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Preface 

This book is about geometry. In particular, it is about the idea of curvature 
and how it affects the assumptions about and principles of geometry. That 
being said, I should mention that the word "curvature" does not even 
appear until the end of the fifth chapter of the book. Before then, it is 
hidden within the idea of the sum of the angles in a triangle. 

In the course of the text, we consider the effects of different assump­
tions about the sum of the angles in a triangle. The main conceptual 
tool is the tiling, or tessellation, of the plane. Changing our assumptions 
on triangles leads to vastly different consequences, which can be seen 
(literally) in the geometric patterns that arise in tilings. 

The result of this point of view is a text that goes in atypical directions 
for a geometry book. In the process of looking at geometric objects, I 
bring in the algebra of complex (and hypercomplex) numbers, some graph 
theory, and some topology. Nevertheless, my intent is to keep the book 
at an elementary level. The readers of this book are assumed to have had 
a course in Euclidean geometry (including some analytic geometry) and 
some algebra, all at the high-school level. No calculus or trigonometry 
is assumed, except that I occasionally refer to sines and cosines. On the 
other hand, the book touches on topics that even math majors at college 
may not have seen. This occurs in Chapter 5, so it is possible to skip some 
or all of this. But I think that would be a mistake. While the ideas in that 
chapter are advanced, the mathematical techniques are not. For me, that 
chapter was the main reason for writing this book. 

Here is a brief summary of the contents: 

v 



vi Preface 

Chapter 1 is an introduction to non-Euclidean geometry. Euclid's ax­
iomatic system is based on five postulates, of which four are reasonably 
intuitive. The fifth postulate, however, is quite another story. In the pro­
cess of attempting to prove that this postulate follows from the others and 
is therefore unnecessary, mathematicians discovered many equivalent 
formulations. The one that is central to this text is the statement due to 
Gerolamo Saccheri (1733): The sum of the angles in a triangle is equal to 
two right angles. Non-Euclidean geometry begins with the negation of this 
statement. Throughout the text we will be exploring the consequences 
of assuming that the sum of the angles in a triangle is always equal to, 
always less than, or always greater than two right angles. The last section 
presents a "proof" due to Saccheri that the sum of the angles in a triangle 
cannot be greater than two right angles, and a "proof" due to Adrien-Marie 
Legendre that the sum of the angles cannot be less than two right angles. 

Chapter 2 proceeds from the assumption that the angle sum is al­
ways 1800 • We consider the process of tiling the plane with regular poly­
gons. Section 2.1 sets up the machinery of isometries and transformation 
groups. In Section 2.2 we find all regular and semiregular tilings. A 
curious unsuccessful attempt to tile the plane with pentagons leads to the 
construction of self-similar patterns and leads to a digression on fractals. 
The last section introduces complex numbers as a tool for studying plane 
geometry. 

In Chapter 3 we start instead with the assumption that the angle sum 
is always less than 1800 • This is the underlying postulate for hyperbolic 
geometry; it can be illustrated by the Poincare disc. Using this model leads 
to the hyperbolic tilings, including those used by M.e. Escher in some of 
his artwork. The simplest description of isometries in this model uses 
fractional linear (Mobius) transformations. So in Section 3.3 we apply the 
arithmetic of complex numbers to the geometry ofthese transformations. 

Chapter 4 uses the assumption of angle sums greater than 1800 , which 
is the postulate underlying elliptic geometries. Section 4.1 is a brieflook 
at the complications this assumption causes. We explore the possibility of 
more than one line connecting two points, relating this to the geometry 
of the sphere. In the second section the problem of tiling the sphere 
leads to an introduction to graphs. We derive Euler's formula. The third 
section consists of the classification of regular and semiregular tilings 
of the sphere, and the construction of regular and semiregular convex 
polyhedra. The last section looks at the geometry of the projective plane 
and includes a description of the Mobius band as the set of lines in 
the plane. 

The fifth chapter, like the Fifth Postulate, is quite a bit more com­
plicated than the first four. It includes topics not found in most (any?) 
elementary geometry books. Section 1 contains Cauchy's theorem, which 
states that closed convex polyhedral surfaces are rigid. Although this is an 
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advanced theorem, the proof is elementary and relies only on properties 
of polygons and Euler's formula. 

Section 5.2 generalizes the construction of complex numbers from 
Chapter 2 to hypercomplex numbers (quaternions). Using the arithmetic 
of such numbers, we look at the problem of figuring out the effect of two 
consecutive rotations of the sphere about different axes. Along the way, 
some of the basic ideas of algebra show up. The third section describes the 
notion of curvature for polyhedra and includes a proof of the polyhedral 
Gauss-Bonnet theorem. Again this advanced theorem turns out to rely 
only on Euler's formula. 

Chapter 6 is a brief, nontechnical, discussion of how all ofthe ideas of 
the previous chapters can be blended together into a more general notion 
of geometry. The sum of the angles is used to quantify the curvature 
of a piece of (two-dimensional) space. A general curved space, either 
polyhedral or "smooth:' is allowed to have curvature that varies from 
place to place. Straight lines give way to geodesics. We briefly examine 
the mysterious behavior of shortest paths on polyhedra. A few final words 
about space-time and general relativity close the chapter. 

The contents of this book can be covered in a one-semester course; on 
the other hand, it would be easy to spend a lot more time on some of the 
topics than such a schedule would permit. Some sections are very easy to 
omit: in particular, the discussion ofMbbius transformations (Section 3.3) 
and the discussion of quaternions (Section 5.2) can be dropped to reduce 
the difficulty level. Section 2.2 on complex numbers is used in those two 
sections but not elsewhere. 

Finally, a note about proofs and mathematical rigor. I have attempted to 
be precise, not vague, about technical issues, but I have generally avoided 
the "theorem-proof" style of exposition. Geometry is a fascinating subject, 
which many people find exciting and beautiful. It is better not to sterilize 
it by obscuring the main ideas in Euclidean formalism. On the other hand, 
some rigor is absolutely essential to the subject. Failure to be careful about 
geometric arguments has led to a lot of nonsense. In Chapter I, I present 
the "proof" of the parallel postulate. It has been my practice, in teaching 
the course for which this book forms the basis, to begin by presenting this 
proof, preceded by the warning that it is not correct. I believe that the best 
way to understand the need for proof in mathematics is to see a really 
good false proof. (This one is a beauty, due to no less a mathematician 
than Legendre!) After that, I expect my students to be able to convince 
each other and me of the truth of claims they make. I also expect them to 
challenge me if they are not convinced about claims I make. This is the 
ideal environment for mathematical rigor. 
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CHAPTER 

Euclid and 
Non-Euclid 

1.1 The Postulates: What They Are 
and Why 
At the beginning of Euclid's monumental thirteen volume text The Ele­
ments [18], there is a list of 23 Definitions, five Postulates, and five Common 
Notions. This book focuses on just one of these, the fifth postulate, com­
monly known as the "Parallel Postulate!' Before we can do that, though, it 
will be necessary to get some idea of what these definitions, etc., are all 
about. If you are familiar with Euclid's axioms you may be able to skip 
this section, which is a brief (and perhaps a bit technical) review. 

Euclid attempted to give a completely self-contained theory of ge­
ometry. (Actually, very little is known about Euclid himself, so this is 
really just an inference we can draw from reading The Elements. He gave 
"definitions" of the basic objects of study in geometry. In what follows, 
I will be quoting directly from the standard source [18]. The first four 
definitions read: 

1. A point is that which has no part. 
2. A line is a breadthless length. 
3. The extremities of a line are points. 
4. A straight line is a line which lies evenly with the points on itself. 

These statements are not terribly easy to understand. They are called 

1 
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2 1. Euclid and Non-Euclid 

"definitions," but really a better term might be "undefined terms," since 
we usually define something by referring to other things we already know 
about. If geometry is to be a self-contained subject, then we start out at the 
beginning, not assuming anything. That means we do not have geometric 
objects we already know about, so we can't define things. 

Instead, we begin the study of geometry by assuming that there are 
things called "points" and "lines," etc., which we will be studying. We 
may have some prior conception of what they are; for instance, we may 
describe a point as the smallest thing there is, so that it cannot be further 
divided into smaller parts. But we don't then try to say exactly what we 
mean by a "part." We try to keep the list of such undefined terms as short as 
possible, but there have to be some items on the list. As we will be seeing 
later, it may be necessary from time to time to revise our understanding 
of what these words "mean." 

The third definition can only be understood if we use the word "line" 
to refer to line segments, which begin at a point A and end at a point B, 
and "complete" lines, which have no ends or "extremities." A line is not 
necessarily a straight line, and Definition 4 distinguishes a straight line as 
a special geometric object. What is meant by the definition is anybody's 
guess; I will give an interpretation that will be useful in this book. If A is 
a point on a line e and B is another point on the same line, then we may 
"slide" e along itself so that point A lands on point B while all the points 
on the line are moved to points on the same line. One may rightly object 
that I have not defined the concept of sliding. What I really have in mind 
is the concept of isometry, which I discuss in the next chapter. 

Next we come to the Postulates and the Common Notions (usually 
called Axioms). The Postulates are assumptions made specifically about 
geometry, which are to be taken as true without proof. The Axioms 
are assumptions about mathematical truth in general, not specific to 
geometry. Although Euclid gives the Postulates first, let us examine the 
Common Notions first. I quote from [18], pp. 154-155: 

COMMON NOTIONS 

1. Things which are equal to the same thing are also equal to one 
another. 

2. If equals be added to equals, the wholes are equal. 
3. If equals be subtracted from equals, the remainders are equal. 
4. Things which coincide with one another are equal to one another. 
5. The whole is greater than the part. 

The fourth item in this list seems to be out of place. Unlike the others, 
it seems to be specifically about geometry. It is also more mysterious than 
the others. If two things coincide, how can they not be equal? One possible 
explanation (see [18], pp. 224-231) is that what Euclid was saying was that 
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if two objects can be made to coincide with one another, then they are equal 
(or congruent). This idea of making one object coincide with another is 
called the method of superposition; Euclid used this method at times but 
appears to have disliked it. In Chapter 2 we will elaborate on this idea 
of comparing objects by moving one to the other. Now let us turn to the 
Postulates. 

POSTULATES 

Let the following be postulated: 

1. Th draw a straight line from any point to any point. 
2. To produce a finite straight line continuously in a straight line. 
3. Th describe a circle with any center and distance. 
4. That all right angles are equal to one another. 
5. That, if a straight line falling on two straight lines make the interior 

angles on the same side less than two right angles, the two straight 
lines, if produced indefinitely, meet on that side on which are the 
angles less than the two right angles. 

The first three postulates are not too bad. The first assures us that 
we can talk about line segments joining any two points. It is generally 
understood that Euclid meant by this that there is exactly one straight line 
segment passing through two distinct points, no more and no less. The 
second postulate appears to mean that a line segment is part of exactly 
one line, no more and no less. The third postulate tells us that there are 
circles of any center and radius. 

Postulate 4 is a bit mysterious. It seems so reasonable that we ought 
to be able to prove it. First we must review what we know about right 
angles. Euclid's tenth definition says: 

When a straight line set up on a straight line makes the adjacent 
angles equal to one another, each of the equal angles is right, and 
the straight line standing on the other is called a perpendicular 
to that on which it stands. 

This should not be interpreted to mean that there actually are right angles. 
In fact, Euclid proves that right angles exist in Proposition 11 (of Book I). 
The definition tells us how to know if we have a right angle. Postulate 4 
says that if you've seen one, you've seen them all. It might seem that the 
method of superposition could be used to prove this postulate. However, 
Euclid never stated the principle of superposition, and it can be argued 
that Postulate 4 is needed to justify the principle. Said another way, the 
postulate can be interpreted as saying that space is homogeneous, that 
one portion of space looks the same as any other portion of space. We 
will explore this idea in more detail in Chapter 6. 
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Another question arises from this discussion. Why should we care 
whether or not we can prove Postulate 4? Since it is so reasonable, why 
not just assert that it is true (as Euclid did) and be done with it? 1b answer 
this question, we must look at the idea of an axiomatic system. We start 
with a list of undefined terms and with a list of assumptions about those 
terms; we call the assumptions axioms or postulates. Then using these 
assumptions and the laws of logic we develop a body of theorems, each 
proved by using the axioms and the theorems we have already proved. We 
need axioms to start up this process; otherwise we would have nothing to 
use in proving the first theorem. 

1b be useful, the axioms we choose have to have four important prop­
erties: 

o. They should be about something. This is not a mathematical cri­
terion, but if the axioms are not about something interesting, then 
neither will anything else be. 

1. They should be consistent. In other words, one assumption should 
not contradict other assumptions. If our axioms were inconsistent, 
we could use logical arguments to deduce nonsense. 

2. They should be complete. There must be enough assumptions so 
that we are able to determine what is true and what is false in our 
axiomatic system. 

3. They should be independent. We should not be able to prove one of 
the axioms from the others. 

If we want a system to be consistent, it is best not to make too many 
axioms. The more axioms, the more possibility that some of them will 
clash. On the other hand, if we want a system to be complete, then 
we need to make enough assumptions. So there is a tug of war between 
consistency and completeness. 

If an axiom can be proved from the others, we can throw it out without 
reducing the scope of our theory. By shortening the list of axioms, we 
have a better chance of figuring out whether they are consistent. But 
suppose an axiom cannot be proved from the others. If we delete it as 
an axiom and try to prove it as a theorem instead, we will not succeed. 
That means the shortened list of axioms is no longer complete. Therefore, 
independence of a collection of axioms means that we cannot afford to 
make the list of axioms any shorter. 

Independence is desirable, but not really essential to a system. 1b 
assume certain theorems as axioms does not change the theory, and often 
it makes the theory easier to understand. On occasion, in later sections of 
this book, I will announce that something is a IIfact." What I am doing in 
effect is adding a theorem to my list of postulates to keep us from getting 
bogged down in details of proofs. As long as I am actually able back these 
facts up with proofs, this does no harm. 
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How can we decide whether an axiomatic system satisfies all of these 
conditions? TOUGH QUESTION! In practice, it may be difficult or im­
possible in a particular case to answer this question. We are not going to 
worry about the consistency or completeness of Euclidean geometry, but 
we will worry a bit about independence. If we could prove that all right 
angles are equal, then the fourth postulate would not be independent of 
the others and we ought to throw it out. Of course, we don't have to throw 
it out, since it doesn't change our theory. If we could prove that right 
angles are not all equal, then the postulates would be inconsistent. 

Which brings us to the fifth postulate. This one takes about three times 
as many words to state as any of the others, and it is rather mysterious. 
Euclid appeared to be aware of the special status of the postulate, since 
he deliberately avoided using it in the proofs of the first 28 propositions. 

We can worry about whether the fourth postulate is independent of the 
first three, but it seems true to us in any event. The trouble with the fifth 
postulate is that it is not so obviously true. After all, what is it saying? In 
the diagram, assume that LABC + LBAD < 180°. Then if we extend the 
lines through AD and BC far enough, they will meet. But what if the sum 
of the angles is really, really close to 180°? How do we know they will 
meet? 

c 

D 

Problem (for readers who know some trigonometry!) 
Suppose line segment AB has length 1 in., LBAD = 100° and LABC = 
79°59'59". How far is it from point A to the point of intersection of the two 
lines according to Euclidean geometry) Guess the answer before calculating. 
Do you want to check your answer by construction) 

Euclid's fifth postulate was a source of intense interest and study for 
over two thousand years. In the next section we will look at some of the 
ways various mathematicians reformulated the postulate. In the third 
section, we will see a "proof' of the postulate. However, in the early 
nineteenth century, several mathematicians independently showed that 
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the fifth postulate is in fact independent of the remaining axioms and 
postulates. 

What this implies is not only that we cannot prove the parallel postulate 
from the other postulates, but also that we cannot disprove it either. Euclid 
was absolutely right in making it a postulate, since otherwise the question 
of whether such lines meet or not could not be resolved. It is ironic 
that a famous book by the eighteenth-century mathematician Girolamo 
Saccheri, in which the author claimed to demonstrate that the fifth pos­
tulate was a logical consequence of the others, was entitled "Euclides 
ab omni naevo vindicatus" (Euclid vindicated from every flaw). In fact, 
one could more accurately say that Euclid's vindication came in the next 
century, when Karl Friedrich Gauss, Nikolai Ivanovich Lobachevsky, 1 and 
Janos Bolyai, among others,2 discovered that one could replace the fifth 
postulate by its negation and still have a consistent theory of geometry. 
Of course, this new theory is different from the one Euclid proposed; 
hence the name Non-Euclidean Geometry. But as G.B. Halsted wrote in his 
introduction to the English translation of Bolyai's The Science of Absolute 
Space (this and Lobachevsky's paper are reprinted in [4]): 

In the brilliant new light given by Bolyai and Lobachevski 
we now see that Euclid understood the crucial character of the 
question of parallels. 

There are now for us no better proofs of the depth and system­
atic coherence of Euclid's masterpiece than the very things which, 
their cause unappreciated, seemed the most noticeable blots on 
his work. 

Originally, there was only one form of non-Euclidean geometry, now 
commonly known as hyperbolic geometry. Lobachevsky published his 
paper "Geometrical Researches on the Theory of Parallels" in 1829. About 
two years later, Bolyai's work appeared as an appendix to a book by his 
father, Wolfgang. The geometry of Lobachevsky and Bolyai is based on 
the assumption that through a point not on a given line it is possible to 
find more than one line not meeting the given line. We will explore this 
assumption in Chapter 3. 

It was not until 1854 that a different geometry appeared. Bernhard 
Riemann described in his dissertation a geometry based on the idea 
that any two lines must intersect. This geometry is more complicated 
than hyperbolic geometry; it is actually necessary to modify Euclid's first 
two postulates as well as the fifth postulate. In fact, there are really two 
different geometries, sometimes called single elliptic geometry and double 
elliptic geometry. We will explore these geometries in Chapter 4. 

l. There are numerous English spellings of this name. 
2. E.g., Ferdinand Karl Schweikart. See [4]. 
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Many people have proposed alternative sets of axioms to replace those 
of Euclid. Of these, the most famous is due to David Hilbert. They are 
more precise than Euclid's five postulates, but they are also quite a bit 
more complex. Here are Hilbert's axioms of plane geometry, taken from 
[21], pp. 3-26 (I omit the axioms of solid geometry): 

I. Axioms of Incidence 

I, 1. For every two points A, B there exists a line that contains 
each of the points A, B. 

I, 2. For every two points A, B there exists no more than one 
line that contains each of the points A, B. 

I, 3. There exist at least two points on a line. There exist at least 
three points that do not lie on a line. 

These axioms say that two points determine a line and that not all 
points are on the same line. 

II. Axioms of Order 

II, 1. If a point B lies between a point A and a point C then the 
points A, B, C are three distinct points of a line, and B then 
also lies between C and A. 

II, 2. For two points A and C, there always exists at least one 
point B on the line AC such that C lies between A and B. 

II, 3. Of any three points on a line there exists no more than 
one that lies between the other two. 

II, 4. Let A, B, C be three points that do not lie on a line and 
let a be a line in the plane ABC which does not meet 
any of the points A, B, C. If the line a passes through a 
point of the segment AB, it also passes through a point 
of the segment AC, or through a point of the segment 
BC. Expressed intuitively, if a line enters the interior of a 
triangle, it also leaves it. 

c 

A B 

These axioms establish the idea of a point being "between" two other 
points (II,l and II,3) and that a line does not have any ends (II,2). 
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Axiom II,4 is known as Pasch's Postulate. Moritz Pasch was the first 
mathematician to identify assumptions that Euclid made implicitly but 
did not state explicitly. Euclid assumed in the proof of his Proposition 21 
(of Book 1) that a line entering a triangle at a vertex must, if extended 
sufficiently, intersect the opposite side. 

A subtle consequence of these axioms is that between any two points 
on a line there must be (infinitely many) other points. Perhaps you would 
like to prove this for yourself. 

Problem 
Use Axioms 1,3, II,2, II,3, and II,4 to show that for any two points A and C 

there is a point B between them on the line segment AG. [HINT Start with A 
and C and use I,3 and II,2 to find other points. Eventually, use II,4 to find an 
intermediate point on the segment AC.j 

III. Axioms of Congruence 

III, 1. If A, B are two points on a line a, and A' is a point on the 
same or on another line a', then it is always possible to 
find a point B' on a given side of the line a' through A' 
such that the segment AB is congruent or equal to the 
segment A' B'. In symbols AB == A' B'. 

III, 2. If a segment A'B' and a segment A"B" are congruent to 
the same segment AB, then the segment A'B' is also con­
gruent to the segment A" B", or briefly, if two segments 
are congruent to a third one they are congruent to each 
other. 

III, 3. On the line a letAB andBCbe two segments which except 
for B have no point in common. Furthermore, on the 
same or another line a' let A' B' and B' C' be two segments 
which except for B' also have no point in common. In 
that case, if AB == A'B' and BC == B'G' then AC == A'C'. 

III, 4. Let L(h, k) be an angle in the plane a and a' a line in the 
plane a and let a definite side of a' in a be given. Let h' 
be a rayon the line a' that emanates from the point 0'. 
Then there exists in the plane a one and only one ray k' 
such that the angle L(h, k) is congruent or equal to the 
angle L(h', k') and at the same time all interior points of 
the angle L (h', k') lie on the given side of a'. Symbolically 
L(h, k) == L(h', k'). Every angle is congruent to itself, i.e., 
L(h, k) == L(h, k). 

III, 5. If for two triangles ABC and A' B' C' the congruences 

AB == A'B',AC == A'C', LBAC == LB'A'C' 
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hold, then the congruence 

LABC == LA' B' C' 

is also satisfied. 

Axiom III,1 can be used to show the existence of circles. Axiom III,S 
can be used to prove the SAS congruence law. Axiom III,4 is difficult to 
read. It says that given a ray h' emanating from a point 0' there are two 
other rays that make a specified angle with h'. Th distinguish between the 
two angles, think of h' as being part of a line a'. Then one of the angles 
lies on each side of this line. 

PICK A SIDE 
a' 

0' 
h' 

IV. Euclid's Axiom 

Let a be any line and A a point not on it. Then there is at 
most one line in the plane, determined by a and A, that 
passes through A and does not intersect a. 

V. Axioms of Continuity 

V, I (Archimedes' Axiom) If AB and CD are any segments 
then there exists a number n such that n segments CD 
constructed contiguously from A, along the ray from A 
through B, will pass beyond the point B. 

V, 2 (Completeness). An extension of a set of points on a line 
with its order and congruence relations that would pre­
serve the relations existing among the original elements 
as well as the fundamental properties of line order and 
congruence that follows from Axioms I-III, and from V, I 
is impossible. 

We saw in the problem above that between any two points on a line 
there has to be another point. The real number line has this property, but 
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so does the rational number line. Ifwe choose a unit of measurement for 
lengths, then it is possible to show that not all lengths are rational. (This 
fact was known to Pythagoras). However, it requires an extra axiom to 
show that all real numbers are possible lengths. This is the completeness 
axiom. (An example of a geometry in which this axiom fails is described 
later in this section.) 

Problem 
Prove Euclid's fourth postulate from Hilbert's axioms. [HINT Use SAS to prove 
that if two angles are equal, then their supplements must be equal. That proves 
that straight angles are equal.] 

Models. Hilbert did not merely formulate a system of axioms for geom­
etry; he also addressed the questions of consistency and independence 
of the axioms. How can one show that axioms are consistent? Hilbert's 
approach was through the use of a model. There are certain undefined 
terms, including point, line, on, between, and congruent. Hilbert gave an in­
terpretation of each of these using arithmetic: he used Cartesian geometry. 

Suppose we represent a point by a pair of real numbers Ca, b). It takes 
two numbers to describe the location of a point. To describe a line, we 
are going to need three numbers. (Think about why this is so!) The ratio 
Cu : V : w) of three numbers defines a line, provided that Li and v are 
not both zero. (By a ratio, we mean that Cu : V : w) and CUi: Vi : Wi) 

should be thought of as the same if the ratios of corresponding pairs of 
numbers are the same.) A point (x, y) is on a line (u : V : w) if the relation 
ux + by + w = 0 holds. 

This is, of course, what we do in analytic geometry. It is now a rea­
sonably easy process to check that all of the postulates of Hilbert are 
true if we interpret them as statements in analytic geometry. We say that 
analytic geometry is a model for Hilbert's geometry. 

Now suppose the axioms of Hilbert were not consistent. Then it would 
also have to be true that the laws of ordinary arithmetic are inconsistent, 
since each of the Hilbert axioms can be deduced from the laws of arith­
metic. So as long as we assume that arithmetic has no inconsistencies, 
then neither does Euclidean geometry. 

Models can also be used to prove the independence of axioms. For 
example, Hilbert described ([21], pp. 29-30) a model for geometry in 
which every axiom holds except the last one (completeness). The model 
he used is just like ordinary analytic geometry, except that he only allows 
numbers that can be constructed from whole numbers using addition, 
subtraction, multiplication, division, and the operation ~, where x 
is any number already produced. So we can get the number .jl3 because 
it equals 2J1 + (3/2)2. But we cannot get all real numbers. For example, 
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we cannot get the number IT, because IT is not an algebraic number (a 
root of a polynomial with rational coefficients.) 

Hilbert showed that his model satisfies all of the axioms of geometry 
except the Completeness Axiom, which is false in this model. If we take 
as our axioms of geometry everything except Y,2 plus the negation ofY,2, 
we get something that is as consistent as arithmetic. This proves that the 
Completeness Axiom is independent of the other axioms. Why is that? 
Because if we could prove the Completeness Axiom, then we would find 
an inconsistency in the model of geometry just described, and that would 
mean that arithmetic is inconsistent. 

In Chapter 3 we will see the Poincare model of the hyperbolic plane, 
which is based on Euclidean geometry. This model shows that if hyper­
bolic geometry is inconsistent, then so is Euclidean geometry (and hence, 
arithmetic). 

1.2 The Parallel Postulate and its 
Descendants 

In this section we will look at alternative formulations of the parallel 
postulate. Originally, many of these formulations were tacit assumptions 
made by mathematicians attempting to prove the parallel postulate. Some 
of them will shed light on the role the fifth postulate plays in describing 
the geometry of space. References for this section include [4], chapters I 
and II; [18], 202-220; and [36], chapter II. All of the statements are true in 
Euclidean geometry, so the key to understanding them is to figure out how 
each assumption implies the parallel postulate. In the more interesting 
cases, this is not altogether obvious! 

The first example is the formulation used by Hilbert as Axiom IV (see 
the previous section). It states: 

Hypothesis 1 
given line. 

Through a given point can be drawn only one parallel to a 

The language of this statement is tricky. What does the word "parallel" 
mean? According to Euclid: 

Parallel straight lines are straight lines which, being in the same plane 
and being produced indefinitely in both directions, do not meet one 
another in either direction. 

This is the definition we will be using. Other definitions sometimes 
beg the question. For instance, according to Proclus, in his Commentary 
on the First Book of Euclid, Posidonius defined parallel lines to be "those 
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which, (being) in one plane, neither converge nor diverge, but have all 
the perpendiculars equal which are drawn from the points of one line to 
the other"([ 4], p. 190). This is all well and good, but then we need to know 
whether lines that do not meet are parallel, and also whether parallel 
lines actually exist! 

Hypothesis 2 There exists a pair of straight lines everywhere equally 
distant from one another. 

Proclus gave a proof of the parallel postulate based on an apparently 
milder hypothesis than (2). Suppose two lines a and b have a common 
perpendicular AB. If we take any other point C on line b and drop 
a perpendicular from it to line a, meeting the line at point D, then 
Hypothesis 2 would claim that AB and CD are congruent and that CD 
is a common perpendicular of the two lines. Suppose we assume instead 
only that the length of CD cannot be arbitrarily large. In other words, if 
AB is one inch long, then any segment CD from a point on b dropped 
perpendicularly to D can be no larger than, say, five trillion miles. Then 
Proclus argues that any line through C must meet line a. 

Suppose CG is such a line. As the lines CF and CG are extended 
indefinitely, the distance between points on one and points on the other 
increases without bound. So eventually the distance from point G to the 
line b will be greater than the distance from line a to line b. So the line 
CG will cut line a. 

This argument is basically correct, but it relies on: 

Hypothesis 3 If two lines a and b are parallel, then the distance from a 
point on one line to the other cannot be made arbitrarily large. 

-------------r~--------~~~------------- F 

G 

--------------~~--------~~~------------- E 
A C 

Hypothesis (2) obrviously implies Hypothesis (3), which by Proclus' 
argument implies Hypothesis (1). So we can conclude that all three of 
these statements are equivalent to the parallel postulate. 
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Actually, even the following assumption is enough to prove the parallel 
postulate: 

Hypothesis 4 If a and b are parallel lines in the plane, then there is 
a segment AB from a point A on a to a point B on b which is a common 
perpendicular. 

Problem 
Prove that Hypothesis 4 implies the parallel postulate. Hint: It will probably 
help to read on a bit before trying this one' 

The following hypothesis is apparently due to the thirteenth-century 
Persian mathematician Nasiraddin at-Thsi ([18], pp. 208-209). It is a cen­
tral idea in this book. 

Hypothesis 5 
right angles. 

In any triangle the three angles are together equal to two 

Using this hypothesis, it is possible to prove Euclid's fifth postulate. 
Since we will be using this fact about triangles throughout the book, we 
really should see a proof. 

Girolamo Saccheri later noted that it is actually enough to find one 
triangle whose angle sum is equal to two right angles in order to prove 
the parallel postulate. (See the next section.) 

Problem 
Assume Hypothesis 5. Let a and b be parallel lines with a common perpen­
dicular AB. Drop a perpendicular from some point C on b to a, meeting a 
at point D. Conclude that CD is also perpendicular to line b, and that CD is 
congruent to AB. 

Theorem 1.2.1 If the sum of the angles in a triangle is always equal to 
180° (two right angles), then the parallel postulate holds. 

Proof 
Let £ be a line and P a point not on the line. Our goal is to show that 
exactly one line through P fails to intersect £. 

Drop a perpendicular from P to the line, meeting the line at point AI. 
Construct the line PQ through P perpendicular to PAl. This line cannot 
meet £, so we must show that no other line through P fails to meet £. 

Construct segment AIAz along £ congruent to PAl. (This can be ac­
complished by drawing the circle with center at Al passing through P.) 
Then angle LAIPAz = e = 45°. So LQPAz is also 45°. Next, construct AZA3 
congruent to PAz. The triangle PAZA3 is isosceles, so the two base angles 
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p Q 

must each be ~. (Of course, we are assuming that the sum of the angles in 
a triangle is 1800 .) This means that the line PA 3 bisects the angle LQPA z. 

We can repeat this construction over and over again, getting a sequence 
ofline segments PAn making smaller and smaller angles with line PQ. If 
PE is any line through P making some angle ¢ with PQ, then the line PAn 
can be constructed making an angle smaller than ¢. That means that the 
line PE enters the triangle PA 1A n, and it must intersect the line f. • 

This is an argument worth thinking about for a while. If the sum of the 
angles in a triangle were always less than 1800 , we could still construct 
the points An in exactly the same way, but the angles of the isosceles 
triangles would be smaller than expected. Thought about another way, 
as a point A slides along £ farther and farther away from A 1 , the angle 
QPA would not shrink down to O. Instead, the line PA would approach a 
limiting position PZ. 

By symmetry, there should be a pair of lines through P, making equal 
angles with PQ, not meeting the line AA 1. These two lines should have the 
property that any line through P making a larger angle with PQ would hit 

p Q 

z 

A---..... ~ 
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P Q 

A 

line AAj somewhere. This is the basic picture of parallelism in hyperbolic 
geometry. 

There are many other interesting assumptions that turn out to be 
equivalent to the parallel postulate. Here are a few: 

Hypothesis 6 (Wallis) There exist a pair of similar triangles which are 
not congruent. 

Hypothesis 7 (Legendre, W. Bolyai) Given any three points not on 
a straight line, there exists a circle passing through them. 

Hypothesis 8 (Gauss) There exist triangles of arbitrarily large area. 

Problem 
Find a proof of the parallel postulate from Hypothesis 6. 

In the next section, we will use another hypothesis that is equivalent 
to the parallel postulate. Watch for it! 

Problem 
What is wrong with the following argument for proving Hypothesis 6> This 
"proof' is due to Bernhard Friedrich Thibaut (1809). (See [36J, pp. 40-41). 

Let ABC be a triangle with angles (x, /3, and y, and consider the line 
containing A and B. Rotating the line around the vertex B until it coincides 
with the line through Band C rotates it through the angle 1800 - /3. Rotating 
the line about the vertex C until it coincides with the line through C and A 
rotates the line through the angle 1800 - Y. Finally, rotating the line about the 
vertex A back to its original position rotates it through a further angle 1800 - (x. 

