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To those who showed us
how enjoyable mathematics can be.



Preface

Focusing Your Attention

The purpose of this book is (at least) twofold. First, we want to show
you what mathematics is, what it is about, and how it is done—by
those who do it successfully. We are, in fact, trying to give effect to
what we call, in Section 9.3, our basic principle of mathematical
instruction, asserting that “mathematics must be taught so that
students comprehend how and why mathematics is done by those
who do it successfully”

However, our second purpose is quite as important. We want
to attract you—and, through you, future readers—to mathematics.
There is general agreement in the (so-called) civilized world that
mathematics is important, but only a very small minority of those
who make contact with mathematics in their early education would
describe it as delightful. We want to correct the false impression
of mathematics as a combination of skill and drudgery, and to re-
inforce for our readers a picture of mathematics as an exciting,
stimulating and engrossing activity; as a world of accessible ideas
rather than a world of incomprehensible techniques; as an area of
continued interest and investigation and not a set of procedures
set in stone.

To achieve these two purposes, and to make available to you
some good mathematics in the process, we have chosen to present

vii
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to you eight topics, organized into the first eight chapters. These
topics are drawn both from what is traditionally described as ap-
plied mathematics and from what is traditionally described as
pure mathematics. On the other hand, these are not topics that
are often presented to secondary students of mathematics, under-
graduate students of mathematics, or adults wishing to update and
upgrade their mathematical competence—and these are the three
constituencies we are most anxious to serve. Naturally, we hope
that the teachers of the students referred to will enjoy the content
of our text and adopt its pedagogical strategy.

Thus, we have chapters on spirals in nature and mathemat-
ics, on the designing of quilts, on the modern topic of fractals
and the ancient topic of Fibonacci numbers—topics which can be
given either an applied or a pure flavor—on Pascal’s Triangle and
on paper-folding—where geometry, combinatorics, algebra, and
number-theory meet—on modular arithmetic, which is a fascinat-
ing arithmetic of finite systems, and on infinity itself, that is, on the
arithmetic of infinite sets. We have tried to cater to all mathemat-
ical tastes; but, of course, we do not claim to be able, through this
or any other text, to reach those unfortunate people for whom all
mathematical reasoning is utterly distasteful. Pythagoras inscribed
on the entrance to his academy, “Let nobody who is ignorant of ge-
ometry enter” We might say, at this point, “Let nobody who abhors
all mathematics read any further” We see this book as a positive
encouragement to those who have already derived some satisfac-
tion from the contact they have had with mathematics. We do not
see it as performing a therapeutic function on the “mathophobic”’—
unless, as is often the case, their mathophobia springs purely from
a mistaken view of what mathematics is.

You will see that the eight chapters described above are largely
independent of one another. We are not at all insisting that you read
them in the order in which we have written them. On the other
hand, we do also want to stress the unity of mathematics, so that
there is bound to be a considerable measure of interdependence
in the material we present. Cross-referencing will help you to find
material from another chapter relevant to the chapter you are cur-
rently studying. We should add that Chapter 2 is particularly rich
in ideas which play a part in the other chapters of the book.
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In our final chapter, Chapter 9, we set out our views of what
mathematics should be in action, that is, how it should best be done.
Naturally, this chapter is quite different in nature from those that
precede it. It is not, however, different in tone; we continue the
informal, friendly approach which, we very much hope, shows up
clearly throughout our text. But we do believe that our readers may
find it helpful to have available to them, in easily digestible form,
some suggestions as to how to raise their expectations of success
in tackling a mathematical exercise. That is our main purpose in
including Chapter 9.

We would like to say a few words here about our notation and
terminology and our expository conventions. First, we number the
items in each chapter separately but as a unity; that is, we start
again with each chapter, but, within a chapter, we do not take ac-
count of the various sections in our numbering system. Moreover,
we have two numbering systems within a chapter; one is the num-
bering system for theorems, corollaries, examples, and so on, and
the other, appearing on the right side of the page, indicates the
sequence of displayed formulae of special importance.

Second, we adopt certain conventions and practices in this text
to help you to appreciate the significance of the material. From
time to time within a chapter we introduce a BREAK which gives
you the opportunity to test your understanding of the material just
presented. At the end of some chapters there is a FINAL BREAK,
testing your understanding of the entire chapter, which is followed,
where appropriate, by a list of REFERENCES and the ANSWERS
to the problems in the final break.! As for the references, they are
numbered 1, 2, 3, ..., and referred to in the text as [1], [2], [3],
.... (You are warned that, in Chapter 2, [3] may be the residue
class of the integer 3! The context will make this quite clear and,
as we say at the end of the Preface, no notation can be reserved
for eternity for one single idea.) From time to time we introduce
harder material, which you may prefer to ignore, or to save for a
second reading; the beginning and end of such material are marked
by a star () in the left-hand margin and the extent of the difficult
material is indicated by a wavy line, also in the left-hand margin,

'Our readers are, of course, to be trusted only to consult the answers after attempting the
problems.
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connecting the two stars. Certain key statements and questions
appear displayed in boxes; the purpose of this display is to draw
your attention to ideas whose pursuit is going to determine the
direction of the subsequent development.

Third, despite our informal approach, we always introduce you
to the correct mathematical term. In particular, theorems are impor-
tant assertions (not necessarily of a geometrical nature) which
are going to be proved. Corollaries are less important assertions
which follow fairly quickly from the previous theorem. Conjec-
tures, on the other hand, are hypotheses which may or may not
be true, but which we have some rational grounds for believing. It
is the standard means of making progress in mathematics to sur-
vey what one knows, to make conjectures based on such a survey,
to prove these (by logical argument) or disprove them (very often
by finding counterexamples), to find consequences of the theorems
thereby established, and thus to formulate new conjectures (com-
pare Principle 4 in Chapter 9, Section 1). We use LHS and RHS
as abbreviations for left-hand side, right-hand side. We employ the
phrase “if and only if” when we are claiming, or proving, that two
propositions are equivalent. Thus “proposition A if proposition B"
means that “B implies A, usually written “B = A”; while “proposi-
tion A only if proposition B” means” that “A implies B” or “A = B’
The obvious, simple notation for “proposition A if and only if propo-
sition B” is then “A & B! As a final example, we may use the term
lemma to refer to an assertion that is to be established for the ex-
plicit purpose of providing a crucial step in proving a theorem.?
Where a proof of an assertion is given rather formally (probably
introduced by the word Proof), the end of the proof will be marked
by a tombstone (0J).

It may also be helpful to say a word about the use of the letters
of our alphabet, or the Greek alphabet, to represent mathematical

2«Proposition A if proposition B” appears sometimes as “B is a sufficient condition for A”;
while “proposition A only if proposition B” may appear as “B is a necessary condition for A"
These terms, however, often create difficulties for students.

3In fact, the literature of mathematics contains many examples of lemmas that have
become more famous than the theorems they were originally designed to prove (e.g., Zorn’s
Lemma in set theory, Dehn’s Lemma in topology, and the Snake Lemma in homological
algebra).
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concepts like numbers, functions, points, angles, and so on.* There
are a few—very few—cases in which, throughout mathematical
writing, a certain fixed letter is always used for a particular con-
cept; thus, the ratio of the circumference of a circle to its diameter
is always m, the base of natural logarithms is always ¢, the square
root of —1 (regarded as a complex number) is always i, a triangle
is always A, a sum is represented by Y, and so on. However, this
does not mean that every time these letters appear they refer to
the concept indicated above; for example, i may be the subscript
for the ith term a; of a (finite or infinite) sequence of numbers. By
the same token we cannot reserve, in the strict sense, any letter
throughout an article, much less a book, so that it always refers
to the same concept. Of course, different usages of the same let-
ter should be kept far apart, so that confusion is not created; but
the reader should remember that any particular usage has a local
nature—local in place and time. There are far too many ideas in
mathematics for each of them to be associated, for all time, with a
particular letter of one of four alphabets (small or capital, standard
or Greek)—or 40 alphabets, for that matter.

As a final remark in this Preface, it is a pleasure to acknowledge
the essential assistance given to us by Kent Pedersen in assembling
the Index.

Now you're ready to start, and we hope you have an interesting
and enjoyable journey through our text.

Preface to the Second Printing

The authors would like to thank those who drew attention to minor
errors in the First Printing.

*You will find one use of a letter of the Hebrew alphabet. This is the standard use of
the first letter X, pronounced “aleph,” to represent the cardinality (size) of an infinite set in
Chapter 7.
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Going Down the
 Drain

CHAPTER

What have Helianthus annuus and Helix pomatia got in common?
First of all, you probably need to know what these things are. He-
lianthus annuus is generally known as the (common) sunflower,
while Helix pomatia is the common or garden French snail that
finds its way onto dinner plates in fancy restaurants all around the
world.

We suppose there’s a sense in which both the sunflower and the
escargot are edible. The one provides seeds to go in snacks and
salads and edible oil which is used in margarine and for cooking,
while the other provides what some people believe is a delectable
source of protein. But the gastronomic connection is not what we
had in mind.

1.1 CONSTRUCTIONS

While you're working on that conundrum, try doing something
more practical. In Figure 1 we have a spider web grid for you. You
might like to photocopy or trace it, because we want you to start
drawing all over it. While we're not against defacing books if it's in

1
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FIGURE 1

a good (mathematical) cause, you may want to use Figure 1 several
more times. It's best to start with a clean version each time.

What do you see in Figure 1? There is a series of concentric
circles whose radii are increasing at a constant rate. In fact, the
radii are 1, 2, 3, 4, 5, and 6 units, respectively. Then there is a
series of straight lines all of which pass through the central point.
The angle between neighboring pairs of these straight lines is 30°.
Actually, you'll notice that these lines go off to infinity in only one
direction. We call such half-rays rays.

Some of you may recognize Figure 1 as polar graph paper but
we won't worry about that for a moment or two. What we are inter-
ested in is that you go off and find a rectangular piece of cardboard.
You'll need a pencil too. We'll wait here while you go and get them.

Now look at Figure 2. Choose a point P;, anywhere on one of
the rays of Figure 1. Now put the cardboard on your polar graph
paper so that one side touches P;. Then slide the cardboard so that
the adjacent side of the card touches the next ray (see Figure 2(a)).
When you've done that, mark the point on this next ray which is
at the corner of the right angle in your card. Call this new point P;.
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FIGURE 2

When you've got that organized, do the same thing again but this
time start at the point P,. So now one side of the card touches P,
and the adjacent side of the card runs along the next ray around
(see Figure 2(b)). Mark the point where the right angle touches this
next ray and call it P;.

Once you've got the idea, continue until it’s no longer physically
possible to add any more points. Suppose that P, is the last point
that you were able to mark on your copy of Figure 1. Now join the
points Py, P,, P3, up to P, in as smooth a curve as you can manage.
You should produce a spiral similar to the one in Figure 3.

It’s worth reflecting for a moment on what you have just done.
You have just been involved in an iterative geometrical procedure

FIGURE 3
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which generates a sequence of points. This means that we perform
an operation on one point (P, here) to get another (P,). We then
perform the same operation again but this time on the new point
(P;), to get the next point (P3). We keep doing this over and over
again.

In Chapter 3, you'll see us playing around with Fibonacci and
Lucas numbers. There we will be iterating numbers. Here we are
iterating points. Later on in this chapter, we'll tie up these two ideas.

In the meantime, we just want to stop for a minute because some
of you may have got a different spiral from the one we've drawn in
Figure 3. Our curve is spiraling inward in a counterclockwise (anti-
clockwise if you don’t have a North American education) direction.
The different spiral that we've just mentioned would be spiraling
in toward the center in a clockwise fashion!

¢ ¢ ¢ BREAK

You might like to think for a minute how that could possibly
have happened, given the exquisitely accurate directions that
we described above.

Well, while you were thinking, we have looked back at our iter-
ative instructions and have discovered that, although we pointed
you to Figure 2, we didn't actually say that the ray that the right
angle touched had to be the one in a counterclockwise direction
from the ray the point P, was on. The misinterpretation that we
noticed clearly put P, on the ray that was the next clockwise around
from P;. Obviously, this was the work of a left-handed person!

