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To Patten 

What is the opposite of two? 
A lonely me. A lonely you. 

From Opposttes, by Richard Wilbur, © Harcourt, Brace and Company, New York, 1973. 
Reprinted by permission. 



Even now there is a very wavering grasp of the true position of mathe­
matics as an element in the history of thought. I will not go so far as to 
say that to construct a history of thought without profound study of the 
mathematical ideas of successive epochs is like omitting Hamlet from 
the play which is named after him. That would be claiming too much. 
But it is certainly analogous to cutting out the part of Ophelia. This 
simile is singularly exact. For Ophelia is quite essential to the play, she 
is very charming-and a little mad. Let us grant that the pursuit of 
mathematics is a divine madness of the human spirit, a refuge from the 
goading urgency of contingent happenings. 

Alfred North Whitehead 
from Mathematics as an 

Element in the 
History of Thought 



Preface to the 
Second Edition 

This second edition of Calculus: An Historical Approach has been 
slimmed down for use in a one-semester calculus course intended 
primarily for liberal arts students seeking to fulfil general education re­
quirements in mathematics. Retitled Calculus: A Liberal Art to reflect this 
more specialized purpose, it includes everything from its predecessor 
that would normally be met in the first semester. New material has been 
added to give the instructor more freedom in determining the mathe­
matical level at which to pitch the course and in choosing what emphasis 
to place upon historical and philosophical issues connected with the 
development of calculus and the nature of mathematics. Those who 
wish to place less emphasis upon such issues, for example, or who wish 
to discuss them only after first jumping into calculus as quickly as pos­
sible, can jump from Chapter 1 to Chapter 4, reviewing intermittently, as 
needed, topics from Chapters 2 and 3. 

What emphasis should be placed upon writing in a course like 
this? The classical liberal arts included grammar, rhetoric, and logic­
disciplines that are still related to our modern notion of a liberal arts 
education. Some of the exercises and problems in Chapter 2 are designed 
to reinforce this relation and to recall the larger kinship with mathe­
matics that is often overlooked today. Even a failed attempt to teach 
writing skills in mathematics may have a beneficial result. Students who 
try to learn how to write mathematics may inadvertently learn how to 
read mathematics. Appendix 4, entitled "Clean Writing in Mathematics", 
may be useful in this connection. 

All the material here could-in theory, at least-be presented early in 
secondary school following courses in algebra and geometry. The main 

vii 



viii Preface to the Second Edition 

reason for delaying its study has to do with the question of mathematical 
maturity.* No use is made here of trigonometric, logarithmic, or expo­
nential functions except in occasional optional material indicating how 
such functions can be handled. 

A perceptive remark made by George P6lya suggests how we can 
simultaneously learn mathematics and learn "about" mathematics-i.e., 
about the nature of mathematics and how it is developed: 

If the learning of mathematics reflects to any degree the invention of 
mathematics, it must have a place for guessing, for plausible inference. 

The reader will find plenty of opportunity here for guessing. The early 
chapters go at a gentle pace and invite the reader to enter into the spirit 
of the investigation. Exercises asking the reader to "make a guess" 
should be taken in this spirit-as simply an invitation to speculate about 
what is the likely truth in a given situation without feeling any pressure 
to guess "correctly". Readers will soon realize that a matter about which 
they are asked to guess will likely be a topic of serious discussion later 
on. 

The last couple of full sections in each chapter, after the first, often 
include several exercises designated as optional. Sometimes they offer 
brief glimpses of deeper ideas of real analysis. Likewise, the latter prob­
lems in most problem sets at the ends of chapters are generally more 
demanding. Readers can omit these if they wish and still find it easy to 
go on to study the next chapter. This challenging material is included 
only in the hope that it may encourage some more ambitious students to 
continue their study of calculus at the next level. The final appendix, 
"From Freely Falling Bodies to Taylor series", is included solely for this 
reason. 

I wish to thank Hardy Grant for generously offering to read early 
drafts of much of the new material and for giving me the benefit of his 
sound judgment. I am grateful also to Bill Imbornoni for smoothly over­
seeing Springer-Verlag's production ofthis second edition with the same 
care that Joyce Schanbacher bestowed upon its predecessor some twenty 
years ago. 

January, 1998 
Sewanee 

*Seep. xi. 

W.M.P. 



Preface to the 
First Edition 

This book is for students being introduced to calculus, and it covers the 
usual topics, but its spirit is different from what might be expected. 
Though the approach is basically historical in nature, emphasis is put 
upon ideas and their place-not upon events and their dates. Its pur­
pose is to have students to learn calculus first, and to learn incidentally 
something about the nature of mathematics. 

Somewhat to the surprise of its author, the book soon became ani­
mated by a spirit of opposition to the darkness that separates the 
sciences from the humanities. To fight the spell of that darkness any­
thing at hand is used, even a few low tricks or bad jokes that seemed to 
offer a slight promise of success. To lighten the darkness, to illuminate 
some of the common ground shared by the two cultures, is a goal that 
justifies almost any means. It is possible that this approach may make 
calculus more fun as well. 

Whereas the close ties of mathematics to the sciences are well known, 
the ties binding mathematics to the humanities are rarely noticed. The 
result is a distorted view of mathematics, placing it outside the main­
stream ofliberal arts studies. This book tries to suggest gently, from time 
to time, where a kinship between mathematics and the humanities may 
be found. 

There is a misconception today that mathematics has mainly to do 
with scientific technology or with computers, and is thereby unrelated to 
humanistic thought. One sees textbooks with such titles as Mathematics 
for Liberal Arts Majors, a curious phrase that seems to suggest that the 
liberal arts no longer include mathematics. 

No discipline has been a part of liberal arts longer than mathematics. 

ix 
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Three-logic, arithmetic, and geometry-of the original seven liberal 
arts are branches of mathematics. Plato's friend Archytas, who helped 
develop the whole idea of liberal education, was a distinguished mathe­
matician. No true student ofliberal arts can neglect mathematics. 

How did it happen that mathematics, in the public eye, became dis­
sociated from the humanities? In brief, the emergence and growth of 
scientific knowledge in the seventeenth century led to a polarization in 
academic circles. Science went one way, the humanities went another. 
Mathematics, at first in the middle, seems now to be more commonly 
identified with the sciences and with the technology they engendered. 

Today in some academic institutions the state is not healthy. The 
ground between the sciences and the humanities is so dark that many 
well-meaning members on each side lack the education to see the most 
valuable contributions of the other. To the disadvantage of students, this 
is sometimes the case even among the faculties of so-called "liberal arts" 
colleges. 

In the seventeenth century mathematics was a bridge between the 
two kinds of knowledge. Thus, for example, Isaac Newton's new physics 
could be read by Voltaire, who was at home both with Homer and with 
Archimedes. Voltaire even judged Archimedes to be superior, in imagi­
nation, to Homer. 

The unity of knowledge which seemed attainable in the seventeenth 
century, and which has long been an ideal of liberal education, is still 
worth seeking. Today as in the time of Voltaire, and in the time of Plato, 
mathematics calls us to eye this goal. 

0 



For Anyone 
Afraid of 
Mathematics 

Maturity, it has been said, involves knowing when and how to delay 
succumbing to an urge, in order by doing so to attain a deeper satisfac­
tion. To be immature is to demand, like a baby, the immediate gratifica­
tion of every impulse. 

Perhaps happily, none of us is mature in every respect. Mature readers 
of poetry may be immature readers of mathematics. Statesmen mature 
in diplomacy may act immaturely in dealing with their own children. 
And mature mathematicians may on occasion act like babies when 
asked to listen to serious music, to study serious art, or to read serious 
poetry. 

What is involved in many such cases is how we control our natural 
urge to get directly to the point. In mathematics, as in serious music or 
literature, the point sometimes simply cannot be attained immediately, 
but only by indirection or digression. 

The major prerequisite for reading this book is a willingness to culti­
vate some measure of maturity in mathematics. If you get stuck, be 
willing to forge ahead, with suspended disbelief, to see where the road is 
leading. "Go forward, and faith will follow!" was d'Alembert's advice in 
the eighteenth century to those who would learn the calculus. Your 
puzzlement may vanish upon turning a page. 

All that will be assumed at the outset is a nodding acquaintance with 
some elementary parts of arithmetic, algebra, and geometry, most of 
which was developed long before A.D. 1600. There wil1 be some review 
in the early chapters, offering us as well a chance to outline the early 
history of mathematics. 
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I wish to thank Mary Priestley for helping me in this enterprise and 
for sharing with me its ups and downs. I am grateful also to Paul Halmos 
for his interest and encouragement. 

May, 1978 
Sewanee 

W.M.P. 
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Anecdote ofthe Jar 
Wallace Stevens 

I placed a jar in Tennessee 
And round it was, upon a hill. 
It made the slovenly wilderness 
Surround that hill. 

The wilderness rose up to it, 
And sprawled around, no longer wild. 
The jar was round upon the ground 
And tall and of a port in air. 

It took dominion everywhere. 
The jar was gray and bare. 
It did not give of bird or bush, 
Like nothing else in Tennessee. 

Copyright 1923 and renewed 1951 by Wallace Stevens. Reprinted from The Collected Poems 
of Wallace Stevens, by Wallace Stevens, by permission of Alfred A. Knopf, Inc., and Faber 
and Faber Ltd. 





CHAPTER 

Tokens from 
the Gods 

A calculus is a pebble, or small stone.* Playing with pebbles, or "calcu­
lating", is a primitive form of arithmetic. The calculus, or calculus, refers 
to some mathematics that was developed principally in the seventeenth 
century. 

Today the calculus can be seen as a natural result of a certain point of 
view. This point of view is reached in three steps. One begins by in­
venting the notion of a variable and trying to see situations, where pos­
sible, in terms of variables. The second step is to focus attention upon 
the relationship between the variables arising in a particular situation. 
This leads to the idea of a function. The third step involves the notion of 
the limit of a function. This simple yet subtle notion, which makes it all 
work, was recognized in the seventeenth century as being a key idea. 

We shall discuss limits a little later. Right now, let us look at a couple 
of concrete situations where we can get hold of the idea of a variable and 
of a function relating one variable to another. 

§1. A Calculus Problem 

Let us become acquainted with a type of problem that calculus can han­
dle. We shall not be able to solve this problem until certain tools are 
developed in a later chapter. 

• Physicians still use the word calculus in this sense, to describe an unwelcome presence in 
the kidney or bladder. The success of a textbook on calculus is measured by the degree to 
which its contents are not described by the physician's usage of the word. 

1 



2 I. Tokens from the Gods 

EXAMPLE 1 
A small rectangular pen containing 12 square yards is to be fenced in. 
The front, to be made of stone, will cost $5 per yard of fencing, while 
each of the other three wooden sides will cost only $2 per yard. What is 
the least amount of money that will pay for the fencing? 

In this example, the total cost of the fencing obviously will vary in 
terms of the design of the rectangle. Our job is to become familiar 
enough with how the cost varies in order to recognize the least possible 
cost. Toward this end we first pick at random a few possible designs and 
calculate their corresponding costs. There are lots of ways to enclose 
12 square yards: 

120 
n front 2 

._l ___ rr_on_t __ _, 

6 

Exercises 

1.1. Suppose the front is 1 yard in length. Find the cost. Hint. The cost is the sum 
of the costs of each of the four sides. First find the lengths of the sides, 
remembering that the area must be 12 square yards. 

1.2. Suppose the front is 2 yards. Find the cost. 

1.3. Suppose the front is 3 yards. Find the cost. Answer: $37.00. 

1.4. Suppose the front is n yards. Find the cost. Answer: 7n + (48/n) dollars. 

§2. Variables and Functions 

The information obtained in the exercises above may be conveniently 
summarized in a table. Here, L is an abbreviation for the length in yards 
of the front, and C stands for the cost of the fencing in dollars. 

L C 

1 55 
2 38 
3 37 
n 7n + (48/n) 



2. Variables and Functions 3 

We have seen, in the exercises above, that the value of Cis entirely 
determined by the value of L. In other words, there is a rule by which 
one gets from L to C. This rule is simply given by 

L-..,.---'1 1£2. C = cost in dollars of . 
L 

=cost of front, plus cost of other sides 

= 5L + 2L + 2 (~) + 2 (~) 
48 

=7L+-. 
L 

(1) 

(2) 

Because the cost C varies in terms of the length L, it is natural to 
speak of C as a variable whose value is determined by the value of the 
variable L. In other words (and more explanation will be forthcoming 
below), C is a fUnction of L, which we express succinctly by writing 

C = f(L) (3) 

(read "C equals f of L"). The symbol f denotes the function, or rule, by 
which Cis given in terms of L. Putting lines (2) and (3) together shows 
that the rule f can be expressed by the equation 

48 
f(L) = 7L +L. 

The notation f(L) does not, of course, denote multiplication, but rather 
denotes the effect of the rule f acting upon the variable L. For example, 
by this rule, 

48 
f(n) = 7n+-, 

7t 

48 
f(3) = 7. 3 + 3 = 21 + 16 = 37, 

48 
f(2) = 7. 2 + 2 = 14 + 24 = 38, 

48 
f(1) = 7 . 1 + 1 = 7 + 48 = 55. 

Since the equation C = 7L + (48/L) says virtually the same thing as 
the equation f(L) = 7L + (48/L), one might ask the reason for introduc­
ing this new symbol f. The reason is that we shall need to have a name 
for the mechanism, or rule, by which one gets from the left column 
above to the right column. It is, after all, this mechanism f that we want 
to study in order to recognize the least possible value of the cost C. 

Note that f is not a variable, but stands for a fixed rule relating the two 
variables C and L. 
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Exercises 

2.1. Use the rule given by f{L) = 7L + {48/L) to find each of the following. 
(a) f( 4). (b) [{5). 
(c) f(x). (d) f( VZ). 
(e) [(3 + VZ)- (f) [(3 +h). 
(g) f(x +h). (h) f(n2 ). 

(i) f(x2 ). (j) f( 4n). 
(k) f(4t). (1) [(8/7). 
(m) [(6). 
Answers: (c) 7x + (48/x). (g) 7(x +h)+ {48/(x +h)). (k) 28t + (12/t). 

2.2. In the following table, fill in the question marks appropriately. (Your 
answers to the preceding exercise may be helpful here.) 

uf" L C 

4 ? 
2.5 ? 
X ? 
xz ? 

x+h ? 
? 50 
? 50 

§3. Three Ways of Looking at a Function 

In this book, the word function will be used a little loosely and may have 
either of these three meanings: 

(A) A function is a pair of columns of numbers. Not just any pair of 
columns, but a pair whose first column has no number repeated. We 
speak of the function as being from the first column to the second. 

1 55 
2 38 
3 37 
4 40 

(etc.) 

(B) A function is a rule of correspondence. Not just any rule, but a rule 
which associates to each number exactly one second number. We 
picture the correspondence as going from a horizontal number line 
to a vertical number line. 



3. Three Ways of Looking at a Function 

55 
50 

5 

2 3 4 

(C) A function is a curve in the plane. Not just any curve, but a curve 
that no vertical line crosses more than once. (Occasionally, instead of 
calling the curve a function, we call it the graph of a function.) 

55 

50 

45 

40 

35 (3, 37) 

2 3 4 

Do you agree that (A), (B), and (C) are, at heart, expressions of the 
same idea? Is it not remarkable that the same idea can be thought of-as 
in (A)-as a static notion or-as in (B)-as a kinematic notion or-as in 
(C)-as a geometric notion? This remarkable feature is one reason why 
the idea of a function is an important one. Already the reader may expect 
that the study of functions will have a bearing on the study of kinematics 
(that is, motion), and on the study of curves in the plane. If the reader 
has also the feeling that the idea of a function can change a moving, or 
fluid, situation into a more easily scrutinized static situation, then much 
of what the ensuing chapters hold has been foreseen. 

A surprising amount of mathematics consists in simply saying the 
same thing in many different ways, until it is finally said in a way that 
makes it simple. The problem in Example 1 of finding the least possible 
cost could be rephrased as either of the following problems: 

(1) Find the least number that can possibly occur in the second column 
in (A). 

(2) Find the lowest point ever hit on the vertical axis by f(L) in (B). 
(3) Find the second coordinate of the lowest point on the curve in (C). 

Calculus will teach us how to do the third of these problems. In 
Chapter 4 we shall begin the study of a technique that often enables one 
to find with ease the lowest point on a curve. 
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For obvious reasons, Example 1 is called an optimization problem, 
where the optimum is achieved by minimizing a certain variable (the 
cost C). Let us now look at a second example, where the optimization 
problem that arises requires that a certain variable be maximized. 

EXAMPLE 2 

A farmer has a cow named Minerva. For her has been purchased 1200 
feet of fencing to enclose three sides of a rectangular grazing area. The 
fourth side is bounded by a long barn and requires no fence. Find the 
largest possible grazing area that Minerva can have. 

In this example the area varies with the design of the rectangle. Our 
task is to become familiar enough with how it varies in order to recog­
nize the greatest possible area. We first pick at random a few possible 
designs and calculate the corresponding areas. There are lots of ways to 
use that 1200 feet offencing. 

I I 

IJ~-· I 
400 

:~0 
1001 1000 

Side of long, long barn 

Exercises 

3.1. Suppose the side along the barn is 100 feet. Find the area enclosed. Hint. 
First figure out the lengths of the other sides. 

3.2. Suppose the side along the barn is 400 feet. Find the area. 

3.3. Suppose the side along the barn is 1000 feet. Find the area. 

3.4. Suppose the side along the barn is n feet. Find the area. Answer: 600n- ~nZ 
square feet. 

§4. Words versus Algebra 

Letting s stand for the length, in feet, of the side along the barn, and let­
ting A stand for the area enclosed, in square feet, we have the following 
table: 



4. Words versus Algebra 7 

100 55,000 
400 160,000 

1000 100,000 
TC 600:rc - !:rc2 

From the exercises above, it is clear that the value of s completely 
determines the value of A. This means that A is a function of s. We want 
to become familiar with this function in order to recognize the largest 
possible area A that it can produce for Minerva. We begin by giving it a 
name. Let us denote this function by g. (If we have a function pop up, we 
are free to baptize it with any name we choose. However, it is conven­
tional in most books to reserve the letters f, g, F, and G to designate 
functions.) 

We now have A= g(s). That is, g(s) is the area A corresponding to the 
rectangle whose length along the side of the barn is s feet. That is, 

g(s) =area, in square feet, of CJ (4) 

Equation (4) defines the function gin words. It is perfectly proper to de­
fine a function by writing out its rule in words. However, if the rule is 
really an algebraic rule in disguise, it behooves us to recognize it. What is 
the height of the rectangle in ( 4) whose base is s feet? It is ! ( 1200 - s). 
Reason: Having used s feet opposite the barn, we have 1200- s feet left, 
of which half must go on each of the other sides. Thus,. from ( 4) we can 
go on: 

g(s) = area of JL-----' 
s(1200- s) 

2 
s2 

= 600s- 2 . 

1200- s 
2 

This shows that the function g, written out in words in equation (4), can 
be expressed as an equation in algebra: 

s2 
g(s) = 600s- 2 . (5) 

For obvious reasons, such a function is called an algebraic function. 
Almost all the functions we shall encounter in the first six chapters of this 
book will be algebraic functions, and it is important to learn to convert 
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an equation in words to an equation in algebra, whenever it is possible to 
do so. There arise many functions like g, whose rules are expressed in 
words, but whose rules are really algebraic rules in disguise. 

Exercises 

4.1. Use the algebraic rule g(s) = 600s- !s2 to calculate 
(a) g(lOO). (b) g( 400). 
(c) g(700). (d) g(lOOO). 
(e) g(n). (f) g(x). 
(g) g(x + n). (h) g(x +h). 
(i) g(2 + 3k). (j) g(l/n). 
(k) g(l/x). 
Answers: (c) 175,000. (g) 600(x + n) - Hx + n)2 . 

4.2 Read again the three ways (A), (B), and (C) oflooking at a function. 
(a) Draw a few arrows, as in (B), picturing the function g as a corre­

spondence going from a horizontal number line to a vertical number 
line: 

160,000~--

120,000 

80,000 

40,000 

~~-~--L__L__ 
100 400 700 1000 

(b) Plot a few points, as in (C), lying on the curve g: 

160,000 

120,000 

80,000 

40,000 

• (400, 160,000) 

100 400 700 1000 

(c) In Chapter 4 we shall learn an easy way to find the highest point on the 
curve g. Can you guess what the highest point might be? 
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§5. Domain and Range 

Look again at equations ( 4) and (5) above. There is a subtle difference 
between them, despite the fact that both equations describe exactly the 
same rule of correspondence. The difference is this: ln equation (4) it 
would make no sense (why?) to let the variable s have a value greater 
than 1200. Nor would it make any sense in (4) to lets take on a negative 
value. On the other hand, the algebraic rule 600s - ~ s2 , given in equation 
(5), is well defined for any value whatever of the variables. For instance, 
when sis -2, this algebraic rule gives 

( -2)2 
600(-2) --2-= -1202, 

even though it is impossible to have a rectangle whose area is negative. 
A way to avoid such confusion is to agree to specify, at the outset, as 

soon as a function is introduced, the collection of numbers on which the 
function is defined. This collection is called the domain of the function. 
The domain of our function g, as specified in words in equation (4), is 
then the collection of all permissible values of the variable s, which may 
be pictured like this: 

0 1200 

(The open circles at the endpoints 0 and 1200 indicate that these values 
are excluded from the domain. We cannot get an honest-to-goodness 
rectangle if we permits to equal either 0 or 1200.) Instead of drawing a 
picture of the domain, one could equally well specify the domain by 
writing the inequality 

0 < s < 1200, 

which says that the values of the variable s are restricted to lie between 
0 and 1200.* 

Once the domain of a function has been specified, one can then speak 
of the range ofvalues assumed by the function. For the function given by 
A = g( s), the domain consists of all permissible values of s and the range 
consists of all corresponding values of A. Since there are three ways of 
looking at a function, there are three ways ofthinking about a function's 
domain and range: 

(A) If the function is thought of as a pair of columns, then its domain is 
the collection of all numbers allowed to go in the first column and its 
range is the collection of all numbers in the second. 

• Had we wished (we did not) to include, say, the point 0 and exclude 1200, we would have 
written 0 5 s < 1200 or drawn the picture with a closed circle at 0 and an open circle at 
1200. 
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t:l { 400 160,000} 
~ 700 175,000 § 
~ . 1 000 I 00,000 ~ 
:::~ (etc.) 

(B) If the function is thought of as a rule of correspondence, then its 
domain is the set of all numbers on which the rule acts, and its range 
is the set of all corresponding numbers. 

g 

I 
0 Domain 1200 

(C) If the function is thought of as a curve, its domain is the projection 
of the curve on the horizontal axis and its range is the projection of 
the curve on the vertical axis. 

0 Domain 1200 

The domain must be specified before it makes any sense to speak of the 
range of a function. If the domain is altered, then the range will likely 
change as well. To find the range of a given function is a problem we 
shall not discuss until Chapter 4. By (C) above, we see that finding the 
range involves finding the highest and lowest points on a curve, a topic 
we shall meet in Chapter 4. 

It is usually easy to specify the domain of a function, however. In the 
function of Example 1, given by 
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48 
f(L) = 7L +L, 

it is natural to take the domain to be specified by the inequality 

O<L 

11 

(or L > 0, if you prefer), which says that the values of the variable L are 
restricted to be positive. This restriction is forced by equation (1), where 
the rule for f is written out in words. 

If one does not like to write inequalities, then one should learn to draw 
pictures. The domain of the function f of Example 1 can be pictured as 
follows: 

0 

(The arrow indicates that the domain is not bounded on the right, but 
continues to include all positive numbers.) 

Suppose a function is specified simply by giving an algebraic rule, 
such as v'XTI. (The radical sign v denotes the positive square root of 
what follows.) What shall we understand to be its domain? We shall 
agree to the following convention. 

Convention 
Unless otherwise specified, the domain of an algebraic rule shall be under­
stood to be the collection of all numbers for which the rule makes sense. 

In applying this convention, one often has to remember two facts 
which ought to be familiar from arithmetic: 

(1) It makes no sense to "divide by zero". 
(2) It makes no sense to take the "square root" of a negative number. 

Thus, the domain of the algebraic rule given by v'XTI, unless otherwise 
specified, shall be understood to be the collection of all numbers for 
which x + 1 is not negative, that is, the collection of all numbers x for 
which 

0.:5: x+ 1, 

which is the same as saying 

-1 .:5: x, 

or drawing the picture 

Domain of the rule ..[X+1 

-1 
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Since it makes no sense to divide by zero, the domain of the rule 
(x2 + x)/x is pictured as follows: 

Domain of the rule (x 2 + x )/ x 

0 

The rule given by x + 1, on the other hand, makes sense for any number 
whatsoever. By our convention, the domain of this rule (unless otherwise 
specified) shall be understood to be unrestricted: 

Domain of the rule x + I 

We now make a point which the reader may think at first to be overly 
precise. The significance of this point will not be appreciated until later. 
The point is this: Although it is true that 

the functions given by 

and 

x2 +x x(x+ 1) 
X X 

=X+ 1 if X -=f. 0, 

F(x) = xz +x 
X 

G(x) = x + 1 

are not the same. Reason: The functions F and G do not have the same 
domain. To say two functions are the same means they have the same 
graph, and, in particular, they must have the same domain. 

Exercises 

5.1. In Example 1 we found that the numbers 37 and 55 were in the range of f. 
Do you believe that every number between 37 and 55 is also in the range? 
Why might you think so? 

5.2. In Example 2 we found that it was possible to enclose an area of 100,000 
square feet and also possible to enclose an area of 160,000 square feet. From 
these facts, given the nature of the problem raised in Example 2, can you 
conclude that it is possible to enclose 130,000 square feet? 
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5.3. Apply the convention above to specify the domain of each of the following 
algebraic rules. (You may specify the domain either by an inequality or by a 
picture.) 
(a) .fi. 
(c) ljx.. 
(e) 7x. + (48/x.). 
(g) (h2 + 2h)/h. 
(i) v'l + h2 . 

(k) (s -1)(s- 2). 
Answers: 
(e) x. # 0: 

(g) h # 0: 

(h) h unrestricted: 

(1) 1 :S s: 

0 

(b) v'X=l. 
(d) 1/(x.- 1). 
(f) 600x. - ~ x.2. 
(h) h + 2. 
(j) £2/(£2-1). 
(1) v'S=l. 

0 

5.4. True or false? The function specified by the rule (h2 + 2h)/h is the same as 
the function specified by the rule h + 2. Hint. Read the last paragraph pre­
ceding these exercises. 

§6. Optimization 

In Example 1, the problem of finding the least cost was seen to be the 
same as another problem, that of finding the least number in the range 
of possible costs. To answer the question raised in Example 1, we need to 
find the least number in the range of f, where f is the function whose 
rule of correspondence and whose domain are specified succinctly by 
writing 

48 
f(L)=7L+L, O<L. 

We shall find this number, once we have developed the appropriate tools 
of calculus. 
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In Example 2, the problem of finding the biggest possible area was 
seen to be the same as another problem, that of finding the largest 
number in the range of possible areas. To answer the question raised in 
Example 2, we need to find the largest number in the range of g, where g 
is the function whose rule of correspondence and whose domain are 
specified succinctly by writing 

1 
g(s) = 600s- -s2 , 0 < s < 1200. 

2 

We shall find this number later, using calculus. 
In our discussion of Examples 1 and 2, we have seen the first step 

in how to handle optimization problems. An optimization problem can 
always be spotted by the presence of a superlative. Whenever a problem 
requires that we find the least, or most, or cheapest, or best, or closest, etc., 
we know that we have an optimization problem on our hands. From our 
discussions in Examples 1 and 2, we may expect that any optimization 
problem will give rise to a function, and that the solution to the problem 
will involve finding the highest (or lowest) point on the curve deter­
mined by the function. Thus, by seeing the optimization problem in 
terms of variables, and by getting an algebraic rule relating one variable 
to another, the optimization problem is transferred to another problem, 
that of studying the curve determined by the rule, or function, relating 
the variables. This is the first step in solving optimization problems. This 
step takes a little while to master. Once it is mastered, however, the 
second step of finding the highest (or lowest) point on a curve can often 
be done with the study of only a little calculus. 

Must every curve necessarily have a highest point and a lowest point? 
Certainly not. The curve f of Example 1 has no highest point. Reason: 
The range of costs is not bounded above. There exists no most expensive 
way to build that fence. The curve g of Example 2 has no lowest point. 
Reason: The grazing area is to be a rectangle and thus cannot have an 
area of zero, yet the area A ranges arbitrarily close to zero. There is no 
least possible grazing area for Minerva. 

Exercises 

6.1. Suppose, in Example 1, the pen was to enclose 30 square yards instead of 12, 
the costs of stone and wood remaining the same. Find an algebraic rule giving 
the cost C in terms of the length L of the front, and specify the domain of 
this rule. 

6.2. Suppose, in Example 2, the farmer had 2000 feet offencing instead of 1200, 
the other conditions of the problem remaining unchanged. Find an algebraic 
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rule giving the area A in terms of the length s of the side along the barn, and 
specify the domain of this rule. Answer: A= 1000s- ~sl, 0 < s < 2000. 

§7. Purpose 
What follows, gentle reader, is an unorthodox introduction to the notion 
of a limit. (If this is frightening, then be assured that an orthodox dis­
cussion is given in Section 9.) Calculus is, in a sense,the study oflimits, 
yet this simple notion is also easily misunderstood, unless the student 
can make the proper distinction between two things which are easy to 
confuse. These two things we might call "purpose" and "action". The 
analogy we shall make, in hopes that it will make the idea of a limit 
easier to grasp, is this: 

The "limit" of a function, at a point in or near its domain, is like the purpose 
of a human being, at a point in time. 

The reader may find that the word limit is almost exactly as easy (or as 
hard) to understand as the word purpose. 

This analogy will be worth nothing at all unless the ordinary dis­
tinction between purpose and action is kept well in mind. These two 
notions, though often related, are quite different. Most of us can think of 
instances when our action did not reflect our purpose or of times when 
we wandered aimlessly to no purpose whatever. Sometimes, even with a 
purpose, one hesitates to act. Finally, there are the gratifying times when 
one has a purpose and acts accordingly. 

A function, believe it or not, is just like a person in this respect, and 
one can learn a lot by inquiring into this aspect of the life of a function. 
At any point in the domain of a function we may compare its action 
(what it actually does at the point) with its purpose (what it seemed on 
the threshold of doing at the point). Often, just as in the lives of human 
beings, the action will agree with the purpose, giving a sense of "con­
tinuity". But there are several other possibilities that can occur. The 
action at some point may disagree with the purpose, or there may be no 
discernible purpose, or there may be purpose with no action, or there 
may be neither purpose nor action. 

We study functions all the time in calculus, and we gradually learn 
that each function has a personality all its own. A function is something 
more than might be imagined from the description "a rule of corre­
spondence", just as a human being is something more than "a featherless 
plantigrade biped mammal". 

Let us try, while studying calculus, to feel ourselves into the world of 
functions, to see what they really are. Here is a fable. It is offered in fun. 
Take it seriously, but not too seriously. 
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Lim: A Fable 

The gods did not reveal all things to men at the start; but, as time goes on, 
by searching, they discover more and more. 

Xenophanes 

The lord whose is the oracle at Delphi neither reveals nor hides, but gives 
tokens. 

Heraclitus 

On the First Day all functions were created, and solemnly told the harsh 
facts of a functional existence: 

Each function has been assigned his domain, to which he will be restricted 
eternally to live in accordance with the rule he has been given. During 
eternity, he must contemplate the purpose of his being, knowing that on 
the Last Day the gods may require him to state his purpose at some trouble­
some point. At that point the function must either state his purpose, or reply 
that no purpose exists. For at each point some functions have been given a 
purpose and some have not. Remember the words of Xenophanes and 
Heraclitus. 

Among the multitude of functions trembling on the First Day was g of 
Example 2. Charged with a Herculean task, g of Example 2 must take each s 
between 0 and 1200 and throw ittothe corresponding A. The throw must be in 
accordance with the god-given rule 

1 
A = area of a rectangle of sides sand 2(1200- s). 

Up and down his domain, g carefully moves, throwing his s's until he 
knows by heart where each little s is supposed to go. He is glad the gods 
did not ask him to throw -2, or any negative number, or to throw any number 
exceeding 1200, because he would have no clue where the gods might want 
these numbers thrown. At last, clever g realizes that he has no purpose at 
the point -2, or at any negative number, or at any number ell:ceeding 1200. 
Should the gods ask him, on the fearsome Last Day, of his purpose at the 
point -2, g would reply in his best courtly fashion: 

The purpose of g, at the point -2, does not exist! (6) 

Confidence begins to well up in g. 
Yet soon g realizes that the gods have played a trick on him. "Ye gods!" 

exclaims g, "Why did ye not give me a closed domain?" Poor g is tantalized 
whenever he moves near the ends of his domain. When he moves to his left, 
toward 0, he is allowed to throw numbers that lie arbitrarily close to 0; 
nevetheless, he is not allowed to throw 0, since 0 is not in his domain. A 
similar frustration is felt when he moves to the right toward 1200. 

Night and day, for what seemed like half of eternity, g continuously 
worried about the points 0 and 1200. Finally the gods had pity upon g and 
sent down to him a messenger, named Lim. 

"Hail, long-suffering g, most favored of Minerva, hail!" shouted Lim. 
"Who that?" responded g, so startled that he began dropping his s's. 
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"I'm the One Who Knows", replied Lim, and smiled smugly. "Remember 
the words of Xenophanes and Heraclitus." 

"Get off my domain!'' shouted g, thinking his intruder to be an oracular 
fanatic. 

"Now, now, calm down", said Lim. "I have been sent to help you find 
your purpose, if you should need help at any point. Do you know your pur­
pose at 1200?" 

"Since I am restricted to my domain for all of eternity," said g, "g(1200) 
does not exist. I am not allowed to act at the point 1200." 

"It is true that you are not allowed action at 1200," responded Lim, 
"but it is still possible that you may have purpose at that point, not to be 
fulfilled before the Last Day. Have you no clue what the gods want you to do 
at 1200 on the Last Day?" 

Long-suffering g thought and thought and thought. He thought about his 
s's near 1200, and about the A's that corresponded to them: 

~g---...... 
s A 

1190 5950 
1199 599.5 
1199.9 59.995 
1199.99 5.99995 
1199.999 0.5999995 

(etc.) 

600 

A 

j.. 

0 1199 

Thr owings's to A's, 
n s is near 1200 whe 

h 
s 1200 

"Ass gets closer to 1200, A gets closer to 0", exclaimed both Lim and g 
simultaneously. Then g, in deep tones, declaimed, 

The purpose of gat 1200 is to throw it to 0. (7) 

"Exactly," said Lim, "but why do you speak in such an old-fashioned 
way? The gods haven't talked like that for ages. Just use my name. Instead 
of your statement (7), just say, 

Lim gat 1200 is 0, 
and instead of (6), say 

Lim gat -2 does not exist. 

The gods will understand what you mean. They all know my name. I deliver 
their ambrosia on Thursdays." 

EXERCISES 

7.1. Is 1200 In the domain of g? Answer: No. 

7.2. Does g(1200) exist? Answer: No, g(1200) is undefined, because 1200 is not in 
the domain of g. There is no action of the function gat the point 1200. 

7.3. Does Lim gat 1200 exist? Answer: Yes. Lim gat 1200 is 0, because ass--+ 1200, 
g(s) --+ 0. (The arrow is an abbreviation for approaches, or gets closer and 
closer to or tends to.) 

17 
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7.4. What is limg at -2? Answer: limg does not exist at -2, because g(s) does 
not exist when s is close to -2, giving g no clue as to a purpose at -2. 

7.5. What is limg at 1202? 

7.6. What is g(1202)? Answer: Since the function g is not allowed to act at the point 
1202, g(1202) does not exist. 

7.7. What is g(O)? 

7.8. What is lim gat 0? 

7.9. What is lim gat 1200.1? Answer: It does not exist. 

7.10. What is Limg at -0.1? 

§8. Continuity: Purpose versus Action 

"Aha!" said g, "I understand now everything about a function's purpose." 
"That is doubtful," replied Lim, "for you are still likely to confuse purpose 

with action. What, for example, is your purpose at the point 600?'' 
"Lim g at 600 is 180,000," responded g without hesitation, "because 

g(600) is 180,000." 

"Aha!" said Lim, "A right answer, but for a wrong reason. Just as I 
expected. When the gods inquire about your purpose at 600, they have in 
mind something more subtle than you imagine. To reply that g(600) is 180,000 
is to state your action at the point 600. But action need not necessarily agree 
with purpose. (At the point 1200 you have no action, yet you do have 
purpose.)" 

"To find your purpose at 600, the first thing you must do is to forget 
entirely about your action at 600. You may as well pretend that 600 has been 
removed from your domain. Then you proceed just as before. What does A 
approach ass approaches 600?'' 

Long-suffering g thought and thought and thought. What, indeed, would 
be his purpose at 600 if 600 were removed from his domain? 

The point 600, being in the interior of the domain, can be approached by 
values of s either slightly smaller or slightly larger than 600: 

~g~ 
s A 

c._../ g--..,. 
s A 

500 175,000 700 175,000 
550 178,750 650 178,750 
590 179,955 610 179,955 
598 179,998 602 179,998 
599 179,999.5 601 179,999.5 
599.9 179,999.995 600.1 179,999.995 

(etc.) (etc.) 

Letting s approach Letting s approach 
600 from the left 600 from the right 

(s-+ 600-) (s-+ 600+) 
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Whether s tends to 600 from the left, or the "minus side" (s--+ 600-), 
or whether s tends to 600from the '"plus side'' (s--+ 600+), the corresponding 
values of A tend to 180,000. Since A--+ 180,000 ass--+ 600 (from either side), 

Lim gat 600 is 180,000. (8) 

A-+ 180, 180,000 ()()() 
ass-+ 600 

A 

0 s 600 

"Now let me get this straight", said g. "To find my purpose at 600, I 
first pretend that 600 has been removed from my domain, and then see 
what happens to A as s tends to 600. This is the way I figure out that state­
ment (8) is true. Isn't there an easier way to do it?" 

"Yes," said lim, "if you are not afraid to use your common sense. Just 
look at the rule you were given, g(s) = 600s - f.sl, and note that it is de­
scribed in terms of some simple algebraic operations. Look at what happens 
to each of them in turn, as s --+ 600. Common sense should tell you that, as 
s --+ 600, it must follow that s•--+ (600)2 and 600s--+ 600(600). Therefore, 
ass--+ 600, 

1 1 
A= g(s) = 600s- -s•-+ 600(600)- -(600)2 • 

2 2 

Thus, A --+ 180,000." 
"I really feel great at 600," said g, "whereas at 1200 I become so frus­

trated." 
"That is because, at 600, your action agrees with your purpose: 

g(600) = 180,000 (by applying the rule g to 600) 

=Lim gat 600 [by (8)]. 

Like any creature, you experience the wholesome feeling of continuity 
at any point where action and purpose exist and agree. Whenever there is 
not agreement between action and purpose, or whenever one or both are 
missing, the anxieties of discontinuity emerge. At 1200, friend g, you behave 
discontinuously. You have a purpose: 

Lim gat 1200 is 0, 

but you do not act accordingly: 

g(1200) does not exist. 

Everyone is frustrated by discontinuity." 
"Let me leave you with this idea, to ponder as you will. To say that a 

function is continuous at a certain point means that, at the point, the function 
has both purpose and action, and they agree." 

19 
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Definition. A function G is said to be continuous at a point x provided that 
the following three conditions are satisfied: 

(1) G(x) exists. 
(2) Lim G at x exists. 
(3) G(x) = LimG at x. 

"That is all the help I can give you," said Lim, "for I must now depart. 
I have to collect 37 chariotloads of ambrosia before Thursday." 

"Wait!" shouted g. "Can't you help my friend f of Example 1? She lives 
on the domain 0 < L. What a curve!" 

"Remember the words of Xenophanes and Heraclitus!" said Lim, and 
departed without another word. 

EXERCISES 

8.1. What is g(400)? 

8.2. What is Lim gat 400? 

8.3. Is g continuous at the point 400? 

8.4. Is g continuous at the point 0? 

8.5. Is g continuous at the point -2? 

8.6. Is g continuous at every point in its domain? Answer: Yes. 

8.7. Consider the function f of Example 1. Is f continuous 
(a) at 0? 
(b) at -2? 
(c) at 2? 
Give reasons justifying your answers. 

§9. Limits 

In everyday language the word limit has virtually the same meaning as 
bound. In calculus, howevr, it has a rather different meaning. The limit of 
a function, at a certain point, is (roughly speaking) what the function, at 
that point, is on the threshold of doing.* If c is the point in question, then 
the limit off at c is symbolized by 

Limit f(x), (9) 
)1-+C 

or by 

Limf ate, 

and is found by investigating the action off at points near c, while com­
pletely ignoring the value off at c. Before any further explanation is given, 

• The word limit is kin to the Latin word limen, which means "threshold". 
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it should be emphasized that f(c), the value off at c, may well be 
entirely unrelated to the limit off at c. [If it happens that they are the 
same, that is, that f(c) = Limit.,_,cf(x), then the function f is said to be 
continuous at the point c.] 

How does one find the limit of a function at a point? The symbolism 
(9) is designed to suggest the method of doing this. We simply ask for the 
limiting value of f(x), as we imagine the values of the variable x taken 
closer and closer to (but not equal to) the number c. The arrow in 
"x -+ c" is supposed to suggest x approaching c ever more closely. 

Some examples should serve to clarify things. The reader is asked 
simply to use common sense in thinking about what happens as the 
value of a variable gets closer and closer to a fixed number c. 

EXAMPLE 3 
Let F(x) = (x2 + x) / x, with domain specified by the inequality x # 0. Find 
Lim Fat 4. 

Here we are asked to find 

(10) 

and it is obvious how this is to be done, simply by reading the formula 
(10) in words: We are asked to find the limiting value of the expression 
(x2 + x)jx as x tends to 4. What happens to this expression as x-+ 4? 
Common sense tells us that x2 -+ 16, so that the expression (x2 + x)jx 
approaches (16 + 4)/4, which is equal to 5. Therefore, 

which answers the question raised in Example 3, and also shows, 
incidentally, that F is continuous at 4. (Why?) D 

EXAMPLE 4 
Let G(x) = x + 1, with unrestricted domain. Find Lim Gat 0. 

This is even easier than the preceding example. As x-+ 0, common 
sense says that (x + 1) -+ 1. Therefore, 

Limit (x + 1) = 1. 
>:-->0 

EXAMPLE 5 

Let F(x) = (x2 + x)jx, with domain specified by x =F 0. Find Lim Fat 0. 
Here we are asked to find 

.. x2 +x 
L1m1t--, 

>:-->0 X 

D 
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and it is not obvious, at first, how this is to be done. As x ---> 0, both the 
numerator i.2 + x and the denominator x also approach 0. What is to be 
done? 

What is to be done is to realize that the question raised in Example 5 is 
exactly the same as the question raised in Example 4, whose answer, we 
have seen, is 1. Why are these two question exactly the same? Because 
Lim Fat 0, remember, is to be found by letting x tend to 0, but never 
allowing x to equal 0. If x -=1- 0, though, then 

x(x + 1) 
F(x) = = x+ 1 

X ' 

so that the limit ofF at 0 is the same as the limit of x + 1: 

.. x2 +x .. () L1m1t -- = Ltmlt x + 1 = l, 
X---+0 X X--+0 

by Example 4. (What has just been illustrated in this example is not hard, 
but it is subtle. Reread this example, and also the last remark in Section 
5, to make sure you understand it.) D 

A picture is the best way to illustrate why Examples 4 and 5 must 
have the same answer: 

0 

F 

F(x) = x2 + x 
X 

G 

G(x) = x +I 

0 

The curves F and G are identical, except when xis 0. Since the limit of 
a function at the point 0 is independent of the action at 0, F and G have 
the same limit at 0. 

Here is another example, using h instead of x as the variable. 

EXAMPLE 6 
Find Limith~o((h2 + 2h)/h). 

This is like Example 5, where it is not immediately obvious whether 
the limit exists at 0. Both the numerator h2 + 2h and the denominator h 
tend to 0 ash---> 0. However, ifh is not equal to 0, then we may divide by 
h, so 
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h2 + 2h = h(h + 2) = h 2 
h h + . 

This shows that the algebraic rule given by (h2 + 2h)/h is exactly the 
same as the algebraic rule h + 2, provided his not 0. Since the limit at 0 is 
independent of the action at 0, these two rules have the same limit at 0: 

. . h2 + 2h . . (h ) L1m1t --h- = L1m1t + 2 = 2. 
h~o h~o 

D 

When investigating the limit of a function at a point, one may en­
counter any of the following situations: 

(I) The limit exists and agrees with the action of the function at the 
point. 

(II) The limit exists, but the function does not act accordingly. 
(III) The limit does not exist. 

If case (I) occurs, the function is said to be continuous at the point. 
This is illustrated in Examples 3 and 4. Case (II) is illustrated in Exam­
ples 5 and 6. Case (III) will be illustrated in Examples 7 and 8. 

EXAMPLE 7 
Find Limit,~0 (7x + (48/x)). 

This limit does not exist. As x -+ 0, the first term, 7x, is "well-behaved", 
tending to 0, but the second term, 48/x, does not tend to a limit, since it 
becomes large-positive as x tends to 0 from the right, and it becomes 
large-negative as x approaches 0 from the left: 

X 7x + 48/x X 7x + 48/x 

1 55 -1 -55 
0.1 480.7 -0.1 -480.7 
O.Ql 4800.07 -0.01 -4800.07 

(etc.) (etc.) 

Letting x approach Letting x approach 
0 from the right 0 from the left 

(x-+ o+) (x-+0-) 

D 

EXAMPLE 8 
The Post Office has discovered that the cost of sending a letter by mail 
varies in terms of the weight w of the letter. Accordingly, the number of 
stamps to be affixed to a letter is a function ofw. One stamp is required if 
the weight w is 2 ounces or less; two stamps if 2 < w ::::;; 4; three stamps if 
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4 < w ~ 6; etc. Let us call this function F, so that 

F(w) =the number of stamps on a letter of weight w. 

Find Lim F at 4. 

3 c---

number 
of 2 0 • 

stamps The "curve" F 

0 2 3 4 5 6 
weight 

Lim F at 4 does not exist. As w tends to 4 from the left, the number of 
stamps F(w) tends to 2; whereas, when w tends to 4 from the right, F(w) 
tends to 3: 

w F(w) w F(w) 

3.9 2 4.1 3 
3.99 2 4.01 3 

3.999 2 4.001 3 
(etc.) (etc.) 

[F(w)-> 2, as w-> 4 -] [F(w) --->3, as w-> 4 +] 

The limit does not exist at 4, because we get different "answers" when 
we approach 4 from different sides. D 

Exercises 

9.1. Limits are sometimes described as "simple, yet subtle". The purpose of this 
exercise is to make sure that both these features are noticed. Here is an 
evaluation of a limit, correctly written as a chain of three equalities: 

. . x2 - 7x . . x(x - 7) . . ( ) Limit---= Limit---= Limit x -7 = -7. 
x--+0 X x--+0 X x--+0 

To justify the answer of -7, we must justify each of the three equalities. 
(a) Which of the three equalities are "simple"? Answer: The first equality 

and the last require almost no thought. 
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(b) Explain the subtlety in the second equality. Answer: Remember that to 
get the limit at 0 of a function, we are allowed to consider the action of 
the function only at nonzero values. But when xis nonzero then xjx is 
always 1, so the function sending x to x(x- 7)/x produces the same 
action as the function sending x to x- 7. Because both functions have 
the same action for nonzero values-and only the action at nonzero 
values determines the limit at zero-they have the same limit at zero, 
that is, 

x(x -7) 
Limit---= Limit(x- 7). 
x-o x x-o 

This justifies the second equality. (It maybe helpful to note further that 
the function sending x to x- 7 is continuous at 0, whereas the function 
sending x to x(x- 7)/x is not continuous at 0 because it has no action at 0.) 

9.2. Here is an evaluation of a limit, correctly written as a chain of equalities: 

Limit __ x_ =Limit __ x __ = Limit - 1- = - ~ 
x-o x2 - 7x x-o x(x - 7) x-o x - 7 7 

To justify the answer of -1/7, we must justify each of the three equalities 
above. 
(a) Which of the three equalities are "simple"? 
(b) Explain the subtlety in the second equality. 

9.3. Evaluate each of the indicated limits (or state that the limit does not exist). 
Write a chain of equalities to arrive at your answer, as illustrated in exercise 
9.2. Take care to include the "subtle" equality-if one is needed-in your chain. 

x2 - 4x 
(b) Limit(x- 4). (a) Limit---. 

x-o X x-o 
x2 -1 

(d) 
sh2 

(c) Limit--. Limit h. 
x-1 x-1 h-o 

(e) 
.. Sh 

L~~Ith. (f) 
.. 5 

L~~Ith. 

(g) 
t- 3 

Limit-2--. 
t-3 t -9 

(h) Limit-5-. 
t-3 6 + t 

9.4. Consider each of the following algebraic rules, and tell whether it is con­
tinuous at the indicated point c: 
(a) (x2 - 4x)jx; c = 0. Answer: Not continuous. 
(b) X- 4; C = 0. 
(c) (x2 - 1)/(x- 1); c = 1. 
(d) 5/(6 + t); c = 3. Answer: Continuous. 

9.5. Consider the "Post Office function" defined in Example 8. 
(a) The function F is defined by a rule stated in words. Do you think it is 

likely that this rule is an algebraic rule in disguise? Hint. Do you think 
an algebraic rule could have a graph like the "curve" F? 

(b) Does Limit F at 2 exist? 
(c) Does F(2) exist? 
(d) Is F continuous at 2? 
(e) Is F continuous at 3? Answer: Yes. 
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(f) A politician asserts that "the scale of charges imposed by the Post 
Office upon its customers exhibits unnatural and unjustifiable discon­
tinuities at 2-ounce intervals." Explain, in more detail, what the politi­
cian means. 

9.6. (A philosophical question to be pondered for a while before being answered) 
Is discontinuity unnatural? That is, must the rules that come from laws of 
nature necessarily be continuous? Man-made rules like the Post Office 
function, are often discontinuous, at least at some points. (One philosopher's 
answer to this question is discussed in Section 3 of Chapter 6.) 

§10. Summary 

Variables, functions, and limits were ideas that came of age in the seven­
teenth century. Fermat (pronounced fer-MAH) was probably the first to 
see the real importance of limits. Continuity is an old philosophical term 
that drew new interest from Leibniz (pronounced LIP-nits), who was the 
first to use the word function. 

These notions were not particularly well defined by their inventors, 
who were content to descnbe things in intuitive terms. The word func­
tion at first referred only to an algebraic rule, which is automatically 
continuous at each point in its domain. 

Problem Set for Chapter I 

1. Consider Example 1 once more. We chose to look at it in terms of the vari­
ables C and L. The cost variable C cannot be avoided, since the problem in­
volves finding the minimum of this variable. However, instead of choosing L, 
the length of the front, as our second variable, we might just as well have 
chosen W, the depth of the pen. 

(a) Write an algebraic rule expressing C in terms of W. 
(b) What is the domain of the rule in (a)? 
(c) Plot a few points on the graph of the equation in (a) that expresses C in 

terms ofW. 
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(d) Write an equation that relates Wand L. Hint. What is their product? 
(e) Go back to equation (2) and, in it, replace L by 12/W and simplify. Do 

you get the same equation as you got in part (a) above? Why did it work 
out that way? 

2. In Example 1, change the word least to greatest. With this modification, 
respond to the question raised. 

3. Consider Example 2 once more. We chose to look at it in terms of the vari­
ables A and s. There is no getting around the variable A, since it must be 
maximized in order to answer the question raised. However, instead of s, we 
might just as well have chosen the other dimension w of the rectangle to be 
our other variable. 

·I 
Side of long barn 

(a) Write an algebraic rule expressing A in terms ofw. 
(b) What is the domain of the function whose rule is given in part (a)? 

(Be careful.) 
(c) Plot a few points on the graph of the equation in (a) 
(d) Write an equation relating wands. Hint. What is the sum of 2w and s? 
(e) In the equation A= 600s- ~s2 , replace s by 1200- 2w, and simplify. 

You should get the same answer as in part (a). Why:' 

4. In Example 2, change the word largest to smallest. With this modification, 
respond to the question raised, bearing in mind that no honest-to-goodness 
rectangle has an area of 0. 

5. Some curves determine functions and some do not. Does a circle ever 
determine a function? 

6. Do all straight lines determine functions? If not, give an example of one that 
doesn't. 

7. Some algebraic equations determine functions and some do not. Consider 
the algebraic equation x2 + y2 = 1. 
(a) Is (0, 1) on the graph of this equation? 
(b) Is (0, -1) on the graph of this equation? 
(c) Does the algebraic equation x2 + y 2 = 1 determine a function? 

8. Does the algebraic equation y = v'1 - x2 determine a function? If so, what is 
its domain? 

9. One way to specify a function is to draw the curve it determines. For each of 
the curves below, specify the domain and the range. Specify either by draw-
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ing pictures or by writing an inequality, whichever is easier. (Note that the 
curve f consists of two pieces.) 

(-2,2) 

(1,4) 

(1,2) G 

(5, 10) 

I 
0 • 

(6, 7) (8, 7) 

• 
(6,4) 

(7,2) 

(8, -2) 

10. Referring to the functions F, f, G, and g pictured in the preceding problem, 
find 
(a) Limit Fat 3. 
(c) Limit Gat 1. 
(e) Limit gat 7. 
(g) f(6). 
(i) g(3). 

(b) Limit fat 6. 
(d) Limit g at 3. 
(f) F(3). 
(h) G(1). 
(j) g(7). 

11. Still referring to the functions F, f, G, and g of problem 9, answer the fol­
lowing questions. 
(a) Is F continuous at 3? 
(b) Is f continuous at 6? 
(c) Is G continuous at 1? 
(d) Is g continuous at 3? 
(e) Is g continuous at 7? 

12. The domain of the "Post Office function" of Example 8 is specified by the 
inequality 0 < w. What is its range? 

13. The functions of Examples 5 and 6 (in Section 9) have the same domain. It 
has a hole in it, at the point 0: 

0 
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(a) What is the range of the function of Example 5? 
(b) What is the range of the function of Example 6? 

29 

14. Suppose the numbers 1 and 3 are known to be in the range of a certain 
function. Must the range then necessarily contain all numbers between I and 
3? Hint. Look at your answer to problem 12. 

15. Suppose the numbers 1 and 3 are known to be in the range of a certain 
function, and suppose the function is continuous at every point in its 
domain. Must the range necessarily contain all numbers between 1 and 3? 
Hint. Look at your answer to problem 13(b). What if, in addition, the domain 
has no "holes" in it? 

16. In the corner of a large courtyard a rectangular enclosu-re is to be built. To 
pay for the material, $240 has been allocated. This is to be used to pay for 
both the stone fence, which costs $6 per meter, and the wood fence, which 
costs $2 per meter. The area A of the enclosure will vary with the way the 
enclosure is built. 

(a) Let L be the length of the stone fence. How much money will be left to 
spend for wood? 

(b) Let L be the length of the stone fence. How long will the wood fence 
be? Hint. The answer to part (a) tells you how much money is left for 
wood. 

(c) Let L be the length of the stone fence. Find an algebraic rule giving the 
area A in terms of L, and specifY the domain of this rule. 

17. There is often more than one way to choose your variables. In problem 16, 
(a) Let xbe the amount of money spent on stone. How much is left to spend 

on wood, and how long, therefore, is the wooden fence? 
(b) Let x be the amount of money spent on stone. Find an algebraic rule 

giving A in terms of x, and specifY the domain of this rule. 

18. A metal container, in the form of a rectangular solid, is to be constructed. 
The base is to be square, there is to be no top, and the volume of the con­
tainer (the product of its three dimensions) is to be 12 cubic meters. Suppose 
the material for the sides costs $2 per square meter, and the material for the 
base costs $3 per square meter. 
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L 

(a) Let C be the cost of the material for the container, and let L be the length 
of a side of the square base (in meters). Find the cost C if L is 2. Hint. 
First note that the height of the container must be 3 (why?) if L is 2. 

(b) Find the cost C if Lis n. Hint. First note that the height of the container 
must be 12/n2 if Lis n. 

(c) Find an algebraic rule giving C in terms of L, and specify its domain. 

19. (This problem is like the preceding one, except that we have a specified amount of 
material, instead of a specified volume.) Suppose that we have 120 square feet 
of material, out of which is to be constructed a square base and four sides of a 
rectangular container. (The container is to have no top.) Let L be the length 
of a side of the base. 
(a) If H is the height of the container, then it is true that 120 = L2 + 4LH. 

(Why?) Solve this equation for H, to get H in terms of L. 

(b) The volume V of the container is the product of its three dimensions, so 
V = L · L ·H. Use part (a) to get V in terms of Lalone. 

(c) In part (b) we have V as a function of L. What is the domain of this 
function? 

20. (Magic) We shall define two functions, f and g, specifying the first as an 
algebraic rule and specifying the second as a rule of correspondence. We 
define f by f(x) = (x2 + x)/2, so that, for example, f(5) = (25 + 5)/2 = 15. 
We define g by specifying that only positive integers go in the left column of 
g, while in the right column goes the corresponding sum of all the positive 
integers up to and including the integer upon which g acts. Thus, for example, 
g(5) is defined to be sum of all the positive integers up to and including 5, 
i.e., g(5) = 1 + 2 + 3 + 4 + 5 = 15. 
(a) Make a table of two columns representing f and make another table of 

two columns representing g. Choose a few small positive integers, say 5, 
6, 7, and 10, to put in the left-hand column of each function and calculate 
the corresponding numbers in the right-hand column for f and for g. 

(b) You should notice something striking about your two tables and (if you 
are willing to make the "philosopher's leap") you will probably be able to 
guess correctly what is the sum of the first thousand positive integers. 
What is it? 1 + 2 + 3 + · · · + 1000 = ??! 

21. (More magic) Virtually anything you can do to a number to make a new 
number (square it, double it, halve it, etc.) you can do to a function to make a 
new function. 
(a) Make a table of two columns representing the "square" of the function 

f of the preceding problem. (Since f(5) = 15, it follows that JZ(5) = 
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(15)2 = 225; more generally, since f(x) = (xZ + x)/2, it follows that 
f 2(x) = (x2 + x) 2 /4.) Choose a few small positive integers, say 5, 6, 7, and 
10 to put into the left-hand column of P and calculate the corresponding 
numbers in the right-hand column. 

(b) Let us define a function G by specifying that only positive integers go in 
the left column of G, while in the right column goes the corresponding 
sum of the cubes of the positive integers up to and including the integer 
upon which G acts. Thus, for example, G(S) is defined to be the sum of 
the cubes of all the positive integers up to and including 5, i.e., G(S) = 
13 + 23 + 33 + 43 +53 = 1 + 8 + 27 + 64 + 125 = 225. Choose a few small 
positive integers, say 5, 6, 7, and 10 to put into the left-hand column of G 
and calculate the corresponding numbers in the right-hand column. 

(c) You should notice something striking about your two tables and (if you 
are willing to make the "philosopher's leap") you will probably be able to 
guess correctly what is the sum of the cubes of the first thousand positive 
integers. What is it? 13 + 23 + 33 + .. ·10003 = ??! 

(This problem and the preceding problem are previews of some ideas to be dis­
cussed more fuUy in Chapter 2.) 

22. Find each of the following limits (or state that the limit does not exist). 

(a) 
. . x2 - 25 b .. x2 -2x+1 

(c) Limit x-n. L1m1t---. ( ) L1m1t 
x--5 X- 5 x-1 x-1 x-n xz -nz 

(d) 
x2 - 25 . . 3x- 21 

(f) Limit~-Limit---· (e) Lrm1t ---· 
x-s x2 - Sx x-7 x2 -7x x-o x2 -7x 

23. (a) Suppose it is known that f(x) = (x2 - 7x)f3x for all nonzero values of x. 
Suppose it is further known that f is continuous at 0 (so that, in particu­
lar, f(O) exists). What is f(O)? 

(b) Suppose a function has both action and limit at a certain point. Must the 
function necessarily be continuous at that point? If not, give an example 
of a function with both action and limit at a point, where the action is not 
the same as the limit. 

(c) (Your answer to this vague question may be connected with your answers 
to questions 24 and 25 that follow.) Can you give an example of a dis­
continuous function defined on an unrestricted domain that would not 
appear "unnatural", "contrived", or "strange" to an impartial observer? 

24. ("Thought-experiment") A very thin metal rod extends from x = 0 to x = 6 on 
the horizontal axis. Suppose at a particular instant its temperature T has 
been measured at every point except its midpoint x = 3 and is given in 
degrees Celsius by the formula 

x2 - 9 
T = --. [See figure below.] 

x-3 

This formula gives no answer when x is 3, but the rod must, of course, have 
some temperature at its midpoint. What must its temperature be when x = 3? 
Hint. If you use this formula to calculate its temperature when x = 2.9 or 
when x = 3.01, you'll have a couple of clues as to its approximate temperature 
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when x is 3. What do you think its exact temperature must be? More im­
portantly, why must its temperature be what you think? 

X T T 
lO 

2 5.00 9 

2.9 5.90 g 

7 

3 ? 
6 
5 
4 

3.01 6.01 3 

5 8.00 2 
1 

0 2 3 4 5 6 X 

25. (A more challenging thought-experiment) Suppose, at a particular instant, we 
somehow know the temperature in degrees Celsius at each point of the space 
occupied by some physical entity such as a very thin metal rod, the surface 
of a calm lake, or a house on fire. We then know the rule of correspondence 
that, at a fixed instant, assigns to each point in this space its temperature. 
Must this "temperature function" necessarily be continuous? Respond to this 
question by either 
(a) descnbing a situation that could actually happen where the temperature 

at some point is not the limit of the temperature function at that point; 
or 

(b) writing a paragraph explaining why it is physically impossible for the 
temperature at any point P of a physical entity to be anything other than 
the limit of the temperatures attained at points arbitrarily close to P. 

Is your answer to part (c) of problem 23 related to your answer to this problem? 



CHAPTER 

Rational 
Thoughts 

The purpose of this chapter and the next is to remind ourselves of the 
elements of precalculus mathematics by studying a little history. Some 
readers may have the urge instead to jump flat-footed into an attack 
upon the problem that arose in Chapter 1, the problem of how the high­
est and lowest points of a curve may easily be found. Those readers may 
scan these short chapters quickly and jump into Chapter 4 if they wish, 
but they are warned that flat-footed jumps are awkward without a firm 
foundation from which to leap. Studying history builds foundations. 

As we shall see, the Greeks' interest in mathematics for its own sake, 
beginning as early as the sixth century B.c., played a crucial role in the 
development of science, philosophy, and liberal education. In earlier 
periods the importance of mathematics seems to have been attached 
almost wholly to its practical value in measurement., as in astronomy 
or commerce. The geometry of magnitudes was valuable to the first 
stargazers, as was the arithmetic of pebbles to the first tradesmen. Why 
should practical tools of measurement such as magnitude and number 
be studied in abstraction for their own sake? The bitth of pure mathe­
matics some 2500 years ago still raises intriguing questions about the 
human spirit that do not lend themselves well to ordinary discourse. 

Unfortunately, the Greeks, who gave us half-serious myths to account 
for various aspects of human nature, left us here to mythologize on our 
own. Let us then say, half-seriously, that our story begins in the twilight 
before the dawn of our day, when Pythagoras of Samos walked upon the 
rocky shore by Homer's fabled wine-dark sea and found himself dream­
ing of a mystical union between heaven and earth. The vision he beheld 
would inform his whole life. Arithmetic, with grand contempt for the 

33 
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slippery pebbles' uncertain support, boldly vaulted from the earth. 
Geometry was drawn out of the stars. 

Mathematics sprang from this marriage, to be nurtured in the bright 
morning of a new era, when Greeks began to walk like giants, to wrest 
secrets from the gods. Why did Pythagoras lengthen his stride? What 
spirit moved the train-Eudoxus to Archimedes-that followed Pytha­
goras down the shore? We are still transported by this caravan of Greeks. 

§1. The Philosophy of Pythagoras 

Real mathematics-mathematics studied for its own sake as a worthy 
human interest-comes into particular prominence in Greek civilization 
with Thales (ca. 624-547 B.c.) and Pythagoras (ca. 572-497 B.C.), both of 
whom are reported to have traveled widely and learned much in Egypt, 
Babylonia, and perhaps in the Orient. Why the spark of mathematics 
should then glow so brightly in Greece, and why the flame should die 
some three or four centuries later with the coming of the Romans, is still 
not widely understood. 

Geometry became increasingly the dominant theme in Greek mathe­
matics, but Pythagoras was at first more attracted to arithmetic. He and 
his followers, the Pythagoreans, formed a society of men and women­
Pythagoras laid down and practiced the principle of equal opportunity 
for both sexes-that virtually worshipped numbers. One short sentence 
is all it takes to sum up the philosophy of Pythagoras: 

All is number. 

According to tradition Pythagoras was the one who first put together 
two Greek words to make the word philosophy, which literally means 
"love of wisdom". He sought wisdom by studying numbers. Number, to 
the Pythagoreans, meant a "multitude of units", the first few numbers 
being represented by the sequence beginning 

• • 
• • • • • • • (etc.) 

• • • • • • • • • • • • 

The unit need not be a point or pebble as pictured here, but might be 
an arbitrarily chosen geometric magnitude, such as a line segment of a 
fixed length. Today we might choose a foot or a meter as our unit. If our 
measurements are of two-dimensional magnitudes, it would be natural 
to use a square, perhaps a square foot. In three dimensions a cube, per-
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haps a cubic meter, might serve as the unit of reference. The essential 
thing is that, once a unit is established for discussion, the numbers of 
which we speak consist of multitudes of identical copies of the estab­
lished unit. 

D rn (etc.) 

The unit itself was not considered to be a number by the Greeks since 
"number" referred to a multitude rather than to a single object. This 
view of the unit did not completely fade away until the seventeenth 
century, when it became obsolete with the use of decimal fractions, 
where every point on the "number line" represents a number. The point 
representing the unit length then lost forever any special status it might 
have earlier enjoyed. Now, of course, the Hindu-Arabic numerals 1, 2, 3, 
etc. are universally used to symbolize the unit and the numbers it gen­
erates, which we now call positive integers. Needless to say, the Greeks 
did not consider negative integers or zero as possibilities for numbers. 

What about fractions, like 3/2, that we use today? It may be helpful to 
recall first that the word fraction has to do with fracturing or breaking. 
Today we consider 3/2 to be the number we reach on the number line 
by putting three unit lengths together and breaking this sum in two. The 
length that results has the same relation to the unit length as 3 has to 2. 
Its decimal representation of 1.50 has the same size relative to the unit 
1.00 as 3 has to 2, which is, of course, why we say today that 3/2 is 1.50 
and consider 3/2 as a perfectly good number. As a result of adopting 
such decimal representations for numbers, we have conflated the idea of 
number with the idea of a point on the number line. For us today, of 
course, fractions are perfectly good numbers. 

The Greeks resisted such a conflation by maintaining a clear distinc­
tion between numbers (multitudes of units to be studied in arithmetic) 
and magnitudes (such as line segments to be studied in geometry). But 
they were continually on the lookout for comparisons between things in 
the form of a ratio-"the size of one thing relative to another"-which 
enabled them to make many remarkable connections. It was the notion 
of a ratio such as 3: 2 (which is essentially equivalent to our fraction 3/2 
or our decimall.SO) that enabled the Greeks to deal with fractions much 
as we do. 

For the Greeks, the unit generates all numbers, whose ratios­
according to the Pythagorean faith- have the power to measure all 
things. The testing of this faith helped to promote a great deal of 
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research in mathematics. Many contributions were made during the first 
hundred years or so after the death of Pythagoras by Hippocrates and 
Archytas, two of the most notable Pythagoreans. Profound advances 
were made in the middle of the fourth century B.C. by Eudoxus, the most 
brilliant of the mathematicians at Plato's Academy in Athens. Following 
Eudoxus a great body of research was produced by the long train of 
mathematicians who studied for a while-or worked for a lifetime-at 
the museum and library in Alexandria, built near the end of the fourth 
century by order of Alexander the Great. Among these were Euclid, 
Archimedes, Eratosthenes, and Apollonius, who continually advanced 
mathematics throughout the third century B.C. As we shall see, Archi­
medes came close to developing the calculus. 

Exercises 

1.1. The Pythagoreans contributed significantly to the rise of mathematics, 
science, philosophy, and liberal education, but in addition to these "rational" 
pursuits they developed religious beliefs tending toward mysticism. In their 
numerology odd numbers were "male" and even numbers were "female". 
Two symbolized Woman. Three symbolized Man. Five was then the number 
of Marriage, the union of man and woman. Four symbolized Justice. And so 
on. 
(a) Why did the unit symbolize God? Hint. Read the beginning of the last 

paragraph preceding these exercises. 
(b) Why did Four symbolize Justice? Hint. Justice has to do with "squarely" 

balancing the claims of one against the claims of another. What does 
this have to do with Four? (See exercise 1.3.) 

(c) Ten was a sacred number to the Pythagoreans but, perhaps surprisingly, 
not because we have ten fingers. Ten symbolized the cosmos-the 
Greek name Pythagoras gave to the universe. In what way is this sym­
bolism appropriate? Hint. Though there are a couple of ways one might 
respond, it is relevant to note that the figurate representation of Ten 
as a triangular number (see exercise 1. 5) shows Ten = One + Two + 
Three+ Four. 

(d) Pythagoras preached that human beings have a psyche-a "soul" -that is 
reborn in another body upon the death of the body in which it resides. 
Metempsychosis is the Greek word for such a passing. Can you think of 
anything in Pythagoras's study of mathematics that might have led him 
to such a fantastic idea? Hint. See the hint for exercise 1.2. 

1.2. A "figurate number" refers to the representation of a positive integer by a 
figure made up of dots or pebbles. An even integer can be represented as a 
rectangular array with two dots on one side of the rectangle; otherwise the 
integer is called odd. Using these definitions, write an argument proving 
that 
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(a) the sum of two even numbers is even. 
(b) the sum of two odd numbers is even. 

37 

Hint. Reread the second sentence in Chapter 1. Then play with some peb­
bles, imagining how Pythagoras might have played with pebbles 2500 years 
ago on a beach near Crotona, Italy. Perhaps (through metempsychosis?) the 
same idea will come to you as came to him. 

1.3. The square of a figurate number is, of course, the number made by 
"squaring", e.g., the square of · · is : :. A positive integer is a square if it 
is possible to represent it as a square array of dots. Prove that 
(a) the square of an even number is even. 
(b) the square of an odd number is odd. 
Hint. If you play with dots in a few examples, you'll see how to make a 
general proof. 

1.4. The sum of consecutive odd numbers is easy to evaluate, once you see the 
pattern. 
(a) What is the sum of the first two odd numbers? 

Answer: · plus · : is : :, the square of two. 
(b) What is the sum of the first three odd numbers? 

Answer: · plus · : plus · · : is : : :, the square of three. 

(c) Do you see the pattern? The sum of the first four odd numbers will turn 
out to be the square of ... (?) 

(d) The sum 1 + 3 + 5 + 7 + 9, which is the sum of the first five odd 
numbers, will turn out to be the square of ... (?) 

(e) What is the sum of the first hundred odd numbers? 
(f) What is the sum of the first n odd numbers? 
(g) How many odd numbers are in the sum 1 + 3 + 5 + · · · + 99? What is 

the sum? 

1.5. The sum of consecutive integers is almost as easy to see. The Pythagoreans 
knew that an easy way to count the number of pebbles arranged in the 
shape of a triangle is to view the triangle as half of a rectangle: 
(a) What is the sum of the first two positive integers? 

Answer: · plus : is . :, which is half of : :, so the sum of the first two 
positive integers is ! (2)(3). · · 

(b) What is the sum of the first three positive integers? Answer: It is! (3)(4), 
or half the dots in a 3 by 4 rectangle. 

(c) Do you see the pattern? The sum 1 + 2 + 3 + 4 + 5 + 6 + 7 is half the dots 
in a 7 by 8 rectangle, so this sum is equal to ... ? 

(d) What is the sum 1 + 2 + 3 + · · · + 100? Hint. This liS half the dots in a 
rectangle of size 100 by 101, so this sum is equal to ... ? 

(e) What is the sum 1 + 2 + 3 + · · · + 1000? 
(f) What, then, is the formula for the sum of the first n positive integers? 
(g) Does your work in this exercise destroy the magic in problem 20 at the 

end of Chapter 1? 

1.6. Exercises 1.4 and 1.5 show that the square numbers are the sums of con­
secutive odd integers and that the triangular numbers are the sums of con­
secutive integers (both sums beginning with unity). You probably know that 
the prime numbers are 2, 3, 5, 7, 11, 13, 17, etc. A prime is an integer 
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exceeding unity that has no proper divisors except itself and unity. Describe 
the prime numbers in terms of their figurate representations. Hint. What 
connection do the rectangular numbers have with the numbers that are not 
prime? 

1.7. (a) The square numbers are 12, 22 , 32, etc. so it is obvious that the n-th 
square number is n2 The triangular numbers are 1, 3, 6, 10, etc. Prove 
that the n-th triangular number is n(n + 1)/2. Hint. This is easy if you 
see the connection between this question and the last part of exercise 
1.5. 

(b) Show, using figurate numbers, that any square (except for 12) is the sum 
of two consecutive triangular numbers. (For example, the third square 
is 32 = 9 = 3 + 6, which is the sum of the second and third triangular 
numbers.) Hint. Given a square array of dots, split it into an upper 
triangle and a lower triangle, with the bottom of the upper triangle 
consisting of the dots on the square's main diagonal. 

(c) Write 10,000 (= 1002) as the sum of two consecutive triangular numbers. 
Answer: 10,000 = 4950 + 5050 =sum of the 99th and lOOth triangular 
numbers. 

(d) Write 1,000,000 (= 10002) as the sum of two consecutive triangular 
numbers. 

§2. Six Famous Ratios- Are they 
Ratios of Integers? 

What the Pythagoreans mean by asserting that all is number is not en­
tirely clear. Perhaps they mean that ultimately everything is determined 
in some fashion by the positive integers. At the least they mean that 
numbers are connected with many things that, at first, seem totally 
unrelated to numbers. For example, the musical tones produced by 
plucked strings seem at first to have nothing to do with numbers. Yet it 
was Pythagoras himself, so legend has it, who discovered the number 
ratios associated with the relative pitches that make up the easily recog­
nized musical intervals of thirds, fifths, octaves, etc. When plucked, two 
lengths of the same string (pulled taut with the same tension) sound 
exactly an octave apart if their lengths are in the ratio 2: 1. Elementary 
facts about music are such common knowledge today that we surely 
underrate their significance. In the sixth century B.C. their discovery 
must have been astonishing. Imagine! Numbers have something to do 
with music. 

It is then easy to take the philosopher's leap: If numbers have some­
thing to with music, perhaps number is the fundamental principle behind 
all things. Perhaps everything is number. Here Pythagoras does not follow 
his teacher Thales, who had proposed that water, because of all its various 
manifestations, might be the basis for all things. 

The fact that ratios of string lengths-rather than simply string lengths 
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alone-enter into the theory of music reminds us that measurement 
deals not with size itself but with the comparison of sizes. The same 
is true in measuring time or in measuring weights. When we say, for 
example, that a book of T.S. Eliot's poetry weighs 1.4 pounds we mean 
that the ratio 14:10, or 7:5, describes the weight of the book in pro­
portion to a pound weight, our standard unit at the moment. This in turn 
means, of course, that a stack of 7 of these standard units would exactly 
balance with a stack of 5 copies of the book. 

POUND 

POUND 

POUND ELiar 

POUND ELiar 

POUND ELiar 

POUND ELiar 

POUND ELiar 

I I 
A 

A perfect balance if one book weighs 1.4 pounds 

We easily overlook how much is involved in the process of mea­
surement. A single fraction like 7/5 measures nothing until the unit of 
measurement is revealed, in which case we have a proportion (the 
proportion being, of course, that the ratio of the object measured to the 
unit is 7: 5). Measurement cannot be done by a number without knowl­
edge of what unit is being taken for consideration, and measurement 
also requires an understanding of ratio and proportion. At the risk of 
belaboring the point, let us repeat that to say a book weighs 1.4 pounds is 
to say that the following proportion holds: 

book's weight : pound weight : : 7: 5. 

The proportion we have just written in compact symbols would have 
been expressed by the Greeks in a long sentence: "The ratio of the book's 
weight to the pound weight is 'squarely balanced' by the ratio of seven 
units to five units." The Greeks rarely used abbreviative symbolism. 

Let us repeat the same thing, but in greater generality. If A and B are 
two weights (or volumes, or times, or areas, or lengths), then when we say 
that the ratio A : B can be expressed as m : n, where m and n are positive 
integers, we mean that we think n copies of A is "equivalent" to m copies 
of B. In other words, if we have the proportion 

A:B::m:n, 

then we can find a unit such that A is equivalent to m copies of the unit 
and B is equivalent ton copies. We simply declare that the unit be taken 
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as what we get by dividing A into m equal parts-or, equivalently, by 
dividing B into n equal parts. In this "co-measurable" case, when A and B 
are each measured by taking appropriate multitudes of the same unit, 
then A and B are said to be commensurable. 

We can hardly say that we know much about squares, circles, cylin­
ders, spheres, pyramids, and cubes unless we can measure their sizes 
relative to each other, or the ratios between the sizes of parts of any one of 
them. Here are six ratios of magnitudes. The Pythagoreans believed that 
each of these ratios of magnitudes could be expressed as ratios of integers. 
But how can one possibly find such ratios of integers? 
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What is the ratio r1 = d : s of the length of a 
diagonal of a square to the length of its side? 

What is the ratio r2 = C : D of the circumference of a 
circle to its diameter? 

What is the ratio r3 =A : r 2 of the area of a circle 
to the area of a square built upon its radius? 

What is the ratio r 4 = S : A of the surface area of a 
sphere to the area of a circle through its "equator''? 

What is the ratio r5 = V c : Vs of the volume of a 
cylinder to the volume of an inscribed sphere? 

What is the ratio r 6 = V Q : V p of the volume of a 
cube to the volume of an inscribed pyramid? 
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Pondering the six questions above will give the reader an idea of what 
research in Greek mathematics was like. The reader is not expected to 
know the answer to any of these six questions at this point. In fact, for a 
couple of these ratios the Greeks themselves never knew for certain 
whether they were equivalent to a ratio of integers or not. 

Notice that the first two ratios each deal with a pair of "one­
dimensional" magnitudes, the next two deal with "two-dimensional" 
magnitudes, and the last two with "three-dimensional" magnitudes. It 
was Pythagoras's belief that any two comparable geometric magnitudes 
(meaning, roughly, that the magnitudes were both finite in size and of the 
same dimension) are commensurable, i.e., their ratio is equal to the ratio of 
some pair of integers. It is, of course, not immediately clear whether this 
is true, or how one might go about deciding whether this is true. 

Yet the later Pythagoreans and others made much progress on these 
and other questions. Perhaps this had something to do with the fact that, 
around 400 B.c., the Greek word mathemata-which referred to "knowl­
edge" or "learning in general"- was contracted to mathema, and the dis­
cipline now known as mathematics received its proper name. 

Exercises 

(Most of these exercises deal with the ratios r1 , r2 , ••• , r6 defined above.) 
2.1. Prove that the ratio r3 is less than 4:1. Hint. Let the unit for this discussion 

be the square built on the radius of the circle. All you have to do is to explain 
why the area of the circle is less than 4 of these unit squares. Nothing could 
be simpler. 

2.2. Prove that the ratio r2 is less than 4: 1. Hint. Let the unit for this discussion 
be the length of one side of a square that is circumscnbed about the circle. 
All you have to do is to explain why the path around the circumference is 
less than 4 of these units. You can use the same picture as in exercise 2.1, 
but the unit now is a line segment rather than a square. 

2.3. Consider a square circumscribed about a circle. Prove that the ratio A : r2 of 
the square's area to the square of the circle's radius is equal to the ratio P : D 
of the square's perimeter to the circle's diameter. Hint. In the course of 
working exercises 2.1 and 2.2 you have already found both ratios. Are they 
equal? 
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2.4. (Generalizing exercise 2.3) Consider a polygon of a large number of (not nec­
essarily equal) sides that is circumscribed about a circle. Prove that the ratio 
A : y2 of the polygon's area to the square of the circle's radius is equal to the 
ratio P : D of the polygon's perimeter to the circle's diameter, i.e., prove that 
the proportion A : r2 : : P : D is true. Hint. First consider a polygon of, say, 
six sides oflengths b1 , b2 , .•. , bs, as in the figure here. Let As denote the area 
of the polygon and let Ps denote its perimeter (so Ps = b1 + b2 + · · · + bs). 
By splitting up the polygon into triangles as indicated, show first that 
As = ! rb1 + ! rb2 + · · · + ! rbs = ! rPs. Then divide both sides of the equation 
As = ! rPs by r 2 . Does this show that As : y2 : : Ps : D, where D = 2r = diame­
ter of circle? Do you see now how to make a proof if the polygon has more 
than six sides? 

2.5. (You are simply asked to make guesses here, in the hope that it wiU make you 
curious to learn how the Greeks were able to answer such questions without 
guessing.) At this stage you are not expected to be acquainted with the exact 
numerical value of any of the six geometric ratios r1 , r2 , r3 , r4 , r5 , r6 defined 
above. Nevertheless, your intuition about relative sizes should enable you to 
make fairly confident guesses. 
(a) Archimedes proved that one of these six ratios is expressible as 4 : 1. Can 

you guess which one? 
(b) Archimedes also proved that one of them is the ratio 3:2. Guess which 

one. 
(c) Eudoxus proved one of them is 3:1. Guess which one. 
(d) Do you think any of the ratios is equal to 2: 1? Which ones, if any? 
(e) Ratios can be ordered in an obvious way. (3: 2 is "smaller" than 2: 1 

since 1.50 < 2.00.) Make a guess as to which of the six ratios is the 
smallest. 

(f) Guess which is the largest. 
(g) Archimedes proved that a certain pair of the six ratios are actually 

identical. (He proved that neither is larger than the other.) Can you 
guess which pair? Hint. The point of exercises 2.3 and 2.4 was to give 
you clues for part (g). 

2.6. (One more guess) Let S1 denote the surface area of a cylinder-just the "side" 
of the cylinder, not including the area of its circular top and bottom. Let S2 

denote the surface area of a sphere inscribed within the cylinder. Make a 
guess as to the size of the ratio r7 defined as S1 : S2 . In particular, guess which 
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of S1 and S2 is larger. Or are they equal? (It was nearly 300 years after 
Pythagoras before Archimedes settled this question.) 

......... ,---, 
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2.7. The modern way to look at a ratio is as a real number identified with a 
decimal expansion, which in turn is identified with a point on the "number 
line". Thus the ratio 3: 2 is identified with 3/2 or 1.50. The ratio 4: 1 is iden­
tified with the point 4/1 or 4.00. Try to match the ratios r1 through r7 with 
the appropriate points. Caution: Not all seven points A through G pictured 
here will be needed, for the ratios are not all different. Just make a guess here. 
We cannot be sure of the answers until we develop the calculus to find them. 

A BC D EF G 
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2 3 4 

2.8. (The greatest Greek mathematician) From the information in exercises 2.5 and 
2.6 it should not be hard to guess the name of the greatest Greek mathema­
tician. He is, of course, the one who did the deepest research on the famous 
ratios introduced in this section, even though others had already had some 
250 years since Pythagoras to think about them before he came along. What 
is his name? 

§3. The Spirit of the Liberal Arts 
Thales is said to have attached great importance to logical arguments 
that begin from clear premises, and Pythagoras wholeheartedly endorsed 
this principle. An argument is now seen as having a life of its own, in­
dependent of its origin, so that truth arrived at by argument-unlike the 
'truth' of a mysterious oracular pronouncement-may thereby appear to 
have an existence independent of human beings. Such new attitudes are 
expressions in mathematics and philosophy of the rise of a civilization 
whose works of sculpture, architecture, and literature are also so cele­
brated that one is tempted to ascribe almost superhuman power to the 
Greeks. But much, if not all, of that power can be seen to flow instead 
from the fullness with which they enjoyed their very human nature. 

Indeed, much of the initial growth of mathematics and philosophy 
can be seen as an overflow into mental activity of cert:~.in human char-
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acteristics long present in the physical arena. The spirit of competitive­
ness and play is at least as old as mankind, and the Greeks-who had 
established the Olympic games in 776 B.c.-were second to none in their 
celebration of athletic prowess. Over the course of the next couple of 
centuries, various bands of Greeks (the Pythagoreans were only one of 
several) became intrigued by new kinds of competitive challenges in­
herent in word-play, dialogues, problems, and paradoxes. The emer­
gence and rapid growth of Greek interest in serious thought owes much 
to this popularization of the sportive aspect of the life of the mind. 

The concurrent development of an unmistakably modern sense of 
humor is further evidence of a growing delight in the play of the mind. 
Consider this short tale about Dionysius I (ca. 430-363 B.C.), dictator of 
Syracuse, who fancied himself to be a poet. 

When the poet Philoxenus, asked by the dictator for his opinion of the 
royal verses, pronounced them worthless, Dionysius sentenced him to 
the quarries. The next day the King repented, had Philoxenus released, 
and gave a banquet in his honor. But when Dionysius read more of his 
poetry, and asked Phil oxen us to judge it, Philoxenus bade the attendants 
take him back to the quarries. 

There are many such wonderfully droll stories that have come down to 
us because the Greeks loved to repeat them. Wit and vitality of mind are 
mutually reinforcing, and the Greeks profited greatly from this sym­
biotic relationship. 

The life of the mind must have expanded even further with the reali­
zation that it furnishes a new arena for the display of courage- for many 
Greeks, the greatest of virtues. No longer restricted by purely physical 
considerations, courage can now be seen in the perseverance through 
mental strength to the end of an argument without fear of where the 
argument may lead. A voyage through strange seas is just as demanding 
when it is taken in the mental world. It is also just as prone to shipwreck. 
We may lose everything when an argument leads to absurdity and thus 
produces the conclusion that one of its premises must be false. On the 
other hand, when we exercise proper foresight (as in the logical tech­
nique of reductio ad absurdum, to be introduced in the exercises 
below), that conclusion may be exactly what we seek. The play of the 
mind is the greatest of all open-ended games. Each unexpected twist and 
turn we take in wrestling with a significant problem brings to us the 
possibility of a new vision of the world. 

Historians already credit the spirit of competition and play with a 
profound effect upon art and literature, for by the sixth century B.C. the 
Greek games had expanded far beyond athletics. Eventually the Olympic 
torch sparked public competitions in pottery, poetry, sculpture, painting, 
choral singing, and drama. Mathematics and philosophy were, of 
course, even more directly encouraged by this expansion of the Olympic 
spirit. 
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Was this growth of spirit an inevitable step in the evolution of human 
beings? Or was it something that could have happened only at this par­
ticular time and place? Who can best explain what animated the Greeks, 
and especially the Pythagoreans, despite (or was it because of?) their 
mysticism, numerology, and other idiosyncrasies. History, anthropology, 
psychology, evolutionary biology, and theology would doubtless give 
characteristically different responses. 

