theorem 1.22 (Euler’s formula) For every z ∈ C,

eiz � cos z + i sin z. (1.9)

Proof
We apply relation (1.7) with iz in place of z and collect the even and
odd powers of z:

eiz � 1+ iz + (iz)2

2
+ (iz)3

3!
+ (iz)4

4!
+ (iz)5

5!
+ (iz)6

6!
+ · · ·

� (1+ i2z2

2
+ i4z4

4!
+ i6z6

6!
+ · · ·)+ (iz + i3z3

3!
+ i5z5

5!
+ · · ·)

� (1− z2

2
+ z4

4!
− z6

6!
+ · · ·)+ i(z − z3

3!
+ z5

5!
− · · ·)

� cos z + i sin z.

This remarkable formula includes curious facts such as−eiπ � 1.
Applying Euler’s formula with−z in place of z and using equation

(1.8) gives the alternate formula

e−iz � cos z − i sin z. (1.10)

Adding and subtracting equations (1.9) and (1.10) gives

cos z � eiz + e−iz

2
and sin z � eiz − e−iz

2i
. (1.11)

Although these formulae hold for all complex numbers z, our
main interest in them is in the case when z is real. For θ ∈ R, we
have

eiθ � cos θ + i sin θ, e−iθ � cos θ − i sin θ, (1.12)
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cos θ � eiθ + e−iθ

2
, and sin θ � eiθ − e−iθ

2i
. (1.13)

For θ ∈ R, equation (1.12) implies that

eiθ � e−iθ (1.14)

and

|eiθ| � 1. (1.15)

Our main interest in the next result is in the special case where
z and w are purely imaginary, which yields

eiθeiϕ � ei(θ+ϕ) for all θ, ϕ ∈ R. (1.16)

This case can be proved using equation (1.12) and elementary
trigonometry (Exercise 1.2.9(i)).

Lemma 1.23 Suppose z, w ∈ C. Then

ez+w � ezew.

Proof
Exercise 1.2.9(ii).

As an application of equation (1.16), note that for θ ∈ R and
n ∈ N,

(eiθ)n � einθ. (1.17)

This equation can be used to obtain elementary trigonometric
identities easily. For example, it is clear that by iterating the addition
formulae for sine and cosine, we can write sin nθ and cosnθ in terms
of sin θ and cos θ (in fact as polynomials in sin θ and cos θ). But
equation (1.17) gives a faster way.

Example 1.24
Express sin 4θ and cos 4θ in terms of sin θ and cos θ.

Solution
First,

e4iθ � cos 4θ + i sin 4θ.

But we also have

e4iθ � (eiθ)4 � (cos θ + i sin θ)4.
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By expanding this expression, using i2 � −1, we have

(cos θ + i sin θ)4 � cos4 θ + 4i cos3 θ sin θ − 6 cos2 θ sin2 θ

− 4i cos θ sin3 θ + sin4 θ.

By equating the real and imaginary parts of this last expression with
cos 4θ and sin 4θ, we have

cos 4θ � cos4 θ − 6 cos2 θ sin2 θ + sin4 θ,

and

sin 4θ � 4 cos3 θ sin θ − 4 cos θ sin3 θ.

Further, equation (1.12) leads to the polar representation of
complex numbers. Suppose z � x + iy ∈ C, with x, y ∈ R and z 	� 0.
The point (x/

√
x2 + y2, y/

√
x2 + y2) has distance 1 from the origin

in R2 and so lies on the unit circle. Hence there exists an angle θ

(in fact infinitely many of them) such that cos θ � x/
√
x2 + y2 and

sin θ � y/
√
x2 + y2. Using equation (1.12),

z � |z|x + iy

|z| � |z|
(

x√
x2 + y2

+ i
y√

x2 + y2

)

� |z|(cos θ + i sin θ) � |z|eiθ.
By letting r � |z|, we have

z � reiθ � r cos θ + ir sin θ.

So reiθ occupies the same point in C that the point with polar
coordinates (r, θ) occupies in R2. We call reiθ the polar representation
of z. We call θ the argument of z, written θ � arg z. Thus r is the
distance in C from z to the origin, and θ is the angle, in radians,
between the positive x-axis and the ray from 0 to z. For z � 0, we
define the polar representation to be r � 0 and we do not define
arg 0.

As in the case of polar coordinates in R2, the polar representation
of a nonzero z ∈ C is not unique. By equation (1.12) and the fact that
the sine and cosine functions have period 2π, we have

reiθ � rei(θ+2kπ) (1.18)
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for any integer k. So arg z is determined only up to adding 2kπ for
some k ∈ Z. If we select arg z so that −π < arg z ≤ π, we call this
the principal value of the argument.

The polar representation gives geometric interpretation to the
multiplication of complex numbers. Suppose z1 � r1e

iθ1 and z2 �
r2e

iθ2 . Then

z1z2 � r1e
iθ1r2e

iθ2 � r1r2e
i(θ1+θ2),

by equation (1.16). Thus the modulus of the product is the product
of the moduli (which we already knew by Lemma 1.7) and the
argument of the product is the sum of the arguments. In other words,
the effect of multiplying a complex number z by reiθ is to multiply
the distance from z to the origin by r and to rotate z by an angle of
θ radians in the counterclockwise direction.

The polar representation makes the computation of positive
integer powers of complex numbers easier, since, for n ∈ N,

(reiθ)n � rn(eiθ)n � rneinθ,

by equation (1.17).

Example 1.25
Find (1+ i)43.

Solution
One polar representation of 1 + i is

√
2eiπ/4, since |1 + i| � √2 and

(cosπ/4, sin π/4) � (1/
√

2, 1/
√

2). So

(1+ i)43 � (
√

2)43ei43π/4 � 221
√

2ei(3π/4+10π)

� 221
√

2ei3π/4 � 221
√

2
(

cos
3π
4
+ i sin

3π
4

)
� −221 + i221.

For comparison, imagine trying to do this problem directly.
The polar representation also allows us to find roots of complex

numbers. First consider an example, which we will solve below after
some discussion.

Example 1.26
Find all 5th roots of 2+2

√
3i; that is, find all complex numbers a+ ib

such that (a + ib)5 � 2+ 2
√

3i.
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If we multiply out the left side of the equation (a + ib)5 �
2+ 2

√
3i and set the real and imaginary parts equal, we obtain two

5th degree polynomial equations in two variables a and b to solve
simultaneously. Even one 5th degree polynomial equation in one
variable cannot be solved by a general algebraic formula (by a deep
theorem in Galois theory, a topic in abstract algebra), so another
approach must be found.

Consider a nonzero complex number z. We guess its N th roots
(for N ∈ N) as follows. Let r � |z| and let θ be a value of arg z such
that 0 ≤ θ < 2π. We use equation (1.18) to write z � reiθ in the
following N ways:

reiθ � rei(θ+2π) � rei(θ+4π) � · · · � rei(θ+2(N−1)π). (1.19)

Our guesses for the N th roots of z are

{r1/Neiθ/N , r1/Nei(θ+2π)/N , r1/Nei(θ+4π)/N , . . . , r1/Nei(θ+2(N−1)π)/N }
(1.20)

or, more concisely,

{r1/Nei(θ+2kπ)/N }N−1
k�0 . (1.21)

It is easy to check that each of these values is an N th root of z: by
equations (1.17) and (1.18),

(r1/Nei(θ+2kπ)/N )N � rei(θ+2kπ) � reiθ � z.

Note that although the values in equation (1.19) are the same, the
arguments in the set (1.20) are distinct and lie between 0 and 2π
(including perhaps 0 but not 2π). Hence the N values in the set
(1.20) are distinct. (If we extend our list in equation (1.19) by adding
the next possibility rei(θ+2Nπ), this would give one more term in the
set (1.20), namely r1/Nei(θ+2Nπ)/N), which would be the same as the
first term r1/Neiθ/N , by equation (1.18).) In fact, a general result (see
Exercise 1.2.16) shows that the equation zN � w (or any polynomial
equation of degree N) can have at most N distinct solutions z. So the
N distinct N th roots of reiθ in the set (1.20) or (1.21) are a complete
list.

One might think that because the N expressions in equation
(1.19) are equal, taking their N th roots should imply that the
expressions in the set (1.20) are equal, which they are not. The point
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is that there is no such thing as the N th root of a complex number
z (unless z � 0); there are instead N different complex numbers
whose N th power is z.

Solution to Example 1.26
The polar representation of 2 + 2

√
3i is 4eiπ/3. Thus we can write

2+ 2
√

3i five ways as

4eiπ/3 � 4ei7π/3 � 4ei13π/3 � 4ei19π/3 � 4ei25π/3.

Hence the 5th roots of 2+ 2
√

3i are:
5
√

4eiπ/15,
5
√

4ei7π/15,
5
√

4ei13π/15,
5
√

4ei19π/15, and 5
√

4ei25π/15.

Using equation (1.12), we can write these in the form a + ib (e.g.,
5
√

4eiπ/15 � 5
√

4 cos(π/15) + i
5
√

4 sin(π/15) ≈ 1.2906735 + .2743411i,
determined by using a calculator).

The theory of roots in C is much simpler than the theory in R.
In R, a positive number has 2 real N th roots if N is even and one if
N is odd, whereas a negative number has no real roots if N is even
and one if N is odd. In C, every nonzero complex number has N

different N th roots. This is a typical phenomenon in mathematics:
from the right perspective, the situation simplifies.

For our purposes, the most important roots are the N th roots of
unity, that is, the N th roots of the number 1. By the procedure we
have just considered, these are

{e2πik/N }N−1
k�0 � {1, e2πi/N , e4πi/N , . . . , e2(N−1)πi/N }. (1.22)

We conclude this section with a brief discussion of the
fundamental theorem of algebra.

Definition 1.27 A polynomial of degree N ≥ 0 is a function P of
the form

P(z) � aNz
N + aN−1z

N−1 + · · · + a2z
2 + a1z + a0,

where ai ∈ C, for i � 0, 1, 2, . . . , N, and aN 	� 0. We call aN the leading
coefficient of P. A root of P is a complex number a such that P(a) � 0.

We have seen that for a nonzero w ∈ C, the polynomial zN − w

has a root, in fact N of them. This is a special case of Theorem
1.28. We assume this result because its proof is outside the scope of
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this introductory chapter (it follows easily from a result in complex
analysis called Liouville’s theorem, for example).

Theorem 1.28 (Fundamental theorem of algebra) Let P be a
polynomial of degree 1 or more. Then P has a root in C.

This theorem was proved by Gauss in his doctoral dissertation.
It implies that any polynomial factors completely over C.

Corollary 1.29 Let P be a polynomial of degree N ≥ 1, with leading
coefficient aN. Then there exist complex numbers z1, z2, . . . zN (not
necessarily distinct), such that

P(z) � aN (z − z1)(z − z2) · · · ·(z − zN ).

Proof
Exercise 1.2.16.

Exercises

1.2.1. Prove Lemma 1.14.
1.2.2. Prove Corollary 1.15.
1.2.3. Prove Corollary 1.16.
1.2.4. A series of complex numbers is conditionally convergent if it

is convergent but not absolutely convergent. Let
∑∞

k�1 ak be
a conditionally convergent series of real numbers. Let α be
an arbitrary real number. Show that there is a reindexing
{aπ(k)}∞k�1 of the sequence {ak}∞k�1 (this means that π is a
permutation of the index set N, i.e., a 1–1, onto map from
N to N) such that the reindexed series

∑∞
k�1 aπ(k) converges

to α. Hint: Since
∑∞

k�1 ak converges, limk→+∞ ak � 0. Since∑∞
k�1 ak does not converge absolutely, the series of positive

terms and the series of negative terms in {ak} must each
diverge. List the positive terms in decreasing order (call
these {bk}) and the negative terms in order of decreasing
magnitude (say {ck}). Form the rearranged series by taking
enough bks, in order starting at b1, until their sum is above α.
Then add enough cks, starting at c1 and proceeding in order,
until the sum is below α. Then add more bks, starting from
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where you left off before, until the sum is above α. Keep
going back and forth, stopping each time as soon as the sum
crosses the target value α. The remaining bks and cks always
have an infinite sum, so one can always add enough to cross
over the value α. Show that since the sequences {bk} and {ck}
converge to zero, the series formed this way converges to α.

1.2.5. Prove Theorem 1.19. Suggestion: for divergence, apply
Corollary 1.15.

1.2.6. (Ratio test) Let
∑∞

n�M zn be a series and suppose that

lim
n→∞

∣∣∣∣zn+1

zn

∣∣∣∣ � ρ exists.

i. Prove that if ρ < 1, then
∑∞

n�M zn converges absolutely,
whereas if ρ > 1,

∑∞
n�M zn diverges. Hint: Make a

comparison with a geometric series and apply Corollary
1.16. Assume the fact that the sequence {rn}∞n�0 diverges
if r > 1.

ii. Give an example of a convergent series for which ρ � 1
and a divergent series for which ρ � 1. Thus the ratio
test gives no conclusion when ρ � 1. You can assume
the fact that

∑
1/np converges if and only if p > 1.

1.2.7. (Radius of convergence) Consider a power series

∞∑
n�0

an(z − z0)n.

Let R � 1/ lim supn→∞(|an|1/n), where if the denominator is
0, R is interpreted as∞, whereas if the denominator is∞,
R is interpreted as 0. Prove that

∑∞
n�0 an(z − z0)n converges

absolutely for |z−z0| < R and diverges for |z−z0| > R. This
R is the radius of convergence of the series. The hint is the
same as for Exercise 1.2.6 although the solution is different.

1.2.8. In the proof of Theorem 1.22, we implicitly used the fact
that if

∑∞
n�0 zn and

∑∞
n�0 wn converge, then

∑∞
n�0(zn + wn)

converges and

∞∑
n�0

(zn +wn) �
∞∑
n�0

zn +
∞∑
n�0

wn.
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Prove this and explain how it was used in the proof of Euler’s
formula (i.e., what were zn and wn?). In addition, we used
the fact that if

∑∞
n�0 zn converges and α ∈ C, then

∑∞
n�0 αzn

converges and

∞∑
n�0

αzn � α

∞∑
n�0

zn.

Prove this also.
1.2.9. i. Prove equation (1.16). Hint: recall the addition formulae:

cos(θ + ϕ) � cos θ cos ϕ − sin θ sin ϕ and sin(θ + ϕ) �
sin θ cos ϕ + cos θ sin ϕ.

ii. Prove Lemma 1.23. Hint: ez+w � ∑∞
n�0(z + w)n/n! by

definition. Expand (z+w)n using the binomial theorem.
Then interchange the order of summation.

1.2.10. Suppose θ ∈ R. Express sin 5θ and cos 5θ in terms of sin θ

and cos θ.
1.2.11. Write each of the following complex numbers in the form

a + ib, with a, b ∈ R, where your answer is stated without
using the trigonometric functions:
i. e3iπ/2

ii. e17πi

iii. e2πi/3

iv. 3e7πi/4

v. 5e−5iπ/6

vi. 2e−32πi/3.
1.2.12. Express the following complex numbers in polar form reiθ,

with r > 0 and 0 ≤ θ < 2π :
i. 4+ 4i

ii. 2
√

3− 2i
iii. −3+ 3

√
3i

iv. −√15−√5i.
1.2.13. Find (

√
3+ i)101. Write your answer in the form a+ ib, with

a, b ∈ R, without using the trigonometric functions.
1.2.14. Find all cube roots of −2 + 2i. Write your answers in the

form a + ib with a, b ∈ R. Pick one of your answers (your
choice) and check it by cubing it directly (i.e., check without
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using the polar representation). Remark: you can use your
calculator to get the answer to high accuracy, but in this case
you can get the exact answers using the addition formulae
(see Exercise 1.2.9) and writing integer multiples of 1/12
as sums of integer multiples of 1/3 and 1/4, for example,
1/12 � 1/3− 1/4.

1.2.15. Using a calculator, find all 4th roots of 3+4i to several decimal
places accuracy.

1.2.16. i. (Factor theorem) Let P be a polynomial and let a ∈ C.
We say z − a divides P, or z − a is a factor of P (written
(z−a)|P), if there exists a polynomial Q such that P(z) �
(z − a)Q (z). Prove that (z − a)|P if and only if P(a) � 0;
that is, z − a is a factor of P if and only if a is a root
of P. Hint: The “only if” direction is immediate. For the
“if” direction, the result follows easily from the division
algorithm for polynomials, if you are familiar with that.
If not, a more elementary proof can be obtained by first
showing that (z−a)|(zk−ak) for any integer k ≥ 1. (This
can be proved by a slight generalization of the argument
leading up to equation (1.5), which is the special case
a � 1.) Then writing out P(z)−P(a) leads to the general
result.

ii. Prove Corollary 1.29.
iii. Prove that a polynomial of degree N can have at most N

distinct roots.

1.3 Vector Spaces and Bases

We work with the vector space Cn in chapters 2 and 3. It is
similar to the more familiar space Rn except that its vectors have
complex components. Later we are concerned with certain infinite
dimensional vector spaces. To give a unified treatment, we start here
with the general definition of a vector space. Then we discuss the
span of a set of vectors, linear independence, and bases for vector
spaces.
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Roughly, a vector space V over a field F is a set of objects (called
vectors) for which two operations are defined, namely addition
of vectors and multiplication of vectors by field elements (called
scalars), such that these operations satisfy certain natural properties.
The general definition of a field was given in Definition 1.1, but the
only examples we use here are R and C.

Definition 1.30 Let F be a field. A vector space V over F is a set with
operations of vector addition + and scalar multiplication · satisfying
the following properties:

A1. (Closure for addition) For all u, v ∈ V, u+ v is defined and is an
element of V.

A2. (Commutativity for addition) u + v � v+ u, for all u, v ∈ V .
A3. (Associativity for addition) u + (v + w) � (u + v) + w, for all

u, v, w ∈ V .
A4. (Existence of additive identity) There exists an element in V,

denoted 0, such that u + 0 � u for all u ∈ V .
A5. (Existence of additive inverse) For each u ∈ V , there exists an

element in V, denoted −u, such that u + (−u) � 0.
M1. (Closure for scalar multiplication) For all α ∈ F and u ∈ V, α · u

is defined and is an element of V .
M2. (Behavior of the scalar multiplicative identity) 1 · u � u, for all

u ∈ V , where 1 is the multiplicative identity in F.
M3. (Associativity for scalar multiplication) α · (β · u) � (αβ) · u, for

all α, β ∈ F and u ∈ V .
D1. (First distributive property) α · (u+ v) � (α · u)+ (α · v), for all

α ∈ F and u, v ∈ V .
D2. (Second distributive property) (α+ β) · u � (α · u)+ (β · u), for

all α, β ∈ F and u ∈ V .

Properties A1–A5 guarantee that addition behaves reasonably.
The field properties tell us that the scalars themselves behave
reasonably. Properties M1–M3 and D1–D2 state that scalar multi-
plication is compatible with vector addition. We usually omit the
symbol · for scalar multiplication, writing αu instead of α · u.
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Example 1.31
Rn. The field F in this example is R. Let Rn be the set of all n-tuples
of real numbers, that is, all

x �




x1

x2
...
xn


 ,

where x1, x2, x3, . . . , xn ∈ R. Vector addition and scalar multiplication
are defined in the usual way: for α ∈ R and xi, yi ∈ R, i � 1, 2, . . . n,

α




x1

x2
...
xn


 �




αx1

αx2
...

αxn


 and




x1

x2
...
xn


+




y1

y2
...
yn


 �




x1 + y1

x2 + y2
...

xn + yn


 .

It is straightforward to check that with these operations, Rn is a vector
space over R.

Example 1.32
Cn. Here the field F is C. Let Cn be the set of all n-tuples of complex
numbers, that is, all

z �




z1

z2
...
zn


 ,

where z1, z2, z3, . . . , zn ∈ C. We call z1, z2, . . . , zn the components of
z. For α ∈ C and zi, wi ∈ C, for i � 1, 2, . . . n, let

α




z1

z2
...
zn


 �




αz1

αz2
...

αzn


 and




z1

z2
...
zn


+




w1

w2
...
wn


 �




z1 +w1

z2 +w2
...

zn +wn


 .

It is easy to check that Cn, with these operations, is a vector space
over C.
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In these examples, the vector space elements, or vectors, are of
the type encountered in calculus. In general this may not be the
case; see Exercise 1.3.1(i) and the following.

Example 1.33
Let [0, 1] � {x ∈ R : 0 ≤ x ≤ 1}. The field is C in this example. Let V
be the set of all complex-valued functions on [0, 1], that is,

V � {f : [0, 1]→ C}.
We define addition in the usual way: for f, g ∈ V , f +g is the function
on [0, 1] defined by

(f + g)(x) � f (x)+ g(x).

Scalar multiplication is naturally defined also: for α ∈ C and f ∈ V ,
αf is the function on [0, 1] such that

(αf )(x) � αf (x).

Then V is a vector space over C (Exercise 1.3.1(ii)).

Definition 1.34 Let V be a vector space over a field F, let n ∈ N,

and let v1, v2, . . . , vn ∈ V. A linear combination of v1, v2, . . . , vn is any
vector of the form

n∑
j�1

αjvj � α1v1 + α2v2 + · · · + αnvn,

where α1, α2, . . . , αn ∈ F.

Note that our definition requires a linear combination to be a
finite sum.

Definition 1.35 Let V be a vector space over a field F, and suppose
U ⊆ V . The span of U (denoted span U ) is the set of all linear
combinations of elements of U . In particular, if U is a finite set, say

U � {u1, u2, . . . un},
then

spanU �
{

n∑
j�1

αjuj : αj ∈ F for all j � 1, 2, . . . , n

}
.
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To visualize the span, note that the span of a single nonzero vector
u in Rn consists of all vectors lying on the line through the origin
that contains u. If u and v are two noncollinear vectors in R3, then
span {u, v} is the plane through the origin containing u and v.

Definition 1.36 Let V be a vector space over a field F and let
v1, v2, . . . vn be elements of V . We say that v1, v2, . . . vn are linearly
dependent (or {v1, v2, . . . vn} is a linearly dependent set) if there exist
α1, α2, . . . , αn ∈ F that are not all zero, such that

α1v1 + α2v2 + · · · + αnvn � 0.

We say that v1, v2, . . . vn are linearly independent (or {v1, v2, . . . vn}
is a linearly independent set) if

α1v1 + α2v2 + · · · + αnvn � 0

holds only when αj � 0 for every j � 1, 2, 3, . . . , n.
For a possibly infinite subsetU ofV , we sayU is linearly independent

if every finite subset ofU is linearly independent, andwe sayU is linearly
dependent if U has a finite subset that is linearly dependent.

In other words, v1, v2, . . . vn are linearly independent if the only
linear combination α1v1 + α2v2 + · · · + αnvn that is 0 is the trivial
one (αj � 0 for all j � 1, 2, . . . , n). If there is a nontrivial linear
combination of v1, v2, . . . vn that is 0, then v1, v2, . . . vn are linearly
dependent.

The last part of Definition 1.36 is consistent with the first by
Exercise 1.3.7. If a set is linearly dependent, then one element can
be written as a linear combination of the others and that element
can be removed from the set without changing the span (Exercise
1.3.8).

Definition 1.37 Let V be a vector space over a field F. A subset U of
V is a basis forV ifU is a linearly independent set such that spanU � V .

Bases are also characterized in the following way.

Lemma 1.38 Let V be a vector space over a field F, and let U be a
nonempty subset of V .

i. Suppose U is finite, say U � {u1, u2, . . . , un}, for some n ∈ N,
with uj 	� uk for j 	� k. Then U is a basis for V if and only if
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for each v ∈ V , there exist unique α1, α2, . . . , αn ∈ F such that
v �∑n

j�1 αjuj.

ii. If U is infinite, then U is a basis for V if and only if for each
non-zero v ∈ V, there exist unique m ∈ N, u1, u2, . . . , um ∈ U,

and nonzero α1, α2, . . . , αm ∈ F such that v �∑m
j�1 αjuj.

Proof
Exercise 1.3.11.

The easiest example of a basis is the following.

Definition 1.39 Define E � {e1, e2, . . . , en} by

e1 �




1
0
0
...
0


 , e2 �




0
1
0
...
0


 , e3 �




0
0
1
...
0


 , · · ·, en �




0
0
0
...
1


 .

These vectors can be regarded as elements of Rn or Cn. We call E the
standard, or Euclidean basis for Rn or Cn.

This terminology is justified because E is a basis for Rn or Cn.
To see this, either verify the definition, or use Lemma 1.38 and note
that a vector with components α1, α2, . . . αn, can be written uniquely
as
∑n

j�1 αjej. It may seem strange that the same vectors span both
Rn and the apparently larger space Cn, but this happens because the
scalar field for Cn is C, instead of R as for Rn.

If a vector space V has a basis consisting of finitely many
elements, we say that V is finite dimensional. In this case, any two
bases for V have the same number of elements.

Theorem 1.40 Let V be a vector space over a field F. Suppose that
V has a basis consisting of n elements. Then any other basis of V also
has n elements.

Proof
Exercise 1.3.13.

This allows us to make Definition 1.41.
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Definition 1.41 Suppose V is a finite dimensional vector space. The
number of elements in a basis for V is called the dimension of V , written
dimV . If dimV � n, we say V is n-dimensional.

Theorem 1.42 yields the useful fact that a collection of n vectors
in an n-dimensional vector space is a basis if one of the two
conditions (that they are linearly independent, or that they span
the space) in Definition 1.37 holds.

Theorem 1.42 Suppose V is an n-dimensional vector space, and
v1, . . . , vn are distinct vectors in V . Then v1, v2, . . . , vn are linearly
independent if and only if

span{v1, v2, . . . , vn} � V.

Proof
Since V is n-dimensional, V has a basis consisting of n vectors, say
w1, w2, . . . , wn.

First suppose v1, v2, . . . , vn are linearly independent. Let u ∈ V

be arbitrary. Then u, v1, v2, . . . , vn are n + 1 vectors belonging to
span{w1, w2, . . . , wn}. By Exercise 1.3.12, u, v1, v2, . . . , vn are linearly
dependent. By Exercise 1.3.9(ii), this implies u ∈ span {v1, v2,

. . . , vn}. Since u is arbitrary, this proves that span {v1, v2, . . . , vn} � V .
Now suppose that span {v1, v2, . . . , vn} � V. If v1, v2, . . . , vn are

linearly dependent, then by Exercise 1.3.8(ii), we can find a subset
of n− 1 vectors that still spans V . Then w1, w2, . . . , wn are n linearly
independent vectors belonging to the span of n − 1 vectors, which
is impossible by Exercise 1.3.12. This contradiction shows that
v1, v2, . . . , vn are linearly independent.

Definition 1.43 Suppose V is a vector space over a field F and
S � {v1, v2, . . . , vn} is a basis for V . For any vector v ∈ V , there exist
unique α1, α2, . . . , αn ∈ F such that v �∑n

j�1 αjvj, by Lemma 1.38. We
denote by [v]S the vector in Fn with components α1, α2, . . . , αn, that is,

[v]S �




α1

α2
...
αn


 . (1.23)

We call αj the jth component of v with respect to S.
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In other words, for a basis S � {v1, v2, . . . , vn}, statement (1.23)
means that v �∑n

j�1 αjvj.

One should not confuse [v]S with the vector v itself. First, they
may be different types of objects. For example, if the vector space
is Pn, the polynomials of degree n (see Exercise 1.3.1(i)), then v is
a polynomial whereas [v]S is an n-tuple of numbers. Second, even if
the vector space V is Rn or Cn, so that v is an n-tuple of numbers
(which is a well-defined object, without reference to any basis), v
and [v]S will usually be different n-tuples of numbers (unless S is
the Euclidean basis, as we note below). So we do not regard [v]S as
identified with v (since two n-tuples are the same only if they have
the same components). Instead [v]S is the vector whose components
are the components of v with respect to the basis S.

However, the components of a vector v with respect to the
Euclidean basis E (Definition 1.39) are the usual components of v.
For example, if

z �




z1

z2
...
zn




is a vector in Cn (similarly for Rn) then z �∑n
j�1 zjej, so

z � [z]E. (1.24)

Suppose that V is an n-dimensional vector space over C (similar
remarks hold for R). We can represent any element v in V with
respect to a given basis by a vector in Cn. So in an appropriate sense
(namely in the sense of a vector space isomorphism, which we do
not define), any n-dimensional vector space over C is equivalent to
Cn. If we are concerned only about finite dimensional vector spaces
over R and C, then up to isomorphism, all we need to consider are
Rn and Cn. So the general theory of vector spaces is needed only if
we want to consider more general fields (which we do not) or infinite
dimensional vector spaces (which we do, later).

In the abstract sense, one basis is pretty much as good as
another. However, in particular cases (e.g., once we have a particular
linear operator to study), the choice of basis can be of paramount
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importance. A great deal of elementary linear algebra comes down
to selecting the basis that simplifies a problem as much as possible.
This is also the underlying theme of Fourier analysis, wavelet theory,
and this text.

Exercises

1.3.1. i. For n ∈ N, let Pn be the collection of all polynomials
over C of degree ≤ n. Define addition and scalar
multiplication by complex numbers in the sense of
functions; that is, for p, q ∈ Pn and α ∈ C, let (p+ q)(x) �
p(x)+ q(x) and (αp)(x) � αp(x). Prove that Pn is a vector
space over C.

ii. Prove that the set V in Example 1.33 with the operations
defined there forms a vector space over C.

1.3.2. Let V be a vector space over a field F, and let U be a subset
of V. We say that U is a subspace of V if the set U itself with
the operations inherited from V forms a vector space over F.
Most of the properties of a vector space hold automatically
in U just because they hold in the bigger set V . Prove that
in order to verify that U is a subspace of V , one needs only
to check that

U 	� ∅ (where ∅ is the empty set);

if u, v ∈ U, then u + v ∈ U ;

and

if u ∈ U and α ∈ F, then αu ∈ U.

In other words, if U is nonempty, one needs only to
check that U itself is closed under addition and scalar
multiplication.

1.3.3. Let V be a vector space over a field F, and let u1, u2, . . . , un ∈
V. Prove that span {u1, u2, . . . , un} is a subspace of V .
(Assume the result of Exercise 1.3.2.)
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1.3.4. Prove that the vectors
 1
−2
3


 ,


 −2

3
1


 , and


 5

1
2




are linearly independent in R3.
1.3.5. Prove that the vectors

 i

2+ i

3


 ,


 2
−i

4− i


 , and


 3
−1
2




are linearly independent in C3.
1.3.6. Prove that any collection of vectors that includes the 0 vector

is linearly dependent.
1.3.7. Prove: if U is a finite collection of vectors that has a linearly

dependent subset, then U is linearly dependent.
1.3.8. Suppose v1, v2, . . . , vn are linearly dependent vectors in

some vector space.
i. Prove that there is some j ∈ {1, 2, 3, . . . , n} such that

vj ∈ span{v1, v2, . . . , vj−1, vj+1, . . . , vn}.
ii. For j as in part i, prove that

span{v1, v2, . . . , vj, . . . , vn}
� span{v1, v2, . . . , vj−1, vj+1, . . . , vn}.

1.3.9. Suppose u, v1, v2, . . . , vn are vectors in some vector space.
i. If u ∈ span {v1, v2, . . . , vn}, prove that u, v1, v2, . . . , vn are

linearly dependent.
ii. Suppose v1, v2, . . . , vn are linearly independent. If u,

v1, v2, . . . , vn are linearly dependent, prove that u ∈
span{v1, v2, . . . , vn}.

1.3.10. Suppose V is an n-dimensional vector space, k ≤ n, and
{v1, v2, . . . , vk} is a linearly independent set in V . Show that
there exist vk+1, . . . , vn in V so that {v1, v2, . . . , vn} is a basis
for V . (In other words, any linearly independent set can be
extended to a basis.) Hint: If k 	� n, span{v1, v2, . . . , vk} 	� V .
So there exists vk+1 ∈ V \ span{v1, v2, . . . , vk}. By Exercise
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1.3.9(ii), the set {v1, . . . , vk, vk+1} is linearly independent.
Continue in this fashion.

1.3.11. Prove Lemma 1.38.
1.3.12. Suppose n + 1 vectors belong to the span of n vectors, say

wj ∈ span {v1, v2, . . . , vn} for j � 1, 2, . . . , n + 1. Prove that
w1, w2, . . . , wn, wn+1 are linearly dependent. Hint: Prove this
by induction on n. Let pn be the statement given. The case
n � 1 is not difficult. Suppose pn−1 holds. To prove pn, write

w1 � α1,1v1 + α1,2v2 + · · · + α1,nvn,

w2 � α2,1v1 + α2,2v2 + · · · + α2,nvn,

...

wn+1 � αn+1,1v1 + αn+1,2v2 + · · · + αn+1,nvn.

If wn+1 � 0, we are done (Exercise 1.3.6). Otherwise, at
least one of its coefficients is nonzero. By reindexing, we
can assume αn+1,n 	� 0. Consider the vectors

uk � wk −
(

αk,n

αn+1,n

)
wn+1,

for k � 1, 2, . . . , n.Writing uk in terms of v1, . . . , vn, show that
the vn terms cancel out. Hence uk ∈ span{v1, . . . , vn−1}. By
pn−1, the induction assumption, u1, u2, . . . , un are linearly
dependent. Show that this implies that w1, . . . , wn+1 are
linearly dependent.

1.3.13. Prove Theorem 1.40. Hint: Use Exercise 1.3.12.
1.3.14. Let R be a basis for a finite dimensional vector space V over

a field F. Prove that:
i. [u + v]R � [u]R + [v]R for all u, v ∈ V ;

ii. [αv]R � α[v]R for all α ∈ F and v ∈ V .
1.3.15. Suppose V is a finite dimensional vector space over C with

basis R. Let v1, v2, . . . , vm be elements of V . Prove that the
set {v1, v2, . . . , vm} is linearly independent in V if and only if
the set {[v1]R, [v2]R, . . . , [vm]R} is linearly independent in Cn.
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1.4 Linear Transformations, Matrices,
and Change of Basis

In mathematics we often consider the class of all objects having
a certain structure, for example, groups, fields, metric spaces, or
topological spaces. In each case we consider maps between these
objects that are consistent with or preserve this structure, such as
homomorphisms or isomorphisms of groups, isometries of metric
spaces, and homeomorphisms of topological spaces. Vector spaces
have the linear structure stated in Definition 1.30. Maps that respect
this structure are called linear transformations.

Definition 1.44 Let U and V be vector spaces over the same field
F. A linear transformation T is a function T : U → V having the
following properties:

L1. (Additivity) T(u1 + u2) � T(u1)+ T(u2), for all u1, u2 ∈ U .
L2. (Scalar homogeneity) T(αu) � αT(u), for all α ∈ F and u ∈ U .

Suppose T : U → V is a linear transformation, and U is finite
dimensional with basis {u1, u2, . . . , un}. Then T is determined by its
action on the basis {u1, u2, . . . , un}, in the following sense. Suppose
u ∈ U . Then there exist unique scalars α1, α2, . . . , αn such that
u �∑n

j�1 αjuj, by Lemma 1.38. By properties L1 and L2,

T(u) � T

(
n∑
j�1

αjuj

)
�

n∑
j�1

αjT(uj).

In particular, suppose L : U → V is a linear transformation,
and L(uj) � T(uj) for all j � 1, 2, . . . , n. Then L � T, that is,
L(u) � T(u) for all u ∈ U , because the steps above also show that
L(u) �∑n

j�1 αjL(uj).
Recall (Definition 1.43) that for a given basis S � {u1, u2, . . . , un}

of a vector space U , [u]S is the vector in Fn (e.g., Rn or Cn) whose
components α1, α2, . . . , αn are the coefficients in the expansion u �∑n

j�1 αjuj. Any linear transformation T : U → V can be represented
in bases forU andV by matrix multiplication, in a sense described in
Lemma 1.49. First we define matrices and their natural operations.



1.4. Linear Transformations, Matrices, and Change of Basis 41

Definition 1.45 For m, n ∈ N, an m × n matrix A over a field F is
a rectangular array of the form

A �




a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · ·
· · · · · ·
· · · · · ·

am1 am2 · · · amn



,

where aij ∈ F for all i � 1, 2, . . . , m and j � 1, 2, . . . , n. We call aij the
(i, j)th entry of A. We also denote A by [aij]1≤i≤m,1≤j≤n or, when m and
n are understood, by [ai,j].

Note that an n× 1 matrix is a vector with n components, that is,
an element of Rn or Cn.

Addition of matrices is defined by the obvious addition of
corresponding entries. Scalar multiplication is also defined in the
natural way.

Definition 1.46 Suppose A � [ai,j] and B � [bi,j] are two m × n

matrices over the same field F. Then A+B is them×n matrix C � [ci,j]
with cij � aij + bij for all i � 1, 2, . . . , m and j � 1, 2, . . . , n. For α ∈ F,

αA is the m× n matrix D � [dij] with dij � αaij for all i, j.

Matrix multiplication is a more subtle process.

Definition 1.47 Suppose A � [ai,j] is an m× � matrix over a field F

and B � [bi,j] is an � × n matrix over the same field F. Then AB is the
m× n matrix C � [ci,j] with

cij �
�∑

k�1

aikbkj

for i � 1, 2, . . . , m and j � 1, 2, . . . , n.

For real matrices, cij is the dot product of the ith row of A with
the jth column of B.

Notice that we define the multiplication of an m× � matrix only
with an �× n matrix, which gives an m× n matrix (the � “cancels”).
Matrix multiplication is not commutative: first, when AB is defined,
it may be that BA is not even defined; second, even if both are
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defined, we may have AB 	� BA. However, matrix multiplication
is associative: for A � [aij]1≤i≤m,1≤j≤�, B � [bij]1≤i≤�,1≤j≤k, C �
[cij]1≤i≤k,1≤j≤n, the (i, j)th entry of them×n matrices (AB)C andA(BC)
are both

�∑
p�1

k∑
q�1

aipbpqcqj.

A special case of particular interest is the product of an m × n

matrix A and an n × 1 matrix (i.e., a vector) x. The result y � Ax is
an m × 1 matrix, that is, a vector with m components. The map T

taking x to Ax, that is, T : Fn → Fm (e.g., F � R or C) defined by
T(x) � Ax, is a linear transformation (Exercise 1.4.2). By Definition
1.47, the ith component of Ax is

(Ax)i �
n∑

k�1

aikxk.

For more general finite dimensional vector spaces, a matrix leads to
a linear transformation by acting on the vector of components with
respect to a given basis as follows.

Lemma 1.48 (Linear transformation associated with a matrix)
Let U and V be finite dimensional vector spaces over a field F. Suppose
R � {u1, u2, . . . , un} is a basis forU and S � {v1, v2, . . . , vm} is a basis for
V . Let A be an m× n matrix over F. We define a mapping TA : U → V

as follows: for u ∈ U , let TA(u) be the element of V whose vector of
components [TA(u)]S with respect to S is A[u]R, that is,

[TA(u)]S � A[u]R.

Then TA is a linear transformation.

Proof
Exercise 1.4.3.

Thus every matrix gives a linear transformation. The converse
is also true: every linear transformation between finite dimensional
vector spaces can be represented by a matrix.

Lemma 1.49 (Matrix representing a linear transformation) Let
U and V be finite dimensional vector spaces over a field F. Suppose
R � {u1, u2, . . . , un} is a basis for U , S � {v1, v2, . . . , vm} is a basis for
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V , and T : U → V is a linear transformation. Since T(uj) ∈ V for each
j, there are unique scalars aij, i � 1, 2, . . . , m, and j � 1, 2, . . . , n, such
that

T(u1) � a11v1 + a21v2 + · · · + am1vm,

T(u2) � a12v1 + a22v2 + · · · + am2vm,

...

T(un) � a1nv1 + a2nv2 + · · · + amnvm.

Let A be the m × n matrix whose kth column consists of the scalars
α1k, α2k, . . . , αmk in the expansion of T(uk):

A �




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


 .

Then

[T(u)]S � A[u]R for all u ∈ U. (1.25)

Moreover, A is the unique matrix satisfying relationship (1.25).

Proof
Let u ∈ U be arbitrary. Let c1, c2, . . . , cn be the components of u with
respect to R, that is,

[u]R �




c1
...
cn


 ,

or, equivalently, u �∑n
j�1 cjuj. By definition of A, T(uj) �

∑m
i�1 aijvi.

By linearity,

T(u) � T

(
n∑
j�1

cjuj

)
�

n∑
j�1

cjT(uj)

�
n∑
j�1

cj

m∑
i�1

aijvi �
m∑
i�1

(
n∑
j�1

aijcj

)
vi.

Hence the ith component of T(u) with respect to the basis S is∑n
j�1 aijcj, which is, by definition, the ith component of the product



1. Background: Complex Numbers and Linear Algebra44

of the matrix A with the vector [u]R. So (1.25) holds. The uniqueness
of A is left to the reader (Exercise 1.4.6).

In the previous lemma, we call A the matrix representing T with
respect to R and S. We sometimes write it as AT .

Example 1.50
Define a basis R for R2 by

R �
{[

2
1

]
,

[
0
2

]}
,

and a basis S for R3 by

S �



 1

0
2


 ,


 0

1
1


 ,


 1

0
3




 .

Define T : R2 → R3 by

T

([
x

y

])
�

 2x − y

x + y

x − 3y


 .

Find the matrix A that represents T with respect to R and S.

Solution
By definition,

T

([
2
1

])
�

 3

3
−1


 , and T

([
0
2

])
�

 −2

2
−6


 .

According to Lemma 1.49, we should find {aij} such that
 3

3
−1


 � a11


 1

0
2


+ a21


 0

1
1


+ a31


 1

0
3


 , (1.26)

and 
 −2

2
−6


 � a12


 1

0
2


+ a22


 0

1
1


+ a32


 1

0
3


 . (1.27)
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These are linear systems; for example, equation (1.26) is the system

1a11 + 0a21 + 1a31 � 3,

0a11 + 1a21 + 0a31 � 3,

2a11 + 1a21 + 3a31 � −1,

which can be solved, for example, by Gaussian elimination (we omit
the calculation), to give

a11 � 13, a21 � 3, and a31 � −10.

Similarly, equation (1.27) can be solved to give

a12 � 2, a22 � 2, and a32 � −4.

Hence

A �

 13 2

3 2
−10 −4


 .

Lemmas 1.48 and 1.49 show that there is a complete correspon-
dence between matrices and linear transformations between finite
dimensional vector spaces. To understand this correspondence bet-
ter, we consider certain properties that a linear transformation can
have and the corresponding properties of the associated matrix.

The next definition is stated in a general form because it makes
sense for any function.

Definition 1.51 Let U and V be sets, and T : U → V a function.
T is one-to-one (written 1 − 1) or injective if T(u1) � T(u2) implies
u1 � u2. T is onto or surjective if, for every v ∈ V , there exists u ∈ U

such that T(u) � v. T is invertible or bijective if T is both 1 − 1 and
onto.

In other words, T is 1− 1 if u1 	� u2 implies T(u1) 	� T(u2); that
is, T cannot take two different values to the same value, and T is
onto if T attains every element in V .

If T is 1 − 1 and onto, we define T−1 : V → U as follows: for
each v ∈ V , there exists (since T is onto) a unique (since T is 1− 1)
u ∈ U such that T(u) � v. Let T−1(v) � u. Then it is easy to see that
T−1 is the inverse mapping of T in the sense that T−1(T(u)) � u for
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all u ∈ U and T(T−1(v)) � v for all v ∈ V. This is the reason for the
term invertible in Definition 1.51.

Related to the terms 1 − 1 and onto are the kernel and range of
a linear transformation.

Definition 1.52 Let U and V be vector spaces, and T : U → V a
linear transformation.

The kernel of T is the set of all vectors that get mapped to the 0 vector
by T; that is,

kerT � {u ∈ U : T(u) � 0}.
The range of T is the set of all vectors in V that are the image of some
vector in U under T:

rangeT � {T(u) : u ∈ U}.
By definition, T is onto if and only if range (T) � V. Also, by the

linearity of T,T is 1− 1 if and only if kerT � {0} (Exercise 1.4.7).
Corresponding to the notion of an invertible linear transforma-

tion is the notion of an invertible matrix. For this, we first need to
define the identity matrix.

Definition 1.53 The n × n identity matrix I over R or C is the
matrix [aij]1≤i,j≤n such that aii � 1 for i � 1, 2, . . . , n and aij � 0 if i 	� j.

In other words, the identity I is the matrix with entry 1 at each
position on the main diagonal and 0 everywhere else. A simple
computation shows that Ix � x for any vector x ∈ Rn or Cn, which is
the reason I is called the identity matrix.

Definition 1.54 Let A be an n× n matrix over R or C. We say A is
invertible if there exists an n× n matrix, denoted A−1, such that

A−1A � I and AA−1 � I.

We call A−1, when it exists, the inverse of A.

For 2× 2 matrices, it is worth remembering that if ad − bc 	� 0,[
a b

c d

]−1

� 1
ad − bc

[
d −b
−c a

]
.

Invertible linear transformations correspond to invertible matrices.
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Lemma 1.55 Let U and V be n-dimensional vector spaces over
C (similarly if both are over R). Suppose T : U → V is a linear
transformation. Let R be a basis for U and S a basis for V . Let AT

be the matrix that represents T with respect to R and S, as in Lemma
1.49. Then T is an invertible linear transformation if and only if AT is
an invertible matrix.

Proof
First suppose T is invertible. Let z be an arbitrary element of Cn,
with components z1, z2, . . . , zn. Suppose R � {u1, u2, . . . , un}. Let
u � ∑n

j�1 zjuj; in other words, [u]R � z. Let AT−1 be the matrix that
represents T−1 with respect to S and R. Then

z � [u]R � [T−1(T(u))]R � AT−1 [T(u)]S
� AT−1AT [u]R � AT−1ATz.

Since z is arbitrary, we deduce that AT−1AT � I, by Exercise 1.4.6(i).
A symmetric argument shows that also ATAT−1 � I. Thus AT is
invertible with inverse AT−1 .

For the other direction, suppose AT is an invertible matrix.
We claim that kerT � {0}. To see this, suppose u ∈ U and
T(u) � 0. Then [T(u)]S is the 0 vector in Cn. So AT [u]R � [T(u)]S �
0. Multiplying this equation on the left by (AT)−1 gives [u]R �
(AT)−10 � 0. But [u]R � 0 implies u � 0. This proves the claim
that kerT � {0}. By Exercise 1.4.7, T is 1 − 1. Since U and V

are n−dimensional, T is onto by Exercise 1.4.8(v). Hence T is
invertible.

Another useful notion is the rank of a matrix.

Definition 1.56 Let A be anm×nmatrix over C (or R). Let T be the
linear transformation associated toA in the standard basis, that is, define
T : Cn → Cm (or T : Rn → Rm) by T(x) � Ax. By Exercise 1.4.9(ii),
range T is a subspace of Cm (or Rm), and hence is a finite dimensional
vector space. The rank of A is the dimension of range T.

In the case of a square matrix, this leads to another interesting
criterion for invertibility.

Lemma 1.57 Suppose A is an n× n matrix over C (or R). Then A is
invertible if and only if rank A � n.
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Proof
Let T : Cn → Cn be defined by T(z) � Az, as in Definition 1.56.

If A is invertible, then T is invertible by Lemma 1.55. Hence
range T � Cn. So range T has dimension n, that is, rank A � n.

Conversely, if rank A � n, then range T has dimension n. This
implies range T � Cn. (Proof: Let z ∈ Cn be arbitrary. Then the
basis elements u1, u2, . . . , un of range T together with z make up
n+1 elements in Cn, which must be linearly dependent by Exercise
1.3.12. By Exercise 1.3.9(ii), z ∈ span{u1, u2, . . . , un} � range T.) So T

is onto. By Exercise 1.4.8(v), T is 1− 1, hence invertible. By Lemma
1.55, A is invertible.

For the proof in the case where A is a matrix over R, replace C

everywhere by R.

Having learned a few prerequisites about matrices, we are ready
to return to our study of representing vectors in different bases. If we
have two bases for the same finite dimensional vector space, how
can we obtain the components of a vector with respect to one of
these bases if we know its components with respect to the other?

Lemma 1.58 Suppose V is an n-dimensional vector space over R or
C. Suppose R � {u1, u2, . . . , un} and S � {v1, v2, . . . , vn} are two bases
for V . Since S is a basis for V , there are unique scalars aij, i � 1, 2, . . . , n,
and j � 1, 2, . . . , n such that

u1 � a11v1 + a21v2 + · · · + an1vn,

u2 � a12v1 + a22v2 + · · · + an2vn,

...

un � a1nv1 + a2nv2 + · · · + annvn.

Let A be the n × n matrix whose kth column consists of the coefficients
α1k, α2k, . . . , αnk in the representation of uk:

A �




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


 .



1.4. Linear Transformations, Matrices, and Change of Basis 49

Then

[x]S � A[x]R for all x ∈ V,

and A is the unique matrix with this property.

Proof
This follows from Lemma 1.49, by letting T be the identity
transformation I defined by I(x) � x for all x. Clearly I is linear. Since
uj � I(uj) for each j, the matrix A is the one required in Lemma 1.49.
Hence

[x]S � [I(x)]S � A[x]R.

The uniqueness of A also follows from Lemma 1.49.

We call the matrix A obtained in Lemma 1.58 the R to S change
of basis matrix.

Example 1.59
Define bases R and S for R2 by

R �
{[

1
−2

]
,

[ −1
7

]}
,

and

S �
{[

2
1

]
,

[
3
4

]}
.

Find the R to S change of basis matrix A.

Solution
By Lemma 1.58, we need to find {aij} such that[

1
−2

]
� a11

[
2
1

]
+ a21

[
3
4

]
,

and [ −1
7

]
� a12

[
2
1

]
+ a22

[
3
4

]
.

Solving these linear systems gives

a11 � 2, a21 � −1,

a12 � −5, and a22 � 3.
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Hence

A �
[

2 −5
−1 3

]
.

As one might suspect, the R to S change of basis matrix is always
invertible and its inverse is the S toR change of basis matrix (Exercise
1.4.14).

Now we restrict our attention to a linear transformation from a
finite dimensional vector space to itself. Fix a basis and consider
representing the linear transformation in that basis. The following
is a special case of what was considered in Lemma 1.49.

Definition 1.60 Let V be a finite dimensional vector space over R or
C, with basis R. Let AT,R be the matrix that represents T with respect to
R and R (as defined in Lemma 1.49), that is, AT,R is the matrix such that

[T(x)]R � AT,R[x]R,

for any x ∈ V. We call AT,R the matrix representing T with respect to
R.

For the simplest example of this, suppose we start with an n× n

matrix A over C and define the associated linear transformation
TA : Cn → Cn by TA(z) � Az. Then in the Euclidean basis
E � {e1, . . . , en} (Definition 1.39),

[TA(z)]E � TA(z) � Az � A[z]E,

by equation (1.24). In other words, A represents TA with respect to
E, or

ATA,E � A.

If we are working with a linear transformation T from V to V , we
can fix a basis for V and represent T with respect to this basis by
a matrix. This allows us to use matrix algebra to do computations
regarding T. However, there are many choices of bases for V . What
effect does the choice of basis have on the matrix that represents
the transformation?

Lemma 1.61 Suppose V is a finite dimensional vector space with
bases R and S. Suppose T : V → V is a linear transformation. Let
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AT,R be the matrix representing T with respect to R and AT,S the matrix
representing T with respect to S. Let P be the R to S change of basis
matrix. Then

AT,R � P−1AT,SP.

Proof
Let x ∈ V be arbitrary. By Exercise 1.4.14, P−1 is the S to R change
of basis matrix. Hence

[T(x)]R � P−1[T(x)]S.

However, AT,S represents T in the basis S, so

[T(x)]R � P−1AT,S[x]S.

But P is the R to S change of basis matrix, so [x]S � P[x]R. Substituting
this in the last equation gives

[T(x)]R � P−1AT,SP[x]R.

The result now follows from the uniqueness assertion in Lemma
1.49.

This result has a natural interpretation: to obtain the action of T
in the basis R, one can first change to the basis S (i.e., multiply by
P), then apply T as represented in the basis S (i.e., multiply by AT,S),
and finally convert back to the basis R (multiply by P−1).

Definition 1.62 Suppose A and B are n × n matrices over R or C.
We say A and B are similar, or that A is similar to B, if there exists a
matrix P such that

B � P−1AP.

It is easy to see (Exercise 1.4.16) that similarity is an equivalence
relation. In particular, the roles of A and B can be interchanged in
Definition 1.62.

Lemma 1.61 tells us that two matrices representing the same
linear transformation with respect to different bases must be similar.
A major concern of ours is to make the best choice of basis, so that the
linear operator with which we are working will have a representing
matrix in the chosen basis that is as simple as possible. In section
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1.5, we discuss operators whose representing matrix can be made
diagonal.

Exercises

1.4.1. LetU be the set of all differentiable functions on the interval
(0, 1) � {x ∈ R : 0 < x < 1}, that is,

U � {f : (0, 1)→ R such that f ′(x) exists for all x ∈ (0, 1)}.

Let V be the collection of all functions f : (0, 1)→ R. Define
addition of functions and multiplication of functions by real
numbers in the usual way (as in Example 1.33).
i. Prove that U and V are vector spaces. (Assume standard

facts from calculus.)
ii. Define T : U → V by T(f ) � f ′. Prove that T is a linear

transformation.
This example demonstrates that important linear trans-

formations arise in the context of infinite dimensional vector
spaces.

1.4.2. Let A be an m × n matrix over C. Define T : Cn → Cm by
T(z) � Az (matrix multiplication). Prove that T is a linear
transformation.

1.4.3. Prove Lemma 1.48. Suggestion: Use Exercises 1.4.2 and
1.3.14.

1.4.4. Fix an angle θ ∈ R. Let Tθ be the map from R2 to itself,
which acts on a vector by rotating it by an angle θ in
the counterclockwise direction (i.e., in polar coordinates,
Tθ leaves the magnitude unchanged but increases the
angle by θ). Draw pictures indicating why Tθ is a linear
transformation. Confirm this by determining the matrix that
represents Tθ in the standard basis for R2.

1.4.5. Define a basis R for R3 by

R �



 1

1
0


 ,


 2

0
1


 ,


 3

2
0




 ,
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and a basis S for R2 by

S �
{[

1
2

]
,

[
2
5

]}
.

Define T : R3 → R2 by

T




 x

y

z




 � [ x + y− z

2x − y+ 3z

]
.

i. Find the matrix A that represents T with respect to R

and S.
ii. Suppose u ∈ R3 and

[u]R �

 1

0
−1


 .

Find [T(u)]S.
iii. For u as in part ii, find the Euclidean coordinates of u.
iv. Find the Euclidean coordinates of T(u) two ways: using

part iii and the definition of T, and using part ii and the
definition of S.

1.4.6. Let A be an n× n matrix over R or C.
i. Suppose that Ax � x for all vectors x ∈ Rn. Prove that

A is the identity matrix I. (Hint: Consider the standard
basis vectors e1, e2, . . . , en in Definition 1.39.)

ii. Suppose B is an n×n matrix over the same field as A and
Bx � Ax for all x ∈ Rn. Prove that A � B, that is, aij � bij
for all i, j.

iii. Prove the uniqueness statement in Lemma 1.49.
1.4.7. Let U and V be vector spaces and T : U → V a linear

transformation. Prove thatT is 1−1 if and only if kerT � {0}.
1.4.8. Let U and V be vector spaces and T : U → V a linear

transformation. Suppose U is n-dimensional, with basis
{u1, u2, . . . , un}.
i. Prove thatT is 1−1 if and only if {T(u1), T(u2), . . . , T(un)}

is a linearly independent set in V .
ii. Prove that span{T(u1), T(u2), . . . , T(un)} � range T.
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iii. Prove that T is invertible if and only if {T(u1), T(u2), . . . ,
T(un)} is a basis for V .

iv. Suppose that T : U → V is an invertible linear
transformation. Prove that V is also finite dimensional
with dimension n.

v. Suppose that V is finite dimensional with dimension n.
Prove that T is 1 − 1 if and only if T is onto. (Hint: Use
Theorem 1.42)

1.4.9. Let U and V be vector spaces and T : U → V a linear
transformation. Recall the definition of a subspace from
Exercise 1.3.2.
i. Prove that kerT is a subspace of U .

ii. Prove that range T is a subspace of V .
1.4.10. (Rank theorem) Suppose U and V are vector spaces,

dim U � n, and T : U → V is a linear transformation.
Prove that

dim kerT + dim rangeT � n.

Hint: Suppose k � dim kerT. Let {u1, u2, . . . , uk} be a
basis for kerT. By Exercise 1.3.10, we can find uk+1, . . . , un
such that {u1, u2, . . . , un} is a basis for U . Prove that
T(uk+1), . . . , T(un) are linearly independent and apply
Exercise 1.4.8(ii).

1.4.11. Let A be an m × k matrix and B a k × n matrix (both over
the same field, either R or C). Prove that rank (AB) ≤ rank
A and rank (AB) ≤ rank B.

1.4.12. Let A and B be n× n matrices over the same field, either R

or C.
i. Prove that AB is invertible if and only if both A and B

are invertible, in which case, (AB)−1 � B−1A−1. (Hint:
Use Lemma 1.57 and Exercise 1.4.11 for the “only if ”
direction.)

ii. Suppose AB � I. Prove that A and B are invertible,
B � A−1, and A � B−1.
Hence in order to check that B � A−1, it is enough to

verify that AB � I or that BA � I; it is not necessary to
check both.
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1.4.13. Define bases R and S for R2 by

R �
{[

1
1

]
,

[
3
7

]}
,

and

S �
{[

1
3

]
,

[
2
5

]}
.

i. Find the R to S change of basis matrix A.
ii. Suppose x ∈ R2 and

[x]R �
[

1
2

]
.

Find [x]S.
iii. Find the Euclidean coordinates of x two ways: using [x]R

and the definition of R, and using [x]S and the definition
of S.

iv. Find the S to R change of basis matrix directly, that is,
by the method of Lemma 1.58. Then check that it is the
inverse of the matrix found in part i.

1.4.14. Let V be a finite dimensional vector space over R or C, with
bases R and S. Let A be the R to S change of basis matrix.
Prove that A is invertible and its inverse is the S to R change
of basis matrix. (Hint: Use Exercise 1.4.6 and, to make it
easier, Exercise 1.4.12(ii).)

1.4.15. LetV be either Rn or Cn. LetE � {e1, . . . , en} be the Euclidean
basis (Definition 1.39) for V and let R � {u1, . . . , un} be
another basis for V . Suppose that for each j � 1, 2, . . . , n

uj �




a1j

a2j

·
·
anj


 .

Let A � [aij]1≤i,j≤n.
i. Prove that A is the R to E change of basis matrix.
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ii. Suppose S � {v1, . . . , vn} is also a basis for V , with

vj �




b1j

b2j

·
·
bnj


 ,

for each j � 1, 2, . . . , n. Let B � [bij]1≤i,j≤n. Prove that
B−1A is the R to S change of basis matrix.

iii. Check the result in part ii by solving Exercise 1.4.13(i)
this way. Remark: This is usually the simplest way to do
these problems.

1.4.16. For two n × n matrices A and B, define A ∼ B if A and B

are similar (Definition 1.62). Prove that ∼ is an equivalence
relation, that is,
i. A ∼ A for all n× n matrices A.

ii. If A ∼ B, then B ∼ A.
iii. If A ∼ B and B ∼ C, then A ∼ C. (Hint: Use Exercise

1.4.12(i).)

1.5 Diagonalization of Linear
Transformations and Matrices

Consider a linear transformation T : V → V , where V is a finite
dimensional vector space. V has many bases; choosing a basis
amounts to picking a coordinate system. Once we select a basis R

for V , we can represent T with respect to R by a matrix, which we
call AT,R (Definition 1.60). If calculations involving T are to be done
with this matrix, we would like to pick the basis R in such a way
that AT,R is as simple as possible. How much choice do we have?
By Lemma 1.61, we know that for any other basis S, the matrix AT,S

representing T with respect to S must be similar to AT,R. This is the
only restriction: any matrix similar toAT,R is the matrix representing
T with respect to some basis for V . This fact is a corollary to Lemma
1.63, which has independent interest.
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Lemma 1.63 Suppose R is a basis for an n-dimensional vector space
V over R or C, and P is an n× n invertible matrix (over the same field).
Then there exists a basis S for V such that P is the R-to-S change of basis
matrix.

Proof
Suppose R � {x1, x2, . . . , xn} and [qij] � Q � P−1. Define S �
{v1, v2, . . . , vn}, where

vi �
n∑

k�1

qkixk, (1.28)

for i � 1, 2, . . . , n.
For j � 1, 2, . . . , n, relation (1.28) yields

n∑
i�1

pijvi �
n∑

i�1

pij

n∑
k�1

qkixk �
n∑

k�1

(
n∑

i�1

qkipij

)
xk � xj, (1.29)

since
∑n

i�1 qkipij is the (k, j)th entry of QP � I, and hence is 1 when
k � j and 0 otherwise.

Let u ∈ V be arbitrary. Suppose

[u]R � a �




a1

a2

·
·
an


 ,

or, equivalently, u �∑n
j�1 ajxj. By equation (1.29),

u �
n∑
j�1

aj

n∑
i�1

pijvi �
n∑

i�1

(
n∑
j�1

pijaj

)
vi �

n∑
i�1

(Pa)ivi, (1.30)

where (Pa)i is the ith component of Pa. This shows that S spans V ,
and hence is a basis, by Theorem 1.42. It also shows that

[u]S � Pa � P[u]R.

This implies that P is the R-to-S change of basis matrix.

Corollary 1.64 Suppose V is a finite dimensional vector space with
basis R, and T : V → V is a linear transformation. Let AT,R be the
matrix representing T with respect to R. Suppose B is a matrix that is
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similar to AT,R. Then there exists a basis S for V such that B represents
T with respect to S (i.e., such that B � AT,S).

Proof
By assumption, there exists an invertible matrix P such that B �
P−1AT,RP. Then P−1 is also invertible; applying Lemma 1.63 to P−1,
there exists a basis S for V such that P−1 is the R-to-S change of basis
matrix. By Exercise 1.4.14, P is the S-to-R change of basis matrix.
Applying Lemma 1.61 (with R and S interchanged in its statement),

AT,S � P−1AT,RP � B.

Hence finding the best basis to represent a linear transformation
comes down to finding the simplest matrix similar to a given one.
Recall (Exercise 1.4.16) that similarity of matrices is an equivalence
relation. So we are looking for the simplest representative of the
equivalence class consisting of all matrices similar to a given one.

To start, we consider some features of the linear transformation
T that must be shared by all matrices representing T. The
eigenvalues are one such feature. We define eigenvalues for both
linear transformations and matrices.

Definition 1.65 LetV be a vector space over a fieldF, andT : V → V

a linear transformation. A scalar λ ∈ F is an eigenvalue of T if there
exists a nonzero v ∈ V such that

T(v) � λv. (1.31)

Any vector v ∈ V satisfying relation (1.31) (including the 0 vector) is
called an eigenvector of T corresponding to λ. The set of all such,
namely

Eλ � Eλ(T) � {v ∈ V : T(v) � λv},
is called the eigenspace of T corresponding to λ.

Any vector v ∈ V satisfying relation (1.31) for some λ ∈ F is called
an eigenvector of T.

An eigenvector is a direction in which T acts simply by scalar
multiplication. The definitions in the case of a matrix are similar.

Definition 1.66 Let F be either R or C. Let A be an n × n matrix
over F. If F � R, let V � Rn, and if F � C, let V � Cn. A scalar λ ∈ F
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is an eigenvalue of A if there exists a nonzero v ∈ V such that

Av � λv. (1.32)

Any vector v ∈ V satisfying equation (1.32) (including the 0 vector) is
called an eigenvector of A corresponding to λ. The set of all such is

Eλ � Eλ(A) � {v ∈ V : Av � λv},
called the eigenspace of A corresponding to λ. Any vector v ∈ V

satisfying equation (1.32) for some λ ∈ F is called an eigenvector of A.

Let T : V → V be a linear transformation and λ a scalar. By
definition, v ∈ Eλ(T) means that T(v) � λv, which is equivalent to
(λI − T)(v) � 0, or v ∈ ker(λI − T), where I is the identity operator
(defined by I(v) � v for all v). Hence Eλ(T) � ker(λI − T). By
Exercise 1.4.9(i), it follows that Eλ(T) is a subspace of V . We define
the geometric multiplicity of λ (with respect to T) to be the dimension
of Eλ(T). When λ is not an eigenvalue of T, then Eλ(T) � {0}, and
the geometric multiplicity of λ is 0.

We make a similar definition for a matrix A. By linearity,

Eλ(A) � {v ∈ V : (λI − A)v � 0}
is a subspace of V , where here I is the identity matrix. The geometric
multiplicity of λ (with respect to A) is the dimension of Eλ(A). If λ is
not an eigenvalue of A, the geometric multiplicity of λ is 0.

The next lemma shows that when a matrix corresponds to
a linear transformation, the eigenvalues and their geometric
multiplicities for the matrix and for the transformation are the same.

Lemma 1.67 Let V be a finite dimensional vector space with basis
R, let T : V → V be a linear transformation, and let A be the matrix
representing T with respect to R (i.e., A � AT,R). Then A and T have the
same eigenvalues, and

v ∈ Eλ(T) if and only if [v]R ∈ Eλ(A), (1.33)

for each eigenvalue λ. The geometric multiplicities of λ for T and for A
are the same:

dimEλ(T) � dim Eλ(A).
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Proof
First, suppose λ is an eigenvalue of T. Then there exists a nonzero
v such that T(v) � λv, that is, v ∈ Eλ(T). Then [v]R 	� 0 and, since A

represents T in the basis R,

A[v]R � [T(v)]R � [λv]R � λ[v]R,

using Exercise 1.3.14(ii). Hence λ is an eigenvalue of A and [v]R ∈
Eλ(A).

Conversely, suppose λ is an eigenvalue of A and y is a nonzero
vector satisfying Ay � λy (so y ∈ Eλ(A)). Let the components of y be
y1, y2, . . . , yn and let R � {u1, u2, . . . , un}. Define v �∑n

j�1 yjuj. Then
y � [v]R, so

[T(v)]R � A[v]R � λ[v]R � [λv]R,

again using Exercise 1.3.14(ii). This implies T(v) � λv (since T(v)
and λv have the same components in the basis R), that is, λ is an
eigenvalue of T and v ∈ Eλ(T).

The only case left to prove in relation (1.33) is when v � 0
(equivalently [v]R � 0), which is trivial because then v ∈ Eλ(T)
and [v]R ∈ Eλ(A).

We now prove the statement about the geometric multiplicities.
Note that λ is not an eigenvalue of T if and only if λ is not an
eigenvalue of A (by what we just proved), in which case both
geometric multiplicities are 0. So the result holds in this case.
Now suppose Eλ(T) has basis {t1, t2, . . . , tm} and Eλ(A) has basis
{s1, s2, . . . , sk}, which, by what we have recently noted, can be written
as {[v1]R, [v2]R, . . . , [vk]R}. By relation (1.33), [t1]R, [t2]R, . . . , [tm]R
belong to Eλ(A) and, by Exercise 1.3.15, are linearly independent.
This implies that m ≤ k (recall Exercise 1.3.12). Also by what we just
proved, v1, v2, . . . , vk belong to Eλ(T) and are linearly independent
(also by Exercise 1.3.15), so k ≤ m. Therefore k � m, as desired.

Lemma 1.67 yields the following result about similar matrices.

Corollary 1.68 Suppose A and B are similar matrices. Then A and
B have the same eigenvalues with the same geometric multiplicities.

Proof
Let T be the linear transformation (on Rn or Cn, depending whether
the scalar field is R or C) defined by T(x) � Ax. Then A represents
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T with respect to the standard basis. Since A and B are similar, there
is a basis S such that B represents T with respect to S, by Corollary
1.64. By Lemma 1.67, both A and B have the same eigenvalues, with
the same geometric multiplicities, as the linear transformation T,
hence the same as each other.

This last proof may seem somewhat roundabout, and one
can prove Corollary 1.68 by a straightforward argument involving
the definition of similar matrices (Exercise 1.5.1). However this
computational proof does not give much insight, and does not
suggest how the result might be anticipated. The proof above
emphasizes that the eigenvalues and their geometric multiplicities
are properties of the transformation itself, independent of how it
is realized by a matrix in some choice of basis. Similar matrices
are different realizations of the same transformation, so any
quantity that depends only on the underlying transformation
must be the same for similar matrices. This gives us an abstract
way of understanding what features similar matrices must have
in common. Any quantity determined by a matrix that must
be the same for any two similar matrices is called a similarity
invariant. Corollary 1.68 states that eigenvalues and their geometric
multiplicities are similarity invariants.

An important fact about eigenvectors of a linear transformation is
that eigenvectors corresponding to different eigenvalues are linearly
independent. A more general statement is as follows.

Lemma 1.69 Let V be an n-dimensional vector space over R or
C and T : V → V a linear transformation with distinct eigenvalues
λ1, λ2, . . . , λk. For i � 1, 2, . . . , k, suppose Eλi has dimension mi and a
basis {vi,1, vi,2, . . . , vi,mi

}. Let
A � {v1,1, v1,2, . . . , v1,m1 , v2,1, v2,2, . . . , v2,m2 , . . . , vk,1, vk,2, . . . , vk,mk

},
that is, let A be the union of the bases for the eigenspaces Eλi , i �
1, 2, . . . , n. Then A is linearly independent.

The sum of the geometric multiplicities of the eigenvalues is at most
n, that is,

k∑
i�1

mi ≤ n. (1.34)
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In particular, T cannot have more than n distinct eigenvalues.

Proof
Suppose there is a linear combination of vectors in A that is 0:

k∑
i�1

mi∑
j�1

aijvi,j � 0. (1.35)

For i � 1, 2, . . . , k, define ui �
∑mi

j�1 aijvi,j. Then equation (1.35)
becomes

k∑
i�1

ui � 0. (1.36)

Note that ui ∈ Eλi , since ui is a linear combination of the vectors
vi,j, j � 1, 2, . . . , mi, which all belong to the subspace Eλi . So T(ui) �
λiui.

We claim that every ui is 0. By reindexing (specifically, by
interchanging the indices i and k), it is enough to prove that uk is
0. Apply the linear transformation λ1I − T to both sides of equation
(1.36). Note that (λ1I − T)ui � (λ1 − λi)ui, which is 0 only for i � 1.
Since the i � 1 term drops out, we obtain

k∑
i�2

(λ1 − λi)ui � 0.

Now we apply λ2I − T to both sides of this equation, which causes
the i � 2 term to drop out. We continue in this way until only one
term remains, which gives

(λ1 − λk)(λ2 − λk) · · · (λk−1 − λk)uk � 0.

Since the coefficient is not 0, we must have uk � 0.
We have shown that ui �

∑mi

j�1 aijvi,j � 0 for each i. However, by
assumption, each set {vi,1, vi,2, . . . , vi,mi

} is linearly independent. So
each aij must be 0. This implies that A is linearly independent.

The number of vectors vi,j is
∑k

i�1 mi. Since these vectors are
linearly independent and V is n-dimensional, the total number is
at most n (Exercise 1.3.12), so relation (1.34) holds. In particular,
since each eigenspace is at least one-dimensional, the number of
eigenvalues is at most n.
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The number
∑k

i�1 mi in relation (1.34) is the maximum possible
number of linearly independent eigenvectors of T, since no
eigenspace Eλi can contribute more than mi � dimEλi eigenvectors
to any linearly independent collection.

Statements corresponding to those in Lemma 1.69 hold for
matrices also.

Corollary 1.70 Let A be an n × n matrix over R or C. Suppose
λ1, λ2, . . . , λk are the distinct eigenvalues of A. For i � 1, . . . , k, suppose
Eλi , the eigenspace of λi, has dimensionmi and basis {vi,1, vi,2, . . . , vi,mi

}.
Then the set {vi,j}1≤i≤k,1≤j≤mi

is linearly independent,
∑k

i�1 mi ≤ n, and
k, the number of eigenvalues of A, is at most n.

Proof
Associate with A the linear transformation T defined by T(x) � Ax.
Then the eigenvalues and eigenvectors of the transformation T are
the same as for the matrix A, so all of the assertions follow from
Lemma 1.69.

The easiest linear transformations to work with are those
for which the maximal linearly independent set of eigenvectors
in Lemma 1.69 is a basis, that is, for which there are enough
eigenvectors to span the vector space.

Definition 1.71 Let V be a finite dimensional vector space and
T : V → V a linear transformation. If V has a basis consisting of
eigenvectors of T, we say T is diagonalizable.

A diagonalizable linear transformation T is simpler than an
arbitrary linear transformation because the action of T can be
broken up into the eigenvector directions, in which T acts by scalar
multiplication.

The corresponding notion for matrices is the following.

Definition 1.72 An n × n matrix D � [dij] is diagonal if dij � 0
whenever i 	� j, that is, if all the entries of D off the main diagonal are 0.

An n×n matrix A is diagonalizable if A is similar to some diagonal
matrix.

In other words, a matrix A is diagonalizable if there is a diagonal
matrix D and an invertible matrix P such that P−1AP � D.
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The relation between the two notions of diagonalizability is
natural.

Lemma 1.73 Suppose V is a finite dimensional vector space and
T : V → V is a linear transformation.
i. T is diagonalizable if and only if there exists a basis R for V such

that the matrix AT,R representing T with respect to R is diagonal.
ii. Let S be any basis for V . Let AT,S be the matrix representing T with

respect to S. Then T is a diagonalizable linear transformation if and
only if AT,S is a diagonalizable matrix.

Proof
i. First suppose T is diagonalizable. By definition, V has a basis

R � {v1, v2, . . . , vn} of eigenvectors of T, say T(vi) � λivi,
i � 1, 2, . . . , n. Let D � [di,j]1≤i,j≤n be the diagonal matrix with
diagonal entries dii � λi. Let v ∈ V be arbitrary. Since R is a basis
for V , there exist scalars α1, . . . , αn such that v �∑n

i�1 αivi, or

[v]R �




α1
...
αn


 .

By linearity,

T

(
n∑

i�1

αivi

)
�

n∑
i�1

αiT(vi) �
n∑

i�1

αiλivi,

or, equivalently,

[T(v)]R �




α1λ1

·
·

αnλn


 �




λ1 0 · · 0
0 λ2 0 · 0
· · · · ·
· · · · ·
0 · · · λn







α1

α2

·
·
αn


 � D[v]R.

Hence AT,R � D, which is diagonal.
Conversely, suppose that R � {v1, v2, . . . , vn} is a basis for

V such that AT,R is a diagonal matrix D � [di,j]1≤i,j≤n. Then
[T(v)]R � D[v]R for all v ∈ V . Note that [vi]R � ei, the ith standard
basis vector (Definition 1.39), since the expansion of vi in terms
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of R has a coefficient of 1 in front of vi and 0 elsewhere. By
assumption,

[T(vi)]R � D[vi]R � Dei � diiei � dii[vi]R � [diivi]R,

using the diagonality of D and Exercise 1.3.14(ii). This implies
that T(vi) � diivi for each i. Thus each vi is an eigenvector of T,
and V has a basis (namely R) of eigenvectors of T.

ii. First suppose T is diagonalizable. By part i, there is a basis R so
that AT,R is diagonal. By Lemma 1.61, AT,S is similar to AT,R, so
AT,S is diagonalizable.

Conversely, suppose AT,S is diagonalizable, say similar to a
diagonal matrix D. By Corollary 1.64, there is a basis R so that D
represents T with respect to R, so by part i, T is diagonalizable.

It is much easier to do computations with a diagonal matrix
than with a general one. For example, multiplying a vector by
a general n × n matrix requires a total of n2 multiplications. If
the matrix is diagonal, however, it requires only n multiplications.
More dramatically, computing a large power of a diagonal matrix
is easy, whereas for a general matrix it requires a huge number of
multiplications to do directly (compare with Example 1.82). So for a
diagonalizable linear transformation T, Lemma 1.73, part i, answers
our basic question of how to choose a basis to simplify computations
with T: we select a basis that diagonalizes T.

It is not easy to determine whether a given linear transformation
T : V → V is diagonalizable. By definition, T is diagonalizable if and
only if V has a basis of eigenvectors of T. If V is n-dimensional, this
meansT is diagonalizable if and only ifT has n linearly independent
eigenvectors. By Lemma 1.69, the maximum number of linearly
independent eigenvectors of T is

∑k
i�1 mi, the sum of the geometric

multiplicities of the eigenvalues. ThusT is diagonalizable if and only
if
∑k

i�1 mi � n.

The same criterion holds for a matrix A. If we consider the linear
transformation T defined by T(x) � Ax (so A represents T in the
Euclidean basis), then by Lemma 1.67, A and T have the same
eigenvalues with the same geometric multiplicities. By Lemma 1.73,
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T is diagonalizable if and only if A is diagonalizable. So an n × n

matrix A is diagonalizable if and only if the sum of the geometric
multiplicities of the eigenvectors of A is n, that is, if and only if A
has n linearly independent eigenvectors.

In the special case in which A or T has n distinct eigenvalues,
each eigenspace must have dimension one (at least one, by
definition, and at most one by relation (1.34)). So the sum of
the geometric multiplicities is n. Hence A or T is automatically
diagonalizable.

To see if A or T is diagonalizable when there are less than
n distinct eigenvalues, we have to consider the eigenspaces and
determine whether the sum of their dimensions is n.

Now we turn to practical matters of computation. Lemma 1.74
tells us how to carry out the diagonalization of a diagonalizable
matrix, assuming we know the eigenvalues and eigenvectors. A little
thought shows that a diagonal matrix D has eigenvalues equal to
its diagonal entries (with eigenvectors equal to the standard basis
vectors). But we have already noted that similar matrices have the
same eigenvalues (Corollary 1.68). So if A is similar to D, the only
possible entries for the diagonal matrix D are the eigenvalues of A.
This explains part of the following result and shows why eigenvalues
play a central role in diagonalization of matrices.

Lemma 1.74 Let A be an n× n diagonalizable matrix.
i. Let v1, v2, . . . , vn be n linearly independent eigenvectors of

A (which exist, as noted above). Let λ1, λ2, . . . , λn be the
corresponding eigenvalues. Let P be the matrix whose jth column
is the vector vj. Let D � [dij] be the diagonal matrix whose jth

diagonal entry djj is λj. Then P−1AP � D.
ii. Conversely, if P−1AP � D, where D is a diagonal matrix, then

the columns of P are linearly independent eigenvectors of A, with
corresponding eigenvalues equal to the diagonal entries of D.

Proof
i. Note that the desired equation P−1AP � D is equivalent to
AP � PD. We calculate

AP � A [v1 v2 · · · vn] � [Av1 Av2 · · · Avn] � [λ1v1 λ2v2 · · · λnvn] .
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On the other hand,

PD � [v1 v2 · · · vn]




λ1 0 · · 0
0 λ2 0 · 0
· · · · ·
0 · · 0 λn


 � [λ1v1 λ2v2 · · · λnvn] .

This proves part i. Part ii is proved by reversing these steps; we leave
this as Exercise 1.5.3.

The suspicious reader will note that we have not yet proved that a
matrix necessarily has any eigenvalues. In fact, a matrix over R may
not have any real eigenvalues (Exercise 1.5.4(i)), although a matrix
over C must have complex eigenvalues, as we will see. Also, we have
not yet learned how to find the eigenvalues and eigenvectors of a
matrix when they exist. For this, we assume some basic facts about
determinants.

Definition 1.75 The determinant of an n × n matrix A, denoted
detA or det(A), is defined as follows. If A is a 1×1 matrix, say A � [a],
let detA � a. For a 2× 2 matrix, define

det
[
a b

c d

]
� ad − bc.

Proceeding inductively, suppose the determinant of an (n− 1)× (n− 1)
matrix has been defined. Now let A � [aij] be an n × n matrix. For
1 ≤ i, j ≤ n, the (i, j)th minor Mij of A is the (n − 1) × (n − 1) matrix
obtained from A by deleting the ith row and jth column of A. Define

detA �
n∑
j�1

(−1)1+ja1j detM1j. (1.37)

As an example, for a 3× 3 matrix,

det


 a11 a12 a13

a21 a22 a23

a31 a32 a33


 � a11det

[
a22 a23

a32 a33

]

−a12det
[
a21 a23

a31 a33

]
+ a13det

[
a21 a22

a31 a32

]
� a11 (a22a33 − a23a32)

−a12 (a21a33 − a23a31)+ a13 (a21a32 − a22a31) .
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Actually we can expand detA along any row or column by an
expression similar to equation (1.37), but proving this takes some
work and this definition will be sufficient for our purposes. In
practice, applying Definition 1.75 is a very slow way to compute
the determinant of a large matrix. Instead we apply elementary
row operations to the matrix and keep track of their effects (which
are simple) on the determinant, until we reach an upper triangular
matrix, whose determinant is the product of its diagonal elements.
We do not go into this further here, as our purpose is only to compute
a few simple examples by hand to illustrate the ideas we have been
discussing.

We assume the following two facts about determinants, whose
proof can be found in most linear algebra texts.

Theorem 1.76 Let A be an n× n matrix. Then
i. A is invertible if and only if detA 	� 0.
ii. If B is another n× n matrix, then det(AB) � detA det B.

Assuming Theorem 1.76, we can compute the eigenvalues and
eigenvectors of a matrix. First we need a definition.

Definition 1.77 Let A be an n × n matrix. The characteristic
polynomial of A is

det(λI − A),

regarded as a polynomial in the variable λ.

A few examples should convince you that the characteristic
polynomial of an n × n matrix is a polynomial of degree n whose
highest order term is λn. The characteristic polynomial plays a key
role throughout linear algebra, but for us its main use comes from
the following observation.

Lemma 1.78 Let A be an n × n matrix. Then the eigenvalues of A
are the roots of the characteristic polynomial of A.

Proof
By definition, λ is an eigenvalue of A if and only if there is
a nonzero vector v such that (λI − A)v � 0. Equivalently, the
linear transformation T defined by T(x) � (λI − A)x is not 1 − 1
(Exercise 1.4.7). By Exercise 1.4.8(v), this happens if and only if
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T is not invertible, hence (by Lemma 1.55) if and only if λI − A

is not invertible. By Theorem 1.76, part i, this is equivalent to
det(λI − A) � 0, which means that λ is a root of the characteristic
polynomial of A.

The characteristic polynomial of a matrix A may not have any
real-valued roots (Exercise 1.5.4(i)). However, by the fundamental
theorem of algebra (Theorem 1.28), any nonconstant polynomial has
a complex root. This is one of the reasons we prefer to work with the
field C. So if we regard our matrices as being complex (which we can,
even if all the entries are real), then every matrix has an eigenvalue.
In fact, by Corollary 1.29, every polynomial splits completely into a
product of linear factors over C. Hence if A is an n × n matrix over
C, we can write

det(λI − A) � (λ− λ1)(λ− λ2) · · · (λ− λn), (1.38)

where some λi may be repeated. (There is no constant in front
because the coefficient of λn is 1.) These λ1, λ2, . . . , λn are the only
roots of the characteristic polynomial, that is, the eigenvalues of A.
To deal with the possibility that some λi are repeated in equation
(1.38), we make the following definition.

Definition 1.79 Let A be an n× n matrix over C. Let λ1, λ2, . . . , λk
be the distinct eigenvalues of A. Then the characteristic polynomial of A
can be written

det(λI − A) � (λ− λ1)m1(λ− λ2)m2 · · · (λ− λk)mk , (1.39)

where each mj is a positive integer, called the algebraic multiplicity of
the eigenvalue λj.

IfA is an n×nmatrix, then the characteristic polynomial ofA has
degree n, so the sum of the algebraic multiplicities of the eigenvalues
of A is n. By Corollary 1.70, the sum of the geometric multiplicities
is at most n. In fact, more is true: for each eigenvalue, its geometric
multiplicity is less than or equal to its algebraic multiplicity. We
do not need this fact, so we will not prove it. However, we do
note that it gives another criterion for diagonalizability: a matrix
is diagonalizable if and only if the geometric multiplicity of each
eigenvalue is equal to its algebraic multiplicity (since that is the
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only way the sum of the geometric multiplicities can be n). Exercise
1.5.8 shows that this may fail.

Notice that the fact that a matrix must have a (complex)
eigenvalue tells us that a linear transformation T : V → V on a
finite dimensional vector space V over C must have an eigenvalue,
since its representation by a matrix with respect to any basis must
have one.

Next we see that the characteristic polynomial and the algebraic
multiplicities of the eigenvalues of a matrix are similarity invariants.

Lemma 1.80 Suppose A and B are similar matrices. Then

det(λI − A) � det(λI − B).

In particular, the algebraic multiplicities of the eigenvalues of A and B

are the same.

Proof
Let P be such that B � P−1AP. Then

λI − B � λI − P−1AP � P−1λIP − P−1AP � P−1(λI − A)P,

since P commutes with I and with multiplication by the scalar λ,
and hence cancels with P−1. By Theorem 1.76, part ii,

det P−1 det P � det(P−1P) � det I � 1.

So

det(λI − B) � det(P−1(λI − A)P)

� det(P−1) det(λI − A) det P � det(λI − A).

The remark about algebraic multiplicities is now obvious because
they are determined by the characteristic polynomial.

We are now ready for an example and some applications.

Example 1.81
Let

A �

 −2 0 6
−1 1 2
−2 0 5


 .
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Determine whether A is diagonalizable, and if it is, find an invertible
matrix P and a diagonal matrix D such that D � P−1AP.

Solution
We begin by computing the characteristic polynomial of A:

det(λI − A) � det


 λ+ 2 0 −6

1 λ− 1 −2
2 0 λ− 5




� (λ+ 2)(λ− 1)(λ− 5)+ (−6)[0− 2(λ− 1)]

� (λ− 1)(λ2 − 3λ+ 2) � (λ− 1)2(λ− 2).

So 1 is an eigenvalue of algebraic multiplicity 2 and 2 is an eigenvalue
of algebraic multiplicity 1. We start by computing the eigenspace E1

of 1, which consists of all vectors v such that (1I − A)v � 0, that is,
all solutions of 

 3 0 −6
1 0 −2
2 0 −4




 a

b

c


 �


 0

0
0


 .

These equations all give the same constraint, namely a � 2c. So we
can arbitrarily pick b and c, if we then set a � 2c. Thus E1 consists
of all vectors of the form

 2c
b

c


 � b


 0

1
0


+ c


 2

0
1


 ,

for some scalars b and c. This shows that E1 is two dimensional,
spanned by the linearly independent vectors

 0
1
0


 and


 2

0
1


 .

We see now that A is diagonalizable. Similar analysis shows that the
eigenspace corresponding to the eigenvector 2 is spanned by the
vector 

 3
1
2


 .
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Hence by Lemma 1.74, we take

P �

 0 2 3

1 0 1
0 1 2


 and D �


 1 0 0

0 1 0
0 0 2


 .

A computation shows that

P−1 �

 1 1 −2

2 0 −3
−1 0 2


 .

We can check this: direct computation shows that P−1AP � D.

It is easier to compute with a diagonalizable matrix A. For
example, consider computing large powers of A. If P−1AP � D, then
A � PDP−1. For any positive integer k,

Ak � PDP−1PDP−1PDP−1 · · · PDP−1 � PDkP−1,

since the middle terms P−1P cancel out. But Dk is the diagonal
matrix whose diagonal entries are the kth power of the corresponding
diagonal entries of D. In some cases we can find roots of matrices
also.

Example 1.82
Let A be the matrix in Example 1.81.

i. Compute A20.
ii. Find a matrix B such that B2 � A.

Solution
i. As noted above, A20 � PD20P−1

�

 0 2 3

1 0 1
0 1 2




 1 0 0

0 1 0
0 0 220




 1 1 −2

2 0 −3
−1 0 2




�

 0 2 3

1 0 1
0 1 2




 1 1 −2

2 0 −3
−220 0 221




�

 4− 3 · 220 0 −6+ 3 · 221

1− 220 1 −2+ 221

2− 221 0 −3+ 222


 .
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ii. Since the diagonal entries of D are nonnegative, it is easy to
find a matrix C such that C2 � D, namely

C �

 1 0 0

0 1 0
0 0

√
2


 .

Then B � PCP−1 satisfies

B2 � PCP−1PCP−1 � PC2P−1 � PDP−1 � A.

Computation gives

B �

 4− 3

√
2 0 −6+ 6

√
2

1−√2 1 −2+ 2
√

2
2− 2

√
2 0 −3+ 4

√
2


 ,

which would be difficult to guess.

The next two examples give a stronger sense of the power of
diagonalization. The first involves solving a difference equation.

Example 1.83
Define a sequence {xn}∞n�0 inductively by setting x0 � 1, x1 � 1, and,
for n ≥ 0,

xn+2 � 2xn+1 + 3xn. (1.40)

Find a closed form expression for xn.

Solution
For each n ≥ 0, define the vector

un �
[
xn+1

xn

]
.

From equation (1.40), we obtain

un+1 �
[
xn+2

xn+1

]
�
[

2xn+1 + 3xn
xn+1

]
�
[

2 3
1 0

] [
xn+1

xn

]
� Aun,

where

A �
[

2 3
1 0

]
.
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Hence

un � Aun−1 � A2un−2 � · · · � Anu0.

Since the conditions x0 � x1 � 1 give us u0, we need to compute
only An. A computation shows that the eigenvalues of A are λ � 3
with eigenvector [3 1] and λ � −1 with eigenvector [−1 1]. Hence

A � PDP−1 �
[

3 −1
1 1

] [
3 0
0 −1

]
1
4

[
1 1
−1 3

]
.

Consequently,

An � PDnP−1

�
[

3 −1
1 1

] [
3n 0
0 (−1)n

]
1
4

[
1 1
−1 3

]

� 1
4

[
3n+1 − (−1)n+1 3n+1 + 3(−1)n+1

3n − (−1)n 3n + 3(−1)n

]
.

Therefore[
xn+1

xn

]
� un � Anu0

� 1
4

[
3n+1 − (−1)n+1 3n+1 + 3(−1)n+1

3n − (−1)n 3n + 3(−1)n

] [
1
1

]

� 1
4

[
2 · 3n+1 + 2(−1)n+1

2 · 3n + 2(−1)n

]
.

In particular

xn � (3n + (−1)n)
2

.

(Note that we did not need to compute the first entry of Anu0.) One
can check directly that xn satisfies the initial conditions x0 � x1 � 1
and that the recurrence relation (1.40) holds.

One can use this method to determine a formula for the nth

Fibonacci number (Exercise 1.5.6).
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The next example shows how diagonalization can be used in
solving systems of differential equations.

Example 1.84
Find the general solution to the system of differential equations

y′1 � −2y1 + 6y3

y′2 � −y1 + y2 + 2y3 (1.41)

y′3 � −2y1 + 5y3.

Solution
Let y denote the vector with components y1, y2, y3. Let A be the
matrix in Examples 1.81 and 1.82. For P and D obtained there, we
can write the given equations as

y′ � Ay � PDP−1y.

This is equivalent to

P−1y′ � DP−1y.

Let z � P−1y, and let the components of z be z1, z2, z3. Then (using
the linearity of the derivative) our equation just becomes z′ � Dz,
or

z′1 � z1, z′2 � z2, and, z′3 � 2z3.

By basic calculus we know that the general solutions to this are
z1(t) � C1e

t, z2(t) � C2e
t, and z3(t) � C3e

2t (the general solution to
f ′ � kf is f (t) � Cekt, where C is an undetermined constant). But
y � Pz. Thus the solution is

 y1(t)
y2(t)
y3(t)


 �


 0 2 3

1 0 1
0 1 2




 C1e

t

C2e
t

C3e
2t


 �


 2C2e

t + 3C3e
2t

C1e
t + C3e

2t

C2e
t + 2C3e

2t


 .

One can check that y1(t), y2(t), and y3(t) satisfy system (1.41).

In this example, the diagonalizability of A allows us to change
basis (to the z-coordinates) in such a way that the equations decouple
into one-dimensional equations. This is the basic idea behind
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diagonalization: the problem is broken up into simpler, independent
problems.

Not every matrix or linear transformation is diagonalizable
(Exercise 1.5.8). One might ask how close one can get in general; that
is, for an arbitrary matrix A, if we look among all similar matrices,
how close to diagonal is the “best” one? One answer is that there is
always a matrix that has the eigenvalues of A on the main diagonal
(repeated in blocks according to algebraic multiplicity), either 0 or 1
at every entry on the superdiagonal (the shorter diagonal just above
the main diagonal), depending on the geometric multiplicity of the
eigenvalues, and 0 everywhere else in the matrix. This matrix is
called the Jordan canonical form of A; it is a complete similarity
invariant of A in the sense that each matrix is similar to only
one matrix in Jordan canonical form (up to permutation of the
eigenvalues), and two matrices are similar if they have the same
Jordan form. This is something of the theoretical culmination of
elementary linear algebra, but we do not need such a powerful and
general result here. We are mainly concerned with the simpler case
of diagonalizable matrices.

Exercises

1.5.1. Suppose A and B are n × n matrices over a field F, where
either F � R or F � C. Suppose A ∼ B, say B � P−1AP. Let
λ be a scalar, and v a vector (in Rn if F � R, in Cn if F � C).

i. Prove that Av � λv if and only if B(P−1v) � λP−1v.

ii. Give a direct proof of Corollary 1.68, that is, a proof
without using Lemma 1.67 or Corollary 1.64. Hint:
Similarly to Exercise 1.4.8(i), prove that multiplication
by an invertible matrix preserves linear independence.

1.5.2. Let A be an n × n matrix over R or C. Prove that A

is invertible if and only if the columns of A, regarded
as vectors, are linearly independent. Hint: Let T be the
linear transformation defined by T(x) � Ax. Let vj be
the jth column of A, regarded as a vector. Prove that
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span{v1, . . . , vn} � range T (e.g., by applying Exercise
1.4.8(ii) with ui � ei), and recall Lemma 1.57 and Theorem
1.42.

1.5.3. Prove Lemma 1.74, part ii: If P is an invertible matrix with
columns v1, v2, . . . , vn, D � [dij] is a diagonal matrix, and
P−1AP � D, then the columns of P are linearly independent
(this follows just from the invertibility of P and Exercise
1.5.2) and Avi � diivi for each i � 1, 2, . . . , n (i.e., vi is an
eigenvector of A with eigenvalue equal to the ith diagonal
entry of D).

1.5.4. Let

A �
[

0 −1
1 0

]

.
i. Regarding A as a matrix over R, show that A has no real

eigenvalues.
ii. Regarding A as a matrix over C, find the complex

eigenvalues of A and a corresponding eigenvector for
each eigenvalue.

iii. Find an invertible matrix P over C and a diagonal matrix
D over C such that P−1AP � D.

iv. Use part iii to calculate A99.
v. Check that A2 � −I. Use this to compute A99, and

compare with the answer in part iv.
1.5.5. Define x0 � 1 and x1 � −1. For n ≥ 0, inductively define

xn+2 � xn+1 + 6xn. Find a formula for xn.
1.5.6. The Fibonacci sequence is defined inductively by x0 � 0,

x1 � 1, and for n ≥ 0, xn+2 � xn+1 + xn. Find a formula for
the nth Fibonacci number xn. (Answer: xn � 5−1/22−n((1 +√

5)n − (1−√5)n).)
1.5.7. Let A be an n× n matrix over C.

i. Prove that det(−A) � (−1)n detA. Hint: Use induction.
ii. Suppose that λ1, . . . , λk are the eigenvalues of A and the

algebraic multiplicity of λi is mi, for each i. Prove that
the determinant of A is the product of its eigenvalues,
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counted according to multiplicity, that is,

det(A) � λ1
m1λ2

m2 · · · λkmk .

Many books use this as a more elegant way to define the
determinant, but this approach requires first proving the
existence of eigenvalues. Hint: Make a good choice of λ
in equation (1.39).
Remark: This implies that the determinant of a matrix

is a similarity invariant (since the eigenvalues and their
algebraic multiplicities are). This can be seen more directly
using Theorem 1.76, part ii.

1.5.8. Let

A �
[

3 1
0 3

]

Show that 3 is a eigenvalue of A which has algebraic
multiplicity 2 but geometric multiplicity 1. Conclude that
A does not have a basis of eigenvectors and hence is not
diagonalizable.

1.5.9. Let

A �

 2 0 0

3 2 1
3 0 3


 .

i. Find a diagonal matrix D and an invertible matrix P such
that P−1AP � D.

ii. Find a matrix B such that B2 � A.
1.5.10. Let A be an n × n matrix over C. If A is diagonalizable and

k is a positive integer, prove that Ak is diagonalizable. How
are the eigenvalues and eigenvectors of Ak related to those
of A?

1.5.11. Find the general solution to the system of differential
equations

y′1 � 8y1 − 15y2

y′2 � 2y1 − 3y2.

1.5.12. We say matrices A and B are simultaneously diagonalizable if
they are diagonalized by the same matrix, that is, if there
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exists an invertible matrix P such that P−1AP � D1 and
P−1BP � D2, for some diagonal matrices D1 and D2. If A
and B are simultaneously diagonalizable, prove that they
commute: AB � BA. Hint: Note that any two diagonal
matrices commute.

1.5.13. Under the assumption that the n×n matrix A has n distinct
eigenvalues, prove the converse to Exercise 1.5.12: If B is
an n × n matrix that commutes with A, then A and B are
simultaneously diagonalizable (see Exercise 1.5.12 for the
definition). Hint: If vj is an eigenvector of A with eigenvalue
λj, use the commutativity of A and B to show that Bvj is an
eigenvector of A with eigenvalue λj, hence is a multiple of
vj. Remark: This result is true without the assumption that A
has n distinct eigenvalues: If A and B are diagonalizable and
commute, then A and B are simultaneously diagonalizable.
This result is important in quantum mechanics.

1.6 Inner Products, Orthonormal Bases,
and Unitary Matrices

The notions we have considered so far, such as linear independence
and bases, make sense for any vector space. However, our main
examples Rn and Cn, as well as certain infinite dimensional vector
spaces, possess the additional structure of having an “inner product.”
An inner product is a generalization of the dot product for vectors
in Rn. It gives a generalized notion of perpendicularity, called
orthogonality. This leads to orthonormal bases and unitary matrices,
which are particularly simple to use.

For x and y in Rn, with components x1, x2, . . . , xn and y1, y2, . . . , yn,
respectively, the dot product of x and y is the real number

x · y �
n∑
j�1

xjyj.

The analog in the complex case is the following.
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Definition 1.85 Suppose z, w ∈ Cn, say

z �




z1

z2

·
·
·
zn




and w �




w1

w2

·
·
·
wn



.

The (complex) dot product of z and w is

z ·w �
n∑
j�1

zjwj,

where wj is the complex conjugate of wj.

We will see the reason for the conjugate in Definition 1.85 soon.
This complex dot product is a special case of a (complex) inner
product.

Definition 1.86 Let V be a vector space over C. A (complex) inner
product is a map 〈·, ·〉 : V × V → C with the following properties:

I1. (Additivity) 〈u + v,w〉 � 〈u,w〉 + 〈v,w〉 for all u, v, w ∈ V .
I2. (Scalar homogeneity) 〈αu, v〉 � α〈u, v〉 for all α ∈ C and all

u, v ∈ V .
I3. (Conjugate symmetry) 〈u, v〉 � 〈v, u〉 for all u, v ∈ V .
I4. (Positive definiteness) 〈u, u〉 ≥ 0 for all u ∈ V , and 〈u, u〉 � 0 if

and only if u � 0.
A vector space V with a complex inner product is called a (complex)

inner product space.

Additivity (I1) in the first variable together with conjugate
symmetry (I3) imply (Exercise 1.6.1) additivity in the second
variable:

〈u, v+w〉 � 〈u, v〉 + 〈u,w〉 for all u, v, w ∈ V. (1.42)

However, scalar homogeneity (I2) in the first variable and conjugate
symmetry (I3) yield (Exercise 1.6.1) conjugate linearity in the
second variable:

〈u, αv〉 � α〈u, v〉, for all α ∈ C and all u, v ∈ V. (1.43)



1.6. Inner Products, Orthonormal Bases, and Unitary Matrices 81

Example 1.87
For z, w ∈ Cn, define 〈z, w〉 � z · w. Then 〈·, ·〉 is a complex inner
product on Cn (Exercise 1.6.2(i)). In checking this fact, one can see
that the conjugate in the definition of the dot product for vectors
in Cn is needed to obtain the positive definiteness property I4. This
explains the need for the conjugate symmetry I3.

For a vector space V over R, we define a real inner product
similarly, except that 〈u, v〉 is always a real number, and we consider
only α ∈ R in I2. In this case, I3 becomes just 〈u, v〉 � 〈v, u〉. As an
example, define 〈x, y〉 � x · y, for x, y ∈ Rn. Then (Exercise 1.6.2(ii))
〈·, ·〉 is a real inner product on Rn.

In this text, we are primarily concerned with complex inner
product spaces. Nearly all of the results we discuss also hold for
real inner product spaces, when formulated appropriately. To avoid
notational confusion, we discuss only the complex case because that
is what we need later.

Example 1.88
Let �2(N) be the set of all square-summable complex sequences:

�2(N) �
{
{zj}∞j�1 : zj ∈ C for all j, and

∞∑
j�1

|zj|2 <∞.

}

With the obvious componentwise addition and scalar multiplication,
�2(N) is a vector space over C (Exercise 1.6.3(ii)). For z � {zj}∞j�1 ∈
�2(N) and w � {wj}∞j�1 ∈ �2(N), let

〈z, w〉 �
∞∑
j�1

zjwj.

(By Exercise 1.6.3(iii), this series converges absolutely.) Then 〈·, ·〉
is a complex inner product on �2(N) (Exercise 1.6.3(iv)).

Example 1.89
Let C([0, 1]) be the set of continuous, complex-valued functions on
the closed interval [0, 1]:

C([0, 1]) � {f : [0, 1]→ C such that f is continuous on [0, 1]}.
(A complex valued function f on [0, 1] is continuous if its real part
u(x) � Re f (x) and its imaginary part v(x) � Im f (x) are continuous.)
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With pointwise addition and scalar multiplication (as in Example
1.33), C([0, 1]) is a complex vector space. For f, g ∈ C([0, 1]), define

〈f, g〉 �
∫ 1

0
f (x)g(x) dx.

(The integral over [0, 1] of a complex-valued function f (x) � u(x)+
iv(x), where u and v are real-valued, is defined to be

∫ 1
0 u(x) dx +

i
∫ 1

0 v(x) dx.) Then 〈·, ·〉 is a complex inner product on C([0, 1])
(Exercise 1.6.4).

An inner product always yields a norm (Exercise 1.6.5) in the
following way.

Definition 1.90 Let V be a vector space over C with a complex inner
product 〈·, ·〉. For v ∈ V , define

‖v‖ �
√
〈v, v〉.

(The square root is defined as a nonnegative real number because of
property I4 in Definition 1.86.) We call ‖v‖ the norm of v.

Notice that for Rn, this norm agrees with the usual notion of the
length of a vector.

