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Preface

There is at present a growing body of opinion that in the decades ahead
discrete mathematics (that is, “noncontinuous mathematics’’), and therefore
parts of applicable modern algebra, will be of increasing importance. Cer-
tainly, one reason for this opinion is the rapid development of computer
science, and the use of discrete mathematics as one of its major tools.

The purpose of this book is to convey to graduate students or to final-year
undergraduate students the fact that the abstract algebra encountered pre-
viously in a first algebra course can be used in many areas of applied
mathematics. It is often the case that students who have studied mathematics
go into postgraduate work without any knowledge of the applicability of
the structures they have studied in an algebra course.

In recent years there have emerged courses and texts on discrete mathe-
matics and applied algebra. The present text is meant to add to what is
available, by focusing on three subject areas. The contents of this book can
be described as dealing with the following major themes:

Applications of Boolean algebras (Chapters 1 and 2).
Applications of finite fields (Chapters 3 to 5).
Applications of semigroups (Chapters 6 and 7).

Each of these three themes can be studied independently. We have not tried
to write a comprehensive book on applied algebra, rather we have tried to
highlight some algebraic structures which seem to have most useful applica-
tions. Each of these topics is relevant to and has strong connections with
computer science.

We assume that the reader has the mathematical maturity of a beginning
graduate student or of a last-year undergraduate student at a North
American university or of a third or final-year Bachelor or Honors student
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in the United Kingdom or Australia. Thus the text is addressed mainly to
a mature mathematics student and should also be useful to a computer
scientist or a computer science student with a good background in algebra.
Some students and lecturers might also be interested in seeing some not-so-
well-known applications of selected algebraic structures. The reader is
expected to be familiar with basic ideas about groups, rings, fields and
linear algebra as the prerequisites for this book. All these requirements ‘are
met in a first course on linear algebra and an introductory course on abstract
algebra.

The first topic, treated in Chapters 1 and 2, deals with properties and
applications of Boolean algebras and their use in switching circuits and
simplification methods. The next three chapters, which form the core of the
text, comprise properties and applications of finite fields. Considerable
emphasis is given to computational aspects. Chapter 3 contains the basic
properties of finite fields and polynomials over finite fields; these will be
used in the following two chapters. Chapter 4 contains topics from algebraic
coding theory with a decoding procedure for BCH codes as its climax.
Chapter 5 is devoted to other areas of applications of rings and finite fields,
such as combinatorics, cryptography and linear recurring sequences. The
third major topic, applications of semigroups to automata, formal languages,
biology and sociology, is covered in Chapters 6 and 7.

Throughout the text, great emphasis is put on computational examples
in the belief that most readers learn to do mathematics by solving numerical
problems. A number of problems is given at the end of each section. Each
paragraph ends with a number of exercises which are solved in Chapter 8
of this book. It is hoped that the reader will work through these problems
and exercises and use the solutions in Chapter 8 only as a check of their
understanding of the material.

The appendix consists of two parts. Part A contains fundamental defini-
tions and properties of sets, logical symbols, relations, functions and alge-
braic operations. More on that can be found in almost every introductory
text. Part B contains some computer programs to perform some of the
algorithms presented in the text. The advent of microcomputers and the
wide and rapidly increasing availability of desk-top computers prompted
us to do so. In certain areas of applied mathematics, the computer is an
indispensible tool.

The chapters are divided into sections; larger sections are subdivided
into subsections A, B, etc. References in the text are organized such that
1.3.5 refers to item (Theorem, Definition,...) number 5 in section 3 of
Chapter 1. Within one chapter we use the abbreviation 3.5 to refer to item
number 5 in section 3 of the present chapter. We refer to items in the
Bibliography by writing the author’s name in small capitals. The symbol (]
denotes the end of a proof or an example. Some of the more difficult or
not quite straightforward problems, exercises or whole sections are marked
with an asterisk *. The notes at the end of each chapter provide some
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historical comments and references for further reading. Parts of the material
of this book appeared (along with some other applications of algebra) in
the authors’ German Text Angewandte Abstrakte Algebra, Vols. I, 11 (Bib-
liographisches Institut, Mannheim, 1982).

It is with pleasure that we thank friends and colleagues for helpful
suggestions after critically reviewing parts of the manuscript. We gratefully
acknowledge contributions to the final draft by: Elizabeth J. Billington
(Brisbane, Australia); Donald W. Blackett (Boston, Massachusetts) ; Henry
E. Heatherly (Lafayette, Louisiana); Carlton J. Maxson (College Station,
Texas); John D. P. Meldrum (Edinburgh, Scotland); Ken Miles (Mel-
bourne, Australia); Alan Oswald (Teesside, England) and Peter G. Trotter
(Hobart, Australia). Finally, we wish to thank the editorial and production
staft of Springer-Verlag for their kind cooperation throughout the prep-
aration of this book.

March 1984 R.L.and G.P.
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CHAPTER 1
Lattices

In 1854, George Boole (1815-1864) introduced an important class of alge-
braic structures in connection with his research in mathematical logic. In
his honor these structures have been called Boolean algebras. These are a
special type of lattices. It was E. Schroder, who about 1890, considered the
lattice concept in today’s sense. At approximately the same time, R.
Dedekind developed a similar concept in his work on groups and ideals.
Dedekind defined in modern terminology modular and distributive lattices,
which are types of lattices of importance in applications. The rapid develop-
ment of lattice theory proper started around 1930 when G. Birkhoff made
major contributions to the theory.

We could say that Boolean lattices or Boolean algebras are the simplest
and at the same time the most important lattices for applications. Since
they are defined as distributive and complemented lattices it is logical to
consider some properties of distributive and complemented lattices first.
Any distributive lattice is modular; therefore we introduce modular lattices
before studying distributive ones.

§1. Properties of Lattices

A. Lattice Definitions

One of the important concepts in all of mathematics is that of a relation.
Of particular interest are equivalence relations, functions and order rela-
tions. Here we concentrate on the latter concept and recall from an introduc-
tory mathematics course:
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Let A and B be nonempty sets. A relation R from A to B is a subset of
A X B. Relations from A to A are called relations on A, for short. If (a, b) € R
then we write @ R b and say that “a is in relation R to b”. Also, if a is not
in relation R to b, we write a K b.

A relation R on a nonempty set A may have some of the following
properties:

R is reflexive if for all a in A we have aR a.

R is symmetric if for all @ and b in A:aRb
implies b R a.

R is antisymmetric if for all a and b in A:aRb and bRa
imply a = b.

R is transitive if for all a,b,cin A:aRb
and bRc imply aRc.

A relation R on A is an equivalence relation if R is reflexive, symmetric
and transitive. In this case [a] == {b € A|a R b} is called the equivalence class
ofa, foranyaec A.

1.1 Definition. A relation R on a set A is called a partial order (relation)
if R is reflexive, antisymmetric and transitive.
In this case (A, R) is called a partially ordered set or poset.

Partial order relations are ‘“‘hierarchical” relations, usually we write <
or < instead of R. Partially ordered finite sets (A, <) can be graphically
represented by Hasse diagrams. Here the elements of A are represented as
points in the plane and if a < b, a # b, we draw b higher up than a and
connect a and b with a line segment. For example, the Hasse diagram of
the poset (P({1,2,3}),<) is

{1,2,3}

N

{1,2} {1, 3} {2,3}

{1} {|2} {3}
\ | /

Figure 1.1

Here we do not draw a line from & to {1, 2}, because this line already exists
via {1} or {2}, etc. The Hasse diagram of ({1, 2, 3, 4, 5}, =), where < means
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less than or equal to, is:

2

1
Figure 1.2

The difference between these two examples can be expressed by the follow-
ing definition.

1.2 Definition. A partial order relation = on A is called a total order (or
linear order) if for each a, b € A either a = b or b < a. (A, <) is then called
a chain, or totally ordered set.

For example, ({1, 2, 3, 4, 5}, =) is a total order, (P({1,2,3}), <) isnot a
total order.

If R is a relation from A to B then R™' defined by (a,b)e
R7':© (b, a) € R is a relation from B to A, called the converse relation of
R.

If (A, =) is a partially ordered set then (A, =) is a partially ordered
set and = is the converse relation to <. In (A, =) the following principle
holds:

“Duality Principle”. Every “statement” (formula, law, expression) on an
ordered set (A, =) remains correct, if everywhere in the statement the
relation = is replaced by its converse relation =. (A, =) is called “dual”
to (A, =).

Let (A, =) be a poset. We say, “a is a greatest element” if ““all other
elements are smaller”. More precisely, a € A is called a greatest element of
A if for all x € A we have x < a. The element b in A is called a smallest
element of A if b = x for all x € A. The element ¢ € A is called a maximal
element of A if ¢ = x implies ¢ = x for all x € A; similarly, d € A is called
a minimal element of A if x = d implies x = d for all x € A. It can be shown
that (A, <) has at most one greatest and one smallest element. However,
there may be none, one, or several maximal or minimal elements. Every
greatest element is maximal and every smallest element is minimal. For
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instance, in the poset of Figure 1.3

a

Figure 1.3

a is a minimal element and is a smallest element. b and d are maximal,
but there is no greatest element.

1.3 Definition. Let (A, <) be a poset and B = A.

(i) a € A is called an upper bound of B:&Vbe B:b=<a.
(ii) a € A is called a lower bound of B:=>V be B:a=<b.
(iii) The greatest amongst the lower bounds, whenever it exists, is called
the infimum of B, and is denoted by inf B.
(iv) The least upper bound of B, whenever it exists, is called the supremum
of B, and is denoted by sup B.

For instance, let (A,=<)=(R,=<) and B =[0,3) then inf B=0 and
sup B = 3. Thus the infimum (supremum) of B may be an element of B,
but does not have to be. If B’ =N then in (R, <) we have inf B’ = 1, but
sup B’ does not exist.

The following statement can neither be proved nor can it be refuted (it
is undecidable). It is regarded as an additional axiom that may be used
without comment in mathematical arguments.

1.4 Axiom (“Zorn’s Lemma”). If (A, <) is a poset such that every chain of
elements in A has an upper bound in A then A has at least one maximal element.

The basic idea for a concept which is more general than that of a chain
is as follows: If x =< z and y = z hold then z is an upper bound for a and
b. Whenever the least of all upper bounds of x and y exists it is the uniquely
determined supremum of x and y, sup(x, y) for short. Hence x =< sup(x, y)
and y = sup(x, y). If z is any upper bound of x and y then sup(x, y) =< z
Similarly for the infimum of x and y, inf(x, y), we have inf(x, y) = x and
inf(x, y) = y. For any lower bound v of x and y we have v < inf(x, y).

In general, not every subset of a poset (L, <) has a supremum or an
infimum. We study more closely those posets which are axiomatically
required to have a supremum and infimum for certain families of subsets.



§1. Properties of Lattices 5

1.5 Definition. A poset (L, <) is called lattice ordered if for every pair x, y
of elements of L the sup(x, y) and inf(x, y) exist.

1.6 Remark. (i) Every ordered set is lattice ordered.
(ii) In a lattice ordered set (L, =) the following statements are equivalent
for all x and y in L:
(a) x=y;
(b) sup(x,y) =y;
(¢) inf(x, y) = x.

There is another (yet equivalent) approach, that does not use order
relations, but algebraic operations.

1.7 Definition. An (algebraic) lattice (L,[,L]) is a nonempty set L with
two binary operations [1 (meet) and LI (join) (also called intersection or
product and union or sum, respectively), which satisfy the following condi-
tions for all x, y, z € L:

(L1) x[My=yMx, xUy=yUx;
(L2) x(yMz)y=(xMy)z xUGpUz)=(xUy)Uz;
(L3) xMxUy)=x xU(xMy)=x

Two applications of (L3), namely x 1 x = x[1(x L (x[7x)) = x, lead to
the additional condition

(L4) xMx=x, xLlx=x

(L1) is the commutative law, (L2) is the associative law, (L3) is the absorption
law, and (L4) is the idempotent law.

The connection between lattice ordered sets and algebraic lattices is as
follows.

1.8 Theorem. (i) Let (L, <) be a lattice ordered set. If we define
xMy=inf(x,y), xUy=sup(x,y),

then (L,1,U)) is an algebraic lattice.
(ii) Let (L,M, L) be an algebraic lattice. If we define

x=y:oxlly=x (orx=y:&xUy=y),
then (L, <) is a lattice ordered set.

PrROOF. Let (L, =) be a lattice ordered set and define x M y = inf(x, y) and
x Ly = sup(x, y). Clearly L is a nonempty set with the above two binary
operations.

(L1) x[y=inf(x, y) =inf(y,x) = y M x Vx,yelL;
xUy=sup(x,y)=sup(y,x)=ylUx VxyelL
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(L2) x M (yMz)=xinf(y, z) = inf(x, inf(y, z)) = inf(x, y, z)
=inf(inf(x, ), z) = inf(x, y) M z=(xy) [z,
Vxyzel;
x L (yU z) = x L sup(y, z) = sup(x, sup(y, z)) = sup(x, y, z)

sup(sup(x, y), z) = sup(x,y) Uz =(xUy) Uz
Vxyze L

(L3) xM(xUy) =xMsup(x, y) =inf(x,sup(x,y)) =x Vx,yelL;

x U (xMy)=xUinf(x, y) = sup(x,inf(x, y)) =x Vx,ye L
(L4) xx=inf(x, x) =x VxelL;

x L x =sup(x, x) = x Vxe L

Let (L,I7, ) be an algebraic lattice and define
x=y:oxfy=x (orx=sy:oxlly=y),

ie.x=y:©inf(x,y) = x (orx = y :& sup(x, y) = y). Clearly forall x, y, z
in L:

(i) xMx =xand xx =x by (L4); so x = x, i.e. = is reflexive.

(ii) f x<yand y=x, then x[1y=x and y[1x=y by (L1) x[y=
y[1x;s0x =y, i.e =< isantisymmetric. Alsox[1y=xand xlLly=y
are equivalent, since, by (L3), e.g. x[1y = x implies

xUy=GxMy)Uy =y
(iii) If x=y and y = z then x"y = x and y 1z = y. Therefore
x=x[My=xM(Mz)=xMNy)MNz=xl1zsox=z by (L2),
i.e. =< is transitive.

Let x,y € L. Then x1(xLly)=x implies x = x|y and similarly y =
xUyIfzeLwithx<zandy=zthen(xUy)Uz=xU(yLdz)=x01]
z =z and so xJ y = z Thus sup(x, y) = x Ll y. Similarly inf(x, y) = x 1 y.
Hence (L, =) is a lattice ordered set. O

1.9 Remark. It can be verified that Theorem 1.8 yields a one-to-one relation-
ship between lattice ordered sets and algebraic lattices. Therefore we shall
use the term lattice for both concepts. |L| denotes the order (i.e. cardinality)
of the lattice L.

Following 1.8 we define two operations in posets: join (also called sum
or union and meet (also called product or intersection). The supremum of
two elements x and y is denoted by x Ly and is called the join of x and
y. The infimum of x and y is denoted by x ['1y and is called the meet of x
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and y. We use the symbols LI and '] to distinguish the operations join and
meet from the corresponding set-theoretic operations v and n. More
generally, if N is a subset of a poset then |_|,.nx and [ |,.n x denote the
supremum and infimum of N, respectively, whenever they exist. We say
that the supremum of N is the join of all elements of N and the infimum
is the meet of all elements of N.

In Definition 1.7 we saw that for the conditions (L1) to (L4) two equations
are given. The duality principle for posets is also valid for lattices.

1.10 ““Duality Principle”. Any “formula” in a lattice (L,1,L]) involving the
operations [l and | remains valid if we replace [ by LI and U by
everywhere in the formula. This process of replacing is called dualizing. [1

The validity of this assertion follows from the fact that in a lattice any
formula, which can be derived by using (L1) to (L4), remains correct if we
interchange [ with Ll everywhere in the formula. So every dual of a
condition in (L1)-(L4) holds too.

1.11 Definition. If a lattice L contains a smallest (greatest) element with
respect to < then this uniquely determined element is called the zero element
(one element), denoted by 0 (by 1). 0 and | are called universal bounds.

Every finite lattice L has a 0 and a 1. If a lattice has a 0 and a 1 then
every x in Lsatisfiess 0= x<1,0x=0,0Ux=x, 1MNx=x, 1Ux=1.
We consider some examples of lattices.

1.12 Examples. Let M and M,, i € I, be linearly ordered sets with smallest
element 0 and greatest element 1 and let G be a group with unit 1.

No Set =< x[y xidy 0 1
1 M linear order min(x, y) max(x, y) smallest greatest
element element
2 X M, componentwise componentwise componentwise (...,0,...) (..., 1,...)
el
3 P(M) < XnY XuY %] M
4 N “divides” ged(x, y) lem(x, y) 1 does not
exist
5 {X|X =G} c XnY subgroup {1} G
generated
by XuY

Theorem 1.8 and Remark 1.9 enable us to represent any lattice as a special
poset or as an algebraic structure using operation tables. We present the
Hasse diagrams of all lattices with at most six elements. V{ denotes the ith
lattice with n elements.
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Figure 1.4 (continued)

The following diagram is an example of a poset which is not a lattice (since
sup(a, b) does not exist).

0
Figure 1.5
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Next we give the operation tables for the lattice V.

[M1{0 a b ¢ 1 L{0 a b ¢ 1
0{0 0 O O O 0/]0 a b ¢ 1
a{0 a 0 ¢ a ala a 1 a 1
b|0 0 b 0 b bbb 1 b 1 1
c|l0 ¢ 0 ¢ ¢ clec a 1 ¢ 1
110 a b ¢ 1 1{1 1 1 1 1 O

1.13 Lemma. In every lattice L the operations [ and || are isotone, i.e.
y=z=>xMy=xMzandxUy=xllz

PrOOF.
y=z=2xMy=&MNx)MNyMNzy=xMy)NxMz)=>xMNy=xMz
The second formula is verified by duality. O
1.14 Theorem. The elements of an arbitrary lattice satisfy the following in-
equalities:

@ {xﬂ(yl_IZ)Z(xF‘ly)l_l(xWZ),
xU(pyMz)y=s(xUy)M(xU z),

(i) {x22=>xl_|(yl_lz)2(xl_ly)LIz=(x|_|y)l_l(xl"lz),
x=z=axUMzo)sxUy)Mz=(xUy)MNxU 2),

(‘““Modular inequalities™).

(““ Distributive inequalities”’).

PROOF.
xMOy=sx,xMy=y=syllz=axTNy=xM(yUz),

xMz=x,xMz=z=s=yllz=>xMz=xM(yU 2).

Thus x[1(yLlz) is an upper bound for x[ 1y and x[1z; therefore
xM(yUz)=(xMy)U(xMz). The second inequality in (i) follows
from duality. (ii) is a special case of (i). O

As usual, we can construct “new” lattices from given ones by forming
substructures, homomorphic images and products.

1.15 Definition. A nonempty subset S of a lattice L is called sublattice of
L if S is a lattice with respect to the restriction of 7 and L] of L onto S.

It is obvious that S = L is a sublattice of the lattice L if and only if S
is “closed” withrespecttolTandLl (i.e. s, s, € S= s, s, € Sand s, Lls, €
S). We note that a subset S of a lattice L can be a lattice with respect to
the partial order of L without being a sublattice of L (see Example 1.16(iii)
below).
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1.16 Examples. (i) Every singleton of a lattice L is a sublattice of L.

(ii) For any two elements x, y in a lattice L the “interval” [x, y] =
{a € L|x = a < y} is either & or a sublattice of L.

(iii) Let L be the lattice of all subsets of a group G and let S be the set of all
subgroups of G, then S is a lattice with respect to inclusion but not a
sublattice of L. O

1.17 Definition. Let L, M be lattices. A mapping f: L > M is called a

(i) join-homomorphism, if x Uy = z = f(x) U f(y) = f(2);
(ii) meet-homomorphism, if x My = z=> f(x) [ f(y) = f(2);
(iii) order-homomorphism, if x <y = f(x) = f(y).

f is a homomorphism (or lattice homomorphism) if it is both a join- and a
meet-homomorphism. Injective, surjective or bijective lattice homo-
morphisms are called lattice monomorphisms, epimorphisms, isomorphisms,
respectively.

It can be shown that every join- (or meet-) homomorphism is an order-
homomorphism. However, the converse is not true. The relationship between
the different homomorphisms can be symbolized as follows:

isomorphism
homomorphism
74 Y
join-homomorphism meet-homomorphism
Ny 174

order-homomorphism

Figure 1.6
1.18 Example. Let L,, L,, L; be lattices with the Hasse diagrams

I, 13

a, bl b3

0l 02

Figure 1.7



12 Chapter 1. Lattices

respectively. We define

fiLi> L, f(0y) = f(a)) = f(b)) =0y, Sy =1,
g:Li~>L, g(1,) = g(a,) = g(by) = 1,, g(0,) =0,
h:L,~> L,, h(0,) = 05, h(a,) = as, h(b;) = b, h(1,) = 1;;

the three mappings are order-homomorphisms.
f is a meet-homomorphism, since

Sfla; 71 by) = f(0,) = 0, = f(a,) 1 f(b,) etc.

However, f is not a homomorphism, since

fla,ub)=f(1,)=1, and f(a,)Uf(b) =0,

Dually, g is a join-homomorphism, but not a homomorphism.
h is neither a meet- nor a join-homomorphism, since

h(all—lbl) = h(Ol) =03 and h(al)l—lh(bl)z a3ﬂb3= a,,
and

h(a1|_|b|)=h(ll)= 13 and h(al)l_‘h(bl)=a3|_lb3=b3. D
1.19 Definition. Let L and M be lattices. The set of ordered pairs

{(x,y)lxe L ye M}
with operations L] and ["1 defined by:

(x1, y1) U (%2, y2) = (x1 L x5, y1 LUya),
(x1, Y1) T (%2, 2) = (%1 T X2, y1 [12),

is the direct product of L and M, in symbols L X M, also called the product
lattice.

It is easily verified that L X M is a lattice in the sense of Definition 1.7.
The partial order of L X M which results from the definition in 1.8(ii)
satisfies

(XL, y) = (X, )& x=x, and y =y,

1.20 Example. The direct product of the lattices L and M can graphically
be described in terms of Hasse diagrams:
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(xl: yl)

(1, ¥2) (1, ¥3)

(x1, v4)
(x2' yl)

» (x2, yz)J

(x2, ¥4) r/

y2 y3 (x3, }’1 )

(X2, J'3)

X3 (3, ¥2) (x3, ¥3)

Ya (x3, ¥3)

L M LxM

Figure 1.8 O

PROBLEMS

1.

Determine all the partial orders and their Hasse diagrams on the set L = {a, b, c}.
Which of them are chains?

. Give an example of a poset which has exactly one maximal element but does

not have a greatest element.

. Let (Q, =) be the poset of the rational numbers and let A = {x|x € Q, x> < 3}.

Is there an upper bound (or lower bound) or a supremum (or infimum) in A?

. Let (L, =) be a poset. Show that if inf(inf(a, b), c¢) exists for a, b, ¢ € L then

also inf(a, b, c) exists and both are equal. Moreover, show that inf(a, b, c) may
exist even when inf(inf(aq, b), ¢) or inf(a, inf(b, c)) do not exist. Finally, show
that inf(inf(a, b), c) may exist even when inf(a, inf(b, c)) does not exist.

. Let (L, =) be a poset with the following properties:

(i) A< L and A # & implies that there exists an a € L such that a = inf A.
(ii) B < L implies that there is a b € L such that x < b for all x € B.
Prove that L is a lattice.

. Prove that any finite lattice has a zero and a one.
- Give an example of an infinite lattice without a zero and a one.

- Let L be the set of complex numbers z = x + iy where x and y are rationals.

Define a partial order < on L by: x, + iy, € x, + iy, if and only if y, < y,. Is
there a minimal or a maximal element in (L, <)? What additional condition is
needed in order to make (L, <) into a chain?
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9. Prove that in any lattice L, for all x, y, z, u e L:
(xM2UGMu = (xUy)M(zLJu).

10. The Hasse diagram of a lattice is as follows:

1

0
Figure 1.9

Find all sublattices of this lattice.

11. Prove: If f is an isomorphism of a poset L onto a poset M and if L is a lattice,
then M is also a lattice and f is an isomorphism of the lattices.

12. Let D(k) denote the lattice of all positive divisors of k. Construct the Hasse
diagrams of the lattices D(20) and D(21) and show that D(20) x D(21) is
isomorphic to D(420).

13. Show that the direct product D(120) x D(432) is isomorphic to

D®2*-3-5-7*-11%)
and also to the lattice

({(ay, 3,83, 84,a9)[0=x,=3,0=<=x,=<1,0=x3 = |,
0=x,=4,0=xs=3},U,M).

14. Let (C([a, b]), max, min) be the lattice of continuous real-valued functions on
a closed interval [a, b], let D((a, b)) be the set of all differentiable functions
on (a, b). Show by example that D((a, b)) is not a sublattice of C([a, b]).

B. Modular and Distributive Lattices

We now turn to special types of lattices with the aim of defining a very
“rich” type of algebraic structure, a Boolean algebra.

1.21 Definition. A lattice L is called modular if V x,y,z € L
M) x=z=xUU(pMz)=(xUy)Mz (“modular equation™).
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1.22 Examples. An important example of a modular lattice is the lattice of
all subspaces of a vector space.

Let A, B, C be subspaces of a vector space V and let A< C. Then
(A+B)n C2A+(Bn C). Conversely, if ¢ € (A + B) n C, then there
are a€ A and be B with c=a+b. Hence b=c—aeBnC_, ie. ce
A+ (Bn C). Therefore ( A+B)nC<c A+(Bn C).

The lattice of all subgroups of a group is in general not modular. The
set of all normal subgroups of a group forms a modular lattice. Any chain
and also the first eight lattices with Hasse diagrams given in Figure 1.4 are
modular. V; is not modular. O

We describe important characterizations of modular lattices.

1.23 Theorem. A lattice L is modular if and only if V x, y,z€ L
xU(yMxUz)=((xUy)MxU z).

Proor. If L is modular, then x < x || z yields the given equations. Con-
versely, the given equation implies the condition (M) of 1.21. il

1.24 Theorem. A lattice L is modular if and only if none of its sublattices is
isomorphic to the “pentagon lattice” V3, whose Hasse diagram is

0
Figure 1.10

Proor. The pentagon lattice is not modular since c < a but cLJ (b1 a) #
(elUb)Ma,becauseof cLI(blMa)=clU0=cand(clUb)Ta=1Ta=
a. Thus any lattice having a pentagon as a sublattice cannot be modular.
To prove the converse we show that if a lattice is not modular, then it has
a sublattice which is isomorphic to the pentagon lattice V;. Let L be
nonmodular. Then there are x, y, z in L such that

x=<z and xU(yMz)<(xUy)Mez

We shall show that the subset S of elements u = yz a=(xUy)lz
b=y c=xU(yMz), v=xLlyforms a sublattice of L which is isomor-
phic to the pentagon lattice.
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We have
u=c<a=v and u=b=u. (%)
Therefore
u=cllb=allb=xUy)MzlMy=yllz=u,
vzallb=cUb=xU(@pMNz)Uy=xUy=uy,
ie.
cMb=allb=uy, clUb=allb=nv

This shows that S is a sublattice of L. We verify that all elements of S are
distinct. Suppose u = b, then

cMb=b=>clUb=c=>v=¢
which is a contradiction to (*). So u # b. Suppose v = g, then
allb=a=allb=b=u=0b>
contradicting the foregoing. So v # a. Suppose ¢ = b, then
u=blb=b,

a contradiction. So ¢ # b. The remaining cases, to show v # b, u # ¢ and
a # b, are treated similarly. O

1.25 Definition. A lattice L is called distributive if either of the following
conditions hold for all x, y, z in L:
xU@pMz)=xUy)MxUz),

or (“distributive equations™)
xM(yUz)=(MNy)U(xMz).

1.26 Examples. (i) (P(M), n, U) is a distributive lattice.
(ii) Every chain is a distributive lattice.

(iii) If I and J aretwoideals of aring R, then we say I divides J,if I = J. Thus
the ged(I, J) is the ideal generated by the set I U J in R, i.e. the set
{a+blacIbeJ}. Alsolem(I,J) = I n J. The set of ideals of R is a
lattice with respect to ged(I, J),lem(1, J). The product of the ideals I and
J is the ideal generated by the elements ab, ac I, beJ, ie.
IJ={Y"  abjla, e I, b eJ}. If every ideal of R can be uniquely
expressed as a product of prime ideals, then the lattice of ideals is
distributive. 0

1.27 Theorem. A lattice L is distributive if and only if ¥V x,y,z€ L
(D) (My)U(yMNz)UEMNx)=xUy) MUz Mzux).

Proor. Exercise.
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1.28 Corollary. Every distributive lattice is modular. O

Using mathematical induction it can be shown that the following formulas
hold in a distributive lattice:

xl_l('_fi y.-) = D (xUy), xﬂ(!;! yi) = t:! (x M y).

1.29 Theorem. A modular lattice is distributive if and only if none of its
sublattices is isomorphic to the “diamond lattice” V3, whose Hasse diagram
is

Figure 1.11

ProokF. The lattice V3 is not distributive, since for instance
alJ(bMc)# (aldb)M(allec),
because
all(bMc¢)=all0=a and (alUb)MN(alc)=1M1=1.

Thus any lattice having a diamond as a sublattice cannot be distributive.
Conversely, let L be a modular but not distributive lattice. By Theorem
1.27 there are elements x, y, z such that

xMy)UMNaUCEMNx) <=Uy)Uz)MNEUx). ()
We shall show that the elements
u=xMNy)UyMz)U(zMx),
v=(xUy)M(yUz)MzUx),

a=ul(xMv),
b=ull(yMv),
c=ull(zMv),

form a sublattice of L which is isomorphic to the diamond lattice.
First, because of the modular law, we have

uld(xMov)=(uldx)MNv forus=snu
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We have
alUb=ulld(xMo)U(yIv)
=ulld[(xM(yUz)U(yM(zLU x))], by the absorption law.
Also x M (y U z) = x = z U x. Therefore
aldb=ull[((xM(yU2)Udy)(zLx)] bymodularity.
Because (x M (yJz)) Uy =(x1y)(yJz) by modularity, we have
allb=ullJv=no.
By duality a1 b = u. In a similar way we can prove
bMec=clla=u and bllc=clla=nv

To show that the elements u, v, g, b, ¢ are distinct, we proceed as follows.
For instance, assume u = a. Then

allb=a=allb=b=>v=0>b,
allc=a=>allc=c>v=c,
and therefore
v=vllov=bllc=uy,
a contradiction to (*), which says u < v.

We leave the remainder of the proof as an exercise. [

1.30 Corollary. A lattice is distributive if and only if none of its sublattices is
isomorphic to the pentagon lattice or the diamond lattice. O

Theorems 1.24 and 1.29 and Corollary 1.30 enable us to observe modular-
ity or distributivity of the lattice from its Hasse diagram. Indeed, if we
notice that somewhere in the diagram the pentagon lattice appears as a
sublattice then we know that the lattice cannot be modular.

1.31 Example. The lattice with Hasse diagram

Figure 1.12
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cannot be modular (and therefore not distributive) since it contains the
pentagon {0, a, f, b, 1} as a sublattice. O

1.32 Theorem. A lattice L is distributive if and only if

Vx,yzeL: (xMy=xMzxldy=xUz)=>y=2
(“cancellation rule™).

Proor. Exercise.

1.33 Definition. A lattice L with 0 and 1 is called complemented if for each
x € L there is at least one element y such that x[y =0, xLly=1.y is
called a complement of x.

1.34 Examples. (i) Let L = ?(M). Then B = M\A is a uniquely determined
complement of A.

(ii) In a bounded lattice 1 is a complement of 0 and 0 is a complement of 1.

(iii) Not every lattice with 0 and 1 is complemented. For instance, ¢ in V;
does not have a complement:

0
Figure 1.13

(iv) The complement does not have to be unique: e.g. in V3, b has the two
complements a and c.

0
Figure 1.14

(v) L ={S|S is subspace of R’} is modular. If dim S =1 then S has
infinitely many complements, namely all subspaces T such that
S® T = R°. Therefore L cannot be distributive, as the following
theorem shows. O
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1.35 Theorem and Definition. If L is a distributive lattice then each x € L has
at most one complement. We denote it by x'.

ProOF. Suppose x € L has two complements y, and y,. Then x Ly, =1=
x|dy,and x[ 1y, =0=x[1y,; thus y, = y, because of 1.32. O

Complemented distributive lattices will be studied extensively in the
following paragraphs.

PROBLEMS

1. Let A and B be two convex regions. Let A - B denote the largest convex region
contained in A and B, A + B denotes the smallest convex region that contains
A and B. (Here A + B is not the set-theoretic union.) Show that these operations
on the set of all convex regions define a lattice which is not distributive.

2. Consider the subgroups of the group of the prime residue classes (mod m).
Draw the Hasse diagram of the lattice of these subgroups. Is this lattice a
distributive and complemented lattice?

3. Prove 1.28.
4. Prove the generalized distributive laws as stated after 1.28.
*5. Prove that a lattice is modular if and only if for all x, y, z:
UGN =xMNEUz))Uyna).
*6. Prove: If for some elements x, y and z of a modular lattice

xMyUz)=xMy)U(xMz)

holds then

y(xUz)y=(pMNx)U(xMz)
and

xU(Mz)=(xUy)MxUz)
also hold.

7. Devise a formal algorithm for testing whether a given finite lattice is distributive.
*8. The elements a,, ..., a, of a modular lattice with zero are called independent, if
(a;U...Ua_Ua,U...Ua,)Ma =0 foralli=1,...,n.

Prove: If @y, ..., a, are such that (a, U ... a,_,)[Ma;, =0foralli=1,...,n,
then they are independent.
*9. In a modular lattice with zero, prove that the equality (a,J...Ua,)b=0
implies
(a,Ub)r...M(a, Mb)y="(a,Ma,...Ma,)Ub.

10. In a distributive lattice prove that allb=x=<allb and x=(allx)U
(bMx)L(arb) are equivalent.
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ExERCISES (Solutions in Chapter 8, p. 409)

1.

*4,

*5.

10.

Let G be the group of quaternion units, G = {+1, i, +j, +k} (see Chapter 3,
§1). Draw the Hasse diagram for the lattice of all subgroups of G.

. Prove the generalized distributive inequality for lattices:

yﬂ(ux) = (1w

. Determine the operation tables for [ and LJ for the lattice with Hasse diagram

Figure 1.15

A lattice L is called metric if there is a real-valued function v: L - R such that
Vxyel

v(x) +o(y) =o(xUy) +o(xMy),
y=x=>uv(y) = v(x).
(a) Prove that a metric lattice is modular.

(b) Define in a metric lattice L a “distance” d by d:L’>R, (x,y)—
v(x Ll y) — v(x T y). Prove that (L, d) is then a metric space.

Prove: (i) The intervals [x, x LI y] and [x 1y, y] are isomorphic in a modular
lattice.

(ii) If for all x, y in a lattice L the intervals [x, x LI y] and [x 1y, y] are
isomorphic under f:a+> a1y then L is modular.

. Prove: In any lattice L we have

(MU M) MxMy)U(yMz)]=xMy forallx,y, ze L.

. Determine the lattice of all subgroups of the alternating group A, and show

that this lattice is not modular.

