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Preface

This text is written for a course in linear algebra at the (U.S.) sophomore
undergraduate level, preferably directly following a one-variable calculus
course, so that linear algebra can be used in a course on multidimensional
calculus. Realizing that students at this level have had little contact with
complex numbers or abstract mathematics, the book deals almost exclusively
with real finite-dimensional vector spaces in a setting and formulation that
permits easy generalization to abstract vector spaces. The parallel complex
theory is developed in the exercises.

The book has as a goal the principal axis theorem for real symmetric
transformations, and a more or less direct path is followed. As a consequence
there are many subjects that are not developed, and this is intentional.

However, a wide selection of examples of vector spaces and linear trans-
formations is developed, in the hope that they will serve as a testing ground
for the theory. The book is meant as an introduction to linear algebra and the
theory developed contains the essentials for this goal. Students with a need
to learn more linear algebra can do so in a course in abstract algebra, which is
the appropriate setting. Through this book they will be taken on an excursion
to the algebraic/analytic zoo, and introduced to some of the animals for the
first time. Further excursions can teach them more about the curious habits of
some of these remarkable creatures.

For the second edition of the book I have added, amongst other things, a
safari into the wilderness of canonical forms, where the hardy student can
persue the Jordan form with the tools developed in the preceding chapters.

Gottingen, LARRY SMITH
June 1984
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Vectors in the plane and space

In physics certain quantities such as force, displacement, velocity, and
acceleration possess both a magnitude and a direction and they are most
usually represented geometrically by drawing an arrow with the magnitude
and direction of the quantity in question. Physicists refer to the arrow as a
vector, and call the quantities so represented vector quantities. In the study
of the calculus the student has no doubt encountered vectors, and their
algebra, particularly in connection with the study of lines and planes and
the differential geometry of space curves. Vectors can be described as
ordered pairs of points (P, Q) which we call the vector from P to Q and often
denote by PQ. This is substantially the same as the physics definition, since
all it amounts to is a technical description of the word “arrow.” P is called
the initial point and Q the terminal point.

For our purposes it will be convenient to regard two vectors as being
equal if they have the same length and the same magnitude. In other words
we will regard PQ and RS as determining the same vector if RS results by
moving PQ parallel to itself.

(N.B. Vectors that conform to this definition are called free vectors,
since we are “free to pick ” their initial point. Not all “vectors” that occur in
nature conform to this convention. If the vector quantity depends not only
on its direction and magnitude but its initial point it is called a bound vector.
For example, torque is a bound vector. In the force-vector diagram rep-
resented by Figure 1.1 PQ does not have the same effect as RS in pivoting
a bar. In this book we will consider only free vectors.)

With this convention of equality of vectors in mind it is clear that if we
fix a point O in space called the origin, then we may regard all our vectors
as having their initial point at O. The vector OP will very often be abbreviated
to P, if the point O which serves as the origin of all vectors is clear from
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1: Vectors in the plane and space
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context. The vector P is called the position vector of the point P relative to
the origin O.

In physics vector quantities such as force vectors are often added together
to obtain a resultant force vector. This process may be described as follows.
Suppose an origin O has been fixed. Given vectors P and Q their sum is
defined by the Figure 1.2. That is, draw the parallelogram determined by the
three points P, O and Q. Let R be the fourth vertex and set P + Q = R.

Figure 1.2

The following basic rules of vector algebra may be easily verified by elemen-
tary Euclidean geometry.

MHP+Q=Q+P
RQP+Q+R=P+@Q+R).
P+0=P=0+P.

It is also possible to define the operation of multiplying a vector by a number.
Suppose we are given a vector P and a number a. If a > 0 we let aP be the
vector with the same direction as P only a times as long (see Figure 1.3).
If a < 0 we set aP equal to the vector of magnitude a times the magnitude
of P but having direction opposite of P (see Figure 1.4). If a = 0 we set aP

aP

Figure 1.3



1: Vectors in the plane ana space

Figure 1.4

equal to O. It is then easy to show that vector algebra satisfies the following
additional rules:

4P+ (-1P)=0
(5) a(®P + Q) = aP + aQ
(6) (a + b)P = aP + bP
(7) (ab)P = a(bP)
® P=0,1P=P
Note that Rule 6 involves two types of addition, namely addition of numbers
and addition of vectors.
Vectors are particularly useful in studying lines and planes in space.

Suppose that an origin O has been fixed and L is the line through the two
points P and Q as in Figure 1.5. Suppose that R is any other point on L.

R
Figure 1.5

Consider the position vector R. Since the two points P, Q completely deter-
mine the line L, it is quite reasonable to look for some relation between the
vectors P, Q, and R. One such relation is provided by Figure 1.6. Observe
that

S+P=Q
Therefore if we write — P for (— 1)P we see that
S=Q-P



1: Vectors in the plane and space
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Figure 1.6

Notice that there is a number ¢ such that

Moreover

=
I
a~]]
+
="

and hence we find
(*) R=P+«Q-P).

Equation (x) is called the vector equation of the line L. To make practical
computations with this equation it is convenient to introduce in addition to
the origin O a cartesian coordinate system as in Figure 1.7. Every point P
then has coordinates (x, y, z), and if we have two points P and Q with co-
ordinates (xp, yp, zp) and (xq, Yo, Zg) then it is quite easy to check that

Figure 1.7



1: Vectors in the plane and space

P + Q is the position vector of the point with components (xp + Xq,
Yp + Yo. 2p + 2q). Likewise for a number a the vector aP is the position
vector of the point with coordinates (axp, ayp, azp). Thus we find by
considering the coordinates of the points represented Equation (*) that
(x, y, 2) lies on the line L through P, Q iff

X = Xp + t(xq — Xp).
(%) y=1yp +tlyq — ye)
Z=2Zp + I(ZQ - :p).
ExampLE 1. Does the point (1,2, 3) lie on the line passing through the
points (4,4,4) and (1,0, 1)?
Solution. Let L be the line through P = (4, 4,4) and Q = (1, 0, 1). Then the
points of L must satisfy the equations
x=4+11-4)=4-173t,
y=4+10-4)=4- 4,
z=4+11-4)=4- 31,
where t is a number. Let us check if this is possible:

=4 -3,
2=4—4,
3=4-3t

The first equation gives
—3=-3t t=1
Putting this in the last equation gives
3=4-3=1

which is impossible. Therefore (1, 2, 3) does not lie on the line through
(4,4,4)and (1,0, 1).

ExAMPLE 2. Let L, be the line through the points (1,0, 1) and (1, L, 1). Let
L, be the line through the points (0, 1,0) and (1, 2, 1). Determine if the
lines L, and L, intersect. If so find their point of intersection.

Solution. The equations of L, are
x=1+(1-1=1,
y=0+t1(1 _O)=tl,
z=1+1,(1-1=1.

The equations of L, are

x=0+ (1 -0), =t,,
y=1+Q@—-1)t,=1+1,,
z=0+(1-0), =1t,.



1: Vectors in the plane and space

If a point lies on both of these lines we must have

1=t2,
t,=1+1t,,
1=t2.

Therefore t, = 1 and t, = 2. Hence (1, 2, 1) is the only point these lines
have in common.

ExaMpLE 3. Determine if the lines L, and L, with equations

x=1-3t
L, y=1+3t
z=1,
x=-=2-13,
L, y=4+3,
z=1+1,

have a point in common.

