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Preface 

Generally speaking, there are three reasons to encode data that is about 
to be transmitted (through space, for instance) or stored (on a computer 
disk, for instance). One reason is for efficiency. It clearly makes sense to 
compress data as much as possible in order to save transmission time or 
storage space. In fact, data compression is very big business in the com­
puter world. The second reason to encode data is for error detection and/ or 
correction. The third reason is for secrecy, that is, so that unauthorized 
persons cannot read the data. 

While the goals of encoding for efficiency, error correction, and se­
crecy are distinct, the first two are related, if not by their purpose, then 
by their simultaneous desirability. To put it bluntly, if you are going to 
transmit or store some data, then you want to both compress it as much 
as possible and protect it from errors. 

Encoding for efficiency falls under the rubric of information the­
ory and encoding for error correction falls under the rubric of coding 
theory. (Encoding for secrecy is the subject of cryptology.) Indeed, 
elementary information theory is a beautiful application of discrete 
probability theory to the problem of encoding for efficiency, and ele­
mentary coding theory is a beautiful application of algebra (in our case 
linear algebra) and combinatorics to the problem of error detection and 
correction. 

VII 
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The subjects of information theory and coding theory began in 
1948 with a famous paper by Claude Shannon, of Bell Labs, entitled A 
Mathematical Theory of Communication. 

The purpose of this book is to introduce these two fields to under­
graduate students of mathematics and computer scie~ce (from motivated 
sophomores to more experienced seniors). Formal prerequisites are kept 
to a minimum. We do use elementary probability theory fairly heavily at 
times, especially in the information theory portion of the book, but we 
use only the basic notions (conditional probability, the Theorem on Total 
Probabilities and Bayes' Theorem) as applied to finite sample spaces. (I 
teach this much probability to my liberal arts students, although I don't 
expect them to use it quite this fluently.) These topics are reviewed in 
Chapter 0. We also use the basic algebraic properties of the vector space 
z; of all strings oflength n over the finite field Zp, However, these prop­
erties are discussed in the first section of Chapter 5, just before they are 
needed. (I cannot deny that students would benefit from an introduction 
to linear algebra prior to studying this book, but it is not mandatory.) 

The information theory portion of the book consists of Chapters 2 
and 3. The coding theory portion is Chapters 4, 5, and 6. We emphasize 
that these two portions are independent and either one may be skipped. 
Thus, a course on error-correcting codes could consist of Chapters 1, 4, 
5, and 6 and a minicourse on information theory (using probability but 
no linear algebra) could consist of Chapters 1-3. More specifically, the 
chapter descriptions are as follows. 

Chapter O is devoted to a brief discussion of prerequisites, such as a 
bit of probability theory. The reader should look over this chapter before 
proceeding to the main topics, if only to establish the terminology used 
throughout the book. 

Chapter 1 contains a general discussion of codes and some issues re­
lated to variable length codes (such as unique decipherability). We also 
establish Kraft's Theorem, which characterizes the codeword lengths of 
instantaneous codes. In Chapter 2·, ,we discuss the efficiency of encoding 
schemes and describe Huffman's method for constructing efficient vari­
able length codes. In Chapter 3, we define and discuss the entropy of an 
information source and state and prove the main result of noiseless ( error 
free) encoding-The Noiseless Coding Theorem. 

Chapter 4 is devoted to a discussion of communications channels, de­
cision rules (ideal observer, maximum likelihood, and nearest neighbor) 
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for decoding in the presence of errors and general remarks about the 
maximum size of a code that can correct a given number of errors (the 
so-called main coding theory problem). 

In Chapter 5, we develop some linear algebra and discuss the general 
theory of linear codes and their decoding. Finally, in Chapter 6, we con­
sider specific linear and nonlinear codes; to wit, the Hamming codes, the 
simplex codes, the Golay codes, the (first order) Reed-Muller codes, the 
ISBN code, single- and double-error-correcting decimal codes, and some 
codes obtained from Latin squares. 

I would like to express my thanks to Tom von Foerster, my editor at 
Springer; Robert Wexler, production editor; and Fred Bartlett, Springer's 
TE')( specialist. Also thanks to Steve Zicree for his help in proofreading 
the manuscript. 

- Steven Roman 
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Introduction 

In this book, we discuss two distinct aspects of the problem of transmitting 
data (called source data) from one location to another or, what amounts to 
the same thing, storing data and then retrieving the data at a later time. 
Both of these aspects involve encoding of the source data. 

In Part I of the book, on information theory, we discuss the is­
sue of encoding for efficiency, that is, encoding so that the source data 
takes up as little space as possible. (This is also known as data com­
pression.) Our focus will be on the theoretical aspects of the problem, 
rather than on the practical aspects. As we will see, encoding for ef­
ficiency is best accomplished using variable-length encoding schemes, 
where the most frequently used source symbols are encoded with the 
shortest codewords. Also, we will assume for this discussion that errors do 
not occur in the handling of source symbols. Hence, this type of encoding 
is noise less. 

There are various ways in which we might model source data. The 
model we will adopt is that of a "black box" that emits source symbols from 
a given finite source alphabet at regular intervals. Each .source symbol 
has a fixed probability of being emitted at any time. We must encode the 
source data, either a single symbol at a time or in predefined blocks of 
symbols, as it is being emitted from the black box-the point is that we 
are not privy to the entire message before encoding. 

I 
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In such a situation, it is the (finite) probability distribution of the 
source symbols that is important, and not the actual symbols themselves. 
As we will see, there is associated to each probability distribution a quan­
tity, known as the entropy of the distribution, that is a measure of the 
total amount of "information11 in the source. The goaJ of efficient encod­
ing is to encode the source data in such a way as to add as little additional 
information beyond the entropy as possible. 

As an example, linguists have done statistical calculations to obtain 
approximate probability distributions for letters in English text. For in­
stance, the following table gives the probabilities associated with the six 
most common characters. 

Character Probability 
space 0.1859 

E 0.1031 
T 0.0796 

~ 

A 0.0642 
~ 

0 0.0632 
I 0.0575 

Now, if we were to encode each of the 26 letters, together with the 
space character, using binary words of a fixed length, then since 24 = 
16 < 27 < 25

1 we would need to use codewords of length 5. Hence, 
each source character would take 5 bits of storage, for instance. On the 
other hand, the so-called Huffman encoding scheme, which we will study 
in detail, allows us to store these characters with an average codeword 
length of only 4.1195 bits per character. This is reasonably efficient en­
coding, since the entropy of this probability distribution is 4.07991 bits 
per character. 

Apropos of efficient encoding, we will describe and prove a famous 
theorem of information theory known as The Noiseless Coding Theorem. 
Roughly stated, this theorem says that, by clever encoding, we can arrange 
it so that the total information in the encoded message is as close to the 
entropy of the original source message as desired. (Of course, there is 
a penalty to pay for this efficiency.) To put this in more concrete terms 
suppose, for example, that the entropy of a given source is 5 bits per 
source symbol. (A bit is a O or a 1.) The Noiseless Coding Theorem tells 
us that, given any E > 01 we can, by clever encoding, encode each source 
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symbol with a binary codeword (string of Os and ls) in such a way that 
the average length of the codewords is 5 + E bits. 

In many situations, such as the archival storage of data on computer 
disk, the entire message is at our disposal, and so the black box model 
may not be the most appropriate one. In this case, for instance, we may 
scan the entire message and compile actual frequencies for the source 
symbols. This removes the uncertainties associated with a probability 
distribution. In fact, under the previous model, on a particularly unlucky 
day, the encoded message may actually be (physically) longer than the 
the source message in its original form! One of the difficulties of this 
two-pass approach, however, is that we must store additional frequency 
data along with the message, thus partially defeating the purpose of the 
encoding. 

We could also take a different approach to the black box model and 
keep a running frequency count of the symbols as they appear, using this 
frequency to encode the source symbols as they appear. Thus, while the 
form of the encoding remains the same, the substance of the encoding is 
constantly changing. This dynamic approach is called adaptive encoding 
and offers distinct practical improvements over static approaches. 

Unfortunately however, a further discussion of the variety of available 
data compression methods would take us too far afield from our more 
theoretical approach to the Noiseless Coding Theorem. Hence, we will 
stick to our simple black box-static probability distribution model. 

In Part 2 of the book, on coding theory, we will turn to the issue 
of how to encode source information in such a way as to detect, and 
even correct, errors in transmission (or storage). This is referred to as 
noisy coding. As we have seen, in encoding for efficiency, the goal is to 
minimize the average amount of information in each codeword, over 
the given probability distribution of the source symbols. However, in our 
concern for accurate encoding, emphasis will shift away from the source 
and its probability distribution to the issue of how to minimize the amount 
of additional information (called redundancy) that we must add to the 
source (through encoding) in order to detect and/ or correct the desired 
number of errors. Indeed, we will quickly assume (as is customary) that 
the probability distribution for the source is uniform, in order to get a 
good handle on how best to make decoding decisions. 

Most (but by no means all) of the work done on encoding for error 
detection/ correction involves the use of fixed-length encoding schemes, 
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where all codewords have the same length. Thus, in Part 2, we will confine 
our attention to fixed-length codes, or block codes. 

Let us illustrate a simple approach to error detection. Consider the 
binary source message 

011001 001100 100110 

which we have divided into three blocks. (Thus, each source symbol is 
a binary string of length six.) One possibility for detecting errors in the 
transmission of this message is to add what is known as an even parity 
check digit to each block. To do this, we simply adjoin to each block a single 
bit (0 or 1) to insure that the total number of ls in the block is even. For 
clarity, we will underline the redundant bits 

0110011 00ll00Q 1001101 

Now imagine that a single error should occur in say, the first block. 
For example, suppose the first block is received as 0100011. The receiver 
immediately counts the number of 1 s in the received string, and finds 
that this number is odd. This tells the receiver that an error has occurred. 
In this way, the addition of an even parity check digit detects a single 
error (in each block.) Furthermore, in this encoding, we have only added 
one bit of redundant data for every 6 bits of source message. Thus, for a 
modest increase in redundancy, we get single error detection. If we are 
willing to allow more redundant data, we can encode the strings in such 
a way as to not only detect single errors, but to correct them as well. 

We should mention in closing that the goals of encoding for efficiency 
and encoding for error detection/ correction are distinct. If both goals are 
sought in a particular instance, the usual procedure is to first encode for 
efficiency and then encode for error detection/correction. (Encoding in 
the reverse order would make little sense.) As far as this author is aware, 
there is no single encoding scheme that achieves significant success in 
attaining both goals. 

-... 
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In this chapter, we will briefly discuss various topics that will be used 
throughout the book. Many of these topics may already be familiar to 
you, but we suggest that you look through the material in any case, if 
only to set the terminology. 

0.1 Miscellany 

The Greek Alphabet 

We will use only a few Greek letters in this text, but for reference we list 
the entire alphabet. 

A a alpha I iota p p rho 
B ft beta K K kappa :E a sigma 
r y gamma A ).._ lambda T r tau 
I),. 8 delta M µ mu T V upsilon 
E E epsilon N V nu <I> <I> phi 
z t zeta 

,.... 
~ xi X X chi C. 

H TJ eta 0 0 omicron '¥ l/1 psi 
e 0 theta n ]'( pi Q (J) omega 

5 
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Sets 

The size (number of elements) of a finite set Swill be denoted by ISi. The 
set with no elements, called the empty set, is denoted by 0. 

The union S U T of sets S and T is the set of all elements that are in 
either S or T, and the intersection Sn T is the set of all elements that are 
in both Sand T. When Sn T = 0, we say that Sand Tare disjoint. In 
other words, two sets are disjoint if they have no elements in common. 

If every element of a set E is also an element of S, then E is a subset 
of S, and we write E c S. We also say that S is a superset of E. Of course, 
0 c Sand S c S, for all sets S. Subsets of S other than S itself are called 
proper subsets. 

If E c S, the complement of E in S is denoted by S - E and consists 
of the elements of S that are not in E. When no confusion can arise, the 
complement of E is written Ee. 

The set Zn = {O, 1, 2 , ... , n-1} consisting of the first n non-negative 
integers will play a predominant role in this book. We will be especially 
interested in Zn when n is a prime number. (A prime number is an 
integer p > 2 that has no positive divisors except 1 and p itself.) 

Summation Notation 

We will often use summation notation to indicate sums. If s1,s2 , .. . ,snare 
numbers or algebraic expressions, we denote their sum by 

For instance, 

20 

L k = l + 2 + 3 + · · · + 20, 
k=l 

and 

.. ' 10 L i2 = z2 + 32 + 42 + ... + 102 
i=2 

n l 1 1 1 
"--- = 1 + -- + --- + ... + ---6 (x + l )k x + l (x + l ) 2 (x + l )n 
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Permutations 

There are two equivalent ways to view permutations-as functions or as 
ordered arrangements. Using the functional point of view, a permutation 
of a finite set A is a bijective (one-to-one and onto) function f : A ➔ A. 
For instance, if A = {0, 1, 2, 3, 4} then the function[: A ➔ A defined by 

f(0) = 2, f(l) = 3, f(2) = 0, f(3) = 4, f(4) = 1 

is a permutation. Using the arrangement point of view, a permutation 
of a set A is simply an ordered arrangement of the elements of A. For 
instance, the permutation f may simply be written as 23041. We wi11 feel 
free to use both representations of permutations in this book. 

The number of permutations of a set of size n is 

n! = 1 · 2 • · · n 

The symbol n! is read n factorial and is just the product of the first n 

positive integers. For instance, the number of permutations of the set A 

is 5! = 1 • 2 · 3 • 4 • 5 = 120. It is also customary to set 0! = 1. 
If A is a set of size n, then a permutation of size k < n, taken from 

A, is just a permutation of k of the elements of A. For instance, tak­
ing the ordered arrangement point of view, if A = {0, 1, 2, 3, 4} then the 
permutations of size 2, taken from A, are 

0l,10,02,20,03,30,04,40, 
12,21,13,31,14,41, 
23, 32, 24, 42, 
34,43 

Notice that there are 20 such permutations. 
In general, the number of permutations of size k, taken from a set of 

size n, is 

n! 

(n - k)! 

For instance, the number of permutations of size 2 from the set A is 

5! 5! 
= = 20 

(5 - 2)! 3! 

as we have seen. 
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Binomial Coefficients 

If O < k _::s n, the binomial coefficient G) (read n choose k) is defined 
by 

(n) n! 
k = k!(n - k)! 

The following theorem shows why binomial coefficients are so 
important. 

Theorem 0.1.1 A set S of size n has precisely G) subsets of size k. Put 
another way, (~) is the number of ways of choosing k elements from a set of 
size n. □ 

For instance, the set :lg = {O, 1, 2, 3, 4, 5, 61 7, 8} has 

G) - 3~~! - 84 

subsets of size 3. There are 84 ways to choose 3 numbers from the set :lg. 
There are a vast number of identities involving binomial coefficients, 

and we mention only two here 

Binary Numbers 

As you no doubt know, a decimal number is just a nonempty string over 
the alphabet {O, 1, 2, 3, 4, 5, 61 7,81 9}. (:Ne generally omit leading Os, but 
that is not essential to the meaning of a number.) Each position in the 
string represents a power of 10. Reading from right to left, the positions 
represent 

10° = 1, 101 = 10, 102 = 100, 103 = 1000, 

The digits of a decimal number are the coefficients of the corresponding 
powers of 10. For instance, in the decimal number 72305, the digit 3 is 
the coefficient of 102 . 
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Binary numbers work in an entirely analogous way. A binary number 
is just a string over the set {O, 1}. (Leading Os may be deleted.) In the case 
of binary numbers, each position in the string represents a power of 2. 
Reading from right to left, the positions represent 

2° = 1 21 = 2 22 = 4 23 = 8 I I I I 

The bits (abbreviation for binary digits) are the coefficients of the 
corresponding powers of 2. 

Of course, a number is a number-instead of saying binary [ resp: dec­
imal] number, we should reallybe saying number written in binary [resp: 
decimal] form, nevertheless, we will continue to abuse the terminology. 

Using these facts, we can easily convert from binary notation to 
decimal notation. For instance, the binary number 11010 is equal to 

1 . 24 + 1 . 23 + o . 22 + 1 . 21 + o. 2° = 26 

in decimal. This is sometimes written 110102 = 2610. 
To convert from decimal notation to binary takes a bit more work. For 

example, consider the decimal number 298. The largest power of 2 that 
is less than or equal to 298 is 256 = 28 . Hence, 

298 = 28 + 42 

Now, the largest power of 2 less than or equal to 42 is 32 = 25 . Hence, 

298 = 28 + 25 + 10 = 28 + 25 + 23 + 2 

which tells us that the binary representation of 29810 is a string ofbits with 
ls in the ninth, sixth, fourth, and second positions and Os elsewhere, that 

1s1 

29810 = 1001010102 

Arithmetic operations on binary numbers are easily performed by 

remembering that 

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1 and 1 + 1 = 10 

and 

0 • 0 = 0, 0 · 1 = 0, 1 · 0 = 0 andl · 1 = 1 
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Note that addition and multiplication of bits looks exactly the same as if 
these bits were decimal digits, except that 1 + 1 = 10. Thus, for instance, 

10111 
+ 1101 

100100 

Binary Trees 

The following concepts will be encountered when we discuss Huffman 
encoding in Chapter 2. (You may postpone a reading of this subsection 
until then.) 

Definition A graph is a finite nonempty collection of points, called 
nodes or vertices together with a collection of line segments, called 
edges, connecting pairs of nodes. (This is a somewhat informal definition 
of the term graph.) □ 

(Do not confuse this concept of a graph with that of the graph of a function. 
The two are not related, except by a common name.) 

For example, Figure 0.1.1 below is a graph. 
The following definition of a binary tree comes from computer 

science. 

Definition A complete binary tree is a graph with the following 
properties. 

1. It is possible to draw a series of equidistant horizontal straight lines so 
that every node lies on one of these lines. These lines are not part of 
the graph, but indicate a level for each node, the top line being level 1. 

FIGURE 0.1.1 
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FIGURE 0.1.2 

2. There is only one node on level 1. It is called the root. 

3. If two nodes are connected by an edge, they must lie on adjacent 
levels. If node a on level i is connected to node b on level i + 1, then 
a is called the parent of b and b is a child of a. If there is a sequence 
of nodes c = c1 , c2, ... , Cn = d where Ci is a child of Ci+I for all i = 1, 
... , n - l, then c is called a descendent of d. 

4. Every node is a descendent of the root; every node has either no or 
exactly two children and every node except the root has exactly one 
parent. A node with no children is called a leaf. Two nodes that have 
the same parent are called siblings. □ 

Figure 0.1.2 is an example of a binary tree with five levels. Node r is the 
root, node a is a leaf and is a child of node b, which is the parent of a. 
Node a is also a descendent of node c (as well as of other nodes). 

0.2 Some Probability 

Probability plays an important role in information and coding theory. In 
this section, we will briefly discuss some aspects of the theory that will 
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be useful to us. A few of our examples refer to the concept of a string. 
You may wish to refer to Section 1.1 for the relevant definitions. 

Let us begin with a few simple definitions. By a process, we mean a 
procedure that produces outcomes from a certain set. For example, flip­
ping a coin is a process, since it produces outcomes {rom the set {Heads, 
Toils}. 

Definition The set of all possible outcomes of a process is called the 
sample space of the process. Any subset of the sample space, that is, any 
set of outcomes, is called an event. □ 

In this book, we will deal exclusively with finite sample spaces, that 
is, sample spaces with only a finite number of elements. 

Example 0.2.1 

1. The sample space for the process of flipping a coin is the set S = 
{H, T}, where H represents heads and T represents tails. 

2. The sample space for the process of rolling a pair of dice is the set S 
of all ordered pairs of the form (x, y), where xis the value on the first 
die, and y is the value on the second die. 0Ve assume that the dice are 
distinguishable by some means.) Thus, 

S = {Cl, 1),(1,2),(1,3), ... ,(6,4),(6,5), (6,6)} 

Note that ISi = 62 = 36. The event of getting a sum equal to 7 is the 
set 

E = {Cl,6),(2,5),(3,4),(4,3),(5,2),(6, 1)} 

3. Consider a ''black box" that randomly emits elements from an alphabet 
A = {s1, s2, ... , sn}. Suppose that one element is emitted each second 
for 6 seconds. The sample space in this case is the set S of all sequences 
ofletters oflength 6, taken from A. Hence, if no repeats are allowed, 
then 

ISi = n(n - l )(n :-;: 2)(n - 3)(n - 4)(n - 5) 

and if repeats are allowed, then ISi = n6 . □ 
Once the sample space S for a given process has been determined, 

the next step is to assign probabilities to each of the possible outcomes. 

