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This book is dedicated to Prabha,
who gave me so much,
and taught me so much more.



Preface

This book is an attempt to communicate to undergraduate math-
ematics majors my enjoyment of abstract algebra. It grew out of
a course offered at California State University, Northridge, in our
teacher preparation program, titled Foundations of Algebra, that was
intended to provide an advanced perspective on high-school mathe-
matics. When I first prepared to teach this course, I needed to select
a set of topics to cover. The material that I selected would clearly
have to have some bearing on school-level mathematics, but at the
same time would have to be substantial enough for a university-level
course. It would have to be something that would give the students
a perspective into abstract mathematics, a feel for the conceptual
elegance and grand simplifications brought about by the study of
structure. It would have to be of a kind that would enable the stu-
dents to develop their creative powers and their reasoning abilities.
And of course, it would all have to fit into a sixteen-week semester.

The choice to me was clear: we should study constructibility.
The mathematics that leads to the proof of the nontrisectibility of
an arbitrary angle is beautiful, it is accessible, and it is worthwhile.
Every teacher of mathematics would profit from knowing it.

Now that I had decided on the topic, I had to decide on how to
develop it. All the students in my course had taken an earlier course
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on sets and functions, but many had not progressed any further into
abstract mathematics. What I needed to do, therefore, was to develop
enough algebra to lead to the proofs of the nonconstructibility results
without getting bogged down in technicalities. But since this course
was going to be the only algebra course that several of my students
would take, the material I developed needed be rich enough so that
everybody would get a good sense of what the subject was all about.

Given this goal for the course, I set out to find a textbook. There
certainly is a wealth of rather excellent textbooks on introductory
abstract algebra, but they seem to be designed with a different pur-
pose in mind: to develop technical mastery of the subject. As such,
they delve into the details of the subject, rather than focusing on an
overview. For me to have culled from existing textbooks the mathe-
matics that I wanted to cover in my course at the level that I wanted
to cover it would have been a horrendous task. I decided instead to
write my own book.

This book has been written in a conversational style, a style
that mirrors my own approach to teaching. The focus is on expo-
sition, on conveying mathematical intuition to an audience that will
have careers in mathematics, but for the most part will not go on
to get a Ph.D. in mathematics. Familiarity with the material is de-
veloped by exposing the students to lots of examples; sacrificing, if
necessary, the desire to prove lots of theorems. The text is peppered
liberally with questions, designed to encourage the students to learn
the subject by thinking through the material themselves. This is par-
ticularly true of the sections that deal with examples: many of the
questions asked within these examples could serve just as well as
formal exercises.

The book begins with an essay on how to learn mathematics, a
topic that I feel is well worth spending some time on in introduc-
tory courses in abstract mathematics. This is followed in Chapter 1
by a study of divisibility in the integers, and in Chapter 2 by a gen-
eral introduction to rings and fields. Vector spaces are introduced in
Chapter 3 so as to make it possible to measure degrees of field exten-
sions. Chapter 4 discusses how degrees of field extensions behave in
towers, and studies the concept of an element in a field extension
being algebraic over the base field. The notion of irreducibility of
polynomials and the phenomenon of unique factorization in poly-
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nomial rings are studied in Chapter 5, and immediately after, the
relation between the degree of the field generated by an element
and the degree of its minimal polynomial is derived in Chapter 6.
Finally, these results are put together in Chapter 7 to arrive at the
algebraic criterion for the constructibility of a real number.

Although the treatment of divisibility in the integers in Chapter
1 is somewhat standard, the remaining chapters are a little less tra-
ditional. As described above, the goal is to get to constructibility with
minimum fuss, but without sacrificing richness. For instance, in the
chapter on rings and fields (Chapter 2), I discuss numerous exam-
ples of such objects and I discuss subrings generated by elements,
but I avoid talking of ideals since I do not have a formal need for this
concept. (On the other hand, in Chapter 6, the set denoted I, is
after all just an ideal of F[x], so I take advantage of this opportunity
to give them a sequence of exercises concerning ideals in general.)
Similarly, by working within a fixed field extension K/F, I never
deal with the abstract construction of field extensions generated by
roots of polynomials, and instead focus on field extensions gener-
ated by specific elements of the overfield K. (In fact, the issue of an
element a of K being algebraic or transcendental over the subfield
F is motivated by the question of when the field generated over F
by a equals the ring generated over F by a.)

Along the way, I have tried to develop topics that a high-school
mathematics teacher might find interesting. For instance, in the
chapter on divisibility in the integers (Chapter 1), I include problems
that show the validity of various divisibility tests (such as tests of di-
visibility by 3 and divisibility by 11). In the same chapter, I include a
discussion on the Euclidean algorithm for finding the greatest com-
mon divisor of two integers, following an exercise where one has to
show that if a = bg + r, then gcd(a, b) = gcd(b, r). In Chapter 2,
I include a problem that shows in a series of steps that unique fac-
torization fails in a very natural “number system,” an exercise that I
hope will help the reader appreciate the significance of unique prime
factorization in the integers. In Chapter 4, I introduce the concept
of algebraic and transcendental numbers, and then discuss the tran-
scendentality of certain specific numbers. I include a problem on
showing that e is irrational, and in the notes to this same chapter, I
explain why there are “so many more” transcendental numbers than
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there are algebraic numbers. In the chapter on polynomials (Chapter
5), I include discussions on the Fundamental Theorem of Algebra
and on roots of polynomials. In the exercises to this chapter, I in-
clude problems that show why complex nonreal roots of polynomial
equations with real coefficients come in pairs, why polynomials of
odd degree with coefficients in the reals have a root in the reals,
how the coefficients of a polynomial are related to its roots, how to
obtain all n nth roots of a complex number given any one root, why
the Lagrange interpolation polynomial is unique, and why synthetic
division works the way it does. As well, in the notes to this chapter,
I include discussions on the general problem of solving polynomial
equations by radicals, and I outline Cardano’s solution of the cubic.
A few words about the notes and the exercises. First the notes—
they are meant to be informal. They started off as a vehicle by which
I could try to provide glimpses into more advanced areas of math-
ematics as well as a vehicle by which I could communicate some
of my own excitement about these areas. Very soon, however, they
developed into a convenient receptacle for all sorts of remarks that
I wanted to make, remarks that I felt should not be made in the text
either for fear of derailing the course or for fear of giving away too
much too soon. As such, one will find in the notes, besides pointers
to theories beyond the scope of this book, comments on certain def-
initions, notes on certain proofs, remarks on specific examples, as
well as occassional hints to some of the questions I ask in the text.
Now for the exercises. I have already noted above that many
of the questions I ask within some of the examples I develop can
serve as formal assignments. ('To take an instance at random, in Ex-
amples 3.11 in Chapter 3, the questions asked in Examples 3.11.1,
3.11.2, 3.11.7, and 3.11.8 can all be assigned formally as problems.)
For the most part, such problems assigned from the various examples
I develop will be of a routine nature, designed to build familiarity
with the material. As for the exercises at the end of each chapter, I
have attempted to make many of them of some substance, exercises
from which students will hopefully learn some significant mathe-
matics. Of course, there is always a danger with such a philosophy
in a beginning class, the danger that this approach may be too diffi-
cult for the students. To mitigate this somewhat, I have broken up
many exercises into several digestible chunks, and I have provided
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copious hints. (I suspect that “guided discovery” is the surest way
to learn mathematics, even when the students are seeing abstract
mathematics for the first time.)