OK, so things can be done that way. For those of you who fol-
lowed the implied counterclockwise direction of Figure 2, have
another go, but this time do it clockwise. And for the people who
did it clockwise the first time, would you mind having a try in the
other direction now, please?

e e ¢ BREAK
Can you manage to make your spiral go the other way?
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FIGURE 4

Fine! So now everybody should have two spirals, one with a
clockwise decline and the other with a counterclockwise decline.
This left-handed version we've shown in Figure 4.

But what we would dearly like to know is: Why is the spiral
heading for the center? What are the alternatives? The points P,
P,, etc., could spiral in to the center, they could keep the same
distance from the center, they could spiral away from the center,
or they could exhibit erratic, exotic behavior not yet described in
the pages of this magnum opus.

e ¢ o BREAK
Why do the points spiral in?

Before we start our erudicious explanation, you must write down
a quick reason of your own. Nothing too elaborate, mind. Some-
thing like “the hypotenuse of a right-angled triangle is longer than
either of the other sides” will do. In fact, if that's what you wrote,
then you're on top of the game. That's exactly what's going on.
Look at the counterclockwise iteration shown in Figure 5(a) and
let C be the center of the polar graph paper. Then you'll see that
ACP, P, is right-angled at P,. The hypotenuse of this triangle is CP;.
So clearly CP, < CP,;. This means that the point P; is closer to the
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FIGURE 5

center C than P;. Hence the points go spiraling in as we move in a
counterclockwise direction.

For the left-handed among us, the clockwise situation is dealt
with in Figure 5(b). Of course, we haven't yet used all of the
information available from the precise rules of the construction.

Now when you're on a good thing, stick to it. We'll just vary the
iteration slightly. Take your card and a pair of scissors and cut off
a right angle as shown in Figure 6. Make the angle « any size you
want. Keep one part of the card to use straightaway. Call this part
A, and the other part B, and put B aside somewhere. We won't need
it for the moment but we will use it later on.

Now get hold of another copy of Figure 1 and use the A part of
your card to go through the iterative process described above, all

FIGURE 6
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over again. The only difference now is that this time the angle «
goes where the right angle went before. If you take an arbitrary
point P; in any ray, and have one side of the card touching P, and
the neighboring side of the card along the next ray, then P, is at
the vertex of the angle «. You should be able to see how to continue
from here. It’s the same old routine.

¢ o » BREAK

The big question now is: “What sort of a curve did you get
when you put a smooth curve through the points Py, P,, ...?"
Did you get another spiral? Did it spiral in or not? Did it stay a
constant distance from the center? Did it exhibit some exotic,
erotic behavior? If so, what sort of behavior?

So what happened? First of all, we’ll assume that you all adopted
the Figure 2 approach so that P, was counterclockwise from P; and
so on. (Perhaps there is still the odd person who went the other
way!) We've listed some possible outcomes in Figure 7. Which, if
any, did you get?

The thing that interests us is that we can get any of the shapes
in Figure 7! Those with some other sort of erratic behavior should
go back to the drawing board. The answer is definitely one of the
curves in Figure 7, as we will now show.

Perhaps a diagram like Figure 5 will be of some help. We may
be able to sort it all out with a simple right-angled triangle. Except

Spiral in Circle Spiral out
(again!) (very unlikely!) (neat!)

FIGURE 7
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FIGURE 8

when we look at Figure 8 there don't appear to be any right-angled
triangles!

How can we compare CP; and CP,? Is it possible that CP; could
be bigger than CP, for some value of «? Could CP; actually equal
CP,? We know already that if « = 90°, then CP, is smaller than CP,
so that ought to be a possibility too.

Ah! Is that the clue? What do we know about the relative sizes of
sides and their opposite angles? Surely the bigger side is opposite
the bigger angle. So if the angle at P, is bigger than the angle at Py,
then CP, is bigger than CP;.

Now if the angle at P; is o (as we know it is), then 180° — 30° — «
is the angle at P;. So whether the iterative curve spirals in or out,
depends on whether « is bigger or smaller than 150° — «! So when
is a bigger than 150° — «?

Now o > 150° — «,
is equivalent to 2a0 > 150°,

or o > 75°%

Those of you who had cut your card so that « was bigger than
75° found that your curve spiraled in because CP, < CP;. Those of
you who had « smaller than 75° has a spiral going out (CP; > CP).
And one of you may have fluked a circle by taking « exactly equal
to 75°.
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(04 curve

bigger than 75° spiral in
equal to 75° circle
smaller than 75°  spiral out

It’s actually interesting to play around with « very close to 75° and
see how long it takes for your spirals to move away from the circle.

¢ o ¢« BREAK

Instead of using the A part of the card with the angle «, try
using the angle 90° — o from the B part (see B in Figure 6). Is
there any connection between the A and B curves? What about
a right-handed A curve and a left-handed B curve? It's worth
looking at Figure 1 again too. There we had rays that were 30°
apart. What happens if you repeat the card construction with
rays that are only 10° apart? What is the critical value of ¢ for
this case?

If you use a 10° gap between rays you'll find it much easier to
get a smooth curve than in the 30° case. However, it all takes a bit
longer and you will have to be more careful with your construction
because small errors mount up.

1.2 COBWEBS

We've drawn the cobweb of Figure 1 for you again in Figure 9(a).
Compare it to the rectangular grid of Figure 9(b). In Figure 9(b)
we've put in the x- and y-axes. You're probably used to this. It’s
easy to locate a point in the plane using the x- and y-coordinates.
Anything that's x units horizontally away from the origin O and y
units vertically away from O, is given the coordinates (¥, y). The
streets of many North American cities are laid out on such a rect-
angular grid, perhaps with the x-axis called Main Street and the
y-axis called State Street. It makes it very easy to find your way
around.
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(@ ®

FIGURE 9

On the other hand, if you are a spider and you have just captured
a particularly delicious Musca domestica, what you'll probably do
is park it for a while to let it mature. Of course, you would like
to remember where the Musca domestica is for future gastronomic
purposes. It doesn’t make any sense to superimpose a rectangular
grid on your cobweb. Why not use what you've got directly? You've
got a polar graph situation, why not use polar coordinates? A fairly
simple approach, using the web of Figure 9(a), would be to say,
well, the Musca domestica is 15 units (probably centimeters but
we won't bother to specify them precisely) from the center C and
60° around from the window ledge. (We're assuming here that the
ledge has a ray that you, as the spider, are particularly fond of and
that you have decided to use this as your reference point.) All you
now have to do is to store the polar coordinates of the point M as
(15, 60°) in your brain next to the Musca domestica and you’ll know
exactly where your next meal is coming from.

In Figure 10 we've shown the position of the Musca domestica
as M. We also notice that you've gathered a few other interesting
specimens in your web. For instance, there is a Diptera culicidae at D
(reference (20, 150°)) and a poor Bombus bombus at B = (25, 300°).

But there is one thing that you need to know straightaway. The
more educated spiders amongst you use radians for angle measure-
ment rather than degrees. This came about because you realized
that when you walked once around your web one unit out from
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90°
120° )

A

240° 300°

180° 0°

2

270°

FIGURE 10

C, you actually traveled 2 units. So you thought of this as having
turned through an angle of 2w radians. So, for spiders, 27 radi-
ans equals 360°. This means that 180° = n radians, that 30° = %
radians, and so on.

¢ ¢ o BREAK

Locate the positions of the Diptera culicidae and the Bombus
bombus using polar coordinates (7, 8), where r is the distance
from C and 0 in radians is the angle turned through, starting
from the ledge already mentioned.

Actually when you think about it, the place where the Musca
domestica is stored cannot only be described as (15, Z), but also as
(15, Z), and (15, 3% ), and indeed (15, £ + 2nx), for any value of
n, positive or negative! So, unlike Cartesian coordinates, polar co-
ordinates are not uniquely defined. It's always going to be possible
to monkey around with the angle part to the tune of multiples of
27. Now it’s possibly a minor complication that there is more than
one way to locate every point, but it does seem to be an easier way

11
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to locate objects on your web than using Cartesian coordinates. You
never know, there may be some other advantages. Who knows?

Now if you were a particularly intelligent spider, you might be
interested in the card construction of the last section. What’s more,
you might even start to draw spirals on your web. If you could man-
age a colored thread, then, no doubt, insects would be attracted
from miles around you, and you and your descendants would
therefore have an evolutionary advantage over the rest of your
species. You might even take over the world eventually. We can
just imagine huge webs, with colored spirals, attracting members
of the species homo sapiens to their doom in droves.

But, as you know, being a spider, it's a little hard to carry a card
and pencils around with you to mark out the position of the next
point in the spiral. It would be much easier to know the location of
the next point so that you could lay out your colored spiral thread
in that direction.

The big question then is, given the first point P;, what is the
location of the point P,? Let's make life easier for you and put P,

bid

at (5, 0) and use rays that are § radians (or 30°) apart.

e e o« BREAK

We'll also use the first card construction, where the card has
a right angle at the corner as shown in Figure 11. If P, is at
(5,0), where is P,?

The coordinates of P, have to be found, right? Now we know
that P, is on the Z ray. So P, = (r, Z). All we have to do is to find
r. But ACP,P, is a right-angled triangle. We know all the angles

in this triangle (after all, P,CP, = %, so CPiP, = 3). So we only

30°

FIGURE 11
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Chy
CP,

CP, = 5c0s § = szﬁ =~ 4.3. So P, is approximately (4.3, %)

Using the same method, your spiderness could calculate the po-
sitions of a whole collection of points P3, P4, and so on. You could
do this forever if you liked, though this might delay the colored
spiral thread manufacture and your inheritance of the Earth.

But maybe you could find a formula which would give you all
these points in one fell swoop. What a savings that would be!
What a colossal evolutionary advantage. Soon spiders of all gen-
era would be at your door for the rule that would provide the key
to everlasting lashings of fast food, fully self-delivered to the table.

Before you get too many dreams of arachnidic grandeur you'd
better find an equation for the spiral. What you need to be able
to do is to find a relation between r and 6 so that any point with
coordinates (r, #) lies on the spiral and no other points do. First, of
course, we must find the relation satisfied by all the points P,,.

Let's have a look at the situation in Figure 12. This supposes that
we know P, = (7, 6,) and we want to find Pry1 = (¥n41, Ont1). Once
again, of course, 641 = 6, + % .Soit's easy enough to find the angle
part of the coordinate. But we have another right-angled triangle
here. So CP,,; = CP, cos 165 This means that r,.; = r,, cos —’é In
other words, P,y = (rncos %, 6, + Z).

Now that'’s all very well, and we know that you are only a spider,
but if you want to get on in this world you are probably going to
have to find an equation linking » and 6 for the general point (7, 6).

need use a bit of trigonometry to see that = cos % . Therefore,

Prov1=(ns1941)

Py = (rn en)

FIGURE 12

13
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All you’ve been able to do is to give us an iterative relation between
the coordinates of P,, and P,,41.

Forget about that for a minute and let's see what we can work out.
If we add % to the angle every time we move on, then P, = (n;, 0),
Py = (r2, £), Ps = (r3, 3), and so on. So the angle part of P,
should be just a multiple of % . Probably Pn; = (rn+1, 1‘—;’-) Check
that out to make sure it's OK. It is, 80 Oy = .

So can we calculate the distance from C in the same way?

Let’'s tackle it the same way. We know that P, = (5,6,) and

P, = (5—‘4—§ ,6,). From what we know about the way P, and P
are related

= ((5)(2)e). - (02)0)

and so on. In general then, Ppy; = (5( ? )", 6,41). This means that

we can at last give the complete polar coordinates for P,;;. They
are (5(%)", ).