Most people would probably agree, however, that it was a quint­
essentially human spirit that lifted the Greeks above provincialism and 
toward the kind of universality reflected by their establishment of de­
mocracy in government and of the liberal arts in education. The word 
liberal as used here is supposed to have the central connotation of free­
dom and to denote those arts whose study will produce a liberated mind 
worthy of a free citizen of a democracy, as opposed to one enslaved by 
ignorance, prejudice, superstition, or fear. Tradition holds that Archytas 
of Tarentum, a Pythagorean born around 428 B.C., conceived the idea of 
what was much later called the quadrivium (the "four-fold way")­
consisting of arithmetic, geometry, music, and astronomy-as the basis 
for an education with the power to make free and independent citizens 
out of hoi poUoi. 

The Pythagoreans revolutionized the study of arithmetic and geo­
metry, and were so enthralled by the science of music that they under­
took the technical study of musical scales, harmony, etc. They saw 
arithmetic playing a role in music analogous to the role of geometry in 
astronomy. Arithmetic studies numbers "at rest"; whereas music-in 
studying the harmony of tones produced by vibrating strings of proper 
ratios-is the study of numbers "in motion". Similarly, geometry studies 
magnitudes at rest; whereas astronomy-in seeking order in the move­
ments of the heavenly bodies- is the study of magnitudes in motion. 

Despite his mystical leanings Pythagoras is sometimes regarded as 
the founder of Western science because he continually promoted mathe­
matics as a means of finding harmony and order in the natural world. 
He even "objectified" the notion of order by taking the Greek word for it, 
cosmos, and giving this name to the universe. Such audacity may have 
helped inspire Plato's attempt, much more radical and two centuries 
later, to objectify things like Truth and Beauty. 

The Greeks emphasized the central role played by ratios in liberal 
education. Ratios not only permeate the "scientific" quadrivium but also 
appear, loosely disguised, in the type of discourse that would later be 
called humanistic. For example, the Pythagorean analogy between pairs 
of members of the quadrivium may be expressed "rationally" by writing 

ARITHMETIC : MUSIC : : GEOMETRY : ASTRONOMY, 

which shows how an analogy (a rhetorical device) is strikingly like a 
proportion (a mathematical device). "To measure is to know" makes as 
much sense in rhetoric as it does in mathematics. 
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These is no doubt the Greeks saw the connection between a pro­
portion and an analogy because they used the same word (analogos) to 
refer to both. Other connections between mathematics and rhetoric were 
probably much more apparent to the Greeks than to us today. The 
Greeks expressed almost all their mathematics rhetorically, i.e., they 
wrote nearly everything out in words, rarely using abbreviative symbol­
ism. For example, in proportions they never employed the now-familiar 
symbol made by a square of four dots to signifY equivalence. This con­
vention was not introduced until the seventeenth century, even though 
the idea of a delicate balancing-as on the scales of Justice-of one side 
"squarely" against another hearkens back to the Pythagoreans, whose 
numerology identified Four with Justice. The seventeenth-century pro­
liferation of abbreviative notation in mathematics and the consequent 
large-scale algebraic and logical manipulation of symbols has proven to 
be enormously efficient, but some of the ties between mathematics and 
rhetoric have thereby been obscured. 

Skillful use of analogy is central to rhetoric, yet every analogy is im­
plicitly dependent upon the notion of a ratio. There are similar parallels 
between logical arguments and mathematical proofs, and between 
grammatical clarity and mathematical precision. The quadrivium was 
naturally conjoined with the trivium of grammar, rhetoric, and dialectic 
(or logic) to form the Greek enkuklios paideia, a phrase from which we 
get "encyclopedia", but which is better translated as "general education" 
or "the usual everyday education received by all". Since kuklios means 
"circle", it is tempting to read into this phrase the connotations of unity 
and well-roundedness, two attributes that, at any rate, characterize the 
program. The Greeks used generalized notions of ratio, proportion, 
rhythm, and harmony to expose common threads that tie these seven 
disciplines into a whole. 

Integrity-"wholeness"-in education is a Greek ideal that seems less 
highly prized today. Even the Greeks were strained, however, to study the 
quadrivium as thoroughly as the trivium. Some elements of the trivium 
were clearly prerequisites to the study of the arts (later to be called 
"sciences") of the quadrivium. 

Greek democracy was relatively short-lived, but the enkuklios paideia 
survived the long period of Roman domination. The Romans adopted 
Greek education along with some other aspects of Greek culture, although 
they virtually ignored all mathematics that was not immediately prac­
tical and therefore paid only a little attention to the quadrivium. 

Despite its "pagan" origin this Greco-Roman system of education­
now known by its Latin name, artes liberales-eventually received the 
grudging endorsement of the Roman church. With the church it survived 
the fall of Rome and came to flourish in late antiquity as the seven 
hoeral arts. The word "art" as used here, of course, means "discipline" 
and has little to do with the modern sense of reference to art as a kind of 
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personal or subjective creativity. In medieval European universities the 
Bachelor of Arts degree for four years' study of the trivium, followed by 
a Master of Arts degree for three additional years of the quadrivium 
became the usual prerequisite for advanced study in such things as 
law, medicine, science, philosophy, or theology. The liberal arts tradi­
tion today can thus trace its existence back continuously for nearly 
2500 years. 

Exercises 

3.1. (What sort of arguments did Thales make?) According to tradition Thales was 
known for emphasizing the importance of justifying theorems by showing 
how they follow logically from simple premises. Here are two examples. 
(a) In a triangle the angles opposite equal sides are equal. Prove this theorem 

the way you did in geometry class. Thales was supposedly the first to 
feel the need of proving this simple theorem about isosceles triangles, 
and the first to give a proof. 

(b) The most striking theorem associated with Thales' name is one he may, 
in fact, have never proved: Any angle inscribed in a semicircle is a right 
angle. Assuming that the line AB in the figure below is the diameter of a 
circle and that the point C lies on the circle, prove that the angle ACB is 
a right angle. Hint. Draw the line segment OC, where 0 is the center of 
the circle and notice that two isosceles triangles are formed, so you can 
immediately use the result of part (a) on each one. The rest of the argu­
ment is up to you. 

A B 

3.2. (A taste of grammar) In the classical liberal arts, grammar included etymol­
ogy. Explain how the hypotenuse got its name. Answer: Suppose you lived 
in Thales' time and you wanted to give an appropriate name to the side 
of a triangle opposite a right angle. If you are in the habit of drawing your 
right triangles lying in a semicircle as in the figure of exercise 3.1, this is 
the side "stretched beneath", or "subtended". The Greek word for "beneath" 
is hypo-as in hypodermic, meaning "beneath the skin". The Greek word 
meaning "to stretch" is tenein. 

3.3. (A taste of logic) In the answers to exercise 3.1 we have examples of direct 
arguments. They begin from simple statements and deduce more subtle 
assertions in a straightforward way. An indirect argument, or an argument 
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by reductio ad absurdum-also called a proof by contradiction-proves an 
assertion by showing that an absurdity (or contradiction) follows from sup­
posing the assertion to be false. It is often a useful technique for proving 
that something does not exist or that something cannot happen. Give a short 
reductio ad absurdum argument to prove each of the following propositions: 
(a) There is no largest integer. Answer: Suppose there were a largest integer. 

Call it N. Let M denote the integer we get by adding another unit toN. 
Thus M = N + 1. But then M is an integer larger than the largest integer 
N, an absurd conclusion. Since an absurd conclusion follows from the 
supposition that there is a largest integer, this supposition must be false. 
Therefore, there is no largest integer, QE.D. 

(b) There is no largest even integer. Hint. Suppose there were; call it N. let 
M = N + 2, and argue much as in part (a) to reach an absurd conclu­
sion. You may need to use the result of exercise 1.2(a) to nail down the 
contradiction. 

(c) There is no largest multiple of 10. Hint. Part (b) showed there was no 
largest multiple of 2. This can be proved in the same way. Just change 
"2" to "10" and argue as in part (b). [Or take Ten as the unit and argue 
as in part (a).] 

3.4. (More logic) Give reductio ad absurdum proofs of each of the following. 
(a) If the square of an integer is even, then the integer itself must be even. 

Answer: Suppose n is an integer whose square is even and suppose n is 
odd. Then n2 is even and n is odd. But we know [by exercise 1.3(b)] that 
n2 must be odd if n is odd. This is a contradiction, for n2 cannot be both 
odd and even. Therefore, if n2 is even, then n must be even, QE.D. 

(b) If the square of an integer is odd, then the integer itself must be odd. 
Hint. Exercise 1.3(a) can be used here the way 1.3(b) was used in the 
answer to part (a). 

3.5. ("Scarecrow Logic") In the movie The Wizard of Oz, the scarecrow-having 
just been given a brain-spouts nonsense, something like the following: 
"The square root of the hypotenuse of an isosceles triangle is equal to the 
sum of the square roots of the two equal sides." Show that such a triangle 
does not exist. Hint. Suppose there were such a triangle and let its sides have 
lengths a, a, and b, with bas the length of the "hypotenuse". Then according 
to the scarecrow, ..fb = .,jii. + .,jii., so ..fb = 2.,fii., and by squaring both sides 
we have b = 4a. Thus the sides of the triangle are a, a, and 4a. This is 
absurd! (Why?) 

3.6. (A taste of rhetoric) Just for fun, try to complete the following analogies. The 
first is adapted from a playful remark of Will Durant's; the second alludes to 
something Mark Twain said about writing; the third is something Archi­
medes proved about a circle. 
(a) "Just as astronomy is a trick that geometry plays upon the eye, so music 

is a trick that __ plays upon the --·" 
(b) A good word : the best word : : a lightning bug:--· 
(c) area of a circle : square of its radius : : circumference of a circle : __ , 
Answer: (b) the lightning. 

3.7. What justification is there for intelligence tests to rely upon questions about 
analogies? 
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3.8. (Suggestions for serious readers) Howard DeLong perceptively noted the 
importance of the sportive aspect of the life of the mind in the first chapter 
of his much-praised Profile of Mathematical Logic, Addison-Wesley, 1970. The 
account of Dionysius and Philoxenus given in this section comes from the 
lively pen of Will Durant in his Life of Greece, Simon and Schuster, 1939. 
A beautifully written book describing the origin of the liberal arts is H.I. 
Marrou's History of Education in Antiquity, translated by George Lamb, Sheen 
and Ward, 1956. Check out one of these from a library and read ten pages. 

§4. The Pythagorean Theorem and Its 
Modern Consequences 

The most famous theorem associated with the Pythagoreans is one with 
which the reader is doubtless already familiar and whose content was 
at least partially known in Babylonia, China, and India long before 
Pythagoras. The Babylonians, for example, had earlier made tables list­
ing many of the possible integral values a, b, c for the sides of a right 
triangle satisfying the relation c2 = a2 + b2 , including the most familiar 
"Pythagorean triple" of 3, 4, and 5. 

By virtue of the Pythagorean theorem we can give another name to 
the first of the six ratios introduced in Section 2. The ratio r1 of the 
length d of a diagonal of a square to the length s of its side can be 
numerically expressed as ,;2. That is, if we were to conflate the ancient 
and modern ways of dealing with numbers, fractions, and ratios, we 
would write 

r1 =d: s 

=dis 

= ..fi. [21 
s 

To see this, simply note that d is the hypotenuse of an isosceles right 
triangle whose two legs have lengths so the Pythagorean theorem says 
that d2 = s2 + s2 = 2s2 . From the fact that d2 = 2s2 I we get d2 I s2 = 2, 
which means d/ s = ,;2. 

Note that the ratio of diagonal to side of a square is ,;2 regardless of 
what size the square is. This is, of course, because any two squares are 
similar, i.e., one is the "same shape" as the other, just pictured in a di£. 
ferent scale. We shall take it as intuitively clear-though the Greeks 
would prefer to discuss this point much more carefully--that the ratio of 
two parts of a figure is unchanged if the figure is simply rescaled to make 
something similar. (Think about what happens when a photograph of 
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your face is enlarged: The ratio of the size of your smile to the size of 
your face must be the same in both pictures.) 

If there is any justification for naming this theorem after the Pytha­
goreans, it is that they were probably the first to give an argument to 
prove it. Today we know many different proofs. The sophisticated argu­
ment presented below is rather like the one Euclid gave in his Elements 
some two hundred years after the death of Pythagoras, except we have 
modified it a bit to emphasize how ratios can be brought to bear. The key 
to this proof is the equivalence of ratios of certain pairs of sides when 
a perpendicular is dropped from the vertex of a right angle upon the 
hypotenuse. 

c c 

~ b a 

A c B A B 

It is obvious that the two smaller right triangles AQC and BQC each 
have two angles of the same size as those of the original triangle ABC. 
It follows (why?) that all three angles must be the same. Thus all three 
triangles are similar-each is the same shape as the other two, simply 
drawn to a different scale. 

The similarity of the two triangles just above with the right triangle 
originally given means that ratios of comparable pairs of sides in each 
are equivalent. Thus we see that r : b : : b : c and s : a : : a : c. But it is 
easier for modern readers to follow Euclid's argument if we re-express 
the equivalence of these ratios in modern terms as equalities offractions, 
as we do in equations (2) and (3) in the proofbelow. 

The Pythagorean Theorem 
In a right triangle, the square built on the hypotenuse has the same area 
as the combined area of the squares built on the other two sides. 
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Proof 
From the vertex of the right angle, drop a perpendicular to the hypo­
tenuse, hitting the hypotenuse at Q. 

a 

a 

a 

The hypotenuse is then split in two, as indicated, so that 

c = s + r. 
Since /'.,AQC is similar to /'.,ACE, we have 

r b 

b c 

Since /'.,BQC is similar to /'.,BCA, it follows that 

s a 
a c 

(1) 

(2) 

(3) 
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From equation (2) it follows that b2 = rc (showing that the two figures 
with vertical markings are equal in area). From equation (3) it follows 
that a2 = sc (showing that the two figures with horizontal markings are 
equal in area). From the equations a 2 = sc and b2 = rc, together with 
equation (1), we have 

a2 + b2 = sc + rc = (s + r)c = c · c = c2 • 

Therefore, a2 + b2 = c2 . D 

The proof just given shows exactly how the square built on the 
hypotenuse can be split into two areas that are equal, respectively, to the 
squares built on the sides. Pythagoras probably gave a more elementary 
proof, perhaps like the one that is outlined in problem 3 at the end of this 
chapter. 

The Pythagorean theorem is applicable to a surprising variety of situ­
ations, as indicated in the exercises that follow. 

Exercises 
4.1. In the plane, indicate the positions of the points P and Q whose coordinates 

are given below, and use the Pythagorean theorem to find the distance 
between P and Q. 
(a) P = (3, 37), Q = (4, 40). Answer: Dist P to Q is v'10 (see figure below). 
(b) p = (1, 55), Q = (6, 50). 
(c) P = (4, 40), Q = (2, 38). 
(d) P= (n,n2), Q= (n3,n4). Answer: DistPto Qis J(n3 -n)2 + (n4 -n2)2. 

(4, 40) 

l 

(3, 37) ( 4 37) 

4.2. Use the Pythagorean theorem to find a formula for the distance from 
(xi,Y!) to (xz,Yz). Answer: Dist (xi,Y!) to (xz,Yz) is J(xz- xi)2 + (yz- YIF· 
(This is called the distance formula and should be memorized.) 

4.3. (a) Use the distance formula to find the distance from (0, 0) to (3, 4). 
(b) There are three "equals" signs in the calculation below. Tell which of 

the three are correct and which, if any, is incorrect. 

Dist(O, 0) to (3, 4) = V32 + 42 = 3 + 4 = 7. 
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4.4. Use the distance formula to find the distance from (0,0) to (x,y). Be sure 
you know why you answer is not equal to x + y. Answer: Dist (0, 0) to 
(x,y) = -./(x- 0)2 + (y- 0)2 = -Jxz + yz. 

4.5. Consider this sentence: 

The distance from (0, 0) to (x,y) is 5. 

Use your answer to exercise 4.4 to write this sentence as an equation using 
only algebraic symbols. Hint. In algebra the word "is" may be translated 
"equals". 

4.6. Consider this sentence: 

The point (x,y) lies on the circle of radius 5 with center at (0, 0). 

(a) Explain why this sentence has exactly the same meaning as the sen­
tence in exercise 4.5. 

(b) Rewrite this sentence in algebra. Hint. In view of part (a) your answer 
to exercise 4.5 is also an answer to this question. 

(c) Is an algebraic equation a sentence? (Does it have a subject, verb, and 
predicate?) 

4. 7. Consider this sentence: x2 + y2 = 25. 
(a) Explain why this sentence means that -Jx2 + y2 = 5. 
(b) Explain why the sentence "-./x2 + y2 = 5" means that (x,y) lies on the 

circle of radius 5 with center at (0, 0). 
(c) Put your answers to parts (a) and (b) together to explain why 

"x2 + y2 = 25" means that (x,y) lies on the circle of radius 5 with center 
at (0, 0). 

(d) Explain carefully in what sense we might say that the equation 
x2 + y2 = 25 "is" the circle of radius 5 with center at (0, 0). Hint. It is 
not meant literally, of course, because an equation is something from 
algebra and a circle is something from geometry. See the remarks on 
analytic geometry at the beginning of the next section. 

4.8. Consider each of the following equations and rewrite it as a sentence in 
words. 
(a) x2 + y2 = 49. Answer: (x,y) lies on a circle of radius 7 centered at (0, 0). 
(b) x2 + y2 = 36. 
(c) x2 + y2 = 25. 
(d) x2 + yZ = 1. 

4.9. Rewrite each of the following sentences as an equation. 
(a) The distance from (x,y) to (n,3) is 5. Answer: (x -n)2 + (y- 3)2 = 25. 
(b) (x,y) lies on the circle of radius 5 centered at (n,3). Answer: Same as 

4.9(a). 
(c) The distance from (x,y) to (2,3) is 5. 
(d) (x, y) lies on the circle of radius 5 centered at (2, 3). 
(e) (x,y) lies on the circle of radius V2 centered at (1, 0). 
(f) (x, y) lies on the circle of radius 3 with center at (- 2, 5). 
(g) (x,y) lies on the circle of radius r with center at (a. b). 
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4.10. Rewrite each of the following equations as sentences about circles. 
(a) (x + 2f + (y- 5)2 = 9. Answer: (x,y) lies on the circle of radius 3 cen-

tered at ( -2, 5). 
(b) (x- 2)2 + (y +sf = 9. 
(c) x2 + (y- 2)2 = 3. 
(d) 7x2 + 7y2 = 14. Hint. First rewrite this as x2 + y 2 = 2. Then it is easier. 
(e) lO(x + 2)2 + lO(y- 4)2 = 250. 

4.11. A cable is to be run from a large island to an electric power plant. Suppose 
a lighthouse is located at the point of the island nearest the power plant, 
which is 13 miles down a straight shoreline, while the lighthouse is 3 miles 
from the nearest point P on land. Suppose that undersea cable cost 7 thou­
sand dollars per mile and underground cable costs 2 thousand per mile. 

Electric plant 
• 

p----13 miles ---o-

(a) What is the cost (in thousands) of running cable from the lighthouse 
undersea to P, then underground to the power plant? 

(b) What is the cost (in thousands) of running cable undersea from the 
lighthouse to a point Q located 4 miles downshore, then underground 
to the plant? 

Electric plant 

(c) Find an algebraic rule giving the cost C (in thousands) of running the 
cable undersea from the lighthouse to a point located x miles down­
shore, then underground to the plant. Answer: C = 7V9 + x2 + 2(13- x). 

(d) What is the domain of the function expressed in part (c)? 
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§5. Geometry versus Arithmetic 
Pythagoras could have had little notion that the Pythagorean theorem 
would be relevant in such a variety of contexts as we have just seen in 
the exercises above. In particular, the idea that an algebraic equation 
(like x2 + y 2 = 25) could be identified with a geometric curve (the circle 
of radius 5 with center at the origin) is an idea whose value the Greeks 
never fully realized. The importance of this interplay between algebra 
and geometry was first seen by two seventeenth-century Frenchmen, 
Pierre de Fermat and Rene Descartes. It was they who developed ana­
lytic geometry, the name given to the study of this interplay, whose 
goal is the attainment of a synthesis of algebra and geometry. 

Ever since 1637, when Descartes wrote La Geometrie, it has been 
common knowledge that curves can have equations and that equations 
can determine curves. Why did the Greeks fail to utilize this means of 
approaching problems in geometry? The answer is simple. The Greeks 
knew that their curves had equations. They developed, however, little 
abbreviative symbolism and therefore had to write the "equations" out in 
words. For the Greeks, sometimes only a wondrous wealth of limiting 
clauses could adequately describe the mathematician's latest and pret­
tiest discovery: 

Let a cone be cut by a plane through the axis, and let it also be cut by 
another plane cutting the base of the cone in a straight line perpendicu­
lar to the base of the axial triangle, and further let the diameter of the 
section be parallel to one side of the axial triangle; then if any straight 
line be drawn from the section of the cone parallel to the common sec­
tion of the cutting plane and the base of the cone as far as the diameter 
of the section, its square will be equal to the rectangle bounded by the 
intercept made by it on the diameter in the direction of the vertex of the 
section and a certain other straight line .... 

Apollonius, Conics, ca. 200 B.C. 

See? 
By contrast, our modern system, which uses Descartes's coordinates 

and his abbreviative notation, is almost magically efficient. In modern 
terms, the long statement of Apollonius simply says, 

Given a parabola, a Cartesian coordinate system can be introduced in 
which the parabola has an equation of the form y = cx2, where c is a 
certain constant .... 

It is hard to overstate the value of appropriate symbolism. The Greeks 
never had it, and they developed only a little algebra. Their powers were 
concentrated upon geometry. 

Why did the Greeks prefer to couch their mathematics in geometry? 
Why not let number play the key role in mathematics, particularly since 
Pythagoras would base everything upon numbers? The reason has to do 



56 2. Rational Thoughts 

with the discovery by the Pythagoreans of irrational quantities, a discov­
ery that might be interpreted as disproving their own philosophy! 

It is told that those who first brought out the irrational from con­
cealment into the open perished in shipwreck, to a man. For the un­
utterable and the formless must needs be concealed. And those who 
uncovered and touched this image of life were instantly destroyed and 
shall remain forever exposed to the play of the eternal waves. 

Proclus 

Pythagoreans want to explain everything in terms of numbers. Trouble 
starts when one tries to explain the simplest elements of geometry by 
numbers. How does one account for points on a line in terms of num­
bers? This appears easy at first, but the appearance is deceptive. On a 
line segment a unit length is first chosen, and then to each ratio of 
integers is associated a point, in a way that is now familiar to every 
schoolchild. The ratio ~. for example, names the point obtained by 
dividing the unit length into 4 equal parts and then taking 3 of them. At 
first it appears that every point on the line can be named in this way, by 
using ratios of integers, or rational numbers. 

The Pythagoreans, however, discovered to their distress that there 
was a certain point P that could be accounted for by no rational number 
whatever! 

I Unitlength • "I p 

2 3 

Consider the point P situated on the line as indicated above. The 
number associated with P would measure our ratio r1 introduced in 
Section 2, since it measures the length of the hypotenuse of a right 
triangle whose legs each have a length of one unit. By the Pythagorean 
theorem, the square of the number associated with P must be equal to 2. The 
shock was felt when somehow, out of the Pythagorean school, around 
430 B.c., came the following remarkable theorem. The proof we give 
is essentially the same as Euclid's, which depends on the simple fact 
that no number can be both even and odd-the key to the original 
Pythagorean argument, according to Aristotle. 

Theorem 
There is no rational number whose square is 2. 
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Proof 
The proof is by reductio ad absurdum. Suppose the theorem stated above 
is false, i.e., suppose there is a rational number whose square is 2. Then, 
by cancelling out any common factors in the numerator and denomi­
nator, we should have a rational number alb in lowest terms whose 
square is 2. We should then have integers a and b satisfying 

a and b have no common divisor; (4) 

(5) 

From equation (5) it follows that 

a is even. 

Reason: If a were odd, then a 2 would be odd as proved in exercise 1.3(b); 
but equation (5) tells us that a2 = 2b2 , showing that a 2 is even (being 
twice another integer). 

Putting this information together with that of(4) shows that 

b is odd, (6) 

since otherwise a and b would both be even and thus have a common 
divisor of 2. 

Since a is even, a must be equal to twice some other integer. Calling 
this other integer k, we then have a = 2k, or a2 = 4k2 , so that equation (5) 
becomes 

4k2 

b2=2, 

where k and b are integers. But from this equation it follows that 

b is even. 

(7) 

(8) 

Reason: If b were odd, then b2 would be odd-again by exercise 1.3(b)­
yet equation (7) tells us, when it is solved for b2, that b2 = 21(2, showing 
that b2 is even. 

The absurd conclusion is evident when one compares statements (6) 
and (8), since obviously no number is both odd and even. This shows 
that an absurd conclusion is a consequence of supposing the theorem 
false. Therefore, the theorem must be true. D 

Our ratio r1, introduced in Section 2, can thus not be accounted for by 
any ratio of integers! In modern terms we would say that the point P on 
the "number line" cannot be represented by a rational number. Today, 
must students have no qualms about associating the point P with the 
number defined by a never-ending decimal expansion beginning 

1.414 .... 
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Historians have observed that one ofthe characteristics of the Greeks, 
in art as well as in science, is a tendency to to shy away from the notion 
of the infinite. In all the liberal arts they sought to obtain perfected 
works like those achieved in Greek sculpture and architecture, rather 
than merely to suggest the beginning of an on-going process. 

When the Greeks realized that they could base mathematics upon 
ratios of integers only by accepting never-ending processes, they sought 
refuge in the "safe" framework of geometry. The point P offers, of course, 
no difficulty at all to geometry. It is just as simple an object as any other 
geometric point. Although the difficulty with irrational numbers resur­
faces in geometry as a problem with incommensurable line segments, the 
brilliant Eudoxus (ca. 408-355 B.C.) showed-as we shall see in the next 
section-how infinity might be tamed. It seemed that geometry could 
handle something that arithmetic could not, and the Greeks came to 
regard geometry more highly than arithmetic. For over two thousand 
years mathematics was couched largely in the framework of geometry. 

The tendency of the ancients to couch mathematical facts in geo­
metrical, rather than numerical, terms is one of several factors that held 
back the development of the calculus. What might have happened if the 
Greeks, or those who followed them, had emphasized measurement by 
numbers and had studied the way that numerical quantities relate to one 
another in a given setting? The notion of a function studying how inputs 
lead to outputs might have quickly arisen, giving birth to one of the 
fundamental viewpoints of experimental science and accelerating the 
development of the calculus. Could science have developed quickly 
enough to have landed men on the moon a thousand years ago? The 
irrationality of V2 may have had a profound effect upon the history of 
mankind. 

Exercises 

5.1. Is 1.414 a rational number? Answer: Yes, since it is equal to 1414/1000, a 
ratio of integers. 

5.2. Is 2 a rational number? Hint. 2 = 2/1. 

5.3. Is it true that ..,fi = 1.414? Hint. The number ..,fi signifies a number whose 
square is 2. Is the square of 1.414 exactly equal to 2? 

5.4. Is v'4 irrational? 

5.5. Using the fact proved in this section (the fact that ..,fi is irrational), give a 

reductio ad absurdum proof that ~..,fi is also irrational. Answer: If it were 
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rational it would be equal to some ratio mfn of integers, which leads to a 
contradiction, as follows: ~v'Z = m/n implies v'2 = 4m/3n = a ratio of 
integers, contradicting the fact that v'2 is irrational. 

5.6. Using the fact that v'2 is irrational, give a reductio ad absurdum proof that 

flv'z is irrational. Imitate the language used in the answer given to 

exercise 5.5, making appropriate modifications. 

5.7. Prove that 5v'2 is irrational. Use language similar to your answer to 5.6. 

5.8. Prove that ~ v'2 is irrational if a and b are nonzero integers. Explain why 

this result is false when either a or b is zero. 

5.9. Prove that 2 + v'2 is irrational. Answer: If 2 + v'2 were rational, we 
would have 2 + v'2 = m/n, which, when solved for v'z, yields v'2 = 
(m- 2n)/n =a rational number, which contradicts that fact that v'2 is 
irrational. 

5.10. Prove that 2- v'2 is irrational. Hint. Modify appropriately the language of 
the given answer to exercise 5.9. 

5.11. Is the sum of two irrationals numbers always irrational? Hint. Add the 
irrational number discovered in exercise 5.9 to the irrational number in 
exercise 5.10. 

5.12. Is the sum of two rational numbers always rational? How about the prod­
uct? Tell why or why not. Don't just answer yes or no. 

5.13. Is the product of two irrationals always irrational? Why or why not? 

5.14. Find an irrational number between 0 and 1/1000000000000. Hint. Set a 
equal to 1 in the expression studied in exercise 5.8 and try taking b as the 
present national debt, in dollars, of the United States. Does this work? 

5.15. We have seen in exercise 3.3 how to prove there is no largest integer. 
Use reductio ad absurdum to prove there is no smallest positive irrational 
number. 

5.16. Are there infinitely many irrational numbers between 0 and 
1/1000000000000? Explain why or why not. 

5.17. Are there infinitely many irrationals between any two rational numbers? 
Explain why or why not. 

5.18. (For more ambitious students) The long statement of Apollonius given in this 
section is, believe it or not, one of the prettiest theorems of geometry, once 
it is understood. Read pp. 203-204 of The World of Mathematics, edited by 
James R. Newman, Simon and Schuster, 1956, where Apollonius' proof 
may be found. 
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§6. Turning Wrong Answers Inside Out: 
Eudoxus' Anticipation of Modern 
Analysis 

Searching for wrong answers may seem foolish until one realizes that 
reductio ad absurdum arguments rely upon little else. The key to such 
indirect proofs is to demonstrate that one of two possible assertions leads 
to absurdity, thereby eliminating it from consideration because it is a 
wrong answer. 

Similarly, it is sometimes useful to search for wrong answers when 
given a problem requiring a numerical answer. This is because a 
thorough search for wrong answers is equivalent to a search for the right 
answer. It is impossible to know all the wrong answers to a numerical 
problem without knowing the right answer-assuming, of course, that 
there is a "right answer". Some problems can best be attacked indirectly 
by finding a procedure to determine when an answer is too large or too 
small. 

Let us first take an easy example from simple physics. Suppose you 
are trying to balance a baseball bat on a single finger. This is hard to do 
directly by simply guessing where to put your finger, but it is easy to 
balance the bat by resting it upon two fingers separated from each other. 
With virtually no effort you have thereby found a large number of wrong 
answers: 

It--==- J -~ .. -~~...---
WRONG WRONG 

A baseball bat balanced upon two fingers 
Wrong answers for the center of gravity of the bat 

To get closer to the point of balance beneath the bat's center of gravity, 
move your fingers toward each other while ensuring that the bat con­
tinues to rest upon both. Though neither of your fingers will ever quite 
reach the "right answer" this way, the desired point will be determined 
as the limit of the positions of your fingers as they approach each other. 

Mathematics can use the same idea to solve certain types of problems. 
To illustrate this, let us search for a number whose square is 2. The Pytha­
goreans, having proved that there is no rational number whose square is 
2, would have thought such a number to be inconceivable. If we make a 
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"guess" G that is a rational number then the square of G cannot be equal 
to 2. Geometrically, this means that if the length of a rectangle's base is 
measured by a rational number G and if the rectangle has an area of 2 
square units, then the rectangle cannot be a square: 

Areaof 2 
2 square units G 

G 

If this rectangle has area 2 and base G 

then its height must be 2/G. 

If G is rational the rectangle 

of area 2 cannot be a square. 

In the figure above we see that if our guess G is rational then 2/G 
must be a number different from G. Of course, we can see the same 
thing algebraically: If 2/G were equal to G, then G2 would equal 2, an 
impossibility if G is rational. 

How will this help us manufacture v'2, a number whose square is 2? 
Answer: It is obvious from studying the rectangle above that the num­
bers G and 2/ G are on opposite sides of the right answer. That is, if the 
square of one of these is less than 2 then the square of the other will ex­
ceed 2. Thus the average of G and 2/G, being halfway in between, will 
likely be a better guess at v'2. Since the average of two numbers is half 
their sum, it follows that if we define B by the equation 

B=~(G+~) 
2 G ' 

(9) 

then B ought to be a better guess at v'2 than was our original guess G. 
There is evidence to indicate the Babylonians knew a geometric 

version of this recipe for cooking up better guesses at square roots at 
least as early as 1000 B.C. Given a guess G the Babylonians could turn 
it into a better guess B essentially by using the "divide and average" 
formula above. If we take G = 2 then by applying formula (9) we get 
B = 3/2 = 1.5. Now we can change our guess to 3/2, divide and average, 
and repeat this process as often as we wish: 

1 (3 2 ) IfG=3/2,thenB=z z-+ 3/ 2 =17/12 ( = 1.4166 ... ). 

1 (17 2 ) IfG=17/12,thenB=z 12 + 17112 =577/408 (=1.4142156 ... ). 

We could continue this process ad infinitum to manufacture rational 
numbers closer and closer to v'2. 



62 2. Rational Thoughts 

Expressing the fractions in decimal expansions, we would say that .../2 
is approximated ever more closely as we march along in the sequence 
beginning 

2, 1.5, 1.4166, 1.4142156, etc., {10) 

where each succeeding term is manufactured by applying formula (9) to 
the term before. Since every member of this sequence will be a rational 
number (why?), we can never actually get to .../2 no matter how far out 
we go in the sequence. The magnitude represented by .../2 is not equal to 
any of the numbers in the sequence (10), no matter how many terms of 
the sequence we calculate, but is, so to speak, what these numbers are 
"trying to be". The "real number" we wish to manufacture to be attached 
to the symbol .../2 is then, in a sense that is perhaps still rather vague, the 
limit of a sequence of "wrong answers" which approximate .../2 ever so 
closely. 

The decimal system is extraordinarily useful, partly because it (like 
calculus itself, incidentally) has the capacity to be used effectively even 
by students who do not completely understand it. To understand the 
decimal system it is necessary to understand that the decimal repre­
sentation of an irrational magnitude essentially expresses the magnitude 
as the limit of rational numbers that approximate it ever more closely. 
Better and better rational approximations are manufactured as the ex­
pansion of the desired magnitude is calculated to more and more deci­
mal places. 

Eudoxus of Cnidus (ca. 408-355 B.c.) was jokingly called Endoxus 
("the renowned") by his colleagues at Plato's Academy, for he was 
known in his time not only as a mathematician, but as an astronomer, 
physician, orator, and philosopher. Today he is still renowned in math­
ematics for a simple yet subtle observation. With no decimal system and 
no explicit notion of a limit in the mathematics of his time, he could 
nevertheless view the work above essentially as a procedure for finding 
all ratios larger-and all ratios smaller-than the size of the magnitude 
in question. The magnitude whose square has an area of 2 is always 
between G and 2/G. As we let G successively be 3/2, 17/12, 577 f 408, ... , 
we see that the successive G's form a sequence converging to .../2 
from above, while the successive values of 2/G (given by 4/3,24/17, 
816/577, ... ) converge from below. Each successive value of G here is 
the preceding value of B as calculated by formula (9). 

Today we can express these observations in three ways. In the figure 
below on the left is a statement of the facts essentially as Eudoxus might 
have expressed them, i.e., in terms of ratios of whole numbers; in the 
center is a geometric picture; while on the right we catalogue the same 
data using modern decimal expansions unavailable to Eudoxus. 
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What sense can we make of this? Whereas the exact size of the mag­
nitude in question here can be specified by no single rational number, its 
size can be determined exactly with reference to the collection of all 
rational numbers in an indirect way: by specifying all the rationals that 
are too small to measure it, together with all those that are too large. 
This revolutionary idea of the fourth century E.G.-specifying indirectly 
a numerical measurement of a geometric ratio in the case when no 
single ratio of integers will measure it-is that century's response to the 
previous century's discovery that not all ratios of geometric magnitudes 
could be measured by ratios of integers. The resulting new theory of 
proportions, traditionally attributed to Eudoxus, is described by Euclid in 
Book V of the Elements, but couched in geometric language difficult for 
modern readers to follow. What is expressed today by writing the seem­
ingly simple inequality 

v'2 < 3/2 (11) 

could not be said nearly so briefly before the use of the symbols "-..(", 
"<", and "/" (not to mention the Hindu-Arabic numerals) became com­
monplace. Eudoxus would have had to express the meaning of the com­
pact inequality (11) in a lengthy rhetorical phrase referring to geometric 
magnitudes, perhaps something like this: 

The two diagonals of a square, when laid end to end, will be 
exceeded in length by three sides of the square laid end to end. (12) 

It was not until the nineteenth century that the German mathema­
tician Richard Dedekind (1831-1916), by translating the lengthy Greek 
phrases into modern compact inequalities, interpreted Eudoxus' insight 
in the following way: Every possible proportion-evety real number, as 
we should say today-is entirely specified by the way it cuts the rational 
numbers into two segments. 
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This indirect method of getting what we want by throwing away (or 
"exhausting") the answers that are too large and those that are too small 
is an ancient secret that deserves to be more widely known. It turns out 
not to be so generally applicable as the modern method of limits, but 
when it can be used it may be expected to yield the same answer as 
would be obtained by taking a limit. By using this powerful method of 
exhaustion, which in essence consists of skillfully throwing out the 
wrong answers, the Greeks were able to uncover significant results of 
calculus some two thousand years before the subject was given its name. 
In Chapter 7 we shall re-examine this method in modern terms. 

This has been the barest sketch of a profound theory that is the basis 
for the modern (nineteenth-century) development of the real number 
system, the most important structure in mathematics. The foundation 
for this structure was laid by Eudoxus of Cnidus, who is still renowned 
today for his strength in mathematics. He turned wrong answers inside 
out and made them tell the truth. 

Exercises 

6.1. The Greeks didn't speak in terms of functions, but today we would think of 
equation (9) as defining a function since it defines a rule that, given G, 
manufactures a unique number B. Calling this function f, we then have 
B = f( G) = ( G + 2/ G) /2, with the domain off naturally taken to consist of 
all positive numbers. Let us catalogue the results of this section in a pair of 
columns representing the action of this function f. It is useful to make two 
tables, one using fractions and the other using decimals: 

v--f--........ v---f~ 
G B G B 

2 3/2 2 1.5 

3/2 17112 1.5 1.4166666 ... 

17/12 577/408 1.4166666 ... 1.41421568 ... 

577/408 1.41421568 ... 

Carry the procedure one step further by filling in the two blanks correctly. 

6.2. The function given by B = f(G) of exercise 6.1 shows us how to modifY a 
rectangle of area 2 to make it more and more like a square of area 2. The 
closer the "output" B is to the "input" G, the closer the rectangle of sides G 
and 2/G is to a square of area 2 (and therefore the closer both Band G are to 
measuring the size of VZ). Thus we are interested in the difference between 
Band G. 
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(a) Find B- G, using equation (9). Answer: B- G = (2- G2)/2G. 
(b) Use your answer to part (a) to show that equation (9) may be re­

expressed as B = G- {G2 - 2)/2G. 
(c) A fixed point of a function is a point that is sent into itself by the 

function, i.e., a function has a fixed point where the output is the same 
as the input. Show that if G is a fixed point of the function f of exercise 
6.1, then G = ±viz. Hint. In your answer to part (a), set B equal toG and 
solve for G. 

(d) A modern pocket calculator has a button with a odd-looking symbol on 
it. If the number 2 is displayed by the calculator and this odd-looking 
button is pressed, the calculator is programmed to do the following odd 
thing. Without displaying its action it calculates f(2), then f(f{2)), then 
f(f(f(2))), and so on, where f is the function of exercise 6.1. It keeps on 
with such calculations until it "thinks" it gets the same number on two 
successive calculations (because their difference is such a small number 
that the calculator considers it to be zero). The calculator then displays 
the number that is repeated. What is the symbol on the button? 

6.3. Approximate v'iO by the Babylonian method of "dividing and averaging". 
Here our rectangle has sides G and 10/G, soB will be the average of G and 
10/G. 
(a) Try G = 3 as your initial guess and give the successive approximations 

to v'iO in both fractional and decimal form by filling in the six blanks 
below: 

G 

3 

19/6 

19/6 

G 

3 3.1666 ... 

3.1666 ... 

(b) The drawing in this section illustrates successive approximations to 
viz. Make a similar drawing to illustrate your approximations to v'iO 
manufactured in part (a). 

6.4. Of course we know that y9 = 3, but it is interesting to see how the Baby­
lonian method will force this fact upon us if we have forgotten it. Make three 
tables using decimal expansions like the table in exercise 6.3 but with "9" 
replacing "10", taking your initial guess to be (a) G = 2; (b) G = 4; (c) G = 3. 

6.5. Approximate -/3 by the Babylonian method. Choose your own initial guess 
G (the closer G is to v'3 the better the approximation B will be), and calcu­
late tables like those in exercises 6.3 and 6.4. Suggestion. Take G initially to 
be 1.7, or 17/10, and find at least three successive values of B. Use decimal 
expressions instead of fractions when the integers in your fractions get too 
large to handle. Do you see the advantage of the decimal system here? 

6.6. Later on, when we re-visit Example 1 on page 2 of this text, we shall find 
ourselves interested in the square root of 48/7. 
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(a) Apply the Babylonian method to approximate .J48l7 by filling in the 
ten blanks below, where we take G = 2 as our initial guess . 

G .!. (c+ 48) 
2 7G 

G .!.(c+~) 
2 7G 

2 19/6 2 2.714 ... 

t9n 2.714 ... 

(revert to decimals) (revert to decimals) 

(b) Try G = 3 instead of G = 2 as your initial guess at .J48fl and see how 
the decimal approximations in the right-hand table above are changed. 

6.7. (A research question) Suppose you want to approximate the cube root of 2. 
Extending the Babylonian ideas to 3 dimensions you might consider a rect­
angular solid instead of a rectangle and note that if G measures one di­
mension, then taking the other dimensions to beG and 2/G2 will ensure that 
the volume of the solid is 2 cubic units. Take B to be the average of the three 
quantities G, G, and 2/G2 • 

(a) What is the formula forB in terms of G? 
(b) Take G = 1 as your initial guess and calculate the decimal expansions of 

several successive values of B until you get an answer that repeats to 
several decimal places. Have you found f/2? (Calculate the third power 
of your answer and see how close to 2 it is.) 

(c) Read in the appendix on Archimedes about the duplication of the 
cube and explain the relevance ofyour work here to the solution of this 
ancient Greek problem. 

6.8. (Higher-dimensional research) The twelfth root of 2 plays a crucial role in 
tuning a piano because the ratio of the frequency of each tone to the one 
below should be \Y2 in order to ensure that after any 12 successive steps 
(through "white notes" and "black notes") we reach a pitch exactly twice as 
high as our initial pitch (i.e., we cover an octave). 
(a) Reason by analogy with the method of exercise 6.7 to extend the Baby­

lonian ideas to 12 dimensions. (This is really a modern problem. The 
Greeks never got above three dimensions.) Hint. Take B to be the aver­
age of 12 quantities, of which the first eleven are all equal to G. What 
should the twelfth quantity then be in order that the product of all 12 
quantities be 2? 

(b) Take G = 1 as your initial guess and calculate the decimal expansions of 
several successive values of B until you get an answer that repeats to 
several decimal places. Have you found \}"2? (Calculate the twelfth 
power of your answer and see how close to 2 it is.) 

6.9. (Make a guess) Eudoxus investigated the ratio of the volume of a cylinder to 
the volume of a cone of the same base and height as the cylinder. He proved 
this ratio is equivalent to one of the six ratios introduced in Section 2. Can 
you guess which one? (We shall later use calculus to find this ratio, in exercise 
9.2 of Chapter 7.) 



7. Ratios of "Unlike" Magnitudes? 67 

§7. Ratios of "Unlike" Magnitudes? 
There is an interesting aspect of the Greek theory of ratios that would 
probably go unnoticed if not explicitly mentioned. It is the fact that only 
"like" magnitudes could be said to have a ratio. In Section 2 we have 
pictured examples of ratios of "one-dimensional" magnitudes, of "two 
dimensional" magnitudes, and of "three-dimensional" magnitudes. Of 
course, one could also speak of ratios of "zero-dimensional" magnitudes, 
such as the ratio of seven points to five points, but this hardly seems 
worth mentioning, as it is already-in essence- the ratio of one number 
to another. 

In Greek mathematics one could not speak of a ratio between two 
geometric magnitudes of different dimensions, such as between a cube 
and a square, a square and a line segment, or a line segment and a point. 
To have a ratio between two things, according to an axiom introduced by 
Eudoxus, some multiple of each thing must exceed the other. Why can 
we not speak of the ratio of a line segment to a point? Answer: No matter 
how you "multiply" points (i.e., no matter what number of points you 
put together), the length of the resulting figure will not exceed that of 
a line segment. Today we might put this by saying that a point is 
"infinitesimal" when compared with a line segment, or-to put it in 
complementary terms-that a line segment is "infinitely greater" than a 
point. 

In one of Plato's dialogues the speaker asserts that the philosopher, 
the statesman, and the sophist are separated by "an interval that no 
geometrical ratio can express", implying that the philosopher is infinitely 
greater than the statesman and the statesman is infinitely greater than 
the sophist. To say that "no geometrical ratio can express this" is simply 
to say that the axiom of Eudoxus effectively bans the notion of infinity 
(and the complementary notion of an infinitesimal) from being consid­
ered as a proper ratio. 

Today we still ban infinity from being considered as a number. Where 
would it be on the number line? It would have to be "the point at the 
end", but a line has no end. In this respect we still follow the Greeks, but 
there are ways in which our use of number is much more general than 
the Greek use of ratios. We have no qualms today about speaking of the 
ratio of the distance travelled during a journey to the time taken. In fact, 
we call this number the average speed of the trip, and measure it in such 
units as miles per hour. The Greeks would have hesitated to speak of the 
ratio of such unlike things as distance and time, or to conceive of some­
thing like "miles per hour" as a unit of measurement. It would be like 
mixing apples and oranges. 

The Greeks could speak of motion at a constant speed by saying that 
the ratio of the distance travelled during one time segment to the dis­
tance travelled during any other time segment is the same as the ratio of 
the time segments involved. They could also deal with uniformly accel-
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era ted motion without straining their language of ratios, but the physics 
of more general motion was beyond them. Aristotle wrote a book on 
physics, but as the son of a physician, he tended to think of physics first 
of all in terms of the growth processes studied by physicians. Physics 
comes from a Greek word whose root meaning is the study of nature. 

Aristotle remarked that, in general, "motion of motion" (acceleration) 
is beyond our ability to measure. Of course, the modern physics of 
motion rests upon Newton's law stating that the force on a body is pro­
portional to its acceleration. Aristotle- who was, among many other 
things, a great biologist-obviously had little chance of becoming a great 
physicist. The restricted notion of number, which Aristotle endorsed, 
prevented progress in this area. 

The modem physics of motion, in fact, is hardly possible to compre­
hend without using the techniques of calculus to make sense out of 
"instantaneous velocity"- a contradiction in terms to Aristotle since 
there is no motion in an instant-and to speak also of "instantaneous 
acceleration". In Chapter 6 we shall see how easily the seventeenth­
century calculus developed by Newton and Leibniz enables us to handle 
such "contradictions in terms" by defining them naturally in terms of 
limits. 

Problem Set for Chapter 2 
1. In a book of the late sixteenth century written by the Flemish engineer 

Simon Stevin, promoting the usefulness of the decimal representation of 
fractions, Stevin wrote, in large capitals at the top of a page, UNITY IS A 
NUMBER. Why did Stevin feel it necessary to emphasize something that is so 
obvious to us today? (Stevin, incidentally, is accented on the second syllable.) 

2. Undersea cable cost $11,000 per mile, whereas underground cable costs 
$7,000 per mile. An island and a power plant are located as indicated, and 
cable is to be run between them. 

SEA 

Power plant 

Let C denote the total cost (in thousands of dollars) of the undersea and 
underground cable, and let x be as indicated. Find an algebraic rule express­
ing C in terms of x, and specify the domain of this rule. (In Chapter 5 we 
shall find the value of x yielding the cheapest way of running the cable.) 
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3. (Eureka!) The following principle is self-evident: If the .same amount is taken 
away from two figures having equal area, then the two modified figures have 
equal area. It is thought that Pythagoras might have employed this principle, 
as follows: 

The two large squares have equal area. Take away the four right triangles 
from each of the large squares and use the principle above. Have you just 
proved the Pythagorean theorem? Explain why. 

4. Find the center and the radius of the circle corresponding to each of the 
following equations. 
(a) x2 + (y- 2)2 = 7. 
(b) 3(x + 3)2 + 3(y- ,.12y = 12. 
(c) x2 + y2 = 10. 
(d) 5x2 + 5y2 = 10. 

5. Write an algebraic equation corresponding to each of the following circles: 
The circle with 
(a) radius 5, center at ( -3, 4). 
(b) radius v's, center at (3, 0). 
(c) radius r, center at (a, b). 

6. The method of reductio ad absurdum-also called "proof by contradiction" or 
"indirect proof"- is a technique that every student of the liberal arts should 
master. 
(a) In which of the seven liberal arts described in Section 3 would a student 

be introduced to the method of reductio ad absurdum? 
(b) Describe this method clearly. Suggestion. Finish this sentence: "Reductio 

ad absurdum is a technique of (your answer to part (a)] that proves an 
assertion to be true by demonstrating that an absurdity follows from the 
supposition that ... " 

(c) Taking it as a known fact that v'2 is irrational, give a reductio ad 
absurdum proof that v'z/20,000 is irrational. 

7. For each of these, tell why or why not. (Don't just say true or false.) 
(a) The product of a rational number with an irrational number is irrational. 
(b) The product of a nonzero rational number with an irrational number is 

irrational. 
(c) The sum of an irrational number and a rational number is irrational. 
(d) The sum of two irrational numbers is irrational. 

8. Give an example of a rational number lying between 
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(a) 0 and 1/10,000. 
(b) 100 and 100.0001. Hint. Add 100 to your answer to part (a). 

9. Give an example of an irrational number between 100 and 100.0001. Hint. Is 
vlz/20,000 between 0 and 1/10,000? If so, use problem 6, 7(c) and the hint to 
8(b). 

10. Give a reductio ad absurdum argument to prove that 
(a) v'8 is irrational. 
(b) v'Tii is irrational. 
Hint. (a) First note that v'8 = V4-2 = v'4v'2 = 2v'2. Then proceed, using the 
known fact that v'2 is irrational. 

11. Prove by reductio ad absurdum that the square root of an irrational number 
must be irrational. 

12. Consider the sequence of numbers v'z, V'z, ~. \o/2, ... , where each number 
is the square root of the number before and the pattern continues without 
end, generating infinitely many real numbers. 
(a) Are all the numbers in this sequence irrational? Hint. Use the result of 

the preceding problem. 
(b) What is the limit of this sequence, i.e., what is the number being 

approached, as we go further and further out in the sequence? (If this is 
not obvious, it will be when you use a calculator to get the decimal 
expansions of the numbers in the sequence. To get them quickly, enter 
the number 2 in your calculator and repeatedly press the square root 
button.) 

(c) Explain why there must be infinitely many irrational numbers lying 
between 1 and 1.1 

(d) Explain why there must be infinitely many irrational numbers between 
1 and 1.001. 

(e) Explain why there must be infinitely many irrational numbers between 
1 and 1 + e, no matter how small e is, so long as e is positive. (Think of 
e-the Greek letter epsilon-as signifYing an "error tolerance".) 

13. (Mathematics and music) The Greeks regarded the ability to play a musical 
instrument (and to dance) as an indispensable social skill. Indeed it has been 
written that, as a people, they thought of themselves as musicians more than 
anything else. When they spoke of music as a liberal art, however, they 
meant the science of music-not the performance of it. 
(a) (Can you hear the square root of two?) Explain how the musical interval 

from C to F~ "is" the square root of two. Hint. You get from C to F~ by 
traversing six keys on a piano. Each time you move from one to the next, 
as explained in exercise 6.8, you multiply the frequency of the pitch 
produced by a factor of o/2. What, then, is the ratio of the frequency of 
F~ to the frequency of C? (The first two notes of the song "Maria" from 
Leonard Bernstein's West Side Story utilize this interval, which suggests a 
relationship oftenuous harmony.) 

(a) Prove that o/2 is irrational. Hint. Use reductio ad absurdum. Suppose it 
were rational; then raise it to the sixth power and use part (a) to get an 
immediate contradiction. 

(c) Explain how you can "hear" the cube root of two on the piano by finding 
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an interval that represents it. Note that the cube root of two happens 
to be very close to a ratio of 5:4. Does it strike you as being more 
"harmonious" than the interval from C to Fll? 

(d) The Pythagoreans, who thought of musical tones as "numbers in motion" 
had a particular affinity for musical intervals represented by ratios of 
very small positive integers. Can you "hear" the ratio 3: 2 as a musical 
interval on the piano? This interval should be the most harmonious of 
all, except for the octave, which is a ratio of 2: 1. 

CDEFGABCDE 

1.---One octave --J 

14. Our perception of sound is connected with the mathematical theory ofloga­
rithms, which we will meet later. Roughly speaking, however, logarithms 
translate the operation of multiplication into the operation of addition. Give 
examples showing how adding musical intervals translates into multiplying 
the ratios associated with these intervals. Hint. The interval from C to Fll is 
associated with the ratio ,.fi., as is the interval from Fll to high C. Adding 
these intervals gives us the interval from C to high C. What is the ratio asso­
ciated with the interval from C to high C? Is it the product of the ratios asso­
ciated with the two intervals that we added? Give other examples of this 
phenomenon. 

15. In part (c) of problem 13 we noted that 5/4 is a very close approximation to 
ifi. and in exercise 6.7 we saw that the formula 

B=~(G+G+ ~) 
gives successively better approximations to ifi,. 
(a) Re-do exercise 6.7(b), taking G = 5/4. Then calculate, using fractions 

(not decimals) two succeeding values of B to produce the rational num­
ber 375047/297675. 

(b) To how many places does the decimal representation of the rational 
number 375047/297675 agree with the decimal representation of ifi.? 

(c) (Make a guess) Do you think ifi is rational or irrational? 

16. (Moving to higher dimensions unrecognized by the Greeks) We have seen that 
in order to approximate the cube root of 2, we imagine, as in exercise 6.7, a 
cube of sides G, G, and 2/G2 and take the average of these three numbers 
to get out next approximation B, arriving at the formula displayed in the 
preceding problem. 
(a) What formula should we use to approximate the cube root of 10? 
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(b) What formula should we use to approximate the cube root of 100? 
(c) What formula should we use to approximate the fourth root of 500? 
(d) What formula should we use to approximate the seventh root of 2? 

17. The Pythagorean theorem deals with squares constructed on the three sides 
of a right triangle. What about semicircles instead? Prove that the area of the 
semicircle with hypotenuse as diameter is equal to the sum of the areas of 
the semicircles on the other two sides. Hint. This is easy. Use the formula 
~ nr2 to find the area of each of the semicircles whose radii have lengths c j 2, 
aj2, and b/2. Then use the Pythagorean theorem. 

18. (This is a famous result of Hippocrates of Chios, a member of the Pythagorean 
school who lived in the fifth century B.C.) In the figure below, the hypotenuse of 
the right triangle is also the diameter of the circle in which the triangle is 
inscribed. Prove that the combined area of the two "lunes" (moon-shaped 
areas) with vertical markings is equal to the area of the right triangle. 

Lunes of Hippocrates 

Hint. This is astonishingly simple (once you "see" it). From the preceding 
problem we know that the area marked vertically in the lower figure is equal 
to the area with horizontal markings. Take away the cross-hatched area from 
both figures and use the principle given at the beginning of problem 3. Eureka! 
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19. (Reductio ad absurdum) Show that it is impossible to place five points in, or on 
the boundary of, a square of size 2 units by 2 units in such a way that the 
distance between all pairs of these points exceeds .,f2 units. Hint. Suppose 
there were five points in a 2 x 2 square with the distance between all pairs 
exceeding .,fZ. Divide the square into four unit squares. Since there are five 
points and only four unit squares, some pair of the points must be in the 
same unit square-and yet the distance between them exceeds .,fZ. Use the 
Pythagorean theorem to get a contradiction. 

20. (Reductio ad absurdum) Show that there are two trees in Brazil with the same 
number ofleaves. Hint. Use the fact that Brazil has a billion trees, but no tree 
has a billion leaves. 

21. Show that somewhere in the world there are two mice with the same number 
of hairs. Hint. Think of an analogy between mice, hairs, trees, and leaves; 
then proceed as in problem 20. 

22. (Stereometry) Plato wanted to include stereometry (solid geometry) in the 
quadrivium. Show that it is impossible to place nine points in, or on the 
boundary of, a cube of size 2 units by 2 units by 2 units in such a way that 
the distance between all pairs of these points exceeds v'3 units. Hint. Gen­
eralize to three dimensions the argument made in problem 19. 

23. (Red sails in the sunset) Take a square photographic print of some appealing 
object-a sailboat at sunset, say-and have three different-sized enlarge­
ments made whose bases fit exactly on the three sides of some right triangle. 
Think about the sum of the areas taken up on your prints by the two smaller 
copies of the sailboat in comparison with the sailboat-shaped area on the 
largest print. The sum of these two smaller sailboat-shaped areas must be 
either less than, equal to, or greater than the area of the largest. 
(a) Which of these three possibilities would you guess must actually occur? 
(b) Give an argument to prove your guess is correct. Hint. Consider first a 

sailboat as a cubist might view it, made up of little squares or triangles. 
(c) Do you now see the "real reason" why problem 17 came out as it did? 

Hint. Just change your focus from the sailboat to the sunset. 
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24. (A short essay question) The Pythagoreans essentially died out in the fourth 
century B.C., though neo-Pythagoreans-"copycats"-continually pop up, 
even today. Was the nineteenth-century development of the periodic table 
inspired by neo-Pythagoreanism? If you have studied the periodic table in a 
chemistry class, write a short essay either attacking or defending the asser­
tion that the existence of this table supports the Pythagorean belief that 
number is the basis of all things. 

If you know nothing about the periodic table, then write instead a five­
paragraph essay describing the most significant contribution of the Pytha­
goreans to the development of each of these five areas: mathematics, 
science, philosophy, education, religion. 

25. (A longer essay question) Copy down the following for your opening para­
graph, then continue to complete an essay offour to seven pages on the topic 
"Mathematics and the Liberal Arts". 

The rise of pure mathematics has never enjoyed anything like the atten­
tion historians have lavished upon the rise of science. While the Scientific 
Revolution of the seventeenth century is well known, the much earlier 
"mathematical revolution" is not. Yet the Greeks' interest in mathematics 
for its own sake promoted not only the eventual rise of science, but also the 
imminent rise of a system of education that initially shaped Western 
thought. 

Near the end of your essay, compare the role mathematics played in helping 
to shape Western thought with the role it played in shaping the thought of 
other cultures with which you are familiar. 

26. (An essay on integrity) The kinship of the purposes of science and art-and 
the consequent integrity ("wholeness") of the liberal arts-is an ancient 
ideal. The literary critic Edmund Wilson explains how a Greek geometer and 
a Greek dramatist are working to make similar patterns: 

In my view, all our intellectual activity, in whatever field it takes place, is an 
attempt to give a meaning to our experience ... ; for by understanding things 
we make it easier to survive and get around among them. The mathema­
tician Euclid, working in a convention of abstractions, shows us relations 
between the distances of our unwieldy and cluttered-up environment upon 
which we are able to count. A drama of Sophocles also indicates relations 
between the various human impulses which appear so confused and danger­
ous, and it brings out a certain justice of Fate-that is to say, of the way in 
which the interaction of these impulses is seen in the long run to work out­
upon which we can also depend. The kinship, from this point of view, of the 
purposes of science and art appears very clearly in the case of the Greeks, 
because not only do both Euclid and Sophocles satisfy us by making patterns, 
but they make much the same kind of patterns. Euclid's Elements takes sim­
ple theorems and by a series oflogical operations builds them up to a climax 
in the square on the hypotenuse. A typical drama of Sophocles develops in 
the same way. 

from "The Historical Interpretation of Literature", 
in The Triple Thinlrers, Oxford, 1984, p. 269 

Is the integrity of the liberal arts today so highly prized? Write an essay 
comparing the integrity of the liberal arts today with the Greek ideal. 



CHAPTER 

To Measure Is 
to Know 

As we have seen in the previous chapter, the word ratio is connected 
with the idea of rational thought or calculated study. The Greek word 
for the same notion is logos, which has similarly acquired overlays of 
meanings stemming from the idea of measurement. We find it as a suffix 
in many academic words derived from Greek: anthropology ("study of 
man"), biology ("study oflife"), and so on. The word lo~~c, of course, also 
comes from logos. 

This notion presumably arises from our desire to see connections, to 
find some sense of unity or regularity in apparent diversity. Edmund 
Wilson's words quoted in the last problem ofthe preceding chapter make 
this point. We find ratios everywhere in the liberal arts, helping us to 
recognize (or to impose) order in potentially chaotic settings. The notion 
of a proportion-an equality of ratios-manifests itself in mathematics 
as measurement, in rhetoric as analogy, and in music as harmony. Pro­
portion is, of course, closely tied to beauty in all the classical arts. 

We have touched upon these things in the previous chapter. In this 
chapter let us go back to the fundamental mathematical meaning of ratio 
and see how the Greeks measured the earth, the circle, and the cone. 
Surprisingly, as we shall see, the earth poses less of a problem than 
either of the other two. 

Let us first, however, take a brief look at the way mathematics influ­
enced two great philosophers. 

75 
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§1. Plato, Aristotle, and Mathematics 

The safest general description of Western philosophy, according to a 
famous remark by Alfred North Whitehead, is that it consists of a series 
offootnotes to the writings of Plato ( 430-349 B.C.). Yet, as we know from 
the warning on his gate ("Let no one ignorant of geometry enter here"), 
Plato's philosophy is profoundly affected by his conception of mathe­
matics. Since Plato learned much about mathematics from Archytas, it is 
no wonder that the Pythagorean spirit can be found in the writings of 
Plato. 

There is a story that Archytas-the Pythagorean who gave mathe­
matics a charter membership and a prominent role in the liberal arts 
-interceded with Dionysus I in 387 B.C. to prevent the outrageous 
poetaster-tyrant from selling Plato into slavery. Dionysius had suppos­
edly lost all restraint when Plato told him to become a philosopher or to 
cease being a king. The role of Archytas as hero of this story is disputed, 
but there is no doubt that Plato strongly supported the quadrivium in 
education as well as the Pythagorean belief that the same basic educa­
tion should be provided for both males and females. The purpose of 
education is to learn to tell the truth, and mathematics-if taught for its 
own sake-promotes this end by helping students to sharpen their in­
tuition, to learn to reason better, to recognize valid reasoning, and to 
write and say more precisely what they intend. Such an education is 
essential to freedom, for without knowing how to tell the truth one is 
easily boxed in by sophistries. (A sophistry relevant to calculus may be 
found in the last problem at the end of this chapter.) Nothing is more 
abhorrent to Plato than the Sophists who use their art of persuasion to 
empower themselves through deliberately deceptive arguments with no 
concern for truth or other ultimate ends such as goodness and beauty. 

Plato, on the other hand, was driven to know the Good, the True, and 
the Beautiful, and became more enamoured of mathematics when he 
perceived a resemblance (which at first must have been quite hazy, in­
deed) between such things and mathematical forms such as the circle 
and the triangle. The fact that mathematicians could use reason to test 
their intuition about mathematical forms apparently inspired Plato to 
believe there must be an analogous way that philosophers might learn to 
know the higher forms with greater certainty. "Geometry will draw the 
soul toward Truth," said Plato, "and create the spirit of philosophy." All 
knowledge might aspire to the state attained by mathematics. Here, 
beyond the realm of immediate practicality, lies the true spirit of pure 
thought. 

For Plato then, the ultimate aim of education is the training of the 
mind to pass from the apparent and the ephemeral to the true and per­
manent. The eternal becomes of great interest to Plato, since it alone has 
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the power to withstand the erosion of time, and here again he found 
virtue in mathematics. The theorems of the Pythagoreans will surely 
outlive not only the Pythagoreans, but the Greek language as well. 
Significant theorems will retain their value not just for the next few 
thousand years, but literally forever. 

Plato went even further. As an illustration, consider the question 
whether the Pythagorean theorem was true before Pythagoras came upon 
it. Plato would reply strongly in the affirmative and would assert that the 
theorem had always been true. It had been ''built into the universe", and 
Pythagoras was just one who saw it clearly enough to present a proof. 
In fact, as we have remarked, there is evidence that the Babylonians, 
Indians, and Chinese knew this result long before the Greeks, though 
they did not develop the Greeks' enthusiasm for demonstrating the truth 
of a proposition by finding an argument connecting it with simple 
premises. 

In Plato's view the connections between the ideas involved have 
always been there. They are waiting to be discovered, just as (un­
beknownst to Plato) the moons of Jupiter were awaiting Galileo and his 
telescope. Plato thought that all enduring knowledge must be like this. 
Knowledge consists of ideas, or eternal forms, and their great web of 
connections that form a realm of beauty beyond the comprehension of 
our senses alone: 

The laws whereby the stars are made 
are fairer than the stars. 

The inspiration for scientific inquiry has perhaps never been better 
expressed than in this strikingly brief statement about truth and beauty, 
but Plato was interested in more than what we today consider as science. 
To put any significant piece of knowledge into down-to-earth terms, so 
that all can understand, is a noble undertaking. Socrates, Plato's teacher, 
undertook to explain the idea of Justice- an idea that is still imperfectly 
understood. Plato tackled the virtually impossible task of examining the 
Good, the True, and the Beautiful, and to see the interrelationship be­
tween these ideas. Not long after Plato, Euclid began to write down the 
interrelationship between all the ideas of geometry that were known up 
to his time. Such efforts as these have inspired to this day many more 
seemingly impossible undertakings. 

The aspect of Plato's philosophy just described is sometimes pictured 
as follows. The ideas, or eternal forms, already exist, floating in the 
"Platonic heaven", just beyond our grasp. Perhaps, as the Pythagoreans 
believed, we ourselves existed in a former life when we might have 
known these ideas before, but we are born with only a hazy memory of 
where we come from. To know the forms fully, to "remember" them, is 
our most natural calling, which is why we must study philosophy. Only a 
lover of wisdom can climb high enough to swing around heaven and 
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slide back down to earth with a new perspective. A Platonist today might 
hold the view that liberal arts consists of ideas brought down to earth by 
such swingers. 

It should be emphasized that Plato was not a mathematician, but he 
saw to it that his Academy in Athens fostered the work of Eudoxus, 
whom we have already met, and of Theaetetus, who became famous in 
mathematics for being first to prove that the square root of every non­
square integer is irrational. Plato must have been strongly affected by the 
fact that these mathematicians had created (or, is discovered a better 
word?) something of significance that would last forever. 

The excitement that Plato lends to the Hellenic study of mathematics 
in Athens contrasts greatly with the tone taken by his teacher Socrates, 
who had little interest in mathematics, and by his great student Aristotle 
(384-322 B.C.), whose more scholarly and less speculative nature would 
influence for centuries the Hellenistic thought of Alexandria. Aristotle 
saw nothing in mathematics to inspire such a flight of imagination as is 
taken by Plato. The capacity to systematize knowledge, to bring order 
through reason, is of the highest importance. The value of mathematics, 
to Aristotle, lies in its exemplification of this capacity to a degree un­
matched in any other discipline. He is more interested in logic than in 
mathematics. 

Aristotle's views on logic have had great influence. They are reflected 
in the style of Euclid, whose Elements appeared in Alexandria not long 
after Aristotle's death. Euclid seems to show that the towering edifice of 
geometry is simply the consequence oflogic unerringly applied to "self­
evident" propositions, or axioms. The value of Euclid's work lies not in 
the announcement of previously unknown theorems (many if not most 
of the theorems in the Elements were known before Euclid was born), but 
rather in the masterful logical organization of a great body of knowledge 
by the axiomatic method. Aristotle endorsed this method, which seems 
to have been introduced two centuries earlier by Thales, who taught 
Pythagoras. The axiomatic method consists in stating clearly one's initial 
assumptions (axioms) and deducing all else by means of logic. The 
method results in a writing style that is demanding, austere, and-to 
some-supremely beautiful: 

Euclid alone has looked on Beauty bare. 
Let all who prate of Beauty hold their peace, 
And lay themselves prone upon the earth and cease 
To ponder on themselves, the while they stare 
At nothing, intricately drawn nowhere 
In shapes of shifting lineage; let geese 
Gabble and hiss, but heroes seek release 
From dusty bondage into luminous air. 
0 blinding hour, 0 holy, temble day, 
When first the shaft into his vision shone 
of light anatomized! Euclid alone 
Has looked on Beauty bare. Fortunate they 
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Who, though once only and then but far away, 
Have heard her massive sandal set on stone. 

-Edna St. Vincent Millay• 
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Western civilization has absorbed over a thousand editions of Euclid's 
Elements. It is no surprise that traces of the axiomatic method can be 
detected in many nonmathematical writings: 

We hold these truths to be self-evident. 

a new nation ... dedicated to the proposition that. ... 

Thomas Jefferson and Abraham Lincoln were among Euclid's 
admirers, as was Benjamin Franklin, who suggested "self-evident" to 
Jefferson just before the final draft of the Declaration of American In­
dependence. Lincoln considered his reading of Euclid an indispensable 
part of his education. The following passage is from a biographical 
sketch written for the 1860 presidential campaign. 

He studied and nearly mastered the six books of Euclid since he was 
a member of Congress. 

He began a course of rigid mental discipline with the intent to im­
prove his faculties, especially his powers of logic and language. Hence 
his fondness for Euclid, which he carried with him on the circuit till 
he could demonstrate with ease all the propositions in the six books; 
often studying far into the night, with a candle near his pillow, while his 
fellow-lawyers, half a dozen in a room, filled the air with interminable 
snoring. 

What is it about Euclid that attracts? Is it not the cold, unexcited cer­
tainty with which tower upon tower of seemingly irrefutable arguments 
are built? No work could be more dispassionate than Euclid's Elements. 
Yet this severe and solemn quality has probably repelled as often as it 
has attracted. 

Euclid's work ought to have been any educationist's nightmare. The 
work presumes to begin from a beginning; that is, it presupposes a cer­
tain level of readiness, but it makes no other prerequisites. Yet it never 
offers any "motivations", it has no illuminating "asides", it does not 
attempt to make anything "intuitive", and it avoids applications to a 
fault. It is so "humorless" in its mathematical purism that, although it is 
a book about "Elements", it nevertheless does not unbend long enough 
in its singlemindedness to make the remark, however incidentally, that 
if a rectangle has a base of 3 inches and a height of 4 inches then it has 
an area of 12 square inches. Euclid's work never mentions the name of 
a person; it never makes a statement about, or even an (intended) allu­
sion to, genetic developments of mathematics .... In short, it is almost 
impossible to refute an assertion that the Elements is the work of an 
unsufferable pedant and martinet. 

-S. Bochner, The Role of Mathematics in the Rise of Science, 
Princeton, 1966, p. 35 

•sonnet XLV, from CoUected Poems, Harper and Row. Copyright 1923, 1951 by Edna St. 
Vincent Millay and Norma Millay Ellis. Reprinted by permission. 
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Whatever excitement Euclid felt for mathematics he restrained in 
writing the Elements. Aristotle would have wanted it that way. Scholar­
ship must stand up under the cold, steady eye. 

Exercises 

1.1. Do you think mathematics is discovered or created? (Or would you rather 
dodge the issue and simply speak of mathematics as being "developed"?) 

1.2. Plato thought of mathematics as being discovered. What are the arguments 
for and against such a view? 

1.3. Plato popularized-and thereby immortalized-the teaching method of his 
own teacher Socrates, who rarely made statements but instead masterfully 
led students toward the discovery of truth by continually asking them 
thoughtful questions. How is the Socratic method related to Plato's belief 
that learning is not simply processing information or mimicking proper 
behavioral responses, but must be essentially concerned with "remem­
bering" or "re-awakening"? 

1.4. In talking about "being" versus "non-being", Plato suggests that one knows 
what a thing is by knowing what it is not. How is this related to the elimi­
nation ofwrong answers discussed in Section 6 of Chapter 2, which culmi­
nates in the subtle modern numerical characterization of an irrational 
magnitude like y'2 in terms of "everything it is not"? 

1.5. Plato made much of the fact that mathematical ideas like points and circles 
do not exist in the same physical sense as tables or chairs. We actually see 
no mathematical forms, but only physical objects that approximate them. A 
star is not a point, but we may "get the idea" of points by looking at stars. 
Similarly, a wedding band is not a circle, but as we conceive of ever thinner 
and rounder bands we "get the idea" of a circle. 
(a) Is the principle of elimination at work in our conception of points and 

circles? That is, do we learn what they are by saying what they are not? 
(b) Is the notion of a limit somehow at work here? Do we conceive of a 

circle as the "limit" in some sense of physical objects that approximate 
more and more the "form" of a circle? 

(c) Plato viewed "eternal forms" like Truth, Beauty, and Goodness as 
existing in somewhat the same sense as mathematical forms. Do you 
see any way that the principle of elimination or the notion of a limit 
might have influenced Plato to hold such a radical view? 

1.6. Aristotle, Plato's student, dismissed his teacher's beloved eternal forms as 
"sound without sense". Aristotle thought of circularity, for example, as 
simply a property that might be inherent in a wedding band (which we 
"abstract" from it)-not as a "form" with independent existence in the 
Platonic heaven. Whose side do you take in this controversy between Plato 
and Aristotle, and why? 
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1.7. Aristotle made a sharp distinction between number-on the one hand­
and geometric magnitudes on the other, and Euclid adopted Aristotle's 
outlook in his Elements. Did the sharpness of this distinction help or hinder 
the development of mathematics? (Our modern notion of a real number 
essentially conflates these two older notions, and we couch much of 
modern mathematics in terms of functions from real numbers to real 
numers. How important to the development of mathematics was this 
change in point of view?) 

1.8. Latin translations of Euclid have made famous the abbreviation QE.D., 
which stands for quod erat demonstrandum. Use a dictionary to find out 
what this means in English. Where does this phrase naturally appear in 
proofs? 

1.9. In addition to studying ratios of two magnitudes, the Greeks developed the 
idea of various means between them. The arithmetic mean of two mag­
nitudes a and b is half their sum, or (a+ b)/2; the geometric mean is the 
square root of their product, or V{iii; the harmonic mean is the reciprocal 
of the arithmetic mean of their reciprocals, which works out to 2abj(a +b). 
(a) Find the arithmetic, geometric, and harmonic mean of a and b, where 

a= 1 and b = 2. Answer: Arithmetic mean is 3/2 = 1.50; geometric 
mean is v'2 ~ 1.414; and harmonic mean is 4/3 ~ 1.333. 

(b) Which mean between 1 and 2 measures the side of a square having the 
same area as a rectangle with sides 1 and 2? 

(c) If a small plane travels into a strong headwind and averages one hun­
dred miles per hour on its flight from point A to point B, then returns 
to A averaging two hundred miles per hour with a tailwind, which 
mean between 1 00 and 200 gives the average speed for the entire 
round-trip flight? Hint. The answer does not depend upon the dista nee 
from A to B. Take this distance to be 200 miles and see what happens 
then. 

(d) Which mean between 1 and 2 should be used to measure a string 
whose frequency of vibration is the arithmetic mean of the frequencies 
produced by plucking strings of lengths 1 and 2? Hint. The funda­
mental frequency of vibration of a string, under constant tension, is 
inversely proportional to its length. If the longer of the strings vibrates 
at the frequency of middle C and the shorter is made half that length to 
emit high C, then this procedure should produce the G-string that splits 
the octave into intervals of a fifth and a fourth. (The musical interval 
from middle C to G is a fifth and from G to high C is a fourth.) 

(e) The Greeks used the notion of harmony in a very general sense (the 
"harmony" of the soul, the "harmony" of the planets), but of course its 
fundamental meaning is musical. What is "harmonic" (in a musical 
sense) about the harmonic mean? Hint. See part (d) above. 

(f) What is "geometric" about the geometric mean? Hint. Given two geo­
metric magnitudes of lengths a and b, suppose we wish to find a mag­
nitude x satisfying the geometric proportion a : x : : x : b. Show that x is 
geometric mean of a and b. 

1.10. (For use in exercise 3.13) Calculate the following means: 
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(a) The harmonic mean between 3 and 2v'3. Answer: 12(2- V3) ~ 
3.215390309. 

(b) The geometric mean between 3 and 12(2- V3). Answer: 6J2- V3 ~ 
3.105828541. 

(c) The harmonic mean between 3.105828541 and 3.215390309. Answer: 
3.159659942 ... 

(d) The geometric mean between 3.105828541 and 3.159659942. Answer: 
3.132628614 ... 

1.11. The following proposition is typical of propositions in Euclid's Elements. 
Can you give a proof of this proposition? 
If two parallel lines are cut by a transversal, then the alternate interior angles 
are equal. 

(Prove that the indicated angles are equal. Look up a proof in a geometry 
book if you have trouble.) 

1.12. Euclid's proposition in exercise 1.11, like much of mathematics, may at 
first appear entirely "abstract", having no possible practical use. Before 
reading the next section, can you see any way at all that this proposition 
might ever be "useful"? 

§2. Measuring the Earth 

The root geo- means "earth" in Greek, and geometry literally means 
"earth-measurement". Eratosthenes (ca. 276-195 B.C.) did just that, with 
the aid of Euclid's proposition about alternate interior angles (see exer­
cise 1.11 above). Eratosthenes convinced himself that the earth's circum­
ference is about 50 times the distance from Alexandria to Aswan. (Aswan 
was known as "Syene" in the time of Eratosthenes, who worked in the 
great library at Alexandria, located in the delta of the Nile some 500 
miles downstream from Aswan.) 

We indicate part of Eratosthenes' reasoning, leaving the rest to the 
reader. Eratosthenes apparently proceeded upon the assumption that 
Alexandria was due north of Aswan. (It is not quite due north. Locate the 
two cities on a globe.) In Aswan there was a deep well that had an un­
usual feature. The sun shone straight down the well, casting no shadow 
at all, once every year: at the summer solstice. The sun, at noon on June 
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22, is directly overhead in Aswan, so the sunlight beaming down aver­
tical well is headed for the center of the earth. At the same time, in 
Alexandria, Eratosthenes observed the shadow cast by an upright pole, 
and measured an angle of slightly more than 7 degrees, or about one­
fiftieth a complete revolution. (One-fiftieth a complete revolution is, in 
degrees, equal to (fa)C360) degrees, or 7.2°.) 

Exercises 

Angle of fo revolution 

in Alexandria 

Eratosthenes 

2.1. Explain how, from the facts above, Eratosthenes might have argued that that 
the following proportion holds: 

EARTH'S ·DISTANCE FROM • • 50·} 
CIRCUMFERENCE • ALEXANDRIA TO ASWAN • • • . 

Sun's rays ................................ 

Center .. ~: ------ _ -1--------r---·---
of Earth Aswan 

2.2. Eratosthenes would have been able to judge the distance between Alexan­
dria and Aswan by knowing how long it took soldiers to get from one city to 
the other at their standard marching pace. Given the modern measurement 
of 500 miles as the distance between these cities, explain how Eratosthenes 
would have immediately inferred that the circumference of the earth is 
about 25,000 miles. 

2.3. Look up the circumference of the earth in an encyclopedia or almanac. How 
close is it to 25,000 miles? 
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2.4. In 1492 Columbus had his own idea of the earth's size. Did he think it larger 
or smaller than Eratosthenes had measured it? What would have happened 
if Columbus had believed Eratosthenes' calculation to be correct? 

§3. Measuring the Circle 

In Section 2 of Chapter 2 we introduced six ratios r1 , r2 , ... , r6 of certain 
geometric magnitudes. Archimedes proved that r3 and r2 were the same 
ratio in disguise. To show r 3 = r2 is to show that Ajr2 = Cj2r, which­
upon multiplying both sides by r2 -is seen to be equivalent to showing 
that 

A =~rc, (1) 

i.e., that the area of a circle is equal to half the radius times the circum­
ference. Archimedes proved equality (1) by showing that neither side 
is greater than the other. To do this he gave two reductio ad absurdum 
arguments, which are now among the most famous arguments in mathe­
matics. The reader may work through the details of Archimedes' rea­
soning in some problems at the end of the chapter. 

Taking equality (1) as established, we must do for r2 and r3 what we 
have already done for r1 . We have already given r1 an appropriate name 
(by the Pythagorean theorem, r1 must be J2) and we have learned in 
Section 6 of Chapter 2 how to approximate its numerical value as closely 
as we please. 

Surprisingly, it was not until the eighteenth century that it became 
conventional to use the Greek letter n to denote the common numerical 
value of r2 and r3 • Presumably n is supposed to remind us of the first 
letter in perimeter, or periphery, which in turn is supposed to remind 
us that n fundamentally stands for our ratio r 2 of the circumference 
("periphery") of a circle to its diameter. As a result of Archimedes' work 
we know that r 3 = n = r 2 , which is to say that 

A C 
r 2 = n = 2r" 

Our familiar formulas for the area and circumference of a circle come 
directly from this. From the fact that Ajr2 = n we see that A= nr and 
from the fact that n = Cj2r we see that C = 2nr. Thus Archimedes' proof 
of equality (1 ), on which the equality of r2 and r3 depends, has quite 
significant consequences. 

Calculating a numerical value for n is not as easy as calculating a 
numerical value for JZ. The Babylonian method of approximating JZ, 
discussed in Section 6 of Chapter 2, is easy to understand and simple to 
use. It can be proved that this method gives roughly twice as many cor-
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rect decimal places with each succeeding guess. For example, if we have 
already guessed an approximation to v'z accurate to four decimal places, 
then by taking that guess as input in the Babylonian method we will get 
an output accurate to eight places. A succeeding step would give sixteen 
places, and we should have accuracy to thirty-two places with one more 
step. Thus we can easily generate a sequence of rational approximations 
tending very rapidly toward v'z as a limit. 

There have been many attempts through the ages to find a ratio of 
integers equivalent to n. There are passages in the writings of ancient 
cultures enabling us to infer what those cultures took as numerical ap­
proximations to n. In the Old Testament, for example, there are a couple 
of passages alluding to a construction made about 1000 B.C. of a round 
container that is ten cubits from brim to brim, with a line of thirty cubits 
measuring its circumference. If we let a cubit take the role of our unit 
here, this might be interpreted as saying that C: D:: 30: 10, so 
C/D = 30/10 = 3. It is easy to see, however, that in a circle the ratio 
C : D certainly exceeds 3. 

p =hexagon's perimeter 
=6r=3D 

Here we have a regular hexagon inscribed in a circle, easily seen to be 
made up of six equilateral triangles. (Regular here means that all six 
sides have the same length.) Clearly, the perimeter p of the hexagon is 
less than the circumference C of the circle, so pjD < C/D. But p/D = 3 
(as the reader is asked to show in exercise 3.9) and thus 3 < CjD. Since 
C/D = n, this proves that 

3 < n. (2) 

Inequality (2), coming from an inscribed hexagon, gives a lower bound 
for n. An upper bound can be gotten from studying a circumscribed 
hexagon. The reader is asked to do this in exercise 3.10 and deduce that 

n < 2v'3 = 3.46 ... (3) 

Thus, by using both an inscribed and a circumscribed regular polygon 
with 6 sides we see from inequalities (2) and (3) that 

3.00 < 7C < 3.46. (4) 
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By using inscribed and circumscribed regular polygons with 12 sides 
the reader can prove (in optional exercises 3.11 and 3.12) that 

6v2- vl3 < n < 12(2 _ vi3) (5) 

which, in decimal expression, takes the form 

3.10 < 7t < 3.21. (6) 

Archimedes went on to calculate what happens when 24, 48, and 96 
sides are used. From the 96-sided inscnbed and circumscnbed polygon 
he concluded finally that 

3W<n<3~. 

Expressed in decimal notation Archimedes' inequality implies that 

3.1408 < 7t < 3.1429, (7) 

which justifies our writing n = 3.14 ... (note the ellipsis indicated by the 
three dots) to express in modern notation the information in (7). Let us 
picture the results so far obtained by our method of exhaustion: 

Inequality ( 4): 

Inequality (6): 

Inequality (7): 

TOO SMALL TOO LARGE 

2 3 4 5 

Searching for all the wrong ratios: 
Rational approximations to 11" by Archimedes' Method 

Archimedes developed a systematic way (which we have not given 
here) to take the approximations given by a regular polygon with n sides 
and produce the approximations given by a polygon with 2n sides. At 
each stage only square roots are needed to calculate numerical results­
as in going from inequality ( 4) to inequality (5) above. Thus, in principle, 
Archimedes' algorithm can be carried out to whatever accuracy one 
wishes. In practice, the calculations become tedious for large n, as they 
require one to multiply ever larger numbers by ever smaller ones, and 
Archimedes stopped with n = 96. 

Some historians have found reason to speculate that Archimedes 
made a fresh attempt beginning with n = 10 and doubling consecutively 
until he reached n = 640. If so, he might have found n to an accuracy of 
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four decimal places rather than two. This work, however, if ever done, is 
now lost. In any case, later mathematicians did such work and achieved 
closer approximations to n than Archimedes. The Chinese mathema­
tician and astronomer Tsu Chung-Chi in the fifth century A.D. used poly­
gons of several thousand sides to prove an inequality which we would 
express as 

3.1415926 < n < 3.1415927. (8) 

For many centuries it seemed as if such refinements of Archimedes' 
idea offered the best way to approximate n. Methods of calculus, how­
ever, have suggested fresh, new approaches to this problem. None of 
these, however, suggest how far the sophisticated modem algorithms 
tailored for electronic computers have carried us. With their aid we now 
know n to an accuracy of several billion decimal places. 

Exercises 
3.1. From the formulas A= nrl and C = 2nr you might be tempted to say that n 

is the area of a circle of radius one and n is also the circumference of a 
circle of diameter one. But this seems to say that an area is a circum­
ference(?) Obviously, it is not quite correct to say such things. It is also not 
correct to say that n is 3.14. What is wrong? Answer: The number n is not 
an area or a length. It is the (dimensionless) ratio r2, which Archimedes 
proved equivalent to r3 . The area of the circle of unit radius is n square 
units, and the length of circumference of a circle of unit diameter is n units. 
And it is simply false to say n is 3.14 because Archimedes proved n > 3.14 
when he proved inequality (7). 

3.2. There is an assumption implicit in our definition of n to which Eudoxus 
paid much attention. How do we know that the ratio of the area of a circle 
to the square on its radius is the same regardless of the size of the circle? 
Hint. This question is like the question (discussed in Section 4 of Chapter 2) 
about the ratio of the diagonal to the side of a square, regardless of the size 
of the square. Can you answer it in a similar way? Can you answer it in a 
different way by noting that Archimedes' method of approximating n re­
sults in the same approximations no matter what size the circle is? 

3.3. (Literal versus non-literal interpretations) If an historical account of the 
ancient past speaks of a circle of circumference 30 cubits and diameter 10 
cubits, should we interpret it literally to mean that n = 30/10 = 3.0? A 
modern scientist might interpret these data in terms of significant digits. 
Then to say the diameter D measures 10 cubits means simply that D lies 
somewhere between 9.5 and 10.5 cubits. Similarly, the circumference Cis 
known only to lie somewhere between 29.5 and 30.5 cubits. Show that this 
implies that 59/21 < C/D < 61/19, from which one may conclude that 
2.81 < n < 3.22. What do you think of this as an interpretation of I Kings 
7:23? 
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3.4. Approximations can be confusing when combined with an "equals" sign. 
For each of the following equalities tell whether it is true or false and why. 
(a) n = 3.14 ... Answer: True, because "3.14 ... "simply signifies a number 

located between 3.14 and 3.15, and inequality (7) shows that n is such a 
number. 