Solution. If a point (x, y, z) lies on both lines it must satisfy both sets of
equations, so there is a number ¢, such that

x=1-=13,
y=1+ 3,
z=r1,

and a number t, with

x='—2—3(2,
y=4+3t2’
z=1+t,,

and the answer to the problem is reduced to determining if in fact two such
numbers can be found, that is if the simultaneous equations

l - 3[1 = —2 - 3[2,
(*) 14 3t;, =4+ 3t,,
tl=1 +t2,

have any solutions. Writing these equations in the more usual form they
become

3 = 3tl - 3t2,
—3 = —3t1 + 3tz,
"'1 = _tl '+' tz.



1: Vectors in the plane and space

By dividing the first equation by 3, the second by — 3, and multiplying the
third by — 1 we get

1=t —1t,,
=1 =1,
=1 —1t,,
giving
[] = l + IZ'

What does this mean? It means that no matter what value of ¢, we choose
there is a value of ¢,, namely ¢, =1 + t,, which satisfies Equations (*).
By varying the values of z, we get all the points on the line L, . For each such
value of t, the fact that thereis a (corresponding) value of ¢, solving Equations
(*) shows that every point of the line L, lies on the line L,. Therefore these
lines must be the same!

The lesson to be learned from this example is that the equations of a
line are not unique. This should be geometrically clear since we only used
two points of the line to determine the equations, and there are many such
possible pairs of points.

ExaMPLE 4. Determine if the lines L, and L, with equations

x=1+41t,
L, y=1+1¢
z=1-1,
x=2+t,
L, y=2-1u
z=2—1t,

have a point in common.
Solution. As in Example 3 our task is to determine if the simultaneous equa-
tions

l+t1=2+t2,
(*) 1+t1=2—t2,
1—t1=2_t2,

has any solutions. In more usual form these equations become

—1 = "[1 + tz,
—1 = —tl "tz,
—‘1 =tl _tz.
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Adding the first two equations gives
-2 = =2,
so t, must equal 1. Putting this into the last equation we get
—1 = 1 - tz,
so 1, must equal 2. But substituting these values of t, and ¢, into either of
the first two equations leads to a contradiction, namely
—l=-142=1,
-l=-1-2= -3,

therefore no values of 7, and 7, can simultaneously satisfy Equations (*) so
the lines have no point in common.

In Chapter 13 we will take up the study of solving simultaneous linear
equations in detail. There we will explain various techniques and “tests™
that will make the problems encountered in Examples 3 and 4 routine.

Suppose now that P, Q, and R are three noncolinear points. Then they
determine a unique plane I1. If we introduce a fixed origin O then it is
possible to deduce an equation that is satisfied by the position vectors of
points of I'l. Considering Figure 1.8 shows that

A-Q=sP-Q+:R-Q)
that is
*) A=sP-Q+t(R-Q)+ Q.

Equation (x) is called the vector equation of the plane I1. Compare it to the
vector equation of a line. Note the presence of the two parameters s and t
instead of the single parameter ¢

(P -Q)

A-Q R - Q)
Figure 1.8
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If we now introduce a coordinate system and pass to components in
Equation (x) we obtain:

x = s(xp — Xq) + t(xgr — X@) + Xq>
() Yy =35(yp — yq) + t(yr— Yo) + Yo
z=5(zp — zg) + tizp — 2q) + zo-

We may regard Equation (x*) as the equation of the plane Il or we may
regard it as a system of three equations in the two unknowns s, ¢ which we
may formally eliminate and obtain the more familiar equation

(%x) ax +by+cz+d=0

where we may take (or twice these values, or —7 times, etc.)
a = (yr — yo)(zp — zq) — (zr — 2Q)(Yp — Vo)
b= (z - Zg)(xp — Xg) — (xg — Xo)(zp — Zo):
¢ = (xg — XQ)Up — Yo) — (yr — Yo)(xp — Xq).
d = —(axp + byp + czp).

Equation (*#) is also called the equation of the plane I1.

ExaMPLE 5. Find the equation of the plane through the points
1,0,1), (0,1,0), (1,1,1).
Determine if the point (0, 0, 0) lies in this plane.
Solution. We know that the equation has the form
ax+by+cz+d=0

and all we must do is crank out values for a, b, ¢, d. (Remember they are not
unique.) We must have

a+c+d=0,
b+d=0,
a+b+c+d=0,

since the points (1, 0, 1), (0, 1, 0), and (1, 1, 1) lie in this plane. Thus
a+c=0, d=0, b=0, a= —c.
So the plane has the equation
x—z=0
and (0, 0, 0) lies in it.

ExaMpLE 6. Determine the equation of the line of intersection of the planes

x—-z=0,
x+y+z+1=0.
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Solution. The line in question has an equation of the form

x =a + ut,
y=b+u,
z=C+wt,

for suitable numbers a, b, ¢, u, v, w. Since such points must lie in both planes
we have
a+ut — (c +wt) =0,
a+ut+b+ovt+c+w+1=0,

for all values of t. Put t = 0. Then

a—c=0,
a+b+c+1=0.

The first equation yields a = ¢. Combining this with the second equation
and setting b = 1 yields 2a + 2 = 0. Hence a = —1 = ¢. Next put t = 1.
Then
O=a+ut—(c+w)=—-14+u+1-—w,
O=a+ut+b+ovt+c+w+1
=~—-l+u+l+v—-1+w+L

The first equation yields u = w. Combining this with the second equation
and settingu = 1 yieldsw = u = 1and v = —2. Then

x=—1+1,
y=1-=-2,
z=—-1+1,

are the equations of a line containing the two points (—1,1, —1) and
(0, —1,0) which lie in both planes and hence must be the line of inter-
section.

EXERCISES

1. Suppose that an origin O and a coordinate system have been fixed. Let P be a
point. Define vectors E,, E,, and E, by requiring that they be the position vectors of
the points (1,0,0), (0, 1,0), and (0, 0, 1), respectively. Let the coordinates of P
be (Xp, e, Zp)- Show that

P = XPE, + nyZ + ZPE3
The vectors
xPEn ypEz, ZPEJ

are called the component vectors of P relative to the given coordinate system.

10



1: Vectors 1n the plane and space

. Find the equation of the line through the two points (1,0, —1). (2. 3. —1). Does

the point (0, 1, — 1) lie on this line?

. Does the point (1, 1, 1) lie in the plane through the points (1, 1, 0). (0. 1, 1), (1.0, 1)?

. Does the line through the pomnts (1. 1, 1), (1, —1, 1) lie in the plane through the

pOints(lv —I‘O)s (1’ 0‘ _1)’(_1~ 1’ 1)‘2

5. Show that the point (1, —2, 1) lies on the line through the two points (0, 1, —1)
and (2, -5, 3).
6. Let P = (x,, y,, 2,), Q = (x3, ¥», =) be two points. Show that the midpoint of the

10.
11.

12.

13.

line segment PQ is

b El ) ) 5

(Xl + X i+ ) o+ 31)

. Find the equation of the line through the origin bisecting the angle formed by

A O B,where A =(1,0,0), B= (0,0, 1).

. Verify that vectors PQ and RS represent the same vector T where P = (0, 1, 1),

Q=(1,34),R=(1,0,—1),S = (2,2 2). Find the coordinates of T.