. Let C, and C, be the finite chains {0, 1,2} and {0, 1}, respectively. Draw the

Hasse diagram of the product lattice C;, X C, X C,.

. Show that the set of all normal subgroups of a group form a modular lattice.

Prove: If a, b, ¢ are elements of a modular lattice with the property (a (L b) [
¢c=0,thenall(blUc)=allb.
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*11. Prove: The following properties for a lattice L are equivalent:
(i) L is modular.
(ii) Va,b,ce L:al((aMb)Uc)=(alMb)LU(allc).
(iii) fa=bandifdce Lwithallc=bllcandalc=>bcthena =b.

*12. Prove: In a lattice (L, <) every finite, nonempty subset S has a least upper
bound.

13. Let S be an arbitrary set and D a distributive lattice. Show that the set of all
functions from S to D is a distributive lattice, where f < g means f(x) < g(x)
for all x.

14. Let L be a distributive lattice with 0 and 1. Prove: If a has a complement a’,
then

all(a'mb)y=allb.
15.

W

Is the lattice with Hasse diagram

0
Figure 1.16

distributive? complemented? modular?

*16. Prove that a lattice is distributive if and only if
xMy)UxNz2))U(MNz)=ExUy)NxUz)N(Uz) Vxyze€lL

17. Show that the set of positive integers, N, ordered by divisibility is a distributive
lattice.

18. For a distributive lattice L show that allb =allcand alb = al1c imply
b=c

19. Let L be a lattice. Show without the use of duality that the following conditions
are equivalent:
(i) Va,bce L:(allb)[MMc=(alc)U(bMc);
(ii) Va,b,ce L: (alb)lUc=(allc)(bUc).
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§2. Boolean Algebras

Boolean algebras are special lattices which are useful in the study of logic,
both digital computer logic and that of human thinking, and of switching
circuits. This latter application was initiated by C. E. Shannon, who showed
that fundamental properties of electrical circuits of bistable elements can
be represented by using Boolean algebras. We shall consider some such
applications in Chapter 2.

A. Basic Properties

2.1 Definition. A complemented distributive lattice is called a Boolean
algebra (or a Boolean lattice).

Distributivity in a Boolean algebra guarantees the uniqueness of comple-
ments (see 1.35), which of course exist because of the complementarity of
each element (see Definition 1.33). Since every distributive lattice is modular
(Corollary 1.28) all properties of distributive, modular and complemented
lattices hold in Boolean algebras.

2.2 Notation. From now on, B denotes a set with the two binary operations
' and LI, with a “zero” and a “one” element “0” and “1”’ and the unary
operation complement “’”’, in short B = (B,[7,11,0,1,") or B = (B,7,L).

223 Examples. (a) B = (P(M), n, U, d, M,’) is the Boolean algebra of the
power set of a set M. Here n and U are the set-theoretic operations
intersection and union and the complement is the set-theoretic complement,
namely M\A = A’ is the complement of A€ P(M); & and M are the
“universal” bounds. If M has n elements then B consists of 2" elements.
(b) B" := ({0, 1}",11,11,0,1,) where the operations are defined as in

1.19. For iy, j. € {0, 1},

(il, ey in) |_| (jl’ “ e ,j") = (min(il,jl), ey min(i,,,j,.)),

(ila ceey ln) |—l (jla e ajrl) = (max(ilajl)a ) max(imjn))’

(fyee e dy) =(i,...,0,) with0':=11:=0,

and

0:=0(0,...,0),1=(1,...,1). O

2.4 Theorem (“De Morgan’s Laws”). In every Boolean algebra B we have
Vx,ye€ B:

(xMy)y=x'Uy and (xUy)=xT1y".
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Proor.
xMy)Ux'Uy)=xUxUy)NpuUxUy)
=(1Uy)aux)y=1mi1=1,
xMy)E'Uy)=MyMx)U((xMyry)
=0My)U(OMx)=0L0=0.

This implies that x' || y’ is the complement of x 1 y. The second formula
follows dually. O

2.5 Corollary. In a Boolean algebra B we have
Vx,yeB:x=yox'=y'
PROOF.
x=yoxUy=yeox Ny =xUy) =y
ox'=y O

2.6 Theorem. In a Boolean algebra B we have

VxyeBix=yoxlNy =0ox'Uy=1oxMNy=xoxUy=y.
ProoF. Exercise.
2.7 Definition. A ring R = (R, +,-) with | is called Boolean ring if all
elements x € R are idempotent, i.e. x> = x.
2.8 Theorem. Every Boolean ring R is commutative and of characterististic 2.
PrOOF. Let x, y € R. Then

x+y=(x+y)x+y)=x"+xy+tyx +y =x+xy +yx +y.

Hence xy + yx = 0. For x = y we have 2x = x + x = x? + x? = 0. Also for

any x, y we have xy = xy + xy + yx = yx. 0

Every Boolean ring with identity can be given the structure of a Boolean
algebra and conversely.

2.9 Example. The basic example for a Boolean ring is the set 2(S) of all
subsets of a set S, for which the operations + and - are defined in terms of
the set-theoretic union, U, intersection n and complementation ~ as follows:

VM,Ne?(S): M+N:=(MnN)u(Mn N),
MN:=M~n N. O
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2.10 Theorem. If we define the operations + and - on a Boolean algebra
B =(B,I,1) by
x+y=(xMy)Uxmy), x-y=x0y,

then we obtain a Boolean ring R(B) = (B, +, -) with identity.
Conversely, if we define the operation || and [ on a Boolean ring R =
(R, +, ) with 1 by
xUy=x+y+xy, x[Ny=x-y

and the complement a' of a by a’' = a + 1, then we obtain a Boolean algebra
B(R) = (R, I1,L)).

Furthermore, the Boolean algebra defined on the Boolean ring corresponding
to the algebra is the algebra itself, i.e.

B(R(B)) = B, R(B(R)) = R.
Prookr. Given a Boolean algebra (B,1,11,0, 1,'), define

x+y=xMNy)Uxy),
and
xy=x[1y
Clearly + is commutative.
Associativity:

(x+py)+z=((xMyHYU'My)) +z
=My Uy M 2TU (M) U (X' T y)) T 2
=[-1UlGM Y)Y (x TTy) T z]
=[-JUl(x"Uy)M(xUy)Mz]
= [-JUN(xMy) L(x'TTy)) M z]
=My 2)UxMyMzY)U(xMyMz) LU (x'My'Mz)
=x+(y+2z),

by symmetry in x and z and using commutativity.

Also x +0=(xM0)U(x'T10)=x and x+x=(x"Tx)LU(x'Tx)=0.
So (B, +) is a commutative group. We know that - is associative and
commutative and x- 1 =(x[11) = x.

Distributivity:

xy+xz=(xly)+(xMz)
=[(xMy) MM 2)TUxMy) TT1(xT2)]
=[xMyNx'uUz)JUl(x'Uy)Mxz]
=(xMyMz2YU(xMzMy)
=xM((yMz2HYU(y'Maz)
=x(y + z).
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Finally, x> = x 1 x = x. Hence (B, +, -, 0, 1) is a Boolean ring.
Conversely, suppose (B, +,-,0,1) is a Boolean ring; define x|y =
X+y+xy,xy:=xy x'=x+1.(LI) and (L4) follow by Theorem 2.8.

(L2) xU(yUz)=xU(y +z+yz)
=xX+y+z+yz+xy+xz+xyz
=(x+y+xy)Uz
=(xUy)Mz

x[(yMz)y=(xMy)z isimmediate.
xMxUy)=xMx+y+xy)=x"+xp+x’y=x+xy +xy = x.
Also
xUxMy)=xU(xy)=x+xy +xxy = x.

So (B,I1,L1) is a lattice.
Distributivity:

xMyUz)=x(y +z +yz)
=xy +xz + xyz
=Xy +Xxz + xyxz
=xy Ll xz
=(xMy)(xIT2).
Clearly 0 and 1 are lower and upper bounds.
xMx'=x(1+x)=x+x=0,

xUX =x+x +xx'=x+1+x+x+x>=1.

So x' is the complement of x. So (B,I1,L1,0,1,’) is a Boolean algebra.
Finally, given a Boolean algebra B, we then define on R(B) the operations
A and v on R(B).

XANYy =Xy

and
Xvy=x+y+xy.

Then x Ay =xy = xy and
xvy=x+y+xy=1+4+(+x)(1+y)
=1+x'y
=(x1’_]yl)/
=xUy
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Also 1 +x=(1TTx)YU(1'T1x) = x"U0 = x'". This proves B(R(B)) = B.
Similarly, R(B(R)) = R. O

2.11 Definition. Let B; and B, be Boolean algebras. Then the mapping
f: B, > B, is called a (Boolean) homomorphism from B, into B, if f is a
(lattice) homomorphism and for all x € B we have f(x') = (f(x))".

Analogously we can define Boolean monomorphisms and isomorphisms
by using 1.17. If there is a Boolean isomorphism between B, and B, we
write B, =, B,. The simple proofs of the following properties are left as
exercises.

2.12 Theorem. Let f: B, > B, be a Boolean homomorphism. Then:

(i) f(0)=0,f(1) =1;
(i) Vx,ye Bux=y=f(x) =< f(y);
(iii) f(B,) is a Boolean algebra and a subalgebra of B,.

2.13 Examples. (i) If M = N then the map f: #(M) > P(N), A~ Aisa
lattice monomorphism but not a Boolean homomorphism, since for
A € P(M) the complements in M and N are different. Also, f(1) =
f(M)=M # N =one in P(N).

(i) If M ={1,..., n}, then {0, 1}" and (M) are Boolean algebras and
the map f:{0,1}" > (M), (i,,...,i,)—{k|ix =1} is a Boolean
isomorphism. O

The following terms are defined for any lattice V rather than just for
Boolean algebras.

2.14 Definition. Let V be a lattice with zero. a € V is called an atom if for

allbe V:0<b=a=b=a.

2.15 Definition. a € V is called join-irreducible if for all b,ce V
a=bllc=a=b or a=c

Otherwise a is called join-reducible.

2.16 Lemma. Every atom of a lattice with zero is join-irreducible.

PROOF. Let a be an atom and let @ = b ¢, a # b. Then a = sup(b, ¢); so
b =< a. Therefore b =0 and a = ¢ O

2.17 Lemma. Let V be a distributive lattice with p € V join-irreducible and
p<allb Thenp<aorp=<h.

PROOF. p<allbmeans p=pll(alldb)=(pMla)ld(plb). Since p is
join-irreducible; p=pllaorp=pllbie.p<aorp=<h. |
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2.18 Definition. If x € [a, b]={ve V|la<v=<b}landye Vwithx[y=a
and x L]y = b, then y is called a relative complement of x with respect to
[a, b]. If all intervals [a, b] in a lattice V are complemented, then V is called
relatively complemented. If V has a zero element and all [0, b] are comple-
mented, then V is called sectionally complemented.

2.19 Theorem. Let V be a lattice. Then the following implications hold

(1) (Vis a Boolean algebra) = (V is relatively complemented);

(2) (Vis relatively complemented) = (V is sectionally complemented );

(3) (V is finite and sectionally complemented) = (every 0 # a € V is a join
of finitely many atoms).

Proor. (1) First we show: If V is distributive and complemented then V
is relatively complemented. Let a =< x < b. Then there is a ¢ € V such that
xMMe=0,xUc=1. Assume y = b1 (allc). y is a complement of x in
[a, b], since

x[My=xM(BMN@Ucd)=xMN@Uc)=xMNa)U(xMc)=xlTa=a

and

I

xUMbBMaU)=xUbMa)dBMe))y=xU(bMe)
(xUb)MxUe)=xUb=>b.

xLly

Thus V is relatively complemented.

(2) If V is relatively complemented then every [a, b] is complemented;
thus every interval [0, b] is complemented, i.e. V is sectionally comple-
mented.

(3) Let{p,,..., p.} betheset of atoms a andlet b = p,L|... p,. Now
b = a, and if we suppose that b # a then b has a nonzero complement, say
¢, in [0, a].

Let p be an atom less than cthenpe {p,,...,p,}andthus p=plib =
¢1b = 0 which is a contradiction. Hence a = b =p,Ll...U p,. O

The finite Boolean algebras can be characterized as follows.
2.20 Theorem (Representation Theorem). Let B be a finite Boolean algebra,
and let A denote the set of all atoms in B. Then B is isomorphic to ?(A), i.e.
(B,M,U)) =, (P(A), n, V).

PrROOF. Let v € B be an arbitrary element and let A(v) := {a € B|a atom,
a = v}, and A(v) = g if v = 0. Then A(v) < A. Define

h: B> 2(A), v— A(v).

We show that h is a Boolean isomorphism. h is a Boolean homomorphism:
let x € A(vl1w)then x is an atom and x = v[1w;also x<=v and x = w,
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so x € A(v) and x € A(w), hence x € A(v) n A(w). Thus h(v[w) =
h(v) n h(w). The proofs of h(v U w) = h(v) U h(w) and h(v') = A\ h(v)
are similar. Since B is finite we are able to use Theorem 2.19 to verify that
h is bijective. We know that every v € B can be expressed as a join of
finitely many atoms: v = q,LI... a,, all atoms a; < v. Let h(v) = h(w),
i.e. A(v) = A(w). Then a; € A(v) and a; € A(w). Therefore a; < w and thus
v < w. Reversing the roles of v and w yields v = w and this shows that h
is injective.

To show that h is surjective we verify that for each C € #(A) there is
ave Bsuchthat h(v) =C. Let C< A, C={c,...,c.}.Letv=¢ UJ...LJ
¢,. Then A(v) = C, hence h(v) =2 C.

Conversely, if a € h(v), then a is an atom with a=v=c¢ U...c,.
Therefore a < ¢, for some 1<i<n, by 2.16 and 2.17. So a=¢ € C.
Altogether this implies h(v) = A(v) = C. O

2.21 Theorem. The cardinality of a finite Boolean algebra is always of the
form 2" and any two Boolean algebras with the same cardinality are isomorphic.

ProoF. We know that |?(A)| = 2" if |A| = n. To show that two Boolean
algebras B,, B, with the same number of elements are isomorphic, we use
Theorem 2.20 and let B; =, P(A,), where |B;| = |?(A,)| = 2*|, where A, is
the set of atoms of B, i = 1,2. If |A,| =|A,|, then there exists a bijection
f: A, > A,. Then we define a mapping

g: P(A) ~> P(A,), A f(A)

and leave it as an exercise to verify that g is a Boolean isomorphism. []

A difterent proof of the representation theorem can be obtained from
the following theorem. We note that in any Boolean algebra B, any interval
[a, b] is also a Boolean algebra but not a sub-Boolean algebra of B unless
a =0 and b = 1. We also note that direct products of Boolean algebras are
again Boolean algebras.

2.22 Theorem. For every finite Boolean algebra B # {0} there is some n e N
with
B =, {0, 1}".

Proor. We use induction on |B|. If | B| = 2, the result is obvious. So suppose
that |[B|>2andletae B,a#0and a # 1.

The mapping f: B > [0, a] X[a, 1], via b— (a1 b, all b), is injective.
Because of f(bMc)=(all(bMec),ald(bT¢c))=f(b)f(c), f(bU
c)=(al(bUJec),all(bldc))=f(b)Uf(c), and f(b')=(allb',al]
b)Y=(alb,allb) = f(b) (in[0, a] X [a, 1]) for all b, c € B, we know that
f is a Boolean homomorphism.

Finally, if (x, y) € [0, a] X[a, 1]then (x, y) = f(b) for b := y[1(a’Ll x).
Hence f is a Boolean isomorphism and B =, [0, a] X [a, 1]. By induction,
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there are n,meN with [0,a]=,{0,1}" and [aq, 1]=,{0,1}™. Hence
B=,{0,1}"*™ 0O

Then Theorem 2.20 follows from 2.13(ii).
2.23 Example. The lattice of the divisors of 30, i.e. the Boolean algebra

B=({1,2,3,5,6, 10, 15,30}, gcd, lcm, 1, 30, complement with respect to
30), is isomorphic to the lattice of the power set ?({a, b, c}). O

We sketch the Hasse diagrams of some small Boolean algebras:

O &

Figure 1.17

2.24 Remark. The identification of B with a power set as in 2.20 is not
always possible. It can be shown that for every (not necessarily finite)
Boolean algebra B there is a set M with B<S ?(M). This is called Stone’s
Representation Theorem.

2.25 Definition and Theorem. Let B be a Boolean algebra and B" be its n-fold
cartesian product. For mappings f and g from B" into B we define
fT1g:B">B,  x—fl(x)Mg(x);
fUg:B">B,  x—f(x)Ug(x);
f:B">B,  x—(f(x));
fo: B" > B, x—0;
fi: B" > B, x—1;

for all x € B". Then the set F,(B) of all mappings of B" into B is a Boolean
algebra. O

PrROBLEMS
1. Prove a generalization of Theorem 2.4 involving the meet of n elements of B
instead of only two elements.
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. Give three examples of lattices which are not Boolean algebras.

. How many Boolean algebras are there with four elements 0, 1, a and b?

Consider the set # of n x n matrices X = (x;) whose entries x,; belong to a
Boolean algebra B = (B,[1,LJ, 0, 1,'). Define two operations on :

Xuy= (xijUJ’ij), XMys= (xijmyzj),

and two matrices 0 and 1, the all zeros and all ones matrix, respectively. Let
X' = (x};). Show that ./ is a Boolean algebra. Furthermore, let

1 0 ... 0

o1 ... 0
E=

00 ... 1

and consider the subset & of /# consisting of all X € ./# with the property X = E.
(Here X= Y& x;; = y; for all {,j.) Show that ¥ is a sublattice of # and that
it is a filter of # (see Problem 12 in Subsection B). Verify also that & is the
interval [E, I] of .

Let & be as in Problem 4, define matrix multiplication and show that A is
closed with respect to multiplication, i.e. X,Y € /< XY € V. Prove: If X e W,
then X=X’=...=<X""'=X"

A Newman algebra N is a generalization of a Boolean algebra, obtained by
dropping the commutative and associative axioms. Let N be a set closed under
+ and - such that:

a(b +c)=ab +ac, (a +b)c=ac+bc forall a,b,ce N,

there exists a 1 such that al = a for all a € N, there exists a 0 such that
a+0=a=0+a for all ae N. To each a there corresponds at least one
“complement” a’ such that

aa' =0, a+a =1.

Prove: (i) aa = a; (ii) (a')' = a; (iii) la = a; (iv) complements are unique; (v)
addition is commutative; (vi) addition is associative.

. (i) Show by example that relative complements are not always unique.

(ii) Prove that a complemented modular lattice is relatively complemented.

Boolean Polynomials, Ideals

We introduce Boolean polynomials and polynomial functions in a form
which is well suited for applications described in Chapter 2.

2.26 Definition. The notion of a Boolean polynomial is defined recursively.
Let X, ={x;,...,x,} be a set of n symbols (called indeterminates or
variables), which does not contain the symbols 0 and 1. The Boolean
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polynomials over X, are the objects which can be obtained by finitely many
successive applications of:

(i) xi, x5, ..., X,, and 0, 1 are Boolean polynomials;
(ii) if p and g are Boolean polynomials, then so are

(p)M(q), (p)LI(q), (p)".
We denote this set of all Boolean polynomials by P,.
2.27 Remark. Two polynomials are equal if their sequences of symbols are
identical. It is necessary to use brackets in 2.26(ii) in order to obtain the

sequence of symbols ((x;) 1 (x,))". Instead of (x;), (0)" and (1)’ we shall
write x;, 0’ and 1, for short.

2.28 Example. Some examples of Boolean polynomials over {x,, x,} are
0, 1, %), Xa, X, T1 2, x; L x5, X1, X1 T 1 X5, .. .. |

Since every Boolean polynomial over x,,..., x, can be regarded as a
Boolean polynomial over x, ..., X,, X,.;, we have
PcPc..cPcP,,,c....

Note that P, is not a Boolean algebra. Of course, we want x, 1 x, and
x,[1x, to be related. Therefore we introduce the concept of polynomial
functions as follows.

2.29 Definition. Let B be a Boolean algebra, B" be the direct product of n
copies of B, and p be a Boolean polynomial in P,. Then
pB: B" - B, (aly' L) an) HﬁB(ala cecy an)

is called the Boolean polynomial function induced by p on B. Here
ps(a,, ..., a,) is the element in B which is obtained from p by replacing
each x;bya,e Bjl=i=<n.

The following example shows that two different Boolean polynomials
can have the same Boolean polynomial function. Again, B denotes the
Boolean algebra {0, 1} with the usual operations LI, 17, ".

2.30 Example. Let n =2, p = x, 1 x,, g = x,1 x,. Then

p_B: IBZ g B, (0, 0) ’__)05 (0, 1) '_>05 (1’0) '_>0’ (15 1) = 15

QB: IBZ - B, (0, 0) = 05 (0, 1) HO, (1,0) = 0, (1, 1) = 1'
Therefore pg = . 0

Let B be a Boolean algebra. Using the notation introduced in 2.29, we
define
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2.31 Definition. P,(B) := {ps|p € P,}.

2.32 Theorem. Let B be a Boolean algebra; then the set P,(B) is a Boolean
algebra and a subalgebra of the Boolean algebra F,(B) of all functions from
B" into B.

Proor. We have to verify that P,(B) is closed with respect to join, meet
and complement of functions (as defined in 2.25) and that P,(B) contains
fo and f,. For I,

(ﬁB [—l q.B)(al, ] an) = p_B(ala ey an) [—l qB(al, R an)
=pB|_|qB(ala"',an) VaiEB,

implies that V pg, gg € p.(B), pgl 1 Gs = pT1qp € p.(B). For LI and ' we
proceed similarly. Also 0 = fo, 1 = fi. O

We partition the set of Boolean polynomials by using equality of Boolean
polynomial functions.

2.33 Definition. Two Boolean polynomials p, g € P, are called equivalent
(in symbols p ~ q), if their Boolean polynomial functions on B are equal,
i.e.

P~ q:= P = §s.

We shall show that ~ is an equivalence relation on P, which partitions
Boolean polynomials into classes of equivalent polynomials with equal
polynomial function. We formulate this precisely.

2.34 Theorem. (a) The relation ~ in 2.33 is an equivalence on P,
(b) P,/~ is a Boolean algebra with respect to the usual operations on
equivalence classes and '

Pn/~ Eb Pn (B)
as Boolean algebras.

ProoFr. (a) We have p ~ p for all p € P, since pg = pg. For all p, g, r in
P, we have

p~q and g~r=>p-~r,

since p~q=>pg=¢qs and g ~r=>gg = iy imply pg = 7. Also p~ qg=
q ~ p, for all p, g € P, since pg = g = qs = Pa-

(b) We define the mapping h: P,(B) » P,/~, which maps pg to the
equivalence class of p, denoted by C,. h is well defined, since pg = gg=>p ~
q=> C, = C,. Itis easily verified that h is a Boolean isomorphism. We leave
the details as an exercise. O
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Moreover, it can be shown with the help of 2.24 that for equivalent
polynomials the corresponding polynomial functions coincide on any
Boolean algebra, not only on B. That is:

2.35 Theorem. Let p, q € P,; p ~ q and let B be an arbitrary Boolean algebra.

Then ﬁB = q-B'

Proor. From Remark 2.24 we assume BS ?(M); from 2.25 we know that

the set of all functions from a set M into B is a Boolean algebra. We define
h: (M) - B, C— xc

and claim that h is a Boolean isomorphism. Here B denotes the algebra
of all mappings from M into B, y. is the characteristic function. We leave
it as an exercise to verify the properties of a Boolean isomorphism for h.
Thus BS B and it suffices to prove the theorem for B™. We know (from
the definition) that

p~qSpe=qg paliy,..., i) = qs(is,...,i,) foralliy,..., i, eB.
Let fi,...,f, € B™ and let m € M. Then
(B (fis .. fa))(m) = Pa(fi(m), ..., fu(m))
= qe(fi(m), ..., f.(m))
= (ga™(fis ..., [u))(m).
Hence pg™ = gg™. O
One frequently wants to replace a given polynomial p by an equivalent
polynomial which is of simpler or more systematic form. This is achieved

by considering so-called normal forms. The collection of normal forms
provides a representative system for the equivalence classes of P,

2.36 Definition. N < P, is called a system of normal forms if
(i) Every p € P, is equivalent to some g € N;
(i) Y g1, 92€ N: g, # ;= ¢, # ¢>.

In the following theorem we describe two systems of normal forms. They
represent Boolean polynomials by equivalent “join of meet” polynomials
(or “meet of join” polynomials). We use the notation:

xi=x, x;'=xj, 00=0, 07':=1, I''=1, 17:=0.
2.37 Theorem. The following two sets are systems of normal forms in P,:

(i) Ny:= { L d; ;[ x;' M xizl'"l ...[ x where d;. . €10, 1}}.
(i

,,,,, in)e{l,—-1}"
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(ii)N, = { M G LI XP L x7 L., . L x% wherec, ;. € {0, 1}}.

(iyeenin)e{1,=1}"

Proor. If
p= L] di, . TIxPT...Txi e Ng
(iyyoemin)e(1,—1}"
then
(1, 1)y = | d ik
. (i yemnin)e{1,~1}"
Now

1 ifil=k1,...,i,,=k,,andd,—ln_,-n=1;

d i m"lklm...m"n"m{
poein 0 otherwise.

Therefore pg(1%,...,1%) =di, ;.

Thus the function pg is completely determined by the values of the d;,_; ’s
in p € N, We may regard the values of the d; _, ’s in p as a function from
{1, 1}" into {0, 1}. Thus there is a bijection between {jg|p € N,} and the
set of functions from {—1, 1}" into {0, 1}. That is

[{Balp € Na}| = {0, 111" = 27",
2" =|{pa|p € Na}| =|P./~| = |P.(B)| = |F.(B)| = 27"

Hence there are precisely 2°" equivalence classes in P,. This proves the
assertion for (i), (ii) is shown similarly (or by “duality™).

Alternatively, we give a more detailed proof that N, is a system of normal
forms. First we show that each equivalence class contains at most one
element of N, i.e. for all p,q € N; with p # q=>p +# q, i.e. pg # gg. Let p
be as in 2.37(i), g be of the form

q= L_J €., inﬂxi‘...mxi;'

and let d; ; # e, ; for suitable j,,...,j.. We define (v,,...,v,) =

,,,,,,,,,,

Denote this last expression by y. If ji # i, k = 1,..., n, then (I’)* = 0 and
then the whole expression y will be 0. Therefore j, = iyandtheny =d; _; [
1#e, ,; =ds(l",..., "), with the same argument as for ps. Therefore
P # s

Next we show that each equivalence class contains at least one element
of N, i.e. for every Boolean polynomial p there is an n € N, such that
p ~ n. We show that N, = {fig|n € N,} equals P,(B) = {pa|p € P,}. Here
P,(B) is regarded as the set of all mappings f from B” into B, where f
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consists of expressions obtained by applying I, LJ and ’ onto 0, 1 and
%, ..., X, finitely many times. x; :B" > B is the ith projection (V1,...,0,) >
v To show that there is a A, € N, for 0 such that 0 = a1, consider 0 ~ p,

.....

equal to 1. Then use mathematical induction to verify

1 ~ L XL M Xl
(ipeensin)€{1,=1}"
so 1=n,. B
Next we have to show that for every X, there is a fi, € Ny such that
X = i, It is easily seen that

L] MG, . Mxe ... Mxp) U

(ityeeesi— ok 4150 in ) E{1,— 1}"
O (xbm...Mxg'M...Mxk)

is equivalent to x;.

Finally we have to verify that if for every function p and g there are
functions 7 and r in N, then for p1 g, p LI § and p’ there are equivalent
functions in N, We demonstrate this in the case p 4. Let p and g be as
above. Then

pﬂq~( L ... inﬂ(x'ill’l...l‘lx‘,p))

(ipsenin)e{1,—1}"

m( L ejl,___J"ﬂ(x’ill—l...I—lxj,;I))

Groenain) {1, - 13"

~ L Sroor T LTI X ),

where d;_; Te, ;i = f. . €{0,1}L
The remaining cases are treated similarly. 0

2.38 Definition. Let p € P,.

(i) The uniquely determined polynomial p; € N, with p ~ p, is called the
disjunctive normal form of p.

(ii) The uniquely determined polynomial p, € N, with p ~ p, is called the
conjunctive normal form of p.

In the disjunctive normal form we only write down the terms xj [1...[]
x» for which d, i, =1 (and omit this coefficient). A similar convention
applies to the conjunctive normal form, where we list only those terms
xp ... x} with coefficients ¢, __; = 1. Thus for (177 x; [ x2) LI (071 x; ]

x) L (M x5 T x,) L (0 x; M1 x5) we write (x; [ x,) LJ (x] 1 x,) and this
is in disjunctive normal form, while (x, [ x,) L x] LI (x, 1 x1 1 x,)" is not.
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We note that in the systems N, and N, of normal forms defined above
the order of the meets and joins, respectively, is not prescribed. Thus N,
and N, are not uniquely determined as “normal forms” should be. This
can be overcome by a formal device (see DorRNHOFF and HoHN, p. 136).
However, we omit this approach since it is not essential for the purpose of

this chapter.

2.39 Example. We demonstrate the second part of the detailed proof of

Theorem 2.37 for the special case:

(a)

(b)

(c)

n=2, and p=(x11x) 0 (% xb)
g=(x;Mx)U(xiMx3), (p,ge Na).
pITg=[0e TTx) L (6 TTx3) 1T [(xy Tx) L (x5 71 x3)]
~ {0 T x5) T[0T x3) U (5 71 %) 1}
LGy T x2) 1[Gy T x3) L (1 71 x3) 1}
~ [0 T 262) 17 (o T 2) T L [(26 T 2x0) 71 (%7 71 x3)]
LI [Cx TTx2) 11 (6 T ) TU [y T 5) 1T (36 71 x3)]
e (CAREN IR CARE N N CARENIRICARED]
L Loy T x0) 1 (e M x5) 1L [(oey 11 x5) T (x5 171 x3)]
~(x;10)LIOr10) L (x, M1 x5) LI(OTT x3)
~0o (x Mxy) L0
~x, M x5e N,
plUg=0xT1x) 01 (e M x3) L (e MTxb) L (x) T x5) e Ny
~ (2, T x2) L (%, TTx5) L (%171 x5) € N,
P =[x T x2) L (e TTx5)T ~ (g T1x2)" 171 (26, 11 x2)
~ (xiLx3) M (x1 U x,)
~ [xi 1 (x3 LX) JU [x2 T (x L X))
~ (i TTx) L () T ) L (3 T eh) L (x5 77 x3)
~x1UxMx)UxMxpuo
~xi U (x] M) U (x5 T x7)
~x1 L (e M) U (xp M1 x5)
~ (] T x) LI (23 T x5) L (%) T ) L (] 71 x3)
~ (X1 M%) LU (x1 M1 x3) € Na
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2.40 Remark. The disjunctive normal form can be obtained by applying the
following rules. Let p be a Boolean polynomial.

Step 1. Apply de Morgan’s laws to bring complementation ' immediately
to the x; and the constants.

Step 2. Apply the distributive laws to express p as a join of meet
expressions. Generally, the meet expressions will lack some x;’s; for each
i we have in each meet either x; or x| or none of both.

Step 3. If x; is missing, insert x; L x/.

Step 4. Now apply the distributive law until a join of meet expression
is obtained. This will be the disjunctive normal form, after application of
the idempotent law and suitable reordering.

2.41 Example. Let
p=[allx)U(bMx)TU(x,LUb) witha, beB.
Step 1.
[(aMx) U bMx)TU (U b)Y ~[(alx) TT(bMx)) U (x{ 1)
~[(a'Ux)M(bMx)]L (xiT1d").

Step 2.

[(a'LUx}) T (bTx,)]L (x4 T b")
~[(a'MbMx)U(x{MbMx) L (x; 715"
~(a'TIbMx) LI(bM x| M x,) L (x}71b).

Step 3.

(a’mbme)Ll(bmx;me)l_l(b’mx;)=:y
~—————

1 2 3

In Step 1: since x, is missing we insert x, Ll x{. In Step 2: x| and x, occur,
so nothing is inserted. In Step 3: since x, is missing we insert x,[] x5.
Therefore:

y~La' T (o, LU x) M, ] (BT Tx1 T %) LI TTx1 17 (x5, L x5)].
Step 4.
[a'TIbM (e Ux)) M x]U (BT xi M x) LIE' M x1 71 (3, L x5)]
~[a'TIbMx, M (x, UxDIU BN XM xy)
LB M1 xi 1T (e L x3)]
~a' TTbMx, Mx) U@ TTbMx, M x)]L (BT xi M xy)
LB T xi Mx) L (b M x1 M x5)]
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~@MbMxMx) U (@ TIbMx; M x) L (BTN x1Mxy)
HICAREAREAINICAREARES)
~@MbMxMx) U (@ TIbMxi M xy) L (bM XM xy)
L (b' T xy M) LI (BT xp M x3). (%)

We put together the three expressions in the middle, where x| [l x, occurs.
Then:

(@TIbMxiMx) LI(bM XM x,) (D' M XM x,)
~[((a'M b)Y b) M (x{ M x,)]L (BT X171 x)
~[bM (X Mx)IU (BT XM xy)
~(bLUb) M (x1Mxy)
~ 1M (x1Mxy)
~ 1M x;Mx,

Thus we have (*) in the normal form
(@M bMx, Mx) AT xi M xy) L (B T1x7 T x3). O

Actually, the proof of 2.30 told us much more:

2.42 Corollaries. (i) |P,/~| = 2*" and P,(B) = F,(B).
(i) If |Bl|=m>2 then |P,(B) =|P,/~|=2""<m® =|F,(B)|; so
P,(B) < F,(B).
(iii) 1f
p= L dil...i,,[—‘xilm ...Mxike N

(igyeensin)e{1,—1}"

then dil---i,. = pB(lil, ey li")_
(iv) If
p= I_] c"l"-"n!—lx'i‘UH-le;"eNc,

(i yrin)e{1,~1}"

then ¢, ;. = pa(0",...,0™). O

The result (i) means that every function from B" into B is a Boolean
polynomial function. One therefore says that B is “polynomially complete’.
Corollary 2.42(ii) tells us that B is the only polynomially complete Boolean
algebra; and (iii) and (iv) in 2.42 tell us how to find the disjunctive and
conjunctive normal form of a given polynomial. Also, these results are very
frequently used to find a polynomial (in normal form) which induces a
given function from B" into B (see 2.2.9-2.2.14).
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2.43 Example. Let
P = ((x L x) Mx}) L ((x5)' T (x U x3)) € P

From ﬁIB((), 0) = Oa ﬁB(Oa 1) = la ﬁIB(LO) = 09 ﬁIB(la 1) = 1 we get p ~
(x} M x,) LI (x, [ x,) = pg, the latter in disjunctive normal form. O

Of course, p; can sometimes be shortened by applying the rules of
Boolean algebras. In the Example 2.43 above we can write

pd~(xiux1)[_]x2~1[_]x2~x2.

Reductions to “shortest forms” will be discussed in §3.

Finally, we note that the disjunctive (conjunctive) normal form of a
Boolean polynomial p is “simpler” (i.e. shorter) than the conjunctive
(disjunctive) normal form of p if there are more zeros (ones) in the function
value table of pg. This follows from 2.42(iii), (iv).

