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Foreword to the First Edition

The present volume is a text designed for a first course in analysis.
Although it is logically self-contained, it presupposes the mathematical
maturity acquired by students who will ordinarily have had two years of
calculus. When used in this context, most of the first part can be omitted,
or reviewed extremely rapidly, or left to the students to read by themselves.
The course can proceed immediately into Part Two after covering Chapters
0 and I. However, the techniques of Part One are precisely those which
are not emphasized in elementary calculus courses, since they are regarded
as too sophisticated. The context of a third-year course is the first time
that they are given proper emphasis, and thus it is important that Part One
be thoroughly mastered. Emphasis has shifted from computational aspects
of calculus to theoretical aspects: proofs for theorems concerning continuous
functions; sketching curves like x%e™*, xlog x, x'/* which are usually
regarded as too difficult for the more elementary courses; and other similar
matters.

Roughly speaking, the course centers around those properties which
have to do with uniform convergence, uniform limits, and uniformity in
general, whether in the context of differentiation or integration. It is
natural to introduce the sup norm and convergence with respect to the
sup norm as one of the most basic notions. One of the fundamental pur-
poses of the course is to teach the reader fundamental estimating tech-
niques involving the triangle inequality, especially as it applies to limits of
sequences of functions. On the one hand, this requires a basic discussion
of open and closed sets in metric spaces (and I place special emphasis on
normed vector spaces, without any loss of generality), compact sets, con-
tinuous functions on compact sets, etc. On the other hand, it is also neces-
sary to include the classical techniques of determining convergence for

v



vi FOREWORD TO THE FIRST EDITION

series, Fourier series in particular. A number of convergence theorems
are subsumed under the general technique of Dirac sequences, applying
as well to the Landau proof of the Weierstrass approximation theorem
as to the proof of uniform convergence of the Cesaro sum of a Fourier
series to a continuous function; or to the construction by means of the
Poisson kernel of a harmonic function on the disc having given boundary
value on the circle. Thus concrete classical examples are emphasized.

The theory of functions or mappings on R” is split into two parts. One
chapter deals with those properties of functions (real valued) which can
essentially be reduced to one variable techniques by inducing the function
on a curve. This includes the derivation of the tangent plane of a surface,
the study of the gradient, potential functions, curve integrals, and Taylor’s
formula in several variables. These topics require only a minimum of linear
algebra, specifically only n-tuples in R” and the basic facts about the scalar
product. The next chapters deal with maps of R” into R” and thus require
somewhat more linear algebra, but only the basic facts about matrices and
determinants. Although I recall briefly some of these facts, it is now reason-
ably standard that third-year students have had a term of linear algebra
and are at ease with matrices. Systematic expositions are easily found
elsewhere, for instance in my Introduction to Linear Algebra.

Only the formal aspect of Stokes’ theorem is treated, on simplices. The
computational aspects in dimension 2 or 3 should have been covered in
another course, for instance as in my book Calculus of Several Variables;
while the more theoretical aspects on manifolds deserve a monograph to
themselves and inclusion in this book would have unbalanced the book,
which already includes more material than can be covered in one year.
The emphasis here is on analysis (rather than geometry) and the basic
estimates of analysis. The inclusion of extra material provides alternatives
depending on the degree of maturity of the students and the taste of the
instructor. For instance, I preferred to provide a complete and thorough
treatment of the existence and uniqueness theorem for differential equa-
tions, and the dependence on initial conditions, rather than slant the book
toward more geometric topics.

The book has been so written that it can also be used as a text for an
honors course addressed to first- and second-year students in universities
who had calculus in high school, and it can then be used for both years.
The first part (calculus at a more theoretical level) should be treated
thoroughly in this case. In addition, the course can reasonably include
Chapters VI, VII, the first three sections of Chapter VIII, the treatment of
the integral given in Chapter X and Chapter XV on partial derivatives. In
addition, some linear algebra should be included.

Traditional courses in “advanced calculus” were too computational,
and the curriculum did not separate the “calculus” part from the “analysis”
part, as it does mostly today. I hope that this Undergraduate Analysis will
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meet the need of those who want to learn the basic techniques of analysis
for the first time. My Real and Functional Analysis may then be used as
a continuation at a more advanced level, into Lebesgue integration and
functional analysis, requiring precisely the background of this undergradu-
ate course.

New Haven SERGE LANG
Spring 1983






Foreword to the Second Edition

The main addition is a new chapter on locally integrable vector fields,
giving a criterion for such vector fields to be globally integrable in terms
of the winding number. The theorem will of course reappear in a sub-
sequent course on complex analysis, as the global version of Cauchy’s
theorem in the context of complex differentiable functions. However,
it seems valuable and efficient to carry out this globalization already in
the undergraduate real analysis course, so that students not only learn
a genuinely real theorem, but are then well prepared for the complex
analysis course. The “genuinely real theorem” also involves an indepen-
dent theorem about circuits in the plane, which provides a good intro-
duction to other considerations involving the topology of the plane and
homotopy. However, the sections on homotopy will probably be omitted
for lack of time. They may be used for supplementary reading.

Aside from the new chapter, I have rewritten many sections, I have
expanded others, for instance: there is a new section on the heat kernel
in the context of Dirac families (giving also a good example of improper
integrals); there is a new section on the completion of a normed vector
space; and I have included a proof of the fundamental lemma of
(Lebesgue) integration, showing how an L!-Cauchy sequence converges
pointwise almost everywhere. Such a proof, which is quite short, illus-
trates concepts in the present book, and also provides a nice introduction
to future courses which begin with Lebesgue integration.

I have also added more exercises. I emphasize that the exercises are an
integral part of the development of the course. Some things proved later
are earlier assigned as exercises to give students a chance to think about
something before it is dealt with formally in the course. Furthermore,
some exercises work out some items to prepare for their use later. For
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X FOREWORD TO THE SECOND EDITION

instance, bump functions can be constructed as an application of the
exponential function in an early chapter, but they come up later in certain
theoretical and practical contexts, for various purposes of approximations.
The bump functions provide an aspect of calculus merging with analysis
in a way which is usually not covered in the introductory calculus courses.

I personally became aware of the Bruhat-Tits situation with the semi-
parallelogram law only in 1996, and realized it was really a topic in basic
undergraduate analysis. So I have given the basic results in this direc-
tion as exercises when complete metric spaces are first introduced in
Chapter VI.

The book has more material than can be covered completely in one
year. The new chapter may provide good reading material for special
projects outside class, or it may be included at the cost of not covering
other material. For instance, the chapter on differential equations may
be covered by a separate course on that subject. Much depends on how
extensively the first five chapters need to be reviewed or actually covered.
In my experiences, a lot.

I am much indebted to Allen Altman and Akira Komoto for a long list
of corrections. I am also indebted to Rami Shakarchi for preparing an
answer book, and also for several corrections.

New Haven, 1996 SERGE LANG
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Review of Calculus






CHAPTER ©

Sets and Mappings

In this chapter, we have put together a number of definitions concerning
the basic terminology of mathematics. The reader could reasonably start
reading Chapter I immediately, and refer to the present chapter only
when he comes across a word which he does not understand. Most con-
cepts will in fact be familiar to most readers.

We shall use some examples which logically belong with later topics in
the book, but which most readers will have already encountered. Such
examples are needed to make the text intelligible.

0, §1. SETS

A collection of objects is called a set. A member of this collection is also
called an element of the set. If a is an element of a set S, we also say that a
lies in S, and write ae S. To denote the fact that S consists of elements
a,b,... we often use the notation S = {a,b,...}. We assume that the
reader is acquainted with the set of positive integers, denoted by Z*, and

consisting of the numbers 1,2,.... The set consisting of all positive in-
tegers and the number O is called the set of natural numbers. It is denoted
by N.

A set is often determined by describing the properties which an object
must satisfy in order to be in the set. For instance, we may define a set S
by saying that it is the set of all real numbers = 1. Sometimes, when
defining a set by certain conditions on its elements, it may happen that
there is no element satisfying these conditions. Then we say that the set is
empty. Example: The set of all real numbers x which are both > 1 and
< 0 is empty because there is no such number.



4 SETS AND MAPPINGS [0, §21

If S and S are sets, and if every element of S’ is an element of .S, then
we say that S’ is a subset of S. Thus the set of all even positive integers
{2,4,6,...} is a subset of the set of positive integers. To say that S'is a
subset of S is to say that §' is part of S. Observe that our definition of a
subset does not exclude the possibility that §' = S. If §' is a subset of 5,
but S % S, then we shall say that S is a proper subset of S. Thus the set
of even integers is a proper subset of the set of natural numbers. To de-
note the fact that §' is a subset of S, we write §' < S, or § © §'; we also
say that &' is contained in S. If ' = Sand S = S’ then § = S

If S,, S, are sets, then the intersection of S, and S, denoted by
S, N S,, is the set of elements which lie in both S, and S,. For instance,
if S, is the set of natural numbers = 3, and S, is the set of natural
numbers < 3, then S, NS, = {3} is the set consisting of the number 3
alone.

The union of S, and S,, denoted by S, U S,, is the set of elements which
lie in S, or S,. For example, if S, is the set of all odd numbers
{1,3,5,7,...} and S, consists of all even numbers {2,4,6,.. .}, then
S, U S, is the set of positive integers.

If §' is a subset of a set S, then by the complement of S’ in S we shall
mean the set of all elements x €S such that x does not lie in S’ (written
x¢8). In the example of the preceding paragraph, the complement of
S, in Z* is the set S,, and conversely.

Finally, if S, T are sets, we denote by S x T the set of all pairs (x, y)
with xe S and ye T. Note that if S or T is empty, then S x T is also
empty. Similarly, if Sy, ...,S, are sets, we denote by S; x --- x §,, or

::

S

i=1

the set of all n-tuples (x,, ... .,x,) with x; € S;.

0, §2. MAPPINGS

Let S, T be sets. A mapping or map, from S to T is an association which
to every element of S associates an element of 7. Instead of saying that
f is a mapping of S into T, we shall often write the symbols f: S — T.

If f:S — T is a mapping, and x is an element of S, then we denote by
f(x) the element of T associated to x by f. We call f(x) the value of f at x,
or also the image of x under f. The set of all elements f'(x), for all x€ S, is
called the image of f. If §' is a subset of S, then the set of elements f(x)
for all xe S, is called the image of S’ and is denoted by f(S").

If f is as above, we often write x+ f(x) to denote the association of
f(x) to x. We thus distinguish two types of arrows, namely — and 1.
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Example 1. Let S and T be both equal to the set of real numbers, which
we denote by R. Let f: R — R be the mapping f(x) = x?, i.e. the map-
ping whose value at x is x?. We can also express this by saying that [ is
the mapping such that x+ x*. The image of f is the set f(R), and consists
of all real numbers > 0.

Let f:S — T be a mapping, and §’ a subset of S. Then we can define
amap S’ — T by the same association x> f(x) for xe S’. In other words,
we can view f as defined only on S'. This map is called the restriction of f
to §', and is denoted by f|S': 8" » T.

Let S, T be sets. A map f:S — T is said to be injective if whenever
x,ye S and x # y then f(x) # f(y).

Example 2. The mapping f in Example 1 is not injective. Indeed, we
have f(1) = f(—1) = 1. Let g: R — R be the mapping x> x + 1. Then
g is injective, because if x # y then x + 1 # y + 1, i.e. g(x) # g(y).

Let S, T be sets. A map f:S — T is said to be surjective if the image
f(S) is equal to all of 7. This means that given any element ye T, there
exists an element x € S such that f(x) = y. One also says that f is onto T.

Example 3. Let f: R — R be the mapping x+» x2. Then f is not sur-
jective because no negative number is in the image of f. Let g:R—>R
be the mapping g(x) = x + 1. Then g is surjective because given a number
y,wehavey = g(y — 1).

Remark. Let R’ denote the set of real numbers = 0. One can view the
association x+»x? as a map of R into R. When so viewed, the map is
then surjective. Thus it is a reasonable convention not to identify this
map with the map f: R — R defined by the same formula. To be com-
pletely accurate, we should therefore denote the set of arrival and the set of
departure of the map into our notation, and for instance write

f5:8-T
instead of our f: S — T. In practice, this notation is too clumsy, so that
we omit the indices S, 7. However, the reader should keep in mind the
distinction between the maps

fR:R->R and fR:R->R

both defined by the association x + x2. The first map is surjective whereas
the second one is not. Similarly, the maps

fR:R>R and fR:R >R
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defined by the same association are injective, whereas the corresponding
maps f&. and fR are not injective.

Let S, T be sets and f: S — T a mapping. We say that f is bijective if f
is both injective and surjective. This means that given an element y e T,

there exists a unique element x € S such that f(x) = y. (Existence because
[ is surjective, and uniqueness because f is injective.)

Example 4. Let J, be the set of integers {1,2,...,n}. A bijective map
a:J,—J, is called a permutation of the integers from 1 to n. Thus, in
particular, a permutation ¢ as above is a mapping i+ a(i).

Example 5. Let S be a non-empty set, and let

I:S—>S

be the map such that I(x) = x for all xeS. Then I is called the identity
mapping, and is also denoted by id, or ids. It is obviously bijective.

Example 6. Let f:S — T be an injective mapping, and let f(S) be its
image. Then f establishes a bijection between S and its image f(S), since f,
viewed as a map of S into f(S), is both injective and surjective.

Let S, T, U be sets, and let

f:8—->T and g:T->U
be mappings. Then we can form the composite mapping
ge f:S->U
defined by the formula
@° ) = g(f(x)
for all xeS.

Example 7. Let f:R — R be the map f(x) = x? and g:R - R be
the map g(x) = x + 1. Then g(f(x)) = x> + 1. Note that in this case,
we can form also

flge)) = flx + 1) = (x + 1)%
and thus that

feg#gef
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Composition of mappings is associative. This means: Let S, T, U, V
be sets, and let

fi8§-T, ¢T->U hU->V
be mappings. Then
he(ge f)=(hog)e f.
Proof. By definition, we have for any element x € S,
(o (g o ) = k(g o NE)) = h(g(f(x))).
On the other hand,
((hog)o £)() = (hog)(f () = hlg(f (x))).
By definition, this means that (hog)o f = ho(go f).
Let f:S—T be a map. By an inverse mapping of f we mean a map
g: T — S such that fo g =id; and g o f =ids. In Exercise 7 you can verify
that a map f has an inverse mapping if and only if it is bijective. This
inverse mapping is usually denoted by f~*. The notation f~* will also be
used in a related context, quite generally, whereby /™ is a mapping
f*: subsets of T — subsets of S,
defined by f~'(Y)=subset of elements xe S such that f(x)eY. If f
happens to be bijective, then the two notions of inverse coincide, if we
identify a set consisting of one element with that element. In general, for

an element ye T, the set f~*(y) consists of all elements x € S such that

Jo) =y

0, §2. EXERCISES

1. Let S, T, T be sets. Show that
SN(TuT)=EnT)UEANT).
If T,,...,T,are sets, show that
SA(TyU---UT)=@ENnT)uU---UE AT,

2. Show that the equalities of Exercise 1 remain true if the intersection and union
signs N and U are interchanged.
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w

Let A, B be subsets of a set S. Denote by %(4) the complement of 4 in S.
Show that the complement of the intersection is the union of the complements,
ie.

@(ANB)=%(A)U%(B) and % (AU B)=%lA)%(B)
4. If X, Y, Z are sets, show that
XuY)xZ=(XxZ)u(Y xZ),

XNnY)xZ=(XxZ)n(Y x Z).

w

. Let f: S — T be a mapping, and let Y, Z be subsets of 7. Show that

Y= (V)nf72)
v =frmuf@.

6. Let S, T, U be sets, and let f:S — T and g: T — U be mappings. (a) If g, f are
injective, show that g o f is injective. (b) If f, g are surjective, show that g o f is
surjective.

7. Let S, T be sets and f: S — T a mapping. Show that f is bijective if and only
if f has an inverse mapping.

0, §3. NATURAL NUMBERS AND INDUCTION

We assume that the reader is acquainted with the elementary properties
of arithmetic, involving addition, multiplication, and inequalities, which are
taught in all elementary schools concerning the natural numbers, that is the
numbers 0,1,2,.... The subset of natural numbers consisting of the
numbers 1, 2, ... is called the set of positive integers. We denote the set of
natural numbers by N, and the set of positive integers by Z*. These sets
are essentially used for counting purposes. The axiomatization of the
natural numbers and integers from more basic axioms is carried out in
elementary texts in algebra, and we refer the reader to such texts if he
wishes to see how to do it.

We mention explicitly one property of the natural numbers which is
taken as an axiom concerning them, and which is called well-ordering.

Every non-empty set of natural numbers has a least element.

This means: If S is a non-empty subset of the natural numbers, then
there exists a natural number ne S such that n < x for all xe S.

Using well-ordering, one can prove a property called induction. We
shall give it in two forms.
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Induction: first form. Suppose that for each positive integer we are given
an assertion A(n), and that we can prove the following two properties:

(1) The assertion A(1) is true.
(2) For each positive integer n, if A(n) is true, then A(n + 1) is true.

Then for all positive integers n, the assertion A(n) is true.

Proof. Let S be the set of all positive integers n for which the assertion
A(n) is false. We wish to prove that S is empty, i.e. that there is no element
in S. Suppose there is some element in S. By well-ordering, there exists a
least element ny in S. By assumption, ny # 1, and hence ny > 1. Since
ng is least, it follows that ny — 1 is not in S, in other words the assertion
A(no — 1) is true. But then by property (2), we conclude that A(n) is also
true because no = (ng — 1) + 1. This is a contradiction, which proves
what we wanted.

Example 1. We wish to prove that for all positive integers n, we have

{424 pn="0ED
2
This is certainly true when n = 1, because
1(1+1)

1= 2

Assume that our equation is true for an integer n 2 1. Then

n(n + 1)
2

L+ tn+@m+1)= +@m+1)

_nn+1)+2mn+1)
=

P +n+2n+2
-T2

_t+tDH(n+2)
=

Example 2. Let f: Z* — Z* be a mapping such that

f&+y) = f)S0)
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for all x, yeZ*. Let a = f(1). Then f(n) = a". We prove this by induc-
tion, it being an assumption for n = 1. Assume the statement for some
integer n = 1. Then

S+ )= fmf(1) =da=a"*"
This proves what we wanted.

Remark. In the statement of induction, we could replace 1 by 0 every-
where, and the proof would go through just as well.

Induction: second form. Suppose that for each natural number n, we are
given an assertion A(n), and that we can prove the following two prop-
erties:

(1) The assertion A(0) is true.
(2) For each positive integer n, if A(k) is true for every integer k with
0 £ k < n, then A(n) is true.

Then the assertion A(n) is true for all integers n Z 0.

Proof. Again let S be the set of integers = 0 for which the assertion is
false. Suppose that S is not empty, and let n, be the least element of S. Then
no # 0 by assumption (1’), and since n, is least, for every integer k with
0 < k < ng, the assertion A(k) is true. By (2) we conclude that A(n)
is true, a contradiction which proves our second form of induction.

0, §3. EXERCISES

(In the exercises, you may use the standard properties of numbers concerning
addition, multiplication, and division.)

L. Prove the following statements for all positive integers.
@1+3+5+--+@@—-1)=n?
() 12 +2>+ 32+ - +n? = nn + 1)2n + 1)/6
© P+22+33+ .- +n®=[nmn + 1)2]?

2. Prove that for all numbers x # 1,

1 — x2*t

A+ 00 + 231+ x9-- (1 + x¥) = 1-x

3. Let f: N — N be a mapping such that f{(xy) = f(x) + f(y) for all x, y. Show that
f(a") =nf(a) for all ne N.
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4. Let (Z) denote the binomial coefficient,

(n) _ n!
k] ki =0

where n, k are integers 2 0,0 < k < n, and 0! is defined to be 1. Also n! is defined
to be the product 1 - 2- 3 --- n. Prove the following assertions.

DB)-(2) o) (1) o

5. Prove by induction that
" i ”
x+y=Y xkyn—k,
K=o \k

6. Prove that

[ 1 [ 2 1 n—-1 nn- 1
1+=) (1+2) - —_ P
(*1)(+2) (”n—l) @1
Find and prove a similar formula for the product of terms (1 + 1/k)**! taken for
k=1,...n— 1.

0, §4. DENUMERABLE SETS

Let n be a positive integer. Let J, be the set consisting of all integers k,
1=k < n IfSis aset, we say that S has n elements if there is a bijection
between S and J,. Such a bijection associates with each integer k as above
an element of S, say k+ q,. Thus we may use J, to “count” S. Part of
what we assume about the basic facts concerning positive integers is that
if S has n elements, then the integer n is uniquely determined by S.

One also agrees to say that a set has 0 elements if the set is empty.

We shall say that a set S is denumerable if there exists a bijection of §
with the set of positive integers Z*. Such a bijection is then said to enu-
merate the set S. It is a mapping

n—a,
which to each positive integer n associates an element of S, the mapping

being injective and surjective.
If D is a denumerable set, and f: S — D is a bijection of some set S with
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D, then S is also denumerable. Indeed, there is a bijection g: D —Z",
and hence g o f is a bijection of S with Z*.

Let T be a set. A sequence of elements of T is simply a mapping of Z*
into T. If the map is given by the association n x,, we also write the
sequence as {X,},»1, OF also {x;,x,,...}. For simplicity, we also write
{x,} for the sequence. Thus we think of the sequence as prescribing a
first, second, . .. ,n-th element of T. We use the same braces for sequences
as for sets, but the context will always make our meaning clear.

Examples. The even positive integers may be viewed as a sequence
{x,} if we put x, =2n for n=1,2,.... The odd positive integers may
also be viewed as a sequence {y,} if we put y,=2n—1forn=1,2,....
In each case, the sequence gives an enumeration of the given set.

We also use the word sequence for mappings of the natural numbers
into a set, thus allowing our sequences to start from O instead of 1. If we
need to specify whether a sequence starts with the O-th term or the first
term, we write

{xn}ngo or {xn}ng 1

according to the desired case. Unless otherwise specified, however, we
always assume that a sequence will start with the first term. Note that
from a sequence {x,},>o We can define a new sequence by letting
Yo =X, for n = 1. Then y, = xq, y, = x;,.... Thus there is no es-
sential difference between the two kinds of sequences.

Given a sequence {x,}, we call x, the n-th term of the sequence. A se-
quence may very well be such that all its terms are equal. For instance,
if we let x, =1 for all n 2 1, we obtain the sequence {1, 1,1,...}. Thus
there is a difference between a sequence of elements in a set T, and a subset
of T. In the example just given, the set of all terms of the sequence consists
of one element, namely the single number 1.

Let {x;,x,,...} be a sequence in a set S. By a subsequence we shall
mean a sequence {x,, X,,,...} such that n, <n, <---. For instance,
if {x,} is the sequence of positive integers, x, = n, the sequence of even
positive integers {x,,} is a subsequence.

Alternatively, there is another notation for a subsequence. Let J be an
infinite subset of the positive integers. Then we may order the elements
of J by increasing order, and we also say that {x,},., is a subsequence.
See Proposition 4.1. This notation is useful to avoid double indices.

An enumeration of a set S is of course a sequence in S.

A set is finite if the set is empty, or if the set has n elements for some
positive integer n. If a set is not finite, it is called infinite.

Occasionally, a map of J, into a set T will be called a finite sequence
in T. A finite sequence is written as usual,

(roex} or {xhiey, e
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When we need to specify the distinction between finite sequences and maps
of Z* into T, we call the latter infinite sequences. Unless otherwise
specified, we shall use the word sequence to mean infinite sequence.

Proposition 4.1. Let D be an infinite subset of Z*. Then D is denumer-
able, and in fact there is a unique enumeration of D, namely {k,, k,, ...}
such that

ky <k, < o<k, <k <---.

Proof. We let k; be the smallest element of D. Suppose inductively
that we have defined k, < --- <k,, in such a way that any element k in
D which is not equal to ky, ...k, is > k,. We define k, ., to be the smallest
element of D which is > k,. Then the map ni— k,, is the desired enumera-
tion of D.

Corollary 4.2. Let S be a denumerable set and D an infinite subset of S.
Then D is denumerable.

Proof. Given an enumeration of S, the subset D corresponds to a sub-
set of Z* in this enumeration. Using Proposition 4.1, we conclude that
we can enumerate D.

Proposition 4.3. Every infinite set contains a denumerable subset.

Proof. Let S be an infinite set. For every non-empty subset T of S, we
select a definite element ay in 7. We then proceed by induction. We let
x; be the chosen element as. Suppose that we have chosen x,...,x,
having the property that for each k = 2, ... ,n the element X, is the selected
element in the subset which is the complement of {x,,...,x_}. We let
X,+, be the selected element in the complement of the set {x,,...,x,}.
By induction, we thus obtain an association n+ X, for all positive integers
n, and since x, # x; for all k < n it follows that our association is injective,
i.e. gives an enumeration of a subset of S.

Proposition 4.4. Let D be a denumerable set, and f: D — S a surjective
mapping. Then S is denumerable or finite.

Proof. For each yeS, there exists an element x,eD such that

f(x,) =y because f is surjective. The association yi— x, is an injective
mapping of S into D (because if y, ze S and x, = x, then

y= f(xy) = f(xz) = z)‘

Let g(y) = x,. The image of g is a subset of D and is denumerable or finite.
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Since g is a bijection between S and its image, it follows that S is denumer-
able or finite.

Proposition 4.5. Let D be a denumerable set. Then D x D (the set of all
pairs (x, y) with x, y € D) is denumerable.

Proof. There is a bijection between D x D and Z* x Z¥, so it will
suffice to prove that Z* x Z* is denumerable. Consider the mapping of
Z* x Z* —» Z* given by

(m, n)1—> 2"3™.
In view of Proposition 4.1, it will suffice to prove that this mapping is
injective. Suppose 2"3™ = 2"3* for positive integers n, m, r, s. Say r<n.
Dividing both sides by 2, we obtain
2k3m = 3s

with k = n —r = 1. Then the left-hand side is even, but the right-hand
side is odd, so the assumption r < n is impossible. Similarly, we cannot
have n <r. Hence r =n. Then we obtain 3" =3°. If m>s, then
3m~% =1 which is impossible. Similarly, we cannot have s > m, whence
m = s. Hence our map is injective, as was to be proved.

Proposition 4.6. Let {D,,D,,...} be a sequence of denumerable sets.
Let S be the union of all sets D, (i=1,2,...). Then S is denumerable.

Proof. For each i =1, 2,... we enumerate the elements of D;, as in-
dicated in the following notation:

Dy {x11, X125 X13, .-}

Dz {xa1, X225 X33, -+ -}

Dy {xi15 Xi25 X35 -+ -}

The map f: Z* x Z* — S given by

f (i, j) = Xij

is then a surjective map of Z* x Z* onto S. By Proposition 44, it
follows that S is denumerable.
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Corollary 4.7. Let F be a finite set and D a denumerable set. Then
F x D is denumerable. If S,,S,,... are a sequence of sets, each of
which is finite or denumerable, then the union S; U S, U--- is finite or
denumerable.

Proof. There is an injection of F into Z* and a bijection of D with Z*.
Hence there is an injection of F x D into Z* x Z* and we can apply
Proposition 4.5 and Proposition 4.1 to prove the first statement. One
could also define a surjective map of Z* x Z* onto F x D. (Cf. Exer-
cises 1 and 4.) Finally, each finite set is contained in some denumerable
set, so that the second statement follows from Propositions 4.1 and 4.6.

0, §4. EXERCISES

1. Let F be a finite non-empty set. Show that there is a surjective mapping of Z*
onto F.

2. How many maps are there which are defined on the set of numbers {1, 2, 3} and
whose values are in the set of integers n with 1 < n < 10?

3. Let E be a set with m elements and F a set with n elements. How many maps are
there defined on E with values in F? [Hint: Suppose first that E has one element.
Next use induction on m, keeping n fixed.]

4. If S, T, S, T are sets, and there is a bijection between S and §', T and T", describe
a natural bijection between S x T and §' x T'. Such a bijection has been used
implicitly in some proofs.

0, §5. EQUIVALENCE RELATIONS

Let S be a set. By an equivalence relation in S we mean a relation between
pairs of elements of S, writen x =y for x, ye S, satisfying the following
three conditions for all x, ye S.

EQU 1. We have x = x.

EQU 2. If x=y,then y=x.

EQU3. Ifx=yand y=2z, then x =z.

Examples. Let S be the set of integers Z. Define x =y to mean that

x — y is divisible by 2, i.e. x — y is even. Show that this is an equivalence
relation.

For entirely different types of examples, see Exercise 4 of Chapter I, §4,
and Exercise 18 of Chapter IV, §2. One of the purposes of an equivalence
relation is to select one property at the expense of others, which are
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regarded as secondary. Objects sharing this property are put in the same
equivalence class.

0, §5. EXERCISES

1. Let T be a subset of Z having the property that if m, ne T, then m + n and
—n are in T. For x, yeZ define x=y if x—ye T. Show that this is an
equivalence relation.

[

Let S = Z be the set of integers. Define the relation x =y for x, y € Z to mean
that x — y is divisible by 3. Show that this is an equivalence relation.



CHAPTER |

Real Numbers

In elementary calculus courses, a large number of basic properties con-
cerning numbers are assumed, and probably no explicit list of them is ever
given. The purpose of this chapter is to make the basic list, so as to lay
firm foundations for what follows. The purpose is not to minimize the
number of these axioms, but rather to take some set of axioms which is
neither too large, nor so small as to cause undue difficulty at the basic
level. We don’t intend to waste time on these foundations. The axioms
essentially summarize the properties of addition, multiplication, division,
and ordering which are used constantly later.

I, §1. ALGEBRAIC AXIOMS

We let R denote a set with certain operations which satisfies all the axioms
listed in this chapter, and which we shall call the set of real numbers, or
simply numbers, unless otherwise specified.

Addition. To each pair of real numbers x, y there is associated a real
number, denoted by x + y, called the sum of x and y. The association
(x, y)> x + yis called addition, and has the following properties:

A 1. For all x, y, z € R we have associativity, namely

x+y+z=x+@+2).

A 2. There exists an element 0 of R such that 0 + x = x + 0 = x for
allxeR.

17
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A 3. If x is an element of R, then there exists an element y €R such that
x+y=y+x=0.

A 4. Forallx,yeR we have x + y = y + x (commutativity).

The element 0 whose existence is asserted in A 2 is uniquely determined,
for if 0’ is another element such that 0/ + x = x+0'=x for all xeR,
then in particular,

0=0+0=0.

We call 0 by its usual name, namely zero.

The element y whose existence is asserted in A 3 is uniquely determined
by x, because if z is such that z + x = x + z = 0, then adding y to both
sides yields

z=z+(x+)=CE+x)+y=y
whence z = y. We shall denote this element y by —x (minus x).
Let xj,...,X, be real numbers. We can then form their sum by using
A 1 and A 4 repeatedly, as
Xy 4o X =00+ X)) F X,

One can give a formal proof by induction that this sum of n real numbers
does not depend on the order in which it is taken. For instance, if n = 4,

Oy + %2) + (x3 + x4) = x1 + (X2 + (x3 + x,))
=x; + (x3 + (x2 + x4))
= (% + x3) + (xz + x4)-

We omit this proof. The sum x; + --- + x, will be denoted by

Multiplication. To each pair of real numbers x, y there is associated a
real number, denoted by xy, called the product of x and y. The association
(x, y)> xy is called multiplication, and has the following properties:

M 1. For all x, y, z € R we have associativity, namely

(xy)z = x(yz).
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M 2. There exists an element e # 0 in R such that ex = xe = x for
all xeR.

M3. If x is an element of R, and x # O, then there exists an element
weR such that wx = xw = e.

M 4. For all x,yeR we have xy = yx (commutativity).

The element e whose existence is asserted in M 2 is uniquely determined,
as one sees by an argument similar to that given previously for 0, namely
if ¢’ is such that &'x = xe' = x for all xeR, then e = ee’ = ¢’. We call
e the unit element of R.

Similarly, the element w whose existence is asserted in M 3 is uniquely
determined by x. We leave the proof to the reader. We denote this element
by x7!, so that we have xx™! = x"1x = e. We call it the inverse of x.
We emphasize that 07! is NOT DEFINED.

As with sums, we can take the product of several numbers, and we may
define the product

.

X = (X1 Xy )Xo

1

This product does not depend on the order in which the factors are taken.
We shall again omit the formal proof.

In particular, we can define the product of a number with itself taken n
times. If a is a number, we let a" = aa-- - a, the product taken n times,
if n is a positive integer. If a is a number # 0, it is convenient to define
a° = e. Then for all integers m, n = 0 we have
am+n = aman.

We define a~™ to be (@~ !)". Then the rule a™*" = a™a" remains valid for
all integers m, n positive, negative, or zero. The proof can be given by
listing cases, and we omit it.

Addition and multiplication are related by a special axiom, called
distributivity :

For all x, y, z€ R we have
x(y + z) = xy + xz.
Note that by commutativity, we also have
O+ 2)x =yx + 2x

because (y + z)x = x(y + 2) = xy + xz = yx + zx.
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We can now prove that Ox = 0 for all x € R. Indeed,
Ox+x=0x+ex=(0+ex=ex=x.
Adding —x to both sides, we find Ox = 0.

We can also prove a rule familiar from elementary school, namely
(—e)(—e)=e.

To see this, we multiply the equation e + (—e) = 0 on both sides by (—e),
and find —e + (—e)(—e) = 0. Adding e to both sides yields what we
want.

As an exercise, prove that for any elements x, y € R we have

(=x)(=y) = xy.

Also prove that (—x)y = —(xy).

We shall usually write x — y instead of x + (—y). From distributivity,
we then see easily that (x — y)z = xz — yz.

We can generalize distributivity so as to apply to several factors, by
induction, namely

X(yy + o Yo) =Xyt XYy

As an example, we give the proof. The statement is obvious when n = 1.
Assume n > 1. Then by induction,

Xy + o+ V) =X+ Yooy + V)
=31+ F Yoo1) + X¥n
=Xy + -t XYpo1 + XY

Similarly, if x,, . . . ,x,, are real numbers, then
Oy + o F X+ V) =Xyt XY

m
=.Z
i=1j

The sum on the right-hand side is to be taken over all indices i and j as
indicated, and it does not matter in which order this sum is taken, so that
the sum is also equal to

3

XiYj-
1

j=1i=1 i=
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When the range of indices i, j is clear from the context, we also write this
sum in the abbreviated form

PRI

ij
We have
O X)) = Xy = — Xy,
and if x,, ...,x, # 0, then x, - - - x,, # 0 and
[CTREEE S i =x7toxrl

We omit the formal proofs by induction from the axioms for multiplica-
tion and addition.

If x # 0, then we also write x™! = 1/x, and y/x = yx~!. The standard
rules developed in arithmetic apply; e.g. for real numbers q, b, ¢, d with
b # 0,d # 0, we have

[
i=1d and

ad + be

+ bd

(S IE~Y
[S 1 IE~Y
aule

We leave the proofs as exercises.

1, §1. EXERCISES

1. Let x, y be numbers # 0. Show that xy # 0.
2. Prove by induction that if x,, ... ,x, # Othen x, --- x, # 0.
3. Ifx,y,ze Rand x # 0, and if xy = xz, prove that y = z.

4. Using the axioms, verify that

(x+yP=x*+2xy+y> and (x+pNx—y)=x>—y.

I, §2. ORDERING AXIOMS

We assume given a subset P of R, called the subset of positive elements,
satisfying the ordering axioms:

ORD 1. For every x€ R, we have xe P, or x = 0, or —x€P, and these
three possibilities are mutually exclusive.

ORD 2. Ifx,y€ePthenx + yePand xy€eP.
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We deduce consequences from these axioms. Since e # 0 and
e =e* = (—e)? and since either e or —e is positive, we conclude that e
must be positive, that is ee P. By ORD 2 and induction, it follows that
e+ -+ e (the sum taken n times) is positive. An element x€R such
that x #0 and x ¢ P is called negative. If x, y are negative, then xy is
positive (because —x € P, —y e P, and hence (—x)(—y) =xy€e P). If x is
positive and y is negative, then xy is negative, because —y is positive, and
hence x(—y) = —xy is positive. For any xeR, x # 0, we see that x?
is positive. If x is positive (and so # 0), it follows that x~* is also positive,
because xx~! = e and we can apply a preceding remark.

We define x > 0 to mean that xe P. We define x <y (or y > x) to
mean that y — xe P, that is y — x > 0. Thus to say that x < 0 is equiva-
lent to saying that x is negative, or —x is positive. We can verify easily
all the usual relations for inequalities, namely for x, y, ze R:

INL x<yandy<z imply x<z.
IN2. x<yandz>0 imply xz < yz.
IN3. x<y implies x+z<y+z

INd. x<yandx,y >0 imply 1)y < 1/x.

As an example, we shall prove IN2. We have y — xeP and zeP, so
that by ORD 2, (y — x)ze P. But (y — x)z = yz — xz, so that by defini-
tion, xz < yz. As another example, to prove IN4, we multiply the
inequality x <y by x~! and y~!, and use IN 2 to find the assertion of
IN 4. The others are left as exercises.

If x, y € R we define x < y to mean that x < y or x = y. Then we verify
at once that IN 1,2, 3 hold if we replace the < sign by < throughout.
Furthermore, we also verify at once that if x < y and y < x then x = y.

Let ae R. We ask whether there is an element x € R such that x*> = q,
and how many such elements x can exist. Certainly, if a is negative, no
such x exists. If a =0, and x? = 0, then x = 0. Assume that ¢ > 0 and
suppose that x, ye R and x> = y* = a. Then

and
x+yE-y=0.

This implies that x + y =0 or x — y =0, thatisx = yor y = —x. Since
x? = a, we also have (—x)? = a. Hence in the present case, if there exists
one element x such that x? = g, there are exactly two distinct elements
whose square is a, namely x and —x. Of these two, exactly one of them
is positive. We define ﬁ to be the unique positive number x such that
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x? = a. We also define \ﬁ) = 0, so that for all numbers a = 0 we let \/E
be the unique number = 0 whose square is equal to g, if it exists, and call it
the square root of a. We do not yet know that square roots exist for all

numbers 2 0. If a, b = 0 and \/a, \/b exist, then ,/ab is defined and
Jab = \/a\/b.

Indeed, if z,w = 0 and z2 = a, w2 = b, then zw = 0 and (zw)* = z2w? = ab.
For every real number x, we define its absolute value |x| to be

|x|=\/?.

Thus |x| is the unique number z = 0 such that z2 = x%. We see that
|x| = | —x| and also:

x if x=0,
Ix| = .
—x if x<O.

The absolute value satisfies the following rules:

AV 1. For all xeR, we have |x| 2 0 and |x| > 0if x # 0.
AV 2. |xy| = |x]||y| for all x,yeR.
AV 3. |x + y| < |x| + |yl forall x, yeR.

The first one is obvious. Asto AV 2, we have

Ixyl = /GO = /X3 = /x2Sy =[xl 1yl

For AV 3, we have

Ix +yP =+ =x"+xy+xy+y
S X+ 20xy] + P
= [x|* + 2|xIyl + |yl
= (x| + IyD™
Taking the square roots yields what we want. (We have used two prop-
erties of inequalities stated in Exercise 2.)

Using the three properties of absolute values, one can deduce others
used constantly in practice, e.g.

Ix + yl = |x| = Iyl
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To see this, we have

Ix|=lx+y—yl
Slx+yl+1-yl
=|x+yl+ Iyl

Transposing |y| to the other side of the inequality yields our assertion.
Others like this one are given in the exercises.

Let a, b be numbers with a < b. The set of all numbers x such that
a £ x £ b is called the closed interval, with end points a, b, and is denoted
by [a, b]. If a < b, the set of numbers x such that a < x < b is called the
open interval with end points a, b and is denoted by (a, b).

The set of numbers x such that a < x < b, and the set of numbers x
such thata < x =< b are called half-closed (or half-open), and are denoted by
[a, b) and (a, b] respectively.

If a is a number, the set of numbers x = a is sometimes called an infinite
closed interval, and similarly, the set of numbers x > a is also called an
infinite open interval. Similarly for the sets of numbers < a or < a respec-
tively. The entire set of real numbers will also be called an infinite interval.
We visualize the real numbers as a line, and intervals in the usual manner.

Let a be a positive number.

From the definition of the absolute value, we see that a number x satisfies
the condition |x| < aif and only if —a < x < a.

The proof is immediate from the definitions: Assume that |x| <a. If
x>0, then 0<x<a If x<O, then |x| = —x <a so that —a< x <0.
Hence in both cases, —a < x < a. Conversely, if —a < x < a, we can
argue backward to see that |x| < a. Similarly, we can show that if b is a
number and € >0, then |x — b| <e¢ if and only if b—e<x<b + ¢
(Cf. Exercise 6.) This means that x lies in the e-interval centered at b.

I, §2. EXERCISES

L If0 < a < b, show that a* < b Prove by induction that a" < b" for all positive
integers n.

2. (a) Prove that x < |x| for all real x. (b) If a, b = 0and a £ b, and if \/Z, \/l_a
exist, show that \/a < \/b.
3. Let a 2 0. For each positive integer n, define a'™ to be a number x such

that x" = a, and x > 0. Show that such a number x, if it exists, is uniquely de-
termined. Show that if 0 < a < b then a'/" < b"/" (assuming the n-th roots exist).
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4. Prove the following inequalities for x,y € R:
[x =yl 2 x| = Iyl
Ix =yl 2 Iyl = Ix[

[x| =[x+ yl + |yl

w

. If x, y are numbers > 0 show that
<Xt
-2

6. Let b, ¢ be numbers and ¢ > 0. Show that a number x satisfies the condition
|x — b| < cifand only if

b-—c<x<b+e

=~

Notation as in Exercise 6, show that there are precisely two numbers x satisfying
the condition [x — b| = e.

oo

Determine all intervals of numbers satisfying the following equality and in-
equality:
@ x+I|x—2=1+|x| ®)Ix-3]+|x—-1] <4

o

Prove: If x, y, ¢ are numbers and ¢ > 0, and if |[x — y| < ¢, then

x| < |yl + ¢ and Iyl < Ix| + e
Also,

Ix|>|yl—¢ and |y > x| —c
10. Define the distance d(x, y) between two numbers x, y to be [x — y|. Show that the
distance satisfies the following properties: d(x,y) =d(y,x); d(x,y) = 0;
d(x,y)=0 if and only if x =y; and for all x, y, z we have

dx, y) < d(x, 2) + d(z, y).

11.

—_

Prove by induction that if x,, . ..,x, are numbers, then

x4 o 4 %l S Il + 0+ Il

I, §3. INTEGERS AND RATIONAL NUMBERS

We interrupt the elaboration of the axioms for R with a brief interlude
concerning integers and rational numbers.

Up to now, we have made a distinction between the natural number 1
and the real number e, and more generally, we have used the natural num-
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bers for counting purposes, in a different context from the real numbers.
We shall now see that we can identify the natural numbers as real numbers.
We define a mapping

fiZ* >R

by letting f(n) = e + - -- + e (sum taken n times) for every positive integer
n. Thus when n = 1 we have f(1) = e. We could also give the preceding
definition inductively, by saying that f(1) = e and

f(n+1)=ne+e,

assuming that f(n) = ne has already been defined. If m, n are positive
integers, then

(m + n)e = me + ne,

the sum being taken m + n times. One can prove this formally from the
inductive definition, by induction on n. Indeed, if n = 1, we have simply
(m + 1)e = me + e, which is the definition. Assuming this proved for
all positive integers < n, and all m, we have

m+n+De=Mm+1+ne=m+ e+ ne
=me + e + ne
=me + (n + De.
Since e > 0, we know that ne > 0 for all positive integers n, and in
particular, ne # 0. Furthermore, if m, n are positive integers and m # n
then we contend that me # ne. Indeed, we can write either m =n + k

or n=m+ | with positive integers k, . Say m=n+k Then
me = ne + ke, and if ne + ke = ne, then ke = 0 which is impossible. Thus

me # ne.

Our map f such that f(n) = ne is therefore an injective map of Z* into
Rsuch that f(n + m) = f(n) + f(m). Furthermore,
S(nm) = f(n)f (m).
We prove this last relation again by induction on n. It is obvious forn = 1
and all m. Assume it proved for all integers < n and all m. Then
f((n + Dm) = f(nm + m) = (nm)e + me
= (ne)(me) + me (by induction)
= (ne + e)(me)
= f(n + 1)f(m),

as was to be shown.



1, §3] INTEGERS AND RATIONAL NUMBERS 27

Thus we see that our map f preserves the algebraic operations on posi-
tive integers. It also preserves inequalities, for if n > m we can write
n = m + k for some positive integer k, so that

ne = f(n) = me + ke
and f(n) > f(m).

In view of the above facts, we shall from now on denote e by 1 and make
no distinction between the positive integer n and the corresponding real
number ne. Thus we view the positive integers as a subset of the real
numbers.

We let Z denote the set of all real numbers which are either positive
integers, or 0, or negatives of positive integers. Thus Z consists of all num-
bers x such that x = n, or x = 0, or x = —n for some positive integer n.
It is clear that if x, ye Z then x + y and xye Z. We call Z the set of
integers.

We let Q denote the set of all real numbers which can be written in the
form m/n, where m, n are integers and n # 0. Since m = m/1 we see that Z
is contained in Q. We call Q the set of rational numbers.

If x, y are rational numbers, then x + y and xy are rational numbers.
Ify # 0, then x/y is a rational number.

Proof. Write x = a/b and y = c/d, where a, b, c, d are integers and
b,d # 0. Then

ad + be
x+y=T and xy

_ac
" bd

are rational numbers. Furthermore, if y # 0 then ¢ # 0, and therefore
x/y = ad/bc is a rational number, as was to be shown.

The usual rules of arithmetic apply to rational numbers. In fact, we
now see that all the axioms which have been stated so far concerning addi-
tion, multiplication, inverses, and ordering apply to the rational numbers.
We note that a rational number x is positive if and only if it can be written
as a quotient m/n where m, n are positive integers.

Proposition 3.1. There is no rational number x such that x* = 2.
Proof. We begin with preliminary remarks on odd and even numbers.

An even (positive) integer is one which can be written in the form 2n, for
some positive integer n. An odd (positive) integer is one which can be
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written in the form 2n + 1 for some integer n > 0. We observe that th-e
square of an even integer is even because (2n)* = 4n’ = 2 2n%, and this
is the product of 2 and 2n% The square of an odd integer 1§ odd, because

@n+1)?=4n* +4n+1=22n" +2n) + L.

Since 2n* + 2n is an integer, we have written the square of our odd number
in the form 2m + 1 for some integer m = 0, and thus have shown that
our square is odd.

Now we are ready to prove that there is no rational number whose
square is 2. Suppose there is such a rational number x. We may assume
that x > 0, and write x = m/n where m, n are positive integers. Further-
more, we can assume that not both m, n are even because we can put the
fraction m/n in lowest form, cancelling as many powers of 2 dividing both
m and n as possible. Thus we can assume that at least one of the integers
mor nisodd. From the assumption that x? = 2 we get (m/n)%= 2 or

Multiplying both sides of this equation by n? yields
m? = 2n?,

and the right-hand side is even. By what we saw above, this means that
m is even, and we can therefore write m = 2k for some positive integer k.
Substituting, we obtain

(2k)? = 2n?

or 4k* = 2n%. We cancel 2 and get 2k* = n?. This means that n? is even,
and consequently, by what we saw above, that n is even. Thus we have
reached the conclusion that both m, n are even, which contradicts the fact
that we put our fraction in lowest form. We can therefore conclude that
there was no rational number m/n whose square is 2, thereby proving the
proposition.

In view of Proposition 3.1, and the fact that Q satisfies all the axioms
enumerated so far, we see that in order to guarantee the existence of a
square root of 2 in R we must state more axioms. This will be done in the
next section. A number which is not rational is called irrational. Thus
\/5 is irrational.
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1, §3. EXERCISES

1. Prove that the sum of a rational number and an irrational number is always irra-
tional.

2. Assume that /2 exists, and let o« = ﬁ Prove that there exists a number ¢ > 0
such that for all integers ¢, p and ¢ 5 0 we have

¢
lge — pl > -.
q

[Note: The same c should work for all g, p. Try rationalizing ga — p, i.c. take the
product (go — p)(ge + p), show that it is an integer # 0, so that its absolute
value is = 1. Estimate qo +p.)

3. Prove that /3 is irrational.
4. Let a be a positive integer such that ﬁ is irrational. Leta = \/E. Show that there

exists a number ¢ > 0 such that for all integers p, ¢ with ¢ > 0 we have

lgo = pl > c/q.

w

. Prove: Given a non-empty set of integers S which is bounded from below (i.e. there
is some integer m such that m < x for all x € S), then S has a least element, that is
an integer n such that ne S and n < x for all x € S. [Hint: Consider the set of all
integers x — m with x € S, this being a non-empty set of positive integers. Show
that if k is its least element then m + k is the least element of S.

1, §4. THE COMPLETENESS AXIOM

Let S be a set of real numbers. We shall say that S is bounded from above
if there is a number ¢ such that x < ¢ for all xe S. Similarly, we say that
S is bounded from below if there is a number d such that d < x for all xeS.
We say that S is bounded if it is bounded both from above and from below,
in other words, if there exist numbers d < ¢ such that for all xe S we have
d < x < ¢. We could also phrase this definition in terms of absolute values,
and say that S is bounded if and only if there exists some number C such
that |x| < C for all x€S. It is also convenient here to define what is meant
by a map into R to be bounded. Let X be a set and f: X — R a mapping.
We say that f is bounded from above if its image f(X) is bounded from
above, that is if there exists a number ¢ such that f(x) < ¢ for all xe X.
We define bounded from below and bounded in a similar way.

Let S again be a set of real numbers. A least upper bound for Sis a
number b such that x < b for all x € S (that is, it is an upper bound) such
that, if z is an upper bound for S then b <z If by, b, are least upper
bounds for S, then we see that b, < b, and b, < b, whence b, = b,. Thus
a least upper bound, if it exists, is uniquely determined: There is only one.
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Similarly, we define greatest lower bound. We often write lub and glb
for least upper bound and greatest lower bound respectively, or also sup
and inf respectively. We can now state our last axiom.

Completeness axiom. Every non-empty set of real numbers which is bound-
ed from above has a least upper bound. Every non-empty set of real num-
bers which is bounded from below has a greatest lower bound.

The above axiom will suffice to prove everything we want about the real
numbers. Either half could be deduced from the other (cf. Exercise 7).

Proposition 4.1. Let a be a number such that

0<a<-
n

for every positive integer n. Then a = 0. There is no number b such that
b = n for every positive integer n.

Proof. Suppose there is a number a > 0 such that a < 1/n for every
positive integer n. Then n < 1/a for every positive integer n. Thus to
prove both assertions of the proposition it will suffice to prove the second.

Suppose there is a number b such that b = n for every positive integer n.
Let S be the set of positive integers. Then S is bounded, and has a least
upper bound, say C. No number strictly less than C can be an upper
bound. Since 0 <1, we have C < C + 1, whence C — 1 < C. Hence
there is a positive integer n such that

C—1<n

This implies that C <n + 1 and n + 1 is a positive integer. We have
contradicted our assumption that C is an upper bound for the set of
positive integers, so no such upper bound can exist.

Proposition 4.2. There exists a real number b > 0 such that b* = 2.

Proof. Let S be the set of numbers y such that 0 < y and y* < 2. Then
S is not empty (because 0 € S), and S is bounded from above (for instance
by 2 itself, because if x = 2 then x* > 2). Let b be the least upper bound
of S. We contend that b?> = 2. Suppose b> < 2. Then 2 — b? > 0. Select
a positive integer n > (2b + 1)/(2 — b?) (this is possible by Proposition
4.1'). Then

2
(b+1) =b2+§+iz§b2+§+l.
n n n n n
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By the way we sclected n, we see that this last expression is < 2. Thus
(b + 1/n)* < 2 and hence b is not an upper bound for S, contradicting the
hypothesis that b> < 2. Suppose that b > 2. Select a positive integer n
such that 1/n < (b> — 2)/2b,and also b — 1/n > 0. Then

2
(b-l) Bl B
n n n h

By the way we selected n, we see that this last expression is > 2. Hence
(b — 1/n)*> > 2, and hence b is not a least upper bound for S, since any
element x €S must satisfy x < b — 1/n. This contradicts the hypothesis
that b* > 2. Thus the only possibility left is that b*> = 2, thereby proving
our proposition.

Part of the argument used in proving Proposition 4.2 is typical and
will be used frequently in the sequel. It depends on the fact that if b is the
least upper bound of a set S, then for every ¢ > 0, b — € is not an upper
bound, and b + € is not a least upper bound. In particular, given € > 0,
there exists an element x € S such thatb — e < x < b.

In a manner similar to the proof of Proposition 4.2, one can prove that
if aeR and a = 0 then there exists x € R such that x> = a. We leave this
as Exercise 8.

Proposition 4.3. Let z be a real number. Given € > 0, there exists a ra-
tional number a such that |a — z| < e.

Proof. Let n be a positive integer such that 1/n < e. It will suffice to
prove that there exists a rational number a such that |a — z| < 1/n. We
shall first assume that z = 0. The set of positive integers m such that
nz < m is not empty (Proposition 4.1) and has a least element by the well-
ordering axiom. Let k denote this least element. Then k — 1 < nz by
hypothesis, and hence

l_(__§z<_
n n
This implies that
LKt
n|l=n

as was to be shown. If z < 0, then we apply the preceding result to —z
and find a rational number b such that |b — (—2)| <e. We then let
a = —b to solve our problem.
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The picture illustrating Proposition 4.3 looks like this:

z
¥
T

t
k-1

n

O
=1
101

31X+

The proof of Proposition 4.3 illustrates the use of small.nun:lbers 1/n,
which are often more convenient to work with than arbitrarily given e.

I, §4. EXERCISES

—

. In Proposition 4.3, show that one can always select the rational number a such that
a # z (in case z itself is rational). [Hint: If z is rational, consider z + 1/n.]

2. Prove: Let w be a rational number. Given € > 0, there exists an irrational number
ysuchthat|y — w| <e.

w

Prove: Given a number z, there exists an integer n such that n < z < n + 1. This
integer is usually denoted by [z].

>

Let x, ye R. Define x = y if x — y is an integer. Prove:

(a) This defines an equivalence relation in R.

(b) If x = y and k is an integer, then kx = ky.

(©) If x, =y, and x, = y,, then x; + x, = y; + y,.

(d) Given a number x € R, there exists a unique number X such that 0 < x <1
and such that X = x (in other words, x — X is an integer). Show that X =
x — [x], where the bracket is that of Exercise 3.

©w

Denote the number X of Exercise 4 by R(x). Show that if x, y are numbers, and
R(x) + R(y) < 1, then R(x + y) = R(x) + R(y). In general, show that

R(x +y) = R(x) + R(y).
Show that R(x) + R(y) — R(x + y) is an integer, i.e.

R(x + y) = R(x) + R(y).

[=2)

. (@) Let a be an irrational number. Let € > 0. Show that there exist integers m,
n with n > 0 such that [ma. — n| < e.
(b) In fact, given a positive integer N, show that there exist integers m, n and
0 <m £ N such that |ma — n| < 1/N.
(c) Let w be any number and € > 0. Show that there exist integers g, p such that

lgo — p—w|<e

[In other words, the numbers of type go — p come arbitrarily close to w. Use part
(a), and multiply mo. — n by a suitable integer.]
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7. Let S be a non-empty set of real numbers, and let b be a least upper bound for S.
Let —S denote the set of all numbers of type —x, with x € S. Show that —b is a
greatest lower bound for —S. Show that one-half of the completeness axiom
implies the other half.

8. Given any real number 2 0, show that it has a square root.

9. Let xy,...,x, be real numbers. Show that x? + --- + x2 is a square.



CHAPTER I

Limits and Continuous
Functions

Il, §1. SEQUENCES OF NUMBERS

Let {x,} be a sequence of real numbers. We shall say that the sequence
converges if there exists an element aeR such that, given € > 0, there
exists a positive integer N such that for all n = N we have

la—x,| <e

We observe that this number g, if it exists, is uniquely determined, for if
b eR is such that

1b—x,|<e
for alln = N, then
la—bl=la—x,+x,—bl<la—x,|+|x,—b| 2

for all n = max(N, N,). This is true for every € > 0, and it follows that
a—b=0, that is a = b. The number a above is called the limit of the
sequence.

We shall be dealing constantly with numbers € > 0 in this book, and
we agree that the letter € will always denote a number > 0. Similarly,
& will always denote a number > 0, and for simplicity we shall omit the
signs > 0 in sentences in which these symbols occur. Furthermore, N
will always stand for a positive integer, so that we shall sometimes omit the
qualification of N as integer in sentences involving N.

34
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We shall give other definitions in the course of this book which are
logically analogous to the one given above for the convergence of a se-
quence. It is therefore appropriate here to comment on the logical usage
of the € involved. Suppose that we have a sequence of numbers {x,}, and
suppose that we can prove that there exists a number a such that given e,
there exists N such that for all n 2 N we have

la — x,| < 5e.

We contend that a is a limit of the sequence. The only difference between
the preceding assertion and the definition of the limit lies in the presence of
the number 5 in front of ¢ in the final inequality. However, being given ¢,
let ¢; = ¢/5. By what we can prove, we know that there exists N, such
that for all n 2 N, we have

la — x,| < 5¢,.

In particular, |a — x,| < e for all n 2 N,. Thus a is a limit of the sequence.
More generally, you can prove the following assertion.

Let {x,} be a sequence of real numbers. Suppose that we can prove that
there exist a number a and a number C > 0 satisfying the following prop-
erty. Given e > 0, there exists a positive integer N such that for all positive
integers n 2 N we have |a — x,| < Ce. Then a is a limit of the sequence.

This will occur frequently in practice, usually with C = 2 or C = 3. Proofs
in these cases are called 2¢ or 3¢ proofs. For a few proofs, we shall adjust
the choice of €, so as to come out in the end exactly with an inequality < e.
Later, we shall relax and allow the extraneous constants.

To simplify the symbolism we shall say that a certain statement A con-
cerning positive integers holds for all sufficiently large integers if there
exists N such that the statement A(n) holds for all n = N. It is clear that if
Ay, ...,A, is a finite number of statements, each holding for all sufficiently
large integers, then they are valid simultaneously for all sufficiently large
integers. Indeed, if 4,(n) is valid for n = N,,..., A,(n)is valid forn 2 N,,
we let N be the maximum of N,, ...,N, and see that each Ay(n) is valid
for n = N. We shall use this terminology of sufficiently large only when there
is no danger of ambiguity.

We shall say that a sequence {x,} is increasing if x, < x,,, for all posi-
tive integers n. We use the term strictly increasing when we require

Xy < Xp+1
instead of

Xy S Xy
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Theorem 1.1. Let {x,} (n=1, 2, ...) be an increasing sequence, and
assume that it is bounded from above. Then the least upper bound b of the
set {x,} (n=1,2,...)is the limit of the sequence.

Proof. Given € >0, the number b — € is not an upper bound for the
sequence, and hence here exists some N such that

b—e<xy=bh

Since the sequence is increasing, we know that for alln = N,
b—e<xy<x,£b

It follows that for all n = N we have 0 < b — x, < €, whence
[x, — b| <¢
thereby proving our theorem.

We can define the notion of a decreasing sequence (x,.+, < x, for all n),
and there is a theorem similar to Theorem 1.1 for decreasing sequences
bounded from below, namely the greatest lower bound is the limit of the
sequence. The proof is similar, and will be left to the reader. Theorem 1.1
will be quoted in both cases.

Examples. The sequence {1, 1, 1,...} such that x, =1 for all n is an
increasing sequence, and its limit is equal to 1.

The sequence {1, 3,4, ...,1/n, ...} is a decreasing sequence, and its limit
is 0. Indeed, given ¢, we select N such that 1/N < ¢, and then for alln = N
we have

1 1
0<-=—=<e
n— N

The sequence {1, 1.4, 1.41, 1.414,...} is an increasing sequence, and its
limit is /2.

If ¢ is a number and we let x, = ¢ — 1/n?, the sequence {x,} is an in-
creasing sequence and its limit is c.

There is no number which is a limit of the sequence {1,2,3,...} such
that x,, = n.

The sequence {1,%, 1,4, 1,4, ...} such that x,,_, = 1 and

1
n+1

Xan =
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does not have a limit. It has something which will be discussed below
(points of accumulation).

All sequences in the rest of this chapter are | to be sequences of
numbers, unless otherwise specified.

A sequence {x,} is said to be a Cauchy sequence if given ¢ there exists N
such that for all m, n = N we have

| X — X,] < €.

Intuitively we see that the terms of a Cauchy sequence come closer and
closer together. We observe that if a sequence converges, then it is a
Cauchy sequence. The proof for this is easy, for if the sequence {x,} con-
verges to the limit a, given ¢ there exists N such that for alln = N we have

€
|x,,—a|<§.

Also for allm = N we have

€

|x,,,—a|<2.

Hence for m, n 2 N, we have

1% = Xul S [Xn —al +]a—x,| <¢

thus proving that our sequence is a Cauchy sequence. We prove the converse
as a consequence of the least upper bound axiom.

Theorem 1.2. Let {x,} be a Cauchy sequence of numbers. Then {x,}
converges, i.e. it has a limit.

Proof. First we need a lemma.
Lemma 1.3. If {x,} is a Cauchy sequence, then it is bounded.

Proof. Given 1 there exists N such thatif n 2 N then
|x, — x| < L.

From this it follows that |x,| < |xy| + 1 for all n 2 N. We let B be the
maximum of |x, [, ..., xy|, [ xy| + 1. Then B is a bound for the sequence.
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Now let {x,} be a Cauchy sequence in R. Since {x,} is bounded by the
lemma, there is a greatest lower bound

by = g~l~b-{«\'n, Xnt15Xn42, - - }

Then {b,} is an increasing sequence, bounded. Let b be its least upper
bound. Given e there exists N, such that

|b—by| <€ forall »n= Nj.
There exists N> such that for all m,n 2 N, we have
|%m — xu| < €.

Let N = max(Ny, N2). For n = N there is m = n such that
|bn — xm| < €.
Then we get
|6 = xu] S 16— bl + by — Xou| + |Xim — Xu < 3e,

qed Theorem 1.2.

Remark. One cou]d take Theorem 1.2 as an axiom instead of the least up-
per bound axiom, together with Proposition 4.1 of Chapter I, and then using
only the algebraic and ordering axioms, prove the least upper bound axiom
from them. What one does at the foundational level is a matter of taste.
One could also simply assume both Theorem 1.2 and the least upper bound
axiom as axioms.

The theorems of analysis can be developed perfectly well from Theorems
1.1 and 1.2. There remains of course to give an existence proof for a system
satisfying these axioms. We don’t want to interpose any obstacle to a rapid
and efficient development of analysis. Furthermore, the construction of a
completion will be seen to apply both to the existence of the reals from the
rationals, as well as to the completion of a normed vector space. Readers
will see this construction in Chapter VII, §4.

It is also a nice exercise for the reader to show that if we assume that ev-
ery Cauchy sequence has a limit in R, then R satisfies the least upper bound
property, so the two properties (existence of least upper bound and every
Cauchy sequence converges) are equivalent.
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Next we come to another consequence of the completeness axiom.

Let {x,} (n =1, 2,...) be a sequence and x a number. We shall say
that x is a point of accumulation of the sequence if given ¢ there exist in-
finitely many integers n such that

|x, — x| <e

Examples. The sequence {1, 1, 1,...} has one point of accumulation,
namely 1.

The sequence {1, %, 1,4, 1, 4, ...} has two points of accumulation, namely
1 and 0.

The sequence {1, 2, 3, ...} has no point of accumulation.

In the definition of point of accumulation, we could have said that given
e and given N there exists some n > N such that |x, — x| < . This formu-
lation is clearly equivalent to the other. Note that we do not say that there
are infinitely many x, such that |x,— x| <e Indeed, all numbers
X, (n=1,2,...) may be equal to each other, as in the sequence {1, 1, 1,...}.
Thus it is essential to refer to the indices n in the definition of point of ac-
cumulation, rather than to the numbers x,,.

Theorem 1.4. Weierstrass-Bolzano Theorem. Let {x,} (n=1,2,...) be a
sequence, and let a, b be numbers such that a < x, £ b, for all positive in-
tegers n. Then there exists a point of accumulation ¢ of the sequence, with
aZcZbh.

Proof. One could use the same method as for Theorem 1.2, but one can
also argue as follows (proving more than what is stated in the theorem). Let
Iy = [a,b]. Let x,,, € I). Let ¢, be the midpoint of I;. Then c; separates the
interval into two intervals, each of length L,/2, where L, = b —a is the
length of I;. One of the two intervals must be such that x, lies in this interval
for infinitely many n. Denote this intervals by I, and let 7, > 1 be such that
Xn, lies in ;. The length of I, is L; /2. We proceed inductively. Suppose we
have constructed I with x,, € I, nx > ng—1, Ly = L1 /2%, and there are in-
finitely many » for which x, lies in I. Let I, be one of the two halves of I
such that there are infinitely many » such that x, € 41, and let x,,,, € Iy
with ngy; > ni. Then the length of Iy is Lryy = Lj/2%. The sequence
{x,} (k=1,2,3...) is Cauchy, because given a positive integer K, for all
k,m= K we have |x,, — x,,| <1/2%-'. By Theorem 1.2, the sequence
{x, } has a limit, which is a point of accumulation. But we have proved
more:

Theorem 1.5. Every bounded sequence of real bers has a convergent
subsequence. If the bounded sequence is in a finite closed interval [a, b], so
is the limit of the subsequence.
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Example. The sequence {1,%,1,%,1,%, ...} has a convergent subse-
quence, namely {},4,4,...}. It has another convergent subsequence,

namely {1,1,1,...}.

Let S be an infinite set of numbers. By a point of accumulation .of the
set S we shall mean a number ¢ having the following property. Given ¢,
there exist infinitely many elements x € S such that |x — ¢| < €.

Corollary 1.6. If S is an infinite bounded set of bers, say a<x=<b
for all x€ S, then S has a point of accumulation ¢ such that a < ¢ < b.

Proof. We know that S contains a denumerable subset {x,},>, to which
we can apply the Weierstrass-Bolzano theorem. Note that in the enumer-
ation {x,, x,, ...} all the elements are distinct, so that in this case, the
statement in the Weierstrass—Bolzano theorem concerning infinitely many
n actually provides us with infinitely many x, having the required property.

Il, §1. EXERCISES

Determine in each case whether the given sequence has a limit, and if it does,
prove that your stated value is a limit.

l —1y
Lox,=- 2.x,,=(__ll
n n
1 14 (=1)
3. x,,=(—l)"(1 ——) 4 x, = 1T
n n
5. x, = sinnn 6. x, = sin(%) + cos nm
2
n n
T Xy = 5— =
X =T 8 x, PR
n’ n? —n
9. X = . x, =
n? +1 10 % =15 +1

. Let S be a bounded set of real numbers. Let A be the sct of its points of
accumulation. That is, 4 consists of all numbers a € R such that a is a point
of accumulation of an infinite subset of S. Then 4 is bounded. Assume that
A is not empty. Let b be its least upper bound.

(a) Show that b is a point of accumulation of S. Usually, b is called the limit
superior of S, and is denoted by lim sup S.

(b) Let ¢ be a real number. Prove that ¢ is the limit superior of S if and only
if ¢ satisfies the following property. For every € there exists only a finite
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number of elements x € S such that x > ¢ + ¢, and there exist infinitely many
clements x of S such that x > ¢ — e

12. Let {a,} be a bounded sequence of real numbers. Let A4 be the set of its points
of accumulation in R. Assume that A is not empty. Let b be its least upper
bound.

(a) Show that b is a point of accumulation of the sequence. We call b the
limit superior of the sequence, denoted by lim sup a,.

(b) Let ¢ be a real number. Show that ¢ is the lim sup of the scquence {a,} if
and only if ¢ has the following property. For every e, there exists only a finite
number of n such that a, > ¢+ ¢, and there exist infinitely many n such that
ay>c—e¢

() If {an} and {b,} are two bounded sequences of numbers, show that

lim sup(ay, + b,) < limsup a, + limsup b,.

13. Define the limit inferior (lim inf). State and prove the properties analogous to
those in Exercise 12.

Il, §2. FUNCTIONS AND LIMITS

Let S be a set. By a function, defined on S, we shall mean a map from S
into the real numbers. By the graph of the function f, we shall mean the
set of all pairs of points (x, f(x)) in S x R, with x€eS.

(Later we shall define complex valued functions, so that when the need
arises, we shall say real valued functions for those which take their values
inR.)

We note that the square root and absolute value are functions,

x|—>\/;c and x| x|.

The absolute value is defined for all numbers. The square root is defined
only for all numbers = 0.

Let S be a set of numbers. Let a be a number. We shall say that a is
adherent to S if given € there exists an element x €S such that [x — a| < e
Observe that if a is an element of S, then a is adherent to S. We simply
take x = a in the preceding condition.

For example, the number 1 is adherent to the open interval 0 < x < 1.
The number 0 is adherent to the set of all numbers {1/n}, n =1,2,3,....
In neither case is this adherent point in the set itself.

Let S consist of the single number 2. Then 2 is adherent to S, and it is a
simple matter to verify that it is the only adherent point to S. If T con-
sists of the interval 0 < x < 1 together with the number 2, then 2 is ad-
herent to T.
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The least upper bound of a (non-empty) set S is adherent to S. )

Let S be a set of numbers and let a be adherent to S. Let f bea func.tlon
defined on S. We shall say that the limit of f(x) as x approaches a exists,
if there exists a number L having the following property. Given ¢, there
exists a number & > 0 such that for all x € S satisfying

|x —al<é
we have
|fG)—Ll<e
If that is the case, we write
lim f(x) = L.
x~a
xeS

We shall also say that the limit of f(a + h) is L as h approaches 0 if the
following condition is satisfied.

Given ¢, there exists 6 such that whenever h is a number with |h| < &
and a + heS, then

|fa+h—Ll<e

We note that our definition of limit depends on the set S on which f is
defined. Thus we should say “limit with respect to S.” The next proposi-
tion shows that this is really not necessary.

Proposition 2.1. Let S be a set of numbers, and assume that a is adherent
to S. Let S’ be a subset of S, and assume that a is also adherent to S'. Let
f be a function defined on S. If lim f(x) exists, then lim f(x) also exists,

x—a x—a
xeS xeS’

and these limits are equal. In particular, if the limit exists, it is unique.
Proof. Let L be the first limit. Given ¢, there exists & such that whenever
xeSand |x — a| < & we have

/6~ LI <.

This applies a fortiori when x € ', so that L is also the limit for xe S'. If M
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is also a limit, there exists 8, such that whenever x € S and
|x —al <,

then
€
/6 — M| <3.
If |x — a| < min(8, §,) and x € S, then
IL=MISIL -/ +1/0) — Ml <z +5=e

Hence |L — M| is less than any ¢, and it follows that |L — M| = 0, whence
L=M.

In view of Proposition 2.1, we shall usually omit the symbols x€ S in
the notation for the limit.

For proofs where we have to choose a finite number of &, it is useful
to make the following remark. A statement A(x) is said to hold for all
x sufficiently close to a if there exists é such that A(x) holds for all x such
that |x — a| < 8. If 4,(x) holds for all x such that |x — a| <4,,...,4,(x)
holds for all x such that |[x — a| < §,, then we can let § = min(d,, ...,5,)
and the statements A;(x), ...,4,(x) hold simultaneously for all x such
that |[x — a| < 4.

Examples. Let f be a constant function, say f(x) = c for all xe S. Then

limf(x) =c.

x—a

Indeed, given ¢, for any é we have | f(x) —c|=0<e.
Next, suppose a is an element of S. We consider any function f on S.
Suppose the limit

lim f(x)

x—a

exists. We contend that it must be equal to f(a). Indeed, for any & we
always have |a — a| < 8, whence if L is the limit, we must have

[f@—Ll<e

for all e. This implies that f(a) = L. We consider specific cases of this
situation.
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An element a of S is said to be isolated if there exists some & such that
whenever x € S and

a—d<x<a+9é

then x = a. In other words, there is an open interval containing a such

that a is the only element of S in this open interval. If f is a function on S,

then in that case lim f(x) exists, because whenever |x — a| < § we must
x—a

have x = g, and consequently we have trivially f(a) — f(a) = 0.

If S is the set of integers, then every element of S is isolated. If S con-
sists of the numbers 1/n for n = 1, 2, ..., then every element of S is isolated.
If T consists of all the numbers 1/n (n = 1, 2, ...) together with 0, then 0
is not an isolated element of T, but every other element of T is isolated.

Let S be the set of numbers such that 0 < x < 1. Define f on S by
f(x) = x. Then

lim f(x) = £(0) = 0.
x=0

Define g on S by g(x) = x if x # 0 and g(0) = 1. Then lim g(x) does not
exist. The graphs of f and g are as follows: x=0

Graph of [ Graph of g

On the other hand, let T be the set of numbers such that 0 < x < 1.
Define h on T by h(x) = x. Then lim h(x) exists and is equal to 0. Note
that h is not defined at 0. x=0

The conventions adopted here seem to be the most convenient ones.
The reader should be warned that occasionally, in some other books,
slightly different conventions may be adopted. According to our conven-
tions, the limit

lim g(x)
x=0
xeT

exists and is equal to 0, if g is the function of the preceding example, i.e.
the same as the function h on the set T, but not the same as the function f
on the set S. One may say that h is the restriction of g to T, and the dis-
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tinction between g, defined on S, and its restriction to T, is brought out in
the symbols

lim g(x)
x-+0
xeT

by writing explicitly x € T under the limit sign.
We now come to the sum, product, and quotient of functions. If f; g are
functions defined on a set S, we define

(f + 9)x) = f(x) + g(x),
(9)x) = f(x)g(x).

If S, is the subset of S consisting of all x such that g(x) # 0, then we define
flg on S, by

FAVRNEDLC))
(g)(x) N

One verifies easily the associativity and distributivity for the sum and
product. For instance, if f; g, h are defined on S then (fg)h = f(gh) and
f(g + h) =fg + fh. These rules follow from the corresponding rules for
addition and multiplication of numbers. We sometimes write f/g as fg~!.

Theorem 2.2. Let S be a set of numbers and let a be adherent to S. Let
£, g be functions defined on S. Assume that

limf(x)=L and lim g(x) = M.
x—a x~—a
Then:
@) lim (f + g)(x) exists and is equal to L + M.
(i) i‘l—t:r‘; (f9)(x) exists and is equal to LM.

(iii) ;j—:nM #0, and S, is the subset of S consisting of all x such that
g(x) # O, then a is adherent to Sy, the limit lim (f/g)(x) exists and
is equal to L/M. x=a

Proof. As to the sum, given ¢, there exists & such that whenever
|x — a| < & we have

Ifx)—Ll<e lgix)—M|<e
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Then
[f()+g(x) =L — M| Z|f(x) = LI+ [M — g(x)| < 2.
This proves that L + M is the limit of (f + g)(x) as x — a.

As to the product, given ¢, there exists § such that whenever |x — a| < é
we have

1 &
&)=L <3

1 e
2L+ 1

IfGIl < |L| + L

lg(x) — M| <

Indeed, each one of these inequalities holds for x sufficiently close to a,
so they hold simultaneously for x sufficiently close to a. We have:
[f()g(x) — LM| = | f(x)g(x) — fOIM + f)M — LM|
= 1)) = SIM| + | f()M — LM |
S1fNgG) — M1+ 1 f(x) — LI M|

e+e
2 2

<e

<

As to the quotient, it will suffice to prove the assertion for 1/g(x), be-
cause we can then use the product rule to deal with

1
S)g(x) = f(x)- oy

Given ¢, let ¢, be the smallest of the numbers e|M|[*/2, |[M|/2, e. There
exists 6 such that whenever |x — a| < § we have

l9(x) — M| < ¢,
This implies that

M
g0 > M| — ¢ 2 |M| - % - %
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In particular, g(x) # 0 when |x — a| < 6. For such x we get

M =gl 2 [M—g)| _ 2 M _

1 1
e} M.‘ GOM| M| M| iM[2iM] ¢

IIA

This proves our theorem.

Corollary 2.3. Let ¢ be a number and let the assumptions be as in the
theorem. Then

lim ¢f (x) = cL.

x—a

Proof. Clear.

Corollary 2.4. Let the notation be as in the theorem. Then

lim (f(x) — g()) = L — M.
Proof. Clear.

Theorem 2.5. Let g be a bounded function defined on a set of numbers S,
and let a be adherent to S. Let f be a function on S such that

lim f(x) = 0.
Then the limit lim f(x)g(x) exists and is equal to 0.
Proof. The proof will be left as an exercise.

Theorem 2.6. Let S be a set of numbers, f, g functions on S. Let a be
adherent to S. Assume that g(x) < f(x) for all x sufficiently close to a
inS. Assume that

limf(x)=L and lim g(x) = M.

x-a X-a
Then M < L.

Proof. Let ¢(x) =f(x) — g(x). Then @(x) 2 0 for all x sufficiently
close to a, and

lim (x) = L — M.

x—a
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Let K =L — M. It will suffice to prove that K = 0. Suppose K <O0.
There exists J such that if |[x — a| < 6 then

K|
lo(x) — K| < -
But then ¢(x) < K + |K|/2 = K/2, and since K is negative, we have a
contradiction, which proves the theorem. Picture:

L
K K2 o

The next theorem describes what is known as the squeezing process.

Theorem 2.7. Let the notation be as in Theorem 2.6, and assume that
L = M. Let h be a function on S such that

g(x) = h(x) < f(»)
Jor all x € S sufficiently close to a. Then

lim h(x)

exists and is equal to L (or M).
Proof. Given e there exists 8 such that whenever |x — a| < & we have
9(x) Sh(x) = (%), lgx) -Li<e,  |f(x)-LlI<s
and consequently
0=7()—gx) S 1f(x) = LI+ 1g(x) — L| < 2.
But

IL = hG) < IL = £ + | f(x) — h(x)]|
< € + f(x)—g(x)
< € + 2e = 3¢,

as was to be shown.
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We have now dealt systematically with the relations of limits and the
various operations pertaining to real numbers (algebraic operations,
ordering). There is still one more operation we can perform, that of com-
posite functions.

Theorem 2.8. Let f:S— T and g: T — R be functions, where S, T are
sets of numbers. Let a be adherent to S. Assume that

lim £(x)

exists and is equal to a number b. Assume that b is adherent to T. Assume
that

lim g(y)

y=b

exists and is equal to L. Then

lim g(f(x)) = L.

Proof. Given ¢ there exists § such that whenever ye T and |y — b| <
then |g(y) — L| < . With the above § being given, there exists ; such

that whenever x€S and |x — a| < &, then | f(x) — b| < é. Hence for
such x,

lg(f()) — Ll<e,

as was to be shown.

Il, §2. EXERCISES

1. Let d > 1. Prove: Given B > 1, there exists N such that if n > N then d" > B.
[Hint: Writed = 1 + b with b > 0. Then

d"=1+nb+---21+nb]
2. Prove that if 0 < ¢ < 1then

lim ¢" = 0.

n=o

What if —1 < ¢ < 0?7 [Hint: Write c = —1/d withd > 1.]



50 LIMITS AND CONTINUOUS FUNCTIONS [11, §3]

3. Show that for any number x # 1 we have

X — 1

T+x+-+x"=
x—1

If |c| < 1, show that

m(1+c+ -+ ¢)=

n—~o

1-¢

4. Let a be a number. Let f be a function defined for all numbers x < a. Assume that
when x < y < a we have f(x) < f(y) and also that f is bounded from above.
Prove that lim f(x) exists.

x—a

w

. Let x > 0. Assume that the n-th root x* exists for all positive integers n. Find
lim x'/n,

n—o

. Let f be the function defined by

o

f(x) = lim

w1+ 07X

Show that f is the characteristic function of the set {0}, that is f(0) =1
and f(x) = 0ifx # 0.

1l, §3. LIMITS WITH INFINITY

We note the analogy between the limit as defined in §2, and the limit of a
sequence as defined in §1. In the case of sequences, we have a function
f:Z* - R, and the definition of limit is essentially the same as that given
in §2, except that the condition “there exists é such that for |x — a| < 6”
is replaced by the condition “there exists N such that for n > N.” It is
therefore convenient to introduce a symbol co, called infinity, and to write

lim x,
n-+ o

for the limit of a sequence. We emphasize however that oo is not a number.
It merely behaves like a number in certain syntactical contexts, which are
always defined precisely.

There is a technical way actually of subsuming the definition of limit
of a sequence under the definition of a limit of a function. Let {x,} be a
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sequence. Let S be the set of all numbers {1/n} (n =1, 2,...). Let g be
the function defined on S such that g(1/n) = x,. Then it is immediate from
the definitions that

lim g(x) = lim x,,
x=0 n-o
in the sense that if one of these limits exists, so does the other and they are
equal.
Similarly, let S be a set of numbers which contains arbitrarily large
numbers. By this we mean: Given a positive number B, there exists x € S
such that x > B. Let f be a function defined on S. We shall say that

lim f(x)

x— o0

exists if there is a number L such that given ¢, there exists some B > 0
such that whenever x € S and x = B we have

|[f)—L|<e
Again, let g(1/x) = f(x) for xe S, x> 0. Then Ylmﬁlo f(x) exists if and
only if lins g(y) exists, and in that case these limits are equal. Note that
Y

g is defined on the set T consisting of all numbers 1/x for xe S, x> 0.

We shall frequently speak of lim f(x) as the limit of f(x) as x becomes

X— 0
arbitrarily large, or simply as x becomes large.

We can also make a definition concerning the values of f becoming
arbitrarily large. First let S be a set of numbers and let a be a number
adherent to S. We shall say that f(x) becomes arbitrarily large as x
approaches a (or x — a), and write f(x) — o, if given a number B (which
we may assume > 0), there exists 6 such that whenever [x —a| < 6 we
have f(x) > B.

Similarly, suppose that S contains arbitrarily large numbers. We say
that f(x) becomes arbitrarily large as x becomes large (or x — 00) if given
a number B there exists C > 0 such that whenever x > C we have
f(x)> B.

Note the logical similarity between the preceding two definitions. The
phrase

“there exists & such that whenever |x — a| < 6”

is merely replaced by the phrase

“there exists C such that whenever x > C.”

Of course, in all these cases, we assume that x € S.
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In a certain sense, the preceding definitions give meaning to the expres-
sions

lim f(x) = and lim f(x) = co.

x=

However, as a matter of convention, we emphasize that we shall continue
to say that a limit

lim f(x) or lim f(x)

xX—* 00
exists only when it is a number.

One could also introduce the notion of f(x) - — o0 as x — a as follows:
Given a positive number B there exists & such that whenever |x — a| < ¢
we have f(x) < —B. We then say that f(x) becomes arbitrarily large
negative as x — a.

If we view the above definitions as giving meaning to the expression

lim f(x) =L

with a or L standing for the symbol oo, or for a number, we then have four
possibilities:

a=o0 and LeR, aeR and LeR,
a=o0 and L = oo, aeR and L = oo.

The theorems concerning limits proved in §2 all have analogues for the
generalized notion of limits involving co. For instance, Proposition 2.1
applies to sequences. If

lim x,
n-*oo

exists and is equal to L, and if {x,,, x,,, ...} is a subsequence, then

lim x,,
k=0

exists and is also equal to L. The proof should now be clear.

As to the statements concerning sums, products, and quotients, they
should be understood as follows.

When a = o0 and L, M are both numbers, we have no problem in
taking the sum L+ M, the product LM, and the quotient L/M if M # 0
and the theorem is valid.
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When L or M is oo, then we define:
00 + 00 = 0, 00 00 = 00, 0/c0 = 0,
¢ + o = oo for all numbers c,
¢- 00 = oo for all numbers ¢ > 0.

We do not define the expressions 0- co, co/co, /0, 0/0, or ¢/0 if c is a
number.

The statements on sums, products, and quotients of limits are then
still true, provided that in each case L + M, LM, or L/M is defined. We

shall state one of these in full as an example.

Limit of a product. Let S be a set of numbers containing arbitrarily
large numbers. Let f, g be functions defined on S. Assume that

lim f(x) =L  and lim g(x) = oo,

x=0 X 00

L being a number > 0. Then

lim f(x)g(x) = co.

We shall prove this statement as an example. We must prove: Given
a positive number B, there exists C such that for all xe S, x = C we have

f(¥)g(x) > B.

So given B, there exists C, such that if x > C, then
L
176 = LI <35,
so that in particular, L — L/2 < f(x) < L + L/2, and thus
L
1) > 7
There exists C, such that if x 2 C, then g(x) > 2B/L. Let
C = max(C,, C,).

If x = C then

00 > 52 =B,

as desired.
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All similar proofs are equally easy, and are left as exercises. The same
is true for limits of composite functions.
We shall now give an example of the above statement on the limit of a

product involving infinity.

Example. We recall that a polynomial is a function f which can be
expressed in the form

fX)=ax*+-+ag

where ag, ...,as are numbers. Suppose that a; > 0 for definiteness, and
d 2 1. We write

f(x)=adx( ax)

The term in parentheses approaches 1 as x — 0. The term ax? — co as
x — c0. Hence f(x) — oo as x — c0.

Next we give an example which generalizes Exercise 1 of the preceding
section. We work out a special case first.

Theorem 3.1. Let a be a number > 1. Then lim a"/n =

n—c

Proof. Write a =1 + b with b > 0. By the binomial expansion,

1+nb+wb2

a+by
n - n

2lip @Dy, oD,

because all the terms - - - on the right-hand side are > 0. Given a number
C > 0, we select N such that

—1>b—2

(thatis N > 2C/b? + 1). Thenforalln > N we have

1+ by
n

>C

which proves the theorem.
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Note that the above proof shows very clearly how (1 + b)"/n becomes
large. We do not say that the limit exists. However, we do say that a"/n
becomes arbitrarily large when n becomes large. Furthermore, if we con-
sider n/a", we do have

. n
lim — =0.

n—oo

Indeed, given ¢, we find a positive integer C such that 1/C < e. We then
select N as before, and we find that for n = N we have

0< " < ! <
a+by - Cc~°
This proves our assertion. Thus the limit of n/a" as n approaches infinity
does exist and is equal to 0.
Next we prove a stronger theorem than Theorem 3.1, by the same
method pushed a bit further.

Theorem 3.2. Let a be a number > 1. Let k be a positive integer. Then

lim a"/n* = co.

n—co

Proof. As in Theorem 3.1 we write down the binomial expansion,
except that we use more terms. We write a =1 + b, so that

LUl Gl PP S

(L4 = Lbnb 4o o

bk+l

All the terms in this expansion are = 0. The coefficient of can be

written in the form

k+1

n + terms with lower powers of n
&+ 1! P :
Hence
a+8)" 5 n L a, Ghat) vt
nk = (k+l)!(1+n+ + o b

where ¢y, ...,¢+, are numbers depending only on k but not on n. Hence
when n— oo, it follows that the expression on the right also — oo, by the
rule for the limit of a product with one factor n/(k 4+ 1)! = co, while the
other factor has the limit b¥+! as n — oo. This concludes the proof.
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Theorem 3.3. Let f(x) = a,x" + -~ + ao be a polynomial. When f is so
expressed, these numbers a, ...,a, are uniquely determined.

Proof. Suppose
gx) = b X"+ -+ + bo

for some numbers by, ...,b,, and assume f(x) = g(x) for all x. Say n=m.
Then we can write

g(x) = 0x" + -+ + 0x™*! + b, x™ + -+ + bo,
and

h(x) = f(x) — g(x) = (@, — b)x" + -+ + (a0 — bo)
=, X" + -+ + co»
letting ¢; = a; — b;. We have h(x) = 0 for all x and we must prove that
¢; =0 for all i. Since h(0) = co = 0, we proceed by induction. Assume
co=---=¢, =0,s0 that
0="h(x)=ce X+ - + X"

For x # 0, divide by x"**. We obtain

0=Cpiy + CruaX + - +c,x" "L

Taking the limit as x — 0, we find ¢, ; = 0, thus proving what we want.

The numbers ay, . .. ,a, are called the coefficients of /. If f is not the
zero polynomial, we can write f in the form

FO)=ax +--- +ag

with a4 ¢ 0. In that case, we call a, the leading coefficient of f. We call aq
its constant term. We call d the degree of f.

The argument showing that the coefficients of a polynomial are uniquely
determined depended on taking limits. One can give a more algebraic
argument. By definition, a root of f is a number ¢ such that f(c) = 0.

Theorem 3.4. If
fx)=a,x"+--- +aq

with numbers a, ...,a, and a, # 0, then there are at most n roots of f.



[11, §3] LIMITS WITH INFINITY 57

Proof. This is clear for n = 1. Assume it for n — 1. Let ¢ be a root of f.
Write x = (x — ¢) + c and substitute in £ Then f(x) can be written in the
form

fx)=bo+by(x—c)+---+by(x—c)

with suitable numbers by, ...,b,. Furthermore, we have by = f(c) = 0.
Hence

J&) =@ = )by + -+ + b,(x — o))

gx)=by + -+ b(x—c) L
If ¢’ is a root of f and ¢’ # c, then
fe) = — )g(c).
Since ¢’ — ¢ # 0 it follows that ¢’ is a root of g. By induction, there are

at most n — 1 roots of g, and hence there are at most n roots of f, as was
to be shown.

I, §3. EXERCISES

—

. Formulate completely the rules for limits of products, sums, and quotients when
L = — oo. Prove explicitly as many of these as are needed to make you feel com-
fortable with them.

Id

. Let f(x) = a;x? + -*- + a, be a polynomial of degree d. Describe the behavior
of f(x) as x > co depending on whether a,> 0 or a, < 0. (Of course the case
a, > 0 has already been treated in the text.) Similarly, describe the behavior of
f(x) as x —» — oo depending on whether a; > 0, a; <0, d is even, or d is odd.

w

. Let f(x) = X" + a,- X"~ + --- + a, be a polynomial. A root of f is a number ¢
such that f(c)=0. Show that any root satisfies the condition

lel £ 1+ 8,1l + -+ + laol-

[Hint: Consider |c| < 1 and |c| > 1 separately.]

&

Prove: Let f, g be functions defined for all sufficiently large numbers. Assume that
there exists a number ¢ > 0 such that f(x) = c for all sufficiently large x, and that
g(x) = o as x = co. Show that f(x)g(x) — 00 as x — co.

w

. Give an example of two sequences {x,} and {y,} such that

lim x, = 0, lim y, = oo,

n—o n—c
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and
lim (x,y,) = 1.
Give an example of two sequences {x,} and {y,} such that

lim x, = 0, lim y, = oo,

but lim (x,y,) does not exist, and such that |x,y,| is bounded, i.. there exists
C >"(—)‘;uch that |x,y,| < C for all n.
Let

f)=ax"+ -+ a,

00) = byx™ + -+ + by

be polynomials, with a,, b,, # 0, so of degree n, m respectively. Assume a,,, b, >0.
Investigate the limit

distinguishing the cases n > m,n = m,and n < m.

Prove in detail: Let f be defined for all numbers > some number a, let g be defined
for all numbers > some number b, and assume that f(x) > b for all x > a. Sup-
pose that

lim f(x) = © and lim g(x) = o0.

x—=o x—®

Show that

lim g(f(x)) = co.

x=c

Prove: Let S be a set of numbers, and let a be adherent to S. Let f be defined on
S and assume

lim f(x) = co0.

x-a
Let g be defined for all sufficiently large numbers, and assume
lim g(x) = L,

where L is a number. Show that

lim g(f(x)) = L.
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10. Let the assumptions be as in Exercise 9, except that L now stands for the symbol
0. Show that

lim g(f(x)) = co.

11. State and prove the results analogous to Exercises 9 and 10 for the cases when
a = oo and L is a number or co.

12. Find the following limits as n — c0:

1+
@ O a-Jard (°)\/nﬁ7—1

1
@ jo5 Fx#0 (©) V/n—+/n+10

I, §4. CONTINUOUS FUNCTIONS

Let f be a function defined on a set of numbers S, and let aeS. We say
that f is continuous at a if

lim f(x)
x—a
exists, and consequently if

lim £(x) = f(a).

x—a

In other words, given € there exists & such that if |x — a| < 6, then

/() —fl@)| <e

Suppose that f is defined on a set of numbers S, and a is adherent to S
but a¢ S, so that f is not defined at a. Assume however that

lim f(x) = b

for some number b. If we define f at a by letting f(a) = b, then we have
extended the domain of definition of f to the set SuU {a} = §'. In that
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case, it follows at once from the definition that

lim f(x) = lim f(x) = b.
zes xes

Furthermore, to define f(a) = b is the only way of defining f on the set
S U {a} to make f continuous at a on this set, by Proposition 2.1 of §2.

We say that £ is continuous on a set S if f is continuous at every element
of S. Thus to verify continuity for a function f, we must verify continuity
at each point of S. )

From the properties of limits, we arrive at once at statements concerning
continuous functions:

Theorem 4.1. Let f, g be defined on S and continuous at a€S. Then
f+ g and fg are continuous at a. If g(a) # O, then f/g is continuous at a
(viewing f/g as a function on the set So consisting of all x €S such that
g(x) # 0).

Examples. The function x — 1/x is continuous at all numbers # 0.
Later we shall define a function sin x, and prove that

. sinx
lim —— = 1.
x=0

Furthermore, we shall know that sin x is continuous for all x. Since the
function 1/x is continuous for all x # 0, it follows that we can define a
function g such that g(0) = 1 and g(x) = (sin x)/x if x # 0, and that this
is the only way of defining g at 0 in such a way that g is continuous at 0.

We note that a polynomial is a continuous function, because it is ob-
tained by means of a finite number of sums and products of continuous
functions (in fact constant functions, and the function x i x).

Theorem 4.2. Let S, T be sets of numbers, and let f:S — T and g: T - R
be functions. Let a€ S and b = f(a). Assume that f is continuous at a
and g is continuous at b. Then gof is continuous at a. A composite of
continuous functions is continuous.

Proof. Given ¢, there exists & such that if ye T and |y — b| < 6, then
19») — g(b)| < e. Now for the & we have just found, there exists &, such
that if xe S and |x — a| < §,, then | f(x) — b| < §. Thus if |x — a| < &,,
we have

19(/) — g(f@) <¥¢,

as was to be shown.
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Note. It is necessary to first choose J for g, and then go back to f in the
proof.

The preceding theorem can also be expressed by writing
lim g(f(x)) = y(lim f(x))-
x=a xX—a

Thus a continuous function is said to commute with limits.

Let f be a function defined on some set S. An element ce S is said to
be a maximum for f on S if f(c) = f(x) for all xeS. It is said to be a
minimum for fon Sif f(c) < f(x) forall xe S.

Theorem 4.3. Let f be a continuous function on a closed interval [a, b].
Then there exists an element c € [a, b] such that ¢ is a maximum for f
on [a, b] and there exists d € [a, b] such that d is a minimum for f on

[a, b].

Proof. We shall first prove that f is bounded, say from above, i.e. that
there exists M such that f(x) < M for all x in the interval.

If f is not bounded from above, then for every positive integer n we can
find a number x, in the interval such that f(x,) > n. The sequence of such
x, has a point of accumulation C in the interval by the Weierstrass-
Bolzano theorem. By continuity, given 1, there exists é such that if
xe[a,b] and |x — C| < §, then | f(x) — f(C)| < 1. In particular,

SO = 1fOI = f(x) - OIS 1L,
whence
n<fix,) <1+
This is a contradiction for n sufficiently large, thus proving that f is
bounded from above.
Let B be the least upper bound of the set of values f(x) for all x in the

interval. Then given a positive integer n, we can find a number z, in the
interval such that

1
@)= Bl <

Let ¢ be a point of accumulation of the sequence of numbers {z,}. Then
f(c) £ B. We contend that f(c) = . This will prove our theorem.
Given ¢, there exists & such that whenever |z, — ¢| < 6 we have

[fz) —f@l<e



62 LIMITS AND CONTINUOUS FUNCTIONS [11, §4]

This happens for infinitely many n, since ¢ is a point of accumulation of the
sequence {z,}. But

7@ = BIS1f@ —f@) +1f () — Bl

This is true for every € and for infinitely many positive integers n. Hence
|f(c) — Bl = 0, and f(c) = B, as was to be shown.

The proof for the minimum is similar and will be left to the reader. The
next theorem is known as the Intermediate Value Theorem.

Theorem 4.4. Let f be a continuous function on a closed interval [a, b].
Let o = f(a) and B =f(b). Let y be a number such that o <7y < p.
Then there exists a humber ¢, a < ¢ < b, such that f(c) = ».

Proof. Let S be the set of numbers x in the interval [a, b] such that
f(x) £ 7. Then S is not empty because a € S and S is bounded from above
by b. Let ¢ be its least upper bound. We contend that f(c) = y. We note
that ¢ is adherent to S. We then have, by Theorem 2.6

fley= li_tp J&x) =

xeS

On the other hand, if x is in [a, b] and x > ¢, then f(x) > y; otherwise ¢
would not be an upper bound for S. Let T be the set of elements x in
[a, b] such that x > ¢. Then T is not empty, because be T, and c is ad-
herent to T. Again by Theorem 2.6

S =limf(x)zy.

X=c
xeT

We conclude that f(c) = 7, as desired.

Note. There is an analogous theorem if « > f and y is such that
o >y > f. The proof is analogous, or can be obtained by considering —f
instead of f on the interval. We shall refer to Theorem 4.4 as covering all
these cases.

Corollary 4.5. Let f be a continuous function on a closed interval [a, b].
Then the image of f is a closed interval.

Proof. Let ze[a, b] be such that f(z) = Z is a minimum, and let
w € [a, b] be such that f(w) = W is a maximum for f on [a, b]. Any value
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Y of f on [a, b] is such that Z < Y < W. By Theorem 4.4 there exists
y€[a, b] such that f(y)=Y. Hence the image of f is the interval [Z, W],
as was to be shown.

Note that the image of f is not necessarily the interval lying between
f(a) and f(b). Picture:

Continuous functions on a closed finite interval [a, b] satisfy a stronger
property, called uniform continuity, defined by the condition: Given e, there
exists é such that if x, ye[a,b] and |x — y| < 6, then [f(x) — f(y)| <e.
This property differs from continuity at a given point in that the choice of
é is independent of the pair of points. For ordinary continuity at a given
point x € [a, b], given e there exists é = §(x, €) depending on x (and ¢)
such that if y € [a, b] and |x — y| <, then |f(x) — f(y)| < . Note that it
makes a difference in the sentence structure where we put the quantifier
concerning € and 8. If we start with the given point x before mentioning
€ and §, then the § depends on x. On the other hand, in the definition of
uniform continuity, we start with € and 6, and then mention x, y so é does
not depend on the pair of points x, y in [a, b].

Theorem 4.6. Let f be a continuous function on the finite closed inter-
val [a, b]. Then f is uniformly continuous.

Proof. Suppose not. Then there exists €, and for each positive integer
n there exists a pair of elements x,, y, € [a, b] such that

*) =yl <ln  but () 1f0x)—SOdlze

There is an infinite subset J, of Z* and some c, € [a,b] such that
x,—¢, for n— oo, neJ;. There is an infinite subset J of J; and
¢, € [a, b] such that y,— ¢, for n— 0 and ne J,. Then, taking the limit
for n— o0, neJ,, from (*) we obtain |c; —c,| =0, s0 ¢; =c,. On the
other hand, by continuity of f, we have f(x,)—f(c,) and f(y,)— f(c,).
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But of course f(c,)=f(c;), so f(x,) — f(y,)— 0. This contradicts (**),
and concludes the proof.

Il, §4. EXERCISES

1. Let f: R — R be a function such that f(tx) = tf(x) for all x, t € R. Show that f is
continuous. In fact, describe all such functions.

2. Let f(x) = [x] be the greatest integer < x and let g(x) = x — [x]. Sketch the
graphs of f and g. Determine the points at which f and g are continuous.

3. Let f be the function such that f(x) = 0if x is irrational and f(p/q) = 1/qif p/qis
a rational number, g > 0, and the fraction is in reduced form. Show that f is
continuous at irrational numbers and not continuous at rational numbers. [Hint:
For a fixed denominator g, consider all fractions m/q. If x is irrational, such frac-
tions must be at a distance > é from x. Why?]

4. Show that a polynomial of odd degree with real coefficients has a root.

5. For x # —1 show that the following limit exists:

. x" — 1\?
f"‘)=,'l‘2(x"+1)'

(a) What are f(1), f(}), f(2)?
(b) What is lim f(x)?

x—1

(c) Whatis lim f(x)?
1

(d) For which values of x # —1 is f continuous? Is it possible to define f(—1) in
such a way that f is continuous at —1?

6. Let

69 = lim -

(a) What is the domain of definition of f, i.e. for which numbers x does the limit
exist?

(b) Give explicitly the values f(x) of f for the various x in the domain of f.

(c) For which x in the domain is f continuous at x?

=

Let f be a function on an interval I. The equation of a line being given as usual
by the formula y = sx + ¢ where s is the slope, write down the equation of the
line segment between two points (g, f(a)) and (b, f(b)) of the graph of f, if
a < b are elements of the interval I.

We define the function f above to be convex upward if

*) S = na+1h) < (1 - 0)f (@) + 1f (b)
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fed

o

12.

for all @, b in the interval, @ < b and 0 < ¢ < 1. Equivalently, we can write the
condition as

S(ua + tb) < uf(a) + fib)

for t, u 2 0 and ¢ + u = 1. Show that the definition of convex upward means
that the line segment between (g, f(a)) and (b, f(b)) lies above the graph of the
curve y = f(x).

. A function f is said to be convex downward if the inequality (*) holds when < is

replaced by 2. Interpret this definition in terms of the line segment being below
the curve y = f(x).

Let f be convex upward on an open interval I. Show that f is continuous.
[Hint: Suppose we want to show continuity at a point cel. Let a <c¢ and
ael. Fora < x < ¢, by Exercise 7 the convexity condition gives

10 9= L@ o) 4 pia))

Given ¢, for x sufficiently close to ¢ and x < c, this shows that
S = flO)+e
For the reverse inequality, fix a point b € I with ¢ < b and use

0 sfO= Iy 4 s,

If the interval is not open, show that the function need not be continuous.

. Let f, g be convex upward and assume that the image of f'is contained in the in-

terval of definition of g. Assume that g is an increasing function, that is if x < y
then g(x) < g(y). Show that g o fis convex upward.

. Let £, g be functions defined on the same set S. Define max(f, g) to be the function

h such that
h(x) = max(f(x), g(x))

and similarly, define the minimum of the two functions, min(f, g). Let f, g be
defined on a set of numbers. Show that if f, g are continuous, then max(f, g) and
min( f, g) are continuous.

Let f be defined on a set of numbers, and let | f | be the function whose value at x
is | f(x)|. If f is continuous, show that | f| is continuous.



CHAPTER Il

Differentiation

i, §1. PROPERTIES OF THE DERIVATIVE

Let f be a function defined on an interval having more than one point, say
I. Let xe I. We shall say that f is differentiable at x if the limit of the New-
ton quotient

im L) =169
B0
exists. It is understood that the limit is taken for x + hel. Thus if x is,
say, a left end point of the interval, we consider only values of h > 0. We
see no reason to limit ourselves to open intervals. If f is differentiable
at x, it is obviously continuous at x. If the above limit exists, we call it the
derivative of f at x, and denote it by f'(x). If f is differentiable at every
point of I, then f” is a function on I.

We have the following standard rules for differentiation.

Sum. If f, g are defined on the same interval, and both are differentiable
at x, then (f + gY(x) = f'(x) + g'(x).

This is obvious from the theorem concerning the limit of a sum.

Product. The function fg is differentiable at x, and

(J9Y () = f(x)g'(x) + f"(x)g ().
66
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For the proof, we consider

f(x + gl + h) — f(x)g(x)
h

_ S+ g + b~ + BgC) | S + Bglx) — f(g()
h h

s IR0 | SR S e,

We then take the limit as h — 0 to get what we want.

Quotient. If f, g are differentiable at x, and g(x) # O, then (f/g) is dif-
ferentiable at x, and

g()f'(x) = f(x)g'(x)
g(x)? ’

For the proof, we consider first the special case of the function 1/g,
that is

(flgY(x) =

1 1
ge+h) g6 _ _gxtW—gx) 1
h h glx + h)g(x)’

Taking the limit as h — 0 yields what we want. To deal with f/g, we use
the rule for the product f- (1/g) and the assertion drops out.

Chain rule. Let f be defined on I, and g be defined on some other interval
J. Assume that the image of f lies in J. Assume that f is differentiable at
x, and that g is differentiable at f(x). Then go f is differentiable at x, and

@fY() = g'(fG)S ).

For the proof, we must reformulate the definition of the derivative. We
say that a function ¢ defined for arbitrarily small values of h is o(h) for
h—0if

h
lim B =0.
B0
Then the function f is differentiable at x if and only if there exists some
number L, and a function @ which is o(h) for h — 0 such that

fCc + h) =f(x) + Lh + o(h).
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Note that in this formulation, we may assume that ¢ is defined at 0 and
¢(0) = 0. o )

The equivalence of the preceding formulation with the one given at the
beginning of the section is immediate. Assuming that f is differentiable at
x, we let

o) =flx+h) —f)—f'(x)h if h#0,
(0) = 0.

Conversely, if a number L and such a function ¢ exist, we have

SO+ B =10 _
h

oh)
L+ o

so that the limit as h — 0 exists and is equal to L. Thus L is uniquely deter-
mined and is equal to f”(x).
The function ¢(h) can be written conveniently in the form

o(h) = hy(h),  where 'llin; Y(h) =0,

namely we simply let Y/(h) = @(h)/h if h # 0, and (0) = 0.
We can now prove the chain rule. Let k = k(h) = f(x + h) — f(x),
and let y = f(x). Then

9(f G + W) — g(f()) = g(y + k) — g(»)
= g'(Mk + ky(k) (where lim y(k) = 0),
k-0
and consequently

g(f(x + b)) — g(f ()
h

=g LEE hz —S0) | St ;;? —I® yny)

Taking the limit as h — 0, and using the fact that the functions  and k
are continuous at 0 and take on the value 0, we obtain the chain rule.
We conclude with some standard derivatives.

If 1 is a constant function, then f’(x) = 0 for all x.

If f(x) = x, then f'(x) = 1.

If n is a positive integer, and f(x) = x", then f'(x) = nx"~!. This is
proved by induction. It is true for n = 1. Assume it for n, and use the
rule for the product of functions: The derivative of x"*! is the derivative
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of x"- x and is equal to
nx""tx 4+ x"=(n + 1)x",

as desired.
If f(x) = cg(x) where c is a constant and g is differentiable, then
f'(x) = ¢g'(x). Immediate.

The above remarks allow us to differentiate polynomials.

If n is a positive integer, and f(x) = x™" = 1/x", then we also have
f'(x) = —nx™""*. This follows at once from the rule for differentiating
quotients. Both f and f” are of course defined only for x # 0.

Finally, we shall also use the notation df/dx instead of f*(x). Further-
more, we allow the classical abuse of notation such that if y = f(u) and
u = g(x), then

dy _dydu
dx  dudx

i, §1. EXERCISES

1. Let a be an irrational number having the following property. There exists a num-
ber ¢ > 0 such that for any rational number p/q (in lowest form) with g > 0 we
have

p c
2>
or equivalently,
c
lga — p| > 7

(a) Let f be the function defined for all numbers as follows. If x is not a rational
number, then f(x) = 0. If x is a rational number, which can be written as a fraction
plq, with integers g, p and if this fraction is in lowest form, ¢ > 0, then f(x) = 1/g>
Show that f is differentiable at a.

(b) Let g be the function defined for all numbers as follows. If x is irrational, then
g(x) = 0. If x is rational, written as a fraction p/q in lowest form, g > 0,
then g(x) = 1/q. Investigate the differentiability of g at the number o as above.

]

. (a) Show that the function f(x) = |x| is not differentiable at 0. (b) Show that the
function g(x) = x|x| is differentiable for all x. What is its derivative?

w

For a positive integer k, let f® denote the k-th derivative of f. Let P(x) =
ao + ayx + *** + a,x" be a polynomial. Show that for all k,

PYO) = k! a.

»

By induction, obtain a formula for the n-th derivative of a product, i.e. (fg), in
terms of lower derivatives f®. g®
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I, §2. MEAN VALUE THEOREM

Lemma 2.1. Let f be differentiable on the open interval a < x < b and
let ¢ be a number such that f(c) is a maximum, that is

fO2fx) for a<x<b.
Then f'(c) = 0.
Proof. For small h we have

fle+h) sf().

If h > O then

fe+h-1@ _
N =JO <o,

If h < 0 then the Newton quotient is = 0. By the theorem on limits of
inequalities (Theorem 2.6 of Chapter II) we conclude that f'(c)=0 as

desired.

2 :

The conclusion of the lemma obviously holds if instead of a maximum we
assume that f(c) is a minimum.

Lemma 2.2. Let [a, b] be an interval with a < b. Let f be continuous on
[a,b] and differentiable on the open interval a <x <b. Assume
f(a) =f(b). Then there exists c such that a < ¢ < b and f'(c) = 0.

Proof. Suppose f is constant on the interval. Then any point c strictly
between a and b will satisfy our requirements. If f is not constant, then
suppose there exists some x € [a, b] such that f(x) > f(a). By a theorem
on continuous functions, there exists ¢ € [a, b] such that f(c) is a maximum
value of f on the interval, and a < ¢ < b. Then Lemma 2.1 concludes the
proof. In case there exists x € [a, b] such that f(x) < f(a), we proceed in
a similar way using the minimum for f on the interval.
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Theorem 2.3 (Mean Value Theorem). Let f be continuous on an interval
[a, b] with a < b, and differentiable on the interval a < x < b. Then
there exists c such that a < ¢ < b and

J®) - f(@ = 1) - a).
Proof. Let

o) =100 - L0

Then g(b) = g(a) = f(a). We apply Lemma 2.2 to g, and obtain Theorem
2.3.

Sby

Sa)

A function f on an interval is said to be (weakly) increasing if whenever
x <y we have f(x) < f(y). It is said to be strictly increasing if whenever
x <y we have f(x) <f(y). We define (weakly) decreasing and strictly
decreasing similarly.

Corollary 2.4. Let f be continuous on [a, b] and differentiable on
a<x<b. Assume f'(x) > 0 for a < x <b. Then f is strictly increas-
ing on the interval [a, b].

Proof. Let a<x <y<b. By the mean value theorem,

FO) = f6) =f"(e)y — x)

for some ¢ between x and y. Since y — x > 0, we conclude that f is strictly
increasing.

An analogous corollary holds for the three other cases when f'(x) <0,
f/(x) = 0, f'(x) < 0 on the interval, in which cases the function is strictly
decreasing, increasing, and decreasing respectively. Note especially the
important special case:

Corollary 2.5. Let f be continuous on [a, b] and differentiable on
a<x<b. Assume f'(x) =0 for a<x <b. Then f is constant on
the interval.
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Proof. Again, for a < x < b there exists a number ¢ between a and x
such that

F&) —f@=f")x—a)=
Hence f(x) = f(a), and f is constant.

The sign of the first derivative has been interpreted in terms of a geo-
metric property of the function, whether it is increasing or decreasing,
We shall now interpret the sign of the second derivative.

Let f be a function defined on a closed interval [a, b]. The equation
of the line passing through (a, f(a)) and (b, f(b)) is

V= f()+f(b) f(a)

(x —a).
The condition that every point on the curve y = f(x) lie below this line
segment between x = a and x = b is that

b) — f(a
@ 109 sf@+ IO ID g

for a < x < b. Any point x between a and b can be written in the form
x=a+tb—a)

with 0 <t < 1. In fact, one sees that the map
ta+ tb — a)

is a strictly increasing map on [0, 1], which gives a bijection between the
interval [0, 1] and the interval [a, b]. If we substitute the value for x in
terms of ¢ in our inequality (*), we find the equivalent condition

**) S(@ = Na+th) = - 1)f(a) + tf (b).

Suppose that f is defined over some interval I, and that for every pair
of points a < b in I the inequality (**) is satisfied. We then say that f is
convex upward on the interval. If the inequality (**) with < replaced by
< holds for 0 < t < 1, we say that f is strictly convex upward. We define
convex downward and strictly convex downward by using the signs
= and >.

Theorem 2.6. Let f be continuous on [a, b]. Assume that the second
derivative f" exists on the open interval a < x < b and that f"(x) > 0
on this interval. Then f is strictly convex upward on the interval [a, b].
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Proof. If a < c<dZb, then the hypotheses of the theorem are satis-
fied for f viewed as a function on [c,d]. Hence it will suffice to prove
(*) with < replaced by < fora <x <b. Leta < x <b and let

09 =@+ IO SO s

Then, using the mean value theorem on f, we get
gt =1 - ')

for some ¢ with a < ¢ < b. Using the mean value theorem on f’, we find
g'(x) =1"d)c — x)

for some d between ¢ and x. If a < x < ¢, then by Corollary 2.4 and the
fact that f”(d) > O we conclude that g is strictly increasing on [a, ¢]. Simi-
larly, if ¢ < x < b, we conclude that g is strictly decreasing on [c, b]. Since
g(a) = 0 and g(b) = 0, it follows that g(x) > 0 when a < x < b, and thus
our theorem is proved.

The theorem has the usual formulation when we assume that
f"(x) 20, <0, <0 on the open interval. In these cases, the function is
convex upward, strictly convex downward, convex downward, respec-
tively.