I believe that this book would serve very well as a gentle one-
semester introduction to abstract algebra, after the students have had
a basic introduction to sets and functions such as the introduction
one gets in a typical undergraduate “discrete mathematics” course.
By dwelling just a bit on the chapter on polynomials, working out
all the exercises therein, a course taught out of this book would ad-
ditionally provide some insight into what used to go by the name
of “Theory of Equations” Such insight would be particularly useful
to anybody teaching high-school mathematics. This book could also
be used by anybody learning algebra on their own; the focus on
exposition is designed to facilitate self-study.

Several colleagues have been of enormous help to me during the
writing of this book. Pat Morandi was very encouraging about the
worth of the project, and being a fellow-author, listened sympathet-
ically to my travails. Besides, he put up with endless discussions
on things like the definition of the greatest common divisor, when
he would much rather be having endless discussions on things like
the definition of étale cohomology. Also, he bravely volunteered to
teach out of thisbook while on sabbatical at Indiana University. Jerry
Gold, another brave soul, agreed to teach out of this book at Califor-
nia State University, Northridge, and provided several very valuable
suggestions for improvement based on his experience. Ann Watkins
read through portions of the book and made numerous comments
that were extremely perceptive. She and Reinhard Laubenbacher
both introduced me to the mechanics and the culture behind book
publishing.

Many friends and family members helped as well. My brother
Ananth and sister-in-law Vidya read through the preliminary ver-
sion of the first few chapters and provided several suggestions. So did
my college buddies KP and Shanks, as well as their spouses Malathi
and Brinda. My good friends Henri and Stan read through the In-
troduction, and insisted that I retain the reference to the equitable
distribution of pastry.

And of course, some of the most helpful individuals were the
students in the Foundations of Algebra course at California State
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University, Northridge. They are unfortunately too numerous to
mention by name, but all these students should know that they were
a joy to teach, and that it was they who were the fundamental reason
why I wrote this book. It gives me particular pleasure to note that
most of them are now established teachers themselves.

The National Science Foundation, as well as the Office of Re-
search and Sponsored Projects and the College of Science and
Mathematics at California State University, Northridge, provided
generous support while this book was being written.

To all these people and organizations, I am very grateful.

B.A. Sethuraman
August 1996
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Introduction

Most of us are introduced to number systems very early in our lives,
when we first learn how to count. We begin by learning to add, us-
ing the numbers 1, 2, 3, .... Then, we learn about the process of
“taking away,” that is, the process of subtracting one number from
another, and as a consequence, we learn about the number 0 as well
as the numbers —1, —2, —3, .... Thus acquainted with the integers,
we learn multiplication as a shortcut to addition—adding four 3s
together is the same as multiplying 3 by 4. After several years of
multiplication tables, we are taught fractions (usually in the context
of dividing two pies among five people), and as a result, we learn
about the rational numbers.

Our introduction to the real numbers comes to us from two
sources. On the one hand, we learn about square roots and cube
roots, and are thus introduced to numbers like +/2 and /3. On the
other hand, we learn from geometry the concept of the length of
a line. We are told that real numbers are the numbers that corre-
spond to lengths of line segments, that is, to points on the number
line.

Finally, it is pointed out to us that although it seems as if only
positive numbers can have square roots, this is in fact not true. The
number i is introduced to us as the square root of —1, and we are told
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2 Introduction

that from this, we get a new system of numbers (the complex num-
bers) by considering all expressions of the form a + ib, where a and
b are real numbers. We learn to add, subtract, multiply, and divide
with these numbers. We learn about the geometric interpretation of
complex numbers and about de Moivre's theorem, and we are told
that at least in theory, we can solve any polynomial equation over
the complex numbers.

Needless to say, in spite of our developing great mechanical fa-
cility with the complex numbers, they remain a mystery to most
of us. Somehow, it still does not seem correct that a negative num-
ber could have a square root! Merely defining i to be the square root
of —1 seems rather contrived, yet these abstract expressions of the
form a + ib indeed seem to give us a set of numbers with wonderful
properties.

The complex numbers are not the only numbers that we wonder
about. At some point, we all wonder about even the most basic of
numbers, the positive integers. They have endless fascination for
us, and there is a wealth of questions that we ask ourselves about
these numbers. (Some of these, such as Goldbach’s conjecture, that
every positive even integer greater than 4 can be written as a sum of
two odd primes, or the question of the existence of infinitely many
“twin” primes, that is, primes that differ by two, remain unsettled to
this day.) At other times, we wonder about the rationals, this process
of forming fractions, that seems to take care of dividing objects into
equal parts. We wonder about the other numbers on the real line,
how some of them have decimal expansions that go on forever with-
out any repetition, and how they can all be approximated arbitrarily
closely by rational numbers. And of course, we continue to wonder
about this mysterious square root of —1.

It is precisely this wonder about numbers that has been respon-
sible for the development of much of the mathematics of the last
two centuries, and in particular, of what is often referred to today as
“abstract” algebra. The attempt to understand the structure of these
numbers and to solve some of the outstanding problems concern-
ing them has led to the introduction of some very deep concepts.
These concepts have in turn shed light on other areas of mathemat-
ics, as well as on areas of science and engineering, and have thus
considerably enriched human knowledge.
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One of the problems that these concepts have solved is that of
constructibility. This is a problem that had baffled the Greeks, and
had remained unsolved for about two thousand years: Can arbitrary
geometric figures be constructed using just a straightedge and a com-
pass? The most famous version of this question asks whether it is
possible to trisect an arbitrary angle, that is, whether it is possible
to construct an angle whose measure is one-third that of any given
angle, using just a straightedge and a compass. As it turns out, a com-
plete answer can be given to this question using only introductory
algebraic concepts.

Our goal in this book will be to learn these introductory concepts and
then apply them to the solution of the constructibility problem.

Our path will take us through rings, fields, and vector spaces. We
will learn about field extensions and learn to differentiate between
algebraic and transcendental numbers. We will study the division
algorithm for polynomials and the notion of an irreducible polyno-
mial, and we will realize that these concepts are exact analogs of
the corresponding division algorithm for integers and the notion of
a prime integer. (In fact, we will start our studies by examining di-
visibility and primes in the integers.) We will learn about the degree
of a field extension, and we will relate this degree to dimensions of
certain vector spaces. Finally, we will see how this degree affects
constructibility.

A thorough understanding of these introductory concepts will en-
able you to proceed further into mathematics and understand some
of the questions we have described above. For instance, a more ad-
vanced course will detail the algebra behind the process by which
the complex numbers are formed from the reals and will discuss the
concept of an ordered field. This will hopefully settle your confusion
about negative numbers having square roots, and you will hopefully
see that the formation of the complex numbers from the reals is
really not the contrived process it first seems, but is instead some-
thing very natural. Similarly, a more advanced course that includes
real analysis (or “advanced calculus”) will illumine the relationship
of the rationals to the reals. As a result of such a course, you will
hopefully realize that the real numbers are precisely the numbers
that arise when one tries to come to grips with the concept of deci-
mal expansions that go on forever without repetition, and you will
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hopefully understand that it is perfectly natural that the rationals be
dense in the reals, that is, that every real number be approximated
arbitrarily closely by rational numbers.