Definition Let S = {s1, ... , sn} be a sample space. Suppose that, for 
each element Si E S, we assign a real number denoted by Pi such that 
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1. 

2. 

0 < Pi < 1 for all i 

L~=1Pi = 1. 

Then the sequence p 1 , ... , Pn is called a probability distribution for 
Sand the assignment P : S ➔ IR defined by P(si) = Pi is a probability 
law for S. □ 

The exact method of assigning probabilities to the outcomes of a pro-
cess depends on the assumptions made about the process. For instance, 
the assumption that a coin is fair is equivalent to making the assignments 

1 1 
P(H) = 2 and P(T) = 2 

Definition Let Ebe a nonempty event in a sample space S. Then the 
probability of E, denoted by P(E), is the sum of the probabilities of each 
outcome in the event. We also set P(0) = 0. □ 

Example 0.2.2 Consider the process of rolling two fair dice, whose sam­
ple space consists of the 36 ordered pairs described in Example O.2.lb. 
Since we are assuming that the dice are fair, the probabilities of each out­
come must be equal, that is Pi = 3

1
6 , for all i = 1, ... , 36. Thus, using the 

description of E in Example O.2.lb, we have 

P(getting a sum of 7) = P(E) 

= P((l, 6)) + P((2, 5)) + P((3, 4)) + P((4, 3)) 

+ P((S, 2)) + P((6, 1 )) 
1 1 

=6•-=-
36 6 

□ 

It is not uncommon for each outcome of a process to be equally likely, 
in which case the probability of each outcome is 

1
;

1
• 

Definition The uniform probability distribution for a sample space 
S of size n is the sequence¼, ... ,¼- D 

Theorem 0.2.1 Let S be a finite sample space with uniform probability 

law. If E is an event in S, then 

P(E) = ~ 
ISi 

The basic properties of the probability function P are as follows. 

□ 
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Theorem 0.2.2 Let S be a finite sample space. Then 

1. P(0) = o 

2. P(S) = 1 

3. 0 < P(E) < 1, for all events E c S 

4. P(Ec) = 1 - P(E), for all events E c S 

5. If E and F are events in S, then 

En F = 0 implies P(E U F) = P(E) + P(F) □ 

It is important to keep in mind that part 5. of Theorem 0.2.2 holds only 
when the events E and Fare disjoint. In probability theory disjoint events 
are said to be mutually exclusive. Part 5. can be extended to more than 
two events. In particular, if E 1 , ... , En are events in S that are pairwise 
mutually exclusive, that is Ei n Ej = 0 for all i f j, then 

n 

P(E1 U · · · U En) = LP(Ei) 
i= 1 

Example 0.2.3 A black box emits symbols from the set A = {O, l}, at 
the rate of one per second. Each symbol is emitted with equal probability. 
After 4 seconds, what is the probability that the string emitted from the 
black box has an even number of ls? 

The sample space is the set S of binary strings of length 4. A string 
with k ls is formed simply by choosing k of the 4 positions in which to 
place 1 s, the remaining positions being filled by Os. Hence, there are (k) 
strings with exactly k ls and the event E of getting an even number of ls 
has size 

Thus, 
... 

8 1 
P(even number of ls) = - 4 = -

2 2 □ 

Example 0.2.4 Five cards are drawn, each with equal probability, from 
a deck of 52 cards. What is the probability of getting exactly 3 aces? 
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In this case, the sample space is the set of all possible 5-card hands, 
and this space has size 

ISi = (5:) = 2,598,960 

Now we must compute the size of the event E of getting exactly 3 aces. 
Such a hand can be formed by first choosing 3 of the 4 aces, and this can 
be done in ( ! ) ways, and then choosing 2 of the remaining 48 (non-ace) 
cards, which can be done in ( 4:) ways. Thus, 

and 

P(E) = ~ = 
ISi 

4 · 1128 
= --- ~ 0.0017 

2598960 □ 

Example 0.2.5 Five decimal digits a 1 , a2, ... , as are chosen at random. 
What is the probability that as is the same as one of the previous 4 
digits? 

The sample space is the set S of all strings of length 5 over 
{O, 1, 2, ... , 9}, and so ISi = 10s. Let Ebe the event that as is the same 
as one of a 1 , a2 , a 3 , or a4 . Determining the size of Eis actually a bit awk­
ward (since, in particular, some of a 1, a2 , a3 , or a4 may be the same). In 
this case, it turns out to be easier to determine the size of the complement 
Ee of E in S. 

To determine the size of Ee, we observe that for each of the 10 possibil­
ities for as, the digits a 1 , a 2 , a3 , and a4 must be taken from the 9 remaining 
digits. Thus IEcl = 94 · 10, and 

94. 10 

10s 
= 0.6561 

Finally, we use part 4) of Theorem 0.2.2 to get 

P(E) = 1 - P(Ec) = 0.3439 □ 
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Independent Events 

Definition 'Two events E and F from the same sample space are 
independent if 

P(E n F) = P(E) · P(F) □ 

The definition of independent events can be extended to more than 
two events, although the definition becomes a bit more involved then you 
might think at first. 

Definition Three events E, F, and G from the same sample space are 
independent if the following two conditions hold. 

1. P(E n F n G) = P(E). P(F). P(G) 

2. Each pair of events from among E, F and G is independent, that is, 

P(E n F) = P(E) · P(F), 

P(F n G) = P(F) · P(G) 

P(E n G) = P(E) · P(G) 

□ 

Definition The events E1 , ... , En from the same sample space S are 
independent if the probability of the intersection of every subcollection 
of these events is equal to the product of the probabilities of these events. 
In symbols 

P(E- n ... n E· ) = P(E· ) ... P(E- ) !1 lk !J lk 

for any i1, ... , ik. □ 

Example 0.2.6 Suppose we toss two fair coins in the air, one at a time. 
Let Ebe the event that the first toss results in heads, and let F be the event 
that the second toss results in heads. Then P(E) = P(F) = ½. Since En F 
is the event that both tosses result in heads, we have P(E n F) = ¼- Thus 
P(E n F) = P(E) · P(F) and so the events E and Fare independent. □ 

Example 0.2. 7 A card is chosen at random from a deck of 52 cards. Let 
Ebe the event that the card is a 10,or a deuce, and let F be the event that 
the card has face value at most 6. (An ace has face value 1, face cards have 
no face value.) Then P(E) = 5

82 = /3 and P(F) = ;~ = 163 . But since EnF 
is the event that the card chosen is a deuce, we have P(E n F) = 5~ = /3 . 

Now 

( 2 6 ) 12 P(E)·P(F) = -- = - f P(EnF) 
13 13 169 



----------------------=I=n=d~ep~e=n=d=e=n~t~E~v~e=n~ts:__ ____ 17 

and so the eve·nts are not independent. □ 

Here are some examples that relate directly to the subject of this book. 

Example 0.2.8 Suppose that binary strings of length 5 are sent over 
a noisy communication line, such as a telephone line. Assume that, be­
cause of the noise, the probability that a bit (0 or 1) is received correctly 
is 0. 75. Assume also that the event that one bit is received correctly is 
independent of the event that another bit is received correctly. 

1. What is the probability that a string will be received correctly? 

2. What is the probability that exactly 3 of the 5 bits in a string are 
received correctly? 

Solutions 

1. If Ei is the event that the ith bit is received correctly, then P(Ei) = 
0.75, and since E1, E 2, E 3, E 4, and Es are independent, we have 

P(string received correctly) = P(E1 n E2 n E 3 n E4 n Es) 

= P(E1)P(E2)P(E3)P(E4)P(Es) 

= (0. 75)5 ~ 0.237 

2. Consider the case where the first three bits are received correctly, and 
the other two are not. Since the probability that a bit is not received 
correctly is 1 - 0.75 = 0.25, the probability of this occurring is 

P(E1 n E2 n E3 n E~ n ED = P(E1)P(E2)P(E3)P(E~)P(E~) 

= (0.75)3(0.25)2 

But this probability would be the same if any set of 3 bits were received 
correctly, and since there are G) possibilities for the positions of 3 

correct bits, we have 

P( exactly 3 bits received correctly) - G) (0. 75)3(0. 25)2 "" 0 .264 

Thus, we see that it is more likely that exactly 2 errors are made in 
transmission than that no errors are made! □ 

Since the previous example is very important, let us generalize it. 

Example 0.2.9 Suppose that binary strings oflength n are sent over a 
noisy communication line. Assume that, because of the noise, the prob­
ability that a bit (0 or 1) is received correctly is p. Assume also that the 
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event that one bit is received correctly is independent of the event that 
another bit is received correctly. 

1. What is the probability that an entire string will be received correctly? 

2. What is the probability that a specified set of k bits (such as the first k 
bits) are received correctly, but that the remaining bits are incorrect? 

3. What is the probability that exactly k bits (any k bits) are received 
correctly? 

4. What is the probability that at least k bits are received correctly? 

Solutions 

1. If Ei is the event that the ith bit is received correctly, then P(Ei) = p, 
and since E1 , ... , En are independent, we have 

P(string received correctly) = P(E1 n · · · n En) 

= P(E1) · · · P(En) = pn 

2. Consider the case where the first k bits are received correctly, and the 
others are not. Since the probability that a bit is not received correctly 
is 1 - p, the probability of this occurring is 

P(E1 n · · · n Ek n Ei+l n · · · n E~) = pk(l - Pt-k 

But this probability would be the same for any set of k bits, and so the 
probability that a specified set of k bits is received correctly ( and the 
rest are received incorrectly) is pk(l - Pt-k. 

3. Since there are G) possibilities for the k correct bit positions, and 
since we saw in part b) that the probability that a specified set of k 
bits is received correctly is pk(l - Pt-k, the probability that exactly k 
bits are received correctly is 

P( exactly k correct bits) = (;) pk(l - Pl-k 
-. ~ 

4. From part c), we have 

n 

P(at least k bits are correct) = L P(exactly i bits are correct) 
i=k 

□ 
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Conditional Probability 

It is often the case that we have some additional knowledge about the 
outcome of a process and want to use this knowledge to obtain more 
accurate probabilities. This leads us to define the concept of conditional 
probability. 

Definition Let S be a sample space and suppose that E and Fare events 
with P(FJ I= 0. The conditional probability of E, given that F has 
occurred, is 

P(E n F) 
P(EJF) = --­

P(F) 
□ 

Example 0.2.10 A certain operation results in complete recovery 60% 
of the time, partial recovery 30% of the time and death 10% of the time. 
What is the probability of complete recovery, given that a patient survives 
the operation? 

Solution Let Ebe the event of complete recovery and let F be the event 
of surviving the operation. We seek the conditional probability P(E I F). 
Since Fe is the event of dying, we have 

1 9 
P(F) = 1 - P(Fc) = 1 - 10 = 10 

The intersection E n F is the event that the patient recovers completely 
and survives, which is just E. Hence 

Thus, we have 

P(E IF) = 

6 
P(E n F) = P(E) = 10 

P(E nF) 

P(F) 

P(E) 
= = 

P(F) 

6/10 

9/10 

2 
= - ~ 67% 

3 
□ 

Note that the formula for conditional probability can be written in the 

sometimes useful form 

P(EnF) = P(E IF)· P(F) 

Example 0.2.11 A company that manufactures computer chips uses 
two different manufacturing processes. Process 1 produces nondefective 
chips 98.5% of the time and process 2 produces nondefective chips 97.1 % 
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of the time. Process 1 is used 60% of the time. What is the probability that 
a randomly chosen chip was produced by process 2 and is nondefective? 

Solution Let Ebe the event that the chip is nondefective and let F be 
the event that the chip was produced by process 2. We seek the probability 
P(E n F). Since process 2 is used 40% of the time, the probability that a 
given chip was made by process 2 is 

P(F) = 0.40 

We are also given the conditional probability that the chip is nondefective, 
given that it was produced by process 2, 

P(E IF) = 0.971 

Hence, 

P(E nF) = P(E IF)· P(F) = (0.971)(0.40) = 0.3884 D 

We will have use for two very important formulas related to 
conditional probability. To state them, we first need a definition. 

Definition Let S be a sample space. The events E1 , ••• , En farm a 
partition of S if 

1. P(Ei) > 0 for all i, 

2. the events are pairwise mutually exclusive, that is, E1 n Ej = 0 for all 
if j, 

3. E1 U · · · UEn = S □ 
Theorem 0.2.3 (Theorem on Total Probabilities) Let S be a sample space 
and let E1, ... , En form a partition of S. Provided that P(Ek) f 0 for all k, 
we have for any event A in S, 

n 

P(A) = L P(A I Ek)P(Ek) 
k=l 

Proof Since the events E1 for:rrr a partition of S, the events A n E1 form 
a partition of A. That is, A n E1, ... , An En are disjoint and their union is 
A. It follows that 

n n 

P(A) = L P(A n Ek) = L P(A I Ek)P(Ek) 
k=l k-1 

which is what we wanted to prove. ■ 
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Theorem 0.2.4 (Bayes' Theorem) Let S be a sample space and let E 1, 

... , En form a partition of S. For any event A in S with P(A) > O, we have 

Proof This follows directly from the definition of conditional probability 
and the Tqeorem on Total Probabilities 

P(E- I A)_ P(EJ nA) = 
1 - P(A) ■ 

0.3 Matrices 

A matrix is a rectangular array of elements, such as 

Our interest will center on matrices whose elements, or entries, come 
from the set Zp. The entry in the ith row and jth column of a matrix is 
referred to as the (i,j)th entry. 

A matrix Mis said to have size m x n if it has m rows and n columns. 
We then say that Mis an m x n matrix. For instance, the matrices above 
have size 2 x 2, 1 x 4, 2 x 3 and 3 x 1, respectively. A matrix with the 
same number of rows as columns (that is, a matrix of size n x n), is called 
a square matrix. The first matrix above is square. 

A matrix of size 1 x n, consisting of a single row, is often referred to 
as a row matrix. Similarly, a matrix of size m x 1, consisting of a single 
column, is referred to as a column matrix. The second matrix above is 
a row matrix; the last matrix is a column matrix. 

A matrix whose entries are all equal to 0 is called a zero matrix, and 
is denoted by 0. If we need to emphasize the size of the matrix, we will 
use the notation Om,n. 

A square matrix that has 1 s along its main diagonal and Os elsewhere 
is called an identity matrix. We use the symbol In to denote the identity 
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matrix of size n x n. For instance, 

u ~l 
1 0 0 0 

I, = [ ~ ~]. 
0 

0 1 0 0 
h = 1 ]4 = 

0 0 1 0 
0 ' 0 0 0 1 

We define addition of matrices simply by adding corresponding 
entries. For instance, 

[ ~ ! ~ ] + [ ~ ~2 ~ ] = [ ; ~ ! ] 
Similarly, we can multiply a matrix by a number by multiplying each 
entry by that number, for example, 

S [ ~2 ~ ] = [ -~0 Ii ] 
The product of a row matrix of size 1 x n and a column matrix of size 

n x 1 is the 1 x 1 matrix defined as follows 

Example 0.3.1 In Z5 (see Section 1.1), we have 

2 

[1 2 3 4] 
1 
0 

3 

= [ 1-2+2·1 +3·0+4·3] = [ 1] □ 

This definition can be extended to the product of an n x m matrix 
and an m x k matrix. However, we shall only need the following special 
cases. The product of an m x n _matrix and an n x 1 matrix is an m x 1 
matrix formed by taking the products of the rows of the first matrix with 
the second (column) matrix, thus 

= 

U11 V1 + U12V2 + ·' · + U1nVn 

U21 V1 + U22V2 + · · · + UznVn 
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The product of a 1 x m matrix and an m x n matrix is the 1 x n matrix 
formed by taking the product of the first (row) matrix with the columns 
of the second matrix, thus 

Un U12 

[ V1 Vz · · • Vm ] 
U21 U22 

Um1 Umz 

= [V1 Un + V2U21 + · · · + VmUm1 

V1U12 + V2U22 + · · · + VmUzm 

U1n 

Uzn 

Umn 

• · • V1 U1n + V2U2n + · · · + VmUmn] 

Example 0.3.2 Over Z2 (see Section 1.1), we have 

1 
0 1 1 
0 0 1 
1 1 1 

1 
0 
0 
1 

[ 
1-1 +0·l +l·O+l-0+1·1] 

= 0•l+0•l+0·0+l·0+l•l 
1-1+1·1+1·0+1·0+1·1 

= u] □ 

It is sometimes convenient to write a string x = x1x2 • • • Xn in the form 
of a row matrix 

or a column matrix 

x= 

In this case, we will say that the string xis in row form, or in column form. 
We will use the same notation x for a string written in its usual form, and 
in column or row form. 
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Definition The transpose Mt of an n x m matrix Mis them x n matrix 
whose first column is the first row of M, whose second column is the 
second row of M, and so on. Thus, if 

U11 U12 U1n 

U21 U22 Uzn 
M= 

Uml Umz Umn 

then 

U11 U21 Um1 

Mt 
U12 U22 Umz 

= □ 

U1n Uzn Umn 

For example, 

1 0 1 

ifM ~ u 0 1 1 : l thenM' ~ 
0 0 1 

0 0 1 1 0 1 
1 1 1 1 1 1 

1 1 1 

A matrix M for which M = Mt is said to be symmetric. For instance, the 
matrix 

is symmetric. 



CHAPTER 

An Introduction to 
Codes 

1.1 Strings and Things 

Modular Arithmetic in Zn 

If n is a positive integer, we let Zn denote the set { 0, 1, ... , n -1} consisting 
of the first n non-negative integers. Much of what we will do in this book 
(especially in the coding theory portion) involves this set. 

If a and f3 are integers, the following three conditions are equivalent. 

l. a - /3 is divisible by n 

2. there exists an integer k for which a = /3 + kn 

3. a and f3 have the same remainder when divided by n. 

If any ( and hence all) of these conditions hold, we say that a and /3 
are congruent modulo n, and write 

a= f3(modn) 

Example I.I.I 

1. 5 = 3(mod2) 

2. 178 = 17(mod7) 

3. -4 = 12(mod4) 

25 
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4. 15 = 0(mod5) 

5. 4 $ 6(mod3) 

6. 14 = 9 = 4 = -1 = -6(mod5) □ 

' Given an integer a, there is exactly one integer kin Zn that is congru-
ent to a, that is, for which k = a(modn). Put another way, in Zn, there 
exists a unique solution to the equation 

x = a(modn) 

This solution is simply the remainder obtained by dividing a by n and is 
referred to as the residue of a modulo n. It can also be found by adding, or 
subtracting, a suitable multiple of n in order to produce a number in Zn, 
For instance, the residue of 25 modulo 7 is found by subtracting 3 • 7 = 21 
from 25, to get 4. That is, 4 = 25 (mod 7), where 4 E Z7 • 

We can define two algebraic operations, known as addition modulo 
n and multiplication modulo n, on the set Zn. If x, y E Zn, we set 

x EBn y = the remainder obtained by dividing x + y by n 

and 

x ®n y = the remainder obtained by dividing xy by n 

Hence, x EBn y = (x + y) (mod n) and x ®n y = xy (mod n). 

Example I. 1.2 

1. In Z5 , 

2. In Z10, 

3 EBs 4 = 2 and 3 ®s 2 = 1 

-... 
7 EB10 8 = 5 and 7 ® 10 8 = 6 □ 

The set Zn, together with the operations of addition and multiplica­
tion modulo n, is referred to as the integers modulo n. It is customary, 
whenever the context makes it clear, to use the ordinary symbols + and 
·, instead of EBn and ®n, and we will also follow this custom. 
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In Z2, addition and multiplication modulo 2 are described by the 
following tables. 

Addition modulo 2 Multiplication modulo 2 

+ 0 1 0 1 

0 0 1 0 0 0 
1 1 0 1 0 1 

The Field Zp 

Our main interest in the set Zp is when p is a prime. The reason is that, 
when pis a prime, addition and multiplication modulo p have much nicer 
properties than in the nonprime case. The following theorem is a case in 
point. 

Theorem 1.1.1 The following property holds in Zn if and only if n is a 
prime 

af3 = 0 implies a = 0 or f3 = 0 

Proof Let n = p be a prime and suppose that af3 = 0 in Zp. This is 
equivalent to af3 = 0 (mod p), which holds if and only if p divides af3. 
Since p is a prime, it divides the product af3 if and only if it divides at 
least one of the factors. But if p divides a then a = 0 (mod p); that is, 
a = 0 in Zp. Similarly, ifp divides f3 then f3 = 0 (modp); that is, f3 = 0 in 
Zp, 

To see that the property does not hold in Zn when n is not a prime, 
observe that, if n is not prime, it has the form n = af3, where 2 < a,{3::::: 
n - l. Hence, a and f3 are nonzero elements of Zn, and 

af3 = n = 0(modn) 

that is, a{J = 0 in Zn. ■ 

The setZp, togetherwith the operations of addition and multiplication 
modulo p, forms a field. Before giving a formal degnition, we need to 
define the concept of a binary operation on a set. 