Let I be an interval, say a closed interval [a, b] with a<b. Let fbe a
function on [a, b]. We know the definition of differentiability on the open
interval (a, b). We define f to be differentiable at a (or right differentiable
at a) in the usual way, but taking h > 0. Similarly, we define 1 to be (left)
differentiable at b by taking h<0. Let p be an integer = 0. If f is
p-times differentiable, and if its first p derivatives are continuous, then we
define f to be of class CP. It is clear that the CP functions on the given
interval form a vector space. A similar definition can of course be made
on an open interval, or on an interval which is half open. We also say
that a function is C® if it is C? for every positive integer p. Thus a C*
function is one all of whose derivatives exist (they are then automatically
continuous!).

I, §2. EXERCISES

1. Let f(x) = a,x" + -+ + ao be a polynomial with a, # 0. Letc, <c; <---<¢,
be numbers such that f(c;) =0 for i = 1,...,». Show that r < n. [Hint: Show
that f has at least r — 1 roots, continue to take the derivatives, and use induction.]
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2. Let f be a function which is twice differentiable. Let ¢, < ¢; < --- < ¢, be num-
bers such that f(c;) = Ofor all i. Show that f’ has at least r — 1 zeros (i.e. numbers
b such that f'(b) = 0).

n
3. Let gy, ...,a, be numbers. Determine x so that )’ (g; — x)? is a minimum.
=t

4. Let fix) = x> + ax? + bx + c, where g, b, ¢ are numbers. Show that there is a
number d such that f is convex downward if x < d and convex upward if x > d.

w

. A function f on an interval is said to satisfy a Lipschitz condition with
Lipschitz constant C if for all x, y in the interval, we have

1fx) = fO) = Clx — yl.

Prove that a function whose derivative is bounded on an interval is Lipschitz.
In particular, a C* function on a closed interval is Lipschitz. Also note that a
Lipschitz function is uniformly continuous. However, the converse is not neces-
sarily true. See Exercise 5 of Chapter IV, §3.

(=2

. Let f be a C' function on an open interval, but such that its derivative is not
bounded. Prove that f is not Lipschitz. Give an example of such a function.

7. Let f, g be functions defined on an interval [g, b], continuous on this interval,
differentiable on a <x <b. Assume that f(a) < g(a), and f'(x) <g'(x) on
a<x <b. Show that f(x) <g(x)ifa <x <b.

Ill, §3. INVERSE FUNCTIONS

Let f be a function on [a, b], and assume that f is strictly increasing. As-
sume that f is continuous. We know from the intermediate value theorem
that the image of f is an interval [o, f]. Furthermore, given « <y <,
suppose that f(x) =y, and a £ x < b. This number x is uniquely deter-
mined by y, because if x; < x,, then f(x,) <f(x;). We can therefore
define a function

g:[% 1~ [a,b]
such that g(y) = unique x € [a, b] such that f(x) = y. Thus
gefx)=x and  feg(y)=y.
We call g the inverse function of f.

Theorem 3.1. Let f be continuous, strictly increasing on [a, b]. Then
the inverse function of f is continuous and strictly increasing.
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Proof. Let g be the inverse function. That g is strictly increasing is
obvious. We must prove continuity. Let ye[«, f] (notation as above).
Given ¢, and y = f(c), consider the closed interval of radius ¢ centered at c.

' 1
T T T

a4+
o

Let x, =c—¢€ if a<c—¢ and x, =a otherwise. Let x, =c + € if
¢ + € £ b,and x, = b otherwise. Then f(x,) < f(x,).

‘We may assume a < b. We select 6 equal to the minimum of

J&x2) = f@@ and  f()) —f(x1)s

except when this minimum is 0. Suppose first that this minimum is not 0.
If |y — y| < & then the unique x such that y = f(x) lies in the interval
x; < X < x,, and hence |g(y) — ¢| < e. If the minimum is 0, then either
a=cor c=b, that is c is an end point. Say ¢ = a. In that case, we dis-
regard x,, and let 6 = f(x,) — f(c). The same argument works. If ¢ = b,
we let & = f(c) — f(x,). This proves the theorem.

Theorem 3.2. Let f be continuous on the interval [a, b] and assume a < b.
Assume that f is differentiable on the open interval a < x < b, and that
f'(x) > O on this interval. Then the inverse function g of f, defined on
[o, B], is differentiable on the interval « <y < B, and

oy L __ 1
10) =7 = 7o)

Proof. Leta < yo < B. Let yo = f(xo) and y = f(x). Then

9 —gQo) _ X —Xo _ 1 ]
¥ = Yo J6) = f(x0) S0 = S(xo)

X — Xo
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Since g is continuous, as y — yo we know that x — Xxo. The theorem fol-
lows by taking the limit as x — xq.

Example. Let y = f(x) = x" for some positive integer n. Then
) =nx""">0

for all x > 0, whence f is strictly increasing. Its inverse function is the n-th
root function. Since x" has arbitrarily large values when x becomes large,
it follows by the intermediate value theorem that the inverse function is
defined for all numbers > 0. Let g(y) = y*/" denote the inverse function.
Using Theorem 3.2, we verify at once that

1/n—=1

, 1
g(y)—;y

When studying the exponential and the logarithm, we shall give another
proof that n-th roots of positive numbers exist.

A function which is either increasing or decreasing is said to be mono-
tone. If it is either strictly increasing or strictly decreasing, it is said to be
strictly monotone.

For simplicity, Theorems 3.1 and 3.2 have been stated for increasing
functions. Obviously their analogues hold for decreasing functions, and
the proofs are the same, mutatis mutandis.

We shall now systematize the notion of inverse for various kinds of
maps. We have already met various categories of mappings, starting with
just plain maps between sets, then continuous maps for functions defined
on subsets of R, differentiable functions on intervals, C® functions (i.e.
infinitely differentiable functions). Later we shall deal with linear maps
between vector spaces, or continuous linear maps. It has been found very
valuable to use a certain terminology applicable to all these situations.
Suppose we are given a category of mappings such as those listed above.
Let f:S— T be a map in the given category. We call f an isomorphism
in this category if f has an inverse g: T— S in the category. In other
words, g o f=1idg, fog =idy, and g is in the same category as f.

Let S, T above be sets. The map f is a set-isomorphism if and only if
f is bijective.

Let S, T be subsets of R. The map f:S— T is a C%isomorphism if
and only if there exists a continuous function g: T — S such that fog=
idr and g o f =idg, ie. f has a continuous inverse.

Let S, T be open intervals in R, and let f: S— T be a C? function, i.e.
p-times continuously differentiable function. Then f is a CP-isomorphism
if and only if f has a CP-inverse g: T— S.

Again if S, T are open intervals and f:S— T is differentiable, then f
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is a differentiable isomorphism if and only f has a differentiable inverse.
Theorem 3.2 gives a criterion for f to be a differentiable isomorphism.

Warning. A function f may be an isomorphism in one category but
not in another. For example, consider the function f:R — R such that
Jx)=x3 Then f is a C%isomorphism, whose continuous inverse func-
tion is given by g(x) = x'®. However, f is not a differentiable isomor-
phism because its continuous inverse is not differentiable at 0. Of course,
f is bijective, ie. f has a set-theoretic inverse.

In the theory of vector spaces, it is proved that if L: E— F is a linear
map between vector spaces, and L is bijective (i.e. there exists a map
G:F - E such that Go L =idg and Lo G =idg), then G is linear, and
hence L is a linear isomorphism.

As we have done above, the category to which an inverse belongs
is referred to by a prefix, as when we say set-isomorphism, or C°-
isomorphism, or C®-isomorphism, or linear isomorphism in the case of
linear maps between vector spaces.

I, §3. EXERCISES

For each one of the following functions f restrict f to an interval so that the
inverse function g is defined in an interval containing the indicated point, and find
the derivative of the inverse function at that point.

L f(x) =x*+ 1;find g’ (2).

2. f(x) = x* —x + 5;find g’ (7).

3. f(x) = x* — 3x* + 1;find g’ (—1).

4 f(x)= —x> + 2x + 1;find g’ (2).
. f(x) = 2x* + 1; find ¢’ (21).

5

6. Let f be a continuous function on the interval [a, b]. Assume that f is twice differ-
entiable on the open interval a < x < b, and that f’(x) > 0 and f“(x) > 0 on this
interval. Let g be the inverse function of f.
(a) Find an expression for the second derivative of g.
(b) Show that g"(y) < O on its interval of definition. Thus g is convex in the op-
posite direction to f.

7. In Theorem 3.2, prove that if f is of class C? with p 2 1, then its inverse
function g is also of class C”.



CHAPTER IV

Elementary Functions

IV, §1. EXPONENTIAL

We assume that there is a function f defined for all numbers such that
f'=f and f(0)=1. The existence will be proved in Chapter IX, §7, by
using a power series.

We note that f(x) # 0 for all x. Indeed, differentiating the function
f(x)f(—x) we find 0. Hence there is a number ¢ such that for all x,

ff(=x) =c.
Letting x = 0 shows that ¢ = 1. Thus for all x,
fG)f(=x)=1

In particular, f(x) # 0 and f(—x) = f(x)~

We can now prove the uniqueness of the function f satisfying the condi-
tions ' = f and f(0) = 1. Suppose g is any function such that g’ = g.
Differentiating g/f we find 0. Hence g/f = K for some constant K, and
thus g = Kf. If g(0) = 1, then g(0) = Kf(0) so that K =1 and g = f.

Since f(x) # 0 for all x, we see that f'(x) # 0 for all x. By the inter-
mediate value theorem, it follows that f"(x) > 0 for all x and hence [ is
strictly increasing. Since f” = f’ = f, the function is also strictly convex
upward.

We contend that for all x, y we have

S+ ) = f)f0).
78
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Fix a number a, and consider the function g(x) = f(a + x). Then g'(x) =
f'(a+ x) = f(a + x) = g(x), so that g(x) = Kf(x) for some constant K.
Letting x = 0 shows that K = g(0) = f(a). Hence f(a + x) = f(a)f(x)
for all x, as contended.

For every positive integer n we have

S(na) = f(a)"
This is true when n = 1, and assuming it for n, we have
S + 1a) = f(na + a) = f(na) f(@) = f(aFf (@) = fla)y*",
thus proving our assertion by induction.
We define e = f(1). Then f(n) = " for any positive integer n. Since f
is strictly increasing and f(0) = 1, we note that 1 < e. Also, f(—n) =e™"

In view of the fact that the values of f on positive and negative integers
coincides with the ordinary exponentiation, from now on we write

f(x)=¢"
The addition formula then reads e**”> = e*¢”, and €® = 1.
Since e > 1, it follows that " — o0 as n — c0. We already proved this
in Chapter I, and it was easy: Write e = 1 + b with b > 0, so that
e"=(1+b"=1+nb.
The assertion is then obvious. Since e* is strictly increasing, it follows that

e — o0 as x — c0. Finally, e™* - 0 as x — co. Hence the graph of &
looks like this:

f(x)=€
/1

Theorem 1.1. For every positive integer m we have

el
lim — = o0.

x— 0
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Proof. Since e = 1, this is a special case of Theorem 3.2 of Chapter II,
whenever x is an integer n. Let f(x) = e*/x™ Then for x sufficiently large,
£ () is strictly increasing, because f’(x) > 0 if x > m, as you verify at once
by a direct computation. Since f is increasing for x > 1 and f(n)—>
when n is an integer — oo, it follows that f(x)— o0 as x—» oo, thus
concluding the proof.

Remark 1. Exercise 2(a) will provide another proof, which you may
find easier to remember. This other proof fits well with the fact, to be
proved later, that e* is equal to the infinite series

x2 X3 x"
_+,__,+...+_l+...’
n!

e"=l+x+2! 3

that is

oo xt
e* = lim k;om.

n—o

In particular, from this series expression, one gets

K
x
—=<e~

o n!

The direct argument of Exercise 2(a) shows how to get this inequality
independently of showing that e* is equal to the series.

Take your pick of all the possible proofs we are giving. Each one
illustrates a different aspect of the exponential function, and some use less
theory than others. You decide what you prefer.

Remark 2. After you have the logarithm, one can also give another
proof, based only on the fact that e*/x — 00 as x — co. Namely, suppose
we want to prove that e*/x™ — o0 as x— 0. It suffices to prove that
log(e*/x™) — co. But

x
log(e*/x™) = x —m1 = —m).
g(e*/x™) = x —mlog x Tog x(log x — m)

Putting x =e” so log x = y, we see that x/log x = 00 as x— oo because
e’/y — o0 as y — oo. Furthermore m is fixed, so

logx —m—- o0 as x - o0.
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Hence log(e*/x™) — co as x — o, as desired. Remember this technique of
taking the logarithm, which can be used in other contexts.

Bump functions. The exponential function can be used to construct

bump functions. By this we mean a function g whose graph has the
following shape:

graph of g

Thus the function is O outside an interval [a, b], and g(x) > 0 if a < x < b.
Furthermore, we require that g is C®, so it requires a bit of an argument
to show the existence of such a function. Define

s09=" e

Then f is also C® and the graph of f looks as follows:

graph of f

Thus f(x) = 0 if x < a, and between a and b, the function f climbs from 0
to a fixed number. This fixed number is actually the area under the
bump. Multiplying f by some constant, one can obtain a function with a
similar graph, but climbing from 0 to 1.

You should now do Exercise 6 to write down all the details of the
construction of the function g.

Iv, §1. EXERCISES
1. Let f be a differentiable function such that
f(x) = =2xf(x).

Show that there is some constant C such that f(x) = Ce™"
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(2) Prove by induction that for any positive integer n, and x 2 0,

x? x"
T+x+ 4+ < en
2! n!

[Hint: Let f(x) =1 + x + -*- + x"/n! and g(x) = e*]
(b) Prove that for x 2 0,

x* X3
. _ xt X
e 21l —-—x+ 21730

(c) Show that 2.7 < e < 3.

. Sketch the graph of the following functions:

(a) xe* (b) xe™*
(©) x%*  (d) x%™*

Sketch the graph of the following functions:
@) e (b)) e”*

. (a) Let f be the function such that f(x) = 0 if x < 0 and f(x) = e""*if x > 0.

Show that f is infinitely differentiable at 0, and that all its derivatives at 0 are equal
to 0. [Hint: Use induction to show that the n-th derivative of f for x > 0 is of type
P,(1/x)e”"* where P, is a polynomial.] .

(b) Sketch the graph of f.

(a) Bump functions. Let a, b be numbers, a < b. Let f be the function such
that f(x) =0 if x <a or x 2 b, and

(a) f(x) = e~l/(x-n)(h-x) or (b) j(x) = e-ll(x-n)e-ll(h-X)

if @ <x < b. Sketch the graph of f. Show that f is infinitely differentiable at
both a and b.

(b) We assume you know about the elementary integral. Show that there
exists a C® function F such that F(x) =0 if x<a, F(x)=1if x2b, and F is
strictly increasing on [a, b].

(c) Let 6 >0 be so small that a+ 6 <b— 4. Show that there exists a C®
function g such that:

g(x)=0if x<aand g(x)=0if x 2 b.

g(x)=1o0n [a+6,b—4]

g is strictly increasing on [a, a + 8] and strictly decreasing on [b — &, b].
Sketch the graphs of F and g.
Let f(x)=e™" if x 0 and f(0) =0. Show that f is infinitely differentiable
and that f®(0)=0 for all n. After you learn the terminology of Taylor's

formula, you will see that the function provides an example of a C* function
which is not identically O but all its Taylor polynomials are identically 0.
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8. Let n be an integer > 1. Let fj,...,f, be polynomials such that
Ji)e™ + £y (e 4+ fo(x) = 0

for arbitrarily large numbers x. Show that f,...,f, are identically 0. [Hint:
Divide by ¢"* and let x — 0.]

IV, §2. LOGARITHM

The function f(x) = e is strictly increasing for all x, and f(x) > 0 for all x.
By Theorems 3.1 and 3.2 of the preceding chapter, its inverse function g
exists, is defined for all numbers > 0 because f takes on all values > 0,
and

- __ 1t _1
T f0) fe») v

Thus we have found a function g such that g'(y) = 1/y for all y > 0.
Furthermore, g(1) = 0 because f(0) = 1.
The function g is strictly increasing, and satisfies

qg0)

g(xy) = g(x) + g(»)

for all x, y > 0. Indeed, fix a > 0 and consider the function g(ax) — g(x).
Differentiating shows that this function is a constant, and setting x = 1
shows that this constant is equal to g(a). Thus g(ax) = g(x) + g(a), thus
proving our formula.

Let a > 0. We see by induction that

g(a”) = ng(a)
for all positive integers n. If a > 1, then g(a") becomes arbitrarily large
as n becomes large. Since g is strictly increasing, we conclude that
g(x) = o0 as x — 0.
The function g is denoted by log, and thus the preceding formulas read
log(a”) =nloga and log(xy) = log x + log y.

For x > 0 we have

0=1log 1 =log x + log(x™*),



84 ELEMENTARY FUNCTIONS v, §2]

whence

logx~! = —log x.
It follows that when x — oo, log 1/x — — o0, i.e. becomes arbitrarily large

negatively.
Finally, the second derivative of the log of y is —1/? < 0, so that the
log is convex downward. Its graph therefore looks like this:

g(x)=log x

If a > 0 and x is any number, we define

@ = e,

It is but an exercise to show that a**” = a*a” and a° = 1. Also (a*) = a®.
We leave the proofs to the reader. If a* = y, we sometimes write

x = log, y.

Note that we can now easily prove the fact that every positive number
has an n-th root. If a > 0, then a'/™ is an n-th root of a, because

(a'"y' = o' = a.

Theorem 2.1. Let x > 0 and let f(x) = x° for some number a. Then
£ = axL,

Proof. This is an immediate consequence of the definition
Xt = etlosx
and the chain rule.

We now determine some classical limits.
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Theorem 2.2. Let k be a positive integer. Then

(log x) _

lim 0.

xX—00
Proof. Let x = ¢ that is z = log x. Then

(log x)* _ z*

x e*’

As x becomes large, so does z, and we can apply Theorem 1.1 to prove
Theorem 2.2.

Corollary 2.3. We have lim x'/* = 1.

x— 0

Proof. Taking the log, we have, as x — oo,
1 log x
Uxy = = ===
log(x'"™) 3 log x P 0.

Taking the exponential yields what we want.

Finally, since the log is differentiable at 1, we see that

1.

—logl
lim log(1 + h) - lim log(1 + };l) ogl _

h=0 h-0
But

—log(lh+ L log((1 + k)™

Taking the exponential, we obtain

lim (1 + B =e.
=0

The same limit applies of course when we take the limit over the set of
h = 1/n for positive integers n, so that (1 + 1/n)" - e asn — oo.

In the exercises, we shall indicate how to prove some other inequalities
using the log. In particular, we shall give an estimate for n!, namely:

en"e " <n! <en"tle”"
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Later in this book. this estimate is made more precise, and one has

n! = nhe~"/2an e%/'2

where 0 £ 0 < 1. This is harder to prove, and in many applications, the
first estimate given suffices.

IV, §2. EXERCISES

1. Let f(x) = x*for x > 0. Sketch the graph of f.

2. Let f be as in Exercise 1, except that we restrict f to the infinite interval x > l/e.
Show that the inverse function g exists. Show that one can write

90) = o)

log log y
where lim Y(y) = 1.

y=oo

w

Sketch the graph of: (a) x log x; (b) x2 log x.
Sketch the graph of: (a) (log x)/x; (b) (log x)/x2.
Let € > 0. Show: (a) hm (log x)/x€=0; (b) hm xlogx=0. (c) Let n be a

positive integer, and let € > 0. Show that

©nos

. (log X)"
lim

x=o

Roughly speaking, this says that arbitrarily large powers of log x grow slower
than arbitrarily small power of x.

. Let f(x) = x log x for x >0, x #0, and f(0) =
() Is f continuous on [0, 1]? Is f uniformly continuous on [0, 1]?
(b) If f right differentiable at 0? Prove all your assertions.

. Let f(x)=x*log x for x>0, x #0, and f(0) =0. Is f right differentiable at
0? Prove your assertion. Investigate the differentiability of f(x) = x* log x for
an integer k > 0, i.e. how many right derivatives does this function have at 0.

f=

=~

8. Let n be an integer > 1. Let f,, ..., f, be polynomials such that

Jux)(log x)" + fu_1(x)(log x)"™" + -+ + fo(x) =

for all numbers x > 0. Show that f,, ..., f, are identically 0. [Hint: Let x = ¢
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and rewrite the above relation in the form
Zaij(ey )iyi >
where ag;; are numbers. Use Exercise 8 of the preceding section.]

. (a) Let a> 1 and x > 0. Show that

o

x*=1Zalx - 1)

(b) Let p, ¢ be numbers = 1 such that 1/p + 1/g =1. If x = 1, show that

—

x
xS+

=
D

10. (a) Let u, v be positive numbers, and let p, g be as in Exercise 9. Show that

wlleple < L
p q

(b) Let u, v be positive numbers, and 0 <t < 1. Show that
W't <+ (1 = O,

and that equality holds if and only if u = v.

11. Let @ be a number > 0. Find the minimum and maximum of the function
f(x) = x*/a*. Sketch the graph of f(x).

12. Using the mean value theorem, find the limit

lim(n'® — (n + 1)V3).

n—ec

Generalize by replacing 3 by 1/k for any integer k = 2.
13. Find the limit

X (l + h)”’ -1
lim ——.

h~0 h

14. Show that for x = 0 we have log(l + x) < x.

15. Prove the following inequalities for x = 0:

2

3
X
(a) log(1 + x) éx———z +

X

3

(b)x—x—;élog(l+x)
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(c) Derive further inequalitics of the same type.
(d) Prove that for 0 <x <1,

2 X"
log (1 + x) = fim (x_"? R (_1)“,'_1)_

16. Show that for every positive integer k one has

1 k 1 k+1
(l+ﬁ) <e<(l+;) .
Taking the product for k = 1,2,...,n — [, conclude by induction that

an=1 . nn
<
D¢ “a-Dn

and consequently

en"e™" < n! < en"tle”".

For another way to get this inequality, see Exercise 20.

17. Show that
»
lim (1 + f) =
n—cwo n

18. Let {a,}, {b,} be sequences of positive numbers. Define these sequences to be
equivalent, and write a, = b, for n — co to mean that there exists a sequence of
positive numbers {u,} such that b, = u,a, and lim u;" = 1. Alternatively, this
amounts to the property that lim(a,/b,)"" = 1.

(a) Prove that the above relation is an equivalence relation for sequences.
(b) Show that n! = n"e™" for n - co. Give a similar equivalence for (3n)!.
(c) Show that if a, = a; and b, = b;, then a,b, = a,b, for n — co.

19. Find the followmg limits as n — co:

® ((3,,)|) © (n(}”e)-an) Yn © (( )2)'/" (d) ((2"),)1/:.

For the next exercises, which concern the logarithm, we assume you know
elementary integration and upper—lower sums associated with the integral. Some
of the proofs are easiest using such sums.

20. We shall give here an alternate proof for the estimate of Exercise 16. Write
down upper and lower sums for the integral of log x over the interval [1,n]
for each positive integer n. Use the partition of the interval at the integers k
such that 1 < k < n. Using the inequalities

lower sum £ integral < upper sum,
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21.

—

22,

23.

24.

give a proof of the inequality
nlogn—n+1=Zlogn)<(n+logn—n+1.
Exponentiating, you have a proof of the inequality
en"e " < n! S en"tlen,

(a) Using an upper and lower sum, prove that for every positive integer n, we
have

! <log|1+ ! < !
n+1 & n) " n
(b) By the same technique, prove that

1+--'+1<l <1+1+ +——1
2 PR 2 o1

(a) For each integer n 2 1, let

a—1+1+~~'+1—lo n
=143 o loen

Show that a,., <a,. [Hint: consider a, — a,4+, and use Exercise 21.]

(b) Let b, = a, — 1/n. Show that b,,, > b,.

() Prove that the sequences {a,} and {b,} are Cauchy sequences. Their limit
is called the Euler number y.

If 0<x<1/2, show that log(l —x) = —x — x%. [Note: When you have
Taylor’s formula and series later, you can see that

The point is that —x is a good approximation to log(l — x) when x is
small.]

(a) Let s be a number. Define the binomial coefficients
(;)=s and (:)=B(n,s)=s(s— (s—2)-(s—n+1)m!
for n=2.
Prove the estimate | B(n, s)| < |s|e¥l(n — 1)*/n. In particular,

lim sup |B(n, s)|"" < 1.
n=co
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Note that the above estimate applies as well if s is complex.
(b) If s is not an integer = 0, show that lim |B(n, s)|'" = 1.

25. Let o be a real number > 0. Let

oo+ 1)+ (o + n)
a=—"""

" n!n®

Show that {a,} is monotonically decreasing for sufficiently large values of n,

and hence approaches a limit. This limit is denoted by 1/I'(z), where I is
called the gamma function.

IV, §3. SINE AND COSINE

We assume given two functions f and g satisfying the conditions ' =g
and g' = —f. Furthermore, f(0) = 0 and g(0) = 1. Existence will be
proved in Chapter 1X, §7, with power series.

We have the standard relation
SO +g(x)* =1
for all x. This is proved by differentiating the left-hand side. We obtain 0,
whence the sum f2 + g2 is constant. Letting x = 0 shows that this con-
stant is equal to 1.

We shall now prove that a pair of functions as the above is uniquely
determined. Let f, g, be functions such that

fi=a and g1 =—/r.

Differentiating the functions fg, — f,g and ff, + gg,, we find 0 in each
case. Hence there exist numbers q, b such that

fa, — frg=a,
M1+ 99, =b.
We multiply the first equation by f, the second by g, and add. We multiply

the second equation by f, the first equation by g, and subtract. Using
f*+g*=1, we find

g, =af +bg,

f1=0bf —ag.
If we assume in addition that f,(0) = 0 and g,(0) = 1, then we find the

™
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values a = 0 and b = 1. This proves that f, = fand g, = g, thus proving
the desired uniqueness.

These functions f and g are called the sine and cosine respectively,
abbreviated sin and cos. We have the following formulas for all numbers
X, y:

[6)) sin®x + cos?x = 1,

()] sin(—x) = —sin x,

3) cos(—x) = cos x,

) sin(x + y) = sin x cos y + cos x sin y,
5) cos(x + y) = cos x cos y — sin x sin y.

The first formula has already been proved. To prove each pair of the
succeeding formulas, we make a suitable choice of functions f,, g, and
apply equations (*) above. For instance, to prove (2) and (3) we let

f1(x) = cos(—x) and g1(x) = sin(—x).

Then we find numbers a, b as before so that (*) is satisfied. Taking the
values of these functions at 0, we now find that b = 0 and a = —1. This
proves (2) and (3). To prove (4) and (5), we let y be a fixed number, and
let

f1(x) = sin(x + y) and g1(x) = cos(x + y).

We determine the constants g, b as before and find a = —sin y, b = cos y.
Formulas (4) and (5) then drop out.

Since the functions sin and cos are differentiable, and since their deri-
vatives are expressed in terms of sin and cos, it follows that sin and cos are
infinitely differentiable. In particular, they are continuous.

Since sin? x + cos? x = 1, it follows that the values of sin and cos lie
between —1 and 1. Of course, we do not yet know that sin and cos take
on all such values. This will be proved later.

Since the derivative of sin x at 0 is equal to 1, and since this derivative is
continuous, it follows that the derivative of sin x (which is cos x) is > 0
for all numbers x in some open interval containing 0. Hence sin is strictly
increasing in such an interval, and is strictly positive for all x > 0 in such
an interval.

We shall prove that there is a number x > 0 such that sin x = 1. In
view of the relation between sin and cos, this amounts to proving that
there is a number x > 0 such that cos x = 0.
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Suppose that no such number exists. Since cos is continuous, we con-
clude that cos x cannot be negative for any value of x > 0 (by the inter-
mediate value theorem). Hence sin is strictly increasing for all x >0,
and cos is strictly decreasing for all x > 0. Let a > 0. Then

0 < cos 2a = cos® a — sin? a < cos? a.

By induction, we see that cos(2"a) < (cos a)*” for all positive integers n.
Hence cos(2"a) approaches 0 as n becomes large, because 0 < cosa < 1.
Since cos is strictly decreasing for x > 0, it follows that cos x approaches 0
as x becomes large, and hence sin x approaches 1. In particular, there
exists a number b > 0 such that

cosb<% and sinb>4

Then cos 2b = cos? b — sin? b < 0, contradicting our assumption that
the cosine is never negative.

The set of numbers x > 0 such that cosx = 0 (or equivalently
sin x = 1) is non-empty, bounded from below. Let ¢ be its greatest lower
bound. By continuity, we must have cosc = 0. Furthermore, ¢ > 0.
We define n to be the number 2c. Thus ¢ = n/2. By the definition of
greatest lower bound, there is no number x such that

/4
0= =
Sx<3

and such that cos x = 0 or sin x = 1.
By the intermediate value theorem, it follows that for 0 < x < nj2 we
have 0 < sin x < 1 and 0 < cos x < 1. However, by definition,

cosg =0 and sing =1

Using the addition formula, we can now find
sinz =0, cosm= —1, sin 2z = 0, cos 2z = 1.

For instance,
2 2

. . (T /4 . n
sinz = sm(—+§) —Zsm—cosi—o‘

The others are proved similarly.
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For all x, using the addition formulas (4) and (5), we find at once:

. n n .
simf{x + =) = cos x, cos{x + -] = —smx,
2 2
sin(x + ) = —sin x, cos(x + ) = —cos x,
sin(x + 2x) = sin x, cos(x + 2m) = cos x.

The derivative of the sine is positive for 0 < x < 7/2. Hence sin x is
strictly increasing for 0 < x < n/2. Similarly, the cosine is strictly de-
creasing in this interval, and the values of the sine range from 0 to 1, while
the values of the cosine range from 1 to 0.

For the interval z/2 < x < &, we use the relation

sin x = cos i
N 2

and thus find that the sine is strictly decreasing from 1 to 0, while the co-
sine is strictly decreasing from 0 to — 1 because its derivative is —sin x < 0
in this interval.

From 7 to 27, we use the relations

sin x = —sin(x — 7)
and similarly for the cosine.
Finally, the signs of the derivatives in each interval give us the con-

vexity behavior and allow us to see that the graphs of sine and cosine look
like this:

sin x cos x

A function ¢ is called periodic, and a number s is called a period, if
@(x + s) = p(x) for all x. We see that 2z is a period for sin and cos. If
s, S, are periods, then

o(x + 51 + 53) = @(x + 51) = (x),
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so that s; + s, is a period. Furthermore, if s is a period, then

o(x) = @(x — s + 5) = p(x — 5),

so that —s is also a period. Since 27 is a period for sin and cos, it follows
that 2nz is also a period for all integers n (positive or negative or zero).

Let s be a period for the sine. Consider the set of integers m such that
2mn < s. Taking m sufficiently large negatively shows that this set is not
empty. Furthermore it is bounded from above by s/2z. Let n be its maxi-
mal element, so that 2nz < s but 2(n + 1)z > s. Let t = s — 2nz. Then ¢
is a period, and 0 < t < 2z. We must have

sin(0 +t) = sin0 =0,
cos(0 + ) = cos0 = 1.

From the known values of sin and cos between 0 and 2z we conclude that
this is possible only if t = 0, and thus s = 2nn, as was to be shown.

Theorem 3.1. Given a pair of numbers a, b such that a* + b* = 1, there
exists a unique number t such that 0 < t < 2r and such that

a = cost, b =sint.

Proof. We consider four different cases, according as a, b are = 0 or
< 0. In any case, both a and b are between —1 and 1.

Consider, for instance, the case where —1<a<0 and 0Sb< 1.
By the intermediate value theorem, there is exactly one value of t such that
7/2 < t < nand such that cos t = a. We have

b*=1—-a*>=1— cos®t = sin?+.

Since for /2 <t < = the values of the sine are = 0, we see that b and
sin t are both = 0. Since their squares are equal, it follows that b = sin ¢,
as desired. The other cases are proved similarly.

Finally, we conclude this section with the same type of limit that we
consider for the exponential and the logarithm. We contend that

. sinh
lim — = 1.
h=0

This follows immediately from the definition of the derivative, because it is
none other than the limit of the Newton quotient

. sinh—sin0
llmu=sm’(0)=coso=l.
h=0 h
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IV, §3. EXERCISES
1. Define tan x = sin x/cos x. Sketch the graph of tan x. Find

lim tan h
w0 h

2. Restrict the sine function to the interval —n/2 < x < m/2, on which it is con-
tinuous, and such that its derivative is > 0 on —n/2 < x < n/2. Define the
inverse function, called the arcsine. Sketch the graph, and show that the deriva-
tive of arcsin x is 1/V1 — x2,

w

. Restrict the cosine function to the interval 0 £ x < 7. Show that the inverse
function exists. It is called the arccosine. Sketch its graph, and show that the
derivative of arccosine x is —1/\/1 —x2 on 0 < x < 7.

4. Restrict the tangent function to —n/2 < x < m/2. Show that its inverse function
exists. It is called the arctangent. Show that arctan is defined for all numbers,
sketch its graph, and show that the derivative of arctan x is 1/(1 + x2).

5. Sketch the graph of f(x) = x sin 1/x, defined for x # 0.

(a) Show that f is continuous at O if we define f(0)=0. Is f uniformly
continuous on [0, 1]?

(b) Show that f is differentiable for x 5 0, but not differentiable at x = 0.

(c) Show that f is not Lipschitz on [0, 1].

6. Let g(x) = x* sin 1/x if x # 0 and g(0) = 0.

(a) Show that g is differentiable at 0, and is thus differentiable on the closed
interval [0, 1].

(b) Show that g is Lipschitz on [0, 1].

(c) Show that g’ is not continuous at 0, but is continuous for all x #0. Is g’
bounded? Why?

(d) Let g,(x) = x2 sin (1/x?) for x # 0 and g,(0) = 0. Show that g{(0) =0 but
gy is not bounded on (0, 1]. Is g, Lipschitz?

7. Show that if 0 < x < /2, then sin x < x and 2/z < (sin x)/x.

[

. Let 0 < x. (a) Show that sin x < x. (b) Show that cosx 2 1 — x%/2. (c) Show
that sin x = x — x%/3! (d) Give the general inequalities similar to the preceding
ones, by induction.

IV, §4. COMPLEX NUMBERS

The complex numbers are a set of objects which can be added and multi-
plied, the sum and product of two complex numbers being also complex
numbers, and satisfying the following conditions:

(1) Every real number is a complex number, and if o, f are real
numbers, then their sum and product as complex numbers are the
same as their sum and product as real numbers.
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(2) There is a complex number denoted by i such that i2=—1

(3) Every complex number can be written uniquely in the form a + bi,
where a, b are real numbers.

(4) The ordinary laws of arithmetic concerning addition and multi-
plication are satisfied. We list these laws:

If o, B, y are complex numbers, then
@+B+y=a+@+y and (B = opy).

We have a(B + y) = off + oy and (B + p)a = Pa + you

Wehaveoaff = feanda + f = + a.

If 1 is the real number one, then lo = o.

If 0 is the real number zero, then Oa = 0.
We have « + (—1)a = 0.

We shall now draw consequences of these properties. If we write
a=a, +a,i and B =by + byi,
then
o+ B=a, +ayi+by +byi=a, +b +(a; + b,)i

If we call a, the real part, or real component of o, and a, its imaginary part,
or imaginary component, then we see that addition is carried out com-
ponentwise. The real part and imaginary part of o are denoted by Re(x)
and Im(e) respectively.

‘We have

aff = (a; + azi)(b, + byi) = a1by — a,b, + (ayb, + a1by)i.
Let « =a + bi be a complex number with a, b real. We define

& = a — bi and call & the complex conjugate, or simply conjugate, of o.
Then

ofl = a® + b2,
If o = a + biis # 0, and if we let

R
T a® +b*’

A

then ad = Aa = 1, as we see immediately. The number A above is called
the inverse of « and is denoted by «™*, or 1/o. We note that it is the only
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complex number z such that za = 1, because if this equation is satisfied,
we multiply it by A on the right to find z = A. If a, f are complex numbers,
we often write f/o instead of o™ 'f or fa~!. We see that we can divide
by complex numbers # 0.

We have the rules

of = ap, o+B=a+p a=o

These follow at once from the definitions of addition and multiplication.
We define the absolute value of a complex number o = a + bi to be

la| = Ja® + b2,

If we think of « as a point in the plane (a, b), then |«| is the length of the
line segment from the origin to . In terms of the absolute value, we can
write

@
e

ot

provided o # 0. Indeed, we observe that |x|*> = «a. Note also that
o] = la.

The absolute value satisfies properties analogous to those satisfied by
the absolute value of real numbers:

|le| = 0 and = 0 if and only if & = 0.
laBl = lel|B]
lo + Bl <l + 1Bl
The first assertion is obvious. As to the second, we have

[eBI? = apap = aapp = |al*|BI*.

Taking the square root, we conclude that || |8 = |«f|. Next, we have

le + BI? = (@ + P + ) = (@ + p)& + )
=od + pa +off + BB
= |a|® + 2Re(f%) + |BI*

because aff = fa. However, we have

2 Re(f7) < 2|pal
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because the real part of a complex number is < its absolute value. Hence

le + BI* < |l +2|al + B
< ol + 2Bl ol + 181
= (la| + |81
Taking the square root yields the final property.
Let z = x + iy be a complex number # 0. Then z/|z| has absolute
value 1.
Let a + bi be a complex number of absolute value 1, so that a? + b*>=1.
We know that there is a unique real 6 such that 0 < 6 < 2z and a = cos 6,
b = sin 6. If 6 is any real number, we define

i — cos @ + isin6.

Every complex number of absolute value 1 can be expressed in this form.
If z is as above, and we let r = \/x? + y?, then

z = re®.

We call this the polar form of z, and we call (r,0) its polar coordinates.
Thus

x =rcosf and y=rsin6.
The justification for the notation e is contained in the next theorem.
Theorem 4.1. Let 6, ¢ be real numbers. Then
£0+io — ,ibgie.
Proof. By definition, we have
€910 = 00 — cos(f 4 @) + isin(d + ¢).

This is exactly the same expression as the one we obtain by multiplying
out

(cos 6 + i sin 6)(cos ¢ + i sin )

using the addition theorem for sine and cosine. Our theorem is proved.
We define ¢® = e for any complex number z = x + iy. We obtain:



[IV, §4] COMPLEX NUMBERS 99

Corollary 4.2. If o, B are complex numbers, then
P = %ef,
Proof. Leta = a, + iay and B = b, + ib,. Then

ea+ﬂ = e(a,+b|)+l'(az+b1) = M +b|ei(ﬂz+b1)

= eogbigiar+iby

Using the theorem, we see that this last expression is equal to
eﬂneblel'ﬂzeibz = en.eiqeb.eilzz.
By definition, this is equal to e%”, thereby proving the corollary.

Let S be a set. We denote the set of complex numbers by C. A map
from S into C is called a complex valued function. For instance, the map

01— ¢

is a complex valued function, defined for all real 6.
Let F be a complex valued function defined on a set S. We can write F
in the form

F(x) = f(x) + ig(x),

where f, g are real valued functions on S. If F(f) = €%, then f(8) = cos @
and g(f) = sin 6. We call f and g the real and imaginary parts of F res-
pectively.

If both the real and imaginary parts of F are continuous (resp. differ-
entiable), we can say that F itself is continuous (resp. differentiable), when-
ever F is defined on a set of real numbers. Or we can give a definition
using the complex absolute value in exactly the same way that we did for
the real numbers. This will be discussed in detail in a more general con-
text, in that of vector spaces and Euclidean n-space.

For this section, we take the componentwise definition of differentia-
bility. Thus we define

F@)=rf0®+ig®

if F is differentiable on some interval of real numbers. We also write dF/dt
instead of F'(t). Then the standard rules for the derivative hold:
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(a) Let F, G be complex valued functions defined on the same interval,
and differentiable. Then F + G is differentiable, and

(F+Gy=F +G.
If o is a complex number, then
(@F) = oF".
(b) Let F, G be as above. Then FG is differentiable, and
(FGY = F'G + FG'.
(c) Let F, G be as above, and G(t) # O for all t. Then

(F/GY = (GF' — FG")/G~.

(d) Let ¢ be a real valued differentiable function defined on some
interval, and assume that the values of ¢ are contained in the
interval of definition of F. Then F o ¢ is differentiable, and

(F = 9)(t) = F'(0®)e'®).

We shall leave the proofs as simple exercises.

Iv, §4. EXERCISES

1. Let o be a complex number # 0. Show that there are two distinct complex num-
bers whose square is o.

2. Let o be complex, # 0. Let n be a positive integer. Show that there are exactly n
distinct complex numbers z such that z" = a. Write these complex numbers in
polar form.

3. Let w be a complex number, and suppose that z is a complex number such that
& = w. Describe all complex numbers u such that e = w.
4. What are the complex numbers z such that & = 1?
5. If 6 is real, show that
i0 —i0 i9 _ ,—if
cosf = e_+2e_ and sinf= T:
6. Let F be a differentiable complex valued function defined on some interval. Show
that

d(ef™)
dt

= F()ef,



CHAPTER V

The Elementary Real Integral

V, §1. CHARACTERIZATION OF THE INTEGRAL

It is convenient to have the elementary integral available for examples,
and exercises, and we need only know its properties, which can be conve-
niently summarized axiomatically. The proof of existence can be done
either along the classical lines of Theorem 2.7, or as in Chapter X, which
fits the larger perspective, applicable to more general integrals.

Theorem 1.1. Let a, d be two real numbers with a < d. Let f be a con-
tinuous function on [a, d). Suppose that for each pair of numbers b < c
in the interval we are able to associate a number denoted by Ii(f)
satisfying the following properties:

(1) If M, m are numbers such that m < f(x) £ M for all x in the interval
[b, ], then

mic — b) < Iy(f) < M(c - b).
(2) We have
() + 1) = L)

Then the function x> IX(f) is differentiable in the interval [a, d], and its
derivative is f(x).

Proof. We have the Newton quotient, say for h>0,

) — B _ B + ) =BG _ BT
h h h

101
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Let s be a point between x and x + h such that f reaches a minimum at s
on the interval [x, x + k], and let ¢ be a point in this interval such that f
reaches a maximum at t. Let m = f(s) and M = f(¢). Then by the first

property,
FO& +h—x) L) S fO + b —x),
whence
F©h £ E*(f) < f(Oh
Dividing by h shows that

Iz "(f)

1) = === 10

As h — 0, we see that s, t — x, and since f is continuous, by the squeezing
process, we conclude that the limit of the Newton quotient exists and is
equal to f(x).

If we take h < 0, then the argument proceeds entirely similarly. The
Newton quotient is again squeezed between the maximum and the mini-

mum values of f (there will be a double minus sign which makes it come
out the same). We leave this part to the reader.

Corollary 1.2. An association as in Theorem 1.1 is uniquely determined.
If F is any differentiable function on [a, d] such that F’' = f, then

I3(f) = F(x) — F(a).

Proof. Both F and x+ I3(f) have the same derivative, whence there
is a constant C such that for all x we have

Fx) =I;(f) + C.
Putting x = a shows that C = F(a) and concludes the proof.
For convenience, we define

W= -1

whenever a < b. Then property (2) is easily seen to be valid for any posi-
tion of a, b, ¢ in an interval on which f is continuous.
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A function F on [a, b] (with a < b) such that F’' = f is called an indefi-
nite integral of f and is denoted by

f f(x)dx.

We use the usual notation. If ¢, d are any points on an interval [a, b] on
which f is continuous, and if F is an indefinite integral for f, then

[ 16 = P

) = F(d) — F(c).

This holds whether ¢ <d or d < c.
From the rules for the derivative of the sum, we conclude that whenever
£, g are continuous, we have

[reax+ Joax = [(r69 + g a

and for any constant ¢ we have

ch(x)dx = cjf(x)dx.

The same formulas hold therefore when we insert the limits of integration,
i.e. replace | by [® in these relations, where we use the more usual notation

{b instead of I%. Thus
b b
[uro=[1+[0

and

f(cf)=cff.

In particular, using ¢ = —1, we conclude that

f(f ~o-| e fg.

The above properties are known as the linearity of the integral.
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V, §2. PROPERTIES OF THE INTEGRAL

Theorem 2.1. Let a, b be two numbers with a < b. Let f, g be continuous
functions on [a, b] and assume that f(x) < g(x) for all x€[a,b]. Then

ff = ng-

Proof. Let ¢ =g — f. Then ¢ = 0. By Property (1), it follows that
I%(p) = 0, whence the theorem follows by linearity.

Corollary 2.2. We have

f&)dx| = blf(X)Idx-
froe|<]

Proof. Let g(x) = | f(x)| in Theorem 2.1.

Corollary 2.3. Let M be a number such that | f(x)| £ M for all x € [a, b].
Then for all c, d in the interval [a, b] we have

Iff(x)dx

Proof. Clear if ¢ < d, and also if d < ¢ from the definitions.

<Mld —c|.

Theorem 2.4. Let f be continuous on [a,b] with a <b and f=0
Assume that there is one point c € [a, b] such that f(c) > 0. Then

ff> 0.

Proof. Given f(c)/2, there exists § such that f(x) > f(c)/2 whenever

x€[a,b] and |x — c| < é. Suppose that ¢ # b. We take & small enough
so that ¢ + 6 < b. Then

as was to be proved. When ¢ = b, we consider the interval [c — &, c] and
proceed analogously.
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Theorem 2.5. Let J,, J, be intervals each having more than one point, and
let f:J,—>J, and g:J, » R be continuous. Assume that f is differ-
entiable, and that its derivative is continuous. Then for any a, beJ 1
we have

b S(b)
[arenrera=[ s
a f()

Proof. Let G be an indefinite integral for g on J,. Then by the chain
rule, G o f is an indefinite integral for g(f(x))f"(x) over J,, and our asser-
tion follows from the fact that both sides of the equation in the theorem are
equal to

G(f®B) — G(f (@)
The next theorem is called integration by parts.

Theorem 2.6. Let f, g be differentiable functions on an interval, and with
continuous derivatives. Then

[ 1695 ax = 1690 — [0 L .

Proof. Differentiating the product fg makes this relation obvious.

For the definite integral, we have the analogous formula:
b b
[ 169669 dx = 16108) - @0t — [ )G .

We end this section of basic properties with a discussion of Riemann
sums, with which you should be acquainted from an earlier elementary
course. Here, we indicate how certain properties which were probably left
without proof can now be proved.

By a partition P of [a, b] we mean a sequence of numbers denoted by
(ao, - - -, a) such that

IA

a,=b.

a=ay2a, 20,2 2q,

We let M;(f) be the maximum of f on [a;, ;;,], and m;(f) the minimum.
We define the lower and upper sums of f* with respect to the partition by

LU D=8 MG —a)  and  UNLP =% M) — )

i=0
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Depending on a choice of c; € [a;, a;4,], we define the Riemann sum
RSP =5, fledaes

Then trivially we have the inequalities

Li(f, P) S RAS. P) S U/, P).

By the size of the partition P as above, we mean the maximum of the
lengths of the subintervals, that is

size(P) = max (a;,, — a;).

The proof of the next result will use uniform continuity rather than
ordinary continuity.

Theorem 2.7. Let f be continuous on [a, b]. Given e, there exists & such
that if P is a partition of [a, b] with size(P) < &, then

UL P) = Lif. P)<e.
The integral f:( f) is equal to the least upper bound of all lower sums and

also equal to the greatest lower bound of all upper sums. Finally, for any
Riemann sum RE(f, P) with size(P) < & (as above), we have

<e€

f:f— RS, P)

Proof. By Theorem 4.6 of Chapter II, the function f is uniformly
continuous, so given € there exists & such that if x, ye[a, b] and
[x — yl <9, then |f(x) — f(y)| < €/(b— a). Now let P be a partition of
[a, b] of size < 8. Then for all x € [a;, a;+,] and ¢; € [a;, a;.,] we have

€ €

Ve -flell <5z and 0S M) -milf) <5

Therefore
0< UMS, P — LA(f, P) = zo (Mf) = m))(@irr — a)

n=

1
(@4 —a) =€

" . €
) <b———a.»=o

This proves the first statement.
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As to the second statement, concerning the integral, by Theorem 1.1(2)
and Theorem 2.1, it follows that for every partition P, we have

LY/, P) < jbf < UN/LP).

In particular, from inequality (¥) for every ¢, it follows that I*(f) is the
unique number which is the least upper bound of all lower sums and the
greatest lower bound of all upper sums. The final statement concerning
Riemann sums then follows at once, since both the Riemann sum R:(f, P)
and the integral L” f are squeezed between the upper and lower sums
whose difference is < ¢, if size(P) < 6. This concludes the proof.

V, §2. EXERCISES

1. (a) Let £, g be continuous functions on [a, b] with a <b. Assume g positive.
Show that there exists ¢ € [a, b] such that

b b
[ sograx =100 [ gty .

(b) Bonnet mean value theorem (1849). Let f, g be continuous real valued
functions on [a, b]. Assume f positive monotone decreasing. Show that there
exists a point c € [g, b] such that

b 3
[ 10900 dx = f1@ [ gty ax

First assume that f is C!, so f' < 0. Let G(x) be the integral of g from a to
x. Integrate by parts. Using the intermediate value theorem, show that there
is some c¢; € [a, b} such that

b
I S(x)g(x) dx = f(BYG(b) + Gle,)(f(a) — f1b)).

Divide by f(a), usc the hypothesis that f is decreasing to conclude that the right
side is on the segment between G(b) and G(c,), so by the intcrmediate value
theorem again, is equal to G(c) for some c, thus proving the result in this case.
In general, possibly wait until Chapter X, §3, Exercise 7. Show that there exists
a sequence {f,} of C' functions with f(a)= f(a), fu(b) = f(b), cach f, is
monotone decreasing, and {f,} converges uniformly to f. Use bump functions
to do this. The theorem is true for each f,, with some ¢, instead of ¢. By
Weierstrass Bolzano, the sequence {c,} has a point of accumulation c € [a,b]
which does what you want.
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1,
] =2 (2 —1y).
2 Let Px) = 5o 2 (02 = 1)
! -
Show that j Py (x)Pu(x) dx =0 if m#n,
-1
1 2 2
and that J_] P,,()‘) dx = m—l
3. Show that

I x"P(x)dx=0 if m<n
-1
Evaluate

1
f X"P,(x) dx.
-1
4. Leta < b. If f, g are continuous on [a, b], let

b
S = ff(x)g(x) dx.

Show that the symbol {f, g) satisfies the following properties.
(a) If f,, f2, g are continuous on [a, b], then

S+ f2.90 = f1.) + {290

If ¢ is a number, then {cf, g> = ¢{/, ¢>.

(b) We have {f.g> = <g. /.
(c) We have (f, > 2 0, and equality holds if and only if /' = 0.

w

. For any number p 2 1 define

b 1p
Ifl, = U If(x)I"dx] .

Let g be a number such that 1/p + 1/g = 1. Prove that
<S> = 1A Mgl

[Hint: 111 /1, and llgl, # O, letu = | £ 1P/l flI5 and v = |g|*/Ig|lg and apply Exercise
10 of Chapter 1V, §2.}
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6. Notation being as in the preceding exercise, prove that

If+ gll, = 1£1, + lgll,-
[Hint: Let I denote the integral. Show that
If+ gl SIS+ g SD + IA S+ glP~ gl

and apply Exercise 5.]

7. Let f:J —» C be a complex valued function defined on an interval J. Write

f = fi1 + if5, where fy, f, are real valued and continuous. Define the indefinite
integral

[rax = [riaae +i [ neax

and similarly for the definite integral. Show that the integral is linear, and prove
similar properties for it with change of variables and integrating by parts.

oo

. Show that for real a # 0 we have

iax
je"’" dx=S_

1a

Show that for every integer n # 0,

2
f e dx = 0.
0

V, §3. TAYLOR’S FORMULA

Theorem 3.1. Let f be a function having n continuous derivatives on an
interval J. Let a,beJ. Then

f'@ £ Ya) -
f(b)=f(a)+T(b—a)+:"+m(b—a)" L +R,

where
b () n—1
R, = J' ﬁ 1% dt.
Proof. We start with

b
1®) = 1@ + f £ de
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We integrate by parts, using induction. Assume the formula of the
theorem proved for a certain n = 1. We let

u@l) = f) and  du(t)= —(b — 1" 'dr
The formula for n + 1 drops out.

Theorem 3.2. There exists a number ¢ between a and b such that

R, = f*Yc) (b;—la)".

Proof. Say a < b. Let M be the maximum of f® on the interval [a, b]
and let m be the minimum of f® on this interval. Then we have the ine-
qualities

(i J‘”(b -t
< =<
J Y ——F—dt<R, =M (n—l)'
The integrations are easily performed to give

R,
< <
m_(b—a)"_M

n!

Since f®™ is assumed continuous, by the intermediate value theorem, we
conclude that there is some ¢ with a £ ¢ < b such that

® li" ay 17,

n!

thereby proving the theorem, if a <b. If b < a then the same argument
can be applied but the above inequalities have to be reversed when n is
odd, since then b — t is < 0. There is no change in the final conclusion.

Examples. Computing the derivatives and evaluating at a =0 yields
the usual formulas for sin x, cos x and e* as follows.

3
smx—x——+ [ O | [k e —

31 + Rym+1(%),

(2m)

cosx=l— + +(—1)"l

21 + Romya(x),

(2m)!

xn—l
eF=1+x+- +( i 7+ R(x)-
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Since the sine and cosine in absolute value are always bounded by 1, we
can use Theorem 3.2 to conclude that in these cases,

IRl s XL
n:

If 0 < x, then the remainder term for e* satisfies
x"
<
IR S 2.

If x < 0, then the remainder term for e* satisfies

RGOl < 2T,
n:

because e < 1forx < ¢ 0.

Before doing the slightly harder case of the binomial expansion, we give
a general corollary of Theorem 3.2.

Theorem 3.3. Let f be of class C" on a closed interval containing 0, say
[—u,u] with u>0. Let K= max |f®c)l. Then for all x in the
interval, cel-uu]

n—1

109 = £10)+ O + FOO % + -+ SO+ R

and |R,(x)| £ Kx"/n, so R,(x) = O(|x|") for x—0.
Proof. Immediate from Theorem 3.2, taking a =0 and b = x.

The polynomial

f(z)(o) f('"”(O)
FTRE oY

xn-l

P,y (x) = f(0) + f"(O)x +

is called the Taylor poynomial of f, of degree <n — 1. In Exercise 3, you
will prove a uniqueness statement about this polynomial.

The binomial expansion

We shall now consider the binomial expansion.
Let

FG) =1+ x),
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where s is real = 0. We may assume that s is not an integer; otherwise
everything is trivial. Then

fOC)=s(s — s —2) (s —n+ DA +xF"
We consider the interval —1 < x < 1. We take a = 0 and b = x. Then
A+xF=1+sx+ (:sz)x2 +-e+ (n i l)x"" + Ry(x),

where

s\ _ss=1---(s—k+1)
k]~ k!

is the generalized binomial coefficient.
We estimate R,(x) and show that R,(x) — 0 as n — c0. We have

J’"s(s— 1)---(s—n+1)

R,(x) = \ CE (x =" QA + " dte.

Suppose first 0 < x < 1. We estimate (1 + &)™ by (1 + ™" < 2°. We
then perform the integration, and find that

28x".

M IRu()] < ‘(j)

From the estimate of the binomial coefficient in Exercise 24, Chapter IV,
§2, it follows that R (x) >0 asn—>o0 for 0 < x < 1.

Suppose now that ¢ is a number, 0 < ¢ < 1, and consider the interval
—1 < —¢ £ x £0. We estimate

g(t) = s

x—t
1
When t =0, we have g(0) = x. Also, g(x) = 0. Taking the derivative

of g shows that g is decreasing between x and 0. Thus in any case, we find
that
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whence

Estimating the integral by Corollary 2.3 shows that

s
n
Again by the estimate of the binomial coefficient, it follows that R, — 0
as n— oo. Note that our estimate is independent of x in the interval

—c<x=<0.

On the other hand, in both cases (1) and (2), when we keep n fixed, we
have an estimate of R,(x) in terms of |x|", of the form

4

IR < 1=

n c".
c

€ IR.(x)| < K|x[",

for some constant K. In case 0 < x < 1, this is already stated in (1). In
case x <0, the constant K depends on the choice of number ¢ such that
—1<c=<x=0. We give a direct proof for inequality (3) in this case, and
note that the proof is less delicate than for (2). We may estimate the term
(1 + ¢f™" by some constant, because now n is fixed. The constant depends
on c. The binomial coefficient is now fixed. We take the absolute value of
the expression inside the integral sign, and pull out the appropriate
constants. Then we perform the integration of what remains, namely

] x|
[Txt—gmra =BT
° n
to get estimate (3).

At the beginning of the next section, we shall describe concepts and a
notation to view estimates such as (3) in a broader context.

The logarithm

Rather than follow the general method with the remainder term, we shall
indicate another way of getting the Taylor formula for the logarithm.

Theorem 34. For —1 < x £ 1, one has

2 3

x*  x _ x"
log(1 +x)=x—7+?—-"+(—1)" l7+R,,“(x),
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with the remainder term

Ry (@) = (=1 jo T

To estimate the remainder, we have two cases:

Case 1. 0<x=<1. Then

n+1

X
R =< .
IRy (9 S

v, 3]

In particular, the remainder approaches 0 in the stated interval, and the
bound 1/(n + 1) can even be made independent of x, or as ome says,

uniformly in x.
Case 2. —1<x=<0. Then

|xln+l
IR 41 (X)] = m

In this case, the remainder also approaches 0 as n— co. If x stays away

from —1,ie. —1 4+ 8 £ x £ 0 for some é > 0, then

|x|n+l 1

IR, 41 (X)] = 5("—_'_1—) < (5(71_+1—)

The arguments used to prove the above statements are easy, and are

left as Exercise 1. Note that Case 1 gives us the formula for log 2:

log2=1-%+45-4+-

Arctangent

Theorem 3.5. On the interval —1 < x £ 1, one has

x3 xs " 2m—1
arctanx =x — — 4+ — —--- —1m
TXTETS LA

where

t

2m
1+ .

Ramar(6) = (= )" L

+ Romsa(x)s
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The remainder has the estimate
Ix|2m+1

IRpmer(X)| = mil

Again we leave the proof as an exercise.

Remark. Note the phenomenon that the Taylor formula for log and
arctangent has a remainder tending to O at the end point x =1. Of
course, the remainder tends to 0 much faster for |x| <1, because the
powers of x then contribute to the smallness of the remainder as n — 0.

V, §3. EXERCISES

1. Prove Theorem 3.4 by integrating
L. T—t+ 22— (=1t +(—1)"t—"
1+¢ 1+¢
from O to x with —1 < x < 1. Prove the estimates for the remainder to show
that it tends to 0 as n— 0. If 0 < ¢ < 1, show that this estimate can be made

independent of x in the interval —c < x < ¢, and that there is a constant K
such that the remainder is bounded by K |x|"*!.

2. Do the same type of things for the function 1/(1 + t2) to prove Theorem 3.5.
3. Let f, g be polynomials of degrees < d. Let a > 0. Assume that there exists C > 0
such that for all x with [x| < a we have
[fx) — g(x)] < Clx|**™.
Show that f = g. (Show first that if h is a polynomial of degree < d such that
|h(x)| £ C|x[**!, then h = 0.)

Exercise 3 shows that the polynomials obtained in Exercises 1 and 2 actually
are the same as those obtained from the Taylor formula.

4. Let a > 1. Prove that
lim 1: =0.

ni

n—o

Conclude that the remainder terms in the Taylor expansions for the sine, cosine,
and exponential function tend to 0 as n tends to infinity.

5. (a) Prove that log 2 = log(4/3) + log(3/2), or even better,

log2=7]og19—0—210g§+310g2—;.
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(b) Find a rational number approximating log 2 to five decimals, and prove
that it does so. The above trick is much more efficient than the slowly
convergent expression of log 2 as the alternating series.

(=}

. (a) Prove that

+v
arctan u + arctan v = arctan
1—w
(b) Prove that m/4 = arctan 1 = arctan(1/2) + arctan(1/3).

(c) Find a rational number approximating n/4 to 3 decimals.
(d) You will do so even faster if you prove that

g = 4 arctan(1/5) — arctan(1/239).
For all this, cf my First Course in Calculus, fifth edition, Springer-Verlag,
Chapter XIII, §5 and §6.

7. Let A > 0, and consider an interval 0 < § < x £ 24 — J. Show that there exists
a constant C, and for each positive integer n, there exists a polynomial F, such
that for all x in the interval, one has

[tog(x) — P.(x)| = C/n.

[Hint: Write x = A + (x — A) so that

logx=log 4 + 1og<1 + ";J).]

We now suggest that you do Exercises 8, 9, 10 of Chapter VII, §3. These
exercises have to do with approximating a function by polynomials. Suppose a
function f is defined on an interval [a,b]. We say that f can be uniformly
approximated by polynomials on [a, b] if given € there exists a polynomial P such
that

1flx) — P(x)| < e for all xe[aq,b].

The above-mentioned exercises will show you how to approximate the absolute
value function uniformly on a given interval, say [—1, 1]. They require nothing
more than what you already know.

V, §4. ASYMPTOTIC ESTIMATES AND
STIRLING’S FORMULA

Functions defined on a set S containing arbitrarily large numbers can be
ordered according to what is called their order of magnitude. More
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precisely, suppose given two functions f and g defined on S, and suppose
g(x) >0 for all xe S, x sufficiently large. We say that f(x) is big oh of

g(x) for x — oo, and write f(x) = O(g(x)), if there is a constant C > 0 such
that

|f(x)| £ Cg(x)  for all x sufficiently large.

Instead of writing f(x) = O(g(x)), we also use the notation
f«g or f(x) < g(x) for x — co.

For example, to say f(x) = O(1), or f « 1, means that f is bounded. Thus
we may write sin x = O(1) for x — c0. For any polynomial P of degree d,
we have

P(x) =0(x?), alsowritten P(x)«x? for x— co.
Similarly, we write f(x) = o(g(x)) for x = oo if

:l_{?o f(/g(x) = 0.

We then say that f is little oh of g, or that f has a strictly lower order of
growth than g (for x — c0). The standard orders of growth are given by
the elementary functions log, polynomials, and exponentials. We can also
iterate the logs and the exponentials, so by ascending order of growth, we
can display functions as follows:

...loglog x,log x, ...,x, x%, ...,x", €

2.
et et e, .

To say that f(x) = o(1) as x —» o0 means that lim f(x) =0. Each one of
Pand-)

the above functions is little oh of the next one on the right. Similarly, on
the other side, we have in ascending order:

e e L xT" L x72 x7Y 1/log x, 1floglog x, ..., 1, ... .

Naturally, the above list does not include all possible orders of growth.
For instance, we can have intermediate orders by multiplying two of the
above,

x log x, x(log x)%, x(log x)3, ...,
or in the other direction

x x x
log x° (log x)’ (log x)** """~
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Or also, reflecting that powers of log x grow slower than powers of x:
log x, (log x)?, (log x)?, ...,(log x), ...,x% X, X%, ....
The following are basic properties of orders of growth, for x — co.

Property 1. If f; < g, and f, < g,, then f; + f, < g, + g,
Property 2. If f;(x) = 0(g,(x)) and f,(x) = o(g(x)), then
(if)(¥) = o(g19(x))-
In particular, if ¢ is a bounded function, and f« g, then ¢f « g.
Property 3. If f=o0(1) and ¢ is a bounded function, then ¢f = o(1).
Property 4. If f, = o(g,) and f, = o(g,), then f, + f, = o(g, + g,)-

We leave the verification of these properties as exercises.

One can make similar definitions when S contains numbers which are
arbitrarily small in absolute value, in which case the order of growth is
meant for x — 0.

Example. If k, n are integers = 0 with k < n, then

x"=o(|x|¥)  for x—0,

which means that x"/|x[* =0 as x - 0. On the other hand,
x*¥=o0(x")  for x —co.

Note the switch between k and n.

Example. Taylor’s formula expresses a function f of class C" in the
form

f(x)=P,_y(x) + O(Ix|") for x =0,
where P,_, is a polynomial of degree < n— 1.

Example. We have sin x — x = o(|x|) and also sinx — x = O(xi) for
x—0. In fact sin x — x = O(|x[3) for x — 0.

In general, say for x — co, by an asymptotic expansion of a function f
defined on a set S containing arbitrarily large numbers, we mean an
expression

6 =£1(x) + 200 + -+ + fulx) + o(fu(x)),

where fiy(X) = o(fy(x)) for x>0, and k=1,...,n— 1. A similar defini-
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tion can be made for x - 0. We may then say that Taylor’s expansion
gives an asymptotic expansion of a function near 0, in terms of powers
of x.

In comparing orders of magnitude, we are led to an equivalence rela-
tion, two functions being equivalent if they have the same order of growth
in the following precise sense. Let f, g be two functions defined on a set S
contraining arbitrarily large numbers. We say that f(x) is asymptotic to
g(x) for x — oo (and x € §) if f(x), g(x) # O for all sufficiently large x, and
lim f(x)/g(x) = 1. We then write f(x) ~ g(x). A similar definition can be
XxX—0

made for functions defined on a set S containing arbitrarily small num-
bers, replacing the limit to infinity by the limit as x approaches 0.

Observe that the relation f(x) ~ g(x) for x — co can be formulated in
different ways, as follows:

There exists a function u such that lim u(x) = 1 and f(x) = g(x)u(x).
X0

There exists a function h such that

lim h(x)=0 and  f(x) =g()(1 + h(x)).

xX=*c0
We have f(x) = g(x)(1 + o(1)) for x — co.
We have f(x) = g(x) + o(|g(x)|) for x — co.
Example. Let f be a function such that lim f(x) = c0. Let C be a
=00

constant. Then f ~ f 4 C, as follows at once from the definitions. But
also if g is a function such that g(x) = o(f(x)) for x — oo, then

() ~ f(x) + g(x) for x— 0.
In particular, if g is a bounded function, then f ~ f+g
Example. Let
LI |
Hn)=) —.
) kzl k

Thus H(n) is the truncated harmonic series. Then H(n) ~log n for n = 0.
If we define H(x) = Y, 1/k, then H(x) ~ log x for x — c0. Prove this as
1SksSx

an exercise, using Riemann sums.
Example. We have sin x ~ x and log(l + x) ~ x for x - 0.

We are now interested in giving an asymptotic expansion for logn!,
with n— oo. In other words, we are interested in the order of growth of
n! for positive integers n. The next theorem refines the rough estimate for
n! of Chapter IV, §2.
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Theorem 4.1 (Stirling’s formula). Let n be a positive integer. Then there
is a number 0 between 0 and 1 such that

nl = n"e"2nn /12",

The steps in the proof are at the level of elementary calculus. The only
difficulty lies in which steps to take and when, so we shall indicate the
steps and leave the easy details to the reader.

1+ x
1—x

1. Let o(x) = 4 log — x. Show that

2

) = —5
P =15

x3
2. Let Y(x) = ¢(x) — m Show that
, —2x*
M
3. For 0 < x < 1, conclude that ¢(x) > 0 and y(x) < 0.

4. Deduce that for 0 < x < 1 we have

1+4+x x3
0=l —x = .
ST TR0 )
1 1+x n+1
5.Letx—2n+1.Thenl_x— n and
x3 1

31 —x%) 1202n+ D +n)

6. Conclude that

n+1 1 < 1
n 2n+ 17 122n + 1)(n® +n)’

+1 1 /1 1
osm+Ylog? T2 1= (-
S (n+3)log n =12\n n+1)

0

IIA

3log

7. Let
nn+ lIZe—n

a,="—7— and  b=aqein
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Then a, < b,. Show that

Thus the a, are increasing and the b, are decreasing. Hence there exists
a unique number c¢ such that

a,<c<bh

IIA

for all n.

8. Conclude that

nl = ¢~ lyn+1zp=n 0120
for some number 6 between 0 and 1.
To get the value of the constant ¢, one has to use another argument.
Our first aim is to obtain the following limit, known as the Wallis

product.
Theorem 4.2. We have

T_ i 224466 20 2
2 ,.o133557 m—12n+1"

Proof. The proof will again be presented as an exercise.

1. Using the recurrence formulas for the integrals of powers of the sine,
prove that

"/zs g 2—12n-3 1=
L XX =" m—2 22’
2 m m—2 2

on+1 — -z
J‘o s X dx = T =13

2. Using the fact that powers of the sine are decreasingasn=1,2,3, ...
and the second integral formula above, conclude that

1 {32 sin?"*'x dx

1+ 1/2n= [g?sin®" x dx L

IA

3. Taking the ratio of the integrals of sin?” x and sin?"*! x between 0
and /2 deduce Wallis’ product.
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Corollary 4.3. We have

! 222n
lim )

— g2
o =x
n oo (20)! 12

Proof. Rewrite the Wallis product into the form

T 24 |
2 T =1
Take the square root and find the limit stated in the corollary.

Finally, show that the constant ¢ in Stirling’s formula is 1/3/2x, by
arguing as follows. (Justify all the steps.)

o (zn)Zn-HIZe-Zn
€= lm =

5 (n !)22271\/5 I:nn-l»llze—n:lz

- n_.lmm (2n)! n'? n!
=./2n-c
Thus ¢ = 1/,/27.

Remark. The above proof is tricky, and does not show the large
structures behind the result. On the other hand, it has the advantage of
using only very elementary means to give an asymptotic development for
log n!, namely

logn!=nlogn—n+%logn + log 2n+lg;n

up to the term 6/12n which tends to 0 as n — c0. The preceding terms are
ordered according to decreasing order of magnitude. The functions of
positive integers given by

1
w constant, log n, n, nlogn,

are in increasing order of growth, each one being little oh of the preceding
one for n— oo.

I don’t like proofs like the above, but I found it worth including here
to show how elementary calculus can be made to work. It takes a few
more pages to establish the general techniques giving a full asymptotic
expansion for the gamma function, with terms going beyond the term
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O(1/n) for n— co. This type of more structural proof is often done in
courses in complex analysis, because it applies to the complex gamma
function as well. Cf. my Complex Analysis, Chapter XV, §2.

V, §4. EXERCISES

1. Integrating by parts, prove the following formulas.

-1
1 ’[sin"‘2 x dx

1.
(a) Isin" xdx = —~sin""" x cos x +
h

n—1

1
(b) Icos" xdx = - cos"™! x sin x + Icos"'z x dx

n

N

. Prove the formulas, where n is a positive integer:
@ I(log )" dx = x(log " — n jaog Xt dx

(b) Ix"e" dx = x"e*—n Ix"'le" dx

w

. By induction, find the value ['o" x"e™*dx =n! The integral to infinity is
defined to be

@ B
j fo)dx = limf £ dx.
[ B-~w Yo

»

. Show that the relation of being asymptotic, ie. f(x) ~ g(x) for x — o0, is an
equivalence relation.

o

Let r be a positive integer. Prove that

Jx—l—dt—o—x- for x — co
2 (logt)” = “\(log x)" )

[Hint: Integrate between 2 and \/J-c, and then between /x and x.]
(a) Define

I

X

Li(x) = L

log t a

Prove that

x x . x
i(x) = —— —= Li(x) ~ ——.
Li(x) Tog x +0 ( {iog x)z) so i(x) Tog »

(b) Let r be a positive integer, and let

. * 1
Li,(x) = ,L m dr.
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Prove that Li,(x) ~ x/(log x) for x — co. Better, prove that

. x x
Li(x) = __(log e + 0< (——log o +1).

(c) Give an asymptotic expansion of Li(x) for x — oo.
7. Let

1
L(x) = —
) 247sx logk

Show that L(x) = Li(x) + O(1) for x — oo, so in particular, L(x) ~ Li(x).

8. More generally, let f be a positive function defined, say, for all x = 2. Assume
that f is decreasing, and let

Fi) = j @) d.
2
Assume that F(x) is unbounded, i.e. lim F(x) = co for x — co. Show that

Fx)~ Y f(y for x-—oo.

28ksx

In fact, if we denote the sum on the right by Sy(x), show that

F(x) = 8;(x) + O(1).

Exercises 6, 7, and 8 are especially significant because they are relevant to the
probabilistic distribution of prime numbers. A prime number is an integer = 2
which is divisible only by itself and 1. Thus the first few primes are 2, 3, 5, 7, 11,
13, 17, 19,.... Roughly speaking, the probability that an integer n is prime is
1/log n. What does this mean? It means that the number of primes in an interval
[2, x] is given by the sum L(x) of Exercise 7, plus an error term which has lower
order of growth. Thus if one denotes as usual by n(x) the number of primes < x,
then one has the prime number theorem,

n(x) = L(x) + E(x),  where E(x)=o(L(x)) for x— oco.

According to Exercise 6, we then see that m(x) ~ x/log x for x — c0. This asymp-
totic relation was discovered experimentally by making tables of primes in the
seventeenth century. It was proved only at the end of the nineteenth century
(1896) by Hadamard and de la Vallee Poussin. Hadamard had developed a theory
of complex analysis motivated precisely by the prime number counting problem.
Perhaps the most famous unsolved problem in mathematics is the Riemann

hypothesis, which says something much more precise about the error term, namely
that

E(x)=0(xlogx) for x — co.
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Riemann was led to this conjecture (published in 1859) partly by experimentation,
but mostly because of a much deeper investigation which could be described
technically only after basic knowledge of complex analysis.

For Exercises 9, 10, and 11, we let

F(x) = L £ dt.

9. Let f and h be two positive continuous functions on R. Assume that
lim h(x) = 0. Assume that F(x) — 0o as x — c0. Show that

r FOh@ dt = o(F())  for x = 0.
2

10. Assume that f, h are continuous positive, that f(x) — oo and (x) — 0 as
x — 0. Show that

r fOhE) dt = o(F(x))  for x - co.
2

11. Suppose that f is monotone positive (increasing or decreasing) and that
fx)=o(F(x))  for x — co.

Prove that

SO = O(LX o dt) for x — 0.






PART TWO

Convergence



The notion of limit, and the standard properties of limits proved for real
functions hold whenever we have a situation where we have something
like | |, satisfying the basic properties of an absolute value. Such things
are called norms (or seminorms). They occur in connection with vector
spaces. It is no harder to deal with them than with real numbers, and they
are very useful since they allow us to deal also with n-space and with func-
tion spaces.

The chapters in this section essentially give criteria for convergence, in
various contexts. We deal with convergence of maps, convergence of
series, of sequences, uniform convergence.

It is recommended that readers have understood Chapter II and have
done the exercises in that chapter. We can then concentrate better here
on limits in the context of distances and normed vector spaces.

128



CHAPTER VI

Normed Vector Spaces

VI, §1. VECTOR SPACES

By a vector space (over the real numbers) we shall mean a set E, together
with an association (v, w)i— v + w of pairs of elements of E into E, and
another association (x, v) xv of R x E into E, satisfying the following
properties:

VS 1. For all u, v, w € E we have associativity, namely
w+v)+w=u+@+w).

VS 2. There exists an element 0 € E such that 0 + v=1v + 0 = v for all
veE.

VS 3. If veE then there exists an element w € E such that
v+w=w+0v=0
VS4. Wehavev +w=w + vforally,weE.
VSS5. If a,beRand v,w € E, then 1v = v, and
(ab)p = a(bv), . (@a+bp=av+by, al+w)=av+aw.

As with numbers, we note that the element w of VS 3 is uniquely deter-
mined. We denote it by —v. Furthermore, Ov = 0 (where 0 denotes the
zero number and zero vector respectively), because

w+v=0+1v=0+1p=1v=n0
129
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Adding —v to both sides shows that Ov =0. We now see that
—v=(—1vbecausev + (== (1 + (=) =00 =0.
An element of a vector space is often called a vector.

Example 1. Let E = R* be the set of k-tuples of real numbers. If
X = (xy,...,x) is such a k-tuple and Y = (yy, ... ,)), define

X+ Y =04y, %+ W
and if a € R, define
aX = (ax,, ... ,ax).

Then the axioms are easily verified.

Example 2. Let E be the set of all real valued functions on a non-empty
set S. If f, g are functions, we can define f + g in the usual way, and af in
the usual way. We now see that E is a vector space.

Let E be a vector space and let F be a subset such that 0e F, if v, we F
then v + we F, and if ve F and a e R then av e F. We then call F a sub-
space. It is clear that Fis itself a vector space, the addition of vectors and
multiplication by numbers being the same as those operations in E.

Example 3. Let k> 1 and let j be a fixed integer, 1 <j < k. Let
E =R* and let F be the set of all elements (x,,...,x) of R* such that
x; = 0, that is all elements whose j-th component is 0. Then F is a sub-
space, which is sometimes identified with R*~! since it essentially consists
of (k — 1)-tuples.

Example 4. Let E be a vector space, and let vy, ...,v, be elements of E.
Consider the subset F consisting of all expressions

X310y + o + X0,

with x; € R. Then one verifies at once that F is a subspace, which is said
to be generated by vy, ... ,v,.

As a special case of Example 4, we may consider the set of all polyno-
mials of degree <d as a vector space, generated by the functions 1,
X,...,x% One can also generate a vector space with an infinite number
of elements. An expression like x,v;, 4 --- + x,v, above is called a
linear combination of vy,...,v,. Given any set of elements in a vector
space, we may consider the subset consisting of linear combinations of a
finite number of them. This subset is a subspace. For instance, the set of
all polynomials is a subspace of the space of all functions (defined on R).
It is generated by the infinite number of functions 1, x, x2,... .
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Example 5. Let S be a subset of the real numbers. The set of con-
tinuous functions on S is a subspace of the space of all functions on S. This
is merely a rephrasing of properties of continuous functions (the sum of
two continuous functions is continuous, and the product of two continuous
functions is continuous, so a constant times a continuous function is
continuous).

Example 6. One of the most important subspaces of the space of func-
tions is the following. Let S be a non-empty set, and let %(S, R) be the set
of bounded functions on S. We recall that a function f on § is said to be
bounded if there exists C > 0 such that | f(x)| < C for all xe S. If f, g are
bounded, say by constants C, and C,, respectively, then

[f&) + g S G + (g = Cy + C,

so f + g is bounded. Also, if a is a number, then |af (x)| £ |a|C so af is
bounded. Thus the set of bounded functions is a subspace of the set of all
functions on S.

Example 7. The complex numbers form a vector space over the real
numbers.

Example 8. Let S be a non-empty set and E a vector space. Let
(S, E) denote the set of all mappings of S into E. Then (S, E) is a
vector space, namely we define the sum of two maps f, g by

(f +9)x) = f(x) + 9(x)
and the product ¢f of a map by a number to be
€f)x) = ef (x)-

The conditions for a vector space are then verified without difficulty. The
zero map is the constant map whose value is 0 for all x € S. The map —f
is the map whose value at x is —f(x).

VI, §2. NORMED VECTOR SPACES

Let E be a vector space. A norm on E is a function v+ || from E into R
satisfying the following axioms:

N 1. We have |v| = 0 and [v| = 0 if and only if v = 0.
N2. IfaeRand veE, then |av| = |a| [v].

N 3. For allv,w € E we have |v + w| < |v] + |wl.

The inequality of N 3 is called the triangle inequality.
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A vector space together with a norm is called a normed vector space.
Avector space may of course have many norms on it. We shall see ex-
amples of this.

Example 1. The complex numbers form a normed vector space, the
norm being the absolute value of complex numbers.

If | | is a norm on a vector space E and if F is a subspace, then the
restriction of the norm to F is a norm on F, which is thus also a normed
vector space. Indeed, the properties N 1, N 2, N 3 are a fortiori satisfied by
elements of F if they are satisfied by elements of E.

As with absolute values, if vy, ...,v, are elements of a normed vector
space, then

oy + o 0l S oyl -+ Lo
This is true for m = 1, and by induction:

(o1 + -+ Vpoy + Ol S oy + o0 F Oy + 0]
Slol+ - + |vnl
We shall deal with normed vector spaces of functions, and in these

cases, it is useful to denote the norm by || || to avoid confusion with the
absolute value of a function.

Example 2. Let S be a non-empty set, and let %(S, R) be the vector
space of bounded functions on S. If f is a bounded function on S, we define

Iflo=1ub|f(x)l, also written  sup |f(x)].
xeS xeS

We contend that this is a norm. If || f||,, = 0, then |f(x)| = O for all xS,
and so f=0. Otherwise, | fll, 20, so N1 is satisfied. Also, N2 is
obviously satisfied. As to N3, let £, g be bounded functions on S, and let
M; = |fllow, M2 = llgll,. We have

[F) + g@)| S 1) + lge)| £ M,y + M,.

This is true for all x € S. Hence

I/ +4gll, = Llilg 1)+ g = 1S oo + llgllos

thus proving N 3. The norm in this example is called the sup norm.
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Observe that in Example 2, the argument can be used to deal with a
more general situation. Again, let S be a non-empty set, let E be a normed
vector space with norm | |, and let (S, E) be the set of all bounded maps
of S and E. Then %(S, E) is a vector space, and one can define a norm
|l Il on it by the same formula that was used in Example 2. The proof that
this is a norm is exactly the same as that given above. The space of
bounded maps is perhaps the space most used throughout this book.

A norm from a scalar product

A norm on a vector space is often defined by a scalar product. By this we
mean a product

,wyv-w=<{v,w)
from E x E into R satisfying the following conditions:

SP1. We havev-w = w-v for all v,w € E.
SP 2. We have for u, v,w € E,

u-+w)y=u-v+u-w
SP 3. If x is a number, then
(xv)-w = x(v-w) =v-(xw).

In addition, the scalar products we shall consider will be positive definite,
that is they satisfy the additional property:

SP4. Ifv=0thenv-v=0,and if v # Othenv-v > 0.

Examples are given in the next section.

As an abbreviation, we shall often write v? instead of v-v. However,
we do not write v3, or any other exponent. Using the properties of the
scalar product, we find that

W+w?2=0v>4+20-w+w
W—w?=0v>=20-w+w,
as usual.
The notation v-w will be useful when dealing with vectors of n-space,

and (v, w) will be useful when dealing with scalar products of functions,
in order to avoid confusion with the ordinary product of functions fg.
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Theorem 2.1. Let E be a vector space with a positive definite scalar
product. Then

1<v, w2 < (o, 0){w, w).
Proof. Let x = {w,w) and y = —{v, w). Then by SP 4 we have

0 < (xv + yw)- (xv + yw)
=x20-v+2xp(v-w) + yPw-w.

Substituting the values for x and y yields
0" (W-w)(v-v) — 2w-w)v-w)? + (v- w)(w- w).
If w =0 then the inequality of the theorem is obvious, both sides being
equal to 0. If w # 0, then w-w # 0, and we can divide the last expression
by w-w. We then obtain
0= (v-v)w-w) — (v-w)?,

which proves the theorem.

We define |v]| = \/v-v.

We can rewrite the inequality of Theorem 2.1 in the form
lv-w| =[] [w]

by taking the square root of both sides. This inequality is known as the
Schwarz inequality.

Theorem 2.2. The function v+ |v| is a norm on E.

Proof. We clearly have N1. If ae R and v € E, then

lav| = \Jav-av
=./a*v-v

= la| |v],

so that N 2 is satisfied. Asto N 3, we have

[+wPr=@+w-@+w=v-v+20-w+w-w
[0 + 2[v] |w| + [w|?

= (lol + [w])?,

IIA
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using the Schwarz inequality in the second step. Taking the square root
yields N 3.

We do not go further here into the study of the scalar product. We
merely wanted to show how it could be used to yield a norm on a vector
space. We comment further in the next section on n-space.

We shall use some geometric terminology with norms. Let E be a
normed vector space, and let we E. Let r > 0. The open ball of radius r
and center w in E consists of all those elements x € E such that |x —w|<r.
The closed ball of radius r and center w in E is the set of all x € E such that
|x — w| = r. The sphere of radius r and center w in E is the set of all x€ E
such that [x — w| = r. We shall see the justification for this terminology
in the next section. We use the notation

Bw), Bw), S

for the open ball, closed ball, and sphere of radius r, centered at w.

We shall now discuss in greater detail the standard norms used through-
out the book. We shall see that a vector space may have two distinct useful
norms on it. It is therefore important to have some notion concerning
these norms which describes when they will affect the notion of limit,
discussed later. Let | |, and | |, be norms on a vector space E. We shall
say that they are equivalent if there exist numbers C,, C, > 0 such that for
all v € E we have

Cyloly = |vl; = Caloly.
If| |1, | |2, | |5 are norms on E such that | |, is equivalent to | |, and | |, is
equivalent to | |3, then | |, is equivalent to | [5. Also if| |, is equivalent to
| |,,then | [, is equivalent to | |,. We leave the easy proofs to the reader.
We define a subset S of a normed vector space to be bounded if there
exists a number C > 0 such that |x| £ C for all xeS. It is clear that if a
set is bounded with respect to one norm, it is bounded with respect to any
equivalent norm. Spheres and balls are bounded.

VI, §2. EXERCISES

1. Let S be a set. By a distance function on S one means a function d(x, y) of pairs of
elements of S, with values in the real numbers, satisfying the following conditions:

d(x,y) = Oforallx,ye S,and = Oif and only if x = y.
d(x, y) = d(y,x)forall x,ye S.
d(x,y) £ d(x,z) + d(z,y)forallx, y,ze S.

Let E be a normed vector space. Define d(x, y) = |x — y| for x, y € E. Show that
this is a distance function.
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2. (a) A set S with a distance function is called a metric space. We say that it is a
bounded metric if there exists a number C > Osuch that d(x, y) < Cforallx, yeS.
Let S be a metric space with an arbitrary distance function. Let xo€S. Letr > 0.
Let S, consist of all x € S such that d(x, xo) < r. Show that the distance function
of S defines a bounded metric on S,.

(b) Let S be a set with a distance function d. Define another function d' on S
by d'(x, y) = min(1, d(x, y)). Show that 4’ is a distance function, which is a
bounded metric.

(c) Define

d(x, y)

TN = T dte )

Show that d” is a bounded metric.

3. Let S be a metric space. For each xe S, define the function f,:S — R by the

formula

£y) = d(x, y).
(a) Given two points x, a in S show that f, — f, is a bounded function on S.
(b) Show that d(x, y) = || f, — £l
(c) Fix an element a of S. Let g, = f, — f,. Show that the map

X gy

is a distance preserving embedding (i.e. injective map) of S into the normed
vector space of bounded functions on S, with the sup norm. [If the metric on
§ originally was bounded, you can use f, instead of g,.] This exercise shows
that the generality of metric spaces is illusory. In applications, metric spaces
usually arise naturally as subsets of normed vector spaces.

4. Let | | be a norm on a vector space E. Let a be a number > 0. Show that the
function x + a|x| is also a norm on E.

5. Let | |; and | |, be norms on E. Show that the functions xi—|x|, + x|,
and x> max(|x|,, |x|,) are norms on E.

6. Let E be a vector space. By a seminorm on E one means a function ¢: E —» R
such that o(x) 2 0 for all x € E, o(x + ) £ a(x) + a(y), and o(cx) = |c|o(x) for
allceR, x, yeE.
() Let 0y, 0, be seminorms. Show that ¢, + o, is a seminorm. If Ay, Ay are
numbers 2 0, show that 1,6, + 4,0, is a seminorm. By induction show that
if 0y,...,0, are seminorms and A4,,...,4, are numbers > 0 then Aoy 40
+ 4,0, is a seminorm.
(b) Let 0 = max(oy, 0,). Show that ¢ is a seminorm.

7. Let 6y be a norm and o, a seminorm on a vector space. Show that 0y + 0,

and max(o,, 0,) are norms.
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1

1

1

8. Let o be a seminorm on a vector space E. Show that the set of all x € E such
that o(x) = 0 is a subspace.

9. The C? seminorms. Let p be an integer > 0. Let E = C?([0, 1]) be the space
of p-times continuously differentiable functions on [0, 1]. Define o, and N, by

o(f)=sup|fP(Y| and NJf)= max 5(f),
* Osrsp

where the maximum is taken for r = 0, cospe

(a) Show that o, is a seminorm and N, is a norm. Note that 6, = N, is just
the ordinary sup norm. The norm N, is called the CP-norm.

(b) Describe the subspace of E consisting of those functions f such that
0,(f) =0 for p =0 and also for p > 0. This is the subspace of Exercise 8.

0. Consider a scalar product on a vector space E which instead of satisfying SP 4
(that is positive definiteness) satisfies the weaker condition that we only have
{v,v) 2 Oforallve E. Let we E be such that {w, w) = 0. Show that {w, v) =0
for all ve E. [Hint: Consider (v + tw, v + tw) = 0 for large positive or negative
values of t.]

—

. Notation as in the preceding exercise, show that the function

wi= [w] = /<{w, w)

is a seminorm, by proving the Schwarz inequality just as was done in the text.

2. Let E be a vector space with a positive definite scalar product, and the
corresponding norm ||v]| = /v-v. Prove the parallelogram law for all v, w e E:

o+ wii? + llo — wi® = 2llol* + 2]lwll%

Draw a picture illustrating the law. For a follow up, see §4, Exercises 5, 6,
and 7.

VI, §3. n-SPACE AND FUNCTION SPACES

The euclidean norm. Let E =R" be the space of n-tuples of real

numbers. If A =(a,,...,a,) and B=(b,,...,b,) and n-tuples of numbers,
we define

A-B=ab, + -+ a,b,.

The four properties of a scalar product are then immediately verified. The
last one holds because if A # O then some a; # 0 and hence a? > 0, so

t

hat 4- A > 0. The others are left to the reader.
We therefore obtain a norm on R” given by

|Al = \/a} + --- + a2.
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This will be called the euclidean norm, because it is a generalization of the
usual norm in the plane, such that the norm of a vector (g, b) is ./a* + b

Consider the euclidean norm, in R2 Then the open ball of radius r
centered at the origin will be called the open disc (of radius r centered at the
origin), and it corresponds geometrically to such a disc. Similarly we define
the closed disc. The sphere of radius r centered at the origin is nothing but
the circle of radius r centered at the origin.

In R3, with the euclidean norm, the ball and sphere have the usual
interpretation of these words. This is the reason for adopting the same
terminology for R”, n > 3, or for normed vector spaces in general.

Ordinary intuition of euclidean geometry can be used to justify the
definition that A is perpendicular (or orthogonal) to B if and only if

A-B=0.

This is done as follows. By euclidean geometry, A4 is perpendicular to B if
and only

|A—B|=|A+B|

as shown on the figure.

A |A-B|

A |A-B| B
R |4 + B
14 + B W
o -B
-B

But this condition is equivalent with
(A + B> = (4 — B)?
or in other words,
A* +24-B+B*= A2 —24-B + B
This is equivalent with 44 - B = 0, whence equivalent with 4-B = 0, as
desired.
Similarly, in an arbitrary vector space E with a scalar product, one

defines two vectors v, w to be perpendicular or orthogonal if and only if
v-w=0.



[VI, §3] n-SPACE AND FUNCTION SPACES 139

The sup norm. We can define another norm on R" which will be denoted
by [ lor |l llo. We let

4] = max |a;l,
i

the maximum being taken over all i = 1,...,n. Thus || 4] is the maximum
of the absolute values of the components of A. We contend that this is a
norm. Clearly, if ||A|| = O then A = O because all q; = 0. Furthermore, if
A # O, then ||A|| > 0 because some |g;| > 0. Let
B = (by,...,b,).

Then

|4 + Bl = max |a; + b;l.
We have

laj + b;| < |a;| + |b;| < max|a;| + max|b;| = 1Al + 1Bl
i i

This is true for each j, and hence

|4 + Bl = max |a; + b;| < 141l + |IBI,
i

so the triangle inequality is satisfied. Finally, if c € R,

llcAll = max |ea;| = max |c| ;] = |c|max |a;| = [e] Al
i i i

This proves that || || is a norm. We shall call it the sup or max norm. Still
another norm useful in some applications is given in the exercises.

Consider the sup norm on R2. The closed ball centered at the origin of
radius r consists of the set of all points (x, y) with x, y € R such that x| = r
and |y| < r. Thus with this norm, the closed ball is nothing but the square
(inside and the boundary).
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The sphere of radius r with respect to the sup norm is then the perimeter of
the square. Note that it has corners, i.e. it is not smooth.

It is easy to verify directly that the euclidean norm and the sup norm
are equivalent. In fact,if 4 = (ay,...,a,), then

lajl = /a2 £ Ja} +--- + af,
so that

14l = max|a;| < | Al
i
On the other hand, let |a,| = max |g;|. Then
i

a} +--- + a; S nlal’,

and consequently

|4 = /a? + - + a2 < /nllAl,

thus showing that our two norms are equivalent.
It is in fact true that any two norms on R" are equivalent. See
Theorem 4.3.

Finite dimensional vector spaces. Instead of R” we could also deal with
finite dimensional vector spaces. Let E be a vector space over R, of
dimension n. Let {el, ...,e,} be a basis of E. Each element v € E can be
written as a linear combination

v=2x5e; +° " + Xx,.e,, with x;eR.

With respect to this basis, we can then define the sup norm with respect to
the basis to be

lloff = max |xi.

just as we did for R". It is easily verified that this defines a norm. If
we change the basis, the sup norm will also change. However, see
Theorem 4.3.

Example. Let E be the vector space of polynomial functions on the
interval [0, 1]. For each positive integer d, let E, be the subspace of
polynomial functions of degree < d. Then E, has dimension d + 1. Let
I llo be the sup norm on E, as in Example 2 of §2. On the other hand,
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let f; be the function fi(x) = x". Then fo, ...,f, form a basis of E,, and an
arbitrary polynomial of degree d can be written as a linear combination

f=ao+aifi + +af,.

Define ||f|| = max |a;|. Then Theorem 4.3 for finite dimensional vector
i

spaces implies that the two norm || ||, and || || are equivalent on E,.

The L'-norm. Let E be the vector space of continuous functions on
[0, 1]. If f e E, define the L'-norm by

1
Ifll, = jo 1160 d.

In Exercise 4 you will prove that this is indeed a norm.
The L?-norm. We shall now consider an example of a norm defined on

a functions space by means of a scalar product. We let E be the space of
continuous functions on the interval [0, 1]. If f, g € E, we define

1
o) = jo £0903) dx.

The four properties of a positive definite scalar product are verified as
immediate consequences of properties of the integral. Thus we obtain the
corresponding norm, called the L2-norm,

17l = <F 542 = ( f s dx) .

Note that a continuous function is bounded on [0, 1] and hence that we
can define the sup norm on the space E of continuous functions on [0, 1].
Let us denote the sup norm || ||,. If f€E, and we let M = || f||,, then

1 1
f fx)Pdx J M?dx < M>.
0 V)

Hence

Il =1 -

However, the two norms || ||, and || ||, are not equivalent because th.ere
is no inequality going in the opposite direction. For instance, the function
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whose graph is as follows:

has a sup norm equal to 1, but its L>-norm is small. Taking such functions
having a narrower and narrower peak, we can get functions having
arbitrarily small L2-norms, but with sup norms equal to 1.

In Exercise 4, you will also prove that

(AT FAPH

but that the two norms L! and L? are not equivalent.

The norms defined above, sup norms, CP-norms, L'-norm, and L2
norm, and more generally norms coming from positive definite scalar
products, are the basic norms in mathematics.

VI, §3. EXERCISES

L. Let E, F be normed vector spaces, with norms denoted by | |. Let E x F be the
set of all pairs (x, y) with x € E and y € F. Define addition componentwise:

(69 + 5 Y) = + X,y +y),
(x, y) = (ex, cy),
for ce R. Show that E x F is a vector space. Define
|(x, )| = max(|x[, |y]).
Show that this is a norm on E x F. Generalize to n factors, i.e. if E,,...,E, are

normed vector spaces, define a similar norm on E, x --- x E, (the set of n-tuples
(Xy,-..,X,) With x; € E)).

.2 Let E=R" and for 4 = (a,,...,a,) define

n
4l = Z; |a]-
i

Show that this defines a norm. Prove directly that it is equivalent to the sup norm.
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w

. Using properties of the integral, prove in detail that the symbol (f, g defined by
means of the integral is in fact a positive definite scalar product on the space of
continuous functions on [0, 1].

4. Let E be the vector space of continuous functions on [0, 1].
(a) Show that the L'-norm is indeed a norm on E.
(b) Show that the L'-norm is not equivalent to the sup norm.
(c) Show that the L'-norm is not equivalent to the L?>-norm. [Hint: Truncate
the function 1/,/x near 0.]
(d) Show that [ fll; Z [If|l, for fe E. [Hint: Use the Schwarz inequality.]

. Let E be a finite dimensional vector space. Show that the sup norms with
respect to two different bases are equivalent.

w

o

Give an example of a vector space with two norms, and a subset S of the vector
space such that S is bounded for one norm but not for the other.

VI, §4. COMPLETENESS

Let E be a normed vector space and let S be a subset. A sequence {x,}
in S is said to converge in S if there exists ve S having the follow-
ing property: Given ¢, there exists N such that for all n= N we have
|x, — v] < €. We then call v the limit of the sequence {x,}. This limit, if it
exists, is uniquely determined, for if w is also a limit of the sequence, we
select N, such that if n = N, then |x, — v| <€ and N, such that if n = N,
then |x, — w| < e. Take N = max(N;, N;). If n = N then

lo—w| = |v—x,| +|x, —w| <2,
so [v — w| = 0 and v = w. The limit is denoted by

lim v, = v.
n—w

A sequence {x,} in a normed vector space is called a Cauchy sequence if
given € there exists N such that for all m, n = N we have

|%m — X,| < €

If a sequence converges then it is a Cauchy sequence. The reader need
only copy the proof given in Chapter II, §1. In the case of real numbers,
we proved, using the Archimedean axiom, that every Cauchy sequence of
numbers has a limit. However, in an arbitrary normed vector space, this
need not be the case. A normed vector space in which every Cauchy
sequence has a limit is called complete, or also a Banach space. We shall
see in a moment that R¥ is complete, and we shall meet later examples of
complete function spaces.



144 NORMED VECTOR SPACES [VI, §4]

Remark. If | |, is 2 norm on E equivalent to | |, then convergent se-
quences, limits, and Cauchy sequences with respect to | |, are the same as
with respect to | | This is verified at once.

Example. Let E be a finite dimensional vector space over R, of dimen-
sion k. Let {e,,...,e,} be a basis, and take the sup norm on E with
respect to this basis. Let {v,, v,...} be a sequence of vectors in E, and
write each v, in terms of its coordinates:

Uy =Xpey + - +xmer  for n=12,..., x;€R

Then we obtain k sequences of coordinates, namely corresponding to the
columns:

{x11, X215 X315} = {xnl}:

{X1k0 X200 X345+ - -} = (X}

Theorem 4.1. The sequence {v,} is a Cauchy sequence if and only if all
the coefficient sequences {x,,}, . ..,{xu} are Cauchy sequences in R.

Proof. Essentially obvious. Suppose {v,} is a Cauchy sequence in
E. Given ¢, there exists N such that if n, m 2 N then |lv, — v, |l <e But
then for eachi = 1, ... k we have

Ixni - xmil <eg
and so the i-th coefficient sequence is Cauchy. Conversely, if every co-
efficient sequence is Cauchy, for each i we find N; such that whenever
n, m 2 N; then [x,; — x,,;] <e. We let N be the maximum of Ny,...,N,.
Then for m, n = N we get

"U,, - l),,," <e,

so the sequence {v,} is Cauchy, thus proving Theorem 4.1.

We continue with the space E, having the sup norm with respect to a
basis.

Theorem 4.2. The space E is complete. The sequence {v,} being as
above, if

lim x,; = y;
n-*cw
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fori=1,....k, then

3
lim v, = Y ye
n—cw i=1

and conversely.

Proof. Given e, there exists N such that if 7> N then |x,; — il <e
for all i=1,....,k. Then |v,—wl <¢, if w=Y ye;. The converse is
equally obvious. Hence if {v,} is a Cauchy sequence in E its coefficient
sequences converge to y,,...,y,, respectively, and so v, converges to

w=) ye.

So far, to be precise, Theorem 4.2 should really be stated as saying that
E is complete with respect to the sup norm, or any norm equivalent to it.
However, this restriction is unnecessary, as we now prove.

Theorem 4.3. Let E be a finite dimensional vector space over R. Then
any two norms on E are equivalent. In particular, every norm on R is
equivalent to the sup norm.

Remark. Using Theorem 2.2 and Exercise 3 of Chapter VIII, one can give
a formally much shorter proof of the present theorem.

Proof. Let k = dim E be the dimension of E. We prove the theorem by
induction on k. Suppose k=1 and let {e,} be a basis of E over R. Let
I | be a norm on E. Then for xeR,

Ixe Il = 1xIlle, Il

so any two norms are simply a constant multiple of each other, and hence
are equivalent. We then prove the theorem by induction on k. Assume
the theorem proved for k — 1, k 2 2. Fix a basis {e,,...,e} of E. It will
suffice to prove that a given norm || || is equivalent to the sup norm || |l,.
One inequality is easy to prove. A vector v € E can be written as a linear
combination v = xjej + - -+ + Xpex, Whence

ol = lIx,ey + -+ + xell
S xglllegll + -+ + [xil llell

= Gilivllo
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where
Cy = llegll + - + llell.

Conversely, we must prove that there exists a number C > 0 such that
for all ve E we have

llollo < Clloll.

Suppose no such constant exists. Given a positive integer m, there exists
v # 0 in E such that

llvllo > m|lo]l.
If x; is the component of this vector v having maximum absolute value of

all the components, we divide both sides of the preceding inequality by
Ix;|. We let v,, = x; *v. Then we still have

omllo > m v, |l.

Furthermore, the j-th component of v, is equal to 1, and all components of
v,, have absolute value <1. Thus we have

*) lomllo=1 and o, <1/m.

For some fixed index j with 1 < j <k, there will be an infinite set J of
integers m for which (*) is satisfied. We fix this integer j from now until the
end of the proof.

We let F be the subspace of consisting of all vectors whose j-th
coordinate is equal to 0. The norm on E induces a norm on F. By
induction, the norm | || on F is equivalent to the sup norm on F, and in
particular, there exists a number C, > 0 such that for all w e F we have

Iwllo = Gy lIw|l.
For each m € J we can write
Uy = € + Wy, or Wi = U — €

with some element w,, € F. Given ¢, take N such that 2/N<e Ifmnz=N
and m,n € J, then

2
[P — Wil < o — | < + N
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Hence {w,} is a Cauchy sequence with respect to || [, and by induction
with respect to the sup norm on F. Since F is complete, it follows that
{w,,} converges to some element w € F with respect to the sup norm. (The
limit is taken for m — oo and m € J as above.) Now we have for m € J:

llej + wll < llej + wanl| + || — w].

By (*) and the convergence w, — w the limit of the right side is 0, so
|lej + || = 0 and hence ¢; + w = 0. This is impossible because w € F and ¢
is not in F. This contradiction proves the theorem.

We now consider systematically the three norms on the space of con-
tinuous functions on a finite interval.

The sup norm. The space C°([0, 1]) is complete for the sup norm.
This will be proved in Chapter VII, Theorem 3.2.

The L' and L?-norms. The space C°([0, 1]) is not complete for each one
of these two norms. To see this, we have to exhibit for each of these
norms a sequence which is Cauchy but does not have a limit in C°([0, 1]).
We do this for the L*-norm, and leave it as an exercise for the L*-norm.
Let

1/ /x ifimsx<1,
S = Jn if0sSxs<1m

The graph of f, is a truncation of the function f(x) = l/\/;c, defined for
0 < x £1, as shown.
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From elementary calculus, we assume elementary properties of the im-
proper integral which allow us to evaluate integrals of some functions
which are not continuous on [0, 1], for instance:

1
=2

1 1
I XMW gx =lim | x712dx = 2x'?
0 o

€=0Je

In some sense the function f is the limit of the sequence {f,}, but is not
in C°([0, 1]). In any case, we can apply the formalism of integration, and
the usual inequalities hold, i.e. it is a routine matter to verify ad hoc that
the following steps are valid. First we can define the L'-norm ad hoc on
differences f — f,, namely

1 In
(1 If=fll = L [f(x) = fu(x)l dx = L 72 — /m) dx

Hence for positive integers, m, n, we have

1 {
2 Sl S =Tl + 1 = fully S —= + =
@ R T e e

Given ¢, if \/N > 1/, then the right side is < 2, whence {f,} is L'-

Cauchy. Actually, equality (1) shows that {f,} is L'-convergent to f.
However, there is no continuous function g on [0, 1] such that {f,} is

L'-convergent to g. Because if there were such a function g, then

I =gl =If =Sl +1fu—glh =0 as n— oo,

whence || f— ¢gll, =0, that is
1

J |f(x) = g(x)| dx = 0.
0

But f, g are continuous on the half-open interval (0, 1], and the usual
argument shows that if there is some c € (0, 1] such that f(c) # g(c), then
|f(x) = g(x)| > 0 for x in some neighborhood of ¢, so the above integral is
actually > 0. This proves that the sequence {f,} has no L'-limit in
CO([0, 1]), which is therefore not complete.

In my Real and Functional Analysis, Chapter VI, you can see how one
finds a complete normed vector spacc of functions in a natural way,
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extending the L'-norm above. This involves a study relating pointwise
convergence, sup-norm convergence, and L'-convergence simultaneously.

VI, §4. EXERCISES

1. Give an example of a sequence in CO([0, 1]) which is L?-Cauchy but not sup
norm Cauchy. Is this sequence L'-Cauchy? If it is, can you construct a
sequence which is L2-Cauchy but not L'-Cauchy? Why?

2. Let f,(x)=x", and view {f,} as a sequence in C°([0,1]). Show that {f,}
approaches 0 in the L'-norm and the L?-norm, but not in the sup norm.

w

. Let | |, and | |, be two equivalent norms on a vector space E. Prove that
limits, Cauchy sequences, convergent sequences arc the same for both norms.
For instance, a sequence {x,} has the limit v for onc norm if and only if it has
the limit v for the other norm.

4. Show that the space C°([0, 1]) is not complete for the L2-norm.

Almost all the time it has been appropriate to deal with subsets of normed
vector spaces. However, for the following exercises, it is clearer to formulate them
in terms of metric spaces, as in Exercises 1 and 2 of §2. The notion of Cauchy
sequence can be defined just as we did in the text, and a metric space X is said to
be complete if every Cauchy sequence in X converges. We denote the distance
between two points by d(x,, x,).

5. The semiparallelogram law. Let X be a complete metric space. We say that X
satisfies the semiparallelogram law if for any two points x,, x, in X, there is a
point z such that for all xe X we have

d(xy, x,)? + 4d(x, 2)? £ 2d(x, x,)? + 2d(x, x;)%

(a) Prove that d(z, x,) = d(z, x;) = d(x,, x,)/2. [Hint: Substitute x = x, and
X = X, in the law for one inequality. Use the triangle inequality for the other.]
Draw a picture of the law when there is equality instead of an inequality.
(b) Prove that the point z is uniquely determined, ie. if = is another point
satisfying the semiparallelogram law then z = =",

In light of (a) and (b), one calls z the midpoint of x,, x,.

I

(Bruhat-Tits—Serre.) Let X be a complete metric space and let S be a bounded
subset. Then S is contained in some closed ball Bg(x) of some radius R and
center x € X. Define r (depending on S) to be the inf of all such radii R with all
possible centers x. By definition, there exists a sequence {r,} of numbers > r
such that 'lin; r, = r, together with a sequence of balls _ﬁ,,, (xn) of centers X,, such

that B, (x,) contains S. In general, it is not true that there exists a ball B,(x)
with radius precisely  and some center x, containing S. If such a ball exists, it
is called a ball of minimal radius containing S. Prove the following theorem:

Let X be a complete metric space satisfying the semiparallelogram law. Let S be
a bounded subset. Then there exists a unique closed ball B,(x,) of minimal radius
containing S.



150 NORMED VECTOR SPACES [VL, §4]

=

[Hint: You have to prove two things: existence and uniqueness. Use the
semiparallelogram law to prove each one. For existence, let {x,} be a sequence
of points which are centers of balls of radius r, approaching r, and B, (x,)
contains S. Prove that {x,} is a Cauchy sequence. Let ¢ be its limit. Show
that B,(c) contains S. _ _

For uniqueness, again use the semiparallelogram law. Let B,(x,) and B,(x,)
be balls of minimal radius centered at x,, x,. Let z be the midpoint, and use
the fact that given e, there exists an element x € S such that d(x,z) 2 r — €]

The center of the ball of minimal radius containing S is called the circum-
center of S.

Let X be a metric space. By an isometry of X we mean a bijection
gX-X
such that g preserves distances. In other words, for all x,, x, € X we have

d(g(xl)9 g(xz)) = d(x,, x3).

If plane geometry was properly taught in high school, you should know that
translations, rotations and reflections are isometries of the euclidean plane, and
that all isometries of the plane can be obtained by composition of these special
ones. In any case, these mappings provide examples of isometries. Note that if
g1, g, are isometries, so is the composite g, 0 g,. Also if g is an isometry, then
g has an inverse mapping (because g is a bijection), and the isometry condition
immediately shows that g™*: X — X is also an isometry. Note that the identity
mapping id: X —» X is an isometry.

Let G be a set of isometries. We say that G is a group of isometries if
G contains the identity mapping, G is closed under composition (that is, if
g1, 92€G then g,0g,€G), and is closed under inverse (that is, if g€ G,
then g~' € G). One often writes g,g, instead of g, o g,. Note that the set of
all isometries is itself a group of isometries.

Let x'e X. The subset Gx' consisting of all elements g(x) with ge G is
called the orbit of x' under G. Let S denote this orbit. Then for all g€ G and
all elements x € § it follows that gx € S. Indeed, we can write x = g,x’ for some
g, € G, and then

9(91x) = g(g:(x)) = (9°g,)(x)eS, and gog,eG by assumption.

In fact, g(S) = S because G contains the identity mapping.

After these preliminaries, prove the following major result.

. Bruhat-Tits fixed point theorem. Let X be a complete metric space satisfying the

semiparallelogram law. Let G be a group of isometries. Suppose that an orbit is
bounded in X. Let x, be the circumcenter of this orbit. Then x, is a fixed point
of G, that is, g(x,) = x, for all g€ G.

Historical comments. The last three exercises resulted from a century of re-

search in rather fancy mathematics. We can’t go into it, but it involves research
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on surfaces of negative curvature by von Mangoldt and Hadamard at the end of
the nineteenth century, and by Cartan in the 1920s, when Cartan formulated a
fixed point theorem under conditions of compactness and negative curvature. In
1972, Bruhat-Tits set up the semiparallelogram law as a fundamental hypothesis,
and proved the fixed point theorem given here in Exercise 7. [*“Groupes réductifs
sur un corps local I,” Publications IHES, 41 (1972), pp. 5-25).] Thus the theorem
was embedded and applied in fancy mathematics. Serre formulated and proved
what we gave here as Exercise 6, the existence of the circumcenter. An exposition
of Serre’s remark was made by K. Brown, Buildings, Springer-Verlag, 1989,
Chapter VI, §5, Theorem 2. Then completely elementary, beautiful, and powerful
results could be extracted from the fancy context, as I have done here in Exercises
5, 6, and 7. Note how the exercises themselves are totally elementary, but even a
discussion of their history is not. That’s life, but one should not let the deep history
hide or obstruct those results, accessible at the present level.

VI, §5. OPEN AND CLOSED SETS

Let S be a subset of a normed vector space E. We shall say that S is open
(in E) if given v € S there exists » > 0 such that the open ball of radius r
centered at v is contained in S.

Example 1. An open ball is an open set. Indeed, let B be the open ball
of radius r > O centered at some point ve E. Given we B, we have
|[w—v|<r, say |w—v|=s. Select §>0 such that s+ <r (for
instance § = (r — 5)/2). Then the open ball of radius & centered at w is
contained in B. Indeed, if |z — w| < ¢ then

lz—v|S|z—w|+|w—v|Sd+s<r

Picture:

We emphasize that our notion of open set is relative to the given normed
vector space in which the set lies. For instance, if we view R as a subspace
of R¥ (consisting of all vectors whose i-th coordinate is 0 for i > 1), then R
is open in itself, but of course is not open in R,
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Remark. If a set is open with respect to the given norm, it is also open
with respect to any equivalent norm.

This remark is immediate from the definitions. Prove it in detail as an
exercise.

For example, let E =R* and let ve R* Consider the two norms || ||
and | | equal to the sup norm and the euclidean norm respectively. Then
any open ball in one norm contains an open ball in the other norm,
centered at the same point. The balls for the sup norm are squares for the
euclidean norm.

We used open balls to define open sets. Note that a set S is open if and
only if for each point x of S there exists an open set U such that x € U and
U is contained in S. Indeed, this condition is certainly satisfied if S is open,
taking U to be the prescribed open ball. However, conversely, if this
condition is satisfied, we can find an open ball B centered at x and con-
tained in U, and then B = U < §, so that S is open.

If x is a point of E, we define an open neighborhood of x to be any open
set containing x.

Let U, V be open setsin E. Then U N V is opsn.

Proof. Given ve U n V, there exists an open ball B of radius r centered
at v contained in U, and there exists an open ball B’ of radius r' centered at
v contained in V. Let 6 = min(r, r'). Then the open ball of radius § cen-
tered at v is contained in U n ¥, which is therefore open.

By induction, it follows that if U,,...,U, are open, then U; n---n U,
is open. Thus the intersection of a finite number of open sets is open.
However, the intersection of an infinite number of open sets may not be
open. For instance, let U, be the open interval —1/n < x < 1/n in R.
The intersection of all U, (n = 1, 2,...) is just the origin 0, and is not open
mnR

Note that our definition of open set is such that the empty set is open.
Furthermore, the whole space E itself is open.

Let I be some set, and suppose given for each i€ I an open set U;. Let
U be the union of the U,, that is the set of all x such that x € U, for some i.
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Then U is open, because given x € U, we know that x € U, for some i, so
there exists an open ball B centered at x such that xe Bc U; < U,
whence U is open.

Example 2. Let S be an arbitrary subset of E, and for each x e S, let
B, be the open ball of radius 1. The union of all balls B, for all xe S is
open.