In all, the line rotates through 5400 - (X - /3 - y. Since the line has rotated 
3600 , the sum of the interior angles must be 1800 . 
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1.3 Proving the Parallel Postulate 

In order to understand this section, it is vital to keep in mind an important 
fact: The "proof' of the parallel postulate presented here is not correct. In fact, 
there can be no proof of the parallel postulate that relies only on the other 
axioms and postulates of Euclid. By the end ofthis book, it should be clear 
where the mistake(s) is (are) in this section. 

This is not to say that the proof is all wrong. In fact, most of it is 
quite correct. This is not so surprising, since the author of the proof 
was the great eighteenth-century mathematician Adrien-Marie Legen­
dre. Legendre's studies in the calculus of variations, elliptic functions, 
and number theory, among other works, made him one of the leading 
mathematicians of his day and one whose work is still important today. 
His textbook Elements de Geometrie, 1794, was widely used in Europe and 
the United States as a substitute for Euclid. Legendre attempted to prove 
the parallel postulate in early editions of the text, but he was not satisfied 
with his own arguments. His final attempt at a proof appeared in 1833 in 
a paper entitled Reflexions sur differentes manii;res de demontrer la theorie 
des paralZeles ou Ie theoreme sur la somme des trois angles du triangle [Mem. 
Ac. Sc., Paris, T.XIII, 1833]. It is this proof that we will be examining here. 
For extensive discussion of proofs of the parallel postulate, see [4], [10], 
or the briefer treatment in [9]. 

Earlier in the eighteenth century, Gerolamo Saccheri attempted to use 
logical reasoning to establish the truth of the parallel postulate. His basic 
approach was to assume the hypothesis that the postulate is false, and 
then to show that a contradiction is reached. This method, known as 
reductio ad absurdum, is a very important and powerful one, and in fact, 
Euclid used it as early as the proof of Proposition 6 of Elements ([4], pp. 
136, 256). We consider a list of cases, one of which has to be true because 
all possibilities have been exhausted in the list. We then rule out all but 
one item on the list. That last survivor must be the true statement. 

Saccheri considered the sum of the angles in a triangle. We have already 
noticed in the last section that the parallel postulate is equivalent to the 
assumption that this sum must always be 180°. Saccheri's observation is 
this: There are three possibilities for the sum of the angles in a triangle: 

1. The angles in a triangle always sum to 1800 • 

2. There is some triangle whose angles sum to more than 180°. 
3. The sum of the angles in a triangle is always no more than 1800 , but 

there is some triangle whose angles sum to less than 1800 • 

If we can rule out (2) and (3), then (1) must be true, and the parallel 
postulate is proved. Legendre's proof is then divided into two pieces. He 
first rules out the possibility of an angle sum being greater than 1800

• This 
is Saccheri's "Hypothesis of the Obtuse Angle." Actually, Saccheri worked 



Proving the Parallel Postulate 17 

with four-sided polygons with three right angles, but the idea is basically 
the same. Then Legendre assumes (3) and shows that that leads to an 
impossibility too. This completes the proof. 

Before we begin, we need one very important geometry lemma, which 
Euclid gives as Proposition 24. Since Euclid does not rely on the parallel 
postulate until he gets to Proposition 27, this is O.K. to use. We have to 
be careful never to assume what we are trying to prove! (That, after all, 
is Legendre's fatal mistake!) Besides needing this lemma now, we will be 
relying on it in Chapter 5. I like to call this the "caliper lemma;" it says 
that as you open the caliper, so that the angle is bigger, the ends of the 
caliper move apart. 

Lemma 1.3.1 
Suppose triangles ABC and DEF are given with side AB congruent to side DE, 
side AC congruent to side DF, and LBAC smaller than LEDF. Then side BC 
is smaller than side EF. 

A D 

c 

B G 

Proof 
Construct triangle DGF congruent to triangle ABC. Now, our goal is 
to show that GF is smaller than EF. The triangle EDG is isosceles, so 
LDEG = LDGE. Since LDGE is smaller than LFGE, and LDEG is larger 
than LFEG, it follows that LFEG is smaller than LFGE. In any triangle, 
the larger side is opposite the larger angle. So side GF is shorter than side 
EF. • 

The picture makes the argument easier to follow. But is it an accurate 
picture? Actually, there is a hidden assumption: Side DG is longer than 
side DF. Otherwise, the point G might land inside the triangle DEF or 
even on the line EF. 

Problem 
Fix the proof of the Lemma. 

Theorem 1.3.2 (Saccheri, 1733; proof by Legendre) 
the angles in a triangle is always less than or equal to 1800 • 

The sum of 
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Proof 
Suppose triangle ABC has angles (x, {J, and y with (X + {J + y > 1800 • If the 
length of side AB is c, mark off consecutive segments AIA2, A 2A 3, A3A4, 
etc. of length c along a fixed line e and construct triangles Al C1A 2 , 

A 2C2A 3, etc. congruent to ABC with their upper vertices Ci on the same 
side of the line. Connect each pair of consecutive upper vertices CiCi+! 
by a line segment. These line segments all have the same length d. 

Now let 8 = LC1A 2C2 between the sides of adjacent triangles. Then 
(X + 8 + {J = 1800 , since the angles fill out a straight angle. Now, that tells 
us that 8 must be smaller than y, so the caliper lemma says that d is 
smaller than c. 

c j d Cz d C 3 d d d Cn 

~ b a 

00000 
af3aLyf3aJ3a13a!3 

c c 

The straight-line distance from A] to An+l is nco If instead we go from 
A] to C], then successively visit Cz, C3 , ... , Cn, and finally go to A n+l , this 
path will have length a + (n - l)d + b. Since the straight-line path is the 
shortest path (this follows from Euclid, Proposition 20, [18]), we get the 
interesting inequality 

a + b - d > n(e - d). 

The left-hand side is a positive number (again by Proposition 20), and 
the quantity (c - d) is also positive. The strange thing is, while both of 
those quantities are fixed, the number n is not! The more triangles we 
build, the bigger we make n. But if we make n large enough, we can make 
the inequality fail. (Thchnically, we are using the Archimedean axiom here. 
It says that there must be an integer larger than the number a~~;;c.) This 
contradiction proves the theorem. -

We may assume from now on that the sum of the angles in a triangle 
is no larger than 1800 • If ABC is any triangle, with angles (x, {J, and y, let's 
call the number 1800 - (X - {J - y the defect of the triangle and denote it 
by the symboI8(ABC). This is a number between 0 and 180 (ignoring the 
units). Th finish the proof of the parallel postulate, Legendre wanted to 
prove that the defect of any triangle has to be O. Let's examine defects for 
a moment. 

Start with a triangle ABC with angles (x, {J, and y. Let D be any point 
on side BC. The line segment AD cuts the angle (X into two pieces, (X] and 
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A 

B 

c 

a2. Denote I..ADB by 81 and denote I..ADC by 8z. Then 8] + 82 = 180. The 
defects of the triangles are given by: 

8(ADB) = 180 - (81 +.B + a]); 

8(ADC) = 180 - (82 + y + a2); 

8(ABC) = 180 - (y + .B + a) 

= 360 - (8] + 82 ) - (y + .B + a] + a2) 

= 8(ADB) + 8(ADC). 

This is an example of a general principle: If a triangle is subdivided into 
smaller triangles, then the defect of the triangle is the sum of the defects of the 
smaller triangles. Using this, Saccheri was able to prove the following: 

Lemma 1.3.3 
If some triangle has positive defect, then every triangle has positive defect. 

Problem 
Prove Lemma 1.3.2. One way to do this: Assume that there is a triangle with 
positive defect. Then show that there is a right triangle with positive defect. 
Then show that any right triangle has positive defect. Finally, show that any 
triangle has positive defect. 

Theorem 1.3.4 (Legendre, 1833) 
triangle is exactly 1800 . 

Proof 

The sum of the angles in every 

Suppose we have a triangle ABC with defect 8(ABC) = 8 > O. Reflect ABC 
across side BC and let D be the image of A. Extend the rays from A to Band 
C and construct line EF through D meeting the ray AB at E and the ray 
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y' 

A C at F. The triangle AEF is subdivided into four smaller triangles, two of 
which are known to have defect 8. It follows that the defect 8(AEF) > 28, 
Repeating this construction, we may produce a triangle with defect 2n 8 
for any positive n. But if n is chosen large enough, then 2n8 > 180, This 
is impossible! Therefore, there can be no triangle with defect 8 > O. • 

Notwithstanding the theorem just "proved:' there are still three possi­
bilities for the sum of the angles in a triangle. In Chapter 2 we will assume 
that the sum of the angles is always 1800 • In Chapter 3 we will assume 
instead that the sum is always less than 1800 • In Chapter 4 we will explore 
the third possibility, that the sum is always greater than 1800 • Chapter 6 
will look at a more general idea of geometry in which some triangles can 
have angle sum larger than 1800 , some less than 1800 , and some equal to 
1800 • This will necessitate changing some basic assumptions made in the 
rest of the book. 

Problem 
What hidden assumptions were used in proving Theorems 1.3.2 and 1.3.4) Do 
these assumptions depend on the parallel postulate? If so, how? 



CHAPTER 

Tiling the Plane 
with Regular 
Polygons 

2.1 Isometrics and Transformation 
Groups 

A good starting point for the study of the geometry of the (Euclidean) 
plane is the concept of isometl~Y. Th many modern geometers this is the 
natural way to talk about things like congruence, and we might expect 
Euclid to have used isometries in his Elements, Strangely enough, Euclid 
fails to mention isometries; yet he appears to use them from the very 
outset, Proposition 4 ([18], p, 247) states: 

If t·wo triangles have the two sides equal to two sides respectively, and have 
the angles contained by the equal straight lines equal, they will also have 
the base equal to the base, the triangle will be equal to the triangle, and the 
remaining angles will be equal to the remaining angles respectively, namely 
those that the equal sides subtend. 

Part way into the proof comes the peculiar argument, "For, if the 
triangle ABC be applied to the triangle DEF, and ifthe point A be placed 
on the point D and the straight line AB on DE, then the point B will also 
coincide with E, because AB is equal to DE!' 

What exactly does the word "applied" mean? This question engaged the 
attention of many mathematicians, who perceived a certain vagueness 
in the proof of Proposition 4 and proposed clarifications, (For a full 
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discussion, see [18), pp. 224-231 and 249-250.) We will interpret "applied" 
to mean that there is an isometry carrying one triangle to the other. We 
will also use the word "congruent" in place of the word "equal," and say 
that two figures are congruent if one can be applied to the other (by an 
isometry). 

An isometry is a correspondence T that assigns to each point A in the 
plane a point A' = TeA) in such a way that for any points A and B, 
the corresponding line segments AB and A'B' are congruent. We might 
visualize this by taking a sheet of paper and marking points A, B, C, ... on 
it. Now let's put a transparency over the paper and mark points A, B, C, ... 
on the transparency over the points with the same names. Ifwe now shift 
the transparency to a new location over the paper, the marked points will 
lie over new points A', B', C', ... on the paper. Since the transparency does 
not stretch, this is an isometry. 

We need the axiom of Pasch [27) here. This says that if A, B, and Care 
points that do not lie on one line and if A' and B' are two points chosen 
such that AB and A' B' are congruent, then there exactly two choices of a 
point C' such that the triangle ABC is congruent to triangle A'B' C'. 

TWo? Well, pick A' and B' on the paper such that A and B on the 
transparency can be simultaneously superimposed on them. Look where 
C goes on the paper. That's one. Now flip the transparency over and line 
up A and B with A' and B'. The point labeled C now lies over the second 
possible location for C'. 

C C' 

A B A' B' 

C' 

Problem 
Suppose we have four points A, B, C, D not all lying on one line. Suppose A' 
and B' are chosen so that AB and A' B' are congruent. Choose C' such that A C 
is congruent to A' C' and BC is congruent to B' C l How many choices are there 
for a point D' such that AD is congruent to A'D', BD is congruent to B'D', and 
CD is congruent to C'D') Why) 

Examples of isometries. 

1. A translation T along a line e moves the points on the plane so that 
each point on e moves the same distance along e to another point 
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on e. Where do points not on the line move? If B is a point not on i 
and AB is the perpendicular from B to i, then A, B, T(B), and T(A) 
form a rectangle. The line through Band T(B) is also carried to itself 
by the translation. (See the figure below.) 

2. A rotation R about a point 0 through angle e fixes the point 0 (that 
is, R(O) = 0) and takes each line through 0 to the line that makes 
the angle e with it. If A is any point, then L.AOR(A) is an isosceles 
triangle with angle e at the vertex O. 

3. A flip (or reflection) F across a line i fixes every point on i while 
moving all points to their mirror images on the other side of i. 

4. A glide reflection G is a translation along i followed by a flip across i. 

B T(B) A'J 
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T 
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1'} R (1 ) (Z) 

A T(A} 0 A 
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It is a basic fact of Euclidean geometry that these are the only possible 
isometries of the plane. 

An important property of an isometry U is that it is a bijection. This 
means that for every point A there is exactly one point Al that is taken 
to A by U. It is easy to see that two different points Al and A z could not 
be taken to the same point A. After all, if U(Al) = U(A z), then the line 
segment from Al to A z would have to be congruent to the "line segment" 
from A to itself. It is less easy to see why there has to be some point Al 
for which U(Al) = A. 

Problem 
Show that the point A 1 can indeed be found. [HINT Find two points Bl and 
Cl for which UBI, UCl, and A form a triangle. Use the last problem.] 

If U is an isometry and V is another isometry, then we can make a 
new isometry VU by the rule 

VU(A) = V(U(A)). 

In other words, if U moves the point A to A' and if V moves the point 
A'to A", then VU moves A to A". Notice that what V does to the point A 
does not matter in figuring out what VU does to the point A. 
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How do we know that VU is an isometry? If U carries B to B' and 
V carries B' to B", then VU takes B to B". Since U is an isometry, the 
line segment AB is congruent to A' B'. Since V is also an isometry, A' B' is 
congruent to A"B". VU carries AB to the congruent segment A"B", which 
is what an isometry is supposed to do. 

If we instead form the isometry UV, made by putting the two isome­
tries together in the opposite order, we may not get the same isometry. 
Here is an example to help us visualize this. Thke a triangle ABC with side 
AB horizontal and point C above it somewhere. Think of the triangle as 
an arrow pointing up. Suppose F is the flip across the (horizontal) line l 
through A and B, while R is the rotation through 900 (counterclockwise) 
around A. Neither of these moves the point A at all, so the isometries RF 
and FR also keep A fixed. But RF moves the triangle ABC to an arrow 
pointing right, while FR moves it to an arrow pointing left. (See the figure 
below.) (This is a bit confusing. 1b do FR, you must first rotate and then 
flip across the original horizontal line. The rotation has moved l to a new 
line e', but the flip is still taken across l.) 

B 

FReB) 

Problem 
Suppose R is a rotation about the point P through an angle of 300 and R' is 
a rotation through an angle of 400 around a different point p'. What type of 
isometry is the isometry R'R? Why) (HINT Draw a geometric object and see 
what happens to it.) 

Problem 
Suppose F is a flip across the line £ and F' is a flip through a different line £'­
What type of isometry is the isometry F'F? Why? (HINT Draw the two lines 
£ and £' and look at where they intersect (if they do intersect!).) 

Problem 
Make up your own question similar to the last two. Figure out the answer: 
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The process of putting two isometries V and V together is called 
composition. The isometries of the plane form an algebraic object called 
a group (see the definition below). The group operation is composition; 
the fact that VV and VV are not necessarily equal means that the group 
is not commutative. We will have more on noncom mutative groups when 
we look at the rotations of three-dimensional space in Chapter 5. Because 
each object V in our group is a transformation, that is, a rule that sets 
up a correspondence between points A and VC A), the group is called 
a transfonnation group. In the next section we will be interested in 
collections of isometries that by themselves form transformation groups. 
The key property is that the composition of any two isometries in our 
collection should be in our collection. 

Here is one simple but important example. If V is any isometry, we 
can form the composition VV; call it V 2 . We can repeat this and form the 
composition V2V = V 3 . Keep going; we get all the powers V n , where n 
is any positive integer. Define the inverse of V, called V-I, by the rule 
V-I (A') = A if V(A) = A'. For instance, if T moves everything up one 
inch, then T- l moves everything down one inch. IfR rotates everything 
30° around 0, then R -1 rotates everything -300 around O. (In other words, 
it rotates in the opposite direction.) IfF flips everything across £, then F- l 

flips everything back across £. CHmm. That means that F- l is the same 
as F!) 

Problem 
When is V-I equal to V) 

Let's call V-1V· l by the name V 2 . Now we can define V n for any 
integer n, positive or negative. What is VO supposed to be? In a moment 
we will see that the answer is that it should be the identity I, which leaves 
everything where it is. Ifwe make that definition, then the reward is that 
the following formula is always true: 

Notice that this says that if we take two powers of V and compose 
them, we get another power ofV. This means that the powers of V form 
a group; we will call this group < V > and call it the cyclic group generated 
byU 

Groups. A set of objects G and an operation 0 on pairs of objects forms 
a group if: 

1. Whenever A and B are two objects in G, then A 0 B is an object in G 
(ilCLOSURE"). 

2. A 0 (B 0 C) = ell. 0 B) 0 C ("ASSOCIATIVE LAW"). 
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3. There is a special object I that satisfies the formula loA = A = A 0 I 
for every A ("IDENTITY"). 

4. For each object A in G, G contains an object A-I that satisfies the 
formula A 0 A-I = I = A-loA ("INVERSE"). 

Problem (The dihedral group Dn) 
Suppose R is a rotation around a point 0 and A is some other point. The points 
A, R(A), R2(A), R3(A), ... all lie on a circle centered at O. If the angle e divides 
360 0 evenly, so that 360 = ne, then these points are the comers of a regular n­
gon P. If we connect A to R( A) with a line segment, then R takes that segment to 
the one joining R( A) to R 2 (A), and so on. The rotation R takes the polygon P to 
itself and so does every R k. Now, although we have infinitely many names R k, 

there are actually only n different rotations: R n = I, R n+1 = R, R n+2 = R2, 
etc. The group < R > is the group of rotations of the n-gon, and we will 
call it Cn. But these are not the only isometries that take P to itself The flip F 
across the line through 0 and A also takes P to itself Thke any other vertex V 
of P and there will be a flip across the line through 0 and V that takes P to 
itself If we add all of these flips to the rotations, we get a group of isometries 
containing exactly 2n isometries. This is the dihedral group Dn. 

How can we see that there are exactly 2n isometries that take P to 
itself? Any such isometry must take A to one of the n vertices of P. So we 
need only see that there are exactly two isometries that take A to a given 
vertex V. But the vertex R(A) must go to one of the two vertices adjacent 
to V, and after that there is no more choice. 

Since RF takes P to itself, it must be one of the isometries described 
above. In fact, it is one ofthe flips. (Which one?) Every transformation in 
Dn can be described either as being in Cn or as RkF for some k. 

Problem 
Find the rule for changing FRl into something of the form RkF. Does k ever 
equalj? 

2.2 Regular and Semiregular 
Thssellations 

A regular tessellation, or regular tiling, of the plane is made by taking 
identical copies of a regular polygon Pn with n sides and covering every 
point in the plane so that there is no overlap except for the edges: Each 
edge of a polygon coincides with the edge of one other polygon. It is pretty 
easy to discover that there are just three types of regular tessellation. This 
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is a somewhat disappointing state of affairs, which turns out to be the fault 
of the parallel postulate. We will fix this in the next chapter. 

In order to make a regular tessellation, we have to be able to fit a certain 
number of copies of a polygon together so that they share a common 
vertex. This means that the interior angle of the polygon has to divide 
360 0 evenly. Let's compute the interior angles of an n-gon. Ifwe draw all 
the diagonals from one vertex to the other vertices, we cut the polygon up 
into exactly n - 2 triangles. The sum of the angles in each one is 1800 • So 
the sum of the interior angles of all the triangles is l80( n - 2t. But this is 
the same as the sum of the interior angles of the polygon (draw a picture 
to see why). Since all the angles are the same, the angle at each vertex is 
180~-2) degrees. This will divide 360 evenly only if 360 x 180(~-2) = nZ:'z 
is a whole number. So n must be 3, 4, or 6. (After 6 the fraction becomes 
smaller than 3 but must stay larger than 2.) Each of the three possibilities 
gives rise to one of the regular tessellations. 

The three regular tessellations 

The three familiar patterns each possess a large amount of symmetry. 
What this means is that for each pattern there is a group of isometries 
that carries each polygon in the pattern onto a polygon in the pattern. For 
instance, the tiling of the plane by squares of unit side length is carried 
to itself by the translation H that slides everything to the right one unit, 
and also by the translation Y that slides everything up one unit. Pick one 
square and call it the "home II square. Let the dihedral group D4 (see the 
last section) be the group ofisometries that take the home square to itself; 
then these isometries also preserve the pattern. For example, if R is the 
rotation by 900 around the center of the home square, then the whole 
pattern rotates into itself. Any composition of symmetries of the pattern 
will again be one; for instance, we can take y-3H 5 , which moves every 
square five units to the right and three down. 

Now in fact, that is the complete list of symmetries for this pattern. 1b 
see this, we first notice that we can move the home square to any other 
square by some combination of horizontal and vertical moves. If we first 
rotate or flip the home square and then move it to another square, we can 
find eight different ways to move the home square to each other square. 
But those are the only possible ways to move the home square to another 
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square, and once we know what has happened to the home square, we 
know where everything else must move. 

The translations that preserve the pattern are generated by Hand V. 
(That means that every translation can be made by repeated use ofH, V, 
and their inverses.) Since the composition of translations is always a 
translation, there is a general prinCiple at work here: Ifwe have any group 
G of isometries of the plane, then the translations that are in G form a 
group K by themselves. Since every isometry in K is in G, we say that K 
is a subgroup of G. We write < H, V > for the group oftranslations of the 
square tiling. If P is any point in the plane, then the set r of points T(P), 
where T ranges over all the translations in the group, is a (square) lattice. 

We can go through the same procedure to find the group of symmetries 
of each of the other patterns. In the case of the triangular tiling, however, 
the story is a bit more complicated. We have colored the pattern with 
black and white triangles. Let's suppose that the home triangle Q is white. 
Then a translation can take the home triangle only to one of the white 
triangles. The translation H that moves one unit to the right and the 
translation D that moves diagonally (at a 600 angle) up and to the right 
one unit generate the group < H, D > of translational symmetries. The 
lattice r of translates of a starting point P is made up of the corners of the 
triangles. It is called a rhombic lattice, since there is a rhombus (made up 
of two adjacent triangles) whose translates by members of this group fill 
out the plane. 

• • 
HD(P) H 2 D(P) 

• H-1 (P) P H(P) 

r 

• -1 D (P) 

The dihedral grou p D3 acting on the home triangle also carries triangles 
to those of the same color. LetR be the 1800 rotation aboutthe lower vertex 
P of the home triangle. (R is called a half-tum). Unlike Hand D, R takes 
white triangles to black triangles. Using H, D, and R, it is possible to take 
Q to any other triangle in the plane. Consequently, we can conclude that 
R together with H, D, and D3 generate the symmetries of the triangular 
lattice. That means that every symmetry is made up of a composition of 
these isometries. 



Regular and Semiregular Thssellations 29 

Here is another description of the group. Let S denote the rotation 
through 600 around the lower vertex P of the home triangle. Let F be 
the flip across the line through the base of the home triangle. Then the 
symmetries of the lattice are generated by H, D, F, and S. 1b see this, 
we can check that HS2 rotates the home triangle 1200 , while SF flips 
the home triangle keeping P fixed. So we can get every symmetry of the 
home triangle using S, H, and F. Using D, H, and F we can move the home 
triangle to any other triangle. 
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Problem 
Show that we don't actually need to use D. So the symmetries of the triangular 
lattice are generated by H, F, and S. 

Problem 
Show that we don't actually need to use H. So the symmetries of the triangular 
lattice are generated by D, F, and S. [HINT Look at the isometry S-1 DS.j 

We won't go through the analysis for the hexagonal tiling. In fact, we 
don't have to, because the group of symmetries is just the same group as 
the one for triangles! There is an easy, and very important, way of seeing 
this. Thke the centers of the hexagons and connect the centers of any two 
adjacent hexagons by drawing the line segment between them. 

This is the process of constructing the dual tiling to the tiling we started 
with. Since all the hexagons are the same, the centers of adjacent ones 
are all at the same distance from each other. So the dual tiling is just 
the regular triangular tiling. Since any symmetry of the hexagonal tiling 
must take the center of each hexagon to the center of a hexagon, the 
symmetries also are symmetries of the dual tiling, and vice versa. 

If we do the same construction for the triangular tiling, we get the 
hexagonal tiling. If we do the dual construction for the square tiling, we 
get another copy of the square tiling. 

Ifwe want a tiling of the plane by regular polygons to have the property 
that there is a symmetry carrying any polygon to any other polygon, 
then all the polygons have to be the same. They don't have to be regular 
polygons, though. For instance, we have already seen an example (slightly 
hidden) of a tiling of the plane by copies of a rhombus. More on this later. 

Meanwhile, suppose we insist on regular polygons but allow more 
than one kind of polygon. Then there is no chance for symmetries 
carrying a fixed polygon to every other one, so instead let's ask that there 
are symmetries carrying a particular vertex P to every other vertex. A 
moment's thought reveals that in that case there have to be the same 
number of polygons meeting at each vertex. Also, if we start at one 
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vertex and walk around it in a circle, we should encounter a certain 
sequence of polygons, with the same sequence occurring when we walk 
around any other vertex. For instance, we might see a square, then an 
octagon, then another octagon, and then be back where we started. This 
is actually possible, because an octagon has 1350 angles. (Remember, the 
formula is I80~-Z).) For the purpose of keeping track of patterns, let's 
give this pattern the name (4,8,8). In general, the name of a pattern 
tells us the number of sides in each polygon we encounter as we walk 
(counterclockwise) once around each vertex. Of course, the same pattern 
has more than one name; for instance, we could call this pattern (8, 4, 8). 

What patterns are possible? 10 search systematically, we consider 
patterns with three polygons at each vertex, then four, then five, and 
then six. Then we will be done, because the smallest angle possible is 600 

(in a triangle), so there can't be more than six angles coming together at 
a corner. 

Three at a vertex. If there are three polygons at each vertex, then we 
have a pattern (nl, nz, n3) where 

nl - 2 nz - 2 n3 - 2 
180-- + 180-- + 180-- = 360, 

nl nz n3 

or 

nl - 2 nz - 2 n3 - 2 --+--+--=2. 
nl nz n3 

A little algebra turns this into the equation 

1 1 1 1 
-+-+-=­
nl nz n3 2 

(2.2.1) 

There are ten sets of integers that work. The first, (6,6,6), comes from 
the regular hexagonal tiling. Three others are (12,12,3), (12,4,6), and 
(8,8,4). Each of these turns out to generate a pattern that fills the whole 
plane. These tilings are called semiregular tilings. 

Pattern (12, 12, 3) 
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Problem 
Find the other six patterns. Figure out why none of them can be used to generate 
semiregular tilings. 

Four at a vertex If there are four polygons at each vertex, then we 
have a pattern (n], nz, n3, n4). A similar calculation leads to the formula 

Problem 

111 1 
-+-+-+-=1 
n] nz n3 n4 

(2.2.2) 

Find all allowable patterns with four polygons at each vertex. For each one, 
try to build a semiregular tiling of the plane. 

Five at a vertex If there are five polygons at each vertex, then we have 
a pattern (n], n2, n3, n4, ns). This time the formula is 

1 1 1 1 1 3 
-+-+-+-+-=­
n1 nz n3 n4 ns 2 

Pattern (8, 8, 4) Pattern (4, 3, 4, 3, 3) 

(2.2.3) 

How do we solve (2.2.3)? Of the five numbers, the smallest one cannot 
be bigger than 3, since the total is ~. So let ns = 3. The remaining fractions 
therefore sum to ~, so one of them must again be %. The remaining three 
fractions sum to ~, so again one of them must be %. Now we need to solve 
~ + t = ~. This has two solutions: a = 3, b = 6 and a = 4, b = 4. 
This gives the following different patterns: (3, 3, 3, 4, 4), (4,3,4,3,3), and 
(6,3,3,3,3). This gives three more semiregular tilings. 

The patterns with four polygons do not all extend to the whole plane, 
as you may have already discovered. The two that do are pictured below. 
They bring the total number of semiregular tilings up to eight. Inter­
estingly, one of the patterns is different from its mirror image. If you 
make copies of all eight patterns on transparencies, and then flip the 
transparencies over, all the others will fit over themselves. In other words, 
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Pattern (3, 3, 3, 4, 4) Pattern (6, 3, 3, 3, 3) 

Pattern (6, 3, 6, 3) 

the group of symmetries of one of these eight patterns does not contain 
a flip or glide reflection. (Can you see which one it is?) 

Problem 
Look at the symmetries of each of the semiregular tilings. Check that there is a 
symmetry taking each vertex to any other vertex. Obviously a symmetry must 
take a polygon to one with the same number of sides. Which patterns (if any) 
have congruent polygons that can not be taken to each other by a symmetry 
of the tiling) 

We constructed the duals of the regular tilings; these turned out to 
be regular tilings. The duals of semiregular tilings do not turn out to be 
semiregular tHings. Since we connect the centers of adjacent polygons, 
we get a polygon around each vertex of the original tiling. In the case 
of semiregular tilings, these polygons are all congruent to each other. 
But they are not regular polygons. Actually, that's good news, because it 
gives us eight pretty examples (some prettier than others) of tilings by 
congruent polygons. In particular, it is possible to fill up the plane with 
congruent pentagons. The symmetries of this tiling carry any pentagon 
to any other pentagon. 
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Problem 
Determine the edge lengths and angles of a pentagon that tiles the plane in 
this way. 

One particularly elegant tiling of the plane by pentagons is known as 
the Cairo tessellation, because it can be seen as a street tiling in Cairo. 
The pentagon used for this tiling can be constructed using straightedge 
and compass; in fact, the pentagon in the picture below was constructed 
using the Geometer's Sketchpad,! a program with wonderful construction 
tools. Although it is not regular, it is equilateral, that is, all the sides have 
the same length. 

Tiling the plane with identical copies of any rhombus is easy: Just 
modifY the usual pattern for squares to make a slanted checkerboard. 
In fact, this works for any parallelogram. That means that if we start 
with any triangle, then we can tile the plane with copies of it by putting 
pairs of them together to make parallelograms. The symmetries of each 
tiling carry any polygon to any other one. Among the dual tilings to the 
semiregular tilings, there is one in which the polygons are rhombi. Unlike 
the checkerboard tilings, this pattern does not have the same number of 
rhombi coming together at each vertex; but it is still possible to find an 
isometry carrying any rhombus to any other. 

The problem of tiling the plane with pentagons has a fascinating 
history. A good place to read about it is in Martin Gardner's book [17], 
chapter 13. You might also read [14], chapters 1 and 2, which deal with 
tilings that are not symmetric. A thorough discussion of symmetry and 
tilings is the book [26] by George Martin. Lastly, I would like to mention 
the picture book [5] as a source of artistic inspiration. 

1. Key Curriculum Press, Berkeley, 1994. 
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2.3 Thssellations That Aren't, and 
Some Fractals 

35 

In constructing regular and semiregular tilings, the primary requirement 
was that the resulting pattern have a large symmetry group. In a semireg­
ular tessellation, there is an isometry of the plane carrying any vertex to 
any other vertex. A tiling with this property is called vertex transitive. A 
tiling is called tile transitive if there is an isometry carrying any tile to any 
other tile. Among the semiregular tilings, only the regular ones are tile 
transitive. 

Problem 
A tiling is called edge transitive if there is an isometry carrying any edge to 
any other. Which semi regular tilings have this property? 

In the last section, we ran into some patterns that did not produce 
semiregular tessellations. My personal favorite is the pattern (10,5,5). The 
interior angles in a regular pentagon are 108°, while those ofthe decagon 
are 144°. That implies that if we take ten regular pentagons and put them 
in a ring, they will fit together perfectly around a decagon. Unfortunately, 
when we try to enlarge this pattern, we are forced to put three pentagons 
together at one corner, where they leave a little gap (36°). This prevents 
us from tiling the plane with regular decagons and hexagons, although it 
does not prevent the creation of beautiful designs. 