(b) n = 3.14. Hint. See exercise 3.1. 
(c) viz+ v'3 = 1.41 ... + 1.73 ... = 3.14 
(d) 3.14 ... = n. 
(e) viz+ v'3 = 3.14 ... = n. 
(f) viz+ v'3 = n. 
Hint. This has to do with our understanding of decimal representations, 
which is related to, but not identical with, the notion of significant digits. 
When we say, for example, that viz= 1.41 ... we mean, of course, only 
that viz lies somewhere between 1.41 and 1.42. (When we say viz::::: 1.41 
we mean 1.405 < viz< 1.415.) 

3.5. Archimedes showed that n lies somewhere in the range between 3W and 
3~. 
(a) Does 355/113 lie in this range? This, as it turns out, is the closest ratio 

of "small" integers to n. The Chinese used 355/113 as early as the fifth 
century A.D. (To help remember 355/113, note that it is just 1,1,3,3,5,5 
"upside-down".) 

(b) Does 52163/16604 lie in this range? 
(c) Does viz+ v'3 lie in this range? Hint. Use the results of exercises 6.1 

and 6.5 of Chapter 2. (Make sure your answer to exercise 3.4(f) is 
consistent with your answer to this question.) 

3.6. Are there infinitely many rational numbers between 3 Wand 3 ~?Are there 
infinitely many irrational numbers between these two? Make a guess as to 
whether n is more likely to be rational or irrational. Hint. See exercise 5.17 
of Chapter 2. (You are just asked to make a guess as to the question of the 
rationality ofn. This difficult question was first settled by J.H. Lambert in a 
paper presented to the Berlin Academy in 1768.) 

3.7. (A modern way of approximating n) Leaf ahead to find formula (13) in Sec­
tion 6. Taking this formula for granted (it is given without proof), use the 
remark following it to arrive at a good approximation of n on your own. 

3.8. (Four guesses) We have gotten to know r1 , r2 and r3 . Make a guess about 
each of r4 , r 5 , r6 , and r7 , introduced in Section 2 of Chapter 2, as to whether 
they are rational or irrational. (Archimedes knew the answer for each of 
these, but it will be easier for us to find these ratios after we learn some 
calculus.) 

3. 9. A regular hexagon inscribed in a circle is pictured just before inequality (2) 
above. 
(a) Show that such a hexagon is made up of six equilateral triangles. Hint. 

If you divide 360 degrees by 6, you get the size of the central angle in 
each of these triangles. Then use exercise 3.1(a) of Chapter 2. 

(b) Use the result of part (a) to prove inequality (2). 
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3.10. Consider a regular hexagon with an inscnbed circle of radius r and a cir­
cumscribed circle of radius R. Let P denote the perimeter of the hexagon. 
(a) Show that P exceeds the circumference C of the smaller circle. 
(b) Show that R/r = 2../3/3 by applying the Pythagorean theorem to the 

right triangle in the figure here. 
(c) Use part (b) to show that P/2r = 2../3. Hint. P/2r = (P/2R)(R/r) and 

you know P/2R = 3 from your work in exercise 3.9. 
(d) Use the results of parts (a) and (c) to prove inequality (3). Hint. 

C/2r = n. 

3.11. (Optional) Archimedes next considered a regular polygon with 12 sides 
instead of 6. Since 360/12 = 30 this means the polygon consists of 12 iso­
sceles triangles whose legs are equal to the radius r of a circle, with a cen­
tral angle of 30 degrees between the legs. 
(a) Show that if the legs of such an isosceles triangle have length r, then its 

base has length rV2- ../3. Hint. You may need to find other lengths 
before finding the length of the base. 

(b) Show that the perimeter p of a 12-sided regular polygon inscribed 

within a circle of radius r is given by p = 12rV 2 - v'3. 
(c) Use the result of part (b) to prove the left-hand inequality in (5). Hint. 

p < C, so p/2r < C/2r. 

3.12. (Optional) Let P denote the perimeter of a 12-sided regular polygon cir­
cumscribed about a circle of radius r. 
(a) If pis the perimeter of the inscribed polygon as in ex:ercise 3.11, show 

that P/p = B/b, where Band bare the respective lenbrths of bases of the 
isosceles triangles making up the circumscribed and inscribed poly­
gons. Hint. This is easy: P = 12B and p = 12b. 

(b) Show by similar triangles that B/b = r /h, where h is the height of the 
isosceles triangle with base b. 

(c) Show that h = (r/2)V2 + ..;3. 
(d) Use (a), (b), and (c) to show P/p = 2/V2 + ..;3. 
(e) Calculate the ratio P/2r by multiplying P/p by p/2r. Hint. Remember 

that we know from exercise 3.11 thatp/2r = 6V2- v'3. 
(f) Simplify your answer to part (e) appropriately to prove the right-hand 

inequality in (5). 
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3.13. (Gregory's amazing observation) In the seventeenth century James Gregory 
observed that the inscribed and circumscribed perimeters calculated by 
successively doubling the number of sides can be found quite quickly by 
using harmonic and geometric means in a certain way. 
(a) Describe how harmonic and geometric means seem to enter in the 

second line of the table here. Hint. Review exercise 1.10 (a), (b). 

sides 

6 
12 
24 
48 
96 

pj2r 

3 

6v'2- v'3 

P/2r 

2v'3 [inequality (4)] 
12(2- v'3) [inequality (5)] 

(b) Assuming this pattern continues, calculate the numbers corresponding 
to 24 sides. Hint. Review exercise 1.10 (c), (d). Use decimal represen­
tations. (fo prove the pattern continues, see Appendix 3, problem 10.) 

(c) Assuming this pattern continues, calculate the numbers corresponding 
to 48 and to 96 sides. Is Archimedes' inequality (7) justified by your 
numbers for a 96-sided polygon? 

(d) Assuming this pattern continues, keep doubling seven more times, 
until you have the numbers for a polygon of 12,288 sides. Is Tsu 
Chung-Chi's inequality (8) justified by your numbers for a 12,288-sided 
polygon? Is it justified by your numbers for a 24,576-sided polygon? 

3.14. (At last we have arrived!) If you have access to an electronic spreadsheet, 
you can quickly extend the table you began in the previous problem to 
contain as many rows as you please. Keep on going until your computer 
prints the same decimal representation for both the lower and upper 
bounds for n. You are as close ton as your computer can get you. 

§4. Measuring the Cone 

An ellipsis must accompany almost all decimal expansions (despite the 
confusion seen in exercise 3.4 that this practice can sometimes bring). 
An ellipsis is conventionally indicated in mathematics, as in rhetoric, by 
writing three dots to signify that something is being left out. Ellipsis, 
hyperbole, and parable are familiar terms from rhetoric that come from 
the same Greek roots as eZZipse, hyperbola, and parabola, the names given 
to the three kinds of conic sections by Apollonius of Perga (250-175 
B.C.). 

Recall that an ellipsis involves abbreviating a longer statement; hyper­
bole is rhetorical exaggeration that overshoots the mark; while a parable 
is, of course, right on the mark. Their mathematical equivalents are less 
than, greater than, and equal to, and this is the way these Greek words 
entered Apollonius' long rhetorical sentences ("equations") describing 
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the conditions that must be met in order for a point to lie on each of the 
three kinds of curves formed when a cone intersects a plane. 

The easiest way to understand this is to refer back to the long state­
ment of Apollonius quoted in Section 5 of Chapter 2 and imagine it 
written in its original Greek. The phrase equal to in "its square will be 
equal to the rectangle ... " would be expressed with a form of the Greek 
verb paraballein (literally "thrown alongside of"). Apollonius found that 
all three types of conic sections were described by virtually the same 
sentence except for the verb, and so-perhaps following Archimedes' 
advice-he named the three types of curves after the three verbs that 
differentiate them. Actually, parabolas, hyperbolas, and ellipses had 
been studied by the Greeks long before Apollonius gave them their 
names. No one knows for sure why they arose, though they were used in 
the fourth century B.C. in connection with the problem of the duplication 
of the cube. 

It has been conjectured that the conics arose because of the sundial, 
which in its simplest form consists of an upright stick called a gnomon 
whose shadow moves with the sun. The word is related to the word 
know. The gnomon "knows" (i.e., measures) the time. The gnomon 
gradually became identified with anything vaguely in the shape of the 
Greek letter r (gamma), such as a carpenter's square to make right an­
gles, or even the shapes of successive odd numbers out of which squares 
are made, as in exercise 1.4 of Chapter 2. 

Since the sun is never directly overhead in Greece but always in the 
southern sky, one might model the sun's movement by a circle in a ver­
tical plane offset to the south as indicated in the figure below. A branch 
of a hyperbola is traced out on the plane of the earth by the tip of the 
shadow of the gnomon as the sun rises and sets. 

Sun moving 
, in a circle 

This picture naturally suggests a two-cusped cone, which is what 
Apollonius used. The curve pictured above is just one of two branches of 
a hyperbola, both branches being unbounded curves in the plane. 
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The other two types of conic sections occur when the plane cuts only 
one cusp of the cone. Usually this results in an ellipse, but we get a 
parabola if the plane happens to be parallel to one of the "sun's rays". 
Ellipses are always bounded curves in the plane, while a parabola is 
unbounded. A circle is a special case of an ellipse. 

Johannes Kepler (1571-1630), the astronomer, found it fascinating to 
reflect how the shape of such curves is altered as the angle changes be­
tween the plane and the cone, everything else being fixed. Start with a 
circle made by intersecting a two-cusped cone with a plane and imagine 
the angle made by the plane with the cone being slowly increased. The 
circle evolves into oval-shaped ellipses that become more elongated, 
then a parabola appears at the instant the plane is parallel to the "side" 
of the second cusp, and suddenly a second branch appears as the plane 
catches the second cusp to make a hyperbola. Kepler thus saw a kind of 
continuous evolution of ellipse to hyperbola, with the parabola serving 
as intermediary, "trying to be like both". The parabola occurs, so to 
speak, at the instant when less than changes to greater than in Apollonius' 
rhetorical description of the curve. 

We already know how to find an equation for a circle by specifying a 
center and radius-without thinking of the circle as a conic section one 
gets by intersecting a cone and a plane in a certain way. The Greeks, 
remarkably, proved analogous things about the other conic sections. We 
can find an equation for a parabola by specifying a focus and directrix­
without thinking of the parabola as the intersection of a cone and a 
plane. The focus F is a point, the directrix Dis a line not containing the 
focus. The curoe consisting of all points P equidistant from F and D is a 
parabola, where by the distance from a point to a line is meant the per­
pendicular distance. 

A whimsical description may be easier to grasp. Pretend the line D is 
the edge of a beach and the point F is the location of a (point-sized) boat 
at sea. Someone yells "Shark!" and each swimmer swims toward the 
nearest safe haven- either directly toward the beach D or toward the 
boat F. The parabola consists of the locations of all swimmers who are 
equally far from both safe havens (and perhaps hesitate before deciding 
which way to go). 
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It is obvious from this description that the point V halfway between F 
and D will lie on the parabola, and that the parabola will be symmetric 
with respect to its axis (the line through F and V). The point V is called 
the vertex of the parabola. 

If we skip from the time of Apollonius to the seventeenth century 
we can use Cartesian coordinates to find an algebraic equation for the 
parabola whose focus F is (0, I) and whose directrix D is the horizontal 
line given by the equation y = -I. The vertex V, halfway between F and 
D, is then located at the origin (0, 0), and the axis of the parabola (the 
line through F and V) is the y-axis. To find such an equation is to trans­
late the statement 

"(x,y) is on the parabola with focus F = (0, I) and whose directrix D 
is the line y =-I" 

into an algebraic equation. This we do in the following steps, each of 
which is easily seen to be equivalent to the preceding: 

Dist (x,y) to F is the same as Dist (x,y) to D 

Dist (x,y) to (0, I) is the same as Dist (x,y) to (x, -I) 

j(x- 0) 2 + (y -1)2 = j(x- x) 2 + (y- (-1)) 2 

(x - 0) 2 + (y - I )2 = (y + 1 )2 

x2 + y 2 - Zy + 1 = y 2 + Zy + I 
4y = x2 

y = ~ x2. 

(9) 

(10) 

Equation (IO) gives y as a function of x. We get a function, of course, 
because a parabola, if placed on a Cartesian coordinate system with its 
axis parallel to the y-axis, is never cut twice by any vertical line. More­
over, as Descartes and Fermat discovered, the graph of any "quadratic 
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function" of the form y = ax2 + bx + c is a parabola. We shall see later, in 
connection with a discussion of the quadratic formula, that any quad­
ratic function falls into one of the six types pictured in Section 9 of 
Chapter 4. 

Equation (10), if rewritten as x2 = 4y, comes out rather as Apollonius 
said it would in the passage quoted in Section 5 of Chapter 2. The ex­
pression xZ, interpreted geometrically, is the area of a square whose 
sides have length x units, and the expression 4y is the area of a rectangle 
of length y units and width 4 units. Thus the equation x2 = 4y says that 
the square made on the line segment running parallel to the directrix 
from the point (x,y) to the parabola's axis has the same area as a rect­
angle made by a segment of length y and a certain fixed line of length 4 
units. 

Let us rewrite condition (9), which describes a parabola, in terms of 
the ratio r defined by 

Dist (x,y) to F 
r= . 

Dist (x,y) to D 
(11) 

Equation (9) says (why?) that if r is set equal to 1 then the graph of 
equation (11) is a parabola. The Greeks discovered that an ellipse is de­
scribed by equation (11) if we set r equal to any fixed positive number 
less than 1, while a hyperbola is descnbed by equation (11) if we set r 
equal to any fixed positive number greater than 1. The ratio r is now 
known as the eccentricity of the conic section described by equation (11). 

We cannot do justice to the conic sections here because the topic is far 
too large. Apollonius wrote a treatise on the conics containing eight 
books and still left many interesting things for others to say later. The 
most famous statement regarding conics is surely Kepler's observation 
that each planet goes around the sun in an elliptical orbit with the sun at 
a focus. The eccentricities of planetary orbits range from 0.01 to 0.09, 
except for Mercury and Pluto, whose eccentricities are about 0.21 and 
0.25. The smaller the eccentricity, the more circular is the orbit. 

Kepler, incidentally, was the first to refer to the crucial point defining 
a conic (the point where he happily located the sun) by the Latin word 
focus, which literally means "fireplace" or "hearth". Apollonius had de­
scribed how to find this crucial point, given the cone and the cutting 
plane, and recognized how it interacted with the directrix in defining the 
curve, but never gave it a name. In fact, the ellipse and hyperbola each 
have two foci and two directrices (see exercises 4.4 through 4.7), and 
Apollonius knew how to describe these curves in terms of their foci 
without reference to their directrices. If the reader has studied these 
curves before, the chances are that they were introduced by giving 
Apollonius' description in terms of their two foci. 

Newton (1642-1727) later combined calculus and physics to deduce, 
in essence, that a conic section with the sun at one focus is the only 
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possible path for a planet or comet (or any relatively small heavenly 
body), so long as the only force acting upon it is the gravitational attrac­
tion of the sun. Since an ellipse is the only bounded conic section and 
since the path of a planet or a (returning) comet is bounded, such paths 
must be elliptical. Halley's comet, which returns every 76 years or so, 
has an elliptical orbit with an eccentricity of about 0.98. With its eccen­
tricity very close to 1.00, the orbit of Halley's comet is an ellipse that 
very closely resembles a parabola. A comet with a parabolic (or hyper­
bolic) orbit would, of course, never return to the solar system. 

Galileo (1564-1642) argued that a parabolic path should be taken by 
a cannonball in flight if the air friction that slows it down is ignored. 
Parabolic reflectors are commonly used today in everything from satel­
lite dishes to headlights. The analytic geometry of Fermat and Descartes 
reveals that every conic section, when placed on a Cartesian coordinate 
system, has an algebraic equation in x andy of second degree. The study 
of second-degree algebraic equations is, in essence, the study of conic 
sections! 

Pascal (1623-1662) and Desargues (1591-1661) invented a whole new 
geometry (projective geometry) by reflecting upon how conic sections 
are related to the various ways the shadow of a circular ring can be pro­
jected on a wall. The circle gives rise to the trigonometric functions and 
the most natural definition of logarithms involves the numerical calcu­
lation (by the method of exhaustion) of areas beneath portions of the 
hyperbola y = 1/x. The cone has proved to be misnamed. It is, both 
literally and figuratively, a cornucopia. 

Exercises 

4.1. Consider the parabola whose focus F is at (0, 2) and whose directrix Dis the 
line with equation y = -2. 
(a) What are the coordinates of the vertex of this parabola? 
(b) What is the axis of this parabola? 
(c) Find an equation for this parabola. Hint. Begin with the defining sen­

tence (9) and proceed in the direction of equation (10), making appro­
priate modifications. 

4.2. Consider the parabola whose focus F is at (O,p) and whose directrix is the 
line whose equation is y = -p. Find an equation for this parabola. Answer: 
4py =xl. 

4.3. In a sense, the "simplest" parabola is the one whose equation is y = x2. 
Where is its focus? Where is its directrix? Hint. This is really quite easy, in 
view of exercise 4.2. The equation y = x2 is the equation 4py = x2 provided 
p = 1/4. So where are the focus and directrix? 
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4.4. Consider the hyperbola whose focus F is (0, 1), whose directrix Dis given by 
the line y = -1, and whose eccentricity is 2. 
(a) Find an equation of this hyperbola. Hint. This means we should set r 

equal to 2 in condition (11 ), which implies 

Dist (x,y) to (0, 1) is twice the Dist (x,y) to (x, -1). 

Now proceedjust as in getting from (9) to (10) above, except take account 
of the extra factor of 2. Answer: x2 - 3y2 -lOy- 3 = 0. 

(b) Is (0, -3) on this hyperbola? 
(c) Is (0, -1/3) on this hyperbola? 
(d) Is the graph of this hyperbola the graph of a function? 

4.5. Consider the ellipse whose focus F is (0, 1 ), whose directrix D is given by the 
line y = -1, and whose eccentricity is 1/2. 
(a) Find an equation of this ellipse. Answer: 4x2 + 3y2- lOy+ 3 = 0. 
(b) Is (0, 3) on this ellipse? 
(c) Is (0, 1/3) on this ellipse? 
(d) Is the graph of this ellipse the graph of a function? 

4.6. Find an equation of the ellipse whose focus F is (0,7/3), whose directrix Dis 
given by the line y = 13/3, and whose eccentricity is 1/2. Answer: This, as it 
turns out, is the same ellipse as in exercise 4.5, but described in terms of its 
other focus and directrix. Condition (11) in this setting should work out to 
the same answer as in exercise 4.5. 

4.7. Find an equation of the hyperbola whose focus F is (0, -13/3), whose di­
rectrix D is given by the line y = -7/3, and whose eccentricity is 2. Answer: 
This has been set up to be the same hyperbola as in exercise 4.4, but de­
scnbed in terms of its other focus and directrix. Condition (11) in this setting 
should work out to the same answer as in exercise 4.4. 

4.8. (Curve sketching) the hyperbola and ellipse of exercise 4.4 and 4.5 have the 
same focus and directrix as the parabola whose graph is already sketched in 
this section. Use the equations found in these exercises-or just use their 
descriptions in terms of equation (11)-to make rough sketches of the 
graphs of these two curves on the same coordinate system as the parabola. 
Notice how the ellipse is "inside" the parabola and the hyperbola is "out­
side". Label the three curves with their eccentricities of 1/2, 1, and 2. Does 
this give you a sense of what Kepler meant by the parabola "trying to be like 
both an ellipse and a hyperbola"? 

4.9. (The "simplest" hyperbola) We have investigated the "simplest" parabola 
y = x2 in exercise 4.3. Surely the simplest ellipse is the unit circle x2 + y 2 = 1, 
which we have investigated in Chapter 2. We should not close this section 
without at least mentioning the simplest hyperbola, whose equation is 
y = 1/x. This curve plays an important role in constructing logarithms, as 
will be indicated in problems 21-22 of Chapter 6 and in problem 29 of 
Chapter 7. (It is not obvious from our definition in terms of equation (11) 
that the graph of y = 1 jx is a hyperbola, but it is. It has a focus at ( v'z, v"i), 
and an eccentricity of v'z.) 
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(a) Sketch a rough graph of the hyperbola given by y = 1/x. Answer: (Its 
graph is sketched in Section 1 of Chapter 5.) 

(b) Is the graph of y = 1/x the graph of a function? If so, what is its domain 
and range? 

§5. The Spirit of Archimedes 
Euclid's Elements, despite its achievements in rigor and synthesis, fails to 
reflect the nature of Greek mathematics in two important respects, both 
of which are vividly illustrated in the person of Archimedes of Syracuse 
(287-212 B.C.), the supreme mathematician of antiquity. In the first 
place, that spirit of delight in discovery- the spirit so associated with 
Archimedes-is nowhere to be found in Euclid. Second, the deepest 
work of Archimedes goes far beyond the elementary "straightedge and 
compass" constructions to which Euclid restricts himself in his Elements. 

What did Archimedes do? He developed a significant part of the 
calculus. The fundamental notion of the calculus-that of a limit-was 
well understood by Archimedes, although he did not call it by name. His 
understanding of the essential idea is implicit in his work. What is even 
more surprising, Archimedes had a clearer grasp of this notion than the 
seventeenth-century mathematicians who invented the term. 

In addition to his mathematics, which includes writings of unmis­
takable modernity in spirit (just glance for a moment at the appendix 
on Archimedes), Archimedes developed the theory of floating bodies 
into the science now known as hydrostatics. In the course of doing this, 
he effectively created mathematical physics. He was also an inventor of 
ingenious and useful devices such as a water pump, elaborate compound 
pulleys utilizing the law of the lever to remarkable advantage, and a 
mechanical contraption that described accurately the motions of the 
heavenly bodies. In spite of these accomplishments in applied mathe­
matics, he is said to have regarded himself as the purest of pure mathe­
maticians. Even today among mathematicians, only Newton and Gauss 
are mentioned in the same breath as Archimedes. 

Rome discovered Archimedes the hard way. Attacking Syracuse in 
214 B.C., the Roman general Marcellus had no way of guessing how for­
midable a foe he would encounter. Archimedes, in great old age, had 
invented and deployed all manner of weapons and techniques to repel 
the Roman legions. Plutarch's description of the campaign of Marcellus 
abruptly shifts to a description of Archimedes himself, who scared the 
pluperfect hell out of the Romans: 

In fine, when such terror had seized upon the Romans that, if they 
did but see a little rope or a piece of wood from the wall, instantly cry­
ing out, that there it was again, Archimedes was about to let fly some 
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engine at them, they turned their backs and fled; Marcellus desisted 
from conflicts and assaults, putting all his hope in a long siege. 

Yet Archimedes possessed so high a spirit, so profound a soul, and 
such treasures of scientific knowledge, that though these inventions had 
now obtained him the renown of more than human sagacity, he yet 
would not deign to leave behind him any commentary or writing on 
such subjects; but, repudiating as sordid and ignoble the whole trade of 
engineering, and every sort of art that lends itself to mere use and 
profit, he placed his whole affection and ambition in those purer specu­
lations where there can be no reference to the vulgar needs of life; 
studies the superiority of which to all others is unquestioned, and in 
which the only doubt can be whether the beauty and grandeur of the 
subjects examined, or the precision and cogency of the methods and 
means of proof, most deserve our admiration. It is not possible to find in 
all geometry more difficult and intricate questions, or more simple and 
lucid explanations. Some ascribe this to his natural genius; while others 
think that incredible effort and toil produced these, to all appearances, 
easy and unlabored results .... 

And thus it ceases to be incredible that (as is commonly told of him) 
the charm of his familiar and domestic Siren made him forget his food 
and neglect his person, to that degree that when he was occasionally 
carried by absolute violence to bathe or have his body anointed, he used 
to trace geometrical figures in the ashes of the fire, and diagrams in the 
oll on his body, being in a state of entire preoccupation, and, in the 
truest sense, divine possession with his love and delight in science. 

-Plutarch's Lives, translated by John Dryden 

When historians speak of a spirit-such as the spirit of democracy or 
the spirit of Rome-they usually refer to an abstract idea. Here, how­
ever, Plutarch describes a spirit that is the very opposite of an abstrac­
tion. It is so real, in fact, that it even cries out and is heard, although 
only on auspicious occasions. This spirit was never so much at home as 
when it resided within the body of Archimedes and raised the roofs of 
Syracuse with its colossal shouts of surprise and delight. 

Archimedes' spirit has been described by phrases rendered into 
English both as a "raging Siren" and as a "familiar demon". The first is 
an apt description of the overflow of exuberance in the moment of light; 
but such moments come only to those who can stand the dark. The sec­
ond seems more descriptive of that spirit of compelling total engage­
ment whose charm kept Archimedes through the long nights and made 
him "trace geometrical figures in the ashes of the fire, and diagrams 
in the oil on his body, being in a state of entire preoccupation, and, in 
the truest sense, divine possession." All students of mathematics have 
known all manner of approximations to this kind of spirit. Without its aid 
one can do little; with its aid one can, like Archimedes, aspire to move 
the earth. 

Indeed, this same spirit is almost as conspicuously present in the first 
modem mathematician powerful enough to be compared with Archi­
medes. Isaac Newton could also muster the self-discipline to keep his 
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subject constantly before him for great periods of time in order to "wait 
till the first dawnings open little by little into the full light." Almost 
supernatural power can come to those who struggle with a problem so 
hard as to feel its presence within themselves. The Greek phrase en 
theos, "a god within"-from which enthusiasm comes-suggests the 
power that such an engagement can generate. 

Archimedes' power of concentration, however, caused his death by 
sword at the age of 75. His military inventions had helped to keep the 
Romans at bay for some two years, but Marcellus' men finally broke 
through. According to one account, Archimedes was struck down when 
he ignored a Roman soldier's order and continued to study the lines and 
curves he had drawn in the sand. This was in 212 B.C. Eratosthenes and 
Apollonius died fairly soon thereafter, and the glory of Greek mathe­
matics was soon to fade. 

The long period of Roman domination followed, but as we have noted, 
the Greek enkuklios paideia lived on with its new Latin name, artes lib­
erales. Its survival was aided by educated Greek slaves who tutored their 
Roman masters' children, an irony that did not go unnoticed by the 
Romans. Graecia capta ferum victorem cepit-"Conquered Greece took 
captive her barbarous conqueror"-wrote the Roman poet Horace 
around 15 B.C. 

Cicero (106-43 B.C.) wrote in old age of his tenure in Sicily in 75 B.C. 

when he remembered having learned some verses describing a sphere 
within a cylinder marking the tomb of Archimedes, Syracuse's "one 
most ingenious citizen" yet an "obscure, insignificant person". After 
some search in the company of prominent Syracusans who knew noth­
ing of the tomb, he spotted a small column of this description. Slaves 
were sent in to remove a dense overgrowth of brambles and thickets, 
and Cicero found the beginning words of these verses barely legible on 
the pedestal. He restored the tomb, although it has since disappeared. 

This poignant story, it has been remarked, is almost the only contri­
bution to the history of mathematics made by a Roman. Although Cicero 
venerated Plato, he ignored Plato's strong endorsement of the quadrivium 
and used the Latin term humanitas to translate the Greek paideia. He 
valued mathematics only for its uses in engineering or in everyday life: 

With the Greeks geometry was regarded with the utmost respect, and 
consequently none were held in greater honor than mathematicians, 
but we Romans have restricted this art to the practical purposes of 
measuring and reckoning. 

But on the other hand we speedily welcomed the orator .... 

-Cicero, Tusculan Disputations 

When the Romans allowed oratio to supersede ratio as the key ele­
ment in the artes liberales, they shifted the center of education decisively 
toward the trivium, pushing mathematics far to the side to be studied 
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only for its practical utility as an applied science. We should not be too 
quick to fault the Romans, however, for today we still fail to see how 
chimerical is the nature of utilitarianism. The immediately practical 
may soon become as useless as Roman numerals, while ultimately use­
ful things, such as a liberal education, may never become immediately 
practical. 

We are surely free, like the Romans, to try to embrace utilitarianism if 
we wish; but who is wise enough to say today what might be useful to­
morrow? Consider the calculus, which was to grow out of seventeenth­
century mathematics. It is still prized highly today for its utility, even by 
some who value relevance and applicability of knowledge more than 
knowledge itself. Calculus is indispensable to the modern engineer. Yet 
Archimedes, who "repudiat[ ed] as sordid and ignoble the whole trade 
of engineering, and every sort of art that lends itself to mere use and 
profit," had unlocked some of the secrets of the calculus in the normal 
course of his studies. 

Today the other secrets of the calculus seem to us not far from 
Archimedes. But Roman engineers added to mathematics little of value. 
For a thousand years the puzzling riddles lay right where Archimedes 
fell, in the reddening sand, amongst pebbles, lines, and curves. 

Exercises 

5.1 Archimedes is famous in mathematics for his deep results about areas, vol­
umes, and centers of gravity, which are notoriously difficult. Yet his method 
of trisecting an angle is beautifully simple. Read about this method at the 
beginning of the appendix on Archimedes, then prove the method works by 
using the hint in problem 1 at the end of that appendix. 

5.2 Alfred North Whitehead was fond of comparing the Greek and Roman atti­
tudes toward mathematics (and toward abstract thought in general) by 
simply remarking that no Roman ever lost his life because he was engaged 
in the contemplation of a mathematical diagram. Explain in more detail the 
point that Whitehead was making. 

5.3 Do a little outside reading about the Greeks, and particularly about Archi­
medes. For example, read pages 19-34 of E. T. Bell's Men of Mathematics 
(Simon and Schuster, New York, 1937). 
(a) What did Archimedes mean when he said, "Give me a place to stand on, 

and I will move the earth!" 
(b) What does E. T. Bell mean when he says that modern mathematics was 

born with Archimedes and died with him for over two thousand years? 
Hint. See problem 16 at the end of this chapter. 

(c) "Eureka! Eureka!" shouted the streaking sage of Syracuse. Why? 
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§6. What is the Rest of the Story? 
We have just about finished our review of precalculus mathematics and 
should be well prepared to turn in the next chapter to the new ideas of 
calculus developed in the seventeenth century. Thus we shall be moving 
quickly from the time of Archimedes to the rise of calculus, two periods 
separated by nearly 2000 years. Mathematically, this transition is not 
difficult because of the astonishing modernity of Archimedes. Histori­
cally, however, nothing could be more wrenching. If this were a history 
of calculus, rather than a pedagogical approach making selective use of 
history, we should thoroughly discuss this long period. Instead, we must 
content ourselves with the briefest of summaries. 

For whatever reasons (see problem 26 at the end of this chapter), 
western Europe added little to mathematics for many centuries follow­
ing the death of Archimedes, except for the work of some Alexandrian 
Greeks such as Claudius Ptolemy (ca. 1 00-178) and Pappus (ca. 250-
300). Chinese and Indian mathematicians cultivated the subject and 
made some innovations, but mathematics did not begin to steer out of 
the doldrums until it was buoyed up and carried forward by the rising 
tide of the Islamic movement in the eighth and ninth centuries. 

Islamic scientists were particularly attracted to astronomy, to which 
they made many new contributions, and which inspired their develop­
ment of new theorems in solid geometry and of remarkably detailed and 
accurate trigonometric tables. Ptolemy's book on Greek astronomy was 
highly esteemed by the Arabs, who called it al-magistri, "the greatest", 
and ever since it has been known as the Almagest. They preserved, 
translated into Arabic, studied, and in some cases expanded upon many 
of the Greek classics written by Euclid, Archimedes, and Apollonius­
not to mention the great number of nonmathematical Greek and Roman 
classics that attracted them as well. 

They also popularized the Hindu-Arabic numerals, now almost uni­
versally used, and they experimented with decimal fractions. In addi­
tion, Islamic mathematicians cultivated algebra, itself an Arabic word­
al-jabr, meaning "restoring" -that comes from the title to al-Khowarizmi's 
famous book written around 825. With the Greeks, algebra had been tied 
to geometry, but now this connection was being severed. The Arabs had 
nothing like our modern notation, but they took an important step in 
this direction. 

a b 

Square of "a plus b" 

~ 
LJj 

Greek "geometrical" algebra Modern equivalent expression 
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The Egyptian mathematician ibn al-Haytham (965-1039)-known in 
the West as Alhazen and famous also for his work in optics-developed a 
technique using figurate numbers by which one could, in principle, find 
a formula for the sums of powers of integers, generalizing the Greek 
formulas which stopped with sums of cubes. Thus, for example, he 
proved that 

4 4 4 4 n(n+1)(2n+1)(3n2 +3n-1) 
1+2+3+···+n= . 

30 

Ibn al-Haytham•s approach is like that discussed in Section 1 of Appen­
dix 2 in this book, which uses the same idea as rediscovered by Blaise 
Pascal (1623-1662). Such formulas, as we shall see in Chapter 7, are 
helpful in determining certain areas and volumes. 

Mathematics is often rediscovered because no one can know every­
thing that has been learned before, particularly if it is written in a foreign 
language. Ibn al-Haytham and other Islamic mathematicians did not 
know all of Archimedes' works and, in the course of adding original 
results relating to volumes of solids and their centers of gravity, also 
rediscovered some deep theorems of Archimedes. The Persian poet 
al-Khayyami-famous in the West as Omar Khayyam (1048-1131)-was 
also a mathematician, wrote a book on algebra, and worked hard and 
effectively on general methods of solving cubic equations, a topic that 
attracted many of his colleagues and to which Archimedes had also 
contributed. 

Not too long ago it was commonly thought that Islamic mathema­
ticians mainly preserved and refined existing material. Recent historical 
scholarship has revealed, however, that they made quite strikingly origi­
nal contributions, as indicated above, and had the capacity to transmit 
to other cultures by the twelfth and thirteenth centuries a great deal 
more than they had received from the Greeks and Indians in the eighth 
and ninth centuries. 

While Islamic science was declining, some amazing discoveries in­
volving sums of infinite series were made by Indian mathematicians, for 
example, 

n 1 1 1 
-=1--+---+··· 
4 3 5 7 

(12) 

and 

(13) 

These equalities appear in Sanskrit verse from an early sixteenth­
century Indian work. Adding up just a few terms of the right-hand side of 
equality (13) and then multiplying by 4 yields an excellent approxi­
mation to n. Unfortunately, these and many other Islamic and Indian 
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contnbutions did not make their way to the West and had to be redis­
covered by European mathematicians on their way to the development 
of calculus. 

There were also adumbrations of calculus in the work of Seki Kowa 
(1642-1708), "the Japanese Newton", but little is known for certain be­
cause of Japan's isolation at that time and the Samurai code of modesty 
to which Seki subscribed. There has been found, however, a 1683 manu­
script of Seki's on determinants, which were independently introduced 
in Europe by Leibniz (1646-1716), who, incidentally, rediscovered for­
mula (12) above. 

The torch that first burned so brilliantly in Greece has thus been 
taken up by diverse peoples and cultures, and Archimedes' cry of sur­
prise and delight now resounds in many tongues. Does this not suggest 
that the spirit behind Archimedes' Olympian quest for excellence be­
longs to all people of all cultures? Surely it behooves us to view the spirit 
of Archimedes as Plato would have us view an eternal form- not as 
an expression of the genius of one man or one culture, but as part of 
the essence of humanity itself, exerting its influence through time 
immemorial. 

Is it not this quintessentially human spirit that makes us cry out in 
exaltation when we succeed in the face of overwhelming odds? Until the 
last eureka is shouted, the spirit of mathematics will live. 

Problem Set for Chapter 3 

1. Which aspects of the Pythagorean philosophy influenced Plato? Describe 
how. 

2. Plato and Aristotle held differing views about the nature of mathematics and 
about the value of mathematics. Contrast their opinions on each of these 
issues. 

3. (Where did geometry come from?) Aristotle said that geometry was cultivated 
by the priestly class in Egypt and Democritus presumably referred to sur­
veyors when he spoke of Egyptian "rope-stretchers". Yet the Pythagoreans, 
in their analogy 

GEOMETRY: ASTRONOMY :: ARITHMETIC: MUSIC, 

associated geometry with the heavens, a source of fascination even in pre­
historic times. 
(a) What is the literal meaning of the Greek word geometry? 
(b) Where do you think most likely that geometry originated? Did it come 

from the earth, from the heavens, or from somewhere else? 
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(c) Plato said that the word geometry is a misnomer, for the subject-matter of 
the geometry developed in Greece is not found in the earth-or in the 
heavens either, for that matter. What did Plato mean by this? 

4. (See exercise 1.9 for definitions of arithmetic, geometric, and harmonic means.) 
An arithmetic sequence is a sequence like 1,2,3,4, ... , where each term (ex­
cept, of course, the first and the last) is the arithmetic mean of the terms 
before and after it. A harmonic sequence is a sequence like 1, 1/2,1/3,1/4, ... , 
where each term is the harmonic mean of the terms before and after. And a 
geometric sequence is defined similarly. 
(a) What kind of sequence is 1, x, x2 , x3 , ••• ? 
(b) If a1 , a2 ,a3 , ... is an arithmetic sequence of nonzero numbers, what kind 

of sequence is 1/aJ, 1/az, 1/a3, ... ? 
(c) Is the sequence 1, 3, 6, 10, ... of triangular numbers arithmetic? harmonic? 

geometric? How about the sequence of squares: 1, 4, 9, 16 ... ? 
(d) Is it possible for a sequence to be arithmetic, harmonic, and geometric at 

the same time? If so, give an example of such a sequence. Hint. Only the 
dullest type of sequence can be all three at once. 

(e) The successive notes on a piano-C, C#, D, D#, E, F, F#, etc.-might 
be loosely described as an arithmetic sequence, since they progress from 
the first note to the second to the third, etc. The successive pitches (fre­
quencies) of these notes is not an arithmetic sequence, however. What 
kind of sequence is it? 

5. "Limits are as simple as pi." This pun contains a good deal of truth. Explain. 

6. There is some reason to believe that Plato conjectured that viz and .J3, when 
added, should give n. Here Plato was thinking along philosophical-not 
mathematical-lines. Explain clearly how, in the century following Plato, 
Archimedes finally settled this conjecture. Suggestion: Re-work the ideas cir­
culating around exercise 3.5 (c), explaining carefully in a couple of para­
graphs the reasoning involved. 

7. (What is the sum of cubes?) The Greeks noticed a pattern relating cubes and 
odd numbers: 13 = 1, the first odd number; 23 = 8 = 3 + 5, the sum of the 
next two odd numbers; 33 = 27 = 7 + 9 + 11, the sum of the next three odd 
numbers; 43 = 64 = 13 + 15 + 17 + 19, the sum of the next four odd num­
bers. Thus the sum of the first four cubes is equal to the sum of the first ten 
odd numbers (since 10 = 1 + 2 + 3 + 4), which is in turn equal to the square 
of 10, or 100. That is, 

13 + 23 + 33 + 43 = 1 + 3 + 5 + · · · + 19 

=sum of first ten(= 1 + 2 + 3 + 4) odd numbers 

= the square of ten [by exercise 1.4, Chapter 2] 

= 100. 

(a) The pattern continues, revealing a simple formula for the sum of cubes. 
By extending this pattern to the general case, show that the sum of the 
first n cubes is equal to the square of n(n + 1)/2. Suggestion: Copy down 
the following steps and explain how the results of exercise 1.4 and 1.5 of 
Chapter 2 help justifY them: 



Problem Set for Chapter 3 

13 + 23 + 33 + 43 + ... + n3 

=the sum of the first (1 + 2 + · · · + n) odd numbers 

n(n + 1) 
= the sum of the first 2 odd numbers 

n(n + 1) 
= the square of 2 

n2 (n + 1)2 

4 
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(b) Use the formula of part (a) to evaluate the sum 13 + 23 + 33 + 43 + · · · + 
1003. 

(c) Does your work in this problem destroy the magic in problem 21 of 
Chapter 1? 

8. (What is the sum of squares?) In the preceding problem we derived a formula 
for the sum of cubes. The formula for the sum of squares is more difficult, 
but was discovered early on. Archimedes explained how it could be dis­
covered by reasoning somewhat along the following lines. 
(a) Recall from exercise 1.7 of Chapter 2 that the triangular numbers are 1, 

3, 6, 10, 15, etc., the n-th triangular number being 1 + 2 + · · · + n = 
n(n + 1)/2. It is obvious from consideration of a square as a figurate 
number that any square (greater than 1) is the sum of two consecutive 
triangular numbers. Thus 4 = 1 + 3; 9 = 3 + 6; 16 = 6 + 10, etc. Hence 
any sum of squares can always be rewritten as a sum of triangular numbers. 
For example, 

12 +22 +32 +42 = 1 +(1 +3) +(3 +6)+ (6+ 10) 

= 1 +3+6+10+6+3+ 1. 

1+2+3+4 

2(4) + 1 

Since each of the three areas of the large rectangle above is equal to 
12 + 22 + 32 + 42 it follows that 
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3(12 + 22 + 32 + 42) = area of large rectangle 

= (1 + 2 + 3 + 4)(2(4) + 1) 

4(4+1)( () ) =--2- 2 4 +1. 

[by exercise 1.5, Chapter 2] 

Show by the same reasoning (using exercise 1.5 and 1.7 of Chapter 2) 
that 

3(1 2 +22 + ··· +n2 ) = (1 +2+ ··· +n)(2n+ 1) 

= n(n: 1) (2n + 1), 

then divide both sides by 3 to get the formula for the sum of squares: 

2 2 2 n(n+1)(2n+1) 
1+2+···+n= 6 . 

9. (The pyramid problem is now easy) Imagine a huge "pyramid" of baseballs 
resting upon a square base. The "top vertex" of the pyramid is a single base­
ball which rests upon 4 baseballs in the shape of a 2 x 2 square. These in turn 
rest upon 9 baseballs in the shape of a 3 x 3 square. And so on, down to the 
bottom. If the base of the pyramid consists of a square of baseballs of size 
100 x 100, how many balls are in the entire pyramid? Hint. The total number 
of balls is obviously given by 12 + 22 + · · · + 1002, and this is quickly eval­
uated using the formula derived at the end of the preceding problem. 

10. (Approximating the ratio r6) Consider again the "pyramid" in the preceding 
problem and consider its size relative to a "cube" of baseballs also built on a 
base of 1 00 x 1 00 balls. 
(a) Find the ratio of the number ofballs in the cube to the number ofballs in 

the pyramid whose base is the same size. Hint. The number ofballs in a 
cube built on a base of 100 x 100 balls is, of course, 1003 . 

(b) Explain why you should expect this ratio to be very close to, but not 
equal to, the ratio r6 introduced in Chapter 2, Section 2. 

(c) Re-do the ratio of the cube to the pyramid if both have a base of 
1000 x 1000 balls instead of 100 x 100. Explain why you should expect 
this ratio to be even closer to r6 than your answer to part (a). 

(d) Re-do the ratio of the cube to the pyramid if both have a base of 
10,000 x 10,000 balls. Explain why you should expect this ratio to be 
even closer to r6 than your answer to part (c). 

11. (The ratio r6 as a limit?) Find the ratio of the cube to the pyramid described in 
the preceding problem ifboth have a base ofn x n balls. Show that this ratio 
is given by 

(n + 1)(2n + 1)" 
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(a) Rewrite this ratio by dividing top and bottom by n2 to see that it is equal 
to 

6 

(b) Setting n equal to 100 in this expression (so that 1/n = 0.01) should make 
it agree with your answer to problem 10(a). Is your answer to 10(a) equal 
to 6/(1.01)(2.01)? 

(c) Is your answer to 10(c) equal to 6/(1.001)(2.001)? And is your answer to 
10(d) equal to 6/(1.0001)(2.0001)? 

(d) The numbers 6/(1.01)(2.01), 6/(1.001)(2.001), 6/(1.0001)(2.0001), · · · 
seem to be getting progressively closer to the exact value of the ratio r6 . 

Can you now guess what the exact value of r6 must be? According to 
Archimedes, Democritus (ca. 460-370 B.C.), the famous philosopher of 
atomism, was the first to discover the exact value of the ratio r6 . (No one 
knows how Democritus did it, but perhaps he counted atoms instead of 
baseballs.) 

(e) Did you guess correctly about the rationality ofr6 in your answer to ex­
ercise 3.8? 

12. Consider the figure below, where the two triangles have a vertex in common 
and the lengths of their bases are equal. Prove that the triangles have the 
same area. 

b b 

13. Here is a problem that intrigued the Greeks. Given a figure, construct a tri­
angle whose area is the same as that of the figure. (For example, given the 
lunes of problem 18 of Chapter 2, Hippocrates found a triangle of the same 
size.) Do this for a regular octagon. (Regular means all sides have the same 
length and all angles made by adjacent sides are equal.) Hint. Stare at the 
figure below, and use the result of the preceding problem. (Both figures can 
be thought of as being made up of eight triangles.) 

I~ 
b b b b b b b b b 
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14. By a regular polygon ofn sides is meant a figure in the plane bounded by n 
equal sides with n equal angles. (Problem 13 dealt with a regular polygon of 8 
sides.) Let r denote the perpendicular distance from the center of a regular 
polygon to a side. Show that the area of a regular polygon is equal to the area 
of a triangle whose height is r and whose base is equal in length to the 
perimeter of the polygon. Hint. Stare at the figure below, and use the same 
reasoning as you did in the preceding problem. 

I~ 
d d d d 

1--------Perimeter of polygon-------o-1 

15. (Here the reader is asked simply to make a guess after considering the evidence.) 
Keep in mind that the equality of areas of the regular polygon and the cor­
responding triangle pictured in problem 14 holds, no matter how many sides 
the polygon has. This equality of areas holds for a polygon of a billion sides, 
for instance. Keeping this in mind, stare at the two figures below. One is a 
circle of radius r, and the other is a triangle of height r whose base is equal in 
length to the circumference of the circle. 

c 

Now make a guess as to which of the following is true: 
(a) The area of the circle exceeds the area of the triangle. 
(b) The area of the triangle exceeds that of the circle. 
(c) The area of the triangle equals the area of the circle. 

16. (For more ambitious students) the amount and the type of reasoning which 
constitute an irrefutable argument in mathematics have never been fixed. 
Some things that the seventeenth century took as obvious (i.e., requiring no 
proof), the twentieth century and also the ancient Greeks accepted only after 
a careful demonstration from basic principles had been given. If you believe 
that the statement in part (c) of problem 15 is "obviously" true, then you are 
in the good company of some of the keenest minds of the seventeenth cen-
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tury. They would reason that equality between areas of polygons and circles 
carries over "in the limit", a circle being regarded as the "geometric" limit of 
the polygons that approximate it ever more closely. 

On the other hand, you may feel that statement (c) in problem 15 re­
quires a clear proof because you have only made an "educated guess" that 
it is true. If so, then you are at home with Archimedes and with most 
twentienth-century mathematicians who would think so too. Archimedes 
proved 15(c) by showing that 15(a) leads to a contradiction, as does 15(b). 
Can you? (See the appendix on Archimedes for his proof.) 

17. Write a paragraph explaining clearly in your own words how the truth of 
statement (c) in problem 15 leads us quickly to a proof of the familiar for­
mulas A = nr2 and C = 2nr. 

18. The formula A= nr2 can be thought of as defining A as a function ofr. Plot a 
few points on the curve determined by this function. What is its domain? 
What is its range? 

Similarly, the formula C = 2nr can be thought of as defining C as a func­
tion of r. What is its domain? What is its range? Plot a few points on the curve 
determined by this function. Is the "curve" really a straight line? 

19. Consider a conic section whose focus is at (4,2) and whose directrix is the hori­
zontal line with equation y = -2. Write an equation for the conic section if 
(a) it is a parabola. 
(b) it is an ellipse whose eccentricity is 1/2. 
(c) it is a hyperbola whose eccentricity is 2. 

20. Define the terms ellipsis, parable, hyperbole, ellipse, parabola, hyperbola, and 
explain how the latter three terms from geometry are related to their 
counterparts in rhetoric. 

21. (Messy, but illuminating) Find an equation of the parabola with focus (600, 
179,999.5), whose directrix is given by the line y = 180,000.5. After simplifY­
ing your answer, explain why Lim: A Fable, from Chapter 1, Sections 7-8, 
might be subtitled "a parable of a parabola". Make a guess as to the name of 
the curve f of Section 2, Chapter 1. 

22. (There is only one parabola!) Although there are lots of c1rcles, Plato thought 
of the Circle as a single "form". That is, any two circles are similar in the 
same sense that any two equilateral triangles are similar. Speaking very 
loosely, we consider two figures in the plane to be similar if a photograph of 
one, when propt·rly enlarged, can be superimposed precisely upon the other. 
Thus, for example, a 3-4-5 right triangle is similar to a 6-8-10 right triangle 
by a magnification ratio of 2. (Not all right triangles are similar, however, 
because no matter how you magnifY a 3-4-5 right triangle, you cannot put it 
in the form of a 5-12-13 right triangle.) 
(a) Whereas it is obvious that there is only one circle in the sense explained 

above, it is rarely observed that there is only one parabola. Explain why 
any two parabolas are similar. 

(b) What about ellipses? Are any two ellipses similar? What if they have the 
same eccentricity? 

(c) What about hyperbolas? Are any two hyperbolas similar? 
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23. (A whimsical introduction to tangents) the definition of a tangent line to a curve 
at a point P lying on the curve will be given precisely in the next chapter. 
The intuitive idea can be given here, however. Suppose you are a shark, 
shrunk to the size of a very short line segment, and you are swimming in a 
perfect circle. That is, you are swimming in such a way as to keep your 
midpoint-the midpoint of that line segment-on a given circle. Make are­
ductio ad absurdum argument showing that the only way you can do this is to 
position yourself always so that your body-the line segment-is perpendic­
ular to the radial line joining the center of the circle to your midpoint. (Don't 
take this problem too seriously. Just give an informal argument suitable for pre­
sentation to pool sharks convincing them that if they don't position themselves in 
this manner they will either veer inside the circle or outside the circle.) 

'1 

Stupid sharks Smart sharks Tangent lines to a circle 

24. (More whimsy, more tangents) Do you "get the idea" of a tangent line to a 
curve? Then consider the graph of the parabola y = ~ x2 . Suppose you are a 
shark-shrunk to the size of a short line segment-swimming so that your 
midpoint always lies on this parabola. 
(a) How must you position yourself in order not to veer off the curve? Hint. 

Look at the graph of this parabola, which is pictured in Section 4. Sup­
pose your midpoint is located at the point (x,y) that is indicated in this 
picture. You had better position yourself so that you-the line segment­
bisect a certain angle. What angle? Why? 

(b) In essence there is only one circle. Describe how you would draw a 
tangent line at any point P on a circle, by finishing this sentence: "The 
tangent line at the point P on a circle with center 0 is the line through P 

that is perpendicular to ... " 
(c) In essence there is only one parabola. Describe how you would draw a 

tangent line at any point P on a parabola by finishing this sentence: "The 
tangent line at the point P on a parabola with focus F and directrix D is 
the line through P that bisects the angle made by the lines ... " 

(d) Use your answer to part (c) to draw the tangent line to the graph of 
y = ~x2 (pictured in Section 4) at each of the following points: (2, 1), (0, 0) 
and(-2,1). 

The Greeks could construct tangent lines to all the conic sections, and to 
many more curves with geometric descriptions. Calculus, as we shall see in 
the next chapter, provides a simple method of quickly finding tangent lines 
to the much more general class of curves arising in analytic geometry 
through algebraic descriptions. 
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25. Write a paragraph explaining clearly why the modern terminology in in­
equality (11) of Section 6 of Chapter 2 says much the same thing as the 
ancient language of the following statement (12) that avoids abbreviative 
symbolism. 

26. (To follow up on the preceding question) Some historians attribute the eventual 
decline of the Greek mathematical tradition to the Greeks' failure to develop 
abbreviative symbolism. Others say the fairly sudden and steep decline, 
which begins shortly after 200 B.c., is principally due to the Greeks' over­
emphasizing geometry and thereby failing to embrace the numerical 
methods that are made almost second nature by the modern use of decimal 
expansions, which were not widely adopted before the seventeenth century. 
Still others point to a "horror of infinity" as the main cause, saying the 
Greeks were so wary of encountering paradoxes when they approached the 
infinite that they never did so without an exruciatingly rigorous circum­
spection that would intimidate most students. Finally, many historians point 
to the "cold breath of Rome" as the reason why the flame of mathematics 
died, alluding to the fact that during their long period of domination the 
"practical" Romans showed no interest in promoting research that was not 
immediately "useful". What do you think about the relative importance of 
these reasons? Rank these four reasons in order of their importance. 

27. (For poets: a long question with a short answer) Here is a poem by Walt 
Whitman (1819-1892): 

When I heard the learn'd astronomer, 
When the proofs, the figures, were ranged in columns before me, 
When I was shown the charts and diagrams, to add, divide, and measure 

them, 
When I sitting heard the astronomer where he lectured 

with much applause in the lecture-room, 
How soon unaccountable I became tired and sick, 
Till rising and gliding out I wander'd off by myself, 
In the mystical moist night-air, and from time to time, 
Look'd up in perfect silence at the stars. 

A different perception of beauty in nature is found in the following words 
of the French mathematician Henri Poincare (1854-1912): 

The scientist does not study nature because it is useful: he studies it because 
he delights in it, and he delights in it because it is beautifu 1. If nature were 
not beautiful, it would not be worth knowing, and if nature were not worth 
knowing, life would not be worth living. Of course I do not here speak of that 
beauty that strikes the senses, the beauty of qualities and appearances; not 
that I undervalue such beauty, far from it, but it has nothing to do with 
science; I mean that profounder beauty which comes from the harmonious 
order of the parts, and which a pure intelligence can grasp. 

Poincare writes in prose, not in poetry, and his words are not so well 
known as Whitman's. Help to rectify this by expressing Poincare's senti­
ments in a short poem of your own composition-the shorter, the better. Can 
you do any better than the two lines of Plato that are quoted in Section 1? 

28. (A long question with an even shorter answer) Consider the following quotation 
from Alfred North Whitehead, on Roman civilization: 

Rome itself stands for the impress of organization and unity upon diverse 
fermenting elements. Roman law embodies the secret of Roman greatness in 
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its Stoic respect for intimate rights of human nature within an iron frame­
work of empire. Europe is always flying apart because of the diverse explo­
sive character of its inheritance, and coming together because it can never 
shake off that impress of unity it has received from Rome. The history of 
Europe is the history of Rome curbing the Hebrew and the Greek, with their 
various impulses of religion, and of science, and of art, and of quest for 
material comfort, and of lust of domination, which are all at daggers drawn 
with each other. The vision of Rome is the vision of the unity of civilization. 

What did the Romans do for mathematics? 

29. (A sophistry) Here is the sort of thing Plato abhorred, a slick argument cal­
culated to deceive and demean the uneducated. Find the major fallacy in this 
sophistry. 

Don't you know, you silly mortal, that you won't live more than a hundred 
years or so at most? And don't you see how foolish and futile it is for you to 
think that you might do in your brieflifetime what only a god could do? Look 
at you, trying to find the least number in the range of costs given by 
C = 7L + 48/L, where L can take on infinitely many values. Don't you see 
that you, a pitiful mortal, can never know all the infinitely many possible 
costs? Only a god could know! 
How do you expect to find the least cost if you can't find all the costs? 
Someone could always come after you and find some new value of L that has 
a lower cost C than any cost you might have found during your pitifully brief 
life. How foolish you are to think you are like a god! Your hubris could fill 
the ocean. Why don't you go drown yourself? 
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Given a curve, such as the one below, how can one locate its lowest 
point? This problem arose naturally in Chapter 1, along with the analo­
gous problem of finding the highest point on a curve. Both problems can 
be solved by the same method, to which we now turn. 

55 

50 

45 

40 

2 3 4 

§1. Rising and Falling Lines 

We must agree first how to use the words rising and falling, for there is 
danger of misunderstanding. Is the curve above rising or falling as it 
passes through the point (1, 55)? The answer depends upon whether one 
thinks of the curve as being traced out from left to right or in the reverse 
direction. So that we all speak the same language, let us agree to think of 
any function's curve as being traced out from left to right (or from west to 
east, if you prefer). The curve above is then falling as it passes through 
(1, 55), and rising as it passes through (4, 40). 

113 
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Before going further, we had better mention the simplest curves of all: 
straight lines. Below are pictured falling, horizontal, and rising lines. 

\(I,SS) 

Falling line 
(negative slope) 

(?, ?) 

Horizontal line 
(zero slope) 

~ 
Rising line 
(positive slope) 

These three lines, if superimposed upon the curve pictured on the 
preceding page, may give the reader a hint as to the method we shall 
develop. At each point P on a curve, we shall seek the line through P that 
most closely approximates the curve near P. This line will be called the 
tangent line to the curve at P. The discussion oftangent lines begins in 
Section 3, and most ofthis chapter is devoted to their study. 

What does the study of tangent lines to curves have to do with the 
problem stated in the first sentence of this chapter? Look again at the 
curve on the preceding page. It is pretty clear, is it not, that the lowest 
point occurs where the tangent line is horizontal, that is, where the tan­
gent line slopes neither up nor down. 

We must give a precise meaning to the word slope. 

Definition 
The slope ofthe line joining (x~,y1 ) and (x2 ,y2 ) is given by 

For example, the slope of the line joining ( 4, 6) and (5, -3) is given by 

-3-6 = -9. 
5-4 

The slope of a line is a number that measures how fast the line rises 
(or, when the slope is negative, how fast the line falls). If Lis the line 
joining ( x~, Y1) and ( Xz, Yz), then 
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so that we have 

Yz - Yl = Slope L, 
Xz- X1 

115 

(1) 

The relation expressed in equation (1) will be useful later in finding an 
equation of the line L. 

Exercises 

1.1. Find the slope of the line joining (1, 2) and (3, 7), and draw a picture of this 
line. Partial answer: Slope is 5/2. 

1.2. Find the slope and draw a picture of the line joining (1, 2) and (3, -2). Is this 
line rising or faUing? 

1.3. Find the slope and draw a picture of the line joining (1, 2) and (5, 2). Is this 
line rising or falling? 

1.4. Find the slope and draw a picture of the line joining (1, 2) and (1, 5). Partial 
answer: Slope is undefined. 

1.5. Using geometry, show that the slope of a line is independent of which pair of 
points is chosen to calculate the slope. That is, in the figure below, show that 
the slope from P to Q is equal to the slope from R to S. Hint. The slope is 
simply a ratio of two sides of a triangle. Prove that the triangles are similar. 

1.6. (a) Find the slope of the line Ljoining (1, 2) and (3, 5). 
(b) Find the slope of the line joining (1, 2) and (300, 450). 
(c) Using your answers to (a) and (b), decide whether the point (300, 450) 

lies above, on, or below the line Ljoining (1,2) and (3, 5). 
(d) Is the point (301, 452) on this line L? How do you know? 

§2. Linear Functions 
It is easy to see, as illustrated in exercises 1.1-1.3, that a line is 

rising if its slope is positive, 
falling if its slope is negative, 
horizontal if its slope is zero. 
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Some curves (and we shall understand a line to be an especially 
simple kind of curve) determine functions, and some do not. Any non­
vertical line does determine a function. (Why?) Such a function is called 
a linear function. 

The slope of a line tells us something about the linear function it de­
termines. It tells us how much the function "stretches". What does this 
mean? Look at the figure below, where a line of positive slope is pic­
tured, and consider the function determined by this line. If the domain is 
the interval from x1 to x2 and if the corresponding range extends from y1 

to y2 , then by what factor is the domain stretched as it is sent into the 
range? 

From the figure, the length of the range is y2 - y 1 , and the length of the 
domain is x2 - x1 . Equation (1) above thus says: 

Length of range= (slope of line)(length of domain). 

The slope of the line thus gives the factor by which a linear function 
stretches lengths. A line of slope 3, for instance, determines a linear 
function that sends any interval into an interval three times as long. A 
line of slope 3, considered as a function, has a "stretching factor" of 3. 

The preceding discussion applies to lines of positive slope. Suppose the 
slope of a line is negative, say -3. Then the linear function determined 
by the line still has a stretching factor of 3, but intervals in the domain 
are "flipped upside down" before they land in the range. 

~ ~----------~ 

~ A line of slope - 3 

Domain 
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The notion of slope makes it easy to write or to recognize equations of 
nonverticallines. The following exercises illustrate this. 

Exercises 

2.1. Translate into words the algebraic equation y- 2 = ~(x -1). Answer: By 
equation (1), this says "(x,y) lies on the line of slope 3/2 passing through 
(1, 2)." [This is an equation, then, of the line described in exercise 1.6(a).] 

2.2. Translate into words the algebraic equation y- 4 = 3(x- 2), and sketch the 
line determined by this equation. 

2.3. Translate into words the algebraic equation y + 4 = -2(x- 3), and sketch 
the line determined. Hint. First rewrite the equation as y- (-4) = 

-2(x- 3), then use equation (1). 

2.4. Translate into words each of the following equations, and sketch the line 
determined. 
(a) y = 2x + 4. Hint. Rewrite as y- 4 = 2(x- 0). 
(b) 3x + 4y = 6. Hint. First solve for y. Then proceed as you did in part (a). 
(c) y = nx + ..;2. 
(d) y = 5. Hint (if needed). Rewrite as y- 5 = O(x- 0), and use equation (1). 

2.5. The slope-intercept form of the equation of a line is 

y = bx+c, 

where b and c are constants. 
(a) Rewrite this equation as y- c = b(x- 0). Find the slope of the line de­

termined by this equation, and find both coordinates of the point where 
the line meets the y-axis. 

(b) Describe the curve determined by the function given by f(x) = 3x + 5. 
Answer: The graph off is a line passing through (0, 5) with slope 3, since 
the algebraic rule 3x + 5 is in slope-intercept form. 

(c) Describe the curve determined by each of the following rules: 
(i) -2x- 5. 

(ii) X -1. 
(iii) 5- X. 

2.6. Find an algebraic equation for the line of slope 3 passing through (0, n). 
Answer: By equation (1), a point (x,y) lies on this line if and only if 
y- n = 3(x- 0), or (simplifying) y = 3x + n. 

2.7. Find an algebraic equation for the line of slope 3 passing through (n, 0). 

2.8. (a) Find the slope of the line joining (4, 6) and (3, 8). 
(b) Using your answer to (a), find an equation of the line joining (4, 6) and 

(3, 8). 

2.9. Find an equation of the line joining 
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(a) (0, 0) and (1, -2). 
(b) (3, 4) and (4, 7). Answer: y = 3x- 5. 
(c) (3, 4) and (7, 4). 
(d) (3, 4) and (3, 7). Hint. This is made simple, not hard, by the fact that the 

slope is undefined. Use common sense. 

§3. The Principle of Elimination 

In the preceding section we have made an essentially complete inves­
tigation of the simplest kind offunction. We have learned that any func­
tion given by a rule of the form 

bx+c 

is a linear function. Its graph is a line of slope b passing through the 
point (0, c) on the vertical axis. 

The next simplest kind of function is a quadratic function, arising 
when a linear expression bx + cis modified by a term involving a square: 
A quadratic function is given by an algebraic rule of the form 

ax2 + bx + c, where a =1 0. 

The behavior of quadratic functions is not hard to study. To investigate 
that behavior, and to learn at the same time how to find tangent lines to 
curoes, let us consider the simplest quadratic function of all. This is, of 
course, the squaring function given by 

f(x) = x2 . 

Plotting a lot of points on the graph ofthe squaring function shows that it 
looks something like this: 

y 

We are ready to move toward attacking the problem stated in the first 
sentence of this chapter. We have already hinted that the solution of that 
problem involves the study of tangent lines to curves. Our task now is to 
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figure out exactly what a tangent line is. So far, we have only made the 
(rather vague) statement that the tangent line to a curve at a point Pis 
the line through P that most closely resembles the curve near P. With 
this meager thread to hold on to, how can one determine the slope of the 
tangent line to the squaring function at the point P = ( 1, 1)? 

This is a challenging question, even for the keen mind of a master 
sleuth. Let us therefore enlist the aid of the great detective: 

Sherlock Holmes's Principle 
When you have eliminated the impossible, whatever remains, however im­
probable, must be the truth. 

The answer to a question is among what remains after wrong answers 
have been set aside. By this principle of elimination, the tangent line is 
the line left when all "nontangent" lines have been discarded. Will this 
be helpful to us? We shall see. Let us first look at some exercises to test 
whether this principle of elimination is well understood. 

Exercises 

Apply Sherlock Holmes's principle to each of the following situations. 

3.1. Winnie the Pooh's honey is gone. Everyone but Tigger has a valid alibi that 
proves his innocence. Answer: By Holmes's principle, Tigger stole the 
honey, provided it was stolen. 

3.2. A survey shows that Peter Pan is a citizen of no country questioned in 
the survey, and England is the only country not questioned. Answer: By 
Holmes's principle, Peter Pan is a citizen of England, provided that Peter Pan 
is a citizen of some country. 

3.3. The county seat ofYoknapatawpha County, Mississippi, is none other than 
the city of Jefferson. 

3.4. 1984 +his not the title of a famous book, ifh is not equal to 0. Answer: No 
famous book has a numerical title, except possibly 1984 

3.5. If h -# 0, then the area of the unit circle is not n + h. Answer: The area of 
the unit circle is none other than n. 

3.6. If h -# 0, then h + 2 is not the answer to a certain problem in arithmetic. 

3.7. If h 'f. 0, then (h2 + 2h)/h is not the answer to a certain problem. Hint. 
(h2 +2h)/h = h+2 ifh-# 0. 

3.8. If h-# 0, then (h2 + 4h)/h is not the answer to a certain problem. Answer: 
By Holmes's principle, the answer must be 4, provided the problem has an 
answer (and provided the answer is a number). 
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3.9. Ifh # 0, then (h2 + 9h)/h is not the answer to a certain problem. 

3.10. Is Holmes's principle a rediscovery of an ancient Greek method? 

§4. The Slope of a Tangent Line 

We are prepared to begin our detective work. To employ the principle of 
Sherlock Holmes, we must attain skill at finding wrong answers, in order 
to eliminate them. Let us recall the question: 

What is the slope of the tangent line to 
the curve y = x2 at the point P = (1, 1 )? (2) 

How can we get a wrong answer to this question? Look once again at the 
graph of the squaring function near P. A line through P that cuts the 
curve twice will not be tangent at P, it would seem. The tangent line at P 
will touch the curve only at P. 

I 

not tangent at P 
(cuts curve twice) 

tangent at P 

Now we have a clue. To obtain a wrong answer to question (2), we 
need only find the slope of a line joining P to another point on the graph 
of the squaring function. This graph consists of each point in the plane 
whose second coordinate is the square of its first coordinate. Another 
point on the curve, then, is (1 + h, (1 + h) 2 ) ifh is not equal to zero. (If his 
0, this "other" point would coincide with P.) The slope of the nontangent 
line joining (1, 1) and (1 + h, (1 + h)2 ) is given by 

(1 + h)2 - 1 
1+h-1 

1 +2h+ h2 -1 

h 
2h+h2 
---

h 

We now know a host ofwrong answers to question (2), for ifh #- 0, then 
(2h + h2 )/h is the slope of a line that is not tangent at P. Note that this 
expression simplifies to 2 + h. 
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(I +h,(l +Wl 

This line, not tangent at P if h # 0, has a slope equal to 2 + h 

What is the answer to question (2), now that we know that 2 +his not 
the answer, if h ¥- 0. The only number not eliminated is 2. By Sherlock 
Holmes's principle, the answer to question (2) must be 2, provided the 
question has an answer. That is, 

the slope of the tangent 
line toy= x2 at (1, 1) is 2, (3) 

provided the curve y = x2 has a tangent line at (1, 1 ). Elementary, dear 
Watson! 0 

Holmes's method illustrates the curious fact that it is possible to get 
the right answer by first considering how to get wrong answers. Let us 
try another question. 

What is the slope of the tangent line 
to the curve y = x2 at the point ( -2, 4)? (4) 

Let us consider how to get wrong answers to question (4). A wrong 
answer is the slope of the line joining ( -2, 4) and ( -2 + h, ( -2 + h) 2 ) if 
h ¥- 0. The slope of this nontangent (or secant, as a line cutting a curve 
twice is often called) is given by 

(-2+h)2 -4 

-2 +h+ 2 

4- 4h + h2 - 4 

h 

-4h + h2 

h 

= -4 + h if h ¥- 0. 

P= (-2,4) 

This secant has a slope equal to -4 + h 
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What is the answer to question (4), now that we know -4 +his not 
the answer if h =I= 0? The only number not eliminated is -4. By Holmes's 
principle, the answer must be -4, provided there is an answer. That is, 

the slope of the tangent 
line toy= x2 at (-2,4) is -4, (5) 

provided the curve y = x2 has a tangent line at (- 2, 4). 

Exercises 

Apply the principle of elimination to each of the following. 

4.1. What is the slope of the tangent line to the curve y = x2 at (0, 0)? Answer: It 
is 0, provided there is a tangent line. 

4.2. What is the slope of the tangent line to the curve y = x2 at the point (2, 4)? 

4.3. What is the slope of the tangent line toy = x2 at (n, n2 )? Answer: 2n, if there 
is a tangent line. 

4.4. What is the slope of the tangent line to the curve y = x2 + 3 at the point 
(1, 4)? 

4.5. What is the slope of the tangent line to the curve y = x2 + 3x at the point 
(1, 4)? Hint. A wrong answer to this question is given by 

(1 + h)2 + 3(1 +h) - 4 h .f h 
h = 5 + I =/' 0. 

4.6. What is the slope of the tangent line to the curve y = x2 + 3x + 2 at the point 
(1, 6)? Answer: 5, ifthere is one. 

4.7. What is the slope of the tangent line to the curve y = x2 + 3x + 2 at the point 
(n, n2 + 3n + 2)? 

§5. Fermat's Method and the Derivative 

As clever as Holmes's method is, it has serious drawbacks, as illustrated 
in problem 17 at the end of this chapter. One worrisome thing about this 
method is that things are left hanging a bit at the end. How do we know 
whether a curve has a tangent line at a certain point? What is needed is a 
clear definition. 

Pierre de Fermat pointed the way toward using the notion of limit to 
invent a workable definition of the slope of a tangent line to a curve. It is 
only a slight modification of the method we have just employed, but by it 
the drawbacks to Holmes's method are removed. 

Fermat described the following method of finding the slope of the 
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tangent line to a curve fat a given point P = (c,[(c)) on the curve. First 
find the slope of the line joining (c,f(c)) and (c + h,f(c +h)), where 
h #- 0. Although this slope, which is given by 

f(c +h)- f(c) 
h 

(6) 

is likely not the desired slope of the tangent line, it clearly approximates 
the desired slope as h is taken nearer to zero. It is natural, then, for us to 
define the slope of the tangent line at (c,f(c)) to be the number (if there is 
one) that expression (6) is trying to become ash approaches zero. 

NOT tangent ...-:; 
to fat P ,;;;,..-; 

// 
(c,f(c))= P 

c c+h 

This nontangent line has slope given by expression (6) 

Definition 
The slope of the tangent line to the curve fat the point (c,[(c)) is de­
fined to be 

L' 't f(c +h)- f(c) 
~~1 h . 

Fermat's idea is simple yet subtle. The "right answer" is the limiting 
value of wrong answers that approximate it ever so closely. Here are 
several examples to illustrate Fermat's method. 

EXAMPLE 1 
Find the slope of the tangent line to the curve y = x2 at the point (1, 1). 

Here the function is given by f(x) = x2 , and the point Pis (1,[(1)). 
According to Fermat's method, the slope of the tangent. line at (1,[(1)) is 
given by 

h2 +2h 
=Limit--h­

h--->0 

= Limit(h + 2) 
h--->0 

=2. 
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Note that nothing is left hanging at the end. Since the limit exists, there 
is a tangent line, and its slope is equal to that limit. By Fermat's defi­
nition, the existence of a tangent line is tantamount to the existence of 
the limit of expression (6). D 

EXAMPLE 2 
Find the slope of the tangent line to the curve y = x2 at the point (n, n-2 ). 

Here we have the squaring function again, given by f(x) = x2 , and the 
point Pis (n,f(n)). By Fermat's method, the slope of the tangent line is 

. . f(n +h) - f(n) . . (n + h)2 - n-2 
Limit h = Limit h 
h~o h~o 

.. 2nh+ h2 

=Limit h 
h~o 

= Limit(Zn +h) 
h-.0 

=Zn. D 

EXAMPLE 3 
Find the slope of the tangent line to the curve y = x2 at the point (x,x2 ). 

This is so similar to Example 2 that the reader can probably guess the 
answer. The answer is Zx, for the same reason that the answer to the 
preceding example is 2n. This is seen by a calculation identical to that of 
Example 2, with x replacing n: 