Definition Let S be a nonempty set. A binary operation on S is a 
function*: S x S ➔ S1 from the set S x S of all ordered pairs of elements 
of S to S. We usually denote *((a, /3)) by a* {J. □ 
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For example, ordinary addition of real numbers is a binary operation 
+JR x JR ➔ JR, where + (a, {3) is almost always written a + {3. 

Now let us give a formal definition of a field. 

Definition A field is a nonempty set :F, together with two binary opera­
tions on :F, called addition (denoted by +) and multiplication (denoted 
by juxtaposition), satisfying the following properties. 
Associative properties: For all a, {3 1 and yin :F, 

a+ (/3 + y) =(a+ {3) + yanda(f3y) = (af3)y 

Commutative properties: For all a and f3 in :F, 

a + f3 = f3 + a and af3 = f3a 

Distributive property: For all a, f3 and y in :F, 

a(f3 + y) = af3 + ay 

Properties of O and 1: There exist two distinct special elements in :F, 
one called the zero element and denoted by O and the other called the 
identity element and denoted by l I with the properties that, for all a E F, 

0 + a = a + 0 = a and 1 • a = a • 1 = a 

Inverse properties: For every a E F, there exists another element in :F, 
denoted by -a and called the negative of a, for which 

a + ( - a) = ( - a) + a = 0 

For every nonzero a E F, there exists another element in :F, denoted by 
a-1

1 and called the inverse of a, for which 

□ 

The most familiar fields are the sets Q of rational numbers, JR of real 
numbers, and CC of complex nmp.bers, each with ordinary addition and 
multiplication. However, it happens that, for every prime power q = pn I 
there is a field of size q. In fact, there is essentially only one field for each 
prime power. For q = p a prime, this field is easy to describe, for it is just 
the integers modulo p. 

Theorem 1.1.2 The set Zn of integers modulo n is a field if and only if n 
is a prime number. 
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Proof Suppose first that n = pis a prime. We will not establish all of 
the properties in the definition of field, but show only that every nonzero 
element a of Zp has an inverse. Consider all possible products of a with 
the elements of Zp 

{aJS I JS E Zp} 

These p products are distinct, for if aJS = aJS' then a(JS - JS') = 0 and 
Theorem 0-.1.2 gives JS - JS' = 0, whence JS = JS'. Since the p products 
are distinct, they represent every element in Zp. In particular, one of the 
products must equal 1, that is, a JS = l for some JS E Zp. By commutativity 
we also have JSa = l and so JS is the inverse of a. 

If n is not a prime, then n = aJS for some nonzero a, JS E Zn. It follows 
that aJS = 0 in Zn and so a cannot have an inverse. For if a-1 did exist, 
then we would have 

which is not the case. Since the nonzero element a does not have an 
inverse, the set Zn cannot be a field. ■ 

Example 1.1.3 Since 2 + 5 = 0 in Z7, the negative of 2 is 5. In symbols, 
-2 = 5. Note that this is true only in Z7 , using addition modulo 7. It is 
certainly not true in the familiar field of real numbers. 

Since 2 • 4 = 1 in Z7 , the inverse of 2 is 4, that is, 2-1 = 4. Again, this 
is true only in Z7 , and not in the field of real numbers. □ 

When p is not a prime, all of the properties in the definition of a field 
hold except that not all nonzero numbers have inverses. However, since 
Zn is not a field if n is not prime, many other properties that hold in Zp 
do not hold in Zn. Theorem 1.1.1 is a case in point. 

The field Z2 of integers modulo 2 has an interesting property not 
shared by the other fields Zp for p > 2. Since 1 + 1 = 0 in Z2, we have 
1 = -1. Certainly 0 = -0, and so, if e is either 0 or 1, then 

e - e = e + ( - e) = e + e 

In other words, in Z2, each element is its own negative and subtraction 
is the same as addition. Note that this is not true in '?Lip, for p f 2. 

We should caution against confusing addition modulo 2 in Z2 with 
addition of binary numbers. In Z2 , we have 1 + 1 = 0, but for addition of 
binary numbers, we have 1 + 1 = 10. 
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Strings 

The concept of a string is fundamental to the subjects of coding and 
information theory. Let S = {s1, s2 , ... , Sn} be a finite, nonempty set, 
which we refer to as an alphabet. A string, or word, over S is simply a 
finite sequence of elements of S. For instance, if S :;::: {a, /3 1 l, 2} then 

/3 1 al, 11 {32, and 2222 

are strings over S. A sequence does not have to be meaningful in some 
languagetoqualifyasa word. For instance, ifS = {a, b, c, ... ,z}, thenxyah 
is a word over S, even though it is not a word in the English language. The 
terms string and word are synonymous and will be used interchangeably. 

Strings will be denoted by boldface letters, such as x, y and z. If x. = 
x1x2 • • • Xk is a string over S, then each Xi in x is an element of x. The 
length of a string x, denoted by len(x), is the number of elements in the 
string. 

The juxtaposition of two strings x and y is the string xy. For instance, 
the juxtaposition of x = 101 and y = 1000 is xy = 1011000. If a string 
has the form z = xy, we say that x is a prefix of z. For instance, 110 is a 
prefix of 1101010. It is clear that 

len(xy) = len(x) + len(y) 

The set of all strings over S is denoted by S*. We also include in S* the 
empty string, denoted by 0 (the Greek letter theta), and defined to be the 
string with no elements. Thus, len(0) = 0. If n is a non-negative integer, 
the set of all strings over S of length n is denoted by sn, and the set of all 
strings over S of length n or less is denoted by Sn, Thus, sn c Sn c S*. 

Note that s0 = So consists of just the empty string. 
A string over Z2 = {O, 1} is called a binary string. Each of the ele­

ments O and 1 is called a bit, which is a contraction of binary digit. For 
instance, 011101 is a binary string of length 6. The complement xc of a 
binary string x is defined to be t~ string obtained by replacing all Os by 1 s 
and all ls by Os. For instance, (11001 / = 00110. A string over Z3 = {O, 1, 2} 
is called a ternary string. 

If O is in the alphabet, then the stringzero string 00 • • • O is denoted 
by a boldface 0. If 1 is in the alphabet, the string consisting of all 1 s is 
denoted by a boldface 1. For instance, in zt we have O = 00000 and 1 
= 11111. If O < i < n, the notation ei is reserved strictly for the string all 
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of whose elements are O except for a 1 in the ith position. For instance, 
• '714 1n tLi2 , 

e1 = 1000,e2 = 0100,e3 = 0010,e4 = 0001 

In Zs, we have e1 = 10000. Thus, there is some ambiguity in this notation, 
since there is a different string ei in each z; with n > i. However, this 
should not cause any problems, since the context will always resolve any 
ambiguity .. · 

The next theorem tells us how many strings there are in sn and Sn. 

Theorem 1.1.3 Let S be an alphabet of size k > l. Then 

kn+l - 1 
1) ISnl = kn 2) ISnl = k 

-1 

Proof For part 1), note that each string in sn can be formed by picking 
one of the k symbols in S for the first position, one for the second position, 
one for the third position, and so on. Because there are k choices for each 
of the n positions, the number of strings that can be formed in this way 
is kn. That is, ISnl = kn. 

For part 2), we use the results of part 1 ), 

Theorem 1.1.4 

ISnl = 1s01 + 1s1 I + ... + 1sn1 
kn+l - l 

= 1 + k + k 2 + · . · + kn = --­
k - l 

l. In Z~, the number of strings with exactly k Os is G). 
2. In Z~, the number of strings with exactly k Os is (~)(r - 1 t-k_ 

■ 

Proof Part 1) follows from the fact that there is one such string for every 
way of choosing k of the n positions in which to place the Os. Part 2) is 
similar, and left as an exercise. ■ 

Example 1.1.4 
1. The set Z~ has size 28 = 256. Furthermore, there are (:) = 56 binary 

strings in Z~ containing exactly three Os. 

2. The set Z~ has size 36 = 729. There are (~)24 = 240 strings in Z~ that 
contain exactly two Os. 

3. The number of strings in Zi0 that contain exactly three Os and exactly 
two ls is c:)G)35 = 612360. This follows from the fact that there are 
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(13°) ways to choose the 3 positions for the Os, then there are G) ways 
to choose 2 of the remaining 7 positions for the two ls and, finally, 
there are 35 ways to fill in the remaining positions with any of the 3 
other elements of Z5 • 

4. The number of strings in Z}2 with at least nine ,Os is 

(1:)6' + G~)6' + G:)6 + G~) -49969 □ 

Exercises 

1. Write out the addition and multiplication modulo 3 tables for Z3 • 

2. Show that the cancellation law 

af3 = ay,a f O implies f3 = y 

holds in Zp, pa prime. Does it hold in Zn when n is not prime? 

3. Find the following residues 

a) 23 (mod 11) 

b) -17 (mod 3) 

c) 1345 (mod 5) 

d) 1232456 (mod 2) 

e) 133 (mod 3) 

f) -1793 (mod.5) 

4. Find the following inverses 

a) 3-1 in Z5 

b) 3-l in Z7 

c) s-1 in Zn . ' 
5. How many strings are there in Z~ that contain exactly four Os? How 

many strings are there that contain exactly three Os and two ls? 

6. Show that there are (;)(r - 1 y-k strings in Z~ containing exactly k Os. 

7. How many strings are there in Z~ with at most two Os? 

8. How many strings are there in z~o with at least two Os? 
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9. How many .strings are there in Z~ that contain exactly k nonzero 
elements? 

10. P h 1 k k2 kn l kn+ 1 
rove t at + + + · · · + = ~-k . 

11. In z;, show that 

a) (x + YY = x + ye 

b) Xe + ye = X + y. 

For the next exercises, we use the following concept (which will be 
defined more formally later in the text). The distance between two strings 
of the same length is the number of positions in which these strings differ. 
For instance, d(00ll, 0110) = 2, since these two strings differ in 2 places 
(the second and fourth). 

12. Let x be a string in Z~. Show that there are (;)(r-1 i strings in Z~ that 
have distance k from x. 

13. If x and y are binary strings oflength n, find expressions for 

a) d(xe, Y) 

b) d(xe, ye) 

in terms of d(x, y). 

14. Show that if x, y, and z are strings of the same length, then 

d(x, y) < d(x, z) + d(z, y) 

This is known as the triangle inequality. 

1.2 What Are Codes? 

A code is nothing more than a set of strings over a certain alphabet. For 

example, the set 

C = {0, 10, 110, 1110} 

is a code over the alphabet Z2 . Of course, codes are generally used to 
encode messages. For instance, we may use C to encode the first four 
letters of the alphabet, as follows 
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a ➔ O 

b ➔ 10 

c ➔ ll0 

d ➔ lll0 
\ 

Then we can encode words (or messages) built up from these letters. The 
word cab, for instance, is encoded as 

cab ➔ ll0Ol0 

These ideas lead us to make the following definitions. 

Definition Let A = {a1 , a2 , ... , ar} be a finite set, which we call a code 
alphabet. An r-ary code over A is a subset C of the set A* of all words 
over A. The elements of Care called codewords. The number r is called 
the radix of the code. □ 

The most commonly used ( and studied) alphabet is the set Z2 . Codes 
over Z2 are referred to as binary codes. Codes over the alphabet Z3 are 
referred to as ternary codes. 

Definition Let S = {s1 , s2 , ... , sq} be a finite set, which we refer to as a 
source alphabet. Let C be a code. An encoding function is a bijective 
function f : S ➔ C, from S onto C. If C is a code and f : S ➔ C is an 
encoding function, we refer to the ordered pair (C, f) as an encoding 
scheme for S. □ 

Because an encoding function is bijective (that is, both one-to-one and 
onto), it associates to each source symbol in the source alphabet one and 
only one codeword. Moreover, every codeword is associated to a source 
symbol. This makes it possible to decode any sequence of codewords. 

Example 1.2.1 The 26 letters of the alphabet can be encoded as follows. 
Let the source alphabet be S = {a, b, c, ... , z}, let the code alphabet be 
A = {0, 1, ... , 9}, and let the code be C = {00, 01, 02, ... , 25}. Letf : S ➔ C 
be defined by · ' 

f(a) = 00, f(b) = 01, f(c) = 02, f(d) = 03, f(e) = 04, 
f(f) = 05, f(g) = 06, f(h) = 07, f(i) = 08, f(j) = 09, 
f(k) = 10, f(l) = ll, f(m) = 12, f(n) = 13, f(o) = 14, 
f(p) = 15, f(q) = 16, f(r) = 17, f(s) = 18, f(t) = 19, 
f(u) = 20, f(v) = 21, f(w) = 22, f(x) = 23, f(y) = 24, 

f(z) = 25 
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TABLE 1.2.1 The ASCII Encoding Scheme (Partial) 

A ➔ 01000001 J ➔ 01001010 s ➔ 01010011 

B ➔ 01000010 K ➔ 01001011 T ➔ 01010100 

C ➔ 01000011 L ➔ 01001100 u ➔ 01010101 

D ➔ 01000100 M ➔ 01001101 V ➔ 01010110 

E ➔ 01000101 N ➔ 01001110 w ➔ 01010111 

F ➔ 01000110 0 ➔ 01001111 X ➔ 01011000 

G ➔ 01000111 p ➔ 01010000 y ➔ 01011001 

H ➔ 01001000 Q ➔ 01010001 z ➔ 01011010 

I ➔ 01001001 R ➔ 01010010 space ➔ 00100000 

This encoding function may be used to encode any message. For instance, 

math is fun -+ 120019070818052013 

We purposely used two-digit numbers for each codeword. If we had 
taken the code to be C' = {O, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... , 25}, then unique­
ness problems would have arisen. For instance, the string 1019 could have 
resulted from several different messages, 

bat -+ 1019, babj -+ 1019, kt -+ 1019 

We will discuss the problem of uniqueness later in this chapter. □ 

Example 1.2.2 Tuble 1.2.1 shows a portion of a very commonly used 
code, known as the ASCII code. The acronym ASCII stands for American 
Standard Code for Information Interchange. This code is used by micro­
computers to store characters in memory or on storage media. In this 
case, the complete source alphabet consists of all upper- and lower-case 
letters, punctuation marks, and various other symbols. The code consists 
of all binary numbers from 0000000 to 1111111, that is, from Oto 127 dec­
imal. (The extended ASCII code, adopted by many personal computers, 
consists of 8-bit binary numbers.) 

For instance, the ASCII code for the upper-case letter A is 1000001 ( or 
65 decimal). The first thirty-three ASCII codes (not shown in the table) are 
used for control characters, that is, characters that control the operation 
of a monitor, printer, or other device. For instance, the decimal number 
12 (00001100 binary) is the ASCII code for a form feed, and 7 (00000111 
binary) is the ASCII code for tintinnabulation. □ 
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Codes can be divided into two general types as follows. 

Definition A fixed length code, or block code, is a code whose code­
words all have the same length n. In this case, the number n is also called 
the length of the code. If a code C contains codewords of varying lengths, 
it is called a variable length code. • □ 

Fixed length codes have advantages and disadvantages over variable 
length codes. One advantage is that they never require a special symbol to 
separate the characters in the message being coded. For example, consider 
the encoded ASCII message 

01000011010011110100010001000101 

Because the (binary) ASCII code is a fixed length code whose codewords 
have length 8, we know that the first 8 bits represents the first character 
of the original message, which according to Tuble 1.2.1, is C. Similarly, 
the second set of 8 bits represents the second character in the message, 
namely 0. Continuing in this way, we decode the message to get the word 
CODE. 

Perhaps the main disadvantage of fixed length codes, such as the ASCII 
code, is that characters that are used frequently, such as the letter e, have 
codes as long as characters that are used infrequently, such as the space 
character. On the other hand, variable length codes, which can encode 
frequently used characters using shorter codewords, can save a great deal 
of time and space. We will discuss both types of codes in this book. 

Exercises 

1. Suppose you require a binary block code containing 126 codewords. 
What is the minimum possible length for this code? .. ' 

2. Suppose you require a binary block code containing n codewords. 
What is the minimum possible length for this code? 

3. How many encoding functions are possible from the source alphabet 
S = {a, b} to the code C = {O, l}? List them. 

4. How many encoding functions are possible from the source alphabet 
S = {a, b, c} to the code C = {001 01, 11}? List them. 
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5. Find a formula for the number of encoding functions from a source 
alphabet of size n to a code of size n. 

6. How many r-ary block codes of length n are there over an alphabet 
A? How many binary codes are there of length 5? 

7. How many r-ary codes are there with maximum codeword length n 
over an alphabet A? What is this number for r = 2 (binary codes) and 
n = 5? 

1.3 Uniquely Decipherable Codes 

One of the most important properties that a code can possess is unique 
decipherability. Informally speaking, this means that any sequence 
of symbols can be interpreted in at most one way as a sequence of 
codewords. More formally, we have the following definition. 

Definition A code C over an alphabet A is uniquely decipherable if, 
for every string x1x2 · • · Xn over A, there exists at most one sequence of 
codewords c1 C2 · · · Cm for which 

Put another way, a code is uniquely decipherable if no two different 
sequences of codewords represents the same string over A, in symbols, 

if 

for codewords Ci and dj, then m = n and 

□ 

Example 1.3.1 Consider the following codes 

C1 = {c1 = 0,c2 = 0l,c3 = 001}, C2 = {d1 = 0,d2 = l0,d3 = 110} 

Code C1 is not uniquely decipherable, since the string 001 represents 
either the single codeword c3 or the string c1 Cz. On the other hand, C2 
is uniquely decipherable, since any string corresponds to at most one 
sequence of codewords. For instance, consider the string 

1000110 
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Reading from left to right, we see that 1 is not, by itself, a codeword. But 
10 is. Furthermore, only one codeword begins with 10 so 10 must be d2 

10100110 

d2 I 

Next, we come to a 0, which must represent d1 , since no other code­
word begins with 0. Continuing in this way, we see that this string 
represents only one sequence of codewords. 

To prove that C2 is uniquely decipherable, we will be content with giv­
ing a set of observations that show that any given sequence x of codewords 
can be interpreted in only one way. In this case, we have the following 
observations, assuming that x is read from left to right. 

1. If we encounter a 0, this must represent d1 . 

2. If we encounter a 1 followed by a 0, this must represent d2 . 

3. If we encounter a 1 followed by another 1, the next element must be 
a 0 and so this must represent d3 . □ 

Speaking loosely, if a code is uniquely decipherable, then it cannot 
have very many short codewords. To illustrate this point, if the word 
Ol00ll of length 6 is a codeword, then the words 010 and 011 of length 
3 cannot both be codewords. We can be more precise about codeword 
lengths in the following theorem, known as McMillan's Theorem (first 
published in 1956). 

Theorem 1.3.1 (McMillan 1s Theorem) Let C = {c1 , c2 , ... , cq} be an r-ary 
code and let li = len( ci). If C is uniquely decipherable1 then its codeword 
lengths f 11 l21 •• • 1 lq must satisfy 

Proof The following proof is fu.e usual one given for this theorem, al­
though it is not particularly intuitive. Suppose that a.1 is the number of 
codewords in C oflengthj. Then we have 

q l m t"" a· 
~ rek = L rj, 
k=l j=l 

where m = maxd,£i}. 
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Now let u be a positive integer, and consider the quantity 

Multiplying this out gives 

Now, since 1 :S iJ < m, each sum i1 + • • • + iu is at least u and at most um. 
Collecting terms with a common sum i1 + • • • + iu, we get 

where 

Now we are ready to use the fact that the code is uniquely decipher­
able. Recalling that ai is the number of codewords in C oflength i, we see 
that 

is the number of possible strings oflength k = i1 + • • • + iu consisting of 
a codeword of length i1 , followed by a codeword of length i2 , and so on, 
ending with a codeword oflength iu. 