Often the values of polynomial functions are tabulated. We use this in
an example.

2.44 Example. Given the Boolean polynomial function pg in terms of its
values

Uy Uz U3 Pe(v1, 02, 03)
1 1 1 1
1 1 0 1
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 1
0 0 1 0
0 0 0 1

Then the disjunctive normal form of p is
CAREARENINCAREAREINICAREAANE Y
L (xf M M x) L (e T x5 11 x3),

since pa(1', 1, 1) =1, pg(1', 1, 17" =1, pg(17",1',1') = 1, etc. The con-
junctive normal form of p is

(et Lt ey L xe3) T (o L ey L xeg) 11 (6 L x5 L X5). |
For applications in Chapter 2, §3 we shall need a few further concepts

in the theory of Boolean algebras. Some of the following terms may also
be defined and studied in more general lattices. In the case of Boolean
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algebras, however, we obtain some simplifications; therefore we restrict our
considerations to this case.

2.45 Definition. Let B be a Boolean algebra. I = B is called an ideal in B,
in symbols I < B, if I is nonempty and if

Vije LVbeB:(ilMbel)a(ildjel).

If we set b = i’ we see that 0 must be in I. Next we consider some useful
characterizations of ideals. As one would expect the kernel of a Boolean
homomorphism h: B, > B, is defined as ker h := {b € B,|h(b) = 0}.

2.46 Theorem. Let B be a Boolean algebra and let I be a nonempty subset of
B. Then the following conditions are equivalent.

(i) I=B.
(ii) I = (B, +,-). This is the Boolean ring (see 2.10) corresponding to B.
(iii) I is the kernel of a Boolean homomorphism from B into another Boolean
algebra.
(iv)y VijeLVbeB:(illjeDa(b=i=>bel).

ProoF. (i) = (ii) is trivial.

(ii) = (iii) follows from the homomorphism theorem of ring theory (see
3.1.11) and (2.10).

(iii) = (iv). Let h: B > C be a Boolean homomorphism and I = ker h.
Moreover, leti,je I, be B,b=<i Then h(illj) = h(i)LIh(j)=0L10=0
and h(b) = h(i) = 0, therefore h(b) =0. Thus ilLlje I and be I

(iv) = (1) is trivial. d

2.47 Examples. Let B be a Boolean algebra:

(i) {0} and B are ideals of B, all other ideals are called proper ideals of B.
(ii) For B = #(M) the set {A < M| A finite} forms an ideal of B.
(iii) For any A€ ?(M), {N|N < A} is an ideal in B = ?(M). O

The examples in 2.47(iii) are generated by a single element A. In general
if b is an element in a Boolean algebra B, the set (b) of all “multiples”
x b of b, for any x € B, is called a principal ideal. An ideal M in B is
maximal when the only ideals of B containing M are M and B itself. See
also Chapter 3, §1.

IfI< B=(B,,L,0,1,") thenwehave I < (B, +, -}, because of 2.46(ii).
Therefore we can form the factor ring B/ I This is again a Boolean ring,
which by 2.10 induces a Boolean algebra, denoted again by B/ I

2.48 Theorem. Let B be a Boolean algebra and b € B. Then the principal ideal
generated by b is

(b)={a € Bla=b}.
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The proof follows from 2.46(iv). The example given in 2.47(ii) is not a
principal ideal, not even a “finitely generated” ideal, if M is an infinite set.
The ideals in 2.47(iii) are principal ideals.

So far everything has been very similar to the concepts in ring theory.
In the case of Boolean algebras, however, we have the possibility of dualiz-
ing. The dual of an ideal is a filter in the following sense.

2.49 Definition. Let B be a Boolean algebra and F < B. F is called a filter
(or dual ideal) if

VS5ge FVbeB:(fl[Nge F)a(flUbeF).

In ?(N), F ={A c N|A'finite} is the filter of cofinite subsets of N; this
filter is widely used in convergence studies in analysis. The connection with
2.47(ii) is motivation for the following theorem, the proof of which is left
to the reader.

2.50 Theorem. Let B be a Boolean algebra and I, F = B.

(i) If I < B then {i'|i € I} is a filter in B.
(ii) If Fis a filter in B, then {f'|f € F} is an ideal in B.

This theorem enables us to dualize 2.46.

2.51 Theorem. Let B be a Boolean algebra and F = B. Then the following
conditions are equivalent:

(i) Fis a filter in B.
(ii) There is a Boolean homomorphism h from B into another Boolean algebra
such that F = {b € B|h(b) = 1}.
(iii) Vf,ge FYbe B:(fllge F)a(b=f=>beF). O

Maximal ideals (filters) can be characterized in a very simple way.

2.52 Theorem. Let B be a Boolean algebra. An ideal (filter) M in B is maximal
if and only if for any b € B either b € M or b’ € M, but not both, hold.

Proor. It is sufficient to prove the theorem for ideals. We use the usual
notation I instead of M. Suppose for every be B we have be I or b'e I
but not both. If J were an ideal in B which properly contained I, then
JjeJIJN\I=j, j' € J, which would imply 1 € J and then J = B. Conversely,
let I be a maximal ideal in B and b, € B, such that neither b, nor b} are
in L ThenJ:={bllilie I, be B, b= by}isanideal, generated by I U {bo},
which contains I properly. Since I is maximal, we have J = B. Then there
exists an i € I, b = b, with b Ll i = by. This implies by 1 (b L i) = b1 by,
which means by [1i = by; therefore by < i and by 2.46(iv) bj € I, a contradic-
tion. O
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We can show (using Zorn’s Lemma) that any proper ideal (filter) is
contained in a maximal ideal (filter). Maximal filters are called ultrafilters.
Ultrafilters in ?(M) include all filters of the form F,, = {A c M|m € A},
for a fixed m € M. Other ultrafilters must exist according to this remark. If
M is finite all ultrafilters are of this form. If M is infinite, F,:=
{A € M| M\ Ais finite} is a proper filter of ?(M). From the remark above
there is an ultrafilter containing F, and this ultrafilter is clearly not an F,,
for any m e M.

PROBLEMS

1. Find disjunctive and conjunctive normal forms of
S =M x) U M xa) U (x] M x3)).
2. Simplify f = (x, + x5 + x{)(x} + x%,) (x5 + x3).

3. Determine the disjunctive normal form of p(x,, x,) = ((a U x;) M1 (b U x,)") L
X, with a and b in the Boolean algebra B.

4. Find the disjunctive normal form of
Sy, X, X3, x4) = (X777 265) L (g T 65 T x3) L (65 T x4 7T x) L () T 63 T ).
5. Fill in the remaining details in the proof of Theorem 2.35.
*6. Prove part (ii) of Theorem 2.37 without dualizing part (i).

7. Demonstrate in detail how an interval [a, b] in a Boolean algebra B can be
made into a Boolean algebra.

8. Prove: A nonempty subset I of a Boolean algebra is an ideal if and only if
aclbel&allbel
9. Ideals and principal ideals of lattices are defined just as those for Boolean
algebras B by replacing B by a lattice L. If (a) and (b) are principal ideals
in the lattice of ideals of a lattice L, prove that (@) 11 (b) = (a1 b), (a) U (b) =

(a U b). (Here the operation [] on two ideals is just their common part and
L of two ideals is the set of elements ¢ of L such that ¢ = x U y, for x € (a),

y € (b))

10. Prove that the ideals of a lattice, ordered by set-theoretic inclusion, form a
lattice.

*11. Prove that in a finite lattice every ideal is a principal ideal.
12. A nonempty subset J of a lattice L is called a filter of L if

(i) aeJ,beJ=allbel,;
(ii) aeJ,xe L=>alixe L.

Prove that in a filter J of L the following conditions hold: If a € J, a < j then
jeJ Also,ifallbeJ,thenaeJand be J
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13. Find all ideals and filters of the lattice

0
Figure 1.18

*14. Show that the correspondence between the ideals of a Boolean algebra and
the ideals of the corresponding ring is one-to-one.

*15. Prove that any ideal of a Boolean algebra equals the intersection of all prime
ideals containing it. (I { Bis prime if a, be B,alNbeI=>aclvbel)

*16. Prove: A distributive lattice is a Boolean algebra if and only if each of its
prime ideals is maximal.

EXERCISEs (Solutions in Chapter 8, p. 416)

1. Show that ({1,2,3,6,9, 18}, gcd, lcm) does not form a Boolean algebra for
the set of positive divisors of 18.

2. Show that (B, gcd, lem) is a Boolean algebra if B is the set of all positive
divisors of 110.

*3. Prove that the lattice of all positive divisors of n € N, is a Boolean algebra
with respect to lcm and ged if and only if the prime factor decomposition of
n does not contain any squares.

4. Prove Theorem 2.6.

5. Show that for any Boolean algebra B there are 22" different Boolean functions
for n variables.

6. Simplify the following terms in a Boolean algebra

(@) My) UMy x'Uy);
) (xOyHYUxMynz)iuez

7. Find the disjunctive normal form of

CYNCARICANENINI(CANE AR INEAF
(ONCANCARENIRICANEHIREYR

8. Find the conjunctive normal form of

CANEAREYIRI(CANEATNICHNEN)P
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9. Let B be a Boolean algebra. Prove: F is a filter in B if and only if F':=
{x'|x € F} is an ideal of B.

*10. Let S be a subset of a Boolean algebra B. Prove

(i) The intersection J of all ideals I containing S is an ideal containing S.
(ii) J in (i) consists of all elements of the form

b, Msp...u(b, 1 s,), n=l1,

where s,,...,5, € S and by, ..., b, are arbitrary elements of B.
(iii) J in (i) consists of the set A of all a such that

a=s L...Us, nz=l,

where s,,..., s, are arbitrary elements of S.
(iv) J in (i) is a proper ideal of B if and only if
sl s, # 1

for all s;,...,s, in S.

*11. By the use of Zorn’s Lemma prove that each proper filter in a Boolean algebra
B is contained in an ultrafilter. (This is called the Ultra Filter Theorem.)

12. Let h: B > B’ be a homomorphism of Boolean algebras. Show that H = h™'(1)
is a filter. This is called the hull of h.

13. Show that for any distinct elements x and y in a Boolean algebra B an ultrafilter
exists containing one but not the other element.

§3. Minimal Forms of Boolean Polynomials

We have seen in the previous section that it is possible to simplify a given
Boolean polynomial by using the axioms of Boolean algebra. For this
process of simplification it is often difficult to decide which axioms should
be used and in which order they should be used. There are several systematic
methods to simplify Boolean polynomials. Many of these methods have the
disadvantage that the practical implementation is impossible when the
number of indeterminates of the polynomial is too large. This problem area
in the theory of Boolean algebras is called the optimization or minimization
problem for Boolean polynomials; it is of importance in applications such
as the simplification of switching circuits (see Chapter 2, §2).

Instead of x 1y and x LI y we shall write xy and x + y, respectively. We
shall discuss the simplification of Boolean polynomials, especially the
reduction of polynomials to a “minimal form™ with respect to a suitably
chosen minimal condition. Our considerations will be restricted to a special
minimal condition for sum-of-product expressions or disjunctive normal
forms. We define a literal to be any variable x; either complemented or not
complemented, and 0 and 1. Let d; denote the total number of literals in
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a sum-of-product expression of f Let e; be the number of disjuncts (or
product terms) in f. We say such an f is simpler than a sum-of-product
expression g if d; < d,, e, < e,, and one of these inequalities is strict. f is
called minimal if there is no simpler sum-of-product expression which is
equivalent to f. In other words we are looking for the “shortest” expression
with the smallest possible number of literals, which is equivalent to f. Such
a minimal form does not always exist uniquely (for examples see p. 52).
We shall describe one method amongst several methods for the simplification
process. It is based on work by Quine and has been improved by McCluskey,
so it is called the Quine—McCluskey method. A Boolean polynomial in this
section is also called an “‘expression”.

3.1 Definition. An expression p implies an expression q if for all
bl,...,bnEB, P_B(bl,"',bn): 1 implles qB(bl,"'9bn)= l;

p is called an implicant of q (cf. 2.2.9 and 2.2.10).

3.2 Definition. A product expression (briefly a product) a is an expression
in which + does not occur. A prime implicant for an expression p is a
product expression a which implies p, but which does not imply p if one
element in « is deleted. A product whose factors form a subset of the factors
of another product is called subproduct of the latter, i.e. q is a subproduct
of pe P, if 3 p,, p, € P, u {A} such that p = p,gp,. (A denotes the empty
word.)

3.3 Example. x,x; is a subproduct of x;x,x; and also of x,x5x; and implies
the expression

P = X1X5X3 + X X5X;3 + X Xx5%x35

because (x,x;)(1, i, 1) = 1. But then p(1, i, 1) = 1 as well. Neither x, nor
x; imply p; therefore x,x; is a prime implicant. x; cannot be an implicant
of p, since forall (1, i,, i;) € {0, 1}’ we have X,(1, i,, i3) = 1 but p(1, i, i3) = 0.

O

3.4 Theorem. A polynomial p € P, is equivalent to the sum of all prime
implicants of p.

PrOOF. Let I, be the set of all prime implicants of p and g =%, _ 1, P If
q(b,,...,b,)=1 for (by,...,b,)eB", then there is a p, eI, with
Pou(by, ..., b,) = 1. Since p, implies p, p(b,,..., b,) =1 is a consequence.

Conversely, let p(b,,...,b,) =1 and s:= x}...x; with xi = x; for
b;=1 and x{ = x| for b;=0. s is an implicant of p. In 5 we remove
all those x{* for which p(by,..., bi_1, b}, biry,..., b,) = 1. The remaining
product r still implies p, but does not imply p anymore if another factor is
removed. Therefore r is a prime implicant for p with 7#(b,, ..., b,) = 1.
Hence g(b,,...,b,) = 1. 0O
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A sum of prime implicants of p is called irredundant if it has the smallest
possible number of product expressions amongst all those sums of prime
implicants, which are equivalent to p. A minimal sum-of-product expression
must be irredundant. In order to determine a minimal expression we there-
fore determine the set of irredundant expressions and amongst them we
look for the one with least number of literals. Here is a method due to
Quine for determining the prime implicants.

Prime implicants are obtained by starting with the disjunctive normal
form d for the Boolean polynomial p and applying the rule

yztyz' ~y,
wherever possible in d. More generally, we use
(aB) +(aB') ~ a, (*)

where @ and B are product expressions. The set of all expressions which
cannot be simplified any more by this procedure is the set of prime
implicants. The sum of these prime implicants gives the minimal form for p.

3.5 Example. Let p be the Boolean polynomial whose disjunctive normal
form d is given by:

d = wxyz' + wxy'z' + wx'yz + wx'yz' + wx'yz + w'x'yz' + w'x'y’z

We use the idempotent law and (*) for the (3) = 21 pairs of products in d
(as far as this is possible) and by doing this we ““shorten” these products.
For instance, the first and second product expression of d yields wxz' by
using (*). If a product expression is used once or more for the simplification,
it is ticked. Since + stands for LI, an expression can be used any number
of times and one tick suffices. In this way all the expressions are ticked
which contain other product expressions and therefore cannot be prime
implicants. Altogether this process leads us

from wxyz’ and wxy'z’ to wxz,
from wx'yz and wx'yz’ to wx'y,
from wxyz’ and wx'yz' to wyz,

from wx'yz and w'x'yz’ to w'x'y,

[

from w'x'yz and w'x'y'z to w'x'z
from wx'yz and w'x'yz to x'yz
from wx'yz’ and w'x'yz’ to x'yz.
In here, all seven summands are used and therefore ticked.
In general, this procedure is repeated over and over again using only

the ticked expressions (which become shorter and shorter). The other ones
are prime implicants and remain unchanged.



48 Chapter 1. Lattices

In our example, the second round of simplifications yields:
from wx'y and w'x'y to x'y,
from x'yz and x'yz’ to x'y.

These four expressions wx'y, w'x'y, x'yz and x'yz’ are ticked. The remaining
ones, namely wxz’, wyz' and w'x’z cannot be simplified. Hence p can be
written as a sum of prime implicants:

p~wxz' +wyz' + wx'z +x'y. O

McCluskey improved this method, which leads us to the general Quine—
McCluskey algorithm. We use the polynomial of Example 3.5 to describe
the procedure.

Step 1. Represent all product expressions in terms of 0-1 sequences, such
that x; and x; are denoted by 0 and 1, respectively. Missing variables are
indicated by a dash, e.g. w'x'y’z is 0001, w'x’z is 00-1.

Step 2. The product expressions, regarded as binary n-tuples, are parti-
tioned into equivalence classes according to their number of ones. We order
the classes according to increasing numbers of ones. In our example

wx'y'z 0 0 01
w'x'yz’' 001 0
w'x'yz 0 0 1 1
wx'yz' 1 01 0
wxy'z’ 1 1.0 0
wx'yz 1 01 1
wxyz' 1 1 1 0.

Step 3. Each expression with r ones is added to each expression containing
r+1 ones. If we use (*), we can simplify expressions in neighboring
equivalence classes. We have to compare expressions in neighboring classes
with dashes in the same position. If two of these expressions differ in exactly
one position, then they are of the form p =iji,...i...i, and g =
iji...i%... 1, where all i, are in {0, 1,-}, and i, is in {0, 1}.

Then (*) reduces p, q to i,iy...4_,—i,4,...0, and p and g are ticked.
This yields in our example

00 — 1
001 -
010 V
-0 11 4
101 -
1 -1 0
1

_
I
e
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The expressions with ticks are not prime implicants and will be subject to
further reduction. They yield the single expression

-0 1 -

Thus we found all prime impli‘cants, namely

00 - 1 w'x'z
1 - 10 wyz'
1 1 -0 wxz'
- 01 - x'y.

Since the sum of all prime implicants is not necessarily in minimal form
we perform the last step in the procedure.

Step 4. Since the sum of all the prime implicants of p is equivalent to p
by 3.4, for each product expression in the disjunctive normal form d of p
there must be a prime implicant which is a subproduct of this product
expression. This is determined by establishing a table of prime implicants.
The heading elements for the columns are the product expressions in d at
the beginning of the rows we have the prime implicants calculated in step
3. A cross X is marked off at the intersection of the ith row and jth column
if the prime implicant in the ith row is a subproduct of the product expression
in the jth column. A product expression is said to cover another product
expression if it is subproduct of the latter one. In order to find the sum of
prime implicants, which then is equivalent to d, we choose a subset of the
set of prime implicants in such a way that each product expression in d is
covered by at least one prime implicant of the subset. Then a minimal form
is a sum of prime implicants with the least number of terms and the least
number of letters. A prime implicant is called a main term if it covers a
product expression which is not covered by any other prime implicant; the
sum of the main terms is called the core. First we find the core, then we
denote by q, ..., g; those product expressions which are not covered by
prime implicants in the core; the prime implicants not in the core are
denoted by py, ..., p... We form a second table with index elements g; for
the columns and index elements p; for the rows. An X is placed in the entry
(i, j) indicating that p; covers g;.

Next we form a product-of-sums. Each factor corresponds to one of the
g; and consists of a sum of those p;’s which cover that g;. Using the Boolean
algebra laws we convert this to the simplest possible sum of products. Each
of these products represents a subset of the p;’s which covers all the g;’s.
We now concentrate on those products with the least number of factors.
From these shortest products we select those with the least total number of
literals in their constituent prime implicants. Each of these last when written
as a sum of its prime implicant factors and added to the core will give a
minimal sum of products representation of p.
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3.6 Example. Determine the minimal form of p, which is given in disjunctive
normal form

d=vwx'y'z +v'wx'yz + v'w'xy'z’ + v'w'xyz’ + v'wx'y'z + v'wx'yz’
[N N 1t

+v'wxy'z + v'wxyz' + v'wxyz + ow'x'y'z’ + ow'x'y'z + vw'xy'z

+ owx'yz' + vwxy'z" + vwxyz' + vwxyz.

Steps 1 and 2.

row numbers

Oones 0 0 0 0 0 (1)
000710 (2)
1 one 00100 (3)
1 0000 (4)
00110j (5)
0100 1 (6)
Zomes 4 1 o 1 o V 7
10001 (8)
01101 v (9)
01110 (10)
3 ones 10101 (11)
11010 (12)
11100 (13)
01111 Y (14)
aomes 1 1 1 o (15)
Somes 1 1 1 1 1 (16)

Step 3. Combination of rows (i) and (j) yields the following simplifica-
tions:

(1) (2) 000 -0
(1) (3) 0 0 00
(1) (4) -0 00 J
(2) (5) 00 -10
(2) (7) 0 - 010
(3) (5) 001 -0
(4) (8) 1000 - I
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Repeating this step by combining the rows as indicated gives

(1) (2),(3) (5)
(2) (5), (7) (10)
(7) (10), (12) (15)
(10) (15), (14) (16)

(5) (10)
(6) (9)

(7) (10)
(7) (12)
(8) (11)

— | © o O

S = = = |

O == O -

—_o O = O

(9) (14)
(10) (14)
(10) (15)
(12) (15)
(13) (15)

| I =]

f—

—— kot

—_—— |

—

SO O

(14) (16)
(15) (16)

1

0
0

0

1
1

1

1
1
1

2 e | me 2 2 M| Qe m

0
0
0

PwAaY
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The marking of the expressions by J or letters A, B, ... 1s, of course, done
after the simplification processes. Having found the prime implicants we
denote them by A, B, ..., J
Step 4. We give the table of prime implicants, where the first “row”
represents the product expressions of d as binary 5-tuples in column form.

_,l o O = O O |

— —

S O = O = o= O |

o o o o |

_——em OO O O |

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

00010001900 1t 1 1t 0 1 1
oo000o011011 0 1 1t 1 1 1
oo0otot1rooo11 1 o0 1 1 1 1
otrooto1roo1 o0 1 0 1 1 1
0000O0O10110 1t 0 0 1 0 1
A X X X X
B x X X
cC | x X

D |x x x X

E X X
F X X

G X X

H X X

I X

J |x
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The core, i.e. the sum of the main terms, is D+ H+ G+ B +E + A (in
our short notation). (4) is the only product expression which is not covered
by the core; it is denoted by g;. C, F, I, J are the prime implicants p; which
are not in the core. The new table is of the form

(4)
1
0
0
0
0
0 - -10 C
011 -1 F
1 0 0 0 - I X
- 0000 J X
This means that the minimal form is
(i) D+H+G+B+E+A+1
if we use I; it is
(ii) D+H+G+B+E+A+J

if we choose J. In our usual notation the minimal form (i) of p is
v'w'z' + v'wy'z + ow'y'z + wyz' + owxz' + wxy + ow'x’y’. O

We refer to HounN for a detailed description of this method, proofs
included.

PROBLEMS
1. Determine all prime implicants of f(x, y, z, u) = xyz + xyz' + x'y'u + yzu.

2. Find the minimal form for x;(x; +x,;) + x,x4 + x;x3x, using the Quine-
McCluskey procedure.

3. Repeat Problem 2 for f = x|x5 + x,x3x, + x;x,%} + x}x3.

4. Simplify:
[ =xyzuv + xyz'uv + xy'zu'v + x'yz'uv + xy'zu'v + x'yz'u'v’ + x'yzuv.
5. Simplify the following disjunctive normal form by using the Quine-McCluskey
procedure:

[

=xy'zu +xy'zu' + xy'z’u’ + x'yzu + x'yzu
y 34 34 y y

ot aul ol

+x'yz'u + x'yz'u' + x'y'zu + x'y'x'u’.
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6. Five different locks L, i=1,2,3,4,5, secure a door. The electrical locking
mechanism opens the door only if at least three of the locks are operated, amongst
them either L, or L, and L,. Find the disjunctive normal form of the Boolean
polynomial that represents unlocking the door and simplify it.

Exercises (Solutions in Chapter 8, p. 420)

1. Find all prime implicants of xy'z + x'yz’ + xyz' + xyz and form the corresponding
prime implicant table.

2. Find three prime implicants of xy + xy'z + x'y’z.

3. Use Quine-McCluskey’s method to find the minimal form of

[ [T

wx'y'z + wixy'z' + wx'y'z' + wxyz + w'x'y'z’ + wxyz + wx'yz + w'xyz' + w'x'yz’.

4. Determine the prime implicants of

[

F=wx'y'z +wx'yz' + wxy'z + wxyz' + w'xyz + wx

[

y'z' + wx'yz
+ wxy'z + wxyz + wxyz’

by using Quine’s procedure. Complete the minimizing process of f by using the
Quine~-McCluskey method.

5. Find the disjunctive normal form of f and simplify it:

f=xy+xyz+xy'z +xy'z
y y y

NoTEs

Standard reference books on lattice theory are BIRKHOFF, RUTHERFORD,
SzAsz, GRATZER;, HALMOs, GRATZER,. The latter book is a recent one and
also a more advanced book on the subject. Several of the books on applied
algebra also contain sections on lattices; most have a chapter on Boolean
algebras, we mention a few of them: BiIRkHOFF and BARTREE, DORNHOFF
and HoHN, GILBERT, GILL, FISHER, STREET and WALLIS, and PRATHER.
We shall refer again in the notes to Chapter 2 to some of these books which
include lattices, Boolean algebras and their applications.

The history of the lattice concept and the development of lattice theory
from the early beginnings in the nineteenth century up to the concept of
universal algebra is beautifully traced in MEHRTENS. Here we indicate some
of the highlights in the history of lattices.

In 1847, G. Boole wrote an epoch making little book The Mathematical
Analysis of Logic in which logic is treated as a purely formal system and
the interpretation in ordinary language comes afterwards. Boole wrote that
mathematics is characterized by its form, not its contents. His next book
Investigation of the Law of Thought (1854) contains the concept of Boolean
algebra.

George Boole’s calculus of logic centred on the formal treatment of
logic by means of mathematical (especially algebraic) methods and on the
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description of logical equations. Following Boole, a school of English
mathematicians, Schroder, and also Whitehead developed the axiomatiz-
ation of operations (conjunction, disjunction, negation); on the other hand
Peirce and Schroder created the axiomatics of order, with inclusion as the
fundamental term. In 1904 E. V. Huntington studied the two systems of
axioms and thus started the treatment of Boolean algebras as mathematical
structures apart from logic.

Another approach to lattices was taken by R. Dedekind, who transferred
the divisibility relation on N to ideals, modules and even fields, and
reformulated gcd and lecm as set-theoretic operations. Thus the lattice
structure appeared in several concrete applications. In 1897, Dedekind
arrived at the abstract concept of a lattice, which he called “Dualgruppe”;
but this abstract axiomatic foundation of lattice theory remained
unnoticed.

Some 30 years later, around 1930, several mathematicians formulated
the lattice concept anew. The axiomatic method was accepted by then and
the time was ripe for lattices. The most important root for lattices was
algebra starting with group theory. Garrett Birkhoff published his very
important paper on lattice theory in 1933, in which he introduced “lattices”.
In following papers he deepened some aspects and widened the area of
applications. Other authors or contributors to lattice theory at that time
were Karl Menger, Fritz Klein, Oystein Ore. Schroder’s lattice concepts
stemmed from his work on the algebra of logic and abstract arithmetic,
Dedekind’s lattice concepts originated in the structure of his algebraic
number theory.

Boole uses distributivity of meet with respect to join, which had been
noted by J. Lambert before him. He worked with sets and denoted the meet
of x and y by xy, the join by x + y, if x and y are disjoint. Similar to Leibniz
he interpreted the inclusion relation as xy = x, which easily gave him the
classical rules of syllogism. Jevons then extended the operation join to
arbitrary x and y; de Morgan and later Peirce proved the duality relations
called De Morgan’s laws.

Most of the nineteenth century logicians did not show much interest in
applying their findings to mathematics. One reason for this was the lack of
the use of variables and quantifiers, which were introduced by Frege and
C. S. Peirce. Peano, among others, introduced the symbols U, N, — for
join, meet and difference of sets. After Van der Waerden’s book on modern
algebra, the concept of universal algebra was not far away. Birkhoff
developed the concepts of an ‘‘algebra” from the approach of Van der
Waerden and took the name “universal algebra” from Whitehead’s book.
In 1934, MacLane also stated some ideas on universal algebra influenced
by his stay in Gottingen, but did not publish them. Ore published a paper
in 1935, which was one of the fundamental papers on lattice theory. The
following years saw many contributions to the subject and work on varied
applications of lattices, e.g. in group theory, projective geometry, quantum
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mechanics, functional analysis, measure and integration theory (see
MEHRTENS, pp. 202-203).

In the years 1933-1937, M. H. Stone developed important results on
Boolean algebras, which he interpreted as special rings, namely Boolean
rings, made amenable to ideal theory. Other fundamental questions tackled
by Stone were the representation of Boolean algebras and applications of
Boolean algebras in topology. From then on lattice theory expanded steadily
into a healthy and vigorous discipline of its own. It is, however, not
completely accepted that lattices are part of algebra. For instance, several
of the most influential or most popular algebra texts do not include lattices
at all, e.g. VAN DER WAERDEN, FRALEIGH, HERSTEIN, LANG, REDEI; on
the other hand some important texts do include lattices, e.g. BIRKHOFF and
MacLANE, MAcLANE and BIRKHOFF, JACOBSON, KUROSH.

There are several other algebraic structures which can be mentioned in
connection with lattices. For instance, a semilattice is an ordered set in
which any two elements have an infimum. An example of a semilattice is
the set of a man and all his male descendants, where the order relation is
defined as ‘““is ancestor of”. Semilattices are used in the developmental
psychology of Piaget. A semilattice could also be defined as an idempotent
and commutative semigroup.

A quasilattice is a set with a reflexive and transitive relation, where to
any two elements in the set there exist infimum and supremum. It can be
shown that quasilattices can also be described as a set with two binary
operations LI and ] which satisfy the associative and absorption laws, but
not the commutative law. JORDAN, MATsSUSHITA and others studied these
structures in the context of quantum physics (and called them skew lattices,
Schragverbéande).

There are other methods available for finding minimal forms. DORNHOFF
and HoHN describe a method for finding all prime implicants and for
finding minimal forms which is based on work by REUscH. REusCcH and
DETERING'’S paper is a tutorial on this topic.



CHAPTER 2
Applications of Lattices

One of the most important practical applications and also one of the oldest
applications of modern algebra, especially lattice theory, is the use of
Boolean algebras in modeling and simplifying switching or relay circuits.
This application will be described in §1. It should be noted that the algebra
of switching circuits is not described because of its primary importance
today but rather for historical reasons since it represented one of the first
applications in this field and also because of its elegant mathematical
formulation. The same theory will also describe other systems, e.g. plumbing
systems, road systems with blocks, etc. The second section considers proposi-
tional logic and the third section indicates applications in probability.

§1. Switching Circuits

A. Basic Definitions

The main aspect of the algebra of switching circuits is to describe electrical
or electronic switching circuits in a mathematical way or to design a diagram
of a circuit with given properties. Here we combine electrical or electronic
switches into series or parallel circuits. Such switches or contacts are
switching elements with two states (open/closed), e.g. mechanical contacts,
relays, semiconductors, photocells, or transistors. The type of the two states
depends on these switching elements; we can consider conductor-noncon-
ductor elements, charged-uncharged, positively magnetized—negatively
magnetized, etc. We shall use the notation introduced in Chapter 1. Again
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we replace x, [ x, by x,x, and x, LI x, by x; +x; and call them product
and sum. Again, P, denotes the set of Boolean polynomials; B is the Boolean
algebra of two elements, {0, 1}; pg = p is the Boolean polynomial function
associated with p € P,.

Electrical switches or contacts can be symbolized in a switching or circuit
diagram or contact sketch:

S, P S, — e

Figure 2.1

Such a switch can be bi-stable, either “open” or “closed”. Sometimes open
and closed switches are symbolized as

Figure 2.2

The basic assumption is that for current to flow through a switch it is
necessary that the switch be closed.

L (complementation) indicates a switch, which is

The symbol — S

open, if '—‘ s

and is closed if —{ S, r— is open. In other words, S, and S/ constitute

—— (a switch appearing elsewhere in the circuit) is closed

two switches which are linked, in the sense that their states are related in
this way. Similarly, if S, appears in two separate places in a circuit it means
that there are two separate switches linked so as to ensure that they are
always either both open or both closed. In the diagram

— 5 S2 —— (series connection)

Figure 2.3

we have “current” if and only if S; and S, are both closed. In

St

(parallel connection)

$2

Figure 2.4

we have “current”, if and only if either or both of S, and S, are closed.
These properties of electrical switches motivate the following definitions,
which give a connection between electrical switches and the elements of a
Boolean algebra. As usual, X, = {x,...X,}.
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1.1 Definition. (a) The elements x,, ..., x, € X,, are called switches.

(b) Every p € P, is called switching circuit.

(c) xiis called the complementation switch of x,

(d) xx; is called the series connection of x; and x;.

(e) x; +x; is called the parallel connection of x; and x;.

(f) For p € P, the corresponding p € P,(B) is called the switching function
of p.

(g) play,...,a,) is called the value of the switching circuit p at a, ..
a, € B. The a; are called input variables.

b

Switches and switching circuits in the sense of 1.1, the mathematical
models of circuits, can be graphically represented by using contact diagrams.
Instead of S; we use x; according to 1.1.

The polynomial (i.e. the circuit) x;x, + x;x; can be represented as:

X1 X2
—— = .
1 X3
[
Figure 2.5

The electrical realization would be:

]
]

Figure 2.6

Another method of representation is as a switching or circuit diagram. These
show the circuit in terms of “boxes”, which convert input variables into
values:

aye—
input variables g peP, | o p(ay,...,a,)
a,eB :
tno—
Figure 2.7

For the example given above we have the diagram

a

a,e— P pP—=aa,+a,a;

a30—

Figure 2.8

play, ..., a,) =1 (or =0) means that in the circuit p the electrical circuit
has current (or does not have current).
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Thus it is possible to model electrical circuits by using Boolean poly-
nomials. Here different electrical circuits operate ‘““identically” if their values
are the same for all possible combinations of the input variables. This means
for the corresponding polynomials p, q that pg = gg; that is, p ~ q.

In order to find a possible simplification of an electrical circuit retaining
its original switching properties we can look for a ‘“‘simple” Boolean poly-
nomial which is equivalent to the original polynomial. This can be done
by transposing the given polynomial into disjunctive normal form and then
applying the Quine-McCluskey algorithm (see Chapter 1, §3).

At this point we mention that in this way we can construct and simplify
a wide variety of flow diagrams with “barriers™, not only electrical circuits,
e.g. pipe systems (for water, oil or gas pipes) and traffic diagrams (with
streets as circuits and traffic lights as switches). We only describe some
aspects of the electrical interpretation of the situation as given above.

1.2 Examples. (i) We draw the diagram for the switching circuit

P = x1(x2(x3 + x4) + x3(x5 + Xg)).

X3
X2
X4
T———— xl e
Xs
b X3
X6

Figure 2.9

(ii) Next, determine the switching circuit p given by the diagram overleaf
(Figure 2.10):

P = x1(x3(x6 + x3(x4 + X5)) + x5(x3 + x6)x3). |

Nowadays, electrical switches are of less importance than semiconductor
elements. These elements are types of electronic blocks which are pre-
dominant in the logical design of digital building components of electronic
computers. In this context the switches are represented as so-called gates,
or combinations of gates. We call this the “‘symbolic representation”. Thus
a gate (or combination of gates) is a polynomial p which has as value in



60 Chapter 2. Applications of Lattices

X4
X3
!
r—1 X2 X5 —
X6
— xl
X3
Xq xg
X6
Figure 2.10

B the element obtained by replacing x; by a; in B for each i. We also say
that the gate is a realization of a switching function. p(a,,...,a,) =1 (or
0) means that we have current (or no current) in the switching circuit p.
We define some special gates.