From now on, when we say V is a complex inner product space,
we assume (unless otherwise stated) that 〈·, ·〉 denotes the inner
product on V and ‖ · ‖ denotes the norm on V obtained from the
inner product as in Definition 1.90.

Lemma 1.91 (Cauchy-Schwarz inequality) Let V be a complex inner
product space. Then for any u, v ∈ V ,

|〈u, v〉| ≤ ‖u‖‖v‖.
Proof
Let u, v ∈ V. If v � 0, then 〈u, v〉 � 〈u, 0v〉 � 0〈u, v〉 � 0, so the
result holds automatically. Now assume v 	� 0. For any λ ∈ C, the
positive definiteness of the inner product (property I4 in Definition
1.86) implies

0 ≤ 〈u + λv, u + λv〉.
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Expanding the right side (using the linearity properties I1, and I2,
and equations (1.42) and (1.43)) gives

0 ≤ 〈u, u〉 + 〈u, λv〉 + 〈λv, u〉 + 〈λv, λv〉
� ‖u‖2 + λ〈u, v〉 + λ〈u, v〉 + |λ|2‖v‖2,

where we used I3 in the last line. Now select

λ � −〈u, v〉‖v‖2 .

Substituting this into the preceding expression yields

0 ≤ ‖u‖2 − 2
|〈u, v〉|2
‖v‖2 + |〈u, v〉|

2

‖v‖4 ‖v‖
2 � ‖u‖2 − |〈u, v〉|

2

‖v‖2 ,

which yields

|〈u, v〉|2 ≤ ‖u‖2‖v‖2.
Taking the square root of both sides yields the result.

A consequence of this is a general version of the triangle
inequality.

Corollary 1.92 (Triangle inequality in an inner product space)
Let V be a complex inner product space. Then for u, v ∈ V ,

‖u + v‖ ≤ ‖u‖ + ‖v‖.
Proof
Applying the definitions and the Cauchy-Schwarz inequality gives:

‖u + v‖2 � 〈u + v, u + v〉 � 〈u, u〉 + 〈u, v〉 + 〈v, u〉 + 〈v, v〉
≤ ‖u‖2 + 2‖u‖‖v‖ + ‖v‖2 � (‖u‖ + ‖v‖)2 .

Now take the square root of both sides.

Recall from calculus that for x and y in R2 or R3, we have

x · y � ‖x‖‖y‖ cos θ,

where θ is the angle between x and y. In particular, x is perpendicular
to y if and only if x · y � 0. In a general inner product space, which
we may not be able to visualize, we use the inner product to define
a generalized notion of perpendicularity.
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Definition 1.93 Suppose V is a complex inner product space. For
u, v ∈ V , we say that u and v are orthogonal (written u ⊥ v) if 〈u, v〉 � 0.

Notice that if u ⊥ v, then expanding the inner product gives

‖u + v‖2 � ‖u‖2 + 〈u, v〉 + 〈v, u〉 + ‖v‖2 � ‖u‖2 + ‖v‖2. (1.44)

This is a general version of the Pythagorean theorem.

Definition 1.94 Suppose V is a complex inner product space. Let
B be a collection of vectors in V . B is an orthogonal set if any two
different elements of B are orthogonal. B is an orthonormal set if B is
an orthogonal set and ‖v‖ � 1 for all v ∈ B.

Orthogonal sets of nonzero vectors are linearly independent.

Lemma 1.95 Suppose V is a complex inner product space. Suppose
B is an orthogonal set of vectors in V and 0 	∈ B. Then B is a linearly
independent set.

Proof
Suppose u1, u2, . . . , uk ∈ B and there exist scalars α1, α2, . . . , αk such
that

α1u1 + α2u2 + · · · + αkuk � 0.

Take the inner product of both sides with uj, where j ∈ {1, 2, . . . , k}
is arbitrary. By the orthogonality assumption, 〈ul, uj〉 � 0 for l 	� j.
We obtain

αj〈uj, uj〉 � 0.

Since uj 	� 0 (since 0 	∈ B by assumption), we have 〈uj, uj〉 � ‖uj‖2 	� 0
(by I4), hence αj � 0. Since j is arbitrary, this proves that B is linearly
independent.

Lemma 1.96 Suppose V is a complex inner product space, and
B � {u1, u2, . . . , un} is an orthogonal set in V with uj 	� 0 for all j.
If v ∈ span B, then

v �
n∑
j�1

〈v, uj〉
‖uj‖2 uj. (1.45)
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Proof
Since v ∈ span B, there exist scalars α1, α2, . . . , αn such that

v � α1u1 + α2u2 + · · · + αnun.

For each j, taking the inner product of both sides of this equation
with uj and using the orthogonality of the elements of B gives

〈v, uj〉 � αj〈uj, uj〉.
Solving for αj gives equation (1.45).

For a general element u belonging to the span of a finite set, one
has to solve a system of linear equations to find the coefficients in
the expansion of u. Lemma 1.96 demonstrates the basic advantage
of orthogonality: for B orthogonal and v ∈ span B, it is easy to
determine the coefficients in the expansion of the element v. Notice
that if we assume that B is orthonormal, then equation (1.45)
simplifies further to

v �
n∑
j�1

〈v, uj〉uj. (1.46)

Equation (1.45) suggests the notion of orthogonal projection.

Definition 1.97 Suppose V is a complex inner product space, and
B � {u1, u2, . . . , un} is an orthogonal set in V with uj 	� 0 for all j. Let
S � span B. (By Exercise 1.3.3, S is a subspace of V .) For v ∈ V , define
the orthogonal projection PS(v) of v on S by

PS(v) �
n∑
j�1

〈v, uj〉
‖uj‖2 uj. (1.47)

The orthogonal projection operator PS has the following proper-
ties.

Lemma 1.98 Let V, B, S, and PS be as in Definition 1.97. Then
i. PS is a linear transformation.
ii. For every v ∈ V , PS(v) ∈ S.
iii. If s ∈ S, then PS(s) � s.
iv. (Orthogonality property) For any v ∈ V and s ∈ S,(

v− PS(v)
) ⊥ s.
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v. (Best approximation property) For any v ∈ V and s ∈ S,

‖v− PS(v)‖ ≤ ‖v− s‖,
with equality if and only if s � PS(v).

Proof
Property i follows from the additivity of the inner product (I1 in
Definition 1.86) and the relation (1.47). Also, expression (1.47) shows
that PS(v) ∈ span B � S, so ii holds. Lemma 1.96 implies iii.

For iv, let v ∈ V and first note that for each m, the orthogonality
of B implies that

〈PS(v), um〉 �
n∑
j�1

〈v, uj〉
‖uj‖2 〈uj, um〉 � 〈v, um〉.

Equivalently

〈v− PS(v), um〉 � 0,

so (v− PS(v)) ⊥ um for m � 1, 2, . . . , n. Since any element s ∈ S is a
linear combination of u1, . . . , un, it follows that (v− PS(v)) ⊥ s.

To prove v, let v ∈ V and s ∈ S. Then

‖v− s‖2 � ‖v− PS(v)+ PS(v)− s‖2 � ‖v− PS(v)‖2 + ‖PS(v)− s‖2
≥ ‖v− PS(v)‖2,

where the next to last step follows from equation (1.44), since s and
PS(v) belong to the subspace S, so PS(v) − s ∈ S, and by part iv,
v − PS(v) is orthogonal to everything in S. Taking the square root
implies v.

Property v of Lemma 1.98 says that the closest element to v in
the subspace S is the orthogonal projection PS(v). This corresponds
to our geometric intuition in the case of R2 or R3. It also shows
that, despite the definition, PS does not depend on the choice of
orthonormal basis B for S: for any two orthonormal bases of S, the
resulting projections are the same. Exercise 1.6.8 gives a more direct
proof of this fact.

Starting with a linearly independent set of vectors, we can
obtain an orthonormal set with the same span by the Gram-Schmidt
procedure, as shown by Lemma 1.99.
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Lemma 1.99 (Gram–Schmidt procedure) Suppose V is a complex
inner product space, and {u1, u2, . . . , un} is a linearly independent set in
V . Then there exists an orthonormal set {v1, v2, . . . , vn} with the same
span.

Proof
For each k � 1, 2, . . . , n, let Sk � span{u1, u2, . . . , uk}. We
define w1, w2, . . . , wn inductively, so that at each stage the set
Bk � {w1, w2, . . . wk} is orthogonal (we normalize at the end)
and span Bk � Sk. To start, let w1 � u1. Then B1 satisfies
the requirements. By the induction hypothesis, suppose Bk−1 �
{w1, w2, . . . wk−1} is orthogonal and span Bk−1 � Sk−1.

Let PSk−1 be the orthogonal projection operator onto Sk−1 and set

wk � uk − PSk−1uk � uk −
k−1∑
j�1

〈uk, wj〉
‖wj‖2 wj, (1.48)

since by assumption Bk−1 is an orthogonal set that spans Sk−1. Notice
that wk 	� 0 since if wk � 0, equation (1.48) would imply that
uk belongs to Sk−1, contradicting (by Exercise 1.3.9(i)) the linear
independence of {u1, . . . , un}. By property iv in Lemma 1.98, wk is
orthogonal to every element in Sk−1, in particular to w1, . . . , wk−1.

So Bk is orthogonal.
Now w1, w2, . . . wk−1 all belong to Bk−1 ⊆ Sk−1 ⊆ Sk. Also,

PSk−1uk ∈ Sk−1 ⊆ Sk, and uk ∈ Sk, so by equation (1.48), wk ∈ Sk.
It follows that span Bk ⊆ Sk.

To prove the converse inclusion, first note that u1, u2, . . . , uk−1 ∈
Sk−1 � span Bk−1 ⊆ span Bk. Also, PSk−1uk ∈ Sk−1 � span Bk−1 ⊆
span Bk, and wk ∈ span Bk. So by equation (1.48), uk ∈ span Bk. It
follows that Sk ⊆ span Bk.

So altogether we obtain Sk � span Bk, completing the induction
step.

After n steps, this process gives an orthogonal set {w1, . . . , wn}
with the same span as {u1, . . . , un}. The orthonormal set {v1, . . . , vn}
in the statement of the theorem is obtained by normalization: set
vj � wj/‖wj‖ for each j. This does not change the orthogonality or
the span.



1. Background: Complex Numbers and Linear Algebra88

Definition 1.100 Suppose V is a complex inner product space. An
orthonormal basis for V is an orthonormal set in V that is also a basis.

Every finite dimensional complex inner product space has an
orthonormal basis: by definition, it has a basis, so by Lemma 1.99
there is an orthonormal set that spans V and has the same number
of elements, and hence is also a basis. The standard basis in Cn

(Definition 1.39) is an example of an orthonormal basis.
We can compute inner products and norms easily using the

components with respect to an orthonormal basis.

Lemma 1.101 Let V be a complex inner product space with (finite)
orthonormal basis R � {u1, u2, . . . , un}.

i. For any v ∈ V ,

v �
n∑
j�1

〈v, uj〉uj. (1.49)

ii. (Parseval’s relation) For any v,w ∈ V,

〈v,w〉 �
n∑
j�1

〈v, uj〉〈w, uj〉. (1.50)

iii. (Plancherel’s formula) For any v ∈ V ,

‖v‖2 �
n∑
j�1

|〈v, uj〉|2. (1.51)

Proof
Part i is equation (1.46), which applies to any v ∈ V since R is a
basis for V . To prove ii, apply equation (1.49) to v and w and use the
linearity of the inner product to write

〈v,w〉 �
〈

n∑
j�1

〈v, uj〉uj, w
〉
�

n∑
j�1

〈v, uj〉〈uj, w〉 �
n∑
j�1

〈v, uj〉〈w, uj〉.

Part iii follows from part ii by letting w � v.

Properties i, ii, and iii make orthonormal bases simple to work
with.

We will consider unitary matrices, which are closely connected
with orthonormal bases.
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Definition 1.102 Let A � [aij] be an m× n matrix over C.
The transpose At of A is the n × m matrix B � [bij] defined by

bij � aji, for all i, j.
The conjugate transpose A∗ of A is the n × m matrix C � [cij]

defined by cij � aji, for all i, j.

In other words, the transpose At is obtained by interchanging the
rows and columns of A. The conjugate transpose A∗ is obtained by
taking the complex conjugates of all the entries of At.

The entries of anm×n complex matrixA � [aij] can be expressed
using inner products by the formula

aij � 〈Aej, ei〉, (1.52)

where ej ∈ Cn and ei ∈ Cm are the Euclidean basis vectors in
Definition 1.39. To see this, note that the kth component of Aej is

(Aej)k �
n∑

��1

ak�(ej)� � akj,

since (ej)�, the �th component of ej, is 1 if � � j and 0 otherwise.
Hence,

〈Aej, ei〉 �
m∑
k�1

akj(ei)k � aij.

A more general formula is given in Exercise 1.6.18.

Lemma 1.103 Let A be an m× n matrix over C. Then

〈Az,w〉 � 〈z, A∗w〉,
for every z ∈ Cn and w ∈ Cm. Furthermore, A∗ is the only matrix with
this property.

Proof
Let z ∈ Cn and w ∈ Cm have components z1, z2, . . . , zn and
w1, w2, . . . wm, respectively. Let A � [aij] be an m × n matrix, and
let B � [bij] be an n × m matrix. Note that the jth component (Bw)j
of Bw is

∑m
i�1 bjiwi. Therefore,

〈z, Bw〉 �
n∑
j�1

zj(Bw)j �
n∑
j�1

zj

m∑
i�1

bjiwi �
n∑
j�1

m∑
i�1

bjizjwi.
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On the other hand,

〈Az,w〉 �
m∑
i�1

(Az)iwi �
m∑
i�1

n∑
j�1

aijzjwi.

Thus, if B � A∗, that is, bij � aji or equivalently bji � aij for each i, j,
then 〈Az,w〉 � 〈z, Bw〉.

To show uniqueness, suppose B � [bij] satisfies 〈Az,w〉 � 〈z, Bw〉
for all z ∈ Cn and w ∈ Cm. By formula (1.52),

aij � 〈Aej, ei〉 � 〈ej, Bei〉 � 〈Bei, ej〉 � bji,

as required.

Definition 1.104 Let A be an n × n matrix. A is unitary if A is
invertible and A−1 � A∗.

For a matrix over the real numbers, the conjugate transpose is
the same as the transpose. So a real unitary matrix A is one that
satisfies A−1 � At; such a matrix is called orthogonal.

Unitary matrices can be characterized in several interesting
ways.

Lemma 1.105 Let A be an n × n matrix over C. Then the following
statements are equivalent:

i. A is unitary.
ii. The columns of A form an orthonormal basis for Cn.
iii. The rows of A form an orthonormal basis for Cn.
iv. A preserves inner products, that is, 〈Az,Aw〉 � 〈z, w〉 for all

z, w ∈ Cn.
v. ‖Az‖ � ‖z‖, for all z ∈ Cn.

Proof
We first prove that i is equivalent to ii. Let vj be the jth column ofA. By
definition, the ith row of A∗ is the vector vi, whose components (vi)k,
1 ≤ k ≤ n, are the conjugates of the corresponding components (vi)k
of vi. By the definition of matrix multiplication, the (i, j)th entry of
A∗A is

(A∗A)ij �
n∑

k�1

(vi)k(vj)k � 〈vj, vi〉.
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By Exercise 1.4.12(ii), A is invertible with A−1 � A∗ if and only if
A∗A � I. Hence A is unitary if and only if 〈vj, vi〉 � 1 when i � j and
0 otherwise; that is, if and only if the set {v1, . . . , vn} is orthonormal.
If so, this set is automatically a basis for Cn since it is a linearly
independent set (Lemma 1.95) with n elements in an n-dimensional
space (Theorem 1.42). This proves that i and ii are equivalent.

Applying a similar argument to AA∗ proves that i and iii are
equivalent (Exercise 1.6.9).

Next, we show that i and iv are equivalent. By Lemma 1.103,

〈Az,Aw〉 � 〈z, A∗Aw〉.
If i holds, that is, A∗A � I, then iv holds. Conversely, if iv holds,
then for any z and w,

〈z, w− A∗Aw〉 � 0.

Taking z � w−A∗Aw shows that A∗Aw � w. Since this holds for all
w, we obtain (by Exercise 1.4.6(i)) that A∗A � I.

We leave the proof that i is equivalent to v as Exercise
1.6.7(iv).

If O is an orthonormal basis, then the change of basis matrices
going from the O coordinates to the Euclidean coordinates or
vice-versa are unitary.

Lemma 1.106 Let E � {e1, e2, . . . , en} be the standard basis for
Cn (Definition 1.39) and suppose that O � {u1, u2, . . . , un} is an
orthonormal basis for Cn. Let U be the n × n matrix whose jth column
is the vector uj.

i. Then U is unitary, U is the O-to-E change of basis matrix, and
U∗ is the E-to-O change of basis matrix.

ii. Suppose T : Cn → Cn is a linear transformation that is
represented by the matrix A in the standard basis (i.e., T(z) �
Az). Then T is represented in the basis O by the matrix

AT,O � U∗AU.

Proof
i. The fact that U is unitary follows from the orthonormality of

O and Lemma 1.105, since any n orthonormal vectors are a
basis for Cn (Lemma 1.95 and Theorem 1.42). Exercise 1.4.15
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shows thatU is theO-to-E change of basis matrix. By Exercise
1.4.14, the E-to-O change of basis matrix is U−1, which is U∗

since U is unitary.
ii. This follows from part i and Lemma 1.61.

Recall the main theme of section 1.5: we have a linear
transformation T represented in some basis R by a matrix A. We
want to select another basis S so that the matrix B representing T

with respect to S is as simple as possible. We have our choice of B
from among all matrices similar to A, that is, all matrices such that
there exists an invertible matrix P so that B � P−1AP. When R is the
standard basis and S is an orthonormal basis, the matrix P is unitary.
This case is particularly easy, because, for example, a unitary matrix
is easy to invert. This prompts special definitions for the case when
P is unitary.

Definition 1.107 Let A and B be n×n matrices over C. We say that
A and B are unitarily similar if there exists a unitary matrix U such
that B � U∗AU. If A is unitarily similar to a diagonal matrix, we say
that A is unitarily diagonalizable.

Remarkably, there is a simple characterization of the unitarily
diagonalizable matrices. The proof is a bit involved, so we leave
it as a series of exercises (Exercises 1.6.11 through 1.6.16) for the
exceptionally motivated student.

Definition 1.108 An n× n matrix A is normal if A∗A � AA∗.

Note that unitary matrices are normal. The term “normal”
is misleading because most matrices are not normal. The next
theorem shows that normal matrices are unitarily diagonalizable.
They should be called “exceptional” or “outstanding” rather than
“normal.”

Theorem 1.109 (Spectral theorem for matrices) Let A be an n × n

matrix over C. Then the following statements are equivalent:
i. A is unitarily diagonalizable.
ii. A is normal.
iii. There is an orthonormal basis for Cn consisting of eigenvectors

of A.
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Proof
The fact that i implies ii is Exercise 1.6.11. That ii implies iii is
difficult; the proof is sketched in Exercises 1.6.12 through 1.6.16.
The fact that iii implies i follows from Lemma 1.74: the diagonalizing
matrix can be taken to have columns equal to the elements of the
orthonormal basis of eigenvectors of A, hence this matrix is unitary
by Lemma 1.105.

The spectral theorem is a major theorem in linear algebra.
Its generalization to infinite dimensional vector spaces is one
of the key theorems in a subject known as functional analysis.
This generalization is much more difficult because in the infinite
dimensional case, the spectrum of T (the appropriate generalization
of the set of eigenvalues) is not necessarily discrete, so one needs
to introduce some measure on the spectrum. The first step in
understanding this deep result is to understand the matrix case.

There is one more special type of matrix that we should discuss.

Definition 1.110 LetA be an n×nmatrix.A isHermitian ifA∗ � A.

In other words,A � [aij] is Hermitian if the entries obtained when
the matrix A is flipped over its diagonal are the complex conjugates
of the original entries: that is, aji � aij for all i, j. Note that the diagonal
entries of a Hermitian matrix must be real. If A has only real entries,
then A is Hermitian if and only if A � At. Such a real matrix is called
symmetric.

Hermitian matrices have the following characterizations.

Lemma 1.111 Suppose A is an n× n matrix. Then the following are
equivalent:

i. A is Hermitian.
ii. A is normal and the eigenvalues of A are real.
iii. There exists a unitary matrix U and a diagonal matrix D with

only real entries such that A � U∗DU .

Proof
(i implies ii): SupposeA is Hermitian. ThenA is normal:A∗A � A2 �
AA∗. Suppose λ is an eigenvalue of A with nonzero eigenvector v.
Then, using Lemma 1.103,

λ〈v, v〉 � 〈λv, v〉 � 〈Av, v〉 � 〈v, A∗v〉 � 〈v, Av〉 � 〈v, λv〉 � λ〈v, v〉.
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Since 〈v, v〉 	� 0, we obtain λ � λ, which implies that λ is real.
(ii implies iii): Since A is normal, by Theorem 1.109 there exists a

unitary matrix U and a diagonal matrix D such that A � U∗DU. The
diagonal entries of D are its eigenvalues, which are the same as the
eigenvalues of A (Corollary 1.68), and hence are real by assumption.

(iii implies i): Suppose A � U∗DU with U unitary and D diagonal
with real entries. Then by Exercise 1.6.10(i),

A∗ � (U∗DU)∗ � U∗D∗(U∗)∗ � U∗D∗U,

by definition of the conjugate transpose. But since D is diagonal with
real entries, D∗ � D. So

A∗ � U∗DU � A.

Hence A is Hermitian.

Unitary matrices have a characterization of a similar nature; see
Exercise 1.6.19.

Exercises

1.6.1. Suppose V is a vector space over C and 〈·, ·〉 is a (complex)
inner product on V . Prove equations (1.42) and (1.43).

1.6.2. i. Check that 〈·, ·〉 as defined in Example 1.87 is a complex
inner product on Cn.

ii. Check that the dot product is a real inner product on Rn.
1.6.3. i. For z, w ∈ C, prove that 2|zw| ≤ |z|2 + |w|2, and deduce

that |z +w|2 ≤ 2(|z|2 + |w|2).
ii. For z � {zj}∞j�1, w � {wj}∞j�1 ∈ �2(N) (defined in Example

1.88), and λ ∈ C, define z + w � {zj + wj}∞j�1, and
λz � {λzj}∞j�1. Prove that �2(N), with these operations, is
a vector space over C. (The only property in Definition
1.30 that is not obvious is A1, which follows from part i.)

iii. For z � {zj}∞j�1 ∈ �2(N) and w � {wj}∞j�1 ∈ �2(N), prove
that the series

∑∞
j�1 zjwj converges absolutely.

iv. Prove that 〈·, ·〉 as defined in Example 1.88 is a complex
inner product on �2(N).
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1.6.4. Prove that 〈·, ·〉 as defined in Example 1.89 is a complex inner
product on C([0, 1]).

1.6.5. A normed vector space is a vector space V with a map ‖ · ‖
(called a norm) defined on V such that

N1. (Positive definiteness) For any v ∈ V , ‖v‖ is a
nonnegative real number.

N2. (Nondegeneracy) ‖v‖ � 0 if and only if v � 0.
N3. (Scalar compatibility) ‖λv‖ � |λ|‖v‖, for every scalar λ

and every v ∈ V .
N4. (Triangle inequality) ‖u + v‖ ≤ ‖u‖ + ‖v‖ for every

u, v ∈ V .
i. Suppose V is a complex inner product space. Define ‖ · ‖

as in Definition 1.90. Show that V with ‖ · ‖ is a normed
vector space.
Remark: Exercise 1.6.6 shows that there are norms that

do not come from inner products in this way.
ii. SupposeV with ‖·‖ is a normed vector space. For u, v ∈ V ,

define d(u, v) � ‖u − v‖. Prove that V with d is a metric
space. (See Exercise 1.1.2 for the definition of a metric
space.)
This is an example of the different levels of structure

in mathematics. A metric space is more general (i.e., less
structure) than a normed vector space, that in turn is more
general than an inner product space. Roughly speaking, an
inner product space that is complete (called a Hilbert space)
is about as close to having all the structure of Cn as possible
without necessarily being finite dimensional.

1.6.6. i. Let V be a complex inner product space and ‖ · ‖ a norm
obtained from the inner product as in Definition 1.90.
Prove the parallelogram identity:

2‖z‖2 + 2‖w‖2 � ‖z +w‖2 + ‖z −w‖2

for every z, w ∈ V . To see why this is called
the parallelogram identity, draw two nonzero vectors
z, w ∈ R2 with a common base point and consider the
parallelogram with sides z and w. Show that the sums
of the squares of the lengths of the two diagonals equals
the sums of the squares of the lengths of the four sides.
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ii. For z ∈ C2, define

‖z‖1 � |z1| + |z2|,
where z1 and z2 are the components of z. Prove that ‖ ·‖1
is a norm on C2. This is called the �1 norm.

iii. Find vectors z, w ∈ C2 such that

2‖z‖21 + 2‖w‖21 	� ‖z +w‖21 + ‖z −w‖21.
Deduce that ‖ · ‖1 is a norm that does not come from an
inner product.

1.6.7. Let V be a complex inner product space and T : V → V a
linear transformation.
i. (Polarization identity) Prove that for any u, v ∈ V ,

4〈T(u), v〉 � 〈T(u + v), u + v〉 − 〈T(u − v), u − v〉
+ i〈T(u + iv), u + iv〉 − i〈T(u − iv), u − iv〉.

ii. Prove that a complex inner product is determined by the
norm it induces; that is, if two inner products on V result
in the same norm, then these inner products must be the
same. Hint: Take T in part i to be the identity operator.

iii. Suppose that for all u ∈ V , 〈T(u), u〉 � 0. Prove that T
is the 0 operator, that is, T(v) � 0 for all v ∈ V . Hint:
Apply part i to obtain that 〈T(u), v〉 � 0 for all u, v ∈ V ,
and then let v � T(u).

iv. Prove that an n × n matrix A is unitary if and only if
‖Az‖ � ‖z‖ for all z ∈ Cn. Suggestion: Apply part iii to
A∗A− I.

1.6.8. Let S be a subspace of a finite dimensional vector space
V . Let v ∈ V . Suppose w ∈ S and (v − w) ⊥ s for every
s ∈ S. Prove that w � PS(v) for PS as in Definition 1.97. This
gives a characterization of PS that does not involve a choice
of basis for S, and hence shows that PS is independent of
the choice of orthonormal basis used in its definition. Hint:
Writew−PS(v) � (w−v)+(v−PS(v)) and show thatw−PS(v)
belongs to S but is also orthogonal to every element of S.

1.6.9. Prove the equivalence of i and iii in Lemma 1.105.
1.6.10. Let A and B be n× n matrices over C.
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i. Prove that (AB)∗ � B∗A∗. (Hint: There is a direct proof,
but it is easier to use the uniqueness result in Lemma
1.103.)

ii. Define A ≈ B if there exists a unitary matrix U such that
B � U∗AU. Prove that ≈ is an equivalence relation; that
is, (a) A ≈ A for any A, (b) if A ≈ B then B ≈ A, and (c)
if A ≈ B and B ≈ C then A ≈ C.

1.6.11. In Theorem 1.109, prove that i implies ii.
1.6.12. Suppose T : Cn → Cn is a linear transformation. Let A be an

n×n matrix over C which representsT in the standard basis,
that is, such that T(z) � Az. We define the adjoint T∗ of T to
be the operator T∗ : Cn → Cn defined by T∗(z) � A∗z. We
say T is normal if T∗T � TT∗, that is, if T∗T(z) � TT∗(z)
for all z ∈ C.
i. Prove that T is normal if and only if A is normal. (Hint:

Use Exercise 1.4.6(ii).)
ii. Show that to prove statement ii implies statement iii

in Theorem 1.109, it is enough to prove that if T is
normal, then Cn has an orthonormal basis consisting of
eigenvectors of T.

1.6.13. Suppose T : Cn → Cn is a linear transformation. Prove that
T is normal (see Exercise 1.6.12) if and only if ‖T∗(z)‖ �
‖T(z)‖ for all z ∈ Cn. Hint: Show that the condition
〈T∗(z), T∗(z)〉 � 〈T(z), T(z)〉 is equivalent to 〈z, (T∗T −
TT∗)(z)〉 � 0 (use Lemma 1.103) and apply Exercise
1.6.7(iii).

1.6.14. Suppose T : Cn → Cn is a normal linear transformation (see
Exercise 1.6.12). Suppose λ ∈ C.

i. Prove that (λI−T)∗ � λI−T∗. (This part doesn’t require
the normality of T. Hint: The corresponding statement
for matrices is easy.)

ii. Prove that λI − T is also normal.
iii. For v ∈ Cn, prove thatT(v) � λv if and only ifT∗(v) � λv.

Hint: Apply Exercise 1.6.13 to λI − T.
1.6.15. Suppose T : Cn → Cn is a normal linear transformation (see

Exercise 1.6.12). Suppose λ, µ ∈ C and λ 	� µ. Suppose u,
v ∈ Cn are eigenvectors of T with eigenvalues λ and µ; that
is, T(u) � λu and T(v) � µv. Prove that u ⊥ v. Hint: Note
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that by Exercise 1.6.14(iii),

λ〈u, v〉 � 〈T(u), v〉 � 〈u, T∗(v)〉 � 〈u, µv〉 � µ〈u, v〉.
1.6.16. Suppose T : Cn → Cn is a normal linear transformation (see

Exercise 1.6.12). Denote the eigenvalues of T by λ1, . . . λk
and the corresponding eigenspaces by Eλ1 , . . . , Eλk . Let mi be
the dimension of Eλi . Let {uij}mi

j�1 be an orthonormal basis for
Eλi . By Exercise 1.6.15, the set

S � {uij}1≤i≤k,1≤j≤mi

is orthonormal. Let

W � span S.

Define

W⊥ � {z ∈ Cn : for all w ∈ W, z ⊥ w
}
.

i. Prove that W⊥ is a subspace of Cn.

ii. Prove that if w ∈ W, then T∗(w) ∈ W. Hint: Use Exercise
1.6.14(iii).

iii. Prove that if y ∈ W⊥, then T(y) ∈ W⊥. Hint: For y ∈ W⊥

and w ∈ W ,

〈T(y), w〉 � 〈y, T∗(w)〉.
Apply part ii.

iv. Let TW⊥ be the restriction of the transformation T to the
subspace W⊥. By part iii, TW⊥ is a linear transformation
from W⊥ to W⊥. However, any nonzero eigenvector
of TW⊥ would be a nonzero eigenvector of T in W⊥.
There cannot be any such eigenvector because all of
the eigenvectors of T belong to W by its definition.
(An element belonging to both W and W⊥ must be
0 because it is orthogonal to itself.) So TW⊥ has no
nonzero eigenvectors, hence no eigenvalues. But this is
impossible unless W⊥ � {0} (by Lemma 1.78, applied
to a matrix representing TW⊥ in some basis, and the
fundamental theorem of algebra). Deduce that W � Cn.
Hint: For a general z ∈ Cn, write z � z − PW (z)+ PW (z);
by Lemma 1.98, z − PW (z) ∈ W⊥.
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v. Deduce that Cn has an orthonormal basis consisting of
eigenvectors of T. With Exercise 1.6.12, this proves the
difficult implication that statement ii implies statement
iii in Theorem 1.109.

1.6.17. Suppose A is an n × n matrix such that A∗ is a polynomial
in A, that is, there exists m ∈ N and scalars a0, . . . , am such
that

A∗ � amA
m + am−1A

m−1 + · · · + a1A+ a0I.

Prove that A is unitarily diagonalizable.
1.6.18. Suppose that R � {v1, v2, . . . , vn} is an orthonormal basis

for a complex inner product space V and T : V → V is a
linear transformation. Let AT,R � [aij]1≤i,j≤n be the matrix
that represents T with respect to R. Prove that

aij � 〈T(vj), vi〉.
1.6.19. Let A be an n × n matrix over C. Prove that A is unitary

if and only if A is normal and all eigenvalues of A have
magnitude 1.

1.6.20. Let A � [ai,j] be an m × n matrix over C with row vectors
u1, u2, . . . , um ∈ Cn and column vectors v1, v2, . . . , vn ∈ Cm

(i.e., ui is the vector with components ai,1, ai,2, . . . , ai,n and
vj is the matrix with components a1,j, a2,j, . . . , am,j). The row
space of A is

U � span {u1, u2, . . . , um},
and the column space of A is

V � span {v1, v2, . . . , vm}.
i. Prove that V � {Az : z ∈ Cn}. Hint: Show that Az �

z1v1+· · ·+ znvn, where z1, z2, . . . , zn are the components
of z.
For z ∈ Cn with components z1, z2, . . . , zn, let z ∈ Cn be
the vector with components z1, z2, . . . , zn.

ii. Suppose z ∈ Cn. Prove that Az � 0 if and only if z ⊥ U .
(The statement z ⊥ U means that z is orthogonal to every
element of U).
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Define T : U → V by T(z) � Az. Note that T(z) ∈ V by
i.

iii. Prove that T is 1–1. Hint: Use Exercise 1.4.7 and part ii.
iv. Prove that T is onto. Hint: Let y ∈ V . By i, Az � y for

some z ∈ Cn. Let w be the orthogonal projection of z

onto U . By definition, (z −w) ⊥ U . Apply ii.
v. Prove that the row space of A and the column space of A

have the same dimension, equal to the rank of A. Hint:
Use Exercise 1.4.8(iv).

vi. Prove that rank At � rankA. (Here At is the transpose
of A; see Definition 1.102.)



2
C H A P T E R

...........................................

The Discrete
Fourier
Transform

2.1 Definition and Basic Properties of
the Discrete Fourier Transform

In chapter 1 we worked with vectors in CN , that is, sequences of N
complex numbers. Here we change notation in several ways. First,
for reasons that will be more clear later, we index these N numbers
over j ∈ {0, 1, . . . , N − 1} instead of {1, 2, . . . , N}. Second, instead
of writing the components of z as zj, we write them as z(j). This
indicates a new point of view: we regard z as a function defined on
the finite set

ZN � {0, 1, . . . , N − 1}.

(This is consistent with the formal definition of a sequence as a
function on the set of indices.) To save space, we usually write such
a z horizontally instead of vertically:

z � (z(0), z(1), . . . z(N − 1)).

101
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However, when convenient, we still identify z with the column
vector

z �




z(0)
z(1)
z(2)
·
·

z(N − 1)



. (2.1)

This allows us to write the product of an N ×N matrix A by z as Az.
Finally, in order to be consistent with notation for functions used
later in the infinite dimensional context, we write �2(ZN ) in place of
CN . So, formally,

�2(ZN ) � {z � (z(0), z(1), . . . , z(N − 1)) : z(j) ∈ C, 0 ≤ j ≤ N − 1
}
.

With the usual componentwise addition and scalar multiplication,
�2(ZN ) is anN -dimensional vector space over C. One basis for �2(ZN )
is the standard, or Euclidean, basis E � {e0, e1, . . . , eN−1}, where
ej(n) � 1 if n � j and ej(n) � 0 if n 	� j. In this notation, the complex
inner product on �2(ZN ) is

〈z, w〉 �
N−1∑
k�0

z(k)w(k),

with the associated norm

‖z‖ �
(
N−1∑
k�0

|z(k)|2
)1/2

(called the �2 norm). We maintain the notion of orthogonality: z ⊥ w

if and only if 〈z, w〉 � 0.
We make one more convention. Originally, for z ∈ �2(ZN ), z(j) is

defined for j � 0, 1, . . . , N − 1. Now we extend z to be defined at all
integers by requiring z to be periodic with period N :

z(j + N) � z(j), for all j ∈ Z.

Hence, to find z(j) for j 	� {0, 1, . . . , N − 1}, add some positive or
negative integer multiplemN ofN to j until j+mN ∈ {0, 1, . . . , N−1};
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then define z(j) � z(j +mN). For example, if N � 12, then

z(−21) � z(−9) � z(15) � z(27) � z(3).

Note that the value of z(j) depends only on the residue of j modulo
N ; one can regard z as defined on the equivalence classes of Z mod
N . In particular we can regard z as defined on any other set of N
consecutive integers instead of {0, 1, . . . , N − 1}.

The reader may be familiar with the theory of Fourier series, in
which a function on an interval of real numbers is represented as a
sum of sines and cosines (this is discussed in chapter 4). A similar
phenomenon occurs with functions on ZN .

Definition 2.1 Define E0, E1, . . . , EN−1 ∈ �2(ZN ) by

E0(n) � 1√
N

for n � 0, 1, . . . , N − 1;

E1(n) � 1√
N
e2πin/N for n � 0, 1, . . . , N − 1;

E2(n) � 1√
N
e2πi2n/N for n � 0, 1, . . . , N − 1;

...

and
EN−1(n) � 1√

N
e2πi(N−1)n/N for n � 0, 1, . . . , N − 1.

More concisely,

Em(n) � 1√
N
e2πimn/N for 0 ≤ m, n ≤ N − 1. (2.2)

We use the capital E notation to suggest the exponential function
instead of using the lower-case e, which we reserve for the standard
basis vectors noted earlier.

Lemma 2.2 The set {E0, . . . , EN−1} is an orthonormal basis for
�2(ZN ).

Proof
Suppose j, k ∈ {0, 1, . . . , N − 1}. Then

〈Ej, Ek〉 �
N−1∑
n�0

Ej(n)Ek(n) �
N−1∑
n�0

1√
N
e2πijn/N 1√

N
e2πikn/N

� 1
N

N−1∑
n�0

e2πijn/Ne−2πikn/N � 1
N

N−1∑
n�0

e2πi(j−k)n/N
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� 1
N

N−1∑
n�0

(
e2πi(j−k)/N)n ,

where we have used equations (1.14), (1.16), and (1.17). If j � k, the
terms inside the last sum are all 1, so 〈Ej, Ej〉 � N−1∑N−1

j�0 1 � 1.
Hence ‖Ej‖2 � 1 for each j, so each Ej has norm one. If j 	� k, then
e2πi(j−k)/N 	� 1 for 0 ≤ j, k ≤ N − 1 since −N < j − k < N. Therefore
the sum is the partial sum of a geometric series, so

N−1∑
n�0

(
e2πi(j−k)/N)n � 1− (e2πi(j−k)/N

)N
1− e2πi(j−k)/N

,

by equation (1.5). But by equation (1.17),(
e2πi(j−k)/N)N � e2πi(j−k) � 1,

since j − k is an integer. So for j 	� k, 〈Ej, Ek〉 � 0, that is, Ej ⊥ Ek.

Thus {E0, . . . , EN−1} is an orthonormal set, and hence is linearly
independent, by Lemma 1.95. Therefore {E0, . . . , EN−1} is a basis
for �2(ZN ) (by Theorem 1.42).

Example 2.3
Let N � 2. Then

E0 �
(
E0(0), E0(1)

) � 1√
2

(1, 1) ,

and

E1 �
(
E1(0), E1(1)

) � 1√
2

(1,−1) ,

since e2πi0/2 � 1 and e2πi1/2 � eiπ � −1 by Euler’s formula (Theorem
1.22). It is clear that {E0, E1} is an orthonormal basis for �2(Z2).

The values in the case N � 3 do not work out as simply, so we
pass on to N � 4.

Example 2.4
Let N � 4. Then (Exercise 2.1.1)

E0 � 1
2

(1, 1, 1, 1) ,

E1 � 1
2

(1, i,−1,−i) ,
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E2 � 1
2

(1,−1, 1,−1) ,

and
E3 � 1

2
(1,−i,−1, i) .

One can check directly (Exercise 2.1.2) that {E0, E1, E2, E3} is an
orthonormal basis for �2(Z4).

Since {E0, E1, . . . , EN−1} is an orthonormal basis for �2(ZN ),
equations (1.49), (1.50), and (1.51) give us, for all z, w ∈ �2(ZN ),

z �
N−1∑
m�0

〈z, Em〉Em, (2.3)

〈z, w〉 �
N−1∑
m�0

〈z, Em〉〈w,Em〉 (2.4)

and

‖z‖2 �
N−1∑
m�0

|〈z, Em〉|2. (2.5)

By definition,

〈z, Em〉 �
N−1∑
n�0

z(n)
1√
N
e2πimn/N � 1√

N

N−1∑
n�0

z(n)e−2πimn/N . (2.6)

Although equations (2.3) and (2.6) are the most natural equations
from the standpoint of orthonormal bases, a renormalized version
in which the factor of 1/

√
N in equation (2.6) is deleted is usually

used in practice.

Definition 2.5 Suppose z � (z(0), . . . , z(N − 1)) ∈ �2(ZN ). For
m � 0, 1, . . . , N − 1, define

ẑ(m) �
N−1∑
n�0

z(n)e−2πimn/N . (2.7)

Let

ẑ � (ẑ(0), ẑ(1), . . . , ẑ(N − 1)). (2.8)

Then ẑ ∈ �2(ZN ). The map ˆ : �2(ZN )→ �2(ZN ), which takes z to ẑ, is
called the discrete Fourier transform, usually abbreviated DFT.
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Notice that if we use formula (2.7) to define ẑ(m) for all m ∈ Z,
the result is periodic with period N :

ẑ(m + N) �
N−1∑
n�0

z(n)e−2πi(m+N)n/N

�
N−1∑
n�0

z(n)e−2πimn/Ne−2πiNn/N � ẑ(m),

since e−2πiNn/N � e−2πin � 1 for every n ∈ Z. Thus using formula
(2.7) for all m is consistent with regarding ẑ as an element of �2(ZN ),
thought of as defined on Z and having period N .

There are a couple of advantages of formula (2.7) compared with
formula (2.6). First, for numerical calculations, it is better to avoid
computing

√
N . Second, we will see later that certain formulas (e.g.,

the formula for the DFT of a convolution, in Lemma 2.30 below)
are simpler with the normalization in formula (2.7). Comparing
formulae (2.7) and (2.6), note that

ẑ(m) � √N〈z, Em〉. (2.9)

This leads to the following reformulation of formulae (2.3), (2.4),
and (2.5).

Theorem 2.6 Let z � (z(0), z(1), . . . , z(N − 1)), w � (w(0),
w(1), . . . , w(N − 1)) ∈ �2(ZN ). Then

i. (Fourier inversion formula)

z(n) � 1
N

N−1∑
m�0

ẑ(m)e2πimn/N for n � 0, 1, . . . , N − 1. (2.10)

ii. (Parseval’s relation)

〈z, w〉 � 1
N

N−1∑
m�0

ẑ(m)ŵ(m) � 1
N
〈ẑ, ŵ〉. (2.11)

iii. (Plancherel’s formula)

‖z‖2 � 1
N

N−1∑
m�0

|ẑ(m)|2 � 1
N
‖ẑ‖2. (2.12)
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Proof
By equations (2.3), (2.9), and (2.2), we have

z(n) �
N−1∑
m�0

〈z, Em〉Em(n) �
N−1∑
m�0

N−1/2ẑ(m)N−1/2e2πimn/N ,

which gives equation (2.10). Similarly, by equation (2.4),

〈z, w〉 �
N−1∑
m�0

〈z, Em〉〈w,Em〉 �
N−1∑
m�0

N−1/2ẑ(m)N−1/2ŵ(m),

yielding equation (2.11). Then equation (2.12) follows either by a
similar argument or by letting w � z in equation (2.11).

To interpret the Fourier inversion formula (2.10), we make the
following definition.

Definition 2.7 For m � 0, 1, . . . , N − 1, define Fm ∈ �2(ZN ) by

Fm(n) � 1
N
e2πimn/N , for n � 0, 1, . . . , N − 1. (2.13)

Let

F � {F0, F1, . . . , FN−1}. (2.14)

We call F the Fourier basis for �2(ZN ).

By equation (2.2), Fm � N−1/2Em. Hence Lemma 2.2 shows that
F , as its name suggests, is a basis (in fact an orthogonal basis) for
�2(ZN ). With this notation, equation (2.10) becomes

z �
N−1∑
m�0

ẑ(m)Fm. (2.15)

In other words, if we expand z in terms of the Fourier basis F , the
coefficient of Fm is ẑ(m). Therefore, the vector representing z with
respect to the Fourier basis is ẑ; that is,

ẑ � [z]F , (2.16)

in the notation of Definition 1.43. Thus the Fourier inversion formula
(2.10) is the change-of-basis formula for the Fourier basis. The DFT
components ẑ(m) are the components of z in the Fourier basis.
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The DFT can be represented by a matrix (as we should expect
because equation (2.7) shows that the map taking z to ẑ is a linear
transformation). To simplify notation, define

ωN � e−2πi/N .

Then

e−2πimn/N � ωmn
N

and

e2πimn/N � ω−mn
N .

In this notation,

ẑ(m) �
N−1∑
n�0

z(n)ωmn
N . (2.17)

To match up with our notation for vectors, we modify our notation
for matrices by indexing the rows and columns from 0 toN−1 instead
of from 1 to N .

Definition 2.8 Let WN be the matrix [wmn]0≤m,n≤N−1 such that
wmn � ωmn

N . Written out, this is

WN �




1 1 1 1 · · 1
1 ωN ω2

N ω3
N · · ωN−1

N

1 ω2
N ω4

N ω6
N · · ω

2(N−1)
N

1 ω3
N ω6

N ω9
N · · ω

3(N−1)
N

· · · · · · ·
· · · · · · ·
1 ωN−1

N ω
2(N−1)
N ω

3(N−1)
N · · ω

(N−1)(N−1)
N



. (2.18)

Regarding z, ẑ ∈ �2(ZN ) as column vectors, as in equation (2.1),
the mth component (0 ≤ m ≤ N − 1) of WNz is

∑N−1
n�0 wmnz(n) �∑N−1

n�0 z(n)ωmn
N , which is ẑ(m), by equation (2.17). In other words,

ẑ � WNz. (2.19)

In section 2.3, we will see that there is a fast algorithm for
computing ẑ. For now, we only compute a simple example in order
to demonstrate the definitions. We could use equation (2.9) for this,



2.1. Basic Properties of the Discrete Fourier Transform 109

but it is easier to use equation (2.19). For convenience, we record
the values obtained in W2 and W4:

W2 �
[

1 1
1 −1

]
(2.20)

and

W4 �




1 1 1 1
1 −i −1 i

1 −1 1 −1
1 i −1 −i


 . (2.21)

Example 2.9
Let z � (1, 0,−3, 4) ∈ �2(Z4). Find ẑ.

Solution

ẑ � W4z �




1 1 1 1
1 −i −1 i

1 −1 1 −1
1 i −1 −i






1
0
−3
4


 �




2
4+ 4i
−6

4− 4i


 .

Note that ẑ has complex entries even though all entries of z are
real.

The Fourier inversion formula (2.10) shows that the linear
transformation ˆ : �2(ZN ) → �2(ZN ) is a 1–1 map: if ẑ � ŵ, then
z � w. Therefore ˆ is invertible (Exercise 1.4.8(v)). More directly,
equation (2.10) gives us a formula for the inverse of ˆ, which we
denote .̌

Definition 2.10 For w � (w(0), . . . , w(N − 1)) ∈ �2(ZN ), define

w̌(n) � 1
N

N−1∑
m�0

w(m)e2πimn/N , for n � 0, 1, . . . , N − 1. (2.22)

We set

w̌ � (w̌(0), w̌(1), . . . , w̌(N − 1)
)
.

The map ˇ :�2(ZN )→�2(ZN ) is the inverse discrete Fourier transform,
or IDFT.

In this notation, equation (2.10) states that for z ∈ �2(ZN ),

(ẑ)ˇ(n) � z(n), for n � 0, 1, . . . , N − 1, (2.23)
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or just

(ẑ)ˇ� z. (2.24)

For a general w ∈ �2(ZN ), there exists z ∈ �2(ZN ) such that ẑ � w

(since ˆ : �2(ZN )→ �2(ZN ) is onto). Taking the DFT of both sides of
equation (2.24) and substituting w for ẑ gives

(w̌)ˆ� w. (2.25)

Since the DFT is an invertible linear transformation, the matrix
WN is invertible (Lemma 1.55), and we must have z � W−1

N ẑ.
Substituting ẑ � w and (equivalently) z � w̌ in equation (2.19) gives

w̌ � W−1
N w. (2.26)

Although one can determineW−1
N directly (Exercise 2.1.9), it is easier

to read what W−1
N must be from formula (2.22). In the notation of

formula (2.17), formula (2.22) becomes

w̌(n) �
N−1∑
m�0

w(m)
1
N
ω−mn
N �

N−1∑
m�0

1
N
ωnm
N w(m).

This shows that the (n,m) entry of W−1
N is ωnm

N /N , which is 1/N
times the complex conjugate of the (n,m) entry of WN . If we denote
by WN the matrix whose entries are the complex conjugates of the
entries of WN , we have

W−1
N �

1
N
WN. (2.27)

For future reference, we note that

W−1
2 �

1
2

[
1 1
1 −1

]
, (2.28)

and

W−1
4 �

1
4




1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i


 . (2.29)

Example 2.11
Let w � (2, 4+ 4i,−6, 4− 4i) ∈ �2(Z4). Find w̌.
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Solution
By formulas (2.26) and (2.29),

w̌ � 1
4




1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i






2
4+ 4i
−6

4− 4i


 �




1
0
−3
4


 .

Note that for z as in Example 2.9, we obtained ẑ � w, so we have
just verified in this example that (ẑ)ˇ� z.

By the same reasoning as for the DFT, if we regard w̌ as defined
on Z by formula (2.22), then w̌ has period N : w̌(n + N) � w̌(n) for
all n. With this understanding, comparing formulas (2.7) and (2.22),
we see that

w̌(n) � 1
N
ŵ(−n).

Since w̌ has period N , we can write this as

w̌(n) � 1
N
ŵ(N − n), (2.30)

which is more convenient since n ∈ {1, . . . , N − 1} if and only if
N − n ∈ {1, . . . , N − 1}; the exceptional case is n � 0, for which
N − n � N .

We summarize the basic facts about the DFT. The map ˆ :
�2(ZN )→ �2(ZN ) defined by equations (2.7) and (2.8) is an invertible
linear transformation with inverse ˇ defined by formula (2.22). We
interpret the Fourier inversion formula (2.10) in the form of equation
(2.15):

z �
N−1∑
m�0

ẑ(m)Fm,

where Fm is the mth element of the Fourier basis F :

Fm(n) � 1
N
e2πimn/N .

Thus ẑ(m) is the weight of the vector Fm used in making up z.
We consider a simple example. Let N � 128 and

z(n) � cos
(

2π · 7n
128

)
+ 4 cos

(
2π · 12n

128

)
.
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The vector z is plotted in Figure 4a. Its DFT ẑ is plotted in Figure 4b,
but in this case it is easy to determine ẑ. By Euler’s formula (1.13),

z(n) � 1
2

(
e2πi7n/128 + e−2πi7n/128)+ 4

1
2

(
e2πi12n/128 + e−2πi12n/128)

� 1
128

(
64e2πi7n/128 + 64e2πi121/128

+ 256e2πi12n/128 + 256e2πi116n/128) .
By comparing this with equations (2.13) and (2.15), we see that

ẑ(7) � ẑ(121) � 64, ẑ(12) � ẑ(116) � 256,

and ẑ(m) � 0 for the other values of m in {0, 1, 2, . . . , 127}. This
is confirmed by Figure 4b, which was generated using the DFT
program (called fft) in Matlab.

To get an intuition for this, we take a closer look at the vector
e2πimn/N , for m fixed, as a function of n � 0, 1, . . . , N − 1. (The factor
1/N is a scale factor, which we temporarily drop for convenience.)
By Euler’s formula,

e2πinm/N � cos(2πmn/N)+ i sin(2πmn/N).

For simplicity, consider only the real part cos(2πnm/N). For m � 0,
this is just the constant function 1. For m � 1, this is the function
cos(2πn/N). If we regard N as being large, and plot these values for
n � 0, 1, . . . , N − 1, we trace out a set of N evenly spaced sample
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FIGURE 4 (a) z, (b) ẑ
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points on the graph of one period of a cosine function. In particular,
cos(2πn/N) carries out one full cycle as n runs from 0 to N − 1 (if
we continued it to N , we would obtain the value at 0 again). This is
illustrated in Figure 5a, with N � 16. Now let m � 2, and consider
the function cos(2π2n/N). It is similar, only it makes two full cycles
of the cosine as n runs from 0 to N − 1. This continues similarly
for a while as m increases; the function cos(2πmn/N) carries out
m full cycles of the cosine wave as n goes from 0 to N − 1 (see
Figure 5b). So as m increases (up to a point, as we will see), the
functions cos(2πmn/N) oscillate more and more times over the
interval 0 ≤ n ≤ N − 1. See Figures 5c (m � 3, N � 16), 5d (m � 7,
N � 16), and 5e (m � 8, N � 16). The imaginary part of e2πinm/N is
a sine wave that behaves similarly. Terms that oscillate more are
called higher frequency components, or just higher frequencies.
Suppose z(n) is a sound signal as a function of time (sampled at
even time intervals). To the ear, the higher frequency signals sound
higher pitched. Because the vectors e2πimn/N contain only one rate of
oscillation, we regard them, and hence their rescaled versions Fm,
as pure frequencies.

There is one technicality here that makes this a little confusing.
The functions e2πinm/N , defined only for integer values of n, have
period N in the variable m as well as in n. Thus higher m cannot
continue to mean higher frequency signals for all m because, for
example, the function at m � N is the same as the function when
m � 0. A signal for N � 16 cannot oscillate faster than in Figure 5e
(m � 8, N � 16). Note that the vector in Figure 5f (m � 9, N � 16)
is the same as in Figure 5d (m � 7, N � 16). (However, it is not
true that F7 � F9 when N � 16, just that their real parts are the
same—their imaginary parts are negatives of each other.) This is a
consequence of considering these functions only for values n ∈ Z. If
we consider e2πimt/N as a function of the real variable t, it does give a
higher frequency as m increases (for m ≥ 0). But when we consider
only the integer values n, we cannot see the oscillation going on
between the integers, which explains how e2πin0/N can be the same
function of n as e2πinN/N (namely both are the constant function 1 on
the integers, since e2πin � 1, by Euler’s formula). This is illustrated
in Figure 6, which shows the graph of cos(2π15n/16) (Figure 6a), the
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FIGURE 5 (a) z(n) � cos(2πn/16), (b) z(n) � cos(2π2n/16),
(c) z(n) � cos(2π3n/16), (d) z(n) � cos(2π7n/16), (e) z(n) �
cos(2π8n/16), (f) z(n) � cos(2π9n/16)
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underlying function of a continuous variable cos(2π15t/16) (Figure
6b), and their superposition (Figure 6c).

Looking at the graphs of the real and imaginary parts, we see
that as m runs from 0 to N/2 (or the closest integer to N/2), the
function e2πinm/N oscillates more and more rapidly and so represents
a higher frequency component. However, for N/2 ≤ m ≤ N − 1, we
let k � N −m, and use periodicity to write

e2πinm/N � e2πin(N−k)/N � e−2πink/N � cos(2πnk/N)− i sin(2πnk/N).

This vector oscillates k times over the interval 0 ≤ n ≤ N − 1. So
the number of oscillations over 0, 1, . . . , N − 1 of e2πinm/N is m for
0 ≤ m ≤ N/2, but N − m for N/2 ≤ m ≤ N − 1. Note that when
m is near N/2, so is N − m, but as m goes toward N , N − m goes
toward 0. Thus we regard e2πimn/N as a high frequency vector for m
near N/2, that is, in the middle of the range 0, 1, . . . , N − 1, and as a
low frequency vector for m near 0 or N − 1.

Incidentally, this is why some prefer to regard the basic interval
for ZN as −M+ 1,−M+ 2, . . . ,−1, 0, 1, . . . ,M when N � 2M is even
and as −M,−M + 1, . . . − 1, 0, 1, . . . ,M − 1,M when N � 2M + 1
is odd, instead of 0, 1, . . . , N − 1 as we have here. In the 0-centered
version, the low frequencies are e2πimn/N for m near 0 and the high
frequencies are those for m near ±M.

Returning to the basic formula

z �
N−1∑
m�0

ẑ(m)Fm,

we have interpreted each Fm as a pure frequency. Therefore, we
regard |ẑ(m)| as the strength of that frequency component in z.
The argument of the complex number ẑ(m) is more difficult to
interpret (this is discussed later in this chapter), but its magnitude
measures how much of the pure frequency Fm is needed to make up
z. If z has the property that |ẑ(m)| is large for values of m near N/2,
then z has strong high-frequency components. If |ẑ(m)| is large for m
near 0 and near N−1, then z has strong low-frequency components.
For example, if z is the appropriately sampled audio signal of a
person playing the drums, we will see relatively large values of |ẑ(m)|
when m is small if the drummer likes to pound on the bass drum a
lot. If the drummer likes to bang on the cymbals, |ẑ(m)|will be large
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FIGURE 6 (a) z(n) � cos(2π15n/16), (b) y(t) � cos(2π15t/16),
(c) Superposition of Figure 6a and Figure 6b
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for values of m near the middle of the DFT range. Thus ẑ gives us a
frequency analysis of the signal z.

This phenomenon is illustrated in Figure 7, where N � 128.
The graph of the vector z(n) � sin(πn2/256) in Figure 7a oscillates
more and more rapidly as n goes from 0 to 127. (Such a signal is
called a “chirp.”) Figure 7b shows the argument (phase) of ẑ, Figure
7c shows the real part of ẑ, and Figure 7d shows the imaginary part
of ẑ. All three of these graphs seem to behave wildly and are difficult
to interpret. However, the graph of |ẑ|, the magnitude of ẑ, in Figure
7e, shows significantly large values (between 5 and 9) of |ẑ(n)| for all
values of n. The interpretation is that a large range of frequencies
is required to make up z, due to the large variation in its oscillation
rate over different parts of its graph.

A comparison of Figures 7, 8, and 9 makes this behavior clearer.
Figure 8a is the graph of z(n) � sin(πn2/512). This is also a chirp,
but the oscillation rate of this z is less at corresponding points than
for the vector in Figure 7a. This suggests that much less in the way
of high frequencies is required to synthesize z. This is demonstrated
by the graph of |ẑ| in Figure 8b. Note that only about half the values
of |ẑ(n)| (those corresponding to the lower frequencies) are large.
Our interpretation is further demonstrated in Figure 9. In Figure
9a, the function z(n) � sin(πn2/1024) is plotted. It is an even
lower frequency chirp than in Figure 8a. The magnitude of its DFT,
plotted in Figure 9b, shows that roughly only the lower fourth of the
frequencies contribute substantially to z.

In Exercise 2.1.7 there is an expansion of z in terms of sines and
cosines that is equivalent to formula (2.10). With this expansion, it
is a little easier to see the high and low frequency interpretations
just discussed. However, this expansion fails to have some of the
key properties of formula (2.10), which we consider in the next two
sections.

Next we consider how the DFT behaves under a few important
operations. The first of these is translation.

Definition 2.12 Suppose z ∈ �2(ZN ) and k ∈ Z. Define

(Rkz)(n) � z(n − k) for n ∈ Z.
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FIGURE 7 (a) z(n) � sin(πn2/256), (b) Phase (angle) of ẑ, (c) Real
part of ẑ, (d) Imaginary part of ẑ, (e) Magnitude of ẑ
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We call Rkz the translate of z by k. We call Rk the translation by k

operator.

Perhaps we should write Rk(z), but this leads to too many
parentheses, so we write only Rkz. Definition 2.12 requires some
interpretation. For n, k ∈ ZN , it may be that n − k 	∈ ZN , so it may
appear that z(n− k) is not defined. However, recall that we regard z

as extended to all of Z in such a way that z has period N . With this
understanding, Definition 2.12 makes sense. As an example, suppose
N � 6, k � 2, and z � (2, 3− i, 2i, 4+ i, 0, 1). Then, for example,

(R2z)(0) � z(0− 2) � z(−2) � z(4) � 0.
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FIGURE 8 (a) z(n) � sin(πn2/512), (b) Magnitude of ẑ
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FIGURE 9 (a) z(n) � sin(πn2/1024), (b) Magnitude of ẑ
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Similarly, (R2z)(1) � z(−1) � z(5) � 1, (R2z)(2) � z(0) � 2, etc. We
obtain

R2z � (0, 1, 2, 3− i, 2i, 4+ i).

Thus the effect of R2 on z is to move the components two positions
to the right, except for the last two, which were rotated around into
the first two positions, in the same order as originally. This can
be visualized as a rotation by two if the positions 0, 1, 2, 3, 4, 5 are
marked off on a circle. For this reason, this operation is sometimes
known as circular translation or rotation, which explains the notation
Rk.

How is the DFT affected by translation? It is intuitive that
translation should not affect the magnitudes of the different
frequencies making up the signal, but it might change their phase
(i.e., the angle in the polar representation reiθ of ẑ(n)). This is verified
by the next result.

Lemma 2.13 Suppose z ∈ �2(ZN ) and k ∈ Z. Then for any m ∈ Z,

(Rkz)ˆ(m) � e−2πimk/N ẑ(m).

Proof
By definition,

(Rkz)ˆ(m) �
N−1∑
n�0

(Rkz)(n)e−2πimn/N �
N−1∑
n�0

z(n − k)e−2πimn/N .

In this last sum, we change variables by letting � � n − k (recall k
is fixed, and n is the summation variable). If n � 0, then � � −k,
whereas for n � N − 1, we have � � N − k − 1. Since n � �+ k, we
obtain

(Rkz)ˆ(m) �
N−k−1∑
��−k

z(�)e−2πim(�+k)/N � e−2πimk/N
N−k−1∑
��−k

z(�)e−2πim�/N .

However, we claim that

N−k−1∑
��−k

z(�)e−2πim�/N �
N−1∑
n�0

z(n)e−2πimn/N � ẑ(m). (2.31)

If so, substituting this gives the final result. To see equation (2.31),
note that both z(�) and e−2πim�/N are periodic functions in the variable
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� with period N . If k � 0, there is nothing to prove, so suppose
0 < k ≤ N − 1. Then

N−k−1∑
��−k

z(�)e−2πim�/N �
−1∑

��−k
z(�+N)e−2πim(�+N)/N+

N−k−1∑
��0

z(�)e−2πim�/N .

In the first of these last two sums, we let n � �+ N , whereas in the
second we just let n � �. This gives us

N−k−1∑
��−k

z(�)e−2πim�/N �
N−1∑

n�N−k
z(n)e−2πimn/N +

N−k−1∑
n�0

z(n)e−2πimn/N

�
N−1∑
n�0

z(n)e−2πimn/N ,

as desired. Now let k ∈ Z be arbitrary. Then there is some integer r
such that k′ � k + rN ∈ {0, 1, 2, . . . , N − 1}. Then, by changing the
summation variable by setting �′ � �− rN we get

N−k−1∑
��−k

z(�)e−2πim�/N �
N−k−rN−1∑
�′�−k−rN

z(�′ + rN)e−2πim(�′+rN)/N

�
N−k′−1∑
�′�−k′

z(�′)e−2πim�′/N ,

by the N -periodicity of both z and the exponential. So by the case
k′ ∈ {0, 1, 2, . . . , N − 1} considered above, the last sum is ẑ(m).

This last summation trick is important enough to be made into
a general principle (see Exercise 2.1.8).

This shows a limitation of the DFT. By Lemma 2.13 and equation
(1.15), we have |(Rkz)ˆ(m)| � |ẑ(m)| for each m. Thus, by looking
only at the magnitude of the DFT, we cannot distinguish z from any
circular translation Rkz. The locations of the particular features of z
are not determined by |ẑ|. That information is contained in the phase
(or argument) of ẑ, but in this form it is very difficult to interpret,
as we noted in connection with Figure 7b. We will see later that
wavelets have an advantage over the DFT in this regard.

The next operation we consider is complex conjugation.
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Definition 2.14 For z � (z(0), z(1), . . . , z(N − 1)) ∈ �2(ZN ), let z
be the vector

z � (z(0), z(1), . . . , z(N − 1)),

that is, z(n) � z(n).

Lemma 2.15 For z ∈ �2(ZN ),

(z)ˆ(m) � ẑ(−m) � ẑ(N −m),

for all m.

Proof
By the properties of complex conjugation (Lemma 1.7),

(z)ˆ(m) �
N−1∑
n�0

z(n)e−2πimn/N �
N−1∑
n�0

z(n)e2πimn/N � ẑ(−m).

Corollary 2.16 Suppose z ∈ �2(ZN ). Then z is real (i.e., every
component of z is a real number) if and only if ẑ(m) � ẑ(N −m) for all
m.

Proof
Note that z is real if and only if z � z. By the invertibility of the DFT,
this holds if and only if ẑ � (z) .̂ By Lemma 2.15, this is equivalent
to ẑ(m) � ẑ(N −m) for all m.

The DFT is the change-of-basis operator that converts from
the Euclidean basis to the Fourier basis. We have interpreted the
elements of the Fourier basis as pure frequencies. The Fourier
inversion formula (2.15) shows that a general signal consists of
a superposition of pure frequencies. The DFT component ẑ(m)
measures the strength of the pure frequency Fm in the signal z.
In the next two sections, we see two strong reasons for using the
Fourier basis.

Exercises

2.1.1. Use Definition 2.1 and Euler’s formula to check the values
given in Example 2.4.

2.1.2. Check directly (not using Lemma 2.2) that the set {E0, E1,
E2, E3} in Example 2.4 is an orthonormal basis for �2(Z4).



Exercises 123

2.1.3. Let z � (1, i, 2+ i,−3) ∈ �2(Z4).
i. Compute ẑ.

ii. Compute (ẑ)ˇdirectly and check that you get z.
2.1.4. Verify formula (2.10) by direct computation (not using

Lemma 1.101), that is, substitute the definition of ẑ(m) and
calculate directly using equation (1.5). Warning: Change one
summation index from n to something else, to avoid using
the same letter for two different variables.

2.1.5. Verify relation (2.11) by direct computation (as in Exercise
2.1.4).

2.1.6. Define z ∈ �2(Z512) by

z(n) � 3 sin(2π7n/512)− 4 cos(2π8n/512).

Find ẑ.
2.1.7. (DFT in real notation) Suppose N is even, say N � 2M.

Define

c0(n) � N−1/2 for n � 0, 1, . . . , N − 1; (2.32)

cM(n) � N−1/2 cos(2π(N/2)n/N) � N−1/2(−1)n (2.33)

for n � 0, 1, . . . , N − 1; and

cm(n) � (
√

2/N) cos(2πmn/N), for n � 0, 1, . . . , N − 1
(2.34)

for m � 1, 2, . . . ,M− 1. Also, for m � 1, 2, . . . ,M− 1, define

sm(n) � (
√

2/N) sin(2πmn/N) for n � 0, 1, . . . , N − 1.
(2.35)

.
i. Prove that

{c0, c1, . . . , cM−1, cM, s1, . . . , sM−1}
is an orthonormal basis for �2(ZN ).
By Lemma 1.101, this implies that

z �
M∑

m�0

〈z, cm〉cm +
M−1∑
m�1

〈z, sm〉sm. (2.36)

This is a variant of the DFT written in real notation. It
has the advantage that if z is real, then all computations
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involve only real numbers. However, we see that this
form does not have some of the key advantages discussed
in the next two sections. In any case, there are simple
transformations relating these coefficients to the DFT
coefficients and vice-versa.

ii. Prove that

〈z, c0〉 � N−1/2ẑ(0),

〈z, cm〉 � (2N)−1/2
(
ẑ(m)+ ẑ(N −m)

)
for m � 1, 2, . . . ,M − 1,

〈z, cM〉 � N−1/2ẑ(M),

and

〈z, sm〉 � −i(2N)−1/2 (ẑ(m)− ẑ(N −m)
)

for m � 1, 2, . . . ,M − 1.
iii. Conversely, prove that

ẑ(0) � √N〈z, c0〉,
ẑ(m) �

√
N/2 (〈z, cm〉 − i〈z, sm〉)

for m � 1, 2, . . . ,M − 1,

ẑ(M) � √N〈z, cM〉,
and

ẑ(m) �
√
N/2 (〈z, cN−m〉 + i〈z, sN−m〉)

for m � M + 1,M + 2, . . . , N − 1.
iv. Derive relation (2.36) from formula (2.10) and Euler’s

formula, without using part i. (Suggestion: Break up the
sum in formula (2.10) into four parts: the term for m � 0;
the term for m � M; the sum on m � 1, 2, . . . ,M−1; and
the sum on m � M+1, M+2, . . . , N−1. Then substitute
the relations from part iii. Change the summation index
in the last sum to run over 1, 2, . . . ,M − 1, combine the
cm terms, and use Euler’s formula.)
Remark: If N is odd, say N � 2J + 1, then we define c0

by equation (2.32); cm by equation (2.34) for m � 1, 2, . . . , J ;
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and sm by equation (2.35) for m � 1, 2, . . . , J. This yields
an orthonormal basis. We have the same formulae relating
the coefficients in this orthonormal expansion to the DFT
coefficients as above, except that the exceptional case m �
N/2 does not occur.

2.1.8. Suppose h is a function on Z that is periodic with period N ,
that is, h(n + N) � h(n) for all n. Prove: for any m ∈ Z,

m+N−1∑
n�m

h(n) �
N−1∑
n�0

h(n).

In other words, any sum over an interval of length N yields
the same result.

2.1.9. i. Prove that N−1/2WN is a unitary matrix. (Suggestion: Use
Lemma 2.2 and Lemma 1.105 ii.)

ii. Use part i to give a direct proof that W−1
N � WN/N .

2.1.10. Let z � (z(0), z(1), . . . , z(N − 1)), w � (w(0), w(1), . . . ,
w(N − 1)) ∈ �2(ZN ). Prove that

〈ž, w̌〉 � 1
N
〈z, w〉

and

‖ž‖2 � 1
N
‖z‖2.

2.1.11. Suppose z ∈ �2(ZN ). We say z is pure imaginary if z � iw

for some w that is real, in other words, if every component
of z is pure imaginary. Prove that z is pure imaginary if and
only if

ẑ(m) � −ẑ(N −m)

for all m.
2.1.12. Suppose z ∈ �2(ZN ).

i. Prove that ẑ is real if and only if z(m) � z(N −m) for
every m.

ii. Prove that ẑ is pure imaginary (see Exercise 2.1.11 for the
definition) if and only if z(m) � −z(N −m) for every m.
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2.1.13. Suppose z ∈ �2(ZN ). Define z̃ ∈ �2(ZN ) by z̃(n) � z(N − n),
for n � 0, 1, . . . , N − 1. Prove that

(z̃)ˆ(n) � ẑ(n),

for all n.
2.1.14. Let N and k be positive integers with k < N , with (k, N) � 1

(this means k and N are relatively prime, i.e., they have no
integer factors in common other than ±1). Let ω � e2πik/N .

(Such an ω is called a primitive N th root of unity.) Prove that

1, ω, ω2, ω3, . . . , ωN−1

are distinct N th roots of unity. Hint: Use the fact from
number theory that if q|ab and (q, b) � 1, then q|a. This
is easy to see by considering prime factors.

Remark: This shows that we can define the DFT starting
with any primitive N th root of unity ω instead of e2πi/N ; the
result is only a permutation of the entries in the DFT matrix.

2.1.15. Let N1 and N2 be positive integers. Let

�2(ZN1 × ZN2) �
{
z : ZN1 × ZN2 → C

}
.

In other words, if z ∈ �2(ZN1 × ZN2), then for every n1 and
n2 with 0 ≤ n1 ≤ N1 − 1 and 0 ≤ n2 ≤ N2 − 1, z(n1, n2) is
defined and is a complex number. With the usual addition
and scalar multiplication, �2(ZN1×ZN2) is a vector space over
C (assume this). For z, w ∈ �2(ZN1 × ZN2), define

〈z, w〉 �
N1−1∑
n1�0

N2−1∑
n2�0

z(n1, n2)w(n1, n2).

Then 〈·, ·〉 is a complex inner product on �2(ZN1 × ZN2)
(assume this).

Prove that �2(ZN1×ZN2) is N1N2 dimensional. Hint: What
plays the role of the standard basis here?

2.1.16. Let �2(ZN1×ZN2) be as in Exercise 2.1.15. Suppose {B0, B1, . . . ,

BN1−1} is an orthonormal basis for �2(ZN1) and {C0, C1, . . . ,

CN2−1} is an orthonormal basis for �2(ZN2). For 0 ≤ m1 ≤
N1 − 1 and 0 ≤ m2 ≤ N2 − 1, define Dm1,m2 ∈ �2(ZN1 × ZN2)
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by

Dm1,m2(n1, n2) � Bm1(n1)Cm2(n2).

Prove that {
Dm1,m2

}
0≤m1≤N1−1,0≤m2≤N2−1

is an orthonormal basis for �2(ZN1 × ZN2). Hint: Prove that

〈Dm1,m2 , Dk1,k2〉 � 〈Bm1 , Bk1〉〈Cm2 , Ck2〉,
where the inner product on the left is in �2(ZN1 × ZN2),
whereas those on the right are in �2(ZN1) and �2(ZN2),
respectively.

2.1.17. i. (Two-dimensional Fourier basis) For m1 ∈ ZN1 and m2 ∈
ZN2 , define Em1,m2 ∈ �2(ZN1 × ZN2) (see Exercise 2.1.15
for the definition) by

Em1,m2(n1, n2) � 1√
N1N2

e2πim1n1/N1e2πim2n2/N2 .

Prove that

{Em1,m2}0≤m1≤N1−1, 0≤m2≤N2−1

is an orthonormal basis for �2(ZN1 × ZN2). As in the
one-dimensional case, we usually renormalize by setting

Fm1,m2(n1, n2) � 1
N1N2

e2πim1n1/N1e2πim2n2/N2 .

We call F � {Fm1,m2}0≤m1≤N1−1, 0≤m2≤N2−1 the Fourier basis
for �2(ZN1 × ZN2).

ii. (Two-dimensional DFT) For z ∈ �2(ZN1 × ZN2), define
ẑ ∈ �2(ZN1 × ZN2) by

ẑ(m1, m2) �
N1−1∑
n1�0

N2−1∑
n2�0

z(n1, n2)e−2πim1n1/N1e−2πim2n2/N2 .

Also, for w ∈ �2(ZN1 × ZN2), define w̌ ∈ �2(ZN1 × ZN2) by

w̌(n1, n2) � 1
N1N2

N1−1∑
m1�0

N2−1∑
m2�0

w(m1, m2)e2πim1n1/N1e2πim2n2/N2 .
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Prove that

z � (ẑ)ˇ,
for all z ∈ �2(ZN1 ×ZN2). Deduce that ˆ : �2(ZN1 ×ZN2)→
�2(ZN1×ZN2) is 1–1, hence invertible, with inverse ˇ. Hint:
Use Exercise 2.1.16, and follow the reasoning in the text
for the one-dimensional case.

2.1.18. With definitions as in Exercises 2.1.16 and 2.1.17, and for
z, w ∈ �2(ZN1 × ZN2), prove Parseval’s formula:

〈z, w〉 � 1
N1N2

〈ẑ, ŵ〉,

and Plancherel’s formula:

‖z‖2 � 1
N1N2

‖ẑ‖2.

Remark: Because visual images are two-dimensional,
to do image processing one needs to work with the two-
dimensional DFT discussed in Problems 2.1.15 through
2.1.18.

2.1.19. Formulate the analogue of Exercises 2.1.15–2.1.18 for d

dimensions and carry out the proofs. It will probably
be helpful to use vector notation; for example, for n �
(n1, n2, . . . , nd) and with m defined similarly, let n · m �∑d

k�1 nkmk.

2.2 Translation-Invariant Linear
Transformations

Most electrical engineering departments have a course titled “Signals
and Systems” or something similar. From our point of view, a “signal”
is just a function. It could be a function on an interval of real numbers
(a continuous, or analog, signal) or a function on a finite set of points
or on an infinite discrete set such as Z (a discrete, or digital, signal).
As shown in section 2.1, a vector in CN can be thought of as a function
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on N points, hence as a signal. Physically, we can think of an audio
signal, for example, a piece of music. Examples of “systems” include
amplifiers, graphic equalizers, and other audio equipment. A system
is something that transforms an input signal into an output signal.
Mathematically, a system is a transformation.

What assumptions are reasonable for a system, which we model
as a transformation T? Ideally, amplifiers and most other audio
equipment should be linear. First, the effect of an amplifier on
two signals together should be the sum of its effects on each signal
separately, that is, T(u + v) � T(u) + T(v). Second, if we multiply
the volume of the input signal by some amount, the output volume
should be multiplied by that amount, that is, T(αu) � αT(u). These
are the ideal characteristics of an amplifier. In reality this is not
possible. If a signal is multiplied by a large enough factor, it will
blow out the system and the output becomes 0. However, within the
usual range of operation, a good amplifier is close to linear. So this
is a reasonable assumption to make on our mathematical model of a
system. The conditions we have just considered are that T is a linear
transformation in the sense of Definition 1.44.

Another natural assumption is that if we delay our input signal
by a certain amount, the only effect on the output is to delay
it by the same amount. In other words, the system does not
behave differently at different times of the day. Such a system is
called time-invariant or shift-invariant. The linear transformation
associated with such a system is called translation invariant. To
formulate the translation invariance property mathematically, recall
the translation operator Rk defined by (Definition 2.12)

(Rkz)(n) � z(n − k) for n ∈ Z,

for z ∈ �2(ZN ). Shifting a signal to the right by k units gives Rk(z).
(Recall that we are working with periodic signals defined on all of
Z, so the translated signal does not actually start earlier or later. But
all the values are shifted to the right by k.) Suppose our input signal
is z and the resulting output is w � T(z). Our hypothesis of shift
invariance says that if the new input signal is Rk(z), the new output
should be the shiftRkw � Rk(T(z)). But by definition ofT, the output
is T(Rkz). Thus our formal definition of translation invariance is as
follows.
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Definition 2.17 Let T : �2(ZN ) → �2(ZN ) be a linear
transformation. T is translation invariant if

T(Rkz) � RkT(z), (2.37)

for all z ∈ �2(ZN ) and all k ∈ Z.

Note that equation (2.37) states that T commutes with the
translation operator Rk.

Recall the Fourier basis F from Definition 2.7. Probably the
single most important fact about the Fourier basis F is that all
translation-invariant linear transformations (from �2(ZN ) to �2(ZN ))
are diagonalized by F . Before proving this, we should pause to
appreciate this fact. We noted above that translation invariant linear
transformations are the most natural. In chapter 1 we learned
that diagonalizable linear transformations are the easiest to use.
Now we find that translation-invariant linear transformations are
all diagonalizable, in fact by the same basis! Moreover, this basis is
orthogonal (by Lemma 2.2).

We begin with a direct proof of this main result. Recall Definition
1.71: a linear transformation T is diagonalizable if its domain has a
basis consisting of eigenvectors of T.

Theorem 2.18 Let T : �2(ZN )→ �2(ZN ) be a translation-invariant
linear transformation. Then each element of the Fourier basis F is an
eigenvector of T. In particular, T is diagonalizable.

Proof
Fix m ∈ {0, 1, . . . , N − 1}. Let Fm be the mth element of the Fourier
basis (defined in relation (2.13)). Then there exist complex scalars
a0, a1, . . . , aN−1 such that

T(Fm)(n) �
N−1∑
k�0

akFk(n) � 1
N

N−1∑
k�0

ake
2πikn/N , (2.38)

for all n, because F is a basis for �2(ZN ). Notice that

(R1Fm)(n) � Fm(n − 1) � 1
N
e2πim(n−1)/N

� 1
N
e−2πim/Ne2πimn/N � e−2πim/NFm(n).
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Since e−2πim/N is independent of n, the linearity of T implies that

T(R1Fm)(n) � e−2πim/NT(Fm)(n)

� e−2πim/N
N−1∑
k�0

akFk(n) �
N−1∑
k�0

ake
−2πim/NFk(n),

by equation (2.38). On the other hand, equation (2.38) also implies

(R1T(Fm))(n) � (T(Fm))(n − 1) � 1
N

N−1∑
k�0

ake
2πik(n−1)/N

� 1
N

N−1∑
k�0

ake
−2πik/Ne2πikn/N �

N−1∑
k�0

ake
−2πik/NFk(n).

But T(R1Fm)(n) � (R1T(Fm))(n) for all n, by the assumption that T
is translation invariant. Comparing the expressions above for these
two quantities, and using the uniqueness of the coefficients of the
representation of a vector in terms of a basis, we obtain that for each
k � 0, 1, . . . , N − 1,

ake
−2πim/N � ake

−2πik/N . (2.39)

If k 	� m, we have e−2πim/N 	� e−2πik/N since 0 ≤ k,m ≤ N − 1. Thus
the only way equation (2.39) can hold is if ak � 0. Hence we have
proved that ak � 0 whenever k 	� m. Therefore in equation (2.38),
all terms disappear except the term with k � m, leaving

T(Fm)(n) � amFm(n),

that is, T(Fm) � amFm. So Fm is an eigenvector of T with eigenvalue
am.

Since m was arbitrary, this shows that every element of the
Fourier basis F is an eigenvector of T. So T is diagonalizable.

Although this proves our main point, this result is so important
that we will consider it again in more detail and approach it through
a different route. Along the way we will encounter a variety of
key concepts such as circulant matrices, convolutions, and Fourier
multipliers. Our goal is to prove the following theorem, which we
state now to map out our objectives, even though we have not
defined some of the terms yet.
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Theorem 2.19 Let T : �2(ZN )→ �2(ZN ) be a linear transformation.
Then the following statements are equivalent:

i. T is translation invariant.
ii. The matrix AT,E representing T in the standard basis E is

circulant.
iii. T is a convolution operator.
iv. T is a Fourier multiplier operator.
v. ThematrixAT,F representingT in the Fourier basis F is diagonal.

Statement v is another way of saying thatT is diagonalized by the
Fourier basis. The strategy of the proof of Theorem 2.19 is to prove
i⇒ ii⇒ iii⇒ i, and then to prove iii⇔ iv and finally iv⇔ v. Note
that Theorem 2.19 gives not only Theorem 2.18 but its converse,
which states that a linear transformation that is diagonalized by the
Fourier basis is translation invariant.

As in Definition 2.8, the indices for matrices will now run from
0 to N − 1, to match our notation for vectors. That is, we write an
n×n matrix A as [amn]0≤m,n≤N−1. When we multiply the matrix A by
a vector z as in expression (2.1), the result is the vector Az whose
mth component (Az)(m) (0 ≤ m ≤ N − 1) is

(Az)(m) �
N−1∑
n�0

amnz(n). (2.40)

Also we will adapt the same periodicity convention for matrices
that we have adapted for vectors. For [amn]0≤m,n≤N−1 given, we define
amn for all m, n ∈ Z by assuming periodicity with period N in each
index:

am+N,n � amn and am,n+N � amn

for all m and n (the extra comma has been added for clarity). Thus
for example a−1,N+2 � aN−1,N+2 � aN−1,2, where only the indices in
the last expression are in the original range 0 ≤ m, n ≤ N − 1.

Definition 2.20 A matrix A � [amn]0≤m,n≤N−1, periodized as above,
is circulant if

am+k,n+k � am,n (2.41)

for all m, n, k ∈ Z.
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Note that it is equivalent to require only am+1,n+1 � am,n for all
m, n ∈ Z, since one can repeat this k times to obtain equation (2.41).

Definition 2.20 states that we obtain column m+ 1 in a circulant
matrix by shifting the mth column down (circular translation) by 1.
Equivalently, we obtain row m+ 1 by shifting row m to the right by
1. Thus circulant matrices are easy to identify by sight.

Example 2.21
The matrix 


3 2+ i −1 4i
4i 3 2+ i −1
−1 4i 3 2+ i

2+ i −1 4i 3




is circulant. The matrix 
 2 i 3

3 2 i

i 2 3




is not circulant, but if the last row were i 3 2, it would be.

Recall that the standard, or Euclidean, basis E for �2(ZN ) is
E � {e0, e1, . . . , eN−1}, defined by en(m) � 1 if m � n, and en(m) � 0
if m 	� n and 0 ≤ m ≤ N − 1. It is useful to define en for all n ∈ Z,
although some redundancy is introduced in the process. Observe
that because we regard en as defined on all of Z, with period N , we
see that en(m) � 1 if and only if m � n + kN for some k ∈ Z. With
this in mind, for each n ∈ Z we define en ∈ �2(ZN ) by periodicity,
that is, by letting

en+N � en

for any n. It follows that

R1en � en+1 (2.42)

for any n. For example, when n � N − 1, the definition of circular
translation shows that R1eN−1 � e0 � eN , which is consistent with
equation (2.42).
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If we multiply A by en, we obtain the nth column of A. The formal
proof is:

(Aen)(m) �
N−1∑
k�0

amken(k) � amn, (2.43)

using relation (2.40) and the fact that en(k) � 0 unless k � n, in which
case it is 1. However, this is probably easier to see by writing it out.
By the periodicity in our definitions, this is true for all n,m ∈ Z.

Recall that if the matrixAT,E represents a linear transformationT

in the standard basis, then T(z) � AT,Ez (since z � [z]E, by equation
(1.24)). We are now prepared to prove the implication i ⇒ ii in
Theorem 2.19.

Lemma 2.22 Suppose T : �2(ZN ) → �2(ZN ) is a linear
transformation. Let AT,E be the matrix representing T in the standard
basis E. If T is translation invariant, then AT,E is circulant.

Proof
For each m, n we have, by equation (2.43) and then equation (2.42),

am+1,n+1 � (AT,Een+1)(m + 1)� (T(en+1))(m + 1)� (T(R1en))(m + 1)

� (R1T(en))(m + 1) � T(en)(m + 1− 1) � T(en)(m)

� (AT,Een)(m) � am,n,

by the assumed translation invariance of T. As noted earlier,
iterating this k times gives am+k,n+k � am,n for any k.

For the next step in Theorem 2.19, we define the convolution of
two vectors.

Definition 2.23 For z, w ∈ �2(ZN ), the convolution z ∗w ∈ �2(ZN )
is the vector with components

z ∗w(m) �
N−1∑
n�0

z(m − n)w(n),

for all m.
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Example 2.24
Let z � (1, 1, 0, 2) and w � (i, 0, 1, i) be vectors in �2(Z4). Then, using
the periodicity of z,

z ∗w(0) �
3∑

n�0

z(−n)w(n)

� z(0)w(0)+ z(−1)w(1)+ z(−2)w(2)+ z(−3)w(3)

� z(0)w(0)+ z(3)w(1)+ z(2)w(2)+ z(1)w(3)

� 1 · i + 2 · 0+ 0 · 1+ 1 · i � 2i.

Similarly,

z ∗w(1) �
3∑

n�0

z(1− n)w(n) � 1 · i + 1 · 0+ 2 · 1+ 0 · i � 2+ i,

z ∗w(2) �
3∑

n�0

z(2− n)w(n) � 0 · i + 1 · 0+ 1 · 1+ 2 · i � 1+ 2i,

and

z ∗w(3) �
3∑

n�0

z(3− n)w(n) � 2 · i + 0 · 0+ 1 · 1+ 1 · i � 1+ 3i.

Therefore

z ∗w � (2i, 2+ i, 1+ 2i, 1+ 3i).

If we fix one vector in the convolution, we can regard convolution
with this fixed vector as a linear transformation.

Definition 2.25 Suppose b ∈ �2(ZN ). Define Tb : �2(ZN )→ �2(ZN )
by

Tb(z) � b ∗ z,
for all z ∈ �2(ZN ). Any transformation T of the form T � Tb, for some
b ∈ �2(ZN ), is called a convolution operator.

It is not difficult to see that a convolution operator Tb is a linear
transformation. The implication ii⇒ iii in Theorem 2.19 states that
a circulant matrix gives rise to a convolution operator. This explains
why convolution is of interest to us.
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Lemma 2.26 LetA be anN×N matrix,A � [amn]0≤m,n≤N−1. Suppose
A is circulant. Define b ∈ �2(ZN ) by

b(n) � an,0

for all n. (In other words, b is the first column of A, regarded as a vector.
By equation (2.43), this means that b � Ae0.) Then for all z ∈ �2(ZN ),

Az � b ∗ z � Tb(z).

Proof
Since A is circulant, we have

amn � am−n,0 � b(m − n),

for any m, n ∈ Z. Hence, by the definition of matrix multiplication
(equation (2.40)),

(Az)(m) �
N−1∑
n�0

amnz(n) �
N−1∑
n�0

b(m − n)z(n) � b ∗ z(m).

We have proved i⇒ ii⇒ iii in Theorem 2.19, so we now know that
any translation-invariant linear transformation T is a convolution
operator Tb. The converse, that a convolution operator is translation
invariant, is relatively easy.

Lemma 2.27 Let b ∈ �2(ZN ), and let Tb be the convolution operator
associated with b as in Definition 2.25. Then Tb is translation invariant.

Proof
Let z ∈ �2(ZN ). Let k ∈ Z. Then for any m,

Tb(Rkz)(m) � b ∗ (Rkz)(m) �
N−1∑
n�0

b(m − n)(Rkz)(n)

�
N−1∑
n�0

b(m − n)z(n − k).

In this last sum we make the change of index � � n − k. Using
Exercise 2.1.8, we obtain

Tb(Rkz)(m) �
N−1−k∑
��−k

b(m − k − �)z(�) �
N−1∑
��0

b(m − k − �)z(�)

� (b ∗ z)(m − k) � Rk(b ∗ z)(m) � RkTb(z)(m),
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for all m. In other words, Tb(Rkz) � RkTb(z); that is, Tb is translation
invariant.

Thus we have proved that statements i, ii, and iii in Theorem 2.19
are equivalent. We pause to consider an application of this result.

Definition 2.28 Define δ ∈ �2(ZN ) by

δ(n) �
{

1 if n � 0
0 if n � 1, 2, . . . , N − 1.

This is the discrete version of what is sometimes called the Dirac
delta function. It is also known as the unit impulse. Note that δ is just
e0, but because the notation δ is standard, we accept this redundancy.

Lemma 2.29 For any w ∈ �2(ZN ),

w ∗ δ � w.

Proof
For each m ∈ ZN,

(w ∗ δ)(m) �
N−1∑
n�0

w(m − n)δ(n) � w(m),

since δ(n) � 0 unless n � 0, in which case δ(0) � 1.

This simple result has the following interpretation. Suppose we
have a system, say an amplifier or some other audio equipment. By
our general discussion above, we model the system as a translation-
invariant linear transformation T on �2(Z). We have proved that
T is a convolution operator Tb for some b ∈ �2(ZN ). If we knew
b, we would know the action of our system on any signal z since
T(z) � Tb(z) � b ∗ z. Thus the system is completely determined by
b. How can we find b? By Lemma 2.29, this is easy:

T(δ) � Tb(δ) � b ∗ δ � b.

Thus to recover b we only have to measure the output of the system
when the input is δ. Since δ is called the unit impulse, b is often
called the impulse response of the system.

We now consider how the DFT interacts with convolution.

Lemma 2.30 Suppose z, w ∈ �2(ZN ). Then for each m,

(z ∗w)ˆ(m) � ẑ(m)ŵ(m).
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Proof
By definition,

(z ∗w)ˆ(m)�
N−1∑
n�0

(z ∗w)(n)e−2πimn/N�
N−1∑
n�0

N−1∑
k�0

z(n − k)w(k)e−2πimn/N

�
N−1∑
n�0

N−1∑
k�0

z(n − k)w(k)e−2πim(n−k)/Ne−2πimk/N

�
N−1∑
k�0

w(k)e−2πimk/N
N−1∑
n�0

z(n − k)e−2πim(n−k)/N .

In the last sum we change index, letting � � n − k, to obtain (by
Exercise 2.1.8)

N−1∑
n�0

z(n − k)e−2πim(n−k)/N �
N−1−k∑
��−k

z(�)e−2πim�/N �
N−1∑
��0

z(�)e−2πim�/N .

Substituting this gives

(z ∗w)ˆ(m) �
N−1∑
k�0

w(k)e−2πimk/N
N−1∑
��0

z(�)e−2πim�/N � ẑ(m)ŵ(m).

Thus, the DFT transforms the relatively complicated operation
of convolution into the simple operation of multiplication.

Example 2.31
In Example 2.24, for z � (1, 1, 0, 2) and w � (i, 0, 1, i), we calculated
that z ∗ w � (2i, 2 + i, 1 + 2i, 1 + 3i). Proceeding as in Example 2.9,
we find that

ẑ � (4, 1+ i,−2, 1− i).

and

ŵ � (1+ 2i,−2+ i, 1, i).

Similarly, we compute

(z ∗w)ˆ� (4+ 8i,−3− i,−2, 1+ i).

Now one can check that (z ∗w)ˆ(n) � ẑ(n)ŵ(n) for n � 0, 1, 2, 3 (e.g.,
ẑ(1)ŵ(1) � (1+ i)(−2+ i) � −3− i � (z ∗w)ˆ(1)).
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Now we consider linear transformations obtained by taking the
DFT, multiplying the resulting components by some numbers, and
taking the inverse DFT (IDFT) of the result.

Definition 2.32 Letm ∈ �2(ZN ). Define T(m) : �2(ZN )→ �2(ZN ) by

T(m)(z) � (mẑ)ˇ, (2.44)

where mẑ is the vector obtained from multiplying m and ẑ component-
wise; that is, (mẑ)(n) � m(n)ẑ(n) for each n. Any transformation of
this form is called a Fourier multiplier operator.

Note that we write T(m) to distinguish Fourier multiplier
operators from convolution operators (denoted Tb) in Definition
2.25. It is not difficult to see that any Fourier multiplier operator is
a linear transformation. Another way to describe T(m) in Definition
2.32 is to note that for each k,

(T(m)(z))ˆ(k) � m(k)ẑ(k), (2.45)

by applying the DFT to both sides of equation (2.44). To understand
this, recall, by Fourier inversion (2.15), that

z �
N−1∑
k�0

ẑ(k)Fk.

By applying inversion (2.15) to T(m)(z) and using equation (2.45), we
get

T(m)(z) �
N−1∑
k�0

(T(m)(z))ˆ(k)Fk �
N−1∑
k�0

m(k)ẑ(k)Fk.

Thus the effect of T(m) on z is to multiply the kth DFT coefficient
ẑ(k) by m(k). This explains the name Fourier multiplier operator.

A piece of audio equipment known as a graphic equalizer is
modeled by a Fourier multiplier operator. The purpose of a graphic
equalizer is to allow one to boost or lower separate frequency
components of an audio signal. Recall that the strength of the
frequency e2πikn/N in a signal is proportional to the magnitude of its
kth DFT coefficient. By equation (2.45), the operator T(m) multiplies
the kth DFT coefficient by m(k). The settings on a graphic equalizer
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correspond to different frequency components of a signal. Each can
be manually raised or lowered, corresponding to an increased or
decreased multiplier factor for that frequency. In doing so, one is
choosing a value of the Fourier multiplier m(k). A graphic equalizer
allows one to tune the frequency response to one’s satisfaction.

The equivalence of iii and iv in Theorem 2.19 follows easily from
Lemma 2.30.

Lemma 2.33 Let T : �2(ZN )→ �2(ZN ) be a linear transformation.
Then T is a convolution operator if and only if T is a Fourier multiplier
operator. More precisely, for a given convolution operator Tb, let m � b̂;
then Tb � T(m). Conversely, given a Fourier multiplier operator T(m), let
b � m̌. Then T(m) � Tb.

Proof
In either case, we have m � b̂ (by Fourier inversion in the second
case). Then by Fourier inversion and Lemma 2.30,

Tb(z) � b ∗ z � ((b ∗ z) )̂ˇ� (b̂ẑ)ˇ� (mẑ)ˇ� T(m)(z),

for any z ∈ �2(ZN ).

The last step in the proof of Theorem 2.19 is to show that iv and
v are equivalent. So far we know that i, ii, iii, and iv are equivalent,
so we could apply Theorem 2.18, which shows that i implies v.
However, we require the converse also, and we prefer to show the
direct connection between iv and v in the next lemma. Recall by
equation (2.16) that ẑ is the vector representing z in the Fourier
basis: ẑ � [z]F . Then equation (2.45) shows that T(m) behaves like
multiplication by a diagonal matrix in the Fourier basis. The proof
of the equivalence of iv and v just requires writing this observation
out.

Lemma 2.34 Let T : �2(ZN )→ �2(ZN ) be a linear transformation.
Then T is a Fourier multiplier operator T(m) for some m ∈ �2(ZN )
if and only if the matrix representing T in the Fourier basis F �
{F0, F1, . . . , FN−1} is a diagonal matrix D.

Moreover, if T � T(m) is a Fourier multiplier operator, then the
diagonal matrix D � [dmn]0≤m,n≤N−1 satisfies dnn � m(n) for n �
0, 1, . . . , N − 1.
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Proof
Let T(m) be a Fourier multiplier operator. Define a diagonal matrix
D � [dmn]0≤m,n≤N−1 by setting dnn � m(n), for 0 ≤ m ≤ N − 1. By
equation (2.45), (T(m)(z))ˆ� mẑ and therefore

[T(m)(z)]F �




m(0)ẑ(0)
m(1)ẑ(1)
·
·

m(N − 1)ẑ(N − 1)


 �




d00ẑ(0)
d11ẑ(1)
·
·

dN−1,N−1ẑ(N − 1)




�




d00 0 · · 0
0 d11 0 · 0
· · · · ·
· · · · ·
0 · · 0 dN−1,N−1







ẑ(0)
ẑ(1)
·
·

ẑ(N − 1)




� Dẑ � D[z]F ,

by using equation (2.16). Hence a Fourier multiplier opertor T(m)

is represented by the diagonal matrix D with respect to the Fourier
basis.

Conversely, suppose the diagonal matrix D � [dmn]0≤m,n≤N−1

represents T with respect to the Fourier basis F . Set m(n) � dnn, for
0 ≤ n ≤ N − 1, and let T(m) be the corresponding Fourier multiplier
operator. Then by the calculation above,

[T(z)]F � D[z]F � [T(m)(z)]F .

Therefore, T � T(m).

This completes the proof of Theorem 2.19. These results can be
used in a practical way in computation. Suppose T is a translation-
invariant linear transformation. From its definition, we can write
down the matrix A � [amn]0≤m,n≤N−1 representing T in Euclidean
coordinates (that is, A such that T(z) � Az). This matrix must be
circulant. We let b ∈ �2(ZN ) be the first column of A. Then T is the
convolution operator Tb, by Lemma 2.26. Let m � b̂. By Lemma
2.33, T is the Fourier multiplier operator T(m). Form the diagonal
matrix D with nth diagonal entry dnn � m(n). Then D represents T
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with respect to the Fourier basis F ; that is,

[T(z)]F � D[z]F .

To understand this on the matrix level, recall from equation (2.19)
that ẑ � WNz, where WN is the matrix (2.18). Thus

WNAz � (Az)ˆ� [Az]F � [T(z)]F � D[z]F � Dẑ � DWNz.

Multiplying on the left by W−1
N gives

Az � W−1
N DWNz,

and hence that

A � W−1
N DWN, or WNAW

−1
N � D. (2.46)

This is an explicit diagonalization of A. Notice that the diagonalizing
matrix WN is the same for any circulant matrix. Recall that the
diagonal entries of D are the eigenvalues of A; we see here that
if A is a circulant matrix, they are just the components of the vector
m determined above. For circulant matrices, this is a much easier
way to find the eigenvalues than trying to factor the characteristic
polynomial.

Example 2.35
Define T : �2(Z4)→ �2(Z4) by

T(z)(n) � z(n)+ 2z(n + 1)+ z(n + 3).

Find the eigenvalues and eigenvectors of T, and diagonalize the
matrix A representing T in the standard basis, if possible.

Solution
One can check that T is translation invariant:

T(Rkz) � (Rkz)(n)+ 2(Rkz)(n + 1)+ (Rkz)(n + 3)

� z(n − k)+ 2z(n + 1− k)+ z(n + 3− k)

� Rk(z(n)+ 2z(n + 1)+ z(n + 3)) � RkT(z).

Alternatively, one can write the matrix A that represents T in
the standard basis (i.e., satisfying T(z) � Az) by considering
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T(z)(0), T(z)(1), T(z)(2), and T(z)(3), obtaining

A �




1 2 0 1
1 1 2 0
0 1 1 2
2 0 1 1


 ,

which is circulant. Then b � (1, 1, 0, 2).
In Example 2.31 we calculated b̂ (b was called z there), where

we obtained m � b̂ � (4, 1+ i,−2, 1− i). These components are the
eigenvalues of A, and the eigenvectors are the Fourier basis vectors
in F . In particular,

D �




4 0 0 0
0 1+ i 0 0
0 0 −2 0
0 0 0 1− i




satisfies W4AW
−1
4 � D.

The transformation considered in the next example is the
second difference operator, which is used to approximate the
second derivative f ′′ when doing numerical solutions of differential
equations in the periodic setting.

Example 2.36
Define ? : �2(ZN )→ �2(ZN ) by

(?(z))(n) � z(n + 1)− 2z(n)+ z(n − 1).

Find the eigenvalues of ?.

Solution
As in Example 2.35, we can check that ? is translation invariant. By
definition,

(?(z))(0) � z(1)− 2z(0)+ z(−1) � z(1)− 2z(0)+ z(N − 1).
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Therefore the first row of the matrix A of ? in the standard basis is
(−2, 1, 0, . . . , 0, 1). Since A must be circulant,

A �




−2 1 0 · · 0 1
1 −2 1 0 · · 0
0 1 −2 1 0 · 0
· · · · · · ·
· · · · · · ·
1 0 · · 0 1 −2



. (2.47)

Therefore b is the first column of A, that is, b � (−2, 1, 0, . . . , 0, 1).
The eigenvalues of ? are the components of m � b̂. We obtain

b̂(k) �
N−1∑
n�0

b(n)e−2πikn/N � (−2) · 1+ 1 · e−2πik/N + 1 · e−2πik(N−1)/N

� −2+ e−2πik/N + e2πik/N � −2+ 2 cos(
2πk
N

)

� −4
(

1
2
− 1

2
cos(

2πk
N

)
)
� −4 sin2(

πk

N
).

These are the eigenvalues of ?. The matrix D with diagonal entries
dkk � −4 sin2(πk/N) satisfies WNAW

−1
N � D.

Exercises

2.2.1. For z ∈ �2(ZN ), define T(z) ∈ (ZN ) by

(T(z))(n) � z(n − 1),

for all n.
i. Prove that T is translation invariant.

ii. Let w(n) � cos(2πn/N), for n ∈ ZN . For each N ≥ 3,
show that w is not an eigenvector of T.
Remark: This shows that the orthonormal basis of sines

and cosines in Exercise 2.1.7 does not diagonalize T.
2.2.2. Define T : �2(ZN )→ �2(ZN ) by

(T(z))(n) � 3z(n − 2)+ iz(n)− (2+ i)z(n + 1),

for all n.
i. Prove that T is translation invariant.
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ii. Write the matrix that represents T with respect to the
standard (Euclidean) basis for the case N � 4.

iii. For the case N � 4, show by direct computation that
the vectors E0, E1, E2, and E3 from Example 2.4 are
eigenvectors of T.