Example 3. Let E =R, and let S be the set of integers n > 1. For
each n, let B, be the open interval centered at n of radius 1/n. The union of
all B, for all n > 1 is an open set which looks like this:

‘ . y ¢ Y ¢ ) JRY
t t t Tt Ay A
5

1 2 3 4

We define a closed set in a normed vector space E to be the complement
of an open set. Thus a set S is closed if and only if given a point y € E,
y ¢ S, there exists an open ball centered at y which does not intersect S.

Let S be a subset of E. Let ve E. We say that v is adherent to S if
given e there exists an element x e S such that |x — v| < e. This means
that the open ball of radius € centered at v must contain some element of
S for every €. In particular, if v € S, then v is adherent to S.

We observe that every adherent point to S is the limit of a sequence in S.
Indeed, if v is adherent to S, given n we can find x,€S such that
|x, — v| < 1/n, and the sequence {x,} converges to v. Given ¢, find N
such that 1/N <e. If n 2 N then |x, — v] < 1/n £ 1/N <¢, so v is the
limit of {x,}.

Conversely, if v € E is the limit of a sequence {x,} with x,, € S for all n,
then v is adherent to S, as follows at once from the definition.

Theorem 5.1. Let S be a subset of a normed vector space E. Then S is
closed if and only if S contains all its adherent points.

Proof. Assume that S is closed. If v is an adherent point, then any open
ball centered at v must contain some element of S by definition, and hence
v cannot be in the complement of S. Hence v lies in S. Conversely, assume
that S contains all its adherent points. Let y be in the complement of S.
Then y is not adherent to S, and so there exists some open ball centered at
y whose intersection with S is empty. Hence the complement of S is open,
thereby proving the theorem.

Corollary 5.2. The set S is closed if and only if the following condition is
satisfied. Every seq e {x,} of el s of S which converges in E has
its limit in S.
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Proof. If a sequence of elements of S converges to an element v € E,
then v is adherent to S. If S is closed, then v € S. Conversely, assume that
every sequence in S which converges in E has its limit in S. Let v be an
adherent point of S. Given n, there exists x, € S such that |x, — v] < 1/n.
The sequence {x,} converges to v, and by hypothesis, v € S, hence § is
closed.

Remark. In the Corollary, we are not asserting that every sequence in
S has a limit in S. We are merely asserting that if a sequence in S has a
limit in E, then that limit must be in S. We are not even asserting that
every sequence in S has a convergent subsequence. For instance, let S be
the set of positive integers n in R, that is § = Z*. Then S is closed in R,
but no subsequence of S has a limit.

Example 4. A closed interval is closed in R. The set of numbers con-
sisting of 1/n (all positive integers n) and O is closed in R. However, the
set of all numbers 1/n (for all positive integers n) is not closed in R. The
number 0 lies in the complement, but any open ball centered at 0 contains
some number 1/n.

Proposition 5.3. Let S, T be closed setsin E. Then S U T is closed.

This can be verified directly, or better, follows formally from the
analogous statement for open sets. Indeed, let us denote by ¢S = %;S the
complement of S in E, that is the set of all x € E such that x¢S. Then
@(S U T) = S N ¥T, and hence the complement of S U T is open, so that
S u T is closed.

By induction, a finite union of closed sets is closed.

In a similar way, one can prove that an infinite intersection of closed sets
is closed, because an infinite union of open sets is open. If I is some set,
and for each i we have associated a closed set S;, then the complement of
the intersection

ns:

iel

is the union of the sets ) S;, and is open. Hence this intersection is

iel
closed.

For example, let §;, >S5, 5---58,>--- be a sequence of closed
sets such that S, > S, ;. Then the intersection is closed. Note that this
intersection may be empty. For instance, taking E = R, let S, be the set
of all numbers x such that x = n. Then S, is closed, and the intersection of
all S, is empty.
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Theorem 5.4. Let E, F be normed vector spaces, and let E x F have the
sup norm. Let U be open in E and V open in F. Then U x V is open in
E x F. If S is closed in E and T is closed in F, then S x T is closed in
E x F.

Proof. Let ue U and ve V. There exists an open ball B in E centered
at u and contained in U, and there exists an open ball B' in F centered at
v and contained in V. Let r be the minimum of the radii of B and B’ and
let B,, B, be the open balls of radius r in E and F respectively, centered at
u and v respectively. By definition of the sup norm, B, x B is then the
open ball of radius r centered at (u,v) in E x F, and is contained in
U x V, thus showing that U x V is open.

Now for the statement about closed sets, let (x, y) be in the complement
of Sx T. Thus x¢S or y¢ T. Say x ¢S. There exists an open set W
in E containing x whose intersection with S is empty. Let W’ be an open
set in F containing y. Then W x W’ is an open set in E x F, whose
intersection with § x T is empty. Hence S x T is closed. This proves the
theorem. ¢ \

By induction, the theorem extends to a finite number of factors. In
particular:

Corollary 5.5. Let S, ...,S, be closed sets in R. Then
Sy x - xS,

is closed in R".

For instance, if S; is the interval [0, 1], then

Slx...xsn

is a closed n-cube in R". (For n = 2, it is the closed square, and for n = 3 it
is what we would ordinarily call the closed cube.)

There is a fairly large number of basic statements about closed sets
whose proofs will be left as (simple) exercises. However, we state here
some basic definitions, giving rise to these statements. _

Let S be a subset of a normed vector space E, and let S denote the set
of all points in E which are adherent to S. We call S the closure of S. In
Exercise 1, you will prove that § is closed, and thus deserves its name.

If S is a subset of T and S = T < §, then we say that S is dense in T.

Example 4. You can easily verify the following assertions, in the
simplest case when E =R or R".
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(a) Let a < b be real numbers. The interval [a, b] is closed, and is the
closure of the open interval (a, b). It is also the closure of the half open
intervals [a, b) or (a, b].

(b) The infinite interval (a, o) consisting of all x > a is open. It closure
is the infinite closed interval [a, 00).

(c) The rational numbers are dense in R.

(d) In R", the open ball of radius r > 0 is dense in the closed ball of
radius r.

(e) In R", the set of all points (a,, ...,a,) whose coordinates are rational
numbers is dense in R"”. Thus R, and R”, have denumerable dense subsets,
even though neither R nor R” are denumerable.

Let S be a subset of a normed vector space E. Let X be a subset of S.
We say that X is open in S if there exists an open set U in E such that
X =SnU. Alternatively, we see that X is open in S if and only if, for
each point x € X, there exists € > 0 such that B.(x) n S is contained in X.
We define a subset X to be closed in S if there is a closed set Z in E such
that X =SnZ.

Remark. Let S be open in E. Then a subset X of S is open in S if and
only if it is open in E. Similarly, let S be closed in E. Then a subset of S
is closed in S if and only if it is closed in E. It is an exercise to give the
proofs of these statements. See Exercise 9.

Identify R with the x-axis in R% Then R is open in R, but is not open
in R% Similarly, an open interval on R is open in R, but is not open in
R2 If the interval is, say, (a,b) with a <b, then this interval is the
intersection of an open set in R? with R. For instance, we can take the
open set in R? to consist of all numbers (x,y) with a <x <b, and
—l<y<l.

It is sometimes useful to use continuous functions to determine open
and closed sets. Let S be a subset of a normed vector space. Let veS
and let f:S— F be a map into some normed vector space F. We shall
say that f is continuous at v if given e there exists § such that whenever
xeS and |x —v| < § then |f(x) — f()] < e. We say that f is continuous
on S if f is continuous at every v € S.

If f: S — Fis a map, and T is a subset of F, we recall that f ~!(T) is the
set of all x € § such that f(x)e T. We call f~!(T) the inverse image of T
by f.

Theorem 5.6. Let S be a subset of a normed vector space E. Let
f:8—>F be a mapping into a normed vector space F. Then f is continu-
ous if and only if, for every open set V in F, the inverse image (V) is
openin S. If T is a closed subset of F, and f is continuous, then {=(T)
is closed in S.



[VI, §5]1 OPEN AND CLOSED SETS 157

Proof. Assume that f is continuous. Let V be open in F and let x e S
be such that f(x)e V. Put y=f(x). From the definition of being open,
there exists € >0 such that B(y) = V. By the definition of continuity,
there exists é > 0 such that

ifveS and |v— x| < 6, then |f(v) — y| <¥¢,

so f(v) e B(y). Hence B;(x)nS < f~*(V), so f~}(V) is open in S.

Conversely, assume that the inverse image under f of an open set in
F is open in S. Let xeS and f(x)=y. Given ¢, the inverse image
S7'(B.(y)) is open in S, so there exists & > 0 such that

B;(x) " S < 7 (BL(y)).

This means precisely that f is continuous at x, and concludes the proof of
the first statement. We leave the proof of the statement about closed sets
to the reader.

Example 5. A polynomial f is continuous. Thus the set of numbers x
such that f(x) < 3 is open in R because the set of numbers y such that
y < 3is an open set ¥ in R, and the set of numbers x such that f(x) < 3 is
equal to f~ (V).

The norm function on a normed vector space E is continuous (with a
vengeance). Therefore:

Let r be a number > 0. Then the r-sphere S,(0) and the r-ball B,(0) are
closed.

Proof. For the sphere, we have S,(0) = g~(r), where g is the norm,
g(x) = |x|. Since a single real number is closed, it follows that g~'(r) =
S,(0) is closed. For the ball, we have B,(0) = g7*([0, r]), and the closed
interval [0, r] is closed. Hence so is the ball B,(0).

Warning. The previous statements are made concerning certain closed
sets with respect to a given norm. Of course these sets will also be closed
with respect to any equivalent norm. However, they may not be closed
with respect to a norm which is not equivalent to the given one.

VI, §5. EXERCISES

1. Let S be a subset of a normed vector space E, and let S denote the set of all points
of E which are adherent to S.
(a) Prove that S is closed. We call S the closure of S.
(b) If S, T are subsets of E,and S < T, showthatS = T
(c) IfS, T are subsets of E, show that SUT =§Su T
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(d) Show that S=§.

(e) If S T < §, prove that T=§.

(f) Let E, F be normed vector spaces, S a subset of E and T a subset of F.
Take the sup norm on E x F. Show that S x T) =S x T

A boundary point of S is a point v € E such that every open set U which con-
tains v also contains an element of S and an element of E which is not in S.
The set of boundary points is called the boundary of S, and is denoted by dS.
(a) Show that S is closed.

(b) Show that S is closed if and only if S contains all its boundary points.

(c) Show that the boundary of S is equal to the boundary of its complement.

An element u of S is called an interior point of S if there exists an open ball B
centered at u such that B is contained in S. The set of interior points of S is
denoted by Int(S). It is obviously open. It is immediate that the intersection
of Int(S) and S is empty. Prove the formula

S = Int(S) L 8S.

In particular, a closed set is the union of its interior points and its boundary
points. If S, T are subsets of normed vector spaces, then also show that

Int(S x T) = Int(S) x Int(T).

Let S, T be subsets of a normed vector space. Prove the following:

(@) d(SuUT)cdSUIT.

(b) SN T)=dSUIT.

(c) Let S — T denote the set of elements xeS such that x¢ T. Then
&S — T) = S U 0T. [Note: You may save yourself some work if you use the fact
that 0%S = 0S, where %S is the complement of S, and use properties
likeS — T=S8Sn¥T,aswellas4(S n T) = €S U ¥T.]

d) oS x T)= (@S x T)u (S x aT).

Let S be a subset of a normed vector space E. An element v of S is called
isolated (in S) if there exists an open ball centered at v such that v is the only
element of § in this open ball. An element x of E is called an accumulation
point (or point of accumulation) of S if x belongs to the closure of the set
S — {x}.

(a) Show that x is adherent to S if and only if x is either an accumulation point of
S or an isolated point of S.

(b) Show that the closure of S is the union of S and its set of accumulation points.

Let U be an open subset of a normed vector space E, and let v € E. Let U, be the
set of all elements x + v where x € U. Show that U, is open. Prove a similar
statement about closed sets.

Let U be open in E. Let t be a number > 0. Let tU be the set of all elements tx
with x € U. Show that tU is open. Prove a similar statement about closed sets.

. Show that the projection R x R — R given by (x, y)+ x is continuous. Find

an example of a closed subset 4 of R x R such that the projection of A on the
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first factor is not closed. Find an example of an open set U in R? whose
projection is closed, and U # R2

Prove the remark before Theorem 5.6.

. Let U be open in a normed vector space E and let ¥ be open in a normed

vector space F. Let
f:U-V and g:V-U
be continuous maps which are inverse to each other, that is
feg=idy and geof =idy,

where id means the identity map. Show that if U, is open in U then f(U,) is open
in V, and that the open subsets of U and V are in bijection under the association

Uy— f(U,) and Vi g(Vy).
Let B be the closed ball of radius r > 0 centered at the origin in a normed

vector space. Show that there exists an infinite sequence of open sets U, whose
intersection is B.

. Prove in detail that the following notions are the same for two equivalent

norms on a vector space: (a) open set, (b) closed set, (c) point of accumulation
of a sequence, (d) continuous function, (e) boundary of a set, and (f) closure of
a set.

Let | |, and | |, be two norms on a vector space E, and suppose that there
exists a constant C >0 such that for all xe E we have [x|; £ C|x|,. Let
fi(x) =|x|,. Prove in detail: Given ¢, there exists ¢ such that if x, y € E and
|x — ylp < 6, then | f1(x) — f1())] < €. [Remark. Since f; is real valued, the last
occurrence of the signs | | denotes the absolute value on R.] In particular, f,
is continuous for the norm | [,.

. Let BS be the set of all sequences of numbers

X =(x1, X3, ce0sXpsees)

which are bounded, i.e. there exists C > 0 (depending on X) such that |x,| < C
for all ne Z*. Then BS is a special case of Example 2 of §1, namely the space
of bounded maps #(Z*, R). For X € BS, the sup norm is

X1l = sup |x,l.
n

ie. | X| is the least upper bound of all absolute values of the components.

(a) Let E, be the set of all sequences X such that x, =0 for all but a finite
number of n. Show that E, is a subspace of BS.

(b) Is E, dense in BS? Prove your assertion. [Note: In Theorem 3.1 of
Chapter VII, it will be shown that BS is complete.]



CHAPTER VII

Limits

VII, §1. BASIC PROPERTIES

A number of notions developed in the case of the real numbers will now
be generalized to normed vector spaces systematically. Let S be a subset
of a normed vector space. Let f:S — F be a mapping of S into some
normed vector space F, whose norm will also be denoted by | |. Let v be
adherent to S. We say that the limit of f(x) as x approaches v exists, if
there exists an element w e F having the following property. Given ¢,
there exists & such that for all x € S satisfying

|x—v|<é
we have
1 fG) —wl<e
This being the case, we write
lim f(x) = w.
o8

Proposition 1.1. Let S be a subset of a normed vector space, and let v
be adherent to S. Let S’ be a subset of S, and assume that v is also
adherent to S'. Let f be a mapping of S into some normed vector space
F. If

lim f(x)

x=v
xeS

160
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exists, then

lim f(x)

x=v
xeS’

also exists, and these limits are equal. In particular, if the limit exists, it

is unique.

Proof. Let w be the first limit. Given ¢, there exists & such that when-
ever x€ S and |x — v| < § we have

1f(x) —w|l<e

This applies a fortiori when x € ' so that w is also a limit for x e §'. If w’
is also a limit, there exists &, such that whenever xe S and |x — v| < §,
then

f&x)—wl<e
If [x — v| < min(d, §,) and x € §, then
w—wl=lw— )+ () - w|< 2
This holds for every ¢, and hence |[w—w|=0, w—w =0, and
w = w', as was to be shown.
If f is a constant map, that is f(x) = w, for all x € S, then

lim f(x) = wy.

x=v

Indeed, given ¢, for any 6 we have | f(x) — wo| =0 < €.
If v € S, and if the limit

lim f(x)

x=v

exists, then it is equal to f(v). Indeed, for any &, we have |v — v| < 4,
whence if w is the limit, we must have | f(v) — w| < e for all e. This implies
that f(v) = w.

We define an element v of S to be isolated (in S) if there exists an open
ball centered at v such that v is the only element of S in this open ball. If v
is isolated, then

lim f(x)

x=v

exists and is equal to f(v).
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The rules for limits of sums, products and composite maps apply as
before. We shall list them again with their proofs.

Limit of a sum. Let S be a subset of a normed vector space and let v be
adherent to S. Let f, g be maps of S into some normed vector space.
Assume that

lim f(x) =w and lim g(x) = w'.

x=v x=v

Then im(f + g)(x) exists and is equal to w + w'.

x=v

Proof. Given ¢, there exists § such that if xe§ and |x —v| < we
have

/() —wl<e
lg(x) —w'|<e
Then
[f(x) + g() —w = W[ S| f(x) — w| + |g(x) — w'| <2e
This proves that w + w' is the limit of f(x) + g(x) as x — v.

Limit of a product. We do not have a product as part of the given
structure of a normed vector space. However, we may well have such
products defined, for instance the scalar products. Thus we discuss possible
products to which the limit theorem will apply.

Let E, F, G be normed vector spaces. By a product of E x F — G we
shall mean a map E x F — G denoted by (u, v)+>uv, satisfying the
following conditions:

PR1 Ifu,u'eEand veF, then (u + u')v = uv + u'v. If v, v € F, then
u( + v') = uv + uv'.

PR2. If ceR, then (cu)v = c(uv) = u(cv).

PR 3. For all u, v we have |uv| < |u| |v].

Example 1. The scalar product of vectors in n-space is a product.
Condition PR 3 is nothing but the Schwarz inequality!

Example 2. Let S be a non-empty set, and let E = %(S, R) be the
vector space of bounded functions on S, with the sup norm. If f is bounded
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and g is bounded, then one sees at once that the ordinary product fg is
also bounded. In fact, let C; = || f|| and C, = ||g||, so that | f(x)| < C,
and |g(x)| < C, for all x € S. Then

[fx)gx) = C.Co = [ 1 gl

for all xeS, whence || fgll = I/ llgll- The first two conditions of the
product are obviously satisfied.

Example 3. If readers know about the cross product of vectors in R?,
they can verify that it is a product of R* x R® —» R3,

Example 4. View the complex numbers C as a vector space over R.
Then the product of complex numbers is a product satisfying our three
conditions. The norm is simply the absolute value.

Suppose given a product E x F - G. Let S be some set, and let
f:S—E and g: S — F be mappings. Then we can form the product
mapping by defining (fg)(x) = f(x)g(x). Note that f(x)eE and
g(x) € F, so we can form the product f'(x)g(x).

We now formulate the rules for limits of products.

Let S be a subset of some normed vector space, and let v be adherent to S.
Let E x F — G be a product, as above. Let

f:S—>E and g:S—>F
be maps of S into E and F respectively. If
lim f(x) =w and lim g(x) = z,
x=v x=v
then lim f(x)g(x) exists, and is equal to wz.
xX=v

Proof. Given ¢, there exists 6 such that whenever |x — v| < 6 we have

1 e
[ fG) — wl <3+ T

|<1 €
96 ==l <31

[fG <lwl+ 1.
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Indeed, each one of these inequalities holds for x sufficiently close to v, so
they hold simultaneously for x sufficiently close to v. We have

[ f()g(x) — wz| = | f(x)g(x) — f(x)z + f(x)z — wzl|
S 1)) — 2l + 1(fx) — whel
S1fGIgl) — 2zl + 1 f(x) — wl|z|

<£+€—e
272 7

thus proving our assertion.

The reader should have become convinced by now that it is no harder
to work with normed vector spaces than with the real numbers.
‘We have the corollaries as for limits of functions.

If c is a number, then
lim ¢f(x) = ¢ lim f(x);

x=v x=v

and if fy, f, are maps of the same set S into a normed vector space, then

lim(fi(x) — £(x)) = lim fy(x) — lim f;(x).

X—v
We also have the result in case one limit is 0.

We keep the notation of the product E x F — G, and again let f: S - E
and g: S — F be maps. We assume that f is bounded, and that lim g(x) = 0.
Then lim f(x)g(x) exists and is equal to 0. x=v

x-v

Proof. Let K > 0 be such that | f(x)| £ K for all x € S. Given ¢, there
exists & such that whenever |x — v| < we have |g(x)| < ¢/K. Then
|f(x)g(x)| = |f(x)||g(x)| < Ke/K = ¢, thus proving our assertion.

Limit of a composite map. Let S, T be subsets of normed vector spaces.
Letf:S — T and g: T— F be maps. Let v be adherent to S. Assume that

lim f(x)

XU
exists and is equal to w. Assume that w is adherent to T. Assume that

lim g(y)

yw
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exists and is equal to z. Then

lim g(f(x))

x=v

exists and is equal to z.

Proof. Given ¢, there exists 6 such that whenever y e T and |y — w| < 6
then |g(y) — z| < e. With the above § being given, there exists &, such
that whenever xeS and |x—wv| <&, then |f(x)—w| <d. Hence for
such x,

lg(f()) — 2zl <&
as was to be shown.

Limit of a quotient. Let f:S—R or f:S— C be a function. Let v be
adherent to S. Assume that lim f(x) exists, and is equal to z # 0. Then

lim 1/f(x) exists and is equal to 1/z.
Proof. The function wi—w™! is continuous on the set of real or com-
plex numbers # 0. For all x in S sufficiently close to v, the value f(x) is
close to z, and hence #0. The function x> 1/f(x) for xe S is the
composite of f and the inverse wsw™!. Therefore the desired limit
follows from the limit for the composite map proved previously.

Limits of inequalities. Let S be a subset of a normed vector space, and let
f:S =R, g:S— R be functions defined on S. Let v be adherent to S.
Assume that the limits

lim f(x) and lim g(x)

x=v xX—=v
exist. Assume that f(x) < g(x) for all x sufficiently close to v in S. Then

lim f(x) < lim g(x).

x—=v x—=v

Proof. Let o(x) =g(x) — f(x). Then ¢(x) =0 for all x sufficiently
close to v, and by linearity it will suffice to prove that lim (x) = 0. Let

x—v
y = lim ¢(x). Given ¢, we can find x € S such that |p(x) — y| < e But

x=v
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¢o(x) — y = lo(x) — y|. Hence
ox)—y<e and y>px) —e= —¢€
for every e. This implies that y > 0, as desired.

As before, we have a second property concerning limits of inequalities
which guarantees the existence of a limit.

Let S be a subset of a normed vector space, and let f, g be as in the preced-
ing assertion. Assume in addition that

w = lim f(x) = lim g(x).

x—v x—sv

Let h: S — R be another function such that

f&) = h(x) = g(x)

for all x sufficiently close to v. Then lim h(x) exists, and is equal to the
limit of f (or g) as x — v. x=v

Proof. Given ¢, there exists 6 such that whenever |x — v| < & we have
lgx) —wl<e and |f(x)—wl<eg
and consequently
0= g(x) = f() S 1fx) — wl| + [g(x) — w| < 2e
But

lw — h(x)| < |w — g(x)| + |g(x) — h(x)|
< e+ glx) —f(x)
<€+ 2 = 3¢,

as was to be shown.

We have limits with infinity only when dealing with real numbers, as in
the following context. Let S be a set of numbers, containing arbitrarily
large numbers. Let f:S— F be a map of S into a normed vector space.
We say that

lim f(x)

xX=+ 0
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exists if there exists w € F such that given ¢, there exists B > 0 such that
for all x € S, x = B we have | f(x) — w| < e. This generalizes the notion of
limit of a sequence, the set S being then taken as the set of positive integers.

The theorems concerning limits of sums and products apply to the
limits as x — oo, replacing the condition

“there exists J such that for [x — v| < 8"
by
“there exists B such that for x = B”

everywhere. The proofs are otherwise the same, and need not be repeated.
We summarize systematically the limits which occur:

lim, lim, lim.

n- o X= 0 x—v

Any statement of the usual type for one of these can be formulated for the
others and proved in a similar way. For this purpose, one occasionally
needs the condition for completeness formulated in terms of mappings
rather than sequences as follows.

Theorem 1.2. Let S be a subset of a normed vector space E. Let f:S - F
be a map of S into a normed vector space F, and assume that F is complete.
Let v be adherent to S. The following conditions are equivalent:

(@) The limit lim f(x) exists.
(b) Cauchy criterion. Given e, there exists 6 such that whenever x, y € S
and

Ix —v| <6, ly—vl<é,

then 1) — f)] < e o
(o) For every sequence {x,} in S converging to v, the limit lim f(x,)
exists.

Proof. Assume (a). We deduce (b) by a 2c-argument. If w is the limit
in (a), then

[f&x) = SIS 1SG) = wl + [w = fO),

so we get (b) at once.
Next assume (b). Let {x,} be a sequence in S which converges to v.
Then {f(x,)} is a Cauchy sequence in F. Indeed, given ¢, let é be as in
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(b). Then for all m, n sufficiently large, we have
|x, —v| <6 and % — 0| < 6.

Hence |f(xm) — f(>n)| < €, so the sequence {f(x,)} is Cauchy. Since F is
complete, the sequence {f(x,)} has a limit, thereby proving (c).

Assume (c). There is a sequence {x,} in S converging to v, and by
assumption, {f(x,)} converges to an element w in F. We need to prove
that w is the limit of f(x) as x — v. If not, there exists € > 0 such that for
all positive integers n there is an element y, € S satisfying

lyn—ol<ln but |fly)—wlZe

Let w’ = lim f(y,) which exists by assumption. Then we conclude that
|w’ — w| = €. However, the sequence (...,x,, ¥,,...) converges to v, so by
assumption the sequence (...,f(x,), f(y,)---) converges, both to w and to
w’, so w = w’, a contradiction which proves (a). This concludes the proof
of Theorem 1.2.

See Theorem 2.1 for the equivalence between (a) and (c) in the context
of continuity.

We conclude this section with comments on the dependence of limits on
the given norm.

Let E be a vector space, and let | |y, | |, be norms on E. Assume that these
norms are equivalent. Let S be a subset of E, and f: S — F a map of S into
some normed vector space F. Let v be adherent to S. We can then define
the limit with respect to each norm.

We contend that if the limit exists with respect to one norm, then it
exists with respect to the other and the limits are equal.

Suppose the limit of f(x) as x — v, x € S, exists with respect to | |, and
let this limit be w. Let C, > 0 be such that

[uly £ Cylul,

for all ue E. Given ¢, there exists , such that if xe S and |x — v|, < ,
then

| fx) —w|<e
Let 5 = 6,/C,. Suppose that x € S and |x — v|, < 5. Then

Ix —vly <&y,
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and consequently we also have | f(x) — w| < e. This proves that w is also
the limit with respect to | |,.

Similarly, if we have two equivalent norms on F, we see that the limit is
also the same whether taken with respect to one of these norms or the
other.

Finally, we note that there exist some associations satisfying PR 1 and
PR 2, and only a modified version of PR 3, namely:

PR3C. There exists a number C > 0 such that for all u, v we have
|uv| < Clul |v].

The study of such a generalized product can be reduced to the other one by
defining a new norm on E, namely

[xly = Clx]|-

Condition PR 3 is then satisfied for this new norm. Thus all the statements
involving limits of products apply. Actually, in practice, PR3 is satisfied
by most of the natural norms one puts on vector spaces, and the natural
products one takes of them.

VII, §1. EXERCISES

1. A subset S of a normed vector space E is said to be convex if given x, y€ S the
points

(1 —t)x+ty, 05t
are contained in S. Show that the closure of a convex set is convex.

2. Let S be a set of numbers containing arbitrarily large numbers (that is, given an
integer N > 0, there exists x € S such that x > N). Let f:S— R be a function.
Prove that the following conditions are equivalent:

(@) Given ¢, there exists N such that whenever x,y € S and x, y 2 N then

[f) - S <e

(b) The limit

lim £(x)

x=

exists.
(Your argument should be such that it applies as well to a map f: S — F of S into
a complete normed vector space.)
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Exercise 2 is applied most often in dealing with improper integrals, letting

.y B
fg=1im o

[ B~ Y0

3. Let F be a normed vector space. Let E be a vector space (not normed yet) and let
L:E— F be a linear map, that is satisfying L(x + y) = L(x) + L(y) and
L(cx) = cL(x) for all ce R, x, y€ E. Assume that L is injective. For each x € E,
define |x| = | L(x)|. Show that the function x+ |x| is a norm on E.

4. Let Ps be the vector space of polynomial functions of degree <5 on the interval
[0, 1]. Show that Py is closed in the space of all bounded functions on [0, 1] with
the sup norm. [Hint: Iff(x) = asx® + - + a, is a polynomial, associate to it the
point (as, . . - ,a,) in R®, and compare the sup norm on functions with the norm on
R%]

5. Let E be a complete normed vector space and let F be a subspace. Show that the
closure of F in E is a subspace. Show that this closure is complete.

o

Let E be a normed vector space and F a subspace. Assume that F is dense in
E and that every Cauchy sequence in F has a limit in E. Prove that E is
complete.

VII, §2. CONTINUOUS MAPS

Let S be a subset of a normed vector space, and let f: S — F be a map of S
into a normed vector space. Let v e S. We shall say that f is continuous at
vif

lim f(x)

exists, and consequently is equal to f(v). Put another way, f is continuous
at v if and only if given ¢, there exists § such that whenever |x — v| < § we
have

/) = fO)l <e

Here, as often in practice, we omit the x € S when the context makes it
clear.

Let S, be a subset of S. We say that f is continuous on So (or relatively
continuous on So) if f is continuous at every element of So. For con-
venience, we now take S = S,.

We emphasize that in the definition of continuity, we definitely take
veS. In§l, when investigating properties of limits, we took v adherent to
S, but not necessarily in S.

From the properties of limits, we get analogous properties for con-
tinuous maps.
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Sum. If f,g: S — F are continuous at v, then f + g is continuous at v.

Product. Let E, F, G be normed vector spaces, and Ex F -G a
product. Let f:S — E and g: S — F be continuous at v. Then the
product map fg is continuous at v.

Composite maps. Let S, T be subsets of normed vector spaces, and let F
be a normed vector space. Let

f:8>T and g:-T—>F

be maps. Let ve S and w = f(v). Assume that f is continuous at v and
g is continuous at w. Then g o f is continuous at v.

Quotient. Let f:S—R or f:S—C be continuous at v, and f(v) # 0.
Then 1/f is continuous at v.

All these follow from the corresponding property of limits. For the
composite, one can also repeat the proof of Theorem 4.2, Chapter IL

If fis a continuous map and c is a number, then ¢f is a continuous map.
Thus the set of continuous maps of S into a normed vector space F is itself
a vector space, which will be denoted by C°(S, F).

One can characterize continuity entirely by means of limits of certain
sequences, as in Theorem 1.2(c).

Theorem 2.1. Let S be a subset of a normed vector space, and let f: S - F
be a map of S into a normed vector space F. Let ve S. The map f is con-
tinuous at v if and only if, for every sequence {x,} of el s of S which
converges to v, we have

lim f(x,) = f(@©)-

n—s

Proof. Assume that f is continuous at v. Given e, there exists o
such that if |x — v| < & then | f(x) — f(W)| < e With this & given, there
exists N such that for n = N we have |x,—v|<d, and hence
|f(x) — f()| < ¢ thus proving the desired limit.

Conversely, assume that the limit stated in the theorem holds for every
sequence {x,} in S converging to v. It will suffice to prove: Given ¢,
there exists N such that whenever |x — v| < 1/N then | f(x) — f(0)| <e.
Suppose this is false. Then for some € and for every positive integer n there
exists x, €S such that |x, —v| < 1/n but |f(x,) — f@)|>e€ The se-
quence {x,} converges to v, and we have a contradiction which proves
that f must be continuous at v.

Again let S be a subset of a normed vector space, and let v be adherent
to S. Suppose that vis notin S. Let f: S — F be a map of S as before, and
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assume that

lim f(x) = w.

x=v

If wedefine fat v to be f(v) = w, then it follows from the definition of con-
tinuity that we have extended our map f to a continuous map on the set
Su{v}. We say that f has been extended by continuity. In a moment, we
shall define the notion of uniform continuity. In Exercises 7 and 8 you
will see how a uniformly continuous map on S can always be extended by
continuity to the closure of S. Exercises 10 and 12 show how this exten-
sion is possible for continuous linear maps. The situation with continuous
linear maps is especially important. See Theorem 1.2 of Chapter X, where
the matter will be treated from scratch.

Equivalent norms. We make the same remark with respect to continuity
that we made previously with respect to limits corresponding to equiva-
lent norms. Let | |; and | |, be equivalent norms on a vector space E.
Let S be a subset of E and f:S— F a map of S into a normed vector
space. Let ve E, v adherent to S. If f is continuous at v with respect to
| Iy, then f is also continuous at v with respect to | |,. This comes from
the fact that equivalent norms give rise to the same limits whenever the
limits exist.

The next theorem deals with maps into a product space. If Fy, ... ,F
are normed vector spaces, we can form F = F; x --- x F, with the
sup norm. A map f:S — F is given by coordinate mappings f;,...,fi
such that f(x) = (fi(x), ..., £i(x)), and f; maps S into F;. We shall deal

especially with the case when F = R¥ and f; are called the coordinate
functions of f.

Theorem 2.2. Let S be a subset of a normed vector space. Let
f:S>F=F; x---x Fy
be a map of S into a product of normed vector spaces, and let

S=Un- /)

be its representation in terms of coordinate mappings. Let v be adherent
to S. Then

lim f(x)

x=v
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exists if and only if

lim fi(x)

x=v

exists for each i = 1,....k. If that is the case and w is the limit of f(x),
w=(wy,...,w) withw; € F;, then w; = lim fi(x).

x=v

Proof. This theorem is essentially obvious. We nevertheless give the
proof in detail. Suppose

lim f(x) = w = (wy, ...,w).

x=v

Given ¢, there exists 6 such that if |[x — v| < & then

1f() —wl<e
Let f(x) = y = (yy, .. .,))- By definition, |y; — w;| < € whenever
Ix —v| <4,
so that
w; = lim fi(x).

x=v

Conversely, if w; = lim fi(x), for all i = 1,...,k, then given € there exists
x=v

d; such that whenever |x — v| < §; we have

i) —wil <e
Let 6 = min §;. By definition, when |x — v} < J each |fi(x) — w;| <€
fori=1,...,k and hence | f(x) — w| < ¢, so w is the limit of f(x) as x — v.

Our theorem is proved.

Corollary 2.3. The map fis continuous if and only if each coordinate map
fiis continuous, i =1, ...,k

Proof. Clear.

Uniform continuity

Suppose f is continuous on S. The & occurring in the definition of
continuity depends on v. That is, for each v € S, there exists 6(v) such that
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if |x — v| < &(v) then |f(x) — f(v)] <e. When one can select this é inde-
pendently of v, then the map f is called uniformly continuous. Thus f is
defined to be uniformly continuous if given ¢, there exists 6 such that
whenever x,yeS and |x — y| <& then |f(x) — f(y)| <e. The principal
criterion for uniform continuity is given in the chapter on compactness.
Here we give some examples.

Example 1. Let f(x) = 1/x. Then f is continuous on R* (the set of
real numbers > 0), but is not uniformly continuous. You can see this by
looking at values f(x) and f(y) for x, y near 0. Given €, numbers x and
y> 0 and approaching 0 have to be closer and closer together to make
|f(x) — f(y)| < e. For instance, let x = 1/n and y = 1/(n + 1). Then

1

nn + 1) but  |f(x) - fO) =1

Ix—yl=

Another way to see the non-uniform continuity is to use the mean
value theorem. We have

1/ = SO = Lf"©Ollx — yl,

where ¢ is between x and y. To get | f'(c)||x — y| <€, we need

[x — yl < €/lf' (),

and |f'(c)] >0 as x,y—0. Thus the choice of § in the definition of
continuity cannot be made independently of x, y.

Example 2. If f satisfies a Lipschitz condition on an interval, with
Lipschitz constant C # 0, then f is uniformly continuous on the interval.
Given €, we can select 6 = ¢/C, independently of x, y in the interval,
because by hypothesis,

/&) = SO = Clx — yl.

If you have not yet done it, you should now do Exercises 5 and 6 of
Chapter 1V, §3, to get a feeling for uniform or non-uniform continuity.

Example 3. In Chapter II, Theorem 4.6, we proved that a continuous
function on a bounded closed interval is uniformly continuous. This
theorem will be generalized considerably in Chapter VIII. For instance,
let S be a closed bounded set in R”. Let f be a continuous function on S.
Then f is uniformly continuous.
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Example 4. Let E = C°([q, b]) be the vector space of continuous func-
tions on [a, b], with the sup norm, and a < b. Let

I'=1E-R,

b
be the integral, that is, for fe E, I(f )=J. f(x)dx. Then I is a linear
map. Let C=b — a. Then by Corollary 2.2‘l of Chapter V, we have

N = ClIAl,

where | f|| is the sup norm of f. Then I is uniformly continuous, and is
actually Lipschitz, because

H) = @ =I(f — gl = Clf -4l

So if |If — gll <€/C then [I(f) — I(g)l <e. Let {f,} be a sequence in E,
converging to a function f in E, with respect to the sup norm. Then by
continuity, we have

lim I(f,) = I(f) or with the integral sign,
n-w

b b
lim [ f(9dx= I £) dx.

Thus the integral of the limit is the limit of the integral. This limit
property of the integral often occurs in the context of products. If {f;},
{g,} are sequences of continuous functions on [a, b] converging to f, g,
respectively for the sup norm, then the product f,g, converges to fg (cf.
Example 4 of §1), and so

b b
tim [ 090,09 dx = [ fix)g() .

In the next section, we shall discuss more systematically limits with
respect to the sup norm, which are called uniform limits. See also
Exercises 10—14 at the end of the present section for a continuation of
some of the above ideas.

Example 5. For this example, we define a fundamental notion, that of
distance not only between points, but between a point and a set. Let S be
a non-empty subset of a normed vector space E, and let v € E. The set of
numbers |x —v| for xe S is bounded from below by 0. We call its
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greatest lower bound the distance from S to v, or v to S, and denote it by
d(s, v) or d(v, S).

Theorem 2.4.

(a) We have d(S, v) = 0 if and only if v lies in the closure of S.
(b) The map ur— d(S, u) is uniformly continuous from E into R.

The proofs, which are easy, will be left for Exercise 1.

Counterexample. There may not be any point w of S such that d(S, v) =
|w—vl|. In the first place, if S is not closed, then a boundary point v of S
but not in S is at distance 0, and there is no point of S at distance 0 from
v. But much more seriously, even if S is closed, and v ¢ S, this phenome-
non may still occur in the case of infinite dimensional spaces. We now
give an example. Let E be the space of bounded sequences of numbers,
ie. bounded maps of Z* into R. Let e, be the n-th unit vector, with
component 1 in the n-th place, and 0 otherwise. Let x, = (1 + 1/n)e,. Let
S consist of all points x, with n = 2. Then you can verify that S is closed.
Furthermore, d(e,, S) = 1, but there is no point v € S such that d(e,, v) =
1. However, see Exercise 16.

Such an example does not exist is finite dimensional spaces. In Chapter
VIII, §2, Exercise 4, you will prove that if S is a closed subset of a finite
dimensional space, then there always exists some w € S such that d(S, v) =
lw—vl|

The distance function can be used to give an easy proof of the
following important theorem.

Theorem 2.5. Let S, T be two non-empty disjoint closed sets in a normed
vector space E. Then there exists a continuous function f on E such that

0S/=L f(8)=0and f(T)=1.

You can prove this in Exercise 1.
The next theorem shows how the condition of uniform continuity
allows one to extend a continuous mapping to the closure of a set.

Theorem 2.6. Let f:S— F be a mapping of a subset S of a normed
vector space E into a complete normed vector space F. Assume that fis
uniformly continuous on S. Then there exists an extension foffroa
continuous mapping of S into F.

Proof. See Exercise 8.

For an important application of Theorem 2.6, see Exercises 10-14, as
well as Theorem 1.2 of Chapter X.



[VII, §2] CONTINUOUS MAPS 177

VII, §2. EXERCISES

1.

(a) Prove Theorem 2.4(a).

(b) Prove Theorem 2.4(b). [Hins: Show that for all v,w € E, we have the inequal-
ity d(S,v) — d(S,w) < d(p,w), or equivalently d(S,v) < d(S,w) + d(v,w). First
note that for all xe S, d(x,v) < d(x,w) + d(v,w). Then take the g.Lb. for xe §
on the left, and follow that by taking the g.L.b. of d(x,w) + d(v,w) for x€ S on
the right.]

(c) Let S, T be two non-empty closed subsets of E, and assume that they are
disjoint, i.e. have no point in common. Show that the function

_ d(s, v)
IO =+ dTo)

is a continuous function, with values between 0 and 1, taking the value 0 on §
and 1on T.
(For a continuation of this exercise, cf. the next chapter, §2.)

2. (a) Show that a function f which is differentiable on an interval and has

w

w

bounded derivative is uniformly continuous on the interval.

(b) Let f(x) = x? sin(1/x?) for 0 < x £ 1 and f(0) = 0. Is f uniformly contin-
uous on [0, 1]? Is the derivative of f bounded on (0, 1)? Is f uniformly con-
tinuous on the open interval (0, 1)? Proofs?

(a) Show that for every ¢ > 0, the function f(x) = 1/x is uniformly continuous
for x = c.

(b) Show that the function f(x) = e™* is uniformly continuous for x 2 0, but
not on R.

(c) Show that the function sin x is uniformly continuous on R.

Show that the function f(x) = sin(1/x) is not uniformly continuous on the
interval 0 < x < =, even though it is continuous.

. (@) Define for numbers ¢, x:

S, x) = §f t#0, f(0,x)=x.

sin tx
t
Show that f is continuous on R x R. [Hint: The only problem is continuity

at a point (0, b). If you bound x, show precisely how sin tx = tx + o(tx).]
(b) Let

2 2
o ‘;Til if (x, ) # (0, 0)
X, y) =

1 if (%) = (0,0),

Is f continuous at (0,0)? Explain.
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6. (a) Let E be a normed vector space. Let 0 <ry <r:. LetveE. Show that
there exists a continuous function f on E, such that:

f(x) = 1 if x is in the ball of radius r; centered at v,
f(x) = 0if x is outside the ball of radius r» centered at v.
We have 0 < f(x) <1 for all x.

| Hint: Solve first the problem on R, then for the special case v = 0.]
(b) Let v, we E and v # w. Show that there exists a continuous function f on
E such that f(v)=1and f(w)=0,and 0 < f(x) <1 for all xe E.

7. Let S be a subset of normed vector space E, and let f: S — F be a map of S
into a normed vector space. Let S’ consist of all points ve E such that v is
adherent to S and l\}l‘l‘lu f(x) exists. Define f(v) to be this limit. If v € S, then

= xeS = s .
S(v) =f(v) by deﬁn\ifion, so f is an extension of f to S’. Show that f is contin-
uous on S’.

Proof. Fix v, € S'. We show continuity of f at v,. Given e there exists § such
that if x € S and [x — vg| < & then | f(x) — f(v0)] < e. Letve S’ and |v — | < /2.
Since lim f(x) = f(v) (xe S.x — v), there exists x€S such that |x—ov| <d/2
and |f(x) — f(v)| < e. Then |x — | < 6, and so

1f () = f(00)] £ 17 (@) = £+ 1f(x) = f(20)] < 2, qed.

In Exercise 7, the set S' is contained in S essentially by definition, but is not nec-
essarily equal to S. The next exercise gives a condition under which S’ = S.

8. Prove Theorem 2.6. [Proof. By the preceding exercise, it suffices to prove that
for every ve S, the limit lim f(x) (x e S,x — v) exists. By basic properties of
Timits, it suffices to prove that given a sequence {x,} in S converging to v, then
lim f(x,) exists. By uniform continuity of f, given e there exists § such that for
N,7eS, |x— y| <6 we have |f(x) — f(»)| <e. There exists N such that for
n2 N we have |x, —v| < /2. Hence for m,n 2 N, we have |x, — x,| <4, so
|/ (xn) = f(xm)| < e. Hence the sequence {/(x,)} is Cauchy. Since F is com-
plete, lim f(x,) exists, thus concluding the proof.

9. Let S, T be closed subsets of a normed vector space, and let A = SUT. Let
f: A — F be a map into some normed vector space. Show that f is continuous
on A if and only if its restrictions to S to T are continuous.

Continuous linear maps

10. Let E, F be normed vector spaces, and let L: E — F be a linear map.
(a) Assume that there is a number C > 0 such that |L(x)| £ C|x] for all x € E.
Show that L is continuous.
(b) Conversely, assume that L is continuous at 0. Show that there exists such a
number C. [Hint: See §1 of Chapter X.]

11. Let L: R¥ — F be a linear map of R¥ into a normed vector space. Show that L is
continuous.

12. Show that a continuous linear map is uniformly continuous.



[VII, §3] LIMITS IN FUNCTION SPACES 179

13. Let L: E— F be a continuous linear map. Show that the values of L on the
closed ball of radius 1 are bounded. If r is a number > 0, show that the values
of L on any closed ball of radius r are bounded. (The closed balls are centered
at the origin.) Show that the image under L of a bounded set is bounded.

Because of Exercise 10, a continuous linear map L is also called bounded.
If C is a number such that |L(x)| < C|x| for all xeE, then we call C a
bound for L.

14. Let L be a continuous linear map, and let | L| denote the greatest lower bound of
all numbers C such that |L(x)| < C|x| for all x € E. Show that the continuous
linear maps of E into F form a vector space, and that the function L |L| is a
norm on this vector space.

15. Let a<b be numbers, and let E = C%([a, b]) be the space of continuous
functions on [a, b]. Let I': E — R be the integral. Is I? continuous: (a) for the
L'-norm; and (b) for the L?-norm on E? Prove your assertion.

16. Let X be a complete metric space satisfying the semiparallelogram law. (Cf.
Exercise 5 of Chapter VI, §4.) Let S be a closed subset, and assume that given
Xy, X, € S the midpoint between x, and x, is also in S. Let v e X. Prove that
there exists an element w e S such that d(v, w) = d(v, S).

Remark. The condition that S contains the midpoint between any two of its
points amounts to a generalized convexity condition. In a linear context, see
Exercises 11, 12, and 13 of Chapter XII, §1.

VII, §3. LIMITS IN FUNCTION SPACES

Let S be a set, and F a normed vector space. Let {f,} be a sequence of
maps from S into F. For each x € S we may then consider the sequence of
elements of F given by {f;(x), fa(x), ...}. Thus for each x, we may speak
of the convergence of the sequence {f,(x)}. If {f,} is a sequence of maps
such that for each x € S the sequence {f,(x)} converges, then we say that
{f,} converges pointwise.

On the other hand, suppose each f, € %(S, F) is an element of the vector
space of bounded maps from § into F, with its sup norm. Then we may
speak of the convergence of the sequence { f,} in this space. If the sequence
{f..} converges for the sup norm, we say that it converges uniformly. Con-
vergence in (S, F) is called uniform convergence. We shall denote the
sup norm by || ||, and usually just || ||, to shorten the notation.

Observe that in defining a convergent sequence f, — f, we take the
difference f, — f. All we really need is that we can take the sup norm of
this difference. Hence we shall say that an arbitrary sequence of maps
{/.} from S into F converges uniformly to a map f if given € there exists
N such that for all n 2 N the difference f — f, is bounded, and such that
Ilf — fill <€ Similarly, we can define a sequence of maps {f,} to be
uniformly Cauchy, without each f, being bounded. All we need is that
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each difference f, — f;, is bounded. In Theorem 3.1 we shall prove that a
uniformly Cauchy sequence is uniformly convergent (assuming F is com-
plete, of course). Its limit is called the uniform limit.

Let T be a subset of S. If f is a map on S, into F, and f is bounded on
T, we write

Ifllr= sup | ).

If { 1,} is a sequence of maps from S into F and if this sequence converges
uniformly for the sup norm with respect to T, then we say that it converges
uniformly on T.

Example 1. For each n, let f,(x) = 1/nx be defined for x > 0. Then
for each x, the sequence of numbers {1/nx} converges to 0. Thus the
pointwise limit of {f,(x)} is 0. We also say that {f,} converges pointwise
to the function 0. However, this convergence is not uniform. Indeed, for
any given x the N needed to make 1/nx < € for all n = N depends on x.
We could write N = N(x). As x approaches 0, this N(x) becomes larger
and larger.

However, let ¢ be a number > 0. View each f, as defined on the set T
consisting of all numbers x = ¢. Then {f;} converges uniformly to 0 on
this set T. Indeed, given ¢, select N such that 1/N < ec. Then for all x = ¢
and alln = N we have

nx — Nc

1
——0|=—S——<e.

Hence || f,ll7 < ¢, thus proving that {f,} converges uniformly to 0 on T.

Example 2. Let {f,} be the sequence of functions whose graph is
shown below:

fs 2 S

| €3 O G

Each function f, has a peak forming a triangle, and its values are equal to 0

for x 2 c,, where {c,} is a sequence of numbers decreasing to 0. Then for
each x > 0, the limit

lim f(x) = 0,

n-co
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because for each x there exists N such that f,(x) = 0 if n = N. Thus again
the sequence { f,} converges pointwise to 0. However, it does not converge
uniformly to 0. If the peaks all go up to 1, then

Il =1=11 - of,

so the sequence of functions cannot converge uniformly. Note that each
£, is bounded, and continuous, and the limit function (pointwise) is also
continuous.

Example 3. Let f,(x) = (1 — x)" be defined for 0 < x < 1. For each
x # 0 we have

lim (1 — x)"=0.

However,

lim £,0) = lim (1 — Oy = 1.

n—o n— o

Each f, is continuous, but the limit function (pointwise) is not continuous
on [0, 1].

We shall now prove two basic theorems concerning uniform limits of
functions.

Theorem 3.1. Let F be a complete normed vector space, and S a non-
empty set. Let {f,} be a sequence of maps f,: S — F which is uniformly
Cauchy. Then the sequence is uniformly convergent to a map f:S —F.
If {£,} is bounded for each n, then so is f. Thus the space %(S, F) with
the sup norm is complete.

Proof. Let {f,} be a Cauchy sequence of maps of S into F. Given ¢,
there exists N such that if n,m = N then

Ifo = full <e

In particular, for each x, |f,(x) — fu(x)| <€ and thus for each x,
{f()} (k=1,2,...) is a Cauchy sequence in F, which converges since
F is complete. We denote its limit by f(x), i.e.

fe) = klim Sx)-

Let n = N. Given x € S, select m 2 N sufficiently large (depending on x)
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such that

| fx) — ful)] <€
Then

1£0) = SO S 1) — Sl + 116) = S
<e+fu— £l
< 2e.

This shows that ||f — f,| < 2¢, whence {f,} converges to f uniformly. If
in addition the functions f, are all bounded, then

£ ()] S 26+ | fn(x)] = 2+ [fwll-

This shows that f is bounded, and proves that (S, F) is complete, also
completing the proof of the theorem.

Theorem 3.2. Let S be a non-empty subset of a normed vector space. Let
{£.} be a sequence of continuous maps of S into a normed vector space F,
and assume that {f,} converges uniformly to a map f:S — F. Then f is
continuous.

Proof. Let veS. Select n so large that || f — £l < e. For this choice
of n, using the continuity of f, at v, select & such that whenever [x — v| <
we have | f,(x) — f,(v)| < €. Then

[fG) = SO Z1F0) = LG + 1 £ — L@ + 1 /) — f@)

The first and third term on the right are bounded by || f — £l <€ The
middle term is <e. Hence

S = f@) <3¢
and our theorem is proved.

From Theorem 3.2, we can conclude at once that the convergence of the
functions in Example 3 above cannot be uniform, because the limit
function is not continuous.

Corollary 3.3. Let S be a non-empty subset of a normed vector space, and
let BC(S, F) be the vector space of bounded continuous maps of S into

a complete normed vector space F. Then BC’(S, F) is complete (for the
sup norm).
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Proof. Any Cauchy sequence in BCY(S, F) has a limit in 8(S, F), by
Theorem 3.1, and this limit is continuous by Theorem 3.2. This proves the
Corollary.

Corollary 3.4. The space of bounded continuous maps BC°(S, F) is closed
in the space of bounded maps (for the sup norm).

Proof. Any adherent point to the space BC(S, F) is a limit of a
sequence of bounded continuous maps, and Theorem 3.2 shows that this
limit is in the space.

As usual, any notion involving n — co has analogues for other types of
limits. Before we formulate the analogues, we make some general remarks
about the way notation concerning sequences indexed by positive integers
has a parallel notation in the case of a variable which may range over a
set which is not the positive integers. So we formalize the notion of a
family of objects, and a family of mappings.

Let X be a set, and let T be a set. By a family of elements of X
indexed by T we simply mean a mapping f: T — X. Thus to each element
te T we have associated an element f(t) € X. We may think of {f(f)} as
parametrized by the set T, and write f; instead of f(t). Let S be a set
and let X = Maps(S, F) where F is a normed vector space. We shall be
concerned with families of maps {f;} indexed by T, with each f;: S—F
being a map of S into F. From such a family, we obtain a mapping

fiTxS—>F  defined by  f(t,x) = fi(x).

Conversely, given a mapping depending on two variables f: T x S—F,
for each t € T we can define a map f;: S — F by letting f(x) = f(t, x).

Now let S be a subset of a normed vector space E and let T be any set.
Let f: T x S — F be a map into a normed vector space F. We view f as
depending on two variables te T and x€S. Let v be adherent to S.
Assume that for each t € T the limit

lim f(t, x)

exists. If ve S then this limit necessarily is equal to f(t,v). If v¢ S, then
we define

S, 9) = f) = }‘T}) Ji0).

Then the map f; such that x+ f(x) = f(¢, X) may be viewed as defined on
the union of S and its boundary point v. When the above limit exists, we
are in a situation already considered when each f, has been extended by
continuity to the boundary point v.
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On the other hand, suppose that T is a subset of a normed vector
space, and that w is adherent to T. We may consider the family of
mappings {f};cr- Suppose that the limit

}lﬂng St x) = lim Jix)
exists for each x € S. Then we may also define the limit value
Sw, %) = f,(x) = 11!3 Jibe) = }gg S, x).
We shall say that the limit llm [z, x) exists uniformly for xe S if given ¢
there exists & such that whenever |t — w| <, then
[ft,x)— fw,x)l <e forall xeS.

Equivalently, viewing { /;},r as a family of maps from S into F, ie. a map
t— f; from T into Maps(S, F), then

lim f; = £,

tow

the limit being taken with respect to the sup norm. In other words, given
€ there exists 6 such that whenever |t — w| < J, then

If— full <e

A theorem like Theorem 3.2 can be formulated formally in terms of
limits as follows. Letting

f=lim f,

n—+o
we want to prove that

f) =lim f(x) = lim (llm f,l(x)>.
x—=v xX—v n—+co
If we could interchange the limits, then
lim (lim f,,(x)) = lim (lim f,,(x)),
x—v n—w n-*co X-p
and since each f, is continuous, the right-hand side is equal to

lim f,(v).

n-co



[VIL, §3] LIMITS IN FUNCTION SPACES 185

On the other hand, the sequence {f,} is assumed to converge uniformly,
and in particular pointwise. Thus

lim f,(v) = f(v).

n-o

The whole problem is therefore to interchange the limits. The argument
given in Theorem 3.2, namely the splitting argument with 3e, is standard
for this purpose, and uses the uniform convergence.

An interchange of limits is in general not valid. Example: Let

xl — yZ
Gy = m
be defined on the set S of all (x, y) such that x 5 0, y # 0. Then

lim f(x,y)= —1  and hence  lim lim f(x, y) = — 1.
x=0 Y40 x-0

On the other hand, we see similarly that

lim lim f(x, y) = 1.
x—=0 y—0

A similar example with infinity can be cooked up, if we let

m—n
m+n

f(m' ") =

be defined for positive integers m, n. Then

lim lim f(m, n) = —1, while lim lim f(m,n)=1.

m—co n—w n— m—o

Theorem 3.5. Let S and T be subsets of normed vector spaces. Let f be
a map defined on T x S, having values in some complete normed vector
space. Let v be adherent to S and w adherent to T. Assume that:

(i) lim f(¢, x) exists for each te T.

(i) lim f(t, x) exists uniformly for x € S.
t—w

Then the limits

lim lim /(0,x),  lim lm f(,x), lim f(5X),

all exist and are equal.
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Proof. First by (i) and (ii), we may define for € T and x € S:
fi0) = [, v) = lim f(t, x) and Jio(x) = lim £z, x).

We shall prove that lim fj(v) exists by using Cauchy’s criterion. For all
xeSandt,t'eT we,f;z‘a"\/e
1/:(0) = fe ) 2 1£:(0) = Sll)] + 1o(x) = S (O + e (x) = fu(@)]-
By (ii), given ¢, there cxists J, such that if t,t'e€ T and
lt—w| <4, and |t —w| <4,
then for all x e S we have

(1 i) — fuldl<e  and  [f(x) = fx)l <€

and consequently

' 2 [£i(x) = fo(¥)] < 2e.
By (i) there exists d,(z, ') such that if xe S and |x — ¢| < §,, then
3 [fix) = ()l <e  and [felx) = fr0)l < e

It follows from (2) and (3) that |f,(v) - f,(v)| < 4¢, whence {/(v)} con-
verges as t —w, say lim f(v) = L. This proves our first limit.

=W

To see that f,.(x)— L as x —» v, we note that the inequality
[fulx) = Ll £ 1£,(x) = £l + 1 £x) — fiw)] + 1 £iv) — LI
is valid for all re T. We first select &, such that if |1 — w| < d3, then
[/i(t) = L| < e. We know from (1) that if |1 — w| < d,, then for all xeS,

|fi(x) = fulx)| <€ Let  be such that |r—w| < min(d;,d3). Having
chosen this . there exists some & such that, by (i), if |x —v| <4, then

[£e(x) = fi(0)] < 3e.
This shows that for such x. we have |f,(x) — L| < 4e, whence

lim £ (x) = L.
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Finally, to see that f(1,x) approaches L as (t,x) — (w,v) in the product

space, we write

1f(t, x) — LI 2 1£,x) = £ulo)l + 1,0 — LI

If ¢ is close to w, then (1) shows that the first term on the right is small by

(i)

. If x is close to v then f,(x) is close to L by the preceding step. This

proves our last limit, and concludes the proof of the theorem.

VI, §3. EXERCISES

—

3

w

»

w

[=2

=

. Let f(x) = x"/(1 + x") for x 2 0.

(a) Show that f, is bounded.

(b) Show that the sequence {f,} converges uniformly on any interval [0, c] for
any number 0 <c < 1.

(c) Show that this sequence converges uniformly on the interval x 2 b if b is a
number > 1, but not on the interval x 2 1.

Let g be a function defined on a set S, and let a be a number > 0 such that
g(x) 2 a for all xe S. Show that the sequence

hg

+ ng

g..=1

converges uniformly to the constant function 1. Prove the same thing if the
assumption is that |g(x)| 2 a for all xe€ S.

. Let f,(x) = x/(1 + nx?). Show that {f,} converges uniformly for x € R, and

that each function f, is bounded.

Let S be the interval 0 < x <1. Let f be the function defined on S by
Sfx)=1/1 - x).

(a) Determine whether f is uniformly continuous.

(b) Let p,(x) =1+ x + - + x". Does the sequence {p,} converge uniformly
to f on S?

(c) Let 0 < ¢ < 1. Show that f is uniformly continuous on the interval [0, cl,
and that the sequence {p,} converges uniformly to f on this interval.

. Let f,(x) = x*(1 + nx?) for all real x. Show that the sequence {f,} converges

uniformly on R.

. Consider the function defined by f(x) = lim lim (cos m! nx)?". Find explicitly

m=c n—w

the values of f at rational and irrational numbers.
As in Exercise 5 of §2, let
(=

flyy=4 ¥+
1 if (x,») =(0,0).

if (x, ) # (0, 0),
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Is f continuous on R?? Explain, and determine all points where f is continu-
ous. Determine the limits

lim lim f(x, y) and lim lim f(x, y).
x=+0 y=0 y=20 x=0

. Let S, T be subsets of normed vector spaces. Let f:S—T and g: T— F be

mappings, with F a normed vector space. Assume that g is uniformly continu-
ous. Prove: Given ¢, there exists 6 such that if f;:S— T is a map such
that ||f — f;ll <4, and ¢g,: T—F is a map such that [lg —g,ll <€, then
llgof—gi0ofill <2e

In other words, if f; approximates f uniformly and g, approximates g
uniformly, then g, o f; approximates g o f uniformly. One can apply this re-
sult to polynomial approximations obtained from Taylor’s formula, to reduce
computations to polynomial computations, within a given degree of approxi-
mation.

Give a Taylor formula type proof that the absolute value can be approximated
uniformly by polynomials on a finite closed interval [—c, c]. First, reduce it
to the interval [—1, 1] by multiplying the variable by ¢ or ¢™* as the case may
be. Then write [t| = \/t_z Select 4 small, 0 <6 < 1. If we can approximate
(¢ + 6)'2, then we can approximate \/ﬁ Now to get (t2 + 6)2 either use the
Taylor series approximation for the square root function, or if you don’t like
the binomial expansion, first approximate

log(t? + 6)V2 = L log(t* + 8)

by a polynomial P. This works because the Taylor formula for the log con-
verges uniformly for § < u <24 — 6. Then take a sufficiently large number of
terms from the Taylor formula for the exponential function, say a polynomial
Q, and use Q o P to solve your problems. Cf. Exercise 7 of Chapter V, §3.

Give another proof for the preceding fact, by using the sequence of polyno-
mials {P,}, starting with Py(t) = 0 and letting

Pras(t) = P(8) + 3(¢ — P,(1)).
Show that {F,} tends to \/; uniformly on [0, 1], showing by induction that

0si-ps =Yt

2+n\/-'

whence 0 < \/E —P.(t) < 2/n.

VI, §4. COMPLETION OF A NORMED VECTOR SPACE

In this book, we deal with concrete normed vector spaces, and especially
with the sup norm. As we have seen in §3, the space of bounded maps is
complete, and so is the space of continuous maps, under this sup norm.
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This suffices for the applications we have in mind. However, it may be
useful to the reader to see a general technique to construct a completion,
especially since this technique emphasizes the notion of Cauchy sequence,
and is also used to construct the real numbers as a “completion” of the
rational numbers. Thus we give this construction in the present section.

Theorem 4.1. Let F be a subspace of a normed vector space F,. Assume
that F is dense in F,, and that every Cauchy sequence in F has a limit in
Fy. Then F, is complete.

Proof. Let {x,} be a Cauchy sequence in F,. By hypothesis, for each
positive integer n there exists y, € F such that |x, — y,| < 1/n. Then {y,}
is Cauchy. To prove this, given € there exists N such that if m,n= N,
then |x, — x,,| < e Then for m,n = N, we have

1Yo = Yl S 1Yn = Xl + 1% = Xl + 1% — Yl

1 1
S-+e+—.
n m

Let N, be an integer = N and = l/e. Then for m,n 2 N, we find

1Yo = Yul = 36

which proves that {y,} is Cauchy. By assumption on F, the sequence {y,}
converges to an element ve F,. Pick N, 2 N, such that for n = N, we
have |y, — v| < €. Then for n = N, we also have

1%, — 0l S Iy = Yul + |y — V] = 26,

which proves that {x,} converges to v, and concludes the proof of the
theorem.

In Theorem 4.1, we are given the space F, with a norm, and the
subspace F. However, in some applications we want to construct F,,
before having a norm on F,, and we want to extend the norm by continu-
ity, as in the Exercises of Chapter VII, §2. We can do this in the following
general context.

Let F be a normed vector space. Let CS(F) be the set of all Cauchy
sequences in F. It is immediately verified that CS(F) is itself a vector
space, i.e. the sum of two Cauchy sequences is Cauchy, and if {x,} is
Cauchy in F, ¢ is a number, then {cx,} is Cauchy. The norms {Ix,l} form
a sequence of real numbers 20, and we claim that {|x,|} is a Cauchy
sequence in R. This is immediate, because given ¢, there exists N such
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that if m, n = N then |x, — x,,| < ¢, and then by the triangle inequality,
[1xa] = 1%l £ 1%, — Xal < &
Hence {|x,|} converges to a real number = 0.

Proposition 4.2. Let ¢ = {x,} be a Cauchy sequence in F. Define

[€] = lim |x,].
Then this definition defines a seminorm on CS(F).

Proof. This is immediate from the triangle inequality and the property
that the limit of a sum is the sum of the limits, and the limit of a constant
times a sequence is the constant times the limit of the sequence. We leave
the details to the reader.

Let F'=CS(F) be the space of Cauchy sequences in F with the
seminorm of Proposition 4.2. We define a null sequence in F to be a
sequence { = {z,} such that lim z, = 0, or equivalently lim |z,| = 0. Note
that for such a null sequence, we have |{| =0 by definition, and con-
versely. Again using the fact that the limit of a sum is the sum of the
limits, we see that the set of all null sequences NS(F) is a subspace of F',
i.e. of CS(F).

We have almost solved our basic problem with the space F’, except
that we have defined a seminorm on F' rather than a norm. However, we
do have a natural embedding of F in F’, ie. an injective linear map
which is such that the seminorm on F' is equal to the given norm
on F. Namely, to each x € F we associate the Cauchy sequence S(x) =
(x, x, x,...) such that x, = x for all n. The map

x> S(x)

is a linear map. If S(x) =0, then x = 0. Thus x> S(x) actually gives an
injective linear map of F into F'. From the way we defined the seminorm
on CS(F) and on F' we see that

[x] = 1S(x)I-

Theorem 4.3. Given a normed vector space F, the space CS(F)=F' is a
vector space with a seminorm, containing F in a natural way (actually
S(F)), such that the seminorm on F' is equal to the norm on elements of
F, and such that F is dense in F' and every Cauchy sequence in F (that
is, S(F)) has a limit in F'. The space F' is complete.
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Since we defined the notion of being dense, limit, and completeness
only for norms, we must add here a word of explanation in the context of
seminorms. The notion of limit can be defined with a seminorm. We say
that ve F' is a limit of a sequence {x,} in F if given € there exists N such
that for n = N we have |x, — v| < e. The only thing to notice here is that
the limit of a sequence is not necessarily unique. Then we can define the
notion of being dense, namely every element of F' is the limit of a
sequence in F. We define completcness similarly for seminorms.

The proof of Theorem 4.3 is then immediate. Namely, let ¢ = {x,}
be a Cauchy sequence in F. Directly from the definition, we see that

1S(xn) =&l = lim |x, = x| so lim |S(x,) - ¢ = 0.

Hence S(F) is dense in F' and li_n_} S(x,) =¢&.

The proof of Theorem 4.1 applies to the seminorm on F’, and thereforc
F' is complete with respect to the seminorm.

Of course, having only a seminorm has some inconvenience. To obtain
a space with a norm, we have to use a standard device of considering only
equivalence classes as follows.

We define two sequences {x,}, {y,} in F to be equivalent if {x, — y,} is
a null sequence. We could also define this equivalence by the property
that there exists a null sequence {z,} such that y,=x, +z, for all n.
Since NS(F) is a subspace, it is immediately verified that the above
relation is an equivalence relation, denoted by & =y for two sequences &,
. Furthermore, the following propertics are satisfied.

(@) If & =n, and &, =1, then &, + &, =n, +1,. If ¢ is a number
and ¢ =y, then ¢ = cn.

(b) Let F, be the set of equivalence classes of Cauchy sequences in F.
Then F, is a vector space.

(¢) Let ¢={x,} and n={y,} be equivalent Cauchy sequences in F.
Then |¢] = |n]. Thus the seminorm is actually defined on the space
of equivalence classes, and it is in fact a norm on F,.

The statement that & =y implies || = |n| is again a consequence of the
property that the limit of a sum is the sum of the limits. Thus we see that
the seminorm on CS(F) = F' depends only on the equivalence class of a
Cauchy sequence, which proves the equality |€] = |#| in (c). The seminorm
on F' is actually a norm on F;, because if £ ={x,} is a sequence in F
such that |£| =0, then ¢ is a null sequence, and so is in the zero
equivalence class.

The embedding of F in F' actually yields an embedding of F in F,,
because if x € F and S(x) is a null sequence, then |x| <€ for all € >0, so
x=0. Define Si(x) to be the equivalence class of S(x). Then the map
x+-8;(x) is an injective linear map of F into F,. Furthermore, from
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property (c) above, we see that |x| = |S,(x)l. Thus we obtain a natural
norm-preserving injective linear map of F into F;. In practice, we shall
usually not make a distinction between an element x € F and its image
S,(x) in F,.

The space F, is called the completion of F with respect to the given
norm. :

Remark. The real numbers could be defined from the rational num-
bers in a manner similar to the above, as equivalence classes of Cauchy
sequences of rational numbers. The elementary school definition of a real
number as an infinite decimal merely represents a real number as the limit
of a Cauchy sequence from the partial decimals

a+ i a,/10%,
k=1

where a is an integer. However, there are other representations of a real
number as a limit of a sequence of rational numbers, for instance by
trecimal or binary expansions. The real number is the equivalence class of
all such Cauchy sequences which have the same limit. For example, one
can express the rational number 2/3 as the decimal .66666---. Both ways
are merely different representations of the same number. The number 1
has the decimal expansion .99999--- and also a trecimal expansion, that is

1=1im Y 9/10t and 1=1Ilim Y 2/3%

n—oo k=1 n—oo k=1
We view 1 as the equivalence class of all its representations by convergent
Cauchy sequences. Of course, the number 1 is known from earlier consid-
erations about counting. However, for other real numbers, even a number
like ﬁ, or 3%5, let alone for e and m, the definition of such numbers as
equivalence classes of Cauchy sequences of rational numbers is the most
natural one.

The next theorem puts together the above discussion.

Theorem 4.4. Let F be a normed vector space. Let F, be the space of
equivalence classes of Cauchy sequences in F, with the norm on F
defined as above, that is, if & = {x,}, then || =lim |x,|. Then S,(F) is
dense in Fy, and every Cauchy sequence in F has a limit in F,. Hence F,
is complete.

Proof. Let & ={x,} be a Cauchy sequence in F. Directly from the
definition, we see that £ =lim S,(x,), so S;(F) is dense in F, and the
Cauchy sequence in F has a limit in F; namely its own class. That F, is
complete now follows from Theorem 4.1, so Theorem 4.4 is proved.



CHAPTER Vil

Compactness

VIil, §1. BASIC PROPERTIES OF COMPACT SETS

Let S be a subset of a normed vector space E. Let {x,} be a sequence in S.
By a point of accumulation of {x,} (in E) we mean an element v € E such
that given ¢ there exist infinitely many integers n such that |x, — v| < e.
We may say also that given an open set U containing v, there exist in-
finitely many n such that x, € U.

Similarly, we define the notion of a point of accumulation of an infinite
set S. It is an element v € E such that given an open set U containing v,
there exist infinitely many elements of S lying in U. In particular, a point
of accumulation of S is adherent to S.

We define the notion of a compact set by the property of the
Weierstrass—Bolzano theorem. A set S in E is said to be compact if every
sequence of elements of S has a point of accumulation in S. This property
is equivalent to the following properties, which could be taken as alternate
definitions:

(a) Every infinite subset of S has a point of accumulation in S.
(b) Every sequence of elements of S has a convergent subsequence
whose limit is in S.

The equivalence between the definition and these properties is more a
matter of language than anything else. We prove it in detail. Note by the
way that if a set is compact with respect to the given norm, it is compact
with respect to any other equivalent norm.

Suppose S is compact, and let T be an infinite subset of S. Then T con-
tains a denumerable set, which we enumerate, and which is then nothing
but a sequence {x,}, such that x, # x,, whenever n # m. This sequence

193
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has a point of accumulation ve S. Given ¢, there exist infinitely many n
such that |x, — v| < ¢, and these infinitely many n give rise to infinitely
many x, having this property, so that v is a point of accumulation for S.
This proves (a).

Assume (a). Let {x,} be a sequence of elements of S. If the set con-
sisting of all x,, is finite, then there exists an infinite set of integers, say I,
such that for all n € I, the elements x,, are all equal to the same element x.
We can order the elements of I as n; < n, < - - so that the corresponding
elements of the sequence {x,,,X,,,...} form a subsequence, which ob-
viously converges to x. If on the other hand the set consisting of all x,
is infinite, it has a point of accumulation v in §. We select n; such that
|x,, — v] <1/1. We then select n, > n, such that |x,, —v| < 1/2. In-
ductively, suppose we have found n, < n, < -+ < n, such that

1
Ix, —tl <. for j=1,...,k
J
We select n,,, > n, such that

| x —v| <

1
vy m
Then the subsequence {x,,, X,,,...} converges to v, thus proving (b).
Finally, if we assume (b), then given any sequence in S, it has a con-
vergent subsequence whose limit is an element of S, and this limit is then
a point of accumulation of the given sequence, thus proving that the set is
compact.

Theorem 1.1. A4 compact set is closed and bounded.

Progf. Let S be compact and let v be in its closure, that is, v is adherent
to S. Given n, there exists x, € S such that |x, — v| < 1/n. The sequence
{x.} converges to v. It has a convergent subsequence whose limit is in S.
By the uniqueness of the limit, it follows that v € S, and hence S is closed.
If S is not bounded, for each n there exists x, € S such that |x,| > n. Then
the sequence {x,} does not have a point of accumulation in S. Indeed,
if v were such a point of accumulation, consider m > 2|v|. Then

m
7"

These inequalities contradict the fact that for infinitely many m we must
have x,, close to v. Hence S is bounded.

|xm - UI 2 Ixml - |l)| Zm- |v| >

Theorem 1.2. A closed subset of a compact set is compact.



[VIIL §1] BASIC PROPERTIES OF COMPACT SETS 195

Proof. Let S be a closed subset of a compact set K. Let T be an infinite
subset of S. Then T has a point of accumulation in K. But a point of
accumulation of T is adherent to T, hence to S, and since S is closed, it
must lie in S. Hence § is compact.

Theorem 1.3, Let S be a compact set, and let S, 5§, >--->8§,>---
be a sequence of non-empty closed subset such that S, > S,.,. Then
the intersection of all S, for alln = 1, 2,... is not empty.

Proof. Let x,€8,. The sequence {x,} has a point of accumulation
in S. Callit v. Then vis also a point of accumulation for each subsequence
{x;} with k = n, and hence lies in the closure of S, for each n. But S, is
assumed closed, and hence v € S, for all n. This proves the theorem.

Theorem 1.4. Let S be a compact set in the normed vector space E, and
let T be a compact set in the normed vector space F. Then S x T is com-
pact in E x F (with the sup norm).

Proof. Let z,=(x,,y,) be the terms of a sequence in E x F with
x,€8 and y,e T. The sequence {x,} has a subsequence {x, } convergent
to a limit ve S. The corresponding sequence {y,} (k =1,2,...) has a
subsequence { y,.‘,} (j=1,2,...) convergent to a limit we T. Then let

znkj = (x""l’ y’lkl)‘

It is clear that

Zn, = (0, W)

as j — oo, thus proving our theorem.

Notationally, the triple indices are somewhat disagreeable. We sh_all
now reproduce the preceding proof using a terminology which avoids
these repeated indices, so that readers may use this better notation if they
wish.

There exists an infinite subset J, of Z* and there exists veS such
that

lim x,, = v.
n—w
nedy

There exist an infinite subset J, of J, and w € T such that

lim y, = w.
n— oo
neltz
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The sequence {z,} (n€J,) then converges to (v, w), which is in § x T,
thus proving the theorem. )

By induction, we conclude that a finite product of compact sets s com-
pact. We use this fact immediately to get a converse of Theorem 1.1 in an
important special case.

Theorem 1.5. A subset of R* is compact if and only if it is closed and
bounded.

Proof. We already know by Theorem 1.1 that a compact subset of R¥
is closed and bounded, so we must prove the converse. Let S be closed
and bounded in R*. There exists C > 0 such that ||x|| < C for all x€S,
where || || is the sup norm on R¥. Let I be the closed interval —C < x <C.
Then I is compact (by the Weierstrass—Bolzano theorem!), and § is con-
tained in the product

IxIx---x1I

which is compact by Theorem 1.4. Since S is closed, we conclude from
Theorem 1.2 that S is compact, as was to be shown.

Remark. The notions of being closed or bounded depend only on the
equivalence class of the given norm, and hence in fact apply to any norm
on R¥, since all norms on R¥ are equivalent.

Example. Let r be a number >0 and consider the sphere of radius r
centered at the origin in R*. We may take this sphere with respect to the
Euclidean norm, for instance. Let f:R¥ — R be the norm, i.e. f(x) = |x|.
Then f is continuous, and the sphere is f ~'(r). Since the point r is closed
on R, it follows that the sphere is closed in R*. On the other hand, it is
obviously bounded, and hence the sphere is compact.

It is not true in an arbitrary normed vector space that the sphere is
compact. For instance, let E be the set of all infinite sequences (x,, x5, - . .)
with x; € R, and such that we have x; = O for all but a finite number of
integers i. We define addition componentwise, and also multiplication by
numbers. We can then take the sup norm as before. Then the unit vectors

having components 0 except 1 in the i-th place form a sequence which has
no point of accumulation in E. In fact, the distance between any two ele-
ments of this sequence is equal to 1.
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VIll, §1. EXERCISES

1. Let S be a compact set. Show that every Cauchy sequence of elements of S has a
limit in S.

N

. (a) Let Sy, ...,S,, be a finite number of compact sets in E. Show that the union
Sy U U S, is compact.
(b) Let {S;};c; be a family of compact sets. Show that the intersection ﬂ S; is
compact. Of course, it may be empty.

w

. Show that a denumerable union of compact sets need not be compact.

»

Let {x,} be a sequence in a normed vector space E such that {x,} converges to
v. Let S be the set consisting of all x, and v. Show that S is compact.

VIIl, §2. CONTINUOUS MAPS ON COMPACT SETS

Theorem 2.1. Let S be a compact subset of a normed vector space E, and
let :S — F be a continuous map of S into a normed vector space F. Then
the image of f is compact.

Proof. Let {y,} be a sequence in the image of f. Thus we can find
x, €S such that y, = f(x,). The sequence {x,} has a convergent sub-
sequence, say {x,, }, with a limit v € S. Since f is continuous, we have

lim y,, = lim f(x,,) = f(v).
k= k- o0

Hence the given sequence {y,} has a subsequence which converges in f(S).
This proves that f(S) is compact.

Theorem 2.2. Let S be a compact set in a normed vector space, and let
f:S—>R be a continuous function. Then f has a maximum on S (there
exists v e S such that f(x) £ f(v) for all xe S), and also a minimum.

Proof. By Theorem 2.1 the image f(S) is closed and bounded. Let b
be its least upper bound. Then b is adherent to f(S). Since f(S) is closed,
it follows that b e f(S), that is there exists v € S such that b = f(v). This
prove the theorem for a maximum. The minimum case follows by con-
sidering —f instead of f.

We can now prove for a compact set what is not true in general for
closed sets.

Corollary 2.3. Let K be a compact set in a normed vector space E, and
let ve E. Then there exists an element w € K such that d(K, v) = v — w]|.
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Proof. The function x+>|x —v| for xe K has a minimum, at an
element w € K which satisfies the property asserted in the corollary.

Corollary 24. Let S be a closed subset of R* with the sup norm. Let
ve R Then there exists we S such that d(S, v) = |w — v|.

Proof. Exercise 4.

For infinite dimensional spaces, we gave a counterexample to the
analogous statement in Chapter VII, following Theorem 2.4.

Example 1. Using Theorem 2.2, in Exercise 3, you will give a much
shorter proof that all norms on a finite dimensional vector space are
equivalent. It is easier to remember this proof rather than the inductive
proof given in Chapter VI, §4.

Let S be a subset of a normed vector space, and let f: S — F be a map-
ping into some normed vector space. We recall that f is uniformly
continuous if given ¢ there exists & such that whenever x, yeS and
|x — yl <dthen|f(x) — fO) <e

Theorem 2.5. Let S be compact in a normed vector space E, and let
f:S = F be a continuous map into a normed vector space F. Then f is
uniformly continuous.

Proof. Suppose the assertion of the theorem is false. Then there exists
¢, and for each n there exists a pair of elements x,, y, € S such that

% — yal <1/n but |f(x)— fO)l>e

There are an infinite subset J, of Z* and some v € S such that x, — v for
n — oo, neJ,. There are an infinite subset J, of J,, and w € S, such that
Yn—> wforn— co and neJ,. Then, taking the limit for n — co and ne J,,
we obtain |[v—w| =0 and v =w. On the other hand, by continuity of f,
we have f(x,)— f(v) and f(y,) = f(w) = f(v) as x, > v and y, > w, neJ;.
Hence taking the limit of the right side, we find

/@) —fW)l ze

a contradiction which proves the theorem.

Remark. It is sometimes possible, in proving theorems about functions
or mappings, to consider their restrictions to compact subsets of the set
on which they are defined. Thus a continuous function on R is uniformly
continuous on every compact interval. Furthermore, if f is a continuous
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map on a set S, and if f is uniformly continuous on S, then f is uniformly
continuous on every subset of S. Thus a continuous function on R is
uniformly continuous on every bounded interval.

Theorem 2.6. Let S, T be subsets of normed vector spaces, and let
f:8— T be continuous. Assume that S is compact and [ is bijective, so f
has an inverse g: T — S. Then g is continuous.

Proof. Let {y,} be a sequence in T converging to an clement we T.
We have to show that g(y,) converges to g(w). Let v=g(w). If {g(y,)}
does not converge (o v, then there exists € and a subsequence {g(y,)}neys
with an infinite subset J of Z*, such that

lg(y))—vl=e€ forall ned.

Since S is compact, there cxists an infinite subset J' of J such that
{g(¥,)}ne s converges to some element v’ € S, and |v' — v| = €, so in partic-
ular, v’ # v. However, by the continuity of f we get

Jy= lim f (g9(y)) = fim y, =w = f(v).

Since [ is injective, we must have v’ = v, a contradiction which proves the
theorem.

Remark. If S is not compact, the conclusion that g is continuous is not
true in general. Counterexamples are routinely constructed. For instance,
let S consist of {0} u(1,2], and T = [0, 1]. Let g(0) =0 and g(y) =y + 1
if y>0and yeT Let f=g7" s0 f(0)=0and f(x)=x—1if xe(1,2]
Then f, g are bijective, f is continuous but g is not.

Vill, §2. EXERCISES

1. Let S = T be subsets of a normed vector space E. Let f T—-Fbea mappmg
into some normed vector space. We 3ay that f is relatively uniformly
on S if given € there exists & such that whenever x€ S, ye T and |x — y| < d,
then |f(x) — f(y)| < e. Assume that S is compact and f is continuous at every
point of S. Verify that the proof of Theorem 2.5 yields that f is relatively
uniformly continuous on S.

Let S be a subset of a normed vector space. Let f: S — F be*a map of S into a
normed vector space. Show that f is continuous on § if and only if the restriction
of f to every compact subset of S is continuous. [Hint: Given v € S, consider se-
quences of elements of S converging to v.]

[

3. Prove that two norms on R” are equivalent by the following method. By the
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bl

o

=~

first part of the proof of Chapter VI, Theorem 4.3, if o is a norm, then there
exists C; > 0 such that ¢ < Cy|| || (the sup norm). Thus o is continuous. Then ¢
has a minimum on the unit sphere, so there exists § > 0 such that o(v) = ¢ for all
v e R" with ||v]| = 1. For any w we have a(w/[w|) 26, so we can take C» = 1/6.

(Continuation of Exercise 1, Chapter VII, §2.) Let E = R¥ and let S be a closed
subset of RX. Let v e R%. Show that there exists a point w € § such that

d(s, v) = |lw —v|.

[Hint: Let B be a closed ball of some suitable radius, centered at v, and consider
the function x+—|x — v|forxe BN S.]

Let K be a compact set in R* and let S be a closed subset of R% Define
d(K, S) = glb|x — yl.
xek
yeS

Show that there exist elements xo € K and yo € S such that d(K, S) = |xo — yol-

[Hint: Consider the continuous map x - d(S, x) for x € K]
Note. In Exercise 5, if K is not compact, then the conclusion does not neces-
sarily hold. For instance, consider the two sets §; and S:

There is no pair of points x,, yo whose distance is the distance between the sets,
namely 0. (The sets are supposed to approach each other.)

Let K be a compact set, and let f: K — K be a continuous map. Suppose that
f is expanding, in the sense that

1fG) ~ fl 2 |x ~y|

forallx,ye K.

(a) Show that f is injective and that the inverse map f~!: f(K) — K is continuous.
(b) Show that f(K) = K. [Hint: Given x, € K, consider the sequence {f"(xo)},
where f" is the n-th iterate of f. You might use Corollary 2.3.]

. Let U be an open subset of R". Show that there exists a sequence of compact

sub:sets K; of 'U such that K; < Int(Kj,,) for all j, and such that the union of all
K,‘ls U. [Hint: Let B; be the closed ball of radius j, and let K; be the set of
points x € U n B; such that d(x, 9U) 2 1/j.]



[VIIL, §3] ALGEBRAIC CLOSURE OF THE COMPLEX NUMBERS 201

Vill, §3. ALGEBRAIC CLOSURE OF THE
COMPLEX NUMBERS

A polynomial with complex coefficients is simply a complex valued func-
tion f of complex numbers which can be written in the form

f@=ao+aiz+--+a,z", aeC

We call a, . .. ,a, the coefficients of f, and these coefficients are uniquely
determined, just as in the real case. If a, # 0, we call n the degree of f.
A root of f is a complex number z, such that f(zo) = 0. To say that the
complex numbers are algebraically closed is, by definition, to say that every
polynomial of degree = 1 has a root in C. We shall now prove that this is
the case.

We write

f@®) =a,t"+---+ag
with a, # 0. For every real number R, the function | f| such that
t=1f@)]
is continuous on the closed disc of radius R, which is compact. Hence

this function (real valued!) has a minimum value on this disc. On the
other hand, from the expression

—ar 1y 4 R0
f(t)—a,,r(1+ant+ +a,,t")

we see that when |t| becomes large, | f(¢)| also becomes large, i.e. given
C > 0, there exists R > 0 such that if |¢|] > R then |f(t)] > C. Conse-
quently, there exists a positive number R, such that, if z, is a minimum
point of | f| on the closed disc of radius Ry, then

[f®1 2 |f(z0)l
for all complex numbers t. In other words, z, is an absolute minimum of

|f|. We shall prove that f(zo) = 0.
We express f in the form

F(®) = co + ¢yt — 20) + -+ + ¢t — 2zo)'

with constants c;. If f(zo) #0, then co = f(z0) #0. Let z=t—12
and let m be the smallest integer >0 such that c, # 0. This integer m
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exists because f is assumed to have degree = 1. Then we can write
) = /@) = co + cnz™ + 27" '9(2)

for some polynomial g, and some polynomial f; (obtained from f by chang-
ing the variable). Let z, be a complex number such that

27 = —co/Cm,

and consider values of z of the type z = Az,, where Ais real, 0 S A< 1.
We have

SO = filhz)) = co — Ao + A" 127 F1g(Azy)
= o[l — A™ + A™* 127 % eg g(Az,)].
There exists a number C > 0 such that for all A with 0 £ 1 < 1 we have
|27 e 'g(Az)| = C
(continuous function on a compact set), and hence
[ fiAz)] £ leol(1 — 4™ + CA™Y).

If we can now prove that for sufficiently small A with 0 < A < 1 we have

0<l—A"4Ca"*' <1,
then for such 4 we get | f;(4z,)| < |col, thereby contradicting the hypoth-
esis that | f(zo)| £ | f(®)| for all complex numbers t. The left-hand in-
equality is of course obvious since 0 < A < 1. The right-hand inequality

amounts to CA™*! < A™, or equivalently CA < 1, which is certainly satis-
field for sufficiently small A. This concludes the proof.

Remark. The idea of the proof is quite simple. We have our polynomial
S1(2) = co + cuz™ + 27 g(2),

and c,, # 0. If g = 0, we simply adjust c,,z™ so as to subtract a term in the
same direction as co, to shrink ¢ toward the origin. This is done by ex-
tracting the suitable m-th root as above. Since g # 0 in general, we have
to do a slight amount of juggling to show that the third term is very small
compared to c,,z", and that it does not disturb the general idea of the proof
in an essential way.
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VIll, §4. RELATION WITH OPEN COVERINGS

Theorem 4.1. Let S be a compact set in normed vector space E. Let r
be a number >0. There exist a finite number of open balls of radius r
with centers at elements of S, whose union contains S.

Proof. Suppose this is false. Let x, € S and let B(x,) be the open ball
of radius r centered at x,. Then B(x,) does not contain S, and there is
some x, €S, x, ¢ B(x,). Proceeding inductively, suppose we have found
open balls B(x,),...,B(x,) of radius r, we select x,,, €S such that x,,,
does not lie in the union B(x,)u- - UB(x,), and we let B(x,.,) be the
open ball of radius r centered at x,,,. By hypothesis, the sequence {x,}
has a point of accumulation ve S. By definition, there exist positive in-
tegers m, k with k > m such that

r

2

r
Ix —v| < and |x,,,—v|<—2—.
Then |x; — x,,| <r and this contradicts the property of our sequence

{x,} because x, lies in the ball B(x,,). This proves the theorem.

Let S be a subset of a normed vector space, and let I be some set. Sup-
pose that for each i € I we are given an open set U;. We denote this associ-
ation by {U;};; and call it a family of open sets. The union of the family is
the set U consisting of all x € E such that x € U; for some i e . We say
that the family covers S if S is contained in this union, that is every x € S
is contained in some U;. We then say that the family {U;};.; is an open
covering of S. If J is a subset of I, we call the family {U;};., a subfamily,
and if it covers S also, we call it a subcovering of S. In particular, if

U U

is a finite number of the open sets U;, we say that it is a finite subcovering
of S if S is contained in the finite union

U,v--vU.

Theorem 4.2. Let S be a compact subset of a normed vector space, and
let {U,};c1 be an open covering of S. Then there exists a finite subcovering,
that is a finite number of open sets U, ... ,U; whose union covers S.

Proof. We prove first that there exists a positive integer n such that
for each x € S, the ball By,(x) is contained in some U;. Suppose this asser-
tion is false. Then for each n there exists x, € S such that By,(x,) is not
contained in U; for all i. By compactness, there is a subsequence {x,.}
which converges to an element v of S. For this v, there exists some Uj;
containing v, and a ball B,y(v) contained in U; for some integer N. For
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all n sufficiently large, and in particular n > 2N, we have |x, — v| < 1/2N,
and hence

Byu(x,) = Bypn(x,) = BI/N(v) <y,

contradicting the supposition that our assertion is false. Thus the asser-
tion is true with some positive integer n. By Theorem 4.1 there exists a
finite number of balls B,,(y,),...,Bys(y.) covering S, and each one of
these balls is contained in some U;, so a finite number U,,..-,U,, covers
S, thus proving the theorem.

From Theorem 4.2, we get another proof that a continuous map on a

compact set S is uniformly continuous, as follows. Given e, for each x €S,
there exists 8(x) such that if ye S and |y — x| < é(x), then

1) — )l <e
For each x € S let B(x) be the open ball centered at x, of radius §(x), and
B’(x) the open ball of radius §(x)/2. Then the union of the balls B'(x) for
all xe S is an open covering of S, and thus there is a finite number of
points x,,...,x, € S such that

B’(Xl)r AR yB'(xn)

contains S. Let

& = min (53(’2‘—‘), ...,6(;")).

Let x, y be any pair of points of S such that [x — y| < 8. Then x is in
some B'(x,), that is

8(x)
|x — x| < 5
Since |y — x| < 8 < 8(x,)/2, it follows that y € B(x,). Hence

fO) = fG <1f0) = fOd] + [ f(x) — £ ()] < 2e.

This proves the uniform continuity.

The property concerning the finite coverings is equivalent to the prop-
erty of compactness.

Theorem 4.3. Let S be a subset of a normed vector space, and assume
that any open covering of S has a finite subcovering. Then S is compact.
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Proof. We must prove that any infinite subset T of S has a point of ac-
cumulation in S. Suppose this is not the case. Given x € S, there exists
an open set U, containing x but containing only a finite number of the
elements of T. The family {U,}, s is an open covering of S. Let

{Uspp---5UL )

be a finite subcovering. We conclude that there is only a finite number of
elements of T lying in the finite union

U,v---uU,.

This is a contradiction, which proves our theorem.

Vill, §4. EXERCISES

1. Let {U,,...,U,} be an open covering of a compact subsct S of a normed vector
space. Prove that there exists a number r > 0 such that if x, ye Sand [x — y| < r
then x and y are contained in U, for some i.

2. Let {S;}ic; be a family of compact subsets of a normed vector space E.
Suppose the intersection ﬂ S; is empty. Prove that there is a finite number of

indices iy, ...,i, such that
S, n:enS;  is empty.

This is the “dual” property of the finite covering property.

3. Let S be a compact set and let R be the set of continuous real valued functions
on S. Let ] be a subset of R containing 0, and having the following properties:
(@) Iff,gel thenf +gel
(i) If feland he R, then hf el.
Such a subset is called an ideal of R. Let Z be the set of points x € S such that
S(x)=0for all fel. We call Z the set of zeros of I.
(a) Prove that Z is closed, expressing Z as an intersection of closed sets.
(b) Let f € R be a function which vanishes on Z, i.e. f(x) = Ofor all x e Z.
Show that f can be uniformly approximated by elements of I. [Hint: Given ¢,
let C be the closed set of elements x € S such that | f(x)| = e. For each x € C, there
exists g € I such that g #0 in a neighborhood of x. Cover C with a finite
number of them, corresponding to functions g,,....g,. Let g =g} + -+ g2
Then g € . Furthermore, g has a minimum on C, and for n large, the function

ng
Y 1+ng

is close to f on C, and its absolute value is < € on the complement of C in §.
Justify all the details of this proof.]



CHAPTER IX

Series

IX, §1. BASIC DEFINITIONS

Let E be a normed vector space. Let {v,} be a sequence in E. The expres-
sion

its n-th partial sum. If lim s, exists, we say that the series converges, and
n-*co
we define the infinite sum to be this limit, that is
@
Y v =lims,.
k=1 n—w

In this case, the limit is called the sum of the series. Thus the sum of the
series, if it exists, is defined as a limit of a certain sequence, and conse-
quently, the theorems concerning limits of sequences apply to series.
Notably, we have:

I

206
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[1X, §1]
are two series in E, and if both converge, then
] ] @
YWtw)= Yv,+ Yw,
n=1 n=1 n=1

@
If ¢ is a number, and if Y. v, converges, then

n=1

If E, F, G are normed vector spaces, and E x F — G is a product, and if

Y v,and Y, w,are convergent series in E and F respectively, then

n=1 n=1
@ @
( Y v,,)( y w,,) = lim s,t,,,
n=1 n=1 n— o
where
Sp =0y + -+ 0,
and

=Wy + o W,

Note that s,t, = ). v;w; the sum being taken for i, j = 1,...,n. The whole
point of this chapter is to determine criteria for the convergence of series.

As a matter of notation, one sometimes writes
2 Uns

omitting the n = 1 and oo if the context makes it clear. Of course, if a
sequence is given for integers n = 0, we can write the sum of a series as

V-

i

Similarly, we let

v, = im0 + vgsy + - +02)

k n—

™Ms

n

whenever it exists.
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The convergence of a series ), v, depends only on

™Ms

Ups
k

El
I

for k large. Indeed, if for some k = 1 the preceding series converges, then
2t
n=1

converges also, as one sees at once by the theorem concerning limits of
sums. Thus we may say that the convergence of the given series depends
only on the behavior of v, for n sufficiently large.

For the same reason, if we have two series ) v, and ), v, such that
v, = v}, for all but a finite number of n, then one series converges if and
only if the other converges. Indeed, if v, = v} for all n 2 N, we can express
the partial sums s, and s, for n 2 N in the form

n
Sa=V v =0 4oy + Y u,
k=N+1

n
=i+ V=t ov Y .
k=N+1

The last sums from N + 1 to n on the right are equal to each other. Hence
{s,} has a limit if and only if {s}} has a limit, as n — co.
Finally, we observe that if ) v, converges, then

limy, =0,

n—o

because in particular |s,.; — s,| = |v,4+,] must be less than ¢ for n suf-
ficiently large. However, there are plenty of series whose n-th term ap-
proaches 0 which do not converge, e.g. ) 1/n, as we shall see in 2 moment.

IX, §2. SERIES OF POSITIVE NUMBERS

We consider first the simplest case of series, that is series of positive
numbers.

Theorem 2.1. Let {a,} be a sequence of numbers = 0. The series

Ms

a

n=1

converges if and only if the partial sums are bounded.
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Proof. Let
S,=a; + - +a,
be the n-th partial sum. Then {s,} is an increasing sequence of numbers.
If it is not bounded, then certainly the series does not converge. If it is

bounded, then its least upper bound is a limit, and hence the series con-
verges, as was to be shown.

In dealing with series of numbers = 0, one sometimes says that the
series diverges if the partial sums are not bounded.

Theorem 2.2 (Comparison test). Let ). a, and . b, be series of numbers
with a,, b, 2 0 for all n. Assume that ) b, converges, and that there is a
number C > 0 such that 0 < a, < Cb, for all sufficiently large n. Then
Y a, converges.

Proof. Replacing a finite number of the terms a, by 0, we may assume
that a, < Cb, for all n. Then

ay+ -+, SCly + - +b)SCY by
k=1

This is true for all n. Hence the partial sums of the series Z a, are bounded,
and this series converges by Theorem 2.1, as was to be shown.

The comparison test is the test used most frequently to prove that a
series converges. Most are compared for convergence either with the geo-
metric series

@
Y,
n=1
where 0 < ¢ < 1, or with the series
@
n;l

The geometric series converges because

1
nl+c'

l Cn+l
l—-¢c l1-c¢

l4+c+---+c"=

and taking the limit as n — oo, we find that its sum is 1/(1 — ¢). The other
series will later be proved to converge.

Theorem 2.3 (Ratio test). Let Y a, be a series of numbers 2 0, and let ¢
be a number, 0 < ¢ < 1, such that a,. < cay for all n sufficiently large.
Then Y, a, converges.
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Proof. We shall compare the series with the geometric series. Let N
be such that a,,, < ca, foralln = N. We have

2
ayy2 S canyl S Cay,
and in general by induction,

K
aywx S Cay-

Hence

INgE]

ayseSay(l+c+--+ M),

k=1

and our series converges, by comparison with the geometric series.

The next theorem concludes the list of criteria for the convergence of
series with terms > 0.

Theorem 2.4 (Integral test). Let f be a function defined for all numbers
2 1. Assume that f(x) =0 for all x, that f is decreasing, and that

J' ® o) dx = tim [ £00)dx
1 1

B- o

exists. Then the series

Ms

S

n=1

concerges. If the integral diverges, then the series diverges.

Proof. For all n 2 2 we have

fn) = Jm_l f(x)dx.
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Hence if the integral converges,

JQ+ o+ fin) < f:f(x) dx < wa(x)dx-

Hence the partial sums of the series are bounded, and the series converges.
Suppose conversely that the integral diverges. Then for n = 1 we have

n+ 1
O j 763) dx,

and consequently

n+ 1
W)+ 4 f) 2 fl 109 dx

and the right-hand side becomes arbitrarily large as n — co. Consequently
the series diverges, and our theorem is proved.

The integral test shows us immediately that the series Y. 1/n diverges,
because we compare it with the integral

J‘ldx
L X

which diverges. Indeed,

"1
L ;dx =log n,

which tends to infinity as n — 0.

Observe that the integral test is essentially a comparison test. We com-
pare the series with another series whose terms are the integrals of f from
n—1ton

Example 1. Using the integral test, we can now prove the convergence of

@©
Z 1+¢€”

1 h

We compare this series with the integral

® 1
J‘l xl+cd‘x‘
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We have

Pl oxp_ L1
e T T T e

Here of course, the ¢ is fixed. Taking the limit as B — oo, we see that the
first term on the right approaches 0, and so our integral approaches 1/e;
so it converges.

For instance,

y L
32
converges. Note that the ratio test does not apply to the series
1
% e

Indeed,

Gt nlte B no \1*e
a, @+ \n+1

and this ratio approaches 1 as n — 0o0. Thus the ratio test does not yield
anything,

We can compare other series with ), 1/n* for s > 1 to prove conver-
gence by means of a standard trick, as follows. We wish to show that

log n
Z ns

converges for s > 1. Write s = 1 4+ ¢ + 6 with 6 > 0. For all n sufficiently
large,

log n

n&

IIA

1,
and so the comparison works, with the series ., 1/n**.

Example 2. One can also use a comparison test to show that a series
diverges. For instance, there is no integer d such that the series Y, 1/(log n)*
converges. Indeed, given d, for all but a finite number of n, we have
(logn)* < n, so 1/n < 1/(logn)* and since ), 1/n diverges, ie. the partial
sums become arbitrarily large as n — o, it follows that the partial sums of
Y 1/(log n)* also become arbitrarily large as n— co.
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One reason for having gone through systematically series with positive
numbers is that they provide a test for arbitrary series.

Theorem 2.5. Let ) a, be a series of numbers. Assume that Y |a,|
converges. Then the series Y. a, itself converges.

Proof. Let

be the partial sum of the series. It will suffice to prove that the sequence
{sn} is a Cauchy sequence. Indeed, for n > m we have

n
Z A
k=m+1

By assumption, given e there exists N such that if m, n > N, then the right
side is < e. This proves the theorem.

[$n — $ml =

n
= Z lal.
k=m+1

A series Y a, such that " |a,| converges is said to converge absolutely.
We shall analyze this situation more systematically in §4, even for normed
vector spaces.

IX, §2. EXERCISES

—

. (a) Prove the convergence of the series Y. 1/n(log n)**< for every € > 0.
(b) Does the series Y. 1/n log n converge? Proof?
() Does the series ). 1/n(log n)(log log n) converge? Proof?
What if you stick an exponent of 1 + € to the (log log n)?

N

Let ) a, be a series of terms = 0. Assume that there exist infinitely many integers
nsuch that a, > 1/n. Assume that the sequence {a,} is decreasing. Show that Ya,
diverges.

w

Let Y a, be a convergent series of numbers 2 0, and let {b,, b,,bs,...} be a
bounded sequence of numbers. Show that ) a,b, converges.

»

Show that Y (log n)/n? converges. If s > 1, does ) (log n)*/n® converge? Given
a positive integer d, does Y (log n)*/n® converge?

wv

. (a) Let n! = n(n — 1)(n — 2)--- 1 be the product of the first n integers. Using
the ratio test, show that . 1/n! converges.
(b) Show that ) 1/n" converges. For any number x, show that Y. x"/n! converges,
and so does ., x"/n".

6. Let k be a integer = 2. Show that

f; 1n? < 1k = 1).
n=k
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1

1

7

e

0

0.

—

Let ) a? and Y’ b? converge, assuming a, 2 0 and b, 2 0 for all n. Show that
Y a,b, converges. [Hint: Use the Schwarz inequality but be careful: The
Schwarz inequality has so far been proved only for finite sequences.]

Let {a,} be a sequence of numbers > 0, and assume that the series Y. a,/n* con-
verges for some number s = s,. Show that the series converges for s = s.

Let (a,,} be a sequence of numbers = 0 such that ) a, diverges. Show that:
@ X1
O) Y
© X5
@ Z

Let {a,} be a sequence of real numbers = 0 and assume that lim a, = 0. Let

dlverges

1+ 2 converges.

somenmes converges and sometimes diverges.

sometlmes converges and sometimes diverges.

n

U Q+a)=>0+a)1+a) (1 +a,)

k=1

We say that the product converges as n — co if the limit of the preceding product
exists, in which case it is denoted by

ma + a.
k=1

Assume that ) a, converges. Show that the product converges. [Hint: Take the
log of the finite product, and compare log(1 + a;) with a,. Then take exp.]

. Decimal expansions. (a) Let « be a real number with 0 < « < 1. Show that

there exist integers a, with 0 < a, <9 such that

a,
3 107

o=

||Ma

The sequence (a,, a,,...) or the series ). a,/10" is called a decimal expansion

of o. [Hint: Cut [0, 1] into 10 pieces, then into 102, etc.]

(b) Let @ = ) ,/10* with numbers g, such that |a,| <9. Show that |« <
k=m

1/10m,

(c) Conversely, let {a,} be integers with |a,| <9, a, # +1 for all k. Let

=
1l
!

R

I
™Ms
g|#

Suppose that |a| < 1/10" for some positive integer N. Show that g, =0 for
k=1,...N—1.
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12,

@© ©

(d) Let a = kz @/10* = Y. b,/10* with integers a,, b, such that 0 < a, <9 and
k

=1 =1
0=<b, <9 Assume that there exist arbitrarily large k such that a, #9 and
similarly b, # 9. Show that a, = b, for all k.

Let S be a subset of R. We say that S has measure zero if given ¢ there exists a
sequence of intervals {J,} such that

Y length(J,) < ¢,
n=1

and such that S is contained in the union of these intervals.
(a) If S and T are sets of measure 0, show that their union has measure 0.
(b) IfS,, S,, ... is a sequence of sets of measure 0, show that union of all

Sii=12..)

has measure 0.

. The space £2. Let ¢? be the set of sequences of numbers

X =xn Xz X))

such that

Ms
%
TN

3
il
-

converges.
(a) Show that ¢£2 is a vector space.

(b) Using Exercise 7, show that one can define a product between two ele-
ments X and Y = (y,, y,,...) by

x. vy = .

Show that this product satisfies all the conditions of a positive definite scalar
product, whose associated norm is given by

I1X13 =3 3.

(c) Let E, be the space of all sequences of numbers such that all but a finite
number of components are equal to 0, i.c. sequences

X =(x1,X3,..5%,,0,0,0,...).

Then E, is a subspace of /2. Show that E, is dense in /2.
(d) Let {X;} be an £>-Cauchy sequence in /2. Show that {X;} is £>-convergent
to some element in £2. So /2 is complete.

14. Let S be the set of elements e, in the space ¢2 of Exercise 13 such that e, has
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15.

component 1 in the n-th coordinate and O for all other coordinates. Show that
S is a bounded set in E but is not compact.

The space £'. Let ¢' be the set of all sequences of numbers X = {x,} such
that the series

f; I

converges. Define [ X||, to be the value of this series.

(a) Show that £' is a vector space.

(b) Show that X+ [IX[l, defines a norm on this space.

(c) Let E, be the same space as in Exercise 13(c). Show that E, is dense in £*.
(d) Let {X;} be an ¢'-Cauchy sequence in /'. Show that {X;} is 7'-convergent
to an element of #'. So ¢! is complete.

. Let {a,} be a sequence of positive numbers such that ) a, converges. Let {g,}

be a sequence of seminorms on a vector space E. Assume that for each x € E
there exists C(x) > 0 such that g,(x) < C(x) for all n. Show that } a,0, defines
a seminorm on E.

. (Khintchine) Let / be a positive function, and assume that

Mes

(9

q

converges. Let S be the set of numbers x such that 0 < x < 1, and such that there
exist infinitely many integers g, p > 0 such that

q9 q

x_z|<@.

Show that S has measure 0. [Hint: Given ¢, let g, be such that

Y@ <e

CEL

Around each fraction0/g, 1/g, ..., q/q consider the interval of radius f(g)/q. For
q Z go, the set § is contained in the union of such intervals... .]

. Let « be a real number. Assume that there is a number C > 0 such that for all

integers g > 0 and integers p we have

Let ¢ be a positive decreasing function such that the sum Y ¢(n) converges.
n=1
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Show that the inequality

P
o q|<|/f(q)

has only a finite number of solutions. [Hint: Otherwise, Y(g) > C/q for infinitely
many gq. Cf. Exercise 2.]

19. (Schanuel) Prove the converse of Exercise 18. That is, let o be a real number.
Assume that for every positive decreasing function ¢ with convergent sum } y(n),
the inequality [¢ — p/q| < ¢(g) has only a finite number of solutions. Show that
there is a number C > 0 such that [@ — p/g| > C/q for all integers p, g, with g > 0.
[Hint: If not, there exists a sequence 1 < g, < g, < --- such that

la = pifgil < (1/2)g;.
-y .2 "’“:.]
vo :; 2"lie

IX, §3. NON-ABSOLUTE CONVERGENCE
We first consider alternating series.

Theorem 3.1. Let {a,} be a sequence of numbers =0, monotone de-
creasing to 0. Then the series ., (— 1)"a, converges, and

<a.

§ (~1ra,
n=1

Remark. Theorem 3.1 is an immediate corollary of the much more
powerful Theorems 3.2 and 3.3. See the example after Theorem 3.3.
However, we give an ad hoc proof first, because the special case has
concrete features which deserve separate emphasis, at the cost of some
inefficiency.

Proof. Let us assume say that a, > 0, so that we can write the series in
the form

by —¢y+by—c;+b3—c3+---
with b,, ¢, 2 0 and b, = a,. Let

Sa=by—¢c;+b;—c;+-- +by,

tha=by—c, +by;—c; ++--+b,—c,.
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Then
Sat1 = Sn— Cn + bosy-
Since 0 £ b, < ¢, it follows that s, < s, and thus
51282

and similarly,

ie. the s, form a decreasing sequence, and the t, form an increasing se-
quence. Since t, = s, — ¢, and ¢, 2 0, it follows that t, < s, so that we
have the following inequalities:

2Rz 2,2 2,

1%

2t 2ty
Given ¢, there exists N such that if n = N then
0<s,—t, <6
and if m = N also, and say m = n, then
|Sn—5m|§5,,—t,,<€.
Hence the series converges, the limit being viewed as either the greatest
lower bound of the sequence {s,}, or the least upper bound of the sequence
{t,}. Finally, observe that this limit lies between s, and
ty=85—¢c =b—¢; 20.

This proves our last assertion.

Example 1. The series ), (—1)"/n converges, by a direct application of
Theorem 3.1. However, the series Y. 1/n does not converge, as we saw

from the integral test.

More generally, let 0 < x < 1. You should have done Exercise 15 of
Chapter IV, §2, from which it follows that

xz x3 ka xZ x3 x2k+l
R N, Z_ < <x—_ 4 ey
x 2+3 2k_log(l+x)_x 2+3 +2k+1

The series on left are truncated at terms with a minus sign, and the series



[IX, §3] NON-ABSOLUTE CONVERGENCE 219

on the right are truncated at terms with a plus sign. The inequalities are
valid also at x = 1, and for this value, let
s,, = truncated alternating series at even terms,
Sa;+1 = truncated alternating series at odd terms,

ie. put x =1 in the above inequality, and let s,, be the left side, while
Sar+1 1S the right side of the inequality. Then we find

S5 1082 = 55449

It is an exercise to see that the sequence {s,,} is increasing, while
the sequence {s,,.,} is decreasing. Furthermore, $,,4; — S5, = 1/(2k + 1).
From this it immediately follows that the least upper bound of the
increasing sequence {s,,} is equal to the greatest lower bound of the
decreasing sequence {s,,+, }, and both are equal to log 2.

Example 2. There is another example similar to the alternating series.
Let f(x) = (sin x)/x. The graph of f looks like this:

sin x
graph of >

The function f represents what is called a dampened oscillation. Let a, be
the area (with a plus sign) between the n-th arch of the curve and the
x-axis. Then

" sin x
——Zdx=a, —ay,+az— - +(—=1)""a,.
o X
This is the other standard example of an alternating series, besides the
alternating harmonic series. The limiting value is more difficult to obtain,
and we show how to get it in Exercise 2 of Chapter XIII, §3.

Remark. The final statement in Theorem 3.1 allows us to estimate the
tail end of an alternating series. Indeed, if we take the sum starting with
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the m-th term, then all the hypotheses are still satisfied. Thus

S (-1t <a,

k=m

The proof of Theorem 3.1 also shows that for positive integers m < n, we
have

Z (= a,| < a,.
k=m

This gives a useful estimate in certain applications, when it is necessary to
estimate certain tail ends uniformly and accurately. The same estimate
will be obtained by a more powerful method in Theorem 3.3.

Let {f(k)}, {g(k)} be sequences of numbers, say, but see Remark 2
below. The main method for dealing with series of the form

Y. flk)g(k)

is based on Abel’s theorem, which is analogous to integration by parts.

Theorem 3.2 (Summation by parts). Let the partial sums of the g(k) be
G(k)=g(1) +--- + g(k),  so that Gk +1)— Gk) =gk + 1).

Then

z 1K) = F)G(r) — z GRSk + 1) — f(K)).

Proof. If n=1 we interpret the sum on the right as being 0. Suppose
n=2. Then

S0YG0) =5 Gtk + 1)~ f16)
= 103G — z' GG+ D + 3, GRM

= 3. f0GEH PRV
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. S0(G) — Glk — ) if we define G(0) =

nM: ||M:

f (k)g(k),
which proves the theorem.

Remark 1. Note how the formalism of the partial sum follows the
formalism of integration by parts, that is

Judv:uv—fvdu.

This is the reason why we wrote the second term on the right with a
minus sign. For some purposes, it is useful to change signs and write the
formula in the form

th JK)g(k) = fn)G(n) + ,,i: G (f(K) — flk + 1)).

This is the way we shall use it in Theorem 3.3, where the f(k) will be
assumed positive decreasing, so that each difference f(k) — f(k + 1) is = 0.

Remark 2. In the statement of Theorem 3.2, we purposely left out
where f and g take on values. Although we said they were functions
before the theorem, in fact, the proof is purely formal, and requires only
that they take values in a vector space E, with a product of E x E into
another vector space F so we can take sums. For instance F could be a
normed vector space, and E could be R itself. Or E could be the space
of real valued functions on some set, and the product is the ordinary
product of functions. Or both f and g could take values in a vector space
with a scalar product, in which case by f(k)g(k) we mean the scalar
product. All these cases arise in practice. The same remark applies to
Theorem 3.3 below.