How should you read this book? The answer, which applies to
every book on mathematics, can be given in one word—actively. You
may have heard this before, but it can never be overstressed—you
can only learn mathematics by doing mathematics. This means much
more than attempting all the problems assigned to you (although
attempting every problem assigned to you is a must). What it means
is that you should take time out to think through every sentence and
confirm every assertion made. You should accept nothing on trust;
instead, not only should you check every statement, you should also
attempt to go beyond what is stated, searching for patterns, looking
for connections with other material that you may have studied, and
probing for possible generalizations.

Let us consider an example. On page 34 in Chapter 2, you will
find the following sentence:

Yet, even in this extremely familiar number system,
multiplication is not commutative; for instance,

1 0 0 1 01 1 0
(6 6) 0 0)* (0 o)(a o)
(The “number system” referred to is the set of 2 x 2 matrices whose
entries are real numbers.) When you read a sentence such as this,
the first thing that you should do is verify the computation yourselves.
Mathematical insight comes from mathematical experience, and you
cannot expect to gain mathematical experience if you merely accept
somebody else’s word that the product on the left side of the equation
does not equal the product on the right side.

The very process of multiplying out these matrices will make the
set of 2 X 2 matrices a more familiar system of objects, but as you
do the calculations, more things can happen if you keep your eyes
and ears open. Some or all of the following may occur:

1. You may notice that not only are the two products not the same,
but that the product on the right side gives you the zero matrix.
This should make you realize that although it may seem impos-
sible that two nonzero “numbers” can multiply out to zero, this
is only because you are confining your thinking to the real or
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complex numbers. Already, the set of 2 x 2 matrices (with which
you have at least some familiarity) contains nonzero elements
whose product is zero.

. Intrigued by this, you may want to discover other pairs of nonzero
matrices that multiply out to zero. You will do this by taking
arbitrary pairs of matrices and determining their product. It is
quite probable that you will not find an appropriate pair. At this
point you may be tempted to give up. However, you should not.
You should try to be creative, and study how the entries in the
various pairs of matrices you have selected affect the product. It
may be possible for you to change one or two entries in such a
way that the product comes out to be zero. For instance, suppose
you consider the product

(11)(a)-(50)

You should observe that no matter what the entries of the first
matrix are, the product will always have zeros in the (1, 2) and
the (2, 2) slots. This gives you some freedom to try to adjust the
entries of the first matrix so that the (1, 1) and the (2, 1) slots also
come out to be zero. After some experimentation, you should be
able to do this.

. You may notice a pattern in the two matrices that appear in our
inequality on page 4. Both matrices have only one nonzero entry,
and that entry is a 1. Of course, the 1 occurs in different slots
in the two matrices. You may wonder what sorts of products
occur if you take similar pairs of matrices, but with the nonzero
1 occuring at other locations. To settle your curiosity, you will
multiply out pairs of such matrices, such as

(7o) (50)
(To)(70)

You will try to discern a pattern behind how such matrices mul-
tiply. To help you describe this pattern, you will let ¢;; stand for

or
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the matrix with 1 in the (i, j)-th slot and zeros everywhere else,
and you will try to discover a formula for the product of ¢;; and
ex1, where i, j, k, and I can each be any element of the set {1, 2}.

4. You may wonder whether the fact that we considered only 2 x 2
matrices is significant when considering noncommutative mul-
tiplication or when considering the phenomenon of two nonzero
elements that multiply out to zero. You will ask yourselves
whether the same phenomena occur in the set of 3 x 3 matri-
ces or 4 X 4 matrices. You will next ask yourselves whether they
occur in the set of n x n matrices, where n is arbitrary. But you
will caution yourselves about letting n be too arbitrary. Clearly n
needs to be a positive integer, since “n x n matrices” is meaning-
less otherwise, but you will wonder whether n can be allowed to
equal 1 if you want such phenomena to occur.

5. You may combine 3 and 4 above, and try to define the matrices
e;; analogously in the general context of n x n matrices. You will
study the product of such matrices in this general context and
try to discover a formula for their product.

Notice that a single sentence can lead to an enormous amount of
mathematical activity! Every step requires you to be alert and ac-
tively involved in what you are doing. You observe patterns for
yourselves, you ask yourselves questions, and you try to answer
these questions on your own. In the process, you discover most of
the mathematics yourselves. This is really the only way to learn
mathematics (and in particular, it is the way every professional
mathematician has learned the subject). Mathematical concepts are
developed precisely because mathematicians observe patterns in
various mathematical objects (such as the 2 x 2 matrices), and to
have a good understanding of these concepts you must try to notice
these patterns for yourselves.

To help you along, brief notes for each chapter have been in-
cluded. These notes contain hints to some of the questions asked
in the chapter, as well as general comments about some of the def-
initions, examples, and theories presented in the chapter. Do not
rush to read these notes; you need to think independently about the
material first!
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Besides the willingness to read this book actively, the prereg-
uisites for this book are small. You are expected to have some
familiarity with the integers, as well as with the rationals, real and
complex numbers, polynomials, and matrices. It would be helpful
to be able to do proofs by induction. A rudimentary knowledge of
set theory is assumed.

Exercises

1. Carry out the program in steps (1) through (5) above.



 Divisibility in
 the Integers

CHAPTER

We will begin our study with a very concrete set of objects, the in-
tegers, that is, the set {0,1, —1,2,—2,...}. This set is traditionally
denoted Z and is very familiar to us—in fact, we were introduced
to this set so early in our lives that we think of ourselves as having
grown up with the integers! Moreover, we view ourselves as having
completely absorbed the process of integer division; we unhesitat-
ingly describe 3 as dividing 99 and equally unhesitatingly describe
5 as not dividing 101.

As it turns out, this very familiar set of objects has an immense
amount of structure to it. It turns out, for instance, that there are
certain distinguished integers (the primes) that serve as building
blocks for all other integers. These primes are rather beguiling ob-
jects; their existence has been known for over two thousand years,
yet there are still several unanswered questions about them. They
serve as building blocks in the following sense: every positive inte-
ger greater than 1 can be expressed uniquely as a product of primes.
(Negative integers less than —1 also factor into a product of primes,
except that they have a minus sign in front of the product.)

The fact that nearly every integer breaks up uniquely into build-
ing blocks is an amazing one; this is a property that holds in very
few number systems. (In the exercises to Chapter 2 we will see an
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example of a number system whose elements do not factor uniquely
into building blocks. Chapter 2 will also contain a discussion of what
a ‘number system” is—see Remark 2.5.) On the other hand, there
are some number systems where such a property does hold, notably
polynomials, and we will find that the fact that polynomials also
break up uniquely into building blocks is crucial to our treatment of
constructibility. We will study polynomials in Chapter 5.

Our goal in this chapter is to prove that integers can be fac-
tored uniquely into primes. We will begin by examining the notion
of divisibility and defining divisors and multiples. We will study
the division algorithm and how it follows from the Well Order-
ing Principle. We will explore greatest common divisors and the
notion of relative primeness. We will then introduce primes and
prove our factorization theorem. Finally, we will look at what is
widely considered as the ultimate illustration of the elegance of pure
mathematics—Euclid’s proof that there are infinitely many primes.