2.2.3. Define T : �2(Z4)→ �2(Z4) by

T(z) � (2z(0)− z(1), iz(1)+ 2z(2), z(1), 0).

i. Let z � (1, 0,−2, i). Compute T(R1z) and R1T(z).
Observe that they are not equal. Hence T is not
translation invariant.

ii. Find the matrix that represents T with respect to the
standard basis. Observe that it is not circulant, as we
expect from part i.

iii. Show that (1, i,−1,−i) is not an eigenvector of T. (Recall
by Example 2.4 that (1, i,−1,−i) is a multiple of the
Fourier basis element F1.)

2.2.4. Let z � (2, i, 1, 0) and w � (1, 0, 2i, 3).
i. Compute ẑ and ŵ.
ii. Compute z ∗w directly.

iii. Compute (z ∗ w)ˆdirectly and check that it agrees with
ẑŵ.

2.2.5. Let z, w ∈ �2(ZN ).
i. Prove that

z ∗w � w ∗ z
directly from the definition of convolution.

ii. Prove that z ∗ w � w ∗ z by using Lemma 2.30 and the
Fourier inversion formula.

2.2.6. Prove that convolution is associative, that is,

(x ∗ y) ∗ z � x ∗ (y ∗ z),
for x, y, z ∈ �2(ZN ). Suggestion: Use the easier of the two
methods in Exercise 2.2.5.

2.2.7. Define T : �2(Z4)→ �2(Z4) by

(T(z))(n) � 3z(n − 1)+ z(n).
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i. Write the matrix AT,E that represents T with respect to
the standard basis. Observe that it is circulant.

ii. Find b ∈ �2(Z4) such that T(z) � b ∗ z.
iii. Find m ∈ �2(Z4) such that T � T(m), that is, such that

(T(z))ˆ(n) � m(n)ẑ(n) for each n.
iv. Find the matrix AT,F representing T in the Fourier basis

F .
v. By direct computation, check that AT,E � W−1

4 AT,FW4,
where W4 is the matrix in equation (2.21).

2.2.8. Let A � [amn]0≤m,n≤N−1 be an N×N circulant matrix. Define

λm �
N−1∑
n�0

a0,ne
2πimn/N

for m � 0, 1, . . . , N − 1. Prove directly, without using
Theorem 2.19, that the eigenvalues of A are λ0, λ1, . . . , λN−1,
which may be repeated according to multiplicity (algebraic
or geometric, which are the same here because A is
diagonalizable).

Hint: For m � 0, 1, . . . , N−1, define vectors Bm ∈ �2(ZN )
by

Bm(n) � e2πimn/N for n � 0, 1, . . . , N − 1.

These are multiples of the Fourier basis elements, hence
by Theorem 2.18, each Bm is an eigenvector of A. Note that
Bm(0) � 1 for each m, and observe that λm as defined above
is the 0th component of ABm.

Remark: Note that if we change summation index in the
expression for λm above by setting k � −n, and use the fact
that A is circulant, we obtain

λm �
N−1∑
k�0

a0,−ke−2πimk/N �
N−1∑
k�0

ak,0e
−2πimk/N � b̂(m),

for b as in Lemma 2.26. Thus the expression above is
consistent with our earlier results. The proof above is a little
more direct than the proof of Theorem 2.19 in the text,
but we preferred to show the connections with circulant
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matrices, convolution operators, and Fourier multiplier
operators.

2.2.9. Define T : �2(ZN )→ �2(ZN ) by

(T(z))(n) � z(n + 1)− z(n).

Find all eigenvalues of T.
2.2.10. LetT(m) : �2(Z4)→ �2(Z4) be the Fourier multiplier operator

defined by T(m)(z) � (mẑ)∨ where m � (1, 0, i,−2).
i. Find b ∈ �2(Z4) such thatT(m) is the convolution operator

Tb (defined by Tb(z) � b ∗ z).
ii. Find the matrix that represents T(m) with respect to the

standard basis.
2.2.11. i. Suppose T1, T2 : �2(ZN ) → �2(ZN ) are translation-

invariant linear transformations. Prove that the compo-
sition T2 ◦ T1 is translation invariant.

ii. Suppose A and B are circulant N × N matrices. Prove
directly (i.e., just using the definition of a circulant
matrix, not using Theorem 2.19) that AB is circulant.
Show that this result and Theorem 2.19 imply part i.
Hint: Write out the (m + 1, n + 1) entry of AB using
the definition of matrix multiplication; compare with the
hint to Exercise 2.2.12 (i).

iii. Suppose b1, b2 ∈ �2(ZN ). Prove that the composition
Tb2 ◦ Tb1 of the convolution operators Tb2 and Tb1 is the
convolution operator Tb with b � b2 ∗ b1. Hint: Use
Exercise 2.2.6.

iv. Suppose m1, m2 ∈ �2(ZN ). Prove that the composition
T(m2) ◦ T(m1) of the Fourier multiplier operators T(m2)

and T(m1) is the Fourier multiplier operator T(m) where
m(n) � m2(n)m1(n) for all n.

v. Suppose T1, T2 : �2(ZN )→ �2(ZN ) are linear transforma-
tions. Prove that if T1 is represented by a matrix A1 with
respect to the Fourier basis F (i.e., [T1(z)]F � A1[z]F ) and
T2 is represented by a matrix A2 with respect to F , then
the compositionT2◦T1 is represented by the matrixA2A1

with respect to F . Deduce part i again.
Remark: By Theorem 2.19, we have just proved the same

thing five times. This may not seem very intelligent, but at
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least we have seen how to interpret the given information
in each of these five formulations. In practice, it is useful to
have these five ways because for any given problem one can
select the formulation that seems simplest. Exercise 2.2.12
is another example of this phenomenon.

2.2.12. Suppose T1, T2 : �2(ZN ) → �2(ZN ) are translation-invariant
linear transformations. In this problem we prove, in four
different ways, that T1 and T2 commute. This means, by
definition, that for any z ∈ �2(ZN ),

T2(T1(z)) � T1(T2(z)).

i. Suppose A and B are circulant N × N matrices. Prove
directly from the definitions of matrix multiplication
and circulant matrices that AB � BA. Deduce (from
Theorem 2.19) that T1 and T2 commute. Hint: For A �
[amn]0≤m,n≤N−1, and B � [bmn]0≤m,n≤N−1, the (m, n) entry
of AB is

N−1∑
k�0

amkbkn,

by the definition of matrix multiplication. But amk �
am+n−k,n and bkn � bm,m+n−k, since A and B are circulant.
Now change summation index and apply Exercise 2.1.8.

ii. Prove that T1 and T2 commute by using Exercises 2.2.5
and 2.2.11 (iii).

iii. Prove that T1 and T2 commute by using Exercise 2.2.11
(iv).

iv. Prove that T1 and T2 commute by using Exercise 2.2.11
(v).

Remark: This exercise and Exercise 1.5.13 explain why all
circulant matrices are diagonalized by the same basis.

2.2.13. Suppose T : �2(ZN ) → �2(ZN ) is a translation-invariant
linear transformation, and z, w ∈ �2(ZN ).
i. Prove that

T(z ∗w) � T(z) ∗w � w ∗ T(z).

ii. Prove that T(z) � T(e0) ∗ z, where e0 is the first element
of the standard basis. Hint: Note that e0 � δ, then apply
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Lemma 2.29 and part i. Note that by equation (2.43),
T(e0) � b, for b as in Lemma 2.26. This gives another
proof of Lemma 2.26.

2.2.14. Let T : �2(ZN ) → �2(ZN ) be a linear transformation.
Prove that T is translation invariant if and only if T(z) �∑N−1

k�0 akRk(z) for some a0, a1, . . . , aN−1 ∈ C. Since Rk is the
same as Rk

1, the kth iterate of R1, this states that T is a
polynomial in R1. Hint: Consider the convolution operator
Tb, where b(k) � ak.

2.2.15. Let A be an N ×N circulant matrix. Prove that A is normal
(Definition 1.108). This can be proved directly, or it follows
from Theorem 1.109, Lemma 2.2, and Theorem 2.18.

2.2.16. Let T : �2(ZN ) → �2(ZN ) be a translation-invariant linear
transformation.
i. Suppose u is an eigenvector ofT with eigenvalue λ. Prove

that for each k ∈ ZN , Rku is also an eigenvector of T with
eigenvalue λ.

ii. By Theorem 2.18, each Fourier basis element Fm is
an eigenvector of T. By part i, so is every RkFm, for
0 ≤ k,m ≤ N − 1. Explain how T can have so many
eigenvectors.

2.2.17. Show that there exist z, w ∈ �2(Z4) such that z 	� 0 and
w 	� 0, but z ∗w � 0, where 0 is the zero vector (0, 0, 0, 0).

2.2.18. Recall the definitions in Exercises 2.1.15 and 2.1.17. For
z ∈ �2(ZN1×ZN2), define z(n1, n2) as for all (n1, n2) ∈ Z×Z by
requiring z to be periodic with period N1 in the first variable
and period N2 in the second variable; that is,

z(n1 + j1N1, n2 + j2N2) � z(n1, n2)

for all n1, n2, j1, j2 ∈ Z. For k1, k2 ∈ Z, define the translation-
invariant linear transformation Rk1,k2 : �2(ZN1 × ZN2) →
�2(ZN1 × ZN2) by

(Rk1,k2z)(n1, n2) � z(n1 − k1, n2 − k2).

We say T : �2(ZN1 × ZN2) → �2(ZN1 × ZN2) is translation
invariant if, for all k1, k2 ∈ Z and all z ∈ �2(ZN1 × ZN2),

T(Rk1,k2z) � Rk1,k2T(z).
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If T : �2(ZN1 ×ZN2)→ �2(ZN1 ×ZN2) is translation invariant,
prove that each Fm1,m2 (defined in Exercise 2.1.17) is an
eigenvector of T. Hint: Follow the proof of Theorem 2.18.

2.2.19. For z, w ∈ �2(ZN1 ×ZN2) (see Exercise 2.2.18), define z ∗w ∈
�2(ZN1 × ZN2) by

z ∗w(m1, m2) �
N1−1∑
n1�0

N2−1∑
n2�0

z(m1 − n1, m2 − n2)w(n1, n2),

for all m1, m2.

i. Prove that

(z ∗w)ˆ(m1, m2) � ẑ(m1, m2)ŵ(m1, m2),

for all m1, m2.

ii. For b ∈ �2(ZN1 × ZN2), define Tb : �2(ZN1 × ZN2) →
�2(ZN1 × ZN2) by

Tb(z) � b ∗ z.
Any linear transformation of this form is called a convo-
lution operator. Prove that Tb is translation invariant.

iii. For m ∈ �2(ZN1 × ZN2), define T(m) : �2(ZN1 × ZN2) →
�2(ZN1 × ZN2) by

T(m)(z) � (mẑ)∨,

where (mẑ)(n1, n2) � m(n1, n2)ẑ(n1, n2) for each (n1, n2).
Any linear transformation of this type is called a Fourier
multiplier operator. Prove that any convolution operator
Tb is a Fourier multiplier operator T(m) with m � b̂.

2.2.20. Suppose T : �2(ZN1 × ZN2) → �2(ZN1 × ZN2) is a linear
transformation. Prove that the following are equivalent:
i. T is translation invariant.
ii. T is a Fourier multiplier operator.

iii. T is a convolution operator.
Hint: The implication i ⇒ ii follows from Exercise

2.2.18, ii⇒ iii follows from Exercise 2.2.19 (iii) and Fourier
inversion, and iii⇒ i was proved in Exercise 2.2.19 (ii).

Remark: This approach avoids matrices, which are more
difficult to write out in the two-dimensional case, although
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they can be represented by writing

(Az)(n1, n2) �
N1−1∑
m1�0

N2−1∑
m2�0

A(n1, n2;m1, m2)z(m1, m2).

We could have followed the sequence of steps in Exercise
2.2.20 for the one-dimensional case presented in the text,
but we preferred to make the matrix description explicit in
that case.

2.3 The Fast Fourier Transform

In section 2.2, we saw the main advantage of the Fourier basis F

(Definition 2.7): all translation-invariant linear transformations are
diagonalized by F . In this section we discuss a second key feature
of F : the DFT can be computed by a fast algorithm, known as the
fast Fourier transform, or FFT. Without the FFT, use of the DFT in
analyzing real speech or video signals would be dramatically limited.

Consider the amount of computation required for a general
change of basis. Suppose z ∈ �2(ZN ). If B is a basis for �2(ZN ), one
can obtain the components [z]B of z with respect to the basis B from
the Euclidean components z � [z]E, by multiplying z by the E to B

change-of-basis matrix, which we call A. That is,

[z]B � A[z]E � Az.

Since the mth component of Az is
∑N−1

n�0 amnz(n), it takes N complex
multiplications to compute each component of Az. Since Az has N

components, it takesN2 multiplications to compute the entire vector
Az � [z]B.

For the Fourier basis, the situation does not appear any different:
we have ẑ � [z]F � WNz, where WN is the matrix in equation
(2.18). So direct computation of ẑ takes N2 complex mutliplications.
To be more precise, we could also count the number of additions.
However, because multiplication is much slower on a computer
than addition, we get a good idea of the speed of computation by
just considering the number of complex multiplications required.
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When we say complex multiplication, we mean the multiplication
of two complex numbers. This would appear to require four real
multiplications, but by a trick (Exercise 2.3.1), it requires only three
real multiplications.

In signal and image processing, the vectors under consideration
can be very large. A television signal, for example, requires
roughly 10,000,000 pixel values per second to preserve all relevant
information (Proakis and Manolakis, 1996, pp. 29–30). Thus one
second of the sampled signal is a vector of length 10,000,000. A
fingerprint image (see the Prologue) is represented digitally by
breaking each square inch of the image into a 500 by 500 grid of
pixels, each of which is assigned a gray-scale value (a darkness).
These values are the components of a large vector. For a video
image, one may have 20–30 vectors of comparable size every second.
Computation of the DFTs of these vectors in real time by direct
means may be beyond the capacity of one’s computational hardware.
So a fast algorithm is needed.

We begin with the simplest version of the FFT, in which the length
N of the vector is assumed to be even. This case demonstrates the
basic idea behind the FFT.

Lemma 2.37 Suppose M ∈ N, and N � 2M. Let z ∈ �2(ZN ). Define
u, v ∈ �2(ZM) by

u(k) � z(2k) for k � 0, 1, . . . ,M − 1,

and

v(k) � z(2k + 1) for k � 0, 1, . . . ,M − 1.

In other words,

u � (z(0), z(2), z(4), . . . , z(N − 4), z(N − 2)
)

and

v � (z(1), z(3), z(5), . . . , z(N − 3), z(N − 1)
)
.

Let ẑ denote the DFT of z defined on N points, that is, ẑ � WNz. Let
û and v̂ denote the DFTs of u and v respectively, defined on M � N/2
points, that is, û � WMu and v̂ � WMv. Then for m � 0, 1, . . . ,M − 1,

ẑ(m) � û(m)+ e−2πim/N v̂(m). (2.48)
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Also, for m � M,M+ 1,M+ 2, . . . , N − 1, let � � m−M. Note that the
corresponding values of � are � � 0, 1, . . . ,M − 1. Then

ẑ(m) � ẑ(�+M) � û(�)− e−2πi�/N v̂(�). (2.49)

Proof
For any m � 0, 1, . . . , N − 1,

ẑ(m) �
N−1∑
n�0

z(n)e−2πimn/N ,

by definition. The sum over n � 0, 1, . . . , N − 1 can be broken up
into the sum over the even values n � 2k, k � 0, 1, . . . ,M − 1, plus
the sum over the odd values n � 2k + 1, for k � 0, 1, . . . M − 1 :

ẑ(m) �
M−1∑
k�0

z(2k)e−2πi2km/N +
M−1∑
k�0

z(2k + 1)e−2πi(2k+1)m/N

�
M−1∑
k�0

u(k)e−2πikm/(N/2) + e−2πim/N
M−1∑
k�0

v(k)e−2πikm/(N/2)

�
M−1∑
k�0

u(k)e−2πikm/M + e−2πim/N
M−1∑
k�0

v(k)e−2πikm/M.

In the case m � 0, 1, . . . ,M − 1, the last expression is û(m) +
e−2πim/N v̂(m), so we have equation (2.48). Now suppose m � M,M+
1, . . . , N−1. By writingm � �+M as in the statement of the theorem
and substituting this for m above, we get

ẑ(m) �
M−1∑
k�0

u(k)e−2πik(�+M)/M + e−2πi(�+M)/N
M−1∑
k�0

v(k)e−2πik(�+M)/M

�
M−1∑
k�0

u(k)e−2πik�/M − e−2πi�/N
M−1∑
k�0

v(k)e−2πik�/M,

since the exponentials e−2πikl/M are periodic with period M, and
e−2πiM/N � e−πi � −1 for N � 2M. This yields equation (2.49).

Example 2.38
Let z � (1, 1, 1, i, 1,−1, 1,−i). Find ẑ.



2. The Discrete Fourier Transform154

✲

✲

✲

✲

✑
✑✸

◗
◗�

✑
✑

✑✑✸◗
◗

◗◗�

✑
✑

◗
◗ ✲

✲

× (−1)× e−2πim/N +

+

v̂(m)
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ẑ(m)

� û(m)− e−2πim/N v̂(m)

� û(m)+ e−2πim/N v̂(m)

FIGURE 10

Solution
Following Lemma 2.37, we obtain

u � (1, 1, 1, 1) and v � (1, i,−1,−i).
Note that u � 4F0 and v � 4F1 (e.g., by Example 2.4 and the fact that
Fm � N−1/2Em). Hence by Exercise 2.3.3 (or by direct computation
using equations (2.19) and (2.21)),

û � (4, 0, 0, 0) and v̂ � (0, 4, 0, 0).

Hence by equation (2.48),

ẑ(0) � û(0)+ 1v̂(0) � 4+ 0 � 4,

ẑ(1) � û(1)+ e−2πi1/8v̂(1) � 0+ 4e−πi/4 � 2
√

2− 2
√

2i,

ẑ(2) � û(2)+ e−2πi2/8v̂(2) � 0+ 0 � 0,

and

ẑ(3) � û(3)+ e−2πi3/8v̂(3) � 0+ 0 � 0.

Then by equation (2.49),

ẑ(4) � û(0)− 1v̂(0) � 4− 0 � 4,

ẑ(5) � û(1)− e−2πi1/8v̂(1) � 0− 4e−πi/4 � −2
√

2+ 2
√

2i,

ẑ(6) � û(2)− e−2πi2/8v̂(2) � 0− 0 � 0,

and
ẑ(7) � û(3)− e−2πi3/8v̂(3) � 0− 0 � 0.

Hence
ẑ � (4, 2

√
2− 2

√
2i, 0, 0, 4,−2

√
2+ 2

√
2i, 0, 0).
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The basic step of this procedure starts with the values û(m) and
v̂(m) and gives ẑ(m) and ẑ(m+M) according to the diagram in Figure
10, called a butterfly. This computation is so basic that computer
hardware is sometimes evaluated by how many butterflies can be
computed per second.

Notice that the same values are used in equations (2.48) and
(2.49), namely û(�) and v̂(�) for 0 ≤ � ≤ M − 1. To apply
equations (2.48) and (2.49), we first compute û and v̂. Because each
of these is a vector of length M � N/2, each can be computed
directly with M2 complex multiplications. We then compute the
products e−2πim/N v̂(m) for m � 0, 1, . . . ,M − 1. This requires an
additional M multiplications. The rest is done using only additions
and subtractions of these quantities, which we do not count. So the
total number of complex multiplications required to compute ẑ by
equations (2.48) and (2.49) is at most

2M2 +M � 2
(
N

2

)2

+ N

2
� 1

2

(
N2 + N

)
.

For N large, this is essentially N2/2, whereas the number of complex
multiplications required to compute ẑ directly is N2. So Lemma 2.37
already cuts our computation time nearly in half.

If N is divisible by 4 instead of just 2, we can go further. Because
u and v have even order, we can then apply the same method to
reduce the time required to compute them. If N is divisible by 8,
we can carry this one step further, and so on. A more general way
to describe this is to define #N , for any positive integer N , to be the
least number of complex multiplications required to compute the
DFT of a vector of length N . If N � 2M, then equations (2.48) and
(2.49) reduce the computation of ẑ to the computation of two DFTs
of size M, plus M additional complex multiplications. Hence

#N ≤ 2#M +M. (2.50)

The most favorable case is when N is a power of 2.

Lemma 2.39 Suppose N � 2n for some n ∈ N. Then

#N ≤ 1
2
N log2 N.
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Proof
The proof is by induction on n. When n � 1, a vector of length 21

is of the form z � (a, b). Then from the definition (see equations
(2.19) and (2.20)),

ẑ � (a + b, a − b).

Note that this computation does not require any complex multipli-
cations, so #2 � 0 < 1 � (2 log2 2)/2. So the result holds in this case.
By induction, suppose it holds for n � k − 1. Then for n � k, we
have by equation (2.50) and the induction hypothesis that

#2k ≤ 2#2k−1 + 2k−1 ≤ 2
1
2

2k−1(k − 1)+ 2k−1

� k2k−1 � 1
2
k2k � 1

2
N log2 N.

This completes the induction step, and hence establishes the
result.

As an example, for a vector of size 262,144 � 218, the FFT reduces
the number of complex multiplications needed to compute the DFT
from 6.87 × 1010 to 2,359,296, making the computation more than
29,000 times faster! Thus if it takes 8 hours to do this DFT directly,
it would take about 1 second to do it via the FFT. This ratio becomes
more extreme as N increases, to the point that some computations
that can be done by the FFT in a reasonable length of time could
not be done directly in an entire lifetime. This radical difference in
speed has been essential for modern-day digital signal processing.

What if N is not even? If N is prime, the method of the FFT does
not apply. However, if N is composite, say N � pq, a generalization
of Lemma 2.37 can be applied.

Lemma 2.40 Suppose p, q ∈ N and N � pq. Let z ∈ �2(ZN ). Define
w0, w1, . . . , wp−1 ∈ �2(Zq) by

w�(k) � z(kp+ �) for k � 0, 1, . . . , q − 1.

For b � 0, 1, . . . , q − 1, define vb ∈ �2(Zp) by

vb(�) � e−2πib�/Nŵ�(b) for � � 0, 1, . . . , p− 1.
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Then for a � 0, 1, . . . , p− 1 and b � 0, 1, . . . , q − 1,

ẑ(aq + b) � v̂b(a). (2.51)

Note that by the division algorithm, every m � 0, 1, . . . , N − 1 is of the
form aq + b for some a ∈ {0, 1, . . . , p − 1} and b ∈ {0, 1, . . . , q − 1}, so
equation (2.51) gives the full DFT of z.

Proof
We can write each n � 0, 1, . . . , N − 1 uniquely in the form kp + �

for some k ∈ {0, 1, . . . , q − 1} and � ∈ {0, 1, . . . , p− 1}. Hence

ẑ(aq+b) �
N−1∑
n�0

z(n)e−2πi(aq+b)n/N �
p−1∑
��0

q−1∑
k�0

z(kp+�)e−2πi(aq+b)(kp+�)/(pq).

Note that

e−2πi(aq+b)(kp+�)/(pq) � e−2πiake−2πia�/pe−2πibk/qe−2πib�/(pq).

Since e−2πiak � 1 and pq � N , using the definition of w�(k) we obtain

ẑ(aq + b) �
p−1∑
��0

e−2πia�/pe−2πib�/N
q−1∑
k�0

w�(k)e−2πibk/q

�
p−1∑
��0

e−2πia�/pe−2πib�/Nŵ�(b) �
p−1∑
��0

e−2πia�/pvb(�) � v̂b(a).

This proof shows the basic principle behind the FFT. In
computing ẑ(aq + b), the same quantities vb(�), 0 ≤ � ≤ p− 1, arise
for each value of a. The FFT algorithm recognizes this and computes
these values only once. Direct computation of ẑ involves implicitly
recomputing these intermediate values each time they arise.

Consider the number of multiplications required for the
algorithm in Lemma 2.40. We first compute the vectors ŵ�, for
� � 0, 1, . . . , p−1. Each of these is a vector of length q, so computing
each ŵ� requires #q complex multiplications. So this step requires a
total of p#q complex multiplications. The next step is to multiply each
ŵ�(b) by e−2πib�/N to obtain the vectors vb(�). This requires a total of
pq complex multiplications, one for each of the q values of b and p

values of �. Finally we compute the vectors v̂b for b � 0, 1, . . . , q− 1.
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Each vb is a vector of length p, so each of the q vectors v̂b requires
#p complex multiplications, for a total of q#p muliplications. Adding
up, we have an estimate for the number of multiplications required
to compute a DFT of size N � pq, namely

#pq ≤ p#q + q#p + pq. (2.52)

This estimate can be used inductively to make various estimates on
the time required to compute the FFT (see Exercises 2.3.7 and 2.3.8).
The advantage of using the FFT is greater the more composite N is.
In many applications we can segment our data stream into pieces
of any size we choose. In this case we usually take N to be a power
of 2 so we can apply Lemma 2.39. If we cannot choose the length of
the vector, sometimes it is harmless to pad it with some extra zeros
at the end until it has length that is highly composite.

Although equations (2.50) and (2.52) can be used to estimate the
total number of complex multiplications needed to compute ẑ, they
don’t show how to set up the full computation. Lemmas 2.37 and 2.40
show how to do each step but not how to organize them iteratively.
We discuss one more FFT algorithm to show how the computation
can be arranged. For simplicity, we restrict ourselves here to the
case where N is a power of 2, say N � 2n. Then we can expand any
m ∈ {0, 1, . . . , N − 1} in base 2 in the form

m � m0 + 2m1 + 22m2 + · · · + 2n−1mn−1,

where m0, m1, . . . , mn−1 ∈ {0, 1}. For z ∈ �2(ZN ), denote

z(m) � z(mn−1, mn−2, . . . , m1, m0).

For any k � k0+2k1+22k2+· · ·+2n−1kn−1 with k0, k1, . . . , kn−1 ∈ {0, 1},

ẑ(k) �
N−1∑
m�0

z(m)e−2πikm/N

�
1∑

m0�0

1∑
m1�0

· · ·
1∑

mn−1�0

z(mn−1, mn−2, . . . , m1, m0)

×exp
(−2πi(k0 + 2k1 + · · · + 2n−1kn−1)(m0 + 2m1 + · · · + 2n−1mn−1)

2n

)
,
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where exp(t) denotes et. Now

exp
(−2πi(k0 + 2k1 + · · · + 2n−1kn−1)(m0 + 2m1 + · · · + 2n−1mn−1)

2n

)

� exp
(−2πi(k0 + 2k1 + · · · + 2n−1kn−1)2n−1mn−1

2n

)
· · ·

× exp
(−2πi(k0 + 2k1 + · · · + 2n−1kn−1)2m1

2n

)

× exp
(−2πi(k0 + 2k1 + · · · + 2n−1kn−1)m0

2n

)
.

In each exponent we can delete all products that give an integer
multiple of 2πi2n in the numerator because after division by 2n, the
argument is an integer multiple of 2π. Thus

exp
(−2πi(k0 + 2k1 + · · · + 2n−1kn−1)(m0 + 2m1 + · · · + 2n−1mn−1)

2n

)

� exp
(−2πik02n−1mn−1

2n

)
exp

(−2πi(k0 + 2k1)2n−2mn−2

2n

)

× exp
(−2πi(k0 + 2k1 + 22k2)2n−3mn−3

2n

)
· · ·

× exp
(−2πi(k0 + 2k1 + 22k2 + · · · + 2n−1kn−1)m0

2n

)
.

Substituting this into the preceding equation gives

ẑ(k) �
1∑

m0�0

1∑
m1�0

· · ·
1∑

mn−1�0

z(mn−1, . . . , m1, m0) exp
(−2πik02n−1mn−1

2n

)

× exp
(−2πi(k0 + 2k1)2n−2mn−2

2n

)
· · · (2.53)

× exp
(−2πi(k0 + 2k1 + · · · + 2n−1kn−1)m0

2n

)
.

Notice that the inside sum depends on the outside summation
variablesm0,m1, . . . , mn−2 and on k0 but not on k1, . . . , kn−1. So define

y1(k0, mn−2, mn−3, . . . , m0)
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�
1∑

mn−1�0

z(mn−1, mn−2, . . . , m1, m0) exp(−2πik02n−1mn−1/2n)

� z(0, mn−2, . . . , m1, m0) · 1
+z(1, mn−2, . . . , m1, m0) exp

(−2πik02n−1

2n

)
.

Computing y1(k0, mn−2, mn−3, . . . , m0) requires only one complex
multiplication for each of the 2n choices of k0, mn−2, mn−3, . . . ,
m0 ∈ {0, 1}, for a total of 2n complex multiplications to compute
all 2n possible values of y1. At the next step, define

y2(k0, k1, mn−3, . . . , m0)

�
1∑

mn−2�0

y1(k0, mn−2, mn−3, . . . , m0)

× exp
(−2πi(k0 + 2k1)2n−2mn−2

2n

)
.

It takes just one complex multiplication to compute each one of
these, hence 2n total to compute all possible values of y2. We continue
in this way, each time replacing the highest remaining m index
by the next k index. Thus the scheme is to make the sequence of
transformations

z(mn−1, mn−2, . . . , m1, m0)→ y1(k0, mn−2, mn−3, . . . , m0),

y1(k0, mn−2, mn−3, . . . , m0)→ y2(k0, k1, mn−3, . . . , m0),
...

yn−1(k0, k1, k2, . . . , kn−2, m0)→ yn(k0, k1, k2, . . . , kn−2, kn−1).

By equation (2.53), the final vector yn(k0, k1, k2, . . . , kn−2, kn−1) is
ẑ(k). At each step we compute the next vector yj at all the 2n

possible choices of its variables. So each step requires at most 2n

complex multiplications, and there are a total of n steps, for at
most n2n � N log2 N complex multiplications. (By Lemma 2.39, this
must be an overcounting by a factor of 2. Exercise 2.3.9 explains
the discrepancy.) Note that once the vector yj has been computed,
yj−1 is no longer needed, and hence can be discarded. Thus the
computation can be done “in place,” that is, at each stage the previous
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data can be replaced by the new data. This reduces the amount of
memory needed to run the computation.

There are many variations on the FFT algorithm, sometimes
leading to slight advantages over the basic one given here. But
the main point is that the DFT of a vector of length N � 2n

can be computed with at most n2n−1 � (N/2) log2 N complex
multiplications as opposed to N2 � 22n if done directly.

What about the inverse DFT, the IDFT? By equation (2.30),

w̌(n) � 1
N
ŵ(N − n),

so the FFT algorithm can be used to compute the IDFT quickly also,
in at most (N/2) log2 N steps if N is a power of 2. (We don’t count
division by N because integer division is relatively fast.)

Given that the DFT and IDFT can be computed rapidly, it follows
that we can compute convolutions quickly also. Namely, we can
write

z ∗w � (ẑŵ)ˇ

(by applying the inverse transform to the result of Lemma 2.30).
If z, w ∈ �2(ZN ), for N a power of 2, it takes at most N log2 N

multiplications to compute ẑ and ŵ, N multiplications to compute
ẑŵ (the componentwise product of these two vectors), and at most
(N/2) log2 N multiplications to take the IDFT of ẑŵ. Thus overall it
takes no more than N + (3N/2) log2 N multiplications to compute
z ∗w.

In section 2.2, we saw that any translation-invariant linear
transformation on �2(ZN ) can be written as a convolution operator.
By Theorem 2.19, this includes the operation of multiplication
by a circulant matrix. Thus the product of an N × N circulant
matrix times a vector of length N can be computed using at most
N + (3N/2) log2 N multiplications, instead of the usual N2. In other
words, when T is a translation-invariant linear transformation, the
DFT not only diagonalizes T, it gives (via the FFT) a fast, practical
way to compute T.
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Exercises

2.3.1. Observe that

(a+ ib)(c+ id) � (a−b)d+ (c−d)a+ [(a − b)d + (c+ d)b
]
i.

This means that to compute the product of two complex
numbers, we need to compute only three real multiplica-
tions, namely (a − b)d, (c− d)a, and (c+ d)b.

2.3.2. Let u � (1, 3), v � (0, 4), and z � (1, 0, 3, 4).
i. Compute û and v̂.
ii. Use part i and equations (2.48) and (2.49) to compute ẑ.

iii. Compute ẑ directly and compare the answer with your
answer to part ii.

iv. Let w � (0, 1, 4, 3). Use equations (2.48) and (2.49) to
compute ŵ.

2.3.3. Let {e0, e1, . . . , eN−1} be the Euclidean basis for �2(ZN ), and
let {F0, F1, . . . , FN−1} be the Fourier basis.
i. Show that êm(k) � e−2πimk/N for all k. Notice that êm is

very nearly (up to a reflection and a normalization) an
element of the Fourier basis.

ii. Show that F̂m � em.
2.3.4. Let w � (1, 0, 1, 0, 1, 0, 1, 0). Compute ŵ. Hint: consider

z � (1, 1, 1, 1).
2.3.5. Let u � (1, i,−1,−i), v � (1,−1, 1,−1), and

z � (1, 1, i,−1,−1, 1,−i,−1).
i. Compute û and v̂. (Suggestion: Use Exercise 2.3.3.)
ii. Compute ẑ.

2.3.6. Suppose u � (a, b, c, d), v � (α, β, γ, δ), and
z � (a, α, b, β, c, γ, d, δ). If

û � (2, i,−1, 0) and v̂ � (3,−2, 0, 4i),

find ẑ.
2.3.7. Suppose p is a prime number and N � pn for some positive

integer n. Prove that

#pn ≤ npn+2 � p2N logp N.

Hint: Use induction and apply equation (2.52) with q � pn

when going from n to n+ 1.
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2.3.8. Suppose N � p
m1
1 p

m2
2 p

m3
3 · · · pmn

n , for some positive integers
p1, p2, . . . , pn andm1, . . . , mn. Prove that there exist constants
C(p1, p2, . . . , pm) depending on p1, p2, . . . , pn but not on
m1, m2, . . . , mn, such that

#N ≤ C(p1, p2, . . . , pm)N log2 N.

Hint: Recall that logb(x) � loga(x)/ loga(b); use Exercise
2.3.7, equation (2.52), and induction on n.

2.3.9. Show that the number of complex multiplications required
to compute equation (2.53) is at most (N/2) log2 N . Hint: At
the general step going from yj to yj+1, we must compute

yj+1(k0, . . . , kj, mn−j−2, . . . , m0)

�
1∑

mn−j−1�0

yj(k0, . . . , kj−1, mn−j−1, . . . , m0)

× exp
(−2πi(k0 + · · · + 2j−1kj−1 + 2jkj)2n−j−1mn−j−1

2n

)
.

This seems to require one multiplication (only one because
there is no multiplication when mn−j−1 � 0) for each
possible value of k0, . . . , kj and mn−j−2, . . . , m0. Separate out
the term e−2πi2jkj2n−j−1mn−j−1/2n and show that it is always either
+1 or −1. Thus the two choices of kj are done via the same
multiplication.

2.3.10. (Operation count for the two-dimensional DFT) Let z ∈
�2(ZN1 × ZN2) (defined in Exercise 2.1.15). Direct compu-
tation of the two-dimensional DFT ẑ(m1, m2) (defined in
Exercise 2.1.17) would at first appear to require N1N2 com-
plex multiplications for each of the N1N2 values of (m1, m2),
for a total ofN2

1N
2
2 complex multiplications. However, define

y(n1, m2) �
N2−1∑
n2�0

z(n1, n2)e−2πim2n2/N2 .

Then by the definition,

ẑ(m1, m2) �
N1−1∑
n1�0

y(n1, m2)e−2πim1n1/N1 .
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i. Show that the direct computation of all values of
y(n1, m2) takes N1N

2
2 complex multiplications, after

which direct computation of all values of ẑ(m1, m2)
requires N2

1N2 multiplications. So the full computation
can be done using N1N2(N1 + N2) multiplications.
Remark: The reason for this advantage is that the

computation of the two-dimensional DFT consists, by its
definition, of computing one transform of size N2 (the
inner sum) followed by a second sum of size N1. Any
computation that can be broken down into a sequence of
smaller summations in this way is called parallelizable. The
principle behind the FFT is that the DFT is parallelizable,
as shown by equation (2.53).
ii. Suppose N1 and N2 are powers of 2. Using the FFT at

each of the two stages outlined above, instead of direct
computation, show that ẑ can be computed using at most
1
2N1N2 log2(N1N2) complex multiplications.



3
C H A P T E R

...........................................

Wavelets on ZN

3.1 Construction of Wavelets on ZN:
The First Stage

In this chapter we continue to work with discrete signals z ∈ �2(ZN ).
In chapter 2 we noted the two key advantages of the Fourier basis F :
(1) translation-invariant linear transformations are diagonalized by
F , and (2) the coordinates in the Fourier basis can be computed
quickly using the FFT. However, for many purposes in signal
analysis and other fields, the Fourier basis has serious limitations.
Many of these come from the fact that the Fourier basis elements
are not localized in space, in the following sense.

We say that a vector z ∈ �2(ZN ) is localized in space near n0 if
most of the components z(n) of z are 0 or at least relatively small,
except for a few values of n close to n0. A Fourier basis element Fm
is not localized in space because its components Fm(n) � 1

N
e2πimn/N

have the same magnitude (namely 1/N) for every n ∈ ZN . This is the
opposite of being localized: the Fourier basis vectors are as evenly
dispersed as possible.

Suppose B � {v0, v1, . . . , vN−1} is a basis for �2(ZN ) such that all
the basis elements of B are localized in space. For a vector z, we can

165
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write

z �
N−1∑
n�0

anvn, (3.1)

for some scalars a0, . . . , aN−1. Suppose that we wish to focus on the
portion of z near some particular point n0. Terms involving basis
vectors that are 0 or negligibly small near n0 can be deleted from
relation (3.1) without changing the behavior near n0 significantly.
Thus we may be able to replace a full sum over N terms by a much
smaller sum when considering only the portion of z near n0.

More generally, a spatially localized basis is useful because it
provides a local analysis of a signal: if a certain coefficient in the
expansion of z is large, we can identify the location with which this
large coefficient is associated. We could then, for example, focus on
this location and analyze it in more detail. One example for which
this is useful is medical image processing, for example to look closely
at a potential tumor. Another is radar or sonar imaging, for example
in oil prospecting to identify the boundary of an oil pocket, or in
archaeology to locate artifacts.

Another example comes from video image analysis. Currently,
the use of video telephones is not widespread because a high-quality
sequence of video images cannot be transmitted along a phone
line in real time, because such a sequence of images exceeds the
phone line’s capacity. If video images can be represented with a
smaller data set without serious degradation of the image, video
telephones may become practical. There is an entire field called
data compression devoted to this and similar problems.

Having a localized basis would help compress video images for
the following reason. For television video images, it is likely that one
frame differs only slightly from the previous frame: for example, the
background may be the same but perhaps a person’s hand is moving.
Instead of transmitting the entire new frame, only the difference
between one frame and the next has to be transmitted. For a localized
basis, the coefficients of the basis vectors that were concentrated
far away from the moving hand would be almost unaffected by
that movement. These coefficients would not change appreciably
from one frame to the next, and so would not require updating. The
only updating required would be for a small number of coefficients
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of basis vectors localized near the hand. The updating could be
done with relatively few data bits, thus achieving a high rate of
compression.

This cannot be done if we are using the Fourier basis to represent
our data. Since

ẑ(m) �
N−1∑
n�0

z(n)e−2πimn/N ,

and e−2πimn/N has magnitude 1 at every n, a change in z(n) for a
single value of n can affect all values of ẑ(m) significantly. Similarly,
the spatially localized hand movement can affect nearly all the DFT
values substantially. Updating the image in the Fourier basis may
require a large number of data bits, even though the image changed
only locally. (For the example of a video image, we should consider
the two-dimensional DFT from Exercise 2.1.17, but the principles
are the same.)

We have one example of a localized basis, namely the standard,
or Euclidean, basis. It is as localized as possible; each basis vector
has only one nonzero component. However, we would also like
to obtain the advantages of the Fourier basis discussed in chapter
2, in particular the fast computation of translation-invariant linear
transformations. For this we would like our basis to be frequency
localized. By this we mean that we would like the DFTs of our basis
vectors to be negligibly small except near one particular region. This
means that the basis vectors should consist of a very small group of
frequencies. Note that a standard basis vector em is not frequency
localized: by Exercise 2.3.3 (i), |êm(k)| � 1 for all k. The Fourier basis
vectors are perfectly localized in frequency: by Exercise 2.3.3 (ii),
F̂m(n) is nonzero only at one n, namely n � m. Because the Fourier
basis, which is perfectly frequency localized, exactly diagonalizes
translation-invariant linear transformations, we expect that a basis
that is somewhat frequency localized will nearly diagonalize these
transformations, in some sense.

Working with a frequency localized basis also allows us to mimic
common filtering techniques. For example, it may be that the high-
frequency components of the signal have very small coefficients,
so that these values can be deleted without altering the signal in a
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serious way. Or it may be that these high-frequency components
are not humanly perceptible, so deleting them does not affect our
perception of the image. (This is the case, for example, for audio
signals.) It may even be that some high-frequencies come from noise
added to the signal, so that the signal becomes more clear when
these terms are removed. With a frequency localized expansion, we
know which terms in our expansion to delete to remove the high-
frequency components of the signal. If the result is that the signal
is satisfactorily represented by a reduced number of data bits, then
we have obtained compression.

Thus, our ultimate goal is to obtain a basis whose elements are
both spatially and frequency localized. Then a vector’s expansion
coefficients in this basis will provide both spatial and frequency in-
formation. Hence, we would obtain a simultaneous space/frequency
analysis of this vector. Wavelets will provide such a basis.

When we talk about an audio signal, we regard the original
variable as time (i.e., z(n) is the amplitude of the signal at time n),
whereas if we are talking about a two-dimensional video image, we
regard the original variable as position (i.e., z(n1, n2) is the darkness
of the image at position (n1, n2); see Exercises 2.1.15–2.1.18). In
either case the DFT variable is considered the frequency (e.g., in one
dimension, ẑ(m) is the coefficient of the frequency component Fm in
the sum making up z). Thus we can talk of time/frequency analysis
or space/frequency analysis, depending on the physical context; the
mathematical meaning is the same.

We would also like the change of basis from the standard basis
E to the new basis B to be computable by a fast algorithm, because
otherwise B will be useless for audio and video signals of a realistic
size. We focus on the issue of rapid computation for the moment. We
can compute the DFT quickly via the FFT but the Fourier basis is
not spatially localized. However, we noted in section 2.3 that we can
use the FFT to compute convolutions quickly also, via the formula

z ∗w � (ẑŵ)ˇ.

Can we use this to compute a change of basis quickly? To answer
this, we first note the connection between convolution and inner
products.
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Definition 3.1 For any w ∈ �2(ZN ), define w̃ ∈ �2(ZN ) by

w̃(n) � w(−n) � w(N − n) for all n. (3.2)

We call w̃ the conjugate reflection of w.

(This will be standard notation for us: from now on, w̃, z̃, etc.,
are assumed without comment to be defined as in equation (3.2).)
By Exercise 2.1.13,

(w̃)ˆ(n) � ŵ(n) (3.3)

for all n. Recall the definition of the circular translate Rkz of a vector
z: (Rkz)(n) � z(n − k) (Definition 2.12).

Lemma 3.2 Suppose z, w ∈ �2(ZN ). For any k ∈ Z,

z ∗ w̃(k) � 〈z, Rkw〉 (3.4)

and

z ∗w(k) � 〈z, Rkw̃〉. (3.5)

Proof
By definition,

〈z, Rkw〉 �
N−1∑
n�0

z(n)Rkw(n) �
N−1∑
n�0

z(n)w(n − k)

�
N−1∑
n�0

z(n)w̃(k − n) � w̃ ∗ z(k) � z ∗ w̃(k),

by the commutativity of convolution (Exercise 2.2.5). This proves
equation (3.4). Then equation (3.5) follows by replacing w with w̃ in
equation (3.4), and noting that ˜̃w � w.

Can Lemma 3.2 be used to obtain a basis that can be computed
quickly? Suppose w ∈ �2(ZN ) is such that B � {Rkw}N−1

k�0 is an
orthonormal basis for �2(ZN ). Then the coefficients of the expansion
of a vector z in terms of B are the inner products 〈z, Rkw〉 (Lemma
1.101 i). By equation (3.4), these coefficients are just the components
of z ∗ w̃, that is,

[z]B � z ∗ w̃.
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Using the FFT, this convolution can be computed rapidly. So for an
orthonormal basis B generated by translates of a single vector w,
the E to B change of basis can be computed quickly (where E is the
Euclidean basis).

The standard basis E is the only obvious example of an
orthonormal basis of the form {Rkw}N−1

k�0 . Remarkably, there is a
simple condition, in terms of the DFT of w, that characterizes all
such bases.

Lemma 3.3 Letw ∈ �2(ZN ). Then {Rkw}N−1
k�0 is an orthonormal basis

for �2(ZN ) if and only if |ŵ(n)| � 1 for all n ∈ ZN .

Proof
Recall the Dirac function δ ∈ �2(ZN ) defined by δ(n) � 1 if n � 0
and δ(n) � 0 if n � 1, 2, . . . , N − 1. By Exercise 2.3.3 and the fact
that δ � e0 (or a simple computation), δ̂(n) � 1 for all n. By Exercise
3.1.1(ii), {Rkw}N−1

k�0 is an orthonormal basis for �2(ZN ) if and only if

〈w,Rkw〉 �
{

1 if k � 0
0 if k � 1, 2, . . . , N − 1.

(3.6)

By equation (3.4), 〈w,Rkw〉 � w∗w̃(k), so equation (3.6) is equivalent
to

w ∗ w̃ � δ.

By Fourier inversion, Lemma 2.30, and equation (3.3), this is the
same as

1 � δ̂(n) � (w ∗ w̃)ˆ(n) � ŵ(n)(w̃)ˆ(n) � ŵ(n)ŵ(n) � |ŵ(n)|2,
for all n.

Although it is gratifying to get such a simple condition for B to be
orthonormal, Lemma 3.3 is a disappointment from our point of view.
It says that we cannot obtain a frequency localized orthonormal basis
of the form {Rkw}N−1

k�0 , since ŵ(n) will have magnitude 1 for all n. By
Lemma 2.13, |(Rkw)ˆ(n)| � |ŵ(n)|, so every element Rkw has the
same property. Thus the situation for any orthonormal basis of this
form is similar to the case of the Euclidean basis.

This observation is not as devastating to our plans as it appears
because it turns out that a slight modification of the original idea



3.1. Construction of Wavelets on ZN : The First Stage 171

leads to the key results. Instead of looking for one vectorwwhose full
set of translates form an orthonormal basis, we look for two vectors
u and v such that the set of their translates by even integers forms
an orthonormal basis. For this result, we must restrict ourselves to
even values of N .

Definition 3.4 Suppose N is an even integer, say N � 2M for some
M ∈ N. An orthonormal basis for �2(ZN ) of the form

{R2ku}M−1
k�0 ∪ {R2kv}M−1

k�0

for some u, v ∈ �2(ZN ), is called a first-stage wavelet basis for �2(ZN ).
We call u and v the generators of the first-stage wavelet basis. We
sometimes also call u the father wavelet and v the mother wavelet.

Our goal is to determine when a pair u, v generates a first-stage
wavelet basis. In Theorem 3.8, we characterize such pairs in terms of
conditions on û and v̂. First we build up some necessary background.

Lemma 3.5 Suppose M ∈ N, N � 2M, and z ∈ �2(ZN ). Define
z∗ ∈ �2(ZN ) by

z∗(n) � (−1)nz(n) for all n. (3.7)

Then

(z∗)ˆ(n) � ẑ(n +M) for all n. (3.8)

Proof
By definition,

(z∗)ˆ(n) �
N−1∑
k�0

z∗(k)e−2πikn/N �
N−1∑
k�0

(−1)kz(k)e−2πikn/N

�
N−1∑
k�0

z(k)e−iπke−2πikn/N �
N−1∑
k�0

z(k)e−2πik(n+M)/N � ẑ(n+M).

Observe that for any z ∈ �2(ZN ), with N even,

(z + z∗)(n) � z(n)(1+ (−1)n) �
{

2 z(n) if n is even
0 if n is odd.

(3.9)

From equation (3.9), we see the utility of z∗: it provides a means
to restrict to even values of n. This is exhibited in the proof of Lemma
3.6.
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Lemma 3.6 Suppose M ∈ N, N � 2M, and w ∈ �2(ZN ). Then
{R2kw}M−1

k�0 is an orthonormal set with M elements if and only if

|ŵ(n)|2 + |ŵ(n +M)|2 � 2 for n � 0, 1, . . . ,M − 1. (3.10)

Proof
By equation (3.4) and Exercise 3.1.1 (iii), {R2kw}M−1

k�0 is an orthonor-
mal set with M elements if and only if

w ∗ w̃(2k) � 〈w,R2kw〉 �
{

1 if k � 0
0 if k � 1, 2, . . . ,M − 1.

(3.11)

By equation (3.9),

(w ∗ w̃+ (w ∗ w̃)∗)(n) �
{

2w ∗ w̃(n) if n is even
0 if n is odd.

(3.12)

Hence, for even values of n, say n � 2k, equation (3.11) holds if and
only if

(w ∗ w̃+ (w ∗ w̃)∗)(2k) � 2w ∗ w̃(2k) �
{

2 if k � 0
0 if k � 1, 2, . . . ,M − 1.

For odd values of n, (w ∗ w̃ + (w ∗ w̃)∗)(n) is automatically 0, by
equation (3.12). Hence equation (3.11) holds if and only if

w ∗ w̃+ (w ∗ w̃)∗ � 2δ.

Since δ̂(n) � 1 for all n, Fourier inversion shows that equation (3.11)
holds if and only if

(w ∗ w̃)ˆ(n)+ ((w ∗ w̃)∗)ˆ(n) � 2 for n � 0, 1, . . . , N − 1. (3.13)

By Lemma 2.30 and equation (3.3),

(w ∗ w̃)ˆ(n) � ŵ(n)(w̃)ˆ(n) � ŵ(n)ŵ(n) � |ŵ(n)|2.
Using this equation and equation (3.8),

((w ∗ w̃)∗)ˆ(n) � (w ∗ w̃)ˆ(n +M) � |ŵ(n+M)|2.
By substituting these last two identities, we see that the left side of
equation (3.13) is |ŵ(n)|2 + |ŵ(n+M)|2. Note that this expression is
periodic with period M:

|ŵ(n+M)|2 + |ŵ(n+M +M)|2 � |ŵ(n +M)|2 + |ŵ(n)|2,
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because ŵ has period N � 2M. Hence |ŵ(n)|2 + |ŵ(n + M)|2 is
2 for n � 0, 1, . . . ,M − 1 if and only if it is always 2. Therefore
equation (3.10) is equivalent to equation (3.13), which we noted is
equivalent to equation (3.11), and hence to the orthonormality of
{R2kw}M−1

k�0 .

The phrase “with M elements” in the statement of Lemma 3.6
is included to guarantee that the elements R2kw are distinct for
k � 0, 1, . . . ,M − 1. For example, if w � N−1/2(1, 1, , , , 1), then
technically the set {R2kw}M−1

k�0 is orthonormal because it has only one
element. We remark that Lemma 3.6 has an alternate proof based
on Parseval’s formula and Fourier inversion (Exercise 3.1.1 (v)).

Definition 3.7 Suppose M ∈ N, N � 2M, and u, v ∈ �2(ZN ). For
n ∈ Z, define A(n), the system matrix of u and v, by

A(n) � 1√
2

[
û(n) v̂(n)
û(n +M) v̂(n +M)

]
. (3.14)

Now we can characterize orthonormal bases generated by the
even integer translates of two vectors.

Theorem 3.8 SupposeM ∈ N and N � 2M. Let u, v ∈ �2(ZN ). Then

B � {R2kv}M−1
k�0 ∪ {R2ku}M−1

k�0

� {v, R2v, R4v, . . . , RN−2v, u, R2u, R4u, . . . , RN−2u}
is an orthonormal basis for �2(ZN ) if and only if the system matrix A(n)
of u and v is unitary for each n � 0, 1, . . . ,M − 1. Equivalently, B is a
first-stage wavelet basis for �2(ZN ) if and only if

|û(n)|2 + |û(n +M)|2 � 2, (3.15)

|v̂(n)|2 + |v̂(n +M)|2 � 2, (3.16)

and

û(n)v̂(n)+ û(n +M)v̂(n +M) � 0, (3.17)

for all n � 0, 1, . . . M − 1.

Proof
Recall (Lemma 1.105) that a 2 × 2 matrix is unitary if and only if
its columns form an orthonormal basis for C2. Applying Lemma 3.6,
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{R2ku}M−1
k�0 is orthonormal if and only if equation (3.15) holds, that is,

the first column of A(n) has length 1 for every n � 0, 1, . . . M − 1.
Similarly, {R2kv}M−1

k�0 is orthonormal if and only if equation (3.16)
holds, which states that the second column of A(n) has length 1 for
n � 0, 1, . . . ,M − 1. Next, we claim that

〈R2ku, R2jv〉 � 0 for all j, k � 0, 1, . . . ,M − 1 (3.18)

if and only if equation (3.17) holds. Note that equation (3.17) is the
statement that the columns of A(n) are orthogonal. Assuming this
claim momentarily, it follows that B is an orthonormal set, hence
an orthonormal basis for �2(ZN ) (because it has N elements), if and
only if A(n) is unitary for each n � 0, 1, . . . ,M − 1.

To prove the equivalence of equations (3.17) and (3.18), first note
that equation (3.18) is equivalent to

u ∗ ṽ(2k) � 〈u, R2kv〉 � 0 for all k � 0, 1, . . . ,M − 1,

by equation (3.4) and Exercise 3.1.1 (iv). By equation (3.9) with
z � u ∗ ṽ, this is equivalent to

u ∗ ṽ+ (u ∗ ṽ)∗ � 0,

because the values at odd indices are automatically 0. By DFT
inversion, this is equivalent to

(u ∗ ṽ)ˆ + (u ∗ ṽ)∗)ˆ � 0.

By Lemma 2.30 and relation (3.3),

(u ∗ ṽ)ˆ(n) � û(n)v̂(n).

Hence by equation (3.8),

((u ∗ ṽ)∗)ˆ(n) � û(n +M)v̂(n +M).

Note that the left side of equation (3.17) is periodic with period M,
so it is 0 for n � 0, 1, . . . ,M−1 if and only if it is 0 for all n. Therefore
equation (3.18) is equivalent to equation (3.17).

There is a generalization of Theorem 3.8 to the case of � functions
(Exercise 3.1.11), which includes Lemma 3.3 as the special case
� � 1.
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It is generally not easy to see directly that {R2kv}M−1
k�0 ∪ {R2ku}M−1

k�0
is an orthonormal basis for �2(ZN ) (although one case for which
this is possible is the discrete Haar basis, defined in Exercise 3.1.2).
However, it is not difficult to construct û and v̂ such that the system
matrix A(n) is unitary for all n � 0, 1, . . . ,M − 1. By Theorem 3.8,
once we do so, we can take the IDFT of û and v̂ to obtain an example
of a first-stage wavelet basis.

Before constructing an example, we compare the conditions in
Lemma 3.3 and Theorem 3.8. In Lemma 3.3, |ŵ(n)|2 is constrained
to be 1 for every n. In Theorem 3.8, the only constraint on |û(n)|2
and |û(n +M)|2 is that their average is 1. This allows, for example,
|û(n)|2 � 2 and |û(n + M)|2 � 0 for some n. Then equation (3.17)
forces v̂(n) � 0, which, by equation (3.16), forces |v̂(n + M)|2 � 2.
In this case the component v̂(n) of Fn in v � ∑N−1

n�0 v̂(n)Fn is 0,
that is, v has no component in the direction Fn. This permits us,
for example, to select u to contain only low-frequency components
and v to contain only high-frequency components (see Example
3.10 below). We remark that when the high and low frequencies
are partitioned to some extent between the generators of a first-
stage wavelet basis, it is standard notation to take u to be the vector
containing the low frequencies (the low pass filter) and v to be the one
containing the high frequencies (the high pass filter). By convention,
the basis B in Theorem 3.8 is ordered with the translates of v coming
first for reasons related to the iteration step in section 3.2.

This shows the appropriateness of the terms mother wavelet and
father wavelet. The advantage of generating first-stage wavelet bases
via two parents, as compared with bases generated by one parent as
in Lemma 3.3, is (as in biology) that more diversity is allowed in the
result.

Example 3.9
Let û � (

√
2, 1, 0, 1) and v̂ � (0, 1,

√
2,−1). Then

A(0) � 1√
2

[ √
2 0

0
√

2

]
� I,

and

A(1) � 1√
2

[
1 1
1 −1

]
.
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Clearly A(0) and A(1) are unitary. By Theorem 3.8, {v, R2v, u, R2u}
is an orthonormal basis for �2(Z4). Computing as in Example 2.11,

u � (û)ˇ � W−1
4 û � 1

4
(2+√2,

√
2,−2+√2,

√
2),

and similarly

v � 1
4

(
√

2,−√2+ 2i,
√

2,−√2− 2i).

Of course,

R2u � 1
4

(−2+√2,
√

2, 2+√2,
√

2),

and

R2v � 1
4

(
√

2,−√2− 2i,
√

2,−√2+ 2i).

One can check the orthonormality of {u, R2u, v, R2v} directly.

Next we consider an example defined for general N , which is
designed to partition the high and low frequencies. Recall that the
high frequencies are the vectors Fm in the Fourier basis with m in
the middle of 0, 1, . . . , N − 1, that is, near N/2, whereas the low
frequencies are those with m near 0 or N − 1.

Example 3.10
(First-stage Shannon basis) Suppose N is divisible by 4. Define
û, v̂ ∈ �2(ZN ) by

û(n)�
{ √

2 if n� 0, 1, . . . , N4 − 1 or n� 3N
4 , 3N

4 + 1, . . . , N − 1
0 if n� N

4 ,
N
4 + 1, . . . , 3N

4 − 2, 3N
4 − 1,

and

v̂(n)�
{

0 if n� 0, 1, . . . , N4 − 1 or n� 3N
4 , 3N

4 + 1, . . . , N − 1√
2 if n� N

4 ,
N
4 + 1, . . . , 3N

4 − 2, 3N
4 − 1.

Notice that at every n, either û(n) � 0 or v̂(n) � 0, so equation (3.17)
holds, that is, the columns of the system matrix A(n) are orthogonal.
Also at each n, either û(n) � √2 and û(n+N/2) � 0 or vice versa, so
(3.15) holds, that is, the first column of A(n) has length one for each
n. The same observation holds for v̂, so the second column of A(n)
has length one. Thus A(n) is unitary for all n, so by Theorem 3.8,
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{R2kv}(N/2)−1
k�0 ∪ {R2ku}(N/2)−1

k�0 is a first-stage wavelet basis. We call this
the first-stage Shannon wavelet basis because it is similar to a basis
arising from something known as the Shannon sampling theorem
(see Exercises 5.3.2 and 5.4.17). Note that we have prescribed u and
v by their DFTs; to obtain the actual values of u and v we must
compute the IDFTs of û and v̂. The resulting sums can be evaluated
in closed form (Exercise 3.1.8). We obtain

u(0) � v(0) � 1√
2
, (3.19)

and

u(n) �
√

2
N

e−iπn/N
sin( πn2 )

sin( πn
N

)
, (3.20)

and

v(n) �
√

2
N

(−1)ne−iπn/N
sin( πn2 )

sin( πn
N

)
, (3.21)

for n � 1, 2, . . . , N − 1.
Observe that v has |v̂(m)| � √2 for the N/2 high frequencies

N/4 ≤ m ≤ (3N/4) − 1, and |v̂(m)| � 0 for the remaining N/2
low frequencies. Since v � N−1∑N−1

m�0 v̂(m)Fm, this means that v

contains no frequencies in the lower half of the frequency scale.
The translates R2kv have the same property because of Lemma 2.13.
In the same way, u and its translates have have no frequencies in
the upper half of the scale. Thus in the representation

z �
(N/2)−1∑
k�0

〈z, R2kv〉R2kv+
(N/2)−1∑
k�0

〈z, R2ku〉R2ku,

for z ∈ �2(ZN ), the higher half of the frequencies in z are contained
in the first sum whereas the lower half are contained in the second
sum.

Sometimes it is advantageous to have an orthonormal basis
consisting entirely of real-valued vectors. For example, suppose the
signals z that we want to expand are all real-valued, as is often
the case in applications (e.g., audio or visual signals). If the basis
elements are real also, then the coefficients in the expansion of z
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will be real because they are the inner products of z with the basis
elements. Thus in this case we would know that we could store
the components of z in this basis as a real vector. This simplifies
computation and saves space in the computer memory because
complex vectors are stored as pairs of real vectors.

Note that the Shannon basis in Example 3.10 is not real valued. By
Corollary 2.16, a vector z is real valued if and only if its DFT satisfies
the symmetry condition ẑ(m) � ẑ(N −m) for every m. Looking at û,
we see that this condition is satisfied for m � 0, 1, . . . , (N/4)− 1 and
for m � (3N/4) + 1, . . . , N − 1, where both values are

√
2, and for

m � (N/4) + 1, . . . , (3N/4) − 1, where both values are 0. However,
the condition fails for m � N/4 (equivalently, m � 3N/4) because
û(N/4) � 0 and û(3N/4) � √2. A similar observation holds for v.
However, we can modify û and v̂ at these values in such as way as
to obtain the symmetry condition (hence u and v will be real) while
still satisfying the conditions of Theorem 3.8.

Example 3.11
(First-stage real Shannon basis) Suppose N is divisible by 4. Define
û, v̂ ∈ �2(ZN ) by

û(n) �




√
2 if n � 0, 1, . . . , N4 − 1 or n � 3N

4 + 1, . . . , N − 1

i if n � N
4

−i if n � 3N
4

0 if n � N
4 + 1, . . . , 3N

4 − 1,

and

v̂(n) �




0 if n � 0, 1, . . . , N4 − 1 or n � 3N
4 + 1, . . . , N − 1

1 if n � N
4 or n � 3N

4√
2 if n � N

4 + 1, . . . , 3N
4 − 1.

Note that at N/4 or 3N/4, v̂(N/4) � v̂(3N/4) because both are
1, whereas û(N/4) � i � −i � û(3N/4). At the other values, û
and v̂ agree with the Shannon basis and hence satisfy the symmetry
condition. Thus u and v are real-valued vectors. Also at n � N/4, the
system matrix is

A(N/4) � 1√
2

[
i 1
−i 1

]
,
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which is unitary. (Note that, given our choice of v̂, we were forced to
take û pure imaginary at N/4 and 3N/4 to obtain both the symmetry
condition and the property that the matrix is unitary.) At other
values, the system matrix is the same as for the Shannon basis, and
hence is unitary. Thus by Theorem 3.8, {R2kv}(N/2)−1

k�0 ∪ {R2ku}(N/2)−1
k�0

is a first-stage wavelet basis such that u and v are real valued. It
follows that all the basis elements are real valued because they are
translates of u and v.

Note that the high and low frequencies are still partitioned
between u and v, as in Example 3.10, except that there is an overlap
when n � N/4 or 3N/4.

Here it is relatively difficult to write closed-form expressions for u
and v. In practice, for a specific N , one would use an IDFT program
to compute u and v and store them for future use. The graphs of
R32u and R32v in the case N � 64 are shown in Figure 11 (we used
translates by 32 to center the graph in the range 0 ≤ n ≤ 63).

Similarly Figure 12 shows the graphs of R256u and R256v in the
case N � 512. Note that these functions are relatively localized
around their center points (32 in the case N � 64 and 256 in the case
N � 512). This may be surprising, because we did not specifically
arrange for this. However, we should expect v to have its maximum
at 0 (and hence R256v, in the case N � 512, to have its maximum at
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FIGURE 11 (a) R32u, (b) R32v
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256) because, by Fourier inversion,

v(n) � 1
N

N−1∑
m�0

v̂(m)e2πimn/N ,

so

v(0) � 1
N

N−1∑
m�0

v̂(m).

Since v̂(m) ≥ 0 for all m in this case, the sum giving v(0) has no
cancellation. For n 	� 0, the sum giving v(n) has cancellation, and
so will give a smaller value than v(0). The functions e2πimn/N are
lined up so as to agree at n � 0. As n moves away from 0, the
exponentials become less aligned, until eventually they are more or
less independent. This means the terms in the sum tend to cancel
out, resulting in small values of v(n) for n far from the center point.

Notice also that
∑N−1

n�0 v(n) � v̂(0) � 0 by construction, which
explains why v seems to have equal positive and negative mass.
However,

∑N−1
n�0 u(n) � û(0) � √2, so u has more positive than

negative mass.
Note that R32v in Figure 11b appears to be symmetric around

n � 32. This can be deduced from Exercise 2.1.12 (i): v is symmetric
around 0 because v̂ is real. Similarly, u is not symmetric around 0
because û is not real, hence (as we can see in Figure 11b), R32u is
not symmetric around n � 32. Similar remarks hold for Figure 12.

Because 2×2 unitary matrices are easy to characterize, Theorem
3.8 can be used to describe all first-stage wavelet bases explicitly (see
Exercise 3.1.6). Later we will find the following result very useful. It
says that every potential father wavelet u has a companion mother
wavelet v such that u and v generate a first-stage wavelet basis.

Lemma 3.12 SupposeM ∈ N, N � 2M, and u ∈ �2(ZN ) is such that
{R2ku}M−1

k�0 is an orthonormal set withM elements. Define v ∈ �2(ZN ) by

v(k) � (−1)k−1u(1− k) (3.22)

for all k. Then {R2kv}M−1
k�0 ∪ {R2ku}M−1

k�0 is a first-stage wavelet basis for
�2(ZN ).
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FIGURE 12 (a) R256u, (b) R256v

Proof
Using relation (3.22) and the substitution k � 1− n,

v̂(m) �
N−1∑
n�0

v(n)e−2πimn/N �
N−1∑
n�0

(−1)n−1u(1− n)e−2πimn/N

�
N−1∑
k�0

u(k)(−1)−ke−2πim(1−k)/N

� e−2πim/N
N−1∑
k�0

u(k)(e−iπ)−ke2πimk/N
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� e−2πim/N
N−1∑
k�0

u(k)e−2πi(m+M)k/N � e−2πim/N û(m +M).

Therefore

v̂(m +M) � e−2πi(m+M)/N û(m + 2M)

� e−2πiM/Ne−2πim/N û(m) � −e−2πim/N û(m),

since 2M � N , so that û(m + 2M) � û(m + N) � û(m) and
e−2πiM/N � e−iπ � −1. Hence

|v̂(m)|2 + |v̂(m +M)|2 � |û(m +M)|2 + |û(m)|2 � 2,

for m � 0, 1, . . . ,M − 1, by Lemma 3.6 and the orthonormality of
{R2ku}M−1

k�0 . Thus equations (3.15) and (3.16) hold. Finally

û(m)v̂(m)+ û(m +M)v̂(m +M)

� û(m)e2πim/N û(m +M)− û(m +M)e2πim/N û(m) � 0,

which is equation (3.17). By Theorem 3.8, the pair u, v generates a
first-stage wavelet basis for �2(ZN ).

Suppose B � {R2kv}M−1
k�0 ∪ {R2ku}M−1

k�0 is a first-stage wavelet basis.
By Lemma 1.106 i, the B to E change-of-basis matrix is the matrix
U with column vectors v, R2v, . . . RN−2v, u, R2u, . . . RN−2u, in that
order. Since B is orthonormal, U is unitary (Lemma 1.105), so the E

to B change-of-basis matrix isU−1 � U∗. However, computing [z]B by
multiplying out U∗z directly is slow, requiring N2 multiplications.
To compute this change of basis quickly, we should use the fact that
the coefficient of R2kv in the expansion of z is 〈z, R2kv〉 � z ∗ ṽ(2k)
and similarly for u. Thus

[z]B �




z ∗ ṽ(0)
z ∗ ṽ(2)
·
·

z ∗ ṽ(N − 2)
z ∗ ũ(0)
z ∗ ũ(2)
·
·

z ∗ ũ(N − 2)




. (3.23)



3.1. Construction of Wavelets on ZN : The First Stage 183

We can represent the calculation of this vector as the result of two
convolutions of z followed in each case by the operation of throwing
out the odd-indexed entries.

Definition 3.13 SupposeM ∈ N andN � 2M. DefineD : �2(ZN )→
�2(ZM) by setting, for z ∈ �2(ZN ),

D(z)(n) � z(2n), for n � 0, 1, . . . ,M − 1.

The operator D is called the downsampling or decimation operator.

In other words, if z � (z(0), z(1), z(2), z(3), . . . , z(N − 1)), then

D(z) � (z(0), z(2), z(4), . . . , z(N − 2)).

The downsampling operator is often denoted ↓ 2 in diagrams. The
calculation of [z]B is represented in Figure 13.

This is a simple example of a filter bank. A general filter bank
is any sequence of convolutions and other operations. The study
of filter banks is an entire subject in engineering called multirate
signal analysis, or subband coding. The term “filter” is used to denote
a convolution operator because such an operator can cut out various
frequencies if the associated Fourier multiplier is 0 (or sufficiently
small) at those frequencies.

We have seen that we can compute the E to B change of basis
quickly. What about going the opposite way, computing the B to E

change of basis? Of course, this can be obtained by multiplying by
the matrix U , but multiplying by an N × N matrix is slow. There is
a fast procedure based on the filter bank approach.

FIGURE 13
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Definition 3.14 SupposeM ∈ N andN � 2M. DefineU : �2(ZM)→
�2(ZN ) by setting, for z ∈ �2(ZM),

U(z)(n) �
{

z(n/2) if n is even
0 if n is odd.

The operator U is called the upsampling operator. It is denoted ↑ 2.

The upsampling operator doubles the size of a vector by inserting
a 0 between any two adjacent values. For example, if

z � (2, 5,−1, i)

then

U(z) � (2, 0, 5, 0,−1, 0, i, 0).

Note that if we upsample and then downsample, we get back what
we started with, that is, D(U(z)) � z for any z. However, if we
first downsample and then upsample, we throw away the odd-index
values and then put them back in as 0s. Thus the composition U ◦D
has the effect of zeroing out all the odd-index values, and hence is
not the identity. By comparing U ◦D with equation (3.9), we see that

U ◦ D(z) � 1
2

(z + z∗). (3.24)

This example shows that, unlike the case of square matrices in
Exercise 1.4.12 (ii), a one-sided inverse is not necessarily a two-sided
inverse.

To regain z from the output of the left filter bank in Figure 13,
we follow up with a right filter bank as in the right half of Figure 14.
Here s, t ∈ �2(ZN ) are unknown.

The output of the top branch of Figure 14 is t̃ ∗ U(D(z ∗ ṽ))
and the output of the lower branch is s̃ ∗ U(D(z ∗ ũ)). Lemma 3.15
gives conditions under which the sum of these outputs is always
the original input z. When this happens we say we have perfect
reconstruction in the filter bank. Note that we do not necessarily
assume the conditions of Theorem 3.8. Thus we have a more
general result about filter banks that do not necessarily correspond
to orthonormal bases. Although we will not pursue this further here,
this more general case leads to a generalization of orthonormal
wavelets called biorthogonal wavelets.



3.1. Construction of Wavelets on ZN : The First Stage 185

FIGURE 14

Lemma 3.15 Suppose M ∈ N, N � 2M, and u, v, s, t ∈ �2(ZN ). For
n � 0, 1, . . . , N − 1, let A(n) be the system matrix (Definition 3.7) for u
and v. Then we have perfect reconstruction in Figure 14, that is,

t̃ ∗ U(D(z ∗ ṽ))+ s̃ ∗ U(D(z ∗ ũ)) � z

for all z ∈ �2(ZN ), if and only if

A(n)
[
ŝ(n)
t̂(n)

]
�
[ √

2
0

]
(3.25)

for all n � 0, 1, . . . , N−1. In the case thatA(n) is unitary, this simplifies
to t̂(n) � v̂(n) and ŝ(n) � û(n). If A(n) is unitary for all n (equivalently,
by Theorem 3.8, if {R2kv}M−1

k�0 ∪ {R2ku}M−1
k�0 is an orthonormal basis for

�2(ZN )), then t � ṽ and s � ũ.

Proof
By equation (3.24),

U(D(z ∗ ṽ)) � 1
2

(
z ∗ ṽ+ (z ∗ ṽ)∗

)
and similarly with v replaced by u. Hence, as in the proof of the
equivalence of equations (3.17) and (3.18),(

U(D(z ∗ ṽ))
)ˆ(n) � 1

2

(
ẑ(n)v̂(n)+ ẑ(n +M)v̂(n+M)

)
,

for any n, and similarly with v replaced by u. Therefore,[
t̃ ∗ U(D(z ∗ ṽ))+ s̃ ∗ U(D(z ∗ ũ))

] ˆ(n)

� t̂(n)
1
2

(
ẑ(n)v̂(n)+ ẑ(n +M)v̂(n +M)

)
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+ ŝ(n)
1
2

(
ẑ(n)û(n)+ ẑ(n +M)û(n +M)

)
� 1

2

(
t̂(n)v̂(n)+ ŝ(n)û(n)

)
ẑ(n)

+1
2

(
t̂(n)v̂(n +M)+ ŝ(n)û(n +M)

)
ẑ(n+M). (3.26)

By Fourier inversion, we have perfect reconstruction if and only if,
for all n and z ∈ �2(ZN ), each expression in equation (3.26) agrees
with ẑ(n). We claim that this holds if and only if

ŝ(n)û(n)+ t̂(n)v̂(n) � 2 (3.27)

and

ŝ(n)û(n +M)+ t̂(n)v̂(n +M) � 0. (3.28)

To prove this, substituting in equation (3.26) shows that equations
(3.27) and (3.28) are sufficient conditions for perfect reconstruction.
Conversely, if we assume perfect reconstruction, fix n and pick z

such that ẑ(n) � 1 and ẑ(n+M) � 0. Using the perfect reconstruction
condition for this z shows that equation (3.27) holds, whereas
considering another z with ẑ(n) � 0 and ẑ(n + M) � 1 implies
equation (3.28).

By dividing by
√

2 and rewriting equations (3.27) and (3.28) in
matrix notation, we get equation (3.25).

In the case that A(n) is unitary, A(n) is invertible and A(n)−1 �
A(n)∗, so solving equation (3.25) gives ŝ(n) � û(n) and t̂(n) � v̂(n).
If A(n) is unitary for all n, then Fourier inversion and relation (3.3)
imply that s � ũ and t � ṽ.

In the case that {R2kv}M−1
k�0 ∪ {R2ku}M−1

k�0 is an orthonormal basis
for �2(ZN ), there is a simpler proof (Exercise 3.1.13) that s � ũ and
t � ṽ, but we have presented this more general result because of its
independent interest.

This tells us how we can reconstruct z using Figure 14, in the case
where u and v generate a first-stage wavelet basis. We take s � ũ

and t � ṽ (or equivalently, s̃ � u and t̃ � v). In particular, the
reconstruction step involves only two more convolutions and hence
can be computed rapidly.
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To put this another way, to compute the B to E change of basis,
input the first half of [z]B in the top portion of the right-hand part
of Figure 11 and input the bottom half in the bottom portion, with
t̃ � v and s̃ � u. The output will be [z]E � z.

So far we have found conditions that allow us to create
orthonormal bases for which the change of basis and its inverse can
be computed fast via convolutions using the filter bank diagram.
From the examples of the Shannon and real Shannon bases, we see
that we can get some degree of frequency localization with such a
basis, because v and its translates carry the high frequencies whereas
u and its translates carry the low frequencies. We have also seen by
experiment that we can obtain a fair degree of spatial localization as
well.

Next, we iterate this type of splitting. This gives us a basis that
naturally reflects different scales. The easiest way to understand this
iteration is in terms of the filter bank diagram, as we see in section
3.2.

Exercises

3.1.1. Let z, w, u, v ∈ �2(ZN ).
i. Prove that

〈Rkz, Rjw〉 � 〈z, Rj−kw〉 � 〈Rk−jz, w〉,
for any k, j ∈ Z.

ii. Prove that {Rkw}N−1
k�0 is an orthonormal basis for �2(ZN )

if and only if equation (3.6) holds.
iii. Suppose M ∈ N and N � 2M. Prove that {R2ku}M−1

k�0 is an
orthonormal set with M elements if and only if equation
(3.11) holds.

iv. Suppose M ∈ N and N � 2M. Prove that equation (3.18)
holds if and only if 〈u, R2kv〉 � 0 for all k � 0, 1, . . . ,M−1.

v. Complete the following alternate proof of Lemma 3.6:
By Parseval’s relation (2.11) and Lemma 2.13,

〈w,R2kw〉 � 1
N

N−1∑
m�0

∣∣ŵ(m)
∣∣2 e2πimk/(N/2).
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Write
∑N−1

m�0 as
∑M−1

m�0 +
∑N−1

m�M and replace m in the
second sum by m −M to write

〈w,R2kw〉 � 1
2M

M−1∑
m�0

(∣∣ŵ(m)
∣∣2 + ∣∣ŵ(m +M)

∣∣2) e2πimk/M.

Regard
∣∣ŵ(m)

∣∣2 + ∣∣ŵ(m +M)
∣∣2 as a vector in �2(ZM) and

apply Fourier inversion.
3.1.2. (The first-stage Haar basis) Suppose N � 2M, for M ∈ N.

Define u, v ∈ �2(ZN ) by

u �
(

1√
2
,

1√
2
, 0, 0, . . . , 0

)
and

v �
(

1√
2
,− 1√

2
, 0, 0, . . . , 0

)
.

i. Prove that {R2kv}M−1
k�0 ∪{R2ku}M−1

k�0 is an orthonormal basis
for �2(ZN ) directly from the definitions of u and v, that
is, not using the DFT or Theorem 3.8.

ii. Compute û and v̂. Check that the system matrix A(n)
(Definition 3.7) is unitary for all n.

iii. For z ∈ �2(ZN ), define

P(z) �
M−1∑
k�0

〈z, R2ku〉R2ku,

and

Q (z) �
M−1∑
k�0

〈z, R2kv〉R2kv.

By part i and Lemma 1.101 i, z � P(z)+Q (z). Prove that
for m � 0, 1, . . . ,M − 1,

P(z)(2m) � P(z)(2m + 1) � (z(2m)+ z(2m + 1)
)
/2.

In other words, P(z) is obtained from z by replacing the
values of z at 2m and 2m+1 by their average. This can be
regarded as the vector z seen at a resolution of 2. Then
Q (z) is the “detail” needed to pass from a resolution of 2
to a resolution of 1.
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iv. For N � 8, suppose

z � (4, 2, 3, 7, 10, 8, 10, 14).

Find P(z) and Q (z). Then graph z, P(z), and Q (z).
3.1.3. Let u ∈ �2(Z4) be such that û � (1,

√
2, i, 0). Find some v̂

such that {v, R2v, u, R2u} is an orthonormal basis for �2(Z4).
3.1.4. Suppose u, v ∈ �2(ZN ).

i. Prove that

〈ũ, R2kṽ〉 � 〈v, R2ku〉.
ii. Suppose M ∈ N and N � 2M. Deduce from part i and

Exercise 3.1.1 that u and v generate a first-stage wavelet
basis for �2(ZN ) if and only if ũ and ṽ do.

iii. Obtain the result in part ii from Theorem 3.8 instead.
3.1.5. Suppose û � (

√
2,
√

2, 0, 0) and v̂ � (0, 0,
√

2,
√

2).
i. Check that the system matrix A(n) (Definition 3.7) is the

identity, and hence is unitary, for n � 0, 1. Deduce that
{v, R2v, u, R2u} is an orthonormal basis for �2(Z4).

ii. Use the IDFT to compute u, v.
iii. Check directly (i.e., without using Theorem 3.8) that
{v, R2v, u, R2u} is an orthonormal set in �2(Z4).

3.1.6. Suppose M ∈ N and N � 2M.
i. Let {r(n)}M−1

n�0 be real numbers such that

0 ≤ r(n) ≤ √2, for all n � 0, 1, . . . ,M − 1.

Let {θ(n)}M−1
n�0 , {ϕ(n)}M−1

n�0 , {σ(n)}M−1
n�0 , {ρ(n)}M−1

n�0 be real
numbers such that, if n ∈ {0, 1, . . . ,M−1} and 0 < r(n) <√

2, then

θ(n)+ρ(n)−ϕ(n)−σ(n)� (2k+1)π for some k� k(n)∈ Z.

(If r(n) � 0 or r(n) � √2, then θ(n), ϕ(n), σ(n), and ρ(n)
are unconstrained.) Define û, v̂ ∈ �2(ZN ) by setting

û(n) � r(n)eiθ(n), û(n + N/2) �
√

2− (r(n))2 eiϕ(n),

v̂(n) �
√

2− (r(n))2 eiσ(n), and v̂(n + N/2) � r(n)eiρ(n)

for n � 0, 1, . . . M − 1. Define u, v ∈ �2(ZN ) by u � (û)∨

and v � (v̂)∨. Prove that {R2kv}M−1
k�0 ∪ {R2ku}M−1

k�0 is an
orthonormal basis for �2(ZN ).
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ii. Prove that for any first-stage wavelet basis {R2kv}M−1
k�0 ∪

{R2ku}M−1
k�0 , û and v̂ are of the form stated in part i for some

real-valued r(n), θ(n), ϕ(n), σ(n), ρ(n), n � 0, 1, . . . ,M−1,
satisfying 0 ≤ r(n) ≤ √2 and θ + ρ − ϕ − σ � (2k + 1)π
for some k � k(n) ∈ Z, for each n � 0, 1, . . . , N−1. Hint:
By Theorem 3.8, this just comes down to parameterizing
2× 2 unitary matrices.

3.1.7. Suppose M ∈ N, N � 2M, z ∈ �2(ZN ), and w ∈ �2(ZM). Prove
that

〈D(z), w〉 � 〈z, U(w)〉.
Note that the inner product on the left side is in �2(ZM),
whereas the inner product on the right is in �2(ZN ).

3.1.8. Verify equations (3.19), (3.20), and (3.21). Hint: Change
summation indices so that each sum begins at 0, and apply
equation (1.5).

3.1.9. In the case N � 2M, with M ∈ N, show that Theorem 3.8
implies Lemma 3.3 by applying Theorem 3.8 with v � R1u.

3.1.10. Suppose M ∈ N and N � 2M. Let u, s ∈ �2(ZN ). Consider the
filter bank with only one branch shown in Figure 15. Prove
that no matter how u and s are chosen, this filter bank cannot
give perfect reconstruction.

FIGURE 15

3.1.11. (Generalization of Theorem 3.8 to � functions) Suppose
� ∈ N and �|N (recall this means that there exists q ∈ Z

such that N � q�).
i. Suppose z, v, w ∈ �2(ZN ). Prove that

{R�kz}(N/�)−1
k�0

is an orthonormal set with N/� elements if and only if

�−1∑
k�0

∣∣ẑ(n + kN/�)
∣∣2 � � for all n.
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Also prove that

〈R�kv, R�jw〉 � 0 for all j, k

if and only if

�−1∑
k�0

v̂(n + kN/�)ŵ(n + kN/�) � 0 for all n.

Hint: Method 1: Prove that
�−1∑
m�0

e−2πinm/� �
{

� if �|n
0 if � 	 |n.

Hence

〈v, R�kw〉 � v ∗ w̃(�k) �



1 if k � 0 and v � w

0 if k � 1, 2, . . . , (N/�)− 1
or v 	� w

if and only if

1
�

�−1∑
m�0

e−2πinm/�v ∗ w̃(n) �
{

δ(n) for all n, if v � w

0 for all n, if v 	� w.

Take the DFT of both sides. Prove that

(e−2πinm/�v ∗ w̃)ˆ(k) � v̂(k +mN/�)ŵ(k +mN/�).

Hint: Method 2: (compare to Exercise 3.1.1 (v)) By
Parseval’s relation (2.11) and Lemma 2.13,

〈v, R�kw〉

� 1
N

N−1∑
m�0

v̂(m)e2πi�km/Nŵ(m)

� 1
N

�−1∑
j�0

(N/�)−1∑
n�0

e2πi�k(n+jN/�)/N v̂(n + jN/�)ŵ(n+ jN/�)

� 1
(N/�)

(N/�)−1∑
n�0

e2πikn/(N/�) 1
�

�−1∑
j�0

v̂(n + jN/�)ŵ(n + jN/�),

and apply Fourier inversion in �2(ZN/�).
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ii. Suppose u0, u1, . . . , u�−1 ∈ �2(ZN ). Prove that

{R�ku0}(N/�)−1
k�0 ∪ {R�ku1}(N/�)−1

k�0 ∪ · · · ∪ {R�ku�−1}(N/�)−1
k�0

is an orthonormal basis for �2(ZN ) if and only if the
matrix

1√
�




û0(n) û1(n) · · · û�−1(n)
û0(n + N

�
) û1(n + N

�
) · · · û�−1(n+ N

�
)

û0(n + 2N
�

) û1(n + 2N
�

) · · · û�−1(n+ 2N
�

)
...

...
. . .

...
û0(n + (�−1)N

�
) û1(n + (�−1)N

�
) · · · û�−1(n+ (�−1)N

�
)




is unitary for all n � 0, 1, . . . , (N/�)− 1.
3.1.12. (Two-dimensional case of Theorem 3.8) Suppose M1,M2 ∈

N, N1 � 2M1 and N2 � 2M2. Recall Exercises 2.1.15, 2.1.17,
2.2.18, and 2.2.19 as background for this problem.
i. Suppose z ∈ �2(ZN1 × ZN2). Define z∗, z∗∗, and z∗∗∗ ∈

�2(ZN1 × ZN2) by

z∗(n1, n2) � (−1)n1z(n1, n2),

z∗∗(n1, n2) � (−1)n2z(n1, n2),

and

z∗∗∗(n1, n2) � (−1)n1+n2z(n1, n2).

Prove that

z(k1, k2) + z∗(k1, k2)+ z∗∗(k1, k2)+ z∗∗∗(k1, k2)

�
{

4 z(k1, k2) if k1and k2 are even
0 if k1 or k2 is odd.

ii. Let u0, u1, u2, u3 ∈ �2(ZN1 × ZN2). Let A(n1, n2) be the
matrix whose mth column (m � 0, 1, 2, 3) is

1
2




ûm(n1, n2)
ûm(n1 + N1

2 , n2)
ûm(n1, n2 + N2

2 )
ûm(n1 + N1

2 , n2 + N2
2 )




Prove that{
R2k1,2k2u0

}
0≤k1≤M1−1,0≤k2≤M2−1
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∪ {R2k1,2k2u1
}

0≤k1≤M1−1,0≤k2≤M2−1

∪ {R2k1,2k2u2
}

0≤k1≤M1−1,0≤k2≤M2−1

∪ {R2k1,2k2u3
}

0≤k1≤M1−1,0≤k2≤M2−1

is an orthonormal basis for �2(ZN1 × ZN2) if and only if
A(n1, n2) is unitary for all n1 � 0, 1, . . . , (N1/2) − 1 and
n2 � 0, 1, . . . , (N2/2)− 1.

iii. (First-stage product wavelets for the two-dimensional
case) The easiest way to generate a basis of the type in
part ii is to form product wavelets. Suppose {R2kv1}N1−1

k�0 ∪
{R2ku1}N1−1

k�0 } is a first-stage wavelet basis for �2(ZN1) and
{R2kv2}N2−1

k�0 ∪ {R2ku2}N2−1
k�0 is a first-stage wavelet basis for

�2(ZN2). Define

w0(n1, n2) � v1(n1)v2(n2),

w1(n1, n2) � u1(n1)v2(n2),

w2(n1, n2) � v1(n1)u2(n2),

and

w3(n1, n2) � u1(n1)u2(n2).

Prove that{
R2k1,2k2w0

}
k1,k2
∪ {R2k1,2k2w1

}
k1,k2

∪ {R2k1,2k2w2
}
k1,k2
∪ {R2k1,2k2w3

}
k1,k2

is an orthonormal basis for �2(ZN1 ×ZN2), where in every
case k1 runs from 0 to M1−1 and k2 runs from 0 to M2−1.
Hint: The easy way to do this is to notice that

R2k1,2k2w0(n1, n2) � R2k1v1(n1)R2k2v2(n2),

and similarly forw1, w2, andw3. Then the result follows from
the general result about product bases in Exercise 2.1.16.
Another way, which is more difficult, but also instructive, is
to use Theorem 3.8 and part ii. Let A1(n1) be the system
matrix with u � u1, v � v1, n � n1, and M � M1, and
let A2(n2) be the system matrix for u2, v2, n2, and M2. By
assumption and Theorem 3.8, A1(n1) and A2(n2) are unitary
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for all n1 and n2. Use this to show that the matrix A(n1, n2)
defined as in part ii, but with wj in place of uj for j � 0, 1, 2, 3,
is unitary for all n1, n2.

We remark that not all orthonormal bases of the form in
part ii are product bases.

3.1.13. Suppose M ∈ N, N � 2M, and u, v, s, t, z ∈ �2(ZN ).
i. Prove that

t̃ ∗ U(D(z ∗ ṽ)) �
M−1∑
k�0

〈z, R2kv〉R2kt̃

and

s̃ ∗ U(D(z ∗ ũ)) �
M−1∑
k�0

〈z, R2ku〉R2ks̃.

ii. Suppose {R2kv}M−1
k�0 ∪ {R2ku}M−1

k�0 is an orthonormal basis
for �2(ZN )). Use part i to give a simple proof that we have
perfect reconstruction in Figure 14 if and only if s � ũ

and t � ṽ. (Hint: Consider z � u or v.)
3.1.14. (Perfect reconstruction for two-dimensional filter banks)

Suppose M1,M2 ∈ N, N1 � 2M1 and N2 � 2M2. Define
the two-dimensional downsampling operator D : �2(ZN1 ×
ZN2)→ �2(ZM1 × ZM2) by

D(z)(k1, k2) � z(2k1, 2k2)

for k1 � 0, 1, . . . ,M1 − 1, k2 � 0, 1, . . . ,M2 − 1, for any
z ∈ �2(ZM1 × ZM2). Define the two-dimensional upsampling
operator U : �2(ZM1 × ZM2)→ �2(ZN1 × ZN2) by

U(z)(k1, k2) �
{

z(k1/2, k2/2) if k1 and k2 are even
0 if k1 or k2 is odd.

Note thatU inserts three zeros for every nonzero component
that it retains.
i. Suppose z ∈ �2(ZN1 × ZN2). Prove that

U(D(z)) � 1
4

(
z + z∗ + z∗∗ + z∗∗∗

)
,

with definitions as in Exercise 3.1.12 (i).
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ii. The basic filter bank in the two-dimensional case has
four branches, just as our first-stage wavelet basis as
in Exercise 3.1.12 (ii) has four generators. Suppose
u0, u1, u2, u3, s0, s1, s2, s3 ∈ �2(ZN1 ×ZN2). In the jth branch
of the filter bank, with input z ∈ �2(ZN1 × ZN2),
we compute z ∗ ũj. Then we apply D. This is the
decomposition stage of the process. In the reconstruction
stage, we take the output of the jth branch so far, namely
D(z∗ũj), applyU , and convolve with s̃j, giving s̃j∗U(D(z∗
ũj)). We have perfect reconstruction if the sum of these
always equals z, that is, if

3∑
j�0

s̃j ∗ U(D(z ∗ ũj)) � z

for all z ∈ �2(ZN1 × ZN2). Let A(n1, n2) be the matrix
defined in Exercise 3.1.12 (ii). Prove that we have perfect
reconstruction if and only if

A(n1, n2)




ŝ0

ŝ1

ŝ2

ŝ3


 �




2
0
0
0




for all n1, n2.

iii. The output of the decomposition stage in part ii is the
vector whose components are of the form

(z ∗ ũj)(2k1, 2k2) � 〈z, R2k1,2k2uj〉
for k1 � 0, 1, . . . ,M1 − 1 and k2 � 0, 1, . . . ,M2 − 1.
Suppose that A(n1, n2) is unitary for all n1, n2, so that
the set in Exercise 3.1.12 (ii) is an orthonormal basis
for �2(ZN1 × ZN2). Then the output of the decomposition
stage is the vector whose components are the coefficients
in the orthonormal expansion of z with respect to this
orthonormal basis. Prove that in this case we have
perfect reconstruction if and only if sj � ũj for j �
0, 1, 2, 3.
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3.2 Construction of Wavelets on ZN:
The Iteration Step

So far we have constructed orthonormal bases for �2(ZN ) of the form

{R2kv}(N/2)−1
k�0 ∪ {R2ku}(N/2)−1

k�0 , (3.29)

which we call first-stage wavelet bases. Theorem 3.8 gives necessary
and sufficient conditions on û and v̂ for such a collection to form
an orthonormal basis. As we see in Examples 3.10 and 3.11, we
can concentrate the high frequencies in the terms involving v in
relation (3.29) and the low frequencies in the terms involving u.
Thus some degree of frequency localization is obtained. As shown
by Figures 11 and 12, we also obtained some degree of spatial
localization. We saw that for a first-stage wavelet basis, the change
of basis can be computed via the filter bank scheme in Figure 13.
The inverse change of basis can also be computed by a filter bank
arrangement, namely the right half of Figure 14. These basis changes
can be computed quickly, because they are accomplished by a pair
of convolutions, which can be done via the FFT.

The filter bank arrangement in Figure 14 suggests a possibility
for iteration. Namely, on either or both of the outputs of the left side,
we can apply the same procedure again. We can pass the output of
either branch through two more filters, and downsample again in
each new branch. Similarly on the right side, we can pass the signal
from each of these two new branches through an upsampler and a
new filter. If the filters at this second stage are compatible, as at the
first stage, we will still have perfect reconstruction. Then we can
iterate. In principle we can iterate in any branch, but in standard
wavelet analysis we iterate in only one of the two branches from the
previous stage, normally the branch coming from the convolution
with the low pass filter u. (More complicated, adaptive iteration
procedures occur in something known as wavelet-packet theory.) In
this section, we study this iteration procedure, and in particular we
see that it corresponds to a certain type of orthonormal basis, which
we call a wavelet basis for �2(ZN ). First we comment on why we
want to iterate.
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Consider the first-stage Shannon wavelet basis in Example 3.10.
Recall that u and v are chosen in this case to split the frequency scale
in half. But from music we know that it is more natural to consider
frequencies on a logarithmic scale, in octaves. This suggests that we
should leave the terms carrying the top half of the frequencies, but
that we should subdivide the frequencies in the lower half into two
equal parts, the lowest quarter of frequencies and the next quarter.
Then we could split the lowest quarter again, and so on. In this way
our basis decomposition could give us a more refined frequency
analysis of a signal.

Another motivation comes from considering the first-generation
discrete Haar basis in Exercise 3.1.2. In part iii of that exercise, we
split z into P(z) and Q (z), where P(z) corresponded to the terms
coming from the translates of u and Q (z) corresponded to the terms
coming from the translates of v. In part iv we saw that P(z) is obtained
by replacing z at adjacent values 2k and 2k+1 by the average of these
values. This can be regarded as viewing z evened out to a scale of
2 instead of at a scale of 1. This may be enough to determine the
general large-scale behavior of z, if the details at scale 1 that are
contained in Q (z) are not essential in our considerations. If we need
to consider only P(z), we have compressed our original data by a
factor of 2, because P(z) is determined by N/2 coefficients.

However, it may be that we can go further. Perhaps the type of
behavior with which we are concerned can be understood at a scale
of 4 or 8 or some larger number. Then we should be able to take our
approximation P(z) at scale 2 and split it into two parts, one being
the approximation at scale 4, the other being the detail needed to
pass from scale 4 to scale 2. We should be able to continue in such a
way that the data at scale 2� are determined by N/2� numbers. This
may, for example, allow us to transmit a rough approximation to a
signal very quickly, and then to add detail gradually as needed. If
we can determine early on that we do not need to look at the full
detail, we have saved time, energy, or both. This could be relevant to
a radar or sonar search, where our first concern is whether there is
anything there; if there is, we look more closely at details to identify
it.

This approach also gives us a natural notion of different scales
of behavior. This is important in many applications, for example in
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studying fluid flow such as ocean waves. Something that only shows
up when looking at the fine-scale terms of the expansion indicates
small-scale behavior, such as small ripples in a wave; the large-scale
terms might indicate the main wave.

To describe the iteration step, consider the filter bank diagram
in Figure 14, now denoting the filters in the left half as ũ1 and ṽ1

instead of ũ and ṽ. Assume that u1, v1 generate a first-stage wavelet
basis, that is, that the system matrixA(n) of u1 and v1 (Definition 3.7)
is unitary for all n. Lemma 3.15 states that for perfect reconstruction,
the filters in the right half of Figure 14 should be u1 and v1.

Let the input of the diagram be some vector z ∈ �2(ZN ), where
N is even. For the second stage that we are about to describe, N
must be divisible by 4. The output of the left half of Figure 10, the
analysis phase, is the pair of vectors D(z ∗ ṽ1), D(z ∗ ũ1) ∈ �2(ZN/2).
We think of v1 as corresponding to the high-frequency part, although
strictly speaking this does not have to be the case (in fact at this
point u and v are interchangeable). As suggested by our examples
above, we leave the vector D(z ∗ ṽ1) alone. However, we operate
on the other vector D(z ∗ ũ1) in the same way we have done so far
with z. Namely, we pick two vectors u2, v2 ∈ �2(ZN/2) whose system
matrix (Definition 3.7 with N replaced by N/2) is unitary for all n.
We pass D(z ∗ ũ1) through the filters corresponding to ṽ2 and ũ2,
followed in each case by a downsampling operator. These, plus the
output of the top branch, become the output of our second-stage
analysis procedure. In other words the ouput is the set of vectors
D(z ∗ ṽ1), D(D(z ∗ ũ1) ∗ ṽ2), and D(D(z ∗ ũ1) ∗ ũ2). This is shown in
the left side of Figure 16.

FIGURE 16
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For the synthesis, or reconstruction, phase, we need only to
introduce a new pair of branches on the right side corresponding
to the two branches on the left introduced at the second stage.
Each branch consists of an upsampling operator followed by a
convolution, namely with v2 in one branch and with u2 in the lowest
branch, as in Figure 16. We then add the outputs of these two
convolutions. By Theorem 3.15, the net effect of all the branches
introduced at the second stage is the identity. Thus by the results
for the first stage, the total effect of the entire diagram is the identity,
and we have perfect reconstruction.

If N is divisible by 2p, we can repeat this process up to p times.
Each time we subdivide only the lowest branch, each time using
filters u�, v� satisfying the conditions of Theorem 3.8, to guarantee
perfect reconstruction. Figure 17 shows this process at stage 3. In
the analysis phase of this figure (the left half), each box represents
convolution of the incoming signal with the two filters, followed by
downsampling each result. For example, the output of the first box
is the pair D(z ∗ ṽ1), D(z ∗ ũ1), similar to Figure 13. In the synthesis
phase, each box represents upsampling of the two incoming signals,
followed by convolutions with the two filters, as in the right half of
Figure 14.

We formalize this process with the following definition.

Definition 3.16 Suppose N is divisible by 2p. A pth-stage wavelet
filter sequence is a sequence of vectors u1, v1, u2, v2, . . . , up, vp such
that, for each � � 1, 2, . . . , p,

u�, v� ∈ �2(ZN/2�−1),

FIGURE 17
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and the system matrix

A�(n) � 1√
2

[
û�(n) v̂�(n)

û�(n + N
2� ) v̂�(n + N

2� )

]
(3.30)

is unitary for all n � 0, 1, . . . , (N/2�)− 1.
For an input z ∈ �2(ZN ), define

x1 � D(z ∗ ṽ1) ∈ �2(ZN/2), (3.31)

and

y1 � D(z ∗ ũ1) ∈ �2(ZN/2). (3.32)

Define x2, y2, . . . , xp, yp inductively by

x� � D(y�−1 ∗ ṽ�) ∈ �2(ZN/2�) (3.33)

and

y� � D(y�−1 ∗ ũ�) ∈ �2(ZN/2�) (3.34)

for � � 2, . . . , p.
The output of the analysis phase of the pth-stage wavelet filter bank

is the set of vectors {x1, x2, . . . , xp, yp}.
The recursion formulae (3.33) and (3.34) can be best understood

by considering the �th stage of the filtering sequence, as in the left
half of Figure 18.

Note that y1, y2, . . . , yp−1 do not occur in the output of the analysis
phase. For � < p, y� is used only to define x�+1 and y�+1. If we write

FIGURE 18
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out x� and y� explicitly, we obtain

x� � D(D(· · ·D(D(z ∗ ũ1) ∗ ũ2) · · · ∗ũ�−1) ∗ ṽ�) (3.35)

and

y� � D(D(· · ·D(D(z ∗ ũ1) ∗ ũ2) · · · ∗ũ�−1) ∗ ũ�). (3.36)

Notice that the sum of the number of components of all the
output vectors of the analysis stage is

N

2
+ N

4
+ · · · + N

2p−1
+ N

2p
+ N

2p
� N,

as expected.
The reconstruction phase can be described by the following

sequence of steps. At the first stage of the reconstruction, we
compute (U(yp)) ∗ up and (U(xp)) ∗ vp. By the perfect reconstruction
property of the lowest block of the filter bank (the analysis and
synthesis phases corresponding to the filters vp and up), we have

(U(yp)) ∗ up + (U(xp)) ∗ vp � yp−1.

Continue similarly with yp−1 and xp−1 to obtain yp−2. Then use yp−2

and xp−2 to obtain yp−3, etc., as suggested by Figure 19.
Formally,

yp−2 � (U(yp−1)) ∗ up−1 + (U(xp−1)) ∗ vp−1,

yp−3 � (U(yp−2)) ∗ up−2 + (U(xp−2)) ∗ vp−2,

and so on until

y1 � (U(y2)) ∗ u2 + (U(x2)) ∗ v2.

FIGURE 19
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Then one more step yields the original vector z, that is,

z � (U(y1)) ∗ u1 + (U(x1)) ∗ v1.

We now consider the number of multiplications needed to compute
the output of the analysis phase of the wavelet filter bank sequence.
The reconstruction phase is computable in the same number of
multiplications (Exercise 3.2.4).

Lemma 3.17 Suppose N � 2n, 1 ≤ p ≤ n, and u1, v1, u2, v2, . . . ,

up, vp form a pth stage wavelet filter sequence. Suppose z ∈ �2(ZN ).
Then the output {x1, x2, x3, . . . , xp, yp} of the analysis phase of the
corresponding pth stage wavelet filter bank can be computed using no
more than

4N + N log2 N

complex multiplications. (We are assuming that the vectors û1, v̂1, . . . ,

ûp, v̂p have been precomputed and stored. We are determining only the
subsequent computation required for each z.)