Additionally, although it’s a minor point, we observe that we don’t
even need the commutativity of the product, and f, g could be maps into
different vector spaces. All we need is the distributive law. In this case,
we have to be careful to put objects on the appropriate side, and the
formula has to be written

5 1Wath) = 0G0) — 3, (ftk+ 1) = FR)GR,
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with all the g(k) and G(k) on the same side (the right side). Still, we
preferred to write the formula in Theorem 3.2 with an order which fits the
formula for integration by parts.

As an application of Theorem 3.2, we prove a result which will reprove
Theorem 3.1 more structurally.

Theorem 3.3. Let {a,} be a decreasing sequence of numbers 2 0. Let
{g(K)} be a sequence in a normed vector space, with partial sums G(n).
Assume that these partial sums are bounded, i.e. there exists C 2 0 such
that

|IGWI<C  forall n

Then
| Zx a,‘g(k)| < Ca,.
&

In fact, for n 2 m= 1, we have
|5 aoth] 26
Proof. By Theorem 3.2 and the triangle inequality, we get
|§1 auy(k)| <Ca, + g Cla, — ay4y) < Cay.

which proves the first statement. The second is then immediate, since it
amounts only to a renumbering of the sequence.

The second estimate in the theorem is useful in that form, because it
gives us an estimate for the norms (or absolute values in case of numbers)
of the tail ends of the sequence, how fast they tend to 0, namely essentially
as fast as the m-th term.

Example. We reprove Theorem 3.1 as follows. With the notation of
this theorem, we let g(k) = (—1)**1, so the partial sums

g() +-+- +g(n)

are bounded, and in fact they are equal to 1 or 0. Then the statement of
Theorem 3.1 is a special case of Theorem 3.3.

Warning. Just because the partial sums are bounded does not imply
the convergence of a series, as you see from ) (—1)". In the application
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to Theorem 3.1, what makes the series converge is that the numbers a, are
not only decreasing, but are decreasing to 0. -

Note that Theorem 3.3 applies when the values g(k) are in the space of
complex numbers, which is a complete normed vector space. Exercise 2
will give you an example when it is useful to have the theorem in the
stated generality.

Special Remark. In Theorem 3.3, we did nor assume that {a,} is
decreasing to 0. In several examples and exercises, this will be the case,
but for one important case when it isn’t, see Abel’s theorem, Exercise 7
of §6.

There is still another theorem which is sometimes useful, with a mixture
of summation and integration by parts, as follows.

Theorem 3.4. Let f be a C* function on the positive reals. Let {a,}, {r,}
be sequences of numbers, say, with r, 2 0, and {r} increasing to oo. For
positive B 2 r,, define the counting function

S.(B) = rgn a,.

Then .
T auftn) = S(B(B) - [ S0V dr.

%S,
Proof. Subtracting the left side from S,(B)f(B) we have

Z a, f(B) — Z a, f(r)

LOES xSB

Z a,(f(B) — f(n)) = ’éa J: a f'(r) dr

reZB
B 0 if r<n,
- r.;ﬂ .[,, gur)dr - where  g,(r) = {ahf ‘0 ifrzr,
B B
-[ Zana=] T arow
ry S ry MST

B
= J Sa(r)f'(r) ar, which proves the theorem.
1

y

One last word on series of the type Y a,b,. Exercise 7 of §2 gives one
method of proving convergence. Summation by parts gives another
method which covers all cases in this section. These are the two standard
methods which one tries in any given situation.
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IX, §3. EXERCISES

1. Leta, = O for all n. Assume that ). a, converges. Show that Yy \/a_,,/n converges.

2. Show that for x real, 0 < x < 2=, Y, e"™/n converges. Conclude that

COs nx

2 sin nx and z

n n
converge in the same interval.

3. A series of numbers ). a, is said to converge absolutely if Y la,| converges. De-
termine which of the following series converge absolutely, and which just con-
verge.

1
@ i P

sinn

[Hint for (b): Show that among three consecutive positive integers, for at least
one of them, say n, one has [sin n| = 172.]

© -y = @Oz

sinn . 2 _ 4n
@ X5, O O e
2"+ 1
(g)Z3,. (h) Zns—'icg—:—%
. 1
o X(- l)“logn G Y- )“n(lo—gn)z

4. For which values of x does the following series converge?
xll
Y
Let {a,} be a sequence of real numbers such that ) a, converges. Let {b,} be a

sequence of real numbers which converges monotonically to infinity. (This means
that {b,} is an unbounded sequence such that b,,, = b, for all n.) Show that

Ll

1 N
lim — Y a,b, =0.
New D n=1

Does this conclusion still hold if we only assume that the partial sums of Za,, are
bounded?

6. The Cantor set. Let K be the subset of [0, 1] consisting of all numbers having a
trecimal expansion

||M8

a,
\ 3

where a, = 0 or a, = 2. This set is called the Cantor set.
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(a) Show that the numbers a, in the trecimal expansion of a given number in K
are uniquely determined.
(b) Show that K is compact.

7. Peano curve. Let K be the Cantor set. Let S = [0, 1] x [0, 1] be the unit square.
Let f:K — S be the map which to each element Y a,/3" of the Cantor set assigns the
pair of numbers

bZ +1 bZ
(2 > L)
where b, = a,,/2. Show that f is continuous, and is surjective. [It is then possible
to extend f to a continuous map of the interval [0, 1] onto the square. This is
called a Peano curve. Note that the interval has dimension 1 whereas its image

under the continuous map f has dimension 2. This caused quite a sensation at the
end of the nineteenth century when it was discovered by Peano.]

IX, §4. ABSOLUTE CONVERGENCE IN VECTOR SPACES

Let E be a complete normed vector space. Let Y. v, be a series in E. Then
we can form the series

[2n]

Ms

1

of the norms of each term. Letting a, = |v,|, we see that Y. a, is a series
of numbers = 0, to which we can apply the criteria developed in §2.

Theorem 4.1. If' Y. |v,| converges, then Y. v, converges also.

This is easily seen, for if

is the partial sum, then for m < n we have

n
=< .
Z Ok _k=§'+1 o

k=m+1

[sn — ml =

Given ¢, there exists N such that if m, n = N and say m < n then the ex-
pression on the right is < €. Thus {s,} is a Cauchy sequence, and converges
since E is assumed complete.

Whenever the series ). |v,| converges, we say that Z v, converges abso-
lutely. We have just seen that absolute convergence implies convergence,

whence the terminology is justified.
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In defining the value of a series Y. v,, we take the limit of the partial
sums

Sp =10y + -+ U,

It is thus important to consider the order in which the terms v, occur.
For instance, if we consider the series ), (—1)" and try to sum it by
putting parentheses this way:

(“1+D+(=1+1)+--
we obtain the value 0. On the other hand, putting the parentheses this way
-1+0-D)+A-1)+---
we obtain the value —1. The partial sums actually oscillate between —1
and 0, and the series does not converge.
We know that the series 3 (—1)"(1/n) converges. However, by re-

ordering the terms, we can obtain a series which does not converge. For
instance, consider the following ordering:

_1+1+1_1+1+1+...+_l__1
274 3768 2, 5
1 1 1

Y2ttt 7T

We select the sequence n; < n, < ny <--- as follows. Having chosen
some n,, we pick n,,; such that the sum

1 1
2 Vo,

is greater than 2, say. When we subtract the odd term immediately after-
wards, what remains is still > 1. Thus the partial sums become arbitrarily
large.

The preceding phenomena are due to the presence of negative terms in
the series, as shown by the next theorem.

Theorem 4.2. Let E be a complete normed vector space, and let ., v, be an
absolutely convergent series in E. Then the series obtained by any re-
arrangement of the terms also converges absolutely, to the same limit.

Proof. The rearrangement of the series is determined by a permutation
of the positive integers Z*. That is, there exists a bijective mapping
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0:Z* — Z* such that the rearranged series can be written in the form

@
Z Vo(ny-
n=1
Given ¢, there exists N such that if m,n > N and say m < n then
1) [Vl + - + vl < e

Select Ny > N so large that if n > N, then g(n) > N. This can be done
because ¢ is injective, and there is only a finite number of integers n such
that a(n) < N. Then ifk, I > N, we have

) [Vogyl + -+ + lvgy| < ¢,

because the terms in this sum are among the terms in the sum (1). This
proves that the partial sums of the series Z | g | form a Cauchy sequence,
and hence that the rearranged series is also absolutely convergent. We
must see that it has the same limit.

We want to estimate

m @ m N ©
3 Z Vstky — Z Uy = Z Uotky — Z Uy — Z Uy
k=1 n=1 k=1 n=1 n=N+1
for m sufficiently large. Select M > N such that every integer n with

1 £ n £ N can be written in the form o(k) for some k £ M. Such M exists
because ¢ is surjective. Consider those m > M. Then by (1),

N

)
vn‘ < E lvnl Se
1 1

n=N+

m
2 Vo) —
k=1 n=

because the difference on the left contains only terms v, such that

n=zN+1.

Consequently we obtain the estimate for (3), namely

=2

m @
2 Vot = 2 U
k=1 n=1

This proves that the limit of the rearranged series is the same as the limit of
the original series, as desired.
There is a variation to the above theorem.
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Theorem 4.3. Let E be a complete normed vector space. Let {v,.} be a
doubly indexed family of elements of E, with n,me Z*. Assume:

i) For each n, the series

o
Y |Vpml converges.

m=1

(i) The repeated series

0 0
S U Y 10l ) converges.
n=1

m=1

Then the series taken in reverse direction, that is

(3

converges, so do the series without the norm signs, and

x (; Umn> = (; U,.m) =w  for some weE.

Furthermore, given ¢, there exists Ny such that for all M, N = Ny we
have

M=

M
Y vum| <€
1 m=1

W —
"

Proof. This theorem is actually analogous to Theorem 3.5 of Chapter
VII. Here instead of points adherent to sets, we deal with “infinity.” We
may view the family {v,,} as a mapping Z* x Z* > E, and so is the
partial sums mapping

N M
fiZ* xZ*—>E givenby fINM)=Y Y v,

n=1 m=1

Thus the variables (1,x) of Chapter VII, Theorem 3.5, are replaced with
the variables (N, M). To apply that reference, we have only to verify that
the two conditions of that theorem are satisfied. The first one is a con-
sequence of the hypothesis that for each N,

lim f(N, M)
M-



[IX, §5] ABSOLUTE AND UNIFORM CONVERGENCE 229

exists, even with absolute convergence of the series. So we have only to
verify the second hypothesis of uniform convergence, that is that the
family {fy} is uniformly convergent. Say N < N'. For all positive inte-
gers M, we have

N M N M

M) = Sl =| 3 3 ol S DY [t
N @©

£ Y Y Oulh

[
2|
¥

1

By the second hypothesis, given e there exists N, such that if N, N'> N,
then

3
I
-

N ©
Y Ylul<e so lfy—ful<e

n=N+1 m=1
This yields precisely the uniformly convergence of the sequence {fy}.

Thus we may apply Theorem 3.5 of Chapter VII in the present context to
conclude the proof.

IX, §5. ABSOLUTE AND UNIFORM CONVERGENCE

We can apply the preceding results to sequences of functions. Let S be a
set, and let {f,} be a sequence of functions on S. We form the partial sums

Se=fite g
so that s, is a function,
Sa(x) = f1(x) + -+ + folx).

We shall say that the series )" f, (also written Y. £,(x)) converges absolutely
if the series

S

converges for each x € S. We shall say that the series ). f, converges uni-
formly if the sequence of functions {s,} converges uniformly.

In most instances, the functions f, are bounded. In this case, we can
use the sup norm, and uniform, absolute convergence on S is the same as
the convergence of the series Y. || f,ll. This is but a special case of that dis-
cussed in the preceding section.
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We see that the convergence of a series of functions is determined by
the convergence of series of numbers, except that estimates now depend
on x, and to prove uniform convergence, we must show that these estimates
can be made in such a way that they do not depend on x.

Example 1. The series Y. (—1)"x"/n converges uniformly for 0 < x <1,
absolutely for x < 1, but not absolutely for x =1. Proof. For 0 = x <1,
the series Y, x"/n is dominated by Y x", which is a geometric series and
converges. For x =1, the series ), 1/n diverges. Finally, to verify the
uniform convergence on the whole interval [0, 1], we sum by parts. For
the tail end, Theorem 3.3 gives the estimate

.
<X <
s—=

1
m

' ¥ (—1xkym
k=m

Hence given ¢, pick N > 1/e, so that for n 2 m = N the above expression
is <e. Note how the estimate on the right is independent of x € [0, 1], so
the convergence is uniform.

Example 2. The series ) (—1)"(x + n)/n®> converges uniformly for
every interval —C < x < C. Indeed, for all n sufficiently large, (x + n)/n?
is positive, and for such n,

xX+n

nZ

0

IA

=

BN

il
n

n — 1)k
s = 3 EDGEHB D,E;Hk)-
k=1

Using Theorem 3.3, we conclude that for m, n large, we have ||s, — s,,|| <
€, whence the convergence is uniform. However, the convergence is not
absolute, because we can compare the series with Z 1/n from below to see
that Y (x + n)/n? diverges.

In the absolutely convergent case, we have a standard test called the
Weierstrass test.

Theorem 5.1. Let {f,} be a sequence of bounded Sfunctions such that
£l £ M, for suitable numbers M,, and assume that ¥ M, converges.
Then Y f, converges uniformly and absolutely. If each f, is continuous
on some set S, then Z Jn is continuous.

Proof. Immediate from the definitions, the comparison test, and
Theorem 3.2 of Chapter VII, for the continuity statement.
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Example 3. The series

sin n2x
y o

is uniformly and absolutely convergent for all x because

sin n%x

n2

<4
“n

231

and we know that ) 1/n” converges. Thus the series defines a continuous

function f(x).

The next theorem will not be used in this book, but provides an

example of uniformly convergent series, so we include it.

Theorem 5.2 (Tietze extension theorem). Let A be a closed subset of a
normed vector space E and let f be a continuous (real valued) function on
A. Then there exists a continuous function f* on E whose restriction to
A is equal to f. If f has values in [0, l], then we can choose f* to have

values in [0, 1] also.

Proof. Assume first that f has values in [0,1]. If C, D are disjoint
closed subsets of E, we denote by gc,p a function with values in [0, 1)
such that g(C) = 0 and g(D) = 1. Such a function exists by Exercise 1(c) of

Chapter VII, §2.

We shall now define functions f, on 4 and g, on E.
We let f, = f and define sets Ay, B, by the conditions:

Ao = {x € A such that f(x) £}},
B, = {x € A such that f(x) = 3}.

We let go = 39,5, and define f; = fo — go- Inductively, suppose that

we have defined f,; we have
A, = {x € A such that f,() <)@},
B, = {x € A such that f,(x) 2 (3)(3)'}-

We then define
: 90 =(3)(3)"94,.5,

and let f,., = f, — g, (Here of course, we understand by g, its restric-
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tion A.) Then in particular:

for=F—=(go+""+gn):
We have

* 0 33r and  0Sf=G)N

IIA
IIA

In

The first inequality is clear. The second is proved by induction. It is
clear for n =0. Let n>0. One distinguishes the three cases in which for
a given xe A we have xe 4,, or x¢ A, but x¢B,, or xeB,. The
desired inequality of f, is then obvious in each case, using the inductive
hypothesis.

From our inequalities (*), we then conclude that the series

Go+ gyt gt

converges pointwise, and furthermore converges to f on A. The uniform
bounds imply at once that the limit function is continuous, thus proving
Theorem 5.2, when f has values in [0, 1].

The restriction to the interval [0, 1] is of course unnecessary, and
the theorem extends at once to any other closed bounded interval, for
instance by mapping such an interval linearly on [0, 1].

Now suppose that f is unbounded. Using the arctangent map we
reduce the theorem to the case when f takes values in the open interval
(—1,1) and we must then know that the extension can be so chosen that
its values also lie in the open interval (—1,1). Let B be the closed
set where the extension f* (which we have constructed with values in
[—1, 1]) takes on the values 1 or —1. Then A and B are disjoint, so
there exists a continuous function h on E with values in [0, 1] such that h
is 1 on A and 0 on B. Then hf* has values in the open interval (—1, 1),
as desired. This concludes the proof of Theorem 5.2.

IX, §5. EXERCISES

1. Show that the following series converge uniformly and absolutely in the stated
interval for x.

1 sin nx
@ Lorafor0sx () X5 forallx
(c) X x"e™ for x = 0.

2. Show that the series

I+ x"
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©

o

=~

converges uniformly and absolutely for 0 < |x| < C, where C is any number
with 0 < C < 1. Show that the convergence is not uniform in 0 < x < 1.

Let

3

Jx) = Z

Show that the series converges uniformly for x = C > 0. Determine all points x
where f is defined, and also where f is continuous.

Show that the series

Y 1

n? — x?

converges absolutely and uniformly on any closed interval which does not
contain an integer.

(a) Show that
DM e n® + x"’

converges uniformly on any interval [0, C] with C > 0.
(b) Show that the series

x+n

Z( 1y

converges uniformly in every bounded interval, but does not converge absolutely
for any value of x.

Show that the series ) e™/n is uniformly convergent in every interval
[6, 2r — 6] for every & such that

0<d<m.

Conclude the same for Y (sin nx)/n and Y (cos nx)/n.

Let ¢! be the set of sequences o = {a,}, a, € R, such that

2 lal

n=1
converges. This is the space of §2, Exercise 15, with the £!-norm [lafl; =
¥ 1.
(a) Show that the closed ball of radius 1 in ¢! is not compact.
(b) Let a = {a,} be an element of ¢!, and let 4 be the set of all sequences
B={b,} in £ such that || <|a,| for all n. Show that every sequence of
elements of A4 has a point of accumulation in A4, and hence that 4 is compact.
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1

1

8. Let F be the complete normed vector space of continuous functions on [0, 2n]
with the sup norm. For o = {a,} in /', let

L@ =Y a,cosnx.
n=1

Show that L is a continuous linear map of ¢! into F, and that [|L()[l £ [lal,
for all a e /.

9. For z € C (complex numbers) and |z| # 1, show that the following limit exists

and give the values:
f(z) = hm 1

Is it possible to define f(z) when |z] =1 in such a way to make f continuous?
0. For z complex, let

2"

@)= hm et

(a) What is the domain of definition of f, that is for which complex numbers
z does the limit exist?
(b) Give explicitly the values of f(z) for the various z in the domain of f.

—-

. (a) For z complex, show that the series
zn-l

PNy e TRy

converges to 1/(1 — z)? for |z] < 1 and to 1/z(1 — 2)* for |z| > 1. [Hint: This is
mostly a question of algebra. Formally, factor out 1/z, then at first add 1 and
subtract 1 in the numerator, and use a partial fraction decomposition, pushing
the thing through algebraically, before you worry about convergence. Use
partial sums.]

(b) Prove that the convergence is uniform for [z Sc¢ <1 and |z| =2 b > 1.

IX, §6. POWER SERIES

Perhaps the most important series are power series, namely

Yax" or Ya,z,

where a,€R and xeR and zeC. The number a, are called the
coefficients of the series. We are interested in criteria for the absolute
convergence of the series.
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Lemma 6.1. Let {a,} be numbers = 0 and let r be a number > 0 such that
the series

Y a,r

converges. Then the series converges also for all numbers x such that
0<x=<r

Proof. Obvious, from the comparison test.

Corollary 6.2. If {a,} is a sequence of numbers, and Y. |a,|r" converges,
then Y a,z" converges absolutely and uniformly for |z| < r.

Proof. By definition.

Example 1. For any r > 0 the series Y r"/n! converges, by the ratio
test:

pi*lopl r

mrD)r n+l

which goes to 0 as n — oo, so the comparison test works. This implies
that the series 3 z"/n! converges absolutely for all z, and uniformly for
|zl £ r. Similarly, the series

3 - x . =2+l
e = Gy
n=0
and
zZ :4 «© ” :2n
1_E+Z_...=Z(_1) o1
n=0

converge absolutely for all =, and uniformly for |z| < r.

Theorem 6.3. Let Y a,z" be a power series. If it does not converge
absolutely for all z, then there exists a number R such that the series con-
converges absolutely for |z| <R and does not converge absolutely for
|z| > R.

Proof. Suppose the series does not converge absolutely for all z. Let R
be the least upper bound of those numbers r > 0 such that

> la,|r
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converges. Then ) |a,||z|" diverges if |z| > R and converges if |z| < R by
Theorem 6.2, so our assertion is obvious.

The number R in Theorem 6.3 is called the radius of convergence of the
power series. If the power series converges absolutely for all z, then we
say that its radius of convergence is infinity. When the radius of conver-
gence is 0, then the series converges absolutely only for z = 0.

We now assume that you know about the lim sup of a sequence of real
numbers. By convention, if this sequence is not bounded from above, we
say that the lim sup is oo. If the sequence is bounded from above, the
lim sup was defined in the exercises of Chapter II, §1. We recall the
definition. Let {x,} be a sequence of real numbers, bounded from above.
Then ¢t = lim sup x, is the number satisfying either one of the following
two properties:

The number ¢ is the largest point of accumulation of the sequence.

Given ¢, there exist infinitely many n such that ¢t — € < x,,, and there is
only a finite number of n such that x, >t + €.

The main theorem about the radius of convergence is the following.

Theorem 6.4. Let Y a,z" be a power series, and let r be its radius of
convergence. Then

)
o= lim sup |a,|"".

If r =0, this relation is to be interpreted as ing that the sequence

{la,|*"} is not bounded. If r= o0, it is to be interpreted as meaning
that lim sup |a,|*" = 0.

Proof. Let t =lim sup |a,|"". Suppose first that t # 0, co. Given € > 0,
there exist only a finite number of n such that |a,|"" > t + €. Thus for all
but a finite number of n, we have

laa| = (¢ + €,

whence the series ). a,z" converges absolutely if |z| < 1/(t + €), by com-
parison with the geometric series. Therefore the radius of convergence r
satisfies r = 1/(t + €) for every € > 0, whence r > 1/t

Conversely, given € there exist infinitely many n such that |a,|'" >t — ¢,
and therefore

lanl = (¢ — &)



[IX, §6] POWER SERIES 237

Hence the series ). a,z" does not converge if |z| = 1/(t — €), because its
n-th term does not even tend to 0. Therefore the radius of convergence r
satisfies » < 1/(t — €) for every € >0, whence r < 1/t. This concludes the
proof in case t # 0, oo.

The case when t =0 or oo will be left to the reader. The above
arguments apply, even with some simplifications.

Corollary 6.5. If lim |a,|'" =t exists, then r = 1/t.

Proof. If the limit exists, then ¢ is the only point of accumulation of
the sequence |a,|'", and the theorem states that t = 1/r.

Let {a,}, {b,} be two sequences of positive numbers. We shall write
a,=b, for n— o0

if for each n there exists a positive real number u, such that lim uX/" =1,
and a, = b,u,. If lim a}" exists, and a, =b,, then lim b}/ exists and is
equal to lim al. We can use this result in the following examples.

Example. The radius of convergence of the series ) n! z" is 0. Indeed,
we have n! = n"e™ and (n!)'" is unbounded as n — co.

Example. The radius of convergence of ) (I/n!)z" is infinity, because
1/n! = e"/n" so (1/n!)*" — 0 as n — oo.

Observe that our results apply to complex series, because they involve
only taking absolute values and using the standard properties of absolute
values. The discussion of absolute convergence in normed vector spaces
applies in this case, and the comparison is always with series having real
terms = 0. The next lemma is for the next section.

Lemma 6.6. Let s be the radius of convergence of the power series
S auz". Then the derived series Y na,z"~' converges absolutely for
|z] <.

Proof. Recall that lim n'™ = | as n — co. Without loss of generality,
we may assume that a, > 0. Let 0 < ¢ <sand let c < ¢, <s. We know
that ) a,c? converges. For all n sufficiently large, n'/"c < ¢, and hence

Y na,ct =Y an*c)

converges. This proves that the derived series converges absolutely for
|z2| £ c. This is true for every ¢ such that 0 < ¢ <s, and consequently
the derived series converges absolutely for |z| < s, as was to be shown.
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Of course, the integrated series

an zn+l
n+1

X E n + 1
also converges absolutely for |z| <s, but this is even more trivial since
its terms are bounded in absolute value by the terms of the original series,
and thus the integrated series can be compared with the original one.

In the next section, we shall prove that the term-by-term derivative of
the series actually yields the derivative of the function represented by the

series.

IX, §6. EXERCISES

—_

. Determine the radii of convergence of the following power series.

(a) Y nx" (®) Y n’x" ©) Z%
@z @Iz 0z:

xl .
® X T (h) Y (sin nm)x"

N

Determine the radii of convergence of the following series.

@ Tlogmw  (®) T v

e

n(log n)2

- .
© X i 0o

Suppose that ) a,z" has a radius of convergence r> 0. Show that given
A > 1/r there exists C > 0 such that

had

la,| < Ca*  for all n.

>

Let {a,} be a sequence of positive numbers, and assume that lim Apyy/a, =
A 2 0. Show that lim al" = A,

wv

. Determine the radius of convergence of the following series.

!
@ Z%z" ® Z((;ni'

. Let {a,} be a decreasing sequence of positive numbers approaching 0. Prove

=)
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that the power series )" a,z" is uniformly convergent on the domain of complex
z such that

lz| £ 1 and lz—1] 26,

where § > 0. Remember summation by parts, and Theorem 3.3.

@
Abel’s theorem. Let ) a,z" be a power series with radius of convergence 2 1.

n=1

=~

@
Assume that the series ) a, converges. Let 0 < x < 1. Prove that
n=1

© P
lim ) ax"=Y a,
x=1n=1 n=1

[Hinr: Use Theorem 3.3 to show that the conditions of Chapter VII, Theorem 3.5
are satisfied. Actually it falls out that the partial sums {s,(x)} converge uniformly
on the closed interval [0, 1].

IX, §7. DIFFERENTIATION AND INTEGRATION OF SERIES
We first deal with sequences.
Theorem 7.1. Let {f,} be a sequence of continuous functions on an inter-

val [a, b], converging uniformly to a function f (necessarily continuous).
Then

tim [ 7, = ff.

n—ova

Proof. We have

J-abfn B J;bf

Given ¢, we select n so large that

1o = Sl <eltb—a)

b
é“(f..—f)‘é(b—a)llﬁ.—fll-

to conclude the proof.

Theorem 7.2. Let {f,} be a sequence of differentiable functions on an
interval [a, b] with a < b. Assume that each f, is continuous, and that



240 SERIES [IX, §71

the sequence {f.} converges uniformly to a function g. Assume also that
there exists one point x, € [a, b] such that the sequence of {fu(xo)} con-
verges. Then the sequence { f,} converges uniformly to a function f, which
is differentiable, and [’ = g.

Proof. For each n there exists a number c, such that
f..(x)=I fi+c,, all xelabl

Let x = x,. Taking the limit as n — oo shows that the sequence of numbers
{c.} converges, say to a number ¢. For an arbitrary x, we take the limit
as n— oo and apply Theorem 7.1. We see that the sequence {f,} con-
verges pointwise to a function f such that

5= [a+e

On the other hand, this convergence is uniform, because

Jor=[o

so I, — fll £ — a)llf; — gll +lc, — cl. This proves our theorem.

[[o- g)| <b-alf - gl

Remark 1. The essential assumption in Theorem 7.2 is the uniform con-
vergence of the derived sequence {f,}. As an incidental assumption, one
needs a pointwise convergence for the sequence {f,}, and it turns out that
pointwise convergence at one point is enough to make the argument go
through, although in practice, the pointwise convergence is usually ob-
vious for all x € [a, b].

Remark 2. Before going on with the applications of Theorem 7.2,
we make some remarks on the proof. Assume for instance that {f,}
converges uniformly to f. We want to prove that f is differentiable and
Jf'=g. Itisin a way natural to try to do this directly without integration,
that is look at the sequence of difference quotients at a point x (fixed),

oy = BN =5

What we want amounts formally to an interchange of limits

lim lim u(k, k) = lim lim u(k, ).
k h=0

h=0 ke o0 b



[IX, §7] DIFFERENTIATION AND INTEGRATION OF SERIES 241

But we don’t know that the conditions for an interchange of limits are
satisfied. Hence trying to carry out the proof according to this pattern
doesn’t work. We go around the difficulty by using the fundamental
theorem of calculus, expressing f, as an integral of f plus the constant of
integration. Use of the integral gives us a version of uniformity, indepen-
dently of the formalism concerning interchanges of limits.

We obtain the theorem for differentiation of series as corollary.

Corollary 7.3. Let Y. f, be a series of differentiable functions with con-
tinuous derivatives on the interval [a, b], a < b. Assume that the derived
series Y. f converges uniformly on [a, b], and that Y f. converges point-
wise for one point. Let f =Y. f,. Then f is differentiable, and

=X
Proof. Apply Theorem 7.2 to the sequence of partial sums of the series.
The corollary states that under the given hypotheses, we can differentiate
a series term by term. Again, we emphasize that the uniform convergence
of the derived series is essential.

Example 1. The function

sin n2x

r@=3%;

is a continuous function. If we try to differentiate term by term, we obtain
the series ), cos nx. It is at first not obvious if this series converges. It
can be shown that it does not.

Example 2. The series

@ sin nx

fx)=%

3
n=1 N

converges absolutely and uniformly for xeR. Differentiating term by
term, we obtain the series

COS nx

g(X)=Z 2

which converges absolutely and uniformly for x € R. Hence by Corollary
7.3, we get f'(x) = g(x). We can replace 3 by any integer =3, and a
similar argument applies.
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Example 3. Let

COS nx

nZ

g(x) = Zl

Differentiating term by term yields the series

—sin nx

hx)=Y

This series does not converge absolutely. By Exercise 6 of §5, you should
know that it converges uniformly on every interval [8, 2z — 8] with § > 0.
Hence on the open interval (0, 27) we have g'(x) = h(x). In the present
example, the convergence is more delicate than in Example 2. In the
chapter on Fourier series, you will be able to see that the series of the
present example represents a very simple function. Cf. Exercises 1 and 9
of Chapter XII, §4.

Next we deal with power series.

Corollary 7.4. Let Y a,x" be a power series with radius of convergence
5s>0. Let f(x) = ) a,x". Then

1) =Y na,x?
Jor |x| <s.

Proof. Let 0 <c¢ <s. Then the power series converges uniformly for
x| £ ¢, and so does the derived series by the lemma of the preceding sec-
tion. Hence f'(x) = ) na,x"~! for |x| < c. This is true for every ¢ such
that 0 < ¢ < s, and hence our result holds for |x| < s.

Corollary 7.4 shows that even though a series may not converge uni-
formly on a certain domain, nevertheless this domain may be the union of
subintervals on which the series does converge uniformly. Thus on each
such interval we can differentiate the series term by term. The result is
then valid over the whole domain. In particular, uniform convergence is
usually easier to determine on compact subsets, as we did in Corollary 7.4,
selecting ¢ such that 0 < ¢ < s and investigating the convergence on
0<|x|=ec

Corollary 7.5. Let Y. a,x" have radius of convergence s, and let

[ =Yax" for |x|<s.
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Let

a,x"*!

F(x)=zn+l’

Then F'(x) = f(x).

Proof. Differentiate the series for F term by term and apply Corollary
74.

We have now derived the theorems giving a proof of the existence of
functions f, g such that

f'=g and g=-/
fO=0 and gO)=1.

Indeed, we put

Jx) = "gl( -t —1);,

© xZn
g(x) = ngo(— )" @l

This fills in the missing existence of Chapter IV, §3, for the sine and cosine.
Similarly, we have proved the existence of a function f(x) such that

S)=f(x) and f(O)=1,
namely

x"
=X

This fills in the missing existence of Chapter IV, §1, for the exponential
function.
IX, §7. EXERCISES

1. Show that if f(x) = ). 1/(n* + x?) then f’(x) can be obtained by differentiating
this series term by term.
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Lol

»

©

Same problem if f(x) = ¥ 1/(n® — x?), defined when x is not equal to an integer.

Let F be the vector space of continuous functions on [0, 2] with the sup norm.
On F define the scalar product

2n
S = R S(x)g(x) dx.

Two functions f, g are called orthogonal if {f, g> = 0. Let
Pn(X) = cos nx and Pn(x) = sin nx.

(Take n 2 1 except for ¢, = 1.) Show that the functions ¢¢, ¢,, ¥,, are pairwise
orthogonal. [Hint: Use the formula

sin nx cos mx = ¥[sin(n + m)x + sin(n — m)x]

and similar ones.] Find the norms of ¢,,, ¢o, Y.

Let {a,} be a sequence of numbers such that )’ a, converges absolutely. Prove
that the series

f(x) =Y a,cosnx
converges uniformly. Show that
o> =0, {fiy) =0 forallm,  {f, o) = nay.

(Borel, 1890’s) Let {a,} be a sequence of numbers. Show that there exists an
infinitely differentiable function g defined on some open interval containing 0
such that

4”0 = a,.

[Hint: The following procedure was shown to me by Tate. Given n > 0 and ¢,
there exists a function f =f, . which is C*® on —1 < x <1 such that:

M) fO) = f©=---=fo0) = 0and f*(0) = 1.
2 |fMx)| < efork=0,....n —land |x| £ 1.

Indeed, let ¢ be a C* function on (~1, 1) such that

o) =1 if |x| S¢2,
0o <1 if 25|x|<¢
ex)=0 if e<|x|<L

Integrate ¢ from 0 to x, n times to get f(x). Then let ¢, be chosen so that Yla,le,
converges. Put

3

90x) = Y apf,, (%)

n=0
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For k 2 0 the series
©
Y a.D¥...
n=0

converges uniformly on |x| £ 1, as one sees by decomposing the sum from 0
to k and from k+ 1 to oo, because for n > k we have

18, DY, ()| £ la,le]

[=a}

. Given a C® function g:[a, b] — R from a closed interval, show that g can be ex-
tended to a C* function defined on an open interval containing [a, b].

bl

. Let n = 0 be an integer. Show that the series

_ © (__ l)kxn+2k
) = k;, 27T (0 + Ry

converges for all x. Prove that y = J,(x) is a solution to Bessel’s equation

1 n?
relyaf1-Z)y =0
}’+x}'+( xz))’



CHAPTER X

The Integral in One Variable

Let F, be a subspace of a normed vector space F. It occurs in many
contexts in mathematics that one is given a linear map L: F, —» E which
one wants to extend to the closure of F,. It occurs especially in the con-
text of integration theory, which we study in this chapter. We begin by
systematizing the general framework.

X, §1. EXTENSION THEOREM FOR LINEAR MAPS

Let F, E be normed vector spaces, and L: F—E a linear map. We
contend that the following two conditions are equivalent:

L is continuous.

There exists a number C > 0 such that |L(x)| < C|x| for all x € F.

Assume the first, and even assume that L is continuous only at 0. Given
1, there exists & such that whenever x € F and |x| < § we have IL(x)] < 1.
Now given an arbitrary xe F, x#0, we have |6x/2]x|| < 8, whence
|L(0x/2]x])| < 1. Taking the numbers out of L yields

LI <31l

We take C = 2/5. Conversely, assume the second condition. Given e,
let 6 = ¢/C. If |x — y| < 8, then

ILx = p)|=ILe) — LY = Clx — y| <,
whence L is not only continuous but uniformly continuous.

246
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A number C as above is called a bound for L. If B is the unit ball cen-
tered at the origin in F, then we see that L(B) is bounded by C, whence
the name for C. In view of the linearity it is clear that there cannot be a
number C; such that |L(x)] £ C, for all xe F unless L =0. Hence in
the case of linear maps, we say that a linear map L is bounded if it is con-
tinuous. We mean by this that it takes bounded values on bounded sets.
There is of course some impropriety in this usage in view of the general
definition of bounded mappings, but it is standard usage and the reader
will find no genuine trouble arising from it.

Proposition 1.1. Let F be a normed vector space, and let F, be a
subspace. Then the closure of F, in F is a subspace of F.

This is nothing but an exercise: If F, denotes the closure of F,, and
ve Fy, then v =lim x, for some sequence of elements x,€ F,. If w=
lim y, with y, € F,, then v + w = lim(x, + y,) also lies in F,. Further-
more,

cv = ¢ lim x,, = lim(cx,,)
lies in F,, so F, is a subspace.
Suppose that we are given a linear map L: F, — E instead of being
given a linear map on F, and assume that L is continuous. We wish to

extend L by continuity to the closure of F,. This can be done in the
following case.

Theorem 1.2. Let F be a normed vector space, and let Fy be a subspace.
Let L: Fy— E be a continuous linear map of F, into a normed vector
space E, and assume that E is complete. Then L has a unique extension
to a continuous linear map

L: Fo —E
of the closure of F, into E. If C is a bound for L, then C is also a
bound for L.

Proof. Let ve F, and let v = lim x,, with x, € F,. We contend that the
sequence {L(x,)} in E is a Cauchy sequence. Given e, there exists N such
that if m, n = N then

€ €
|x,,—v|<E, |x,,,—v|<E.

Then |x, — Xn| < |x, — v| + |v — x,,| < 2¢/C. Consequently
|L(xn) — LOxm)| = | L(xp — xp)| < 2€,

thus proving our contention.
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Since E is assumed complete, the Cauchy sequence {L(x,)} converges
to an element w in E. Suppose {x,} is another sequence of elements of Fy
converging to v, and let {L(x,)} converge to w' in E. Then

lw—w'| < |w— Lol + [L0e) — LO)| + [L0e) = Wl

Furthermore, |L(x,) — L(x};)| £ C|x, — x4|. From the definition of con-
vergence, it is then clear that for all n sufficiently large, |w — w| < 3e.
This is true for every ¢, and hence |[w — w’| = 0, w = w". This means that
the limit of {L(x,)} is independent of the choice of sequence {x,} in Fy
approaching . _

We define L(v) = lim L(x,). If v happens to be in F,, then L(v) = L)
because, for instance, we can take x, = v for all n.

If v = lim x,, and ¢’ = lim x|, with x,, x; € Fy, then

v+ v’ = lim(x, + x).
Hence
L(v + v') = lim L(x, + x,) = lim(L(x,) + L(x}))
= lim L(x,) + lim L(x}) = L(v) + L(').
Also,
L(cv) = lim cL(x,) = c lim L(x,) = cL(v).

Hence L is linear.
Finally, C is also a bound for L, because

|L@)| = |lim L(x,)| = lim | L(x,)].

Since |L(x,)| £ C|x,|, it follows from the theorem on inequalities of
limits that | L(v)| < C|v|, as desired.

X, §2. INTEGRAL OF STEP MAPS

We now wish to develop systematically the theory of the elementary Rie-
mann integral. In practice, one needs first the integral both of real valued
and complex valued functions. Of course, a complex valued function can
be written f, + if, where f}, f, are real valued, so the integral can be
reduced to coordinate functions which are real valued. Next, one needs
also to consider the integral of maps of an interval into some euclidean
space R¥. Such maps are curves. It is however bothersome to write such a
map always in terms-of coordinate functions, and we may think of R*
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merely as a vector space, with a norm, and complete. It turns out that the
theory actually is valid in this generality. In first reading, the reader may
think of functions only. We denote the space where our maps take values
by a neutral letter E, to cover both the real and complex case, and the case
of vector spaces if the reader wants it so. This latter case is in fact useful
later when we consider the calculus of maps from one space into another.

Of course, some statements concerning the integral are related to the
ordering of the real numbers: if a function is positive, then its integral is
positive. In such cases, we always specify that the function is real valued.

Let a, b be numbers, a < b. By a partition P of the interval [a, b] we
shall mean a finite sequence of numbers (ay, . . . ,a,) such that

a=ag<a, <---Za,=b

Let f:[a,b]—E be a map (function). We shall say that f is a step map with
respect to the partition P if there exist elements w,, ...,w, € E such that

[ =w; if g,<t<a, i=1,..,n

Thus f has constant value on each open interval determined by the parti-
tion. We don’t care what value f has at the end points of each interval
[ai-1, a;)- If a; = a;—,, we let

w; = f(a).

We say that f is a step map on [a, b] if it is a step map with respect to
some partition. Let f be a step map with respect to the partition P as
above. We define

Ix(f) = (ay — agdwy + -+ + (ay — Gp—1)Wn

(a; — ai-)w;

M-

and call this value the integral of f with respect to the partition P.
If f is real valued, then the graph of f has the usual shape shown on the
next figure, and the integral is the naive sum of the areas of the rectangles,

' H 1 1
] 1
1 ~ 1 1
1 1 1 1 ]
' 1 1 ' [
L . | H .
t + + +
a=a, a, a, ay) a3 +Gny Gy =b
|
1
|
|
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with a plus or minus sign according as the constant value of f over an
interval is positive or negative.

Suppose that f is a step map with respect to another partition Q of [a, b].
We contend that I1p(f) = Io(f).

To prove this, consider first the partition obtained from P by inserting
one more point ¢ between the points of P:

P, = (g, -0 Cs Ay 1s - -+ n)

with

We observe that if a, <t < agy, and f(t) = wy,,, then f has this same
constant value on each of the intervals

g <t<c and C<t<agy,

if @, < ¢ or ¢ < a,4,. Consequently, the integral of f with respect to the
partition P, is equal to

™) (a —agdwy + -+ + (c — awis,
+ (ak-l-l - c)wk+l +-+ (an — Qp- l)wn‘

This sum differs from the sum for Ix(f) only in that the one term
(ax+1 — @)Wy, is replaced by the two terms as shown. However

(€ — aWirr + @y — Wirr = (@es1 — GIWks1s
and this shows that Ip (f) = Ix(f).

A partition R is said to be a refinement of P if every point of the partition
P is also a point of the partition R. Inserting a finite number of points
and using induction, we conclude that if R is a refinement of P, then
Ir(f) = 1e(f).

If Q is another partition, then P and Q have a common refinement.
Indeed, if Q = (b, ...,b,), then we can insert inductively by, ...,b, to
obtain this refinement, which we denote by R. Then

1(f) = Ix(f) = 1o(f).

This shows that our integral does not depend on the partition. We shall
therefore denote the integral of f by I(f).
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It is clear that a step map f is bounded, because f takes on only a finite
number of values, and the maximum of the norms of these values is a
bound for f. We have also an obvious bound for I(f). Preserving the
preceding notations, and letting || /|| be the sup norm, we find

IS X lo = aies 10 € 3 = aie LY

=G -alfl.

Except for showing that step maps form a vector space, we have proved:

Lemma 2.1. The set of step maps of [a, b] into E is a subspace of the
space of all bounded maps of [a,b] into E. Denote it by St([a, b], E).
The map

I: St([a, b],E)> E
is a linear map with bound b — a, that is

HNI = @ - a1

Proof. Let f, g be step maps. Suppose that f is a step map with respect
to the partition P and g is a step map with respect to the partition Q. Let
R be a common refinement of P and Q. Then both f and g are step maps
with respect to R. Let R = (co, ...,c,) and suppose that f has a constant
value w;,, on ¢; < t < c¢j,, and g has a constant value v;,, on

¢ <t < Cjyy

Then f + g has a constant value v;,, + w;,, on this open interval. If d
is a number, then df has a constant value dw;,, on this interval. Hence
the set of all step maps is a vector space. Combined with the preceding
results, the linearity of I is obvious. This proves the lemma.

Let F be the space of all bounded maps from [a, b] into E. Let F, be
the subspace of step maps. We can apply the linear extension theorem to I
and thus we know that there is a unique linear map of F, with values in E
which extends I. We shall denote this linear map again by I, and call it the
integral. We see that the integral is defined on all bounded maps which are
uniform limits of step maps. To emphasize the dependence of I on the
interval [a, b] we also write I(f) = I%(f), or also

[r- [ "y
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Lemma 2.2. Let f be a step map on [a,b]. Let a<c<b. Then fisa
step map on [a, c] and on [c, b], and

1) = I + 1)
Proof. Let P be a partition of [a, b] with respect to which [ is a step

map. Let P, be the refinement of P obtained by inserting ¢ in P. The state-
ment of Lemma 2.2 is then clear from the sum (*).

Lemma 23. Let E =R be the real numbers. If f is a step function on
[a, b] such that f 2 0 (that is f(t) = O for all t) then I¥(f)Z 0. If f, g
are step functions on [a, b] such that f < g, then

I(f) £ I).

Proof. If f(t) = 0 for all ¢, and P is a partition with respect to which f
is a step function, then

1) = i=i1 (a; — a;—y)w;

and w; > O for all i. Thus the integral is a sum of terms each of which is
2= 0, and is consequently = 0. If f < g, we apply what we have just proved
tog — f 2 0 and use the linearity of the integral,

o -IN=re-nNzo.

X, §3. APPROXIMATION BY STEP MAPS

To get the integral defined on continuous maps, it suffices to show that
these are contained in the closure of the space of step maps.

Theorem 3.1. Every continuous map of [a, b] into E can be uniformly
approximated by step maps. The closure of St([a,b], E) contains
C°([a, b, E).

Proof. By Theorem 2.5 of Chapter VIII, we know that a continuous
map f on [a, b] is uniformly continuous. Given ¢, choose § such that if

x,y€[a,b]
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and |x — y| < & then | f(x) — f(y)| < €. Let P = (ay, ...,a,) be the parti-
tion of [a, b] such that each interval [a;_,, a;] has length (b — a)/n, and
choose n so large that (b — a)/n < 8. If a;_, <t < a;, define

9(0) = f(ai- ).
Then for all ¢ in [a, b] we have
lg() — f(Ol <&
and g is a step map, thus proving Theorem 3.1.

Note. The proof of Theorem 2.5, Chapter VII, is self-contained and
very simple, based on nothing else than the Weierstrass—Bolzano theorem.
See also Theorem 2.7 of Chapter V. Thus the present theorem can be
proved immediately after the Weierstrass—Bolzano theorem, and the theory
of integration can thus be developed very early in the game.

The closure of the space of step maps contains a slightly wider class of
functions which are useful in practice, for instance in the study of Fourier
series. It is the class of piecewise continuous maps. A map f:[a,b] > E
is said to be piecewise continuous if there exists a partition

P = (ao,--.,a,) of [a, b]
and for each i = 1, ... ,n a continuous map
filai-, a]—>E
such that we have
J(t)=£i(t) if a_,<t<a.

The graph of a piecewise continuous function looks like this:

.
|;'/'z;

Essentially the same argument which was used to prove Theorem 3.1 can
be used to prove that a piecewise continuous map can be uniformly ap-
proximated by step maps.
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Note that instead of saying that there exists a continuous map f; having
the property stated above, we can say equivalently that f should be con-
tinuous on any open subinterval a;_; < t < a;, and that the limits

lim f(t) and lim f(t)
t—~ag-y t—aq
t>a;-y t<a

should exist. These limits are usually denoted by

lim f(t) and lim f(¢).

t=ag- 1+ t—a—

We leave it as an exercise for the reader to prove that the piecewise con-
tinuous maps form a subspace of the space of bounded maps.

It will be convenient to have a name for the closure of the space of step
maps in the space of bounded maps. We shall call it the space of regulated
maps. Thus a map is regulated if and only if it can be uniformly approxi-
mated by step maps. We denote the space of regulated maps by

Reg([a, b], E), or St([a, b], E).

X, §3. EXERCISES

1. If f is a continuous real valued function on [a, b], show that one can approximate
f uniformly by step functions whose values are less than or equal to those of f,
and also by step functions whose values are greater than or equal to those of f.
The integrals of these step functions are then the standard lower and upper Riemann
sums.

2. Show that the product of two regulated maps is regulated. The product of two
piecewise continuous maps is piecewise continuous.

3. On the space of regulated maps f:[a,b] — C, show that | f| is regulated, and

define
Il = rlfl-

Show that this is a seminorm (all properties of a norm except that || f||, = 0 but
[/, may be O without f itself being 0).

4. Let F be the vector space of real valued regulated functions on an interval [a, b).
We have the sup norm on F. We have the seminorm of Exercise 3. It is called the
L'-seminorm. Prove that the continuous functions are dense in F , for the L'-semi-
norm. In other words, prove that given f € F, there exists a continuous function g
on [a, b] such that || f — gll, <e. [Hint: First approximate f by a step function.
Then approximate a step function by a continuous function obtained by changing
a step function only near its discontinuities.]
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5. On the space of regulated functions as in Exercise 4, define the scalar product

b
S0 = [ 109009 dx.

The seminorm associated with this scalar product is called the L2-seminorm. (Cf.
Exercise 11 of Chapter VI, §2.) Show that the continuous functions are dense in
F for the L2-seminorm.

f=}

. The space F still being as in Exercise 4 or 5, show that the step functions are dense
in F for the L'-seminorm and the L?-seminorm.

~

Let F be the space of regulated functions on [a, b] once more. Let C® =
C*([a, b]) be the space of infinitely differentiable real valued functions on
[a,b). Prove that C* is (a) L'-dense and (b) L>-dense in F. [Hint: First
approximate by step functions, then smooth out the corners by using bump
functions which are 0 in a é-interval around a corner, and 1 outside a 25-
interval around each corner. Pick & sufficiently small]

Note. Exercises 4 through 7 are quite useful because there is a certain type of
result which is proved by the following technique. One proves the result first for
very smooth functions, say C®, and then one extends the result to a wider class of
very kinky functions. Examples of this procedure will be met in the theory of
Fourier series. In a subsequent course, the same technique applies to prove
approximation results about a fancier integral, the Lebesgue integral. See the
appendix of §4 and my Real and Functional Analysis, Chapter VI, §6. Actually, the
very definition of the Lebesgue integral comes from this approximation technique,
by describing more precisely the behavior of the limit of an L' or L? Cauchy
sequence of step maps or of continuous maps. The net result is that such a
sequence converges pointwise “almost everywhere” in a precise sense, and abso-
lutely uniformly outside sets of arbitrarily small measure. See the appendix of §4.

X, §4. PROPERTIES OF THE INTEGRAL

The integral being defined as a limit, we can immediately formulate the
properties stated in §2 for the integral applied to limits of step maps.

We consider regulated maps from [a,b] into the complete normed
vector space E. From §1, we conclude:

Theorem 4.1. If {f,} is a uniformly convergent sequence of regulated
maps converging to f, then

b
tim [ £, = blimf..=ff.

n-w Ja a n+o

Let f be regulated on an interval J. If a < b are numbers of this interval,
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we define

[r=-[r

Theorem 4.2. For any three numbers a, b, ¢ in J, we then have

b c b
[r=[r+]r
a a c
Proof. Suppose first that a < ¢ < b. If {f,} is a sequence of step maps
on [a, b] converging to f uniformly on [a, b], then it also converges to f
uniformly on [a,c] and on [c,b]. From the basic properties of limits,

and Lemma 2.2, we conclude that our relation is valid. Say now that
a<b<c. Then

b b c c
f=f+f and hence I=I—I.
a a b a a b
Our formula follows from the definitions.

Theorem 4.3. The integral is linear, that is if f, g are regulated on [a,b]

then
[v+a-= [1+[o au fo=Kff

for any number K.

This follows by the fact that the extension theorem yields a linear map.
(It is an exercise to verify the last property when E = C and K is complex.)

Theorem 4.4. Let f, g be regulated real valued functions on [a,b]. If
f =0, then

ffgo.

If f < g, then

L bf = fg-

The first statement follows from the fact that we can find a convergent
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sequence of step functions {f,} converging to f such that f, = 0 for all n.
The second follows from the first by considering the integral of g — f.

Theorem 4.5. Let f be regulated on [a,b]. Let ce[a,b]. Then for
x € [a, b] we have

Slx—=cllfl.

X
The map x> J f is continuous.
c

Proof. To prove the inequality if x < ¢ we reverse the limits of integra-
tion. Otherwise, the inequality follows by the limiting process from the
integral of step maps. As for the continuity statement, it is clear, because
if we let

Fo = [ s
c
then
[FGe + k) — FG)l < 1h[ 1 Sf1l,
and this goes to 0 as h — 0.

Theorem4.6. Let f be a regulated real valued function on [a,b] and
assume a < b. Let a < ¢ £ b. Assume that f is continuous at ¢ and that
f(c) > 0, and also that f(t) = O for all t € [a,b]. Then

ff> 0.

Proof. Given f(c), there exists some & such that f(t) > f(c)/2 if
|t —c| < éand tela,b]. If c # a,let 0 < A < & be such that the interval
[c — 4, c] is contained in [a, b]. Then

ff=j: £+ f+ff

2 f 229 ” @,
thereby proving our assertion. If ¢ = a, we take a small interval [a, a + 4]
and argue in a similar way.
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Consider now the special case when f takes its values in k-space RK,
Then f can be represented by coordinate functions,

7@ = (710, .- SlD):

It is easily verified that f is a step map if and only if each f; is a step func-
tion, and that if f is a step map, then

() = (1D, L)

In other words, the integral can be taken componentwise. Thus by taking
limits of step maps, we obtain the same statement for integrals of regulated
maps:

Theorem 4.7. If f: [a,b] — R* is regulated, then each coordinate func-
tion fy, ... fy of f is regulated, and

= (eef7)

Thus the integral of a map into R¥ can be viewed as a k-tuple of integrals
of functions. However, it is useful not to break up a vector into its com-
ponents for three reasons. One, the geometry of k-space can be easily
visualized without components, and the formalism of analysis should
follow this geometrical intuition. Second, it is sometimes necessary to
take values of f in some space where coordinates have not yet been
chosen, and not to introduce irrelevant coordinates, since the pattern of
proofs if we don’t introduce the coordinates follows the pattern of proofs
in the case of functions. Third, in more advanced applications, one has to
integrate maps whose values are in function spaces, where there is no ques-
tion of introducing coordinates, at least in the above form. However, in
some computational questions, it is useful to have the coordinates, so
one must also know Theorem 4.7.

Note that in the case of the complex numbers, if f is a complex valued
function, f = ¢ + iy where @, Y are real, then

ff= ftp + if.//.

X, §4. EXERCISES

1. Leta £t < b be a closed interval and let

P=fa=tySt, S-St}
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g

be a partition of this interval. By the size of P we mean

size P = max(ty+, — t).
k

Let f be a continuous function on [a, b], or even a regulated function. Given num-
bers ¢, with

0 S 6 S by

form the Riemann sum

n—1
S(P,c,f) = kz,of ©(tx+r — -

Let

L= r 1.

Show that given € > 0, there exists & such that if size(P) < é then
IS(P,c,f)— L] <e

The Stieltjes integral. Let f be a continuous function on an interval a <t < b.
Let h be an increasing function on this interval, and assume that h is bounded.
Given a partition

P={a=t,2t;£---Zt,=b}

of the interval, let ¢, be a number, t;, < ¢; < t,,, and define the Riemann-Stieltjes
sum relative to h to be

n—1
S(P, ¢, f) = kzof (clh(tis 1) — h(td)-

Prove that the limit
L=1limS(P,c,f)

P,c

exists as the size of the partition approaches 0. This means that there exists a num-
ber L having the following property. Given ¢ there exists & such that for any parti-
tion P of size < & we have

|S(P,c, f)— Ll <e

[Hint: Selecting values for c, such that f(c;) is a maximum (resp. minimum) on
the interval [t;, £, 1], use upper and lower sums, and show that the difference is
small when the size of the partition is small.] The above limit is usually denoted

by
L= J:fdh.
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3. Suppose that k is of class C* on [a, b), that is h has a derivative which is continuous,
Show that

f: fdh = f: FOHE) dr.

4. The total variation. Let
f:[a,b]—C

be a complex valued function. Let P = {t, <t, £---<1t,} be a partition of
[a, b]. Define the variation V() to be

V) = B 1) = 161

Define the variation

V(f) = sup Vi),
P

where the sup (least upper bound if it exists, otherwise o) is taken over all parti-
tions. If V(f) is finite, then f is called of bounded variation.
(a) Show that if f is real valued, increasing and bounded on [a, b] then f is of
bounded variation, in fact bounded by f(b) — f(a).
(b) Show that if f is differentiable on [a, b] and f* is bounded, then f is of bounded
variation. This is so in particular if f has a continuous derivative.
(c) Show that the set of functions of bounded variations on [a, b] is a vector space,
and that if f, g are of bounded variation, so is the product fg.

The notation for the variation really should include the interval, and we should
write

V(f,ab)

Define
Vi) =V(fax),

so ¥, is a function of x, called the variation function of f.

5. (a) Show that V, is an increasing function.
(b) Ifa £ x £ y < bshow that

V(f.a,y)=V({f,ax)+ V(f,x,y)

All the above statements are quite easy to prove. The next theorem is a little more
tricky. Prove: .

6. Theorem. If f is continuous, then V; is continuous.

Sketch of proof: By Exercise 5(b), it suffices to prove (say for continuity on the
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right) that
lim V(f, x, y) = 0.
yox

If the limit is not 0 (or does not exist) then there exists § > 0 such that

V(f,%y) >4

for y arbitrarily close to x, and hence by Exercise 5(b), such that

V(f,xy) >0
for all y with x < y < y, with some fixed y,. Let
P={xo=x<x; <-+ <X, =y}

be a partition such that Vy(f) > 6. By continuity of f at x, we can select y, such
that x < y, < x, and such that f(y,) is very close to f(x). Replace the term

/G =Sl by [f(x0) = Sl

in the sum expressing Vp(f). Then we have found y, such that V(f, y,, y,) > 8.
Now repeat this procedure, with a descending sequence

S Yn < Ypry < <Y
Using Exercise 5(b), we find that

V(£ % 31) Z V(S Yas Y- 1) + V(s Va1 Ya=2) + - V(S Y2, 1)
2 @n - 1é.
This is a contradiction for n sufficiently large, thus concluding the proof.]

Remark. In all the preceding properties of functions of bounded variations,
your proofs should be valid for maps f: [a, b] — E into an arbitrary Banach space.

=~

Prove the following theorem.

Theorem. Let f be a real valued function on [a,b], of bounded variation.
Then there exist increasing functions g, h on [a, b] such that g(a) = h(a) =0
and

Jx) = f(@) = g(x) — h(x),
Vi(x) = g(x) + h(x).
[Hint: Define g, h by the formulas
Y=V, +f~fl@ and 2h=V,—[+f(@)]

Remark. Functions of bounded variation form a natural class for which the
Fourier series (Chapter XII) behave quite well.
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8. Let f be a real valued function of bounded variation on [a, b]. Let c€ [a, b).
Prove that the limits
lim f(c + h) and lim f(c + h)
h=0 h=0
h>0 h<0

exist if ¢ # a, b. If ¢ = a or ¢ = b, then one has to deal with the right limit with
h > 0, respectively, the left limit with h <0. [Hint: First prove the result if f is
an increasing function.]

X, §4. APPENDIX. THE LEBESGUE INTEGRAL

For the present course, it is not necessary to deal with integrals of
functions other than those considered in this chapter, or those for which a
rather naive notion of improper integrals can be defined as in Chapter
XIII. These integrals can be handled in very short space, and are service-
able for the numerous applications we give in this book. However, it may
be illuminating to see how these integrals can be subsumed under a larger
class, which is covered in a subsequent course. The definition of this class
may be based on what I call the fundamental lemma of Lebesgue integra-
tion, which is presented in this appendix. Instead of approximating cer-
tain functions uniformly by step maps, we approximate them in the L!-
seminorm by step maps. In other words, instead of considering Cauchy
sequences of step maps for the sup norm, we consider Cauchy sequences
of step maps for the L'-seminorm. We then want to see how such a
sequence converges pointwise. The answer is given in the present appen-
dix. The proof is an €/2" proof. Both the result and its proof provide
examples of notions which have been defined so far, so this appendix can
be used both to illuminate past results in a new light, and to serve as an
introduction for future happenings.

Note that our approach to integration, starting in §1, continuing in §2,
and also in the present appendix, sets things up along the following
general pattern. To prove something in integration theory at the basic
level, first prove it for a subspace of functions for which the result is
obvious or easy, then extend by linearity and continuity to the largest
possible subspace. The very definition of the integral, whether in §2 or in
this appendix, follows the general pattern.

Nothing will be used about the space of values of functions or map-
pings except linearity, a norm, and completeness, so there is no reason to
assume anything more. Thus we deal with mappings f: R — E, where E is
a complete normed vector space.

The length of an interval 4 will be called the measure of A and will be
denoted by p(A). In this definition, the interval may be open, closed, or
half closed. Thus the interval may consist of a single point. A subset § of
R will be said to have measure 0 if given € > 0 there exists a sequence of
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intervals {4,} such that
@©
Sc(JA4, and Y A, <e
n=1

You should now have done Exercise 12 of Chapter IX, §2. Thus we take
for granted the fact that a denumerable union of sets of measure 0 also
has measure 0.

Again let S be a subset of R. We say that S has measure < e if there
exists a sequence of intervals {4,} such that

ScJ4, and i wWA,) <e
n=1

Thus a set of measure 0 is a set of measure < € for every € > 0.

In the chapter we considered step maps on a fixed interval [a, b]. We
now consider step maps on all of R. Thus a step map (with values in E)
is a map which is 0 outside some finite interval [q, b], and on [a, b] is a
step map as defined in §2. It is immediate that a map f: R— E is a step
map if and only if there exists a finite number of intervals 4,, ...,4, such
that A4,,...,4, are disjoint (that is, A;n 4; is empty if i #j) and f has a
constant value w; on 4;. Thus we may write

wi=f4;) for i=1,...,r

Then just as in the chapter the set of step maps of R into E is a vector
space, denoted by St(R, E). We define the integral of f over R to be

[ =% wansay = 5 uagm.
R i=1 i=1

This is exactly the previous definition. Indeed, if f is a step map with
respect to a partition of some finite interval 4, and also step with respect
to a partition of another finite interval B, then it is step with respect to a
partition of an interval J containing both A4 and B, and from §2 we know
that the integral is well defined. The integral

L: St(R, E) > E

is thus a linear map.
Let f e St(R, E), and let A be a finite interval. Define the map f; by
letting

_Jfex) if xeAd,
f"(")‘{o if x ¢ A
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Then we define

[l

The following properties are immediate:

If A and B are disjoint intervals, then

(1) J‘A\/Bf=-[1f+J‘Bf.

Over the reals, the integral is an increasing function of its variable.
This means:

If E=R and f < g, then

@ [r=]s

Furthermore, if f=0 and A = B, then

) [r=] e
4 B
Note that Property (2) can be obtained from its positive alternate, namely

(2Pos) If =0, then I f=zo0.

Indeed, to prove (2) we just use linearity on g — f, and the fact that
g—fz0.

If A is a finite union of disjoint intervals, A = A, U A, U-*-U 4,, then
we define the measure of 4 to be the sum of the lengths of the intervals,
that is

A = i; H(Ay).

Finally, the integral satisfies the inequalities with a sup norm:

@ |L f| < L 1S 1 lop(A),

where || /|l is the sup norm. This is an obvious estimate on a finite sum
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expressing the integral, and since we deal with step maps, was already
remarked in Lemma 2.1. However, we are now not so much interested in
the sup norm as we are in the L'-seminorm, which we define as before to
be

Il = L 0

for every step map f. Then |f| is just a function in the ordinary sense of
the word; it is in fact a step function with values in the reals > 0. From
the corresponding property on finite intervals, we have

©)

Lf‘ SIS0

This means that the linear map
el s
R

is continuous for the L!-seminorm, as a linear map from St(R, E) into E.
Let {f,} be a sequence of mappings (always from R into E unless
otherwise specified). We say that {f,} converges pointwise almost every-
where if there exists a set S of measure 0 such that for each x ¢S, the
sequence {f,(x)} converges. No uniformity condition is imposed here.

Fundamental lemma of Lebesgue integration. Let {f,} be an L'-Cauchy

q e of step mappings. Then there exists a subsequence which con-
verges pointwise almost everywhere, and satisfies the additional property:
given € there exists a set Z (denumerable union of finite intervals) of
measure < € such that this subsequence converges absolutely and uni-
Jormly outside Z.

Proof. For each integer k there exists N, such that if m, n > N,, then

1
Vo = bl < -

We let our subsequence be gy = fy,, taking the N, inductively to be
strictly increasing. Then we have for all m, n:

1 .
lgm — @ulls <3z if mzn
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We shall show that the series

00 + ki (91 () — 90)

converges absolutely for almost all x to an element of E, and in fact we
shall prove that this convergence is uniform except on a set of arbitrarily
small measure.

Let Y, be the set of x € R such that

1
1gn+1(x) — gu(x)| 2 PR

Since g, and g,, are step mappings, it follows that Y, has finite measure,
actually Y, is a finite union of finite intervals.
On Y,, we have the inequality

1
o0 = |9ne1 = Gul
whence
1 1 1
2—,,#(Yn) = JY" o = L [gns1 — gnl = o
Hence
1
Y)= =
u%) S 5.
Let
Z,=Y,uY,u
Then
1
TAET =Y

If x ¢ Z,, then for k = n we have
1
[gr+1(3) — gul)| < 7%
and from this we conclude that our series
)
k;‘ (gk+l(x) - gk(x))

is absolutely and uniformly convergent, for x ¢ Z,. This proves the state-
ment concerning the absolute uniform convelgenoe If we let Z be the
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intersection of all Z,, then Z has measure 0, and if x ¢ Z, then x ¢ Z, for
some n, whence our series converges for this x. This proves the lemma.

From the fundamental lemma, it is now clear how to get at the more
general integral. We define the space #'(R, E) to be the space of func-
tions f such that there exists an L'-Cauchy sequence of step mappings
{f,} converging pointwise almost everywhere to f. One then shows easily
that the sequence of integrals

{4}
R

is a Cauchy sequence, and thus we define

f S=1m [ £.

R n—o JR

It is easy to show that this limiting value of the integral is independent of
the L'-Cauchy sequence {,} used to approximate f. Furthermore, if {f,}
approximates [ as above, then the sequence {|f,|}, formed with the norms
of the maps f,, is a sequence of real valued functions, actually with values
in R4, which is L'-Cauchy, and converges pointwise almost everywhere
to |f]. Thus we may define the L'-seminorm

Il = lijg Il = li_rg L If..l=jR 1f1

Finally, one proves that || /||, = 0 if and only if f(x) = 0 except on a set of
measure 0. Thus one can develop the theory of the more general integral
in this natural way, which readers may look up in my Real and Functional
Analysis (Springer-Verlag), Chapter VI.

X, §5. THE DERIVATIVE

The other properties of the integral are related to the derivative. We have
not yet discussed the derivative of a map taking values in a normed vector
space. The discussion follows exactly the same pattern as that of the ordi-
nary derivative of functions, and we now go through the details.

Let f be a map of an interval J into a normed vector space E. We
assume that the interval has more than one point, but the interval may
contain its end points. We say that f is differentiable at a number ¢ in its
interval of definition if

lim S +hz -f@)

h—0
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exists, in which case this limit is called the derivative of f at ¢ and is de-
noted by f'(t). We say that f is differentiable (on J) if it is differentiable
at every t € J, and in that case, f’ is a map of J into E. If f has p continuous
derivatives, we say f is of class C?. If f is infinitely differentiable, we say
that f is C*.

The derivative being defined as a limit, we have the routine properties.
First consider a standard example. Suppose that E = R" for some n. Then
amap '

f:J->R"
can be represented by coordinate functions,

f(t) = (fl(t)b s Jn(t))’

and

fe+h)—f@) _ (fl(t +h) = fi®) St +h) —f,(t))
: i . .

The limit can be taken componentwise, and consequently f is differentiable
if and only if each coordinate function is differentiable, and then

J'® = (£10, .. S D).

One usually views a map f such as the above as a parametrized curve in
R" (or an arbitrary vector space E).

Example. Let
f(t) = (cos t,sint)

parametrizes the circle. We have

S'(t) = (—sint, cos t).

(cos t, sin t)

(1
L
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Example. Let f(t) = (cost,sint, t). Then f(t) describes a spiral as
on the figure. Its projection in the plane of the first two coordinates is of
course the circle.

=

As in these examples, a map of an interval into a normed vector space is
viewed as, or called, a curve in the space. The examples give a curve in R?
and R respectively. To distinguish such curves from those given by an
equation like

x2+y2=l’

we also call them parametrized curves. If f is a differentiable curve, then
the derivative f” is called the velocity of the curve. The second derivative
", if it exists, is called the acceleration of the curve.

Let us go back to the general case of f:J — E, where E is an arbitrary
normed vector space.

If f, g are differentiable at t, then so is f + g and
S+ =10+ g0

If E, F are normed vector spaces, and E x F — G is a product, and
f:J = E and g: J — F are differentiable at t, then

(f9)(®) = f(Og'®) + S (D)g(D).

If the reader refers back to the proof given in the case of functions, he will
see that the same proof goes through verbatim. As an example, we shall
give the proof for the product:

S+ gt + ) — f(0)g(t)

h
_ S g+ B~ 1+ W) | S+ o) — (Do)
- h h
K —
PG ) g(t) +f<t+i2 @
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Taking the limit as h — 0, we see that the limit exists, and yields the desired
expression for (fg)'(t)-

Examples. Take E = R", and let f:J — R" and g:J — R" be differ-
entiable maps. We can take the dot product of vectors, and form the map

t f(0)-9()

so that f(¢)-g(¢) is a number, for each t, and f-g:J — R is an ordinary
function. In that case, our product rule asserts that

470+ 90) = 1090 + 7 O-4 .

The reader can also check this directly using the components (coordinate
functions) of f and g.
A similar rule exists for the cross product, that is

L (0 % 90) = 10 x 40 + 1O % 40

Next, we have the chain rule

Let J,, J, be intervals. Let f:J, —J, and g:J, - E be maps. Let
teJ,. If f is differentiable at t and g is differentiable at f(t), then go f is
differentiable at t and

@ 1Y = g(FO)S®)

Again the proof goes on as before. Note that the values of g are vectors,
and also the values of g’ are vectors, in E. The values of f are numbers,
and so are the values of f’. The formula for the chain rule should therefore
be interpreted as the product of the element g'(f(t)) € E and the number
f'(¢). IfveE and c is a number, we can define vc = cv to be able to make
sense of the formula. The position of f'(t) above on the right comes from
the fact that we wrote

gy + k) = g(y) + g0k + o(k).

One could of course put the k on the left, in the present case, to follow the
usual notation of a number times a vector. However, we shall meet in
Part three a situation where such a reversal is not possible.

One may interpret the map f: J, — J, as a change of parametrization
of the curve g: J, = E if J, = f(J,), that is, if f is surjective. The images
g(f(J,)) and g(J,) in E are the same in both cases.
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Theorem 5.1. Let J be an interval, and let f:J — E be a differentiable
map. If f'(t)=0 for all t in J then f is constant.

Proof. We first give the proof when E = R for some positive integer k.
Then we can express f in terms of its coordinates

S@ = (/1@ ... fu®),

and by hypothesis we have fi(t) = 0 for i = 1, ...,k. Hence each f; is con-
stant, so f is constant.

Expressing the complex numbers C in terms of two coordinates, we see
that the theorem also applies to complex valued functions. It is also true
for maps with values in an arbitrary normed vector space, but one needs
some replacement for coordinates, and we don’t go into this here.

For applications to the chapter on Fourier series, it is necessary to
extend Theorem 5.1 and subsequent ones like it to the case of piecewise
continuous functions. We do this systematically in corollaries which the
reader may omit if he is not interested in these applications, which occur
only in the chapter on Fourier series.

Theorem 5.2. Let f:J — E be a continuous map. If f'(t) exists except
Jor a finite number of values of t in the interval, and if f'(t) = 0 except
for a finite number of t, then f is constant on J.

Proof. Let a, b be the end points of the interval J, a < b. Let
a=ay<a <---<a,=b

be a finite sequence of points in the interval such that f is differentiable on
each open interval aq;_, <t <a;, i=0, ...,n, and such that f'(t) =0
on each such interval. Then f is constant on each such interval. Since f is
continuous on J, it follows that the constant is the same for all the inter-
vals, and also that if a or b is in the interval, then f(a) or f(b) is equal to
this constant.

Theorem 5.3. Let f:J — E be a differentiable map from an interval
into E. Let A: E— F be a continuous linear map. Then Ao f:J— F is
differentiable, and

Ao f)(x) = Af'()).
Proof. We have

MSCx+ 1) — Af) _ A(f (x+h)—f (X))
h h

because A is linear. Since 1 is continuous, our assertion follows.
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X, §6. RELATION BETWEEN THE INTEGRAL AND
THE DERIVATIVE

We can now relate the integral with the derivative.

Theorem 6.1. Let f be a regulated map on [a,b], a < b. Let ce[a,b]
be a point where f is continuous. Let

F(x) = f 1.
Then F is differentiable at ¢, and

F(c) = f(o).
Proof. We have

F(c +h) — Fc) _ 1 (***
h _hJ: J-

Furthermore,
[ re-mwo.

Hence
F(c + k) — F(c) 1 +h +h
s E [0 -z[f f- f f(c)]

+h
= [0 - s

Taking the norm and estimating, we find that

1
< mlhlsw f(® — f©)I
Ssuplf(@®) - f@I,

where the sup is taken for ¢t between ¢ and ¢ + h. Since f is assumed con-
tinuous at ¢, we see that the expression on the right approaches 0 as
h — 0, whence F'(c) = f(c), as was to be shown.

F(c + hz — F() _ 1©

Theorem 6.2. Let f be a continuous map on [a, b] and let F be a differ-
entiable map on [a, b] such that F' = f. Then

ff = F(b) — F(a).
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Proof. Both maps
X f f and x> F(x)

have the same derivative. Hence they differ by a constant. It is clear that
this constant is equal to F(a).

Corollary 6.3. The conclusion of Theorem 6.2 holds if f is assumed to be
only piecewise continuous, F continuous, and differentiable except at a
finite number of points, such that F'(x) = f(x) except for this finite num-
ber of points.

Proof. Let a =ay < a; <--+ <a, be the points where f is not con-
tinuous or F is not differentiable. We have
ai+ 1
f=F@,) — Fa)
ag
for eachi =0, ...,n — 1 because on each interval [a;, a;4,] We can apply

Theorem 6.2. Taking the sum for i =0,...,n we obtain the desired con-
clusion.

Remark. If ¢, d are points in the interval [a, b] in Theorem 6.2, then

r f = F(d) — F(c).

This holds whether ¢ < d or d < ¢, and the proof follows at once from the
additivity of the integral with respect to the end points proved at the be-
ginning of the section.

Theorem 6.4. Let J,, J, be intervals and let a, b be points of J,. Let
f:Jy = J, be differentiable with continuous derivative. Let g:J, - E
be continuous. Then

b J(b)
[ar@rod= [ g
a S(a)

Proof. Let G be differentiable on J, such that G' = g. Then

(GofY(®) = g(f D)),
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whence we conclude that both sides are equal to
G(f (b)) — G(f(a))
as was to be shown.

Corollary 6.5. The conclusion of Theorem 6.4 holds under the following
hypotheses on f and g:

(i) f is differentiable and strictly increasing or strictly decreasing on J,.
(ii) f' is piecewise continuous.
(iii) g is piecewise continuous.

Proof. We apply the corollary of Theorem 6.2. Note that in Theorem
6.2 and in its corollary, the same formula is valid even if b < a so that the
order of the end points of integration does not matter. In the present in-
stance, the strictly increasing or decreasing behavior of f is assumed to
ensure that gof is piecewise continuous, and Go f is continuous, and
differentiable except at a finite number of points, so that we can apply the
corollary of Theorem 6.2. In applications, the change of variable function
f will be no worse than u = t + x or some such simple function.

Finally we give the formula for integrating by parts.

Theorem 6.6. Let J be an interval. Let E, F, G be complete normed vector
spaces, with a product E x F - G. Let f:J — E and g: J — F be differ-
entiable, with continuous derivatives. Then for a, beJ we have

b b
[r@dwa = 1era® - @@ - f 109 d.

Proof. The product map ¢+ f(t)g(¢) is differentiable, and our formula
follows from the known formula for differentiating this product.

Corollary 6.7. The formula for integration by parts is true under the
JSollowing assumptions on f and g: Both f and g are continuous, differ-
entiable except at a finite number of points, and their derivatives [, ¢
are piecewise continuous.

Proof. Clear.

X, §6. EXERCISES

1. Let J be an interval and let f:J — C be a complex valued differentiable function.
Assume that f(t) # 0 for all t e J. Show that 1/f is differentiable, and that its deri-
vative is —f"/f? as expected.
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w

w

. Let f:[a, b] = E be a regulated map. Let 1: E — G be a continuous linear map.

Prove that A< f is regulated. Prove that

frreA()

. Prove: Let f be a regulated real valued function on [a, b]. Assume that there is a

differentiable function F on [g, b] such that F' = f. Prove that

f f=F@®) — Fa).
[Hint: For a suitable partition (ao < a, < --- < a,) use the mean value theorem
F(ai1) — F(a)) = F'(c)@is1 — @) = f(c)Gis1 — a3)

and the fact that f is uniformly approximated by a step map on the partition.]

Let f: [a, b] — E be a differentiable map with continuous derivative from a closed
interval into a complete normed vector space E. Show that

1f®) = f(@)| £ (b — a)sup| [,

the sup being taken for t € [a, b]. This result can be used to replace estimates given
by the mean value theorem.

. Let f be as in Exercise 4. Let tye[a, b]. Show that

1f() — f(@) — f'(te)(b — a)| = (b — @) sup| f'(t) — /' (¢o)l,

the sup being again taken for t in the interval. [Hint: Apply Exercise 4 to the map
g(t) = f(t) — f'(to)t. We multiply vectors on the right to fit later notation.]

X, §7. INTERCHANGING DERIVATIVES AND INTEGRALS

Let T be some set, and J an interval (containing more than one point).
We consider a map

f:TxJ—>R

We define the partial derivative

Dy f(t, %) = lim M}w

h—0

if it exists. Thus the partial derivative is nothing but the derivative of the
map x > f(t, x) for each t.
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Theorem 7.1. Let f and D, f be defined and continuous for a <t <b
andc £ x<d,c<d. Let

b
o) = [ rax .
Then g is differentiable, and
b
ge) = [ Dasxyar

Proof. We have by linearity,

_ b
gt B ob) [ Dot xya

_ J‘” [f('_’“i_z—f(_“‘) - D, [, x)] dr.

By the mean value theorem, for each ¢ there exists c, , between x and x + h
such that

JCx3 D J6D _ p, pt e,

and since D, f is uniformly continuous on [a, b] x [¢,d] (by compact-
ness), we have

f<"x+)—f("x)_nzf(t,x)

=1D2 /¢, c,) = D2 (6 )] < 5~
—a

whenever h is sufficiently small. This proves that g is differentiable and
that its derivative is what we said it was.

Example. Let f(t,x) = (sintx)/t. Then D, f(t, x) = costx. Hence
if we let

g
o= [5820s,

1

then

2
g'(x) = j cos tx dt.
1
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This can actually be verified by integrating directly the expression for
g'. In this case, we can view x as lying in any closed bounded interval
—c £ x < c¢ with ¢ > 0. The theorem applies for any such interval, and
thus g is differentiable everywhere. This trick can be used when f(t, x)
is defined for x lying in some infinite interval. Since the differentiability
property is local (that is depends only on the behavior of the Newton
quotient near a given point), we can always restrict f(t, x) to values of x
lying in a closed bounded interval to test differentiability of g.
Actually, we saw that if we define

sin tx

fit,x)= if t#0,

f(O’ x) = X,

then f is continuous. Thus we could have the same result about differ-
entiating under the integral if we took the integral from 0 to 2:

d [?sintx 2
——I dt = f cos tx dt.
dx Jo t o

Theorem 7.2. Let a <b and ¢ £d. Let f:[a,b] x [c,d] >R be a
continuous map. Then the maps

xl—»J‘bf(t, x) dt
and

x> P(t,x) = J‘xf(t,u) du

are continuous.

Proof. Let
b
o) = [ s 0
Then

b
o0+ 1) = 00) = [ (Fx + B = f(e. )
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Using the uniform continuity of f, we immediately see that ¢(x + k) — ¢(x)
as h — 0, so ¢ is continuous.

For the second part of the theorem, let y/(x) be as written.
Then certainly D,y(t, x) = f(t, x) (this is from the strictly one variable
theorem). We contend that y is continuous. Indeed,

@ WD) — ¥ x0 = [ S du = o)
- J' L w) = f(to, w)] du + f 1t w) du.

Now f is bounded by some number K. Given ¢, take |x — xo| < ¢/K.
Furthermore, f is uniformly continuous, so that there exists §, such that
whenever |t — to| < 6, we have

Lt ) = fte, W)l < e
We can therefore estimate the absolute values of the two integrals of (1) as
Se+elxy—cl,

letting 6 = min(¢/K, 8,) and |x — xo| < 8, |t —to| < 6. This proves
that i is continuous and concludes the proof of the theorem.

Theorem 7.3. Let a< b and ¢ < d. Let f be continuous on (a,b] x [c,d].
Then

J[’“:f(x’y) d"] dy:J:“df(sz) dy] dx.

c c

Proof. Let
Fx) = [ 1(05)

Then D, f(x, y) = f(x, y) by calculus of one variable, and F is continuous
by Theorem 7.2. By Theorem 7.1, we can DUTIS to get

a—ijdj"'f(r, ») di dy = de(x, ») dy.

¢ Ja ¢
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On the other hand,

a%jr £(t,y) dy dr = Jd 1(x,7) dy.

aJe c

Hence there exists a constant C such that for all x € [a, b],

ffﬂ”y) d'dY=j:ff(hy) dydt+C.

Put x = a. Then 0 = 0 + C, whence C = 0, ged.

In view of Theorem 7.3, it is customary to omit the brackets in the re-
peated integral, and write

Jh de(x, y) dy dx.

alde

Remark. Theorems 7.1, 7.2 and 7.3 hold for values in R* by applying the
case of real valued functions to coordinates. They also hold more generally
for values in an arbitrary complete normed vector space as usual. The
reader can verify this as an exercise. The use of the mean value theorem in
the proof of Theorem 7.1 has to be refined slightly, using an integral form of
the mean value theorem. See Exercises 4, 5 of §6.






PART THREE

Applications of the Integral



The next four chapters deal with applications of the integral in various
contexts. The rest of the book is essentially logically independent of them.
We study here the scalar product obtained from the integral, and the
operation of convolution, together with relations with the scalar product.
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CHAPTER XI

Approximation with
Convolutions

Xl, §1. DIRAC SEQUENCES

Given a function f, we wish to approximate f by functions having certain
properties. There is a general method for doing this, which will now be
described.

For convenience, it will be useful to take integrals between —co and co.
Suppose we have a function g which is equal to 0 outside some interval

[—c, c]. We write
f_w g(t)dt = £ g(t) dt.

For this chapter, this will suffice for the applications we have in mind.

However, the following arguments are valid for a pair of functions f, g
which are, say, piecewise continuous on every finite interval, such that fis
bounded, and

[ * lgl dt < oo,

—©

in other words, g is absolutely integrable. A reader acquainted with the
preceding chapter can verify immediately that the subsequent properties
are valid under these general conditions. In first reading, the reader may
assume that all functions mentioned are continuous and zero outside an
interval. Our main point here is not to extend the class of functions for
which the following formalism is valid.

For a pair of functions f, g as above, we define their convolution f*g

283
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by the integral
(Feae = [ fogee—oa
In Exercise 4, you will prove from elementary properties of the change of
variables that this “product” is linear in each variable, i.e.
L+ g=fixg+faxg,  (f)*g=c(f*g) ifcis constant,
similarly with f*(g, + g5), f*(cg), and we have commutativity, that is

frg=g+/

In other words,

[* gt —0ae= [ s =g ar

These rules allow us to work easily with the convolution “product.”
By a Dirac sequence we shall mean a sequence of functions {K,}, real
valued and defined on all of R, satisfying the following properties:

DIR 1. We have K,(x) 2 O for all n and all x.
DIR 2. Each K, is continuous, and

I:UK,,(t) dt = 1.

DIR 3. Given € and 6, there exists N such that if n = N then

-é @
J K, + f K, <e
) )

Condition DIR 2 means that the area under the curve y = K,(x) is equal
to 1. Condition DIR 3 means that this area is concentrated near 0 if n
is taken sufficiently large. Thus a family {K,} as above looks like this:
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The functions K, have higher peaks near 0 as n becomes large in order to
make the area under the curve near 0 come out equal to 1. Furthermore,
in all applications in this chapter and in the next, the functions K, are
even, that is K,(—x) = K,(x) for all x. This is the reason why we have
drawn the graphs symmetrically around the y-axis.

As mentioned before, in the applications of this chapter, K, will be 0
outside some interval. If f is any piecewise continuous function and is
bounded, then we let f, = K, *f, that is

f) =Ko f) = [ Ko (0f0x - 0.

—o

We shall see that the sequence {f,} approximates f.

Theorem 1.1. Let f be a piecewise continuous function on R, and assume
that f is bounded. For each n, let f, = K,  f. Let S be a compact subset
of R on which f is continuous. Then the sequence {f,} converges to f
uniformly on S.

Proof. We have

5= [ Kose-oa
On the other hand, by DIR 2,
16 = 1) _: K, (0 dt = r; K, (0f ) d.
Hence

709 — 10 = [ KL — 1) — fo] de.

We take x€S. By the compactness of S and the uniform continuity of

£ on S, we conclude that given ¢, there is & such that whenever |t| < 6 we
have

Ifx=0—-fE)l<e

for all xe S. Let M be a bound for f. Then we select N such that ifn 2 N,

-é © €
f_wK,,+J; K, <m-
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We have

= d 0
@ -s@is |+ + [ BOUE-0-rela

To estimate the first and third integral, we use the given bound M for f,
so that | f(x — £) — f(x)| £ 2M. We obtain

J:; + Jj KOl (=1 — f)| dt S2M U:i + Jm k() dt] <e

6

For the integral in the middle, we have the estimate

f_i K@l = ) = {0 dtgf_: K, =ej_2 Kose| K se

This proves our theorem.

Functions such as K, which are used to take integrals like the con-
volution are sometimes called kernel functions. They have the effect of
transforming f into functions f, approximating f and having usually
better properties than f. We shall see examples in the exerciscs and the
subsequent sections, as well as in the next chapter.

Specifically, we shall deal with the following list of Dirac sequences, or
Dirac families (a slight variation):

The Landau sequence, giving approximation by polynomials, in the next
section.

The Fejer kernels, giving approximation by trigonometric polynomials,
in Chapter XII, §3.

The Poisson kernel giving harmonic functions on the disc, in Chapter
XII, §3, Exercises 2 through 7.

A Dirac family giving harmonic functions on the upper half plane, in
Exercise 10 of Chapter XIII, §3.

The heat kernel giving a fundamental solution of the heat equation, in
Chapter XIII, §4.

Thus Dirac sequences or families constitute a fundamental structure in
analysis, and their importance cannot be overemphasized. They are some-
times called an approximation of the identity, because of Theorem 1.1,
which may be interpreted as stating that convolution with K, approxi-
mates the identity mapping on a reasonable space of test functions.
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XI, §1. EXERCISES

L

o

w

b

Let K be a real function of a real variable such that K > 0, K is continuous, zero
outside some bounded interval, and

ff K(t)dt = 1.

Define K, (1) = nK(nt). Show that {K,} is a Dirac sequence.

. Show that one can find a function K as in Exercise | which is infinitely differen-

tiable (cf. Exercise 6 of Chapter IV, §1), even, and zero outside the interval
[—1,1].

. Let K be infinitely differentiable, and such that K(r) = 0 if t is outside some bound-

ed interval. Let f be a piecewise continuous function, and bounded. Show that
K « f is infinitely differentiable, and in fact (K % f) = K’ f.

Let f, g, h be piecewise continuous (or even continuous if this makes you more
comfortable), and bounded, and such that g is zero outside some bounded interval.
Define

rea= [ s - o

Show that (f*g)*h = fx(g=h). With suitable assumptions on f,, f,, show
that (fy, + f)*g = fy*g + f2+g. Show that fxg=g=*[.

Xl, §2. THE WEIERSTRASS THEOREM

We apply Theorem 1.1 to a special case.

Theorem 2.1. Let [a, b] be a closed interval, and let f be a continuous
function on [a, b]. Then f can be uniformly approximated by polynomials
on [a, b].

Proof. We first make some reductions to a case where we can apply

Theorem 1.1, with a special K,. We may assume a # b. Let

x—a
u=
b—a’

Then x = (b — a)u + a,and 0 < u =< 1. Let

g() = f((b — aju + a).
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If we can find a polynomial P on [0, 1] such that

|P(u) — g(w)| < €

for all ue [0, 1], then

x —a
— <
’P(b — a) fx)|=e
fora < x < b,and P((x — a)/(b — a))is a polynomial in x, thus proving our

theorem. This reduces the proof to the case when [a, b] = [0, 1]. Next,
assuming this is the case, let

h(x) = f(x) = £(0) — x[f(1) — f(O)]-

If we can approximate h by polynomials, then clearly we can approximate
f by polynomials. This reduces our proof to the case when f(0)=f(1)=0.
From now on, we assume that [a, b] = [0, 1] and f(0) = f(1) = 0.
We then define f(x) = 0 if x is not in the interval [0, 1]. Then f is con-
tinuous and bounded on the whole real line.
Next, we let ¢, be a suitable constant > 0, and let

(a-ay

K = if —1sts1,

K@)=0 if t<—-1 or t>1.

Then K,(t) = 0 for all ¢ and K, is continuous. We select ¢, so that condi-
tion DIR 2 is satisfied. This means that

1
- _ 2
C, = f_l(l )" d.

Qbserve that K, is even. We contend that {K,} satisfies DIR 3, and hence
is a Dirac sequence. To prove this we must estimate ¢,. We have:

1 1
%= f A —2)dt = f 1+ 6" — 6y dt

o 0

1
1
2| ad-ordi=——oo.
_-[)( y n+1
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Thus ¢, = 2/(n + 1). Given é > 0, we have

1 _ 1(1—t2)" '(n'+l) 2
LK,(t)dt—L—cn dtgLT(l—a) dt

< "—42'—1(1 - 8%(1 — 6).

Let r = (1 — 6%). Then 0 < r < 1, and (n + 1)r" approaches 0 as n — co.
This proves condition DIR 3. (The integral on the other side has the same
value because of the symmetry of K,.)

Thus {K,} is a Dirac sequence. There remains to show only that

H= [ K- s d
is a polynomial. But f is equal to O outside [0, 1]. Hence
1
£ = [ K= 0f0 .
4]

Observe that K,(x — t) is a polynomial in t and x, and thus can be written
in the form

Kyx = 8) = got) + g1(0)x + -+ + gau()x*",
where g, . . . ,g2, are polynomials in ¢t. Then
[ulX) = ap + ayx + -+ + az,x™,

where the coefficients q; are expressed as integrals

1
a; = I g:(0)f(¢) dt.
0

This concludes the proof of the Weierstrass theorem.

The functions K, used in this proof are called the Landau kernels.

XI, §2. EXERCISES

1. Let f be continuous on [0, 1]. Assume that

1
J Sx)x"dx =0
o
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N

w

for every integer n =0, 1, 2, .... Show that f = 0. [Hint: Use the Weierstrass
theorem to approximate f by a polynomial and show that the integral of f 2 is
equal to 0.]

. Prove that if f is a continuous function, then

ok ~
lm f e SR dx = 7f(©)
h>0

. An integral operator. Let K = K(x, y) be a continuous function on the rectangle

defined by inequalities

asx=sbh and c<y<d.

For fe C%[c, d]), define the function Tf = T f by the formula

d
Tef() = [ Ku)I0)dy.
(a) Prove that Ty is a continuous linear map
C°([c, d1) - C([a, b),

with the sup norms on both spaces.
(b) Prove that Ty is a continuous linear map with the L?-norm on both spaces.

Remark. One often denotes Ty f by K*f. When we take a convolution in the

text, we use addition implicitly to get a function of two variables out a function of
one variable, that is, given the K, in the text, we could define L,(x, y) by

L,(x,y) = K(x — y).

Then L, *f= K, *f.



CHAPTER Xl

Fourier Series

Xil, §1. HERMITIAN PRODUCTS AND ORTHOGONALITY
We shall consider vector spaces over the complex numbers. These satisfy
the same axioms as vector spaces over the reals, except that the scalars
are now taken from C.
Let E be a vector space over C. By a hermitian product on E we mean a
map E x E — C denoted by
(v, W)= (v, w)

satisfying the following conditions:

HP 1. We have {v, w) = {w, v) for all v, we E. (Here the bar denotes
complex conjugate.)

HP 2. Ifu, v, w are elements of E, then
Cu v+ w) = (u, v) + {u, W)

HP 3. IfaeC, then

(o, v) = alu, v) and {u, av)y = alu, v).

In addition we shall assume throughout that the hermitian product is
semipositive, namely it satisfies the condition

HP 4. For all ve E we have {v,v) = 0.
291
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If furthermore we have <v, v) > 0 whenever v # 0, we say that the product is
positive definite. However, we don’t assume that.

Example 1. This is the example with which we are concerned through-
out the chapter. Let E be the vector space of complex valued functions on
R which are piecewise continuous (on every finite interval) and periodic
of period 2n. Thus these are essentially the piecewise continuous func-
tions on the circle, as we say. If f, g € E, we define

oy = [ 1o d.

The standard properties of the integral show that this is a hermitian pro-
duct satisfying the four conditions. The complex conjugate which appears
in the definition is to guarantee HP 4. In the case of real valued functions,
it is of course not needed. For complex valued functions, we have
ff = 1f1? and we know that the integral of a function = 0 is also = 0.

We let Eg be the space of real valued functions in E. Thus Ep is the
space of real valued piecewise continuous functions of period 2z. If f is
complex valued, and f=f, + if; is its decomposition into a real part
and an imaginary part, then fe E if and only if f,, f, € Eg. This is obvious.

We return to an arbitrary vector space E over C, with a hermitian
product.

We define v to be perpendicular or orthogonal to w if {v, w) = 0. Let
S be a subset of E. The set of elements ve E such that {v, w) = 0 for all
we S is a subspace of E. This is easily seen and will be left as an exercise.
We denote this set by S*. In particular, we may take S to consist of E
itself. Thus E* is the subspace of E consisting of those elements ve E
such that {v,w) =0 for all we E. We denote E* by E,, and call E, the
null space of the hermitian product.

Example 2. If E is the space of periodic piecewise continuous functions
as before, and fe E is such that {f, /) = 0, this means that

[r=] 1re-o

We know that if g is continuous at a point and s 0 at that point, and if g
is otherwise > 0, then its integral is > 0. Hence we conclude that I fI2
is equal to 0 except at a finite number of points. It follows that f is equal
to 0 except at a finite number of points. Conversely, if f has this property,
then {f, g> = 0 for all ge E. Hence E, consists of all functions which are
equal to 0 except at a finite number of points.
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The next theorem shows in general that the subspace E, can be
characterized by a weaker property. Indeed, we show that if we E and w
is orthogonal to itself, then w is orthogonal to all elements of E. Formally
stated:

Theorem 1.1. If weE is such that {w, w) =0, then weE,, that is
{w,v) =0 forallveE.

Proof. Let t be real, and consider
0= <v+ tw, v+ tw) = {v,v) + 2t Re{v, w) + t2{w, w)
= {v, v) + 2t Re{v, w).

If Re{v, w) # 0 then we take t very large of opposite sign to Re{v, w).
Then (v, v) + 2t Re{v, w) is negative, a contradiction. Hence

Re{v, w) = 0.

This is true for all ve E. Hence Re(iv,w) =0 for all ve E, whence
Im{v, w) = 0. Hence {v, w) = 0, as was to be shown.

We define ||v|| = /<, v), and call it the length or norm of v. By defini-
tion and Theorem 1.1, we have ||v]| = 0 if and only if ve E,.

We note another property of the norm, which we use in a moment,
namely for any number « € C we have {ow, av) = a@{v, v), and so

lewll = [ellofl,

where || is the absolute value of &, and ||v] is the norm of v.
Pythagoras theorem. If u, w € E are perpendicular, then

llee + wii? = llull® + Iwll
The proof is immediate from the definitions.

Next let v, we E. We want to orthogonalize v from w; in other words
we seek a number ¢ such that v — cw is perpendicular to w. Suppose
{w, w) # 0. Then:

v—cwlw < {v—cw,w)=0,
<« {v,w) —<ew,w) =0,
= (ow)—cw,wy =0,

oW
c= <W, W>.
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Thus there exists a unique number c¢ such that v—cw L v, and this
number c is given by

(o, w)
T lmwy

We call ¢ the component of v along w, or the Fourier coefficient of v with
respect to w.

It is natural to define the projection of v along w to be the vector cw,
because of the following picture where ¢ is the Fourier coefficient.

We shall give examples of such Fourier coefficients later. For the mo-
ment, we give an application of Pythagoras and the orthogonalization
process to prove:
Theorem 1.2 (Schwarz inequality). For all v, w € E we have
I<v, wl = ol iwll
Proof. If |v]| or |lw|| =0, then both sides of the inequality are equal to
0 so the theorem is proved. Suppose w # 0. Let ¢ be the component of v
along w, so v — cw L w. Write
v="0—cw+cw.
Then v — cw and cw are perpendicular, so by Pythagoras,

Iol? = llo — ewll® + llewll? 2 [cl* Iwll?,

because [lv — cw||2 2 0. We substitute the value for ¢ found above, and
cross multiply to get

<o, wHI2 < Jloll* w]l*.
Taking the square root proves the theorem.
Just as in the real case, we see that the hermitian product satisfies the

continuity condition which allows us to conclude that the product of a
limit is the limit of a product. Also as in the real case, we conclude:
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The function vi— ||v|| is a seminorm on E, that is:

SN 1. We have ||v|| = 0, and ||v|| = O if and only if ve E,.
SN 2. For every complex o, we have |lav| = |e|]v|-

SN 3. For v, we E we have ||lv + w| < |v]| + |[w]-

Proof. The first assertion follows from Theorem 1.1. The second has
already been mentioned. The third is proved with the Schwarz inequality.
If suffices to prove that

o+ wi < (ol + Iwl)>
To do this, we have
lo+wl2=<v4wv+w)= )+ {w,v) + (o, w) + (w, w).
But {w, v) + <v, w) = 2 Re{v, w) < 2|{v, w)|. Hence by Schwarz,
o+ wii? < ol + 21<o, w| + Iwl?
< Joll® + 20oll iwl + Iwl® = (el + lwl)>

Taking the square root of each side yields what we want.

An element v of E is said to be a unit vector if [[v]] = 1. If |jv]| # 0, then
vflv]lis a unit vector.

Examples in the function space

Example 3. We return to the space E which consists of piecewise
continuous functions, periodic of period 2r. We shall determine Fourier
coefficients with respect to certain important functions, defined as follows.

We let y, be the function

xoX) = €™
for each integer n (positive, negative, or zero). Then
s x> =21, Lo X =0 if m#n

Thus we view x,/./27 as a unit vector.

If f is a function, then its Fourier coefficient with respect to y, is

Cy = % J:f(x)e"""" dx.
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We let @, = 1, and for every positive integer n we let @,(x) = cos nx
and ,(x) = sin nx. We agree to the notation that for a positive integer
n, we put

@-(x) = sin nx = Y,(x).

We thus have a unified notation {¢,}..z- Elementary integrations show
that forallneZ, me Z,

{Po» P> =21, (P @ =T, {Pr, P> =0 if m+#n

Observe that we have ¢, = . Furthermore, we have relations between
@u» Y and ¥, X—,, Namely:

™t e"i=2cosnx and ™ — e~ = 2isinnx.

Of course,

& = cos nx + i sin nx.

We shall usually use the letters aq, a,, b, = a_, to denote the Fourier
coefficients of f with respect to 1, cos nx, and sin nx respectively, so that:

to=ne [ sdx  a=1 [ ) cosmean
a_,=b,= %f f(x) sin nx dx.

Having the Fourier coefficients, one may then form what is called the
Fourier series of f, which can be expressed either in terms of the functions
Xn or the functions 1, cos nx, sinnx. Let us first deal with the partial
sums.

Consider first the case of the functions {y,}, with ne Z, so that n
ranges over all positive or negative integers and 0. We agree to the
convention that the partial sums of the Fourier series are

= Y oax or  s(x)= Y et

k=-n k=—-n

At the moment, nothing is said about the convergence of this series. We
shall study various types of convergence later.
The reader will immediately verify that if {a,},.z are the Fourier co-



X1, §1] HERMITIAN PRODUCTS AND ORTHOGONALITY 297

efficients of f with respect to the family {¢,},z, then

; QP = Z CiXks

in other words

ao + Y, (@ coskx + bsinkx) = Y ¢ e
K=1

k=-n

Let Eg as before be the real vector space of real valued piecewise
continuous periodic functions. Then the functions 1, cosnx, sinnx
(neZ,n > 1) may be viewed as generating a subspace of Eg as well as a
subspace of E = Ec.

The Fourier coefficients of a real function with respect to the functions
¢, are real, so using the functions ¢, has the advantage of never leaving
the real category of functions in Fourier theory. All the above results
could have been carried out for a real vector space, as could subsequent
results, for instance, Theorems 1.4 and 1.5. Readers should think this
through. We now return to the complex case for definiteness.

The Fourier series itself is defined to be

©

e
S;=Y 4,0, = Y. Cns
-0 —0

or simply Y’ a,¢,, it being understood that n € Z, and that the sum is taken
in the prescribed order,

lim Y a¢,=1lim Y cix

ns o k=-n n—s o k=-n

The Fourier series may or may not converge. One writes the series

Sp(x)=ao + i (a, cos nx + b, sin nx)
n=1

independently of whether the series converges or not. It is then a problem
to determine when the series converges and gives the value of the function
f(x) at a given point x.

Example 4. Let f(x)=x on the interval (—=,m), and extend f by
periodicity to R. It doesn’t matter what the values are at the end points.
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However, note that there is no way to define a value at the end points so
that the extended periodic function is continuous on all of R. The
extended function is the sawtooth function whose graph is shown on the
figure.

graph of f(x) = x, — 7 < x < ;w made periodic

Let us determine the Fourier coefficient of the function f(x) = x with
respect to sin nx. We have

b, =lj X sin nx dx.
TJ-n
We can integrate by parts, and find
2 2
b,= —=cosnn = (—1)"*' =,
n n
Then it follows that the Fourier series of f is the series
@ 2 sin nx
Sf(x) = Zl (-1 S

Do Exercise 6(a), which amounts to showing that a, =0 for all integers
n 2 0. Note that the phenomenon a, =0 for all integers n = 0 is not an
accident. The general principle which allows one to see at once when one
half or the other half of the Fourier coefficients are 0 is the following:

If f is an even function, then b, =0 for all n = 1.
If f is an odd function, then a,= 0 for all n 2 0.

Do Exercise S for the proofs.
Sometimes a function is given in the interval [0, 2n] and extended by
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periodicity to the whole real line. The Fourier coefficients can then be
computed by taking the integrals between 0 and 27. (Cf. Exercise 4.) Thus
for any periodic f of period 2,

2
C = 1 j uf(x)e""’ dx.
2n Jo

Example 5. Let f(x) = (x — x)?/4 on the interval [0, 27]. Then f(0) =
f@2m), and we can extend f by periodicity to a continuous function of
period 2. Its Fourier coefficients can easily be computed to be:

a, = n?/12,

a, = 1/n?® for n equal to a positive integer,

b,=0 for n equal to positive integer.
The Fourier series for f is thus seen to be

a2 & coskx
Sf(x) = E + k; T.

In §3, we shall see that the series actually converges to the function on
0<x<2m

Remark 1. Note the difference in the decay of the coefficients in
Examples 4 and 5. The Fourier series of Example 4 is not absolutely
convergent, but the series in Example 5 is absolutely convergent. A
general principle is that the smoother f is, the faster the Fourier coeffi-
cients converge to 0, and the better the Fourier series of f converges to f.
As for the Fourier coefficients, do Exercises 8 and 9, which give a quanti-
tative form to the above principle.

Remark 2. On the function space, we can use the sup norm, but we
also have the seminorm arising from the hermitian product. When we
deal with both simultaneously, as is sometimes necessary, we shall denote
the sup norm by || || as before, or also || ||, but we denote the seminorm
of SN1-3 by || ||,. It is customary to call this seminorm also a norm, that is
we shall commit the abuse of language which consists in calling it the L2-
norm. For any function f we have

£l = /27l f -
Indeed, let M = || fll,. Then

1f13 =j 2 < j M? = 20M2.
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Our assertion follows by taking square roots. For the rest of the section,
we deal only with the abstract case, and use || | for the seminorm of the
hermitian product.

Orthogonalization theorems

The orthogonalization via the Fourier coefficients actually yields a
stronger orthogonalization as follows, preparing us for Theorem 1.4.

Let v,,...,0, be elements of E which are not in E,, and which are
mututually perpendicular, that is (v, v;>) =0 if i#j. Let ¢; be the
Fourier coefficient of v with respect to v;. Then

n
v—Y G
k=1
is perpendicular to vy, ...,v,.

Proof. All we have to do is to take the product of v with v;. All the
terms involving {v;, v;> will give 0 if i # j, and we shall have two terms

(v, 0 — cKvj, v

which cancel. Thus subtracting linear combinations as above ortho-
gonalizes v with respect to vy, ...,v,.

In applications, we try to orthogonalize with respect to an infinite
sequence of vectors {v,, v, ...}. We then run into a convergence problem,
and in fact into three convergence problems: with respect to the L2-norm,
with respect to the sup norm, and with respect to pointwise convergence.
The study of these problems, and of their relations is what constitutes the
theory of Fourier series.

In this section we continue to derive some simple statements which
hold in the abstract set up of the vector space with its hermitian product.

Let {v,} be a sequence of elements of E such that |u,] 0 for all n.
For each n let F, be the subspace of E generated by {v,,...,0,}. Then by
definition, F, consists of all linear combinations ¢, + - + ¢,, with
complex coefficients c;, ...,c,. We let F be the union of all F,, that is the
set of all elements of E which can be written in the form

€101 + -+ + €0,

with complex coefficients c;, and all possible n. Then F is clearly a sub-
space of E, which is again said to be generated by {v,}. We shall say that
the family {v,} is total in E if whenever veE is orthogonal to each v, for
all n it follows that ||v| = 0, that is veE,. We shall say that the family
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{v,} is an orthogonal family if its elements are mutually perpendicular,
that is {v,, v,> = 0 if m # n, and if |v,|| # O for all n. We say that it is
an orthonormal family if it is orthogonal, and if ||lv,| = 1 for all n. One
can always obtain an orthonormal family from an orthogonal one by
dividing each vector by its norm.

If {v,} is an orthogonal family and if F is the space generated by {v,},
then {v,} is total in F. Indeed, if

coy + -+, Ly
foralli=1,...,n, then c{v;, v;) = 0, and therefore ¢; = 0

Theorem 1.3. Let {v,} be an orthogonal family, and let ve E be an
element all of whose Fourier coefficients with respect to {v,} are equal
to 0. Assume that v lies in the closure of the space generated by {v,}.
Then ||v| = 0. In particular, suppose that the subspace generated by all
v, is dense in E, that is E is the closure of this subspace. Then the family
{v,} is total.

Proof. Let F be the subspace generated by all v,. Let w be in the
closure of F. Then there exists a sequence {w,} in F such that lim w, = w.
We have

Iwl? = {w, wy = lim <w, w,> =0,
n—*w

because w L w, by assumption, and the product of the limit is the limit of
the product. This concludes the proof.

The next theorem asserts that if we try to approximate an element v of
E by linear combinations of v,,...,v,, then the closest approximation
is given by the combination with the Fourier coefficients. “Closest” here
is taken with respect to the L2-norm.

Theorem 1.4. Let {v,} be an orthogonal family in E. Let ve E, and let
¢, be the Fourier coefficient of v with respect to v,. Let {a,} be a family
of numbers. Then

IA

v—
k

AUy
1

n
v— Y by
k=1
Proof. Let us write
n n n
v=Y au=v— Y gu+ Y (G — @)
k=1 k=1 =1

n
=u+w, say, with u=v— Y ¢
K=t
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Then u is orthogonal to w, and we can apply Pythagoras to conclude that

n 2 n 2 n 2
v=Y au| =lv-Y an| + || Y, (¢ — a)o;
k=1 =1 k=1
n 2
2= Y qu
k=1

because the term furthest to the right is = 0. This proves the theorem.

Theorem 1.4 will be used to derive some convergence statements in E.
Even though || || is only a seminorm, we continue to use the same language
we did previously with norms, concerning adherent points, convergent
series, etc. [Actually, we could also deal with equivalence classes of ele-
ments of E, saying that v is equivalent to w if there exists some u € E, such
that v=w + u. We can make equivalence classes of elements into a
vector space, define the hermitian product on this vector space, and define
Il II also on this vector space of equivalence classes. Then | || becomes
a genuine norm on this vector space. However, we shall simply use the
other language as a matter of convenience.]

Theorem 1.5. Let {u,} be an orthonormal family. Let v € E, and let c, be
the Fourier coefficient of v with respect to u,. Then the partial sums of
the series Y. c,u, form a Cauchy sequence, and we have

Ylel® = ol

The following conditions are equivalent:

(i) The series ). c,u, converges to v.
(ii) We have Y |c,|* = ||v]|2
(iii) The element v is in the closure of the subspace generated by the
Samily {u,}.

Proof. We write

n n
v=v— k;l Gty + k;l Clly.

By Pythagoras, we obtain

n 2 n
"v“z =(v— Z Cuy || + || z Cpliy,
(*) k=1 k=1
n 2 n
=lv— X auw| + ¥ lal?
k=1 k=1
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because the family {u} is orthonormal, and we can use Pythagoras also
on the finite sum furthest to the right, with |c,u,]|> = |c,|2 Thus for every
n, we have

n
> led? < oli>.
k=1

From this we sec as usual that given €, we have

2

n 2
=3 lal*<e

k=m

n
3 ot

k=m

for m, n sufficiently large. Thus we have proved that the partial sums of
the Fourier series form a Cauchy sequence.
From (*) we see that

n n 2
lim y |eJ>={vl> ifandonlyif lim[v— Y culf =0
n—o k=1 n—oo k=1

This proves the equivalence between (i) and (ii). Also if these conditions
are satisfied, then certainly v is adherent to F. Finally, let us assume that
v is adherent to F. Given e, there exist numbers a,, ...,ay such that

<E.

N

v— Y aly
k=1

By Theorem 1.4, it follows that for all n = N,

This proves that the series . c,u, converges to v, and concludes the proof
of the theorem.

] |
v—3 ckllk[l <e
k=1 Iy

The series ) c,v, is called the Fourier series of v with respect to the
family {v,}. This definition is just a general abstract version of the defi-
nition given for the space of periodic functions considered in the pre-
vious examples. In those examples, we dealt with the orthogonal family
{%n}ne z, and also the family {¢,},.,. Note that if v, is not a unit vector,
and u, = v,/||v,[, if c, is the Fourier coefficient of v with respect to v,,
while ¢, is the Fourier coefficient of v with respect to u,, then

,
Coly = Cy Uy

In other words, the projection of v on the space generated by v, is the
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same as its projection on the space generated by u,, because these two
spaces are equal.
Xil, §1. EXERCISES

1. Verify the statements about the orthogonality of the functions y,, and the
functions @, @,, ¥,. That is, prove {x,, Xm> =0 and <{@,, ¢,> =0if m #n.

2. On the space C" consisting of all vectors z = (z,, ...,z,) and w = (wy, ...,w)
where z;, w; € C, define the product

(z, W) = 2,Wy + -+ + 2,W,.

Show that this is a hermitian product, and that {z,z) = 0if and only if z = 0.

w

. Let I be the set of all sequences {c,} of complex numbers such that Y |c,|? con-
verges. Show that [ is a vector space, and that if {a,}, {f,} are elements of %,
then the product

o, B~ X
is a hermitian product such that {&, @) = 0 if and only if « = 0. (Show that the

series on the right converges, using the Schwarz inequality for each partial sum.
Use the same method to prove the first statement.) Prove that 2 is complete.

4. If f is periodic of period 2m, and q, b € R, then

b—2n

b+ 2n
r SO)dx = f(x)dx = S(x)dx.
a a+2n a-2n
(Change variables, letting u = x — 2%, du = dx.) Also,

J:‘f(x +a)dx = J:f(x) dx = fj:af(x) dx.

(Split the integral over the bounds —n + a, —n, 7, 7 + a and use the preceding
statement.)

gl

Let f be an even function (that is f(x) = f(—x)). Show that all its Fourier co-
efficients with respect to sinnx are 0. Let g be an odd function (that is
g(—x) = —g(x)). Show that all its Fourier coefficients with respect to cos nx
are 0.

[=2)

. Compute the real Fourier coefficients of the following functions: (a) x; (b) x%;
(©) |x[; (d) sin? x; (€) |sin x|; (f) |cos x|.

. Let f(x) be the function equal to (m — x)/2 in the interval [0, 27], and extended
by periodicity to the whole real line. Show that the Fourier series of [ is

Y (sin nx)/n.

=~
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8. Let f be periodic of period 2n, and of class C'. Show that there is a constant
C > 0 such that all Fourier coefficients c, (n # 0) satisfy the bound {c,| < C/|n|.
[Hint: Integrate by parts.]

9. Let f be periodic of period 2m, and of class C? (twice continuously differ-
entiable). Show that there is a constant C > 0 such that all Fourier coeffi-
cients ¢, (n # 0) satisfy the bound |c,| < C/n?. Generalize.

10. Let t be real and not equal to an integer. Determine the Fourier series for the
functions f(x) = cos tx and g(x) = sin tx.

11. Let E be a vector space over R with a positive definite scalar product. Prove the
parallelogram law: For all v, w € E we have

2 2 2 2
llo+ i + flo — wif? = 20l + 2{pwil.

In terms of the distance d(v,w) = |lv — w||, and the midpoint z between two
points vy, v, for all v € E, show that

d(v1,02)% +4d(v,2)* = 2(v,01)* + 2(v, 2)*.

12. Let E be a vector space over R, with a positive definite scalar product. Let F be a
complete subspace of E. Let v, € E, and let

r=inf |loo —wll.