. . f(x +h) - f(x) . . (x + h)2 - x2 

Limit h = Limit h 
h~o h-.o 

= Limit(2x +h) = 2x. 
h~o 

(The reader is asked to fill in the missing steps in this calculation.) D 

The work of Examples 1-3 may be summarized in a table: 

~~~Slope of tangent 
x y line at (x, y) 

1t 

X 

-1 

2 
2n 
2x 
? 
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If we recall the definition of a function in terms of a pair of columns, 
then we see that the first and third columns above determine a new 
function. This new function, derived from the original function f, will be 
denoted by f' and called the derivative of f. From the third line of the 
table above, we see that the rule determining f' is simply the "doubling" 
rule, sending x to 2x. That is, we see that 

if f(x) = x2 , thenf'(x) = 2x. (7) 

Or, in words, the derivative of the squaring function is the doubling function. 

EXAMPLE 4 

Find the slope of the tangent line to the curve y = x2 at the point ( -1, 1). 
Now there is no need to go back to Fermat's method, because the de­

rivative gives us the general slope-predicting rule. All that is asked here is 
that the question mark in the preceding table be filled in appropriately, 
and that is now easy. The answer is f'( -1), which is equal to -2, since f' 
is the doubling function. D 

EXAMPLE 5 

Find the slope of the tangent line to the curve y = x2 at the point (4, 16). 
The answer is f'( 4), which is equal to 8. D 

The function f sends x into y. What does the function f' do? It is con­
venient to let y' stand for the long phrase "Slope of the tangent line at 
(x,y)". Then the function f' sends x into y'. Thus, equation (7) says 
exactly the same thing as 

if y = x2 , then y' = 2x. 

Exercises 

5.1. Fill in the missing steps in Example 3. 

5.2. Find the slope of the tangent line to the curve y = x2 at the point (3, 9) 
(a) by using Fermat's method, going through all the steps to find the limit of 

((3 + h)2 - 9)/h ash approaches 0. 
(b) by using the shortcut method of Example 5, knowing that the derivative 

of the squaring function is the doubling function. 

5.3. What does statement (5) of Section 4 say in terms of y'? Answer: It says, 
"Given y = x2, then y' is -4 when xis -2." 

5.4. What does statement (3) of Section 4 say about y'? 

5.5. What does the answer to exercise 4.5 say about y'? Answer: It says, "Given 
y = x2 + 3x, then y' is 5 when xis 1 (assuming there is a tangent line)." 

5.6. What does the answer to exercise 4.6 say about y'? 



126 4. Sherlock Holmes Meets Pierre de Fermat 

§6. The Interplay between a Function 
and Its Derivative 

The derivative f' is useful for many reasons. One reason (we shall see 
others later) is thatf' gives information about the behavior ofthe original 
function f. To illustrate this, let us continue to study the squaring func­
tion f, whose derivative, we have seen, is the doubling function. 

First, note that f' is just as "good" a function as f. The equation 
y' = f'(x) determines a curve too! In this case the rule for f' is the linear 
expression 

2x, 

which we should recognize immediately to be pictured as a line of slope 
2, passing through the origin (0, 0) in the x-y' plane. 

X 

1t 

s 

2x 
2n 
2s 

To see the interplay between f and f', it is convenient to picture the 
curve f' on a separate coordinate system (the x-y' plane) and to compare 
it with the curve fin the x-y plane. 

y 

(-2,4) (2,4) 

X 

-/falling~ /rising­

horizontal tangent line 

y' 
(2,4) 

X 

(-2,-4) 

At a point where the curve f is falling, the tangent line must have a 
negative slope. Hence, iff is falling at the point (c,f(c)), then f'(c) must 
be negative. Similarly, when f is rising, then f' must be positive. And 
when the curve f has a horizontal tangent line, then f' must be zero. 
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Exercises 

6.1. Find both coordinates of a point on the curve y = x2 where the slope of the 
tangent line is 3. Answer: We are required to fill in the question marks cor­
rectly in the following table: 

When y = 3, we have 2x = 3; SO X=~- When X=~' y = m2 = l Therefore, 
the slope of the tangent line is 3 at the point (~ , ~). 

6.2. Find both coordinates of a point on the curve y = x2 where the slope of the 
tangent line is 
(a) -2. 
(b) 0. 
(c) 10. 
(d) 5. 

6.3. Suppose the slope of the tangent line to a curve is -1 at a certain point. Is 
the curve rising or falling as it passes through that point? 

6.4. Find an equation of the tangent line to the curve y = x2 at the point (3, 9). 
Answer: When x is 3, y' is 6; so the slope of the tangent line is 6. An equation 
of the line of slope 6 through (3, 9) is y- 9 = 6(x- 3). 

6.5. Find an equation of the tangent line to the curve y = x2 at the point 
(a) (1, 1). 
(b) (-1, 1). 
(c) (:n:, :n:z). 
Answer: (c) y- :n:2 = 2:n:(x- :n:). 

§7. Solving Optimization Problems 
with Derivatives 

Compare the equation y = x2 with the equation A = s 2. Both equations 
determine the same function. Why? Because both equations define 
exactly the same rule, the squaring rule. The curve in the x-y plane of the 
equation y = x2 is identical with the curve in the s-A plane of the equa­
tion A = s2 . Since the derivative of the squaring function is the doubling 
function, it is clear that 

if A= s2 , then A'= 2s. (8) 
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By the same token, we know, for example, that 

if y = L 2 , then y' = 2L. 

Changing only the names of the variables doesn't alter the function, or its 
derivative, at all. 

Let us find another quadratic function to play with. In Example 2 of 
Chapter 1 we encountered the personable function g given by the quad­
ratic rule 

s2 
--+ 600s. 

2 

What is the rule for g', the derivative of g? 

400 
700 

s 

160,000 
175,000 

-!s2 + 600s ? 

Can you guess the rule for g', before we work it out below? There is 
nothing wrong with guessing. Consider the facts. Statement (8) tells us that 
from the expression s2 in the second column we derive the expression 2s 
in the third column. On the basis of this, what would you guess to be 
derived from the expression - !s2? As for the expression 600s, that is 
easy. This is just a linear expression of slope 600, leading one to expect 
that from the expression 600s in the second column we would derive the 
expression 600 in the third. From these facts, what would you guess: 

s2 
If g(s) = - 2 + 600s, then g'(s) =? 

To verify your guess, go back to the definition ofthe derived function. 
By definition, g'(s) is the slope of the tangent line to the curve gat the 
point (s,g(s)). Using Fermat's method to calculate that slope, we have 

. . g(s + h) - g(s) g' ( s) = L1m1t "'--'---'--7-------"'--'-'-
h---+O h 

-! s2 - sh - ! h2 + 600s + 600h + ! s2 - 600s 
=Limit 2 2 2 

h---+0 h 

-sh- lh2 + 600h 
=Limit 2 h 

h--->0 
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= Limit (-s -~ + 6oo) 
h~o 2 

= -s + 600. 

Thus we see that g'(s) = -s + 600. In other words, 

sz 
if A= --z+600s, thenA' = -s+600. 

? 
s 

A A' 

? 0 
-!s2 + 600s -s + 600 

129 

We now have enough information to determine the highest point(?, ?) 
on the curve g, for this point must occur where the slope of the tangent is 
zero. This is easy, for A' = 0 when 

-s+600 = 0, 

s = 600. 

Thus, at the point (600, 180,000), the curve g has a horizontal tangent 
line. How do we know this is the highest point? Look at the derivative. 
The curve A' = -s + 600 is a linear curve of slope -1, and A' is 0 when s 
is 600. The derivative looks like this: 

-+--g'>O g'<O-

Therefore the curve g must be rising to the left of 600 and falling to the 
right of 600. This means that, at s = 600, the maximal A is attained. 

- g rising~ g falling­

horizontal tangent at 600 

The optimization problem arising in Example 2, Chapter 1, is now 
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solved. The maximal area is 180,000 square feet, attained when the 
length s along the barn is 600 feet: 

Maximal area 
in Example 2, 
Chapter I 300 

600 

Side of barn 

Let us attack a similar problem to show how easy an optimization 
problem can become when calculus is applied. 

EXAMPLE 6 
A farmer has 300 meters of fencing to enclose three sides of a rectangu­
lar area. The fourth side is bounded by a long barn and requires no 
fence. What is the largest area she can enclose? 

We want to maximize the area A, which varies in terms of the lengths 
along the barn. Letting G denote the function that arises, we have 

A= G(s) =area (in square meters) of 

sz 
=150s--

2' 

s 

300- s 

2 

where the domain is specified by the inequality 0 < s < 300. 
To solve this optimization problem, we must find the highest point 

(?, ?) on the curve G, which gives the area A as a function of s. Toward 
this end, we take the derivative: 

sz 
IfA=150s- 2 , thenA1 =150-s (why?). 

Thus A' is 0 when sis 150, and we have found the point on the curve G 
where the tangent line is horizontal: 

150 
s 

11,250 
150s- h 2 

A' 

0 
150- s 

In all likelihood, the point (150, 11 ,250) is the highest point on the 
curve G. To prove that it is, look at the sign of the derivative on either 
side of 150. The derivative G' is given by the linear rule 150- s, and thus 
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looks like this: 

Therefore, the curve G must be rising to the left of 150 and falling to the 
right. This shows that, at s = 150, G attains its maximum. 

~G 

-G rising--G falling­

max Gat 150 

The maximal area is 11,250 square meters. 

Exercises 

0 

7.1. The derivative of the squaring function is the doubling function. The slope 
of the line bx + c is b. Use these facts and try your hand at quickly guessing 
answers to the following: 
(a) Ify = x2 + 3x, what is y'? 
(b) If y = x2 - 6x, what is y'? 
(c) If A= 4s2 +60s, what is A'? 
(d) If y = 10x2 + 4x + 20, what is y'? 
(e) If y =aX-+ bx + c, what is y'? 

7.2. In each of (a) through (e) of exercise 7.1, use Fermat's method to verify 
the correctness of your guess. Answer: (a) Given y '= f(x) = x2 + 3x, by 
Fermat's method we have 

y' = f'(x) =Limit f(x +h) - f(x) 
h~o h 

L" . 2xh + h2 + 3h 
= ~~It h 

= Limit(2x + h + 3) 
h~o 

= 2x+ 3. 
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7.3. In each of (a) through (e) of exercise 7.1, find both coordinates of the point 
on the quadratic where the tangent line is horizontal. Answer: (a) At the 
point (-3/2, -9/4), y' is zero. 

7.4. Find both coordinates of the highest point on the curve A= 1200w- 2w2 , 

with domain 0 < w < 600. (This is the function which arose in problem 3 at 
the end of Chapter 1.) 

7.5. A farmer has 4000 feet offencing to enclose three sides of a rectangular area 
(the fourth side being bounded by a long fence already standing). Find the 
largest area that can be enclosed, and specifY the dimensions that should 
be used to attain maximal area. 

7.6. A farmer has 4000 feet of fencing to enclose four sides of a rectangular area. 
What dimensions should be used to maximize the area enclosed? 

7.7. By working through the following steps in turn, find a pair of positive num­
bers whose sum is 10 and whose product is as large as possible. 
(a) We want to maximize their product. Let P denote their product. What 

is P if the first number is 2? (First find the second number, using the 
fact that the sum of the two numbers must be 10.) 

(b) What is P if the first number is n? 

(c) What is P if the first number is x? 
(d) Your answer to (c) yields a quadratic rule giving P as a function of x. 

What is P'? 
(e) What is the domain of the function you found in part (c)? (Remember 

that both numbers must be positive.) 
(f) Find both coordinates of the highest point on the graph of the quadratic 

function of part (c). 
(g) Answer the question of problem 7.7 with a complete sentence. 

7.8. Express the number 10 as the sum of two positive numbers in such a way 
that the sum of the square of the first and three times the second is as small 
as possible. Hint. This is similar to exercise 7.7. 

7.9. Work through the following steps in turn, in order to answer the question 
at the end. 
(a) In the x-y plane, draw the line y = 3x + 2. Also inclicate the position of 

the point (4, 0). 
(b) Find the square of the distance between the point (4, 0) and the point 

on the line y = 3x + 2 whose first coordinate is n. (First find the second 
coordinate, then find the square of the distance by the Pythagorean 
theorem.) 

(c) Find the square of the distance between the point (4, 0) and the point 
on the line y = 3x + 2 whose first coordinate is x. Answer: 
10x2 + 4x + 20. 

(d) The rule written down in the answer to part (c) is the quadratic func­
tion in exercise 7.3(d). Find the value of x that yields the minimum of 
this function. 

(e) Find both coordinates of the point on the line y = 3x + 2 that is closest 
to the point (4, 0). Answer: ( -1/5,7 /5). 

7.10. Find both coordinates of the point on the line y = 5- 2x that is closest to 
the point (0, 0). 
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§8. Definition of the Derivative 

Calculus relies greatly upon derivatives. We therefore seek rules en­
abling us to write down quickly the derivative of any function we might 
meet. We have already found such a rule for writing down the derivative 
of any quadratic function: 

If y = ax2 + bx + c, then y' = 2ax + b. 

(Another way of expressing the same thing is, "If f(x) = ax2 + bx + c, 
then f'(x) = 2ax +b.") By virtue of this simple rule, there is no need 
to go through all the details of Fermat's method in order to find the 
derivative of a quadratic. In the next chapter, however, we shall meet 
more complicated algebraic functions, such as are given by the rules 1/x 
(the reciprocal function), x3 (the cubing function), y'X (the square root 
function), etc. To find their derivatives, we must be clear about the defi­
nition of the derivative. 

Iff is any function, the rule defining its derivative f' is given below. 
The derivative is defined so that, at a point x, the derivative f' gives 
the slope of the tangent line to the curve f at the point (x,f(x)). Since 
Fermat's method gives this slope, we have the following definition. 

Definition 
Given a function f, and a point x in its domain, the derivative f' is 
defined by the rule 

f'(x) =Limit f(x +h)- f(x). 
h-+0 h 

Note that the definition of the derivative incorporates all three basic 
notions: variable, function, limit. 

To calculate f' directly from this definition is sometimes tedious, 
requiring several lines of computation. However, as in Section 7, it is 
possible to guess and to verify shortcut rules of finding derivatives. This 
will be the business of Chapter 5. To understand that chapter, it is 
necessary to understand the preceding definition and to recognize a 
derivative when it is staring you in the face. That is the point of the 
following exercises. 

Exercises 

8.1. Consider each of the expressions below, and show that you recognize it as a 
derivative. 

(a) Limi/(n +h)- f(n). 
h-+0 h 
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(b) Limit(1/h)(f(x +h)- f(x)). 
h-o 

(c) Limit(1/h)(g(1 +h)- g(1)). 
h~o 

(d) Limit(1/h)(F(s +h)- F(s)). 
h~o 

Partial answer: The expression (a) is equal to f'(n), and (d) is equal to F'(s). 

8.2. Let f(x) = x3 , F(x) = ,jX., g(x) = 1/x. Which of the following is equal to f'(x)? 
to F' (x)? tog' (x)? 

Limit 2. (-1- - 2.) 
h-0 h X+ h X ' 

8.3. (For more ambitious students) Evaluate each of the limits in exercise 8.2. 
(Answers may be found in Chapter 5.) 

8.4. (For more ambitious students) Consider the function f given by f(L) = 
7L + (48/L). 
(a) What is f(L +h)? 
(b) Simplify the expression f(L +h) - f(L), as much as possible, by com-

bining fractions with the use of a common denominator. 
(c) Divide your answer to (b) by h, where h =I 0. Answer: 7- (48/L(L +h)). 
(d) Findf'(L), by taking the limit of your answer to (c), ash tends to 0. 
(e) Solve Example 1 of Chapter 1 by using f' to find the minimal cost. 

§9. Classifying Quadratics: the 
Quadratic Formula 

The reader has probably heard of the quadratic formula, which is the an­
swer to question (9) below. This formula was known long before calculus 
was developed, but our study in this chapter of the calculus of quadratics 
may cast a new light upon it. We have seen that the quadratic function 
given by f(x) = ax2 + bx + c has a horizontal tangent line at the point 

( -b, -b2 + 4ac). 
2a 4a 

This followed, as in exercise 7.3(e), from setting the derivative f'(x) 
equal to zero and solving for x. The graph of the quadratic f might look 
like this: 

-b/2a 
X 

(- b2 + 4ac)/4a 
ax2 + bx + c 

y' 

0 
2ax + b 
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For any quadratic f we have thus answered the question, when is f'(x) 
equal to zero? (Answer: At the "critical point" -b/2a.) We now ask a 
different question. 

../-!~ 
X y 

? 0 
? 0 
x ax2 + bx+ c 

When is f(x) equal to zero? (9) 

The clue to answering question (9) lies in the apparent symmetry 
of the curve above. We are inclined to guess that the question has two 
answers, each lying the same distance L from the critical point -bj2a. 
There ought to be, then, some number L such that 

f(x) =0 whenx= { ~ ::: 
2a 

All that remains is to find this number L. Since f(( -bj2a) + L) = 0, 
we have 

(-b )2 (-b ) a Za + L + b Za + L + c = 0. (10) 

In (10), when the first term is squared out, a cancellation results (the 
reader is asked to perform the calculations), and eventually we get 

(ll) 

Equation (11) bears some scrutiny. We are trying to find L, with a, b, 
and c being given. Note that the left-hand side of (11) is a square, since 
4a2L2 = (2aL)Z, and therefore cannot be negative. If b2 - 4ac should be 
negative, then there is no number L satisfying (11 ). On the other hand, if 
b2 - 4ac is nonnegative, we can take its square root to solve for L. From 
(ll) there are two possible paths: 

Case I. If b2 - 4ac < 0, then there is no number L satisfying equation 
(ll), and hence there is no number L satisfying (10). 

Case II. If b2 - 4ac ~ 0, then by taking square roots we get 

ZaL = Vb2 - 4ac, 

vb2 - 4ac 
L= . 

2a 
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We now know a formula for Land we know that the answer toques­
tion (9) is given by x = ( -b/2a) ± L. Putting these facts together yields 
the quadratic formula in the theorem below. 

Theorem on Quadratics 
The equation 

ax2 + bx + c = 0 (a of. 0) 

has solutions given by 

-b ± vb2- 4ac 
X=--=----

2a 
(quadratic formula) 

provided that the discriminant b2 - 4ac is not negative. The equation has no 
solution if the discriminant is negative. 

For example, consider the equation 

-16x2 - SOx+ 200 = 0. 

The discriminant here is (-50) 2 - 4(-16)(200) = 15,300, whose square 
root is approximately 123.7. The quadratic formula says the solutions are 

X= -(-50) ± ..;r5,300 ~ { -5.43. 

-32 2.30. 

As another example, consider the equation 

-16x2 +SOx- 200 = 0. 

D 

The discriminant here is (50) 2 - 4(-16)(-200) = -10,300, which is neg­
ative, showing that the equation has no solutions. D 

If the discriminant is equal to zero then the "two" solutions meld 
into one. In this case, L is zero, making the critical point -b/2a into a 
"double root" of the quadratic equation. This happens in the equation 
x2 - 4x+ 4 = 0 where the discriminant is (-4)2 - 4(1)(4) = 0, and the 
quadratic formula yields 

-(-4) ± 0 
X= =2 

2 

as the only solution. D 

There is nothing mysterious going on here. A little reflection shows 
that any quadratic function falls into one of the following six classi­
fications. 
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Positive Zero 
discriminant discriminant 

y v_ 
a>O 

-b/2a 

-n -b/2a 

a<O T\ 
Two roots One "double" root 

Exercises 

9.1. Solve the equation x2 - 4x + 4 = 0 by factoring. 

9.2. Solve the equation x2 - x - 6 = 0 
(a) by the quadratic formula. 

Negative 
discriminant 

v 
-b/2a 

-b/2a 

(\ 
No root 

(b) by factoring x2 - x- 6 into the product of x + 2 and x- 3. 

9.3. Solve the equation x2 - x - 4 = 0. 

137 

9.4. Factor the quadratic x2 - x - 4 into the product of two linear expressions. 
Answer: x2 - x- 4 = (x- ~ (1 + v17))(x-! (1 - v17)). 

9.5. Solve the equation x2 - 6x + 13 = 0. 

9.6. Show all the steps of an algebraic derivation of equation (11), beginning 
with equation (10). 

9.7. For each of the six categories of quadratics pictured above, give an 
example. 

9.8. Consider once again Example 1 of Chapter 1. Show that it is impossible to 
build the fence described there for a cost C of $35. Hint. If C = 35, then 
7L + {48/L) = 35, so upon multiplying through by L we get 

7L2 + 48 = 35L, 

Use the theorem on quadratics to show that, no matter what the length L of 
the front fence is, this equation cannot be satisfied. 

9.9. What is the least positive value of C for which the equation 7£2 -

CL + 48 = 0 has a solution? What, therefore, is the least possible cost in 
Example 1 of Chapter 1? 
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9.10. The quadratic formula says that the roots of the equation ax2 + 5x- 3 = 0 
are given by ( -5 ± ,125 + 12a)j2a if a¥- 0. If a= 0 this equation becomes 
simply 5x- 3 = 0, whose single solution is given by x = 3/5. How do the 
pair of roots occurring when a is near 0 manage to go away and leave us with 
only the single root of 3/5 when a = 0? This question leads us to investigate 
the limit of each of these roots as a tends to 0: 

-5 + ,125 + 12a 
Limit---=----
a~o 2a 

and 
. . -5- ,125 + 12a 

L1m1t . 
a~o 2a 

(a) Do either of these limits exist? Does either limit seem to be equal to 
3/5? [Plug in a very small nonzero value of a and see how close you are 
to 3/5.] 

(b) On the same coordinate system graph the line y = 5x - 3 and graph 
the three quadratic curves whose equations are y = ax2 + 5x - 3 for 
a= l, 1/10, and 1/100. Indicate the points where each of these qua­
dratic curves crosses the x-axis. Referring to these graphs, write a short 
paragraph explaining why this bit of analytic geometry dispels any 
mystery in your answers to part (a) by visually showing why those 
answers should have been obvious all along. 

9.11. Find Limita~o(-3+J9+28a)j2a. Hint. This is the limit of a root of 
ax2 + 3x - 7 = 0 and you can guess the right answer by the technique used 
in part (b) of exercise 9.10. But the standard way of doing this is first to 
"rationalize the numerator" by rewriting the troublesome expression as 
follows: 

-3 + V'9+28a -3 + v'9-+2&i -3 - v"9+28a 
2a 2a -3 - ,19 + 28a 

9-(9+28a) -14 
2a( -3 - ,19 + 28a) -3 - ,19 + 28a · 

The limit as a tends to 0 is now easy to take. 

§10. Newton's Method: Using 
Derivatives to Solve Equations 

Beginning with the equation ax2 + bx + c = 0 we needed some fairly 
complicated algebra in Section 9 to derive the quadratic formula that 
solves this equation. A less complicated approach using calculus leads to 
a method that solves not only quadratics, but cubics, quartics, and even 
more complicated equations of the form f(x) = 0. The essence of this 
method is expressed in the simple formula (12) below, which was dis­
covered and exploited in the seventeenth century by Isaac Newton and 
others, whose approach to this problem is similar in spirit to the ancient 
Babylonian method of approximating square roots, a topic discussed in 
Chapter 2. 
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A method (or procedure, or "recipe") that describes steps to be taken 
toward attaining a desired result in mathematics is called an algorithm. 
The word, which originally came into English as algorism, is a corruption 
of the name of the ninth-century Islamic mathematician al-Khowarizmi, 
who was well known for his writings on algebra. Recall the main steps of 
the Babylonian recipe for cooking up the square root of 2: 

BABYLONIAN ALGORITHM TO SOLVE EQUATION x2 = 2 

1. Input G. 
2. Let B = (G + 2/G)/2. 
3. Let G =B. 
4. Go to Step 2. 

[Make an initial guess at viz; call it G.] 
[B is expected to be a better guess than G.] 
[Let the better guess serve as a new G.] 
[Repeat procedure, getting a new B.] 

As we have seen in Section 6 of Chapter 2, this procedure will accept 
any positive number G as an initial guess and will produce succeeding 
values of G that approach viz as a limit. In theory the algorithm above 
will run forever, producing ever closer approximations to viz, but in 
practice we cut it off when we are satisfied with the degree of approxi­
mation already obtained. 

The Babylonian problem is to solve for x in the equation x2 = 2, which 
may be rewritten as x2 - 2 = 0. In modern terms the problem may be 
rephrased as seeking the positive solution to the equation f(x) = 0, 
where f(x) = x2 - 2. That is, we want the x-coordinate of the point where 
the curve f crosses the x-axis. Given a guess G at this x-coordinate, the 
picture below indicates how we might use the idea of a tangent line to 
produce a better guess B. Note in this picture how much closer B is to the 
desired solution than G. 

Desired solution 
wheref=O 

f 

Tangent line at (G,f(G)) 
with slope off'( G) 

G 

The picture tells us how to get a better guess B: Given G, let B equal the 
x-intercept of the line tangent to fat ( G ,f( G)). Since this tangent line is the 
line of slope f'(G) passing through (G,f(G)) it has the equation 

y- f(G) = f'(G)(x- G). 

Our better guess B is then the value of x when y = 0. Thus we must 
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arrange to choose B so the equation above is satisfied when y = 0 and 
x = B, i.e., we must have 

0- f(G) = f'(G)(B- G). 

Our object is to find B if we are given G. Assuming f' (G) is nonzero we 
first divide to get 

f(G) 
- f'(G) = B- G, 

and then we have what we want: 

(12) 

Formula (12) expresses Newton's method (sometimes called the 
Newton-Raphson algorithm) of computing a better guess B for a given 
guess Gat a solution to the equation f(x) = 0. 

NEWTON'S METHOD TO SOLVE EQUATION f(x) = 0 

1. Input G. 
2. Let B = G- f(G)/f'(G). 
3. Let G =B. 
4. Go to Step 2. 

[Make an initial guess at solution; call it G.] 
[Formula (12); B is expected to be better.] 
[Let the better guess serve as a new G.] 
[Repeat procedure, getting a new B.] 

Newton's method can be applied, in principle, to any function f 
whose derivative you know. In practice it is prudent to make sure the 
equation f(x) = 0 that you are trying to solve does indeed have a solution 
by making a rough sketch of the curve f and assuring yourself that the 
curve does indeed cross the x-axis. It usually helps to take a little time to 
choose an initial guess G that is already fairly close to the solution you 
seek. (Use trial-and-error to choose your initial guess G so that f( G) is 
already close to 0.) Then the method often works with astonishing 
quickness, as in the examples below. 

EXAMPLE 7 
Apply Newton's method to solve the equation >? - 2 = 0. 

Here we are solving f(x) = 0 where f(x) = x2 - 2, so f'(x) = 2x. Thus 
f( G) = G2 - 2 and f' (G) = 2G so that formula (12) becomes 

G2 - 2 
B=G---. 

2G 
(13) 

As we have already noted in exercise 6.2(b) of Chapter 2, formula (13) 
produces exactly the same results as the Babylonian formula B = 
(G + 2/G)/2: If G = 2, then B = 3/2; if G = 3/2, then B = 17/12. And so 
on. The successive values of 2, 3/2, 17/12, 577/408, etc. get successively 
closer to .,fi, the positive solution to the equation f(x) = 0. 
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What happens if we begin with a negative number, say G = -1, as 
our initial guess. Then, as the reader is asked to verify in exercise 10.1 
below, the successive B's calculated by formula (13) will tend to -v'z, 
the negative solution of the equation f(x) = 0. Studying the figure below 
makes it clear why any negative initial guess here will tend to the neg­
ative solution and any positive first guess will tend to the positive solu­
tion. The figure also makes clear why it is not a good idea in this sit­
uation to choose 0 as a first guess. 

y 

IfG= -1, thenB= -~. 

If G = 2, then B = ~-

Newton's method not only gives the same result as the Babylonian 
method in the problem of finding square roots; it gives the same result, 
in essence, as the quadratic formula in the problem of finding solutions 
to a quadratic equation. 

EXAMPLE 8 
In Section 9 we applied the quadratic formula to solve -16x2 -

SOx+ 200 = 0 and worked out the approximate solutions of -5.43 and 
2.30. Solve this equation by Newton's method. 

Here we have the equation f(x) = 0 where f(x) = -16x2 - SOx+ 200, 
sof'(x) = -32x- 50. Thusf(G) = -16G2 - SOG + 200andf'(G) = -32G-
50, so formula (12) becomes 

B = G _ -16G2 - SOG + 200 
-32G- 50 

8G2 + 25G- 100 
= G- ----=-~--

16G+ 25 
(14) 

Let us make two tables of successive G's and B's, with G = 0 as initial 
guess in the first table and G = -5 in the second. Newton's method often 
takes only a few calculations to get as close as you please to a solution, 
but these calculations can be done even more quickly with the help of an 
electronic spreadsheet, if you have access to one. 
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G 

0.00000000 
4.00000000 
2.56179775 
2.31103680 
2.30292005 
2.30291152 

B [by formula (14)] 

4.00000000 
2.56179775 
2.31103680 
2.30292005 
2.30291152 
2.30291152 

G B [by formula (14)] 

-5.0000000 -5.4545455 
-5.4545455 -5.4380027 
-5.4380027 -5.4279115 
-5.4279115 -5.4279115 

There is no point in continuing either table further, as the bottom 
numbers would only repeat themselves unless we go to the trouble of 
calculating them to many more decimal places. When they repeat, then 
of course we have B = G in formula (12), which in turn immediately 
implies (why?) thatf(G)/f'(G) = 0. Butthis means thatf(G) = 0, i.e., G is 
a solution to the equation f(x) = 0. Thus the solutions to the equation 
-16x2 - SOx + 200 = 0 are given to great accuracy by the repeated num­
bers -5.4279115 and 2.30291152. This agrees, of course, with the answers 
worked out in the previous section using the quadratic formula. 

Notice that starting with the guess G = 0, which is relatively far away 
from the root near 2.30, the method takes a couple of steps longer to 
achieve its goal than starting at G = -5, which is already rather close to 
the root near -5.43. D 

EXAMPLE 9 
Apply Newton's method to find the cube root of 2. 

To find the cube root of 2 is to find the number x whose cube is 2, i.e., 
to solve the equation x3 = 2. This equation is not of the form f(x) = 0, but 
any equation can be put into this form, simply by taking all the terms over 
to the left-hand side, here getting~ - 2 = 0. Thus we have f(x) = x3 - 2. 
It is true that 

if f(x) = ~- 2, thenf'(x) = 3x2 , (15) 

a result already obtained by the reader who has successfully done the 
relevant part of exercise 8.3. We will soon see how to get this result more 
easily (without going through Fermat's method) in exercise 6.1 of the 
next chapter, but let us go ahead and use it now. 

The rest is simple. To find ?12 we apply Newton's method to the 
equation f(x) = 0 where f(x) = ~- 2 and f'(x) = 3x2 , so f(G) = G3 - 2 
andf'(G) = 3G2 . Formula (12) becomes 

(16) 

and this leads to the following table of successive approximations, start­
ing with the initial guess G = 1. 
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G 

1.00000000 
1.33333333 

1.2812503 

1.2602743 

1.2599213 

B[from formula (16)] 

1.3333333 

1.2812503 

1.2602743 

1.2599213 

1.2599213 
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Thus ?lz ~ 1.2599213. (Did your response to exercise 6.7 of Chapter 2, 
using a different formula, produce this same table of values? It should 
~J D 

Warning. Some equations, like 7x2 - 35x + 48 = 0, studied in exercise 
9.8 in the previous section, do not have solutions. If you apply Newton's 
algorithm to this equation the successive numbers you get will show no 
tendency to repeat themselves, no matter what initial guess you make. If 
you are foolish enough to apply Newton's method to try to find non­
existent solutions, you will get what you deserve. 

Exercises 

10.1. Start with any negative number, say G = -1, as your initial guess G, and 
use formula (13) to calculate successively better and better guesses at a 
solution to the equation x2 - 2 = 0. Do they get closer and closer to the 
negative root of this equation? What happens if you choose G = 0 as your 
initial guess? 

10.2. Find the two roots ofx2 - x- 4 = 0 by 
(a) using the quadratic formula. (You may have already done this in 9.3 or 

9.4.) 
(b) using Newton's method. Hint. Here formula (12) becomes B = G­

( G2 - G - 4) / ( 2G - 1). Make two tables analogous to those of Example 
8. Take an initial guesses of G = 0 in one and of G = 3 in the other. 
Does Newton's method lead to the same answer as in part (a)? 

10.3. Approximate the square root of 10 by Newton's method, i.e., solve the 
quadratic equation x2 - 10 = 0 for its positive root. (If you take G = 3 as 
your initial guess you should get exactly the same sequence of approxi­
mations as in exercise 6.3 of Chapter 2.) 

10.4. Approximate the square root of 48/7 by Newton's method. (If you take 
G = 2 as your initial guess you should get exactly the same sequence of 
approximations as in exercise 6.6 of Chapter 2.) 

10.5. Applying Newton's method to a linear equation is rather heavy-handed, but 
instructive. Apply the method to solve Sx - 3 = 0 by first writing down 
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formula (12) with f(x) = Sx- 3 and f'(x) = 5. Then make an outrageous 
first guess, like G = 100. What happens? Now try G = -1000 as your first 
guess. You have just discovered the rule of false position, a method of solving 
linear equations that dates back to the ancient Egyptians. Explain geo­
metrically what is going on here. Hint. In the picture from which formula 
(12) was derived, the curve f is straight iff is a linear function, so its 
tangent line is itself. 

10.6. Approximate the cube root of 16 by Newton's method. Hint. In equation 
(16) replace "2" by "16" and make the resulting table, choosing a good 
initial guess at rn. 

10.7. In Newton's method to solve x3 - 27x + 27 = 0, what does formula (12) 
become? Answer: Using the result of exercise 8.3 we see it is 

G3 - 27G+ 27 
B = G- --=----

3G2- 27 

10.8. In Newton's method to solve x3 - Sx2 + 6x- 1 = 0, what does formula (12) 
become? Use it to find one root of this equation. Can you find all three 
roots by making three different initial guesses? What are the three roots? 

§11. Three Frenchmen 

The influence of France was increasingly felt throughout Europe in the 
seventeenth century. This influence was particularly strong in mathe­
matics. France nurtured no fewer than three mathematical minds of the 
first rank, in addition to many lesser lights. 

Blaise Pascal (1623-1662), who at the age of eighteen invented the 
first calculating machine, might have been unsurpassed as a mathema­
tician, had his other great talents not drawn him elsewhere. Even so, he 
helped give birth to projective geometry and to the theory of probability, 
and he came very close to discovering the fundamental theorem of cal­
culus (to be discussed in Chapter 7). In fact, Leibniz hit upon the funda­
mental theorem while reading a mathematics paper by Pascal. 

Little need be said here of Rene Descartes (1596-1650), for half the 
world already knows his name. We have noted earlier that he developed 
analytic geometry and made it widely known through his writings. 
Without analytic geometry the step up to the calculus would be for­
midable indeed. Isaac Newton was to say, "If I have seen further than 
Descartes, it is by standing on the shoulders of giants." One of those 
giants was, of course, Descartes himself. 

Another giant was Pierre de Fermat (1601-1665). Fermat occupies a 
special place in the hearts of those who love mathematics. His appeal is 
that of the amateur who can outdo the professionals. Fermat developed 
analytic geometry in 1629, but did not publicize the fact, and Descartes 
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got all the credit with a paper published in 1637. In correspondence with 
Pascal, Fermat was an equal partner in creating the theory of prob­
ability. He corrected mistakes that Descartes and Pascal made, in fields 
where they were acknowledged as masters, and was rarely himself in 
error. Fermat's real love was the theory of numbers, which was revolu­
tionized by his accomplishments. 

Unlike Descartes and Pascal, Fermat published little, and his work 
is known mainly through his letters and through the notes he was ac­
customed to make in the margins of books. Although Fermat never used 
the word limit, Laplace's appellation- "Fermat, the true inventor of the 
differential calculus"-can still be maintained. Isaac Newton, in a letter 
discovered only in 1934, stated that his own early ideas about calculus 
came directly from Fermat's way of drawing tangents, presumably be­
cause of Fermat's implicit use of limits. 

Problem Set for Chapter 4 

1. Use Fermat's method (not a shortcut rule) to show that the derivative of 
x2 - 6x + 13 is given by Zx- 6. 

2. Consider the function defined by f(x) = x2 - 6x + 13. 
(a) Fill in the question marks in the following table using the fact that 

y' = Zx- 6. 

.J-f-.....,. 
y' X y 

0 ? ? 
? ? -4 
5 ? ? 
1t ? ? 
? ? 0 

(b) Use the first line of the table to find the slope of the tangent line to the 
curve fat the point (0, 13). 

(c) Is the curve [rising or faUing as it passes through the point (0, 13)? 
(d) Write an equation of the tangent line to the curve fat the point (0, 13). 
(e) For what values ofx isf'(x) positive? 
(f) For what values of x is the curve f rising? 
(g) For what values of x is the curve f falling? 
(h) Find both coordinates of the point where the tangent line to the curve f 

is horizontal. 
(i) Sketch the curve f in the x-y plane, making sure your sketch is in 

accordance with your answers to the preceding three questions. 
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(j) If the domain off is taken to be all values of x satisfying the inequality 
0 ::::;; x ::::;; 5, what is the range? 

(k) What is the range off if the domain is given by the inequality 0 < x < 5? 
(l) What is the range if the domain is 0 ::::;; x < 2? 
(m) What is the range if the domain is unrestricted? 

3. Consider the function defined by f(x) = 2x-2- 6x. 
(a) What is the slope of the tangent line to the curve fat the point (0, 0)? 
(b) Is the curve [rising or falling at (0, 0)? 
(c) For what values of xis the curve f falling? 
(d) Sketch the curve f. 
(e) What is the range off if the domain is 0::::;; x::::;; 4? 
(f) What is the range off if the domain is 0 < x < 1? 
(g) What is the range off if the domain is unrestricted? 

4. Consider the function defined by f(x) = 8- x2 + 3x. 
(a) What is the range if the domain is 0 :s;; x < 2? 
(b) What is the range if the domain is -2 < x < 0? 

5. Consider the function defined by f(x) = 8- 3x. 
(a) What is the range if the domain is 0 ::::;; x::::;; 3? 
(b) What is the range if the domain is -2 < x < 5? 

6. Find both coordinates of the point on the line y = 2x - 3 that is closest to 
(0, 0). 

7. Find both coordinates of the point on the line y = 6 - x that is closest to 
(-2, -4). 

8. (This problem is like Example 1 of Chapter 1, except we have a specified amount 
of money instead of a specified area.) A sum of $56 has been allocated to pay 
for fencing four sides of a rectangular area. If the front fence costs $5 per 
yard and each of the other three sides costs $2 per yard, what is the maxi­
mum area that can be enclosed? Hint. If L is the length in yards of the front 
side, and A is the corresponding area in square yards, then A/Lis the width 
of the rectangle, so 56= 7L + 4A/L. (Do you see why?) Solve this equation to 
get A in terms of L. Then get A' quickly and use it to find the maximum area. 

9. A Norman window is in the shape of a rectangle surmounted by a semicircle. 
If the perimeter of the window is 16 feet, find the dimensions which allow 
the most light to pass through the window. 

10. Although the point (2, -1) is not on the quadratic y = x2 - 2x + 3, there are 
two tangent lines to this quadratic that pass through this point. Find an 
equation of either one of these lines. 

11. A wire 500 centimeters long is cut in two. The first part is bent into the cir­
cumference of a circle, and the second is bent into the perimeter of a square. 
How should the wire be cut in order that the combined areas of the circle 
and the square be as small as possible? 

12. Use Fermat's method to show that iff{x) = 7x- 9, then f'(x) = 7. 

13. Use Fermat's method to show that if f(x) = 7, then f'(x) = 0. 
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14. Consider the quadratic function given by f(x) = x2 + 2x + 7. When x = 0, 
then f(x) = 7. What is f'(x) when x = 0? Does your answer contradict the 
result of problem 13? Explain. 

15. Reread problem 16 in the problem set at the end of Chapter 1. Find the 
maximal area that can be enclosed. 

16. Carry out the following steps in order to accomplish the last step. 
(a) The points (1, 1) and (1 + h, (1 + h) 3 ) lie on the curve y = x3. Find the 

slope of the line joining these points (assuming, of course, that h =1 0). 
(b) Simplif'y your answer to part (a) by using the fact that (1 + h) 3 = 

1 + 3h + 3h2 + h3 

y= x' 

)

(I+ h,(! + h)3) 

I) 

(c) Take the limit, as h --> 0, of your answer to part (b). and thus show that 
the slope of the tangent line to the curve y = x3 at (1, 1) is 3. 

17. (This problem is supposed to show why the "Sherlock Holmes method" of finding 
tangent lines will not always work. Actually, Descartes proposed a closely related 
method, but it had to be discarded in favor of Fermat's approach.) The Sherlock 
Holmes method of finding tangents rests upon the belief that a line joining 
two points on a curve cannot be tangent to the curve. (This happens to be 
true for quadratic curves.) 
(a) Using the result of problem 16(c), write an equation of the tangent line at 

(1, 1) to the curve y = x3 

(b) Does the point ( -2, -8) lie on the line of part (a)? 
(c) Does the point (-2, -8) lie on the curve y = x3 ? 

(d) If the Sherlock Holmes method were applied to the curve y = ;.:3 at the 
point (1, 1 ), would it work? 
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18. Consider each of the following functions, and match it with its derivative. 
(The derivative of the function pictured in (a), for example, is pictured in 
(d).] 

(a) (b) 

(d) (e) 

(g) (h) 

(j) (k) 

(c) 

(f) 

(i) 

[The curve in (k) 
coincides with the 
horizontal axis.] 

19. If the page containing the curves of problem 18 is turned upside down, we 
see eleven new functions pictured. Match each of these with its derivative. [If 
the curve pictured in (a) is viewed upside down, its derivative is pictured in 
(h), viewed upside down.] 

20. (The general "Minerva problem') The method used in Section 7 to find the 
largest area enclosed by a rectangle where the total length of three sides is 
1200 feet is easily generalized to cover any specified total length. 
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(a) A farmer has n kilometers of fencing to fence in three sides of a rectan­
gular field for her cow Minerva, the fourth side being bounded by a long 
fence already standing. What is the maximal area that can be enclosed? 
Draw a picture, giving the dimensions, of the field with maximal area 
subject to these constraints. 

(b) A farmer has a length P of fencing to fence in three sides of a rectangular 
field for her cow Minerva, the fourth side being bounded by a long fence 
already standing. What is the maximal area that can be enclosed? Draw a 
picture, giving the dimensions, of the field with maximal area subject to 
these constraints. 

21. In the corner of a large courtyard a rectangular enclosure is to be built like 
the one pictured in problem 16 at the end of Chapter 1. To pay for the 
material, $1000 has been allocated. This is to be used to pay for both the 
stone fence, which costs $10 per meter, and the wooden fence, which costs 
$5 per meter. What is the maximal area that can be enclosed? Draw a picture 
giving its dimensions. 

22. (The general "courtyard problem') This problem generalizes problem 21, just 
as problem 20 generalizes the Minerva problem. 
(a) In the corner of a large courtyard a rectangular enclosure is to be built 

like the one pictured in problem 16 of the problem set at the end of 
Chapter 1. To pay for the material, P dollars has been allocated. This is 
to be used to pay for both the stone fence, which costs A dollars per 
meter, and the wooden fence, which costs B dollars per meter. What 
is the maximal area that can be enclosed? Draw a picture giving its 
dimensions. 

(b) Show that the way to optimize the area in the courtyard problem is sim­
ply to put half the allocated money into wood and the other half into 
stone. Hint. You have solved the problem in part (a). Just explain why 
your solution allocates the same amount of money for stone and wood. 

23. Use the algebraic technique of "rationalizing the numerator" illustrated in 
exercise 9.11 to find the following two limits: 

. . -4 + v'l6- 28x 3- y'g- 40x 
(a) Limit . (b) Limit . 

x--J>o 2x x-o x. 

Knowing the limits of two expressions makes it easy to find the limit of 
their product or quotient. Using your answers to (a) and (b), find each of the 
following limits quickly, without any involved calculation: 

. . ( -4 + v'16- 28x)(3- y'g- 40x) 
(c) L~~It 2x2 . 

. . -4 + v'l6- 28x 
(d) Ltmit . 

x~o 6- 2v'9=40x 

( -4 + v'16 - 28x)3 

(e) L~~it 6 - 2v'9- 40x · 

24. (Do you understand Newton's method?) Here is a simple test. Fill in the ques­
tion mark in each table with the number Newton would give for his guess at 
the right answer. 
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(a) 

X I y I y 
(b) 

X I y I y 

25. (Newton's method) Find the root of the equation il - 27x + 27 = 0 that lies 
near 1 by taking G = 1 as your initial guess in Newton's method. Find this 
root to an accuracy of at least four decimal places. Then find the other two 
roots of this equation by taking different initial guesses in Newton's method. 
Hint. See exercise 10.7. 

26. (Fermat's "other" method) We have seen how useful Fermat's method of tan­
gents is in studying continuous curves. Fermat also developed a discrete 
method for use in reductio ad absurdum proofs in the theory of numbers. 
Learn this method by going through the steps below that lead to Fermat's 
strikingly modern proof of the irrationality of ..;2. 
(a) But first, explain in what sense "concrete" and "continuous" can each be 

regarded as antonyms of "discrete". If you don't know this already, you 
don't know as much about continuity as you might. (The discreet use of 
a dictionary will help.) 

(b) If ..;2 = m/n, then m2 = 2n2 and thus m2 - mn = 2n2 - mn. It follows 
that m(m- n) = n(2n- m). Show that this implies that the ratio m/n can 
be re-expressed as 

m 2n-m 
n m-n 

(c) Show that if ..;2 = m/n, where m and n are positive integers, then 
0 < m - n < n and 0 < 2n - m < m. Hint. Since 1 < ..;2 < 2, we know 
1 < m/n < 2. Multiplying each member of this inequality by n shows 
that n < m < 2n. Continue working with this last inequality to deduce 
the two inequalities required. 

(d) Notice that parts (b) and (c) together show that if ..;2 can be expressed as 
the quotient of positive integers m and n, then m/n can be re-expressed 
as the quotient of still smaller positive integers. By repeating the same 
argument we can re-express this second quotient as the quotient of even 
smaller positive integers. And so on. As we continually repeat the same 
argument we produce an "infinite descent" of ever-decreasing positive 
integers (in both numerator and denominator). 

(e) But just a moment's thought shows you that there can be no such thing. 
Think about it! You can have an "infinite ascent" of ever-increasing 
positive integers, but you certainly cannot have an infinite descent of 
integers without eventually having negative integers appear. • Thus any 

• Fermat was not the first to make this simple observation (Euclid noted it as an obvious 
fact two thousand years earlier), but he was the first of the moderns to sense how this ob­
servation captures the most essential property of the Pythagorean world of numbers. No 
matter where you start in this world, even if you start with the number of grains of sand in 
the earth, you cannot count downwards forever using only positive integers. A con­
sequence of this is the well-ordering principle: Any (nonempty) collection of positive 
integers contains a least integer. Reason: If no member ofthe collection is its least member, 
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supposition that leads to an infinite descent of positive integers must be false. 
This is the essence of Fermat's method of infinite descent. Since we 
have seen in part (d) that the supposition that viz is rational leads to an 
infinite descent of positive integers, that supposition must be false, 
QE.D. 

27. Use Fermat's method descnbed in the preceding problem to prove that v'6 
is irrational. Hint. First show that if mjn = v'6, then mjn = (6n- 2m)/ 
(m- 2n); and note that 2 < v'6 < 3. Then go through steps analogous to 
steps (c) and (d) of the previous problem and obtain a contradiction ifm and 
n are positive integers. 

28. Prove that y10 is irrational. Hint. If mjn = ylO, then mjn = (IOn- 3m)/ 
(m- 3n); note that 3 < y10 < 4. 

29. Something very much like Fermat's observation is already implicit in the 
Pythagorean proof of the irrationality of viz sketched in Chapter 2, which 
begins by taking it as obvious that any rational number can be re-expressed in 
"lowest terms". Write out a proof of this "obvious" fact. Hint. Observe that if it 
were not the case, then for some rational mjn we could continue to cancel 
out common factors in numerator and denominator forever. Explain how 
this would lead to an infinite descent of positive integers (in both numerator 
and denominator), and hence to a contradiction. 

we could start by choosing any member we please and be able to find one that is smaller, 
thus counting downwards forever using only positive integers from the given collection. 

A "keen sense of the obvious" is not to be derided. It is one of those childlike qualities 
often associated with genius. Do you sense the difference between the discrete world of 
positive integers in which you can never count downwards forever, and the continuous 
world of positive real numbers, in which you can? The ancient Babylonians showed us how 
to count downwards forever toward ,;2 by using the sequence beginning 3/2, 17/12, 
577/408, etc. generated by their algorithm. The infinite set of positive real numbers gen­
erated here obviously does not contain a least member (because ,;2 is not a member of this 
set), whereas every (nonempty) set of positive integers obviously does. 

To fail to sense such a difference is to confuse the continuous with the discrete. 
Although Fermat captured the most essential property of the discrete set of positive integers 
in the early seventeenth century, it was not until the late nineteenth century (see Section 6 
of Chapter 2) that mathematicians were able to pin down the most essential property of the 
continuous set of real numbers. 



CHAPTER 

Optimistic 
Steps 

What is calculus? It is the study of the interplay between a function and 
its derivative. There are quite a few aspects to this interplay, some of 
which may be surprising. In this chapter we shall learn more about the 
use of derivatives in solving optimization problems. To do this effi­
ciently, the major part of the chapter is concentrated upon the develop­
ment of shortcut rules for finding derivatives. 

§1. The Derivative of the 
Reciprocal Function 

Iff is a function, thenf'(x) is defined as the limit of the difference quotient 

f(x +h)- f(x) 
h 

(1) 

as h tends to zero. (Do you see why expression (1) is a quotient of differ­
ences?) In order to find this limit, it is often necessary to use a little 
algebra to write the difference quotient in a simple way. 

Before proceeding, let us review very briefly the algebra of simplifY­
ing fractions by combining them with the use of a common denomi­
nator. For instance, 

1 1 4 5 4-5 -1 
---

20' 5 4 5·4 5·4 5·4 

1 1 n n+2 n- (n + 2) -2 
----

(n + 2)n: (n + 2)n: (n + 2)n: (n + 2)n: ' n+2 n 
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and, by the same token, 

1 1 x x+h 
x+h x (x + h)x (x + h)x 

x- (x+h) 
(x+ h)x 

-h 
(x+ h)x· 
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(2) 

Whenever the rule for f involves division, the difference quotient (1) is 
often filled with fractions that need to be combined by using a common 
denominator. 

EXAMPLE 1 
Findf'(x), if[(x) = 11x. 

Here, the algebraic rule 1lx involves division (and, of course, is un­
defined when xis 0). Let us first use a common denominator to simplify 
the expression 

f(x +h) - f(x) 

before dividing by h and taking the limit. Since f(x) = 1lx and 
f(x +h) = 1l(x +h), equation (2) shows that 

-h 
f(x +h) - f(x) = (x + h)x. 

Dividing by nonzero h yields 

f(x+h)- f(x) _ -1 
h -(x+h)x· 

Using this simplified expression for the difference quotient makes it 
easy to take the limit: 

f'(x) =Limit f(x +h)- f(x) 
h->0 h 

-1 
= Limit ..,-------,-,­

h-+0 (x + h)x 

-1 

(x+ O)x 
-1 
~· 

The derivative ofl lx is therefore -1 I x2. The expression 1 I xis called the 
reciprocal ofx. We now know the derivative of the reciprocal function. 

L 
I 

f(x)= x 
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The domain of f does not include 0. Note that f' is always negative 
(because the curve f is always falling). 

Exercises 

-I 
f'(x)=7" 

1.1. If f(t) = 1/t, what is f'(t)? Answer: f'(t) = -1/t2 , because f is simply there­
ciprocal function. Remember that changing only the name of the variable does 
not alter the function. 

1.2. If f(L) = 1/L, what is f'(L)? 

1.3. If A = 1/s, what is A'? 

I.4. In each of the following, first make a guess as to the expression giving the 
derivative. Then verifY your guess by Fermat's method. 
(a) y = 48/L. 
(b) C = 7L + (48/L). 
(c) y = 5/(x- 7). 

1.5. Consider the function given by f(x) = 1(nx + 7). Carry out the following 
steps to find f'(x). 
(a) SimplifY the expressionf(x +h) - f(x) by using a common denominator. 
(b) Divide your answer to (a) by nonzero h. 
(c) Find the limit, as h tends to zero, of your answer to (b). Answer: 

f'(x) = -n/(nx + 7f 
1.6. Suppose f(x) = 1/g(x), where g is some given function. [For instance, 

exercise I.5 dealt with the case where g(x) = nx + 7.] Since f is expressed in 
terms of g, the difference quotient off can be expressed in terms of g as 
well. Show that the difference quotient off can be expressed by 

f(x +h) - f(x) 
h 

Hint. Begin by writing 

-1 g(x +h)- g(x) 
g-(c-x-+""""h..,..)g--,( x-,-) h 

I I 
f(x +h) - f(x) = g(x +h) - g(x) , 

and combine the fractions on the right. Then divide by h. 
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§2. General Rules for Reciprocals and 
for Constant Multiples 
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Now that we know the derivative of 1 jx, it is natural to ask about the 
derivatives of similar expressions involving reciprocals. For example, 
what is the derivative of 1/x2 ? Or of 1/(x2 + Zx)? Or, more generally, 
what is the derivative of 1/g(x), where g is some given function? 

To answer this question, first recall that g'(x) is the limit, as h 
approaches zero, of the difference quotient 

g(x +h) - g(x) 

h 
(3) 

In order that the quotient (3) tend to a limit, the numerator of the 
quotient must tend to 0 as h tends to 0. Reason: The denominator h tends 
to 0; if the numerator did not, then the quotient wou:ld "blow up" as h 
approached 0, and consequently the limit would not exist. 

When the numerator in (3) tends to 0, we have 

Limit g(x +h) = g(x) 
h~o 

(4) 

This fact will be useful in just a moment. 
We can now answer the question raised at the beginning of this sec­

tion: What is the derivative of 1/g(x)? The derivative of a function is the 
limit of its difference quotient. The difference quotient of 1/g(x) is sim­
plified in exercise 1.6, showing that the derivative of1/g(x) is equal to 

. . -1 g(x+h) -g(x) -1 , 
Limit · = ---- g (x), 
h~o g(x + h)g(x) h g(x)g(x) 

where (4) has been used (how?) in evaluating this limit. We have just 
proved the following rule to be valid. 

General Rule for Reciprocals 
The derivative of 1 / g( x) is 

-1 
(g(x) )2 g' (x) 

if the function g has a derivative. 

If we suppress writing the variable, this rule can be expressed in a 
very compact way. It says 

(1)' -1 g =g;:g'. (5) 
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For example, what is the derivative ofl/(4- 3x)? By (5), 

( 1 )' -1 1 3 
4-3x = (4-3x)2 (4 - 3x) = (4-3x)2 ' 

since (4- 3x)' = -3. D 

For another example, what is the derivative ofl/(nx + 7)? By (5), 

( 1 )' -1 ( )' -n 
nx+7 = (nx+7)2 nx+ 7 = (nx+7)2 ' 

which agrees with the answer to exercise 1.5. D 

A rule that is much easier to prove involves multiplication by con­
stants. We have essentially guessed this rule already, in Chapter 4, when 
we guessed that the derivative of~ s2 ought to be one-half the derivative 
of s2 : 

(~J = ~(sz)' 
1 

= -z(2s) = s. 

It takes little imagination to guess that there ought to be a general rule 
involving multiplication by constants, like ~· 

Rule for Constant Multiples 
The derivative of c · g( x) is c · pj ( x) if c is a constant and the function g has a 
derivative. 

For example, what is the derivative of 100/(nx + 7)? By the rule for 
constant multiplies, 

( 100 )' ( 1 )' -lOOn 
nx + 7 = 100 nx + 7 = (nx + 7)2 ' 

where the second equality comes from the general reciprocal rule. D 

The reader is asked to prove the rule for constant multiples, in a 
problem at the end of this chapter. 

Exercises 

2.1. Find y' ify = 1/(7 + 3x). Answer: y' = -3/(7 + 3x)2 • 
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2.2. Use the general rule for reciprocals to find the derivatives of the following 
functions: 
(a) f(x) = 1/xl-. 
(b) g(x) = 1/(xl- + 2x). 
(c) F(x) = 1/(6- 3x). 
(d) G(x) = I/(2x2- 3x + 4). 
Answer: (b) g(x) = (-2x- 2)/(x2 + 2x)2 . 

2.3. Apply the general rule for reciprocals to find the derivative of 1/x. Does 
your answer agree with the answer obtained in Section 1, where Fermat's 
method was used? 

2.4. Find y' if y = 1/t?-. Answer: y' = -2/t3 . 

2.5. Find C' if C = 1/(L2 + 4). 

2.6. Use the general rule for reciprocals, together with the rule for constant 
multiples, to find the derivatives of the following functions, expressed as 
algebraic rules: 
(a) 5/x2 . 

(c) n/(6- 3x). 
(e) 5/(4- 3s). 
(g) -l/t2 . 

(b) 14/(xl- + 2x). 
(d) 100/(2x2 - 3x + 4). 
(f) 48/L. 
(h) 6/(n- 0). 

§3. The Sum Rule and the 
Second Derivative 

There is an easy rule involving the sum of two functi.ons. We have es­
sentially guessed this rule already, in Chapter 4, when we guessed that 
the derivative of ax2 + bx + c ought to be equal to the sum of the de­
rivatives of ax2 and of bx + c: 

(ax2 + bx +c)' = (ax2)' + (bx +c)' 

= 2ax+b. 

One would surely suspect that this is a special case of a general rule. 

Rule for Sums 
The derivative of f(x) + g(x) is equal to f'(x) + g'(x) if the functions f and g 
have derivatives. 

This rule is true, but its proof is left to the reader as a problem at the end 
of this chapter (problem 37). 

One often has to use several rules at once. 
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EXAMPLE 2 

Find the derivative of the function given by the algebraic expression 
6x2 + (17/(x2 +3x)). 

Here we have a sum, and the sum rule says (f +g)'= f' + g'. 
Therefore, 

~ 17 )' ( 17 )' 6x2 +-2-- = (6x2 )' + - 2-- (by sum rule) 
x+3x x+3x 

= 6(x2 )' + 17(-2- 1-)' (by rule for constant multiples) 
x +3x 

-1 
= 6(2x) + 17 2 (2x + 3), 

(x2 + 3x) 

by the rule for quadratics, together with the reciprocal rule. The answer 
may be simplified, if desired, to 12x- ((34x + 51)/(x2 + 3x) 2 ). D 

The calculation in Example 2 required several steps. The reader will 
find that, with practice, it is easy to combine these steps into one: 

The derivative of5x2 + (6/(x2 - 2)) is 5(2x) + 6(-1/(x2 - 2) 2)(2x). 
The derivative of7L + (48/L) is 7 + 48( -1/L2 )(1). 
The derivative of (10/x)-(45/x2 )-Sx2 +x-n is 10(-1/x2 )(1)-

45(-1/x4)(2x)- 5(2x) + 1. D 

Having taken one derivative, we have nothing preventing us from 
taking a second derivative. The second derivative (the derivative off') 
is denoted by f". We now have y = f(x),y' = f'(x), andy"= f"(x). 

EXAMPLE 3 
Find the first and second derivatives of the function given by 

3 
f(x) = 2x2 +-- 4. 

X 

Here, the first derivative is given by 

3 
f'(x) = (2x 2 +-- 4)' 

X 

3 
=4x-­x2' 

and the second derivative is given by 

f"(x) = (4x- ~)' 
-1 

= 4- 3X4(2x) 

6 
=4+3· 

X 
D 
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A function is given by a pair of columns, and its derivative adds a 
third column to consider. The second derivative gives us still another 
column to play with. For example, in the function f above, if we let x 
equal 1, we get 

The first two columns tell us that the curve f goes through the point 
P = (1, 1). The third column tells us that the tangent at P has a positive 
slope, so the curve f is rising as it goes through P. What does the fourth 
column tell us? As we shall see in the next section, the positive second 
derivative tells us that the curve f, as it passes through P, looks rather 
like a smile. 

Exercises 

3.1. For the function f of Example 3, fill in the question marks appropriately. 

X y y' y" 

2 ? ? ? 
-1 ? ? ? 

t ? ? ? 

3.2. Find the second derivative of each of the following functions. 
(a) f(x) = 2x2 + 3x- 5. 
(b) g(x) = -3x2 + 4x- .../2. Answer: g''(x) = -6. 
(c) f(L) = 7L + (48/L). 
(d) g(s) = 600s- ~s2 . 
(e) G(t) = t 2 - 6t + (5/(t- 3)). 

Answer: G"(t) = 2 +((lOt- 30)/ (t2 - 6t + 9)2). 

(f) F(x) = (10/x) - Sx2 + x- n. 

§4. The Second Derivative 
and Concavity 

The second derivative f" gives the same sort of information about f' as 
the first derivative f' gives about f. Indirectly, then, the second deriva-
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tive says something about the behavior of the original function f. Let us 
try to find out exactly what f" tells about f. 

First we must agree on some terminology to describe how a curve is 
"curving". There are several terms in use for this (the phrases concave 
upwards and concave downwards are common descriptions), but they 
do not seem to be immediately suggestive of what they are intended to 
describe. To remedy this, let us depart from common terminology and 
make up our own way of describing how a curve curves. 

We have already agreed, on the first page of Chapter 4, to think of a 
curve as being traced out from left to right. If we thought of the curve 
as describing a road on a road map, then the pencil point tracing out the 
curve moves in a generally eastward direction. Pretend that you, on your 
motorcycle, have been shrunk to the size of that pencil point tracing out 
the curve. As you journey eastward, there is a simple way you can de­
scribe how the road is curving. All that need be said is whether you are 
leaning to your left or to your right, in order to keep your motorcycle on 
the road. 

The functions f and g below curve in opposite directions. Note that 
their second derivatives f" and g' have opposite signs. 

(0,0) 

f(x) = x 2 , 

f"(x) = 2 

(0,4) 

(\ 
g(x) = 4- x 2 , 

g"(x) = -2 

In the case of the curve y = x2 , you must always lean to your left to 
stay on the curve; you lean always to your right to stay on the curve 
y = 4 - x2 . The first curve has a positive second derivative; the second 
curve has a negative second derivative. These are simple examples, in 
that the second derivative is constant in both, whereas we shall see that 
generally the second derivative will change sign when the "road" starts 
to curve the other way. Nevertheless, these examples give us a clue to 
the truth: When f" is positive, the curve f is bending to the left; when f" is 
negative, the curve [is bending to the right. 

Why should it be this way? Focus attention on a particular point P 
lying on a curve f. Then P = (c,f(c)) for some number c. A little reflec­
don shows that 

then the curve f is bending to 
if f" (c) < 0, the right as it passes through 

the point P = (c,f(c)). 
(6) 
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To see this, all one needs to recall is that when the derivative of a func­
tion is negative, then the values of the function are decreasing (because 
its curve is falling). Keeping this in mind, and remembering that f" is the 
derivative off', one can see the plausibility of statement (6), as follows. 
Suppose f"(c) < 0. Then the values off' are decreasing, i.e., the slopes of 
the tangent lines to the curve f are decreasing, as the curve f passes 
through (c,f(c)). But decreasing slopes of the tangent lines near this 
point imply that the curve is bending to the right. Near P the curve f 
must look like one of the following iff" (c) is negative: 

1 
(a) Rising, bending 

right 

p 

(\ 
(b) "Flat" at P, 

bending right 
(c) Falling, bending 

right 

Similar reflection shows that, near P, the curve f must look like one of 
the following iff" (c) is positive: 

(d) Rising, bending 
left 

v 
p 

(e) "Flat" at P, 
bending left 

(f) Falling, bending 
left 

The upshot of the preceding discussion is this. While the sign of the 
first derivative tells whether the curve is rising or falling, the sign of 
the second derivative tells whether it is bending to the left or to the right. 
The second derivative f" tells which way the curve f is curving. D 

When the second derivative is negative, as in the figures (a), (b), and 
(c) above, we have described the curve as ''bending to the right". It is 
descnbed as concave down in most books, and figures (d), (e), and (f) are 
described as concave up. The definition of concavity in these terms is 
given in a problem at the end of the chapter. There is little point in 
learning these terms, however, if you are interested in studying calculus 
only for a semester or so. In fact, it might be better to describe (d), (e), 
and (f) as "smiles", and call (a), (b), and (c) "frowns", and just re­
member that a positive second derivative always draws a smile. 

Knowing both derivatives of a function at a point gives us a fairly good 
idea of what the curve looks like nearby. The word local (as opposed to 
global) is used in mathematics to describe this kind of information; it 
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tells us what the road looks like only in a small neighborhood of a point 
as we roar through on our motorcycle. What adventures may lie else­
where on the road remain to be seen. 

EXAMPLE 4 

Describe the local behavior of the curve y = x2 + (8/x) as the curve 
passes through 

(a) (1, 9) 
(b) (2, 8). 
(c) ( -2, 0). 

It is intended that we sketch the curve locally near each of these 
points, so as to indicate whether the curve is rising or falling, "smiling" 
or "frowning", as it passes through. From the first and second derivatives 

I 8 y =2x-­xz 

we can fill in the following table. 

X 

1 
2 

-2 

y 

9 
8 
0 

16 
and y" = 2 + x3 , 

y' y" 

-6 18 
2 4 

-6 0 

It is really only the sign of y' andy" that we need. From the first line of 
the table we see that y' is negative and y" is positive. The curve is then 
falling and smiling as it goes through (1, 9). It must resemble the curve 
sketched in figure (f) above, with P = (1, 9). 

From the second line of the table, with both derivatives positive, 
we see that the curve must resemble the one of figure (d), with 
p = (2,8). 

The third line of the table, withy' negative, shows the curve falling as 
it passes through ( -2, 0), but how do we interpret the fact that y'' is zero? 
We must look at the sign of y" for x just less than -2 and for x just greater 
than -2. Doing this reveals that the sign of y" switches from positive to 
negative. This means that, at the point ( -2, 0), the curve stops bending 
left and starts bending right (or, if you prefer, the concavity switches 
from up to down). Such a point, where the curve stops bending one way and 
starts bending the other way, is called a point of inflection. 
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All the information gleaned above is in this picture: 

;(2,8) 

The curve y = i2 + (8/x), pictured locally in neighborhoods of three points. The 
point (-2, 0) is a point of inflection. D 

At a point of inflection the second derivative must be zero (why?). 
However, the second derivative can be zero at points other than in­
flection points. A straight line has no inflection points, but the second 
derivative of a linear function is always zero. 

Exercises 
4.1. Consider the function given by f(x) = i2- 3x + 2. Proceed as in Example 4 

to describe the local behavior of the curve f as it passes through 
(a) (0, 2). 
(b) (2, 0). 
(c) (1,0). 

4.2. Use the data collected in exercise 3.1 to describe the local behavior of the 
function f of Example 3 as it passes through (2, !f), ( -1, -5), and (! ,~). 

4.3. Describe the local behavior of the curve y =lOx- (4/x) near 
(a) (1,6). 
(b) (2, 18). 
(c) (-!,3). 
Partial answer: The curve looks like figure (a), page 161, with P = (1, 6). 

4.4. Describe the local behavior of the curve C = 7L + (48/L) near 
(a) (2, 38). 
(b) (2.5, 36.70). 
(c) (3, 37). 

4.5. Describe the local behavior of the curve y = i2 + (8/x) near 
(a) (-1,-7). 
(b) (~, 7~). 
(This is the curve of Example 4.) 
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4.6. From the meager sketch in Example 4 above, we see that the curve appears 
to have a local minimum between x = 1 and x = 2. Find the x-coordinate of 
this local minimum. Is this a global minimum as well, i.e., is this the lowest 
point on the entire curve? 

4.7. Does any linear function have an inflection point? Does any quadratic 
function have an inflection point? 

4.8 Find both coordinates of an inflection point on the curve y = il + (1/x). 

4.9. Suppose you have a function f and a point c where f'(c) = 0 and f"(c) is 
positive. Have you found a local minimum or a local maximum off? 

§5. The Rule for Squares 
There remain four shortcut rules to be discussed in this chapter. We 
need to find out how to take derivatives of squares, of square roots, of 
products, and of quotients. One might suspect that we shall therefore have 
to go through all the details of Fermat's method four more times. For­
tunately, things can be arranged so that we have to do Fermat's method 
only once more, to find a rule for squares. The only algebraic trick we 
shall need is a simple one. The difference of two squares factors into the 
product of their sum and difference: 

a2 - b2 = (a+ b)(a- b). 

Suppose we are presented with a function whose rule involves a 
square. For example, suppose we have a rule f(x) given by (x2 + 3)2 , or 
by (Sx- (7 /x))2, or, more generally, by (g(x)) 2 , where g is a function 
whose derivative we know. By Fermat's method, iff(x) = (g(x)) 2 , then 

f'(x) =Limit f(x +h)- f(x) 
h--+0 h 

= Limit (g(x + h))z - (g(x))z 
h--+0 h 

How can this difference quotient be simplified, in order to find its 
limit? Answer: Since the numerator is the difference of two squares, we 
can factor it into the product of their sum and difference, to get 

f '( ) L" "t (g(x +h)+ g(x))(g(x +h)- g(x)) 
x=~~l h 

= L~~it(g(x +h)+ g(x)) (g(x + h~- g(x)) 

= (g(x) + g(x))g'(x) [by equation (4)] 

= 2g(x)g' (x), 

provided, of course, that g has a derivative. We have our rule. 



6. The Product Rule and the Square Root Rule 165 

Rule for Squares 
The derivative of (g(x))2 is 2g(x)g'(x) if the function g has a derivative. 

By this rule, for example, 

the derivative of (x2 + 3)2 is 2(x2 + 3)(2x), 
the derivative of (Sx- (7/x)) 2 is 2(5x- (7/x))(S + (7/x2)). 

Exercises 
5.1. Find the derivative of (3x + 5)2 by using the rule for squares. Answer: Here 

we have (g(x)) 2 , where g(x) = 3x + 5. By the rule for squares, its derivative is 
2gg, which is 2(3x + 5)(3), or 18x + 30. 
[The reader should check that this is the same answer one obtains by first writing 
( 3x + 5 )2 as 9x2 + 30x + 25, and then taking the derivative by the quadratic rule.] 

5.2. Find the derivative of (6- 7x)3 

(a) by applying the rule for squares. 
(b) by first squaring the expression 6- 7x and then applying the rule for 

quadratics. 

5.3. Find the derivative of each of the following functions, expressed as algebraic 
rules. 
(a) (x2- 5xf 
(b) (7L + (48/L))2 • 

(c) (5x2 + (6/(x2- 2)))2 . 

(d) (3x3 - 5x + ...;2Y 
(e) (2x2 + (3/x) - 4)2 . 

Answer: (b) 2(7L+ (48/L))(7- (48/L2)). 

5.4. True or false? The derivative of a square is equal to the square ofthe derivative. 

5.5. Find the derivative of x4 by regarding x4 as (x2 ) 2 and using the rule for 
squares. Answer: 4x3. 

5.6. Find the derivative of (l/x)2 

(a) by applying the rule for squares. 
(b) by first writing (l/x)2 = I/x2 and then using the general reciprocal rule. 

5.7. What is the derivative of 
(a) (x2 + 5x)2? 
(b) (f(x) + g(x)) 2? Answer: 2(f(x) + g(x))(f'(x) + g'(x)). 

§6. The Product Rule and the 
Square Root Rule 

It is not true that the derivative of a product is the product of the deri­
vatives. The product rule is a little more complicated than that. It is 
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easy to derive the product rule, though, because a product can always be 
expressed in terms of squares, and we already know the rule for squares. 

To see the relationship between products and squares, begin with the 
familiar identity 

(a+ b) 2 = a2 + 2ab + b2 

and "solve" this equation for the product ab. You get 

ab =~((a+ b) 2 - a2 - b2 ), 

which expresses the product ab in terms of squares. The same thing 
holds, of course, for functions. Iff and g are functions, then their prod­
uct can be written as 

fg = !((f +g)z- f2 -gz). 
2 

Taking derivatives by using the rule for squares, and also using the result 
of exercise 5.7, we find that 

(fg)' = ~ [2(f + g)(f' + g')- 2/f'- 2gg'] 

= (f + g)(f' + g')- ff'- gg' 

Rule for Products 

= ff' + fg' + gf' + gg' - ff' - gg' 

= fg' +gf'. 

The derivative off(x)g(x) is f(x)g'(x) + g(x)f'(x), provided that f and g have 
derivatives. 

The reader may find it easier to remember the product rule by read­
ing it in words: The derivative of a product is equal to the first term times the 
derivative of the second, plus the "other way around". 

As an example, let us find the derivative of the product (x + 2)(x- 3). 
By the product rule, it is 

(x + 2)(x- 3)' + (x- 3)(x + 2)' 

= (x + 2)(1) + (x- 3)(1) 

=2x-l. 

In this example we can check our answer by noting that the product 
(x + 2)(x- 3) is equal to the quadratic expression x2 - x- 6, whose 
derivative is indeed 2x - 1. D 

Here are some more examples, with the answers left in an unsim­
plified form. 
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The derivative of (x2 + x)(5x- 2) is equal to 

(x2 + x)(5) + (5x- 2)(2x + 1). 

The derivative of(7L + {48/L))(L2 -n) is equal to 

(7L + ~) (ZL) + (L2 -n) (7- ~~). D 

Now, what about square roots? How do we get the derivative off, 
if the function f is given by f(x) = ,,h + x2 ? Or by vzx- 3? Or, more 
generally, by y/g(X), where g is some function whose derivative we al­
ready know? We can guess the answer to this question by using the rule 
for squares: Iff = yg, then (by squaring both sides) we have 

f2 =g, 

2ffl =gl 

f 1_2_ I 

- 2fg 

f' __ 1_ I 

- 2ygg 

(by rule for squares), 

(solving for f 1), 

(since f = ..jg). 

Square Root Rule 1 
The derivative of Ji(X) is r::t::\ g1(x), provided the function g has a 
derivative. 2y g(x) 

The application of this rule is quite straightforward. 

The derivative of V1 + x2 is 

1 X 

2~(2x)=~· 

The derivative of vzx - 3 is 

1 1 
~(2)= . 

2v ~~ - a vzx- 3 

The derivative of ..fi is 

1 1 
2.,fi (1) = Z.,fi. 

Exercises 

D 

6.1. Find the derivative of i!, by regarding x3 as the product of x2 and x. Answer: 
(il)1 = (x2x) 1 = x2 (1) + x(Zx) = 3x2 • 
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6.2. Find the derivative of ~A by regarding ~A as the product of il and x. Does 
your answer agree with exercise 5.5? 

6.3 Find the derivative of each of the following. 
(a) x'. 
(b) x6 . 

(c) x7 . 

(d) xn, where n is a positive integer. 

6.4. Any quotient can be expressed as a product. Find the derivative of xj(x + 3), by 
regarding this quotient as the product of x and 1/(x + 3). 

Answer: 

-1 1 
=X (x+3f+ x+3(1) 

-X 1 

= (x + 3)2 + x + 3 · 

6.5. Find the derivative ofil/(5x + 1) by regarding this quotient as the product of 
x3 and 1/(5x + 1). 

6.6. Use the square root rule to find the derivatives of the following. 
(a) v'9+x2 . 

(b) 1 7 v'r::-3x--.2----=2=-x. 

(c) .,fiiX. 
(d) v'2. 

6.7 Find the derivative ofx4 v'f+X. 

Answer: (x4v"f+X)' = x4( v"i+X)' + ( v"i+X)(x4)' 

=x4 ( • ./ ) +(v'1+x)(4x3 ) 
2 1 +x 

x4 3 ~ 
= ~+4x v1 +x. 

2v1 +x 

6.8. Find the first derivatives of the following. 
(a) x2 v'1 + x2 . 

(b) x>fi. 
(c) ilv'zx- 3. 
(d) x6 v'3x2 - 2x. 

6.9. Find the second derivative y'' if y = y'2x + 5. 

§7. The Quotient Rule 

Exercises 6.4 and 6.5 give the clue to finding a rule for obtaining the 
derivative of a quotient f / g: Regard it as the product of 1/ g and f. Then we 
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have 

(~)' = Gf)' 
= G)f'+fG)' 
= (;)t+f(~;)i 

gf'- fg' 
g2 

Rule for Quotients 
The derivative off(x)/g(x) is 

g(x)f'(x) - f(x)g'(x) 
(g(x) )2 

if the jUnctions f and g have derivatives. 
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The reader may find it easier to remember the quotient rule by read­
ing it in words: The derivative of a quotient is equal to the bottom times the 
derivative of the top, minus the other way around, over the bottom squared. 

For example, 

the derivative ofxf(x + 3) is 

(x + 3)(1)- (x)(1) 

(x + 3)2 

the derivative of~/ ( 5x + 1) is 

(5x + 1 )(3x2 ) - (~)(5) 

(5x + 1)2 

(The reader should check that these answers, with the help of a little 
algebra, may be seen to agree with the answers to exercises 6.4 and 
6.5.) D 

Exercises 

7.1. Ify = 2x/(x2- 3), what is y'? Answer: y' = ( -2x2 - 6)/(x2 - 3)2 . 

7.2. If y = 2x/(x2 - 3), what is y''? Hint. Use the quotient rule to find the 
derivative of the answer to exercise 7 .1. In the course of doing this, the rule 
for squares will come in handy in finding the derivative of the bottom. Don't 
take time to simplify your answer. 
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7.3. Describe the local behavior of the curve y = 2x/(x.Z- 3) near the point (2, 4) 
and near (1, -1). Is (0,0) an inflection point? 

7.4. Find the first derivative of each of the following. Do not simplify. 
(a) (x + 2)/(x- 2). 
(b) (x2 - 3)/(x- 2)2 . 

(c) x3 j../l+X2. 
(d) y'(x + 2)/(x- 2). 
(e) ((3x -1)/x2) 2 . Answer: 2((3x- 1)/x.l)((x2 (3)- (3x- 1)(2x))/x"). 

7.5. Consider the function given by f(x) = Sx2 + (6/(x.Z - 2)). What does the 
curve f look like, locally, near the point (0, -3)? Near (2, 23)? 

7.6 What does the curve y = v'16 + x2 look like, locally, as it passes through 
(0, 4)? 

§8. Solving Optimization Problems 

Where are we now? We have just completed an unavoidable digression 
from our original theme, which was the solution of optimization prob­
lems. As we saw in Chapter 1, an optimization problem leads to the 
problem offinding the highest (or lowest) point on a certain curve. This, 
in turn, has led to the study of derivatives, because derivatives cast light 
on the behavior of a curve. And now, at last, we know how to bypass 
Fermat's method and use the following rules instead. 

(1) (cf)' = c · f' (constant multiples). 
(2) (f +g)' = f' + g' (sums). 
(3) (1/g)' = (-1/g"l)g' (reciprocals). 
(4) (gZ)' = 2gg' (squares). 
(5) ( y'g)' = !g' / y'g (square roots). 
(6) (fg)' = fg' + gf' (products). 
(7) (f /g)'= (gf'- fg')jg2 (quotients). 

There is also the useful power rule derived in exercise 6.3: (xn)' = 
nxn-l, where n can be any positive integer. The applicability of this rule 
when n is not a positive integer will be tested in problem 32 at the end 
of this chapter. 1 

The reader should practice using these rules until they have been 
memorized. Then the taking of derivatives will be quite a routine matter, 
and the most important step in solving an optimization problem will 
have been mastered. 

We can finally come to grips with the topic to which the title of this 
chapter alludes. What are the steps leading to the solution of an opti­
mization problem? Basically, there are just two steps. First, translate the 
problem into the geometric problem of finding the highest (or lowest) 
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point on a certain curve f; and second, find f' and use it as an aid in 
understanding how the curve f behaves. 

The critical points to be found in sketching a curve f are those where 
the tangent line to the curve is horizontal. [That leads to a definition: To 
say that xis a critical point off is to say that f'(x) = 0.] Usually, although 
not always, the function f will attain its optimal value at a critical point. 

To verify whether the optimum has been found, make a rough sketch 
of the curve near each critical point (the second derivative is helpful 
here) and near each endpoint of the domain. 

Remember the idea of seeking wrong answers in order to eliminate 
them? Here is an application that shows the power of calculus (and 
shows the major fallacy in the sophistry of problem 29 of Chapter 3). 

Theorem on Optimization and Elimination 
In searching for the largest and smallest values in the range off on the 
domain a ::5: x ::5: b, we may eliminate from consideration those values of 
x where f'(x) is nonzero, unless xis one of the endpoints (a or b). Restated 
positively: Iff has a derivative, then in searching for the extreme values 
off, we need only check the values off at the endpoints of its domain 
and at critical points inside. 

Proof 
If f'(x) is nonzero then the curve f is either rising or falling as it passes 
through the point (x,f(x)), so such a point (if it is not an endpoint of the 
curve) can be neither the highest nor lowest point on the curve and may 
be eliminated from a search for these points. D 

As we have seen, some curves do not have a highest (or lowest) point. 
It can be proved, however, that a curve must have such points if it comes 
from a continuous function and if the domain is an intetval containing its 
endpoints. This is a deep theorem of analysis, the modern branch of 
mathematics into which seventeenth-century calculus evolved, and can­
not be proved here. The moral for us is to be aware of what a function is 
doing near the endpoints of its domain, particularly if the domain does 
not include endpoints. If a continuous curve fails to have a highest (or 
lowest) point, then by the theorem of analysis the trouble must lie in the 
behavior of the function near an endpoint missing from its domain. 

EXAMPLE 5 
Find the highest point on the curve f given by 

on the domain 

(a) 0 ::5: x ::5: 4. 
(b) 0 <X< 4. 

f(x) = 2x+ 3, 
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Let us look first for all critical points in the domain, that is, all values x 
for which f'(x) = 0. Here we have f'(x) = 2, which shows that there are 
no such values. Since f has no critical points, the principle of analysis 
mentioned above guarantees that the extreme values off must occur at 
the endpoints of the domain. At the endpoint 0, the value off is 3; at the 
endpoint 4, the value off is 11. Therefore, 

(a) if the domain is 0 ~ x ~ 4, then (4, 11) is the highest point on the 
curve f. 

(b) if the domain is 0 < x < 4, then the curve f contains no highest 
point. 

Note that, to draw the conclusions (a) and (b), we did not have to draw 
a picture of the curve f! The reader may wish to draw a picture anyway, to 
see better what is going on. The expression 2x + 3 reveals f to be a linear 
function of slope 2: 

(a) Domain: 0 ~ x ~ 4 
Range: 3 ~ y ~ 11. 

(4, II) 

Domain 

0 4 

The highest point on the 
curve is (4, 11). The greatest 
number in the range is 11; the 
least is 3. 

EXAMPLE 6 

(b) Domain: 0 < x < 4 
Range: 3 < y < 11. 

Domain 
0 0 
0 4 

There is no highest (or lowest) 
point on the curve, because the 
range contains no greatest (or 
least) number 

Let C = 7L + (48/L), with domain 0 < L. Find the least possible value 
of C. 

Let us first find all critical points in the domain, that is, points where 
C' is zero. Since C' = 7- (48/L2 ), C' is zero when 

48 
7--=0 £2 , 

7L2 - 48 = 0 (multiplying through by L2 ), 

7L2 = 48, 
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2 48 
L =-, 

7 
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Because - J4817 is not in the domain, the only critical point in the 
domain is 

~ = 2.619.... [by exercise 6.6 of Chapter 2] 

At the critical point, the corresponding value of C is given by 

We must now show that this is the least possible value of C. 
The second derivative helps here. It is given by 

C"= 96 
£3' 

which is (obviously) positive for aU values of L in the domain 0 < L. 
Therefore, the curve C = 7L + (48/L) is always bending to its left (or 
smiling). The point 

(2.619 ... , 36.661 ... ), 

being the point on the curve where a tangent line is horizontal, must be 
the lowest point on the curve. 

We can now answer the question raised in Example 1 of Chapter 1. 
The least amount of money that will pay for the fencing is $36.66 
(rounded off to the nearest cent). D 

The preceding example was discussed rather thoroughly without ever 
drawing the curve. We found the lowest point and we discovered that the 
curve was always bending to the left. If it is desired to sketch the curve, 
what additional information is needed? Answer: Information about the 
curve's behavior near the "endpoints" of the domain, i.e., when Lis very 
small and when Lis very large. 

To get this information, use common sense. Look at the two terms 7L 
and 48/L, whose sum gives C. What happens to each of them when Lis 
very small? The first term 7L is negligible (i.e., nearly zero), so the curve 
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behaves essentially like the graph of 48/L when L is small. The ex­
pression 48/L increases without bound as L---+ o+. (See Example 7, near 
the end of Chapter 1.) 

What happens when L is very large? Then the expression 48/L is 
negligible, so the curve behaves essentially like the graph of 7L when L 
is large. The expression 7L produces a line of slope 7. For large L, the 
curve C = 7L + (48/L) approximates a straight line of slope 7. 

Putting these facts together produces the following sketch: 

36.66 ... 

0 

Exercises 

Domain 

Domain: 0 < L 
Range: 36.66 ... :.,;; C 

8.1. For each of the following functions, find its maximum value, ifit has one. 
(a) f(x) = 5- 2x, 0 :o;; x < 3. Hint. Proceed as in Example 5. 
(b) F(x) = x2 - 2x, 0 :o;; x :o;; 4. 
(c) g(x) = x- (ljx) + 6, 0 < x :o;; 8. 
(d) G(x) = x+ (l/x) +6,0 < x :o;; 8. 
Answers: (b) max F is 8. (d) max G does not exist. 

8.2. For each of the functions in exercise 8.1, find its minimum value, if it has 
one. Answers: (a) min f does not exist. (b) min F is -1. 

8.3. Sketch the curve y = 4x + (36/x), with domain 0 < x, indicating both coor­
dinates of the lowest point. Also, indicate how the curve looks when x is very 
small and when x is very large. 

8.4. A rectangular pen containing 48 square meters is to be fenced in. The 
front will cost $5 per meter of fencing, while each of the other three sides 
will cost $3 per meter. What is the least amount of money that will pay for 
the fencing? 

8.5. In the problem set at the end of Chapter 1, read again problem 19. Find 
the greatest possible volume V. Answer: max V = 40Vl0, attained at critical 
point L = J4Q. 
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§9. Summary 

Here, in detail, are the steps that have been illustrated above. 

Step 1. Algebraic formulation: 
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(a) See the problem in terms of variables. (The quantity to be 
optimized is one variable, say y, and you have to find a 
second variable, say x, on which y depends.) 

(b) Write down an algebraic rule f, giving y in terms of x. 
(c) Specify the domain of the function f. 

Step 2. Geometric analysis: 
(a) See the problem as one of finding the highest (or lowest) 

point on the curve f. 
(b) Find the derivative f'. (And find f" too, if it can be done 

without much trouble.) 
(c) Find the critical points, if any, that lie in the domain of f. 

(That is, find all values of x in the domain off that satisfy the 
equation f'(x) = 0.) 

(d) Check what happens near the endpoints ofthe domain. 
(e) Using the information of steps 2( c) and 2( d), find the desired 

highest (or lowest) point on the curve f. 
[The second derivative may be helpful in steps 2(d) and 2(e).] 

Step 3. Back to everyday life: 
(a) Read the problem again, to determine e:xactly what was 

called for. (Was it the first or second coordinate, or both, of 
the highest or lowest point of the curve that you were seek­
ing?) 

(b) Give a direct answer to the question raised in the problem, 
by writing a complete, concise sentence. 

Step l(c) is easy to forget, and thus deserves emphasis. The domain 
must be specified; otherwise, steps 2(c) and 2(d) cannot be carried out. 
Step 3 is also easy to forget. In concentrating on step 2, you can lose sight 
of your goal and, as a consequence, do unnecessary work. When a 
problem takes a long time to work, it is a good idea to remind yourself 
now and then what you are after. 

Here is another example to illustrate these steps. 

EXAMPLE 7 

An ordinary metal can (shaped like a cylinder) is to be fashioned, using 
54n square inches of metal. What choice of radius and height will maxi­
mize the volume of the can? 

Here, we want to maximize the volume, so let V denote the volume, 
which is given in terms of the radius r and height h by the formula 
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V =(area of base) (height) 

= nr2h. (7) 

The rule V = nr2h gives V in terms of two variables. We need to get V in 
terms of only one variable, and this can be done, as follows, by finding a 
relation between r and h. The picture below shows that the area of the 
side of the can is given by 2nrh: 

After making 
a vertical cut 
in the side, 

we have here the side of 
the can, flattened. 

T 
h 

.___ _____ ___Jl 
<-------- 211:r ------+ 

The total amount of metal available, 54n square inches, must equal 
the amount in the side of the can, plus the amount in the circular top 
and bottom: 

54n = 2nrh + 2nr2 . 

This is a relation between r and h. It is easy to solve for h (the reader is 
asked to do it), and obtain 

27- r 2 
h=--. 

r 

Putting equations (7) and (8) together gives 

2 (27- Y
2

) V=nr ---
r 

= nr(27- r 2 ) 

= 27nr- nr3 , 

(8) 

which expresses V in terms of r alone. The problem now is to find the 
value of r that yields the maximal volume V, where 

V = 27nr- n0, 0 < r < 57. 
[The radius r must be less than ,fi7. Reason: The height h must be posi­
tive, so, by equation (8), 27- r2 must be positive.] 

r v 

? 
r 

V' 

0 
27n- 3nr2 
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Let us find critical points. The derivative is given by 

V' = 27-n:- 3nr2 , 

which is zero when (dividing by 3n) 

o = 9 -r, 
r=9, 
r= ±3. 

Since -3 is not in the domain, the only critical point is 3. 
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We now show that when r is 3, the volume Vis maximal. This is easy 
to see, for the second derivative is given by 

v" = -6-n:r, 

which is (obviously) negative throughout the domain. The curve is there­
fore always bending to its right (or frowning), and hence it must reach its 
highest point at the place where it has a horizontal tangent line. (At both 
endpoints of the domain, V tends to zero.) 

To maximize the volume, the radius should be 3 inches, and the cor-
responding height, by equation (8), should be 6 inches. 0 

A Final Remark. As in Examples 5, 6, and 7, it is not really necessary 
to sketch the curve in order to do the problem. Iff has a derivative, then 