. Find the sum of the vectors PQ and RS where P = (0. 1. 1), Q = (1,0.0),

R=(1,0,-1),S=(222)
Let P= (1,1, Q=(23), R=(-23). S =(l, - 1) Find PQ - RS. PQ + RS.

Show that the points A, B, C, D with the following coordinates form a parallelogram
inaplane:A =(1,1),B=(3,2),C=(2,3),D = (0, 2).

Let P=(1,0,1). Q =(1,1,1), and R = (=1, 1, —1). Find the coordinates of T
where

@ T=2P-Q
(b) T=PQ
() T=2R
d T=-R

(&) T=PQ + PR
(f) T = aP + bQ + cR. where a, b, ¢ are given constants.

In each of (a)-(g) find a vector equation of the line satisfying following conditions:

(a) passing through the point P = (-2, 1) and having slope %

(b) passing through the point (0, 3) and parallel to the x-axis

(c) the tangent line to y = x? at (2, 4)

(d) the line parallel to the line of (c) passing through the origin

(e) the line passing through points (1,0, 1) and (1, 1, 1)

(f) the line passing through the origin and the midpoint of the line segment PQ
where P = (4,4,0),Q = (0,0, 1)

(g) the line on xy-plane passing through (1, 1, 0) and (0. 1, 0).

11



1: Vectors in the plane and space

14.

12

In each of (a)-(g) determine a vector equation of the plane satisfying the given
conditions:

(a) the plane determined by (0, 0), (1, 0), and (1, 1)

(b) the plane determined by (0,0, 1), (1,0, 1), and (1, 1, 1)

(c) The plane determined by (1,0, 0), (0, 1,0), and (1, 1, 1) (Does the origin lie
on this plane?)

(d) the plane parallel to the xy-plane and containing the point (1, 1, 1)

(e) the plane through the origin and containing the points P = (1. 0, 0),Q = (0. 1, 0)

(f) the plane through three points A, B, C, where A = (1,0,1). B = (-1, 2, 3),
and C = (2, 6, 1) (Does the origin lie on this plane?)

(g) the plane parallel to yz-plane passing through the point (1, 1, 1).



Vector spaces

In the previous chapter we reviewed the basic notions of vectors in space
and their elementary application to the study of lines and planes. We derived
elementary vector equations for lines and planes and saw how once a co-
ordinate system was chosen these vector equations lead to the familiar
equations of analytic geometry. However, particularly in application to
physics, it is often very important to know the relation between the equations
for the same plane (or line) in different coordinate systems. This leads us to
the notion of a coordinate transformation. The appropriate domain in which
to study such transformations are the abstract vector spaces to be introduced
now.

Definition. A vector space is a set, whose elements are called vectors, together
with two operations. The first operation, called_vector addition, assigns
to each pair of vectors A and B a vector denoted by A_+ B, called their
sum. The second operation, called scalar multiplication, assigns to each
vector A and each number’ r a vector denoted by rA. The two operations
are required to have the following properties:

Axiom 1. A + B = B + A for each pair of vectors A and B (Commutative
law of vector addition).

Axiom2.(A + B) + C = A + (B + C)for each triple of vectors, A, Band C.

Axiom 3. There is a unique vector 0, called the zero vector, such that
A + 0 = A for every vector A.

! For the moment we agree that the number r is a real number

13



2: Vector spaces

Axiom 4. For each vector A there corresponds a unique vector — A such that
A+(-A)=0

Axiom 5. r(A + B) = rA + rB for each real number r and each pair of
vectors A and B.

Axiom 6. (r + s)A =rA + sA for each pair of real numbers r and s and
each vector A.

Axiom 7. (rs)A = r(sA) for each pair r, s of real numbers and each vector A.
Axiom 8. For each vector A, 1A = A.

In developing the mathematical theory of linear algebra we are going to
follow the axiomatic method. That is a vector, vector addition, and scalar
multiplication constitute the basic terms of the theory. They are not defined
but rather our study of linear algebra will be based on the properties of
these terms as specified by the preceding eight axioms. In the axiomatic
treatment, what vectors, vector addition and scalar multiplication are is
immaterial, rather what is important is the properties these quantities have
as consequences of the axioms. Thus in our development of the theory we
may not use properties of vectors that are not stated in or are consequences
of the preceding axioms. We may use any properties of vectors, etc. that are
stated in the axioms: for example, that the vector O is unique, or that A = 1A
for any vector A. On the other hand we may not say that a vector is an arrow
with a specified head and tail.

The advantage of the axiomatic approach is that results so obtained
will apply to any special case or example that we wish to consider. The con-
verse is definitely false. Presently we will see an enormous number of examples
of vector spaces. Let us first begin with some elementary consequences of
the axioms.

Proposition 2.1. 0A = 0.
PrOOF. We have
A=1A=(1+0A=1A+0A=A+0A
by using Axioms 8, 6, and 8 again. To the equation
A=A+0A
we apply Axiom 1 getting
A =0A + A.
14



2: Vector spaces

Now apply Axiom 4 and we obtain by Axiom 2:
0=A+(-A)=(0A+A)+ (-A)=0A + (A + (—A))

=0A +0=0A
by Axiom 3.
That is
0=0A
which is the desired conclusion. a

Notational Convention: It should be clear by now that we will reserve capital
letters for vectors and small letters for numbers.

The proof of (2.1) was given in considerable detail to illustrate how results
are deduced by the axiomatic method. In the sequel we will not be so detailed
in our proofs, leaving to the reader the task of providing as much detail
as he feels needed.

Proposition 2.2. (—1)A = —A.
PROOF. We have by (2.1)

0=0A=(1-1NA=1A+(-1DA =A + (-1A.
Now add — A to both sides giving

—A=-A+A+(-DA)=(-A+A)+(-DA
=(A-A)+(-DA=0+(-DA=(-1)A+0
=(—-DA

as required. a

Proposition 2.3.0 + A = A.
ProoF. Exercise. O

These formal deductions may seem like a sterile intellectual exercise—
an indication of the absurdity of too much reliance on abstraction and formal-
ism. On the contrary, they help to point up the advantages of an abstract
formulation of a mathematical theory. For if the basic terms are not defined,
the possibility is opened of assigning to them content in new and unforeseen
ways. If in this way the axioms become true statements when the meanings
assigned to the basic terms vector, vector addition, and scalar multiplication
are specified, we have constructed a model for the abstract theory. That is, if
we can assign a meaning to the terms vector, vector addition and scalar
multiplication such that Axioms 1-8 become true statements about this
assignment then we say we have constructed a model or example of the
axioms. Here then is one standard such model.

15



2: Vector spaces

Cartesian or Euclidean spaces

Definition. Let k be a positive integer. The Cartesian k-space denoted by R,
is the set of all sequences (a;, a,, . .., a) of k real numbers together with
the two operations

(al,az,...,ak) +(b1,b2,...,bk) = (a, + bl’aZ + bz,...,ak + hk)
and
Hay, ..., a) = (ra,, ra,, ..., ray).

(In particular R! = R is the set of real numbers with their usual addition
and multiplication.) The number qg; is called the ith component of

@@, .- &)
Theorem 2.4. For each positive integer k, R* is a vector space.