Hence, the sum Nk is the total number of strings c1 · • · Cu of length 
k made up of exactly u codewords. Since C is uniquely decipherable, no 
two sequences of u codewords can yield the same string of length k and 
so there can be at most rk such sequences of codewords, since rk is the 
total number of strings oflength k from an r-ary alphabet. In other words, 

and so 

N < rk k_ 
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Toking uth roots gives 

m 
~ ak < ul/uml/u 
~ k -
k=l r 

Since this holds for all positive integers u, we may let u approach oo. But 
u 11umllu ➔ l as u ➔ oo, and so we must have 

m a 
~~<l 
~ k -
k=l r 

■ 

The inequality in McMillan's Theorem is called Kraft's Inequality. 
McMillan's Theorem confirms that, for a uniquely decipherable code, 
the codeword lengths must be reasonably large. (The numbers .e.i must be 
large in order to make the terms lire; small.) 

Example 1.3.2 Suppose we desire a binary code consisting of six code­
words, but we restrict the codeword lengths to a maximum of 2. (That 
is, .e.i < 2 for i = 1, 2, ... , 6.) Since there are precisely six nontrivial 
strings over {0, l} of length at most 2, our code must consist of these six 
strings. That is, C = {0, 1, 00, 01, 10, 11}. But this code is not uniquely 
decipherable. (The string 01, for example, has two interpretations.) 

In this case, the "shortness" of the codewords forces us to use code­
words, such as 01, that are made up of smaller codewords (0 and 1). This 
prevents the code from being uniquely decipherable. 

Of course, we could have used McMillan's Theorem to tell us that such 
a code could not be uniquely decipherable. For, in this case, .e.i < 2 for all 
i. Hence, re, < r 2 and so 

Thus, since r = 2, we have 

1 1 
->­
rl; - r2 

6 1 6 1 6 1 6 L rlk 2:: L: ,,.2 = L 4 = 4 > 1 
k=l k=l k=l 

This tells us that Kraft's inequality does not hold for this code, and so it 
cannot be uniquely decipherable. □ 

Note that McMillan's Theorem cannot tell us when a particular code is 
uniquely decipherable, but only when it is not. For the theorem does not 
say that any code whose codeword lengths satisfy Kraft's inequality must 



Exercises 41 --------------------=====-=------

be uniquely decipherable. Rather, it says that if a code is known to be 
uniquely decipherable, then its word lengths must satisfy Kraft's inequal­
ity. Hence, if a code does not satisfy this inequality, we may conclude 
that it cannot be uniquely decipherable. 

Exercises 

1. Is the code C = {O, 10, llOO, ll01, lllO, 1111} uniquely decipherable? 
Justify. 

2. Is the code C = {O, 10, llO, lllO, 11110, lllll} uniquely decipherable? 
Justify. 

3. Is the code C = {O, 01, Oll, 0111, 01111, 11111} uniquely decipherable? 
Justify. 

4. Is the code C = {O, 10,110, lllO, 1111, llOl} uniquely decipherable? 
Justify. 

5. Is the code C = {O, 10, ll01, lllO, lOll, llOllO} uniquely decipherable? 
Justify. 

6. Determine whether or not there is a uniquely decipherable binary 
code with codeword lengths 1,2,3,3. If so, construct such a code. 

7. Determine whether or not there is a uniquely decipherable binary 
code with codeword lengths 1,3,3,3,4,5,5,5. If so, construct such a code. 

8. Is it possible to construct a uniquely decipherable code, over the alpha­
bet {O, 1, 2, ... 1 9}, with nine codewords of length 1, nine codewords 
of length 2, ten codewords of length 3, and ten codewords of length 

4? 

9. For a given binary code, let N(k) be the total number of sequences of 
codewords that contain exactly k bits. For instance, if 

C = {c1 = O,c2 = 10,c3 = 11} 

then N(3) = 5, since the five codeword sequences 

each contain exactly 3 bits, and no other codeword sequences contain 

exactly 3 bits. 
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a) Determine N(l) and N(2). 

b) Show that N(k) = N(k - 1) + 2N(k - 2), for all k > 3. Hint: a 
string oflength k ::::: 3 begins with either a codeword oflength 1 or 
a codeword oflength 2. 

c) Solve the recurrence relation in part b). Hint: assume a solution 
of the form N(k) = cl and solve for a. Get a general solution of 
the form N(k) = aa~ + ba~ and determine the values of a and b. 

d) For the code D = {0, 10, ll0, lll}, compute N(l), N(2), N(3), N(4), 
N(S). Show that these values are consistent with the formula 

4 k 3 2.7r ,./3 2.7r 
N(k) = - · 2 + - cos -k + -sin -k 

7 7 3 21 3 

1.4 Instantaneous Codes and Kraft's 
Theorem 

It is clear that unique decipherability is a very desirable property. How­
ever, even though a code may have this property, it may still not 
be possible to interpret codewords as soon as they are received. The 
following simple example will illustrate this. 

Example 1.4.1 The code 

C3 = {c1 = 0,c2 = 01} 

is easily seen to be uniquely decipherable (by reading strings backwards). 
Now suppose that the string 0001 is being transmitted. Just after receiving 
the first 0, we cannot tell whether it should be interpreted as the codeword 
c1 or the beginning of c2 . Once we receive the second O in the message, 
we know that the first O must represent c 1 , but we don't know about 
the second 0. Thus, codewords cannot be interpreted as soon as they are 
received. ··, 

On the other hand, for the code 

C4 = {d1 = O,d2 = 10} 

individual codewords can be interpreted as soon as they are received. 
For instance, consider the string 00100. As soon as the first O is received, 
we know immediately that it must be d1, and similarly for the second O. 
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When the 1 is received, we know that a O is coming next, and that the 
string 10 must be d2 . Thus, the message can be interpreted codeword by 
codeword. □ 

The previous example motivates the following definition. 

Definition A code is said to be instantaneous if, whenever any se­
quence of codewords is transmitted, each codeword can be interpreted 
as soon as it-is received. □ 

If a code is instantaneous, then it is also uniquely decipherable. 
However, the converse is not true. There are codes that are uniquely de­
cipherable but not instantaneous, as illustrated by the code C3 of Example 
1.4.1. 

There is a very simple way to tell when a code is instantaneous. First 
we need a definition. 

Definition A code is said to have the prefix property if no codeword 
is a prefix of any other codeword. □ 

Example 1.4.2 The code C2 in Example 1.3.1 has the prefix property. 
However, the code C1 does not, since c1 is a prefix of Cz. □ 

The importance of the prefix property comes from the following 
theorem. 

Theorem I .4.1 A code C is instantaneous if and only if it has the prefix 
property. 

Proof Suppose that Chas the prefix property. Then, as soon as the first 
codeword is received, we can decode it, since it cannot be a prefix of 
another codeword. The same reasoning applies to the second codeword 
and indeed to all other codewords in the sequence. Hence, the code C is 
instantaneous. 

Conversely, suppose that C is instantaneous. If a codeword c is a prefix 
of a codeword d, then the first c in the sequence cc cannot be decoded 
until we receive at least one additional symbol, for when we have re­
ceived only the first string c, we cannot tell whether or not this should 
be interpreted as a c or as the beginning of a d. Hence, no codeword is a 
prefix of another codeword and C has the prefix property. ■ 

Example 1.4.3 Since the code C2 of Example 1.3.1 has the prefix 
property, Theorem 1.4.1 tells us that it is instantaneous. □ 
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Example 1.4.4 The code 

C = {O, 10, 110, 1110, 11110, 11111} 

is an example of a comma code. This terminology comes from the fact 
that the symbol O acts as a kind of comma, telling the receiver when a 

\ 

codeword ends. (The receiver can tell when the last codeword ends by 
its length.) 

Comma codes have the prefix property, and so they are instantaneous. 
On the other hand, consider the code obtained by reversing the order of 
the bits 

D = {0,01,011,0111,01111, 11111} 

This code does not have the prefix property, and so it is not instantaneous. 
But it is uniquely decipherable, since any sequence of codewords can be 
deciphered by starting from the end of the message and first picking out 
all strings of ls of length 5, which must represent the codeword 11111, 
then picking out strings of ls oflength 4, and so on. □ 

Kraft's Theorem 

Now we come to a theorem that tells us precisely when an instantaneous 
code exists with given codeword lengths l 1 ,l2 , .• • ,lq. This theorem was 
first published by L. G. Kraft in 1949. 

Theorem 1.4.2 

1. (Kraft's Theorem) There exists an instantaneous r-ary code C = 
{c1, c2, ... , cq}, with codeword lengths l 1, l2, ... , lq, if and only if these 
lengths satisfy Kraft's inequality, 

q l 
"' - < 1 L rek -
k=l 

2. Let C be an instantaneous r-ary code. Then C is maximal instantaneous, 
that is, C is not contained in any strictly larger instantaneous code, if and 
only if equality holds in Kraft's inequality. 

3. Suppose that C is an instantaneous code with maximum codeword length 
m. If C is not maximal, then it is possible to add a word of length m to C 
without destroying the property of being instantaneous. 
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Proof Let C be a code with codeword lengths .e1, ... , .eq. We refer to the 
sum on the left side of Kraft's inequality as Kraft's sum. Let us begin 
by rewriting Kraft's inequality in a different form. Suppose that Chas ui 

codewords oflength i for i = 1, ... , m, where mis the maximum codeword 
length in C. The the Kraft sum can be written 

q l m U· 1 m . 

"'"' "'"' l "'"' m-t ~ rlk = ~ ri = rm~ uir 
k=l i=l i=l 

and Kraft's inequality can be written in the form 

m 

"'"'U·rm-i < rm 
~ l -

i= 1 

or 

m-1 

u + "'"' u-rm-i < rm m ~ l - (1.4.1) 
i= 1 

We can now prove part a). First, we show that an instantaneous code 
C must satisfy Kraft's inequality. Let e E C have length i < m - 1. Since 
e cannot be a prefix of any other codeword in C, none of the words ex, 
where x is a string of length m - i, can be in C. Since len(x) = m - i, 
there are rm-i words of the form ex, all of which must be excluded from 
C. Moreover, if d is another codeword, say of length j, then there are an 
additional rm-i words oflength m that must also be excluded from C. (If 
ex = dy for e I= d, then one of e or d is a prefix of the other, which is 
not possible.) Thus, the total number of excluded words of length mis 
precisely equal to the summation on the left side of (1.4.1 ). Adding the 
number Um of words of length m that are in C must result in a number 
that is no greater than the total number rm of words of length m. Hence, 
(1.4.1) holds. 

For the converse of part a), we must show that if .e1 , .e2 , ••. , lq satisfy 
Kraft's inequality, then there is an instantaneous code C with these code­
word lengths. This can be proved by induction on the number q. If q is 
less than or equal to the radix r, then taking distinct code symbols gives 
an instantaneous code of size q, all of whose codewords have length 1. 
Certainly, we can extend the length of each codeword to get codewords 
of lengths .e1, ••• , lq, whilst preserving the prefix property. Hence, the 
result is true for q < r. Now assume that it is true for all sets of q or 
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fewer lengths, and let .e1, ... , lq+ 1 be q + l lengths that satisfy Kraft's in­
equality. We assume, by renumbering if necessary, that .ei ::::: .ei + 1 for all 
i = 1, ... I q. 

By the induction hypothesis, there is an instantaneous code C of size 
q with codeword lengths i 1, ... , lq. Moreover, thes~ numbers give strict 
inequality in Kraft's inequality (1.4.1). Hence, the reasoning that led to 
(1. 4.1) shows that there is at least one word d oflength lq that has not been 
included in C, but is also not excluded by virtue of having a codeword in 
C as prefix. It follows that we may include this word in C and still have an 
instantaneous code. Lengthening d (if necessary) by adjoining Os to the 
right end will give a codeword oflength lq+I without violating the prefix 
property and so we have an instantaneous code with codeword lengths 

i 1 , · · • , lq + I . 

' For part b ), suppose first that the codeword lengths of an instantaneous 
code C give equality in Kraft's inequality. If we add any word to C, the 
resulting code would not satisfy Kraft's inequality, which implies by what 
we have just proved above that it cannot be instantaneous. Hence, C is 
maximal instantaneous. 

For the converse, we must show that if a code C is maximal instanta­
neous, then equality holds in Kraft's inequality. But this follows easily by 
looking at Kraft's inequality in the form (1.4.1). For if equality does not 
hold in Kraft's inequality, then the left side of (1.4.1) is less than rm and so 
there is at least one word of length m that has not been included in C but 
is also not excluded by virtue of having a codeword as prefix. Hence, we 
may include this word in C and still have an instantaneous code. Thus, if 
C is maximal, equality must hold in Kraft's inequality. This finishes the 
proof of part b) and also proves part c). ■ 

Note that Kraft's Theorem says that, if the lengths .e 1 ,.e2 , .. . ,lq satisfy 
Kraft's inequality, then there must exist some instantaneous code with 
these codeword lengths. It does not say that any code whose codeword 
lengths satisfy Kraft's inequality.must be instantaneous. As we see in the 
next example, this is not necessar'ily the case. 

Example 1.4.5 ConsiderthebinarycodeC = {O, 11,100,110}. The code­
word lengths are 1,2, and 3, and since IAI = 2, the left side of Kraft's 
inequality is 

1 

2 

1 1 1 
+-+-+-=l 

22 z3 23 
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Hence, these lengths do satisfy Kraft's inequality. Nonetheless, this 
code is not instantaneous, since the second codeword is a prefix of the 
fuurth. o 

Parts b) and c) of Theorem 1.4.2 actually gives us a clue as to how to 
construct an instantaneous code with given codeword lengths .e1 , ... , .eq, 
Suppose that these lengths are arranged so that .e1 < .e2 < • • • < lq. If 
we have succeeded in finding k < q codewords c1, ... , ck with lengths 
l1, ... , .ek, then the Kraft sum, using only these lengths, is strictly less 
than 1 and so, according to partb) ofTheorem 1.4.2, the code {c1, ... , ck} 
is not maximal. Hence, by part c), we may include an additional codeword 
c oflength .ek or greater, in particular, of length .ek + 1 . The point is that we 
may add any codeword of length .ek + 1 as long as it does not violate the 
prefix property, for then we can repeat the process until we have a code 
of size q. Here is an example. 

Example 1.4.6 Let A = {0, 1, 2} and let £1 = 1, £2 = 1, £3 = 2, £4 = 4, 
ls = 4, .e6 = 5. Kraft's inequality is satisfied 

1 1 1 1 1 1 
-+-+-+-+-+-= 
3 3 32 34 34 3s 

34 + 34 + 33 + 3 + 3 + 1 
3s 

196 
= - < 1 

243 

and so there exists an instantaneous code C over A with these codeword 
lengths. 

First, we choose the two codewords of the smallest length 1, say 

C1 = 0 and c2 = 1 

Then we choose any codeword c3 of the next smallest length 2 that does 
not cause the prefix property to be violated. Hence, c2 cannot start with 
0 or 1. Let us choose 

C3 = 20 

Next we choose any two codewords oflength 4 that begin with 2, but not 
with 20. Let us choose 

c4 = 2100 and cs = 2101 

Finally, we choose any codeword of length 5, not beginning with any 
previously chosen codeword. We may pick 

C5 = 21100 
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Thus, C = {0, 1, 20, 2100, 2101, 21100}. Of course, this process is by 
no means unique and there are other instantaneous codes with these 
codeword lengths. □ 

Kraft's Theorem and McMillan's Theorem together tell us something 
interesting about the relationship between uniquely decipherable codes 
and instantaneous codes. In particular, if there exists a uniquely decipher­
able code with codeword lengths .e 1 ,f,2 , •. . ,.en, then according to McMillan's 
Theorem, these lengths must satisfy Kraft's inequality. But then we may 
apply Kraft's Theorem to conclude that there must also exist an instan­
taneous code with these lengths. In summary, we have the following 
remarkable theorem. 

Theorem 1.4.3 If a uniquely decipherable code exits with codeword lengths 
l 1,f,2, .. . ,.en, then an instantaneous code must also exist with these same 
codeword lengths. □ 

Our interest in this theorem will come later, when we turn to the question 
of finding desirable codes with the shortest possible codeword lengths. For 
it tells us that we lose nothing by considering only instantaneous codes 
(rather than all uniquely decipherable codes). 

Let us conclude with another application of Kraft's Theorem. 

Example 1.4. 7 Let A = {O, 1}. Suppose that we want an instantaneous 
code C that contains the codewords 0, 10, and 110. How many additional 
codewords oflength 5 could be added to this code? 

Since IA I = 2, the three aforementioned codewords contribute 

1 1 1 7 
-+-+-=-
2 22 23 s 

to the sum on the left side of Kraft's inequality. Thus, we have ½ left 
to work with, so to speak. Now, a codeword of length 5 will contribute 
is = }2 to the Kraft sum, and so we cannot add more than four such 
codewords, since 4 · ( l2 ) = ½. (Yve_ may not be able to add as many as four 
codewords, but we cannot add rriore than 4.) Checking the possibilities 
shows that each codeword of length 4 must begin with 111. This leads us 
to the only possibilities, namely, 11100, 11101, 11110, and 11111. It is not 
hard to check that we may add these four codewords to our code that is 

I I 

that the code 

{0, 10,110, 11100,11101,11110, 11111} 
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is instantaneous. □ 

Exercises 

1. Show that if a code is instantaneous, then it is also uniquely 
decipherable. 

2. Is the code C = {0, 101 ll00, llOl I lll0, llll} instantaneous? 

3. Is the code C = {0 1 10, ll0, lll0, lOll, llOl} instantaneous? 

4. Can a block code fail to have the prefix property? Explain. 

5. Can you construct an instantaneous binary code with codewords 0,10 
and an additional nine codewords oflength 5? Explain. 

6. Find an example of a binary code that is uniquely decipherable but 
not instantaneous, different from any of the codes in the book. 

7. How many prefixes does a word oflength n have? 

In Exercises 8 through 14, determine whether or not there is an in­
stantaneous code with given radix rand codeword lengths. If so, construct 
such a code. 

8. r = 2, lengths 1,2,3,3 

9. r= 2, lengths 1,2,2,3,3 

10. r = 2, lengths 1,3,3,3,4,4 

ll. r = 21 lengths 2,2,3,3,4,4,5,5 

12. r = 31 lengths 1,1,2,2,3,3,3 

13. r = 5, lengths 1,1,1,1,2,2,2,2,3,3,3,4,4,4 

14. r = 5, lengths 1,1,1,1,1,8,9 

15. Suppose that we want an instantaneous binary code that contains the 
codewords 0, 10, and ll00. How many additional codewords oflength 
6 could be added to this code? Construct a code with these additional 
codewords? 

16. Suppose that £1 , ... , fq, and r give equality in Kraft's inequality. Let C 
be an instantaneous r-ary code with these codeword lengths. If L = 
max { fd, show that C must contain at least two codewords of maximum 

length L. 
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Efficient Encoding 
CHAPTER 

2.1 Information Sources; Average 
Codeword Length 

In order to achieve unique decipherability, McMillan's Theorem tells us 
that we must allow reasonably long codewords. Unfortunately, this tends 
to reduce the efficiency of a code, by requiring longer strings to encode 
a given amount of data. 

On the other hand, it is often the case that not all source symbols 
occur with the same frequency within a given class of messages. Thus, it 
makes sense to assign the longer codewords to the less frequently used 
source symbols, thereby reducing the average number of code symbols 
per source symbol, and improving the efficiency of the code. 

Our plan in this chapter is to construct a certain class of instantaneous 
encoding schemes that are the most efficient possible among all instan­
taneous encoding schemes, in a sense that we shall now make precise. 
(An encoding scheme is instantaneous if the corresponding code is in­
stantaneous.) To this end, we will assume that each source symbol has 
associated to it a probability of occurrence. This leads us to make the 
following definition. 

Definition An information source (or simply source) is an ordered 
pair S = (S, P), where S = {s1, s2, ... , Sq} is a source alphabet, and Pis a 

53 
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probability law that assigns to each elementsi of Sa probability P(si). The 
sequence P(s1), ••• , P(sq) is the probability distribution for S. □ 

Often we will be interested only in the probability distribution of the 
source, which we may simply write in the form P = {p1 , ... ,pq}-

A source can be thought of as a "black box" that emits source symbols, 
one at a time, to form a message. We will assume that the emission of 
source symbols is independent of time. In other words, the fact that a 
given source symbol is emitted at a given instant has no effect on which 
source symbol will be emitted at any other instant. 

As a measure of the efficiency of an encoding scheme, we use the 
average codeword length. 