the extreme values (maximum and minimum) can be located by checking 
among the endpoints and the critical points. Curve sketching is to be 
encouraged, because pictures say more than words, but the principles of 
analysis are valid regardless of how well one draws. 

Problem Set for Chapter 5 

1. A rectangular pen bordering a road is to be fenced in. The fence along the 
road will cost $7 per meter, while each of the other three sides will cost $3 
per meter. 
(a) What is the minimum cost of the fencing if the pen is to contain 36 

square meters? 
(b) What is the maximum area that can be enclosed by spending $120 on 

fencing? 

2. A book company wants to put 60 square inches of type on a rectangular 
page, leaving margins of 1 inch on the sides and bottom and of 2 inches at 
the top. What should be the dimensions of the page in order to minimize the 
amount of paper used? 

3. Write an equation of the tangent line to the curve y = 5/x2 at the point (1, 5). 
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4. Tell whether the curve y = 5/x2 is bending to the right or to the left as it 
passes through 
(a) (1, 5). 
(b) (-1,5). 

5. Consider the function f defined by f(x) = 5x)1 - 3x. 
(a) Is the curve [rising or falling as it passes through the point (0, 0)? 
(b) Is the curve f bending to the left or to the right as it passes through the 

point (0, 0)? 

6. Consider the function given by f(x) = ax2 + bx + c, where a, b, and c are 
constants. Which way does the curve f bend if 
(a) a> 0? 
(b) a< O? 

(c) a= 0? 

7. Consider the curve C = 3L + (27/L), 0 < L. 
(a) Find the first coordinate of a point on this curve where the tangent line 

is horizontal. 
(b) This curve always bends the same way on the domain 0 < L. Which 

way? 
(c) From your answer to part (b), you know the point found in part (a) must 

be the highest or lowest point on the curve? 

8. Consider the curve C = 3L + (27/L),L < 0. 
(a) This curve always bend the same way on the domain L < 0. Which way? 
(b) Find both coordinates of the highest point on the curve. 
(c) Does this curve have a lowest point? 

9. What is the range off, where f(L) = 3L + (27/L), with domain L # 0? Hint. 
First sketch the curve f, using the information obtained in problems 7 and 8. 

10. (A problem in curve sketching.) Consider the cubic equation y = ;0 - 3x + 2. 
(a) The derivative y' = 3x2 - 3 is a simple quadratic function. Plot the graph 

of this quadratic, and, on a different coordinate system, plot the graph of 
the simple linear function y" = 6x. 

(b) The two graphs just sketched give much information about the original 
cubic. Use these two graphs to specifY on what interval(s) the cubic is 

(i) rising. 
(ii) falling. 

(iii) bending to the left. 
(iv) bending to the right. 

(c) Find both coordinates of an inflection point of the cubic. 
(d) There are two points on this cubic where there is a horizontal tangent 

line. Find both coordinates of both points. 
(e) Sketch the curve y = ;0 - 3x + 2, using all the information just obtained. 
(f) SpecifY the range of the cubic if the domain is 

(i) 0 ::;; X::;; 3. 
(ii) -2 ::;; X< 0. 

(iii) -2 <X::;; 0. 
(iv) unrestricted. 
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11. Consider the cubic equation y = 0 + 3x + 2. 
(a) Sketch the graph of this cubic, after first investigating its first and second 

derivatives, as in the preceding problem. 
(b) Find both coordinates of an inflection point. 
(c) SpecifY the range of this cubic if its domain is given by -1 ::5; x ::5; 4. 

12. As in the preceding two problems, carry out an analysis of the cubic 
y = x3 + 2, sketch its graph, and find its point of inflection. What is its range 
if its domain is given by -1 ::o; x < 2? 

13. Suppose y = (t2 - 3)/(t + 2). Find y' and y'' when t is 0,. and use this in­
formation to sketch the curve locally, near the point P = ( 0, - ~). 

14. Sketch the curve y = x2 + (8/x),x '# 0, a portion of which has already been 
sketched in Section 4. 

15. Express the number 10 as the sum of two positive numbers in such a way 
that the sum of the cube of the first and the square of the second is as small 
as possible. 

16. Find the point on the graph ofy2 = 4x that is nearest the point (2, 1). 

17. What is the smallest slope that a tangent line to the curve y = x3 + 3x + 2 
could possible have? 

18. Identical squares are to be cut out of each corner of a piece of metal that is 
shaped like a rectangle of dimensions 5 feet by 8 feet. The four squares are 
then discarded, and the sides folded upwards to make a large box, with open 
top. Let x be the length of the sides of the squares cut out, and let V be the 
corresponding volume of the box. Find the value of x that maximizes V. 

X 

1 

r--------------r 

l--====s=s ====--
Discard squares, fold up sides: 

,__,_/1 __ /1 X 

I V 
19. Identical squares are to be cut out of each corner of a rectangular piece of 

metal measuring 10 meters by 4 meters. Then the squares are to be dis-
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carded, and the sides folded up to make a water trough for thirsty horses. 
What size squares should be cut out in order to maximize the volume of the 
trough? 

20. Out of 100 square centimeters of metal, the sides, top, and bottom of a cy­
lindrical can are to be fashioned. What should be the radius of the base of the 
can in order to maximize the amount of chicken soup that the can will hold? 

21. In exercise 4.11 of Chapter 2, a certain cost C was given in terms of a length x 
by the equation 

C = 7V9 + x2 - 2x + 26, 0 =o; x =o; 13. 

(a) Find C', then fill in the table below. 

(b) Tell whether the curve is rising or falling as it passes through (0, 47) and 
through {4, 53). Can you conclude that the lowest point on the curve lies 
somewhere between these two points? 

(c) Find the value of x that yields the least cost C. 
(d) Read again exercise 4.11 of Chapter 2. Then draw a picture of how the 

cable should be built in order to minimize the cost of the cable. 

22. A lighthouse is located 4 miles offshore. The nearest town is 5 miles down­
shore. Whenever she goes into town, the lighthouse keeper must take a motor­
boat containing her motorcycle, dock at a point somewhere downshore, then 
ride the rest of the way by motorcycle. Where should the boat be docked in 
order to minimize the time of the trip to town if 
(a) the motorboat goes 20 miles per hour and the motorcycle goes 40 miles 

per hour? 
(b) the motorboat and the motorcycle travel at the same speed? 
(c) the motorboat goes A miles per hour and the motorcycle goes B miles 

per hour? 

23. In problem 18 at the end of Chapter 1, a certain cost C was given in terms of 
a length L by the equation 

2 96 c = 3L + L' 0 < L. 

(a) Find the value of L that minimizes the cost. 
(b) Read again problem 18 of Chapter 1, and draw a picture indicating the 

dimensions of the metal container that will minimize its cost. 

24. Find the dimensions of the cheapest possible trash can with square base and 
rectangular sides, subject to the following specifications. The volume of the 
can is to be 3 cubic meters, the material for the sides costs $0.30 per square 
meter, and the material for the base costs $0.50 per square meter. 
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25. In the preceding problem, suppose it is decided to add a top to the can, made 
out of light metal costing only $0.10 per square meter. With this addition, 
what are the dimensions of the cheapest can? 

26. The metal used in making the top and bottom of a cylindrical can will cost 
$0.03 per square centimeter, while the metal used in the side of the can will 
cost $0.02 per square centimeter. If the volume of the can is to be 100 cubic 
centimeters, what should be the dimensions of the can in order to minimize 
the cost? 

27. Out of 160 square feet of material, a container is to be made. What dimen­
sions will maximize the volume of the container if the container is to be 
shaped like 
(a) a rectangular figure with square base and open top? 
(b) a rectangular figure with square base and with a top? 
(c) a cylindrical can without a top? 
(d) a cylindrical can with a top? 

28. A Norman window is in the shape of a rectangle surmounted by a semicircle. 
Find the dimensions of the window that will allow the most light to pass, 
provided that the perimeter of the window is 8 meters. 

29. A wire is to be cut in two. The first part is to be bent into the circumference 
of a circle, and the second part into the perimeter of a square. How should 
the wire be cut in order to minimize the combined area of the circle and 
square if 
(a) the wire is 100 centimeters long? 
(b) the wire is A centimeters long? 

30. The definition of concave upward is as follows: A curve fis concave upward 
if it lies above each tangent line (with the obvious exception of the point of 
tangency). 
(a) Iff" is always positive, is the curve f concave upward? 
(b) If the area in the plane lying up above the curve f forms a concave figure, 

is the curve f concave upward? 

31. Find the first derivatives of the following. Do not simplify you answers. 
(a) (xj(x- 6))2 

(b) Jxj(x- 6). 
(c) (4x5 -3x)(x2 -x+v2Y 
(d) x4j(il+x-3t 
(e) (~ - x)y2 + 7x. 
(f) #. 

32. Mathematics shares some characteristics with experimental science. One 
notices a pattern developing, and then one tries to guess a general rule. The 
rule must then be tested for its applicability to new situations. One hopes 
that a widely applicable rule can be derived logically from simpler principles 
that are already accepted. Consider the rule 

(xn)' = nxn-1, 

which ought to have been guessed in exercise 6.3 of this chapter. This 
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rule applies where n is a positive integer. Let us test this rule for wider 
applicability. 
(a) Apply the rule above to find (x- 1 )'.Does it result in the correct answer? 

(We already know that the derivative ofx-1 is -1/x2 , from our work in 
Section 1.) 

(b) Apply the rule to fine (x-2)'. Does it give the derivative of 1/xZ? 
(c) Apply the rule to find (x112)'. Does it give the derivative of .,fi? 
(d) Apply the rule to find (x312 )'. Does it give the derivative of x.,fi? (The 

derivative ofx.,fi can be taken by the product rule.) 
(e) Apply your rule to find (:012 )'. Does it give the derivative of#? 
(f) Apply your rule to find (x-712 )'. Does it give the derivative of 1/.../Xf? 
(g) If it made any sense to speak of raising a number to the power n, what 

would you guess is the derivative of xn? 

33. Suppose that a function g has a derivative at a point x. Does it necessarily 
follow thatg is continuous at x? That is, if g'(x) exists, does it follow thatg(x) = 
Limg at x? Hint. In Section 2 we saw that if g'(x) exists, then equation (4) 
necessarily follows. 

34. Suppose that a function g is continuous at a point x. Does it necessarily 
follow that g has a derivative at x? Hint. Consider a function whose curve has 
a "corner", as pictured below, at the point (x,g(x)). 

35. Use Fermat's method to show that the derivative of a constant function is 
zero. [This is so easy that it is easy to miss. You are to show that if g(x) = c, 
where cis a constant, then g'(x) = 0 for all x.J 

36. Give two proofs of the rule for constant multiples, which states that 
(c ·f)'= c -f'. 
(a) First, by applying the product rule to the product f · g, where g(x) = c, 

and using the result of problem 35. 
(b) Secondly, by applying Fermat's method to the situation pictured below: 

the curve 
y= c · f(x) 
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37. By applying Fermat's method to the situation pictured below, prove the rule 
for sums, which states that (f +g)'= f' + g'. 

(x + h,f(x + h) + g(x + h)) 

the curve 
y = f(x) + g(x) 

38. Use Fermat's method (not a shortcut rule) to show that if f(x) = y'x, then 
f' (x) = 1 /2v'X. Hint. Simplify the difference quotient off by multiplying both 
the top and the bottom by the expression vx + h + y'x. 

39. Use Fermat's method (not a shortcut rule) to prove directly the product rule, 
which states that (fg)' = fg' + gf'. Hint. First find the difference quotient of 
the product function given by y = f(x)g(x). Simplify it by inserting the 
expression f(x + h)g(x) - f(x + h)g(x) into the numerator to get 

f( h)g(x+h)-g(x) ( )f(x+h)-f(x) 
x+ h +gx h . 

Then find the limit as h tends to 0. 

40. Derive the reciprocal rule from the product rule, by proceeding as follows. 
Assuming that the expression 1/g has a derivative, begin with the obvious 
equality 

and use the product rule, together with the result of problem 35, to write 

then solve for the derivative of 1/g. 

41. (Newton's method again) Now that we know the derivative of x12 , we can use 
it to calculate the decimal expansion of the twelfth root of 2, which plays 
a crucial role in the theory of music. Carry this out by applying Newton's 
method (Chapter 4, Section 10) to solve the equation ;~12 - 2 = 0, taking 
G = 1 as your initial guess. Do you get the same succession of approxi­
mations to \7'2 that you did in exercise 6.8 of Chapter 2? 

42. (A cube-root rule?) Given f = <jg, is there a "cube-root rule" enabling us to 
find f' quickly? The way we came upon the square-root rule in Section 6 can 
be modified to do this. 
(a) Iff= <jg, then of course, [3 = g, so g = [3 = JZf. What is g'? Hint. Since 

g = f 2f, then g' = ([Zf)'. Use the product rule to find ([Zf)', but be care­
ful; you'll have to use the rule for squares in the course of carrying out 
the product rule. 
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(b) We are after f' here. Take your equation g' = 3[Zf' derived in part (a) 
that gives g' in terms off and f' and "solve" it for f'. 

(c) From part (b) you should have an equation expressing f' in terms of g' 
and f. If in this equation you replace f by vg, then you have f' expressed 
in terms of g and g'. This gives you the cube-root rule. Write it in a 
complete sentence: "Iff= vg, then f' = .... " 

(d) Apply your rule derived in part (c) to the simple case when g(x) = x: If 
f(x) = 'fi:, then f'(x) = ??? 

(e) In the spirit of problem 32, make a guess: If f(x) = x113 , then f'(x) = ??? 
Does your guess agree with your answer to (d)? 

43. Match each of the following functions (a) through (j) with its derivative. [The 
derivatives of (k) and (l) are not pictured.] 

(a) (b) (c) 

(d) (e) (f) 

(g) (i) 

(j) (l) 
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44. The rules for sums, products, etc. enable us to find derivatives of com­
plicated functions made up out of simpler functions whose derivatives 
we know. Suppose we are given the following data concerning functions f 
and g. 

vf-..... vg-..... 
X y y' y" X y y' y" 

2 3 4 -2 3 

2 3 5 -2 2 3 0 5 

3 -2 3 2 -I 0 

Apply these rules properly to the data above to fill in the question marks in 
the tables for the function P, yg,fg, and f jg. 

vf\ v..fi....._ 
X y y' y" X y y' y" 

4 12 34 

2 2 
3 

3 Yi -I -I 

2Vz I!Vz 

(a) (b) 

vfg-..... vflg....._ 
X y y' y" X y y' y" 

I 2 7 26 
2 9 15 9 2 
3 3 

(c) (d) 

45. Using the data given in problem 44, describe the local behavior of the curves 
f, g, and fg when x is 1, 2, and 3. (Sketch nine rough pictures describing each 
of these three curves near (x,y) for each of these three values ofx, indicating 
whether the curves are rising or falling, "smiling" or "frowning".) 

46. Using the data given in problem 44, describe the local behavior of the curves 
p,..;g, andf/g when xis 1, 2, and 3. (Sketch nine rough pictures, as in the 
preceding problem.) 

47. Using the data given in problem 44, describe the local behavior of the curves 
1/f and 1/g when xis 1, 2, and 3. (Sketch six rough pictures.) 
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48. (We still need one more rule.) Given two functions f and g, we can compose the 
functions by first applying g to get g(x) and then applying f to get f(g(x)). 
The new function sending x to f(g(x)) is denoted fog and called the compo­
sition off with g. Notice that if we take the composition in the other order, 
using go f to send x to g(f(x)), we don't necessarily get the same result. 
Given the information on f and g in problem 44, fill in the question marks 
below. Do not yet attempt to fill in the blanks giving values of the derivatives. You 
will be asked to do this after learning the chain rule in Chapter 6. 

Jog 

'-' " X y 

2 

3 

? 

? 

3 

y' 

-5 

y" 

-2 

I 

2 

3 

y' y" 

49. Write a thoughtful response to the sophistry presented in the final problem 
in Chapter 3, explaining clearly how the theorem on optimization and elimi­
nation of Section 8 helps bring to light the major fallacy in this argument. 



CHAPTER 

Chains and 
Change 

Things change. The world is in flux. How can one understand a world in 
which change plays so great a role? The seventeenth-century answer 
given by Leibniz and Newton is simplicity itself: 

Study change. 

To study change is to study the way things vary. We have done a little 
of this in the preceding chapters, but we have not yet taken up this study 
in earnest. The derivative has a remarkable ability to capture the dynamics 
of change. A main point of this chapter is that the derivative may be 
viewed as measuring the instantaneous rate of change. 

How can this be? Before answering, we need to develop symbolism 
that is suggestive of the ideas involved. The symbolism of primes (as in y' 
or f') to denote the derivative offers no aid to our new endeavor. In fact, 
the main advantage of denoting the derivative by f' is that this notation 
suggests that the derivative is a function. Once this important fact has 
been hammered home, the use of primes to denote derivatives offers no 
special advantage, and may be discarded in the presence of a superior 
system of symbolism. 

§1. Leibniz's Notation: 
Mathematics and Poetry 

A superior system of notation for the calculus was developed by Leibniz. 
If y is a function of x, Leibniz denoted the derivative by 
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dy 
dx' 
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instead ofby y'. Or, if A is a function of s, Leibniz called the derivative 

instead of A'. 

dA 
ds' 

At this point the reader is doubtless mystified as to why this sym­
bolism is supposed to be more helpful than the perfectly good notation 
already developed. It is helpful only if one views the derivative the way 
Leibniz did. Let us illustrate how Leibniz would go about showing that 
the derivative of x2 is 2x. 

Consider a fixed point (x,y) on the curve y = x2 . 

Jy 

Jx 

X X+ Jx 

A portion of the curve y = x 2 

Let Ax be a small change in the variable x. ("A" is the Greek letter delta. 
The expression Ax is to be taken as a whole, and not to be confused with 
a product. The change Ax may be either positive or negative.) What is the 
corresponding change Ay in the variable y? From the figure, it is clearly 
given by 

Ay = (x + Ax) 2 - x2 

= x2 + 2x(Ax) + (Ax)2 - x2 

= 2x(Ax) + (Ax) 2 . 

Therefore, the ratio of the change (or increase) in y to the increase in x 
which caused it is given by 

Ay 
-= 2x+Ax. 
Ax 

(1) 

As mentioned above, the increase Ax may be either positive or negative 
(a negative increase of course represents a decrease), but may not be zero. 
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What happens in equation (1) as Ax tends to 0? Then the fraction Ay/ Ax 
approaches what might be termed the instantaneous rate of increase of y 
with respect to x, which, using equation (1 ), is equal to 

Limit ~y = Limit (2x + Ax) = 2x . 
.1>:--+0 nX Ax--+0 

(The reason that we get the derivative of x2 should be plain. As seen in 
the figure above, the ratio of changes Ay/ Ax is also the slope of a line 
that approaches the tangent line at (x,y) when Ax approaches zero.) 

The ratio Ay /Ax of changes taking place over an interval of length Ax 
is not of primary interest here. Leibniz wanted the "ultimate ratio", or 
the instantaneous rate of increase taking place at the point x. This is what 
happens as the length Ax shrinks to zero, and this Leibniz called dyjdx. 
That is, the symbol dyjdx is defined as follows: 

dy . . Ay 
dx = L1m1t 7 . 

Ax--+0 nX 

Why did Leibniz choose to denote the derivative this way? What is 
in the symbol dyjdx that is not in the name derivative? A lot, as it turns 
out. First, dyjdx reminds us that the derivative is the limit of ratios of 
changes. Secondly, because the symbol dyjdx looks like a fraction, it 
reminds us that the derivative is a limit of fractions, of "quotients of dif. 
ferences". The symbol dyjdx, by its very form, gives a hint that the deri­
vative might be expected to exhibit some of the familiar properties of fractions. 
In a lighter vein, the reason Leibniz chose this symbolism is that, by the 
seventeenth century, the ancient Greek letter A had evolved "in the 
limit" to the modern d. What could be more natural than to denote the 
limit of Ay/ Ax by dyjdx? 

It is hard to overestimate the value of appropriate symbolism. Of all 
creatures, only human beings have much ability to name things and to 
coin phrases. Poets like Shakespeare do this best of all. 

... as imagination bodies forth 
The forms of things unknown, the poet's pen 
Turns them to shapes and gives to airy nothing 
A local habitation and a name. 

A Midsummer-Night's Dream, Act V 

It can be contended that Leibniz's way of writing the calculus ap­
proaches the poetic. One can be borne up and carried along purely by 
his symbolism, while his symbols themselves may appear to take on a 
life all their own. Mathematics and poetry are different, but they are not 
so far apart as one might think. 

The reader who is skeptical of the remarks just made is asked to sus­
pend a final judgment until this chapter and the next are completed. Any 
skepticism that still remains may be lessened by reading Chapter 8. In 
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the meantime, just to show that the remarks above are not especially 
radical, here is a well-known quotation from a man who won the Nobel 
Prize in literature: 

Mathematics, rightly viewed, possesses not only truth, but supreme 
beauty-a beauty cold and austere, like that of sculpture, without ap­
peal to any part of our weaker nature, without the gorgeous trappings of 
painting or music, yet sublimely pure, and capable of a stern perfection 
such as only the greatest art can show. The true spirit of delight, the 
exaltation, the sense of being more than man, which is the touchstone 
of the highest excellence, is to be found in mathematics as surely as in 
poetry. 

Bertrand Russell 

Before we can see anything in Leibniz's notation, we must learn how 
to use it. There is no poetry in the examples that follow, only illus­
trations of how things are said in the language of Leibniz. 

dy d 2 
then dx = dx (x ) = 2x. 

dA d ( 2) then d.s = d.s s = 2s. 

If f(x) = XJ, then : = 3x2 • 

~(J1+3t2)= 6t . 
dt 2)1 + 3t2 

Ify =f ·g, then dy=fdg+gdf 
dx dx dx 

(the product rule). 

d (1)- -1 dg dx g - gz dx (the reciprocal rule). 

Exercises 

1.0. What similarities and differences do you see between mathematics and 
poetry? (You might be interested in comparing your views with those ex­
pressed in W.M. Priestley, Mathematics and Poetry: How Wide the Gap? 
Mathematical InteUigencer Vol. 12, No. 1, 14-19 (1990) and in Vol. 12, No. 3, 
5-6.) 

1.1. Write the square root rule in Leibniz's notation: Ify = ..;g, then dyfdx =? 

1.2. Write the quotient rule: !; (f /g) =? 

1.3. Find dC/dL ifC = 7L + {48/L). 
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1.4. What is 1t (tl + 3t + n)? 

1.5. Use the product rule to find! (w4 y'3 + Sw}. 

1.6. Find the derivatives of each of the following, expressing your answer in 
Leibniz's notation. 
(a) L = 12/W. 
(b) C = (84/W} + 4W. 
(c) C = 2nr. 
(d) A= nr2 • 

Answers: (b) dC/dW = ( -84/W2 } + 4. (c) dCfdr = 2n. 

1.7. (This question is not entirely frivoloW>, as will be seen in Chapter 7.) The 
ancient Greek letter A has by the seventeenth century evolved "in the 
limit" to the letter d. What about the Greek letter E (sigma)? What is 
the "seventeenth-century limit" of E? 

1.8. Is dyjax the quotient of "dy" and "ax"? Answer: No. The derivative is de­
noted by the entire symbol dyjax. Just as one understands the word rain­
bow without feeling any need to know what ra and inbow might mean, so 
one can understand dyjax without ascribing meaning to dy and ax. 

1.9. A familiar rule for fractions is (A/B)(B/C) =A/C. If derivatives behaved 
like fractions, what would the product 

be equal to? Answer: dyfdt. 

ayax 
ax dt 

1.10. If derivatives behaved like fractions, what would the following products of 
derivatives be equal to? 
(a) (dCfdL)(dLfdW). 
(b) (dA/dr)(drfdt). 
(c) (dLfdW)(dW fdL). 

§2. The Derivative as 
Instantaneous Speed 

Suppose a rock is thrown directly upward, and suppose that, at time t 
seconds after it is released, its height h (in feet) is given by the equation 

h = -16t2 + 64t. 

To illustrate the ideas just introduced concerning change, let us try to 
answer the following questions. 

(a) During its first second of flight, what is the rock's average speed? 
(b) What is the rock's instantaneous speed when t = 1 (i.e., 1 second after 

release)? 
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(c) When t = 3 (i.e., 3 seconds after release), is the rock going up or 
down? 

(d) When does the rock attain its maximum height? 
(e) What is the rock's initial velocity, i.e., what speed was given the rock 

at the instant of release? 

To get hold of this situation, let us set up the usual table. Since 
h = -16t2 + 64t, the derivative is given by 

dh 
dt = -32t + 64. 

Plugging in a few numbers gives rise to this table. 

t h dh/dt 
(in seconds) (in feet) (in feet per second) 

~]At 4~]Ah 32 
2 64 0 
3 48 -32 

-16t2 + 64t -32t + 64 

Why is dhjdt in the units of feet per second (ft/sec)? Because the 
change Llh in h is in feet and the change Llt is in seconds, so Llhj Llt is in 
feet per second, showing that dhj dt is the limit of numbers Llh/ Llt that 
are in units of feet per second. Let us answer the questions raised in 
turn. 

(a) During the initial 1-second interval, we have L1t = 1. The corre­
sponding distance traveled is the change in height from 0 to 48 feet. 
That is, Llh = 48. The average speed for the first second is then given 
by 

distance traveled Llh 

time taken Llt 

48 feet 
1 second 

=48ft/sec. 

(b) The derivative dhjdt gives the instantaneous rate of increase of 
height with respect to time. When t = 1, dhjdt =32ft/sec. Ifthe rock 
had a speedometer inside it to measure the upward speed, the speed­
ometer should read 32 when t is 1. 

(c) When tis 3, then dhjdt is -32, so that dhjdt, which measures the rate 
of increase ofheight, is negative. Since the rate of increase ofheight is 
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negative, the rock is falling when t is 3. (The instantaneous speed is 
32ft/sec downward when tis 3.) 

(d) The rock is going up when the upward speed dh/dt is positive and is 
going down when dhjdt is negative. The rock must therefore attain 
its maximum height when dh/dt is zero. This occurs when tis 2. 

(e) It is easy to be confused about speeds at the moment of release and 
at the moment of impact with the ground. But there is no question 
that at any intermediate time t, the speed is given by the expression 
-32t + 64. To avoid confusion, let us agree that the initial speed is 
the limit of this expression as t tends to zero from the right: 

Limit ( -32t + 64) = 64ft/sec. 
t--+0+ 

D 

It is easy to sketch the quadratic curve h = -16t2 + 64t, and thus it is 
easy to picture the situation described above. Avoid the mistake of think­
ing that the rock travels along the curve, however. The rock moves straight 
up (until t = 2), then straight down, along the vertical axis. 

t=2;speed0 (2,64) 
64 

1=1; t=3; 
speed + 32 speed - 32 48 

I 

l 32 

16 
h = -1612 + 64t 

Ground 0 2 3 4 

The rock hits the ground when t = 4. What is its speed at the moment of 
impact? God only knows. We can know if we interpret the question as 
requiring us to find the speed the rock is approaching as t tends to the 
moment of impact. Then the answer is easy. The upward speed at the 
moment of impact is approaching 

Limit ( -32t + 64) =-64ft/sec. 
t--+4-

(The negative sign occurs because -32t + 64 gives the upward speed). At 
the moment of impact, the rock is approaching a downward speed of 
64ft/sec. 
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Exercises 

2.1. A rock is thrown directly upward. It height h (in feet) at timet seconds after 
release is given by 

h = -16t2 + 128t. 

(a) What is the rock's average speed during its first second of flight? 
(b) What is the rock's instantaneous speed when t = 1? 
(c) Is the rock going up or down when t = 3? 
(d) When is the maximum height attained? 
(e) What is the average speed of the rock during the time interval between 

t = 1 and t = 3? 
(f) What is the instantaneous speed when t = 2? 
(g) What is the rock's initial speed? 
(h) When does the rock hit the ground, i.e., when is the height h equal to 

zero? Answer: When t = 8. 
(i) What is the speed of the rock when it hits the ground? (See the discus­

sion above for a proper interpretation of this question.) 

2.2. A rocket travels directly upward. At time t seconds after it is launched, its 
height h in feet is given by 

h =50~ +BOt. 

(a) What is the rocket's average speed during its first 2 seconds of flight? 
Answer: 280ft/sec. 

(b) What should the rocket's speedometer read when t = 1? 
(c) Let v stand for the rocket's speedometer reading (so that v = dh/dt). 

Then v, like h, is a function oft. Fill in the question marks appropriately 
in the following table. 

h v dv/dt 

1 ? 230 ? 
2 560 680 ? 
1t ? ? ? 

50t3 +SOt ? ? 

(d) Think about the units in which things are measured. Here we have tin 
seconds, h in feet, so v is in feet per second. What units is dv / dt mea­
sured in? Answer: ft/sec per second. 

(e) When tis 2, is the speedometer reading v increasing or decreasing? Hint. 
This is the same question as, "Is dvldt positive or negative?" It is also the 
same question as, "Is the rocket accelerating or decelerating in its upward 
movement?" 
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(f) Is the rocket accelerating or decelerating when t = 1? 
(g) Acceleration is defined as the rate of increase of speed. What is the rock­

et's instantaneous acceleration when t = 1? Answer: The rate of increase 
of speed, dvjdt, is equal to 300ft/sec per second, when t = 1. 

(h) What is the rocket's instantaneous acceleration when t = 2? 

2.3. Go back to the situation described in exercise 2.1. 
(a) Fill in the following table. 

h v 

112 96 
4 ? ? 
6 ? ? 

-16t2 + 128t ? 

dvfdt 

? 
? 
? 
? 

(b) Since v is the upward speed, and since dv / dt measures the rate of in­
crease of v, it follows that dvjdt measures the upward acceleration. In 
this case the upward acceleration is constant. What is it? Answer: It is 
-32ft/sec per second. (This is what gravity does, near the earth's sur­
face. Each second the effect of gravity is to decrease the upward speed 
of a freely falling body by 32ft/sec.) 

(c) If a freely falling body is given an initial speed of+ 128ft/sec, how many 
seconds will gravity take to change the speed to 
(i) 64ft/ sec? 

(ii) -64ft/ sec? 
(d) In the rocket problem of exercise 2.2, why isn't the acceleration 

-32ft/sec per second, since this is the acceleration due to gravity? 

§3. Continuity and Nature 

Laws that govern nature command our interest. Leibniz believed that all 
such laws are subject to the following basic principle. 

Leibniz's Principle of Continuity 
Nature must behave in a continuous fashion. 

What does this mean? It is best to look at a concrete example, so con­
sider again the motion of the rock discussed at length in the preceding 
section. This could be regarded as a simple experiment in physics, out of 
which arise the variables h and t, related by the function f pictured here. 
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(2,64) 
64 

48 

32 

16 

0 2 3 4 

Notice that f is continuous at each point in its domain 0 ~ t ~ 4. Ac­
cording to Leibniz's principle, it could be no other way, for f describes a 
process that actually takes place in nature. It would be impossible, for 
example, for the rock to behave as described by the function g pictured 
below. 

(1,64) 
64 

48 

32 

16 

0 2 3 4 

This describes the rock climbing steadily to 48 feet, then instantly 
leaping to a height of almost 64 feet. Only a miracle (i.e., something that 
disregards the laws of nature) could accomplish this! Leibniz's principle 
says that nature simply cannot allow the discontinuity of the function g 
at the point t = 1. If there are laws of nature, then these laws determine 
an underlying purpose, and the action of nature must agree with that 
purpose. Thus only continuous functions can arise out of this experi­
ment, or any experiment, in physics. Or so the philosopher thought. 
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Nothing happens all at once, and it is one of my great maxims, and 
among the most completely verified, that nature never makes leaps: 
which I called the Law of Continuity . ... 

Leibniz 

197 

Let us go into this a bit further. Consider the instant when tis 1. What 
happens naturally (i.e., in the course of nature) is supposed to be con­
tinuously related both to the past and to the future. What does this mean 
in terms of change? Does continuity mean that a small change At in time 
will produce only a small change Ah in height? Certainly not, because 
anyone can think of occasions where nature allows large changes in little 
time. Instead, continuity means that, as At is taken nearer and nearer to 
zero, then the corresponding change Ah must also tend to zero: 

At ----> 0 implies Ah ----> 0. 

In other words, to say that h is a continuous function oft is to say 

Limit Ah = 0. 
Llt--->0 

(2) 

To illustrate this, notice the difference in the behavior off and g near 
the point t = 1. 

48 
.1h 

!: f·------ I 

48~-1 i I I 
I I 
I I 
I I 

I .11 I 
1..---1 

I 

The first two figures show that as .1t-+ 0, either through positiv(: or negative values, 
.1h-+ 0. Thus, Limit,.,~ 0 .1h = 0 and f is continuous at 1. The third figure shows that 
as .1t-+ 0 through positive values, .1h-+ 16. Thus, Limit,.,~ o+ .1h # 0 and g is discon­
tinuous at 1. 

Condition (2) expresses the definition of continuity in terms of 
change. We should check to see that the definition of continuity by 
condition (2) agrees with the definition of continuity given in Chapter 1. 
To see this, assume that h = f(t) satisfies condition (2). Because Ah = 
f(t +At)- f(t), this condition tells us that 

Limit f(t +At) - f(t) = 0, 
Llt--+0 

which means 

Limit f(t +At) = f(t), 
Llt--+0 

which says that 

f(t) = Limit fat t, 



198 6. Chains and Change 

showing that f satisfies the definition of continuity given in Chapter 1. 

At 

Think oft as being fixed, with Lit tending to zero 

Exercises 

3.1. Suppose that, at a certain point, the derivative dh/dt exists. Prove that con­
dition (2) must then be satisfied, showing that continuity follows from the 
existence of the derivative. Hint. As At -+ 0, Ah/ At tends to the limit dh/ dt. 
Why does this imply that Ah -+ 0? 

3.2. Does the existence of a derivative follow from continuity? That is, if Lit -+ 0 
implies Ah -+ 0, does it automatically follow that the limit of Ah/ Lit exists? 

3.3. If derivatives behaved like fractions, what would you expect the following 
products of derivatives to be equal to? 
(a) (dA/dC)(dC/dr). 
(b) (dy/dx)(dx/dy). 
(c) (dV /dh)(dh/dt). 

§4. A Chain Rule? 

Believe it or not, there is still something to be learned from the example 
given on the second page of Chapter 1. Three variables arise from that 
example, related in the following way. 

C = cost of .... 1 ___ ..... 1 W, where W · L = 12. 

L 

The variable C can be expressed either in terms of L alone or of W alone, 
while the variables W and L are themselves related by the fact that their 
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product must be 12, the area of the rectangle. This leads to the following 
relations. 

48 
e= 7L+L, (3) 

12 
(4) L=w, 

84 
e= W+4W. (5) 

Equations (3) and ( 4) might be thought of as links in a chain of rela­
tions which together produce equation (5). That is, the first two equa­
tions show howe is a function of Land Lis a function of W. This chain 
of relations forces e to be a function of W, namely, the function specified 
in equation (5). One feels that there ought to be a rule governing de­
rivatives in the presence of such a chain. The derivatives that arise from 
(3), (4), and (5) are as follows. 

de 48 
dL = 7-£2. 

dL -12 
dW- W2 • 

de -84 
dw= W2 + 4. 

(3') 

(4') 

(5') 

Is there a "chain rule", as one feels there ought to be? Leibniz's 
notation suggests one to us. The notation suggests that derivatives 
might act like fractions, in which case we might expect that the product 
(dejdL)(dL/dW) is equal to dejdW. Let us see if this is so. 

de dL = (7- 48) (-12) [from(3')and(4')] 
dL dW £2 wz 

-84 48 ·12 
= wz + L2W2 

-84 48 ·12 
=-+-­

W2 (LW)2 

-84 
= wz + 4 (since LW = 12) 

de 
dW [from(5')]. 

It is so! Leibniz's notation has suggested a chain rule for derivatives. Has 
any magician's trick ever been so delightful as this? 
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Exercises 
4.1. From equation (4) we get W = 12/L. 

(a) Find dW fdL. 
(b) If derivatives behaved like fractions, one might expect that the product 

of dW/dL and dL/dW is 1. Is it? Multiply your answer to part (a) by 
dL/dW as given in equation (4') and use equation (4) to simplify. 

4.2. Suppose y = 1/x. 
(a) Find dyfdx. 
(b) Suppose, in addition, that x = t2 + 3t. Find dxfdt. 
(c) The chain of relations y = 1/x and x = t2 + 3t tells us that y = 

1/(tl + 3t). Find dyfdt by using the general rule for reciprocals. 
(d) Using your answers to parts (a) and (b), find the product of dyjdx and 

dxfdt. Does your answer agree with dyjdt as found in part (c)? Hint. 
After finding the product, get your answer entirely in terms of t by 
replacing x with t2 + 3t. 

4.3. Suppose y = ifii. 
(a) Find dyfdu. 
(b) Suppose, in addition, that u = x2 + 9. Find dufdx. 
(c) The chain of relations y = ifU and u = x2 + 9 tells us that y = .../x2 + 9. 

Find dyfdx by using the square root rule. 
(d) Using your answers to parts (a) and (b), find the product of dyfdu and 

dufdx. Does your answer agree with dyfdx as found in part (c)? It 
should. 

4.4. Consider the chain of relations y = u5 and u = 3x2 + 7x. What does this tell 
us about the dependence of y upon x? Answer: The dependence of y upon x 
is expressed by the rule y = (3x2 + 7x)5 . 

4.5. Consider each of the following chains of relations. What does it tell us about 
the dependence of y upon x? 
(a) y=u3 ,u=7x-13. 
(b) y = 5/(2- t), t = 2- x. Answer: y = 5/x. 
(c) y=u2 ,u=x3 -3x+n. 

4.6. A complicated dependence can often be regarded as made up of a chain of 
simpler dependences. For each of the following, specify such a chain. 
(a) y = (4x2 - 6x)7 . Answer: This can be regarded as the result of the chain 

y = u7 , u = 4x2 - 6x. 
(b) y = .../3- 2x + x2 . 

(c) y = (19x- 4)5 . 

(d) y = (5x + (l/x)) 4 • Answer: This is y = u4, where u = 5x + (1/x). 

§5. The Chain Rule 
Suppose that we have two functions that form a chain of relations, and 
suppose that each has a derivative. That is the setting for the chain rule. 
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Chain Rule 
If y is a function of u and u is a function of x, then 

dy dy du 
ax=dudx· 

201 

This is the rule that Leibniz's notation enabled us to guess. It is also 
a rule that Leibniz's notation enables us to remember, since it says, 
essentially, that derivatives multiply just like fractions, provided that 
Leibniz's notation is used. 

Why is this rule true? First note that u is a continuous function of x, 
since duf dx exists. This means that 

Au ---+ 0 as Ax ---+ 0. (6) 

(See exercise 3.1.) This fact will be useful in a moment. 
To see the plausibility of the chain rule, consider what is produced by 

a nonzero change Ax in x. First, a change Au in u occurs (since u is a 
function of x), and then the change Au in turn produces a change Ay in y 
(since y is a function of u). By ordinary multiplication of fractions, 

Ay Ay Au 
Ax Au Ax' 

provided Au =f. 0. As Ax---+ 0, equation (7) becomes "in the limit" 

dy dy du 
dx dudx' 

(7) 

by virtue of condition (6). D 

What has just been given is more of a "plausibility argument" than a 
real proof to justify the chain rule. The trouble is that equation (7) does 
not hold if Au= 0, i.e., if a nonzero Ax should produce no change in u. A 
more careful proof, taking account of this troublesome case, may be 
found (by those rare readers blessed with both skepticism and patience) 
in any book on real analysis. Let us for the time being accept the chain 
rule as true, and learn how to use it. It is the most important rule gov­
erning derivatives. 

EXAMPLE 1 
What is the derivative of (3x2 + 7x)5 ? 

Here we want dy/dx, where y = (3x2 + 7x) 5 . As in exercise 4.4, we 
may regard y as being given in terms of x by the chain of relations 

y = u5 and u = 3x2 + 7x. 

By the chain rule, 
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EXAMPLE 2 

dy dy du 
dx du dx 

= 5u4 (6x + 7) 

= 5(3x2 + 7x)4 (6x + 7). 

6. Chains and Change 

D 

What is the derivative of (x3 - 3x + n) 2? 
Here we want dyjdx, where y = (x3 - 3x + n)2 = u2 , if we set u equal 

to x3 - 3x + n. We then have the chain 

By the chain rule, 

y = u2 and u = x3 - 3x + n. 

dy dy du 
dx du dx 

= 2u(3x2 - 3) 

= 2(x3 - 3x + n)(3x2 - 3). 

(Note that Example 2 can be done by the rule for squares, to get the same 
answer. The rule for squares is simply the special case of the chain rule 
that arises when a chain of relations involves a square.) D 

Exercises 

5.1. What is the derivative of (7x- 13)3 ? Hint. The chain of relations in exercise 
4.5(a) arises here. 

5.2. Find the derivative of (4x2- 6xf. Hint. We want dyjdx, where y = 
(4il- 6x)7 = u7 , if we set u equal to 4x2 - 6x. 

5.3. Regard each of the following as being given by an appropriate chain of 
relations, and use the chain rule to obtain the derivative. 
(a) (5x + (1/x))4 • 

(b) (x2 - 2x + 1)3 . 

(c) (t2 +t)3 . 

(d) (5L- 16nL2 ) 4 . 

5.4. The area, radius, and circumference of a circle are related by the chain 
A= nr2 and r = (1/2n)C. Find dA/dC by the chain rule. Answer: dA/dC = 
(dA/dr)(drjdC) = (21tY)(1/2n) = r = (1/2n)C. 

5.5. On the basis of the answer to exercise 5.4, and with nothing but Leibniz's 
notation to guide your intuition, guess what dC/dA is. If dAjdC = r, then 
dC/dA ought to be ... ? 
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5.6. From the equations A = nr2 and C = Znr, 
(a) find an algebraic rule giving C in terms of A. 
(b) find dC/dA from your answer to part (a), and see if it agrees with the 

guess made in exercise 5.5. 
Partial answer: C = J41tA. (Find dC/dA by the square root rule.) 

5. 7. If y = x2 , x > 0, then it follows that x = ..JY, y > 0. 
(a) Find dy / dx from the equation y = x2. 
(b) Find dx/dy from the equation x = ..JY. 
(c) The expression dy/dx "looks like" the reciprocal of dx/dy. Is it? 

§6. Related Rates 
Problems involving related rates are tailor-made for the chain rule. Let 
us do an easy example, then a harder example, in order to make some 
observations on how such problems may be handled. 

EXAMPLE 3 
A pebble is dropped in still water, forming a circular ripple whose radius 
is expanding at a rate of 3 inches per second. When the radius is 7 inches, 
how fast is the area A of the ripple increasing? 

In rate problems it is important to get straight exactly what we are 
required to find, as well as what we are given to start off with. One must 
remember that the derivative measures the instantaneous rate of in­
crease. The rate of increase of area A (with respect to time) is then 
d.A/dt. The goal of Example 3 is then to find d.A/dt when r is 7. This may 
be abbreviated by 

(8) 

(read "d.Ajdt, evaluated when r is 7"). The expression (8) is the rate we 
are required to find. 

What are we given to work with? The first sentence of Example 3 tells 
us a related rate: 

dr 
dt = 3, (9) 

and we know that there is a chain of relations connecting the variables 
A,r, and t: 

A= nr2 and r is a function oft. 

By the chain rule, using (9), 

d.A d.A dr 
dt = dr dt = Znr(3). 
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Therefore, 
dA 
dt= 6nr. 

To evaluate expression (8), plug in r = 7: 

dAd I = 6nrlr=7 
t r=7 

= 6n(7) 

= 42nin2 /sec. 

6. Chains and Change 

(The expression "in2 /sec" abbreviates the phrase "square inches per 
second". Why must d.Ajdt come out in these units?) D 

EXAMPLE 4 
The bottom end of a 10-foot ladder resting against a wall is pulled away 
from the wall at a rate of 2ft/ sec. At what rate is the top end falling at the 
instant when the bottom end is 6 feet from the wall? 

y 

X 

There are two ways to work this problem, and we shall look at both 
of them. As with virtually every calculus problem, the first step is to see 
the problem in terms of variables. Time is certainly one variable, and the 
others are x andy, the legs of a right triangle formed by the ladder, the 
wall, and the floor. As time t increases, it is evident that x increases andy 
decreases. The derivative dyjdt gives the rate of increase ofy. The rate at 
which the top of the ladder falls is the rate of decrease of y, which is the 
negative of dyjdt. Thus we are required to find 

- ~~x=6· (10) 

What are we given to work with? We know a related rate: 

dx 
dt = 2' 

(11) 
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and we known an age-old relation that connects the variables x and y: 

(12) 

Solving this equation for y shows that we have the following chain of 
relations connecting y, x, and t: 

y = v'100- x2 and xis a function oft. 

By the chain rule, with help from equation (11 ), 

so that 

dy dy dx 
dt dx dt 

-2x 
2v'100- x2 ( 2), 

dy 2x 

dt v'100- x2 

To find (10), as desired, plug in x = 6. 

dyl 
dt x=6 

12 

J100- 36 

3 
=- ft/sec. 

2 
D 

An alternate way to finish this problem is as follows. In equation (12), 
x andy both depend upon t. Taking the derivative with respect tot yields 

so that 

Therefore, 

d 2 2 d 
dt (x + y ) = dt (100), 

dx dy 
2x dt + 2y dt = 0 (by rule for squares), 

4x+2y~~=O [by(ll)], 

dy 2x 

dt y 

- dy I = 2x I = 2(6) = ~ ft/sec, 
dt x=6 Y x=6 8 2 

since (by the Pythagorean theorem) y = 8 when x = 6. D 

Related rates problems may seem difficult at first because everything 
in them seems to be changing at once. But this is only an invitation to 
see the problem in terms of variables and to use the derivative's magic 
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power to measure change. Then adopt the philosopher's point of view. 
Seek that which does not change, that "holds sway above the flux". 
Search for a relation between the variables that always holds. This rela­
tion may be as simple as the Pythagorean theorem (in Example 4) or the 
formula for the area of a circle (in Example 3). Finally, express yourself 
in the language of Leibniz. It will lead you to the truth. 

Exercises 

6.1. A pebble is dropped in still water, forming a circular ripple whose radius is 
increasing at a rate of 5 inches per second. When the radius is 3 inches, how 
fast is the area of the ripple increasing? 

6.2. The bottom end of a 13-foot ladder resting against a wall is pulled away from 
the wall at a rate of 3 feet per second. How fast is the top end falling when 
(a) the bottom end is 5 feet from the wall? 
(b) the top end is 5 feet from the floor? 
Answer: (a)~ ft/sec. (b) ¥ ft/sec. 

6.3. An airplane is flying horizontally at 5000 feet, with speed 600ft/ sec, and an 
observer is on the ground. Let s be the distance from the observer to the 
airplane. 

5000 

Find ds/ dt, the rate of increase of s, at each of the following instants. 
(a) Two seconds after the plane passes directly above the observer. 
(b) One second after the plane is directly overhead. 
(c) At the instant the plane is overhead. 
(d) Three seconds before the plane is directly overhead. 
Hint. (c) At this instant the plane is closest to the observer, so s assumes its 
minimum. What value does the derivative take when a minimum is at­
tained? 
Hint. (d) You want (d13/dt) 1=-1800, and you should expect a negative answer, 
since the distance s is decreasing at this instant. 
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6.4. Consider again the rock whose motion is described at length in Section 2. 
Suppose there is an observer at ground level, 36 feet from the point where 
the rock is released. Let s be the distance from the observer to the rock. 

Find dJJfdt when 
(a) t = 1 (and h = 48). 
(b) t = 2 (and h = 64). 
(c) t = 3 (and h = 48). 
Hint. From the table in Section 2, dh/dt is 32, 0, and -32 at times t = 1, 2, 
and 3, respectively. 

6.5. A child 4 feet tall walks directly away from a street light that is 10 feet above 
the ground. She walks at a rate of 5 feet per second. How fast does the tip 
of her shadow move? Hint. See figure below. You want dL/dt, knowing 
that dx/dt = 5, and knowing, from similar triangles, that the relation L/10 = 
(L- x)/4 always holds. Proceed as in the alternate solution to Example 4. 

§7. Antiderivatives 

We have so far been mainly concemed with the following operation: 
getting a function, forming with it a quotient of differences, and taking a 
limit in order to get its derivative. This operation is called differentiation. 
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To differentiate a function is to take its derivative. For example, we get 

1 by differentiating t, 

by differentiating 
t2 

2' 

t2 by differentiating 
t3 

3' 
t3 by differentiating 

t4 
(13) 

4 
In general, we get 

tn by differentiating 
tn+I 

n+1 

What we have been studying so far is called the differential calculus. 
The name is due to Leibniz who, writing in Latin, spoke of "calculus dif. 
ferentialis". An important concern of the differential calculus is simply 
to fill in the question mark, given the following table. 

dy/dt 

? 

The differential calculus is concerned with how to get from the second 
column above, to the third. It is done, of course, by means of Fermat's 
method. We shall now consider the reverse problem: how to get from the 
third column back to the second. This is a principal concern of "calculus 
integralis", as Leibniz called it, writing in 1696. 

dyjdt 

f(t) 

This is the problem of finding an antiderivative. Fortunately, we already 
know a little about antiderivatives. From the formulas (13) it is com­
pletely obvious that 

is an antiderivative of 1, 

t2 
is an antiderivative of 

2 
t, 

t3 
is an antiderivative of t2 

3 ' 
t4 

4 
is an antiderivative of P. 
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In general, 

is an antiderivative of tn. 

Knowing this enables one to find easily antiderivatives of many func­
tions whose rules involve powers only: 

An antiderivative of -32 is -32t. 
An antiderivative of -32t is -16t2 • 

An antiderivative of 64- 32t is 64- 16t2 • 

An antiderivative of 1 + 4t - 9t2 is t + 2t2 - 3f. 

We generally say "an", rather than "the", in speaking of antideriva­
tives, because there is generally more than one antiderivative of a given 
function. Having found an antiderivative, you can easily find another, 
simply by adding any constant to the one already in hand. Reason: If 
F is an antiderivative of f (i.e., if F' = n, then F + C is too [since 
(F +C)'= F', the derivative of a constant C being 0]. Thus, for example, 

-32t, -32t- 7, -32t + n, -32t + C, 

where C can be any constant, are all antiderivatives of -32. We cannot 
speak of "the" antiderivative of -32, unless we specify, by giving addi­
tional information, exactly which antiderivative we mean. 

EXAMPLE 5 
Consider the function given by f(t) = -32, with domain 0 ~ t. Find 

(a) an antiderivative F of f. 
(b) the antiderivative F off that takes the value 64 when tis 0. 
(c) the antiderivative F off that takes the value -40 when tis 5. 

We have already answered part (a). Any function whose rule is of 
the form -32t + C will do, where C can be any constant (including, of 
course, 0). D 

To answer (b), note that what is required is to fill in properly the 
following table. 

F(t) f(t) 

0 64 
? -32 

The first line of the table gives enough information (we hope) to make 
the antiderivative unique. By part (a) we expect 

F(t) = -32t + C, (14) 
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and by the first line of the table we must have 

F(O} = 64. (15} 

From (14), with t = 0, we get 

F(O} = -32(0} + C = C. 

This equation, together with (15), shows that C must be 64. Thus, in 
equation (14), not just any constant C will do; we must have F(t) = 
-32t+ 64. D 

To answer (c) we must satisfy the condition 

F(5} = -40, 

in addition to equation (14), which implies 

F(5} = -32(5} +C. 

Putting (16) and (17) together determines C: 

-40 = -160 + c, 

c = 120. 

The answer to part (c) is then given by F(t) = -32t + 120. 

(16} 

(17} 

D 

An antiderivative is generally determined, not uniquely, but only "up 
to an additive constant". Additional information, as in parts (b) and (c) 
of Example 5, is required to specify a unique antiderivative. How can we 
be sure of uniqueness, though? Our procedure here will be justified in 
the next section. 

Exercises 

7.1. In each of the following, specify an antiderivative F of the given function f. 
(a) f(t) = 3t + 2. Answer: F(t) = ~ t2 + 2t +C. 
(b) f(t) = -32t + 96. 
(c) f(t) = 1 +t+t2 . 

(d) f(t) = nt3 . Answer: F(t) = ~1tt4 +C. 

7.2. In each of parts (a) through (d) of exercise 7.1, find the antiderivative F that 
takes the value 6 when t = 2. 
Answers: (a) F{t) = ~f + 2t- 4. (d) F{t) = ~nt4 + 6- 4n. 

7.3. In each of the following the derivative of his specified. Use antiderivatives 
to find h itself. 
(a) dhjdt = 96- 32t. 
(b) dh/dt = -40- 32t. 
(c) dh/dt = -32t. 
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7.4. In each of parts (a) through (c) of exercise 7.3, find the antiderivative h that 
takes the value 100 when t = 0. Answer: (a) h = 96t- 16t2 + 100. 

7.5. In each of parts (a) through (c) of exercise 7.3, find the antiderivative h that 
takes the value 100 when t = 1. Answer: (a) h = 96t- 16t2 + 20. 

§8. A Fundamental Principle and 
Freely Falling Bodies 

Taking antiderivatives points us in a direction exactly opposite the direc­
tion of differential calculus, and leads to the study of integral calculus. The 
reason for the use of the word integral will be explained in Chapter 7. 

Let us examine more carefully the notion of an antiderivative. Be­
cause we get 0 by differentiating a constant function F(t) = C, it seems 
plausible that 

any antiderivative of 0 is a constant function. (18) 

Can we be sure of this? Another way of saying the same thing is as fol­
lows: 

If F'(t) = 0, then F(t) = C for some constant C. (19) 

Statements (18) and (19) are true, but only with the additional under­
standing that the domain in question is connected, that is, has no holes 
in it. The example pictured below shows that statement (19) can fail with 
holes in the domain. In this example F'(t) = 0, yet the function F is not 
constant. 

0 0 

o---o F 

Disconnected domain 

1----o-----c>-----o---- F' 
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In analysis it is shown that (18) and (19) are true, provided the domain 
is connected. The reader is asked to accept this as intuitively obvious. It 
has an important consequence, which will provide the basis for much 
that will follow. 

A Fundamental Principle of Integral Calculus 
Let F and A be functions defined on the same connected domain, and assume 
that dA/dt = dF jdt. Then, 

for some constant C. 

Proof 
First note that 

A(t) = F(t) + C 

d dA dF 
-(A -F)=---= 0 
dt dt dt ' 

since dA/dt = dF/dt, by assumption. Therefore, 

A- F =an antiderivative of 0 [by (20)] 

= a constant function [by (18)], 

since the domain is assumed connected. Thus, for some constant C, 

A(t) - F(t) = C, 

A(t) = F(t) +C. 

(20) 

0 

The fundamental principle just established is sometimes phrased 
this way: Two antiderivatives of the same function differ by a constant. The 
reader is cautioned to remember that zero is a perfectly good constant. 

Intuition often runs ahead of reason. A good example of this is found 
in Section 7, where we expected equation (14) to hold and to justify what 
followed there. Now we know that we were right. The fundamental 
principle guarantees equation (14), for it says that any antiderivative 
whatsoever of -32 differs by a constant from -32t, on a connected 
domain. Thus, parts (b) and (c) of Example 5 do indeed have unique 
answers, for the domain of Example 5 is connected. 

Though the fundamental principle may appear abstract, it has quite 
practical uses. It comes into play whenever we know the rate of change 
of a quantity and want to know the quantity itself. An example of this is 
furnished by the study of freely falling bodies. This refers to the vertical 
movement of objects thrown in the air near the earth's surface. If gravity 
is the only force acting on the body (which means that the body is not 
self-propelled and that the effect of air friction is ignored), the body is 
said to be freely falling. 
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Near the earth's surface, the effect of gravity is very simple to de­
scribe. Each second gravity decreases the upward speed of a freely falling 
body by 32ft/ sec. That is, if v is the upward speed of a freely falling 
body, then the effect of gravity is specified by the equation 

dv 
dt = -32. (21) 

This equation gives the rate of increase ofv. If we want to know v itself, 
the fundamental principle says that 

v = -32t+ c 

for some constant C. We need additional information to determine C. 
If, for example, the initial speed was known to be 64ft/sec, then v = 
-32t + 64, as in part (b) of Example 5. If, as in part (c) of Example 5, the 
speed is known to be downwards at 40ft/sec when t = 5, then we must 
have v = -32t + 120. 

EXAMPLE 6 
A rock is thrown upward from ground level with an initial speed of 
64ft/sec. Treating the rock as a freely falling body, answer the following: 

(a) What is the maximum height attained by the rock? 
(b) Where is the rock 3 seconds after it is released? 
(c) When, and with what speed, will it hit the ground? 

Here, we know that the upward speed v is given by v = -32t + 64, by 
the remarks preceding the example. But the upward speed v is equal to 
dh/dt, the rate of increase ofheight. Hence. 

dh 
dt = -32t + 64. 

Therefore, by the fundamental principle, 

h = -16t2 + 64t + c (22) 

for some constant C. What is C? Since the rock is thrown from ground 
level, we must have h = 0 when t = 0, so that, from (22), 

0 = -16(0) 2 + 64(0) +c. 

Therefore, C = 0 and (22) becomes 

h = -16t2 + 64t. 

But this is the height formula that was discussed at length in Section 2. 
From that section we know that the maximum height of the rock is 64 
feet, the rock is at 48 feet and falling when t = 3, and it hits the ground 
when t = 4 with a downward speed approaching 64ft/sec. D 
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The way the preceding example was begun involved two steps that 
can be schematized as follows: 

(time since release) 

0 

h 
(height) 

0 
(Step 2) 

v ( =dhjdt) 
(upward speed) 

+64 
(Step 1) 

dvjdt 
(upward acceleration 

due to gravity) 

-32 

Example 6 involves two antiderivatives. In step 1, when we "pull back" 
from the fourth column to the third, we must adjust the constant so that 
the initial speed is 64, as required. When we pull back from the third 
column to the second, another constant must be adjusted to be in accor­
dance with the given initial height. 

EXAMPLE 7 
From a building 200 feet high, a ball is thrown downward at an initial 
speed of 50ft/sec. Find an algebraic expression for the height of the 
ball in terms of the time since release, treating the ball as a freely falling 
object. 

Here, we begin with the following information, and we want to fill in 
the question mark giving h in terms oft. To do this we must first fill in 
the other question mark properly. 

0 

h 

200 
? 

v = dh/dt 

-50 
? 

dvjdt 

-32 

We must simply pull back twice by taking antiderivatives, each time 
adjusting the constant in accordance with the initial conditions. Pulling 
back to the third column yields v = -32t- 50, and thus in the second 
column we must have h = -16f- SOt+ 200. This equation gives h in 
terms oft, so long as gravity is the only force that acts upon the ball, that 
is, until h = 0 when the ball hits the ground. This occurs when t ~ 2.30, 
according to our work in Example 8 of Chapter 4. D 

The method outlined in Examples 6 and 7 develops a mathematical 
"model" predicting the motion of a freely falling body. Given the initial 
speed and the initial location, we can find the formulas goveming the 
speed and the height at any time, so long as gravity acts. Thus the dy­
namics of a freely falling body can be worked out with ease, through the 
help of our fundamental principle of integral calculus. 



Exercises 215 

Our model is hardly perfect, however, for the notion of a freely falling 
body is an idealization of what actually happens when a rock is tossed 
up in the air. Air friction has its effect, particularly at high speeds, and a 
more complex model is required to account for this and other factors. 

Exercises 

8.1. A ball is thrown vertically from a cliff. Find its upward speed v in terms of 
the time t since release if 
(a) it is initially thrown upward at 96ft/sec. 
(b) it is initially thrown downward at 60ft/sec. 

8.2. A rock is thrown upward from ground level at an initial speed of 96ft/sec. 
(a) What is its maximum height? 
(b) Where is the rock 4 seconds after release? 
(c) When will the rock hit the ground? 
(d) What is the speed of the rock at the moment of impact? Answer: 

LimitH6- v = -96ft/sec. 

8.3. From a tower 256 feet high, a ball is thrown upward at an initial speed of 
96ft/sec. When, and with what speed, will it hit the ground? Hint. 

0 

? 

h 

256 
(Step 2) 

0 

v 

96 
(Step 1) 

? 

dvfdt 

-32 

Partial answer: At impact the downward speed approaches 160ft/sec. 

8.4. Suppose, in exercise 8.3, the ball is thrown downward initially at 96 ftl sec. 
When, and with what speed, will it hit the ground? Hint. This is done like 
exercise 8.3, except the initial speed is -96 instead of 96. 

8.5. A rifle is supposed to have a muzzle velocity of lOOOfl:lsec. If it is fired 
straight up, how high will the bullet go? 

8.6. A certain rifle, when fired straight up, will send a bullet to a height of 2000 
feet. What is the muzzle velocity of the rifle? Hint. Letting v0 be the muzzle 
velocity, we have 

h v 

0 0 
2000 

Find v0 , beginning with equation (21). 

Vo 
0 
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8.7. A boy hurls a ball directly upwards. It hits the ground 8 seconds later. What 
was the ball's initial speed? Hint. 

Find Vo. 

0 
8 

h v 

0 
0 

Vo 

§9. Antiderivatives and Distance 

The method of freely falling bodies does not apply, of course, to self­
propelled objects like motorcycles, cars, and rockets. Nevertheless, anti­
derivatives come into play with self-propelled objects when it is desired 
to convert speedometer readings into distance traveled. Suppose a navi­
gator charts his speedometer reading as it varies over the span of an 
hour. How can the navigator determine from his chart the distance 
traveled during this hour? The answer involves antiderivatives. 

EXAMPLE 8 
A rocket ship blasts through the firmament on a journey directly away 
from the earth. At noon on a certain day the navigator becomes inter­
ested in the ship's speedometer reading as a function of time, and finds 
that it is given by lOOfl- 400t2 +BOOt, where tis the time in hours since 
noon. If this function f gives the speedometer reading in km/hr (kilo­
meters per hour), find the distance traveled by the rocket 

(a) between noon and two o'clock. 
(b) between one and four o'clock. 

The speedometer reading is the instantaneous rate of change of dis­
tance from the earth. If we let s be the distance from the earth, we then 
have 

ds 
dt = l00t3 - 400t2 +BOOt= f(t). 

The distance s must be in kilometers, since the speedometer reading is 
given in km/hr. Schematically, the situation we are faced with can be 
pictured as follows. 
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(hours since noon) 

0 
1 
2 
4 

s 
(distance from earth) 

? 
? 
? 
? 

F(t) 

ds/dt 
(speed) 

f(t) 
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We know the expression for f(t) and we need to fill in the question 
marks correctly to answer (a) and (b) above. 

We first find an antiderivative F off: 

8 = F(t) = 100t4 _ 400f + 800t2 +C. 
4 3 2 

We know the position function F must be of this form by the fundamental 
principle, but we are not given enough information to determine C. 
Nevertheless, by plugging in the values 0, 1, 2, and 4 into this expression 
for F, we can easily figure out what was required: 

(a) The distance traveled between timet= 0 and t = 2 is equal to 

(position at t = 2) minus (position at t = 0) 

= F(2)- F(O) 

= 933.7+C- C 

= 933.7km. 

F(2) 

s = F(t) 
= position at time t 

F(O) 

(b) The distance traveled between timet= 1 and t = 4 is equal to 

F(4)- F(1) = 4266.7 + C- (291.7 +C) 

= 3975km. D 



218 6. Chains and Change 

To get the distance traveled, given the speed function f, is then a job 
for antiderivatives. Iff is an antiderivative off, then F gives the position 
at time t, so that the initial and final positions are readily determined. 
The distance traveled is simply the distance between the initial and final 
position, if the ship does not reverse course. (In Example 8 the speed 
function is always positive, so the direction of travel is always away from 
the earth.) 

What happens if the speed function changes sign in the midst of the 
journey, so that the course of travel is reversed? Then the distance traveled 
must be calculated in two steps, as illustrated in the next example. 

EXAMPLE 9 
A rock is thrown upward at an initial speed of 64ft/ sec. How far does the 
rock travel during the first 3 seconds of its flight? 

Here the speed function f is given by f(t) = 64- 32t, because of the 
influence of gravity. When t = 2, the sign of the speed function changes 
from positive to negative, showing that the rock's motion changes from 
up to down. We must calculate separately the distance traveled by the 
rock during its upward and downward journey. An antiderivative F is 
given by 

F(t) = -16t2 + 64t + C 

for some constant C. We are not given enough information to determine 
C, for we do not know the initial height of the rock. 

Nevertheless, the distance traveled upward is 

F(2)- F(O) = 64 + C- C =64ft. 

The distance traveled downward from t = 2 to t = 3 is 

F(2)- F(3) = 64 + C- (48 +C) 

=16ft. 

The total distance traveled is then 80 feet, even though the distance be­
tween the rock's final and initial positions, given by F(3)- F(O), is only 
48 feet. (Example 9 is, of course, essentially the same situation that we 
have met twice before, in Section 2 and in Example 6, Section 7.) D 

Suppose we have two continuous functions f and g defined on the 
domain 0 :5: t, and supposef(t) :5: g(t), i.e., suppose the first never exceeds 
the second. Let us think of these functions as giving the upward speeds 
of two particles moving on the vertical axis, whose "heights" are then 
given by antiderivatives F(t) and G(t). What can we conclude from the 
fact that the rate of upward motion of the first particle never exceeds 
that of the second? Answer: It is intuitively clear that after any timet, the 
net increase in height of the first cannot exceed that of the second, i.e., 
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F(t) - F(O) cannot exceed G(t) - G(O). The reader should reflect for a mo­
ment to see that this conclusion follows even if the speeds f and g should 
sometimes be negative, producing downward motion. 

Let us state our conclusion as a theorem, even though we have sup­
ported it here by a (perhaps questionable) appeal to our intuition. In 
problem 27 of Chapter 7 the reader will be asked to justify this con­
clusion by an appeal to the fundamental theorem of calculus. 

Theorem on Antiderivatives and Inequalities 
If f(t) ~ g(t) on the domain 0 ~ t, then 

F(t) - F(O} ~ G(t) - G(O), if 0 ~ t, 

provided that F and G are antiderivatives off and g, respectively. 
This theorem tells us how to go from inequalities on functions to in­

equalities on their antiderivatives. Or, equivalently, it tells us how to go 
from inequalities on derivatives of functions to inequalities on the func­
tions themselves. 

EXAMPLE 10 
Suppose f(t) ~ 5- 4t + 9t2 if 0 ~ t. What is the corresponding inequality 
forced upon F(t), where F is an antiderivative off? 

Here we are given f(t) ~ g(t), where g(t) =5-4+ 9t2. Using the 
theorem above with G(t) = 5t- 2t2 + 3t3, we may deduce that 

F(t)- F(O) ~ 5t- 2t2 + 3t3 , if 0 ~ t. 

To get a bound on F(t) itself we add the constant F(O} to each member of 
this inequality: 

EXAMPLE 11 
Suppose h(t) gives the height of a particle at time t and suppose h'(t) is 
bounded as follows: 

5-4t+8t2 ~h'(t)~5-4t+9t2 , ifO~t. 

Knowing these bounds on the values of its derivative, what can we say 
about bounds on h(t) itself? 

Applying the theorem above to each inequality separately we infer, 
just as in Example 10, that 

8 
5t- 2t2 + 3 t3 ~ h(t)- h(O) ~ 5t- 2t2 + 3t3 , if 0 ~ t. 

Adding h(O) to each of the three members of this inequality shows that 
h(t) must satisfy the inequality 

8 
h(O) + 5t- 2t2 + 3 t3 ~ h(t) ~ h(O) + 5t- 2t2 + 3t3, if 0 ~ t. 0 
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In the previous section we learned that if dA/dt = dF jdt on a con­
nected domain, then A(t) and F(t) differ by a constant. It follows that 
A(t) - A(O) = F(t)- F(O) if 0 lies in this domain. Now we know that if 
dAjdt ~ dFjdt when 0 ~ t, then A(t)- A(O) ~ F(t)- F(O). The surpris­
ing power of this seemingly simple observation about antiderivatives 
and inequalities may be seen in Appendix 5, where a brief account of the 
theory of Taylor approximations is given. 

Exercises 

9.1. In Example 8, find the distance traveled by the rocket ship between 
(a) t = 0 and t = 3. 
(b) t = 1 and t = 3. 

9.2. If dsjdt is the upward speed, then its rate of increase, which is d(dsjdt)jdt, is 
the upward acceleration. In Leibniz's notation, the symbol d(dsjdt)jdt is ab­
breviated to d 2sjdt2 • Find the upward acceleration in Example 8, and then 
answer the following: 
(a) Is the rocket accelerating or decelerating in its upward movement when 

t = 3? 
(b) Is the rocket accelerating or decelerating when t = 0? Answer: Since 

d2s/dt2 lr=o = 800 km/hr per hour, which is positive, the rocket is 
accelerating. 

9.3. In Example 9, how far does the rock travel between 
(a) t = 1 and t = 3? 
(b) t = 0 and t = 4? Answer: 128 feet. 

9.4. A stone is thrown upward from a tower window at an initial speed of 
48ft/ sec. Find the distance traveled by the stone during its first 3 seconds of 
flight, treating it as a freely falling body. 

9.5. Do exercise 9.4 with the modification that the stone is thrown downward 
instead of upward. 

9.6. The speed function f of a ship stays constant at 30 km/hr, i.e., f(t) = 30. 
Find how far the ship travels between t = 1 and t = 4, 
(a) by the method of antiderivatives, as in Example 8. 
(b) by common sense. 

9.7. A ship moves in a straight line. Its speed function f is unknown but is 
bounded by the inequality 

30 + 2t:::; f(t) :::; 30 + 4t, when 0 :::; t. 

Use the theorem on antiderivatives and inequalities to find bounds on how 
far the ship travels between the times t = 0 and t = 3. Hint. The distance 
traveled is given by F(3) ~ F(O), where F is the position function of the 
ship. 
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§10. A Token 

There is a lot to be learned in the simple pastime of contemplating a 
circle. (All of trigonometry, in fact, arises this way.) In Chapter 3 it was 
established that the area A of a circle is given by 

(23) 

where r is the radius. This followed from Archimedes' demonstration 
that the two figures below have the same area. 

Circleof 0 
radius r and A 
circumference C 

Right triangle 
of baser and 
height C 

The equality of areas produces the equation nr2 = ~ Cr, from which we 
get the formula for the circumference, 

C = 2nr. (24) 

From (23) we derive the equation dAjdr = 2nr, so that by (24) we 

dA 
dr =C. 

have 
(25) 

Thus the derivative (with respect tor) of the area of a circle is equal to the 
circumference! It takes only a little sensitivity to recognize that there must 
be here some sort of underlying harmony that has so far gone unnoticed. 
Equation (25) is a token from the gods. It is up to us to figure out what it 
really means. Remember the words of Xenophanes and Heraclitus! 

Is equation (25) just an accident? Or should we :have realized, by 
adopting the proper point of view, that this equation was bound to be 
true? Let us set about trying to derive equation (25) directly from funda­
mental considerations. We may discover something worth knowing in the 
process. 
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The equation C = 211:r defines, of course, a straight line of slope 211: 
passing through the origin. The variables r, C, and A are then related as 
indicated in the figure. 

(r,C) 

If r is changed by a small amount Llr, what are the corresponding 
changes LlC and LlA? They are as indicated in the figure below. 

i 
JC 

c 
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To calculate the change AA in area, regard it as being made up of a 
rectangle surmounted by a triangle. The rectangle has base Ar and 
height C, and the triangle has base Ar and height AC. Therefore, 

1 
AA = C(Ar) + Z (Ar)(AC). 

Dividing by Ar produces 

AA 1 --:;- = c +-(A c). 
nY 2 

As Ar ---+ 0, we must have AC ---+ 0 also, because C is a continuous func­
tion ofr. Therefore, 

d.A .. AA 
-=Llmlt­
dr Ar-->0 Ar 

= Limit[c+~(Ac)] 
Ar-->0 2 

=C. 

What have we learned? We have learned that the equation d.Ajdr = C 
is simply a consequence of the fact that A is the area beneath the curve 
giving C as a continuous function of r. That is, given the picture 

it must follow that d.Ajdr =C. 
Are areas beneath continuous functions always related to the func­

tions in this way? What is the secret that is still eluding us? 
It turns our that what is behind all this is the fundamental theorem of 

calculus. Leibniz guessed it, probably sometime in the 1670s. Actually, 
Isaac Newton had come upon it in 1666 (at the age of twenty-three), but 
kept it a secret. 

The fundamental theorem is discussed in Chapter 7. The reader may 
possibly be able to guess what it says beforehand, however, after doing 
the following exercises. The many uses of this theorem will still bring 
surprise. 
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Exercises 

10.1. Make a guess about a relation between the three variables that occur in 
each of the following pictures. 

(a) (b) 

(c) (d) 

A 

Answer: (c) dAjdL =C. (d) dA/dx = y. 
10.2. Guess again, as in exercise 10.1, but utilize the fact that equations for the 

curves are furnished. 

(1,55) 

(a) --'----------'--

Answer: (c) dA/dx = x2 . 

§11. Leibniz 

Leibniz, like Descartes, is one of several mathematicians who were also 
distinguished philosophers. He said that we live in "the best of all possi­
ble worlds". Voltaire admired Leibniz, but could not accept this con­
clusion and satirized Leibniz's "optimism" in Candide. Relatively recent 
developments in physics have shown, however, that profound truth can 
be found in Leibniz's seemingly naive belief: 
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NOP" A METHODllS PRO MAXI~! IS ET /111-
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gtmu,perG,G. L. 
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SitaxisAX,&curva:pinres,utVV, \X''«', YY, zz, quarum erJI.TAB.XU 
. natz, ad axem n~rmalc•.' \:~· W X, Y X, ZX, quzvoctntur rdpc· 

dan·,~!,.., .':• z' &_•p(~ A X •mk.!fa ab axe, vocetur x. Tangentcs fint 
VB, \v C, 1 D, Z l:. ax a occurrcntes rcfpcelivc in pundis D, C J) F. 
Jamredaaliqua piOarbinio afii•mta voceturdx, & fda qua: r.: ad 
dx,utP ( vclv,vel y, vel z )dhd V D(vclWC, vel YD,vel ZE) vo-
ce curd" (veld w, vel dy vel dz) five dificrentia ipfarum p (vel i}"·li-
rum '11('1 aut y, aut 1) 1-lis poficiscalculi regula:erunt tales: 

Sit a quantitas dar a ~onRans,er~r daa:qualiso, & d ~ erit a:qu; 
a dx: fi fir y a:qu r (feu ordmata quzvascurvz Y Y, zqualis cui\· is or­
dinar;:e rclpondcmicurvz V V) erit dyzqu.dP , J:.mAJJititi{J' S.l-

tmCfitl; fiGrz-y+w+x zqu.P,erit d ~-.:y+w'+-; feu d•, :rqu 

d z- d Y~fod w +d x. Mu/tip/irAtill,d ~ :tqu. xd •+• dx,fcu rotito 
'! a:qu.x v, fict d y a:qu X d l' + ,. d x. In atbitfio cnim en vel formulam, 
ut lC v, \'el compcndio pro ca lit cram, Ut y,adhibe~. Norandam & X 

& d xeodcm modo in hoc lalculo rradari, ut y &dy, vclaliam lirrram 
indctcrminatam cum fua.diftcrcntiali. Notandum etiam non dad 
fempcr rcgrdlum a diffcrcnriali .£quarione, nifi cum quadam caurio-

ne, de quo alibi. Porro Di•iJ•, d ~vel ( politozzqu.~) dz zqu. 
:f:•dy i·Ydll y y 

yy 
~oads,;p .. hoc rrobe notandum, cum in calculo FrO litrra 

fubl\iruirur fimpli,itrr rjut diftcrC'ntialis, fcrv:1ri quidcm eadem ligna, 
& l'ro+zf~ribi + dl, pro -z fcribi-d z, utcx addirionc & !ir:,tra­
llione paulo ante pofira apparct; fed quando ~d cxrgcfU\ \'alorum 
vcnirur, fcu cum confidcrarur ipfius z rclatio ad x, rune apparcrc, an 
valor ipfius d z fit quantitas affirmativa, an nihilo minor feu ncgath•a: 
quod roll:criusccm fir,tunc t:tngcns Z E ducirura punc!o Z non \'rr­
fus A, fr.! in partes contrarias feu infra X.id cl\ :unccum irf"or,:::~.::.t: 

NnnJ ,c,i,·~,:o:-

Figure I. First page of the first paper published on the calculus. Leibniz 
wrote this short account-only six pages long-in 1684. The long title 
reads "A new method for maxima and minima, as well as for tangents, 
which is not obstructed by fractional and irrational quantities, and a 
unique calculus for them". 
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Ours, according to Leibniz, is the best of all possible worlds, and the laws 
of nature can therefore be described in terms of extremal principles. 

C.L. Siegel and J.K. Moser• 

Modern books on celestial mechanics show that the course actually 
chosen as the path of a heavenly body is the optimum among all possible 
courses. It should be added that the optimum path must be defined quite 
carefully, and in a way that Fermat was more likely to have foreseen 
than Leibniz. Nevertheless, the optimization techniques of Leibniz's 
calculus enter the picture in an essential way. 

Few men have been more gifted than Leibniz. He invented a calcu­
lating machine that could multiply, divide, and take roots. He organized 
the Berlin Academy of Sciences and was its first president. He knew 
many languages, was an historian and a diplomat, with interests in eco­
nomics, and a pioneer in the field of international law. 

But when he died in 1716, little notice was taken. Only one mourner 
attended the funeral of Gottfried Wilhelm von Leibniz, and an observer 
said that "he was buried more like a robber than what he really was, the 
ornament of his country." 

Problem Set for Chapter 6 

1. A motorcycle travels on a straight road leading directly away from a city. At 
timet hours past noon its distance from the city is lOtl- 40t2 +BOt miles. 
(a) How far does the motorcycle go between one o'clock and three o'clock? 
(b) What is its average speed over the time interval between one o'clock and 

three o'clock? 
(c) What is the speedometer reading at two o'clock? 
(d) At two o'clock, is the motorcycle accelerating or decelerating? 
(e) At one o'clock, is the motorcycle accelerating or decelerating? 

2. The height of a rock at time t is given by h = -4.9t2 + 20t, where h is in 
meters and t is in seconds. 
(a) Is the rock rising or falling when t = 3? 
(b) How fast is the rock going when t = 3? 
(c) When does the rock attain its maximal height? 
(d) What is the acceleration of the rock? 

3. Suppose x and y are each functions oft. Let A denote their product. (If x and 
y are positive, A can be pictured as the area of a rectangle whose sides vary 
in length as t increases.) 

• Siegel/Moser, Lectures on Celestial Mechanics (New York: Springer-Verlag, 1971) p.l. 
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Ay 

y 

X Ax 

The shaded area is AA 

(a) In time At, x becomes x +Ax andy becomes y + Ay. Hence A+ AA = 
(x + Ax)(y + Ay). Use this equation to find AA in terms of x,y,Ax, and 
Ay. 

(b) Suppose dx/dt and dyjdt exist. What must happen to Ax and Ay as 
At-+ 0? 

(c) Derive the product rule, by carrying out the following steps. 
(i) Take your answer to (a), and divide both sides of the equation by At. 

(ii) Take the limit as At-+ 0, using your answer to part (b), to show that 

4. Back in Chapter l, we encountered this situation linking, the three variables 
A,s, and w: 

A= area of Ll ___ __,l w, where 2w + s = 1200. 

L 

This leads to the chain 

1 2 
A = 600s- Z s , where s = 1200 - 2w, 

which produces the equation A= 1200w- 2w. 
(a) Using the three equations above, find d.Ajds,dsjdw, and d.Ajdw. 
(b) Multiply d.A/ds by dsjdw. Is your answer equal to dAjdw? 
(c) Find dwjdx after solving for win the equation 2w + s = 1200. Is it equal 

to the reciprocal of ds / dw? 

5. Use the chain rule to find the derivative of each of the following: 
(a) (xZ + 7x)4 . 

(b) (il- (1/x)t 
(c) ((x- 2)/(x + 2)t 
(d) (0- 3x + nl. 

6. Find the second derivative of the expression given in 5(a), paying attention to 
the fact that since its first derivative is expressed as a product by the chain 
rule, you must use the product rule to work out its second derivative. (And in 
the course of implementing the product rule you will have to use the chain 
rule again.) Now go back to the problem 48 of the previous chapter and give 
it a try. 
(a) (Simple) In problem 48 of Chapter 5, fill in the blanks properly giving the 

first derivatives. These are simple products by the chain rule. 
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(b) (Challenging) Fill in the blanks properly giving the second derivatives in 
this problem. You must correctly use the product rule and the chain rule 
(again) here. 

7. Suppose the radius r of a circle is increasing at the rate of 7 in/sec at the 
instant when r is 5 inches. 
(a) (Easy) How fast is the area A of the circle increasing at this instant? 
(b) (Harder) Find d2Ajdt2 at this instant if d2rjdt2 = 3 in/sec per second. 

8. A ladder 20 feet long rests against a wall. If its bottom end is pulled away 
from the wall at a constant rate of 5 ft/ sec, how fast is the top of the ladder 
descending 
(a) when the bottom end is 12 feet from the wall? 
(b) when the top end is 12 feet from the floor? 

9. A man 5 feet tall walks directly away from the base of a street light at a rate 
of 3 ft/ sec. How fast does the length of his shadow increase if the street light 
is 12 feet tall? 

10. An observer is 80 feet from a railroad track when a train passes at a rate of 
SOft/sec. How fast is the train's engineer moving away from the observer at 
the instant they are 
(a) 80 feet apart? 
(b) 100 feet apart? 

11. Syrup is poured on a pancake at a constant rate so that the circular area 
covered by the syrup is increasing at a rate of 3 in2/sec. How fast is the 
radius of this circular area increasing at the instant when the radius is 2 
inches? 

12. Find antiderivatives of each of the following. 
(a) 3t2 + 12t + n. 
(b) 1/f2. 
(c) f3 - 5t + 3. 
(d) ~ + 4f3 -16t2. 

13. In each of parts (a) through (d) of problem 12, find an antiderivative that 
takes the value 0 when t = 1. Is there a unique answer in each case? 

14. From a window 276 feet high, a rock is thrown upward at an initial speed of 
50ft/sec. Answer the following questions, treating the rock as a freely falling 
body. 
(a) When will the rock attain its maximal height? 
(b) When will it hit the ground? 
(c) What will be the speed of the rock when it hits the ground? 

15. A baseball is thrown straight up. What was its initial speed if 
(a) it reaches a maximum height of 100 feet? 
(b) it hits the ground 5 seconds after it is released? 
(c) it is at a height of 60 feet 2 seconds after it is released? 

16. Since 32 feet is about 9.8 meters, equation (21) of Section 8 becomes dvjdt = 
-9.8 m/sec per sec. By taking antiderivatives twice, show that the height h in 
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meters of a freely falling body is -4.9t2 + v0t + h0 , where v0 is the initial up­
ward speed in m/sec, h0 is the initial height in meters, and tis the time in 
seconds after the body is released. 

17. In Example 7 of Section 8, find the speed at which the ball hits the ground. 

18. The derivative of a certain function f is given by f'(x) = 10- Bx. It is also 
known that f(2) = 3. Find the largest number in the range of f. 

19. Suppose that the least number in the range of a certain function g is 2. 
Suppose also that g'(x) = 2x- 4. Find g(3). 

20. Think about a tennis ball just as it lands on the ground after being dropped. It 
bounces up. The upward speed is negative just before impact, and positive 
just after. Does this mean that the speed function must be discontinuous at 
the instant of impact? Is Leibniz's principle of continuity violated? Or can 
you see a way to save this principle by a more careful examination of what 
actually happens at the moment of impact? 

21. (For ambitious students only) Although we know the derivative of the recip­
rocal function, we do not yet know an antiderivative of it. Nevertheless, sup­
pose that we have somehow found the antiderivative A of the reciprocal 
function that takes the value 0 at the point 1. That is, we have a function A 
satisfYing the following: 

A(t) A'(t) 

0 
A(t) l/t 

Although we do not yet have any sort of formula by which to express the rule 
for the function A, we can nevertheless deduce some interesting things about 
it. 
(a) To begin with, we know that if L = A{t), then dL/dt = 1/t. This makes it 

unlikely that the domain of the function A includes the point 0. Why? 
(b) Lety = A(nt). This maybe regarded as the chainy = A(u), where u = nt. 

Use the chain rule to find dyfdt. Hint. dyfdu = 1/u. 
(c) The work in parts (a) and (b) shows that dL/dt = dyfdt. By the funda­

mental principle of integral calculus, there must be some constant C 
such that y = L + C, i.e., A(nt) = A(t) + C, on a connected domain. Show 
that the constant C must be A{n). Hint. A{1) = 0. 

(d) We now know that A(nt) = A(n) + A(t), since C = A(n). Assuming that 
the domain of A is the connected set of all positive numbers, show that, 
for any s > 0 and t > 0, we have 

A(st) = A(s) + A(t). 

Hint. Use the same reasoning as before. Just considers instead ofn. 
(e) The equation in (d) shows that the function A "converts multiplication 

into addition" in a sense. That is, the action of A on a product st is the 
sum of the action on each term. By letting t = s in this equation, prove 
that A{s2 ) = 2A(s) if s > 0. 
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(f) Prove that A(sl) = 3A(s) if s > 0. 
(g) In the equation in (d), lett= l/s, and show that A(1/s) = -A(s) if s > 0. 
(h) In the equation in (d), lets= t = y'X and prove that A(y'X) = !A(x). 
(i) If L =A (f), then dL/df = 1/f. What would you guess is the formula for 

df/dL? 
(This has been a preview of the logarithmic function.) 

22. Consider the area A as indicated below: 

y = 1/t 

(a) What is A when t = 1? 
(b) What would you guess dA/dt to be? 
(c) Here, A is a function oft. Does it satisfY the table set up at the beginning 

ofproblem 21? 

23. A rock is thrown up at an initial speed of 96ft/sec. How far does the rock 
travel during 
(a) the first 2 seconds of flight? 
(b) the first 5 seconds of flight? 

24. A small, tired bug is climbing up they-axis. At timet= 1, the bug is at the 
origin and, from that time on, her speed is given by f(t) = 4/il. 
(a) How far does the bug go between times t = 1 and t = 2? 
(b) At what time t will the bug be at position y = 3? 
(c) At what time twill the bug be at position y = 3.75? 
(d) How far does the bug go between times t = 1 and t = 1000? 
(e) Will the bug ever reach the position y = 4? 

25. Match each of the following functions (a) through (g) with its derivative. (The 
derivative of (h) is not pictured.] 

/V/ 
(b) 

o----~o~--+-~o~----~o 

(c)~IV (d) 
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0 : : 0 Jl--(e) (f) ~r 

(g)-o 0 0 0- _)IL 
(h) 

[The curve in (g) lies on the horizontal axis, but has holes in it. The 
left branch of the curve in (f) is identical with that of (d), but translated 
downwards.] 

26. In problem 25, the curves (d) and (f) have the same derivative, but do not 
differ by a constant. Doesn't this contradict the fundamental principle of 
integral calculus? Explain why not. 

27. The acceleration due to gravity near the earth's surface is often denoted in 
physics books by g. Thus g here denotes a constant that is equal to -32 ftlsec 
per sec, if we use seconds and feet to measure time and height. If we use 
meters instead of feet, then g = -9.8 m/sec per sec. 
(a) Find h(t) if the initial height of a freely falling body is h0 and its initial 

upward speed is v0 , i.e., fill in properly the blank space below, where g is 
the (constant) acceleration due to gravity: 

h 

0 

dhldt 

g 

g 

The only difference between this problem and problem 16 is that here 
we use g to denote the upward acceleration instead of a definite number 
like -9.8 or -32. The point of this is to see exactly how the second de­
rivative ofh enters into the expression giving h(t). 

(b) The numerical value of the constant g varies with the choice of units for 
time and height. What is the value of g in centimeters per second per 
second? What is its value in centimeters per minute per minute? Can 
you make up units of distance and time so that the value of g will be -1? 

28. (What if gravity is not constant?) In fact, the acceleration of gravity is not 
constant, but varies with height. If a body begins its free fall at a great dis­
tance above the earth, its acceleration due to gravity might at first be some­
thing like -30ft/ sec per sec, tending to -32 ftl sec per sec as it approaches 
the ground. In this case the body will not be falling as rapidly as the motion 
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described in problem 27 so its actual height h(t) will in fact be higher than 
the height h calculated there. 
(a) Explain why this means that h0 + v0t + ~gt-2 :-:;; h(t) for all t ~ 0 during 

which the body is in free fall. Hint. Use your answer to problem 27. 
(b) On the other hand, if we compute h in problem 27 assuming that the 

acceleration due to gravity is constant during the entire trip at G = 
-30ft/sec per second we must come out with a larger height than the 
actual height h(t). Show that this, together with the result of part (a), 
implies that while the body is in free fall, 

1 2 1 .~ 
ho + Vot+zgt :<:;; h(t) :<:;; ho + Vot+z Gr, if 0 :-:;; t. 

(c) Suppose the initial height of a freely falling object is 700,000 ft, at which 
height the acceleration due to gravity is -30ft/sec per second. Suppose 
its initial speed is downwards at 1500 ft:/sec. Use the inequality of part (b) 
to get upper and lower bounds on the height of the object 150 seconds 
after its release. 

The reader impatient to know what the third, fourth, and higher derivatives are 
good for may tum to Appendix 5 after working problem 28. 



CHAPTER 

The Integrity 
of Ancient 
and Modern 
Mathematics 

When minds of first order meet, sparks fly, even across the centuries. 
The fundamental theorem of calculus, to be discussed in this chapter, 
is the result of such a pyrotechnic fusion of ideas. When Leibniz and 