But how do we get a formula linking r and 6 for the general
point (7, 6)? Let’s think what's going on for a minute. Suppose we

letr = 5( —“g—g )" and § = 7. Now both of these last equations have

ann in them. What if we eliminate n? Won’t we then have a relation

between r and 0, satisfied by the coordinates of all points P,,?
Well, 0 = 7 ,son = % . Substituting for n in the r equation gives

60
r= 5( é) * . What a mess! Let’s write it out large to see if it looks
any better

66

r=5<[—3->?. (1D

2

It certainly is a mess but it does seem correct. After all, the points
P, all satisfy it. The other points on the spiral are just what we get
by smoothing between the P, points. As well as that, we can easily

V3

see that as € gets larger r gets smaller. This is because % is less

than 1. Ast approaches infinity ( ? ) approaches zero. This means
that » will approach zero as 6 gets larger and larger. So this curve
will definitely spiral in as we've already seen.

Young arachnid, we think you're on a winner here. You'll get so
many insects in your new colored spiral web that you'll be able to
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sell them to all the spiders in the neighborhood. Just think of it.
Arachdonalds! Selling fries and juicy Big Arachs!

1.3 CONSOLIDATION

The work of the last section has, of course, only opened up a can
of worms. What equation would we get if we had used rays which
were only % apart? What equation would we find for cards which
have corner angles « equal to %, 2 % and especially 2 ? How
could we explain the right-handed and left-handed versions of all
the spirals? There are clearly a lot of mathematical questions that
are still unresolved here, not to mention the sunflower-escargot
conundrum.

Now we have been looking for a relation between r and 6, starting
from curves that we knew something about. We certainly knew
how to construct them. Why don't we turn the questions around
and look at (7, §) relations to see what curves they produce? It's
probably a good idea to start with something simple. We'll then say
goodbye to you and let you explore to your heart’s content.

So what could be simpler than r = k, a constant? In such a curve,
the points are always a constant distance from the origin. Hence
they must lie on a circle, center C.

Another simple equation that needs to be dealt with is 6 = k.
Any point on the graph of this relation makes with C the same
fixed angle from the initial direction. Hence we get a straight line
which starts at C and heads off to infinity. Notice that we get a ray,
not a complete line through C.

Another simple equation is r = 8. What does the spider web
graph of this relation look like? Well, there are at least three ways
to go about answering that question. We could plot lots of points
and join them all up, or we could use a graphing calculator, or we
could think about what could happen.

¢ o ¢ BREAK

See if you can make any progress with the graph whose polar
equation is r = 6?

If you've plotted points you may have found that they disap-
peared off your web pretty quickly. We hope that you changed

15
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your scale so that you were able to get points whose values of 6
were larger than 2.

Is there very much to say about r = 6? As ¢ increases so does 7.
So the curve formed by the points (7, ), where r = 6, must spiral
out from the center. It'll have to look like the curve in Figure 13.

Normally in polar coordinates, we only allow r to be positive or
zero. After all, it is the distance of the point from the pole. However,
in some books you will see r being allowed to be negative. We
won't though, because we have an aversion to negative distances.
Of course, 0 is generally allowed to be any real number but, for any
particular relation, we only allow those values of 6 which make
r > 0. Naturally, the point with coordinates (7, 8) is the same as
the point with coordinates (r, 6 + 2m).

Gettingback to relations between r and 6, the next obvious things
to try are the linear relations—things like r = mf + ¢, where m and
¢ are fixed real numbers.

¢ ¢ ¢« BREAK

Why not see what curves have equation r = mf + ¢? You may
need to use a combination of point-plotting and thinking. But
thinking is always preferable if there's a choice. You might
like to try the special cases m = 0 and ¢ = 0.

You've probably realized by now that all the relations with m
positive give spirals. Since we allow 6 to be negative, the spirals

FIGURE 13
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m =
FIGURE 14
FIGURE 15
start at § = — -, because r can't be negative, that is, we require

6 > — . We already know that if m = 0, we get a circle of radius
c. For m negative, we require § < —=. All of these situations are
shown in Figure 14.

Let’s have a little deeper look into a special case of these linear
spirals. So let r = 26. The polar curve with this equation is given
in Figure 15.

The interesting thing that we want to point out here is the con-
stant nature of this curve. Look what happens every time it crosses
the initial line.

From the table you can see that the value of r increases each
time by 4. But the same thing happens no matter what ray we
look at. As the curve spirals out, every time it crosses a fixed ray, it
is 47 further out than the last time. To see this constant increase for

TABLE1 v = 20

6 0 2m 4 6 8w

v 0 4n 8n 12n 167

17
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r, take any ray, 6 = 6, say. When the curve crosses that ray again,
6 has increased by 2 to 6, + 27. At the first crossing, r; = 26, and
at the second r, = 2(6, + 27) = 26, + 4n. Clearly, the difference
between r; and r; is 47. And that constant difference applies no
matter which ray the curve crosses.

You probably also managed to show that the same thing
happened for any polar curve of the form

r=mb +c. (2)

The argument is the same. At the ray 6 = 6,, we get r; = mf; + ¢
at first. The next time past this ray

=6+ 2n and r, = m(6 + 2m) + c.
So the difference between the two values of r is
1, — 1 = (M, + m2n 4+ ¢) — (mb; + ¢) = 2nm.

Again, a constant increase. Again, the same increase occurs for
every ray. Such curves are known as Archimedean spirals (see [2]
and [3], for example).

¢ ¢ ¢ BREAK

Can you think where you might have seen Archimedean
spirals?

If you have a non-zero constant ¢, in your Archimedean spiral,
see (2), the curve looks as if it might follow the surface of some
sort of material on a roll—dress material, for instance. But this
isn’t quite right. Material certainly winds around the roll adding
a constant width once every time round. However, the start isn't
quite right. On the other hand, if the constant is zero, the spiral
above is just the kind of curve you get when you roll a length
of something tightly up onto itself. Tape measures are sometimes
rolled this way.

Now when we're dealing with Cartesian coordinates, polynomial
relations give some interesting curves. But if we allow, for example,
7 = 62 + 26 + 2, then we find we don't get anything very exciting—
just more spirals. So we'll try something different.
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e ¢ o BREAK

What do you think the polar curve with equation r = sin 8
looks like? Have a guess and then try to sketch it.

Before we dor = sin 6, let's have alook at r = cos 6. In fact, we'll
show it in Figure 16. It's a circle, with center at (3, 0) and radius
1. How does that come about?

If you can't see how we got this, draw up a table of values. You
should find that as 6 goes from 0 to 7, r goes from 1 to 0. There
are no values for r with 6 between 7 and 325, but from §2£ to 2m,
r increases from 0 to 1 and the circle is completed. (If you take
increasing values of 6 from here, you just go round the circle again
and again with suitable gaps every n radians, in the same way
that you do from 6 = 0 to 27). Alternatively, there is a straight-
forward proof using Cartesian coordinates. Starting with » = cos 6,
multiply both sides by r to get > = r cos 6. Since x = r cos # and
y = rsin 6, we then see that x*> + y?> = x. Completing the square
gives (x — %)2 + y* = ;. Do you recognize this as a circle?

If you're still worried about r = sin 6, you should now be able to
show that it too is a circle. This one, though, has center at (3, Z)
in polar coordinates and again the radius is % .

¢ o ¢ BREAK

There is an easy way of obtaining the graph of r = sin 6 from
that of r = cos 6. Recall that cos(Z — 6) = sin6? How does
that help you sketch r = sin 8? What is the effect on the curve
r = cos 6 of changing 6 to 7 — 6?

Looking at trigonometric functions opens up floodgates. You
should find a lot of interesting shapes of the form r = cos 26,

[
U

FIGURE 16

(o} 1
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r = cos 36, and so on. Something like r = 1 — sin @ is interesting
too. If you're hooked on these polar curves, we suggest you try to
graph a few more of them.

If we can remind you of your spider days in the previous sec-
tion, remember that we came up with a polar equation of the form

r = ka®. (In actual fact k was 5 and a was (%) - .) Now this curve
has an interesting property. Look at the values of r for two values
of 8.

If6 =6, r, = ka® and if 8 = 6,, r, = ka®.

“So what?” we hear you ask. OK, so take the ratio r; : r1. Then

72
Y1 ka®

6,
ka e,

(3)

So here’s the insight. If we take any two values of 8 which differ by
a given amount ((6; — 6,) is constant), the resulting ratio 2 is the
same, no matter where you are on the spiral. Because of this prop-
erty, curves with polar equation r = ka® are called equiangular
spirals (for more details see [2] and [3]).

The property also means that, in some sense, the curve is self-
similar. The distance from the origin increases by the same amount
(by the same ratio) for every constant angle that the spiral goes
through. Every section of the spiral is then a replication of the
previous section. Zooming in (or out) on the spiral you see the
same shape. Hence the spiral is much like a fractal (see Chapter 8).

1.4 FIBONACCI STRIKES

We have constructed spirals with cards on cobwebs but there are
other methods of construction. Take your favorite sequence—the
Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, ... comes to mind (see
Chapter 3)—and use a polar grid with rays at angles of % for a
start. When 6 = 0, let r = F; = 1. When 0 = %, let r = F, = 1.
Keep going so that when 6 = ng, 7 = Fuy1.
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FIGURE 17

e e ¢ BREAK

Plot the Fibonacci points as indicated above and draw a
smooth curve between them. You should get a respectable
spiral. Check it out.

You have probably ended up with something like the graph of
Figure 17. Actually, with a little work, you can give a relation be-
tween r and 6 for this curve. Have a go and see what you come up
with.

But you don't have to use the Fibonacci sequence. Something
like 1, 2,4, 8,16,32,...0r1, 4,9, 16, 25, ..., will give you a spiral
too.

e o ¢ BREAK

Experiment with different sequences of numbers and see
what your spirals look like.

Just to wrap this one up, let’s find the relation between r and 6

for the curve formed from 1, 2, 4, 8, 16, .... Using rays % apart,

when 6 = nZ, r must be 2"'. So r = 251 = %(2%9) It looks as
if we've ended up with another equiangular spiral. Did you get an
equiangular spiral for the Fibonacci curve?

e e » BREAK

Use the Binet formula (see Chapter 3) to express the Fibonacci
curve by an equation in polar coordinates.

21
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1.5 DENOUEMENT

We started oft this chapter asking what there is in common be-
tween the sunflower and the snail. The answer is that the seeds of
the sunflower and the shell of the snail both exhibit a spiral struc-
ture. If you look at the snail's shell, you'll see a clear spiral. What
may not be obvious, at first, is that the spiral is equiangular. “The
whorls continually increase in breadth and do so in a steady and
unchanging ratio” (see [1, Volume 2, p. 753]).

The same kind of behavior is to be found in the Nautilus shell
and in many other shells, too. But itis not to be found in sunflowers.
Instead, sunflowers exhibit the Fibonacci spiral behavior. This is
illustrated in Figure 18.

In this chapter we have only skimmed the surface of the study
of spirals and polar curves. There is a lot more out there to inves-
tigate. You might actually like to do some of that investigating. If
you do, don't forget about three-dimensional spirals. The common
or garden helix not only occurs in circular staircases and in bed-

FIGURE I8
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springs but also seems to have something to do with DNA too. But
what on earth is an Archimedean screw? ‘
Oh! It's suddenly occurred to us that we haven’'t mentioned
drains and that was in the title of the chapter. What's the path
traced out by a fleck of fat as it goes down the drain? And does it
matter whether the fat is in Sydney, Southampton, or Seattle?

e o ¢ FINAL BREAK
Here are a few problems for you to try out your new skills on.

1. In Section 1, when using the card construction of a spiral
we found that 75° (or 2£) was a critical angle. Would the
same angle be critical if the angle between the rays was

changed?

2. Draw four equally spaced equiangular spirals on a piece
of card. Pin the point C to the center of a turntable. What
effect do you get when the turntable rotates?

3. Consider the polar curve whose equation is v = sin 6. What
would happen if 6 were allowed to be negative?

4. Find the polar equation for the circle, center (a, o) and
radius b. [Hint: First get the Cartesian equation.]
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ANSWERS FOR FINAL BREAK

1. Suppose the angle between rays is €. Then the critical case
occurs when m — 6 — ¢ = . Hence the critical value of « is
%(n — 6), which certainly depends on the angle 6 between the
rays.