Definition Let S = (S, P) be an information source, and let (C,f) be 
an encoding scheme for S = {s1 , ... , Sq}- The average codeword length 
of (C,f) is 

q 

L len(f(si))P(si) □ 
i = 1 

Example 2.1.1 Consider the source alphabet S = {a,b,c,d}, with 
probabilities of occurrence 

P(a) - 2 P(b) = 2 P(c) = ~ P(d) - 5 
- 17 1 17' 17' - 17 

Consider also the two encoding schemes shown below 

We have 

Scheme I Scheme 2 
a ➔ 11 a ➔ 01010 
b ➔ o b ➔ 00 
C ➔ 100 
d ➔ 1010 

C ➔ 10 
d ➔ 11 

. 2 2 8 5 50 
Average length for scheme 1 ~,z • - + 1 • - + 3. - + 4. - = 

17 17 17 17 17 
and 

2 2 8 
Average length for scheme 2 = 5 • - + 2 • - + 2. -

17 17 17 

5 
+ 2·- = 

17 

40 

17 
Thus, encoding scheme 2 has a smaller average codeword length. In this 
sense, it is more efficient than scheme 1. □ 
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Example 2.1.2 · Toble 2.1.1 (see next page) shows the letters of the al­
phabet and the space character, along with approximate probabilities of 
occurrence in the English language, based on statistical data. The last 
three columns of the table show three different encoding schemes. 

The first scheme is a simple fixed length code, using the first 27 bi­
nary numbers. In this case, the codewords all have length 5, which is 
the minimum possible codeword length for a fixed length code (since 
24 < 27 < 25). Thus, the average codeword length of this scheme is 5. 

The second scheme uses a comma code, discussed in Section 1.4. We 
have not written out all of the codewords, since their lengths become 
rather large. (The last two codewords have length 26.) Calculation gives 
an average codeword length of approximately 7.0607 for this scheme. 
Hence, the fixed length code is more efficient. 

The third scheme is the Huffman encoding scheme. As we will see, 
Huffman encoding produces the most efficient scheme, in the sense of 
having the smallest average codeword length, among all instantaneous 
codes. In this case, a computation shows that the average codeword length 
is approximately 4.1195, a savings of approximately 18% over the fixed 
length code. 

It is worth noting that the comma code is less efficient than the fixed 
length code because the probabilities of occurrence are all fairly close to 
each other. Had the probability of occurrence of the space character, for 
instance, been much larger compared to the other probabilities, then the 
comma code would have been more efficient than the fixed length code 
(but not the Huffman code). □ 

Exercises 

1. Lets= {a1b1c1d 1e} and P(a)= ½, P(b)~. ½, P(c)= /0 , P(d)= 1
1
0 , P(e)= 

½- Which scheme is more efficient 

(a) a ➔ 0, b ➔ J 0, c ➔ 110, d ➔ 1110, e ➔ 11110, or 

(b) a ➔ 000, b ➔ 001, c ➔ 010, d ➔ 011, e ➔ 100? 

2. Let S = {a1b 1c1d1e1f} and P(a) = 0.2, P(b) = 0.2, P(c) = 0.3, P(d) = 0.1, 
P(e) = 0.1, P(f) = 0.1. Which scheme is more efficient 
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TABLE 2.1.1 

Symbol Probability Block Code Comma code Huffman code 

(Space) 0.1859 00000 0 111 
E 0.1031 00001 10 010 
T 0.0796 00010 110 ,1101 
A 0.0642 00011 1110 1011 
0 0.0632 00100 11110 1001 
I 0.0575 00101 111110 0111 
N 0.0574 00110 0110 
s 0.0514 00111 0011 
R 0.0484 01000 0010 
H 0.0467 01001 0001 
L 0.0321 01010 10101 
D 0.0317 01011 10100 
u 0.0228 01100 00001 
C 0.0218 01101 00000 
F 0.0208 01110 110011 
M 0.0198 01111 110010 
w 0.0175 10000 110001 
y 0.0164 10001 100011 
p 0.0152 10010 100010 
G 0.0152 10011 100001 
B 0.0127 10100 100000 
V 0.0083 10101 1100000 
K 0.0049 10110 11000011 
X 0.0013 10111 1100001011 
Q 0.0008 11000 1100001010 
J 0.0008 11001 111- · · 10 1100001001 
z 0.0005 11010 111 · · · 11 1100001000 

(a) a ➔ 0, .b ➔ 10, c ➔ ll0, d ➔ lllO, e ➔ llll0, f ➔ lllll0, or 

(b) a ➔ 000, b ➔ 001, c ➔ 010, d ➔ 011, e ➔ 100, f ➔ 101? 
. 

3. Assuming a source with a uniform probability distribution, what is the 
average codeword length of a comma code with ten codewords? 

4. Assuming a source with a uniform probability distribution, what is the 
average codeword length of a comma code with n codewords? 

5. How do we minimize the average codeword length of an encoding 
scheme for a source with a uniform probability distribution? 
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2.2 Huffman Encoding 

In 1952, D. A. Huffman published a method for constructing highly ef­
ficient instantaneous encoding schemes. This method is now known as 
Huffman encoding. Before giving an example of Huffman encoding, let us 
state the reason why this type of encoding is so important. (A proof will 
be given in the next section.) 

Theorem 2.2.1 Let S = (S, P) be an information source. Then all 
Huffman encoding schemes for S are instantaneous. Furthermore, Huff­
man encoding schemes have the smallest average codeword length among 
all instantaneous encoding schemes for S. □ 

The minimum average codeword length, taken over all uniquely deci­
pherable r-ary encoding schemes for Swill be denoted by MinAveCode­
Lenr( S). According to Theorem 1.4.3, this is the same as the minimum, 
taken over all instantaneous encoding schemes. We also denote the av­
erage codeword length of any r-ary Huffman encoding scheme for S 
by AveCodeLenHuffr(S). Then Theorem 2.2.1 can be summarized by 
writing 

AveCodeLenHuffr( S) = MinAveCodeLenr( S) 

Now let us give an example of Huffman encoding. Although r-ary Huff­
man encoding schemes can be constructed for all r :::: 2, we will restrict 
attention to binary Huffman codes. (For information on nonbinary Huff­
man encoding, we refer the reader to Coding and Information Theory, by 
this author. See also the exercises for this chapter.) 

Before reading this example, you should familiarize yourself with the 
terminology on binary trees in Section 0.1. 

Example 2.2.1 Consider the source alphabet and probabilities shown 
below. 

Symbol Probability 
a 0.35 
b 0.10 
C 0.19 

d 0.25 

1 0.06 
2 0.05 



58 2. Efficient Encoding ___ _____:_ _ ______:__.:.._ __ ~----------------

The Huffman encoding scheme 1s constructed by constructing a 
complete binary tree as follows. 

Step I Place each symbol inside a node. Then label each node with the 
probability of occurrence of the symbol and arrange the nodes in order 
of increasing probability of occurrence. 

o.o5Q) 0.060 0.10® 0.190 0.350 

Step 2 Connect the two leftmost nodes to a new node, as shown below. 
Label the new node with the sum of the probabilities associated to the 
original nodes. Lower this portion of the figure so that the new node is at 
the top row. 

o.10(B 0.19 0 0.25@ 0.350 

Step 3 Repeat the process of arranging the figure so that the nodes on 
the top level are in increasing order of probabilities, and then connecting 
the two leftmost nodes, until only one node remains on the top row. Here 
are the steps required in this case. 

0.10 ® 0.190 0.25@ 0.350 

. ()_190 0.25@ 
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0.19© 0.25@) 

0.350 

0.25@ 0.350 
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Step 4 Discard all of the probabilities, and label each line segment that 
slants up (from left to right) with a O and each line segment that slants 
down (from left to right) with a 1. This is done in Figure 2.2.2. The result 
is referred to as a Huffman tree. 

To determine the codeword associated to each source symbol, start at 
the root and write down the sequence ofbits encountered en route to the 

FIGURE 2.2.1 
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FIGURE 2.2.2 

source symbol. In this case, the Huffman encoding is 

Source Symbol Code 
a 11 
b 010 
C 00 
d 10 
1 0111 
2 0110 

We will leave it as an exercise to verify that this is an instantaneous 
code, whose average codeword length is 2.32. 

Notice that a binary fixed length code would require codewords of 
length at least 3 to encode 6 source symbols (22 < 6 .:s 23). Hence, the 
average codeword length of a fixed length code is 3, and the Huffman 
code reduces the average codeword length by 22.7%. □ 

We should remark that the Huffman encoding scheme need not be unique 
for a given source S. This is due to the ambiguity that occurs when two 
nodes in the top row have the same probability. Nevertheless, all Huffman 
encoding schemes for S have the same average codeword length which, 
according to Theorem 2.2.1, is the smallest among all instantaneous 
encoding schemes for S. 
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Exercises 

In Exercises 1-6, find a Huffman encoding of the given probabil­
ity distribution, using the source symbols A, B, C, ... (in this order). 
Determine the savings over the most efficient :qxed length code. 

1. P = {0.1, 0.2, 0.4, 0.2, 0.1} 

2. P = {0.25, 0.25, 0.25, 0.24, 0.01} 

3. P = {0.l,0.2,0.4,0.1,0.l,O.l} 

4. P = {0.05, 0.1, 0.55, 0.05, 0.1, 0.1, 0.05} 

5. P = {0.1, ... ,0.1} 

6. P = {0.9, 0.09, 0.009, 0.0009, 0.0001} 

7. Write a computer program to implement Huffman encoding. 

8. State a condition in terms of the sizes of the probabilities that 
guarantee uniqueness (up to switching Os and ls) in Huffman 
encoding. 

9. Determine a}l source probability distributions {p1 ,P2, p31 p4} that have 
{00, 01, 10, 11} as Huffman codewords. Hint: think about the Huffman 
tree. 

10. Let (C, f) be a binary Huffman encoding and suppose that the code­
word ci has length .e.i for i = 1, ... , k. Prove that equality holds in 
Kraft's inequality, that is, 

1 I: ze, = i 

Hint: Show that there does not exist an instantaneous code D whose 
codeword lengths mi satisfy mi < .e.i for all i and m1 < .e.1 for some j. 
How does this cause a problem if the Kraft sum is strictly less than 1? 

11. (Huffman codes of radix >2.) When the radix is greater than 2, 
Huffman encoding proceeds .in a manner entirely analogous to the 
case r = 2, with one exception. In each step, we want to group those 
r nodes on the top level with smallest probabilities together into a 
single node, which is labeled with the sum of these r probabilities. 
However, at the penultimate step, we want exactly r nodes, before 
combining them into the root node. Thus, the first step may require 
that we combine fewer than r nodes. Determine the correct number 
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of nodes to combine into a single node on the first step, so that we 
may combine r nodes into one on each of the subsequent steps and 
have exactly r nodes at the penultimate step. How many reduction 
steps are necessary to complete the Huffman tree? 

12. Let (C,f) be a binary Huffman encoding. Let L = max{lt}. Show that 
C must contain two codewords c and d of maximum length L with the 
property that they differ only in their last positions. 

13. Let (C,f) be a binary Huffman encoding for the uniform probabil­
ity distribution P = {lln, ... , lln}, and suppose that the codeword 
lengths of C are f.i. 

(a) Show that (C,f) has minimum total codeword length T = L .ei 
among all instantaneous encodings for P. 

(b) Show that C contains two codewords c and d of maximum 
codeword length and that c and d differ only in their last positions. 

(c) Show that f.i = Lor f.i = L - 1 for all i. 

(d) Let n = a2k, where 1 < a :S 2. Let u be the number of codewords 
oflength L - 1 and let v be the number of codewords oflength L. 

Determine u, v, and Lin terms of a and k. 

(e) Find MinAveCodeLen2(~ 1 ••• , ~)-

14. Given n source symbols and thinking in terms of using frequencies in 
place of probabilities (which does not affect the results of the Huffman 
algorithm), what are the minimum possible frequencies (frequencies 
must be positive integers) to produce a Huffman code with the largest 
possible maximum codeword length? What is this largest length? 

2.3 The Proof that Huffman Encoding Is 
the Most Efficient 

We are now ready to prove the following theorem, first stated in the 

previous section. 

Theorem 2.3.1 Let S be an information source. Then all Huffman encod­
ing schemes for Sare instantaneous. Furthermore, Huffman encoding schemes 
have the smallest average codeword length among all instantaneous encoding 
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schemes for S. In symbols, 

AveCodeLenHuffr( S) = MinAveCodeLenr( S) □ 

Proof Again, we restrict our attention to binary (r = 2) codes. The 
fact that Huffman coding schemes are instantaneous can be seen most 
easily by considering the Huffman tree. If one codeword was the prefix 
of another, then it would be possible to get to the second codeword by 
traveling from the root to the first codeword, and then continuing down 
the tree from there. But codewords come only at the end nodes (the 
leaves) of the tree, and so this is not possible. Hence, Huffman encoding 
schemes have the prefix property, and so they are instantaneous. 

Now we must show that Huffman encoding schemes have the smallest 
average codeword length among all instantaneous encoding schemes. Let 
(H,f) be a binary Huffman encoding scheme for S, and let (C, g) be any 
other instantaneous binary encoding scheme. Let us denote the average 
codeword lengths of these schemes by AveLen(H,f) and AveLen(C,g). 
Thus, we want to prove that 

AveLen(H,f) :S AveLen(C, g) 

We begin by making several observations. Toble 2.3.1 will set the notation. 

Of course, we may assume by reordering the source symbols if 
necessary that 

Observation 1 We may assume that the codeword lengths for C satisfy 

TABLE 2.3.1 

Source Huffman Huffman Other Other . ' 
Symbol Probability Codeword Length Codeword Length 

S1 PI h1 f, 1 C1 m1 

S2 P2 h2 £2 Cz m2 

S3 p3 h3 £3 C3 m3 

Sq Pq hq fq Cq mq 
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For if not, then we may interchange two codewords and produce an en­
coding scheme with smaller average codeword length, which can be used 
in place of (C, g). 

We may also assume that the last two codewords Cq- l and cq of C are of 
equallength, that is, mq-1 = mq I and differ only in their last bits. For if not, 
we may again replace (C, g) by an encoding scheme with smaller average 
codeword length. To see this, suppose that mq-I < mq, and consider 
the codeword c~, obtained by removing the last bit from Cq. Since C is 
instantaneous, c~ is not a codeword in Candis too long to be a prefix of a 
codeword in C. Hence, we may replace cq by the shorter word c~, which 
will reduce the average codeword length. 

Observation 2 During the initial step of Huffman1s algorithm, the rel­
ative order in which we place source symbols with the same probability 
of occurrence has no effect on the average codeword length of the encod­
ing scheme, for it amounts to nothing more than a relabeling of source 
symbols with the same probability of occurrence. Hence, we may arrange 
it so that the source symbols Sq and sq-I occupy the first two positions on 
the left (in that order). 

It is also clear that, since sq and sq-I are siblings in the Huffman tree, 
the codewords Cq and Cq-l have the same length and, in fact, differ only 
in their last bits. Hence J!,q = J!,q-l • (See the previous exercise set.) 

With these observations in mind, a proof can be constructed using 
induction on the number q of source symbols. If q = 2, then the Huffman 
encoding scheme has average codeword length 1, and so 

AveLen(H,f) :S AveLen(C,g) 

Let us assume that the result is true for all source alphabets of size q - 1, 
and then prove that it is also true for source alphabets of size q. 

Consider the Huffman scheme (H, f) for the source S. For purposes of 
induction, we form a new source S' by replacing Sq and Sq-1 with a single 
source symbols, with probability of occurrence pq + Pq-I · This gives us 
a source alphabet S' = {s11 s2 , ... , Sq-2, s} of size q - 1. To determine the 
average codeword length for a Huffman encoding (H',f') of this source, 
observe that, at the second step in the encoding of the original source S, 
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we connect the two leftmost nodes, to get 

From this point on, we will get the same tree by replacing this "mini­
tree" with a single node labeled s, with probability pq + Pq-l and then 
putting the minitree back at the end. Hence, we can encode the new 
source S' by encoding the original source and then replacing the mini tree 
above by the single node s. 

Removing this minitree causes the removal of the two nodes for sq 

and Sq- I, and subtracts 

f.q-lPq-l + f.qpq 

from the average codeword length. But the inclusion of the node for s 
adds 

(f.q-1 - 1 )(pq-l + Pq) 

to the average codeword length. Hence, there is a net change of (since 
f.q = f.q-1) 

(f.q-1 - 1 )(pq-1 + Pq) - (f.q-lPq-1 + f.qpq) = -(pq-l + Pq) 

Thus 

AveLen(H',f') = AveLen(H,f) - (pq-1 + Pq) (2.3.1) 

Now consider the encoding scheme (C, g). The last two codewords of 
C have the form 

and 

Cq-1 = X1X2 · ··Xul 

Since C is instantaneous, the string c = x1x2 • • • Xu is not a codeword 
in C and so we may encode the new source S' using c as the codeword 
for the source symbol s. This results in a net change in average codeword 
length of (because mq-I = mq) 

(mq-1 - 1 )(pq-1 + Pq) - (mq-1Pq-1 + mqpq) = -(pq-1 + Pq) 
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which is the sarrie as in the Huffman case. Hence, 

AveLen(C', g') = AveLen(C, g) - (pq-l + pq) 

But, the induction hypothesis implies that 

AveLen( H' ,f') ~ Ave Len( C', g') 

and this, together with (2.3.1) and (2.3.2), shows that 

AveLen(H, f) ~ AveLen(C, g) 

as desired. 

(2.3.2) 

■ 

We should conclude by making a few remarks on how Huffman en­
coding is implemented. Given a message to encode, one does not usually 
know ahead of time the proper probabilities of occurrence. Using Toble 
2.1.1 on the relative frequencies ofletters in the English language (com­
piled statistically) may be far from ideal for a given message, and can 
even lead to a lengthening of some messages. 

Accordingly, a static approach is to first scan the message and compile 
a table of frequencies for each source symbol. Since the Huffman algo­
rithm is not affected by a proportional scaling of the probabilities, these 
frequences can be used in place of probabilities. (Scaling the frequencies 
by dividing by their sum would, of course, yield a probability distribu­
tion but, in practice, these numbers must be stored in a computer and 
roundoff errors may actually change the shape of the tree.) 

The static approach provides a probability distribution (or set of 
frequencies) that statistically models the given message, but has the dis­
advantage that the table of frequencies (or the code itself) must also be 
transmitted along with the message, for decoding purposes. 

A more efficient approach is to use dynamic (also called adaptive) 
Huffman encoding, which involves scanning the message only once 
and constantly updating the frequency information after each symbol 
is encoded. Thus, the probability model (via frequencies) is constantly 
changing. It is important to emphasize that this approach is entirely 
outside the theoretical scope of our discussion (both previous and 
forthcoming), where we assume that a fixed probability distribution is 

given. 
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Exercises 

1. A complete binary tree is said to be weighted if a) each node has a 
number associated with it, called a weight, and b) the weight of a node 
that is not a leaf is the sum of the weights of its two children. If we 
divide each weight in a weighted binary tree by the sum of all of the 
weights, the result is a weighted binary tree the sum of whose weights 
is 1. Let us refer to such a binary tree as a normalized weighted 
complete binary tree. Prove that a graph G is a Huffman tree (that 
is, comes from an application of the Huffman algorithm applied to 
some source) if and only if 

(a) G is a normalized weighted complete binary tree, and 

(b) as we scan the weights of the nodes, going from left to right and 
starting on the bottom level and proceeding upward through the 
levels, the weights fall in increasing order by size. 



Noiseless Coding 
CHAP.TER 

3.1 Entropy 

The results of the previous chapter show that Huffman encoding schemes 
are the most efficient, in the sense of having the smallest average code­
word length, among all instantaneous encoding schemes. Our goal in this 
chapter is to determine just how efficient such an encoding scheme can 
be. We will see that, to every source S, there is a number, called the en­
tropy of S, that has the property that the average codeword length of any 
instantaneous encoding schen:ie for S must be greater than or equal to 
the entropy of S. In other words, the entropy provides a lower bound on 
the average codeword length of any instantaneous encoding scheme. 

The entropy of a source is intended to measure in a precise way the 
amount of"information" in the source. In order to motivate the concept of 
the amount of information obtained from a source symbol, let us imagine 
that a contest is taking place. Each of two contestants has a "black box" that 
emits source symbols from a source S with source alphabet S = {s1 , s2}, 

and probabilities P1 = 1
9; 0 , pz = 1~0 • The winner of the contest is the first 

one to name both source symbols, that is, the first one to have complete 
information about the set S. (:Ne assume that neither contestant has seen 
the source symbols beforehand.) 

69 
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Now, suppose that on the first round, the first contestant gets source 
symbol s1, while the second contestant gets s2 . At this point, which 
contestant is more likely to win the contest? 