Prove that there exists an element wp € F such that r = |lup — wo||. [Hint: Let
{wn} be a sequence in F such that |lup — w,]|| converges to r. Prove that {w,} is
Cauchy.]

13. Notation as in the preceding exercise, assume that F s E. Show that there exists
a vector v € E which is perpendicular to F and v # 0. [Hint: Let o€ E, vo ¢ F.
Let wy be as in Exercise 12, and let v = vg — wp. Then

lol? llo+w|)? forall weF.

If some (v, w) # 0, consider v + nw, with small values of ¢, so that (v, w) < 0.

14. Notation as in Exercises 12 and 13, let 2: E — R be a continuous linear map.
Show that there exists y € E such that A(x) = {x, y) for all x € E. [Hint: Let F
be the subspace of all x € E such that A(x) = 0. Show that F is closed. If F 3 E,
use Exercise 13 to get an element z € E, z ¢ F, z 0, such that z is perpendicular
to F. Dividing by its norm, one may assume ||z]] = 1. Let y = A(z)z.]

Verify that Exercises 11-14 hold for a hermitian positive definite product over C.

15. Let E be a vector space over € with a hermitian product which is positive definite
Let v, ..., be elements of E, and assume that they are linearly independent.
This means: if c,v, + --- + ¢,v, = 0 with ¢;e C, then ¢, = 0 for all i. Prove that
for each k=1,...,n there exist elements w,,...,w, which are of length I,
mutually perpendicular (that is {w;, w;> =0 if [ #j), and generate the same



306 FOURIER SERIES [XI1, §2]

subspace as v,,...,05. These elements are unique up to multiplication by
complex numbers of absolute value 1. [Hint: For the existence, use the usual
orthogonalization process: Let

Uy =0y,
Uy = Uy — Cyly,
U = Vg — gy Ug—g — 7" — Cy Uy,

where c; are chosen to orthogonalize. Divide each u; by its length to get w;. Put
in all the details and complete this proof.]

. In this exercise, take all functions to be real valued, and all vector spaces over

the reals. Let K(x, y) be a continuous function of two variables, defined on the
squarea < x < banda <y < b. A continuous function f on [a, b] is said to be
an eigenfunction for K, with respect to a real number 4, if

b
[ K100 dy = 2500

Use the L2-norm on the space E of continuous functions on [4, b]. Prove that
if fy, --.,/, are in E, mutually orthogonal, and of L%-norm equal to 1, and are
eigenfunctions with respect to the same number A s 0, then n is bounded by a
number depending only on K and A. [Hint: Use Theorem 1.5.]

XIl, §2. TRIGONOMETRIC POLYNOMIALS AS

A TOTAL FAMILY

By a trigonometric polynomial, we mean a finite linear combination

n

P=kz X thatis  Px)= Y cxlx)= Y ce™,
n k=-n k=-n

with coefficients ¢, € C. Equivalently, we may write P in the form

P(x)=ao+ Y (a cos kx + b, sin kx),
“

and the coefficients a,, a,, b, are also in C. Usually, we use this second
representation when dealing with real functions, so that aq, a,, b, are

taken to be real.

In this section, we assume the following theorem.
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Theorem 2.1. Let f be a continuous function, periodic of period 2m.
Then f can be uniformly approximated by trigonometric polynomials.

We shall give a proof in the next section using Dirac sequences. Here
we shall derive consequences of Theorem 2.1.

Let E be the vector space of regulated functions, i.e. uniform limits of
step functions, periodic of period 2n. Then E contains the subspace of
piecewise continuous periodic functions. We let Eg be the R-vector space
of functions in E which are real valued. We shall prove that the families
of functions

{Xn}ns z and {(pn}ne z

are total. We emphasize that we have three seminorms on E, the L!-
seminorm, the L2-seminorm denoted by || ||,, and the sup norm, denoted
by Il -

Lemma 2.2. Let C§ be the space of continuous periodic functions [ such
that f(—n) =f(m) =0. Then C3 is L* and L? dense in E. In other
words, every element of E is in the closure of CJ with respect to either
norm.

Proof. Let f be a uniform limit of step functions. To approximate f, it
suffices to do so for its real and imaginary parts, so without loss of
generality, we may assume that f is real valued. Since the L' and L?
norms are bounded by a constant times the sup norm (on the interval
[—=, n]), and since we can approximate an element of E by step functions
in the sup norm, we can therefore approximate an element of E by step
functions in the L' or L?-norm. Thus it suffices to prove the lemma for
step functions. Since a step function is a linear combination of character-
istic functions of intervals, it suffices to prove the lemma for a function g
which is equal to a constant value on an interval (g, b) and is 0 outside
(a, b) with

-7

IIA
2
IA
o
IIA
El

The graph of g looks as follows:

One may have a=—=n or b=mn. We now pick a small 4, and define a
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function h to be:
h(x)=0if —-n<x<aandif b<x=m
h(x) is linear from a to a + 8, with h(a + 6) = g(a + 9).
h(x) is linear from b — & to b, and h(b — 8) = g(b — 9)-
h(x) =g(x)fora+d<x<b—0.

The graph of h is shown on the next figure.

[\

_n aa+d b-8b n

Then, say for the L?-seminorm (and similarly for the L'-seminorm):
b a+éd b
to—niz=[ 19— =["tg—nr+ [ 19—

<264lgll%-

Letting 6 —0 we see that we can find elements h = h; in C§ arbitrarily
close to g in the L2-seminorm, thus proving the lemma.

Theorem 2.3. The space of trigonometric polynomials is dense in E, in
other words every element of E lies in the closure of the subspace of
trigonometric polynomials. (The closure is for the L2-seminorm.)
Proof. By Lemma 2.2, every element f € E can be L2-approximated by
a continuous periodic function g. By Theorem 2.1, g can be uniformly
approximated by a trigonometric polynomial P, and we have
llg— Pl £Cllg — Pllo for some constant C,
50 g can be L2-approximated by a trigonometric polynomial. This proves

the theorem. (By Remark 2 in §1, one can take C = v/2x, but this is irrele-
vant here.)

Theorem 2.4. The families {x,},cz and {9}, are total.
Proof. This is a special case of Theorem 1.3, in light of Theorem 2.3.

Remark. There is an alternative way to proving that the sequence {x.}is
total, as follows.
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Instead of Theorem 2.1, one proves that if a function is of class C2?,
then the Fourier series of the function converges uniformly to the function.

Instead of Lemma 2.2, one proves that periodic functions of class C?
(actually of class C*) are L2-dense in E.

Then the double approximation of Theorem 2.3 can be carried out to
show that the trigonometric polynomials are L2-dense in E.

This alternative bypasses the considerations of §3, via Dirac sequences,
and goes at once into the direct convergence question of the Fourier
series. It is mostly a question of taste which path is followed, because no
matter what, all the structures involved ultimately have to be dealt with.
The price to be paid for the organization I have chosen, giving priority to
the Dirac sequences, is that one has to take the average of the Fourier
series to get pointwise convergence. The advantage is that the Dirac
sequences have a very tight universal algebraic structure, serviceable in
many contexts. So the present organization of the material first shows
how to fit Fourier series into the Dirac sequence context, and then shows
how the convergence of the Fourier series itself diverges from the Dirac
sequence context in that the lack of positivity requires more smoothness
on the function to get the formal convergence argument to work. Never-
theless, §4 has been written in such a way that it can be covered before §3,
if an instructor so desires.

The situation is actually part of a larger pattern as follows. Suppose
given in some natural fashion a sequence of periodic functions {W,},
which are usually C®, and normalized by

n
W,=1.

We use these functions to define operators, such that if f is a periodic
function, not assumed to be even continuous, we may still define the
convolution

W, f(x) = j W0)f(x — 0 de.

We meet conditions under which W, % f(x) converges to f(x) if f is contin-
uous at x. What happens is a trade off. The better the function f is, the
fewer properties the functions W, have to satisfy. Thus if f is merely
continuous, it is natural to impose the condition of positivity on W, as
well as the third Dirac sequence property to get the approximation result.
If f is better than continuous, and in particular is of class C?, then we can
forego the positivity property and rely on another type of weaker property
of W, to get the approximation result. In the two subsequent examples,
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we shall deal with two possible sequences W,, one yielding the Fourier
series itself, and the other yielding the average of the Fourier series. These
two cases may thus be treated in parallel, independently of each other.
The relevant definitions of W, are given at the beginning of the next
section.

Xll, §2. EXERCISES

1. Let « be an irrational number. Let f be a continuous function (complex valued,
of a real variable), periodic of period 1. Show that

3 l N 1
lim & 3 f() = fof(x) dx.

[Hint: First, let f(x) = ¢?"** for some integer k. If k # 0, then you can compute
explicitly the sum on the left, and one sees at once that the geometric sums

N
Z e2nlkna
n=1

are bounded, whence the assertion follows. If k=0, it is even more trivial
Second, prove that if the relationship is true for two functions, then it is true for
a linear combination of these functions. Hence if the relationship is true for a
family of generators of a vector space of functions, then it is true for all
elements of this vector space. Third, prove that if the relationship is true for a
sequence of functions {f;}, and these functions converge uniformly to a function
/, then the relationship is true for f.]

N

. Prove that the limit of the preceding exercise is valid if f is an arbitrary real
valued periodic (period 1) regulated function (or Riemann integrable function)
by showing that given e, there exist continuous functions g, h, periodic of period
1, such that

1
g<f<h and I(h—g)<€.
V]

In particular, the limit is valid if f is the characteristic function of a subinterval
of [0, 1]. In probabilistic terms, this means that the probability that 2nka (with
a positive integer k), up to addition of some integral multiple of 2, lies in a
subinterval [a, b], is exactly the length of the interval b — a. This result pro-
vides a quantitative continuation of Chapter I, §4, Exercise 6. It is also called
the equidistribution of the numbers {ka} modulo Z.

Remark. Exercise 2 is a variation on the method of Exercise 1, since it deals
with a weaker approximation than uniform approximation, namely what one
could call Riemann approximation. This approximation technique is quite wide-
spread, and has many other applications to fancier contexts, when equidistribution
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of certain sequences is verified by verifying a limiting integral formula as in

Exercise 1 with respect to some specific families of functions called characters,

playing the role of the exponentials ¢>™**. If you go on studying questions of

analysis, you will meet such situations. The technique was first used by Hermann

Weyl.

3. (a) Let P, Q be trigonometric polynomials. Show that P+ Q and PQ are
also trigonometric polynomials. If ¢ is a constant, then cP is a trigonometric poly-
nomial.

(b) Suppose a trigonometric polynomial P is written in the form

P(x)=ag + Y. (a cos kx + b, sin kx).
k=1

If @, or b, + 0, define the trigonometric degree of f to be n. Prove that if f, g
are two real trigonometric polynomials, then

trig deg(fg) = trig deg /' + trig deg g.

4. Let Cy be the space of C” functions which are periodic and vanish at —z, 7.
Show that Cg is L*-dense in E (the space of piecewise continuous periodic func-
tions). [Hinr: Approximate the function by step functions, and use bump
functions.]

Xll, §3. EXPLICIT UNIFORM APPROXIMATION

We now come to questions of pointwise approximation of a function by
its Fourier series. This section and the next give two different ways. We
start with the formalism of convolution, which applies to both. Then we
treat uniform approximation in this section, and more delicate pointwise
approximation in the next. These two parts can be read independently of
each other.

If £, g are periodic of period 27, we define

Seat =" foate—o o

and again call it the convolution of f and g. We shall convolve a function
f with two types of kernels. One of them will be the Dirichlet kernel

1 " e R 1 "
)= — i e D,=-- ,
D=5 % e ie i = D T
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and the other will be the Fejer kernel (called also the Cesaro kernel)

1 oz ikx H _ 1 cee
K, (x) = T o o e ie. K,= ;(Do + 4+ D,,)

We see that thc second one is an average of the first. It turns out that the
Fejer kernels form a Dirac sequence, but the Dirichlet kernels do not,
although we shall see in the next section that they also furnish certain
approximation theorems.

We denote by s, the n-th partial sum of the Fourier series of a function
/. (Strictly speaking we should write sy, ,.)

We shall take the convolution both of D, and K, with a given function
f- We start by looking at the convolution of f with the functions

xx) = €%
We have
n
1109 = [ e d
n -
= f(t)e""' dt- eikx
= 2mc, ™,

where c, is the k-th Fourier coefficient of f. This ties up the Fourier series
with convolutions, and since the convolution product is distributive over
addition, we obtain:

Theorem 3.1. Let f be a periodic, piecewise continuous function. Then

D, f(x) = 5,(x)

and

K+ f(x) = So(x) + n+ Sn—l(x)_

Thus K, +f is the average of the partial sums of the Fourier series of f
We shall now prove the approximation theorem for trigonometic poly-
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nomials by the method of Dirac sequences. Since we are dealing with
periodic functions, we replace the bounds of integration by —= and =
instead of — oo and co. Otherwise we make no change in the definition of
Dirac sequence. Hence for this section, a Dirac sequence {K,} is a
sequence of continuous periodic functions satisfying:

DIR 1. K, =0 for all n.
n
DIR 2. f K,=1

DIR 3. Given € and 6 > 0, there exists n, such that for all n = n, we

have
- n
J. + j K,<e
-n é

Without any change in the proof except writing = instead of oo, the main
result of Chapter XI, Theorem 1.1, is valid, using a periodic function f.
We shall refer to this theorem without repeating it here any further for
periodic functions.

We shall now analyze the Fejer kernels using trigonometric identities,
and prove that they form a Dirac sequence. We use brute force summing
the geometric series twice, as it comes in the definition of K,,.

We first prove the formula:

1 sin? nx/2

M il = 27n sin? x/2

Proof. We just sum finite geometric series. We have:

m 1 — gitm¥x | _ gmitmti)x

Z eikx = ix + ix - 1'

k=—m 1—e¢ 1—e"

Summing the geometric series once more, we obtain
n—1 m

Y e

m=0 k=—m

_ ! wloe™ L (wlme™y
_l_eix n—e l_eix l_e—ix l_e—ix

—e 2 Ll —e™ + eI i e--‘xl — g7inx "
=2isnx2\" ¢ T—e*) " 2isinx2 T—e®

ikx
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= m(e‘"’ + e”™ —2) (because the terms with n cancel)
1

1 . .
= inx/2 _ ,=inx/2\2 _
@ )

sin? (nx/2)
sin? (x/2)
This proves the formula for K, (x).
Theorem 3.2. The sequence of Fejer kernels is a Dirac sequence.
Proof. Since K, is the square of a real function, its values are = 0, so
DIR 1 is satisfied. For DIR 2 we integrate the terms in the definition of

K, and obtain 0 except for one term, with m = 0, which gives 1. For
DIR 3, given ¢, we have

02
lj"sm nt/Zd <1J‘" 1

R =- 0 dt.
nls sin®t/2  ~ nJ; sin?tf2

The integral on the right is a fixed number, and dividing by n shows that
the expression on the right tends to 0 as n — co. Hence DIR 3 is satisfied.
(Actually, the integral on the right can be integrated easily, but this is
irrelevant here.)
Observe that, as usual, K,, is an even function.

Corollary 3.3 The functions K,*f converge uniformly to f on any
compact set where f is continuous.

Proof. General Dirac sequence property.

We have already observed that
So e+ Sy
n
is the average of the partial sums of the Fourier series. The procedure of

taking this average is known as Cesaro summation. The corollary of
Theorem 3.2 can be stated by saying that

the Fourier series of a function is Cesaro summable to the function, uni-
Jformly on any compact set where the function is continuous.

Observe that this is a pointwise convergence statement.
The functions K, are even. Evaluating their Fourier coefficients with
respect to cos kx for each k, one finds:

@ K,(0) = 2% + % :2:: (l - l'—:) cos kx.
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The corresponding formula for K, x f is then given by

K, *f(x)=ao + "il (l - ;)(a,, cos kx + b, sin kx),
k=1

where aq, ay, by are the Fourier coefficients of f with respect to the cosine
and sine functions. This is trivially verified.

In the next section, we prove statements which show how we can adjust
the properties of the Dirac sequences to provide convergence statements
with D, instead of K,,.

Xil, §3. EXERCISES

1. Let E be as in the text, the vector space of piecewise continuous periodic functions.
If f, g € E, define

seger= [ sogt— e

Prove the following properties:

@) fxg=g*f

(b) fheE, then fx(g + h)=fxg + f*h.
© (f*@)xh=fx(g*h).

(d) If o is a number, then (of') g = a(f *g).

2. For 0 £ r < 1, define the Poisson kernel as
1 & .
P(r, 0) = P(0) = — Y. r'le™®,
2n 55

Show that
1 1—r2

P'(0)=ﬂl—2rcose+rz'

3. Prove that P,(6) satisfies the three conditions DIR 1, 2, 3, where n is replaced by
rand r — 1 instead of n — co. In other words:

DIR 1. We have P,(8) 2 0 for all r and all .
DIR 2. Each P, is continuous and

f_ P(6)d6 = 1.

DIR 3. Given ¢ and 8, there exists ro, 0 < ro < 1,suchthat if ro <r < 1then

- n
f P,+fP,<e
- s
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4.

“o

o

7

Show that Theorem 1.1 concerning Dirac sequences applies to the Poisson ker-
nels, again letting r — 1 instead of n — co. In other words: Let f be a piecewise
continuous function on R which is periodic. Let S be a compact set on which f is
continuous. Let

fr=Prf

Then f, converges to f uniformly on Sasr — L.

In this exercise we use partial derivatives which you should know from more ele-
mentary courses. See Chapter XV, §1, for a systematic treatment.

Let x = rcos 6 and y = rsin @ where (r, 6) are the usual polar coordinates.
Prove that in terms of polar coordinates, we have the relation

az+aZ_az+1a+Li
w2 o ror r?oe*

This means that if f(x, y) is a function of the rectangular coordinates x, y then

S(x,y) = f(r cos 6, r sin 6) = u(r, 6)
is also a function of (r, 6), and if we apply the left-hand side to £, that is

&, o
ax?  ay?
then we get the same thing as if we apply the right-hand side to u(r, 6). The above
relation gives the expression for the Laplace operator (/0x)* + (8/0y)? in terms of
polar coordinates. The Laplace operator is denoted by A.
A function f is called harmonic if Af = 0.

(a) Show that the functions r*le™® are harmonic, for every integer k.
(b) Show that AP = 0. In other words, the function

P(r,0) = 1 i rilgike
pL =

is harmonic for 0 £ r < 1. Justify the term by term differentiations.

The use of the Poisson kernel comes from the desire to solve a boundary-value
problem. Suppose given a function g, viewed as a function on the circle, say g(6),
periodic of period 2n. We want to find a function on the disc, that is a function
u(r, 8) with 0 < r < 1, which is harmonic, and such that u has period 2x in its sec-
ond variable, that is

u(r, 6) = u(r, 6 + 2n).

Furthermore, we want u(l, 6) to be as much like g as possible. This can be
achieved as follows.

Let g be a continuous function of 6, periodic of period 2n. Define

u(r, 6) = (P, * g)(6) for 0Sr<1.
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(2) Show that u(r, 6) is harmonic. (You will need to differentiate under an integral
sign.) In fact, A(Pxg) = (AP)+g.
(b) Show that

lim u(r, 6) = g(6)
r—1

uniformly in 6, as a special case of approximation by Dirac families.

Xll, §4. POINTWISE CONVERGENCE

The most obvious test for pointwise convergence is due to the fact that a
uniformly convergent series can be integrated term by term.

Theorem 4.1. Let {a,},.z be a family of numbers such that the series
Y 2w @,0, converges uniformly, and let g =YY%, a,@,. Then a, is the
Fourier coefficient of g with respect to ¢,, and therefore Y. a,, is the
Fourier series of g.

Proof. For each m the function ¢,, is bounded (by 1 even), and this
shows at once that the series

@
Y %QkOm = GPnm

k=—-w

converges uniformly. Hence it can be integrated term by term, and the
orthogonality relations show that

Al Pms Om) = {Gs P>

This proves the theorem.

Example 1. Let f(x) = (x — x)%/4 on the interval [0, 2n], and otherwise
extended by periodicity. The Fourier coefficients are easily computed to

T 1
a,,=F, b.=0,

for positive integers k. Hence the Fourier series converges uniformly. It
will be proved in Theorem 4.3 that it converges to f itself. Hence

) (n—x)z_n2+ ® cos kx
M 4 125 kB
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Letting x = 0, we find that

=

nz @
T

Example 2. We have already seen in Exercise 9 of §1 that if the
periodic function f is twice continuously differentiable, then its Fourier
coefficients c, tend to O like 1/n% and consequently the Fourier series is
uniformly convergent. We state this generalization formally.

Theorem 4.2. Let f be a periodic function of class CP with p 2 1. Then
there exists a constant C (depending on the first p derivatives, of course)
such that the Fourier coefficients c, of [ satisfy the estimate

lea| £ ’% so ¢, = O(1/n?)  for n— .

In particular, for p 22, the Fourier series is absolutely and uniformly
convergent.

Proof. Integrate by parts p times to get the estimate.

The question is now whether in Theorems 4.1 and 4.2 the Fourier series
converges to the function f itself. No matter what, one basic result runs
as follows.

Theorem 4.3. Let f be a continuous function, periodic of period 2m. Let
{c,} be its Fourier coefficients, and assume that Y. c,x, converges uni-
formly. Then the Fourier series of f converges uniformly to f. This
occurs in particular, if’ f is of class C? with p = 2.

Proof. As mentioned at the end of §2, there are two approaches to this
result. Suppose we are willing to use Theorem 2.1, proved by the tech-
nique of Dirac sequences in §3. Let g be the uniform limit of the Fourier
series. Then all the Fourier coefficients of f — g are 0, and we can apply
Theorem 2.4 to conclude the proof.

We shall now carry out the alternative approach, without assuming
Theorem 2.1, but dealing directly with the Fourier series when the func-
tion f is assumed to be smoother than just continuous.

Lemma 4.4 (Riemann-Lebesgue lemma). Let a < b. Let f be a uniform
limit of step functions on [a, b]. Then

b
lim f(.)()e'.""c dx =0,

A= Jgq

and similarly if "4~ is replaced by cos Ax, or sin Ax, or e,
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Proof. Assume first that f is differentiable except at a finite number of
points, and that its derivative is piecewise continuous. Decomposing the
interval [a, b] into a finite number of segments, we see that it suffices to
prove our lemma for each such segment. Thus it suffices to prove: If f
has continuous derivative on [a, b], then

b
lim | f(x)e*dx =0.
A= Jg

In this case, we integrate by parts, and get

[[ et ax SO LA L [* pipgns

This clearly goes to 0 as A — oo because f* is bounded on the closed inter-
val [a, b].
Now let f be arbitrary. Given ¢, there exists a step function g such that

b
f 11 — )l dx < €.

Then

b . b : b .
j Seedx = [ (f3) = glx))ei* dx + [ otetsds,

and taking absolute values, we have

' r S()et= dx

b b )
< f 1£0) — g0 dx + f g(x)e= dx|,

because |e*4*| < 1. The first term on the right is <€, and the second also
for all A sufficiently large, according to the first part of the proof. This
proves the Riemann—-Lebesgue lemma with the exponential.

The corresponding statement with sin and cos can be done similarly, or
they follow from the exponential by decomposing f into its real and
imaginary parts. This concludes the proof.

The Riemann-Lebesgue lemma will play a role similar to the role
played by one of the conditions on Dirac sequences, namely that the
contribution to the integral outside a d-interval around the origin is very
small for n sufficiently large.

The other properties needed are easy, namely:

D2 f D,(x)dx =1,



320 FOURIER SERIES [XII, §4]

D3 | D)= Sig‘j%};‘m (x # even multiple of 7).

Property D 2 is immediate from the fact that every x, has integral 0 unless
k=0. For Property D 3, we start with the identity

1 — eftm+lx  o=ixi2 _ pitm+1/2)x

Y ekx = -

o 1—e*  —2isinx?2

We write down a similar identity for the sum of e™™** adding and sub-
tracting 1 to take care of the missing term with k=0 in this second
sum from | to m. Then both sums are over the common denominator
2i sin x/2, and adding these two sums we see that D 3 falls out.

Let xe[—n,n]. We say that f satisfies a Lipschitz condition at x if
there exists a constant C > 0 and an open interval containing x such that
for y in this interval, we have

£ = f) = Clx — yl.
Or alternatively, there exists & such that for all ¢ with |¢t] < §, we have

e+ 0 = f()l = Clel.

Theorem 4.5. Let f be a periodic, uniform limit of step functions on
[—m n]. Suppose f satisfies a Lipschitz condition at a given point x.
Then the Fourier series Sy(x) converges to f(x).

Proof. With x fixed, also fix ¢ > 0. Using D 2 we get
DS = f09 = [ DO =0~ o) e

) I:, * V + [ Dot - 0 - s e

By the Lipschitz hypothesis we can pick &, such that for
fx=0—f)N = Clef

for J¢| < 6,. Then using D 3, the integral over [—§, 6] with 0 <6 < &y, is
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estimated absolutely by:

f DL (x — 1) — f0)]) dt < 26 sup — 'L

1is3 |sin /2|

because the numerator involving the sine in D 3 is bounded by 1. The
function ¢ t/sin(t/2) is continuous at 0, so the sup term is bounded near
0. Picking ¢ sufficiently small makes the right side < ¢, independently of
n. Now we estimate the other two integrals over the intervals [§, n] and
[—n, —8]. By the Riemann—Lebesgue lemma, these integrals approach 0
as n— oo. This proves that the Fourier series of f converges to f(x).

Corollary 4.6. Suppose f is periodic of class C2. Then the Fourier series
S, converges to f uniformly.

Proof. By Theorem 4.5, we have pointwise convergence to f. By
Theorem 4.2, the Fourier series converges uniformly to a function g.
Hence g =f, and the convergence is uniform to f. This concludes the
proof.

Thus we have bypassed the Cesaro—Fejer summation (average of the
Fourier series), and dealt directly with the Fourier series to get the
convergence to the function in the case f is C2. But then we can use
Exercise 4 of §2.

Theorem 4.7. Let E be the space of piecewise continuous periodic func-
tions. Then the space of C*® periodic functions is L? dense in E.

Thus finally we have given an independent proof that the trigonometric
polynomials are dense in E, and hence that the family {x,} is total.

The method of approximation pointwise to the function can be refined
quite a bit. We give here one further statement showing how the hypo-
theses can be weakened to get pointwise convergence. We now consider
a piecewise continuous function and a point x where f need not be con-
tinuous.

It is natural to consider at any point x the average value of the function.
If

Sty =lim e +B)  and  fGe=) = lim f(xc— ),
h=0 nd
h>0 h>0

we let

Av gy = LERHI60)
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It is the mid-point between the right and left limits:

N

/\

Most functions we consider, in addition to being piecewise continuous
are also piecewise differentiable. A reasonable condition which is used in
practice is slightly weaker. We shall say that f satisfies a right Lipschitz
condition at x if there exist a constant C > 0 and & such that

|f(x+h) —f(x+)| =< Ch
for all h with 0 < h < 6. Similarly, we define a left Lipschitz condition

at x. Certainly if f is right differentiable at x, then it satisfies a right Lip-
schitz condition at x.

Theorem 4.8. Let f be piecewise continuous and assume that f satisfies a
right and a left Lipschitz condition at a given point x. Then the Fourier
series of [ converges to Avy(x) at x.

Proof. We have for 6 > 0,
Dy 9 = vy = [ [fx = 0~ Av, (OID, 1) de

B f-’a " f.a + [T -0 - av, D0

The first integral will be estimated absolutely; the other two will be esti-
mated by using the Riemann lemma. We give e.

Let C be the constant of the Lipschitz condition, and choose & < .
Note that D, is even, i.e. D,(t) = D,(—t). Therefore

5
f,; SO —)D () dt = f Jx + 0)D(0) dt.
- -5
Hence the first integral from —§ to 8 is equal to

f ) [\f G-ty Av,(x)]D,,(t) d,
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which, in absolute value, can be estimated by

[ el
s Jsin /2]

because ¢/sin(¢/2) is continuous even at 0 and is bounded by some C;.
Thus our first integral is small.

Now as for the others, the function g(t) = f(x — t) — Av (x) is piece-
wise continuous. Consequently, for all n sufficiently large, the second and
third integrals tend to 0. This proves our theorem.

sin dt < 2¢CC,

II/\

(2n+ 1) r
2 | at s Csm t/2

It is clear from the Riemann-Lebesgue lemma, and the estimate of the
first part of the proof of Theorem 4.2 that to get uniformity statements on
the convergence, one needs to have uniformity statements on the Lipschitz
constant, and on the oscillation of f. We don’t go into this question here.
Interested readers can look at my Real and Functional Analysis, Chapter
X, §2, for further refinements, especially in connection with functions of
bounded variation.

Xll, §4. EXERCISES

—

. (@) Carry out the computation of the Fourier series of (n — x)*/4 on [0, 2n].
Show that this Fourier series can be differentiated term by term in every
interval [§, 2n — ] and deduce that

sin kx

il Z , O<x<2m

(b) Deduce this same identity from Theorem 4.5.

[

Carry out the details of the proof of Theorem 4.2 and give a value for the
constant C in that theorem, in terms of the derivative of f.

w

. Show that the convergence of the Fourier series to f(x) at a given point x
depends only on the behavior of f near x. In other words, if g(t) = f{(t) for all
t in some open interval containing x, then the Fourier series of g converges to
g(x) at x if and only if the Fourier series of f converges to f(x) at x.

4. Let F be the complete normed vector space of continuous periodic functions on
[—n, 7] with the sup norm. Let /' be the vector space of all real sequences
a={a,} (n=1,2,...) such that Zla,,l converges. We define, as in Exercise 8 of
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w

oo

Chapter IX, §5, the norm

tel, = 3 o
Let La(x) = ) a, cos nx, so that L: ' — F is a linear map, satisfying
LI < fedl,.
Let B be the closed unit ball of radius 1 centered at the origin in I'. Show that L(B)
is closed in F. [Hint: Let { fi} (k = 1,2,...) be a sequence of clements of L(B) which

converges uniformly to a function f in F. Let fi = L(a*) with o = {af} in B.
Show that

1
ak = - J Jilx) cos nx dx.
-n

Let b, = 1/ {“x f(x) cos nx dx. Note that |b, — a¥| £ 2[If = fillo- Let f={b,}.
Show first that f8 is an element of B, because for all N,

N N
2l = i

Why can you now conclude that L() = f7]

la¥| < 1.
1

n=

. Determine the Fourier series for the function whose values are e* for

0<x<2m

In Exercises 6, 7, 8, show that the following relations hold:

. For 0 < x < 2n and « # O we have

& acos kx — ksin kx)

1
x — (2an _ [ — .
e = (e )(Za tL T era

For 0 < x < 27 and a not an integer, we have

sin 2an & asin 2am cos kx + k(cos 2an — 1) sin kx
ncos ax = + 3 > .
2a k=1 a® —k

. Letting x = 7 in Exercise 7, conclude that

(=1

z_kz

1+ ¥
2

sin an ]

2

when a is not an integer.

(In all the above cases, Theorem 4.5 shows that the Fourier series converges
to the function.)
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9. (Elkies) Let B be the periodic function with period 1 defined on [0, 1] by

B(x)=x*—x+4.

1 1
P that B(x) = —; — g2minx,
(a) Prove that B(x) 3 ..g’o 2°

(b) Prove the polynomial identity for every positive integer M:

l M+1 M+1 " M+1 m
n —k ) — 1— m —m .
—M+l(";lz)(hglz ) m;l( M+l)(z +z7™) + 1,

(c) Prove that for all integers M = 1 we have:

M m 1
3 (1) oz

(d) More generally, let 4 = (a,,...,qa,) be an r-tuple of positive numbers. Let
X =(xy,..., x,) be an r-tuple of real numbers. Define

1
EA4,X)=Y a;aiEB(xx - x).
i#j
Prove that

1 r
EA4,X)2 -=Y a&

125



CHAPTER XIlI

Improper Integrals

XIlil, §1. DEFINITION

We assume that our functions are complex valued, unless otherwise
specified.

Let a < b be numbers, and let f be a piecewise continuous function on
the interval a < x <b. Then for every small 4 >0 we can form the
integral

b—5

f

If the limit of this integral exists as 6 approaches 0, then we say that the
improper integral
b
[r

is defined, and is equal to this limit. Similarly, if f is piecewise continuous
ona < x £ b, we define

b b
J' f=lm | f
a 60 Ja+é

Example 1. The improper integral

b | . b |
—dx=lim [ 2ax =i
Lﬁ" ‘I“I\/;"" lim 2,/
=lim(@2-2/8) =2
-0

1

t2

exists.

326
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Similarly, let f be defined for x = a and be piecewise continuous on
every finite interval [a, b] with a < b. We define

J;mf= lim bf

b-sw Ja

if the limit exists. For example, the following integral exists:

f e 'dt=lim (—e 2+ 1)=1.
0

Bow

Instead of saying that an improper integral exists, we shall also say that
it converges.

Suppose that f is piecewise continuous on the open interval a < x < b.
Let a < ¢ < b. We define the improper integral

-2
f f=tm | f+lm | f
a 60 Ja+s A-0 Je

This is independent of the choice of ¢ in the interval a < x < b, because
ifa < ¢, < b then

c -2
lim + lim = lim + lim fb
-0 Ja+s A-0 Je -0 a+6 1 A-0 Je

= lim + lim

6-0 Ja+s A-0

Warning. We take the limits independently of each other on each side
of the interval, because a definition of the improper integral as

lim f
-0 Ja+é

would be unreasonable for our present purposes due to cancellations, as
in the following example:

w1

VRS
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We consider the integral

nj2 -5 nj2-5
J‘ tan x dx = log cos x =0
—nj2+5 —nj2+5

since cos x = cos (—x).

We leave it as an exercise for the reader to prove that if f=0 on
a < x < b, then actually we don’t need to be careful about the independent
limits.

Note that in our improper integrals, if f is actually piecewise continuous
on [a, b], then the new integral coincides with the old one, because as we
saw, the old one is a continuous function of its end points.

Similarly, suppose that f is piecewise continuous in every interval
a<x<b(aisfixed, all b > a). Let a < c. We define

fwf=1im S lim f

-0 b

Finally, if f is piecewise continuous on every bounded interval, we define

© b
j f=tm | f+lm | £
= a» o v=-a b-w Je

These are independent of the choice of c.

Example 2. The integral

@ 0 @
f e lgx = J‘ e ldx + f e *dx
—© —© )

converges, being equal to
]
2 J‘ e~ *dx.
[

1-.7rom the properties of limits, it is clear that the improper integrals are
again linear in f. For instance, with co as a limit, and with any constant a,

f(f+g)=f°f+ [
oy

and
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whenever each improper integral for f and g converges. Furthermore,
if f is real valued and f 2> O for x > g, then

[(rz0

provided the integral converges, and thus if f > g then

[r= [

again provided each one of these integrals converges.
Finally, we define an integral
[7r

ffl 19 dx

to be absolutely convergent if

converges. We say that f is absolutely integrable (on R) if

[Cin

converges. Equivalently, we also say that f isinL'.

Xlil, §1. EXERCISES

1. Let f be complex valued, f = f; + if, where f;, f, are real valued, and piecewise
continuous.
(a) Show that

f f converges if and only if f /i and f /> converge.
(b) The function f is absolutely integrable on R if and only if f; and f, are ab-
solutely integrable.
2. Integrating by parts, show that the following integrals exist and evaluate them:

w
f e~ *sin x dx
°

and

o
f e~ * cos x dx.
[
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3. Let f be a continuous function on R which is absolutely integrable.
(a) Show that

f_:f(—x) dx = fjmf(x) dx.

(b) Show that for every real number a we have

J;m fx+adx = f_:f(x) dx.

() Assume that the function f(t)/t| is continuous and absolutely integrable.
Use the symbols

i 1
Lf(t)d*t = f_mf(t)l—ﬁdt'

If a is any real number # 0, show that
f S(at)d*t = f f(@®d*e.
re R

This is called the invariance of the integral under multiplicative translations with
respect to dt/t.

Xill, §2. CRITERIA FOR CONVERGENCE

We shall formulate the criteria with co as a limit. The other cases follow
a similar pattern.

Theorem 2.1. Let a be a number, and f a piecewise continuous function
in every interval [a, x] for x > a. Then

[r

converges if and only if, given € there exists B > 0 such that whenever

x,y=B
[r-[r f:f

<E
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Proof. This theorem is nothing else but Theorem 1.2 of Chapter VII,
that is the Cauchy criterion applied to oo as a limit instead of v, and to the
function

o= [

Corollary 2.2. If an integral converges absolutely, then it converges.

Theorem 2.3. Let >0 for x = a, and let g be defined for x = a, piece-
wise continuous on every finite interval. If |g| £ f and if _[ f converges,
then _[ g converges (absolutely).

Proof. For every B > a we have

[l rs s

The least upper bound of all values j' |g| for all B is a limit for this inte-
gral, which therefore converges.

Example 1. We shall give an example with an improper integral over a
finite interval. We wish to show that the integral

llogt
[t
[\]
converges. Write

I?g = (t" log t)

We know that

lim (¢¥* log £) = 0

-0
(why?) and hence the function (¢**log () is continuous on [0, 1], hence
bounded. On the other hand let f(t) = 1/t3%. Then the improper integral
of f exists:

1y

1
1/4
ft3,4dt 4t
o

whence our integral of (log t)/t'/? converges. Note that we don’t evaluate
it.
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Example 2. Let A > 0. We claim that

lim x4 f e dt=0.

xX—0
We have to estimate the integral. Because of the exponent which has an
x2, one cannot determine this integral as an elementary function. But it

can be easily estimated, namely for ¢t = 1, one has e <e™'. Hence for
x21,

] 2 @
J e dt < f e'dt=e"
x x

From the very first study of the exponential we know that x4e™ —0 as
x — o0, thus proving our claim. The example illustrates the general princi-
ple that to estimate, we can replace the expression by some other which
can be handled much more easily.

Theorem 2.4. Let f be defined for x = 1, say, and let

Y ff

If the integral [ f converges, then so does the series ¥ a,,.
Proof. Obvious from the definition.
The next theorem is a converse of Theorem 2.4.

Theorem 2.5. Let f be defined for x = 1, say, and let

oo f“ﬁ

Assume that

lim f(x)=0.

x—+ 0

If the series Y a, converges, then so does the integral .(T f.

] Pr.oof. Select N so large that if x > N then | f(x)| < ¢, and such that
if 5, is the n-th partial sum of the series, then |s, — Sm| < € whenever n,
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m> N. If N < B, < B,, then

B2 n m B
LA LA Lo S
By By n m
We select n < B, <n+1 and m < B, <m+ 1. The length of each
interval [n, B,] and [m, B,] is at most 1. Using the hypothesis on f, we

conclude that each one of the terms on the right of the inequality is < ¢;
hence we have a 3e-proof of the theorem.

= + +

Theorem 2.6. Let f, g be continuous for x = a. Assume that f(x) is real
monotone decreasing to 0 as x— oo and that j g is bounded for all
b = a. Then the integral j fg converges. In fact, let

G(x) = Jg

a

Then we have the estimate

” 5| 5 S@IGH..

Proof. In general, the stated estimate is a direct consequence of the
Bonnet mean value theorem, Exercise 1 of Chapter V, §2, and the Cauchy
criterion. Since this theorem is delicate in general, we reprove the current
theorem assuming that f is C', which is all that matters in the applica-
tions. Integrating by parts, just as we summed by parts for the analogous
theorem about series, and noting that G(a) =0, we find

[ 1o=swr60)-[ o

The assumption f decreasing implies /' < 0 so —f’ = 0, whence we get
the estimate

b b
|[[ 5] 5 r@n61 4161 -1 = @61 + 16l (1@ - 160)
= f(a)"G"oo>

thus proving the estimate stated in the theorem. Then given ¢, for all
A £ B are sufficiently large, we get

U: fg‘ < S(AIGl, <,
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which proves the Cauchy criterion and also the convergence of the in-
tegral fﬂw fg, thus finishing the proof of the theorem.

Example 3. The integral
@ sin x
f —dx
1

X

converges. We take f(x) = 1/x and g(x) = sin x.

Example 4. We can sometimes prove the convergence of an integral by
integrating by parts. Suppose f, g, f’, g’ are continuous functions. Then for
B = a, we have

B B
f fg' = f(B)g(B) — f(a)g(a) — f 9f"

If f(B)g(B) = 0 as B— oo and the integral on the right has a limit as
B — o, then so does the integral on the left. For example, the integral

B P
J xe ™ dx = —xe™ |y +J e dx
0 0

can be handled in this way.
It can also be handled, for instance, by writing

% = g~ H2pxI2

and observing that for x sufficiently large, xe™*2 < 1. In that case, we
can compare the integral with
I x.e—xlz dx

which is seen to converge by a direct integration between a, B and letting
B tend to infinity.

Xlll, §2. EXERCISES

1. Show that the following integrals converge absolutely. We take a > 0, and P is a
polynomial.

(a) J; P(x)e™* dx (b) fmﬂx)e'"’dx
)
(c) J; P(x)e*"dx  (d) r P(x)e™ ™ dx

w
(e) f (1 + [x[|)"e™* dx for every positive integer n
o
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2. Show that the integrals converge.

1

/2 l £
- b -
@ J;, |sin x|'/? dx 0 2 Isin x|/ &

3. Interpret the following integral as a sum of integrals between nz and (n + 1),
and then show that it converges.
© 1
—_—
J; (x? + 1)|sin x|"/? X

4. Show that the following integrals converge:
(@) on 1 e *dx (b) Jm 1 e *dx fors<1
o Jx o X
5. Assume that f is continuous for x = 0. Prove that if j:” J(x) dx exists, then

fwf(x)dx =a J;mf(ax)dx fora=1.

6. Let E be the set of functions f (say real valued, of one variable, defined on R) which
are continuous and such that

f_:l 1691 dx

converges.
(a) Show that E is a vector space.
(b) Show that the association

w
S f 1 £0)dx
—o
is a norm on this space.
(c) Give an example of a Cauchy sequence in this space which does not converge

(in other words, this space is not complete).

In the following exercise, you may assume that

fm e Pdt = \/1_r

)

=

. (a) Let k be an integer = 0. Let P(t) be a polynomial and let ¢ be the coefficient of
its term of highest degree. Integrating by parts, show that the integral

f ” (:—; e-")P(:) dt

is equal to 0 if deg P < k, and is equal to (—l)"k!c\/;r ifdeg P =k.
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(b) Show that
dh 2, -2
;IF(e-( ) = Pi(t)e™"

where P, is a polynomial of degree k, and such that the coefficient of t* in P, is
equal to

a = (—1y2~

(c) Let mbe an integer = 0. Let H,, be the function defined by
an
— g2 & -
H,(t)=¢ ar ™).
Show that
f H )} dt = (—1)"mlan/7,
and that if m # n then

Jm H,(OH (t)dt = 0.

oo

. (a) Let f be a real valued continuous function on the positive real numbers, and
assume that f is monotone decreasing to 0. Show that the integrals

B B B
f f(@®)sin ¢t dt, f f(t)cos t dt, f ft)e" dt
A A A

are bounded uniformly for all numbers B2 4 = 0.
(b) Show that the improper integrals exist:

Jm f@sintdt, fm f(t)cost dt, fm f@)e" dt.
[ 0 0

The integrals of this exercise are called the oscillatory integrals.

XIll, §3. INTERCHANGING DERIVATIVES AND INTEGRALS

Theorem 3.1. Let f be a continuous function of two variables (t, x) de-
fined for t = a and x in some compact set of numbers S. Assume that the
integral

fwf(t,x)dt=lim Bf(t,x)dt
a B-w Ya
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converges uniformly for xe S. Let
o) = [ fanae

Then g is continuous.

Proof. For given x € S we have
o+ 1) = g0 = [ Sex+ = [ s
= J:o(f(t,x + h) — f(t, x)) dt.
Given ¢, select B such that for all y e S we have

< €.

’ [ " f e

Then

B
lg(x + h) — g(x)| = U (fCt.x + ) — f(t,x)) dt

+|J:f(t,x+h)dt

+'£°f(t,x)dz’.

We know that f is uniformly continuous on the compact set [a, B] x S.
Hence there exists § such that whenever |h| < & we have

[f(t,x + ) — f(t. x)| < ¢/B.

The first integral on the right is then estimated by Be/B = €. The other
two are estimated each by ¢, so we have a 3e-proof for the theorem.

We shall now prove a special case of the theorem concerning differ-
entiation under the integral sign which is sufficient for many applications,
in particular those of the next chapter. It may be called the absolutely
convergent case.

Theorem 3.2. Let f be a function of two variables (t, x) defined for t = a
and x in some interval J = [c, d], ¢ < d. Assume that D, f exists, and
that both f and D, f are continuous. Assume that there are functions
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@(t) and Y(t) which are = 0, such that | f(t, x)| < ¢(t) and
ID, f(t, x)| = ¥(1),

for all t, x, and such that the integrals
-] -]
f () dt and j W(t) dt
converge. Let
o= [ rexn
Then g is differentiable, and
Dg(x) = f D, f(t, x) dt.

Proof. We have

h) — @
g_(_J_c_-i-,:—g(x} —_ J; sz(t, x) dt‘

<[

Jex+h - %) '2 —JEX) _p,p, 0|

But

xR =1,
JCxAD IR _ p, f,%) = D, 1, c0) ~ Da St ).

Select B so large that

J‘wllI(t) dt < e
B

Then we estimate our expression by

=00

Since D, f is uniformly continuous on [a, B] x [c, d], we can find & such
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that whenever |h| < 6,
€
ID, f(t, c.,w) — D2 f(t, )| < B

The integral between a and B is then bounded by e. The integral between
B and oo is bounded by 2¢ because

ﬂ%@ - D, f(t, %) | < 20v).

This proves our theorem.

Remark. In Theorem 3.1, if one assumes a condition similar to that of
Theorem 3.2, then the absolute value signs can be taken inside the integral
between a and B. In the next theorem, a similar condition implies the
uniform convergence which will be assumed there.

Theorems 3.1 and 3.2 are the only results of this chapter, together with
Theorem 3.5 below, which are used in the next chapter. They all make
hypotheses of absolute and uniform convergence.

Theorem 3.3. Let f be a continuous function of two variables (t, x)
defined for t Za and for x in some closed interval J = [c,d], c <d.
Assume that the integral

B ©
lim | f(t,x)dt = J‘ f(t, x)dt

B-w Ya

converges uniformly for xe J. Then

J:d J;wf(t, x)dtdx = J;w J:df(t, x) dx dt.

Proof. Given ¢, there exists B, such that for all B> B, and all xeJ
we have

€

<d—c

J;Bf(t, x) dt — me(t, x) dt

We know from Theorem 3.1 that j':’ f(t, x) dt is continuous in x, and so
can be integrated. We obtain the bound

J:’ Lﬂf(t, x)dt dx — J:d fof(t, x) dt dx

< €.
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But we know from Theorem 7.2 of Chapter X that the finite integrals can
be interchanged, that is

fff(t,x)d:dx= fff(t,x)dxdt.

This proves that

;i:x; J;Bff(t,x)dxdt= Jjwa(t,x)dtdx,

which is the statement of the theorem.

Theorem 3.4. Let f be a function of two variables t, x defined for t = a
and for x in some closed interval J = [c, d], ¢ < d. Assume that f and
D, f exist and are continuous. Assume that

mez f(t, x)dt

converges uniformly for x € J, and that

o9 = [ s
converges for all x. Then g is differentiable, and

g(x) = L sz f(t, x)dt.
Proof. By Theorem 3.3 we have
J;x J;tzf(t, u)dtdu = Jw J”‘D2 S, u)du dt
- [(ven-reoa

= fwf(t, x) dt — Ff(z, ¢)dt
= g(x) — g(c).

This implies that g is differentiable, and that its derivative is what we said
it was.
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Note. The proof is entirely analogous to the proof about the differ-
entiation term by term of infinite series of functions. Furthermore, in
having proved Theorem 3.4 from Theorem 3.3 we showed how one could
prove Theorem 7.1 from Theorem 7.2 in Chapter X.

Example 1. Leta > 0. Let

sint _
Jx)=——e™

Then f is continuous for ¢t >0 and for all x. We shall consider first
x = a>0. Then

D, f(t,x) = —e *sint

is absolutely integrable for x = g, that is

@ -]
j |sint|e""dt§f e ™ dt
o o

converges. The other conditions of Theorem 3.4 are clearly satisfied, so
that the function

o
t
g(x) = snt e ™dt
o t

is differentiable, and
g'(x) = —J‘ e~ sin t dt.
o

Since this formula for the derivative is true for each a > 0 and x = g, it is
true for x > 0.

An estimate as in Theorem 2.6 can be used to show that the integrals
above converge uniformly for x > 0. We shall leave this to the reader.

Example 2. Let ¢(t) be a continuous function for ¢ = 0 such that
[Cuotra
[\]

converges. Then

g(x) = f:fp(t)eﬂ" dt
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converges, and

g'(x) = Lwinp(t)e"" dt.

In many applications, one takes for ¢(t) a function like e™".

Example 3. In the next chapter, we shall define the Fourier transform
of a function f to be

1) == j: F(0)e ™ .

Theorem 1.3 of the next chapter asserts that if f(f) = e™*?, then f* = .
Try to work this out now as in Exercises 4 and 5. In other words,

1
N

We are left with one theorem to prove for the case when both integrals
are taken from 0 to oo, in Theorem 3.3. In that case, we must put some
supplementary condition, as shown in the example given in Exercise 8.

-
I e V2% Jy = ¢7XR,
-

Theorem 3.5. Let f be a continuous function of two variables, defined
fort = aand x = c. Assume that:

(1) The integrals

0 00
[rena aa  [“ieoa
a c
converge uniformly for x in every finite interval, and for t in every

finite interval respectively.
(2) One of the integrals

J;w _[lef(t, x)|dtdx  or -[:o J;w”(t, X)| dx dt

converges.

Then the following integrals exist, and they are equal.

Jm r f(t,x) dtdx = J:O j:c S(t,x) dx dt

c Ja
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Proof. In condition (2), assume for instance that the first repeated
integral converges. Assume first that f = 0, so that we may omit absolute
value signs. Then by Theorem 3.3,

b roo o b 0 Moo
= =< .
=101
This is true for all b 2 a, and since all our integrals are > 0, the least upper
bound of the integral on the left for b > a is a limit of that integral, which
therefore converges. Thus we have proved that the second integral also
converges, and is less than or equal to the first. We can now use sym-
metry to conclude that they are equal.

To deduce the general case from the special case just considered, we
split f into its imaginary and real parts. The assumptions (1) and (2)
apply to these, so that we may assume that f is real. Finally, we write
f=g, — g, where g, = max(0, f) and g, = max(0, —f). Then g,, g,
are both =0, and g, <|f|, g, < |f]- The hypotheses of the theorem

apply separately to g, and g,, and by linearity we see that our theorem is
proved for f.

Xiil, §3. EXERCISES

1. Show that the integral
© sin t
g(x) = smt e~ ™ dt
o
converges uniformly for x = 0 but does not converge absolutely for x = 0.

2. Let g be as in Exercise 1. (a) Show that you can differentiate under the integral
sign with respect to x. Integrating by parts and justifying all the steps, show that
for x > 0,

g(x) = —arctan x + const.

(b) Taking the limit as x — oo, show that the above constant is nf2.
() Justifying taking the limit for x — 0, conclude that

® sin t n
f —dt==.
o 2

. Show that for any number b > 0 we have

w

© sin bt n
dt =
J:) t 2
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4. Show that there exists a constant C such that

w
f e~ cos tx dt = Ce™™,
o

[Hint: Let f(x) be the integral. Show that f*(x) = —xf(x)/2. See the proof of
Theorem 1.3 of the next chapter. Using the value

o 2"’

fwe"z dt = \/1_[

one sees that C = ﬁ/Z. The preceding value is best computed by reduction to
polar coordinates as in elementary calculus. We deal with this later in the book.]

5. Determine the following functions in terms of elementary functions:

@ f(x)= fj e Usintxdt  (b) f(x)= f_w e Y™ dt

6. Determine whether the following integrals converge:

) l 1
(a) f ———dx b) f sin (1/x) dx
o x/1+x? o ¢
7. Show that _[: sin (x2) dx converges. [Hint: Use the substitution x* = t.]

8. Evaluate the integrals

P[P t—x @ [Pt —x
———dtd and f f ————dx di
J.nf:(x+t)3 * R

to see that they are not equal. Some sort of assumption has to be made to make
the interchange of Theorem 3.5 possible.

0

For x 2 0let

_ [Clog (*x* + 1)
96 = f u? + 1 du

so that g(0) = 0. Show that g is continuous for x = 0. Show that g is differenti-
able for x > 0. Differentiate under the integral sign and use a partial fraction
decomposition to show that

. _ n
g(x)——l+x for x > 0,

and thus prove that g(x) = mlog (1 + x). (I owe this proof to Seeley.)
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10.

11

12.

(a) Fory > 0let

Prove that {¢,} is a Dirac family for y — 0.

(b) Let f be continuous on R and bounded. Prove that (¢, * f)(x) converges
to f(x)asy —0.

(c) Show that ¢(x, y) = ¢,(x) is harmonic. Probably using the Laplace opera-
tor in polar coordinates makes the computation easier.

For each real number ¢ let [t] be the largest integer < r. Let
P@)=t—-[]-%

(a) Sketch the graph of P,(t), which is called the sawtooth function for the ob-
vious reason.
(b) Show that the integral

PO
o T+t

converges.
(c) Let 6 > 0. Show that the integral

_["P®,

I o X+t

converges uniformly for x = 6.
(d) Let

P(t) =342 —1t) for0<t<1

and extend P,(t) by periodicity to all of R (period 1). Then P,(n) = 0 for all inte-
gers n and P, is bounded. Furthermore P(t) = P,(t). Show that for x > 0,

fw md,_

o X+t

°_Py)
[ a5

(¢) Show that if f(x) denotes the integral in part (d), then f*(x) can be found by
differentiating under the integral sign on the right-hand side, for x > 0.

Show that the formula in Exercise 11(d) is valid when x is replaced by any com-
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13.

14.

plex number z not equal to a real number < 0. Show that

o 204
y=w vo Y+

The gamma function. Define

00 00 d
J(x) = f TleTdt = f e"t"—t
o o

t

for x > 0.

(a) Show that f is continuous.

(b) Integrate by parts to show that f(x + 1) = xf(x). Show that f(1) = 1, and

hence that f(n + 1) = n!forn=0,1,2,....
(c) Show that for any a > 0 we have

Ler dt—a"'

(d) Sketch the graph of f for x > 0, showing that f has one minimum point, and
tends to infinity as x — oo, and as x — 0.

(e) Evaluate f(§) = f [Hint: Substitute ¢ = u? and you are allowed to use
the value of the integral in the hint of Exercise 4.]

(f) Evaluate £(3/2), £(5/2),....f(n + ).
(g) Show that

Jaf@n) =227 f(n + 4).

(h) Show that f is infinitely differentiable, and that
) = f (log )"t~ 'e™" dt.
o

For any complex number s with Re(s) > 0 one defines the gamma function

I'(s) = f e"r‘ﬂ.
0

t

Show that the gamma function is continuous as a function of s. If you know
about complex differentiability, your proof that it is differentiable should also
apply for the complex variable s.

Show that

= Y
f JEry l)‘ ﬁ (;( 5 for Re(s) > 1.

[Hint: Multiply the desired integral by I'(s) and let ¢t (u? + 1)r.]
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15. A Bessel function. Let g, b be real numbers > 0. For any complex number s
define

K1 K{a,b) = f J—— )

') t

Show that the integral converges absolutely. For ¢ > 0 define

K2 KS(C) = f e clt+1/nys ﬂ
° t

Show that

K3. K(a, b) = (g) K (ab).

Show that

K4. K{c) = K_Jc).

KS. Ky5(0) = \/§ e,

[Hint: Let

g(x) = K 2(%).

Change variables, let t— t/x. Let h(x) = \/;g(x). Differentiate under the inte-
gral sign and twiddle the integral to find that

K(x) = —2h(x),

whence h(x) = Ce™2* for some constant C. Let x = 0 in the integral for h(x)
to evaluate C, which comes out as I'(3) = \/n.]

Xl §4. THE HEAT KERNEL

This section deals with one of the most important functions in analysis.
We shall state several major, useful results, but we leave some details as
exercises, which are applications of the general theorems about improper
integrals and differentiation under the integral sign. Some details also
involve computations carried out in the previous section.

We start with an example of a Dirac family over the real numbers. We
reformulate the axioms with a parameter ¢ ranging over the positive real
numbers, and ¢ — 0 instead of n — co. Thus for purposes of this section, a
Dirac family {K,} is a family of continuous functions on R, indexed by
the real positive numbers ¢, and satisfying the following properties.
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DIR 1. We have K, > 0.
DIR 2. J K(x)dx=1for all t > 0.
R

DIR 3. Given € and 6 > 0, there exists ¢, > 0 such that if ¢ < t,, then

K/(x)dx <e.
xl28

Mutatis mutandis, the approximation theorem for a Dirac family {K,}
is valid with the same proof as before:

Let f be a bounded function on R, piecewise continuous on every finite
interval. Then K, xf(x) converges uniformly to f(x) as t—0, on every

compact subset where f is continuous, or on every subset where f is
uniformly continuous.

Theorem 4.1. For t >0 let

K(t’ x) = K,(X) = We-le‘“.

Then {K,} is a Dirac family.

Proof. It is clear that K(t, x) > 0 for all ¢, x. For DIR 2, namely that
the integral (with respect to x) is 1, use the value given in Exercise 4 of §3,
with a minor change of variables. For DIR 3, we have to estimate a little.

Given ¢, 6 we have to show that for ¢ sufficiently close to 0.

1 (° _.,
WI e M gx < e,
]

Change variables, putting x = 2t'2y and dx = 2t¥2 dy. Then the above
expression becomes

Y ‘ .
f eV dy.
6[2!”1

Now put u = §/2t"> 50 u— 00 as t — 0. Then the expression becomes
@
j e dy.
u

In fact, not only does this integral tend to 0 as u — oo, but given 4 >0,
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the product

@
u"J. eVdy>0 as u— oo
u

One reason is that for u2 1, and so y =1, we have e <e™, and
replacing e™** by e™ we can perform the integration, to get

@ @
u‘f e""dyéu"J. eVdu=ue™ >0 as u-— oo.

u u

This concludes the proof.

One calls the above function K of two variables (¢, x), the heat kernel
on R.

Theorem 4.2. Let D = (8/0x)> — 8/dt. Then DK = 0.

Proof. Keep cool, calm, and collected. Differentiate with respect to x
twice and with respect to t once. You'll get the same value (unless you
make a computational error, which I often do), and when you subtract

you get 0.

One calls D the heat operator. The theorem means that K satisfies the
heat equation, i.e. is annihilated by the heat operator.

Corollary 4.3. Let f be a continuous bounded function on R. Let
F(t, x) = (K, +f)(x).
Then DF = 0, ie. F satisfies the heat equation.
Corollary 4.3 follows by differentiating under the integral sign, which
shows that D(K * f) = (DK) *f.
The above results give a description of what is called the fundamental

solution of the heat equation on R. Similar results hold on R", and can
also easily be proved in the same way, by using the n-dimensional version

n 1
R - —x2/4t
K* (¢, x) (_47tt)"/2 e 2
Here x = (x4, ...,X,) € R" and x? is the dot product of x with itself,

xt=x}4+x2

The proofs are the same as in the one-dimensional case.
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Next we are interested in the heat kernel on the circle, as one says. In
other words, we want similar results for periodic functions, with period
2n. Then integrals are taken as for Fourier series, over the interval
[—mn, n]. We proceed as follows.

Let

KS(t, x) = Zz K(t, x + 2mn),
ne

where the sum is taken over all integers n.

Theorem 4.4. The above sum converges uniformly on bounded intervals,
and defines a continuous periodic function. Let

KS(x) = K5(t, %).

Then {K?} is a Dirac family for t - 0, with respect to periodic functions,
i.e. on the interval [ —n, 7).

In other words, DIR 1 is the same as before, and in fact one has the
strict positivity

KS(t,x)>0  forall (tx).

In DIR 2, one takes the integral over the interval [—m, 7] just as for
Fourier series. In DIR 3, one takes the limits of integration to be

d=|x|=m

Cf. Exercise 3 of Chapter XII, §3.

The point is that the series for K5(t, x) converges uniformly on any
region where x is bounded, say |x| < 4, and ¢ is bounded, say 0 <t < T.
Indeed, consider the sum

e—(x+21m)zl4t‘
nel

There is a constant C such that for all |x| £ 4, t < T, and n 2 24 (say),
we have N

(x+2nn)2 /4t = Cn?,
so we can compare the series uniformly for |x| £ 4 and ¢ £ T, to the series

Z e-(x+21m)1[4!§ Z e-c,,zé Z e=Cn
n2ng n2ng nzng
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which converges better than a geometric series )y, " with r = ¢7C. Thus
the series defines a continuous function of (¢, x).

Condition DIR 1 is obvious since the series for KS(t, x) is a sum of
positive terms.

For DIR 2, note that the integral of the series over [0, 2r] actually
amounts to an integral over R, namely

2;

2n n
I z e-(x+21m)zl4l dx = Z e—(x+2ym)1/4! dx
o =n n Jo

2n(n+1)
— 2,
=X f e dy
n

2nn
©
= f e gy,
—

Thus the proof of DIR 2 for the periodized KS is reduced to the analo-
gous result for K itself over R.

Using the same method, you can then prove DIR 3 for the periodized
KS,

We come to the property of the heat kernel having to do with the heat
operator.

Theorem 4.5. Again let D be the heat operator. Then DKS =0, so by
definition, KS satisfies the heat equation.

Proof. This is an application of Theorem 7.3 of Chapter IX, allowing
differentiation of a series term by term. Each term in the series for K*
satisfies the heat equation, as you will check immediately.

Next we want to relate convolution on the circle (i.e. for periodic
functions, say of period 27) and on the real line. On the circle, convolution
is given by

2
fro09=[ " figtx =y dy
for functions periodic of period 2n. Let f be periodic. Then
2n
Kenf) = [ KEOMe =) dy
o
o ‘m (4mt)2

1 o
= (47([)”2 Z fo e (y+2nn)2l4y(x - ,V) dy
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2n(n+1) . .
= W ZI e ’Pf(x —y)dy (because f is periodic)

1
~ (u)?

2nn
©

J e f(x — y) dy.
-0

Thus we have related convolution for periodic functions with an integral
on [0, 2], and convolution on R, namely:

Theorem 4.6. Let f be continuous, periodic of period 2n. Then
KP*f(x) = K, * (),

where the convolution on the left is on [0, 2n], and convolution on the
right is on (—o0, 00).

Note that the formula
D(KS+f)=(DKS)*f=0

can also be seen from Theorem 4.6.

Since K$ is periodic and continuous, it has a Fourier series expansion.
Actually, K$ is C®, as one verifies by differentiating term by term, and
showing that the differentiated series converge absolutely and uniformly
on every bounded region |x| < 4. So the Fourier series converges to the
function. Using the integral of Exercises 4 and 5(b) of §3 (Example 3 of
§3), you can work out this Fourier series as a further exercise, namely:

Theorem 4.7 (Poisson’s inversion formula). The Fourier series for K$ is
given by:

1 1 .
—(x+2nn)2/dr __ —n2t ,inx
—_— e =— e " e,
(4nr) n;Z 2n u;z
In particular, for x =0,
_1_ Z e~ (2mm2far _L z et
(47“)”2 neZ 27 nez

The above formula will be worked out with a different approach in the
next chapter. You may want to carry out the proofs of this section in
connection with the first section of that chapter.

We note that the Fourier series on the right in Theorem 4.7 appears to
be very oscillatory, whereas the sum on the left is positive because each
term is positive.



CHAPTER XIV

The Fourier Integral

X1V, §1. THE SCHWARTZ SPACE

We are going to define a space of functions such that any operation we
want to make on improper integrals converges for functions in that space.

Let f be a continuous function on R. We say that f is rapidly decreasing
at infinity if for every integer m > 0 the function |x|™f(x) is bounded.
Since |x|™* f (x) is bounded, it follows that

lim |x|"f(x) =0

|x]-

for every positive integer m.

We let S be the set of all infinitely differentiable functions f such that f
and every one of its derivatives decrease rapidly at infinity. There are such
functions, for instance e™*".

It is clear that S is a vector space over C. (We take all functions to be
complex valued.) Every function in S is bounded. If f€S, then its deriva-
tive Df is also in S, and hence so is the p-th derivative D?f for every integer
p 2 0. We call S the Schwartz space. Since

@ 1

ol +x
converges, it follows that every function in S can be integrated over R,
i.e. the integral

[ reax

353
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converges absolutely. For simplicity, from now on we write

[-I
since we don’t deal with any other integrals.
If P is a polynomial, say of degree m, then there is a number C > 0 such
that for all | x| sufficiently large, we have
|P(x)| = Clx|™
Hence if f€S, then Pf also liesin S. If f, g € S then fgeS. (Obvious.) We
see that S is an algebra under ordinary multiplication of functions.

We shall have to consider the function —ixf(x), i.e. multiply by —ix.
To avoid the x, we may use the notation

Mf)(x) = —ixf(x),
and iterate,
M (x) = (—ix)"f (x)

for every integer p = 0.
In order to preserve a certain symmetry in subsequent results, it is con-
venient to normalize integrals over R by multiplication by a constant

factor, namely 1/,/2n. For this purpose, we introduce a notation. We
write

1
[redin=—= 1w ax.
/2n
We now define the Fourier transform of a function f € S by the integral
70 = (19
The integral obviously converges absolutely. But much more:

Theorem 1.1. If feS, then feS. We have

D = (M*)*  and  (DPf)" = (—1)M?.
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Proof. The function f is continuous and bounded since

7o) < f £ (e~ dx < j £l dx.

The partial derivative

55 UG = —inf (e

is bounded by | x| | f(x)|, and so we can differentiate the Fourier transform
under the integral sign. We obtain

Di) = j —ixf()e” ™ dyx,

whence the first formula by induction, for D?f. As to the second, we inte-
grate by parts the integral

J‘Df(x)e"""' d,x,

using u = e~ and dv = Df(x) dx. Taking the integral over a finite inter-
val [— B, B] and then taking the limit (obviously converging), we find that

@N"O) = iyj ).

By induction, we obtain the second formula. From it, we conclude that 7
lies in S, because DPf € S, hence (DPf)" is bounded, and thus |y|?| FO)l is
bounded. This proves Theorem 1.1.

We now introduce another multiplication between elements of S. For
/. g € S the convolution integral

frg00 = ff(t)g(x — ) dyt

is absolutely convergent. In fact, if C is a bound for g, then

If xg0)] < Cflf(t)ldxt-
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Theorem 1.2. If f,geS, then f xgeS. We have f +g =g+ f,and S'is
an algebra under the product ( f, g)v f * g. We have

D¥(f+g)=D"f=g = fxDg
and
(f*9)" =TJo.

Proof. Changing variables in the convolution integral, letting u = x — ¢,
du = —dt, between finite bounds and letting the bounds tend to infinity,
we see that f+g = g * f. The product is obviously linear in each variable.
Since Dg is in S, we have a uniform bound

| f()Dg(x — )] = C1S ()
for some constant C, whence we can differentiate under the integral sign
and find that D(f#*g) = f*Dg. Iterating by induction gives the first
formula, DP(f * g) = f = DPg.

We now show that f*g is in S. Fix a positive integer m. For any x, t
we have

[xI" < (Ix = t] + 1" = ¥ crlx — el 2P
with fixed numbers c,;. Then

[xI"I(f * ) £ X e IItI’If(t)I [x = tFlg(x — 1) dyt

is bounded, so f* g isin S.
There remains but to prove the last formula. We have

(f*9)"0) = f j T@9(x — e~ d,t dyx.

Since f#g is absolutely integrable, being in S, we can interchange the
orders of the integrals, and find

00 = [[rout - e apx

- If (t)[fg(x — ety g, x] e a
=70I0)

after a change of variables u = x — ¢. This proves Theorem 1.2.
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We conclude with a useful example of a function f such that f = f.
Theorem 1.3. Let f(x) = e **2 Then f = f.

Proof. We know that
Df(y) = j —ixe * 2TV g x,

We integrate by parts, using u = "™ and dv = —xe */* dx. We first
integrate between —B and B and let B — oo. The term with up will vanish
because e~ %2 will pull it to 0. The other term shows that

Df(y) = -y (y).

We differentiate the quotient

f»

e 2
and find 0. Hence there is a constant C such that
Jo) = cer 2.
On the other hand

f ) = J' e g x =1

(this is where the normalized integral is useful!). Hence the constant C
is equal to 1, thus proving the theorem. [As already mentioned, evalua-
tion of | e™** dx is best done with polar coordinates as in elementary cal-
culus. We shall redo it later in the book.]

From Theorem 1.3 we conclude that f = f , and so forth. We shall
generalize the equality f = f to arbitrary functions in S, and find that

f(x) = f(—x). In the special case of Theorem 1.3, the minus sign dis-
appears because of the evenness of the function.

XIV, §1. EXERCISES
1. Let g € S and define g,(x) = g(ax) for a > 0. Show that

20) =+ é(f).
a

a

In particular, if g(x) = e™*, find g,(x).
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2. Normalize the Fourier series differently, for the interval [0, 1]. That is, define the
scalar product for two functions f, g periodic of period 1 to be

1}
L £ .

The total orthogonal family that corresponds to the one studied in Chapter 12 is
then the family of functions
{e*™™}, neZ

These are already unit vectors, that is these functions form an orthonormal family,
which is often convenient because one does not have to divide by 2z. The theorems
of Chapter XII go over to this situation, of course. In particular, if we deal
with a very smooth function g, its Fourier series is uniformly convergent to the
function. That's the application we are going to consider now.

Let f be in the Schwartz space. Define a different normalization of the
Fourier transform for the present purposes, namely define the Poisson dual

1@ = [ see e ar.
Prove the Poisson summation formula:
n;z Sty = n;z .
[Hint: Let
g(x) = sz (x +n).

Then g is periodic of period 1 and infinitely differentiable. Let

1 1
Cn= J’ g(x)e—ZnKmx dx = I 2 f(x + n)e-lrdmx dx,
o 0 neZ

Y cm=g(0)= X, Jo.

meZ

On the otper hand, using the integral for c,, insert the factor 1= g~2%m"
change variables, and show that c,, = f¥(m). The formula drops out.]

3. Functional equation of the theta function. Let 6 be the function defined for x > 0 by

6(x) = ie"""‘.

)
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Prove the functional equation, namely

8x™") = x26(x).

»

Functional equation of the zeta function (Riemann). Let s be a complex number.
s =0 + it with g, t real. If 6 > 1, and a > 1, show that the series

21
)= ’Z:l =

converges absolutely, and uniformly in every region ¢ = a > 1. Let F be the func-
tion of s defined for ¢ > 1 by

F(s) = n"’zl'(%)C(s).

Let g(x) = ¥ ™™™, so that 2g(x) = 6(x) — 1. Show that
n=1

Fo) = [ ertgn &
0

s d: b 1\ d.
= f x2g(0) S + f x"’zg(——) =
1 x 1 x/ x
Use the functional equation of the theta function to show that
1 1 b dx
= - s/2 (1-5)/2 =,
F(s) Py S+£ (x + x )g(x)x

Show that the integral on the right converges absolutely for all complex s, and
uniformly for s in a bounded region of the complex plane. The expression on the
right then defines F for all values of s 5 0, 1, and we see that

F(s) = F(1 — s).

XIV, §2. THE FOURIER INVERSION FORMULA
If f is a function, we denote by f~ the function such that f~(x) = f(—x).

The reader will immediately verify that the minus operation commutes
with all the other operations we have introduced so far. For instance:

D =) U+ =f"*g7, ) =g~

Note that (f7)” = f.
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Theorem 2.1. For every function f€ S we have f =f".

Proof. Let g be some function in S. After interchanging integrals, we
find

[Fe9e g i = [[r0ememge duedux
= [roe +na.
Let h € S and let g(u) = h(au) for a > 0. Then

5u) = % H(%)

and hence
ff(x)e-"*’h(ax) dyx = ff(t) : ﬁ(ﬁf‘—y) dyt

= j lau — y)h(u) dyu

after a change of variables,

Both integrals depend on a parameter a, and are continuous in a. We let
a — 0 and find

hO)f () = f(~) fﬁ(u) du = f(—y)h(0).
Let h be the function of Theorem 1.3. Then Theorem 2.1 follows.

Theorem 2.2. For every f€S there exists a function ¢ € S such that
f=¢. If f,g€S, then

(fo)" = f*4.

Pr?oﬁ Fir.st, it is clear that applying the roof operation four times to a
function f gives back f itself . Thus f = ¢, where ¢ = f***. Now to



X1V, §2] THE FOURIER INVERSION FORMULA 361

prove the formula, write f = ¢ and g =. Then f= ¢~ and d=y by
Theorem 2.1. Furthermore, using Theorem 1.2, we find

D" =@ =(@*¥)"" =(0*¥Y)”" = ¢~ xy~ = x4,

proving the formula.

We introduce the violently convergent hermitian product

Srgd = f 190 dx.

We observe that the first step of the proof in Theorem 2.1 yields

j 700 dx = f 169(x) dx

by letting y = 0 on both sides. Furthermore, we have directly from the
definitions

F-r-

where the bar means complex conjugate. In the next theorem, we shall use
the fact that

[rerax= s ax
(changing variables will cause a double minus sign to appear).

Theorem 2.3. For f, g € S we have
gy =D

and hence

Iz = 17102

Proof. We have

[ra-[14-[15 - [

This proves what we wanted.
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Remark. The results of this chapter generalize essentiall){ without
change to functions of several variables. The Schwartz space 1s defined
similarly, using | | to mean the euclidean norm. We define

1
dlx =@[—)mdx1 ---dx,,

if we deal with functions of n variables. The product xy of two vectors
can then be written x - y and is the ordinary dot product, so that

fo) = L S)e™ ™7 dyx

L f j S g X =V dxy - - dx,

=(2—7[)"72 —m”.

is an integral in n variables. All results and proofs are then valid mutatis
mutandis, partial derivatives replacing the derivative of one variable.

XIV, §2. EXERCISES

1. Let T denote the Fourier transform, i.e. Tf = f. Then T:S— § is an invertible
linear map. If feS and g = f + Tf + T% + T, show that Tg = g, that is
g = g. This shows how to get a lot of functions equal to their roofs.

N

Show that every infinitely differentiable function which is equal to 0 outside some
bounded interval is in S. Show that there exist such functions not identically zero.
(Essentially an exercise in the chapter on the exponential function!)

The support of a function f is the closure of the set of points x such that f(x) # 0.
In particular, the support is a closed set. We may say that a C* function with com-
pact support is in the Schwartz space. The support of f is denoted by supp(f)-

3. Write out in detail the statements and proofs for the theory of Fourier integrals as
in the text but in dimension n, following the remark at the end of the section. This
should involve practically no change, and no additional difficulties, from the presen-
tation in the text for one variable. An example in two variables will be given in
the next section.

You may also do them for R" in light of Exercise 3. We let C(R) = space of con-
tinuous functions with compact support.

4. Letge Ce(R),g 2 0,and [g=1. Show that |g] < 1.

5. Suppose that g is even, real valued in S. Let f=g*g. Show that f=|g%
How does supp( 0)) compare with supp(g)?

6. Given € > 0, show that there exists a function f € S, real valued, such that:

fz0, foy=1, supp(f)<[—¢ €l
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7. As for the Poisson formula, define the Poisson dual
10 = [ e ax.
R

Verify the formula f¥¥ = f~, which thus holds also for this normalization of the
Fourier transform. You can get this one out of the other one by changes of
variables in the integrals. Keep cool, calm, and collected.

XIV, §3. AN EXAMPLE OF FOURIER TRANSFORM
NOT IN THE SCHWARTZ SPACE

At the end of §2 we already noted that all the arguments go through for
functions of several variables. Here in this section, we want to give a con-
crete example of a simple function in two variables and we want to study
its Fourier transform a little. In two variables, let us write

x = (xlr Xz), y= (YI’ YZ)b and X y=Xx1y; + X3¥2.
Let ¢ be the characteristic function of the unit disc in the plane, that is

L1t
“’(")‘{o if x] > 1.

Then ¢ is C*® except on the unit circle. We can define its Fourier transform
by the integral

N 1 j —ixy 1 J iy
=— e dx = — e dx.
) =2m s 21 )ig1

We write dx = dx, dx, and the integral is a double integral, taken over the
unit disc. We assume that the reader is acquainted with such double in-
tegrals from a course in calculus. Of course, the general theory will be
carried out completely later in this book. Using polar coordinates, whereby

dx, dx, = rdr db,
the double integral can be written in a way which lends itself better to

analysis. This Fourier transform depends only on the distance s = |y|,
and if we use polar coordinates, then we can rewrite the integral in the form

- M = irscosf do\r d
¢‘y>=L[£L ¢ ]’ "
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But the inner integral is a classical Bessel function, namely by definition,
for any integer n one lets

J,.(Z) =%I e—ni0+izsin6 do.

Thus
1
o(y) = J Jo(2nrs)r dr.
0

As an example of concrete analysis over the reals, we shall estimate the
Bessel function for z real tending to infinity.

Proposition 3.1. We have
J) <t for t— 0.

(The sign < means that the left-hand side is bounded in absolute value by
a constant times the right-hand side, also written O(t~'/2).)

Proof. For concreteness, we deal with the case n = 0, and we shall just
consider a typical integral contributing to J,(t), namely

f"étcme 46 = Il eﬁm du )
) -1 1—u?

Again typically, we show that

1
; 1
e ———— dy = O t-l/z X
[ = tu =00

0 —_

We may rewrite the integral in the form

1
itu 1
J; ¢ = 9w du,

where g(u) = 1/{/1 +u is C* over the interval. Integrating by parts
(cf. also Lemma 3.3), we see that the desired integral satisfies the bound:

X
. 1
e du|.
J:) V1—u

where || || is the sup norm. Thus we are reduced to the following lemma.

< (lgll + Hg'll) max

0sxs<1
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Lemma 3.2. Let 0<a<b<1. Then uniformly in a, b we have

b
. 1
J eft - du=0(@"")  fort—oo.
s Jl—-u

Proof. Let v =1 — u, and then tv = r. Then the integral is estimated by
the absolute value of

1/2 B iw 1
t” j,e"———dr,
ST

where 0 < A < B. But writing e” = cos r + i sin r, and noting that l/\/;
is monotone decreasing, we see that the integral on the right-hand side is
uniformly bounded independently of 4, B. This proves the lemma, and
also concludes the proof of the proposition for n = 0.

The integration by parts shows that the asymptotic behavior of the
Fourier transform depends only on the singularity. The case treated above
is typical, and we let the reader handle the proof in general by using the next
lemma, which shows how the singularity affects the estimate.

Lemma 3.3. Let [a,b) be a half-open interval. Let f be a continuous
function on this interval, such that the improper integral

b
f Lf@)lde

converges. Let g be C* on the closed interval [a,b]. Then the Fourier
transform of g satisfies the estimate

b
fy(u)ei"‘f(u) du < (llgll + llg'DIFA

where

F(x) = fxe“'f(u) du,

and ||F,|| is the sup norm for x € [a, b].
Proof. This is an immediate consequence of integration by parts.

Theorem 3.4. Let ¢ be the characteristic function of the unit disc in the
plane. Then ¢(y) = O(|yl~¥?) for |y| — .
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Proof. As before, let s = |y|. By definition, we have

17! 1l 2
—j Jo(rs)r dr =j j cos(urs)(1 — u?)~ 2 qur dr
2)o o0Jo

1 pr
[setting ur = t, r du = dt] = f J cos(ts)(1 — (¢/r)?)™2 dt dr
0 Jo
1 1
= f cos(ts)J- (1 = /M) dr dt
4] t

1
[by direct integration] = I cos(ts)(1 — t2)V2 dt
4]

1 1
[integration by parts] = ;J sin

14
1s) —=dt.
o (s)\/[—tz

Estimating this last integral as in Lemmas 3.2 and 3.3 concludes the proof.

XIv, §3. EXERCISES

1. The lattice point problem. Let N(R) be the number of lattice points (that is, ele-
ments of Z2) in the closed disc of radius R in the plane. A famous conjecture as-
serts that

N(R) = 7R? + O(RY2+¢)

for every € > 0. It is known that the error term cannot be O(R"*(log RY) for
any positive integer k (result of Hardy and Landau). Prove the following best
known result of Sierpinski-Van der Corput-Vinogradov—Hua:

N(R) = nR* + O(R*P).

[Hint: Let ¢ be the characteristic function of the unit disc, and put

X
op(x) = “’(E)'

Let ¢ be a C* function with compact support, positive, and such that

J Y(x)dx=1, and let ¢.(x)=e-1¢(")
R2

<)

Then {y,} is a Dirac family for ¢ — 0, and we can apply the Poisson summation
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N

w

formula to the convolution @g * ¥, to get
Y orr¥m)= Y Pplm)fim)
me22 me2?
=nR? + Y nR*@(Rm)f(em).
m#0

We shall choose € depending on R to make the error term best possible.]

Note that g * Y (x) = @g(x) if dist(x, Sg) > ¢, where S is the circle of radius
R. Therefore we get an estimate

|left-hand side — N(R)| < €R.
Splitting off the term with m=0 on the right-hand side, we find by Theorem 3.4:
Y R*@(Rm)fi(em) < R*=¥2Y |m|~¥2j(em).
m#0 m#0

But we can compare this last sum with the integral

er' 32(er)r dr = O(e™V12).
1

Therefore we find
N(R) = nR? 4 O(¢R) + O(R"2¢™112),

We choose € = R™'/3 to make the error term O(R%?), as desired.

. Verify that the proof of Theorem 2.1 applies under the following more general

conditions: The function f is in L', bounded and continuous. Here you can take
L' to mean that

| wearas

exists, i.e. converges.

. Let ¢ be a continuous function on (0, ) = Rso. Under conditions of conver-

gence, we define the Mellin transform Mg at a complex number s by the integral
ks d),
Mg = [ o1 Y.
o ¥y
Let s = o + it, with o and 1 real. Let g, be the function such that g, (v) = ¢(¥)»°.

Suppose ¢, is bounded, continuous for a given o, and in L' (R0, dy/y), meaning
that the integral

£ d},
oy —
NI
converges. Using the preceding exercise, show that

o
o) =5 | M)+ iy ot .

[Hint: Change variables, put y = e".]






PART FOUR

Calculus in Vector Spaces



There are four cases in which one can develop the differential calculus,
depending on the kind of variables and the kind of values one uses. They
are: :

1. numbers to numbers 2. numbers to vectors
3. vectors to numbers 4. vectors to vectors

We have so far covered the first two cases. We cover the third case in the
first chapter of this part, and then cover the last case, which theoretically
covers the first three, but practically introduces an abstraction which
makes it psychologically necessary to have developed all other cases pre-
viously and independently. Actually, each case is used in a context of
its own, and it is no waste of time to go through them separately. Although
the abstraction is greater, the last case resembles the first one most, and
the symbolism is identical with the symbolism of the first case, which was
the easiest one. Thus the reader should learn to operate formally just as
in his first course of calculus, even though the objects handled are more
complicated than just numbers. Introducing coordinates to handle the
intermediate cases actually introduces an extraneous symbolism, which
must however be learned for both theoretical and computational reasons.
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CHAPTER XV

Functions on n-Space

XV, §1. PARTIAL DERIVATIVES

Before considering the general case of a differentiable map of a vector
space into another, we shall consider the special case of a function, ie.
a real valued map.

We consider functions on R". A point of R" is denoted by

x = (%1, X)-

We use small letters even for points in R” to fit the notation of the next
chapter. Occasionally we still use a capital letter. In particular, if

A= (ay,.--an)

is an element of R”, we write Ax = A-x = a,x, + - -+ + a,X,. The reason
for using sometimes a capital and sometimes a small letter will appear
later, when in fact the roles played by A4 and by x will be seen to correspond
to different kinds of objects. In the special case which interests us in this
chapter, we can still take them both in R".

Let U be an open set of R”, and let f: U — R be a function. We define
its partial derivative at a point x € U by

D, (x) = lim M)—_ﬂx)

_ limf(x"""x' + h,..;l,x,,) — f(xyy -0 -5%y)
h-0
371
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if the limit exists. Note here that e; = (0,...,1,...,0) is the unit vector
with 1 in the i-th component and O at all other components, and h € R
approaches 0.

We sometimes use the notation

pw=L.

We see that D; f is an ordinary derivative which keeps all variables fixed
but the i-th variable. In particular, we know that the derivative of a sum,

and the derivative of a constant times a function follow the usual rules,
that is D(f + g) = D; f + D;g and D{cf) = cD;f for any constant c.

Example. If f(x, y) = 3x3y? then

o _
7 = DUy = 9x?y?

and

of s
- D, f(x,y) = 6x°y.

Of course we may iterate partial derivatives. In this example, we have

62
315 = DiDa () = 1837,
az
o= DaD, fx ) = 1851y,

Observe that the two iterated partials are equal. This is not an accident,
and is a special case of the following general theorem.

Theorem 1.1. Let f be a function on an open set U in R2. Assume that the

partial derivatives D, f, D, f, D,D, f and D,D,f exist and are con-
tinuous. Then

D\D,f= D,D,f.

Proof. Let (x, y) be a point in U, and let h, k be small non-zero numbers.
We consider the expression

9 = f(x, y + k) — f(x, ).
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We apply the mean value theorem and conclude that there exists a number
sy between x and x + h such that

g(x + h) — g(x) = g'(s,)h.
This yields

fe+hy+k)—fx+hy)—flxy+k+f(x)y)
: =g(x + h) — g(x)
=[Dy f(s1,y + k) — Dy f(s1,y)Ih
= D, D, f(sy, s2)kh

with some number s, between y and y + k.

Applying the same procedure to g,(y) = f(x + h, y) — f(x, y), we
find that there exist numbers t,, t, between x, x + h and y, y + k re-
spectively such that

D, D, f(s1, s2)kh = DD, f(t,, ty)kh.

We cancel the kh, and let (h, k) — (0, 0). Using the continuity of the re-
peated derivatives yields D, D, f(x, y) = D,D, f(x, y), as desired.

Consider a function of three variables f(x, y, z). We can then take three
kinds of partial derivatives: D,, D, or D; in other notation, 9/dx, 8/dy,
0/0z. Let us assume throughout that all the partial derivatives which we
shall consider exist and are continuous, so that we may form as many
repeated partial derivatives as we please. Then using Theorem 1.1 we can
show that it does not matter in which order we take partials. For
example, if we have a function of three variables x,, x,, x5 we find that

D3D, f= D\Ds f.

This is simply an application of Theorem 1.1 keeping the second variable
fixed. We may then take a further partial derivative, for instance

D\D3D, f.

Here D, occurs twice and D3 occurs once. Interchanging D and D, by
Theorem 1.1 we get

D\D3D, f = D,D\D; f = Dstf-
In general an iteration of partials can be written

DyDEDSS
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with integers ky, k,, k3 = 0. Similar remarks apply to n variables, in which
case iterated partials can be written

D'{'~-~Dﬁ"

with integers k; = 0. Such a product expression is called an elementary
partial differential operator. The sum

ky+ -+ k,
is called its degree or order. For instance DZD; has degree 2 + 1 = 3.
Remark. Some smoothness assumption has to be made in order to have
the commutativity of the partial derivatives. See Exercise 12 for a counter-

example.

In the exercises, we deal with polar coordinates.
Let x =rcosfand y = rsin 6. Let

S(x y) = g(r, ).
We wish to express dg/0r and dg/06 in terms of df /0x and 9f/dy. We have
g(r, 6) = f(r cos 8, r sin 6).

Hence

g _ 0x dy

7 = D) 5+ Do f(x, y)g
SO

dg .

*) i D, f(x, y)cos 6 + D, f(x, y) sin 6.
Similarly,

99 _ Ox ay

0= D, f(x,y) PR D, f(x, ")a_e’
)
** %—p '

Fr i 1f(x, y)(—rsin 6) + D, f(x, y)r cos 6.

Insteaq of writing D, f(x, y), D, f(x, y), we may write df/ox and of /oy
respectively.
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In 2-space, the operator

2 2 62 az
A=D?%+ D2 or 7z + a—yz

is called the Laplace operator. In Exercises 6 and 7 you will be asked to
express it in terms of polar coordinates. A function f such that Af =0 is
called harmonic. Important functions which are harmonic are given in
polar coordinates by

" cos n@ and " sin né,
where n is a positive integer. You can prove easily that these functions
are harmonic by using the formula of Exercise 6. They are fundamental

in the theory of harmonic functions because other harmonic functions are
expressed in terms of these, as infinite series

g(r,0) = Y a,r"cosnf + . b,r"sinnf,
n=0 n=1

with appropriate constant coefficients a, and b,. In general, a C*-function
f on an open set of R" is called harmonic if (D7 + - + D?)f = 0.

XV, §1. EXERCISES
In the exercises, assume that all repeated partial derivatives exist and are continu-
ous as needed.

1. Let £, g be two functions of two variables with continuous partial derivatives of
order < 2 in an open set U. Assume that

y_ u . Y_%

ox dy ay ax
Show that
azf f
=0.
it

2. Let f be a function of three variables, defined for X # O by f(X) = 1/| X|. Show
that
azf azf 7 _
sz +t353
a2 ay 2z2

if the three variables are (x, , z). (The norm is the euclidean norm.)
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3.

Let f(x, y) = arctan(y/x) for x > 0. Show that

a2f az-f
ax? tar oy?

4. Let 0 be a fixed number, and let

wv

x =ucos 6 — vsin 6, y =usin 6 + vcos 6.

Let f be a function of two variables, and let f(x, ) = g(u, v). Show that

() -G -GG

. Assume that f is a function satisfying

Slx,ty) = "f(x, y)

for all numbers x, y, and ¢. Show that

20
Bx2+2x'v

6x 6y + yz =m(m — 1)f(x, y).

[Hint: Differentiate twice with respect to t. Then put t = 1.]

. Let x = rcos @and y = rsin 6. Let f(x, y) = g(r, 6). Show that

of _ dg sinfdg
PPl S T
Bf Ga_g cos Ga_g
y or r 06’

[Hint: Solve the simultaneous system of linear equations (*) and (**) given in
the example of the text.]

. Let x = rcos §and y = rsin 6. Let f(x, y) = g(r, 6). Show that

g 1dg 199 62f o
?+;E+r 2502~ ox? +6y

This exercise gives the polar coordinate form of the Laplace operator, and we can

write symbolically:
(a)2+(a)2_ oy 1o 1(oy
x "\ T\ trate %)

[Hint for the proof: Start with (*) and (**) and take further derivatives as
needed. Then take the sum. Lots of things will cancel out leaving you with
Dif+ Dif]
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8. With the same notation as in the preceding exercise, show that

og\* 1 (og AN CAY
(5) e (a_e) ax) * a‘y) '
9. In R?, suppose that f(x, y) = g(r) where r = . /x2 + y2. Show that

o O L, Lds

x2" 8y d  rdr
10. (a) In R3, suppose that f(x, y, z) = g(r) where r = \/x2 + y* + z2. Show that

PP P _dg 2dg

ox? ayz 922 drr  rdr

(b) Assume that f is harmonic except possibly at the origin on R”, and that
there is a C? function g such that f(X)=g(r) where r=./X-X. Let n23.
Show that there exist constants C, K such that g(r) = Kr?™" + C. What if
n=2?

11. Let r = \/x? + y* and let r, 6 be the polar coordinates in the plane. Using the
formula for the Laplace operator in Exercise 7 verify that the following functions
are harmonic:

(a) r"cosnf = g(r, 6) (b) r"sin nf = g(r, 6)
As usual, n denotes a positive integer. So you are supposed to prove that the
expression

d%g 1dg 1%
e tiw
is equal to O for the above functions g.

12. Forx e R"let x2 = x2 + --- + x2 For t real >0, let
[(x, 1) = 172 x4,

If A is the Laplace operator, A = Y 8%/0x?, show that Af = df/dt. A function
satisfying this differential equation is said to be a solution of the heat equation.

13. This exercise gives an example of a function whose repeated partials exist but such
that D,D, f # D, D, f. Let
2
X" = .
D 5L i = 0.0),
Sep=y XtV
0 if (x5 =1(0,0)

Prove:

(a) The partial derivatives 8%f/dx dy and 8*f/dy dx exist for all (x, y) and are
continuous except at (0, 0).

(b) D\D, £(0,0) # D, D, f(0,0).
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Green’s function

14.

15.

Let (a, b) be an open interval, which may be (a, ). Let

d 2
== )+

where p is an infinitely differentiable function. We view M, as a differential
operator. If f is a function of the variable y, then we use the notation

M, f0) = =1"0) + pO)SO)-

A Green'’s function for the differential operator M is a suitably smooth function
g(y, ¥') defined for y, y’ in (g, b) such that

b
M, [ 40,7008 = 10)

for all infinitely differentiable functions f on (a, b) with compact support (meaning
[ is 0 outside a closed interval contained in (g, b)). Now let g(y, y') be any con-
tinuous function satisfying the following additional conditions:

GF 1. g is infinitely differentiable in each variable except on the diagonal, that
is when y=y'.
GF 2. If y# y, then Mg(y,y) =0.

Prove:

Let g be a function satisfying GF 1 and GF 2. Then g is a Green’s function for
the operator M if and only if g also satisfies the jump condition

GF 3. Dig(y, y+) — Dig(y, y—) =L
As usual, one defines
Dyg(y, y+) = lim Dyg(y, y'),
Y-y

y>y

and similarly for y— instead of y+, we take the limit with y' <y. [Hint:

Write the integral
b
L0

Assume now that the differential equation f” — pf = 0 has two linearly inde-
pendent solutions J and K. (You will be able to prove this after reading the
chapter on the existence and uniqueness of solutions of differential equations.
See Chapter XIX, §3, Exercise 2.) Let W = JK' — J'K.

(a) Show that W is constant £ 0.
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(b) Show that there exists a unique Green's function of the form

AVNOG) iy <y,

90-7) = {Bof)l«y) iy >y

and that the functions A, B necessarily have the values 4 = K/W, B = J/W.

16. On the interval (—oo, c0) let M, = —(d/dy)* + c* where c is a positive number,
so take p = ¢ > 0 constant. Show that e¢” and e~ are two linearly independent
solutions and write down explicitly the Green’s function for M,.

17. On the interval (0, o) let
d\* s(1-—s)
M,=—|—) —
’ (dy) v

where s is some fixed complex number. For s # %, show that y! =% and y* are two
linearly independent solutions and write down explicitly the Green’s function for
the operator.

XV, §2. DIFFERENTIABILITY AND THE CHAIN RULE

A function ¢ defined for all sufficiently small vectors he R", h # 0, is said
to be o(h) for h — 0 if

oo Thi
Observe that here, h = (hy,...,h,) is a vector with components h; which
are numbers.

We use any norm | | on R” (usually in practice the euclidean norm or
the sup norm). Of course we cannot divide a function by a vector, so we
divide by the norm of the vector.

If a function (k) is o(h), then we can write it in the form

o(h) = |h|y(h),
where

lim y/(h) = 0.

h-0

All we have to do is to let y(h) = @(h)/|h] for h#0. Thus at first ¥ is
defined for sufficiently small h # 0. However, we may extend the function
¥ by continuity so that it is defined at 0 by y/(0) = 0.
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We say a function f: U — R is differentiable at a point x if there exists
a vector A € R" such that

SO+ ) = f(x) + A-h + o(h).

By this we mean that there is a function ¢ defined for all sufficiently small
values of h # 0 such that ¢(h) = o(h) for h — 0 and

SOx+h)=f(x)+ A-h+ o).

In view of our preceding remark, we can express this equality by the con-
dition that there exists a function  defined for all sufficiently small h such
that

lim y(h) = 0

h=0
and
SO+ h) = f(x)+ A-h + |hly(h).
We can include the value of y at 0 because when h = 0 we have indeed
SX)=f(x)+A-0.

We define the gradient of f at any point x at which all partial derivatives
exist to be the vector

grad f(x) = (D1 f(x), .. .Dpf (x)).
One should of course write (grad f)(x) but we omit one set of parentheses

for simplicity.
Sometimes we use the notation df/dx; for the partial derivative, and so

grad f(x) = (i ?I_)

x,’ " ox,

Theorem 2.1. Let f be differentiable at a point x and let A be a vector such
that

SO+ h) = f(x)+ A-h + oh).
Then all partial derivatives of f at x exist, and
A = grad f(x).

Conversely, assume that all partial derivatives of f exist in some open
set containing x and are continuous functions. Then f is differentiable at x.
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Proof. Let A = (a,,...,a,). The first assertion follows at once by letting
h = te; with real t and letting ¢ — 0. It is then the definition of partial
derivatives that a; = D; f(x). As to the second, we use the mean value
theorem repeatedly as follows. We write

SO+ by X+ b)) — f(xq, 0%,
=fley+hyy o, x, + H) = [0, %2 + hayo Xy + hy)
+ f(xy, X3 + hay oo Xy + By) — (X1, X2, %, + )

+ f(Xgs - Xp— 1, Xy + hy) — S (X4 sXn)
=D,f(cr, Xz + hayoo. Xy + By + - + Dy f (X1, -« Xy 1, Co)Ps

where ¢,,...,c, lie between x; + h; and x;, respectively. By continuity,
for each i there exists a function ; such that

lim y(h) =0
h=0
and such that
Dif(xys---sXim1s Cis- - sXy + hy) = D f(x) + Yi(h).

Hence

S+ B = 09 = 3 (DS + b

™M=

DS + 3 Uit

1

n

It is now clear that the first term on the right is nothing but grad f(x) - h
and the second term is o(h), as was to be shown.

Remark. Some sort of condition on the partial derivatives has to be
placed so that a function is differentiable. For instance, let

xy
x? + yz

Sl y) = if (x,y) #(0,0),

f(@©,0=0.
You can verify that D, f(x, y) and D, f(x, y) are defined for all (x, y), in-

cluding at (0, 0), but f is not differentiable at (0, 0). It is not even con-
tinuous at the origin.
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When the function f is differentiable, we see from Theorem 2.1 that
the gradient of f takes the place of a derivative. We say that f isdifferenti-
able on U fif it is differentiable at every point of U. The rules for derivative
of a sum hold as usual: If f, g are differentiable, then

grad(f + g) = grad f + grad g;
and if ¢ is 2 number,
grad(cf) = c grad f.

One could formulate a rule for the product of two functions as usual, but
we leave this to the reader. At the moment, we do not have an interpretation
for the gradient. We shall derive one later. We shall use a technique re-
ducing certain questions in several variables to questions in one variable as
follows. Suppose f is defined on an open set U, and let

¢:[a,b] > U

be a differentiable curve. Then we may form the composite function f o ¢
given by

(o 0)(®) = flo(®):

We may think of ¢ as parametrizing a curve, or we may think of ¢(t) as
representing the position of a particle at time ¢. If f represents, say, the
temperature function, then f(@(t)) is the temperature of the particle at
time ¢. The rate of change of temperature of the particle along the curve is
then given by the derivative df (¢(t))/dt. The chain rule which follows
gives an expression for this derivative in terms of the gradient, and general-
izes the usual chain rule to n variables.

Theorem 2.2. Let ¢:J — R" be a differentiable function defined on some
interval, and with values in an open set U of R". Let f: U — R be a dif-
ferentiable function. Then fo ¢:J — R is differentiable, and

(fo@)(®) = grad f(o(2))- ¢'(t).

Proof. By the definition of differentiability, say at a point ¢ € J, there is
a function ¥ such that

lim y(k) = O,

k-0

and

S(e(t + B) — f (o)) = grad f(e(t)) - (0@t + k) — (1))
+ | o(t + h) — @) [W(kh)),
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where k(h) = @(t + h) — ¢(t). Divide by the number h to get

L0004 1) = SO0 _ g g HH1) = 00
ot + ) =~ 9(0)
£ |—h-— V(B

Take the limit as h — 0 to obtain the statement of the chain rule.

Application: interpretation of the gradient

From the chain rule we get a simple example giving a geometric inter-
pretation for the gradient. Let x be a point of U and let v be a fixed vector
of norm 1. We define the directional derivative of f at x in the direction of v
to be

D,,f(x)=%f(x + tv) .

This means that if we let g(t) = f(x + tv), then
D, f(x) = g'(0).

By the chain rule, g’(t) = grad f(x + tv) - v, whence

D, f(x) = grad f(x)-v.

From this formula we obtain an interpretation for the gradient. We use
the standard expression for the dot product, namely

D, f(x) = |grad f(x)||v] cos 6,
where 8 is the angle between v and grad f(x). Depending on the direction
of the unit vector v, the number cos 6 ranges from —1to + 1. The maximal

value occurs when v has the same direction as grad f(x), in which case for
such unit vector v we obtain

D, f(x) = |grad f(x)|-
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Therefore we get an interpretation for the direction and norm of the
gradient:

The direction of grad f(x) is the direction of maximal increase
of the function f at x.

The norm |grad f(x)| is equal to the rate of change of f in its di-
rection of maximal increase.

Example. Find the directional derivative of the function f(x, y) = x2)?
at (1, —2) in the direction of (3, 1).

Let A = (3, 1). Direction is meant from the origin to 4. Note that 4 is
not a unit vector, so we have to use a unit vector in the direction of A4,
namely

1
v=—+=(3,1).
10( )

N

We have grad f(x, y) = (2xy3 3x%y?) and grad f(1, —2) = (—16, 12).
Hence the desired directional derivative is

1
\/—1—0 (€ ))

= L(_36)_

/10

Consider the set of all x € U such that f(x) = 0; or given a number c, the
set of all xe U such that f(x) = c. This set, which we denote by S,, is
called the level hypersurface of level c. Let x € S, and assume again that
grad f(x) # 0. It will be shown as a consequence of the implicit function
theorem that given any direction perpendicular to the gradient, there
exists a differentiable curve

D,f(, -2) = (-16,12)-

aJ->U

defined on some interval J containing O such that o(0) = x, o'(0) has the
given direction, and f(x(t)) = ¢ for all t € J. In other words, the curve is
contained in the level hypersurface. Without proving the existence of such
a curve, we see from the chain rule that if we have a curve « lying in the
hypersurface such that a(0) = x, then

d
0 =2,/ (6(®) = grad f (a(®)) - o(0).
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In particular, for t = 0,

0 = grad f(e(0)) - &’(0)
= grad f(x) - o/(0).

Hence the velocity vector o’(0) of the curve at ¢t = 0 is perpendicular to
grad f(x). From this we make the geometric conclusion that

grad f(x) is perpendicular to the level hypersurface at x.

Thus geometrically the situation looks like this:

grad f(x)

%

o »‘g level surface f(x) = 0.
B

a9

Application: the tangent plane

We want to apply the chain rule to motivate a definition of the tangent
plane to a surface. For this we need to recall a little more explicitly some
properties of linear algebra. We denote n-tuples in R" by capital letters. If

A= (ay,....a,) and B =(b,,...,b,)

are elements of R", we have already seen that A is perpendicular to B if and
onlyifA-B=0.

Let Ac R", A # O and let P be a point in R". We define the hyperplane
through P perpendicular to A to be the set of all points X such that

(X-P)-A=0,

or also X - A = P - A. This corresponds to the figure as shown. The set of
points Y such that ¥ - 4 = 0 is the hyperplane passing through the origin,
perpendicular to 4, and the hyperplane through P, perpendicular to 4, is a
translation by P.
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Example. The plane in 3-space passing through (1, —2, 3), perpendicular
to A = (—2, 4, 1) has the equation

-2 +4y+z=-2-8+3=-7.

Let f be a differentiable function on some open set U in R". Let ¢ be a
number, and let S be the set of points X such that

fX)=c but grad f(X) # O.
The set S is called a hypersurface in R". Let P be a point of S. We define
the tangent hyperplane of S at P to be the hyperplane passing through P
perpendicular to grad f(P).

Example. Let f(x,y,z) = x? 4+ y? + z2. The surface S of points X
such that f(X) = 4 is the sphere of radius 2 centered at the origin. Let

P=(1,1,./2).
We have grad f(x, y, z) = (2x, 2y, 22) and so
grad f(P) = (2,2,2,/2).
Hence the tangent plane at P is given by the equation
2x + 2y 4+ 2,/2z = 8.
Functions depending only on the distance. Let f be a differentiable

!‘unction on R" — {0}, depending only on the distance from the origin, that
is, there exists a differentiable function g of one variable r > 0 such that

JX)=9g() where r=./X-X=xI+ +x.
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Then a routine differentiation using the chain rule shows that

(grad N0 =L0x

Carry out the differentiation as Exercise 3.

XV, §2. EXERCISES

1. Show that any two points on the sphere of radius 1 (or any radius) in n-space
centered at the origin can be joined by a differentiable curve. If the points are not
antipodal, divide the straight line between them by its length at each point. Or
use another method: taking the plane containing the two points, and using two
perpendicular vectors of lengths 1 in this plane, say A4, B, consider the unit circle

o(t) = (cos t)A + (sin t)B.

[

. Let f be a differentiable function on R", and assume that there is a differ-
entiable function h such that

(grad f)(X) = h(X)X.

Show that f is constant on the sphere of radius r centered at the origin in R"
[Hint: Use Exercise 1.]

w

. Prove the converse of Exercise 2, which is the last statement preceding the
exercises, namely if f(X) = g(r), then grad f(X) = g'(N X/r.

4. Let f be a differentiable function on R" and assume that there is a positive integer
m such that f(tX) = t"f(X) for all numbers ¢ # 0 and all points X in R". Prove
Euler’s relation:

I of _
a +- +""a_xn‘"’f(x)‘

wv

. Let f be a differentiable function defined on all of space. Assume that
f@P) =1 (P)
for all numbers t and all points P. Show that

(P) = grad £(0)- P.

o

. Find the equation of the tangent plane to each of the following surfaces at the
specified point.
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~

oo

o

10.

(@ x2+y* +z2=49at(6,2,3)

b)) x*+x2+y +z+1=0at(2,-3,4)
©) x2y? +xz—2y>=10at(2,1,4)

(d) sin xy + sin yz + sin xz = 1 at (1, n/2, 0)

Find the directional derivative of the following functions at the specified points
in the specified directions.

(a) log(x? + y*)'/? at (1, 1), direction (2, 1)

(b) xy + yz + xz at (—1, 1, 7), direction (3, 4, —12)

. Let f(x,),2) = (x + y)* + (y + 22 + (z + x)2. What is the direction of greatest

increase of the function at the point (2, —1,2)? What is the directional derivative
of f in this direction at that point?

. Let f be a differentiable function defined on an open set U. Suppose that P is a

point of U such that f(P) is a maximum, that is suppose we have
f(Pyzf(X) forall X in U.

Show that grad f(P) = 0.

Let f be a function on an open set U in 3-space. Let g be another function, and let
S be the surface consisting of all points X such that

g(X)=0 but grad g(X) # O.

Suppose that P is a point of the surface S such that f(P) is a maximum for f on S,
that is

f(P) = f(X) for all X on S.
Prove that there is a number 2 such that

grad f(P) = A grad g(P).

. Let f:R? = R be the function such that (0, 0) = 0 and

3
SaD = T ) # 0.0,

Show that f is not differentiable at (0, 0). However, show that for any differenti-
able curve ¢:J — R? passing through the origin, f o ¢ is differentiable.

XV, §3. POTENTIAL FUNCTIONS

Let U be an open set in R”. By a continuous path in U we shall mean a
continuous ‘map a:J - U from some closed interval J = [q, b] into U.
By a piecewise continuous path in U we shall mean a finite sequence

{ay,...,0,}
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of continuous paths, defined on closed intervals J,,...,J, such that if
J; = [a;, b;] then

04 1(@i41) = ai(by).

We call a(a;) the beginning point of o; and a(b;) the end point of o;;. We
call ot,(a;) the beginning point of the path, and a,(b,) its end point. We often
use a short symbol like y to denote a path. We say that the path

v = {00}

is piecewise C' if each «; has a continuous derivative. For the rest of this
chapter, by a path we shall mean a piecewise C' path.
A path looks like this:

We say that an open set U is connected if given two points P, Q in the
set, there exists a path in U whose beginning point is P and whose end
point is Q.

Theorem 3.1. Let U be an open set in R" and assume that U is connected.
Let f, g be two differentiable functions on U. If grad f = gradg on U,
then there exists a constant C such that

f=g+C

Proof. We note that grad(f —g) = grad f — gradg = 0, so it will
suffice to prove that if ¥ is a differentiable function on U with grady = 0
then y is constant.

Let P, Q be any two points of U, and let {aj, ..., } be a path between
P and Q, that is P is its beginning point and Q is its end point. Then for
each i,

W ° @)'(0) = grad Y(et)) - &(t) = O.

Hence y o a; is constant on its interval of definition. In particular, let P;
be the beginning point of o;. If oy is defined on [a1, b)) then

W(Py) = Ylagiay)y = Yo, (by)) = W(Pa2),
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By induction, we obtain

Y(Py) = Y(P) = --- = ¥(Prsy),

thereby proving the theorem.
Again let U be an open set in R". A vector field on U is a map
F:U-R"

(which therefore associates with each point of U an element of R"). The
map F is represented by coordinate functions, F = ( 1o -ofn) We say
that F is continuous (resp. differentiable) if each f; is continuous (resp.
differentiable).

Example. Let F(x, y) = (x2y, sin xy). Then F is a vector field which to
the point (x, y) associates (xy, sin xy), having the same number of co-
ordinates, namely two of them in this case.

A vector field in physics is often interpreted as a field of forces. A vector
field may be visualized as a field of arrows, which to each point associates
the arrow as shown on the figure. Each arrow points in the direction of

7/
il

/ —_—

the force, and the length of the arrow represents the magnitude of the
force.

If f is a differentiable function on U, then we observe that grad f is a
vector field, which associates the vector grad f(P) to the point in U.

If F is a vector field and if there exists a differentiable function ¢ such
that F = —grad ¢, then ¢ is called the potential energy of the vector field,
and F is called conservative, for the following reason. Suppose that a particle
of mass m moves along a differentiable curve a(t) in U, and let us assume
that this particle obeys Newton’s law :

F(o(t)) = mo"(t)

for all ¢t where o(t) is defined. In other words, force equals mass times
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acceleration. Physicists define the kinetic energy to be
Imo'(1)? = fmu(e)?
where u(t) is the speed (norm of the velocity).

Conservation law. If F = —grad ¢, then the sum of the potential energy
@ and the kinetic energy is constant.

Proof. We have to prove that
o(ed?)) + 3mo'(¢)?

is constant. To see this, we differentiate this sum. By the chain rule, we
see that its derivative is equal to

grad @(a(t)) - a'(t) + mol'(t) - o"(2).

By Newton’s law, ma"(tf) = F(a(f)) = —grad ¢(a(t)). Hence this derivative
is equal to 0. This proves what we wanted.

It is not true that all vector fields are conservative. We shall discuss
below the problem of determining which ones are conservative. The fields
of classical physics are conservative.

Example. Consider a force F(X) which is inversely proportional to the
square of the distance from the point X to the origin, and in the direction
of X. Then there is a constant k such that for X # 0 we have

1 X

FX) = kg o
X =k xpix]

because X/| X | is the unit vector in the direction of X. Thus
1
FX)=k 3 X,
where r = | X|. A potential energy for F is given by
k
o(X) =-.
r

This is immediately verified by taking the partial derivatives of this func-
tion. Cf. Exercise 3 of the preceding section, and Exercises 1 and 2 below.
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By a potential function for a vector field F we shall mean a differentiable
function ¢ such that F = grad ¢. Thus a potential function is equal to
minus the potential energy (if it exists). Theorem 3.1 shows that a potential
function is uniquely determined up to a constant if U is connected.

Example. When a vector field comes from a single source of whatever
(heat, electricity, etc.) located at a point, then the potential function ¢(X)
depends only on the distance from this point. Suppose this point is the
origin. Then there exists a function g of one variable such that

oX)=g(r) where r=|X|=/X-X.
Conversely, suppose given a function g of one variable r, defined for r > 0,

and of class C'. Define ¢(X)=g(|X])=g(r). Then in the preceding
section you saw that

(@ad 00 = L0 x.

Now do Exercise 2.

From Theorem 1.1, we are able to deduce a criterion for the existence of
a potential function.

Theorem 3.2. Let F = (f,,...,f,) be a C* vector field on an open set

U of R". (That is, each f; has continuous partial derivatives.) If F has a
potential function, then

Dif;=D;f;
foreveryi,j=1,...n.

Proof. This is an immediate corollary of Theorem 1.1. Indeed, if ¢
is a potential function for F, then f; = D;¢. Hence

D;f;=D;D;p = D;D;p = D, f;,
as was to be shown.
Example. We conclude that if, say in two variables, we have a vector
fild F with F(x,y) = (f(x, y), g(x, )) such that f, g have continuous

partials, and 9f/dy # dg/dx, then the vector field does not have a potential
function. For instance, the vector field

F(x,y) = (x%y,x + y*)
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does not have a potential function. In this case, f(x, y) = x2y and
9(x, ) =x + y°,
and 9f/dy = x? while dg/ox = 1.

For the converse of Theorem 3.2, in general, we need some condition on
the open set U. However, in many special cases, we can find a potential
function by ordinary integration. The most important case is the follow-
ing.

Theorem 3.3. Let a < b and ¢ < d be numbers. Let F be a C* vector

field on the rectangle of all points (x, y) witha < x <band c <y <d.
Assume that F = (f, g) with coordinate functions f, g such that

D, f = D,g.
Then F has a potential function on the rectangle.