Let us start with something that seems very innocuous, but is
actually rather profound. Write N for the nonnegative integers that
is, N = {0,1, 2,3,...}. (N stands for “natural numbers,’ as the non-
negative integers are sometimes referred to.) Let S be any nonempty
subset of N. For example, S could be the set {0, 5,10, 15, ...}, or the
set {1,4,9,16, ...}, or else the set {100, 1000}. The following is rather
obvious: there is an element in S that is smaller than every other
element in S, that is, S has a smallest or least element. This fact,
namely that every nonempty subset of N has a least element, turns
out to be a crucial reason why the integers possess all the other beau-
tiful properties (such as a notion of divisibility, and the existence of
prime factorizations) that make them so interesting.

Contrast the integers with another very familiar number system,
the rationals, that is, the set {a/b | a and b are integers, with b # 0}.
(This set is traditionally denoted by Q.) Can you think of a nonempty
subset of the positive rationals that fails to have a least element?

We will take this property of the integers as a fundamental axiom,
that is, we will merely accept it as given and not try to prove it from
more fundamental principles. Also, we will give it a name:

Well Ordering Principle: Every nonempty subset of the non-
negative integers has a least element.
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Now let us look at divisibility. Why do we say that 2 divides 6? It
is because there is another integer, namely 3, such that the product
2 times 3 exactly gives us 6. On the other hand, why do we say that
2 does not divide 7? This is because no matter how hard we search,
we will not be able to find an integer b such that 2 times b equals 7.
This idea will be the basis of our definition:

Definition 1.1

A (nonzero) integer d is said to divide an integer a (denoted d|a) if
there exists an integer b such that a = db. If d divides a, then d is
referred to as a divisor of a or a factor of a, and a is referred to as a
multiple of d.

Observe that this is a slightly more general definition than most
of us are used to—according to this definition, —2 divides 6 as well,
since there exists an integer, namely —3, such that —2 times —3
equals 6. Similarly, 2 divides —6, since 2 times —3 equals —6. More
generally, if d divides a, then all of the following are also true: d}|—a,
—d|a, —d|—a. (Take a minute to prove this formally!) It is quite rea-
sonable to include negative integers in our concept of divisibility, but
for convenience, we will often focus on the case where the divisor
is positive.

The following easy result will be very useful:

Lemma 1.2

If d is a nonzero integer such that d|a and d|b for two integers a and b,
then for any integers x and y, d|(xa + yb). (In particular, d|(a + b) and
di(a — b))

Proof Since dl|a, a = dm for some integer m. Similarly, b = dn for
some integer n. Hence xa + yb = xdm + ydn = d(xm + yn). Since we
have succeeded in writing xa + yb as d times the integer xm + yn,
we find that d|(xa + yb). As for the statement in the parentheses,
takingx = 1 and y = 1, we find that d|la + b, and taking x = 1 and
y = —1, we find that d|a — b. u

The following lemma holds the key to the division process. Its
statement is often referred to as the division algorithm. The Well
Ordering Principle plays a central role in its proof.
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Lemma 1.3 (Division Algorithm)
Given integers a and b with b > 0, there exist unique integers q and r,
with 0 <r < bsuchthata = bq + .

Remark 1.4

First, observe the range that r lies in. It is constrained to lie between
0 and b — 1 (with both 0 and b — 1 included as possible values for r).
Next, observe that the lemma does not just state that integers g and
rexist with 0 <r < band a = bq + r, it goes further—it states that
these integers q and r are unique. This means that if somehow one
were to have a = bq; + r, and a = bg, + r; for integers q1, 11, q2,
and r, with 0 < r; < band 0 < r, < b, then g; must equal g, and
r1 must equal r,. The integer q is referred to as the quotient and the
integer r is referred to as the remainder.

Proofof Lemma 1.3 Let Sbe the set {a—bn | n € Z}. Thus, S contains
the following integers: a (= a —b-0),a—b,a + b, a — 2b, a + 2b,
a — 3b, a + 3D, etc. Let S* be the set of all those elements in S that
are nonnegative, thatis, S* = {a—bn|neZ, anda —bn > 0}. It
is not immediate that $* is nonempty, but if we think a bit harder
about this, it will be clear that S* indeed has elements in it. Forif a is
nonnegative, thena € §*. Ifa is negative, then a—b(a) is nonnegative
(check!), so a —b(a) € S*. By the Well Ordering Principle, since S* is
anonempty subset of N, $* has a least element; call it 7. (The notation
r is meant to be suggestive; this element will be the “r” guaranteed
by the lemma.)

Since r is in S (actually in §* as well), r must be expressible as
a — bq for some integer g, since every element of S is expressible
as a — bn for some integer n. (The notation g is also meant to be
suggestive, this integer will be the ‘q” guaranteed by the lemma.)
Since r = a — bq, we find a = bg + r. What we need to do now is to
show that 0 < r < b, and that g and r are unique.

Observe that since r is in §* and since all elements of S* are
nonnegative, ¥ must be nonnegative, that is 0 < r. Now suppose
r > b. We will arrive at a contradiction. Write r = b + x, where
x > 0 (why is x > 0?). Writing b + x forr ina = bg + r, we find
a=bq+Db+xora=>blg+1)+x0rx=a->b(g+1). This form
of x shows that x belongs to the set S (why?). Since we have already
seen that x > 0, we find further that x € S$*. But more is true: since
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x = r—Dbandb > 0, x must be less than r (why?). Thus, x is an
element of S$* that is smaller that r—a contradiction to the fact that
7 is the least element of $*! Hence, our assumption that r > b must
have been false, so r < b. Putting this together with the fact that
0 <r, we find that 0 < r < b, as desired.

Now for the uniqueness of g and r. Suppose a = bq, + r, and as
well, a = bg, + 1, for integers qy, 11, g2, and r, with 0 < r; < b and
0 <1z < b. Then b(qy — q2) = 2 — 1. Thus, r — n, is a multiple
of b. Now the fact that 0 < 1, < band 0 < r, < b shows that
—b < r; — 1 < b. (Convince yourselves of this!) The only multiple
of b in the range (—b, D) (both endpoints of the range excluded)
is 0. Hence, r, — r; must equal 0, that is, v, = 7. It follows that
b(q» — gq2) = 0, and since b # 0, we find that q; = g». O

Observe that to test whether a given (positive) integer d divides
a given integer a, it is enough to write a asdg + r (0 <r < d) and
examine whether r is zero or not. For d|a if and only if the remainder
obtained on dividing a by d (the integer r above) is zero.

Now, given two nonzero integers a and b, it is natural to wonder
whether they have any divisors in common. Notice that 1 is auto-
matically a common divisor of a and b, no matter what a and b are.
Recall that |a| denotes the absolute value of a, and notice that every
divisor d of a is less than or equal to |a|. (Why?) Also, for every divi-
sor d of a, we must have d > —|a|. (Why?) Similarly, every divisor
d of b must be less than or equal to |b| and greater than or equal
to —|b|. It follows that every common divisor of a and b must be
less than or equal to the lesser of |a| and |b|, and must be greater
than or equal to the greater of —|a| and —|b|. Thus, there are only
finitely many common divisors of a and b, and they all lie in the
range max(—|al, —|b|) to min(la|, |b|).

We will now focus on a very special common divisor of a and b.

Definition 1.5

Given two (nonzero) integers a and b, the greatest common divisor of
a and b (written as gcd(a, b)) is the largest of the common divisors
of a and b.

Note that since there are only finitely many common divisors
of a and b, it makes sense to talk about the largest of the common
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divisors. (By contrast, must an infinite set of integers necessarily
have a largest element? Must an infinite set of integers necessarily
fail to have a largest element? What would your answers to these
two questions be if we restricted our attention to an infinite set of
positive integers?)