Before beginning the proof of (2.4) let us consider exactly what it is that
we are trying to prove. We are going to assign meanings to the three basic
terms of the axioms for a vector space. Namely, by a vector we will mean a
k-tuple (ay, ..., a). For vectors A = (ay,...,a,) and B = (b, ..., b,), the
equality of the two vectors A = Bmeans thata, = b,,a, = b,, ..., a, = b,.
By addition of A and B, we shall mean the vector (a, + by, ..., a, + b),
that is we define

A + B= (al + bl,...,ak + bk)'
Likewise we define
rA = (ray, ..., ray).

Axioms 1-8 for a vector space then become statements about k-tuples and
we must verify that they are true statements.

PROOF OF (2.4). We will verify the axioms in turn.

Axiom 1. Let A = (ay,...,a,), B = (b,,...,b,). Then
A+B=(a1 +bl,..-,ak+bk)
=(bl +a1,...,bk+ak)=B-l- A
so Axiom 1 is true.

Axiom 2. Let A = (a,...,a),B=(b;,...,b),and C = (¢, ..., ¢,). Then
A+B)+C=(, +by,...,a, + b) +(cy,..., )
=(a; +b;+cy.e a0+ b+ ¢y
=@,..,a)+ by +cyyen b+ )
=A+B+0)
so Axiom 2 holds.

16



2: Vector spaces

Axiom 3. We let 0 = (0, ..., 0). Then for any A = (a,, ..., ) we will have

A+0=(Ul +0,...,ak+0)=(al,...,ak)-_-A.

Moreover if B = (by, ..., b,) is any vector such that
A+B=A
then
(@ +by,...;a,+b)="(ay, ..., a)

and therefore

a1+b1=a| = b1=0
a2+b2=az = bz=0

ak+bk=a,‘ = bk=0

i.e. B = 0. Thus 0 is the unique vector with the property that A + 0 = A,
and Axiom 3 holds.

Axiom 4. Let A = (a,,...,q,)and set —A = (—a,,..., —a;). Then

A+(=A)=(ay..- a) +(—ay, ..., —a)
=@, —ap...,ax—a)=(0,...,0=0.
Moreover if C = (cy, . .., ¢;) is any vector such that
A+C=0
then

(al +C1,...,ak+ck)=(0,...,0)

and therefore

a|+C,=0 = C1=—a1
az+C2=0 = (3= —Aa,
ak+Ck=0 = = —ax

ie. C= —A. Thus —A is the unique vector with the property that
A + (—A) = 0 and Axiom 4 holds.

17
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Axiom 5. Let r be a real number and A = (a,,...,a) and B = (b,,..., b,
be vectors. Then
A +B)=r(a, +by,....a + b)) = (ra; + by),....,r(a + b))
= (ra, +rby,...,ra, + rb) = (ray, ....ra) + (rby, ..., rb))
=r(a1,...,ak)+r(b1,...,b,,)=rA +rB

so that Axiom $ is satisfied.

Axiom 6. Let r, s be numbers and A = (a,, ..., a,). Then

(r + A = ((r +s)ay, ..., + s)ay)

= (ra, + say, ..., ra; + sa,)
(rag, ..., rap) + (say, ..., say)
rag,...,a) + s(ag, ..., a)
=rA +sA

i

so Axiom 6 holds.

Axiom 7. Let r, s be numbers and A = (qy, ..., a). Then

(rs)A = (rsay, ..., rsay) = r(say, ..., say)
= r(s(a,, ..., ) = r(s(A))
so Axiom 7 holds.

Axiom 8. Instant.

Therefore R is a vector space. O

Before turning to a few additional examples of vector spaces let us deduce
some more elementary consequences of the axioms. One of these is the
general associative law.

Proposition 2.5. Let n be an integer n > 3. Then any two ways of associating
a sum
Al + ce + A"

of n-vectors give the same vector. Consequently sums may be written without
parentheses.

The proof of this proposition is elementary and may be carried out by
induction on n. Similarly we have:

Proposition2.6. Let n be any integer >2. Then the sum of any n-vectors
A,, ..., A, is independent of the order in which the sum is taken.

18
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Notations. We will use the symbol e as an abbreviation for **is an element of.”

Thus x € § should read: x is an element of the set S.

The symbol < is an abbreviation for “is contained in.” Thus S= T
should be read: the set § is contained in the set T.

If S and T are sets then the collection of elements contained in either
set is denoted by S U T. Thus x € S U T is equivalent to xe S or x € T.
The collection of all elements common to both sets is denoted S N T.
Thus x € S N T is equivalent to x € S and x € T. The set S U T is called
the union of S and T and S N T the intersection of S and 7. We denote
by J the empty set.

The axioms for a vector space that we have given are the axioms for a
real vector space, that is a vector space whose scalars are the real numbers,
which we denoted by R. It is also possible and often important to study
vector spaces whose scalars are the complex numbers, which we denote
by C. A vector space with complex scalars is called a complex vector space.
The axioms for a complex vector space are exactly as for a real vector space
except that the numbers (=scalars) are to be complex. The generic example
of a complex vector space is the complex Cartesian space C* of k-tuples
A =(ay,...,a) of complex numbers where, for vectors A = (a,,...,a,)
and B = (b,, ..., b,) and for scalars r € C, vector addition and scalar multi-
plication are given by

A+B=(al +b1,...,a,‘+bk)
and
rA = (ra,, ..., ray).

For a while at least we will study only real vectors spaces, indicating
where necessary the modifications required in the complex case.

EXERCISES

1. Assume that the plane is equipped with a coordinate system. The set ¥~ of all vectors
P with initial point at the origin and terminal point at P = (x, y) of Chapter 1 is a
vector space with the operation described in Chapter 1.

. Let A = {(2a,a)lae R}, B = {(b,b)|be R}. Find A U Band A n B.

. A = {(2n,n)|n € integers}, B = {(k + 1, k)|k € integers}. Find A U B, A n B.
. IfA= B ,Bc CthenA4 < C.

.IfAcB, AcCthenA< BnC.

.IfA>B, A>CthenA>BuC.

. Show An(BNC)=(AnB)n(AnC)and An(BuC)=(AUB)n(An (),
where A. B, C are sets.

N N O AW

8. LetA={xeR||x|>1},B={xeR|-2<x<3}.FindAuBand A nB.

19



2: Vector spaces

9.

Let ¥ be a vector space. Prove each of the following statements:

(a) IfAe¥ and a1s a number then uA = 0 1ffa = O or A = 0, or both.
(b) If Ae ¥ and a is a number then aA = A iffa =1o0r A =0,or both.

10. Let V be the set of all ordered pairs of real numbers (a, b). Define an addition for

11.

12.

20

the elements of V by the rule
(@, b)®(c,d)=(a+d.b+0)
and a multiphcation of elements of ¥ by numbers by the rule
a-(c,d) = (ac,d).
Is V, with these two operations, a vector space? Justify your answer.

A translation of the plane IT is a function T+ IT — IT with the following two prop-
erties:

(1) There is a constant k, called the length of the translation, such that for every

point p I the distance from p to T(p) is equal to k.
(2) For any two points p, g € [T the distance from p to g is the same as the distance
from T(p) to T(q).

Introduce cartesian coordinates in I'T and show:

(a) If T is a translation, then for every p = (X, y)ell, T(p) = (x + [, x + [,)
where T(0, 0) = (I,, [,). T is said to be the translation by [ = (I, [5).
(b) If I = (I,, I,) e T1 show that

Te) =G+, y+hL), p=@xyel
defines a translation of 1.
If T, S are translations define their sum T @ S by
(T @ S)(p) = T(S(p))

(c) Show that T @ S is again a translation. If T is the translation by [ = (I, 1,)

and a is a number define a - T to be the translation by (al,, al,).
(d) Show that the set of translations with the addition @ and scalar multiplication -

form a vector space.