1.3 Definition.

(i) a a identity gate (symbolizes x)
(ii) a a NOT-gate (or inverter) (symbolizes x')
a, |
oy B2
(iif) . a,a,- - a, AND-gate (symbolizes x,X; * - - X,)
a,
(iv) a,+a,+---+a, OR-gate (symbolizes
X +x+ - +x,).
Figure 2.11

In the propositional logic (see §2) the three polynomials x| + x, (subjunc-
tion), (x; +x,)' (Pierce-operation) and (x;x,) (Sheffer-operation) are of
importance.
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A briefer notation for the NOT-gate is to draw a black disc immediately
before or after one of the other gates to indicate an inverter, e.g.

a;

a,
(a,a;)’ and a,ab
a— 4, ——

Figure 2.12

1.4 Definition.

a,
(i) (a} +ay) subjunction gate

a
a

(ii) (a, +a) NOR-gate
a,
a,

(iii) (a,a,) NAND-gate
a, —1

Figure 2.13

1.5 Examples. (i) The symbolic representation of p = (x[x,)’ + x5 is

al—-D—
a4 ————— p(ay, az a3) = (ajay) +a,
as

Figure 2.14

Here we used the gates of 1.3. The representation of p by using 1.4 as

well is
a, ..__D_
a; —————— p(a,, ay, as)
as

Figure 2.15
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(ii) The polynomial p which corresponds to the diagram

a,
a,
as
a,
is p = (((x1%2)"x3) + x4)((3:%;) + (x3%4)). O

Figure 2.16

1.6 Example. In 1.2.42(i) we noted that there are 2*” = 16 Boolean poly-
nomial functions on B in the case n = 2. The function value table for all
these polynomial functions, written as columns, is as follows:

a a | p P, Pz P Po Pu P2

w
EY
~
-
©
]l
]
]
]l

13 14 15 16

——
—_—— —
(=R =
—_ O =
—_——

0 0
1 1
1 0
0 1

O
—_— = =
OO — -
SO O =
SO —= O
—_—— O
O—= OO
- o O
SO OO

1 1
1 0
0 1
0 0

Minimal forms of the polynomials p,,..., p;s inducing p,, ..., p;¢ are as
follows:

—_— !
=1 Ps = X1+ x, Do = X + X3, Pi3 = X,
—_ ! ! —_ !
D2= X, + X, Des = Xo, Pio = X1 X3 + XX, Di1a = X1Xa,
—_ [
Py =X, + X3, P = XX, + X115, P = X3, Pis = XX,

_ ! —
Pa = Xy, Ps = XX, P12 = X1 X3, Pie=0. O
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From these sixteen polynomial functions eight are very important in the
algebra of switching circuits and get special names.

1.7 Definition.

Ps - . AND-function, Ps - . . implication function,
Pi2 . .. inhibit function, Pz - . . equivalence function,
Po - - - antivalence function, Ps . . . NAND-function,

P> ... OR-function, Pis - - . NOR-function.

1.8. Remark. Especially in the algebra of switching circuits it is usual to
call the products (or sums) in the disjunctive (or conjunctive) normal form
of a Boolean polynomial the minterms (or maxterms). Each minterm (max-
term) has the value 1 (or 0) for exactly one assignment x; = a; and has
value 0 (or 1) otherwise.

Before giving applications to switching circuits we briefly describe a
different way of representing switching functions, namely Karnaugh
diagrams (also called Veitch diagrams). We explain them by using the
AND-function.

row a, a, minterm pla, ay) = a,a,
(1) 1 1 XXy l
(2) 1 0 X1X% 0
3) 0 1 x1x, 0
(4) 0 0 x(x3 0

The fourth column is the unique minterm which has the value 1 for the
given assignment of input variables. The Karnaugh diagram consists of an
a, and a} column and an a, and a5 row for two input variables a,, a,.

a| af
a | ()] O3
o] 2] @
Figure 2.17

Each section in the intersection of a row and a column corresponds to a
minterm. In the case of the AND-function the shaded section has value 1;
the others have values 0.

a; 01'

02'

Figure 2.18
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Karnaugh diagrams with three input variables a,, a,, a; can be presented

as follows:

?
ay ay ,
as
a
a3
!
a -
a3
Figure 2.19

Karnaugh diagrams for four input variables are of the following form (called

the standard square SQ):

ay al'

a

a| a a3

Figure 2.20

The standard square enables us to construct Karnaugh diagrams with more

than four input variables.

5 Variables:
as

6 Variables:

sQ

8Q

Figure 2.21

as as
g | SQ| SQ
e | SQ| SQ

We give examples of the Karnaugh diagrams of some of the functions

introduced in 1.7.

i,

7

W

/]

W

Pro:

W

W

Figure 2.22
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Karnaugh diagrams can be used to simplify Boolean polynomials. The

following idea is fundamental; we try to collect as many portions of the

diagram as possible to form a block; these represent simple polynomials

or polynomial functions. Here we may use part of the diagram more than

once, since the polynomials corresponding to blocks are connected by +.
As an example we consider simplifying the circuit

p = (% + %) (x; +Xx3) + X1 2%;5.

Its Karnaugh diagram is:

a
77777,
/1/§ 2 |af
a2 7///47///
4,3//;‘ %

77 a3
%/ KRG
Figure 2.23

The diagram consists of the block formed by squares (1), (3), (5), (7) and
the block formed by (3), (4). The first block represents x,, the second x,x;.
Thus P~ X + X2X3.

PROBLEMS

1. Simplify and represent in terms of gates:

Xy X2
Xy x5
x} X3
Figure 2.24
2. As in Problem 1

X, X2
X X3
X3 x)

Figure 2.25
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3. Simplify

Chapter 2. Applications of Lattices

Figure 2

.26

4. Find the gate representation corresponding to the function

(x, y, z, u) = xyzu + x'y'zu + xy'z'u + xyz'v’
Y 3% y 3%

+ x'yzu' + x'yz'u + xy'zu' +x

5. Find the Boolean polynomial for

X1
i
X3 X4
x5 x4
e X5
x4
X3
X1 X3 X4
!
X
x5 X4

Figure 2.27
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6. Use NAND-gates repeatedly to represent AND, OR and NOT gates.
7. Use NOR-gates repeatedly to represent AND, OR and NOT gates.
8. Use Karnaugh diagrams to simplify all polynomials of Example 1.2.

9. Give the Karnaugh diagrams of all polynomial functions p; of Example 1.6.

B. Applications of Switching Circuits
We describe some examples of applications.

1.9 Example. In a large room there are electrical switches next to the three
doors to operate the central lighting. The three switches operate alternatively,
i.e. each switch can switch on or switch off the lights. We wish to determine
the switching circuit p, its symbolic representation and contact diagram.
Each switch has two positions: either on or off. We denote the switches by
X1, X2, X3 and the two possible states of the switches x; by a; € {0, 1}.

The light situation in the room is given by the value p(a,, a,, a;) =0
(=1) if the lights are off (are on, respectively). We arbitrarily choose
p(L,1,1) = 1.

(a) If we operate one or all three switches then the lights go off, i.e. we
have p(a,, a,, a;) = 0 for all (a,, a,, a;) which differ in one or in three
places from (1,1, 1).

(b) If we operate two switches, the lights stay on, i.e. we have p(a,, a,, a;) =
1 for all those (a,, a,, as) which differ in two places from (1, 1, 1).

This yields the following table of function values:

a, a, a minterms pla,, a,, as)
1 1 1 X1 X2X3 1
1 1 0 XX, X5 0
1 0 1 X, X5X3 0
1 0 0 x, x5x}% 1
0 1 1 X1X5X3 0
0 1 0 X]1%x,X5 i
0 0 1 X{X5X3 1
0 0 0 x{x5x4 0

From this table we can derive the disjunctive normal form for the switching
circuit p as in 1.2.42(iii):

P = X\ X2X3 + X;X5X5 + X1X,X5 + X]X5X3.
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Thus we obtain the symbolic representations:

a

a,

as

\S

p_(al’ az, a3)

Figure 2.28

This switching circuit can also be represented in terms of antivalence and
equivalence switches (see 1.6 and 1.7):

P = X X2%3 + X X5x5 + x[{x.x5 + + x{xhx;
~ [x:[x2%5 + x5x3]] + [xi[x,x5 + x3%3]].
— ——

equivalence of x,, x; antivalence of x,, x,

This solution is symbolically represented as in Figure 2.29. A circuit diagram
is as in Figure 2.30. O

1.10 Example. In fast printers for computers, and in machines for paper
production or in machines with high speed of paper transport careful control
of the paper movements is essential. We draw a schematic model of the
method of paper transportation and the control mechanism (see Figure
2.31). The motor operates the pair of cylinders (1), which transports the
paper strip (2). This paper strip forms a light barrier for lamp (3). If the
paper strip breaks, the photo cell (4) receives light and passes on an impulse
which switches off the motor. The light in lamp (3) can vary in its brightness
or it can fail, therefore a second photu cell (5) supervises the brightness of
lamp (3). The lamp works satisfactorily as long as its brightness is above
a given value a. If the brightness falls Lelow a, but remains above a minimum
value b, then the diminished brightness is indicated by a warning lamp (6).
In this case the transportation mechanism still operates. If the brightness
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a,

a

as

p(ay, a3, a3)

Figure 2.29
X2 X3
X1
x; x5
!
X2 X3
xl'
!
X9 X3

Figure 2.30
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O=—0= x

warning lamp (6) | photo cell (5) lamp (3)

pair of cylinders (2) @
| ©,
|
I
]
|
|
@ photo cell (4)
Y

paper strip (1)
Figure 2.31

L— t0 motor

of the lamp goes below b then the photo cell (4) cannot work satisfactorily
and the motor is switched off. We obtain the switching circuit and its
symbolic representation, using the following notation:

a, = 1 if brightness of (3) > a;
a, = 0 if brightness of (3) < a;
a, = 1 if brightness of (3) > b;
a, = 0 if brightness of (3) < b;
a, = 1 if paper strip is broken;
a; = 0 if paper strip is unbroken. Note that b < a.

Thus we need a function value table for the state of the motor (say
pi(ay, ay, a;)) and one for the warning lamp (say p,(a,, a,, as)). We define

pi(ay, az, a3) = 1; motor operates;

pi(ay, ay, a3) = 0:  motor is switched off;

pa(a,, ay, a;) = 1:  warning lamp (6) operates;

p»(ay, ay, a;) = 0: warning lamp (6) does not operate.

Therefore the values of the functions can be summarized

a; a, as pi(ay, a, a3) p2(ay, ay, a;)
1 1 1 0 0

i 1 0 1 0

} 0 +

i O 0

0 1 1 0 1

0 i 0 i 1

0 0 1 0 0

0 0 0 0 0
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According to our definitions the case a, =1, a, = 0 cannot occur. This
yields as the disjunctive normal form of the polynomial expressing the
switching circuit p, = x;x,x3 + x| x,x} ~ x,x3. For p, we obtain the disjunc-
tive normal form p, = x]x,X; + X{X>x5 ~ x1x,. We see that the state of the
motor is independent of a, and the state of the warning lamp is independent
of a;. The symbolic representation is

">

a,

paay, az, a3) = ala,

pi(ay, a3, az) = a,a}

D>

Figure 2.32 O

1.11 Example. A motor is supplied by three generators. The operation of
each generator is monitored by a corresponding switching element which
closes a circuit as soon as a generator fails. We demand the following
conditions from the electrical monitoring system:

(i) A warning lamp lights up if one or two generators fail.
(ii) An acoustic alarm is initiated if two or all three generators fail.

We determine a symbolic representation as a mathematical model of this
problem. Let a; = 0 denote that generator i is operating, i € {1,2,3}; a; = 1
denotes that generator i does not operate. The table of function values has
two parts p,(a,, a,, a;), p.(a,, a,, a), defined by:

pi(ay, ay, a;) = 1; acoustic alarm sounds;

pi(ay, a,, a;) = 0:  acoustic alarm does not sound;
p.(ay, a,, a;) = 1:  warning lamp lights up;

p.(ay, ay, a;) = 0: warning lamp is not lit up.

Then we obtain the following table for the function values:

a a as pi(ay, ay, a3) paay, a,, a3)
1 1 1 1 0
1 1 0 1 1
1 0 1 1 1
1 0 0 0 1
0 1 1 1 1
0 1 0 0 1
0 0 1 0 1
0 0 0 0 0
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For p, we choose the disjunctive normal form, namely
D1 = X1 XX3 + X1X0X5 + X1 X5%5 + X{X,X;.
This can be simplified by using rules of a Boolean algebra:
D1~ X1 X5 + XaX3 + X X5.
For p, we choose the conjunctive normal form:
P2 = (% +x; + x3)(x] + x5 + x3).

The symbolic representation is

a,
a,
as

pAay, a,, a;)

St

D

j ‘ Z ,L » pi(a, ay ay)

D

One of the applications of Boolean algebras is the simplification of
electromechanical or electronic switching circuits. In order to economize it
is often useful to construct switching circuits in such a way that the costs
for their technical realization are as small as possible, e.g. that a minimal
number of gates is used. Unfortunately, it is often difficult to decide from
the diagram of a switching circuit whether its technical implementation is
simple. Also, the simplest and most economical switching circuit may not
necessarily be a series-parallel connection, in which case switching algebra
is not of much help. Some methods of simplification are discussed in
DorNHOFF and HouN and also in HoHN.

Figure 2.33 O
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1.12 Remark. A switching circuit p can be simplified as follows:

1. It can be simplified according to the laws of a Boolean algebra (e.g., by
applying the distributive, idempotent, absorption and de Morgan laws).

2. Sometimes calculating the dual d(p) of p and simplifying the dual yields
a simple expression.

3. We can also determine the minimal form of p (e.g. by using the method
of Quine and McCluskey, see Chapter 1, §3).

1.13 Example. We give an example for each of the methods mentioned in
1.12.
1. p=(x]+x,+x3+x)(x] +x, + x5 +x4)(x] + x5+ x5+ x2)
~(x]+ %, + x5+ x,x4)(x] + X3 + x4 + X,X5)
~(x] + x5+ x)(x] + x5 +x5)
~ x| + x5 + XX},
2. P = ((x; +x)(x; + x3)) + (x1x2%3)

~ (%) +x3) + (%:%%3)) ((x; + x3) + (x1%,%3)).

VT

=D =Dz
Let d denote “dual of”. We have d(p,) = (x;x,)(x, + x, + x3) ~ x;X,.
Therefore d(d(p,)) ~ x, +x,, d(p,) = (x,%3)(x; + x, + x;3) ~ x;x;. Thus
d(d(py)) ~ x, + x5. Altogether we have p ~ p;p, ~ (x; + x,)(x; + x;3) ~
x; + (x2%3).
3. We apply the Quine-McCluskey algorithm to
D = X(X5X3X4 + X1X5X3Xe + X1 X5X3X4 + X]X5x3%,

+ X1X,X3%, + X1 X5X5X5 + X, %,%5%4.

This yields the minimal form

X X5%5 + x1x3%, + xx5. d

We consider two more examples of applications (due to DOXTER and
STEINHAUER).

1.14 Example. An elevator services three floors. On each floor there is a
call-button C to call the elevator. It is assumed that at the moment of call
the cabin is stationary at one of the three floors. Using these six input
variables we want to determine a control which moves the motor M in the
right direction for the current situation. One, two, or three call-buttons may
be pressed simultaneously; so there are eight possible combinations of calls,
the cabin being at one of the three floors. Thus we have to consider 8-3 = 24
combinations of the total of 2° = 64 input variables. We use the following



74 Chapter 2. Applications of Lattices

notation: a; = ¢; (for i = 1, 2, 3) for the call-signals. ¢, = 0 (or 1) indicates
that no call (or a call) comes from floor i. a, = f, as:=f,, ag = f; are
position signals; f; =1 means the elevator cabin is on floor i
play, ..., a¢) = M1, ps(ay,..., as) = M| indicate the direction of move-
ment to be given to the motor; then the signal M1 = 1 means movement
of the motor upwards. The output signals (function values) of the motor
are determined as follows. If there is no call for the cabin the motor does
not operate. If a call comes from the floor where the cabin is at present,
again the motor does not operate. Otherwise the motor follows the direction
of the call. The only exception is the case when the cabin is at the second
floor and there are two simultaneous calls from the third and first floor. We
agree that the cabin goes down first. Here is the table of function values:

Direction
Call Floor of motor

G C C3 h f S5 M1 M|
1 1 1 1 0 0 0 0
1 1 0 1 0 0 0 0
1 0 1 1 0 0 0 0
1 0 0 1 0 0 0 0
0 1 1 1 0 0 1 0
0 1 0 1 0 0 1 0
0 0 1 1 0 0 1 0
0 0 0 1 0 0 0 0
1 1 1 0 1 0 0 0
1 1 0 0 1 0 0 0
1 0 1 0 1 0 0 1
1 0 0 0 1 0 0 1
0 1 1 0 1 0 0 0
0 1 0 0 1 0 0 0
0 0 1 0 1 0 1 0
0 0 0 0 1 0 0 0
1 | 1 0 0 1 0 0
1 1 0 0 0 1 0 1
1 0 1 0 0 1 0 0
1 0 0 0 0 1 0 1
0 1 1 0 0 1 0 0
0 1 0 0 0 1 0 1
0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 0

From this table we derive the switching circuits p, for M% and p, for M|
in disjunctive normal form. Here x; are replaced by C, for i = 1,2,3 and
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by F,_;fori=4,5,6.
p1 = C1C,GF F3F; + C|C,C3F,F3F}
+ C{C5C;F, F5F + C|C4C;,F\F,F;.

The first and third minterms are complementary with respect to C, and can
be combined. This gives:

p1 = C1C,CiF \F3F + C{CyF, FyF} + C{C5C,F  F,F}.
For M| we obtain
p, = C,C,C;F\F,F} + C,C,C,F|F,F; + C,C,CiF F;F,
+ C,C5CLF F5F; + C1C,C4F | FF;.

The first two minterms are complementary with respect to C,, the third and
fourth minterm are complementary with respect to C,. Simplification gives

p. = C,CyF\F,F} + C,CiF\F5F; + C{C,C4F | FF;.

The two switching circuits enable us to design the symbolic representation
of Figure 2.34 (we have six NOT-gates, six AND-gates and two OR-gates),
O

1.15 Example. We consider a simplified model of a container for chemical
reactions and design a circuit which involves four function values depending
on two input variables (temperature and pressure). In a container, in which
chemical reactions can take place, we have a thermometer T and a
manometer (pressure-gauge) P for monitoring purposes. Both instruments
have upper and lower contacts: a, = t,, a,:= t, (lower and upper temperature
contacts) and a; = p,, a,'= p, (lower and upper pressure contacts). We want
to control the reaction in a certain way, involving a mixing motor
Pilay, a,, as, a;) = m, a cooling-water valve p,(a,, a,, as, a;) = ¢, a heating
device ps(a, a,, a3, ay) = h, and a safety valve p,(a,, a,, as, a,) = s (Figure
2.35).

We use the following interpretation:
y=0and t,=0,

(e.g., t; =0 means that the temperature is less than the lower temperature
contact).

temperature is too low,

t,=land tu=0,
y=1landt,=1,
p=0andp, =0,
pl=1andpu=05

p=landp,=1,

m=0/m=1,
c=0/c=
h=0/h=1,

temperature is correct;
temperature is too high;
pressure is too low;
pressure is correct;
pressure is too high;
mixing motor off/on;
cooling-water valve off/on;
heating off/on;

safety valve closed/open.



76

¢ (&)

_Dfﬁ

s  fi L S

A 4

Chapter 2. Applications of Lattices

\/\l/\L/\/\I/

Figure 2.34
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cooling-water

input
h
- ¢
n —t
cooling-water . =
output -
s
m = mixing motor s = safety valve
¢ = cooling-water valve t = thermometer
h = heating device p = manometer

Figure 2.35
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The following function table shows the desired operation of the input and
output variables:

4 . P P h ¢ i §

0 0 0 0 1 0 1 0

1 0 0 0 1 0 0 0 initial state
1 1 0 0 0 0 1 0

0 0 1 0 1 0 0 0

1 0 1 0 0 0 0 0 normal state
1 1 1 0 0 1 1 0

0 0 1 1 0 0 1 0

1 0 1 1 0 1 1 0 danger state
1 1 1 1 0 1 1 1

We denote the corresponding switches and switching circuits by using
corresponding capital letters. The table enables us to represent H, C, M
and S in disjunctive normal forms, which can be simplified by using the
laws of Boolean algebra (some of the steps of simplification have not been
written down explicitly):

H = TiT,PP, + T,T.PiP, + TiT,PP,~ ...~ T.P,(P; + T},
C = TIT.PP, + TT, PP, + TT.PP, ~ ...~ T\P(T, + P,)),
M = T|T,P;P, + T,T,P;P, + T,T,PP, + T\T,PP, + T,T,PP, + TT,PP,
~ T:T, PP, + TT.PP, + TT,P, + T,PP,
S = T,T,PP,

Using four NOT-gates, six AND-gates and three OR-gates we can represent
the switching circuit in Figure 2.36. a

As a final example of applications of this type we consider the addition
of binary numbers with halfadders and adders. Decimals can be represented
in terms of quadruples of binary numbers; such a quadruple is called a
tetrad. Each digit of a decimal gets assigned a tetrad; thus we use ten
different tetrads corresponding to 0, 1,2, ...,9. Using four binary positions
we can form 2* = 16 tetrads. Since we need only ten tetrads to represent
0,1,...,9, there are six superfluous tetrads, which are called pseudotetrads.
A binary coded decimal then uses the following association between
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0,1,...,9 and tetrads:

ag play, ay, ay, a3)

I~
w
Q
N
B

pseudotetrads

N

S = W hH UL 0N

decimals <

O O O OO OO O — o
OO O QC it it it OO O O et et i
C O~ OO = OO —mm O O — —
O~ O~ O~ O, OO = O =D -
C OO0 OO =

p(aq, a1, as, a3) =1 denotes the pseudotetrads. We have to evaluate
plao, ay, a,, a;) to find out if the result of a computing operation is a
pseudotetrad.
We represent p in disjunctive normal form:
P = X3X:X1 X0 + X3X,X X0 + X3XX [ Xo + X3X,X] X0
+ X3X5X1 X0 + X3X5%, X0,

The pairs of minterms 1 and 2, 3 and 4, 5 and 6 are complementary with
respect to x, and can be simplified:

p ~ X3xel + x3x2x’1 + x:;xéxl
-~ X3X2xl + X3x2x| + X3x2x; + x3x£x|
~ (X3X%) + X3%,X1) + (X3%) + X3%3%)
~ X3x2 + X3x| -~ X3(x2 + xl).
This result indicates that determining if a tetrad with the four positions

a,, a,, a,, a; is a pseudotetrad is independent of a,. If we use the a; as
inputs, then Figure 2.37 indicates the occurrence of a pseudotetrad.
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a,

a,

as
Figure 2.37

1.16 Example (“Half-adders). We describe the addition of two binary
numbers. In order to add two single digit binary numbers a, and a, we
have to consider a carry é(ay, a,), in case a, = a, = 1. The table of the
function values for the sum §(a,, a,) is as follows:

a, a 5(ay, a) e(a,, ay)
1 1 0 1
1 0 1 0
0 1 1 0
0 0 0 0

s and ¢ have the disjunctive normal forms x,x5 + x}x, and x,x,, respectively.
Thus the corresponding circuit is

a, \
» C(ay, a)
. W

5(ay, ay)

Figure 2.38

To obtain a simpler circuit we modify s according to the axioms of a Boolean
algebra.

s = x5 + (x1x2) ~ ((x] +x3)" + (% +x3)")
~ ((x] + x)(x; +x3))" ~ (x{x; + X% + x1x3 + x,x3)"

~ (x1%2 + x1x3)" ~ (x1%2) (x1x2)" ~ ¢'(x; + x3).
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This leads to a circuit called the half-adder.

a,
} » C(a;, ay)

——> E(al’ a2)

a,

Figure 2.39

Symbolically we write

a HA\—-P Ci(al, ay)
a, e S(al, az)
Figure 2.40 a

1.17 Example. Full-adders can add three one-digit binary numbers. Let
a,, a,, a; denote the three numbers. Then we can summarize all possible
cases in the following table:

a, a a; 5(a,, a,, a3) c(ay, a,, as)
1 1 1 1 |
1 1 0 0 1
1 0 1 0 1
1 0 0 1 0
0 1 1 0 1
0 1 0 1 0
0 0 1 1 0
0 0 0 0 0
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Next we consider partial sums of two summands.

a a 51(ay, a3) ti(ay, a;)
1 1 0 1
1 0 | 0
0 1 1 0
0 0 0 0
1 1 0 1
1 0 1 0
0 1 1 0
0 0 0 0
a, 5\(a, a;) 5(a), a5, a3)  ©ay, 51(ay, a3))
1 0 1 0
1 1 0 1
1 1 0 1
1 0 1 0
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0
éi(ay, as) &lay, 51(ay, a3)) c(ay, a,, as)
1 0 1
0 1 1
0 1 1
0 0 0
1 0 1
0 0 0
0 0 0
0 0 0

From these tables we derive: a, and a; are inputs of a half-adder with
outputs 5,(a,, a;) and ¢,(a,, a;). The output 5,(a,, a;) together with a, forms
inputs of a second half-adder, whose outputs are 5(ay,a,, a;) and
&(a,, 5,(ay, a;)). Here §(a,, a,, a;) is the final sum. Finally, disjoining
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¢(ay, a3) and ¢,(ay, §,(a,, a;)) yields ¢(a,, a,, a;). Hence a full-adder is
composed of half-adders in the form:

. 5@ a) | HA | otar, Siay a) D—: a2 22
HA ¢\(ay, as) ) (ay, ay, as)
as
a,
) 5(ay, az, a;)
T DY
as

E(ala a, a3)

Figure 2.41

A symbol for the full-adder is:

a, [ N _
—— §(a,, a,, a3)

a, | ADD _

a; > {(a,, ay, a3)

Figure 2.42 O

1.18 Example. Addition of two binary numbers a,a;a, and b,b;b, is
performed according to three steps:

(i) A half-adder calculates the provisional sums s; and carry ¢/, i =0, 1, 2.
(ii) A second half-adder combines s; with ¢;,_; (i = 1, 2) to the final sum
X; in position i. There may be a carry c;.
(iii) Either c;or c{ is 1. An OR-gate generates the carry c; for the following
position i + 1.

The symbols are shown in Figure 2.43. O

We have seen that an arbitrary electrical circuit can be obtained from
suitable compositions of series and parallel circuits. Any function from
{0, 1}" into {0, 1}, thus any switching function of an electrical circuit, is a
Boolean polynomial; therefore any electrical circuit can be described by a
Boolean polynomial in its mathematical model.
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a b
a,| ai|a, b2| b, | bo
4 y
/ /
N N
HA HA HA
A )] CI| 5
/
A RS
|y R
HA HA
ch [
t&j (-
¢ 5
C;

Figure 2.43

Different circuits (namely equivalent ones) can describe different elec-
trical circuits with the same behavior. On the other hand there are electrical
circuits which are not composed of series and parallel circuits. These are
called bridge circuits. According to these remarks there is a corresponding
equivalence class of Boolean polynomials, the polynomial functions which
reflect the electrical behavior of the bridge circuit.

If we replace single switches in a series-parallel circuit by another
series-parallel circuit we again obtain a series-parallel. We can use this to
recognize bridge circuits as follows: In a given electrical circuit we look for
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a series-parallel circuit which contains at least two switches and connects
any two endpoints of the given circuit. These are replaced by a single switch.
If we continue this process of simplification and obtain a single switch after
possibly several steps, then the given circuit must be a series-parallel circuit.
If we reach a point where we cannot further simplify, then the given circuit
is a bridge circuit.

1.19 Example. Is the following circuit a series-parallel circuit?

x z
z
— —
u' x'
Yy u
Figure 2.44

If we replace the “inner” series-parallel circuit by a single switch a, we obtain

Figure 2.45

Since a further simplification is not possible, we recognize this circuit as a
bridge circuit. 0
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For bridge circuits we can find a corresponding polynomial by determin-
ing all possible “paths” through the circuit. Thus we determine the switching
function. Here is an example for illustration.

1.20 Example. Given

Xy X3

X2 X4

Figure 2.46

We have current in the circuit if and only if either

x, and x, are closed, or

x,, x; and x, are closed, or
x, and x, are closed, or

x, and x; (and x,) are closed.

A switching circuit with this switching function is given by the polynomial
P = X1 Xy + X X3X5 + X3X4 + XoX3.

A series-parallel circuit with the same switching function is given by:

X1 X9

-4 X X3 X4
X2 X4
Xy X3

Figure 2.47
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A simpler series-parallel circuit with the same “behavior” is:

X1 x3 X4
xq R
X3 X3
X4
Figure 2.48

The corresponding polynomial x,x;x, + (x; + x; + X,)x, is equivalent to p.
We note that the bridge circuit has fewer contacts than the series-parallel
circuit and could be preferred because of financial considerations. O

At present there is no general method known to find as simple as possible
a realization of a given Boolean polynomial as a bridge circuit.

So far we considered so-called two pole circuits or networks. Now we
extend this concept.

1.21 Definition. An n-pole circuit (or network) is a configuration of electrical
circuits which are connected by wires, where n points are denoted as poles
P, The set {P, P;} of two poles is denoted by p;.

There are 3n(n — 1) such pairs pi- If we study all connecting paths between
two different poles P, P, in the network, then we obtain a 2-pole network
in each case, i.e. an electrical circuit in the sense above. The corresponding
Boolean polynomials are also denoted by pj.

1.22 Definition. Two n-pole circuits are called equivalent, if corresponding
Boolean polynomials p; of the two circuits are equivalent.

1.23 Example. The 3-pole network (see Figure 2.49) is a combination of
13(3 — 1) = three 2-pole circuits py,, pi3, po; which have the corresponding
polynomials

P12 = X; + X5X3, P13 = (%3 + x1x3)(x4 + x5x4),

P23 = (X%, + x3) (x4 + X5X4). |



§1. Switching Circuits 89

X1

X2 X3

X4

x; x4

Figure 2.49

Now we show how to reduce arbitrary 3-pole networks to series-parallel
circuits.

1.24 Definition. A star-circuit is a 3-pole circuit in which the three 2-pole
circuits have one point in common which is not a pole. A triangle circuit is
a 3-pole circuit in which the only connecting points of any two 2-pole
circuits are the poles themselves.

The simple cases are:

star Py triangle
circuit circuit P
2
X2
X1 X3
X1 X3 p
L x
I X4 Np, 1 3 Py
Figure 2.50

The following “transformation” is called a star-triangle transformation,
because it transforms a given star circuit into an equivalent triangle circuit;
all occurring 2-pole circuits p; are equivalent.

P, P,

X2 X2 X2

>

X1 X3

Xy X3

Pl ~ Py Pl X1 X3 P3

Figure 2.51
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This transformation transforms a given circuit into an equivalent one. Let
py and g; denote the 2-pole circuits of the star and triangle circuit, respec-

Chapter 2. Applications of Lattices

tively. Then p, = XX, = quz, P13 = X1X3 = ¢13, P23 = X2X3 = 3.

The following transformation is called a triangle-star transformation and
it transforms a given triangle circuit into an equivalent star circuit, as we
readily see by applying the distributive law.

Py

To show the equivalence of the two circuits let p; and g; be as before. Then

1.25 Example. The bridge circuit

is to be transformed into an equivalent series-parallel circuit. Ignoring x,

q12 = x1 + X3x2 ~ (xl + x3)(x1 + x2) = P12,
Gi3 = X3 + X1 ~ (X3 + x,)(x3 + X;) = py3,

G2z = Xz + X1 X3 ~ (X2 + X, )(X2 + X3) = pas.

B
X X4
X3
Xa xs
D
Figure 2.53

P
—T
X1 X2
x3 P;
Py
Figure 2.52

L

X1

X3

P,

X2

X3

X2

and x5 the point B in the bridge circuit is the “center” of a star with points
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A, D and C. Using the star-triangle transformation we obtain the following
equivalent circuit.

C
Pl A X1 X4 P2

X1 X4

X
X2 x3 3

Xs

D
Figure 2.54

This circuit has the contact diagram

Xy X4
P, — P,
Xy X3 X3 X4
X2 ' Xs
Figure 2.55
The contact diagram yields:
P12 = X1 X4 + (X1X3 + %) (X3X4 + X5). O

The star-to-triangle transformation may be generalized to a knot-to-mesh
transformation where the knot represents an n-pole circuit with a common
central point which then is eliminated to give the equivalent mesh circuit
(see Figure 2.56). The knot of the n-pole circuit is the common central
point which is to be eliminated. The arrow indicates that further poles with
increasing index up to P, may be added. The paths from P, to P, in both
circuits are equivalent. For let p; be a 2-pole circuit in the knot circuit, and
let g; be a 2-pole circuit in the mesh circuit. Then

Gna = XpX1X1X5 + XnXo + XpX3X3Xy ~ XpXy = pn2.

We proceed similarly for the other paths.
In Example 1.20 we described one method of finding polynomials for
given circuits. The following method is another trial-and-error method for
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Py

Py

Figure 2.56 P

the same purpose. It requires one to draw lines through the circuit in all
possible ways such that the circuit is broken. For example, consider

Figure 2.57

From the diagram we see that L, cuts x,, x,, L, cuts x,, x5, L; cuts x;, x,
xs, Ly cuts x5, X3, X4 Thus ppp=(x; +x)(xs + x5)(x; + x3 + x5)(x2
+ X3 + X4).
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1.26 Example. We wish to simplify the circuit

Figure 2.58

First we determine the corresponding Boolean polynomial. The lines are
drawn in such a way that the following switches are involved:

L,: x1, x,, X1, X3, L;: x, x5; Ly x1, x5, X5, X3, L,: x,, X5, X5, X;.
Therefore
Piz = (X1% + X1+ x3) (%) + X3) (X132 + X, + x3) () + X5 + x5 + xy).
We simplify this according to the rules of a Boolean algebra.
Piz = (x1x; + %1 + x3) () + 2x3) (X1 X2 + X5 + %3)(x; + X3 + X, + %))
~ (xx]%3 + X%, + x5 + X1 X%5 + X X3 + X3%3)
X (x)x, + x5 + x3)(x; + %, + x5 + x;)
~ (0 +x; + X% + X1%%3 + x3)(x1%; + X2 + x3)(x) + X5 + X3)
~ (3 + x3)(x1x; + X + %3) (X + X2 + x3)
~ (X1X0% + X%, + XX5 + X1%X5 + XoX3 + X3X3) (%) + X5 + X3)
~ (0 + XX, + X1X3 + X1X:X;3 + X%3 + X3) (X, + X, + Xx3)
~ (X% + X3) (%) + X3 + Xx3)
~ XXXy X1 X5 F XXX, + XoX5 F X X0X3 + X3X3
~ XXy + X1X3 + X3X3 + X1 XX3 + X3

~ X1X3 + X3.
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The corresponding diagrams are of the form:

X3
X X5
a, —-—J
p
a,
14 b(ay, a5, a3)

as

Figure 2.59 O

PROBLEMS

1. In a production process there are three motors operating, but only two are
allowed to operate at the same time. Design a switching circuit which prevents
that more than two motors can be switched on simultaneously.