Notice that since 1 is already a common divisor, the greatest com-
mon divisor of a and b must be at least as large as 1. We can conclude
from this that the greatest common divisor of two nonzero integers
a and b must be positive.

If p and g are two positive integers and if g divides p, what must
ged(p, q) be? Will your answer change if p is merely assumed to be
a nonnegative integer, but q is still assumed to be a positive integer
and still assumed to divide p?

Let us derive an alternative formulation for the greatest common
divisor that will be very useful. Given two nonzero integers a and
b, any integer that can be expressed in the form xa + yb for some
integers x and y is called a linear combination of a and b. (For example,
a =1-a+ 0-bisa linear combination of a and b; so are 3a — 5b,
—6a + 10b, —b = 0-a + (—1) - b, etc.) Write P for the set of linear
combinations of a and b that are positive. (For instance, ifa = 2 and
b = 3,then -2 = (—1)-2 + (0)-3 would not be in P as —2 is negative,
but7 = 2-2 + 3 wouldbe in P as 7 is positive.) Now here is something
remarkable: the smallest element in P turns out to be the greatest
common divisor of a and b! We will prove this below.

Theorem 1.6

Given two nonzero integers a and b, let P be the set {xa + yblx,y €
Z, xa + yb > 0}. Let d be the least element in P. Then d = gcd(a, b).
Moreover, every element of P is divisible by d.

Proof First observe that P is not empty. For if a > 0, then a € P,
and if a < 0, then —a € P. Thus, since P is a nonempty subset
of N (actually, of the positive integers as well), the Well Ordering
Principle guarantees that there is a least element d in P, as claimed
in the statement of the theorem.

To show that d = gcd(a, b), we need to show that d is a common
divisor of a and b, and that d is the largest of all the common divisors
of a and b.
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First, since d € P, and since every element in P is a linear combi-
nation of a and b, d itself can be written as a linear combination of a
and b. Thus, there exist integers x and y such thatd = xa + yb. (Note:
These integers x and y need not be unique. For instance, if a = 4
andb = 6, we can express 2asboth (—1)-4 +1-6and (—4)-4 + 3-6.
However, this will not be a problem; we will simply pick one pair
%,y for which d = xa + yb and stick to it.)

Let us show thatd is acommon divisorofa and b. Writea = dg+r
for integers d and r with 0 < r < d (division algorithm). We need to
show thatr = 0. Suppose to the contrary thatr > 0. Writer = a—dg.
Substituting xa + yb for d, we find thatr = (1 —xq)a + (—yq)b. Thus,
r is a positive linear combination of a and b that is less than d—a
contradiction, since d is the smallest positive linear combination of
a and b. Hence r must be zero, that is, d must divide a. Similarly,
one can prove that d divides b as well, so that d is indeed a common
divisor of a and b.

Now let us show that d is the largest of the common divisors of
a and b. This is the same as showing that if ¢ is any common divisor
of a and b, then ¢ must be no larger than d. So let ¢ be any common
divisor of a and b. Then, by Lemma 1.2 and the fact thatd = xa + yb,
we find that c|d. Thus, ¢ < |d| (why?). But since d is positive, |d] is
the same as d. Thus, ¢ < d, as desired.

To prove the last statement of the theorem, note that we have
already proved that dla and d|b. By Lemma 1.2, d must divide all
linear combinations of a and b, and must hence divide every element
of P.

We have thus proved our theorem. O

In the course of proving Theorem 1.6 above, we have actually
proved something else as well, which we will state as a separate
corollary:

Corollary 1.7
Every common divisor of two nonzero integers a and b divides their
greatest common divisor.

Proof As remarked above, the ideas behind the proof of this corol-
lary are already contained in the proof of Theorem 1.6 above. We
saw there that if ¢ is any common divisor of a and b, then ¢ must
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divide d, where d is the minimum of the set P defined in the state-
ment of the theorem. But this, along with the other arguments in the
proof of the theorem, showed that d must be the greatest common
divisor of a and b. Thus, to say that ¢ divides d is really to say that
¢ divides the greatest common divisor of a and b, thus proving the
corollary. O

Exercise 12 will yield yet another description of the greatest
common divisor.

Given two nonzero integers a and b for which one can find inte-
gers x and y such that xa + yb = 2, can you conclude from Theorem
1.6 that gcd(a, b) = 2? If not, why not? What, then, are the possible
values of gcd(a, b)? Now suppose there exist integers ¥’ and y’ such
that ¥’a + y'’b = 1. Can you conclude that gcd(a, b) = 1? (See the
notes on Page 27 after you have thought about these questions for at
least a little bit yourselves!)

Given two nonzero integers a and b, we noted that 1 is a common
divisor of a and b. In general, a and b could have other common
divisors greater than 1, but in certain cases, it may turn out that the
greatest common divisor of a and b is precisely 1. We give a special
name to this:

Definition 1.8
Two nonzero integers a and b are said to be relatively prime if
gcd(a,b) = 1.

We immediately have the following:

Corollary 1.9
Given two nonzero integers a and b, gcd(a, b) = 1 if and only if there
exist integers x and y such that xa + yb = 1.

Proof You should be able to prove this yourselves! (See the
questions two paragraphs above Definition 1.8.) a

The following lemma will be useful:

Lemma 1.10
If albc and gcd(a, b) = 1 (where a, b, and c are nonzero integers), then
alc.
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Proof Since gcd(a, b) = 1, Theorem 1.6 shows that there exist inte-
gers x and y such that 1 = xa + yb. Multiplying by ¢, we find that
¢ = xac +ybc. Since ala and albc, a mustdivide cby Lemma1.2. O

We are now ready to introduce the notion of a prime!

Definition 1.11

An integer p greater than 1 is said to be prime if its only divisors are
+1 and £p. (An integer greater than 1 that is not prime is said to be
composite.)

The first ten primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, and 29. The
hundredth prime is 541.

Primes are intriguing things to study. On the one hand, they
should be thought of as being simple, in the sense that their only
positive divisors are 1 and themselves. (This is sometimes described
by the statement “primes have no nontrivial divisors”) On the other
hand, there is an immense number of questions about them that
are still unanswered, or at best, only partially answered. For in-
stance: is every even integer greater than 4 expressible as a sum
of two primes? (We saw this question in the introduction as “Gold-
bach’s conjecture” The answer is unknown.) Are there infinitely
many twin primes? (We saw this question earlier too—the answer to
this is also unknown.) Is there any pattern to the occurence of the
primes among the integers? Here, some partial answers are known.
There are arbitrarily large gaps between consecutive primes, that is,
given any n, it is possible to find two consecutive primes that differ
by at least n. (See Exercise 8.) It is known that for any n > 1, there is
always a prime between n and 2n. (It is unknown whether there is
a prime between n? and (n + 1)?, however!) It is known that as n be-
comes very large, the number of primes less than n is approximately
n/In(n). (This is the celebrated Prime Number Theorem.) Also, it is
known that given any arithmetic sequence a, a + d, a + 2d, a + 3d,
..., where a and d are nonzero integers with gcd(a, d) = 1, infinitely
many of the integers that appear in this sequence are primes!

Those of you wheo find this fascinating should delve deeper into
number theory, which is the branch of mathematics that deals with
such questions. It is a wonderful subject with hordes of problems
that will seriously challenge your creative abilities! For now, we will
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content ourselves with proving the unique prime factorization prop-
erty and the infinitude of primes already referred to at the beginning
of this chapter.