Show that if a vector space contains two elements then it contains finitely many.



Subspaces

Definition. A nonempty subset % of a vector space ¥~ is called a linear sub-
space of ¥ iff the following two conditions are satisfied:

(1) fAe and Be% then A + Be %
(2) fAe% andre R thenrA e %.

These two conditions assert that applying the two basic vector operations
to elements of the collection % give again elements of the collection #.
If the vector space ¥ is complex then Condition (2) should be replaced by
(2C) if A € % and ¢ € C then cA € %, and likewise in the sequel.

Proposition 3.1. If % is a linear subspace of the vector space ¥ then # is
itself a vector space if we define vector addition and scalar multiplication
asin ¥

ProoF. Notice that Conditions (1), (2) assure us that we have operations

on %, i.e., if A and B belong to % so do A + B and if r belongs to R, rA also

belongs to %. The properties expressed by Axioms 1, 2, 5, 6, 7, and 8 are
valid for vectors in ¥~ and hence for vectors in the smaller set %. To verify

Axiom 3 we first show that 0 € . Since % is nonempty there exists at least

one vector A € %. By (2.1) and Condition (2) for a subspace 0 = 0A € %.

Axiom 3 is now immediate since it holds in ¥". To verify Axiom 4 suppose

that Ae%. Then (—1)A e %, but by (2.2), (—1)A = —A and therefore

— A € % and Axiom 4 holds. O

EXAMPLES

(1) v is always a subspace of 7.
(2) The set consisting of the zero vector alone {0} is always a subspace of ¥".
We often abuse notation and write 0 for this subspace.
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3. Subspaces

Definition. If A,,.... A, are vectors of ¥, then a linear combination of
A, ..., A, s a vector of the form

A=A+ +a,A,

where a,, ..., a, are numbers.

Definition. If the vectors A, ..., A, are fixed, the linear span of Ay, .. A,,
denoted £(A,, ..., A,), is the set of all vectors of ¥ which arc linear
combinations of A, ..., A,.

Proposition 3.2. Suppose that A, ..., A are vectorsof ¥ ', then L(A . ..., A,)
is a linear subspace of ¥ .

PrOOF. We must verify that the two conditions of the definition of linear
subspace are satisfied by the linear combinations of A, ..., A,. So suppose

ALA"e LA, ..., A).

Then

A =adA +- +d,A,

A" =diA + - + ajA,
for suitable numbers a,...,q,, af,...,a,. Then using the gencralized
associative and commutative laws we find

A+A" =a)A 4+ +dA, +alA + - + dlA,
= a1A; + diA, + - + @A, + @ A,

(@) + aDA; + -+ + (a, + ap)A,

which shows that A’ + A” is again a linear combination of A,, ..., A,, that
s, A"+ A"e L(A,,...,A,). Similarly if re Rand A e L(A,, ..., A,) then

A=aA + - +a,A,

for suitable numbers a,, ..., a,, so
rA = r(alAl + cee 4 anA")
= ralAl + -+ ranA"
showingrAe L(A,,..., A,). Therefore £(A,, ..., A,) is a subspace of ¥".
a

The idea of the linear span is not restricted to finite sets of vectors, but
may be extended to arbitrary sets of vectors as follows.

Definition. Let ¥~ be a vector space and E = ¥~ , that is, E is a collection of

vectors in #". A linear combination of vectors in E is a vector in ¥ of the
form

alAl + azAz + M + a,,An
22



3: Subspaces

where A,, ..., A, € E. The linear span of E, denoted by £(E), is the set
of all vectors that are linear combinations of vectors of E.

Proposition 3.3. Let ¥ be a vector space and E = ¥". Then £(E) is a linear
subspace of V.

The proof of (3.3) follows closely the proof of (3.2) and will be left to the
diligent student. Note that the linear span allows us to assign to each subset
of ¥” a subspace of ¥". Note E = L(E).

Proposition 3.4. Let ¥~ be a vector space and E = ¥~. Then E = £ (E) iff
E is a linear subspace of ¥".

PROOF. Suppose that E is a linear subspace of ¥~. Then if A,,..., A, € E
and a,,...,a, are numbers the vector a,A; + --- + a,A, belongs to E
because E is closed under the operation of scalar multiplication and vector
addition. Therefore £L(E) < E. Since E = L(E) we must conclude that
E = L(E).

Conversely, suppose that E = Z(E). If A, B¢ E then A + B is certainly
a linear combination of vectors in E and hence A + B belongs to Z(E),
which since Z(E) = E leads us to conclude A + B e E. Likewise qA is a
linear combination of vectors of E and hence belongs to £(E) = E. Therefore
E is closed under vector addition and scalar multiplication, and hence E is a
linear subspace of 7. O

The preceding propositions show that in general a vector space has an
abundance of subspaces.

ExampLE. In R3 consider the subspace spanned by the two vectors
A = (1,0,1) and B = (0, 1, 0). (See Figure 3.1.) Note that this is just the
plane through the origin, x — z = 0. That is the vectors in £(A4, B) are
those vectors (x, y, z) € R3 whose coordinates satisfy the equationx — z = 0.

A

Figure 3.1
23



3: Subspaces

Proposition 3.5. Let & and . be subspaces of ¥v". Then .¥ N .7 is also a
subspace of ¥".

PROOF. Suppose that Ae ¥ " T andBe ¥ n.7. Then A€ .¥ and Be &,
Since & is a subspace A + Be &. Likewise A e / and B € J and since 7
is a subspace A + Be 7. Therefore A + Be & n J. If r is a number, then
since & and 7 are subspaces rA € & and rA € 7 so rA € ¥ n 7 showing
that & n 7 is again a subspace of ¥". O

Definition. If & and .7 are subspaces of ¥/, their sum, denoted by ¥ + .7,
is defined to be the set of all vectors C in ¥~ of the form

C=A+B
where A € ¥ and Be 7.

Proposition 3.6. If & and 7 are subspaces of the vector space ¥ then so is
S+ I,

PROOF. Suppose that C,, C, € ¥ + 7. Write
C,=A +B, A e¥ B e
C2=A2+B2 AZG.S’,BZEH’.
Then

C,+C,=A,+B, +A,+B,
=(A; +A;) + (B, + By

Let A=A, +A,, B=B, +B,. Since & and 7 are subspaces A € ¥
and B € 7 while since

it follows that C, + C, e & + 7.
Next suppose that Ce & + 7 and r € R. Then we may write

C=A+B Ae ¥ Be T
and hence

rC = r(A + B) = (rA) + (rB).
Since & and 7 are subspaces rA € &, rB € 7 and hence C € & +7. 0O

PROBLEM. Suppose that &, 7 are subspaces of ¥". When is & U 7 again a
subspace of ¥"?

Answer. If ¥ <« T or I c <.
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EXERCISES

1.

Which of the following collections of vectors in R are subspaces?

@) % = {(x), %, x3) € R*|x, = 0}
®) % = {(x,, x,,x3) € R3|x, = 0}
©) U = {(x,, x5, x3) € R3|x; + x; =0}
d) = {(x;,x;,x3)eR3|x; + x, =1}
(€ U= {(x1, x2,x3) € R3¥[x, + x, = 0}.