2. Design a switching circuit that enables you to operate one lamp in a room from
four different switches in that room.

*3. Design a circuit for the subtraction of two three-digit integers. (Use binary
representation for the integers.)

*4. Design a circuit for the addition of three three-digit binary numbers.

5. Construct a circuit which helps the water level moving between the points A
and B in the diagram below. Thus the motor M of a pump P should always
be switched on, if the water level goes below B. The motor should be switched
off whenever the water level goes above A.

B e )

%

=<}

a~]

]

circuit

Figure 2.60

6. Let T, and T, be two telephones which are arranged in such a way that T,
cannot be used unless T, is engaged but T, is not cut off when T is not engaged.
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A light L is switched on whenever both T, and T, are engaged but does not
switch off until both telephones are disengaged. Construct suitable switching
circuits and obtain Boolean polynomials for the circuits for T, and L.

*7. Find a 2-pole series-parallel switching circuit which is equivalent to the bridge
circuit.

X A
P,
X2
Xg
B
X6 Xg X3
C
X7
X4
D Xs
P,
Figure 2.61

8. Find a series-parallel circuit which is equivalent to the following circuit:

Py

Figure 2.62

*9. Design a circuit for the addition of three two-digit binary numbers.

ExEeRcises (Solutions in Chapter 8, p. 425)
1. Determine the symbolic representation of the circuit given by

P = (X + 2+ x3)(x] + x)(x1%3 + xx,) (x5 + x3).
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2. Determine the Boolean polynomial p of the circuit

X
X3

X3

Figure 2.63

3. Find the symbolic representation of a simple circuit for which the binary
polynomial function f in four variables is defined as follows: fis 0 at (0, 0, 1, 0),
(0,0,1,1),(0,1,1,0), (0,1, 1, 1), (1,0, 0,0), (1,0,0,1), (1,1,0,0), (1,1,0, 1),
(1,1,1,1) and has value 1 otherwise.

4. Find the symbolic gate representation of the contact diagram (see Figure 2.64).
5. Simplify p = ((x; + x,)(x; + x3)) + (x,%,%;3).
6. Determine which of the contact diagrams in Figure 2.65 give equivalent circuits.

7. A voting-machine for three voters has three YES-NO switches. Current is in
the circuit precisely when YES has a majority. Draw the contact diagram and
the symbolic representation by gates and simplify it.

8. An oil pipeline has three pipelines b,, b,, b; which feed it. Design a plan for
switching off the pipeline at three points §;, S,, S such that oil runs in the
following two situations: S; and S, are both open or both closed but S, is
open; S, is open and S,, S, are closed.

9. A hall light is controlled by two switches, one upstairs and one downstairs.
Design a circuit so that the light can be switched on or off from the upstairs
or the downstairs.
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&

(=]

& &

(=]

Figure 2.64

(i) : (i)

x2 x2

(iii)

Figure 2.65

10. Determine a series-parallel circuit which is equivalent to the following bridge

OARS
060

Figure 2.66
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11. Find the Boolean polynomial for the bridge circuit:

X3 Xs

Figure 2.67

and draw an equivalent series-parallel circuit.

*12. Find a series-parallel circuit that is equivalent to the bridge circuit in the figure
and simplify your circuit.

Figure 2.68
13. Find a series-parallel circuit equivalent to the following 4-pole network.

P2 })3

P] P4

Figure 2.69
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14. Simplify the following circuit.

Figure 2.70

15. Determine the Karnaugh diagrams of p,,, p.4, ps and ps.
16. Use a Karnaugh diagram to simplify
(i) aja,a} + aja,as +(a, + a + ay) +(a, + a, + a;3)’ + a;(a} + a,).
(ii) a,a,a; + a,a;a, + aja,a, + a\a,a;al, + a'asd).
17. Simplify the following using Karnaugh diagrams.
(1) x125 + x)x3%4 + X,x4%, + x5X3%,.
(1) (x1 +x2)(x; + x)(x; + xx,).
18. Find Karnaugh diagrams for the following polynomials.
(i) x1x; + x\x,%5 + x{x}x4.
(i) x,x,x4 + (X} + x3)x5.
(ili) x3x4 + x;x,%5 + x)x}x5.
(iv) (x +x3)(x; + x3)(x3 + X,).

*19. Find the minimal forms for x;(x, +x,) + x,x} + x3xix, using Karnaugh
diagrams.
*20. Simplify
[ = X{x5 + x1%:3%4 + X1 %,X) + xbx5.
21. Find simple functions for the following Karnaugh diagrams

x x}

YUY

4

Xy ee—_—— X}
X3

Figure 2.71

)

X3
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(ii) X x|

7 .

X3

Figure 2.72

§2. Propositional Logic

The algebra of symbolic logic represents one of the early applications of
Boolean algebras. Symbolic logic is concerned with studying and analyzing
modes of thoughts, arguments and conclusions by making extensive use of
symbols. This was the historical origin and the initial purpose for the
foundation of the algebra named after G. Boole. The term “proposition”
is central in this section and the algebra of truth values will serve as a tool
for studying them.

2.1 Informal Definition. A proposition is a meaningful sentence (in the
natural language) that can properly be assigned the notion true or false.

The careful reader will have noticed that 2.1 is not really a definition
but rather a description of the term proposition. At the basis of the concept
of propositions we have the two-value-principle (also called “principle of
the excluded middle’ or ‘““tertium non datur’), a principle which goes back
to the classical propositional logic of Aristotle. It means that each proposi-
tion must be either true or false, there is no other possibility.

2.2. Examples. The following are propositions:

(a) 7 is a prime number.
(b) Addition of 2 and 3 gives 4 as the sum.

The following are not propositions:

(c) Be quiet!
(d) Two dogs on the way to yesterday. 0
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Propositions will be denoted by capital letters A, B, C, . ... They can be
compounded in several ways, e.g. by “and”, ““or”, “if ...then...”. We can
also obtain a new proposition from a given one by negating it. The truth
value “true” of a proposition will be denoted by 1 and the truth value
“false” will be 0. Truth tables will be used to define the compound proposi-
tion by describing its truth value according to the truth values of the
propositions involved in the combination.

2.3. Definition. Let A and B be propositions. The negation (or complementa-
tion) of A (in symbols: —A) is the proposition “not A”, i.e. —A is true if
and only if A is false. The conjunction of A and B (in symbols: A A B) is
the proposition “A and B”, i.e. A A B is true if and only if A as well as B
are true. The disjunction of A and B (in symbols: A v B) is the proposition
“Aor B”,i.e. Av B is true if and only if either A or B or both are true.

We shall use the following notation in the context of propositional algebra,
also used in Chapter 1, §2. As before, B is the Boolean algebra {0, 1}.

2.4 Definition. (i) x,, ..., x, are called propositional variables.
(ii) Each p € p, is called a propositonal form.
(iii) Each pg € P,(B) is called the truth function of p.

2.5 Definition. Let A, ..., A, be propositions and let A be composed of
A, ..., A, by means of the operations A, v and —1 with suitable use of
brackets. If we replace A,..., A, A, Vv, 1 by X,...,x, 1,4, respec-
tively, then we obtain a polynomial in P,, which is called the polynomial
corresponding to A with respect to A,, ..., A,. If B is another proposition
formed from A,,..., A,, then A and B are called equivalent (or logically
equivalent) if the polynomials corresponding to A and B are equivalent (in
the sense of 1.2.33), in symbols A ~ B.

2.6 Theorem and Definition. Let M be the set of all propositions which can
be formed according to 2.5 using propositions A,,..., A,. Then M/~
together with the induced operations is a Boolean algebra called the proposi-
tional algebra over Ay, ..., A,. A,,..., A, are the atomic propositions of M
and all other propositions of M are called compound.

2.7 Example. Let A, be the proposition “It rains”” and A, be “The sun is
shining”. M as defined in 2.6 can have at most as many elements as there
are nonequivalent polynomials over {x,, x,}, namely |P,/~|=|P,B)| =
[B¥| = 2* = 16, by 1.2.34 and 1.2.42. In fact, M has 16 elements (i..
equivalence classes of propositions) which we can give by the representatives
*“It rains and it does not rain”, “It rains”, “The sun is shining”, “The sun
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is shining or the sun is not shining”, etc. Therefore, in short,
M ={[A, A AL [AL[AL [A A AL [A1 v Ay, ... [Ay v DAL
Here [A, A 1A,] is the 0 and [A, v A,] is the 1 of M. O

We noted above that the compound propositions can be characterized
by truth tables.

2.8 Examples. We give some examples of truth tables

A | DA A B| AnB AvB —AvB (CmAvB)a(mBv A)
1 1 1 1 1 1 1
0 1 1 0 0 1 0 0
—_— 0 1 0 1 1 0
0 0 0 0 1 1

Here AA B, Av B, A v B and (mA v B) A (4B v A) are the polynomial
functions induced by x, A x5, X, V X5, X] V X, (X] v X;) A (X} v Xx;), respec-
tively. Therefore we use polynomials which have the values of the corre-
sponding polynomial functions. We use the expression “truth table” which
gives the truth values of the polynomial function. Two compound proposi-
tions are equivalent according to Definition 2.5 if their columns in the truth
tables are equal. O

2.9 Definition. p € P, is called a tautology if the Boolean polynomial func-
tion p is always 1, i.e. p = f}. A propositional form p is called contradictory
if the Boolean polynomial function j is always 0, i.e. p = fo.

The normal forms of Boolean polynomials enable us to decide whether
a given proposition is a tautology. Corollary 1.2.42 shows:

2.10 Theorem. (i) A propositional form is a tautology if and only if its
disjunctive normal form has all coefficients equal to 1.

(ii) A proposition is contradictory if and only if its conjunctive normal form
has all coefficients equal to 0. a

The two last propositions in 2.8 are of special importance in symbolic
logic and get special names.

2.11 Definition. 1A v B = A - B is called the subjunction of A and B (or
“if-then” operation). (

(mA v B) A (B v A) = A & B is called the bijunction of A and B (or
“if and only if” operation).
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2.12 Theorem. Two propositional forms p and q are equivalent if and only if
the bijunction p < q is a tautology. O

The proof is obvious.

One of the problems of propositional logic is to study and simplify
propositions and to determine their truth values. In practical applications
it is often useful to describe the logical framework in complicated treaties,
rules, or laws and to determine their truth values by applying methods of
propositional algebra. A simple example will suffice to demonstrate a
possible use.

2.13 Example. We determine if the following argument is correct by rep-
resenting the sentences as propositions and by checking whether the con-
junction of the assumptions implies the conclusion. This could be done by
writing down truth tables, but we demonstrate a quicker procedure: “If the
workers in a company do not go on strike, then a necessary and sufficient
condition for salary increases is that the hours of work increase. In case of
a salary increase there will be no strikes. If working hours increase there
will be no salary increase. Therefore salaries will not be increased.” The
assumptions can be formulated as follows:

aAS->(IToe W), I-> S, W > 1,

where S denotes “strike”, I *““salary increase’” and W ““increase of working
hours”. Then the conclusion is denoted as —I. We want to determine if the
assumptions imply the conclusion. We assume there is a truth assignment
making the conjunction of the assumptions true and the conclusion false.
For such an assignment =S > (I & W), I > S, W - I are true and I
is false; therefore I is true. I > —1S is true implies that —S is true. Hence
by the truth of the first assumption above we know that I « W is true. I
is true; therefore W must be true. But since W > —I is true, =1/ is true,
which is a contradiction to the assumption. Therefore the original argument
is correct. O

Propositions such as “‘x is a natural number’, where we can substitute
“things” for x which make this proposition true or false (e.g. x =3
or x =~/§, respectively), are called predicates. These predicates can be
introduced formally. We need the following ingredients. Let A be a set,
called the alphabet, let X be a set disjoint with A, and let V be an arbitrary
set and B a propositional algebra whose propositions are elements of the
free semigroup (formal language) over A. Those elements of the “free
semigroup” on A u X u {0, 1, '} which are propositions in B if the elements
in X are replaced by those from V are called predicates over A, B, X and
V. We are not considering this formal approach but refer to the literature.

Next we show how equations in Boolean algebras can be used in logic.
In order to do this we have to clarify the term “equation”. We wish to know
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under which conditions two Boolean polynomials p, g have the same value.
We cannot, in general, speak of the equation p = g, since p = g holds by
definition only if p and q are identical. Therefore we have to be a little
more careful (extensive treatment of this topic can be found in LAuscu
and NOBAUER).

2.14 Definition. Let p and q be Boolean polynomials in P,. Then the pair
(p, q) is called an equation; (b,,...,b,) € B" is called a solution of this
equation in a Boolean algebra B if pg(b,, ..., b,) = Gg(b,, ..., b,). A system
of equations is a set of equations {( p;, q;)|i € I}; a solution of a system is a
common solution of all equations (p;, g;).

Often we shall write p = q instead of (p, q) in case no confusion can
arise. For instance, x{x, + x; = x;(x, + X3) is an equation and (1,0,1) is a
solution of the equation since the polynomial functions corresponding to
the polynomials have value 1 at (1,0,1). However, x; +x{ =0 is an
equation, which does not have a solution. For the following it is convenient
to transform an equation p = g into an equation of the form r = 0.

2.15 Theorem. The equations p = q and pq' + p'q = 0 have the same solutions.

ProoOF. Let B be a Boolean algebra and let (b,,...,b,) € B". Then for
a = pg(by,...,b,) and b == Gg(b,, ..., b,) we have

a=b& (a+b)a' +b)=aa +ab' +a'b’+bb'=ab +a'b
which proves the theorem. 0
Using this theorem we are able to transform the system of equations
{(ps, ;)| = i = n} into a single equation
P1q1 tP1gi + pag> +prga + ...+ pudn + Pugn = 0. (*)

If we express the left-hand side in conjunctive normal form we see that (*)
has a solution if at least one factor has value 0, since for this n-tuple the
whole expression on the left of (*) has value 0. In this way we obtain all
solutions of the original system of equations.

2.16 Example. We wish to solve the system {(x;x,, x;x; + x,), (x; + x5, x3)}.
Or, written more loosely, the system
XXy = X1X3 + X,
X, + X5 = X.
Using 2.15 we can transform this system into a single equation of the form
(1262) (X165 + %3)" + (x1%2) (%163 + X2) + (x; + x3) x5 + (x; + x3)'%3 = 0.

If we express the left-hand side in conjunctive normal form we obtain the
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equation
(%, +x, + x3)(x) + x5 +x5) =0,

which has the same set of solutions as the original system. The solutions
over B = B are the zeros of the first or second factor, namely all (a,, a,, a;) €
B?, such that

a+a,+a;=0, ie. a;=a,=0, as;=1,
or with

ay+ab+a5=0, ie. a, =a,=a;=0.

b

Our system of equations therefore has exactly two solutions in B, namely
(0,0, 1) and (0,0, 0). O

Knowing the behavior of solutions of Boolean equations we can find
applications in logic (see Exercises).

PROBLEMS

1. Represent the propositional form
(AABAC)v (MDA A(BvC)) (*)

as an electrical circuit. Then construct a circuit which has current if and only if
the circuit corresponding to (*) does not have current. Give a table which indicates
the behavior of the switches in (*) such that current can flow through the circuit.

2. If A wants to see a particular movie, so will B. C and D do not want to see the
movie at the same time. B and C either want to see the movie together or neither
of them sees it. If A does not see the movie then B and D want to see it. Who
is watching the movie?

3. Three people A, B and C are eligible to serve as members of a committee. It is
desirable that as many of the three as possible should serve, but the following
restrictions hold: A and B should not serve on the committee together, A should
serve if and only if C serves; B serves on the committee only if C serves. Who
will be members of the committee?

4. Of three women A, B, C, one is young, one is middle-aged and one is elderly.
Of the three following statements one is true and two are false: “A is young”,

LE T

“B is not young”, “C is not middle aged”. Determine the age of each woman.

ExERCISES (Solutions in Chapter 8, p. 439)

1. Determine the truth function of ((x; v x,) v x3) v (x; A X3).

2. Which of the following are tautologies:
(a) x; = (38 x> x3)5
(b) x; = (% v x3);
(c) (31> x2) v (%2> x3).
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3. Determine whether the following statements are consistent by representing the
sentences as compound propositions: ““An economist says that either devalu-
ation will occur or if exports increase, then price controls will have to be
imposed. If devaluation does not occur, then exports will not increase. If price
controls are imposed then exports will increase”.

4. A politician says in four of his election speeches:
“Either full employment will be maintained or taxes must not be increased”;
*“Since politicians have to worry about the people, taxes have to be increased”;
“Either politicians worry about people or full employment cannot be main-
tained”;
“It is not true that full employment has increased taxes as a consequence”.
(i) Are these four statements consistent?
(ii) Are the first three statements consistent or are these three statements put

together nonsensical?

*5. Each of the objects A, B, C is either green or red or white. Of the following
statements one is true and four are false.
(1) B is not green and C is not white.
(2) C isred and (4) is true.
(3) Either A is green or B is red.
(4) Either A is red or (1) is false.
(5) Either A is white or B is green.
Determine the color of each object.

*6. Solve the system of equations
X1 X3 = X3 + X1 X,%5,
x| + X3 = x;X,.

7. Show that the equation allx =1 in a Boolean algebra B has the general
solution x = a’'LJ u, where u is an arbitrary element in B.

8. Prove: The general solution of x| y = ¢ is of the form
x=cMulv), y=cM@wUv).

[Hint: show that the given forms of x, y satisfy the equation and, conversely,
if x and y are solutions, then they must be of the given form.]

9. Show that the equation a L] x = b has a solution iff @ < b, and if this condition
holds show that the general solution is of the form

x=(ula)b.
*10. Prove: The equation x LI (a[1y) = b has the general solution
x=(ull(a'LUv))1b,
y=(a'LUb)Mv,

for arbitrary u and v in B.
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*§3. Further Applications

This final section will show how lattices also occur in other parts of
mathematics and outside mathematics in a natural way. We begin with the
connection between lattices and topology. If the reader wants to omit the
applications of lattice theory in topology he/she should start reading after
3.13. If the reader is more interested in the applications of lattices in
probability theory, we recommend the reading of BirkHoFF (Ch. 9) and
HavLmMos. Firstly, we need some algebraic preparations.

3.1 Definition. A lattice L is called complete if arbitrary (not only finite)
subsets of L have a supremum and an infimum in L.

If L has a zero element, then a € L is called an atom if a # 0,but b € L,
b < a= b = 0. Thus atoms are the minimal elements in L\{0} (see 1.2.14.
Equivalently, an element which covers 0 is an atom.) L is called atomic if
for any v € L there is an atom a € L such that a < v. L is called atom free
if L does not have any atoms.

A lattice L is called Brouwer lattice if, for any two elements a, b € L, the
set {v € L|av = b} always has a greatest element.

3.2 Examples. #(M) is always complete and {A < N|A finite} is not com-
plete. Complete lattices are bounded by inf L and sup L. In ?(M) all
one-element subsets (called singletons) are atoms. The one-dimensional
subspaces are the atoms in the lattice of all subspaces of a vector space. In
(N, ged, Icm) the atoms are exactly the primes. All lattices mentioned so far
are atomic. However, {A < N|A’ finite} does not contain any atoms; thus
it is atom free. Complete atomic Boolean algebras are precisely those which
are Boolean isomorphic to ?(M).

Brouwer lattices are distributive (see BIRKHOFF, p. 45). Any Boolean
algebra is a Brouwer lattice, since a’ + b is the greatest element in {v e
L|av = b}. Every finite distributive lattice and every chain are Brouwer
lattices. O

Next we need a few topological terms. A topological space is a pair
(X, &), which consists of a nonempty set X and a subset & of ?(X) such
that & and X belong to & and & is closed with respect to finite unions
and arbitrary intersections. The elements of &f are called closed sets. M < X
is open if the complement M’ is closed. The sets which are both open and
closed are called clopen sets, e.g. & and X are clopen sets. A topological
space (X, &) is called discrete if of = P(X). In this case all subsets of X
are clopen. These definitions and 3.2 imply

3.3 Theorem. Let (X, o) be a topological space. Then the set o of all closed
sets forms a complete distributive lattice and the set s{* of all open sets is a
Brouwer lattice. O
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However, in general, & is not a Brouwer lattice, since, e.g. in ]0, 1[ with
the usual topology, {V € H|{1/2} n V = &} does not have a greatest ele-
ment. A topological space (X, &) is traditionally called a T,-space if all
singletons are in &, i.e. all singletons are closed. T,-spaces are obviously
atomic. The following theorem says that a T,-space can be characterized
by the lattice of its closed subsets.

We say that a mapping f from a topological space (X, &,) into a
topological space (X,, &,) is continuous if the pre-images of all sets in &,
are in &,. f is called a homeomorphism if f is bijective and f and f~' are
continuous. In that case (X, &) and (X,, &/,) are homeomorphic or
topologically isomorphic. Thus homeomorphisms are those bijective map-
pings from X, to X, which induce a bijective mapping from &, to <£,.

3.4 Theorem. Let (X, &;), i = 1,2, be two T,-spaces. (X,, &,) and (X,, o,)
are homeomorphic if and only if o, and «, are isomorphic lattices.

Proor. If (X, «,) and (X,, &,) are homeomorphic, then &, and &, are
isomorphic.

Conversely, any lattice isomorphism from &, onto &, induces a
bijective mapping between the singletons of &, and &, and hence
a bijective mapping between X; and X,. Obviously this must be a
homeomorphism. O

This also tells us which lattices occur as lattices of closed sets of a
topological space.

3.5 Theorem. A lattice L = (L,["1, ) is isomorphic to the lattice of all closed
subsets of a T,-space (X, ) if and only if L is a complete atomic lattice
whose dual lattice (L, L1, 11) is a Brouwer lattice. O

Here we may assume that X is the set of the atoms of L. The last two
theorems imply that one may identify parts of topology and lattice theory.
This gives rise to hope that one may transfer theorems and results from one
theory into the other theory. We shall see that this is indeed possible. A
topological space is compact if any family (A;);; of closed sets with the
property [ \ic; A; = & contains a finite subfamily (Ay)xecx With (Veex A =
& (finite intersection property). For instance, in R" with the usual topology
the closed bounded subset are compact spaces (theorem of Borel-Lebesgue).

3.6 Theorem. A T,-space (X, o) is compact if and only if in the lattice s
each ultrafilter is generated by one element, i.e. it is of the form {A € o|x € A}
for some x € X.

ProoF. Let (X, &) be compact. If F is an ultrafilter in &, then the intersec-
tion of all sets in F cannot be the empty set, since in that case there is a
finite subfamily of sets in F with intersection & so that J € F and thus
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F =4, a contradiction. Let x be in this intersection. Then F c
{A e H|x € A} = {A € H|{x} = A}. The latter is a proper filter in &/ and so
the maximality of F implies equality. F is also generated by {x}.
Conversely, suppose every ultrafilter in & is of the form as given in the
theorem. Let A, i € I, be closed sets whose intersection is . If the filter
generated by all A; were not equal to & then it would be contained in an
ultrafilter F which is generated by {x}, say. x is an element of all A;, which
contradicts [ );c; A; = &. Therefore the A; generate a filter equal to </, and
we can obtain J in finitely many steps as an intersection of A;’s. O

Further connections between topology and lattice theory are obtained
as follows. A toplogical space (X, &) is called a Hausdorff space if any two
different points x,, x, € X are contained respectively in open sets 0,, 0, with
0, n 0, = . Any Hausdorff space is a T;-space. If (X, ;) are topological
spaces, then we can build up a system & of closed sets on X = X, ; X;
from the sets ;. Here & is the smallest possible system of closed sets on
X such that all projections X - X; are continuous. (X, &) is the product
of the spaces (X, &;). A theorem of Tychonoff states that (X, &) is compact
if all (X, ;) are compact. If the spaces (X, ;) are Hausdorff spaces then
(X, o) is a Hausdorfl space. If all the factors (X, &;) are equal to (X, &),
say, we write the product as a power (X', &').

3.7 Definition. Let B be a Boolean algebra. Then B* := {h|h is a Boolean
homomorphism from B to B} with the topology it inherits as a subspace of
the product B®. Here B = (B, (B)) has the discrete topology.

Every finite topological space and in particular (B, ?(B)) are compact;
(B, (B)) is also a Hausdorfl space. Therefore B* is a compact Hausdorft
space. B* is completely disconnected, which means that any open set is the
union of clopen sets. B* is nonempty, since for any b € B there is a maximal
ideal I which does not contain b. So B/I is simple (see Exercise 10 in
Chapter 3, §2), therefore it is isomorphic to B. Hence we have a Boolean
epimorphism B - B.

3.8 Definition. A compact Hausdorff space is called a Boolean space if any
open set is the union of clopen sets.

Obviously, finite discrete topological spaces are Boolean spaces. From
the above we obtain:

3.9 Theorem. If B is a Boolean algebra, then B* is a Boolean space. O
The converse is true, as can be verified by elementary calculations.

3.10 Theorem. If (X, o) is a Boolean space, then the set X* of all clopen
sets is a Boolean algebra. O
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HaLMos gives proofs of the following two theorems which show a
connection between Boolean algebras and Boolean spaces.

3.11 Theorem. (i) Let B be a Boolean algebra. Then (B*)* = B** is Boolean
isomorphic to B.

(ii) Let (X, ) be a Boolean space. Then (X*)* =1 X** is homeomorphic
to X. O

3.12 Definition. If (X, /) = B* then (B, X) is called a dual pair.

Results on Boolean pairs reflect the connections between topology and
lattice theory. We mention a few of these results. Here we call x € X an
isolated point if {x} is open ({x} is also closed since X is a T, space).

3.13 Theorem. Let (B, X) be a dual pair. Then:

(i) B is finite & X is discrete.

(ii) B is countable & X is metrizable (i.e. the topology can be generated by
a metric).

(iii) B is atomic & the isolated points are dense in X (i.e. X is the smallest
closed set which contains all isolated points).

(iv) B is atom free & X is perfect (i.e. does not contain isolated points).

(v) The ideals ( filters) in B correspond to the open (closed) sets in X ; here
the clopen sets in C correspond to the principal ideals, the minimal closed
subsets correspond to the ultrafilters, and the maximal open sets to the
maximal ideals. |

Moreover, if (X, B;),i =1,2 are two dual pairs, then to a Boolean
homomorphism h: B, - B, there corresponds a continuous mapping f: X, -
X, the kernel of h corresponds to the complement of the image of f, etc.

We leave this topic and consider next the connections between lattices
and probability theory. At the foundations of probability theory and statistics
we have the analysis of “‘experiments with random outcome”. Here we
mean “‘experiments’ or observations of experiments whose outcome is not
predetermined. This may be the case because of lack of knowledge of the
circumstances of the experiment, because of too complicated a situation
(see 3.14(i)), or because of real chance (see 3.14(ii)); we could also have
a situation with seemingly chance outcome (see 3.14(iii)).

3.14 Example. (i) Let an experiment consist of casting a die once. If the
die is completely homogeneous and symmetrical, then we may assume
that any of the numbers 1, 2,.. ., 6 have the same chance of occurring.
If the die is not “ideal”, then one (or more) numbers will occur more
often and would be less random.
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(ii) The experiment consists of counting the number of a-particles which
are emitted by a radioactive substance during one second. The outcome
of this experiment is truly random.

(iii) Consider the values of the first, second, third...decimal place of a
real number, given in decimal notation. If x is rational, then x has a
periodic decimal expansion and in the sequence of the numbers in the
various decimal places there is nothing random. However, if x is
irrational then the numbers in the decimal places may be randomly
distributed. O

These simple examples show that the term randomness is not an easy
one. The question if and how much the outcome of an experiment is random
can be answered by statistical methods in such a way that we try to confirm
or contradict the assumption of randomness by using a series of tests, e.g.
homogeneity of a die tested by a series of casts. In general an experiment
has many possible outcomes not all of which are of interest in a special
situation. Moreover, some or all combinations of outcomes may be of
interest, e.g. “‘the die shows more than four points”, etc.

We shall construct a mathematical model to study random experiments
similar to the model constructed for switching circuits. This mathematical
model will depend on the main aspects of the situation we are interested in.

3.15 Model for Random Experiments I. In a random experiment let () be
the set of all (interesting) outcomes of the experiment. The elements of €
are called samples and () is called the sample space of the experiment.
Combinations of outcomes of an experiment can be modeled as subsets of
the sample space. For example, if (3 = {1, 2, ..., 6} is the sample space for
tossing a die once, then the combination “the die shows more than four
points” of possible outcomes can be described by {5, 6}. If K,, K, denote
two combinations of outcomes (described by the subsets A;, A, of ), then
“K, and K,” (described by A, n A,), “K, or K,” (described by A, U A,)
and “not K,” (described by A}) are also combinations of outcomes. These
three ‘“‘operations” on outcome combinations (which interest us) should
again be interesting outcome combinations. This leads to the concept of
Boolean algebras and to the second stage of our model building process.

3.16 Model for Random Experiments II. A random experiment is modeled
by the pair (Q, o). Here () is the sample space and « is a Boolean subalgebra
of (). The elements of & (corresponding to the interesting combinations
of outcomes) are called events. & is called the algebra of events over the
sample space {).

3.17 Examples. (i) In tossing a die let all outcomes and all combinations
be of interest. Then a mathematical model is given as (Q, ?(())), where
Q=1{1,2,...,6}.
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(ii) In tossing a die assume we are only interested whether the points are
less than 3 or greater than or equal to 3. In this case a model is given
by (2, #(Q)), where Q = {a, b}, a means “points value <3”, b means
“points value =3,

(iii) In tossing two dice a suitable mathematical model could be (Q, 2(Q})),
where Q ={1,2,...,6} x{1,2,...,6}. The event {(4, 6), (5, 5), (6, 4)}
can be interpreted as the outcome combination “the sum of points is
10”.

(iv) If we consider the experiment of counting a-particle emissions during
one second (see 3.14(ii)) then (N,, &¢) would be a suitable model where
A = {A = Ng|A is finite or Np\A is finite}. O

3.18 Definition. Let o be the algebra of events over the sample space (). If
& (as a Boolean algebra) is generated by a subset &, then the elements of
& are called elementary events.

In the examples 3.17 we can take the one-element subsets as elementary
events. If we chose (N,, 2(N,)) as a model in 3.17(iv), we would have to
choose a much more complicated system of elementary events.

So far we have not mentioned “probability”. It is useful to restrict the
definition of an algebra of events. There are good reasons why we would
like to have unions and intersections in & for countably many sets
A,, A, .... Thus we have to compromise between arbitrary Boolean alge-
bras (in which any two-element set, therefore also any finite set, has a
supremum and an infimum) and those Boolean algebras, which are complete
lattices. Boolean algebras of this type are called o-algebras.

3.19 Definition. A Boolean algebra B is called a o-algebra if every countable
subset of B has a supremum and an infimum in B.

For example, (M) is a o-algebra for any set M. & in 3.17(iv) is not a
o-algebra since the family {{0}, {1}, {2}, ...} has no supremum in <. We
refer to HALMOs (pp. 97-103) for connections with o-spaces (see 3.9-3.12),
and for the representability of any o-algebra as a o-algebra in a suitable
P(M), factorized by a suitable o-ideal (theorem of Loomis); the theory of
free o-algebras over a set is also described there (these are given by the

o-algebra of Baire sets generated by the clopen sets in the Boolean o-space
B™).

3.20 Definition. Let o/ be an algebra of events on the sample space Q. If
A is a o-algebra then (), &) is called a measurable space.
Now we are able to “measure’.

3.21 Definition. Let B be a o-algebra. A measure on B is a mapping u from
B into {x € R|x = 0} u {0}=:[0, 0] with the following properties:
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(i) m(b) < co for at least one b € B.
(ii) If by, b,, ... are countably many elements in B with bb; = 0 for i # j
and if b is their supremum, then

w(b) = if w(b) (o-additivity).

Moreover
(iii) if w(1) =1, then u is called a probability measure and w(b) is the
probability of b € B.

The pair (B, u) is called a measure space. If u is a probability measure then
(B, ) is also called a probability measure space.

3.22 Examples. Let M # (J be a finite set. Then u, defined by u(A) = |A|,
is a measure on P#(M). If |[M| =2 then u is not a probability measure.
P(A) = |A|/|M| defines a probability measure P on ?(M). If B=
P({1,2,...,6), see 3.17(i), then we have, e.g.

P({5,6})=M|_=z=l |

Now we are able to conclude our model.

3.23 Model for Random Experiments III. The triplet (), &, P) is called a
probabilistic model of a random experiment if ) is the set of all outcomes
(which interest us), & is a suitable o-algebra in () and P is a probability
measure on .

In this case (Q, &) is a measurable space; (&, P) is a probability space.
The question of whether a given probability measure P is the “correct”
measure to model a random experiment is one of the central questions of
mathematical statistics. We cannot go into these problems here and refer
the reader to the literature.

In case of a finite sample space ) one is usually best served by the
o-algebra of = P(Q). However, for infinite sample spaces, there are some
problems: if we choose & “to small” (e.g. as in 3.17(iv)) then we do not
obtain a o-algebra; if we choose & “too large” as, for instance, in & =
P(Q), it often happens that we cannot have a probability measure on #,
as happens for Q = R. Therefore we have to compromise. For {} =R and,
more generally, for ) = R" and its subsets, we obtain a solution to this
problem as follows.

3.24 Definition. Let Q < R". We consider the o-algebra B in ?(R") which
is generated by the set of all products of open intervals. % is called the
o-algebra of Borel sets in R". The o-algebra of reduced Borel sets on () is
defined as B == {B n QB € B}.
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We obtain a measure space (%, u) if we define u on the product of open
sets as follows:

p((ay, by) x(ay, by) X... X (a,b,)) = (by—a))(b,—ay)...(b, — a,)
and extend u to all of B in an obvious way. If we define

r((ay, by) X (ay, b)) ... X (a, b,))
=gi(by — a))g:(b; — ay) ... g,(b, — a,)
with suitable weights g;, then we can obtain a probability space. For more

information we have to refer to the literature on probability theory.

We summarize some of the basic properties of probability measures.

3.25 Theorem. Let (B, P) be a probability space. Then:

(i) by, by € B, bib, =0 imply P(b, + b,) = P(b,) + P(b,);

(ii) V bl’ bz € B: P(b] + bz) = P(bl) + P(bz) - P(b]bz);
(iii) V b], b2 € B: bl = b2:>P(b1) = P(bz);
(iv) Vb e B: P(b) [0, 1];

(v) Ybe B: P(b')=1— P(b).
ProoF. (i) Is a special case of o-additivity,

(ii) We have b, + b, = b,b; + b, b, + b}b, and the terms on the right-hand

side have intersection (product) 0. Therefore

P(b, + by) = P(b,b5 + b,b, + b1b,) = P(b,by) + P(b,b,) + P(bb,)
= P(b,b3) + P(b,b,) + P(bib,) + P(b,b,) — P(b,b,)
= P(b,b5 + bb,) + P(bib, + b;b,) — P(bb,)
= P(b,) + P(b,) — P(b,b,).
(iii) by = b,=> b, =b, +bib, (with b,(bib,) =0). Therefore P(b,) =
P(b,) + P(bib,) = P(b,).