Proof. Let (xo, yo) be a point of the rectangle. Define
X y

o) = [ @+ [ gtro,u)du
x0 Yo

Then the second integral on the right does not depend on the variable x.
Consequently we have

Dyo(x, y) = f(x, )
by the fundamental theorem of calculus. On the other hand, by Theorem

7.1 of Chapter X, we can differentiate under the first integral sign, and
obtain

Dy0(x,3) = | Daftt ) dt + glxo,)
X0

= [ Digt.y e+ gtxa. )
xo

=g(x, y) — g(xo, y) + g(x0, y)
= g(x’ Y)r

as was to be shown.

The theorem generalizes to n variables as follows.
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Theorem 3.4. Let F be a C* vector field defined on a rectangular box
a;<x;<b;fori=1,...,n Let

F=(flb"'bj;x)

be its coordinates, and assume that D; f; = D; f; for all pairs of indices i, j.
Then F has a potential function.

Proof. Exercise, following the same pattern as in Theorem 3.3. For

example, if n = 3, one defines

x y z
0(x,7,2) = f Sty de + f Fulxor ty2)dt + f Fikor yor D,
X0 Yo Zo

where (xq, Vo, Zo) is a fixed point in the rectangular box. The same
technique of differentiating under the integral sign shows that ¢ is a
potential function for F.

XV, §3. EXERCISES

1

N

Let X =(x,,...,x,) denote a vector in R". Let | X| denote the euclidean norm.
Find a potential function for the vector field F defined for all X 5 O by the formula

F(X) = r*X

where r = | X|. (Treat separately the casesk = —2,and k # —2.)

. Again let r = | X|. Let g be a differentiable function of one variable. Show that the
vector field defined by
F(X)= @ X

on the open set of all X # O has a potential function, and determine this potential
function.

Let

Glx, y) = (——y x )

x2+y2’x2+y2 "

This vector field is defined on the plane R? from which the origin has been deleted.
(a) For this vector field G = (f, g) show that D, f = D,g.

(b) Why does this vector field have a potential function on every rectangle not
containing the origin?

(c) Verify that the function ¥(x, y) = —arctan x/y is a potential function for G
on any rectangle not intersecting the line y = 0.
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(d) Verify that the function (x, y) = arcos x/r is a potential function for this
vector field in the upper half plane.

In the next section you will see that this vector field does not admit a potential
function on the whole plane from which the origin has been deleted.

XV, §4. CURVE INTEGRALS

Let F = ( f, g) be a vector field such that D, f = D,g.

On more general domains than rectangles there does not always exist a
potential function because the domain does not allow for the simple type
of integration which we performed. In Theorem 3.3 we could integrate the
function repeatedly without difficulty, with an ordinary integral. We shall
now see how to extend this integration, and formulate whatever is true in
general.

Let U be an open set in R" and let a: J = R" be a C! curve (so with con-
tinuous derivative) defined on a closed interval J, with say J = [a, b].
Assume that o takes its values in U. Let F be a continuous vector field on
U. We wish to define the integral of F along a. We define

J;F = f bF(a(t)) -al(t) dt.

Note. o(t) is a point of U, so we can take F(a(t)) which is a vector. Dot-
ting with the vector «'(t) yields a number for each t. Thus the expression
inside the integral is a function of ¢, and is continuous, so we can integrate
it. If P, Q are the beginning and end points of a respectively, that is

P=al@) and Q=ab),

then we shall also write the integral in the form

[} [’}
F or J‘ F - do.
P

P,a

Example. Let F(x, y) = (x*y, *). Let o parametrize the straight line
between (0, 0) and (1, 1), so a(t) = (¢, t) for 0 < ¢t < 1. To find the integral
of F along a from the origin to (1,1), we have F(x(t)) = (¢, %) and
o'(t) = (1, 1). Hence

Fla(t)) - o (t) = 263,
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Hence

1
IF=J‘2t3dt=%.
a o

Remark. Occasionally one commits an abuse of language in speaking
of the integral of a vector field along a path. For instance, let

F(x,y) = (%, —x)

be a vector field in the plane R2, We wish to find the integral of F along
the parabola x = y?, from (0, 0) to (1, 2). Strictly speaking, this is a mean-
ingless statement since the parabola is not given in parametric form by a
map from an interval into the plane. However, in such cases, we usually
mean to take the integral along some naturally selected path whose set of
points is the given portion of the curve between (0, 0) and (1, 2). In this
case, we would take the path defined by

at) = (2, t),

which parametrizes the parabola, between ¢t =0 and t = 1. Thus the
desired integral is equal to

1 1
j % —t%)-(2t, 1) dt = f @2 — tHdt = L.
0 o

The straight line segment between two points P and Q is usually para-
metrized by

at)y=P+tQ—P) with 0Zt=<1.
The circle of radius a > 0 around the origin is parametrized by
B(t) = (acost, asin t).

) The integral along a curve is independent of the parametrization. This
is essentially proved in the next theorem.

Theorem 4.1. Let J, = [a,,b,] and J, = [a,, b,] be two intervals, and
let g:J, > J, be a C' map such that g(a,) = a, and g(b,) = b,. Let
a:J, = U be a C* path into an open set U of R". Let F be a continuous
vector field on U. Then
[r=[ F
« aeg
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Proof. This is nothing more than the chain rule. By definition,

[.r f Flatg@) - 20D 4,

(by
[

(@)

- f F(e(w)) - () du = J‘F.

This proves our theorem.
Suppose the vector field is on RZ, say

F(x, y) = (f(x, y), g, y)).

Then one denotes the integral of F along a curve o formally by the expres-
sion

LF= J;fdx+gdy.

The curve « can be represented by coordinates,
o(t) = (x(t), (t)) witha<t<b,

and therefore in terms of the parameter ¢ the integral is given by

fF f[ d | ‘;f]d:

Note that the expression inside the integral sign is precisely the dot product:

dx dy da
gt 9 =Fe®) -5

Example. Let us go back to the vector field F(x, y) = (x%y, y°) to be

integrated along the line segment between (0, 0) and (1, 1). Then we can
write the integral in the form

fp=J'x2ydx+y3dy [withx = ¢,y = £]
a (-
1
=J‘t3dt+t3dt
0

=1
= 3.
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Example. We want to find the integral of the vector field

x y
F(x,y) = (xz—_'_yzxz—_'_yz)

around the circle of radius 2, counterclockwise. We parametrize the circle
by x = 2 cos 6, y = 2 sin 6, so the integral is equal to

X y
S (N N
J;F J;x2+y2dx+x2+yz y
27
=J cos 6(—sin 6) d6 +sin 6(cos 6) d6
0

=0.

If a = {a,,...,0,} is a path such that each «; is C*, we define

Lp:LH.-.JrLF

to be the sum of the integrals of F taken over each o;, i = 1,...,r.

We shall say that the path « is closed if its beginning point is equal to
its end point. The next theorem is concerned with closed paths, and with
the dependence of an integral on the path between two points. For this
we make a remark.

Let a:J — U be a C' path between two points of U. Say « is defined
on J =[a,b] and P = ofa), Q = a(b). We can define a path going in
reverse direction by letting

a () =ala+b—1t).

When ¢t = a we have a™(a) = a(b), and when t = b we have a~(b) = o(a).
Also, a” is defined on the interval [a, b]. A simple change of variables in
the integral shows that

f F=— j F.

We leave this to the reader. We call o« the opposite path of «, or inverse
path.

The piecewise C* path consisting of the pair {o, @7} is a closed path,
which comes back to the beginning point of @. More general closed paths
look like this:
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Theorem 4.2. Let U be a connected open set in R". Let F be a continuous
vector field on U. Then the following conditions are equivalent:

(1) F has a potential function on U.

(2) The integral of F between any two points of U is independent of the
path.

(3) The integral of F along any closed path in U is equal to 0.

Proof. Assume condition (1), and let ¢ be a potential function for F
on U. Let « first be a C! path in U defined on an interval [a, b]. Then
using the chain rule, we find:

b b
j F= j F(a(t)) - o' (2) dt =j (grad p(a(r))) - o'(2) dt
= [ ofatcnar
= (b)) — pl«(a)).

Thus if P = a(a) and Q = a(b) are the beginning and end points of « re-
spectively, we find that

'L(_Z¢F=LF=¢(Q)—¢(P).

From this we conclude first that the integral is independent of the path,
and depends only on the values of ¢ at Q and P.

Now suppose that a = {a;, 0, --- %} is 2 piecewise C! path between
points P = P, and Q = P,,,, where P; is the beginning point of «; (or the
end point of o;_,). By definition and by what we have just seen, we find
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that

jiF=J;IF+--~+J;rF

= @(P3) — @(P,) + ¢(P3) — @(P3) + -+ + ¢(Pp+1) — o(P))
= ¢(P,+1) — @(P;) = ¢(Q) — &(P).

Hence the same result holds in the general case.

In particular, if « is a closed path, then P = Q and we find

o
[ r=er-am=o

Thus we have shown that condition (1) implies both (2) and (3).

It is obvious that (2) implies (3). Conversely, assume that the integral
of F along any closed path is equal to 0. We shall prove (2). Intuitively,
given two points P, Q and two paths a, § from P to Q, we go from P to Q
along o, and back along the inverse of 8. The integral must be equal to 0.
To see this formally, let S~ be the path opposite to . Then Q is the be-
ginning point of f~ and P is its end point. Hence the path {«, f~} is a
closed path, and by hypothesis,

J;F+ L_F=0.
J;F+I_F=LF—LF=0.
J;F=J;F

thus proving that (3) implies (2).
) There remains to prove that if we assume (2), that is if the integral is
independent of the path, then F admits a potential function.

Let P be a fixed point of U. It is natural to define for any point Q of U
the value

However,

Hence

0(Q) = L °F
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taken along any path a, since this value is independent of the path. We
now contend that ¢ is a potential function for F. To verify this, we must
compute the partial derivatives of ¢. If

F=(f,--- J;l)
is expressed in terms of its coordinate functions f;, we must show that
Do = f; fori=1,...,n

Let Q = (xy,...,X,), and let ¢; be the i-th unit vector. We must show

that
im 20+ 1) — 0(©)

h-0

= Q).

We have
Q+bhe,

0@ +he) — 0@ = | F—fF

Q+ he,
- f F
Q

where the integrals are taken along any path. Since they are independent
of the path, we do not specify a path in the notation. Now the integral
between Q and Q + he; will be taken along the most natural path, namely
the straight line segment between Q and Q + he;.

Since U is open, taking h sufficiently small, we know that this line
segment lies in U. Thus we select the path « such that «(t) = Q + the;
with

0<t=1
Then a(0) = Q and a(1) = @ + he;. Furthermore, &/(t) = he;. We find:

oQ +he) = (@) _

1 1
- 2 - he; dt.
: hL F(Q + the;) - he; dt.

But for any vector ve R" we have F(v)-e; = f(v). Consequently our
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expression is equal to
1 1
z f £AO + theh dt.
hlo
We change variables, letting u = ht and du = hdt. We find:
1
- rﬁ(Q + ue;) du.
hJo

Let g(u) = f{(Q + ue;) and let G be an indefinite integral for g, so that
G' =g. Then

;’ J:f,-(Q + ue) du = G(h) G(O)

Taking the limit as h — 0, we obtain G'(0) = g(0) = f(Q), thus showing
that the i-th partial derivative of ¢ exists and is equal to f;. This concludes
the proof of our theorem.

Example. The theorem allows us to show that the vector field

y x
G(x,y) = (x +y2,x2+y)

defined on the plane R? from which the origin is deleted does not have a
potential function. Indeed, if you integrate this vector field around a circle
centered at the origin, you will find 2z (see Exercise 4). This circle is a
closed path, so there cannot be a potential function.

On the other hand, this vector field has a potential function on the upper
half plane as given in Exercise 3 of the preceding section. Therefore the
integral of G along the path shown on the figure is easy to determine:

IG arccos 0 — arccos | = g
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Observe, however, that some vector fields are defined on the same
domain, but do admit potential functions, for instance any vector field of
the form

(r
F, ) =20 ),
where r = /x> + y? and g is a differentiable function of one variable.

The potential function is g(r) = f(x, y), which you can check by direct
differentiation in computing its gradient.

XV, §4. EXERCISES

Compute the curve integrals of the vector field over the indicated curves.

—

. F(x, y) = (x* — 2xy, y* — 2xy) along the parabola y = x from (—2, 4) to (1, 1).

N

. (x, y, xz — y) over the line segment from (0, 0, 0) to (1, 2, 4).

w

. (x?y?, xy?) along the closed path formed by parts of the line x = 1 and the para-
bola y? = x, counterclockwise.

4. Let

S
= (Feriz)

(a) Find the integral of this vector field counterclockwise along the circle
x2 + y2 = 2from (1, 1) to (— /2, 0).

(b) Counterclockwise around the whole circle.

(c) Counterclockwise around the circle x? 4+ y? = a? for a > 0.

Let r = (x* + y»)*? and F(X)=r"'X for X = (x,y). Find the integral of F
over the circle of radius 2, centered at the origin, taken in the counterclockwise
direction.

6. Let C be a circle of radius 20 with center at the origin. Let F(X) be a vector field
on R? such that F(X) has the same direction as X (that is there exists a differenti-
able function g(X) such that F(X) = g(X)X, and g(X) > O for all X). What is
the integral of F around C, taken counterclockwise?

@

~N

. Let P, Q be points in 3-spaces. Show that the integral of the vector field given by
F(x,y,2) = (2%, 2y, 2x2)

from P to Q is independent of the curve selected between P and Q.

. Let F(x, y) = (x/r3, y/r?) where r = (x* + y*)"/2. Find the integral of F along the
curve

oo

a(t) = (¢' cos t, €' sint)

from the point (1, 0) to the point (¢*", 0).
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9.

10.

11.

Let F(x, ) = (x’y, xy*).
(a) Does this vector field admit a potential function?
(b) Compute the integral of this vector field from (0, 0) to the point

P=(1/4/2,11/2)

along the line segment from (0, 0) to P.

(c) Compute the integral of this vector field from (0, 0) to P along the path which
consists of the segment from (0, 0) to (1, 0), and the arc of circle from (1, 0) to P.
Compare with the value found in (b).

Let

X COSF Y COS ¥
r r )

F(x,y) = ( s

where r = \/x? + y2. Find the value of the integral of this vector field:
(a) Counterclockwise along the circle of radius 1, from (1, 0) to (0, 1).
(b) Counterclockwise around the entire circle.

(c) Does this vector field admit a potential function? Why?

Let
xe" ye"
F(x,y) = (—, y—).
r r

Find the value of the integral of this vector field:

(a) Counterclockwise along the circle of radius 1 centered at the origin.

(b) Counterclockwise along the circle of radius 5 centered at the point (14, —17).
(c) Does this vector field admit a potential function? Why?

. Let

Y it 4 x
= (55 )

(a) Find the integral of G along the line x + y = 1 from (0, 1) to (1, 0).
(b) From the point (2,0) to the point (—1, \/3) along the path shown on the
figure.
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13. Let F be a smooth vector field on R? from which the origin has been deleted, so F
is not defined at the origin. Let F = (f, g). Assume that D, f = D g and let

)
k=—|F.
2n Je

where C is the circle of radius 1 centered at the origin. Let G be the vector field

S s
o= (a5

Show that there exists a function ¢ defined on R? from which the origin has been
deleted such that

F = grad ¢ + kG

[Hint: Follow the same method as in the proof of Theorem 4.2 in the text, but
define ¢(P) by integrating F —kG from (1,0) to P as shown on the figure.]

P

-
e

XV, §5. TAYLOR’S FORMULA

Let f be a function on an open set U of R". We may take iterated partial
derivatives (if they exist) of the form

DillD:.':f

where i,,...,i, are integers = 0. It does not matter in which order we
take the partials (provided they exist and are continuous) according to
Theorem 1.1.

If ¢; .., are numbers, we may form finite sums

o in

Z"i. -~-.‘,,Dl.1' .. .D:"n
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which we view as applicable to functions which have enough partial de-
rivatives. More precisely, we say that a function f on U is of class C? (for
some integer p = 0) if all partial derivatives

exist for i, + --- + i, < p and are continuous. It is clear that the functions
of class C? form a vector space. Let ij,...,i, be integers = 0 such that
iy +"+i,=r=p. Let F, be the vector space of functions of class C”.
(For p = 0, this is the vector space of continuous functions on U.) Then
any monomial Di - -- Dir may be viewed as a linear map F, — F,_, given
by

Dyt Dif.

We say that f is of class C* if it is of class C? for every positive integer p.
If f is of class C*, then D --- Dinf is also of class C®. We can take the
sum of linear maps in the usual way, and thus

(Z Ciy '“inD‘ll e D:,")f = Z Ciy "'inDill e Dil"f’
if the sum is taken over all n-tuples of integers (iy, . . . ,i,,) such that
4+, =
A linear map such as the above, expressed as a sum of monomials of
partial derivatives with constant coefficients, will be called a partial differ-
ential operator with constant coefficients.

We multiply such operators in the obvious way using distributivity.
For example,

(D, + D,)* = D? + 2D,D, + D3.
In terms of two variables (x, y), say, we write this also in the form

0 . a\ _[a\t .09 [a\
..__+_ = —_— —_—— —
(ax 5?) (3x) NCTN (6y)'

Similarly, we write in terms of n variables x,,. .. Xt

Di1"“D"'=(i ".“ iin_ Jitk - +in
n ax, aX" _axl'll,“ax:‘n-

In Taylor’s formula, we shall use especially the expansion

(1Dy + -+ h,D,Y = Y c;\ i Bt -+~ KD . .. Din
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if by, ... b, are numbers. In the special case where n = 2 we have

(WD + kDY = ¥ (2)h‘k'"D‘l Dt
i=0

In the general case, the coefficients are generalizations of the binomial
coefficients, which we don’t need to write down explicitly.
It will be convenient to use a vector symbol

0 0
V=(D,,...,.D,))= (5{;”"’5}—)’

its form in terms of x,,...,x, being used when the variables are called
X1y--- X If H = (hy,...,h,)is an n-tuple of numbers, then we agree to let

H'V=h1D1 +"'+h,,D,,.
We view H - V as a linear map, applicable to functions. Observe that
H-Vf=hDf+-+hD,f=H-grad f,
or in terms of a vector X = (x,,...,X,),
(H-V)f(X) =Dy f(X) + -+ + kD, f(X)
= H - (grad fXX).

This last dot product is the old dot product between the vectors H and
grad f(X). Of course one should write ((H - V) £ }(X), but as usual we omit
the extra parentheses.

This notation will be useful in the following application. Let f be a C*
function on an open set U in R". Let P e U, and let H be a vector. For

some open interval of values of ¢, the vectors P + tH lie in U. Consider
the function g of t defined by

g(t) = f(P + tH).
By a trivial application of the chain rule, we find that

dg(') — g'(t) = grad f(P + tH) - H

= hDyf(P + tH) + - + h,D, f(P + tH)
= (H-V)f(P + tH).

We can generalize this to higher derivatives:
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Theorem 5.1. Let r be a positive integer. Let f be a function of class C
on an open set U in n-space. Let P € U. Let H be a vector. Then

(&Y e + ) = - wyree +

Proof. For r=1 we have just proved our formula. By induction,
assume it proved for 1 Sk <r. Let ¢ = (H- V) and apply the deriva-
tive d/dt to the function t — @(P + tH). By the case k = 1, we find

4 (o + ) = (- V(P + 1.

Substituting @ = (H - V), we find that this expression is equal to
(H - V) If (P + tH),
as was to be proved.
Taylor’s formula. Let f be a C" function on an open set U of R". Let
P e U and let H be a vector. Assume that the line segment
P+tH, 0=t=£l,
is contained in U. Then there exists a number t between 0 and 1 such that

f(P+H)=f(P)+w_'Y_)!£Qz+...

+ (H-Vy"Y(P) + (H-V)f(P + tH).
r—=1n! r!

Proof. Let g(t) = f(P + tH). Then g is differentiable as a function
of t in the sense of functions of one variable, and we can apply the ordinary
Taylor formula to g and its derivatives between t = 0 and t = 1. In that
case, all powers of (1 — 0) are equal to 1. Hence Taylor’s formula in one
variable applied to g yields

o +99Q .. 07O, 6"
g(1) = g(0) + == + oot

for some number t between 0 and 1. The successive derivatives of g are
given by Theorem 5.1. If we evaluate them for t = 0 in the terms up to

order r — 1 and for t = 7 in the r-th term, then we see that the Taylor
formula for f simply drops out.
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Estimate for Taylor’s formula. Let the remainder term be

R(H) = (H~V)’f('P + tH)

r!
for 0 <t =< 1. Let C be a bound for all partial derivatives of f on U of

order <r. Then there exists a number K depending only on r and n such
that

CK
IRUDI = —- A"

Proof. If we expand out (H - V)", we obtain a sum
Y Ciyoi B - HPDE -+ D

where the ¢, are fixed numbers coming from generalized multinomial
coefficients depending only on r and n, and the exponents satisfy

T
The estimate is then obvious, since each term can be estimated as indicated,

and the number of terms in the sum depends only on r and n.
Using another notation, we obtain

SX) = f(0) + Dy f(O)xy + -+ + Du f(O)xn + -+ + fr—1(X) + R(X)
=Jf(0) + fiX) + -+ + fi-1(X) + R(X)

where f;,...,f,_; are homogeneous polynomials of degrees 1,...,r —1,
respectively, and R, is a remainder term which we can write as

IR(X)| = O0(XI) for |X|—0.
The sum
SoX) + -+ + fr=(X)

is the Taylor polynomial in several variables of total degree < r — 1.

XV, §5. EXERCISES

1. Let f be a differentiable function defined for all of R". Assume that f(0) = 0 and
that f(¢X) = tf(X) for all numbers ¢ and vectors X = (x,,...,X,)- Show that for
all X e R" we have f(X) = grad f(0) - X.
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8]

w

S

wv

o

Let f be a function with continuous partial derivatives of order < 2, that is of class
C? on R". Assume that f(0) = 0 and f(tX) = t3f(X) for all numbers ¢ and all
vectors X. Show that for all X we have

X - V)’ (O,
00 - &I

Let f be a function defined on an open ball centered at the origin in R" and assume
that f is of class C*. Show that one can write

X)) = f(0) + g:(X)x; + -+ + gu(X)Xn

where g,, ...,g, are functions of class C®. [Hint: Use the fact that

td
00 -10)= [ 2560 dz.]

. Let f be a C* function defined on an open ball centered at the origin in R". Show

that one can write

S(X) = f(0) + grad f(0)- X + ;glj(x)xixj
g

where g;; are C* functions. [Hint: Assume first that £(0) = 0 and grad f(0) = 0.
In Exercises 3 and 4, use an integral form for the remainder.]

. Generalize Exercise 4 near an arbitrary point A = (a,, .. . ,a,), expressing

JX) = f(4) + LD f(Axi — @) + 3, hifX)xi — a)x; — ap).
i=1 [¥)
This expression or that of Exercise 4 is often more useful than the expression of
Taylor’s formula.

Let F, be the set of all C* functions defined on an open ball centered at the origin
in R". By a derivation D of F,, into itself, one means a map D: F,, — F,, satisfying
the rules

D(f+9)=Df +Dg,  D(¢f) = cDf,
D(fg) = fD(g) + D(f)g
for C* functions f, g and constant c. Let 4,,...,4, be the coordinate functions,

thatis 2(X) = x; fori = 1,...,n. Let D be a derivation as above, and let ¢; = D(4)).
Show that for any C* function f on the ball, we have

D)= T DS

where D; f is the i-th partial derivative of f. [Hint: Show first that D(1) = 0 and
D(c) = O for every constant ¢. Then use the representation of Exercise 5.]
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7. Let f(X) and g(X) be polynomials in n variables (x,,...,x,) of degrees < s — 1.
Assume that there is 2 number a > 0 and a constant C such that

1/(X) — g(X)| < CIXF

for all X such that | X| < a. Show that f = g. In particular, the polynomial of
Taylor’s formula is uniquely determined.

d

Let U be open in R"and let f:U — R be a function of class C*. Letg:R - Rbea
function of class C?. Prove by induction that g o f is of class C?. Furthermore,
assume that at a certain point P € U all partial derivatives

Di."'Di,f(P)=0

for all choices of i,,...,i, and r < k. In other words, assume that all partials of f°
up to order k vanish at P. Prove that the same thing is true for g o f. [Hint: In-
duction.]

XV, §6. MAXIMA AND THE DERIVATIVE

In this section, we assume that the reader knows something about the
dimension of vector spaces. Furthermore, if we have a subspace F of R"
and if we denote by F* the set of all vectors w e R" which are perpendicular
to all elements of F, then F*! is a subspace, and

dim F + dim F* = n.

In particular, suppose that dim F = n — 1. Then dim F* = 1, and hence
F* consists of all scalar multiples of a single vector w, which forms a basis
for F*.

Let U be an open set of R" and let f: U — R be a function of class C*
on U. Let S be the subset of U consisting of all x € U such that f(x) =0
and grad f(x) # O. We call S the hypersurface determined by f. The next
lemma will follow from the inverse function theorem, proved later.

Lemma 6.1. Given x€ S and given a vector w e R" perpendicular to
grad f(x), there exists a curve a:J — U defined on an open interval J
containing 0 such that «(0) = x, a(t)€ S for all te J (so the curve is con-
tained in the hypersurface), and o!(t) = w.

Theorem 6.2. Let f:U — R be a function of class C', and let S be the
subset of U consisting of all x € U such that f(x) = 0 and grad f(x) # O.
Let PeS. Let g be a differentiable function on U and assume that P is a
maximum for g on S, that is g(P) 2 g(x) for all x € S. Then there exists
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a number p such that
grad g(P) = p grad f(P).

Proof. Let a:J — S be a differentiable curve defined on an open in-
terval J containing 0 such that «(0) = P, and such that the curve is con-
tained in S. We have a maximum at t = 0, namely

9(x(0)) = g(P) Z g(«(0)

for all t € J. By an old theorem concerning functions of one variable, we
have
0 = (g > &)'(0) = grad g((0)) - &’(0)
= grad g(P) - &'(0).
By the lemma, we conclude that grad g(P) is perpendicular to every vector

w which is perpendicular to grad f(P), and hence that there exists a number
4 such that

grad g(P) = p grad f(P)

since the dimension of the orthogonal space to grad f(P) is equal ton — 1.
This concludes the proof.

The number p in Theorem 6.2 is called a Lagrange multiplier. We shall
give an example how Lagrange multipliers can be used to solve effectively
a maximum problem.

Example. Find the minimum of the function
S, y,2) =x* + y? + 2

subject to the constraint x2 + 2y — 22 — 1 = 0.

The function is the square of the distance from the origin, and the con-
straint defines a surface, so at a minimum for f, we are finding the point on
the surface which is at minimum distance from the origin. Computing the
partial derivatives of the functions f and

gX) =x2+2y* — 22 — 1
we find that we must solve the system of equations g(X) = 0, and:

(a) 2x = p2x.
(b) 2y = pay.
(©) 2z=p(-22).
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Let (xo, Yo, Zo) be a solution. If z, # 0 then from (c) we conclude that
p = —1. The only way to solve (a) and (b) with p = —1isthat x = y = 0.
In that case, from the equation g(X) = 0 we must have

which is impossible. Hence any solution must have z, = 0.

If x, # O then from (a) we conclude that p = 1. From (b) and (c) we
then conclude that y, = zy = 0. From the equation g(X) = 0 we must
have xo = +1. In this manner we have obtained two solutions satisfying
our conditions, namely

(1,0,0) and  (—1,0,0).
Similarly if y, # 0, we find two more solutions, namely

0,30 and (0, —/30).

These four solutions are therefore the extrema of the function f subject to
the constraint g (or on the surface g = 0).

If we ask for the minimum of f, then a direct computation of f(P) for P
any one of the above four points shows that the two points

P=(0, /%0

are the only possible solutions because 1 > 3.

Next we give a more theoretical application of the Lagrange multi-
pliers to the minimum of a quadratic form. Let A = (a;;) be a symmetric
n x n matrix of real numbers. “Symmetric” means that g;; = a;;. If {x, y)
denotes the ordinary dot product between elements x, y of R”, then we
have {Ax, y> = (Ay, x). The function

S(x) = {A4x, x>

is called a quadratic form. If one expresses x in terms of coordinates
Xy, ... ,X, then f(x) has the usual shape

n

fx)= Z ayX;X;.

i,j=1

But this expression in terms of coordinates is not needed for the statement
and proof of the next theorem.

A vector v e R", v # 0 is called an eigenvector of A if there exists a num-
ber ¢ such that Av = cv.
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Theorem 6.3. Let A be a symmetric matrix and let f(x) = {(Ax, x).
Let v be a point of the sphere of radius 1 centered at the origin such that v
is a maximum for f, that is

f@) = f(x) for all x on the sphere.
Then v is an eigenvector for A.
Proof. Let a be a differentiable curve passing through v (that is «(0) = v)

and contained in the sphere S. Using the rules for the derivative of a
product, and composition with a linear map, we know that

d d

Ef (x(®) = T {Ao(t), o(t)>
= CAdL(), a(t)) + (Ax(t), o'(1))
= 2 Aa(t), &'(1)>

using the fact that 4 is symmetric. Since a(0) = v is a maximum for f,
we conclude that

0 = (Sea)(0) = 2{Ax(0), o'(0)) = 2{Av, &’(0)).
Now by the lemma, we see that Av is perpendicular to o'(0) for every dif-

ferentiable curve a as above, and hence that Av = cv for some number c.
The theorem is proved.

XV, §6. EXERCISES

1. Find the maximum of 6x? + 17y* on the subset of R? consisting of those points
(x, y) such that

x—1P—-p*=0.

2. Find the maximum value of x* + xy + y2 + yz + z2 on the sphere of radius 1
centered at the origin,

3. Let f be a differentiable function on an open set U in R”, and suppose that P isa

minimum for f on U, that is f(P) £ f(X) for all X in U. Show that all partial
derivatives D; f(P) = 0.

4. Let 4, B, C be three distinct points in R". Let
JX)=(X - 42 +(X - B? + (X — O~

Find the point where f reaches its minimum and find the minimum value.
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S. Find the maximum of the function f(x, y,z) = xyz subject to the constraints
x20,y=20,z20,andxy + yz + xz = 2.

6. Find the shortest distance from a point on the ellipse x2 + 4y = 4 to the line
x+y=4

7. Let S be the set of points (x,,. .. x,) in R" such that

Yx=1 and x>0 foralli
Show that the maximum of g(x) = x, -- - x, occurs at (1/n, ...,1/n) and that
gx)sn" forall x € S.

[Hint: Consider logg.] Use the result to prove that the geometric mean of n
positive numbers is less than or equal to the arithmetic mean.

8. Find the point nearest the origin on the intersection of the two surfaces
x2—xy+y’—z2=1 and x2+)*=1

9. Find the maximum and minimum of the function f(x, y, z) = xyz:
(a) ontheball x2 + y> + 22 < 1;
(b) ontheplane trianglex + y + z=4,x 2 L,y =1,z 1.

10. Find the maxima and minima of the function
(ax? + by}e~=*7*

if @, b are numbers with 0 < a < b.

11. Let A4, B, C denote the intercepts which the tangent plane at (x, y, z)

(x>0,y>0,2z>0)

on the ellipsoid

xl yz zz
a2tpta!

makes on the coordinate axes. Find the point on the ellipsoid such that the follow-
ing functions are a minimum:

(@ A+B+C.

(b) /A% + B? + C2.

12. Find the maximum of the expression

x2 + 6xy + 3)2
xP—xy+y* '

Because there are only two variables, the following method will work: let
y = tx, and reduce the question to the single variable .
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Exercise 12 can be generalized to more variables, in which case the above
method has to be replaced by a different conceptual approach, as follows.

13. Let 4 be a symmetric n x n matrix. Denote column vectors in R” by X, Y, etc.
For X eR" let f(X)={AX, X), so f is a quadratic form. Prove that the
maximum of f on the sphere of radius 1 is the largest eigenvalue of A.

Remark. If you know some linear algebra, you should know that the roots of
the characteristic polynomial of A are precisely the eigenvalues of 4.

14. Let C be a symmetric n X n matrix, and assume that X (CX, X) defines a
symmetric positive definite scalar product on R™ Such a matrix is called
positive definite. From linear algebra, prove that there exists a symmetric
positive definite matrix B such that for all X € R" we have

{CX, X = (BX, BX) = || BX||.

Thus B is a square root of C, denoted by CY2. [Hint: The vector space
V =R" has a basis consisting of eigenvectors of C, so one can define the
square root of C by the linear map operating diagonally by the square roots
of the eigenvalues of C.]

15. Let A, C be symmetric n x n matrices, and assume that C is positive definite.
Let Q,(X) = (AX, X) and Q.(X) = (CX, X) = (BX, BX) with B= C'2. Let
J(X) = Q4(X)/Qc(X)  for X #0.

Show that the maximum of f (for X #0) is the maximal eigenvalue of
B™'AB™'. [Hint: Change variables, write X = BY.)

16. Let a,b,c,e, f,g be real numbers. Show that the maximum value of the
expression

ax? + 2bxy + cy? N

T+ 2Py + ) (eg—f*>0)

is equal to the greater of the roots of the equation
(ac — b%) — T(ag — 2bf + ec) + T*(eg — f3) =0.
For Exercise 16, both methods, that of Exercise 12 and the one coming from

quadratic forms in several variables, work. If you don’t mind computations, check
that they give the same answer.



CHAPTER XVI

The Winding Number and
Global Potential Functions

Theorem 4.2 of Chapter XV gave us a significant criterion for the exis-
tence of a potential function, but falls short of describing completely the
nature of global obstructions for its existence if we know that the vector
field is locally integrable. The present chapter deals systematically with
the obstruction, which will be seen to depend on a single vector field. The
same considerations are used in subsequent courses on complex analysis
and Cauchy’s theorem. The fundamental result proved in the present
chapter is valid more generally, but will constitute perfect preparation for
those who will subsequently deal with Cauchy’s theorem. In fact, Emil
Artin in the 1940s gave a proof of Cauchy’s theorem basing the topo-
logical considerations (called homology) on the winding number (cf. his
collected works). I have followed here Artin’s idea, and applied it to
locally integrable vector fields in an open set U of R%. A fundamental
result, quite independent of analysis, is that if the winding number of a
closed rectangular path in U is 0 with respect to every point outside U,
then the path is a sum of boundaries of rectangles completely contained
in U. See Theorem 3.2. If one knows that for certain vector fields their
integrals around boundaries of rectangles are 0, then it immediately fol-
lows that their integrals along paths satisfying the above condition is
also 0. This is the heart of the proof of the global integrability theorem,
and may be viewed as a general theorem on circuits in the plane.

Some readers may be only interested in this aspect of locally integrable
vector fields, and they may omit the entire subsequent discussion leading
to homotopy. However, since I have found that homotopy is not satisfac-
torily treated from the point of view of an undergraduate analysis course
anywhere else, I have still included three sections which deal with arbi-
trary continuous curves and homotopy.

417
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In §1 we establish some technically convenient results about integrals
along paths. In §2 we state the global integrability theorem, and mention
some applications. We shall see that the vector field G mentioned in
Chapter 15 is (up to translations) essentially the only obstruction for a
locally integrable vector field to have a global potential function. In §3 we
prove the global integrability theorem. In §4 we define the integral along
an arbitrary continuous path. This is useful to deal with the homotopy
form of the integrability theorem, which we give in §5. We discuss
homotopies more extensively in §6.

XVI, §1. ANOTHER DESCRIPTION OF THE
INTEGRAL ALONG A PATH

Let U be a connected open set in R%. Let F = (f;, f;) be a vector field on
U. For simplicity, we assume F is of class C'. In §4 we shall indicate
a generalization which allows more flexibility in dealing with certain
questions. For our purposes here, we define F to be locally integrable if
D, fi =D, f,. Exactly the same proof given for Theorem 3.3 of Chapter
XV shows that if D is a disc contained in U, then F has a potential
function on D. All we needed was to be able to integrate along certain
line segments from one point to another, and such integration is possible
within a disc as well as within a rectangle.

By a path throughout until §4, we shall mean a piecewise C! path. If F
has a potential function ¢ on U and y is a path in U from a point P to a
point Q, then we know from Chapter XV that

j F=0(0) - o(P).

Even if F does not admit a global potential function, it is still possible to
express its integral locally in terms of such differences. We then extend the
global formulation by using a partition as follows.

Lemma 1.1. Let y: [a, b] » U be a continuous curve in U. Then there is

some positive number r >0 such that every point on the curve lies at
distance Zr from the complement of U.

Figure 1



[XVI, §1] THE INTEGRAL ALONG A PATH 419

Proof. The image of y is compact. Consider the function
o) = inn l»@® - Ql,

where the minimum is taken for all Q in the complement of U. This
minimum exists because it suffices to consider Q lying inside some big
circle. Then ¢(t) is easily verified to be a continuous function of t,
whence ¢ has a minimum on [q, b], and this minimum cannot be 0
because U is open. This proves our assertion.

Let 2 = [ao, ..-,a,] be a partition of the interval [a, b]. We also write
2 in the form

a=asasa < Sa=h

Let {Do,...,Du-1} be a sequence of discs. We shall say that this sequence
of discs is connected by the curve along the partition if D; contains the
image y([a;, a;+,])- The following figure illustrates this.

Figure 2

One can always find a partition and such a connected sequence of
discs. Indeed, let € > 0 be a positive number such that € < r/2 where 7 is
as in Lemma l.1. Since y is uniformly continuous, there exists é such
that if ¢, se[a b] and |t —s| <8, then |p(t) — y(s)l <e. We select an
integer n and a partition & such that each interval [a;, a;4,] has length
< 5. Then the image y([a;, a;4,]) lies in a disc D; centered at y(a;) of
radius €, and this disc is contained in U.
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Suppose that y is a path (so piecewise C'), with a partition as above.
Let P; = y(a;). Then we may find the value of the integral in terms of the
potential function on each disc D;, and therefore we find:

Lemma 1.2. Let y: [a, b] - U be a path, with a partition

{ap<a, = <a,}

as above, and a sequence of discs {Dy,...,Dp_1} connected along the
partition. Suppose F has a potential ¢; on D;. Let P, = y(a;). Then

[ F=F totrn) - oo
y i=

XVl, §2. THE WINDING NUMBER AND HOMOLOGY

Let G be the vector field we have encountered in Chapter XV §4 namely

I
o= (55 7).

Use polar coordinates, x = r cos 6 and y = r sin 6. We have

gdr+a—x

o a6110=cosOdr—rsm0d0,

dx =

_ Oy oy . _ .
dy_gdr-pa—ede—sm@dr—rcoseda

Using x? + y* =r?, it immediately follows that

-y x B
x2+y2dx+x2—+yz_dy_d6'
The vector field G is defined on the punctured plane, that is R? from

which the origin has been deleted. Given any point P = (xo, y,), we
may define the translation of G to P by

Gp(X) = G(X ~ P) = G(x — xq, y — yo).

Then G; is defined on the plane R? from which P has been deleted. From
Chapter XV we know that G is locally integrable. A potential for G on the



[XVI, §2] THE WINDING NUMBER AND HOMOLOGY 421

disc or the rectangle is the function
o(x,y)=0=arctany/x+C, or 6= —arctanx/y+C,

with definite choices of the constants C; or C,. By direct partial dif-
ferentiation, it is immediately verified that

a - a x
a—x(—arctan x[y) = Wyyz and 5(—arctan x/y) = m,
and similarly with arctan y/x instead of —arctan x/y. Instead of a disc, we
may of course work over a rectangle. Remember that the graph of the
tangent is periodic, and breaks up into pieces over intervals of length 7.
To define the arctangent in a calculus course, one selects some definite
such interval, usually (—n/2, n/2), so the arctangent is defined on R with
values in this interval. However, the point here is that when going around
the whole plane, a different choice may be imposed.

Example. Let H, be the right half plane, H, the top half plane, H, the
left half plane, and H, the bottom half plane. Then G has a potential
function on each H;. For instance:

On H, define ¢,(x, y) = arctan y/x = 6 with —n/2 < 6 < n/2.

On H, define ¢,(x, y) = —arctan x/y + n/2
= arccos x/r = 0 with 0 < 6 < 7.

And so forth, you fill in the rest. The arctan has its usual meaning, with
values between —n/2 and /2. Then ¢, = @, on the intersection H, n H,,
ie. on the first quadrant. Similarly, you can define ¢; on H; with i = 3,4,
such that ¢, = @5 on the second quadrant, and ¢; = ¢, on the third
quadrant. Then @, = ¢, + 2n on the fourth quadrant, ie. the lower right
quadrant.

P2=93 P =9

@3(x, ¥) @1(x, )

Figure 3
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For definiteness, let D be an open disc not containing the origin, and
let P;, P, be points of the disc. If y is a path in D from P; to P,, then

j G=0(P,) — p(P,) =0, 6,

where 6, is the angle which OP, makes with the x-axis, that is 6; = ¢(P).
Another choice of ¢ would involve an integral multiple of 2z, but the
difference 6, — 6, is independent of the choice.

Note that if ¢ is a potential for G on an open set U, then ¢p is
a potential for Gp on the translated set U, = U + P. Here ¢p(X)=
(X — Pf, and U + P consists of all points X + P with X e U.

Let U be a connected open set in R2. Let y: [a, b]—» U be a closed
path. In §1 we saw how to define the integral

J,o

by using a partition of [a,b] and a connected sequence of discs
{Dy,...,D,_} along the partition. We let P; = y(a;). Then we have

[6=% i - ae)

where ¢; is a potential function for G on D;, and so ¢; represents a choice
of angle on each disc D;. Let us select ¢, in some fashion on D,. Then
select ¢, on D, such that ¢,(P,) = ¢o(P,). Continuing inductively, choose
@141 on D,y such that

Gi+1(Pi+1) = ¢i(Piyy)-
Since P, = P, because y is assumed to be a closed path, it follows that

an(I",,) is an angle for P, and also for P,, but it may differ from @o(Py) by
an integral multiple of 2. Thus there is an integer k such that

I G = 2nk.
Y
We define the winding number W(y, 0) to be

1
W(v,0)=EJG=k.
Y
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Similarly, let P be an arbitrary point of R? such that P does not liec on
y. We define the winding number of y with respect to P to be

1
Wiy, P) = EJ‘ Gp.
v

Applying the chain rule to a translation, we see that W(y, P) is an integer.
For example, the winding number of the curve in Figure 4 with respect
to P is equal to 2.

=

Figure 4
Lemma 2.1. Let y be a path. Then the function of P defined by
PHI Gp
¥

Jor P not on the path, is a continuous function of P.

Proof. The path consists of a finite number of C* curves, so without
loss of generality, we may suppose y is C!, so the integral is of the form

b
j GO — Py (@)t

The mapping P G(y(t) — P) is continuous, being composed of continu-
ous maps, and all other operations involved in the above expression are
continuous, for instance taking the dot product with y'(t) and integrating.
Hence

b
Pl—»f G(y(t) — P)-y'(t) dt

is a continuous function of P, as asserted.
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Lemma 22. Let y be a closed path. Let S be a connected set not
intersecting y. Then the function

1
PHﬂJ; Gp

is constant for P in S. If S is not bounded, then this constant is 0.

Proof. The integral is the winding number, and is therefore an integer.
If a function takes its values in the integers, and is continuous, then it
is constant on any curve. More formally, let f be a continuous function
on S, integer valued, and let a: [a, b] - S be a continuous curve. Then
foa:[a,b]—Z is a continuous Z-valued function on the interval [aq, b],
and must be constant (give the formal details proving this assertion). The
assumption that S is connected (pathwise) then implies that f is constant
on S.

Suppose next that S is not bounded. The path y consists of a finite
number of C' curves. We shall prove that for each C! curve 5 the
integral of G, over 5 approaches 0 as |P|—oo. The following figure
illustrates Lemma 2.2.

Figure §

We can compute the integral in the usual way, i.. letting P = (P15 P2)s
we compute

(x—p,)
X - PP

—(y—p),
X =P dx +

dy

by substituting the parametrization x = x(4(t)) and y = y(;(¢)) and use the
derivative #'(f) which is bounded. Then the integrand is bounded by a
constant times
1
IX-Pl
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for X on the curve (which is compact), and |P| tending to infinity. Thus
the integrand is arbitrarily small. Since the integral over y giving the
winding number is an integer, and has arbitrarily small value, it must be
0, as was to be shown.

Let U be an open set. Let y be a closed path in U. We want to give
conditions that
[r=0
Y

for every locally integrable vector field F on U. We already know from
the example of a winding circle that if the path winds around some point
outside of U (in this example, the center of the circle), then definitely we
can find a vector field whose integral is not equal to 0, and even with
the special vector field Gp, where P is a point not in U. The remarkable
fact about the global integrability theorem is that it will tell us this is the
only obstruction possible to having

IF=O
¥

for all possible F. In other words, the vector fields G, (for P ¢ U) suffice
to determine the behavior of (, F for all possible F. With this in mind, we
want to give a name to those closed paths in U having the property that
they do not wind around points in the complement of U. The name we
choose is homologous to 0, for historical reasons. Thus formally, we say
that a closed path y in U is homologous to 0 in U if

Wy, P)=0

for every point P not in U, or in other words,

IG,.=0
Y

for every such point.
Similarly, let y, n be closed paths in U. We say that they are homolo-
gous in U if

W(y, P) = W(, P)

for every point P in the complement of U. It will also follow that if y and
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n are homologous, then

Jor=lr

for all locally integrable F on U.

Next we draw some examples of homologous paths.

In Figure 6, the curves y and n are homologous. Indeed, if P is a point
inside the curves, then the winding number is 1, and if P is a point in the
connected part going to infinity, then the winding number is 0.

Figure 6

In Figure 7 the path indicated is supposed to go around the top hole
counterclockwise once, then around the bottom hole counterclockwise
once, then around the top in the opposite direction, and then around the
bottom in the opposite direction. This path is homologous to 0.
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In Figure 8 we are dealing with a simple closed curve, whose inside is
contained in U, and the figure is intended to show that y can be deformed
to a point, so that y is homologous to 0. This will be proved formally in
Theorem 5.4.

Figure 8

Given an open set U, we wish to determine in a simple way those
closed paths which are not homologous to 0. For instance, the open set
U might be as in Figure 9, with three holes in it, at points Py, P,, P3, so
these points are assumed not to be in U.

Figure 9

Let 7y be a closed path in U, and let F be locally integrable on U. We
illustrate y in Figure 10.

" 72 73

({OOO)

Figure 10
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In that figure, we see that y winds around the three points, and winds
once. Let y,, 7,, y; be small circles centered at P, P,, P;, respectively,
and oriented counterclockwise, as shown on Figure 10. Then it is reason-
able to expect that

IF= F+| F+| F.
Y

Y1 ¥2 ¥3

This will in fact be proved after the integrability theorem. We observe that
taking 7y,,7,,7s together does not constitute a “path” in the sense we
have used that word, because, for instance, they form a disconnected set.
However, it is convenient to have a terminology for a formal sum like
¥, + 72 + 73, and to give it a name 7, so that we can write

LF=LF.

The name that is standard is the name chain. Thus let, in general,
Y1s---»%s be curves, and let m,,...,m, be integers which need not be
positive. A formal sum

n
y=my +-+my,= z; m;y;
&
will be called a chain. If each curve y; is a curve in an open set U, we

call y a chain in U. We say that the chain is closed if it is a finite sum of
closed paths. If y is a chain as above, we define

J‘F=Zm,~ F.

If y =Y my; is a closed chain, where each 7, is a closed path, then its
winding number with respect to a point P not on the chain is defined as
before,

Wiy, P) = 2—1”L Gp.
If 9, n are closed chains in U, then we have
W +n, P) = Wy, P) + W(x, P).
Therefore, if y is a closed chain as above,

=73 my,
i=1



[XVI, §2] THE WINDING NUMBER AND HOMOLOGY 429

then for P not on any y;, we have

W, P) = Z; m;W(y,, P).
We say that y is homologous to # in U, and write y ~ #, if
W(y, P)= W(x, P)

for every point P ¢ U. We say that y is homologous to 0 in U and write
y~0if

Wy, P)=0
for every point P ¢ U.
Example. Let y be the curve illustrated in Figure 11, and let U be the
plane from which three points P,, P,, Py have been deleted. Let y,, 75, 73
be small circles centered at P;, P, P3, respectively, oriented counter-

clockwise. Then it will be shown after the integrability theorem that

Yy~ +2p+ 2y,

"

Figure 11

so that for any vector field F locally integrable on U, we have

IF:I F+2I F+2I F.
Y "1 Y2 ¥3

The above discussion and definition of chain provided motivation for
what follows. We now go back to the formal development, and state the
global version of the integrability theorem.
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Theorem 2.4 (Integrability theorem). Let y be a closed chain in an open
set U, and assume that y is homologous to 0 in U. Let F be locally
integrable on U. Then
f F=0.
Y

A proof will be given in the next section. Here we continue with
applications.

Corollary 2.5. If vy, n are closed chains in U and vy,  are homologous in

U, then
j F=J F.
Y n

Proof. Apply the integrability theorem to the closed chain y — .

Next we show how one reduces integrals along complicated paths to
integrals over small circles.

Theorem 2.6.

(@) Let U be an open set and y a closed chain in U such that y is
homologous to 0 in U. Let Py,...,P, be a finite number of distinct
points of U. Let y; (i=1,...,n) be the boundary of a closed disc D;
contained in U, containing F;, and oriented counterclockwise. We
assume that D; does not intersect D if i #j. Let

m; = Wy, B).
Let U* be the set obtained by deleting Py, ...,P, from U. Theny is

homologous to Y m;y, in U*.
(b) Let F be locally integrable on U*. Then

LF:i‘ém;L F.

Proof. A point outside U* is either outside U or one of the points
Py,...,B,. If P is outside U, then

Wy —Y my,P)=0—-0=0.
If P = P, for some k, then

Wy — Zmi}’nPk) =m—m =0,
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S0 7 — Zm,»y,» is homologous to 0 in U*, which proves (a). For (b), we
merely apply Theorem 2.4 to conclude the proof.

Example. In Figurc 12, we have
Y~ = = 20— 73— 20,

and

LF=—J;‘F—ZLIF—L,F—ZL‘F

Figure 12

Let Dy be a disc centered at a point P, and let D¥ be the punctured disc,
Dp — {P}. Let yp be a circle oriented counterclockwise centered at P in the
disc. Let F be a locally integrable vector field on Dj. We define the residue
of F at P to be
1
)==— | F.
resp(F) o er

This residue is independent of the choice of y, (why?). Then the conclu-
sion of Theorem 2.6 may be formulated as

J F=2rY_ m;resp(F),
¥

that is, 2r times the sum of the residues. This fits the terminology of
Cauchy’s formula in complex analysis.
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As another application of Theorem 2.6, we state:
Theorem 2.7. Let U be a connected open set in R? such that every
closed path in U is homologous to 0. Let Py,...,P, be distinct points of

U and let U¥=U —{P,,...,P,} be the set obtained by deleting Py, ...,P,
from U. Let F be a locally integrable vector field on U*. Let as usual

-y X
G(x,y)= m,m >

and let Gy, be its translation by F;. Then there exist constants ay,...,a,
and a function g on U* such that

F —Y a,Gp, = grad g.

We leave the proof as an exercise, which is an immediate application of
Theorem 2.6. A hint will be given in Exercise 2. Note that Theorem 2.7
gives a substantial generalization of Exercise 13, Chapter XV, §4.

Remark. In §4 we shall define the notion of U being simply connected,
and we shall prove that if U is simply connected then every closed path in

U is homologous to 0. Thus the hypothesis on U in Theorem 2.7 could
be replaced by the condition that U is simply connected.

XVI, §2. EXERCISES

1. In Theorem 2.7, let y; be a small circle centered at P,. Determine the value

I Gr,.
"

2. Give a complete proof of Theorem 2.7, using Theorem 2.6. [Hint: Let

1
a= o L. F= resp'(F).]

XVI, §3. PROOF OF THE GLOBAL
INTEGRABILITY THEOREM

In this section we prove Theorem 2.4 by making greater use of topologi-
cal considerations. We reduce Theorem 2.4 to a theorem which involves
only the winding number, and not the locally integrable vector field F.
We state this result as Theorem 3.2.



[XVI, §3] PROOF OF THE GLOBAL INTEGRABILITY THEOREM 433

A path will be said to be rectangular if every curve of the path is either
a horizontal segment or a vertical segment. We shall see that every path
is homologous with a rectangular path, and in fact we prove:

Lemma 3.1. Let y be a path in an open set U. Then there exists a

rectangular path n with the same end points, and such that for any locally
integrable vector field F on U, we have

LF=LR

Therefore, if Theorem 2.4 is true for rectangular paths, then it is true in
general.

Proof. Suppose y is defined on an interval [a, b]. We take a partition
of the interval,

such that the image of each small interval

(L, ai41])

is contained in a disc D; = U. Then F has a potential on D;. We replace
the curve y on the interval [a;, a;4,] by the rectangular curve drawn on
Figure 13. This proves the lemma by using Lemma 1.2.

Figure 13

In the figure, we let P, = y(a;).
If y is a closed path, then it is clear that the rectangular path con-
structed in the lemma is also a closed path, looking like this:
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n

—
L]
— 3 =

Figure 14
By definition of homologous, the lemma states that y and 5 are homolo-
gous in U.
The lemma reduces the proof of the integrability theorem to the case
when y is a rectangular closed chain. We shall now reduce the theorem to
the case of rectangles by stating and proving a theorem having nothing to

do with vector fields. We need a little more terminology.
Let y be a curve in an open set U, defined on an interval [a, b]. Let

a=ay2a;Sa, X =a,=b

be a partition of the interval. Let

it [ag, a1 > U

be the restriction of y to the smaller interval [a;, a;,,]. Then we agree to
call the chain

Nit+Pat+

a subdivision of y. Furthermore, if #; is obtained from y, by another
parametrization, we again agree to call the chain

Nit+n+-+n,
a subdivision of y. For any practical purposes, the chains y and

N+, 4+,
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do not differ from each other. In Figure 15 we illustrate such a chain y
and a subdivision 7, + 1, + 13 + 1,.

n2 n3 n4
m

Figure 15

Similarly, if y = Y,m;y; is a chain, and {n;} is a subdivision of 3, we

Z Z miti;
i
a subdivision of y. The next theorem is the heart of Artin’s proof.

Theorem 3.2. Let y be a rectangular closed chain in U, and assume that
7 is homologous to 0 in U, i.e.

W(y, P)=0

for every point P not in U. Then there exist closed rectangles Ry, ...,R,;,
contained in U, such that if OR; is the boundary of R; oriented counter-
clockwise, then a subdivision of 7 is equal to

N
Y m; 0R;
Jor some integers m;.

Lemma 3.1 and Theorem 3.2 make the Integrability Theorem 2.4
obvious because we know that for any locally integrable vector field F on
U we have

F=0

R,

Hence the integral of F over the subdivision of y is also equal to 0,
whence the integral of F over y is also equal to 0.

We now prove the theorem. Given the rectangular chain y, we draw
all vertical and horizontal lines passing through the sides of the chain, as
illustrated on Figure 16.
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Figure 16

Then these vertical and horizontal lines decompose the plane into rectan-
gles, and rectangular regions extending to infinity in the vertical and
horizontal direction. Let R; be one of the rectangles, and let P, be a
point inside R;. Let

m; = W(y, P).

For some rectangles we have m; =0, and for some rectangles, we have
m;#0. We let Ry,...,Ry be those rectangles such that m,,...,my are
not 0, and we let dR; be the boundary of R; for i=1,...,N, oriented
counterclockwise. We shall prove the following two assertions:

1. Every rectangle R; such that m; # 0 is contained in U.
2. Some subdivision of y is equal to

N
Y. m; OR;.
=

This will prove the desired theorem.

Assertion 1. By assumption, P, must be in U, because W(y, P) =0 for
every point P outside of U. Since the winding number is constant on
connected sets, it is constant on the interior of R;, hence # 0, and the
interior of R; is contained in U. If a boundary point of R; is on 7, then
it is in U. If a boundary point of R; is not on 7, then the winding
number with respect to y is defined, and is equal to m; # 0 by continuity
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(Lemma 2.1). This proves that the whole rectangle R;, including its
boundary, is contained in U, and proves the first assertion.

Assertion 2. We now replace y by an appropriate subdivision. The
vertical and horizontal lines cut y in various points. We can then find a
subdivision ; of y such that every curve occurring in # is some side of a
rectangle, or the finite side of one of the infinite rectangular regions. The
subdivision 7 is the sum of such sides, taken with appropriate mutli-
plicities. If a finite side of an infinite rectangle occurs in the subdivision,
then after inserting one more horizontal or vertical line, passing through the
infinite rectangular region, the finite side will be the side of a rectangle R’ of
the grid, and its winding number ' will be equal to zero. Thus without loss
of generality, we may assume that every side of the subdivision is also the
side of one of the finite rectangles in the grid formed by the horizontal
and vertical lines.

It will now suffice to prove that

n=7y moR,.
Suppose n — Y m; R, is not the 0 chain. Then it contains some horizon-
tal or vertical segment g, so that we can write
n—Y mioR; =mo+ C',
where m is an integer, and C’ is a chain of vertical and horizontal segments
other than ¢. Then o is the side of a finite rectangle R,. We take o

with the orientation arising from the counterclockwise orientation of the
boundary of the rectangle R,. Then the closed chain

C=n—Y moR,—maR,

does not contain ¢. Let P, be a point interior to R,, and let P’ be a point
near ¢ but on the opposite side from P,, as shown on the figure.

P'=P P,
P’ 11 .’ . *
g

R, R R,

Figure 17

Since # — Y, m; 8R; — m 0R, does not contain g, the points F, and P’ are
connected by a line segment which does not interesect C. Therefore

W(C, F,) = W(C, P).
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But W(y, B)=m, and W(0R;,B)=0 unless i=k, in which case
W(0R,, B,) = 1. Similarly, if P’ is inside some finite rectangle R;, then
j # k because P’ is on the other side of ¢, and hence

W(@R,, P') = 0.
If P’ is in an infinite rectangle, then W(0R,, P') = 0. Hence:
W(C, B)= W(n — Y. m; 0R; —m R, B) =m, —m, —m = —m;
W(C, P’y = W(n — Y m; 8R; — m dR,, P')=mj —m; =0

if P’ is in some finite rectangle R;, and 0 — 0 = 0 otherwise.
This proves that m = 0, and concludes the proof that n — Y m; 0R; = 0.

XVI, §4. THE INTEGRAL OVER CONTINUOUS PATHS

To go further, it is now convenient to extend our notion of local
integrability, and to deal with continuous paths rather than piecewise C!
paths. We do this as follows.

Let U be an open connected set in R% Let F = (f;, f,) be a continu-
ous vector field on U. We say that F is locally integrable on U if given a
point P there exists a disc D centered at P such that F has a potential
function on D. For the rest of this chapter, we assume that F is locally
integrable. Furthermore, by a curve and a path from now on, we mean a
continuous curve or continuous path. We do not require further differen-
tiability. We shall define the integral of F along continuous paths.

Let y,: [ay, a,] — U be a (continuous) curve, whose image is contained
in a disc D = U, and suppose F has a potential g on D. Then we define
the integral

F=g(P,) — g(Py), where Py =y,(a,), P,=7v(az).
"1

Since a potential is uniquely determined up to an additive constant, it
follows that the value g(P,) — g(P,) is independent of the choice of poten-
tial g for F on the disc. If the curve y, happens to be C!, then the above
value coincides with the value we gave in Chapter XV, Theorem 4.2.

Suppose now that y: [a, b] —» U is a continuous curve, without restric-
tion on its image. We have seen that we can find a partition 2 of [a, b],
and a sequence of discs Dy,...,D,_; connected by the curve along the
partition such that each D, =« U. We next formulate a stronger result.

Lemma 4.1. There exists a partition {ag<a, <--<a,} and a se-

quence of discs {Ds, . .., D,_1 } connected along the partition such that F has
a potential g; on D;.



[XVI, §4] THE INTEGRAL OVER CONTINUOUS PATHS 439

Proof. For each P in the image of y, there is a disc D, centered at P,
such that F has a potential on D,. Let r, be the radius of D,. We cover
the image of y by the discs D; of radius r,/2. Since the image of y is
compact, there is a finite subcovering, say by discs D] centered at P; of
radius 13/2,j = 0,...,m. Let

€ = min r;/2.
There exists § such that
if t;.t,€[a,b] and |1, — t,] < 4, then |p(t;) — y(t;)| < e.
We let n be an integer such that 1/n <, and we take the partition
[ao, ....a,] such that the length of [a;.a;,,] is 1/n. Then y(q;) is con-
tained in some disc Dj;, depending on i, and y([a;, a;.,]) is contained in a
disc of radius at most € centered at y(a;). Therefore y([a;, a;4,]) is con-
taincd in the disc D, centered at P; of radius ;. We can then use the
sequence of discs
Dj0), - - -+ Djgu-1

to conclude the proof of the lemma.

Let y;: [ai,ai] — U be the restriction of y to the smaller interval
lai, aiy1]. Then

n-1
F=y I F.
¥ =0 Jy,

Let y(a;) = P,, and let g; be a potential of F on the disc D,. We define

f F= zo [9:(Ps) — i(P)).

Thus even though F may not have a potential on the whole open set U,
its integral can nevertheless be expressed in terms of local potentials by
decomposing the curve as a sum of sufficiently smaller curves. The same
formula then applies to a path.

This procedure allows us to define the integral of F along any continu-
ous curve; we do not need to assume any differentiability property of the
curve. We need only apply the above procedure, but then we must show

that the expression
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5 L) — )]

is independent of the choice of partition of the interval [a, b] and of the
choices of the disc D; containing y([a;, a;4,]). Then this sum can be
taken as the definition of the integral

L F.

We state formally this independence, repeating the construction.

Lemma 4.2. Let y: [a,b] — U be a continuous curve. Let

gp=asa; Sa,<---<a,=b

be a partition of [a, b] such that the image y([a;, @;4,]) is contained in a
disc D;, and D; is contained in U. Let F be locally integrable on U and
let g; be a potential of F on D;.

Let P,=y(a;). Then the sum

5 [0Pu) — 0P)]

is independent of the choices of partition, discs D;, and potentials g; on
D; subject to the stated conditions.

Proof. First let us work with the given partition, but let B; be another
disc containing the image y([a;, a;4,]), and B; contained in U. Let h; be
a potential of f on B;. Then both g,, h; are potentials of F on the
intersection B; n D;, which is open and connected. Hence there exists a
constant C; such that g; = h; + C; on B,nD;. Therefore the differences
are equal:

9i(Pis1) — 94(P) = hi(Pipy) — hi(F).

Thus we have proved that given the partition, the value of the sum is
independent of the choices of potentials and choices of discs.

Given two partitions, we can always find a common refinement, as in
elementary calculus. Recall that a partition

2=[by,....b,]

is called a refinement of the partition 2 if every point of 2 is among the
points of 2, that is if each g; is equal to some b;. Two partitions always
have a common refinement, which we obtain by inserting all the points
of one partition into the other. Furthermore, we can obtain a refinement
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of a partition by inserting one point at a time. Thus it suffices to prove
that if the partition 2 is a refinement of the partition 2 obtained by
inserting one point, then Lemma 4.2 is valid in this case. So we can
suppose that 2 is obtained by inserting some point ¢ in some interval
[ay, G+, for some k, that is 2 is the partition

[Ggs - sy Cs Ayaysoeerly])

We have already shown that given a partition, the value of the sum as in
the statement of the lemma is independent of the choice of discs and
potentials as described in the lemma. Hence for this new partition 2, we
can take the same discs D; for all the old intervals [a;, a;,,] when i # k,
and we take the disc D, for the intervals [a,, c] and [c, a,,,] Similarly,
we take the potential g; on D; as before, and g, on D,. Then the sum
with respect to the new partition is the same as for the old one, except
that the single term

9k (Pes1) — 9u(P)

is now replaced by two terms

9lBe1) — 0u((0)) + 9u3(0)) — gul(B)-
This does not change the value, and concludes the proof of Lemma 4.2.

For any continuous path y: [a, b] » U we may thus define

[ F=% (006D - a6t

for any partition [ag, a,,...,a,] of [a, b] such that y([a;, a;,,]) is con-
tained in a disc D;, D; = U, and g; is a potential of F on D;. We have
just proved that the expression on the right-hand side is independent of
the choices made, and we had seen previously that if y is piecewise C!
then the expression on the right-hand side gives the same value as the
definition used in Chapter XV, Theorem 4.2. It is often convenient to
have the additional flexibility provided by arbitrary continuous paths.

As an application, we shall now see that if two paths lie “close to-
gether,” and have the same beginning point and the same end point, then
the integrals of F along the two paths have the same value. We must
define precisely what we mean by “close together.” After a repara-
metrization, we may assume that the two paths are defined over the same
interval [a,b]. We say that they are close together if there exists a
partition
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IIA
I\

a=a,2a,=a, a, =b,

and for each i=0,...,n — 1 there exists a disc D; contained in U such
that the images of each segment [a;, a;,,] under the two paths y,  are
contained in D;, that is,

v([a;, a;411) = D; and n(la;, aivy1) = D;.

Given the locally integrable vector field F, we say that the paths are
F-close together if they satisfy the above conditions, and also if F has a
potential function on each disc D;.

Lemma 4.3. Let y, y be two paths in an open set U, and assume that

they have the same beginning point and the same end point. Let F be a
locally integrable vector field on U, and assume that paths are F-close

together. Then
IF=IE
Y n

Proof. We suppose that the paths are defined on the same interval
[a,b], and we choose a partition and discs D; as above. Let g; be a
potential of F on D,. Let

P, =v(a) and Qi =n(a,).

We illustrate the paths and their partition in Figure 18.

"'--I-“~——&w@=wwg

R =v@)=n@)=0,

Figure 18

The functions g;,, an.d g; are potentials of F on the connected open set
Dy 0Dy, s0 g4y — g; is constant on D,y nD;. But Dy N D; contains
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P, and Q;,. Consequently

Gi+1(Pir1) = 9i41(Qir1) = 9i(Pis1) — 9i(Qis1)-

Then we find
n—1
[ F=] F="S (0P - 0P) — (01@100) - 90O

n—1
= '_;) [(giPisy) — gi(QH-l)) —(g:(P) - gi(Qi))]

= gn-1(P) — 9u-1(Q0) — (go(Po) - go(Qo))
=0,

because the two paths have the same beginning point P, = Q,, and the
same end point P, = Q,. This proves the lemma.

One can also formulate an analogous lemma for closed paths.

Lemma 4.4. Let y, n be closed paths in the open set U, say defined on
the same interval [a, b]. Assume that they are F-close together. Then

LF=LF.

Proof. The proof is the same as above, except that the reason why we
find 0 in the last step is now slightly different. Since the paths are closed,
we have

P =F, and Qo = 0.,

Figure 19

as illustrated in Figure 19. The two potentials Gn-1 and g, differ by a
constant on some disc contained in U and containing Py, Q,. Hence the
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last expression obtained in the proof of Lemma 4.3 is again equal to 0,
as was to be shown.

XVI, §5. THE HOMOTOPY FORM OF THE
INTEGRABILITY THEOREM

Let y, n be two paths in an open set U. After a reparametrization if
necessary, we assume that they are defined over the same interval [a, b].
We shall say that y is homotopic to # if there exists a continuous function

¥:[ab] x [, d]» U
defined on a rectangle [q, b] x [c, d], such that
U(t,o)=y( and Y, d) =n()
for all t € [a, b].

For each number s in the interval [c, d], we may view the function ¥
such that

Us(t) = ¥(t, 5)

as a continuous curve, defined on [g, b], and we may view the family of
continuous curves Y, as a deformation of the path y to the path . The
picture is drawn on Figure 20. The paths have been drawn with the same
end points because that’s what we are going to use in practice. Formally,
we say that the homotopy Y leaves the end points fixed if we have

Y@ s)=vy@ and  Y(b,s)=y(b)
for all values of s in [c,d]. In the sequel it will be always understood that

when we speak of a homotopy of paths having the same end points, then
the homotopy leaves the end points fixed, unless otherwise specified.

v ()

Figure 20
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If y is homotopic to # (by a homotopy leaving the end points fixed), we
denote this property by y = 5 (relative to end points). In line with our
convention, we might omit the reference to the end points.

Similarly, when we speak of a homotopy of closed paths, we assume
always that each path Y is a closed path. These additional requirements
are now regarded as part of the definition of homotopy and will not be
repeated each time.

Theorem 5.1. Let y, n be paths in an open set U having the same
beginning point and the same end point. Assume that they are homo-
topic in U relative to the end points. Let F be locally integrable on U.

Then
I F =I F.
Y n

Theorem 5.2. Let y, y§ be closed paths in U, and assume that they are
homotopic in U. Let F be locally integrable on U. Then

LF=LE

In particular, if y is homotopic to a point in U, then

IF=Q
Y

If 9, y are closed paths in U and are homotopic, then they are
homologous.

We prove Theorem 5.2 in detail, and leave Theorem 5.1 to the reader;
the proof is entirely similar using Lemma 4.3 instead of Lemma 4.4. The
idea is that the homotopy gives us a finite sequence of paths close to each
other in the sense of these lemmas, so that the integral of F over each
successive path is unchanged.

The formal proof runs as follows. Let

y:[a,b] x [d] U

be the homotopy. The image of ¥ is compact, and hence has distance
> 0 from the complement of U. By uniform continuity we can therefore

find partitions
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of these intervals, such that if
S;; = small rectangle [a;, a;41] % [} ¢j41]
then the image ¥/(S;;) is contained in a disc D; which is itselfl contained

in U and such that F has a potential g; on D;.
Let y; be the continuous curve defined by

Y =vtc) j=0,....m

Then the continuous curves ¥, ¥;,, are F-close together, and we can apply
Lemma 4.4 to conclude that

J‘ F= F.
7] Vi

Since Y, =y and ¥, = n, we see that the theorem is proved.

Remark. It is usually not difficult, although sometimes it is tedious, to
exhibit a homotopy between continuous curves. Most of the time, one
can achieve this homotopy by simple formulas when the curves are given
explicitly.

Example. Let P, Q be two points in R2. The segment between P, Q, '
denoted by [P, Q], is the set of points

P+yQ—-P), O0=t=]l,
or equivalently,

(1—1tP +1Q, 0st=1.

A set S in R? is called convex, if whenever P, Q €S, then the segment
[P, Q] is also contained in S. We observe that a disc and a rectangle are
convex.

Lemma 53. Let S be a convex set, and let y, y be continuous closed
curves in S. Then y, n are homotopic in S.

Proof. We define
Y(t, ) = sp()) + (1 — s)n(e).

It is immediately verified that each curve y, defined by (1) = Y(t,s)is a
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closed curve, and ¥ is continuous. Also
W0 =n() and P, 1) =70,

so the curves are homotopic. Note that thc homotopy is given by a
linear function, so if y, n are smooth curves, that is C* curves, then each
curve i, is also of class C!.

We say that an open set U is simply connected if it is connected and if
every closed path in U is homotopic to a point. By Lemma 53 a
convex open set is simply connected. Other examples of simply con-
nected open sets will be given in the exercises.

From Theorem 5.2, we conclude at once:

Theorem 54. Let F be a locally integrable vector field on a simply
connected open set U. Then F has a potential function on U.

Proof. Theorem 5.2 shows that the third condition of Theorem 4.2 in
Chapter XV is satisfied, and so the potential function may be defined by
the integral of F from a fixed point P, to a variable point P in U,
independently of the path in U from P, to P.

Thus we have derived one useful sufficient condition on an open set U
for the global cxistence of a potential for F, namely simply connectedness.

Corollary 5.5. Let F be a locally integrable vector field on an open set
U. Then F admits a potential function on every disc and every rectangle
contained in U. If R is a closed rectangle contained in U, then

I F=0.
‘R

Proof. The first assertion comes from the fact that a disc or a rectangle
is convex. As to the second, since a closed rectangle is compact, there
exists an open rectangle W containing R and contained in U (take W with
sides parallel to those of R, and only slightly bigger). Then W is simply
connected, and we can apply Theorem 5.4 to conclude the proof.

Corollary 5.6. If two paths are close together in U, then they are
F-close together for every locally integrable vector field F on U

We can also give a proof of Lemma 2.2 based on a different principle.
Indeed, the closed path y being compact, it is contained in some disc D. It
is therefore homotopic to a point Q in D. If P lies outside D (which is the
case when P is at sufficiently large distance from the curve), it follows
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from Theorem 5.2 that
J‘ Gp=0,
Y

because that integral is the same as the trivial integral over the constant
curve with value Q.

Although in this chapter we are principally concerned with open sets in
the plane, it is useful to develop a general formalism of homotopy for
more general spaces. A metric space S is called pathwise connected if any
two points in the space can be joined by a continuous curve in the space.
Given such a space S, let P,Q e S. Let Path(P, Q) be the set of all con-
tinuous curves o: [0,1] — S such that o(0) = P and (1) = Q. We define
a homotopy between two such curves o, f relative to the end points (i.c.
relative to P, Q) to be a continuous map

h:[0,1] x [0,1] =S

such that h(t, 0) = «(t) and h(t, 1) = B(t). We denote the property that o is
homotopic to f relative to the end points by o = f8.

For homotopies, the interval of definition of a curve, and the interval
for the parameter are chosen to be [0, 1] for convenience. One may use
other intervals also, and then use the fact that given two intervals, there is
a polynomial of degree 1 which maps one on the other. One can also use
the following remark.

Lemma 5.8.
(@) Let [a,b] and [c, d] be two intervals, and let
f:led]—[ab]

be continuous such that f(c)=a and f(d)=b. Let a, B:[a,b] >S
be continuous curves in a metric space S, from P to Q. If axp,
then oo f ~fof.

(b) Let o:[0,1] = S be a continuous curve in a metric space S. Let
S:[0,11-[0,1] be a continuous function such that f(0)=0 and
f()=1 Thena=xuaof.

Proof. We l.eave the first assertion to the reader. As to the second, a
homotopy leaving the end points fixed is given by

ht, u) = a((1 — Wt + uf(p)).
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Theorem 5.9. Let U be open in R? and let F be a locally integrable
vector field on U. Let a: [a,b] — U be a continuous curve, and let

f:le.d] —[a,b]

be continuous such that f(c) = a and f(d) =b. Then

J F=J F.
o aof

Proof. This is an immediate consequence of what we have already
done.

First, after a translation and a linear function, one reduces the proposi-
tion to the case when both intervals are [0, 1]. Then one applies Lemma
5.8 as well as Theorem 5.1, which tells us that the integrals of F over two
homotopic paths from P to Q have the same value.

Note that in Theorem 5.9 the map f is a very general kind of repara-
metrization of the interval. We put no condition of any kind on f except
continuity, and the value at the end points.

We have now finished our discussion of the integrability theorem in the
context of homotopies. The next, and final section of this chapter con-
tinues with properties of homotopies.

Xvi, §5. EXERCISES

1. Let 4 be a closed annulus bounded by two circles | X|=r; and [X|=r, with
0<r, <r,. Let F be a locally integrable vector field on an open set containing
the annulus. Let y, and y, be the two circles, oriented counterclockwise. Show

that
I F=I F.
1 2

2. A set S is called star-shaped if there exists a point P, in S such that the line
segment between P, and any point P in S is contained in S. Prove that a
star-shaped set is simply connected, that is, every closed path is homotopic to a
point.

3. Let U be the open set obtained from R? by deleting the set of real numbers
2 0. Prove that U is simply connected.

4. Let V be the open set obtained from R? by deleting the set of real numbers
< 0. Prove that V is simply connected.
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Xvi, §6. MORE ON HOMOTOPIES

In this section we deal with homotopies for their own sake, to comple-
ment §4, and give more criteria for paths to be homotopic in various
ways. The section can be used for further study, but it will not be used in
the rest of this book.

Let T be the triangle with vertices (0, 0), (0, 1), (1, 0), as shown on the
figure, and let h: T — S be a continuous map of the triangle into a metric
space S.

(O

00 y @O
Figure 21

Then the map

Yo: t—>h(t, 0), 0=<:=1,
is a curve 7y, in S. If we look at the restriction of h to the diagonal, from
(0, 1) to (1, 0), then we may also view the image of this diagonal as a curve
in S, but the domain of definition is not the interval [0, 1]. By a simple

device, we can change the parametrization to a standardized one defined
on a square. Indeed, let

¢:[0,11x[0,1]->T
be a continuous map of the unit square onto the triangle which keeps the
left vertical side fixed, and also the bottom horizontal side fixed, and maps

the top side of the square on the diagonal, namely

& >, 1 —1).

©. 1 [CRY ©, 1)

©0O 1 GO 6Oy, @0

Figure 22
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For instance, one could take ¢(t, u)=(t, 1- t)u). Then the composite
ho ¢ gives a homotopy of the image of the bottom curve with the image
of the diagonal under h. The homotopy ho ¢ is defined on the unit
square. For each fixed u with 0 < u < 1, the map

t h{g(t, v))

is one of the curves in the homotopy. Since ho @(t, 1) = h(t, 1 — t), we see
that the image of the top line of the square under ho ¢ is precisely the
image of the diagonal under h.

In practice, up to a point, one gets away with not writing down the
homotopy by a formula but just drawing pictures which convince people
that the formulas can be written down. The rest of this section consists
of exercises, which we state as propositions, although we give occasional
hints.

Throughout we let S be a pathwise connected metric space.

Proposition 6.1. Let P,Q € S.

If o, B,y € Path(P, Q) and a =~ B, f =y, then a = y.
If o ~ B, then f =~ a.

Since o = o, it follows that homotopy in Path(P, Q) is an equivalence
relation.
Given three points P, P, P in S, let aePath(P,P’) and let
B € Path(P’, P"). Define a # f € Path(P, P") by the formula:
_ Ju20) f0<t=<1/2,
@#he = {ﬁ(Zt 1) if12sis1.
Proposition 6.2. If a ~ o, and B~ Py, then o # p =~ oy # B, .

[Hint: Let h(t, u) = hy(2t, 4) for 0 <t < 1/2; h(t, u) = hp(2t — 1, u) for
125:<1]

Let Hot(P, Q) denote the set of homotopy equivalence classes of paths
between P and Q as in Proposition 6.1. Then we can define a “product”

Hot(P, P') x Hot(P', P") —» Hot(P, P") by (o, )y o # B.

Proposition 6.3.

@) This product is associative, that is

@#P#y~a#(B#Y)
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(b) The equivalence class of the constant path {:[0, 1] — S such that
L(t) =P for all t is a left unit that is

(#a~a for all « € Path(P, Q).
(c) Every class has an “inverse,” that is if o~ denotes the path such that
a () =oa(l —1t)

between Q and P, then o # o~ ~ (.

Thus the “product™ is associative, elements have right and left inverses,
and there is a multiplicative unit on the right and on the left.

We give the homotopies used in Proposition 6.3 for the record, but you
should find them yourself (or others to do the same job) before you copy
what follows.

(@ Let A=(ax#pP)#7yand p=oa#(f #y). Define

2t if 0=St=1/4,
f)=<t+1/4 if1/4<t=1)2,
t+12 f125t=51.

Verify that A(r) = p(f(1)), and apply Lemma 5.8(b).
(b) To show (#a =~ «, define

P ifo<t=(1-u)2,

h(t,u) = 2 -
(t.4) a('fT“ul) if(1—w2=r<l.

() To show a # o~ ~ { define

o(2tu) fo<r<1p2
h(t, 1) = ==l
(e, 1) {a(Zu(l 1) f12sts1.

Remark. In §5 we dealt with homotopies leaving the end points fixed,
and also with homotopies of closed curves which do not leave end points
fixed, and are sometimes called free homotopies. The question arises: If
two closed curves in S are freely homotopic, are they homotopic by a
homotopy leaving a point fixed? The answer is yes, and from Proposition
6.3, we are now able to prove it. We state this application formally as a
theorem, which would otherwise not be immediately obvious.
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Theorem 6.4. Let o, f € Path(P, Q), and suppose the path o # B~ is
homotopic to the point P, with a homotopy leaving P fixed. Then o and
B are homotopic by a homotopy leaving the end points P, Q fixed.

Proof. One can see this from the associativity
axo#P #PrP

using the fact that o # B~ represents the trivial homotopy class. One can
also see this from the following figure. We let h be a homotopy shrinking
the path o # 8~ to the point P. We have drawn curves in the square, and
the images of these curves under h constitute a continuous family leaving
P, Q fixed, with the beginning curve being « and the end curve being .
Of course, it's a pain to write down the formulas. However, the discussion
of the section indicates how to do this, by decomposing the square into
triangles, and composing homotopies.

P P
az
a a, a=a=a;~a;=f
P ' P
a @ B
Figure 23

Proposition 6.5. Let y, € Path(P, P) be a closed curve in S. Suppose that
Yo is homotopic in S to a closed curve y,, by a homotopy which does not
necessarily leave the point P fixed. Let

h:[0,1] x [0,1] =S

be the homotopy, defined on the square shown below, and let o be the
curve as shown, ie. a(u) = h(0, u) = h(1, u). Then

Yo RO H Y H A .

Q "1 Q

h(0, 1)=Q=h(1, 1)
(0, 0)=P=h(l, 0)

P P
Yo

Figure 24
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We can define a continuous family of curves g, as shown on the next
figure, where the end points of the top segment come closer and closer to
the to corners of the square. Of course, there are many possible variations
of this idea. We have drawn two of them.

Y1
g By

S— " """""

P P P -
Yo Yo
Possible curves o, The curve o,

Figure 25

A curve g, is really the image under h of the solid path shown on the
figure. Thus oy =17, is deformed continuously to o #y, #a~. The
parameter s of the homotopy can range over any interval [0, b], say,
whatever end point is convenient when actual formulas are written down.
But if one insists on having the homotopy being parametrized by the
interval [0, 1], then one simply makes a final linear change of variables.
However, mathematicians find the above pictures convincing, and usually
do not require writing down the actual formulas in such a straight-
forward case.

Proposition 6.6. Let Pe S and let y € Path(P, P) be a closed curve in S.
Suppose that y is homotopic to a point Q in S, by a homotopy which does
not necessarily leave the point P fixed. Then v is also homotopic to P
itself, by a homotopy which leaves P fixed.

[Hint: Use Proposition 6.5 when y, has the constant value Q. Then
o #y, # o simply consists of first going along «, and then retracing your
steps backward. You can then use Proposition 6.3(c).]

Remark. In connection with this section, you can look up elementary
discussions of homotopy in M. Greenberg and J. Harper, Algebraic Topol-
ogy: A First Course, Benjamin-Cummings, 1992; and also W. Massey, 4
Basic Course in Algebraic Topology, Springer-Verlag, 1991.



CHAPTER XVl

Derivatives in Vector Spaces

XVIl, §1. THE SPACE OF CONTINUOUS LINEAR MAPS

Let E, F be normed vector spaces. Let A:E — F be a linear map. The
following two conditions on A are equivalent:

(1) A is continuous.
(2) There exists C > 0 such that for all v e E we have

|A@)] £ Clvl.
Indeed, if we assume (2), then we find for all x, y € E:
[4x) — () = |Ax = y)| = Clx = yl,
so that 1 is even uniformly continuous. Conversely, assume that 4 is con-

tinuous at 0. Given 1, there exists § such that if xe E and |x| < é then
|A(x)] < 1. Let v be an element of E, v # 0. Then |&v/|v|| < é, and hence

)

1
4@ < 5101,

<1

This implies that

and we can take C = 1/6.
455
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We observe that a linear map A: R” — F into a normed vector space is
always continuous. In fact, if e; is the i-th unit vector, and

X =x.8; + -+ X€,
is an element of R" expressed in terms of its coordinates, then
Mx) = x;1Meq) + -+ + XuAen),
whence

1A < 12,1 1AeD] + -+ + |xal 1A(en)]

< n max | x;| max |A(e;)|.

If we let C = n max |A(e;)|, we see that A is continuous, using say the sup
norm on R". (Cf. also Exercise 1.)

A number C as in condition (2) above is called a bound for the linear
map. It is related to the notion of bound for an arbitrary map on a set as
follows. Note that if we view A as a map on all of E, there cannot possibly
be a number B such that |A(x)| < B for all x € E, unless 4 = 0. In fact, if v
is a fixed vector in E, and t a positive number, then

[Aex)] = [e]|A(x)]-

If A(x) # O, taking ¢ large shows that such a number B cannot exist. How-
ever, let us view 1 as a map on the unit sphere of E. Then for all vectors
veE such that [v] = 1 we find |A(v)| < C if C satisfies condition (2). Thus
the bound we have defined for the linear map is a bound for that map in
the old sense of the word, if we view the map as restricted to the
unit sphere.

We denote the space of continuous linear maps from E into F by
L(E, F). It is a vector space. We recall that if 4,, A, are continuous linear
maps then A; + A, is defined by

(A1 + 2)(x) = A4(x) + A5(x),
and if c € R then
(eA)(x) = cA(x).
We shall now use the norms on E and F to define a norm on L(E, F).
Let A: E — F be a continuous linear map. Define the norm of 4, denoted

by |4], to be the greatest lower bound of all numbers C > 0 such that
|A(x)| = Clx| for all xe E. The reader will verify at once that this norm
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is equal to the least upper bound of all values | A(v)| taken with v€ E and
o] =1. (f v +# 0, consider A(v)/|v|.) Because of this, we see that the
norm of 1 is nothing but the sup norm if we view 1 as a map defined only
on the unit sphere. Thus by restriction of A to the unit sphere, we may view
L(E, F) as a subspace of the space of all bounded maps (S, F), where S
is the unit sphere of E (centered at the origin, of course).

Theorem 1.1. The normed vector space L(E, F) is complete if F is com-
plete.

Proof. Let {1,} be a Cauchy sequence of continuous linear maps from
E into F. We shall first prove that for each ve E the sequence {1,(v)} of
elements of F is a Cauchy sequence in F. Given ¢, there exists N such that
form,n = N we have |4,, — 4,| < ¢/|v|. This means that

€lv|
A, — A <f—-=
I, ~ WO S T =6

and (4, — 4,)Xv) = 4,,(v) — A,(v). This proves that {A,(v)} is Cauchy.
Since F is complete, the sequence converges to an element of F, which we
denote by A(v). In other words, we define A: E — F by the condition

Mv) = lim A,(v).

n—co

If v, v € E, then

Mv + v') = lim A4,(v + ¢') = lim (4,(v) + A,(0"))

n—co n— o

= lim 4,(v) + lim A,(v)

n— o n-sco

= Av) + AQ).
If ¢ is a number, then

Mcv) = lim A (cv) = lim cA,(v)

n—so n—+ o
= ¢ lim A4,(v) = cA(v).

n-c

Hence A is linear. Furthermore, for each n we have

[4,@)] = 1410,
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whence taking limits and using the properties of limits of inequalities
together with the fact that the norm is a continuous function, we find that

[M)| = Clvl
where
C = lim |4,].
n- o

Finally, the sequence {A,} converges to A in the norm prescribed on
L(E, F). Indeed, given ¢, there exists N such that for m, n 2 N and all
v with |[v] = 1 we have

[2a(0) — A (0)| <.

Since we have seen that 4,(v) —» A(v) as n —» oo, we take n sufficiently large
so that

[2(0) — Av)| < e
We then obtain for all m > N the inequality

[2n(0) = )] = |4, — A)0)] < 2e.

This is true for every v with |v| = 1 and our theorem is proved.

To compute explicitly certain linear maps from R” into R™, one uses
their representation by matrices. We recall this here briefly. We write a
vector x in R" as a column vector:

()

If

we define the product Ax to be the column vector
Ayt Qg (X% Ay x
ax=| )=l
Ami ** Qmnf \Xn Am "X

(allxl + et agx,

A1 Xy + 0+ Xy,
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Let
Al RS R™
be the map defined by
Au(x) = Ax.
Then it is immediately verified that A, is a linear map.

Conversely, suppose given a linear map A: R" —» R™. We have the unit
vectors ¢; (i = 1,...,n) of R", which we view as column vectors, and we can
write

x =Xy + -+ x,,
in terms of its coordinates x,,...,x,. Let €},...,e,, be the unit vectors
of R™. Then there exist numbers a;; (i = 1,...,m and j=1,...,n) such
that
Mey) = ay ) + -+ + e,
)'(en) = alne,l + -+ a,,,,,e:,.

Hence

Axyey + -+ + xpe,)
= x,Mey) + -+ + x,Men)
= (X853 +  + Xa @12y + 0+ (X1py + o F XaGun)e

The vector A(x) is thus nothing but the multiplication of the matrix
A = (a;;) by the column vector x, that is we have 1 = 4,

Mx) = Ay(x) = Ax.

The space of linear maps L(R", R™) is nothing else but the space of
m x n matrices, addition being defined componentwise. In other words,
if B = (b;;) and c € R then

A+B=(a;+b;) and cA=(cay.
One has by an immediate verification:

Agsp=A4+Ap and Aea = CAq.
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We hope that the reader has had an introduction to matrices and linear
maps, and the brief summary which has preceded is mainly intended to
remind the reader of the facts which we shall use.

Example 1. What are the linear maps of R into R? They are easily
determined. Let 1: R — R be a linear map. Then for all x € R we have

AMx) = AMx- 1) = xA(1).
Let a = A(1). Then
Mx) = ax.

Thus we can write A = A, where 1,: R — R is multiplication by the num-
ber a.

Example 2. Let A = (a,, ... ,a,) be a row vector, and x a column vector,
corresponding to the coordinates (x,,...,x,). We still define 4-x as
a;xy + -+ + a,x,. We have a linear map

AgR*">R
such that
Ax) =A-x

for all xeR. Our discussion concerning matrices shows that any linear
map of R" into R is equal to some 1, for some vector A.

Example 3. Let F be an arbitrary vector space. We can determine all
linear maps of R into F easily. Indeed, let w be an element of F. The map

X = Xw

for x e R is obviously a linear map of R into F. We may denote it by 4,,, so
that A,(x) = xw. Conversely, suppose that A: R — F is a linear map.
Then for all x e R we have

Mx) = Ax- 1) = xA1).

Now A1) is a vector in F. Let wo = A(1). We see that A = 1,,,. In this
way we have described all linear maps of R into F by the elements of F
itself. To each such element corresponds a linear map, and conversely;
namely to the element w corresponds the linear A,,: R — F such that

Au(x) = xw
for all xeR.
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Observe that a linear map into R™ can be viewed in terms of its co-
ordinate functions.

Theorem 1.2. Let E be a normed vector space, and A: E — R™ Let
A= (Ay,..-,A,) be its expression in terms of coordinate functions A;.
Then A is a continuous linear map if and only if each A, is continuous
linear fori=1,...,m.

Proof. This is obvious from the definitions.

Remark. One need not restrict consideration to maps into R™. More
generally, if F,,...,F, are normed vector spaces, we can consider maps
AE—F; x---x F, into the product space consisting of all m-tuples
of elements (x,, ...,x,) with x;€ F;. We take the sup norm on this space,
and Theorem 1.2 applies as well.

Let us reconsider the case of R" — R™ as a special case of Theorem 1.2.
Let 2: R" — R”™ be a linear map, and A = A, for some matrix 4 = (a;;).
Let (4;,...,4,) be the coordinate functions of . By what we have seen
concerning the product Ax of 4 and a column vector x, we now conclude
that if A,, ... ,A,, are the row vectors of 4, then

A(x) = A;-x
is the ordinary dot product with 4;. Thus we may write
A= Aap - sha,)-
Finally, let E, F, G be normed vector spaces and let
w:E->F  and AMF -G

be continuous linear maps. Then the composite map Ae @ is a linear map.
Indeed, for v, v,, v, € E and c € R we have

Mo, + v2)) = Mo(vy) + @v;)) = Ae(vy)) + Aw(v,))
and
Ma(cw)) = Acw(v)) = cAw(v))-

A composite of continuous maps is continuous, so A o is continuous.

In terms of matrices, if E = R", F = R™, and G = R®, then we can repre-
sent w and A by matrices 4 and B respectively. The matrix 4 is m x n
and the matrix B is s x m. Then Ao w is represented by B4. One verifies
this directly from the definitions.
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XVIil, §1. EXERCISES

1. Let E be a vector space and let vy, ....v,€ E. Assume that every element of E has
a unique expression as a linear combination x,u, + --- + X,t, with x;eR. That
is, given v € E, there exist unique numbers x; € R such that

v=x30y + 00+ XpUpe

Show that any linear map A: E — F into a normed vector space is continuous.

N

Let Mat,, , be the vector space of all m x n matrices with components in R. Show
that Mat,, , has elements e;; (i = 1,...,m and j = 1,....n) such that every element
A of Mat,, , can be written in the form

m om
A=Y Y ae;
i=1j=1

with number a;; uniquely determined by 4.

w

. Let E, F be normed vector spaces. Show that the association

L(E,F) x E»F

given by
4 y) = Ay)

is a product in the sense of Chapter VII, §1.
4. Let E, F, G be normed vector spaces. A map
MExF-G
is said to be bilinear if it satisfies the conditions
Av, wy + wy) = Ao, wy) + Ao, wy),
Moy + vz, W) = Ay, W) + Avy, W),
Mev, w) = cA(v. w) = A, cw)
for all v,v;€ E, w,w; € F, and ceR.

(a) Show that a bilinear map A is continuous if and only if there exists C >0
such that for all (v, w) € E x F we have

|14, w)| < Clow].

(b) Let ve E be fixed. Show that if 1 is continuous, then the map A,: F — G given
by wi— A(v, ) is a continuous linear map.
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For the rest of this chapter, we let E, F, G be euclidean spaces, that is R"
or R™. The reader will notice however that in the statements and proofs of
theorems, vectors occur independently of coordinates, and that these proofs
apply to the more general situation of complete normed vector spaces. We
shall always accompany the theorems with an explicit determination of the
statement involving the coordinates, which are useful for computations. The
theory which is independent of the coordinates gives, however, a more faith-
ful rendition of the geometric flavor of the objects involved.

XVII, §2. THE DERIVATIVE AS A LINEAR MAP

Let U be open in E, and let xe U. Let f: U — F be a map. We shall say
that f is differentiable at x if there exists a continuous linear map A: E - F
and a map ¢ defined for all sufficiently small h in E, with values in F, such
that

lim y(h) = 0,
h-0
and such that
* Fx + h) = f(x) + Ah) + [h|y(h).

Setting h = 0 shows that we may assume that ¢ is defined at 0 and that
(0) = 0. The preceding formula still holds.

Equivalently, we could replace the term |h|y(h) by a term ¢(h) where ¢
is a map such that

li (P—(h)—=0

h-Oll

The limit is taken of course for h # 0, otherwise the quotient does not
make sense.

A mapping ¢ having the preceding limiting property is said to be o(h)
for h— 0. (One reads this “little oh of h.”)

We view the definition of the derivative as stating that near x, the values
of f can be approximated by a linear map 4, except for the additive term
f(x), of course, with an error term described by the limiting properties
of Y or ¢ described above.

1t is clear that if f is differentiable at x, then it is continuous at x.

We contend that if the continuous linear map A exists satisfying (*),
then it is uniquely determined by f and x. To prove this, let ,, 4, be con-



464 DERIVATIVES IN VECTOR SPACES [XVII, §2]

tinuous linear maps having property (*). Let ve E. Let t have real values
> 0 and so small that x + tv lies in U. Let h = tv. We have

f&x + h) = f(x) = A,(h) + |h|Y(h)
= Ay(h) + [hly (k)
with

lim (k) = 0

h—0
for j = 1,2. Subtracting the two expressions for
fx + ) — f(x),

we find

Ay(h) — Aa(h) = [kl (W2(h) — ¥1()),
and setting h = tu, using the linearity of 4,

t(A1(0) — A2(0)) = tlv| (Y2(tv) — Yy(t0)).

We divide by ¢ and find

A (0) = A,(0) = |v] (Y2(t0) — ¥1(t0)).
Take the limit as t — 0. The limit of the right side is equal to 0. Hence
A1(v) — A;(v) = 0 and A,(v) = A,(v). This is true for every ve E, whence
Ay = A,, as was to be shown.

In view of the uniqueness of the continuous linear map 4, we call it the

derivative of f at x and denote it by f'(x) or Df(x). Thus f'(x) is a contin-
uous linear map, and we can write

S(x+ h) = f(x) =f'Gh + |hlg(h)
with

lim (k) = 0.

h=-0

We have written f(x)h instead of f(x)(h) for simplicity, omitting a set of
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parentheses. In general we shall often write
Ah

instead of A(h) when A is a linear map.
If f is differentiable at every point x of U, then we say that f is differ-
entiable on U. In that case, the derivative f* is a map

f:U->L(E,F)

from U into the space of continuous linear maps L(E, F), and thus to each
x € U, we have associated the linear map f'(x) € L(E, F).

We shall now see systematically how the definition of the derivative as a
linear map actually includes the cases which we have studied previously.
We have three cases:

Casel. We consider a map f:J — R from an open interval J into R.
This is the first case ever studied. Suppose f is differentiable at a number
x € J in the present sense, so that there is a linear map A: R — R such that

fGx+ ) — f(x) = Ah) + |hly(h)
with

lim y(k) = 0.

k=0

We know that there is a number a such that A(h) = ah for all h, that is
A= A,. Hence

S+ k) = f(x) = ah + |hIY(h).

We can divide by h because h is a number, and we find

S +h—fC) _ Al
IR = a ).

But |h|/h=1 or —1. The limit of (|hl/h)y(h) exists as h—0 and is
equal to 0. Hence we see that f is differentiable in the old sense, and that
its derivative in the old sense is a. In this special case, the number a in
the old definition corresponds to the linear map “multiplication by a”
in the new definition. (For differentiable maps over closed intervals, cf.
the exercises.)
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Case 2. Let U be open in R” and let f: U — R be a map, differentiable
at a point x € U. This is the case studied in Chapter XV, §1. There is a
linear map A: R" — R such that

FGx + ) = f(x) = Ah) + [Kly(h)
with

lim y(k) = 0.

h=0

We know that A corresponds to a vector A, that is A =4,, where
Ah) = A-h. Thus

fx+ k)= f(x)=A-h+|hlYh).

This is precisely the notion of differentiability studied in Chapter XV, and
we proved there that A = grad f(X) = (9f/0x,, - ..,0f/0x,). In the pres-
ent case, the old “derivative” A4 corresponds to the new derivative, the
linear map “dot product with 4.”

Case 3. Let J be an interval in R, and let f: J — F be a map into any
normed vector space. This case was studied in Chapter X, §5. Again
suppose that f is differentiable at the number x € J, so that

S+ k) = f(x) = A(h) + |RIY(R)

for some linear map A: R — F. We know that A corresponds to a vector
weF,thatis A = A, is such that A,(k) = hw. Hence

fCe+ ) = f(x) = hw + [h|Y(h).
In the present case, h is a number and we can divide by h, so that

R (N TP
h
The right-hand side has a limit as # — 0, namely w. Thus in the present
case, the old derivative, which was the vector w, corresponds to the new
derivative, the linear map A,,, which is “multiplication by w on the right”
We have now identified our new derivative with all the old derivatives,
and we shall go through the differential calculus for the fourth and last
time, in the most general context.
Let us consider mappings into R™.
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Theorem 2.1. Let U be an open set of R", and let - U — R™ be a map
which is differentiable at x. Then the continuous linear map f'(x) is
represented by the matrix

J (x) = (0f/ox;)
where f; is the i-th coordinate function of f.
Proof. Essentially this comes from putting together Case 2 discussed

above, and Theorem 1.2. We go through the proof once morc from
scratch. We have using Case 2:

LG+ 1) = fi(x)
f(x+h) —f(x)= :

Fulx + B) = £,(0)
(Al -h+ ‘Pl(h))
A b+ 9,(B)

A, -h fPl(h)
_ ( ) (7
Am'h (Pm(h)

A; = grad fi(x) = (56’{#., ... ,gf ),

where

and ¢ h) = o(h). It is clear that the vector @(h) = (,(h),....p,(h) is
o(h), and hence by definition of f*(x), we see that it is represented by the
matrix of partial derivatives, as was to be shown.

The matrix
ofy . Y%
0x, 0x,,
J=1": :
0x, 0x,

is called the Jacobian matrix of f at x. We see that if f is differentiable at
every point of U, then x> J(x) is a map from U into the space of ma-
trices, which may be viewed as a space of dimension mn.
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We defined f to be differentiable on U if f is differentiable at every point
of U. We shall say that f'is of class C! on U, or is a C* map, if f is differ-
entiable on U and if in addition the derivative

f':U > L(E, F)

is continuous. From the fact that a map into a product is continuous if
and only if its coordinate maps are continuous, we conclude from Theorem
2.1:

Corollary. The map f: U - R™ is of class C' if and only if the partial

derivatives 0f;/0x; exist and are continuous functions, or put another way,
if and only if the partial derivatives D; f;: U — R exist and are continuous.

XVIl, §2. EXERCISES
1. Find ;xplicitly the Jacobian matrix of the polar coordinate map
x =rcosf and y=rsin6.
2. Find the Jacobian matrix of the map (u, v) = F(x, y) where
u = e* cos y, v =e*siny.

Compute the determinants of these 2 x 2 matrices. The determinant of the matrix
a b
c d

3. Let :R" > R" be a linear map. Show that A is differentiable at every point, and
that 2'(x) = 4 for all xe R".

is by definition ad — bc.

XVII, §3. PROPERTIES OF THE DERIVATIVE

Sum. Let U be open in E. Let f, g: U ~ F be maps which are differenti-
able at x€ U. Then f + g is differentiable at x and

F+9Y®) =16 + g'(x).

If ¢ is a number, then

(@Y (x) = ¢f (x).
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Proof. Let A; = f'(x) and 4, = ¢'(x) so that
S+ B) = f(x) = Ath + [hly(h),
g(x + h) — g(x) = A, h + |h|o(h),

where lim y(h) = 0. Then
B0

(f+g)x + h) — (f+ 9)x) =f(x + k) + g(x + b) — f(x) — g(x)
= Ah + Aok + |l (1(h) + Y2(h))
= (A + 2)0) + Rl (W 1(B) + ya(h)).

Since lim (,(h) + ¥ ,(h)) = 0, it follows by definition that
h=0

M+l =(f+9)()

as was to be shown. The statement with the constant is equally clear.

Product. Let F, x F, - G be a product, as defined in Chapter VII, §1.
Let U be open in E and let f: U — F, and g: U — F, be maps differenti-
able at x € U. Then the product map fg is differentiable at x and

(f9Y(x) = f'(x)g(x) + f(x)g'(x).
Before giving the proof, we make some comments on the meaning of

the product formula. The linear map represented by the right-hand side is
supposed to mean the map

v (' (xI0)g(x) + f(x)(g'(x)v)-
Note that f'(x): E - F, is a linear map of E into F,, and when applied

to veE yields an element of F;. Furthermore, g(x) lies in F,, and so we
can take the product

(f'GIwlg(x) €G.

Similarly for f(x)(g'(x)v). In practice we omit the extra set of parentheses,
and write simply

f'Gg(x)-
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Proof. We have

Sx + hg(x + h) — f(x)g(x)
=f(x + kglx + h) — f(x + Bg(x) + £ (x + Bg(x) — f(x)g(x)
=f(x + B)(g(x + h) — g(x) + (fCx + B) = F(x))g(x)
=£(x + B)(G'h + |klY2(W) + (£ + Bl (B)g(x)
=f(x + Bg'h + 1h £ + BW(h) + f'(hg(x) + |h1Y 1 (Rg(x)
=f(x)g' (X + f'(x)hg(x) + (f(x + b) — F())g' )k
+ Bl f(x + W (h) + |kl (R)g(x).
The map
h— f(x)g'()h + f'(x)hg(x)

is the linear map of E into G, which is supposed to be the desired derivative.
It remains to be shown that each of the other three terms appearing on the
right is of the desired type, namely o(h). This is immediate. For instance,

[(fCx + ) = fCg Gl £ 1 fCx + B) — G g'(x)] ||

and

}lin; [fGx+B) —f)Ig(x) =0

because [ is continuous, being differentiable. The others are equally ob-
vious, and our property is proved.

Example. Let J be an open interval in R and let
t— AQl) = (@) and > X()
be two differentiable maps from J into the space of m x n matrices, and
into R" respectively. Thus for each t, A(t) is an m x n matrix, and X(¢)
is a column vector of dimension n. We can form the product A(t)X(t),
and thus the product map
t— A(DX(),

which is differentiable. Our rule in this special case asserts that

d
20 AOX0) = AOX @) + ADOX'()
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where differentiation with respect to ¢ is taken componentwise both on
the matrix A(t) and the vector X(t). Actually, this case is covered by the
case treated in Chapter X, §5, since our maps go from an interval into
vector spaces with a product between them. The product here is the
product of a matrix times a vector.

If m = 1, then we deal with the even more special case where we take
the dot product between two vectors.

Chain rule. Let U be open in E and let V be open in F. Let f:U -~V
and g: V — G be maps. Let x€U. Assume that f is differentiable at x
and g is differentiable at f(x). Then g o fis differentiable at x and

GofYx) =g (f(x) e f'(x).
Before giving the proof, we make explicit the meaning of the usual
formula. Note that f'(x): E— F is a linear map, and ¢'(f(x)): F > G
is a linear map, and so these linear maps can be composed, and the com-

posite is a linear map, which is continuous because both g'(f(x)) and f'(x)
are continuous. The composed linear map goes from E into G, as it should.

Proof. Let k(h) = f(x + h) — f(x). Then

9(f(x + B) — g(f(x)) = g (fCk(h) + [k() ¢ 1 (k(B))

with lim ¢,(k) = 0. But

k=0
k(h) = f(x + h) — f(x) = f'(x)h + |h|g2(h),
with lim y,(h) = 0. Hence
h=0
9(f(x + b)) — 9(f(x))
= g(fGNSCh + [hlg' (fIW2h) + k(B (k(h)).
The first term has the desired shape, and all we need to show is that each

of the next two terms on the right is o(h). This is obvious. For instance,
we have the estimate

[k(B)| S 1f'CI 1k + [hl1g2(k)]  and }.iﬂ;%(k(h))=0

from which we see that |k(h)|y,(k(h)) = o(h). We argue similarly for
the other term.
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The chain rule of course can be expressed in terms of matrices when the
vector spaces are taken to be R”, R™, and R°® respectively. In that case, in
terms of the Jacobian matrices we have

Jges(x) = T (£(x))J 1),
the multiplication being that of matrices.

Maps with coordinates. Let U be open in E, let f: U —»F, x -+ x F,,

and let f=(fy,....f,) be its expression in terms of coordinate maps.

Then f is differentiable at x if and only if each f; is differentiable at x,

and if this is the case, then

£ = (f16)s -+ s f (X))
Proof. This follows as usual by considering the coordinate expression

Jex 4+ B) = fG) = (filx + B) = f1(x), .. . foulx + B) = £,(x)).

Assume that f(x) exists, so that
Six+ k) — £i(x) = fi 0k + oi(h)
where ¢y(h) = o(h). Then
F&x+B) = f(x) = (10, .. .. [ (OB + (@1(B), - ...0(R)

and it is clear that this last term in F; x --- x F,, is o(h). (As always,

we use the sup norm in F; x --- x F,.) This proves that f'(x) is what
we said it was. The converse is equally easy and is left to the reader.

Theorem 3.1. Let A: E — F be a continuous linear map. Then A is differ-
entiable at every point of E and X(x) = A for every x € E.

Proof. This is obvious, because
Ax + h) — A(x) = Ah) + 0.

Note therefore that the derivative of 1 is constant on E.

Corollary 3.2. Let f: U~ F be a differentiable map, and let A: F -G
be a continuous linear map. Then

Ao fYG) = 2 f'(x).
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For every ve U we have
(Ao fY( = A(f ().

Proof. This follows from Theorem 3.1 and the chain rule. Of course,
one can also give a direct proof, considering

MfGx+ ) = M) = S (x + b) = ()
= Mk + |hlg(h))
= Mf'Gh) + [hIA(W(R)),

and noting that lim A(Y(k)) = 0.
h~0

XVil, §3. EXERCISES

1. Let U be open in E. Assume that any two points of U can be connected by a con-
tinuous curve. Show that any two points can be connected by a piecewise differ-
entiable curve.

2. Let f: U - F be a differentiable map such that f’(x) = 0 for all xe U. Assume
that any two points of U can be connected by a piecewise differentiable curve.
Show that f is constant on U.

XVII, §4. MEAN VALUE THEOREM

The mean value theorem essentially relates the values of a map at two
different points by means of the intermediate values of the map on the
line segment between these two points. In vector spaces, we give an inte-
gral form for it.

We shall be integrating curves in the space of continuous linear maps
L(E, F). This is a complete normed vector space, and we have known how
to do this since Chapter X.

We shall also deal with the association

L(E,F)x E~»F
given by

(%))~ A0)
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for Ae L(E, F) and y e E. Note that this is a product in the sense of Chap-
ter VI, §1. In fact, the condition on the norm

121 = 1411yl

is true by the very nature of the definition of the norm of a linear map.

Let a:J— L(E,F) be a continuous map from a closed interval
J = [a, b] into L(E, F). For each t € J, we see that a(t) € L(E, F) is a linear
map. We can apply it to an element ye E and a(t)ye F. On the other
hand, we can integrate the curve a, and

J: ba(t) dt

is an element of L(E, F). If « is differentiable, then da(t)/dt is identified with
an element of L(E, F). If we deal with the case of matrices, then integration
and differentiation is performed componentwise. Let us use the notation

A:J —» Mat,, ,

so that A(t) is an m x n matrix for each t e J, A(t) = (a;{t)). Then

Jj A@)dt = ( Jj aiJ(t)_dt)

dA() (da; ,(t))

a \ dt

and

In this case of course, the a;; are functions.

Example. Let
cost t
Alt) = .
® (sint tz)
Then
() = dA(t) _(—sint 1
dt cost 2t
and

" _ [0 =%2
J;A(t)dt—(z n3/3),
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Lemma 4.1. Let a: J — L(E, F) be a continuous map from a closed inter-
val J = [a, b] into L(E, F). Let ye E. Then

fa(t)y dt = Jja(t) dt-y

where the dot on the right means the application of the linear map

fba(t) dt

a

to the vector y.
Proof. Here y is fixed, and the map

A=Ay =y

is a continuous linear map of L(E, F) into F. Hence our lemma is a special
case of Exercise 2 of Chapter X, §6.

If readers visualize the lemma in terms of matrices, they will see that
they can also derive a direct proof reducing it to coordinates. For instance,
if Ay(t), ... ,A,(t) are the rows of A(t), and y is a fixed column vector, then

Ay(®)-y ap@®yy + -+ a(t)ys
Ay = )= : :
A1)y Ay (®)y1 + -+ + ()Y

and a;;(t), y; are numbers. One can then integrate componentwise and
term by term in the expression on the right, taking the y; in or out of the
integrals. Similarly,
A1) ay (yy + -+ dy(Dy,

d(A®)Y) _ 1(:) y 115 W1 1 (:)Y

dt

A0y Ay (Oy1 + -+ + Gy
where we differentiate componentwise.
Theorem 4.2. Let U be open in E and let xe U. Let yeE. Let f:U » F

be a C! map. Assume that the line segment x + ty with 0 St <1 is
contained in U. Then

1 1
St ) =16 = [ £+ iy = [recsmay
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Proof. Let g(t) =f(x + ty). Then ¢'(t) = f'(x + ty)y. By the funda-
mental theorem of calculus (Theorem 6.2 of Chapter X) we find that

1
an—am=£¢mn

But g(1) = f(x + y) and g(0) =f(x). Our theorem is proved, taking
into account the lemma which allows us to pull the y out of the integral.

Corollary 4.3. Let U be open in E and let x, z€ U be such that the line
segment between x and z is contained in U (that is the segment
x+tz— x)with0 <t £1). Letf: U — F be of class C'. Then

[f@@) = f)] £ |z — x| sup | f'()I,

the sup being taken for all v in the segment.

Proof. We estimate the integral, letting x + y = z. We find

S A - 0)sup | S (x + )yl

1
’ J;f’(x + ty)y dt

using the standard estimate for the integral, that is Theorem 4.5 of Chapter
X. Our corollary follows.

(Note. The sup of the norms of the derivative exists because the
segment is compact and the map t —|f"(x + ty)| is continuous.)

Corollary 4.4. Let U be open in E and let x, z, xo € U. Assume that the
segment between x and z lies in U. Then

1@ = f(x) = f'(xolz — x)| < |z — x| sup | f'(v) — f"(xo),
the sup being taken for all v on the segment between x and z.

Proof. We can either apply Corollary 4.3 to the map g such that
9(x) = f(x) — f'(xo)x, or argue directly with the integral:

1
f@—ﬂ»=£f@+@-nw-na
We write

T+ tz = X)) = f'(x + tz — x)) = f'(x0) + "(xo),
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and find
1
J@) = f(x) =f'(xo)z — x) + L[f " + Hz — x)) — f'(x0))(z — x) dt.
We then estimate the integral on the right as usual.

We shall call Theorem 4.2 or either one of its two corollaries the Mean
Value Theorem in vector spaces. In practice, the integral form of the re-
mainder is always preferable and should be used as a conditioned reflex.
One big advantage it has over the others is that the integral, as a function
of y, is just as smooth as f’, and this is important in some applications. In
others, one only needs an intermediate value estimate, and then Corollary
4.3, or especially Corollary 4.4, may suffice.

XVII, §4. EXERCISE

1. Let f:[0,1]—>R" and g¢:[0,1] - R have continuous derivatives. Suppose
|f'(®)1 < g'(z) for all . Prove that |f(1) — f(0)] = 9(1) — g(O)]-

The following sections on higher derivatives will not be used in an essential way
inwhat follows and may be omitted, especially in what concerns the next chapter.
Readers may therefore skip from here immediately to the inverse mapping
theorem as a natural continuation of the study of maps of class C*. They should
then take p = 1 in all statements of the next chapter. Reference will however be
made to the theorem concerning partial derivatives in §71.