. Determine the subspace of R?® which is the linear span of the three vectors (1, 0, 1),

0,1,0),(0, 1, 1).

. Repeat Exercise 2 for (1, 0, 0), (0, 1, 0), (1, 1, 1).

. Suppose &, 7 are subspaces of ¥ and & n 7 = 0. Show that every vector in

& + 7 can be written uniquely in the form A + B, A€ &, B € 7. Construct an
example to show that this is false if ¥ N 7 # 0.

. Show that any nonzero vector spans R'.

6. Show that the two sets of vectors

10.

11.

12.
13.

{A=(1,1,0),B=(0,0, 1)}
and
{C=1,1,1),D=(-1,-1,1)}

span the same subspace of R3,

. Let ¥ be the set of pairs of numbers A = (a,, a,). If A, Be ¥ define (B = (b,, b,))

A+B= (a, + b],az +b2).
If a is a number define
aA = (aa,, 0)

Is ¥ a vector space? Why?

. Suppose ¥ is a vector space and E, F are subsets of ¥". Show

(@) Ec F= L(E) = £L(F).
(b) L(Eu F) = L(E) + £L(F).
(€) L(ENnF)c L(E)n L(F).

. Let ¥~ be a vector space and E, F  ¥". Suppose £ (E) = £L(F). Is it true that

EcF?

Suppose that ¥ is a vector space and E < ¥ If % is a subspace containing E then
4 contains ZL(E).

Suppose ¥ is a vector space and E < ¥".Show that £(E) = n {#|% is a subspace
of ¥~ and % contains E}.

For any subspace % of ¥ show that % + % = %.

Find all the linear subspaces of R2.
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14,
15.

16.

17.
18.

19.

20.

21.

22.

23.

26

Find all the linear subspaces of R>.

Show that a subset E of a vector space ¥~ which does not contain 0 is not a subspace
of ¥

Let E be the subset of R? defined by E = {(x, y)|x = 0, y € R}. Is E a subspace of
R2?

Let E = {(x, 2x + 1)|x € R}. E 15 a subset of R2. Is E a subspace of R*?

(a) Let E = {(2a,a)|a € R}. Is E a subspace of R??
(b) Let B = {(b, b)|b € R}. Is B a subspace of R??
(c) Whatis En B?

(d) Is E U B a subspace of R??

(¢) Whatis E + B?

Let & and J be subspaces of 7. Prove:

@) S+7 =LFLuT).

b) NS +T)=9.

c +IT =9 + .

d ¥ =T, then¥ +9 =7.

Let " be a vector space, A, B, Ce¥. Suppose A + B + C = 0. Show that
ZL(A,B) = £(B,C).

Let ¥~ be a vector space and # a subspace of ¥ Show that
{AeV|A¢#}
is not a vector subspace of 7"
Let ¥~ be a vector space, # a subspace of ¥, and A, B € #. Assume that
A¢W but Ae L(¥# u (B)).
Show that Be L(¥%" U {A)).
Let &, 7, % be subspaces of a vector space #". Is 1t always true that

ST +U)=(FT)+ (S + #)

. Can 1t happen for two subspaces ¥ and 7 of ¥ that &' N T = x?

- Can you find two vectors A, B € R3 such that £(4, B) = R?



Examples of vector spaces

Before continuing with our study of the elementary properties of vector
spaces and their linear subspaces let us collect a list of examples of vector
spaces. We have already encountered the cartesian k-space R* and so for
the sake of completeness let us begin by listing this example:

ExaMpLE 1. R*

The first new example that we have in this chapter is primarily designed
to destroy the belief that a vector is a quantity with both direction and
magnitude and to give meaning to the phrase in our comments on axiomatics
in Chapter 2, that “the possibility is opened of assigning to them (the axioms
of a vector space) content in new and unforeseen ways.”

ExaMPLE 2. 2 ,(R)

The vectors in 2,(R) are polynomials
px)=a¢ +a;x +--- + a,x"
of degree less than or equal to n, that is, m < n. Addition of vectors is to be
ordinary addition of polynomials and multiplication of a polynomial by a
number, the ordinary product of a polynomial by a number. With these
interpretations of the basic terms:
vector «> polynomial of degree < n
vector addition «+ addition of polynomials
scalar multiplication < multiplication of a polynomial by a number,

we obtain an example of a vector space. To verify that 22,(R) is indeed a
vector space we must check that the eight declarative sentences obtained
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4- Examples of vector spaces

from these interpretations of the basic terms vector, vector addition, scalar
multiplication, are true sentences. This is a straightforward deduction from
the (assumed) properties of real numbers following the pattern of (2.4) and
will be left to the diligent reader.

Note that 1n this example it is very difficult to say what direction or length
a vector has.

ExaMpPLE 3. C

Let us denote by C the complex numbers. (We will not here be concerned
with the technical details of constructing the complex numbers, but will
take them as we learned them in grammar school.) Recall that a complex
number looks like

a + bi

where a, b are real numbers, and i is a number with i = —1.

The vectors in our vector space will be complex numbers. Addition of
vectors is to be the ordinary addition of complex numbers, and scalar
multiplication the familiar process of multiplying a complex number by a
real number. With these interpretations of the basic terms

vector <> complex number
vector addition «+ addition of complex numbers

scalar multiplication < multiplication of a complex number
by a real number,

we obtain an example of a vector space. The verifications are again routine.

Note that in Example 3 we are not using all of the structure that we have,
for it is possible to multiply two complex numbers, that is, in this example we
may multiply two vectors, something it is not always possible to do in a
vector space. This is a possibility worthy of further study, and we will do
Just that when we study spaces of linear transformation and linear algebras.

Note. the product of two polynomials of degree at most n will have
degree at most 2n, so you cannot multiply elements of 2,(R) in any obvious
way.

Example 2 is a very important example, and a prototype for many others
of the same type. These examples are characterized by the fact that their
“vectors” are actually functions of some type or other.

ExaMPLE 4. 22(R)

The simplest way to obtain a space akin to but different from 22,(R) is
simply to remove the restriction that the polynomials have degree at most n.
In this way we obtain the vector space 2(R) whose vectors are the poly-
nomials

p(x) = ag + a;x + -+ + apx"

28



4: Examples of vector spaces

with no restriction on m. The interpretation of the basic terms we propose in
this example is:

vector «» polynomial
vector addition «» addition of polynomials
scalar multiplication < multiplication of a polynomial by a number.

It is again a routine verification that the vector space axioms are satisfied.
EXAMPLE 5. 6(a, b)

This is a very fancy example, and included only to indicate the wealth of
possible examples of vector spaces.

Let a and b be numbers with a < b. The vectors of é(a. b) are the con-
tinuous functions defined fora < x < b. Addition of vectors is to be addition
of functions. That is if f and g are functions defined and continuous for
a < x < bthen f + g is the function defined by

(f +9)(x) = f(x) + g(x)

for all a < x < b. It is an important theorem of the calculus that f + g is
again a continuous function for a < x < b. Scalar multiplication is to be
defined as the ordinary product of a function by a number. If the function is
continuous then its product by a number is also continuous. The basic
terms of a vector space are to be interpreted as follows in this example:

vector < continuous functionona < x < b
vector addition « addition of functions
scalar multiplication «» multiplication of a function by a number.

Again the vector space axioms are easily verified.