Proof
We use the fact (Lemma 2.39) that the DFT of a vector of length 2k

can be computed using at most k2k−1 complex multiplications, via
the FFT. We first compute ẑ, which requires

n2n−1 � 1
2
N log2 N

multiplications. From now until the final step, we stay in the
frequency domain, that is, we work with the DFT at every stage.

At the first stage, we compute (z ∗ ṽ1)ˆ � ẑv̂1 (by Lemma 2.30
and equation (3.3)) via N multiplications, and similarly for (z ∗ ũ1) .̂
Now, instead of applying the IDFT to compute z ∗ ṽ1 and then
downsampling, we apply Exercise 3.2.1 (i) to obtain x̂1 � (D(z ∗ ṽ1))ˆ
from (z ∗ ṽ1)ˆwithout any multiplications. Also define y1 � D(z ∗ ũ1)
and compute ŷ1 in the same way. So we have obtained x̂1 and ŷ1 with
2N additional multiplications.

At the second stage, recall that x2 � D(y1 ∗ ṽ2) and y2 �
D(y1 ∗ ũ2). Because we have already computed ŷ1, we can compute
(y1 ∗ ṽ2)ˆ � ŷ1v̂2 in N/2 multiplications, since these vectors have
length N/2. Then we use Exercise 3.2.1 (i) to do the downsampling
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on the transform side, yielding x̂2. We compute ŷ2 with N/2
multiplications similarly.

We continue in this way. Each step ends with a downsampling,
which reduces the size of the vectors by a factor of 2. The jth step
yields a pair of vectors, xj and yj; xj is kept to the end, and yj is used
at the next stage to yield xj+1 and yj+1. The jth stage requires a total of
2(N/2j−1) multiplications. After p stages, we have x̂1, x̂2, . . . , x̂p, and
ŷp, and altogether we have used

2
(
N + N

2
+ N

4
+ · · · + N

2p−1

)
< 4N

multiplications for these stages.
To compute {x1, x2, x3, . . . , xp, yp}, we need to compute the IDFTs

of x̂1, x̂2, . . . , x̂p, and ŷp. Since x1 ∈ �2(ZN/2); x2 ∈ �2(ZN/4), . . . ; xp ∈
�2(Zp

N/2); and yp ∈ �2(Zp

N/2), this requires at most

1
2

(
(n − 1)2n−1 + (n − 2)2n−2 + · · · + (n − p)2n−p + (n − p)2n−p

)
≤ n2n−1 � 1

2
N log2 N

multiplications (see Exercise 3.2.3 for the proof of the inequality).
Thus the total number of multiplications is at most

2 · 1
2
N log2 N + 4N � 4N + N log2 N.

Thus this recursive filter bank procedure can be computed
rapidly, requiring only about two to three times as many multipli-
cations as the FFT for large N . If the filters u1, . . . , up, v1, . . . , vp all
have at most K nonzero components, we can compute the output
of the analysis phase using at most 4KN multiplications (Exercise
3.2.12).

Although the recursive description in Definition 3.16 is useful
for computational purposes, it is not clear what it has to do with
our original intent of constructing orthonormal bases for �2(ZN ).
There is an equivalent nonrecursive reformulation of our filter bank
structure, which gives us more insight and leads to orthonormal
bases. We begin with a lemma. To be clear about our notation, we
point out that when we write D(z) ∗ w, we mean (D(z)) ∗ w, not
D(z ∗w).
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Lemma 3.18 Suppose N is even, say N � 2M, z ∈ �2(ZN ), and
x, y, w ∈ �2(ZN/2). Then

D(z) ∗w � D(z ∗ U(w)), (3.37)

and

U(x) ∗ U(y) � U(x ∗ y). (3.38)

Proof
To prove equation (3.37), we note that w(m) � U(w)(2m) for each
m; hence,

D(z) ∗w(n) �
(N/2)−1∑
m�0

D(z)(n −m)w(m)

�
(N/2)−1∑
m�0

z(2n − 2m)U(w)(2m)

�
N−1∑
k�0

z(2n − k)U(w)(k) � z ∗ U(w)(2n)

� D(z ∗ U(w))(n),

since U(w)(k) � 0 at the odd values of k, so they can be added to the
sum on m with no change.

To prove equation (3.38), the fact that U(y)(m) � 0 if m is odd
and U(y)(m) � y(m/2) if m is even, shows that

U(x)∗U(y)(n) �
N−1∑
m�0

U(x)(n−m)U(y)(m) �
(N/2)−1∑
k�0

U(x)(n−2k)y(k).

If n is odd, then so is n − 2k, hence U(x)(n − 2k) � 0 for all k. So in
this case,

U(x) ∗ U(y)(n) � 0 � U(x ∗ y)(n),

by definition. If n is even, say n � 2�, then U(x)(n − 2k) �
U(x)(2�− 2k) � x(�− k), so, from above,

U(x) ∗ U(y)(n) �
(N/2)−1∑
k�0

x(�− k)y(k) � x ∗ y(�) � (U(x ∗ y))(n).
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When we write D�(z), we mean the composition of D with itself
� times, applied to z. More formally, D1 � D and, by induction,
we define D�(z) � (D ◦ D�−1)(z) for � > 1. We define U�(z) �
(U ◦ U�−1)(z) in the same way. Note that D� : �2(ZN ) → �2(Z�

N/2)
is given by

D�(z)(n) � z(2�n),

whereas U� : �2(Z�
N/2)→ �2(ZN ) is given by

U�(w)(n) �
{

w(n/2�) if 2�|n
0 if 2� 	 |n.

Corollary 3.19 Suppose N is divisible by 2�, x, y, w ∈ �2(ZN/2�), and
z ∈ �2(ZN ). Then

D�(z) ∗w � D�(z ∗ U�(w)), (3.39)

and

U�(x ∗ y) � U�(x) ∗ U�(y). (3.40)

Proof
Exercise 3.2.5.

We now introduce a nonrecursive notation that will be seen to
be equivalent to the recursive notation in Definition 3.16.

Definition 3.20 Suppose N is divisible by 2p. Suppose vectors
u1, v1, u2, v2, . . . , up, vp are given, such that, for each � � 1, 2, . . . , p,

u�, v� ∈ �2(ZN/2�−1).

Define f1 � v1, and g1 � u1. Then inductively define f�, g� ∈ �2(ZN ), for
� � 2, 3, . . . , p, by

f� � g�−1 ∗ U�−1(v�) (3.41)

and

g� � g�−1 ∗ U�−1(u�). (3.42)

Writing a few of these out, we see that

f2 � u1 ∗ U(v2), g2 � u1 ∗ U(u2),

f3 � u1 ∗ U(u2) ∗ U2(v3), g3 � u1 ∗ U(u2) ∗ U2(u3),
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and so on, with general terms

f� � u1 ∗ U(u2) ∗ U2(u3) ∗ · · ·U�−2(u�−1) ∗ U�−1(v�) (3.43)

and

g� � u1 ∗ U(u2) ∗ U2(u3) ∗ · · ·U�−2(u�−1) ∗ U�−1(u�). (3.44)

Note that all the convolution operations in the definitions of f� and
g� involve only uj filters, except for the last convolution in the case
of f�, which involves v�.

For future reference, we note that

f̃� � (g�−1 ∗ U�−1(v�))˜� g̃�−1 ∗ (U�−1(v�))˜� g̃�−1 ∗ U�−1(ṽ�), (3.45)

by Exercise 3.2.2. Similarly,

g̃� � g̃�−1 ∗ U�−1(ũ�). (3.46)

The next lemma allows us to describe the output of the analysis
phase of a pth stage recursive wavelet filter bank as a set of
single (nonrecursive) convolutions. It also allows us to describe the
reconstruction phase in a similar way.

Lemma 3.21 Suppose N is divisible by 2p, z ∈ �2(ZN ), and
u1, v1, . . . , up, vp are such that

u�, v� ∈ �2(ZN/2�−1),

for each � � 1, 2, . . . , p. Define x1, x2, . . . , xp, y1, y2, . . . , yp as in
equations (3.31)–(3.34), and f1, f2, . . . fp, g1, g2, . . . , gp as in Definition
3.20. Then for � � 1, 2, . . . , p,

x� � D�(z ∗ f̃�), (3.47)

and

y� � D�(z ∗ g̃�). (3.48)

Proof
We prove equations (3.47) and (3.48) together by induction on �.
When � � 1, equations (3.47) and (3.48) hold by equations (3.31)
and (3.32) and the definitions of f1 and g1. Now suppose equations
(3.47) and (3.48) hold for � − 1. By equation (3.33), induction, and
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equation (3.39),

x� � D(y�−1 ∗ ṽ�) � D(D�−1(z ∗ g̃�−1) ∗ ṽ�)
� D ◦ D�−1(z ∗ g̃�−1 ∗ U�−1(ṽ�))

� D�(z ∗ g̃�−1 ∗ U�−1(ṽ�)) � D�(z ∗ f̃�),
by equation (3.45). Similarly, using equation (3.34) in place of
equation (3.33),

y� � D(y�−1 ∗ ũ�) � D(D�−1(z ∗ g̃�−1) ∗ ũ�)
� D ◦ D�−1(z ∗ g̃�−1 ∗ U�−1(ũ�))

� D�(z ∗ g̃�−1 ∗ U�−1(ũ�)) � D�(z ∗ g̃�),
by equation (3.46). This completes the induction step and hence the
proof.

Thus the output of the �th branch of the analysis phase of the
filter bank sequence is D�(z ∗ f̃�), for � � 1, 2, . . . , p. The output of
the final branch is Dp(z ∗ g̃p). This is exhibited in the left half of
Figure 20.

There is a similar description of the reconstruction phase of the
filter bank sequence.

Lemma 3.22 Suppose N is divisible by 2p. Consider a pth-stage filter
bank sequence u1, v1, . . . , up, vp as in Definition 3.16 (except that we do
not require that the system matrix in equation (3.30) be unitary for this
result). Define f1, . . . , fp, gp as in Definition 3.20. If the input to the �th

branch (1 ≤ � ≤ p) of the reconstruction phase (i.e., the branch for which
the next operation is convolution with v�) is x�, and all other inputs are
zero, then the output of the reconstruction phase is

f� ∗ U�(x�).

If the input to the final branch (for which the next operation is convolution
with up) is yp, and all other inputs are zero, then the output of the
reconstruction phase is

gp ∗ Up(yp).

Proof
Exercise 3.2.6.
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FIGURE 20

Thus the full recursive pth-stage wavelet filter sequence can be
represented by the nonrecursive structure shown in Figure 20.

Recall our original goal of constructing orthonormal bases
for �2(ZN ). Recall also from Definition 3.16 that the output
of the analysis phase of our filter bank is the set of vectors
x1, x2, . . . xp−1, xp, yp. By Lemma 3.21, for each � � 1, 2, . . . , p,

x�(k) � D�(z ∗ f̃�)(k) � z ∗ f̃�(2�k) � 〈z, R2�kf�〉, (3.49)

for k � 0, 1, . . . , (N/2�)− 1, by equation (3.4). Similarly,

yp(k) � Dp(z ∗ g̃p)(k) � z ∗ g̃p(2pk) � 〈z, R2pkgp〉, (3.50)

for k � 0, 1, . . . , (N/2p) − 1. As we noted above, the total number
of components of x1, x2, . . . xp−1, xp, yp is N . As one might hope, it
turns out (by Theorem 3.27) that these are the components of the
expansion of z with respect to an orthonormal basis.
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Definition 3.23 Suppose N is divisible by 2p, where p is a positive
integer. Let B be a set of the form

{R2kf1}(N/2)−1
k�0 ∪ {R4kf2}(N/4)−1

k�0 ∪ · · · ∪ {R2pkfp
}(N/2p)−1
k�0 ∪ {R2pkgp

}(N/2p)−1
k�0

for some f1, f2, . . . , fp, gp ∈ �2(ZN ). If B forms an orthonormal basis for
�2(ZN ), we call B a pth stage wavelet basis for �2(ZN ). We say that f1, f2,
. . . , fp, gp generate B.

Our goal is to show that f1, f2, . . . , fp, gp, obtained by Definitions
3.16 and 3.20, generate a pth stage wavelet basis. The key step is
contained in the next lemma.

Lemma 3.24 Suppose N is divisible by 2�, g�−1 ∈ �2(ZN ), and the
set

{R2�−1kg�−1}(N/2�−1)−1
k�0 (3.51)

is orthonormal with N/2�−1 elements. Suppose u�, v� ∈ �2(ZN/2�−1),
and the system matrix A�(n) in equation (3.30) is unitary for all n �
0, 1, . . . , (N/2�)− 1. Define

f� � g�−1 ∗ U�−1(v�) and g� � g�−1 ∗ U�−1(u�).

Then

{R2�kf�}(N/2�)−1
k�0 ∪ {R2�kg�}(N/2�)−1

k�0 (3.52)

is an orthonormal set with N/2�−1 elements.

Proof
By equation (3.4) and the assumed orthonormality of the set (3.51),

g�−1 ∗ g̃�−1(2�−1k) � 〈g�−1, R2�−1kg�−1〉
�
{

1 if k � 0
0 if k � 1, 2, . . . , (N/2�−1)− 1.

(3.53)

By Theorem 3.8, applied to �2(Z�−1
N/2), our assumption that A�(n) is

unitary guarantees that the set

{R2kv�}(N/2�)−1
k�0 ∪ {R2ku�}(N/2�)−1

k�0 (3.54)
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is an orthonormal basis for �2(Z�−1
N/2). In particular, using equation

(3.4),

v� ∗ ṽ�(2k) � 〈v�, R2kv�〉 �
{

1 if k � 0
0 if k � 1, 2, . . . , (N/2�)− 1,

(3.55)

v� ∗ ũ�(2k) � 〈v�, R2ku�〉 � 0 for all k, (3.56)

and

u� ∗ ũ�(2k) � 〈u�, R2ku�〉 �
{

1 if k � 0
0 if k � 1, 2, . . . , (N/2�)− 1.

(3.57)

To prove the orthonormality of the set (3.52), use equation (3.4) to
write, for k � 0, 1, . . . , (N/2�+1)− 1,

〈f�, R2�kf�〉 � f� ∗ f̃�(2�k)

� g�−1 ∗ U�−1(v�) ∗ g̃�−1 ∗ U�−1(ṽ�)(2�k)

� (g�−1 ∗ g̃�−1) ∗
(
U�−1(v� ∗ ṽ�)

)
(2�k),

where we have used equation (3.45), the commutativity and
associativity of convolution, and equation (3.40). By writing out the
last convolution as bracketed, we have

〈f�, R2�kf�〉 �
N−1∑
n�0

(g�−1 ∗ g̃�−1)(2�k − n)U�−1(v� ∗ ṽ�)(n).

Observe that U�−1(v� ∗ ṽ�)(n) � (v� ∗ ṽ�)(j) when n � 2�−1j and 0
otherwise. Hence the sum over all n reduces to a sum over n of the
form 2�−1j, hence to a sum over j after a substitution. We obtain

〈f�, R2�kf�〉 �
(N/2�−1)−1∑

j�0

g�−1 ∗ g̃�−1(2�k − 2�−1j)(v� ∗ ṽ�)(j).

By equation (3.53),

g�−1 ∗ g̃�−1(2�k − 2�−1j)

� g�−1 ∗ g̃�−1(2�−1(2k − j)) �
{

1 if j � 2k
0 if j 	� 2k, j ∈ ZN/2�−1 .

Therefore

〈f�, R2�kf�〉 � (v� ∗ ṽ�)(2k) �
{

1 if k � 0
0 if k � 1, 2, . . . , (N/2�)− 1,
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by equation (3.55). It follows that the set {R2�kf�}(N/2�)−1
k�0 is orthonor-

mal, as in Exercise 3.1.1.
Following the same procedure, but with g� in place of f�, leads to

〈g�, R2�kg�〉 � (u� ∗ ũ�)(2k) �
{

1 if k � 0
0 if k � 1, 2, . . . , (N/2�)− 1,

by equation (3.57). This proves that the set {R2�kg�}(N/2�)−1
k�0 is

orthonormal.
Similarly, by equation (3.56), we obtain

〈f�, R2�kg�〉 � (v� ∗ ũ�)(2k) � 0

for all k. As in Exercise 3.1.1, this proves that 〈R2�kf�, R2�jg�〉 � 0 for
all j, k. Hence the set in relation (3.52) is orthonormal.

This result can be proved by a DFT argument (Exercise 3.2.7).
Lemma 3.24 shows that we can break a subspace generated by
translates by 2�−1 of one vector into two orthogonal subspaces,
each generated by the translates by 2� of another vector. This is a
generalization of Theorem 3.8, which shows how to do this when the
original subspace is the whole space �2(ZN ), regarded as generated
by all translates of δ. The more general result in Lemma 3.24 allows
us to iterate this splitting. To describe this, the following terminology
is convenient.

Definition 3.25 Suppose X is an inner product space and U and V

are subspaces of X. Suppose U ⊥ V (i.e., for all u ∈ U and all v ∈ V ,
〈u, v〉 � 0). Define

U ⊕ V � {u + v : u ∈ U, v ∈ V}. (3.58)

We call U ⊕ V the orthogonal direct sum of U and V . In particular, if
we say U ⊕V � X, we mean that U and V are subspaces of X, U ⊥ V ,
and every element x ∈ X can be written as x � u + v for some u ∈ U

and v ∈ V .

Lemma 3.26 Suppose N is divisible by 2�, g�−1 ∈ �2(ZN ), and the set

{R2�−1kg�−1}(N/2�−1)−1
k�0

is orthonormal and has N/2�−1 elements. Suppose u�, v� ∈ �2(ZN/2�−1),
and the system matrix A�(n) in equation (3.30) is unitary for all n �
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0, 1, . . . , (N/2�)− 1. Define

f� � g�−1 ∗ U�−1(v�) and g� � g�−1 ∗ U�−1(u�).

Define spaces

V−�+1 � span {R2�−1kg�−1}(N/2�−1)−1
k�0 , (3.59)

W−� � span {R2�kf�}(N/2�)−1
k�0 , (3.60)

and

V−� � span {R2�kg�}(N/2�)−1
k�0 . (3.61)

Then

V−� ⊕W−� � V−�+1. (3.62)

Proof
By Lemma 3.24, every basis element R2�kg� of V−� is orthogonal to
every basis element R2�jf� of W−�. It follows by linearity that every
element of V−� is orthogonal to every element of W−�. This proves
that V−� ⊥ W−�. Next we claim that V−� and W−� are subspaces of
V−�+1. To see this, note that, for k � 0, 1, . . . , (N/2�)− 1,

R2�kg�(n) � g�(n − 2�k) � g�−1 ∗ U�−1(u�)(n − 2�k)

�
N−1∑
m�0

g�−1(n − 2�k −m)U�−1(u�)(m).

Since U�−1(u�)(m) � u�(m/2�−1) if 2�−1 | m and 0 otherwise, the sum
over m reduces to a sum over m of the form 2�−1j, and

R2�kg�(n) �
(N/2�−1)−1∑

j�0

g�−1(n − 2�k − 2�−1j)u�(j)

�
(N/2�−1)−1∑

j�0

u�(j)R2�−1(j+2k)g�−1(n).

Since this is true for any n, we have

R2�kg� �
(N/2�−1)−1∑

j�0

u�(j)R2�−1(j+2k)g�−1. (3.63)
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In the same way, we obtain

R2�kf� �
(N/2�−1)−1∑

j�0

v�(j)R2�−1(j+2k)g�−1. (3.64)

Therefore R2�kg� and R2�kf� belong to V−�+1, because the right-
hand sides of equations (3.63) and (3.64) are linear combinations
of translates of g�−1 by integer multiples of 2�−1, that is, linear
combinations of basis elements of V−�+1. Thus the basis elements
R2�kg� of V−� and R2�kf� of W−� belong to V−�+1, and hence the
same is true for all elements of their spans. So V−� and W−� are
subspaces of V−�+1. However, we have seen that V−� and W−� each
have dimension N/2�, so V−� ⊕W−� has dimension N/2�−1, which
is the dimension of V−�+1. It follows that V−� ⊕W−� � V−�+1.

It may seem strange that we define the spaces V−� with negative
indices. This is done partly so that the spaces will increase with
the index (i.e., V−� ⊆ V−�+1) and partly to be consistent with the
notation we use later when considering wavelets on R.

Lemma 3.26 contains the main effort required to prove that the
output of the analysis phase of a pth-stage wavelet filter bank system
with input z yields the coefficients of z with respect to a pth-stage
wavelet basis.

Theorem 3.27 Suppose N is divisible by 2p, and u1, v1, u2, v2, . . . ,

up, vp is a pth-stage wavelet filter sequence (Definition 3.16). Define f1,

f2, . . . fp, g1, g2, . . . , gp as in Definition 3.20. Then f1, f2, . . . , fp, gp
generate a pth-stage wavelet basis (Definition 3.23) for �2(ZN ).

Proof
Our goal is to prove the orthonormality of the set in Definition
3.23. Given this, the fact that this set has N elements implies that
it is an orthonormal basis for �2(ZN ). Since f1 � v1 and g1 � u1,
Theorem 3.8 guarantees that the set {R2kf1}(N/2)−1

k�0 ∪ {R2kg1}(N/2)−1
k�0

is orthonormal. Then an inductive argument and Lemma 3.24
show that the set {R2�kf�}(N/2�)−1

k�0 is orthonormal for each � �
1, 2, . . . , p, and

{
R2pkgp

}(N/2p)−1
k�0 is orthonormal. Therefore, to obtain

the orthonormality of the full set, all that remains to be proved is
the orthogonality of elements in the different subsets. Consider first
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some R2�kf� and some R2mjfm, where we may assume m < �. Lemma
3.26 implies (with the spaces V−� and W−� defined there) that

R2�kf� ∈ W−� ⊆ V−�+1 ⊆ · · · ⊆ V−m,

and R2mjfm ∈ W−m. Also by Lemma 3.26, V−m ⊥ W−m, so R2�kf� is
orthogonal to R2mjfm. Similarly, for any � ≤ p, any R2pkgp belongs to
V−p ⊆ V−� and hence is orthogonal to any R2�kf� ∈ W−�.

The best way to understand what we have done is in terms of
Figure 21, which shows the subspaces in Lemma 3.26. The arrows
represent containment. Beginning at the right, we break �2(ZN ) into
orthogonal subspaces V−1 and W−1. We keep W−1, but we break V−1

into orthogonal subspaces V−2 and W−2. We keep W−2, and continue
with V−2. We keep going in this way until the pth stage, where we
keep both W−p and V−p. We see in chapters 4 and 5 that this point
of view can be applied to develop wavelets on Z and R.

FIGURE 21

By equations (3.49) and (3.50), the output of the analysis phase
of the pth-stage wavelet filter bank in Figure 20 with input z is a set
of vectors whose components are the components of the expansion
of z with respect to the pth-stage wavelet basis in Theorem 3.27. In
particular, by Lemma 3.17, the wavelet coefficients are computable
by a fast algorithm.

For comparison with later work, we set the following notation.

Definition 3.28 SupposeN is divisible by 2p. Let u1, v1, . . . , up, vp be
a pth-stage wavelet filter sequence (Definition 3.16). Let f1, g1, . . . , fp, gp
be as in Definition 3.20. For j � 1, 2, . . . , p and k � 0, 1, . . . , (N/2j)−1,
define

ψ−j,k � R2jkfj, (3.65)

and

ϕ−j,k � R2jkgj. (3.66)
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Thus, in this notation, the pth-stage wavelet basis generated by
f1, f2, . . . , fp, gp (Theorem 3.27) has the form{
ψ−1,k

}(N/2)−1
k�0 ∪ {ψ−2,k

}(N/4)−1
k�0 ∪ · · ·∪ {ψ−p,k}(N/2p)−1

k�0 ∪ {ϕ−p,k}(N/2p)−1
k�0 .

(3.67)
The elements of this orthonormal basis are called wavelets on ZN .

Note that in this terminology,

V−j � span{ϕ−j,k}(N/2j)−1
k�0 (3.68)

and

W−j � span{ψ−j,k}(N/2j)−1
k�0 . (3.69)

We warn the reader that the term “wavelets” in general usage is
reserved for wavelets on R, which we consider in chapter 5. The
version here, which we have called wavelets on ZN , is our analog
for the finite-dimensional case. This case may have independent
interest, and it serves as the easiest introduction to the train of
thought in chapter 5.

Exercise 3.2.10 (ii) shows that the definition of the term “wavelet”
in Definition 3.28 is not very restrictive, but we let it stand for
heuristic reasons.

Summarizing our results, we have the following recipe for
creating a wavelet basis for �2(ZN ).

Recipe 3.29 Suppose 2p|N . Let u1, v1, . . . , up, vp be a pth-stage
wavelet filter sequence (Definition 3.16). Define f1, f2, . . . , fp, g1, g2, . . . , gp
as in Definition 3.20, and ψ−j,k, ϕ−p,k as in equations (3.65) and (3.66).
Then the set in equation (3.67) is a pth-stage wavelet basis for �2(ZN ).

It turns out that all wavelet bases for �2(ZN ) are obtained from
some wavelet filter sequence by this recipe (Exercise 3.2.9).

We have seen that for any such wavelet basis, the components
of some vector z ∈ �2(ZN ) in this basis can be computed quickly (in
roughlyN log2 N multiplications, ifN is a power of 2) via the analysis
phase of the filter bank diagram. The inverse transformation can also
be computed with the same speed via the reconstruction phase of
the filter bank diagram (Exercise 3.2.4).

It is sometimes useful to look at the wavelets on the DFT side.
By taking the DFT of both sides of equation (3.43) and (3.44), and
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applying Exercise 3.2.1 (ii), we obtain

ψ̂−j,0(n) � f̂j(n) � û1(n)û2(n) · · · ûj−1(n)v̂j(n) (3.70)

and

ϕ̂−j,0(n) � ĝj(n) � û1(n)û2(n) · · · ûj−1(n)ûj(n). (3.71)

Note also that

ψ−j,k � R2jkfj � R2jkψ−j,0 (3.72)

and

ϕ−p,k � R2pkgp � R2pkϕ−p,0. (3.73)

By Lemma 2.13, the DFTs of these translates are given by

ψ̂−j,k(m) � e−2πim2jk/N ψ̂−j,0(m) (3.74)

and

ϕ̂−j,k(m) � e−2πim2jk/N ϕ̂−j,0(m) (3.75)

for all j, k. To clarify our notation, we remark that ψ̂−j,k denotes
(ψ−j,k) ,̂ and similarly ϕ̂−j,k denotes (ϕ−j,k) .̂

So far we have not required any relationship between the filters
u�, v� at different stages. It may even seem that no relationship is
possible, because they are vectors of different lengths. However, the
next lemma provides a way of obtaining filters u�, v� satisfying the
criterion that the system matrix A� in Definition 3.16 is unitary for
all n, directly from filters u1, v1 satisfying this property for A1.

Lemma 3.30 (The folding lemma) Suppose N is divisible by 2, and
u1 ∈ �2(ZN ).

i. Define u2 ∈ �2(ZN

2
) by

u2(n) � u1(n)+ u1

(
n+ N

2

)
. (3.76)

(Note that the right side of equation (3.76) is periodic with period
N/2.) Then for all m

û2(m) � û1(2m). (3.77)
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ii. Suppose N is divisible by 2�. Define u� ∈ �2(ZN/2�−1) by

u�(n) �
2�−1−1∑
k�0

u1

(
n+ kN

2�−1

)
. (3.78)

Then

û�(m) � û1(2�−1m). (3.79)

Proof
To prove part i, write

û2(m) �
(N/2)−1∑
n�0

u2(n)e−2πinm/(N/2)

�
(N/2)−1∑
n�0

u1(n)e−2πinm/(N/2) +
(N/2)−1∑
n�0

u1

(
n + N

2

)
e−2πinm/(N/2),

by definition of u2. In the first of the sums on the last line, let k � n;
in the second, let k � n+ N/2. We obtain

û2(m) �
(N/2)−1∑
k�0

u1(k)e−2πik(2m)/N +
N−1∑
k�N/2

u1(k)e−2πik(2m)/N � û1(2m),

as required. Part ii follows from part i by an induction argument
(Exercise 3.2.11).

We call this the folding lemma because u2 is obtained from u1 by
cutting u1 just before N/2, folding that part over the first part, and
summing. It has the following corollary.

Corollary 3.31 Suppose N is divisible by 2p. Suppose u, v ∈ �2(ZN )
are such that the system matrix A(n) in Definition 3.7 is unitary for
all n. Let u1 � u and v1 � v, and, for all � � 2, 3, . . . p, define
u� by equation (3.78) and v� similarly with v1 in place of u1. Then
u1, v1, u2, v2, . . . , up, vp is a pth-stage wavelet filter sequence.

Proof
By equation (3.79), the �th system matrix is

A�(n) � 1√
2

[
û�(n) v̂�(n)

û�
(
n+ N

2�
)

v̂�
(
n+ N

2�
) ]
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� 1√
2

[
û1(2�−1n) v̂1(2�−1n)

û1
(
2�−1n+ N

2

)
v̂1
(
2�−1n + N

2

) ] � A1(2�−1n);

hence it is automatically unitary for all n.

Thus if we are given u and v satisfying the condition in Theorem
3.8, we can obtain u1, v1, . . . , up, vp in an automatic way by Corollary
3.31, and then obtain a wavelet basis by Recipe 3.29. In this case
we say we have a wavelet basis with repeated filters. Note that for
repeated filters, equations (3.70) and (3.71) become, respectively,

ψ̂−j,0(n) � û(n)û(2n)û(4n) · · · û(2j−2n)v̂(2j−1n), (3.80)

and

ϕ̂−j,0(n) � û(n)û(2n)û(4n) · · · û(2j−2n)û(2j−1n). (3.81)

Wavelet bases of this type are particularly easy to construct because
they require constructing only one pair u, v such that the system
matrix is unitary.

Exercises

3.2.1. Suppose z ∈ �2(ZN ).
i. If N is even, prove that

(D(z))ˆ(n) � 1
2

(
ẑ(n)+ ẑ

(
n+ N

2

))
,

for all n. Hint: Show that the DFT on N/2 points of
D(z) agrees with the DFT on N points of (z + z∗)/2, for
z∗(n) � (−1)nz(n).

ii. Prove that

(U(z))ˆ(n) � ẑ(n)

for all n. Note that the DFT on the left side is in �2(Z2N ),
whereas the one on the right is in �2(ZN ). Nevertheless,
the assertion is that they (or their periodic extensions)
agree at every n. Hint: See equations (2.48) and (2.49).

3.2.2. Suppose z, w ∈ �2(ZN ).
i. Prove that (z ∗w)˜� z̃ ∗ w̃.
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ii. Suppose that N is even. Prove that (D(z))˜� D(z̃).
iii. Prove that (U(z))˜� U(z̃).

3.2.3. Suppose 1 ≤ p ≤ n. Prove that

(n − 1)2n−1 + (n − 2)2n−2 + · · · + (n − p+ 1)2n−p+1

+(n − p)2n−p + (n − p)2n−p ≤ n2n.

Suggestion: Use induction on n.
3.2.4. Suppose N � 2n, 1 ≤ p ≤ n. Prove that the reconstruction

phase of the pth stage recursive wavelet filter bank
can be computed using at most 4N + N log2 N complex
multiplications.

Hint: As in the analysis stage, do everything in the Fourier
domain. To start, one needs to compute (U(x1)) ,̂ (U(x2)) ,̂ . . . ,
(U(xp))ˆ and (U(yp))ˆ. But since x1 ∈ �2(ZN/2), we can
use Exercise 3.2.1 (ii) to compute (U(x1))ˆ with at most
((n − 1)2n−1)/2 multiplications, and similarly for the other
vectors. Thus these require the same number of multipli-
cations as computing the IDFTs of x̂1, x̂2, . . . , x̂p, and ŷp in
Lemma 3.17. The multiplications required to compute the
DFTs of all the filtering operations is the same as for the anal-
ysis phase. The DFT of each U(yj) is obtained from ŷj with
no multiplications via Exercise 3.2.1 (ii). After this, we have
ẑ, so to find z we perform the IDFT. So the total computation
count is the same as in Lemma 3.17.

3.2.5. Prove equations (3.39) and (3.40). Suggestion: Use induc-
tion.

3.2.6. Suppose N is divisible by 2p, and u1, v1, . . . , up, vp are such
that, for each � � 1, 2, . . . , p,

u�, v� ∈ �2(ZN/2�−1).

Define f1, f2, . . . fp, g1, g2, . . . , gp as in Definition 3.20. For
� � 1, 2, . . . , p, and w ∈ �2(Z�

N/2), define

A�(w) � (U(· · · (U(U(w) ∗ v�) ∗ u�−1) · · ·) ∗ u2) ∗ u1

and

B�(w) � (U(· · · (U(U(w) ∗ u�) ∗ u�−1) · · ·) ∗ u2) ∗ u1.
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i. Prove that for � � 1, 2, . . . , p,

A�(w) � U�(w) ∗ f�
and

B�(w) � U�(w) ∗ g�.
Hint: Note that A�(w) � B�−1(U(w) ∗ v�) and B�(w) �
B�−1(U(w) ∗ u�), and use induction.

ii. Prove Lemma 3.22. Hint: If x� is the input to the �th

branch of the reconstruction phase of the filter bank,
and all other inputs are zero, check that the output is
A�(x�). Similarly, if the input in the last branch is yp, and
the other inputs are zero, check that the output is Bp(yp).

3.2.7. Prove Lemma 3.24 by taking DFTs and using the criteria in
Exercise 3.1.11 (i). Hint: Write

2�−1∑
k�0

|f̂�(n+kN/2�)|2 �
2�−1∑
k�0

|ĝ�−1(n+kN/2�)|2|v̂�(n+kN/2�)|2,

using Exercise 3.2.1 (ii). Break up the sum into a sum over k
even and a sum over k odd. Note that because v̂� has period
N/2�−1, the terms involving v̂ are constant in each of these
two sums. Take the constant out and apply the assumptions.
This will give the orthonormality of the set {R2�kf�}(N/2�)−1

k�0 .

Similar arguments deal with the remaining cases.
3.2.8. Suppose X is an inner product space, with subspaces U,V,

and W . Suppose U ⊥ V,U ⊥ W , and U ⊕V � U ⊕W . Prove
that V � W .

3.2.9. Suppose N is divisible by 2p, and

{R2kf1}(N/2)−1
k�0 ∪{R4kf2}(N/4)−1

k�0 ∪···{R2pkfp}(N/2p)−1
k�0 ∪{R2pkgp}(N/2p)−1

k�0

is a wavelet basis for �2(ZN ). Define

W−� � span{R2�kf�}(N/2�)−1
k�0

for � � 1, 2, . . . , p and

V−p � span{R2pkgp}(N/2p)−1
k�0 .
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Also define, for � � 1, 2, . . . , p− 1,

V−� � W−�−1 ⊕W−�−2 ⊕ · · · ⊕W−p ⊕ V−p.

Prove inductively that there exist g� for � � 1, 2, . . . , p − 1,
and u�, v� for � � 1, 2, . . . , p, such that
i. u�, v� ∈ �2(Z�−1

N/2) for each �.
ii. The system matrix A�(n) in equation (3.30) is unitary for

each n and �.
iii. f1 � v1, g1 � u1.
iv. f� � g�−1 ∗ U�−1(v�), g� � g�−1 ∗ U�−1(u�) for 2 ≤ � ≤ p.

v. V−� � span{R2�kg�}(N/2�)−1
k�0 for � � 1, 2, . . . , p− 1.

Remark: This proves the assertion in the text that every
wavelet basis is obtained from a wavelet filter sequence via
Recipe 3.29.

Hint: For � � 1, define v1 � f1, and obtain u1 as in Lemma
3.12, but with u and v interchanged. Then part i holds for
� � 1, as does part ii, by Theorem 3.8. Then define g1 � u1.
If we set

X−1 � span{R2kg1}(N/2)−1
k�0 ,

then by Theorem 3.8, W−1 ⊥ X−1 and

W−1 ⊕ X−1 � �2(ZN ) � W−1 ⊕ V−1.

By Exercise 3.2.8, then, X−1 � V−1, and part v holds for
� � 1. Now suppose the result is true for � − 1. To prove
it for �, note that f� ∈ W−� ⊆ V−�+1. So by the induction
hypothesis (part v) for �−1, there exist coefficients v�(k), k �
0, 1, . . . , (N/2�−1)− 1 such that

f� �
(N/2�−1)−1∑

k�0

v�(k)R2�−1kg�−1.

This defines v� ∈ �2(Z�−1
N/2) such that f� � g�−1 ∗ U�−1(v�).

From this and Exercises 3.2.1 (ii) and 3.1.11 (i), we get

2� �
2�−1∑
k�0

∣∣∣∣ĝ�−1

(
n + kN

2�

)∣∣∣∣
2 ∣∣∣∣v̂�

(
n+ kN

2�

)∣∣∣∣
2

.
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Break this sum into the terms with k � 2j and the terms with
k � 2j + 1. Since v̂� has period 2�−1, the term involving v̂�
is constant in each sum, with value |v̂�(n)|2 in the first sum,
and value |v̂�(n+N/2�)|2 in the second. Factoring these out
and applying Exercise 3.1.11 (i) to g�−1 leads to

|v̂�(n)|2 +
∣∣∣∣v̂�
(
n+ N

2�

)∣∣∣∣
2

� 2.

This allows us to pick u� so that the system matrix A�(n) is
unitary for all n, by Lemma 3.12 with u and v reversed.
For � < p, define g� � g�−1 ∗ U�−1(u�). Define X−� �
span{R2�kg�}(N/2�)−1

k�0 . (When � � p, gp is already given.
Then up can be obtained from gp in the same way that
v� was obtained from f�.) Then by Lemma 3.26, V−�+1 �
X−� ⊕W−�. However, by definition, V−�+1 � V−� ⊕W−�. By
Exercise 3.2.8, it follows that X−� � V−�. This completes the
induction.

3.2.10. i. Suppose N is a multiple of 2p and 1 ≤ � ≤ p. Suppose
f ∈ �2(ZN ). Prove that there is a pth-stage wavelet basis
such that f� � f (notation as in Definition 3.23) if and

only if the set {R2�kf }(N/2�)−1
k�0 is orthonormal. Hint: The

“only if” direction is immediate. To prove the “only if”
direction, let E0 � f̂ and for j � 1, . . . , �, define

Ej(n) �
(

1
2j

2j−1∑
k�0

∣∣∣∣ f̂
(
n+ kN

2j

)∣∣∣∣
2
)1/2

.

Note that Ej has period N/2j. If {R2�kf }(N/2�)−1
k�0 is

orthonormal, then by Exercise 3.1.11 (i), E�(n) � 1 for
all n. Define u1, . . . , u�−1 and v� so that ûj � Ej−1/Ej, j �
1, 2, . . . , �−1, and v̂� � E�−1/E�,when the denominators
are not 0. (Note that when the denominator is 0, the
numerator must be 0 also. In this case define the fraction
to be 1.) Note ûj is periodic with period N/2j−1 and v̂� has
period N/2�−1. Check that

|ûj(n)|2 + |ûj(n + N/2j)|2 � 2
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for all n, and similarly for v�. This allows us to select
v1, v2, . . . , v�−1, u� such that the system matrix Aj(n) is
unitary for all j � 1, 2, . . . , �, by Lemma 3.12. We can
select any admissable filters u�+1, v�+1, . . . , up, vp and
obtain a wavelet basis as in Theorem 3.27. Note that our
definitions give us, using equation (3.70) and Exercise
3.2.1 (ii), that

f̂� � û1û2 · · · û�−1v̂� � E0

E�

,

by cancellation. But E0 � f̂ by definition, and E� � 1
as noted above. (Note that if Ej(n) � 0 for some j and n,
then f̂ (n) � 0, and at least one Ek−1(n)/Ek(n) is 0, so we
still have the equality in this case.)

ii. Suppose N � 2n. Prove that if f ∈ �2(ZN ) has ‖f ‖ � 1,
then there exists an nth-stage wavelet basis such that
fn � f . This means that, by our rather weak definition of
the term, every vector of length one is a wavelet.

3.2.11. Prove Lemma 3.30, part ii.
3.2.12. Suppose N is divisible by 2p, and u1, v1, u2, v2, . . . , up, vp

is a pth-stage wavelet filter sequence such that, for each
� � 1, 2, . . . , p, both u� and v� have at most K nonzero
components. Prove that components of z ∈ �2(ZN ) with
respect to the corresponding wavelet basis can be computed
using at most 4KN complex multiplications. Hint: Compute
everything directly, not using the DFT. Each component
of each convolution requires at most K multiplications to
compute because the filter has at most K nonzero entries.
In the recursive filter bank structure, one needs to compute
two convolutions of length N , two of length N/2, two of
length N/4, down to two of length N/2p.

Remark: This shows that the wavelet transform for the
case of bounded filter length can be computed in at most
a fixed multiple of N multiplications, which is faster than
the FFT! However, comparing to Lemma 3.17, this is an
advantage only if 4KN < 4N + N log2 N , that is, if K <

1 + (1/4) log2 N . For example, if all the filters have at most
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four nonzero entries, this requires N > 212 before this
yields an advantage. However, if all the filters are real
valued and z is real valued, then all these multiplications are
real multiplications, which correspond to 1/3 of a complex
multiplication (Exercise 2.3.1).

3.2.13. (Iteration in the two-dimensional case) Suppose 2�|N1 and
2�|N2. Suppose that for each � � 1, 2, . . . , p, we are given
u�,0, u�,1, u�,2, u�,3 ∈ �2(ZN1/2�−1 × ZN2/2�−1). For � � 1, 2, . . . , p,
define A�(n1, n2) as in Exercise 3.1.12 (ii) except with u�,m
in place of um, m � 0, 1, 2, 3, N1/2� in place of N1, and
N2/2� in place of N2. Suppose that for each �, n1, and n2,
A�(n1, n2) is unitary. (Such a sequence of filters is called
a two-dimensional wavelet filter sequence). Define f1,0 �
u1,0, f1,1 � u1,1, f1,2 � u1,2, and g1 � u1,3. Inductively define
f�,j � g�−1∗U�−1(u�,j), for j � 0, 1, 2 and g� � g�−1∗U�−1(u�,4).
Define, for � � 1, 2, . . . , p,

B� �
2⋃

j�0

{R2�k1,2�k2 f�,j}k1�0,1,...,(N1/2�)−1,k2�0,1,...,(N2/2�)−1.

Also define

Cp � {R2pk1,2pk2gp}k1�0,1,...,(N1/2p)−1,k2�0,1,...,(N2/2p)−1.

Prove that

B1 ∪ B2 ∪ · · · ∪ Bp ∪ Cp

is an orthonormal basis for �2(ZN1 × ZN2). Such a basis is
called a two-dimensional (discrete) wavelet basis.

3.2.14. (Folding lemma in two-dimensions)
i. Suppose N1 and N2 are even, and u1 ∈ �2(ZN1 × ZN2).

Define u2 ∈ �2(ZN1/2 × ZN2/2) by

u2(n1, n2) � u1(n1, n2)+ u1

(
n1 + N1

2
, n2

)

+u1

(
n1, n2 + N2

2

)

+u1

(
n1 + N1

2
, n2 + N2

2

)
.
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More generally, suppose 2p|N1 and 2p|N2. Define u� ∈
�2(ZN1/2�−1 × ZN2/2�−1) for 1 ≤ � ≤ p by

u�(n1, n2) �
2�−1−1∑
k1�0

2�−1−1∑
k2�0

u1

(
n1 + k1N1

2�−1
, n2 + k2N2

2�−1

)
.

Prove that

û�(m1, m2) � û1(2�−1m1, 2�−1m2),

for all � � 1, 2, . . . , p.
ii. Suppose 2p|N1 and 2p|N2. Suppose u1,0, u1,1, u1,2, and

u1,3 are such that the matrix A1(n1, n2) (defined as in
Exercise 3.2.13) is unitary for all (n1, n2) ∈ ZN1 × ZN2 .
For � � 2, . . . , p, define u�,0, u�,1, u�,2, and u�,3 as in part
i but with u�,j in place of u�, for each j � 0, 1, 2, 3. Prove
that A�(n1, n2) is unitary for all �, n1, and n2; that is, the
resulting u�,j for j � 0, 1, 2, 3 and � � 1, 2, . . . , p form a
two-dimensional wavelet filter sequence.

3.3 Examples and Applications

We summarize our algorithm for constructing wavelet bases for
�2(ZN ). Suppose N is divisible by 2p. We begin with a wavelet filter
sequence u1, v1, u2, v2, . . . , up, vp, that is, (Definition 3.16) a sequence
such that for each � � 1, 2, . . . , p,

u�, v� ∈ �2(ZN/2�−1),

and the system matrix

A�(n) � 1√
2

[
û�(n) v̂�(n)

û�
(
n+ N

2�
)

v̂�
(
n+ N

2�
) ]

is unitary for n � 0, 1, . . . , (N/2�)− 1 (equivalently, for all n). If we
have u1, v1 ∈ �2(ZN ) such thatA1(n) is unitary for all n, we can obtain



3. Wavelets on ZN226

a wavelet filter sequence with repeated filters by defining

u�(n) �
2�−1−1∑
k�0

u1

(
n+ kN

2�−1

)
and v�(n) �

2�−1−1∑
k�0

v1

(
n+ kN

2�−1

)
.

(3.82)
We then define (Definition 3.20) f1 � v1, g1 � u1, and, by induction,
for 2 ≤ � ≤ p,

f� � g�−1 ∗ U�−1(v�), and g� � g�−1 ∗ U�−1(u�). (3.83)

More explicitly, this gives equations (3.43) and (3.44). We define

ψ−j,k � R2jkfj and ϕ−j,k � R2jkgj, (3.84)

for j � 1, 2, . . . , p. Then

{ψ−1,k}(N/2)−1
k�0 ∪ {ψ−2,k}(N/4)−1

k�0 ∪ · · · ∪ {ψ−p,k}(N/2p)−1
k�0 ∪ {ϕ−p,k}(N/2p)−1

k�0

is an orthonormal basis for �2(ZN ), called a pth-stage wavelet basis.
Notice that if we have a pth-stage wavelet basis and 1 ≤ j ≤ p,

then (
j⋃

l�1

{ψ−�,k}0≤k≤(N/2�)−1

)
∪ {ϕ−j,k}0≤k≤(N/2j)−1 (3.85)

forms a jth-stage wavelet basis. In fact this basis is exactly
what we would obtain from the jth-stage wavelet filter sequence
u1, v1, . . . , uj, vj by the algorithm given above.

Suppose j ∈ {1, 2, . . . , p}. Observe that

{ϕ−j,k}(N/2j)−1
k�0 � {R2jkgj}(N/2j)−1

k�0

is an orthonormal basis for V−j (orthonormality follows because

the set (3.85) is orthonormal, and V−j � span {R2jkgj}(N/2j)−1
k�0 by

definition). Hence the orthogonal projection P−j(z) of z ∈ �2(ZN )
onto V−j (see Definition 1.97) is

P−j(z) �
(N/2j)−1∑

k�0

〈z, ϕ−j,k〉ϕ−j,k. (3.86)

We call P−j(z) the partial reconstruction at level −j of z. It represents
an approximation to z using only N/2j terms in the full expansion
of z in terms of a jth-stage wavelet basis. As we would expect, this
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approximation is more and more coarse for larger values of j. We
think of P−j(z) as the approximation to z “at level −j.”

The orthogonal projection Q−j(z) of z onto

W−j �span{ψ−j,k}(N/2j)−1
k�0 � span {R2jkgj}(N/2j)−1

k�0

is defined by

Q−j(z) �
(N/2j)−1∑

k�0

〈z, ψ−j,k〉ψ−j,k. (3.87)

Recall (Lemma 3.26) that V−j ⊕ W−j � V−j+1, so {ϕ−j,k}(N/2j)−1
k�0 ∪

{ψ−j,k}(N/2j)−1
k�0 is an orthonormal basis forV−j+1 (as is {ϕ−j+1,k}(N/2j−1)−1

k�0 );
hence,

P−j+1(z) �
(N/2j)−1∑

k�0

〈z, ϕ−j,k〉ϕ−j,k +
(N/2j)−1∑

k�0

〈z, ψ−j,k〉ψ−j,k,

for any z ∈ �2(ZN ). Therefore

P−j+1(z) � P−j(z)+ Q−j(z), (3.88)

for j � 2, 3, . . . , p. For convenience, set V0 � �2(ZN ) and let P0

be the identity operator (i.e., P0(z) � z for all z). Then equation
(3.88) is true even for j � 1, since {ϕ−1,k}N/2−1

k�0 ∪ {ψ−1,k}N/2−1
k�0 �

{R2kv1}N/2−1
k�0 ∪ {R2ku1}N/2−1

k�0 is an orthonormal basis for �2(ZN ), by
Theorem 3.8. We regard Q−j(z) as containing the “details at level
−j + 1” needed to pass from P−j(z), the level −j approximation of z,
to P−j+1(z), the level −j + 1 approximation.

Let

R−j(z) �
j∑

��1

Q−�(z).

Then applying equation (3.88) inductively, we obtain z � P0(z) �
P−1(z)+ Q−1(z) � P−2(z)+ Q−2(z)+ Q−1(z) and so on, until

z � P−j(z)+
j∑

��1

Q−�(z) � P−j(z)+ R−j(z),
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for each j � 1, . . . , p (this can also be seen from the fact that the set
(3.85) is an orthonormal basis for �2(ZN )). Thus R−j(z) is the error
made in approximating z by P−j(z).

In this section, we first consider some examples of wavelet bases.
Later we describe some basic compression examples.

Example 3.32
(The Haar system) In Exercise 3.1.2, we considered the first-stage
Haar system. Here we consider the general pth-stage Haar system,
obtained from the first stage by the procedure just described, using
repeated filters. Suppose N is divisible by 2p. Define

u1 �
(

1√
2
,

1√
2
, 0, 0, . . . , 0

)

and

v1 �
(

1√
2
,− 1√

2
, 0, 0, . . . , 0

)
.

We saw in Exercise 3.1.2, that u1, v1 form a first-stage wavelet basis.
Define u�, v� by equation (3.82) for 2 ≤ � ≤ p. We can show (Exercise
3.3.1 (i)) that

u�(0) � 1√
2
, u�(1) � 1√

2
, and u�(n) � 0 for 2 ≤ n ≤

(
N

2�−1

)
− 1,

(3.89)

v�(0) � 1√
2
, v�(1) � − 1√

2
, and v�(n) � 0 for 2 ≤ n ≤

(
N

2�−1

)
− 1.

(3.90)
Then equations (3.83), (3.89), (3.90), and an induction argument
(Exercise 3.3.1 (iii)) lead to

f�(n) �



2−�/2, n � 0, 1, . . . , 2�−1 − 1
−2−�/2, n � 2�−1, 2�−1 + 1, . . . , 2� − 1
0, n � 2�, 2� + 1, . . . , N − 1

(3.91)

and

g�(n) �
{

2−�/2, n � 0, 1, . . . , 2� − 1
0, n � 2�, 2� + 1, . . . , N − 1,

(3.92)
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for � � 1, 2, . . . , p. Hence (Exercise 3.3.1 (iv)) for k � 0, 1, . . . , (N/2�)−
1,

ψ−�,k(n) �



2−�/2, n � 2�k, 2�k + 1, . . . , 2�k + 2�−1 − 1
−2−�/2, n � 2�k + 2�−1, 2�k + 2�−1 + 1, . . . , 2�k + 2� − 1
0, n � 0, 1, . . . , 2�k − 1; 2�k + 2�, . . . , N − 1

(3.93)
and

ϕ−�,k(n) �
{

2−�/2, n � 2�k, 2�k + 1, . . . , 2�k + 2� − 1
0, n � 0, 1, . . . , 2�k − 1; 2�k + 2�, 2� + 1, . . . , N − 1.

(3.94)
For the Haar system, the reconstructions at level � have a simple
interpretation. One can show (Exercise 3.3.1 (v)) that for 2�k ≤ n ≤
2�k + 2� − 1,

P−�(z)(n) � 1
2�
[
z(2�k)+ z(2�k + 1)+ · · · + z(2�k + 2� − 1)

]
.

(3.95)
In other words, P−�(z) is obtained from z by replacing the 2�

consecutive values of z on the segment n � 2�k, 2�k + 1, . . . , 2�k +
2� − 1 by their average. We regard P−�(z) as z seen at a resolution
of 2�. By equation (3.88), Q−� contains the information needed to
upgrade the approximation from a resolution of 2� to one of 2�−1.

Example 3.33
(Shannon wavelets) In Example 3.10, we considered the first-stage
Shannon basis. Calling the u and v there u1 and v1, respectively, we
define u�, v� ∈ �2(Z�−1

N/2) by equation (3.82). Then equation (3.79) and
its analog for v̂� imply that

v̂�(n) �
{ √

2, N
2�+1 ≤ n ≤ 3N

2�+1 − 1
0, 0 ≤ n ≤ N

2�+1 − 1; 3N
2�+1 ≤ n ≤ N

2�−1 − 1

and

û�(n) �
{ √

2, 0 ≤ n ≤ N
2�+1 − 1; 3N

2�+1 ≤ n ≤ N
2�−1 − 1

0, N
2�+1 ≤ n ≤ 3N

2�+1 − 1.

Since û� and v̂� have period N/2�−1, these formulae define them
for all n. Define f� and g� by equation (3.83), and ψ−j,k and ϕ−j,k by
equation (3.84), for j � 1, 2, . . . , p (where N is divisible by 2p+1).
Then ψ̂−1,0 � v̂1 and ϕ̂−1,0 � û1. For � ≥ 2, Exercise 3.2.1 (ii) leads



3. Wavelets on ZN230

(Exercise 3.3.2) to

ψ̂−�,0(n) �




2�/2, N
2�+1 ≤ n ≤ N

2� − 1;
N − N

2� ≤ n ≤ N − N
2�+1 − 1

0, 0 ≤ n ≤ N
2�+1 − 1; N

2� ≤ n ≤ N − N
2�−1 ;

N − N
2�+1 ≤ n ≤ N − 1

(3.96)

and

ϕ̂−�,0(n) �
{

2�/2, 0 ≤ n ≤ N
2�+1 − 1;N − N

2�+1 ≤ n ≤ N − 1
0, N

2�+1 ≤ n ≤ N − N
2�+1 − 1.

(3.97)

Thus ψ̂−1,0 is nonzero only on the highest N/2 frequencies, ψ̂−2,0

is nonzero only on the next highest N/4 frequencies, and so on,
down to ϕ̂−p,0, which is 0 except at the lowest N/2p frequencies. By
Lemma 2.13, similar remarks hold for the translates ψ−j,k and ϕ−p,k.
Thus the partial reconstruction P−p(z) consists exactly of the lowest
N/2p frequencies of z, P−p+1(z) the lowest N/2p−1 frequencies, and
so on. In this case the partial reconstructions give a filtering out of
the high frequencies, to varying degrees.

Example 3.34
(Real Shannon wavelets) In Example 3.11 we constructed the first-
stage real Shannon wavelet basis. It was a minor modification of the
first stage Shannon basis that had the advantage that the basis vectors
were all real valued. By applying the iteration procedure previously
described to this basis, we can obtain a real-valued pth-stage wavelet
basis with structure very similar to the Shannon basis. Let u1 and
v1 be the u and v of Example 3.11. Define u� and v� by equation
(3.82), f� and g� by equation (3.83), and ψ−j,k and ϕ−j,k by equation
(3.84). Then ψ̂−1,0 � v̂ and ϕ̂−1,0 � û are as given in Example 3.11.
For � > 1, a calculation (Exercise 3.3.3) similar to the one for the
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Shannon wavelets in Example 3.33 shows that

ψ̂−�,0(n) �




2(�−1)/2, n � N
2�+1 , N − N

2�+1

2�/2, N
2�+1 + 1 ≤ n ≤ N

2� − 1;
N − N

2� + 1 ≤ n ≤ N − N
2�+1 − 1

2(�−1)/2i, n � N
2�−2(�−1)/2i, n � N − N

2�

0, 0 ≤ n ≤ N
2�+1 − 1;

N
2� + 1 ≤ n ≤ N − N

2� − 1;
N − N

2�+1 + 1 ≤ n ≤ N − 1

(3.98)

and

ϕ̂−�,0(n) �




2�/2, 0 ≤ n ≤ N
2�+1 − 1;

N − N
2�+1 + 1 ≤ n ≤ N − 1

2(�−1)/2i, n � N
2�+1

−2(�−1)/2i, n � N − N
2�+1

0, N
2�+1 + 1 ≤ n ≤ N − N

2�+1 − 1.

(3.99)

Figure 22 shows the graphs of a few 4th level real Shannon wavelet
basis functions ψ−j,k, j � 1, 2, 3, 4, and ϕ−4,k, for N � 512. At each
level, the translation parameter k has been picked so that the basis
function is centered in the middle of the range. Note how well
spatially localized the high-frequency basis function ψ−1,128 is
(Figure 22a). Thereafter ψ−2,64 is relatively localized (Figure 22b),
ψ−3,32 less localized (Figure 22c), and ψ−4,16 (Figure 22d) and ϕ−4,16

(Figure 22e) even less so. Note that the 4th-level wavelet basis
consists of 256 translates by 2 of ψ−1,0; 128 translates by 4 of ψ−2,0; 64
translates by 8 of ψ−3,0; 32 translates by 16 of ψ−4,0; and 32 translates
by 16 of ϕ−4,0. In Figure 22f, we have plotted the magnitude of the
DFT of the first-generation wavelets ψ−1,k (because they are related
to each other by translation, their DFTs have the same magnitude
at every point, by Lemma 2.13). We already knew that the graph
should look like this, by the definition of v̂ � ψ̂−1,0 in Example 3.11,
but we have included the graph for comparison with Example 3.35.
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FIGURE 22 (a) ψ−1,128, (b) ψ−2,64, (c) ψ−3,32, (d) ψ−4,16, (e) ϕ−4,16,
(f) |ψ̂−1,k|
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Figure 23 shows an example of a signal z and the magnitude of
its DFT. The signal (Figure 23a) is

z(n) �




0, 0 ≤ n ≤ 127

sin
(
|n−128|1.7

128

)
, 128 ≤ n ≤ 255

0, 256 ≤ n ≤ 383

sin
(
|n−128|2

128

)
, 384 ≤ n ≤ 447

0, 448 ≤ n ≤ 511.

(3.100)

For the first interval in which z is not identically 0 (n such that
128 ≤ n ≤ 255), the rate of oscillation of z is increasing as we move
from left to right. Also, the oscillation of z is more rapid in the second
nontrivial interval (n such that 384 ≤ n ≤ 447). So we expect
that there is a substantial range of frequencies present in z. This is
reflected in the magnitude of the DFT of z (Figure 23b): the two outer
humps show the existence of a low-frequency component (from the
first interval, although the magnitude of the DFT does not tell us
which portion of the signal contributes this low-frequency part),
and the two inner humps show that there is a higher frequency
component (from the second interval).

Figure 23 should be compared with the graphs in Figure 24, which
show the 4th level real Shannon wavelet coefficients of z in equation
(3.100) (z is plotted again in Figure 24a). In Figure 24f, we plot
the value of 〈z, ϕ−4,k〉 at the point 24k, since ϕ−4,k � R24kg4 is
centered around the point 24k. This graph shows the coefficients of
the lowest frequency wavelets; note that we get fairly large values
near the left portion of the first interval 128 ≤ n ≤ 255, where
the lower frequency part of z occurs. Figures 24 b–e show the
other levels of wavelet coefficients, each time with the value of
the wavelet coefficient 〈z, ψ−j,k〉 plotted above the point 2jk where
the corresponding wavelet basis vector is centered. In Figure 24e
(plotting 〈z, ψ−4,k〉), we see that the next higher frequency wavelet
coefficients are still mostly concentrated on the left portion of
the first interval. Figure 24d shows somewhat higher frequency
coefficients 〈z, ψ−3,k〉, which are concentrated more on the right half
of the interval containing the lower frequency component. This is
due to the increase in the frequency of z from the left to right of the
first interval. The two highest frequency sets of coefficients 〈z, ψ−1,k〉
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FIGURE 23 (a) z, (b) Magnitude of ẑ

and 〈z, ψ−2,k〉 in Figures 24b and 24c are mostly large on or near the
second interval 384 ≤ n ≤ 511. The exception is that there are a few
large high-frequency wavelet coefficients near the endpoint n � 255
of the first interval; this is due to the more rapid jump of z there due
to the cutoff of the graph at 255. The main point is that the wavelet
coefficients give a sense not only of which frequency levels make
up the signal, but which locations in the signal require the different
frequencies. Thus the wavelet coefficients give a simultaneous space
and frequency analysis of a signal.
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FIGURE 24 (a) z, (b) 〈z, ψ−1,k〉, (c) 〈z, ψ−2,k〉, (d) 〈z, ψ−3,k〉,
(e) 〈z, ψ−4,k〉, (f) 〈z, ϕ−4,k〉
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The role of the wavelet coefficients at different levels is further
clarified by Figure 25, which shows the partial reconstructions, in
the real Shannon wavelet basis, of the vector z from Figure 24a.
Figure 25a is the graph of the vector

P−4(z) �
31∑
k�0

〈z, ϕ−4,k〉 ϕ−4,k,

as in equation (3.86). Thus Figure 25a exhibits the portion of the
wavelet expansion of z corresponding to the coefficients plotted in
Figure 24f. Roughly speaking, these are the lowest frequency terms
in the wavelet expansion. This is why the portion of the vector z

that is best reconstructed by this part of the expansion is the portion
from about n � 128 to about n � 170, where z is oscillating relatively
slowly. The partial expansion corresponding to the coefficients in
Figure 24e is

Q−4(z) �
31∑
k�0

〈z, ψ−4,k〉ψ−4,k,

as defined in equation (3.87). By equation (3.88), the next level
projection is

P−3(z) � Q−4(z)+ P−4(z).

The vector P−3(z) is plotted in Figure 25b; it is made up of the terms
in the wavelet expansion of Z corresponding to the coefficients in
Figures 24e and 24f. Thus it contains the information in the two
lowest frequency levels of the wavelet expansion. This is exhibited
by the picture, as the next lowest level of oscillation of the vector z
begins to show up. In Figure 25c, we plot P−2(z), corresponding to
the coefficients in Figures 24d–f, which includes the next lowest
frequency level. Figure 25d shows P−1(z), including all but the
terms coming from the highest frequency wavelet coefficients in
Figure 24b. Note that the more slowly oscillating segment of z (for
128 ≤ n ≤ 255) is relatively faithfully reproduced, except for the
right edge (points near n � 255), where the cutoff requires higher
frequency terms for synthesis. Somewhat unexpectedly, P−1(z) does
a better job of approximating z near the right endpoint of the region
384 ≤ n ≤ 447 than near the left endpoint. This is similar to
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FIGURE 25 (a) P−4(z), (b) P−3(z), (c) P−2(z), (d) P−1(z), (e) P0(z),
(f) E � z − P0(z)
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the situation in Figure 6: although formula (3.100) suggests more
rapid oscillation near the right endpoint, this cannot be seen on the
discrete scale n � 0, 1, . . . , 511. On the discrete scale, z is actually
made up of lower frequency terms near n � 447 than near n � 384.
Figure 25e shows P0(z), which we define as in equation (3.88) by

P0(z) � Q−1(z)+ P−1(z).

Of course, P0(z) is the full reconstruction of z from all its wavelet
coefficients, so it should just be z. We carried out the computation of
the wavelet coefficients and the partial reconstructions on MatLab,
so Figure 25e is a test of our algorithm. Visually, it seems to agree
with the original in Figure 24a. To be more precise, we use MatLab to
plot the difference E � z − P0(z) in Figure 25f. The most important
thing to notice in this picture is the symbol ×10−14 above the upper
left corner of the box bounding the graph. It shows that the scale
on the y−axis is plotted in multiples of 10−14. Thus the error in
the reconstruction is less than 10−14 at every point; this error is
a consequence of round-off error resulting from the computer’s
inability to do computations to an infinite degree of accuracy. From
Figure 25 we get a sense of the information regarding z that is
contributed by each level of wavelet coefficients.

Example 3.35
(Daubechies’s D6 wavelets on ZN ) The real Shannon wavelet system
was designed to divide the frequency scale very sharply. Thus the
real Shannon wavelets have well-localized DFTs. Ingrid Daubechies
constructed families of wavelets that are very well localized in space
rather than in frequency. Her construction was originally done in
the contexts of Z (see section 4.7) and R (see section 5.5), but here
we adapt her construction to ZN .

We assume that N is divisible by 2p, for some positive integer
p, and that N/2p > 6. Let M � N/2. Our goal is to construct
u ∈ �2(ZN ) such that u has only six nonzero components and
satisfies equation (3.15). Then we apply Lemma 3.12 to find v so
that {R2kv}M−1

k�0 ∪ {R2ku}M−1
k�0 is a first-stage wavelet basis for �2(ZN ).

We begin with the trivial identity(
cos2

(πn
N

)
+ sin2

(πn
N

))5
� 1 for all n.
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Expanding this out, we have

cos10
(πn
N

)
+ 5 cos8

(πn
N

)
sin2

(πn
N

)
+ 10 cos6

(πn
N

)
sin4

(πn
N

)

+10 cos4
(πn
N

)
sin6

(πn
N

)
+5 cos2

(πn
N

)
sin8

(πn
N

)
+sin10

(πn
N

)
� 1.

(3.101)
Define

b(n) � cos10
(πn
N

)
+5 cos8

(πn
N

)
sin2

(πn
N

)
+10 cos6

(πn
N

)
sin4

(πn
N

)
.

Note that

cos
(
π(n +M)

N

)
� cos

(πn
N
+ π

2

)
� − sin

(πn
N

)
and similarly

sin
(
π(n +M)

N

)
� cos

(πn
N

)
.

Hence

b(n +M) � 10 cos4
(πn
N

)
sin6

(πn
N

)
+5 cos2

(πn
N

)
sin8

(πn
N

)
+ sin10

(πn
N

)
.

Thus by equation (3.101),

b(n)+ b(n +M) � 1 for all n.

We select u ∈ �2(ZN ) so that

|û(n)|2 � 2b(n). (3.102)

Then we have

|û(n)|2 + |û(n +M)|2 � 2 for all n � 0, 1, . . . ,M − 1,

that is, condition (3.15).
We could obtain equation (3.102) just by setting u � (

√
2b)ˇ

(where
√

2b is the vector whose value at n is
√

2b(n)), but this would
not give us a vector u that is nonzero only at six points. Instead,
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following Strichartz (1993), we write

b(n) � cos6
(πn
N

) [
cos4

(πn
N

)
+ 5 cos2

(πn
N

)
sin2

(πn
N

)
+10 sin4

(πn
N

)]
� cos6

(πn
N

) [(
cos2

(πn
N

)
−√10 sin2

(πn
N

))2

+(5+ 2
√

10) cos2
(πn
N

)
sin2

(πn
N

)]
.

Define û ∈ �2(ZN ) by

û(n) � √2e−5πin/N cos3
(πn
N

) [
cos2

(πn
N

)
−√10 sin2

(πn
N

)
+ i

√
5+ 2

√
10 cos

(πn
N

)
sin
(πn
N

)]
.

Then equation (3.102) holds. By applying Euler’s formula and the
double angle identities, we can write

û(n) � √2e−2πi4n/Ne3πin/N
(
eiπn/N + e−iπn/N

2

)3

×
[

1
2

(
1+ cos

(
2πn
N

))
−
√

10
2

(
1− cos

(
2πn
N

))

+i
√

5+ 2
√

10
2

sin
(

2πn
N

)]
.

To simplify the notation, let

a � 1−√10, b � 1+√10, and c �
√

5+ 2
√

10.

Using Euler’s formulas further, we obtain

û(n) �
√

2
8

e−2πi4n/N (e2πin/N + 1)3

×
[
a

2
+ b

4
(e2πin/N + e−2πin/N )+ c

4
(e2πin/N − e−2πin/N )

]
.
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At this point we can see that

û(n) �
5∑

k�0

u(k)e−2πikn/N , (3.103)

for some numbers u(0), u(1), . . . , u(5). Multiplying out and doing the
algebra gives

u � (u(0), u(1), u(2), u(3), u(4), u(5), 0, 0, . . . , 0)

�
√

2
32

(b+ c, 2a + 3b+ 3c, 6a + 4b+ 2c,

6a + 4b− 2c, 2a + 3b− 3c, b− c, 0, 0, . . . , 0).

Hence we obtain u ∈ �2(Z) such that equation (3.15) holds.
Define v ∈ �2(ZN ) by v(k) � (−1)k−1u(1 − k) for all k, which

agrees with equation (3.22) since u is real. By Lemma 3.12, u and v

generate a first-stage wavelet basis for �2(ZN ).
To be explicit,

v(0) � −u(1), v(1) � u(0), v(N − 4) � −u(5),

v(N − 3) � u(4), v(N − 2) � −u(3), v(N − 1) � u(2),

and v(n) � 0 for 2 ≤ n ≤ N − 4. That is,

v � (−u(1), u(0), 0, 0, . . . , 0, 0,−u(5), u(4),−u(3), u(2)). (3.104)

Hence v also has only six nonzero entries.
Notice that this works for any N > 6, and u and v at different

levels have the same form, the only difference being the number of
zeros in the vectors u and v. Thus we can define u1, v1 ∈ �2(ZN ) of
this form, then u2, v2 ∈ �2(ZN/2) similarly, down to up, vp ∈ �2(Zp

N/2)
(recall we assumed that N/2p is an integer larger than 6). This is
what we would obtain by the folding lemma (Lemma 3.30) also.
We now follow Recipe 3.29 to obtain a pth stage wavelet basis: define
f1 � v1, g1 � u1, then define f� and g� for 2 ≤ � ≤ p by equation (3.83),
and ψ−j,k, ϕ−p,k by equation (3.84). We call the resulting orthonormal
system Daubechies’s D6 wavelet basis for �2(ZN ), where the “6” refers
to the number of nonzero components of u and v. Daubechies
constructed a similar basis with 2L nonzero components, for each
positive integer L (see Exercise 3.3.4 for the case of D2, which are
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the Haar wavelets, and Exercise 3.3.5 for D4). For different values
of L, these wavelets have slightly different properties, as we discuss
when we come back to this subject in the context of R in chapter 5.

The case N � 512 and p � 4 is illustrated in Figure 26. These
plots should be compared with the corresponding plots for the
real Shannon wavelet basis in Figure 22. In Figure 26a we have
plotted the first-generation wavelet ψ−1,128, which is the same as
R256v1. However, since this vector has only six nonzero components,
we have restricted the plot to the small interval 245 ≤ n ≤
265 containing those nonzero components. The graphs appear
continuous because we have used connect-the-dots graphs in Figures
26 a–e, for consistency, because such graphs look better on a scale
of 511. However, in Figure 26a we have superimposed an “x” plot
to show that ψ−1,128 has only 6 nonzero components. The second
generation wavelet plotted in Figure 26b has 16 nonzero values,
and the third generation wavelet in Figure 26c has 36 nonzero
components. For these we have continued to restrict the graph to a
small portion of the full domain 0 ≤ n ≤ 511. For Figures 26d and 26e,
which depict ψ−4,16 and ϕ−4,16, respectively, we have plotted the full
domain so that the degree of localization can be clearly seen. These
vectors have 76 nonzero components. By comparing with Figure 22,
we see that the D6 wavelets are much more sharply localized in
space than the real Shannon wavelets. On the other hand, the D6
wavelets are not as precisely localized in frequency, as we can see
by comparing Figure 26f (showing the magnitude of the DFT of a
first-generation D6 wavelet) with Figure 22f (a corresponding plot
for a first-generation real Shannon wavelet).

In Figure 27, we plot the D6 wavelet coefficients of vector z

defined previously and studied in Figure 24. The coefficients are
plotted in the same order as in Figure 24. We see that the basic
features of the two sets of pictures are similar; the highest frequency
wavelet coefficients (the terms 〈z, ψ−1,n〉) are largest near the most
rapidly oscillating portion of z, and as we go down in level (and
hence in frequency) the wavelet coefficients are sensitive to the
more slowly oscillating portions of z. Thus the two different wavelet
systems (real Shannon and D6), although constructed on very
different principles, give roughly the same information. The main
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FIGURE 26 (a) ψ−1,128, (b) ψ−2,64, (c) ψ−3,32, (d) ψ−4,16, (e) ϕ−4,16,
(f) |ψ̂−1,k|
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FIGURE 27 (a) z, (b) 〈z, ψ−1,k〉, (c) 〈z, ψ−2,k〉, (d) 〈z, ψ−3,k〉,
(e) 〈z, ψ−4,k〉, (f) 〈z, ϕ−4,k〉
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difference in the two sets of graphs is that many of the D6 wavelet
coefficients are 0, instead of just being small as in the case of the
real Shannon basis. This is because the vector z has large intervals
in which it is 0. If we have a wavelet ψ such that all its nonzero
coefficients occur in an interval where z is identically 0, then the
wavelet coefficient

〈z, ψj,k〉 �
∑
n

z(n)ψj,k(n)

will be 0, because at every n, either z(n) � 0 or ψj,k(n) � 0. This is
the advantage of having such a highly localized basis.

In Figure 28a, we have plotted the vector

z(n) �




1− n
64 0 ≤ n ≤ 63

0, 64 ≤ n ≤ 255
5− n

64 256 ≤ n ≤ 319
0, 320 ≤ n ≤ 511.

In Figures 28b–f, we have plotted the D6 wavelet coefficients of
z at different levels. Note that the highest frequency wavelet
coefficients (corresponding to ψ−1,k, 0 ≤ k ≤ 255) have only a few
significantly large values, corresponding to the edges of the two
spikes in z. As we move down to lower frequency wavelets (those
with more nonzero components) we see more significant values in
a slightly larger region than just where z is nonzero. There are two
important observations to make regarding this example. The first is
that in Figures 28c–f, we see nonzero wavelet coefficients near the
right edge of the picture (near n � 511), despite the fact that the last
nonzero component of z occurs at n � 319. This is because we are
working on ZN , where every vector should be regarded as periodic
with period N . Thus we should regard z as having another spike just
to the right of the picture, which is the reason the wavelets located
near the right edge yield nonzero coefficients. This will no longer be
the case when we consider wavelets on Z in chapter 4. The second
major observation regarding Figure 28 is that very few of the D6
wavelet coefficients are significantly large. Thus it should not take
very many terms in the D6 wavelet expansion to approximate z very
accurately. The essential information about z can be contained in
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FIGURE 28 (a) z, (b) 〈z, ψ−1,k〉, (c) 〈z, ψ−2,k〉, (d) 〈z, ψ−3,k〉,
(e) 〈z, ψ−4,k〉, (f) 〈z, ϕ−4,k〉
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only a few D6 wavelet coefficient values. This leads to one of the
major applications of wavelets, namely compression.

Figures 29–34 show the results of some basic compression
experiments. In each figure, the top left graph is a signal z, which
belongs to �2(Z512) and hence is represented completely by 512
numbers. For any orthonormal basis B � {vj}511

j�0, we have

z �
511∑
j�0

〈z, vj〉 vj. (3.105)

We select some number K, the number of terms we will use for our
compressed approximation to z; for example, in Figure 29, K �
20. We sort the coefficients 〈z, vj〉 in order of magnitude, and use only
the terms in the expansion corresponding to the K largest ones. In
other words, if S is the set consisting of the K values of j for which
|〈z, vj〉| is the largest, we approximate z by

w �
∑
j∈S
〈z, vj〉 vj. (3.106)

(For the case of “ties,” where more than one coefficient has the
borderline value, we arbitrary choose to use the terms with highest
index until the correct number K of terms is obtained. A different
choice from among the ties would yield a different picture, but
the same relative error, as described below.) This is the best
approximation possible using onlyK of the terms in equation (3.105).

Results of this compression procedure are plotted for four
different bases in Figures 29–34. The four bases used are the
Fourier basis, the real Shannon basis, Daubechies’s D6 basis, and
the Euclidean basis. For the Euclidean basis, this compression just
amounts to zeroing out all values below the K largest (in absolute
value). For the Fourier basis, it is possible for the approximation w to
have nonzero imaginary part, but since we have selected the original
vector z to be real, the imaginary part is part of the error in w. So
we have plotted only the real part of the approximation w for the
Fourier basis.

We define the error made in approximating z by w as ‖z−w‖. We
define the relative error as ‖z−w‖/‖z‖. This adjusts for the size of z,
giving an absolute scale that can be used to compare the compression
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FIGURE 29 (a) Original, (b) Fourier, K � 20, (c) Shannon Wavelet,
K � 20, (d) D6 Wavelet, K � 20, (e) Euclidean, K � 20, (f) Relative
Error
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of different signals. In Figures 29f, 31f, 32f, 33f, and 34f, we have
plotted the relative error for each type of basis as a function of K, the
number of terms in the approximation. The four graphs correspond
to the four bases as follows:

solid line: D6 basis
dotted line: real Shannon basis
dashed line: Fourier basis
dash-dot line: Euclidean basis

In Figure 29a, the original vector z is the same “double spike” as
in Figure 28a. For Figures 29c–e, we take K � 20. The relative errors
for these cases are:

Figure 29b, Fourier basis: Relative error .2431
Figure 29c, real Shannon basis: Relative error .1694
Figure 29d, D6 basis: Relative error .1238
Figure 29e, Euclidean basis: Relative error .7767.

Figure 29f displays the graphs of the relative errors. In this case
we present only the graph for 1 ≤ K ≤ 300 because the graphs are
too small to be visible for K > 300. In Figures 30b–e, we consider
the same original vector z but we increaseK to 75. The relative errors
are:

Figure 30b, Fourier basis: Relative error .1223
Figure 30c, real Shannon basis: Relative error .0650
Figure 30d, D6 basis: Relative error 5.55 ×10−15

Figure 30e, Euclidean basis: Relative error .2709.

These results confirm our intuition from the graphs that
Daubechies’s D6 basis does very well at compressing z. This is
because of the sharp localization of the D6 wavelets and the fact
that z is zero such a large proportion of the time. The result is that
many of the D6 wavelet coefficients are zero or very small. When
we compress, we omit the corresponding terms from the expansion
(3.105), but since these coefficients are very small this has little
effect. To put it another way, the D6 compression does not waste
terms on the part of the graph where z is zero. Interestingly, the
D6 expansion is virtually perfect with K � 75 terms, although
the vector z has 128 nonzero components. This is because the
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FIGURE 30 (a) Original, (b) Fourier, K � 75, (c) Shannon Wavelet,
K � 75, (d) D6 Wavelet, K � 75, (e) Euclidean, K � 75, (f) Fourier,
K � 200
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multilevel structure of the wavelet basis allows one lower frequency
wavelet to carry information about a number of points. The real
Shannon wavelets, being somewhat localized, do fairly well, but
not as well as the D6 basis. The Fourier basis has difficulty dealing
with large jumps, because the basis exponentials e2πinm/N come from
very smooth functions. It takes many large high-frequency terms
to synthesize a big jump, resulting in poor compression. This is
further demonstrated in Figure 30f, when we consider the Fourier
compression with K � 200 terms. Even with such a large number
of terms, the approximation is not good near the large jumps of
z, and the relative error in this case is .0512. Compression with the
Euclidean basis does the obvious thing; it keeps the K largest values.
That gives a perfect reconstruction of this particular z once K ≥ 128,
but for small values of K the approximation is not very good.

In Figure 31 we consider the signal z from Figures 23, 24 and
27. This signal is more difficult to compress, so we have taken
K � 75, and the relative error in Figure 31f is shown over the entire
interval 1 ≤ K ≤ 512. For K � 75, the relative errors are:

Figure 31b, Fourier basis: Relative error .5899
Figure 31c, real Shannon basis: Relative error .2062
Figure 31d, D6 basis: Relative error .0763
Figure 31e, Euclidean basis: Relative error .5393.

The vector z has both spatial localization (being zero on a
major part of its graph) and frequency localization (being made up
primarily of two major frequency ranges), as shown in Figure 23b.
Hence the two wavelet bases do a good job of compressing it. The
D6 basis has the advantage of being able to more effectively ignore
the regions where z is zero.

In Figure 32a, the signal

z(n) � sin(n1.5/64)

is plotted. It is a chirp of steadily increasing frequency. The relative
errors for K � 50 are:

Figure 32b, Fourier basis: Relative error .4396
Figure 32c, real Shannon basis: Relative error .1781
Figure 32d, D6 basis: Relative error .3473
Figure 32e, Euclidean basis: Relative error .8972.
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FIGURE 31 (a) Original, (b) Fourier, K � 75, (c) Shannon Wavelet,
K � 75, (d) D6 Wavelet, K � 75, (e) Euclidean, K � 75, (f) Relative
Error
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FIGURE 32 (a) Original, (b) Fourier, K � 50, (c) Shannon Wavelet,
K � 50, (d) D6 Wavelet, K � 50, (e) Euclidean, K � 50, (f) Relative
Error
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This signal is not spatially localized, so the D6 basis does not do
so well compressing it. The real Shannon basis does well because of
its frequency localization. The Fourier basis does not do badly, for
the same reason, and the Euclidean basis does a terrible job, as one
might expect.

The advantages of wavelet bases for compressing certain signals
at very high compression rates (i.e., using very few terms in the
expansion) is shown in Figure 33, where

z(n) � (n − 256)e−(n−256)2/512.

This vector (a multiple of the derivative of a Gaussian) is well
localized in both space and frequency. Thus even with K � 8, the
wavelet bases do very well at compressing z. The relative errors are:

Figure 33b, Fourier basis: Relative error .6399
Figure 33c, real Shannon basis: Relative error .0168
Figure 33d, D6 basis: Relative error .0636
Figure 33e, Euclidean basis: Relative error .8915.

In Figure 34a, the vector z is

z(n) �




1, 32 ≤ n ≤ 95
2, 132 ≤ n ≤ 259
4, 416 ≤ n ≤ 511
0, other n between 0 and 511.

In this case, z is not so well spatially localized, and because of the
sharp jumps at the edges of the steps it is not well localized in
frequency either. The result is that the wavelet compressions and
the Fourier compression are of similar quality. The relative errors
for K � 16 are

Figure 34b, Fourier basis: Relative error .2389
Figure 34c, real Shannon basis: Relative error .2406
Figure 34d, D6 basis: Relative error .2566
Figure 34e, Euclidean basis: Relative error .9374.

No basis works best for all types of original signals. However,
if one expects the signals with which one is working to have, to
some degree, both spatial and frequency localization, then a wavelet
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FIGURE 33 (a) Original, (b) Fourier, K � 8, (c) Shannon Wavelet,
K � 8, (d) D6 Wavelet, K � 8, (e) Euclidean, K � 8, (f) Relative Error
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FIGURE 34 (a) Original, (b) Fourier, K � 16, (c) Shannon Wavelet,
K � 16, (d) D6 Wavelet, K � 16, (e) Euclidean, K � 16, (f) Relative
Error
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basis is likely to do well at compressing these signals. In particular it
should do better at picking up local features than the Fourier basis,
and also better at recognizing frequency characteristics than the
Euclidean basis.

With the advent of digital television and the transmission
of digital pictures over the Internet, there is great interest in
compressing images (i.e., two-dimensional signals). As described in
the Prologue in reference to digital fingerprint images, an image is
represented by small squares, called pixels, each of which is given
a gray-scale value describing the darkness of that pixel (this is for
a black and white picture; for color the same is done for each of
the primary colors in the picture). For example, if the image is
broken into a grid of 200 pixels by 250 pixels, then there are 50,000
pixel gray-scale values to assign, so the image is represented in a
computer as a vector of length 50,000. This is a great deal of data,
so we may need to compress it. We can do so by two-dimensional
versions of the methods we have just considered. (For a description
of the two-dimensional DFT, see Exercises 2.1.15–2.1.18. For the two-
dimensional wavelet basis in the case of ZN1 × ZN2 , see Exercises
3.1.12 and 3.2.13.)

An example of this is shown in Figure 35. In the upper left corner
is the original image, a picture of Simon Zhang. In the upper right
corner, we see the result of compressing with Daubechies’s wavelets,
in this case retaining the largest 10 percent of the terms in the
wavelet expansion. The picture in the lower left corner shows the
result when the largest 5 percent of the wavelet terms are retained.
The result of retaining the largest 10 percent of the terms in the
Fourier expansion is exhibited in the lower right corner. The odd-
looking ripples are apparently a wave reflection of the sharp outline
of Simon’s shirt. This picture is more fuzzy than the others. To get a
better sense of the difference, we focus on some local feature. A good
example is the button on Simon’s clothes (the one on Simon’s right;
the other button is not so clear in the original). Simon’s button is
much sharper and clearer even in the 5 percent wavelet compression
picture than in the 10 percent Fourier compression picture. The basic
reason is that the Fourier basis elements are not localized; they have
constant magnitude at all points. Thus for everym, the inner product
〈z, Fm〉 (written for the one-dimensional case, as an example, but the
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FIGURE 35 (Courtesy of Shangqian Zhang.)

principle is the same for two dimensions) is affected by the part of
z near the local feature (the button). Thus when we compress the
image by deleting terms in the Fourier expansion, a large part of the
information regarding the button is lost, resulting in the blurring of
the button. In the wavelet basis, because of its spatial localization,
relatively few terms are affected by the button, so only a few terms in
the expansion are needed for the clear reconstruction of the button.

The compression examples we have given here are of a very basic
nature. They are simple enough that they can be reproduced (except
Figure 35) by a student familiar with a computational package such
as MatLab or Mathematica (these examples were done with MatLab).
They are not intended as realistic examples of signal compression.
For example, with JPEG—the current industry standard for image
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compression—the picture is first subdivided into smaller blocks.
Then a Fourier expansion (actually a variant known as the discrete
cosine transform expansion) is compressed in each block. This
gives a way of incorporating a certain degree of localization into
the Fourier expansion. For example if an entire block is essentially
constant (as in the background behind Simon), it can be represented
with very few terms. However, the choice of block size is somewhat
arbitrary, whereas with wavelets the different scales incorporate
different degrees of localization in a natural manner.

One problem with JPEG is that since the compressions are done
independently on adjacent blocks, they do not necessarily line up
smoothly at the edges between blocks. This is the reason for the
blocking artifacts in the JPEG fingerprint compression image in
Figure 2 in the Prologue. Because the wavelet expansion carries a
natural multilevel structure, the wavelet fingerprint compression
image in Figure 3 does not show block lines. This is one of the main
reasons that the FBI fingerprint compression contract was awarded
to the group using wavelets.

A more realistic example of image compression is shown in
Figure 36. Figure 36a displays the original, uncompressed “Lena”
image. It is a file of size 262,159 data bytes. Figure 36b shows the
same image, compressed by a factor of about 10 to 1 using JPEG (see
the Prologue for a discussion of JPEG). More precisely, the file for the
image in Figure 36b contains 26,264 data bytes. At this compression
ratio, the image is represented with good visual accuracy. However,
at higher compression ratios, there are problems. Figure 36c shows
the JPEG compression at a ratio of about 40 to 1 (more precisely,
using 6,646 bytes), and Figure 36d shows the JPEG compression at
a ratio of about 103 to 1 (2,533 bytes). Some loss of image quality
can be seen in Figure 36c, for example near the woman’s shoulder.
In Figure 36d the degradation of the image is severe. The JPEG
program is not designed to work well at such extreme compression
ratios. Figure 36e shows the Lena image at a compression ratio
of about 40 to 1 (6506 bytes, comparable to Figure 36c), using
a compression program based on wavelets. Figure 36f shows the
wavelet compression at a ratio of about 103 to 1 (2562 bytes,
comparable to Figure 36d). Especially at the higher compression
ratios, the wavelet compression method gives better images. Figures
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FIGURE 36 (a)Original, (b) JPEG10-1, (c) JPEG 40-1, (d) JPEG103-1,
(e) Wavelet 40-1 (Courtesy of Summus Technologies, Inc.), (f) Wavelet
103-1 (Courtesy of Summus Technologies, Inc.).



Exercises 261

36b, c, and d were created using the commercially available program
WinJPG v. 2.84. Figures 36e and f were done using the program
Summus 4U2C 3.0, provided to the author by Björn Jawerth and
Summus Technologies, Inc. Work is ongoing to incorporate wavelet
compression methods into commercial digital signal processing.

Incidentally, the lady in Figure 36 is Lena Sjöblom. Her picture
was digitized and used in an early paper on image compression.
Since then this image has become a standard, as later papers used
the same image to make comparisons. Many people in the field of
image compression were unaware of the origin of this picture. In
fact it is a portion of the Playboy magazine centerfold for November
1972. As the signal analysis field has become more gender-mixed,
some have suggested that a different image be used. (Notice how
the author of this text has avoided controversy by using Figure 35.)
However, this is difficult to do, because one would like to compare
new methods with older ones, which have used the Lena image. As
a student once put it, “politically incorrect or not, the Lena image
must stay, for the good of science.” Recently Lena herself was located
by signal analysts, and was a guest of honor at a major symposium
on digital signal processing.

Exercises

3.3.1. i. Prove equations (3.89) and (3.90).
ii. Deduce that

U�−1(v�)(n) �




1√
2
, n � 0,

− 1√
2
, n � 2�−1

0, n � 1, . . . , 2�−1 − 1;
2�−1 + 1, . . . , N − 1

and

U�−1(u�)(n) �



1√
2
, n � 0, 2�−1

0, n � 1, . . . , 2�−1 − 1;
2�−1 + 1, . . . , N − 1.



3. Wavelets on ZN262

iii. Prove equations (3.91) and (3.92).
iv. Prove equations (3.93) and (3.94).
v. Prove equation (3.95).

3.3.2. Prove equations (3.96) and (3.97). Hint: Proceed by induc-
tion on �. By Exercise 3.2.1 (ii), and equation (3.83),

ψ̂−�,0(n) � f̂�(n) � ĝ�−1(n)v̂�(n).

By induction, ĝ�−1(n) is only nonzero for 0 ≤ n ≤ (N/2�)−1
and N − N/2� ≤ n ≤ N − 1, so we need to consider only
these regions. For 0 ≤ n ≤ (N/2�)−1 we consider the regions
0 ≤ n ≤ (N/2�+1)−1 andN/2�+1 ≤ n ≤ (N/2�)−1 separately
and apply the formulas for û� and v̂� above, along with the
induction assumption. Similarly, we break N − N/2� ≤ n ≤
N−1 into the two regionsN−N/2� ≤ n ≤ N−N/2�+1−1 and
N−N/2�+1 ≤ n ≤ N−1. On the first of these regions, v̂� is

√
2

and û� is 0, and vice versa on the second of the two regions.
The easiest way to see that is to note that û� and v̂� have
period 2�−1, and, for example, the first region is equivalent,
modulo 2�−1, to the region N/2� ≤ n ≤ (3N/2�+1)−1, which,
by the formulae in the text, is a subset of the region where
v̂� is

√
2 and û� is 0.

3.3.3. Prove equations (3.98) and (3.99).
3.3.4. Assume N is even. Show that the Haar wavelets (except that

the vector v is multiplied by −1) can be obtained by starting
with the identity

cos2
(πn
N

)
+ sin2

(πn
N

)
� 1

and proceeding as in Example 3.35.
3.3.5. Assume N/2p is an integer greater than 4, where p is some

positive integer. Proceed as in Example 3.35, but starting
with the identity

(
cos2

(πn
N

)
+ sin2

(πn
N

))3
� 1,

to obtain a pth level wavelet basis for �2(ZN ) for which u1 and
v1 have only four nonzero components.
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One answer:

u1 �
√

2
8

(1+√3, 3+√3, 3−√3, 1−√3, 0, 0, 0, . . . , 0),

v1 �
√

2
8

(−3−√3, 1+√3, 0, 0, . . . , 0, 0,−1+√3, 3−√3).

These are Daubechies’s D4 wavelets for �2(ZN ).
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4
C H A P T E R

...........................................

Wavelets on Z

4.1 �2(Z)

So far we have considered signals (vectors) of finite length, which
we have extended periodically to be defined at all integers. In
this chapter we deal with infinite signals, which are generally
not periodic. More explicitly, we consider sequences of complex
numbers defined at the integers, denoted

z � (. . . z(−2), z(−1), z(0), z(1), z(2), . . .),

or, more concisely,

z � (z(n))n∈Z.

To do calculations in a meaningful way (e.g., so that the sums
we consider will converge), z should not be too big. Specifically,
we restrict attention to sequences that are square-summable, which
means that ∑

n∈Z

|z(n)|2 < +∞.

We make the following remarks to clarify this because previously
we have not considered series summed over Z.

265
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Definition 4.1 A series of complex numbers
∑

n∈Z w(n) converges
if the sequence of symmetric partial sums

sN �
+N∑

n�−N
w(n)

converges as a sequence of complex numbers (Definition 1.10). We say∑
n∈Z w(n) converges absolutely if

∑
n∈Z |w(n)| converges.

For many purposes it is more natural to require the convergence
of both

∑N
n�0 w(n) and

∑0
n�−N w(n) as N → ∞. However, for our

later work with Fourier series, Definition 4.1 is more convenient.
If the terms are nonnegative real numbers, the two senses of
convergence agree (Exercise 4.1.2 (ii)).

If a series
∑

n∈Z w(n) converges absolutely, then it converges
(Exercise 4.1.1 (iii)). If the series consists of positive terms, as in
the case of

∑
n∈Z |z(n)|2, the partial sums are increasing, hence they

either diverge to +∞ or converge.
We denote the space of all square-summable complex sequences

on Z by �2(Z). Formally,

�2(Z) �
{
z � (z(n))n∈Z : z(n) ∈ C for all n, and

∑
n∈Z

|z(n)|2 < +∞
}
.

One can check (Exercise 4.1.3) that �2(Z) forms a vector space over
C, under the natural operations of componentwise addition and
scalar multiplication. For z, w ∈ �2(Z), define

〈z, w〉 �
∑
n∈Z

z(n)w(n). (4.1)

It follows (Exercise 4.1.4) that 〈·, ·〉 is a complex inner product on
�2(Z). We say that z and w are orthogonal if 〈z, w〉 � 0. Thus we have
a notion of perpendicularity in this infinite dimensional context that
may be geometrically nonintuitive. In particular the notion of an
orthonormal set of vectors (elements) in �2(Z) makes sense.

We define a norm on �2(Z) as in Definition 1.90. That is, for
z ∈ �2(Z),

‖z‖ �
(∑

n∈Z

|z(n)|2
)1/2

. (4.2)
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By Exercise 1.6.5, this makes �2(Z) a normed space, hence a metric
space with the distance d(z, w) � ‖z − w‖. The Cauchy-Schwarz
inequality |〈z, w〉| ≤ ‖z‖‖w‖ (proved for any complex inner product
space in Lemma 1.91) takes the following form here: for z, w ∈ �2(Z),∣∣∣∣∣

∑
n∈Z

z(n)w(n)

∣∣∣∣∣ ≤
(∑

n∈Z

|z(n)|2
)1/2 (∑

n∈Z

|w(n)|2
)1/2

.

We can apply this to the sequences |z| and |w|, whose values at n are
|z(n)| and |w(n)|, respectively. Noting that ‖|z|‖ � ‖z‖, and similarly
for w, and recalling that |w(n)| � |w(n)|, we obtain

∑
n∈Z

|z(n)w(n)| ≤
(∑

n∈Z

|z(n)|2
)1/2 (∑

n∈Z

|w(n)|2
)1/2

. (4.3)

Also, by Corollary 1.92, we have the triangle inequality ‖z + w‖ ≤
‖z‖ + ‖w‖ in �2(Z):(∑

n∈Z

|z(n)+w(n)|2
)1/2

≤
(∑

n∈Z

|z(n)|2
)1/2

+
(∑

n∈Z

|w(n)|2
)1/2

.

(4.4)
In Definition 4.2, do not confuse zk with z(k): for each k, zk �
(zk(n))n∈Z is a sequence in �2(Z).

Definition 4.2 Suppose M ∈ Z, zk ∈ �2(Z) for each k ∈ Z with
k ≥ M, and z ∈ �2(Z). The sequence {zk}∞k�M converges to z in �2(Z)
if, for all ε > 0, there exists a positive integer N such that

‖zk − z‖ < ε

for all k > N . Also {zk}∞k�M is a Cauchy sequence in �2(Z) if, for all
ε > 0, there exists a positive integer N such that

‖zk − zm‖ < ε

for all k,m > N .

Theorem 4.3 (Completeness of �2(Z)) Suppose {zk}∞k�M is a Cauchy
sequence in �2(Z). Then there exists z ∈ �2(Z) such that {zk}∞k�M
converges to z in �2(Z).

Proof
Exercise 4.1.7.
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The main difference in dealing with the vector space �2(Z)
instead of �2(ZN ) is that �2(Z) is infinite dimensional. The natural
analogs for �2(Z) of the standard basis vectors in �2(ZN ) are the
vectors ej ∈ �2(Z) defined for j ∈ Z by

ej(n) �
{

1 if n � j

0 if n 	� j.
(4.5)

However, the set {ej}j∈Z does not form a basis for �2(Z) in the sense
of Definition 1.37 because we cannot write every element of �2(Z)
as a finite linear combination of the vectors {ej}j∈Z. Nevertheless, it
seems clear that every element z � (z(n))n∈Z can be written as the
infinite sum z � ∑j∈Z z(j)ej. To be precise about this, we must first
discuss convergence of series in the space �2(Z). Because we will
consider several cases of this type, we include a general discussion
of the convergence of sequences and series in infinite dimensional
inner product spaces in section 4.2.

Exercises

4.1.1. Let
∑

n∈Z w(n) be a series of complex numbers.
i. (Cauchy criterion) Prove that

∑
n∈Z w(n) converges if

and only if, for all ε > 0, there exists an integer N such
that ∣∣∣∣∣

−k∑
n�−m

w(n)+
m∑

n�k
w(n)

∣∣∣∣∣ < ε

for all m ≥ k > N . Suggestion: Apply either Theorem
1.12 to the partial sums, or Lemma 1.14 to the series∑∞

n�0 zn, where z0 � w(0) and, for all n ≥ 1, zn �
w(n)+w(−n).

ii. (Comparison test) Let {a(n)}n∈Z be a sequence of
nonnegative real numbers such that |w(n)| ≤ a(n) for
all n such that |n| ≥ N , for some N ∈ Z. If

∑
n∈Z a(n)

converges, prove that
∑

n∈Z w(n) converges.
iii. If

∑
n∈Z w(n) converges absolutely, prove that

∑
n∈Z w(n)

converges.
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4.1.2. i. Show that the series
∑

n∈Z n converges, but does not
converge absolutely. In particular, it is not true that the
convergence of

∑
n∈Z w(n) implies that limn→∞w(n) �

0. This is one reason many texts require a stronger
definition of convergence than the one in Definition 4.1.

ii. Prove that
∑

n∈Z w(n) converges absolutely if and only if∑∞
n�0 w(n) and

∑∞
n�1 w(−n) converge absolutely.

iii. Show that if
∑

n∈Z w(n) converges absolutely, then
limn→∞w(n) � 0 and limn→∞w(−n) � 0.

4.1.3. For z, w ∈ �2(Z), and α ∈ C, define z +w and αz by

(z +w)(n) � z(n)+w(n), and (αz)(n) � αz(n),

for all n ∈ Z. With these operations, prove that �2(Z)
is a vector space over C. Remark: The only property in
Definition 1.30 that is not obvious is A1. See the hint for
Exercise 1.6.3 (ii).

4.1.4. Prove that 〈·, ·〉, defined in equation (4.1), is a complex inner
product on �2(Z). (See the hint for Exercise 1.6.3. The main
point is to show the absolute convergence of the sum in
equation (4.1).)

4.1.5. (Monotone convergence theorem for sequences) Suppose
M ∈ Z, and, for each k ∈ Z with k ≥ M, xk � {xk(n)}n∈Z

is a sequence of nonnegative real numbers (i.e., xk(n) ≥ 0
for each k, n). Suppose that for each n and k, xk(n) ≤
xk+1(n), that is, {xk(n)}∞k�M is a nondecreasing sequence for
each n. By the monotone sequence lemma, limk→∞ xk(n)
exists (although it could be +∞) for each n. Set x(n) �
limk→∞ xk(n). Prove that∑

n∈Z

x(n) � lim
k→∞

∑
n∈Z

xk(n). (4.6)

(Note that
∑

n∈Z xk(n) is increasing in k, so the limit on the
right side exists.) Here the equality is interpreted in the
sense that if one side is finite, the other must be also, and
the values are the same, but we also allow both sides to be
+∞. Hint: Since xk(n) ≤ x(n), the fact that the left side of
(4.6) is≥ the right side is easy. For the other inequality, note
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that for any fixed integer J > 0,

J∑
n�−J

x(n) � lim
k→∞

J∑
n�−J

xk(n) ≤ lim
k→∞

∑
n∈Z

xk(n).

Now let J →+∞.
4.1.6. (Fatou’s lemma for sequences) Suppose M ∈ Z, and, for

each k ∈ Z with k ≥ M, xk � {xk(n)}n∈Z is a sequence of
nonnegative real numbers. Suppose x(n) � limk→∞ xk(n)
exists for each n ∈ Z. Prove that∑

n∈Z

x(n) ≤ lim inf
k→∞

∑
n∈Z

xk(n). (4.7)

(By definition, for any sequence {ak}∞k�M of real numbers,
lim inf k→∞ ak � limm→∞(inf j≥m aj). This limit exists (it
could be infinite) because inf j≥m aj is increasing in m.)

Hint: Let ym(n) � inf j≥m xj(n). Prove that ym(n) increases
to x(n) for each n. Therefore by Exercise 4.1.5,∑

n∈Z

x(n) � lim
m→∞

∑
n∈Z

ym(n).

Now prove that ∑
n∈Z

inf
j≥m

xj(n) ≤ inf
j≥m
∑
n∈Z

xj(n).

4.1.7. Suppose {zk}∞k�M is a Cauchy sequence in �2(Z) (Definition
4.2).
i. Prove that for each n ∈ Z, {zk(n)}∞k�M is a Cauchy

sequence in C.
ii. By part i and the completeness of C (Theorem 1.12),

z(n) � limk→∞ zk(n) exists for every n ∈ Z. Let z �
{z(n)}n∈Z. Prove that {zk(n)}∞k�M converges to z in �2(Z)
(Definition 4.2). Hint: For k sufficiently large but fixed,
apply Exercise 4.1.6 to obtain∑

n∈Z

|zk(n)− z(n)|2 ≤ lim inf
m→∞

∑
n∈Z

|zk(n)− zm(n)|2.

Remark: By using relation (4.4) to write ‖z‖ ≤ ‖z− zk‖+
‖zk‖, we obtain z ∈ �2(Z). This proves the completeness
of �2(Z).
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4.1.8. i. Suppose {zk}∞k�0 is a sequence of elements of �2(Z) and
z is an element of �2(Z) such that {zk}k∈Z converges
to z in �2(Z) (see Definition 4.2; this is called norm
convergence). Prove that

lim
k→∞

zk(n) � z(n)

for each n ∈ Z (this is called pointwise convergence).
ii. Give an example of a sequence {zk}∞k�0 of elements of

�2(Z) and an element z ∈ �2(Z) such that

lim
k→∞

zk(n) � z(n)

for each n ∈ Z but {zk}k∈Z does not converge to z in �2(Z).
Thus norm convergence in �2(Z) is stronger than

pointwise convergence.
4.1.9. Observe that {en}∞n�0 is a bounded sequence in �2(Z) (this

is trivial: ‖en‖ � 1 for each n). Prove that there is no
subsequence {enk}∞k�1 that converges in �2(Z) (Definition
4.2).