The greatest monument to geometrical design is the Alhambra, in 
Granada, Spain. Built in the thirteenth century, when Granada was the 
capital of Moorish Spain, it is decorated with intricate designs of a wide 
variety of geometric patterns. The Islamic religion forbids the graphic 
representation of living things, and this prohibition was rigorously ap­
plied. (Judaism also has such a prohibition: See Exodus 20:4, the second 
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Commandment. The Second Council of Nicea in 787 ruled that this did 
not apply to Christians, overruling the "Iconoclasts," who wanted to apply 
this commandment rigidly.) Islamic artists dealt with this prohibition 
when decorating mosques by concentrating on nonrepresentational de­
sign. Clearly, the symmetry of a pattern was to them a reflection of its 
spirituality. 

A consequence of this is that the numbers 3,4,6,8, 12, and 16 appear 
in great abundance in the designs found in the Alhambra, while 5 and 
10 are not very common. There are examples of symmetrical patterns in 
Moorish art that contain pentagons, decagons, and five- and ten-pointed 
stars. See plates 171-190 in [5]; one example is sketched below. There are 
even a few designs containing 7 and 14 (see plates 164-170). Still, one 
can search for hours through a bewildering array of intricate designs in 
the Alhambra without encountering many such objects. (I was unable to 
locate an example of a seven-sided figure during a recent visit.) 

Problem 
Even this pattern of pentagons and ten-pointed stars does not exhibit fivefold 
symmetry. Find the symmetries of this pattern. If S is a symmetry of the 
pattern for which Sn = I for some integer n, what values can n take? 

We shall now examine a geometric object with a new kind of symmetry. 
A Similarity of the plane is a transformation such that for some fixed 
constant r, it carries every line segment AB to a line segment A' B' whose 
length IABI = rIA'B'I. Ifr = I, then this is just an isometry. When r i= I, a 
triangle ABC is taken to a triangle A' B' C' that is similar but not congruent. 
(Recall from Chapter 1 that Wallis's alternative to the parallel postulate 
says that there exist similar, noncongruent triangles. So this is definitely 
a Euclidean concept.) Such a transformation is called a dilation. 
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A regular pentagon can be divided up into six regular pentagons and 
four small triangles. Each of the small pentagons is similar to the original 
large pentagon. Therefore, we may divide each of those six pentagons into 
six smaller similar pentagons (and four left-over triangles). This gives a 
pleasing array of 36 tiny pentagons. You may also observe a few decagons 
almost but not quite appearing in the design. 

Now, if we take one of the medium-sized pentagons in this picture, 
it contains a design within it that looks somewhat similar to the overall 
design. The difference is that it lacks the fine detail: the larger pentagonal 
"snowflake" has 36 little pentagons in it, while the smaller one has only 
six. Th fix that, replace each tiny pentagon by a snowflake of six smaller 
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pentagons. This leads to a more elaborate pattern, consisting of a large 
"snowflake" made up of six smaller "snowflakes" each of which is almost 
similar to the large one. 

Imagine that we could continue this process indefinitely, leading to 
more and more complicated patterns. The result of this process would 
be a geometric object that has the same isometry group as the pentagon 
(the dihedral group Ds) but also has an additional type of symmetry. We 
can find arbitrarily tiny pieces of it that are exactly similar to the whole. 
Such an object is called a fractal. I like to call this particular example 
a "pentaflake." Snowflake is not really an appropriate term, since real 
snowflakes have six-fold symmetry. 

It is also possible to fill out the entire plane by this process (except 
that the funny-shaped holes will get larger and larger). Starting with 
the pentaflake, construct an array of six of them; this fills out a larger 
pentagonal region of the plane. Repeat this process indefinitely. In the 
end, we will have a pattern with the weird property that there is a dilation 
that carries the pattern exactly onto itself! 

Fractals. The term fractal was coined by the mathematician Benoit 
Mandelbrot [25] to describe a geometrical object with the property that 
no matter how closely you look at it, it always looks the same. Such 
an object is called self-similar. (Actually, that definition can be loosened 
to "approximately self-similar," meaning that small pieces look roughly 
similar to the whole. A famous example of such an object is the Mandelbrot 
set, which arises in the study of iteration of functions.) 

The oldest example of such a geometric object is the Koch snowflake, 
constructed by the Swedish mathematician Helge von Koch in 1904. The 
procedure for constructing the snowflake is simple. We begin with an 
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equilateral triangle. The first stage places a smaller equilateral trian­
gle on the middle third of each side of the triangle to produce a six­
pointed star. 

Each successive stage is produced by putting an equilateral triangle on 
the middle third of each side of the preceding figure. In the end we get 
a snowflake. 1b be precise, the Koch snowflake is actually the boundary 
curve. It has some rather remarkable properties. For example, suppose 
we start with a triangle of side 1. Then its perimeter is 3. The six-pointed 
star has perimeter 4, because each side of the triangle has been replaced 
by a curve that is ~ as long. Now, at the next stage each edge of the star 
is replaced by a curve that is ~ as long, so the new figure has perimeter 
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~ x ~ = J9~' The next figure (pictured to the right below) has perimeter ~. 
Continuing in this way, we get figures whose perimeters are (~r. When 

n gets big, these numbers also get big. (Since (~)4 > 3, we can see that 

(D 4n > 3n .) So the Koch snowflake has infinite perimeter' 

On the other hand, it is pretty clear that the areas of the successive 
stages do not grow very much. It can be shown that the area enclosed by 
the Koch snowflake curve is exactly 2{3. 

~ .) 

This strange behavior is characteristic of fractal curves. One way to 
see that the perimeter of the curve is infinite is to use the property of 
self~similarity. Suppose the perimeter were exactly 3x, where x is the 
length of one of the three "sides" of the snowflake. (That is, what evolved 
from one of the sides of the original triangle.) Well, that side is made 
up of four identical pieces, each of which must therefore have length ~. 
But if we take one of those pieces and dilate it by a factor of 3, it will 
exactly coincide with the whole side. That means that 3 x ~ = x. Uh-oh! 
'1'his can't be true, so the assumption that the number x even exists must 
be false. 

There is another way of interpreting this last argument. If we triple 
the dimensions of a rectangle, its area increases by a factor of nine, while 
its perimeter only increases by a factor of three. The same is true for 
a triangle or a circle. If we triple the dimensions of a cube, the volume 
increases by a factor of 27 = 33 , and the same is true for any other solid 
object. This is one way of distinguishing between "two-dimensional" and 
"three-dimensional" objects. Ifwe take a side ofthe Koch snowflake curve 
and triple its "dimensions," it becomes 4 = 31262 times as large. By this 
reasoning, the snowflake curve has dimension 1.262 (= log 4/ log 3). It has 
j1't:{ctional dimension, whence the name fractal. Mandelbrot observed that 
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various objects in nature such as geographical coastlines and mountain 
ranges exhibit this fractional behavior. 

One further example of a fractal is constructed by subdividing an 
equilateral triangle into four smaller ones and removing the middle one 
(which is upside down). This process is then repeated on the remaining 
smaller triangles. A similar analysis to that of the Koch snowflake shows 
that in the end, the area of the resulting geometric object is O. This is an 
indication that this object is not real1y two-dimensional, but that it has a 
fractional dimension less than two. 

Problem 
What is the dimension of this self-similar triangular figure? What is the 
dimension of the pentaflake) 

A pleasant introduction to fractals can be found in chapter 3 of[14]. A 
mathematical treatment offractals and fractional dimensions is contained 
in the book [12], and the applications of fractal geometry are explored in 
Mandelbrot's book [25], which features some spectacular pictures. 

The Renaissance artist Albrecht Durer, who W<lS fascinated by tilings, 
produced a tiling of the plane using regular pentagons with diamond­
shaped gaps. Here is a version of his tiling; note that it possesses only 
fivefold symmetry. 
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2.4 Complex Numbers and the 
Euclidean Plane 

It is a theorem of Euclidean plane geometry that every isometry is either 
a translation, a rotation, a reflection, or a glide reflection. This is not 
entirely obvious; in fact, in non-Euclidean geometry it is false! So to the 
extent that our intuition about geometry does not include understanding 
parallel lines, we should not expect to have an intuitive understanding of 
the nature ofisometries. In particular, if we compose two rotations about 
different points it is not so easy to see what the result is. 

In this section we will begin using a powerful computational tool to 
analyze isometries: complex arithmetic. In Chapter 3 we will use this 
tool to study isometries of the hyperbolic plane. In Chapter 5 we will use 
a generalization of complex numbers to study rotations of the sphere. 

Analytic geometry translates statements about points and lines into 
statements about ordered pairs of numbers and equations. We will carry 
this one step further by thinking about ordered pairs as numbers that we 
can add, subtract, multiply, and divide. 

We begin by assuming that there is a "number" i (i for imaginary) that 
when multiplied by itselfgives -1. Supposing that there is such a number, 
with which we can do arithmetic along with ordinary numbers, we can 
then form numbers of the form ex = a + bi, called complex numbers. We 
will do arithmetic with these numbers by using the ordinary rules of 
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arithmetic and remembering that when i is multiplied by itself it yields 
-1. Geometrically, a + bi is just the ordered pair (a, b). 

Th add ex = (a + bi) to f3 = (c + di), we must use several rules of 
arithmetic. Let's do this carefully: 

(a + bi) + (c + di) = ((a + bi) + c) + di 

= (a + (bi + c)) + di 

= (a + (c + bi)) + di 

= ((a + c) + bi) + di 

= (a + c) + (bi + di) 

= (a + c) + (b + d)i 

(Associative Law) 

(Associative Law) 

(Commutative Law of addition) 

(Associative Law) 

(Associative Law) 

(Distributive Law). 

This process did not use anything about the number i. In fact, if we 
wanted to add ordered pairs of numbers, we could just write 

(a, b) + (c,d) = (a+c,b+d). 

This is the usual definition of vector addition. Geometrically, adding 
complex numbers is just like adding vectors. 

(l+~=( a + c) + (b + d)i 

O+Oi 

Subtraction works the same way as subtraction of vectors. Multiplica­
tion is more interesting. 

ex x f3 = [(a + bi) x c] + [(a + bi) x (di)] (Distributive Law) 

= lac + ((bi) x c)] + [(a + bi) x (di)] (Distributive Law) 

= lac + ((bi) x c)] + [(a x (di)) + ((bi) x (di))] (Distributive Law) 

= lac + ((bi) x c)] + [((ad)i) + ((bi) x (di))] (Distributive Law) 

= lac + (b(i x c))] + [((ad)i) + ((bi) x (di))] (Associative Law) 

= lac + (b(i x c))] + [((ad)i) + (b(i x (di)))] (Associative Law) 

= lac + b(ci)] + [((ad)i) + (b(i x (di)))] (Commutative Law) 

= lac + (bc)i] + [((ad)i) + (b(i x (di)))] (Associative Law) 

= lac + (bc)i] + [((ad)i) + (b((id)i))] (Associative Law) 

= lac + (bc)i] + [((ad)i) + (b((di)i))] (Commutative Law) 
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= lac + (bc)i] + [((ad)i) + (b(d(i x im] 

= lac --!-. (bc)i] + [(C ad) i) + (be d( -1 )))] 

= lac + (bc)i] + [(ad)i - bd] 

= Cac - bel) + (bc + ad)i. 

(Associative Law) 

It is important to note that we needed to use the fact that ~ x el = di. 
This is the commutative law of multiplication, but since i is not an 
ordinary number, we needed to adopt that rule in order to complete the 
calculations. This little point will become significant in Chapter ,5. 

Division of complex numbers poses more of a challenge than other 
operations. Th divide a by fJ, we need to find a complex number y that 
when multiplied by fJ gives us back a. If fJ = c is a real number, this is 
easy. We have (~+ ~i) x c = a +bi. This makes sense, provided that c of 0. 
Now, by a very clever trick we may reduce the problem of division to this 
special situation. First we need a definition. 

If a = a + bi is a complex number, then its complex conjugate Ot is the 
complex number a - bi. The real number a is called the real part Re( a) of 
a, while the real number b is called the imaginary part ImC a) of a. Using 
complex conjugates, we can fInd the real and imaginary parts of a by the 
formulas 2Re(a) = a + Ot and 2Im(a) = a - Ot. 

Lemma 2.4.1 
If (~ and fJ are complex numbers, then 6i + ~ = a + fJ, and Ot~ = afJ. The 
product aOt is real and positive for any a of 0. 

Now we are able to divide complex numbers. Ifa = a+bi and fJ = c+di, 
then 

a 1 - ac + bd (bC - ad) . 
~ = fJ~afJ = c2 +d2 + c2 +dz- 1. 

If a = a + bi, then aOt = a 2 + b2 , which by the pythagorean theorem is 
the square of the length of the line segment from (0, 0) to (a, b). We define 
the absolute value of a to be the quantity lal = ~. If a and fJ are two 
complex numbers, then la - fJl is the length of the line segment joining 
a to fJ. If a' and fJ' are two other numbers in the complex plane, then the 
line segments joining a to fJ and a' to fJ' are congruent if la - fJl = la' - fJ'l· 

Suppose p is a complex number that has absolute value 1. Define a 
transformation R of the plane by RCa) = pa. Then we have 

IRCa) - R(fJ)12 = Ipa - pfJI 2 

-------oc 

= Cpa - pfJ)(pa - pfJ) 

= pea - fJ)(p)(a'''~) 
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= pp(a - f3)(a - f3) 

= (a - f3)(a - f3) 

= la - f312. 
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In other words, the distance from R(a) to R(f3) is the same as the 
distance from a to f3. This calculation shows that R is an isometry of 
the plane. Since for p i= I, R(a) = a only for a = 0, R must be a rotation 
around the origin. Using a little trigonometry, we can determine the angle 
of rotation. Since Ipi = I, the segment from the origin to p has length 1 
and makes an angle e with the positive x-axis. So the coordinates of p 
can be written as cose and sine. Since R(I) = p, R is rotation bye. 
The rotations of the plane around the origin are in I-to-l correspondence 
with the complex numbers p satisfying Ipi = 1. If P and a are two such 
numbers, then their product pa satisfies Ipal = Ipllal = 1. The numbers 
of absolute value 1 make up the circle group 81 . The identity element 
in this group is the number 1. Since pp = I, the complex conjugate 
of p is its inverse in the group. In other words, multiplication by p 
rotates the plane counter-clockwise by an angle e (assuming that e is 
positive), while multiplication by p rotates the plane clockwise by the 
same angle. 

Suppose p = cos e + i sin e and a = cos ¢ + i sin ¢ are two members 
of the circle group. Rotating a through the angle e gives us cos(e + 
¢) + isin(e + ¢). Using complex multiplication, pa = (cos(f))cos(¢)­
sin(f)) sin(¢)) + i(sin(f)) cos(¢) + cos(f)) sin(¢)). Since these two complex 
numbers are equal, the real parts must be equal and the imaginary parts 
must also be equal. These are the double angle formulas of trigonometry: 
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cos(e + ¢) = cos(e) cos(¢) - sinCe) sin(¢), 

sinCe + ¢) = sinCe) cos(¢) + cos(e) sin(¢). 

Similarly, we can compute pn two different ways to get de Moivre's 
formula: 

(cos e + i sin e)n = cos(ne) + i sin(ne). 

If a is any complex number other than 0, then multiplication by a is 
easy to describe. If lal = r, then ~ has absolute value l. Therefore, we 
can write ~ = cos(e) + i sinCe), or a = r( cos(e) + i sinCe)). Multiplication 
by a positive real number r just moves every point in the plane to a point 
r times as far out on a ray from the origin. This is a dilation of the plane. 
(I use this term even when r < I, although its everyday use assumes 
r > 1). Now it is easy to see that multiplication by a is dilation by a factor 
of r combined with rotation around the origin by angle e. 

If 17 = a + bi, then the map T(a) = a + 17 translates every point in the 
plane a units horizontally and b units vertically. Subtracting 17 translates 
in the opposite direction; it is the inverse T-1 of the translation T. If we 
want to rotate by an angle e around the point whose coordinates in the 
plane are (a, b), then we can translate the plane so that (a, b) moves to the 
origin, rotate by e around the origin, and then translate the origin back 
to (a, b). If P = cose + isine, and ifR is rotation bye around the origin, 
then the rotation R' around (a, b) is 

R'(a) = TRT-1Ca) 

= pea - 17) + 17 

= pea) + 17(1 - p). 

This is where our work with complex numbers begins to payoff. Any 
transformation U(z) = pz + r of the complex plane with Ipi = 1 is an 
isometry consisting of rotation by an angle e followed by translation by 
the vector (c, d), where p = cose + i sine and r = c + di. If P = I, then 
this is a straight translation. If p i= I, then this is a rotation by the angle 
e around the point (a, b), where a + bi = l~P' 

Problem 
Suppose R is a rotation around (1, 0) through an angle of 30° and R' is a 
rotation through an angle of 40° around the point (0,1). Describe the isometry 
R'R. Is it the same as the isometry RR'? 

We have taken care of translations and rotations. What about flips and 
glide reflections? Those are easy, too. IfF(a) = ii, then F is the reflection 
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across the x-axis in the plane. Suppose we want to flip across the line 
through 0 and p, where as usual p = cose + isine. Ifwe first flip across 
the x-axis, that takes p to p. Now if we rotate by an angle 2e, that will 
bring p back to where it started. Since the origin is also unmoved, the line 
through 0 and p doesn't move. But then that must be the flip across that 
line. Our formula is U(z) = p2Z. 

Problem 
Find the general formula for a glide reflection. From the formula, read off the 
line across which the reflection is taken and the distance points move along 
that line. 



CHAPTER 

Geometry of 
the Hyperbolic 
Plane 

3.1 The Poincare disc and 
Isometries of the Hyperbolic Plane 

The Fifth Postulate of Euclid is equivalent to the statement that the sum of 
the angles in any triangle is equal to 180° (Hypothesis 5; see Section 2.1). 
From this we are able to deduce the possible regular and semiregular 
tilings of the plane (See Section 2.2). Now we are going to make the 
contrary assumption, that the sum of the angles in any triangle is less 
than 180°. (Recall Legendre's and Saccheri's Theorem 1.3.2, which says 
that either the sum of the angles in every triangle equals 180° or else the 
sum is always less than 180°.) This will lead to a very different conclusion 
about possible tilings. For example, four squares no longer fit together at 
their corners without leaving a gap. As we will see, however, it is possible 
for five squares to do so! 

1b begin, let us examine a model of the hyperbolic plane known as the 
Poincare disc. Recall from Chapter 1 that a model for a postulate system 
is created by substituting specific objects for the undefined terms in the 
system in such a way that the postulates become true statements about 
the objects. In the example of Euclidean geometry known as Cartesian, or 
analytic, geometry, the word "point" meant an ordered pair (a, b) of real 
numbers and the word "line" meant the locus of points (a, b) satisfying 
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the relation as + bt + u = 0 for some fixed triple (s, t, u) of real numbers 
with sand t not both equal to 0 

What we are going to do is to describe a model for geometry in which 
all of the postulates except the parallel postulate are true and the parallel 
postulate fails. The model actually comes from Euclidean geometry, 
although we have to change our interpretation of some of the basic terms. 

The hyperbolic plane J{ will consist of all points contained within the 
unit circle Q with center at the origin. In terms of analytic geometry, J{ 
consists of all ordered pairs (a, b) of real numbers satisfying the inequality 

a2 + b2 < I. 

Such an ordered pair is defined to be a point. A line is defined to 
be the locus of points lying inside Q on a circle that meets the unit 
circle orthogonally (perpendicularly). 1b measure the angle between two 
(hyperbolic) lines, we draw the Euclidean straight lines tangent to the 
lines at the point of intersection and measure the angle between them. 
So for example, two hyperbolic lines are perpendicular if their tangents 
are perpendicular. We must also include in our definition of hyperbolic 
line the diameters of the circle Q. 

1b understand this model, we need to investigate the geometry of 
circles and determine when two circles in the (Euclidean) plane are 
orthogonal to each other. The basic tool we will use is a geometric con­
struction known as inversion. 

Suppose 1; is a circle of radius k centered at a point O. If X is any point 
other than 0, define its inverse X' with respect to 1; to be the point on the 
ray from 0 through X satisfying the equation 

Points inside 1; have inverses outside 1;. The inverse of X' is X. Points 
on the circle are their own inverses. The importance of inverses comes 
from the following lemma and its corollaries. 1b avoid confusion, note 
that the circle S in the lemma is not the circle through which we will be 
inverting points. That circle, 1;, will have center at the point O. 

Lemma 3.1.1 
If from a point 0 outside a circle S a ltne is drawn meeting the circle at X and 
X', then 10XI x 10X'i = k2, where k is the length of the tangent OP to S. 

Proof 
The key to this lemma is to see that triangles OXP and OPX' are similar 
triangles. Since they have one angle in common, we only need to check 
that LXPO = LPX'O. Let Ll = LQX'X = LQXX', L2 = LPX'O, and L3 = 
LX' XP. Then since f:D(' QP and f:D(QP are isosceles, L QPX' = L 1 + L 2, while 
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LQPX = Ll+L3. Add up the anglesinL.PXX' to see that Ll+LZ+L3 = 90 0 • 

Now we use the fact that OP is tangent to the circle to get LXPO = LZ. 
S· t· 1 AOP'X d AOX'p ··1 IOXI _ IOPI 1nce nang es Do an Do are SImI ar, IOPI - lox'i . • 

Corollary 3.1.2 
If X and X' are inverses to each other with respect to the circle I;, then any 
circle S passing through X and X' meets I; orthogonally. 

Proof 
The tangent line OP from the center 0 of the circle I; to the circle S 
satisfies the formula IOPI 2 = IOXI x IOX'1 = k2 , so IOPI = k. • 

Corollary 3.1.3 
If F is inversion through a circle I; with center 0 and radius k, then F takes 
any circle orthogonal to I; to itself 

Proof 
Let S be a circle that crosses I; orthogonally at a point P. Then the radius 
OP of I; is tangent to S. If a ray from 0 meets S at points X and Y, then 
by Lemma 3.l.1, IOXIIOYI IOPI 2 = k2 , so X and Yare inverses with 
respect to I;. • 

Problem 
Figure out how to construct X' given the circle I; with center 0 and the point X, 
using only compass and straightedge. Then see if you can construct X' using 
only a compass. (This is easier when the point X is outside the circle.) 

Proposition 3.1.4 
If F is inversion through a circle I; with center 0 and radius k, then F takes 
any circle not passing through 0 to a circle not passing through o. 
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o X' 

Proof 
Suppose S is a circle with center C. For convenience let's assume that 0 
is outside the circle. There is a similar argument when it is inside. The 
ray from 0 through C hits the circle at points A and B. Let P be any other 
point on the circle. Let F(A) = A', F(B) = B', and Fep) = P'. 

O~-----4~----~~----~--------~---------='B 

Now IOPIIOP'I = 10BIIOB'I, so :~~: = :~;;:. This means that the triangles 
60PB and 60B'P' are similar triangles, and LOP'B' = LOBP. By the same 
argument, LOP'A' = LOAP. Furthermore, LOAP = LOBP+Ul.PB (because 
an exterior angle is the sum ofthe other two interior angles-we are still 
doing Euclidean geometry here!) So LAPB = LA'B'P'. 

But AB is a diameter of a circle and P :is on that circle, so LAPB = 90°. 
So if we draw the circle with diameter A'B', then by the same principle, 
P' must be on that circle. The circle with diameter AB is therefore taken 
to the circle with diameter A'B'. 
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Problem 
Show that the inverse of a circle through 0 is a straight line not passing 
through O. 

In the proof of Proposition 3.l.4 we saw that if three points A, P, and 
B were taken to points A', pi, and B', the corresponding angles iAPB and 
iBIPIA' are equal. Using this observation it is possible to prove: 

Proposition 3.1.5 
Inversion through a circle :E takes curves crossing at an angle a to curves 
crossing at the same angle a. 

Now we will apply Corollary 3.l.2 to the circle Q. If X is any point 
inside Q, then there is a corresponding point X' outside. If X happens to 
be the center 0, the construction does not apply, and we can think of the 
other point as being "at infinity!' Let's worry about this later. 

If X and Yare two points in Q, there is a unique circle passing through 
X, Y, and X'. (This is a fact from Euclidean geometry.) By Corollary 3.1.2, 
this circle will be orthogonal to Q, so the part inside Q is a hyperbolic 
straight line (which we will call an h-line for short). This proves that two 
points are uniquely joined by an h-line. The collection ofh-lines through 
X is the set of circles through X and X'. (This is known as a coaxial system 
of circles.) 

In the special case where X is the center 0 of the circle, this construc­
tion is replaced by the easier one of taking all the ordinary straight lines 
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through o. We can imagine these lines as all passing through a point 0' at 
infinity. Using the construction known as stereographic projection, there is 
another way to visualize this. 

Imagine the Euclidean plane P as the x-y plane in three-dimensional 
space, and let S be the sphere of radius 1 centered at the origin. We'll call 
the north pole of this sphere N; it has coordinates (0,0,1). If A is any 
other point on S, then the line through N and A intersects P at the point 
a(A). a is called stereographic projection. This construction goes back a 
couple of thousand years. If the sphere is thought of as the surface of 
the earth, then a sets up a correspondence between points on the earth's 
surface and points in a flat plane; in other words, a map of the world. 
Such a map was known to ptolemy, who used it in his book Geographia. 

Stereographic projection has a number of useful properties, of which 
two are important for us right now. The first is that it takes circles to 
circles and straight lines. Circles on S that do not pass through N are 
taken to circles in P; circles passing through N are taken to straight lines. 
Thinking of this in the opposite direction, straight lines in P correspond 
to circles through the north pole of S. We can think of N as "the point at 
infinity" where straight lines all meet. 

The second property of stereographic projection is that if two circles 
meet at an angle e on S, then their images under stereographic projection 
also meet at angle e. The map a is said to be conformal. 

Problem 
An exercise in analytic geometry: If a(a, b, c) = (x, y, 0), find the equations 
for x and y in terms of a, b, and c. If a straight line in the plane is given 
by the equation sx + ty + u = 0, determine the corresponding relationship 
between a, b, and c and verify that this describes a circle passing through the 
north pole. 

Stereographic projection takes the southern hemisphere of S to the 
points in J{, the points inside the unit circle Q, and the equator cor-
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responds to Q. A circle on the sphere crosses the equator orthogonally 
precisely when its image under stereographic projection crosses Q or­
thogonally. Now, how do we get such a circle on the sphere? It's simple! 
Just take a vertical plane that slices through the sphere. The intersec­
tion of a plane with a sphere is a circle, and vertical planes cut the 
equator orthogonally. The circles in the plane passing through a point 
X correspond to circles passing through a point A on the sphere, where 
X = a{ A). So take the vertical line through A and look at all planes 
containing that line. These planes slice through the sphere along circles 
through A. that cross the equator orthogonally. In this picture, the circle 
that also passes through the north pole corresponds to the radial straight 
line through X. 

The vertical line through A meets the sphere at a second point A'. If 
aC A) = X, then aC A') = X', where X' is the inverse of X with respect to 
the unit circle. So the relationship of inverse points on the sphere is quite 
simple. In the case where A. is the south pole of the sphere, it becomes 
natural to think of the north pole as its inverse. The circles through the 
poles orthogonal to the equator are the meridians of the sphere, which 
correspond to the straight lines through the origin in the plane. Now 
we see that those straight lines are just like arcs of circles that hit Q 

orthogonally. 
So far, we have verified that in the Poincare disc model of hyperbolic 

geometry two points determine a line. To verify that Euclid's third and 
fourth postulates hold in this model, we need to have a notion of congru­
ence. Suppose £ is an h-line in J-f. That is, £ is the part of a circle S crossing 
Q orthogonally. Define F by the rule F(X) = X' if X' is the inverse of X 

with respect to the circle S. F will be the flip, or reflection, through £ in J-f. 
In the special case where P is part of a straight line, F is just the ordinary 
reflection through that line. 
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Because Q is orthogonal to S, points on Q have inverses that are on s"2. 
Therefore, F(X) is in J{ whenever X is in J{. We will declare F to be an 
isometry of the hyperbolic plane, and therefore any composition of these 
flips will be an isometry. This should take care of all possible isometries, 
because of a fundamental theorem of geometry: 

Theorem 3.1.6 
three reflections. 

Proof' 

Any isometry of the plane is a composition of at most 

Let AB be a line segment, and let ArB' be a congruent segment. We saw 
in Chapter 2 that there are exactly two isometries that carry A to A' and 
B to B' (Pasch's axiom). Let's see how to find two isometries using only 
reflections. If £1 is the perpendicular bisector of the segment AA', then 
the reflectionFl across £1 will take A toA'. Suppose FleB) = Bf!. IfB" = Br, 
then we hit the jackpot and can stop here. Otherwise, let £2 be the line 
bisecting the angle LBA'B", Then the flip F2 will take B" to B', and the 
isometry we want is F2Fl. We have found one isometry; the other is gotten 
by following the first by the flip across the line through A' and B'. III 

This theorem is a classical theorem of Euclidean geometry, whose 
proof does not use the parallel postulate. Consequently it is also a true 
theorem of hyperbolic geometry. In general, geometrical theorems that 
do not depend on the parallel postulates are theorems in what is called 
absolute geometry. 

Problem 
Show that a rotation about a point X through an angle e can be accomplished 
by two flips. Show that a translation along a line £ can be achieved by two flips. 

That our definition ofisometry makes sense requires a bit of work. By 
Proposition 3.1.4, F takes circles to circles. By Proposition 3.1.5, a circle 
orthogonal to Q will be taken to a circle orthogonal to Q. So h-lines are 
taken to h-lines and angles are preserved. We need to know also that if A 
and B are two points in J{, then there are exactly two isometries that fix 
both of them. In Section 3.3 we will be able to prove this algebraically. 

If A is an h-line andX is a point not on A, then there are infinitely many 
h-Iines through X that do not meet I,. Among them are two h-lines M and 
\! that pass through the same points of Q. These are sometimes called 
"parallel" to A, while the other lines are called "hyperparallel." The line A 
and the two parallels through X together form a sort of triangle with two 
of its three vertices on Q. A point on the circle Q is called an ideal point. 
An ideal point is not a point in J{, but rather a "point at infinity." If Y is 
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any point on the opposite side of A from X, then it is not possible to draw 
an h-line through Y that intersects both fJ and v. 

This explains the flaw in Legendre's proof of Theorem 1.3.4 of Chapter 
1. In that proof we had a triangle ABC and a pointDbelowthe segmentBC. 
We assumed that there was a line through D that met two rays emanating 
from A. (The picture in the proof showed the line EF already drawn.) The 
existence of EF used the parallel postulate! 

Ideal points are very helpful in understanding the geometry of the 
hyperbolic plane. Given two ideal points 'P and Q, there is a unique h­
line A that "connects" them. 1fT is a (hyperbolic) translation along A, then 
as a set, the line A is carried to itself. It is invariant under T. Since our 
isometries are represented by transformations of the Poincare disc, we 
can think of them as also defined on the ideal points. Ideal points are 
always taken to ideal points by any isometry of J-f. It follows that the 
isometry fixes the points 'P and Q. (Where else could they go?) 

These turn out to be the only two ideal points that are fixed by T. But 
this means that no other line is invariant under T. Unlike the Euclidean 
case, where translation along a line is also translation along all parallel 
lines, a translation in hyperbolic geometry only slides one line along 
itself. Instead, points at a fixed distance h from the line A are carried 
to points the same distance from A. (We have not actually defined dis­
tance. This can be done, however, and then our isometries will preserve 
distances.) The set of such points is called an equidistant curve. In the 
disc, this curve is described by a circle arc passing through the points 
'P and Q. 

How can we see that this is so? We know that the isometry T fixes 'P 
and Q. We know that circles go to circles, so every circle through 'P and 
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Q. goes to some circle through 'P and Q.. Since T preserves angles, each 
circle through 'P and Q. must in fact be taken to itself. 

The h-lines orthogonal to A correspond to circles that are orthogonal to 
a11 circles through 'P and Q.. Translation carries one such line to another. 
In the picture above, the light circles correspond to h-lines, while the 
horizontal curves are loci of points a fixed distance from the h-line A. As 
the curves approach an ideal point, they appear to our Euclidean eyes to 
be getting closer together, but they are not. All h-line segments joining 
two equidistant curves are congruent to each other. As we move an object 
closer and closer to Q while keeping its shape the same from the point 
of view of hyperbolic geometry, it appears to our Euclidean eyes to be 
shrinking in size. In the next section, we will be tiling the hyperbolic 
plane with congruent polygons. In the Poincare disc, the polygons will 
appear to get sma11 as they get close to the boundary circle. 