Since the first contestant still needs to receive source symbol s2 , whose 
probability of occurrence is 1~0 , whereas the seco.nd contestant needs 
to receive s1 , whose probability of occurrence is 1

9
0
9
0 , it is clear that the 

second contestant is more likely to win than the first. In some sense 
then, ·the second contestant has received more information about S from 
the source symbol s2 , with the smaller probability of occurrence, than 
did the first contestant. This motivates the statement that, however we 
decide to define the information obtained from a source symbol, it should 
have the property that the less likely a source symbol is to occur, the more 
information we obtain from an occurrence of that symbol, and conversely. 

Because the information obtained from a source symbol is not a 
function of the symbol itself, but rather of the symbol's probability of oc­
currence p, we use the notation I(p) to denote the information obtained 
from a source symbol with probability of occurrence p. We will make the 
following reasonable assumptions about the function I(p), defined for all 
O<p:Sl. 

Assumption 1 I(p) ~ 0 

Assumption 2 The function I(p) is continuous in p. 
Since we assume that the events of Si and Sj occurring (on differ­

ent transmissions) are independent, the information obtained from the 
knowledge that both Si and Sj have occurred should be the sum of I(pi) 
and I(pj)- Since the probability of both events occurring is the product 
PiPj, we get 

Assumption 3 I(pip1-) = I(pt) + I(pj) 
The remarkable fact about these three assumptions is that there is 

essentially only one function that satisfies them. 

Theorem 3.1.1 A function I(p), defined for all 0< p < l, satisfies the 
previous three assumptions if and only if it has the form 

1 
I(p) = Clg -

p 

where C is a positive constant and lg is the logarithm base 2. □ 
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Proof We leave it as an exercise to show that any function of this form 
satisfies all three assumptions. For the converse, observe first that, by 
assumption 31 

I(p 2) = I(p · p) = I(p) + I(p) = 2I(p) 

and similarly, 

In general, for any positive integer n, 

(3.1.1) 

a statement that can be proved formally by induction. Replacing p by p 11n 

gives 

1 
I(p11n) = -I(p) 

n 
Since (3.1.1) and (3.1.2) hold for all positive integers n, we have 

l n 
I(pnlm) = -J(pn) = -I(p) 

m m 
that is, 

for all positive rational numbers q. 

(3.1.2) 

Since, for any positive real number r, there is a sequence of positive 
rational numbers qn for which limn➔oo qn = r, and thus limn➔ooPqn = pr, 
the continuity of I(p) implies that 

I(pr) = I( lim pqn) = lim I(pqn) = I(p) lim qn = rI(p) 
n➔ oo n➔ oo n➔ oo 

Now let us fix a value of p for which 0 < p < l. Since any q satisfying 
0 < q < l can be written in the form q = p 10gPq, we have 

1 
I(q) = I(p10gPq) = I(p) log q = Clg -

p q 

for some constant C > 0. Finally, the continuity of the information 
function gives I(l) = 0. ■ 

Since the arbitrary multiplicative constant can be absorbed in the 
units of measurement of information, the previous theorem justifies the 
following definition. 
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Definition The informationJ(p) obtained from a source symbols with 
probability of occurrence p > 0, is given by 

1 
I(p) = lg -

p 

where lg is the base 2 logarithm. □ 

When it is convenient, we will also use the notation I(s) for the infor­
mation obtained from the source symbol s. However, it is important to 
keep in mind that the information I(s) depends only on the probability 
of occurrence of s. 

The unit of measurement of information is the bit, which is a con­
traction of binary unit. The connection between the binary unit and the 
binary digit (also abbreviated bit) comes from the following observation. 
If the source is S = {O, l}, P = {½, ½L then the information given by 
either source symbol is IC½) = lg 2 = 1. In other words, if the source 
randomly emits 1 binary digit (bit), then the information obtained by a 
single emission is 1 binary unit (bit). 

Example 3.1.1 A personal computer monitor is capable of displaying 
pictures made up of pixels at a resolution of 1024 columns by 768 rows 
(and higher). Hence, if each pixel can be in any one of 256 = 28 colors, 
there are a total of 2Bxloz4x75s = 26291456 different pictures. If each of 
these pictures is considered to be equally likely, the probability of a given 
picture occurring is 2-5291455 , and so the information obtained from a 
single picture is 

I = lg 26291456 = 6 291 456 bits I I 

On the other hand, let us estimate the information obtained from a ran­
dom speech of 1000 words. (While it is true that most people do not speak 
in random sequences of words, politicians often do, for example.) A 10,000 
word vocabulary would be considered quite excellent (in fact, quite amaz­
ing), and the probability of speaking a given sequence of 1000 words 
from such a vocabulary is 10000-1000 . Hence, the amount of information 
obtained by such a speech is 

I = lg 100001000 = 1000 lg 10000 < 14,000 bits 

This proves that a picture is worth more than a thousand words! □ 

We can now define the concept of entropy. 
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Definition Let S = (S, P) be a source, with probability distribution 
P = lP1, ... , pq}. The average information obtained from a single sample 
from Sis 

The quantity H( S) is called the entropy of the source. (When Pi = 0, 
we set Pi lg} = 0.) Since this quantity depends only on the probability 
distributionP (and not on the source alphabet S), we also use the notations 
H(P) and H(p1, ... ,Pn) for the entropy. □ 

Example 3.1.2 Consider a source S 1 = (S1 , P 1) for which each source 
symbol is equally likely to occur, that is, for which P1(si) = Pi = liq, for 
all i = 1, 2, ... ,q. Then 

1 1 q l q l 
H( S1) = H( - , ... , -) = LPi lg~ = L -lg q = lg q 

q q i = 1 Pi i = 1 q 

On the other hand, for a source S2 = (S2, P 2), wherep1 = 1 and pi = 0 
for all i = 2, 3, ... , q, we have 

1 
H(S2) = H(l, 0, ... I 0) = Pl lg- = 0 

Pl 
□ 

The previous example illustrates why the entropy of a source is often 
thought of as a measure of the amount of uncertainty in the source. The 
source S 1 , which emits all symbols with equal probability, is in a much 
greater state of uncertainty than the source S2, which always emits the 
same symbol. Thus, the greater the entropy, the greater the uncertainty 
in each sample and the more information is obtained from the sample. 
(The term disorder is also used in this context.) 

Example 3.1.3 If S = (S, P), where S = {s1, s2, s3 } and 

1 1 1 
P(s1) = 4, P(s2) = 4, P(s3) = 2 

then the entropy is 

1 1 1 1 1 1 
H ( S) = H ( 4 I 4 I 2) = 4 lg 4 + 4 lg 4 + 2 lg 2 = 1. 5 

This is compared to an entropy oflg 3 = 1.585 for a source of size 3 where 
each source symbol is equally likely. □ 
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Example 3.1.4 The entropy of the source S = (S, P) where S = 
{s1, s2, S3} and 

1 1 
P(s1) = -, P(s2) = -, P(s3) = O 

2 2 
' 

1 1 1 1 
H(S) = H(-2, 2,0) = 2lg2 + 2lg2 + 0 = lg2 = 1 

This is the same as the entropy of a two-symbol source, each of whose 
symbols is equally likely. This example illustrates the fact that the addi­
tion of a source symbol (or symbols) that cannot occur does not effect 
the amount of information obtained from a sampling of the source. D 

Example 3.1.5 The first two columns ofToble 2.1.1 show the informa­
tion source associated with the letters of the alphabet used in the English 
language. A computation shows that the entropy for this source is approx­
imately 4.07991. Thus, one gets an average of 4.07991 bits of information 
by sampling a single letter from English text. 

Note that the average codeword length for the Huffman encoding 
scheme in Toble 2.1.1 is approximately 4.1195 bits and so there is a small 
amount of additional information in the Huffman code beyond what is 
contained in the source itself. Recall also that no other instantaneous 
binary code can do better in terms of average codeword length. D 

Exercises 

1. Compute the entropy of the probability distribution { ½, ! } . 
2. Compute the entropy of the probability distribution{½,½, ¾l-
3. Compute the entropy of the probability distribution { l, .!., ... , ~ ~} 

a a a' a 
where a > 5 is an integer. -. ' 

4. Show that any function of the form I(p) = C lg .!. satisfies all three 
assumptions for the entropy function. P 

5. When is the entropy H( S) of a source equal to 0? 

6. Suppose a fair coin is tossed and if the outcome is a heads, we toss 
it again. How much information do we get if the final outcome is a 
heads? A tails? How much uncertainty is there in the final outcome? 
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7. Suppose we 'toss a fair coin and roll a fair die. Do we get more infor­
mation ( on the average) from this experiment or from the experiment 
of tossing three fair coins? Four fair coins? 

8. How much information do we get (on the average) by sampling from 
a deck of cards if 

(a) each card is equally likely to be drawn? 

(b) the black cards are twice as likely to be drawn as the red cards? 

9. Suppose that we roll a fair die that has two faces numbered 1, two faces 
numbered 2, and two faces numbered 3. Then we toss a fair coin the 
number of times indicated by the number on the die and count the 
number of heads. How much information is obtained (on the average) 
by this procedure? 

3.2 Properties of Entropy 

In Example 3.1.2, we saw that the entropy of a source S1 of size q with 
uniform probability distribution is equal to lg q, and that the entropy of 
a source S2 where one symbol has probability of occurrence 1 is equal 
to 0. These are the two "extreme" cases for the value of the entropy of 
any source. In other words, the entropy satisfies 0 < H( S) < lg q for all 
sources of size q. 

In order to prove this fact, we must first establish some preliminary 
results concerning logarithms, whose proofs are left as exercises. 

Lemma 3.2.1 

1. Jfln denotes the natural logarithm then, for all x > 0, 

lnx < x- l 

2. Iflg denotes the logarithm base 2 then, for all x > 0, 

x-l 
lgx < --

- ln2 

In both cases, equality holds if and only if x = l. □ 



76 ____ ~3~-~N~o~i=se~l=es=s~C=o=d=in~g~--------------------

Lemma 3.2.2 Let P = {p1,p2 , ... ,pq} be a probability distribution. Let 
R = {r1 , r2 , ... , rq} have the property that O < ri < 1 for all i, and 

q 

I: ri :s 1 
i = 1 

(Note the inequality here.) Then 

q 1 q 1 
L Pi lg ~ :::: L Pi lg ~ 
i = I Pi i = I r1 

with equality holding if and only if pi = ri for all i. 

Proof According to Lemma 3.2.1, 

q r 1 q ( r· ) 
LPtlg_:_ < -I:Pi _:_ -1 
i=l Pi ln 2 i=l Pt 

1 q 

= -L(ri-pi) 
ln 2 i = 1 

= - 1 (t ri - tPi) 
ln 2 i=l i=l 

= - 1 (t ri - 1) :::: 0 
ln 2 i= 1 

Thus 

Writing lg(r/pi) = lg(l/pi) - lg(l/ri) and rearranging gives 

q 1 q 1 
LPi lg-:::: LPdg-
i = 1 Pi i = 1 ri 

□ 

Finally, equality holds here if arid only if it holds in Lemma 3.2.1, which 
happens if and only if r/pi = 1 for all i. ■ 

With these lemmas at our disposal, we can prove the main result of 
this section. 

Theorem3.2.3 ForasourceS = (S, P)ofsizeq, theentropyH(S)satisfies 

0 < H(S) < lgq 



___________________ 3_.2~--P~ro::..:.Ep~e~rt~ie=s~o=f~E=n=tro=-=.!p~y ____ 77 

Furthermore, H(S) = lg q if and only if all of the source symbols are equally 
likely to occur, and H( S) = 0 if and only if one of the source symbols has 
probability 1 of occurring. □ 

Proof Let P = lP1, ... ,Pq} be the probability distribution of Sand let 
R = {1/ q, 1/ q, ... , ll q} be the uniform distribution. Applying Lemma 
3.2.2 to P and R gives 

q l q l 
H(S) = LPilg- < LPilg-

i = 1 Pi i = 1 l / q 
q q 

= LPi lgq = (lgq) LPi = lgq 
i = 1 i= 1 

Thus, H(S) ~ lgq. As for equality, this happens precisely when equal­
ity holds in Lemma 3.2.2, that is, when pi = 1/ q for all i. Proof of the final 
statement is left as an exercise. ■ 

Theorem 3.2.3 confirms the fact that, on the average, the most infor­
mation is obtained from sources for which each source symbol is equally 
likely to occur. 

Let us examine a bit more closely the entropy of the special binary 
source S = {O, l}, with probability distribution of the form P = {p, 1 - p}. 
Thus, the entropy of a binary source is 

1 1 
H ( S) = p lg - + (1 - p) lg --

p l-p 

The function on the right is often denoted by H(p) 

1 1 
H(p) = plg- + (1 - p)lg--

p l-p 
(3.2.1) 

and called the entropy function. Its graph is shown in Figure 3.2.1. (Note 
that p lg(.!.) is defined to be O when p = 0.) As expected, the entropy 

p 
function reaches its maximum value when p = l - p = l/2. 

A final note. The definition of entropy involves base 2 logarithms, but 
it is sometimes convenient to use logarithms to other bases. Accordingly, 
for any positive integer r, we define the r-ary entropy of a source Sby 

q l 
Hr(S) = LPi logr ~ 

i= i Pi 

Thus, the entropy H( S) = H 2 ( S) is the binary entropy. 
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p 
1/2 FIGURE 3.2.1 The entropy function H(p) 

Exercises 

1. Prove Lemma 3.2.1. 

2. Compute the derivative of the entropy function H(p) given in (3.2.1). 

3. Prove that the entropy function H(p) in (3.2.1) is symmetric about the 
1, 1 me x = 2. 

4. Show that 

Hr(S) = H(S) 
lg r 

5. Find a relationship between Hr( S) and Hs( S). 

6. Let P = {v1, ... ,Pnl be a probability distribution. Suppose that Eis a 
positive real number and that p 1 - E > P2 + E::: 0. Thus, {v1 - E,P2 + 
E, ... ,Pnl is also a probability distribution. Interpret the inequality 

in words. Verify this inequality. 

7. Use Lemma 3.2.2 to prove that, if {p1 , ... ,Pnl is a probability 
distribution, then 

where x1 , ... , Xn are positive real numbers. This says that the geomet­
ric mean of the Xi is less than or equal to the arithmetic mean. Prove 
that equality holds if and only if the Xi are all equal. Hint: consider 
the expressions ri = PiX/ '5..:,1 PJXJ, 
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3.3 Extensions of an Information Source 

Consider the binary source S = {s1 , s2 }, with probabilities 

P(s1) = P1 = 0.25, P(s2) = P2 = 0.75 

A Huffman encoding for this source is 

S1 ➔ 0 

S2 ➔ 1 

with average codeword length 1. 
Rather than encoding each symbol from S, suppose we encode all 

strings of length two over S. In other words, consider the source with 
alphabet 

where the probabilities of occurrence are determined by multiplication, 

P(s1s1) = P1P1 = (0.25)(0.25) = 0.0625 

P(s1s2) = P1P2 = (0.25)(0.75) = 0.1875 

P(s2s1) = P2P1 = (0.75)(0.25) = 0.1875 

P(s2s2) = PzP2 = (0.75)(0.75) = 0.5625 

The Huffman algorithm gives the encoding 

S1S1 ➔ 010 

S1S2 ➔ 011 

S2S1 ➔ 00 

S2S2 ➔ 1 

This scheme has average codeword length 

(0.0625) · 3 + (0.1875) · 3 + (0.1875) · 2 + (0.5625) · 1 = 1.6875 

But since each codeword represents two source symbols, the average 
codeword length per original source symbol is 1.6875/2 = 0.84375, which 
is an improvement over encoding the original source. Continuing this 
theme, let S3 be the source alphabet consisting of strings of length 3 
over S. Each source symbol in S3 is assigned a probability as before. For 
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instance, 

P(s1s2s1) = P1P2P1 = (0.25)(0.75)(0.25) = 0.046875 

A Huffman encoding of this source is 

S1S1S1 ➔ 11100 

S1 S1 Sz ➔ 11101 

S1S2S1 ➔ 11110 

S1S2S2 ➔ 100 

SzS1 S1 ➔ 11111 

SzS1S2 ➔ 101 

SzS2S1 ➔ 110 

SzSzSz ➔ 0 

which has an average codeword length of 2.46875, or an average codeword 
length per original source symbol of 2.46875/3 = 0.82292, which is an 
additional improvement over the original encoding. 

From these examples, we see that it may be possible to improve the 
average codeword length per original source symbol by grouping source 
symbols to form a new source. While it is true that, in some cases, this 
method does not result in improvements, the method is important, and 
does lead, as we shall see, to significant theoretical results. This leads us 
to make the following definition. 

Definition Let S = ( S, P) be an information source. The nth exten­
sion of sis the source sn = csn I pn), where sn is the set of all words of 
length n over S, and pn is the probability distribution defined as follows. 
If S = Si1 Si2 " " • Sin is a word in sn I then 

Pn(s) = P(s· s· • · · s·) = p· p· · · ·p· 11 12 1,, 11 lz In □ 
The entropy of an extension sn is related to the entropy of Sin a very 

simple way. In fact, when we think of entropy as the average amount 
of information obtained per symbol, it seems intuitively clear that, since 
we get n times as much information from a word of length n as from a 
single character, the entropy of sn should be n times the entropy of S. 
The following theorem confirms this. 

Theorem 3.3.1 Let S be an information source, and let sn be its nth 
extension. Then H( Sn) = nH( S). □ 
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Proof The entropy of the nth extension is 

The properties of logarithms give 

H(Sn) = L Pi1Pi2 ···Pin lg~ 
i1 ,iz, ... ,in Pi1 

(3.3.1) 

+ I: 
i1 ,iz, ... ,in 

1 
P·p· ···p·lg-11 12 1,, 

Pin 

Now, let us look at the first of these summations 

l q l q q 

. ~. Pi1Pi2 •••Pin lg Pii = ~Pi1 lg Pi X ~Pi2 X • • • X ~Pin 
11,12,,.,,1n 11-l 1 12-l 1n=l 

Since the sum of the probabilities Pi equals 1, this equals 

q l 
LPi1 lg-_ = H(S) 
i1 =1 P11 

Since each of the other sums in the expression (3.3.4) for H(Sn) is also 
equal to H(S), and since there are n such sums, we get 

H(Sn) = H(S) + H(S) + · · · + H(S) = nH(S) ■ 

Example 3.3.1 The entropy of the binary source S = {s11 s2 }, p 1 = 0.25, 
p 2 = 0.75, is 

1 1 
H(S) = 0.25lg- + 0.75lg- = 0.81128 

0.25 0.75 

Hence, the entropy of the nth extension sn is 

H( Sn) = nH( S) = 0.81128n 

As we will see in the next section, there is a simple relationship between 
the entropy of a source (or its extensions) and the average codeword 
length of any Huffman encoding of that source (or its extensions.) □ 
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Exercises 

1. Consider the S source with alphabet S = {a, b} and probability distri­
bution P( a) = ¼, P(b) = ¾- Construct a Huffman encoding scheme 
for S, S 2 , and S3 and find the average codeword lengths per source 
symbol. 

2. Repeat the previous exercise with a uniform probability distribution 
on S. 

3.4 The Noiseless Coding Theorem 

When encoding a source S, it certainly seems reasonable that we will 
need at least as many bits of information in the encoding as there is 
in the source. (For efficient encoding, we also want as few extra bits in 
the encoding as possible.) Since the entropy of S measures the amount 
of information in S, it should come as no surprise that the minimum 
average codeword length of any encoding of S should be at least as great 
as the entropy of S. In symbols, 

Hr( S) < MinAveCodeLenr( S) 

This is the content of part of the famous Noiseless Coding Theorem, first 
proved by Claude Shannon in 1948. (Noise refers to the introduction of 
errors in the code.) 