XVIl, §5. THE SECOND DERIVATIVE

Let U be open in E and let f: U — F be differentiable. Then
Df=f":U - L(E, F)
and we know that L(E, F) is again a complete normed vector space. Thus
we are in a position to define the second derivative
D*f = f: U - L(E, L(E, F))

if it exists. This leads us to make some remarks on this iterated space of
linear maps.

Let v, w be elements of E, ie. vectors, and let Ae L(E, L(E, F)).
Applying A to v yields an element of L(E, F), that is A(v) is a continuous
linear map of E into F. We can therefore apply it to w and find an element
of F, which we denote by

Av)(w) = Mo, w) or also v-w
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using this last notation when too many parentheses are accumulating,
By definition, fixing v, we see that the preceding expression is linear in the
variable w. However, fixing w, we see that it is also linear in v, because if
vy, v, € E then

Moy + 0)(W) = (Mvy) + M))w) = Ay)(W) + Av2)(W)
= Moy, w) + Moy, w).
Also trivially,
Mev)(w) = cA(v)(w) = cA(v, w).

This now looks very much like a product as in Chapter VII, §1, and in
fact it is essentially. Indeed, we have the first two conditions of a product
E x E — F satisfied if we define the product between v and w to be A(v, w).
On the other hand,

* [A@)YW)| = [A)| [w] = [4][v]Iw]
so the third condition is almost satisfied except for the constant factor |4|.

Of course, constant factors do not matter when studying continuity and
limits. Actually, we can also view the association

(4, v, W)= Av)(w)
as a triple product, which is linear and continuous, satisfying in fact the

inequality (*). Cf. Exercise 1.
In general, a map

fiE, x--xE,»F
is said to be multilinear if each partial map
A A Tt N |
is linear. This means:
S+ 0 0) = f (0, 00) + f(01 - Ve 50,
Sy oevy, .00 0,) = ¢f (0, ... ,0,),

for v;, v;€ E; and ceR. In this section, we study the case n = 2, in which
case the map is said to be bilinear.

Examples. The examples we gave previously for a product (as in
Chapter VII, §1) are also examples of continuous bilinear maps. We leave
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it to the reader to verify for bilinear maps (or multilinear maps) the con-
dition analogous to that proved in §1 for linear maps. Cf. Exercise 1. Thus
the dot product of vectors in R" is continuous bilinear. The product of
complex numbers is continuous bilinear, and so is the cross product in
R3. Other examples: The map

L(E,F)x E>F
given by
(4, v)— A(v)
that we just considered. Also, if E, F, G are three spaces, then
L(E, F) x I(F, G) - L(E, G)
given by composition,
(L w)y—wold

is continuous bilinear. The proof is easy and is left as Exercise 4. Finally,
if

A= (aij)

is a matrix of n? numbers a; (i=1,...,n; j = 1,...,n), then 4 gives rise
to a continuous bilinear map

AR x R">R
by the formula
(X, Y)="XAY

where X, Y are column vectors, and ‘X = (x,, ...,x,) is the row vector
called the transpose of X. We study these later in the section.

Theorem 5.1. Let w: E; x E, — F be a continuous bilinear map. Then o
is differentiable, and for each (x,, x;) € E; x E, and every

(v, v;)€Ey X E,
we have

Daxxy, X2)(v1, U2) = @(xy, v3) + w(vy, X2),
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so that Dw: Ey x Ey — L(E, x E,, F) is linear. Hence D*w is constant,
and D3w = 0.

Proof. We have by definition

w(xy + hy, X3 + h3) — (x4, X3) = 0(xy, ) + 0(hy, x2) + @(hy, hy).
This proves the first assertion, and also the second, since each term on the
right is linear in both (x,, x;) = x and h = (h,, h;). We know that the
derivative of a linear map is constant, and the derivative of a constant
map is 0, so the rest is obvious.

‘We consider especially a bilinear map

AMEXE-F
and say that A is symmetric if we have
v, w) = Aw, v)
for all v, we E. In general, a multilinear map
MEx---xE—>F

is said to be symmetric if

Moy, .- 00) = )"(va(l)’ <+ e Vom)

for any permutation ¢ of the indices 1,...,n. In this section we look at
the symmetric bilinear case in connection with the second derivative.

We see that we may view a second derivative D2f(x) as a continuous
bilinear map. Our next theorem will be that this map is symmetric. We
need a lemma.

Lemma 5.2. Let A: E x E — F be a bilinear map, and assume that there

exists a map  defined for all sufficiently small pairs (v, w)€ E x E with
values in F such that

lim Y(v,w) =0,

(v, w)~+(0,0)

and that

[, w)| = [Y(v, W) |v] |w].
Then A =0.
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Proof. This is like the argument which gave us the uniqueness of the
derivative. Take v, we E arbitrary, and let s be a positive real number
sufficiently small so that y(sv, sw) is defined. Then

|A(sv, sw)| < 1¢(sv, sw)| |sv] |swl,
whence
5% Mo, W) < 5 |¢(sp, sw)| o] [w].
Divide by 52 and let s — 0. We conclude that Mv, w) = 0, as desired.

Theorem 5.3. Let U be open in E and let f: U — F be twice differentiable,
and such that D?f is continuous. Then for each x € U, the bilinear map
D?f(x) is symmetric, that is

D2f (x)(v, w) = D*f (x)(w, v)

forallv,weE.

Proof. Let xeU and suppose that the open ball of radius r in E
centered at x is contained in U. Let v, w € E have lengths < r/2. We shall
imitate the proof of Theorem 1.1, Chapter XV. Let

g(x) = f(x + v) — f(x).
Then
fOx+v+w)—flx+w)—f(x+0v)+f(x)

1
=g(x + w) — g(x) = J g'(x + twywdt
0
- f "[Df(x + v + ) — Df(x + tw)lwde
0

1 1
= f f D (x + sv + tw)v ds- wdt.
0 Jo
Let

W(sv, tw) = DY (x + sv + tw) — D?f(x).
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Then
1 1
o+ w =g = [ [ Dpeommasa
0 JO
1 1
+ J. J. Y(sv, tw)v - w ds dt
1] 1]

= D?f(x)v, w) + (v, w)

where o(v, w) is the second integral on the right, and satisfies the estimate
| (v, w)| < sup [Y(sv, tw)| [v] [w]-
s, t

The sup is taken for 0 < s < 1 and 0 < t < 1. If we had started with

g:) =f(x + w) —f(x)

and considered g,(x + v) — g,(x), we would have found another expres-
sion for the expression

fOx+v+w)—f(x+w)—f(x+0v)+f(x),

namely
DY (x)w, v) + ¢1(v, W)
where
[o1(v, W) = sup (Y1 (s, tw)| 0] [w]-
But then

D (x)(w, v) — Df (x)(v, W) = 9(v, W) — 94(v, W).

By the lemma, and the continuity of D?f which shows that sup |y(sv, tw)|
and sup |, (sv, tw)| satisfy the limit condition of the lemma, we now con-
clude that

D (x)(w, v) = D (x)(v, w),

as was to be shown.
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We now give an interpretation of the second derivative in terms of
matrices. Let 2:R" x R" — R be a bilinear map, and let e, ... ,e, be the
unit vectors of R". If

v=1vie, + -+ e,
and
w=we, +--+ we,

are vectors, with coordinates v;, w;e R (so these are numbers as coor-
dinates) then

Mo, w) = AMvyey + -+ + vpe,, wieg + - + wee,)
= Z vw;Me;, €;)
L
the sum being taken for all values of i, j=1,...,n. Let a;; = Ae;, ¢)).

Then q;; is a number, and we let 4 = (g;;) be the matrix formed with these
numbers. Then we see that

Ao, w) =Y a;jo,w;.
ij

Let us view v, w as column vectors, and denote by ‘v (the transpose of v)
the row vector ‘v = (vy, . ..,v,) arising from the column vector

L
v,
Then we see from the definition of multiplication of matrices that
Mo, w) = "'vAw,
which written out in full looks like

(TR S TAWA S
g5 -0 : : L= Yaow;
ij
dn1 " Gpp/ \Wn

We say that the matrix A4 represents the bilinear map A. It is obvious con-
versely that given an n X n matrix 4, we can define a bilinear map by
letting

(v, w) > "vAW.



484 DERIVATIVES IN VECTOR SPACES [XVIL, §5]

Let
2;R"x R" >R
be the map such that
Aifv, w) = v;w;.

Then we see that the arbitrary bilinear map A can be written uniquely in
the form

A= Z a;hij.
L)

In the terminology of linear algebra, this means that the bilinear maps
{43 (=1,...,nand j=1,...,n) form a basis for L}(R" R). We also
sometimes write A;; = 4; ® A; where 4; is the coordinate function of R”
given by A(v,,...,0,) = v;.

Now let U be open in R” and let g: U » L%(R", R) be a map which to
each x e U associates a bilinear map

g(x):R" x R" > R.

We can write g(x) uniquely as a linear combination of the 4;;. That is,
there are functions g;; of x such that

9(x) = Z 9i{(x)s;.
L

Thus the matrix which represents g(x) is the matrix (g;(x)), whose co-
ordinates depend on x.

Theorem 5.4. Let U be open in R" and let f: U — R be a function. Then
fis of class C* if and only if all the partial derivatives of f of order <2
exist and are continuous. If this is the case, then D*f(x) is represented
by the matrix

(D:D jf (x)).

Proof. The first derivative Df(x) is represented by the vector (1 x n
matrix) grad f(x) = (D f(x), ..., D, f(x)), namely

Df(x)v = le(x)vl + e + an(x)vn
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if v=(vy,...,0,) is given in terms of its coordinates v;e R. Thus we can
write

Df(x) = Dy f(x)Ay + -+ + D, f(x)A,

where 4; is the i-th coordinate function of R”, that is
AfVy, .. 50,) = 05

Thus we can view Df as a map of U into an n-dimensional vector space.
In the case of such a map, we know that it is of class C if and only if the
partial derivatives of its coordinate functions exist and are continuous.
In the present case, the coordinate functions of Df are D,f,...,D,f. This
proves our first assertion.

As to the statement concerning the representation of D2f(x) by the
matrix of double partial derivatives, let we R" and write w in terms of its

coordinates (wy,...,w,), w;€ R. It is as easy as anything to go back to
the definitions. We have

Df(x + h) — Df (x) = D} (x)h + o(h)
where ¢(h) = o(h). Hence
DY (x)h-w + @(h)w = Df (x + h)w — Df (x)w

= S 0ufGc+ B = DS

i (DjDif(x)hj + @i(h)w;

e 3

-

(D Dif Ch;w; + oh)w;).

Al
‘l‘lM:

Here as usual, ¢;(h) =o(h) for each i=1, ...,n. Fixing w and letting
h — 0, we see that for each w the effect of the second derivative D?f (x)h - w
on h is given by the desired matrix. In other words, for any v, we R" we
have

D¥f(xp-w= Z D;D; f (x)v;w;,
L)

thereby proving the desired formula.
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Note. Instead of going back to the definitions, one could also write
D’ (x)(v, w) = DD f(x)owy + -+ + DD, f(x)ow,,

evaluate Dg;(x)v where g; = D;f by
Dg,(x)v = Z Dig)(x)vi = Z DeDjf(x)vh
i=1 i=1

and substitute in the preceding expression to obtain what we want.

The matrix representing D?f(x) is called the Hessian of f at x and is
denoted by

i I |
) 0x, 0x, 0x, 0x,
W :
H(x) = (6x,- ax,) B " 6;f
rf
0x,, 0%y " 0x,, 0x,,

following the same notation as for the Jacobian.
The symmetry condition that D%f(x)(v, w) = D*f(x)(w, v) is reflected
in the matrix representation by the fact that
D-'Djf(x) = DjDif(x)
for the partial derivatives D;, D;. So everything fits together.

We can also use the same notation as that of Chapter XV, §5, namely

DY (x)(v, w) = (v- V)w- V) f(x)

where
v-V=uv,Dy +--- +,D, w-V=wD +---+wD,

are differential operators. This is simply a notational reformulation of
the theorem. The reader should note: One is torn between trying to avoid
the abstraction of the bilinear maps without coordinates which follow a
simple but abstract formalism, and the annoyance of the coordinates
which make formulas look messy. We have described above the notations
which emphasize various aspects of the theory, and which may be used
alternatively according to the taste of the user or the requirements of the
problems at hand. For bilinear maps, things still look reasonably simple,
but indices become much worse for the multilinear case.
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XVII, §5. EXERCISES

1. Let Ey, ...,E,, F be normed vector space and let
ME, x -+ xE,~»F

be a multilinear map. Show that A is continuous if and only if there exists a num-
ber C > 0 such that for all v; € E; we have

[Xvs, - . 0| S Cloyl[va] - [val-

N

Denote the space of continuous multilinear maps as above by L(E,,...,E,; F).
If A is in this space, define || to be the greatest lower bound of all numbers
C > 0 such that

[ A, - 0n)| £ Cloglvz] -+ |tw]

for all v; € E;. Show that this defines a norm.

w

Consider the case of bilinear maps. We denote by L(E, F) the space of continu-
ous bilinear maps of E x E —» F. If Ae L(E, L(E, F)), denote by f; the bilinear
map such that f(v, w) = Mv)}(w). Show that [A| = | f,|. :

4. Let E, F, G be normed vector spaces. Show that the composition of mappings
L(E, F) x (F, G) ~ L(E, G)

given by (4, w)—>w oA is continuous and bilinear. Show that the constant C of
Exercise 1 is equal to 1.

@

Let 1 be a function of class C2 on some open ball U in R" centered at A. Show that
SX)=f(A) + Df(A)- (X — A) + g(XYX — A, X — 4)

where g: U — LR, R) is a continuous map of U into the space of bilinear maps
of R" into R. Show that one can select g(X) to be symmetric for each X e U.

XVII, §6. HIGHER DERIVATIVES AND
TAYLOR’S FORMULA

We may now consider higher derivatives. We define

D*f(x) = D(D*™f Xx).

Thus D?f(x) is an element of L(E, L(E, ...,L(E, F) .. .)) which we denoted
by LP(E, F). We say that fis of class C? on U or is a C* map if D*f (x) exists
for each x € U, and if

D¥: U » LXE, F)

is continuous for eachk =0, ..., p.
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We have trivially DID'f(x) = D?f(x) if ¢ + r = p and if D’f(x) exists.
Also the p-th derivative D? is linear in the sense that

D*(f+g)=D"f+D’q and  D¥cf) = cD
If Ae LP(E, F) we write
Mo )vs) - (0p) = Aoy, .05 V)
If g + r = p, we can evaluate A(v,, ... ,v,) in two steps, namely
Ay, - 0g) - (Dga1s -+ - 3Dp)-
We regard A(vy, ..., v,) as the element of L?~%(E, F) given by

Mgy 0g) (Dgu1s -+ s0p) = MVgs -+ - 50p):

Lemma 6.1. Let v,,...,0, be fixed elements of E. Assume that f is p
times differentiable on U. Let

g(x) = D* I (x)(v3, - - -5 V)

Then g is differentiable on U and
Dg(xXv) = D (x)(v, vz, ..., Vp).
Proof- The map g: U — F is a composite of the maps
DP=if: U — LP7Y(E, F) and A LP"YE,F)>F

where 1 is given by the evaluation at (v,,...,v,). Thus 1 is continuous
and linear. It is an old theorem that

D(AoDP'f) = Ao DDP~!f = A o D?f,
namely the corollary of Theorem 3.1. Thus
Dg(x)o = (D% (x)o)3, -, v,),

which is precisely what we wanted to prove.

Theorem 6.2. Let f be of class CP on U. Then for each x € U the map
DFf (x) is multilinear symmetric.
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Proof. By induction on p 2 2. For p = 2 this is Theorem 5.3. In par-
ticular, if we let g = D?~2f we know that for v,, v, € E,

D?g(x)(vy, v3) = D?g(x)(v;, v;),
and since D?f = D2DP~ %f we conclude that
(.) Dpf(x)(vl’ vee )vp) = (DZDP— zf(x))(vl) vz) . (03’ ce ’vy)

= (D*DP72f ()0, 01) - (V3, - - 0,
= D (x)(vz, vy, V35 - - -sUp)-
Let o be a permutation of (2, ...,p). By induction,
D™ lf(x)(va'(Z)) v e sUg(my) = DPT lf(x)(vz, e aUp).
By the lemma, we conclude that
** DFf (x)(v,, Ug(2)s -+ 5 a'(p)) = D (x)(vy, . .-, p)-
From (*) and (**) we conclude that DPf(x) is symmetric because any
permutation of (1, ...,p) can be expressed as a composition of the permu-
tations considered in (*) or (**). This proves the theorem.

For the higher derivatives, we have similar statements to those obtained
with the first derivative in relation to linear maps. Observe that if
we LP(E, F) is a multilinear map, and A€ L(F, G) is linear, we may com-
pose these

Ex---xE8FAG
to get Aow, which is a multilinear map of E x --- x E —» G. Further-
more,  and A being continuous, it is clear that Ao w is also continuous.
Finally, the map
Ay LX(E, F) » L¥(E, G)
given by “composition with A”, namely

w—low

is immediately verified to be a continuous linear map, that is for
wy, w, € LP(E, F) and c e R we have

Ao(wy + W) =Aowy + Acw, and  Ae(cw,;) = chow,
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and for the continuity,
[Ao vy, ....0)| S |2l @] ]vg] -0,
)
[1eo| < |Alla].

Theorem 6.3. Let f: U — F be p-times differentiable and let A:F - G
be a continuous linear map. Then for every x € U we have

DP(Ae f)(x) = Ao Df(x).
Proof. Consider the map x+— DP~!(40 f)(x). By induction,
DP~ (Ao f)(x) = Ao DP™f (x).

By the corollary of Theorem 3.1 concerning the derivative D(4, o D?~*f),
namely the derivative of the composite map

U 2L 1y E, FY S 1P Y(E, 6),
we get the assertion of our theorem.

If one wishes to omit the x from the notation in Theorem 6.3, then one
must write

(ke f) = 4,0 D7f.
Occasionally, one omits the lower * and writes simply DP(Ao f) = A o D¥.

Taylor’s formula. Let U be open in E and let f: U — F be of class CP.
Let xeU and let ye E be such that the segment x +ty, 0 St <1, is
contained in U. Denote by y® the k-tuple (y, y, ...,y). Then

Dy, DTG

S 9) = £ + =55 TN R,

where

101 _ pyp-1
R [ Q=0

A W DPf(x + ty)y‘”’ dt.
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Proof. We can give a proof by integration by parts as usual, starting with
the mean value theorem,

1
FOc+ ) = f6) + j DfGx + ty)y dt.

We consider the map t — Df(x + ty)y of the interval into F, and the usual
product

RxF—>F
which consists in multiplying vectors of F by numbers. We let
u = Df(x + ty)y and dv=dt,v=—(1—-1)
This gives the next term, and then we proceed by induction, letting

(1 —op?

u=DMf(x +ty)y® and dv=-—-"—-
f(x + ty)y =Dl

dt

at the p-th stage. Integration by parts yields the next term of Taylor’s
formula, plus the next remainder term.
The remainder term R, can also be written in the form

_ra-t o
R‘,—J‘owl)'{f(xi'ty)dt y(y‘
The mapping
ye j it ,),,_ oo DY+ )t

is continuous. If f is infinitely differentiable, then this mapping is infinitely
differentiable since we shall see later that one can differentiate under the
integral sign as in the case studied in Chapter X.

Estimate of the remainder. Notation as in Taylor's formula, we can also
write

+ 6(y)

DP; (P)
st ) =16+ Ly DTED

1!
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where
|D%f (x + ty) — D*f ()]
61 = Sup 0 [yl?
and
tim 2O _
y~0 Iyl?

Proof. We write

D*f(x + ty) — D*f(x) = ¥(ty)-

Since DFf is continuous, it is bounded in some ball containing x, and

lim y(ty) =

y~0

uniformly in t. On the other hand, the remainder R, given above can be
written as

f (1_')"— - DY Gy dx+f a-o’
0

DT —pr Ve d

We integrate the first integral to obtain the desired p-th term, and estimate
the second integral by

ta -t
(-1

where we can again perform the integration to get the estimate for the
error term 6(y).

sup YNyl | ~——-dt,
0sts1 0

Theorem 6.4. Let U be open in E and let f:U > F, x --- x F,, be a
map with coordinate maps (fy, ..., f,,). Then f is of class C? if and only
if each f; is of class CP, and if that is the case, then

D*f = (D*f,, ...,D*f,).

Proof. We proved this for p = 1 in §3, and the general case follows by
induction.

Theorem 6.5. Let U be open in E and V open in F. Let f: U — V and
g:V — G be CP maps. Thengo f is of class CP.
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Proof. We have

D(g o f)(x) = Dg(f(x)) o Df (x).

Thus D(go f) is obtained by composing a lot of maps, namely as repre-
sented in the following diagram:

U X — L(E, G).
L F)}

If p = 1, then all mappings occurring on the right are continuous and so
D(ge f) is continuous. By induction, Dg and Df are of class C*~!, and
all the maps used to obtain D(go f) are of class CP~! (the last one on the
right is a composition of linear maps, and is continuous bilinear, so in-
finitely differentiable by Theorem 5.1). Hence D(go f) is of class C?~?,
whence g o f is of class C?, as was to be shown.

We shall now give explicit formulas for the higher derivatives in terms
of coordinates when these are available.

We consider multilinear maps

AR"X---xR'=>R

(taking the product of R” with itself p times). If

vy =vg.8 + 0+ Vg€,
v, =Up€y + + vpen
where v;; € R are the coordinates of v;, then
Aviier + -+ + Vinen, - \Up1€1 4+ + Upnen)
= 3 v U Ags -0 )
iy endp

the sum being taken over all r-tuples of integers j, ..., j, between 1 and n.
If we let 4;,...; : R" x -=* x R”— R be the map such that

Ay i1 -+ 30p) = Dy - Upj,
then we see that 4;,...;, is multilinear; and if we let

Meyy ---585,) = oy,
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then we can express A as a unique linear combination
A =3 aphep
@

where we use the abbreviated symbols (j) = (jy,-.-,Jj,)- Thus the multi-
linear maps A form a basis of L*(R", R).
Ifg: U - L°(R", R) is a map, then for each x € U we can write

g(x) = Z i)
U)

where gy;, are the coordinate functions of g. This applies in particular
when g = D?f for some p-times differentiable function f. In that case,
induction and the same procedure given in the bilinear case yield:

Theorem 6.6. Let U be open in R" and let f: U — R be a function. Then
£ is of class CP if and only if all the partial derivatives of f of order < p
exist and are continuous. If this is the case, then

D*f(x) = %Dh - Dy, f(X)Ay, e,
and for any vectors vy, ... ,v, € R" we have
DPf(x)(vy, - . - ’vp) = uszx e Dj,f(x)”lj, ©t Upje
)

Observe that there is no standard terminology generalizing the notion
of matrix to an indexed set

{aj, "'jp}

(which could be called a multimatrix) representing the multilinear map.
The multimatrix

{Dj, -+ D;, f(x)}

represents the p-th derivative D?f(x). In the notation of Chapter XV, §5,
we can write also

DPf(x) (s, - --50p) = (01 - V) (v, VIS ()

where

v:°V=0vyDy + - +v,D,

is a partial differential operator with constant coefficients vy, . . . ,v;, which
are the coordinates of the vector v;.
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XVII, §6. EXERCISE
1. Let U be open in E and V openin F. Let
U=V and g:V-G
be of class CP. Let xoe U. Assume that D¥(x,) = 0 for all k =0,...,p. Show

that DY(gof)(xo) =0 for 0 < k < p. [Hint: Induction] Also prove that if
D*(f(x0)) =0for 0 < k < p, then (DXgo f))xo) = 0for 0< k < p.

XVIl, §7. PARTIAL DERIVATIVES

Consider a product E = E; x --- x E, of complete normed vector spaces.
Let U; be open in E; and let

fiU; x---xU,»F
be a map. We write an element xe U, x --- x U, in terms of its “co-
ordinates,” namely x = (x,, ...,x,) with x; € U;.

We can form partial derivatives just as in the simple case when E = R".
Indeed, for x4, ...,X;_y, X;41, - - - X, fixed, we consider the partial map

X f(X gy e e e s Xy e e %)

of U; into F. If this map is differentiable, we call its derivative the partial
derivative of fand denote it by D; f(x) at the point x. Thus, if it exists,

Dif(x)=AE,»F
is the unique continuous linear map 4 e L(E;, F) such that
S gseesXi + By oox,) — f(xq, .. 00%,) = AB) + o(h),
for he E; and small enough that the left-hand side is defined.
Theorem 7.1. Let U; be openin E; (i = 1,...,n) and let
fiU;x--xU,»F
be a map. This map is of class C” if and only if each partial derivative

Dif:Uy x -+ x Uy > L(E,, F)
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is of class CP~'. If this is the case, and
v=(vy,...,0)€EE; X :--- X E,,

then
D = 3. Duf

Proof. We shall give the proof just for n = 2, to save space. We assume
that the partial derivatives are continuous, and want to prove that the
derivative of f exists and is given by the formula of the theorem. We let
(x, y) be the point at which we compute the derivative, and let h = (h,, h,).
We have

f(X + hlsy + hz) _f(x’Y)
=f(x+hy,y+ b)) —f(x + hy, y) +(x + by, y) — f(x,9)

1 1
= f D, f(x + hy, y + thy)h, dt + J‘ D, f(x + thy, y)h, dt.
0 0

Since D, f is continuous, the map ¥ given by

Y(hy, thy) = Dy f(x + hy, y + thy) — D f(x, y)
satisfies

lim Y(h,, thy) = 0.
h=0
Thus we can write the first integral as

1 1 1
[ Das e+ by + thhy = [ Dy 165 by + [ ths, thh at
0 0 0

1
= D, Whs + [ Wlhsy thlhy
0

Estimating the error term given by this last integral, we find

1
| [ s iy
0

= sup |Y(hythy)||hy|
0sest

= |h| sup|yi(hy, thy)|
= o(h).
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Similarly, the second integral yields

D, f(x, y)hy + o(h).

Adding these terms, we find that Df(x, y) exists and is given by the for-
mula, which also shows that the map Df = f is continuous, so f is of class
C'. If each partial is of class CP, then it is clear that fis CP. We leave the
converse to the reader.

Example. Let E, be an arbitrary space and let E, = R™ for some m
so that elements of E, can be viewed as having coordinates (y,, . ..,y,).
Let F = R® so that elements of F can also be viewed as having coordinates
(21, -.-,2). Let U be open in E; x R™ and let

f:U>R
be a C? map. Then the partial derivative

D, f(x,y): R" = R*

may be represented by a Jacobian matrix. If (f},...,f,) are the coordinate
functions of f, this Jacobian may be denoted by J?(x, y), and we have

LRy
0y, Y
JPx, = | : :
9% .. 9%
9y, a—ym

For instance, let f(x, y, z) = (x2y, sin z). We view R® as the product
R x R? so that D, f is taken with respect to the space of the last two co-
ordinates. Then D, f(x, y, z) is represented by the matrix

2
pono=(2 2)

0 cosz

Of course, if we split R* as a product in another way, and compute D, f
with respect to the second factor in another product representation, then
the matrix will change. We could for instance split R® as R? x R and
thus take the second partial with respect to the second factor R. In that
case, the matrix would be simply

(e}
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It will be useful to have a notation for linear maps of products into
products. We treat the special case of two factors. We wish to describe
linear maps

AE, x E—»F, x F,.

We contend that such a linear map can be represented by a matrix

(lll 3'12)
A2y Az
where each ;;: E; — F; is itself a linear map. We thus take matrices whose
components are not numbers any more but are themselves linear maps.
This is done as follows.

Suppose we are given four linear maps A; as above. An element of

E, x E, may be viewed as a pair of elements (vy, v;) with v, € E; and
v, € E;. We now write such a pair as a column vector

Uy
UF)
and define A(v,, v,) to be

('111 }*12)(”1) _ ('111”1 + Alzvz)

Aa1 A2z f\vy A2101 + A220

so that we multiply just as we would with numbers. Then it is clear that A
is a linear map of E, x E, into F; x F,.

Conversely, let A: E; x E; » F, x F, be a linear map. We write an
element (v, v;) € E; X E, in the form

(1, 3) = (01, 0) + (0, vy).

We also write 4 in terms of its coordinate maps A = (4,, 4,) where
AtEy x E; > Fyand A;: E; x E, — F, are linear. Then

Moy, 02) = (A, (01, v2), A5(y, v5))
= (A1(v1, 0) + 4,(0, v3), A3(vy, 0) + A,(0, v,)).
The map
vy Ay(vy, 0)
is a linear map of E, into F, which we call ,,. Similarly, we let
i) = 401,0),  A1,(2) = 40, vy),
A21(v,) = Ay(v,, 0), A22(v2) = 4,(0, v,).
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Then we can represent A as the matrix

j'1 1 Al 2
)'21 )'22
as explained in the preceding discussion, and we see that A(v,,v,) is given
by the multiplication of the above matrix with the vertical vector formed
with v, and v,.
Finally, we observe that if all 4;; are continuous, then the map 4 is also
continuous, and conversely.

We can apply this to the case of partial derivatives, and we formulate
the result as a corollary.

Corollary 7.2. Let U be open in Ey x E; and let f: U — F; x F; be a
CP map. Let

f=Uuh)
be represented by its coordinate maps
fi:U->F, and  f,:U > F,.
Then for any x € U, the linear map Df (x) is represented by the matrix

(lel(x) szl(x))
Dy fo(x) D, fa(x))

Proof. This follows by applying Theorem 7.1 to each one of the maps
/1 and f, and using the definitions of the preceding discussion.

Observe that except for the fact that we deal with linear maps, all that
precedes was treated in a completely analogous way for functions on open
sets of n-space, where the derivative followed exactly the same formalism
with respect to the partial derivatives.

XVIl, §8. DIFFERENTIATING UNDER THE INTEGRAL SIGN

The proof given previously for the analogous statement goes through
in the same way. We need a uniform continuity property which is slightly
stronger than the uniform continuity on compact sets, but which is proved
in the same way. We thus repeat this property in a lemma.
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Lemma 8.1. Let A be a compact subset of a normed vector space, and let
S be a subset of this normed vector space containing A. Let f be a contin-
uous map defined on S. Given € there exists 6 such that if x€ A and y€S,
and |x — y| < &, then | f(x) —f()| <e.

Proof. Given ¢, for each xe A we let r(x) be such that if ye S and
|y — x| < n(x), then |f(y) —f(x)| <e. Using the finite covering prop-
erty of compact sets, we can cover 4 by a finite number of open balls B;
of radius &; = r(x;)/2, centered at x; (i = 1,...,n). Welet

6 = min §;.

If x € A, then for some i we have |x — x;| < r(x;)/2. If |y — x| <, then
|y — x| < r(x;), so that

LfD) =SG£S0 = f &) + 1S (xi) = f )

< 2¢,

thus proving the lemma.

The only difference between our lemma and uniform continuity is that
we allow the point y to be in S, not necessarily in A.

Theorem 8.2. Let U be open in E and let J = [a, b] be an interval.
Let f:J x U — F be a continuous map such that D, f exists and is con-
tinuous. Let

b
o) = [ %y
Then g is differentiable on U and
b
Dg(x) =j D, f(t, x) dr.

Prqof. Differentiability is a property relating to a point, so let xe U.
Selecting a sufficiently small open neighborhood V of x, we can assume
that D, f'is bounded on J x V. Let A be the linear map

b
1=J Dyf(1,x) dt.
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We investigate
b
g(x + h) —g(x) — Ah = I [f(t, x + b) — f(t, x) — D, f(t, x)h] dt

- J‘: [I: Dy f(t, x + uh)h du — D, £, x)h] dt
- [

lg(x + B) — g(x) — Ah| < max | D, (¢, x + uk) — D, f(t, x)||h| (b — a)

Jol (Daf (1, x + uk) — Daf (6, )} du} a.

We estimate:

the maximum being taken for a<u <b and a <t <b. By the lemma
applied to D, f on the compact set J x {x}, we conclude that given € there
exists 6 such that whenever |h| < & then this maximum is < e. This proves
that A is the derivative g'(x), as desired.



CHAPTER XVIII

Inverse Mapping Theorem

XV, §1. THE SHRINKING LEMMA

The main results of this section and of the next chapter are based on a
simple geometric lemma.

Shrinking lemma. Let M be a closed subset of a complete normed vector
space. Let f:M — M be a mapping, and assume that there exists a num-
ber, K,0 < K < 1, such that for all x, y € M we have

1fG) = fWI £ KIx — .

Then f has a unique fixed point, that is there exists a unique point xo € M
such that f(xo) = xo. If x € M, then the sequence {f"(x)} (iteration of f
repeated n times) is a Cauchy sequence which converges to the fixed point.

Proof. We have for a fixed x e M,
1f26) = ) = 1 fIf () = f()] < K| f(x) = x].
By induction,
1) = £ £ K1) = "7 (x)] < K7| £ (x) = x].
In particular, we see that the set of elements {f"(x)} is bounded because

1176) = x| £ 1/7(x) = £* )]
1) = 1720 + -+ | ) — ]
< (Ku-l +K"-2+...+K+ ])lf(x) —xl

and the geometric series converges.

502



[XVIIL, §1] THE SHRINKING LEMMA 503

Now by induction again, for any integer m = 1 and k > 1 we have
[f™44x) — ()l £ K™ f4(x) — x|.

We have just seen that the term f*(x) — x is bounded, independently of k.
Hence there exists N such that if m, n > N and say n = m + k we have

f™H46) = fm()] <€

because K™ — 0 as m — co. Hence the sequence {f"(x)} is a Cauchy se-
quence. Let x, be its limit. Select N such that for all n > N we have

[xo — f"(¥)| < e
Then
[f(xo) = f 1) £ Klxg — f(x)| < e
This proves that the sequence { f"(x)} converges to f(x,). Hence

S(xo) = xo

and x, is a fixed point. Finally, suppose x, is also a fixed point, that is
f(xy) = x,. Then

Ixy = xo| = 1f(x1) — f(x0)| < Klx; — xol.

Since 0 < K < 1, it follows that x;, — xo = 0 and x, = x,. This proves
the uniqueness, and the theorem.

A map as in the theorem is called a shrinking map. We shall apply the
theorem in §3, and also in the next chapter in cases when the space is a
space of functions with sup norm. Examples of this are also given in the
exercises.

XViii, §1. EXERCISES

1. (Tate) Let E, F be complete normed vector spaces. Let f: E — F be a map having
the following property. There exists a number C > 0 such that for all x, y € E we
have

&+ - -folsC
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N

w

Ll

=

(a) Show that there exists a unique additive map g: E — F such that g —f is
bounded for the sup norm. [Hint: Show that the limit

909 = lim L. (i:")

exists and satisfies g(x + y) = g(x) + g(y).]
(b) If f is continuous, prove that g is continuous and linear.

. Generalize Exercise 1 to the bilinear case. In other words, let f:E x F—>Gbea

map and assume that there is a constant C such that
1y +x2,9) = f(x1, ) = fx2, M S C,
£y + y2) = [ 3) = [ y)l = C
for all x,x;,x,€E and y,y,,y, € F. Show that there exists a unique bi-

additive map g: E x F — G such that f— g is bounded for the sup norm. If f
is continuous, then g is continuous and bilinear.

. Prove the following statement. Let B, be the closed ball of radius r centered at 0 in

E. Let f: B, » E be a map such that:

@) /() = fOI S blx — y|with0 <b < L.

®) /O] <11 - b). _

Show that there exists a unique point x € B, such that f(x) = x.

Notation as in Exercise 3, let g be another map of B, into E and let ¢ > 0 be such
that |g(x) — f(x)| £ c for all x. Assume that g has a fixed point x,, and let x, be
the fixed point of f. Show that |x, — x| < c/(1 — b).

Let K be a continuous function of two variables, defined for (x, y) in the square
as<x=banda<y=b. Assume that |K| < C for some constant C > 0. Let f
be a continuous function on [a, b] and let r be a real number satisfying the in-
equality

Irl <=t
Cb-—a

Show that there is one and only one function g continuous on [a, b] such that

b
S(x)=g(x) +r f K(t, x)g(t) dt.

(Newton’s method) This method serves the same purpose as the shrinking lemma
but sometimes is more efficient and converges more rapidly. It is used to find
zeros of mappings.

Let B, be a ball of radius r centered at a point xo € E. Let f: B, — E be a C?
mapping, and assume that f” is bounded by some number C = 1 on B,. Assume
that f'(x) is invertible for all x € B, and that | f'(x)~!| < C for all xe€ B,. Show

that there exists a number & depending only on C and r such that if 1f(xo)| =6
then the sequence defined by

Xas1 = Xo = [(x:)7'f (x,)
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lies in B, and converges to an element x such that f(x)=0. [Hint: Show
inductively that

%41 = Xa| = CLAX)

C
1fa ) S 14y — X,,|25,

and hence putting r} = ( ) /2),
If(xa)l = (C? /2)'+2+~-~+zn»l &

[Xust = X0 £ Clry 472 4 -+ +1}").
i

=

Apply Newton’s method to prove the following statement. Assume that f: U — E
is of class C? and that for some point x, € U we have f(xo) = 0 and f*(x,) is in-
vertible. Show that given y sufficiently close to 0, there exists x close to x, such that
f(x) = y. [Hint: Consider the map g(x) = f(x) — y.]

[Note. The point of the Newton method is that it often gives a procedure which
converges much faster than the procedure of the shrinking lemma. Indeed, the
shrinking lemma converges more or less like a geometric series. The Newton
method converges with an exponent of 2".]

e

The following is a reformulation due to Tate of a theorem of Michael Shub.

(a) Let n be a positive integer, and let f: R — R be a differentiable function such
that f(x) 2 r > 0 for all x. Assume that f(x + 1) = f(x) + n. Show that there
cxists a strictly increasing continuous map «: R — R satisfying

alx + 1) =a(x) + 1
such that
S (ox)) = a(nx).
[Hint: Follow Tate's proof. Show that f is continuous, strictly increasing, and let
g be its inverse function. You want to solve a(x) = g(x(nx)). Let M be the set of all
continuous functions which are increasing (not necessarily strictly) and satisfying

a(x 4+ 1) = «(x) + 1. On M, define the norm

llal = sup |a(x)I.

0sxs1
Let T: M — M be the map such that
(Ta)(x) = gla(nx)).

Show that T maps M into M and is a shrinking map. Show that M is complete,
and that a fixed point for T solves the problem.] Since one can write

nx = o (fa(x)),
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one says that the map x +— nx is conjugate to f. Interpreting this on the circle,
one gets the statement originally due to Shub that a differentiable function on the
circle, with positive derivative, is conjugate to the n-th power for some n.

(b) Show that the differentiability condition can be replaced by the weaker con-
dition: There exist numbers ry, r, with 1 < r; < r, such that for all x 2 0 we have

rsSf(x +s)— f(x) Srps.

Further problems involving similar ideas, and combined with another tech-
nique will be found at the end of the next section. It is also recommended that
the first theorem on differential equations be considered simultaneously with
these problems.

XVIII, §2. INVERSE MAPPINGS, LINEAR CASE

Let A: E — F be a continuous linear map. We continue to assume through-
out that E, F are euclidean spaces, but what we say holds for complete
normed spaces. We shall say that A is invertible if there exists a continuous
linear map w: F — E such that w <1 = idg and 40w = id; where idg and
idr denote the identity mappings of E and F respectively. We usually
omit the index E or F on id and write simply id or I. No confusion can
really arise, because for instance, w o 4 is a map of E into itself, and thus
if it is equal to the identity mapping it must be that of E. Thus we have for
everyxe Eand ye F:

o(A(x)=x and AMo@y) =y

by definition. We write 2~ ! for the inverse of A.

Consider invertible elements of L(E, E). If 4, w are invertible in L(E, E),
then it is clear that w o 4 is also invertible because (w0 A) ' = 1" 1oL
For simplicity from now on, we shall write wA instead of w o A.

Consider the special case A: R” — R". The linear map 4 is represented
by a matrix 4 = (g;;). One knows that A is invertible if and only if 4 is
invertible (as a matrix), and the inverse of 4, if it exists, is given by a
formula, namely

1

-1 _
A= Detay

4

where A is a matrix whose components are polynomial functions of the
components of 4. In fact, the components of 4 are subdeterminants of
A. The reader can find this in any text on linear algebra. Thus in this
case, A is invertible if and only if its determinant is unequal to 0.
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Note that the determinant
Det: Mat,,,—» R

is a continuous function, being a polynomial in the n? coordinates of a
matrix, and hence the set of invertible n x n matrices is open in Mat,, ,..

The next theorem gives a useful formula whose proof does not depend
on coordinates.

Theorem 2.1. The set of invertible elements of L(E, E) is open in L(E, E).
If ue€ L(E, E) is such that |u| < 1, then I — u is invertible, and its inverse
is given by the convergent series

u".

™Ms

d-w'=I+u+v*+--=

n

[}

Proof. Since |u| < 1, and since for u, v € L(E, E) we have |uv| < |u]|v|,
we conclude that |u"| < |u[". Hence the series converges, being compa-
rable to the geometric series. Now we have

- +u+u?+-+u")
=l—ut=T+u+-+u)I—u.
Taking the limit as n — co and noting that u"*! — 0 as n — 0o, we see
that the inverse of I — u is the value of the convergent series as promised.

We can reformulate what we have just proved by stating that the open
ball of radius 1 in L(E, E) centered at the identity I, consists of invertible
elements. Indeed, if A€ L(E, E) is such that |1 — I| < 1, then we write
A=1— (I — 1) and apply our result. Let u, be any invertible element
of L(E, E). We wish to show that there exists an open ball of invertible
elements centered at u,. Let

1
0<d<—t»
Jug '

and suppose that u € L(E, E) is such that |u — u,| < 8. Then
luug ' — Il = |(u — uplug ' | < lug 'l — ugl < 1.

By what we have just seen, it follows that uug ' is invertible, and hence
uug 'uy = u is invertible, as was to be shown.
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Remark. If u is sufficiently close to u, then u~! is bounded, as one sees
by writing |u™ | = |u™ ugug | < [u™ uol lug *|.

Denote by Inv(E, E) the open set of invertible elements of L(E, E). The
map of Inv(E, E) — Inv(E, E) given by

T

is easily seen to be continuous. Indeed, if u, is invertible, and u is close
to ug, then

U ugt = um Y — uug

u
Taking norms shows that

-1

™t —ug | = lu — uol lug ' [ u™"],

whence the continuity. However, much more is true, as stated in the next
theorem.

Theorem 2.2. Let ¢: Inv(E, E) — Inv(E, E) be the map u+>u~'. Then
@ is infinitely differentiable, and its derivative is given by

@@y = —utou™ .
Proof. We can write for small h € L(E, E):

W+t —ut=@wd+uh) ' —u?
= (] + u_lh)'lu" —y!
=[T+u'h)™" = 1u

By Theorem 2.1 there is some power series g(k), convergent for 4 so small
that |u~'h| < 1, for which

T+u'h)y ' =1—u'h+ @ *h)?g(h),
and consequently

+m) —ut = [—u™h + )Py Ju
= —u Mt + g

The first term on the right is ¢'(u)h in view of the estimate

[ *h)?g(h)u=*| < C|h|?
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for some constant C. Thus the derivative is given by the formula as stated
in the theorem. The fact that the map u+u~1! is infinitely differentiable
follows because the derivative is composed of inverses and continuous
bilinear maps (composition), so that by induction ¢’ is of class C” for every
positive integer p. The theorem is proved.

Remark. In the case of matrices, the map
A(x) — Ax) !

where (x) = (x;;) are the n> components of the matrix A(x), can be seen
to be C* because the components of A(x)™! are given as polynomials in
(x), divided by the determinant, which is not 0, and is also a polynomial.
Thus one sees that this map is infinitely differentiable using the partial
derivative criterion. However, even seeing this does not give the formula
of the theorem describing the derivative of the inverse map, and this
formula really would not be proved otherwise even in the case of matrices.
Note that the formula contains the usual —u~2 except that the noncom-
mutativity of the product has separated this and placed ™' on each side of
the variable v.

XVIIl, §2. EXERCISES
1. Let E be the space of n x n matrices with the usual norm | 4| such that
|4B| = |A4]|BI.

Everything that follows would also apply to an arbitrary complete normed vector
space with an associative product E x E — E into itself, and an element I which
acts like a multiplicative identity, such that |I| = 1.

(2) Show that the series

© gn
exp(d) = 3, —
n=0 N:

converges absolutely, and that |exp(4) — I| < 1if | A| is sufficiently small.
(b) Show that the series

2 B
1og(1+B)=l—:—B7+~--+(—1)"“7+~--

converges absolutely if | B| < 1 and that in that case,
llog(I + B)| < |BI/(1 — | B])-

If |I — C| < 1, show that the series
c-i

() RPN ol

logC=(C-N-— -

converges absolutely.
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(c) If | A| is sufficiently small show that log exp(4) = A and if |C — I| < 1 show
that exp log C = C. [Hint: Approximate exp and log by the polynomials of the
usual Taylor series, estimating the error terms.]

(d) Show that if A, Bcommute, that is AB = BA, then

exp(A + B) = exp A exp B.

State and prove the similar theorem for the log.

(e) Let C be a matrix sufficiently close to I. Show that given an integer m >0,
there exists a matrix X such that X™ = C, and that one can choose X so that
XC =CX.

. Let U be the open ball of radius 1 centered at . Show that the map log: U — E
is differentiable.

N

bad

Let V be the open ball of radius 1 centered at 0. Show that the map exp: V — E
is differentiable.

4. Let K be a continuous function of two variables, defined for (x, y) in the square
a< x<banda <y <b. Assume that |K|| < C for some constant C > 0. Let f
be a continuous function on [a, b] and let r be a real number satisfying the in-
equality

Il <
r v
C(b — a)
Show that there is one and only one function g continuous on [a, b] such that

b
169 =g + rf K, x)g() dt.

(This exercise was also given in the preceding section. Solve it here by using Theorem
2.1)

wv

. Exercises 5 and 6 develop a special case of a theorem of Anosov, by a proof due to
Moser.

First we make some definitions. Let A: R? — R? be a linear map. We say that

A is hyperbolic if there exist numbers b > 1, ¢ < 1, and two linearly independent

vectors v, w in R? such that Av = bv and Aw = cw. As an example, show that the

matrix (linear map)
2 1
A=
G2

Next we introduce the C' norm. If f is a C' map, such that both f and f* are
bounded, we define the C' norm to be

has this property.

I Uy = max(l £ 1l 171D

where || | is the usual sup norm. In this case, we also say that f is C'-bounded.
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Sl

The theorem we are after runs as follows:

Theorem. Let A:R? - R? be a hyperbolic linear map. There exists & having
the following property. If f:R? - R? is a C' map such that

If—Al <,

then there exists a continuous bounded map h: R? — R? satisfying the equation
Seh=hoA.

First prove a lemma.

Lemma. Let M be the vector space of continuous bounded maps of R? into

R2 Let T: M — M be the map defined by Tp=p— A opoA. ThenTisa
continuous linear map, and is invertible.

To prove the lemma, write

p(x) = p* (v + p~(x)w
where p* and p~ are functions, and note that symbolically,

Tp* =P§ — b_lp+°A,

that is Tp* = (I — S)p* where ||S|| < 1. So find an inverse for T on p*. An-
alogously, show that Tp~ = (I — S5 *)p~ where [ISoll < 1, so that S,T = So — I
is invertible on p~. Hence T can be inverted componentwise, as it were.

To prove the theorem, write f = A + g where g is C'-small. We want to solve
for h = I + p with p e M, satisfying foh = ho A. Show that this is equivalent to
solving

Tp=—A""ogoh,
or equivalently,
p=-T A7 ego(I +p))
This is then a fixed point condition for the map R: M — M given by
R@p)= —T "(A 'ege( + p))

Show that R is a shrinking map to conclude the proof.

One can formulate a variant of the preceding exercise (actually the very case dealt
with by Anosov-Moser). Assume that the matrix A with respect to the standard
basis of R? has integer coefficients. A vector z € R? is called an integral vector if its
coordinates are integers. A map p: R? — R? is said to be periodic if

p(x + z) = p(x)
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for all x € R? and all integral vectors z. Prove:

Theorem. Let A be hyperbolic, with integer coefficients. There exists & having the
following property. If g is a C*, periodic map, and ||gll, < J, and if

f=4A+g
then there exists a periodic continuous map h satisfying the equation
feh=hoA.

Note. With a bounded amount of extra work, one can show that the map h
itself is CO%invertible, and so f = ho Aoh™".

XVIII, §3. THE INVERSE MAPPING THEOREM

Let U be open in E and let f: U - F be a C' map. We shall say that f
is C'-invertible on U if the image of f is an open set V in F, and if there is a
C! map g: V - U such that f and g are inverse to each other, that is for all
x €U and y e V we have

gf)=x and  fg0)) = .

In considering mappings between sets, we used the same notion of
invertibility without the requirements that the inverse map g be C'. All
that was required when dealing with sets in general is that f, g are inverse
to each other simply as maps. Of course, one can make other requirements
besides the C! requirement. One can say that f is C%-invertible if the in-
verse map exists and is continuous. One can say that f is CP-invertible if f°
is itself CP and the inverse map g is also C?. In the linear case, we dealt
with linear invertibility, which in some sense is the strongest requirement
which we can make. It will turn out that if f is a C* map which is C'-in-
vertible, and if f happens to be C?, then its inverse map is also C?. This is
the reason why we emphasize C! at this point. However, it may happen
that a C! map has a continuous inverse, without this inverse map being
differentiable. For example: Let f: R — R be the map f(x) = x*. Then
certainly f is infinitely differentiable. Furthermore, f is strictly increasing,
and hence has an inverse mapping g: R — R which is nothing else but the

cube root: g(y) = y'/3. The inverse map g is not differentiable at 0, but is
continuous at 0.

Let
f:U=V and g VoW

be invertible C? maps. We assume that V is the image of f and W is the
image of g. We denote the inverse of f by f~! and that of g by g~*. Then
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it is clear that g o f is CP-invertible, and that (go f)™! = f~!og~!, because
we know that a composite of C? maps is also C”.

Let f: U — F be a C” map, and let x, € U. We shall say that f is locally
CP-invertible at x, if there exists an open subset U, of U containing x,
such that f is CP-invertible on U,. By our definition, this means that there
is an open set V; of F and a C? map g: V; » U, such that fog and gof
are the respective identity mappings of ¥, and U,. It is clear that a com-
posite of locally invertible maps is locally invertible. In other words, if

ftU->V and g: VoW

are CP maps, X, € U, f(xo) = Yo, if f is locally CP-invertible at x,, if g is
locally CP-invertible at y,, then g o f is locally CP-invertible at x,.

It is useful to have a terminology which allows us to specify what is the
precise image of an invertible map. For this purpose, we shall use a word
which is now standard in mathematics. Let U be open in E and let V be
open in F. A map

o:U->V
will be called a CP-isomorphismif it is C?, and if there exists a C? map
Y:V-U

such that ¢, ¢ are inverse to each other. Thus ¢ is CP-invertible on U, and
V is the image ¢(U) on which the C” inverse of ¢ is defined. We write the
inverse often as y = ¢~ .

If

uUbv and Vew

are CP-isomorphisms, then the composite go f is also a CP-isomorphism,
whose inverse is given by f "o g™ L

The word isomorphism is also used in connection with continuous
linear maps. In fact, a continuous linear map

AME—~F

is said to be an isomorphism if it is invertible. Thus the word isomorphism
always means invertible, and the kind of invertibility is then made explicit
in the context. When it is used in relation to C? maps, invertibility means C?-
invertibility. When it is used in connection with continuous linear maps,
invertibility means continuous linear invertibility. These are the only two
examples with which we deal in this chapter. There are other examples in
mathematics, however.

Let : U — V be a continuous map which has a continuous inverse
@:V - U. In other words, y is a C%invertible map. If U, is an open
subset of U, then y(U,) = V; is an open subset of V because = ¢!
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and ¢ is continuous. Thus open subsets of U and open subsets of V' cor-
respond to each other under the associations

Uy y(Uy) and Vi = (V)
Let U be open in E. A C” map
Yy:U->V

which is CP-invertible on U is also called a C? chart. If a is a point of U,
we call i a chart at a. If y is not invertible on all of U but is CP-invertible
on an open subset U, of U containing a, then we say that ¢ is a local C?-
isomorphism ata. If E = R" = F and the coordinates of R" are denoted by
Xy, X, then we may view ¢ as also having coordinate functions,

W = ('l/l’ me )‘l/n)‘

In this case we say that y,,... i, are local coordinates (of the chart) at a,
and that they form a CP-coordinate system at a. We interpret  as a change
of coordinate system from (x,, ...,X,) to (1, (%), ..., (%)), of class C".

This terminology is in accord with the change from polar to rectangular
coordinates as given in examples following the inverse mapping theorem,
and which the reader is probably already acquainted with. We give here
another example of a chart which is actually defined on all of E. These are
translations. We let

t,E—>E
be the map such that t(x) = x + v. Then the derivative of t, is obviously
given by

Dt (x)=1
where [ is the identity mapping. Observe that if U is an open set in E and
ve E then 7,(U) is an open set, which is called the translation of U by v.

It is sometimes denoted by U,, and consists of all elements x + v with xe U.
We have

TwoTw = Totw
if w,v € E, and
0T, =1I.
A map 1, is called the translation by v. For instance, if U is the open ball

centered at the origin, of radius r, then t,(U) = U, is the open ball cen-
tered at v, of radius r.
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When considering functions of one variable, real valued, we used the
derivative as a test for invertibility. From the ordering properties of the
real numbers, we deduced invertibility from the fact that the derivative was
positive (say) over an interval. Furthermore, at a given point, if the de-
rivative is not equal to 0, then the inverse function exists, and one has a
formula for its derivative. We shall now extend this result to the general
case, the derivative being a linear map.

Theorem 3.1 (Inverse mapping theorem). Let U be open in E, let x, € U,
and let f: U~ F be a C' map. Assume that the derivative f'(xo): E—~ F
is invertible. Then f is locally C'-invertible at x,. If ¢ is its local in-
verse, and y = f(x), then ¢'(y) = f'(x)"".

Proof. We shall first make some reductions of the problem. To begin
with, let A = f'(x,), so that A is an invertible continuous linear map of
Einto F. If we form the composite

A"lof:U—E,

then the derivative of 17! o f at xq is A7 o f'(xo) = I. If we can prove
that 7! o f'is locally invertible, then it will follow that f is locally invertible,
because f = AoA~'of. This reduces the problem to the case where f
maps U into E itself, and where f"(x,) = I.

Next, let f(xo) = yo. Let fi(x) = f(x + xo) — yo. Then f, is defined
on an open set containing 0, and f;(0) = 0. In fact, f; is the composite
map

', T-,
U_,,B3USLEZSE.

It will suffice to prove that f, is locally invertible, because f; = 7_, 0 f o 7,
and then

f= Tyo°fl °T_xo

is the composite of locally invertible maps, and is therefore invertible.

We have thus reduced the proof to the case when xo = 0, f(0) = 0 and
f'(0) = I, which we assume from now on.

Let g(x) = x — f(x). Then ¢'(0) =0, and by continuity there exists
r > 0 such that if |x| < r then

lg'el < 5.

Furthermore, by the continuity of f* and Theorem 2.1, f'(x) is invertible
for |x| =r.
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From the mean value theorem (applied between 0 and x) we see that
lg(x)] < %x|, and hence g maps the closed ball B(0) into B,,,(0). We
contend that given y € B,,,(0) there exists a unique element x € B(0) such
that f(x) = y. We prove this by considering the map

gx) =y +x — f(x)

If |y| < r/2 and |x| < r then |g,(x)| < r, and hence g, may be viewed as a
mapping of the complete metric space B,(0) into itself. The bound of % on
the derivative together with the mean value theorem shows that g, is a
shrinking map, namely

lg,(¢1) — gy(x2)| = lg(x1) — g(x2)| < 3lx; — x5

for x,, x, € B,(0). By the shrinking lemma, it follows that g, has a unique
fixed point, which is precisely the solution of the equation f(x) = y. This
proves our contention.

Let U, be the set of all elements x in the open ball B(0) such that
| f(x)| < r/2. Then U, is open, and we let V; be its image. By what we
have just seen, the map f: U; — V/ is injective, and hence we have inverse
maps

JiUi=V, [Tl=e:Vio U,
We must prove that ¥, is open and that ¢ is of class C*.

Let x; € U, and let y, = f(x,) so that |y,| < r/2. If y€ E is such that
|yl < r/2 then we know that there exists a unique x € B/(0) such that
f(x) = y. Writing x = x — f(x) + f(x) we see that

[ — %] S 1) — fx)] + 1g(x) — glxy)
S = Gl + 2% — x41.
Transposing on the other side, we find that
*) [x — %] = 2] f(x) — f(x,)].
This shows that if y is sufficiently close to y,, then x is close to x,, and in
particular, |x| <r since |x,| <r This proves that x € U,, and hence
that y € ,, so that ¥, is open. The inequality (*) now shows that ¢ = f~!

is continuous.
To prove differentiability, note that f’(x, ) is invertible because

JO) = f0x0) = f/(x)0x = %)) + |x — x4 [Y(x — x,)
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where ¢ is a map such that lim y(x — x,) = 0. Substitute this in the ex-

XXy

pression

™ ST - 700 = Fe)T =)
=x =% — f'(x)"(f(x) = f(x,).

Using the inequality (*), and a bound C for f’(x,)™!, we obtain

(G = 1) x = xg [g(x — xy)
= 2C1y = yil l¥le() — o).

Since ¢ = f~! is continuous, it follows from the definition of the deriva-
tive that ¢'(y,) = f'(x,)”'. Thus ¢’ is composed of the maps ¢, f”, and
“inverse,” namely

o0 = ()

and these maps are continuous. It follows that ¢’ is continuous, whence
@is of class C'. This proves the theorem.

Corollary 3.2. If f is of class CP then its local inverse is of class CP.

Proof. By induction, assume the statement proved for p — 1. Then f*
is of class C?~, the local inverse ¢ is of class C?~?, and we know that the
map u—u~' is C®. Hence ¢’ is of class CP~!, being composed of CP~!
maps. This shows that ¢ is of class C?, as desired.

In some applications, one needs a refinement of the first part of the proof,
given a lower bound for the size of the image of f when the derivative of f
is close to the identity. We do this in a lemma, which will be used in the
proof of the change of variable formula.

Lemma 3.3. Let U be open in E, and let f: U — E be of class C . Assume
that f(0)=0, f'(0)=1 Let r> 0 and assume that B(0) < U. Let
0 < s < 1, and assume that

1f'@) - fx)<s

forallx,ze B(0). If ye Eand |y| £ (1 — s)r, then there exists a unique
x € B/0) such that f(x) = ).
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Proof. The map g, given by g,(x) = x — f(x) + y is defined for |x| <r
and |y| < (1 — s)r. Then g, maps B(0) into itself, because from the esti-
mate

[f(x) = x| = 1/(x) = f(0) — f(Ox] = |x| sup | f'(2) — S (O)] = sm

we obtain |g(x)| £ sr + (1 — s)r = r. Furthermore, g, is a shrinking
map, because from the mean value theorem we get

19,(%1) — g(x2)| = 1%y — x5 — (fCey) = f(x2))l
=%y = x5 = f1(0)(xy — x3) + 6(x1, X2)]
= [6(xy, x2)I,

where

[8(x1, x2)| £ |x, — %;|supl () — /" (0)]

< slxy — x,.
Hence g, has a unique fixed point x € B,(0), thus proving our lemma.

We shall now give a standard example with coordinates.

Example 1. Let E = R? and let U consist of all pairs (r, 6) with r > 0
and arbitrary 6. Let ¢: U » R? = F be defined by

@(r, ) = (r cos 6, r sin 6).
Then

cosf —rsinf
Tolr 6) = (sin 6  rcos 9)

and
Det J(r, 6) = rcos? 6 + rsin? 0 = r.

Hence J, is invertible at every point, so that ¢ is locally invertible at every

point. The local coordinates ¢,, ¢, are usually denoted by x, y so that one
usually writes

x=rcosf and y=rsinb.
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One can define the local inverse for certain regions of F. Indeed, let V be
the set of all pairs (x, y) with x > 0 and y > 0. Then on V the inverse is
given by

r=./x*+y* and 0=arcsin+.

x2 + y?
Example 2. Let E = R® and let U be the open set of all elements
(p, 6, 0,) with p > 0 and 6, 6, arbitrary. We consider the mapping
@:U—>F=R?
such that
@(p, 64, 6,) = (p cos 6, sin B, p sin 6, sin 6,, p cos 0,).
The determinant of the Jacobian of ¢ is given by
Det J(p, 6,, 6,) = —p?sin 6,

and is not equal to 0 whenever 6, is not an integral multiple of #. For such
points, the map ¢ is locally invertible. For instance, we write

x = pcos 6, sin 6,, y=psin 6, sin 6,, z = pcosb,.

Let V be the open set of all (x, y, z) such that x > 0, y > 0, z > 0. Then
on V the inverse of ¢ is given by the map

Yy:V-U
such that
. Yy z
={/x% + y? + 22, arcsin , arccos )
Y(x, v, 2) ( xX*+y +z \/ﬁyz \/;c2+y2+z2

The open subset U, of U corresponding to V (that is ¥(V)) is the set of
points (p, 8, , 6,) such that

p>0, 0<6, <m/2, 0<6, <2

Example 3. Let ¢: R? » R? be given by

o(x, y) = (x + X’ (x, »), y + y*9(x, )
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where f, g are C! functions. Then the Jacobian of ¢ at (0, 0) is simply the

identity matrix:
10
J,(0,0) = (0 1).

Hence ¢ is locally C!-invertible at (0, 0). One views a map ¢ as in this
example as a perturbation of the identity map by means of the extra terms
xf(x, y) and y?g(x, ), which are very small when x, y are near 0.

Example 4. The continuity of the derivative is needed in the inverse
mapping theorem. For example, let

f() =x + 2x%sin(l/x) if x #0,
f)=0.

Then f is differentiable, but not even injective in any open interval con-
taining 0. Work it out as an exercise.

XViil, §3. EXERCISES

1. Let f:U — F be of class C* on an open set U of E. Suppose that the derivative of
f at every point of U is invertible. Show that f(U) is open.

2. Let f(x,y) = (¢* + ¢, ¢* — ¢*). By computing Jacobians, show that f is locally
invertible around every point of R2. Does f have a global inverse on R? itself?

3. Let f:R? - R? be given by f(x,y) = (¢* cos y, e*sin y). Show that Df(x,}) is
invertible for all (x, y) € R?, that f is locally invertible at every point, but does not
have an inverse defined on all of R%

4. Let f:R? — R be given by f(x, y) = (x* — y?, 2xy). Determine the points of R?
at which f is locally invertible, and determine whether f has an inverse defined
on all of R2

The results of the next section will be covered in a more general situation in §5.
However, the case of functions on n-space is sufficiently important to warrant
the repetition. Logically, however, the reader can omit the next section.

XViil, §4. IMPLICIT FUNCTIONS AND CHARTS

Throughout this section, we deal with maps which are assumed to be of
class C?, and thus we shall say invertible instead of saying CP-invertible,
and similarly for locally invertible instead of saying locally CP-invertible.
We always take p = 1.
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We start with the most classical form of the implicit function theorem.
Theorem 4.1. Let f:J, x J, > R be a function of two real variables,
defined on a product of open intervals J,,J,. Assume that f is of class CP.
Let (a,b)eJ, x J, and assume that f(a,b) =0 but D, f(a,b) # 0.
Then the map

Y:Jyx J,>Rx R
given by

)= (6 (6 9)
is locally CP invertible at (a,b).
Proof. All we need to do is to compute the derivative of y at (a, b). We

write Y in terms of its coordinates, Y = ({/y, ¥,). The Jacobian matrix of
Y is given by

A AN
J ) ox 0dy
X, y) = =
N, )\ o
ox 0dy Ox 0Oy

and this matrix is invertible at (g, b) since its determinant is equal to
df/dy # 0 at (a, b). The inverse mapping theorem guarantees that  is
locally invertible at (g, b).

Corollary 4.2. Let S be the set of pairs (x, y) such that f(x, y) = 0. Then
there exists an open set U, in R? containing (a, b) such that Y(S n U,)
consists of all numbers (x, 0) for x in some open interval around a.

Proof. Since y(a, b) = (a, 0), there exist open intervals V;, ¥, contain-
ing a and 0 respectively and an open set U, in R? containing (a, b) such that
the map

U »Vix 1,
has an inverse
N x Vo-U,
(both of which are CP according to our convention). The set of points

(X, y) € U, such that f(x,y) =0 then corresponds under ¥ to the set of
points (x, 0) with x € ¥, as desired.
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Theorem 4.1 gives us an example of a chart given by the two coordinate
functions x and f near (g, b) which reflects better the nature of the set S.
In elementary courses, one calls S the curve determined by the equation
f =0. We now see that under a suitable choice of chart at (a, b), one can
transform a small piece of this curve into a factor in a product space. As it
were, the curve is straightened out into the straight line V;.

Example 1. In the example following the inverse mapping theorem,
we deal with the polar coordinates (r, 6) and the rectangular coordinates

(x, ). In that case, the quarter circle in the first quadrant was straightened
out into a straight line as on the following picture:

H 1
In this case U, is the open first quadrant and V; is the open interval
0<6<mf2. We have Y(SnU;)={1} x ¥;. The function f is the
function f(x, y) = x2 + y* — 1.

The next theorem is known as the implicit function theorem.

Theorem 4.3. Let f:J, x J, — R be a function of two variables, defined
on a product of open intervals. Assume that f is of class CP. Let

(a,b)eJ, x J,

and assume that f(a,b)=0 but D,f(a,b) #0. Then there exists an
open interval J in R containing a and a CP function

g:J >R
such that g(a) = b and
f (x’ g(x)) =0

forallxel.
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Proof. By Theorem 4.1 we know that the map
Y:J; x J, R x R=R?
given by
(X, 9) = (%, f(x, )

is locally invertible at (a, b). We denote its local inverse by ¢, and note
that ¢ has two coordinates, ¢ = (¢,, ¢,) such that

o(x,2) = (x, ¢;(x,2)) for xeR, zeR.

We let g(x) = @,(x,0). Since ¥(a, b) = (a, 0) it follows that ¢,(a,0) = b
so that g(a) = b. Furthermore, since y, ¢ are inverse mappings, we obtain

(x,0) = ylo(x, 0) = Y(x, g(x)) = (x, £ (x, 9(x))).
This proves that f(x, g(x)) = 0, as was to be shown.

We see that Theorem 4.3 is essentially a corollary of Theorem 4.1. We
have expressed y as a function of x explicitly by means of g, starting with
what is regarded as an implicit relation f(x, y) = 0.

Example 2. Consider the function f(x,y) = x? + y2> — 1. The equa-
tion f(x, y) = 0 is that of a circle, of course. If we take any point (a, b)
on the circle such that b # 0, then D, f(a, b) # 0 and the theorem states
that we can solve for y in terms of x. The explicit function is given by

y=./1—- x? if b>0,
y=—J1—x* if b<0.

If on the other hand b = 0 and then a # 0, then D, f(a, b) # 0 and we
can solve for x in terms of y by similar formulas.

We shall now generalize Theorem 4.3 to the case of functions of several
variables.

Theorem 4.4. Let U be open in R" and let f: U — R be a C? function on
U. Let (a,b)=(ay,..-n-1,b) € U and assume that f(a,b) =0 but
D, f(a, b) # 0. Then the map

Yy:U->R"! xR=R"
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given by
() (x, f(%,9))
is locally CP invertible at (a,b).
[Note. We write (a, y) as an abbreviation for (a;, ...,@,-1, y)-]

Proof. The proof is basically the same as the proof of Theorem 4.1.
The map ¢ has coordinate functions x,,...,x,—; and f. Its Jacobian
matrix is therefore

1 0
0 1
J,,,(x) = : . :
0 e 1 0
¥y ¥y ¥
0x, 0x, 0x,

and is invertible since its determinant is again D, f(a, b) # 0. This proves
the theorem.

Corollary 4.5. Let S be the set of points P € U such that f(P) =0 Then
there exists an open set Uy in U containing (a, b) such that Y(S 0 U,)
consists of all points (x, 0) with x in some open set V; of R"™ 1.

Proof. Clear, and the same as the corollary of Theorem 4.1.

From Theorem 4.4 one can deduce the implicit function theorem for
functions of several variables.

Theorem 4.6. Let U be open in R" and let f: U — R be a C? function on
U. Let (a,b) = (ay,....8,—1,b) € U and assume that f(a,b) =0 but
D, f(a,b) # 0. Then there exists an open ball V in R"™! centered at (a)
and a CP function

g:V-R
such that g(a) = b and

flxg(x))=0
forallxeV.
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Proof. The proof is exactly the same as that of Theorem 4.3, except that
X = (Xy,...X,—y) lies in R"™1. There is no need to repeat it.

In Theorem 4.6, we see that the map G given by
x> (x, g(x)) = G(x)
or writing down the coordinates
(g ee Xnm ) (Xgs oo Xm gy X3, Xm )
gives a parametrization of the hypersurface defined by the equation

f(xy,...X,—1, ¥) = 0 near the given point. We may visualize this map as
follows:

grad f(P)

Surface f(x) =0

On the right we have the surface f(X) = 0, and we have also drawn the
gradient at the point P = (g, b) as in the theorem. We are now in a posi-
tion to prove a result which had been mentioned previously (Chapter XV,
§2 and §4), concerning the existence of differentiable curves passing through
a point on a surface. To get such curves, we use our parametrization,
and since we have straight lines in any given direction passing through
the point a in the open set V of R"~1, all we need to do is map these straight
lines into the surface by means of our parametrization G. More precisely:

Corollary 4.7. Let U be open in R" and let f:U — R be a C? function.
Let P € U and assume that f(P) = 0 but grad f(P) # O. Let w be a vector
of R" which is perpendicular to grad f(P). Let S be the set of points X such
that f(X) = 0. Then there exists a CP curve

owJ—>S

defined on an open interval J containing the origin such that «(0) = P
and o(0) = w.

Proof. Some partial derivative of f at P is not 0. After renumbering the
variables, we may assume that D, f(P) # 0. By the implicit function
theorem, we obtain a parametrization G as described above. We write P
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in terms of its coordinates, P = (a, b) = (ay, . - - 4,1, b) so that G(a) = P.
Then G'(a) is a linear map

G'(a):R"™! > R

In fact, for any x = (x,,...,X,-,) the derivative G'(x) is represented by
the matrix

1 0

0

0 0 - 1
%9 9 . 9
0x, 0x, 0x,

which has rank n — 1. From linear algebra we conclude that the image of
G'(a) in R" has dimension n — 1. Given any vector v in R"~! we can define
a curve o in S by letting

oft) = G(a + tv).
Then «(0) = G(a) = P. Furthermore, «/(t) = G'(a + tv)v, so that
«'(0) = G'(a)v.

Thus the velocity vector of « is the image of v under G'(a). The subspace
of R" consisting of all vectors perpendicular to grad f(P) has dimension
n—1. We have already seen (easily) in Chapter XV, §2, that «'(0) is
perpendicular to grad f(P). Hence the image of G'(a) is contained in the
orthogonal complement of grad f(P). Since these two spaces have the
same dimension, they are equal. This proves our corollary.

XVIil, §5. PRODUCT DECOMPOSITIONS

We shall now generalize the results of the preceding section to the general
case where dimension plays no role, only the product decompositions.

The proofs are essentially the same, linear maps replacing the matrices of
partial derivatives.

Theorem 5.1. Let U be open in a product E x F, and let f:U — G be a
CP? map. Let (a, b) be a point of U withae E and b € F. Assume that

D,f(a,b):F—>G
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is invertible (as continuous linear map). Then the map

Y:U—>ExG givenby  (x,)) (x, f(x, )

is locally CP-invertible at (a, b).

Proof. We must compute the derivative '(a, b). Since D,f(a, b) is
invertible, let us call it A. If we consider the composite map

Ilof:UGELF

then its second partial derivative will actually be equal to the identity.
If we can prove that the map

*) )= (x, A7 e f(x, 1))

is locally invertible at (a, b), then it follows that y is locally invertible
because ¢ can be obtained by composing the map from (*) with an in-
vertible linear map, namely

(v, w) > (v, Aw).

This reduces our problem to the case when G = F and D, f(a, b) is equal
to the identity, which we assume from now on.

In that case, the derivative §'(a, b) has a matrix representation in terms
of partial derivatives, namely

(b O Vo L 0
Dyta, b) = (ul f@b) D, f( b)) - (Dxf @b ! )

Let u = D, f(a, b). Then the preceding matrix is easily seen to have as
inverse the matrix
(5 7)
- I

representing a continuous linear map of E x F —» E x F. Thus Dy(a, b)
is invertible and we can apply the inverse mapping theorem to get what we
want.

Note the exact same pattern of proof as that of the simplest case of
Theorem 4.1.

The values of f are now vectors of course. Let ¢ = f(a, b). Then c is an
element of G. Let S be the set of all (x, y) € U such that f(x,y) = c. We
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view S as a level set of f, with level c. The map ¥ is a chart at (a, b), and
we see that under this chart, we obtain the same kind of straightening
out of S locally near (a,b) that we obtained in §4. We formulate it as a
corollary.

Corollary 5.2. Let the notation be as in Theorem 5.1. Let f(a,b) = c and
let S be the subset of U consisting of all (x,y) such that f(x,y) =c.
There exists an open set U, of U containing (a, b), and a CP-isomorphism

Y: Uy — Vy x V, with V) open in E, V> open in G, such that

VS AU =W x {c}

In the chapter on partial derivatives, we saw that the partial D, f(a, b)
could be represented by a matrix when we deal with euclidean spaces.
Thus in Theorem 5.1, suppose E x F = R" and write

R"=R? x R™
We have the map
f:USR"
and the isomorphism

D, f(a, b):R™ — R™.

This isomorphism is represented by the matrix

% %
OXpopms1 0x,
JP>xy, ..o x) = :
o fm
a'xn--m-t'l o a_xn

evaluated at (a,,...,a,). The last set of coordinates (X, y,. . ..x,) plays
the role of the (y) in Theorem 5.1. The creepy nature of the coordinates
arises first from an undue insistence on the particular ordering of the co-
ordinates (x,, . ..,x,) so that one has to keep track of symbols like

n—m+1;

second, frgm the non-geometric nature of the symbols which hide the linear
map and identify R™ occurring as a factor of R”, and R™ occurring as the
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space containing the image of f; third, from the fact that one has to evalu-
ate this matrix at (a,, . ..,a,) and that the notation

%h %
aa"—_"'“ 61.1,, Dyomsr i@ --- D, f,(a)
: : to denote : :
I ... Dn Dyomirful@) -+ Dpfa)
[ — [

is genuinely confusing. We were nevertheless duty bound to exhibit these
matrices because that’s the way they look in the literature. To be abso-
lutely fair, we must confess to feeling at least a certain computational
security when faced with matrices which is not entirely apparent in the
abstract (geometric) formulation of Theorem 5.1.

Putting in coordinates for R" and R™, we can then formulate Theorem
5.1 as follows.

Corollary5.3. Let a = (a,,....a,) be a point of R" Let fy,....f, be
CP functions defined on an open set of R" containing a. Assume that the
Jacobian matrix (D;f(a)) (i=1,....,m and j=n—m+1,...,n) is
invertible. Then the functions

(xh” '7xn—m’fl(x)" xfm(x))

form a CP coordinate system at a.

Proof. This is just another terminology for the result of Theorem 5.1 in
the case of R = R"™™ X R™.

We obtain an implicit mapping theorem generalizing the implicit func-
tion theorem.

Theorem 5.4. Let U be open in a product E x F and let f:U - G be a
C? map. Let (a, b) be a point of U withac Eand be F. Let f(a, b) = 0.
Assume that D, f(a,b): F — G is invertible (as continuous linear map).
Then there exists an open ball V centered at a in E and a continuous map
g:V = F such that g(a) = b and f(x,g(x)) =0 forall xe V. If Vis a
sufficiently small ball, then g is uniquely determined, and is of class C*.

Proof. The existence of g is essentially given by Theorem 5.1. If we
denote the inverse map of § locally by ¢, and note that ¢ has two com-
ponents, ¢ = (¢,, ¢,) such that

o(x, 2) = (x, 92(x, 2)),
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then we let g(x) = @,(x, 0). This gives us the existence of a C” map satis-
fying our requirements.

The uniqueness is also easy to see. Suppose that there exist continuous
maps g,, g,: V — F such that g,(a) = g,(a) = b and

f(x g1(0) = f(x,92(x)) = 0

for all x e V. We know that the map (x, y)+— (x, f(x, y)) is locally in-
vertible at (a, b), and in particular, is injective. By continuity and the
assumption that g,(a) = g,(a) = b, we conclude that g,(V,) and g,(V;)
are close to b if Vj is selected sufficiently small. Hence if points (x, g,(x))
and (x, g,(x)) map on the same point (x, 0) we must have g,(x) = g,(x).
Now let x be any point in ¥ and let w = x — a. Consider the set of those
numbers ¢t with 0 £t <1 such that g,(a + tw) = g,(a + tw). This set
is not empty. Let s be its least upper bound. By continuity, we have
gi(a + sw) = g,(a + sw). If s <1, we can apply the existence and that
part of the uniqueness just proved to show that g, and g, are in fact equal
in a neighborhood of a + sw. Hence s = 1, and our uniqueness is proved
as well as the theorem.

Remark. The shrinking lemma gives an explicit converging procedure
for finding the implicit mapping g of Theorem 5.4. Indeed, suppose first
that D, f(a, b) = I. (One can reduce the situation to this case by letting
A =D, f(a,b) and considering 27" o f instead of f itself) Let r, s be
positive numbers < 1, and let B,(a) be the closed ball of radius r in E
centered at a. Similarly for By(b). Let M be the set of all continuous maps

«: B(a) - Byb)
such that a(a) = b. For each « € M define T« by
To(x) = o(x) — f(x, a(x)).

It is an exercise to show that for suitable choice of r < s < 1 the map T
maps M into itself, and is a shrinking map, whose fixed point is precisely
g. Thus starting with any map o, the sequence

o, T, Ta,. ..

converges to g uniformly. If D, f(a, b) = A is not assumed to be I, then
welet fy = A" f, and T is replaced by the map T; such that

Tia(x) = a(x) — fi(x, a(x)) = a(x) — 27 'f (x, «(x)).

If the map f is given in terms of coordinates, then D, f(a, b) is represented
!3y a partial Jacobian matrix, and its inverse can be computed explicitly
in terms of the coordinates.
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We now return to the aspect of the situation in Theorem 5.1 concerned
with the straightening out of certain subsets. Such subsets have a special
name, and we give the general definition concerning them.

Let S be a subset of E. We shall say that S is a submanifold of E if the
following condition is satisfied. For each point x € S there exists a C’-
isomorphism

Yy:U-Wxh

mapping an open neighborhood U of x in E onto a product of open sets
V, in some space F,, V; in some space F,, such that

WS U) =W x {c}

for some point ¢ in ¥,. Thus the chart provides a CP-change of coordinates
so that in the new space, (S N U) appears as a factor in the product.
The chart y at x gives rise to a map of S,

YIS:SNnU-W

simply by restriction; that is we view  as defined only on S. The restric-
tion of such a chart § to S N U is usually called a chart for S at x. It gives
us a representation of a small piece of S near x as an open subset in some
space F,. Of course, there exist many charts for S at x. Theorem 5.1, and
the theorems of the preceding section, give criteria for the level set of f to
be a submanifold, namely that a certain derivative should be invertible.

We shall now derive another criterion, starting from a parametrization
of the set.

Let E, be a closed subspace of E, and let E, be another closed subspace.
We shall say that E is the direct sum of E, and E, and we write

E=E, ®E,,
if the map
E, x E,—»E givenby (v,v)v, +0,

is an invertible continuous linear map. If this is the case, then every ele-
ment of E admits a unique decomposition as a sum

=0, + 0,

with v, € E, and v, € E,.
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Example 1. We can write R" as a direct sum of subspaces R? x {0}
and {0} x R®ifg + s=n.

Example 2. Let F be any subspace of R". Let F* be the subspace of
all vectors w € R" which are perpendicular to all elements of F. Then
from linear algebra (using the orthogonalization process) one knows that

R"=F@®F*!

is a direct sum of F and its orthogonal complement. This type of de-
composition is the most useful one when dealing with R” and a subspace.

Example 3. Let vy,...,0, be linearly independent elements of R". We
can always find (in infinitely many ways if g # n) elements v ,,,...,0,
such that {v,...,0,} is a basis of R". Let E, be the space generated by
vy, ...,V and E, the space generated by v, ,...,v,. Then

R'=E ®E,.

In Example 2, we select v, 4,...,v, so that they are perpendicular to E,.
We can also select them so that they are perpendicular to each other.

When we have a direct sum decomposition E = E; ® E, then we have
projections

n;: E— E, and n,: E—>E,

on the first and second factor respectively, namely =,(v, + v,) = v, and
ny(vy + v3) = v, if v, €E, and v, € E,. When E, = E{ is the orthog-
onal complement of E; then the projection is the orthogonal projection as
we visualize in the following picture:
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We have drawn the case dim E; = 2 and dim E, = 1. Such decomposi-
tions are useful when considering tangent planes. For instance we may
have a piece of a surface as shown on the next picture:

We may want to project it on the first two coordinates, that is on R? x {0},
but usually we want to project it on the plane tangent to the surface at a
point. We have drawn these projections side by side in the next picture:

R

R?

The tangent plane is not a subspace but the translation of a subspace.
We have drawn both the subspace F and its translation Fp consisting of all
points w + P with w e F. We have a direct sum decomposition

R3=F@®F-

Theorem 5.5. Let V be an open set in F and let

g:V—-E
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be a C? map. Let a €V and assume that g'(a): F - E is an invertible
continuous linear map between F and a closed subspace E, of E. Assume
that E admits a direct sum decomposition E = E; @ E,. Then the map
@:Vx E;,»E
given by
x, ))g(x) +y

is a local CP-isomorphism at (a, 0).

Proof. We need but to consider the derivative of ¢, and obtain
¢'(a, 0)(v, w) = g'(a) + w

for veF and weE,. Then ¢'(a,0) is invertible because its inverse is
given by v, + v, (A7 vy, v,) if v, €E,, v, €E, and 1 =g'(a). We can
now apply the inverse mapping theorem to conclude the proof.

From Theorem 5.5, we know that there exist open sets V; in F containing
a, V, in E, containing 0, and U in E such that

o: WV x V,»>U
is a CP-isomorphism, with inverse y: U —» V; x V,. Then

9(x) = o(x, 0).

Let S = g(V;). Then S is the image of V; under g, and is a subset of E
parametrized by g in such a way that our chart y straightens S out back
into ¥; x {0}, that is

w(s) =1 x {0}

We note that Theorems 5.1 and 5.5 describe in a sense complementary
aspects of the product situation. In one case we get a product through a
map f which essentially causes a projection, and in the other case we obtain
the product through a map g which causes an injection. At all times, the
analytic language is adjusted so as to make the geometry always visible,
without local coordinates.

There is a Jacobian criterion for the fact that D, f(a, b) is invertible, as
described in Chapter XVII, §7. We can also give a matrix criterion for the
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hypothesis of Theorem 5.5. Let us consider the case when E = R" and
F = R™ withm < n. Then V is open in R™ and we have a map

g:V->R"

The derivative g'(a) is represented by the actual Jacobian matrix

Oa, oa,,
Ja)=| : :
99, 9.,
Oa, oa,,

if (@) = (a5-...a,,) and g(x) = (g,(x),...,gu(x)). From linear algebra, we
have:

Theorem 5.6. In order that g'(a) give an isomorphism between R™ and a
subspace of R" it is necessary and sufficient that the Jacobian J (a) have
rank m.

We won’t prove this which is a standard elementary result of linear
algebra. It means that the kernel of the linear map represented by J,(a)
is 0 precisely when this matrix has rank m. Theorem 5.6 gives us computa-
tional means to test whether a specific mapping satisfies the condition of
Theorem 5.5. Observe that the space R™ is different from its image in R"
under ¢'(a), and that is the reason why in Theorem 5.5 we took the spaces
F and E, different. In the special case of R", as pointed out before, given
the subspace E, we can always find some E, such that R" = E, @ E, is a
direct sum decomposition.

Example. Let g: R? - R® be the map given by

g(x, y) = (sin x, €* cos y, sin ).

Then
cos x 0
Jyx,y)=[e*cosy —e*siny
0 cos y
and hence
10
J0,00=|1 0
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has rank 2, so that in a neighborhood of (0, 0), the map g parametrizes a
subset of R® as in the theorem.

XViil, §5. EXERCISES

1. Let f:R? — R be a function of class C'. Show that f is not injective, that is there
must be points P, Q € R%, P # Q, such that f(P) = f(Q).

2. Let f:R"—>R™ be a mapping of class C' with m <n. Assume f'(x,) is
surjective for some x,. Show that f is not injective. (Actually much more is
true, but it’s harder to prove.)

3. Let f:R — R be a C' function such that f’(x) # O for all x € R. Show that fisa
C'-isomorphism of R with the image of f.

Let U be open in R” and let f: U — R™ be C* with f*(x): R" — R™ surjective for
all x in U. Prove that f(U) is open.

>

5. Let f:R™— R" be a C' map. Suppose that x € R™ is a point at which Df(x) is
injective. Show that there is an open set U containing x such that f(y) # f(x) for
allyeU.

o

Let [a, b] be a closed interval J and let f: J — R? be a map of class C'. Show
that the image f(J) has measure 0 in R2. By this we mean that given ¢, there
exists a sequence of squares {S,, S,,...} in R? such that the area of the square
S, is equal to some number K, and we have

fNelys, and YK,<e

Generalize this to a map f:J — R3, in which case measure zero is defined by
using cubes instead of squares.

7. Let U be open in R? and let f: U — R? be a map of class C. Let A be a compact
subset of U. Show that f(A4) has measure 0 in R3. (Can you generalize this, to
maps of R” into R” when n > m?)

8. Let U be open in R” and let f:U — R™ be a C' map. Assume that m < n and
let a € U. Assume that f(a) = 0, and that the rank of the matrix (D; fi(@)) is m, if
(f1s---+fm) are the coordinate functions of f. Show that there exists an open
subset U, of U containing a and a C'-isomorphism ¢: ¥, - U, (where V, is open
in R™) such that

J(@(X1s-5%)) = Kpe s 15+ - - %)

9. Let f:R x R —R be a C' function such that D, f(a, b) # 0, and let g solve the
implicit function theorem, so that f (x, g(x)) = 0 and g(a) = b. Show that

_ D, f(x, g(x))

90 =~ 5, Tt 000)’
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10.

14.

Generalize Exercise 9, and show that in Theorem 5.4, the derivative of g is given by

g0 = —(D2 £ (% g(x))~" o D, f (x, 9(x)).

. Let f:R — R be of class C* and such that | f'(x)| < ¢ < 1 for all x. Define

g:R? > R?
by

g(x, y) = (x + Sy + f()).

Show that the image of g is all of R2,

. Let f:R" —» R" be a C' map, and assume that | f'(x)| < ¢ < 1 for all xe R". Let

g(x) = x + f(x). Show that g: R" — R” is surjective.

. Let A: E — R be a continuous linear map. Let F be its kernel, that is the set of all

we E such that A(w) = 0. Assume F # E and let vo€ E, vo ¢ F. Let F, be the
subspace of E generated by v,. Show that E is a direct sum F @ F, (in particular,
prove that the map

w,t)—>w + tyg

is an invertible linear map from F x R onto E).

Let f(x,y) = (x cos y, x sin y). Show that the determinant of the Jacobian of f
in the rectangle 1 < x <2 and 0 < y < 7 is positive. Describe the image of the
rectangle under f.

. Let S be a submanifold of E, and let Pe S. If

V:UynS-W and Y :UsnS=V,

are two charts for S at P (where U, U, are open in R®), show that there exists a
local isomorphism between ¥, at y,(P) and V; at /,(P), mapping ¥, (P) on Y/5(P).

. Let y,: U, 0 S — V, be a chart for S at P and let g,: ¥, = U, N S be its inverse

mapping. Suppose V, is open in F,, and let x, € F, be the point such that
g1(xy) = P.

Show that the image of g(x,): F, — E is independent of the chart for S at P.
(It is called the subspace of E which is parallel to the tangent space of S at P.)



CHAPTER XIX

Ordinary Differential
Equations

XIX, §1. LOCAL EXISTENCE AND UNIQUENESS

We link here directly with the shrinking lemma, and this section may be
read immediately after the first section of the preceding chapter.

We defined a vector field previously over an open set of R”. We don't
need coordinates here, so we repeat the definition. We continue to assume
that E, F are euclidean spaces, and what we say holds more generally for
complete normed vector spaces.

Let U be open in E. By a vector field on U we mean a map f: U — E.
We view this as associating a vector f(x)€E to each point xe U. We
say the vector field is of class C? if f is of class C”. We assume p > 1
throughout, and the reader who does not like p 2 2 can assume p = 1.

Let xo € U and let f: U — E be a vector field (assumed to be of class C?
throughout). By an integral curve for the vector field, with initial condition
Xo, WE mean a mapping

aJ->U

defined on some open interval J containing 0 such that « is differentiable,
o(0) = x, and

o) = f(eAt))

for all te J. We view «(t) as an element of E (this is the case of maps from
numbers to vectors). Thus an integral curve for f is a curve whose velocity
vector at each point is the vector associated to the point by the vector

538
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field. If one thinks of a vector field as associating an arrow to each point,
then an integral curve looks like this:

Remark. Let «:J — U be a continuous map satisfying the condition

oft) = xo + J: S (c(w)) du.

Then o is differentiable, and its derivative is «'(t) = f («(t)). Hence « is of
class C' and is an integral curve for f. Conversely, if « is an integral curve
for f with initial condition x,, then « obviously satisfies our integral equa-
tion since indefinite integrals of a continuous map differ by a constant, and
the initial condition determines this constant uniquely. Thus to find an
integral curve, we shall have to solve the preceding integral equation. This
will be a direct consequence of the shrinking lemma.

Theorem 1.1. Let U be open in E and let f: U — E be a C" vector field.
Let xoeU. Then there exists an integral curve a:J — U with initial
condition x,. If J is sufficiently small, this curve is uniquely determined.

Proof. Let a be a number > 0 and let B, be the open ball of radius a
centered at x,. We select a sufficiently small so that f is bounded by a
number C on B,. We can do this because f is continuous. Furthermore,
we select a so small that f” is bounded by a constant K = 1 on the closed
ball B,. Again we use the continuity of f’. Now select b > 0 such that
bC < a and also bK < 1. Let I, be the closed interval [—b, b]. Let M be
the set of all continuous maps

o I,— B,

such that «(0) = xo. Then M is closed in the space of all bounded maps
with the sup norm. For each « € M define a map S« by

(Sa)(t) = xo + f f(ew) du.
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We contend that S« lies in M. First, it is clear that Se(0) = x, and that
Sa is continuous. Next, for all te I},

|So(t) — xo| = BC

$0 Se€ M. Finally, for o, f € M we have
Salt) — SBE) = j (flew) — F(BGA)) du

whence by the mean value theorem,

|Sedt) — SB(1)] < bK sup|ofu) — Bu)]

uelp

= bK|le — BIl.

This proves that S is a shrinking map, and by the shrinking lemma, S has
a unique fixed point o, that is S« = «. This means that o satisfies the inte-
gral equation which makes it an integral curve of f, as was to be shown.

We shall be interested in a slightly more general situation, and for future
reference, we state explicitly the relationship between the constants which
appeared in the proof of Theorem 1.1. These are designed to yield uni-
formity results later.

Let U be an open set in some space, and let

fiVxU—E

be a map defined on a product of U with some set V. We say that f satis-
fies a Lipschitz condition on U uniformly with respect to V if there exists a
number K > 0 such that

1 f0,x) — f(0, )] < K|x — y|

for allveV and x, ye U. We call K a Lipschitz constant. If f is of class
C', then the mean value theorem shows that f is Lipschitz on some open
neighborhood of a given point (v, o) in ¥ x U, and continuity shows
that f itself is bounded on such a neighborhood.

It is clear that in the proof of Theorem 1.1, only a Lipschitz condition
intervened. The mean value theorem was used only to deduce such a
condition. Thus a Lipschitz condition is the natural one to take in the
present situation.

Furthermore, suppose that we find integral curves through each point
x of U. Then these curves depend on two variables, namely the variable t
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(interpreted as a time variable), and the variable x itself, the initial condi-
tion. Thus we should really write our integral curves as depending on these
two variables. We define a local flow for f at x, to be a mapping

wJx U,»U

where J is some open interval containing 0, and U, is an open subset of U
containing x,, such that for each x in U, the map

t— o, (t) = oft, x)

is an integral curve for f with initial condition x, i.e. such that «(0, x) = x.

As a matter of notation, we have written «, to indicate that we view x
as a certain parameter. In general, when dealing with maps with two argu-
ments, say ¢@(t, x), we denote the separate mappings in each argument
when the other is kept fixed by ¢,(t) or ¢,(x). The choice of letters and the
context will always be carefully specified to prevent ambiguity.

The derivative of the integral curve will always be viewed as vector
valued since the curve maps numbers into vectors. Furthermore, when
dealing with flows, we sometimes use the notation

o(t, x)

to mean D,«(t, x) and do not use the symbol ' for any other derivative
except partial derivative with respect to t, leaving other variables fixed.
Thus

o(t, x) = oG(t) = Dyodt, x)

by definition. All other partials (if they exist) will be written in their cor-
rect notation, that is D,, ... and total derivatives will be denoted by D as
usual.

Example. Let U = E be the whole space, and let g be a constant vector
field, say g(x) = v # O for all x € U. Then the flow « is given by

oft, x) = x + to.

Indeed, D,o(t, x) = v and since an integral curve is uniquely determined,
with initial condition «(0, x) = x, it follows that the flow is precisely the
one we have written down. The integral curves look like straight lines. In
Exercise 4, we shall indicate how to prove that this is essentially the most
general situation locally, up to a change of charts.
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We shall raise the question later whether the second partial D, «(t, x)
exists. It will be proved as the major result of the rest of this chapter that
whenever [ is C? then « itself, as a flow depending on both t and x, is also
of class CP.

Finally, to fix one more notation, we let I}, be the closed interval [—b, b]
and we let J, be the open interval —b <t <b. If a > 0 we let B,(x) be
the open ball of radius a centered at x, and we let B,(x) be the closed ball
of radius a centered at x.

The next theorem is practically the same as Theorem 1.1, but we have
carefully stated the hypotheses in terms of a Lipschitz condition, and of
the related constants. We also consider a time-dependent vector field.
By this we mean a map

fiJxU—E

where J is some open interval containing 0. We think of f(t, x) as a vector
associated with x also depending on time t. An integral curve for such a
time-dependent vector field is a differentiable map

o Jo—=» U
defined on an open interval J, containing 0 and contained in J, such that

o(t) = £(t, el1)).

As before, a(0) is called the initial condition of the curve. We shall need
time-dependent vector fields for applications in §4.

We also observe that if f is continuous then « is of class C! since o is
the composite of continuous maps. By induction, one concludes that
if fis of class CP then « is of class C**'. We shall consider a flow for this
time-dependent case also, so that we view a flow as a map

w:Jog x Ug» U

where U, is an open subset of U containing x, and J,, is as above, so that
for each x the curve

t—oft, x)
is an integral curve with initial condition x (i.e. a(0, x) = x).
Theorem 1.2. Let J be an open interval containing 0. Let U be open in E.
Let xoeU. Let 0 < a < 1 be such that the closed ball B,,(x,) is con-

tained in U. Let

fiIxU—>E
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be a continuous map, bounded by a constant C > 0 and satisfying a Lip-
schitz condition on U with Lipschitz constant K > O uniformly with
respect to J. If b < a/C and b < 1/K then there exists a unique flow

o Jp X By(xg) > U.
If fis of class CP, then so is each integral curve .
Proof. Let x € B,(xo). Let M be the set of continuous maps
a: Iy, = Byy(xo)

such that «(0) = x. Then M is closed in the space of bounded maps under
the sup norm. For each « € M we define Sa by

Sa(t) = x + J:f(u, ofu)) du.
Then S« is certainly continuous and we have Sx(0) = x. Furthermore,
|So(t) — x| £bC < a
so that So(t) € B,,(x,) and S« lies in M. Finally for o, f € M we have
1S — SBIl = b sup 1/, o) = flu, B@))I

= bK|lo — BI.

This proves that S is a shrinking map, and hence S has a unique fixed point
which is the desired integral curve. This integral curve satisfies «(0) = x,
and so depends on x. We denote it by a,, and we can define a(t, x) = o,(t),
as a function of the two variables t and x. Then « is a flow. This proves our
theorem.

Remark 1. There is no particular reason why we should require the
integral curve to be defined on an interval containing 0 such that o(0) = x,.
One could define integral curves over an arbitrary interval (open) and
prescribe a(to) = xo for some point t, in such an interval. The existence
and uniqueness of such curves locally follows either directly by the same
method, writing

o = o) + [ 0o e

or as a corollary of the other theorem, noting that an interval containing
to can always be translated from an interval containing 0.
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Combining the local uniqueness with a simple least upper bound argu-
ment, we shall obtain the global uniqueness of integral curves.

Theorem 1.3. Let f:J x U — E be a time-dependent vector field over
the open set U of E. Let

o2y > U and oy Sy, » U

be two integral curves with the same initial condition xo. Then o, and o,
are equalon J, N J,.

Proof. Let T be the set of numbers b such that a,(t) = o,(t) for
0 <t <b. Then T contains some b > 0 by the local uniqueness theorem.
If T is not bounded from above, the equality of ,(t) and a,(t) for all t > 0
follows at once. If T is bounded from above, let b be its least upper bound.
We must show that b is the right end point of J, nJ,. Suppose this is
not the case. Define curves f;, f, near 0 by

B = +0 and D) = 0 + 1)

Then B,, B, are integral curves of f with the initial conditions o,(b) and
o,(b) respectively. The values f,(t) and B,(t) are equal for small negative
t because b is a least upper bound of T. By continuity it follows that
oy (b) = o3(b), and finally we see from the local uniqueness theorem that
B(t) = B,(t) for all t in some neighborhood of 0, whence «;, and o, are
equal in a neighborhood of b, contradicting the fact that b is a least upper
bound of T. We can argue in the same way toward the left end points,
and thus prove the theorem.

1t follows from Theorem 1.3 that the union of the domains of all integral
curves of f with a given initial condition x, is an open interval which we
denote by J(x,). Its end points are denoted by t*(x,) and t~(x,) respec-
tively. We allow by convention + oo and — oo as end points.

Let 2(f) be the subset of R x U consisting of all points (t, x) such that

t(x) <t <t*(x).
A global flow for f is a mapping
o 9(f)->U
such that for each x € U the partial map «,: J(x) » U, given by

a(t) = oft, x)
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defined on the open interval J(x), is an integral curve for f with initial
condition x. We define 2(f) to be the domain of the flow. We shall see in
§4 that 2(f) is open and that if f is CP then the flow « is also C? on its do-
main.

Remark 2. A time-dependent vector field may be viewed as a time-
independent vector field on some other space. Indeed, let f be as in
Theorem 1.2. Define

fiJxU—>RxE
by
ft.x) = (1,1 x)

and view f as a time-independent vector field on J x U. Let & be its flow,
so that

D,a(t, s, x) = f(at, s, x)),  &O0,s,x) = (s, x).

We note that & has its values in J x U and thus can be expressed in terms
of two components. In fact, it follows at once that we can write & in the
form

alt, s, x) = (t + s, &(t, s, x)).
Then &, satisfies the differential equation
D, a,(t, s, x) = f(t + s, 8,(t, s, x))
as we see from the definition of . Let
B(t, x) = @,(t, 0, x).

Then B is a flow for f; i.e. satisfies the differential equation

D, B(t, x) = f(t, B, x)), B0, x) = x.
Given x € U, any value of t such that « is defined at (¢, x) is also such that
& is defined at (¢, 0, x) because «, and S, are integral curves of the same
vector field, with the same initial condition, hence are equal. Thus the

study of time-dependent vector fields is reduced to the study of time-
independent ones.
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Remark 3. One also encounters vector fields depending on parameters,
as follows. Let V be open in some space F and let
g:JxVxU—-E

be a map which we view as a time-dependent vector field on U, also de-
pending on parameters in V. We define

G:JxVxU—-»FxE
by
G(t,z, ) = (0, g(t, 2, y))

for teJ, zeV, and ye U. This is now a time-dependent vector field on
V x U. A local flow for G depends on three variables, say f(t, z, y), with
initial condition (0, z, y) = (z, ). The map f§ has two components, and it
is immediately clear that we can write

Bt 2, y) = (2, olt, 2, )

for some map o depending on three variables. Consequently « satisfies
the differential equation

Dyu(t,z,y) =gtz olt, 2, 1)),  «0,z,y) =y
which gives the flow of our original vector field g depending on the param-

eters ze V. This procedure reduces the study of differential equations
depending on parameters to those which are independent of parameters.

XIX, §1. EXERCISES

—

. Let f be a C* vector field on an open set U in E. If f(x,) = 0 for some xo € U, if
a:J — U is an integral curve for f; and there exists some t, € J such that a(te) = Xo,
show that «(t) = x, for all te J. (A point x, such that f(x,) = 0 is called a critical
point of the vector field.)

2. Let f be a C* vector field on an open set U of E. Let a: J — U be an integral curve
for f. Assume that all numbers ¢ > 0 are contained in J, and that there is a pomt
Pin U such that

lim a(t) = P.

1~

Prove that f(P) = 0. (Exercises 1 and 2 have many applications, notably when

S = grad g for some function g. In this case we see that P is a critical point of the
vector field.)

=]

. Let U be open in R” and let g: U — R be a function of class C2. Let xoe U and
assume that x, is a critical point of g (that is g'(xo) = 0). Assume also that D?g(x,)
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is negative definite. By definition, take this to mean that there exists a number
¢ > 0 such that for all vectors v we have

D?g(xo)(v, v) £ —clvl|™

Prove that if x, is a point in the ball B,(x,) of radius r, centered at x,, and if r is
sufficiently small, then the integral curve « of grad g having x, as initial condition
is defined for all t 2 0 and

lim aft) = xq.

1~

[Hint: Let y(t) = (o(t) — xo)- (o) — xo) be the square of the distance from
oft) to xo. Show that  is strictly decreasing, and in fact satisfies

V() = —2c,9(2),
where ¢, > 0 is near ¢, and is chosen so that
Dg(x)(v, ) £ —c4 ol

for all x in a sufficiently small neighborhood of x,.
Divide by y(t) and integrate to see that

log Y(t) — log Y(0) < —ct.

Alternatively, use the mean value theorem on ¥(t,) — Y(t,) to show that this dif-
ference has to approach 0 when 1, <, and ¢,, 1, are large.]

4. Let U be open in E and let f: U — E be a C' vector field on U. Let xoe U and
assume that f(x,) = v # 0. Let « be a local flow for f at x,. Let F be a subspace
of E which is complementary to the one-dimensional space generated by v, that
is the map

RxF—>E

given by (¢, y)— tv + y is an invertible continuous linear map.

(a) If E = R" show that such a subspace exists.

(b) Show that the map B: (t, y)— alt, xo + y) is a local C* isomorphism at (0, 0).
You may assume that D, exists and is continuous, and that D,«(0, x) = id. This
will be proved in §4. Compute Df in terms of Dy« and D,o.

(c) The map o: (¢, y) > xo + y + tv is obviously a C' isomorphism, because it is
composed of a translation and an invertible linear map. Define locally at x, the
map ¢ by ¢ = o 6", so that by definition,

@(xo + ¥ + ) = alt, Xo + ).
Using the chain rule, show that for all x near x, we have

Do(x)v = f(p(x)).
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If we view ¢ as a change of chart near x,, then this result shows that the vector
field f when transported by this change of chart becomes a constant vector field
with value v. Thus near a point where a vector field does not vanish, we can always
change the chart so that the vector field is straightened out. This is illustrated in

the following picture:
U,

Vo "
0 Xo
—_——
- /\\
_ -

In this picture, we have drawn the flow, which is horizontal on the left, the vector
field being constant. In general, suppose ¢: Vo — Uy is a C' isomorphism. We
say that a vector field g on ¥, and a vector field f on U, correspond to each other
under ¢, or that f is transported to ¥, by ¢ if we have the relation

S (@(x)) = Do(x)g(x)-
which can be regarded as coming from the following diagram:

E—2 ,F

Yo——Uo

In the special case of our Exercise, g is the constant map such that g(x) = v for all
xeV.

XIX, §2. APPROXIMATE SOLUTIONS

As before, we let f:J x U—>E be a time-dependent vector field on U.
We now investigate the behavior of the flow with respect to its second
argument, i.e. with respect to the points of U. Let J, be an open subinterval
of J containing 0 and let

@:Jo—> U
be of class C'. We shall say that ¢ is an e-approximate integral curve of f

on J, if

lo') = f(t o) S €

forall tin J,.
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Theorem 2.1. Let @,, ¢, be €,- and €,-approximate integral curves of f
on J, respectively, and let € = €, + €;. Assume that f is Lipschitz with
constant K on U uniformly in J or that D, f exists and is bounded by K

onJ x U. Let ty be a point of J,. Then for any t in J, we have

- € -
[91() — 2] < 1y(to) — @a(to)l X~ + Eem' tal,

Proof. By assumption we have
[91(1) — f(t, 1)) S €y,
l92(t) = £(t, 02()] £ €3
From this we get

[03(1) — 932(t) + f(t, 92(0) — f(t, (D) S €

Say t = t, so that we don’t have to put absolute value signs around

t—to. Let

¥() = lo,(@) — @211,

o(t) = 1 £(t, 92(0) = f(t, 921
We have

S et — to),

[w—on+ | :[f(u, 02) — £, 92)] d
whence
WO~ W0 5 < = 1) + [ o du
S et —ty) + K £ :lll(u) du
<K f. : [|//(u) + %]du
and finally the relation

w0 590+ & [ [v0 + 5]



550 ORDINARY DIFFERENTIAL EQUATIONS [XIX, §2]

On any closed subinterval of J,, our map ¢ is bounded. If we add ¢/K to
both sides of the last relation, then we see that our theorem follows from
the next lemma.

Lemma 2.2. Let g be a positive real valued function on an interval,
bounded by a number B. Let tq be in the interval, say t, < t, and assume
that there are numbers C, K = 0 such that

gt) < C+ K fg(u) du.

Then for all integers n = 1 we have

K(t — to) K"t — to) ! BK"(t — to)"
1! [T )

g(t)§C[l+ ok "!

Proof. The statement is an assumption for n = 1. We proceed by
induction. We integrate from t, to t, multiply by K and use the recurrence
relation. The statement with n + 1 then drops out of the statement with n.

Theorem 2.1 will be applied immediately to obtain a continuity result
for a flow depending on its second variable. If x is close to xq, then the
integral curve with initial condition x may be seen as an approximate inte-
gral curve with respect to x, and the estimates of Theorem 2.1 will yield:

Corollary 2.3. Let f:J x U — E be continuous, and satisfy a Lipschitz
condition on U uniformly with respect to J. Let x, be a point of U. Then
there exists an open subinterval J, of J containing 0, and an open subset
U, of U containing x, such that f has a unique flow

o Jo x Ug— U

We can select Jo and U, such that o is continuous, and satisfies a Lip-
schitz conditionon J, x U,.

Proof. Given x, yeU, we let ¢,(t) = «t,x) and ¢,(f) = oft, y) be
defined on the Jo x Up obtained in Theorem 1.2. Then we can apply
Theorem 2.1 with & =¢& =0. For s,1€J; we obtain

lodt, x) — afs, y)| < loft, x) — o(t, Y)| + ledt, y) — s, y)|
< |x—ylefM 4 |1 — 5B

if we take J; of s_mall length and B is a bound for /- Indeed, we estimate
the first term using Theorem 2.1 with t, = 0. We estimate the second

term using the integral expression for the integral curve and the bound
B for f. This proves the corollary.
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Next we consider the problem of determining the largest possible inter-
val over which an integral curve can be defined. There are two possible
reasons why an integral curve cannot be defined over all of R, or say for
allt = 0.

The first one is that as the curve proceeds along, it is tending toward a
point at the boundary of the open set U, but not in U. The curve is thus
prevented from reaching this point a priori. One can create this situation
artificially. For instance, suppose we have a vector field on E itself and a
perfectly reasonable integral curve defined on all of R. Let P be a point of
E, and suppose that the integral curve has initial condition x, and passes
through P so that «(t,) = P for some t;. Let U be the open set obtained
from E by deleting P. If we view our vector field now on U it is clear that
the integral curve starting at x, cannot be extended beyond t, as an inte-
gral curve on U, and that as t — t,, we have «a(t) > P.

A situation like the above may arise naturally. One can visualize it as in
the following picture:

o(0)=xo

The second reason why an integral curve cannot be extended to all of
R is that, as the curve proceeds along, the vector field becomes unbounded,
and the curve speeds up so rapidly that it has no time to reach certain
numbers of R.

The next result states that these are the only possibilities which may
prevent a curve from being extendable past a certain point.

Theorem 2.4. Let J be an open interval (a, b) and let U be open in E. Let
f:J X U — E be a continuous map which is Lipschitz on U uniformly for
every compact subinterval of J. Let o be an integral curve of f; defined on
a maximal open subinterval (ag, bo) of J. Assume:

(i) There exists € > 0 such that the closure

((bo — € bo))

is contained in U.
(ii) There exists a number C > 0 such that | f(t, «(t))| < C for all t in
(bo — € bo)-

Thenby = b.
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Proof. Suppose by < b. From the integral expression for o, namely
3
oft) = afto) + ". S (u, o)) du
to

we see that for ¢, 1, in (by — €, bg) we have
laty) — oftz)] < Clty — t5].
This is the Cauchy criterion, and hence the limit

lim oft)
t=bo

exists and is equal to an element x, of U by hypothesis (i). By the local
existence theorem, there exists an integral curve B defined on an open
interval containing by such that f(bo) = xo and B'(t) = f(t, B(t)). Then
B’ = o/ on an open interval to the left of b, and hence «, § differ by a con-
stant on this interval. Since their limits as t — by are equal, this constant is
0. Thus we have extended the domain of definition of « to a larger interval,
as was to be shown.

Remark. Theorem 2.4 has an analogue giving a criterion for the integral
curve being defined all the way to the left end point of J, and we shall use
Theorem 2.4 in both contexts as a criterion for the integral curve to be
defined on all of J.

XIX, §3. LINEAR DIFFERENTIAL EQUATIONS

We shall consider a special case of differential equations, both for its own
sake and for applications to the general case afterwards.

We let L be a vector space as usual which in applications will be a space
of continuous linear maps. We let E be some space, and assume given a
product

LxE—E, written 4, W) o,

that is a bilinear map satisfying the condition |Aw| £ |1]|w].
Let J be an open interval, and let

A:J-SL

be a continuous map. We consider the differential equation

2O = AW
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corresponding to the time-dependent vector field on E given by
(t, w) — A(t)w. In the applications, we have two cases:

1. The product given by composition of mappings, namely

L(E, E) x L(E, E) - L(E, E)

for some space E, so that Aw = Ao w for 4, w e L(E, E).
2. The product given by applying linear maps to vectors, namely

L(E,E) x E—E.
In the first case, suppose E = R". Then we can think of A(t) as ann x n

matrix, and of the solution as an n x n matrix also, say B(t), so that our
differential equation can be written

B(t) = A(1)B(r),
the product being multiplication of matrices.
In the second case, we think of A(t) as a curve in R", which we write X(t),
and the differential equation looks like
X'(t) = AMX(),
or in terms of coordinates,

x1(t) = ay (%1 (€) + - - + ag(O)xa(t),

X0) = G (Oxs(8) + - + (XA,

It is clear that the solutions of our differential equation A'(t) = A(t)A(t)
form a vector space. One of the main facts which is always true in this
linear case is that the integral curves are defined on the full interval J. This
will be proved below, and we consider the slightly more general case when
the equation depends on parameters.

Theorem 3.1. Let J be an open interval of R containing 0, and let V be
open in some space. Let

A:Jx VL

be a continuous map, and let L x E — E be a product. Let w, be a fixed
element of E. Then there exists a unique map

AJ x V—>E,
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which, for each x € V, is a solution of the differential equation
A(t, x) = A(t, )AL, x), A0, x) = w,-
This map A is continuous.
Proof. Let us first fix x € V. Consider the differential equation
A(t, x) = A(t, x)A, x)

with initial condition A(0, x) = w,. This is a differential equation on E,
with time-dependent vector field f given by

f(t, v) = A(t, x)v

for ve E. We want to prove that the integral curve is defined on all of J,
and for this we shall use Theorem 2.4.

Suppose that ¢ A(z, x) is not defined on all of J. We look to the right,
and let b, be the right end point of a maximal subinterval of J on which it
is defined. If J has a right end point b then b, < b. (Of course, if J goes to
infinity on the right, there is no b.) Now the map t — A(t, x) is bounded
on every compact subinterval of J. In particular, we see that our vector
field satisfies the Lipschitz condition of Theorem 2.4. Condition (i) is also
satisfied, trivially, because our vector field is defined on the entire space E.
This leaves condition (ii) to verify.