The following lemmas will be needed:

Lemma 1.12
Let p be a prime and a an arbitary integer. Then either pla or else

ged(p,a) = 1.

Proof 1If p already divides a, we have nothing to prove, so let us
assume that p does not divide a. We need to prove that gcd(p, a) = 1.
Since any common divisor of p and @ must in particular divide p, and
since the only positive divisors of p are 1 and p, the only possible
positive common divisors of p and a are 1 and p. Now, if p were
a common divisor of p and a, then p would in particular divide a,
contrary to our assumption. Hence, the only common divisor of p
and a is 1, that is, gcd(p, a) = 1. O

Lemma 1.13
Let p be a prime. If p|ab for two integers a and b, then either p|a or else

p|b.

Proof 1f p already divides a, we have nothing to prove, so let
us assume that p does not divide a. Then by Lemma 1.13 above,
gcd(p, a) = 1. It now follows from Lemma 1.10 that p|b. O

We are ready to prove our factorization theorem!

Theorem 1.14 (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be factored into a product of
primes. The primes that occur in any two factorizations are the same,
except perhaps for the order in which they occur in the factorization.

Remark 1.15

The statement of this theorem has two parts to it. The first sentence
is an existence statement—it asserts that for every positive integer
greater than 1, a prime factorization exists. The second sentence
is a uniqueness statement. It asserts that except for rearrangement,
there can only be one prime factorization. To understand this second
assertion a little better, consider the two factorizations of 12 as 12 =
3x2x2 and 12 = 2 x 3 x 2. The orders in which the 2’s and the 3
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appear are different, but in both factorizations, 2 appears twice, and
3 appears once. The uniqueness part of the theorem tells us that
no matter how 12 is factored, we will at most be able to rearrange
the order in which the two 2's and the 3 appear such as in the two
factorizations above, but every factorization must consist of exactly
two 2's and one 3.

Proof of Theorem 1.14 We will prove the existence part first. The
proof is very simple. Given any integer a greater than 1, either it is
prime or it is not. If it is prime, then “a = a” is its prime factorization.
If it is not, a must factor as bc for suitable integers b and ¢, with
b < a and ¢ < a. If b and ¢ are themselves prime, then “a = bc” is
the desired prime factorization. If not, either b or ¢ is not prime (or
perhaps both are not prime). If, say, b is not prime, then b = de, for
suitable integers d and e withd < band e < b. At this stage, we have
a = bc = dec. If all three of d, ¢, and ¢ are prime, then “a = dec” is
the desired prime factorization. If not, then one or more of the three
integers d, €, and ¢ must admit further factors...This process must
eventually stop, since at each stage the factors are becoming smaller
and smaller, and the smallest factor we are allowed to have at any
stage is 2. When the process stops, we will have a factorization of a
into primes!

Let us move on to the uniqueness part of the theorem. The basic
ideas behind the proof of this portion of the theorem are quite simple
as well. The key is to recognize that if an integer a has two prime
factorizations, then some prime in the first factorization must equal
some prime in the second factorization. This will then allow us to
cancel primes pair by pair in the two factorizations and conclude
that the two factorizations must be the same.

So suppose that a is some positive integer greater than 1, and
suppose that we have two prime factorizations

n ng _ M m,
a:p] ps _ql ...qt"

wherethep; (i = 1,...,s)aredistinct primes, andtheg; j = 1,...,1)
are distinct primes, and the n; and the m; are positive integers. (By
“distinct primes” we mean that p;, p, ..., ps are all different from
one another, and similarly, ¢, g2, - . ., g: are all different from one an-
other.) Without loss of generality, we may assume that s > t. (What
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does this statement mean? It means that if instead t were greater
than s, then we could simply reverse the roles of the p's and the ¢'s
in the arguments below, and the proof would still work!) Since p;
divides a, and since a = ¢;" ---q;", p1 must divide g}" - - - q/". Now,
we proved in Lemma 1.13 that if a prime divides a product of two
integers, then it must divide one of these two integers. This gener-
alizes easily to the statement that if a prime divides a product of k
integers (k > 2), then it must divide one of these k integers. (Exer-
cise 3 asks you to prove this!) In our situation, since p; divides the
product q;"' --- g/, it must divide one of the factors of this product,
that is, it must divide one of the g;. Relabeling the primes g; if nec-
essary (remember, we do not consider a rearrangement of primes
to be a different factorization), we may assume that p; divides q;.
Since the only positive divisors of g, are 1 and q;, we find p; = q;.

Now that we have proved that p; = ¢, let us prove that the
exponent n; of p; in the first factorization must equal the exponent
m,; of g, in the second factorization. For suppose that n; > m,. Since
we know p; = q, let us for convenience write the two factorizations
as

oo Ns _ L M1 My m,
a=py-pd =P 4y - 4q -

Canceling off pI" on both sides, we will find

—m,

n ng m; m
a:pl ...psé=q2 ...qr'.

Since n; —m; > 0 (by assumption), p; divides the left-hand side, and
hence the right-hand side as well. Another application of Exercise 3
shows that p; must divide one of q,, . . ., gm. Since p; = g1, this means
that g, must divide one of g5, . .., gm. As before, since gy, . . ., gm, are
all primes, if g; divides one of g5, .. ., gm, then g; must actually equal
one of g, ..., gm. But this is a contradiction, since we assumed that
q1, 92, - - -, gm are all distinct. Hence our assumption that n; > m;
is flawed. We can prove similarly (do so!) that m, cannot be greater
than n; either, which shows that n; = m;.

At this stage, we have p; = g1 and n; = m,. This means as well
that p" = q;".

Note that if s = 1, then t = 1 as well by our assumption that
s > t, and the two factorizations of a must have been a = p]' = g/".
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Since we have already proved that p; = q; and n; = m;, we would
have proved our theorem!

So suppose s > 1. Canceling off pi' and q|" from the two
factorizations of a, we find

12 ng __ M m
by P =4y G-

Once again, p, must divide some prime on the right, and must there-
fore be equal to some prime on the right. (How do we know that there
are any primes at all on the right at this stage, that is, how do we
know that t # 1?) By relabeling the primes if necessary, we may
assume that p, = g2. As before, we can show that both n; > m; and
my > ny will give us contradictions, so we conclude that n, must
equal my. So far, we have p; = q1, p2 = g2, n1 = My, nz = my. Can-
celing off p,? from the left and g, from the right and proceeding
similarly till there are no more primes left to cancel, we find that
s = t (whyis s > t not possible?), p1 = qi, ..., ps = gs, and n; = my,

.., ns = ms. Thus, except for rearrangement, the two factorizations
of a are indeed the same! O

Remark 1.16

While Theorem 1.14 only talks about integers greater than 1, a sim-
ilar result holds for integers less than —1 as well: every integer less
than —1 can be factored as —1 times a product of primes. The primes
that occur in any two factorizations are the same, except perhaps for
the order in which they occur in the factorizations.