This is a key difference between the infinite dimensional
and finite dimensional cases: by the Bolzano-Weierstrass
theorem, every bounded sequence in Rn or Cn has a
convergent subsequence.

4.2 Complete Orthonormal Sets in
Hilbert Spaces

Let X be an infinite dimensional complex inner product space with
inner product 〈·, ·〉. (Everything we say will be true in the finite
dimensional case for trivial reasons, but it simplifies our notation
to consider only the infinite dimensional case here.) Define a norm
‖ · ‖ on X as in Definition 1.90.

Definition 4.4 Let M ∈ Z. A sequence {xn}∞n�M of elements in X

converges in X to some x ∈ X if, for all ε > 0, there exists N ∈ N such
that ‖xn − x‖ < ε for all n > N . Also {xn}∞n�M is a Cauchy sequence
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in X if, for all ε > 0, there exists N ∈ N such that ‖xn − xm‖ < ε for all
n,m > N .

If {xn}∞n�M converges in X, then {xn}∞n�M is a Cauchy sequence
(Exercise 4.2.2).

Definition 4.5 A complex inner product space X is complete if every
Cauchy sequence in X converges. A complete complex inner product
space is a Hilbert space.

Note that for H � �2(Z) (which is a Hilbert space, by Exercises
4.1.3 and 4.1.4, and Theorem 4.3), Definition 4.4 is consistent with
Definition 4.2.

From now on we focus on Hilbert spaces because completeness
is necessary for the following theory, and our examples of interest
are complete. Next we define convergence of a series in a Hilbert
space. This should not be confused with Definition 4.1, in which
we consider only series of complex numbers. Here the terms in the
series are elements of the Hilbert space.

Definition 4.6 LetH be aHilbert space, and let {wn}n∈Z be a sequence
of elements of H. For N � 1, 2, 3, . . . , let sN be the symmetric partial
sum

sN �
+N∑

n�−N
wn.

We say the series
∑

n∈Z wn converges in H to some s ∈ H if the sequence
{sN }∞N�1 converges to s in H (in the sense of Definition 4.4).

Recall (Definitions 1.93 and 1.94) that the notions of orthogonal-
ity and orthonormal sets are defined in any (complex) inner product
space. The next result shows that square summable sequences play
a natural role in the study of any infinite dimensional inner product
space.

Lemma 4.7 Suppose H is a Hilbert space, {aj}j∈Z is an orthonormal
set in H, and z � (z(j))j∈Z ∈ �2(Z). Then the series∑

j∈Z

z(j)aj
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converges in H, and ∥∥∥∥∥
∑
j∈Z

z(j)aj

∥∥∥∥∥
2

�
∑
j∈Z

|z(j)|2. (4.8)

Proof
For N � 1, 2, 3, . . . , let sN be the partial sum

sN �
+N∑

j�−N
z(j)aj.

Then for N > M,

‖sN − sM‖2 �
∥∥∥∥∥
∑

M<|j|≤N
z(j)aj

∥∥∥∥∥
2

�
∑

M<|j|≤N
|z(j)|2,

because this is a finite sum and the aj are orthonormal (Exercise
4.2.3). Because the series

∑
j∈Z |z(j)|2 converges, its sequence of

symmetric partial sums must be Cauchy (Theorem 1.12). Hence
given ε > 0, there exists K such that

∑
M<|j|≤N |z(j)|2 ≤ ε for all

N > M > K. By the above inequality, this proves that the sequence
{sN }N∈N is Cauchy. Since H is complete, {sN }N∈N converges, that is,∑

j∈Z z(j)aj converges in H.
For the proof of (4.8), see Exercise 4.2.4.

Lemma 4.7 shows part of the relation between a general infinite
dimensional Hilbert space and �2(Z): given an orthonormal set
{aj}j∈Z and z ∈ �2(Z), the series

∑
j∈Z z(j)aj converges to an element

of H. However, we can also go the other way: given an element f of
H, we can obtain a sequence in �2(Z) by considering {〈f, aj〉}j∈Z.

Lemma 4.8 Suppose H is a Hilbert space, {aj}j∈Z is an orthonormal
set in H, and f ∈ H. Then the sequence {〈f, aj〉}j∈Z belongs to �2(Z) with∑

j∈Z

|〈f, aj〉|2 ≤ ‖f ‖2. (4.9)

Proof
For N � 1, 2, . . . , let sN �

∑+N
j�−N 〈f, aj〉aj. Then

‖f − sN‖2 � 〈f, f 〉 − 〈f, sN 〉 − 〈sN , f 〉 + 〈sN , sN 〉.
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Note (using equation (1.43)) that

〈f, sN 〉 �
〈
f,

N∑
j�−N
〈f, aj〉aj

〉
�

N∑
j�−N
〈f, aj〉〈f, aj〉 �

N∑
j�−N
|〈f, aj〉|2.

By I3 in Definition 1.86,

〈sN , f 〉 � 〈f, sN 〉 �
N∑

j�−N
|〈f, aj〉|2 �

N∑
j�−N
|〈f, aj〉|2,

because the last quantity is real. Also, by equation (4.8),

‖sN‖2 �
N∑

j�−N
|〈f, aj〉|2.

Substituting these three facts above gives

‖f − sN‖2 � ‖f ‖2 − 2
+N∑

j�−N
|〈f, aj〉|2 +

+N∑
j�−N
|〈f, aj〉|2

� ‖f ‖2 −
+N∑

j�−N
|〈f, aj〉|2.

Since ‖f − sN‖2 ≥ 0, this implies that

+N∑
j�−N
|〈f, aj〉|2 ≤ ‖f ‖2.

Taking the limit as N →∞ yields the conclusion.

If {aj}j∈Z is an orthonormal set in H and f ∈ H, then by Lemma
4.8, the sequence {〈f, aj〉}j∈Z belongs to �2(Z). So by Lemma 4.7, the
series

∑
j∈Z〈f, aj〉aj converges in H. We are interested in finding a

condition on the orthonormal set that guarantees that
∑

j∈Z〈f, aj〉aj �
f , for any f ∈ H, as in the case of an orthonormal basis in a finite
dimensional inner product space (Lemma 1.101 i).

Definition 4.9 Suppose H is a Hilbert space and {aj}j∈Z is a set of
elements in H. We say that {aj}j∈Z is a complete orthonormal set or
complete orthonormal system if {aj}j∈Z is an orthonormal set with the
property that the only element w ∈ H such that 〈w, aj〉 � 0 for all j ∈ Z

is w � 0.
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Note that the word “complete” is used here in a sense different
from the sense above relating to the convergence of Cauchy
sequences.

Theorem 4.10 Suppose H is a Hilbert space and {aj}j∈Z is an
orthonormal set in H. Then {aj}j∈Z is a complete orthonormal set if and
only if

f �
∑
j∈Z

〈f, aj〉aj, for all f ∈ H.

Proof
First suppose {aj}j∈Z is a complete orthonormal set. Given f ∈ H, let
g �∑j∈Z〈f, aj〉aj (as noted previously, this series converges in H by
Lemmas 4.7–4.8). Then for all m ∈ Z,

〈g, am〉 � 〈f, am〉,
by Exercise 4.2.5. Thus 〈f − g, am〉 � 0 for all m ∈ Z. Since {aj}j∈Z is a
complete orthonormal set, this implies that f − g � 0, that is, f � g,
which is what we want to prove.

Conversely, suppose every f ∈ H can be written in the form∑
j∈Z〈f, aj〉aj. If 〈f, aj〉 � 0 for all j, then all the coefficients are 0, so

f � 0. This proves the completeness of {aj}j∈Z.

Going back to our example of �2(Z), it is easy to see that the set
{ej}j∈Z defined in equation (4.5) is a complete orthonormal set in
�2(Z). Thus, by Theorem 4.10, every z � (z(n))n∈Z ∈ �2(Z) can be
represented by the series

∑
j∈Z z(j)ej, whose partial sums converge

(to z) in �2(Z). (Of course, this could be seen directly, but our concern
is to illustrate Theorem 4.10.) So although {ej}j∈Z does not constitute
a basis in the vector space sense, it is possible to represent every
element of �2(Z) as an “infinite linear combination” of the set {ej}j∈Z.
Many texts will therefore still refer to a complete orthonormal set
as an “orthonormal basis,” using the term “basis” in a sense different
from Definition 1.37, but we prefer to avoid this confusion by just
calling it a complete orthonormal set or system.

Another useful characterization is the following.

Lemma 4.11 Let {aj}j∈Z be an orthonormal set in a Hilbert space H.
Then the following are equivalent:

i. {aj}j∈Z is complete.
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ii. (Parseval’s relation) For all f, g ∈ H,

〈f, g〉 �
∑
j∈Z

〈f, aj〉〈g, aj〉. (4.10)

iii. (Plancherel’s formula) For all f ∈ H,

‖f ‖2 �
∑
j∈Z

|〈f, aj〉|2. (4.11)

Proof
The implication i⇒ ii is Exercise 4.2.7. We have ii⇒ iii by letting
g � f . For iii⇒ i, see Exercise 4.2.6.

A Hilbert space with a finite or countably infinite complete
orthonormal set is called separable. There are Hilbert spaces so large
that any complete orthonormal set must be uncountable, but we will
not encounter such nonseparable spaces in this text.

In Lemma 1.98, we considered the basic properties of the
orthogonal projection operator onto a finite dimensional subspace.
These results can be extended to the case of an infinite dimensional
subspace.

Definition 4.12 Suppose A � {aj}j∈Z is an orthonormal set in a
Hilbert space H. Let

SA �
{∑

j∈Z

z(j)aj : z � (z(j))j∈Z ∈ �2(Z)

}
. (4.12)

(Note that
∑

j∈Z z(j)aj converges in H for {z(j)}j∈Z ∈ �2(Z) by Lemma
4.7.)

Any such SA is a subspace of H (Exercise 4.2.8).

Definition 4.13 Suppose {aj}j∈Z is an orthonormal set in a Hilbert
space H. Define S � SA as in Definition 4.12. For f ∈ H, define

PS(f ) �
∑
j∈Z

〈f, aj〉aj. (4.13)

(This series converges in H by Lemmas 4.7 and 4.8.) We call PS(f )
the orthogonal projection of f on S. We call the operator PS itself the
orthogonal projection onto S.

Lemma 4.14 Let H, S, and PS be as in Definition 4.13. Then
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i. For every f ∈ H, PS(f ) ∈ S.
ii. The transformation PS : H → S is linear.
iii. If s ∈ S, then PS(s) � s.
iv. (Orthogonality property) 〈f − PS(f ), s〉 � 0 for any f ∈ H and

s ∈ S.
v. (Best approximation property) For any f ∈ H and s ∈ S,

‖f − PS(f )‖ ≤ ‖f − s‖,

with equality only for s � PS(f ).

Proof
Exercise 4.2.9.

Exercises

4.2.1. Let {xn}∞n�1 be a sequence in a complex inner product space
X, and let x ∈ X. Prove that {xn}∞n�1 converges to x in X if
and only if ‖xn− x‖ converges to 0 as n→∞, as a sequence
of numbers.

4.2.2. Suppose M ∈ Z, {xn}∞n�M is a sequence in a complex inner
product space X, and {xn}∞n�M converges in X to some x ∈ X.
Prove that {xn}∞n�M is a Cauchy sequence (Definition 4.4).

4.2.3. Suppose X is a complex inner product space and {v1, v2, . . . ,

vn} is a finite orthonormal set in X. If z � ∑n
j�1 z(j)vj and

w � ∑n
j�1 w(j)vj, for some scalars z(1), z(2), . . . , z(n) and

w(1), . . . w(n), prove that

〈z, w〉 �
n∑
j�1

z(j)w(j),

and

‖z‖2 �
n∑
j�1

|z(j)|2.
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4.2.4. Prove equation (4.8). Hint: Let sN be as in the proof of
Lemma 4.7. By Exercise 4.2.3,

‖sN‖2 �
N∑

j�−N
|z(j)|2.

Use the convergence of sN in H to s � ∑j∈Z z(j)aj and the
triangle inequality (4.4), to show that ‖s‖ � limN→∞ ‖sN‖.

4.2.5. Let H be a Hilbert space.
i. Suppose {fn}∞n�1 is a sequence of elements of H that

converge in H to some element f ∈ H. Prove that for
any g ∈ H,

lim
n→∞〈fn, g〉 � 〈f, g〉.

Hint: Apply the Cauchy-Schwarz inequality to 〈fn− f, g〉.
ii. Suppose {aj}j∈Z is an orthonormal set in H and z �

(z(n))n∈Z ∈ �2(Z). Prove that for any m ∈ Z,〈∑
j∈Z

z(j)aj, am

〉
� z(m).

Hint: Show that this is true when the series is replaced
by its partial sum sN , for N > m, and apply part i.

iii. Suppose A � {aj}j∈Z is an orthonormal set in H, z ∈ H,
and 〈z, aj〉 � 0 for every j ∈ Z. Let SA be defined by
equation (4.12). Prove that 〈z, s〉 � 0 for all s ∈ SA.

4.2.6. Let {aj}j∈Z be an orthonormal set in a Hilbert space H. Prove
that {aj}j∈Z is a complete orthonormal set if and only if
equation (4.11) holds for all f ∈ H. Hint: Use the inequality
obtained in the proof of Lemma 4.8 and let N →∞.

4.2.7. Let {aj}j∈Z be a complete orthonormal set in a Hilbert space
H. Prove that equation (4.10) holds for all f, g ∈ H. Hint:
Substitute

∑
j〈f, ej〉ej for f and use Exercise 4.2.5 to take

the sum outside the inner product. Also, this follows from
Exercise 4.2.6 and the polarization identity (Exercise 1.6.7
(i)) with T � I.

4.2.8. Define SA as in Definition 4.12. Prove that SA is a subspace
of H.
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4.2.9. Prove Lemma 4.14. Hints: i: Lemma 4.8; ii: linearity of 〈·, ·〉
and

∑
; iii: Exercise 4.2.5 (ii); iv: prove it for s � aj (using

Exercise 4.2.5 (ii)) first, then apply Exercise 4.2.5 (i); v: see
the proof of the analogous statement in Lemma 1.98.

4.2.10. Let H be a Hilbert space and E a subset of H. We say E is
closed if whenever {uj}∞j�1 is a sequence of elements of E that
converges in H to some u ∈ H, then u ∈ E (i.e., E contains
all of its limit points). Let A � {aj}j∈Z be an orthonormal set
in H and let SA be defined by equation (4.12). Prove that
SA is a closed subspace of H, that is, a subspace of H that is
also a closed set. Hint: By the best approximation property
(Lemma 4.14 v), ‖u − PS(u)‖ ≤ ‖u − uj‖ for every j.

4.3 L2([−π, π)) and Fourier Series

A key example of an infinite dimensional Hilbert space other than
�2(Z) is the space of complex valued functions f on the interval
[−π, π) � {x ∈ R : −π ≤ x < π} that are square-integrable, which
means that ∫ π

−π
|f (θ)|2 dθ < +∞.

(For those familiar with the following terms, we are using the
Lebesgue integral here, not the Riemann integral. We regard two
functions f and g as the same if f and g agree except on a set
of “measure 0,” written f � g a.e., where “a.e.” stands for “almost
everywhere.” To be more precise, the relation f ∼ g if f � g a.e.
is an equivalence relation, and the space we talk about here is a
space of equivalence classes of functions modulo this equivalence
relation. The condition f � g a.e. is exactly the condition that∫ π

−π |f (θ)− g(θ)| dθ � 0, which is the reason it arises here. For those
unfamiliar with these terms, ignoring them will cause no trouble if
you are willing to accept a few reasonable properties of the Lebesgue
integral on faith.)
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Formally, we define

L2([−π, π)) �
{
f : [−π, π)→ C :

∫ π

−π
|f (θ)|2 dθ <∞.

}
Defining pointwise addition and scalar multiplication of functions
in the usual way (as in Example 1.33), one can show (Exercise 4.3.1
(i)) that L2([−π, π)) is a vector space. For f, g ∈ L2([−π, π)), define

〈f, g〉 � 1
2π

∫ π

−π
f (θ)g(θ) dθ. (4.14)

One can show (Exercise 4.3.1 (ii)) that 〈·, ·〉 is an inner product on
L2([−π, π)). (This is where the identification of two functions that
are equal a.e. is necessary, to obtain property I4 in Definition 1.86.)
We define a norm ‖ · ‖ as in Definition 1.90. In this case we obtain

‖f ‖ �
(

1
2π

∫ π

−π
|f (θ)|2 dθ

)1/2

.

The Cauchy-Schwarz inequality (Lemma 1.91) gives, for f, g ∈
L2([−π, π)),∣∣∣∣ 1
2π

∫ π

−π
f (θ)g(θ) dθ

∣∣∣∣ ≤
(

1
2π

∫ π

−π
|f (θ)|2 dθ

)1/2 ( 1
2π

∫ π

−π
|g(θ)|2 dθ

)1/2

.

Replacing f and g with |f | and |g|, respectively, gives

1
2π

∫ π

−π

∣∣f (θ)g(θ)
∣∣ dθ ≤ ( 1

2π

∫ π

−π
|f (θ)|2 dθ

)1/2 ( 1
2π

∫ π

−π
|g(θ)|2 dθ

)1/2

.

(4.15)
The triangle inequality (Corollary 1.92) in L2([−π, π)) gives(

1
2π

∫ π

−π
|f (θ)+ g(θ)|2 dθ

)1/2

≤
(

1
2π

∫ π

−π
|f (θ)|2 dθ

)1/2

+
(

1
2π

∫ π

−π
|g(θ)|2 dθ

)1/2

. (4.16)

In addition to L2([−π, π)), we consider the following class of
functions.

Definition 4.15 Let

L1([−π, π)) �
{
f : [−π, π)→ C :

∫ π

−π
|f (θ)| dθ < +∞.

}
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If f ∈ L1([−π, π)), we say f is integrable, and we define

‖f ‖1 �
∫ π

−π

∣∣f (θ)∣∣ dθ.
In other words, for f to be integrable, we require that the integral∫ π

−π f (θ) dθ converges absolutely. To understand the significance of
this, suppose momentarily that f is real-valued (otherwise consider
the real and imaginary parts of f separately). If f is not integrable,
then f has either an infinite amount of positive mass, an infinite
amount of negative mass, or both. Then the integral may be infinite,
and in the third case, it has the ambiguous form ∞−∞. To avoid
this, we define only the integral of complex-valued functions that are
integrable. If f is integrable, then

∫ π

−π f (θ) dθ is defined. Moreover, we
have (Exercise 4.3.10) the inequality:∣∣∣∣

∫ π

−π
f (θ) dθ

∣∣∣∣ ≤
∫ π

−π

∣∣f (θ)∣∣ dθ. (4.17)

If f is integrable, the integral can be broken up more or less any
way one likes. That is, suppose {Aj}j is a finite or countably infinite
collection of disjoint “reasonable” subsets of [−π, π) such that ∪jAj �
[−π, π). (Here “reasonable” means measurable, a term coming from
Lebesgue integration theory that we do not define here. We remark
that nonmeasurable sets are difficult to construct, requiring the
axiom of choice, so any set we encounter in this text is measurable.)
Then ∫ π

−π
f (θ) dθ �

∑
j

∫
Aj

f (θ) dθ,

where the integrability of f guarantees the absolute convergence
of the series on the right. This will not work with a nonintegrable
function because the series may diverge or we may run into the
problem associated with a series of real numbers that converges
conditionally: the series can be rearranged to converge to any value
one likes (see Exercise 1.2.4).

Note that if f, g ∈ L2([−π, π)), then f · g ∈ L1([−π, π)), by relation
(4.15). Applying this with g � 1, we see that L2 functions on [−π, π)
are integrable, that is, L2([−π, π)) ⊆ L1([−π, π)). We remark that
L1([−π, π)) is larger than L2([−π, π)) (Exercise 4.3.3).
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The definitions of convergence of a sequence of vectors and of
a Cauchy sequence in a general complex inner product space in
Definition 4.4 apply to L2([−π, π)). In particular, by Exercise 4.2.1,
a sequence of functions {fn}∞n�1 in L2([−π, π)) converges to some
f ∈ L2([−π, π)) if and only if ‖fn − f ‖ converges to 0 as n → ∞.
This definition may seem natural at this point, but this is really a
new idea because we are not requiring pointwise convergence of the
functions fn to f (see Exercise 4.3.2 to clarify the distinction).

The key point that we assume is that L2([−π, π)) is complete,
that is, every Cauchy sequence in L2([−π, π)) converges. This is a
relatively deep fact, which depends on using the Lebesgue integral
(it is not true for the Riemann integral). Thus L2([−π, π)) is a Hilbert
space. Hence the results obtained in the previous section about
complete orthonormal sets apply here.

Definition 4.16 The trigonometric system is the set of functions
{einθ}n∈Z. A trigonometric polynomial is a finite linear combination
of elements of the trigonometric system, that is, a function of the form∑N

n�−N cne
inθ for some N ∈ N and some complex numbers {cn}Nn�−N .

Lemma 4.17 The trigonometric system is an orthonormal set in
L2([−π, π)).

Proof
Note that

〈eikθ, eijθ〉 � 1
2π

∫ π

−π
eikθeijθ dθ � 1

2π

∫ π

−π
ei(k−j)θ dθ.

If k � j, this is 1. If k 	� j, we integrate to get

1
2πi(k − j)

(
ei(k−j)π − ei(k−j)(−π)) � 0,

because ei(k−j)θ is periodic with period 2π.

Our goal is to prove that the trigonometric system is complete in
L2([−π, π)). The following elementary lemma plays a critical role.

Lemma 4.18 Suppose θ0 ∈ (−π, π) and α > 0 is sufficiently small
that −π < θ0 − α < θ0 + α < π. Define intervals

I � (θ0 − α, θ0 + α),
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and

J � (θ0 − α/2, θ0 + α/2).

Then there exists δ > 0 and a sequence of real-valued trigonometric
polynomials {pn(θ)}∞n�1 such that

i. pn(θ) ≥ 1 for θ ∈ I.
ii. pn(θ) ≥ (1+ δ)n for θ ∈ J .
iii. |pn(θ)| ≤ 1 for θ ∈ [−π, π) \ I.

Proof
Define

t(θ) � 1+ cos(θ − θ0)− cosα.

Note that α < π, by the requirement that −π < θ0−α < θ0+α < π.
Observe that cos x is even on [−π, π] and decreasing on [0, π]. Since
t(θ0 + α) � 1 � t(θ0 − α), we see that t(θ) ≥ 1 for θ ∈ I, and, for
some δ > 0, t(θ) ≥ 1 + δ for θ ∈ J . Also, looking at the graph of
t(θ), the 2π-periodicity of cos x shows that t(θ) ≤ 1 for all points
θ ∈ [−π, π) \ I. However, t(θ) ≥ −1 at all points, because | cos x| ≤ 1
for all x. Therefore, |t(θ)| ≤ 1 for θ ∈ [−π, π) \ I. We define

pn(θ) � (t(θ))n.

Then parts i, ii, and iii follow from the observations regarding t.
It is clear that t(θ) is real valued, hence so is pn(θ). What remains

is to show that pn is a trigonometric polynomial. However, 1− cosα
is a constant (hence a multiple of the trigonometric system element
ei0θ � 1) and

cos(θ − θ0) � 1
2

(
ei(θ−θ0) + ei(−θ+θ0)) � e−iθ0

2
eiθ + eiθ0

2
e−iθ.

Hence t(θ) is a trigonometric polynomial. But any product of
trigonometric polynomials is also a trigonometric polynomial (by
multiplying out and using eikθeimθ � ei(k+m)θ for all k,m). Therefore
pn is a trigonometric polynomial for all n.

Lemma 4.18 is needed to prove the following.

Lemma 4.19 Suppose f : [−π, π)→ C is continuous and bounded,
say

|f (θ)| ≤ M for all θ.
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If

〈f, einθ〉 � 1
2π

∫ π

−π
f (θ)e−inθ dθ � 0 for all n ∈ Z, (4.18)

then f (θ) � 0 for all θ ∈ [−π, π).

Proof
First we suppose f is real valued. We argue by contradiction. Suppose
f is not identically 0. Then there exists some point θ0 ∈ [−π, π)
and some ε > 0 such that f (θ0) > 2ε (or else f (θ0) < −2ε, in
which case we replace f by −f ). By continuity we can assume
θ0 ∈ (−π, π). Again by continuity, there exists some α > 0 such
that −π < θ0 − α < θ0 + α < π and f (θ) > ε for θ0 − α < θ < θ0 + α.
Define I, J , and {pn}∞n�1 as in Lemma 4.18.

By equation (4.18) and linearity, f is orthogonal to any
trigonometric polynomial. Thus

0 �
∫ π

−π
f (θ)pn(θ) dθ

�
∫

[−π,π)\I
f (θ)pn(θ) dθ +

∫
I\J

f (θ)pn(θ) dθ +
∫
J

f (θ)pn(θ) dθ, (4.19)

for all n ≥ 1. Since |pn(θ)| ≤ 1 on [−π, π) \ I (Lemma 4.18 iii),∣∣∣∣∣
∫

[−π,π)\I
f (θ)pn(θ) dθ

∣∣∣∣∣ ≤ 1 · sup
[−π,π)

|f (θ)| · 2π ≤ 2πM,

for any n. Since f and pn are both positive on I \ J (Lemma 4.18 i),∫
I\J

f (θ)pn(θ) dθ ≥ 0.

On J , f is bounded below by ε > 0 and pn is bounded below by (1+δ)n
(Lemma 4.18 ii). Hence∫

J

f (θ)pn(θ) dθ ≥ ε(1+ δ)nα.

Putting these estimates together, we see that the right side of
equation (4.19) goes to +∞ as n → ∞. But that contradicts the
equality in equation (4.19). This contradiction shows that f must be
identically 0.
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Now suppose f is complex valued, say f � u + iv, with u and v

real valued. Then for any n ∈ Z,∫ π

−π
f (θ)e−inθ dθ �

∫ π

−π
f (θ)einθ dθ � 0 � 0,

by equation (4.18). Hence by linearity, u � (f + f )/2 is orthogonal
to all elements of the trigonometric system. By the case of real-
valued functions already considered, we obtain that u is identically
0. Similarly, v � (f − f )/2i is zero.

Lemma 4.19 comes close to proving the completeness of the
trigonometric system, because it says that a continuous, bounded
function on [−π, π) that is orthogonal to all elements of the
trigonometric system is identically 0. However, we would like to
obtain this for all functions in L2([−π, π)). In fact, we prove this for
all functions in the larger class L1([−π, π)). To do this we assume the
following generalization of the Fundamental theorem of calculus
(FTC) in the setting of Lebesgue integration.

Theorem 4.20 Suppose f ∈ L1([−π, π)). Define F : [−π, π)→ C by

F(θ) �
∫ θ

−π
f (t) dt.

Then F is continuous on [−π, π) and F is differentiable a.e., with
F ′(θ) � f (θ) a.e.

Now we can state a uniqueness result for Fourier series.

Theorem 4.21 Suppose f ∈ L1([−π, π)) and

〈f, einθ〉 � 1
2π

∫ π

−π
f (θ)e−inθ dθ � 0 for all n ∈ Z.

Then f (θ) � 0 a.e.

Proof
Define F(θ) � ∫ θ

−π f (t) dt. By Theorem 4.20, F is continuous and
F ′ � f a.e. Also F is bounded: for all θ ∈ [−π, π), inequality (4.17)
yields

|F(θ)| ≤
∫ θ

−π
|f (θ)| dθ ≤

∫ π

−π
|f (θ)| dθ,
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which is finite since f ∈ L1([−π, π)). For n 	� 0,∫ π

−π
F(θ)e−inθ dθ �

∫ π

−π

∫ θ

−π
f (t) dt e−inθ dθ.

Interchanging the order of integration (allowed by a result regarding
Lebesgue integration called Fubini’s theorem), the last expression is
equal to∫ π

−π
f (t)

∫ π

t

e−inθ dθ dt �
∫ π

−π
f (t)

1
−in

(
e−inπ − e−int

)
dt � 0,

by our assumptions on f . Let

A � 1
2π

∫ π

−π
F(θ) dθ.

For n 	� 0, ∫ π

−π
(F(θ)− A)e−inθ dθ � 0,

by the above result for F becauseA is constant, and hence orthogonal
to e−inθ for n 	� 0. For n � 0,∫ π

−π
(F(θ)− A)e−i0θ dθ �

∫ π

−π
F(θ) dθ − 2πA � 0,

by definition of A. Thus F(θ)−A is a continuous, bounded function
that is orthogonal to all elements of the trigonometric system. So by
Lemma 4.19, F(θ)−A � 0 for all θ, that is, F(θ) � A for all θ. Hence
f (θ) � 0 a.e., since f � F ′ a.e.

Corollary 4.22 The trigonometric system is complete in L2([−π, π)).

Proof
This corollary follows from Theorem 4.21 since L2([−π, π)) ⊆
L1([−π, π)).

Definition 4.23 Suppose f ∈ L1([−π, π)). For n ∈ Z, 〈f, einθ〉 is the
nth Fourier coefficient of f . The series∑

n∈Z

〈f, einθ〉einθ (4.20)
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is the Fourier series of f . The N th partial sum of the Fourier series of f
is

sN (f ) �
N∑

n�−N
〈f, einθ〉einθ. (4.21)

By applying the results in section 4.2, we obtain Corollary 4.24.

Corollary 4.24
i. Suppose z � (z(n))n∈Z ∈ �2(Z). Then the series∑

n∈Z

z(n)einθ

converges to an element of L2([−π, π)).
ii. (Plancherel’s formula) Suppose f ∈ L2([−π, π)). Then the

sequence {〈f, einθ〉}n∈Z ∈ �2(Z), and∑
n∈Z

|〈f, einθ〉|2 � ‖f ‖2 � 1
2π

∫ π

−π
|f (θ)|2 dθ. (4.22)

iii. (Parseval’s relation) Suppose f, g ∈ L2([−π, π)). Then

〈f, g〉 �
∑
n∈Z

〈f, einθ〉〈g, einθ〉. (4.23)

iv. (Fourier inversion) For any f ∈ L2([−π, π)),

f (θ) �
∑
n∈Z

〈f, einθ〉einθ, (4.24)

in the sense that the partial sums sN (f ) (defined in equation
(4.21)) of the series on the right side of equation (4.24) converge
in L2([−π, π)) to f , that is,

‖sN (f )− f ‖ → 0 as N →∞. (4.25)

.

Proof
Part i follows from Lemmas 4.7 and 4.16. Parts ii and iii follow
from Lemma 4.11 and Corollary 4.22. Part iv follows from Theorem
4.10.

Equation (4.24) should be compared to equation (2.15) in the
finite dimensional case. We regard einθ as a pure frequency because
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its real and imaginary parts are cosnθ and sin nθ, respectively. Notice
that cosnθ and sin nθ oscillate n times over the interval [−π, π).
Therefore, as n increases, the frequency of einθ increases without
bound. This is unlike the case in chapter 2, where there were only
a finite set of possible pure frequencies.

The Fourier inversion formula (4.24) states that a general
function in L2([−π, π)) can be written as a superposition of pure
frequencies. The Fourier coefficient 〈f, einθ〉 in equation (4.24) is the
strength of the pure frequency einθ in f . If we think of a function f

on [−π, π) as an audio signal, and if the sound is high pitched, then
there must be at least one large value of |n| such that 〈f, einθ〉 is large.
If the sound is low pitched, its Fourier coefficients must be large for
some small value of |n|.

Part iv of Corollary 4.24 shows that any f ∈ L2([−π, π)) is
represented by its Fourier series in the sense of convergence in
the norm on L2([−π, π)). The question of pointwise convergence
of sN (f )(θ) to f (θ) is much more delicate and has been extensively
studied. On the negative side, du Bois Reymond showed in 1876 that
the Fourier series of a continuous function can diverge at a point. In
1926 Kolmogoroff gave an example of f ∈ L1([−π, π)), for which the
Fourier series diverges everywhere. On the positive side, if f has a
reasonable amount of smoothness, an elementary argument shows
that the partial sums sN (f ) converge to f at every point (Exercise
4.3.16). There are many more refined results than this, with weaker
assumptions. Finally in 1966 Carleson proved that the Fourier series
of any f ∈ L2([−π, π)) converges to f a.e. This last result is extremely
deep and difficult. For our purposes, we need only the basic result
in Corollary 4.24 iv.

When working with linear transformations on an infinite
dimensional space, one has to be careful. For example, the derivative
operator is a linear transformation on the class of differentiable
functions. In particular,

d

dθ
einθ � ineinθ. (4.26)

By analogy with the finite dimensional case, one might think that
one could use linearity and the Fourier inversion formula (4.24) to
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deduce that for any f ∈ L2([−π, π)) and any θ,

f ′(θ) �
∑
n∈Z

〈f, einθ〉 d
dθ

einθ �
∑
n∈Z

in〈f, einθ〉einθ. (4.27)

However, this last series may not converge (in L2 or pointwise at
θ), and f may not be differentiable at all points (for example an L2

function can be discontinuous at many points). (We remark that
there is a certain generalized definition of the derivative, arising
in a subject known as distribution theory, for which equation (4.27)
is true.) The source of this problem is that the derivative is not a
bounded operator on L2([−π, π)).

Definition 4.25 Suppose H1 and H2 are Hilbert spaces (possibly the
same) with norms ‖ · ‖1 and ‖ · ‖2, respectively, as in Definition 1.90.
Suppose T : H1 → H2 is a linear transformation. We say T is bounded
if there exists C > 0 such that

‖T(x)‖2 ≤ C‖x‖1 (4.28)

for all x ∈ H1. The infimum of all C such that equation (4.28) holds is
called the operator norm of T; it is denoted ‖T‖.

Lemma 4.2.6 shows how the boundedness property plays a role.

Lemma 4.26 Suppose H is a Hilbert space and T : H → H is a
bounded linear transformation. Suppose the series

∑
n∈Z xn converges in

H (Definition 4.6). Then

T

(∑
n∈Z

xn

)
�
∑
n∈Z

T(xn),

where the series on the right converges in H.

Proof
Exercise 4.3.8.

Like the Fourier basis for �2(ZN ), the trigonometric system
diagonalizes translation-invariant (bounded) linear transformations,
as defined below. For this and other definitions, we extend f ∈
L2([−π, π)) periodically with period 2π to all of R, that is, so that

f (θ + 2π) � f (θ) (4.29)



4. Wavelets on Z290

for all θ ∈ R.

Definition 4.27 For ϕ ∈ R, define the translation operator τϕ :
L2([−π, π))→ L2([−π, π)) by

(τϕf )(θ) � f (θ − ϕ).

A linear transformation T : L2([−π, π))→ L2([−π, π)) is translation-
invariant if it commutes with τϕ for every ϕ ∈ R:

T(τϕf )(θ) � τϕ(T(f ))(θ),

where τϕ(T(f ))(θ) � T(f )(θ − ϕ).

Theorem 4.28 SupposeT : L2([−π, π))→ L2([−π, π)) is a bounded,
translation-invariant linear transformation. Then for each m ∈ Z, there
exists λm ∈ C such that

T(eimθ) � λme
imθ. (4.30)

Proof
Fix m ∈ Z. By Corollary 4.24 iv, we can write

T(eimθ) �
∑
n∈Z

cne
inθ, (4.31)

where cn � 〈T(eimθ), einθ〉. Let ϕ ∈ R be arbitrary. Then

τϕ(eimθ) � eim(θ−ϕ) � e−imϕeimθ.

Hence by linearity of T and equation (4.31),

T(τϕ(eimθ)) � e−imϕT(eimθ) �
∑
n∈Z

cne
−imϕeinθ.

On the other hand, equation (4.31) also implies

τϕT(eimθ) �
∑
n∈Z

cne
in(θ−ϕ) �

∑
n∈Z

cne
−inϕ einθ.

However, T(τϕ(eimθ)) � τϕT(eimθ) by the assumption of translation
invariance of T. Hence by the uniqueness of Fourier coefficients
(Exercise 4.3.9),

cne
−imϕ � cne

−inϕ,
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for every n and ϕ. If n 	� m, this implies that cn � 0. Returning to
equation (4.31), this means that

T(eimθ) � cme
imθ.

Since m ∈ Z is arbitrary, this completes the proof.

You may have seen the analog of Fourier series (i.e., equation
(4.24)) written in real notation (see Exercise 4.3.6). This has the
advantage that if f is real valued, all the expansion coefficients are
real valued also. However, this expansion lacks the key property
described in Theorem 4.28 (see Exercise 4.3.13): the functions
sin nθ and cosnθ do not diagonalize translation-invariant linear
transformations.

Observe that the proof of Theorem 4.28 is analogous to the proof
of Theorem 2.18. Also note that Theorem 4.28 shows that a linear
transformation on an infinite dimensional space can have infinitely
many eigenvectors. Because these vectors are functions in this case,
they are called eigenfunctions.

Suppose T : L2([−π, π))→ L2([−π, π)) is a bounded, translation-
invariant linear transformation. Writing any f ∈ L2([−π, π)) in its
Fourier series expansion

f (θ) �
∑
n∈Z

c(n)einθ,

where c(n) � 〈f, einθ〉, we get (by Lemma 4.26)

T(f )(θ) �
∑
n∈Z

c(n)T(einθ) �
∑
n∈Z

c(n)λneinθ.

Thus from the point of view of the Fourier coefficients (the
components of f in the trigonometric system), the effect of T is just
to multiply the nth component c(n) by λn. This is just like multiplying
a vector by a diagonal matrix in the finite dimensional case (and
we can do that similarly here if we develop the theory of infinite
matrices). So we say that T is diagonalized by the trigonometric
system.

We remark that the derivative operator is translation invariant:

d

dθ
(f (θ − ϕ)) � df

dθ
(θ − ϕ),
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by the chain rule. However, the derivative is not defined on all of
L2([−π, π)), just on the subspace of differentiable functions, and it
is not a bounded operator even on that subspace. So Theorem 4.28
does not apply, but nevertheless heuristically we understand that
d/dθ is diagonalized by the trigonometric system because

d

dθ
einθ � ineinθ.

This shows that a result may be true in a more broad sense than
we know how to prove or even to formulate. Finding a version
of Theorem 4.28 that includes the derivative operator requires a
substantial amount of sophisticated material, so we stop here with
Theorem 4.28 and a hint that the result is more general. The
diagonalization of translation-invariant linear transformations is the
real reason for the effectiveness of Fourier series in the study of
differential equations: the trigonometric system diagonalizes d/dθ

and, more generally, all constant coefficient differential operators
because they are translation invariant.

Exercises

4.3.1. For f, g ∈ L2([−π, π)), and α ∈ C, define f + g and αf by

(f + g)(θ) � f (θ)+ g(θ) and (αf )(θ) � αf (θ),

for −π ≤ θ < π.
i. Prove that L2([−π, π)), with these operations, is a vector

space. Remark: All properties in Definition 1.30 are
obvious except A1. Use Exercise 1.6.3 (i).

ii. Prove that 〈·, ·〉 defined in equation (4.14) is an inner
product on L2([−π, π)). Remark: The main point is to see
that the integral in equation (4.14) converges absolutely,
so that 〈f, g〉 is defined. We cannot use inequality (4.15)
because its proof depends on knowing that 〈·, ·〉 is an
inner product on L2([−π, π)). Use the inequality in
Exercise 1.6.3 (i).

4.3.2. i. For n ∈ N, define a function fn on [−π, π) by setting
fn(θ) �

√
n if 0 < θ < 1/n and fn(θ) � 0 otherwise.
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Observe that fn ∈ L2([−π, π)) for each n. Prove that the
sequence {fn}n∈N converges pointwise to 0, which means
that for each θ ∈ [−π, π), limn→∞ fn(θ) � 0. However,
prove that {fn}n∈N does not converge to 0 in norm, that is,
in the space L2([−π, π)) (recall Definition 4.4).

ii. Define a sequence {gn}n∈N of functions on [−π, π) as
follows. For n ∈ N, we can write n � 2j + k for some
k ∈ {0, 1, . . . , 2j−1} in a unique way, with j ∈ Z and j ≥ 0.
Define g2j+k(θ) � 1 for 2−jkπ ≤ |θ| ≤ 2−j(k + 1)π, and
g2j+k(θ) � 0 otherwise. Prove that the sequence {gn}n∈N

converges to 0 in L2([−π, π)) (i.e., in norm), but at every
point θ ∈ [−π, π), the sequence of numbers gn(θ) does
not converge as n → ∞ (in particular, we do not have
pointwise convergence).
Remark: This shows that in L2([−π, π)), there is no

implication between norm convergence and pointwise
convergence, unlike the case of �2(Z) discussed in Exercise
4.1.8.

4.3.3. Define f (θ) � 1/
√|θ| for θ 	� 0, and f (0) � 0. Show that

f ∈ L1([−π, π)) but f 	∈ L2([−π, π)).
4.3.4. i. Define f : [−π, π)→ R by

f (θ) �
{

1 if 0 ≤ θ < π

0 if − π ≤ θ < 0.

Compute the Fourier coefficients of f . Note that their
decay is only of order 1/|n|; this reflects the discontinuity
of f at the origin. Intuitively, large high-frequency
components are required to synthesize a discontinuity.

ii. Define g : [−π, π) → R by g(θ) � |θ|. Compute the
Fourier coefficients of g. Note that they decay on the
order of 1/n2. This decay is faster than that in part i
because of the continuity of g (or, more precisely, the
continuity of the 2π-periodic extension of g).

4.3.5. For a > 0, define

L2([−a, a)) �
{
f : [−a, a)→ C :

∫ a

−a
|f (t)|2 dt <∞

}
.
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As in Exercises 4.3.1 and 4.3.2, L2([−a, a)) is a complex inner
product space with inner product

〈f, g〉 � 1
2a

∫ a

−a
f (t)g(t) dt.

Assume this fact and also the fact that L2([−a, a)) is a
Hilbert space. Prove that the system {einπt/a}n∈Z is a complete
orthonormal set in L2([−a, a)). Hint: Change variables to
reduce to the case of [−π, π).

4.3.6. (Fourier series in real notation)
i. Show that the set of functions

{1} ∪ {√2 cosnθ}∞n�1 ∪ {
√

2 sin nθ}∞n�1

is a complete orthonormal set in L2([−π, π)). Hint: For
completeness, use Corollary 4.22 and Euler’s formulas.

ii. Deduce that each f ∈ L2([−π, π)) has an expansion

a0

2
+
∞∑
n�1

an cosnθ +
∞∑
n�1

bn sin nθ,

where

an � 1
π

∫ π

−π
f (θ) cosnθ dθ

for all n ≥ 0, and

bn � 1
π

∫ π

−π
f (θ) sin nθ dθ

for all n ≥ 1. Describe the sense in which this series
converges to f .

iii. Let f , {an}∞n�0, and {bn}∞n�1 be as in part ii. For n ∈ Z, let
cn � 〈f, einθ〉. Deduce the relations

a0 � 2c0, an � cn+c−n (n ≥ 1), bn � i(cn−c−n) (n ≥ 1)

and, going the other way,

c0 � a0/2,

cn � (an − ibn)/2 (n ≥ 1),

cn � (a−n − ib−n)/2 (n ≤ −1).



Exercises 295

Hence it is straightforward to pass back and forth
between the expansion in part ii and equation (4.24).

4.3.7. Define

L2([0, π)) �
{
f : [0, π)→ C :

∫ π

0
|f (θ)|2 dθ <∞

}
.

As in Exercises 4.3.1 and 4.3.2, L2([0, π)) is a complex inner
product space with inner product

〈f, g〉 � 1
π

∫ π

0
f (θ)g(θ) dθ.

Assume this fact and also the fact that L2([0, π)) is a Hilbert
space.
i. Prove that the set {√2 sin(nθ)}∞n�1 is a complete orthonor-

mal set in L2([0, π)). Hint: To prove the completeness,
define g : [−π, π) → C by setting g(θ) � f (θ) for
0 ≤ θ < π, and g(θ) � −f (−θ) for −π ≤ θ < 0 (g is
the odd extension of f ). Show that g is orthogonal to the
trigonometric system in L2([−π, π).

ii. Prove that the set {1,√2 cos θ,
√

2 cos 2θ,
√

2 cos 3θ, . . . } is
a complete orthonormal set in L2([0, π)). Hint: Consider
the even extension of f , appropriately defined.

4.3.8. Prove Lemma 4.26. Hint: First prove that
∑

n∈Z T(xn)
converges by showing that its partial sums are Cauchy. Let
sN �

∑N
n�−N xn and s � ∑n∈Z xn. Since sN is defined by a

finite sum, linearity gives T(sN ) �∑N
n�−N T(xn). Now use

‖T(sN )− T(s)‖ ≤ C‖sN − S‖.
4.3.9. (Uniqueness for Fourier series) Suppose

{c(n)}n∈Z, {d(n)}n∈Z ∈ �2(Z),

and ∑
n∈Z

c(n)einθ �
∑
n∈Z

d(n)einθ

(where both series converge in L2([−π, π)), by Corollary 4.24
i). Prove that c(n) � d(n) for all n.

4.3.10. Suppose f ∈ L1([−π, π)). Prove relation (4.17). Hint: This is
relatively easy for f real valued. If f is complex valued, we
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can write
∫ π

−π f (θ) dθ � reiα for some r ≥ 0 and α ∈ [0, 2π).
Show that

r �
∫ π

−π
Re
(
e−iαf (θ)

)
dθ.

4.3.11. Suppose f, g ∈ L1([−π, π)), and extend f and g periodically
to all of R with period 2π, as in equation (4.29). Define f ∗ g,
the convolution of f and g, by

f ∗ g(θ) �
∫ π

−π
f (θ − ϕ)g(ϕ) dϕ. (4.32)

Prove that f ∗ g ∈ L1([−π, π)). Hint:∫ π

−π

∣∣∣∣
∫ π

−π
f (θ − ϕ)g(ϕ) dϕ

∣∣∣∣ dθ ≤
∫ π

−π

∫ π

−π
|f (θ − ϕ)g(ϕ)| dϕ dθ,

by inequality (4.17). Because the last integrand is nonnega-
tive, you can switch the order of integration (assume this; it
follows from a result called Tonelli’s theorem). Then make a
change of variable.

4.3.12. Let f, g and f ∗ g be as in Exercise 4.3.11.
i. Prove that

〈f ∗ g, einθ〉 � 2π〈f, einθ〉〈g, einθ〉. (4.33)

In other words, up to a factor of 2π, taking Fourier
coefficients turns convolution into multiplication, much
like the case in Lemma 2.30.

ii. Prove that f ∗ g � g ∗ f .
iii. Let τϕ be the translation operator from Definition 4.27.

Set Tg(f ) � f ∗ g. Show that Tg is translation invariant,
that is, that Tg(τϕf ) � τϕ(Tg(f )).

4.3.13. Let j ∈ Z. For f ∈ L2([−π, π)), define

Tj(f ) � f ∗ eijθ.
See Exercise 4.3.11 for the definition of convolution.
i. Prove that Tj(f ) � 〈f, eijθ〉eijθ, for all f ∈ L2([−π, π)).

ii. Deduce that Tj(f ) ∈ L2([−π, π)), if f ∈ L2([−π, π)). Then
show that Tj : L2([−π, π)) → L2([−π, π)) is bounded
(Definition 4.25).
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iii. By Exercise 4.3.12 (iii), Tj is translation invariant, so by
the previous part, Tj satisfies the conditions of Theorem
4.28. Determine the values λm, for m ∈ Z, in Theorem
4.28, for T � Tj.

iv. We have just noted that Tj is diagonalized by the
trigonometric system. Observe that for j 	� 0, cos jθ
and sin jθ are not eigenfunctions of Tj (i.e., Tj(cos jθ)
is not a multiple of cos jθ, and similarly for sin jθ).
Thus the system associated with Fourier series in real
notation (Exercise 4.3.6) does not diagonalize bounded
translation-invariant linear transformations.

4.3.14. Suppose f ∈ L1([−π, π)). Define sN (f ) by equation (4.21).
Prove that

sN (f ) � 1
2π

DN ∗ f,

where convolution ∗ is defined in Exercise 4.3.11, and

DN (θ) �
N∑

n�−N
einθ.

The function DN is the Dirichlet kernel. Hint: Writing out the
partial sum gives

sN (f )(θ) �
N∑

n�−N

1
2π

∫ π

−π
f (ϕ)e−inϕ dϕeinθ.

Bringing the sum inside the integral gives DN ∗ f (θ).
4.3.15. Define DN as in Exercise 4.3.14. Prove that

DN (θ) � sin(N + 1/2)θ
sin(θ/2)

,

for θ 	� 0, and DN (0) � 2N + 1. Hint: After factoring out
e−iNθ, what is left is the partial sum of a geometric series.

4.3.16. Suppose f : R→ C is periodic with period 2π (i.e., f satisfies
equation (4.29)). Suppose also that at every point t ∈ R,
f ′′(t) exists, and f ′′ is continuous. Prove that at every point
t, sN (f )(t) converges to f (t) as N →∞. Hints: Note from the



4. Wavelets on Z298

definition of DN in Exercise 4.3.14 that

1
2π

∫ π

−π
DN (θ) dθ � 1.

Therefore, using Exercises 4.3.14, 4.3.12 (ii), and 4.3.15, we
can write

sN (f )(t)− f (t) � 1
2π

∫ π

−π
f (t − θ)DN (θ) dθ

− 1
2π

∫ π

−π
f (t)DN (θ) dθ

� 1
2π

∫ π

−π
(f (t − θ)− f (t))DN (θ) dθ

� 1
2π

∫ π

−π

f (t − θ)− f (t)
sin(θ/2)

sin((N + 1/2)θ) dθ.

Fixing t, define

g(θ) � f (t − θ)− f (t)
sin(θ/2)

for θ 	� 0 and g(0) � −2f ′(t). Prove that g is differentiable
with a continuous derivative on R (this uses the assumptions
on f ′′). Then integrate by parts to obtain

sN (f )(t)− f (t) � 1
π(2N + 1)

∫ π

−π
g′(θ) cos((N + 1/2)θ) dθ.

4.4 The Fourier Transform and
Convolution on �2(Z)

Our goal in this section is to develop an analog for �2(Z) of the
DFT. We begin by considering the critical properties of the vectors
gm(n) � e−2πimn/N , m � 0, 1, . . . , N − 1, used in the context of �2(ZN )
in chapters 2 and 3. A look at some of the proofs (e.g., Theorem
2.18) suggests that the key property is that each gm is multiplicative,
defined as follows. A function χ : ZN → C is multiplicative if

χ(j + k) � χ(j)χ(k), (4.34)
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for all j, k. Note that if χ is not identically 0, this forces χ(0) � 1 (let
j � k � 0 in equation (4.34)) and

χ(n) � (χ(1)
)n
, (4.35)

by induction (let j � n − 1 and k � 1 for the inductive step).
However, for χ defined on ZN , χ must be periodic with period N .
Thus, equation (4.35) gives(

χ(1)
)N � χ(N) � χ(0) � 1.

Hence χ(1) must be an N th root of unity e−2πim/N for some m.
Then equation (4.35) gives χ(n) � e−2πimn/N . Because only N of
these exponentials are different, we obtain the system of functions
{gm}0≤m≤N−1 in the DFT.

Now consider the case of infinite sequences z ∈ �2(Z). A function
χ : Z→ C is multiplicative if equation (4.34) holds for all j, k ∈ Z. A
multiplicative function χ that is not identically 0 will, by the same
reasoning as above, satisfy χ(0) � 1 and equation (4.35). However,
because χ is not necessarily periodic, we do not obtain the restriction
that χ(1) is a root of unity. If |χ(1)| > 1, then |χ(n)| � |χ(1)|n grows
so rapidly as n → +∞ that such a function is not useful for us.
Similarly, if |χ(1)| < 1, then |χ(n)| � |χ(1)|n grows too rapidly as
n→ −∞. So we restrict our attention to the case where |χ(1)| � 1.
Then χ(1) � eiθ for some θ ∈ [−π, π), and we end up with χ(n) � einθ

for some such θ. For each different θ, we obtain a multiplicative
function, so we consider all of these.

This leads to the following analog of the DFT.

Definition 4.29 The Fourier transform on �2(Z) is the map ˆ :
�2(Z)→ L2([−π, π)) defined for z ∈ �2(Z) by

ẑ(θ) �
∑
n∈Z

z(n)einθ,

where the series is interpreted as its limit in L2([−π, π)).

The existence of this limit is guaranteed by Lemmas 4.7 and 4.17.
We sometimes regard ẑ as defined on all of R by extending it to have
period 2π. Note that the formula defining ẑ has period 2π, so it can
be used as the definition of ẑ(θ) for all θ ∈ R.
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Given a function f ∈ L2([−π, π)), Lemmas 4.8 and 4.17 show that
its sequence of Fourier coefficients belong to �2(Z). This allows the
following definition.

Definition 4.30 The inverse Fourier transform on L2([−π, π)) is
the map ˇ : L2([−π, π))→ �2(Z) defined for f ∈ L2([−π, π)) by

f̌ (n) � 〈f, einθ〉 � 1
2π

∫ π

−π
f (θ)e−inθ dθ.

As the notation suggests, ˆand ˇare inverse maps.

Lemma 4.31 The mapˆin Definition 4.29 is one-to-one and onto, with
inverse .̌ For z ∈ �2(Z),

z(n) � (ẑ)ˇ(n) � 1
2π

∫ π

−π
ẑ(θ)e−inθ dθ. (4.36)

For all z, w ∈ �2(Z) we have Parseval’s relation:

〈z, w〉 �
∑
n∈Z

z(n)w(n) � 1
2π

∫ π

−π
ẑ(θ)ŵ(θ) dθ � 〈ẑ, ŵ〉 (4.37)

(where the inner product on the right side is as in equation (4.14)), and
Plancherel’s formula

‖z‖2 �
∑
n∈Z

|z(n)|2 � 1
2π

∫ π

−π
|ẑ(θ)|2 dθ � ‖ẑ‖2. (4.38)

Proof
Suppose that z ∈ �2(Z). By Exercise 4.2.5 (ii),

〈ẑ, einθ〉 �
〈∑
m∈Z

z(m)eimθ, einθ

〉
� z(n), (4.39)

that is, (ẑ)ˇ � z, or equation (4.36). This shows that ˆ is one-to-one.
Suppose f ∈ L2([−π, π)). Corollary 4.24 iv shows that f � (f̌ )ˆ. Hence
ˆ is onto, with inverse .̌

Applying Corollary 4.24 iii with f � ẑ and g � ŵ gives equation
(4.37), by equation (4.39). Letting z � w in equation (4.37) implies
equation (4.38).

Equation (4.36) is the Fourier inversion formula for �2(Z). It
expresses z(n) as an integral average over θ ∈ [−π, π) of the
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pure frequencies e−inθ. It is curious, however, that for every θ, the
sequence e−inθ (as a sequence in n) does not belong to �2(Z). Thus
in equation (4.36), elements of �2(Z) are written as averages of
elements not in this space. This suggests the need for an integral
average: no single term e−inθ should be given more than infinitesimal
weight. With this understanding, equation (4.36) is analogous to a
basis representation. Then ẑ(θ) is the weight of the pure frequency
e−inθ in the integral average in equation (4.36) that represents z.

Next we define convolution. Observe that for z, w ∈ �2(Z), and
m ∈ Z, we have, by relation (4.3),

∑
n∈Z

|z(m−n)w(n)| ≤
(∑

n∈Z

|z(m − n)|2
)1/2(∑

n∈Z

|w(n)|2
)1/2

� ‖z‖‖w‖,
(4.40)

where we changed summation index (let k � m − n) to obtain the
last equality. This shows that the sum in Definition 4.32 converges
absolutely.

Definition 4.32 Suppose z, w ∈ �2(Z). For m ∈ Z, define

z ∗w(m) �
∑
n∈Z

z(m − n)w(n). (4.41)

The sequence z ∗w is called the convolution of z and w.

We note that

|z ∗w(m)| ≤
∑
n∈Z

|z(m − n)w(n)| ≤ ‖z‖‖w‖,

by inequality (4.40). Thus for z, w ∈ �2(Z), z ∗ w is a bounded
sequence. However, it is not necessarily the case that z ∗ w ∈ �2(Z)
(Exercise 4.4.6 (ii)). To obtain z ∗ w ∈ �2(Z), we make a stronger
assumption on one of the two vectors.

Definition 4.33 Let z � (z(n))n∈Z be a sequence of complex
numbers. We say z is summable if the series∑

n∈Z

|z(n)| < +∞.

Let

�1(Z) � {z � (z(n))n∈Z : z(n) ∈ C for all n,and z is summable
}
.
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For z ∈ �1(Z), define

‖z‖1 �
∑
n∈Z

|z(n)|.

By Exercise 4.4.2, �1(Z) is a vector space (but not an inner product
space), and ‖ · ‖1 is a norm (called the �1-norm) on �1(Z), in the
sense of Exercise 1.6.5. Moreover, �1(Z) is a proper subspace of
�2(Z) (meaning that it is a subspace that is not the whole space).
We continue to use ‖ · ‖ to denote the norm in �2(Z) defined in
equation (4.2), but we denote the �1 norm by ‖ · ‖1.
Lemma 4.34 Suppose z ∈ �2(Z) and w ∈ �1(Z). Then z ∗w ∈ �2(Z),
and

‖z ∗w‖ ≤ ‖w‖1‖z‖. (4.42)

Proof
For any m ∈ Z,∣∣∣∣∣
∑
n∈Z

z(m − n)w(n)

∣∣∣∣∣ ≤
∑
n∈Z

|z(m − n)||w(n)|1/2|w(n)|1/2

≤
(∑

n∈Z

|z(m − n)|2|w(n)|
)1/2 (∑

n∈Z

|w(n)|
)1/2

� ‖w‖1/2
1

(∑
n∈Z

|z(m − n)|2|w(n)|
)1/2

,

by inequality (4.3). Therefore,

‖z ∗w‖2 �
∑
m∈Z

∣∣∣∣∣
∑
n∈Z

z(m − n)w(n)

∣∣∣∣∣
2

≤ ‖w‖1
∑
m∈Z

∑
n∈Z

|z(m − n)|2|w(n)|

� ‖w‖1
∑
n∈Z

|w(n)|
∑
m∈Z

|z(m − n)|2.

(The interchange of order of summation is justified by a theorem in
analysis, because all terms are nonnegative.) Changing summation
index (say, letting k � m − n) gives that

∑
m∈Z |z(m − n)|2 � ‖z‖2,
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for any n. Substituting this gives

‖z ∗w‖2 ≤ ‖w‖21‖z‖2.
The result follows by taking the square root.

Convolution has the following basic properties.

Lemma 4.35 Suppose v,w ∈ �1(Z) and z ∈ �2(Z). Then
i. (z ∗w)ˆ(θ) � ẑ(θ)ŵ(θ) a.e.
ii. z ∗w � w ∗ z.
iii. v ∗ (w ∗ z) � (v ∗w) ∗ z.

Proof
To prove part i, we first suppose z ∈ �1(Z). Then for each θ ∈ [−π, π),

(z ∗w)ˆ(θ) �
∑
n∈Z

z ∗w(n)einθ �
∑
n∈Z

∑
k∈Z

z(n − k)w(k)ei(n−k)θeikθ

�
∑
k∈Z

w(k)eikθ
∑
n∈Z

z(n − k)ei(n−k)θ

�
∑
k∈Z

w(k)eikθ
∑
m∈Z

z(m)eimθ � ẑ(θ)ŵ(θ),

by the change of index m � n − k. The interchange of the order
of summation is justified because z, w ∈ �1(Z), so the double sum
converges absolutely.

The extension to the case z ∈ �2(Z) requires care because ẑ

and (z ∗w)ˆare interpreted in the L2([−π, π)) sense as in Definition
4.29. For each positive integer N , define a sequence zN by setting
zN (n) � z(n) if |n| ≤ N and zN (n) � 0 if |n| > N . Then zN ∈ �1(Z),
so by the �1(Z) case,

(zN ∗w)ˆ� ẑN ŵ. (4.43)

We would like to take the limit in norm as N →∞ of both sides of
(4.43).

For the left side, note that {zN }∞N�1 converges to z in norm; that
is, ‖zN − z‖ → 0 as N →∞. Hence, by Lemma 4.34,

‖zN ∗w− z ∗w‖ � ‖(zN − z) ∗w‖ ≤ ‖zN − z‖‖w‖1 → 0

as N →∞. By Plancherel’s formula (4.38), then,

‖(zN ∗w)ˆ− (z ∗w) ‖̂ → 0,
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as N →∞.
For the right side of equation (4.43), note that for all θ,

|ŵ(θ)| �
∣∣∣∣∣
∑
n∈Z

w(n)einθ
∣∣∣∣∣ ≤

∑
n∈Z

|w(n)| � ‖w‖1.

By using this inequality and equation (4.38), we get

‖ẑN ŵ− ẑŵ‖2 � 1
2π

∫ π

−π
|ẑN (θ)ŵ(θ)− ẑ(θ)ŵ(θ)|2 dθ

≤ ‖w‖21
1

2π

∫ π

−π
|ẑN (θ)− ẑ(θ)|2 dθ � ‖w‖21‖ẑN − ẑ‖2

� ‖w‖21‖‖zN − z‖2 → 0

as N →∞.
Hence, as N → ∞, the left side of equation (4.43) converges

in L2([−π, π)) to (z ∗ w)ˆ whereas the right side converges to ẑŵ.
Therefore (z∗w)ˆand ẑŵ agree in L2([−π, π)), hence a.e. This proves
part i.

We leave the proof of parts ii and iii as Exercise 4.4.4.

The technique in the last proof of verifying the result first under
weaker conditions, which justify the formal calculation, and then
using this result and a limiting argument to justify the general result,
is common in analysis.

By analogy to Theorems 2.18 and 4.28, we expect the trigono-
metric system {e−inθ}θ∈[−π,π) to diagonalize any bounded translation-
invariant linear transformation T : �2(Z) → �2(Z). In some sense
this is true, but care must be taken in the interpretation of this state-
ment. We cannot say that e−inθ is an eigenvector of T, because e−inθ

is not in the domain �2(Z) of T. In particular, the analog of the first
step of the proofs of Theorems 2.18 and 4.28, namely, to apply the
Fourier inversion formula to T(e−inθ), breaks down immediately be-
cause T(e−inθ) is not defined. However, the approach of the alternate
proof in Theorem 2.19 can be carried out, with the proper interpre-
tation. We begin with the definition of translation invariance in this
context.
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Definition 4.36 For k ∈ Z, the translation operator Rk : �2(Z) →
�2(Z) is defined by

Rkz(n) � z(n − k),

for all n ∈ Z. A linear transformation T : �2(Z)→ �2(Z) is translation
invariant if, for all z ∈ �2(Z) and k ∈ Z,

T(Rkz) � RkT(z),

that is, if T commutes with each Rk.

Example 4.37
Suppose b ∈ �1(Z). For z ∈ �2(Z), define

Tb(z) � b ∗ z.
By Lemma 4.34, Tb(z) is defined and belongs to �2(Z), that is,
T : �2(Z)→ �2(Z). Moreover, Lemma 4.34 shows that Tb is bounded
(Definition 4.25) on �2(Z). One can check that Tb is translation
invariant (Exercise 4.4.5).

Definition 4.38 Define the delta function δ by

δ(n) �
{

1, if n � 0
0, if n 	� 0.

(4.44)

This terminology is redundant because δ � e0, but convenient
and standard, as in the case of �2(ZN ) (Definition 2.28).

Lemma 4.39 Suppose T : �2(Z) → �2(Z) is a bounded,
translation-invariant linear transformation. Define b ∈ �2(Z) by

b � T(δ).

Then for all z ∈ �2(Z),

T(z) � b ∗ z.
Proof
Because {ej}j∈Z is a complete orthonormal set in �2(Z), we can write

T(ej) �
∑
k∈Z

aj,kek,
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for some scalars {aj,k}k∈Z. Taking the inner product of both sides with
a standard basis vector shows that

aj,k � 〈T(ej), ek〉 � T(ej)(k).

By the translation invariance of T,

aj+1,k+1 � T(ej+1)(k + 1) � T(R1ej)(k + 1)

� R1(T(ej))(k + 1) � T(ej)(k) � aj,k.

(This says that the infinite matrix {aj,k}j,k∈Z representing T in the
standard basis is circulant.) Repeating this � times gives aj+�,k+� � aj,k
for all j, k, �.

Suppose z ∈ �2(Z). We can write z �∑j∈Z z(j)ej. By Lemma 4.26
and the boundedness of T,

T(z) �
∑
j∈Z

z(j)T(ej).

These remarks give

T(ej)(n) � aj,n � a0,n−j � T(e0)(n − j) � T(δ)(n − j) � b(n − j).

Hence

T(z)(n) �
∑
j∈Z

z(j)b(n − j) � b ∗ z(n),

for all n.

Hence for T translation invariant and b � T(δ), we can write

T(z)(n) � b ∗ z(n) � ((b ∗ z)ˆ)ˇ(n) � (b̂ẑ)ˇ(n)

� 1
2π

∫ π

−π
b̂(θ)ẑ(θ)e−inθ dθ,

by Lemma 4.35. By comparing this with equation (4.36), we see that
the effect of T on z is to replace the “coefficient” ẑ(θ) of e−inθ in
equation (4.36) by b̂(θ)ẑ(θ). In this sense the system {e−inθ}θ∈[−π,π)

diagonalizes T, like the cases of the Fourier basis for �2(ZN ) in
Theorem 2.18 and the trigonometric system for L2([−π, π)) in
Theorem 4.28.

Now we introduce some definitions in the context of �2(Z) that
are similar to those for �2(ZN ) in chapter 3.
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Definition 4.40 Suppose z ∈ �2(Z). For n, k ∈ Z, define the
conjugate reflection of z:

z̃(n) � z(−n). (4.45)

Also define

z∗(n) � (−1)nz(n). (4.46)

This leads to the following results, analogous to those in chapter
3.

Lemma 4.41 Suppose z, w ∈ �2(Z). Then
i. z̃, z∗ ∈ �2(Z), and Rkz ∈ �2(Z), for all k ∈ Z.
ii. (z̃)ˆ(θ) � ẑ(θ).
iii. (z∗)ˆ(θ) � ẑ(θ + π).
iv. (Rkz)ˆ(θ) � eikθẑ(θ).
v. 〈Rjz, Rkw〉 � 〈z, Rk−jw〉, for all j, k ∈ Z.
vi. 〈z, Rkw〉 � z ∗ w̃(k) for all k ∈ Z.
vii. δ̂(θ) � 1, for all θ.

Proof
We give the proof of part iii, because its statement looks a little
different from the corresponding statement for �2(ZN ). By definition,

(z∗)ˆ(θ) �
∑
n∈Z

z∗(n)einθ �
∑
n∈Z

(−1)nz(n)einθ

�
∑
n∈Z

(eiπ)nz(n)einθ �
∑
n∈Z

z(n)ein(θ+π) � ẑ(θ + π).

We leave parts i, ii, iv, v, vi, and vii as Exercise 4.4.8.

Note that the basic machinery of Fourier analysis that we have
just constructed in the context of �2(Z) is closely analogous to the
machinery we developed in chapter 2 for �2(ZN ). Because of this, we
are able to develop wavelets on Z in a manner closely corresponding
to the construction on ZN in chapter 3.

Exercises

4.4.1. Suppose χ : R→ C satisfies
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i. χ is 2π periodic on R: χ(θ + 2π) � χ(θ) for all θ ∈ R.
ii. χ is multiplicative: χ(θ + ϕ) � χ(θ)χ(ϕ) for all θ, ϕ ∈ R.

iii. χ is not identically 0 on R.
iv. χ is differentiable at 0.

Prove that there exists n ∈ R such that χ(θ) � einθ. Hint:
Prove that χ is differentiable on R and χ′(θ) � χ′(0)χ(θ).
Remark: These functions correspond to the group characters
on the circle {eiθ : −π ≤ θ < π} defined byχ(eiθ) � einθ or just
χ(z) � zn. Their appearance in equation (4.24) is analogous
to the appearance of the characters χ(n) � e2πimn/N (for
m ∈ ZN ) on ZN in equation (2.10) and the characters
χ(n) � einθ (for θ ∈ [−π, π)) on Z in equation (4.36). In every
case, a general �2 or L2 function is written as some sort of
superposition (sum or integral) of the associated characters.
There is a general theory (Fourier analysis on locally compact
abelian groups) behind this.

4.4.2. i. Prove that �1(Z) is a vector space, with the usual
componentwise addition and scalar multiplication.

ii. Prove that ‖ · ‖1 is a norm on �1(Z) (see Exercise 1.6.5 for
the definition of a norm on a vector space).

iii. Prove that �1(Z) is not an inner product space. (Hint: See
Exercise 1.6.6.)

iv. Prove that �1(Z) ⊆ �2(Z). Hint: If z ∈ �1(Z), prove that
supn∈Z |z(n)| < +∞ and then that∑

n∈Z

|z(n)|2 ≤ sup
n∈Z

|z(n)|
∑
n∈Z

|z(n)|.

Remark: Observe that this containment goes the oppo-
site way to the containment L2([−π, π)) ⊆ L1([−π, π)).

v. Give an example of z ∈ �2(Z) such that z 	∈ �1(Z).
4.4.3. Suppose z, w ∈ �1(Z).

i. Prove that the series
∑

n∈Z z(m − n)w(n) converges
absolutely for each m ∈ Z.

ii. Prove that z ∗w ∈ �1(Z).
4.4.4. Prove Lemma 4.35 ii and iii. Remark: For part ii, note that

w ∈ �2(Z) by Exercise 4.4.2 (iv), so ŵ is defined. For part iii,
note that v ∗ w ∈ �1(Z) by Exercise 4.4.3, so (v ∗ w) ∗ z is
defined. Hint: This is very similar to the case of �2(ZN ).
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4.4.5. Define Tb as in Example 4.37. Prove that Tb is translation
invariant.

4.4.6. i. Let

f (θ) � 1
4
√|θ|

for θ 	� 0, and f (0) � 0. Prove that f ∈ L2([−π, π)) but
f 2 	∈ L2([−π, π)).

ii. Prove that there exist z, w ∈ �2(Z) such that z∗w 	∈ �2(Z).
Hint: Let z � w � f̌ , for f as in part i, and apply Lemma
4.35 i.

4.4.7. Suppose z ∈ �2(Z). Prove that z ∗ δ � z, for δ as in Definition
4.38.

4.4.8. Prove Lemma 4.41, parts i, ii, iv, v, vi, and vii.
4.4.9. Suppose z ∈ �1(Z). Prove that the series

∑
n∈Z z(n)einθ

converges absolutely and uniformly. Deduce that ẑ(θ) is
continuous. Hint: Apply a theorem in analysis that says that
the limit of a uniformly convergent sequence of continuous
functions is continuous.

4.4.10. Convolution arises in multiplication of polynomials as
follows. Let p(x) � ∑M

k�0 ak x
k and q(x) � ∑N

k�0 bk x
k be

polynomials (for some M,N ∈ N). Define a, b ∈ �2(Z) by
setting a(k) � ak for 0 ≤ k ≤ M and a(k) � 0 otherwise, and
similarly b(k) � bk for 0 ≤ k ≤ N and 0 otherwise. Prove
that

p(x)q(x) �
M+N∑
k�0

a ∗ b(k) xk.

With appropriate convergence considerations, this result
can be extended to power series

∑∞
k�0 ak x

k or even to
Laurent series

∑
k∈Z ak z

k.

4.5 First-Stage Wavelets on Z

In this section, we characterize first stage wavelet bases on Z. For
the most part, this is done by adapting the techniques in chapter
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3 to �2(Z). The most substantive differences come from the infinite
dimensionality of �2(Z). In the finite dimensional case, we could say
that an orthonormal set with the right number of elements must
span the space, and hence is a basis. Here an infinite orthonormal
set is not necessarily complete (e.g., take one element away from a
complete orthonormal set). So some extra work will be required to
show completeness.

The first step is to prove the analog of Lemma 3.6.

Lemma 4.42 Suppose w, z ∈ �1(Z).
i. The set {R2kw}k∈Z is orthonormal if and only if

|ŵ(θ)|2 + |ŵ(θ + π)|2 � 2 for all θ ∈ [0, π). (4.47)

ii. We have

〈R2kz, R2jw〉 � 0 for all k, j ∈ Z (4.48)

if and only if

ẑ(θ)ŵ(θ)+ ẑ(θ + π)ŵ(θ + π) � 0 for all θ ∈ [0, π). (4.49)

Proof
For part i, we first observe that the elements R2kw must be distinct
for k ∈ Z, that is,R2kw � R2jw implies k � j (Exercise 4.5.1 (ii)). Next,
note that the quantity |ŵ(θ)|2+ |ŵ(θ+ π)|2 is periodic with period π

(because ŵ has period 2π), so the identity in equation (4.47) holds
for all θ if and only if it holds for all θ ∈ [0, π). By Exercise 4.5.1 (iii),
{R2kw}k∈Z is orthonormal if and only if

〈w,R2kw〉 �
{

1 if k � 0
0 if k 	� 0.

(4.50)

By Lemma 4.41 vi, equation (4.50) is equivalent to

w ∗ w̃(2k) �
{

1 if k � 0
0 if k 	� 0.

For any y ∈ �2(Z),

(y+ y∗)(n) � (1+ (−1)n)y(n) �
{

2y(n) if n is even,
0 if n is odd.
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Using this fact with y � u∗ũ, we see that equation (4.50) is equivalent
to

w ∗ w̃+ (w ∗ w̃)∗ � 2δ.

By Fourier inversion (Lemma 4.31) and Lemma 4.41 vii, this is
equivalent to

(w ∗ w̃)ˆ(θ)+ ((w ∗ w̃)∗)ˆ(θ) � 2 for all θ. (4.51)

By Lemma 4.35 i and Lemma 4.41 ii,

(w ∗ w̃)ˆ(θ) � ŵ(θ)(w̃)ˆ(θ) � ŵ(θ)ŵ(θ) � |ŵ(θ)|2.
By using this fact and Lemma 4.41 iii, we get

((w ∗ w̃)∗)ˆ(θ) � (w ∗ w̃)ˆ(θ + π) � |ŵ(θ + π)|2.
By substituting these last two facts in equation (4.51), we obtain the
equivalence of equations (4.50) and (4.47). This completes the proof
of part i. Part ii is similar, and is left as Exercise 4.5.2.

There is an alternate proof of Lemma 4.42 based on Parseval’s
formula (Exercise 4.5.1 (iv)).

The following definitions correspond to definitions in chapter 3.

Definition 4.43 For a sequence z � (z(n))n∈Z, define sequencesD(z)
and U(z) on Z by

D(z)(n) � z(2n)

and

U(z)(n) �
{

z(n/2) if n is even
0 if n is odd.

Clearly D : �2(Z) → �2(Z) and U : �2(Z) → �2(Z). The m-fold
composition of D with itself is denoted Dm, and similarly for Um. Then

Dm(z)(n) � z(2mn),

and

Um(z)(n) �
{

z(n/2m) if n � 2mj for some j ∈ Z

0 if n is not divisible by 2j .

We call D the downsampling operator and U the upsampling operator.
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Definition 4.44 Suppose u, v ∈ �1(Z). Let

B � {R2kv}k∈Z ∪ {R2ku}k∈Z. (4.52)

IfB is a complete orthonormal set in �2(Z), we callB afirst-stage wavelet
system for �2(Z).

Recall that �1(Z) ⊆ �2(Z) (Exercise 4.4.2 (iv)). It might seem more
natural in Definition 4.44 to assume only that u, v ∈ �2(Z). However,
we will be considering z ∗ u and z ∗ v, for z ∈ �2(Z), and we need
these convolutions to belong to �2(Z). By Lemma 4.34, that condition
is guaranteed under the assumption u, v ∈ �1(Z). It seems that there
is no harm in making this assumption because it is satisfied by most
interesting examples. This assumption guarantees that û and v̂ are
continuous functions (see Exercise 4.4.9).

Definition 4.45 Suppose u, v ∈ �2(Z). The system matrix of u and
v is

A(θ) � 1√
2

[
û(θ) v̂(θ)

û(θ + π) v̂(θ + π)

]
. (4.53)

The characterization of first-stage wavelet systems for �2(Z) is
analogous to the characterization in �2(ZN ). The proof is similar
as well except that the additional step of proving completeness is
required.

Theorem 4.46 Suppose that u, v ∈ �1(Z). Then

B � {R2kv}k∈Z ∪ {R2ku}k∈Z

is a complete orthonormal set in �2(Z) if and only if the system matrix
A(θ) is unitary for all θ ∈ [0, π).

Proof
Applying Lemma 4.42 i with w � u, the set {R2ku}k∈Z is orthonormal
if and only if the first column ofA(θ) has norm one for all θ. Similarly,
letting w � v, {R2kv}k∈Z is orthonormal if and only if the second
column of A(θ) has norm one for all θ. Applying Lemma 4.42 ii,
the elements of {R2ku}k∈Z are orthogonal to those in {R2kv}k∈Z if and
only if the two columns of A(θ) are orthogonal for all θ. Thus, B is
an orthonormal set if and only if A(θ) is unitary for all θ.

To complete the proof, we must show that if A(θ) is unitary for
all θ ∈ [0, π), then the orthonormal set B is complete in �2(Z). The
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proof of completeness is inspired by the reconstruction procedure
for the filter bank in chapter 3, Figure 14. Observe that the unitarity
of A(θ) for all θ ∈ [0, π) implies the unitarity of A(θ) for all θ ∈ R

because û and v̂ are 2π-periodic. We claim that

v ∗ U(D(z ∗ ṽ))+ u ∗ U(D(z ∗ ũ)) � z, (4.54)

for all z ∈ �2(Z). To see this, note that U ◦D(z) � (z+z∗)/2 (Exercise
4.5.4 (ii)) and proceed as in the proof of Lemma 4.42 i, to obtain(

v ∗ U(D(z ∗ ṽ))
)ˆ(θ)+ (u ∗ U(D(z ∗ ũ))

)ˆ(θ)
� v̂(θ)

1
2

[
ẑ(θ)v̂(θ)+ ẑ(θ + π)v̂(θ + π)

]
+û(θ)

1
2

[
ẑ(θ)û(θ)+ ẑ(θ + π)û(θ + π)

]
� ẑ(θ)

1
2

[|û(θ)|2 + |v̂(θ)|2]
+ẑ(θ + π)

1
2

[
û(θ)û(θ + π)+ v̂(θ)v̂(θ + π)

]
.

However, the unitarity of A(θ) implies that the rows of A(θ) are
orthonormal (Lemma 1.105), so the last expression reduces to

ẑ(θ) · 1+ ẑ(θ + π) · 0 � ẑ(θ).

By Fourier inversion, this implies equation (4.54).
Note that

D(z ∗ ṽ)(k) � z ∗ ṽ(2k) � 〈z, R2kv〉,
and similarly D(z ∗ ũ)(k) � 〈z, R2ku〉. Hence, if 〈z, R2kv〉 � 0 and
〈z, R2ku〉 � 0 for all k ∈ Z, then D(z ∗ ṽ) � 0 and D(z ∗ ũ) � 0. Hence,
z � 0, by equation (4.54), which proves the completeness of B.

The last part of the proof can also be carried out by using equation
(4.54) and noting (Exercise 4.5.2 (ii)) that

v∗U(D(z ∗ ṽ))+u∗U(D(z ∗ ũ)) �
∑
k∈Z

〈z, R2kv〉R2kv+
∑
k∈Z

〈z, R2ku〉R2ku.

(4.55)
The proof of Theorem 4.46 is remarkable because the first part

shows that the orthonormality of B is equivalent to the unitarity
of A(θ) for all θ, yet by the second part, the unitarity of A(θ) for
all θ implies the completeness of B. Hence the orthonormality of
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B implies its completeness; we get the completeness free. This
is similar to the finite dimensional case, in which a linearly
independent set of maximal size automatically spans the space. In
the infinite dimensional case in general, there is no reason that an
infinite orthonormal set should be complete. Theorem 4.46 shows
that such an unusual implication does hold for sets of the form of
B. Curiously the reason behind this is the elementary fact that if the
columns of a square matrix are orthonormal, then so are the rows.

The identity (4.55) shows that the same filter bank arrangement
(Figure 14 with t̃ � v and s̃ � u) as for wavelets on ZN can be used
to carry out the analysis and synthesis phases associated with the
identity

z �
∑
k∈Z

〈z, R2kv〉R2kv+
∑
k∈Z

〈z, R2ku〉R2ku.

We saw in Lemma 3.12 that a vector u ∈ �2(ZN ) with the
property that its even integer translates are orthonormal always has
a companion v such that u and v generate a first-stage wavelet basis
for �2(ZN ). A similar result is true for �2(Z), as stated in Lemma
4.47. This result is more surprising in the infinite dimensional
context because, for example, the subspace orthogonal to an infinite
dimensional subspace does not have to be infinite dimensional.
However, because of the structure of the closed subspace generated
by the even integer translates of u, its orthogonal subspace is not only
infinite dimensional, it is generated by the even integer translates
of a vector v which is easily determined by u.

Lemma 4.47 Suppose u ∈ �1(Z) and {R2ku}k∈Z is orthonormal in
�2(Z). Define a sequence v ∈ �1(Z) by

v(k) � (−1)k−1u(1− k). (4.56)

Then

{R2kv}k∈Z ∪ {R2ku}k∈Z

is a complete orthonormal system (hence a first-stage wavelet system) in
�2(Z).
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Proof
Since u ∈ �1(Z), it is clear that v ∈ �1(Z). By Lemma 4.42 i, the
orthonormality of {R2ku}k∈Z is equivalent to

|û(θ)|2 + |û(θ + π)|2 � 2 for all θ.

By changing the summation index, we observe that

v̂(θ) �
∑
k∈Z

(−1)k−1u(1− k)eikθ �
∑
j∈Z

(−1)−ju(j)ei(1−j)θ.

By writing (−1)−j � (eiπ)−j � e−iπj, we obtain

v̂(θ) �
∑
j∈Z

e−iθu(j)eij(θ+π) � eiθû(θ + π). (4.57)

Hence

v̂(θ + π) � ei(θ+π)û(θ + 2π) � −eiθû(θ).

It follows (Exercise 4.5.9) that the matrix A(θ) defined in equation
(4.53) is unitary for all θ. The result follows by Theorem 4.46.

Lemma 4.47 reduces the construction of a first-stage wavelet
basis to the construction of a vector u ∈ �1(Z) such that the set
{R2ku}k∈Z is orthonormal.

A first-stage wavelet system {R2kv}k∈Z ∪ {R2ku}k∈Z for �2(Z)
automatically yields a first-stage wavelet basis for �2(ZN ) (Definition
3.4) by a process known as periodization.

Lemma 4.48 (Periodized wavelets for �2(ZN )) SupposeM ∈ N and
N � 2M. Suppose u, v ∈ �1(Z) are such that {R2kv}k∈Z ∪ {R2ku}k∈Z is a
first-stage wavelet system for �2(Z). Define u(N), v(N) ∈ �2(ZN ) by

u(N)(n) �
∑
k∈Z

u(n + kN) and v(N)(n) �
∑
k∈Z

v(n + kN). (4.58)

(Note that these sums converge absolutely by the assumption that u, v ∈
�1(Z).) Then

{R2kv(N)}M−1
k�0 ∪ {R2ku(N)}M−1

k�0

is a first-stage wavelet basis for �2(ZN ).
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Proof
By computing the DFT of u(N), we obtain

û(N)(m) �
N−1∑
n�0

u(N)(n)e−2πinm/N �
N−1∑
n�0

∑
k∈Z

u(n + kN)e−2πinm/N

�
N−1∑
n�0

∑
k∈Z

u(n + kN)e−2πi(n+kN)m/N

�
∑
�∈Z

u(�)e−2πi�m/N� û(−2πm/N),

where on the right we mean the Fourier transform of u in the sense
of Definition 4.29. As a consequence,

û(N)(m +M) � û(−2π(m +M)/N)

� û(−2πm/N − π) � û(−2πm/N + π),

because û is 2π periodic. By applying the same identities with u

replaced by v, we see that the system matrix A(n) for u(N) and
v(N) in Definition 3.7 is equal to the system matrix A(θ) for u, v,
as in Definition 4.45, when θ � −2πn/N . By Theorem 4.46, A(θ) is
unitary for all θ, and hence A(n) is unitary for all n. By Theorem
3.8, {R2kv(N)}M−1

k�0 ∪ {R2ku(N)}M−1
k�0 is a first-stage wavelet basis for

�2(ZN ).

Lemma 4.48 can be proved directly, without using the DFT
(Exercise 4.5.10).

Corollary 4.49 Suppose u, v ∈ �1(Z) are such that {R2kv}k∈Z ∪
{R2ku}k∈Z is a first-stage wavelet system for �2(Z). Suppose also that

u(n) � v(n) � 0 for all n < 0 and n > N − 1.

Define u(N), v(N) ∈ �2(ZN ) by

u(N)(n) � u(n) and v(N)(n) � v(n) for n � 0, 1, . . . , N − 1.

Then {R2kv(N)}M−1
k�0 ∪ {R2ku(N)}M−1

k�0 is a first-stage wavelet basis for
�2(ZN ).

Proof
Because of the finiteness assumptions on u and v, u(N) and v(N) agree
with the definitions in equation (4.58). Hence the result follows from
Lemma 4.48.
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For m a positive integer, Daubechies’s D2m wavelets for �2(Z) (see
Example 4.57 for the case m � 3) are generated by vectors u and v

such that u(n) � 0 for n < 0 or n > 2m − 1, whereas v(n) � 0
for n < −2m + 2 or n > 1. If we replace v with R2m−2v, which
does not change the set {R2kv}k∈Z, the assumptions of Corollary 4.49
apply to these wavelets if N > 2m. Sometimes people implementing
Daubechies’s wavelets numerically are unsure whether they should
use circular convolution (i.e., convolution on �2(ZN ), as in Definition
2.23) or linear convolution (convolution on �2(Z), as in Definition
4.32). The surprising answer is that either will work if done correctly.
This is explained by Corollary 4.49. If circular convolution is used,
one is computing wavelets on ZN , as in chapter 3, whereas linear
convolution is used when computing wavelets on Z, as in this
chapter.

Exercises

4.5.1. Suppose w ∈ �2(Z).
i. If there exists k ∈ Z such that Rkw � w, prove that w � 0

(i.e., w(n) � 0 for all n). Hint: If w(m) 	� 0, prove that
there are infinitely many n ∈ Z such that w(n) � w(m),
which contradicts the assumption that w ∈ �2(Z).

ii. If there exist k, j ∈ Z with k 	� j such that Rkw � Rjw,
prove that w � 0.

iii. Prove that {R2kw}k∈Z is orthonormal if and only if
equation (4.50) holds.

iv. Complete the following proof of Lemma 4.42. For part i,
by Parseval’s formula (4.37) and Lemma 4.41 iv,

〈w,R2kw〉 � 1
2π

∫ π

−π

∣∣ŵ(θ)
∣∣2 e−i2kθ dθ.

Write
∫ π

−π as
∫ π

0 +
∫ 0
−π and replace θ by θ+π in the second

integral. By noting that ŵ is 2π-periodic, obtain

〈w,R2kw〉 � 1
2π

∫ π

0

(|ŵ(θ)|2 + |ŵ(θ + π)|2) e−i2kθ dθ.
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Let ϕ � 2θ and use Fourier inversion to deduce equation
(4.47). Part ii can be proved similarly.

4.5.2. i. Prove Lemma 4.42 ii by methods analogous to those used
in the text for part i.

ii. Prove equation (4.55).
4.5.3. i. Prove that D : �2(Z) → �2(Z) is a linear transformation

that is onto but not one-to-one.
ii. Prove that U : �2(Z) → �2(Z) is a linear transformation

that is one-to-one but not onto.
Recall from Exercise 1.4.8 (v) that examples like this

do not exist for a linear transformation from a finite
dimensional vector space to itself.

4.5.4. Let z � (z(n))n∈Z be a sequence.
i. Prove that D ◦ U(z) � z.

ii. Prove that U ◦ D(z) � (z + z∗)/2.
4.5.5. Suppose w ∈ �1(Z).

i. Prove that {Rkw}k∈Z is a complete orthonormal set for
�2(Z) if and only if |ŵ(θ)| � 1 for all θ ∈ [−π, π).
Remark: As for Lemma 3.3 in the context of �2(ZN ), this

proof shows that frequency localization cannot be obtained
for an orthonormal basis of the form {Rkw}k∈Z.
ii. Prove that {R2kw}k∈Z cannot be a complete orthonormal

set in �2(Z). Hint: See Exercises 3.1.10 and 3.1.13.
4.5.6. (Perfect reconstruction in a first-stage filter bank on Z)

Suppose u, v, s, t ∈ �1(Z). Prove that

z � t̃ ∗ U(D(z ∗ ṽ))+ s̃ ∗ U(D(z ∗ ũ))

for all z ∈ �2(Z) if and only if

A(θ)
[
ŝ(θ)
t̂(θ)

]
�
[ √

2
0

]

a.e. (Hint: Compare with Lemma 3.15. Let z � δ and
z � R1δ.)

4.5.7. Suppose z, w ∈ �2(Z). Prove that
i. U(z ∗w) � U(z) ∗ U(w).

ii. (U(z))˜� U(z̃).
iii. (z ∗w)˜� z̃ ∗ w̃.
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4.5.8. (Generalization of Theorem 4.46 to � functions) Suppose �

is a positive integer.
i. Let u, v, w ∈ �1(Z). Prove that {R�kw}k∈Z is orthonormal

if and only if

�−1∑
k�0

|ŵ(θ + 2πk/�)|2 � � for all θ.

Also prove that

〈R�ku, R�jv〉 � 0

for all j, k ∈ Z if and only if

�−1∑
k�0

û(θ + 2πk/�)v̂(θ + 2πk/�) � 0 for all θ.

Hint: Method 1: Prove that
�−1∑
m�0

e2πimn/� �
{

� if �|n
0 if �	 |n.

Deduce that

〈u, R�jv〉 � u ∗ ṽ(�j) �
{

δ(j) if u � v

0 if u 	� v

if and only if

�−1∑
k�0

e2πikn/�u ∗ ṽ(n) �
{

�δ(n) if u � v

0 if u 	� v.

Take the Fourier transform in �2(Z) on both sides of this
equation, noting that for z ∈ �1(Z) and ϕ ∈ R,

(z(n)einϕ)ˆ(θ) � ẑ(θ + ϕ).

Method 2 (compare with Exercise 4.5.1 (iv)): By Parse-
val’s relation (4.37) and Lemma 4.41 iv,

〈u, R�jv〉 � 1
2π

∫ π

−π
û(θ)v̂(θ)e−i�jθ dθ

� 1
2π

�−1∑
k�0

∫ −π+2π(k+1)/�

−π+2πk/�
û(θ)v̂(θ)e−i�jθ dθ.
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Make the substitution ϕ � �θ− 2πk+π(�− 1), which brings
every integral back to [−π, π]. Taking the sum on k inside
the integral, obtain

〈u, R�jv〉 � 1
2π

∫ π

−π
g(ϕ)e−ijϕ dϕ,

for

g(ϕ)�eijπ(�−1) 1
�

�−1∑
k�0

û

(
ϕ

�
− π + π

�
+ 2π

k

�

)
×v̂
(
ϕ

�
− π + π

�
+ 2πk

�

)
.

Note that g is 2π-periodic and apply Fourier inversion.
ii. Let u0, u1, . . . u�−1 ∈ �1(Z). Prove that

B � {R�ku0}k∈Z ∪ {R�ku1}k∈Z ∪ · · · ∪ {R�ku�−1}k∈Z

is a complete orthonormal set in �2(Z) if and only if the
matrix

A(θ) �

1√
�




û0(θ) û1(θ) · · · û�−1(θ)
û0
(
θ + 2π

�

)
û1
(
θ + 2π

�

) · · · û�−1
(
θ + 2π

�

)
û0
(
θ + 4π

�

)
û1
(
θ + 4π

�

) · · · û�−1
(
θ + 4π

�

)
· · · · · ·
· · · · · ·
û0

(
θ + (�−1)2π

�

)
û1

(
θ + (�−1)2π

�

)
· · · û�−1

(
θ + (�−1)2π

�

)




is unitary for all θ ∈ [−π, π]. Hint: Part i shows that the
unitarity of all A(θ) is equivalent to the orthonormality
of B. As in Theorem 4.46, the completeness of B is left
to prove. Prove that

1
�

�−1∑
j�0

(
uj ∗

�−1∑
m�0

e2πimn/�z ∗ ũj(n)

)
(̂θ)

� 1
�

�−1∑
j�0

ûj(θ)
�−1∑
k�0

ẑ(θ + 2πk/�)ûj(θ + 2πk/�).

Change the order of summation and apply to unitarity
of A to deduce that the last expression equals ẑ(θ). As in
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the hint for part i, Method 1 above, observe that

1
�

�−1∑
m�0

e2πimn/�z ∗ ũj(n) �
{ 〈z, Rnuj〉 if �|n

0 if �	 |n.

4.5.9. Prove that the matrix A(θ) in the proof of Lemma 4.47
is unitary for all θ. Hint: The proof is similar to the
corresponding part of the proof of Lemma 3.12.

4.5.10. Prove Lemma 4.48 directly (without using the DFT). Hint:
For example, to show that {R2ku(N)}M−1

k�0 is orthonormal,
write, for 0 ≤ j ≤ M − 1,

〈u(N), R2ju(N)〉 �
N−1∑
n�0

∑
k∈Z

u(n + kN)
∑
�∈Z

u(n − 2j + �N).

In the inside sum, k is fixed, so we can let p � �−k, to obtain

N−1∑
n�0

∑
k∈Z

u(n + kN)
∑
p∈Z

u(n + kN − 2j + pN)

�
∑
p∈Z

∑
m∈Z

u(m)u(m − 2j + pN) �
∑
p∈Z

〈u, R2j−2pMu〉,

where the last inner product is in �2(Z).

4.6 The Iteration Step for Wavelets on Z

Theorem 4.46 states that if the system matrix A(θ) of u and v

(belonging to �1(Z)) is unitary for all θ, then �2(Z) splits into
two pieces, generated by the even integer translates of u and v,
respectively. As in section 3.3, the next step is to iterate this splitting.
As in section 4.5, the proofs correspond to those in chapter 3, except
that extra steps are required to prove completeness because of the
infinite dimensionality of the spaces considered. The next result is
analogous to Lemma 3.24.

Lemma 4.50 Suppose � is a positive integer, g�−1 ∈ �2(Z), and

{R2�−1kg�−1}k∈Z
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is orthonormal in �2(Z). Suppose also that u, v ∈ �1(Z) and the system
matrix A(θ) of u and v (Definition 4.45) is unitary for all θ. Define

f� � g�−1 ∗ U�−1(v) and g� � g�−1 ∗ U�−1(u). (4.59)

Then

{R2�kf�}k∈Z ∪ {R2�kg�}k∈Z (4.60)

is orthonormal.

Proof
We first observe that U�−1(u) and U�−1(v) belong to �1(Z), hence
f�, g� ∈ �2(Z), by their definition and Lemma 4.34.

Next we note that by Exercise 4.5.7 (ii, iii),

f̃� �
(
g�−1 ∗ U�−1(v)

) ˜� g̃�−1 ∗ U�−1(ṽ).

Hence by Lemma 4.41 vi, Lemma 4.35 ii and iii, and Exercise 4.5.7
(i),

〈f�, R2�kf�〉 � f� ∗ f̃�(2�k)

� g�−1 ∗ U�−1(v) ∗ g̃�−1 ∗ U�−1(ṽ)(2�k)

� (g�−1 ∗ g̃�−1) ∗
(
U�−1(v ∗ ṽ)

)
(2�k)

�
∑
n∈Z

(g�−1 ∗ g̃�−1)(2�k − n)U�−1(v ∗ ṽ)(n).

Note that U�−1(v ∗ ṽ)(n) � 0 unless n is of the form 2�−1m, for some
m ∈ Z, in which case it is v ∗ ṽ(m), so we can rewrite the last term
and obtain

〈f�, R2�kf�〉 �
∑
m∈Z

(g�−1 ∗ g̃�−1)(2�−1(2k −m))v ∗ ṽ(m).

By Lemma 4.41 vi,

g�−1 ∗ g̃�−1(2�−1(2k −m)) � 〈g�−1, R2�−1(2k−m)g�−1〉,
which is 1 when m � 2k and 0 otherwise, by assumption. Hence

〈f�, R2�kf�〉 � v ∗ ṽ(2k) � 〈v, R2kv〉.
Since A(θ) is unitary for all θ by assumption, Theorem 4.46 shows
that

〈f�, R2�kf�〉 �
{

1 if k � 0
0 if k 	� 0.

(4.61)
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By nearly the same argument with v in place of u, we obtain

〈g�, R2�kg�〉 �
{

1 if k � 0
0 if k 	� 0.

(4.62)

The unitarity of A(θ) also implies that 〈v, R2ku〉 � 0 for all k ∈ Z. By
using this implication and Lemma 4.42 ii, we obtain (Exercise 4.6.1)
that

〈f�, R2�kg�〉 � 0 for all k ∈ Z . (4.63)

Equations (4.61), (4.62), and (4.63) yield the result.

As in the corresponding case in chapter 3, this result also has a
proof based on Fourier transform methods (Exercise 4.6.3). Next we
see that Lemma 4.50 gives an orthogonal splitting of subspaces.

Lemma 4.51 Let u, v, g�−1, f�, and g� be as in Lemma 4.50. Define

V−�+1 �
{∑

k∈Z

z(k)R2�−1kg�−1 : z � (z(k))k∈Z ∈ �2(Z)

}
,

V−� �
{∑

k∈Z

z(k)R2�kg� : z � (z(k))k∈Z ∈ �2(Z)

}
, (4.64)

and

W−� �
{∑

k∈Z

z(k)R2�kf� : z � (z(k))k∈Z ∈ �2(Z)

}
. (4.65)

Then

V−� ⊕W−� � V−�+1.

Proof
By Exercise 4.2.8, V−�+1, V−�, and W−� are subspaces of �2(Z). By
Exercise 4.6.4 and equation (4.63), V−� and W−� are orthogonal.

Now we prove that V−� and W−� are subsets of V−�+1. First, note
that

R2�kf�(n) � f�(n − 2�k) � g�−1 ∗ U�−1(v)(n − 2�k)

�
∑
m∈Z

g�−1(n − 2�k −m)U�−1(v)(m)
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�
∑
j∈Z

g�−1(n − 2�k − 2�−1j)v(j)

�
∑
j∈Z

v(j)R2�−1(j+2k)g�−1(n),

where, in the next to last line, we used the fact that U�−1(v)(m) � 0
unless m is of the form 2�−1j for some j ∈ Z, in which case it is
just v(j). Changing summation index (let m � j + 2k) in the last
expression gives

R2�kf� �
∑
m∈Z

v(m − 2k)R2�−1mg�−1, (4.66)

which shows that the elements of the complete orthonormal set
{R2�kf�}k∈Z for W−� belong to V−�+1. By Exercise 4.6.5, this implies
that W−� is a subspace of V−�+1.

A similar argument applied to g� leads to

R2�kg� �
∑
m∈Z

u(m − 2k)R2�−1mg�−1, (4.67)

and hence that V−� is a subspace of V−�+1.
What remains to prove is that V−�+1 ⊆ V−� ⊕W−�. We begin by

observing a certain identity. By Theorem 4.46, {R2kv}k∈Z ∪ {R2ku}k∈Z

is a complete orthonormal set in �2(Z). Let j ∈ Z and let ej be as in
equation (4.5). Then for all m ∈ Z,

ej(m) �
∑
k∈Z

〈ej, R2kv〉R2kv(m)+
∑
k∈Z

〈ej, R2ku〉R2ku(m).

Note that

〈ej, R2kv〉 �
∑
n∈Z

ej(n)v(n − 2k) � v(j − 2k) � ṽ(2k − j),

and similarly for u. Substituting these identities into the previous
equation yields

ej(m) �
∑
k∈Z

ṽ(2k − j)v(m − 2k)+
∑
k∈Z

ũ(2k − j)u(m − 2k). (4.68)

Now we move on to our main goal, which is to prove that, for j ∈ Z,

R2�−1jg�−1 �
∑
k∈Z

ṽ(2k − j)R2�kf� +
∑
k∈Z

ũ(2k − j)R2�kg�. (4.69)
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(See Exercise 4.6.6 for the reason one would guess this result.) To
prove equation (4.69), substitute equations (4.66) and (4.67) to obtain∑
k∈Z

ṽ(2k − j)R2�kf� +
∑
k∈Z

ũ(2k − j)R2�kg�

�
∑
k∈Z

ṽ(2k − j)
∑
m∈Z

v(m − 2k)R2�−1mg�−1

+
∑
k∈Z

ũ(2k − j)
∑
m∈Z

u(m − 2k)R2�−1mg�−1

�
∑
m∈Z

(∑
k∈Z

(
ṽ(2k − j)v(m − 2k)+ ũ(2k − j)u(m − 2k)

))
R2�−1mg�−1

�
∑
m∈Z

ej(m)R2�−1mg�−1 � R2�−1jg�−1,

by equation (4.68). Thus R2�−1jg�−1 ∈ V−� ⊕W−� for each j ∈ Z. As
a consequence, Exercise 4.6.5 shows that V−�+1 ⊆ V−� ⊕W−�. This
completes the proof.

Definition 4.52 Suppose p is a positive integer and f1, f2, . . .

fp−1, fp, gp ∈ �2(Z). Let

B � {R2kf1} ∪ {R4kf2} ∪ · · · ∪ {R2pkfp} ∪ {R2pkgp}, (4.70)

where in each case k runs over Z, or equivalently

B � {R2�kf� : k ∈ Z, � � 1, 2, . . . , p} ∪ {R2pkgp : k ∈ Z}. (4.71)

If B is a complete orthonormal set in �2(Z), then B is called a pth stage
wavelet system for �2(Z). We say that f1, f2, . . . , fp, gp generate B.