We omit the index x for simplicity of notation, and on the interval
0 <t < by we have

A = wp + f ' A du
0
so that
1201 < ol + K [ 1301 d
0

where K is a bound for the map ¢ A(¢) on the compact interval [0, b,]-
By Theorem 2.1, it follows that A is bounded on the interval 0 < ¢ < by,
whence

I 20) = A0

is bounfled on this interval. Thus condition (ii) is satisfied, and our
assumption that b, is not the right end point of J is contradicted. This
proves that A is defined on all of J.
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We now consider A as a map with two variables, ¢ and x, and shall prove
its continuity, say at a point

(to, x0)eJ X V.

Let ¢ > 0 be so small that the interval I = [ty — ¢, ty + c] is contained
in J. Let V; be an open ball centered at x, and contained in V such that
A is uniformly continuous and bounded on I x V,. (The existence of this
ball is an immediate consequence of the compactness of /. Cf. Lemma 8.1

of Chapter XVII, §8, where this is proved in detail) For (t,x)el x V, we
have

[t x) = Mo, x0)| S [A(L, x) — AL, x0)| + [A(L, x0) — Alto, Xo)l-
The second term on the right is small when ¢ is close to t, because 4 is con-
tinuous, being differentiable. We investigate the first term on the right,
and shall estimate it by viewing A(t, x) and A(t, x,) as approximate integral

curves of the differential equation satisfied by A(t, x). We find:

12(t, x0) — At )AL, x0)| S 1A(t, x0) — A(t, x0)A(L, X0)|
+ [A(L, xo)A(t, xo) — A(t, X)A(L, x0)l
S A, xo) — A, )AL, X0l
By the uniform continuity of 4 and the fact that A(t, x,) is bounded for ¢ in
the compact interval I, we conclude: Given ¢, there exists & such that if
|x — xo| < 6 then

|A(t, x0) = A(t, X)A(L, Xo)| < €.

Therefore A(t, xo) is an e-approximate integral curve of the differential
equation satisfied by A(t,x). We apply Theorem 2.1, to the two curves

0o(t) = AMt, xo)  and  ,(t) = At, x)
for each x with |x — xo| < 8. We use the fact that
A0, x) = X0, xo) = wy.
We then find
AL, x) — A(t, x0)| < €K

for some constant K, > 0, thereby proving the continuity of 1 at (t, xo).
This concludes the proof of Theorem 3.1.
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Remark. Suppose given the linear differential equation on L(E, E),
that is consider case 1,

D, At, x) = A(t, X)A(t, x)

with A1, x)e L(E, E). Let ve E. Then we obtain a differential equation
on E, namely

D, At, x)v = A(t, x)At, x)v

whose integral curve is t+A(t, x)v. This is obvious, and we shall deal
with such an equation in the proof of Theorem 4.1 below.

XIX, §3. EXERCISES

1. Let A: J — Mat,,, be a continuous map from an open interval J containing 0 into
the space of n x n matrices. Let S be the vector space of solutions of the differ-
ential equation

X'(t) = ADOX(@).

Show that the map X + X(0) is a linear map from S into R", whose kernel is {O}.
Show that given any n-tuple C = (cy, ...,c,) there exists a solution of the differ-
ential equation such that X(0) = C. Conclude that the map X — X(0) gives an
isomorphism between the space of solutions and R".

N

. (a) Let go,...,g,—1 be continuous functions from an open interval J containing
0into R. Show that the study of the differential equation

Dy + guiD" 'y + -+ goy =0
can be reduced to the study of a linear differential equation in n-space. [Hint: Let

Xy =YXy =Yoo Xg= Y07 10]
(b) Show that the space of solutions of the equation in part (a) has dimension n.

w

. Give an explicit power series solution for the differential equation
du
i Au(t),

where A is a constant n x n matrix, and the solution u(t) is in the space of n x n
matrices.

»

Let A:J — L(E, E) and : J — E be continuous. Show that the integral curves of
the differential equation

B@©) = AP + (1)
are defined on all of J.
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5. For each point (to, xo)€J x E let oft, to, Xo) be the integral curve of the differ-
ential equation

o(t) = A(t)o(t)
satisfying the condition «(to) = x,. Prove the following statements:

(a) For each teJ, the map x> u(t, s, x) is an invertible continuous linear map of
E onto itself, denoted by C(t, s).

(b) For fixed s, the map t+— C(t, s) is an integral curve of the differential equation

@'(t) = A(t) o o(t)

on L(E, E), with initial condition w(s) = id.
(c) For s, t, ue J we have

C(s,u) =C(s,0)C(t,u) and  C(s,t) = C@t,5)" L.

(d) The map (s, ) — C(s, t) is continuous.

o

Show that the integral curve of the non-homogeneous differential equation

B(@) = A@B®) + ¥()

such that f(t,) = x, is given by

() = C(t, to)xo + I ’C(t, SY(s) ds.

XIX, §4. DEPENDENCE ON INITIAL CONDITIONS

Given a C” vector field f: U - E, we consider its flow a:J x Ug—» U
at a point x, € U,. We are now asking whether o is also of class C?, and
this will be the content of the next theorem. Suppose that « is C'. By defi-
nition of an integral curve, we have

Do(t, x) = f(aft, x))-

We want to differentiate with respect to x. Suppose we can do this and
interchange D,, D,. We obtain

DD, «(t, x) = Dy Dyoft, x) = Df (ot, x))D; ot, x).
Both Df («(t, x)) and D, «(t, x) are elements of L(E, E) (that is linear maps

of E into itself) and the product here is composition of mappings. Thus we
see that D,a(t, x) satisfies a linear differential equation on L(E, E). The
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preceding argument was purely formal, but is a convenient way to re-
member the intended differential equation satisfied by D,o. Of course, so
far, we don’t know anything about the flow « with respect to x except
what was proved in the corollary of Theorem 2.1, namely that « is locally
Lipschitz at every point. We shall prove that « is of class C” by showing
directly that D,a exists and satisfies the linear differential equation de-
scribed above. As before, we consider a time-dependent vector field, so
that instead of taking Df we have to take D, f. Concerning the depen-
dence on ¢, the differential equation of the flow D, o(t, x) = f(«(t, x)) shows
that D,« is continuous since it is composed of continuous maps.

Theorem 4.1. Let J be an open interval in R containing 0 and let U be
openin E. Let

f:IxU—E
be a CP map with p 2 1 (possibly p = o), and let xo€ U. There exists
a unique local flow for f at xo. We can select an open subinterval Jq of J
containing 0 and an open subset Uy of U containing xo such that the
unique local flow
aJog xUg—> U
is of class C?, and such that D, o satisfies the differential equation
DyDyo(t, x) = D, f{(t, odt, x))Det, x)
on Jo x Ug with initial condition D, (0, x) = id.
Proof. Let
A:J x U - L(E, E)
be given by
A(t, X) = Dy f(t, alt, x))-
Select J, and U, such that « is bounded and Lipschitz on J, x U, (using
Corollary 2.3), and such that 4 is continuous and bounded on Jy x Up.

Let Jo be an open subinterval of J; containing 0 such that its closure Jy
is contained in J;.

Let A(t, x) be the integral curve of the differential equation on L(E, E)
given by

A(t, x) = A(t, x)A(t, x), M0, x) = id,
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as in Theorem 3.1. We contend that D,« exists and is equal to 4 on
Jo x Uy. This will prove that D,o is continuous on J, x U,. Using
Theorem 7.1 of Chapter XVII, this will imply that « is of class C'. We
now prove the contention.

Fix x€ Ug. Let

O(t, h) = oft, x + h) — oft, X).
Then
D,\0(t. h) = Dya(t, x + h) — Dyt, x)
= f(t. ot x + b)) = £(t, «(t, x))-

By the mean value theorem, Corollary 4.4 of Chapter XVII. we obtain

|D,O(t, h) — A(t, x)B(t, h)|
=|f(t, alt, x + b)) — f(t, a(t. x)) — D, f (1. o2, x))6(t, W]
< |h|sup|D, f(t, y) — D, f(t, oft, X))

where the sup is taken for y in thc segment between o(t, x) and o(t, x + h).
By the compactness of Jp it follows from Lemma 8.1 of Chapter XVII,
that our last cxpression is of the type |h|y(h) where y(h) tends to O with h,
uniformly for t in J,. Thus we can writc

1D, 6(t, h) — A(t, x)0(t, )| < [h1y(h),

for all teJ,. This shows that 6(t, h) is an |h|y(h)-approximate integral
curve for the differential equation satisfied by A(t, x)h namely

D, A(t, x)h — A(t, X)A(t, x)h =0

with the initial condition A(0, x)h = h. We note that 0(t, h) has the same
initial condition, 0(0, h) = h. Taking t, = 0 in Theorem 2.1, we obtain the
estimate

16(t, h) — A(t, x)h| = C,|hiy(h)

for some constant C, and all ¢t in J,. This proves the contention that D,«
is equal to A on Jy x Ug, and is therefore continuous. As we said pre-
viously, it also proves that « is of class C*, on J, x Up.

Furthermore, D, satisfies the linear differential equation given in the
statement of the theorem, on J, x Uy. Thus our thcorem is proved when

p=1
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The next step is to proceed by induction. Observe that even if we start
with a vector field f which does not depend on time t, the differential equa-
tion satisfied by D,« is time-dependent, and depends on parameters x
just as in Theorem 3.1. We know, however, that such vector fields are
equivalent to vector fields which do not depend on parameters. In the
present case, for instance, we can let A(t, x) = D, f{(t, a(t, x)), and let

G:J x Vx L(E,E)y—> F x L(E, E)
be the map such that
G(t, x, w) = (0, A(t, x)w)

for we L(E, E). The flow for this vector field is then given by the map A
such that

A(t, x, w) = (x, AL, X)w).

Suppose that p is an integer = 2, and assume the local Theorem 4.1
proved up to p — 1 so that we can assume « locally of class C?~! (that is
we can select J, and U, such that « is of class C*~! on J, x Up). Then
A is locally of class CP~! whence D, is locally of class C?~! by induction
hypothesis. From the expression

Dyo(t, x) = f(t, oft, x))

we conclude that D« is locally of class C*~!, whence our theorem follows
from Theorem 7.1 of Chapter XVII, for an arbitrary integer p.

If fis C* and if we knew that the flow « is of class CP for every integer p
on its domain of definition, then we could conclude that « is C® on its do-
main of definition. (The problem at this point is that in going from p to
p + 1 in the preceding induction, the open sets J, and U, may be shrinking
and nothing may be left by the time we reach c0.) The next theorem proves
this global statement.

Theorem 4.2. If f is a vector field of class C? on U (with p possibly o0),
then its flow is of class CP on its domain of definition, which is open in
R x U.

Proof. By Remark 2 of §1 we can assume f is time independent. It will
suffice to prove the theorem for each integer p, because to be of class C®
means to be of class C” for every p. Therefore let p be an integer > 1. Let
Xo € U and let J(xo) be the maximal interval of definition of an integral
curve having x, as initial condition. Let 2(f) be the domain of definition
of the flow for the vector field f, and let « be the flow. Let T be the set of
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numbers b > 0 such that for each ¢ with 0 £ 1 < b there exists an open
interval J, containing t and an open set U, containing x, such that
J, x U, is contained in 2(f) and such that o is of class C* on J, x U,.
Then T is not empty by Theorem 4.1. If T is not bounded from above,
then we are done looking toward the right end point of J(x,). If T is
bounded from above, we let b be its least upper bound. We shall show
that b = r*(x). Cf. Theorem 1.3. Suppose b < +(xo). Then a(b, xo) is de-
fined. Let x; = (b, xg). By the local Theorem 4.1, we have a unique local
flow at x;, which we denote by f:

BiJax Blx)— U, f(O.x)=x,

defined for some open interval J, = (—a, a) and open ball B,(x,) of radius
a centered at x;. Lct & be so small that whenever b — é < t < b, we have:

oft, Xq) € Bya(xy).
We can find 6 because
lim a(t, xo) = X,
—=b
by continuity. Select a point t; such that b — 6 <, <b. By the hy-
pothesis on b, we can select J; and U, so that
a:Jy x Uy = By(xy)

maps J; x Uy into B,j(x1). We can do this because « is continuous at
(ty, Xo), being in fact CP at this point.

If|t —t,] < aand xe U,, we define

olt. x) = Bt — t,, a(ty, x)).
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Then

(ty, x) = PO, alty, x)) = ofty, X)
and

Dy o(t, x) = D B(t — t1, o1y, X))
=f(B(t — 1, o(ty, x)))
= f(e(, x)).

Hence both ¢, and «, are integral curves for f with the same value at ¢,.
They coincide on any interval on which they are defined by Theorem 1.3.
If we take & very small compared to a, say d < a/4, we see that ¢ is an ex-
tension of « to an open set containing (t,, Xo) and also containing (b, x,).
Furthermore, ¢ is of class C?, thus contradicting the fact that b < t*(x,).

Similarly, one proves the analogous statement on the other side, and
one therefore sees that 2(f) is open in R x U and that « is of class C?
on 9(f), as was to be shown.



PART FIVE

Multiple Integration



The extension of the theory of the integrals to higher dimensional domains
gives rise to two problems which are due to the more complicated nature
of the domain and to the more complicated nature of the functions. When
dealing with functions of one variable, we work over intervals which are
easily handled. Furthermore, the assumption of piecewise continuity
(or regularity-uniform limit of step functions) is very easy to handle and
quite sufficient to treat important applications. The end points of an in-
terval, which form its boundary, present no problem, but in dealing with
higher dimensional domains, we require a minimum of theory to obtain a
satisfactory description of the boundary which allows us to generalize
the fundamental theorem of calculus relating integration and differentia-
tion.

In Chapter XX we give the basic tool in n-space, and in Chapter XXI
we describe the formalism of differential forms, which allows us to define
the integral over a parametrized set.
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CHAPTER XX

Multiple Integrals

XX, §1. ELEMENTARY MULTIPLE INTEGRATION

Let [a, b] be a closed interval. We recall that a partition P on [a, b] is a
finite sequence of numbers

=coSc S Se=b

between a and b, giving rise to closed subintervals [c;, ¢;4,]- This notion
generalizes immediately to higher dimensional space. By a closed n-
rectangle (or simply a rectangle) in R” we shall mean a product

Jy x--- xJ,

of closed intervals J,...,J,. An open rectangle is a product as above,
where the intervals J; are open. We shall usually deal with closed rec-
tangles in what follows, and so do not use the adjective “closed” unless
we start dealing explicitly with other types of rectangles.

If P; is a partition of the closed interval J;, then we call (P,,...,P,) = P
a partition of the rectangle. In 2-space, a rectangle together with a parti-
tion looks like this:
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We view P as dividing the rectangle into subrectangles. Namely, if S;
is a subinterval of the partition P;, for eachi = 1,... ,n, then we call

S x o0 xS,

a subrectangle of the partition P.
LetR =J, x--- x J, be arectangle, expressed as a product of intervals
J;. We define the volume of R to be

u(R) = I(J,)---I(J,)
where I(J;) is the length of J;. If J; = [a;, b;], then
I(J;)) =b; — a;
so that
uR) = (by — a,)- - (b, — a).

We define the volume of an open rectangle similarly. The volume is equal
to 0 if some interval J; consists of only one point.

Let f be a bounded real valued function on a rectangle R. Let P be a
partition of R. We can define the lower and upper Riemann sums by

Le(P,f) =} irslf(f Ju(S),

Ur(P.f) =% Slgp(f )u(S),

where infg( f) is the greatest lower bound of all values f(x), for x €S,
sups(f) is the least upper bound of all values f(x) for x € S, and the sum
is taken over all subrectangles S of the partition P. If R is fixed throughout
a discussion, we omit the subscript R and write simply L(P, f) and
U(P, f).

Let P' = (Py,...,P,) be another partition of R. We shall say that P’
is a refinement of P if each P; is a refinement of P; (i = 1,...,n). We recall
that P; being a refinement of P; means that every number occurring in
the sequence P; also occurs in the sequence P;. If P, P’ are two partitions
of R, then it is clear that there exists a partition P” which is a refinement
of both P and P'. This is achieved for intervals simply by inserting all
points of a partition into the other, and then doing it for each interval
occurring as a factor of the rectangle, in n-space. We have the usual lemma.

Lemma 1.1. If P’ is a refinement of P then

L(P,f) £ L(P', f) < U(P', f) < U(P, f).
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Proof. The middle inequality is obvious. Consider the inequality re-
lating L(P', f) and L(P, f). We can obtain P’ from P by inserting a finite
number of points in the partitions of the intervals occurring in P. By induc-
tion, we are thus reduced to the case when P’ is obtained from P by insert-
ing one point in some partition P; for some i = 1,...,n. For simplicity
of notation, assume i = 1. The rectangles of P are of type

Sy x - x 8§,
where S; is a subinterval of P;. One of the intervals of P,, say T, is then
split into two intervals T°, T by the insertion of a point in P. All the sub-
rectangles of P’ are the same as those of P, except when T occurs as a first
factor. Then the rectangle
S=TxS8; x---x 8§,
is replaced by two rectangles, namely
=T x8;x:x8§, and §"=T"%x8; x--- x8,.
The term

irslf(f )u(S)

in the lower sum L(P, f) is then replaced by the two terms

inf(f)u(S") + inf(f)v(S").
s s”

We have ((T) = [(T’) + I(T"), and hence
inf(f)u(S) = inf(IUTIS,) - - - I(S,) + ir;f(f WTIS,) -~ - [(Sy)
s s

< inf(f)v(S') + inf(f)v(S").
s s

This proves that L(P, f) < L(P’, f). The inequality concerning the upper
sum is proved the same way.

We define the lower integral L(f) to be the least upper bound of all
numbers Lx(P, f), and the upper integral Ug(f) to be the greatest lower
bound of all numbers Ug(P, f). We say that f is Riemann integrable (or
simply integrable) if

Lr(f) = Ur(f),
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in which case we define its integral Iz(f) to be equal to the lower or upper
integral; it does not matter which.

Example. Let f be the constant function 1. Let
R = [a;, b] x -+ x [a,, b,
Let P = (P,,...,P,) be a partition of R. Each P; can be written in the form
P; = (Cio, - - - Cir)

where

a=coScy =Sy = b
The subrectangles of the partition are of the type

[Cljncl,j|+1] X oo X [Cnjps Cnjut 1]

The lower sum is equal to the upper sum, and is equal to the repeated sum
kn Ky
Yo Ylenjer = €up) Cagprs ~ Cna)
in=0 i1=0
We evaluate the last sum first, and note that
K
Z (Cnjot1 — Cnjp) = bn — .
in=0
By induction, we find that
Ix(1) = (b, — ay) - (by — an)
= v(R).

From the definitions of the least upper bound and greatest lower bound,
we obtain at once an (¢, P)-characterization of the integrability of f, namely:

[ is integrable on R if and only if, given e, there exists a partition P of R
such that

|UPP, f) — L(P, /)| <e.

Furthermore, we also note that if the preceding inequality holds for P,
then it holds for every partition P’ which is a refinement of P.
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Theorem 1.2. The integrable functions on R form a vector space. The
integral satisfies the following properties: ’

INT 1. The map f > I f is linear.
INT2. If f20,then Iz f 2 0.

Proof. The first assertion follows from the fact that for each subrec-
tangle S of a partition of R we have

inf(f) + inf(g) < inf(f + g)
s s s

< sup(f + g) < sup(f) + sup(g),
S N S

and hence for the partition P,

L(P, f) + L(P,g) £ L(P, f + g) S U(P, f + g) < U(P, f) + U(P, g).

Also for any number ¢ = 0,
inf(¢f) = cinf(f).
s s
The linearity follows at once. As for INT 2, if f = 0 then

inf(f) 2 0
s

so that L(P, f) = O for all partitions P. Property INT 2 follows at once.

From INT 1 and INT 2 we have a strengthening of INT 2, namely:

If f, g are integrable and f < g, then Ix(f) < Ir(g).

Indeed, we have g — f = 0, so Ir(g — f) = 0, and by linearity,

Ix(g) — Ir(f) 2 0,

whence our assertion.

We now want to integrate over more general sets than rectangles. A
subset K of R" will be said to be negligible if given ¢, there exists a finite

number of rectangles R,,...,R,, which cover K (that is whose union con-
tains K) and such that

o(Ry) + -+ v(R,) <e
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It is clear that in this definition, we may take the rectangles to be either
open or closed. Furthermore, a negligible subset is clearly bounded. Its
closure is also negligible, and is compact.

A function f on a rectangle R will be said to be admissible if it is bounded
and continuous except possibly on a negligible subset of R.

It is trivial that a finite union of negligible sets is negligible. Hence a
finite sum of admissible functions on R is admissible, and in fact, the set
of admissible functions forms a vector space. It is also clear that the prod-
uct of two admissible functions is admissible, and if f, g are admissible,
then so are max(f, g), min(f, g), and | f'|.

We define the size of a partition P of R to be < ¢ if the sides of all sub-
rectangles of P have a length < 4.

Theorem 1.3. Every admissible function on R is integrable. Given an
admissible function, and ¢, there exists 6 such that if P is a partition of R
of size < 0, then

U, f) - LP,f) <e

If f, g are admissible and if f(x) = g(x) except for the points x in some
negligible set, then I f = Ipg.

We shall need a lemma.

Lemma 1.4. Let S be a rectangle contained in a rectangle R. Given ¢,
there exists 6 such that if P is a partition of R, size(P) < 6, and

SiresSm
are the subrectangles of P which intersect S, then
(Sy) + -+ 0(S,) = uS) + e
Proof. Let S be the rectangle
[y, dy] % -+ x [cg, dy).
Let P be a partition of size < 4, and let S,,...,S,, be the subrectangles
of P which intersect S. Then each S; (j=1,...,m) is contained in the
rectangle
[c;—6,d, +0) x -+ x [c, — 6,d, + 5],

and the sum of the volumes (S ;) therefore satisfies the inequality

US4+ + USw) S (@1 — ¢y + 20)---(d, — ¢, + 26).
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If & is small enough, the expression on the right is < (S) + ¢, as was to be
shown.

To prove Theorem 1.3, let f be an admissible function on some rectangle
R, and let D be a negligible set of points containing the set where f is not
continuous. Let RY,...,R{ be open rectangles which cover D, and such
that if Ry, ... ,R, are the corresponding closed rectangles, then

ARy + -+ o(RY < €.

Let U be the union RS U --- U R}, so that U is open. Let Z be the
complement of U. Then Z n R is closed and bounded, so compact, and
[ is uniformly continuous on Z N R. Let 8, be such that whenever

x, yeZnNnR

and |x — y| <8, then |f(x) — f(y)l <e. (We use the sup norm on R")
By the lemma, there exists §, such that if P is a partition of size < J,,
then if S,,...,S,, are the subrectangles of P which intersect R,,...,R,
then

v(Sy) + - + v(S,) < 2e.
Let § < min(d,,§,). To compare the upper and lower sum of f with

respect to this partition, we distinguish the subrectangles S according as S
is one of Sy, ...,S,, or is not. We obtain:

U(P, f) — L(P, f) Z [Sl;P(f ) — i;lf(f )]v(S)

I
n'[v] 3

[Sup(f )= mf(f )]v(S,-)

J

+ Z[Sup(f) mf(f)]v(S)

5#5;

S 20112 + € ¥ uS)
S#S¢

<201 f12€ + e(R).

This proves that f is integrable.

Furthermore, suppose we change the values of f on D to those of another
function g. The lower sums L(P, ) and L(P, g) then differ only in those
terms

Sinf(fs) and Y inf@ws)
i=18; j=15;
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which are estimated by || f]|2¢ and (lg||2¢ respectively. Thus for € small,
the lower sums are close together. Since these lower sums are also close to
the respective integrals, it follows that Ir(f) = Ix(g). This proves the
theorem.

A subset 4 of R” will be said to be admissible if it is bounded, and if its
boundary is a negligible set. We denote the boundary of a set A by dA4.
The verification of the following properties is left to the reader as an exer-
cise:

(A U B) c (0A v 0B), (A N B) c (0A U 0B),
(A — B) = (04 L 0B)
where we denote by A — B the set of all x € 4 such that x ¢ B. Hence:
Lemma 1.5. A finite union of admissible sets is admissible, a finite inter-

section of admissible sets is admissible, and if A, B are admissible, so is
A—B.

Let A be a subset of R? and B a subset of R% Then A x B is a subset of
RP*4 and

(A4 x B) = (04 x B)u (4 x 0B).
This is immediately verified. By induction, we find that
Ay x - x A)=unionof 4, x --- x d4; x --- x 4,

the union taken for all i=1,...,n if 4,, ...,A, are subsets of euclidean
spaces. We can apply this to the case of a rectangle

R =[ay, b,] x--- x [a,, b,]
and find that its boundary is the union of sets
[o1,b1] x - x {a} x -+ x [ay, b,]
and
[a, by x - x {b;} x --- x [a,, ba)-

The boundary of a rectangle obviously is negligible. For instance, we can
cover a set

[a1, b3 x -+ x {c} x -+ x [a,, b,]
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by one rectangle
[a;, b, % -+ x J x -+ x [a,, b,]

where J is an interval of length € containing ¢, so that the volume of this
rectangle is arbitrarily small. It is also nothing but an exercise to show
that if 4, B are admissible, then A x B is admissible.

A function f on R" is said to be admissible if it is admissible on every
rectangle. Let f be admissible, and equal to O outside the rectangle S. Let
R be a rectangle containing S. We contend that Ig(f) = Is(f). To prove
this, write

R =1Ta;,b,] x -+ x [an, bs),
S =[cy.dy] x -+ x [cn, dn):

We view (a;, ¢;, d;, b;) as forming a partition P;, and let P = (P,,...,P,)
be the corresponding partition of R. Then S appears as one of the sub-
rectangles of the partition P of R. Let g be equal to f except on the bound-
ary of S, where we define g to be equal to 0. If P’ is any partition of R which
is a refinement of P, and S’ is a subrectangle of P’, then either S’ is a sub-
rectangle of S, or S’ does not intersect S, or S’ has only boundary points in
common with S. Hence for each P’ we find that

Ly(P', g) = Ls(P5, 9)

where Py is the partition of S induced by P’ in the natural way. From this
it follows at once that Ip(g) = I(g). By Theorem 1.3, we know that
Ix(f) = Ig(g) and I f) = Is(g). This proves our contention.

If A is an admissible set and f an admissible function, we let f, be the
function such that f,(x) = f(x) if x € 4 and f,(x) = 0if x ¢ A. Then f, is
admissible. We take any rectangle R containing A and define

Lif =1fd) = IR(fA)-

Our preceding remark shows that I,(f) is independent of the choice of
rectangle R selected containing 4. We call I, f the integral of f over A.

Conversely, given an admissible set 4 and a function f on A, we say
that f is admissible on A if the function extended to R” by letting f(x) = 0
if x ¢ A is an admissible function.

We have now associated with each pair (4, f) consisting of an admissible
set A and an admissible function f a real number I, f satisfying the follow-
ing properties:

INT 1. For each A, the map fw 1, f is linear.
INT2. If f2O0thenI,f20.



574 MULTIPLE INTEGRALS XX, §1]
INT 3. We have I,f = 14 fy4.
INT 4. For every rectangle S we have Is(1) = v(S).

Other properties can be deduced purely axiomatically from these four.
We have already seen one of them:

Proposition 1.6. If f < g,then I, f < 1,49.

Next, we have:

Proposition 1.7. If A, B have no elements in common, then
Lisef=I14f + 1sf.
Proof. We can assume f = f,5, and then write
f=fa+fa
It follows that

Liosf = Laos(fu + f6) = Laos(fa) + Laos(fs) = Laf + 15 f.

Actually, there is a more general formula, because for any two admissible
sets, we can write

AUB=(A—-B)u(An B)u(B— A4),
and the three sets appearing on the right are disjoint. Furthermore,
(A—B)u(AnB)=A4,
and similarly, (B — A) U (4 n B) = B. Hence:
Proposition 1.8. For any two admissible sets A, B we have

Liosf =14+ 1sf — 1 nsf.

Let X be any set. We define its characteristic function 1, to be the func-
tion such that 1x(x) = 1if x € X and 1,(y) = 0if y¢ X. Then 1y is con-
tinuous at every point which is not a boundary point of X, and is definitely
not continuous on the boundary of X. It follows at once that

X is admissible if and only if 1 is an admissible function.
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For any admissible set 4 we define its volume to be
Vol(4) = v(4) = 1(1).
This is simply the integral of the characteristic function of 4.

Proposition 1.9. We have |1, f| < [l fll(A) Gf || fl| is the sup norm as
usual).

Proof. Since +f < | fl we can use linearity and the inequality-pre-
serving property of the integral to conclude that

L f S I,
which yields our assertion. In particular:
Proposition 1.10. If A is negligible, then 1, f = 0.

Theorem 1.11. There is one and only one way of associating with each
admissible set A and admissible function f a (real) number 1, f satisfying
the four properties INT 1 through INT 4.

Proof. Existence has been shown. We prove uniqueness. We denote
by I% f any other integral satisfying the four properties. Suppose A4 is
contained in some rectangle R, and let P be a partition of R. If S, S’ are
subrectangles of the partition, then they are disjoint, or have only boundary
points in common, so that the set of common points is negligible. We may
assume that f(x) = 0if x ¢ 4. We then have

Lf=Ixf= gls*f-

For each S, by the inequality property of the integral, and linearity, we
find

inf(f)(S) £ 13(f) = Sl;p(f Jo(S)-
s
Hence
Lg(P, f) S I} f < Ur(P, f).
Since f is integrable, it follows that I% f = I, f, as was to be shown.
Let A, f be admissible. Let we R". We define A4,, to be the set of all

elements x + w with x € A. Similarly, we define f,, to be the function
such that f,(x) = f(x — w) (the minus sign is not a misprint). We call
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A, and f,, the translations by w of 4 and f respectively. It is clear that the
map

St

is linear (in other words, (f + g)w = f + g and (c¢f). = ¢f.,). As for
sets, we have (4 U B),, = 4,,u B, and (4 n B),, = 4,,n B,,.

If R is a rectangle, then R,, is a rectangle, having the same volume
(obvious). The translation of a negligible set is thus obviously negligible.
Hence one verifies at once that both 4,, and f,, are admissible.

Theorem 1.12. The integral is invariant under translations. In other
words, for admissible A and f, and w € R" we have:

IAf= IAwfw~
Proof. We define (for fixed w):
Lif=14fw

The four properties INT 1 through INT 4 are then immediately verified.
Note that in INT 3, we use the fact that f,,(x + w) = f(x), so that if fis 0
outside A, then f, is 0 outside 4,, and 4,, < B,. We can then apply
Theorem 1.11 to see that I* = 1. As for INT 4, if S is the rectangle

[er di] x -+ x [cqd,],
and w = (wy,...,w,), then S,, is the rectangle
[ey + wy,dy + wi] x -+ x [c, + Wy, dy + W]
whose volume is obviously equal to 1(S). The first two properties are even

more obvious, and the theorem is proved.
In light of the uniqueness, we shall use standard notation, and write

Lf= Lf - Lf(x) ax.

XX, §1. EXERCISES

The first set of exercises shows how to generalize the class of integrable functions.

1. Let A be a subset of R” and let a € A. Let f be a bounded function defined on A.
For each r > 0 define the oscillation of f on the ball of radius r centered at a to be
oscillation

o(f, a,r) = sup| f(x) — ()|
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the sup being taken for all x, y € B/(a). Define the oscillation at a to be

o(f,a) = limo(f, a,r).
r—0

Show that this limit exists. Show that f is continuous at a if and only if
o(f,a) =0.
2. Let A be a closed set, and f a bounded function on A. Given ¢, show that the
subset of elements x € A such that o(f, x) = ¢ is closed.

3. A set A is said to have measure 0 if given ¢, there exists a sequence of rectangles
{Ry, R,,...} covering A such that

Y uR) <e
=1

Show that a denumerable union of sets of measure 0 has measure 0. Show that a
compact set of measure 0 is negligible.

4. Let f be a bounded function on a rectangle R. Let D be the subset of R consisting
of points where f is not continuous. If D has measure 0, show that f is integrable
on R. [Hint: Given ¢, consider the set A of points x such that o(f, x) 2 e. Then
A has measure 0 and is compact.]

w

. Prove the converse of Exercise 4, namely: If f is integrable on R, then its set of
discontinuities has measure 0. [Hint: Let A,, be the subset of R consisting of all x
such that o(f, x) 2 1/n. Then the set of discontinuities of f is the union of all
Ay, forn = 1,2,...s0it suffices to prove that each 4,,, has measure 0, or equiva-
lently that 4,,, is negligible.]

Exercises 4 and 5 above give the necessary and sufficient condition for a
function to be Riemann integrable. We now go on to something else.

6. Let A be a subset of R”. Let ¢ be a real number. Show that d(tA4) = td(A) (where
1A is the set of all points tx with x € A).

7. Let R be a rectangle, and x, y two points of R. Show that the line segment joining
x and y is contained in R.

. Let A be a subset of R” and let A° be the interior of A. Let x € A° and let y be
in the complement of A. Show that the line segment joining x and y intersects
the boundary of A. [Hint: The line segment is given by x + #(y — x) with

oo

0st=1.

Consider those values of t such that [0, t] is contained in 4°, and let s be the least
upper bound of such values.]

=1

. Let A be an admissible set and let S be a rectangle. Prove that precisely one of
the following possibilities holds: S is contained in the interior of 4, S intersects
the boundary of 4, S is contained in the complement of the closure of A.
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10. Let A be an admissible set in R”, contained in some rectangle R. Show that

11

Vol(4) = lub Y’ «(S),

P Sca

the least upper bound being taken over all partitions of R, and the sum taken over
all subrectangles S of P such that S = A. Also prove: Given ¢, there exists & such
that if size P < 6 then

Vol(4) — T uS)| <6
ScA

the sum being taken over all subrectangles S of P contained in 4. Finally, prove
that
Vol(d)=glb Y uS)
r

SN Anotempty

the sum now being taken over all subrectangles S of the partition P having a non-
empty intersection with A.

Let R be a rectangle and f an integrable function on R. Suppose that for each
rectangle S contained in R we are given a number I%f satisfying the following
condition:

(i) If P is a partition of R then

(ii) If there are numbers m and M such that on a rectangle S we have

msf(x)=M for all x € S,
then
mu(S) < I3 f < Mu(S).
Show that I} f = I f.

. Let U be an open set in R" and let Pe U. Let g be a continuous function

on U. Let ¥, be the volume of the ball of radius r. Let B(P, r) be the ball of
radius r centered at P. Prove that

g(P) = lim -L I g
o ¥, B(P.r)

XX, §2. CRITERIA FOR ADMISSIBILITY

In

this section we give a few simple criteria for sets and functions to be

admissible.

We recall that a map f satisfies a Lipschitz condition on a set A if there

exists a number C such that

fx) = fO) £ Clx — yl
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for all x, ye 4. Any C' map f satisfies locally at each point a Lipschitz
condition, because its derivative is bounded in a neighborhood of each
point, and we can then use the mean value estimate

1f) = fO) = Ix — ylsup| f'(2)l,

the sup being taken for z on the segment between x and y. We can take
the neighborhood of the point to be a ball, say, so that the segment be-
tween any two points is contained in the neighborhood.

Proposition 2.1. Let A be a negligible set in R" and let f: A — R" satisfy
a Lipschitz condition. Then f(A) is negligible.

Proof. Let C be a Lipschitz constant for f. A rectangle is called a cube
if all its sides have the same length. By Lemma 1.4 we can cover 4 by a
finite number of cubes S;,...,S,, such that

(Sy)+ -+ (S, <e
Let r; be the length of each side of S;. Then for each j = 1,...,m we see
that f(4n§;) is contained in a cube §; whose sides have length < 2Cr;.
Hence
v(§j) = 2°C"rj' = 2"C"(S)).
Hence f(4) is covered by a finite number of cubes S; such that
v(Sy) + - + v(S;,) < 2"C".

This proves that f(A) is negligible, as desired.

Proposition 2.2. Let A be a bounded subset of R™. Assume that m < n.
Let f: A — R” satisfy a Lipschitz condition. Then f(A) is negligible.

Proof. View R™ as contained in R" (first m coordinates). Then 4 is
negligible. Indeed, if A is contained in an m-cube R, we takg n — m sides
equal to a small number 6, and then R x [0, 8] x --- x [0, 5] has small
n-dimensional volume. Thus we can apply Proposition 2.1 to conclude
the proof.

Remark. In Propositions 2.1 and 2.2 we can replace the Lipschitz con-
dition by the condition that the map f is C* on an open set U containing
the closure A of A.
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Proof. Since A is compact, there exists a finite covering of A by open
balls U; (i = 1,...,r) contained in U such that f’ is bounded on each U;.
Then f is Lipschitz on each U; and hence in Proposition 2.1, each set
A n U, is negligible, so that 4 itself is negligible, being a finite union of
negligible sets. In Proposition 2.2, the same applies to each f(4 N U)).

Proposition 2.2 is used in practice to show that the boundary of a certain
subset of R" is negligible. Indeed, such a boundary is usually contained
in a finite number of pieces, each of which can be parametrized by a C!
map f defined on a lower dimensional set.

Proposition 2.3. Let A be an admissible set in R" and assume that its
closure A is contained in an open set U. Let f:U — R" be a C' map,
which is C'-invertible on the interior of A. Then f(A) is admissible and

U(A4) = f(04).

Proof. Let A° be the interior of 4, that is the set of points of 4 which
are not boundary points of A. Then A° is open, so is f(A4°), and f yields a
C-invertible map between 4° and f(A4°). We have

A= AU a4,
and 04 = 04, whence
(4% < f(A) = f(A) = f(4°) U f(3A).

This shows that f(4) = f(84), and that 9f(4) is negligible by Proposition
2.1, thus proving Proposition 2.3.

Proposition 2.4. Let U be open in R" and A admissible such that the
closure A is contained in U. Let f:U — R" be a map of class C', and
C'-invertible. Let g be admissible on f(A). Then g o [ is admissible on A.

Proof. Using Proposition 2.3, we know that f(A) is admissible, and so is
S(A4). We can extend g arbitrarily to f(A), say by letting g(y) = 0 at those
points y where g is not originally defined. Then this extension of g is still
admissible. If D is a closed negligible set contained in f(A) and containing
the boundary of f(4) as well as all points where g is not continuous, then
D is compact, contained in the image f(U), and S~ YD) is therefore neg-
ligible by Proposition 2.1. Since g o f is continuous outside f~YD), our
proposition is proved.
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XX, §2. EXERCISES

1. Let g be a continuous function defined on an interval [a, b]. Show that the graph of
g is negligible.

N

Let g,, g, be continuous functions on [q, b] and assume g, < g,. Let 4 be the set

of points (x, y) such that a < x < b and ¢,(x) £ y < g,(x). Show that 4 is ad-
missible.

3. Let U be open in R" and let f: U — R" be a map of class C'. Let R be a closed cube
contained in U, and let A be the subset of U consisting of all x such that

Det f'(x) = 0.

Show that f(4 n R) is negligible. [Hint: Partition the cube into N" subcubes
each of side s/N where s is the side of R, and estimate the diameter of each f(4 N S)
for each subcube S of the partition.]

XX, §3. REPEATED INTEGRALS

We shall prove that the multiple integral of §1 can be evaluated by re-
peated integration. This gives an effective way of computing integrals.

Let A, B be (closed) rectangles in R? and R? respectively. Let f be an
integrable function on 4 x B. We denote by f,: B — R the function such
that f.(y) = f(x, y). We may then want to integrate f, over B. It may
happen that for some x, € 4 the set {xo} x B is a set of discontinuities
for f, because such a vertical set is negligible in R? x R% However, if f,
is integrable, we define

Infe= [ sy = £

The map x - I f, then defines a function on A4, or rather on the subset
of 4 consisting of those x such that I f; exists. We shall assume that I f,
exists for all x except in some negligible set in 4. We define I f; in any
way (bounded) for x in this negligible set. For the purposes of the next
theorem, we shall see that it does not matter how we define I f, for such
exceptional x. We shall denote the function x + I f, by I f.

Theorem 3.1. Let A, B be (closed) rectangles in RP and R? respectively.
Let f be an integrable function on A x B. Assume that for all x except
in a negligible subset of A the function f, is integrable. Then the function
Ig f isintegrable, and we have

IA(IBf) =I4xsf,
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or in another notation,

anf - L[Lﬂx' » dy] dx.

Proof. Let P, be a partition of A and Pp a partition of B. Then we
obtain a partition P of 4 x B by taking all products S = §4 x Sp of sub-
rectangles S, of P, and subrectangles Sg of Pg. We have:

LPf)=}% irslf(f W)=Y Y inf (f)AS4 x Sp)
S

Sa SB Sa%Sp

<Y Y inf inf(f)u(Ss)u(Sa)
Sa Sp ¥€94 98

=< Z inf (z i“f(fx)v(sa))v(SA)

Sa x€eSa\Ss SB

= Z inf(I f)v(S,)

54 Sa
= L(P4, I5f).
Similarly, we obtain
P, f) S L(P4. I f) £ U(P4, I f) < U(P, f).

Since we can choose P = P, x Py such that U(P, /) and L(P, f) are ar-
bitrarily close together, we conclude that I, f is integrable, and that its

integral over 4 is given by
Jlnf = J £
4 AxB

Example. We recover an elementary theorem concerning multiple
integration as a consequence of Theorem 3.1. Let g,, g, be continuous
functions on [a, b] such that g, < g,. As we saw in Exercise 2 of the pre-
ceding section, the set of all points (x, y) such that a < x < b and

as was to be shown.

91(x) £ y £ gx(x)

is admissible. We denote this set by 4. Let f be a continuous function on
A. Let R be a rectangle containing 4 and extend f to all of R by defining
f(x,y) =0if (x, y) € R but (x, y) ¢ A. Then f is admissible, since its set of
discontinuities is the boundary of A and is negligible. We may take

R = [a,b] x [m, M]
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where m, M are numbers such that m < g,(x) < g,(x) £ M for all x in

[a, b]. Then
IR K
R 4
By Theorem 3.1, we also have

[r=[] renaa

because for each x, the function f, is continuous on the interval
[91(x), g2(x)]

and is equal to 0 outside this interval. We then obtain

[r-] b[ m::)f(x, » dy] dx.

The picture for the preceding example is as follows:

g2(x)

XX, §3. EXERCISE

1. Let f be defined on the square S consisting of all points (x, y) such that 0 < x <1
and 0 < y < 1. Let f be the function on S such that

(6 y) = 1 if x is irrational,
Sy = y* if x is rational.

1 1
ijmﬂu
(] 0
does not exist.

(b) Show that the integral Is(f) does not exist.

(a) Show that
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XX, §4. CHANGE OF VARIABLES

We first deal with the simplest of cases. We consider vectors v,,...,0,
in R" and we define the block B spanned by these vectors to be the set of
points

Loy + o+ o,
with 0 £ t; £ 1. We say that the block is degenerate (in R") if the vectors

1. ...V, are linearly dependent. Otherwise, we say that the block is non-
degenerate, or is a proper block in R".

A block in 2-space

A block in 3-space

We see that a block in R? is nothing but a parallelogram, and a block in
R? is nothing but a parallelepiped (when not degenerate).

We denote by Vol(v,,...,v,) the volume of the block B spanned by
vy,...,0,. We define the oriented volume

Vol°(vy,...,v,) = + Vol(v,, ...,0,),

taking the + sign if Det(v,, . ..,v,) > 0and the — sign if
Det(v,,...,0,) <O.
The determinant is viewed as the determinant of the matrix whose column
vectors are vy,. .. ,V,, in that order.
We recall the following characterization of determinants: Suppose that

we have a product

W1, ... 0) 0, AV A2 A Y,

n

which to each n-tuple of vectors associates a number, such that the product
is multilinear, alternating, and such that

egn--Ane =1
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if ey, ...,e, are the unit vectors. Then this product is necessarily the de-
terminant, ie. it is uniquely determined. “Alternating” means that if
v; = v; for some i # j then v; A --- A v, =0. The uniqueness is easily
proved, and we recall this short proof. We can write

U, =ape + 0+ ape,
for suitable numbers g;;, and then
Uy A AV =(ag ey + o ag,e) A A (@8 + 00 + ape,)
=X A10)Cany A A A, a(n)Catn)
7

= Z 1,001)" " An,amCo(1) N """ A Eon)-
a

The sum is taken over all maps o¢:{1,...,n} = {1,...,n}, but because
of the alternating property, whenever ¢ is not a permutation the term
corresponding to ¢ is equal to 0. Hence the sum may be taken only over all
permutations. Since

o)y A ot A oy = €(@)ey At A ey
where ¢(c) = 1 or —1 is a sign depending only on g, it follows that the

alternating product is completely determined by its value e; A --- A e,
and in particular is the determinant if this value is equal to 1.

Theorem 4.1. We have Vol°(vy,...,v,) = Det(v,, ...,v,) and

Vol(vy, . . . ,v,) = |Det(vy, ... ,0,)l.

Proof. Ifv,,...,v, are linearly dependent, then the determinant is equal
to 0, and the volume is also equal to 0, for instance by Proposition 2.2.
So our formula holds in this case. It is clear that
Vol%e;, ... e,) = 1.
To show that Vol° satisfies the characteristic properties of the determinant,
all we have to do now is to show that it is linear in each variable, say the
first. In other words, we must prove:

* Vol(cv, v,, ...,0,) = ¢ Vol°(v, v,,...,v,)  for ceR,

(**  Vol°( + W, 05, ...,0,) = VoI°(v, v, ...,,) + Vol°(w, v, ...,0,).
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As to the first assertion, suppose first that ¢ is some positive integer k.
Let B be the block spanned by v, v,,...,0,. We may assume without loss
of generality that v, v,,...,v, are linearly independent (otherwise, the
relation is obviously true, both sides being equal to 0). We verify at once
from the definition that if B(v, v,,...,v,) denotes the block spanned by
v, Vs, ...,0, then B(kv, v,,...,v,) is the union of the two sets

B((k — 1), v,,...,0,) and B(v, v,,...,0,) + (k — v

which have a negligible set in common. We actually carry out the details,
proving this.

By definition, B(kv, v, . . .,,) is the set of elements x which can be written
in the form t,kv + tv, + -+ + t,v, with 0 < t; £ 1. Consider the subsets
A, A’ defined as follows. A consists of all the elements of B(kv, v,, ...,v,)
such that

0=t = (k- 1k
and A’ consists of those elements such that (k — 1)/k <t, < 1. Then
A= B(k — 1), v,,...,0,). Asfor 4, let

thk=k—-1)+s, or s=tk—(k=1).
Then 0 < s, < 1 and elements of A’ can be written in the form
k—=1Dv+s,0+ 10, + -+ + t,0,

Thus A’ = B(v, v,, ...,v,) + (k — v is the translation of B(v, v,, ...,0,) by
(k — 1)v, as was to be shown.

The points in common between the above two sets 4 and A’ are those
for which t; = (k — 1)/k, and thus these points can be parametrized by a
lower dimensional set, under a map which is a composite of a linear map
and a translation. Hence 4 n 4’ is negligible.

Therefore, we find that

Vol(kv, vy, . - . ,v,) = Vol((k — 1)v, v,,...,p,) + Vol(v, v,,...,v,)
= (k — 1) Vol(v, v,,...,v,) + Vol(v, v5,...,0,)
=k Vol(v, v,,...,0,),

as was to be shown.
Now let

<
I
==
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for a positive integer k. Then applying what we have just proved shows
that

1 1
Vol (E vy, vz,.‘.,v,,) = EVol(v,,..., )

Writing a positive rational number in the form m/k = m-1/k, we con-
clude that the first relation holds when ¢ is a positive rational number.
If r is a positive real number, we find positive rational numbers ¢, ¢’ such
that ¢ £ r £ ¢'. Since

B(cv, vy, ...,0,) © B(rv, vy,...,0,) < B(c'v,v;,...,0,),
we conclude that

¢ Vol(v, vy, . ..,0,) < Vol(ry, vy, ...,t,) £ ¢ Vol(v, vy, - ... ,v,).

Letting ¢, ¢’ approach r as a limit, we conclude that for any real number
r 2 0 we have

Vol(rv, v,,. ..,v,) = r Vol(v, vz, ...,0,).
Finally, we note that B(—v, v,,...,,) is the translation of
B(v,v;,...,0s)

by —v so that these two blocks have the same volume. This proves the
first assertion.

For the second assertion, we shall first prove a special case.

Lemma4.2. If vy, ..., are linearly independent, then

Vol(v, + v3, 05, --.,0,) = Vol(vy, vz, ... ,0,)-

Proof. We look at the geometry of the situation, which is made clear
by the following picture:

vy + 0, + 0,
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The proof amounts to observing that the two shaded triangles have the
same volume because one is the translation of the other. We give the
details. Let B be the block spanned by v,, v, ... ,v, and B’ the block spanned
by v, + v;, ;,...,0,. Then:

B’ consists of all x =t;(v; + v;) + t20, + - + t,0, with 051,

which we can also write as t, v; + (t; + t)v; + --- + t, 5.

B consists of all elements y = 5,0, + 5,0, + -+ + 5,0, With0 < 5; S 1.
Let B — B’ be the set of all ye B, y¢ B'. An element y lies in B — B’ if and
onlyif0 <s; < 1ands, <s,. Indeed, let t; =s,. If s, < s, then there is
no t, suchthat s, = t; + t,. Conversely, if s, = s;,then welett, = s, — 5,
and we see that y liesin B N B'.

Finally, consider the set B’ — B consisting of all x € B’ such that x ¢ B.
It is the set of all x written as above, with t; + t; > 1. Lets, = ¢, +t; — 1.
An element x € B — B can then be written

X =10 + S0, + 03 + -+ + 5,0,
with 0 <t, £1 and 0 <s, <t,. (The condition s, <t, comes from
the fact that s, + (1 —t;) =t,.) Conversely, any element x written with

t, and s, satisfying 0 < s, <t, lies in B' — B, as one sees immediately.
Hence, except for boundary points, we conclude that

B —B=(B—B)+v,.

Consequently, B — B and B — B’ have the same volume. Then
Vol B = Vol(B — B’) + Vol(B n B’) = Vol(B' — B) + Vol(B n B)
= Vol B
This proves the lemma.
From the lemma, we conclude that for any number c,
Vol°(v, + v, v, ...,0,) = Vol°(vy, vy, ...,0,).
Indeed, if ¢ = O this is obvious, and if ¢ # 0 then
¢ Vol%(v, + cvy,0;,...,0,) = Vol°(v; + cv,, vy, ....0,)
= Vol%v,, cv,, ... ) = ¢ Vol°(vy, v,,....0,).

We can then cancel ¢ to get our conclusion.
To prove the linearity of Vol° with respect to its first variable, we may
assume that v,,...,v, are linearly independent, otherwise both sides of
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(**) are equal to 0. Let v, be so chosen that {v,,...v,} is a basis of R".
Then by induction, and what has been proved above,

Vol®(c vy + -+ + ol D2, .. .,0,) = VOI%C10y + -+ + Coe yUn 1 V2 -+ - ,0p)
= Vol%c,v;, v, .. ,0,)

=¢; Vol°v,,...,0,).
From this the linearity follows at once, and the theorern is proved.

Corollary 4.3. Let S be the unit cube spanned by the unit vectors in R".
Let 2:R" - R" be a linear map. Then

Vol A(S) = | Det(3)|.

Proof. If v,,...,v, are the images of e,,...,e, under A, then A(S) is the
block spanned by v,,...,v,. If we represent A by the matrix 4 = (a;j), then

v; = ajjey + -+ + ainey
and hence Det(vy, ...,v,) = Det(4) = Det(4). This proves the corollary.

Corollary 4.4. If R is any rectangle in R" and A: R" — R" is a linear map,
then

Vol A(R) = | Det(4)| Vol(R).

Proof. After a translation, we can assume that the rectangle is a block.
If R = A,(S) where S is the unit cube, then

MR) = A2 A,(S)
whence by Corollary 4.3,
Vol A(R) = |Det(A o A,)| = |Det(4) Det(4,)| = |Det(4)| Vol(R).

The next theorem extends Corollary 4.4 to the more general case where
the linear map A is replaced by an arbitrary C'-invertible map. The proof
then consists of replacing the linear map by its derivative and estimating
the error thus introduced. For this purpose, we define the Jacobian de-
terminant

Ay(x) = Det J «(x) = Det f'(x)

where J (x) is the Jacobian matrix, and f’(x) is the derivative of the map
f:USR
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Theorem 4.5. Let R be a rectangle in R", contained in some open set U.
Let f:U — R" be a C' map, which is C'-invertible on U. Then

VLR = [ 141

Progf. When f'is linear, this is nothing but Corollary 4.4 of the preceding
theorem. We shall prove the general case by approximating f by its deriva-
tive. Let us first assume that R is a cube for simplicity. Let P be a
partition of R, obtained by dividing each side of R into N equal segments
for large N. Then R is partitioned into N" subcubes which we denote by
S,(j=1,....,N". Welet a; be the center of §;.

We have

Vol f(R) = Y. Vol f(S)

because the images f(S;) have only negligible sets in common. We investi-
gate f(S;) for each j.

Let C be a bound for | f'(x)™!|, x € R. Such a bound exists because
x| f'(x)""] is continuous on R which is compact. Given ¢, we take N
so large that for x, z € S; we have

1) = f')] < ¢/C.
Let 4; = f"(a;) where a; is the center of the cube S;. Then
14 e f(2) = A7 e (X < €

for all x,z€ S;. By Lemma 3.3 of Chapter XVIII, §3 applied to the sup
norm, we conclude that }.j" o f(S;) contains a cube of radius

(1 — e)(radius of S)),
and trivial estimates show that A; ' o f(S;) is contained in a cube of radius
(1 + e)(radius of S),

these cubes being centered at a;. We apply A ; to each one of these cubes
and thus squeeze f(S;) between the images of these cubes under Aj. We
can determine the volumes of these cubes using Corollary 4.4. For some
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constant Cy, we then obtain a lower and an upper estimate for Vol f(S )
namely

|Det f'(a))| Vol(S;) — eC, Vol(S;) < Vol £(S;)
< |Det f'(a;)| VoI(S;) + €C; VoI(S)).

Summing over j, and estimating |A,| by a lower and upper bound, we get
finally

L(P,14,]) — €C, < Vol f(R)
S U, |Af]) + €C,

for some constant C, (actually equal to C, Vol R). Our theorem now
follows at once.

Remark. We assumed for simplicity that R was a cube. Actually, by
changing the norm on each side, multiplying by a suitable constant, and
taking the sup of these adjusted norms, we see that this involves no loss of
generality. Alternatively, we can find a finite number of cubes B,,...,B,,
in some partition of the rectangle such that

[v(By) + -+ + v(B,) — UR)| < ¢
and apply the result to each cube.

The next result is an immediate consequence of Theorem 4.5, and is
intermediate to the most general form of the change of variable formula
to be proved in this book. It amounts to replacing the integral of the con-
stant function 1 in Theorem 4.5 by the integral of a more general function
g. It actually contains both the preceding theorems as special cases, and
and may be called the local change of variable formula for integration.

Corollary 4.6. Let R be a rectangle in R", contained in some open set U.
Let f:U — R" be a C' map, which is C'-invertible on U. Let g be an
admissible function on f(R). Then g o f is admissible on R, and

= ° Al
.0 f @ NI,

Proof. Observe that the function g  f is admissible by Proposition 2.4,
and so is the function (g © f)|A|.
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Let P be a partition of R and let {S} be the collection of subrectangles
of P. Then

_’. inffgs | g= f sup g,
1) £(S) IS ) £(5)

whence by Theorem 4.5, applied to constant functions, we get

fsinf(g NI < jf E leslp(g o DAL

s

Let C be a bound for |A;| on R. Subtracting the expression on the left
from that on the right, we find

0= J.[sup(gof) — inf(g °f)]IA[|
sl s s
< Cf[sm)(gof) —inf(g°f)]-
sLs s
Taking the sum over all S, we obtain
by [fsup(g o NIAFl — Iinf(g of)lA,|] S CLUPP. g f)— L(P, g )]
sliss ss

and this is < e for suitable P. On the other hand, we also have the in-
equality

[intg=iasis [@eniajis [ nial
SSs S S S

which we combine with the preceding inequality to conclude the proof
of the corollary.

We finally come to the most general formulation of the change of
variable theorem to be proved in this book. It involves passing from rec-
tangles to more general admissible sets under suitable hypotheses, which
must be sufficiently weak to cover all desired applications. The proof
is then based on the idea of approximating an admissible set by rectangles
contained in it, and observing that this approximation can be achieved in
such a way that the part not covered by these rectangles can be covered
by a finite number of other rectangles such that the sum of their volumes is
arbitrarily small. We then apply the corollary of Theorem 4.5.
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Theorem 4.7. Let U be open in R" and let f: U — R" be a C* map. Let
A be admissible, such that its closure A is contained in U. Assume that
f is Cl-invertible on the interior of A. Let g be admissible on Sf(A).
Then g o f is admissible on A and

o= [@enia.
S(4) 4

Proof. In view of Proposition 2.3, it suffices to prove the theorem under
the additional hypothesis that A4 is equal to its closure 4, which we make
from now on.

Let R be a cube containing A. Given e, there exist § and a partition P
of R such that all the subrectangles of P are cubes, the sides of these sub-
cubes are of length 4, and if Sy,...,S,, are those subcubes intersecting 94

then
u(S)+ -+ uS,) <e

Let K=(S;u---uUS,)n A Then K is compact, v(K) <e¢ and we
view K as a small set around the boundary of 4 (shaded below).

If T is a subcube of P and T # S; for j = 1,...,m, then either T is con-
tained in the complement of A or T is contained in the interior of 4
(Exercise 9 of §1). Let Ty,...,T, be the subcubes contained in the interior
of A and let

B=Tv:-- VT,

Then B is an approximation of 4 by a union of cubes, and 4 — B is con-
tained in K. We have 4 = B U K and B n K is negligible. Both f(K) and
f(B) are admissible by Proposition 2.3. We have:

q
f g=f g+j g=f g+Zf g
JA) JK) J(B) JK) k=1 Jf(Ty)
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and by the corollary of Theorem 4.5,

q
~{ o+ 3 [ @enial
J(K) k=191,

= L o [@nia.

All that remains to be done is to show that [, g is small, that (g - f)
is admissible, and that the integral over B of (g » f)| A, is close to the inte-
gral of this function over A. We do this in three steps.

(1) By the mean value estimate, there exists a number C (the sup of
| f'(z)| on A) such that f(S; n A4) is contained in a cube S; of radius < C6
for each j = 1,...,m. Hence f(K) can be covered by S3,...,S,, and

uS)) < C"6" < Cu(S)).
Consequently v(f(K)) < C"", and

[ o ’ < Celgl
J(K)

which is the estimate we wanted.

(2) Under slightly weaker hypotheses, the admissibility of g o f would
follow from Proposition 2.4. In the present case, we must provide an
argument. Let fy: K — f(A) and fz: B— f(A) be the restrictions of f to K
and B respectively. Let D be a closed negligible subset of f(4) where g is
not continuous. Note that D n f(B) is negligible, and hence

f3' D) =f"'D)n B

is negligible, say by Proposition 2.1 of §2 applied to f~*. On the other
hand,

D) =f'D)nK

is covered by the rectangles S, .. .,S,,. Hence f~ (D) n A can be covered
by a finite number of rectangles whose total volume is < 2e. This is true
for every ¢, and therefore f~'(D) n A is negligible, whence g o f is ad-
missible, being continuous on the complement of £~ (D) N A.

(3) Finally, if C, is a bound for |g < f||A;| on 4, we get

L(yof)m,l—L(gef)|A,||§L_B|gof||A,|

=Ci(4 - B)
< Cye,

which is the desired estimate. This concludes the proof of Theorem 4.7.
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Example 1 (Polar coordinates). Let
f:R? > R?
be the map given by
f(r,6) = (r cos 6, r sin 6)

so that we put

x =rcosf
and
y =rsin6.
Then
o (28 )
and

Agr,0)=r

595

Thus Ay(r, 6) > 0if r > 0. There are many open subsets U of R? on which
f is Cl-invertible. For instance, we can take U to be the set of all (r, 6)
such that 0 < r and 0 < 6 < 2n. The image of f is then the open set V
obtained by deleting the positive x-axis from R2. Furthermore, the closure
U of U is the set of all (, ) such that r = 0 and 0 £ § < 2n. Furthermore,

f(D)is all of R2.

If 4 is any admissible set contained in U and g is an admissible function

on f(A), then

f g(x,y)dxdy = J‘ g(r cos 6, r sin O)r dr db.
S A

2n

r r
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The rectangle R defined by
062 and 0<r=n

maps under f onto the disc centered at the origin, of radius r,. Thus if we
denote the disc by D, then

2 ory
f g(x, y) dx dy = J‘ g(r cos 6, r sin O)r dr db.
D o Jo
The standard example is g(x, y) = e”* =¥ = ¢~", and we then find
2n pry
"‘e"‘z"" dxdy = J‘ f e "rdrdf =l —e "1,
D o Jo

performing the integration by evaluating the repeated integral. Taking the
limit as r; — oo, we find symbolically

f e P dxdy = .
R2

On the other hand, if § is a square centered at the origin in R?, it is easy to
see that given ¢, the integral over the square

a 2
r r eV dxdy = [f e dx]
—av —-a —-a

differs only by e from the integral over a disc of radius r, provided r, > a
and a is taken sufficiently large. Consequently, taking the limit as a — oo,
we now have evaluated

0
f e ¥ dx = ﬁ
-

(As an exercise, put in all the details of the preceding argument.)

Example 2. Let 4 be an admissible set, and let  be a number = 0. De-
note by r4 the set of all points rx with x € A. Then

Vol(rd) = r" Vol(A).
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Indeed, the determinant of the linear map ¢ such that ¢(x) = rx is simply
r" because we can replace ¢ by the matrix having components r on the
diagonal and 0 otherwise. If we denote by — A the set of all points —x with
x € A, how does Vol(— A4) differ from Vol(4)?

Example 3. We know that the area of the disc of radius 1 is n. The
ellipse defined by the inequality

[

2

+5 =1

S

§~| =

is a dilation of the disc by the linear map represented by the matrix

3

if a, b are two positive numbers. Hence the area of the ellipse is mab. As
an exercise, assuming that the volume of the n-ball of radius 1 in n-space is V;,,
what is the volume of the ellipsoid

XX, §4. EXERCISES

1. Let A be an admissible set symmetric about the origin (that means: if x € A then
—x € A). Let f be an admissible function on A such that

J(=x)= =00

=

2. Let T:R" > R" be an invertible linear map, and let B be a ball centered at the
origin in R". Show that

Show that

J‘ e~ <T».T»> dy = .[ e~ <X x> dx|det T_‘|.
B T(8)

(The symbol {,) denotes the ordinary dot product in R") Taking the limit as the
ball’s radius goes to infinity, one gets

I e~ gy = f e™ x> dx|det T™|.
. n

= n"2|det T™!|.
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3. Let B,(r) be the closed ball of radius r in R", centered at the origin, with respect
to the euclidean norm. Find its volume V,(r). [Hint: First note that

Vi(r) = V(1)
We may assume n 2 2. The ball B,(1) consists of all (x,, . ..,x,) such that
x4+ x2L1

Put (xy, x,) = (x, y) and let g be the characteristic function of B,(1). Then

1 1
wo= | [ g(x,y,xa,...,xodx,-~~dx"]dxdy
—-1v-1 Rp-2

where R,_, is a rectangle of radius 1 centered at the origin in (n — 2)-space. If
x2 + y? > 1 then g(x, y, X3,---,%,) = 0. Let D be the disc of radius 1 in R2.
If x2 + y2 <1, then g(x, y, x3,...,x,) viewed as function of (x3,...,x,) is the
characteristic function of the ball

B,-.(/1 - x?—y3).

Hence the inner integral is equal to

9%, Y, X3, %) dxz - dx, = (1 — x2 — y2)o=22y,_ (1)

Rn-2

so that
T = Voma® [0 = 5% =y .
D

Using polar coordinates, the last integral is easily evaluated, and we find:

7[" znnn-l
Voll) = = 4 Y )=— 2"
wl) =5 an = 135Gy

Suppose that T' is a function such that I'(x + 1)=xI'(x), I'(1)=1, and
I'(1/2) = \/=. Show that

”nIZ

D= Fa
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4. Determine the volume of the region in R” defined by the inequality

[+ -+ x| S

w

- Determine the volume of the region in R?" = R? x -.- x R? defined by
lzgl + o 4 |z, 1,
where z; = (x;, y;) and |z = \/x? + y? is the euclidean norm in R2.

6. (Spherical coordinates) (a) Define f: R® — R? by

X, =rcosf,,

X, = rsin 6, cos 8,

x3 =rsin 0, sin 6,.
Show that

A(r,6,,....0,-,) = r*sin 6,.
Show that f is invertible on the open set
O<r, 0<0,<m, 0< 6, <2m,

and that the image under f of this rectangle is the open set obtained from R® by

deleting the set of points (x, y, 0) with y 2 0, and x arbitrary.

X1

&
7

X3

X2

Let S(r,) be the closed rectangle of points (r, 8,, 8,) satisfying

0Zr=r, 0<0,=m 0<0, <2
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Show that the image of S(r,) is the closed ball of radius r, centered at the origin
in R3.
(b) Let g be a continuous function of one variable, defined for r = 0. Let

Glxy, X2, X3) = g(/x} + X3 + x3).
Let B(r,) denote the closed ball of radius r,. Show that

G=W, .r g(ryr? dr
By o

where W, = 3V,, and V4 is the volume of the three-dimensional ball of radius
1in R2
(c) The n-dimensional generalization of the spherical coordinates is given by
the following formulas:

xy =rcosb,,

Xz = rsin 6, cos 6,

rsin,sin@,---sin6,_, cosf,_,,

Xn—1
X, =rsinf,sinf,---sinf,_,sinb,_,.

Wetake0 <r,0 <6, <mfori=1,....n—2and 0 < 6,_, < 2n. The Jacobian
determinant is then given by

A(r, 6y, ...,6,-,) =r""sin""2 6, sin"26,--sin 6,_,
=r"'J(6).
Then one has the n-dimensional analogue of dx dy = r dr d, namely
dx,---dx,=r""'J(0)dr df,---df,_, abbreviated r"' dr du(6).

Assuming this formula, define the (n — 1)-dimensional area of the sphere to be
W, = AS™) = [ due),

where the multiple integral on the right is over the intervals prescribed above
for 6 = (6,,...,6,-,). Prove that

AS™Y) =nv,

where V, is the n-dimensional volume of the n-ball of radius 1. This general-
izes the formula W, = 3V, carried out in 3-space.
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7. Let T:R" - R" be a linear map whose determinant is equal to 1 or —1. Let A
be an admissible set. Show that

Vol(TA) = Vol(A).

(Examples of such maps are the so-called unitary maps, i.e. those T for which
{Tx, Tx) = {x, x) for all x e R")

-

. (a) Let A be the subset of R? consisting of all points
tie, + tye;

with 0 < t;and t, + 1, < 1. (This is just a triangle.) Find the area of 4 by inte-
gration.

(b) Let v, v, be linearly independent vectors in R2. Find the area of the set of
points t,v, + v, with0 < t;and t; + t, < 1, in terms of Det(vy, v,).

9. Let vy,...,v, be linearly independent vectors in R". Find the volume of the solid
consisting of all points

Loy + s+ L,

withO< g and ¢, + .-+, = 1.

10. Let B, be the closed ball of radius a > 0, centered at the origin. In n-space, let
X = (x,...,%,) and let r = | X|, where | | is the euclidean norm. Take

O<ax<l,

and let A, be the annulus consisting of all points X with a <|X| < 1. Both in
the case n = 2 and n = 3 (i.e. in the plane and in 3-space), compute the integral

1
1,=J' —dx, - dx,.
X1

Show that this integral has a limit as a — 0. Thus, contrary to what happens
in 1-space, the function f(X) = 1/|X| can be integrated in a neighborhood of 0.
[Hint: Use polar or spherical coordinates. Actually, using n-dimensional spherical
coordinates, the result also holds in n-space.] Show further that in 3-space, the
function 1/| X|? can be similarly integrated near 0.

11. Let B be the region in the first quadrant of R? bounded by the curves xy = 1,
xy =3,x2 — y? = 1,and x* — y* = 4. Find the value of the integral

f (x* + y*)dx dy

B

by making the substitution u = x* — y? and v = xy. Explain how you are apply-
ing the change of variables formula.



602 MULTIPLE INTEGRALS [XX, §5]

12.

Prove that
2 [ e
=24y gy dy = —a-[ — _du
Ife dx dy = ae N
)

where A denotes the half plane x 2 a > 0. [Hint: Use the transformation

x4+ yr=u+a* and y=ux.]

[nyz dx dy dz

2 2 2
x Y oz
LI AP
ZtpEtas

. Find the integral

taken over the ellipsoid

Let f be in the Schwartz space on R". Define a normalization of the Fourier
transform by

ror=| seeax

Prove that the function h(x) = e™™" is self dual, that is h¥ = h.

. Let B be an n x n non-singular real matrix. Define (f© B)(x) = f(Bx). Prove

that the dual of fo B is given by

1
(foB)'(y)= mf“('B"y),

where ||B|| is the absolute value of the determinant of B.

. For b e R define f,(x) = f(x — b). Prove that

() (y) = 72" (y).

XX, §5. VECTOR FIELDS ON SPHERES

Let S be the ordinary sphere of radius 1, centered at the origin. By a tangent
vector field on the sphere, we mean an association

F:S>R?

which to each point X of the sphere associates a _vector F(X) which is tan-
gent to the sphere (and hence perpendicular to 0X). The picture may be
drawn as follows:
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X + F(X)

For simplicity of expression, we omit the word tangent, and from now on
speak only of vector fields on the sphere. We may think of the sphere as
the earth, and we think of each vector as representing the wind at the given
point. The wind points in the direction of the vector, and the speed of the
wind is the length of the arrow at the point.

We suppose as usual that the vector field is smooth. For instance, the
vector field being continuous would mean that if P, Q are two points close
by on the sphere, then F(P) and F(Q) are arrows whose lengths are close,
and whose directions are also close. As F is represented by coordinates,
this means that each coordinate function is continuous, and in fact we
assume that the coordinate functions are of class C.

Theorem 5.1. Given any vector field on the sphere, there exists a point
P on the sphere such that F(P) = 0.

In terms of the interpretation with the wind, this means that there is
some point on earth where the wind is not blowing at all.

To prove Theorem 5.1, suppose to the contrary that there is a vector
field such that F(X) # O for all X on the sphere. Define

F(X)
EX)=—==,
X =r0)]
that is let E(X) be F(X) divided by its (euclidean) norm. Then E(X) is a
unit vector for each X. Thus from the vector field F we have obtained a
vector field E such that all the vectors have norm 1. Such a vector field
is called a unit vector field. Hence to prove Theorem 5.1, it suffices to
prove:

Theorem 5.2. There is no unit vector field on the sphere.

The proof which follows is due to Milnor (Math. Monthly, October,
1978).
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Suppose there exists a vector field E on the sphere such that
|E(X)| =1
for all X. For each small real number ¢, define
G(X) = X + tE(X).
Geometrically, this means that G(X) is the point obtained by starting at X,

going in the direction of E(X) with magnitude t. The distance of X + tE(X)
from the origin O is then obviously

JI1+ 2

Indeed, E(X) is parallel (tangent) to the sphere, and so perpendicular to X
itself. Thus

|X + tEQX)> = (X + tE(X))> = X2 + 2E(X)* = 1 + 2,
since both X and E(X) are unit vectors.

Lemma 5.3. For all ¢ sufficiently small, the image G(S) of the sphere
under G, is equal to the whole sphere of radius \/1 + t2.

Proof. This amounts to proving a variation of the inverse mapping
theorem, and the proof will be left as an exercise to the reader.

‘We now extend the vector field E to a bigger region of 3-space, namely
the region A4 between two concentric spheres, defined by the inequalities

as|X|Sbh
This extended vector field is defined by the formula
E(rU) = rE(U)

for any unit vector U and any number r such thata < r < b.
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It follows that the formula
G(X) = X + tE(X)
also given in terms of unit vectors U by
G(rU) = rU + tE(rU) = rG(U)
defines a mapping which sends the sphere of radius r onto the sphere of

radius r,/1 + t? by the lemma, provided that ¢ is sufficiently small. Hence
it maps A onto the region between the spheres of radius

a/l1+1t* and b1+ %
By the change of volumes under dilations, it is then clear that
Volume G,(4) = (/1 + t2)® Volume(A).
Observe that taking the cube of \/1 + 2 still involves a square root, and is
not a polynomial in ¢.
On the other hand, the Jacobian matrix of G, is
JodX) = I + tJ(X),
as you can verify easily by writing down the coordinates of E(X), say
E(X) = (gl(x7 Ys Z), gz(x, Ys Z), g3(x’ ba Z)).
Hence the Jacobian determinant has the form
86 X) = fo(X) + 108 + LX) + f(X0F,
where f, . ..,fy are functions. Given the region 4, this determinant is then
positive for all sufficiently small values of ¢, by continuity, and the fact
that the determinant is 1 when t = 0.

For any regions 4 in 3-space, the change of variables formula shows
that the volume of G,(A) is given by the integral

Vol G(4) = J:[ Ag(x, y, 2) dy dx dz.
4

If we perform the integration, we see that

Vol G(A) = co + ¢t + ¢t + c3t?
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where
G= H fi(x, y, z) dy dx dz.
A

Hence Vol G(A) is a polynomial in ¢ of degree 3. Taking for 4 the region
between the spheres yields a contradiction which concludes the proof.
XX, §5. EXERCISE

Prove the statements depending on inverse mapping theorems which have been left
as exercises in the above proof.



CHAPTER XXI

Differential Forms

XXI, §1. DEFINITIONS

We recall first two simple results from linear (or rather multilinear)
algebra. We use the notation E” = E x E x --- x E, r times.

Theorem A. Let E be a finite dimensional vector space over the reals.
For each positive integer r there exists a vector space /\' E and a multi-
linear alternating map

E(')—b/\'E

denoted by (uy,...,u)—uy; A -+ A u,, having the following property:
If {v,,...,v,} is a basis of E, then the elements

{fo, A A}, i <ip<e<i,
form a basis of /\' E.

We recall that alternating means that u; A---A u, =0 if u; = u; for
some i # j.

Theorem B. For each pair of positive integers (r, s), there exists a unique
product (bilinear map)

NEx/NE->N*E

607
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such that if uy, ... u,, wy, ..., w;€E then
Wy A Au)X Wy A AW U Ao Al AWp A AW
T his product is associative.

The proofs for these two statements will be briefly summarized in an
appendix. We call /\’ E the r-thalternating product (or exterior product)
of E. Ifr = 0, we define /\’ E = R. Elements of /\' E which can be written
i/n\ the form u; A --- A u, are called decomposable. Such elements generate

\ E.
Now let E* denote the space of linear maps from R" into R. We call
E* the dual space of R". It is the space which we denoted by L(R", R). If
Ay, . .. ,A, are coordinate functions on R”, that is

}'i(xli e ’xn) = X,

then each 4; is an element of the dual space, and in fact {1,,...,4,} is a
basis of this dual space.

Let U be an open set in R". By a differential form of degree r on U (or
an r-form) we mean a map

co:U—»/\’E*

from U into the r-th alternating product of E*. We say that the form is of
class C? if the map is of class CP. For convenience in the rest of the book,
we assume that we deal only with forms of class C®, although we shall some-
times make comments about the possibility of generalizing to forms of
lower order of differentiability.

Since {4,,...,4,} is a basis of E*, we can express each differential form
in terms of its coordinate functions with respect to the basis

an Ak} Gi<-r <),
namely for each x € U we have

o(x) = % Sty A oo A A
where f; = f;,...;, is a function on U. Each such function has the same
order of differentiability as w. We call the preceding expression the stan-
dard form of w. We say that a form is decomposable if it can be written as

just one term

SOy Ao A AL
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Every differential form is a sum of decomposable ones.

We agree to the convention that functions are differential forms of
degree 0.

It is clear that the differential forms of given degree form a vector space,
denoted by Q"(U). As with the forms of degree = 1, we assume from now
on that all maps and all functions mentioned in the rest of this book are
C®, unless otherwise specified.

Let f be a function on U. For each x € U the derivative

S(x):R">R
is a linear map, and thus an element of the dual space. Thus
f':U—E*

is a differential form of degree 1, which is usually denoted by df. [Note. If
f was of class CP, then df would be only of class C*~!. Having assumed
[ to be C=, we see that df is also of class C*.]

Let A; be the i-th coordinate function. Then we know that

aax) = Xx) = &

for each x € U because A'(x) = 4 for any continuous linear map A. When-
ever {x,,...,X,} are used systematically for the coordinates of a point in
R", it is customary in the literature to use the notation

dA(x) = dx;.

This is slightly incorrect, but is useful in formal computations. We shall
also use it in this book on occasions. Similarly, we also write (incorrectly)

=Y fagdxi A Adx,
®
instead of the correct

w(x) = ‘z‘): Sy Ao A A,

In terms of coordinates, the map df (or f”) is given by
df (x) = f'(x) = D1 f()Ay + -+ + Du f ()2,

where D; f(x) = df/éx; is the i-th partial derivative. This is simply a re-
statement of the fact that if H = (hy, .. .,h,) is a vector, then
o s,

f’(x)H=§1h1 +...+a_x; n
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which was discussed long ago. Thus in older notation, we have

df(x)=gdx1 +'--+;dex,,.
1 n

Let @ and ¥ be forms of degrees r and s respectively, on the open set U.
For each xe U we can then take the alternating product w(x) A ¥(x)
and we define the alternating product @ A ¢ by

(@ A P)x) = (x) A P(x).

If f is a differential form of degree 0, that is a function, then we define

fAo=fw

where (fw)(x) = f(x)w(x). By definition, we then have

o AfYy=fony

We shall now define the exterior derivative dw for any differential form
w. We have already done it for functions. We shall do it in general first in
terms of coordinates, and then show that there is a characterization in-
dependent of these coordinates. If

=Y fodh A AdA
®

we define

do =Y dfy A dhy A -+ A dh,.
@)

Example. Suppose n = 2 and w is a 1-form, given in terms of the two
coordinates (x, y) by
(U(X, y) =f(x7 .Y) dx + g(x’ y) d.V‘
Then

da(x, y) = df (x, y) A dx + dg(x, y) A dy

(Y Y % , . %
= (axdx+ 3ydy) Adx + (adx +6_ydy A dy

9 dg
—aydy/\ dx+a—xdx A dy

_(31_3_9

=\% ax) dy A dx
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because the terms involving dx A dx and dy A dy are equal to 0. As a
numerical example, take

a(x, y) = ydx + (x2y) dy.
Then
do(x, y) = dy A dx + (2xy) dx A dy
=(1—2xy)dy A dx.
Theorem 1.1. The map d is linear, and satisfies
dwnAyY)=dony+(—1Yo Ady

if r=degw. The map d is uniquely determined by these properties,
and by the fact that for a function f, we have df = f'.

Proof. The linearity of d is obvious. Hence it suffices to prove the
formula for decomposable forms. We note that for any function f we have

d(fw) = df A @ + fdo.

Indeed, if w is a function g, then from the derivative of a product we get
dfg)=fdg +gdf. If

w=gdl A AdA,
where g is a function, then
d(fw) = d(fgddi, A --- A dA) =d(fg) A dAy, A - A dA,,
=(fdg +gdf) ndhy A A dh,
=fdw + df A @,
as desired. Now suppose that
o =fdl A+ AdA;, and U=gdij An---ndl,
=fo =gy

with i, <--- <1, and j, <--- < as usual. If some i, = j,, then from
the definitions we see that the expressions on both sides of the equality
in the theorem are equal to 0. Hence we may assume that the sets of
indices iy, - ..,i, and j,,...,j; have no element in common. Then

ddAP)=0
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by definition, and

dw A Y) = d(fod A ) = d(fg) A DAY
—@df+fd) ADAY
=doAy+fdgAndAY
=do Ay +(-DfdAdg Ay
=do Ay + (—Dw A dy,

thus proving the desired formula, in the present case. (We used the fact
that dg A @ = (— 1)@ A dg whose proof is left to the reader.) The form-
ula in the general case follows because any differential form can be ex-
pressed as a sum of forms of the type just considered, and one can then
use the bilinearity of the product. Finally, d is uniquely determined by the
formula, and its effect on functions, because any differential form is a sum
of forms of type fdA, A --- A dA; and the formula gives an expression
of d in terms of its effect on forms of lower degree. By induction, if the
value of d on functions is known, its value can then be determined on forms
of degree = 1. This proves the theorem.

XXI, §1. EXERCISES

—

. Show that ddf = 0 for any function f; and also for a 1-form.
2. Show that ddw = O for any differential form w.

3. In 3-space, express dw in standard form for each one of the following w:
(@) w=xdx + ydz (b) w =xydy + xdz
(¢) w=(sinx)dy + dz d) w=¢edx +ydy + eV dz

»

Find the standard expression for dw in the following cases:
(@) w=x%ydy —xy*dx (b)) w=e"dx Adz
(¢) @ = f(x, y) dx where f is a function.

w

. (a) Express do in standard form if
w=xdy Adz+ydz A dx + zdx A dy.

(b) Let £, g, h be functions, and let
w=fdy ndz+gdz A dx + hdx A dy.

Find the standard form for dw.

(=2}

. In n-space, find an (n — 1)-form o such that

dow = dx; A -+ A dx,.
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7. Let w be a form of odd degree on"U, and let f be a function such that f(x) # 0
for all x € U, and such that d(fw) = 0. Show that w A dw = 0.

f=d

. A formw on U is said to be exact if there exists a form  such that w = dy. If
w), w, are exact, show that w, A w, is exact.

Nl

. Show that the form
1
a(x,y,2) = 5 (xdy A dz + ydz A dx + zdx A dy)
r

is closed but not exact. As usual, r? = x2 + y2 + z? and the form is defined on
the complement of the origin in R3.

XXI, §2. STOKES’ THEOREM FOR A RECTANGLE

Let w be an n-form on an open set U in n-space. Let R be a rectangle in
U. We can write o in the form

w(x) =f(x)dx; A -+ A dx,,

where fis a function on U. We then define

J.Rw= ~’.Rf(x)tilxl---dx,,=J.R_ﬁ

where the integral of the function is the ordinary integral, defined in the
previous chapter.

Stokes’ theorem will relate the integral of an (n — 1)-form ¥ over the
boundary of a rectangle, with the integral of dyy over the rectangle itself.
However, we need the notion of oriented boundary, as the following ex-
ample will make clear.

Example. We consider the case n = 2. Then R is a genuine rectangle,

R = [a, b] x [c,d].
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The boundary consists of the four line segments
{a} x [c,d], {b} x[c,d), [ablx{c}), [ab]x{d}
which we denote by
B n, 15 I
respectively. These line segments are to be viewed as having the beginning
point and end point determined by the position of the arrows in the pre-
ceding diagram. Let
w=fdx +gdy
be a 1-form on an open set containing the above rectangle. Then

dw = df A dx + dg A dy

and by definition,
of a9 o
dw ady/\dx+a dx A dy = (ax dx A dy.

Then by definition and repeated integration,

J'dw—r_r(———)dxd

- f [gb, ») — ga, )1 dy — f [/, d) — f(x, O] dx.

The right-hand side has four terms which can be interpreted as the integral
of w over the “oriented boundary” of R. If we agree to denote this
oriented boundary symbolically by 8°R, then we have Stokes’ formula

de = J .
R °R

We shall now generalize this to n-space. There is no additional dif-
ficulty. All we have to do is keep the notation and indices straight.
Let

R= [al’ bl] X -0 X [am bn]'
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Then the boundary of R consists of the union for all i of the pieces
RY = [ay, by x --+ x {a;} x -+ x [a,,b,],
Rl =T[ay, by] x -+ x {b} x --- x [a,, b,).
If o(xg,....%) =f(Xg,....x)dx; A -+ A c@j A --- Adx, is an (n — 1)-

form, and the roof over anything means that this thing is to be omitted,
then we define

b 1B b ~
Jw=f J o | Sy X)) dAXy e dX - dX,.
RY ay a an

And similarly for the integral over R!. We define the integral over the
oriented boundary to be

foum 2ol L)

Stokes’ theorem for rectangles. Let R be a rectangle in an open set U
in n-space. Let w be an (n — 1)-formon U. Then

fdw=f .
R 20R

Proof. It suffices to prove the assertion in case w is a decomposable
form, say

o(x) =f(Xg, .. X) dxg A - A d/x\j/\ cor A dx,.

We then evaluate the integral over the boundary of R: If i # j then it is
clear that

J.w=0= w
RO R!

so that

O] "
w=(-1yj ff (DT
3°R ay ay an

—fGrree by X)) dxy o dy e dx,
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On the other hand, from the definitions we find that

dco(x)=(1,;,7f1dxl +~-+gdx,,) Adxy Ao A d/:?j/\ <o Adx,

=(—l)""§£dx1 Ao A dx,.
J

(The (—1)'~* comes from interchanging dx; with dx,, ...,dx;_,. All other
terms disappear by the alternation rule.)

Intergrating dw over R, we may use repeated integration and integrate
f/ox; with respect to x; first. Then the fundamental theorem of calculus
for one variable yields

)
fb af—jdx,=f(xl,...,bj,...,x,,)—f(xl,...,aj,...,x,,).
ay

We then integrate with respect to the other variables, and multiply by
(—1)~'. This yields precisely the value found for the integral of w over
the oriented boundary °R, and proves the theorem.

In the next two sections, we establish the formalism necessary to extend-
ing our results to parametrized sets. These two sections consist mostly of
definitions, and trivial statements concerning the formal operations of the
objects introduced.

XXI, §3. INVERSE IMAGE OF A FORM

We start with some algebra once more. Let E, F be finite dimensional
vector spaces over R and let A: E — F be a linear map. If u: F —» R is an
element of F*, then we may form the composite linear map

pel:E-SR
which we visualize as
EALAFLR
We denote this composite g A by A*(u). It is an element of E¥. We have

a similar definition on the higher alternating products, and in the appendix,
we shall prove:

Theorem C. Let A: E - F be a linear map. For each r there exists a
unique linear map

A N F* o /N E*
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having the following properties:

(@) ¥ A ) = 1¥(w) A 1Y) forwe /X F*, ye/\NFx
(ii) If pe F* then 2*(u) = po A, and A* is the identity on N F* =R

Remark. If y;,...u; are in F*, then from the two properties of
Theorem C, we conclude that

Py Ao A )= W e ) A A (g0 M)
Now we can apply this to differential forms. Let U be open in E = R"
and let V be open in F = R™. Let f: U—> V be a map (C*® according to
conventions in force). For each x € U we obtain the linear map

f'x):E->F

to which we can apply the preceding discussion. Consequently, we can
reformulate Theorem C for differential forms as follows:

Theorem3.1. Let f: U —» V be a map. Then for each r there exists a
unique linear map

f*Q1(V) - Q)

having the following properties:

@) For any differential forms w, Y on V we have
e A )=o) A fXW).
(i) If g is a function on V then f*(g) = g ° f, and if w is a 1-form then
(f*@)(x) = o(f(x))e df (x).

We apply Theorem C to get Theorem 3.1 simply by letting A = f'(x)
at a given point x, and we define

(S*o)(x) = f'(x)*o(f(x))-
Then Theorem 3.1 is nothing but Theorem C applied at each point x.

Example 1. Let y,, ...y, be the coordinates on V, and let p; be the
j-th coordinate function, j = 1,...,mso that y; = pi(yy, ... .ym) Let

f:U->V
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be the map, with coordinate functions
Vi = fix) = pjof (x).
If
(y) = g(y) dyj, A --- A dy;,

is a differential form on V, then

f*o=(gef)df;, A - A df,.

Indeed, we have for x € U:
(f*o)(x) = g(fONk, oSG A - A (g2 (X))
and
Six) = Qo Y (x) = pjo f'(x) = dffx).

Example 2. Let f: [a, b] - R% be a map from an interval into the plane,
and let x, y be the coordinates of the plane. Let ¢ be the coordinate in
[a, b]. A differential form in the plane can be written in the form

o(x, y) = g(x, y) dx + h(x, y) dy

where g, h are functions. Then by definition,
d. d
Fr0) = glx(0h Y0) Gy de + Hx(), 90) G de

if we write f(£) = (x(¢), /(t)). Let G = (g, h) be the vector field whose
components are g and h. Then we can write

S*o(t) = G(f®) f(t) dt

which is essentially the expression which we integrated when defining the
integral of a vector field along a curve.

Example 3. Let U, V be two open sets in n-space, and let f: U — V
be a map. If

o(y) = g(y)dy, A -+ A dy,,
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where y; = fi(x) is the j-th coordinate of y, then

dy; =D, f(x)dx, + -+ + D, fi(x) dx,,

o

o, dx,

_9;
—del‘i'""f'

and consequently, expanding out the alternating product according to the
usual multilinear and alternating rules, we find that

ro(x) = g(fCNAAx) dxy A -+ A dx,.

As in the preceding chapter, A, is the determinant of the Jacobian matrix

of f.

Theorem 3.2. Let f: U — V and g: V — W be maps of open sets. If @
is a differential form on W, then

g° N*) = f*(g*w).
Proof. This is an immediate consequence of the definitions.

Theorem 3.3. Let f: U — V be a map, and w a differential form on V.
Then

[*dw) = df *o.
In particular, if g is a function on V, then f*(dg) = d(g ° f).

Proof. We first prove this last relation. From the definitions, we have
dg(y) = g'(y), whence by the chain rule,

(*d@)x) = g'(f(¥) f'(x) = (g fY(x)

and this last term is nothing else but d(g - f)(x), whence the last relation
follows. The verification for a 1-form is equally easy, and we leave it as
an exercise. [Hint: It suffices to do it for forms of type g(y) dy,, with
V1 = f1(x). Use Theorem 1 and the fact that ddf; = 0.] The general
formula can now be proved by induction: Using the linearity of f*, we
may assume that w is expressed as w = A n where , n have lower
degree. We apply Theorem 1.1 and (i) of Theorem 3.1, to

frdo = f*@dy A ) + (1 A dn)

and we see at once that this is equal to df*w, because by induction,
f*dy = df*y and f*dn = df*n. This proves the theorem.
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XXI, §3. EXERCISES

1. Let the polar coordinate map be given by
(x,y) = f(r,0) = (r cos 6, r sin ).

Give the standard form for f*(dx), f*(dy), and f*(dx A dy).
2. Let the spherical coordinate map be given by
(%15 X2, X3) = f(r, 0, 65) = (r cos 0, r sin 6, cos B,, r sin 6, sin 6,).

Give the standard form for f*(dx,), f*(dx), f*(dx;), f*(dx, A dx,),
S*(dx, A dx3), f¥(dx; A dx;), and f¥(dx; A dx; A dx;).

XXI, §4. STOKES’ FORMULA FOR SIMPLICES

In practice, we integrate over parametrized sets. The whole idea of the
preceding section and the present one is to reduce such integration to
integrals over domains in euclidean space. The definitions we shall make
will generalize the notion of integral along a curve discussed previously,
and mentioned again in Example 2 of §3.

Let R be a rectangle contained in an open set U in R", and let 6: U - V
be a map (C* according to conventions in force), of U into an open set V
in R™. For simplicity of notation, we agree to write this map simply as

6:R-V.
In other words, when we speak from now on of a map 6: R > V, it is
understood that this map is the restriction of a map defined on an open
set U containing R, and that it is C* on U. A map ¢ as above will then be

called a simplex. Let w be a differential form on V, of dimension n (same
as dimension of R). We define

J‘co = fa"‘co.
o R

Let oy, ...,0, be distinct simplices, and c, ... ,c; be real numbers. A
formal linear combination

Y =100, + -+ ¢s0;

will be called a chain. (For the precise definition of a formal linear com-
bination, see the appendix.) We then define

s
J'cu =Y f w.
Y i=1 ay
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This will be useful when we want to integrate over several pieces, with
certain coefficients, as in the oriented boundary of a rectangle.
Let 0: R — V be a simplex, and let

R =[a;,by] x -+ x [a,, b,).
Let
Ri=[ay,b,] x -+ x [a;, b x --- x [, b,].
We parametrize the i-th pieces of the boundary of R by the maps
o:Ri-»V, olL:R -V
defined by
L (C T Y T | (-, N }
G X g B0 Xy) = 0(Xgs v by, o).

Observe that omitting the variable x; on the left leaves n — 1 variables,
but that we number them in a way designed to preserve the relationship
with the original n variables. We define the boundary of o to be the chain

86 = Y (—1){(a? — o}).

i=1
Example. We consider the case n = 2. Then R is a genuine rectangle,

R = [a, b] x [c,d].




622 DIFFERENTIAL FORMS [XXI, §4]

We then find:

) =@y, ¢l =0y

o3x) = (x,0),  o3(x)=(x.d)
Then

6=—0{+ 0% + 0} — 0}
is the oriented boundary, and corresponds to going around the square
counterclockwise.
In general, consider the identity mapping
I:R—>R

on the rectangle. Let  be an n-form. We may view 8°R as 1, so that

LORw - a!w - tg":l(_ l)i[f’?\b - J‘Hw].

If 6: R - V is a simplex, and w is an (n — 1)-form on V, then

Lﬂw = Loxa*(w)

as one sees at once by considering the composite map ¢ = ¢ I?.

RERSY
\_o/

Stokes’ theorem for simplices. Let V be open in R™ and let w be an
(n— 1)formon V. Let 6: R — V be an n-simplex in V. Then

[ - [o

Proof. Since do*w = ¢* dw, it will suffice to prove that for any
(n — 1)-form Y on R we have
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This is nothing else but Stokes’ theorem for rectangles, so Stokes’ theorem
for simplices is simply a combination of Stokes’ theorem for rectangles
together with the formalism of inverse images of forms.

In practice one parametrizes certain subsets of euclidean space by
simplices, and one can then integrate differential forms over such subsets.
This leads into the study of manifolds, which is treated in my Real and
Functional Analysis. In the exercises, we indicate some simple situations
where a much more elementary approach can be taken.

XXI, §4. EXERCISES

1. Instead of using rectangles, one can use triangles in Stokes’ theorem. Develop
this parallel theory as follows. Let vy, ..., be elements of R” such that v; — vy
(i = 1,... k)arelinearly independent. We define the triangle spanned by v, - . . .},

to consist of all points

tolo + -+ + 1,0y

with real t; such that 0 < ;and 1o + ++- + 1, = L.
We denote this triangle by T, or T(ve, .. . ,0s).
(a) Letw; = v; — vofor i = 1,... k. Let S be the set of points

$)Wy + oo+ S Wy
with 5; 2 0 and s, + -+- + 5, < 1. Show that T(vo, ...,) is the translation of

S by vo.
Define the oriented boundary of the triangle T to be the chain

k
OT = ¥ (= 1YT(o, ... Bjr- - 00)-
i=0

(b) Assume that k = n, and that T is contained in an open set U of R". Let w be
an (n — 1)-form on U. In analogy to Stokes’ theorem for rectangles, show that

J. do = w.
T T

The subsequent exercises do not depend on anything fancy, and occur in R2. Es-
sentially you don’t need to know anything from this chapter.

N

. Let A be the region of R? bounded by the inequalities
as<x=<bh

and
g1(x) £y = g2()
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w

where g,, g, are continuous functions on [a, b]. Let C be the path consisting of
the boundary of this region, oriented counterclockwise, as on the following picture:

a b

Show that if P is a continuous function of two variables on 4, then

Ide: J’J. —Edydx.
c ’ dy

Prove a similar statement for regions defined by similar inequalities but with re-
spect to y. This yields Green’s theorem in special cases. The general case of
Green'’s theorem is that if A is the interior of a closed piecewise C! path C
oriented counterclockwise and w is a 1-form then

o= [

In the subsequent exercises, you may assume Green’s theorem.

. Assume that the function f satisfies Laplace’s equation,

oy
wtgy =l

on a region A which is the interior of a curve C, oriented counterclockwise. Show
that

. If F=(Q,P) is a vector field, we recall that its divergence is defined to be

div F = 0Q/dx + dP/dy. If C is a curve, we say that C is parametrized by arc
length if [|C'(s)|| = 1 (we then use s as the parameter). Let

C(s) = (91(5), 92(5))
be parametrized by arc length. Define the unit normal vector at s to be the vector

NGs) = (95(5), —4)(s)):
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Verify that this is a unit vector. Show that if F is a vector field on a region 4,
which is the interior of the closed curve C, oriented counterclockwise, and para-
metrized by arc length, then

J;J. (div F)dydx = J;F~Nds.

If C is not parametrized by arc length, we define the unit normal vector by

N@)

"0 = Nor’

where | N(t)| is the euclidean norm. For any function f we define the normal deriva-
tive (the directional derivative in the normal direction) to be

D.f = (grad f)-n.

so for any value of the parameter t, we have

(DafXt) = grad f(C(9) - n(2).

@

Prove Green'’s formulas for a region A bounded by a simple closed curve C, always
assuming Green’s theorem.

(a) [fal(grad f)-(grad g) + gAf] dx dy = [cgDaf ds.
() [fulgAf — fAg)dx dy = [{gD.f — fDag) ds.

Let C: [a,b] - U be a C'-curve in an open set U of the plane. If f is a function
on U (assumed to be differentiable as needed), we define

=

b
[7= [ rconcona
c a

- ff(cm) (‘,’,—f)z + (%)z dt.

Forr > 0,let x = rcos @ and y = r sin 6. Let ¢ be the function of r defined by

2n

1 1 _
o= 5— J;'f— 7 ), f(r cos 6, r sin 6)r d§

where C, is the circle of radius r, parametrized as above. Assume that f satisfies
Laplace’s equation

?f oY

E‘—z+a—’,z=0.
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Show that ¢(r) does not depend on r and in fact
=51
T 2ar )

[Hint: First take ¢'(r) and differentiate under the integral, with respect to r. Let
D, be the disc of radius r which is the interior of C,. Using Exercise 4, you will find
that

o) = — Idlv grad f(x, y) dy dx = 27r _U (aZf aZI) Ay dx =

Taking the limit as r — 0, prove the desired assertion.]
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We shall give brief reviews of the proofs of the algebraic theorems which
have been quoted in this chapter.

We first discuss “formal linear combinations.” Let S be a set. We wish
to define what we mean by expressions

Sy + o+ ¢S,

where {c;} are numbers, and {s;} are distinct elements of S. What do we
wish such a “sum” to be like? Well, we wish it to be entirely determined
by the “coefficients” c;, and each “coefficient” c; should be associated with
the element s; of the set S. But an association is nothing but a function.
This suggests to us how to define “sums” as above.

For each s€ S and each number ¢ we define the symbol

cS

to be the function which associates ¢ to s and 0 to z for any element z€ S,
z # s. If b, c are numbers, then clearly

b(cs) = (bc)s and (b + ¢)s = bs + cs.

We let T be the set of all functions defined on S which can be written in the
form
€Sy + -+ €S,

where c; are numbers, and s; are distinct elements of S. Note that we have
no problem now about addition, since we know how to add functions.

629
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We contend that if s,, ... s, are distinct elements of S, then
1sy, ..., 1s,

are linearly independent. To prove this, suppose ¢, ...,c, are numbers
such that

CiS1 4 F €Sy =0 (the zero function).

Then by definition, the left-hand side takes on the value ¢; at s; and hence
c; = 0. This proves the desired linear independence.

In practice, it is convenient to abbreviate the notation, and to write
simply s; instead of 1s;. The elements of T, which are called formal linear
combinations of elements of S, can be expressed in the form

CiSy + -0 + CoSps

and any given element has a unigue such expression, because of the linear
independence of sy, .. .,s,. This justifies our terminology.

We now come to the statements concerning multilinear alternating pro-
ducts. Let E, F be vector spaces over R. As before, let

E?=E x---x E,
taken r times. Let
f:EY>F

be an r-multilinear alternating map. Let v,,...,v, be linearly indepen-
dent elements of E. Let A = (a;5) be an r x n matrix and let

Uy =ant + -+ ajtn,
U = a0y + -+ + apuv,.
Then

Sy o) =@y + - + @alus .. 80y + -+ + a0,

= Z f(al.d(l)va(l)’ .. ’ar.a(r)vo(r))
a
= 2 a,601) " ar.u(r)f(”a(l)) ees o(r))
o
where the sum is taken over all maps 6: {1,...,r} - {1, ...,n}.

In.this sum, all terms will be 0 whenever ¢ is not an injective mapping,
that is whenever there is some pair i, j with i % j such that a(i) = o(j),
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!)e.cause of the alternating property of £ From now on, we consider only
injective maps ¢. Then {¢(1),...,0(r)} is simply a permutation of some
r-tuple (i,,...,i,) withi, <--- </i,.

We wish to rewrite this sum in terms of a determinant.

For each subset S of {1,...,n} consisting of precisely r elements, we
can take the r x r submatrix of A consisting of those elements a;; such
that je S. We denote by

Detg(A)

the determinant of this submatrix. We also call it the subdeterminant of A
corresponding to the set S. We denote by P(S) the set of maps

o:{1,...07} = {1,...,n}
whose image is precisely the set S. Then

Dets(4) = 2 €5(6)ay,o01) " Gr.atnys
ceP(s)

and in terms of this notation, we can write our expression for f(u,, ...,u,)
in the form

(l) f(ul’ et ,M,) = ; DetS(A)f(vS)

where vg denotes (v;,, ... ;) if i, <--- <, are the elements of the set S.
The first sum over § is taken over all subsets of of 1, ...,n having precisely
r elements.

Theorem A. Let E be a vector space over R, of dimension n. Let r be an
integer 1 < r < n. There exists a finite dimensional space /\’ E and an
r-multilinear alternating map E® — /\' E denoted by

(Upy oo M) UL A s AU,
satisfying the following properties:

AP 1. If F is a vector space over R and g: EW > F is an r-multilinear
alternating map, then there exists a unique linear map

Gx' /\' E-F
such that for all u,, ... ,u, € E we have

gy, - Up) = Gylug Ao AUy
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AP2. If {v,,...,0,} is a basis of E, then the set of elements
Uy A A, 1<i<---<iSn,
is a basis of /\' E.

Proof. For each subset S of {1,...,n} consisting of precisely r elements,
we select a letter tg. As explained at the beginning of the section, these
letters tg form a basis of a vector space whose dimension is equal to the

binomial coefficient . It is the space of formal linear combinations
r

of these letters. Instead of t5, we could also write g = t;,..; with
iy <---<i,. Let {v,,...,0,} be a basis of E and let u,, ... ,u, be elements
of E. Let A = (a;;) be the matrix of numbers such that

Uy =apt + -+ aatns

U, = a0y + -+ + a0,
Define
uy A -+ Au, =Y Detg(A)ts.
s

‘We contend that this product has the required properties.
The fact that it is multilinear and alternating simply follows from the
corresponding property of the determinant.
We note that if S = {i,, ...} withi, <-.-- <, then
s=Uy A--- A Y,

=

A standard theorem on linear maps asserts that there always exists a
unique linear map having prescribed values on basis elements. In par-
ticular, if g: E” — F is a multilinear alternating map, then there exists a
unique linear map

gy /\' E->F
such that for each set S, we have
94(ts) = g(vs) = g(vi,, .-..0;)
if iy, ...,i, are as above. By formula (1), it follows that
guy, - ) = gy (uy Ao Auy)

for all elements u,, ... u, of E. This proves AP 1.
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A§ for AP2, let {w,,...,w,} be a basis of E. From the expansion of
(l), it follows that the elements {wg}, i.e. the elements Wy Ao A wy,
with all possible choices of r-tuples (iy, ... ,i,) satisfying i, < --- < i, are

generators of /\' E. The number of such elements is precisely "), Hence
r

they must be linearly independent, and form a basis of /\’ E, as was to be
shown.

Theorem B. For each pair of positive integers (r, s) there exists a unique
bilinear map

NEx/NE>N*E
such that if uy, ..., u,, w,, ..., ws€E then
Uy Ao AU) XWE A AW) 5 Uy Ao AU AW A AW
This product is associative.

Proof. For each r-tuple (u,, ... u,) consider the map of E® into /\™** E
given by

Wyseo s W)l Uy A AU AW A" AW

This map is obviously s-multilinear and alternating. Consequently, by
AP 1 of Theorem A, there exists a unique linear map

9w = Gur, oo’ /NE "/\'J's E
such that for any elements w,, ... ,w, € E we have
GufWi A AW)=Up A AU AW A AW

Now the association (u)+— gy, is clearly an r-multilinear alternating map
of E® into L(/\ E, /\'*¢ E), and again by AP 1 of Theorem A, there exists
a unique linear map

9:: N\E—> L(/NE N**E)
such that for all elements u,, ... ,u, € E we have
Juseeir = g*(ul JATRARAN u,).

To obtain the desired product /\’ E x /\‘E—» /\' *sE, we simply take
the association

(@, ¥) - g (@)().
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It is bilinear, and is uniquely determined since elements of the form
uy A -+ A u, generate /\' E, and elements of the form w; A -+ A w;
generate /\s E. This product is associative, as one sees at once on decom-
posable elements, and then on all elements by linearity. This proves
Theorem B.

Let E, F be vector spaces, finite dimensional over R, and let 1: E—> F
be a linear map. If u: F — R is an element of the dual space F*, i.e. a linear
map of F into R, then we may form the composite linear map

pel:E-R
which we visualize as
EAFAR
We denote this composite p o A by A*(u). It is an element of E*,

Theorem C. Let A: E — F be a linear map. For each r there exists a
unique linear map

FLE /\r F* o /\r E*
having the following properties:

() A A ¥) = 5w) A W) forwe /N F* ye /N F~
(ii) If pe F* then A*(u) = po A, and A* is the identity on /\° F* =R

Proof. The composition of mappings
F*x.oox F*=F* o E* x ...x E* = E* , N\ E*
given by
oot Qo Ayt e Ao (g o) A o A (10 )

is obviously multilinear and alternating. Hence there exists a unique linear
map /\' F* - /\' E* such that

By A A X)) A A A% ().
Property (i) now follows by linearity and the fact that decomposable ele-

ments yy A .-+ A p, generate /\’ F*. Property (ii) comes from the defini-
tion. This proves Theorem C.
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Equivalent norms 135
Euclidean norm 137
Euler number 89
Euler’s relation 387
Even 27

Exact form 613
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Exponential 78

Exponential of matrices 509

Extend by continuity 172, 176

Extension theorem for linear maps
247

Exterior derivative 610

F

Family 183

Family of open sets 203

Fejer kernel 312

Finite 12

Finite sequence 12

Finite subcovering 203

Fixed point theorem 150, 502

Flow 541

Formal linear combination 630

Fourier coefficients 294, 295

Fourier series 296, 303

Fourier transform 342, 354

Free homotopy 452

Function 41

Functional equations 358

Fundamental lemma of integration
265

Fundamental solution of heat equation
349

G

Gamma function 346
Generate vector space 130
Global flow 544

Gradient 380

Graph 41

Greatest lower bound (glb) 30
Green’s function 378

Green’s theorem 624

H
Half-closed 24
Half-open 24

Harmonic 316, 375

Heat equation 350

Heat kernel 348, 372

Heat operator 349

Hermitian product 291

Hessian 486

Homologous 425, 429

Homotopic 444

Homotopy 444

Homotopy relative to end points 448
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Hyperbolic 510
Hyperplane 385
Hypersurface 411

Ideal of continuous functions 205

Identity map 6

Image 4

Imaginary part 96, 99

Implicit functions 522, 527

Improper integral 326

Increasing 35, 71

Indefinite integral 103

Induction 8

Inf 30

Infinite 12

Infinite interval 24

Infinity 50

Initial condition 538, 557

Injective 5

Integers 27

Integrability theorem 430

Integrable 471

Integral 101, 249, 395, 568

Integral along a path 418, 438

Integral curve 538

Integral equation 504, 510

Integral mean value theorem 107

Integral operator 285, 290, 306

Integral test 210

Integration by parts 105

Integration of series 239

Interchange of derivative and
integral 276, 337, 340

Interchange of integrals 277, 339, 342

Interchange of limits 185

Interior point 158

Intermediate value theorem 62

Intersection 4

Interval 24

Inverse 74, 96

Inverse image 156

Inverse image of a form 616

Inverse mapping 7

Inverse mapping theorem 502, 515

Inverse path 398

Inversion function 74

Invertible 76, 512

Invertible linear map 506

Irrational 28

Isolated 158, 161

Isometry 150

Isomorphism 76
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J

Jacobian 467
Jacobian determinant 589

K

Kernel function 286
Khintchine Theorem 216
Kinetic energy 391

L

£ 216, 233

£ 215

L'-norm 141, 254, 329

L*norm 141, 255, 299

Lagrange multiplier 412

Landau kernel 288

Laplace operator 316

Lattice point problem 366

Leading coefficient 56

Least upper bound (lub) 29

Lebesgue integral 262

Length 293

Level surface 384

Li(x) 123

Limit 41, 42, 50, 143, 160

Limit inferior 41

Limit superior 40

Linear combination 130

Linear differential equation 552

Lipschitz condition 74, 174, 320, 540,
578

Lipschitz constant
Little oh 117
Local flow 541
Local isomorphism 513
Locally integrable 418, 438
Locally invertible 513
Logarithm 83, 133

Lower integral 567

Lower sum 105

74, 540

M

Mapping 4

Matrix representing bilinear map 483
Maximum 61

Mean value theorem 71, 475
Measure 262

Measure less than epsilon 263
Measure zero 215, 577

Metric space 136

Midpoint 149

Minimum 61
Monotone 76
Multilinear 478
Multiple integral
Multiplication 18

568, 581

N

Natural numbers 3, 8
Negative 22

Negligible 569

Newton quotient 66
Newton’s law 390
Newton’s method 504
Non-degenerate block 584
Norm 131, 293

Normal derivative 625
Normed vector space 132
Null sequence 190

Null space 292
Numbers 17

o

o(g) 117

o(h) 67, 463

Odd 27

Onto 5

Open ball 135

Open covering 203
Open disc 138

Open in a subset 156
Open interval 24
Open neighborhood 152
Open set 51

Opposite path 398
Order of magnitude 116
Ordering 21

Oriented boundary 613
Oriented volume 584
Orthogonal 138, 292
Orthogonal family 301
Orthonormal 301
Oscillation 576
Oscillatory integral 318, 336

P

psand g's 29,32, 69, 216-217
Parallelogram law 137, 305
Parametrized 269

Partial derivative 275, 371, 495
Partial differential operator 324, 406
Partial sum 206



Partition of interval 105, 249

Partition of rectangle 565

Parts (summation by) 220

Path 388

Path integral 398, 418, 438

Pathwise connected 448

Peano curve 225

Periodic 93

Pcrmutation 5

Perpendicular 138, 292

Piecewise C' 389

Piecewise continuous 253, 388

Point of accumulation 35, 36, 132,
157, 193

Pointwise convergence 179, 317

Poisson inversion 352

Poisson kernel 315

Poisson summation formula 358

Polar coordinates 518, 595

Polar form 98

Polynomials 54, 287

Positive definite 133, 292

Positive integer 8

Positive number 21

Potential energy 390

Potential function 392

Power series 234

Prime numbers 124

Product 162

Product decomposition 526

Product of matrices 458

Products (infinite) 214

Projection 294

Proper 4

Pythagoras theorem 293

Q
Quadratic form 413

R

Radius of convergence 235
Rapidly decreasing at infinity 353
Ratio test 209

Rational number 27

Real number 17

Real part 96, 99

Rectangle 565

Rectangular path 433

Refinement 250, 566

Regulated map 253

Relatively continuous 170
Relatively uniformly continuous 199
Remainder in Taylor formula 110

INDEX

Repeated integral 581
Residue 431
Riemann integrable 567

Riemann-Lebesgue lemma 318

Riemann-Stieltjes 259
Riemann sum 106
Root 56, 201

S

Sawtooth function 345
Scalar product 133
Schanuel’s theorem 217
Schwartz space 353
Schwarz inequality 135, 294
Second derivative 477
Self conjugate 173
Seminorm 136
Semiparallelogram law 149
Sequence 12, 32

Series 206

Shrinking lemma 502
Shrinking map 503
Shub’s theorem 505
Simplex 620

Sine and cosine 90
Size of partition 106, 570
Sphere 135, 600
Spherical coordinates 599
Square root 23
Squeezing process 48
Standard 608

Star shaped 449

Step map 249, 252
Stieltjes integral 259
Stirling’s formula 120
Stokes’ theorem 614, 622
Strictly convex 72
Strictly decreasing 35, 71
Strictly increasing 35, 71
Strictly monotone 75
Subcovering 203
Subdivision 434
Submanifold 531
Subrectangle 566
Subsequence 13

Subset 4

Subspace 130
Sufficiently close 43
Sufficiently large 35
Sum of series 206
Summation by parts 220
Sup 30

Sup norm 132, 139
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Support 362
Surjective 5
Symmetric second derivative 481

T

Tangent plane 386

Tangent vector 602

Tate’s lemma 503

Taylor formula 109, 408, 490
Taylor polynomial 111, 409
Taylor series, arbitrary 244
Theta series 358

Tietze extension 231

Total family 300

Translation 514

Trecimal expansion 192, 224
Triangle inequality 131
Trigonometric degree 311
Trigonometric polynomials 306, 311

U

Uniform convergence 179, 229
Uniform distribution 310
Uniform limit 180

Uniformly Cauchy 179

Uniformly continuous 63, 174, 198
Union 4

Unit element 9

Unit vector 295, 625

INDEX

Upper integral 567
Upper sum 105

\%

Value 4

Variation 260

Vector 130

Vector field 390, 538
Vector field on sphere 602
Vector space 129
Velocity 269

Volume 575, 584

Volume of n-ball 598

w

Wallis product 121
Weakly increasing 71
Weierstrass approximation theorem

Weierstrass—Bolzano theorem 38, 193
Weierstrass test 230

Well-ordering 8

Winding number 422

YA

Zero 18
Zeros of ideal 205
Zeta function 359
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