2. You should get an interesting optical effect.
3. You get the same circle again and again.

4. In Cartesian coordinates the center is (a cos @, a sin a) and the
radius is b. So the equation is

(x —acosa)’ + (y — asina)® = b
Simplifying, this becomes
x* +y* — 2xacosa — 2yasina = b* — a’.
Converting to polar coordinates, we obtain
r? — 2racosfcosa — 2rasin@sina = b* — a?,
or
r* — 2racos(f — @) = b* — a*.

The moral is that, when dealing with circles whose centers are
not at the origin, it’s easier to use Cartesian coordinates than
polar coordinates.



A Far Nicer
Arithmetic

CHAPTER

2.1 GENERAL BACKGROUND: WHAT YOU ALREADY
KNOW

Suppose you have to do an addition, say 357 + 586. How much do
you need to know in order to know the last digit of the answer?
Would the last digit of each summand be enough? Suppose, in-
stead, that it’s a subtraction problem? A multiplication problem? A
division problem?

We think you will immediately see that, to know the last digit of
the answer to the addition problem you only need to know the last
digit of each of the summands. (In the above example you would
simply add 7 to 6, ignore the 1 in the tens position and get 3.)
Likewise, to know the last two digits of the answer, you only need
the last two digits of the summands (so that, above, you would
add 57 to 86, ignore the 1 in the 100 position, and get 43), and so
on. Indeed, the traditional algorithm for adding a column of figures
exploits this fundamental fact. And what goes for addition is true
of subtraction and multiplication, too, though not of division, even
where the divisor is an exact factor of the dividend (think of 12 + 2,
22 +2).
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Let us concentrate for the moment on the last digit. The last
digit of the integer a may be described as the remainder when a is
divided by 10. Then, as we have said above, the remainder when
a + b is divided by 10 may be obtained from the remainders when
a and b are divided by 10; and the same goes for the remainder
when a — b or ab is divided by 10. And what goes for remainders
when you divide by 10 is just as true for remainders when you
divide by 100, 1000, and so on.

Now comes the big, but obvious step—the same goes when you
divide by any integer m. Those of you who have done arithmetic
in various bases will already have met this fact, but we feel that
none of our readers will have any real difficulty in understanding
this. Thus, for example, if a = 44 and b = 23, we see that 44 has
a remainder of 4 and 23 has a remainder of 3 when divided by 5.
Thus we know that the remainder whena + b (= 67)is divided by 5
is the same as the remainder when 4 4 3 is divided by 5, that is, 2;
and a — b (= 21) leaves a remainder of 4 — 3, or 1, when divided
by 5. In just the same way we know that 44 x 23 leaves the same
remainder as 4 x 3 when divided by 5, that is, a remainder of 2. It
is very striking that we don't need to calculate 44 x 23 to get this
last result!

¢ o o BREAK

Check the results of the last paragraph. Then try some
examples with a value of m different from 5.

Mathematicians like to use short, pithy phrases,’ so, instead of
the long-winded “the remainder when you divide by m” they say
“the remainder mod m" and the set of all integers leaving the same
remainder mod wm is called a residue class mod m; here “mod” is
short for “modulo,” and m is called the “modulus” Thus the re-
mainder mod m is a specially chosen member of its residue class,
namely, that integer r in the class which satisfies 0 < r < m. No-
tice that there are only finitely many residue classes mod m (in
fact, there are precisely m such classes), but that a residue class
contains infinitely many integers.

! Another example of a short, pithy phrase is “the triangle ABC" instead of “the triangle
with vertices A, B, C.” Can you think of further examples?



2.1 General Background: What You Already Know

Now we also need a word for the process which, working mod m,
starts with the residue classes of a and b and produces the residue
class of (a + b). The word we use is, of course, the addition of
residue classes. Likewise, we speak of the subtraction and multi-
plication of residue classes; moreover, we use the usual symbols
to denote these three operations on residue classes.

Of course, the addition of remainders is not quite like the addi-
tion of integers. Certainly, if the modulus is 10, then the sum of
the remainders 3 and 5 is 8; but the sum of the remainders 6 and 7
is 3, not 13, because a remainder mod m must lie between 0 and
(m — 1). We now introduce some notation to overcome this slight
awkwardness.

Let [a), stand for the set of all integers which leave the same
remainder as a when you divide by m; thus [a], consists of all
integers (a + km) where k is any integer. As we have said, we call
[a]m a residue class, more precisely, the residue class of a mod m.
Thus if a = 0, m = 2, then [a],, is just the set of even integers; if
a = 1, m = 2, then [a],, is the set of odd integers; and [1]3 is the set
{..,=5-=2,1,4,7,...}.

Now we may write the basic arithmetical facts as

[alm + [P]m = [@ + D)m,

)
[@)m[Dlm = [aD]m,
strictly speaking, we may regard the relations (1) as defining the
addition and multiplication of residue classes mod m. Notice that,
in (1), there is no restriction on the possible integer values of a and
b; they could be remainders but they need not be. Indeed, a or b
could be negative.

Notice, too, that we omitted subtraction from (1). We had two rea-
sons for doing this. First, we cannot just define subtraction any way
we please; subtraction must fit with addition. More formally,a — b
is the solution x to the equation x + b = a. Of course, a moment'’s
reflection will convince you that the rule

[aln = [D}n = [@ = D] )

does produce a result compatible with our definition above of the
sum of residue classes; moreover, it is obvious that [0}, is the zero

27
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for our addition of residue classes, that is,

so that
—[a]m = [~a]m- 3)

However, the second reason for our delaying the statement of
the subtraction rule is more important in practice. We have talked
so far in this chapter of integers and may have left the impression
(though we didn’t actually say so!) that we had positive integers in
mind. But, for (2) or (3) to make sense we must allow negative
integers and zero, since a — b may well fail to be positive, even
if a and b are positive. You may wonder if there is any difficulty
in talking of the residue class [a], if a is negative. The answer
is: No, there isn't. For recall that the residue class [a],, consists
of all integers (a + km), where k is any integer, and so contains
positive and negative integers, whatever value we give to a. The
usual remainder, which number theorists also call the residue, is
just the smallest nonnegative integer in the collection (a + km);
but, quite often, another representative of the residue class is more
natural or more useful, as in (3). Notice that the modulus m is
always a positive integer. For we never allow m = 0 (why not?) and
there would be no difference between [a],, and [a]—,, if we did allow
negative m. To understand this last statement take a careful look at
the definition of [a], and [a]-,. For example, if a = 2, m = 3, we
see that, by definition, [2]; is the set of integers 2 + 3k, where k is
any integer; so if k is

., =3,-2,-1,0,1,2,3, ...,
then the corresponding elements of [2]; are
=7, —4,-1,2,5,8,11, ... .

Likewise, we see that, by definition, [2]_3 is the set of integers
2 — 3k, where k is any integer; sokis...,—3,-2,-1,0,1,2,3, ...,
then the corresponding elements of [2]_3 are

..11,8,5,2,—1,—4,—7, ...,

that is, the same set of integers as above.
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Now we can be quite precise. We allow a, b, . . . to range over the
set of integers Z; m is a fixed positive integer; [a]» is the set of inte-
gers (a + km, k € Z); (1) gives the rules for adding and multiplying
residue classes mod m; (2) shows how to subtract residue classes
to achieve the usual properties of subtraction; and (3) shows how
to take the additive inverse.

We have, in our discussion so far, been skirting round one of the
most fundamental ideas in mathematics, that of an equivalence
relation and the associated set of equivalence classes. Those of
you who are familiar with this idea may have recognized that our
residue classes [a], are just special cases of equivalence classes. To
“level the playing field,” let’s take a moment to make all our readers
familiar with this idea.

Let S be a set and let ~ be a relation on the set S. Thus it may
happen that a ~ b for certain pairs (a, b) of elements of S. As an
example, think of the set Z and let a ~ b mean that m exactly
divides (a — b); we write thisasm | (a — b). We say that the relation
~ on § is an equivalence relation if it satisfies three conditions:

I. (Reflexivity)a ~ a, for alla € §;
II. (Symmetry) Ifa ~ b, thenb ~ a, forall a, b € S; and
II1. (Transitivity) Iffa ~ b, b ~ ¢, thena ~ ¢, foralla, b,c € S.

Given an equivalence relation ~ on a set S, the set is partitioned
into equivalence classes by the rule that a, b go into the same
class if and only if a ~ b. You may check that the three conditions
above are precisely what we need to make sense of this rule. For
example, condition I guarantees that every element of S belongs
to some class.

If we revert to our example, then we see that the equivalence
class (subset of Z) containing a is precisely the residue class of
amod m, or [a],,. We call the equivalence relation of our example
congruence mod m, and write a = bmod m for a ~ b.

e ¢ » BREAK

Consider the following relations and decide which of condi-
tions I, II, and III they satisfy:

(i) S=Z,a~bmeansa > b;
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(i) S=1Z,a ~ bmeansa > b;
(iii) S =Z, a ~ b means a # b;
(iv) S = set of straight lines in the plane,

¢ ~m means “¢ is parallel to m”

(v) S is as in (iv), £ ~ m means “¢ is perpendicular to
m”

Because of the simple nature of the rules (1), (2), and (3), it
follows immediately that the addition and multiplication of residue
classes have all the nice, convenient properties of the addition and
multiplication of integers (with one important exception, described
below). Thus (writing [a] for [a], for simplicity), we have

{w+m=m+m
(Commutative laws) (4)
[a][b] = [P][a],
[([a] + [bD) + [¢] = [a] + ([P] + [eD),
(Associative laws) (5)
([a][PDe] = [al([P][cD,
(Distributive law) [a)([b] + [c]) = [a][b] + [a][c], (6)
(Zero) [a] +[0] = [a], [a](0] = [O], )
(Unity) [@](1] = [a] (8)

Rules (1) to (8) are said to be the rules of modular arithmetic.

e ¢ ¢« BREAK

Check the results of (4) through (8) by example and by
definition.

The only rule of ordinary arithmetic that you might expect to
hold, but which actually fails for modular arithmetic, is the one
which states, for integers®. a, b, that, if ab = 0, then a = 0 or

20r, indeed, for any real numbers a, b! This rule is the basis of our method of solving
equations. Division cannot even be defined (let alone carried out) without it
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b = 0. The corresponding statement for residue classes is false;
for example,

[2]10[5}h0 = [10]10 = [Ofao,

but, of course, [2]10 # [010, [5}o # [0]10. We will have much more
to say about this phenomenon later—it is very closely related to
the reason why, in division, the last digit of the dividend and of the
divisor do not give us the last digit of the quotient. However, by way
of compensation for the loss of this division rule for integers, the
arithmetic of residue classes has many great advantages. Perhaps
the most obvious is that the set of residue classes mod m is finite,
consisting of the m elements [0}, [1]m, . .., [m — 1}». Thus the ad-
dition and multiplication tables can be completely described by a
square array. Let us illustrate this for the moduli (plural of “modu-
lus™!) 5 and 6; we emphasize that these tables, unlike the traditional
tables, are not part of the process of adding and multiplying—they
actually tell you everything! In these tables—and often when do-
ing modular arithmetic—we write the remainder instead of the
residue class containing it (in accordance with our principle of
using simplified notation—see Chapter 9).

+10 1 2 3 4 x|0 1 2 3 4
0|10 1 2 3 4 00 O O O O
111 2 3 4 0 110 1 2 3 4
212 3 401 2|0 2 4 1 3 9)
313 4 0 1 2 3(0 3 1 4 2
414 0 1 2 3 4,0 4 3 2 1
Addition mod 5 Multiplication mod 5
+|10 1 2 3 4 5 x{0 1 2 3 4 5
010 1 2 3 4 5 0J]0 0 0 0 0 O
111 2 3 4 5 0 110 1 2 3 4 5
212 3 4 5 0 1 210 2 4 0 2 4 (10)
313 4 5 0 1 2 310 3 0 3 0 3
4(4 5 01 2 3 410 4 2 0 4 2
515 0 1 2 3 4 510 5 4 3 2 1
Addition mod 6 Multiplication mod 6
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e o ¢ BREAK

Construct some tables of your own choosing—of course, with
some prime and some non-prime moduli.