Problem 
Suppose A and J-L are two h-lines that meet at an ideal point 'P. Let Fl be the 
reflection across A and Fz the reflection across J-L. Show that FZFl(X) =1= X for 
all points in J{ Show that FzF1(Q.) =1= Q. for any ideal point other than 'P. 
Conclude that this isometry is not a translation, rotation, or glide reflection. 

3.2 Thssellations of the Hyperbolic 
Plane 
A regular polygon in J-{ is, as in the Euclidean case, a polygon whose 
edges are a11 congruent and whose vertex angles are all congruent. Here 
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is a simple way to make one. Let's suppose we want to make a regular 
hexagon. Draw six rays from the center 0 of Q at 60° angles extending to 
Q. Draw a circle centered at 0; it meets the rays at six points. Now connect 
consecutive points with h-lines instead of regular lines. Since the ordinary 
Euclidean rotation around 0 is an isometry of J-f, the polygon is regular. 

Note that we can construct a regular four-sided polygon by this method. 
But we probably should not call it a "square," since the angles at the 
four corners are not right angles. This creates a bit of confusion about 
the idea of "area" of a hyperbolic figure, since there is no "unit square" 
floating around. Actually, area is not all that simple a concept even in 
Euclidean geometry. There are three simple properties of area that are 
easy to describe. The first is that if one polygon is inside another, then the 
inner polygon has smaller area than the outer one. The second property 
is that area is additive; this means that if a polygon is cut up into smaller 
polygons, then the area of the large polygon is equal to the sum of the 
areas of the smaller polygons. The third is that if two polygons are con­
gruent, then they have the same area. In Euclidean geometry, we would 
then choose a unit square and use these principles to determine the areas 
of polygons. If we get into the question of objects with curved sides, the 
subject gets quite a bit more complicated, so we will stay with polygons. 

In Section 1.3 we defined the defect of a triangle to be the difference 
between 180° and the sum of the angles in a triangle, and we saw that the 
defect is also additive. That is, if a triangle is cut up into smaller triangles, 
then the defect ofthe triangle equals the sum of the defects of the smaller 
triangles. Using this fact it is not too difficult to show: 

Lemma 3.2.1 
The area of a triangle is proportional to its defect. There is an upper bound to 
the area of a triangle in J-{ 

This is a remarkable fact! There is no comparable phenomenon in 
Euclidean geometry. In fact, we may define the area of a triangle to equal 
its defect; then every triangle has area smaller than 180. (Actually, it is 
customary to use radians rather than degrees, so that every triangle has 
area less than n.) 

TIuning to our hexagons again, if we connect the ideal points at the 
ends of the six rays from the origin by h-lines, we get an "ideal hexagon." 
Since h-lines are parts of circles orthogonal to Q, the adjacent sides of this 
polygon are actually tangent; in effect, the vertex angles are o. So as we 
construct regular hexagons with vertices chosen farther and farther away 
from the origin, the vertex angles are decreasing, and they can be made 
as close to 0 as we like. In fact, if e is any angle less than 120°, there is 
exactly one way to construct a regular pentagon with interior angles all 
equal to e. 
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We have built our hexagon centered at the origin. By using an isometry, 
we can move it to any p1ace we like. With our "Euclidean" eyes, however, 
the polygon will appear to shrink as we move it farther away from the 
origin. For example, we could start with a hexagon whose interior angles 
are exactly 90°. By reflecting the hexagon across each of its six sides, 
we get six more hexagons, each apparently smaller than the original but 
actually congruent to it in :Jf. Since there is 900 left outside of this figure 
at each of the six vertices, we can just squeeze one more hexagon in. This 
is the beginning of the process of building the regular tiling (6, 6, 6, 6) of 
J{by hexagons with four at each vertex. 

Of course, we could use pentagons instead of hexagons. Now the 
interior angles must be smaller than 10SO; we can find a right-angled 
pentagon and use it to tile the plane. Below is a picture of the regular 
tiling (5,5,5,5). 

By making the pentagon bigger, we can reduce the vertex angles to 72 0 • 

This gives the (5,5, 5, 5, 5) regular tiling of the plane. 
We can also construct semiregular tilings. For example, we might try to 

put two regular hexagons and a regular octagon together at a vertex. But 
how do we know we can do this? In the Euclidean case, if we wanted to 
put two octagons and a sq uare together, we just chose the square with the 
same edge length as the octagon and then put them together. The angles 
automatically added up. But in .'l-{ life is more interesting. We can build 
an octagon and two hexagons with the same edge length, but the angles 
might not add up right to put them together. 

Suppose we start by building the three polygons very large. Then the 
sum of the angles around the vertex can be made smaller than 3600 

without any difficulty. Now start shrinking the polygons, keeping the 
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edge lengths equal to each other. The angles will keep growing. In fact, the 
smaller we make the polygons, the closer the angles are to the Euclidean 
angles (because the defect is proportional to area by Lemma 3.2.1). So 
there is some intermediate size at which they will just fit together. This 
is the size we will use for the (6,6,8) semiregular tessellation of J-{ 

This is all very well and good, but how do we know that this process 
always works? In the Euclidean case, we were able to put two pentagons 
and a hexagon together at a vertex, but the pattern could not be extended 
to a tiling of the plane. What assurance do we have that there really is a 
(6, 6, 8) tiling? 

One way to approach this problem is to look at the dual tiling. Suppose 
we have actually constructed the (6,6,8) tiling. As we did in Chapter 2, 
construct a tiling by taking as vertices the centers of the polygons and as 
edges the h-line segments joining two adjacent polygons. This will divide 
J{ into triangles, all of them identical, one for each vertex of the original 
tiling. The angles at the vertices will be exactly 60°, 60°, and 45°. (This 
follows from the fact that we cut up each polygon into identical pieces, 
and the central angles add up to 360°.) Any two adjacent triangles are 
mirror images of each other. 

Now let's turn the problem around. Start with the triangle with vertex 
angles 60°, 60°, and 45°. If we can generate a tiling of J{ by repeatedly 
reflecting the triangle across its sides, then its dual tiling will be the 
(6,6,8) tiling we seek. 
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This turns out always to be possible. Namely, if I, m and n are integers 
that satisfy the equation 

1 1 1 - + - + - < 1, 
I m n 
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then the triangle T whose angles are I~O, I!O, and I~O degrees tiles the 
hyperbolic plane by repeated reflection across its sides. The dual tiling to 
this tiling by triangles is the (21, 2m, 2n) tiling. 

Let F I, F 2, an F 3 be the reflections across the three sides of T. If we 
alternately flip across two of the sides, the vertex where they meet does 
not move, and the result is a rotation around that vertex. We get the 
equation (FzF1Y = I, where I is the identity transformation (See Section 
2.1 for information about transformations.) Likewise, (F3Fd = I, and 
(FIF3)m = I. If we color T black, color the triangles adjacent to T white, 
and then follow the rule that whenever we flip a triangle it reverses 
color, then the triangles will be neatly divided into two sets, with adjacent 
triangles never having the same color. 

Problem 
Modify the construction above to account for the fact that there is also a (7, 6, 6) 
tiling of the hyperbolic plane. 

A proof that repeated flipping of a triangle across its sides does not 
lead to inconsistencies is actually a bit too advanced for this book. It 
requires some topology, specifically, the theory of covering spaces. An 
intuitive explanation is possible, however. It is easier to describe in the 
Euclidean case, but the non-Euclidean argument would be equally fine 
(if we happened to be non-Euclidean people). Imagine a room with three 
walls that are covered with mirrors and a floor that is in the shape of a 
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triangle with each angle evenly dividing 1800 • (Unfortunately, there is 
rather a narrow selection, since we are Euclidean!) As we look at a wall 
we seem to see a vista (with lots ofimages of ourselves seen from different 
angles). Because of the angle condition, whenever we see the edge of the 
room, everything around it fits together perfectly. The result is that we 
see a plane covered with trianglular flooring, one triangle for each image 
of the room. That is our tiling. 

Problem 
Suppose we were in a room with three triangular walls meeting at a point and 
a triangular floor (in other words, we were inside a tetrahedron). Suppose all 
the walls and the floor had mirrors. Would it be possible for the view to seem 
like ordinary (Euclidean) space in all directions? In other words, is it possible 
to fill up space with reflected copies of a tetrahedron? If so, how? 

M.e. Escher Maurits Comelis Escher (1898-1972) studied graphic arts 
at the School of Architecture and Decorative Arts, in Haarlem. From his 
student days on, he was fascinated with repetetive design patterns, and 
throughout his life he produced marvelous designs in woodcut and wood 
engraving using the geometry of planar tessellations. A typical woodcut 
features a repeating pattern made by taking one of the possible symmetry 
groups and replacing the geometric figures by birds, fish, or other real or 
imaginary creatures. 
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According to Doris Schattschneider's book Visions of Symmetry ([30], 
p. 251), Escher was intrigued with the idea of artistically representing 
infinity by a repeated pattern that diminished in size. One of his designs, 
Whirlpools (November 1957), depicts two spiraling streams of fish swim­
ming in opposite directions along spirals that emerge from one vortex and 
disappear into another. The fish diminish in size as they approach the 
center of each vortex. Escher struggled for years with the problem of pro­
ducing a design in which instead the fish would recede endlessly toward 
the boundary of an enclosed region while decreasing in size. Then in 1958 
he found a mathematical article by H.S.M. Coxeter (Crystal Symmetry and 
its Generalizations, in "a Symposium on Symmetry," Transactions of the 
Royal Society of Canada 51 (1957), 1-13) which pictured a hyperbolic 
tessellation of the plane. This led to correspondence between Escher and 
Coxeter, and the magnificent woodcut Circle Limit III, displaying yellow, 
green, blue, brown, and black fish inside a disc, whose backbones form 
the edges of the semiregular tiling (4, 3, 4,3,4,3) of J-( 

Doris Schattschneider's book [30] is a superb source for information 
about Escher and his work. The geometry of the hyperbolic plane is 
discussed in [4], [7], [35], and [36]. 

3.3 Complex numbers, Mobius 
'Ii:'ansformations, and Geometry 

Just as complex numbers are useful in describing the isometries of the 
Euclidean plane, so are they useful in describing the isometries of the 
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hyperbolic plane. There is a simple reason for this. We will find out 
that inversion through a circle can be described simply using complex 
arithmetic. Since every transformation of J{ is a composition of such 
isometries, the formulas for isometries can be derived by understanding 
inversions. It turns out that every isometry can be written by a formula 
of the form 

or of the form 

U(z) = CiZ + f3 
yz+o 

U(z) = Ci~ + f3 , 
yz+o 

where the quantity fl = CiO - f3y is assumed to be nonzero. (If fl = 0, 
then U is constant.) Transformations of the complex plane given by the 
first type of formula are called Mobius transformations, while those of 
the second type are called conjugate Mobius transformations. Not all of 
these transformations are actually isometries of J{; we must single out 
those transformations that take points inside the unit circle Q to points 
inside Q. 

Let's begin with a simple example. Suppose we want to invert points 
in the plane with respect to the unit circle. That means we must take 
every point X to a point X' on the ray through 0 and X in such a way that 
IOXIIOX'1 = l. If Ci is the complex number corresponding to the point 
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X, then any point on the ray through 0 and X can be represented as a 
complex number m, where r is a positive real number. Since IOXI = lal, 
the equation for inverses is lallml = I, or r = 1;1 2 • Now using the fact that 

lal 2 = aa and plugging in for r in the expression for XI, we get 

Proposition 3.3.1 
The inversion through the unit circle is given by the formula 

1 
FJ(a)=-::-

a 

Ifwe want to invert through the circle of radius k centered at the origin, 
we can modifY the argument above and quickly see that the appropriate 
formula is 

Now, what about inversion through a circle not centered at the origin? 
Here is a simple strategy for finding the formula. Suppose Tx is the 
translation that takes the origin to the point X. T;(J takes X back to the 
origin. To accomplish the inversion through the circle of radius k centered 
at X, we shift X to the origin, perform the inversion through the circle of 
radius k centered at the origin, then shift back to X. If a is the complex 
number that corresponds to the point X, then the formula for translation 
is TxCz) = z + a. The inversion is then given by 

= (az + ~k2 - la I2)) . 
z-a 

Every inversion through a circle is a conjugate Mobius transformation. 
We are also interested in reflection across a line through the origin, since 
that also corresponds to a hyperbolic reflection. Recall from Chapter 2 
that the formula for such a reflection is F(z) = p2Z. This too is a conjugate 
Mobius transformation (with y = 0). 

Suppose D and D' are conjugate Mobius transformations. We need to be 
able to compute their composition. This is just a brute force calculation: 



Complex numbers, Mobius Transformations, and Geometry 

V'V(z) = V' (a~ + ,8) 
yz+8 

a' Q'~+ti + ,8' 
yz+8 

y'Q'~+ti + 8' 
yz+8 

a'az+7J + ,8'yz+:8 

y'az +,8 + 8'yz + 8 

(a'a + ,8'y)z + (a'fJ + ,8'8) 
(y'a + 8'y)z + (y',8 + 8'8) 

67 

So the composition of two conjugate Mobius transformations is a Mo­
bius transformation. A similar computation shows that a composition 
of a Mobius transformation and a conjugate Mobius transformation is 
a conjugate Mobius transformation. Since reflections in hyperbolic ge­
ometry can be represented by inversions through a circle, and since by 
Theorem 3.l.6 every isometry is a composition of such reflections, this 
gives us: 

Theorem 3.3.2 Any isometry of the hyperbolic plane can be represented 
by a Mobius or congugate Mobius transformation. In particular; translations 
and rotations can be represented by Mobius transformations, while reflections 
and glide reflections can be represented by conjugate Mobius transformations. 

Any conjugate Mobius transformation V(z) can be written as a compo­
sition of simple transformations. If y i= 0, then 

az + ,8 a a8 - ,8y a a8 - ,8y 1 
V(z) = -_ - = - - = - - . 

yz+8 y y(yz+8) y y2 (z+i) 
y 

This formula shows that every conjugate Mobius transformation can be 

written as a composition of a translation z t-----+ z + (I); a circle inversion 
y 

z t-----+ 7s;. where k2 = 141; the rotation z t-----+ p2Z, where p2k2 = -4; z y y 

and the translation z t-----+ z + ~. Of course, if y = 0, the formula does 
y 

not apply. In that case, V is a composition of reflection across a line, a 
dilation, and a translation. 

Problem 
Decompose Mobius transformations into simple transformations as above. 
Using this decomposition, conclude that every Mobius or conjugate Mobius 
transformation takes lines and circles to lines and circles and preserves angles. 
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The Mobius transformations form a group:M under composition. Using 
the stereographic projection of the sphere onto the plane (Section 3.1), we 
can view :M as transformations of the sphere. Remember that the north 
pole ofthe sphere corresponds to the lip oint at infinity" in the plane. Ifwe 
then interpret "infinity" as the reciprocal of 0, the Mobius transformation 
can be thought of as defined on this "extended complex plane" C*, which 
is known as the inversive or conformal plane by geometers ([7], p. 84; [29], 
p. 75) and the Riemann sphere in complex analysis. The obvious advantage 
of this is that then the transformation V(z) = ~~:~ is defined for every 
complex number z, including "00." We rewrite 

a+l' 
V (z) = -----t 

Y+ z 
and see that V( 00) = ~, while VC - ~ ) = 00. y y 

Thought of as a transformation of the sphere, V is a conformal map, a 
function that preserves angles. It is a deep theorem of complex analysis 
that Mobius transformations are the only conformal transformations of 
the sphere that take distinct points to distinct points. V also takes circles 
to circles. 

Problem 
Let V(z) = ~~:~ If U is not the identity transformation, what are the 
possibilities for the number of points z for which V(z) = z> (Include 00 

as a possible point) Investigate the same question for conjugate Mobius 
transfom1ations. 

Problem 
The cross-ratio of four complex numbers ZI, Z2, Z3, and Z4 is the quantity 

(ZI - Z3)(Z2 - Z4) 
(ZI, Z2: Z3, Z4) = . 

(Z2 - Z3)(ZI - Z4) 

If V is a Mobius transfon11ation, show that 

If ZI, Z2, Z3 are three distinct complex numbers, and if WI, W2, and Wl 

are distinct complex numbers, verify that the equation (w, W2: W3, W4) = 
(z, Z2: Z3, Z4) defines a Mobius transformation w = V(z) for which w, = V(z,). 

Among the Mobius transformations, those that take the interior of the 
unit disc to itselfform a subgroup G. For each transformation V in G, there 
is a conjugate Mobius transformation U defined by U(z) = U(z). There 
is also a Mobius transformation V* defined by V*(z) = V(Z). From the 
properties of conjugation, uv = uv and vi! = V*V. The transformations 
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in (1 and their conjugates form the isometry group 1(J-{). 1b understand 
this group, we really only need to understand (1. Let's figure out which 
Mobius transformations belong to (1. 

Problem 
Verify the formulas UV = UV and UV = U*V. When is U* = U) 

If U is in (1, then whenever zz = I, we must also have U(z)U(z) = 1. 
Clearing the denominator from this equation, we get 

(az + fJ)(az + fJ) - (yz + 8)(yz + 8) = O. 

Multiplying this out and replacing zz by I, this becomes 

- - - -
(afJ - y8)z + (afJ - ji8)z + (aa - yji) + (fJfJ - 88) = o. 

The two quantities (a/3 - y8)z and (afJ - ji8)z are complex conjugates 
of each other, so they add up to 2Re( a/3 - y8)z) (twice the real part). This 
is supposed to be constant, but z can be any number for which Izl = 1. So 
the coefficient of z has to be O. (If this is not clear, try z = I, z = -I, z = i, 
and z = -i.) So these equations are not so bad after all. They become 

a/3 - y8 = 0, 

lal 2 _ lyl2 = 181 2 - IfJ12. 
(3.3.1) 

(3.3.2) 

If a = 0, we are quickly led to U(z) = ~, with IKI = 1. This does take 
the unit circle to itself, but it switches the inside and the outside. So let's 
choose a complex number K by the equation 8 = Ka. Then equation 3.3.1 
tells us that /3 = Ky. Now we can plug in to equation 3.3.2 to get IKI = I, 
or K = ~. 

K 

We have now arranged for the unit circle to be transformed to itself by 
U. Since U(O) = ~ = &' we need to add the inequality IfJl < lal. Also, 
since multiplying all of the coefficients of U by a real number r doesn't 
change it, we can adjust a and fJ so that lal2 - IfJI2 = 1 Putting this all 
together, we get the answer to our question. 

Theorem 3.3.3 A Mobius transformation U carries the unit disc to itself 
if and only if there are complex numbers a, fJ, and K with lal2 - IfJI2 = 1 and 
IKI = 1 for which 

( az + fJ) U(z) = K -_--_ . 
fJz + a 

Problem 
By replacing K by p2 and using the fact that pp = I, show that it is always 
possible to write U( z) by the formula 

U(z) = (~z + ~) 
fJz + a 
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with 10'1 2 - ItW = 1. 

A fixed point of a transformation T is a point X for which TeX) = X. For 
transformations in fj, fixed points come in pairs: 

Problem 
Show that ifU(z) = z, for U a Mobius tmnsfonnation in fj, then U(Z') = z', 
where Z' is the inverse of z with respect to the unit circle Q 

From this last problem and an earlier one, we can see that there are 
three possibilities for the fixed points of U: 

Proposition 3.3.4 
If U is a Mobius transformation in fj, then exactly one of the following holds. 

1. U has one fixed point inside the Imit disc and none on the circle, 
2. U has exactly two fixed points on the unit circle, 
3. U has exactly one fixed point on the unit circle. 

The first case described in the proposition corresponds to a rotation 
in :H about some point. The second case arises from a translation in :J-{. 
The fixed points are the endpoints of the line along which the translation 
occurs. The third case is a new one. Suppose w is the fixed point of U. If 
{ is any h-line through w, then U takes { to another line through w. This 
is just what an ordinary rotation about a point X does to lines through X , 
so U is sometimes described as a "rotation" about the ideal point (t). It is 
called a pamllel displacement about w. If {) and {2 are two lines passing 
through an ideal point w, and ifF) and F2 are the reflections across these 
lines, then U = F2FJ is a parallel displacement about w. 

The rotations, translations, and parallel displacements are direct isome .. 
tries of Jf. If U is a direct isometry that takes A to AI, B to B', and C 
to C' , where A, B, and C are the vertices of a triangle, then not only 
are LABC and LA'B'C congruent, but the congruence preserves the 
orientation of the triangle. If V is a reflection or a glide reflection, then 
the corresponding triangle Lilli B" C" has the opposite orientation. 

B"L-. _____ -' A" A'--------" B A' '--------" B' 
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V,That exactly is orientation? Intuitively, if we slide 6ABC around, we 
can superimpose it over 6A'B'C', but we would have to lift it out of the 
plane and flip it over to put it over 6AIf B" CIf . I say "intuitively" because 
how do we know that someone can't cleverly slide the triangle around to 
make it fit over 6A"B"C"? After all, the two triangles are congruent! 

We observe that the vertices A', B', and C' are written in order counter·· 
clockwise around the triangle, while AI!, B", and CIf appear clockwise. But 
then, what do these words mean? If we are facing a clock that is in a 
vertical plane, then the hands of the clock move to the right when they 
are pointing upward and to the left when pointing downward. That seems 
clear enough, but what do the words "left" and "right" mean? Suppose 
we had to communicate the notion of clockwise and counterclockwise to 
someone on another planet, using only audio communication. How could 
we know that our sense of clockwise would agree with that of people 
on another planet? Martin Gardner refers to this intriguing question as 
the "Ozma Problem!' ([13], Chapter 18) He quotes William James on 
this puzzle: 

Ifwe take a cube and label one side top, another bottom, a third front, and 
a fourth back, there remains no form of words by which we can describe 
to another person which of the remaining sides is right and which left. We 
can only point and say here is right and there is left, just as we should say 
this is red and that blue. 

We know that at least we have been able to adopt a convention that 
those of us living on this planet will universally understand. How do we 
know that such an idea makes sense mathematically in a non-Euclidean 
two-dimensional universe? That is, how can we define orientation in 
such a way that it consistently holds throughout the plane? A picturesque 
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science fiction version of this question is, Suppose I have a pair of gloves; I 
leave the left glove at home and go for a long trip carrying the right glove. 
How can I be sure that when I return home the glove I am carrying will 
be the opposite of the glove I left behind? 

A mathematically rigorous answer is not easy to arrive at. Here is a 
partial answer. If e is a line in J-{, then it divides J-{ into two halfplanes, 
defined as follows: 'Two points X and Y not on e are in the same half~plane 
if the line segment XY does not meet e. Similarly, a point A on a line e 
divides e into two rays. 

Problem 
How do we know that there are exactly two halfplanes determined by the 
line e) 

Now suppose we fix some half-plane M and fix two points A] and A2 
on the line e. If a triangle has its vertices numbered V j , V 2 , and V 3 , we 
will say it is oriented by this numbering. It is positively oriented if there 
is an isometry in (j that takes Vj to A j , V2 to a point on the ray from A I 
which contains A z, and V3 to a point in the half-plane M. Otherwise, we 
will say the triangle is negatively oriented. 

Problem 
Show that if U(V,) = (W,) and U is in (j, then the triangles!::' V j V2 VJ and 
!::, W j W z W3 (with the orientations defined by this numbering) have the same 
orientation IfU is not in (j, then the two triangles have opposite orientations. 

Problem 
Investigate the idea of orientation in the Euclidean plane and in Euclidean 
three-dimensional space. 

Left­
handed 

Right-~ 
handed ~ 
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For a fascinating investigation of the problem of orientation, sometimes 
called handedness, see Martin Gardner's book [13]. In Section 4.4, we will 
encounter a different geometry, in which orientation cannot be defined. 
In that world, it pays to keep pairs of gloves pinned together during 
long trips. 



CHAPTER 

Geometry of 
the Sphere 

4.1 Spherical Geometry as 
Non-Euclidean Geometry 

Euclid's axiom, as formulated by Hilbert (see Section 1.1), states that given 
a point A not lying on a line a, there is at most one line passing through A 
that does not intersect a. Hyperbolic geometry replaced that axiom with 
the assumption that more than one line through A does not intersect a. 
These are the only two possibilities consistent with the remaining axioms. 
From Hilbert's axioms we can always construct one line through A not 
meeting a. 

Now we want to consider a third geometry, in which through a point 
A not on a line a there is no line that does not meet a. This is not possible 
from Hilbert's other axioms, for reasons that will be easier to see a little 
later. lfwe look at this assumption as a replacement for Euclid's axioms, it 
still appears impossible. For one thing, it implies the existence oftriangles 
whose angle sums are greater than 180°, which Theorem 1.3.2 says is 
impossible. Let's examine one of these impossible triangles. 

Let A and B be two points lying on a line c. Constmct the line a through 
B perpendicular to c. Now constmct the line b through A perpendicular to 
c. Ifwe assume that this line meets a at some point C, then the resulting 
triangle flABC would have two right angles. (It is necessary to draw 
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curved lines in the figure below to represent straight lines. Tty to imagine 
these as straight lines.) 

A 

But wait; it gets worse. Choose a point A' on the line c such that 
IBA'I = IABI. Then the triangle A'BC must be congruent to ABC; this 
means that the segment CA'is also perpendicular to c. All three ofthese 
perpendiculars must have the same length, since we can easily prove that 
ABC is isosceles. We can keep extending the line c and constructing more 
perpendiculars from C. (But it gets harder to draw a convincing picture 
of this!) 

c 

A c 

We also can construct 6ABC' congruent to 6ABC on the other side of 
the line c. Now, since the angles at A and B are right angles, these two 
triangles fit together in such a way that C, A, and C' all lie on a line, and 
also the points C, B, and C' all lie on a line. Now we seem to have two 
straight lines passing through the points C and C' , forming a "biangle", a 
polygon with two sides! 

It is pretty easy to see from all of these pictures why this geometry 
was not considered a possibility even after the discovery of hyperbolic 
geometry. Then, in 1854, Georg Friedrich Bernhard Riemann presented 
a lecture entitled "Uber die Hypothesen welche der Geometrie zu Grunde 
liegen" (On the Hypotheses Which Lie at the Foundation of Geometry). 
At the time, Riemann was just a lowly lecturer, or Privatdozent, at the 
great German University at Gottingen, and it was customary for such a 
lecturer to give an inaugural presentation to the faculty. This lecture was 
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A B 

arguably the most significant inaugural lecture in history: It transformed 
our view of geometry forever. (An English translation of the lecture can 
be found in [32], vol. 2. It is well worth reading.) 

We wi1l1ook at Riemann's ideas about geometry and space more care­
fully in Chapter 6. For now, let us zero in on one small piece of his theory. 
I quote the relevant passage from [32]. The meaning of some ofthe words 
may not be clear, particularly the words "manifold" and "curvature!' These 
will be discussed in Chapter 6. 

When constructions in Space are extended into the immeasur­
ably large, unboundedness is to be distinguished from infinitude; 
one belongs to relations of extension, the other to metric rela­
tions. That space is an unbounded triply extended manifold is 
an assumption whkh is employed for every apprehension of the 
external world, by which at every moment the domain of actual 
perception is supplemented, and by which the possible locations 
of a sought for object are constructed; and in these applications 
it is continually confirmed. The unboundedness of space conse­
quently has a greater empirical certainty than any experience 
of the external world. But its infinitude does not in any way 
follow from this; quite to the contrary, Space would necessarily be 
finite if one assumed independence of bodies frorn position, and 
thus ascribed to it a constant curvature, as long as this curvature 
had ever so small a positive value. If one prolonged the initial 
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directions lying in a surface into shortest lines, one would obtain 
an unbounded surface with constant positive curvature, and thus 
a surface which in a flat triply extended manifold would take the 
form of a sphere, and consequently be tInite. 

77 

What Riemann was saying is that the idea that space is unbounded is 
different from the idea that it is infinite. A straight line in Eucld's geometry 
is intInite. A circle is tInite, but it has no beginning or end. Why not 
imagine a geometry in which a straight-line actually closes up on itself 
like a circle? One could travel in a straight line direction forever and not 
come to the end of it. But maybe if we did that we would come back to 
where we started over and over again. 

The simple model Riemann proposed for this is a sphere. In this 
model of geometry, called spherical geometry, a point is a point on 5, 
the surface of the sphere of radius 1; and a line, which we will call an 
s-line, is a great circle. (Any plane intersects the sphere in a circle; a 
plane through the origin intersects the sphere in a great circle.) Angles 
are measured in the usual (Euclidean) way. In order for this model to 
tIt into the framework of geometry that we have been using, we have to 
modify Euclid's tIrst postulate to mean that there is at leclst one straight 
line passing through any two points. If the two points are not antipodal 
points on the sphere, then there will be exactly one s-line. But for example, 
every meridian on the globe corresponds to (half of) an s-line passing 
through the north and south poles of the sphere. The second postulate 
must be understood that a line has no limit, not that it is intInite. The 
fifth postulate, of course, is to be replaced by the postulate that any two 
straight lines intersect (in fact, in a pair of antipodal points). If A andB are 
not antipodal points, then there is a unique s-line segment joining them 
that is a piece of a great circle not containing any pair of antipodal points. 
There is no way to specify a line segment uniquely between a pair of 
antipodal points. Consequently, arguments about triangles become very 
complicated unless they are small. 

What is a triangle on the sphere? Suppose A, B, and C are points in 
the sphere S that do not lie on the same s-line. In particular, no two of 
them can be antipodaL If c is the s-line determined by Ji and B (which 
is unique, because A. and B are not antipodes), then c divides 5 into two 
hemispheres, one of which contains C. We get a unique spherical triangle 
ABC, which is contained in this hemisphere. It is not too difficult to prove 
that an s-line that passes through a point of the segment AB must also 
pass through a point of either JiC or BC. So Pasch's axiom, Hilbert's Axiom 
II,4, holds in S. 

Problem 
Examine the other IIilbert axioms of geometry (Section 1.1). Which of them 
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hold in spherieal geornetry) You will need to define dbetween" somehow in order 
to do this problem. 

We have not yet defined congruence in our model for geometry. The 
answer comes from three-dimensional Euclidean geometry. A rotation of 
three-dimensional Euclidean space around some line through the origin 
takes points on the unit sphere to points on the unit sphere. It preserves 
angles between curves, since it is an isometry of Euclidean geometry. 
Since it also takes planes through the origin to planes through the origin, 
it takes great circles to great circles and preserves angles between them. 
In addition to the rotations, there are reflections. If P is any plane through 
the origin, then reflection through this plane will take the unit sphere to 
itself, fixing points on the great circle that is the intersection of P with S. 
This is defined to be a reflection in S. 

Just as we used complex analysis to write down formulas for isome­
tries, we will find formulas for the isometries of S. This turns out to be a 
formidable task, however, so let's put this otI until Chapter 5. 

But what about our theorem that says there is no such geometry? If 
we assume that a line can be unbounded without being infinite, then we 
can find a flaw in Legendre's argument that the sum of the angles in a 
triangle cannot be greater than 1800 • The argument assumed that if we 
travel on a straight line between two points, then we must be following a 
shortest path. In fact, on a sphere, a great circle arc is the shortest path 
that stays on the sphere and joins the two endpoints, provided that it does 
not contain antipodal points. In the proof of Theorem 1.3.2, the possibility 
that the path joining Alto A2 to A 3, etc., might not be the shortest path 
was not considered. 

On the sphere it is actually quite easy to construct a triangle with two 
right angles. If A and B are any two points on the equator and C is the 
north pole, then L:::.ABC has two right angles. All of the pictures from 
the beginning of this section make perfectly good sense in S. In fact, 
by choosing AB to be a quarter circle, we may construct an equilateral 
triangle with three right angles. Eight of them fit together perfectly to 
fill out the sphere. This is our first example of a regular tessellation of 
the sphere. 

Just as we constructed regular polygons in hyperbolic space by picking 
points on rays from some central point, we can construct regular polygons 
on the sphere. To construct a regular hexagon, tor example, draw six 
meridians from the north pole N at 60° angles. A plane perpendicular to 
the line through the north and south poles will cut the sphere in a small 
circle that crosses each meridian at a point. Now connect consecutive 
points with s-lil1fcs. Since the rotation around the north-south axis is an 
isometry of S, the polygon is regular. An important consequence of the 
construction is worth noting: 
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Proposition 4.1.1 
The vertices of a regular spherical polygon lie in a plane in Euclidean space, 
Therefore, the vertices of a regular spherical polygon are the vertices of a 
regular Euclidean polygon that is inscribed in the sphere, 

To determine the interior angles of the regular polygon, we use an 
analysis similar to that used in the hyperbolic case, The hexagon is made 
up of six isosceles triangles, each having an angle of 60° at its apex, Only 
this time, instead of the sum of the angles being less than 180°, it turns 
out to be larger. Consequently, we define the excess of a spherical triangle 
to be 1800 minus the sum of the angles in the triangle. 