(iv) Follows from (iii), since P(b) = P(1) =1 for all b € B.
(v) 1 = b + b’ with bb’ = 0. Therefore 1 = P(1) = P(b) + P(b’). O

Next we introduce and study the term “conditional probability”.

3.26 Definition. Let (B, P) be a probability space and b,, b, ¢ B where
P(b,) > 0. Then P(b,|b,) = P(b,b,)/ P(b,) is called conditional probability
of b, under the condition b,. If P(b,|b,) = P(b,), then b, and b, are said
to be independent.

Simple calculations verify the following theorem.
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3.27 Theorem. Let (B, P) and b,, b, be as in 3.26. Then

(i) P(b,b,) = P(b,|b,)P(b,);
(i) P(b,b,) = P(b,)P(b,), if b, b, are independent. O

Finally we mention a completely different situation where lattices appear
in “nature”. We consider a “classical mechanical system”, such as our
system of nine planets. Each planet can be described by its position (three
local coordinates). Thus the system can be described as a “point” in R*.
R? is called the phase space of the system. Any property of the system (e.g.
“the distance between Jupiter and Saturn is less than k kilometres™) deter-
mines a subset of R?’ (in the example this is {(x, ..., Xz7)|(X13 — X16)* +
(X14 = X17)* + (15 — X15)° = K} if (x13, X4, X15) gives the position of Jupiter
and (x;¢, X;7, X13) the position of Saturn). Conversely, there is the question
of whether one can assign a relevant physical property to any of the subsets
of R, or more general phase spaces. It seems to make sense to assume
that we can assign sensible physical properties to the Borel sets in R?. Thus
the physical system of our planets can be studied by means of the o-algebra
of the Borel sets on R*’.

In microcosms we have some problems, since not all observables like
place, impulse, spin, energy, etc. of a quantum-theoretical system can be
precisely measured at the same time. We know this from Heisenberg’s
uncertainty principle. In this case it is advisable to choose an infinite-
dimensional separable Hilbert space as our phase space. This is a vector
space H with an inner product ( , ) such that any Cauchy sequence (h,),
which is characterized by lim,, ,..o{h, — hpn, b, — h,,) = 0, converges to an
h € H. Moreover H has a countable subset B such that any h € H is limit
of a sequence of elements in B.) Then the observable properties of a quantum
system correspond to the closed subspaces of H. Here lattices of the
following type arise:

3.28 Definition. Let L be a lattice with zero element 0. L is called an
orthocomplemented lattice if for any v € L there is a v* € L (called the
orthocomplement of v) such that:

i) (v =v;
(i) v=wDvi=w';
(iii) vo* =0.
An orthocomplemented lattice L with 0,1 is called orthomodular if the
orthomodular identity
v=wDw=0v+wot

is satisfied.

3.29 Example. Let L be the lattice of all subspaces of an inner product
space. L is orthocomplemented and the orthocomplement of a subspace U
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of L is the orthocomplemented space U* = {x[(x, u) = 0 for all u € U}.
That is, the set of all vectors x orthogonal to U. |

We verify immediately:

3.30 Theorem. Let H be a separable Hilbert space. Then the closed subspaces
of H form a complete, atomic and orthocomplemented lattice. 0

The fact that some of the observables of a quantum-theoretic system can
be measured simultaneously and others not, however, can be expressed in
the following definition.

3.31 Definition. Let L be an orthomodular lattice and v, w € L. v and w are
called orthogonal, if v < w*. v and w are called simultaneously verifiable if
there are pairwise orthogonal elements a, b, ¢ € L such that v = ac, w = bc.
We write v & w.

The relation < is reflexive and symmetric, but in general is not transitive.

3.32 Definition. Let L be an orthomodular lattice. z € L is called central if
zeo vforall ve L.

In all classical mechanical systems all observables are simultaneously
measurable and therefore we obtain Boolean algebras. The next and last
theorem shows that quantum mechanics in this sense can also be regarded
as an extension of classical mechanics and quantum logic as an extension
of classical logic.

3.33 Theorem. Let L be an orthomodular lattice. Then the central elements in
L form a Boolean algebra. O

This theory goes deep into lattice theory and quantum mechanics.

PROBLEMS

*1. Prove: a lattice is complete unless it has a subset which forms an infinite chain.

2. Show that the existence of a 0 and a | is a necessary but not a sufficient
condition for a lattice to be complete.

3. Prove that for any homomorphism f of a complete lattice L into itself there
is at least one element a € L such that a = f(a).

*4. Determine if the Cartesian product of a family of Boolean spaces is a Boolean
space with respect to the product topology.
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*5.

*8.

10.

*11.

12.

13.

14.
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Prove: Every closed subset Y of a Boolean space (X, &) is a Boolean space
with respect to the topology on X. Every clopen set in Y is the intersection
of Y with some clopen subset of X.

. Two gamblers A and B have $a and $b, respectively, at the start of a game.

The game is repeated until one of them is “ruined”. Let p and g, p +q =1,
be the probability for A and B, respectively, to win in each game. In each
game the win of a player (and the loss of the other player) is $1. Find the
probability for the loss of each player.

. Let (Q, o) be an experiment and & # B € & be an event. The experiment

(Q, ) conditioned by the event B is (B, B«), where B& denotes the family
of those A € & for which A < B. When is (B, B«) the trivial experiment? Let
& =0Q,4,),i=1,2,..., be a finite or denumerably infinite sequence of
experiments such that ©, and Q, i # j, are disjoint. Define a sum and product
of the experiments &; and give an interpretation to these new experiments.

Let () be a nondenumerable set and let & be a family of subsets A of € such
that either A or A is denumerable. Show that:
(i) « is a o-algebra;
(ii) « contains nondenumerably many atoms;
(iii) not every union of atoms belongs to .

. A positive integer I is selected with probability P(I = n)=(3)", n=1,2,....

—-n

If I takes the value n, a coin with probability e™" of heads is tossed once.
Find the probability that the resulting toss is a head.

Prove finite additivity for the measure w, in Definition 3.21(ii), i.e. u(d) =
Z’l‘ w(b;), where the b; are disjoint and b is their supremum.

Verify that the lattice of all subspaces of three-dimensional real Euclidean
space is an orthomodular lattice.

Construct an example of an orthocomplemented lattice with six elements that
is not orthomodular.

If a < b in an orthomodular lattice L, prove that the sublattice [a, b] is also
orthomodular.

Let L be an orthocomplemented lattice. Verify in L that (a + b)* = a*b*. Also
show that L is orthomodular if and only if in case a < b there exists ce L
such that a and c are orthogonal and a + ¢ = b.

ExERCISES (Solutions in Chapter 8, p. 443)

1.
2.

Justify the propositions in 3.2.

Which of the lattice in and following 1.1.12 are Boolean lattices? Which are
atomic, or complete or Brouwer lattices?

. Which compact Hausdorff spaces are Boolean spaces?

A random experiment consists of going to the doctor’s surgery to find out how
long one has to wait to get attended to. Give a model for this experiment.
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5. An experiment consists of tossing a die on a table and measuring the distance
of the die from the edge of the table. Give a model.

6. In the models of Exercises 4 and 5 state a system of elementary events for each
experiment.

*7. Justify the statements in 3.22.

8. Let & be the o-algebra of Borel sets on R. Is B atomic? Are all finite subsets
elements of B? Is the set of positive real numbers in B? Is @ € B?

9. Give a probability measure P for 3.17(iii). Interpret A = {1} x{1,2,...,6} and
B={(1,1),...,(6,6)}. Calculate P(A|B) and P(B|A). Are A and B
independent?

10. A deck of 52 cards is shuffled and two cards are dealt in succession face up.
Describe the sample space for (y,, y,), where y, is the designation on the ith
card dealt, e.g., AS, ace of spades, etc. How many points are in the sample
space? Describe the subset A for the event “both are spades”. How many points
are in A?

Let A; be the occurrence of an ace on the jth draw and let B; be the occurrence
of exactly j aces. Express B; in terms of the A; and calculate p(B,), p(B,), p(B,).

NOTES

Some standard introductory textbooks on Boolean algebras and applications
are HOHN, MENDELSON, WHITESITT.

The collection of survey articles by ABBOTT contains applications of
lattices to various areas of mathematics. It includes a paper on orthomodular
lattices, one on geometric lattices, a general survey on “what lattices can
do for you” within mathematics, and a paper on universal algebra. Most
of the books on applied algebra consider Boolean algebras in an introductory
way and have applications to switching circuits, simplification methods,
logic: BIRKHOFF and BARTEE, DORNHOFF and HOHN, FISHER, GILBERT,
PRATHER and PREPARATA.

Further texts describing the applications given in this chapter and several
additional examples are DOKTER and STEINHAUER, DWORATSCHEK, HAR-
RISON, PERRIN, DENQUETTE and DALCIN, PESCHEL. A comprehensive
book* by Davio, DescHAMPs and THAYSE on discrete and switching
functions (algebraic theory and applications) has been published recently.
RUDEANU deals with polynomial equations over Boolean algebras.

As to the development of logic, the great merit of the fundamental work
of Aristotle is that Aristotle succeeded in describing and systematizing in
a set of rules the process of reaching logical conclusions from assump-
tions. Aristotle focused his attention mainly on a certain type of logical
relations and chains, syllogisms. Leibniz tried to give Aristotelian logic an
algebraic form. He used the notation AB for the conjunction of two terms,

* DAVIO, M., DESCHAMPS, J. P. and THAYSE, A. Discrete and Switching Functions. McGraw-
Hill, New York, 1978.
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noted the idempotent law, and knew that “every A is a B” can be written
as A = AB. He noted that the calculus of logic applied to statements or
expressions as well. However, he did not go far enough and only Boolean
algebra was an adequate tool. Leibniz’s interest in this context was mainly
in transcribing the rules of syllogism into his notation. Boolean algebras
reduced an important class of logical questions to a simple algebraic form
and gave an algorithm of solving them mechanically.

Under the three Boolean operations the binary relations on a set X form
a Boolean algebra isomorphic to that of the power set of all subsets of X>.
This was initially considered independently by C. S. Peirce and Schroder.
The success of Boolean algebra and relation algebra in simplifying and
clarifying many logical questions encouraged mathematical logicians to try
to formalize all mathematical reasoning. Regarding texts on mathematical
logic we mention HiLBERT and ACKERMAN, a classic, and also BARNES
and MaAck, RENNIE and GIRLE.

In 1900 at the International Congress of Mathematicians in Paris,
D. Hilbert gave an address entitled “Mathematical Problems” in which he
listed 23 problems or problem areas in mathematics. Problem 6 refers to
the question of the axiomatization of physics and probability theory, which
prompted S. N. Bernstein (in 1917) and R. V. Mises (in 1919) to use algebra
in the foundations of probability theory. Kolmogorov (in 1933) based
probability theory on the concept of measure theory and o-algebras. An
introductory text on probability theory based on Boolean o-algebras is
FrRASER. See also LoEVE, GNEDENKO, CHUNG.

A survey article by Holland in ABBOTT’s collection gives an excellent
description of the history and development of orthomodular lattices and
also includes a bibliography on the subject. VARADARAJAN is a modern
introduction to quantum theory, VoN NEUMANN is a classic on quantum
mechanics.

Further applications of lattices and Boolean algebras are due to ZELMER
and STANcu, who try to describe biosystems (e.g. organisms and their
environment) axiomatically and interpret them in terms of lattice theory.
FRIEDELL gives lattice theoretical interpretations to social hierarchies inter-
preted as partial orders.



CHAPTER 3
Finite Fields and Polynomials

Finite fields give rise to particularly useful and, in our view, beautiful
examples of the applicability of rings and fields. Such applications arise
both within mathematics and in other areas; for example, in communication
theory, in computing and in statistics. In this chapter we present the basic
properties of finite fields, with special emphasis on polynomials over these
fields. The simplest finite field is the field F, consisting of 0 and 1, with
binary addition and multiplication as operations. Many of the results for
F, can be extended to more general finite fields.

Section 1 contains a summary of the basic properties of rings and fields.
The core of the present chapter consists of §2 on finite fields and §3 on
irreducible polynomials. We apply some of the results herein to the problem
of factorization of polynomials over finite fields. Section 5 is an appendix,
giving algorithms for finding null spaces.

§1. Rings and Fields

We assume that the reader has a basic knowledge of the ring concept and
therefore we give only a brief summary of fundamental results on rings and
fields. Most proofs can be found in standard introductory texts on abstract
algebra, such as FRALEIGH or HERSTEIN.

A. Rings, Ideals, Homomorphisms

1.1 Definition. A ring is a set R together with two binary operations, + and
-, called addition and multiplication, such that

(i) (R, +) is an abelian group;
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(ii) the product r- s of any two elements 7, s € R is in R and multiplication
is associative;

(iii) for all r,s,te R:r-(s+t)=r-s+r-t and (r+s)-t=r-t+s-t
(““distributive laws).

We will then write (R, +, -) or simply R. In general, the neutral element
in (R, +) will be denoted by 0, the additive inverse of r € R by —r. Instead
of r-s we shall write rs. Again, let R* := R\ {0}. Rings according to 1.1
are also called “‘associative rings” in contrast to ‘“nonassociative rings”
(where associativity is not assumed). The “‘prototype” of a ring is (Z, +, -).

1.2 Definition. Let R be a ring. R is said to be commutative if this applies
to -. If there is an element 1 in R such that r-1=1-r=r for any re R
then 1 is called an identity (or unit) element. If rs = 0 then r is called a left
divisor and s a right divisor of zero. If rs = 0 implies r = 0 or s = 0 for all
r,s € R, R is called integral. A commutative integral ring with identity is
called an integral domain. If (R*, -) is a group then R is called a skew field
or a division ring. If, moreover, R is commutative, we speak of a field. The
characteristic of R is the smallest natural number k with kr==r+... +r
(k-times) equal to O for all r € R. We then write k = char R. If no such k
exists, we put char R = 0.

Now we list a series of examples of rings. The assertions contained in
this list are partly obvious, some will be discussed in the sequel; the rest is
left to the reader.

1.3 Examples. See table on page 122.

Remarks to this list: In R®, + and - are defined pointwise; i.e.
(f+8)(x)=f(x) +g(x) and (f- g)(x):=f(x) g(x) forf geR"

0" and 1’ are the functions which have constant values 0 and 1, respectively.
The operation * in G is defined by g * h = 0 for all g, h € G; hence every
abelian group can be made into a (commutative) ring. O

We state how some of the concepts introduced in 1.2 are interrelated.

1.4 Theorem. (i) Every field is an integral domain.

(ii) Every finite integral domain with more than one element is a field.

(iii) Every finite skew-field is a field (Wedderburn’s theorem).

(iv) If R is an integral domain then char R is 0 or a prime. O

The finite fields (by 1.4(ii) and (iii) hence also the finite integral domains
and the finite skew-fields) will be explicitly described in §2. A first example
of a proper skew-field is given by
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1.5 Example. Let Q = (R%, +, -) with component-wise addition and multi-
plication defined by

(a,b,¢,d)(a',b',c',d")
= (aa’—bb' —cc'—dd',ab' + ba' + cd' — dc', ac’' — bd' + ca’
+db', ad' + bc' — cb’ + da’).
With 1:=(1,0,0,0), i==(0,1,0,0), j:=(0,0,1,0), k:=(0,0,0,1) we get
P=7=k=~-1,ij=k jk=1i ki =j, ji=—k kj = —i, ik = —j and
Q={al +bi+¢ +dk|a,b,c,d e R}.
Hence Q can be considered as a four-dimensional vector space over R.
(Q, +, ) is a skew-field; it is not a field and can be viewed as an “‘extension”
of C to a system with three “imaginary units” i, j, k. ({x1, £i, £j, £k}, -) is

a group of order 8, isomorphic to the quaternion group (4.1.4(iii)). Q is
called the skew-field of quaternions. O

For our purposes the following example will be of great interest.

1.6 Example. Let n be a positive integer and let =, denote the following
relation on Z: a =, b:& n divides a — b (denoted by n|a — b). Then =,
is an equivalence relation on Z, called the congruence modulo n. The
equivalence classes are denoted by [a], or by [a], We also write a =
b (mod n). Thus [a], is the set of all integers z which on division by n give
the same remainder as a gives. Therefore [a] is also called the residue class
of a modulo n. We have

[0]= {0, n,—n,2n,—2n,3n, —3n,...},

[M={l,n+1,-n+1,2n+1,-2n+1,-2n +1,...},

[21={2,n+2,-n+2,2n+2,-2n+2,...},

[n—1]={n-1,n+n-1,-n+n-1,2n+n-1,-3n+n-1,...}

There are no more: [n]=[0], [n +1]=[1],.... In general, [k] = [a] for
ac{0,1,...,n— 1}, if k divided by n gives remainder a. The equivalence
relation =, on Z satisfies

a=,bc=,d >a+c=,b+d ac=,bd

Thus =, is compatible with the operations + and - on Z and =, is a
congruence relation on Z. We can define two operations addition and
multiplication on Z,, = {[0],...,[n — 1]} by

[a] +[b] =[a + b],
[a](b] = [ab].
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It can be verified that (Z,, +, ) is a commutative ring with identity and
is called the residue class ring mod n. O

The following theorem contains important information, particularly that
Z, is a field if n is prime. This is our first example of a field with finitely
many elements.

1.7 Theorem. For every n > 1, the following conditions are equivalent.

(i) Z, is an integral domain;
(ii) Z, is a field;
(iii) n e P. O

Let R be a ring and let S < R. S is called a subring of R (denoted by
S = R) if S is a ring with respect to the operations of R operating on the
subset S of R.

A subgroup I of (R, +) is called ideal of R and is denoted by I < R if

VielVreR:irelandrie L (*)

If only the first part ir € I (or the second part ri € I) of (%) holds then we
speak of right (left) ideals of R. A left (right) ideal is thus a special subring.
The condition (*) is often written as “JR < I A RI = I”. We put I < R if
I<RbutI#R

For every subring S of R we get an equivalence relation ~g by
r o ~st S r —r,€ S Since (R, +) is abelian, ~ is automatically compat-
ible with + thatis r, ~gr,, r{ ~gr =r, +ri ~gr, + r5. However, ~ is not
necessarily compatible with -. For instance, if R = Q@ and S = Zthen S < R
and1 ~,0aswellas3 ~,3(sincel —0eZand2-1e2Z),butl-3-0-1¢7
whence 1 -2#,0- 5.

When is ~ compatible with -, i.e. when is ~¢ a congruence relation in
R?

1.8 Theorem. Let I = R. Then ~ is a congruence relation in (R, +, -) if and
only if I < R O

One readily sees that R/~ then turns out to be a ring with respect to
(r+D)+(s+D)=(r+s)+Tand(r+I)(s+I)=rs+LR/~;,= R/Iis
called the factor ring of R with respect to the ideal L

In the case of groups, normal subgroups are intimately connected with
homomorphisms. The same applies to rings where ideals are related to
homomorphisms.

Let R, S be rings and let h: R > S be a function. h is called a (ring-)
homomorphism provided that h(r, +r,) = h(r;) + h(r,) and h(rr,) =
h(r,)h(r,) hold for all r,, r, in R. Ker h:= {r € R|h(r) = 0} is then called
its kernel and Im h = h(R) its image. It is easy to see that Im A < S (... the
notation above). The kernel is more than just a subring:
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1.9 Theorem. Every kernel of a homomorphism leaving R is an ideal of R,
and all ideals can be obtained in this way. O

Injective homomorphisms are called monomorphisms (or embeddings),
surjective homomorphisms are called epimorphisms, bijective homomorph-
isms are isomorphisms. We use the symbol = to mean “is isomorphic to”.
If there exists a monomorphism from a ring R into a ring R’ then R is
embeddable in R’, in symbols RS R'. Let

Hom(R, R’) = {f|f: R > R’ homomorphism}.

1.10 Theorem. Every ring R can be embedded in a ring R'" with identity. (]

Such a ring R may be of the form (R X Z, +,-), where addition
of pairs is defined component-wise and multiplication is defined by
(nbz)-(r,z)=(r'+zr'+z'r,zz") forall r,r € R and z,z' € Z.

It should be remarked that if R already has an identity 1 then 1 loses
its role in the process of embedding R into the ring R with identity.

1.11 Theorem. Let R, S be rings and h: R > S a homomorphism.

(i) {0} Rand R<R.

(ii) h is an epimorphism iff Im h = S and a monomorphism iff Ker h = {0}.

(iii) (“Homomorphism Theorem for Rings”.) R/Ker h = Im h.

(iv) There is a 1-1 correspondence between the subrings (one- and two-sided
ideals) of R containing Ker h and the ones of Im h.

(v) (“First Isomorphism Theorem™.) If S < Rand I < Rthen (I + S)/I =
S/(InS).

(vi) (“Second Isomorphism Theorem™.) If I < R with Kerh < I then
R/I = h(R)/h(I). With J := ker h this reads as (R/J)/(I/J)=R/L

O

Intersections of subrings (ideals) of R are again subrings (ideals). We
can also speak of the concept of a generated subring (ideal, respectively).
Ideals which are generated by a single element deserve special interest. Let
R be a ring and a € R. The ideal generated by a will be denoted by (a)
and is called the principal ideal generated by a. If R is a commutative ring
with identity, then for all a € R we get (a) = aR = {ar|r € R}. In a ring
with identity, {0} = (0) and R = (1) are principal ideals. In Z, nZ = (n) is
a principal ideal for every n € N,. An integral domain in which every ideal
is principal is called a principal ideal domain (PID). For example, Z is a PID.

An ideal I in R is called a maximal ideal if I # R and there is no ideal
strictly between I and R. It can be shown that the ideal (n) is a maximal
ideal in Z iff n is a prime. R is simple if {0} and R are its only ideals.

An ideal P in a commutative ring R is called a prime ideal of R if P # R
and for all r,s € R: rs € P implies r€ P or s € P.
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1.12 Theorem. Let I < R. R a commutative ring with identity. Then:

(i)
(ii)
(iii)

I is maximal & R/ 1 is a field.
1 is prime & R/ 1 is an integral domain.
I is maximal => I is prime. U

PrROBLEMS

1.
2.

10.
*11.
12.
13.

15.

16.

17.
18.
*19.

20.
21.

Prove parts (i), (ii) and (iv) of Theorem 1.4 (for (iii) see, e.g. HERSTEIN).

In Example 1.3 is there a ring in which every element is either invertible or a
divisor of zero?

. Verify in detail that Q of Example 1.5 really is a skew-field.
. Is the following true: “n < m & Z, is a subring of Z,,”?

. Determine all rings with two and three elements.

. Prove Theorem 1.7.

. Find all rings with (Z,, +) as their additive group.

. Are there integral rings of characteristic 6?

. Let R be a commutative ring of characteristic p, a prime. Show that

(x +y)? =xP +yP and (xy)? = xPy?
hold for all x,y € R.
Show that char R divides n, if R has n € N elements.
Prove Theorems 1.8 and 1.9.
Prove Theorem 1.10.

Show that nZ is an ideal in Z. What does one obtain for n = 0 and for n = 1?

. Find all ideals in Z;, Z, and Z, and determine homomorphisms with these

ideals as kernels.

Are the following rings PID: Z,,; nZ; every skew-field; every field; every simple
ring?

Find all maximal ideals in the following rings: R; Q; Z,; Z3; Z4; Zs; 2545 2
(p a prime); Z,.

Is the intersection of prime ideals a prime ideal?
Find a prime ideal in a given ring which is not maximal.

Show that if h: R > S is a homomorphism and if R is commutative then
h(I +J)=h(I)+h(J) and h(I nJ) = h(I) ~ h{J) hold for all ideals I, J
in R.

Find, in Z X Z, the subring and the ideal generated by (2,2). Is Z X Z a PID?
Find the ideal generated by {12, 14} in Z and in 2Z = {0, £2, £4, £6,...}.
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22. Find all endomorphisms of (Q, +, -).
23. Find a commutative ring R and some r € R such that (a) # aR.
24. Is 27, a maximal ideal in Z,,?

*25. Prove Theorem 1.12.

B. Polynomials

Usually one thinks of polynomials as ‘“formal expressions™ ay + a;x +... +
a,x" in the “indeterminate” x. But, if x is “not determined” or “‘unknown”,
one might raise the question, how this ““‘undetermined” x can be squared,
added to some a,, and so on. We will overcome this difficulty by introducing
polynomials in a way which at first glance might look much too formal.
But exactly this “formalism” will prove very useful in applications. The
whole matter starts by observing that a “polynomial a; + a,x +... + a,x"”
is already determined by the sequence (ao, a,, ..., a,) of its “coefficients”.

1.13 Definition. Let R be a commutative ring with identity. All sequences
of elements of R which have only finitely many nonzero elements are called
polynomials over R, all sequences of elements of R are called formal power
series over R. The set of polynomials over R is denoted by R[x], the set
of power series over R is R[[x]]. If p = (aq, a4, ..., a,,0,0,...) € R[x] we
will also write p = (ay, ..., a,). If a, # 0 then we call n the degree of p
(n = deg p); if a, = 1 we call p monic. We put deg(0, 0,0, ...) = —oo. Poly-
nomials of degree < 0 are called constant.

In R[x] and R[[x]] we define multiplication (aq, ai,...). (b, by,...) =
(Cos €1,--.) with ¢ = ¥, _, aib; = ¥_, aibe_,, and addition (ao, ay,...) +
(bo, by, ...) = (ao + by, a, + by, ...). Note that deg pq = deg p + deg g, for
D, 9 € R[x].

With respect to the operations of multiplication and addition the sets
R[x] and R[[x]] are commutative rings with identity (1,0,0,...). If R is
integral, the same applies to R[x] and R[[x]]. (R[x], +, ) and (R[[x]], +, )
are called the ring of polynomials and the ring of formal power series,
respectively. In R[x] and R[[x]] we define x == (0,1,0,0,...) = (0,1). We
then get x-x=x>=(0,0,1), x>=(0,0,0,1), and so on. With x°:=
(1,0,0,...) and a; = (a,0,0,...) we see that in R[x] and R[[x]] we can
write

p=(aga,a,...)=a+ax+ax + - =Y, ax"

This gives the familiar form of polynomials as }.;_, ax’ and formal power
series as Y ..., ax' (they are called “formal” since one is not concerned with
questions of convergence). We see: x is not an “indeterminate™, it is just
a special polynomial.
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Let p, q € R[x). pdivides q (denoted by p|q)if p = q- r forsome r € R[x].
If deg g > deg(p) > 0 then p is called a proper divisor of q. A polynomial
q with deg g = 1 which has no proper divisors is called irreducible.

Every polynomial of degree 1 is, of course, irreducible. If R = C there
are no more irreducible ones; if R = R then “‘half” of the quadratic poly-
nomials are irreducible as well. This is the contents of the so-called * Funda-
mental Theorem of Algebra™:

1.14 Theorem. (i) The irreducible polynomials in C[x] are precisely the ones

of degree 1.
(ii) The irreducible polynomials in R[x] are the ones of degree = 1 and the
polynomials a, + a,x + a,x* with a3 — 4aya, < 0. a

The best way to check if g|f is to “divide” f by g and to see if there is
some nonvanishing remainder. This is possible by the following theorem.

1.15 Theorem (The Division Algorithm). Let R be a field and f, g € R[x].
Then there exist q, r € R[x] with

f=g-q+r and degr <degg. O

There are some properties of some polynomial rings which will prove
useful.

1.16 Theorem. Let R be a field and p, f, g € R[x]. Then:

(i) R[x] is a PID.
(i) (p) is a maximal ideal <(p) is a prime ideal # R< p is irreducible
and p # 1.
(iii) p irreducible A p|f-g=>p|lfvrlg O

Theorem 1.16(i) has important consequences: we can define concepts
like “greatest common divisors”:

1.17 Theorem. Let R be a field and f, g € R[x]. Then there exists exactly one
d € R[x] which enjoys the following properties:

(i) d|fand d|g.
(ii) d is monic.
(iii) If d'|f and d’|g then d'|d.

For this d there exist p,q € R[x] withd =p-f+q- g O
The polynomial d in 1.17 is called the greatest common divisor of f and

g, denoted by gcd(f, g). f and g are called relatively prime (or coprime) if
ged(f, g) = L.
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1.18 Theorem (The Unique Factorization Theorem). Let R be a field. Then
every f € R[x] has a representation (which is unique up to order) of the form
f=r-p -ps-...-pwithr € R, py, ..., px monic and irreducible polynomials
over R. O

We mention explicitly that the proof of this theorem does not indicate
how to construct this “prime factor decomposition”. In general, there is no
efficient constructive way to do this. However, we will describe a (construc-
tive) algorithm in §4, if R is a finite field.

In general, rings with a property analogous to 1.18 are called unique
Jactorization domains (UFD). It can be shown that every PID is a UFD.

The penetrating similarity between Z and R[x] (R a field) is enunciated
by the following table. Let f, g be in Z or in R[x], according to the left-hand

side or right-hand side of the table.

z

R[x]

“Norm”: absolute value of f.

Invertible: numbers with value 1.

Every integer can be represented in the
form a,+a,-10+a,- 10> +...+
a,- 10"

flg:®3qez:f=¢g-q

dqreZ:f=g-q+ra0=r<l|g|

Z is an integral domain and a PID.

f and g have a uniquely determined
greatest common divisor d which
can be written as d =f-a+g-b
with a, b € Z.

fis a prime :& f has no proper divisors.

Every integer is a “unique” product of
primes.

“Norm”: degree of f.

Invertible: polynomials of degree 0.

Every polynomial can be represented in
the form a,+a,x +a,x*>+...+
ax".

flg:®3qeRx):f=¢gq

q,reR[x]:f=g-q+rnadegr
< degg.

R[x] is an integral domain and a PID.

f and g have a uniquely determined
greatest common divisor d which
can be written as d =f-a+g-b
with a, b € R[x].

f is irreducible & f has no proper
divisors.

Every polynomial is a “‘unique” product
of irreducible polynomials.

Many people think of “functions” when polynomials are discussed. In fact,
every polynomial induces a “polynomial function”, but not necessarily
conversely.

If p=(ap,...,a,)=0ap+ax+...+a,x" € R[x] then p: R> R, r—
ay+a;r+a,y’*+...+a,r" is called the polynomial function induced by p.
Here ay+... +a,r" = p(r). Let P(R) = {p|p € R[x]} be the set of all
polynomial functions induced by polynomials over R. If no confusion is to
be expected, we will simply write p instead of p.
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1.19 Theorem. (i) Vp,qe R[x]:p+q=p+qAap-q=p-q.
(i) P(R) is a subring of R®. O

1.20 Theorem. (i) The map h: R[x] > P(R), p — P, is a (ring-) epimorphism.
(ii) If all nonzero elements of (R, +) are of infinite order then h is an
isomorphism. O

This result allows us to “identify” R[x] and P(R) if R = R, for instance.
This is, however, not allowed if R is a finite ring. In Z,[x], the polynomial
x(x +1)...(x + (n — 1)) has degree n, but j is the zero function. Hence
p is in ker h of 1.20. If R is finite, the same applies to P(R) =< R®. On the
other hand, R[x] is infinite as long as |R| > 1. Hence the map h of 1.20
cannot be an isomorphism in this case.
An element r € R is called a root (or a zero) of the polynomial p € R[x]
if p(r) = 0. There is an important link between roots and divisibility of
polynomials.

1.21 Theorem. An element r of a field R is a root of the polynomial p € R[x]
if and only if x — r divides p. O

Let r € R be a root of p € R[x]. If k is a positive integer such that p is
divisible by (x — r)¥, but not by (x — r)**', then k is called the multiplicity
of r. If k = 1, then r is called a simple root of p.

We also remark that by (R[x])[y]=: R[x, y], etc., one gets polynomial
rings in more “variables” (they are not variables at all). If one were very
precise, one would have to write (R[x])[x].

PROBLEMS

1. Let f=x°+3x"+4x*—3x +2, g=x*>+2x—3¢€Z;[x]. Determine g re
Z,[x] such that f = gq +r.

2. Let f(x) =2 +2x +2x* +2x> + x* + x7 + x, g(x) =2+ x + x* be two poly-
nomials in Z;[x]. Is f divisible by g?

3 If f=x+2x +3x* +3x° +2x* +3x7 +x* and g =x +3x* +x’ are poly-
nomials over R, compute polynomials g and r (with degr <3) such that

f=g-q+r Does g|f hold? Answer these questions for R =R, R =Q and
finally R = Z,. Do you get the same answers?

4. With f, g of Problem 3, compute ged(f, g) again for R =R, Q and Zs.
*5_ Show that R[x] and R[[x]] are integral domains if R is integral.

6. Show that p € R[x] (R a field and deg p =< 3) is irreducible iff 5 has no zero
(i.e. no r € R with p(r) =0).

7. Decompose x° +x* +3x* +3x* + x + 1 € Z5[x] into irreducible factors over
ZS-
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*15.

16.

18.

19.
*20.
21.

22

23.
24.

25.

26.

[=2}

. If R is a field, show that a, + a;x +... € R[[x]] is invertible iff a, # 0.

. Find the inverse of 1 — x in R[[x]].

. List the elements of P(Z,) and P(Z,) explicitly.

. Show that P(R) = {fe R®|r—se I=>f(r) - f(s) € I for each I < R}.

. Find at least five distinct polynomials in Z,[x] which induce the zero function.
. Determine all homomorphic images of F[x], F a field.

*14.

Let F be a field, a, b € F, a # 0. Show that there is exactly one automorphism
¢ of F[x] with ¢(x) = ax + b and ¢ maps each element of F into itself. Show
that all automorphisms of F[x] are of this form.

Prove that for any ideal I in a ring R we have (R/I)[x] is isomorphic to

R[x]/I[x].

Prove: Let p be a prime and let a,. .., a, be finitely many integers, p/ a,.
Then the equation a; + a;x +... +a,x" = 0 over Z, has at most n distinct
solutions x in Z,. (Theorem of Lagrange.)

. Which of the following ideals in Z[x] are prime ideals, which are maximal:

(x+1); (2,x); 3,x); (6,x); (x?); (x> —2x? —2x — 3)? (Here (2, x) denotes
the ideal generated by 2 and x.)

Show that (x* + 1) is not a maximal ideal of R[x] and (2, x?) is not a principal
ideal of Z[x].

Find three maximal ideals in R[x]. Also for Z,[x].
Show that R[x, y] is a UFD but not a PID.

x and y are relatively prime in R[x, y]. Show that there are no a, b € R[x, y]
such that 1 = ax + by.

Show that the ideals (x), (x, y), (2, x, y) are prime ideals in Z[x, y], but only
(x, y) is maximal.

Determine all zeros in Zs of 2x*'° + 3x7* +2x°7 + 3x* e Z[x].

Show that f, g € F[x], F afield, have a common zero b, if b is zero of ged(f, g).
Find the common zeros of f =2x*+ x>~ 4x+1and g=x*—1inR.