Newton met Eudoxus and Archimedes, the calculus was rounded out 
into a whole. By the end of the seventeenth century it was becoming 
evident that calculus was not a bag of unrelated tricks but was an entity 
complete unto itself. 

The point of this chapter is to see our subject as a unified whole, and 
the fundamental theorem is what really ties it together. Before coming to 
this theorem, let us recall briefly what we have seen so far. Calculus is 
largely the study of the interplay between a function and its derivative. 
In Chapters 4 and 5 we saw the geometric aspect of this interplay, which 
gives insight into the study of curves lying in a plane. As a by-product, 
the solution of optimization problems was effected. In Chapter 6, a 
dynamic aspect of this interplay revealed itself, throwing light upon 
the study of change. Previously vague terms, like instantaneous velocity, 
acceleration, and rate of growth, were seen to have natural and precise 
meanings couched in calculus. In addition, the fundamental notion of 
continuity has been clarified in terms of limits, and we have learned to 
solve equations by Newton's method. 

We have seen by now that the interplay between a function and 
its antiderivative is signally rich. In this chapter we study still another 
aspect of this interplay. Calculus permits the easy calculation of the area 
of a figure bounded by curves in the plane. 

233 
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§1. Areas and Antiderivatives? 

Why should there be any connection between the calculus and the calcu­
lation of area? Isaac Newton saw the connection at an early age, having 
learned something, no doubt, from studying at Cambridge University 
under the tutelage oflsaac Barrow. While Newton was keeping his secrets 
to himself, the light came to Leibniz upon studying a mathematics paper 
by Pascal. The connection is a secret no longer. 

Let us try to guess the connection first and put off until later an 
attempt to prove that our guess is correct. The key is to work through 
several simple examples and to observe that two seemingly different 
approaches yield the same result. 

To see the landscape clearly, a motorcycle ride will help, if the reader 
will put up with just one more trip. Suppose you are watching the 
speedometer and therefore know the function f giving the speed of the 
motorcycle in terms oftime. What method(s) can be applied to the speed 
function[, in order to calculate the distance traveled between, say, the 
times t = 1 and t = 4? 

EXAMPLE 1 

Suppose the speed is constant at 50 km/hr, i.e., the speed function is 
given by f(t) =50. What is the distance traveled between t = 1 and 
t = 4? 

One way the distance traveled can be found is by the antiderivative 
method illustrated in Section 9 of Chapter 6. Since the speed is always 
positive in this example, the distance traveled is just the distance between 
the motorcycle's initial and final positions. The position function F is an 
antiderivative of the speed function [, so 

F(t) = SOt+ C, 

where C is some constant. The distance traveled is then 

F(4)- F(1) = 200 + C- (50+ C) 

= 150 kilometers. 

150 

F(4) = position 
at I= 4 

F(t) = position 
at timet 

F(l) =position 
at t =I 
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Common sense reveals a simpler way to do this problem, however, 
for the speed is constant at 50 km/hr. Traveling at 50 km/hr for 3 hours, 
the motorcycle covers a distance of 

50· 3 = 150 kilometers. 

The product 50· 3 has a striking significance if we look at the graph of the 
speed function f, which is simply a horizontal line. One cannot help but 
notice that the distance traveled between times t = 1 and t = 4 is numeri­
cally equal to the area beneath the curve f, between t = 1 and t = 4: 

-----urrmniiiiiiiiiTTTTTTTTTTTllTIIIII~~rTTTTTllTT1TTTT:~~IIIIIIII~IIIIH ft<) ~ ~ 
4 

~------3--------~ 

Area beneath f, from t = 1 to t = 4, is 150 = F(4) - F(1 ), 

where F is an antiderivative of f. Could it be that the area beneath any 
curve is so simply related to an antiderivative? 0 

EXAMPLE 2 
Suppose the speed is given by f(t) = 2t. What is the distance traveled 
between t = 1 and t = 4? 

An antiderivative F is given by F(t) = t2 +C. Since the speed 2t is 
always positive between t = 1 and t = 4, the distance traveled is 

F(4)- F(1) = 16 + C- (1 +C)= 15 units. 

Let us check to see if this is equal to the area beneath the curve f. 
Since the graph of f(t) = 2t is simply a line of slope 2, the area in ques­
tion looks like this: 

/(I)= 21 

(4.8) I 

l 
2 

4 
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The area is made up of a rectangle of area 3 · 2 = 6, surmounted by a 
right triangle of area !(3)(6) = 9. The area beneath the curve f is then 

6 + 9 = 15. D 

The two methods agree once again! The area beneath the graph of the 
positive function f again turns out to be the same number as that calcu­
lated by the antiderivative method, i.e., 

F(4)- F(1). (1) 

We shall see a lot of such expressions as (1), and it will be convenient to 
have an abbreviation for them. The notation Fl~ or [F(t)]~ is defined to 
do this: 

For example, 

EXAMPLE 3 

Fl~ = [F(t)]~ = F(b) - F(a). 

50tli = 50(4)- 50(1) = 150, 

[t2]i = 42 -12 = 15, 

[t2 - 2t]i = (16 - 8) - (1 - 2) = 9. (2) 

Consider the area beneath the curve given by f(t) = 2t - 2, between 
t = 1 and t = 4. Sketch this area and see if it is equal to that calculated by 
the antiderivative method. 

(4,6) 

f(t)= 2t- 2 

4 

The area is easily seen to be a right triangle of base 3 and height 6, 
having an area of 

1 
2 (3)(6) = 9, 

which agrees with the number calculated by the antiderivative method 
in equation (2) preceding the example. D 
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Exercises 

(Remember that the phrase "beneath the curve" means "below the curve 
and above the horizontal axis".) 

1.1. Sketch the graphs of each of the following linear functions f and find the 
area beneath f, between t = 1 and t = 4, by splitting the area into a rectangle 
surmounted by a triangle, as in Examples 2 and 3. 
(a) f(t) = 10- 2t. 
(b) f(t) = t. 
(c) f(t) = 4t- 3. 

1.2. For each of the three linear functions of exercise 1.1, apply the anti­
derivative method. That is, find an antiderivative F and calculate the ex­
pression (1 ). Answer: (b)! t2 [i = !(16) - !(1) = Jt. 

1.3. Apply the method of antiderivatives to each of the following. 
(a) f(t) = 4t + 2, from t = 2 to t = 5. 
(b) f(t) = 4t + 2, from t = 1 tot= 4. 
(c) f(t) = t, from t = 0 tot= 1. 
(d) f(t) = 5- t, from t = 0 tot= 2. 
Answer: (a) [2t2 + 2t]~ = 60 - 12 = 48. 

1.4. The answer to each of the four parts of exercise 1.3 ought to be equal to a 
certain area. In each case, sketch the area. Answer: (a) The area of 48 is that 
lying beneath the curve f(t) = 4t + 2, 2 ::;;; t ::;;; 5. 

(5,22) 

f 

(2, 10) 

2 5 

1.5. Apply the method of antiderivatives to each of the following. 
(a) f(t) = 1/t2 , from t = 1 tot= 4. 
(b) f(t) = 1/t2 , from t = 2 tot= 6. 
(c) f(t) = t2 , fiom t = 0 tot= 1. 
(d) f(t) = t 2 - 4t + 5, from t = 1 tot= 4. 
Answer: (a) [-1/tli = -~- ( -1) = ~-

§2. Areas Bounded by Curves 

Consider the area beneath the quadratic curve given by 

f(t) = t2 - 4t + 5, 1 :::;; t :::;; 4. 
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(4,5) 

(1, 2) 
f(t)=t2 -4t+5 

4 

An antiderivative F off is given by 

1 
F(t) = J t3 - 2f +St. 

In view of the way things have turned out up to now, one might guess 
that this area is equal to 

= 6. 

The answer of 6 square units is surely easy to calculate by the anti­
derivative method. But how can we be sure that this method gives the 
correct area? We must first have a clear definition of area. 

The importance of the role of definitions (in any subject, but particu­
larly in mathematics) is not often noticed. At first we generally have 
only an intuitive conception of some notion that seems of interest. 
However, we can deal with intuitive notions, like tangent line and area, 
only in a superficial way until we assign these notions a precise signifi­
cance, showing how they are related to ideas with which we are quite 
at home. Even more important (in any subject) is the choice of what 
terms to define, for that choice will determine one's language and con­
sequently will ease-or hinder-one's way. When Fermat chose to think 
in terms of the intuitive notion of a limit, he rendered invaluable service 
to all who would enter mathematics. 

Fermat pointed us toward a definition that clarified the idea of a tan­
gent line and enabled us to travel in this book as far as we have. To travel 
much further with security, we must seek clarification of the notion of 
area. What does it mean to assert that the area pictured above is 6 square 
units? The figure is bounded by a curve on one side! Is it nonsense to 
speak of the "area" inside a curved figure? 

This question was profoundly considered long ago by Archimedes, 
who became the master of a method introduced still earlier by Eudoxus. 
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Archimedes, of course, had no notion of antiderivatives, but he could 
calculate areas (and volumes!) enclosed by curved figures. He used the 
method of Eudoxus, coupled with his own awesome technique. 

The exercises below may suggest the essence of Eudoxus' method, but 
the discussion in depth of this method is postponed until Section 5. 
There we shall again seek out Eudoxus and Archimedes, who knew what 
they were talking about. 

Exercises 

2.1. Review problems 8 through 16 in the problem set at the end of Chapter 3. 

2.2. Consider the two "stairstep" figures superimposed on the curve f(t) = t2-
4t + 5, 1 ~ t ~ 4. 

(4,5) 

2 3 4 

Use them to convince yourself that the area beneath the curve exceeds 4 
square units but is less than 9 square units. 

2.3. What can you deduce by considering twice as many steps? 

0 I 1.5 2 2.5 3 3.5 4 

Answer: The area beneath the curve exceeds 4.875 square units but is less 
than 7.375 square units. 
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2.4. By putting in a few more steps, convince yourself that the area beneath the 
curve exceeds 5 square units but is less than 7 square units. 

2.5. (A question for speculation) Make up a definition of the area enclosed by a 
curved figure lying in the plane. There are several ways this might be 
defined. Can you think of a way to define the area as a number that is the 
limit of other numbers that approximate it ever so closely? This is the way 
we shall proceed in Section 6, but an alternative approach may be found in 
problem 30 at the end of the chapter. 

§3. Areas and Antiderivatives 

The exercises in Section 2 point the way toward a definition of the notion 
of area. The definition will be stated precisely in Section 5. Right now, let 
us take for granted the fact that the notion of area dates from antiquity, 
and ask a seventeenth-century question: What have areas got to do with 
antiderivatives? 

The answer to this question was given independently by Newton and 
Leibniz, and runs somewhat as follows. The key step in most calculus 
problems is to see the problem in terms of variables. How can we see the 
problem of calculating this area, for example, as a problem involving 
variables? 

f 

4 

The answer is to consider the way the indicated area A varies in terms of 
tin the picture below. 

A dA/dt 

1 0 
4 ? 
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(Do you see why we set A= 0 when t = 1 ?) We want to find the area A 
when t = 4. We have made a guess that the antiderivative method will 
probably give it to us: 

When t = 4, then A= F(4)- F(l), (3) 

where F is an antiderivative of f 
So far, equation (3) is only an educated guess. To prove that it is 

correct, let us try to find a formula expressing A in terms of t, in order 
to plug in t = 4. From the picture given above, we may expect that 

dA 
dt = f(t). (4) 

(See Section 10 of Chapter 6.) A proof of (4) will be forthcoming shortly, 
but first note that (4) says that A, like F, is an antiderivative of f. By 
the fundamental principle of integral calculus, A and F differ by some 
constant C, i.e., 

A =F(t) +C. 

What is C? Since A = 0 when t = I, equation (5) shows 

0 = F(l) + C, 

so that C = -F(l) and (5) becomes 

A = F(t)- F(l). 

(5) 

(6) 

Statement (3), which we were trying to prove, is now an obvious con­
sequence of (6)! D 

A proof of ( 4), on which the preceding argument hangs, will be given 
below, but the style of argument just seen will be valuable later and 
ought to be remembered. It consists of three steps, culminating in a 
proof of (3): 

Step 1. By (4), we have 

A dA/dt 

0 
f(t) 

Step 2. By the fundamental principle, since F' = f, we have 

A dAjdt 

0 
F(t) + C f(t) 
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Step 3. Adjusting C so that A = 0 when t = 1 yields this information 
from which (3) follows easily. 

t 
4 

A dAfdt 

0 
F(t)- F(l) 

? 
f(t) 

To make things complete, we must prove (4), which shows the con­
nection between areas and antiderivatives. Note that here we are dealing 
with a function whose graph lies above the axis, i.e., a positive function. A 
more general case is treated in Section 4. 

Theorem on Areas and Antiderivatives 
Let f be a positive, continuous fUnction, and let A be the area beneath the 
curve f from x = a to x = t. 

a 

Then A is an antiderivative of f 
d.A 
dt = f(t). 

Proof 
Let t be fixed, and let y = f(t). To find d.A/dt, we first consider the 
change LIA in area produced by a nonzero change At: 

LIA 

Lit 
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Compare the size of LfA with that of rectangles built upon the same base 
oflength Lft. 

y + Lly 

Lit Lit 

Since the area of these rectangles are equal, respectively, toy· Lft and 
(y + Lfy) · Lft, it follows that LfA lies between y · Lft and (y + Lfy) · Lft. Divid­
ing by Lft then shows that 

LfA Lit lies between y andy+ Lfy. (7) 

From (7) it is easy to determine the limit of LfA/ At as Lft --. 0, for Lfy 
must tend to zero as well (since y is a continuous function oft). Thus 
LfA/ Lft, being sandwiched between y andy+ Lfy, must tend toy, i.e., 

dA LfA 
dt = Lj[!;~t At= y = f(t). D 

The proof just given may seem to rely on the picture that shows the 
curve f rising as it passes through (t,y) and also shows the change Lft as 
being positive. If the curve is falling, or if Lft is negative, the pictures have 
to be redrawn, but the proof has been worded in such a way as to require 
no change. If the function "wiggles" violently near (t, y) so that the curve 
is neither rising nor falling there, our proof is invalid, but the theorem is 
still true, as shown in a more careful demonstration better deferred to a 
course in analysis. 

Exercises 

3.1. Find the area beneath the graph of each of the following equations, from 1 
to 4. 
(a) f(t) = t2 - 2t + 6. (b) f(t) = 1/t2 • 

~fW=~. ~fW=~. 
(e) f(x) = ~ + x3 . (f) y = 3t2 + 5. 
(g) y=4x3 -3~. (h) y=n. 
(i) h = -16t2 + 64t. (j) g(s) = 600s-! s2 . 

Answers: (b) ~ square units. [See exercise 1.5(a).] (d) x4 /4li = (256/4)­
(1/4) = 255/4 = 63~ square units. (f) 78 square units. (h) 3n square units. 
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3.2. In Section 10 of Chapter 6 you were asked to do some problems by guess­
work. With the aid of the theorem on areas and antiderivatives, go back and 
do exercises 10.1 and 10.2 without guessing. 

3.3. With the aid of the theorem on areas and antiderivatives, find dA/ dt in each 
of the following situations. Specify your answer in terms oft. 

(a) (b) 

f(x)=~ 

Q 
-I 0 

Answer: (a) Since f(x) = yf1- x2 , we have f(t) = Vf=t2. By the theorem, 
dAjdt = f(t) = Vf=t2. (Note that this problem really has nothing to do with 
"x". The answer would be the same if the function f had been expressed by 
writing f(s) = yf1 - s2 , or by writing the equation y = yf1 - L2 to specifY the 
curve f. In this problem x is a dummy variable, in the sense that the answer 
is unchanged if "x" is renamed as "s" or "L".) 

3.4. The algebraic rule Vf=t2 has domain -1 :5: t :5: 1. Find an antiderivative of 
this function. Answer: Let A be the function oft specified by the picture in 
exercise 3.3(a). (This function is specified in words, not as an algebraic rule, 
but it is a perfectly good function, and the theorem on areas and anti­
derivatives shows that it answers this question.) 

3.5. Find an antiderivative of each of the following functions, expressed as alge­
braic rules. 
(a) 1/(t + 1), 0 :5: t. 
(b) 1/t, 1 :5: t. 
(c) yf4-t2 ,-2:5:t:5:2. 
(d) 1/(t2 + 1), 0 :5: t. 
Answers: (a) Let A be the function oft specified in the picture in exercise 
3.3(b). (b) Let A be the function oft specified in the picture in problem 22 at 
the end of Chapter 6. 

§4. Areas between Curves 

The preceding section studied how to find the area between a curve and 
a certain straight line (the horizontal axis). It is just as easy to find the 
area between a curve and another curve. 
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I 
x=a I 

(a,f(a)) 

(a,g(a)) 

I 
I 
I 
I 
I 

I 
I 
I 
I 

f 

g 

I 
I x=b 

I (b,f(b)) 

I (b,g(b)) 

I 
I 
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Finding the area between two curves is a problem that can be ap­
proached by the method of Newton and Leibniz outlined in Section 3. 
The key is to see the problem in terms of variables. Let A be the area 
indicated below, so that A is a function oft. 

I I 
x=a I 

I 
I X= t 
I 

I I 
I (t,f(t)) 
I 
I 

(a,f(a)) f 

(l,g(t)) 
(a,g(a)) 

I 
I g 

I 
I 

If both f and g are continuous, with flying above g, it follows that 

dA dt = f(t) - g(t). (8) 

The proof of (8) will not be given, because the idea of the proof is so 
similar to that of the theorem of Section 3. [The only basic difference is 
this. In the theorem of Section 3, AA was seen to be roughly equal to 
the product f(t) At; whereas here AA is roughly equal to (f(t)- g(t)) At.] 
From (8) it is easy to deduce, as explained below, a more general area 
principle. 

General Area Principle 
Let f and g be continuous curves, with f lying above g. Then the area 
between f and g, from x = a to x = b, is given by 
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[F-GJ!, 

where F is an antiderivative of f and G is an antiderivative of g. 

Proof 
The proof follows exactly the pattern of the three steps described in 
Section 3. Using (8), we have the following information about the de­
pendence of A upon t: 

A dA/dt 

a 0 
t 
b 

? 
? 

f(t)- g(t) 

Equation (8) says that A is an antiderivative off- g. Since F - G is 
too (why?), the fundamental principle of integral calculus says that 

A= (F(t)- G(t)) + C (9) 

for some constant C. What is C? Because A = 0 when t = a, we get from 
equation (9) that 

0 = (F(a) - G(a)) +C. 

This shows that C = -(F(a)- G(a)), so that (9) becomes 

A= (F(t)- G(t))- (F(a)- G(a)) = [F- Gj~. 

Thus the formula A = [F - G]~ expresses A in terms of t. When t = b, 
then A becomes the desired area, as pictured at the beginning of this 
section. From the formula, when t = b, 

A= [F- Gj~. D 

In applying the general area principle to areas bounded by curves, it 
is essential to note which curve is on top. If the curves cross one or more 
times, several applications of the area principle may be required. (See 
Example 8.) 

EXAMPLE 4 

Find the indicated area. 

(-1,2) (I, 2) 

y=l+x2 

X= -I x=l 

(-1,0) y=O (1,0) 
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This is the area between the curves f and g, where f(x) = 1 + xZ, 
g(x) = 0, a= -1, b = 1. Antiderivatives off and g are given by F(x) = 
x + JC3 /3 and G(x) = 0. By the general area principle, the area is 

4 (-4) 8 = 3 - 3 = 3 square units. 0 

EXAMPLE 5 
Find the indicated area. 

The curve lying on top here is given by f(x) = 0, while the bottom 
curve's equation is g(x) = x3 - 1. Here, a= 0 and b = l. Antiderivatives 
are given by F(x) = 0 and G(x) = x4 j4- x. By the general area principle, 
the area is equal to 

[F - en = [ 0 - e4
4 

- X) [ 
3 

= 4 square units. 0 

EXAMPLE 6 
Find the indicated area. 

Let f(x) = x, g(x) = x2 , a= 0, b = 1. The area is equal to 
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[xz x3] 1 
[F-Gn = ---

2 3 0 

1 1 1 . = - - - = - square units. 
2 3 6 D 

EXAMPLE 7 
Find the indicated area. 

(-2,4) 

y=2-x 

(I, I) 

X= -2 

(-2, -8) 

Let f(x) = 2- x, g(x) = x3 , a= -2, b = 1. The area is given by 

[2x - xz - x4] l 

2 4 -2' 

which, when evaluated, is seen to be 1f square units. D 

EXAMPLE 8 
Consider the curve given by f(x) = x2 - 1, with domain -2 ~ x ~ 4. 

x=4 

4 

Find the area between the curve f and the x-axis. 



Exercises 249 

Since the curve crosses the x-axis twice, the required area splits into 
three pieces, A1, A2 , and A3 , as indicated. In each piece the area princi­
ple may be applied, taking account as to which of the curves y = x?- - 1 
andy= 0 is on top. We get 

The total area between the curve f and the x-axis is then 

A1 + A2 + A3 = 20~ square units. 0 

Exercises 

4.1. In each of the following, find the indicated area. Hint for A 4 • First find 
A3. A4 = Az - A3 (why?). 

y==8x-2x2 

(-1,4) (1,4) 

A, 

(-1,0) (1,0) (0,0) (4,0) 

(-1,0) (2,0) 

(2, -1) 

(-1, -4) 

(0,0) (4,0) 
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{I, I) y=x3 -5x2 +6x 

(:\ I 
(-1, -I) 

(1, -3) 

Partial answer: A2 = ¥· A5 =.!f. A7 = ~· Ag = ~· 

4.2. Find the area between each of the following curves and the x-axis, as illus­
trated in Example 8. 
(a) f(x)=4-x2,-3s;xs;4. 
(b) f(x) = x3 - Sx2 + 6x, -2 s; x s; 4. 
(c) f(x) = 1 - ( 4/x2 ), 1 s; x s; 3. 
Answer: (c)~ square units: 

! 
I 1(3.~) p;rr· 

(1,-3) 

§5. Eudoxus' Method and the Integral 

Integrity, integer, integration, integral-these words have the same root 
meaning, that of "wholeness". To integrate is to collect into a whole. 
What we are now studying is called integral calculus, and it is high time to 
explain why Leibniz chose to call it that. The reason may stem from an 
observation made by Leibniz [and, before him, by Cavalieri (1598-1647) 
and others], an observation that may be confirmed by the general area 
principle. If, when figures in the plane are set one above the other, they 
are seen to be made up of equal "vertical segments", then the areas of the 
figures must be equal. This delightful observation is generally known as 
Cavalieri's principle. A concrete illustration is below. 
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(0,3) 

(0,0) 

y=x+3 
y=x2 +3 

(1,3) 

y=x-x2 -1 
y= -1 

(0, -I)~-+--~ (1, -I) 
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Here, a vertical line through any point x on the horizontal axis shows a 
vertical segment of length x - x2 in all three figures. Cavalieri's principle 
says the three figures must have the same area. This is confirmed by the 
general area principle, which says that all three figures have an area of 
[(x2 /2) - (x3 /3)]6 =!square units. 

A rough* statement of Cavalieri's principle is that the area of a figure 
is determined by the vertical line segments that make it up. The area of 
a figure would thus seem to be the result of collecting into a whole, or 
integrating, all its vertical line segments. Leibniz toyed with the idea of 
regarding any area as an integral of (infinitely many) line segments. 

This idea raises serious questions. The area of each vertical line seg­
ment is of course zero, since a line segment has no width. Yet somehow 
Leibniz would have us believe that infinitely many zeros integrate into a 
nonzero total area! The paradoxical nature of this idea was recognized 
by Leibniz, who nevertheless persisted in believing the idea valuable, 
at least on an intuitive level. Leibniz was never able to describe clearly 
this intuitive perception, and it has generally been regarded with 
suspicion. 

Nonetheless, by thinking on this intuitive level Leibniz was able to 
make important discoveries. Justification for some of these discoveries 
often had to wait for later mathematicians, as Leibniz sometimes had 
difficulty in saying what he meant. The difficulty is understandable, for 
it is related to one of the old paradoxes of Zeno (ca. 495-435 B.C.), but 
further discussion of this is postponed until Chapter 8. 

• And, as it stands, quite inaccurate. See problem 21 at tbe end oftbis chapter. 
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The point of the preceding discussion was to explain how the word 
integral entered the calculus. Leibniz wanted to refer to an area as an 
integral, and out of respect for Leibniz we shall do likewise. However, 
we discard his fuzzy notion about an "integral of zeros" collecting 
together to yield a nonzero number. We seek a slight modification of 
Leibniz's notion of an integral to bring things into clear focus. How can 
this be done? 

Once again we turn for help to the notion of a limit, which has already 
done more than its share to clarify the idea of a tangent to a curve and 
the idea of continuity. As we shall see, the integral has a natural defi­
nition in terms of a limit, by means of a modification of a method 
introduced by Eudoxus over 2000 years ago. 

Eudoxus, of course, never spoke of limits, nor did Archimedes. The 
Greeks never called limits by name, but could sometimes manage to get 
the same job done by using the method of elimination. (In modern 
terms, this amounts to finding an area A by somehow eliminating all 
numbers larger than A, together with all numbers smaller, leaving the 
desired number A as the only number left.*) Our experience in Chapter 
4 suggests that the use of limits may be preferable to the use of the 
principle of elimination. 

Here, then, is Eudoxus' method (in modern dress), defining the 
integral of a function f on the domain a ~ x ~ b. 

(x2 ,f(x2 )) 

(x1 ,f(xJl) 

(a,f(a)) 

I 

(b,f(b)} 

Idea: As n gets larger, the area beneath the staircase with n steps approaches 
the area beneath the curve f 

Consider any large positive integer n, and divide the interval a ~ 
x ~ b into n subintervals, t each of the same length Lfx, so that 

b-a 
Lfx=--. 

n 

• An example of this method may be found in the appendix on Archimedes. 
t Think of n as being the current size of the national debt. 

(10) 
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Thus (see the picture) we have x0 = a, x1 = a + Ax, x2 = a + 2 Ax, 
x3 = a+ 3 Ax, and so on. Finally, at the last, we have 

Xn = a+nAx 

=a+ n(b-a) =b. 
n 

There is a convenient way to abbreviate the preceding two sentences, 
namely, 

Xk=a+kAx, fork=0,1,2, ... ,n. (11) 

The area Ak of the k-th rectangle (see the picture) is simply the prod­
uct of its height and width: 

(12) 

Therefore, the total area Sn beneath the staircase figure with n steps is 
the sum A1 + Az +···+An. We abbreviate this by writing 

(read "Sn equals the sum, as k runs from 1 to n, of Ak"). Substituting the 
expression (12) for Ak shows 

n 

Sn = L f(xk) Ax. (13) 
k=l 

Now Sn is the area beneath the staircase figure with n steps, and it is not 
likely to be equal to the area beneath the curve f. However, as n is taken 
larger and larger, Sn clearly approximates the area beneath f to great 
accuracy. The area beneath f is the limit of Sn as n increases without 
bound,* so we define the integral of f to be this limit. That is, the 
integral off from a to b is defined as 

n 

Limit Sn = Limit L f(xk) Ax [by (13)], 
Llx-o k=l 

(14) 

since (10) shows that Ax--+ 0 as n increases without bound. 
The right-hand side of (14) suggests that the integral off from a to b 

might be denoted by 

J: f(x) dx, (15) 

since this is the symbol that results from replacing the Greek A by 

• Think of the national debt. 
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the letter d, the Greek I: by the letter f (a seventeenth-century S) and 
replacing the discrete points Xk by the continuous variable x, which runs 
from a to b. 

Definition 
Let f be a function with domain a ~ x ~ b. The integral off frorn a to b 
is denoted by 

f f(x) dx (or, for short, by J: f) 

and is defined to be the number calculated by Eudoxus' method: 

J
b n 

f(x) dx = Limit L f(xk) Llx = Limit Sn, 
a Ax->0 k=l 

where Sn is defined by equation (13). 

The idea of Eudoxus' method is not unlike the idea behind Fermat's 
method. The "right answer" for the integral J: f is the limit of "wrong 
answers" Sn that come quite close to the integral when n is quite large. In 
integral calculus Eudoxus' method assumes a role of importance parallel 
to the role played by Fermat's method in differential calculus. It defines 
the basic notion to be studied. 

Just as we have found shortcuts to Fermat's method, so we can find 
shortcuts to the method of Eudoxus. We can sometimes guess the value 
of an integral by interpreting the integral as an area. For instance, from 
exercise 3.1(d) we may expect that 

J4 3 
f(x)dx = 63-, 

I 4 
where f(x) = x3 , 

or, more briefly, 

J
4 x3 dx = 63 ~. 
I 4 

If the variable is called t instead of x, we modifY our notation accord­
ingly. From exercise 1.1, without using Eudoxus' method, we expect to 
have 

r(10 _ 2t)dt = 15, J
4 15 

tdt =-, 
1 2 

f ( 4t- 3) dt = 21. 

These examples should suggest that integrals, defined by Eudoxus' 
method, can be calculated by the method of antiderivatives. This is true, 
and it is essentially the content of the fundamental theorem. Before the 
fundamental theorem can be appreciated, however, we must learn to be 
at home with 
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(a) interpreting integrals as areas (being careful, because an integral is 
not always an area). 

(b) calculating integrals by Eudoxus' method (as a limit of sums). 

The first of these should be accomplished by the following exercises. 
Section 6 deals with the second. 

Exercises 

5.1. In exercise 3.1, ten areas were found. Express each of these areas as inte­
grals, and express the answers you found in exercise 3.1 m integral notation. 
Answers: (b)];" (1/t-2) dt = l (c) f1

4 x2 dx = 21. (h)];" ndt = f1
4 ndx = f1

4 nds = 
3n. 

5.2. Interpret each of the following integrals as an area. 

(a) J;(sx-2x2 )dx. (b) J~ 1 (3x2 +1)dx. 
(c) J~(x3 - 5x2 + 6x) dx. (d) Jg n dt. 

(e) J~3 Jg- t2 dt. (f) J~2 v 4- t2 dt. 

(g) Jg V25 - t2 dt. (h) J~3 Jg - x2 dx. 
Answers: (a) This integral is equal to the area A2 of exercise 4.1. (d) This 
integral is equal to the area beneath the curve y = n, from t = 0 tot= 5. (e) 
This integral is equal to the area beneath the curve y = Jg - t2 , a semicircle 
(why?), from t = -3 to t = 3. 

5.3. Evaluate each of the integrals in 5.2 by some means other than Eudoxus' 
method. Answer: (e) The area of a semicircle of radius 3 is equal to half the 
area of the full circle, or 9n/2. Therefore, J~3 Jg - t2 dt == 9n/2. 

5.4. If a function f is negative, i.e., ifits graph lies below the horizontal axis, then 
all the Ak's of equation (12) are negative. Use this to explain why, when f is 
negative, then J: f(x) dx will not be an area. Hint. No area is negative. 

§6. The Integral as a Limit of Sums 

It takes time and patience to carry out Eudoxus' method of calculating an 
integral. Since the antiderivative method is shorter, one may ask why 
time should be spent studying Eudoxus. There are several reasons. 

(a) J! f cannot be calculated by antiderivatives unless an antiderivative 
of f is known. [There are many functions, such as 1/x and 
1/(1 + x2 ), whose antiderivatives we have not yet met.] 

(b) Eudoxus' method leads to a clear understanding of what is meant 
by the area beneath a curve. 
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(c) Eudoxus' method emphasizes that an integral is a limit of sums. 
Areas are not the only quantities that are limits of sums. As we shall 
see, volumes can also be regarded as limits of sums, and they can be 
expressed by integrals. Integrals are of use in expressing other 
quantities as well, such as the quantity of work required to put a 
satellite in orbit. 

Eudoxus' method involves the sum of n numbers, where n is a large 
integer. Such a sum must be simplified before the limit can be taken in 
order to find the integral. There is one such sum which, thanks to the 
Pythagoreans, we know how to calculate already. 

n(n + 1) 
1+2+3+···+n= . 

2 
(16) 

(See Chapter 2, exercise 1.5.) The formula for the sum of the squares of 
the first n positive integers has also been known since antiquity: 

2 n(n+1)(2n+1) 
1+4+9+···+n = 6 . (17) 

Archimedes' proof of formula (17) was outlined in problem 8 at the end 
of Chapter 3 and a modern (seventeenth-century) proof may be found in 
Section 1 of Appendix 2. 

To deal efficiently with sums, an efficient system of notation must be 
developed. The symbol 

n 

L 
k=l 

is used as an indication to sum up n numbers that are to be indexed by k. 
We refer to k as the index of summation. For instance, 

3 

L k = 1 + 2 + 3 = 6, 
k=l 

because I::~=I k indicates the sum of 3 numbers, the numbers being 
expressed by k, where k runs from 1 to 3. Similarly, 

3 L 5k = 5. 1 + 5. 2 + 5. 3 = 5(1 + 2 + 3). 
k=l 

(18) 

This simplifies, of course, to 5 · 6 = 30, but it is more important to note 
that equation (18) shows that 

3 3 

L 5k=5·L k. (19) 
k=l k=l 

What is the "real reason" that the number 5 can be brought out in front 
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of the summation sign, as in (19)? It is that 5 is an expression which is 
independent ofthe index k. It therefore occurs in each of the summands 
and can be factored out in front, as seen in (18). 

What has just been illustrated in the simple example given above is 
most important to remember when trying to simplify sums. Note when 
an expression can be brought out in front of the summation sign. We can see, 
for example, that 

t(~z)k = (~z) · t k, 
k=l k=l 

(20) 

simply because the expression 1/n2 is independent of the index k. In 
fact, beginning with equation (20), we can carry out a complete sim­
plification as follows. We already know how to simplify the sum that 
occurs in the right-hand side of (20). Equation (16) says 

tk=n(n+1)_ 

k=l 2 
(21) 

[Do you see why equation (16) says exactly this?] When this is used in (20) 
we get 

As a first example of Eudoxus' method, let us calculate an integral 
whose value we already know by other means. 

EXAMPLE 9 
Calculate J~ x dx directly from its definition by applying the method of 
Eudoxus. 

Here, we must apply Eudoxus' method to the function given by 
f(x) = x on the domain 0:::;; x:::;; 1. Thus we have a= 0, b = 1, and 

b-a 1-0 1 
L1x = -- = --=- [from (10)], 

n n n 

Xk =a+ kL1x = 0 + k(~) = ~ [from (ll)], 

k 
f(xk) = Xk = -. 

n 

Using these, we first find an approximation Sn to the desired integral. 
From (13), 

Sn = t f(xk) L1x = t (~) (.!.) = t (-;) k. 
k=I k=l n n k=l n 
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The integral, by definition, is the limit of Sn as n increases without 
bound. In order to find that limit we must first simplifY the expression 
for Sn. This has already been carried out in (22), so we have 

Sn =~ (1 +~). (23) 

From (23), it is easy to find Limit Sn, for it is obvious that, as n grows 
increasingly larger, 1/n ....... 0. Therefore, 

Jl dx . . . 1 ( 1 ) 1 ( ) 1 x = L1m1t Sn = L1mit - 1 + - = - 1 + 0 = -. 
o 2 n 2 2 

D 

Example 9 shows that Eudoxus' method, like Fermat's method, can be 
carried out without ever drawing a geometric picture to describe what 
goes on. A picture aids the understanding, however, so let us draw one. 
What was shown in (23) is that the area Sn of the staircase figured with n 
steps is equal to!+ 1/2n square units. As n gets larger (or, equivalently, 
as Ax ....... 0), the jagged figure on the left approximates more and more 
the area on the right. 

(0,0) 

(I, I) 

/
Areas.= ± f(x,)~x =! + -21 

l=t n 

Area Jo' f(x)dx =! 

(1,0) (0,0) 

(I, I) 

f(x)=x 

(1,0) 

The integral of Example 9 is, of course, calculated much more quickly 
by simply using the formula for the area of a triangle. Or, by the anti­
derivative method, 

D 

Before doing a second example it might be well to make a small point 
about summations. Here is a question that is easy to miss because it is 
too simple. What is 
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equal to? To answer this question, remember that "2:~=1 " indicates that 3 
numbers are to be summed. For instance, 

3 

L Ak = Al +A2 +A3. 
k=l 

If Ak = 1 (that is, if A 1 = l,A2 = I,A3 = 1), this becomes 
3 

E 1 = 1 + 1 + 1 = 3, 
k=l 

answering our question. By the same token we see that 

n 

L 1 = 1 + 1 + 1 + · · . + 1 = n. 
k=l nsummands 

EXAMPLE 10 

(24) 

Calculate J1
4 2x dx directly from its definition by applying the method of 

Eudoxus. 
We apply Eudoxus' method to the function given by f(x) = 2x on the 

domain 1 ~ x ~ 4. Thus we have a= 1, b = 4, and 

b-a 4-1 3 
Ax=--=--=- [from (10)], 

n n n 

(3) 3k 
Xk = a + k Ax = 1 + k ~ = 1 + n [from (11)], 

6k 
f(xk) = 2xk = 2 +-. 

n 
Hence, 

n n ( 6k) (3) Sn = L f(xk) Ax = L 2 +- -
k=I k=l n n 

= t(~+ 182k) 
k=l n n 

n 6 n 18k 
= E -+ E -2 (why?) 

k=l n k=l n 
6 n 18 n 

= - E 1 + 2 E k (why?) 
n k=l n k=l 

___ 6 (n) + 18 n(n +I) 
n n 2 2 [by (21) and (24)] 
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Therefore, 

f Zxdx =Limit Sn =Limit 6 + 9(1 +~) = 6 + 9(1 +0) = 15. 0 

By comparison with Eudoxus' method, antiderivatives evaluate in­
tegrals like lightning: 

f Zxdx = x2 1{ = 16- 1 = 15. 

The point of these examples, however, has nothing to do with speed of 
calculation. Only an electronic computer would regard Eudoxus' method 
as speedy. The point is to emphasize that the integral is a limit of sums 
and can be calculated without reference to any geometric figure and 
without any knowledge whatever of derivatives or antiderivatives. 

The integral J: f does have a geometric interpretation, however, as 
the area beneath the curve f, if f is not negative. By another stroke of 
good fortune, the integral enjoys a connection with antiderivatives, to be 
stated precisely in the fundamental theorem. Since such delightful con­
nections can be proved to be true, the most intellectual of minds might 
regard them as unsurprising, being merely part of the nature of things. 
Some of the rest of us, who know the meaning of serendipity, happily 
find it here. 

Exercises 

(Be willing to put in a little time practicing the use of summation notation. It 
is quite efficient, once learned. The appendix on sums and limits may be 
helpful.) 

6.1. Go through the following steps to calculate the integral J: {3x + 2) dx. 
(a) Use formula (10) of Section 5 to find L1x. Answer: L1x = (7- 0)/n = 7 jn. 
(b) Use formula (11) to find Xk. Answer: Xk = 0 + k L1x = 0 + k(7 /n) = 7k/n. 
(c) Find f(xk)· Answer: Here we have f(x) = 3x + 2, so f(xk) = 3xk + 2 = 

(21k/n) + 2. 
(d) Use formula (13) with your answers to (a) and (c) to find Sn. 

Answer: Sn = L:~=l f(xk) L1x = I:~= I c~k + 2) G). 
(e) (The hard part) Simplify Sn by using (21) and (24), as illustrated in 

Example 10. 
Answer: Sn = (147 /2){1 + l/n) + 14. 

(f) The integral is defined as the limit of Sn. Find this limit by using your 
answer to (e). 
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Answer: J; (3x+2) dx= Limit (147 /2)(1 + 1/n) + 14 = (147 /2)(1+0) + 14 
= 175/2. 

(g) Check your answer by interpreting the integral as an area as in exercise 
5.2. 
Answer: J; (3x+2) dx=[area beneath 3x+2 from 0 to 7} 

= [~' +2x]~ = l~s. 

6.2. Calculate each of these integrals by going through steps (a)-(f) in exercise 
6.1. 
(a) J;(5x+ 1)dx. 

(b) J~(Sx + 1) dx. 

(c) J;(sx + 1) dx. 

(d) J;(l- 5x) dx. 
Answer: (d) -28. (The integral here is not an area, since the function 1 - 5x 
is negative on the domain 2 ~ x ~ 4.) 

6.3. Explain why, in exercise 6.2, it is to be expected that the sum of your 
answers to parts (b) and (c) is equal to the answer to part (a). 

6.4. Write formula (17) in summation notation. Answer: ~~~=l /<?- = n(n + 1) x 
(2n + 1)/6. 

6.5. Use your answer to exercise 6.4 to help calculate J~ x2 dx directly from its 
definition by Eudoxus' method. Answer:~- (See Appendix 2, Section 2.) 

§7. Some Properties of the Integral 

In Section 2 we guessed that a certain area was equal to 6 square units 
without knowing, at that time, what was meant by the area within a figure 
bounded by a curve. We now have Eudoxus' method of determining such 
an area, and we can therefore check our guess of Section 2. Let us do 
that, with an eye out for noticing some properties of the integral. 

Consider, then, the function given by 

f(x) = x2 - 4x + 5, 1 ~ x ~ 4. 

Applying the method of Eudoxus to find the area beneath f, we have 
Ax= 3/n, Xk = 1 + 3k/n, and 

n n 

Sn = L f(xk)L1x = L [x~ - 4xk + 5JL1x (25) 
k=l k=l 

= ~[ (1 + ~y -4(1 + ~) +5] (~) 
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= t 277<?-- 18k + ~ (by collecting terms) 
k=I n3 n2 n 

27 n 18 n 6 n 

=3L~-z-Lk+-L 1 
n k=I n k=I n k=I 

= 
2
: ( 1 +~) (2 +~)- 9(1 +~) +6, 

by (16), (1 7), and (24). (The reader is asked to fill in the missing steps in 
this calculation.) Since 1/n--+ 0 as n gets larger, it is easy to take the 
limit of Sn, which gives the area beneath f. The area beneath f is then 
equal to 

. . . . [27 ( 1) ( 1) ( 1) ] L1m1t Sn = L1m1t B 1 + n 2 + n - 9 1 + n + 6 
27 

=- (1)(2)- 9(1) + 6 
6 

= 6 square units. 

This confirms our guess, and shows that 

Looking back over the calculation given above, we can notice an 
important property of the integral. From line (25), we see that 

n n n 

Sn = L x~Ax- L 4xkAx+ L SAx. (26) 
k=l k=I k=l 

What happens to this equation "in the limit"? As n increases without 
bound, equation (26) becomes (do you see why?) 

f(x2 -4x+5)dx= f x2 dx- f 4xdx+ f Sdx. 

This suggests that the integral of a sum of functions is equal to the sum of 
their integrals. This is true: 

Sum Rule for Integrals 
If the functions f and g have integrals on the domain a::;:;; x::;:;; b, then 

f (f(x) + g(x)) dx = f f(x) dx + f g(x) dx. 
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Proof 

J
b n 

a (f(x) + g(x)) dx =Limit ~(f(xk) + g(xk))Lix 

n n 

= Limit L f(xk) Llx + Limit L g(xk) Llx 
k=l k=l 

= J: f(x) dx + J: g(x) dx. 0 

What about a rule for constant multiples? Is it true that J1
4 4x dx is 

equal to 4 f1
4 x dx? Sure it is: 

Constant-Multiple Rule for Integrals 
Iff has an integral on the domain a ~ x ~ b, then for any constant c, 

J: c · f(x) dx = c J: f(x) dx. 

Proof 
We know that 

n n 

L c · f(xk) Llx = c L f(xk) Llx, (27) 
k=l k=l 

since the constant c is independent of the index of summation. Since 
equation (27) holds for each n, no matter how large, we get, in the limit, 

J: c · f(x) dx = c J: f(x) dx. 0 

Another property of the integral is suggested by this figure. 

(0,5) (4,5) 

y= x2 - 4x+ 5 

0 4 

s:(x2 - 4x + 5)dx f,4(x2 - 4x + 5)dx 

Since the total shaded area is equal to J~(x2 - 4x + 5) dx, we know that 

J~ (x2 - 4x + 5) dx + J1
4 (x2 - 4x + 5) dx = J0

4 (x2 - 4x + 5) dx. We are led to 
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suspect that, in general, if J: f exists, then so does J~ f and J;' f, and we 
have the additivity property 

We can incorporate this into an existence theorem. 

Existence Theorem for Integrals 
If f is a continuous function throughout the domain a :S x :S b, then the 
integral 

exists. Moreover, ift is between a and b, then 

What does it mean to say that an integral "exists"? It means, simply, 
that Limit Sn exists, where Sn is the approximating sum from Eudoxus' 
method. The limit will exist, according to the theorem given above, iff 
is continuous. But the proof of the existence theorem is better left to a 
course in analysis. Let us take it for granted that f has an integral from a 
to b iff is continuous on a :S x :S b. 

Exercises 
7.1. Fill in the missing steps in the calculation of Sn that begins with equation 

(25). 

7.2. Consider the areas A1 and A2 in the figure. 

A y=f-g 

I~ 
a b 

Cavalieri's principle says that A1 = Az. Prove that this is true by showing, in 
order, 
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(a) A1 = J:(r- g). 

(b) A 2 = J: f- J: g. [Draw pictures of the areas measured by these 

integrals.] 
(c) A 1 = A2 • [Use (a), (b), and the rule for sums and constant multiples.] 

7 .3. Is the integral of a product equal to the product of the integrals? 

7.4. Use Eudoxus' method to calculate 
(a) f~ (XZ - 4x + 5) dx. 

(b) ta(XZ- 4x + 5) dx. 

7.5. Is it true that f1
4 ~dx + .J:" ~dx = f1

4" ~dx? 
Hint. Use the additivity property discussed in this section. 

7.6. Attempt to calculate J~ (l/x2 ) dx by Eudoxus' method. 
(a) Show that Sn = I:~=l nj)\2. 
(b) What is 81? 82? 83? Partial answer: 82 = 2.5. 
(c) Show that Sn is never less than n. Hint. Show Sn = n(l + · · ·). 
(d) Does Limit Sn exist? Answer: In view of part (c), Sn cannot tend to a 

limit, since it grows arbitrarily large as n increases. 
(e) Does J~ (l/x2 ) dx exist? Hint. By definition, the integral is equal to 

Limit Sn. Use part (d). 
(f) Does your answer to part (e) contradict the existence theorem for 

integrals? Why not? 
(g) Draw a picture of the area that the integral J~ (1 / XZ) dx is "trying" to 

measure. Why can it not be measured? 

§8. The Fundamental Theorem 

The fundamental theorem shows the connection between the two 
branches of calculus, differential and integral. The connection is really 
between Fermat's method and Eudoxus' method, of course. To prepare 
the way for the fundamental theorem, let us review Fermat's method, 
using the notation of Leibniz. 

increase 
inF 

tangent, 
slopeF(x) ......_ 

X 

F 
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Consider a function F and a point x, and let .dx be length of a small 
interval that contains x. Then, by Fermat's method, it follows that 

F'(x) =Limit .dy. 
Llx-->0 .dx 

This means, roughly speaking, that the number .dyj.dx is very close to 
F'(x) when .dx is very close to (but not equal to) zero. In symbols, 

F'(x) ::::: ~~, provided .dx::::: 0, 

where " :::::" stands for "approximate equality". It will serve our purpose 
to rewrite this as 

F'(x)- .dy ::::: 0 provided .dx::::: 0. 
.dx ' 

(28) 

Here, x is fixed, and the expression F' (x) - ( .dy / .dx) varies in terms of .dx. 
Let the letter o stand for this expression: 

.dy 
F'(x)- .dx = o. 

By (28), we know something about the variable o: 

o::::: 0, provided .dx::::: 0. 

From (29), upon multiplying through by .dx, 

F'(x) .dx- .dy = o.dx, 

F'(x) .dx = .dy + o.dx. 

(29) 

(30) 

(31) 

Equation (31 ), in connection with the information given in (30), is the 
key to the proof of the fundamental theorem. Note that (31) is, so to 
speak, what one gets by beginning with Fermat's method and "undoing 
it". Roughly speaking, (31) says that when the derivative is multiplied by 
.dx, a small change in x, you get a close approximation to .dy, the corre­
sponding change in y. Remember that o is not 0, but rather a variable 
tending to 0 as .dx --> 0. 

The Fundamental Theorem of Calculus 
Iff is a continuous jUnction with domain a:::;; x:::;; b, then 

J: f(x) dx = F(b) - F(a), 

where F is any antiderivative off 

Proof 
(Didn't we prove this already when we proved the area principle? 
Answer: No. The integral off is not always an area. The fundamental 
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theorem asserts that the antiderivative method works even when the 
function f is not always positive.) 

Since we know that F is an antiderivative off, equation (31) says 

f(x) Llx = Lly + o Llx, 

where Lly is the change in F corresponding to the change Llx in x. 
Applying this to the k-th subinterval in Eudoxus' method, we have 

f(xk)Lix = change in F on k-th subinterval+ Ok Llx. 

Hence the approximating sum to the integral J: f can be expressed as 

n n n 

L f(xk) Llx = L change in F on k-th subinterval+ L Ok Llx. (32) 
k=l k=l k=l 

It is obvious that 

~ change in F on change in F on the 
L.J k-th subinterval - entire interval a :5: x :5: b 
k=l 

= F(b) - F(a). 

Therefore, from (32), 

n n 

L f(xk) Llx = F(b) - F(a) + L ok Llx, 
k=l k=l 

and, taking the limit as Llx --+ 0, we get 

J: f(x) dx = F(b) - F(a) +I: 0 dx [by (30)] 

= F(b)- F(a). D 

The careful reader may feel that the last step in the proof given above 
does not justifY adequately the fact that 

n Jb Limit L Ok Llx = 0 dx. 
Llx-+0 k=l a 

(33) 

The careful reader is right. Although (33) is surely made plausible by 
(30), it has not been justified rigorously in the above proof. Rigorous 
proof of (33) is better deferred to a course in analysis. 

Exercises 

8.1. (a) Evaluate the integral J~ 1 xdx by the antiderivative method. 
(b) Evaluate f~1 xdx by Eudoxus' method. Answer: 0. 
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(c) Do your answers to (a) and (b) agree, as the fundamental theorem 
asserts? 

(d) Can the integral in question be regarded as an area? 

8.2. Prove that if the continuous curve f crosses the x-axis, then the integral J: f 
gives the algebraic sum of the areas between the curve f and the axis, 
counting area above as positive and below as negative. Hint. In the picture 
below, you want to show that 

Prove this by giving three reasons- one for each of the following equalities: 

=I: (f- 0)- r (0- f)+ Dr- 0) =AI - Az + A3. 

8.3. Evaluate each of the following integrals by using the fundamental theorem. 
(a) J~(l- 0) dx. (b) J0

2 3dx. 

(c) J~ 1 3x2 dx. (d) t 1 (n- nx2 ) dx. 

(e) J1
10 (1/x2 ) dx. (f) J.::"i0 (1/x2 ) dx. 

Answers: (d) 4n/3. (e) ft· (f) ft· 
8.4. First express each of the following areas as an integral. Then evaluate the 

integral, using the fundamental theorem. 

(a) 

y= /

(1,3) 

+x+l 
(0, I) 

(b) 

(1,2)~ 

(1, !) ~ (3,j) 

Y = lfx (3.!) 
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(c) 

y=l+~ 

(-·.·~~~~~wr··' 
(-1,0) y=~ (1,0) 

Answer: (a) J~ (x- x2 ) dx = [(x2 /2) - (x3 /3)]~ =!square units. 

8.5. (For careful readers) What is wrong with the following "calculation"? 
J~ 1 (1/x2)dx= -l/xl~ 1 = -2. 

8.6. Consider the integral J; n:~x2 dx. 
(a) Evaluate this integral, using the fundamental theorem. 
(b) Draw a picture of an area that is represented by this integral. (On the 

following pages, we shall see that this same integral also represents a 
volume.) 

§9. Integrals and Volumes 

Integrals, defined by Eudoxus' method, arise naturally in many contexts 
having nothing to do with area. Yet the fundamental theorem can still be 
used to evaluate the integral, provided an appropriate antiderivative can 
be found. This is why the fundamental theorem is of much more signifi­
cance than the area principle. Many illustrations of this may be seen in 
Chapter 8. 

One illustration is readily at hand. Let us consider the problem of 
finding volumes of solids of revolution. The only thing we need to know at 
the outset is the formula for the volume of a cylinder. It is given by the 
product of the area of the circular base and the height. 

h 

~--.--~h 
1--r----J 

Working carefully through an example will enable us to see a shortcut 
way of working many similar examples. The key is to try to express the 
volume desired as an integral. The integFal can then be evaluated by the 
fundamental theorem. 
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EXAMPLE 11 
Determine the volume of a cone if its height is 7 feet and if the radius of 
its base is 5 feet. 

What is meant by the volume of a solid figure? This question is easily 
answered by means of the notion of a limit. We can get the volume by 
approximating it ever more closely and then obtaining it exactly as the 
limit of our approximations. The desired volume, we shall see, will turn 
out to be the limit of a sum, just as in Eudoxus' method. That is, the 
desired volume will turn out to be an integral. 

Let us carry out this procedure. If we turn our given cone on its side, 
we see that it could be regarded as the solid figure obtained by revolving 
the indicated area 360 degrees about the horizontal axis. Such a solid 
figure is called a solid of revolution. The volume of any solid of revolution 
is easy to obtain by the method described below. 

Llx 

T 
5 Our cone is the solid 
1 obtained by revolving the 

area beneath the line 
y = tx, between 0 and 7. 

A "jagged cone" that 
approximates ours is 
obtained by revolving 
the staircase figure. 

The kth cylinder 
comes from revolving 
the kth step. 

(n steps) 

0 Llx 
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From the formula for the volume of a cylinder, the volume of the k-th 
cylinder is clearly given by 

( 5 ) 2 25 n - Xk Llx = n- x~Lix. 
7 49 

The jagged cone is made up of n cylinders. Its volume is the sum of 
the volumes of these cylinders: 

Volume of _~volume of _ ~ 25 2 Ll ( ) 
jagged cone - {;:t k-th cylinder - {;:t n 49 xk x. 34 

As Llx ----> 0, the jagged cone approximates our given cone ever more 
closely. Therefore, 

Volume of given cone = Limit (volume of jagged cone) 
Ax-->0 

n 25 
=Limit L n-x~Lix [by (34)]. 

Ax-->0 k=l 49 

This says that the volume of our given cone is equal to the limit of 
a sum, i.e., to an integral. What integral is it? The domain is surely 
0 :s; x :s; 7, because the points Xk subdivide that domain. Clearly, then, 

n 25 17 25 
Limit L n-x~Lix = n-x2 dx 
Ax-->0 k=l 49 0 49 

25x317 = n-- ~ 183.2fi. 
49 3 0 

The volume of a cone, with h = 7 feet and r = 5 feet, is then given by 

n(25)(7) . 
---'-----:!--'--'- ~ 183.26 cub1c feet. 

3 
D 

One might conjecture that the volume of a cone of height h and radius 
r is given by nr2h/3. This seems to be what the answer to Example 11 
is trying to tell us. The reader is asked to verify this conjecture in an 
exercise to follow. 

Exercises 

9.1. Determine the volume of a cone of height hand radius r. (Just work through 
each step of Example 11, but with h in place of 7 and with r in place of 5.) 

9.2. Compare a cone with a cylinder of the same base and height. Using your 
answer to exercise 9.1, find the ratio of the volume of the cylinder to the 
volume of the inscribed cone. 
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Answer: The ratio is 3:1, first proved by the man himself, Eudoxus of 
Cnidus, as an application of the method that now bears his name. 

9.3. Suppose it is desired to cut a cone parallel to its base, in such a way that the 
two resulting pieces have the same volume. Where should the cut be made? 

9.4. In Example 11, the area beneath the line y = ~x, 0 :5; x :5; 7, was revolved 
about the x-axis, and the volume of the resulting solid of revolution found. 
Suppose instead we revolve the area beneath the quadratic y = x2 , 0 ::5; x ::5; 1. 

Let Vbe the volume of the resulting solid, and let the points Xk subdivide the 
interval 0 :5; x :5; 1, as in Eudoxus' method. For each of the equalities that 
follow, give a reason to justify it. 

§10. 

= nx4 dx = n x4 dx = n - = - cubic units. Jl Jl [xs] 1 n 
0 0 5 0 5 

The Volume of a Solid 
of Revolution 

We found the volume of a cone in Section 9 by regarding the cone as a 
solid of revolution. Thus its volume could be approximated by a "jagged" 
solid of revolution, then calculated exactly as an integral. Exactly the 
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same procedure will give us an integral formula for the volume of any 
solid of revolution. 

Consider the solid of revolution obtained by revolving the area beneath 
a continuous curve f, with domain a ::::; x ::::; b. 

This solid is obtained 
from this area beneath f. 

This "jagged" solid is 
gotten by revolving 
Eudoxus' staircase 
approximation to f. 

f c-J 
a b 

J 
x. 

The jagged solid is made up ofn cylinders, if the staircase has n steps. 
The k-th cylinder comes from revolving the k-th step: 

mT 
/(xt) 

kth cylinder _i_ 

~t:tx 

Since the volume of the k-th cylinder is n(f(xk))2 Ax, the volume of the 
jagged solid is 

n 

L n(f(xk))2 Ax. 
k=l 

As Ax --+ 0, the jagged solid's volume tends to 

J: n(f(x))2 dx. (35) 

Formula (35) then gives the volume of the solid of revolution obtained by 
revolving the area beneath the curve f, from x = a to x = b, about the x-axis. 
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EXAMPLE 12 
Find the volume of a sphere whose radius is 7 meters. 

A sphere can be regarded as the solid of revolution obtained by 
revolving a semicircle about its diameter. 

x2 +y2 =49 

Circle, radius 7 

Semicircle, radius 7 

The equation 

y = V49- x2 , -7::;; x::;; 7, 

describes a semicircle of radius 7 whose diameter lies on the x-axis. By 
formula (35), the volume of a sphere of radius 7 meters is given by 

r7 n(V49- x2 ) 2 dx = n F/49- x2) dx 

= n[49x- ~[7 
D 

One might conjecture that the volume of a sphere of radius r is given 
by 4nr3 /3. That could be what the answer to Example 12, where r = 7, 
is trying to tell us. The reader is asked to verify this conjecture in an 
exercise to follow. 
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Exercises 

10.1. Use formula (35) to find the volumes of the solids of revolution obtained by 
revolving the areas under each of the following curves. 
(a) f(x)=x2 ,0:5;x:5;5. 
(b) f(x) = x2 , -4 :5; x :5; 4. 
(c) f(x) = x + 1, 0 :5; x :5; 3. 
(d) f(x) = v'1 +x2,-1 :5;x :5; 2. 
Answers: (a) 625n cubic units. (c) 21n cubic units. 

10.2. Consider the integral J{(n/x2 ) dx. Draw a picture of 
(a) a figure in the plane whose area is given by this integral. 
(b) a solid of revolution whose volume is given by this integral. 

10.3. Determine the volume of a sphere of radius r. (Just work through the steps 
of Example 12 with r in place of 7.) 

10.4. Consider a sphere in comparison with a cylinder in which the sphere is 
inscribed. Using your answer to exercise 10.3, find the ratio of the volume 
of the cylinder to the volume of the sphere. 

T 
I 

Answer: The ratio is 3: 2, as first proved by Archimedes m the third century 
B.c. (See the appendix on Archimedes.) 

§11. Isaac Newton 
The Plague, in 1664-1665, had at least one fortunate consequence. 
Cambridge University was forced to shut down. Newton, having just 
received his B.A. degree, moved back to the English countryside where 
he had been bom on Christmas Day of 1642. Newton delighted in 
privacy. The next two years of secluded life by an apple grove produced 
astonishing results. Newton came into possession of ideas that would 
enable him to create modem physics virtually by himself, with the help 
of calculus, which he also created at the same time. 

Newton not only had ideas of his own. He could see new features 
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hidden in the ideas of others. Whereas Fermat had developed his method 
only to find tangent lines to curves, Newton saw in this same method the 
means of defining a derived function that would measure instantaneous 
rates of change. Newton used this to study the physics of motion, of which 
he postulated certain "universal laws". When he put these laws together 
with his calculus and with the law of gravitation (also discovered on 
the farm), Newton derived the equations governing the motion of the 
planets about the sun. 

Johannes Kepler (1571-1630) had earlier made the significant dis­
covery that the planets travel in elliptical orbits, but Kepler could not 
explain why. Newton knew how to explain that this was no more mys­
terious than the fall of an apple from the tree. When Newton overcame 
his secretive nature and finally revealed in 1687 the magnitude of his 
work, the effect was overwhelming. Newton, it was said, had "explained 
the universe". That was, of course, an overstatement, whose repetition 
finally prompted the playful couplet of Alexander Pope, 

Nature and Nature's laws lay hid in night; 
God said, "Let Newton be!" and all was light. 

Nevertheless, it is generally conceded that Newton's Mathematical 
Principles of Natural Philosophy (1687) remains the greatest single work in 
the history of science. Perhaps never before or since has so much been 
uncovered at a single stroke. Aided by 20 years ofthought, Newton wrote 
it, start to finish, in 18 months. 

An aura of mystery still surrounds the man: 

... Newton with his prism and silent face, 
The marble index of a mind forever 
Voyaging through strange seas of thought, alone. 

So wrote William Wordsworth near the dawn of the nineteenth century, 
upon marveling at a statue of Newton celebrating his work in optics. 

Newton's highest compliment came from his only rival, who pub­
lished (in 1684) the first paper on the calculus. There would be bitter 
years of controversy over who first discovered the calculus. But, 

Taking mathematics from the beginning of the world to the time of 
Newton, what he has done is much the better half. 

Leibniz 

Although others owned bits and pieces of the calculus, Newton was the 
first to have the whole subject at his command. He rose like Archimedes 
above the age in which he lived, moved by a spirit impervious to time. 

I do not know what I may appear to the world; but to myself! seem to 
have been only like a boy playing on the seashore, and diverting myself 
in now and then finding a smoother pebble or a prettier shell than 
ordinary, whilst the great ocean of truth lay all undiscovered before me. 

Newton 
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[ I ] 

PHILOSOPH:!.£ 
NATURALIS 

Principia 
MA THEMA TICA 

Deftnitiones. 

Def. I. 

QKantitaf Mttteri£ eft menfitra ejufdem orta ex iUi~tJ' Denfitttte t-~ 
Magnitudine conj1mctim. 
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A Er duplo dentlor in duplo fpatio quadruplus efi:. Idem 
. intellige de Nive et Pulveribus per compreffionem vellique­
fa&ionem condenfaris. Et par eft ratio corporum otn11ium, qux 
per caufas quafcunq; diverfimode condenfantur. Medii interea, 
((quod fuerit, interftitia partium libere pervadentis, hie nullam ra­
tioncm habeo. Hanc autem quantitatem fub nomine corporis vel 
Ma ITa: in tequenribus pailim intelligo. Innotefcit ea per corporis cu­
jutq; pondus. Nam ponderi proportionalem efTe reperi per expe­
rimcnta pendulorum accuratiffime inftituta , uti pofihac doc.ebi-
ttlr. 

B De f. 

Figure 2. The first page of Newton's Principia (1687) 



278 7. The Integrity of Ancient and Modern Mathematics 

The transport of calculus from the seashore to the stars: that was 
Newton's accomplishment. A dream of old Pythagoras had been realized 
at last. 

Problem Set for Chapter 7 

1. A boat travels along a straight course. At time t hours past noon, its speed is 
t2 - 4t + 10 km/hr. How far does the boat travel between three o'clock and 
six o'clock? 

2. Sketch the quadratic curve y = t2 - 4t + 10, and find the area beneath this 
curve, between t = 3 and t = 6. 

3. If A is the area indicated in the figure below, find dA/dt. (Your answer should 
be expressed in terms oft, of course.) 

4. Find the indicated area. (In each case, split the area into two pieces by 
drawing an appropriate vertical line, find the area of each piece separately, 
and add.) 

(a) y=4-x2 (b) 

~) ~~x+2 
(-2,0) (2,0) 

5. Draw a picture of the area represented by the integral J~ 4 dt, and evaluate 
the integral by finding the area of your picture. 

6. Evaluate the integral J~ v"4=t2 dt, after first drawing a picture of the area it 
represents. 
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7. Find the indicated area by using your answers to proble.ms 5 and 6. Why is 
the general area principle of no use to you here? 

(0,4) (2,4) 
--..,...TTTrmnTITT~-- Y = 4 

(0,2) 

y=~ 

(2,0) 

8. Find the indicated area by splitting it into three parts, finding the area of 
each part, and adding. 

(3, 3) 

9. Calculate the following integrals directly from their definition by Eudoxus' 
method. 
(a) J~ 4xdx. 

(b) J1
4 (2x-1)dx. 

(c) s:xdx. 

10. Consider the integral J~112 (x2 - 2x) dx. 
(a) Illustrate Eudoxus' method in calculating this integral. 
(b) Illustrate the fundamental theorem in calculating this integral. 
(c) Explain why it is to be expected that your answers to parts (a) and (b) 

agree with each other, yet disagree with your answer to problem 8. 

11. (a) By using the appropriate rules for derivatives, and simplifYing your 
answer, show that 

3x2 

ifF(x)= ~· 
2 1 +x3 

(b) Evaluate the integral 

3x(4+x:') 
then F'(x) = .,12 . 

4(1 + x3)· 
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12. Find the indicated areas, by any means. 

(a) 

-1 

(b) y=~ 

--1 

13. Find the volumes of the solids of revolution obtained by revolving the areas 
of problem 12 about the x-axis. 

14. (a) Find an equation ofthe line joining (1,2) and (4,5). 
(b) Find the volume of the frustum of a cone obtained by revolving the in­

dicated area about the x-axis. 

(4,5) 

(1,2) 

4 

15. Find the volume of the indicated flower pot, shaped like the frustum of a 
cone. 

T 
3 
1 

T 
5 

1 
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Hint. The volume is that obtained from revolving the area beneath the line 
joining (0, 3) and (7, 5). 

16. Find a formula (in terms of r1 , r2 , and h) for the volume of a frustum of a 
cone with the indicated dimensions. 

l--r2---l 

T 
1 

17. A grapefruit half, shaped like a hemisphere of radius 3 inches, is sliced in 
two, as indicated. 

j.l~2"-l 

(a) Find the volume of each slice. 
(b) Which slice has greater volume? 
(c) Where should the slice be made in order to divide the grapefruit into 

pieces of equal volume? (Your answer maybe expressed as the solution 
to a certain cubic. Solve the cubic by Newton's method.) 

18. Consider the integral J~ nil- dx. 
(a) Draw a picture of a figure whose area is given by this integral. 
(b) Draw a picture of a solid of revolution whose volume is given by this 

integral. 

19. The equation (il- ja2 ) + (y2 jb2 ) = 1 has an ellipse as its graph. Let A be the 
area inside the ellipse. JustifY each of the following equalities in the calcu­
lation of A. 
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b 

-a a 

[~xz 
A=2 b2 --2 dx 

-a a 

= 2- Va2 - x2 dx = 2- -na2 =nab. bia b(l) 
a -a a 2 

20. If the ellipse of problem 19 is revolved about the x-axis, an elbpsoid of revolu­
tion (watermelon) results. Find the volume inside it. 

21. The two right triangles below might be regarded as being made up of 
"identical vertical segments", if their segments are made to correspond as 
indicated. But it is clear that the two triangles do not have the same area. 
Does this violate Cavalieri's principle? Why not? 

22. In the problem set at the end of Chapter 3, work problem 12 by applying 
Cavalieri's principle. Hint. Go to problem 12, Chapter 3. Turn your head 
sideways as far as you can. Don't strain your neck. 

23. Find the coordinates of the point Plying on the curve y = 4- x2 that maxi­
mizes the area of the indicated triangle PQF... (P must lie between R and Q.) 

R = (-2,0) 
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24. Match each of the curves below with its derivative. 

(a) (c) 

(b) (d) 

(The curve in (d) coincides with the horizontal axis, but has a hole in it.] 

25. Sometimes we can evaluate an integral most easily if we notice that its value 
measures the size of an area. Draw a picture of the areas represented by each 
of the following integrals, then evaluate the integrals by splitting up each 
of the areas into two pieces-a right triangle and a "slice of pie". Then add 
together the areas of these two pieces, each of which i.s easily found using 
basic geometric formulas. Why is the fundamental theorem of calculus of no 
use to you here? 

(a) fov'Z;z Vl - x2 dx. (b) f0v'3;z Vl - x2 dx. 

26. (Proving the fundamental principle of integral calculus) This principle states 
that if F'(t) = 0 for all tin a connected domain, then F is a constant function, 
i.e., F takes the same value at any two points a and b. To prove F(a) = F(b), 
we need only show that F(b)- F(a) = 0. Do this by justifying each of the 
following steps. 
(a) For any two points in a connected domain, explain why the domain 

contains all points lying between them. Hint. What does connected mean? 
(See Chapter 6, Section 8.) 

(b) If F'(t) = 0 for each t in a connected domain and if a and b lie in this 
domain with a< b, then J: F'(t)dt = 0. Hint. By part (a), F'(t) = 0 if 
a:;;; t:;;; b. 

(c) J: F'(t) dt = F(b)- F(a). Hint. Use the fundamental theorem of calculus. 
(d) F(b)- F(a) = 0. Hint. Put together the results of parts (b) and (c). 

27. (Antiderivatives and inequalities) Given two functions f and g with f(x) :;;; g(x) 
on the domain a :;;; x :;;; b, it follows, of course, that f(xk) :5: g(xk) for any point 
Xk in this domain. 
(a) Explain why, in Eudoxus' method, we then have L~=I f(xk) Ax:;;; 

L~=I g(xk) Ax. 
(b) Prove that J: f(x) dx:;;; J: g(x) dx if each of these integrals exists. Hint. 

Each integral is the limit of its appropriate sum in Eudoxus' method. Use 
the result of part (a). 
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(c) Show that the inequality of part (b) implies that F(b)- F(a) ~ G(b)­
G(a), where F and G are antiderivatives off and g, respectively. Hint. 
Use the fundamental theorem of calculus. 

(d) In Section 10 of Chapter 6 we stated without proof a theorem on anti­
derivatives and inequalities. Can you prove this theorem now? Hint. In 
part (c) let the roles of a and b be played by 0 and t. 

28. If f(t) = tn, an antiderivative is generally given by F(t) = tn+1 j(n + 1). The 
reciprocal function given by f(t) = t-1 = 1/t does not come under this 
rule. (Why not' What goes wrong in this rule when n = -1?) Since we have 
no antiderivative of the reciprocal function we must calculate integrals of 
it by Eudoxus' method. In 1647 Gregory of St. Vincent made a remarkable 
observation about certain integrals involving this function. Gregory's ob­
servation was really about the areas represented by the integrals several 
decades before integrals (or antiderivatives) were invented. 
(a) Show that the approximating sum S, of the integral Jndt is given 

by Sn = E~1 (n- 1)/(n + kn- k). (Here we have Lit= (n- 1)/n, tk = 1+ 
k(n- 1)/n, etc.) 

(b) Show that the approximating sum Sn of the integral J:n t dt is also given 
by Sn = L~=1 (n- 1)/(n + kn- k). (Now we have Lit= (4n- 4)/n, 
tk = 4 + k(4n- 4)/n, etc.) 

(c) Gregory could now conclude that K tdt = s:n tdt because the result of 
parts (a) and (b) shows that both these integrals are limits of identical 
Sn's. Draw a picture of the areas represented by these two integrals and 
see whether you can understand geometrically why this is true. (Can you 
see that the first area can be transformed into the second if it is scaled down 
vertically by a factor of 1/4 and then scaled up horizontally by a factor of 
4?) 

29. (Looking backwards and forwards with logarithms) It is obvious from the 
remarks at the end of Section 7 that 

(a) Use this equality together with the result of part (c) of problem 28 to 
show that Jt' tdt = J: tdt + J; tdt, and then note that there is nothing 
special here about 4 and n. Show, as Gregory of St. Vincent did, that for 
any numbers a and b exceeding 1, it is true that 

r~dt = Ja ~dt + Jb ~dt. 
1 t 1 t 1 t 

(b) Explain how the result of part (a) is the same result-just expressed in 
different language-as that obtained in problems 21 and 22 at the end of 
Chapter 6. 

(c) Finally, explain the statement made at the end of Section 4 of Chapter 3 
about the connection between hyperbolas and the numerical calculation 
oflogarithms. 

Gregory's approach to logarithms superseded the work of Napier (1550-
1617) and Briggs (1561-1631), who calculated the first accurate logarithmic 
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tables. Napier took quite a different "inverse" approach that we shall not 
discuss, except to say that it is related to the idea of changing arithmetic 
movement to geometric movement-an idea we met briefly in problem 14 of 
Chapter 2. 

30. (The Riemann integral) While we feel very much at home with the number 
denoted by ..;2 and with the number denoted by n, we may still be less com­
fortable with the number denoted by J: f(x) dx. Thanks to G.F.B. Riemann 
(1826-1866), we now know that the numbers behind all three of these sym­
bols are equally easy to comprehend. 
(a) Study the figure from Section 6 of Chapter 2 entitled "searching for wrong 

ratios"; then study the analogous figure from Section 3 of Chapter 3. 
(b) Let's take a particular integral, say t x2 - 4x + 5 dx, in hopes of seeing 

how to handle all integrals in the same way. The following figure should 
be self-explanatory: 

n=3 

n=6 

4 9 
[from exercise 2.2] 

4.875 7.375 
[from exercise 2.3] 

TOO SMALL TOO LARGE 

0 2345678910 

J.4 
x 2 -4x + 5dx 

We need to have a name for the numbers that are "too big", such as the 
number 9 calculated in exercise 2.2 after dividing the domain into n = 3 
pieces, or the number 7.375 calculated in exercise 2.3 by dividing the 
domain into n = 6 pieces. They are called upper sums for this integral. 
Similarly, the numbers 4 and 4.875 are lower sums corresponding to 
partitions of the domain when n = 3 and n = 6, respectively. For each 
positive integer n (even if n is as large as the national debt), we get 
numbers that are too big and numbers that are too small by taking upper 
sums and lower sums, respectively. Complete the following sentence the 
way you think Riemann might have: "The integral J,~ f(x) dx can be sim­
ply defined as the number, if there is only one such number, that lies 
between every __ and every--·" 



CHAPTER 

Romance in 
Reason 

Having reached the fundamental theorem of calculus, we have come to 
a natural place to pause and take stock of our accomplishments and 
aspirations. Let us close this volume by discussing the way calculus was 
viewed in the seventeenth century, looking both backward and forward 
in time to put this remarkable century's mathematical thought in true 
perspective-and perhaps to learn something about the true nature of 
mathematics itself. 

How can we speak of such inscrutable things as these? Learning to tell 
the truth may have been the original purpose of a liberal arts education 
in ancient Greece, but times have changed, and truth today no longer 
seems to be that bright sun to which Plato said we are all so naturally 
drawn. The twentieth-century mathematician John von Neumann re­
marked that truth is much too complicated to allow anything but ap­
proximations. The best we can do, most of the time, is to glimpse truth 
as a kind of limit that we cannot attain, but only strive toward. 

In this spirit we may say that the emphasis placed in Chapter 2 upon 
the concurrence of the rise of mathematics and of rational thought re­
veals much about the nature of mathematics, but gives us only an ap­
proximation to the whole truth. Just as number has both rational and 
irrational elements, so does mathematics itself. What we shall see in this 
chapter is that, although the seventeenth century is justly called the Age 
of Reason because of its progress in science, much of its "reasoning" in 
mathematics is more characteristic of the later Romantic Movement, as 
manifested in its opposition to the glorification of rational thought. This 
chapter, then, is concerned with "romantic" elements in supposedly 
"rational" mathematics. 

So far as calculus itself is concerned, incidentally, its "age of reason" is 

286 
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really the nineteenth century. That is when analysis had to be developed 
to make rational sense out of the paradoxes and general confusion that 
arose out of the huge mass of seventeenth- and eighteenth-century 
mathematical research largely due to-but overly dependent upon-an 
unbridled trust in mathematical intuition. The reader can get a hint of 
what analysis is like by re-reading the end of Section 6 of Chapter 2, but 
the full story is best left to another volume. 

Let us review very briefly the historical movements leading up to the 
Age of Reason. We have already mentioned at the end of Chapter 3 how 
the torch of mathematics was taken up by diverse peoples-among them 
the Chinese, Indians, and Arabs-who preserved or rediscovered much 
of Greek mathematics and developed much that was new. The discovery 
by western Europe of many of these works helped rekindle the flame of 
mathematics in the Renaissance. Neoclassicism, a movement to revive 
or to adapt the classical style, arose in mathematics just as it arose in 
European literature, art, and music. 

As every student of history knows, all this led in time to the Age of 
Reason, the Enlightenment, and eventually to the Romantic Movement. . 
And every student of the liberal arts will know something of the way 
these historical movements are reflected in literature. art, and music. 

Let us not leave mathematics out of the liberal arts. How does mathe­
matics enter into this scheme of things? It is obvious that the develop­
ment of calculus helped bring about the rise of modem science, to which 
the Enlightenment pointed with such pride. However, let us not be con­
tent with such an obvious remark. While we may not learn "the true 
position of mathematics as an element in the history of thought", we 
may yet learn something by musing about the nature of mathematics. 

The key word of the discussion in this chapter is tension. It has been 
contended that the life in any work of art derives from the creation and 
resolution of tension, where "tension" is understood in a rather broad 
sense. Certainly the vitality of mathematics springs from a kind of ten­
sion. Mathematics itself, being in residence between the humanities and 
the sciences, is stretched in many directions: toward beauty, form, and 
vision on the one hand; and toward utility, function, and rationality on 
the other. And these are only a few of the struggles taking place within 
mathematics: 

Mathematics as an expression of the human mind reflects the active 
will, the contemplative reason, and the desire for aesthetic perfection. 
Its basic elements are logic and intuition, analysis and construction, 
generality and individuality. Though different traditions may emphasize 
different aspects, it is only the interplay of these antithetic forces and 
the struggle for their synthesis that constitute the life, usefulness, and 
supreme value of mathematical science. 

R. Courant and H. Robbins• 

• What is Mathematics? Oxford University Press, New York, 1941, p. xv. 
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§1. Guessing versus Reasoning 

Mathematics has always been associated with reason, or rational thought. 
The word rational still carries the connotation of "measurement" or 
"calculation". A rational man measures, or calculates, the effect of his 
activity. 

The mathematician, in the act of making a discovery, is hardly 
"rational", however. The view that mathematicians employ only a cold, 
unexcited, strictly logical approach to their calling is somewhat dis­
torted. Archimedes, struggling with a perplexing problem, once had such 
an exciting idea that he jumped from his bath to run naked and scream­
ing down the streets of Syracuse. And Newton's greatness as a mathe­
matician seems not to have been due primarily to his ability to reason 

1rrectly: 

I fancy his pre-eminence is due to his muscles of intuition being the 
strongest and most enduring with which a man has ever been gifted. 
Anyone who has ever attempted pure scientific or philosophical thought 
knows how one can hold a problem momentarily in one's mind and 
apply all one's powers of concentration to piercing through it, and how 
it will dissolve and escape and you will find that what you are surveying 
is a blank. I believe that Newton could hold a problem in his mind for 
hours and days and weeks until it surrendered to him its secret. Then 
being a supreme mathematical technician he could dress it up, how you 
will, for purposes of exposition, but it was his intuition which was pre­
eminently extraordinary-'so happy in his conjectures', said de Morgan, 
'as to seem to know more than he could possibly have any means of 
proving' .... 

John Maynard Keynes• 

Conjectures, or guesses, play a largely unrecognized role in mathe­
matics. We have seen in this book some instances of how they work. 
Early in Chapter 4 we guessed that the slope of a certain tangent line was 
2, yet it took a while to find a reason why. Early in Chapter 7 we guessed 
that a certain area was 6 square units, but reasoned justification for that 
guess could come only much later. "Humble thyself, impotent reason!" 
exhorted Pascal, who almost discovered the calculus himself, before 
Newton. While reason may demonstrate the truth of a guess, reason 
alone rarely discovers anything of significance. 

Mathematics is regarded as a demonstrative science. Yet this is only 
one of its aspects. Finished mathematics presented in a finished form 
appears as purely demonstrative, consisting of proofs only. Yet mathe­
matics in the making resembles any other human knowledge in the 
making. You have to guess a mathematical theorem before you prove it; 

• "Newton, the Man" from Essays in Bwgraphy, Horizon Press Inc., New York, 1951, p. 312. 
(This essay appears also in Newton Tercentenary Celebrations, Cambridge University Press, 
1947.) 
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you have to guess the idea of the proof before you carry through the 
details. You have to combine observations and follow analogies; you 
have to try and try again. The result of a mathematician's creative work 
is demonstrative reasoning, a proof; but the proof is discovered by 
plausible reasoning, by guessing. 

G. P6lya* 

289 

Let there be no doubt of the existence, in mathematics, of knowledge 
acquired in nonrational ways: 

I have had my solutions for a long time, but I do not yet know how I am 
to arrive at them. 

Gauss 

It's plain to me by the fountain I draw from, though I will not undertake 
to prove it to others. 

Newton 

Certain things first became clear to me by a mechanical method, 
although they had to be demonstrated by geometry afterwards, because 
investigation by the said method did not furnish an actual demonstration. 

Archimedes 

Gausst, Newton, and Archimedes stand in a class above all other 
mathematicians. We thus have it on the highest authority that imagi­
nation plays a role in mathematics at least rivaling, and perhaps sur­
passing, the role of reason. Great mathematicians have both gifts, in 
great degree. 

Exercises 

1.1. Make a guess as to the formula for the surface areaS of a sphere of radius r. 
Reason by analogy with a circle, which is a "sphere" in the plane: for a cir­
cle, A = :n:r2 and C = Z:n:r; for a sphere, V = ~ :n:r3 and S == ? 

2nr ?? 

• Induction and Analogy in Mathematics, Princeton University Press, 1954, p. vi. 
t Carl Friedrich Gauss (1777-1855), preeminent German mathematician. 
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1.2. Give the approximate dates and general characteristics of the Renaissance, 
the Age of Reason, and the Romantic Movement. For help, consult an 
encyclopedia or a history of Western civilization. 

1.3. Leaf through Volume 1 of Mathematics and Plausible Reasoning, G. P6lya, 
Princeton University Press, Princeton, N.J., 1954, for a fuller understanding 
of the art of guessing. 

§2. Atomism versus Common Sense 

How is nonrational, or intuitive, knowledge possible? What sorts of tricks 
were used by the developers of the calculus to tell them which way to go? 
Many tricks stem from the "atoms ofDemocritus". The Greek Democritus 
(ca. 460-370 B.C.) supported the doctrine of atomism, which holds that 
bodies are made up of atoms, or indivisible units. An atomist would raise 
no objection to thinking of a line as the sum of its points, or of an area as 
the sum of its vertical line segments. Atomism regards time as being 
made up of instants, an instant being a "point" in time. 

Like most philosophical doctrines, atomism has its drawbacks. Com­
mon sense seems to tell us that time, like a pencil point moving smoothly 
along a line, is a "flowing", or "continuous", kind of thing. How can a 
continuous entity like time be made up of discrete instants? How can an 
atomist answer the Arrow Paradox of Zeno (ca. 495-435 B.c.)? 

Consider an arrow flying through the air. At each instant the arrow is 
motionless. How can the arrow move if it is motionless at each instant? 

The same general sort of "paradox" is not uncommon in mathematics: 

How can a line segment have nonzero length, if each of its points has 
length zero? 

How can a planar figure have nonzero area, if each of its vertical line 
segments has area zero? 

The inadequacy of atomism is evident. The atoms of a body appar­
ently need not reflect all the properties of that body: whereas a line has 
length, its points do not. The whole may be something more than the 
sum of its atoms. 

What good, then, is atomism? In mathematics it is often an aid to the 
intuition. Democritus used it to make an inspired guess about the proper 
formula for the volume of a cone or pyramid (one-third the area of the 
base times the height, in either case). Democritus had the imagination to 
guess the correct answer, but was never able to offer any rational jus­
tification for that answer. It was Eudoxus whose method provided 
the demonstrative proof. Both deserve credit: Democritus as seer, and 
Eudoxus as sage. 
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... in the case of the theorems the proof of which Eudoxus was the first 
to discover, namely that the cone is a third part of the cylinder, and the 
pyramid of the prism, having the same base and equal height, we 
should give no small share of the credit to Democritus who was the first 
to make the assertion ... but did not prove it. 

Archimedes 

The passage above, as well as the quotation from Archimedes given 
earlier, is taken from a letter addressed to Eratosthenes. Archimedes 
goes on in this letter to describe discovery and proof as complementary 
aspects of mathematics. He then describes how he used atomism, in a 
novel way, to conjecture the truth of some of his most celebrated theo­
rems, which he proved later by a masterful use of Eudoxus' method. The 
means of discovery and the means of proof were completely different. 

Exercises 

2.1. Archimedes' letter to Eratosthenes is discussed briefly in an appendix to this 
book. Read the appendix on Archimedes. 

2.2. (The purpose of this exercise is to give a clue as to how Democritus might have 
used atomism to guess that the volume of a pyramid is one-third the area of the 
base times the height.) Consider a bunch of cannonballs (to be thought of as 
large atoms) . 

• . . 

(a) Find the number of cannonballs in a pyramid if the base is 
(i) two by two. 

(ii) three by three. 
(iii) four by four. Answer: 30. 
(iv) n by n. Hint. See appendix on sums. 

(b) Find the number of cannonballs in a cube if the base is 
(i) two by two. 

(ii) three by three. 
(iii) four by four. Answer: 64. 
(iv) n by n . 

• 
. 

. 
. 
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(c) Find the ratio of the number of cannonballs in a pyramid with square 
base to the number of cannonballs in a cube with the same base, if the 
base is n by n. Answer: n(n + l)(Zn + 1)/6n3 • 

(d) The ratio in part (c) has 1/3 as a limit. How might this have helped 
Democritus? 

§3. Seer versus Sage 

It has never been a secret that the pursuit of mathematics requires more 
than the power of deductive reasoning. Even a rationalist allows this 
possibility. 

There are only two ways open to man for attaining certain knowledge 
of truth: clear intuition and necessary deduction. 

Descartes 

The seer who discovers is just as much a mathematician as the sage 
who proves. Some mathematicians, like Archimedes, are coequally seer 
and sage, and no mathematician is wholly one or the other. Nevertheless 
the distinction is useful. The seer has the gift of vision-intuition, divina­
tion, or imaginative insight. Whereas the sage is blessed with wisdom­
sound judgment, good taste, and reason. The seer points his hand to the 
sky while his eye darts around the heavens as if to see everything at a 
single instant. The sage, however, plants his feet squarely on the ground, 
his gaze fixed upon his object, and marks his world with a steady eye. 

The distinction between seer and sage is of interest when one exam­
ines the philosophies of Plato and Aristotle, insofar as they pertain to 
mathematics. Platonism has often been seen to animate speculation, the 
searching and re-searching for undiscovered truths lying just beyond our 
ken. Seers are often disciples of Plato. 

If Plato animates speculation, says Whitehead, then Aristotle ani­
mates scholarship. Aristotle emphasized the consolidation of knowledge, 
through reason, into a coherent system. Aristotle's influence may be 
seen in the form in which Euclid's Elements was cast, even though the 
content of the Elements owes its existence to the spirit of speculation. 
Aristotle's influence was great, and Greek mathematics appears almost 
always in finished form, cold, unexcited, and with strict logic, as if it 
might have been written by a sage alone. 

The fact that classical Greek texts presented only proofs became a 
source of some annoyance later. One might think that the Greeks, in a 
wondrous plot, had all agreed to conspire against the seventeenth cen­
tury by refusing to divulge their means of discovery. 
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Figure 3. * Plato and Aristotle in Raphael's "School of Athens". Even 
now there is a very wavering grasp of the true position of mathematics as an 
element in the history of thought. -Whitehead. 

• Reproduced, with permission, from Raphael, by Oskar Fischel, translated by Bernard 
Rackham, Routledge & Kegan Paul Ltd., London, 1948. 
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... like some artisans who conceal their secret, they feared, perhaps, 
that the ease and simplicity of their [hidden] method, ifbecome popular, 
would diminish its importance, and they preferred to make themselves 
admired by leaving to us, as the product of their art, certain barren 
truths deduced with subtlety, rather than to teach us that art itself, the 
knowledge of which would end our admiration. 

Descartes 

Descartes could not have known that the "art itself", the seer's vision, 
had been freely given by Archimedes in his letter* to Eratosthenes 
mentioned earlier. And, having revealed his secret method (discussed in 
an appendix to this book), Archimedes wrote, 

I am persuaded that this method will be of no little service to mathe­
matics. For I foresee that this method, once understood, will be used to 
discover other theorems which have not yet occurred to me, by other 
mathematicians, now living or yet unborn. 

Unfortunately for Descartes, the contents of Archimedes' letter had 
been lost for centuries and were found again only in 1906, in Turkey, by 
the Danish philologist J.L. Heiberg. 

The preference expressed by Descartes for the seer as opposed to the 
sage was typical of seventeenth- (and eighteenth-)century thought in 
mathematics. The influence of Aristotle was at an ebb, and Platonism 
was once again ascendent. It is curious that, in the Age of Reason, the 
climate was such as to permit a lapse of rigor in the reasoning used by 
mathematicians. The "idea itself", the means of discovery, became more 
important than the rigorous logical demonstration. The happy accep­
tance of vague, but intuitively suggestive remarks as a valid proof was 
not unusual. A reaction set in against the "over-precise" manner of the 
Greeks, which could only impede the progress of seventeenth-century 
mathematics. 

An illustration of this is seen in Newton's Principia, written in 1687. 
In composing this greatest of works Newton attempted to emulate the 
rigorous Archimedean style; but, by doing so, he only made the Principia 
more difficult for modern minds to comprehend: 

The ponderous instrument of synthesis (Archimedism), so effective in 
his hands, has never since been grasped by one who could use it for 
such purposes; and we gaze at it with admiring curiosity, as on some 
gigantic implement of war, which stands idle among the memorials of 
ancient days, and makes us wonder what manner of man he was who 
could wield as a weapon what we can hardly lift as a burden. 

William Whewell 

• See The Method of Archimedes, a Supplement to The Works of Archimedes, edited by 
T.L. Heath, Cambridge University Press, 1912 (also available in paperback by Dover 
Publications). 