N 

N 

w 

Each isosceles triangle is made from two meridians from the north 
pole N together with a great circle that passes through a pair of antipodal 
points E and Won the equator. In the special case where the third side is 
part ofthe equator, the resulting triangle 6.NAB has base angles of exactly 
90°. If the triangle ""NA' B' has its vertices in the northern hemisphere, 
then the base angles will be smaller than 90°. As we move the base to 
points A" and B" closer to N, the angles continue to decrease. When they 
are very close to N, the picture looks like a tiny triangle with straight 
sides; in fact, the base angles decrease to the Euclidean values of 60 0 , Th 
prove this, the key is to notice that the spherical triangle can be more 
and more closely approximated by the (planar) Euclidean triangle with 
the same vertices as it shrinks in size, There is a more general fact that 
is true: By exact analogy with the hyperbolic case, it is easy to prove that 
the excess is additive, Remember that this means that if a triangle is cut 
up into smaller triangles, then the excess of the triangle is the sum of 
the excesses ofthe smaller triangles. Using this fact, it is not too difficult 
to prove: 
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Lemma 4.1.2 
The area of a spherical triangle is proportional to its excess 

Since the triangles we are examining sit inside a spherical lune that 
has exactly one-sixth the area of a sphere, we can use this example to 
determine the constant of proportionality. For the right triangle NilE 
has area exactly ~ (i2 the total area of the unit sphere) and has excess 
90 + 90 + 60 - 180 = 60. So the constant of proportionality must be 
exactly 1~()' 

Incidentally, this is an illustration of the advantages of using radian 
measure for angles. If we were measuring angles in radians, the triangle 
would have angles i, i, and}, and its area would be exactly equal to its 
spherical excess. 

Now, since the isosceles triangle sits inside the lune whose area is~¥-, 
its spherical excess can not be any larger than 120. Therefore the base 
angles must lie strictly between 60° and 1200 • The interior angles of a 
regular hexagon are therefore between 1200 and 240 0 • When the interior 
angles get bigger than 1800 , then of course, the hexagons start to be a bit 
weird. In fact, the hexagon with vertex angles exactly 1800 is really just a 
hemisphere. Let's rule out angles this big in our regular polygons. Then 
the following theorem describes the situation on the sphere completely: 

Theorem 4.1.3 There is a regular polygon with n sides in the sphere 
whose interior angles are eo for 180(~-2) < e < 180. 

Now it is routine to find the regular tilings of the sphere, using our 
familiar methods. Hexagons don't work, since even three of them will no 
longer fit around one vertex. It is possible to fit three pentagons around 
one vertex, but not tour. It is possible to fit three regular quadrilaterals 
around one vertex, but again not four. With triangles it is possible to fit 
three, four, or five around a vertex. In all, this gives us five possibe tilings 
of the sphere. 

How can we see that in each case, it is possible to complete the 
const.ruction? By Proposition 4.1.1, if we have such a tiling, we can 
inscribe regular polygons whose vertices correspond to the vertices on 
the sphere. These will fit together to give an object made up of polygonal 
sides, a polyhedron. Now in fact, there are exactly five polyhedra made up 
of identical regular polygons: These are the five Platonic solids. 

The five solids-the tetrahedron, cube, octahedron, dodecahedron, and 
icosahedron-are constructed in the final propositions of Book XIII of 
Euclid's Elements (see Heath ([19]). They appear to have been first studied 
by Theaetetus; Plato viewed them as being central to the scientific study 
of the universe. 
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It turns out to be very instructive to note certain statistics concerning 
the platonic solids. Let's denote by V the number of vertices (corners) in 
one of these polyhedra, by E the number of edges, and by F the number 
of polygonal faces. The results are summarized in the following chart: 

V E F 
Tetrahedron 4 6 4 

Cube 8 12 6 
Octahedron 6 12 8 

Dodecahedron 20 30 12 
Icosahedron 12 30 20 

The similarity in the statistics for the octahedron and the cube, and 
for the dodecahedron and icosahedron, is easily explained. As in the 
Euclidean and hyperbolic cases, we can form the dual tiling to each of the 
regular tilings of the sphere. The dual tiling will have one vertex for each 
face of the original tiling, one face for each vertex, and one edge for each 
edge. The cubic and octahedral tilings are duals, as are the dodecahedral 
and icosahedral tilings. The tetrahedron is its own dual, so V = F. 
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Another statistic is more subtle: In each case, 

V+F = E+2. 

This is the content of Euler's theorem, and it is a powerful tool in the study 
oftilings ofthe sphere, because it is true for any tiling. In the next section, 
we will examine this theorem and its proof; its consequences will appear 
in Section 4.3 as well as in Chapter 5. 

4.2 Graphs and Euler's Theorem 

The fonnula of Euler was stated and proved by Leonhard Euler in 1752. 
In le60 a partial manuscript written by Rene Descartes, containing a 
theorem about polyhedra that can be used to prove Euler's formula, was 
discovered among the papers of Leibniz [3], so many scholars concluded 
that Descartes knew the formula as early as 1635, and the formula is 
known by some as the Euler-Descartes furmula. According to Eves ([11], 
p. 74), it may even have been known to Archimedes. However, most 
recent scholarship disputes these claims and returns the recognition to 
Euler. (See the excellent article by Joseph Malkevitch in [31], pp. 80-92, 
for a historical review of the formula and of polyhedra in general.) It is one 
of the fundamental results in the area of mathematics known as algebraic 
topology, where it has been generalized in a large number of ways. 

The proof of the formula is relatively easy, although this is a bit decep­
tive. There are some technical difficulties lurking in the undergrowth, 
which we will try to avoid stepping on. The most significant of these 
is something called the Jordml curve theorem. This innocent-sounding 
theorem says that a simple closed curve C in the plane (or on the sphere 
S) divides it into two regions. The word "Simple" refers to the fact that C 
has no self-intersections. The word "divides" refers to the fact that a point 
in one region can be connected to any other point in the same region by 
a curve that does not touch C, but any curve joining points from different 
regions must cross C. 

The difficulty in proving this theorem comes from the fact that a simple 
closed curve can be very complicated; for example, it can be a fractal 
curve such as the boundary ofthe Koch snowflake or the pentaflake from 
Chapter 2. If the curve is not so awful, for example if it is made up of 
finitely many straight line segments in the plane or circle arcs on the 
sphere, then the technical difficulties are not too great. For a relatively 
elementary proof, see [34], pp. 26-35. 

We will take the Jordan curve theorem for granted here. Next, we need 
some terminology. A graph on the sphere or the plane consists of a finite 
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collection of points called vertices and a finite collection of curves called 
edges; each endpoint of an edge should be a vertex. It is permissible to 
have both ends of an edge at the same vertex; this is called a loop. It is 
permitted to have two edges connecting the same pair of vertices. It is 
also permitted for two edges to cross, but we will require that they cross 
at no more than one point. Edges that each have a vertex x as an endpoint 
are called incident; these should not cross. No edge should pass through 
a vertex. 

y 

z 

1Wo vertices a and b of a graph are said to be in the same component if 
there is a sequence of vertices (al,a2,a3, ... ,an), where al = a, an = b, 
and each pair of consecutive vertices in the list is connected by an edge. In 
the graph pictured above, there is a sequence (v, x, y) connecting v to y, so 
they are in the same component. There is no such sequence connecting 
v and z. The components of the graph are the vertices {v, w, x, y}, the 
vertices {u, z}, and the single vertex {s}. (JVe have to specify that every 
vertex is in the same component as itselfto get that last case.) 

We will mainly be interested in graphs that have the added property 
that no two edges cross; such a graph is said to be embedded. Suppose G is 
such a graph. Points in the plane (or the sphere) that are not on any ofthe 
edges ofthe graph are divided up into regions called faces. 1Wo points are 
in the same face if they can be joined by a path that does not touch the 
graph. Let V = V(G) be the number of vertices of the embedded graph 
G, E the number of edges, F the number of faces in the plane or sphere 
determined by the graph, C the number of components of G. 

Theorem 4.2.1 (Euler's Theorem) For any embedded graph G in the 
plane or sphere, 

V-E+F = 1 +C. 

Proof 
The idea ofthe proof is an induction argument. If there are no edges in the 
graph, then E = 0, F = 1, and V = C. Now assume that the theorem is true 
for any graph with E = n. Suppose G is a graph with n + 1 edges. Pick an 
edge e ofthe graph joining two vertices a and b, and delete it. Call the new 
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graph G'; this graph has n edges. Then V(G') = V(G), E(G') = E(G) - 1, 
and V(G') - E(G') + F(G') = 1 + G(G') hold by our assumption that the 
theorem is true for graphs with n edges. There are several possibilities: 

x 

(0 y 

0 w 
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If the vertices were connected by more than one edge, then G( G') = 
C(G) and F(G') = F(G) -1. This is illustrated in the transition from graph 
(1) to graph (2). More generally, ifin graph G' the vertices a and b are in 
the same component, then there is a path of edges from a to b that when 
combined with the deleted edge e between a and b forms a simple closed 
curve. By the Jordan curve theorem, points on opposite sides of e cannot 
be connected by a path that does not touch the graph G. But after deleting 
e we can easily connect two such points. Therefore, the number of faces 
must have decreased, and F( G') = F( G) - 1. Since there is still a path 
joining a and b, G(G') = C(G). The transition from (2) to (3) illustrates 
this case. 

The final possibility is the most technically subtle. If a and b are in 
different components of G', then C(G') = G(G) + 1. In this case, which 
is illustrated in the transition between (3) and (4), the number of faces 
does not change: F(G') = F(G). But how do we prove this? The fact that 
points on opposite sides of the deleted edge can be connected by a path 
that does not touch G can be seen in the picture, but proving that it exists 
is hard. Fortunately, if we are careful, we can avoid this problem. 

If we are careful, we can always choose an edge for which one of the 
vertices has no other edges connected to it. Begin with the edge we first 
chose and follow a path of edges going from one vertex to another, always 
leaving by a different edge. Eventually, one of two things will happen. If 
we come back to a vertex we have already visited, then we have found 
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a closed curve of edges. In that case, deleting one of these edges does 
not disconnect the vertices. This is the case we have already dealt with. 
The second possibility is that we can no longer move. In that case, the 
last edge must have a vertex with no other edges on it. If we delete that 
edge, then we have C( G') = C( G) + 1 and Fe G') = Fe G). This last equation 
comes from the fact that points on opposite sides of the deleted edge e 
can be connected by a path that walks around the free end of the edge. 
(Technically, this is the Jordan arc theorem, and its proof is as subtle as 
the Jordan curve theorem. But if the arc is not an ugly curve, this is not 
hard to prove.) 

In each of the cases above, one number on each side of the equation 
changes by 1 in such a way as to keep the balance. So ifthe equation holds 
for G', it must also hold for G. .. 

A useful exercise is to continue deleting edges in the example above 
until there are none left, while computing V, E, F, and C at each stage. 
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Problem 
If the graph is not embedded, and X denotes the number of points where two 
edges cross, what is the relationship of V, E, F, C, and X? What happens if 
three edges go through the same point? (For simplicity, assume C = 1; that is, 
assume that any two vertices are connected by a legitimate path of edges. Test 
your result on the pentagram. 

As an application of Euler's theorem, consider the following problem: 
Suppose a map of Europe shows five countries, each of which has a 
border consisting of a simple closed curve. Is it possible that each pair 
of countries shares a common border? We assume that a common border 
consists of more than one point, otherwise we could easily have five 
countries shaped like wedges of pie all touching at one point. 

1b answer this, we use the technique described in Chapter 2 offorming 
the dual of the map. Suppose we choose a point in the middle of each coun­
try and draw curves between these points that connect pairs of countries 
across their common borders. The result is a graph with five vertices, one 
for each country, and ten edges, one for each border crossing. We can draw 
these curves so that no edges cross. By Euler'S formula, F = 2 - V + E = 7, 
so this graph must divide the sphere into seven regions. But each region 
must have at least three sides, for otherwise we would have two edges 
connecting the same two vertices. Since there are seven regions, that 
makes a total of at least 21 sides. Each of the ten edges accounts for two 
sides, so we can only account for 20 sides. So this map doesn't exist! Stated 
another way, if we put five points in the plane or sphere and connect each 
pair of points with an edge, then at least one pair of edges must intersect. 

Problem (The Utilities Puzzle) 
Three utilities provide water; phone, and electricity, respectively, to houses in 
a community. Each utility wants to dig a trench and run a conduit from its 
plant to each of three houses. Show that two of these trenches are going to 
have to cross. (Note: The companies are not allowed to cheat by connecting 
one house directly to another l) 
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Coloring. When designing maps showing different countries, states, 
or other political subdivisions, it is desirable to use different colors for 
different regions in order to make it easy to distinguish them. The same 
color may be used for more than one country, but different colors are 
used for adjacent countries to delineate borders. We have shown that it 
is not necessary to use five different colors to distinguish five different 
countries. The four color theorem states that in fact, it is possible to color 
any map on the sphere or plane using only four different colors in such a 
way that no two adjacent countries have the same color. (This is only 
true if countries are assumed to have borders that are simple c10sed 
curves, as above. A country that is made up of separate pieces may 
have to have different parts colored with different colors.) We also color 
oceans, etc. 

That four colors are necessary can be seen in many examples; for 
instance, ifvle color the ocean blue and try to color the states of the U.S., 
we need different colors for Florida, Georgia, and Alabama, none of which 
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can be colored blue. We do not need a fifth color for Mississippi or South 
Carolina. 

The four color problem has a long and interesting history. It dates 
back at least to 1840, when it was mentioned by the mathematician A.F. 
Mobius, and it was an unsolved problem until 1976, when Ken Appel 
and Wolfgang Haken of the University of Illinois announced their proof. 
The proof itself is an enormous one, involving a computer analysis of 
hundreds of special cases. Needless to say, the complete proof is not an 
easy one to read. There is a very readable discussion of the four color 
theorem, including a brief explanation of the main ideas of the Haken­
Appel proof, in [3]. This reference has quite a lot of interesting material 
on polyhedra, Euler's theorem, and graphs. It also has the solution to the 
following interesting (and difficult) puzzle: 

Problem (The Colony Problem) 
Suppose we have a map in which each country has at most one colony. Each 
country has a border that is a simple closed curve, and its colony also has 
such a border. We want to color the map so that no countries with a common 
border have the same color, but any colony has the same color as the country 
to which it belongs. How many colors suffice to color any such map? 

Although the four color theorem is difficult to prove, we can easily 
prove that five colors are sufficient to color any map. The techniques 
used here will be very helpful in the next section. Suppose there is a map 
that cannot be colored with five colors. We can choose such a map with the 
smallest number of countries; call such a map "critical". Corresponding 
to the map is a graph G with a vertex for each country and an edge for 
each common border. The number of sides of all faces determined by the 
graph is at least 3F, since each face must have at least three sides. (We 
are counting the "outside" region, which goes off to infinity, if we are on 
the plane. On the sphere it is just another region.) Since each edge is a 
side for two regions, this gives the inequality 

3F:S: 2E. 

Euler's theorem tells us that V - E + F = 1 + c ::: 2, so combining these 
inequalities, 

2 1 
2 < V - E + -E = V - -E 

- 33' 

or 

E:s: 3V - 6. (4.2.1) 
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Since every edge has two ends, the average number of edges per vertex 
is 2EIV. By equation 4.2.1 

2E 12 
- < 6- - < 6. 
V - V 

This tells us that there is a country that has no more than five neighbors. 
Suppose some country has no more than four neighbors. Let one of its 
neighbors invade and annex it. Now we redraw the map; it has one less 
country, so it is subcritical. It has too few countries to be a problem, so by 
assumption we can color it with five colors. Now redraw the conquered 
country. Since it only touches four other countries, we can recolor it using 
the fifth color. 

Suppose instead that a country touches five other countries. By our 
earlier theorem, there must be two among these five countries that do 
not share a common border. This time, imagine that the country in the 
middle conquers both of these countries. The new map is subcritical, so 
we can color it. Now divide that country back into three again. The one 
in the middle has five neighbors, but only four colors were used to color 
them. So we can color the middle one with the fifth color. 

The conclusion ofthe argument is that our so-called "critical" map isn't 
critical after all. That contradiction proves the theorem. 

Nevada is surrounded by exactly five other states. Tb color the map 
of the U.S., first let Nevada annex California and Utah. Color the map. 
Now notice that there are in this example only three colors used to color 
Nevada's neighbors. Pick one of the available colors (in this example, 
Nevada gets the same color as the Pacific Ocean.) 

Problem 
Modify the argument above to show that any map that has no more than 11 
regions can be colored using only four colors. 



90 4. Geometry of the Sphere 

Problem 
Show that the dodecahedron can be colored with four colors. If a map has 
12 regions and every region touches five other regions, show that it must look 
like the dodecahedron map. Conclude that any map with no more than 12 
countries can be colored with four colors. 

4.3 Tiling the Sphere: Regular and 
Semiregular Polyhedra 
In searching for all regular and semiregular tilings ofthe plane, we relied 
on the fact that only certain regular polygons fit together around a point 
so that the sum ofthe angles around a point was exactly 3600 • Ifwe did not 
insist on regular polygons, this technique would not have been available 
to us. In fact, we saw that it is possible to tile the plane with copies of 
a (nonregular) pentagon, while regular pentagons do not fit together in 
the plane. 

Euler's theorem tells us that the situation is somewhat different on the 
sphere. Suppose, for example, we wish to tile the sphere with pentagons, 
without concerning ourselves about whether they are regular polygons. 
We ask only that exactly k pentagons come together at each vertex, where 
k is a whole number. If F is the number of polygons, then the number of 
edges must be exactly ~F, while the number of vertices must be exactly 
~F. Euler's equation implies that V = 2+ ~F, so eliminating V and solving 
for F in terms of k gives us 

4k 
F = -10---3"::"k' 

Since k can't be less than 3, the only possible value for k is 3, and 
F = 12. With a little patience we can check that the only way to fit 12 
pentagons together is in the pattern given by the dodecahedron. One way 
to describe this pattern is to use stereographic projection to draw this in 
the plane; the result is a graph, known as a Schlegel diagram, consisting 
of a pentagon divided into 11 smaller pentagons. This is the map of 12 
countries (including the outer one) each of which touches five others. 

Problem 
Can you find a non regular pentagon, copies of which fit together to fit a 
nonregular dodecahedron? 

Suppose the sphere is divided into polygonal regions in such a way that 
every region has n sides, and k polygons come together at each vertex. 
Call this a regular subdivision of the sphere. 
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Proposition 4.3.1 
There are exactly five pairs of numbers {n, k} for which there exist regular 
subdivisions of the sphere. These correspond to the five regular polyhedra. 
For any regular subdivision, the corresponding graph in the plane is uniquely 
determined. 

Proof 
If a regular subdivision has V vertices, E edges, and F faces, then counting 
the total number of sides to all the regions in three different ways gives 

ZE = nF = kV. 

By Euler's theorem, ZkV - ZkE + ZkF = 4k, so ZnF - knF + ZkF = 4k. 
Solving for F and fiddling with the denominator yields 

4k 4k 
F- - --------~---

- Zn - kn + Zk - 4 - (n - Z)(k - z)' 

Since F is positive, we must have (n - Z)(k - Z) < 4. There are 
exactly five solutions to this inequality, corresponding to the five regular 
polyhedra. For each one, the value of F is uniquely determined, as are V 
and E. It is not hard to check that each of the five determines uniquely a 
simple graph in the plane. -

The same type of argument can be used in narrowing down our search 
for possible semiregular tilings ofthe sphere. Given a tiling of the sphere, 
we have a graph G consisting of the vertices and edges ofthe tiling. Using 
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stereographic projection, we can think of the graph as being an embedded 
graph in the plane. Call such a graph uniform if there is the same number 
k of edges at every vertex, and for every m there is the same number of 
m-sided faces at each vertex. 

Suppose that at each vertex there are exactly h three-sided faces, f4 
four-sided faces, and so on. Suppose there are V vertices. The number of 
edges at each vertex is the same as the number of faces, so the number 
of edges in the graph is given by 

2E = (f3 + f4 + f5 + .. . )V. 

The total number of triangles is h3v . We have to divide by three because 
we count each one three times. Likewise, there are f~v four-sided faces, 
etc. Adding these up, we obtain 

By Euler's theorem, 

4 = 2V - 2E + 2F = 2V - V [[3 + f4 + f5 + ... ] 
+ V [2h + 2f4 + 2f5 + ... J 

3 4 5 ' 
(4.3.1) 

[ 1 2 3 ] 4 = V 2 - 3h - 4f4 - 5f5 - . .. . (4.3.2) 

The quantity inside the brackets in equation 4.3.2 must be positive, 
which means that 

1 234 
-h + -f4 + -f5 + -f6 + ... < 2. 
3 4 5 6 

(4.3.3) 

Lemma 4.3.2 
There are at most three different types of region at any vertex of a uniform 
graph. 

Proof 
Iffour of the terms on the right side of equation 4.3.3 were nonzero, then 
they would have to add up to at least ~ + ~ + ~ + ~ = 2.1, contradicting 
the inequality. -

That narrows down our search for uniform graphs a bit. Equation 4.2.1 
helps us a lot more; it says that the average number of edges at each vertex 
is less than 6. That means that if f = h + f4 + f5 + ... , then f = 3, 4, or 
5. Now, for each of the possible values of f we can study the solutions to 
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equation 4.3.2. For example, suppose f = 3 and there are three different 
polygons at each vertex. If a < b < c are the numbers of sides of the 
three polygons, then we have 

[ 2 2 2 ] 4=V -+-+--1 . 
abc 

(4.3.4) 

None of the three numbers a, b, and c can be odd. For suppose, say, b 
were odd. Walk around the face with b sides; the type of face adjacent to 
each side would have to alternate. But then when we get back to where 
we started, the type doesn't match! 

Now, we have a :::: 4, b :::: 6, c :::: 8. There are two possible solutions to 
equation 4.3.4. Each of these turns out to correspond to a polyhedron. 
One of them, which has the tiling pattern {4, 6, 8} (to use the notation 
of Chapter 2), has V = 48, E = 26, F = 72; it is known as the great 
rhombicuboctahedron. The other, {4, 6, 10}, has V = 120, E = 62, F = 180; 
it is called the great rhombicosidodecahedron. 

Suppose f = 3, and there are two polygons with a sides and one with 
b sides at each vertex. Then a calculation like the one above gives 

If a were an odd number larger than 3, we would run into the same 
type of difficulty described above; b can be odd, however. There are 
actually infinitely many combinations that work. If a = 4 and b is any 
even number bigger than 6, we can find a prism consisting of two regular 
polygons with b sides connected by squares. When a = 3 and b is an even 
number greater than two, there is an anti prism with two b-sided polygons 
joined by equilateral triangles. 

Apart from the prisms and antiprisms, there are just five uniform 
graphs that have three edges at each vertex: the truncated tetrahedron, 
the truncated cube, the truncated octahedron, the truncated dodecahedron, 
and the truncated icosahedron. These arise in a very simple way from the 
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Platonic solids: If one slices off all of the corners from one of the platonic 
solids, each vertex can be replaced by a regular polygon, The lengths of 
the sides can be adjusted so that the remaining taces are also equilateral 
polygons, In fact, they are regular polygons, so the resulting polyhedron 
is semiregular, 

Among the fIve truncated polyhedra, the most familiar one is the 
truncated icosahedron, which is the standard design for a soccer ball, This 
particular polyhedron has recently gained prominence with the discovery 
of carbon molecules made of sixty atoms in this shape. They are known 
as "Buckyballs" or "Buckminsterfullerine" in honor of the architect and 
engineer R Buckminster Fuller, who pioneered the use of polyhedra in 
architecture with structures known as geodesic domes.] 

Starting with the cube, if we cut of larger corners so that the cor­
responding triangles touch at their corners, we get another semiregu-
1ar polyhedron known as the cuboctahcdnm, which has vertex pattern 

1. See H,W. Kroto et aI, "C60 : Buckminsterfullerene," Nature 318 (1985), 162-] 63, 



Tiling the Sphere: Regular and Semiregular Polyhedra 95 

{4, 3, 4, 3}. Similarly, if we cut the corners off the dodecahedron we get 
the icosidodecahedroH, which has vertex pattern {5, 3, 5, 3}. 

The graphs of the great rhombicosidodecahedron and the great rhom­
bicuboctahedron arise from those of the cuboctahedron and the icosi­
dodecahedron by this same truncation process, but this time the faces 
are not all regular; the actual polyhedra have to be made by distorting 
the sides. 

It turns out that there are two more vertex patterns with four polygons 
at each vertex. These are the pattern {4, 3, 5, 3} and the pattern {4, 4, 4, 3}. 
The first corresponds to a polyhedron known as the small rhombicosido­
decahedron. The second pattern has an interesting history. It corresponds 
to the polyhedron known as the small rhombicuboctahedron Early in 
the twentieth century, a new semiregular polyhedron was discovered 
that has the same vertex pattern {4, 4, 4, 3}. (L.A. Lyusternik credits this 
discovery to VG. Ashkinuz [24]; In [2], J.e.p. Miller is cited as the discov­
erer.) J. Malkevitch points out [31] that in fact, D.M.Y. Sommerville had 
Schlegel diagrams for both polyhedra in a paper in 1905. The pseudo­
rhombicuboctahedron, as it is called, differs from the rhombicuboctahe­
dron in an important way: The rotational symmetries of the figure do not 
take every vertex to every other vertex. 

Proble1ll 
Draw Schegel diagrwns for the rhomhicuhoctahedron and for the pseudorhom­
hicuhoctahedron. 
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Problem 
How many isornetries are there of the rhomhicuboctahedron> How many are 
there of the pseudorhombicuboctahedron) 

There are two more semiregular polyhedra, known as the snub cube 
and the snub dodecahedron. Each has five polygons at each vertex. These 
two, together with the eleven polyhedra described above, make up the 
Archimedean solids. Here are the Schlegel diagrams for these two solids. 

An important feature of these diagrams is chirality, the fact that they 
are dit1erent from their mirror images. Correspondingly, the polyhedra 
exist in two enantiomOl7Jhous forms. That is a fancy way of saying that 
there is a "left-handed" one and a "right-handed" one. These are the only 
Archimedean solids with this property. We can compare this with the 
semiregular tilings in the plane; you may recall that the (6, 3, 3, 3, 3) tHing 
also had two enantiomorphous forms. 

The subject of mirror symmetry and handedness of objects is big 
enough to warrant a whole book, and in fact there is a fascinating one 
written by Martin Gardner [13]. There is a huge literature on polyhedra; 
an excellent starting place is the collection [31], where there are many 
more good bibliographic references. 

4.4 Lines and Points: The Projective 
Plane and Its Cousin 
The most obvious drawback of spherical geometry as an alternative to 
Euclidean geometry is the fact that straight lines meet in two points in­
stead of one. There is another geometry, however, called elliptic geometry, 
which does not have this drawback. We wiJ] explore it briefly here. 
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In Section 4.1 we constructed a triangle ABC with two right angles, 
and its mirror image ABC', concluding from this that two lines met in 
two points (forming a "biangle"). There is another possibility, which at 
first blush seems unlikely: The points C and C' might be the same point' 

Here is one model for this geometry. A point in the elliptic plane 'E 
will be defined to be an (unordered) pair of antipodal points on the unit 
sphere. A line in 'E, which we will call an e-line, will be as before a great 
circle on the sphere. 

Since the idea of using two points as one point is a bit confusing, 
there is another model that is a bit easier to use for some purposes. If 
we use stereographic projection to take the sphere to the plane, then 
the southern hemisphere is taken to the unit disc. Since every pair of 
antipodes has one point in the southern hemisphere (or both on the 
equator), we can represent points in our new geometry by points inside 
the unit disc together with pairs of antipodal points on the unit circle. 
In this model, straight lines are represented by straight lines through the 
origin and circle arcs that pass through two antipodal points on the unit 
circle. Angles are again measured in the Euclidean way. 

The e-lines a and b in the picture above meet at the point C. The e-lines 
a and d meet at the point P, which appears twice in the picture. It is easy 
to see from the picture that the angles in /:::,.OBC add up to more than 1800 • 

What is perhaps not so easy to see is that there is more than one choice 
for the triangle /:::"OBC! For instance, we can follow the straight line from 
o to B, then take the circle arc from B through P Uumping from one copy 
of P to the other) and on to C, and then take the line segment from C 
back to O. In fact, there are other choices of triangle (can you find them 
all?) with these same vertices. 

The difficulty we are having stems from the fact that two points deter­
mine a line, but they do not determine a line segment. This is similar to 
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the difficulty we had with the sphere, but there is more trouble ahead. 
It is no longer true that a line divides the plane into two pieces. In fact, 
if A and B are two points not lying on a line £, then there is exactly one 
line segment joining A to B that does not meet f. Since the entire straight 
line £ makes up a simple closed curve, this shows that the Jordan curve 
theorem is not true in 'E. 

The idea behind the Jordan curve theorem allows us to distinguish 
between triangles determined by three points. Of the two triangles DBC 
described above, the first one divides 'E into two regions; the second does 
not. How can we decide in general whether a polygon divides 'E or not? 
The answer comes from the relationship between spherical geometry and 
elliptic geometry. 

There is a function IT : S --0> 'E that takes antipodal points in S to the 
single point they represent in 'E. Using this function, we can draw pictures 
in the sphere that correspond to pictures in 'E. For example, suppose we 
have a quadrilateral with vertices Xl, Xz, X 3 , and X 4 . In the sphere there 
are two points corresponding to each of these points. Pick a point Yl for 
which ITeYl) = (XI). The e-line determined by Xl andX2 corresponds to a 
great circle 0' in S through YI and its antipode Zl containing the two points 
corresponding to X 2 . Ifwe choose an e-line segment in 'Ejoining Xl to X 2 , 

then the points taken to that e-line by IT make up two great circle arcs in 0'. 

But only one ofthem has YI as an endpoint. The other endpoint is a point 
1'2 corresponding to X 2 . Its antipode Z2 is the endpoint oUhe arc starting 
at . Proceeding in this way, we get a path joining 1'1 to Y2 to Y3 to Y4 in 
the sphere. Now, the last step is to take an arc starting at Y4 corresponding 
to the e-line segment from X4 to Xl. The other end of this arc is either 1'1, 

or His Zl. We want the last point to be 1'1, so we will say that an e-polygon 
is one in which the corresponding curve in the sphere is a Jordan curve. 
Notice that if we had started at Z] instead of Yj , the result would be to 
come back to Zl again, so our choice doesn't matter for our definition. 

Problem 
Show that an e-po/ygon is represented by a path in the unit disc that jumps 
across the unit circle boundary an even number of times. How many e-tnangles 
are there joining three points A, B, and C; 

We will define a tiling of'E in the usual way, being careful, however, that 
we use only e-polygons. Now, suppose we have such a tiling. Using IT, we 
can then produce a tiling of the sphere, where each tile of'E determines 
two tiles of S. Which tilings of the sphere correspond to tilings of 'E? The 
answer comes from looking at the antipodal map. This is the isometry A 
of S that interchanges each point with its antipode. This can be achieved, 
for example, by the composition FR, where R is rotation by 1800 around 
the north and south poles, and F is the reflection across the equator. 



Lines and Points: The Projective Plane and Its Cousin 99 

Proposition 4.4.1 
A tiling of S comes from a tiling of'E if and only if the antipodal map A is a 
symmetry of the tiling. 

Problem 
Find all regular and semiregular tilings of 'E. 

Problem 
Show that the projective plane can be divided into six polygonal regions each 
of which has a border with each other region. 

Problem 
Prove the six color theorem: Any map on 'E can be colored using no more than 
six colors. 

If we have a tiling of 'E with V vertices, E edges, and F polygons, then 
the corresponding tiling of S must have 2V vertices, 2E edges, and 2F 
faces. So the Euler formula for a tiling of 'E is 

V-E+F=l. 

There is another way of viewing elliptic geometry. Instead of stereo­
graphic projection, let's look at gnomonic projection. We take a ray drawn 
from the center of the sphere (of radius 1) instead of the north pole. Each 
ray through a point in the southern hemisphere meets the plane tangent 
to the south pole in a point. We may think of this map as taking a pair 
of antipodal points to a single point in the plane. The pairs of antipodal 
points on the equator, however, give lines that do not meet the plane. 
We think of these as corresponding to ideal points at infinity. The plane 
together with these ideal points is called the projective plane. 