Let f(x) =1 +x +4x> +2x* + 4x* + 3x% € Z,[x]. Factor f into a product of
irreducible polynomials over Z.

n

(i) Let f(x) =Y ,_, ax'. Explain the following table due to W. G. Horner (in
1819) for the calculation of f(x) = (x — ¢}(b,_;x" ™' +...+ by) + f(c) and
also for determining the value of f at c.

a, a,_; a,_, ... 4y a a,
0 + ¢b,_ +¢b,_ ...+ch +cb + ¢b
Ly n—1 V' n—2 Ly f 2 /) 1 / 0

a, = bn—l bn—Z bn—3 . /bl bO f(C)
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(ii) Generalize Horner’s scheme to obtain the coefficients b,_,, b,_i, . .., bo;
r, 1, of b(x)=2bx' and r(x)=r,+rx in the equation f(x)=
(x* — ax — ¢)b(x) + r(x).

(iii) Use (i) to determine f(4) for f(x) = 2x°® — x> — 9x* + 10x> — 11x +9 over
R.

(iv) Determine the multiplicity of the zero 1 of f(x)=
X =2x*+x>+x*—2x +1overR.

(v) Determine f(~3), f'(=3), f(=3) for f(x) = x* +3x* + 2x + 1 over R by
continued use of (i).

(vi) Use (i) to find f(3) over Zs for f(x) = x*— x> —x + 1.

C. Fields

Rings R which can be embedded in a field F (in symbols R S F) obviously
have to be commutative and integral, since F has these properties and every
subring inherits them. We may assume that R is an integral domain.

1.22 Theorem. For every integral domain # {0} there is a field F with the
Jollowing properties:

(i) RS F.
(i) If RS F', F' a field, then FS F'.

SKETCH OF PROOF (the details are left as an exercise). Let S = R x R¥.
Wedefineon S (a, b) + (¢, d) = (ad + bc, bd) and (a, b) - (¢, d) = (ac, bd),
as well as (a, b) ~ (¢, d) :< ad = bc. One has to check that (S, +,-) is a
ring, ~ is a congruence relation in S and F := S/~ is a field. The map h,
sending r into the equivalence class of (r, 1), is an embedding. If F’ is
another field with an embedding h’: R » F'thenthe map g: F - F’, sending
the equivalence class of (a, b) into h'(a)h’(b)”', is well defined and is an
embedding as well. The equivalence class of (a, b), by the way, is usually
denoted by a/b. O

Thus every integral domain can be embedded in a “minimal” field.
The field of 1.22 is called the quotient field of R (or field of quotients of
R).

1.23 Theorem. Leth: R, > R, be anisomorphism between the integral domains
R, and R,. Then h can be uniquely extended to an isomorphism h between
the quotient fields F, and F, of R, and R,.

PrOOF. h: F, » F,, [(u, b)] > h(u)h(b)™" does the job. O

1.24 Corollary. Any two quotient fields of an integral domain are isomorphic.
O
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Thus we can speak of the quotient field of an integral domain. Applying
this construction to our three standard examples of integral domains yields
the following fields:

1.25 Examples and Definitions. (i) Q is the quotient field of Z.

(ii) Let R be a field. The field of quotients of R[x] is denoted by R(x)
and is called the field of rational functions over R. But the name is
quite misleading: the elements in R(x) are not functions at all. They
consist of fractions p/q with p, g € R[x], g # 0 (in the sense of 1.22).

(iii) If R is a field then the quotient field of R[[x]]is denoted by R(x) and
is called the field of formal Laurent series over R. In an isomorphic

copy, R{x) consists of sequences (a_,, . .., a, 4, . . . ) of elements of R,
0

1.26 Definition. A subset U of a field F is called a subfield of F, in symbols
U = F,if U is a subring of F and U is a field with respect to the operations
in F. If U # F then (U, +, -) is called a proper subfield of (F, +,-), in
symbols U < F. (F, +, -) is called an extension field (or extension) of the
field (U, +, -) if (U, +, -) is a subfield of (F, +, ). A field P is called a prime
field if it has no proper subfield.

The following theorem characterizes all prime fields.

1.27 Theorem. Up to isomorphism, all distinct prime fields are given by Q and
Z,, p prime.

PrOOF. Let P be a prime field and let 1 be its identity. It can be verified
immediately that C = {n1|n € Z} is an integral domain in P. The mapping
Y:Z - C, z+>z1, is an epimorphism of Z onto C. We distinguish between
two cases:

(i) If ker ¢ = {0}, then ¢ is an isomorphism. The quotient field of C is
the smallest field containing C and is isomorphic to the quotient field
of Z, which is Q. Therefore P = Q.

(ii) If ker ¢ # {0} then there is a ke N\{1} with kery = (k). The
homomorphism theorem 1.11(iii) implies Z; = Z/(k) = C. C and Z,
are finite integral domains with more than one element, so they are
fields and k must be a prime. In this case P = C = Z,. O

Let F be an arbitrary field. It is easily verified that the intersection of
all subfields of F is a subfield of F as well as a prime field. Therefore the
intersection P of all subfields of F is called the prime field of F.

1.28 Theorem. Let P be the prime field of the field F. Then

(i) If char F =0 then P = Q.
(ii) If char F=peP then P=12, O
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A field with prime characteristic does not necessarily have to be finite,
as the following example shows:

1.29 Example. The field Z,(x) of all rational functions f/g, f, g € Z2[x],
g # 0, has prime field Z,, i.e. its characteristic is 2, but it has infinitely many
elements. O

We now note that an element r lying in some extension field of a field
F is called a root (or a zero) of p € F[x]if p(r) = 0.

We proceed to prove one of the basic theorems of modern algebra,
Theorem 1.32, which is a result due to L. Kronecker (1821-1891). This
theorem guarantees the existence of an extension containing a zero of an
arbitrary polynomial over a field. The proof of the theorem also suggests a
method of the construction of such an extension. Let F be a field. We
already know that the ideals in F[x] are principal ideals (see 1.16). Let
f € F[x] be a polynomial of positive degree and let (f) denote the principal
ideal generated by f. An important result for the factor ring F[x]/(f) is
that F[x]/(f) is a field if and only if f is irreducible over F (see 1.12 and
1.16).

Suppose f is a monic polynomial of degree k over F. Let g + (f) be an
arbitrary element in F[x]/(f). From the division algorithm (1.15) it follows
that g = hf + r, where deg r < k. Since hf € (f), it follows that g + (f) =
r + (f). Hence each element of F[x]/(f) can be uniquely expressed in the
form

ao+a;x+...+a_ x* '+ (), a; € F. (1)

If we identify F with the subfield {a + (f)|a € F} of F[x]/(f), then
F[x]/(f) can be regarded as a vector space over F.

1.30 Remark. If f is an irreducible polynomial of degree n > 0 over F then
[11, [x], [x%],...,[x"']is a basis for F[x]/(f) over F.

Each element of F[x]/(f) can be uniquely represented in the form

-1

ap+aja+... +a_ a7, a;€ F, where a = x + (f). (2)

Since f + (f) is the zero element of F[x]/(f), we have f(a) =f+(f) =
0+ (f), i.e. @ is a root of f Clearly, a is an element in F[x]/(f) but not
in F. Thus the elements in F[x]/(f) of the form (2) can be regarded so that
@ is a symbol with the property that f(a) = 0.

1.31 Example. Let F be the field Z, ={0,1}; then f=x*+x+1 is an
irreducible polynomial of degree 2 over Z,. Z,[x]/(x* +x +1) is a field
whose elements can be represented in the form a + ba, a, b € Z,, where a
satisfies f(a) =0, ie. a®+a +1=0.
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The product (a + ba)(c + da) of two elements in Z,[x]/(x*> + x + 1) can
be evaluated. ac + (ad + bc)a + bda® = ac + (ad + bc)a + bd(a + 1) =
(ac + bd) + (ad + bc + bd)a. O

This example indicates that calculations in F[x]/(f) and Z, can be
performed in a “similar” way.

1.32 Theorem (Kronecker). Let Fbe a field and let g be an arbitrary polynomial
of positive degree in F[x). Then there is an extension field K of F such that
g has a zero in K.

Proor. If g has a zero in F then the theorem is trivial. If this is not the
case then there is a divisor f of g of degree at least 2, which is irreducible
over F. Let K := F[x]/(f) and consider g as a polynomial over K. Denoting
the element x + (f) of K by « we have f(a) =0, i.e. @ is a zero of f and
therefore also a zero of g. O

We now consider a field which is large enough to contain all zeros of a
given polynomial.

1.33 Definition. A polynomial f € F[x] is said to split in an extension K of
F if f can be expressed as a product of linear factors in K[x]. K is called
a splitting field of f over F if f splits in K, but does not spiit in any proper
subfield of K containing F.

1.34 Corollary. Let F be a field and let g € F[x] be of positive degree. Then
there is an extension K of F such that g splits into linear factors over K.

PROOF. The polynomial g has x — a as a divisor in K,[x], where F =< K.
If g does not split into linear factors over K, then we repeat the construction
of 1.32 and construct extensions K, K, ... until g splits completely into
linear factors over K. O

The following notation will prove useful. Let F be a subfield of a field
M and let A be an arbitrary set of elements in M. Then F(A) denotes the
intersection of all subfields of M, which contain both F and A. F(A) is
called the extension of F which is obtained by adjunction of the elements
of A If A ={a}, a ¢ F, then F({a}) is called a simple extension of F. We
also write F(a) in this case. We have F(A) = (F u A). For F({a,, ..., a,})
we shall write F(a,,..., a,).

1.35 Theorem. Let f € F[x] be of degree n and let K be an extension of F.
Iff =c(x—ay)...(x - a,) in K[x] then F(a,,...,a,) is a splitting field of
fover F. O
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Theorem 1.20 and Corollary 1.33 secure the existence of splitting fields.
The proof of the uniqueness of the splitting field of a polynomial f over a
field F is slightly more complicated and we omit it (see, e.g. FRALEIGH).

1.36 Theorem. For any field F and polynomial f € F[x] of degree =1 all
splitting fields of f over F are isomorphic. g

PROBLEMS

l. Let R={a + b«/Ela, b € Z}. Define operations + and - and show that (R, +, )
is a commutative ring with identity. Determine the quotient field of R in the
field R.

2. Let G denote the set of complex numbers {a + bi|a, b € Z}. With the usual
addition and multiplication of complex numbers G forms the domain of
Gaussian integers. Show that its quotient field is isomorphic to the subring of
C consisting of {p + gi|p, q € Q}.

3. Show that an automorphism of a field maps every element of its prime field
into itself.

*4. Let Q be the quotient field of an integral domain R. Let I be an ideal of R.
Prove or disprove that {ab™'|a € I, b € R\ {0}} is an ideal of Q and every ideal
of Q can be obtained in this way.

*5. Let Q be the quotient field of an integral domain R. Show that any mono-
morphism of R into a field F has a unique extension to a monomorphism of
Q into F.

6. According to 1.31 construct a field of nine elements, given Z;, and f =
x% + x + 2 € Z,[x]. Construct the operation tables for this field.

7. Show that Q((—1 ++/3i)/2) is the splitting field of x* + x? + 1 over Q.
8. Find the splitting field of x? —~ 1 € Q[x], p a prime.

9. Discuss all possible splitting fields of x> + ax” + bx + ¢ over a field F depending
on the polynomial being reducible or irreducible over F.

10. If (i}, ..., 1,) is any permutation of (1,...,n) and F(a,,...,a,) is as in 1.35,
prove that F(a,,...,a,) = F(a;,...,qa,).

*D. Algebraic Extensions

We now introduce special types of extension fields of a given field F.

1.37 Definition. Let K be an extension of a field F. An element a of K is
called algebraic over F, if there is a nonzero polynomial g with coefficients
in F such that g(a) = 0. If « is not algebraic over F then a is said to be
transcendental over F.
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Using this definition of algebraic elements we can divide all extension
fields into two classes:

1.38 Definition. An extension K of a field F is called algebraic if each
element of K is algebraic over F. If K contains at least one element which
is transcendental over F then K is a transcendental extension. The degree
of K over F, in symbols [K : F], is the dimension of K as a vector space
over F.

1.39 Examples. If 8 € K is also an element of F then B is a zero of
x — B € F[x]. Thus any element in F is algebraic over F. The real number

2 is algebraic over Q, since v2 is a zero of x* — 2. It can be shown, though
with considerable difficulty, that 7 and e are transcendental over Q. The
result implies that R is for example, a transcendental extension of Q. O

The following two theorems determine all extensions up to isomorphisms.
We state the first result without proof.

1.40 Theorem. Let K be an extension of F, and let a € K be transcendental
over F. Then the extension F(a) is isomorphic to the field F(x) of rational
functions in x. O

For simplicity, we shall use Fla]={a,+a,a +... + a,a"|neNy, a; €
F.

1.41 Theorem. Let K be an extension of F, and let o € K be algebraic over
F. Then:

(i) F(a)= F[a]= F[x]/(f), where f is a uniquely determined, monic,
irreducible polynomial in F[x] with zero a in K.
(ii) « is a zero of a polynomial g € F[x] if and only if g is divisible by f.
(iii) If fin (i) is of degree n then 1, a, ..., a" " is a basis of F(a) over F.
We have [F(a): F]=n and each element of F(a) can be uniquely
expressed as ap + aya +... +a,_a"" ', a; € F.

Proor. (i) We consider ¢: F[x]—> F[a] defined by g+~ g(a). Then
F[x]/ker ¢ = F[a]. Since « is algebraic over F, the kernel of ¢ is not zero
and not F[x], i.e. it is a proper ideal. Ker ¢ is a principal ideal, say
Ker ¢ = (f), where f is irreducible. We may assume f is monic, since F is
a field. The uniqueness of f is clear. By the irreducibility of f, (f) is maximal
and F[x]/(f) is a field. Consequently F[a] is a field and we have F[a] =
F(a), since F(a) is the smallest field which contains F[a].

(ii) This follows from Ker ¢ = (f).

(iii) Thisisa consequence of [1],[x],...,[x" ']being a basis of F[x]/(f)
over F. O

The polynomial f in Theorem 1.41(i) plays an important role in field
extensions.
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1.42 Definition. Let « € L be algebraic over a field F. The unique, monic,
irreducible polynomial f € F[x] with a as a zero is called the minimal
polynomial of « over F. The degree of a over F is defined as the degree

of f.

1.43 Example. The minimal polynomial of < 2¢ Q(\ﬁ) over Qis x> — 2. We

have Q(\ﬁ) = Q[«ﬁ] and [Q(xﬁ):@] = 3. The elements 1, 3/5, 4 form a
basis of Q(¢2) over Q such that any element of @(J2) can be uniquely
expressed in the form a, + a1\3/2 + a2«74, a; € Q. d

1.44 Theorem. An element a in an extension K of F is algebraic over F if and
only if it is a zero of an irreducible polynomial f € F[x] of degree = 1.

Proor. This follows from the fact that « is a zero of f if and only if it is
a zero of an irreducible factor of f. O

Next we describe a relationship between extensions K of a field F and
vector spaces over F. Let K be an extension of F. Then K can be regarded
as a vector space over F by considering the additive group (F, +) together
with scalar multiplication by elements in F.

1.45 Definition. Let F < K. K is called a finite extension of F if dim K =:
[K : F] is finite. Otherwise K is called an infinite extension of F.[K:F]is
the degree of K over F. The degree of an element @ € K over Fis[F(a): F].

If a,...,a, is a basis of K over F then F(a,...,a,) =
{cia, +... + c,a,|c; € F}. If K is a finite extension of F of degree n then
there is a subset {a,,..., a,} of K such that K = F(a,,..., a,).

1.46 Theorem. Any finite extension K of F is an algebraic extension.

Proor. If n=[K:F], then any set of n +1 elements in K is linearly
dependent. Let « € K. Then 1, o, @°,...,a" in K are linearly dependent
over F, i.e. there are ¢; € F not all zero, such that ¢, + c;a +... + c,a™ = 0.
Thus «a is a zero of the polynomial g = ¢, +... + ¢,x" € F[x] and therefore
it is algebraic. O

We mention briefly that there do exist algebraic extensions of a field
which are not finite, although we restrict ourselves to finite extensions in
Theorem 1.46. An important example of an infinite algebraic extension is
the field of all algebraic numbers, which consists of all algebraic elements
over Q. For extensions it can be shown that if a field L is algebraic over K
and K is algebraic over F then L is algebraic over F.

In a certain sense, the following theorem represents a generalization of
the Theorem of Lagrange to the case of finite extensions.
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1.47 Theorem. Let L be a finite extension of K and K be a finite extension of
F. Then [L: K] K:F]=[L:F]

PROOF. Let {a;|i € I} be a basis of L over K and {B; |j € J} be a basis of
K over F. One may verify that the |I| - |J| elements {e;8;|i € I andj e J}
form a basis of L over F. U

1.48 Corollary. Let K be a finite extension of F.

(i) The degree of an element of K over F divides [K : F].
(ii) An element in K generates the vector space K over F if and only if its
degree over F is [K : F].
(iii) If [K:F]=2" and fis an irreducible polynomial over F of degree 3
then f is irreducible over K. 0

Part (iii) of this corollary enables us to give proofs of the impossibility
of certain classical Greek construction problems, i.e. constructions with the
use of ruler and compass only. We mention the problem of doubling the
cube. Given a cube of volume 1 then the construction of a cube of twice
this volume makes it necessary to solve x®—2 =0. This polynomial is
irreducible over Q. In general, equations of circles are of degree 2 and
equations of lines are of degree 1, so that their intersection leads to equations
of degree 2™. This implies that Greek construction methods lead to fields
of degree 2™ over Q. The irreducibility of x* — 2 over Q implies that it is
impossible to construct a side of a cube with twice the volume of a given
cube by using ruler and compass alone.

The problem of trisecting an angle is similar. It is equivalent to determin-
ing the cosine of one third of a given angle. By analytic geometry this cosine
¢ must satisfy the equation 4x> — 3x — ¢ = 0. In general, this is an irreducible
polynomial over @(c), so this implies the impossibility of trisecting an angle
using only ruler and compass constructions.

1.49 Example. Q(\/E, J3) is a field of degree 4 over Q. Since (2 ++3) -
9(«/5 +~/§) = 2«/5, we see that v2 is an element of Q(«/5+\/—3:l. Since
J3 i(s/i +~/—3-) —x/E, we have V3e D(\/E +~/—3-), and so Q(~/2,\/§) =
QW2 +3). |

This example shows that at least in special cases it is possible to regard
an algebraic extension F(a,,..., @,) of F as a simple algebraic extension
F(a) for suitable a.

An irreducible polynomial f in F[x] is called separable if there are no
multiple zeros of f in its splitting field. An arbitrary polynomial in F[x] is
called separable if each of its irreducible factors is separable. An algebraic
element « over F is called separable if its minimal polynomial is separable
over F.



140 Chapter 3. Finite Fields and Polynomials

1.50 Theorem. Let F be a field and let «\, . . ., a, be algebraic and separable
over F. Then there is an element a in F(a,,..., a,) such that F(a) =
F(al,...,a,,). D

This theorem is useful in the study of field extensions since simple
extensions are more easily handled than multiple extensions. It is therefore
important to be able to determine the separability or nonseparability of a
polynomial. Here we need the concept of the formal derivative. Let
D: F[x] - F[x] be defined by

D:f=a,+ax+...tax">f=a; +...+nax""".
We may verify immediately that

(af +bg)' = af' + by,

i.e. D is an F-endomorphism of the vector space F[x] with kernel F. D is
called the differential operator and f' is called the derivative of f. We now
state, without proof, important criteria for separability of an irreducible
polynomial over F.

1.51 Theorem. A polynomial f over F is separable if and only if gcd(f, f) = 1.
O

1.52 Theorem. An irreducible polynomial f over F is separable if and only if
its derivative is nonzero. O

A field F is called algebraically closed if any nonconstant polynomial in
F[x] splits into linear factors in F[x]. A field F is called an algebraic closure
of a field F, if F is algebraically closed and is an algebraic extension of F.
We note that this is equivalent to saying that F does not have any algebraic
extension which properly contains F. It is easy to see that a polynomial of
degree n > 0 in F[x], F algebraically closed, can be expressed as product
of n linear monic polynomials. In this context we repeat an important
theorem (cf. 1.14) for which there are more than one hundred proofs, the
first of which was given by C. F. Gauss in 1799.

1.53 Theorem (Fundamental Theorem of Algebra). The field of complex
numbers is algebraically closed. O

PROBLEMS

1. Describe the smallest subfield of the real numbers containing V2 and V3. Find
three proper subfields of this field.

2. Show that the given number a € C is algebraic over Q by finding f(x) € Q[x]



§1. Rings and Fields 141

*4,

*5.

10.

*11.

12.

13.

14.

*15.

16.

17.
*18.

*19.

20.

such that f(a) = 0, for
(i) a =2 ++3;
(i) @ =V1+3/2.

. Does there exist a polynomial with rational coefficients of degree less than 4

such that v2 ++/3 is a root?

Let L be a simple algebraic extension of a field F. Prove that H is also a simple
algebraic extension of F if L> H o F.

Let L be a finite extension of a field F. Prove that L is a simple extension if
and only if there are only finitely many fields H such that L > H > F.

. Let p, i = 1,2, 3, be distinct primes. Determine the degree of Q(\/}Tl, \/E, \/;3)

over Q.

. Let F be a field and b € F, b # 0, be a zero of f(x) =¥, axx' € F[x]. Show

that 1/b is a zero of g(x) =Y.7_, a,.x".

. Let f(x) =Y, ax' € Z[x], and let f(0) and f(1) be odd. Show that f does

not have integer zeros.

. Show that f(x)=x*+x+1eQ[x] is irreducible over @ and determine the

multiplicative inverse of x* + x + 1 + (f(x)) in the field Q[x]/(f(x)).

Find necessary and sufficient conditions on a, b € Q so that the splitting field
of x* + ax + b has degree exactly 3 over Q.

Let L be an extension of F, let f € F[x] and let ¢ be an automorphism of L
that maps every element of F into itself. Prove that ¢ must map a root of f
in L into a root of f in L.

Determine a primitive element « of the splitting field of x> — 7 € Q[x] over @
and determine its minimal polynomial.

Let K = F(x) and L= F(x*(x +1)7'). Show that K is a simple algebraic
extension of L and determine [K: L].

Let G be the Gaussian integral domain {a + bi|a, b € Z}. Show that G/(7) is
a finite field, determine its prime field P and an element ¢t € G such that
G = P(t). Also determine the minimal polynomial of ¢ over P.

Show that the splitting field of x" — a € @Q[x] can be obtained by adjoining a
primitive nth root of unity and a root of x" — a.

Is it possible to divide the angle «/3 into five equal parts using ruler and
compass constructions?

Show that the regular 9-gon cannot be constructed by ruler and compass.

Prove: An algebraic element a over a field F of prime characteristic p is
separable if and only if F(a?) = F(a).

If F is a field of prime characteristic p, prove that f € F[x] has a multiple root
only if it is of the form f(x) = g(x?) for a suitable polynomial g over F.

Prove that x?" — x over a field of prime characteristic has no multiple roots.
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ExERCISES (Solutions in Chapter 8, p. 446)

1. How many possibilities are there to define the multiplication operations on
R = {0, 1, 2, 3} to make R into a ring, if addition is defined as mod 4 addition?

*2. Prove that a ring R # {0} is a skew-field if and only if for every nonzero a € R
there is an x € R such that axa = a.

*3. Show that if a finite ring R has a nonzero element which is not a zero divisor
then R has an identity.

4. Give an example of a ring R with identity 1 and a subring R’ of R with identity
1’ such that 1 # 1"

5. Let R be a finite ring of characteristic p, a prime. Show that the order of R is
a power of p.

6. Show that Z is a PID.

*7. Aring R with more than one element is called simple if R has no ideals except
{0} and R itself. Prove that R is a field if and only if R is a simple commutative
ring with identity.

8. Prove that an ideal I # R of a ring R is maximal if and only if R/ is simple.

*9. Let R be a ring with identity and let I = R. Prove that I is contained in a
maximal ideal.

*10. Show that the ideals of R[[x]], R a field, are precisely the members of the chain
R[[x]1= (1) 2 (x) 2 (x) >...2(0).
Hence R[[x]] is a PID with exactly one maximal ideal.
*11. Prove Theorem 1.16.
*12. Prove Theorem 1.17.
*13. Prove the Unique Factorization Theorem 1.18.

14. Prove Theorem 1.19.
*15. Prove Theorem 1.20.
16. Show that if I is an ideal of a ring R then I[x] is an ideal of R[x].

17. Determine all roots and their multiplicity of the polynomial x° + 3x° + x* +
x* +4x* +3x +2 over Zs.

18. Let f(x) =3 +4x +5x* +6x*> + x® and g(x) = | + x + x* be two polynomials
over Z,,. Is f divisible by g? Determine f(3) + g(3) and f + g(3).

19. Let f(x) +1 +x + x> +x®and g(x) = 1 + x + x> + x* be polynomials over R.
If R =R, is f divisible by g? If R = Z,, is f divisible by g?

*20. Show that an element « in an extension K of a field F is transcendental
(algebraic) over F, if the map ¢: F[x] > F(a), f+ f(a) is an isomorphism
(not an isomorphism).
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21.

22.

23.
24.
25.

26.

27.

28.

29.

30.

31.

32.

*33.

34.

35.

Show that f = x> + x + 1 is irreducible over Z,. Determine the elements of the
field Z,[x}/(f) and show that this field is the splitting field of f over Z,.

Show that & = 2 +i is of degree 4 over Q and of degree 2 over R. Determine
the minimal polynomial of « in both cases.

Determine the multiplicative inverse of 1 + 2 +¥4in 0(9/5).

Describe the elements of Z,[x]/(x).

(i) Show that x* + 1 is irreducible in Z,[x].
(ii) Let « be a zero of x>+ 1 in an extension of Z,. Give the addition and
multiplication tables for the nine elements of Z;(a).

Find the degree and a basis for each of the given field extensions.

@) Q(«/g,J3,«/5) over Q.
(i) Q(2,v6) over Q(3).
(iii) Q(W2,¥2) overQ.

(iv) QW2 +3) over Q(+/3).

(i) Find the splitting field of (x* —3)(x* + 1) over Q.

(ii) Find the splitting field of (x? — 2x — 2)(x* + 1) over Q.
(iii) Find the splitting fields of x2 — 3 and x* — 2x — 2 over Q.
(iv) Find the splitting field of x* + x + 1 over Z,.

(v) Determine the splitting field of x* + x + 2 over Q.

Show that f = x® + x + 1 is irreducible over Zs. Let @ = x + (f) be in Z5[x]/(f)
and let B8 be another zero of £ Determine an isomorphism from Zs(a) onto

Zs(B)-

Let a be a zero of x> +x + 1 and let B be a zero of x* + 4. Determine an
element y such that Z(y) = Zs(a, B).

Show that (x" — 1)/(x — 1) is a polynomial over Q for all positive integers n.
Also determine precisely the set of values of n for which it is irreducible.

Deduce algebraically that by repeated bisection it is possible to divide an
arbitrary angle into four equal parts. (Use a relationship between cos 46 and
cos 6.)

(a) Can the cube be “trebled”?
(b) Can the cube be “quadrupled”?

A regular n-gon is constructible for n = 3 if and only if the angle 27/n is
constructible. 277/n is constructible if and only if a line segment of length
cos(2#/ n) is constructible. Prove: If the regular n-gon is constructible and if
the odd prime p divides n, then p is of the form 22* + 1.

Given a segment s, show that it is impossible to construct segments m and n
such that s:m =m:n =n:2s.

Determine whether the following polynomial has multiple roots:

x* —5x% +6x% +4x — 8 € Q[x].
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§2. Finite Fields

A field with m elements (m € N) is called a finite field of order m. One of
the main aims of this section is to show that for any prime number p and
positive integer n there is (up to isomorphism) exactly one finite field of
order p". This field is the splitting field of x*" — x over Z,. We know from
§1 that a finite field F must be of prime characteristic p and that the prime
field of F is isomorphic to Z,. We shall identify the prime field of a finite
field with Z,, i.e. we shall regard any field of prime characteristic p as
extension field of the field Z, of the integers mod p.

2.1 Theorem. Let F be a finite field of characteristic p. Then F contains p™
elements, where n = [F:Z,).

Proor. F, considered as a vector space over its prime field Z,, contains a
finite basis of n elements. Each element of F can be expressed as a unique
linear combination of the n basis elements with coefficients in Z,. Therefore
there are p" elements in F. O

For the proof of the following theorem we recall two results from an
introductory course on group theory. Let G be a finite group of order |G|,
and let g be an element of G. Then g'°' = 1. We also require the “Funda-
mental Theorem on Finite Abelian Groups”, which states that every finite
abelian group is the direct product of cyclic groups. For proofs see e.g.
HERSTEIN or FRALEIGH.

2.2. Theorem. Let F be a finite field with p" elements.

(i) The multiplicative group of the nonzero elements of F is cyclic and of order
p"— 1

(ii) All elements a of F satisfy a”" — a = 0.

Proor. We first prove the theorem by using the fundamental theorem for
finite abelian groups. The multiplicative group G of nonzero elements of
F is a group of order p" ~ 1. G is a direct product of the cyclic subgroups
U,..., U, where |Uj| divides |U,,,|. This implies that the order of each
element in G divides the order r of U,,. For any element a in G we therefore
have a” — 1 = 0. The polynomial x" — 1 over F can have at most r zeros in
F, hence |G| = p" — 1 < r. Since |U,,| divides |G|, we have r < p" — 1, which
proves (i). Since U, is of order p" — 1, we have G = U,,. Part (ii) follows
from the fact that for any nonzero element a we have a* ' —1=0 as
mentioned above. O

An elementary proof of Theorem 2.2(i), which does not rely on the
fundamental theorem for finite abelian groups, goes as follows. Let p" = q.
We may assume q = 3. Let h = py'p% ... py be the prime factor decomposi-
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tion of h = g — 1, the order of the group F\{0}. For every i, | < i = m, the
polynomial x"/» — 1 has at most h/p; roots in F. Since h/p; < h, it follows
that there are nonzero elements in F which are not roots of this polynomial.
Let a; be such an element and set b; = a’?". We have b?" = 1, hence the
order b; is a divisor of p; and is therefore of the form p;: with 0 < s; < r.
On the other hand,

bP = gh/h

and so the order of b; is pj*. We claim that the element b = b,b, ... b,, has
order h. Suppose, on the contrary, that the order of b is a proper divisor
of h and is therefore a divisor of at least one of the m integers h/p;
1 =i=m, say of h/p,. Then we have

1= b"P = bl/Pph/e bhP,

Now if 2 <i=< m, then p} divides h/p,, and hence b!’/?* = 1. Therefore
b/P1 = 1. This implies that the order of b, must divide h/ P1, Which is
impossible since the order of b, is pi'. Thus F\{0} is a cyclic group with
generator b. O

In the special case F = Z, we have elements a € Z,, such that the powers
a,a’ ..., a" " represent all nonzero elements of Z,. Such an element a is
called a primitive root modulo p. A generator of the cyclic group of a finite
field F is called a primitive element.

2.3 Theorem. Let F be a finite field and let a,, ..., o) be algebraic over F.
Then F(a,,...,a;) = F(a) for some a in F(a,,..., a). O

It can be shown that the extension field F(a,, ..., a;) is finite over F,
and that it is an algebraic extension of F. Therefore it is a finite field with
cyclic multiplicative group. If « is a generating element of this group then
the theorem follows.

2.4 Corollary. Let F be a finite field of characteristic p and let [F:Z,] = n.
Then there is an element « in F such that « is algebraic of degree n over Z,
and F = 7,(a). 0

Theorem 2.2(ii) ensures that any finite field F consists of the roots of
the polynomial x?" — x for some n where p = char F. The following theorem
describes all finite fields and shows that there is a finite field for any prime
power p".

2.5 Theorem. (i) Any finite field is of order p” where p is a prime and n is a
positive integer.
(ii) For any prime p and any n € N there is a field of order p".
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(iii) Any field of order p" is (up to isomorphism) the splitting field of x*" — x €
Z,[x].
(iv) Any two fields of order p" are isomorphic.

Prookr. (i) follows from Theorem 2.1. Let K be the splitting field of
x?" — x = f over Z, and let @ € K be a root of f so that f = (x — a)*g in
K[x], where a is not a root of g. Then f' = —1 is divisible by (x — a)*™!
and hence k — 1 = 0. This means that « is simple. All roots of f in K are
distinct and f has p" roots in K. It is easily verified that sums, products
and inverses of roots of f in K are also roots of f. Thus the roots of f form
a field with p" elements, which must be the splitting field of K of f over
Z,. This implies [K:Z,] = n, which proves (ii) and (iii). The uniqueness
(iv) follows from the uniqueness of the splitting field (see 1.36). O

2.6 Corollary. For any positive integer n there is an irreducible polynomial of
degree n in Z,[x]. The finite field of p" elements is the splitting field of an
irreducible polynomial in Z ,[x] of degree n. O

Theorem 2.5 enables us to speak of the finite field with p" elements. This
field is also called the Galois field, in honour of Evariste Galois (1811-1832)
and is denoted by GF(p") or F,~ The multiplicative group of F,» is denoted
by F}+. The prime field F, is isomorphic to Z,.

The results obtained so far make it possible to determine the elements
of a finite field. We know that F,» is a vector space of dimension n over F,.
Moreover, it is a simple extension of the prime field F,, say F,» = F,(a),
and any n +1 elements of F, are linearly dependent, so that a, + a,a +
...+ a,a" = 0. This means that « is a root of a polynomial in F,(a). Let
f be the minimal polynomial of «a, then F,» =F,(a) =F,[x]/(f). In order
to obtain the elements of [, explicitly, we determine an irreducible monic
polynomial of degree n over F, and form F,[x]/(f). More generally, to
obtain F,~, g = p”, we find an irreducible, monic polynomial g of degree
m over F, and form F,[x]/(g), which is then isomorphic to F .

2.7 Example. We determine the elements of F,:. If we regard F, as a simple
extension of degree 3 of the prime field F, then this extension is obtained
by adjoining to F, a root of an irreducible cubic polynomial over F,. It is
easily verified that x*> + x + 1 and x*> + x* + 1 are irreducible over F,. There-
fore Fp» = F,[x]/(x* + x + 1) and also F» = F,[x]/(x* + x> +1). Let a be a
root of f = x*> + x + 1, then 1, a, o® form a basis of F* over F,. The elements
of F,: are of the form

a +ba +ca® foralla, b, ceF,

We can also use g = x> + x* + 1 to determine the elements of F,>. Let 8 be
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aroot of g, so B>+ B>+ 1 = 0. It can be easily verified that 8 + 1 is a root
of fin F;[x]/(g). The two fields Fo[x]/(f) and F,[x]/(g) are splitting fields
of x* — x and are thus isomorphic. Therefore there is an isomorphism ¢
such that y(a) = B +1 and ¢ restricted to F, is the identity mapping. The
elements 1,8 +1,(B8 +1)* form a basis of F,[x]/(g) over F,. Thus the
isomorphism ¢ is given by

Yla+ba+ca®)=a+b(B+1)+c(B+1)* witha b, ceF,

The multiplication table of the multiplicative group F,[x]/(x*> + x* +
1)\{0} is as follows (B is as above)

1 B B +1 B? B> +p B2+1 B2+B+1
1 1 B B+1 B? B>+p B2+1 B2+B+1
B B B? B2 +p B2 +1 1 B2+B+1 B+1
B+1 B+1 B2 +B B?+1 1 Br+B+1 B B?
B? B? BZ+1 1 B+pB+1 B B+1 B>+p
B*+p B+ 1 B*+pB+1 B B +1 B? B2 +1
B> +1 B*+1 B2+B+1 B B+1 B? B*+B 1
BZ+B+1|B2+B+1 B+1 B? B2+pB B> +1 1 g O

If F is a subfield of order p™ in F,~ then F is the splitting field of x”" — x
in F,» over F,. We shall describe all subfields of a finite field. The following
lemma can be proved as an exercise.