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The passage above is from a nineteenth-century book on the history 
of science. In the seventeenth century, one might well have heard of 
Newton's Principia what King James had earlier said of Francis Bacon's 
Novum Organum, that "it was like the peace of God, which passeth all 
understanding." 

Exercises 

3.1. "If logic is the hygiene of the mathematician, it is not his source of food." 
The twentieth-century mathematician Andre Weil said this. What does Weil 
mean? 

3.2. On the whole, has the spirit of Plato or of Aristotle been more conducive to 
the progress of science? 

3.3. Find Newton's Principia in a library. The full title in English is Mathematical 
Principles of Natural Philosophy. 
(a) What did Newton mean by "natural philosophy"? 
(b) Why did Newton write in Latin? 
(c) Newton's book is generally acknowledged as the greatest single work 

ever written on science. Why? 
(d) Why is Newton's book so little read today? 

3.4. (For more ambitious students) "The world will again sink into the boredom of 
a drab detail of rational thought, unless we retain in the sky some reflection 
oflight from the sun of Hellenism." Read Chapter 7, "Laws of Nature", from 
Adventures of Ideas, A.N. Whitehead, Macmillan, New York, 1933, then tell 
what is meant by Whitehead's warning. 

§4. The Discrete versus the Continuous 

The attraction of atomism is probably the emphasis it places upon the 
discrete, a notion that seems quite transparent to the intuition. Certainly 
the discrete is easier to comprehend than the continuous. It is easier to 
think about a stationary pebble than about flowing sand. It is easier to 
think about a stationary instant than about flowing time. 

The temptation is great to attempt to explain the continuous in terms 
of the discrete. Newton tried to explain light this way. Although common 
sense tells us that light is a "continuous" phenomenon, Newton spoke of 
"particles of light", as if a light ray was made up of a huge number of 
discrete units. Newton's description was not really taken seriously until 
the development of quantum theory in the twentieth century. 

Within mathematics itself, the tension between the discrete and the 
continuous is profound. 
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The whole of mathematical history may be interpreted as a battle for 
supremacy between these two concepts. This conflict may be but an 
echo of the older strife so prominent in early Greek philosophy, the 
struggle of the One to subdue the Many. But the image of a battle is not 
wholly appropriate, in mathematics at least, as the continuous and the 
discrete have frequently helped one another to progress. 

E.T. Bell* 

The development of calculus given in this book has been based upon 
the notion of limit, which is intimately related to the idea of continuity. 
Thus we have placed much more emphasis upon the continuous than 
upon the discrete. It must now be confessed that the seventeenth cen­
tury attempted a discrete approach to the calculus as well, the descrip­
tion of which makes up a remarkable chapter in the history of ideas. 

An attempt will now be made to describe this discrete approach. If the 
reader finds this approach slightly incomprehensible, there is a good 
reason for it. The description is kept at a very intuitive level in order to 
ignore any difficulties that might be seen by close logical scrutiny. This is 
the way some things were done in the mathematics of the seventeenth 
century, and much of the great progress made then is undoubtedly due to 
this approach. Had there not been a lapse in emphasis upon logical rigor, 
Newton and Leibniz might have feared to put some of their speculations 
into print. It is helpful to remember that the tone of seventeenth-century 
mathematics contrasts greatly with the classical Greek. Seventeenth­
century mathematics often reads as if written by seer alone. 

With our eyes "in a fine frenzy rolling", let us seek the seer's vision. 
Consider the following question: 

What does the difference Llx become, as Llx tends to zero, but is never 
allowed to equal zero? 

The answer given by Leibniz might run something like the following: 

The difference Llx becomes a quantity of infinitesimal size, to be de­
noted by "/b" and called the differential of x. To say that tb is an in­
finitesimal is to say that tb is not zero, but is smaller than any positive 
number. 

The differential of y, where y is a function of x, is "defined" in a simi­
lar way: the differential dy is what the difference .Liy becomes, as .Lix 
tends to zero, but is not allowed to equal zero. Leibniz thought of the 
derivative as an actual quotient of the differentials dy and dx. Thinking 
this way leads one to discover the chain rule. Newton thought in an 
intuitive way along much the same lines, but his terminology was di£. 
ferent. He spoke of fluents, fluxions, and their moments, because he 
thought of a variable as a flowing quantity. 

In reply to the question given above, many of us would say that the 

• E.T. Bell, The Development of Mathematics, McGraw-Hill, 1945, p. 13. 
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question is simply ill-posed and has no answer. The difference Ax does not 
"become" anything, because it is never zero. It just "keeps on changing". 
This would be the reply of a sage. Calculus was not discovered by a sage. 

It is easy to criticize the notion of an infinitesimal, if it is regarded as 
a fixed quantity somehow squeezed between zero and the positive 
numbers. Where could it be on the number line? There is no place for it: 

0 2 

If there is such a thing as an infinitesimal, it must be a new kind of 
quantity, for it cannot be pictured as a point on the number line. The 
notion of the infinitesimal is one of the most elusive ideas ever conceived. 
Attempts to describe it, as with the adjectives nascent and evanescent, 
bordered upon the the comic. The first adjective means "just born", the 
second means "just vanishing". 

However, we should not laugh at this seventeenth-century version of 
atomism called infinitesimal analysis. Though it all seems so vague, it was 
really a noble attempt to reconcile, through a rather mystical notion, the 
two great cooperating opposites of mathematics. An infinitesimal was 
supposed to be a discrete entity that retained qualities of the continuous. 

Exercises 

4.1. Prove that there is no positive number lying "next" to zero. That is, show 
that between any positive number and zero lies another number. Hint. Make 
a reductio ad absurdum argument, using the fact that halving a nonzero 
quantity always results in a new quantity that is closer to zero. 

4.2. Criticize the following statement. "The tangent line to a curve at a point is 
the line through the point and the next point on the curve." 

4.3. (For more ambitious students) Read in a philosophy book about Leibniz's 
theory of monads. Write a paper explaining this theory, and explaining how 
it may be related to Leibniz's theory of differentials. 

§5. The Infinitesimal Calculus 

Let us continue in the spirit of the preceding section, agreeing to pretend 
that we know what an infinitesimal is. Let us also agree to accept the 
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romantic notion that logic is unimportant, that something is true as soon 
as it is felt. This is the setting for discussing the remarkable theory ofthe 
infinitesimal calculus, in the spirit of seventeenth-century mathematical 
thought. 

To start off with a bang, let us consider the fundamental theorem of 
calculus: 

J: f(x) dx = F(b)- F(a) ifF'= f. 

Infinitesimal calculus is better done in Leibniz's notation, which does 
not name functions, only variables. To put the fundamental theorem in 
this notation, let y = F(x), so that dy/dx = F'(x) = f(x), y(b) = F(b), and 
y(a) = F(a). 

The Fundamental Theorem of Calculus 
s:(dy/dx) dx = y(b)- y(a). 

"Proof"! 
Canceling the differential dx we have 

Jb dy Jb 
a dxdx = a dy. (1) 

Now J: dy is simply the sum, from a to b, of all the infinitesimal changes 
in y! This will obviously add up to the total change in the function y, as x 
runs from a to b: 

J: dy = y(b) - y(a). 

The fundamental theorem is simply the result of putting equations (1) 
and (2) together! (?) 

EXAMPLE 1 
Use infinitesimal calculus to find the area between the curves y = 
2 + 2x - x2 and y = x - x2 , between x = 0 and x = 2. 

(0,2) 

x=O 

(0,0) 

(2, -2) 
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Let x be any number between 0 and 2. Consider the vertical segment 
through x whose width is infinitesimal! The length of this segment is 

The width of this segment is the infinitesimal dx! Its area is therefore 
(2 + x) dx! The entire area between the curves is the sum of these in­
finitesimal areas (2 + x) dx, as x runs from 0 to 2! The entire area is then 

I: (2 + x) dx = 6 square units, 

by the fundamental theorem of calculus! (?) 

EXAMPLE 2 
Use infinitesimal calculus to find dA/dt, where A is the area beneath the 
curve y, between x = a and x = t. 

A 

a 

This is easy! As any transcendental eye can see, the infinitesimal 
change dA in area is clearly given by a rectangle of height y and width dt! 

dt 

dA = ydt. 

Dividing by dt, we see that dA/ dt = y. Thus the area beneath a curve y 
yields an antiderivative of y. (?) 

EXAMPLE 3 
Use infinitesimal calculus to find the volume of a solid generated by 
revolving the area beneath a curve about the x-axis. 
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(x,y) 

Let us consider the solid of revolution generated by the curve y from 
x = a to x = b. If x is any number between a and b, consider the volume 
of the indicated slice through x of infinitesimal width! 

dx 

Its infinitesimal volume dV is given by 

dV = ny2 dx, 

by the well-known formula for the volume of an infinitesimal cylinder! 
The total volume V of the solid is the sum of all these infinitesimal dV's, 
as x runs from a to b! 

Jx=b Jb 
V = dV = ny2 dx. 

x=a a 

This is the formula for the volume of a solid of revolution! (?) 

EXAMPLE 4 
Suppose a solid of revolution is generated by revolving the area beneath 
a curve about they-axis. Use infinitesimal calculus to find the formula 
for the solid. 

Let x be any number between a and b, and consider what happens to 
the vertical segment through x, as it is revolved about the y-axis. The 
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surface of a cylinder is obtained, the cylinder being of height f(x) and 
radius x. Let us find the infinitesimal volume of this surface, whose 
thickness is infinitesimal! When the surface is flattened out, a rectangu­
lar solid is obtained, dimensions 2nx, f(x), and dx. 

_1._ 
f(x) 

T 
surface, ftattened ---=n ~------~------_J 

2nx 
dx 

Its infinitesimal volume dV is then given by 

dV = 2nxf(x) dx. 

The total volume V is the sum of these infinitesimals d'V, as x runs from 
a to b! 

Jx=b Jb 
V = x=a dV = a 2nxf(x) dx 

is the required formula! (?) 

EXAMPLE 5 
Use infinitesimal calculus to find the derivative of the squaring function. 

dy 

dx 

The two points virtually coincide 

On the curve y = x2 consider the point ( x, x2 ). If x is changed by an 
infinitesimal amount dx, then 

dy = (x + dx) 2 - x2 = 2xdx + (dx) 2 . 
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Figure 4. * Engraving from Euler's Introductio in Analysin Infinitorum 
(1748), the first great treatise on analysis. Every textbook on calculus 
today borrows, more or less, from Euler. 

• This illustration serves as frontispiece for Abraham Robinson's historic Non-standard 
Analysis, North-Holland, Amsterdam, 1966. Reproduced by kind permission of Elsevier­
North Holland. 
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Dividing by dx, we obtain 

dy 
dx = Zx +dx. (3) 

Since dx is infinitesimal, equation (3) becomes 

dy 
dx = Zx. (?) (4) 

Example 5 leads to an interesting question for anyone who professes 
to understand the "reasoning" in it. How can Zx + dx be equal to 2x unless 
dx is zero? And if dx is zero then how do you justify dividing by it to arrive at 
equation (3)? One way to avoid embarrassment is to discard the notion 
that an infinitesimal is fixed and to think of it instead as a variable 
tending to zero. In that sense equation (3) does "become" equation (4). 
This leads to the discarding of fixed infinitesimals in favor of the notion 
of a limit. 

Exercises 

5.1. Discuss the following quotations of Bertrand Russell. 
(a) "It is peculiar fact about the genesis and growth of new disciplines that 

too much rigour too early imposed stifles the imagination and stultifies 
invention. A certain freedom from the strictures of sustained formality 
tends to promote the development of a subject in its early stages, even if 
this means the risk of a certain amount of error." (Wisdom of the West, 
Rathbone Books Limited, London, 1959, p.280.) 

(b) "Instinct, intuition, or insight is what first leads to the beliefs which 
subsequent reason confirms or confutes . . . Reason is a harmonising, 
controlling force rather than a creative one. Even in the most purely 
logical realms, it is insight that first arrives at what is new." (Our 
Knowledge of the External World, George Allen & Unwin Ltd., London, 
1949, p.22.) 

5.2. In the spirit of this section write out a "proof" of each ofthe following, using 
infinitesimals. If ever you feel yourself getting into logical difficulties, adopt 
the visionary's style of reasoning by making exclamations instead of state­
ments. 
(a) The distance traveled is the integral of the speed function. 
(b) dy/dt = (dy/dx)(dx/dt). 
(c) ds/dt = (dt/ds)-1 . 

Answer: (c) What else could it be! 
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5.3. Consider a curve f. What is its length from the point (a,f(a)) to (b,f(b))? 

(b,f(b)) 

(a,J(a)) 

Use infinitesimals to try to guess a formula for the length of a curve. (Try to 
express it as an integral.) After you have made your guess, check to see if it 
works when the curve f is a straight line. 

5.4. By carrying out the following steps, check to see if the formula of Example 4 
works in this simple case considered here. 
(a) Use the known formula (derived in Chapter 7) for the volume of a cone 

to find the volume of a cone of radius 2, height 4. 
(b) Consider the cone generated by revolving the area beneath the line 

y = 4 - 2x, 0 :::; x :::; 2, about they-axis. 

Apply the formula of Example 4 to this situation. Does it give the proper 
answer as found in part (a)? 

5.5. (How do you measure surface area?) In exercise 1.1 you were asked to make a 
guess as to the formula for the surface areaS of a sphere of radius r. Con­
sider the following way one might reason by the use of infinitesimals. The 
sphere of radius r is obtained by revolving the graph of y = .Jr2 - x2 , 

r :::; x :::; r, about the x-axis. 
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When the point (x,y) is revolved we get the surface of an infinitesimal cyl­
inder of radius y and height dx! This surface, when flattened out into a rect­
angle, is seen to have an area of 2nydx. Therefore (!), the total surface area 
is given by 

S = Jr 2ny dx = 21l Jr y dx = 21l (the area beneath the curve y) . 
-r -r from -r to r 

Since the area beneath the semicircle is nrl /2, it follows that S = 
2n(nr2 /2) = n2rl. (?) 
(a) This probably disagrees with the guess you made in exercise 1.1. Do 

you still have more confidence in your guess, or do you accept the 
infinitesimal analysis just given? Why? 

(b) Are you willing to accept all the infinitesimal analysis given in this 
section? If not, how do you decide what to accept and what to reject as 
invalid? 

Hint. Archimedes showed that the surface area of a sphere of radius r is 
given by S = 4nr2• (See Section 2 of the appendix on Archimedes.) 

5.6. Archimedes was the first to find the correct numerical value of the ratio r7 

introduced in exercise 2.6 of Chapter 2. Use his formula S = 4nr2 to find this 
value. Find r4 also. 

§6. Analysis versus Modern 
Developments 

As Leibniz grew older, he began to move away from infinitesimals and 
toward the notion of limit. The following excerpt from a letter written in 
1702 is seen as evidence for this. 

One must remember ... that incomparably small quantities ... are by 
no means constant and determined. On the contrary, since they may be 
made as small as we like, they play the same part in geometric reason­
ing as the infinitely small in the strict sense. For if an antagonist denies 
the correctness of our theorems, our calculations show that the error is 
smaller than any given quantity, since it is in our power to decrease the 
incomparably small ... as much as is necessary for our purpose. 

Leibniz" 

This passage says, in effect, that the use of infinitesimals can be re­
garded as a shortcut means of taking a limit. The objectionable reasoning 
in Example 5, Leibniz seems to say, is merely a quick way of getting the 
result that was derived with a little more care in Chapter 6, Section 1. 

It was doubly difficult for Leibniz to discard the infinitesimal, for this 
conception had inspired both his mathematics and, in his theory of 

• From a letter to Varignon, as given in Ways of Thought of Great Mathematicians, by Her­
bert Meschkowski, Holden-Day, 1964, p. 58. 
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monads, his philosophy. In deciding whether to disown his brainchild 
Leibniz must have experienced quite a struggle between mind and heart. 
His indecision is understandable. It was easier for Newton, who re­
nounced the infinitely small in his later work, in favor of an intuitive 
understanding of the limit notion. Analysis in mathematics became 
based upon limits. 

Atomism continues to survive today, though, and so do infinitesimals. 
Though sometimes, as in exercise 5.5. infinitesimals lead one astray, 
generally they point one in the proper direction like magic. Their suc­
cess led Leo Tolstoy to seek an historical adaptation. 

[Infinitesimal calculus], unknown to the ancients, when dealing with 
problems of motion admits the conception of the infinitely small, and so 
conforms to the chief condition of motion (absolute continuity) and 
thereby corrects the inevitable error which the human mind cannot 
avoid when it deals with separate elements of motion instead of exam­
ining continuous motion. 

In seeking the laws of historical movement just the same thing hap­
pens. The movement of humanity, arising as it does from innumerable 
arbitrary human wills, is continuous .... 

Only by taking infinitesimally small units for observation (the differ­
ential of history, that is, the individual tendencies of men) and attaining 
to the art of integrating them (that is, finding the sum of these infini­
tesimals) can we hope to arrive at the laws of history. 

Tolstoy* 

These words were written in the middle of the nineteenth century, 
showing that infinitesimals were alive and kicking then. Even in the 
mid-twentieth century infinitesimals were used in calculus, though only, 
it was supposed to be emphasized, as a shortcut means of deriving what 
was done more rigorously by means oflimits. 

Analysis, a branch of mathematics growing out of calculus to develop 
a precise notion of limit, had in the late nineteenth century given calcu­
lus a firm foundation. Analysis tried to do for the calculus what Euclid 
had attempted to do for geometry: base the entire structure upon a few 
simple general principles. The "a-0" definition of a limit (the discussion 
of which we defer) has given a precise meaning to that notion. (The 
reader will have observed that the discussion of limits so far offered in 
this book has been completely intuitive in character.) 

Quite recently mathematics has seen the exciting development of 
nonstandard analysis, which makes real sense out of infinitesimals. This 
work was pioneered in the 1960s by Abraham Robinson (1918-1974), 
who used sophisticated modern mathematical ideas to capture the in­
tuitive notion of an infinitesimal. The discrete approach to the calculus, 
thought for so long to have been a heroic failure, may yet be a success 
after all. 

• War and Peace, translated by Louise and Aylmer Maude, Oxford University Press, London, 
1970, Book XI, Chapter I. 



7. Faith versus Reason 307 

At the same time, a movement in quite the opposite direction has 
been born. Errett Bishop (1928-1983) and his followers have developed 
an approach to the calculus that is more down-to-earth and constructive 
in nature than traditional analysis. It will be interesting to see how cal­
culus looks in the year 2015, on its 350-th birthday. 

Exercises 

6.1. Read Chapter 7, "The Beginning of Modern Mathematics, 1637-1687", in 
The Development of Mathematics, E.T. Bell, McGraw-Hill, New York, 1945. 

6.2. Read the first section of Book Eleven of War and Peace, from which Tolstoy's 
quotation above is taken. 

6.3. Read pp. 1-2 of Non-standard Analysis, Abraham Robinson, North-Holland, 
Amsterdam, 1966. Compare it with "A Constructivist Manifesto", pp. 1-10 of 
Foundations of Constructive Analysis, Errett Bishop, McGraw-Hill, New York, 
1967. 

§7. Faith versus Reason 

Having had a very brief view of what has happened to calculus recently, 
let us get back to the early eighteenth century, where the old conflict 
between faith and reason still raged. A minor, but revealing incident in 
this conflict concerns infinitesimals, which became the ammunition for a 
skirmish between Edmund Halley, the astronomer, and George Berkeley 
(pronounced BARK-ly), the philosopher. 

Halley, so the story goes, had persuaded a friend of Berkeley's to 
become skeptical about his religious beliefs, whereupon they were re­
jected on the grounds that theologians' claims could not be justified so 
soundly as the claims of mathematicians. This infuriated the Irishman 
Berkeley, who was about to be made a bishop in the Church of England. 
His outrage was so great that he sought not to shore up the foundations 
of theology, but to undermine those of mathematics. The result was an 
extraordinary essay, The Analyst, "a discourse addressed to an infidel 
mathematician". 

Whereas then it is supposed that you apprehend more distinctly, 
consider more closely, infer more justly, and conclude more accurately 
than other men, and that you are therefore less religious because more 
judicious, I shall claim the privilege of a Freethinker; and take the lib­
erty to inquire into the object, principles, and method of demonstration 
admitted by the mathematicians of the present age, with the same free­
dom that you presume to treat the principles and mysteries of Religion; 
to the end that all men may see what right you have to lead, or what 
encouragement others have to follow you .... 
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THE 

AN A L Y S T; 
0 R, A 

DISCOURSE 
Addrd!Cd to aa 

Infidel MATHEMAT I ClAN. 

WHEREIN 

It is examined whether the Objetl, Princi­
ples, and Inferences of the modern Anaty ... 
tis are more diftint\ly conceived, or ·more 
evidently dcduced,than Religious Myfteries 
and Points of Faith. 

By the Av THo a of 7lf Mi11ute Phil•fop/Jtr. 

Firjl tteft ollt IN •t•• old •f thine ""' Eye; MJ thtn 
Jh•l~ IN• foe dtMJy tl c•JI otu lbt tiiOtt ·~.of th)' DNJ. 
thers t)'t. S. Man. c. vu. v. f· 

L 0 N D 0 N: 
Printed for J. ToNs oN in the Strand. J 7H· 

Figure 5. Title page of Berkeley's "The Analyst". 
[H]e who can digest a second or third fluxion ... need not, methinks, be 
squeamish about any point in divinity. 
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Berkeley wrote The Analyst in 1734, not too many years after the 
deaths of Newton and Leibniz. In his essay Berkeley forcefully made the 
argument given at the end of Section 5, in criticism of the logic used in 
infinitesimal calculus. He pointed out quite rightly that the seventeenth 
century was content to accept arguments that the ancient Greeks would 
have discarded as inadequate. The implication was that seventeenth­
century mathematicians were accepting arguments on faith, not on rea­
son. Berkeley then went on drily to inquire whether infinitesimals were 
not "ghosts of departed quantities", implying that nothing in theology 
could be more ghostlike than the basic notion of infinitesimal calculus. 

Attempts by mathematicians to answer Berkeley's splendid philippic 
sometimes became too verbose to be effectual. Today it is admitted by 
virtually every student of mathematics that some of Berkeley's objec­
tions to the calculus were unanswerable until the nineteenth century, 
when analysis at last produced a precise definition of the notion of a 
limit. 

Exercises 

7.1. Read one of the following chapters from Mathematics in Western Culture, 
Morris Kline, Oxford University Press, New York, 1953. 
(a) Chapter XVI, "The Newtonian Influence: Science and Philosophy". 
(b) Chapter XVII, "The Newtonian Influence: Religion". 
(c) Chapter XVIII, "The Newtonian Influence: Literature and Aesthetics". 

7.2. Read the excerpts and commentary arising from Berkeley's Analyst given on 
pp. 286-293 of World of Mathematics, edited by James R. Newman, Simon 
and Schuster, New York, 1956. 

7.3. Read Chapter 13, "From Intuition to Absolute Rigor, 1700-1900", in The 
Development of Mathematics, E.T. Bell, McGraw-Hill, New York, 1945. 

§8. Conclusion 

It is curious that, despite his fulminations, Bishop Berkeley accepted the 
calculus on faith. He believed, he said, that correct results in the calculus 
were the product of some "compensation of errors" in reasoning. 

Mathematicians soon became aware of the shaky ground on which the 
calculus was erected, as indicated by the admonition of d'Alembert 
(1717-1783): "Go forward, and faith will follow!" In the conflict between 
faith and reason, mathematics had the potential for use by either side. 
Among the founders of the calculus both Leibniz and Newton exhibited 
strong interest in theology. Leibniz made a serious attempt to reunite the 
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Protestant and Catholic churches, and Newton thought of his work as 
helping to prove the existence of God. The study of things eternal may 
tend to heighten one's awareness of religion. 

The first edition (1771) of the Encyclopaedia Britannica quoted with 
approval the sentiments expressed a century earlier by Issac Barrow. 
Barrow was Newton's teacher, who resigned from Cambridge in order 
that Newton be given his professorship. The words could have been 
written by Plato himself: 

The mathematics . . . effectually exercise, not vainly delude, nor 
vexatiously torment, studious minds with obscure subtilties; but plainly 
demonstrate every thing within their reach, draw certain conclusions, 
instruct by profitable rules, and unfold pleasant questions. These dis­
ciplines likewise enure and corroborate the mind to a constant diligence 
in study; they wholly deliver us from a credulous simplicity, most 
strongly fortify us against the vanity of scepticism, effectually restrain 
us from a rash presumption, most easily incline us to a due assent, 
perfectly subject us to the government of right reason. While the mind 
is abstracted and elevated from sensible matter, distinctly views pure 
forms, conceives the beauty of ideas, and investigates the harmony 
of proportions; the manners themselves are sensibly corrected and 
improved, the affections composed and rectified, the fancy calmed 
and settled, and the understanding raised and excited to more divine 
contemplations. • 

Nevertheless, mathematics appears generally seen as allied with rea­
son in opposition to faith. Voltaire pointed to the spectacular achieve­
ments of "rational" science and mathematics, and demanded the right to 
examine everything under the authority of reason. Voltaire won out, for 
a time, and it was little noted that mathematicians of the Enlightenment 
were using their instinct more than their intellect: 

They defined their terms vaguely and used their methods loosely, and 
the logic of their arguments was made to fit the dictates of their in­
tuition. In short, they broke all the laws of rigor and of mathematical 
decorum. 

The veritable orgy which followed the introduction of the infini­
tesimals ... was but a natural reaction. Intuition had too long been 
held imprisoned by the severe rigor of the Greeks. Now it broke loose, 
and there were no Euclids to keep its romantic flight in check. 

Tobias Dantzigt 

The Enlightenment, emphasizing intellect, was to be washed aside by 
the Romantic Movement that declared, with Rousseau, the primary 
nature of instinct. Romanticism can be, and has been, described in a 
variety of ways. But if it is marked by a reaction against Neoclassicism, 
an emphasis upon imagination, a disregard for decorum, and a predi-

• "Mathematics", Encyclopaedia Britannica, Vol. III, 1771, pp. 30-31. 
t Number, the Language of Sctence, Macmillan, New York, 1939, p. 130. 
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lection for the seer to the sage, then the Romantic Movement was 
already rampant in mathematics at the very height of the Age of Reason. 

Is this a paradox? Or is it a blunt reminder to us that mathematics has 
always incorporated the elements of both movements? Mathematics is 
romance in reason. 

Problem Set for Chapter 8 

1. Much of our knowledge of Greek mathematics comes from a commentary 
written on the first book of Euclid's Elements by Proclus, who lived in the fifth 
century. In his commentary Proclus says that mathematics 

arouses our innate knowledge, awakens our intellect, purges our under­
standing, brings to light the concepts that belong essentially to us, takes 
away the forget-fulness and ignorance that we have from birth, sets us free 
from the bonds of unreason; and all this by the favor of the god [Hermes?] 
who is truly the patron of this scien:::e, who brings our intellectual endow­
ments to light, fills everything with divine reason, moves our souls towards 
Nous [the highest form of knowledge], awakens us as it were from our heavy 
slumber, through our searching turns us back upon ourselves, through our 
birthpangs perfects us, and through the discovery of pure Nous leads us to 
the blessed life. (Proclus: A Commentary on the First Book ofBuclid's Elements, 
translated by Glenn R. Morrow, Princeton University Press, 1970, p.38) 

(a) Compare this passage with the passage quoted in Chapter 8, Section 8, 
written in the Encyclopaedia Britannica some 1300 years later. 

(b) From the quotation above it is obvious whom Proclus thought to be the 
supreme philosopher. Was it Plato or Aristotle? 

2. Name at least five noted philosophers who have also been mathematicians. 
Is it just an accident that some of the most eminent philosophers have also 
been mathematicians? 

3. The Greek writings of Plato, the French of Pascal, Descartes, and Poincare, 
the English of Russell and Whitehead have all been acclaimed as models of 
prose style by students of literature. Is it just an accident that some of the 
most eminent writers have also devoted themselves to mathematics? 

4. Consider each of the following relatively recent statements. Which of them is 
virtually a restatement of the principle of continuity? Which of them remind 
you of Pythagoras? of Plato? of Archimedes? ofLeibniz? 
(a) Remote from human passions, remote even from the pitiful facts of 

nature, the generations have gradually created an ordered cosmos, 
where pure thought can dwell as in its natural home and where one, 
at least, of our nobler impulses can escape from the dreary exile of the 
actual world (Bertrand Russell, twentieth century). 

(b) Since the fabric of the world is the most perfect and was established by 
the wisest Creator, nothing happens in this world in which some reason 
of maximum or minimum would not come to light (Leonhard Euler, 
eighteenth century). 
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(c) Apart from a certain smoothness in the nature of things, there can be no 
knowledge, no useful method, no intelligent purpose (Alfred North 
Whitehead, twentieth century). 

(d) The great book of Nature lies ever open before our eyes and the true 
philosophy is written in it ... But we cannot read it unless we have first 
learned the language and the characters in which it is written ... It is 
written in mathematical language (Galileo, seventeen century). 

(e) I have never done anything 'useful' .... The case for my life ... is this: 
that I have added something to knowledge, and helped others to add 
more; and that these somethings have a value which differs in degree 
only, and not in kind, from that of the creations of the great mathe­
maticians, or of any of the artists, great or small, who have left some 
kind of memorial behind them (G.H. Hardy, twentieth century). 

5. Isaac Newton wrote, "By a Number we understand not so much a Multitude 
of Unities, as the abstracted Ratio of any Quantity to another Quantity of the 
same Kind, which we take for Unity." Contrast this modern notion of num­
ber with the ancient Greek idea, and explain the importance of this new 
point of view to the development of mathematics and science in modern 
times. 

6. In his notebook Voltaire wrote, "Before Kepler all men were blind. Kepler 
had one eye, Newton had two." Compare Voltaire's extravagant praise of the 
scientific spirit with the sentiments expressed in the following poem by the 
English poet and mystic William Blake (1757-1827). Note that Blake expects 
his reader to be familiar with the "atoms of Democritus" and Newton's 
"particles of light" -topics we met briefly in Chapter 8. 

Mock on, Mock on Voltaire, Rousseau: 
Mock on, Mock on: 'tis all in vain! 
You throw the sand against the wind, 
And the wind blows it back again. 

And every sand becomes a Gem 
Reflected in the beams divine; 
Blown back they blind the mocking Eye, 
But still in Israel's paths they shine. 

The Atoms of Democritus 
And Newton's Particles of light 
Are sands upon the Red sea shore, 
Where Israel's tents do shine so bright. 

What does Blake think of the eighteenth-century French philosophes who felt 
that the modern age began with the publication of Newton's Principia? 

7. In Chapter 7, Cavalieri's Principle was discussed for figures lying in the 
plane. Actually, Cavalieri formulated an analogous principle for figures lying 
in three-dimensional space. Can you? "Two solid figures have the same 
volume if .. " 

8. Consider the figure on the left below that looks like a powder-horn, where 
each vertical cross-section is a circle. 
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(a) Explain, using your answer to problem 7, why you should expect the 
powder-horn's volume to be equal to the volume of the solid of revolu­
tion pictured on the right. 

(b) Find the volume of the powder-horn, using the result of part (a) and the 
integral formula for the volume of this solid of revolution. 

(4, 6) 

y = ..;:<Iffi--(4, 2) 
I I 
I I 

-~....----f-4---· 
I 
I 
I 

(4, -2) 

9. Find the volume of the solid figure below, where each vertical cross-section 
is a circle. Hint. You can handle this solid just as you handled the powder­
horn above. 

(4, 10) 

y=2x+2 

10. An intuitive idea behind infinitesimal calculus is that you can get the area of 
a figure in the plane by "integrating the lengths of its vertical cross-sections". 
Can you extend this idea to three dimensions? "You get the volume of a 
figure in three-dimensional space by integrating the __ of its vertical cross­
sections." Hint. In three dimensions the vertical cross-sections are two­
dimensional, so it no longer makes sense to speak of their "length". Look at 
the integrals you have as answers to the preceding two problems and note 
what measurement of the cross-sections you are integrating. 

11. Consider the figure below, which is a pyramid whose base is an equilateral 
triangle with sides of 10 units each, and whose height perpendicular to this 
base is also 10 units. 
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(a) Show, using similar triangles, that the horizontal cross-section lying a 
distance of x units down from the top vertex is an equilateral triangle 
with sides of x/10 units. 

(b) Find the area of an equilateral triangle, each of whose sides has length 
xjlO 

(c) Use your answers to problems 10, ll(a), and ll(b) to write down an 
integral giving the volume of this pyramid. (You may consider the hori­
zontal cross-sections to be vertical cross-sections, of course, just by 
rotating the figure ninety degrees.) 

(d) Use the fundamental theorem of calculus to evaluate the integral of part 
(c). 

(e) Does it turn out, from your answer to part (d), that the volume of the 
pyramid is equal to one-third the area of its base times its height? 

12. (Much easier than it may at first appear) Take any familiar figure in the plane, 
such as a triangle, a circle, an ellipse, or even something more complicated 
as indicated in the drawing below. Let the point P be situated a distance h 
above the plane and consider the solid-which we might call the (general­
ized) cone built upon the given planar figure- made up of all lines joining P 

to the given planar area. Go through the following steps to show that if B is 
the numerical measure of the given planar area, then the volume V of the 
cone built upon it is given by V = ~ Bh. 
(a) Show that the indicated cross-sectional area located a distance of x units 

(b) 

(c) 

(d) 

(e) 

down from Pis similar to the area at the base of the cone, with the ratio 
xjh being the contraction factor involved in this similarity. 
Explain why, if the contraction factor between similar planar figures is 
xjh, then the numerical ratio of their areas is x2 jh2 . 

Deduce from parts (a) and (b) that the numerical measure of the cross­
sectional area at height x above the plane is Bx2 jh2 . 

Use part (c) and the result of problem 10 to show that the required 
volume Vis given by the integral J;(Bjh2 )x2 dx. 
Remembering that B and h are constants here, use the fundamental 
theorem to evaluate the integral in part (d). 
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13. (The surface area of a sphere) Let us assume that if you own land on the 
surface of the earth, then you also own all the land beneath it, down to the 
point P at the center of the earth. In other words, you own the generalized 
cone built on your land with vertex P. 
(a) Find the volume of earth that you own, expressed in terms of Band r, 

where B is the numerical measure of the area owned by you on the 
surface of the earth and r is the radius of the earth. Hint. Use the result of 
problem 12, assuming your land-which lies on the (curved) surface of 
the earth-is in fact "flat". 

(b) Show that the volume of earth owned by n small flatland-owners is 
given by (B1 + B2 + · · · + B,)r /3, where B1 is the surface area of the j-th 
landowner. 

(c) Assume the entire surface S of the earth is owned by n small flatland­
owners, so that S = B1 + B2 + · · · + B,. Use the result of part (b) to show 
that the volume V of the earth is given by V = Sr/3. 

(d) Argue that the formula V = Sr/3 must hold for a perfect sphere. Hint. 
Use limits, noting that by part (c) this formula holds for arbitrarily 
many "flat" subdivisions of the sphere, each of which can be arbitrarily 
small. 

(e) We know that V = 4nr3 /3 from exercise 1 0. 3 of Chapter 7. Combine this 
equation with the equation V = Sr/3 to get the surface areaS in terms 
of r. 

(f) Compare your answer to part (e) with your answers to exercises 1.1 and 
5.5. 

14. (The volume of a doughnut) One way to find the volume of a doughnut is to 
find the volume of the "solid" doughnut and then subtract the volume of the 
"hole". 
(a) Find the volume of the solid of revolution obtained by revolving each of 

the areas below about the x-axis. Hint. In the course of doing this, you 
will be faced with evaluating the integral J~ 1 v'l - x2 dx. This, of course, 
is n/2. (Why?) 
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y= 2 +..J1-x2 

(-1, 2) (1, 2) (-1, 2) ~ (1, 2) 
y= 2-Y1-x· 

(-1, 0) (1, 0) (-1, 0) (1, 0) 

(b) Find the volume of the "doughnut" obtained by revolving about the 
x-axis the area within the circle with equation x2 + (y- 2)2 = 1. Hint. 
All you have to do is find the difference between the two volumes you 
calculated in part (a). (Why?) 

(c) Use the technique of part (b) to find the volume of the "doughnut" 
obtained by revolving about the x-axis the area within the circle with 
equation x2 + (y- 4)2 = 4. Comment: There is a shorter way to get the 
answer, however, for the doughnut of part (c) is similar to the doughnut 
of part (b) by a "stretching factor" of two in each dimension. (Draw a 
picture of the two doughnuts to see this.) What must then be the ratio of 
the volumes of these similar solids? 

15. Pappus of Alexandria, who lived in the fourth century, stated that the volume 
of a solid of revolution is equal to the numerical value of the area revolved, 
multiplied by the distance through which its center of gravity revolves. The 
center of gravity of a circle is, of course, its ordinary center. Pappus' proof, 
however, has been lost. Let us test whether Pappus is correct in the situations 
described in problem 14. 
(a) Multiply the area of the circle in part (b) of problem 14 by 4n, the dis. 

tance through which the point (0, 2) moves as it revolves 360 degrees 
about the x-axis. Is the result equal to the volume you calculated for the 
doughnut described in that problem? 

(b) Multiply the area of the circle of part (c) of problem 14 by the distance 
through which (0, 4) revolves. Does the result agree with the volume you 
calculated in part (c) of problem 14? 

16. Consider the doughnut made by revolving about the x-axis the area within 
the circle whose equation is x2 + (y- 3) 2 = 4. 
(a) Find the volume of this doughnut using the technique of problem 14(b). 
(b) Find the volume ofthis doughnut using the technique of problem 15. 

17. (The most beautiful proof in mathematics?) Recall our simple reductio ad 
absurdum proof from Chapter 2 showing that there is no largest integer. 
(Suppose there is, call it N, then quickly derive a contradiction by consider­
ing the integer N + 1.) By following the steps below, show likewise that there 
is no largest prime. 
(a) Suppose there is a largest prime and call it P. Then 2, 3, 5, 7, 11, ... , Pis 

a complete list of all the primes. Consider the integer N made by adding 
1 to the product of all these primes: N = 1 + 2 · 3 · 5 · 7 · 11 · · · P. Show 
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that N is not divisible by any of the primes in our complete list. Hint. 
Show that N is equal to 1 plus a multiple of 2, so N has a remainder of 1 
when divided by 2; then show that N is equal to 1 plus a multiple of 3, so 
N has a remainder of I when divided by 3; and so on. 

(b) Show that N is not prime. Hint. We are supposing that Pis the largest 
prime. Is N larger than P? 

(c) Show that N must be divisible by some prime. Hint. Since we have just 
established that N is not prime, it must be equal to the product of two 
smaller integers: N = A · B, where A and B are both less than N. If either 
A or B is prime we have shown what is required; if not, then A can be 
factored into the product of two smaller integers: A = C · D. If one of 
these is prime we have shown what is required; if not, then C can be 
factored into the product of still smaller integers. And so on. Show that 
eventually we must get a prime factor of N this way. Further hint. Show 
that if we never get a prime this way, then we get an infinite descent 
N,A, C, ... of positive integers, and recall Fermat's method of infinite 
descent described in problem 26 of Chapter 4. 

(d) Show that the supposition that there is a largest prime leads to a contra­
diction. Hint. The supposition that there is a largest prime leads to the 
result of part (a) and the result of part (c). 

This is essentially the proof given in Euclid's Elements, showing that the 
primes march on forever. It is as close to poetry, perhaps, as elementary 
mathematics can come. 

18. The American poet Wallace Stevens (1879-1955) took a train trip through the 
South in 1918 and spent some time in Tennessee. Shortly thereafter he pub­
lished Anecdote of the Jar, which is reprinted as an epigraph to this book just 
before page 1. What do you think is the main theme of Calculus: A Liberal 
Art, and in what ways does Stevens's poem reflect this theme? (You may 
wish to compare your answer with the answer given in "Mathematics and 
Poetry: How Wide the Gap?", The Mathematical Intelligencer, Vol. 12, No. 1, 
1990, pp. 14-19.) 



APPENDIX 

Writings 
''About'' 
Mathematics 

The complaint of some humanists that mathematicians make no attempt 
to describe to others their function is unjustified. On the contrary, a list 
of articles and books published with this purpose in mind is extensive, 
owing to the efforts of a number of writers, many of whom have been 
distinguished mathematicians. 

This appendix calls attention to some of these writings about mathe­
matics, which are by and large nontechnical in nature and addressed to 
the general reader. It also serves as a way of acknowledging, however 
inadequately, the debt owed by the author of this book to the writings of 
others. The list of works mentioned reflects to some degree, of course, 
the taste of the author. 

Quite an extensive list of such writings is included among those 
cited by Matthew P. Gaffney and Lynn Arthur Steen in their Annotated 
Bibliography of Expository Writings in the Mathematical Sciences (Mathe­
matical Association of America, Washington, D.C., 1976). Since then, 
continual updatings have appeared in the Mathematics Magazine and, 
more recently, in the College Mathematics Journal. All ofthese are published 
by the Mathematical Association of America, which may soon organize 
this large collection and make it available on the World Wide Web. 

§1. The Nature of Mathematics 

The quotation just inside the title page of this text is taken from Alfred 
North Whitehead's chapter on mathematics in Science and the Modern 

318 
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World [W7]. * This essay, "Mathematics as an Element in the History of 
Thought", is a modern classic. Quite a different kind of article, but 
equally celebrated, is Henri Poincare's "Mathematical Creation". The 
fascinating story told here by the great French mathematician is often 
mentioned in discussions of creativity. Poincare's article may be found 
in [G2], for example, as well as in [P3]. It inspired Hadamard's The 
Psychology of Invention in the Mathematical Field [Hl]. 

It is easy to justify mathematics in terms of its utility, but G.H. 
Hardy's brief and controversial defense [HS] of mathematics rests largely 
upon aesthetic grounds. A Mathematician's Apology has been reprinted, 
with a foreword by C.P. Snow. Of this unique book, Graham Greene has 
said, "There is nothing here which the layman cannot understand except 
possibly one theorem, and I know no writing-except perhaps Henry 
James's introductory essays-which conveys so clearly and with such an 
absence of fuss the excitement of the creative artist." Davis and Hersh 
[D4] paint quite a different picture of mathematics, which they see as a 
social enterprise helping to mold our collective consciousness-not as a 
part of the Platonic realm envisaged by Hardy. 

The attractiveness of mathematics as an activity similar to creative 
endeavors in the fine arts is the theme of an article [H2] by Paul Halmos, 
which can also be found in [C3], as well as in the collection [H3] of 
Halmos's expository articles. In Rothstein's Emblems of Mind [R4] the 
Pythagorean callings of mathematics and music are seen to be animated 
by the pursuit of beauty and truth in subtly analogous ways. Mathe­
matics is tied to poetry in [B7] and [PS], to all the humanities in [W6], and 
to beauty itself in [Ll ]. This theme is given its most eloquent expression, 
perhaps, by Bertrand Russell: "Mathematics, rightly viewed, possesses 
not only truth, but supreme beauty ... " (See Chapter 6, Section 1, for the 
rest.) It is only fair to add here that Russell later partially repudiated 
some of these sentiments in [RS], owing to certain developments in 
twentieth-century philosophy. 

Douglas Hofstadter's GOdel, Escher, Bach [H7] winds around the para­
doxes of self-referentiality in mathematics, painting, and music. Roger 
Penrose challenges Hofstadter's views on computers and thinking in [PI] 
and [P2]. For more on how minds may work, see the intriguing book by 
Marvin Minsky [M6]. 

Hardy says that mathematics is not a contemplative, but a creative 
subject. One cannot know the nature of mathematics without doing 
some mathematics. The books by George P6lya [P4] and by Courant and 
Robbins [CB] will help the reader learn what Hardy means. Anyone who 
wishes to know what mathematics is like as a profession should read 
Paul Halmos's "automathography" [H4]. 

• Expressions is square brackets refer to the listing in the bibliography at the end of this 
appendix. 
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§2. About Mathematicians 

E.T. Bell's Men of Mathematics [B2] is probably the most popular book 
about mathematicians. In his inimitable, crusty style, Bell relates the 
lives and achievements of some thirty mathematicians, the latest being 
Georg Cantor, who died in 1918. Bell's occasional penchant for telling a 
good story without thoroughly checking the facts, however, should be 
borne in mind. Dauben's definitive biography [D2] of the beleaguered 
Cantor, for example, paints quite a different picture from Bell's in 
several respects. 

Despite its title, Men of Mathematics devotes some space to women, 
such as Sofya Kovalevskaya (1850-1891), the first woman to earn a 
doctorate in mathematics. Kovalevskaya was not only a star student of 
Weierstrass, but an accomplished Russian poet and novelist, who wrote 
about her early life in [K7]. According to Reid [R3], Men of Mathematics 
was instrumental in Julia Robinson's becoming a mathematician. It 
was only a matter of time, of course, before there should appear a book 
entitled Women of Mathematics [G7]; see also [02]. 

Only a few mathematicians have written autobiographies; one of 
some literary merit is by Bertrand Russell, who won the Nobel Prize for 
Literature in 1950. Since Russell did little in mathematics after World 
War I, only Volume I of his book [R6] is a mathematician's autobiogra­
phy. Norbert Wiener, who received his Ph.D. degree at the age of eigh­
teen and studied under Russell and Hardy, has written a two-volume 
autobiography [W8], [W9]. Wiener is the father of cybernetics. 

Two Polish mathematicians, Mark Kac and Stanislaw Ulam, who col­
laborated on the excellent but demanding essay Mathematics and Logic 
[K2], have written lively autobiographies [K1 ], [U1 ], as has the celebrated 
French mathematician Andre Weil [W2]. All three of these moved from 
their native countries to continue their work in the United States. One 
might have expected Weil in [W2] to give us more than just a glimpse of 
his famous sister, Simone, but he has written about her elsewhere. 

Robert Kanigel has written for the general reader an absorbing biog­
raphy [K3] of the brilliant, self-taught Indian mathematician Srinivasa 
Ramanujan, whom G.H. Hardy "discovered". Oystein Ore's biography 
[01] of the great Norwegian mathematician Niels Henrik Abel is well 
worth reading. Abel died at the age of twenty-six. Michael Mahoney has 
described Fermat's mathematical career [M2], and Leopold Infeld [II] 
has written movingly of another remarkable French mathematician, 
Evariste Galois, who died at twenty. Isaac Newton continues to receive 
much attention [W3], [F1 ]. 

A thoughtful biography [R1] of David Hilbert is the work of Constance 
Reid, who followed it with the life story [R2] of Richard Courant and 
a personal account [R3] of her mathematician sister, Julia Robinson. 
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Hilbert, long associated with Gottingen, helped chart the course of 
modern mathematics by outlining in 1900 twenty-three unsolved prob­
lems of central importance for the future; and Courant, in moving from 
Gottingen to New York, was instrumental in raising the level of mathe­
matical research in the United States. Julia Robinson helped solve one of 
Hilbert's problems. 

The multivolumed Dictionary of Scientific Biography (G4] is an invalu­
able source of information on mathematicians and scientists of the past. 
A good impression of the personalities of contemporary mathematicians 
may be found in the lively interviews collected in [Al J and [A2J. 

As a rule, of course, only the celebrated mathematician is written 
about. The ordinary teacher of mathematics, upon whom real inspira­
tion descends grudgingly and fleetingly, is usually thought undeserving 
of attention. But Donald Weidman has written a brie( sympathetic ac­
count [Wl], now reprinted in [C3), of the run-of-the-mill mathematician's 
fate. 

§3. History and Development 
of Mathematics 

D.J. Struik's A Concise History of Mathematics [S7] is most handy for the 
general reader. Four good textbooks used by undergraduate courses in 
the history of mathematics are Eves [E2], Boyer [BSJ, Burton [B9), and 
Katz [K4]. Eves gives a fuller treatment of geometry, whereas Boyer 
leans toward analysis and Burton toward number theory. Katz gives 
more consideration to the development of mathematics by non-Western 
cultures, often driven by the needs of astronomy. Ivor Grattan-Guinness's 
recent History of the Mathematical Sciences [G6] is large. comprehensive, 
lively, and witty. 

Boyer wrote an earlier book on the development of calculus, but 
on this subject one may prefer the later investigation of Henry Edwards 
[El] or, for quite a different kind of treatment, the concise genetic 
approach of Otto Toeplitz [Tl J. Simmons [S2] and Dunham [D7] offer 
calculus students rare mathematical gems and engaging historical 
sketches; Dudley [D6] provides readings for a course in calculus. 

Dantzig's book [Dl], dealing mainly with analysis, is easy to read. 
Meschkowski's little book [MS] is good, as is Kline's big book [KSJ. Bell 
[B3] is unique. For samples oflittle gems by ancient and classical mathe­
maticians such as Archimedes, Pascal, and Leibniz, see the collections 
by Coolidge [C7] or Meschkowski [M4J. Extensive source books are Smith 
[S3) and Struik [SB]; Calinger [Cl] is most engaging. Collections of histor­
ical readings, such as [F2], [C2], and [Bl], may be utilized by instructors 
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in diverse ways to help integrate the history of mathematics with its 
pedagogy. 

If Greek mathematics is your interest, then you may find van der 
Waerden [Vl] most rewarding. Here is an exciting account by a distin­
guished mathematician who writes especially for the interested general 
reader. Fowler [F3] provides a new look at the mathematics of Plato's 
Academy. The puzzling question of how much Plato has to do with our 
conception of Pythagoras is discussed in Burkert's scholarly book [B8]. 
Neugebauer [N3] writes about Babylonian and Egyptian mathematics, 
and Gillings [G3] offers more on Egypt. 

Historians continue to uncover interesting mathematical activities in 
all ancient civilizations, and even to discern "proto-mathematical" activ­
ities in less well-developed cultures all over the globe. Frank Swetz's 
collection [S9] shows how diverse is the cultural base of mathematics, but 
opinion still varies as to what constitutes "real mathematics" and what, 
therefore, the history of mathematics should really be about. Do we 
make too much of the character impressed upon mathematics by the 
development of the axiomatic method? Do we praise the Greeks too 
highly for the consequent central role played by mathematics in the rise 
of liberal education? A multicultural view of mathematical ideas is given 
by Ascher [A4], and non-European roots of mathematics are discussed 
further in Joseph's interesting and provocative book, The Crest of the 
Peacock [Jl ]. 

§4. Philosophy of Mathematics 

Is mathematics created or is it discovered? What are the foundations of 
mathematics? Answers to such questions may vary according to whether 
one subscribes to the philosophy of intuitionism, formalism, logicism, or 
Platonism. DeLong's much-praised Profile of Mathematical Logic [DS], 
which helped to inspire Hofstadter's book [H7], considers such topics. A 
briefer treatment may be found in Komer [K6]. Anglin and Lambek offer 
a concise textbook [A3] on the history, philosophy, and foundations of 
mathematics. 

Hermann Weyl, who was an intuitionist, wrote a deep book [W4], 
Philosophy of Mathematics and Natural Science. It demands deliberate 
reading. Poincare is articulate on this subject, as on every other subject 
collected in his essays [P3]. The intuitionist position has been revived 
and modified, with the coming into prominence of constructive 
methods. See the review [S6] of Bishop's Foundations of Constructive 
Analysis, which is reprinted, although much abridged, in [C3]. 
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Hilbert was the foremost proponent of formalism, and passages in [R1] 
attempt to capture the spirit of the early twentieth-century debate over 
the validity of the formalist thesis. The celebrated theorem proved 
by Kurt Godel in 1931, which was initially seen as a great setback for 
Hilbert's hopes, has been outlined for the general reader by Nagel and 
Newman [Nl]. 

Russell and Whitehead promulgated the logistic thesis. See Henkin 
[H6], also reprinted in [C3], for some comments on its current state. 

Platonism remains a lively issue, receiving hostility in [SZ], dismissal 
in [D4], indifference in [H7], sympathy in [H 4] and [G 1], qualified en­
dorsement in [PI], efforts at rehabilitation in [Ml], and unabashed affec­
tion in [R4]. It is quite possible, however, that the proving of mathe­
matical theorems will increasingly rely upon a symbiotic relationship 
between human beings and computers. Does this mean that formalism 
will win out? 

Many important issues in the philosophy of mathematics turn on 
one's answer to a seemingly simple question: What is a real number? One 
might think that all mathematicians would agree upon real numbers by 
now, since numbers have been around for a long time, if not eternally. 
But see Steen [S4]. For more on nonstandard analysis, see Dauben's 
biography [D3] of its creator, Abraham Robinson. 

§5. Collections of Expository Articles 

If a guide to writings about mathematics listed only one entry, it would 
have to be the four-volume set World of Mathematic.s [N4], edited by 
James R. Newman. Some of the articles mentioned elsewhere here are 
reprinted, although often abridged, in this superb collection. Anyone 
interested in mathematics is probably already familiar with this work. 
The collection by Campbell and Higgins [C3] is a worthy supplement of 
more recent writings. 

Shortly after World War II there appeared in France an ambitious 
collection of expository essays about mathematics. Written mainly by 
French mathematicians, these cover a great range of topics, even in­
cluding the relationship between mathematics and music, aesthetics, 
philosophic idealism, social change, and Marxism. Although some are 
quite dated by now, many retain their original striking quality. It is good 
to have them available in English [LZ]. 

An even greater range of topics is covered in the encyclopedia edited 
by Grattan-Guinness [GS], which offers, in addition, a rich source of refer­
ences to works about mathematics at the ends of appropriate articles. 
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§6. Miscellaneous Writings 

The book by Littlewood [L3], Hardy's great collaborator, surely goes 
under the heading of miscellaneous writings. Hermann Weyl's Symmetry 
[WS] and Hugo Steinhaus's Mathematical Snapshots [SS] have been widely 
admired. J.D. Williams has written for the layman a delightful book on 
game theory, The Compleat Strategyst [W10]. 

Mathematics plays an important role in Jacob Bronowski's Ascent of 
Man [B6]. Menninger's Number Words and Number Symbols [M3] must be 
on the coffee table of every modern Pythagorean, and a more recent 
view of numbers is given by Conway and Guy [C6]. Vilenkin's book [V2] 
is an attractive elementary introduction to infinity as a mathematical 
concept. 

Roger Nelson's "wordless proofs" [N2] are often striking. Recreational 
mathematics and its history is discussed in [G8]. Osserman [03] attempts 
to explain to the general reader the curved space-time of the cosmos. 
Bochner's collection of essays [B4] contains a delightfully idiosyncratic 
appendix. Here, for example, Moritz Cantor's huge tome [C4], once con­
sidered the definitive history of mathematics (up to 1800), is charac­
terized as "one of those large-scale works by bearded gaslight-Victorians 
which the 20th century does not quite know how to supersede with 
whatever it might try to supersede them with." 

Mathematical Gems [H8] is the first of a series of brief books, all with 
similar titles, written by Ross Honsberger containing imaginative dis­
cussions of a variety of intriguing problems. Eves's books [E3], [E4], also 
the first of a series of like titles, help preserve the folklore of mathe­
matics, as does Moritz's classic collection [M7] of "witty, profound, 
amusing passages about mathematics and mathematicians". Quotable 
passages of more recent vintage may be found in Schmalz [S1]. 

Martin Gardner, whose column on mathematics in Scientific American 
was widely read for twenty-five years, has recently given us a broad 
selection of his essays [G 1 ], including many articles of interest about 
mathematics. One of Gardner's most popular publications has been his 
annotated edition [CS] of "Alice in Wonderland", the brainchild of that 
dour Oxford professor of mathematics, the Reverend Charles Lutwidge 
Dodgson. 

Bibliography 

(AI] Albers, D. and Alexanderson, G. Mathematical People, Birkhauser, Boston, 
1985. 

(A2] Albers, D., Alexanderson, G. and Reid, C. More Mathematical People, 
Harcourt Brace Jovanovich, Orlando FL, 1990. 



Bibliography 325 

[A3] Anglin, W. and Lambek, J. The Heritage of Thales, Springer-Verlag, New 
York, 1995. 

[A4] Ascher, M. Ethnomathematics: A Multicultural View of Mathematical Ideas, 
Brooks Cole, Pacific Grove CA, 1991. 

[Bl] Bekken, 0., Fauvel, J., Johansson, B., Katz, V. and Swetz, F. Leamfrom 
the Masters, Mathematical Association of America, Washington DC, 
1995. 

[B2] Bell, E. Men of Mathematics, Simon and Schuster, New York, 1937. 
[B3] Bell, E. The Development of Mathematics, McGraw-Hill, New York, 1945. 
[B4] Bochner, S. The Role of Mathematics in the Rise of Science, Princeton Uni-

versity Press, Princeton, 1966. 
[B5] Boyer, C. A History of Mathematics, rev. by Uta Merzbach, Wiley, New 

York, 1991. 
[B6] Bronowski, J. The Ascent of Man, Little, Brown, New York, 1973. 
[B7] Buchanan, S. Poetry and Mathematics, John Day, New York, 1929. 
[B8] Burkert, W. Lore and Science in Ancient Pythagoreanism, Harvard Uni­

versity Press, Cambridge MA, 1972. 
[B9] Burton, D. History of Mathematics: An Introduction, Brown, Dubuque IA, 

1995. 
[Cl] Calinger, R., ed. Classics of Mathematics, Prentice Hall, Englewood Cliffs 

NJ, 1995. 
[C2] Calinger, R., ed. Vita Mathematica: Historical Research and Integration with 

Teaching, Mathematical Association of America, Washington DC, 1996. 
[C3] Campbell, D. and Higgins, J., eds. Mathematics: People, Problems, Results, 

3 vols., Wadsworth, Belmont CA, 1984. 
[C4] Cantor, M., ed. Vorlesungen iiber Geschichte der Mathematik, 4 vols., Johnson 

reprint, New York, 1965. 
[C5] Carroll, Lewis, The Annotated Alice: Alice's Adventures in Wonderland & 

Through the Looking Glass, notes by Martin Gardner, World Publishing 
Company, New York, 1963. 

[C6] Conway, J. and Guy, R. The Book of Numbers, Springer-Verlag, New York, 
1996. 

[C7] Coolidge, J. The Mathematics of Great Amateurs, Dover, New York, 1963. 
[C8] Courant, R. and Robbins, H. What is Mathematics? Oxford, New York, 

1941. 
[Dl] Dantzig, T. Number, the Language of Science, Doubleday Anchor, New 

York, 1956. 
[D2] Dauben, J. Georg Cantor: His Mathematics and Philosophy of the Infinite, 

Harvard University Press, Cambridge MA, 1979. 
[D3] Dauben, J. Abraham Robinson: The Creation of Nonstandard Analysis, a 

Personal and Mathematical Odyssey, Princeton University Press, Prin­
ceton, 1995. 

[D4] Davis, P. and Hersh, R. The Mathematical Experience, Birkhauser, Boston, 
1980. 

[D5] DeLong, H. A Profile of Mathematical Logic, Addison-Wesley, New York, 
1970. 

[D6] Dudley, U. Readings for Calculus, Mathematical Association of America, 
Washington DC, 1993. 

[D7] Dunham, W. Journey through Genius, Wiley, New York, 1990. 



326 Appendix 1. Writings "About" Mathematics 

[EI] Edwards, C.H. The Historical Development of the Calculus, Springer-Verlag, 
New York, 1979. 

[E2] Eves, H. An Introduction to the History of Mathematics, Holt Rinehart, and 
Winston, New York, 1969. 

[E3] Eves, H. In Mathematical Circles, Prindle, Weber, and Schmidt, Boston, 
1969. 

[E4] Eves, H. Mathematical Circles Revisited, Prindle, Weber, and Schmidt, 
Boston, 1971. 

[Fl] Fauvel, J., Flood, R., Shortland, M. and Wilson, R., eds. Let Newton Be! 
Oxford, New York, 1988. 

[F2] Fauvel, J. and Gray, J., eds. The History of Mathematics: A Reader, Mac­
millan, London, 1987. 

(F3] Fowler, D. The Mathematics of Plato's Academy: A New Reconstruction, 
Oxford, New York, 1990. 

[GI] Gardner, M. The Night is Large: CoUected Essays, 1938-1995, St. Martin's 
Press, New York, 1996. 

(G2] Ghiselin, B., ed. The Creative Process, Mentor, New York, 1952. 
[G3] Gillings, R. Mathematics in the Time of the Pharaohs, M.I.T. Press, Cam­

bridge, 1972. 
[G4] Gillispie, C., ed. The Dictionary of Scientific Biography, 18 vols., Scn"bners, 

New York, 1970-1997. 
[G5] Grattan-Guinness, 1., ed. Companion Encyclopedia of the History and Phi­

losophy of the Mathematical Sciences, 2 vols., Routledge, New York, 1994. 
[G6] Grattan-Guinness, I. The Fontana History of the Mathematical Sciences: The 

Rainbow of Mathematics, Fontana Press, London, 1997. 
[G7] Grinstein, L. and Campbell, P. Women of Mathematics: A Biobibliographic 

Sourcebook, Greenwood Press, New York, 1987. 
[G8] Guy, R. and Woodrow, R., eds. The Lighter Side of Mathematics, Mathe­

matical Association of America, Washington DC, 1994. 
[HI] Hadamard, J. The Psychology of Invention in the Mathematical Field, Dover, 

New York, 1954. 
(H2] Halmos, P. Mathematics as a creative art, The American Scientist 56, 375-

389 (1968). 
(H3] Halmos, P. Selecta: Expository Articles, Springer-Verlag, New York, 1983. 
(H4] Halmos, P. I Want to be a Mathematician: An Automathography, Springer­

Verlag, New York, 1985. 
[H5] Hardy, G.H. A Mathematician's Apology, Cambridge, New York, 1967. 
[H6] Henkin, L. Are logic and mathematics identical? Science 138, 788-794 

(1962). 
[H7] Hofstadter, D. Godel, Escher, Bach, Basic Books, New York, 1979. 
(H8] Honsberger, R. Mathematical Gems, Mathematical Association of Amer­

ica, Washington DC, 1973. 
[II] Infeld, L. Whom the Gods Love, Whittlesey House, New York, 1948. 
[Jl] Joseph, G. The Crest of the Peacock: Non-European Roots of Mathematics, 

Penguin, London, 1991. 
[KI] Kac, M. Enigmas of Chance: An Autobiography, U. of California Press, 

Berkeley, 1987. 
[K2] Kac, M. and mam, s. Mathematics and Logic: Retrospect and Prospects, 

Praeger, New York, 1968. 



Bibliography 327 

[K3] Kanigel, R. The Man Who Knew Infinity: A Life of the Genius Ramanujan, 
Macmillan, New York, 1991. 

[K4] Katz, V. A History of Mathematics: An Introduction, Harper Collins, New 
York, 1993. 

[K5] Kline, M. Mathematical Thought from Ancient to Modern Times, Oxford, 
New York, 1972. 

[K6] Korner, Stephan, The Philosophy of Mathematics: An lntroduction, Harper 
Torchbooks, New York, 1962. 

[K7] Kovalevskaya, S. A Russian Childhood, ed. by B. Stillman, Springer, New 
York, 1978. 

[Ll] Lang, S. TheBeautyofDoingMathematics, Springer-Verlag, New York, 1985. 
[L2] Le Lionnais, F., ed. Great Currents of Mathematical Thought, 2 vols., Do-

ver, New York, 1971. 
[L3] Littlewood, J.E. A Mathematician's Miscellany, Methuen, London, 1953. 
[Ml] Maddy, P. Realism in Mathematics, Oxford, New York, 1990. 
[M2] Mahoney, M. The Mathematical Career of Pierre de Fermat, 1601-1665, 2nd 

ed., Princeton University Press, Princeton, 1994. 
[M3] Menninger, K. Number Words and Number Symbols: A Cultural History of 

Numbers, M.I.T. Press, Cambridge, 1969. 
[M4] Meschkowski, H. Ways of Thought of Great Mathematicians, Holden-Day, 

San Francisco, 1964. 
[M5] Meschkowski, H. Evolution of Mathematical Thought, Holden-Day, San 

Francisco, 1965. 
[M6] Minsky, M. The Society of Mind, Simon and Schuster, New York, 1985. 
[M7] Moritz, R. Memorabilia Mathematica: The Philomath's Quotation Book, 

Mathematical Association of America, Washington DC, 1993. 
[NI] Nagel, E. and Newman, J.R. Gbdel's Proof. N.Y.U. Press, New York, 1958. 
[N2] Nelson, R. Proofs Without Words: Exercises in Visual Thinking, Mathe­

matical Association of America, Washington DC, 1993. 
[N3] Neugebauer, 0. The Exact Sciences in Antiquity, Dover, New York, 1969. 
[N4] Newman, J.R., ed. The World of Mathematics, 4 vols., Simon and Schuster, 

New York, 1956. 
[01] Ore, 0. Niels Henrik Abel: Mathematician Extraordinary, U. Minn. Press, 

Minneapolis, 1957. 
[02] Osen, L. Women in Mathematics, M.I.T. Press, Cambridge, 1974. 
[03] Osserman, R. Poetry of the Universe: A Mathematical Exploration of the 

Cosmos, Anchor, New York, 1995. 
[PI] Penrose, R. The Emperor's New Mind: Concerning Computers, Minds, and 

the Laws of Physics, Oxford, New York, 1989. 
[P2] Penrose, R. Shadows of the Mind: A Search for the Missing Science of Con­

sciousness, Oxford, New York, 1996. 
[P3] Poincare, H. The Foundations of Science, The Science Press, New York, 

1929. 
[P4] P6lya, G. Mathematical Discovery, Wiley, New York, 1962. 
[P5] Priestley, W. Mathematics and poetry: How wide the gap? Mathematical 

InteUigencer 12, 14-19 (1990). 
[RI] Reid, C. Hilbert, Springer-Verlag, New York, 1970. 
[R2] Reid, C. Courant in Gbttingen and New York, Springe.r-Verlag, New York, 

1976. 



328 

[R3] 

[R4] 

[R5] 

[R6] 

[8I] 

[82] 
[83] 
[84] 

[85] 
[86] 

[87] 
[88] 

[89] 
[TI] 

[Ul] 
[VI] 
[V2] 

[WI] 
[W2] 

[W3] 

[W4] 

[W5] 
[W6] 

[W7] 
[W8] 
[W9] 
[WIO] 

Appendix 1. Writings "About" Mathematics 

Reid, C. Julia· A Life in Mathematics, Mathematical Association of Amer­
ica, Washington DC, 1996. 
Rothstein, E. Emblems of Mind: The Inner Life of Music and Mathematics, 
Times Books, New York, 1995. 
Russell, B. The retreat from Pythagoras, The Basic Writings of Bertrand 
Russell, Simon and Schuster, New York, 252-256 (1961). 
Russell, B. The Autobiography of Bertrand Russell, 3 vols., Atlantic-Little 
Brown, Boston, 1967. 
Schmalz, R Out of the Mouths of Mathematicians: A Quotation Book for 
Philomaths, Mathematical Association of America, Washington DC, 1993. 
Simmons, G. Calculus Gems, McGraw-Hill, New York, 1992. 
Smith, D.E. A Source Book in Mathematics, 2 vols., Dover, New York, 1959. 
Steen, L. New models of the real-number line, Scientific American 225, 
92-99 (1971). 
Steinhaus, H. Mathematical Snapshots, Oxford, New York, 1969. 
Stolzenberg, G. Review of Errett Bishop's Foundations of Constructive 
Analysis, Bulletin of the American Mathematical Society 76, 301-323 (1970). 
Struik, D.J. A Concise History of Mathematics, Dover, New York, 1967. 
Struik, D.J. A Source Book in Mathematics, 1200-1800, Harvard, Cam­
bridge, 1969. 
Swetz, F.J., ed. From Five Fingers to Infimty, Open Court, Chicago, 1994. 
Toeplitz, 0. The Calculus: A Genetic Approach, University of Chicago 
Press, Chicago, 1963. 
Ulam, S. Adventures of a Mathematician, Scribners, New York, 1983. 
Vander Waerden, B.L. Science Awakening, Oxford, New York, 1961. 
Vilenkin, N. In Search of Infinity, trans. by Abe Shenitzer, Birkhiiuser, 
Boston, 1995. 
Weidman, D. Emotional perils of mathematics, Science I49, 1048 (1965). 
Weil, A The Apprenticeship of a Mathematician, trans. by Jennifer Gage, 
Birkhiiuser, Boston, 1992. 
Westfall, R Never at Rest: A Biography of Isaac Newton, Cambridge, New 
York, 1980. 
Weyl, H. Philosophy of Mathematics and Natural Science, Princeton Uni­
versity Press, Princeton, 1949. 
Weyl, H. Symmetry, Princeton University Press, Princeton, 1952. 
White, A, ed. Essays in Humanistic Mathematics, MAA Notes #32, Math­
ematical Association of America, Washington DC, 1993. 
Whitehead, A. Science and the Modem World, Macmillan, New York, 1925. 
Wiener, N. Ex-prodigy, M.LT. Press, Cambridge, 1964. 
Wiener, N. I am a Mathematician, M.LT. Press, Cambridge, 1964. 
Williams, J.D. The Compleat Strategyst, McGraw-Hill, New York, 1954. 



APPENDIX 

Sums and 
Their Limits 

This appendix is intended to supplement the discussion of Eudoxus' 
method given in Chapter 7 by presenting proofs of several summation 
formulas and by offering some more examples of summation techni­
ques. What follows may be read immediately after Section 6 of Chapter 7. 

Let us begin by discussing a problem which may be no further away 
than the nearest supermarket. We shall solve it two ways. The first 
solution makes no use of summation techniques. 

ProblemA 
Oranges are stacked in the form of a pyramid whose base is rectangular, 
with 6 oranges along one side and 10 oranges along the other. How many 
oranges are in the pyramid? 

Solution 1 
The bottom level, of dimensions 6 by 10, has 4 more oranges along one 
side than along the other. As any experienced stacker of oranges knows, 
it follows that every level will have 4 more oranges in one dimension 
than in the other. The size of the top level has to be 1 orange by 5 or­
anges, the next level must be of size 2 by 6, followed by a level of size 3 
by 7, and so on. Adding the oranges in each level-beginning at the top 
level- we see that the total number of oranges is given by 

1. 5 + 2. 6 + 3. 7 + 4. 8 + 5. 9 + 6 ·10 =· 175. D 

Solution 2 
The k-th level (counting from the top level down) will have k oranges 
along one side and k + 4 oranges along the other. Hence the k-th level 
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will contain k(k + 4) = k:'2 + 4k oranges. There are obviously 6 levels in 
all, so the total number of oranges is equal to 

6 6 6 6 

L oranges on k-th level= L(k2 + 4k) = L k'2 + 4 L k. (*) 
k=l k=l k=l k=l 

There are easy formulas for E k, for E k2 , and for E kl, given as fol­
lows: 

(1) 

t k:'2 = n(n + 1)(2n + 1), 

k=l 6 
(2) 

(3) 

(We shall prove these formulas shortly.) When n = 6, formulas (1) and 
(2) become 

t k = 6(7) = 21· 
k=l 2 , 

t ~ = 6(7)(13) = 91. 
k=l 6 

These, when put together with equation (*) above, show that the total 
number of oranges is equal to 91 + 4(21) = 175. 0 

In Problem A we needed to add together only six quantities. With such 
a small number of summands the use of summation techniques saves 
little time. Solution 2 will probably consume as much time as Solution 1. 
With a large number of summands, however, the use of summation 
techniques is almost indispensable. The reader will find it helpful to 
memorize formulas (1 ), (2), and (3). 

ProblemA+ 
Baseballs are stacked in the form of a huge pyramid, with a rectangular 
base of 60 balls by 50 balls. How many baseballs does the pyramid con­
tain? 

Solution 1 
Every level will have 10 more balls in one dimension than in the other, 
and there will be 50 levels in all. Counting from the top level down, we 
see that the total number ofballs is given by 

1 . 11 + 2. 12 + 3 . 13 + ... +50. 60 = ??! 0 
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Solution 2 
The k-th level from the top will have k balls along one side and k + 10 
balls along the other. Hence the k-th level contains k(k + 10) = "J<:2 + 10k 
balls, and the total number ofballs in the entire pyramid is given by 

50 50 50 

~)"J<:2 + lOk) = L:"J<:2 + 10· Lk 
k=l k=l k=l 

= 50(51)(101) + 10 50· 51 [by (1) and (2)] 
6 2 

= 55,675. 0 

§1. Collapsing Sums; Proofs of 
Formulas (1), (2) and (3) 

Here are some examples of a simple but important type of summation. 
The sum depends only upon the first and last terms, since the inter­
mediate terms cancel. The sum "collapses", making it quite easy to add 
up. The following equalities are obvious. 

(1-~)+(~-~)+(~-~)+···+(.!.--1 )=1--1 (4) 
2 2 3 3 4 n n+l n+l' 

[1 2 - 02] + [22 -12] + [32 - 22] + ... + [n2 - (n --1) 2] = n2 , (5) 

[1 3 - 03] + [23 -13] + [33 - 23] + · · · + [n3 - (n -- 1)3] = n3 . (6) 

In summation notation, formulas (4), (5), and (6) are expressed as 
follows. 

(4') 

n 

L:W- (k- 1)2 ) = n2 ; (5') 
k=l 

n 

L(~- (k -1)3) = n3. (6') 
k=l 

What is this good for? It seems too obvious to lead to anything interest­
ing. Yet interesting results are immediately at hand. Since (1/k)­
(1/(k + 1)) = lj("J<:2 + k), the obvious formula (4') immediately yields the 
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interesting summation formula 

n 

L 1/(~ + k) = n/(n + 1), 
k=l 

a result which may not be obvious. And the obvious formulas (5') and 
(6') lead immediately to proofs offormulas (1) and (2). 

Proof of Formula (1) 
First note that 

~ - (k- 1 )2 = ~ - (~ - 2k + 1) = 2k- 1' 

so that formula (5') becomes 

Therefore, 

n 

L(2k- 1) = n2 • 

k=l 

n n 

2 . L:)- I> = nz' 
k=l k=l 

n 

2 · Ek- n = n2 , 

k=l 

n 

2· Ek=n2 +n, 
k=l 

n n2 +n 
Ek=-. 
k=l 2 

Proof of Formula (2) 
First note that 

12 - (k - 1/ = k3 - (12 - 3~ + 3k - 1) = 3k2 - 3k + 1' 

so that formula (6') becomes 

n 

L(3k2 - 3k+ 1) = n3• 

k=l 

Therefore, 

n n(n+l) 
3 · L ~ - 3 + n = n3 • 

k=l 2 

D 



1. Collapsing Sums; Proofs of Formulas (1 ), (2) and (3) 333 

We want to derive formula (2) by solving this equation for~ k2 • This is 
easier to do if first we multiply through by 2: 

n 

6. 2::.: k2 - 3n(n + 1) + 2n = 2n3 . 

k=l 

Therefore (the reader is asked to supply the missing steps), 

n 

6 · L k2 = 2n3 + 3n2 + n 
k=l 

= n(2n2 + 3n + 1) 

= n(n + 1)(2n + 1), 

and formula (2) is obtained upon dividing by 6. 

Proof of Formula (3) 

0 

Since the idea of these proofs should be familiar by now, only the main 
steps are given. The reader is asked to fill in the details. Beginning with 
the collapsing sum 

n 

L(k4 - (k- 1)4 ) = n\ 
k=l 

and noting that k4 - (k- 1 )4 = 4k3 - 6k2 + 4k- 1, we get 

4 . 2::.: k3 - 6 . 2::.: k2 + 4 . 2::.: k - 2::.: 1 = n4 , 

where all the summations run from k = 1 to k = n. Using formulas 
already derived for ~ k2 , ~ k, and ~ 1, we obtain the equation 

Therefore, 

4 · L k3 - (2n3 + 3n2 + n) + (2n2 + 2n)- n = n4 . 

4 · L k3 = n4 + 2n3 + n2 

=n2 (n2 +2n+1) 

= n2 (n + 1)2 , 

and formula (3) is obtained upon dividing by 4. 0 

The summation formulas (1 ), (2), and (3) were known to the Greeks, 
but the proofs presented here are modern. The modem approach, using 
summation notation, has the advantage of applying equally well to the 
determination of formulas for ~k4 , ~k5 , etc.-sums which the Greeks 
apparently did not consider. The determination of such formulas is left 
to the reader as an exercise. 
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§2. Integrals of Quadratics and Cubics 

Many examples of Eudo:xus' method of calculating integrals are given in 
Chapter 7, but most of them deal with relatively simple linear functions. 
Here are some slightly more complicated applications of the method. 

EXAMPLE 1 
Calculate the integral J~ x2 dx, directly from its definition as a limit of 
sums. 

Solution 
We are asked to calculate J: f(x) dx, where a= 0, b = 1, and f(x) = x2. 
Here we have Ax= 1/n, Xk = kjn, and f(xk) = k2/n2 . An approximating 
sum for the desired integral is then given by 

Therefore, 

n 

Sn = L f(xk)Ax 
k=l 

=~tk2 
n k=l 

n(n + 1)(2n + 1) 
6n3 [by (2)] 

x2 dx = Limit Sn = Limit- 1 +- 2 +- =- (1 )(2) =-. Jl 1 ( 1) ( 1) 1 1 
0 6 n n 6 3 

EXAMPLE 2 

D 

Calculate the integral J; ax2 dx directly from its definition as a limit of 
sums. 

Solution 
This is only a slight modification of the preceding example. Here we 
have Ax= njn, Xk = kn/n, and f(xk) =a~ n2 /n2 • 

Sn = t(a~2n2) (~) =an; t ~ = an3n(n + 1~(2n + 1). 
k=I n n n k=I 6n 
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Therefore, 

ax2 dx = Limit Sn = Limit- 1 +- 2 + -- = -. J" an3 
( 1) ( 1) an3 

0 6 n n 3 
D 

EXAMPLE 3 
Calculate the integral J~ ax2 dx by Eudoxus' method. 

Solution 
This is treated just like the preceding example except that we have tin 
place of n. It is therefore obvious that the bottom line will read 

Jt at3 ( 1) ( 1) at3 
ax2 dx = Limit Sn = Limit - 1 +- 2 + -~ = -. 

0 6 n n 3 

EXAMPLE 4 

Calculate the integral J~ x3 dx by Eudoxus' method. 

Solution 
Here we have 

Therefore, 

1 ( 1)2 
=4 1 +;:i . 

Jl 1 ( 1)2 1 1 x3 dx = Limit Sn = Limit- 1 +- =- (1) =-. 
0 4 n 4 4 

EXAMPLE 5 

Calculate the integral J: x3 dx by Eudoxus' method. 

Solution 

D 

D 

Here are the main steps. The details are left to the reader. To save space 
the index k is suppressed in the summations below. The summations are 
understood to run from k = 1 to k = n. 
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Since Xk = a + k Llx, we have 

Sn = I>~Lix 
=~)a+ k Llx) 3 Llx 

= L)a3 + 3a2k(Lix) + 3a~(Lix)2 + k3 (Lix) 3]Lix 

= a3 (Lix) L) + 3a2 (Lix) 2 L:> + 3a(Lix)3 L ~ + (L1) 4 L k-'. 

Using the fact that Llx = (b- a)/nand using the summation formulas for 
L 1, L k, L k2 , and L ~, we get 

3 ) 3 2 2 ( 1) 1 3 ( 1) ( 1) Sn =a (b- a + 2 a (b- a) 1 + n + 2a(b- a) 1 + n 2 + n 

Taking the limit of Sn as n increases without bound, we see that 

Ib 3 1 
x3 dx = a3(b- a)+ -a2(b- a) 2 + a(b- a)3 +- (b- a)4 

a 2 4 

b4 a4 

4 4 D 

§3. Geometric Series and Applications 

The equation (1 + x)(1 - x) = 1 - x2 is such a simple algebraic identity 
that the most interesting thing about it is rarely noticed. The interesting 
thing is that it comes from a collapsing sum. 

(1 + x)(1- x) = (1)(1- x) + (x)(1- x) = (1- x) + (x- x2 ) = 1- x2 • 

This is about the simplest possible example of a collapsing sum. We 
should ask whether this example generalizes readily and whether the 
generalization is even more interesting. The answer is yes to both ques­
tions. 

The immediate generalization is this: 

(1 + x + x2)(1 - x) = (1 - x) + (x- x2 ) + (x2 - x3 ) = 1 - ~. 

And the far-reaching generalization is one of the most important identi­
ties in mathematics: 
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The identity is important because from it we get the following summa­
tion formula (by dividing both sides of the identity by 1 - x): 

(7) 

The series on the left is called a geometric series and its sum is given in 
equation (7). The result just obtained is useful enough to be called a 
theorem. (The "geometric" nature of 1, x, x2 , ••• is revealed in problem 4 
of Chapter 3.) 

Theorem on Geometric Series 
For a geometric series the following summation formula is valid, provided 
X# 1: 

n k 1-xn+l L>---
k=O 1-x 

(where x0 is understood to be 1). 

The reader should note the difference between the type of series 
now being considered and the type that was considered in Section 1. In 
Section 1 we found, for example, that 

tk2 = n(n+ 1)(2n+ 1); 

k=l 6 

whereas by the theorem just proved (with x = 2) we have 

n 1- 2n+l 
L2k= =2n+I_l. 
k=O 1- 2 

The reader should be careful not to confuse E 2k with E 1(2. One is a 
geometric series while the other is not. Note also that the formula for 
the geometric series above is for the sum beginning with index k = 0. 
By subtracting 1 from both sides of equation (7) we get an analogous 
formula where the index k begins at 1: 

EXAMPLE 6 
Evaluate the sum 

n k X- xn+l 
"'"' X = , X =/= 1. ~ 1-x 
k=l 

1 (1)2 (1)3 (1)n 1 +4+ 4 + 4 +···+ 4 . 
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Solution 
The sum in question comes from the geometric series 

By (7) its sum is 

1 - mn+I - _i- ~ (~)n 4 
1-i -3 3 4 ::::3 

if n is a large positive integer. 

EXAMPLE 7 

0 

Consider the function given by f(x) = 1/(1 - x). Find an approximation 
of this function given by nonnegative powers of x. 

Solution 
Equation (7) says 

1 Xn+I 1 
1+x+il+x3 +···+xn=-----:::: __ 

1-x 1-x 1-x 
if x :::: 0. Therefore, 

1 n -:::: L x", if X:::: 0. 
1- X k=O 

This answer should be compared to the result of problem 11 (i) at the end 
of Appendix 5. 0 

Here is a dazzling application of the use of a geometric series. It is due 
to Fermat. While the theorem is easy to prove using the fundamental 
theorem of calculus, Fermat was able to prove it before the fundamental 
theorem was known. The proof demands careful attention, as some 
details of it are left to the reader. 

Theorem (Fermat) 
Let A be the area beneath the graph of the curve y = tn (where n is a positive 
integer) between t = 0 and t =b. Then A= bn+I /(n + 1). 

Proof 
Let x be a positive number just less than 1 and consider the (infinite) 
sequence of numbers 

b,bx,bx2 ,bx3 , ... ,bx", ... 

which subdivide the interval from t = 0 to t = b into infinitely many 
subintervals. For fixed x, let A, be the area beneath the staircase built 
upon these subintervals. 
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(0,0) 

As x ~ 1- the staircase approximates the curve ever more closely. 
Hence the area A beneath the curve is given by 

A= Limit A,.. 
X-+ I-

We shall first calculate A,.. To do this it is convenient to start at the top 
step and go down, with the top step counted as the 0-th step. Then the 
k-th step looks like this. 

bx>+ 1 bx• 

height: b"x.,. 
width: b(l - x)x• 

The area beneath the k-th step is then bn+1(1- x)(xn-t-I)k, and the total 
area Ax (where x < 1) is given by summing, beginning at k = 0: 

Ax = bn+l (1 - x) [1 + xn+l + (xn+l )2 + (xn+l )3 + .. ·] 

= bn+l (1 - x) [ 1 ] (why?) 
1 -xn+l 

= bn+l [ 1 ~~~l] 
= bn+l /(1 + x + x2 + .. · + xn) [by (7)]. 
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Therefore, 

A= Limit Ax= Limit bn+l/(1 +X+ x2 + ... + xn) 
x~I- X---+1-

= bn+I/(n + 1). D 

Problems (Optional) 

1. Baseballs are stacked in the form of a pyramid with a rectangular base of 40 
balls by 36 balls. How many balls are in the pyramid? 

2. Evaluate each of the following sums. 
(a) 1 · 8 + 2 · 9 + 3 · 10 + 4 · 11 + .. ·+50· 57. 
(b) 1/{1 . 2) + 1/{2. 3) + 1/(3. 4) + ... + 1/(99. 100). 

(c) E~~01 ](3. 
(d) L~oi 3k. 

(e) L~~o (!)k. 

3. (a) Prove that E~=I k" = n(n + 1)(2n + 1)(3n2 + 3n- 1)/30. 
(b) Use the result of part (a) to calculate I~ ;0 dx by Eudoxus' method. 

4. Find a formula for E k"' and use it to calculate I~ X" dx. Caution: Keep a cool 
head. This problem can cause nervous breakdowns. 

5. Apply Eudoxus' method to calculate each of the following integrals. 
(a) J:(3x3 - 2x2 ) dx. 

(b) I~2 (2x3- 7x) dx. 

(c) I~1 (x2 - x + 4) dx. 

6. (For those who think they understand infinity) This book has avoided mention­
ing the symbol for infinity until now, because the symbol is so easily mis­
understood. Test whether you understand it or not, by explaining why it is 
natural to write 

00 

Lxk = 1/(1- x), if -1 < x < 1; 
k=O 

and yet at the same time to write 

00 

L~-#1/(1-x), ifx<-1orx>l. 
k=O 

7. (a) When did Fermat die? 
(b) When did Newton discover the fundamental theorem of calculus? 
(c) Look again at the theorem of Fermat's proved in the last section. Give a 

one-line proof of this theorem by making use of the fundamental theorem 
of calculus. 
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8. (An ambitious project) Geometric series continue to find many surprising ap­
plications, even to the present day. Yet none could be more charming than 
the application made by Archimedes to effect a quadrature of the parabola. He 
proved that the area of a segment of a parabola is equal to four-thirds the area 
of its largest inscribed triangle. (The factor 4/3 comes from the fact that 
:E~oWk = 4/3, as seen in Example 6.) In modern terminology we may state 
this result as follows: 

Theorem (Archimedes) 
Let A be the area enclosed between the graph of a linear fUnction and the graph of 
a quadratic fUnction, and let T be the area of the largest triangle that can be in­
scribed inA. Then A= (4/3)T. 

Either (a) prove this result through the use of calculus; or (b) look up Archi­
medes' original proof and write a paper on it, sketching the main points. 

9. Prove that for each positive integer n, 

13 + 23 + · · · + n3 = (1 + 2 + 3 + · ·. + n)2 . 



Archimedes 
APPENDIX 

The mind of Archimedes is modern. Though he was born about 287 B.C., 

one may expect to have difficulty understanding his work unless one 
knows something of the developments in mathematics that took place 
two thousand years later. 

In his published papers Archimedes characteristically put together his 
ideas with such tight logic that the adjective archimedean has come to 
refer to any logical demonstration meeting the very highest standards 
of rigor. The reader interested in seeing truly archimedean demonstra­
tions is invited to consult T.L. Heath, The Works of Archimedes, Cam­
bridge, 1912 (also available in paperback by Dover Publications). This 
appendix outlines only a few of his ideas, and these are given pre­
sentations that may be described as casual if compared with archime­
dean standards. 

§1. Archimedes and the 
Classical Problems 

The three so-called "classical problems of antiquity" are as follows. 

(The Trisection Problem) Given an angle, devise a method for con­
structing another angle one-third as large. 

(The Quadrature of the Circle) Given a circle, devise a method for con­
structing a square having the same area. 

342 
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(The Duplication of the Cube) Given a cube, devise a method for con­
structing another cube whose volume is twice as large. 

It is probably safe to say that every Greek mathematician worked 
seriously on at least one of these famous problems. It ought to be sur­
prising, therefore, that Euclid's Elements gives no account of them. 

Why did Euclid not discuss these easily stated, natural problems? The 
reason is simple. Euclid did not know how to do them. Nor did anyone else. 
The construction of the required trisection, quadrature, or duplication 
eluded the efforts of the greatest mathematicians. 

It is important to understand what Euclid meant by a "construction". 
In Euclidean geometry a construction may use a ruler and a compass, 
but nothing else. And the "ruler" can have no distance markings on it, its 
use being only as a straightedge to draw straight lines through points 
already constructed. Using Euclidean constructions, no one was able to 
solve any of the three problems above. 

Archimedes somehow recognized the futility of Euclidean methods 
of attacking these problems, and reacted in a thoroughly modem way. 
If traditional theory proves inadequate to handle the type of thing for 
which it was designed, then something new is needed. 

In a sense, it is "obvious" that each of the problems above has a solu­
tion. For example, it is obvious that there exists a trisection of a sixty­
degree angle. (An angle of twenty degrees, of course, does the trick.) The 
whole problem is in constructing an angle of twenty degrees from a given 
angle of sixty degrees through the use of ruler and compass alone. Archi­
medes devised the following construction of striking simplicity. 

Given an angle, we may construct a circle whose center 0 lies at the 
angle's vertex: 

On a ruler, or straightedge, mark off two points R and S the distance 
between which is equal to the radius OQ. Now perform the following 
trick with the straightedge. Keeping the point R on the line through OQ 
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and keeping the point S on the circle, manipulate the straightedge until 
it touches the point P: 

The angle PRQ is the required trisection of the given angle POQ The proof 
of this is easy and is left to the reader. Hint. Begin by drawing the tri­
angles RSO and SOP and note that they are isosceles triangles. 

As Archimedes pointed out, the construction just outlined is done 
with ruler and compass, but it is not a Euclidean construction. Why is it 
not a Euclidean construction? 

Archimedes' answer to the problem of squaring the circle resulted in 