The main virtue of gnomonic projection is that it takes great circles in 
the sphere to straight lines in the plane. In navigation, this is extremely 
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useful for course plotting. If we have a gnomonic projection of a piece 
of the globe, then we can connect two points on the map with a straight 
line to find the shortest flight path connecting these points. In practice, 
one can more easily follow a compass heading than a great circle arc. So 
the straight line in the gnomonic map is divided into segments PIPZ, 

PZP3 , etc. The longitude and latitude of each point Pi is determined. 
Then the compass heading needed to fly from point PI to point Pz, etc, 
is computed. 

For our purpose, gnomonic projection allows us to think of the ordi­
nary plane as a model for elliptic geometry. In this model, an ordinary 
Euclidean straight line is a straight line, and an ordinary point is a point. 
However, there is an additional ideal point added in each direction: 'TWo 
lines that are parallel in the Euclidean sense are thought of as meeting at 
an ideal point. The collection of ideal points forms an ideal line. In this 
geometry, any two points determine a line, and any two lines intersect 
a~ one point. 

Perhaps the most elegant feature of projective geometry is this sym­
metry-two points determining a line and two lines determining a point. 
In fact, theorems in projective geometry can be "dualized" by replacing 
point by line and line by point, giving rise to new, correct theorems. Using 
gnomonic projection, this turns out to be easy to explain. 

A point in the projective plane can be thought of as a line through the 
origin in three-dimensional space. On the other hand, any line through 
the origin determines uniquely a plane through the origin that is per­
pendicular to that line. The plane through the origin determines a great 
circle by intersection with the unit sphere, or, by gnomonic projection, a 
straight line in the projective plane. So starting with a point in our plane, 
we can construct a line and vice-versa. Note that if we start with the 
origin, which corresponds to the north and south poles of the sphere, we 
end up with the ideal line. Conversely, if we start with an ideal point, we 
end up with a line through the origin. 

Problem 
What are the straight lines that correspond under this construction to points 
on the unit circle in the plane? (By unit circle, I mean the circle of Euclidean 
radius 1 around the point (0, 0, -1) in the plane z = -1.) Why is the unit 
circle special in this construction? 

Polar Coordinates. We will now look at the description oflines in the 
(Euclidean) plane. Let's denote by :Nt the set oflines. Why :Nt? We will see 
the reason shortly. Since with one exception, every line in the projective 
plane corresponds via duality to a Euclidean line, and since every line 
corresponds to a point in the projective plane, we can think of the lines 
as making up the projective plane with one point removed. This useful 
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notion allows us to make sense of the idea of two lines being "close to 
each other!' 

Let's pause for a moment to think about this. Suppose we plotted 
several points on a piece of graph paper and then wanted to pass a line 
through these points. Of course, if there are more than two points, the 
chances are that they won't exactly lie on any line. So we try to come 
close by drawing a line that almost passes through these points. 

More than one such line may look pretty good. For example, two 
parallel lines may both look close, or two lines that intersect as in the 
picture above. If two different people tried to draw a "best" line, they 
would not necessarily draw the very same line. But we would expect the 
lines to look more or less the same. Intuitively, such lines ought to be 
close to each other. What is the property of two lines that makes us think 
they are close to each other? 

Surely it is not where they intersect. 'Two parallel lines intersect way 
out at an ideal point, while we can tilt a line slightly at any point along it 
to get a line close to it that intersects at that point. 

One property we can identify of close lines is that they are tilted at 
approximately the same angle. But that is not enough. Two parallel lines 
may be close together or far apart. Conversely, two lines making a very 
small angle always will be far apart if we go far away from the point of 
intersection. So we also want the lines to be close together near some 
reference location (for instance, near where we plotted our points). 

With this in mind, let us now describe a coordinate system for lines 
in the plane, such that two lines that we want to consider to be close 
have close coordinates. First let us review the basic idea of coordinate 
geometry. To describe a point in the plane in coordinate form, it is 
necessary to (a) choose an origin, (b) pick a pair of coordinate axes 
through that origin (preferably orthogonal), and (c) mark off scales on the 
axes. Then every point P has a pair of coordinates (x, y) and vice versa. 
There is a correspondence between points and pairs of real numbers. 
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A straight line can then be described in various ways, using, for exam­
ple, the principle that two points determine a line-this leads to the "two 
point formula": 

y - Yo Yl -Yo 
x - Xo 

Is there a nice coordinate system tor describing lines the way we 
describe points, so that a correspondence is set up between numbers and 
lines? The formula above is not very satisfactory. True, given numbers 
XU, Yo, Xl, and YI we can determine a line, but this is a horribly redundant 
scheme. Another possibility is to use (A, B, C) to describe the line whose 
equation is Ax + By + C = O. This still has redundancy (more about 
this later). The slope .. intercept formula Y = mx + b doesn't have any 
redundancy, but not every line can be written in that form. 

Here is a lovely scheme for describing lines that avoids these prob­
lems. L Envision a straight line as a (very long!) ship sailing in the ocean. 
Suppose a sonar operator is trying to locate the ship by bouncing a signal 
off its hull. The operator is located at the origin in the plane. If the 
operator bounces a signal perpendicularly off the hull of the ship (that 
is, off the line) it 'will bounce straight back to the operator. This will then 
give two numbers: an angle ¢ that indicates the direction of the signal 
and a distance r that the signal travels. Let us call these "reverse polar 
coordinates" (¢, r) for the line. (This is just to remind us that we are not 
doing the usual polar coordinates for points in the plane.) Ifwe allow r to 
be equal to 0, then every line can be described by a pair of reverse polar 
coordinates. There is redundancy, but it is a mild sort of redundancy, 
since different nearby coordinates correspond to different lines. If we 
allow r to be positive, negative, or zero, then the redundancy can be 
described in a simple way: (¢, r) and (¢ + ] 80, --r) describe the same 
line (and therefore also (¢ + 360, r), C¢ + 540, -r), etc). A representative 
coordinate pair for any line can be uniquely fbund in the infinite strip 
{O ::c ¢ < 180, -00 < r < oo}. We can include the edge of this strip, 
¢ = ISO, together with the rule that every point (ISO, r) corresponds to 
the point CO, -r). In other words, the set oflines is described by an infinite 
ribbon with the edges glued together after twisting one edge relative to 
the other. 

The fact that the ribbon is infinite is a bit of a nuisance. To fix this 
we have to use some trick like stereographic projection to compress the 
strip down to a finite size. We can then visualize the ribbon as a rectangle 
(with two opposite sides missing, since they represent points at infinity). 
The gluing process then produces that marvelous mathematical toy, the 
Mobius band:M.. 

2. I am grateful to the late Prof. Chih-Han Sah of SUNY Stony Brook for this idea. 
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r>O 
0 lRO 

r=O 

r<O 

The centerline of:Nt corresponds to the curve r = 0 (which becomes a 
circle after the ends have been glued together). This curve corresponds to 
the striaght lines that pass through the origin. In other words, r = 0 is the 
equation of a point! Remember that a "point" in :Nt corresponds to a line 
in the plane. A point in the plane can be thought of as being described by 
the set of lines passing through that point, that is, by a curve in :Nt! 

Problem 
Find the equation of a point P in reverse polar coordinates. (This requires 
trigonometry, but only the definition of cosine.) Compare your answer with 
the equation of a line in polar coordinates in the plane. 

If you have worked out the preceding problem correctly, you will see 
that the curve on :Nt corresponding to the point P winds once around 
the band, and it crosses the equatorial curve at exactly one point. Why? 
Because there is one line through P that passes through the origin. More 
generally, the curves corresponding to points P and Q always cross at 
one point, because two points determine a line. The Mobius band has the 
property that any curve that goes once around the band must cross 
the centerline. This corresponds to the amazing fact that cutting along 
the centerline does not divide :Nt into two pieces. (If you have never 
done this, by all means build a Mobius band out of paper and try it!) 



104 4. Geometry of the Sphere 

Problem 
Use this property of :M to say something about moving a line around in the 
plane without letting it hit the origin so that it rotates through 1800 and comes 
back to itself What about rotating through 180kO) 

Remember that using duality, we can think of the lines in the plane 
as corresponding to points in the projective plane. If D : Jvt ---+ 'E is 
the function that assigns to each line in the plane the dual point in 
the projective plane, then D takes Jvt onto every point except the one 
corresponding to the line at infinity. If we visualize 'E as the unit disc, 
then the point that is dual to the line at infinity is the center of the disc. 
The centerline ofthe Mobius band, as we saw, consists ofthe lines through 
the origin. D takes these lines to (pairs of) points on the boundary of the 
unit disc. So the projective plane and the Mobius band are cousins; if we 
remove the center of the unit disc and then glue opposite points on the 
boundary together, we have the Mobius band. 

Actually, this is physically impossible, for a couple of reasons. First of 
all, the edge of the Mobius band is not supposed to exist. And the points 
on this nonexistent edge correspond to the center of the disc. If instead 
of removing just the center we cut a small hole in the center of the disc, 
then in theory we could glue opposite points on the unit circle together 
and make a Mobius band. But to physically achieve this, we would need 
to have the disc made of some stretchable material. The tiny hole in the 
center would end up getting streched a lot. This process of stretching an 
object without allowing it to rip apart is a basic process in topology, which 
Kasner and Newman refer to as "Rubber-sheet Geometry" in their classic 
book about mathematics [22]. Here is the relevant fact from topology, 
which is proved using the function D: 

Proposition 4.4.2 
The Mobius band is topologically equivalent to the projective plane with one 
point removed. 

It is a fact, rather difficult to prove, that it is impossible to build a model 
for the entire projective plane with no self-intersections. The Mobius 
band, which contains all but one point of the projective plane, is as close 
as we can come! 



CHAPTER 

More Geometry 
of the Sphere 

5.1 Convex Polyhedra Are Rigid: 
Cauchy's Theorem 

We saw in the last chapter that a tessellation of the sphere by regular 
polygons determines a polyhedron with regular faces inscribed in the 
sphere. However, it is certainly possible to construct polyhedra with 
regular faces that are not inscribed in the sphere. In our classification of 
regular and semiregular polyhedra, we saw that Euler's formula severely 
limited the possible polyhedra that we could construct. By analysis of 
the numerical relations implied by the Euler formula and the polygonal 
faces, we were able to find all possible candidates. 

One important question that we ignored was this: Is the combinatorial 
data enough to completely describe the polyhedron? In other words, 
suppose two people attempt to assemble the same polyhedron. Each is 
given an identical collection of !)olygons together with assembly rules 
indicating which polygon is to be attached to which along a common 
edge. Each assembles the polyhedron according to these rules. Will the 
resulting polyhedra be identical (that is, congruent)? 

The example ofthe pseudo-rhombicuboctahedron serves as a warning. 
It shows that knowing only what each vertex looks like is not sufficient. So 
let us assume that we have been more precise: We have specified exactly 
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which edge of each polygon corresponds to which edge of another poly­
gem. For example, we could have a diagram that is the Schlegel diagram for 
the proposed polyhedron. (Remember that the rhombicuboctahedron and 
its sibling had different Schlegel diagrams.) Suppose we have specified 
the dimensions of each polygonal face in such a way that corresponding 
edges of adjacent faces have the same lengths. Does this determine the 
polyhedron uniquely? 

As stated, this question turns out to be very difficult to answer. Here 
is a simple example. Suppose we want to build a tetrahedron. We will be 
gluing together four triangles along their edges. The Schlegel diagram is a 
very simple one. Ifwe specify the lengths of the six edges ofthe diagram, 
can we build the resulting tetrahedron? Well of course, we need to know 
that each face is an honest triangle. This means that no side can be longer 
than the sum of the other two sides. But this is definitely not enough, as 
the following example shows. 

14 

Suppose we take an equilateral triangle with sides of length ] 4 and 
three isosceles triangles with sides of lengths 8, 8, and 14. The Schlegel 
diagram (left) shows how we plan to glue the polygons together. But after 
gluing the long sides of the isosceles triangles to the equilateral triangle, 
it is no longer possible to glue the remaining edges together. They don't 
reach far enough. 

This example is bit too simple. In fact, the large angles of the isosceles 
triangles are bigger than 120°, which means that we can't even fit these 
three triangles together. But it will suffice as a warning: Knowing that 
edges match up in length is not enough to insure that we can assemble 
the polyhedron. So let's assume that it is possible to assemble the polygons 
into a polyhedron. Will there be only one way to do it? 

The answer is: not necessarily. For example, start witb our friend the 
smal1 rhombicuboctahedron. There is a plane that passes through eight 
vertices of it, cutting it into two pieces. We got the pseudo-rhombicubocta­
hedron by rotating one of the pieces and reattaching it. This changed the 
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Schlegel diagram. Suppose instead we reflect the smaller piece through 
the plane and reattach it. We get another polyhedron with the same 
Schlegel diagram as the small rhombicuboctahedron, but it is a very 
different figure. 

The obvious difference between the newly constructed polyhedron 
and other polyhedra is that part of it is ·caved in." In this section we 
will avoid such polyhedra by concentrating on geometric objects that are 
convex. A geometric object in the plane or in three-dimensional Euclidean 
space is convex if whenever it contains points A. and B, it contains the 
entire line segment A.B joining them. A triangle in the plane is always 
convex, but not all four-sided polygons are convex. 

If X is a convex object, then it divides space up into three kinds of 
points. The points outside the object are called exterior points. Th be more 
precise, an exterior point must have the property that some small disc or 
ball around the point consists entirely of points outside of X. A convex 
set is called closed if all points not in X are exterior points. This rules out, 
for example, the possibility of taking a triangle and throwing out one if 
its vertices. It is easy to check that such a set is convex, but the missing 
vertex is not exterior to it. From now on all convex objects we consider 
will be closed. 

Points in the object are divided up into interior points and boundary 
points. The difference between them is that if A. is an interior point, then 
all the points within a small disc or ball around the point are also in X. 
A convex set X is bounded if it is entirely contained in some large disc 
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or ball. Not all convex sets are bounded; for instance, a half plane is an 
unbounded convex set. 

Now suppose X is a bounded (closed) convex object in the plane. Then 
the boundary points always turn out to form a simple closed curve. We 
will call such a curve a convex curve. A convex curve made up of straight 
line segments is a convex polygon. In three dimensions, the boundary 
points of a convex object make up a convex surface, provided that the X 
does not lie entirely in a plane. If the surface is made up of polygons, it 
is called a convex polyhedron. 

Now that we have a clean and precise definition of the geometric 
objects we want to study, we can formulate the theorem that is the goal of 
this section. It was stated and proved by the great French mathematician 
Augustin Louis Cauchy in 1813 (see [24], p. 66-81, or [6], p. 226-231 for a 
thorough treatment of the theorem). 

Theorem 5.1.1 (Cauchy's Theorem) ThJo convex polyhedra com­
prising the same number of equal similarly placed faces are superposable or 
symmetric. 

A consequence of Cauchy's theorem is that convex polyhedral surfaces 
are rigid, meaning that they hold their shape. For some polyhedra, such 
as the cube, this is obvious. 1b see why, let us first look at polygons in 
the plane. Suppose we are given a collection of bars, each made out of 
unbendable, un stretchable material. They are connected together using 
ball joints, which allow the angles between successive bars to change, to 
form a planar polygon. Assuming that the bars remain in a fixed plane, 
when can the polygon change its shape? 

If there are only three bars, forming a triangle, then the resulting 
polygon must hold its shape; this is a consequence of the SSS congruence 
theorem in Euclidean geometry. If there are more than three bars, then 
it is pretty clear that such polygons are never rigid. With four bars we 
can always "flex" the polygon, making two angles smaller and the other 
two larger. 

If the quadrilateral is convex, then the four angles alternately increase 
and decrease in size. (The angle at vertex A in the picture below decreases, 
while B increases, when we read from left to right.) the nonconvex case, 

A 

B B 
B 
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this is not necessarily true. The angles at vertex A increase along with 
those at B in the picture below. 

A 

B B 

Imagine a small sphere centered at one vertex of a cube. The intersec­
tion with the sphere of each square adjacent to this vertex is a 90° arc of a 
great circle on the sphere. The complete intersection of the cube with the 
sphere is a spherical triangle. If the three squares that come together at 
one corner of the cube could flex, then likewise, the triangle on the sphere 
would have to flex. (Notice that the length of each side cannot change; 
it depends only on the angle of the polygonal face.) But triangles in the 
sphere are rigid, by SSS (which still works on the sphere). Consequently, 
three squares can be glued together at a corner in only one way. 

The same statement is definitely not true for an octahedron. The four 
triangles that come together at one vertex form a flexible structure. If you 
build a model of such an object (a square pyramid without its base), you 
can quickly discover that it is flexible. The argument above shows that 
flexing one corner of an octahedron corresponds to flexing a spherical 
quadrilateral. Again two opposite angles get larger and the other two get 
smaller. In the pyramid this translates into the observation that two ofthe 
dihedral angles between adjacent triangles get larger and two get smaller. 

Yet while half of an octahedron is a flexible object, the entire octa­
hedron has no flexibility at all. The easiest way to understand this is to 
notice that as we flex one corner of the octahedron as shown above, the 
dihedral angle along the edge from that corner to the vertex A decreases, 
while the angle from the corner to the vertex B increases. Now, whichever 
way the dihedral angle along the edge AB is supposed to change, it will 
be inconsistent with this pattern of alternate dihedral angles at a vertex 
changing in opposite directions. 

This argument is good enough to explain why any convex octahedron 
is rigid, but it is a bit too special to take care of more general polyhedra. 
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Cauchy's proof generalized this argument in two ways. First, he stated 
and proved a general lemma about the ways in which convex planar or 
spherical polygons flex. Then he applied Euler's theorem to show that 
the ways that the dihedral angles in a polyhedron would have to change 
around each vertex was always inconsistent. 

Lemma 5.1.2 
[Cauchy's Lemma} Suppose we transform (:l convex (spherical or planar) 
polygon A j A 2 ·· . An into another convex polygon A;A~ . .. A~ in such a way 
that the lengths of the sides AiAI+l remain unchanged. If the angles at the 
vertices A 2 , A 3 , ... ,An- 1 remain unchanged or increase, then the length of the 
remaining side AnAj must also increase. 

When n = 3, this is the "caliper lemma" from Chapter 1. Cauchy 
attempted to prove this lemma by an induction argument on the number 
of sides in the polygon. His strategy was to increase the angles one at a 
time, keeping the other angles fixed. Unfortunately, this doesn't always 
work; Cauchy missed the possibility that in increasing the angles one at 
a time, there might be an intermediate stage in which the polygon was 
not convex. 

A' A' 
1 4 

A corrected proof was provided by Steinitz in 1934. Since then there 
have been various correct proofs of this lemma, of which perhaps the 
simplest is due to Schoenberg and Zaremba. I We will look at their proof of 
the planar version ofthe lemma. The spherical case (which is actually the 
case we need for Cauchy's theorem) is not too much more complicated. 

PROOF of Cauchy's Lemma 

Among the vertices of the original polygon, choose the vertex A, 
farthest from the 1ine containing An and A j . (If there is more than one, 
there is a similar argument.) Picture the polygon as having AlA" as part 
of the x-axis, with the x coordinate of An larger than that of AI, and Ak as 
being on the positive y-axis. 

Now construct the altered polygon in such away that Ak does not move 
and no vertex of the new polygon is higher up on the y axis. Let (Xi, Yi) 
be the coordinates ofthe point AI' Then the length of AlAn is given by 

I. 1.1. Schoenberg and S.K. Zaremba, On Cauchy's lemma concerning convex 
polygons, Canad. I !Hath. 19 (1967), 1062-1077. 
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Some of these quantities are positive and some are negative. All we need 
to see is that each one of them gets larger when we move to the new 
polygon; it will then follow that the length of A~A~, which is at least 
x~ - x~, will be larger than that of AlAn. 

This is easy to see geometrically. The edges to the left of the vertex 
Ak must rotate counterclockwise, while those to the right must rotate 
clockwise. In the picture, for example, X4 - X3 is positive, and after the 
segment A3A4 is rotated, it increases; Xz - Xl is negative, and after rotation 
it also increases (that is, gets less negative.) The edges on the other side 
of As are rotated in the opposite direction, with the same consequence. 

Corollary 5.1.3 
Suppose a convex polygon is transformed into another convex polygon without 
changing the lengths of its sides. Mark each vertex whose angle increases with 
a + sign and each which decreases with a - sign. Then in making a circuit 
of the vertices in order; we must find at least two changes of sign from plus to 
minus and two from minus to plus (or no changes at all.) 

Proof 
Suppose some vertex angle increases. Then obviously, some other angle 
decreases, so the number of sign changes is at least 2. Also obviously, it is 
an even number. So we only need to rule out the possibility of exactly two 
changes of sign. But if there were exactly two, then we could divide the 
polygon into two pieces by drawing a diagonal connecting the midpoints 
of two sides, in such a way that all the angles on one side of the diagonal 
increase and all the angles on the other side decrease. But then by the 
Cauchy lemma the diagonal would have to get bigger and also smaller. -
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PROOF of Cauchy's Theorem 

Suppose we have two convex polyhedra X and Y with corresponding 
faces that are congruent. 1b decide whether the polyhedra themselves 
are congruent, we look at each edge and see whether the dihedral angle 
(The angle between the faces sharing that edge) has changed. If none of 
the dihedral angles is different, then it is pretty easy to see that the X and 
Yare congruent. 

Take the Schlegel diagram of the polyhedron. Recall that this is a graph 
with one vertex for each vertex of the polyhedron and one edge for each 
edge of the polyhedron. We can picture this as a graph in the plane, and 
Euler's formula holds for it. Now let us put a label on some edges of the 
diagram, as follows: If the dihedral angle at the edge in Y is larger than 
the one in X, put a + sign. Ifthe angle is smaller, put a - sign. If they are 
the same, then leave it unmarked. 

Next, delete from the diagram all unmarked edges. What remains is 
a graph G that has each edge marked with a + or -. This graph has V 
vertices, E edges, and F regions, and V - E + F = 1 + C ::: 2, where C 
is the number of components of G. (Since G need not be the graph of a 
polyhedron, we don't know the value of C.) 

Now look at the edges that emanate from one vertex V ofthe graph G. 
As we go once around V reading the markings on the edges, we count the 
number of sign changes. By the Corollary to the Cauchy lemma, there 
must be at least four such changes around V. Let S be the total number 
of sign changes we find as we go around every vertex Then 

S::: 4V. (5.l.1) 

On the other hand, as we walk around any region determined by G, 
we can also count changes of sign as we go from one edge to the next. If 
the region has three sides, there can be at most two sign changes (since 
it has to be an even number), while if the region has four sides, there can 
be at most four sign changes, etc. If Fn is the number of regions with n 
sides, then we have the equations 

F = F3 + F4 + Fs + F6 + ... , 
2E = 3F3 + 4F4 + 5Fs + 6F6 + ... 

and 

4 V :s S :s 2F3 + 4F4 + 4Fs + 6F6 + .... 

(5.l.2) 

(5.l.3) 

(5.l.4) 

Now, by Euler's formula, 4V - S ::: 4E - 4F, so putting 5.l.2 and 5.l.3 
together, 

4 V - S ::: 2F3 + 4F4 + 6Fs + SF6 + .... (5.l.5) 
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Now subtract equation l.5.4 from equation 5.l.5 to get 

-8 ~ 2Fs + 2F6 + 4F7 + 4Fs + 6Fg + .... 

This equation is impossible. So the graph G does not exist! In other 
words, there are no labeled edges at all. That proves the theorem. 

The assumption of convexity was crucial in this proof. Cauchy's lemma 
is not true for nonconvex polygons. Furthermore, we know it is possible 
to build a nonconvex polyhedron with the same polygons as a convex 
polyhedron. However, we could not bend one of the polyedra into the 
other without breaking it apart. Of course, half of an octahedron is flexible. 
Th speak about rigidity in a more general setting, we should first define a 
closed polyhedral surface to be a polyhedron in which each edge is shared 
by exactly two faces. The Rigidity Conjecture can then be stated as follows: 
a closed polyhedral surface cannot be deformed without stretching or 
bending the faces or breaking it apart. This conjecture was apparently 
formulated by Euler, and it remained an unsolved problem until 1978, 
when Robert Connelly found a counterexample! Instructions for building 
a flexible polyhedron can be found in Connelly's article, The rigidity of 
polyhedral surfaces, Math. Mag. 52 (1979), 275-283. A complete survey 
of the subject can be found in [6]. 

5.2 Hamilton, Quaternions, and 
Rotating the Sphere 
In studying the isometries of the plane, and later in studying the isome­
tries of the hyperbolic plane, we found a powerful computational tool in 
the complex numbers. With their help we could determine, for example, 
what the composition of two rotations around different points was. We 
now want to investigate the isometries of the sphere. The positively 
oriented isometries (see Section 3.3 for a discussion of orientation) turn 
out to be rotations; this is a theorem due to Euler.2 Pick a pair of antipodal 
points on the sphere, or take the line a through these two points in 3-space. 
Then a rotation R through an angle e around this line is an isometry of 
the sphere. Now suppose we take a second pair of antipodes and the 
corresponding line b and take a rotation R' around b through an angle ¢. 
What is the result of taking the composition R'R? 

This is not an easy question to answer. It turns out to be a rotation 
about an axis c through an angle 1/1. But what axis? What angle? This 

2. L. Euler, Formulae generales pro translatione quacunque corporum rigidorum, 
Novi Comm. Acad. Sci. Imp. Petrop. 20 (1775), 189-207. 
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problem was solved by Olinde Rodrigues in 1840.3 Not long afterward 
(October 1843) William Rowan Hamilton discovered the quatemions, a 
higher-dimensional generalization of the complex numbers. Using these 
numbers he was able to describe the rotations of the sphere. 4 We will 
examine quaternions in this section. For a full treatment of the history of 
the problem of rotations ofthe sphere, see [1], chapter 1). 

We begin by defining a new imaginary number j, which has the prop­
erty p = -1 in common with i. A quaternion q is a "number" of the form 

q = a + f3j, 

where a = a + bi and 13 = c + di are complex numbers. We will try to 
imitate the complex numbers by defining the arithmetical operations. If 
q' = a' + f3'j is another quaternion, then the sum q + q' = (a +a') + (13 + f3')j 
is easy to describe. Before we determine the rule for multiplication, let 
us think about the rules of arithmetic. The distributive law of arithmetic 
decrees that (x + y)z = xz + yz and x(y + z) = xy = xz. So in particular, 
(c + di)j = cj + (di)j. If the associative law of multiplication holds, then 
(di)j = d(iJ) = dk, where k is defined by the formula 

k = ij. 

Now we may rewrite a quaternion q by 

q = (a + bi) + (c + di)j = a + bi + cj + dk. 

The question is, what is the number k? If the commutative law for 
multiplication holds, then we have 

k2 = k(iJ) = (ki)j = (ik)j = (i(iJ))j = ((ii)J)j = (-J)j = + l. 

This seems perfectly reasonable. But notice that then 

(1 + k)(l - k) = 1 - k + k - k2 = 1 - 1 = o. 

This is not good news. If the product of two numbers is 0, then one 
of them had better be O. If not, division becomes a problem. (If we are 
allowed to divide by any number except 0, then we can first divide by one 
factor and then by the other, with the result that we can divide by O!) 

So either k = 1 or k = -l. But ifk = I, then i(i + J) = i 2 + k = 0, while 
ifk = -I, i(i - J) = O. Now the same reasoning as before would say that 

3. O. Rodrigues, Des lois geometriques qui regissent les deplacements d'un 
systeme solide dans l'espace, et de la variation des coordonnees provenant de ses 
de placements consideres independamment des causes qui peuvent les produire, 
1- de Mathematiques Pures et App/iquees 5 (1840), 380-440. 
4. W.R. Hamilton, On quaternions; or a new system of imaginaries in algebra, 
Phil. Mag., 3rd. ser., 25 (1844), 489-495. 
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i = j or i = -j; in other words, our new numbers would just be complex 
numbers! 

Hamilton wrestled with this problem for a long time. Originally, he 
sought a multiplication rule for triples a + bi + cj of numbers. After 
much struggle, he was led to the surprising realization that he needed 
to abandon the commutative law of multiplication; he decided on the 
rule 

ij = k = -ji. (5.2.1 ) 

Hamilton's struggle to discover the multiplication rules of quatemions 
is described in a lovely article by B.L. van der Waerden, "IIamilton's 
Discovery of Quatemions,"(Mathematics Magazine 49 (1976), 227-234.) 
After deciding on the formula 5.2.1, van der Waerden reports, Hamilton 
was then led to the necessity of dealing with four-dimensional numbers, 
a difficult leap of insight since the concept of a fourth dimension seemed 
paradoxical at that time. 

We may now describe the laws of arithmetic for quaternions. All 
the rules of arithmetic, including associative laws, the distributive law, 
and commutative laws hold, with the exception of the commutative law 
of multiplication. This last law is supplemented by equation 5.2.1. A 
consequence of this is the general rule of multiplication 

qq' = (a + {3J)(a' + {3'f) = (0'0" - {3{3') + (a{3' + {3a')j. 

Problem 
Verify equation 5.2.2 by checking that it jollowsfrom the special case 

ja = aj. 

(5.2.2) 

What is the fonnula for the product of q anel q' in tenns of the real numbers 
a, b, c, d, etc.) 

The absolute value of a quatemion q, denoted by Iql, is given by 

Geometrically, it can be thought of as the (four-dimensional!) length of 
the line segment from the origin in 4-space to the point with coordinates 
(a, b, c, d). This is the generalization of the Pythagorean theorem to four 
dimensions. 

The quaternionic conjugate q* of the q uaternion q is given by 

q* = a - hi - cj - dk = a - {3j. 

If {3 = 0, so that q is an ordinary complex number, q* is just its complex 
conjugate. This definition is motivated by the following important fact, 
which can be checked by computation: 
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Proposition 5.2.1 
qq* = q*q = Iql2 Ifq and q' are quatemions, then (qq')* = qt*q* (Note that 
the order of multiplication is reversed.) 

Corollary 5.2.2 
For any two quaternions q and ql, Iqq'l = Iqllql 

Proof 
Iqq'I Z = (qq')(qql)* 
Iq121q'12. 

(qq')qt*q* q(q' ql*)q* qq*lq'12 

• 
Notice in the proof how convenient it is that * reverses the order of 

multiplication. Because multiplication is no longer commLltative, that 
reversal was really important in making the argument work. 

Problem 
Let ql = 1 + i - ) and q2 = 2 + 2) + k. 

]. Compute ql + qz, q1 q2, and Q2ql· 

2. Verify that IQ1 q21 = Iqlllq21 
3. Let x = -~i + ~) - ~k. Verify that qlX = q2 
.-1. compute Xq1. 

You may recall (from Chapter 2) that complex conjugation was the 
key tool in defining division. The same idea works for quaternions, but 
we must decide what we actually mean by division. First consider the 
problem of dividing 1 by q. If q is a quaternion (not 0), the quaternion 
~ should have the property that q x ~ = 1 = i x q. As we will see, this 

notation is misleading, so we will use the expression q-l instead of ~. By 
the same principle we used for complex numbers, we can quickly see 
that the formula 

1 * = ------q 
Iql2 

(5.2.3) 

works. We need to use the fact that qq* = q* q and the fact that multi­
plication by real numbers can be performed on either side to see that 
q-lq = 1 = qql. (Check this computation for yourself) 

Now the general problem of division of a by b can be formulated in 
two ways: 

• Solve the equation bx = a for x; 
• Solve the equation yb = a for y. 

In general, these problems have different solutions. 
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Proposition 5.2.3 
Ifb ;;ft 0, then x = b-1a solves the equation bx = a, while y = ab-1 solves 
yb = a. 

We may say that x arises by "dividing on the left," while y arises by 
"dividing on the right:' ]f a or b is real, then x = y. 

Problem 

1. When, if ever; can the equation bx = a have more than one solution) 
2. Find x and y such that (j + k)x = y(j + k) = i. 
3. Suppose (j + k)x = x(j + k) = q. What possible values can q have) 
4. Suppose (j + k)x = -x(j + k) = q.What possible values can q have) 

Complex numbers of absolute value 1 rotate the complex plane by 
multiplication. We can imitate this construction using quaternions, but 
there are two comp1ications. The first is that quaternions make up a four­
dimensional space, and we want to study rotations in three-dimensional 
space. The second is that because the commutative law fails for multi­
plication, there are two different ways to define multiplication by a unit 
quaternion. This fact turns out to be the key to understanding rotations 
in three dimensions. 

First some notation. The symbol J{ (from the name Hamilton) denotes 
the four-dimensional space of quaternions. The unit quatemions, that is, 
the quaternions that have absolute value 1, form the unit 3-sphere S3 in 
,1i. (This is the generalization to one higher dimension ofthe unit sphere 
Sin 3-space R3. 