2.8 Lemma. x™ — 1 divides x" — 1 over a field F if and only if m divides n.

2.9 Theorem. Let p be a prime and let m, n be natural numbers.

(i) If F,m is a subfield of F,» then m|n.
(ii) Ifm|nthenF, =< F,» Thereis exactly one subfield of F ,» with p™ elements.

PrOOF. (i) Theorem 1.47 implies
[For:Fp] = [Fpr:Fpm][Fpm:F L.

Since the term on the left-hand side is n and the second factor on the
right-hand side is m, we have m|n.

(ii) Now m|n implies p™ — 1|p" — 1, thus (by 2.8) x*" ' — 1|x*""! -1
and x*" — x|x?" — x. The roots of x”" — x form a subfield of F,» of order
p™, which is isomorphic to F,~ There can not be another subfield with p™
elements, because otherwise there would be more than p™ roots of x”" — x
in [Fpn. g
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2.10 Example. We draw a diagram of all subfields of F:.

F2|2
nfzb n:24
|F23 ﬂ:22
F,
Figure 3.1

a

Because of Theorem 2.9 and the property m!|n! for positive integers
m < n, we have an ascending chain of fields

F,cFrclFpca....

We define F,= as (_, F,~ and note that F,~ is a field, which contains F,~ as
a subfield for any positive integer n. Each element in F,~ is of finite
multiplicative order, but F,= itself is infinite. The field F,~ is the algebraic
closure of F,.

Of importance in field theory is the set of automorphisms of an extension
K of F which fix the elements of F. It can be shown that this set G forms
a group under composition of mappings. G is called the Galois group over
F. In the case of automomorphisms of finite fields F,-, all elements of F
remain fixed. Thus G consists of all automorphisms of F,~. Let g = p".

p

2.11 Definition. The mapping 6:F, > F,, a > a”, is called the Frobenius
automorphism of

It can be verified that € is an automorphism. If a is a generating element
of F¥ of order g — 1 then 6"(a) =a” =a. For i=2,...,n—1 we have
6'(a) = a” # a;therefore 0 is an automorphism of order n. We state without
proof:

2.12 Theorem. The group G of automorphisms of F, is cyclic of order n. G
consists of the elements 0, 0% ...,0"" and 6" = ., where . is the identity
mapping. O

Finally, we consider a generalization of the well-known concept of
complex roots of unity. In C the nth roots of unity are z, = ™" k =
0,1,..., n — 1. Geometrically they can be represented by the n vertices of
a regular polygon in the unit circle in the complex plane. All z, with
(k, n) = 1 are generators. They are again called primitive nth roots of unity.
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These complex numbers z, form a multiplicative group of order n, which
is cyclic with generator z, = ¢*™/". We define for an arbitrary field F:

2.13 Definition. Let F be a field. A root of x" — 1 in F[x] is called an nth
root of unity. The order of an nth root « of unity is the least positive integer
such that «™ = 1. An nth root of unity of order n is called primitive. The
splitting field S, of x" — 1 € F[x] is called the associated cyclotomic field.

2.14 Theorem. Let n be a positive integer and let F be a field whose characteristic
does not divide n.

(i) There is a finite extension K of F which contains a primitive nth root of
unity.

(ii) If @ is a primitive nth root of unity then F(a) is the splitting field of
f=x"—1 over F.

(iii) x" — 1 has exactly n distinct roots in F(a). These roots form a cyclic
group. The order of an nth root a of unity is just the order of « in this
group. The primitive nth roots of unity in F(«) are precisely the generators
of this group. There are ¢(n) primitive nth roots of unity, which can be
obtained from one root by raising it to the powers k < n, gcd(k, n) = 1.

Proor. The proofs of (i) and (ii) are similar to that of 2.5 and are omitted.
We show that the set of nth roots of unity is a cyclic group and leave the
rest of (iii) as an exercise. Let char F = p. Then the extension K of F
contains the splitting field S, of x" — 1 over F,. S, is finite and has a cyclic
multiplicative group. The roots «, ..., a, of x" — 1 in S, form a subgroup
S of G, which is cyclic. a is a generator of S if and only if it is of order n,
so that indeed « is a primitive nth root of unity. The case where char F = 0
is treated separately. d

In factoring x" — 1 into irreducible factors, the so-called cyclotomic
polynomials are useful.

2.15 Definition. The polynomial Q, = (x — a;) ... (X — a,,)) is called the
nth cyclotomic polynomial over a field F, if «a,,..., ay,) are the ¢(n)
primitive nth roots of unity.

Let a be a primitive nth root of unity. Then it follows from 2.14 that
Q, =[I (x — a"), where the product is formed over all i with gcd (i, n) = 1.
The polynomial Q, is of degree ¢(n). Let n = kd so that a* is of order d
and is a primitive dth root of unity. The dth cyclotomic polynomial is of
the form Qu = [, q¢a)=1 (x — a™).

Any nth root of unity is a primitive dth root of unity for exactly one d.
Therefore we can group the nth roots of unity together and obtain

2.16 Theorem. x" — 1 =[], Qu
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2.17 Theorem. Let p be a prime number and m a positive integer. Then

m—1

Q= 1+x""" +.. +xlP70r"
Proor. Theorem 2.16 shows
xP" —1 xP" 1
me = = pm—l
QQ,...Qm x -1
which yields the result. O

The decomposition of x" — 1 in 2.16 does not necessarily give irreducible
factors. It is called the cyclotomic decomposition of x™ — 1. Using the so-called
Mobius inversion formula we can derive a formula for cyclotomic poly-
nomials.

2.18 Definition. The mapping u:N - {0, 1, —1}, defined by

u(l) =1,
w(p,...p) = (-1)" if p; are distinct primes,
w(in)=0 if p?|n for some prime p,

is called the Mobius function or w-function.

There is a very simple and useful property of the u-function, namely

{1 ifn=1,

LD=10 itns,

d|n

To verify this, for n > 1, we have to take into account only those positive
divisors d of n for which u(d) # 0, i.e. for which d = 1 or d is a product
of distinct primes. Thus, if p,, p,, . .., px are the distinct prime divisors of
n, we get

Lopld)=p)+ Y ulp)+ X w(pip,) +... +u(pip2...pi)

d|n I=ij<i;=k

k k 2 k k _ 1))k =
e (Ben s (Bevre (v -ascnr-o

The case n =1 is trivial.

2.19 Theorem (Mobius Inversion Formula). (i) (Additive Form.) Let f:N >
(A, +) and g:N > (A, +) be mappings from N into an additive abelian
group A; then

g =X )& fn)= T w(2)s(@.

(i) (Multiplicative Form.) Let f:N - (A, -) and g:N~> (A, -) be mappings
from N into a multiplicative abelian group A; then

g(n) = {LI fld)& f(n) = dfll g(d)= /.
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Proor. We show the additive form of the inversion formula. Assuming
g(n) =%, f(d) we get

2 u(5)s(@ = 2 u@g(5) = 2 w@) $ fO=1 3 wd)fo

din d|n c|ln/d c|ln din/c

= %f(C) dlZ/ u(d) = f(n).

The converse is derived in a similar calculation. The multiplicative form
follows from the additive form by replacing sums with products and products
with powers. O

2.20 Corollary.
Q= T (x* = AV = ] (x4 = 1)@, 0

dln d|n

It can be verified that all cyclotomic polynomials over Q have integer
coefficients, while in the case of polynomials over Z,, the coefficients are
to be taken mod p. Cyclotomic polynomials are irreducible over Q, but not
necessarily over Z,,. A curious property of Q, is that the first 104 cyclotomic
polynomials have coefficients in {0, 1, —1} only. In Qs we have 2 as one
of the coefficients.

2.21 Examples.

n Q.

1 x—1

2 x+1

3 xX+x+1

4 x2+1

5 X+ +Exr+x+1

6 x2—x+1

7 X+t +Hx+x+1

8 x*+1

9 x+x3+1

10 x=-xP+xt-x+1

11 X0+ + xS+ +1
12 xP=x2+1

13 2+ x4+ x0T+ x4+ xR X+
14 - +xt - +xt-x+1

15 - +x*—x*+xP-x+1

O

It follows from 2.3 and 2.14 that the cyclotomic field S, can be constructed
as a simple extension of Z, by using a polynomial which divides Q,. The
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finite field F,~ is the cyclotomic field of the (p" — 1)th roots of unity. In F,»
we have
Pl -1 = [ Qa
dip"—-1

In general the polynomial Q; is not irreducible, but has as roots all elements
of order d in F,~ An element of order d in an extension of [, has a minimal
polynomial of degree k over F,, where k is the smallest integer such that
d|p* — 1. since there are ¢(d) elements of order d, we have ¢(d)/k irreduc-
ible polynomials of degree k over F, with this property. The product of
these polynomials is equal to Q.

2.22 Example. We want to factorize x'* — 1 over F,. First we consider x'° — 1
as a product of cylotomic polynomials, namely

x®=1=Q5Q5Q;Q,,
where
Q =x+1,
Qs=x*+x+1,
Qs=x*+x*+x>+x+1,
Qs=x"—x"+x-x*+x>—x+1

Q., Q; and Q; are irreducible over F,. Since 15 divides 2* — 1 and ¢(15) = 8,
we conclude that Qs is a product of irreducible polynomials of degree 4
over [F,.

Qis=x*+x+ D +x>+1). 0

The procedure indicated in this example is useful for determining all
elements of finite fields.

2.23 Example. We want to describe the elements of Fs2. This is the eighth
cyclotomic field. We determine Qg and factorize it over [,

QG=x*+1=*+x-1D*-x-1).

A root of x> + x — 1 is a primitive eighth root of unity over F;. Let ¢ be such
aroot, so {> +{ — 1 = 0. Now all nonzero elements of F;2 can be represented
in the form ¢’ 1=i=8, so F2=1{0,¢ % %040, 85 0, %) We may
represent the elements of F;2 also by using the approach of Example 2.7.
First we choose any irreducible polynomial of degree 2 over F5, say x> + 1 =
0. Let @ be a root of this polynomial, so a® + 1 = 0 in F;2. Then the nine
elements of F,2 can be represented in the form F;: = {a + ba|a, b € F;}. In
order to establish a connection between this representation and the one
above we note that { = 1 + a is a root of x* + x — 1. The nonzero elements
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of F52 can be represented in a table, called index table or table of discrete
logarithm:

l1+a
2a
1+2a
2+ 2a

24+a

0O 1 N L B W N —

More generally if F, can be represented as {£'|0= i< q— 1} U {0} then
the unique i is called the index or discrete logarithm of a if any a € F, can
be written as ¢’ for a primitive root ¢ in F,. The discrete logarithm of a is
denoted as i = ind (a) if a = {". It satisfies the following basic rules:

ind,(ab) = ind,(a) +ind;(b) (mod g — 1),
ind,(ab™") = ind,(a) — ind,(b) (mod g — 1).

The inverse function of the discrete logarithm is the antilogarithm that maps
i onto {'.

PROBLEMS
1. Define the operations + and - on Z?2 as follows
(ay, by) +(a,, by) = (a, + a,, b, + b,),
(ay, by) - (a,, b;) = (aya, — byby, a,b, + a,b)).
Prove that (Z3, +, ) is a finite field F 2 if and only if p = 3 (mod 4).

2. Let @;, i=0,1,...,7, be the eight elements of F,:, defined by the irreducible
polynomial x*> + x + 1 over F,. Find the operation tables for addition and
multiplication of elements of F,:.

3. Show each element of a finite field is the sum of two squares.

*4. Prove: If x> + ax + b is irreducible over a finite field F then —4a® —27b%is a
square in F.

*5. The map x » x* is never an automorphism of the additive group of F,», n > 1.
For which p is the map x - x” an automorphism of the multiplicative group
of F,s?

6. Let a, b be elements of F,», n odd. Prove that a> + ab + b = Oimpliesa = b = 0.
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*7.

*10.

1.

12.
13.
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Let a,b be elements of F,~. Prove or disprove if F,(a) nF,(b) =F, then
F,(a, b) =F,(a + b).

. Prove that every element of [, is the kth power of some element of F, if and

only if ged(k, g — 1) = 1.

. Let a be a primitive element of F . The Zech’s logarithm Z is a function which

is defined on the integers, for 0=<n=g—1, in such a way that a“™ =a" +1.
This can be used to add elements o' and o’ in F, by using the equation
a' + o’ = o/**"7), Determine the Zech logarithm in F,« and evaluate o> + o
and also a* + a'3, where a* +a +1 =0.

Let [, be of characteristic p. Prove that there exists exactly one pth root for
each element of F,.

For the cyclotomic polynomial Q,(x) prove:
(i) Q.(0)=1 ifn=2;
0 ifn=1,
(ii) Q,(1) =<p if nis a power of the prime p,
1 if n has at least two distinct prime factors.

Find the index table (or discrete logarithms) for a finite field with 27 elements.

Represent all elements of F,5 as linear combinations of basis elements over Fs.
Then find a primitive element B of F,s and determine for each element a of
F%; the least nonnegative integer n such that « = 8"

Exercises (Solutions in Chapter 8, p. 451)

1.
2.

*4.

Determine all elements of F .

The polynomials x* — x + 1 and x* — x — 1 are irreducible over F;. Determine
the isomorphism between their respective splitting fields over Fs.

. Prove that every mapping f:F, - F, can be expressed uniquely as a polynomial

function p of degree g — 1 of the form

p(B) = EF fa)1-(B-a)"), PBeF,
This is called the Lagrange Interpolation Formula for finite fields.
Conversely, if R is a finite commutative ring such that any function from
R into itself can be represented as a polynomial function, R is a finite field.

Prove:

for any positive integer m.

3 am=

ack,

0 otherwise

{—1 if (g — 1)|m

In particular ¥ a=0forpelP, p+#2.

aeZ,

. For a e F;» = F and K =F,, the trace Trg,x(a) of a over K is defined by

m-—1

Trrk(a)=a+a?+... +a?
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Prove:
() Tre/x(@ + B) = Trg/k(a) +Trg )k (B) forall o, 8 € F;
(ii) Trg/k(ca) = ¢Ttgx(a)forall ce K, a € F;
*(iii) Trg,k is a linear transformation from F onto K, where both F and K
are viewed as vector spaces over K ;
(iv) Trg/x(a) =ma forallae K ;
(v) Tre/x(a?) = Trg/k () for all @ € F.

*6. Let aq, ..., a,_; be elements of F,. Prove
g 0 for I=t=sgq-2,
Y al ={ 1
i<o -1 for t=q-1,
if all elements ay, ..., a,_, are distinct.

7. Show as consequences of properties of finite fields that for a € Z and p e P
(i) a? = a mod p (**Little Fermat’s Theorem”)
(i) (p = 1)!'= —1mod p (“ Wilson’s theorem).

8. Find all subfields of F,s¢,5s and F.
9. Prove Lemma 2.8.
10. Determine all primitive elements of F,.
11. Prove f(x)? = f(x9) for f € F [x].
12. Let { be an nth root of unity over a field K. Prove that 1 +¢ +{> +... +
{"'=0ornaccordingas { #l or { = 1.
13. Prove the following properties of cyclotomic polynomials:
(i) If p is prime and p+m then
Qup(x) = Qpm(xF

(ii) If p is prime and p+m then
me(x) =

k—1

).

Qum(xP)
Qnm(x)’

(iii) If n =2, Q.(x) = [, (1- x/dyntd),
(iv) If n =3, n odd, then Q,,(x) = Q,(—x).
(v) fn=2,Q,(x Hx*"™ = Q,(x).

14. Find the cyclotomic polynomials Qs and Q,s.
15. The companion matrix of a monic polynomial
f=ao+tax+...+ a,_,x"' +x"

of degree n =1 over a field is defined to be the n X n matrix

00 0 -aq

10 0 -q
A il P

00 ... 1 —a,,

A satisfies f(A) =gl + @A +... +a,_A""' + A" = 0. I f is irreducible over
F, then A can play the role of a root of f and the polynomials in A over F,
of degree less than n yield a representation of the elements of F ,, where ¢ = p".
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(i) Let f = x* + 1 € Fy[x]. Find the companion matrix A of f and a representa-
tion of F, using A. Establish the multiplication table for the elements of
Fy given in terms of A.

(ii) Let f = x> + x + 2 € F5[x] be an irreducible factor of the cyclotomic poly-
nomial Qg € F3[x]. Find the companion matrix A of f and a representation
of the elements of F, in terms of A.

16. Let F, be a finite field and F, a finite extension. Show that F, is a simple
algebraic extension of [, and that every primitive element of F, can be adjoined
to F, to give F,.

17. Show that a finite field F, is the (¢ — 1)th cyclotomic field over any one of its
subfields.

m-—1

18. Let F ~ be an extension of F, and let @ € F ~. The elements a, a,..., a?
are called the conjugates of a with respect to F,. Find an element of F,5 and
its conjugates with respect to F, and with respect to F,.

19. A basis of F,~ over F,, which consists of a suitable element o € F,~ and its
conjugates with respect to F,, is called a normal basis of F,~ over F,. Find a
normal basis of Fg over F,.

*20. Let « and B be nonzero elements of F . Show that there exist elements a, b € F,
such that 1 + aa® + 8b> = 0.

§3. Irreducible Polynomials over Finite Fields

We have seen in §1 and §2 that irreducible polynomials over a field are of
fundamental importance in the theory of field extensions. This is true, in
particular, in the case of extensions of finite fields. In this section we consider
polynomials over F ,, these have many applications in combinatorics, number
theory and algebraic coding theory.

We recall that the splitting field of an irreducible polynomial of degree
k over F, is Fg

3.1 Theorem. Let f be an irreducible polynomial over F, of degree k. f divides
x?" — x if and only if k divides n.

PROOF. Suppose f]x?" — x. Then f has its roots in F,» and its splitting field
F,< must be contained in F,». Theorem 2.9 implies k|n. Conversely, let k|n,
so that F« is a subfield of F,. Since f and x?" — x split into linear factors
in [Fqn,ﬂx"" — x holds over F,» by 2.2(ii). O

By 2.2(ii), x*" — x € F,[x] has only simple roots. Theorem 3.1 implies
that this is so for all irreducible polynomials in F,[x] as well. If « is any
root of an irreducible polynomial, all other roots are given by
a® a?,..., a?" called the conjugates of a.
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3.2 Theorem. x¥" — x = I1, f,, where the product is extended over all distinct,
monic, irreducible polynomials over F,, with degree a divisor of n.

Proor. Itis easily verified thatif f; and f; are two distinct, monic, irreducible
polynomials over F, whose degrees divide n, then f; and f; are relatively
prime and hence f;f|x?" —x. The theorem follows from Theorem 3.1 and
the fact that x?" — x has only simple roots in its splitting field over F,. O

Theorem 3.1 asserts that any element @ € F,~ is a root of an irreducible
polynomial of degree =n over F,. Let M be the minimal polynom1al of a
over F,, and let the degree of M be k where k|n. Then a, a¥,...,a” " are
the roots of M and M is also the minimal polynomial for each of these
roots. The factorization of Theorem 3.2 can also be regarded as the product
of all distinct minimal polynomials of elements of F,~ over F, Properties
of minimal polynomials are summarized as follows; see also 4.8 and 4.11
in this chapter.

3.3. Theorem. Let a € . Suppose the degree of a over F, is d and let M be
the minimal polynomial of a over F,.

(i) M is irreducible over F, and deg M = d divides n.
(ii) f e F,[x] satisfies f(a) = 0 if and only if M|f.
(iii) If @ is primitive then deg M = n.
(iv) @, a%...,a% " all have M as minimal polynomial.
(v) Iffisa momc irreducible polynomial of F [x] withf(a) =0, thenf = M.
(vi) M divides x** — x and x=" — x.
(vii) The roots of M are a, % ..., a?""", and M is the minimal polynomial
over F, of all these elements. 0

As we saw before, it is often important to find the minimal polynomial
of an element in a finite field. A straightforward method of determining
minimal polynomials is the following one. Let { be a defining element of
F,~ over F,, so that {1, {,...,{" '} is a basis of F,» over F, If we wish to
find the minimal polynomial g of 8 € F}- overF, we represent 8°, 8',..., 8"
in terms of the basis elements. Let

=Y d forlsisn+l,

Jj=1

Let g be of the form g(x) = ¢,x" +... + ¢;x + ¢,. In order that g be the
monic polynomial of least positive degree with g(8) =0 we proceed as
follows. The condition g(B)=c¢,B" +...+¢;B+¢,=0 leads to the
homogeneous system of linear equations.

n+1
2 Gdy =0 forl=j=<n, (*)

i=1



158 Chapter 3. Finite Fields and Polynomials

with unknowns ¢y, ¢;, ..., ¢,. Let D be the matrix of coefficients of the
system, i.e., D is the (n + 1) X n matrix whose (i, j) entry is dj, and let r be
the rank of D. Then the dimension of the space of solutions of the system
is s=n+1—r, and since 1 = r < n, we have 1 =< s < n. Therefore we let
s of the unknowns ¢, ci, ..., ¢, take prescribed values and then the remain-
ing ones are uniquely determined. If s = 1, we set ¢, = 1, and if s > 1, we
set ¢, =Cp1=...=Cr_sp=0and ¢,_;, = 1.

3.4 Example. Let { € F¢, be a root of the irreducible polynomial x® + x + 1
in Fo[x]. For B8 = ¢* + ¢* we have

B°=1,

B'= g+

B =1+{++ 0,

B=  [+0+0

= (+0 +7,

B’=1 ++ 18

Bé=1+¢+ + 4

Therefore the matrix D is of the form

1 00 00O
000110
1 11100
D=0 111 0 0
011010
1 00110
111010

and its rank is r = 3. Hence s=n+1-r =4, and we set ¢, = ¢cs = ¢, = 0,
¢; = 1. The remaining coefficients are determined from (*), and this yields
¢, =1, ¢, =0, ¢g = 1. Therefore the minimal polynomial of B over F, is
g(x)=x*+x*+1. Od

Another method of determining minimal polynomials is as follows. If
we wish to find the minimal polynomial g of B € F - over F,, we calculate
the powers B, B, B"Z, ... until we find the least positive integer d for which
B? = p. This integer d is the degree of g, and g itself is given by g(x) =
(x = B)(x —B7)...(x — BY""). The elements B, B%, ..., B*" " are called the
conjugates of B with respect to [, they are distinct and g is the minimal
polynomial over F, of all these elements.

3.5 Example. We compute the minimal polynomials over [, of all elements
of F6. Let { € F be a root of the primitive polynomial x* + x + 1 over F,,



§3. Irreducible Polynomials over Finite Fields 159

so that every nonzero element of F, can be written as a power of {. We
have the following index table for F4:

i ¢ i 4
0 1 8 | 1+¢2

1 4 9 | ¢+

2 22 10 | 142+

3 I 1| ¢+2+8

4 | 1+¢ 12 | 1+¢+2+2
5 ¢+ 13 | 1+22+2

6 2+ 14 | 1+

7 1+¢+3

The minimal polynomials of the elements 8 of F, over F, are:

B=0 gi(x)=x

B=1 gx)=x-1.

B = {: The distinct conjugates of { with respect to F, are ¢, ¢2, ¢*, ¢%, and
the minimal polynomial is

&(X)=(x -0 -)x—Hx-H=x+x+1.

B = {*: The distinct conjugates of {* with respect to F, are {3, £, ¢'2, {** =
£®, and the minimal polynomial is

8(x) = (x =) x = )x =) x =) =x*+x7 + x> +x + 1.

B = {’: Since B* = B, the distinct conjugates of this element with respect
to F, are £, {', and the minimal polynomial is

gs(x)=(x =) x-{)=x"+x+1.

B = {’: The distinct conjugates of ¢’ with respect to F, are {7, £, {*® = ¢"3,
£** =¢"', and the minimal polynomial is

8s(x) = (x = {N(x = ¢"Nx =) (x =) = x* +x° + 1.

These elements, together with their conjugates with respect to F,, exhaust
FIG. D

3.6 Theorem. The number of all monic, irreducible polynomials of degree k
over F, is given by

1 k
10 =¢ 2 u(5)a

Proor. Theorem 3.2 implies that the degree of the product of all monic,
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irreducible polynomials over F, whose degree divides k is equal to
Yaik I,(d)d = q*. The additive form of the MG&bius inversion formula,
Theorem 2.19(i), gives the desired result. O

The formula in Theorem 3.6 shows how to check I,(k) = 1 for any prime
power g and any positive integer k. Here we see the difference between
irreducible polynomials over F, and irreducible polynomials over R and C
(see Corollary 2.6).

3.7 Example.

q k I,(k)
2 1 2
2 2 1
2 3 2
2 4 3
2 5 6

There is an interesting connection between minimal polynomials and
primitive elements of a finite field. We introduce the order (also called the
exponent or the period) of a nonzero polynomial over a finite field. The
following result motivates the definition of an order.

3.8 Lemma. Let f € F,[x] be a polynomial of degree m =1 with f(0) # 0.
Then there exists a positive integer e < q™ — 1 such that f divides x* — 1.

Proor. F,[x]/(f) has g™ "' nonzero residue classes. Since the g™ residue
classes x’ + (f), 0 <j =< q™ — 1, are all nonzero, there exists integers s and
t with0 = s <t = q™ — 1 such that x’ = x* mod f. Since (x, f) = 1, we have
x*=I1modfie fIx*—-1)and 0<t—s=gq™ —1. |

3.9 Definition. Let 0 # f € F,[x]. If f(0)# 0 then the smallest natural
number e with the property that f](x° — 1) is called the order of £ If f(0) =0
and f is of the form x"g with h € N and g € F [x], g(0) # 0, for a unique
polynomial g, then the order of fis defined as the order of g, in symbols ord f.

The order of an irreducible polynomial can be characterized by its roots.

3.10 Theorem. Let f € F,[x] be an irreducible polynomial over F, of degree
m with f(0) # 0. Then ord f is equal to the order of any root of f in Fn.

PrOOF. F,~ is the splitting field of f over F,. The roots of f have the same
order in F¥»; let @ € F~ be a root of f. Then ® = 1 if and only if f|x® — 1.
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The result follows from the definition of ord f and the order of a in the
group Fim. O

3.11 Corollary. If f € F [x] is irreducible over F, of degree m, then ord f
divides q™ — 1.

Prookr. If f = cx with ¢ € F¥, then ord f = 1. Otherwise the result follows
from Theorem 3.10 and the fact that the order of F}~ is ¢™ — 1. O

From the above it follows that the order of a polynomial of degree m = 1
over F, is at most g™ — 1. This upper bound is attained for an important
class of polynomials, which are based on primitive elements of a finite field.

3.12 Definition. A primitive element of F, is a generating element of F}. A
monic irreducible polynomial of degree m over F, is called primitive if it
is the minimal polynomial of a primitive element of F .

We note the following characterization of primitive polynomials.

3.13 Theorem. A polynomial f € F,[x] of degree k is primitive over F if and
only if f is monic, f(0) # 0 and the order of fis equal to q™ — 1.

Prookr. If f is primitive over F, then f is monic and f(0) # 0. Now f is
irreducible and has as root a primitive element over F,~, so by Theorem
3.10 ord f = q™ — 1. Conversely, it suffices to show that f is irreducible.
Suppose on the contrary that f is reducible. We have two cases to consider:
Either f = g,g, where g, and g, are relatively prime polynomials of positive
degrees k, and k,, or f = g where g € F,[x], and g(0) # 0 is irreducible.

In the first case let e; = ord g;; then by Lemma 2.8, ord f < e,e..
By Theorem 3.1, g]x"k'"' -1 so e=gqg"—1. Hence ordf=<ee,<
(g =1)(g—-1) < gM*'a—1=¢™ -1, a contradiction.

In the second case, let e = ord g. By Theorem 3.1 and the fact that g|f
we have e|g™ — 1 so p|e where p is the characteristic of F,. By Exercise 3.4
glx* — 1 if e|k. So if k = p'j where p|j we have

xk—1=xP—1=(x'-1)".

Since x’ — 1 has no repeated roots every irreducible factor of x* — 1 has
multiplicity p'. Let ¢ be the unique integer with p'™' < b < p’, then ord f =
ep'. But ep’ = (q" — 1)p’ where n = m/b, the degree of g. Moreover ep’ <
q"""—1.Sot=p' '=b—-1=(b- 1)n. Now combining these inequalities
we have ord f < g"*' — 1= ¢~ 1 = g™ — 1, a contradiction. Therefore f
is irreducible and by Theorem 3.10 the roots of f have order g™ — 1, so f

is primitive. O
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An important problem is that of the determination of primitive poly-
nomials. One approach is based on the fact that the product of all primitive
polynomials over F, of degree m is equal to the cyclotomic polynomial Q,
with e = q™ — 1. Therefore, all primitive polynomials over F, of degree m
can be determined by applying one of the factorization algorithms, which
we describe below, to the cyclotomic polynomial Q..

Another method depends on constructing a primitive element of F ,~ and
then determining the minimal polynomial of this element over F,. To find
a primitive element of F,», one starts from the order g™ — 1 of such an
element in the group F ¥~ and one factorizes it in the form g™ — 1 = h, ... h;,
where the positive integers h,,. .., b, are pairwise relatively prime. If for
each i,1 =i =<k, one can find an element a; € F}~ of order h; then the
product a, ... a; has order g™ — 1 and is thus a primitive element of F .

3.14 Example. We determine a primitive polynomial over F; of degree 4.
Since 3* — 1 = 16 - 5, we first construct two elements of F¥, of order 16 and
5, respectively. The elements of order 16 are the roots of the cyclotomic
polynomial Q,¢(x) = x* + 1 € F5[x]. Since the multiplicative order of 3
modulo 16 is 4, Q,¢ factors into two monic irreducible polynomials in F;[x]
of degree 4. Now

BHl=(x*-1)2-x'=(x*-1+x)(x* -1 -x%),
and so f(x) = x* — x* — 1 is irreducible over F; and with a root 6 of f we

have Fg, = F;(0). Furthermore, 6 is an element of F§; of order 16. It can be
verified that a = 6 + 6% has order 5. Therefore

{=6a=6"+6

has order 80 and is thus a primitive element of Fg,. The minimal polynomial
g of { over F; is

(x=x =) x =) x =)= (x- 0>~ 6%)
X(x—14+0+6)(x—0>+6)(x—1-6+6%

g(x)

=x*+x*+x*-x-1,

and we have thus obtained a primitive polynomial over F; of degree 4.
|

Using the notation of Theorem 3.3 we observe the additional properties
of minimal polynomials

(viii) If @ # 0, then ord M is equal to the order of o in F}.
(ix) M is primitive over F if and only if a is of order g —1inFiH 0O
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Next we list some primitive polynomials of degree =20 over F,.

Degree Polynomial
1 x +1
2 x2 +x +1
3 x> +x +1
4 x* +x +1
5 x +xr+1
6 x6 +x +1
7 x +x +1
8 x® +x% +x% +x +1
9 x° +x*+1
10 x0+x*+1
11 x'+x*+1
12 x2+x7 +x* +x°+1
13 xB+xt +x3 +x +1
14 x4 x 4 x +1
15 xB+x +1
16 x+x° +x* +x2+1
17 x7T+x3+1
18 x4+ xT+1
19 xP+x5 +x° +x +1
20 X2 +x3 41

We shall now give a list of some irreducible polynomials f =
a.x" +a, ,x" ' +...+a, of degree n over F,. We abbreviate the poly-
nomials by writing the coefficient vector as a,a,_;...a,. The column e
indicates the order of f.

For p =2:

n=1 e n=4 e n==6 e
10 10011 15 1000011 | 63
11 1 11001 15 1001001 9
11111 5 1010111 | 21
1011011 | 63
n=2 e 1100001 | 63
n=>5 e 1100111 | 63
9y 3 1101101 | 63
100101 | 31 1110011 | 63
101001 | 31 11o1ot | 21

n=3 e 101111 | 31

(o111 | 31

1011 7 111011 31

1101 7 1101 | 31
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n=7

10000011
10001001
10001111
10010001
10011101
10100111
10101011
10111001
10111111
11000001
11001011
11010011
11010101
11100101
11101111
11110001
11110111
11111101

127
127
127
127
127
127
127
127
127
127
127
127
127
127
127
127
127
127
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n=23§

100011011
100011101
100101011
100101101
100111001
100111111
101001101
101011111
101100011
101100101
101101001
101110001
101110111
101111011
110000111
110001011
110001101
110011111
110100011
110101001
110110001
110111101
111000011

51
255
255
255

17

85
255
255
255

255
255
85
85
255
85
255
51
85
255
51
85
255

255

n=238 e
111001111 255
111010111 17
111011101 85
111100111 255
111110011 51
111110101 255
111111001 85

n=9 e
1000000011 73
1000010001 | 511
1000010111 73
1000011011 | 511
1000100001 | 511
1000101101 | 511
1000110011 | 511
1001001011 73
1001011001 | 511
1001011111 | 511
1001100101 73

n=9 e
1001101001 | 511
1001101111 | 511
1001110111 | 511
1001111101 | 511
1010000111 | 511
1010010101 | 511
1010011001 73
1010100011 | 511
1010100101 | 511
1010101111 | 511
1010110111 | 511
1010111101 | 511
1011001111 | 511
1011010001 | 511
1011011011 | 511
1011110101 | 511
1011111001 | 511
1100000001 73

n=9 e
1100010011 | 511
1100010101 | 511
1100011111 | 511
1100100011 | 511
1100110001 | 511
1100111011 | 511
1101001001 73
1101001111 | 511
1101011011 | 511
1101100001 | 511
1101101011 | 511
1101101101 | 511
1101110011 | 511
1101111111 | 511
1110000101 | 511
1110001111 | 511
1110100001 73
1110110101 | 511
1110111001 | 511
1111000111 | 511
1111001011 { 511
1111001101 | 511
1111010101 | 511
1111011001 | 511
1111100011 | 511
1111101001 | 511
1111111011 | 511

For p =3:

n=1 e

10

11 2

12 1

n=2 e

101 4

112 8

122 8
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n=3 e
1021 26
1022 13
1102 13
1112 13
1121 26
1201 26
1211 26
1222 13
n=4 e
10012 80
10022 80
10102 16
10111 40
10121 40
10202 16
11002 80
11021 20
11101 40
11111 5
11122 80
11222 80
12002 80
12011 20
12101 40
12112 80
12121 10
12212 80
n=>5 e
100021 242
100022 121
100112 121
100211 242
101011 242
101012 121
101102 121
101122 121
101201 242
101221 242

n=>5 e
102101 242
102112 121
102122 11
102202 121
102211 242
102221 22
110002 121
110012 121
110021 242
110101 242
110111 242
110122 121
111011 242
111121 242
111211 242
111212 121
112001 242
112022 121
112102 11
112111 242
112201 242
112202 121
120001 242
120011 242
120022 121
120202 121
120212 121
120221 242
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