one of the most important papers in mathematics. Instead of finding a 
square of the same area as the circle, Archimedes found a triangle, 
which is just as good. 

Archimedes' Quadrature of the Circle 
A circle has the same area as a triangle whose base is equal to the circum­
ference of the circle and whose height is equal to the radius. 

Proof 
Let A be the area of the circle of radius r and let B be the area of the right 
triangle with legs oflengths rand C. 

~Area A 

\V·~ 
c 

There are clearly three logical possibilities: 

(a) A> B, 
(b) A< B, 
(c) A =B. 
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To prove (c) Archimedes used the principle of elimination. He proved 
that neither possibility (a) nor possibility (b) could be true. This leaves 
(c) as the only case not eliminated. 

Proof that possibility (a) is false 
We use the method of reductio ad absurdum. Suppose A> B. Then the 
number B is not equal to A but is only an approximation. How can we 
get a better approximation? That is easy. We can approximate the circle 
as closely as we please by a regular polygon inscribed inside, and there­
fore there is such a polygon whose area Pis a better approximation to A. 
Then we have 

A >P>B. (1) 

But this leads quickly to a contradiction. Let p denote the length of 
the polygon's perimeter and let r' denote the polygon's "radius" (see the 
figure below). 

It follows that 

P = ! r'p (by problem 14 of Chapter 3) 

< !rC (since r' < rand p < C). 

Therefore, P < !rC. But !rC = B, so 

P<B. (2) 

Statements (1) and (2) contradict each other. This contradiction arises 
from the supposition that A >B. This supposition is therefore false. 
Possibility (a) has been proved false. 

Proof that possibility (b) is false 
This proof follows closely the lines of the proof above, except that a 
circumscribed polygon approximating the circle is brought into play. 
Suppose that A < B. Then there is a circumscribed regular polygon satis­
fYing condition (1) but with the inequalities reversed. This leads quickly 
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to a contradiction (the demonstration of which is left to the reader), 
which shows that the supposition A < B must be false. 

By "double elimination" it follows that A = B. 0 

In the theorem above, Archimedes tells us how to construct a triangle 
equal in area to a given circle. However, the construction given is not a 
Euclidean construction. (Why not?) 

In fact, this theorem occupies only a small (though essential) place in 
Archimedes' celebrated paper on the quadrature of the circle. The main 
body of the paper is concerned with estimating the numerical value of 
the ratio of the circumference of a circle to its diameter. (Today this ratio 
is always denoted by the Greek letter n-the first letter in the Greek 
word for perimeter-but this notation was popularized only in the eigh­
teenth century by Euler.) Archimedes found this ratio to be between 3M' 
and 3~, as we have seen in Section 3 of Chapter 3. 

Actually, there existed before Archimedes other successful (but not 
Euclidean) methods of trisecting angles and squaring circles. In fact, a 
single curve-aptly called the quadratrix-could be employed in solving 
both problems. Hippias and Dinostratus had shown how to do this, but at 
the expense of a considerable departure from traditional methods. 

Like Hippias and Dinostratus, Archimedes did not hesitate to break 
with tradition when tradition prevented him from attending his calling. 
But when he broke, he evidently did not like to go further away than he 
had to. When Archimedes found Euclidean constructions inadequate 
he tried to develop adequate constructions that were almost Euclidean. 
Happily he found them, as we have seen above, even though he also 
found a single curve-the spiral-that could be used to do the same job 
as the quadratrix. 

In the case of the third of the classical problems, the duplication of 
the cube, Archimedes offered no new solution. Solutions (using non­
Euclidean constructions) had already been given by Archytas, Eudoxus, 
Eratosthenes, Apollonius, and others. In modern terms the problem can 
be stated as follows. Given a cube whose sides have length s (yielding a 
volume of s3), construct a cube with sides x whose volume is 2s3 , or twice 
as large. This means one must construct a length x satisfying the equa­
tion 

(3) 

where sis given. There are many (non-Euclidean) ways of doing this. 
Archimedes did something harder. Instead of posing for himself the 

problem of solving the simple cubic equation (3), Archimedes tackled 
the analysis of cubic equations in general. Since the Greeks couched all 
their algebra in geometric terms, and since they did not consider nega­
tive numbers, it would not be said today that Archimedes gave the first 
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complete analysis of the general cubic equation. But if it were said, it 
would not be far wrong. 

As we have seen, Archimedes failed in his attempts to solve the three 
classical problems of antiquity through the exclusive use of Euclidean 
methods. These are among his few failures, but we now know that they 
are nothing to be ashamed of. No Euclidean method, no matter how in­
genious, will solve any of these problems. The inadequacy of Euclidean 
methods in this regard was conclusively demonstrated in the nineteenth 
century. This demonstration may be found in many undergraduate texts 
on modern algebra, but it is beyond the scope of the present text. 

§2. Archimedes' Method 

When does a seesaw balance? Answer: when the moments on each side 
are equal, the moment being defined as the product of a weight with its 
distance from the lever's fulcrum. This principle is a cornerstone of 
statics, a branch of physics that studies conditions of equilibrium. 

-d,-d2---

Weight w2 

Law of the lever: 
The lever is in equilibrium ifw1d1 = w2d2 

This principle was known to the Greeks before Archimedes was born. 
Yet Archimedes was the one to see how this tool could be used to open 
the way toward mathematical physics. He postulated simple axioms 
about statics, from which he proceeded to deduce the law of the lever 
and much, much more. He began investigating, with great success, the 
problem of finding the centroid, or center of gravity, of a solid figure. 
When he incorporated into all this his famous principle: of buoyancy (the 
upward force on an object submerged in water is exactly equal to the 
weight of the water displaced), he invented the science of hydrostatics. 
Though Archimedes is said to have deplored "the whole trade of en­
gineering", he could not have failed to know that his work would have 
practical applications to engineering. Everything from the design of 
more efficient compound pulleys to the design of more stable floating 
vessels is connected with it. 
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As impressive as all this might be, there is yet another application 
of the law of the lever that is even more surprising. Archimedes per­
ceived-in what must be described as a flash of genius-that the lever 
can be brought into play with problems of pure mathematics. While a 
physical principle cannot, of course, be admitted into an archimedean 
demonstration of pure mathematics, a physical principle (or anything 
else, for that matter) can certainly be used to make guesses. And an 
archimedean guess precedes an archimedean demonstration. 

The law of the lever applies only to the physical world, of course. But 
it occurred to Archimedes that there ought to be an analogous law in the 
realm of geometry! What should such a law say? Archimedes began to 
play with the idea ofbalancing geometric objects against each other. He 
reasoned, for example, that equilibrium would hold in the following 
situation. 

circle, 
area nd2 

Since nxd · d = nd2 · x, equilibrium obtains 

Since a body behaves as if all its weight is concentrated at its center of 
gravity, the configuration below is essentially the same as the one above, 
and is therefore in equilibrium. (The combined area of the two circles 
below is equal to the area of the square in the picture above.) 

Reasoning somewhat as Cavalieri was to do centuries later (see 
Chapter 7), Archimedes concluded that we must have equilibrium in the 
following figure-for each vertical slice through the cylinder is exactly 
balanced by a corresponding pair of horizontal slices in the sphere and 
cone. 
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sphere, 
diameter d ,_,.,.,.,,~,...! 

cone, 
radius d 

and height d 
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What is all this good for? Archimedes used it to guess the volume of a 
sphere. The volumes of cones and cylinders were well known already. 
Since the configuration above balances, the law of the lever says that 

. d 
(volume of sphere and cone). d =(volume of cylmder). z· 

(The length d/2 is the moment arm of the center of gravity of the 
cylinder.) Dividing by din this equation shows that 

volume of sphere+ volume of cone=! (volume of cylinder). 

Let V denote the volume of the sphere of diameter d. Then by known 
formulas for the volumes of cones and cylinders the above equation be-
comes 

1 1 v +- rr:d3 = -rr:d3 
3 2 , 

from which it follows that 

1 4 
V = -rr:d3 =- rr:r3 

6 3 , (4) 

where r (=!d) is the radius. The volume of a sphere is then given by 
equation (4). 

This is one of several extraordinary balancing acts that Archimedes 
was able to perform. They are all examples of his so··Called "method", 
described in his famous letter to Eratosthenes. He emphasized that his 
method was used only to make guesses at what seemed to be plausible. 
Once he knew the likely truth he could prove it by rigorous means, such 
as the principle of double elimination illustrated in Section 1. 

Let us look at just one more example of what a genius can see. In his 
letter to Eratosthenes, Archimedes says 

... judging from the fact that any circle is equal to a triangle with base 
equal to the circumference and height equal to the radius of the circle, I 
apprehended that, in like manner, any sphere is equal to a cone with 
base equal to the surface of the sphere and height equal to the radius. • 

• From The Method of Archimedes, pp. 20-21 of the supplement to The Works of Archimedes, 
edited by T. L. Heath, Cambridge, 1912. 
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Archimedes has guessed this cubature of the sphere: 

Sphere of @---
surface area S -- -T------
and radius r r Cone of -------___ 1 __ -=~- baseS and -E::::::3 height r 

If this guess is correct it follows that 

4 1 
-nr3 =-Sr 
3 3 

from the formulas for the volumes of spheres and cones. Solving this 
equation for the surface area S yields 

S = 4nr2 . (5) 

In this way Archimedes guessed the correct formula (5) for the sur­
face area of a sphere. The surface area is exactly four times as large as 
any great circle in the sphere, according to Archimedes. Having guessed 
the right answer he then proved it by completely different means, giving 
a rigorous demonstration to meet his standards. 

As Archimedes once noted on a different occasion, a light touch-if 
properly applied-can move the earth. 

Problems (Optional) 

1. Prove that Archimedes' trisection technique actually works, as follows: in the 
figure of Section 1 illustrating this technique, let oc = angle PRQ, let 
P = angle POQ, and prove that P = 3oc. 

2. (a) Given lengths x andy, outline a Euclidean construction that produces 
the length ..jXjj. Hint. Ponder the figure below. What is the length PQ? 
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p 

Semicircle with 
diameter x + y 
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(b) Devise a way of effecting a quadrature of a rectangle, using only Eucli­
dean methods. That is, given a rectangle of sides x and y, construct a 
square having the same area as the rectangle. Hint. Use the result of part 
(a). 

(c) Devise a way of effecting a quadrature of a triangle, using only Euclidean 
methods. Hint. First construct by Euclidean methods a rectangle having 
the same area as the given triangle. Then use the result of part (b). 

3. Many references are listed at the end of Appendix 1. Several of them discuss 
the quadratrix of Hippias and Dinostratus. 
(a) Find a book that discusses the quadratrix (also called the trisectrix). 
(b) Be prepared to illustrate in class how the quadratrix can be employed to 

trisect an angle and to square a circle. 

4. Find a book that discusses Archimedes' spiral and be prepared to illustrate in 
class how the spiral can be employed to trisect an angle and to square a circle. 

5. It is impossible to duplicate the cube using only Euclidean constructions. 
Find a way to do it that uses constructions that are "almost" Euclidean. If you 
need to, find and use a book that discusses the Greek attempts to solve the 
Delianproblem (as the problem of duplicating the cube was known). 

6. We have already noted (in exercise 10.4 of Chapter 7) that Archimedes found 
the ratio of the volume of a cylinder to the volume of an inscnbed sphere. 
Archimedes also found the ratio of the surface area of the cylinder (including 
its base and top) to the surface area of the inscnbed sphere. What is this ra­
tio? 

7. Archimedes' "balancing act" descnbed in Section 2 works not only for a 
sphere but also (as Archimedes pointed out) for a segment of a sphere. Only 
a slight modification of the method described in Section 2 is needed to 
determine the volume of this segment of a sphere: 

/ A segment with height h Teo-1 h of a sphere with diameter d 

Guess what this volume is by using the method of Archimedes. Then verifY 
your result by calculus. Hint. Let V denote the volume of the segment of 
height h pictured above. By Archimedes' method of balancing, derive the 
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relation 

Then solve for V. Check your answer to see that it is the same as the integral 

J
~r+h 

~r n(r2 -x2 )dx, 

which gives V as the volume of a solid of revolution. 

8. The proof given in Section 1 of Archimedes' quadrature of the circle is left 
unfinished. The proof that possibility (b) is false is left to the reader. Write 
out this proof in detail. 

9. Write a short essay either defending or attacking Voltaire's assertion that 
Archimedes is superior in imagination to Homer. 

10. (Only for those who have studied trigonometry) Familiarity with trigonometric 
identities involving double-angle (or half-angle) formulas makes it easy to 
prove that the pattern observed by the Scottish mathematician James Greg­
ory (1638~1675) must continue in the successive rows of the table begun in 
exercise 3.13 of Chapter 3. There is no evidence that Archimedes noticed this 
pattern, even though his work, done before our modern sine and cosine 
functions were defined, shows an ease in using formulas equivalent to our 
double-angle formulas for the sine and cosine. 
(a) Using familiar trigonometric identities, show that 2tan(l:l/2) is the har­

monic mean ofsin(l:l) and tan(l:l) if !:I is an acute angle. 
(b) Show that for any acute angle 0, 2 sin( 1:1 /2) is the geometric mean of 

sin(l:l) and 2tan(l:l/2). Hint. Show that 4sin2 (1:1/2) = 2tan(0/2)sin(l:l). 
(c) Using an appropriate figure, show that a regular polygon with n sides 

inscribed in a circle of radius r has a perimeter p given by p = 

2nr sin(l:l), where 1:1 is 180/n degrees. Then show that it has a perimeter 
P given by P = 2nr tan( 1:1) if the polygon is circumscribed instead of 
inscribed. 

(d) Deduce from part (c) that the table below must produce exactly the 
same numbers as the table in exercise 3.13 of Chapter 3. 

n n sin(180/n) n tan(180/n) 

6 6 sin(30°) 6 tan(30°) 
12 12 sin(15°) 12 tan(15°) 

n n sin( I:/) n tan(O) 
2n 2n sin(l:l/2) 2n tan(l:l/2) 

(e) Deduce from parts (a) and (b) that the pattern observed by Gregory 
must continue. 
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Clean 
Writing in 
Mathematics 

Style is like good manners. Its lambent presence is barely noticeable, but 
its absence is conspicuous. Taken in a broad sense, style can be dis­
cerned almost everywhere. One can speak of style (or its absence) in 
playing basketball, in hosting a dinner party, in presiding over a meet­
ing, in teaching a class, or even-the subject of this appendix-in writing 
out the solution to a problem in calculus. 

In such activities style is characterized by the light touch that draws 
harmony out of imminent disorder and makes difficult things seem easy. 
Everyone hates the burden of unnecessary fuss and bother; the grace 
that comes from easing this burden is the hallmark of style. In any pur­
poseful activity it is style that eases the way. 

Style must be natural because it cannot be affected. Affectation will 
draw attention only to itself, while style would draw attention straight­
way to the goal at hand. 

Style is an outgrowth of education, not a product of it, for style cannot 
be readily taught or learned. It is acquired almost incidentally, like good 
manners, by those who want to please. Yet the final aim of education 
may be the cultivation of a sense for style. 

Finally [out of education], there should grow the most austere of all 
mental qualities; I mean the sense for style. It is an aesthetic sense, 
based on admiration for the direct attainment of a foreseen end, simply 
and without waste. Style in art, style in literature, style in logic, style in 
practical execution have fundamentally the same aesthetic qualities, 
namely, attainment and restraint. The love of a subject in itself and for 
itself, where it is not the sleepy pleasure of pacing a mental quarter­
deck, is the love of style as manifested in that study. 

353 



354 Appendix 4. Clean Writing in Mathematics 

... Style, in its finest sense, is the last acquirement of the educated 
mind; it is also the most useful. It pervades the whole being. The ad­
ministrator with a sense for style hates waste; the engineer with a sense 
for style economises his material; the artisan with a sense for style pre­
fers good work. Style is the ultimate morality of mind. 

But above style, and above knowledge, there is something, a vague 
shape like fate above the Greek gods. That something is Power. Style is 
the fashioning of power, the restraining of power. But, after all, the 
power of attainment of the desired end is fundamental. The first thing 
to do is to get there. Do not bother about your style, but solve your 
problem, justifY the ways of God to man, administer your province, or 
do whatever else is set before you. 

Where, then, does style help? In this, with style the end is attained 
without side issues, without raising undesirable inflammations. With 
style you attain your end and nothing but your end. With style the effect 
of your activity is calculable, and foresight is the last gift of gods to men. 

Alfred North Whitehead* 

§1. What to Do After Solving a Problem 

Much of this text aims at aiding the reader to acquire the power to solve 
problems. This appendix is not about solving problems, but about what 
to do afterwards. Unless a problem is so easy that its answer is virtually 
apparent at the outset, one should not be content with merely finding 
the answer. One ought to develop a style of justifying what one believes 
to be true. 

The tone of that justification should be geared to the expectations of 
those to whom it is addressed. Archimedes aimed at satisfying the high­
est expectations of his most critical fellow mathematicians. 

[Archimedes' deliberate style] suggests the tactics of some great strate-
gist who foresees everything, eliminates everything not immediately 
conducive to the execution of his plan, masters every position in its 
order, and then suddenly (when the very elaboration of the scheme has 
almost obscured, in the mind of the spectator, its ultimate object) strikes 
the final blow. Thus we read in Archimedes proposition after proposi-
tion the bearing of which is not immediately obvious but which we find 
infallibly used later on; and we are led by such easy stages that the 
difficulty of the original problem, as presented at the outset, is scarcely 
appreciated. 

T. L. Heatht 

Plutarch must have been right in suggesting that it was only by means 
of the greatest labor that Archimedes' works appear so unlabored. Archi-

• Presidential address to the Mathematical Association of England, 1916. (Reprinted in The 
Aims of Education, by A. N. Whitehead, Macmillan, 1929, p. 24.) 
t Preface to The Works of Archimedes. Cambridge. 1897, p. vi. 
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medes was willing to put forth any amount oftime and effort in his work. 
He was baffled for years, he tells us, before he was able to write some of 
his papers. 

No one (including the instructor) in an introductory calculus course 
should be expected to meet archimedean standards. But some standards 
of clean exposition can be developed and maintained. Here are a few 
rules that might be considered. 

(1) Do not slavishly follow any set of rules, even these. 
(2) State clearly what information has been given at the outset, and 

make each succeeding step in your reasoning follow from what has 
gone before. 

(3) If you introduce a symbol such as "x", be sure to indicate what it 
stands for. Your reader may not guess. Similarly, never introduce the 
pronoun "it" unless there can be no confusion as to what "it" stands 
for. 

( 4) Say exactly what you mean. Do not, for example, put an "equals" 
sign between unequal quantities. 

(5) Write complete sentences and punctuate them correctly. Remember 
that an equation is (usually) a sentence. 

(6) By being as concise and as natural as you can, disguise whatever 
effort it may have cost you to attain your goal. Be serious but not 
solemn. 

(7) When you have completed your argument and have led your reader 
to the end, state your full conclusion in a complete sentence. Then 
stop writing. 

(8) Review what you have written and delete anything irrelevant. 

All of these rules may be condensed into one short Latin phrase: 

Respice fin em!* 

It takes thought and time to produce a clear and concise piece of 
writing. The story is told that Pascal-a master of French prose-once 
apologized at the end of a long letter, saying that he simply had not had 
time to write a short letter. The great mathematician C. F. Gauss told a 
friend: 

You know that I write slowly. This is chiefly because I am never 
satisfied until I have said as much as possible in a few words, and writ­
ing briefly takes far more time than writing at length. t 

But one can write too little just as easily as one can write too much. A 
proper balance must be struck. 

• Literally, "Respect your goal!" or "Have a high regard for the final result!" The phrase is 
often understood in its broadest sense, where it expresses a philosophy oflife. 
t From a letter by Gauss, as quoted in Ways of Thought of Great Mathematicians, by Herbert 
Meschkowski. Holden-Day, 1964, p. 62. 
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EXAMPLE 

Consider the function given by f(x) = x2 - 4x + 2. Find the coordinates 
of the highest point on the graph off if the domain off is specified by 
the inequality 0 ~ x ~ 3. 

"Solution" by Student D 

y=x2 -4x+2=2x-4=0 

2x = 4 

X=2 

Remark 
Student D appears to be slavishly following rule 1, for he has broken 
rules 4, 5, and 7. His statement 

x2 -4x+2=2x-4 

adds a touch of algebraic humor to this brief comedy of errors. 

"Solution" by Student C 
If y = x2 - 4x + 2, then y' = 2x- 4. The derivative is then equal to zero 
when 2x - 4 = 0, or x = 2. The point x = 2 is then the highest point on 
the graph of f. 

Remark 
Although Student C demonstrates knowledge of a nonalgebraic lan­
guage-and thus appears to be better educated than Student D-his 
attempted solution is still inadequate. For one thing, the point x = 2 is on 
the x-axis and not on the graph of f. 

"Solution" by Student B 
To find the highest point, we set the derivative 2x- 4 equal to zero. We 
get x = 2. Since f(2) = -2 we have a horizontal tangent line to the graph 
off at the point (2, -2). The highest point is therefore (2, -2). 

Remark 
Student B has favored us with four informative sentences indicating 
much knowledge of calculus. But the fourth sentence does not follow 
from the third, and this breaks rule 2. 

Solution by Student A 
The only critical point occurs when x = 2. Since the largest value at­
tained by a continuous function must occur at a critical point or at an 
endpoint, we need only glance at the following table to see that (0, 2) is 
the highest point on the graph of f. 
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Remark 
Student A has style. 

Solution by Student A+ 

m 2 
2 

3 
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Since the second derivative (given by f"(x) = 2) is always positive, the 
curve f is always concave upwards. Every such curve, like every smile, 
reaches its highest point at one end, and the endpoints here are (0, 2) 
and (3, -1). The highest point on the curve is then (0, 2). 

§2. Rewriting 

"This first thing to do is to get there. Do not bother about your style, but 
solve your problem ... " Whitehead's point is well taken. Virtually any 
means of solving a problem is legitimate, whether by a calculated 
method, by eliminating wrong answers, or by pure guesswork. If you are 
like the author of this book, you will make a big mess. You will fill up 
pages with hastily scrawled, illegible handwriting (half of which will be 
crossed out, being irrelevant), you will sketch badly drawn figures 
(which will not be improved when you spill coffee on them), and you 
will lose your pencil (the one that still had a good eraser). You will begin 
to believe those who say that scientific research is the -purest example of 
an essentially comic activity. 

But you learn, after all, through play; comic activity serves a serious 
purpose. Almost miraculously, your playful attempts may begin to give 
form to something new, however dimly conceived. Then your work is 
really cut out for you. What is becoming clear to you must be shown re­
lated to things familiar to all. It is here, with your end already in mind, 
that you begin to worry about style. 

The chances are that you must rethink your whole project. First you 
must decide for whom you are writing. Are you addressing your in­
structor and classmates, or some wider circle? It is well to keep in mind 
some real or imaginary audience. 

What is your goal? Is it to impress your reader with your knowledge, 
or is it to lead your reader to that knowledge? Or do you see your task as 
offering the most direct possible justification of some assertion? Your 
goal will determine your style. 
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EXAMPLE 

A Norman window is in the shape of a rectangle surmounted by a semi­
circle. If the perimeter of the window is 16 feet, find the dimensions 
maximizing the area. 

Comic activity. 

2..1 + :z..l L/t'l') = II. 
, -t- I...},.,. : 8 

'(} ~ 'i .. l./• 

1( .. - 'lf'r -'2..\"" 

2-

A ... i ~,.,_ ..... 
- i«t"'lr + 

+ 1 
• 

-
1 -r'Z. + I' t.. "l.. ., "' r - rrl""' - 2 r z. 



2. Rewriting 

A' -- 1Tr -t I~ -l.'tfY"' -tfr ~ o 

-11 r - '1- r- = - n 
(-r -~) r ~ -I~ 

J.!:_ ~ L 
q. -t .,-

A If ~ rr- '2..1t" - '1 .. --rr- 'f ~ 0 

Solution A 

5•~ r\ 
,vlt.~ 
~· 
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Let r be the radius of the semicircle making up the top of a Norman 
window whose perimeter is 16 feet. It follows easily that the rectangular 
portion ofthe window must be of dimensions 2rby (16 -nr- 2r)/2 feet. 
The area A of the window is the sum of the areas of the semicircle and 
the rectangle: 

1 
A= Z nr2 + 2r(16- nr- 2r)/2 

= ( -2- ~ n )r2 + 16r. 

This is just a simple quadratic function whose leading term is negative, 
so it attains a maximum at its critical point. To find the critical point we 
set the derivative A' equal to zero: 

2 ( -2- ~ n) r + 16 = 0, 

(4 + n)r = 16, 

r = 16/(4 + n) 

~ 2.24 feet. 
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To maximize the area, the rectangular portion of the window must be of 
dimensions 4.48 by 2.24 feet, approximately. 

Solution A+ 
It is no harder to consider the more general problem where a fixed 
perimeter P is specified, and to prove the following theorem. 

Norman Window Theorem 
Let P be the perimeter of a Norman window, made up of a rectangle sur­
mounted by a semicircle. Then the area of the window is maximized if the 
rectangle has base 2P I ( 4 + n) and height PI ( 4 + n). 

Proof 
If r is the radius of the semicircle, it follows by easy algebra that the 
rectangle has these dimensions: 

base= 2r, 

P- nr- 2r 
height= --2-- (**) 

The area A of the window is the sum of the areas of the semicircle and 
the rectangle. When these are calculated and combined we get 

A= -(4;n)rz +Pr, 

A'= -(4+n)r+P, 

A"= -(4+n). 

Setting A' equal to zero immediately yields r = Pl(4 + n). This gives the 
only critical point, which is a maximum since A" is negative. Substitut­
ing this value of r into equations (*) and (* *) shows that the area A is 
maximized when the rectangle is of dimensions 2P I ( 4 + n) by PI ( 4 + n). 

0 

§3. Summary 
Like virtually every course taught in the liberal arts, a course in mathe­
matics is in part a course in writing. A student cannot learn to think like 
a mathematician without learning to write like a mathematician. 

Style in writing is of little use, however, unless you first have some­
thing to say. To find something new you must strike out on your own, 
with a willingness to make mistakes, to learn from them, and to laugh at 
yourself. By playing the fool in a comedy of errors, you may find the 
means to climb up to a more serious level. 
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What has been discussed in this appendix is the classical sense of style 
that is so well depicted by Whitehead. This sense derives to some extent 
from classical mathematics. In modern times other notions about style 
have arisen, the most notable being that style is virtually synonymous 
with self-expression. Since everyone agrees that it is fatal to imitate the 
style of another, many believe that style is acquired only by writing 
away after one's own fashion with a proud indifference to any discipline 
imposed from outside. 

Mathematics was born, however, in a less (or perhaps more) sophis­
ticated time when self-expression was not so important. The purpose of 
education was not then to learn to express yourself; it was to learn to tell 
the truth. And even today, when writing in the discipline of mathe­
matics, you may find yourself most squarely standing between the 
reader and the truth. In this austere place there is little room for self­
expression. You must get yourself out of the way. It is only good manners 
to bow. 

Problems (Optional) 

l. Consider the function given by f(x) = 3x2 + 6x + 7. Find the coordinates of the 
highest point on the graph off if the domain off is specified by the inequality 
0 ::::;; x ::::;; 3. Write up your solution like Student A in Section 1. Or be less 
methodical and more creative like Student A+. 

2. A Norman window is in the shape of a rectangle surmounted by a semicircle. 
If the perimeter of the window is 16 feet, find the dimensions maximizing the 
area of the rectangular portion of the window. 

3. An athletic field is to be built roughly in the shape of an oval, with a 400-meter 
track as its perimeter. The field is to consist of a rectangle with a semicircle 
at each end. Find the dimensions of the field maximizing the area of the 
rectangular portion. 

4. In problem 3, find the dimensions of the field maximizing its total area. 

5. (Make a guess.) If you did the preceding problem correctly, you can probably 
guess the correct answer to "Dido's problem": Given a piece of string of fixed 
length, say 400 meters, what curve should you make from it to enclose the 
largest possible area? You are free to mold the string into a triangle, a rect­
angle, a square, a hexagon, an ellipse, or any other curve that encloses an area 
inside it. What curve would you use? 

(According to legend, Dido was given a challenge similar to this by a local 
chieftain who derisively told her she could have all the land she could enclose 
with a bull's hide. She then cut the hide up into razor-thin strips and tied them 
together to make a very long strand. After shaping the strand in such a way as 
to maximize the area inside, Dido claimed her new kingdom of Carthage and 
became its fabled queen.) 
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6. Antique mantel pieces from the Renaissance sometimes have RESPICE 
FINEM carved upon them. Here the phrase we met in Section 1 expresses a 
philosophy of life. Describe this philosophy by contrasting it with that 
expressed by another familiar Latin phrase, carpe diem ("seize the day"). 

7. In the passage quoted at the beginning of this appendix Alfred North White­
head, one of the twentieth century's greatest philosophers, implies that the 
final aim of education is the cultivation of a sense for style. What do you think 
is the final aim of education and what, if anything, does the study of mathe­
matics contribute to its attainment? 



APPENDIX 

From Freely 
Falling Bodies 
to Taylor 
Series 

What are the higher-order derivatives good for? Studying them leads us 
into a realm of striking mathematical ideas developed in the eighteenth 
and nineteenth century. One of the things we see in this appendix, for 
example, is that if you have imprecise, or "approximate", information 
about the general size of some higher derivative of a function-say, you 
know that its tenth derivative is never smaller than -1 nor greater than 
+1-then you can deduce quite surprising information about the size of 
the function itself (see Example 10 below). This way of gleaning infor­
mation about how the size of a higher derivative of a function affects the 
size of the function itself is called the theory of Taylor approximation. 

The term comes from the name of Brook Taylor (1685-1731), al­
though Taylor himself never considered the question about how closely 
his "Taylor series" approximates the function from which it arises. This 
question was taken up later by others, notably the French analyst Joseph 
Louis Lagrange (1736-1813), who came close to the heart of the matter. 
In this appendix, however, we shall not follow the historical develop­
ment because, in retrospect, it may be seen that the central question is 
more easily asked and more quickly answered by reconsidering the 
simple theory of freely falling bodies discussed in Chapter 6. 

§1. Freely Falling Bodies and 
Quadratic Approximations 

If the acceleration due to gravity of a freely falling body is not precisely 
constant, but instead varies (in an unknown way) between two constants 

363 
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g and G (where g < G), then the height h of the body cannot be exactly 
predicted. Nevertheless, it is easy to see, as in problem 28 of Chapter 6, 
that the height h(t) at timet must satisfy the inequality 

(1) 

where h0 is the initial height and v0 is the initial upward speed, that is, 
h0 = h(O) and v0 = h'(O). Beginning with time t = 0, inequality (1) will 
continue to hold for positive values of t until such time as forces other 
than gravity come into play. Thus, if air resistance is ignored, inequality 
(1) will usually be expected to hold until the body hits the ground. 

We have stumbled here upon a small miracle. We have noted that a 
bound upon the second derivative h"(t) between g and G forces a major 
constraint, given by inequality (1 ), upon the size of h(t) itself. If we are 
given the initial values h(O) and h'(O) and we are further told that h"(t) 
always lies between two constants g and G, then we may invoke in­
equality (1) to predict the approximate size ofh(t) when t > 0. 

EXAMPLE 1 
Let h be a function satisfying h(O) = 200, h'(O) = 100, and suppose the 
second derivative ofh is not known exactly, but is bounded between -32 
and -30, 

-32 5: h"(t) 5: -30. 

What can we say about the approximate size of h(l)? What about h(2)? 
What about h(4) and h(8)? 

According to inequality (1 ), we can say that for all positive t for which 
the inequality -32 5: h"(t) 5: -30 obtains, we are entitled to write 

200 +lOOt +H-32)t2 5: h(t) 5: 200 +lOOt +H-3o)t2 . 

Substituting 1, 2, 4, and 8 for t in this inequality shows that 

284 5: h(l) 5: 285, 

336 5: h(2) 5: 340, 

344 5: h( 4) 5: 360, 

-24 5: h(8) 5: 40. D 

Here we see that the upper and lower bounds in these inequalities are 
close together for h(l) but grow farther apart in the inequalities for h(2), 
h(4), and h(B). This will turn out to be a general feature of Taylor ap­
proximation. The closer t is to the point where we have the most precise 
data-the point 0, in this case-the better able we are to approximate 
h(t) by using the upper and lower bounds in inequality (1). 
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400 

200 + lOOt- 15t2 

200 + 1001- 16t2 

(8,40) 
---+--L--L-----L----------~r 

(8,-24) 2 4 
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The function h = h(t) is bounded between two quadratic functions if 0 :s; t. 
The bounding quadratic curves grow farther apart as t increases. 

Is there anything special about freely falling bodies in this regard? 
Shouldn't we expect the quadratic inequality (1) to apply generally to any 
function h = h(t) whose second derivative is bounded between g and G? 
The answer is yes, and a quick proof of this general principle of second­
degree Taylor approximation is outlined in problem 1 at the end of 
this appendix. Let us see what sort of information this principle gives. 

EXAMPLE 2 
(Applying inequality (1) to general functions) Suppose h(O) = 10, h'(O) = 
1/20, and -1/4000 :s; h"(t) :s; 0 if 0 :s; t. What can we say about the 
approximate size of h(1)? What about h(2)? What about h(4), h(8), and 
h(20)? 

By inequality (1), with g = -1/4000 and G = 0, we can say that 

10 + (1/20)t- (1/8000)t2 :s; h(t) :s; 10 + (1/20)t, if 0 :s; t. (2) 

Substituting 1, 2, 4, 8, and 20 fort in inequality (2) shows that 

10.049875 :s; h(1) :s; 10.050000, 

10.0995 :s; h(2) :s; 10.1000, 

10.198 :s; h(4) :s; 10.200, 

10.392 :s; h(8) :s; 10.400, 

10.95 :s; h(20) :s; 11.00. 

(3) 

(4) 

(5) 

(6) 

(7) 
D 

It turns out, as the reader is asked to demonstrate in problem 2 of this 
appendix, that the function given by h(t) = Jt + 100 actually satisfies the 
conditions given in Example 2, so that these inequalities must hold when 
h(1) = JlDl, h(2) = v'102, etc. Our last two inequalities, (6) and (7) 
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above, for example, then tell us that 

10.392 ~ v'i08 ~ 10.400, 

10.95 ~ v'120 ~ 11.00, 

which, of course, are easily seen to be true. 

§2. Cubic Inequalities from Bounds on 
Third Derivatives 

In the preceding section we have seen how a bound on the second deriv­
ative of a function leads to a quadratic inequality restricting the size of 
the function itself. Now suppose we have a bound on the third derivative 
of a function h, that is, suppose that for some constants m and M, 

m ~ h111 (t) ~ M, if 0 ~ t. (8) 

To deal with this, we need only remind ourselves that the third deriva­
tive of h is, of course, the second derivative of h'. Thus we may apply 
inequality (1) to this situation, where the role of his now played by h', 
and the roles of the constants g and G are played by m and M. We get 

h'(O) + h"(O)t + ~mt2 ~ h'(t) ~ h'(O) + h"(O)t + ~Mt2 , if 0 ~ t. 

Now we face the situation introduced in Example 11 of Chapter 6, and 
we proceed in the same way. The theorem on antiderivatives and in­
equalities (Chapter 6, Section 9) says that from this inequality we may 
take antiderivatives to deduce that 

tz t3 
h'(O)t + h"(O) Z + m6 ~ h(t)- h(O) 

tz t3 
~h'(O)t+h"(D)-z+MB, ifO~t. 

Here, h'(O) and h"(O) are merely constants, just like m and M, so the 
business of taking antiderivatives could hardly have been simpler. Add­
ing the quantity h(O) to each of the three members of this inequality then 
proves that h(t) is sandwiched between two cubic functions if its third 
derivative satisfies condition (8): 

h(O) +h'(D)t+~h"(O)t2 +!mt3 ~ h(t) 

~ h(O) + h'(O)t + ~h"(D)t2 + !Mt3, if 0 ~ t. (9) 

Let us put this general principle of third-degree Taylor approxima­
tion to use. 
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EXAMPLE 3 
Suppose we know that 3 ~ h111 (t) ~ 6, where the function h = h(t) sat­
isfies the initial conditions given in the first row of the table below. 

t h h' h" 

0 7 5 -3 

1 ? (10) 
2 ? 

4 ? 

What can be said about the action of the function h = h(t) when t = 1, 
t = 2, and t = 4? 

We simply use inequality (9) with h(O) = 7, h'(O) = 5, h"(O) = -3, 
m = 3, and M = 6 to write 

7+5t-~t2 +!t3~h(t)~7+5t-~t2 +t3, ifO~t. (11) 

Substituting 1, 2, and 4 for t in the cubic inequality (11) gives us the 
required information: 

11 ~ h(1) ~ 11.5, 

15 ~ h(2) ~ 19, 

35 ~ h(4) ~ 67. 

Note that we know the approximate value of the function at 1 much 
more precisely than at 4, because 1 is closer to the point 0 at which we 
have precise knowledge about the function. D 

EXAMPLE 4 
Can we approximate integrals as well? Given the information about the 
function h = h(t) in the first row of the table in Example 3 and the bound 
3 ~ h111 (t) ~ 6, what can we say about the integrals~ h(t) dt? 

Here we haven't enough information to determine the integral 
exactly, but we do have enough to write down inequality (11 ), from 
which it follows easily (why?) that 

J~ (7 + 5t- ~tz + !t3 ) dt ~ J: h(t) dt ~ J~ (7 + 5t- ~t2 + t-3) dt. (12) 

By using the fundamental theorem to evaluate the integrals on the left 
and right, we deduce that 

9.125 ~ J~ h(t) dt ~ 9.25. (13) 
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Thus we have determined the value of the integral from 0 to 1 with fairly 
good accuracy. If we had tried to estimate the size of the integral from 0 
to 4, however, we would have found its value to be much more indeter­
minate. (See problem 3.) 0 

The reader may recall the binomial theorem from algebra, which 
gives a formula for raising the sum of two quantities to any positive 
integral power. In the case of the third power, the formula is given by 

(14) 

Surprisingly, this result for third powers can be obtained as a con­
sequence of the Taylor theory of cubic approximations, as seen in 
Example 5. 

EXAMPLE 5 
Apply the result (9) on cubic inequalities when h(t) = (n: + t) 3 . 

We must take the first three derivatives ofh(t), find a bound on the third 
derivative, then write inequality (9) using the data we have found. This 
is easy: 

h(t) = (n: + t) 3 

h'(t) = 3(n: + t) 2 

h" (t) = 6(n: + t) 

h"'(t) = 6 

[so that h(O) = n:3] 

[so that h' (0) = 3n:2] 

[so that h" (0) = 6n:] 

[so that 6:::;; h"'(t) :::;; 6]. 

Using these initial conditions in inequality (9), with m = M = 6, we find 
that 

n:3 + 3n:2t +! (6n:)t2 + H6)t3 :::;; (n: + t)3 

:::;; n:3 + 3n:2t +! (6n:)t2 +! (6)t3 ' 0 :::;; t. 

In this inequality the extreme left and right sides are identical. The 
expression sandwiched in between must therefore be identically equal to 
either, or 

0 

We have thus used third-degree Taylor approximation to discover the 
binomial theorem (14) for third powers. The ambitious reader may wish 
to follow in the footsteps of Isaac Newton and use Taylor approximation 
of nth degree to discover the general binomial theorem. (See problem 11.) 
Newton did this, he later said, shortly before obtaining his bachelor's 
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degree from Cambridge in 1664-in essence, by using "Taylor" series 
before Brook Taylor had even been born. His success inspired him to 
devote himself further to mathematics. 

§3. Translation of Variables and 
Taylor Polynomials 

It should be intuitively clear that the role of zero is not essential and that 
initial conditions given at any other point would do just as well by a 
simple "translation" of variables. Example 6 shows how to move things 
over. 

EXAMPLE 6 
Suppose 3 :::;; f"(x) :::;; 6, and suppose f satisfies the following initial con­
ditions when x = 10. 

f"(x) 
(15) 

10 -3 

Estimate the size off(11), f(12), andf(14), and the size ofthe integral 
Jll~ f(x)dx. 

The trouble here is that we are given the "initial data" not at x = 0, but 
at x = 10. To rectifY this, all we have to do is introduce a new variable t 
defined by t = x- 10. Think oft as a "translation" of x by 10 units so as to 
move the point x = 10 back to the point t = 0. To say t = x - 10 is to say 
x = t + 10, so that (obviously) dx/dt = 1. Now consider the simple chain 
given by h = f(x), where x = t + 10, that is, h = f(t + 10). By the chain 
rule, 

h'(t) = dh = dh dx = f'(x) 
dt dx dt 

[ . dh dx ] smce dx = f'(x) and dt = 1 . 

Thus, h'(t) = f(x), where x = t + 10. By using the chain rule again on 
this chain of relations, we get h"(t) = f"(x), where x ·= t + 10, and one 
more application of the chain rule shows that h"'(t) '= f"'(x). Thus the 
information in the table in Example 6 in terms of x and f(x) translates 
exactly into the information (10) in the first row of the table in Example 3 
in terms oft and h(t) -from which inequality (11) follows. By substitut­
ing x- 10 fort in inequality (11), so that h(t) becomes F(x), we see that if 
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0::;; x- 10, that is, iflO::;; x, then 

7 + 5(x- 10)- Hx- 10)2 +! (x- 10)3 

::;; f(x) ::;; 7 + 5(x- 10) -1 (x- 10)2 + (x- 10)3 (16) 

Moreover, f(ll) = h(1), f(12) = h(2), f(14) = h(4), and f11~ f(x)dx = 
J~ h(t) dt, and estimates of the sizes of all these quantities are worked 
out in Example 3. Thus the answers for Example 6 can be read off the 
answers for Example 3 by a simple translation of the variable by 10 units. 
In particular, 11 ::;; f(11) ::;; 11.5, and 

Jll 9.125 ::;; f(x) dx ::;; 9.25. 
10 

(17) D 

To discuss the general theory of Taylor approximation efficiently, we 
must develop some abbreviative language. The first thing to introduce 
is the notion of factorials. The factorial of n, where n is a positive in­
teger, is denoted by n! and defined as the product of all positive integers 
up to, and including, n. Thus, 1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! = 120, and 
so on. The factorials grow quite rapidly, so that 10! exceeds three million 
and 15! exceeds one trillion. For most of us, the national debt of the 
United States is a colossally large number, yet-at the time of this writ­
ing-it is still far less than 16! dollars. As we shall see in Section 4, it is 
the huge size of the factorials of relatively small integers that often 
makes it possible for Taylor approximation to be surprisingly effective. 

We also need to have a more compact notation for higher derivatives. 
It is awkward to denote the fifth derivative off by ["111 , so it is conven­
tionally denoted by f(s) instead. In general, we denote the kth derivative 
of a function f by f(k). Thus, instead of writing h111 , we may write h(3). The 
reason for the parentheses here, of course, is to enable us to distinguish 
the nth derivative from the nth power. Thus f 2 denotes the square of the 
function f, whereas f( 2) denotes the second derivative of f. 

Finally, it is convenient to have a name for the row of numbers that 
tabulate the initial conditions we wish to use for our Taylor approxi­
mations. Let us borrow the word signature for this. Thus the row offour 
numbers displayed in (10) is the second-order signature of the function h 
at 0, and the row offour numbers in (15) is the second-order signature of 
the function fat 10. Note that it takes n + 2 numbers to specifY the nth­
order signature of a function. 

Definition 
Let f be a function having n derivatives, and let a be a fixed point in the 
domain of f. Then by the nth-order signature off at the point a, 
we mean the row of constants displayed in the second line of the table 
below: 
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a 

Definition 
The nth-degree Taylor polynomial off, expanded at the point a, is the 
polynomial Pn of nth degree having the same nth-order signature as f at 
the point a. 

How can we write down quickly the nth-degree Taylor polynomial 
from the nth-order signature? As we shall see in our next example, the 
first-degree Taylor polynomial PI of a function f expanded at the point a 
turns out to be nothing other than the linear function that is tangent to 
the curve fat the point (a,f(a)), and the higher degree polynomials are 
rather obvious generalizations of this notion. 

EXAMPLE 7 
Write the Taylor polynomials of degree 0, 1, 2, 3, 4, and 5, arising from 
the signature given below: 

10 
(18) 

Here we have a = 10 as the point of expansion, and therefore, 

p 0 (x) = 7 [constant function; horizontal line through (10, 7)] 

PI (x) = 7 + S(x- 10) [best linear approximation to fat (10, 7)] 

pz(x) = 7 + S(x- 10) - ~ (x- 10)2 

[best quadratic approximation to fat (10, 7)] 

p 3 (x) = 7 + S(x- 10) - ~ (x- 10)2 + ~ (x- 10)3 [best cubic at (10, 7)] 

p4(x) = 7 + S(x -10) -~(x -10) 2 +~(x -10)3 +f4-(x -10)4 

[best quartic] 

[best quintic] 

How do we know these are correct? We must verifY that the nth-order 
signature ofpn at 10 agrees with the given nth-order si!,rnature off at 10. 
To verifY that our expression for p 2 (x) is correct, for example, we simply 
take two derivatives and evaluate them when x = 10: 
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P2(x) = 7 + 5(x- 10)- ~ (x- 10)2 [so thatp2(10) = 7] 

p~(x) = 5- 3(x- 10) 

p~(x) = -3 

[so thatp~(lo) = 5] 

[so thatp~(10) = -3] 

Thus our formula for p 2 is correct because the signature of p 2 at 10 
agrees with the signature (18) off at 10 through second order. It also 
agrees with (15), and the reader should note that this second-degree 
Taylor polynomialp2 (x) has already arisen as a prominent part of(16) in 
connection with second-degree Taylor approximation. When we notice 
that the denominators 1, 2, 6, 24, and 120 in the expression for p 5 (x) are 
simply the successive factorials of the first five positive integers, we have 
discovered Taylor's secret of writing down quickly any Taylor poly­
nomial: 

Taylor's Theorem 
Let f be a function with n derivatives and let a be a fixed point in the 
domain of f. Let the signature off at a be given by 

(19) 
a 

Then the nth-degree Taylor polynomial off at a is given by the formula 

a2 2 a3 3 an n 
Pn(x)=a0 +ai(x-a)+ 2,(x-a) + 3,(x-a) +···+ n!(x-a). (20) 

Proof 
It is left to the reader to check that the nth-order signature of Pn at a is 
given by (19). (It is just as easy to check this as to check the work in Ex­
ample 7 above.) D 

We expect-or rather, we hope-that Pn(x) will be close to f(x) if n is 
large: 

f(x) ~ Pn(x). (21) 

Writing the approximation (21) is straightforward if we are given, or if 
we can calculate, the nth-order signature of f. The most interesting 
signature is a string of "ones" going on forever. Let us see what happens 
then. 

EXAMPLE 8 
Suppose f is a function having the following signature at 0. Use approx­
imation (21) to fill in the question mark with your best guess at the value 
off(1). 
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f(x) 

0 1 

? 

By using equation (20) with a = 0 and 1 = a0 = a1 = · · · = an, we have 

Pn(x) = 1 + x + ~x2 + ~x3 + i:Jx4 + 1 ~0 x5 + 7~0 x6 + · · · + ~xn. (22) 

Using equation (21) and setting x equal to 1 in the expression (22) for 
Pn(x) gives us what we want: 

f ( 1) ;::;: Pn ( 1) = 1 + 1 + ~ + ~ + i:J + 1 ~0 + 710 + · · · + ~ , ( 2 3) 

where we hope this approximation will become more accurate as we 
take n larger and larger. Remembering how fast factorials grow 
(10! = 3,628,800), we should expect that the sum of only a few terms will 
give us very good accuracy. Taking n = 10, we get f(1);::;: p 10 (1) = 

1 + 1 + ~ + ~ + -f4 + 1~0 + 7~0 + so14o + 40~20 + 3621880 + 362~8oo ;::;: 2. 71828. The 
number 2.71828 ... calculated this way-as the limit of Pn(1) as n in-
creases without bound- is called Euler's number (named for the 
eighteenth-century Swiss mathematician Leonhard Euler-pronounced 
"oiler") and is denoted by e. (See problem 16.) 

§4. Taylor's Theorem with Rernainder 
The good thing about Taylor's theorem is that it gives us an answer fairly 
quickly, as in Example 8. The bad thing is that it often leaves an impor­
tant question unanswered. If we know, for example, that f(10) = 7, 
f'(10) = 5, and f"(10) = -3, then by (21) we may quickly write f(x);::;: 
p 2 (x) = 7 + 5(x- 10)- ~ (x- 10f If we wanted to estimate f(9), say, 
then we get f(9);::;: p 2 (9) = 7 + 5(9- 10)- ~ (9- 10)2 = 1/2. Thus, from 
Taylor's theorem we quickly estimate that f(9) ;::;: 1/2. The more im­
portant question, however, is what kind of confidence can we have in 
this estimate? What "error tolerance" must we allow for? That is, what 
can we say about the "remainder" in Taylor's approximation?* We must 

*Approximations are worth little unless a corresponding estimate of 1:he error tolerance to 
be allowed is also given (or understood). To say, for example, that Earth is "about five bil­
lion years old" cannot be taken seriously as a scientific statement because virtually any 
large number (it may be argued) is "about five billion". How could we know (unless the 
speaker has the courtesy to tell us, or unless we share common understanding about the 
use of significant digits) what numbers are not, in his view, "about equal to five billion"? 

On the other hand, it is significant when a geologist says that Earth is "4.5 billion years 
old, with a possible error of at most 0.5 billion." From this we may infer that the geologist 
is prepared to present scientific data to show us that Earth is at least four billion years 
old and, further, to convince us that the age of the earth does not exceed five billion 
years. Whenever we use rough approximations instead of exact statements, we should be 
careful to include-if possible-a statement of the maximum possible error we might be 
committing. 
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make something more precise out of the rough approximation (21) 
before we can take it seriously. 

Taylor's Theorem with Remainder 
Let f be a function with n + 1 derivatives and let a be a point in the do­
main of f. Let x be any other point in this domain and let m and M be, 
respectively, lower and upper bounds for the range of f(n+l) on the in­
terval between a and x. Then, ifpn(x) is given by equation (20), 

f(x) = Pn(x) + Rn (24) 

where the "remainder" (or "error") Rn lies between m((x- at+1 I 
(n + 1)!) and M((x- at+1 /(n + 1)!). 

Proof 
First note that another way of stating the conclusion is that 

~-~~ ~-~~ 
Pn(x)+m (n+ 1)! ~f(x)~Pn(x)+M (n+ 1)!, (25) 

but with an important, and perhaps surprising, provision: The inequalities 
in (25) must be reversed if n is even and x < a. (The inequality fails as 
written in this case because ifn is even and x <a, then the left-hand side 
cannot be smaller than the right-hand side.) 

The proof is made by repeatedly applying the theorem on anti­
derivatives and inequalities, beginning with the given information that 
for all t between a and x we have 

m ~ f(n+1l(t) ~ M. 

Where we go from here depends upon whether a < x or x < a. If a < x, the 
theorem on antiderivatives and inequalities says that for any number t 
between a and x we have 

m(t- a) ~ f(n)(t)- an ~ M(t- a), [since a< t] (26) 

that is, 

an+m(t-a) ~f(n)(t) ~an+M(t-a), ifa~t~x. 

Applying the theorem on antiderivatives and inequalities again, we see 
that if a ~ t ~ x, 

an(t- a)+; (t- a)2 ~ r<n-1)(t)- an-1 ~ an(t- a)+~ (t- a)2 , (27) 

that is, 

m 2 ( 1) M )2 an-1 + an(t- a)+ Z (t- a) ~ f n- (t) ~ an-1 + an(t- a) + 2 (t- a . 

Applying the theorem n- 1 more times, using (20), then setting t equal 
to x, proves (25). 
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It remains to describe the proof in case x < a. Then the theorem on 
antiderivatives and inequalities would give us inequality (26), but with 
the inequalities reversed, since t < a. Applying the theorem again with 
t < a, however, will reverse the inequalities once more, and result in 
inequality (27) as written. A third application will reverse the inequal­
ities, and a fourth will restore them. And so on. The final result is in­
equality (25) as written if n is odd, but with the inequalities reversed if 
x < a and n is even. 0 

EXAMPLE 9 
Suppose f is a function whose third derivative is bounded between m = 3 
and M = 6, and which satisfies f(10) = 7, f'(10) = 5, and f"(10) = -3. At 
the beginning of this section, we have used Taylor's theorem to get 
quickly a "sloppy" estimate at the value of f(9). Now use Taylor's theo­
rem with remainder to make a careful estimate off(9). 

Here we are given the second-order signature of f at 10. Taylor's 
theorem with n = 2 says 

f(x) = p 2 (x) +R = 7 + 5(x -10)- ~(x -10)2 +R, (28) 

where R (= R 2 ) is bounded between 

3 3 -(x -10) and 
3! 

6 3 
-(x-10) 
3! ' 

(29) 

that is, R lies between~ (x- 10)3 and (x- 10)3 • Letting x = 9 in (28) and 
(29) shows that f(9) = p 2 (9) + R = 0.5 + R, where R lies between -0.5 
and -1.0. Thus, by Taylor's theorem with remainder, we know f(9) lies 
between -0.5 and 0. 

Another way to arrive at the same conclusion is to write inequality 
(25), remembering that the inequalities must be reversed (since n = 2 is 
even here, and since 9 < 10). Inequality (25) here becomes inequality 
(16), which, when x is set equal to 9 (and the inequalities reversed) 
shows that -0.5 ~ f(9) ~ 0. 0 

Notice the difference between the vagueness of Taylor's rough ap­
proximation (21) and the precision of Taylor's theorem with remainder. 
In the setting of the previous example, approximation (21) says only that 
the value of f(9) is approximately equal to 1/2-but it might in fact be 37 
or -11, for all the assurance we can have in using approximation (21) by 
itself. On the other hand, Taylor's theorem with rema·lnder says we can 
be sure that f( 9) is between -1/2 and 0 if we know that the third deri­
vative off takes values only between 3 and 6 on the interval between 9 
and 10. 

EXAMPLE 10 
Given a certain function S = S(x), suppose we know that the tenth de­
rivative s<10l(x) is bounded between -1 and 1 for all x. Suppose further 
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that its ninth-order signature at 0 is given as specified in the table below. 
Use Taylor's theorem with remainder to estimate S(n/6), S( -n/2), and 
S(n/3). 

X s s<IJ s<zJ s<aJ s<4J s<sJ s<6J s<7J s<aJ s<9J 
0 0 1 0 -1 0 1 0 -1 0 1 

n/6 ? 

-n/2 ? 

n/3 ? 

Here, because of the zeroes at each even order in the signature, the 
Taylor polynomial p 9 (x) contains only odd powers of x. By (20), with 
a = 0 and n = 9, we have 

(30) 

and 
S(x) = p 9 (x) + R, (31) 

where R lies between 3628~oo x10 and 362~800 x10. Letting x =~in (30) and 

(31) shows that S(~) = p9 (~) + R = 0.50000000 + R, where R is exceed­
ingly small, being less in absolute value than 362~800 (~) 10 . Hence, we 
know that sm = 0.50000000 .... 

Letting x = -;" in (30) and (31) shows that S(-;") = 
p 9 (2") + R = -1.0000 + R, where R is less in absolute value than 

362~800 m10 . Hence, 8(2") = -1.0000 .... 
Letting x = ~ in (30) and (31) shows that SG) = p 9 G) + R = 

0.866025 + R, where R is less in absolute value than 362~800 (~) 10 . Hence, 
S(~) = 0.866025. . .. 0 

§5. L'Hopital's Rule 

As seen in our last example, Taylor's theorem with remainder can pre­
dict relatively accurately the value of a function f at a point x relatively 
far from the point a at which its signature is known. Of course, the pre­
diction becomes increasingly accurate as the point x is taken increas­
ingly close to a. This makes the theorem invaluable, when restated in 
the form below, in studying limits at a of expressions involving f. 

Taylor's Theorem with Remainder (Restatement) 
Under the hypotheses of Taylor's theorem with remainder, we may 
write f(x) = Pn(x) + Rn, where the remainder Rn = Rn(x) tends to zero so 
fast, as x tends to a, that 

. . Rn(x) 
L1m1t ( )n = 0. 

X------ta X-a 
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Proof 
(Easy) We know that Rn(x) lies between m((x- at+l /(n + 1)!) and 
M((x- at+l /(n + 1)!), and both these quantities clearly tend to 0 after 
being divided by (x- at. D 

EXAMPLE II 
Find the limit, as x tends to 0, of (3- Jg + x)/(2- J4- x). 

The idea is that, since we are taking the limit at 0, things should be­
come simpler if we approximate every complicated expression by its 
Taylor polynomial at 0. We could use any Taylor polynomial, but we 
save time by picking the one of lowest degree that will get the job done. 
Here, first-degree Taylor approximation will do. When we replace 
Jg +xby 3 + !x +R1(x) and V4- xby 2- ix+ Q 1(x), we see that 

Dividing numerator and denominator ofthe expression on the right by x, 
we get 

Now the limit is obvious, because Taylor's theorem says that both 
R1 (x)fx and ~ (x)/x tend to zero, as x tends to zero. Therefore, 

~ _!_R1(x) _! 
L . . 3 - v ::1 -r ,\0 L' . 6 X 6 2 

lmlt ~= Imlt ~ =-1 == -3· 
x ..... o 2-v4-x x ..... o +i- ~x +4 

D 

When we must take the limit of a quotient at a point a, where both 
numerator and denominator tend to zero, all we have to do is to write 
the numerator in terms of an appropriate Taylor polynomial expanded 
at a, do the same for the denominator, and then use Taylor's theorem 
with remainder to see clearly what is going on. In the most interesting 
case the resulting limit is given by the strikingly simple formula (32) 
below. 

L'Hopital's Rule 
Suppose f and g both satisfy the hypotheses of Taylor's theorem and 
suppose that the nth-order signatures of both f and g at a begin with a 
string of n zeroes, followed at last, in the case of g, by a nonzero number 
bn. That is, suppose we have the following signatures at the point a: 
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···(all zeroes)··· 

···(all zeroes)··· bn( of= 0) 

Suppose further that locally, near the point a, g(x) is nonzero except at a 
itself. Then, 

Limit f(x) =an= f(n)(a) 
x-+a g(x) bn g(n) (a)" 

(32) 

Proof 
Because of all the zeroes in the signature off at a, the nth-degree Taylor 
polynomial off consists of only one term, namely, an(x- a)" jn!. Sim­
ilarly, the nth-degree Taylor polynomial of g is bn(x- a)" jn!. By Taylor's 
theorem, as restated above, we have 

as x--+ a. D 

EXAMPLE 12 
(Reworking Example 11) Use L'Hopital's Rule to evaluate quickly 
Limitx ..... o (3- y9 + x)/(2- y4- x). 

Here we have the limit (32), where f(x) = 3- .jg + x and g(x) = 
2 - v' 4 - x. The signatures off and g at 0 are quickly worked out to first 
order: 

f'(x) 
and 

g'(x) 

-1/6 1/4 

so the answer, by (32), is the quotient of -1/6 by 1/4, or -2/3. D 

EXAMPLE 13 
Use L'Hopital's Rule to find Limitx_,1 (x4 -6x3 +13x2 -12x+4)/ 
(0 - 2x3 + x2 ). 

Here we have the limit (32), where f(x) = x4 - 6x3 + 13x2 -12x + 4 
and g(x) = x4 - 2x3 + x2 . The signatures off and g at 1 must be worked 
out to second order before we get a nonzero entry in the signature for g. 
We find that 

f"(x) 
and 

g''(x) 

2 1 2 
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so the answer, by (32), is 

x4 - 6~ + 13i!- 12x + 4 2 
Limit =- = 1. 

x-+1 x4- 2x3 +x2 2 
0 

Just as Taylor did not discover Taylor series, L'Hopital did not dis­
cover L'Hopital's Rule. The name comes from its appearance in the 
first calculus textbook, published in France in 1696 by the Marquis de 
L'Hopital, a wealthy nobleman. L'Hopital used notes provided him by 
Johann Bernoulli (1667-1748), a young Swiss mathematician who dis­
covered the rule and who received a generous monthly stipend in ex­
change for giving L'Hopital exclusive use of the lecture notes he was 
writing. Even after L'Hopital's death in 1704, Bernoulli never asserted his 
right to be credited with the discovery of the rule that made his patron 
famous. 

§6. Summary 

Lagrange's notion that it would be a good idea to try to express a function 
as the sum of its (infinite) Taylor series would prove to have fruitful 
consequences, leading to an easily obtained precision in discussing such 
nonalgebraic functions as the sine, cosine, exponential, and logarithmic 
functions. In the problem set that follows, the reader can glimpse how 
this might be done. Developments in series also lead to a surprisingly 
natural understanding of the rich field of analysis of functions whose 
domains and ranges are complex numbers instead of real numbers. It is 
hoped that the reader will be inclined to pursue these ideas further in 
other courses. In any case, bon voyage! 

Problems (Optional) 

1. Suppose that the inequality g ::5: h"(t) ::5: G holds if 0 ::5: t. Explain why the 
theorem in Chapter 6 on antiderivatives and inequalities implies that the in­
equality given below in part (a) follows, if 0 ::5: t. Then eKplain why each of 
the succeeding chain of statements (b)-(d) follows from the one before it. 
(a) gt ::5: h'(t)- h'(O) ::5: Gt. 
(b) h'(O) + gt ::5: h'(t) ::5: h'(O) + Gt. 
(c) h'(O)t + !gt2 ::5: h(t)- h(O) ::5: h'(O)t + !Gt2 . 

(d) h(O) + h'(O)t + !gt2 ::5: h(t) ::5: h(O) + h'(O)t +! Gt2 • 

(e) Explain how the result of the chain of reasoning (a)-(d) justifies the 
general principle of second-degree Taylor approximation- that is, in­
equality (I)-used in Example 2. 
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2. Consider the function given by h(t) = ylt + 100. 
(a) Find h'(t), h"(t), and h'"(t). 
(b) Recall from Chapter 5 how to use the derivative of a function to help find 

its range. Then use your answer to part (a) to show that on the domain 
0::::; t, the range of h"(t) is given by -1/4000::::; h"(t) < 0. (The range of 
h" can be found by simply applying common sense to your expression 
giving h"(t), but you will get the same answer if you use h111(t) to study 
the behavior ofh"(t).) 

(c) Explain how, by using the results of parts (a) and (b), we may infer that 
10.049875 ::::; v'lOf::::; 10.050000. Hint. See Example 2, equation (3). 

(d) Write the inequalities corresponding to v'i02 and y'i04 that come out of 
inequalities (4) and (5) in Example 2. 

(e) Approximate vT16 by substituting t = 10 in the quadratic inequality (2) 
of Example 2. 

(f) We know that v"12l = 11, of course. Nevertheless, substitute t = 21 in 
inequality (2) and get bounds on v"121. Does 11 lie between these 
bounds? 

3. Suppose we have a function h = h(t) and we know that 3::::; h111 (t) ::::; 6, 
h(O) = 7, h'(O) = 5, and h"(O) = 3. These are the initial data given in Exam­
ple 3. 
(a) Use inequality (11) to estimate h(3). 
(b) Use inequality (11) to estimate h(5). 
(c) Estimate the size of f~ h(t) dt by first explaining how equation (12) is 

justified in Example 4; then do the easy calculation to show how equa­
tion (13) follows from equation (12). 

(d) Estimate the size off; h(t) dt. 
(e) Estimate the size of fo h(t) dt. Explain why its value is so much more 

indeterminate than the value of the integrals approximated in parts (c) 
and (d). 

4. Suppose we have a function C = C(t) and we know that 0::::; C'"(t) ::::; 1. 
Suppose further we have the initial conditions C(O) = 1, C'(O) = 0, and 
C"(O) = -1. 
(a) Use the cubic inequality (9) to estimate the value of C(1/10). 
(b) Apply Taylor's third-degree treatment-inequality (9)-to estimate 

C(1). 
(c) The reader is not supposed to know this yet, but the cosine function 

C(t) = cos(t) satisfies the initial conditions given here (and satisfies the 
given bound on its second derivative if 0 ::::; t ::::; 1 ). Use a calculator to 
find cos(1/10). Is your calculator's value of cos(0.1) within the bounds 
you found in part (a)? 

(d) Is your calculator's value of cos(l.O) within the bounds you found in part 
(b)? 

5. Suppose we have a functionS= S(t) and we know that -1 ::::; S111 (t) s 0. Sup­
pose further we have the initial conditions S(O) = 0, S'(O) = 1, and S"(O) = 0. 
(a) Use the cubic inequality (9) to estimate the value of 8(1/10). 
(b) Apply Taylor's third-degree treatment-inequality (9)-to estimate S(1). 
(c) The reader is not supposed to know this yet, but the sine function 

S(t) = sin(t) satisfies the initial conditions given here (and satisfies the 
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given bound on its second derivative if 0 ::5: t ::5: 1). Use a calculator to 
find sin(1/10). Is your calculator's value of sin(0.1) within the bounds 
you found in part (a)? 

(d) Is your calculator's value of sin(l.O) within the bounds you found in 
part (b)? 

(The sine function's ninth-degree Taylor approximation is discussed in Example 
10.) 

6. Consider the function given by h(t) = ..jt + 25. 
(a) Write out carefully the steps analogous to those of problem 2 to prove the 

inequality 

5 + (1/10)t- (1/1000)t2 ::5: Jt + 25 ::5: 5 + (1/10)t, if 0 ::5: t. 

(b) Plot carefully the graph of the quadratic curve y = 5 + (1/10)t­
(1/1000)t2 and the graph of the line y = 5 + (1/10)t, both on the domain 
0 ::5: t ::5: 3. Do your graphs make it look as if the line is tangent to the 
quadratic curve at (0,5)? Is it? 

(c) In view of the inequality proved in part (a), where must the curve 
y = ..jt + 25 be situated relative to the graphs of the quadratic curve and 
its tangent line plotted in part (a)? 

(d) Let t = 3 in the inequality of part (a) to get v'28 bounded closely from 
below and above. Take the average of these two close bounds as a rea­
sonable guess at v'ZB. How good a guess is it? (To see how good a guess 
at v'28 you have, square your guess and see how close to 28 you come. If 
this "quadratic guess" is disappointingly inaccurate, see the next prob­
lem for a better "cubic guess".) 

7. We do not get great accuracy in problem 6 where we used second-degree 
approximations to try to estimate v'ZB. Let us try third-degree approxi­
mations instead. Ifh(t)=(t+25)1/ 2 , then h'(t)=(1/2)(t+25)-1/ 2 , h"(t)= 
-(1/4)(t + 25)-3/ 2 , and h"'(t) = (3/8)(t + 25)-sl . Therefore we have h(O) = 
5, h'(O) = 1/10, h"(O) = -1/500, and h"'(O) = 3/25,000. It is easy to see 
that h"'(t) is bounded between 0 and 3/25,000 if 0 ::5: t. Thus we may take 
m = 0 and M = 3/25, 000 in inequality (9) to write 

5 + (1/10)t- (1/1000)f ::5: ..jt + 25 

::5: 5 + (1/10)t- (1/1000)f + (1/50, 000)~, if 0 ::5: t. 

(a) Lett= 3 in this inequality to get v'28 bounded very closely from below 
and above. Then take the average of these bounds as a reasonable guess 
at v'ZB. How good a guess is it? (How much better is it than the guess you 
made in the preceding problem?) 

(b) Lett= 1 in this inequality to get ..;26 bounded very closely from below 
and above. Then take the average of these bounds as a reasonable guess 
at ..;26. How good a guess is it? (Square your guess and see how close 
you come to 26.) 

8. (Cube roots) Suppose we want to find the cube root of 10. Let us use both 
quadratic and cubic approximations to compare their accuracy. Since 8 is the 
largest perfect cube smaller than 10, it is natural (why?) to begin with 
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h(t) = (t + 8)1/ 3 . Then (see problem 32 at the end of Chapter 5) we have 
h'(t) = (l/3)(t + 8)-2/ 3 and h"(t) = -(2/9)(t + 8)-513 , so h(O) = 2, h'(O) = 
1/12, and h"(O) = -1/144. Moreover, h"(t) lies between -1/144 and 0 if 
0::;; t. 

(a) Show that these calculations, when used in inequality (1) of second­
degree Taylor theory, imply that 

2+rzt- 2~8 t2 :o;;V't+S:o;;2+rzt, ifO:o;;t. 

Let t = 2 in this inequality and conclude that ?flO lies between 2.1527 
and 2.1667. The average of these, which is 2.1597, then ought to be a 
fairly good guess at ?110. 

(b) Now let us investigate the size of h111 (t). Since h111 (t) = (12/27)(t + 8)-813 , 

we see h111 (0) = 1/576 and we see h'"(t) is bounded between m = 0 and 
M = 1/576 for 0::;; t. Show that inequality (9) from third-degree Taylor 
theory implies that 

2 +lzt- 2~8t2 ::;; ,Yt+ 8::;; 2 +lzt- 2~8t2 + 3~56t3 , if 0::;; t. 

Now lett= 2 and conclude that ?flO lies between 2.15278 and 2.15509. 
The average of these, which is 2.15394, ought to be a better guess at ?flO 
than was the guess of part (a). 

(c) Lett= 1 in the inequality of part (b) and get very close bounds on ?"9, 
worked out to at least five decimal places. Take the average of these very 
close numbers as a reasonable guess at a five-place approximation to ?"§. 
How good is your guess? (Cube your guess and see how close to 9 it is.) 

9. Approximate ?"§ by applying Newton's method to solve the equation 
x3 - 9 = 0, taking G = 2 as your initial guess. Compare Newton's method 
with Taylor's method of part (c) of the preceding problem. Which method is 
easier to understand? Which is easier to carry out? Which gives you a more 
satisfactory answer? Which is more valuable for a calculus student to learn? 

10. In Example 5, Taylor's theorem with remainder-in the simple case when 
a= 0 and n = 2-is applied to h(t) = (n + t) 3 The result proves that 
(n + t) 3 = n3 + 3n2 t + 3nt2 + t3 • 

(a) In like manner, apply Taylor's theorem with remainder when a= 0 and 
n = 3 to the function given by h(t) = (n + t) 4 • (Your first step is to find 
bounds m and M on the fourth derivative.) The result should be that 
(n + tt = n4 + 4n3t + 6n2 t2 + 4nt3 + t4 . 

(b) Apply Taylor's theorem with remainder when n = 4 to the function 
given by h(t) = (n + t) 5 . What is the result? 

(c) Apply Taylor's theorem with remainder for general n to the function 
given by h(t) = (n+tt. Write out enough of the first few terms so that 
the pattern for succeeding terms is evident. (If you do this correctly, you 
will have, in essence, proved the binomial theorem in the case where n 
can be any positive integer.) 

11. (For ambitious students only) In problem 10 we remain in the realm of algebra 
because we consider only positive integral powers. Isaac Newton helped 
open up a new realm of analysis by considering fractional and negative 
powers. 
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(a) Consider the function h(x) = (l + x)P, where p is a constant, but not a 
positive integer. Write out enough of the first few terms of the Taylor 
polynomial approximations at a = 0 so that the pattern for succeeding 
terms is evident. 

(b) Explain why the signature at 0 of the function h(x) in part (a) "goes on 
forever", whereas the signature of the function in part (c) of the previous 
problem eventually becomes a string of zeroes from some point on. 

(c) Use your answer to part (b) to explain why your answer to part (a) is an 
"infinite" series, whereas the binomial series from ordinary algebra is 
"finite". 

(d) Let p = 1/2 in your answer to part (a) and write out the first three or four 
terms. 

(e) Set x equal to t/100 in your answer to part (d). 
(f) Multiply both sides of your equation in part (e) by 10. 
(g) Explain how your answer to part (f) is related to the approxima­

tions to v't+T50 calculated in problem 2. Hint. .Jt + 100 = 
y'(100)(1 + (t/100)) = 10(1 + (t/100)) 1/ 2 . 

(h) Letp = l/3 in your answer to part (a) and write out the first three or four 
terms. Then set x equal to t/8, and, finally, multiply both sides of your 
equation by 2. Explain how the result is related to the approximations 
to ~ calculated in problem 8. Hint . .yt+8 = {18(1 + (t/8)) = 
2((1 + (t/8)) 113 . 

(i) Let p = -1 in your answer to part (a) and write out the first three or four 
terms; then set x equal to -t. Explain how the result is related to the 
formula for the sum of a geometric series discussed in problem 6 of 
Appendix 2. 

(j) Read Isaac Newton's short article "On the Binomial Theorem for Frac­
tional and Negative Exponents" in The World of Mathematics, Volume 1, 
edited by James R. Newman, Simon & Schuster, pp. 521-524. Why do 
you suppose Newton did not consider exponents that are arbitrary real 
numbers, such as V2 or n? 

12. Use the method of Example 11 to find each of the follo>~;ing limits: 
.. 10- .Jx+ 100 

(a) Limit . 
x~o 5 - .Jx + 25 

Hint. The appropriate Taylor polynomials are already worked out in 
problems 2 and 6. 

b 10- .Jx + 100 
( ) Limit --'-::-o==~ 

x~o 2- ,Yx + 8 
Hint. The appropriate Taylor polynomials are already worked out in 
problems 2 and 8. 

13. Use the method of Example 12 (L'Hopital's Rule) to find each of the limits in 
the preceding problem. 

14. The limits in problem 22 of Chapter 1 are easily found by the methods of 
Chapter 1. Show how L'H6pital's Rule results in the same answer for each of 
these six limits. 
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15. Use the method of Example 12 (L'H6pital's Rule) to find each of the three 
limits in problem 23, parts (a), (b), and (d), of Chapter 3. 

16. Find each of the following limits. Use the method of Example 11, 12, or 13. 
. . x2 -4 .. x4+2x3 -3x2-4x+4 

(a) Limit ~- (c) Limit ··' 2 . 
x~2 -3 + vx2 + 5 x~l ,.- + 3x -4 

b L. . 5x2 - 5x3 d . . x4 + 2x3 - 3x2 - 4x + 4 
( ) Imit . ( ) Limit . 

x~o 24 + x- 12-zy'x + 8 x~-2 x3 + 3x2- 4 

17. (Newton's method from Taylor series?) The reasoning behind Newton's method 
becomes transparent if one studies the first figure drawn in Section 10 
of Chapter 4. Newton himself, however, found B = G- f(G)/f'(G) without 
referring to a figure at all. 
(a) Given the equation f(x) = 0, and knowing f(G) and f'(G), just replace 

f(x) by its Taylor polynomial p 1 (x) of first-degree obtained from the first­
order signature off at G. The resulting equation p 1 (x) = 0 becomes 

f(G) + f'(G)(x- G)= 0. 

Do you get G- f(G)/f'(G) as your solution when you solve this equation 
for x? 

(b) (Newton's method of second order?) A more sophisticated method to solve 
f(x) = 0, knowing f(G), f'(G), and f"(G), is to replace f(x) by its Taylor 
polynomial p 2(x) of second-degree obtained from the second-order 
signature off at G, and solve for x in the equationp2(x) = 0, that is, solve 

f(G) + f'(G)(x- G)+ !f"(G)(x- G) 2 = 0. 

Our better guess B will be a value of x that is a solution to this equation, 
which may be regarded as a quadratic equation not in x, but in the ex­
pression x- G. Apply the quadratic formula to solve for this expression, 
then find a formula for B in terms of G after deciding which of the 
two roots you must take. Using the formula from this "second-order" 
Newton's method should result in even swifter convergence to the root 
of the given equation, once you get close to the root. 

18. (The central jUnction of calculus) A central role in the calculus should be 
played by a function f that is its own derivative. Of course, the "zero func­
tion" (the function given by f(x) = 0 for all x) is such a function. To avoid the 
trivial zero function, let us require not only that f'(x) = f(x), but also that 
f(O) = 1. We can use Taylor series to calculate f(x). 
(a) Iff(x) =f'(x), showthatf'(x) =f"(x). (Thisissoeasyitmightbedijficult.) 
(b) If f(x) = f' (x), show that f(x) = f' (x) = f" (x) = · · · = f(n) (x) = · · ·. 
(c) Suppose f(x) = f'(x) and f(O) = 1. Show, using part (b), that the signa­

ture off at 0 is given by the "string of ones" in Example 8, where we see 
thatf(1) = e = 2.71828 .... 

(d) Using the method of Example 8, show that f(1/2) = 1.64872 .... (Notice 
that 1.64872 ... seems to be suspiciously close to v'2.71828 ... ). 

(e) Using the method of Example 8, show that f( -1) = 0.367879 ... and 
notice that 0.36789 ... seems to be suspiciously close to 1/(2.71828 ... ). 

(f) (Make a guess.) From parts (e), (d), and (c), we should be vecy suspicious 
that we might have f(-1) = e-1, f(l/2) = e112, and f(l) = el, where e 
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is Euler's number, defined in Section 3. What would you guess is the 
formula for f(x)? 

(g) Among the graphs plotted in problem 43 of Chapter 5, find the one that 
looks like it might be the graph of f(x) = e~. Is it the one you picked in 
that problem to be its own derivative? 

19. (Calculating logarithms) In problem 21 of Chapter 6 we found that a function 
L = A(t) satisfying A'(t) = 1/t and A(l) = 0 would have the desirable loga­
rithmic property of changing multiplication into addition, that is, A(st) = 
A(s) +A(t). At that time, however, we had no way of calculating values of 
this logarithmic function precisely. 
(a) Since A'(t) = 1/t = c 1 , we have A<2l(t) = -t-2 , A(3l(t) = 2t-3 , 

A<4l(t) = -6t-4 , A<5l(t) = 120t-5, and so on. (Notice how the factorials pop 
up here.) Hence, A(l) = 0, A'(l) = 1, A"(l) = -1, A!3l(l) = 2, and so on. 
Show that at the point a= 1, the nth-degree Taylor polynomial of A(t) is 
given by 

Pn(t) = (t-1) -Ht-1)2 +Ht-1)3 -Ht-1)4 +···+(-It' (t-It. 

(b) In problem 18 we found that e112 = 1.64872 .... To approximate the log-
arithm of this number, let t equal 1.64872 ... in the expression for Pn(t) 
found in part (a). Does it appear that the logarithm of e112 is equal to 112? 

(c) In problem 18 we found that e-1 = 0.367879 .... To approximate the 
logarithm of this number, let t equal 0.367879 ... in the expression for 
Pn ( t). Does it appear that the logarithm of e-1 is equal to -1? 

(d) (Make a guess.) On the basis of your answers to parts (b) and (c), can you 
guess what the logarithm of~ will be? If so, you should be able to fill in the 
blanks in the following sentence. "If t = ~. then the logarithm oft will be 
__ , and if xis the logarithm oft, then t must be --·" 

(e) Explain why the logarithm of a number is simply the power to which 
Euler's number e must be raised in order to reach that number. (In other 
words, the logarithm function we have defined here is the logarithm "to 
the base e".) 

This problem set has offered only the briefest of introductions to trigonometric func­
tions, logarithms, and exponentials. There are many details to be filled in that would 
be presented much more leisurely in a calculus course at the next level. 
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Selected 
Problems 

1. (a) C = {84/W) + 4W. (b) 0 < W. 

3. (a) A= 1200w- 2w2 • (b) 0 < w < 600. 

9. (a) domain F is 

3 s' 
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or 1 :-:;; x :-:;; 5, x oft 3. range F is 

or 4 :-:;; y :-:;; 10, y oft 7. 
(b) domain f is 

or 3 < x :-:;; 8. range f is 

or y = 4 or 7. 

4 7 

3 

• •• 4 7 

to' 

s' 
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11. (a) No. (b) No. 

13. (a) range F is 

or y 'I' 1. 

17. (b) A= 20x- (1/12)x2, 0 <X< 240. 

19. (c) 0 < L < y'fZO. 

CHAPTER2 

1. Hint. Read Section 1. 

5. (a) (x + 3)2 + (y- 4)2 = 25. 
(b) (x- 3)2 + y2 = 5. 
(c) (x- a)2 + (y- b)2 = r2 . 

7. (d) Hint. See exercise 5.11. 
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11. Suggestion: Given the fact that x is irrational, suppose that the equation 
..jX = mjn holds for some integers m and n. Explain why this supposition 
leads to an absurd conclusion as soon as you square both sides of this equation. 

13. (b) Suggestion: Suppose the equation o/2 = mjn holds for some integers m 
and n. Explain why this supposition leads to an absurd conclusion as 
soon as you raise both sides of this equation to the sixth power. 

15. (a) If G = 5/4, then B = 378/300 = 63/50; if G == 63/50, then B = 
375047/297675. 

17. Hint. The area of the largest semicircle is ~ n(c/2) 2 = ~ ncZ = ~ n(a2 + b2), 

since c2 = a2 + b2 • Now calculate the sum of the areas of the two smaller 
semicircles and see whether you get the same thing. 

19. Hint. Use the Pythagorean Theorem to find the length of the diagonal of a 
unit square. Can the distance between two points lying in the unit square 
exceed this length? 

21. Hint. Use the fact that there are more mice in the world than there are hairs 
on any mouse. 

CHAPTER3 

3. (a) (See the beginning of Section 2.) 
(c) (See exercise 1.5.) 

5. Hint. The geometric meaning ofn is given by the ratio r2 (or r3), as defined in 
Section 2 of Chapter 2. Explain how, when we attempt to give a numerical 
meaning to n, as in inequalities (2) through (8) of this chapter-or as in 
exercise 3.14-the intuitive idea of a limit seems to be forced upon us. 

9. 12 + 22 + 32 + ... + 1002 = (100)(101)(201)/6 = 338,350 balls. 
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13. Hint. Problem 12 shows that the triangle marked "4" is equal in area to the 
triangle marked "1". 

15. The reader is asked only to make "an educated guess". (Problem 16 describes 
two ways that mathematicians have imaginatively responded to the facts 
presented here.) 

17. Suggestion: First explain how, having proved statement (c), Archimedes 
knew that A = ! Cr. Then divide both sides of this equality by y2 to show that 
Ajr2 = C/(2r). Explain why this means that the ratios r2 and r3 defined in 
Chapter 2 are equal (so that either can then be taken as the definition of the real 
number n). Thus, we know that Ajr2 =nand C/2r = n, and the familiar for­
mulas for the area and circumference of a circle follow immediately. 

19. From equation (11) we see that the point (x,y) is on the parabola if the ratio r 
of the distance between ( x, y) and F to the distance between ( x, y) and D is 1; 
it is on the ellipse if this ratio r is 1/2; and it is on the hyperbola ifr is 2. That 
is, (x,y) is on the conic section with eccentricity rand with the given focus 
and directrix if 

J(x- 4)2 + (y- 2)2 

r=~====== J(x- x)2 + (y + 2)2 

Squaring both sides and simplifying shows that r2 (y + 2)2 = (x- 4)2 + 
(y - 2)2 • Further simplification yields x2 - Bx + y2 - r2y2 - 4y - 4r2y + 
20- 4r2 = 0. Setting r equal to 1, 112, and 2, respectively, gives the equations 
called for in parts (a), (b), and (c). 

21. The equation you derive should show you that g is, in fact, a parabola. His 
friend f turns out to be (one branch of) a hyperbola. 

25. Hint. Choose your unit to be the length of one side of the square mentioned 
in statement (12) and find the length of the diagonal of the square by the 
Pythagorean theorem. Then explain why inequality (11) and statement (12) 
say, in essence, the same thing. 

29. Hint. Read the beginning of the next chapter. 

CHAPTER4 

1. If f(x) = x2 - 6x + 13, then 

f'(x) =Limit f(x +h) - f(x) 
h-o h 

3. (a) -6. 
(b) falling. 

. . (x + h) 2 - 6(x +h)+ 13- x2 + 6x- 13 
= Ll~lt h 

. 2xh + h2 - 6h 
= L~~01t h 

= Limit(2x + h - 6) 
h .... o 

= 2x- 6. 
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(c) x < l 
(d) 

(e) -4.5 :s;;y::;; 8. 
(f) -4 < y < 0. 
(g) -4.5::;; y. 

5. (a) -I:s;;y:s;;8. (b) -7<y<14. 

7. (4,2). 

9. (This problem is discussed in detail in Appendix 4.) 
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11. The wire should be cut so as to make the first part 500n/(4 + n):::::: 220 
centimeters long in order to minimize the combined areas. 

13. f'(x) = Limith-o((f(x +h)- f(x))/h) = Limith-o((7 -7)/h) = Limith-o 0 = 0. 

15. 1200 square meters. 

17. (a) y-1=3(x-1),ory=3x-2. (b) Yes. (c) Yes. (d) No,thetangent 
line of slope 3 through (1, 1) would be eliminated from consideration in 
"Holmes's method", because it cuts the curve twice. 

18. The derivative of(a) is pictured in (d); the derivative of(b) is (d); of(c) is (g); 
of (d) is (g); of (e) is (h); of (f) is (b); of (g) is (k); of (h) is (j); of (i) is (b); of 
U) is (k); of (k) is (k). 

CHAPI'ER5 

I. (a) $92.95. (b) 60 square meters. 

3. y- 5 = -10(x -1). 

5. (a) rising. (b) to the right. 

7. (a) 3. (b) to the left. (c) lowest. 

9. range[ is 

-18 18 

11. (a) 
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(b) (0,2) 
(c) -2 ~y ~ 78. 

13. t 

0 

y" 

1 
4 
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15. The first number should be ( -1 + v'61)/3 ~ 2.27, and the second should be 
~ 7.73. 

17. 3. 

19. The side of the cut-out square should be of length (14- v'76)/6 ~ 0.88 
meters, in order to maximize the volume. 

21. (d) Distance PQ should be J475 ~ 0.8944 miles. 

\ 
p~ 

Q 

23. (a) min C occurs when L = 06 ~ 2.52 meters. 

25. ?"3 by ?"3 by ?"3 meters. 

27. (a) approximately 7.30 by 7.30 by 3.65 feet. 
(b) approximately 5.16 by 5.16 by 5.16 feet. 
(c) both radius and height should be y'160/3n ~ 4.12 feet. 
(d) radius should be approximately 2.91 feet and height 5.82 feet. 

29. (b) The first part should be nA/(4 + n) centimeters long. 

31. (a) 2(xj(x- 6))((x- 6- x)j(x- 6)2 ). (f) (1/2VXS)(5x4 ). 

43. (Partial answer) the derivative of (a) is (d); the derivative of (j) is (a). 

CHAPTER 6 

1. (a) 100 miles. (b) 50 mi/hr. (c) 40 mi/hr. (d) accelerating. 
(e) decelerating. 

3. (a) L\A = x(L\y) + y(L\x) + (L\x)(L\y). (b) L\x and L\y must tend to zero since 
x and y are differentiable, hence continuous, functions oft. 
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7. (a) dA/dt = 2nr(dr/dt) = 2n(5)(7) = 70nin2 /sec at the instant in question. 
(b) Hint. Since d.Ajdt = 2nr(drjdt) and since rand drjdt are both functions 

oft, the second derivative must be taken by applying the product rule to 
27CY(drjdt). (Note that d2Ajdt2 is not equal to (d2Ajdr2)(d2rjdt2).) 

9. J,f ft/sec. 

II. (dr/dt)ir=2 = 3/4ninjsec. 

13. (b) F(t) = 1 - (1/t). (This curve F is pictured in (d) of problem 25.) The 
answer is not unique, because the function pictured in figure (f) of 
problem 25 is also an antiderivative of I/t2 that takes the value 0 when 
t =I. 

15. (a) 80ft/sec. (b) 80 ftlsec. (c) 62ft/sec. 

17. The upward speed at impact is Limitt--+2.3- ( -32t- 50)= --123.6 ft/sec. 

19. g(3) = 3. 

23. (b) 208ft. 

CHAPI'ER 7 

I. 39 km. 

3. dA/dt = 1/(t + 2). 

5. 

It=. 
0 2 

The area is 2 · 4 = 8. 

7. 8 - 11: square units. (VIle do not yet know an antiderivative of../ 4- t2 .) 

9. (a) J: 4xdx =Limit t 4(2kjn)(2/n) = Limit(16/n2) t k 

= Limit8(1 + 1/n) = 8. 

(c) Sn = t XkLfx = t(a + kLfx)Ax = a(Ax) t 1 + (Ax)2 t k 
k=I k=I k=I k=l 

_ (b- a) (b- a) 2n(n +I) -a--n+ --
n n 2 

= a(b -a)+ (b- alG) (1 +~)-
xdx = LimitSn = a(b -a)+ (b-a) 2 - = ---. Jb (1) ~ ~ 

a 2 2 2 
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11. (b) 2. 

13. (a) 16n/15 cubic units. (b) 4n/3 cubic units. 

15. 343n/3 cubic units. 

17. (b) Slice 2. 
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(c) (The cubic equation arising is the one whose solution is required in 
problem 25 of Chapter 4.) 

23. (-1/2,15/4). 

CHAPTERS 

2. It is one of the rarest gifts to be able to hold a view with conviction and detach­
ment at the same time. Philosophers and scientists more than other men strive to 
train themselves to achieve it, though in the end they are usually no more suc­
cessful than the layman. Mathematics is admirably suited to foster this kind of 
attitude. It is by no means accidental that many of the greatest philosophers have 
also been mathematicians. -Bertrand Russell. 

7. Two solid figures have the same volume if, from some perspective, they can 
be seen to be made up of "cross-sections" with equal areas. (Think of a deck 
of cards. It takes up the same volume-doesn't it?-whether it is neatly 
stacked or is listing to one side.) 

9. Hint. The vertical cross-section through a point x on the x-axis-where x 
ranges from 0 to 4-is a circle of radius x + 1 and therefore has an area of 
n(x + 1 )2 . By Cavalieri's principle the total volume is given by the integral 

Jo n(x + 1 )2 dx. Evaluate this integral by the fundamental theorem. 

APPENDIX 2 

36 36 36 (36)(37){73) (36)(37) 
1. I;(~+ 4k) =I: ~ + 4 I: k = + 4--= 18,870 balls. 

k-=1 k-=1 k=1 6 2 

b . = ~ (k4 ) (.!.) = (_.!...) ~ ,A= n(n + 1)(2n + 1)(3n2 + 3n- 1) 3. ( ) Hmt. Sn L- 4 5 L- tc 0 5 , 
k=1 n n n k=1 3 n 

from the result of part (a). To calculate the integral J~ x4 dx, find the 
limit of Sn as n increases without bound. 

APPENDIX 3 

1. Hint. Note that there are a pair of isosceles triangles in the figure, and recall 
that an "exterior" angle of a triangle is equal to the sum of the two "opposite" 
angles. That is, in the figure below we must have I/J1 + I/J2 = I/J3 . (Why?) 
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APPENDIX4 
3. The area of the rectangular portion of the field is maximized when its length 

is 100 meters and its width is 200/n meters. 

APPENDIX 5 

3. (a) 22 :;;; h(3) :;;; 35.5. 
(b) 57:;;; h(S) :;;; 119.5. 

(d) 22:;;; s; h(t) dt:;;; 24. 

(e) 64 :;;; fo h(t) dt :;;; 100. 

5. Partial answer: Formula (9) tells us here that t- ~ fl :;;; S(t) :;;; t. Letting t = 0.1 
shows that 0.9983:;;; 8(0.1):;;; 0.1000; letting t = 1 shows that 0.833:;;; 
S(l.O) :;;; 1.000. 
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