A quaternion q = a + bi + cj + dk can be thought of as the sum of a 
real number a and a pure quatemion V = bi + cj + dk. Hamilton called 
a a scalar and V a vector. V is the vector part of q, while a is the scalar 
part. We will think of R3 as being the space of vectors, where hi + cj + dk 
corresponds to the point with coordinates (b, c, d). 

With this understanding, the vector i corresponds to the point (1,0,0), 
or the unit vector along the positive x-axis in R3. Likewise, j and k are 
the unit vectors along the positive y-axis and z-axis, respectively. (This is 
actually the standard notation used for these vectors in vector calculus 
today, although it is not usually mentioned that the letter i stands for the 
complex number!) 

If V = bi + cj + dk and W = b'i + c'j + d'k are two pure quaternions (that 
is, vectors), then their product VW is not generally a vector. Ifwe write the 
product as x + X, where x is the scalar part and X is the vector part, then 
we call -x the scalar product and X the vector product. The vector product 
is usually denoted by V x W; it is also called the cross product. The scalar 
product is usually denoted by V· W; it is also caned the dot product. These 
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are both important operations in the study of vector calculus, but we will 
not be using them here. 

Prob1em 
Compute V x Wand V . W. VerifY that V x W = - W x V. y.,That can be said 
in general about V x V) 

In order to use quaternions to describe rotations in R 3 , we need to solve 
the problem of recognizing when a quaternion is a vector; in other words, 
when the real part of a quatemion is O. This has an elegant solution: 

Proposition 5.2.4 
A quaternion q is a vector if and only if (/ is a nonpositive realnumher: 

Proof 
If q = a + bi + cj + dk, then using the rules for multiplying quaternions 
together, we compute q2 = (a 2 - b2 - c2 - d 2 ) + 2ahi + 2ac} + 2adk. Nmv, if 
a = 0, then this reduces to _b2 - c2 - d2 , which is a negative real number 
or zero. On the other hand, if q2 is a real number, then either a = 0 or b, 
C, and d all have to be zero. So either q is a vector or a scalar. Of course, 
if it is a scalar, its square can't be negative, so q must be a vector. .. 

Ifq = a+bi+c}+dk is a unit quaternion, then of course a 2 +b2 +c2 +d" = 
1. So we can find an angle e with 0 ::: e ::: 1800 and a = cos (). Then we can 
write q = cos () + sin ev, where V is a vector oflength one. For reasons to 
be explained in a little while, let us replace e by ~¢, where now ¢ is an 
angle between 0 and 3600 • 

Define the transformation Lq : J-{ -----+ J-{by 

Lq(x) = qx. 

Similarly, define the transformation Rq : -'I{ -----+ J-{by 

Rq(x) = xI]. 

Lq is a linear function; that is, Lq(x + y) = Lq(x) + Lq(Y). This is just the 
distributive law for multiplication over addition. Now if x and yare any 
two points in J-{, then the line segment joining them has length Iy - xl. 
The line segment joining Lq(x) to Lq(Y) has length 

ILq(Y) ..... Lq(x) I = Iqy- = Iq(y - x)1 = Iqlly - xl = iy - xl. 

So Lq is an isometry of four-space. The same argument applies to R q . 

Now what we want is an isometry of R 3 , which can be thought of as an 
isometry of J-{ that takes R3 to itself. Define 
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Since this is a composition ofisometries, it is also an isometry. (Note that 
since q is a unit quaternion, q* = q-l is also a unit quaternion.) 

Theorem 5.2.5 For any unit quatemion q in 83 , Uq is an isometry ofR3. 
If q = cos!¢ + sin !¢V, then Uq rotates R3 about the line determined by V 
through the angle ¢. 

1b prove this theorem, we should check that Uq takes vectors to vectors. 
Then we should check that it does not move the vector V. Finally, we 
should see that it rotates vectors about the axis by the right amount. This 
last step is not hard if you are familiar with cross products, but it is a bit 
tedious without them; we'll skip the proof. 

Proof 
If x is a vector, we want to see that Uq(x) 
Proposition 5.2.4, we just have to square it: 

qxq* is also a vector. By 

(qxq*i = (qxq*)(qxq*) = (qx)(q*q)(xq*) 

= (qx) ( xq*) = q( X2)q* = (X2)qq* = x2. 

The next-to-Iast equality comes from the fact that x2 is real, so the 
commutative law of multiplication can be used. So Uq(x) has the same 
square as q and by the proposition must also be a vector. 

Since q = a+sV for real numbers a and s, Vq = Va+ VsV = aV +sVV = 
(a + s V) V = q V. (J'Ie say that V and q commute with each other.) It follows 
that Uq(V) = qvq* = Vqq* = V. So V does not move (and neither does 
any real multiple of it). • 

Although we have skipped a detail in the proof, it is important to say 
something about the angle ¢. Notice, for example, that i = cos 90° + 
sin 900 i, which means that ¢ = 180°. We can compute Ui easily: Ui(X) = 
ixi* = ix( -i) = -ixi. So UiU) = -iji-ki = -j. Sure enough, Ui spins vectors 
180° around the line through i. This doesn't match up with the role played 
by i as a complex number. Remember that complex multiplication by i 
resulted in a rotation by only 90° in the complex plane. 

This factor of two caused confusion for many years following Hamil­
ton's development of quaternions. Hamilton assumed that as one traveled 
around the unit circle in the plane containing 1 and i, the corresponding 
rotations would spin the sphere once around its axis, just as traveling 
around the unit circle in the complex plane corresponds to spinning the 
plane once around the origin. But in fact, the rotations Uq with q on the 
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circle through 1 and i correspond to spinning the sphere twice around its 
axis. 

More generally, the rotations determined by q and -q are always 
the same. If we think of q and -q as antipodal points on the three­
dimensional sphere S3, then this can be reformulated as the statement, 
the correspondence q t----+ U q is not a I-to-I correspondence but a 2-to-
1 correspondence between points on the 3-sphere and rotations of S. If 
we define the three-dimensional projective space p3, by analogy with the 
projective plane, as consisting of pairs of antipodal points in the three­
sphere, then the correspondence becomes I-to-1. The result ofthis is a 
description of the group of rotations of the sphere: 

Theorem 5.2.6 The group of rotations is equal to the projective space p3. 
The group of unit quatemions is in 2-to-l correspondence with the rotation 
group. 

This theorem has very deep physical significance. Ifwe rotate an object 
continuously through 3600 , then every point on the object returns to its 
initial position. Ifwe picture the process as tracing out a continuous path 
in the group of rotations, then the path forms a closed curve, beginning 
and ending at the identity element of the group. But in the group of unit 
quaternions, the corresponding path does not close up. If we go twice 
around the path in the rotation group, the resulting path in the quaternion 
group does close up. Somehow, we are distinguishing between spinning 
through 3600 and spinning through 7200 • 

The twentieth century physicist Paul Dirac designed a device to il­
lustrate this phenomenon. It consisted of a cube attached to a frame by 
strings running from the eight corners of the cube to the corresponding 
corners of the frame. If the cube is rotated through 3600 , the strings 
become tangled up and cannot be disentangled. If the cube is rotated 
again by 3600 , the strings seem more entangled, but in fact they can 
be disentangled without twisting the cube. Dirac's interest in this device 
relates to the observation that rotating an electron through 3600 multiplies 
its wave function by -1. 

You can perform your own experiment to demonstrate the same phe­
nomenon Dirac studied. Thke an ordinary plate, preferably with a design 
on it. Hold it face up in the palm of one hand. By rotating your arm, 
rotate the plate through 3600 , keeping the design always upward. You will 
be uncomfortable at this point. Now rotate the plate in the same direction 
through another 3600 , always keeping the plate face up. You will have to 
twist your wrist and arm during this process. But at the end, your arm is 
magically restored to its initial position. Try it! 

For more information on rotations, see Simon Altmann's book [1]. (This 
is a rather advanced book, but the introduction is quite interesting.) An 
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article describing Thngloids, a game based on the string tangling idea of 
Dirac, and related ideas about groups, can be found in chapter 2 of [16]. 
Quaternions are briefly discussed in lecture 29 of [11 ]. 

5.3 Curvature of Polyhedra and the 
Gauss-Bonnet Theorem 

As we said in Section 4.2, Euler's theorem, V - E + F = 2, was at one time 
attributed to Descartes. We will now examine the theorem Descartes did 
prove, which is closely related to Euler's theorem, and we will then begin 
to relate it to a famous theorem of Gauss, one that is at the heart of the 
subject known as differential geometry. 

In order to form a closed curve out of a straight piece of wire, it is 
necessary to bend it. If we bend a wire into a polygonal curve, then the 
bending takes place only at the corners. The amount of bending is best 
measured by the exterior angles rather than the interior angles, since a 
small exterior angle corresponds to a small change in direction. If we 
let aI, a2, ... , an denote the exterior angles of the vertices of a convex 
polygon, then it is not hard to see that 

(5.3.1) 

Here is a geometric argument for this formula. For each point x on the 
unit circle, take the line tangent to that point. at the point of tangency, 
draw an arrow perpendicular to the line and pointing away from the 
center of the circle. We will call the line with the arrow a contact element 
of the circle. 

If ~ is a convex closed curve, then we can move the contact element at 
x parallel to itself until it touches the curve in such a way that the entire 
curve lies on one side of the line and the arrow points to the other side. 
This gives a support line ¢J(x) of the curve. 
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If r is any convex closed curve, we can make the same detlnition. 
Notice that in the case of a polygon, the support line usually touches the 
curve only at a corner; more than one support line can touch at the same 
point. There are support lines that touch along a whole side of r. 

Now take all the support lines that touch at one vertex V of L. 1\vo 
of them will be tangent to the two sides adjacent to V. The remaining 
support lines, which touch L only at V, correspond to an arc of the circle 
with angle () exactly equal to the exterior angle at V. 

In this way, we can divide the circle up into arcs, one corresponding 
to each vertex of L. Each arc has an angle equal to one of the exterior 
angles, so the sum of the exterior angles is equal to the total angle of a 
circle, which is 3600 • 

For what we will be doing in this section, it is better if we measure 
angles in radians instead of degrees. The measure of an angle () in radians 
is given by measuring the length of the corresponding arc of the unit 
circle. Since the circumference of the unit circle is 2n, it follows that the 
total angle of a circle, corresponding to 360°, is equal to 2n. To convert 
angles from degrees to radians, just multiply the angle bY;6~1 ; for instance, 
a right angle is 90 x i6~ = ~. Using radians to measure angles, the 
argument above says: 

Proposition 5.3.1 
The sum of the exterior angles in a convex polygon, measured in radians, is 

always equal to 2n. 

Ifwe consider polygons that are not convex, there is a moditlcation of 
Proposition 5.3.1 that is still true. When an interior angle () at a vertex of 
a polygon is greater than n (180 degrees), define the exterior angle to be 
the negative number n - (). with this definition, we have the more general 
fact (not proved here): 
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Proposition 5.3.2 
The sum of the exterior angles in a simple closed polygon is always equal to 2]'{. 

Why is this theorem true? Here is a plausibility argument. Start on one 
side of the polygon and take an arrow pointing outward perpendicular 
to the side. As we walk around the curve, we rotate the arrow so that it 
always is perpendicular to each side. In the convex case, the arrow always 
rotates in the same direction. At a vertex where the polygon is not convex, 
the arrow rotates in the opposite direction. At each vertex, the amount 
the arrow rotates is given by the exterior angle at that vertex; negative 
exterior angles correspond to rotating in the opposite direction. When we 
return to the first side, the arrow has returned to its original position. 
Therefore, it has rotated through a full 2]'{. 

Well, we don't actually know that. Maybe it rotated twice around the 
circle, for example. In fact, if we don't assume that the polygon has no self­
intersections, that is exactly what may happen. In general, all we can say 
is that the sum of the exterior angles must be 2]'{n, where n is an integer 
called the rotation index. We also should specifY in which direction we 
travel around the polygon. If we go in the opposite direction, the arrow 
will rotate around in the opposite direction. If we adopt the standard 
convention that going counterclockwise around the circle increases the 
angle, then it is possible to prove that going counterclockwise around a 
convex curve always makes the arrow rotate once around in the positive 
direction. 

This argument is not so easy to make for a nonconvex curve. In fact, 
once we allow for negative exterior angles, it is not so easy to decide which 
angles are positive and which negative, especially for curves that have 
self-intersections. The curve pictured below, for example, is ambiguous. 
Which of its exterior angles are positive and which are negative? 

1b resolve the ambiguity, we should specifY which way we will travel 
around the polygon; this is called orienting the polygon. In the case of a 
simple closed curve, there is a standard way of doing it. By the Jordan 
curve theorem, the curve determines two regions in the plane, one inside 
and one outside. The positive orientation of the polygon is chosen by 
traveling around in the direction where the outward arrow perpendicular 
to a side is rotated counterclockwise to point in the direction we are 
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traveling. The curve pictured above does not have an inside and an 
outside, so there is no clear choice of direction. The result is that we can 
change the sign of the rotation index of a curve by reversing its direction. 
So the rotation index is really defined only for oriented curves. 

Problem 
What is the rotation index jar each of the following polygons) 

It is easy to see that the sum of the interior angles in a polygon plus 
the sum of the exterior angles in the polygon must be nV, where V is 
the number of vertices of the polygon. So for instance, a triangle must 
have interior angles plus exterior angles add up to 3n. This says that 
the sum of the interior angles of a triangle must be n (which is 180°). 
So we must have been relying on the fact that we are doing geometry 
in the Euclidean plane. What is the right analogy of this theorem in the 
non-Euclidean versions of the plane? 

Let's look first in the hyperbolic plane. There, the sum of the angles in 
a triangle is always less than n. In fact, we saw in Section 2.2, that n minus 
the sum ofthe angles in a triangle (the defect ofthe triangle, now translated 
into radians) is proportional to the area of the triangle. Again, the sum 
of the interior angles in a triangle plus the sum of the exterior angles 
must always be 3n; the Euclidean argument hasn't changed. Therefore, 
we have the following principle: 

Lemma 5.3.3 
If 6.ABC is a triangle in the hyperbolic plane, then the Slim of its exterior 
angles is always greater than 2n by an amount proportional to the area of the 
triangle. 

Proof 
(Sum of exterior angles in 6.ABC) = 3n - (the sum of the interior angles) 
= 3n - (n - the defect of the triangle) = 2n -+ Cx(area of the triangle), 
where C is the constant of proportionality. -

You may be wondering about the mysterious constant C in this lemma. 
lfwe change the unit oflength (and therefore the unit of area) in the plane, 
we will change the value of the area but not the angles. Consequently, we 
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will be changing the value of C. In the "standard" model of the hyperbolic 
plane, we choose the unit so that C = 1. Note that in that case, any triangle 
will have area no larger than n. 

Problem 
Let's assume for convenience that C = 1. Show that the sum of the exterior 
angles of any polygon is always equal to 2n + the area of the polygon. [HINT 
Cut the polygon up into triangles.] 

There is an exact analogue of the lemma above that applies to polygons 
in the sphere. Now, of course, the sum ofthe interior angles in a triangle is 
larger than n, so the sum of the exterior angles in a triangle will be smaller 
than 2n. The following theorem is a basic fact in spherical geometry: 

Theorem 5.3.4 The sum of the exterior angles of any polygon in the unit 
sphere plus the area of the polygon is always equal to 2n 

Because we chose the sphere of radius I, the constant ofproportionality 
in the theorem above turns out to be 1. If we scaled the sphere, then the 
area would also scale, and so, as in the hyperbolic case, we would need 
to put in a new constant of proportionality. The scale factor turns out to 
be the reciprocal of the square of the radius. In other words, the sum of 
the exterior angles plus ~2 x the area adds up to 2n. As R gets larger, 
this constant shrinks more and more. We can imagine a plane as being a 
"sphere of infinite radius," in which case the term ;2 could be thought of as 
O. Then the sum of the exterior angles would be exactly 2n. The quantity 
~2 is the curvature of the sphere of radius R. The plane has curvature O. By 
analogy, the standard model of hyperbolic space must have curvature -1; 
we may fancifully think of it as a sphere of imaginary radius i, whatever 
that means! The hyperbolic plane is sometimes called a "pseudosphere!' 

Now let's move away from the problem of polygons and think instead 
about polyhedra. What is the analogous theorem, if any, for convex 
polyhedra? 1b start, define the contact element at the point x of the unit 
sphere S to be the plane tangent to the sphere together with an arrow 
perpendicular to the plane pointing away from the sphere. [f L; is a convex 
polyhedron, a support plane at a point p is a plane that passes through p 
for which L; lies entirely on one side ofthe plane. Attach to this plane an 
arrow at p that points perpendicular to the plane and away from L;. Now 
given any point x ofthe unit sphere, we can translate the contact element 
at x parallel to itself until it becomes a support plane at a point p = ¢Cx) 
with the arrow poining outward. 

As in the case of polygons, the support plane will usually touch only at 
a vertex of the polyhedron. 1b take a concrete example, consider a cube, 
resting flat on a table. The north and south poles ofthe sphere correspond 
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to the top and bottom support planes of the cube. There are four equally 
spaced points on the equator corresponding to support planes tangent to 
the four lateral faces of the cube. 

All the remaining points on the equator correspond to support planes 
that touch the cube along one of the vertical edges. Each great circle arc 
connecting one of the four points on the equator to one of the poles 
corresponds to support planes that touch the cube along one of the 
horizontal edges. This divides the sphere into eight congruent triangles, 
each of which corresponds to the support planes that touch one of the 
eight corners. 

How exactly does this correspondence go? Let's trace the triangle 
corresponding to one corner V of the cube. 'Take a vector (an arrow) 
perpendicular to one face of the cube adjacent to V and slide it over to 
an edge emanating from V. Rotate it perpendicular to the edge until it 
becomes perpendicular to the adjacent face. Now slide it along the face to 
the next edge from V. Repeat the process until we get all the way around 
the vertex. Each great circle arc on the sphere is traced out by moving 
a vector perpendicular to one edge. Its length is given by the dihedral 
angle, that is, the angle between adjacent faces. The interior angle a of 
the triangle on the sphere between this great circle arc and the next one is 
determined by how much we change direction in moving from one edge 
of the cube to the next. This angle is just the supplementary angle to the 
angle a of the face at the vertex V. In the case of the cube, these are both 
right angles. Thus, the angles of the polygons at the vertex V are equal to 
the exterior angles of the spherical triangle corresponding to V. 

By Theorem 5.3.4, the area of each spherical triangle is 2rr minus the 
sum of the exterior angles. The observation above says therefore that the 
area of the triangle is 2rr minus the sum of the angles at V. We define 
the defect at a vertex V of a polyhedron to be this quantity 2rr - sum of 
the angles at V. 

Each of these eight spherical triangles has area equal to one-eighth 
the total area of the sphere, or k x 4rr = ~. Correspondingly, the defect 
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at each of the eight vertices of the cube is equal to ~. This is an instance 
of Descartes's Theorem, which we are now ready to state. 

Theorem 5.3.5 (Descartes's Theorem) If ~ is any convex polyhe-
dron, then the sum of the defects at all of the vertices of ~ is 4rr. 

We have all we need for a proof of this theorem. If ~ is a convex 
polyhedron, then we divide up the unit sphere into polygons, one for 
each vertex, where each polygon corresponds to the set of support planes 
to a vertex of ~. The area of each polygon is equal to the defect of the 
corresponding vertices. The sum of the areas is the area of the sphere, 
which is 4rr. 

However, there is another proof of this theorem that does not rely on 
this division of the sphere. Instead, we will see that the theorem is a 
direct consequence of Euler's theorem. In fact, this is a two-way street: 
if we assume Descartes's theorem, we can prove that for any convex 
polyhedron V - E + F = 2. As Malkevich points out in his article ([31], p. 
86), this has led to the erroneous impression that Descartes could easily 
have discovered Euler's formula. But that would have required Descartes 
to think of a polyhedron as a combinatorial object, rather than a geometric 
object, a major intellectual leap at the time. 

Thke a convex polyhedron ~. Th simplify things a bit, we can divide 
each face up into triangles by drawing diagonals. For example, a cube 
can be thought of as having twelve triangular faces, each an isosceles 
right triangle. Let F be the number of (triangular) faces of~. Then the 
number of sides of polygons is 3F, and so the number of edges is given 
by E = ~F. If V is the number of vertices, then Euler's theorem says that 
2 V - 2E + 2F = 2 V - F = 4. 

The sum X of the defects at the vertices is given by summing the 
quantities (2rr - angles at V). This gives 2rrV - (the sum of all the angles 
at all the vertices). This sum can be computed in a different way, however. 
Instead of adding up the angles, vertex by vertex, we add up the angles 
triangle by triangle! The sum we get is exactly rrF. So 
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x = 2nV - nF = 4n. 

1b close this section, we will look at an analogue of this theorem 
that holds for convex surfaces that are smooth, which means (roughly 
speaking) that there are no corners, but instead a plane tangent to the 
surface at each point. Examples of such objects are spheres, ellipsoids 

(surfaces given by an equation of the form fz + fz + ~ -1 = 0), and more 
generally, the set of solutions to some equation F(x, y, z) = 0, where F 
is a "nice" function and where the solution set happens to be a convex 
surface. 

The function ¢ that assigns to each point x in the unit sphere the point 
¢(x) on b that has a support plane perpendicular to the line from the origin 
to x is well-defined. If P is a set of points on the sphere with area A(P), 
then we say that the integral curvature of ¢(P) is the quantity A(P). The 
integral curvature of a piece of b measures how much the piece bends 
around. With this definition, we can say that the total integral curvature 
of a convex surface is always equal to 4n. This is a special case of what is 
known as the Gauss-Bonnet theorem. 

Of course, at the moment this seems like a self-evident fact and 
therefore not important. 1b appreciate the result, let us look back at 
Descartes's theorem. With the same definition of integral curvature we 
can see that if we take a subset P of a polyhedron b that has no vertices, 
then its integral curvature is o. This is because ¢ takes all of the unit 
sphere to the vertex set except for some points and circle arcs, and 
those don't have any area. In fact, if K(P) is the integral curvature of a 
set P, then 

K(P) = K(V!) + K(VZ) + ... + K(Vn), 

where VI, V2 , ... Vn are the vertices contained in P. For a vertex V, K(Y) 
is the defect of the vertex V. 

Now, the defect of a vertex can be measured by looking only at the 
geometry of the polygons that share the vertex. If we imagine a "two­
dimensional" being living on the surface b equipped with measuring 
instruments, we can imagine that this being could detect the defect at 
a vertex by making measurements. 1b put this in more technical terms, 
we say that the curvature at a vertex is intrinsic to the geometry of a 
surface. It does not depend on how the polyhedron sits in space. 

For example, take four triangles meeting at a vertex V. The support 
planes to this pyramid at V determine a spherical quadrilateral whose 
area is the defect at V. Ifwe pinch the pyramid, so that the dihedral angles 
change but the triangles themselves do not change, then the spherical 
quadrilateral will change. Yet its area stays the same! 
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By contrast, dihedral angles are not intrinsic to a polyhedral surface. 
For if we take two polygons that are connected along an edge, we can 
change the dihedral angle between them without stretching or tearing 
the polygons. 

Gauss, who studied the geometry of smooth surfaces in the early 
nineteenth century, proved a beautiful theorem that he called the Theo­
rema Egregium, or Excellent Theorem. (Nowadays the word egregious has 
taken on a negative meaning!) His theorem states that the curvature of a 
smooth surface is intrinsic, so that it can be determined from the internal 
geometric relations of points on the surface. The Gauss-Bonnet theorem 
says that if we change the intrinsic geometry of a surface (by stretching 
and distorting it), we can change the curvature in different places but the 
total integral curvature cannot change. 

The Gauss-Bonnet theorem says more than that. Even ifthe surface is 
not convex, the formula continues to be valid. This is reminiscent of the 
principle for closed curves in the plane, but there is a difference. If the 
surface has no self-intersections, it may still have total curvature different 
from 4rr. In fact, the total curvature of a surface must be 2rrx, where X 
is the number Euler's theorem predicts for V - E + F. For example, the 
torus is the surface of an inner tube or a doughnut. The Gauss- Bonnet 
theorem predicts that the total integral curvature of such a surface must 
be O. Note that as in the case of curves, it is necessary to talk about negative 
curvature for this formula to make sense. If a surface has only positive 
curvature, then it turns out to be convex. 

Problem 
Divide the surface ora torus (pictured above) into regions (with curved sides) 
in such a way that any two regions that touch, touch along a whole side or 
at one point. Compute V, E, F for your diagram, and determine the value of 
V-E+F 

Problem 
One way of doing the previous problem is to imagine a torus as being con­
structed from a sheet of rubber in the form of a rectangle by gluing opposite 
pairs of sides together. Divide a rectangle into polygonal regions, cutting up the 
edges of the rectangle into segments and remembering to match corresponding 
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segments. What is the srnallest number of such regions into which you mn 
divide a rectangle so that no two regions share more than one edge> How 
many colors do you need to c%r the resulting diagram 80 that regions with a 
common border have different colors) 



CHAPTER 

Geometry 
of Space 

6.1 A Hint of Riemannian Geometry 
In the last section of Chapter 5, we referred to curvature as being intrinsic. 
We will explore the notion of intrinsic and extrinsic properties of a geo­
metric object in this section, ending with a rough description of Bernhard 
Riemann's reformulation of geometry. 

Let's begin with a puzzle, quoted from Mathematical Puzzles by Geoffrey 
Mott-Smith (Dover, 1954), called "The Spider and the Fly" (p. 60). 

A spider lived in a rectangular room, 30 feet long by 12 feet wide and 
12 feet high. One day the spider perceived a fly in the room. The spider 
at that time was on one of the end walls, one foot below the ceiling and 
midway between the two side walls. The fly was on the opposite end 
wall and one foot above the floor. The spider cleverly ran by the shortest 
possible course to the fly, who, paralyzed by fright, suffered himselfto be 
devoured. The puzzle is: What course did the spider take and how far did 
he travel? It is understood he must adhere to the walls, etc.; he may not 
drop through space. 

Problem 
Before reading on, solve the puzzle! 

The fly, being capable in calmer moments of flying at will through 
space, views the walls of the room as part of a three-dimensional world. 
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By contrast, the spider, constrained by nature to cling to the walls of the 
room (except when it spins a web!), has a different view of it. 1b the 
spider, the walls form a two-dimensional world made up of six rectangles 
connected along edges. If we were to unfold some of the walls and lay 
them flat on a plane, the spider's path along the walls could be traced out 
in this plane; its length would not change. 

Of course, it is necessary to sever the connections between some of 
the rectangular sides ofthe room to lay them out, but as long as we don't 
break the connections that the spider will use in its walk, it makes no 
difference. If, for example, the spider crawls along the ceiling to get to 
the fly, then the path it will take will look like a straight line A when we 
unfold the walls as illustrated below. It is then obvious that the distance 
the spider crawls will be 42 feet. 

A 

FLOOR 

The spider could also crawl along the ceiling and one of the long walls 
on its way to the fly. This path is the straight line B illustrated below, 
whose length turns out to be approximately 40.7 feet. If the spider chooses 
path C below, which uses the floor as well, the length of the path is exactly 
40 feet. This is the actual shortest path from spider to fly. 

How do we know that the spider will crawl on a straight-line path and 
not a zigzag? More generally, if instead of a rectangular room, we had a 
spider and a fly on some polyhedron, how do we know that the shortest 
route joining them would look like a straight line if we laid out the faces 
in order? Before examining this problem, let us first define the polyhedra 
for which this question makes sense. A (Euclidean) polyhedral surface is a 
finite collection of polygons glued together along edges according to the 
following rules: 

1. Each polygon is congruent to a convex polygon in the Euclidean 
plane. 

2. Any two polygons that have a point in common meet either at a 
common vertex or along a common edge. 
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3. If two polygons have an edge in common, then the edge has the 
same length in each polygon. 

4. Every edge of a polygon is an edge of exactly one other polygon. 
5. If aI, az, ... , an are all the polygons that share a vertex V, then we 

can renumber the polygons in such a way that aj and aj+l share an 
edge for 1 .::: i < nand al and an share an edge. 

A convex polyhedral surface is an example of a Euclidean polyhedral 
surface. The fifth rule prevents us from encountering such objects as 
two tetrahedral surfaces glued together at one vertex. If the first rule 
is replaced by the statement that each polygon is congruent to a convex 
polygon in the hyperbolic plane (respectively, the sphere), then the result 
is a hyperbolic (respectively, spherical) polyhedral surface. Note that it 
is not necessary to assume that the polyhedral surface can actually be 
assembled in space the way the rectangular walls of the room can be 
assembled to form the room. Consequently, such a surface is sometimes 
called an abstract polyhedral surface. Since we may not have a model 
of the polyhedron sitting in space, the only properties we can study are 
intrinsic ones. 

Suppose I: is a (Euclidean) polyhedral surface. What does the shortest 
path joining two points A (= spider) and B (= fly) look like? In order 
to answer this, we need to assume that a shortest path exists. This is by 
no means obvious; it can be proved, but the proof requires some difficult 
mathematical arguments. (You may find them in a text on differential 
geometry.) But now that we have made the assumption, suppose y is a 
shortest path from spider to fly. Pick two points X and Y along the path 
close to each other. If they are in the same polygon, then the part of y 
joining them must be a straight line segment, since otherwise we could 
replace that portion of the path by a shorter one. (Here we are using the 
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Euclidean fact that the shortest path between two points in the plane is 
a straight line segment. 

If X and Yare in different polygons that share a common edge, and 
the path y crosses the edge at some point Z, put these two polygons down 
adjacent to each other in the plane. Ifthe straight line joining X to Y stays 
in the two polygons, then again it is shorter than the piece of y. If not, 
then at least the line segment from X to Z and the line segment from Z 
to Y form the shortest path from X to Y going through Z. But then there 
is a shorter path from X to Y that goes through one of the endpoints of 
the common edge. 

(Why is this true? Intuitively, connect the points with a piece of a very 
elastic band and let the band shrink. If the band were just allowed to 
move anywhere in the plane, it would snap to a straight line. If the band 
is forced to pass through the line segment between the two polygons, it 
will pull offto one end or the other.) 

What we have decided so far is that if y really is a shortest path, then 
the part of it inside anyone polygon will be a straight line, and ifit crosses 
a border anywhere except at a vertex, the crossing will be such that the 
two segments on opposite sides of the edge fit together to form a straight 
line segment. There is, however, the possibility that a shortest path will 
go through a corner. Let k be the angle deficit at the corner, and assume 
that k > o. Then we can put all of the polygons that meet at this corner 
down onto the plane so that they share the corner. For instance, if we are 
on a dodecahedron, we can put down the three pentagons so that they do 
not overlap. 

In general, there will be more than one way to layout the polygons 
that meet at a vertex onto the plane. In our example, there are three 
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different ways the three pentagons can be placed, corresponding to the 
three edges along which we would have to cut in order to flatten the 
corner out. Now, it is always true that at least one of the possible ways 
will have the property that the line segment joining X to Y in the plane 
stays within the polygons. (This is left as a problem for the reader to 
verify.) But that means that there is a shorter path from X to Y that does 
not go through the vertex. 

'Ib summarize, we have the following theorem about shortest paths: 

Theorem 6.1.1 A shortest path on a Euclidean polyhedral surface joining 
two points X and Y is made up of straight line segments that meet edges of the 
polyhedron in such a way that adjacent segments either fit together to form a 
straight line when the adjacent polygons are laid out on the plane or meet at 
a vertex with negative angle deficit. 

Problem 
Justify the argument above that says that if a path goes through a vertex with 
positive deficit it is always possible to find a shorter path that misses the vertex. 

Problem 
Suppose six right triangles meet at a vertex, as pictured below, in some 
polyhedron. Let X and Y be points in two opposite triangles (separated by 
two triangles in either direction going around the vertex). Show that if the 
shortest path stays within the triangles, then it must go through the vertex at 
the center. Construct an example of a polyhedron with such a vertex, in which 
the shortest path between the points X and Y does not go through the vertex. 

In the picture above, it is not hard to see that if X and Y were picked 
very close to the central vertex, then the shortest path would of necessity 
go through that vertex. That is because any path which does not go 
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through the vertex would have to leave the triangles, and just getting 
out to the border would be too big a detour. We can restate this obser­
vation in another way. A two-dimensional being living on the surface 
of a polyhedron will be able to detect a nearby vertex with positive 
defect by the fact that shortest paths tend to avoid going through it. 
The being will be able to detect a nearby vertex with negative defect by 
noticing that shortest paths tend to go through it. But the being will not 
be able to detect an edge. The defects at vertices are part of the intrinsic 
geometry of the polyhedron, while the edges are part of the extrinsic 
geometry. 