Theorem 4.53 Let p ∈ N. For � � 1, 2, . . . , p, suppose that u�, v� ∈
�1(Z) and the system matrix

A�(θ) � 1√
2

[
û�(θ) v̂�(θ)

û�(θ + π) v̂�(θ + π)

]
(4.72)

is unitary for all θ ∈ [0, π). Define f1 � v1, g1 � u1, and, inductively, for
� � 2, 3, . . . , p,

f� � g�−1 ∗ U�−1(v�), g� � g�−1 ∗ U�−1(u�). (4.73)

Define B as in equation (4.71). Then B is a complete orthonormal set
(hence a pth-stage wavelet system) for �2(Z).
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Proof
For � � 1, 2, . . . , p, define V−� and W−� as in equations (4.64)
and (4.65). To prove that B is orthonormal, we see from Lemma
4.50 and induction that {R2�kf�}k∈Z is orthonormal for each � �
1, 2, . . . , p and that {R2pkgp}k∈Z is orthonormal. Hence we need to
check orthogonality only between these different sets. Note that for
m < � ≤ p, and k ∈ Z,

R2�kf� ∈ V−� ⊆ V−�+1 ⊆ · · · ⊆ V−m,

and similarly with R2pkgp in place of R2�kf�. However, for j ∈ Z,
R2mjfm ∈ W−m, which is orthogonal to V−m, by Lemma 4.51.

We now prove that the orthonormal system B is complete.
Suppose z ∈ �2(Z) is orthogonal to every element of B. Applying
Exercise 4.2.5 (i), z is orthogonal to every element in W−1∪W−2∪ · ·
·∪W−p∪V−p. By Lemma 4.51, W−p⊕V−p � V−p+1. This implies z is
orthogonal to every element in V−p+1. Similarly, W−p+1 ⊕ V−p+1 �
V−p+2, so this implies that z is orthogonal to every element of
V−p+2, etc., until we obtain that z is orthogonal to every element
of W−1 ⊕ V−1 � �2(Z). Hence z � 0.

Writing out f� and g�, we have

f� � u1 ∗ U(u2) ∗ · · · ∗ U�−2(u�−1) ∗ U�−1(v�) (4.74)

and

g� � u1 ∗ U(u2) ∗ · · · ∗ U�−2(u�−1) ∗ U�−1(u�), (4.75)

exactly as in the finite dimensional case (equations (3.43) and
(3.44)).

Because we are in the infinite dimensional case, we can carry out
the iteration step infinitely many times. This leads to the following
variation.

Definition 4.54 Let f� ∈ �2(Z) for all � ∈ N. Let

B � {R2�kf� : k ∈ Z, � ∈ N}. (4.76)

If B is a complete orthonormal system for �2(Z), we say B is a
homogeneous wavelet system for �2(Z).

Theorem 4.55 Suppose u�, v� ∈ �1(Z) for each � ∈ N, and the system
matrixA�(θ) defined in equation (4.72) is unitary for all θ ∈ [0, π). Define
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f1 � u1, g1 � v1, and, inductively, for � ∈ N, � ≥ 2, define f� and g� by
equation (4.73). For each � ∈ N, define V−� as in equation (4.64). Suppose⋂

�∈N

V−� � {0}. (4.77)

Define B as in equation (4.76). Then B is a complete orthonormal set
(hence a homogeneous wavelet system) in �2(Z).

Proof
Define W−� as in equation (4.65), for all � ∈ N. The orthonormality
of B follows by the same argument as in the proof of Theorem 4.53,
or directly from Theorem 4.53 by noting that for any two elements
of B, there exists p sufficiently large so that the pth-stage wavelet
system obtained as in Theorem 4.53 contains these two elements.

To prove the completeness of B, suppose 〈z, R2�kf�〉 � 0 for all
k ∈ Z and all � ∈ N. Then (e.g., using Exercise 4.2.5 (i)), z is
orthogonal to every element of each space W−j. We claim that this
implies that z ∈ V−j for all j ∈ N. We proceed inductively. First, to
prove z ∈ V−1, note that since �2(Z) � V−1⊕W−1 (by Theorem 4.46),
there exist v−1 ∈ V−1 and w−1 ∈ W−1 such that z � v−1 + w−1. But
V−1 ⊥ W−1, so 〈v−1, w−1〉 � 0. Hence

‖w−1‖2 � 〈w−1, w−1〉 � 〈v−1 +w−1, w−1〉 � 〈z, w−1〉 � 0,

since w−1 ∈ W−1. Therefore w−1 � 0. Hence z � v−1 ∈ V−1. Now
suppose z ∈ V−�+1. By Lemma 4.51,V−�+1 � V−�⊕W−�. Thus we can
write z � v−� +w−� for some v−� ∈ V−� and w� ∈ W−�. By the same
argument as in the case � � 1, the orthogonality of z to W−� implies
that w−� � 0, so z � v−� ∈ V−�. This completes the induction, which
shows that z ∈ ∩�∈NV−�. But our assumption is that ∩�∈NV−� � {0}.
Hence z � 0, proving the completeness of B.

Notice that it is possible to pick u� � u1 and v� � v1 for all � in
either Theorem 4.53 or Theorem 4.55. We call this repeated filters.

The more standard notation for wavelets is

ψ−j,k � R2jkfj (4.78)

and

ϕ−j,k � R2jkgj. (4.79)
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In this notation, the pth-stage wavelet system in Theorem 4.53 is

B � {ψ−j,k : k ∈ Z, 1 ≤ j ≤ p} ∪ {ϕ−p,k : k ∈ Z}. (4.80)

The homogeneous wavelet system in Theorem 4.55 is

{ψ−j,k : j ∈ N, k ∈ Z}. (4.81)

Thus in the homogeneous case, the father wavelet ϕ disappears from
the record, leaving only the mother wavelet ψ and her daughters.
In the next chapter, when we consider wavelets on R, the chain of
spaces Vj will not only be infinite, it will extend infinitely in both
directions (i.e., j will run throughout Z).

Exercises

4.6.1. Prove equation (4.63).
4.6.2. i. Suppose z ∈ �2(Z). Prove that

(U(z))ˆ(θ) � ẑ(2θ)

for all θ.
ii. Define f� and g� as in Theorem 4.53 (i.e., by equations

(4.74) and (4.75)). Prove that

f̂�(θ) � û1(θ)û2(2θ)û3(4θ) · · · û�−1(2�−2θ)v̂�(2�−1θ)

and

ĝ�(θ) � û1(θ)û2(2θ)û3(4θ) · · · û�−1(2�−2θ)û�(2�−1θ).

If the filters are repeated, that is, u� � u and v� � v for
all �, we obtain

ϕ̂−�,0(θ) �
�−1∏
j�0

û(2jθ)

and

ψ̂−�,0(θ) � v̂(2�−1θ)
�−2∏
j�0

û(2jθ).
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4.6.3. Prove Lemma 4.50 using Exercises 4.6.2(i) and Exercise
4.5.8(i). Hint: For example, to show {R2�kf�}k∈Z is orthonor-
mal, write

2�−1∑
k�0

∣∣∣∣f̂�
(
θ + 2πk

2�

)∣∣∣∣
2

�
2�−1∑
k�0

∣∣∣∣ĝ�−1

(
θ + 2πk

2�

)∣∣∣∣
2 ∣∣v̂(2�−1θ + πk)

∣∣2

� |v̂(2�−1θ)|2
2�−1−1∑
m�0

∣∣∣∣ĝ�−1

(
θ + 2πm

2�−1

)∣∣∣∣
2

+|v̂(2�−1θ + π)|2
2�−1−1∑
m�0

∣∣∣∣ĝ�−1

(
θ + π

2�−1
+ 2πm

2�−1

)∣∣∣∣
2

,

by breaking the sum on k into its even and odd parts. Now
apply the assumptions.

4.6.4. Suppose H is a Hilbert space, and {ak}k∈Z and {bk}k∈Z are
orthonormal sets in H with 〈aj, bk〉 � 0 for all j, k ∈ Z. Let

V �
{∑

k∈Z

z(k)ak : z � (z(k))k∈Z ∈ �2(Z)

}

and

W �
{∑

k∈Z

z(k)bk : z � (z(k))k∈Z ∈ �2(Z)

}
.

Prove that V ⊥ W (i.e., for all v ∈ V and w ∈ W , 〈v,w〉 � 0).
Hint: First show that 〈v, bk〉 � 0 for all k ∈ Z, by Exercise
4.2.5 (iii).

4.6.5. Suppose H is a Hilbert space, and {ak}k∈Z and {bk}k∈Z are
orthonormal sets in H. Let

V �
{∑

k∈Z

z(k)ak : z � (z(k))k∈Z ∈ �2(Z)

}

and

W �
{∑

k∈Z

z(k)bk : z � (z(k))k∈Z ∈ �2(Z)

}
.
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Suppose ak ∈ W for each k. Prove that V is a subspace of
W . Hint: Let v � ∑k∈Z z(k)ak ∈ V . If you try to write each
ak as a sum of the form

∑
j∈Z ck(j)bj and work with these

sums, you will run into a problem similar to that in Exercise
4.4.6 (ii). Instead, note that the partial sums of

∑
k∈Z z(k)ak

belong to W and use Exercise 4.2.10.
4.6.6. For u, v, g�−1, f�, g� as in Lemma 4.51, prove that

〈R2�−1jg�−1, R2�kf�〉 � ṽ(2k − j), and

〈R2�−1jg�−1, R2�kg�〉 � ũ(2k − j).

If R2�−1jg�−1 ∈ V−� ⊕W−�, it must be true that

R2�−1jg�−1 �
∑
k∈Z

〈R2�−1jg�−1, R2�kf�〉R2�kf�

+
∑
k∈Z

〈R2�−1jg�−1, R2�kg�〉R2�kg�,

so we are led to equation (4.69). Hint: Apply Lemma 4.41 v
and vi, and follow the type of argument leading to equation
(4.61).

4.7 Implementation and Examples

We discuss the computation of wavelets on Z, which is analogous to
the theory on ZN in chapter 3. We can construct examples of wavelet
systems in Z along the same lines as some of the examples for ZN . In
particular, we discuss Haar wavelets and Daubechies’s D6 wavelets
on Z.

Recall the procedure in Theorem 4.53. We start with u�, v� ∈
�1(Z), for 1 ≤ � ≤ p, such that the system matrix A�(θ) in equation
(4.72) is unitary for all θ. We set f1 � u1, f2 � u2, and define f� and
g� inductively for � � 2, 3, . . . , p by equation (4.73). Define ψ−j,k and
ϕ−p,k for k ∈ Z and 1 ≤ j ≤ p by equations (4.78) and (4.79). Then
B defined in equation (4.80) is a pth-stage wavelet system in �2(Z).
We have already remarked (after the proof of Theorem 4.46) that
the first-stage wavelet coefficients and the reconstruction of a vector
from its first-stage wavelet coefficients can be computed by the same
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filter bank arrangement as in Figure 14 (with s̃ � u and t̃ � v). The
only difference is that the vectors and convolutions are defined in
�2(Z). In the same way, the pth-stage transform and its inverse can
be computed as in the nonrecursive filter-bank structure in Figure
20. To see this, note that

〈z, ψ−�,k〉 � 〈z, R2�kf�〉 � z ∗ f̃�(2�k) � D�(z ∗ f̃�)(k),

by Lemma 4.41 vi and the definition of D�. Similarly,

〈z, ϕ−p,k〉 � Dp(z ∗ g̃p)(k).

These relations show that the pth-stage wavelet coefficients of z can
be computed by the analysis phase in the left portion of Figure 20.
To see that z can be reconstructed using the synthesis phase in the
right half of Figure 20, note (Exercise 4.7.1) that

f� ∗ U�(D�(z ∗ f̃�) �
∑
k∈Z

〈z, ψ−�,k〉ψ−�,k (4.82)

and similarly

gp ∗ Up(Dp(z ∗ g̃p) �
∑
k∈Z

〈z, ϕ−p,k〉ϕ−p,k. (4.83)

The wavelet coefficients can also be computed recursively as in
Figures 16–19. Define x1 � D(z ∗ ṽ1) ∈ �2(Z) and y1 � D(z ∗ ũ1) ∈
�2(Z). Then define x2, y2, . . . , xp, yp ∈ �2(Z) inductively by

x� � D(y�−1 ∗ ṽ�)
and

y� � D(y�−1 ∗ ũ�),
analogous to Definition 3.16. Then (Exercise 4.7.2)

x� � D�(z ∗ f̃�) (4.84)

and

y� � D�(z ∗ g̃�, ) (4.85)

as in Lemma 3.21. With these facts, one can see that the analysis
phase of the nonrecursive structure in Figure 20 (now regarded as
taking place in Z rather than ZN ) is equivalent to the recursive
structure indicated in Figure 17 for p � 3 and at the general step
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in Figure 18. Similarly, the synthesis phase can be computed by a
recursive structure whose general step is represented in Figure 19.
The proof of this is the analog for Z of the proof of Lemma 3.22.

In principle, these convolutions in Z involve infinite sums and
hence do not appear computable in practice. However, as we see
by example later, if the vector z has only finitely many nonzero
components and if the elements of the wavelet basis are each zero
except at finitely many points, the convolution can be computed
in finitely many steps. Hence we focus attention on examples of
wavelet bases on Z that have this property that each basis element
has only finitely many nonzero components. The simplest example
is the Haar system.

Example 4.56
(Haar wavelets on Z) Define u, v ∈ �1(Z) by

u(n) �
{

1/
√

2 if n � 0 or n � 1
0 otherwise

(4.86)

and

v(n) �



1/
√

2 if n � 0
−1/
√

2 if n � 1
0 otherwise.

(4.87)

One can check (Exercise 4.7.3) that the pair u, v generates a first-
stage wavelet system for �2(Z). For each � ∈ N, let u� � u and
v� � v. Define f� and g� inductively by equation (4.73). One can
show (Exercise 4.7.4 (i)) that

g�(n) �
{

2−�/2 0 ≤ n ≤ 2� − 1
0 otherwise

(4.88)

and

f�(n) �



2−�/2 0 ≤ n ≤ 2�−1 − 1
−2−�/2 2�−1 ≤ n ≤ 2� − 1
0 otherwise.

(4.89)

(Compare with Exercise 3.3.1.) Then by Theorem 4.53, B defined by
equation (4.71) is a pth-stage wavelet system for �2(Z).

For j ∈ N, defineV−j as in equation (4.64). This space has a simple
characterization, described in Exercise 4.7.4 (ii), which shows that
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∩j∈ZV−j � {0}. By Theorem 4.55, B defined by equation (4.76) is a
homogeneous wavelet system on �2(Z), called the Haar system for
�2(Z).

For j ≥ 1, define the orthogonal projection operator P−j onto V−j
as in Definition 4.13, by

P−j(z) �
∑
k∈Z

〈z, ϕ−j,k〉ϕ−j,k. (4.90)

For the Haar system, the projection P−j(z) of z onto V−j has a
natural interpretation. For each n ∈ Z, we can find k ∈ Z such
that 2jk ≤ n < 2j(k + 1) (because for fixed j, these intervals in n are
disjoint and their union covers Z). Then (Exercise 4.7.4 (iii))

P−jz(n) � 2−j
(
z(2jk)+ z(2jk + 1)+ · · · + z(2jk + 2j − 1)

)
. (4.91)

In other words, P−j replaces z on each block {n ∈ Z : 2jk ≤ n <

2j(k + 1)} by its average on that block.
We also define the partial sums Q−j(z) of the wavelet expansion

of z by

Q−j(z) �
∑
k∈Z

〈z, ψ−j,k〉ψ−j,k. (4.92)

It follows (Exercise 4.7.5) that

P−j+1(z) � P−j(z)+ Q−j(z), (4.93)

for all j ≥ 1, where for j � 0 we define P0(z) � z. Thus, as in the
case of ZN , we interpret Q−j(z) as the detail regarding z needed to
pass from the −jth level approximation P−j(z) to the −j + 1 level
approximation P−j+1(z).

An example of the Haar wavelet transform is pictured in Figures
37 and 38. Figure 37a shows the graph of

z(n) �
{

sin(πn/19) if 0 ≤ n ≤ 38
0 otherwise.

Of course, the graph window is finite, but keep in mind that z is
defined on Z and equals 0 for all integers less than 0 or greater than
38. The Haar wavelet coefficients 〈z, ψ−j,k〉 for j � 1, 2, 3, 4 are plotted
in Figures 37b, c, d, and e, respectively. The coefficients 〈z, ϕ−4,k〉 are
plotted in Figure 37f. As usual, we plot the value 〈z, ψ−j,k〉 at the point
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FIGURE 37 (a) z, (b) 〈z, ψ−1,k〉, (c) 〈z, ψ−2,k〉, (d) 〈z, ψ−3,k〉,
(e) 〈z, ψ−4,k〉, (f) 〈z, ϕ−4,k〉
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2jk near which ψ−j,k is concentrated. Similarly 〈z, ϕ−4,k〉 is plotted at
24k.

In this case it appears (and turns out to be true) that the wavelet
coefficients 〈z, ψ−j,k〉 are nonzero only at values 2jk such that 0 ≤
2jk ≤ 36 (similarly for 〈z, ϕ−4,k〉). However, as will be more evident
with Daubechies’s D6 wavelets later, it is not necessarily true that the
nonzero wavelet coefficients are confined to the region where z is
nonzero (strictly speaking this is not true here because z(0) � 0, but
the wavelet coefficients corresponding to the point 0 are not zero).
How do we know in Figure 37 that there are no nonzero wavelet
coefficients corresponding to points outside the region graphed?
Exercise 4.7.6 gives a very useful general result characterizing the
maximal nonzero region for the convolution of two vectors, in terms
of their nonzero regions. Note that

〈z, ψ−j,k〉 �
∑
n∈Z

z(n)R2jkfj(n) �
∑
n∈Z

z(n)fj(n − 2jk)

�
∑
n∈Z

z(n)f̃j(2jk − n) � z ∗ f̃j(2jk).

By equation (4.89), f̃j(n) is nonzero only for −2j + 1 ≤ n ≤ 0. By
definition, z is nonzero only for 1 ≤ n ≤ 37. Hence by Exercise
4.7.6, z ∗ f̃j(n) can be nonzero only for −2j + 2 ≤ n ≤ 37. Therefore,
〈z, ψ−j,k〉 could be nonzero only if −2j + 2 ≤ 2jk ≤ 37. The smallest
k for which this can happen is 0, and the largest is at most 36 (since
j ≥ 1). (The analysis for 〈z, ϕ−4,k〉 is the same as for 〈z, ψ−4,k〉.) Thus
we can determine in advance the maximal region on which we need
to plot the wavelet coefficients. If we count, we get at most 41 wavelet
coefficients that could be nonzero (19, 10, 5, 3, and 3, respectively, for
Figures 37b, c, d, e, and f, respectively), although some in-between
values actually turn out to be 0. Note that this is not exactly the same
as the number of nonzero values of z, but it is close.

To understand the graphs in Figure 37, recall that the wavelet
coefficients 〈z, ψ−j,k〉 measure the activity in z going on at a scale
of 2j near the point 2jk. Thus the fact that the wavelet coefficients
at the smallest scale (for j � 1) in Figure 37b are relatively small
shows that the small-scale variation of z is mild. This reflects
the smoothness and slow variation of z. As we increase j, the
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FIGURE 38 (a) P−1(z), (b)Q−1(z), (c) P−2(z), (d)Q−2(z), (e) P−3(z),
(f) P−4(z)
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typical wavelet coefficients become larger, indicating the substantial
large-scale variation of z.

Figures 38a, c, e, and f show the projections P−j(z), for j � 1,
2, 3, and 4, respectively. These projection vectors are plotted with
x’s, and the original vector z is plotted with dots. These pictures
exhibit the property that P−j(z) is obtained by replacing z on a
block {n : 2jk ≤ n < 2j(k + 1)} of length 2j by its average on this
block. Thus we can think of P−j(z) as z averaged out at a scale
of 2j, or seen at a resolution of 2j. Since z � P−1(z) + Q−1(z) (by
equation (4.93)), Q−1(z) is the difference between z and its scale-of-
2 average P−1(z). Thus Q−1(z), plotted in Figure 38b, contains the
fine-scale information needed to pass from z seen at a resolution of
2 (P−1(z) in Figure 38a) to z at resolution 1 (z itself). Similarly, since
P−1(z) � P−2(z)+Q−2(z), Q−2(z) (plotted in Figure 38d) contains the
information required to improve from z at a resolution of 4 (P−2(z)
in Figure 38c) to z at a resolution of 2 (P−1(z)).

Example 4.57
(Daubechies’s D6 wavelets on Z) In Example 3.35, we constructed
vectors with only six nonzero components, which generate a first-
stage wavelet system for �2(ZN ), for certain N . By virtually the
same construction, we can obtain vectors u, v ∈ �2(Z) with only six
nonzero components, which generate a first-stage wavelet system
for �2(Z). Using these as repeated filters, we can obtain a pth-stage
wavelet system for �2(Z) for any p ∈ N. We call these Daubechies’s
D6 wavelets for �2(Z).

By Theorems 4.46 and 4.53, and Lemma 4.47, our main concern
is to find u ∈ �2(Z) with only six nonzero components such that
{R2ku}k∈Z is an orthonormal set in �2(Z). This is done by the same
method as in Example 3.35, so we leave some computations that are
virtually the same to the reader (Exercise 4.7.7). The main difference
is that we work with all θ ∈ [0, π) instead of the discrete set of values
πn/N , for 0 ≤ n < N/2. There are also a few minor differences
coming from the fact that the DFT is defined with a minus sign in the
complex exponential, whereas the Fourier transform on Z is defined
with a positive sign (both definitions are arbitrary but traditional).
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We start with the identity(
cos2

(
θ

2

)
+ sin2

(
θ

2

))5

� 1 for all θ. (4.94)

Define

b(θ) � cos10
(
θ

2

)
+ 5 cos8

(
θ

2

)
sin2

(
θ

2

)
+ 10 cos6

(
θ

2

)
sin4

(
θ

2

)
.

By elementary trigonometric identities,

b(θ+π) � 10 cos4
(
θ

2

)
sin6

(
θ

2

)
+5 cos2

(
θ

2

)
sin8

(
θ

2

)
+sin10

(
θ

2

)
.

By expanding equation (4.94), we see that

b(θ)+ b(θ + π) � 1 for all θ. (4.95)

We select u ∈ �2(Z) with only six nonzero components such that

|û(θ)|2 � 2b(θ) for all θ. (4.96)

To do this, we first write

b(θ) � cos6
(
θ

2

)[(
cos2

(
θ

2

)
−√10 sin2

(
θ

2

))2

+
(
5+ 2

√
10
)

cos2
(
θ

2

)
sin2

(
θ

2

)]
.

Define

û(θ) � √2e5iθ/2 cos3
(
θ

2

)[
cos2

(
θ

2

)
−√10 sin2

(
θ

2

)

−i
√

5+ 2
√

10 cos
(
θ

2

)
sin
(
θ

2

)]
.

Hence equation (4.96) holds. As in Example 3.35, it is convenient to
set

a � 1−√10, b � 1+√10, and c �
√

5+ 2
√

10.
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Then the double-angle formulae, Euler’s formula, and some
computations yield

û(θ)�√2eiθe3iθ/2
(
eiθ/2 + e−iθ/2

2

)3 [
a

2
+ b

4

(
eiθ + e−iθ

)+ c

4

(
e−iθ − eiθ

)]

�
√

2
32

(
eiθ+1)3 [b+ c+ 2aeiθ + (b− c)e2iθ] � 5∑

k�0

u(k)eikθ,

for

(u(0), u(1), u(2), u(3), u(4), u(5)) (4.97)

�
√

2
32

(b+ c, 2a + 3b+ 3c, 6a + 4b+ 2c, (4.98)

6a + 4b− 2c, 2a + 3b− 3c, b− c) . (4.99)

Define u ∈ �2(Z) by letting u(n) be as in equation (4.97) for 0 ≤ n ≤ 5
and u(n) � 0 for all other n ∈ Z. By equations (4.95) and (4.96),

|û(θ)|2 + |û(θ + π)|2 � 2 for all θ.

By Lemma 4.42 i, {R2ku}k∈Z is an orthonormal set in �2(Z).
Define v ∈ �2(Z) by setting v(n) � (−1)n−1u(1− n) for all n ∈ Z.

(This agrees with equation (4.56) because u is real-valued in this
case.) Specifically,

v(−4) � −u(5), v(−3) � u(4), v(−2) � −u(3),

v(−1) � u(2), v(0) � −u(1), v(1) � u(0),

and v(n) � 0 for all other n ∈ Z. By Lemma 4.47, u and v generate a
first-stage wavelet system for �2(Z).

Let p ∈ N be given. Let u� � u and v� � v for 1 ≤ � ≤ p. Define
f1 � v1 and g1 � u1. Define f2, g2, . . . , fp, gp inductively by equation
(4.73). Define ψ−j,k � R2jkfj and ϕ−j,k � R2jkgj for 1 ≤ j ≤ p and
k ∈ Z. Define B by equation (4.80). By Theorem 4.53, B is a pth stage
wavelet system for �2(Z). We call B the pth-stage D6 wavelet system
for �2(Z).

Note that all components of u and v are real-valued, which
simplifies computations.
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We remark on the main step of this construction. By using the
half-angle trigonometric formulae (cos2(θ/2) � (1 + cos θ)/2 and
sin2(θ/2) � (1 − cos θ)/2), we can rewrite b(θ) as a polynomial in
the variable cos θ. By using Euler’s formulas, we can then write b as
a trigonometric polynomial. It is not obvious that the trigonometric
polynomial 2b(θ) has a “modular square root,” that is, a function u

satisfying |û(θ)|2 � 2b(θ), which is also a trigonometric polynomial.
Following Strichartz (1993), we have obtained this example by hand.
However, there is a general result of Fejér and Riesz (sometimes
called the Riesz lemma) from the early 1900s that states that any
nonnegative trigonometric polynomial has a modular square root
that is also a trigonometric polynomial.

In addition to the D6 wavelet system, Daubechies constructed
similar wavelet systems with u and v having 2N nonzero compo-
nents, for each N ∈ Z. The case N � 2 gives the Haar system
(Exercise 4.7.8).

Figure 39 shows the 4th-level D6 wavelet coefficients of the vector

z(n) �
{

sin( n
1.5

64 ) if 0 ≤ n ≤ 511
0 otherwise.

This is the extension by 0 of the vector in �2(ZN ) considered in Figure
32. Figure 39a shows z, restricted to the interval 0 ≤ n ≤ 511. Figures
39b, c, d, and e show the wavelet coefficients 〈z, ψ−j,k〉, for j � 1, 2, 3
and 4, respectively, where 〈z, ψ−j,k〉 is plotted at the point 2jk, as in
Figure 37, and similarly for 〈z, ϕ−4,k〉 plotted in Figure 39f. Notice that
in Figure 39b, the larger coefficients occur in the right half of the
graph, where z is oscillating more rapidly. This reflects the fact that
the wavelet coefficients 〈z, ψ−1,k〉measure the finest scale (or highest
frequency, or most rapid oscillation) behavior of z. As j increases, the
wavelet coefficients pick up the larger scale (more slowly oscillating)
behavior of z, so that in Figure 39f, the largest values are near zero
and in the region just to the right of zero. These graphs also show
the phenomenon that a few wavelet coefficients corresponding to
points outside the original range 0 ≤ n ≤ 511 can be nonzero; this is
most clear in Figure 39f.

The partial reconstructions P−4(z), P−3(z), P−2(z), and P−1(z) are
plotted in Figures 40a, b, c, and d, respectively. These exhibit the
same phenomenon as in Figure 39: the more slowly oscillating
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FIGURE 39 (a) z, (b) 〈z, ψ−1,k〉, (c) 〈z, ψ−2,k〉, (d) 〈z, ψ−3,k〉,
(e) 〈z, ψ−4,k〉, (f) 〈z, ϕ−4,k〉
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FIGURE 40 (a) P−4(z), (b) P−3(z), (c) P−2(z), (d) P−1(z), (e) P0(z),
(f) E � z − P0(z)
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portions of z are picked up by P−4(z), the part of the wavelet
expansion corresponding to the terms{ϕ−4,k}k∈Z. As we include terms
corresponding to ψ−4,k (in P−3(z)), then ψ−3,k (in P−2(z)), ψ−2,k

(in P−1(z)), and finally ψ−1,k (in P0(z)), we fill in the more rapid
oscillations and fine detail of z. Of course P0(z) should agree with
z. This appears to be the case in Figure 40e. To test this, we have
plotted z−P0(z) in Figure 40f. Note that the scale here is in multiples
of 10−14. This small error comes from round-off error in MatLab, the
program used to do these computations and graphs.

In Figure 41a we have plotted the vector

z(n) �




0 if n < 0
1− n/64 if 0 ≤ n ≤ 63
0 if 64 ≤ n ≤ 255
5− n/64 if 256 ≤ n ≤ 319
0 if n > 320.

This is the extension by 0 of the vector in �2(ZN ) whose D6 wavelet
coefficients in the sense of ZN were displayed in Figure 28. The only
difference is that values that appeared near the right edge in Figure
28 appear slightly to the left of 0 in Figure 41 (this is easiest to see
in Figures 28f and 41f). Note that all wavelet coefficients in Figure
41b–f corresponding to points near the right edge of the graph are
0, because these wavelets do not have any nonzero values at points
where z is nonzero. This was not the case for Figure 28 because of
the periodicity of vectors in �2(ZN ).

The vector

z(n) �
{

sin(πn/128) if 0 ≤ n ≤ 511
0 otherwise

is plotted in Figure 42a. Its 4th-level D6 wavelet coefficients
are plotted in Figures 42b–f. For a vector z with such a slow
oscillation, the only terms of significant size are those in Figure
42f, corresponding to larger scale behavior (note the widely varying
scales used in these different graphs). One curiosity in Figure 42b–e
is the relatively large size of the values near 0 and 511 (compared
to the values in the middle). This comes from the fact that the
underlying function f (x) on R defined by f (x) � sin(πx/128) for
0 ≤ x ≤ 512 and f (x) � 0 otherwise, is not differentiable at x � 0
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FIGURE 41 (a) z, (b) 〈z, ψ−1,k〉, (c) 〈z, ψ−2,k〉, (d) 〈z, ψ−3,k〉,
(e) 〈z, ψ−4,k〉, (f) 〈z, ϕ−4,k〉
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FIGURE 42 (a) z, (b) 〈z, ψ−1,k〉, (c) 〈z, ψ−2,k〉, (d) 〈z, ψ−3,k〉,
(e) 〈z, ψ−4,k〉, (f) 〈z, ϕ−4,k〉
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or x � 512. This lack of smoothness requires relatively large high
frequency terms to synthesize.

Exercises

4.7.1. Prove equation (4.82). Hint: See equations (4.54) and (4.55)
for the case � � 1.

4.7.2. Suppose z, w ∈ �2(Z).
i. Prove that

D(z) ∗w � D(z ∗ U(w))

and

U(z) ∗ U(w) � U(z ∗w).

Hint: See Lemma 3.18 for the case of ZN .
ii. Let � be a positive integer. Prove that

D�(z) ∗w � D�(z ∗ U�(w))

and

U�(z ∗w) � U�(z) ∗ U�(z) ∗ U�(w).

iii. Prove equations (4.84) and (4.85).
4.7.3. Define u, v ∈ �1(Z) by equaitons (4.86) and (4.87).

i. Prove directly (without using Theorem 4.46) that
{R2kv}k∈Z ∪ {R2ku}k∈Z is a complete orthonormal set
(hence a first-stage wavelet system) in �2(Z). Hint: To
prove completeness, prove that for z ∈ �2(Z),

z(2m) � 1√
2

(〈z, R2mu〉 + 〈z, R2mv〉) ,

and

z(2m + 1) � 1√
2

(〈z, R2mu〉 − 〈z, R2mv〉) .

ii. Show directly that the sytem matrix A(θ) (Definition
4.45) is unitary for all θ. This gives another proof of the
result in part i.
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iii. For z ∈ �2(Z), let

P−1(z) �
∑
k∈Z

〈z, R2ku〉R2ku.

Prove that for m ∈ Z,

P−1(z)(2m) � P(z)(2m + 1) � z(2m)+ z(2m + 1)
2

.

Thus P−1(z) replaces z(2m) and z(2m + 1) by their
average.

4.7.4. Define u, v ∈ �1(Z) by equations (4.86) and (4.87). For each
� ∈ N, let u� � u and v� � v. Define f� and g� inductively by
equation (4.73).
i. Prove equations (4.88) and (4.89).

ii. Define V−� for � ∈ N as in equation (4.64). Show that
z ∈ V−� if and only if z ∈ �2(Z) and z is constant on each
block of values

k2�, k2� + 1, k2� + 2, . . . , k2� + 2� − 1

for k ∈ Z. Deduce that ∩�∈NV−� � {0}.
iii. Let P−j be the orthogonal projection onto V−j, as in

equation (4.90). For z ∈ �2(Z) and n ∈ Z such that
2jk ≤ n < 2j(k + 1) for some k ∈ Z, prove equation
(4.91).

4.7.5. Prove equation (4.93). Hint: See the proof of equation (3.88).
4.7.6. Suppose a, b, c, d ∈ Z with a < b and c < d. Suppose

z, w ∈ �2(Z) satisfy

z(n) � 0 if n < a or n > b

and

w(n) � 0 if n < c or n > d.

i. Prove that z ∗w(n) � 0 if n < a + c or n > b+ d.
ii. Let z(n) � 1 for a ≤ n ≤ b and 0 otherwise, and let

w(n) � 1 for c ≤ n ≤ d and 0 otherwise. Prove that
z ∗w(n) 	� 0 for a+ c ≤ n ≤ b+d. Thus the result in part
i cannot be improved.
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4.7.7. Verify the computational assertions in Example 4.57,
including equations (4.95) and (4.97–4.99). Hint: See
Example 3.35.

4.7.8. Starting with cos2(θ/2) + sin2(θ/2) � 1 and following the
procedure in Example 4.57, derive the Haar wavelets.

4.7.9. Starting with (
cos2(θ/2)+ sin2(θ/2)

)3 � 1

and proceeding as in Example 4.57, construct u, v ∈ �1(Z),
each having only four nonzero components, which generate
a first-stage wavelet basis for �2(Z). One answer:

(u(0), u(1), u(2), u(3))

�
√

2
8

(
1+√3, 3+√3, 3−√3, 1−√3

)
,

u(n) � 0 for all other n ∈ Z,

(v(−2), v(−1), v(0), v(1))

�
√

2
8

(
−1+√3, 3−√3,−3−√3, 1+√3

)
,

and v(n) � 0 for all other n ∈ Z. These generate Daubechies’s
D4 wavelets on �2(Z).



5
C H A P T E R

...........................................

Wavelets on R

5.1 L2(R) and Approximate Identities

Despite the previous few chapters, the term “wavelets” usually refers
to wavelets on R, examples of which we construct in this chapter.
The first two sections present the basics of Fourier analysis on R.

We consider complex-valued functions defined on R. As one
might suspect from chapter 4, to obtain a suitable notion of
orthogonality we must restrict ourselves to functions are not too
large. Specifically, we consider functions f that are square-integrable,
that is, such that ∫

R

|f (x)|2 dx < +∞.

As in the case of L2([−π, π)) in chapter 4, we are using the
Lebesgue integral and identifying two functions that agree a.e.
(almost everywhere). (Also as in chapter 4, the reader unfamiliar
with these terms can just ignore them, if he or she is willing to
accept a few consequences of this theory.) Formally,

L2(R) �
{
f : R→ C :

∫
R

|f (x)|2 dx < +∞
}
.

349
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L2(R) is a vector space with the operations of pointwise addition and
scalar multiplication of functions (Exercise 5.1.1 (i)).

For f, g ∈ L2(R), define

〈f, g〉 �
∫

R

f (x)g(x) dx. (5.1)

By Exercise 5.1.1(ii), 〈·, ·〉 is an inner product on L2(R). Applying
Definition 1.90 and Exercise 1.6.5, L2(R) is a normed space with the
norm

‖f ‖ �
(∫

R

|f (x)|2 dx
)1/2

, (5.2)

called the L2 norm. The Cauchy-Schwarz inequality (Lemma 1.91)
gives us∣∣∣∣

∫
R

f (x)g(x) dx
∣∣∣∣ ≤

(∫
R

|f (x)|2 dx
)1/2 (∫

R

|g(x)|2 dx
)1/2

,

for f, g ∈ L2(R). By applying this inequality with f and g replaced by
|f | and |g|, respectively, we obtain∫

R

|f (x)g(x)| dx ≤
(∫

R

|f (x)|2 dx
)1/2 (∫

R

|g(x)|2 dx
)1/2

. (5.3)

Also, by Corollary 1.92, we have the triangle inequality(∫
R

|f (x)+ g(x)|2 dx
)1/2

≤
(∫

R

|f (x)|2 dx
)1/2

+
(∫

R

|g(x)|2 dx
)1/2

.

(5.4)
We define convergence in L2(R) in accordance with the

definitions in section 4.2 for a general inner product space. Namely,
suppose {fn}n∈N is a sequence of functions in L2(R) and f ∈ L2(R).
We say {fn}n∈N converges to f in L2(R) if, for all ε > 0, there exist
N ∈ N such that ‖fn − f ‖ < ε for all n > N . By Exercise 4.2.1,
this is equivalent to ‖fn − f ‖ → 0 as n → +∞. We say {fn}n∈N is
Cauchy if, for all ε > 0, there exists N such that ‖fn − fm‖ < ε for all
n,m > N . We assume the somewhat deep fact (which depends on
properties of the Lebesgue integral) that L2(R) is complete, meaning
that every Cauchy sequence in L2(R) converges in L2(R). Thus, in
the terminology of section 4.2, L2(R) is a Hilbert space. In particular,
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all of the results about complete orthonormal sets from section 4.2
apply here.

One example of a complete orthonormal set in L2(R) is given in
Exercise 5.1.2. In this chapter, we construct wavelet systems, which
are complete orthonormal sets for L2(R) of a particular form.

As in chapter 4, we consider the class of integrable functions,
that is, those functions whose integral converges absolutely.

Definition 5.1 Let

L1(R) �
{
f : R→ C :

∫
R

|f (x)| dx < +∞
}
.

For f ∈ L1(R), let

‖f ‖1 �
∫

R

|f (x)| dx.

We call ‖ · ‖1 the L1 norm. If f ∈ L1(R), we say f is integrable.

Remarks corresponding to those made after Definition 4.15 apply
in the context of R, with the important exception that there is no
containment between L1(R) and L2(R) (Exercise 5.1.3).

Lemma 5.2 If f ∈ L1(R), then∣∣∣∣
∫

R

f (x) dx
∣∣∣∣ ≤

∫
R

|f (x)| dx � ‖f ‖1. (5.5)

Proof
Exercise 5.1.4.

With the norm ‖·‖1,L1(R) is a normed vector space (as in Exercise
1.6.5) but not an inner product space (Exercise 5.1.5). Note that we
still use the notation ‖ · ‖ for the norm defined in equation (5.2).

We now consider convolution on R.

Definition 5.3 Suppose f, g : R→ C and∫
R

|f (x − y)g(y)| dy <∞ (5.6)

for a.e. x ∈ R. For x such that equation (5.6) holds, define

f ∗ g(x) �
∫

R

f (x − y)g(y) dy. (5.7)
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Define f ∗ g(x) � 0 for x at which equation (5.6) is false. We call f ∗ g
the convolution of f and g.

Under the assumptions of Definition 5.3, inequality (5.6) fails
only on a set of measure 0, so we could define f ∗ g arbitrarily there.
We selected the value 0 just to be definite.

It is easy to see (by making the change of variables t � x − y in
equation (5.7)) that convolution is commutative:

f ∗ g � g ∗ f, (5.8)

whenever either convolution (and hence the other) is defined.
Several circumstances under which the convolution of f and g is

defined follow.

Lemma 5.4
i. Suppose f, g ∈ L2(R). Then inequality (5.6) holds for all x ∈ R.

In this case f ∗ g is bounded and

|f ∗ g(x)| ≤ ‖f ‖‖g‖ for all x ∈ R.

ii. Suppose f, g ∈ L1(R). Then inequality (5.6) holds for a.e. x ∈ R.
In this case, f ∗ g ∈ L1(R) with

‖f ∗ g‖1 ≤ ‖f ‖1‖g‖1.
iii. Suppose f ∈ L2(R) and g ∈ L1(R). Then (5.6) holds for

a.e. x ∈ R. In this case, f ∗ g ∈ L2(R) with

‖f ∗ g‖ ≤ ‖f ‖‖g‖1.
Proof
For part i, note that by relation (5.3),∫

R

|f (x − y)g(y)| dy

≤
(∫

R

|f (x − y)|2 dy
)1/2 (∫

R

|g(y)|2 dy
)1/2

� ‖f ‖‖g‖,

for all x ∈ R, by changing variables in the integral involving f (x−y).
Thus inequality (5.6) holds for all x. Since

∣∣f ∗ g(x)
∣∣ � ∣∣∣∣

∫
R

f (x − y)g(y) dy
∣∣∣∣ ≤

∫
R

|f (x − y)||g(y)| dy,
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by relation(5.5), we obtain |f ∗g(x)| ≤ ‖f ‖‖g‖ from the same estimate.
To prove part ii, note that by inequality (5.5),∫

R

|f ∗ g(x)| dx ≤
∫

R

∫
R

|f (x − y)||g(y)| dy dx

�
∫

R

|g(y)|
∫

R

|f (x − y)| dx dy

� ‖f ‖1
∫

R

|g(y)| dy � ‖f ‖1‖g‖1,

where the next-to-last equality follows by the change of variable
t � x − y in the interior integral, and the interchange of the order
of integration is justified by a theorem in analysis because the
integrands are all positive. This shows that inequality (5.6) holds,
since

∫
R
|f (x − y)g(y)| dy, as a function of x, is in L1(R) and so must

be finite a.e.
We leave the proof of part iii to the reader (Exercise 5.1.6).

We remark that in case i, when f, g ∈ L2(R), it is not necessarily
true (see Exercise 5.2.15) that f ∗ g ∈ L2(R) (as in the case of �2(Z)
in Exercise 4.4.6 (ii)).

The definitions of conjugate reflection and translation are similar
to their analogs in chapters 3 and 4.

Definition 5.5 Suppose f : R→ C, and y ∈ R. Define the translation
Ryf : R→ C by

Ryf (x) � f (x − y).

Also define the conjugate reflection f̃ : R→ C by

f̃ (x) � f (−x).
We have the following properties.

Lemma 5.6 Suppose f, g ∈ L2(R) and x, y ∈ R. Then
i. 〈Rxf, Ryg〉 � 〈f, Ry−xg〉.
ii. 〈f, Ryg〉 � f ∗ g̃(y).

Proof
Exercise 5.1.7.

We can consider the operation of dilation for functions in L2(R)
(unlike the cases of �2(ZN ), �2(Z), or L2([−π, π))).
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Definition 5.7 For g : R → C and t ∈ R with t > 0, define
gt : R→ C, the t-dilation of g, by

gt(x) � 1
t
g

(x
t

)
. (5.9)

The factor t in equation (5.9) guarantees that
∫

R
gt(x)dx �∫

R
g(x)dx, by a change of variable.
In the cases of �2(ZN ) and �2(Z), there is an identity element

for convolution. That is, there exists an element δ ∈ �2(ZN )
(respectively, δ ∈ �2(Z)) such that δ ∗ z � z for all z ∈ �2(Z)
(respectively, �2(Z)) (see Lemma 2.29 and Exercise 4.4.7.) However,
there is no δ ∈ L2(R) such that δ∗ f � f for all f ∈ L2(R) (see Exercise
5.2.16). (There is a measure δ with this property, popularly known
as the delta function but it is not an element of L2(R).) Instead, there
is an analog known as an approximate identity.

Definition 5.8 Suppose g : R→ C satisfies

|g(x)| ≤ c1

(1+ |x|)2
for all x ∈ R, (5.10)

for some constant c1 > 0, and∫
R

g(x) dx � 1. (5.11)

For each t > 0, define gt by equation (5.9). The family {gt}t>0 is called
an approximate identity.

Inequality (5.10) is a concise way of stating that g is bounded
and decays at least as fast as a constant multiple of 1/x2 for large x.
Note that these two estimates imply that g ∈ L1(R): By applying the
boundedness estimate for |x| ≤ 1 and the decay estimate for |x| > 1,
we have ∫

R

|g(x)| dx ≤
∫
{x:|x|≤1}

c1 dx +
∫
{x:|x|>1}

c1

x2
dx < +∞.

Thus the integral in equation (5.11) is absolutely convergent. In
many texts, decay conditions weaker than (5.10) are allowed (see
Exercise 5.1.14), but this definition is sufficient for our purposes.
The reason for calling {gt}t>0 an approximate identity is made clear
in Theorem 5.11. To state this result, we require some preliminaries.
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We assume the fundamental theorem of calculus for Lebesgue
integration: if f ∈ L1(R) and

F(x) �
∫ x

a

f (t) dt

for some fixed a ∈ R, then F is a.e. differentiable on R and F ′ � f

a.e. (as in Theorem 4.20). A consequence of this is that if f ∈ L1(R),
then

lim
h→0+

1
2h

∫ x+h

x−h
f (t) dt � f (x) for a.e.x ∈ R. (5.12)

To see this, note that

1
2h

∫ x+h

x−h
f (t) dt � F(x + h)− F(x − h)

2h

� 1
2
F(x + h)− F(x)

h
+ 1

2
F(x)− F(x − h)

h

and observe that each difference quotient converges to F ′(x) as
h → 0, when F ′(x) exists, hence a.e. Because f (x) is constant with
respect to the integration variable t,

1
2h

∫ x+h

x−h
f (x) dt � f (x),

so equation (5.12) can be rewritten as

lim
h→0+

1
2h

∫ x+h

x−h
f (t)− f (x) dt � 0 a.e.,

or, by changing variables (let y � x − t) as

lim
h→0+

1
2h

∫ h

−h
f (x − y)− f (x) dy � 0 a.e. (5.13)

However, it is possible for these integrals to converge to 0 because
of cancellation rather than because the nearby values f (x − y) for
−h < y < h are getting close, on the average, to f (x) (see Exercise
5.1.8). This suggests the following stronger notion.
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Definition 5.9 Suppose f ∈ L1(R). A point x ∈ R is a Lebesgue
point of f if

lim
h→0+

1
2h

∫ h

−h
|f (x − y)− f (x)| dy � 0. (5.14)

A point of continuity of f is a Lebesgue point of f , but a Lebesgue
point is not necessarily a point of continuity (Exercise 5.1.9). An
integrable function f may not have any points of continuity (for
example, the function that is 1 at every rational value of x and 0 at
every irrational value), but the next result guarantees that nearly
all points are Lebesgue points of f . This result appears stronger
than equation (5.13), but actually follows from equation (5.13) by
a measure theory argument.

Lemma 5.10 Suppose f ∈ L1(R). Then almost every point of R is a
Lebesgue point of f .

Proof
Exercise 5.1.11.

The notion of a Lebesgue point of a function extends easily to the
class of locally integrable functions (see Exercises 5.1.10 and 5.1.12),
a class larger than L1(R). However, we have restricted our attention
to integrable functions because that restriction is sufficient for our
next result, which is our main purpose.

Theorem 5.11 Suppose f ∈ L1(R) and {gt}t>0 is an approximate
identity (i.e., g satisfies relation (5.10) for some c1 > 0, equation (5.11),
and gt is defined by equation (5.9)). Then for every Lebesgue point x of f
(hence, by Lemma 5.10, for a.e. x ∈ R),

lim
t→0+

gt ∗ f (x) � f (x). (5.15)

Proof
Suppose x is a Lebesgue point of f . Let ε > 0. By the definition of a
Lebesgue point, there exists H > 0 such that if 0 < h ≤ H,

1
2h

∫ h

−h

∣∣f (x − y)− f (x)
∣∣ dy <

ε

24c1
. (5.16)
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Since g ∈ L1(R) (as noted earlier), by Exercise 5.1.13 there exists
a sufficiently small t0 > 0 such that

c1t0‖f ‖1
H2

+ |f (x)|
∫
{y:|y|≥H/t0}

|g(y)| dy < ε/2. (5.17)

We claim that |gt ∗ f (x) − f (x)| < ε if 0 < t < t0, which would
complete the proof of equation (5.15). To obtain this estimate, first
note that ∫

R

gt(y) dy �
∫

R

1
t
g

(y
t

)
dy �

∫
R

g(u) du � 1,

by the change of variables u � y/t and equation (5.11). Hence

f (x) �
∫

R

f (x)gt(y) dy.

Therefore, by using (5.5), we get

|gt ∗ f (x)− f (x)| �
∣∣∣∣
∫

R

(
f (x − y)− f (x)

)
gt(y) dy

∣∣∣∣
≤
∫

R

∣∣f (x − y)− f (x)
∣∣ |gt(y)| dy � It + IIt,

where

It �
∫ H

−H

∣∣f (x − y)− f (x)
∣∣ |gt(y)| dy

and

IIt �
∫
{y:|y|≥H}

∣∣f (x − y)− f (x)
∣∣ |gt(y)| dy.

We estimate IIt first. By relation (5.10),

|gt(y)| �
∣∣∣∣1t g

(y
t

)∣∣∣∣ ≤ c1

t

(y
t

)−2
� c1t

y2
, (5.18)

so for |y| ≥ H, |gt(y)| ≤ c1t/H
2. Hence,∫

{y:|y|≥H}
|f (x − y)||gt(y)| dy ≤ c1t

H2

∫
R

|f (x − y)| dy

≤ c1t

H2

∫
R

|f (y)| dy � c1t

H2
‖f ‖1.
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Therefore, by the triangle inequality,

IIt ≤
∫
{y:|y|≥H}

|f (x − y)||gt(y)| dy+ |f (x)|
∫
{y:|y|≥H}

∣∣gt(y)
∣∣ dy

≤ c1t

H2
‖f ‖1 + |f (x)|

∫
{u:|u|≥H/t}

|g(u)| du <
ε

2

if t < t0, using a change of variables u � y/t, relation (5.17), and the
fact that the last expression involving t decreases when t is reduced.

Hence, the proof will be complete if we show that It < ε/2. We
use the simple estimate

|gt(y)| �
∣∣∣∣1t g

(y
t

)∣∣∣∣ ≤ c1

t
, (5.19)

which follows from inequality (5.10). If t ≥ H, we use relations (5.19)
and (5.16) to conclude that

It ≤ c1

t

∫ H

−H
|f (x − y)− f (x)| dy ≤ c1

t

2Hε
24c1

≤ ε

12
<

ε

2
,

by using the assumption that t ≥ H.
If t < H, there exists a unique nonnegative integer K such that

2K ≤ H/t < 2K+1. We break up the region of integration in It as
follows:

It �
K∑

k�1

∫
{y:2−kH≤y<2−k+1H}

|f (x − y)− f (x)||gt(y)| dy

+
∫
{y:|y|<2−KH}

|f (x − y)− f (x)||gt(y)| dy.

In the region {y : 2−kH ≤ y < 2−k+1H}, relation (5.18) implies

|gt(y)| ≤ c1t

y2
≤ c1t22k

H2
.

For the last integral we use relation (5.19). Substituting these
estimates, we obtain

It ≤ c1t

H2

K∑
k�1

22k
∫
{y:|y|≤2−k+1H}

|f (x − y)− f (x)| dy

+c1

t

∫
{y:|y|≤2−KH}

|f (x − y)− f (x)| dy,
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where we have replaced the annular regions {y : 2−kH ≤ y ≤
2−k+1H} by the larger regions {y : |y| ≤ 2−k+1H}, which cannot
decrease the corresponding integrals. We apply equation (5.16) to
obtain

It ≤ c1t

H2

4Hε
24c1

K∑
k�1

22k2−k + c1

t

2Hε
24c1

2−K

� εt

6H

K∑
k�1

2k + ε

12
2−KH

t
<

ε

6
2t2K

H
+ ε

6
≤ ε

3
+ ε

6
� ε

2
,

by using
∑K

k�1 2k < 2K+1, and the facts, following from our definition
of K, that 2−KH/t < 2 and t2K/H ≤ 1. This estimate completes the
proof.

Thus gt∗f (x) is close to f (x) for sufficiently small t, which justifies
calling {gt}t>0 an approximate identity for convolution. We remark
that one cannot obtain more than the a.e. convergence of gt ∗ f (x)
to f (x), because one can change f arbitrarily on a set of measure
0 without changing gt ∗ f (x). Theorem 5.11 plays a key role in the
inversion of the Fourier transform on R in the next section.

Exercises

5.1.1. i. Define addition on L2(R) by (f + g)(x) � f (x) + g(x).
Define multiplication of a function f ∈ L2(R) by a scalar
α ∈ C by (αf )(x) � αf (x). With these operations, prove
that L2(R) is a vector space. (As in Exercise 4.3.1, the
only property in Definition 1.30 that is not immediately
clear is A1. Use Exercise 1.6.3 (i) to check A1.)

ii. Check that 〈·, ·〉, defined by equation (5.1), is a complex
inner product on L2(R). (As in Exercise 4.3.1 (ii), the
only difficulty is to see that the integral defining 〈f, g〉
converges absolutely for f, g ∈ L2(R). See Exercise 1.6.3
(i).)

5.1.2. For j, k ∈ Z, let

gj,k(x) �
{

(2π)−1/2eijx if 2πk ≤ x < 2π(k + 1)
0 otherwise.
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Prove that {gj,k}j,k∈Z is a complete orthonormal set for L2(R).
Hint: For completeness, suppose 〈f, gj,k〉 � 0 for all j, k ∈ Z,
for f ∈ L2(R). Use the completeness of the trigonometric
system in L2([−π, π)) (Corollary 4.22) to show that the
restriction of f to [2πk, 2π(k + 1)) is a.e. 0 for each k ∈ Z.

5.1.3. i. Let f (x) � 1/x for x > 1, and 0 otherwise. Show that
f ∈ L2(R) \ L1(R).

ii. Give an example of a function f ∈ L1(R) \ L2(R). Hint:
See Exercise 4.3.3.

5.1.4. Prove Lemma 5.2. Hint: See Exercise 4.3.10.
5.1.5. Prove that (L1(R), ‖ · ‖1) is a normed vector space (see the

definition in Exercise 1.6.5), but not an inner product space.
Hint: See Exercise 1.6.6.

5.1.6. Prove Lemma 5.4 iii. Hint: Follow the argument in the proof
of Lemma 4.34, but use integrals instead of sums.

5.1.7. Prove Lemma 5.6.
5.1.8. Define f ∈ L1(R) by setting f (x) � −1 for−1 < x < 0, f (0) �

0, f (x) � 1 for 0 < x < 1, and f (x) � 0 for all other x ∈ R.
Prove that equation (5.13) holds for x � 0, but 0 is not a
Lebesgue point of f .

5.1.9. i. Suppose f ∈ L1(R) and f is continuous at x. Prove that x
is a Lebesgue point of f .

ii. Define f ∈ L1(R) by setting

f (x) � 1 for
1
n
< x <

1
n
+ 1

2n
, n � 1, 2, 3, . . .

and f (x) � 0 for all other x. Prove that f is not continuous
at 0 but 0 is a Lebesgue point of f .

5.1.10. (This exercise requires some background in Lebesgue
integration theory.) A function f : R→ C is locally integrable
if
∫ T

−T |f (x)| dx <∞ for every T > 0. The class of all locally
integrable functions on R is denoted L1

loc(R). For example,
f (x) � x is locally integrable but not integrable. Prove
equation (5.13) for f ∈ L1

loc. (Note that the local integrability
of f guarantees the existence and finiteness of the integral
in equation (5.13).) Hint: By the fact that a countable union
of sets of measure 0 has measure 0, it is enough to show
that the set of points x in the interval [n, n + 1] for which
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equation (5.13) fails has measure 0 for each integer n. To
see this, apply equation (5.13) to an integrable function that
agrees with f on a neighborhood of [n, n+ 1].

5.1.11. (This exercise requires some background in Lebesgue
integration theory.) Prove Lemma 5.10, assuming equation
(5.13). Hint: Select some enumeration {ri}∞i�1 of the rational
numbers. For each i ∈ N, apply Exercise 5.1.10 to |f (x)− ri|,
which is locally integrable, to deduce that there is a set Ei of
measure 0 such that for all x ∈ R \ Ei,

lim
h→0

1
2h

∫ h

−h

∣∣f (x − y)− ri
∣∣− ∣∣f (x)− ri

∣∣ dy � 0.

Let E � ∪∞i�1Ei. The objective is to show that every x ∈ R \E
is a Lebesgue point of f . To see this, let ε > 0 be given and
pick ri sufficiently close to f (x). Then write

∫ h

−h
|f (x−y)−f (x)| dy ≤

∫ h

−h
|f (x−y)−ri| dy+

∫ h

−h
|ri−f (x)| dy.

5.1.12. (This exercise requires some background in Lebesgue
integration theory.) Suppose f ∈ L1

loc(R) (see Exercise
5.1.10). We say that x ∈ R is a Lebesgue point of f if equation
(5.14) holds. Prove that almost every x ∈ R is a Lebesgue
point of f .

5.1.13. Suppose g ∈ L1(R). Prove that

lim
T→∞

∫
{x:|x|>T}

|g(x)| dx � 0.

Hint: Write
∫

R
|g(x)| dx � limN→∞

∑N
k�−N

∫ k+1
k
|g(x)| dx and

use facts about series.
5.1.14. In the definition of an approximate identity, replace relation

(5.10) with the weaker assumption that there exists some
ε > 0 and some c1 > 0 such that

|g(x)| ≤ c1(1+ |x|)−1−ε for all x ∈ R.

Obtain the result of Theorem 5.11 under this assumption.
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5.2 The Fourier Transform on R

In this section we develop the Fourier transform for L2(R); it is
analogous to the DFT on �2(ZN ) in chapter 2 and the Fourier
transform on �2(Z) in chapter 4. As suggested by the discussion at
the beginning of section 4.4, we consider functions χ defined on R

that are multiplicative, that is, such that

χ(x + y) � χ(x)χ(y) for all x, y ∈ R. (5.20)

If χ is not identically 0, this implies that χ(0) � 1. If we assume that
χ is reasonably smooth, say differentiable at the origin, it follows
(Exercise 5.2.1) that

χ(x) � ecx,

for some constant c � η+ iξ ∈ C, with η, ξ ∈ R. Then

|ecx| � |exηeixξ| � exη.

If η > 0, exη is too big as x→+∞, whereas if η < 0, exη is too big as
x→−∞. So we restrict to the case η � 0, that is,

χ(x) � eixξ,

for some ξ ∈ R. For �2(Z), we noted that for n ∈ Z, einθ is periodic
with period 2π in the variable θ, for all n ∈ Z, so we restricted θ to
[−π, π). Here, the functions {eixξ}ξ∈R are all distinct, so we consider
all real ξ. Based on our previous experience, we expect to obtain
some analog of the DFT using expressions of the form

〈f, eixξ〉 �
∫

R

f (x)eixξ dx �
∫

R

f (x)e−ixξ dx.

Unfortunately, this integral may not converge absolutely for f ∈
L2(R) (this is related to the fact that the inner product 〈f, eixξ〉 is not
defined in the usual sense, since eixξ 	∈ L2(R)), so this requires some
interpretation. However, if f ∈ L1(R), then by relation (5.5),∣∣∣∣

∫
R

f (x)e−ixξ dx
∣∣∣∣ ≤

∫
R

|f (x)| dx � ‖f ‖1, (5.21)

for any ξ ∈ R. Thus the following definition is possible.
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Definition 5.12 For f ∈ L1(R) and ξ ∈ R, define

f̂ (ξ) �
∫

R

f (x)e−ixξ dx. (5.22)

We call f̂ the Fourier transform of f ; the mapping ˆ is the Fourier
transform.

For g ∈ L1(R) and x ∈ R, define ǧ, the inverse Fourier transform
of g, by

ǧ(x) � 1
2π

∫
R

g(ξ)eixξ dξ. (5.23)

The mapping ˇ is the inverse Fourier transform.

We are hoping for an inversion formula

f (x) � (f̂ )ˇ(x) � 1
2π

∫
R

f̂ (ξ)eixξ dξ, (5.24)

which would be analogous to the inversion formulas (2.10) for the
DFT and (4.36) for the Fourier transform on �2(Z). However there are
several difficulties. We expect equation (5.24) to hold for f ∈ L2(R),
but (Exercise 5.1.3) functions in L2(R) need not belong to L1(R),
and the integral in equation (5.22) converges absolutely only for
f ∈ L1(R). Also, we cannot prove equation (5.24) by orthogonality
methods, as we did for formulas (2.10) and (4.36) because the
functions e−ixξ do not belong to L2(R), as functions of x or ξ, and there
are uncountably many of these functions. Even if f ∈ L1(R), so that
f̂ (ξ) is defined for each ξ, we can interpret the integral in equation
(5.24) as an absolutely convergent integral only if f̂ ∈ L1(R), which
is not generally the case. However, we will see (Theorem 5.15) that
when f ∈ L1(R) is such that f̂ ∈ L1(R), the Fourier inversion formula
(5.24) does hold a.e. Moreover, this allows us (Definition 5.21) to
define f̂ more abstractly for f ∈ L2(R) in such a way that Fourier
inversion holds in an appropriate sense for all f ∈ L2(R) (Theorem
5.24).

First we require a lemma regarding the Gaussian function G,
which is incidentally the density function of a standard normal
random variable, whose graph is the famous bell-shaped curve.
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Lemma 5.13 Define G : R→ R by

G(x) � 1√
2π

e−x
2/2.

Then
i.
∫

R
G(x) dx � 1

ii. There exists c1 > 0 such that G(x) ≤ c1
(1+|x|)2 .

iii. Ĝ(ξ) � e−ξ2/2, or Ĝ � √2πG.

Proof
The proof of part i is a famous trick involving conversion to polar
coordinates, which is outlined in Exercise 5.2.2. Property ii is trivial:
G is bounded above by 1/

√
2π, and decays exponentially at ±∞,

which is much faster than c1/x
2. To prove part iii, first note that

G′(x)+ xG(x) � −x√
2π

e−x
2/2 + x

1√
2π

e−x
2/2 � 0, (5.25)

for all x. Exercise 5.2.3 (i) implies that

(G′)ˆ(ξ) � iξĜ(ξ).

Also (Exercise 5.2.3 (ii)) Ĝ is differentiable and

(xG(x))̂(ξ) � i(Ĝ)′(ξ). (5.26)

Thus, taking the Fourier transform of both sides of equation (5.25)
yields

iξĜ(ξ)+ i(Ĝ)′(ξ) � 0.

This is a first-order ordinary differential equation that can be solved
by multiplying by the integrating factor eξ

2/2 to obtain(
eξ

2/2Ĝ(ξ)
)′ � ξeξ

2/2Ĝ(ξ)+ eξ
2/2(Ĝ)′(ξ) � 0.

Hence,

Ĝ(ξ) � Ce−ξ
2/2

for some constant C. Letting ξ � 0 shows that

C � Ĝ(0) �
∫

R

G(x) dx � 1,

by property i.
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Observe that properties i and ii imply that the family {Gt}t>0 is an
approximate identity (Definition 5.8). We also require the following
lemma. Here ĝt(ξ) denotes the Fourier transform of gt, that is (gt)ˆ(ξ),
not the dilate of ĝ (which we would write as (ĝ)t).

Lemma 5.14 Suppose g ∈ L1(R) and t > 0. Then for all ξ ∈ R,

ĝt(ξ) � ĝ(tξ). (5.27)

Proof
Exercise 5.2.4.

We now prove our first version of the inversion formula for the
Fourier transform.

Theorem 5.15 (Fourier inversion on L1(R)) Suppose f ∈ L1(R)
and f̂ ∈ L1(R). Then

1
2π

∫
R

f̂ (ξ)eixξ dξ � f (x)

at every Lebesgue point x of f (hence a.e., by Lemma 5.10).

Proof
Let

It(x) � 1
2π

∫
R

f̂ (ξ)e−t
2ξ2/2eixξ dξ � 1

2π

∫
R

f̂ (ξ)Ĝt(ξ)eixξ dξ,

by Lemmas 5.13 iii and 5.14. An elementary argument (Exercise
5.2.5), or an application of the dominated convergence theorem (if
this is familiar to you; we discuss it in section 5.4) shows that

lim
t→0+

It(x) � 1
2π

∫
R

f̂ (ξ)eixξ dξ (5.28)

for every x. We evaluate this limit by another route. By writing out
f̂ (ξ) in the definition of It, we obtain

It(x) � 1
2π

∫
R

(∫
R

f (y)e−iyξ dy
)
Ĝt(ξ)eixξ dξ

�
∫

R

f (y)
1

2π

∫
R

Ĝt(ξ)ei(x−y)ξ dξ dy,

where the interchange in the order of integration is justified by
Fubini’s theorem (a result in measure theory) because f and Ĝt are
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integrable. However, by using Lemma 5.14, the change of variables
γ � tξ, and Lemma 5.13 iii twice, we get

1
2π

∫
R

Ĝt(ξ)ei(x−y)ξ dξ � 1
2π

∫
R

Ĝ(tξ)ei(x−y)ξ dξ

� 1
2πt

∫
R

Ĝ(γ)ei(x−y)γ/t dγ

� 1

t
√

2π

∫
R

G(γ)e−iγ(y−x)/t dγ

� 1

t
√

2π
Ĝ((y− x)/t) � 1

t
G((y− x)/t)

� 1
t
G((x − y)/t) � Gt(x − y),

since G is an even function. Substituting this equation into the one
above it yields

It(x) �
∫

R

f (y)Gt(x − y) dy � Gt ∗ f (x).

We have already noted that {Gt}t>0 is an approximate identity, so by
Theorem 5.11,

lim
t→0+

It(x) � lim
t→0+

Gt ∗ f (x) � f (x) (5.29)

at every Lebesgue point x of f . Thus equations (5.28) and (5.29)
complete the proof.

This gives an important uniqueness property.

Corollary 5.16 (Uniqueness of the Fourier transform in L1(R))
Suppose f, g ∈ L1(R) and f̂ � ĝ a.e. Then f � g a.e.

Proof
Apply Theorem 5.15 to f − g to deduce that f − g � (f̂ − ĝ)ˇ � 0ˇ � 0
a.e.

Theorem 5.15 states that for f, f̂ ∈ L1(R) we have

f � (f̂ )ˇ a.e.

Under the same assumptions, we also have

f � (f̌ )ˆ. (5.30)
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To see this, first observe that from the definition of the inverse
Fourier transform,

f̌ (x) � 1
2π

f̂ (−x). (5.31)

Hence the assumption that f̂ ∈ L1(R) implies f̌ ∈ L1(R). Then

(f̌ )ˆ(ξ) �
∫

R

f̌ (x)e−ixξ dx � 1
2π

∫
R

f̂ (−x)e−ixξ dx

� 1
2π

∫
R

f̂ (x)eixξ dx � (f̂ )ˇ(ξ) � f (ξ) a.e.

The conditions f, f̂ ∈ L1(R) in Theorem 5.15 are quite restrictive.
First note (Exercise 5.2.6) that f ∈ L1(R) implies that f̂ is a bounded,
continuous function. By equation (5.31), corresponding results hold
for the inverse Fourier transform. In particular, if f̂ ∈ L1(R), then (f̂ )ˇ
is bounded and continuous. Thus by Theorem 5.15, if f, f̂ ∈ L1(R),
f must be a.e. equal to the bounded, continuous function (f̂ )ˇ. That
is, the assumptions of Theorem 5.15 imply that f can by modified
on a set of measure 0 (yielding an equivalent function from the
standpoint of Lebesgue integration theory) so that the result is
bounded and continuous.

On the other hand, if a function f is C2 (meaning that at every
point, f has two derivatives, and the second derivative is continuous)
and f has compact support, defined as follows, then f and f̂ belong
to L1(R) (Exercise 5.2.7).

Definition 5.17 Let f : R → C be a function. The support of f ,
denoted supp f , is the closure of the set

{x ∈ R : f (x) 	� 0}.
We say f has compact support if supp f is a compact set.

Because supp f is closed by definition, f has compact support
if and only if supp f is bounded (by the Heine-Borel theorem). In
other words, f has compact support if there exists r < ∞ such that
supp f ⊆ [−r, r], that is, such that f (x) � 0 for all x satisfying |x| > r.

Although the class of C2 functions with compact support may not
seem large, it is large enough to be dense in L2(R), in the following
sense.
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Lemma 5.18 Suppose f ∈ L2(R) and let ε > 0. Then there exists a
C2 function g with compact support (hence, by Exercise 5.2.7, a function
g ∈ L1(R) such that ĝ ∈ L1(R)), satisfying

‖f − g‖ < ε.

Proof
We assume the fact from Lebesgue integration theory that there is a
step function h such that

‖f − h‖ < ε/2.

(By definition, a step function is any function of the form

h �
n∑

k�1

ckχ[ak,bk ],

where χ[ak,bk ] is the function that is 1 on the interval [ak, bk] and 0
elsewhere; c1, c2, . . . , cn are constants; and n can be any positive
integer.) By Exercise 5.2.8, there is a C2 function g of compact
support such that ‖h − g‖ < ε/2. Then by the triangle inequality
(5.4),

‖f − g‖ ≤ ‖f − h‖ + ‖h− g‖ < ε/2+ ε/2 � ε.

This completes the proof.

In fact one can find an infinitely differentiable function of
compact support that is within ε of f in L2 norm, but this is more
difficult to prove and we will not need this result.

Lemma 5.18 says that we can approximate an L2 function by
functions that satisfy the conditions of Theorem 5.15. We use this
lemma to define the Fourier transform on L2(R). The following
preliminary forms of Parseval’s relation and Plancherel’s theorem
play a key role.

Lemma 5.19 Suppose f, g ∈ L1(R) and f̂ , ĝ ∈ L1(R). Then
i. f, g, f̂ , ĝ ∈ L2(R).
ii. (Parseval’s relation) 〈f̂ , ĝ〉 � 2π〈f, g〉.
iii. (Plancherel’s formula) ‖f̂ ‖ � √2π‖f ‖.
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Proof
We leave the proof of part i as Exercise 5.2.9. For part ii,

〈f̂ , ĝ〉 �
∫

R

f̂ (ξ)ĝ(ξ) dξ �
∫

R

f̂ (ξ)
∫

R

g(x)e−ixξ dx dξ

�
∫

R

f̂ (ξ)
∫

R

g(x)eixξ dx dξ �
∫

R

∫
R

f̂ (ξ)eixξ dξ g(x) dx

� 2π
∫

R

f (x)g(x) dx � 2π〈f, g〉,

by Theorem 5.15 (and where the interchange in the order of
integration is justified by Fubini’s theorem since g, f̂ ∈ L1(R)). Then
part iii follows from part ii by taking g � f .

For f ∈ L2(R), we cannot define f̂ pointwise by equation (5.22)
because the integral may not be absolutely convergent. However,
we can find a sequence of functions {fn}∞n�1 such that fn, f̂n ∈ L1(R)
for each n, and fn → f in L2(R) as n → ∞ (recall this means that
limn→∞ ‖fn − f ‖ � 0). For example, we can apply Lemma 5.18 with
ε � 1/n to obtain fn as desired such that ‖fn − f ‖ ≤ 1/n, for each n.
Since fn ∈ L1(R), f̂n is defined for each n. We would like to define
f̂ � limn→∞ f̂n. Lemma 5.20 shows that this makes sense.

Lemma 5.20 Suppose f ∈ L2(R). Let {fn}∞n�1 be a sequence of
functions such that fn, f̂n ∈ L1(R) for each n, and fn → f in L2(R)
as n→∞.

i. The sequence {f̂n}∞n�1 converges to some F ∈ L2(R) (i.e., ‖f̂n −
F‖ → 0 as n→∞).

ii. Let {gn}∞n�1 be another sequence of functions such that gn, ĝn ∈
L1(R) for each n, and gn → f in L2(R) as n→∞. By part i, ĝn
converges in L2 to some G ∈ L2(R). Then G � F a.e., for F as
in part i.

iii. Suppose f ∈ L1(R) ∩ L2(R). Let F be as in part i. Then F � f̂ .

Proof
To prove part i, note that by Lemma 5.19 i, f̂n ∈ L2(R) for each n.
Since {fn}∞n�1 is convergent in L2(R), it is a Cauchy sequence in L2(R).
By Lemma 5.19 iii,

‖f̂n − f̂m‖ �
√

2π‖fn − fm‖
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for each n and m. Hence {f̂n} is also a Cauchy sequence in L2(R).
Since L2(R) is complete, there exists some F ∈ L2(R) such that {f̂n}
converges to F in L2.

For part ii, the triangle inequality (5.4) implies that

‖F − G‖ ≤ ‖F − f̂n‖ + ‖f̂n − ĝn‖ + ‖ĝn − G‖ (5.32)

for each n. By Lemma 5.19 iii and triangle inequality (5.4),

‖f̂n − ĝn‖ �
√

2π‖fn − gn‖ ≤
√

2π(‖fn − f ‖ + ‖f − gn‖).
Hence, as n → ∞, the right side of relation (5.32) goes to 0.
Therefore, ‖F − G‖ � 0, so F � G a.e.

To establish part iii, by Exercise 5.2.10 we can find a sequence
{gn}∞n�1 of L1 functions with ĝn ∈ L1(R) for each n such that {gn}
converges to f in L2, and also

‖gn − f ‖1 → 0 as n→∞. (5.33)

By relation (5.5), for each ξ ∈ R,∣∣∣ĝn(ξ)− f̂ (ξ)
∣∣∣ � ∣∣∣∣

∫
R

(gn(x)− f (x))e−ixξ dx
∣∣∣∣ ≤

∫
R

|gn(x)− f (x)| dx.

Hence by relation (5.33), ĝn converges uniformly to f̂ as n → ∞.
By part ii, however, ĝn converges to F in L2(R). This guarantees that
F � f̂ a.e., as follows. For any positive integer N , by inequality (5.4)
we have(∫ N

−N
|F(ξ)− f̂ (ξ)|2 dξ

)1/2

≤
(∫ N

−N
|F(ξ)− ĝn(ξ)|2 dξ

)1/2

+
(∫ N

−N
|ĝn(ξ)− f̂ (ξ)|2 dξ

)1/2

≤ ‖F − ĝn‖ +
√

2N sup
ξ∈R

|ĝn(ξ)− f̂ (ξ)|

for every n. Letting n → ∞, the right side goes to 0. Hence∫ N

−N |F(ξ) − f̂ (ξ)|2 dξ � 0. Because this is true for all N ∈ N, we

obtain that F � f̂ a.e.

This allows the following definition.

Definition 5.21 Suppose f ∈ L2(R). Let {fn}∞n�1 be a sequence such
that fn, f̂n ∈ L1(R) for all n, and such that fn converges to f in L2 as
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n→∞. Define f̂ , the Fourier transform of f , to be the limit in L2 of the
sequence {f̂n}∞n�1.

We define f̌ , the inverse Fourier transform of f , to be the L2 limit of
the sequence f̌n}∞n�1.

Note that for f ∈ L2(R), f̂ is defined as an L2 function, not
pointwise as in Definition 5.12 when f ∈ L1(R). Thus f̂ is only
determined a.e., that is, up to a set of measure 0, for f ∈ L2(R).
Lemma 5.20 i guarantees that the L2 limit of {f̂n}∞n�1 exists in L2(R),
and Lemma 5.20 ii shows that this limit is independent of the
choice of the sequence {fn}∞n�1. Hence f̂ is well defined. In the case
f ∈ L1(R) ∩ L2(R), Lemma 5.20 iii guarantees that f̂ in Definition
5.21 is the same L2 function as f̂ in Definition 5.12.

The relation (5.31) between ˆ and ˇ shows that the analog for
the inverse Fourier transform of Lemma 5.20 holds also, which
justifies the definition of ˇ in Definition 5.21 in the same way as
for .̂ Moreover, for f ∈ L2(R), by equation (5.31) we have

f̌ (x) � lim
n→∞ f̌n(x) � lim

n→∞
1

2π
f̂n(−x) � 1

2π
f̂ (−x),

for {fn}∞n�1, as in Definition 5.21, where the limits are L2 limits. Thus
equation (5.31) is true for f ∈ L2(R) also.

For f ∈ L2(R), it is part of the definition of f̂ that f̂ ∈ L2(R). That
is, we have ˆ : L2(R)→ L2(R). By equation (5.31), interpreted in the
L2 sense, we also have ˇ : L2(R)→ L2(R).

We can now extend Lemma 5.19 to L2(R).

Theorem 5.22 Suppose f, g ∈ L2(R). Then we have
i. (Parseval’s relation) 〈f̂ , ĝ〉 � 2π〈f, g〉.
ii. (Plancherel’s formula) ‖f̂ ‖ � √2π‖f ‖.

We also have
iii. 〈f̌ , ǧ〉 � 1

2π 〈f, g〉.
and

iv. ‖f̌ ‖ � 1√
2π
‖f ‖.

Proof
Let {fn}∞n�1 and {gn}∞n�1 be sequences of functions with fn, gn, f̂n,
ĝn ∈ L1(R) for each n, such that fn → f and gn → g in L2(R) as
n → ∞. By definition, f̂ � limn→∞ f̂n and ĝ � limn→∞ ĝn, where
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these are L2 limits. This implies

〈f̂ , ĝ〉 � lim
n→∞〈f̂n, ĝn〉. (5.34)

(Proof: by relations (5.4) and (5.3),∣∣∣〈f̂ , ĝ〉 − 〈f̂n, ĝn〉∣∣∣ ≤ ∣∣∣〈f̂ − f̂n, ĝ〉
∣∣∣+ ∣∣∣〈f̂n, ĝ − ĝn〉

∣∣∣
≤ ‖f̂ − f̂n‖‖ĝ‖ + ‖f̂n‖‖ĝ − ĝn‖,

which goes to 0 as n → ∞, because the convergence of f̂n in L2(R)
implies the boundedness of ‖f̂n‖.) We can apply Lemma 5.19 ii to
fn, gn to obtain

〈f̂n, ĝn〉 � 2π〈fn, gn〉
for each n. Hence by equation (5.34),

〈f̂ , ĝ〉 � lim
n→∞ 2π〈fn, gn〉 � 2π〈f, g〉,

by the same argument as in the proof of equation (5.34). This proves
part i. Then part ii follows from part i by taking g � f . Part iii follows
either by a similar argument or from equation (5.31) (for f ∈ L2(R))
and part i because

〈f̌ , ǧ〉 � 1
4π2

∫
R

f̂ (−x)ĝ(−x) dx � 1
4π2
〈f̂ , ĝ〉 � 1

2π
〈f, g〉.

Then part iv follows from part iii by taking g � f .

For f ∈ L2(R), we defined f̂ by taking a sequence {fn}∞n�1 of
sufficiently nice functions (i.e., such that fn, f̂n ∈ L1(R) for all n)
that converge to f in L2(R), and letting f̂ be the L2 limit of f̂n as
n → ∞. However, at this point we can see that for any sequence
of functions, nice or otherwise, converging in L2 to f , their Fourier
transforms converge to f̂ .

Corollary 5.23 Suppose f ∈ L2(R), and {fn}∞n�1 is a sequence of L2

functions such that fn → f in L2(R). Then

f̂n → f̂ in L2(R) as n→∞ (5.35)

and

f̌n → f̌ in L2(R) as n→∞. (5.36)
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Proof
By Theorem 5.22 ii,

‖f̂n − f̂ ‖ � √2π‖fn − f ‖ → 0 as n→∞,

which proves relation (5.35). Theorem 5.22 iv implies relation (5.36)
similarly.

Hence, if we take any sequence {fn}∞n�1 of functions in L1(R) ∩
L2(R) such that fn → f in L2(R), then f̂n is defined pointwise by
equation (5.22) and f̂ is the L2 limit of f̂n as n → ∞. By Exercise
5.2.11, an example of such a sequence {fn}∞n�1 is

fn(x) �
{

f (x), if |x| ≤ n

0, if |x| > n.
(5.37)

Note that

f̂n(x) �
∫

R

fn(x)e−ixξ dx �
∫ n

−n
f (x)e−ixξ dx.

Thus for f ∈ L2(R),

f̂ (ξ) � lim
n→∞

∫ n

−n
f (x)e−ixξ dx, (5.38)

where the limit is in the L2 sense. This “principal value” interpreta-
tion of f̂ for f ∈ L2(R) is as natural and explicit as possible, so many
texts take it as the definition of f̂ .

After all this, the proof of our main objective is anticlimactic.

Theorem 5.24 (Fourier inversion on L2(R))
i. Suppose f ∈ L2(R). Then

f � (f̂ )ˇ (5.39)

and

f � (f̌ ) .̂ (5.40)

ii. The Fourier transformˆ : L2(R)→ L2(R) is one-to-one and onto
with inverse ˇ : L2(R)→ L2(R).

Proof
Select a sequence {fn}∞n�1 with fn, f̂n ∈ L1(R) for all n, such that fn → f

in L2(R) as n→∞. Then f̂n → f̂ in L2(R) as n→∞, by definition
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of f̂ . By relation (5.36),

(f̂n)ˇ → (f̂ )ˇ in L2(R) as n→∞.

By Theorem 5.15, however,

(f̂n)ˇ � fn → f in L2(R) as n→∞.

This proves equation (5.39). In the same way, using relations (5.35)
and (5.30),

(f̌ )ˆ� lim
n→∞(f̌n)ˆ� lim

n→∞ fn � f,

where these are L2 limits, proving equation (5.40). Then part ii
follows easily from part i.

The Fourier inversion formula (5.24) has essentially the same
interpretation here as in the DFT context (see formula (2.10)),
the context of L2([−π, π)) (see equation (4.24)), or in �2(Z) (see
equation (4.36)). As ξ increases in magnitude, eixξ is a more and more
rapidly oscillating function of x. We think of each such function as
representing a pure frequency, which is higher as |ξ| gets larger.
These different frequencies can be “added” together with weights
f̂ (ξ) via the integral in equation (5.24) to form anyL2 function f . Thus
f̂ (ξ) measures the weight or strength of the pure frequency eixξ used
in making up f . We think of equation (5.24) as analogous to a basis
representation in the case of a finite dimensional vector space; every
element of L2(R) is written in terms of the fixed system {eixξ}ξ∈R via
a weighted superposition (in this case an integral instead of a linear
combination). As in the case of equation (4.36), the representing
elements eixξ, as functions of x, are not in the space L2(R), so none
of these elements can be given more than infinitesimal weight in
the representation (5.24).

We now consider how some operations we have introduced, such
as convolution or translation, interact with the Fourier transform.

Lemma 5.25 Suppose g, h ∈ L1(R), and either f ∈ L1(R) or
f ∈ L2(R). Then

i. (f ∗ g)ˆ� f̂ ĝ.

ii. f ∗ (g ∗ h) � (f ∗ g) ∗ h.
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Proof
Exercise 5.2.13.

Lemma 5.26 Suppose f ∈ L1(R) or f ∈ L2(R), and y, ξ ∈ R. Then

i. (f̃ )ˆ(ξ) � f̂ (ξ) a.e.
ii. (Ryf )ˆ(ξ) � e−iyξ f̂ (ξ) a.e.

Proof
Exercise 5.2.14.

As noted above, the Fourier inversion formula (5.24) can be
thought of as a representation of f (x) as a superposition of the
pure frequencies eixξ. This representation has the same key property
for L2(R) as the DFT expansion for �2(ZN ) in Theorem 2.18, the
Fourier series expansion for L2([−π, π)) in Theorem 4.28, and the
Fourier system expansion for �2(Z) in Lemma 4.39: it diagonalizes
(in a sense to be described) all bounded translation-invariant linear
transformations. We say that a bounded (Definition 4.25) linear
transformation T : L2(R) → L2(R) is translation invariant if, for all
y ∈ R and all f ∈ L2(R),

T(Ryf ) � RyT(f ),

where RyT(f )(x) � T(f )(x − y), by definition. It turns out, like the
cases noted above, that every translation-invariant bounded linear
transformation T on L2(R) is a convolution operator, that is, there
exists b such that T(f ) � b ∗ f . The class b belongs to is not easy to
specify at this point, so we leave this point vague. By Lemma 5.25 i,
we have (in an appropriate sense)

(T(f ))ˆ(ξ) � b̂(ξ)f̂ (ξ)

for all ξ ∈ R. If we apply Fourier inversion (5.24) to T(f ), we obtain

T(f )(x) � 1
2π

∫
R

b̂(ξ)f̂ (ξ)eixξ dξ.

Thus the result of applying T is to replace the “coefficients” f̂ (ξ) in
the Fourier representation formula (5.24) by b̂(ξ)f̂ (ξ). Thus T acts as
a diagonal operator with respect to the system {eixξ}ξ∈R. In this sense,
the Fourier transform diagonalizes bounded translation-invariant
operators on L2(R).
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A key example of a translation-invariant operator is the
derivative, since

d

dx

(
Ryf
)
(x) � d

dx
(f (x − y)) � df

dx
(x − y) � Ry

(
df

dx

)
(x).

Although the derivative is not defined on all of L2(R), and is not
a bounded operator on its domain, the above argument is correct
in some generalized sense. In particular, if we formally bring the
derivative with respect to x inside the integral sign in equation (5.24),
we obtain

f ′(x) � 1
2π

∫
R

iξf̂ (ξ)eixξ dξ.

This argument can be justified for nice enough functions f . Thus the
derivative operator corresponds to the Fourier multiplier iξ, and the
derivative is diagonalized by the Fourier system. This is the reason
for the prevalence of Fourier techniques in the study of differential
equations: the Fourier system diagonalizes the derivative operator.

Exercises

5.2.1. Suppose χ : R → C is multiplicative (i.e., equation (5.20)
holds), χ is not identically 0, and χ is differentiable at 0.
Prove that χ(x) � ecx for some c ∈ C. Hint: Use the definition
of the derivative to show that χ is differentiable at every
point of R with χ′(x) � χ(x)χ′(0).

5.2.2. Prove Lemma 5.13 i. Hint: Let I � ∫
R
G(x) dx. Then

I2 �
∫

R

1√
2π

e−x
2/2 dx

∫
R

1√
2π

e−y
2/2 dy

� 1
2π

∫
R

∫
R

e−(x2+y2)/2 dx dy.

Then conversion to polar coordinates yields an integral that
can be explicitly evaluated.

5.2.3. i. Suppose g ∈ L1(R) is a differentiable function such that
g′ ∈ L1(R) and limx→±∞ g(x) � 0. Prove

(g′)ˆ(ξ) � iξĝ(ξ).
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Hint: Integrate by parts.
ii. Suppose g ∈ L1(R) is continuous and xg(x) ∈ L1(R).

Prove that ĝ is differentiable at every point in R and

ĝ′(ξ) � −i(xg(x))ˆ(ξ).
Hint: The assumptions justify differentiating under the

integral sign.
5.2.4. Prove Lemma 5.14.
5.2.5. Prove equation (5.28). Hint: Show that∣∣∣∣It − 1

2π

∫
R

f̂ (ξ)eixξ dξ
∣∣∣∣ ≤ 1

2π

∫
R

|f̂ (ξ)|
∣∣∣e−t2ξ2/2 − 1

∣∣∣ dξ.
Break this last integral into two parts, the integral over
{ξ : |ξ| > T} and the integral over {ξ : |ξ| ≤ T}. Given ε > 0,
pick T using Exercise 5.1.13 to estimate the integral over the
infinite region. Show that e−t2ξ2/2 converges uniformly to 1
on the finite region as t→ 0.

5.2.6. Suppose f ∈ L1(R).
i. Prove that f̂ is a bounded function with |f̂ (ξ)| ≤ ‖f ‖ for

all ξ.
ii. Prove that f̂ is a continuous function on R. Hint: Show

that ∣∣∣f̂ (ξ)− f̂ (ξ0)
∣∣∣ ≤ ∫

R

|f (x)| ∣∣e−ix(ξ−ξ0) − 1
∣∣ dx,

and see the hint in Exercise 5.2.5.
5.2.7. Suppose f : R → C is C2 and has compact support. Prove

that f, f̂ ∈ L1(R). Hint: Recall the theorem that a continuous
function on a compact set is bounded. With this it is easy to
show f ∈ L1(R). By Exercise 5.2.6(i), f̂ is bounded. Integrate
by parts twice in the definition of f̂ (ξ) and estimate to show
that |f̂ (ξ)| ≤ c/ξ2 for some constant c.

5.2.8. Let ε > 0. For each of the functions h defined in parts i, ii,
and iii of this exercise prove that there exists a C2 function
g of compact support such that ‖h− g‖ < ε.
i. Let h(x) � 1 for 0 ≤ x ≤ 1 and h(x) � 0 for all other x ∈ R.

Suggestion: Round off the corners of h. For example, for
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δ chosen sufficiently small, let

g(x) �




0 if x < −δ or x > 1+ δ

1+ x
δ
− 1

2π sin
(

2π(x+δ)
δ

)
if −δ ≤ x ≤ 0

1 if 0 < x < 1

1+ 1−x
δ
− 1

2π sin
(

2π(1+δ−x)
δ

)
if 1 ≤ x ≤ 1+ δ.

ii. For a, b ∈ R with a < b and c ∈ C, let h(x) � c for
a ≤ x ≤ b and h(x) � 0 for all other real numbers x.

iii. Let h : R→ C be any step function (defined in the proof
of Lemma 5.18).

5.2.9. Prove Lemma 5.19 i. Hint: See Exercise 5.2.6(i).
5.2.10. Suppose f ∈ L1(R) ∩ L2(R). Let ε > 0.

i. Prove that there exists a step function h (defined in the
proof of Lemma 5.18) such that

‖f − h‖ < ε and ‖f − h‖1 < ε.

Suggestion: We can find N (which we can assume is
greater than 1) such that∫
{x:|x|>N}

|f (x)| dx < ε

2
and

∫
{x:|x|>N}

|f (x)|2 dx < ε2

4
.

Assume the result from Lebesgue integration theory that
there exists a step function H such that∫

R

|f (x)−H(x)|2 dx < ε2

8N
.

Apply inequality (5.3) to the functions f (x)−H(x) and 1
to obtain∫

{x:|x|≤N}
|f (x)−H(x)| dx ≤ ε√

8N

√
2N � ε

2
.

Let h(x) � H(x) for |x| ≤ N and h(x) � 0 for |x| >
N . Observe that h is a step function. Use the triangle
inequalities for L1(R) and L2(R) to complete the proof.

ii. Prove that there is a C2 function g of compact support
(hence, by Exercise 5.2.7, a function g ∈ L1(R) such that
ĝ ∈ L1(R)) satisfying

‖f − g‖ < ε and ‖f − g‖1 < ε.



Exercises 379

Hint: See Exercise 5.2.8.
5.2.11. Suppose f ∈ L2(R). For n ∈ N, define fn by equation (5.37).

i. Prove that fn ∈ L1(R) ∩ L2(R) and

‖fn‖1 ≤
√

2n‖f ‖.
Hint: Let g(x) � 1 if |x| ≤ n, and g(x) � 0 if |x| > N , and
apply inequality (5.3).

ii. Prove that fn → f in L2(R) as n→∞ (i.e., ‖fn − f ‖ → 0
as n→∞). Hint: See Exercise 5.1.13.

5.2.12. Suppose f, g ∈ L2(R). Prove that∫
R

f̂ (y)g(y) dy �
∫

R

f (y)ĝ(y) dy.

5.2.13. Prove Lemma 5.25. Hint: When f ∈ L1(R), part i can be
proved by interchanging the order of integration. For f ∈
L2(R), apply the L1 result and a limiting argument, using
Exercise 5.2.6(i) and Lemma 5.4 iii. The easy way to prove
part ii is to use part i.

5.2.14. Prove Lemma 5.26. Remark: For f ∈ L1(R), the conclusions
hold for every ξ.

5.2.15. Show that there exist f, g ∈ L2(R) such that f ∗ g 	∈ L2(R).
Hint: Compare to Exercise 4.4.b(ii).

5.2.16. Prove that there is a no δ ∈ L2(R) such that δ ∗ f � f for all
f ∈ L2(R). Hint: If such a δ exists, prove that δ̂(ξ) � 1 for all
ξ.

5.2.17. Let L1 ⊕ L2(R) denote the class of all functions f : R → C

such that f � f1 + f2 for some f1 ∈ L1(R) and f2 ∈ L2(R).
(Warning: This representation is not unique.)
i. Give an example of f ∈ L1⊕L2(R) that is not an element

of L1(R) ∪ L2(R). Hint: See, Exercise 5.1.3.
ii. If f1 + f2 � g1 + g2 with f1, g1 ∈ L1(R) and f2, g2 ∈ L2(R),

prove that

f̂1 + f̂2 � ĝ1 + ĝ2 a.e.,

where f̂1 and ĝ1 are defined pointwise by Definition 5.12,
and f̂2 and ĝ2 are defined in L2(R) by Definition 5.21.
Remark: This allows us to extend the definition of the

Fourier transform to L1⊕L2(R) by setting f̂ � f̂1+ f̂2 for any
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representation f � f1 + f2 with f1 ∈ L1(R) and f2 ∈ L2(R).
Part ii guarantees that this is well defined.

5.3 Multiresolution Analysis and
Wavelets

Our goal in this chapter is to construct a wavelet system, which is
a complete orthonormal set in L2(R) consisting of a certain set of
translates and dilates of a single function ψ (see Definition 5.28).
In this section, we reduce the construction of a wavelet system to
the construction of a multiresolution analysis. First we set some
notation.

Definition 5.27 For ϕ, ψ ∈ L2(R) and j, k ∈ Z, define ϕj,k, ψj,k ∈
L2(R) by

ϕj,k(x) � 2j/2ϕ(2jx − k) and ψj,k(x) � 2j/2ψ(2jx − k). (5.41)

The factor of 2j/2 in the definitions of ϕj,k and ψj,k is included so
that the L2 norms will be the same for all j, k:

‖ψj,k‖2 �
∫

R

|2j/2ψ(2jx − k)|2 dx

�
∫

R

2j|ψ(2jx − k)|2 dx �
∫

R

|ψ(y)|2 dy � ‖ψ‖2,

and similarly for ϕj,k, by changing variables (let y � 2jx − k) in the
integral.

We can write

ψj,k(x) � 2j/2ψ(2j(x − 2−jk)). (5.42)

Thus the definition of ψj,k involves a normalization, as just noted, a
dilation, and a translation. To understand the dilation, note that for
j > 0, the graph of ψ(2jx) is obtained by contracting the graph of ψ
along the x-axis by a factor of 2j (for j < 0 the graph is expanded
in the x direction). For example, suppose ψ has compact support
(Definition 5.17), and let r > 0 be the smallest number such that
ψ(x) � 0 for all x such that |x| > r. Then ψ(2jx) has compact support
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inside the interval [−r/2j, r/2j] since ψ(2jx) � 0 whenever |2jx| > r,
that is, when |x| > r/2j.

The graph ofψ(2jx−k) � ψ(2j(x−2−jk)) is obtained by translating
the graph of ψ(2jx) by 2−jk along the x axis (to the right if k > 0, to
the left if k < 0). Hence, if ψ has compact support in the interval
[−r, r], then ψ(2jx − k) has support inside [2−jk − 2−jr, 2−jk + 2−jr].
Finally, by equation (5.42), the graph of ψj,k is obtained from the
graph of ψ(2jx− k) by multiplying by 2j/2, which stretches the graph
in the y direction by this factor. Similar remarks hold for ϕj,k.

Roughly speaking, the functions ϕ and ψ that we consider are
centered near 0 and concentrated on a scale comparable to 1 (which
means that most of the mass of the function is located within an
interval around the origin of length about n, where n is a reasonably
small positive integer). Then ϕj,k and ψj,k are centered near the point
2−jk on a scale comparable to 2−j.

Definition 5.28 A wavelet system for L2(R) is a complete
orthonormal set in L2(R) of the form

{ψj,k}j,k∈Z,

for someψ ∈ L2(R). The functionsψj,k are called wavelets. The function
ψ is called the mother wavelet.

At the moment, it is not clear that any wavelet system exists. We
will eventually construct one. If {ψj,k}j,k∈Z is a wavelet system, then
(by Theorem 4.10) every f ∈ L2(R) can be written in the form

f �
∑
j∈Z

∑
k∈Z

〈f, ψj,k〉ψj,k. (5.43)

This is called the wavelet identity, and the map taking f to the
sequence of coefficients {〈f, ψj,k〉}j,k∈Z is called the (discrete) wavelet
transform. The wavelet identity should be interpreted as follows. By
the above discussion, ψj,k is centered near the point 2−jk and has
a scale of about 2−j. The wavelet transform coefficient 〈f, ψj,k〉 is
the weight or strength of the term ψj,k in the expansion (5.43). So
we think of the value 〈f, ψj,k〉 as measuring the part of f near the
point 2−jk at the scale 2−j. We think of the wavelet identity (5.43) as
breaking down f into its components at different scales 2−j, centered
at different locations 2−jk, for j, k ∈ Z.
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Before discussing the construction of discrete wavelet systems,
we digress for a moment and discuss a formula similar to identity
(5.43), except that it involves an integral instead of a sum and
includes all possible translations and positive dilations. It has the
advantage that it is relatively easy to derive.

Lemma 5.29 (Calderón formula) Suppose ψ ∈ L1(R) ∩ L2(R) is
such that ∫ +∞

0
|ψ̂(s)|2 ds

s
� 1 (5.44)

and ∫ +∞
0
|ψ̂(−s)|2 ds

s
� 1. (5.45)

For t > 0 and y ∈ R, define ψt(x) � (1/t)ψ(x/t) as in equation (5.9),
and

ψ
y
t (x) �

1√
t
ψ

(
x − y

t

)
.

Then for all f ∈ L2(R),

f (x) �
∫ +∞

0
ψt ∗ ψ̃t ∗ f (x) dt

t
(5.46)

or, equivalently,

f (x) �
∫ +∞

0

∫
R

〈f, ψy
t 〉ψy

t (x) dy
dt

t2
. (5.47)

Proof
We take the Fourier transform of the right side of equation (5.46)
and change the order of integration:(∫ +∞

0
ψt ∗ ψ̃t ∗ f (x) dt

t

)
ˆ(ξ) �

∫
R

∫ +∞
0

ψt ∗ ψ̃t ∗ f (x) dt
t
e−ixξ dx

�
∫ +∞

0

∫
R

ψt ∗ ψ̃t ∗ f (x)e−ixξ dx dt
t

�
∫ +∞

0

(
ψt ∗ ψ̃t ∗ f

)
ˆ(ξ)dt

t

�
∫ +∞

0
(ψt)ˆ(ξ)(ψ̃t)ˆ(ξ)f̂ (ξ)dt

t
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� f̂ (ξ)
∫ +∞

0
|(ψt)ˆ(ξ)|2 dt

t

� f̂ (ξ)
∫ +∞

0
|ψ̂(tξ)|2 dt

t
,

where we have used Lemmas 5.25 i, 5.26 i, and 5.14. If ξ > 0, we
make the change of variables s � tξ in the last integral, obtaining

f̂ (ξ)
∫ +∞

0
|ψ̂(s)|2 ds

s
� f̂ (ξ),

by equation (5.44). If ξ < 0, we set s � −tξ, and obtain

f̂ (ξ)
∫ +∞

0
|ψ̂(−s)|2 ds

s
� f̂ (ξ),

by equation (5.45). We now apply Fourier inversion (Theorem 5.24)
to obtain the identity (5.46). To obtain identity (5.47), write

ψt ∗ ψ̃t ∗ f (x) �
∫

R

ψt(x − y)ψ̃t ∗ f (y) dy � 1
t

∫
R

〈f, ψy
t 〉ψy

t dy,

using Lemma 5.6 ii and the definitions. Substituting this equation
into the identity (5.46) gives identity (5.47).

The right-hand side of identity (5.47) should be interpreted as
the limit in L2(R) as n→∞ of∫ n

1/n

∫
R

〈f, ψy
t 〉ψy

t (x) dy
dt

t2
.

The identity (5.46) is named for A. P. Calderón. In the form (5.47), it is
a continuous analog (i.e., an integral version) of the discrete wavelet
identity (5.43) for which we are searching. The identity (5.47) shows
that every f ∈ L2(R) can be written as an integral superposition of
the basic functions {ψy

t }t>0,y∈R. Reasoning as in our discussion ofψj,k,
we regard the function ψ

y
t as having scale t and being centered at

y. The map taking f to the set of coefficient values {〈f, ψy
t 〉}t>0,y∈R

is called the continuous wavelet transform. The size of 〈f, ψy
t 〉 is a

measure the part of f near y on a scale of t. The identity (5.47)
is sometimes called the continuous wavelet identity. It is useful for
certain applications, particularly those in which wavelets are used
as diagnostic tools to understand the behavior of f at different scales.
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The main disadvantage of identities (5.46) and (5.47) is that they
are difficult to use computationally. Because each formula involves
a continuum of values, it is difficult to approximate by a finite set.
One can think of identity (5.46) as an “unfolding” of f , replacing one
function of x ∈ R by the family {ψt ∗ ψ̃t ∗ f (x)}t>0, each element of
which is a function of x ∈ R. This is in some sense the opposite of
compression. The advantage of the discrete wavelet identity (5.43)
is its concision: no information in equation (5.43) is redundant.
It is remarkable how much more difficult it is to obtain the tight
representation (5.43) than relation (5.47).

Some approaches to discrete wavelet theory start with identity
(5.4.7) and then show that one can replace the full set {ψy

t }t>0,y∈R

by a discrete sampled subset of these functions and still recover f .
This approach reflects some aspects of the history of the subject
more accurately than the linear algebra approach of this text.
Exercises 5.3.1 and 5.3.3 show one way the Calderón formula can
be discretized, although this does not yield an orthonormal wavelet
system.

The reader might expect that the derivation of equation (5.43)
will proceed by arguments analogous to those in sections 3.1 and
3.2 for �2(ZN ) and in sections 4.5 and 4.6 for �2(Z), by using
the Fourier transform on L2(R) in place of the previous versions.
Unfortunately, this does not work. It is instructive to see why. In
�2(ZN ) and �2(Z), there is an element δ such that the set of all
translates {Rkδ}k (k ∈ ZN or k ∈ Z, respectively) is a complete
orthonormal set for the space. Then we could split the space to
obtain a complete orthonormal set of the form {R2kv}k ∪ {R2ku}k.
In other words, the first step was to replace the minimal scale
translations {Rkδ}k with two sets of translations at twice the minimal
scale. For L2(R), there is no minimal scale (and no δ ∈ L2(R)—
see Exercise 5.2.16). Although we can find necessary and sufficient
conditions for a set {ϕ0,k}k∈Z (recall that ϕ0,k(x) � ϕ(x − k)) to be
orthonormal (see Lemma 5.42), we cannot expect such a set to be
complete in L2(R). For example, if ϕ has compact support, then
only finitely many functions ϕ0,k have support intersecting a given
interval, say [−π, π). If {ϕ0,k}k∈Z is complete, then any f ∈ L2([−π, π))
could be written as a linear combination of those ϕ0,k with support
intersecting [−π, π). This would imply that L2([−π, π)) is finite
dimensional, which is false. The same consideration would apply
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if we used smaller scale translations, say ϕ(x − εk), k ∈ Z for some
ε > 0.