EXAMPLE 6. Linear Homogenous equations. A linear homogenous equation in

the variables x, ..., x, is an equation of the form

() a,;x; +a,x; +---+ a,x, =0.

A solution to this equation is a sequence of n-numbers (s, ..., s,) such that

a,s; +---+a,s, =0.

If A=(s,...,s,)and B=(t,,....r,) are solutions to (x) define
A+B=(s; +1;,....5,+1,).

We claim that A + B is again a solution to (x). For we have

ay(s; + 1)+ ax(sy +t3) + -+ ays, + 1)
=a8, + ayty +a,s, + axt; + -+ + a,s, + a,t,
=a,8; +a;5; + -+ a,s, + ajt; + axt, +--- + at,
=0+0=0
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4: Examples of vector spaces

as we claimed. Next define aA for a number a to be
aA = (asy, ... as,).
Simple manipulation shows
a,(as;) + -+ + a,(as,) = aa,s, + --- + adys,

= a(a,s, + -+ + a,s,)
=a(0)=0

so that aA is again a solution to (). We now define a vector space ¢ by the
interpretation
vector < solution to (x)
vector addition <« as defined above
scalar multiplication « as defined above.

To show that ¥ is a vector space we will show that it is actually a linear
subspace of R". For by definition the vectors of ¥ are scquences (s, ..., s,)
of numbers and hence are vectors in R". The process of adding solutions
and multiplying solutions by scalars 1s exactly the process of adding vectors
in R" and multiplying a vector of R" by a number. In our preceding discussion
we checked

(1) IfA,Be ¥ then A + Be ¥
(2) If A € ¥ then aA € ¥ for any number a.

Thus we may apply (3.1) to conclude that #” is a vector space. But wait! In
order to apply (3.1) to ¥~ we must know that ¥ " is nonempty, that is, that
(%) has at least one solution. Happily this is a simple point, because (0. ..., 0)
is a solution to () as one easily sees, since

a0+a,0+:--4+a0=0+---+0=0.
Thus 7 is a linear subspace of R".

The preceding example may be extended from one equation to many,
but this is a topic for future study. (Await Chapter 13.)

Continuing our list of examples we introduce:
ExaMPLF 7. Let S be a set and % (S) the set of all functions f:S — R. If
f, g € F(S) define

f+g:S-R
by
(f + g)s) = f(s) + g(s)
and for a real number r define
M:S-R
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4: Examples of vector spaces

by

(rf)(s) = r(f(s)).
forallsesS.

Equipped with this vector addition and scalar multiplication the set Z(S)
becomes a vector space. The zero vector of F (S) is the function

0:S-R
defined by
0(s)=0

for all s € S; that is, 0 is the constant function which takes the value O for all
s € . The negative of f € Z(S) is the function

—f:S-R
defined by
(—=f)(s) = —f(s).

It is now routine to verify that the axioms of a real vector space are satisfied
for Z(S).

We can also make the set of all complex-valued functions .F(S) =
{f:S — C} into a complex vector space by setting

(f + 2)(s) = f(s) + g(s)
(cf)(s) = c(f(s))

forallf,ge #(S),seS,and ceC.
If T < S then we denote by F (S, T) the set of all functions

f:S-R
such that
f(s)=0 forallseT.

The set (S, T) = #(S) is 1n fact a subspace. For if f,ge #(S, T) and
s € T then

f+s)=1s)+gs)=0+0=0
and if r € R then
(rf)(s) = rf(s) =r-0 =0,
so that f + ge #(S, T), rfe F#(S, T), and finally since 0 € F#(S, T) we
see that # (S, T) is a subspace of F(S).

Finally we will close the introduction to examples of vector spaces by
describing a rather artificial example.
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4: Examples of vector spaces

ExaMpLE 8. Let ¥ be the set of all positive real numbers and define for
A, B e ¥ a vector sum by

A+B=AB

where the product on the right is the usual product of numbers. If g is a
number and A € ¥~ define

a-A=A"

that is the number A raised to the a power. Note that since A > 0 the (1/a)th
root of A will always exist. For example, with these definitions

2+3=6
2-3=0.

We claim that with these definitions of vector, vector addition and scalar
multiplication ¥~ becomes a vector space. The details of verification are left
to you.

The preceding list only barely scratches the surface of the enormous
variety of examples of vector spaces. More examples will appear as we
progress through the book and will by no means exhaust the possibilities.

EXERCISES

1. Show that 22,(R) is a linear subspace of 2 (R) whenever r < s.

2. Show that 2(R) is always a subspace of 2(R).

3. What is the span of {1 + x, 1 — x} in P(R)?

4. What is the span of {1, x2, x*} in 2,(R)?

5. Find a vector that spans the subspace 2x — 3y = 0 of R2.

6. Find a pair of vectors that span the subspace x + y — 2z = 0 of R*.

7. Verify that example 7 is indeed a vector space. What is the zero vector in this

example?
8. Let & be the subset of 22(R) defined by
& = {p(x)|p(x) € Z,(R) and p(—x) = p(x)}
Show that & is a linear subspace of 22,(R).

9. The set of all continuous functions y = f(x), ~0 < x < co satisfying the dif-
ferential equation

yn__yl_zy:o

is a vector space. (Infact any solution of this differential equation is a linear combina-
tionof y = ¢"*and y = ¢?*)
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.

12.

13.

14.

15.

16.

17.

18.

4: Examples of vector spaces

The set of all continuous solutions of a linear differential equation
ag(™ + a ()Y + -+ g, ()Y + ax)y =0

where ay(x) is not zero on [a, b], and a/x) are continuous on [a, b],i = 1.2,...,n,
is a vector space.

Let ¢ = {fe $(a, b)|/ is differentiable on (a, b)}. Show that & is a subspace of
%(a, b).

Let 2(a, b) = {Polynomials of x, a < x < b}. Then #(a, b) « Z < 6(a, b). Show
P(a, b) 1s a subspace of 2 and also a subspace of 6(a, b).

Consider the set 2™ of all n-times differentiable functions on the interval [a, b].
'™ is also a vector space. Is 2(a, b) < &'"™?

Let S be a set and F(S) the vector space of real-valued functionson S. If 4, B < §
show that

F(S,4)nF(S.B)=F(S,AvB).
If A = B show that #(S, A) contains .# (S, B) as a subspace.
Let Sbeasetand T < S. Is it true that

FES)=F(S. T)+ FS.S-T)?

Let ¥ be a vector space and S a set. Define Fun(S, ¥") = {f: § — ¥7}, that is,
the set of all functions from S mto 7. (In this notation F#(S) = Fun(S, R).) If
f,ge Fun(S, ¥’) definef + g: S— ¥ by

(f + g)s) = f(s) + g(s)-
Iffe Fun(S, ") and re Rdefine r-f: S— 7 by
(r-f)(s) = r-1(s).

(a) Show that Fun(S, ") equipped with these two operations becomes a vector
space.

(b) If 77 is a subspace of # show Fun(S, ¥") is a subspace of Fun(S, #").

(c) If & and J are subspaces of ¥~ show

Fun(S, &) + Fun(S. 7) = Fun(S, & + 7).

Let ¥~ be a vector space and
¥ ->R
such that
(LF 1) o(A + B) = ¢(A) + ¢(B), VA,BeY;
(LF 2) o(rA) = rp(A), VAe? VreR.