We close this section by drawing your attention to the important
notational innovations we have introduced: if the integers a and b
belong to the same residue class mod m, then we may write

a = bmod m. (11)

Thus (11) means exactly the same as [a},, = [D]». We read (11) as
“a is congruent to b mod m. Notice that (11) is equivalent to

a—b=0mod m
or
m exactly divides (a — b). (12)

For example, 38 = 12 mod 13. In the phrase “m exactly divides n”
we will always suppose in this chapter that m is a positive integer,
but we allow n to be any integer. Instead of writing the phrase we
will usually use the abbreviated form

m | n. (13)

Then (13) is true if and only if there is an integer k such that
n = mk.

e e ¢ BREAK

Some things to think about: What can you infer if you know
that:

(1) m|nandn | m?

(2)y minandn | g?

(3) alnand b | nand a and b are coprime, that is,
gced(a, b) = 1.2

3gcd means greatest common divisor, so “gcd(a, b) = 1" means the only common factor
ofaandbis 1.
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2.2 SOME SPECIAL MODULI: GETTING READY FOR THE
FUN

From what you'll learn in this section, you'll get a reputation
as a lightning calculator—but you won't, in fact, have done the
calculations your audience thinks you've done. Read on!

Of course, so long as we continue to write numbers in base 10,
arithmetic mod 10 (i.e., the arithmetic of residue classes mod 10)
will continue to hold a special place among the various modular
arithmetics. However, there are other modular arithmetics which
are also of special interest and which we will now describe. The first
two, arithmetic mod 9 and arithmetic mod 11, also derive their
special interest from the fact that we write numbers in base 10.

Arithmetic mod 9 Here the special interest, as we have said,
derives not from any particular properties of the residue classes
mod 9 but from the fact that remainders mod 9 can be quickly
calculated for numbers written in base 10, as we will suppose they
are. Thus let n be any positive integer and let s(n) be the integer
obtained by adding the digits of n. Thus,

if n=23857, then s(n)=3+8+5+7 = 23.

We now have an important result, which we state as a theorem.
Theorem 1 [n], = [s(n)],.

Of course, this only means that n — s(n) is divisible by 9. The
general argument is clear if we deal with our particular case above.
Then

n = 3000 + 800 + 50 + 7,
sm)y=3 +8 +5 +7,
so that
n — s(n) = 3(1000 — 1) + 8(100 — 1) + 5(10 — 1)
= 3(999) + 8(99) + 5(9).

It thus suffices to observe that for any positive integer g, 102 — 1 is
divisible by 9. This last fact comes immediately from our rule of
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multiplication (1); for
since [10]g = [1]g, it follows that [107)g = [19]g = [1]s.

(Of course, you may also observe that 109 — 1 is written in base 10
as a sequence of g 9's.)

Of course, we can iterate the s-function, that is, we can calculate
s(s(n)) which we naturally write as s*(n), and so on. Eventually,
we must reach a number lying between 1 and 9, and this must
be the remainder when n is divided by 9, with the small modifi-
cation that if we eventually reach the number 9 itself, then there
was no remainder and our number n is divisible by 9. So, for our
example of n = 3857, s(n) = 23, s’(n) = 5, so the remainder is 5.
If n = 49826, then s(n) = 29, s*(n) = 11, s*(n) = 2, so the remain-
deris 2. If n = 5247, then s(n) = 18, s*(n) = 9, so 5427 is divisible
by 9. (You should check these.)

Now let us consider this question:

What is the remainder when 3857 X 49826 is divided by 9?

This question appears at first sight to involve either long, tedious
calculation or appeal to a hand calculator or computer. Actually,
however, it is easily answered without any mechanical aids. For
Theorem 1 tells us that

[nle = [s(W]s = [$*(W)]s = .- .
Thus
(3857 = [5]s, [49826]s = [2]e,
o)
[3857 x 49826y = [5 X 2]y = [10Js = [1]s,

and the remainder is 1!

We will see in Section 5 how these ideas can be used very
effectively to check calculations. However, there is already an
interesting point revealed by this calculation. Those for whom
arithmetic is merely a skill would believe that, to find the remain-
der when a number expressed in a complicated way is divided by 9,
one must (a) first express the number in traditional (base 10) form;
and (b) then carry out the division. We have shown that this belief
1s wrong.
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Notice that, since 3 is a factor of 9, it follows from Theorem 1
that

Corollary 2 [n], = [s(n)],.

Thus we may use the same technique as that above to find the
remainder when n is divided by 3; we simply apply the s-function
repeatedly until we achieve a number between 1 and 9. Then

if we achieve 1, 4, or 7, the remainderis1,

if we achieve 2, 5, or 8, the remainder is 2,

if we achieve 3, 6, or 9, the remainder is 0.
Notice that this gives us an easy check for divisibility by 3 (and
by 6).

Arithmetic mod 11. A similar technique may also be used to do
arithmetic mod 11. Once again the interest derives from the ease
with which remainders mod 11 can be calculated. Admittedly, it
is not as easy as calculating remainders mod 9, but it is very easy
compared, say, with calculating remainders mod 7.

Let us again take 3857 as our example. If n = 3857, we again
write

n = 3000 + 800 + 50 + 7.

Now, however, we exploit the (obvious?) fact that 10 = —1 mod 11.
Then (by (1)), since (-1)' = -1, (=12 =1, (-1)® = -1, ...

10" = (-1)! = =1 mod 11, so we see that
11 divides 10 + 1 (= 11);

10 = (—1)®> = 1 mod 11, so we see that
11 divides 100 — 1 (= 99);

10* = (=1)* = —1mod 11, so we see that
11 divides 1000 + 1 (= 1001);

We may express all these facts in one formula

107 = (—1)? mod 11, (14)
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noting that

1 if g is even,
(-1 = (15)
-1 if g is odd.

From (14) and (15) we see that what we need now, instead of the
function s which we used in calculating mod 9, is the function o
which gives us the alternating sum of the digits. Thus if

n = 3857 = 3000 + 8000 + 50 + 7,
then
on)=-3+8—-5+7.

(Notice that the signs in o(n) alternate, ending with a positive sign.)
Then the result for the modulus 11 which corresponds to Theo-
rem 1 is

Theorem 3 [n),; = [o(n)],;.

Once again we can iterate the function ¢ when necessary (it
wasn't necessary in our example, since o(3857) = 7, so the remain-
der is 7). However, a small difficulty arises because o(n) need not
be positive. What then should we do if, as is possible, o(n) is a
large negative number? Well, suppose o(n) = —n; and o(n;) = ny,
where n and n; are positive, but n; is not necessarily positive. Then

n, = nymod 11,
so —n; = —ny;mod 11, and n = o(n) = —n; = —ny mod 11.
Thus our basic result that n = o(n) mod 11 remains valid
if we interpret o(—n), for n positive, to mean —a(n);

and we can then iterate automatically. Let us given an example. If
n = 908172, then

on)=-9-8+1-7+2=-21

ando(—21) = —0(21) = —(=2 4 1) = 1. Thus 908172 = 1 mod 11,
so 1 is the remainder when 908172 is divided by 11.
Another example of the application of Theorem 3 is this:

if n = 13464, theno(n) =1 -3+4 -6+ 4,
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so 0 is the remainder when 13464 is divided by 11, that is, 13464
is exactly divisible by 11. In Section 5 we will show how to exploit
our results on the calculation of remainders on division by 9 or 11.

e o ¢ BREAK

Before reading the next section we suggest that you check
your own understanding of this section by showing, without
doing any division, that:

2037618 is divisible by 9;

30207618 is divisible by 9 (Why is this now especially easy?);
9456238 is divisible by 11;

35343 is divisible by 99;

194601 is divisible by 3;

and 190614 is divisible by 6.

You might also like to prove that any number which reads the
same forward and backward (called a palindromic number
with an even number of digits is divisible by 11.

2.3 ARITHMETIC mod P: SOME BEAUTIFUL
MATHEMATICS

If you look back at the multiplication tables for multiplication
mod 5 and mod 6 you will notice an important difference. In fact,
this difference becomes even more obvious if, in each table, the row
and column headed by 0 are omitted. Then (9) and (10) become,
respectively,

2 4

RN o e
1 1 2 3 4 2 2 4 0 2 4
2 2 4 ! 3 3 3 0 3 0 3
3 3 ! 4 2 4 4 2 0 4 2
4 4 3 2 1

B 515 4 3 2 1
Multiplication mod 5

Multiplication mod 6

Thus each row (and column) of the mod 5 table is just a per-
mutation of 1, 2, 3, 4; but not every row of the mod 6 table is a
permutation of 1, 2, 3, 4, 5; and those which are not contain zeros.
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Of course, the essential difference between 5 and 6 which is re-
sponsible for the distinctive properties of the multiplication tables
is that 5 is prime, whereas 6 is not. If m is not prime, then m may
be factored as m = k€, with neither k nor £ divisible by m, so that
(with [ ] meaning [ )

[0] = [m] = [k} = [K][€], [k] # [0}, [€] # [O].

We now show why the multiplication table mod p (where p is
prime) must have the features of our example when p = 5. Recall
that we write m | n to mean “m divides n (exactly).” The key fact is
the following:

Theorem 4 Ifpisprimeandp | k€, thenp | korp | L.

This is regarded by some mathematicians as the definition of
a prime, provided we insist that p # 1. Alternatively, Theorem 4
follows easily from the basic result on the factorization of integers
as a product of primes.

For the rest of this section we suppose that p is a prime dif-
ferent from 2, since the case p = 2 is trivial for our discussion, as
you will see.

Now let a be any number prime to p (i.e., p does not divide a, or
p 1 a), and consider the sequence of integers

a, 2a3a, ... (p— 1a (16)

We claim that no two of the integers on the list (16) are congruent
mod p. For suppose we were wrong; then we would have num-
bers k, £, with 1 < k < £ < p — 1, such that ka = £a mod p. This
means that p | a(€ — k). But p t a, by hypothesis; and p { £ — k
sincel < £ — k < p.Thus, by Theorem 4, p { a(¢ — k). This contra-
diction shows that, after all, we were right—no two of the integers
in (16) are congruent mod p.

A very similar argument shows that no integer in the list (16)
is divisible by p. Thus the list (16) consists of representatives of
(p — 1) distinct nonzero residue classes mod p. But there are only
(p — 1) distinct nonzero residue classes mod p and they are repre-
sented by 1, 2, 3, ..., (p — 1). Therefore, the list of residue classes
[a], [2a), [34], . .., [(p — 1)a] is just a reordering, or permutation, of
the list [1],{2], [3], - - -, [P — 1]-
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e e ¢ BREAK

Check this last assertion for various (appropriate) values of p
and a.

We may draw some very important conclusions from this ob-
servation. First, we now know that, in the list (16), some number
congruent to 1 must occur. This means that, given a # 0, there
exists b such that ba = 1 mod p (you may check various instances
of this on the multiplication table mod 5).

We then say that b is the (multiplicative) inverse of a mod p.
Of course, strictly speaking, it is the residue class of b which is
the inverse of the residue class of a, but it is quite intolerable to
be forced always to be so precise. So long as we know what we
mean we can (and should) express ourselves informally—this is
our Principle of Licensed Sloppiness in action (see Chapter 9).

It is easy to check that, when an inverse exists, it is unique;
here, of course, the uniqueness refers to the residue class. So every
nonzero residue modulo p has an inverse when p is prime. This shows
that arithmetic mod p is easier in an important sense than ordi-
nary arithmetic—we don’t have to introduce fractions. In fact, with
p 1 a, we can obviously solve for x any congruence xa = ¢ mod p.
Forifba = 1 mod p, then (bc)a = ¢ mod p. And Theorem 4 imme-
diately implies that the solution is unique. So if we used a prime
base for our numeral system (instead of base 10), we could deter-
mine the last digit in a division problem, too, from the last digit in
the divisor and dividend, provided, of course, that the divisor is a
factor of the dividend, and that its last digit is not zero. (This is not,
let us add, a good enough reason for abandoning base 10!)