For L2(R), we start at a scale of 1 by considering ϕ such that
{ϕ0,k}k∈Z is orthonormal. Then we consider dilations to both larger
and smaller scales. We still construct an increasing sequence of
subspaces, each of which is then split into two parts, as in the cases
of �2(ZN ) and �2(Z). However, for L2(R), the sequence is infinite in
both directions, to capture smaller scales as well as larger scales. Due
to the lack of completeness at any single scale and the nonexistence
of δ ∈ L2(R), the techniques for subspace splitting in �2(ZN ) and
�2(Z) do not carry over directly to L2(R). Conveniently, however,
we are able to apply the results for �2(Z) to carry out the subspace
splitting in L2(R). Stéphane Mallat determined the conditions that
the sequence of subspaces should satisfy so that it leads to a wavelet
system, as follows.

Definition 5.30 A multiresolution analysis (or MRA) with scaling
function or father wavelet ϕ is a sequence {Vj}j∈Z of subspaces of L2(R)
having the following properties:

i. (Monotonicity) The sequence is increasing, that is, Vj ⊆ Vj+1 for
all j ∈ Z.

ii. (Existence of the scaling function) There exists a function ϕ ∈ V0

such that the set {ϕ0,k}k∈Z is orthonormal and

V0 �
{∑

k∈Z

z(k)ϕ0,k : z � (z(k))k∈Z ∈ �2(Z)

}
. (5.48)

iii. (Dilation property) For each j, f (x) ∈ V0 if and only if f (2jx) ∈ Vj.
iv. (Trivial intersection property)

⋂
j∈Z Vj � {0}.

v. (Density)
⋃

j∈Z Vj is dense in L2(R).

By definition, part v means that for any f ∈ L2(R), there exists a
sequence {fn}+∞n�1 such that each fn ∈ ∪j∈ZVj and {fn}+∞n�1 converges to
f in L2(R), that is, ‖fn − f ‖ → 0 as n→+∞.

This definition is difficult to understand at first. Example 5.31
may help.

Example 5.31
(Haar MRA) For each j, k ∈ Z, let Ij,k be the interval [2−jk, 2−j(k+1)).
An interval of the form Ij,k is called a dyadic interval. For each j ∈ Z,
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let

Vj � {f ∈ L2(R) : for all k ∈ Z, f is constant on Ij,k }.
Note that any dyadic interval of length 2−j−1 (i.e., an Ij+1,k) is
contained in a dyadic interval of length 2−j (specifically, if k is even,
then Ij+1,k ⊆ Ij,k/2, whereas if k is odd, Ij+1,k ⊆ Ij,(k−1)/2). If f ∈ Vj, in
other words, if f is constant on dyadic intervals of length 2−j, then f

is constant on dyadic intervals of length 2−j−1, and hence f ∈ Vj+1.
Therefore {Vj}j∈Z is an increasing sequence of subspaces. If we set

ϕ(x) �
{

1 if 0 ≤ x < 1
0 if x < 0 or x ≥ 1,

(5.49)

then the set {ϕ0,k}k∈Z is orthonormal because the supports of different
ϕ0,k do not overlap. Moreover, every f ∈ V0 can be written as

f �
∑
k∈Z

ck ϕ0,k,

where ck is the value of f on [k, k+ 1). Note that
∑

k∈Z |ck|2 � ‖f ‖2 <
+∞, so equation (5.48) holds. The dilation property (Definition 5.30
iii) for a multiresolution analysis follows directly from the definition
of {Vj}j∈Z. If f ∈ ∩j∈ZVj, then f is constant on the intervals [0, 2−j) and
[−2−j, 0) for all j ∈ Z. This implies that f is constant on [0,+∞) and
on (−∞, 0) (take any two points in either region and let j → −∞).
Since f ∈ L2(R), these two constants must be 0, so f � 0. Thus
∩j∈ZVj � {0}. The final property, Definition 5.30 v, that ∪j∈ZVj is
dense in L2(R), is also true, but a little more difficult to prove. We will
not prove it here because it will follow from a general result below
(Lemma 5.48). Assuming this, {Vj}j∈Z is a multiresolution analysis
with scaling function ϕ.

Another example is given in Exercise 5.3.4. Eventually we will
give more examples. Our main goal in this section is to prove that a
multiresolution analysis gives rise to a wavelet system.

Note that the orthonormality of the set {ϕ0,k}k∈Z implies that
for each j ∈ Z, {ϕj,k}k∈Z is an orthonormal set, because changing
variables shows that for j, k, k′ ∈ Z,

〈ϕj,k, ϕj,k′ 〉 � 〈ϕ0,k, ϕ0,k′ 〉 �
{

1 if k � k′

0 if k 	� k′.
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The dilation condition iii states that Vj consists of the dilates by 2j

of the elements of V0. From this condition and equation (5.48), it
follows (Exercise 5.3.5) that for each j ∈ Z,

Vj �
{∑

k∈Z

z(k)ϕj,k : z � (z(k))k∈Z ∈ �2(Z)

}
. (5.50)

Thus {ϕj,k}k∈Z is a complete orthonormal system for the subspace Vj.
One might think that the union of these systems would be a

complete orthonormal system for L2(R). However, that is not true
because the functions ϕj,k are not necessarily orthogonal at different
levels j. For example, since ϕ ∈ V0 ⊆ V1, equation (5.50) implies
that

ϕ(x) �
∑
k∈Z

u(k)ϕ1,k(x) �
∑
k∈Z

u(k)
√

2ϕ(2x − k), (5.51)

for some coefficient sequence u � (u(k))k∈Z ∈ �2(Z). Note
that u(k) must equal 〈ϕ, ϕ1,k〉 because {ϕ1,k}k∈Z is a complete
orthonormal system for V1. In particular, 〈ϕ0,0, ϕ1,k〉 � 〈ϕ, ϕ1,k〉 is
not always 0. Equation 5.51 explains why ϕ is called the scaling
function.

Definition 5.32 Suppose {Vj}j∈Z is a multiresolution analysis with
scaling function ϕ. Equation (5.51) is known as the scaling equation,
the scaling relation, or the refinement equation. The sequence u �
(u(k))k∈Z in equation (5.51) is called the scaling sequence.

The following observation is a crucial clue suggesting that we
can apply what we know about �2(Z) directly to the construction of
wavelet systems in L2(R).

Lemma 5.33 Suppose {Vj}j∈Z is a multiresolution analysis with
scaling function ϕ and scaling sequence u. Then {R2ku}k∈Z is an
orthonormal set in �2(Z).

Proof
If we replace x by x − k in the scaling identity (5.51) (and change
summation index on the right because k is now fixed), we obtain

ϕ(x − k) �
∑
�∈Z

u(�)
√

2ϕ(2x − 2k − �) �
∑
m∈Z

u(m − 2k)
√

2ϕ(2x −m),
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that is,

ϕ0,k �
∑
m∈Z

u(m − 2k)ϕ1,m. (5.52)

Substituting this equation and identity (5.51) gives

〈ϕ, ϕ0,k〉 �
〈∑
j∈Z

u(j)ϕ1,j,
∑
m∈Z

u(m − 2k)ϕ1,m

〉

�
∑
j∈Z

u(j)
∑
m∈Z

u(m − 2k)〈ϕ1,j, ϕ1,m〉.

But the set {ϕ1,�}�∈Z is orthonormal, so 〈ϕ1,j, ϕ1,m〉 is 0 except when
m � j, in which case 〈ϕ1,j, ϕ1,m〉 � 1. Hence we obtain

〈ϕ, ϕ0,k〉 �
∑
j∈Z

u(j)u(j − 2k) � 〈u, R2ku〉. (5.53)

From our assumption, {ϕ(x − k)}k∈Z is an orthonormal set in L2(R),
so

〈u, R2ku〉 �
{

1 if k � 0
0 if k 	� 0.

(5.54)

By Exercise 4.5.1 (iii), the result follows.

Lemma 5.33 states that given a scaling function ϕ for an MRA,
there corresponds a scaling sequence u ∈ �2(Z) with the property
that the even integer translates of u are orthonormal in �2(Z). So we
have mapped our problem in L2(R), which we do not know how
to handle directly, into �2(Z), which we understand pretty well.
We use the results in �2(Z) and map back into L2(R) to obtain
wavelets for R. Specifically, by Lemma 4.47 the sequence u has
a companion v such that u and v generate a first-stage wavelet
system for �2(Z). In the same way that ϕ corresponds to u, we
define ψ corresponding to v. This yields the orthogonal splitting
of V1 � V0 ⊕W0, which corresponds to the orthogonal splitting of
�2(Z) derived from a first-stage wavelet system for Z. By dilation, a
similar splitting Vj+1 � Vj⊕Wj holds at every level. Taking the union
of the orthonormal systems {ψj,k}k∈Z for the orthogonal complement
spacesWj yields a wavelet system for L2(R). The plan is summarized
by Figure 43.
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mother wavelet

ψ

MRA: ϕ

L2(R)

✲

✛

ϕ �∑k∈Z u(k)ϕ1,k

�2(Z)

u : {R2ku}k∈Z is orthonormal in �2(Z)

❄
v : {R2ku}k∈Z ∪ {R2kv}k∈Z is a

complete orthonormal set in �2(Z)

ψ �∑k∈Z v(k)ϕ1,k

v(k) � (−1)k−1u(1− k)

FIGURE 43

Lemma 5.34 Suppose {Vj}j∈Z is a multiresolution analysis with
scaling function ϕ and scaling sequence u ∈ �1(Z). Define v ∈ �1(Z)
by

v(k) � (−1)k−1u(1− k), for all k ∈ Z. (5.55)

Define

ψ(x) �
∑
k∈Z

v(k)ϕ1,k(x) �
∑
k∈Z

v(k)
√

2ϕ(2x − k). (5.56)

Then {ψ0,k}k∈Z is an orthonormal set in L2(R). Define

W0 �
{∑

k∈Z

z(k)ψ0,k : z � (z(k))k∈Z ∈ �2(Z)

}
. (5.57)

Then

V1 � V0 ⊕W0. (5.58)

Proof
By steps like these used to prove equation (5.52), identity (5.56) leads
to

ψ0,k �
∑
m∈Z

v(m − 2k)ϕ1,m. (5.59)

Then, as for the proof of equation (5.53), we obtain (Exercise 5.3.6)

〈ψ,ψ0,k〉 � 〈v, R2kv〉 �
{

1 if k � 0
0 if k 	� 0.

(5.60)
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By a change of variables, for k, � ∈ Z,

〈ψ0,k, ψ0,�〉 � 〈ψ,ψ0,�−k〉.
Hence equation (5.60) implies that {ψ0,k}k∈Z is an orthonormal
set in L2(R). By Exercise 4.2.8, W0 is a subspace of L2(R). The
orthonormality of {ϕ0,k}k∈Z is part of the definition of an MRA.

By arguments like those leading to equations (5.53) and (5.60)
(Exercise 5.3.6),

〈ϕ, ψ0,k〉 � 〈u, R2kv〉 � 0 (5.61)

for all k. Hence, by changing variables,

〈ϕ0,k, ψ0,�〉 � 〈ϕ, ψ0,�−k〉 � 0 for all k, � ∈ Z.

By Exercise 4.6.4, these results imply that the subspaces V0 and
W0 are orthogonal.

By equation (5.59), ψ0,k ∈ V1 for each k ∈ Z. By Exercise 4.6.5, it
follows that W0 is a subspace of V1. Recall that V0 is a subspace of V1

by assumption.
To prove that V0 ⊕ W0 � V1, all that is left to show is that

V1 ⊆ V0 ⊕W0. The proof of this is similar to the proof of equation
(4.69). Our goal is to show that

ϕ1,j �
∑
k∈Z

ũ(2k − j)ϕ0,k +
∑
k∈Z

ṽ(2k − j)ψ0,k (5.62)

for each j ∈ Z. To prove this, substituting equations (5.52) and (5.59)
shows that the right side of equation (5.62) is∑
k∈Z

ũ(2k − j)
∑
m∈Z

u(m − 2k)ϕ1,m +
∑
k∈Z

ṽ(2k − j)
∑
m∈Z

v(m − 2k)ϕ1,m

�
∑
m∈Z

(∑
k∈Z

ũ(2k − j)u(m − 2k)+
∑
k∈Z

ṽ(2k − j)v(m − 2k)

)
ϕ1,m.

The only way that equation (5.62) can be true is if the term inside
the large parentheses in the last expression is 1 when m � j and 0
otherwise. Fortunately, this is exactly what equation (4.68) states.
Therefore equation (5.62) holds, and shows that for each j ∈ Z,
ϕ1,j ∈ V0 ⊕W0. By Exercise 4.6.5, we obtain V1 ⊆ V0 ⊕W0.

Thus we have obtained a splitting of V1. By dilation, every Vj is
split similarly. This leads to a wavelet system for L2(R).
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Theorem 5.35 (Mallat’s theorem) Suppose {Vj}j∈Z is a multiresolution
analysis with a scaling function ϕ and scaling sequence u � (u(k))k∈Z ∈
�1(Z). Define v � (v(k))k∈Z by equation (5.55) and ψ by equation (5.56).
Then {ψj,k}j,k∈Z is a wavelet system in L2(R).

Proof
For j ∈ Z, the orthonormality of {ψ0,k}k∈Z implies, by a change of
variable, just as in the case of ϕ above, that {ψj,k}k∈Z is an orthonormal
set. Define

Wj �
{∑

k∈Z

z(k)ψj,k : z � (z(k))k∈Z ∈ �2(Z)

}
. (5.63)

It follows from this definition (Exercise 5.3.7) that the spaces {Wj}j∈Z

have the same dilation property that the {Vj}j∈Z have, according to
Definition 5.30 iii:

f ∈ W0 if and only if f (2jx) ∈ Wj. (5.64)

From Lemma 5.34, V1 � V0⊕W0. By Definition 5.30 iii and relation
(5.64), a dilation argument (Exercise 5.3.8) shows that this splitting
persists at every stage:

Vj+1 � Vj ⊕Wj for all j ∈ Z. (5.65)

We claim that

B � {ψj,k}j,k∈Z

is an orthonormal set in L2(R). For each fixed j, we already know
that {ψj,k}k∈Z is orthonormal. We must show that ψj,k is orthogonal
to ψ�,m, when j 	� �; we can assume by symmetry that j > �. Then
ψ�,m ∈ W� ⊆ V�+1 ⊆ · · · ⊆ Vj, by Definition 5.30 i. But ψj,k ∈ Wj,
and Wj is orthogonal to Vj. So ψj,k is orthogonal to ψ�,m. Hence B is
orthonormal.

What remains is to show the completeness of the orthonormal
set B. To prove this, we use properties iv and v in Definition 5.30,
which have not been used so far. We first make the following claim.
Suppose g ∈ Vj for some j ∈ Z, and g ⊥ W� (which means that
〈g, w〉 � 0 for all w ∈ W�) for all � ≤ j − 1. Then g � 0. The proof
of this claim is almost the same as in the proof of completeness in
Theorem 4.55, so we leave this as Exercise 5.3.9.
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Now suppose f ∈ L2(R) is orthogonal to every element of B; that
is, 〈f, ψj,k〉 � 0 for all j, k ∈ Z. It follows that f ⊥ Wj for each j ∈ Z

(e.g., using Exercise 4.2.5 (i)). We need to show f � 0. For each j, let
Pj(f ) be the projection of f on Vj, defined (as in Definition 4.13) by

Pj(f ) �
∑
k∈Z

〈f, ϕj,k〉ϕj,k. (5.66)

By definition (see Lemma 4.14 i), Pj(f ) ∈ Vj. By Lemma 4.14 iii,
f − Pj(f ) is orthogonal to every element of Vj. For � ≤ j − 1,
W� ⊆ V�+1 ⊆ Vj, so f − Pj(f ) is orthogonal to W� for every � ≤ j − 1.
Because f is orthogonal to every W�, linearity shows that Pj(f ) ⊥ W�

for all � ≤ j − 1. By the result stated in the previous paragraph,

Pj(f ) � 0 for all j ∈ Z.

However, by Lemma 4.14 v, for all j ∈ Z, Pj(f ) � 0 is the best
approximation to f in Vj; that is, for all h ∈ Vj,

‖f ‖ � ‖f − Pj(f )‖ ≤ ‖f − h‖. (5.67)

By Definition 5.30 v, there exists a sequence {fn}n∈Z such that fn ∈
∪j∈ZVj for all n ∈ Z and ‖f − fn‖ → 0 as n→∞. By relation (5.67),
this implies ‖f ‖ � 0, that is, f � 0. This proves the completeness of
B.

Because the subspaces Vj are increasing and their union is dense
(Definition 5.30 i and v), we think of these spaces as approximations
to the entire space L2(R). We think of the projection Pj(f ) of f onto Vj

as the approximation of f at level j. For f ∈ L2(R), the approximations
Pj(f ) improve and converge in norm to f (Exercise 5.3.10).

Example 5.36
We return to the Haar MRA (Example 5.31) and apply Theorem 5.35
to find the corresponding wavelet system for L2(R)). The key is to
find the coefficients u(k), k ∈ Z in the scaling relation (5.51). The
orthonormality of the set {ϕ1,k}k∈Z shows that u(k) � 〈ϕ, ϕ1,k〉 for each
k ∈ Z. Note that ϕ1,k(x) �

√
2ϕ(2x− k) is

√
2 for k/2 ≤ x < (k+ 1)/2,

and 0 for all other x. Therefore computing 〈ϕ, ϕ1,k〉 is easy, and we
obtain u(0) � 1/

√
2, u(1) � 1/

√
2, and u(j) � 0 if j 	∈ {0, 1}. We can

check that this works: the scaling relation (5.51) with these values
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is equivalent to

ϕ(x) � ϕ(2x)+ ϕ(2x − 1),

which is easy to verify. Formula (5.55) for v gives v(0) � −1/
√

2,
v(1) � 1/

√
2, and v(j) � 0 for all other j. Thus by equation (5.56),

the mother wavelet is

ψ(x) � −ϕ(2x)+ ϕ(2x − 1) �


−1 if 0 ≤ x < 1

2
1 if 1

2 ≤ x < 1
0 if x < 0 or x ≥ 1.

Then

ψj,k(x) �


−2j/2 if k

2j ≤ x < k
2j + 1

2j+1

2j/2 if k
2j + 1

2j+1 ≤ x < k+1
2j

0 if x < k
2j or x ≥ k+1

2j .
(5.68)

It is not difficult to check directly that the set {ψj,k}j,k∈Z is
orthonormal (Exercise 5.3.11). The completeness of {ψj,k}j,k∈Z follows
from Theorem 5.35. Thus we have an example of a wavelet system.
The functions ψj,k are called Haar functions, after A. Haar, who
considered them in a paper published in 1910. This was the first
example of a wavelet system. The projections Pj(f ) of f ∈ L2(R) onto
Vj defined by identity (5.66) have a natural interpretation: Pj(f ) is
obtained (Exercise 5.3.12) from f by replacing f on each interval Ij,k,
for k ∈ Z, by its average (as in the discrete case—see equations (3.95)
and (4.91)).

Note that the coefficient sequences u and v for the Haar system
are the generators of the discrete Haar system in �2(Z) (Example
4.56) (except for the sign of v, which has been reversed).

For many purposes, the Haar system is not satisfactory, due to
the lack of smoothness of the Haar functions: they are not even
continuous. One purpose of wavelet theory is to construct smooth
versions of the Haar functions.

The procedure in Theorem 5.35 for obtaining a wavelet system
from a MRA is explicit and constructive, as we have seen in Example
5.36. Thus one can obtain examples of wavelet systems by the recipe
in Theorem 5.35 if one can construct MRAs.

We remark that for a while it was an open question whether every
wavelet system arises from a multiresolution analysis. The answer is



5. Wavelets on R394

“no” in general, but all nice enough wavelet systems do (see Auscher
(1995) for the precise statement).

In the next section we discuss the construction of multi-
resolution analyses.

Exercises

5.3.1. i. Suppose ϕ, ψ ∈ L2(R) are such that∑
j∈Z

ϕ̂(2−jξ)ψ̂(2−jξ) � 1 for all ξ 	� 0, ξ ∈ R. (5.69)

Show, at least formally (i.e., without discussing conver-
gence) that, for f ∈ L2(R),

f �
∑
j∈Z

ϕ̃2−j ∗ ψ2−j ∗ f.

This is analogous to equation (5.46), with the integral
replaced by a sum. Hint: Take the Fourier transform
of both sides, assuming you can interchange the order
of the resulting double integral on the right side. Then
apply Lemma 5.14.

ii. It is not difficult to obtain equation (5.69). Suppose
a. ϕ̂(ξ) � 0 unless 1/2 ≤ |ξ| ≤ 2, and
b. ϕ̂(ξ) 	� 0 for all ξ ∈ [−5/3,−3/5] ∪ [3/5, 5/3].
Let

B(ξ) �
∑
k∈Z

|ϕ̂(2kξ)|2.

Show that by supposition a, this sum is finite at each ξ

(at most two terms are nonzero), and by supposition b,
B(ξ) 	� 0 for ξ 	� 0 (the dilates of the interval [3/5, 5/3]
overlap). Prove that

B(2jξ) � B(ξ),

for all j ∈ Z. Let

ψ̂(ξ) � ϕ̂(ξ)/B(ξ).

Prove that equation (5.69) holds.
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5.3.2. (Shannon sampling theorem) Suppose h ∈ L2(R) and

supp ĥ ⊆ [−b, b].

(Such a function is said to be of exponential type b. If f is
of some exponential type, we say f is bandlimited.) Suppose
also that Fourier inversion holds at every point for h, that is,
(ĥ)ˇ(x) � h(x) for all x ∈ R.
i. Prove that for |ξ| ≤ b,

ĥ(ξ) �
∑
n∈Z

π

b
h

(nπ
b

)
e−inπξ/b. (5.70)

Hint: By Exercise 4.3.5, the set {e−inπt/b}n∈Z is a complete
orthonormal set in L2([−b, b)) (see that exercise for the
definitions). Expand ĥ in terms of this set. Note that in
the equation

〈ĥ, e−inπt/b〉 � 1
2b

∫ b

−b
ĥ(t)einπt/b dt,

the interval of integration can be replaced by R because
of the exponential type assumption. Use Theorem 5.24.

ii. Prove that

h(x) �
∑
n∈bZ

h(
nπ

b
)
sin(bx − nπ)

bx − nπ
. (5.71)

Hint: Apply Fourier inversion

h(x) � 1
2π

∫
R

ĥ(ξ)eixξ dξ.

By the exponential type assumption, the integral on R

can be replaced by
∫ b

−b. Substitute equation (5.70).
Remark: This exercise shows that h is determined by the

discrete set of values {h(nπ/b)}n∈Z. This statement is false
without the exponential type assumption. This means that a
bandlimited signal can be recovered from its sample values
if the samples are sufficiently dense (with required density
inversely related to the exponential type, also called the
bandwidth). This fact underlies digital processing of audio
signals, which can be assumed bandlimited because our ears
hear only a finite bandwidth.
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5.3.3. (Phi transform identity) Let ϕ, ψ be as in Exercise 5.3.1 (i),
with supp ϕ̂, supp ψ̂ ⊆ [−2,−1/2] ∪ [1/2, 2]. Define ϕj,k and
ψj,k as in Definition 5.27.
i. Prove that ψ̂j,k � 2−j/2e−ik2−jξψ̂2−j , where ψ̂2−j �

(ψ2−j)ˆ(ξ).
ii. For f ∈ L2(R), prove that 〈f, ϕj,k〉 � 2−j/2f ∗ ϕ̃2−j(2−jk).

iii. For f ∈ L2(R), prove (formally, without discussing
convergence) that

f �
∑
j∈Z

∑
k∈Z

〈f, ϕj,k〉ψj,k.

Hint: Apply Exercise 5.3.1 (i) and Fourier inversion to
write

f �
∑
j∈Z

(
(f ∗ ϕ̃2−j) ˆ ψ̂2−j

)ˇ
.

Note that

supp (f ∗ ϕ̃2−j) ˆ⊆ {ξ : 2j−1 ≤ |ξ| ≤ 2j+1}
⊆ {ξ : −2jπ ≤ ξ ≤ 2jπ},

and apply equation (5.70) with b � 2jπ. Then use parts i
and ii.
Remark: This formula is similar to the wavelet identity

(5.43), although it does not come from an orthonormal set.
5.3.4. For j ∈ Z, let

Vj � {f ∈ L2(R) : supp f̂ ⊆ [−2jπ, 2jπ]}.
Prove that {Vj}j∈Z is a multiresolution analysis. Hint: It

is easy to see that each Vj is a subspace of L2(R). Property i
in Definition 5.30 is clear. For property ii, define

χ[−π,π](ξ) �
{

1 if −π ≤ ξ ≤ π

0 if |ξ| > π.

Let

ϕ(x) � (χ[−π,π])ˇ(x) � sin(πx)
πx

.

If f ∈ V0, then we can expand f̂ in a Fourier series on [−π, π):

f̂ (ξ) �
∑
k∈Z

a(k)e−ikξχ[−π,π](ξ),
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for some sequence (a(k))k∈Z ∈ �2(Z). Note that

(ϕ0,k)ˆ(ξ) � e−ikξχ[−π,π](ξ),

by Lemma 5.26 ii. By Fourier inversion, deduce that

f (x) �
∑
k∈Z

a(k)ϕ(x − k).

The dilation property (iii in Definition 5.30) follows from
Lemma 5.14. Property iv follows from the definition of the
spaces Vj. For property v, suppose f ∈ L2(R) and let fn be
such that f̂n(ξ) � f̂ (ξ) if |ξ| ≤ 2nπ, and 0 otherwise. Show
that ‖f̂n − f̂ ‖ → 0 as n → ∞ (compare to Exercise 5.1.13)
and apply Plancherel’s formula.

5.3.5. Suppose {Vj}j∈Z is a multiresolution analysis with scaling
function ϕ. Prove equation (5.50).

5.3.6. Prove equations (5.60) and (5.61).
5.3.7. Prove equation (5.64).
5.3.8. Prove equation (5.65), assuming equations (5.58) and (5.64).
5.3.9. Let {Vj}j∈Z be a multiresolution analysis with scaling fuction

ϕ. Define ψ by equation (5.56) and Wj by equation (5.63) for
j ∈ Z.
i. Prove the claim in the proof of Theorem 5.35: if g ∈ Vj

and g ⊥ W� for all � ≤ j − 1, then g � 0. Hint: Follow
the reasoning in the proof of Theorem 4.55, but start at
j rather than at 0. Obtain g ∈ ∩j��−∞V� � ∩�∈ZV�, by
Definition 5.30 i. Then apply Definition 5.30 iv.

ii. Deduce that {ψ�,k}�,k∈Z:�<j is a complete orthonormal
system for Vj.
Remark: With the correct interpretation, this implies that

Vj � ⊕j−1
��−∞W� for each j ∈ Z.

5.3.10. Suppose {Vj}j∈Z is a multiresolution analysis. Let f ∈ L2(R).
For each j, let Pj(f ) be the orthogonal projection of f onto the
subspace Vj, as in equation (5.66). Show that the sequence
{Pj(f )}j∈Z converges to f in L2(R), that is, that

‖Pj(f )− f ‖ → 0 as j→∞.

Hint: By using Definition 5.30 i, show that ‖Pj(f ) − f ‖ is
a decreasing sequence, and hence converges. Use the best
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approximation property and Definition 5.30 v to see that the
limit must be 0.

5.3.11. For j, k ∈ Z, define ψj,k by equation (5.68). Prove that
{ψj,k}j,k∈Z is an orthonormal set in L2(R). Hint: Use the
property that if two dyadic intervals Ij,k and Ij′,k′ intersect,
then one is a subset of the other. This fact follows from the
comments on dyadic intervals at the beginning of Example
5.31.

5.3.12. Define ϕ by equation (5.49) and ϕj,k as in Definition 5.27, for
j, k ∈ Z.
i. Prove that ϕj,k(x) � 2j/2 if x ∈ Ij,k (defined in Example

5.31) and ϕj,k(x) � 0 if x 	∈ Ij,k.
ii. For j ∈ Z and f ∈ L2(R), define Pj(f ) by equation (5.66).

For x ∈ Ij,k, show that

Pj(f )(x) � 2j
∫
Ij,k

f (t) dt,

the average of f over Ij,k.
5.3.13. (Inhomogeneous wavelet system for L2(R)) Let {Vj}j∈Z be a

multiresolution analysis with scaling fuction ϕ. Define ψ as
in Theorem 5.34. Let � ∈ Z. Set

B � {ψj,k}j,k∈Z:j≥� ∪ {ϕ�,k}k∈Z.

Prove that B is a complete orthonormal system in L2(R).
Hint: To prove completeness, show that if f is orthogonal
to every element of B, then f is orthogonal to the wavelet
system in Theorem 5.35.

5.4 Construction of Multiresolution
Analyses

In section 5.3 we saw that a multiresolution analysis with scaling
sequence u ∈ �1(Z) yields a wavelet system for L2(R). However, we
have only two examples of MRAs so far (the Haar MRA in Example
5.31 and the MRA in Exercise 5.3.4). The Haar MRA leads to the Haar
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system, which has been known since 1910, so it may appear that not
much progress has been made. However, we do have interesting
examples of vectors u ∈ �1(Z) such that {R2ku}k∈Z is orthonormal in
�2(Z), such as Daubechies’s D6 wavelets for �2(Z) in Example 4.57.
In this section we see that it is possible to use such a u to construct
a wavelet system for L2(R).

From Figure 43, it may appear that we can skip the first step, start
with u, define v and then obtain the mother waveletψ. However, this
is not the case because the definition of ψ involves ϕ. Instead, we
attempt to reverse the first arrow. That is, given u such that {R2ku}k∈Z

is orthonormal in �2(Z), we attempt to find ϕ that solves the scaling
relation

ϕ(x) �
∑
k∈Z

u(k)ϕ1,k(x) �
∑
k∈Z

u(k)
√

2ϕ(2x − k), (5.72)

and obtain a corresponding MRA from which we can derive a wavelet
system by the recipe in Theorem 5.35. Because ϕ occurs on both
sides of the scaling equation, it is not apparent whether equation
(5.72) has a non-trivial solution ϕ (the trivial solution being ϕ(x) � 0
for all x, which obviously does not yield an MRA). If equation (5.72)
does have a nontrivial solution, the solution is not unique because
any constant multiple of a solution is also a solution.

However, under reasonable conditions, there is a nontrivial solu-
tion to the scaling equation that is unique except for multiplication
by a constant. To see why, we sketch a heuristic argument, which
leads to a formula for a nontrivial solution. Precise assumptions will
be given later when we state results as lemmas and theorems. We
begin by taking the Fourier transform of both sides of the scaling
identity. Note (Exercise 5.4.1) that

ϕ̂1,k(ξ) � 1√
2
e−ikξ/2ϕ̂

(
ξ

2

)
. (5.73)

Assuming we can interchange the sum and the integral in the
definition of the Fourier transform of the right side of equation
(5.72), we obtain

ϕ̂(ξ) � 1√
2

∑
k∈Z

u(k)e−ikξ/2ϕ̂

(
ξ

2

)
. (5.74)
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This suggests that we define

m0(ξ) � 1√
2

∑
k∈Z

u(k)e−ikξ. (5.75)

Then equation (5.74) gives

ϕ̂(ξ) � m0

(
ξ

2

)
ϕ̂

(
ξ

2

)
. (5.76)

The great thing about equation (5.76) is that it can be iterated. That
is, if we apply equation (5.76) with ξ replaced by ξ/2, we obtain

ϕ̂

(
ξ

2

)
� m0

(
ξ

4

)
ϕ̂

(
ξ

4

)
.

If we substitute this in equation (5.76), we obtain

ϕ̂(ξ) � m0

(
ξ

2

)
m0

(
ξ

4

)
ϕ̂

(
ξ

4

)
.

We can continue this (replace ξ by ξ/4 in equation (5.76), etc.) and
obtain, for any n ∈ N,

ϕ̂(ξ) � m0

(
ξ

2

)
m0

(
ξ

4

)
· · ·m0

(
ξ

2n

)
ϕ̂

(
ξ

2n

)
. (5.77)

This suggests that we should be able to let n→+∞ (this requires ϕ̂
to be continuous at 0) to obtain

ϕ̂(ξ) � ϕ̂(0)
∞∏
j�1

m0

(
ξ

2j

)
. (5.78)

If ϕ̂(0) � 0, equation (5.78) implies that ϕ̂(ξ) � 0 for all ξ, and
hence ϕ is the zero function. Therefore, a nontrivial solution ϕ

of equation (5.72) must satisfy ϕ̂(0) 	� 0. Then equation (5.78)
shows that, under reasonable conditions, the solution is unique up
to scalar multiplication (namely, the choice of ϕ̂(0)), and is explicitly
determined by m0, hence by u.

We see later that to obtain the orthonormality of the set {ϕ0,k}k∈Z,
we must have |ϕ̂(0)| � 1. Given this, we can multiply by a
unimodular constant to obtain ϕ̂(0) � 1. This normalization will turn
out to be useful (see Lemma 5.54) in the numerical implementation
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of the wavelet transform. Note that ϕ̂(0) � ∫
R
ϕ(x) dx, by definition

of the Fourier transform, hence∫
R

ϕ(x) dx � 1. (5.79)

We obtained equation (5.78) assuming that a nontrivial solution
of the scaling equation exists. This argument suggests that to show
the existence of a solution, it is natural to define

ϕ̂(ξ) �
∞∏
j�1

m0

(
ξ

2j

)
(5.80)

and

ϕ � (ϕ̂)ˇ. (5.81)

Then we can hope to prove that ϕ really satisfies the scaling equation
with scaling sequence u.

We prove here that under a few additional hypotheses, this
approach works. First we make some observations.

We noted previously that a nontrivial solution ϕ of equation (5.72)
must satisfy ϕ̂(0) 	� 0. If we substitute ξ � 0 in equation (5.76), we
obtain ϕ̂(0) � m0(0)ϕ̂(0), and hence that

m0(0) � 1. (5.82)

By the definition of m0 in equation (5.75), equation (5.82) is
equivalent to ∑

k∈Z

u(k) � √2, (5.83)

which puts a new restriction on u that did not arise in the context of
�2(Z). This assumption, in the form of equation (5.82), plays another
key role: it guarantees that the terms m0(ξ/2j) in (5.80) converge
to 1 as j → ∞, which is essential for convergence of the product∏∞

j�1 m0(ξ/2j).
Observe that m0 is a 2π-periodic function on R and

m0(ξ) � 1√
2
û(−ξ), (5.84)

where here û denotes the Fourier transform in the sense of �2(Z)
(see Definition 4.29). For u ∈ �1(Z), the partial sums of the series
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in equation (5.75) are continuous and converge uniformly to m0

(Exercise 4.4.9), hence m0 is continuous.
Recall (Lemma 4.42 i) that the assumption that {R2ku}k∈Z is

orthonormal in �2(Z) is equivalent to the identity

|û(θ)|2 + |û(θ + π)|2 � 2

for all θ. In terms of m0, this is equivalent to the condition

|m0(ξ)|2 + |m0(ξ + π)|2 � 1 for all ξ. (5.85)

Obviously, this implies that |m0(ξ)| ≤ 1 for all ξ.
Let v be the companion for u defined by v(k) � (−1)k−1u(1− k),

so that u and v generate a first-stage wavelet system for �2(Z)
(Lemma 4.47). Define

ψ �
∑
k∈Z

v(k)ϕ1,k, (5.86)

as in Lemma 5.34. If we take the Fourier transform of both sides of
equation (5.86) and use equation (5.73), an argument similar to the
derivation of equation (5.74) yields

ψ̂(ξ) � 1√
2

∑
k∈Z

v(k)e−ikξ/2ϕ̂

(
ξ

2

)
. (5.87)

By defining

m1(ξ) � 1√
2

∑
k∈Z

v(k)e−ikξ, (5.88)

We find that equation (5.87) is equivalent to

ψ̂(ξ) � m1

(
ξ

2

)
ϕ̂

(
ξ

2

)
. (5.89)

If we iterate equation (5.76) as we did in deriving equation (5.78),
we obtain

ψ̂(ξ) � m1(
ξ

2
)
∞∏
j�2

m0

(
ξ

2j

)
, (5.90)

using the normalization that ϕ̂(0) � 1.
Note the similarities between equations (5.80) and (3.81), and

between equations (5.90) and (3.80) (compare also with Exercise
4.6.2 (ii)).
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Observe thatm1 is 2π-periodic and thatm1(ξ) � 1√
2
v̂(−ξ), where v̂

is as in Definition 4.29. The relation (4.57) between û and v̂ becomes

m1(ξ) � e−iξm0(ξ + π). (5.91)

Then equation (5.90) gives an explicit formula for the mother
wavelet ψ in terms of m0.

This result suggests that instead of starting with u, as suggested
so far, we could also take m0 as the starting point for the construction
of an MRA. Because both approaches are useful, many of our results
are given two formulations, one in terms of u and one in terms ofm0.
Of course, u ∈ �2(Z) determines m0 ∈ L2([−π, π)) by equation (5.75),
or, equivalently equation (5.84). Conversely, given m0 ∈ L2([−π, π)),
we define

u(k) �
√

2
2π

∫ π

−π
m0(ξ)eikξ dξ �

√
2m̌0(−k), (5.92)

for k ∈ Z and u � (u(k))k∈Z. Then u ∈ �2(Z) and

1√
2

∑
k∈Z

u(k)e−ikξ �
∑
k∈Z

m̌0(−k)e−ikξ � (m̌0)ˆ(ξ) � m0(ξ),

by Lemma 4.31 or Corollary 4.24 iv (here ˆ and ˇ are as defined in
chapter 4).

By Theorem 4.46, the assumption that u and v generate a first-
stage wavelet basis for �2(Z) is equivalent to the system matrix (4.53)
being unitary for all θ. In terms of m0 and m1, this is equivalent to
the matrix [

m0(ξ) m1(ξ)
m0(ξ + π) m1(ξ + π)

]
(5.93)

being unitary for all ξ. Because the first row of matrix (5.93) must be
a vector of length 1 and m0(0) � 1 by (5.82), we obtain m1(0) � 0.
By equation (5.89), this implies that ψ̂(0) � 0, or, equivalently,∫

R

ψ(x) dx � 0. (5.94)

Hence, the mother wavelet ψ (and therefore every ψj,k, by a change
of variables) has mean 0. This is a standard cancellation property
for wavelets. It is counterintuitive in view of the expansion f �
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∑
j,k∈Z〈f, ψj,k〉ψj,k for an arbitrary f ∈ L2(R): equation (5.94) appears

to imply that any f ∈ L2(R) satisfies
∫

R
f (x)dx � 0. However, this is

not the case; see Exercise 5.4.2. Note also that by definition of m1,
the condition m1(0) � 0 implies that∑

k∈Z

v(k) � 0,

which is the discrete analog of equation (5.94).
We now start to make all this rigorous. We begin by establishing

the convergence of the product in equation (5.80).

Lemma 5.37 Suppose m0 : R→ C satisfies m0(0) � 1, |m0(ξ)| ≤ 1
for all ξ ∈ R, and there exist δ > 0 and C < +∞ such that

|m0(ξ)−m0(0)| ≤ C|ξ|δ for all ξ ∈ R. (5.95)

For n ∈ N, let

Gn(ξ) �
n∏
j�1

m0(ξ/2j).

Then Gn(ξ) converges, as n→+∞, uniformly on every bounded subset
of R, hence pointwise at every point ξ ∈ R.

Proof
For each n, note that

|Gn+1(ξ)− Gn(ξ)| �
n∏
j�1

|m0(ξ/2j)||m0(ξ/2n+1)− 1|

≤ |m0(ξ/2n+1)− 1| ≤ C|ξ/2n+1|δ,
by the assumptions |m0(ξ)| ≤ 1, m0(0) � 1, and relation (5.95).
Therefore, if m > n, the triangle inequality gives

|Gm(ξ)− Gn(ξ)| ≤
m−1∑
j�n
|Gj+1(ξ)− Gj(ξ)| ≤ C

m−1∑
j�n
|ξ/2j+1|δ

≤ C|ξ|δ
m−1∑
j�n

1
2(j+1)δ

≤ C2−nδ|ξ|δ
+∞∑
j�1

1
2jδ
≤ C′2−nδ|ξ|δ,

where C′ is another constant, depending on δ, because the last series
is a convergent geometric series. This estimate shows that on a
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bounded set of R, the sequence Gn is uniformly Cauchy, and hence
converges uniformly.

An example that can be explicitly computed is given in Exercise
5.4.3 (i). We remark that the assumption |m0(ξ)| ≤ 1 in Lemma 5.37
is unnecessary (Exercise 5.4.4), but it holds by equation (5.85) in our
case and it simplifies the proof.

When inequality (5.95) holds for some C > 0, we say that
m0 satisfies a Lipschitz condition of order δ at 0. This implies the
continuity of m0 at 0, but relation (5.95) is a stronger condition
because it specifies a rate at which m0(ξ) approachs m0(0) as ξ

approaches 0. Still, condition (5.95) is mild. For example, suppose
m0 is continuously differentiable on R with a bounded derivative
(i.e., there exists some constant C such that |m′0(ξ)| ≤ C for all ξ). By
the mean value theorem, m0(ξ) − m0(0) � m′0(η)(ξ − 0) for some η

between ξ and 0. Hence,

|m0(ξ)−m0(0)| ≤ C|ξ|,

so m0 satisfies a Lipschitz condition of order 1 at 0. The next lemma
gives conditions on the scaling sequence u that imply thatm0 defined
by identity (5.75) satisfies a Lipschitz condition of positive order at 0.

Lemma 5.38 Suppose u � (u(k))k∈Z satisfies

∑
k∈Z

|k|ε|u(k)| < +∞ (5.96)

for some ε > 0. Define m0 by identitiy (5.75). Then m0 satisfies a
Lipschitz condition of order δ � min(1, ε).

Proof
We assume ξ 	� 0 because there is nothing to prove if ξ � 0. We
first note the elementary inequality |eiθ − 1| ≤ |θ| for all θ ∈ R.
To see this, observe that by the triangle inequality, we always have
|eiθ− 1| ≤ 2, so the result is trivial if |θ| ≥ 2. If |θ| < 2, the arc length
of the shortest portion of the unit circle connecting eiθ to 1 � ei0 is
|θ|, which is greater than the straight line distance |eiθ − 1|.
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Hence, if S � {k ∈ Z : |k| ≤ 1/|ξ|} and T � {k ∈ Z : |k| > 1/|ξ|},
then

|m0(ξ)−m0(0)| � 1√
2

∣∣∣∣∣
∑
k∈Z

u(k)e−ikξ −
∑
k∈Z

u(k)

∣∣∣∣∣
≤ 1√

2

∑
k∈Z

|u(k)||e−ikξ − 1| ≤ 1√
2

∑
k∈S
|u(k)||kξ| + 1√

2

∑
k∈T
|u(k)|2

≤ 1√
2

∑
k∈S
|u(k)||kξ|δ +√2

∑
k∈T
|u(k)||kξ|δ ≤ √2

∑
k∈Z

|u(k)||k|ε|ξ|δ,

using δ ≤ 1 in the next to last step and δ ≤ ε in the last. This
gives condition (5.96) with C � √2

∑
k∈Z |u(k)||k|ε, which is finite

by assumption.

The new condition (5.96) on u is stronger than our usual
assumption that u ∈ �1(Z), but it is still weak enough to cover most
interesting examples. Under the conditions of Lemmas 5.37, we have
established the existence of the product in equation (5.80) (which is
defined to be the pointwise limit of the partial products). Now we
consider its properties.

Theorem 5.39 Suppose m0 : R → C satisfies a Lipschitz condition
of order δ > 0 at 0 (i.e., (5.95) holds), m0(0) � 1, m0 is 2π-periodic, and
|m0(ξ)|2+|m0(ξ+π)|2 � 1 for all ξ. Define ϕ̂(ξ) �∏∞j�1 m0(ξ/2j).Then

i. ϕ̂ satisfies ϕ̂(ξ) � m0(ξ/2)ϕ̂(ξ/2) for all ξ ∈ R.
ii. ϕ̂ ∈ L2(R).

Let ϕ � (ϕ̂)ˇ. Let u � (u(k))k∈Z be such that equation (5.75)
holds (i.e., define u(k) by equation (5.92)).

iii. If u ∈ �1(Z), then ϕ satisfies the scaling relation (5.72).
iv. The function ϕ̂ is continuous at 0.

Proof
For any ξ ∈ R,

m0(
ξ

2
)ϕ̂
(
ξ

2

)
� m0

(
ξ

2

) ∞∏
j�1

m0

(
ξ

2 · 2j
)
�
∞∏
j�1

m0

(
ξ

2j

)
� ϕ̂(ξ).

So part i is proved.
For part ii, it follows from Lemma 5.37 that the product defining

ϕ̂ converges uniformly on bounded sets. For n ∈ N, set Gn(ξ) �
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∏n
j�1 m0(ξ/2j) and

In �
∫ 2nπ

−2nπ

∣∣Gn(ξ)
∣∣2 dξ.

Observe that m0((ξ − 2nπ)/2j) � m0(ξ/2j) for j � 1, 2, . . . , n − 1, by
the 2π-periodicity of m0, and hence Gn−1 is 2nπ-periodic. For each
n ≥ 2, Gn(ξ) � Gn−1(ξ)m0(ξ/2n), so

In �
∫ 0

−2nπ

∣∣Gn−1(ξ)
∣∣2 |m0(ξ/2n)|2 dξ +

∫ 2nπ

0
|Gn−1(ξ)|2|m0(ξ/2n)|2 dξ

�
∫ 2nπ

0

∣∣Gn−1(y)
∣∣2 (|m0(y/2n − π)|2 + |m0(y/2n)|2) dy,

by the change of variables y � ξ + 2nπ in the first integral and the
fact that Gn−1 is 2nπ-periodic. By assumption, the term inside the
parentheses in the last integral is identically 1. Hence,

In �
∫ 2n−1π

0

∣∣Gn−1(y)
∣∣2 dy+

∫ 2nπ

2n−1π

∣∣Gn−1(y)
∣∣2 dy

�
∫ 2n−1π

−2n−1π

∣∣Gn−1(ξ)
∣∣2 dξ � In−1,

using the change of variables ξ � y− 2nπ in the second integral and
the 2nπ-periodicity of Gn−1. Therefore∫ 2nπ

−2nπ

∣∣Gn(ξ)
∣∣2 dξ � In � In−1 � In−2 � · · · � I1

�
∫ 2π

−2π

∣∣m0(ξ/2)
∣∣2 dξ ≤ 4π,

because |m0(ξ)| ≤ 1 for all ξ. Note that

|ϕ̂(ξ)| �
∣∣∣∣∣

n∏
j�1

m0(ξ/2j)

∣∣∣∣∣
∣∣∣∣∣
∞∏

j�n+1

m0(ξ/2j)

∣∣∣∣∣
� |Gn(ξ)|

∞∏
j�n+1

|m0(ξ/2j)| ≤ |Gn(ξ)|,

because |m0(ξ)| ≤ 1. Hence,∫ 2nπ

−2nπ

∣∣ϕ̂(ξ)
∣∣2 dξ ≤

∫ 2nπ

−2nπ

∣∣Gn(ξ)
∣∣2 dξ ≤ 4π,
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by the estimate above. Letting n → ∞, it follows (compare with
Exercise 5.1.13) that ϕ̂ ∈ L2(R).

By part ii and Fourier inversion (Theorem 5.24), ϕ � (ϕ̂)ˇ is
defined and belongs to L2(R). Using Exercise 5.4.6(i) and equation
(5.73), (∑

k∈Z

u(k)ϕ1,k

)
ˆ(ξ) � 1√

2

∑
k∈Z

u(k)e−ikξ/2ϕ̂

(
ξ

2

)

� m0

(
ξ

2

)
ϕ̂

(
ξ

2

)
� ϕ̂(ξ),

by part i. Taking the inverse Fourier transform of the left and right
sides of this last equation shows that ϕ satisfies the scaling equation,
proving part iii.

By equation (5.95), m0 is continuous at 0, hence so are the partial
products Gn. By Lemma 5.37, these functions converge uniformly
on bounded sets to ϕ̂. By a standard analysis result, this uniform
convergences implies that the limit ϕ̂ is also continuous at 0.

The corresponding statement in terms of u is as follows.

Corollary 5.40 Suppose u � (u(k))k∈Z is a sequence such that
the set {R2ku}k∈Z is orthonormal in �2(Z),

∑
k∈Z u(k) � √2, and∑

k∈Z |k|ε|u(k)| < ∞ for some ε > 0. Define m0 by equation (5.75)
and ϕ̂ by equation (5.80). Then ϕ̂ ∈ L2(R), ϕ̂ is continuous at 0, and
ϕ � (ϕ̂)ˇ satisfies the scaling relation (5.72) with scaling sequence u.

Proof
The assumption

∑
k∈Z |k|ε|u(k)| < ∞ implies that u ∈ �1(Z), which

in turn implies that m0 is continuous (Exercise 4.4.9). By definition,
m0 is 2π-periodic. The assumption that {R2ku}k∈Z is orthonormal in
�2(Z) is equivalent to the condition |m0(ξ)|2 + |m0(ξ + π)|2 � 1 for
all ξ. We have m0(0) � 1 since

∑
k∈Z u(k) � √2. By Lemma 5.38, m0

satisfies a Lipschitz condition of order δ � min(1, ε). Thus, Theorem
5.39 applies and yields all conclusions.

Under the conditions on u in Corollary 5.40, we can make our
heuristic argument above precise and prove the uniqueness inL2(R),
up to a constant multiple, of the solution to the scaling equation
(Exercise 5.4.7).
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Recall that our objective is to obtain an MRA from a sequence u

such that {R2ku}k∈Z is an orthonormal set in �2(Z). So far we have
shown that if we add the conditions that

∑
k∈Z u(k) � √2, and∑

k∈Z |k|ε|u(k)| < ∞ for some ε > 0, then we can find a solution
ϕ ∈ L2(R) to the scaling equation with scaling sequence u. However,
another requirement in the definition of an MRA (Definition 5.30)
is that the set {ϕ0,k}k∈Z is orthonormal in L2(R). One might think
that this follows from the orthonormality of {R2ku}k∈Z in �2(Z), in
the same way that the orthonormality of {ψ0,k}k∈Z in L2(R) followed
from the orthonormality of {R2kv}k∈Z in �2(Z) in the proof of Lemma
5.34. However, a closer look shows that this proof assumed and used
the orthonormality of {ϕ0,k}k∈Z. In fact, the orthonormality of the
set {ϕ0,k}k∈Z does not necessarily follow under these conditions, as
Example 5.41 shows.

Example 5.41
Define a sequence u ∈ �1(Z) by

u(k) �
{

1√
2

if k � 0 or k � 3
0 otherwise.

Then it is easy to check that {R2ku}k∈Z is orthonormal in �2(Z)
because the even integer translates are nonzero on disjoint sets. Also∑

k∈Z u(k) � √2 and the condition
∑

k∈Z |k|ε|u(k)| <∞ is trivial for
any ε > 0 because the sum is finite. So the assumptions of Corollary
5.40 hold. Let

ϕ(x) �
{

1/3 if 0 ≤ x < 3
0 if x < 0 or x ≥ 3.

(5.97)

Then ϕ is a solution of the scaling equation (5.72) for this u, since
ϕ(x) � ϕ(2x)+ ϕ(2x − 3), or, equivalently,

ϕ � 1√
2
ϕ1,0 + 1√

2
ϕ1,3.

Since ϕ ∈ L2(R) and ϕ̂(0) � ∫
R
ϕ(x) dx � 1, by Exercise 5.4.7 ϕ is the

unique L2 solution to the scaling equation satisfying ϕ̂(0) � 1 (also
see Exercise 5.4.5). However, the set {ϕ0,k}k∈Z is not orthogonal; for
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example,

〈ϕ, ϕ0,1〉 �
∫ 3

1

1
3

1
3
dx � 2

9
.

Fortunately, if we put an additional restriction (see condition
(5.102) below) on the sequence u, we can obtain the orthonormality
of {ϕ0,k}k∈Z. This is the most delicate part of the theory. We begin by
finding criteria for the orthonormality of any set of the form {ϕ0,k}k∈Z.

Lemma 5.42 Suppose ϕ ∈ L2(R). Then the following conditions are
equivalent:

i. The set {ϕ0,k}k∈Z is orthonormal in L2(R).
ii. ∫

R

|ϕ̂(ξ)|2eikξ dξ �
{

2π if k � 0
0 if k 	� 0.

iii. ∑
k∈Z

|ϕ̂(ξ + 2πk)|2 � 1 a.e.

Proof
By a change of variables, 〈ϕ0,k, ϕ0,�〉�〈ϕ, ϕ�−k〉, so the orthonormality
of {ϕ0,k}k∈Z is equivalent to the conditions that 〈ϕ, ϕ0,k〉 is 1 if k � 0
and 0 otherwise. By Parseval’s relation (Theorem 5.22 (i)),

〈ϕ, ϕ0,k〉 � (2π)−1〈ϕ̂, ϕ̂0,k〉 � (2π)−1
∫

R

|ϕ̂(ξ)|2eikξ dξ,

for k ∈ Z, since (ϕ̂0,k)(ξ) � e−ikξϕ̂(ξ). Hence conditions i and ii are
equivalent.

We leave the equivalence of conditions ii and iii (which we will
not use later) as Exercise 5.4.8 .

It is convenient to introduce the following standard notation.

Definition 5.43 For any set E ⊆ R, define the function χE : R→ R

by

χE(x) �
{

1 if x ∈ E

0 if x 	∈ E.

We call χE the characteristic function of E.
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Our approach to proving the orthonormality of {ϕ0,k}k∈Z is to
obtain ϕ as a limit of a sequence {ϕn}+∞n�0 such that for each n,
{(ϕn)0,k}k∈Z is orthonormal, where (ϕn)0,k(x) � ϕn(x − k).

Lemma 5.44 Suppose m0 : R → C is 2π-periodic and satisfies
|m0(ξ)|2 + |m0(ξ + π)|2 � 1 for all ξ. Define

ϕ̂0 � χ[−π,π),

and, for n ≥ 1, inductively define

ϕ̂n(ξ) � m0

(
ξ

2

)
ϕ̂n−1

(
ξ

2

)
.

Then for each n ≥ 1,

ϕ̂n(ξ) � χ[−2nπ,2nπ)(ξ)
n∏
j�1

m0

(
ξ

2j

)
. (5.98)

Define ϕn � (ϕ̂n)ˇ for each n ≥ 1. Then, for each n,

{(ϕn)0,k}k∈Z is an orthonormal set in L2(R). (5.99)

Proof
We obtain equation (5.98) from the definition of ϕ̂n and a simple
inductive argument (Exercise 5.4.9).

To prove statement (5.99), we also proceed by induction, using
an argument similar to the proof of Theorem 5.39 ii (in fact, that
argument is the special case k � 0 of the following argument).
Condition ii in Lemma 5.42 is easy to check for ϕ0, so statement
(5.99) holds for n � 0. Now suppose statement (5.99) holds for n−1.
For n ∈ N, setGn(ξ) �

∏n
j�1 m0(ξ/2j). SinceGn(ξ) � m0(ξ/2n)Gn−1(ξ),∫

R

|ϕ̂n(ξ)|2 eikξdξ �
∫ 2nπ

−2nπ

n∏
j�1

∣∣∣∣m0

(
ξ

2j

)∣∣∣∣
2

eikξ dξ

�
(∫ 0

−2nπ
+
∫ 2nπ

0

) ∣∣∣∣m0

(
ξ

2n

)∣∣∣∣
2 ∣∣Gn−1(ξ)

∣∣2 eikξ dξ.
In the integral over [−2nπ, 0], we change variables (let y �

ξ + 2nπ) and use the facts that Gn−1(ξ) is 2nπ-periodic (as in the
proof of Theorem 5.39 ii) and eikξ is 2π-periodic. We then obtain∫

R

|ϕ̂n(ξ)|2 eikξdξ
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�
∫ 2nπ

0

[∣∣∣m0

( y

2n
− π

)∣∣∣2 + ∣∣∣m0

( y

2n

)∣∣∣2] ∣∣Gn−1(y)
∣∣2 eiky dy.

By assumption, the sum in brackets is identically 1. We break the
region of integration into two intervals, [0, 2n−1π] and [2n−1π, 2nπ].
In the integral over [2n−1π, 2nπ], we change variables, setting ξ �
y−2nπ. Note that the integrand is unchanged, by the 2nπ-periodicity
of Gn−1 and eiky. Hence, we obtain∫

R

|ϕ̂n(ξ)|2 eikξdξ �
∫ 2n−1π

−2n−1π

∣∣Gn−1(ξ)
∣∣2 eikξ dξ � ∫

R

∣∣ϕ̂n−1(ξ)
∣∣2 eikξ dξ,

by equation (5.98). This last integral is 2π when k � 0 and 0
otherwise, by the induction hypothesis and Lemma 5.42. Thus, we
have obtained the condition in Lemma 5.42 ii for ϕ̂n. Hence, Lemma
5.42 implies statement (5.99) for n, completing the induction.

Observe that by equation (5.98), ϕ̂n(ξ) converges pointwise as
n→∞ to ϕ̂(ξ) as defined in equation (5.80). If we could show that∫

R

|ϕ̂(ξ)|2eikξ dξ � lim
n→∞

∫
R

|ϕ̂n(ξ)|2eikξ dξ, (5.100)

for all k ∈ Z, then we could conclude by Theorem 5.42 that {ϕ0,k}k∈Z

is orthonormal, since

lim
n→∞

∫
R

|ϕ̂n(ξ)|2eikξ dξ � lim
n→∞

{
2π if k � 0
0 if k 	� 0

�
{

2π if k � 0
0 if k 	� 0,

(5.101)
using Lemma 5.44 and Lemma 5.42. One might think that equation
(5.100) always holds because it is just a matter of letting n → ∞.
However, we know from Example 5.41 that this cannot always work.
In fact, interchanging a limit with an integral is a delicate matter
(see Exercise 5.4.11 for some simple examples for which it cannot
be done). Various conditions under which it can be done are usually
covered in a beginning graduate course in real analysis. We accept
without proof the following fundamental result, the proof of which
can be found in any text on Lebesgue integration.

Theorem 5.45 (Lebesgue’s dominated convergence theorem, or
DCT) Suppose {fn}∞n�1 is a sequence of functions that converges a.e.

to a function f . Suppose there exists a function g ≥ 0 such that
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∫
R
g(x) dx < +∞ and

|fn(x)| ≤ g(x) for all n ∈ N and a.e. x ∈ R .

Then

lim
n→+∞

∫
R

fn(x) dx �
∫

R

f (x) dx.

The assumption in Theorem 5.45 is that all of the functions fn
are simultaneously dominated at an a.e. point by a function g that
has a finite integral. In some sense, this means that all of the action
is under control, which suggests why the conclusion holds.

We know from Example 5.41 that the assumptions of Theorem
5.39 are not enough to guarantee the orthonormality of {ϕ0,k}k∈Z.
Thus we need some additional assumption, namely condition
(5.102). This condition is not so intuitive, but its role is to provide
us with an estimate that allows us to apply the DCT to justify
equation (5.100). Condition (5.102) is not the sharpest possible, but
it is relatively easy to check and is sufficient for the applications we
consider here.

Lemma 5.46 Suppose m0 : R → C satisfies a Lipschitz condition
of order δ > 0 at 0 (i.e., inequality (5.95) holds), m0(0) � 1, m0 is
2π-periodic, |m0(ξ)|2 + |m0(ξ + π)|2 � 1 for all ξ, and

inf
|ξ|≤π/2

|m0(ξ)| > 0. (5.102)

Define ϕ̂(ξ) � ∏∞
j�1 m0(ξ/2j). Let ϕ � (ϕ̂)ˇ. Then {ϕ0,k}k∈Z is an

orthonormal set in L2(R).

Proof
The pointwise convergence of

∏+∞
j�1 m0(ξ/2j) follows from Lemma

5.37, so ϕ̂ is defined. Define ϕ̂n by equation (5.98). This definition
shows that ϕ̂n(ξ) converges pointwise to ϕ̂(ξ). By Theorem 5.39,
ϕ̂ ∈ L2(R).

We show that there exists a constant C1 independent of ξ such
that for all n ∈ N,

|ϕ̂n(ξ)| ≤ C1|ϕ̂(ξ)|. (5.103)

Assuming this inequality momentarily, then∣∣|ϕ̂n(ξ)|2eikξ∣∣ ≤ C2
1|ϕ̂(ξ)|2,
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which is a function (that will play the role of g in the DCT) with
a finite integral since ϕ̂ ∈ L2(R). Note that |ϕ̂n(ξ)|2eikξ converges
pointwise as n→∞ to |ϕ̂(ξ)|2eikξ (by the pointwise convergence of
ϕ̂n to ϕ̂), hence equation (5.100) follows from the DCT. Therefore
equation (5.101) implies the orthonormality of {ϕ0,k}k∈Z, by Lemma
5.42.

Observe that relation (5.103) is trivial if |ξ| > 2nπ because the
left side is 0. By definition of ϕ̂ and ϕ̂n, for |ξ| ≤ 2nπ,

|ϕ̂(ξ)| �
n∏
j�1

|m0

(
ξ

2j

)
| ·

∞∏
j�n+1

|m0

(
ξ

2j

)
| � |ϕ̂n(ξ)|

∞∏
j�n+1

|m0

(
ξ

2j

)
|.

(5.104)
Note that

∞∏
j�n+1

|m0

(
ξ

2j

)
| �

∞∏
j�1

|m0

(
2−nξ

2j

)
| � |ϕ̂(2−nξ)|. (5.105)

By equations (5.104) and (5.105), inequality (5.103) is reduced to
showing that |ϕ̂(2−nξ)| ≥ 1/C1 > 0 (with C1 independent of n) for
all ξ ∈ [−2nπ, 2nπ], or, equivalently, that

|ϕ̂(ξ)| ≥ 1
C1

> 0 for all ξ ∈ [−π, π]. (5.106)

For |ξ| ≤ π, we have

|m0

(
ξ

2j

)
− 1| ≤ C

|ξ|δ
2jδ
≤ C

πδ

2jδ
,

by the Lipschitz assumption on m0 and the condition m0(0) � 1.
Select N sufficiently large that Cπδ/2Nδ ≤ 1/2. For j > N, Cπδ/2jδ ≤
C2π

δ/2Nδ ≤ 1/2, by our choice of N . For 0 ≤ x ≤ 1/2, 1 − x ≥ e−2x

(Exercise 5.4.12) , so by the triangle inequality we obtain∣∣∣∣m0

(
ξ

2j

)∣∣∣∣ ≥ 1−
∣∣∣∣1−m0

(
ξ

2j

)∣∣∣∣ ≥ 1− C
πδ

2jδ
≥ e−2Cπδ2−jδ . (5.107)

Let

C2 � inf
|ξ|≤π/2

|m0(ξ)|,

which is positive by assumption. For ξ ∈ [−π, π] and j ∈ N, |ξ/2j| ≤
π/2, so |m0(ξ/2j)| ≥ C2. Using this result and relation (5.107) yields,
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for |ξ| ≤ π,

|ϕ̂(ξ)| �
N∏
j�1

∣∣∣∣m0

(
ξ

2j

)∣∣∣∣ ·
∞∏

j�N+1

∣∣∣∣m0

(
ξ

2j

)∣∣∣∣ ≥ CN
2

∞∏
j�N+1

e−2Cπδ2−jδ

� CN
2 e
−2Cπδ

∑∞
j�N+1 2−jδ ≡ 1

C1
> 0,

because the series is convergent. We have proved relation (5.106),
and therefore relation (5.103).

This result gives us an explanation of our normalization |ϕ̂(0)| �
1. (For another explanation, based only on the orthonormality of
{ϕ0,k}k∈Z and the scaling relation (5.72), see Exercise 5.4.14.) Namely,
by Lemma 5.46 this normalization yields a function with L2 norm 1,
so any other choice would yield a different L2 norm, contradicting
the orthonormality of {ϕ0,k}k∈Z.

For Example 5.41,

m0(ξ) � 1
2

(1+ e−3iξ),

which is 0 at ξ � π/3, and hence fails to satisfy condition (5.102).
This example shows that we cannot replace π/2 in relation (5.102)
with any number less than π/3, which indicates that this condition is
somewhat delicate. We also remark that m0 is continuous, under the
condition u ∈ �1(R), in which case condition (5.102) is equivalent to
the condition that m0 has no zeros on [−π/2, π/2] (recall that a con-
tinuous function on a compact set attains its infimum on that set).

Lemma 5.46 represents the most difficult work going into our
construction of an MRA. With this lemma we can define ϕ̂ by
equation (5.80) and obtain the orthonormality of {ϕ0,k}k∈Z and the
scaling relation (5.72). By defining Vj by equation (5.50), properties
i, ii, and iii in Definition 5.30 of a multiresolution analysis follow
easily. However, we still need to consider properties iv and v. Lemma
5.4.7 says that the trivial intersection property iv of Definition 5.30
is redundant; it follows from properties ii and iii.

Lemma 5.47 Suppose ϕ ∈ L2(R), and for each j ∈ Z, {ϕj,k}k∈Z is an
orthonormal set. Define {Vj}j∈Z by equation (5.50). Then⋂

j∈Z

Vj � {0}.
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Proof
Suppose f ∈ ∩j∈ZVj. Let ε > 0. Since f ∈ L2(R), by Exercise 5.1.13
we can select R large enough that∫

{x:|x|>R}
|f (x)|2 dx < ε2.

Let

g(x) �
{

f (x) if |x| ≤ R

0 if |x| > R.

By choice of R and g,

‖f − g‖ < ε.

For each j ∈ Z, define the orthogonal projection operator Pj :
L2(R)→ Vj by equation (5.66). By Lemmas 4.7 and 4.8,

‖Pj(h)‖2 �
∑
k∈Z

|〈h, ϕj,k〉|2 ≤ ‖h‖2,

for any h ∈ L2(R). Also, by Lemma 4.14 iii, Pj(f ) � f since f ∈ Vj by
assumption. Therefore,

‖f − Pj(g)‖ � ‖Pj(f − g)‖ ≤ ‖f − g‖ < ε, (5.108)

for any j.
Since g(x) � 0 for |x| > R, we have

|〈g, ϕj,k〉|2 �
∣∣∣∣
∫

R

f (x)χ[−R,R](x)ϕj,k(x) dx
∣∣∣∣
2

≤ ‖f ‖2‖χ[−R,R]ϕj,k‖2,

by the Cauchy-Schwarz inequality (5.3). However,

‖χ[−R,R]ϕj,k‖2 �
∫ R

−R
|2j/2ϕ(2jx − k)|2 dx �

∫ −k+2jR

−k−2jR
|ϕ(y)|2 dy,

by the change of variable y � 2jx − k. Now select J ∈ Z sufficiently
negative such that 2JR < 1/2. Then for j < J , we have from the
above estimates that

‖Pj(g)‖2 �
∑
k∈Z

|〈g, ϕj,k〉|2 ≤ ‖f ‖2
∑
k∈Z

∫ −k+2jR

−k−2jR
|ϕ(y)|2 dy

� ‖f ‖2
∫

R

χ∪k∈Z[−k−2jR,−k+2jR](y)|ϕ(y)|2 dy,
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since the intervals [−k − 2jR,−k + 2jR] do not overlap because
2jR < 1/2 for j < J . Let

hj(y) � χ∪k∈Z[−k−2jR,−k+2jR](y)|ϕ(y)|2.
Then hj(y) → 0 a.e. as j → −∞. Note that each hj satisfies
|hj(y)| ≤ |ϕ(y)|2, and

∫
R
|ϕ(y)|2 dy < +∞ since ϕ ∈ L2(R). Therefore

the DCT (Theorem 5.45) applies and shows that∫
R

χ∪k∈Z[−k−2jR,−k+2jR](y)|ϕ(y)|2 dy→ 0 as j→−∞.

In particular, by the estimates just discussed, we can select j so that
‖Pj(g)‖ < ε.

Combining this inequality with relation (5.108), the triangle
inequality (5.4) gives us

‖f ‖ ≤ ‖f − Pj(g)‖ + ‖Pj(g)‖ < ε+ ε � 2ε.

Since ε > 0 is arbitrary, this shows that ‖f ‖ � 0, and hence
f � 0.

The density property v of Definition 5.30 is not quite automatic,
but it holds under mild conditions.

Lemma 5.48 Suppose ϕ ∈ L2(R) is such that ϕ̂ is bounded, ϕ̂ is
continuous at 0, and ϕ̂(0) � 1. Also, suppose that for each j ∈ Z,
{ϕj,k}k∈Z is an orthonormal set. Define {Vj}j∈Z by equation (5.50). Then⋃

j∈Z

Vj is dense in L2(R).

Proof
Suppose f ∈ L2(R). Let ε > 0. By Plancherel’s formula (Theorem
5.22 ii), f̂ ∈ L2(R), so there existsR large enough (see Exercise 5.1.13)
so that ∫

{ξ:|ξ|>R}
|f̂ (ξ)|2 dξ < ε2.

Define ĝ by

ĝ(ξ) �
{

f̂ (ξ) if |ξ| ≤ R

0 if |ξ| > R,
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and let g � (ĝ)ˇ. Then by Plancherel’s formula again,

‖f − g‖ � 1√
2π
‖f̂ − ĝ‖ < ε√

2π
< ε. (5.109)

Define the orthogonal projection operator Pj : L2(R) → Vj by
equation (5.66). Then Pj(g) ∈ Vj (Lemma 4.14 i), and g − Pj(g)
is orthogonal to every element of Vj (Lemma 4.14 iv). Hence (by
equation (1.44)),

‖g‖2 � ‖g − Pj(g)+ Pj(g)‖2 � ‖g − Pj(g)‖2 + ‖Pj(g)‖2. (5.110)

We claim that ‖Pj(g)‖ → ‖g‖ as j→+∞. To see this, first note that,
by Parseval’s relation (Theorem 5.22 i),

|〈g, ϕj,k〉|2 � 1
(2π)2

|〈ĝ, ϕ̂j,k〉|2.

By changing variables in the integral,

ϕ̂j,k(ξ) �
∫

R

2j/2ϕ(2jx − k)e−ixξ dξ � 2−j/2e−ikξ/2j ϕ̂

(
ξ

2j

)
.

Hence,

|〈g, ϕj,k〉|2 � 1
(2π)2

2−j
∣∣∣∣
∫

R

ĝ(ξ)ϕ̂(ξ/2j)eikξ/2j dξ

∣∣∣∣
2

� 1
(2π)2

2j
∣∣∣∣
∫

R

ĝ(2jy)ϕ̂(y)eiky dy
∣∣∣∣
2

� 1
(2π)2

2j
∣∣∣∣∣
∑
�∈Z

∫ (2�+1)π

(2�−1)π
ĝ(2jy)ϕ̂(y)eiky dy

∣∣∣∣∣
2

� 2j
∣∣∣∣∣
∑
�∈Z

1
2π

∫ π

−π
ĝ(2j(θ + 2π�))ϕ̂(θ + 2π�)eikθ dθ

∣∣∣∣∣
2

,

which is 2j times the square of the−kth Fourier coefficient on [−π, π)
of

H(θ) �
∑
�∈Z

ĝ(2j(θ + 2π�))ϕ̂(θ + 2π�). (5.111)

Hence, by Corollary 4.24 ii (Plancherel’s formula for Fourier series),
we obtain

‖Pj(g)‖2 �
∑
k∈Z

|〈g, ϕj,k〉|2 � 2j
1

2π

∫ π

−π
|H(θ)|2 dθ.
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We select J such that 2J > R/π. If j > J , we claim that at every point
θ, there is at most one term in the sum on the right side of equation
(5.111) which is not zero. To see this, suppose at some point θ that
ĝ(2j(θ+2πn)) 	� 0 and ĝ(2j(θ+2πm)) 	� 0. Since ĝ(ξ) � 0 for |ξ| > R,
this implies |θ + 2πn| ≤ R/2j and |θ + 2πm| ≤ R/2j. Then by the
triangle inequality, for j > J ,

|2π(m− n)| ≤ |2πm+ θ| + | − θ − 2πn| ≤ R

2j
+ R

2j
� 2R

2j
<

2R
2J

< 2π.

This is impossible unless m � n. Hence as claimed, the sum reduces
to a single nonzero term (at most) at each point. Therefore the square
of the sum is the sum of the squares, that is,

|H(θ)|2 �
∑
�∈Z

|ĝ(2j(θ + 2π�))ϕ̂(θ + 2π�)|2.

By substituting this equation into the expression for ‖Pj(g)‖2, we get

‖Pj(g)‖2 � 2j
1

2π

∫ π

−π

∑
�∈Z

|ĝ(2j(θ + 2π�))ϕ̂(θ + 2π�)|2 dθ

� 2j
1

2π

∑
�∈Z

∫ (2�+1)π

(2�−1)π
|ĝ(2jy)|2|ϕ̂(y)|2 dy

� 2j
1

2π

∫
R

|ĝ(2jy)|2|ϕ̂(y)|2 dy

� 1
2π

∫
R

|ĝ(ξ)|2|ϕ̂
(
ξ

2j

)
|2 dξ.

We want to apply the DCT to this last integral. By assumption, ϕ̂ is
bounded, say |ϕ̂(ξ)| ≤ C for all ξ. Thus, for all j,

|ĝ(ξ)|2|ϕ̂
(
ξ

2j

)
|2 ≤ C|ĝ(ξ)|2,

and
∫

R
C|ĝ(ξ)|2 dξ < +∞ since g ∈ L2(R). Thus we have

an appropriate dominating function. We also assumed that ϕ̂ is
continuous at 0 and ϕ̂(0) � 1. Therefore, for each ξ, |ĝ(ξ)|2|ϕ̂(ξ/2j)|2
converges to |ĝ(ξ)|2 as j→+∞.Thus by the dominated convergence
theorem, ‖Pj(g)‖2 converges, as j→+∞, to

1
2π

∫
R

|ĝ(ξ)|2 dξ � 1
2π
‖ĝ‖2 � ‖g‖2,
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by Plancherel’s formula. By equation (5.110), this equation implies
that ‖g − Pj(g)‖2 converges to 0 as j → +∞. In particular, there
must be some j such that ‖g − Pj(g)‖ < ε. By relation (5.109) and
the triangle inequality, we obtain ‖f − Pj(g)‖ < 2ε. Since Pj(g) ∈ Vj

and f and ε are arbitrary, this result shows that ∪j∈ZVj is dense in
L2(R).

We remark that for the Haar system, the definition of ϕ (see
equation (5.49)) and a calculation show that

ϕ̂(ξ) � e−iξ/2 sin( ξ2 )
ξ

2

,

for ξ 	� 0, and ϕ̂(0) � 1. Thus |ϕ̂(ξ)| is bounded by 1 and is continuous
at 0. Hence, Lemma 5.48 applies and completes the proof that {Vj}j∈Z

forms a multiresolution analysis, as promised back in Example 5.31.
We can now state and prove the main results of this section.

Theorem 5.49 Suppose m0 : R→ C is 2π-periodic,
i. |m0(ξ)|2 + |m0(ξ + π)|2 � 1 for all ξ ∈ R.
ii. m0(0) � 1.
iii. m0 satisfies a Lipschitz condition of order δ > 0 at 0 (i.e.,

inquality (5.95) holds for some δ, C > 0).
iv. inf |ξ|≤π/2 |m0(ξ)| > 0.
Let u � (u(k))k∈Z be such that m0(ξ) � 1√

2

∑
k∈Z u(k)e−ikξ (i.e.,

define u(k) by equation (5.92)), and suppose u ∈ �1(Z).
Then

∏∞
j�1 m0(ξ/2j) converges uniformly on bounded sets to a

function ϕ̂ ∈ L2(R). Let ϕ � (ϕ̂) ∨. Then ϕ satisfies the scaling equation
(5.72) and {ϕ0,k}k∈Z is an orthonormal set in L2(R). For j ∈ Z, define

Vj �
{∑

k∈Z

z(k)ϕj,k : z � (z(k))k∈Z ∈ �2(Z)

}
. (5.112)

Then {Vj}j∈Z is a multiresolution analysis with scaling function ϕ and
scaling sequence u.

Proof
By properties i, ii, and iii, Theorem 5.39 implies that

∏∞
j�1 m0(ξ/2j)

converges uniformly on bounded sets to ϕ̂ ∈ L2(R), and that ϕ

satisfies the scaling equation (5.72). By property iv, Lemma 5.46
implies the orthonormality of {ϕ0,k}k∈Z. Thus the definition of V0
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gives property ii in Definition 5.30 (the definition of a MRA). The
definition of Vj implies the dilation property (Definition 5.30 iii). By
a dilation argument, {ϕj,k}k∈Z is an orthonormal set in L2(R) for each
j ∈ Z. The scaling equation (5.72) and another dilation argument
show that

ϕj,k �
∑
m∈Z

u(m − 2k)ϕj+1,m

for all j, k ∈ Z. Hence Exercise 4.6.5 implies that Vj ⊆ Vj+1

for every j ∈ Z (Definition 5.30 i). Lemma 5.47 gives Definition
5.30 iv automatically. Note that |ϕ̂(ξ)| ≤ 1 for all ξ ∈ R since
|m0(ξ)| ≤ 1 by property ii. By property iii, m0 is continuous at
0, and hence ϕ̂ is also by Theorem 5.39 iv. Also, by definition,
ϕ̂(0) � ∏∞j�1 m0(0) � ∏∞j�1 1 � 1. Hence, Lemma 5.48 shows that
Definition 5.30 v holds.

Theorem 5.50 Suppose u � (u(k))k∈Z is a sequence satisfying
i.
∑

k∈Z |k|ε|u(k)| < +∞ for some ε > 0.
ii.
∑

k∈Z u(k) � √2.
iii. {R2ku}k∈Z is an orthonormal set in �2(Z).
iv. inf |ξ|≤π/2 |m0(ξ)| > 0, for m0(ξ) � 1√

2

∑
k∈Z u(k)e−ikξ.

Then
∏∞

j�1 m0(ξ/2j) converges uniformly on bounded subsets of R

to a function ϕ̂ ∈ L2(R). Let ϕ � (ϕ̂)∨. For each j ∈ Z, define Vj by
equation (5.112). Then {Vj}j∈Z is a multiresolution analysis with scaling
function ϕ and scaling sequence u.

Proof
By definition, m0 is 2π-periodic. By property i, u ∈ �1(Z), and
Theorem 5.49 iii holds by Lemma 5.38. Property ii is equivalent
to Theorem 5.49 ii, and property iii is equivalent to Theorem 5.49 i.
Property iv is the same as Theorem 5.49 iv. Hence all conclusions
follow from Theorem 5.49.

Thus we have reduced the construction of a multiresolution
analysis (and hence, by Theorem 5.35, the construction of wavelet
systems) to the constuction of a sequence u satisfying conditions
i–iv in Theorem 5.50. We will see some examples in Section 5.5.
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Exercises

5.4.1. Prove equation (5.73).
5.4.2. i. For n ∈ N, define a function fn on R by

fn(x) �




0 if x < 0
1 if 0 ≤ x < 1
− 1

n
if 1 ≤ x < n+ 1

0 if x ≥ n+ 1.

Define f (x) by f (x) � 1 for 0 ≤ x < 1 and f (x) � 0
otherwise. Show that f ∈ L1(R)∩L2(R), fn ∈ L1(R)∩L2(R)
for all n ∈ N,∫

R

fn(x) dx � 0 for all n ∈ N,

and

‖fn − f ‖ → 0

as n→∞, even though∫
R

f (x) dx � 1.

ii. Let f be any function such that f ∈ L1(R) ∩ L2(R).
Generalize part i by constructing a sequence of functions
{fn}∞n�1 such that ‖fn − f ‖ → 0 as n→∞ and∫

R

fn(x) dx � 0

for all n ∈ N.
Remark: This result shows that the condition

∫
R
fn(x) dx �

0 is not maintained in the limit when {fn}∞n�1 converges
to f in the L2 sense. This explains how the wavelet iden-
tity (5.43) can hold for all f ∈ L2(R), despite ψj,k satisfying∫

R
ψj,k(x) dx � 0 for each j, k ∈ Z (by equation (5.94) and a

change of variable): any finite partial sum of equation(5.43)
has integral 0, but these partial sums converge in the L2

sense, so the limit may not have integral 0.
iii. Suppose {fn}n∈N is a sequence of functions in L1(R) and∫

R
fn(x) dx � 0 for all n ∈ N. Suppose {fn}n∈N converges to
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f in L1 norm, which means that ‖fn− f ‖1 → 0 as n→∞.
Prove that

∫
R
f (x) dx � 0. This implies that for f ∈ L1(R)

with
∫

R
f (x) dx 	� 0, the wavelet identity (5.43) will not

converge in L1 norm.
5.4.3. Prove the formula

∞∏
j�1

cos
( x

2j

)
� sin x

x
(5.113)

two ways:
i. by writing

sin x � sin 2
(x

2

)
� 2 cos

(x
2

)
sin
(x

2

)
and iterating, and

ii. by applying equation (5.78) in the case of the Haar sys-
tem (this uniqueness argument is justified by Exercise
5.4.7 below). Hint: For u as in Example 5.36,

m0(ξ) � 1
2

(1+ e−iξ) � e−iξ/2 cos
(
ξ

2

)
.

Write ϕ̂(ξ) similarly.
5.4.4. Prove Lemma 5.37 without the assumption |m0(ξ)| ≤ 1.

Hint: Show that

|m0

(
ξ

2j

)
| ≤ 1+ C2−jδ|ξ|δ ≤ eC2−jδ|ξ|δ .

5.4.5. Let u be the sequence in Example 5.41. Compute m0(ξ).
Define ϕ̂ by equation (5.80). By computation (i.e., without
appealing to the uniqueness of the solution of equation
(5.72)), show that ϕ is as given in equation (5.97). Hint:
As in the hint to Exercise 5.4.3 ii, show that m0(ξ) �
e−i3ξ/2 cos(3ξ/2) and apply equation (5.113).

5.4.6. i. Suppose {fk}k∈Z is a sequence of functions that is bounded
in L2(R); that is, supk∈Z ‖fk‖ < ∞. Suppose a �
(a(k))k∈Z ∈ �1(Z). Prove that

∑
k∈Z a(k)fk ∈ L2(R) and(∑

k∈Z

a(k)fk

)
ˆ �

∑
k∈Z

a(k)f̂k.
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ii. Show that we cannot replace the assumption a ∈ �1(Z) in
part i with the assumption a ∈ �2(Z). Hint: For example,
let a(k) � 1/k for k ∈ N. Let f ∈ L2(R) be a function
with ‖f ‖ 	� 0. Let fk � f for all k. Show that the sequence∑N

k�1 a(k)fk does not converge in L2(R) as N →∞.
5.4.7. Suppose u � (u(k))k∈Z satisfies the assumptions of Corollary

5.40. Suppose ϕ ∈ L2(R) is a solution of the scaling equation
(5.72) such that ϕ̂(0) � 1. Prove that ϕ is the solution
obtained in Corollary 5.40. Hint: Use Exercise 5.4.6 to justify
equation (5.76). Iterate to obtain equation (5.77). Then use
some of the conclusions of Corollary 5.40 to justify equation
(5.78).

5.4.8. Prove the equivalence of conditions ii and iii in Lemma 5.42.
Hint: Write∫

R

|ϕ̂(ξ)|2eikξ dξ �
∑
�∈Z

∫ (2�+1)π

(2�−1)π
|ϕ̂(ξ)|2eikξ dξ

�
∫ π

−π

∑
�∈Z

|ϕ̂(θ + 2π�)|2eikθ dθ.

5.4.9. Prove equation (5.98).
5.4.10. Prove the main induction step in the proof of Lemma 5.44

(if statement (5.99) holds for n−1,then it works for n) in the
following ways.
i. Define a sequence u � {u(k)}k∈Z by equation (5.92), so

that equation (5.75) holds. Fourier inversion shows that

ϕn �
∑
k∈Z

u(k) (ϕn−1)1,k.

It is a bit tricky to justify the interchange of the sum and
the Fourier transform, because we are only assuming
u ∈ �2(Z) (compare to Exercise 5.4.6). However, the facts
that |ϕ̂n−1(ξ)| ≤ 1 for all ξ and supp ϕ̂ ⊆ [−2n−1π, 2n−1π]
allow one to apply Plancherel’s theorem and show that
the partial sums of

∑
k∈Z u(k) (ϕn−1)1,k are Cauchy in

L2(R).) Use the formula for ϕn to prove that

〈ϕn, (ϕn)0,k〉 �
∑
�∈Z

u(�)
∑
m∈Z

u(m)〈ϕn−1, (ϕn−1)0,2k+m−�〉

� 〈u, R2ku〉.
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ii. Use the criterion in Lemma 5.42 iii. Consider∑
k∈Z |ϕ̂n(ξ+2πk)|2. Apply the definition of ϕ̂n and break

the sum on k into its even and odd parts, say k of the form
2� and k of the form 2� + 1. Using the 2π-periodicity of
m0, rewrite the sum on k as

|m0(ξ/2)|2
∑
�∈Z

|ϕ̂n−1((ξ/2)+ 2π�)|2

+|m0((ξ/2)+ π)|2
∑
�∈Z

|ϕ̂n−1((ξ/2)+ 2π�+ π)|2,

and apply the induction hypothesis.
5.4.11. i. For each n ∈ N, define fn ∈ L1(R) by

fn(x) �



0 if x ≤ 0
n if 0 < x < 1

n

0 if x ≥ 1
n
.

Prove that limn→∞ fn(x) � f (x) exists for all x ∈ R, and
limn→∞

∫
R
fn(x) dx exists, but

lim
n→∞

∫
R

fn(x) dx 	�
∫

R

f (x) dx.

Why does the DCT (Theorem 5.45) not apply here? What
is the smallest function g satisfying fn(x) ≤ g(x) for all
x ∈ R and all n ∈ N?

ii. Answer the same questions as in part i except with

fn(x) �



0 if x ≤ 0
1
n

if 0 < x < n

0 if x ≥ n.

5.4.12. For 0 ≤ x ≤ 1/2, prove that 1− x ≥ e−2x. Hint: Use calculus.
5.4.13. Suppose ϕ ∈ L2(R) and {ϕ0,k}k∈Z is an orthonormal set.

Suppose m0(ξ) is 2π-periodic and satisfies equation (5.76).
Use Lemma 5.42 iii to prove directly (i.e., without appealing
to Lemma 4.42) that equation (5.85) holds. Hint: The proof
is similar to the proof in Exercise 5.4.10 ii.

5.4.14. Assume that ϕ̂ is continuous and satisfies |ϕ̂(ξ)| ≤ C/|ξ|
for all ξ ∈ R. Derive the condition |ϕ̂(0)| � 1 from the
orthonormality of {ϕ0,k}k∈Z, equation (5.76), and the 2π-
periodicity of m0, by using the criterion in Lemma 5.42
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iii. Hint: By Exercise 5.4.13, equation (5.85) holds. Then
m0(0) � 1 follows as in the text. By this result, equation
(5.85), and the periodicity of m0, m0(jπ) is 0 if j is odd and
1 if j is even. If k is odd, then equation (5.76) implies that
ϕ̂(2πk) � 0. If k is even and not 0, write k � 2�j for some
� ≥ 1 and j odd. Then equation (5.76) gives

ϕ̂(2π2�j) � ϕ̂(2π2�−1j).

Iterate this and obtain ϕ̂(2πk) � 0 for k 	� 0.
5.4.15. Suppose u � (u(k))k∈Z ∈ �1(Z) satisfies

∑
k∈Z u(k) � √2 and

{R2ku}k∈Z is orthonormal in �2(Z). Define m0(ξ) by equation
(5.75).
i. Prove that

∑
k∈Z(−1)ku(k) � 0. Hint: Use equations

(5.85) and (5.82).
ii. Prove that

∑
k∈Z u(2k) �

√
2

2 �
∑

k∈Z u(2k + 1).
5.4.16. Suppose u � (u(k))k∈Z satisfies

∑
k∈Z u(k) � √

2 and
{R2ku}k∈Z is orthonormal in �2(Z). Suppose ϕ satisfies the
scaling equation (5.72). Suppose also that ϕ is continuous
and decays rapidly enough (|ϕ(x)| ≤ C(1+ |x|)−1−ε for some
ε > 0 is sufficient, but do not bother to prove this) so that

g(x) �
∑
�∈Z

ϕ(x − �)

converges everywhere and is continuous. Prove that g(x) is
constant on R. Hint: Substitute for ϕ(x− �) in the definition
of g by using equation (5.72). Change the summation index
in the interior sum to obtain

g(x) �
∑
�∈Z

∑
m∈Z

u(m − 2�)
√

2ϕ(2x −m).

Interchange the order of summation, and apply Exercise
5.4.15 (ii) to deduce that g(x) � g(2x) for all x ∈ R. Hence
g(x) � g(2−nx) for any n ∈ N.

5.4.17. Let {Vj}j∈Z be the MRA in Exercise 5.3.4. Find the wavelet ψ
associated with this MRA. Hint: Apply Theorem 5.49. Recall
from Exercise 5.3.4 that ϕ̂(ξ) � χ[−π,π](ξ). Show that equation
(5.76) implies that the restriction to [−π, π) of m0 is given
by m0(ξ) � χ[−π/2,π/2](ξ). Use equation (5.91) to obtain m1.
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Then obtain ψ̂ from equation (5.89). Answer:

ψ(x) � 1
π(x − 1/2)

(
sin 2π

(
x − 1

2

)
− sin π

(
x − 1

2

))
.

Remark: This exercise shows that it may be easier to
determine the wavelet corresponding to an MRA by using
equations (5.89) and (5.91) if m0 is known explicitly, rather
than by the prescription based on knowing u in Theorem
5.35. In fact, Theorems 5.35 and 5.49, as we have stated
them, do not apply here, because the scaling sequence
u can not belong to �1(Z), since m0(ξ) is not continuous
(see Exercise 4.4.9). Nevertheless, {ψj,k}j,k∈Z is a wavelet
system in L2(R). This can be most easily checked by looking
at ψ̂(ξ) � e−iξ/2χ{ξ : π ≤ |ξ| ≤ 2π}(ξ). The factor
e−iξ/2 can be omitted in this case (in general it is needed
to obtain orthogonality between different levels, but here
this is immediate because of the supports of the Fourier
transforms). This leads to a simpler mother wavelet ψ

having x in place of x − 1/2 above. These wavelets are
known as Shannon wavelets for L2(R), because they can be
constructed by methods related to the Shannon sampling
theorem (see Exercise 5.3.2). They were known long before
modern wavelet theory.

5.4.18. (Meyer’s wavelets) Let h : R → R be a C2 function (recall
that this means that h has at least two continuous derivatives
at every point) such that h(x) � 0 for all x ≤ 0, h(x) � π/2
for all x ≥ π, and h is increasing on [0, π].
i. Show that h defined by

h(x) �



0 if x < 0
x
2 − 1

4 sin 2x if 0 ≤ x ≤ π
π
2 if x > π

is an example of a C2 function satisfying the conditions
stated above.
Let m0 : R → R be the 2π-periodic function whose
restriction to [−π, π) is defined by

m0(ξ) �
{

sin[h(3ξ + 2π)] if −π ≤ ξ < 0
cos[h(3ξ − π)] if 0 ≤ ξ < π.
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ii. Prove that m0 is a C2 function on R, m0(ξ) � 0 if
2π/3 ≤ |ξ| ≤ π and m0(ξ) � 1 if |ξ| ≤ π/3.

iii. Prove that m0 satisfies conditions i, ii, iii, and iv in
Theorem 5.49.

iv. Define u � (u(k))k∈Z by equation (5.92). Prove that u ∈
�1(Z). Hint: Integrate by parts twice in equation (5.92),
using the fact that m0 is C2, to show that |u(k)| ≤ C/k2

for k 	� 0.
v. Define ϕ̂ by equation (5.80). Show that in this case, ϕ̂(ξ) �

m0(ξ/2) for |ξ| ≤ 2π and ϕ̂(ξ) � 0 for |ξ| > 2π. Hint:
Observe that m0(ξ/2j) � 0 for 2π2j/3 ≤ |ξ| ≤ 4π2j/3 for
each j ∈ N, whereas for j ≥ 2,m0(ξ/2j) � 1 for |ξ| ≤ 4π/3.

vi. Definem1 by equation (5.91) and ψ̂ by equation (5.90). By
Theorem 4.49,ψ � (ψ̂)ˇ is a mother wavelet for a wavelet
system. Sketch the graph of |ψ̂|. In particular, show
that the graph consists of two bumps, one supported on
−8π/3 ≤ ξ ≤ −2π/3, the other on 2π/3 ≤ |ξ| ≤ 8π/3.

vii. Suppose h satisfies h(π − x) � π/2 − h(x) for all x ∈ R

(check that this is true for the h given in part i). Prove
that m0 is an even function (i.e., m0(−ξ) � m0(ξ) for all
ξ). Also prove that |m1| is even and hence |ψ̂| is even.
Remarks: It is possible to find an infinitely differen-

tiable function h satisfying the conditions of this exercise
(including vii). The corresponding wavelets are known
as Meyer’s wavelets, after Yves Meyer, who constructed
this wavelet system in 1985, before the theory of mul-
tiresolution analyses. In fact, MRA theory was developed
largely to explain Meyer’s construction and put it in a
more general framework. The only wavelets known prior to
Meyer’s wavelets were the Haar wavelets (Example 5.36),
the Shannon wavelets (Exercise 5.4.17), and a wavelet sys-
tem developed by Strömberg in 1980 in the study of Hardy
spaces. Note that Meyer’s wavelets are obtained in some
sense by smoothing out the Shannon wavelets on the Fourier
transform side. The result is that Meyer’s wavelets decay
faster than the reciprocal of any polynomial at∞, unlike the
Shannon wavelets, which decay only like 1/|x| at∞. Unlike
the Haar wavelets, however, Meyer’s wavelets are infinitely
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differentiable (because their Fourier transforms have com-
pact support; differentiate under the integral sign in the
Fourier inversion formula (5.24)). Strömberg’s wavelets
could be made Ck for any finite k but not infinitely differ-
entiable. Note that Meyer’s wavelets decay rapidly at∞ and
have compactly supported Fourier transforms; hence they
are localized in both space and frequency.

5.5 Wavelets with Compact Support and
Their Computation

We begin by summarizing what we have obtained from Theorems
5.35 and 5.50. Suppose u � (u(k))k∈Z satisfies conditions i–
iv in Theorem 5.50. Define m0(ξ) � 1√

2

∑
k∈Z u(k)e−ikξ. Then∏+∞

j�1 m0(ξ/2j) converges to a function ϕ̂ ∈ L2(R) such that ϕ �
(ϕ̂)ˇ is the scaling function for a multiresolution analysis {Vj}j∈Z,
by Theorem 5.50. Define a sequence v ∈ �1(Z) by v(k) �
(−1)k−1u(1− k), and a function ψ on R by ψ �∑k∈Z v(k)ϕ1,k. Then
(by Theorem 5.35) ψ is the mother wavelet for a wavelet system;
that is, {ψj,k}j,k∈Z is a complete orthonormal set in L2(R).

In Example 4.57, a wavelet system for �2(Z) was constructed
with generators u and v that had only six nonzero components
(Daubechies’s D6 wavelets for �2(Z)). In Example 5.52 we see that u
satisfies conditions i–iv in Theorem 5.50 and hence that we can use
the recipe just described to construct a wavelet system in L2(R).
First we note in the next theorem that the property that u has
only finitely many nonzero components implies that the scaling
function ϕ and the mother wavelet ψ have compact support. We do
not give the proof of this result in full detail because it requires some
aspects of measure theory that are beyond the prerequisites for this
text. Nevertheless, it is instructive to give an outline of the proof,
assuming certain facts that can be found in standard graduate-level
analysis texts.
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Theorem 5.51 Suppose m0 : R → C is a trigonometric polynomial
of the form

m0(ξ) � 1√
2

N∑
k�0

u(k)e−ikξ

for some positive integer N . Suppose |m0(ξ)| ≤ 1 for all ξ ∈ R and
m0(0) � 1. Let ϕ̂(ξ) � ∏∞

j�1 m0(ξ/2j). Then ϕ � (ϕ̂)ˇ has compact
support, with

supp ϕ ⊆ [0, N ].

We begin with a summary of the facts about measures needed
for the proof of Theorem 5.51. A (signed Borel) finite measure µ on
R is a map assigning to each set in a certain collection (the Borel
sets, which we do not define here) of subsets of R a real number,
with the property that µ is σ-additive. This means that if {Ej}∞j�1 is a
sequence of Borel sets that are disjoint (i.e., Ei∩Ej � ∅ if i 	� j), then
µ(∪∞j�1Ej) �

∑∞
j�1 µ(Ej). The assumption that µ is finite means that

there is a constant C such that µ(E) ≤ C for every Borel set E. A key
example of a measure is the point mass δx0 at a point x0 ∈ R, defined
by

δx0(E) �
{

1 if x0 ∈ E

0 if x0 	∈ E.

This measure is also known as the delta function, even though it is
not a function. A finite linear combination µ � ∑N

j�1 cjµj of finite
measures µ1, . . . , µN , where c1, . . . , cN are real numbers, is also a
finite measure defined by µ(E) �∑N

j�1 cjµj(E).
Given a finite measure µ, one can define the integral of a

reasonable function f (one that is µ-integrable, which we do not
define here) with respect to µ; this is denoted

∫
fdµ or

∫
f (x)dµ(x).

For example, a function g ∈ L1(R) yields a finite measure µ by the
formula µ(E) � ∫

E
g(x) dx. Then dµ is denoted gdx, and

∫
f dµ �∫

f (x)g(x) dx for reasonable functions f . For the point mass δx0 ,∫
fdδx0 � f (x0).

For a finite measure µ, any bounded continuous function f will be
µ-integrable, so

∫
fdµ will be defined. In particular, this allows us to
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define the Fourier transform of a finite measure µ by

µ̂(ξ) �
∫

e−ixξ dµ(x).

If dµ � gdx for g ∈ L1(R), as described,then µ̂ � ĝ. So the definition
of the Fourier transform of a finite measure is consistent with the
usual definition for integrable functions. It turns out that in some
general sense (the sense of distributions), Fourier inversion carries
over to finite measures: µ � (µ̂)ˇ. We also have the following version
of Parseval’s relation: if g, ĝ ∈ L1(R), g is continuous, and µ is a finite
measure, then ∫

R

µ̂(ξ)ĝ(ξ) dξ � 2π
∫

g(x) dµ(x). (5.114)

To prove this result, note that the left side of equation(5.114) is∫
R

ĝ(ξ)
∫

R

e−ixξ dµ(x) dξ �
∫

R

∫
R

ĝ(ξ)e−ixξ dξ dµ(x)

� 2π
∫

(ĝ) ∨ (x) dµ(x) � 2π
∫

g(x) dµ(x),

by interchanging the order of integration and applying Fourier
inversion (Theorem 5.15).

The convolution of two finite measures µ and ν is the finite
measure defined by

µ ∗ ν(E) �
∫ ∫

χE(x + y) dµ(x) dν(y).

(One can check (Exercise 5.5.1) that this result agrees with the
usual definition of

∫
E
f ∗ g(x) dx when dµ � fdx and dν � gdx for

f, g ∈ L1(R).) Then

(µ ∗ ν)ˆ(ξ) � µ̂(ξ)ν̂(ξ),

just as in the case of integrable functions. This fact and Fourier
inversion show that convolution of measures is commutative and
associative.

A null set for a measure µ is a µ-measurable set B such that
µ(E) � 0 for every µ-measurable subset E ⊆ B. The support of a
measure µ is

suppµ � R \ ∪{O ⊆ R : O is an open null set of µ}.



5. Wavelets on R432

The support of a finite measure µ is contained in a closed set E if
and only if

∫
f dµ � 0 for all C2 functions with compact support

whose support is disjoint from E. If µ is a finite measure supported
in the interval [a, b], and ν is a finite measure supported in [c, d],
then µ ∗ ν is supported in [a+ c, b+ d] (for the corresponding result
for integrable functions, see Exercise 5.5.2). With this preparation,
we can outline the proof of Theorem 5.51.

Proof Sketch
For j ∈ N, let µj be the finite measure

µj � 1√
2

N∑
k�0

u(k)δ2−jk,

where δ2−jk is the point mass at the point 2−jk. Observe that suppµj ⊆
[0, N/2j]. By linearity of the integral,

µ̂j(ξ) � 1√
2

N∑
k�0

u(k)
∫

e−ixξdδ2−jk(x) � 1√
2

N∑
k�0

u(k)e−ikξ/2j � m0(ξ/2j).

The rough idea of the proof is that

ϕ̂(ξ) �
∞∏
j�1

m0

(
ξ

2j

)
�
∞∏
j�1

µ̂j(ξ) � (µ1 ∗ µ2 ∗ µ3 ∗ · · ·)ˆ(ξ),

so intuitively

ϕ � µ1 ∗ µ2 ∗ µ3 ∗ · · ·,
and hence

supp ϕ ⊆ suppµ1 + suppµ2 + suppµ3 + · · ·
� [0, N/2]+ [0, N/4]+ [0, N/8]+ · · · � [0, N ].

However, we have not defined such infinite convolutions, so to be
more precise we proceed via a limiting argument. For n ∈ N, define

γn � µ1 ∗ µ2 ∗ · · · ∗ µn.

By the support property of convolutions previously noted and an
induction argument,

supp γn ⊆
[
0,

N

2
+ N

4
+ · · · + N

2n

]
�
[
0, N − N

2n

]
⊆ [0, N ],
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for each n ∈ N. Also

γ̂n(ξ) �
n∏
j�1

µ̂j(ξ) �
n∏
j�1

m0

(
ξ

2j

)
.

By Lemma 5.37, γ̂n converges pointwise to ϕ̂ (note that equation
(5.95) is satisfied with δ � 1 because m0 is a trigonometric
polynomial, hence it is continuously differentiable). The rest of the
proof consists of showing that γn converges to ϕ as n → ∞ in a
sense that allows us to conclude that supp ϕ ⊆ [0, N ] from the fact
that supp γn ⊆ [0, N ] for each n.

Note that |γ̂n(ξ)| ≤ 1 for all ξ (because the same is true of m0). If
G ∈ L1(R), it follows by the DCT (Theorem 5.45) that

lim
n→∞

∫
R

γ̂n(ξ)G(ξ) dξ �
∫

R

ϕ̂(ξ)G(ξ) dξ, (5.115)

since |γ̂n(ξ)G(ξ)| ≤ |G(ξ)| ∈ L1(R).
Let f be a C2 function with compact support such that supp

f ∩ [0, N ] � ∅. Then f, f̂ ∈ L1(R) by Exercise 5.2.7. Let g � f . Then
by Parseval’s relation and equations (5.115) and (5.114),∫

R

ϕ(x)f (x) dx �
∫

R

ϕ(x)g(x) dx � 1
2π

∫
R

ϕ̂(ξ)ĝ(ξ) dξ

� lim
n→∞

1
2π

∫
R

γ̂n(ξ)ĝ(ξ) dξ � lim
n→∞

∫
R

g(x) dγn(x)

� lim
n→∞

∫
R

f (x) dγn(x).