Show that .1" = {A e ¥"|@(A) = 0} is a vector subspace of ¥ .
Let ¥ be a vector space and S be a set and s€ S a fixed element. Define

es:Fun(S, ¥)—> 7~
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19.

20.

21.
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by
e (f) = 1(s).
Show that
A = {feFun(S, ¥")|e(f) = 0}
is a subspace of Fun(S, 7").

Let " and #" be vector spaces. Show that the cartesian product ¥ x # consisting
of all the ordered pairs (A, B), Ae ¥, Be # becomes a vector space if we define
vector addition and scalar multiplication componentwise, that 1s

(A,B)+ (A", B)=(A"+ A",B + B"),
r(A, B) = (rA, rB).
Let ¥~ be a vector space, S a set and s, t € Y. Define
¢o:Fun(S,¥)—» ¢ x v
by
o(f) = ({(s), £(r)).
Show that
N = {fe Fun(S, ¥)|e(f) = 0
is a vector subspace of Fun(S, ¥ ).
Let ¥ be a vector space, # a subspace of #, S a set and s € §. Show that
% = {f e Fun(S, ¥)|f(s) e W}
is a subspace of Fun(S, ¥").



Linear independence
and dependence

Definition. A set of vectors E is said to be linearly dependent if there exist
distinct vectors A,,..., A, in E and numbers a, ..., aq;, not all zero,
such that

(*) alA, +a3A2+"'+akAk=0.

Equation (x) is called a linear relation between A, ..., A,.

ExAMPLE 1. Let E be the set of vectors
E ={0,1,0),(0,1,1), (0,0, 1)}
in R*. Then E is a linearly dependent set of vectors because
1(0,1,0) + 1(0,0, 1) + (= 1)(0, 1, 1) = (0, 0, 0).

ExAMPLE 2. Let E be the set of vectors
E = {p(x)|such that degree p(x) is at most 1}

in 24(R). Then E is a linearly dependent set of vectors because the vectors
1, x,1 + x belong to E and

I(1+x)+(-Dx+(=1H(1)=0.

Definition. A set of vectors E that is not linearly dependent is said to be
linearly independent.

ExaMPLE 3. Let E be the vectors
{(1,1,1),(0,1,1), (0,0, 1)}
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5: Linear independence and dependence

in R3. Then E is a linearly independent set of vectors. In order to prove this
suppose to the contrary that E is linearly dependent. Then there must
exist numbers a,, d,, s, not all zero, such that

a, (1,1, 1) + a5(0, 1, 1) + a3(0,0, 1) = (0,0, 0).

But if these were so, then since
a,(1, 1, 1) + a,(0, 1, 1) + as3(0, 0,1) = (a;,a, + ay.a, + a, + a;)
we would have
0,0,0) = (a,,a, + az,a, + a; + a3)

and hence that

a, =0 a+a,=0 a, +a,+a;=0
from which we see that of necessity

a,=0, a;=0 - a3=0.

But this contradicts our original assumption that not all of a,, a,, and a,
are zero. Therefore the set E cannot be linear dependent, and hence must
be linearly independent.

ExAMPLE 4. Let E be the set of vectors {1, i} in C. Then E is linearly inde-
pendent. For if we suppose that {1,i} is dependent, then there are real
numbers a,, a,, not both zero, such that

ay(1) + ay(i) = 0.

Now let a, — a,i be the conjugate complex number. Then 0 = a, + a,i
implies

0= (a, + ayi)(a, — a,i) = a? + a3
which is impossible. Therefore E cannot be linearly dependent and hence
must be linearly independent.

Remark. The proof above uses the conjugate complex number. There is
an alternative proof as follows. Since we consider only real vector spaces
now, suppose there are two real numbers a,, a, so that

all + azi = 0
Then
ay = —ayi ().

a, is real from assumption, and since a, is real (x) says that a, is also purely
imaginary. The only way to avoid a contradiction is for ¢; = 0 and a, = 0.
Thus {1, i} is a set of linearly independent vectors.
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5: Linear independence and dependence

EXAMPLE 5. Let E be the set of vectors {1 + x, 1 — x} in 2,(R). Then E is
linearly independent. For suppose to the contrary that {1 + x,1 — x} is
linear dependent. Then there exist numbers a,, a,, not both zero, such that

a(l +x)+a,(1 -x)=0.
Then we will have
0=ag(1+x)+ay(l =x)=a, +a;x+a, —a,x
= (al + az) + (al - az)x.

Remember that a polynomial is identically zero iff all its coefficients are
zero. Therefore we have

a, +a, =0, a, —a, =0.
Solving these equations we find
a = 0, a, = 0

which is a contradiction to the assumption that {1 + x, 1 — x} is a linearly
dependent set of vectors. Therefore it is linearly independent.

ExAMPLE 6. Let S be a set. For each s € S the characteristic function of s is
the function

:S-R
defined by
1 ift=s,
16 = {o ift #s.

If s,...,s,€S are distinct points then their characteristic functions
Asis - -+ » Xs € F(S) are linearly independent. To see this suppose that

Ais, + o+ B, =0
is a linear relation between y,, ..., ¥5. Then

0= (aIXsk +e akxsk)(si)
= a1 Xs,(8) + - F ¥ (S)
= a10+ R o a,'_!0‘+‘a,'1 + a,-HO + - +ak0 =a;

soa; =0,a,=0,...,a,=0and g, ..., X are linearly independent.
A very quick test for a linearly dependent set is the following:

Proposition 5.1. If a set of vectors E contains the vector 0, it is linear dependent.

Proor. Clearly
1-0=0

so letting A, = 0€ E and a, = 1, k = 1 we satisfy the condition of linear
dependence. O
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5: Linear independence and dependence

Corollary 5.2. If E is a linear subspace of ¥ then E is a linearly dependent
set of vectors.

PROOE. A linear subspace always contains 0. Apply (5.1). a

Definition. A vector A is said to be linearly dependent on a set of vectors E
iff A e L(E).

Proposition 5.3. A set of vectors E is linearly dependent iff there is a vector
A in E linearly dependent on the remaining vectors of E.

PROOF. Suppose that E is linearly dependent. Then we may find distinct
vectors A,, A,, ..., A, in E, and numbers a,, ..., a, not all zero, such that

a,Al +a2A2 + - +akAk=0.

Since not all the numbers a,, . .., a, are zero, we can by changing the order
arrange so that a, # 0. Then we have

alA| = -azAz - a3A3 — = akAk
and since a, # 0,

—a —a —a
A, =—EI—Z-A2 +—;’A3 +o +7z_,kA"
and hence A, € £(A,, ..., A,) which shows (since A, ..., A, are distinct)
that A, is linear dependent on the remaining vectors of E.
Conversely, if there is a vector A in E which is linearly dependent on the
remaining vectors of E we may find distinct vectors A,,...,A,, different
from A, such that

A=azA2 + - +a,‘Ak.

Then

0 = (_l)Al + azAz + st + akAk
is a linear relation between A, = A, A,, ..., A, showing that E is a linearly
dependent set. O

Theorem 54. If E is a finite set of vectors spanning the linear subspace U
of V', that is L (E) = %, then there exists a subset F of E such that F is a
linearly independent set of vectors and L(F) = % = £(E).

PrOOF. If E is linearly independent there is nothing to prove. So suppose
that E is a linearly dependent set of vectors. By (5.3) there exists a vector A
that is linearly d