¢ o ¢ BREAK

You may like to debate the relative merits of the bases 10
and 12. What are the advantages and disadvantages of base 2?

Our second conclusion, based on the observation immediately
preceding the first break of this section, will lead us to a famous
theorem. Since the numbers in the list (16) are congruent, in some
order, to the numbers 1, 2, 3, ..., (p — 1), the overall products must
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be congruent. Thus

a’'(p — 1) = (p — 1)! mod p.

where n! is the factorial function1 x 2 x 3 x --- X n. But we may
now invoke Theorem 4 again. For certainly p { (p — 1)}, as an ele-
mentary application of Theorem 4 shows. Thus we conclude from
the congruence above a famous theorem of Fermat* (1601-1665):

Theorem 5 Let p be a prime and a an integer such that p { a. Then

a’!' = 1 mod p.

(You might like to know that Theorem 5 is a special case of
a fundamental result in group theory, which itself follows from
a celebrated theorem due to the great French mathematician La-
grange (1736-1813). Look out for Lagrange's Theorem when you
study group theory!)

Notice how Fermat’s Theorem enables you to answer appar-
ently very difficult questions quickly. Here’s an example. What
is the remainder when 2% is divided by 7? Now 1000, on divi-
sion by 6, leaves a remainder of 4 (so 1000 may be expressed as
6g + 4 for some g). Thus 21090 = 264+4 = 264 % 24 for some g. But
26 = 1mod 7. Thus 259 = 1 mod 7,50 2% = 2% = 16 = 2mod 7.
Thus, finally, 2!1°° = 2 mod 7. So the answer is 2. Of course, here
we've given you the justification of the method. The procedure
itself is very much quicker since we only need the remainder
when 1000 is divided by 6.

Theorem 4 has yet another very interesting consequence. Sup-
pose n* = 1mod p. Thenp | (n* — 1) orp | (n — 1)(n + 1). Theo-
rem 4 tellsusthatp | (n — 1)orp | (n + 1), sothatn = £1 mod p.
This gives us an important property of prime numbers p, namely,

If n* = 1 mod p, then n = £1 mod p. (17)

4This is sometimes called Fermat’s Little Theorem, in contrast to the famous Fermat’s
Last Theorem (FLT) which he never proved. FLT asserts that, if n > 3, then the equation
a" + b" = ¢" cannot be solved in non-zero integers a, b, c. At the time of writing this chapter,
we are hoping that FLT is being proved by Andrew Wiles, of Princeton University. (At the
time of proofreading it had!)
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Thus, since, by hypothesis, p # 2, there are precisely two residue
classes mod p whose squares are [1], namely [£1]. Of course, [—1]
is the residue class containing p — 1 (and —1). No surprises yet.

Now, as we have pointed out, to every residue class [a] there is
a residue class [b] such that [a][b] = 1; and what we have proved
above tells us that [a] # [b] unless [a] = [1] or [p — 1]. It follows
that if we consider the totality of nonzero residue classes mod p,
namely, [1], [2], [3], ..., [p — 1], and (temporarily!) throw away [1]
and [p — 1], then the rest fall into pairs of distinct residue classes
([a], [b]) such that their product is [1]. See (9) for the verification of
these facts in the simple case p = 5.

It now follows (this is the “blinding light”) that if we multiply
together all the nonzero residue classes

(1) 12 (8 -- - [p — 1]
then their product is [1][1][p — 1], that is, [—1]. In other words,

(- DI =[-1),

or, as we prefer to express it:

Theorem 6 (Known as Wilson's Theorem®) If p is a prime,
-1 = —1 mod p.

®Oystein Ore (in his book Number Theory and Its History, McGraw-Hill, 1948) gives the
following historical account of this theorem:

In the Meditationes Algebraicae by Edward Waring, published in Cambridge in 1770,
one finds, as we have already mentioned, several announcements on the theory of
numbers. One of them is the following. For any prime p the quotient

is an integer.

This result Waring ascribes to one of his pupils John Wilson (1741-1793). Wilson
was a senior wrangler at Cambridge and left the field of mathematics quite early
to study law. Later he became a judge and was knighted. Waring gives no proof of
Wilson's theorem until the third edition of his Meditationes, which appeared in 1782.
Wilson probably arrived at the result through numerical computations. Among the
posthumous papers of Leibniz there were later found similar calculations on the
remainder of n!, and he seems to have made the same conjecture. The first proof of
the theorem of Wilson was given by J.L. Lagrange in a treatise that appeared in 1770.

It is usual nowadays to state the theorem as a congruence.
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Let's just check thisforp = 7. Then 6! = 6 x5x4x3x2x1 =
720 and 720 = —1 mod 7 since 7 is, clearly, a factor of 721.
Of course, Theorems 5 and 6 are true (but trivial!) if p = 2.
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Try this for some other primes p. Does it work for non-prime
moduli? Does (17) work for non-prime moduli?

Now some final thoughts on arithmetic mod p. We gave a proof
above that there are precisely two residue classes of integers n
satisfying n? = 1 mod p, namely, n = +1 mod p. What is the situ-
ation if we consider a fixed but arbitrary integer a, with p 1 a, and
seek to solve the congruence n?> = a mod p? A slightly subtler ar-
gument shows us that there are always either two solutions or no
solutions. For suppose we square all the nonzero residues. Then
it is easy to see that b* = ¢® mod p if and only if b = +¢mod p
(Theorem 4 again). Thus, the p — 1 nonzero residues [1], [2],
[3],...,[p — 1] maybe arranged in pairs [b], [c] such that [b]* = [c]*.
This means that there are p%l residues which are squares (and they
are squares of exactly two residues), and p—;—l residues which are
not. Let us look at the example p = 11. Then, squaring the residues
1), [2), .- -, [10]mod 11, we get

[11, (4], 191, (5], 13, [31, [5], 9], [4], {1),
just as the theory predicted. Thus
[1], [3], [4], [5], [9] are squares, while [2], [6], [7], [8], [10] are not.

How can one tell, without squaring all the nonzero residues,
whether a given residue is a square or not? There is a beautiful
theorem which answers this question, namely, Theorem 7 below.
Before stating it, we introduce the term quadratic residue for a
residue (such as [1], [3], [4], [5], [9]mod 11, above) which is the
square of another. Remember also that p is always an odd prime in
this section. (Do you notice where we have already used this fact?
Hint: Look at our proof of Wilson’s Theorem.)
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Theorem 7 Suppose p | a. Then a is a quadratic residue if and only

if
a"" =1mod p.

(If a is not a quadratic residue then a % = —1mod p.)

One part of this is easy to prove. If a is a quadratic residue mod p,
say a = b* mod p, then

a7 = )T =P =1mod p,

the last congruence being Fermat's Theorem. Now, certainly,

a7 = +1mod p,since (a7 )2 = a?~! = 1 mod p. But how do we
know that we must have a quadratic residue a if a 7 = 1mod p?

Let us explain the answer without going into every detail. Congru-
ences mod p behave, in many ways, just like ordinary equations.
Now we know that an equation of the form

XX+ + -+ ix+o=0, of degree k,
cannot have more than k roots. In the same way, the congruence
coX* + X'+ +x+ ¢ =0mod p

cannot have more than k solutions. In particular, the congruence
xT —1=0mod Y4

cannot have more than ’%1 solutions. But we know by our previous
arguments that all quadratic residues satisfy this congruence, and
there are Ii%l quadratic residues. Hence the quadratic residues
provide the full complement of solutions of the congruence

X7 — 1 = 0mod p,

and so none of the other residues, that is, the nonquadratic
residues, can satisfy this congruence; thus, by (17), they must
satisfy the congruence xT +1 = 0mod p.

If we try this with p = 11, then %! = 5and

15 =1, 2° =32 = —1mod 11,
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3° = 243 = 1 mod 11, 6> =2°.3° = —1mod 11,
4% = 1024 = 1 mod 11, 7°=18°=3°.6"= —1mod 11,
5° = 3125 = 1 mod 11, 8° = (2°® = ~1mod 11,

9° = (3°)* = 1mod 11, 10° = (-1)° = ~1mod 11,

as predicted.

2.4 ARITHMETIC mod NON-PRIMES: THE SAME BUT
DIFFERENT

We know things cannot be as nice with arithmetic mod m, if m is
not a prime, as they are with arithmetic mod p. For, as we have
said, if m is not prime, then the following situation is bound to arise
for certain numbers a, b:

ab = 0mod m, although a # 0mod m and b # 0 mod m. (18)

You can see this because if m is not a prime we can express m as
m = ab, where a, b are proper factors of m (remember our example
based on 10 = 2 x 5). However, we can salvage something. For
there is a generalization of Theorem 4 which we can use. Recall
that we say m is prime to k, or that m and k are coprime, it the
greatest common divisor of m and k is 1, that is, gcd(m, k) = 1.
Then we have

Theorem 8 Ifm | k€ and m is prime to k, then m | £.

This is proved just as in the special case when m is prime (i.e.,
Theorem 4), using the factorization of k€ as a product of primes.

¢ o ¢ BREAK

Try writing out the proof of Theorem 8 which we have
sketched. Test the statement of the theorem with some
examples.

From Theorem 8 we may proceed as in the previous section,
but confining our attention to those residues which are prime to m.
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Notice that this terminology makes sense, since
a is prime to m if and only if a + km is prime to m
(Why?). Thus we suppose that we have written out the remainders
=), rn... na,rnnEm-—1) (19)
prime to m. We multiply by any number a prime to m, to get
ary, ary, ..., arg_q, arg. (20)

We then argue, as we did before, that the residue classes rep-
resented in the list (20) simply form a permutation of those
represented in (19). From this we first conclude that the list (20)
contains a number congruent to 1 mod m, so that every residue
prime to m has an inverse. Second, we observe that, multiplying
all the numbers in (19) together and all those in (20) together, we
have

MYy Ty = anary---arg = alnry---r,mod m. (21)
But r,7; - - - 7,4 is prime to m so that, by Theorem 8,
a? =1 mod m. (22)

The number g deserves a special name. It depends on m, of course,
and is called the Euler ®-function® and is written g = ®(m); it is
the number of residue classes mod m which are prime to m. Then
(22) is Euler’s Theorem, so-called since it was discovered by the
great Swiss mathematician Leonhard Euler (1707-1783).

o(m)

Theorem 9 a = 1 mod m if a is prime to m.

This, of course, generalizes Fermat's Theorem (Theorem 5); for
you should have no difficulty in seeing that
if p is prime, then ®(p) =p — 1.

Notice that we have, in Theorem 9 (or Theorem 5), a situation in
which we know that the number a®™ — 1 is divisible by m without
having to do any dividing. We show below that #(5040) = 1152, so
we know that (for example) 135 — 1 is divisible by 5040. How long

5@ is the capital Greek letter “phi”
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would it take a high-speed computer to show this by straightforward
arithmetic?
Theorem 9 has the important consequence.

Corollary 10 Let a be prime to m. Then there exists a positive integer
n, called the order of a mod m, such that

a’*=1mod m ifandonlyif n|s.

Proof Let n be the smallest positive integer such that
a" = 1mod m.

Such an n exists by Theorem 9, which tells us that there is a
positive integer, namely, ®(m), with

a®™ = 1mod m.
Now let s be a positive integer. If s = nk, then
a® = (@ = 1 mod m.

Conversely, suppose a® = 1 mod m. We may divide s by n,
getting a quotient g and a remainder r, so that

s=gn+vr, 0<r<n

Then a” = a*(a™)™? = 1 mod m. By the minimality of n, we
must haver = 0, son | s. O

e ¢ ¢ BREAK
Find the orders of 3 mod 10; 3 mod 7; 6 mod 11.