Remark 1.17

Suppose we have a relation a = bc between three positive integers
a, b, and c. Stringing together the prime factorizations of b and c,
we get a factorization of bc into a product of primes. On the other
hand, bc is just a, and a has its own prime factorization as well. By
the uniqueness of prime factorizations, the prime factorization of bc
that we get from stringing together the prime factorizations of b and
¢ must be the prime factorization of a. (For example, ifb = 36 = 22.32
andc¢ = 15 = 3.5, then 22.32. 3.5 is a prime factorization of the
product 36-15 = 540, and by the uniqueness of prime factorization,
22 .3%.3 .5 must be the prime factorization of 540. Of course, this
factorization is more commonly written as 22-33-5.) In particular, the
prime factors of b (and ¢) must be a subset of the prime factors of a.
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Now suppose that a prime p occurs to the power x in the factorization
of a, to the power y in the factorization of b, and to the power z in the
factorization of c. Stringing together the factorizations of b and ¢, we
find that p occurs to the power y + z in the factorization of bc. Since
the factorization of bc is just the factorization of a and since p occurs
to the power x in the factorization of a, we find that x = y + z. In
particular, y < x. Together with our earlier observation, this shows
that if a and b are positive integers with b|a, the prime factors of b
must be a subset of the prime factors of a, and the exponent of any
prime p in the prime factorization of b can be no larger than the
exponent of p in the prime factorization of a. Conversely, if a and
b are positive integers such that the prime factors of b are a subset
of the prime factors of a, and the exponent of any prime factor p
in the prime factorization of b is no larger than the exponent of
p in the prime factorization of a, then it is easy to check (do so!)
that bla. These observations will be very useful, particularly in the
exercises.

Having proved the Fundamental Theorem of Arithmetic, there
remains the question of showing that there are infinitely many
primes. (What is wrong with the following argument?—There are
infinitely many positive integers. Each of them factors into primes
by the theorem that we have just proved. Hence there must be in-
finitely many primes.) The proof that we provide is due to Euclid,
and is justly celebrated for its beauty.

Theorem 1.18 (Euclid)
There exist infinitely many prime numbers.

Proof Assume to the contrary that there are only finitely many
primes. Label them p;, p2, ..., pn. (Thus, we assume that there
are n primes.) Consider the integer a = pip2---pn + 1. Since
a > 1, a admits a prime factorization by Theorem 1.14. Let g be
any prime factor of a. Since the set {p;, p2, ...,pn} contains all
the primes, ¢ must be in this set, so g must equal, say, p;. But
then, a = q(p\p2---pi-1Pi+1---Pn) + 1, SO we get a remainder of
1 when we divide a by g. In other words, g cannot divide a. This is
a contradiction. Hence there must be infinitely many primes! 0O



Exercises 23

Exercises

1. In this exercise, we will formally prove the validity of various
quick tests for divisibility that we learn in high school!

@

®

©

©)

©

®

Prove that an integer is divisible by 2 if and only if the digit
in the units place is divisible by 2. (Hint: Look at a couple of
examples: 58 = 5-10 + 8, while 57 = 5-10 + 7. What does
Lemma 1.2 suggest in the context of these examples?)

Prove that an integer is divisible by 4 if and only if the integer
represented by the tens digit and the units digit is divisible by
4. (To give you an example, the “integer represented by the
tens digit and the units digit” of 1024 is 24, and the assertion
is that 1024 is divisible by 4 if and only if 24 is divisible by
4—which it is!)

Prove that an integer is divisible by 8 if and only if the integer
represented by the thousands digit and the tens digit and the
units digit is divisible by 8.

Prove that an integer is divisible by 3 if and only if the sum
of its digits is divisible by 3. (For instance, the sum of the
digits of 1024 is1 + 0 + 2 + 4 = 7, and the assertion is that
1024 is divisible by 3 if and only if 7 is divisible by 3—and
therefore, since 7 is not divisible by 3, we can conclude that
1024 is not divisible by 3 either! Here is a hint in the context
of this example: 1024 = 11000 + 0-100 + 2-10 + 4 =
1-(999 +1)+0-(99 +1) + 2-(9 + 1) + 4. What can you say
about the terms containing 9, 99, and 999 as far as divisibility
by 3 is concerned? Then, what does Lemma 1.2 suggest?)

Prove that an integer is divisible by 9 if and only if the sum
of its digits is divisible by 9.

Prove that an integer is divisible by 11 if and only if the dif-
ference between the sum of the digits in the units place, the
hundreds place, the ten thousands place, ... (the places cor-
responding to the even powers of 10) and the sum of the digits
in the tens place, the thousands place, the hundred thou-
sands place, ... (the places corresponding to the odd powers
of 10) is divisible by 11. (Hint: 10 = 11 — 1, 100 = 99 + 1,
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1000 = 1001 — 1, 10000 = 9999 + 1, etc. What can you say
about the integers 11, 99, 1001, 9999, etc. as far as divisibility
by 11 is concerned?)

Given nonzero integers a and b, with b > 0, writea = bg + r
(division algorithm). Show that gcd(a, b) = gcd(b, r).

(This exercise forms the basis for the Euclidean algorithm for
finding the greatest common divisor of two nonzero integers. For
instance, how do we find the greatest common divisor of, say, 48
and 30 using this algorithm? We divide 48 by 30 and find a re-
mainder of 18, then we divide 30 by 18 and find a remainder
of 12, then we divide 18 by 12 and find a remainder of 6, and fi-
nally, we divide 12 by 6 and find a remainder of 0. Since 6 divides
12 evenly, we claim that gcd(48,30) = 6. What is the justifica-
tion for this claim? Well, applying the statement of this exercise
to the first division, we find that gcd(48,30) = gcd(30,18).
Applying the statement to the second division, we find that
gcd(30,18) = ged(18,12). Applying the statement to the third
division, we find that gcd(18,12) = gcd(12, 6). Since the fourth
division shows that 6 divides 12 evenly, gcd(12,6) = 6. Work-
ing our way backwards, we obtain gcd(48, 30) = gcd(30,18) =
gcd(18,12) = gcd(12,6) = 6.)

Show using induction and Lemma 1.13 that if a prime p divides
a product of integers a; - a; - - - ax (k > 2), then p must divide one
of the a;'s.

Given nonzero integers a and b, let h = a/gcd(a,b) and k =
b/gcd(a, b). Show that ged(h, k) = 1.

Show that if a and b are nonzero integers with gcd(a, b) = 1,
and if ¢ is an arbitrary integer, then a|c and b|c together imply
ablc. Give a counterexample to show that this result is false if
gcd(a, b) # 1. (Hint: Just as in the proof of Lemma 1.10, use the
fact that gcd(a, b) = 1 to write 1 = xa + yb for suitable integers x
and y, and then multiply both sides by ¢. Now stare hard at your
equation!)

The Fibonacci Sequence, 1,1, 2, 3,5, 8,13, - - - is defined as follows:
If a; stands for the ith term of this sequence, thena; = 1,a; = 1,
and for n > 3, a, is given by the formula a, = a, .1 + a,_,. Prove
that for all n > 2, gcd(an, an—1) = 1.
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11.

12.

13.

. Given an integer n > 1, recall that n! is the product1-2-3---(n—

1) - n. Show that the integers (n + 1)! + 2,(n + 1)! + 3,...,(n +
)t + (n + 1) are all composite.

. Use Exercise 7 to prove that given any positive integer n, one can

always find consecutive primes p and q such thatg — p > n.

. If m and n are odd integers, show that 8 divides m? — n?.