Theorem 3.4.1 (The Noiseless Coding Theorem-Version 1) Let S be 
an information source. Then 

Hr(S) < MinAveCodeLenr(S) 

where MinAveCodeLenr( S) denotes the minimum average codeword length 
among all uniquely decipherable r':qry encoding schemes for S. □ 

Proof Denote the probability distribution of the source S by P = 
lP1,P2, ... ,pq}- Let (C,f) be a uniquely decipherable r-ary encoding 
scheme for S, with codeword lengths f. 1 ,f.2 , .. . /q and consider the 
numbers 

1 



The ri satisfy O <:: ri < l. Furthermore, since C is uniquely decipherable, 
McMillan's Theorem tells us that 

q q l 
Lri=Lrej<l 
i=l i=l 

Thus, Lemma 3.2.2 implies that 

q l q l q 

H(S) = LPilg~ < LPilg~ = LPilgl• 
i = 1 Pi i = 1 1 i = l 

q 

= lg r LPli = (lg r)AveCodeLen(C,f) 
i= 1 

q 

LPlilgr 
i= 1 

Dividingbylgr, and notingthatHr(S) = H(S)llgr, we get 

Hr( S) < AveCodeLen(C,f) 

Since this holds for any uniquely decipherable r-ary encoding scheme for 
S, the result follows. ■ 

Example 3.4.1 Consider the source S = (S, P), where S = {O, 1, ... , 9} 
and P is uniform. The entropy of this source is lg 10. According to the 
Noiseless Coding Theorem, the average codeword length of any uniquely 
decipherable ternary encoding scheme ( alphabet of size 3) must be at least 

H3(S) = Hl(S) = 2.0959 
g3 

(3.4.1) D 

Example 3.4.2 Table 2.1.1 contains an information source correspond­
ing to the letters of the English language. In Example 3.1.5, we noted that 
the entropy of this source is approximately 4.07991, and so the Noiseless 
Coding Theorem tell us that any uniquely decipherable encoding scheme 
must have average codeword length of at least 4.07991. 

Table 2.1.1 also shows a Huffman encoding scheme for this source. In 
Example 2.1.2, we mentioned that the average codeword length of this 
Huffman encoding scheme is approximately 4.1195, which is quite close 
to the minimum possible. □ 

The first version of the Noiseless Coding Theorem says that the en­
tropy Hr( S) provides a lower bound on MinA veCodeLenr( S). Let us now 
turn to the issue of finding an upper bound on MinA veCodeLenr( S). 
For this, we wish to construct an instantaneous encoding of S with 
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small codeword lengths. Recall that if the lengths .e 1 , ... , .eq satisfy Kraft's 
inequality 

q l 
"- :s 1 ~ ye; 
i= 1 

then there is an instantaneous code with these codeword lengths. If P = 
{p1 , ... ,pq} is the probability distribution for S, then Kraft's inequality 
can be written in the form 

Thus, if 

q l q 

Le:< LPi 
i=l r i=l 

1 
-<p· 

D - i y<-, 

for all i, Kraft's inequality will be satisfied. This can be rewritten in the 
form 

1 
log - < .e-r - i 

Pi 

so let us choose .ei to be the smallest integer satisfying this inequality. In 
other words, if the integers .ei are chosen to satisfy 

1 1 
log - < .e · < log - + 1 r - i r 

Pi Pi (3.4.l) 

for all i, then there is an instantaneous encoding with these codeword 
lengths. An encoding scheme whose codeword lengths .ei satisfy (3.4.2) 
is referred to as a Shannon-Fano encoding scheme. Moreover, 

q q ( 1 ) 
AveCodeLenr(S) = LPi.ei < LPi logr ~ + l 

i=l i=l Pi 
q l q 

= L-P.,dogr ~ + LPi = Hr(S) + l 
i=l Pi i=l 

Hence, 

AveCodeLenr(S) < Hr(S) + l 

from which it follows that 

MinAveCodeLenr(S) < Hr(S) + l 
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Combining this upper bound with the first version of the Noiseless 
Coding Theorem gives the second version of this theorem. 

Theorem 3.4.2 (The Noiseless Coding Theorem-Version 2) Let S be 
an information source. Then 

Hr(S) < MinAveCodeLenr(S) < Hr(S) + 1 

where MinApeCodeLenr( S) is the minimum average codeword length among 
all uniquely decipherable r-ary encoding schemes for S. □ 

This theorem tells us that MinAveCodeLenr(S) lies between Hr(S) 
and Hr( S) + l. However, the difference between these bounds is 1 r­
ary unit per source symbol, and this is still quite a lot from a practical 
standpoint. Fortunately, better results can be achieved by considering the 
encoding of extensions of the source S. 

In particular, since the nth extension sn of S is a source in its own 
right, we may apply the Noiseless Coding Theorem to sn, to get 

Hr(Sn) < MinAveCodeLenr(Sn) < Hr(Sn) + l 

But Hr(Sn) = nHr(S), and so 

nHr( S) < MinA veCodeLenr( Sn) < nHr( S) + 1 

Dividing by n gives the final version of the Noiseless Coding Theorem. 

Theorem 3.4.3 (The Noiseless Coding Theorem-Final Version) Let S 
be an information source, and let sn be its nth extension. Then 

MinA veCodeLenr( Sn) S l 
Hr(S) <--------<Hr( ) + -

n n 

where MinAveCodeLenr( Sn) is the minimum average codeword length among 
all uniquely decipherable r-ary encoding schemes for sn. □ 

Since each codeword in the nth extension sn encodes n source 
symbols from S, the number 

MinA veCodeLenr( Sn) 

n 

is the minimum average codeword length per source symbol of S, taken 
over all uniquely decipherable r-ary encodings of sn. Furthermore, since 
1/n tends to Oas ngets large, the upperboundHr(S) + 1/n approaches the 
lower bound Hr(S), and so, according to the Noiseless Coding Theorem, 
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the number MinAveCodeLenr(Sn)ln can be made as close to Hr(Sn) as 
desired by taking n large enough. 

In other words, by encoding extensions of S 1 that is, blocks of source 
symbols rather than individual source symbols, we can reduce the aver­
age codeword length per source symbol to as close to the entropy Hr( S) 
as desired. This is the real essence of the Noiseless Coding Theorem. The 
penalty for doing so is that, since ISnl = qn, the number of codewords re­
quired to encode the nth extension sn grows exceedingly large as n gets 
large. As a result, achieving the desired "closeness11 to the entropy may 
be a practical impossibility. 

Exercises 

1. Consider the source S = (S, P), where S = {a, b, c} and P(a) = 1/21 

P(b) = l/ 41 P(c) = 1/ 4. What is the binary entropy of this source? 
Can we achieve a minimum average codeword length equal to the 
entropy for this source? 

2. Consider the source S = (S1 P), where S = {a, b, c} and P(a) = 2/3 1 

P(b) = l/61 P(c) = 1/6. What is the binary entropy of this source? 
Can we achieve a minimum average codeword length equal to the 
entropy for this source? 

3. Let S be a binary source (thus S = {01 1 }). In order to guarantee that 
the average codeword length, per source symbol of S, is at most 0.01 
greater than the entropy of S 1 which extension of S should we encode? 
How many codewords would we need? 

4. In this exercise, we construct an entirely different type of encoding 
scheme. Rather than encoding each source symbol with a fixed code­
word (as in Huffman encoding), source symbols are encoded in groups 
in a way that depends on each symbol's relationship to other source 
symbols in the source message. To be specific, let the source alphabet 
be S = {0 1 l} and suppose that P(O) = p and P(l) = 1 - p. To encode 
a string of source symbols, we count the number of Os occurring in 
the string before the appearance of a 1. The two encoding rules are 

(a) if eight Os appear in a row, encode these 01s as a 01 that is, 

00000000 --* 0 
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(b) if fewer than eight Os appear (say k Os) before the next 1, then 
determine the 3-bit binary representation of k ( say e1 e2e3 ) and en­
code the string of k Os followed by the 1 as the codeword 1 e1 e2e3 . 

For instance, the source string 0001 (which is three Os followed by 
a 1) is encoded as 1011 since 011 is the binary representation of the 
number three. 

i. S1?-ow that the resulting code is instantaneous. 

ii. What is the probability that the source will emit k Os followed 
by a 1? (Recall that we assume independence of the source 
emissions.) 

iii. Define an event as the construction of a codeword. Find the 
average codeword length per event. 

iv. Find the average number of source bits per event. 

v. For each event, compute the number of codeword bits needed 
per source bit. Then compute the average of these numbers. 

vi. For p = 0.9, determine the average codeword length per 
source bit for a Huffman encoding of the fourth extension 
5 4 • How does this number compare to the number in part v)? 
What significance does this have for the optimality of Huffman 
encoding? Does this violate the Noiseless Coding Theorem? 

5. Let 5 be a source and let 5 2 be its second extension. Is the second 
extension of 5 2 equal to the fourth extension of 5? In symbols, is 
(52)2 = 547 



-... 



Coding Theory 
PART 





CHAP.TER 

The Main Coding 
Theory Problem 

4.1 Communications Channels 

Up to now, we have been concerned with how to encode an information 
source in the most efficient way, in order to keep the average codeword 
length as small as possible. The Noiseless Coding Theorem tells us that, 
at least theoretically, we can achieve a level of efficiency as close to the 
value of the entropy as desired. Let us now turn to the question of how 
to encode source data in order to detect and perhaps correct errors in 
transmission or storage. Let us begin by setting the stage and defining 
the terms for our discussion. 

Definition Let A = {a1 , ••• , ar} be a set of size r, which we refer 
to as a code alphabet and whose elements are called code symbols. 
An r-ary block code C over A is a nonempty subset of An I the set 
of all strings over A of length n. The elements of c are referred to as 
codewords. 

The number n is the length of the code and the number of code­
words in c is the size of the code. A code of length n and size M is 
called an (n, M)-code. A code over the alphabet Z2 = {O, l} is called a 
binary code. A code over the alphabet Z3 = {O, 1, 2} is called a ternary 
00~- □ 

91 
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As before, boldface letters are used to denote codewords. Since we will 
restrict our attention to block codes from now on, we will simply refer to 
them as codes. 

Our model for communications is that of a communications channel, 
which can be thought of simply as a "black box" that accepts individual 
code symbols as input and produces as output one code symbol per input 
symbol. 

The idea is that we encode the source symbols in our message into 
codewords and then input the resulting sequence of codewords, one code 
symbol at a time, into the channel. Hopefully, the channel will repro­
duce these symbols accurately as output. The problem is that channels 
make mistakes and occassionally alter an input symbol. When the out­
put symbol differs from the corresponding input symbol, a symbol error 
has occurred. If one or more symbol errors result in the alteration of a 
codeword, then a word error has occurred. 

This model of a communications channel as a black box applies not 
only to the transmission of data, such as over telephone lines or through 
space in the form of electromagnetic radiation, but also to the storage of 
data, such as on computer disk, tape, CD ROM, and so on. In this case, 
the input corresponds to the writing of the data and the output to the 
subsequent reading of that data. 

The issue before us is how to design a procedure for determining 
whether word errors have occurred and, if so, how to correct those er­
rors. (There is no way to correct an individual symbol error by itself.) A 
procedure that substitutes a codeword (hopefully the codeword transmit­
ted) for a given received word (when it feels that this is necessary), or 
else simply declares an error, is called a decision rule. 

Note that when a received word is a codeword, it is not possible to tell, 
without some additional information, whether or not a word error has 
occurred (changing one codeword into another). Of course, sometimes 
the context of the received mes~age will reveal that errors have occurred, 
but this type of error detection\s not relevant to our discussion. On the 
other hand, when a received word is not a codeword, then a word error 
has occurred. 

The choice of which decision rule to use depends on the nature of 
the communications channel. To illustrate this, let us consider a simple 
example. Suppose that a certain channel has the property that the prob­
ability of a symbol error is the same for each position in the string being 
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transmitted and 1.s considerably less than ½. If the code is 

C = {00000000, 11111111} 

and the received word is y = 11101111, then the decision rule should 
decide that the codeword sent was 11111111, and not 00000000. Of course, 
this may be wrong in a particular case, but since it is far more likely to 
be 11111111 ~han 00000000, this decision procedure will be right a vast 
majority of the time. 

On the other hand, suppose that the channel has the property that the 
first bit sent is always incorrect. Then if the string 111011111 is received, 
the decision rule should identify the codeword sent as 00000000, and not 
11111111. Thus, the nature of the channel can have a profound effect on 
the choice of decision rule. 

Consider a communications channel that accepts symbols from a code 
alphabet A = {a1 , ... , ar} 1 which we also refer to as the channel alphabet. 
A given input symbol ai produces an output symbol ai. At a different time, 
the same input ai might produce a different output ak. Thus, the key fea­
ture of a communications channel is the set of conditional probabilities 
P(aJ received! ai sent). These probabilities are called the channel prob­
abilities, or transition probabilities. We can now give a formal definition 
of a communications channel. 

Definition A communications channel consists of a finite channel 
alphabet A = {a11 ... , ar} and a set of (forward) channel probabilities, 
or transition probabilities, P(aJ received! ai sent), satisfying 

r 

LP( ai received I ai sent) = 1 
j=l 

for all i. As the notation indicates, we think of P( ai received I ai sent) as the 
probability that the code symbol ai is received, given that ai is sent through 
the channel. Furthermore, as the notation suggests, we assume that this 
probability does not change with time. The equation above simply says 
that, given that ai was sent, some code symbol must be received. □ 

It is important not to confuse the forward channel probability P( ai 

received I ai sent) with the so-called backward channel probability 
P( ai sent I ai received). In the forward probabilities, we assume a certain 
codeword was sent. In the backward probabilities, we assume a certain 
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word is received. The backward channel probabilities will be discussed a 
bit later in this section. 

We will deal only with channels that have no memory, in the following 
sense. 

' Definition A communications channel is said to be memoryless if the 
outcome of any one transmission is independent of the outcome of the 
previous transmission. Put more formally, if c = c1 • · · Cn and x = x1 · · · Xn 

are words of length n over the alphabet A, the probability P(x received 
I c sent) that xis received, given that c is sent (one symbol at a time), is 
just the product 

n 

P(x received I c sent) = TT P(xi received I Ci sent) 
i = 1 

We will also refer to the probabilities P(x received I c sent) as forward 
channel probabilities. □ 

Communication channels can be described in a variety of ways. One 
way is to construct a graph as shown in Figure 4.1.1. There is one node 
on the left for each code symbol, and similarly on the right. Each node 
on the left is connected with each node on the right by an edge that is 
labeled with the corresponding channel probability. (In Figure 4.1.1, we 
have drawn only one edge as an illustration.) 

Example 4.1.1 Perhaps the most important memoryless channel is the 
binary symmetric channel, which has channel alphabet {0,1} and channel 
probabilities 

P(l received I O sent) = P(O received I 1 sent) = p 

P(O received I O sent) = P(l received I 1 sent) = 1 - p 

P(cjjci) 
Ci • --------+ • Cj 

FIGURE 4.1.1 A communications channel. 
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1-p 
0 •-----• 

p 

p 

1 • 
1-p . 

• 1 
FIGURE 4.1.2 A binary symmetric channel. 

FIGURE 4.1.3 A binary erasure channel. 

Thus, the probability of a symbol (bit) error, also called the crossover 
probability, is p. This channel is pictured in Figure 4.1.2. □ 

Example 4.1.2 Another important memoryless channel is the binary 
erasure channel, whose alphabet is {O, 1, ?}, as shown in Figure 4.1.3. 
(For clarity, we have left out two arrows with O probability. Also, the 
intention for this channel is never to send the symbol 11 ?11• However, this 
symbol may be received and so it is included in the channel alphabet.) 
Can you explain why this is called an erasure channel? □ 

Exercises 

1. Draw the graph of a binary erasure channel that either transmits a bit 
correctly, or else erases the bit. 
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2. Explain why a communications channel whose diagram has the 
following form 

-~· • • . . ' 

-~· • • 
• • • 

• . -~· • • 
• • 

(all edges not shown have O probability) is called a lossless channel. 

3. Explain why a communications channel whose diagram has the 
following form 

·-------. •-----'• .-----. ·-------. ·-----· • • 
• 
• ·-------. . ------· • • 

(all edges not shown have O probability) is called a deterministic 
channel. 

4. Explain why a communications channel whose diagram has the 
following form 

• 
• 
• 

• 

---->~• 
---->~• 
---->~ • 

• 

• 
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(all edges not shown have O probability) is called a noiseless channel. 

5. Explain why a communications channel whose diagram has the 
following form 

1 e----••1 
1-p 

is called a useless channel. 

6. Draw a diagram of a channel, with channel alphabet A = {O, 1, 2} and 
with the following two properties a) the probability that any symbol is 
transmitted correctly is independent of the symbol being sent, and b) 
when a symbol error is made, the received symbol is equally likely to 
be any of the symbols that were not sent. If the probability that a O is 
transmitted correctly is i90 , what is the probability that a O is changed 
into a 1? 

7. What should one do with a binary symmetric channel whose crossover 
probability is significantly greater than ½? Hint: it is not correct to 
answer "chuck it!" 

4.2 Decision Rules 

As mentioned previously, a procedure that substitutes a codeword for a 
given received word, or declares a decoding error, is called a decision 
rule. The concept of a decision rule can be defined more precisely as a 
function from the set of all words to the set of codewords, together with 
an additional symbol representing a decoding error. 

Definition Let Cbe an (n, M)-code over a code alphabetA. Assume that 
c does not contain the symbol "?" as a codeword ( otherwise replace "?" by 
son1e other symbol). A decision rule for C is a function f : An ~ CU { ?} . 
The process of applying a decision rule is referred to as decoding. Ifx is a 
( received) word in An, then the decision rule f decodes x as the codeword 
f (x) if f(x) E C or else declares a decoding error if f (x) = ?. □ 
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Our goal is to find a decision rule that maximizes the probability of 
correct decoding, that is, the probability thatf(x) is actually the codeword 
that was sent. (It is probably worth remarking, however, that the receiver 
has no way of knowing whether or not the decoding process has resulted 
in the correct codeword.) 

The probability of correct decoding can be expressed in a variety of 
ways. For instance, using the Theorem on Total Probabilities (Chapter 0), 
we can easily derive two formulas for this probability. Conditioning on 
the codeword sent gives 

P(correct decoding) = L P(correct decoding I c sent)P(c sent) 
cEC 

(4.2.1) 
Conditioning instead on the word received gives 

P(correct decoding) = L P(correct decoding I x received)P(x received) 

(4.2.2) 
where the sum now runs over all words in An. 

Note that formula (4.2.1) explicitly involves the probabilities P(c 
sent) that the various codewords c are sent through the channel. These 
probabilites 

{P(c1 sent), ... , P(cM sent)} 

form the so-called input distribution for the channel. The input distri­
bution is not part of the channel and causes unfortunate complications, 
since it may vary depending on what type of messages are being sent. (If 
you are sending credit card numbers, for\instance, there will be consider­
ably higher probability that a codeword representing a digit is being sent 
then if you are sending the text of Henry TV, Part I.) Of course, formula 
( 4.2.2) also involves the input __ distribution, since the probability that a 
given word x is received usually 'depends on which codeword was sent. 

Let f be a decision rule for the code C. If the codeword c is sent, then 
a correct decoding takes place provided that the received word x satisfies 
f(x) = c. Hence, 

P(correct decoding I c sent) = L P(x received I c sent) 
x:f(x)=c 
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Substituting into ( 4.2.1) gives 

P(correct decoding) = L L P(x received I c sent)P(c sent) 
cEC x:f(x)=c 

The double sum on the right is a bit nasty, however. 
Fortunately, formula ( 4.2.2) provides us with a better handle on how 

to obtain a good decision rule. Under the decision rule f, a received word 
xis decoded-correctly if the codeword sent was actually f(x). Thus, 

P(correct decoding I x received) = P(f(x) sent I x received) 

(no sum this time). Substituting into formula (4.2.2) gives 

P(correct decoding) = L P(f(x) sent I x received)P(x received) 
xEA" 

Hence, the probability of correct decoding can be maximized by choosing 
the decision rule that maximizes each of the conditional probabilities 

P(f(x) sent I x received) 

In other words, given that xis received, we decide that the codeword sent 
is the one most likely to have been sent! This is accomplished by looking 
at the backward channel probabilities 

P( c1 sent I x received), ... , P( cM sent I x received) 

and choosing the codeword Ci with the largest probability. (The issue 
of ties will be discussed in a moment.) This motivates the following 
definition. 

Definition Any decision scheme f for whichf(x) has the property that 

P(f(x) sent I x received) = max P(c sent I x received) 
cEC 

for all possible received words x, is called an ideal observer. In words, 
an ideal observer is one for which f (x) is a codeword most likely to have 
been sent, given that x is received. □ 

Our deliberations thus far have proven the following theorem. 

Theorem 4.2.1 An ideal obseroer decision rule maximizes the probability 
of the correct decoding of received words. □ 

An ideal observer certainly lives up to its name in the sense of max­
imizing the probability of correct decoding. However, the problem with 
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ideal observers is that they depend on the input distribution, as can be 
seen explicity by using Bayes' Theorem ( see Chapter 0) 

. P(x received I c sent)P(c sent) 
P(c sent Ix received)= --M,_-------------

Lk=I P(x received I ~k sent)P(ck sent) 
(4.2.3) 

Thus, in order to function, an ideal observer needs to know how likely it 
is that various codewords are sent through the channel, that is, it must 
know something about the messages being sent! 