How easy is it to calculate ®(m)? It is not too difficult if we use
some clever counting. First, if m is a power of a prime, say m = p”",
then

PP") =p"(p - D). (23)
To see this, consider the residues that are not prime to p"; these
are represented by those numbers up to p” which are divisible
by p. Which are these representative numbers? They are just
p,2p,3p, ..., p", and there are obviously p"~! of them. Thus, there
are p" — p"~! residues which are prime to p, as (23) asserts.
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* Now suppose m = kf, where k, £ are coprime. We write the
numbers from 1 to k€ in a rectangular array as follows:

1 2 N 4
e+ 1 42 e 20
20 + 1 20+ 2 12 (24)
(k=1 +1 (k=2)¢+2 --- ke

(Try this with k = 9, £ = 8, say.) We now make a series of claims
or assertions.

Claim 1 If the entry at the head of a column is (is not) prime
to £, then all the entries in that column are (are not) prime
to €. This is just a restatement of (18). Thus, if we wish to
strike out numbers in (24) which are not prime to k¢, we may
first strike out whole columns consisting of numbers none of
which is prime to ¢, leaving just $(£) columns, which consist
entirely of numbers prime to £. (Carry your example k = 9,
¢ = 8 along with our argument.)

Claim 2 The final column of (24) consists of representatives of
the residue classes

(e 2k - (KK,

in some order. This is our old argument (based on Theorem 7
and used in the proof of Euler’s Theorem); it is here that we
make vital use of the fact that k, £ are coprime.

Claim 3 Every column of (24) consists of representatives of the
residue classes

Ak (20 - - Kk,

in some order. For how do we pass to the column immedi-
ately to the left of the last column? We just subtract 1. So
we subtract 1 from the residue classes [1), [2], - . ., [k} (in
some order). This, of course, is just a further (cyclic) permu-
tation of these classes. So we continue, stepping to the left and
subtracting 1, across the whole array (24).
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Claim 4 Thus, in every column of (24), there are ®(k) residues
prime to k.

Claim 5 From Claims 1 and 4 we conclude that there are
d(k)P(¢) entries in (24) which are prime to both k and ¢.

Claim 6 A number is prime to k¢ if and only if it is prime to k
and to ¢. (Prove this!)

From Claims 5 and 6 we obtain the key result

d(kt) = P()P(¢) ifk, £ are mutually prime. (25)
Now you should have no difficulty in deducing from (25) that if
ky, koo ky
is any (finite) collection of mutually prime integers, then
P(kiky - ky) = Dk))D(ky) - - - DKy (26)

¢ o » BREAK

Exemplify the whole argument fork = 9, ¢ = 8; and any other
pairs of values k, ¢ you care to choose. Illustrate (25) with
examples. Hlustrate (26) for the case n = 3.

[t is easy, using (23) and (26), to calculate ®(m) for any m. Let us
give an example. What is ® (one million)? Now you surely agree
that it would be very tedious to enumerate all the numbers up
to 1,000,000 which are prime to 1,000,000, and then count them.
All we need to do, in fact, is this:

1,000,000 = 10° = 2° . 5°.
Thus, by (25),
@(1,000,000) = ®(2®(5°) =2°-1-5" -4, by (23)
=410
= 400,000.

If you think just of the units digits, you may see why exactly %
of the numbers from 1 to 1,000,000 are prime to 1,000,000, and feel
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you don't need the complicated argument we've given in this case.
But now try ®(5040). We know of no easier method than

5040 = 2*-32.5.7, so ®(5040)=2°-3-2-4-6 = 1152.

¢ ¢ ¢ BREAK

Try calculating @ for yourself for some nice, juicy numbers!
What is ®(600), $(1728), $(90)? Here's a place where man
(and woman!) beats the machine!

Show by an example that the relation ®(kf) = ®(k)P(£)
tails if k, £ are not coprime.

You may think, at this point, that, after all, there isn’t so much
difference between mod p arithmetic (p a prime) and mod m arith-
metic (m not a prime). Let's just give one example to show that
there really is. We saw in formula (17) of Section 3 that there
are exactly two residues n mod p such that n? = 1 mod p, namely,
n = £1 mod p. But there is no such result for general residues
mod m. Thus, for example,

12=5"=7"=11" = 1 mod 12,

so that there are four residues n mod 12 such that n?> = 1 mod 12.
Why do you think this difference appears between arithmetic
mod p and arithmetic mod m?

2.5 PRIMES, CODES, AND SECURITY

One of the simplest questions and, as we have seen, one of the
most important questions that can be asked about an integer is:
Is it prime? For most integers the surprising answer is, we don't
know—at least we don’t know how to determine whether or not an
integer is prime in reasonable time. Consequently, the question,
“What are the factors of a number N?” is even more unreasonable.
We will see that the reluctance of numbers to be factorized can,
surprisingly, be quite useful. We will also see that the reason we
want to find primes is so that we can then multiply a couple of
them together to get a composite number.

49
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So why is it so difficult to determine whether or not a given
number N is prime? All you have to do is to see if 2 divides N (if it
does, and N # 2, clearly N isn’t a prime), then if 3 divides N, then
if 5 divides N, and so on, until you've checked all the primes up to
the largest prime number p such that p < +/N.

¢ o o« BREAK

Of course, if p = +/N it means N is the square of the prime
p, and hence composite. Why don'’t you need to check any
primes bigger than +/N?

Thus we see that, in theory, there is no difficulty—but, in prac-
tice, the difficulty is time. We know how to decide whether or not
a number is prime, but the test that we have just mentioned can
involve many steps. This shows that there is sometimes a differ-
ence in mathematics between knowing something is possible and
actually making it happen.

The challenge, then, is to find some practical method for de-
termining the primality of a number. One way of attempting it
might be to use Fermat’s Little Theorem (Theorem 5). In the last
section we discovered that if p was a prime number and p 1 a,

then a?”! = 1 mod p. Is the converse true? We might ask less. If
aV¥~! = 1mod N for some a # 1 mod N, does this mean that N is
a prime?

You might like to test this using, say, a = 2. If you do, we suggest
that you use a computer, although when, in 1819, Sarrus discovered
that 23** = 1 mod 341, he had to do it by hand.

In fact, the situation is very complicated. There are compos-
ite numbers N for which a¥~! = 1 mod N for certain values of a
satisfying 1 < a < N. Because the N with this latter property are
behaving like primes, we call them pseudoprimes in base a. You
shouldn't have trouble finding a pseudoprime in base 7.

¢ ¢ ¢ BREAK
Find two numbers N which are not pseudoprime in base 7.

* Let's push pseudoprimes a step further. Suppose N — 1 = 2°d,

with d odd and s > 1. (We can easily get the 2°d factorization of
(N — 1); simply keep dividing by 2 until the result is no longer
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even.) Take a < N, such that a and N are relatively prime. Then
we call N a strong pseudoprime in base a if a* = 1 mod N or
a*4 = —1mod N for some r with 0 < r < s. You should check
that all primes p are strong pseudoprimes for every base a such
that1l < a < p.

And now let’s look at a test for primality that's a bit “iffy.” It won’t
be up to our usual high mathematical standards of exactness. Start
with N, the number we want to test for primality and choose at
random k (bigger than one) small numbers a (1 < a < N) and
such that a and N have no common factors. (The Euclidean Algo-
rithm gives an efficient way of checking this—no time difficulties
there.) Now test to see whether N is a strong pseudoprime in
base a.

Two things can happen. It is possible that N may not be a strong
pseudoprime for some base a, in which case N is composite. On
the other hand, if N passes the test for each one of the k values of
a, then the probability that N is a prime is greater than 1 — 47%
Even for relatively small a this gives a high probability that N
is prime. Admittedly it does not give an ironclad guarantee that
N is prime but you might be happy to balance certainty against
efficiency.

Just in case you are worried by this, be assured that there are
efficient tests of primality that come with no element of doubt.
Unfortunately, they require a knowledge of some deep results in
algebraic number theory so we'll skip them.

Let's suppose we've found ourselves a couple of nice big prime
numbers p, g, say, with 200 digits each. Now form the composite
number m = pg and let’s go into the coding business. To do this,
choose some ¢ which is relatively prime to (p — 1)and (g — 1), we'll
see why in a minute. If someone wants to send us a message, they
first convert it into a number. This can be done in many ways. They
could, for example, let A = 01, B = 02, and so on, so long as they
told us what they planned in advance. Running all the numbers for
all letters of the message together gives them a number M. Now
they want M to satisfy M < m — 1. If M > m — 1, they would
simply break the message into separate parts M;, M, - - -, so that
each M; would satisfy M; < m — 1; and each M; would then be
handled just as in our description below for M, where we now
assume M < m — 1.
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They would calculate the remainder E of M“ mod m. This new
number E, the encoded message, they then send off to us by carrier
pidgon—or e-mail.

While we've been waiting for the message we haven't been idle.
We've calculated d such that 1 <d < (p — 1)(q — 1) = &(m) and
ed = 1 mod ®(m). Again the Euclidean Algorithm comes in handy
here. Then we take the message E we've just received and calculate
the remainder F of E mod m. Somewhat surprisingly, F = M.

To see why, we first point out a consequence of Fermat's
Theorem (Theorem 5); thus

Proposition 11 Let p be prime and let p be an arbitrary positive
integer. Then, for any integer a,

a1 = g mod p.

This follows immediately from Theorem 5 if p )( a.lfp ] a, how-
ever, the congruence is obvious, since each side of the congruence
is congruent to 0.

From Proposition 11, we infer the following consequence,
actually a generalization

Theorem 12 Let n be a product of distinct primes and let t be an
arbitrary positive integer. Then, for any integer a,

a't'®"M = g mod n.

Forletn = p1p; - -pr. Then®(n) = (p1 — D(p2— 1) - - (pr — 1),
so, forany i, 1 <i <k,

(i = 1) | @(n).

Thus we infer from Proposition 11 that, for any positive integer
t,

a0 =gamod p;, 1 <i<k

Since p; | (a'®™ — q) for all i, it follows that pyp; - - px
(a'*'®™ — g), and this establishes the theorem.
Now let’s get back to our code. We have

F = EY mod m

= (M%) mod m
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But ed = 1 mod ®(m). Hence ed = 1 + t®(m) for some positive
integer t. So

F = MM mod m

= M mod m,

by Theorem 12, since m = pq, a product of distinct primes. But
F, M both lie between 1 and m — 1, so F = M, and we've decoded
the original message!

So what? If we can do it, so can anyone else, surely! After all,
the person who was sending us the message knew m and e. Surely
they, and any other Tomasina, Dick, or Harriet who knew the en-
coding procedure, together with m and ¢, could find d and do the
decoding.

Ah, but we didn't spend all that time finding 200 digit primes for
nothing. For example, suppose we have an adversarial situation in
which we desperately wish to keep secrets from an enemy. Then, to
find d, the enemy would have to know ®(m) = (p — 1)(q — 1) and
this requires them to find p and g starting with m. And factorization,
especially of 400 digit numbers, can take quite some time—even
with today’s speedy computers. The best factorization algorithm,
on the fastest computer, or even on linked computers, would take
a long long time. Too long for the message to be of any interest to
the enemy by the time they’d done the decoding.

This method of encryption is generally called a public key
crypto-system because the key (m and €) can be made public with-
out endangering the security of the system. You can put your key
in the classified pages of the paper for everyone to see. Despite this,
only you can decode messages sent to you this way. Because an
effective implementation of this was produced by Rivest, Shamir,
and Adleman in 1978, this public key system is usually known as
the RSA system. Is this the only public key crypto-system?

Those of you interested in reading more about primes should
consult Paulo Ribenboim’s well-written account, “Prime Number
Records,” in The College Mathematics Journal, Vol. 25, No. 4 (1994),
pp. 280-290. In this article Ribenboim discusses how many primes
exist, how one can produce them, how one can recognize them, and
how they are distributed among the natural numbers. The article
also records the “biggest sizes reached so far—the prime number
records.
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2.6 CASTING OUT 9’S AND 11'S: TRICKS OF THE TRADE

In Section 2 we showed that it was particularly easy to compute
remainders mod 9 and mod 11. We will now see how to take ad-
vantage of this to check a calculation involving the operations of
addition, subtraction, and multiplication.