But
∫

R
f (x) dγn(x) � 0 for each n because supp γn ⊆ [0, N ] and supp

f ∩ [0, N ] � ∅. Therefore
∫

R
ϕ(x)f (x) dx � 0 for all C2 functions

with compact support that is disjoint from [0, N ]. This implies that
supp ϕ ⊆ [0, N ].

The proof of Theorem 5.51 gives us a certain intuition regarding
the relation between wavelets on ZN or Z and wavelets on R. The
finite measure µj � 1√

2

∑N
k�0 u(k)δ2−jk in the proof corresponds in

some sense to the vector u ∈ �1(Z) with values u(k) for k � 0, 1, . . . , N
and 0 for other k, only renormalized by a factor of 1/

√
2 and rescaled

to take values on the grid 2−jZ � {2−jk : k ∈ Z} instead of Z.
We could make similar definitions with v in place of u. Recall that



5. Wavelets on R434

wavelets on ZN or Z were constructed by repeated convolution of
such sequences (see equations (3.43)–(3.44) and (4.74)–(4.75)). The
proof of Theorem 5.51 shows that ϕ is a limit of γn � µ1∗µ2∗· · ·∗µn,
which corresponds to equation (3.44) or (4.75). From equation (5.90),
the formula for ψ corresponds to equation (3.43) or (4.74) in the
same way. Thus wavelets on R are obtained as a limit as j → ∞ of
wavelets on 2−jZ. We will see this principle again when we discuss
how to compute ϕ and ψ numerically (Lemma 5.56).

Suppose as in Theorem 5.51 that u(k) � 0 for k < 0 and k > N .
Since v(k) � (−1)k−1u(1− k), it follows that v(k) is nonzero only
when 0 ≤ 1−k ≤ N , or−N+1 ≤ k ≤ 1. Thus ψ �∑1

k�−N+1 v(k)ϕ1,k.
Since supp ϕ ⊆ [0, N ], it follows that supp ϕ1,k ⊆ [k/2, (N + k)/2]
(since ϕ(2x−k) � 0 if 2x−k 	∈ [0, N ]). Because k ranges from−N+1
to 1, we obtain

suppψ ⊆ [−N/2+ 1/2, N/2+ 1/2]. (5.116)

Note that this is still an interval of length N .
We remark that if we have a sequence u satisfying conditions

i–iv in Theorem 5.50, then R�u, the translate of u by �, still satisfies
conditions i–iv. The ultimate effect is only that ϕ is translated by
�, and the mother wavelet is multiplied by −1 if � is odd (Exercise
5.5.3). Thus, given u(k), which is nonzero only for N1 ≤ k ≤ N2,
we can replace u by R−N1u to obtain a vector that is nonzero only
for 0 ≤ k ≤ N2 − N1. By convention, Daubechies’s DN wavelets are
chosen with u(k) 	� 0 only for 0 ≤ k < N .

We now show that Daubechies’s D6 wavelets on Z can be used
to construct an example of a wavelet system on R with compactly
supported wavelets.

Example 5.52
(Daubechies’s wavelets for L2(R)) In Example 4.57 we constructed
vectors u, v ∈ �1(Z) with only six nonzero components, which
generate a first-stage wavelet system in �2(Z). Recall that

(u(0), u(1), u(2), u(3), u(4), u(5))

�
√

2
32

(b+ c, 2a + 3b+ 3c, 6a + 4b+ 2c,

6a + 4b− 2c, 2a + 3b− 3c, b− c), (5.117)
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where

a � 1−√10, b � 1+√10, and c �
√

5+ 2
√

10.

In the notation of Example 4.57, we have

m0(ξ) � 1√
2

5∑
k�0

u(k)e−ikξ � 1√
2
û(−ξ),

where

û(ξ) � √2e5iξ/2 cos3
(
ξ

2

)[
cos2

(
ξ

2

)
−√10 sin2

(
ξ

2

)

−ic cos
(
ξ

2

)
sin
(
ξ

2

)]
. (5.118)

From equation (4.96), we also have

|m0(ξ)|2 � 1
2
|û(−ξ)|2 � b(−ξ) � b(ξ),

for

b(ξ) � cos10
(
ξ

2

)
+ 5 cos8

(
ξ

2

)
sin2

(
ξ

2

)
+ 10 cos6

(
ξ

2

)
sin4

(
ξ

2

)
.

It is easy to check conditions i–iv in Theorem 5.50. Condition i is
trivial because there are only finitely many nonzero coefficients
u(k). Recall that condition ii is equivalent tom0(0) � 1, or û(0) � √2,
which follows from equation (5.118). Condition iii holds because of
the orthonormality of Daubechies’s D6 wavelets on �2(Z). By the
definition of b above, |m0|2 � b is a sum of nonnegative terms, the
first of which is bounded away from 0 for −π/2 ≤ ξ ≤ π/2. Thus
condition iv holds.

Now we follow Theorem 5.50 to define ϕ, v, andψ. Then {ψj,k}j,k∈Z

is a wavelet system for L2(R). This is Daubechies’s D6 wavelet
system for L2(R). Note that the coefficients u(k) are all real, which
is convenient in calculations.

Thus we obtain a wavelet system such that ϕ is supported in [0, 5]
and ψ is supported in [−2, 3] (by relation (5.116)). Also ϕ and ψ are
real-valued. One way to see this is to note that the measures γn in the
proof sketch of Theorem 5.51 are all real, hence so is their limit ϕ.
Then ψ is real because v(k) is real for each k, and ψ �∑k∈Z v(k)ϕ1,k.
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In a similar way, for each N ∈ N one can use Daubechies’s
DN wavelets for �2(Z) (for which u has N nonzero components)
to construct compactly supported wavelets for L2(R), known as
Daubechies’s DN wavelets for L2(R).

Figure 44 shows the graphs of the father wavelets ϕ and the
mother wavelets for Daubechies’s D4, D6, and D12 wavelet systems.
Note that these functions appear to be (and in fact are) continuous,
unlike the Haar functions in Examples 5.31 and 5.36.

Ingrid Daubechies made a detailed study of compactly supported
wavelets, creating more than one infinite family of them. Her
wavelets are the most commonly used in applications. Her book
(Daubechies, 1992) contains tables of the nonzero coefficients of the
scaling sequences u for several of these wavelets in a couple of these
families, and graphs of a several of the resulting scaling functions
and wavelets. (We remark that in Figure 44, our scaling functions
ϕ are the same as in Daubechies’s book, but our wavelets ψ are the
negatives of hers, because she uses a slightly different convention
that results in her sequence v being the negative of ours.) As N

increases, Daubechies’s DN wavelets have larger support intervals.
However, this is compensated for in many applications by the facts
that the DN wavelets for larger N tend to have more cancellation
(e.g.,

∫
R
xjψ(x) dx � 0 for some positive integers, instead of just

j � 0 as guaranteed by equation (5.94), which is why the graphs
look more “wiggly”) and more smoothness (as suggested by the
graphs). Daubechies and others have made a systematic study of the
smoothness of these wavelets. (See Exercises 5.5.8 and 5.5.9 for the
first steps in one approach to this study.) It turns out that in a precise
sense, the smoothness of Daubechies’s wavelets grows linearly with
their support, and linear growth is the best possible.

Now we turn to the question of how one actually computes with
these wavelets. We see that everything is done using only the scaling
sequence u and the associated sequence v.

Lemma 5.53 Suppose {Vj}j∈Z is an MRA with scaling function ϕ and
scaling sequence u � (u(k))k∈Z. Suppose v � (v(k))k∈Z is defined by
v(k) � (−1)k−1u(1− k), and ψ � ∑k∈Z v(k)ϕ1,k. Suppose f ∈ L2(R)
and, for each j ∈ Z, define sequences xj � (xj(k))k∈Z and yj � (yj(k))k∈Z
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by

xj(k) � 〈f, ψj,k〉 (5.119)

and

yj(k) � 〈f, ϕj,k〉. (5.120)

Then

xj � D(yj+1 ∗ ṽ) (5.121)

and

yj � D(yj+1 ∗ ũ), (5.122)

where D is the downsampling operator (Definition 4.43) and the
sequences and convolution are in �2(Z), as in chapter 4.

Also

yj+1 � U(yj) ∗ u + U(xj) ∗ v, (5.123)

where U is the upsampling operator (Definition 4.43) on �2(Z).

Proof
From equation (5.52) and a rescaling argument (Exercise 5.5.6) we
obtain, for all j, k ∈ Z,

ϕj,k �
∑
m∈Z

u(m − 2k)ϕj+1,m. (5.124)

Similarly, from equation (5.59),

ψj,k �
∑
m∈Z

v(m − 2k)ϕj+1,m, (5.125)

for all j, k ∈ Z. By equation (5.124),

yj(k) � 〈f, ϕj,k〉 �
〈
f,
∑
m∈Z

u(m − 2k)ϕj+1,m

〉
�
∑
m∈Z

u(m − 2k)〈f, ϕj+1,m〉

�
∑
m∈Z

ũ(2k −m)yj+1(m) � yj+1 ∗ ũ(2k) � D(yj+1 ∗ ũ)(k).

This proves equation (5.122). In a similar way, using equation (5.125)
instead of equation (5.124), we obtain equation (5.121).
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To prove equation (5.123), recall the identity (5.62). By a dilation
argument (Exercise 5.5.6), we obtain, for any j, m ∈ Z,

ϕj+1,m �
∑
k∈Z

ũ(2k −m)ϕj,k +
∑
k∈Z

ṽ(2k −m)ψj,k. (5.126)

Hence,

yj+1(m) � 〈f, ϕj+1,m〉 �
∑
k∈Z

ũ(2k −m)〈f, ϕj,k〉 +
∑
k∈Z

ṽ(2k −m)〈f, ψj,k〉

�
∑
k∈Z

u(m − 2k)yj(k)+
∑
k∈Z

v(m − 2k)xj(k)

�
∑
k∈Z

u(m − 2k)U(yj)(2k)+
∑
k∈Z

v(m − 2k)U(xj)(2k)

�
∑
�∈Z

u(m − �)U(yj)(�)+
∑
�∈Z

v(m − �)U(xj)(�)

� U(yj) ∗ u(m)+ U(xj) ∗ v(m),

where the next to last equality holds becauseU(yj)(�) � U(xj)(�) � 0
for the odd values of � by the definition of upsampling. This proves
equation (5.123).

The reader should recognize these formulas (compare with
equations (3.33) and (3.34), for which the indexing is reversed).
Equations (5.121) and (5.122) say that to pass from yj+1 to xj and yj, we
apply one segment of the analysis phase of a filter bank, as shown in
the left half of Figure 45. Conversely, by equation (5.123), to recover
yj+1 from xj and yj, we apply one segment of the reconstruction phase
of a filter bank, exhibited in the right half of Figure 45.

Because the wavelet expansion in general involves infinitely
many terms, we can never compute it exactly. So we must

FIGURE 45
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approximate at some stage. By the definition of a multiresolution
analysis, ∪j∈ZVj is dense in L2(R). So given f ∈ L2(R), we first pick
m sufficiently large that ‖Pm(f ) − f ‖ is negligible, where Pm(f ) �∑

k∈Z〈f, ϕm,k〉ϕm,k is the projection of f on Vm. This is possible, since
‖Pm(f ) − f ‖ → 0 as m → +∞, by Exercise 5.3.10. The next lemma
tells us how to approximate the sequence ym � (〈f, ϕm,k〉)k∈Z in
Lemma 5.53, for sufficiently large m. Its proof is an approximate
identity argument (compare with Theorem 5.11).

Lemma 5.54 Suppose f ∈ L2(R) satisfies a Lipschitz condition of
order ε, for some ε ∈ (0, 1], which means that there exists a constant
C1 <∞ such that for all x, y ∈ R,

|f (x)− f (y)| ≤ C1|x − y|ε. (5.127)

Suppose ϕ ∈ L1(R) ∩ L2(R) satisfies∫
R

ϕ(x) dx � 1, (5.128)

and ∫
R

|x|ε|ϕ(x)| dx � C2 <∞. (5.129)

Then ∣∣2m/2〈f, ϕm,k〉 − f (2−mk)
∣∣ ≤ C1C22−mε, (5.130)

or, equivalently,∣∣〈f, ϕm,k〉 − 2−m/2f (2−mk)
∣∣ ≤ C1C22−m(ε+1/2). (5.131)

Proof
Note that∫

R

2m/2ϕ(2mx − k) dx � 2−m/2
∫

R

ϕ(t) dt � 2−m/21 � 2−m/2,

by the change of variables t � 2mx−k and by using equation (5.128).
Hence, ∣∣〈f, ϕm,k〉 − 2−m/2f (2−mk)

∣∣
�
∣∣∣∣
∫

R

(
f (x)− f (2−mk)

)
2m/2ϕ(2mx − k) dx

∣∣∣∣
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≤
∫

R

∣∣f (x)− f (2−mk)
∣∣ 2m/2

∣∣ϕ(2mx − k)
∣∣ dx

� 2−m/2
∫

R

∣∣f (2−mt + 2−mk)− f (2−mk)
∣∣ ∣∣ϕ(t)

∣∣ dt
≤ C12−m/2

∫
R

∣∣2−mt∣∣ε ∣∣ϕ(t)
∣∣ dt � C1C22−m(ε+1/2),

by relations (5.127) and (5.129).

Lemma 5.54 explains why we normalize the argument of the
scaling function ϕ so that ϕ̂(0) � ∫

R
ϕ(x) dx � 1. Any reasonable

scaling function will satisfy relation (5.129) for all 0 < ε ≤ 1. For
example, if ϕ is bounded with compact support, relation (5.129) is
obvious.

For m sufficiently large, in the notation of Lemma 5.53,

ym(k) � 〈f, ϕm,k〉 ≈ 2−m/2f (2−mk).

Lemma 5.54 gives an estimate for the error in this approximation
if f satisfies a Lipshitz condition. This condition is mild: any
differentiable function with bounded derivative satisfies relation
(5.127) with ε � 1, by the mean value theorem.

In some cases, one may not want to go to sufficiently large m

so that the approximation in inequality (5.130) is satisfactory. In
that case, one can estimate 〈f, ϕm,k〉 by some numerical method (for
example, some quadrature formula as in Sweldens and Piessens
(1994)) to sufficient accuracy.

After obtaining our approximation to ym, we calculate the wavelet
coefficients of a function f as follows. We apply equations (5.121) and
(5.122) iteratively (the analysis phase of the filter bank in Figure
46) to obtain, after � steps, the wavelet coefficients xj(k) � 〈f, ψj,k〉
for j � m − 1, m − 2, . . . , m − �, and the remaining coefficients
ym−�(k) � 〈f, ϕm−�,k〉. At this stage the corresponding formula for
Pm(f ) (our approximation to f ) is (by Exercise 5.5.10)

Pm(f ) �
m−1∑

j�m−�

∑
k∈Z

〈f, ψj,k〉ψj,k +
∑
k∈Z

〈f, ϕm−�,k〉ϕm−�,k. (5.132)

Conversely, if we have the wavelet coefficients xj(k) � 〈f, ψj,k〉 for
j � m−1, m−2, . . . , m−�, and the remaining coefficients ym−�(k) �
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〈f, ϕm−�,k〉, we can recover ym (and hence our approximation to the
values f (2−mk) ≈ 2m/2〈f, ϕm,k〉 � 2m/2ym(k)) by applying equation
(5.123) recursively (the reconstruction phase of the filter bank in
Figure 46) to obtain ym−�+1, ym−�+2, . . . , ym−1, and finally ym.

In Figure 46, the symbol “. . . ” in the left half of the diagram (the
analysis phase) represents a convolution (with either ṽ or ũ) followed
by a downsampling, whereas in the right half (the reconstruction
phase), it represents an upsampling followed by a convolution (with
either v or u).

Thus we never need to know the scaling function ϕ or the
mother wavelet ψ. All that is needed in the computation are the
values of the scaling sequence u (because v is determined by u via
v(k) � (−1)k−1u(1− k)). We illustrate this with Example 5.55.

Example 5.55
We compute the Daubechies’s D6 wavelet transform of the function

f (x) �
{

sin(4πx) if 0 ≤ x ≤ 1
0 otherwise.

We cannot compute the entire transform because it is infinite,
and the part we do compute will be an approximation. We begin
by approximating the scaling function coefficients 〈f, ϕm,k〉 by the
sample values 2−m/2f (2−mk), with an error that decreases as we
increase k, as in Lemma 5.54. Suppose we decide that m � 9 gives
an acceptable error. Thus we take

y9(k) � 2−9/2f (2−9k) �
{

1√
512

sin( πk
128 ) if 0 ≤ k ≤ 512

0 otherwise.

Note that this is 1/
√

512 times the vector z whose �2(Z) wavelet
coefficients are shown in Figure 42. We now compute the vectors
x8, x7, x6, x5, and y5 (say we do a 4-level transform), by the filter
bank arrangement in the left half of Figure 46. Then xj(k) is our
approximation to the wavelet coefficient 〈f, ψj,k〉 for j � 8, 7, 6, and
5, and y5 is our approximation to the scaling function coefficient
〈f, ϕ5,k〉. Note that the vectors u and v for the D6 wavelets on
L2(R) are the same as those for the D6 wavelet transform on �2(Z)
(this is how Daubechies’s D6 wavelets for L2(R) were constructed
in Example 5.52). Hence, a comparison with the algorithm for
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computing wavelets in �2(Z) shows that finding x8, x7, x6, x5, and y5

is exactly the same computation (except for the factor of 1/
√

512) as
for the 4th level �2(Z) wavelet transform for the vector z ∈ �2(Z).
The only difference is the shift in indices; here, for example, x8

corresponds to the−1 level D6 wavelet coefficients of z. Thus, except
for the factor of 1/

√
512, the wavelet coefficients 〈f, ψj,k〉 for j � 8, 7, 6,

and 5 are plotted in Figures 42b, c, d, and e, respectively, and the
scaling function coefficients 〈f, ϕ5,k〉 are plotted in Figure 42 f, with
the understanding that the point n ∈ Z in Figure 42 corresponds to
the point n/512 ∈ R.

This gives another interpretation of the computation of wavelets
on L2(R). We can sample the given function f at a sufficiently fine
resolution, yielding the vector z ∈ �2(Z) of sample values. Then we
computes the (exact) wavelet transform of z in the sense of �2(Z) (as
in chapter 4) to approximate the L2(R) wavelet transform of f . This
is a useful interpretation, especially because we are given only the
sample values of f in many experimental circumstances.

On the other hand, some students may feel let down by this.
They may think that we have just arrived at what we already had
in the context of Z, and in the process we have had to go through
some difficult analysis and add some conditions on an �2(Z) wavelet-
generating sequence u to guarantee that the associated ψ is the
mother wavelet for a wavelet system in L2(R). However, there are
crucial advantages in knowing that our calculations correspond to
a wavelet system in the continuous setting of R instead of just
the discrete setting Z. We see this in chapter 6 when we apply
wavelets to differential equations, where the nondiscrete nature of
the underlying space is essential.

Although we have noted that we do not need to know the function
values of ϕ and ψ to compute the wavelet transform, the reader may
still wonder how the graphs of these functions (as in Figure 44) can
be obtained. Moreover, it aids our intuition to have these graphs.
These graphs are obtained as an application of our reconstruction
algorithm (5.123) as follows.

We cannot compute ϕ and ψ everywhere explicitly, but we can
compute them to good approximation at points of the form 2−mk for
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k ∈ Z andm large, and then fill in between these values by continuity
(e.g., linear interpolation). We apply Lemma 5.54 with f replaced by
ϕ and ψ to conclude that for m large,

ϕ(2−mk) ≈ 2m/2〈ϕ, ϕm,k〉 and ψ(2−mk) ≈ 2m/2〈ψ, ϕm,k〉. (5.133)

Lemma 5.56 tells us how to compute the inner products in
approximation (5.133).

Lemma 5.56 Suppose ϕ is the scaling function and ψ is the mother
wavelet, obtained as in Theorem 5.35, for some multiresolution analysis,
with scaling sequence u ∈ �1(Z) and associated sequence v defined by
v(k) � (−1)k−1u(1− k). For k ≥ 1, define sequences ck, dk ∈ �1(Z)
inductively by

c1 � u, d1 � v,

and, for m ≥ 2,

cm � U(cm−1) ∗ u, and dm � U(dm−1) ∗ u. (5.134)

Equivalently, define

cm � u ∗ U(u) ∗ U2(u) ∗ · · · ∗ Um−1(u) (5.135)

and

dm � u ∗ U(u) ∗ · · · ∗ Um−2(u) ∗ Um−1(v). (5.136)

Then for all j ≥ 1,

cj(k) � 〈ϕ, ϕj,k〉 (5.137)

and

dj(k) � 〈ψ, ϕj,k〉, (5.138)

for all k.

Proof
To prove equation (5.137), we apply Lemma 5.53. Define xj and yj as
in equations (5.119) and (5.120), with f � ϕ. Thus equation (5.137)
is equivalent to the statement that yj � cj for j ≥ 1. Note that

y0(k) � 〈ϕ, ϕ0,k〉 � δ(k),
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or y0 � δ. Also note that for j ≥ 0, ψj,k ∈ Wj, and ϕ ∈ V0 ⊆ Vj.
Because Vj ⊥ Wj, it follows that for j ≥ 0

xj(k) � 〈ϕ, ψj,k〉 � 0,

for all k ∈ Z. Hence xj � 0 for all j > 1. Therefore in this case,
equation (5.123) reduces to

yj+1 � U(yj) ∗ u, (5.139)

for j ≥ 0. When j � 1, we obtain

y1 � U(y0) ∗ u � U(δ) ∗ u � δ ∗ u � u.

This gives y1 � u � c1. Then ym � cm follows for each m ≥ 2 by
equations (5.134) and (5.139).

Now define xj and yj in Lemma 5.54 by equations (5.119) and
(5.120) with f � ψ. To prove equation (5.138), we must show that
yj � dj for j ≥ 1. Note that

x0(k) � 〈ψ,ψ0,k〉 � δ(k),

and

y0(k) � 〈ψ, ϕ0,k〉 � 0,

since ψ ∈ W0, ϕ0,k ∈ V0, and W0 ⊥ V0. Hence, equation (5.123) gives

y1 � U(x0) ∗ v � U(δ) ∗ v � δ ∗ v � v � d1. (5.140)

For j ≥ 1,

xj(k) � 〈ψ,ψj,k〉 � 0,

since W0 ⊥ Wj for j 	� 0. Hence, for j ≥ 1, equation (5.123) reduces
to yj+1 � U(yj)∗u. By induction, equations (5.134) and (5.140) show
that yj � dj for all j.

Observe that equation (5.135) is an analog of equations (3.44) and
(4.75), whereas equation (5.136) is analogous to equations (3.43) and
(4.74). This confirms our statement after Theorem 5.51 that wavelets
on R are limits, in some sense, of wavelets on Z ≈ 2−jZ, as j→∞.
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Exercises

5.5.1. Suppose f, g ∈ L1(R). Let dµ � f dx and dν � g dx. Prove that∫ ∫
χE(x + y) dµ(x) dν(y) �

∫
E

f ∗ g(x) dx.

Hint: Change variables (let t � x + y) and interchange
the order of integration. Note that for a general h,∫
χE(t)h(t) dt � ∫

E
h(t) dt.

5.5.2. Suppose f, g ∈ L1(R) with supp f ⊆ [a, b] and supp g ⊆ [c, d].
Prove that supp f ∗g ⊆ [a+c, b+d]. (Compare with Exercise
4.7.6).

5.5.3. Suppose u � (u(k))k∈Z satisfies conditions i–iv in Theorem
5.50. Define ϕ̂(ξ) � ∏∞j�1 m0(ξ/2j), v(k) � (−1)k−1u(1− k),
and ψ �∑k∈Z v(k)ϕ1,k. Let � ∈ Z.
i. Show that R�u (defined as in chapter 4 by (R�u)(n) �

u(n−�)) also satisfies conditions i–iv in Theorem 5.50, for
m0(ξ) replaced by M0(ξ) � 1√

2

∑
k∈Z(R�u)(k)e−ikξ. Hint:

Observe that M0(ξ) � e−i�ξm0(ξ).
ii. Define ϕ�, v�, and ψ� associated with R�u and M0 in the

same way that ϕ, v, and ψ are associated with u and m0.
Prove that

ϕ�(x) � ϕ(x − �)

and

ψ� � (−1)�ψ.

Hint: Use equations (5.89) and (5.91), and Lemma 5.26.
5.5.4. Suppose u � (u(k))k∈Z is a sequence satisfying conditions

ii and iii in Theorem 5.50. Suppose also that there are only
two values of k ∈ Z such that u(k) 	� 0.
i. Prove that there exists m ∈ Z and an odd number j ∈ Z

such that

u(k) �
{

1√
2

if k � m or k � m + j

0 otherwise.
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Hint: The fastest way to see this is to use Exercise 5.4.15
(ii).

ii. By definingm0 by equation (5.75) and ϕ̂ �∏∞j�1 m0(ξ/2j),
prove that

ϕ � 1
j
χ[m,m+j],

for m and j as in part i. Hint: Show that m0(ξ) �
e−imξe−ijξ/2 cos(jξ/2) and apply equation (5.113), as in
Exercise 5.4.5.

iii. Show that the set {ϕ0,k}k∈Z is orthogonal only when j � 1.
Note that this is also the only case in which condition
iv in Theorem 5.50 holds. Observe that in this case the
resulting wavelets are the Haar wavelets (up to a possible
negative sign, by Exercise 5.5.3).

5.5.5. Show that Daubechies’s D4 wavelets for �2(Z) (Exercise
4.7.9) lead to wavelets for L2(R) in the same way as in
Example 5.52.

5.5.6. Prove equations (5.124), (5.125), and (5.126).
5.5.7. Suppose f : R → C satisfies a Lipschitz condition of order

α > 1; that is, there exists a constant C such that, for all
x, y ∈ R,

|f (x)− f (y)| ≤ C|x − y|α.
Prove that f must be a constant function. Hint: Show that f
is differentiable everywhere and calculate the derivative.

Remark: This exercise explains the restriction ε ≤ 1 in
Lemma 5.54.

5.5.8. Suppose 0 < α ≤ 1, f ∈ L1(R), and there exist constants
ε > 0 and C > 0 such that, for all ξ ∈ R,

|f̂ (ξ)| ≤ C(1+ |ξ|)−1−α−ε.

i. Show that f̂ ∈ L1(R). By Theorem 5.15, by modifying f

on a set of measure 0, we can assume the f (x) � (f̂ ) ∨(x)
at every point x ∈ R. Deduce that f is bounded; that is,
there exists a constant C1 (depending on f , α, ε and C,
but not on x) such that

|f (x)| ≤ C1,
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for all x ∈ R.
ii. Prove that f satisfies a Lipschitz condition of order α; that

is, for some other constant C2, and for all x, y ∈ R,

|f (x)− f (y)| ≤ C2|x − y|α.
Hint: By part i, the estimate is easy if |x−y| > 1. Suppose
|x − y| ≤ 1. By Fourier inversion, obtain

|f (x)− f (y)| ≤ 1
2π

∫
R

|f̂ (ξ)||e−iξx − e−iξy| dξ

� 1
2π

∫
R

|f̂ (ξ)||e−iξ(x−y) − 1| dξ.

On {ξ : |ξ(x − y)| ≤ 1}, use the estimate

|e−iξ(x−y) − 1| ≤ |ξ(x − y)| ≤ |ξ(x − y)|α.
On the complementary set, make the trivial estimate
|e−iξ(x−y) − 1| ≤ 2.

Remark: This result is natural because it says that the faster
|f̂ (ξ)| decays as |ξ| → ∞ (i.e., the smaller the weights of
the high-frequency terms in equation (5.24)), the smoother
f is. In particular, this provides a way of estimating the
smoothness of f based on knowledge of the decay of f̂ .
This is one method used to prove smoothness estimates for
wavelets. Higher-order smoothness can be obtained from
more rapid decay of f̂ (ξ), as in Exercise 5.5.9.

5.5.9. Suppose f ∈ L1(R), and there exist constants ε > 0 and
C > 0 such that, for all ξ ∈ R,

|f̂ (ξ)| ≤ C(1+ |ξ|)−2−ε.

i. Prove that f ′(x) exists for all x ∈ R, and

f ′(x) � 1
2π

∫
R

f̂ (ξ)(−iξ)e−ixξ dξ.

Hint: For any sequence {hn}∞n�1 such that limn→∞ hn � 0
and hn 	� 0 for all n, write

f (x + hn)− f (x)
hn

� 1
2π

∫
R

f̂ (ξ)
e−i(x+hn)ξ − e−ixξ

hn
dξ.
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Make an estimate for |(e−i(x+hn)ξ − e−ixξ)/hn| that is
independent of n and apply the DCT (Theorem 5.45)
to justify differentiating under the integral.

ii. Let m be a positive integer. Assume that for some
constants δ > 0 and C1 > 0,

|f̂ (ξ)| ≤ C1(1+ |ξ|)−m−1−δ.

Prove that the mth derivative f (m)(x) of f exists at every
point x ∈ R and

f (m)(x) � 1
2π

∫
R

f̂ (ξ)(−iξ)me−ixξ dξ.

Hint: Use part i and induction.
5.5.10. Let ϕ be the scaling function for an MRA {Vj}∞j�1 with

scaling sequence u ∈ �1(Z). Let ψ be the mother wavelet
determined as in Theorem 5.35. For m ∈ Z, and f ∈ L2(R),
let

Pm(f ) �
∑
k∈Z

〈f, ϕm,k〉ϕm,k

and

Qm(f ) �
∑
k∈Z

〈f, ψm,k〉ψm,k

be the orthogonal projections of f onto Vm and Wm,
respectively, where Wm is defined in equation (5.63).
i. Prove that Pm(f ) � Pm−1(f )+Qm−1(f ). Hint: Use equation

(5.65).
ii. Deduce equation (5.132).



6
C H A P T E R

...........................................

Wavelets and
Differential
Equations

6.1 The Condition Number of a Matrix

Many applications of mathematics require the numerical approxi-
mation of solutions of differential equations. In this chapter we give
a brief introduction to this topic. A thorough discussion is beyond
the scope of this text. Instead, by simple examples, we give an idea
of the contribution wavelet theory can make to this subject.

The methods we discuss for numerically solving a linear ordinary
differential equation (which is all we discuss here) come down
to solving a linear system of equations, or equivalently, a matrix
equation Ax � y. Theoretically, such a system is well understood:
for a square matrix A, there is a unique solution x for every y if and
only if A is an invertible matrix. However, in applications there are
further issues that are of crucial importance. One of these has to do
with the condition number of the matrix. We begin with an example.

Example 6.1
Consider the linear system Ax � y, where x, y ∈ C2, and

A �
[

5.95 −14.85
1.98 −4.94

]
.

451
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The determinant of A is .01, which is not 0, so A is invertible. For

y �
[

3.05
1.02

]
,

the unique solution to Ax � y is

x �
[

8
3

]
,

as the reader can check. Now suppose

y′ �
[

3
1

]
.

Then the solution to Ax′ � y′ is

x′ �
[

3
1

]
.

Note that y and y′ are close but x and x′ are far apart. A linear
system for which this happens is called badly conditioned. In this
situation, small errors in the data y can lead to large errors in
the solution x. This is undesirable in applications, because in
nearly all computations with real data there is an error either
due to rounding off (computers can give only a finite degree of
accuracy) or due to imperfect measurements of the data. For a
badly conditioned system, the apparent solution can be virtually
meaningless physically.

By considering the diagonalization of A, we get an indication of
what is going on. We have already seen that Ax′ � x′, that is, that x′

is an eigenvector of A with eigenvalue 1. Subtracting x′ from x, we
see that

x′′ �
[

5
2

]

satisfies Ax′′ � .01x′′, so x′′ is an eigenvector of A with eigenvalue
.01. Thus A is similar to the diagonal matrix with diagonal entries 1
and .01. In particular, in the x′ direction, A behaves as the identity,
so perturbing y in the x′ direction results in a perturbation of the
solution x by the same amount. However, in the x′′ direction, A acts
by multiplication by .01, so perturbing the component of y in the x′′
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direction by some amount results in a perturbation of x by 100 times
this amount. This difference in behavior of A in different directions
is the source of the problem.

From the previous example, one might conclude that the way to
determine whether a system is badly conditioned is to look at the
determinant or maybe the smallest eigenvalue. However, this is not
correct because these quantities do not scale properly. For example,
if we multiply matrix A in Example 6.1 by 10, we multiply each
eigenvalue by 10 and the determinant by 100, but the basic nature
of the matrix has not changed. This suggests that we should look for
some quantity that is scale invariant. The next quantity is not scale
invariant, but it will be used to define the right quantity, which is.

Definition 6.2 Let A be an n × n matrix. Define ‖A‖, called the
operator norm, or just the norm, of A by

‖A‖ � sup
‖Az‖
‖z‖ , (6.1)

where the supremum is taken over all nonzero vectors in Cn.

Equivalently (Exercise 6.1.2),

‖A‖ � sup{‖Az‖ : ‖z‖ � 1, z ∈ Cn}. (6.2)

The norm of a linear transformation T : H1 → H2, for Hilbert
spaces H1 and H2 was given in Definition 4.25. This corresponds to
equation (6.1) in the case H1 � H2 � Cn in the sense that if we
define TA : Cn → Cn by TA(z) � Az, then ‖TA‖ � ‖A‖.

Because of the finite-dimensionality of Cn, the supremum in
equation (6.1) or (6.2) is always finite (Exercise 6.1.3). Note that from
the definition of supremum, ‖A‖ is an upper bound for {‖Az‖/‖z‖ :
z 	� 0}. Hence we obtain the boundedness (Definition 4.25) of
TA : Cn → Cn: for all z ∈ Cn,

‖TA(z)‖ � ‖Az‖ ≤ ‖A‖‖z‖. (6.3)

It is not true that every set of real numbers contains an element
attaining its supremum. However, for an n × n matrix, the finite
dimensionality of Cn guarantees (Exercise 6.1.4) that there is always
a nonzero vector z such that

‖TA(z)‖ � ‖Az‖ � ‖A‖‖z‖. (6.4)
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We remark that for a bounded linear transformation T : H → H on
an infinite dimensional Hilbert space H, there does not have to be
a nonzero vector v ∈ H such that ‖T(v)‖ � ‖T‖‖v‖ (Exercise 6.1.5).

Definition 6.3 Let A be an invertible n × n matrix. Define C#(A),
the condition number of A, by

C#(A) � ‖A‖‖A−1‖.
If A is not invertible, set C#(A) � +∞.

It is not difficult (Exercise 6.1.6) to show that for c 	� 0, C#(cA) �
C#(A); that is, the condition number is scale invariant. Also (Exercise
6.1.7), for any matrix A,

C#(A) ≥ 1. (6.5)

Lemma 6.4 Suppose that A is an n × n normal (Definition 1.108)
invertible matrix. Let

|λ|max � max {|λ| : λ is an eigenvalue of A} (6.6)

and

|λ|min � min {|λ| : λ is an eigenvalue of A}. (6.7)

Then

C#(A) � |λ|max

|λ|min
. (6.8)

Proof
By the spectral theorem for matrices (Theorem 1.109), A is unitarily
similar to a diagonal matrix D. By Exercise 6.1.8 (ii), C#(A) � C#(D).
The diagonal entries of D are the eigenvalues of A (Lemma 1.74
ii). Hence by Exercise 6.1.9, ‖D‖ � |λ|max. The matrix D−1 is the
diagonal matrix whose diagonal entries are the reciprocals of the
corresponding diagonal entries of D (none of which are 0 because A

is assumed invertible). Therefore, by Exercise 6.1.9 again, ‖D−1‖ �
1/|λ|min. Putting this together,

C#(A) � C#(D) � ‖D‖‖D−1‖ � |λ|max

|λ|min
,

as desired.
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The condition number of a matrix A measures the stability of the
linear system Ax � y under perturbations of y. Think of perturbing
y by δy to obtain y + δy. Let x be the solution of Ax � y and δx

the solution to Aδx � δy. Then by linearity, A(x + δx) � y + δy.
Thus perturbing y by δy results in perturbing the solution x by δx.
The stability of the linear system is most naturally described by
comparing the relative size ‖δx‖/‖x‖ of the change in the solution
to the relative size ‖δy‖/‖y‖ of the change in the given data. The
condition number is the maximum value of this ratio.

Lemma 6.5 Suppose A is an n×n invertible matrix, x, y, δx, δy ∈ Cn,
x 	� 0, Ax � y, and Aδx � δy. Then

‖δx‖
‖x‖ ≤ C#(A)

‖δy‖
‖y‖ . (6.9)

Moreover, there exist nonzero x, y, δx, δy ∈ Cn such that Ax � y,
Aδx � δy and equality is attained in relation (6.9). Hence C#(A) cannot
be replaced in relation (6.9) by any smaller number.

Proof
Since y � Ax, by relation (6.3) we have

‖y‖ ≤ ‖A‖‖x‖. (6.10)

Similarly, since δx � A−1δy,

‖δx‖ ≤ ‖A−1‖‖δy‖. (6.11)

By multiplying inequalities (6.10) and (6.11), and using the definition
of the condition number, we get

‖y‖‖δx‖ ≤ C#(A)‖x‖‖δy‖,
which is equivalent to inequality (6.9) (note that y 	� 0 because
Ax � y and A is invertible).

To prove the optimality of the number C#(A) in relation (6.9),
note that by Exercise 6.1.4 (ii), there must exist a nonzero vector x

such that

‖Ax‖ � ‖A‖‖x‖,
and a nonzero vector δy such that

‖A−1δy‖ � ‖A−1‖‖δy‖.
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Let y � Ax and δx � A−1δy. Then y 	� 0 and δx 	� 0 because A and
A−1 are invertible. Multiplying the two equations above gives

‖y‖‖δx‖ � ‖A‖‖A−1‖‖x‖‖δy‖ � C#(A)‖x‖‖δy‖.
Hence we have equality in relation (6.9).

The condition number of A measures how unstable the linear
system Ax � y is under perturbation of the data y. In applications,
therefore, a small condition number (i.e., near 1) is desirable. If the
condition number of A is high, we would like to replace the linear
system Ax � y by an equivalent system whose matrix has a low
condition number, for example, by multiplying by a preconditioning
matrix B to obtain the equivalent system BAx � By, where C#(BA) is
smaller thanC#(A). For an invertible matrixA, this is always possible
in theory, by takingB � A−1. But this is cheating in most applications
because usually it is impractical to compute A−1. However, in some
cases it is possible to find a simple preconditioning matrix.

Exercises

6.1.1. Let

A �
[

2.6 .8
−4.8 −1.4

]
.

i. Check that

A

[
1
−2

]
�
[

1
−2

]
and A

[
.5
−.5

]
�
[

.9
−1.7

]
.

ii. Prove that C#(A) ≥ 5. Hint: Let

x �
[

1
−2

]
, x + δx �

[
.5
−.5

]
,

and apply relation (6.9).
6.1.2. Let A be an n× n matrix. Prove equation (6.2).
6.1.3. Let A be an n× n matrix. Prove that

sup
{z:z 	�0}

‖Az‖
‖z‖ < +∞.
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Hint: One approach is to use the fact that ‖Aej‖ < ∞ for
j � 1, 2, . . . , n.

6.1.4. Let A be an n × n matrix. Define TA : Cn → Cn by
TA(z) � Az.
i. Show that TA is uniformly continuous on Cn: if ε > 0 is

given, there exists δ > 0 such that ‖TA(z)− TA(w)‖ < ε

for all z, w ∈ Cn such that ‖z − w‖ < δ. Hint: Apply
relation (6.3).

ii. Prove that there exists a nonzero vector z ∈ Cn such
that ‖Az‖ � ‖A‖‖z‖. Hint: By equation (6.2) and the
definition of the supremum, for each k ∈ N, there must
be zk ∈ Cn such that ‖zk‖ � 1 and

‖Azk‖ ≥
(

1− 1
k

)
‖A‖.

Assume the Bolzano-Weierstrass theorem for Cn (any
bounded sequence of vectors in Cn has a convergent
subsequence) and apply part i.

6.1.5. DefineT : L2([−π, π))→ L2([−π, π)) as follows. For each f ∈
L2([−π, π)), represent f by its Fourier series

∑
k∈Z〈f, eikθ〉eikθ,

and let

(T(f ))(θ) �
∑

k∈Z,k 	�0

(
1− 1

k

)
〈f, eikθ〉eikθ.

i. Prove that T(f ) ∈ L2([−π, π)) for all f ∈ L2([−π, π)).
ii. Prove that ‖T‖ � 1, where

‖T‖ � sup {‖T(f)‖/‖f‖ : f ∈ L2([−π, π)) and f 	� 0}.
iii. Prove that for all f ∈ L2([−π, π)) such that f 	� 0,

‖T(f )‖ 	� ‖T‖‖f ‖.
6.1.6. Let A be an n× n invertible matrix, and c ∈ C with c 	� 0.

i. Prove that ‖cA‖ � |c|‖A‖ and ‖(cA)−1‖ � ‖A−1‖/|c|.
ii. Prove that C#(cA) � C#(A).

6.1.7. i. LetA and B be n×nmatrices. Prove that ‖AB‖ ≤ ‖A‖‖B‖.
ii. Let A be an n×n invertible matrix. Prove that C#(A) ≥ 1.

6.1.8. Suppose A and B are n×n matrices that are unitarily similar
(Definition 1.107).
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i. Prove that ‖A‖ � ‖B‖. Hint: Use Lemma 1.105 v.
ii. Suppose also thatA is invertible. Prove thatB is invertible

and C#(A) � C#(B).
6.1.9. Suppose D is an n×n diagonal matrix with diagonal entries

d1, d2, . . . , dn. Prove that

‖D‖ � max{|d1|, |d2|, . . . , |dn|}.
6.1.10. Let

A �
[

8.1 −3.8
−3.8 2.4

]
.

i. Find C#(A).
ii. Find nonzero vectors x, y, δx, δy ∈ C2 such that Ax �

y, Aδx � δy, and equality holds in relation (6.9).
6.1.11. Suppose U is an n×n unitary matrix. Prove that C#(U) � 1.
6.1.12. Let A and δA be n×n matrices, and x, y, δx ∈ Cn. Suppose A

is invertible,

Ax � y, and (A+ δA)(x + δx) � y.

Prove that

‖δx‖
‖x + δx‖ ≤ C#(A)

‖δA‖
‖A‖ .

Hint: Show that the two equations imply

δx � −A−1δA(x + δx),

and apply Exercise 6.1.7 (i).
Remark: This exercise has the following interpretation.

Starting with the system Ax � y, perturb the matrix A

slightly to obtain A + δA. Leaving the data y unchanged,
consider the solution x + δx of the perturbed equation
(A + δA)(x + δx) � y. The conclusion of Exercise 6.1.12 is
that the relative error (measured here as ‖δx‖/‖x + δx‖) in
the solution is bounded by C#(A) times the relative change
in the norm of A. Thus the lower the condition number, the
greater the stability of the system Ax � y under rounding
off or perturbing the matrix A, as well as under perturbing
y.
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6.2 Finite Difference Methods for
Differential Equations

Suppose f : [0, 1]→ C is continuous. Our goal is to obtain a C2 (i.e.,
twice continuously differentiable) function u that is a solution to the
equation

− u′′(t) � f (t) for 0 ≤ t ≤ 1, (6.12)

with Dirichlet boundary conditions

u(0) � 0 and u(1) � 0. (6.13)

(Nonzero boundary values can be dealt with easily once this case
is understood (Exercise 6.2.1).) In equation (6.12), derivatives are
interpreted in the one-sided sense at the endpoints 0 and 1.

The theory of this equation is well understood. It is easy to
see that a unique solution u of equations (6.12) and (6.13) exists
(Exercise 6.2.2). However, if f is a function whose antiderivative
cannot be expressed in terms of elementary functions, it may not
be possible to explicitly evaluate the formula in Exercise 6.2.2.
One approach to approximating the solution u is to numerically
estimate the integrals in this formula. Another method, which is
more general because it applies to equations whose solutions are not
so easy to write explicitly, is the finite difference method. It is based
on approximating the derivatives in equation (6.12) by differences
evaluated on a finite set of points in the interval [0, 1].

By the definition of the derivative,

u′(t) ≈ u(t +?t)− u(t)
?t

for small ?t. For reasons of symmetry, let h > 0, consider both
?t � h/2 and ?t � −h/2, and average:

u′(t) ≈ 1
2

[
u
(
t + h

2

)− u(t)
h
2

+ u(t)− u
(
t − h

2

)
h
2

]

� u
(
t + h

2

)− u
(
t − h

2

)
h

.
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Applying this to u′ leads to

u′′(t) ≈ u′(t + h
2 )− u′(t − h

2 )

h
≈ u(t + h)− 2u(t)+ u(t − h)

h2
. (6.14)

We consider the points

tj � j

N
, j � 0, 1, . . . , N.

On this partition, the smallest step we can take is 1/N , so we let
h � 1/N. We set

x(j) � u

(
j

N

)
and y(j) � 1

N2
f

(
j

N

)
, for j � 0, 1, . . . , N. (6.15)

To solve −u′′(tj) � f (tj), we approximate u′′(tj) using approximation
(6.14) and consider the system of equations

−u
(
j + 1
N

)
+ 2u

(
j

N

)
− u

(
j − 1
N

)
� 1

N2
f

(
j

N

)
,

with boundary conditions u(0) � u(1) � 0. When j � 0 or j � N ,
this equation does not make sense because u(−1/N) and u(1+1/N)
are undefined, so we restrict ourselves to 1 ≤ j ≤ N − 1. Thus, we
consider

− x(j + 1)+ 2x(j)− x(j − 1) � y(j), for j � 1, . . . , N − 1, (6.16)

with the boundary conditions

x(0) � 0 and x(N) � 0. (6.17)

Notice that for j � 1, equation (6.16) reduces to−x(2)+2x(1) � y(1)
because x(0) � 0, and when j � N − 1, equation (6.16) reduces
to 2x(N − 1) − x(N − 2) � 0 because x(N) � 0. Thus equation
(6.16) is a linear system of N − 1 equations in the N − 1 unknowns
x(1), . . . , x(N − 1) represented by the matrix equation



2 −1 0 · · · 0 0
−1 2 −1 0 · · · 0
0 −1 2 −1 0 · · 0
· · · · · · · ·
· · · · · · · ·
0 0 · · 0 −1 2 −1
0 0 · · · 0 −1 2







x(1)
x(2)
·
·
·
·

x(N − 1)



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�




y(1)
y(2)
·
·
·
·

y(N − 1)



, (6.18)

which we denote

ANx � y.

One can check (Exercise 6.2.3) that detAN � N . Hence AN is
invertible, and there is a unique solution x to equation (6.18) for
each vector y. As we let h → 0, that is, N → +∞, we expect our
solution x to approximate the true values of u in equation (6.15) with
greater accuracy. However, we saw in section 6.1 that it is important
numerically for a linear system to be well conditioned. So next we
consider the condition number of AN .

Note that AN is real and symmetric, hence Hermitian (Defi-
nition 1.110). Therefore, AN is normal. By Lemma 6.4, C#(A) �
|λ|max/|λ|min, where |λ|max and |λ|min are defined by equations (6.6)
and (6.7). At first it is not clear how to compute the eigenvalues ofAN .
However, consider the matrix (which we denote BN−1) that agrees
with AN except that the entries of BN−1 in the top right and lower left
corners are−1 instead of 0. Then BN−1 is circulant (Definition 2.20).
Hence, we can diagonalize BN−1 and determine its eigenvalues using
Theorem 2.19.

Another way to view the relation between AN and the circulant
variant just noted is to observe that AN is the N−1×N−1 submatrix
obtained by deleting the first row and column of the N × N matrix
BN in the matrix equation BNx

′ � y′ as follows:


2 −1 0 0 · · · 0 −1

−1 2 −1 0 · · · 0 0
0 −1 2 −1 0 · · · 0
· · · · · · · · ·
· · · · · · · · ·
−1 0 0 · · · 0 −1 2







x(0)

x(1)
x(2)
·
·

x(N − 1)



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�




y(0)

y(1)
y(2)
·
·

y(N − 1)



, (6.19)

where x′ � (x(0), x(1), . . . , x(N − 1)) and similarly for y′. The
matrix BN arises naturally in the periodic formulation of equation
(6.12) (see Exercise 6.2.5). However, this formulation is less natural
than equations (6.12) and (6.13) (Exercise 6.2.5) and BN is not
invertible (Exercise 6.2.6 (i)), so we leave this variation to the
exercises. Instead, we see that we can get information regarding the
eigenvalues and eigenvectors of AN from those of BN .

Suppose x′ � (x(0), x(1), . . . , x(N − 1)) is an eigenvector of BN

such that x(0) � 0. Let λ be the associated eigenvalue. Let x �
(x(1), x(2), . . . , x(N−1)). Then BNx

′(j) � ANx(j) for j � 1, 2, . . . , N−1
because the condition x(0) � 0 guarantees that the first column of
BN has no effect on the value of BNx

′(j). Therefore,

ANx(j) � BNx
′(j) � λx′(j) � λx(j),

for j � 1, 2, . . . , N−1. In other words,ANx � λx, so x is an eigenvector
of AN with eigenvalue λ.

Because BN is circulant, its eigenvectors are F0, F1, . . . , FN−1, the
elements of the Fourier basis (see Definition 2.7 and Theorem 2.18).
Because Fj(0) � 1/N for every j, it may seem that no eigenvector
x′ of BN satisfies x′(0) � 0. However, in Example 2.36 we computed
the eigenvalues of BN (actually we considered A � −BN in Example
2.36). We found that BNFj � λjFj, where λj � 4 sin2(πj/N). Hence, if
1 ≤ j < N/2, we have λN−j � λj, so the eigenspace corresponding
to λj is two-dimensional, spanned by Fj and FN−j. Therefore a
linear combination of Fj and FN−j belongs to this eigenspace. For
1 ≤ j < N/2, define Hj ∈ �2(ZN ) by

Hj(n) � N

2i

(
Fj(n)− FN−j(n)

)
� 1

2i

(
e2πijn/N − e−2πijn/N) � sin

(
2πjn
N

)
.
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Then Hj(0) � 0 and BNHj � λjHj. By the earlier discussion, this
implies that the vector of length N − 1 obtained by deleting the first
component from Hj is an eigenvector of AN with eigenvalue λj. For
reasons that will be clear momentarily, we denote this vectorG2j and
more generally define vectors Gm of length N − 1 for 1 ≤ m ≤ N − 1
by

Gm(n) � sin
(πmn

N

)
for n � 1, 2, . . . , N − 1. (6.20)

In this notation, we have seen that G2, G4, G6, . . . up to either GN−1

if N is odd or GN−2 if N is even are eigenvectors of AN .
It is worth checking this explicitly:

(ANGm) (�) � −Gm(�− 1)+ 2Gm(�)− Gm(�+ 1)

� − sin
(
πm(�− 1)

N

)
+ 2 sin

(
πm�

N

)
− sin

(
πm(�+ 1)

N

)

� −
[
sin

πm�

N
cos

πm

N
− cos

πm�

N
sin

πm

N

]
+ 2 sin

πm�

N

−
[
sin

πm�

N
cos

πm

N
+ cos

πm�

N
sin

πm

N

]

�
[
2− 2 cos

(πm
N

)]
sin
(
πm�

N

)
� 4 sin2

(πm
2N

)
Gm(�),

where the first equality is correct even if � � 1 because
Gm(0) � 0. When m � 2k, we recover the fact noted
earlier that ANG2k � 4 sin2(πk/N)G2k. However, note that this
computation did not require the condition that m is even. Thus
we see that the eigenvectors of AN are Gm,m � 1, 2, . . . , N − 1,
with corresponding eigenvalues 4 sin2(πm/2N). (Note that these
eigenvalues are distinct, hence so are the eigenvectors, and thus
this is a complete set of eigenvectors for the (N−1)× (N−1) matrix
AN .)

A comparison of the problem represented by equations (6.12)
and (6.13) with the periodic formulation in Exercises 6.2.5 and 6.2.6
is instructive. The property that

−Gm(�− 1)+ 2Gm(�)− Gm(�+ 1) � 4 sin2
(πm

2N

)
Gm(�)
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is the discrete analog of the property that the function g(x) � sin πmx

satisfies g′′ � π2m2g. The eigenvectorsGm ofAN for even values ofm
correspond to an integer number of full periods of the sine function,
which arise in the periodic as well as nonperiodic settings. Form odd,
Gm corresponds to m/2 (which is not an integer) periods of the sine
function, which is missed when looking only for periodic solutions,
in the same way (Exercise 6.2.5 (ii)) that u(x) � π−2 sin πx satisfies
equations (6.12) and (6.13) for f (x) � sin πx but u is not 1-periodic.

The condition number of AN is

C#(AN ) � |λ|max

|λ|min
�

4 sin2
(
π(N−1)

2N

)
4 sin2

(
π

2N

) .

As N → ∞, sin2(π(N − 1)/2N) → 1, whereas sin2(π/2N) behaves
like π2/4N2. Thus

C#(AN ) ≈ 4N2

π2
.

Thus the condition number of AN goes to ∞ proportionally to
N2. So although increasing N should increase the accuracy of the
approximation to the solution u of equations (6.12) and (6.13), the
linear systemANx � y becomes increasing unstable and the solution
becomes more and more unreliable.

For the simple equations (6.12) and (6.13), we were able to
explicitly diagonalize the matrix AN arising in the finite difference
approximation. Partially this was due to the fact (see the remark at
the end of Exercise 6.2.6) that the operator L defined by Lu � −u′′
is translation invariant (as noted near the end of section 5.2, for
example). Consequently the matrix AN was close to circulant, in the
sense that AN is closely related to the circulant matrix BN , which
arises in the periodic formulation of the problem (Exercise 6.2.6).
This and a bit of luck enabled us to obtain the eigenvectors of AN .
More generally, any linear constant coefficient ordinary differential
operator, that is, an operator L of the form

(Lu)(t) � L(u)(t) �
N∑
j�0

bj
dj

dtj
u(t), (6.21)

where each bj is a constant, is translation invariant (Exercise 6.2.7).
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If the coefficients bj in equation (6.21) are allowed to vary with
t (such an operator is called a linear variable coefficient ordinary
differential operator), the operator L will not be translation invariant.
(For example, if R � td/dt, then R(u(t − s)) � tu′(t − s), whereas
(Ru)(t − s) � (t − s)u′(t − s). See Exercise 6.2.7 for the general
result.) For such an operator, even the periodic problem will not
be diagonalized by the Fourier system. When we look at the matrix
A arising in the finite difference approximation to the solution of
Lu � f on [0, 1] with the boundary conditions u(0) � u(1) � 0, A
will not be close to circulant (see Exercise 6.2.8 for an example),
so we cannot follow the methods applied to AN above. Even if A is
diagonalizable, which is not clear, there is little hope to explicitly
diagonalize A. We expect the condition number of A to be large
because that is the case even in the much simpler case of equations
(6.12) and (6.13).

An alternative approach using wavelets that includes the variable
coefficient case is considered in section 6.3. This approach leads to
linear systems with bounded condition numbers.

Exercises

6.2.1. Let f : [0, 1]→ C be a continuous function and let a, b ∈ C.
Suppose u0 : [0, 1] → C is a C2 function that satisfies
equations (6.12) and (6.13). Find a C2 function u (expressed
in terms of u0, a, and b) satisfying−u′′ � f on [0, 1], u(0) � a,
and u(1) � b. Hint: What equation does u − u0 satisfy?

6.2.2. Suppose f : [0, 1]→ C is a continuous function. Define

u(x) � −
∫ x

0

∫ t

0
f (s) ds dt + x

∫ 1

0

∫ t

0
f (s) ds dt,

for 0 ≤ x ≤ 1.
i. Prove that u is aC2 function that satisfies equations (6.12)

and (6.13).
ii. Prove uniqueness: u is the only C2 function satisfying

equations (6.12) and (6.13).
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6.2.3. Let AN be the (N − 1)× (N − 1) matrix in equations (6.18).
Prove that detAN � N for N ≥ 2. Hint: Use induction. Show
that detAN+1 � 2 detAN − detAN−1.

6.2.4. Prove that {e2πint}n∈Z is a complete orthonormal set in
L2([0, 1)). Hint: For completeness, extend f to be defined on
R with period 1, and apply Exercise 4.3.5 with a � 1/2. The
result for [−1/2, 1/2] gives the result for [0, 1] by translation.

6.2.5. Let f : R → C be a continuous function with period
1 : f (t + 1) � f (t) for all t ∈ R. The periodic formulation
of the problem represented by equations (6.12) and (6.13)
is to find a C2 function u : R → C that has period 1 and
satisfies −u′′ � f on [0, 1] and u(0) � 0.

i. Observe that a solution u to the periodic problem satisfies
equations (6.12) and (6.13).

ii. The periodic formulation above is not equivalent to
equations (6.12) and (6.13). For example, let f (x) �
sin πx. Show that u(x) � π−2 sin πx is C2 on [0, 1] and
satisfies equations (6.12) and (6.13), but does not have a
C2 1-periodic extension because the derivative of u from
the right at 0 does not agree with the derivative of u from
the left at 1. By part i and uniqueness (Exercise 6.2.2 (ii)),
this periodic problem has no solution.

iii. Prove that if the periodic problem has a solution u, then∫ 1
0 f (t) dt � 0.This is another way to see that the example

in part ii has no 1-periodic solution.

iv. Suppose the 1-periodic continuous function f satisfies∫ 1
0 f (t) dt � 0. Prove that u as defined in Exercise

6.2.2 has a 1-periodic extension that is a solution to
the periodic problem. Hint: One needs only to check
that the 1-periodic extension is C2 at the endpoints 0
and 1. Certainly u and u′′ � −f match up at 0 and 1.
The assumption

∫ 1
0 f (t) dt � 0 is required only when

checking u′.
v. Suppose

∫ 1
0 f (t) dt � 0. Then the periodic problem can

be solved formally by Fourier methods. Assume that f
can be represented by its Fourier series on [0, 1) (see
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Exercise 6.2.4):

f (t) �
∑

n∈Z,n 	�0

cne
2πint.

The constant term is c0 � (2π)−1
∫ 1

0 f (t) dt � 0 by
assumption. Show that

u(t) � a +
∑

n∈Z,n 	�0

cn

4π2n2
e2πint,

where the constant a is chosen so that u(0) � 0, is 1-
periodic and satisfies −u′′ � f at least formally (that is,
assuming that it is valid to take the second derivative
inside the sum on n).

6.2.6. In this problem we consider the finite difference method for
solving the periodic problem formulated in Exercise 6.2.5.
Because u and f are defined on all of R, we can extend the
definitions in equation (6.15) to all j ∈ Z. The 1-periodicity
of f and u implies that x and y are N -periodic, that is,
x, y ∈ �2(ZN ). Then equation (6.16) makes sense also for
j � 0, since x(−1) � x(N − 1). Similarly, when j � N − 1 in
equation (6.16), we have x(j + 1) � x(N) � x(0). If we write
the resulting system of equations for j � 0, 1, . . . , N − 1, we
obtain BNx � y, where BN is the matrix in equation (6.19);
x � (x(0), x(1), . . . , x(N − 1); y � (y(0), y(1), . . . , y(N − 1));
and the boundary condition is x(0) � 0.
i. Let w ∈ �2(ZN ) be defined by w � (1, 1, . . . , 1). Prove

that BNw � 0. This shows that BN is not invertible.
ii. Prove that ker BN is one-dimensional, hence is spanned

by w. Hint: If BNx � 0, then for each j, x(j + 1) − x(j) �
x(j)−x(j−1). Thus the values x(j) lie on a line. Then use
periodicity.

iii. Let w⊥ � {z ∈ CN : z ⊥ w}. Prove that range BN � w⊥.
Hint: By the rank theorem (Exercise 1.4.10) and part
ii, the dimension of the range of BN must be N − 1. If
BNx � y, for some x, show that

〈y,w〉 �
N−1∑
j�0

x(j − 1)− 2
N−1∑
j�0

x(j)+
N−1∑
j�0

x(j + 1) � 0.
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Remark: Thus BNx � y has a solution x if and only if∑N−1
j�0 y(j) � 〈y,w〉 � 0, which is the discrete analogue of

the compatibility condition
∫ 1

0 f (t) dt � 0 in Exercise 6.2.5
(iii).
iv. Let TBN

be the operator associated with the matrix BN ,
that is, TBN

(x) � BNx. Restrict TBN
to w⊥. Prove that

TBN
|w⊥ : w⊥ → w⊥ is 1− 1 and onto, hence invertible.

v. Let f : R → C be continuous, 1-periodic, and satisfy∫ 1
0 f (t) dt � 0 (a necessary condition for solvability of

the periodic problem, by Exercise 6.2.5). Define y �
(y(0), y(1), . . . , y(N − 1)) for y(j) as in equation (6.15).
Prove that

lim
N→+∞N

N−1∑
j�0

y(j) � 0.

Hint: Recognize N
∑N−1

j�0 y(j) as a Riemann sum.
Remark: Although it is not necessarily true that y ∈ w⊥,

part v shows that
∑N−1

j�0 y(j) approaches 0 relatively rapidly.
When trying to solve BNx � y, one can first approximate y

with

y# � y−
〈
y,

w

‖w‖
〉

w

‖w‖ ,

the orthogonal projection of y ontow⊥. By part iv, the system
BNx � y# has a unique solution in w⊥. This solution can be
modified by adding a vector in w⊥ � ker BN to satisfy the
boundary condition x(0) � 0.
vi. Because BN is circulant, it is diagonalized (Theorem

2.18) by the Fourier basis {F0, F1, . . . , FN−1} in Definition
2.7. This leads to a simple formula for the solution
to BNx � y#. Note that w � NF0, and hence that
w⊥ � span{F1, F2, . . . , FN−1}. Since y � ∑N−1

j�0 ŷ(j)Fj (by
equation (2.15)), we obtain y# � ∑N−1

j�1 ŷ(j)Fj. Let λj be
the eigenvalue of BN associated with the eigenvector Fj,
so that BNFj � λjFj. Note that for 1 ≤ j ≤ N − 1, we have
λj 	� 0, since Fj 	∈ ker BN (to be explicit, λj � 4 sin2(πj/N),
by Example 2.36). Show that the general solution to
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BNx � y# is

x � cF0 +
N−1∑
j�1

(
ŷ(j)
λj

)
Fj.

Determine c so that the initial condition x(0) � 0 is
satisfied.
Remark: Note the close analogy between the solution

of the continuous periodic problem in Exercise 6.2.5 and
its finite difference discretization in Exercise 6.2.6. The
underlying reason for this analogy is that the second-
derivative operator L (defined by Lu � u′′) is translation
invariant and hence is diagonalized by the Fourier system.
In the discrete setting, the corresponding feature is the fact
that the matrix BN is circulant (i.e., the associated operator
is translation invariant) and therefore is diagonalized by
the discrete Fourier transform. The imposition of boundary
conditions upsets the translation invariance of the problem,
but in the periodic formulation the effect is mild and can be
dealt with as we have indicated. The boundary conditions
(6.13) in the nonperiodic formulation are more difficult to
incorporate, as described in the text.

6.2.7. Let L be a (possibly variable coefficient) differential operator

L �
N∑
j�0

bj(t)
dj

dtj
,

defined for t ∈ R. Prove that L is translation invariant if
and only if each coefficient function bj(t) is constant. Hint:
Consider Lu, where u(t) � tm, 0 ≤ m ≤ N . Write out
(Lu)(t − s) and L(u(t − s)). Set s � t to deduce that b0 is
constant. Then cancel this term, divide by t− s, and iterate.

6.2.8. Consider the equation

tu′′(t)+ u(t) � f (t)

on [0, 1], with boundary conditions u(0) � u(1) � 0.
Discretize this equation on the partition tj � j/N, j �
0, 1, . . . , N − 1. Set x(j) � u(tj). Show that tju

′′(tj) is
approximately jN

[
x(j + 1)− 2x(j)+ x(j − 1)

]
. Set y(j) �
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f (j/N). As in the case of equations (6.12) and (6.13), obtain
the system of equations

jNx(j+1)+(1−2jN)x(j)+jNx(j−1) � y(j), for 1 ≤ j ≤ N−1.

Show that this can be written as Ax � y, where x �
(x(1), x(2), . . . , x(N − 1)); y � (y(0), y(1), . . . , y(N − 1)); and

A �




1− 2N N 0 0 · · · 0 0
2N 1− 4N 2N 0 · · · 0 0
0 3N 1− 6N 3N · · · 0 0
· · · · · · · ·
· · · · · · · ·


 .

6.3 Wavelet-Galerkin Methods for
Differential Equations

In this section we present another approach to the numerical
solution of ordinary differential equations, known as the Galerkin
method. For a certain class of equations, using wavelets in
conjunction with the Galerkin method gives the two primary
desired features for the associated linear system: sparseness and
low condition number.

We consider the class of ordinary differential equations (known
as Sturm-Liouville equations) of the form

Lu(t) � − d

dt

(
a(t)

du

dt

)
+ b(t)u(t) � f (t), for 0 ≤ t ≤ 1, (6.22)

with Dirichlet boundary conditions

u(0) � u(1) � 0.

Here a, b, and f are given real-valued functions and we wish to solve
for u. We assume f and b are continuous and a has a continuous
derivative on [0, 1] (this always means a one-sided derivative at the
endpoints). Note that L may be a variable coefficient differential
operator because a(t) and b(t) are not necessarily constant. We
assume the operator is uniformly elliptic, which means that there
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exist finite constants C1, C2, and C3 such that

0 < C1 ≤ a(t) ≤ C2 and 0 ≤ b(t) ≤ C3. (6.23)

for all t ∈ [0, 1]. By a result in the theory of ordinary differential
equations, there is a unique function u satisfying equation (6.22)
and the boundary conditions u(0) � u(1) � 0.

The simplest example is a(t) � 1 and b(t) � 0, which yields
equations (6.12) and (6.13). We will see the relevance of the
ellipticity assumption later. It may seem more natural to write out

− d

dt

(
a(t)

du

dt

)
� −a′(t)u′(t)− a(t)u′′(t),

by the product rule, but the formulation in equation (6.22) is more
convenient when we integrate by parts.

Note (compare with Exercises 4.3.5 and 6.2.4) that L2([0, 1]) is a
Hilbert space with inner product

〈f, g〉 �
∫ 1

0
f (t)g(t) dt.

For the Galerkin method, we suppose that {vj}j is a complete
orthonormal system for L2([0, 1]), and that every vj is C2 on [0, 1]
and satisfies

vj(0) � vj(1) � 0. (6.24)

We select some finite set N of indices j and consider the subspace

S � span{vj : j ∈ N}.
We look for an approximation to the solution u of equation (6.22) of
the form

uS �
∑
k∈�

xkvk ∈ S, (6.25)

where each xk is a scalar. Our criterion for determining the
coefficients xk is that uS should behave like the true solution u on
the subspace S, that is, that

〈LuS, vj〉 � 〈f, vj〉 for all j ∈ �. (6.26)

By linearity, it follows that

〈LuS, g〉 � 〈f, g〉 for all g ∈ S.
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Notice that the approximate solution uS automatically satisfies the
boundary conditions uS(0) � uS(1) � 0 because of equation (6.24).
It turns out that uS determined by equation (6.26) is the best
approximation in S to u, with respect to a certain natural norm (not
the L2 norm—see Exercise 6.3.1 (iii)).

If we substitute equation (6.25) in equation (6.26), we obtain〈
L

(∑
k∈�

xkvk

)
, vj

〉
� 〈f, vj〉, for all j ∈ N,

or ∑
k∈�
〈Lvk, vj〉xk � 〈f, vj〉, for all j ∈ N. (6.27)

Let x denote the vector (xk)k∈N, and let y be the vector (yk)k∈N, where
yk � 〈f, vk〉. Let A be the matrix with rows and columns indexed by
N, that is, A � [aj,k]j,k∈N, where

aj,k � 〈Lvk, vj〉. (6.28)

Thus, equation (6.27) is the linear system of equations∑
k∈N

aj,kxk � yj, for all j ∈ N,

or

Ax � y. (6.29)

In the Galerkin method, for each subset N we obtain an approxima-
tion uS ∈ S to u, by solving the linear system (6.29) for x and using
these components to determine uS by equation (6.25). We expect
that as we increase our set N is some systematic way, our approx-
imations uS should converge to the actual solution u (see Exercise
6.3.1 (iv)).

Our main concern is the nature of the linear system (6.29) that
results from choosing a wavelet basis for the Galerkin method as
opposed to some other basis, for example, some Fourier basis. For
numerical purposes, there are two properties that we would like the
matrix A in the linear system (6.29) to have. First, as discussed in
section 6.1, we would like A to have a small condition number, to
obtain stability of the solution under small perturbations in the data.
Second, for performing calculations with A quickly, we would like
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A to be sparse, which means that A should have a high proportion of
entries that are 0. The best case is when A is diagonal, but the next
best case is when A is sparse.

In this text we have not discussed wavelets on the interval [0, 1]. It
would take us too far afield to do so, so we will assume the following
facts. There is a way of modifying the wavelet system for L2(R) so
as to obtain a complete orthonormal system

{ψj,k}(j,k)∈O (6.30)

for L2([0, 1]). The set O is a certain subset of Z × Z that we do not
specify. The functions ψj,k are not exactly the same functions as in a
wavelet basis for L2(R), but they are similar. In particular, ψj,k has a
scale of about 2−j, ψj,k is concentrated near the point 2−jk, and ψj,k is
0 outside an interval centered at 2−jk of length proportional to 2−j.
Wavelets concentrated well into the interior of [0, 1] are nearly the
same as usual wavelets, but those concentrated near the boundary
points are substantially modified. (In particular, they are no longer
all translates and dilates of the original mother wavelet ψ.) For each
(j, k) ∈ N, ψj,k is C2 and satisfies the boundary conditions

ψj,k(0) � ψj,k(1) � 0.

The wavelet system {ψj,k}(j,k)∈O also satisfies the following key
estimate: There exist constants C4, C5 > 0 such that for all functions
g of the form

g �
∑
j,k

cj,kψj,k (6.31)

where the sum is finite, we have

C4

∑
j,k

22j|cj,k|2 ≤
∫ 1

0
|g′(t)|2 dt ≤ C5

∑
j,k

22j|cj,k|2. (6.32)

An estimate of this form is called a norm equivalence; it states that up
to the two constants, the quantities

∑
j,k 22j|cj,k|2 and

∫ 1
0 |g′(t)|2 dt are

equivalent. Such estimates show up more and more in analysis at
an advanced level. Although we do not prove estimate (6.32) here,
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we can get a general sense of why it might be true. We know that∫ 1

0
|g(t)|2 dt � ‖g‖2 �

∑
j,k

|cj,k|2, (6.33)

since g �∑ cj,kψj,k and {ψj,k}(j,k)∈N is a complete orthonormal system
in L2([0, 1]). Now consider g′ instead of g. Recall that for standard
wavelets in L2(R),

ψj,k(t) � 2j/2ψ(2jt − k).

By the chain rule,

(ψj,k)′(t) � 2j2j/2ψ′(2jt − k) � 2j(ψ′)j,k. (6.34)

These wavelets on [0, 1] are not standard wavelets on R, but their
behavior is similar. In equation (6.34), taking the derivative gives us
a factor of 2j and changes ψ to ψ′. With a little leap of faith, we can
believe that ψ′ behaves like ψ (in particular they have the same
scale), so roughly speaking,

∑
cj,k(ψj,k)′ behaves like

∑
cj,k2jψj,k.

Therefore, identity (6.33) suggests estimate (6.32).
Estimate (6.32) is a good example of what was meant at the end

of chapter 5 when we said that it is important to have wavelets on
R, not just on Z. This estimate shows that wavelets are compatible
with the continuous structure on R.

The notation used for applying the Galerkin method with these
wavelets is somewhat confusing due to the fact that the wavelets are
indexed by two integers. Thus for wavelets we write equation (6.25)
as

uS �
∑

(j,k)∈N
xj,kψj,k,

and equation (6.27) as∑
(j,k)∈�

〈Lψj,k, ψ�,m〉xj,k � 〈f, ψ�,m〉 for all (�,m) ∈ N, (6.35)

for some finite set of indices N. We can still regard this as a matrix
equationAx � y, where the vectors x � (xj,k)(j,k)∈N and y � (yj,k)(j,k)∈N
are indexed by the pairs (j, k) ∈ N, and the matrix

A � [a�,m;j,k](�,m),(j,k)∈N
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defined by

a�,m;j,k � 〈Lψj,k, ψ�,m〉 (6.36)

has its rows indexed by the pairs (�,m) ∈ N and its columns indexed
by the pairs (j, k) ∈ N. Because N is a finite set, this could all be
reindexed to have the usual form, but there is no natural reindexing,
and the traditional wavelet indexing is useful.

As suggested, we would like A to be sparse and have a low
condition number. Actually A itself does not have a low condition
number, but we can replace the system Ax � y by an equivalent
system Mz � v, for which the new matrix M has the desired
properties. To see this, first define the diagonal matrix D �
[d�,m;j,k](�,m),(j,k)∈N by

d�,m;j,k �
{

2j if (�,m) � (j, k)
0 if (�,m) 	� (j, k).

(6.37)

Define M � [m�,m;j,k](�,m),(j,k)∈N by

M � D−1AD−1. (6.38)

By writing this out, we see that

m�,m;j,k � 2−j−�a�,m;j,k � 2−j−�〈Lψj,k, ψ�,m〉. (6.39)

The system Ax � y is equivalent to

D−1AD−1Dx � D−1y,

or, setting z � Dx and v � D−1y,

Mz � v. (6.40)

The norm equivalence (6.32) has the consequence that the
system (6.40) is well conditioned, as we see in Theorem 6.7. The
process (when possible) of changing an ill-conditioned system into
a well-conditioned system is a variation on the preconditioning
process described at the end of section 6.1.

Before stating and proving Theorem 6.7, it is useful to observe
the following lemma. It explains the need for the uniform ellipticity
assumption (6.23).

Lemma 6.6 Let L be a uniformly elliptic Sturm-Liouville operator
(i.e., an operator as defined in equation (6.22) satisfying relation (6.23)).
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Suppose g ∈ L2([0, 1]) is C2 on [0, 1] and satisfies g(0) � g(1) � 0. Then

C1

∫ 1

0
|g′(t)|2 dt ≤ 〈Lg, g〉 ≤ (C2 + C3)

∫ 1

0
|g′(t)|2 dt, (6.41)

where C1, C2, and C3 are the constants in relation (6.23).

Proof
Note that

〈−(ag′)′, g〉 �
∫ 1

0
−(ag′)′(t)g(t) dt

�
∫ 1

0
a(t)g′(t)g′(t) dt � 〈ag′, g′〉,

by integration by parts. (The boundary term is 0 because g(0) �
g(1) � 0.) Therefore,

〈Lg, g〉 � 〈−(ag′)′ + bg, g〉 � 〈ag′, g′〉 + 〈bg, g〉.
Hence, by relation (6.23),

C1

∫ 1

0
|g′(t)|2 dt ≤

∫ 1

0
a(t)|g′(t)|2 dt �

∫ 1

0
a(t)g′(t)g′(t) dt � 〈ag′, g′〉.

(6.42)
Also by relation (6.23),

0 ≤
∫ 1

0
b(t)|g(t)|2 dt � 〈bg, g〉.

Adding these two inequalities gives

C1

∫ 1

0
|g′(t)|2 dt ≤ 〈Lg, g〉,

which is the left half of relation (6.41). For the other half, note that
by relation (6.23),

〈ag′, g′〉 �
∫ 1

0
a(t)|g′(t)|2 dt ≤ C2

∫ 1

0
|g′(t)|2 dt. (6.43)

Also note that because g(0) � 0,

g(t) �
∫ t

0
g′(s) ds,
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by the fundamental theorem of calculus. Hence by the Cauchy-
Schwarz inequality (5.3) (applied to the functions g′χ[0,t] and χ[0,t],
with χ as in Definition 5.43),

|g(t)|2 ≤
(∫ t

0
|g′(s)|2 ds

)(∫ t

0
1 ds
)
≤
∫ 1

0
|g′(s)|2 ds

for every t ∈ [0, 1]. Therefore∫ 1

0
|g(t)|2 dt ≤

∫ 1

0
|g′(s)|2 ds

∫ 1

0
dt �

∫ 1

0
|g′(s)|2 ds. (6.44)

Hence, by (6.23),

〈bg, g〉 �
∫ 1

0
b(t)g(t)g(t) dt ≤ C3

∫ 1

0
|g(t)|2 dt ≤ C3

∫ 1

0
|g′(t)|2 dt.

This result and relation (6.43) give the right side of relation
(6.41).

Theorem 6.7 Let L be a uniformly elliptic Sturm-Liouville operator
(an operator as defined in equation (6.22) satisfying relation (6.23)). Let
{ψj,k}(j,k)∈O be a complete orthonormal system for L2([0, 1]) such that
each ψj,k is C2, satisfies ψj,k(0) � ψj,k(1) � 0, and such that the norm
equivalence (6.32) holds. LetN be a finite subset of O. LetM be the matrix
defined in equation (6.38). Then the condition number of M satisfies

C#(M) ≤ (C2 + C3)C5

C1C4
, (6.45)

for any finite set N, where C1, C2, and C3 are the constants in relation
(6.23), and C4 and C5 are the constants in relation (6.32).

Proof
Let z � (zj,k)(j,k)∈N be any vector with ‖z‖ � 1. For D as in equation
(6.37), let w � D−1z; that is, w � (wj,k)(j,k)∈N, where

wj,k � 2−jzj,k.

Define

g �
∑

(j,k)∈N
wj,kψj,k.
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Then by equation (6.39),

〈Mz, z〉 �
∑

(�,m)∈N
(Mz)�,mz�,m

�
∑

(�,m)∈N

∑
(j,k)∈N

〈Lψj,k, ψ�,m〉2−jzj,k2−�z�,m

�
〈
L

( ∑
(j,k)∈N

wj,kψj,k

)
,
∑

(�,m)∈N
w�,mψ�,m

〉
� 〈Lg, g〉,

since 2−jzj,k � wj,k and 2−�z�,m � w�,m. Applying Lemma 6.6 and
relation (6.32) gives

〈Mz, z〉 � 〈Lg, g〉 ≤ (C2+C3)
∫ 1

0
|g′(t)|2 dt ≤ (C2+C3)C5

∑
(j,k)∈N

22j|wj,k|2,

and

〈Mz, z〉 � 〈Lg, g〉 ≥ C1

∫ 1

0
|g′(t)|2 dt ≥ C1C4

∑
(j,k)∈N

22j|wj,k|2.

However, ∑
(j,k)∈N

22j|wj,k|2 �
∑

(j,k)∈N
|zj,k|2 � ‖z‖2 � 1.

So for any z with ‖z‖ � 1,

C1C4 ≤ 〈Mz, z〉 ≤ (C2 + C3)C5.

If λ is an eigenvalue of M, we can normalize the associated
eigenvector z so that ‖z‖ � 1, to obtain

〈Mz, z〉 � 〈λz, z〉 � λ〈z, z〉 � λ‖z‖2 � λ.

Therefore, every eigenvalue λ of M satisfies

C1C4 ≤ λ ≤ (C2 + C3)C5. (6.46)

Note that H is Hermitian (Exercise 6.3.2), and hence normal, so
by Lemma 6.4, C#(M) is the ratio of the largest eigenvalue to the
smallest (which are all positive, by relation (6.46)). So by relation
(6.46), condition (6.45) holds.

Thus the matrix in the preconditioned system (6.40) has a
condition number bounded independently of the set N. So as we
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increase N to approximate our solution with more accuracy, the
condition number stays bounded. This is much better than the finite
difference case in section 6.2 in which the condition number grows
as N2. Thus, with the Galerkin method using wavelets on [0, 1],
we do not have to worry about measurement or round-off errors
invalidating our solution as we aim for higher and higher accuracy.

There are other complete orthonormal systems for which a
similar preconditioning can be done to yield a bounded condition
number. The Fourier system is an example. We cannot use the
functions e2πint because they don’t satisfy the boundary conditions,
but we can use a basis of sine functions that vanish at the endpoints
(Exercise 6.3.3).

So although we see the advantage of the Galerkin method over
finite differences, the advantage of wavelets over the Fourier system
is still not clear. To see this, we should consider the other feature
of the matrix M that is desirable: we would like M to be sparse.
We can see from equation (6.39) that this is the case, because
of the localization of the wavelets. Namely, ψj,k is 0 outside an
interval of length c2−j around the point 2−jk, for some constant c
(depending on the choice of wavelet system). Because L involves
only differentiation and multiplication by another function, it does
not change this localization property. So Lψj,k is 0 outside this
interval also. Similarly, ψ�,m is 0 outside an interval of length c2−�

around the point 2−�m. As j and � get large, fewer and fewer of these
intervals intersect, so more and more of the matrix entries

m�,m;j,k � 2−j−�〈Lψj,k, ψ�,m〉 � 2−j−�
∫ 1

0
Lψj,k(t)ψ�,m(t) dt

are 0. So M is sparse, which makes computation with it easier.
The basic reason for this sparseness is the compact support of the
wavelets.

For the Fourier system in Exercise 6.3.3, the associated matrix is
not sparse. We have terms of the form

〈L(
√

2 sin(2πnt)),
√

2 sin(2πmt)〉.
After writing out L and integrating by parts we obtain the expressions

〈a(t)2
√

2πn cos(2πnt), 2
√

2πm cos(2πmt)〉
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� 8π2nm

∫ 1

0
a(t) cos(2πnt) cos(2πmt) dt (6.47)

and

〈b(t)
√

2 sin(2πnt),
√

2 sin(2πmt)〉 � 2
∫ 1

0
b(t) sin(2πnt) sin(2πmt) dt.

(6.48)
When a and b are constant, the orthonormality of the Fourier system
makes these terms 0 unless m � n, so the matrix is diagonal. This
orthogonality is a precise but delicate property. Multiplying by a(t)
or b(t) destroys this, and the result is a matrix that is not necessarily
close to diagonal, or even sparse. By integrating by parts in equations
(6.47) and (6.48), we can show that these terms decay on the order
of |n − m|−k, where k is determined by the number of derivatives
that a and b have. Especially for relatively nonsmooth functions a

and b, this is a slow decay rate in comparison to the sparseness of
the wavelet matrix M.

The matrices that we obtain using finite differences, as in section
6.2, are sparse. However, they have large condition numbers. Using
the Galerkin method with the Fourier system, we can obtain a
bounded condition number, but the matrix is no longer sparse.
Using the Galerkin method with a wavelet system, we obtain both
advantages.

This demonstrates the basic advance represented by wavelet
theory. The Fourier system diagonalizes translation-invariant linear
operators, but it does not necessarily come close to diagonalizing
non–translation-invariant operators such as variable coefficient
differentiable operators. The wavelet system is more crude than
the Fourier system in the sense that there are few, if any, naturally
occuring operators that are diagonalized by a wavelet basis. But for a
very large class of operators, for instance the variable coefficient
differential operators considered here, the matrices representing
these operators in the wavelet system are sparse, which we regard as
being nearly diagonal. Thus, although the wavelet system does not
exactly diagonalize much of anything, it nearly diagonalizes a very
large class of operators, a much larger class than the translation-
invariant operators, which are perfectly diagonalized by the Fourier
system.
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The fact that a wavelet system nearly diagonalizes a very broad
class of operators is one of the key properties of wavelets. We have
seen that this property is important in applications to numerical
differential equations. Another key property of wavelets is their
combination of spatial and frequency localization, which is used in
signal analysis applications such as image compression, as we saw in
chapter 3. A third key property of wavelets is that norm equivalences
for wavelets such as relation (6.32) hold for a much larger class of
function spaces than for the Fourier system. This topic, which is
beyond the scope of this text (see, e.g., Hernández and Weiss (1996))
is important in many applications of wavelets in pure mathematics.

Exercises

6.3.1. Let C2
0([0, 1]) denote the set of all complex-valued, continu-

ous functions f on [0, 1] such that f (0) � f (1) � 0, and f has
two continuous derivatives on [0, 1].
i. Prove that C2

0([0, 1]) is a vector space under the usual
addition and scalar multiplication of functions.

ii. For f, g ∈ C2
0([0, 1]), let

〈f, g〉0 � 〈L(f ), g〉 �
∫ 1

0

[
(−af ′)′(t)+ bf (t))

]
g(t) dt,

for a and b as in relations (6.22) and (6.23). Prove that
〈·, ·〉0 is an inner product onC2

0([0, 1]). Hint: All properties
are clear except I4 in Definition 1.86. To prove this, use
relation (6.23) and integration by parts, as in the proof
of Lemma 6.6.

Remark: Unfortunately, C2
0([0, 1]) is not complete under the

inner product 〈·, ·〉0, because a sequence of functions in
C2

0([0, 1]) can be Cauchy but the apparent limit function may
not belong to C2

0([0, 1]). However, there is a space H1
0 (the

completion ofC2
0([0, 1]) in this norm) containingC2

0([0, 1]) and
a way of extending the inner product 〈·, ·〉0 to H1

0 so that H1
0
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is complete with this inner product. Also, H1
0 is a subspace

of L2([0, 1]).
iii. Assume the previous remark. Suppose {vj}∞j�1 is a

complete orthonormal set in L2([0, 1]) such that each
vj belongs to C2

0([0, 1]). For some positive integer N ,
let N � {1, 2, . . . , N} and set S � span{v1, v2, . . . , vN }.
Suppose Lu � f (where L is as in equation (6.22)) with
u ∈ H1

0 . Suppose uS ∈ S and uS satisfies equation (6.26).
Prove that uS is the orthogonal projection in the space
H1

0 of u onto S. Hint: The orthogonal projection PSu is
characterized by the properties that PSu ∈ S and u− PSu

is orthogonal to every vector in S (Exercise 1.6.8).
Remark: By the best approximation property (Lemma 1.98
v), this means that the Galerkin approximation uS is the
element of S that is closest to u in the H1

0 norm.
iv. Let ‖ · ‖0 be the norm induced by the inner product
〈·, ·〉0 (as in Definition 1.90). (By relation (6.41), ‖g‖2 is
equivalent to

∫ 1
0 |g′(t)|2 dt.) Suppose there exist positive

constants C1 and C2 and a scalar sequence {λj}∞j�1 such
that for all functions g �∑∞j�1 αjvj ∈ H1

0 (here each αj is
a scalar),

C1

∞∑
j�1

|λjαj|2 ≤ ‖g‖20 ≤ C2

∞∑
j�1

|λjαj|2

(for example, relation (6.32)). For N ∈ N, let uN be the
Galerkin approximation to u for N � {1, 2, . . . , N}, as in
part iii. Prove that

‖u − uN‖20 ≤ C2

∞∑
j�N+1

|λjβj|2,

where u �∑∞j�1 βjvj. Deduce that the sequence {uN }∞N�1
converges to u in the space H1

0 as N →∞.
6.3.2. Define M � [m�,m;j,k](�,m),(j,k)∈N by equation (6.39). Prove that

M is Hermitian. Hint: Use the form (6.22) of L, and integrate
by parts twice in equation (6.39). Recall that a and b are
real-valued.
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6.3.3. For n ∈ N, define sn ∈ L2([0, 1)) by

sn(t) �
√

2 sin(πnt).

i. Prove that {sn}n∈N is a complete orthonormal set in
L2([0, 1)). Note that sn(0) � sn(1) � 0 for every n. Hint:
Apply a rescaling argument to the result in Exercise 4.3.7
(i).

ii. For any g of the form
∑

cnsn, where the sum is finite,
prove that

‖g′‖2 � π2
∑

n2|cn|2.
Hint: Prove that the set {√2 cos(πnt)}∞n�1 is orthonormal
in L2([0, 1)). This can be done directly, or by rescaling
Exercise 4.3.7 (ii).

iii. By part i, we can apply the Galerkin method with the
complete orthonormal system {sn}n∈N and the finite set
NN � {1, 2, . . . , N} ⊆ N. Define a matrix A � [aj,k]Nj,k�1 by
setting

aj,k � 〈Lsk, sj〉,
as in equation (6.28). The preconditioning matrix will be
the diagonal matrix D � [dj,k]Nj,k�1, where djj � πj if 1 ≤
j ≤ N , and djk � 0 if j 	� k. Define M � D−1AD−1. The
Galerkin approximation to the the solution of equation
(6.22) is obtained by solving Mz � v, with z and v as in
the text. Prove that

C#(M) ≤ C2 + C3

C1
,

for C1, C2, C3 as in relation (6.23).
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d’opérateurs, Séminaire Bourbaki 662 (1985–86), 1–15.



Bibliography 489

Meyer, Y., Wavelets and Operators, Cambridge University Press,
Cambridge, 1993, English translation of Ondelettes et Opérateurs,
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Daubechies’s wavelets on Z, 335
Daubechies’s wavelets on ZN ,

237, 243
DCT, 412, 414, 417, 419, 425, 450
decimation, 183
delta function, 136, 170, 305,

379, 430
density property for an MRA,
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Fatou’s lemma for sequences,

270
FBI fingerprint archive, 1
FFT, 151, 155, 156
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Fourier inversion formula for
the Fourier transform,
363, 365, 366, 373–375,
383, 408, 431, 449

Fourier inversion formula for
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Fourier multiplier operator on
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Fourier multiplier operators in
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Fourier series, 286, 291, 396,
457, 466

Fourier series, pointwise
convergence, 297

Fourier series in real notation,
290, 293, 296

Fourier transform on �2(Z), 299,
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Fourier transform on L1(R), 363
Fourier transform on L2(R), 362,

371, 373
frequency, 113, 118, 139, 167,

176, 197, 231, 449
frequency, pure, 113, 116, 287,

300, 374, 375
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Fubini’s theorem, 286, 365, 369
functional analysis, 93
fundamental theorem of

algebra, 26, 69, 99
fundamental theorem of

calculus, 285, 355, 477

Galerkin method, 470–472, 482
Galerkin method with the

Fourier system, 479, 480,
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Galerkin method with wavelets,
474, 477, 479, 480

Galois theory, 24
Gauss, 26
Gaussian function, 363
geometric multiplicity, 59, 61,

62, 66, 70, 78
geometric series, 18, 27, 404
geometric series, convergence

of, 18
geometric series, partial sum of,
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Gram-Schmidt procedure, 87
graphic equalizer, 139
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308

Haar basis for �2(ZN ), 229
Haar basis for �2(ZN ), first stage,
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Haar MRA, 385, 392, 398, 420
Haar system for �2(Z), 332, 393
Haar system for L2(R), 393, 398,

420, 423, 428, 436
Hardy spaces, 428
Heine-Borel theorem, 367
Hermitian matrix, 93
high pass filter, 175
Hilbert space, 95, 272, 282, 350,
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identity matrix, 46
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identity transformation, 49
IDFT, 109, 160
image compression, 3, 166, 256
image processing, medical, 166
imaginary axis, 12
imaginary part of a complex

number, 12
impulse response, 137
infinite product, convergence

of, 423
injective, 45
inner product, complex, 80
inner product, real, 81
inner product on �2(Z), 266, 269
inner product on �2(ZN ), 102
inner product on L2([−π, π)),

280, 292
inner product on L2(R), 350
inner product space, 95, 96
inner product space, complete,

272, 481
inner product space, infinite

dimensional, 271
integers, 7
integrable function, 280, 351
integrable function, locally, 356,

360
Internet, 3, 256
inverse discrete Fourier

transform, 160
inverse discrete Fourier

transform, 109
inverse discrete Fourier

transform, matrix
representation, 110

inverse Fourier transform on
L2([−π, π)), 299

inverse Fourier transform on
L2(R), 371, 408

inverse Fourier transform on
L1(R), 363, 367

invertible linear transformation,
46, 47, 54

invertible matrix, 47, 48, 55
isomorphism, 10
isomorphism, vector space, 37

Jordan canonical form, 76
JPEG, 3, 259

kernel of a linear
transformation,
46, 54

Laurent series, 309
least upper bound property, 9
Lebesgue integral, 279, 281, 282,

349, 350
Lebesgue point, 356, 360, 361,
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limit points, 279
linear combination, 32, 33
linear system, stability of, 455,

456
linear transformation, 40, 42,

43, 52, 288
linear transformation, bounded,

289, 453
linear transformation, operator

norm, 289
linear transformation,

translation invariant,
129, 130, 133, 136, 137,
141, 146–148, 150, 160,
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165, 289, 291, 296, 304,
305, 375, 464, 469

linear transformation,
translation invariant, in
two dimensions, 149

linearly dependent set, 33
linearly independent set, 33, 54,

62, 84
Liouville’s theorem, 26
Lipschitz condition, 405, 406,

413, 415, 420, 440, 448,
449

localization, frequency, 167,
170, 187, 196

localization, spatial, 165, 166,
179, 187, 196, 232, 259,
479

Los Alamos National Laboratory,
4

low pass filter, 175

magnitude of a complex
number, 12

magnitude of a real number, 9
Mallat’s theorem, 390
MatLab, 237, 343
matrices, addition of, 41
matrices, multiplication of, 41
matrix, 41
matrix, circulant, 131–133, 135,

141, 146, 147, 161, 461,
462, 468, 469

matrix, Hermitian, 461, 482
matrix, normal, 461
matrix, sparse, 470, 475, 479,

480
matrix, symmetric, 461

matrix as a linear
transformation,
42

matrix representing a linear
transformation, 43, 50,
58, 64, 92

mean value theorem, 405
measurable function, 281
measure, 354, 429–433
measure, Fourier transform of,

431
metric, 15
metric space, 15, 95, 267
Meyer’s wavelets, 427, 428
modulus of a complex number,
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monotone convergence

theorem for sequences,
269

mother wavelet, 171, 175, 328,
381, 429, 436, 450

mother wavelet, computation
of, 445

mother wavelet, support of, 430
MRA, 385, 388, 393, 396–399,

409, 420, 421, 426, 428,
429, 436

multiplication of complex
numbers, 10

multiplication of complex
numbers, geometric
interpretation, 23

multiplicative function, 298,
362, 376

multiplicity, algebraic, 70
multiplicity, geometric, 59
multirate signal analysis, 183
multiresolution analysis, 385,

388, 390, 393, 396–399,
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natural numbers, 7
norm, �1, 302
norm, L1, 351
norm, operator, 453
norm convergence, 271, 292
norm equivalence, 473, 475
norm in �2(Z), 266
norm in �2(ZN ), 102
norm in L2([−π, π)), 280
norm on L2(R), 350
norm of a vector, 82
normal linear transformation,

97, 98
normal matrix, 92–94, 99, 148
normed vector space, 95, 96, 267

oil prospecting, 166
one-to-one, 45, 54, 100, 317
onto, 45, 54, 100, 317
open set in C, 19
ordered field, 8, 9, 15
orthogonal direct sum, 212, 323
orthogonal matrix, 90
orthogonal projection, 85, 97,
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392, 393, 397, 416, 418,
450, 468, 482

orthogonal projection in a
Hilbert space, 276

orthogonal set, 84
orthogonality, 84
orthonormal basis, 88, 90, 93,

170, 275

orthonormal basis for �2(ZN ),
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orthonormal set, 84, 272
orthonormal set, complete, 274,

275, 391
orthonormal set, complete, in
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orthonormal system, complete,

274, 275

parallelizable computation, 163
parallelogram identity, 96
Parseval’s relation for the DFT,
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Parseval’s relation in a finite

dimensional vector
space, 88

Parseval’s relation for Fourier
series, 287

Parseval’s relation for the
Fourier transform, 368,
371, 418, 431, 433

Parseval’s relation in a Hilbert
space, 276

Parseval’s relation for �2(Z), 300
partial reconstruction, 340
partial sum of a Fourier series,

286, 287, 297
partial sum of a series, 17
partial sums, symmetric, 266
perfect reconstruction, 184, 198,
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perfect reconstruction,
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periodic extension in
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Plancherel’s formula in a finite
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Plancherel’s formula for Fourier
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Plancherel’s formula for the
Fourier transform, 368,
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Plancherel’s formula in a
Hilbert space, 276

Plancherel’s formula for �2(Z),
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pointwise convergence, 271,

288, 292
pointwise convergence of

Fourier series, 297
polar coordinates, 364, 376
polar representation of complex

numbers, 22
polarization identity, 96
polynomial, 25, 37
polynomial, characteristic, 68
polynomial, factor of, 29
polynomial, factor theorem, 29
polynomial, leading coefficient

of, 25
polynomial, root of, 25, 29
polynomial multiplication and
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preconditioning matrix, 475,
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principal value, 373
product, infinite, 401, 404

product, infinite, convergence
of, 404

product wavelets, first stage, 193
Pythagorean theorem, 84

quantum mechanics, 79

radius of convergence, 19, 27
range of a linear transformation,

46, 48, 54
rank of a matrix, 48, 54, 100
rank theorem, 54, 467
ratio test, 27
rational numbers, 9
real axis, 12
real numbers, 31
real part of a complex number,

12
real Shannon basis for �2(ZN ),

231–234, 243, 247
real Shannon basis for �2(ZN ),

first stage, 178, 231
reconstruction, partial, 228, 230,

231, 234
reconstruction phase, 199, 201,

207, 208, 221, 312
reconstruction phase, fast

computation, 220
refinement equation, 387
repeated filters, 227, 229, 327,

328
resolution, 230, 335
Riemann integral, 279, 282
Riesz lemma, 340
roots of unity, 25
row space of a matrix, 99
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sampling theorem, Shannon,
394

scalar multiplication, 30
scalar multiplication of

functions, 32, 52, 280, 350
scalars, 30
scaling equation, 387, 399, 401,

406, 408, 409, 420, 426
scaling equation, solution of,

400, 401
scaling function, 385, 387, 388,

390, 397, 398, 420, 421,
436, 441, 442, 445, 450

scaling function, computation
of, 445

scaling function coefficients,
442

scaling function coefficients,
approximation of, 442

scaling identity, 426
scaling relation, 387, 399, 406,

408, 409, 420
scaling sequence, 387, 388, 390,

398, 405, 421, 429, 436,
442, 445, 450

separable Hilbert space, 276
sequence, square-summable,

265, 266
sequence, summable, 301
sequence of complex numbers,

101
sequence of real numbers, 9
series of complex numbers, 16
Shannon basis for �2(ZN ), 230
Shannon basis for �2(ZN ), first

stage, 176, 230
Shannon sampling theorem,

177, 394, 427
Shannon wavelets for �2(ZN ),

first stage, 197

Shannon wavelets for L2(R),
427, 428

signal, 128
signal, audio, 288, 395
signal analysis, multirate, 183
similar matrices, 51, 57, 61, 76
similarity invariant, 61, 70, 76,

78
Simon, 256, 260
simultaneous diagonalizability,

79
sine of a complex number, 19
Sjöblom, Lena, 260, 262
space/frequency analysis, 168,

234, 251
span, 38, 54
sparse matrix, 470, 473
spatial localization, 165, 179,

187, 232, 259
spectral theorem for matrices,

93, 454
spectrum of a linear

transformation, 93
square-integrable function, 279,

349
stability of a linear system, 455,

456
standard basis, 34, 61, 92, 102,

131, 167
step function, 368, 378
Strömberg’s wavelets, 429
Sturm-Liouville equation, 470
Sturm-Liouville operator,

uniformly elliptic, 471,
475, 477

subband coding, 183
subspace of a vector space, 37,

54
support, compact, 367, 368, 377,

378, 380, 429, 430, 433
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support of a function, 367
support of a measure, 431
surjective, 45
symmetric matrix, 93
symmetric partial sum, 272
synthesis phase, 199, 314
system, 128, 137
system matrix, 173, 178, 185,

198, 200, 219, 227, 312,
316, 321, 325, 326, 330,
403

telescoping sum, 18
time/frequency analysis, 168
Tonelli’s theorem, 296
translation, circular, 120, 169
translation and the DFT, 120
translation in �2(Z), 304
translation in �2(ZN ), 119, 129,

169
translation in L2([−π, π)), 289
translation in L2(R), 353, 374,

380, 381
translation invariance, 129
transpose, 89, 100
transpose, conjugate, 89
triangle inequality in C, 13, 15
triangle inequality in an inner

product space, 83
triangle inequality in �2(Z), 267
triangle inequality in

L2([−π, π)), 280
triangle inequality in L2(R),

350, 417
triangle inequality in a metric

space, 15
triangle inequality in R, 9
trigonometric identities, 21

trigonometric polynomial, 282,
284, 430, 433

trigonometric system, 282
trigonometric system,

completeness of, 286
trivial intersection property for

an MRA, 385, 415

uniqueness for Fourier series,
285, 295

uniqueness for the Fourier
transform, 366

unit impulse, 136
unitarily diagonalizable, 92
unitarily similar, 92
unitary matrix, 90, 92, 94, 96,

99, 173, 180
upsampling, 184, 311, 318, 328,

438, 442
upsampling, two-dimensional,

195

vector space, 29, 30
video telephones, 166

wavelet, father, 171, 175, 328,
385, 436

wavelet, father, computation of,
445

wavelet, father, support of, 434
wavelet, mean zero property,

403
wavelet, mother, 171, 175, 328,

429, 450
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wavelet, mother, computation
of, 445

wavelet, mother, support of, 430
wavelet bases for �2(ZN ), first

stage, parameterization
of, 190

wavelet basis for �2(ZN ),
pth-stage, 227

wavelet basis for �2(ZN ),
Daubechies’s, 237, 243,
247

wavelet basis for �2(ZN ), first
stage, 171, 180, 196, 316

wavelet basis for �2(ZN ), first
stage, criterion for, 173

wavelet basis for �2(ZN ),
periodized, 315

wavelet basis for �2(ZN ), pth

stage, 209, 214, 216, 226
wavelet basis, first stage,

two-dimensional, 192
wavelet basis, two-dimensional,

225
wavelet coefficients, fast

computation of, 215, 216,
224, 436, 441, 444

wavelet compression, 4
wavelet filter sequence, 199,

216, 218, 226
wavelet filter sequence,

two-dimensional, 226
wavelet generators, 171
wavelet identity, 381

wavelet identity, continuous,
383

wavelet packets, 197
wavelet recipe, 216
wavelet system for �2(Z),

Daubechies’s, 335
wavelet system for �2(Z), first

stage, 311, 315, 330, 388,
402

wavelet system for �2(Z),
homogeneous, 326, 327

wavelet system for �2(Z), pth

stage, 325, 327
wavelet system for L2(R), 381,

391, 398, 429
wavelet system for L2(R),

Daubechies’s, 434
wavelet system for L2(R),

inhomogeneous, 398
wavelet system for L2(R),

Meyer’s, 427
wavelet system for L2(R),

Strömberg’s, 429
wavelet transform, 381
wavelets, biorthogonal, 185
wavelets, Daubechies’s,

smoothness of, 436, 449
wavelets on the interval, 473,

474

Zhang, Simon, 256, 260
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