Let n = pi'py*---pi* be the prime factorization of a positive
integer, where for each i from 1 to k, p; is a prime, and n; > 1.
Show that the positive divisors of n are all those integers whose
prime factorizations are of the form p}'p? - - - pi¥, where for i =
1,---,k, e;isinthe range 0 < e; < n;. (As an example, the positive
divisors of 36 = 2232, are the integers 2°3° ( = 1), 2'3°%, 2230, 203!,
2131 2231 2032 2132 and 2232)

Use Exercise 10 to show that the number of positive divisors of n
is(m + D(nz + 1)---(nx + 1).

Let m and n be positive integers. By allowing the exponents in the
prime factorizations of m and n to equal 0 if necessary, we may
assume that m = p{"py*---p;* and n = p{'py? - - p;*, where for
i=1,---,k p;is prime, m; > 0, and n; > 0. (For instance, we
can rewrite the factorizations 84 = 22.3.7 and 375 = 3 .53
as 84 = 22.3.5%.7and 375 = 2°-3.5%.70) For each i, let

Ak

di; = min(m;, n;). Prove that gcd(m, n) = pf‘ pﬁz Ry 74

Given two (nonzero) integers a and b, the least common multiple
of a and b (written as lcm(aq, b)) is defined to be the smallest of
all the positive common multiples of a and b.

(a) Show that this definition makes sense, that is, show that the
set of positive common multiples of a and b has a smallest
element.

(b) Retaining the notation of Exercise 12 above, let ; =
max(m;, ) (i = 1,..., k). Show that lem(m, n) = plfplz2 . -p;*.

(c) Use Exercise 12 and Part 13b above to show that lcm(a, b) =
ab/gcd(a, b).

(d) Conclude that if if gcd(a, b) = 1, then lem(a, b) = ab.
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14.

15.

16.

Let a = p", where p is a prime and n is a positive integer. Prove
that the number of integers x such that 1 < x < a and gcd(x, a) =
lisp" —p" L.

(More generally, if a is any integer greater than 1, one can
ask for the number of integers x such that 1 < x < a and
gcd(x,a) = 1. This number is denoted by ¢(a), and is referred
to as Euler's ¢-function. It turns out that if a has the prime fac-
torization pi"'py? - - - pi ¥, then ¢(a) = ¢(1") - d(L32) - ... - (XL
Delightful as this statement is, we will not delve deeper into
it in this book, but you are encouraged to read about it in any
introductory textbook on number theory.)

The series 1 + 1/2 + 1/3 + .- - is known as the harmonic series.
This exercise concerns the partial sums (see below) of this series.

(a) Fix aninteger n > 1, and let S, denote the set {1, 2, ..., n} Let
2' be the highest power of 2 that appears in S,. Show that 2
does not divide any element of S,, other than itself.

(b) For any integer n > 1, the nth partial sum of the harmonic
series is the sum of the first n terms of the series, that is, it is
the number 1 + 1/2 + 1/3 + ---1/n. Show that if n > 2, the
nth partial sum is not an integer as follows:

i. Clearingdenominators, show that the nth partial sum may
be written as a/b, where b = n!anda = (2:-3---n) +
(2-4---m) +(2-3-5---m)+ -+ (2:3---n—1).

ii. Let S, and 2 be as in part 15a above. Also, let 2™ be the
highest power of 2 that divides n!. Show that m > ¢t > 1
andthatm>m—t +1>1.

iii. Conclude from part 15(b)ii above that 2™~ '*! divides b.

iv. Use part 15a to show that 2™~**! divides all the summands
in the expression in part 15(b)i above for a except the term
(2:3---20—=1-2"+1---n),

v. Conclude that 2"'*! does not divide a.
vi. Conclude that the nth partial sum is not an integer.

Fix an integern > 1, and let S,, denote the set {1, 3,5,...,2n—1}.
Let 3 be the highest power of 3 that appears in S,. Show that 3
does not divide any element of S,, other than itself. Can you use
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this result to show that the nth partial sums (n > 2) of a series
analogous to the harmonic series (see Exercise 15 above) are not
integers?

17. Prove using the unique prime factorization theorem that /2 is
not a rational number. Using essentially the same ideas, show
that ,/p is not a rational number for any prime p. (Hint: Suppose
that /2 = a/b for some two integers a and b with b # 0. Rewrite
this as a? = 2b%. What can you say about the exponent of 2 in
the prime factorizations of a? and 2b??)

Notes

Remarks on Theorem 1.6 It is very crucial that d be the least pos-
itive linear combination of a and b for you to be able to conclude that
gcd(a, b) = d. For instance, if you only know that there exist integers x
and y such that xa + yb = 2, you cannot conclude that gcd(a,b) = 2—
for all you know, there may exist two other integers " and y’ such that
Xa+yb =1

Notice though that if you know that there exist integers ¥’ and y’ such
that ¥a + y'b = 1, you can conclude that gcd(a,b) = 1. For 1 has to be
the least positive linear combination of a and b, since there is no positive
integer smaller than 1.

Remarks on the definition of the greatest common divisor
We have defined the greatest common divisor of two nonzero integers a
and b to be the largest of their common divisors (Definition 1.5), and we
have noted that gcd(a, b) must be positive. On the other hand, Corollary
1.7 showed that every common divisor of a and b must divide gcd(a, b).
Putting these together, we find that gcd(a, b) has the following specific
properties:

1. gcd(a, b) is a positive integer.
2. gcd(a, b) is a common divisor of a and b.

3. Every common divisor of a and b must divide gcd(a, b).

You will find that many textbooks have turned these properties around
and have used these properites to define the greatest common divisor! Thus,
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these textbooks define the greatest common divisor of a and b to be that
integer d which has the following properties:

1. d is a positive integer.
2. d is a common divisor of a and b.

3. Every common divisor of a and b must divide d.

Of course, it is not immediately clear that such an integer d must exist, nor
is it clear that it must be unique, and these books then give a proof of the
existence and uniqueness of such a d. Furthermore, it is not immediately
clear that the integer d yielded by this definition is the same as the greatest
common divisor as we have defined it (although it will be clear if one
takes a moment to think about it). The reason why many books prefer to
define the greatest common divisor as above is that this definition applies
(with a tiny modification) to other number systems where the concept
of a “largest” common divisor may not exist. (In fact, we ourselves will
give a similar definition of the greatest common divisor of two nonzero
polynomials in Chapter 5—see Definition 5.9.) In the case of the integers,
however, we prefer our Definition 1.5, since the largest of the common
divisors of a and b is exactly what we would intuitively expect gcd(a, b)
to be!
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In the previous chapter we studied the integers in detail, focusing
on divisibility properties. Divisibility, of course, is defined via mul-
tiplication: we say d divides a if a = db for some integer b. What we
did not do in the last chapter is go deeper still—we did not analyze
multiplication itself.

Abstract algebra begins with the observation that several sets that
occur naturally in mathematics, such as the integers, the rationals,
the set of 2 X 2 matrices with entries in the reals, the set of contin-
uous functions from the reals to the reals, all come equipped with
certain operations that allow one to combine any two elements of
the set and come up with a third element. These operations go by
different names, such as addition, multiplication, or composition
(you would have seen the notion of composing two functions in cal-
culus). Abstract algebra studies mathematics from the point of view
of these operations, asking, for instance, what properties of a given
mathematical set can be deduced just from the existence of a given
operation on the set with a given list of properties. We will be deal-
ing with some of the more rudimentary aspects of this approach to
mathematics in this book.

However, do not let the abstract nature of the subject fool you
into thinking that mathematics no longer deals with concrete ob-
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