Consider, for example, the assertion

46 x 28 — 65 x 17 = 183. (27)

Let us cast out 9's from the two sides of (27), that is, calculate
mod 9.Ontheleftwegetl x 1 — 2 x 8, which is congruent mod 9
to 1 — 7 and hence (since —6 + 9 = 3) to 3. On the right we also
get 3. So we say that the result (27) satisfies our “check” (and this
simply means that both sides, when divided by 9, leave a remain-
der of 3). If we had believed that 46 x 28 — 65 x 17 = 173, this
check would have proved us wrong, since the right side would
have produced 2, while the left produced 3.

We must emphasize that the check by casting out 9’s can never
prove that the result of a calculation is correct—but it can very often
detect error. Some errors would, obviously, escape this check. The
commonest error of this type is that of (accidentally) interchanging
digits. Thus, for example, if we had misread our answer as 138, the
check would not have revealed this, because the remainders mod 9
of 183 and 138 are, of course, the same (since we obtain them by
adding the digits). Similarly, if we had calculated the left-hand side
using 56 instead of 65 we could not have detected this.

A very important principle emerges from this technique of
checking by casting out 9's.

You may know an answer is wrong
without knowing the right answer!

This is an important principle in life itself, of which many people
(e.g., parents, priests, and politicians) seem to be unaware. In fact,
it is customary to deny to people who do not claim to know the
right answer to a problem the right to make any comment at all
on the problem, and especially on the correctness of an expert's
proposed solution. (Think of examples from your own experience!)

We can make doubly sure of our answer in (27) by casting
out 11's. Going back to (27) and casting out 11's (i.e., calculating
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mod 11), as explained in Section 2, we get on the left
2x6)—(-)x6)=1+6=7,
while on the right, we get
1-8+4+3=—-4=7mod 11,

and so the result (27) satisfies this second, independent check. It
is now highly unlikely that (27) is wrong if we did a calculation
(by hand or machine) to get the result. If, on the other hand, we
had merely guessed the answer, we might still be wrong. Notice,
in particular, that this check would have detected the error of writ-
ing 138 instead of 183 on the right of (27), but it would have failed
to detect the error of writing 381 instead of 183.

You may wonder why we speak of “casting out 9's” rather than
just saying that we calculate mod 9. The reason is that often the
most efficient technique to calculate mod 9 is, literally, to cast
out 9’s. Suppose, for example, that we wish to check the calculation

67 + 24 + 86 = 177.

Calculating mod 9, we get on the left 4 + 6 + 5. We now notice that
4 + 5 =09, so we cast out the pair 4, 5 and are left with 6. Here,
of course, we also get 6 as the residue of 177 mod 9, so we suspect
our calculation is correct.

We couldbe even cleverer. We could cast out the pair 7, 2 from the
original digits on the left, so we would be left with 6 + 4 + 8 + 6; we
could then cast out 6 + 4 + 8 since this is 18 (we would be casting
out a pair of 9's!), and we would be left with 6.

Of course, there is no fixed rule as to how to use this beautiful
technique; you should simply try to make the process as short and
easy as possible.

¢ ¢ ¢ BREAK

1. See if you can figure out the following diagram:

2345) 3
y747)4 |
)

5025}3
tYg4agl4 \

1 9160} 8 « .- wrong
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2. Can you see how one may, in a similar way, literally “cast
out 11's?”

Can we check division problems by casting out 9's and 11's? Let
us first discuss casting out 9's. If the result of a division problem
is announced in the form of (quotient, remainder), then the an-
swer is “Yes” To check whether the result of dividing a by b is to
produce a quotient g and a remainder r is just to check whether
a = bq + r and we know we can check this. Indeed, this shows that
we can check any calculation involving fractions the same way. For
example, the statement

+ - = ; is equivalent to the statement  flad + bc) = bde.

c
d

SR

However, as you will see, such a check may be rather a waste of
time. If, for instance, our number b above is divisible by 9 (say,
b = 9), then all we are checking is whether fad is divisible by 9!
So it is best to confine attention to fractions whose denominators
are prime to 3, in using the technique of casting out 9’s to check a
calculation. But then we have, in fact, a far quicker method than
that suggested by the argument above. For we saw, in Section 4,
that, for any m, every residue mod m prime to m has an inverse.
In fact, with m = 9, 11, the tables are

Residue 1 2 4 5 7 8
Inverse 1 5 7 2 4 8
m=29
Residue 1 2 3 4 5 6 7 8 9 10
Inverse 1 6 4 3 9 2 8 7 5 10
m =11

2.7 (28)
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Casting out 9’s, that is, calculating mod 9, we find 31 = 4, 26 = 8.

Now £ = 1 and, from the table above,
% = 5 while % = 8.
Thus
i-!-l El+255+7><8=6157.
31 26 2 8

Turning to the right-hand side of (28), 806 = 14 = 5and ; = 2, s0

269 8
— =-=8x2=16=7.
806 5
The calculation passes the mod 9 test!
Obviously, the same arguments apply to casting out 11's, so let
us now apply the mod 11 test. Then

2 2 _
T R
and
7 7 7
%E__2+6:ZE7X3=215—2+1=—1,
o)
£+——7—E—2mod11.
31 26
On the other hand,
269 2-6+9 5 5 5
806 B8+6 14 —-1+4 3

=5x4=20=-2mod 11.

The calculation also passes the mod 11 test.

So our restriction on applying the mod 9 test to a calculation
involving fractions is that none of the denominators have a factor
of 3; and we may apply the mod 11 test if no denominator has a
factor of 11. (This makes the mod 11 test even more serviceable
for calculations involving fractions than the mod 9 test!)
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FINAL BREAK

Here are a few problems for you to try out your new skills on.

1.

*5.

Find the residue mod 9 of the following numbers without
using a hand calculator:

(a) (2873 + 5915)%;

(b) (3028 x 473) — 4629;

(C) 144864 x 3475 x 84616 x 2378429;
(d) 8%

(e) 71 + 2%

Three of the following statements are false. Identify the
false statements without using a hand calculator:

(a) 7282 x 416 = 2913832;
(b) 4083 + (961 x 6137) = 25184 x 290;
() 6184 + (968 x 39) = 43936;

(d) 512 x 8172 x 903 = 4001216022.

. Show that the following statements are false by casting

out 9's. Give your arguments:

2 93 __ 1
@ 5+ = n

5 8 11 29
M X35+ = 500

. Explain why we may test whether a number is divisible

by 99 by casting out 9's and 11’s.

Show that n = 12 mod 99 if and only if n = 1 mod 11 and
n = 3mod 9. More generally, show that the residue class
of n mod 99 is determined by its residue classes mod 9 and
mod 11; and that these last two residue classes can take any
values.

(For the enthusiastic reader.) Take a look at the article,
“Casting Out Nines Revisited,” by Peter Hilton and Jean
Pedersen, published in Mathematics Magazine, Vol. 54,
No. 4, September 1981, and set yourself some more
problems casting out 9’s and 11’s.
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ANSWERS FOR FINAL BREAK

1. (a) 7.
(b) 8.

(c) 0 (Note that it is enough to observe that the first factor is
divisible by 9.)

(d) 1 (Note that 8 = —1 mod 9 and —1 raised to any even power
is1.)

(e) 0 (Note that 7 = —2mod 9 and (—-2)!! = -21)

2. (a) and (b) may be seen to be false by casting out 9's, (c)
and (d) may not. However, (d) may be seen to be false
by casting out 11's. An even quicker proof of its falsity is
to observe that 512 x 8172 x 903 is obviously divisible by 4,
whereas 4001216022 fails the test for divisibility by 4 (namely,
that the number formed by the last two digits must be divisible
by 4).

8mod 9, 2 =6mod 9, 84+ 6 =5mod 9; but ¥ =

2mod 9and £ =3

() 5 =5mod9, £ =7mod 9, ¥ =3mod 9,5x7x3 =

6mod 9; but 22 = 22 = 1mod 9.

3(@%

4. A number is divisible by 99 if and only if it is divisible by 9
and 11. This is because 9 and 11 are coprime.

5. Obviouslyifn = 99k + 12,thenn = 1 mod 11 andn = 3 mod 9.
In the other direction, suppose n = 1 mod 11 andn = 3 mod 9.
Thenn = 11k + 1, so

11k +1 = 3mod 9,
11k = 2mod 9,
2k = 2mod 9 (cast out 9's!),
k=1mod 9, k=9¢+1, n=199¢ + 12.
In general, if n = amod 11, n = bmod 9, thenn = 11k + a

11k +a = bmod 9,
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60 2 A Far Nicer Arithmetic

11k = b — amod 9,

2k = b —amod 9,
k=50b—aymod 9 (Why?),
k=94 50b—a) n=99¢+ 55 — a) + a,
n = 55(b —a)+amod 99.

Here a and b are arbitrary.



- Numbers

CHAPTER

3.1 A NUMBER TRICK

Consider the following number trick—try it out on your friends.
You ask them to write down the numbers from 0 to 9. Against 0O
and 1 they write any two numbers (we suggest two fairly small pos-
itive integers just to avoid tedious arithmetic, but all participants
should write the same pair of numbers). Then against 2 they write
the sum of the entries against 0 and 1; against 3 they write the
sum of the entries against 1 and 2; and so on. Once they have com-
pleted the process, producing entries against each number from 0
to 9, you suggest that, as a check, they call out the entry against
the number 6. Thus their table (which, of course, you do not see)
might look like the table in the margin. You now ask them to add
all the entries in the second column, while you write 341 quickly
on a slip of paper.

How did you know? Well, let’s look at the procedure from an
algebraic viewpoint. If you had started with any numbers a and b,
your table would have been:
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19
31
50
81
131

~ Fibonacci and Lucas

<— (This is
the one used
as a check.)



62 3 Fibonacci and Lucas Numbers

TABLE 1
0 a

fum—

b

a +b
a +2b
2a + 3b
3a + 5b
8a + 13b
13a + 21b
2la + 34b

O 0 NN O U oW N

And if we supplement Table 1 with the running sums we get:

TABLE 2

N un 2y = Zﬁlo Un
0 a a

1 b a +b

2 a +b 2a + 2b
3 a +2b 3a + 4b
4 2a +3b 5a + 7b
5 3a +5b 8a +12b
6 13a + 20b
7 8a +13b 2la + 33b
8 13a+21b 34a + 54b
9 2la + 34b

Now we see why the trick works—the running sum ) 4 is actu-
ally 11 times ug, whatever numbers a, b we choose (but the values
of a and b themselves are not known when you give the answer)!

But is this really a satisfactory explanation? Why does this
strange phenomenon just relate ) ¢ and ug; and why is the multi-
plying factor 11? If we look at Table 2 more closely we see much



3.2 The Explanation Begins

more in it. The coefficients of a in uy are
101123581321; 1)

and the coefficients of b are almost the same, except that they start
with the 0; thus they are

01123581321 34. (2)

Moreover, the coefficients ofain ), are again essentially the same
sequence, except starting now with the 1 in the second place in (2),
namely

112358132134 55. (3)

Finally, the coefficients of b in ), are much like the numbers in
(3), except that we start in the third place in (2) and subtract 1, thus,

0124712203354 88. (4)

3.2 THE EXPLANATION BEGINS

How can we explain all this? Well, first, we must obviously study
carefully this sequence that keeps coming up in some form. We
take it in the form (2) and we define it by the rules

Fo=0F =1, (5)
Fn+Z=Fn+1+Fn; n>0. (6)

We call (5) the initial conditions and (6) the recurrence relation.
In fact, (5) and (6) together determine a very famous sequence
(i.e., (2)) called the Fibonacci sequence,’ named after Leonardo of
Pisa, who lived from 1180 to 1250 and who was called Fibonacci,
meaning “the son of Bonacci” The F<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>