If a vertex has defect exactly 0, then its geometry will be Euclidean. 
For example, if we divide a polygon into smaller polygons by adding 
vertices and edges, then the new vertices will not be detectible by intrinsic 
measurements. Is it possible to have a polyhedral surface with 0 defect 
at every vertex? Yes it is. Here is an example: Thke a rectangle and divide 
it into nine similar, smaller rectangles. Now glue the top edge of the 
rectangle to the bottom edge and glue the left edge to the right edge. 
The resulting polyhedral surface has nine rectangles with two rectangles 
meeting at each edge. The angle sums at each vertex are 2n. For example, 
the rectangles numbered 1,3,7, and 9 come together around one vertex. 

A two-dimensional being living on this surface would not be able to 
detect any deviation from the rules of Euclidean geometry as long as 
the being did not try to travel long distances. Notice, however, that a 
straight path drawn horizontally along the polyhedron closes up to form 
a closed curve, (a closed geodesic), as does a vertical straight path. This is 
reminiscent of the phenomenon of great circles on the sphere, but the 
similarity ends here. Diagonal lines behave quite differently from great 
circles on the sphere. For example, there is a straight path from the point 
X through the point Y, then through Z, then returning to x. It crosses 
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each horizontal closed geodesic once, but it crosses each vertical closed 
geodesic twice! 

If we attempt to build a model of this surface in space, we can take a 
rectangular piece of paper and glue the top edge to the bottom, forming a 
tube. Now we need to attach the left end of the tube to the right end. This 
can only be done by crump1ing the tube; nevertheless, we can connect 
them in our imagination. What we get is a torus. From the last problem 
of Chapter 5, or from the construction above, we know that for such a 
surface V - E + F = O. This could also be predicted from the abstract 
version of Descartes's theorem: 

Theorem 6.1.2 (Polyhedral Gauss-Bonnet Theorem) Let X de­
note the value of V - E + F for a polyhedral surface. Then the sum of the 
defects at the vertices of any Euclidean polyhedral surface is 2:rrX. 

The quantity X is called the Euler characteristic of the surface. The 
Euler characteristic of the sphere is 2, while that of the torus is O. The 
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proof of the theorem above is identical with the second proof we gave of 
Descartes's theorem in Chapter 5. 

Are there other examples of Euclidean polyhedral surfaces that have 
o defect at every vertex? In fact, there are infinitely many. Replace the 
rectangle above by any other rectangle, or more generally by a parallelo­
gram. The result will be a torus. Is it the same torus or are they different? 
If the parallelogram has a different area, then we can tell the two tori 
apart. By scaling all the dimensions, we can get a similar surface with 
any area we want. Let us assume that the area is always fixed at 1. Then 
could a being living on one ofthe two surfaces tell the difference between 
them by some measurement on the surface? 

Again the answer is yes. Our rectangular torus gives us two families of 
closed geodesies that are everywhere perpendicular to each other. If we 
used a different rectangle, the lengths of these closed geodesics would be 
different. In particular, the vertical geodesic in our example above is the 
shortest closed geodesic. Its length is an intrinsic geometric quantity. 

If we took a parallelogram instead of a rectangle, then in general if we 
take the shortest closed geodesic, there will be a family of such curves 
parallel to it. But the curves perpendicular to them will not usually close 
up after going once around. In the example pictured below, the shortest 
closed geodesics are horizontal; a single vertical geodesic crosses each of 
them four times before closing up. 

y x w z 

x w z y 

Problem 
Divide a regular hexagon up into polygons Now glue opposite pairs of edges 
together to form a Euclidean polyhedral surface. Study the properties of this 
surface. 
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Not every Euclidean polyhedral surface with 0 defects is a torus. If 
we change the gluing rule for the sides of the rectangle so that the left 
side is given a twist before being attached to the right side, the resulting 
surface is called a Klein bottle. Like the projective plane, the Klein bottle 
is a cousin of the Mobius band, but it has Euler characteristic 0, whereas 
the projective plane has Euler characteristic 1. It turns out that the torus 
and the Klein bottle are the only surfaces that have Euler characteristic o. 

Problem 
Investigate the possibility of tiling a Euclidean polyhedral surface with 0 defects 
by regular polygons. Relate this problem to the problem of tiling the plane. 

Our discussion so far has concerned the geometry of polyhedra. Now 
let us shift our attention to smooth surfaces, which we discussed briefly at 
the end of the last chapter. We want to consider shortest paths joining two 
points X and Y on such a surface. Because a smooth surface in Euclidean 
three-space is curved, it does not usually contain any straight lines. How 
then do we talk about shortest paths? If y is a curve in space, we can 
inscribe a polygonal path in it by choosing some points on the curve 
and connecting consecutive points with line segments. The length of the 
curve should be more than the sum of the lengths of such inscribed paths. 
This allows us to define the length of y to be the least upper bound of the 
lengths of all possible inscribed paths. 

This idea of length goes back at least to Archimedes, who inscribed 
polygons in a circle to estimate its circumference (and compute the value 
of Jr). A mathematical treatment oflength of curves requires calculus, but 
we can proceed here on an intuitive basis, pretending that we know how 
to measure the length of a curve. (If we had a surface in front of us, 
for instance a globe, we could lay a piece of string over a curve, then 
straighten the string and measure it.) Incidentally, complicated curves 
can be infinitely long; an example is the perimeter curve of the Koch 
snowflake from Chapter 2. 

A geodesic on a surface is a curve that is the shortest path between any 
two points on it that are close together. Why do the points have to be 
"close together"? A good example is the sphere, where a great circle arc 
is a geodesic. Nearby points on the arc have it as the shortest path, but if 
we go too far, there will be a shorter arc gotten by going around the great 
circle in the opposite direction. 

We can imagine two-dimensional beings living on the surface and capa­
ble of making geometric measurements of lengths and angles. Actually, 
since human beings live on the surface of the earth, we do not need such 
a vivid imagination. When we measure the length of a stretch of a path, 
we make measurements based on the misleading impression we have 
that the earth is flat. We perceive of a geodesic as a straight line, when 
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actually it is part of a curved line in space that lies on the surface of 
the globe. 

By the intrinsic geometry of a surface, we mean those geometric 
properties that can be studied using length and angle measurements on 
the surface alone. So the circumference around the equator ofthe earth is 
intrinsic, but the diameter of the equator (thought of as a curve in space) 
is extrinsic. 

Why restrict ourselves to two dimensions? Let us now imagine a three­
dimensional "space" in which we can do geometry. We assume that we can 
measure lengths of curves in the space and also angles. Any properties of 
objects that only depend on such measurements will be intrinsic. What 
are the general principles, the postulates, of this geometry? 

In his great lecture of June 10, 1854, Ober die Hypothesen, welche deY 
Geometrie zu Grunde /iegen (On the Hypotheses which lie at the Foun­
dations of Geometry), Georg Friedrich Bernhard Riemann developed a 
new view of geometry, which we now call Riemannian Geometry. He 
proposed a general view of geometry in which one could speak of three­
dimensional (or in fact, any-dimensional) spaces, in which one could 
make measurements of lengths and angles. His guiding principle was 
that in a very tiny portion of space the rules of geometry should be 
"approximately Euclidean!' What he actually proposed was that at the 
infinitesimal level, the geometry should be exactly Euclidean. In such a 
space, a tiny being would see geometric figures as conforming to the 
laws of Euclidean geometry, although on a very large scale these laws 
might fail. 

If we look at the parallel postulate as telling us that the sum of the 
angles in a triangle is always exactly 180°, then this is either true or false. 
But consider a tiny triangle on the sphere. The sum of the angles in the 
triangle is greater than 180°, but by an amount proportional to its area. So 
if the area of the triangle is very small (compared to the total area of the 
sphere), then the discrepancy will be in the range of experimental error. 
This is our experience on Earth: a small triangle laid out by surveyors on 
the surface ofthe earth will appear to have angle sum 180°, because our 
instruments cannot measure the actual sum carefully enough to tell the 
difference. Euclidean geometry is perfectly reliable for measurements 
on the earth's surface, provided that we take only a very small part of 
the earth. 

Riemannian geometry is the study of the properties of spaces that on 
a microscopic level are Euclidean but on the macroscopic level may be 
quite different. 

Problem 
Assume that the earth is perfectly round and has a radius of 4000 miles. If we 
construct an equilateral triangle on the surface of the earth whose angle sum 
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is 181°, approximately how much area would the triangle cover? Compare this 
area with some geographic region. 

6.2 What Is Curvature? 

In this section we will briefly explore the notion of curvature for a smooth 
surface. 1b do this, it is helpful to begin with the idea of the curvature of a 
smooth curve in the plane. Such a curve (Y has at each point a tangent line, 
and we may, as we did in Section 5.3 in the case of convex curves, draw 
an arrow perpendicular to that line. There are two choices for such an 
arrow; the important thing is to make the choice consistent as we travel 
around the curve. The arrow is called the normal vector to the curve. 

2 1 

2 1 

~ 
4 

Corresponding to each point P on the curve we get a point yep) on the 
unit circle by carrying the normal vector parallel to itself until its tail is 
at the center of the circle. (We assume that the vector has length one, so 
its head touches the circle.) This correspondence y is called the Gauss 
map of the curve. The geodesic curvature K( P) of the curve at the point P 
measures the rate at which the arrow is rotating as we move along the 
curve through the point P. That is, if we take a small piece of the curve 
of length e with P in the middle, and if we measure the total change ¢ in 
the angle at which the vector points between the two ends of the piece, 
then the ratio * is the average curvature of that piece of curve. If we take 
tinier and tinier lengths, this average will more and more resemble a fixed 
number K. 

What we are real1y doing is computing a derivative of the Gauss map, 
which requires some technical assumption about the curve ("smooth­
ness"). But since this requires calculus, we will try to leave this at an 
intuitive level here. In the picture above, the curvature K is relatively 
small at point 1 and 2 and gets larger at 3 and 4. A circle of radius R 
has the same curvature at every point, namely K = ~. Larger circles have 
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smaller curvature. A straight line has curvature O. Ifwe take a small piece 
of a curve through a point P, we can approximate it by an arc of a circle. 1b 
do this, pick a point on each side of P and very close to it. There is a circle 
(or possibly a straight line) that passes through these three points. As we 
allow these points to get closer and closer to P, we get better and better 
approximations to the curve. The "best-fitting" circle, called the osculating 
circle, has radius R = K(~. If K = 0, the osculating circle is actually a 
straight line. 

There is a slightly more precise definition of curvature that allows 
curvature to be positive or negative, depending on the choice of normal 
vector: Ifwe reverse the choice of normal vector, then the sign of the cur­
vature will change. With a circle, the inward-pointing normal determines 
the positive sign for the curvature. In general, ifthe curve lies on one side 
of its tangent line and the normal vector points to the same side, then the 
curvature is positive. The curve can cross its tangent line at a place where 
the curvature is zero. 

K > 0 

Now let's look at curvature for surfaces. Leonhard Euler dealt with the 
idea of curvature of a surface through the examination of plane sections. 
Suppose that we have a smooth surface 1:; and a point P on the surface. 
The line f through P perpendicular to the tangent plane at P is called 
the normal line. 1b describe the way the surface curves at P, we can 
form the intersection of the surface 1:; with a plane that contains f and 
then compute the curvature K of the intersection curve, called a normal 
section, in the plane. Euler showed] that each of these normal sections 
has curvature given by the formula 

K = Kj cosz () + KZ sinz (), 

where Kj and KZ are the largest and smallest curvatures, and () is the angle 
between the plane corresponding to Kj and that for K. In particular, the 
planes corresponding to Kj and KZ are orthogonal. So Euler established that 
in some sense the curvature of a surface at a point could be described by 
means of two numbers. (In fact, this statement is more precisely due to 

1. Recherches sur la courbure des surfaces, Histoire de I'Academie Royale des 
Sciences de Berlin, 16 (1760), 119-143. 
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Meusnier, who showed that even the curvatures of nonnonnal sections, 
formed by using planes through P not containing the normal line, are 
determined by this pair of numbers.) 

There is an ambiguity in the definition of the normal curvature, coming 
from the fact that the sign of the curvature of a curve in the plane depends 
on which normal we use. If we specify a normal vector to the surface 
instead of just a normal line, then it can be used to fix the sign of the 
curvature of a section. For example, on a sphere the inward-pointing 
normal corresponds to the curvatures of normal sections (that is, great 
circles) being positive. 

The modern theory of surfaces originates in the magnificent work 
of Carl Friedrich Gauss, who set forth many of the central ideas in his 
1827 Gottingen lecture Disquisitiones Generales Circa Superficies Curvas. 
Gauss defined a function from the surface :E to the unit sphere, exactly 
analogous to the function described above from curves to the unit circle. 
The function assigns to each point P on the surface the point reF) on the 
sphere whose direction corresponds to the normal direction to the surface. 
(We assume that a normal direction to the surface has been specified, such 
as the outward direction for a convex surface.) 

Using this function, which is now known as the Gauss map, he defined 
the integral curvature of a region of 1: to be the area of its image under 
the map. This is the same definition we used in Chapter 5 for polyhedra. 
Then he defined the measure of curvature KeF) at a point P to be the 
limiting value of the ratios of integral curvature to area for small regions 
surrounding P. This is the analogue of the geodesic curvature for a 
curve, with area replacing length. Then Gauss related this number to 
the curvatures /([ and /(2 by the simple formula 

Notice that if we switch our choice of normal direction, then both K1 

and K2 change signs, so the sign of K is not affected by this choice. K is 
usually known as the Gaussian Curvature. Unlike the case of curves, the 
sign of the Gaussian curvature does not depend on a choice. 

Now we have a very pretty geometric interpretation of curvature; 
in particular, we can see a qualitative difference between positive and 
negative values of K manifested in the shape of the surface. How do 
we get a negative value? A convex surface will always have positive 
curvature, because all of the normal sections curve in the same direction. 
An example of a negatively curved surface is a saddle (pictured below). 
As we vary the choice of normal section, the curves change the sign of 
the curvature. 

This particular saddle is the graph of the function z = f(x, y) = x2 _ y2. 
At the origin (0,0,0), this surface has a tangent plane that is horizontal. 
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(This may surprise you, since it means that the tangent plane cuts the 
surface near the point of tangency.) The z-axis is the normal line to the 
surface. The intersection of this graph with the xz-plane is the parabola 
z = xz. Ifwe choose the upward-pointing normal to the surface, then this 
curve is positively curved. The intersection ofthe graph with the yz-plane 
is the downward-pointing parabola z = _yz. It has negative curvature. 

Problem 
What curves form the other normal sections of the saddle above~ Which ones 
have curvature o~ 

Gauss's Theorema Egregium, to which we referred at the end of Chapter 
5, can now be restated as the product of the curvatures K} and KZ can be 
determined from the intrinsic geometry of the surface. Imagine that a piece 
of surface is made of material that is flexible but not stretchable. By flexing 
the material we can change the values of K] and KZ, but not their product. 
For example, take a sheet of typing paper. When it lies flat on the table, 
its curvatures K] and KZ are both o. Ifwe curl the paper into a cylindrical 
tube, we can change K] to some nonzero quantity, while leaving Kz alone. 
But we cannot curl the paper simultaneously in two different directions, 
for then the product K] KZ would no longer be zero. Experimentation with 
paper quickly leads one to this conclusion. 

Another important example: Thke a piece of a sphere. It is possible to 
pinch it so that its curvature increases in one direction and decreases in a 
perpendicular direction. This is consistent with the Theorema Egregium, 
which promises only that the product must remain constant. However, 
it is impossible to flatten out a piece of a sphere onto a plane without 
distortion. This means that no map of a portion of the Earth's surface can 
precisely scale all lengths and angles correctly. The Mercator map, for 
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example, correctly displays angles (it is conformal) and takes longitudes 
and latitudes to straight lines. But it does not represent areas correctly: 
Greenland comes out looking too large, for instance. 

While the product of the curvatures Kl and KZ is an intrinsic property 
ofa surface, the average of the curvatures, H = ~(Kl +KZ), is an extrinsic 
quantity, known as the mean curvature. One of the most important and 
well-studied problems in geometry concerns the question, What surfaces 
have the property that H = 0 everywhere? This question is important for 
the following reason: Suppose you take a loop of wire and dip it into a 
solution of bubble soap. When you remove it there may be a film of soap 
stretched around in a surface bounded by the wire loop. Surface tension 
causes the soap to contract to a surface that has the smallest possible 
area. Such a surface is called a minimal surface. Joseph Louis Lagrange 
formulated the fundamental principle of such surfaces in 1760: A minimal 
surface has H = 0 everywhere. This equation can be understood physi­
cally by use of Laplace's equation: The pressure difference p between the 
sides of a soap film at any point is proportional to the mean curvature H. 
So in order to be in equilibrium, the pressure has to be equalized, which 
means that the mean curvature has to be o. 

A soap bubble does not have mean curvature zero. Unlike a soap film, 
it encloses a volume of air, which resists compression. It turns out that 
soap bubbles satisfy the equation H = C, where C is some constant. 
Such surfaces are called surfaces of constant mean curvature. A sphere 
of radius -k satisfies this equation, and indeed, soap bubbles tend to be 
spherical. However, more complicated configurations of soap bubbles, in 
which several bubbles are stuck together, do occur. (See chapter 5 of [20] 
for a discussion of bubbles.) 

If P is a point on a surface and r > 0 a small positive number, then 
the geodesic circle of radius r consists of all points Q for which the shortest 
path from P to Q has length r. In the plane, the circumference of such a 
circle is 2nr. What does a geodesic circle of radius r look like on a sphere 
of radius R? For convenience, let P be the north pole and think of the 
sphere as the sphere of radius R centered at the origin o. Shortest paths 
from P are arcs of great circles of radius R centered at 0 and passing 
through the poles. If LPOQ is e measured in radians, then the length of 
the arc from P to Q is Re. This will be r if 

r 
() - -- R· 

Now we can see that a geodesic circle of radius r is a parallel of latitude 
lying in the plane z = R - R cos i. This is a circle of radius R sin i in 
that plane, so it has circumference 2nR sin i. It can be shown using 
trigonometry that this quantity is smaller than 2nr. The following fact 
can be established using elementary calculus: 
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Proposition 6.2.1 
Let K = iz. Then on the sphere of radius R a geodesic circle of radius r has 
circumference 2:rrr - ~ Kr3 + oCr3), where OCr3) denotes a quantity that is very 
small compared with r3. 

Problem 
Using a calculator or computer; compute the value of 2rrR sin ~ for r a small 
number and various values of R. Compare your answers with 2rrr - ~ Kr3. 

This proposition gives a new interpretation of Gaussian curvature. The 
sphere has curvature K > O. This is reflected in having circles of radius 
r having circumference smaller than expected in Euclidean geometry. 
Straight lines bend toward each other, eventually even meeting. In a 
space with negative curvature, the opposite phenomenon occurs. The 
circumference of a circle turns out to be larger than the Euclidean value, 
as rays emanating from a point spread apart. 

6.3 From Euclid to Einstein 

What is the nature of the geometry of space? For over two thousand years 
the answer seemed to be contained in the work codified by Euclid. Until 
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the nineteenth century it was believed that the laws of geometry were 
those that followed inevitably from his axioms and postulates. 

In ancient Greek times, Aristotle formulated the theory that force was 
necessary to maintain motion; he observed that objects on Earth tended 
to move in straight lines when not influenced by outside forces. Galileo 
(1564-1642) developed the theory of motion, later restated by Newton 
in 1713 as his first law of motion: "Every body continues in its state of 
rest or of uniform motion in a straight line, except in so far as it may be 
compelled by force to change that state;' This means that straight lines 
are a fundamental feature of space: They are the inertial paths of objects. 

So how do these straight lines work? Until the birth of non-Euclidean 
geometry, it seemed that we had no choice. The laws of geometry were 
those of Euclid's geometry, and that was that. The discovery of hyperbolic 
geometry, and later of elliptic geometry, opened up new possibilities. But 
which one is right? and how do we decide. 

It might seem that the way to answer the question would be to build 
a triangle, measure the angle sum, and compare with 1800 • The problem 
is that we would need a really large triangle. I mean REALLY large. 
Remember that the defect (or excess) of a triangle, ifit exists, is supposed 
to be proportional to its area. So the discrepancy between Euclidean and 
non-Euclidean triangles only becomes apparent when the size is quite 
large. Gauss is said to have attempted a measurement of a triangle formed 
by the peaks of three mountains, but the discrepancy he found was well 
within the range of experimental error. 

As a practical matter, then, we may assume that the rules of Euclidean 
geometry hold in our own tiny corner of the galaxy. But Euclidean 
lines go on forever, while straight lines in elliptic geometry come back 
to themselves. This raises the intriguing question: If we assume that a 
light ray travels along a straight path, can I point a flashlight (albeit 
a ridiculously powerful one!) off into space and illuminate the back of 
my head? 

Here is a chain of thoughts about how we might find out the answer 
to this question. Think of our universe as a three-dimensional geometric 
space. While we don't know what far distant portions of space look like, 
we will assume that they are geometrically about the same as our portion 
of space. This is the principle of homogeneity. In particular, this means 
that the "curvature" of space is the same everywhere. How is curvature 
defined in three dimensions? Riemann proposed a definition. Imagine at a 
point P a small piece of a straight line Ci. Draw the straight lines emanating 
from P in each direction perpendicular to Ci. Ifwe are in Euclidean space, 
this family of lines fills out the plane perpendicular to Ci. But in general, 
this family will form a surface passing through the point P. Its curvature 
atP can be measured intrinsically (by Gauss's Theorema Egregium). Call 
this curvature K(Ci)' Do this for all possible straight lines through P; the 
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resulting numbers describe the way space bends at P. The assumption of 
homogeneity is that these numbers will be the same at different points 
in space. 

Next, assume that space is isotropic. This means that space looks the 
same in every direction; there are no "preferred" directions. A conse­
quence of this is that the curvatures K(a) would all be the same. Thus 
there is one number K that describes how space bends in every direction 
at every point. This assumption is the assumption that the universe has 
constant curvature. It is then possible to prove mathematically that the 
universe is a three-dimensional version of one of our three geometries­
Euclidean, hyperbolic, or elliptic-depending on whether K is zero, neg­
ative, or positive. 

Of course, we have been making rather generous assumptions. Why 
should space be homogeneous and isotropic? In a general Riemannian 
manifold the curvature can vary as we move from one point to another. 
On the surface of a (two-dimensional) torus, for example, the Gaussian 
curvature is positive on the outer part and negative on the inner part. 
Th see this, note that the outer part has a convex shape, while the inner 
part has the shape of a saddle. This implies that if we construct a small 
equilateral triangle with sides oflength E in different parts ofa torus (with 
geodesic sides), the angle sum will change. In a geometry with variable 
curvature, congruence of figures becomes a problem. 

K<O 

~ 

This is an argument for homogeneity. If physical objects can be moved 
from one place to another without changing their dimensions, then that 
would seem to suggest that space has to be homogeneous. If objects can be 
rotated without changing their properties, then space must be isotropic. 

While appealing, this is not a convincing argument. For how do we 
know that objects do not change their shape as they move? Measuring 
them with rulers to see that their dimensions do not change only works 
if the rulers themselves do not change! In fact, if we assume only that 
space is approximately homogeneous and isotropic, then slight changes 
in shapes may be undetectable anyway. 

The late nineteenth century saw another great change in our way 
of thinking about geometry. When James Clerk Maxwell developed his 
theory of electricity and magnetism, which appeared in 1871, he predicted 
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that electromagnetic waves should exist, which would travel at a speed 
c, the speed of light. How is this speed to be measured? Presumably, 
with respect to the ether, the material of absolute space. (Just as sound 
propagates through air, so light was presumed to propagate through the 
ether.) In 1887, Albert A. Michelson and Edward W. Morley, working at 
institutions that later merged to form my school, Case Western Reserve 
University, devised and carried out an experiment to detect the ether 
and its effect on the speed of light. They reasoned that light travelling in 
different directions through the ether with respect to the motion of the 
earth would be observed to travel at different speeds. Their equipment 
was designed to be able to detect this difference between "upstream" and 
"downstream" motion. 

The experiment showed no difference in the observed speed of light. 
This negative result led H.A. Lorentz to formulate a theory of "contrac­
tion," in which a moving object shrinks in the longitutidinal direction. In 
other words, a ruler moving along the path of a light ray is shorter than 
one staying in a fixed position. (Maybe that idea of objects changing shape 
as they move from place to place was not so fanciful after all.) 

In 1905, Albert Einstein presented a new theory of space, the special 
theory of relativity, based on two assumptions: (1) The speed of light is a 
constant independent of the motion of the observer, and (2) all physical 
laws should have the same form for two observers moving at constant 
velocity relative to each other. His theory required that space and time 
be thought of as making up a single, four-dimensional entity known as 
space-time. The geometry of this space is not Euclidean but Lorentzian; its 
properties are quite different from those of Euclidean geometry, notably 
in the fact that it is no longer possible to speak about "lengths!' 

Let us look briefly at the two-dimensional version of Lorentzian ge­
ometry. Our model is the plane M, which we imagine as having two 
coordinate axes x and t. The x coordinate stands for the position of an 
object in space and the t coordinate for the position in time. An object 
moving at constant speed v will go from a position x at time t to a position 
x + vh at time t + h. As h varies, the object traces out a path (called the 
"world line") that is a straight line. 

If v = 0 (an object standing still), the world line is a vertical line x = k; 
the faster the object moves, the less steep the slope of the line. If we 
assume that no object travels faster than c, the speed of light, and if we 
choose units of measurement such that c = I, then no world line can tilt 
at an angle less than 45° from the horizontal. On the other hand, light 
rays travel along straight lines that have exactly 45° slope. 

Our choice of coordinate axes gives us a reference point (the origin 
(0,0)) corresponding to designating a point in space as a reference and 
a moment in time as a reference. If we change to a new reference point 
Q = (c, d), nothing should change in our description of the geometry of 
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space-time. This means that we can pick a new set of coordinate axes 
parallel to the old one with the origin located at Q. Geometrically, we 
allow all (Euclidean) translations T to be considered isometries of our 
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space M. The new coordinate system (x', t') is related to the old one by 
the formulas 

x' = x - C, t' = t - d. 

Newton's law of motion, which says that the acceleration of an object 
is proportional to the (vector) sum of the forces acting on it, implies the 
existence of a coordinate system with respect to which the law holds. 
Such a coordinate system is called an inertial system. In other coordinate 
systems the law will not hold; for example, in a rotating coordinate system, 
objects do not follow the paths that would be predicted by assuming 
an inertial coordinate system. Newtonian relativity is the principle that 
says that the law of motion will remain unchanged in form with respect 
to another coordinate system moving relative to an inertial system at 
constant velocity. In a Newtonian space-time, we would therefore allow 
a new coordinate system (x', t') given by x' = x - ut, t' = t. In other words, 
a point P that has coordinates (a, b) with respect to the x-t system will 
have new coordinates (a - vb, b). The new time-axis is tilted with respect 
to the old one, while the space-axis does not change. (It may seem that 
the x-axis should be the one to change; study the picture below to see 
why that does not happen.) 

In the new coordinate system, an object that had been traveling at 
a constant speed w would be observed to move at the constant speed 
w - v. For instance, any object moving at speed v (with respect to our 
old coordinate system) now appears to be standing still. This principle 

t = 0 = t' 

x=O 
(t-axis) 

x=a 

x=vt 
x'=O 
(t'-axis) 
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would hold even for light rays. But the Michelson-Morley experiment 
showed that this is not the case. Light rays are always observed to move 
at the speed c = 1. The coordinate change described above is therefore 
not allowed in Einstein's theory of relativity. Instead, it turns out that the 
appropriate coordinate change is given by the formulas 

, 
x 

x - vt , t - vx 
t = ---=== v'l=V2. (6.3.1 ) fi"=VI' 

Problem 
Verify that this trans/annation carries the equation x = t to the equation 
x' = tl, so the speed of a light ray remains unchanged. More generally, If an 
object moves at velocity u, so that x = ut + b, with -1 :::: u :::: 1, what is the 
velocity measured in the (x', t') coordinate system) 

The transformations described above are called Lorentz trans/anna­
tions; they form a group under composition. The space :M. is called (2-
dimensional) Minkowski space, named after the Russian mathematician 
Hermann Minkowski. A geometric object in this space should be some­
thing whose description remains unchanged under Lorentz transforma­
tions. The property of being a straight line is one example. There are 
three types of straight lines: timelike, which can be made the t-axis in 
some coordinate system, spacelike, which can be made the x-axis, and 
light-like, which trace out the paths of light rays. 

Circles are not generally taken to circles, but there is another class of 
curves that playa role similar to that of circles in Euclidean geometry. 
The curve C given by the equation x2 - t2 = C, c f 0, is preserved under 
all Lorentz transformations. In fact, given two points A and B on the 
curve C, there is exactly one transformation of the form 6.3.1 that takes 
A to B. We may think of curves like C as "circles" centered at the origin 
and the Lorentz transformations as "rotations" of these circles. (Actually, 
"translations" is probably a more appropriate term.) 

Problem 
Verify the assertions made in the last paragraph. 

Our discussion has concerned two dimensions. Three-dimensional 
Minkowski space :M.3 has two space coordinates. If we spin our two­
dimensional model around the t-axis, we get the three-dimensional ver­
sion. Instead of light traveling in two possible directions, we have a 
circle's worth of directions. The possible paths taken by a light ray passing 
through a point P in :M.3 form a cone, called the light cone. The curves 
described above are replaced by surfaces x2 + ,1/ - t2 = c. ,"{hen c = 0, 
this is an equation of the light cone through the origin. When c > 0, the 
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surface is the hyperboloid of one sheet. When c < 0, the surface has two 
pieces: It is the hyperboloid of two sheets. The Lorentz transformations 
fix the origin, take the light cone to itself, and take each hyperboloid 
to itself. Rotations about the t axis also preserve the light cone and the 
hyperboloids. 

We may think of the surface t 2 - x2 - y2 = 1, t > 0, as a geometric 
surface and the rotations and Lorentz transformations as isometries of 
that surface. The remarkable fact is that this surface is then a model 
of the hyperbolic plane! Likewise, in four-dimensional space-time, the 
space t2 - x2 - y2 - Z2 = 1 is a model for three-dimensional hyperbolic 
geometry. Thus hyperbolic geometry turns out to playa significant role 
in the geometry of space-time. 

The quantity t 2 - x2 - y2 - Z2 is called the Minkowskian distance from 
the origin to the point with coordinates (x, y, 2, t). This is a little bit like 
Euclidean distance, which would be #+--y-Z---+ Z2 + t2 . Notice that the 
Minkowskian distance can be negative or zero, so it would not be a good 
idea to take a square root. For a physical interpretation of this distance, 
as well as a discussion of clocks, black holes, and other interesting phe­
nomena, you may want to read the expository article by Roger Penrose 
"Geometry of the Universe," in [33]. 

In 1916, Einstein generalized his theory to include the role of gravity 
in influencing motion_ The general theory of relativity describes the uni­
verse as a four-dimensional space-time, in which gravitational fields are 
manifested through curvature. 

This idea can be illustrated intuitively. Suppose, for example, we want 
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to understand how a satellite orbits around the earth in a spiraling path 
ending in the satellite hitting the ground. Picture a taut bedsheet with a 
heavy object placed in the middle of it. The weight causes the sheet to 
sag in the middle, forming a well. A ball rolling around the sag will spiral 
inward, eventually dropping into the center. 

sag caused 
by weight 

Just as Riemann formulated a general idea of a space in which the 
geometry was "locally Euclidean," while possibly having variable shape 
as we move from one place to another, so Einstein proposed a notion of 
a space as being "locally Lorentzian," with the presence of gravitational 
objects being reflected in changes in the shape of space from one place to 
another. The mathematical study of Riemann's spaces is called Rieman­
nian geometry, while Einstein's space falls under a more general heading 
called pseudo-Riemannian geometry. 

This grandly complicated description of the universe seems far distant 
from the geometry described by Euclid 2,300 years ago. And yet, had it 
not been for Euclid's formulation of the parallel postulate, we might never 
have arrived at this point in our understanding of space. By insisting on 
making the property of parallel lines a Postulate, he initiated a process 
that led, 2,100 years later, to the discovery that he was right in doing so. 
That gave rise to the thought that there was more than one way to think 
about the mathematical principles of geometry, which led to the great 
leaps of the nineteenth and twentieth centuries. 
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