This is not so ideal. 
One way around this is simply to assume that the input probability 

distribution is uniform 

1 
P(c sent) = M 

where Mis the size of the code. Thus, (4.2.3) becomes 

P(x received I c sent) 
P( c sent I x received) = I:r= 1 P(x received I Ck sent) 

Now, the denominator on the right is a sum of forward channel prob­
abilities and thus depends only on the channel. Thus, maximizing the 
left side of this equation is equivalent to maximizing the numerator on 
the right side; that is, the forward channel probabilities P(x received I c 
sent). This leads to the following definition and theorem. 

Definition Any decision rule f for which f (x) maximizes the forward 
channel probabilities, that is, for which 

P(x received If (x) sent) = max P(x received I c sent) 
CEC 

for all possible received words x, is called a maximum likelihood deci­
sion rule. In words, f(x) is a codeword with the property that for no 
other codeword would it be nfore likely that the given output x was 
received. □ 

Applying the maximum likelihood decision rule is called maximum 
likelihood decoding. 

Theorem 4.2.2 For the uniform input distribution, an ideal observer is one 
who applies maximum likelihood decoding. □ 
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Since the forward channel probabilities are given as part of the defi­
nition of the channel, it is relatively easy to apply maximum likelihood 
decoding. 

Example 4.2.1 Suppose that codewords from the code {000, 111} are 
being sent over a binary symmetric channel with crossover probability 
p = 0.01. Thus, the probability that a symbol is received correctly is 
l -p = 0.99 .. Suppose that the string 100 is received. The forward channel 
probabilities are 

P(l00 received I 000 sent) = P(l received I 0 sent)P(0 received I 0 sent)2 

= (0.01 )(0.99)2 = 0.009801 

and 

P(l00 received I 111 sent) = P(l received 11 sent)P(0 received I 1 sent)2 

= (0.99)(0.01 )2 = 0.000099 

Since the first probability is larger than the second, the maximum 
likelihood decision rule decodes 100 as 000. □ 

In view of Theorem 4.2.2, from now on we will assume a uniform 
input probability distribution. 

Before continuing, we should make a remark about ties. When two or 
more codewords, say c 1 and c2, give the maximum forward channel prob­
ability, then maximum likelihood decoding results in a tie. In practice, the 
procedure for handling ties usually depends on the seriousness of making 
a decoding error. In some cases, we may wish to choose randomly from 
among the candidates. In other cases, it might be more desirable simply 
to admit a decoding error, thereby reducing the chance of getting an un­
detected error. The term complete decoding refers to the case where 
all received words are decoded (one way or another), and the term in­
complete decoding refers to the case where we prefer occasionally to 
simply admit an error, rather than always decode. 

Exercises 

1. Verify formula ( 4.2.3). 
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2. Suppose that codewords from the code {0000, 1111} are being sent over 
a binary symmetric channel with crossover probability p = 0.01. Use 
the maximum likelihood decision rule to decode the received words 
a) 0000, b) 0010, c) 1010. 

3. Suppose that codewords from the code {000, 001, 111} are being sent 
over a binary symmetric channel with crossover probability p = 0.01. 
Use the maximum likelihood decision rule to decode the received 
words a) 010, b) 110. 

4. Consider a binary channel with channel probabilities 

3 7 
P(0 received I 0 sent) = 4, P(l received I 1 sent) = 8 

If codewords from the code {000, 001, 111} are being sent over this 
channel, use maximum likelihood decoding to decode the received 
words a) 010, b) 110. 

5. Consider a binary erasure channel, as described in Example 4.1.2, 
with probability p = 0.008, q = 0.99. If codewords from the 
code {000, 001, 111} are being sent over this channel, use maximum 
likelihood decoding to decode the received word a) 010, b) 10?, c) ??0. 

6. In this exercise, we compute the probability of a decoding error for 
three different channels. In each case, the code C consists of the 8 
binary strings oflength 3. Also, in each case we use the "no brainer" 
decision rule-decide that the output is correct! Denote an input code­
word by i1i2i3 and a received word by o1o2o3 . Finally, let BSC denote a 
binary symmetric channel with crossover probability p. 

(a) The first channel works as follows: send i1 through the BSC to get 
01. Then choose Oz and o3 randomly (flip a fair coin for each). 

(b) The second channel works as follows: choose o1 to be the majority 
bit among i1, i2 and i3. Then set Oz = 03 = o1. 

(c) The third channel work~· as follows: send i1 through the BSC to get 
01, send i2 through the BSC to get o2 , and send i3 through the BSC 
to get o3 . 

Compute the probability of correct decoding for each of these chan­
nels, assuming a uniform input distribution. Which channel is best for 
p = 0.001? Hint: use formula (4.2.1). 
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4.3 Nearest Neighbor Decoding 

By far the most thoroughly studied communications channel is the bi­
nary symmetric channel and we wish to examine maximum likelihood 
decoding more closely for this channel. (It turns out that what we learn 
for this channel applies to other channels as well.) 

It is reasonable to assume that the crossover probability of a binary 
symmetric channel satisfies p < ½ (in practice, it should be much less 
than ½)- Since the probability that a code symbol is received correctly is 
1 - p, the probability that a codeword oflength n is received correctly is 

P(no word error) = (1 - Pt 
The probability that a single symbol error occurs in a specified place in 
the codeword is 

P(one symbol error in a specified place) = p(I - Pt- 1 

The probability that exactly two errors occur in specified places is 

P(two symbol errors in specified places) = p 2(1 - Pt-2 

More generally, the probability of exactly k errors occurring ink specified 
places is 

P(k symbol errors in specified places) = pk(I - Pt-k 

(see Example 0.2.9). 
As a result, if a codeword c differs from a word x in exactly k positions, 

then 

P(x received I c sent) = pk(I - Pt-k 

Since p < ½, it follows that 1 - p > p, and so this probability is larger 
for larger values of the exponent n - k, that is for smaller values of k. 
Hence, the probability P(x received I c sent) is maximized by choosing a 
codeword for which k is as small as possible, that is, a codeword that has 
the fewest symbol differences with the received word x. 

We can summarize as follows. 

Theorem 4.3.1 For a binary symmetric channel, the maximum likelihood 
decision rule is to choose a codeword that differs in the fewest places with the 

received word x. □ 
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We have come a long way from having to find maximum backward 
channel probabilities. Now all we need to do is compare bits in the re­
ceived word with bits in the various codewords. A codeword with the 
fewest differences is a maximum likelihood codeword. This decision rule 
can be phrased a bit more elegantly by introducing a measure of the 

' closeness of two strings. 

Definition Let x and y be strings of length n over an alphabet A. The 
Hamming distance from x toy, denoted by d(x, y), is defined to be the 
number of places in which x and y differ. □ 

Example 4.3.1 

(a) Since the strings x = 11001 and y = 11010 differ in exactly two places, 
their distance apart is d(x, y) = 2. 

(b) Ifx = 1234 and y = 1423, then d(x, y) = 3. □ 

Since Hamming distance is the only type of distance that we will 
consider in this book, let us simply refer to it as distance. 

Now suppose that C is a code oflength n over A. The codewords that 
are closest (in Hamming distance) to a given received word x are referred 
to as nearest neighbor codewords. The nearest neighbor decision 
rule is the rule that decodes a received word x as a nearest neighbor 
codeword. Applying the nearest neighbor decision rule is referred to as 
nearest neighbor decoding, or minimum distance decoding. Notice 
that the distance d( c, x) between the codeword sent and the received word 
x is just the number of symbol errors that occurred in the transmission. 

Theorem 4.3.2 For a binary symmetric channel, maximum likelihood 
decoding is the same as nearest neighbor decoding. □ 

Example 4.3.2 Suppose that codewords from the code 

C = {0000,0011, 1000, 1100} 

are being sent over a binary symmetric channel. Assuming x = 0111 is 
received, then 

d(0lll,0000) = 3 
d(0111, 0011) = 1 
d(0lll, 1000) = 4 
d(0lll, 1100) = 3 
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Hence, the nearest neighbor codeword is 0011. □ 

Nearest neighbor decoding is certainly easy to implement, at least 
in principle. However, for large codes, there may be practical problems 
in taking the "brute force" approach of computing the distance to each 
codeword. As we will see in Chapter 5, for a large class of very impor­
tant codes, there are more efficient methods for implementing nearest 
neighbor decoding. 

Let us conclude this section by stating some properties of the 
Hamming distance function. Proof of the next theorem is left for the 
exercises. 

Theorem 4.3.3 The Hamming distance function is a metric on the set 
An, that is, for all x, y, and z in An, we have 

1. (positive definiteness) 

d(x, y) > 0, and d(x, y) = 0 if and only if x = y 

2. (symmetry) 

d(x, y) = d(y, x) 

3. (triangle inequality) 

d(x, z) < d(x, y) + d(y, z) □ 

Since Hamming distance d is a metric, the pair (An, d) is referred to as 
a metric space. The most famous metric space is the pair (IR, r) where 
IR is the set of real numbers and r is the ordinary Euclidean distance 

function r(x,y) = Ix -yl. 

Exercises 

1. Compute the Hamming distances a) d(0110101, 1101011) b) d(123456789, 

987654321) 

2. For the code C = {11100, 01001, 10010, 00111} use nearest neighbor de­
coding to decode the following received words a) 10000, b) 01100, c) 

00100, and d) 01001. 
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3. For the ternary code C = {11200, 01221, 20012, 00111} use nearest 
neighbor decoding to decode the following received words a) 12200, 
b) 21102, c) 00100, and d) 01201. 

4. Prove that the Hamming distance function is a metric on An. 

5. Consider a channel with channel alphabet A = {a1, ... , ar}- Assume 
that the probability that any given symbol is sent correctly is p > ½ 
and that the probability that a symbol is changed into another symbol 
is the same for all other symbols. What is that probability? Show that, 
for such a channel, maximum likelihood decoding is equivalent to 
nearest neighbor decoding. 

6. Show that maximum likelihood decoding is equivalent to nearest 
neighbor decoding for the binary erasure channel with the property 
that P(l received I 0 sent)= P(O received I 1 sent)= 0, assuming that 
we only consider codes over {O, 1}, that is, excluding ?. 

7. Construct a binary channel (channel alphabet {0, 1 }) for which max­
imum likelihood decoding is not the same as nearest neighbor 
decoding. Hint: the probability that a 0 is changed into a 1 must be 
different from the probability that a 1 is changed into a 0. 

4.4 The Minimum Distance of a Code 

If one or two symbol errors should occur in transmitting a codeword from 
the code C = {000, 111}, the resulting string cannot be another codeword 
and therefore such errors can always be detected. For this reason, C is 
referred to as a double-error-detecting code. Furthermore, if a single error 
should occur in transmission, the resulting string will be closer to one 
of the codewords than to the other and so nearest neighbor decoding 
will correct this error. Hence, C is a single-error-correcting code. Let us 
generalize these concepts in a definition. 

Definition Let u be a positive integer. A code C is u-error-detecting 
if, whenever a codeword incurs at least one but at most u errors, the 
resulting string is not a codeword. A code C is exactly u-error-detecting 
if it is u-error detecting but not (u + l )-error-detecting. □ 

We will assume that, in order to detect errors in transmission, the 
receiver checks the received string against a list of all codewords. If the 
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string is not on the list, the receiver knows that at least one error has 
occurred, but he has no way of knowing exactly how many errors have 
occurred. 

Since this list checking can be done by computer, we may imagine that 
the receiver has a red light on his desk. This light goes on whenever the 
received string is not a codeword. For a u-error-detecting code, the light 
will go on if at least one but at most u errors have occurred. However, the 
light may or ·may not go on if more than u errors have occurred. Thus, if 
the light goes on, the receiver can be certain only that at least one error 
has occurred. Furthermore, if the light does not go on, the receiver cannot 
conclude that no errors have occurred, for it is possible that "so many" 
errors occurred as to change the codeword sent into another codeword. 

Example 4.4.1 The code C = {000000, 111000, 111111} is double­
error-detecting, since changing any codeword in one or two posi­
tions does not result in another codeword. In fact, C is exactly 
double-error-detecting. □ 

Definition Let v be a positive integer. A code C is v-error-correcting if 
nearest neighbor decoding is able to correct v or fewer errors, assuming 
that if a tie occurs in the decoding process, a decoding error is reported. 
A code is exactly v-error-correcting if it is v-error-correcting but not 
(v + 1 )-error-correcting. □ 

It should be kept in mind that, as long as the received word is not a 
codeword, nearest neighbor decoding will decode it as some codeword, 
but the receiver has no way of knowing whether that codeword is the 
one that was actually sent. The receiver knows only that, under av-error­
correcting code, if no more than v errors were introduced, then nearest 
neighbor decoding will produce the codeword that was sent. 

Example 4.4.2 If one or two errors should occur in the transmission of 
a codeword from the code C = {0000000000, 1111100000, 1111111111}, the 
resulting word is closer to the codeword sent than to any other codeword. 
Hence, c is double-error-correcting. 

If more than two errors occur, nearest neighbor decoding may produce 
the wrong codeword. For instance, if 0000000000 is sent, but 1110000000 
is received, the closest codeword is 1111100000, and a decoding error will 
result. Hence, C is exactly double-error-correcting. □ 
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Example 4.4.3 The code Rep2(3) = {000, lll} is called a binary rep­
etition code of length 3. Similarly, Rep2(4) = {0000, llll} is a binary 
repetition code oflength 4. More generally, the r-ary repetition code 
of length n is 

' Repr(n) = {0 · · · 0, 1 · · • 1, 2 · · · 2, ... , (r - 1) · · · (r - 1 )} 

consisting of r codewords, each of length n. 
The r-ary repetition code of length n can detect up to n-1 errors in 

transmission, and so it is (n-1 )-error-detecting. Furthermore, it is exactly 
L n;1 J-error-correcting. D 

Example 4.4.4 The set of all ten-digit telephone numbers (including 
area codes) is an example of a block code oflength 10. There are currently 
about llS million telephones in the United States, and a natural question 
arises as to whether it is possible to assign numbers to these telephones 
so that a single error in dialing can be corrected. In the parlance of coding 
theory, we ask if there is a single-error-correcting 10-ary code of length 
10 and size 115,000,000. It is customary to refer to 10-ary codes as decimal 
codes. 

At this time, it is not known what the maximum size is for a single­
error-correcting decimal code of length 10. However, it is known, and 
we shall be able to prove it later, that this maximum is no bigger than 
100,000,000. Therefore, it is not possible to encode all telephone numbers 
in this country with single error correction. 

However, we will see later that there is a single-error-correcting 
decimal code of length 10 with size 82,644,629. Therefore, single error 
correction would be possible in many other countries. □ 

The error detecting/ correcting value of a code can be expressed more 
elegantly in terms of the minimum distance between codewords. 

Definition Let Cbe a code witn at least two codewords. The minimum 
distance d(C) of C is the smallest distance between distinct codewords. 
In symbols, 

d(C) = min{d(c, d) I c, d EC, c f d} ( 4.4.IJ 

Since c f d implies that d(c, d) > 1, the minimum distance of a code 
must be at least 1. 



Example 4.4.5 · 

(a) If C1 = {000, 010, 0ll}, then since d(000, 010) = 1, we have d(C1) = 1. 

(b) Let C2 = {000ll, 00101, lll01, ll000}. The following table shows all 
distances between distinct codewords of C2 • 

000ll 00101 lll01 ll000 

000ll * 2 4 4 
00101. 2 * 2 4 

lll01 4 2 * 2 

ll000 4 4 2 * 

Hence, d(C2) = 2. 

(c) For the r-ary repetition code 

Repr(n) = {00 · · · 0, ll · · -1, ... , (r - l)(r - l) · • · (r - l)} 

oflength n, we have d(c, d) = n for all c, d E Repn(n) and so d(C) = n. 

(d) The double-error-detecting code in Example 4.4.2 has minimum 
distance d(C) = 5. □ 

The next theorem is essentially just a restatement of the definition of 
u-error-detecting in terms of minimum distance. 

Theorem 4.4.1 A code C is u-error-detecting if and only if d(C) :::: u + 
1. □ 

Here is the analog for error correction. 

Theorem 4.4.2 A code C is v-error-correcting if and only if d(C) > 2v + 
1 □ 
Proof Suppose first that d(C) > 2v + l. If a codeword c suffers between 
1 and v errors, the resulting string x satisfies 1 < d(c, x) < v. This implies 
that xis closer to c than to any other codeword inc. For if d(x, d) < v for 
any codeword d f c, then the triangle inequality gives 

d(c, d) < d(c, x) + d(x, d) < v + v = 2v 

which contradicts the fact that d(C) = 2v + l > 2v. Hence, nearest 
neighbor decoding will correct v or fewer errors. 

For the converse, suppose that C is v-error-correcting, but that there 
are distinct codewords c and d with d( c, d) = d(C) < 2v. We wish to 
show that, assuming c is sent and at most v errors occur, it is nevertheless 
possible that nearest neighbor decoding will either report a tie (which is 
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considered a decoding error) or else decode the received word incorrectly 
as d. This contradiction to C being v-error-correcting shows that d(C) > 

2v + 1. 
First, we observe that d(c, d) = d(C) > v + 1, for otherwise c could 

be turned into d by suffering at most v errors, wh~ch would then go un­
corrected. Thus, we may assume, for the sake of argument, that c and d 
differ in exactly the first k = d(C) positions, where v + 1 < k < 2v. (This 
assumption can be justified in terms of reordering coordinates.) Consider 
the received word x that agrees with c in the first k - v positions, agrees 
with d in the next v positions and agrees with both c and d in the last 
n - k positions, as shown below 

X = X1 • · · Xk-v Xk-v + 1 ' ' · Xk Xk + l · · · Xn 
'-v--'---~----,-, 

agree with c agree with d agree with both 

Since d(c, x) = v and d(d, x) = k - v < v, it follows that either d(c, x) = 
d(d, x), in which case there is a tie, or d(c, x) > d(d, x), in which case x 
is decoded incorrectly as d. ■ 

Since the concept of minimum distance is clearly important, the 
following notation has been devised. 

Definition A code of size M, length n, and minimum distance d, is 
referred to as an (n,M,d)-code. The numbers n, M and d are called the 
parameters of the code. □ 

Example 4.4.6 

(a) The code C1 in Example 4.4.5 is a (3,3,1)-code. 

(b) The code C2 in Example 4.4.5 is a (5,4,2)-code. 

(c) The code C = {0000, 1100} is a (4,2,2)-code. 

(d) The code C = {00, 01, 10, 11} is a (2,4, 1 )-code. 

(e) The r-ary repetition code Repr(n) is an (n, r, n)-code. □ 
Example 4.4. 7 In January 1979, the Mariner 9 spacecraft took black 
and white photographs of Mars. A grid of size 600 x 600 was placed over 
each photograph, and each of the resulting 360,000 grid components was 
assigned one of 64 shades of gray. Thus, the source information consisted 
of 64 different source symbols. Each source symbol was then encoded 
using a particular binary (32,64,16)-code, known as a Reed-Muller code. 
Since the minimum distance of this code is 16, Corollary 4.4.3 tells us 
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that it is exactly seven-error-correcting. (:Ne will study Reed-Muller codes 
later in the book.) □ 

Example 4.4.8 In the period from 1979 through 1981, the Voyager 
spacecrafts took color photographs of Jupiter and Saturn. This required 
a source alphabet of size 4096 to represent various shades of color. 
The source information was then encoded using a particular binary 
(24,4096,8)-c.ode, known as a Golay code. By Corollary 4.4.3, this code 
is exactly three-error-correcting. (:Ne will study Golay codes later in the 
book.) □ 

We can characterize being exactly v-error-correcting in terms of 
minimum distance. Proof of the following corollary is left as an exercise. 

Corollary 4.4.3 

l. An (n, M, d)-code C is exactly v-error-correcting if and only if d = 2v + l 
or d = 2v + 2. 

2. A code C has d(C) = u if and only if it is exactly l u;1 J-error-correct-

~ □ 

Mixed Error Detection and Error Correction 

There is a somewhat subtle point that should be made about error de­
tection and correction. Namely, both cannot take place at the same 
time and at maximum levels. To be more specific, suppose that a code 
C has minimum distance d. Thus, it is ( d - l )-error detecting and 
ld;1 J-error-correcting. 

If we use C for error detection only, it can detect up to d - l errors. 
On the other hand, ifwe want C to also correct errors whenever possible, 
then it can correct up to ld;1 J errors, but may no longer be able to detect 
a situation where more than l d;1 J but less than d errors have occurred. 
For if more than l d; 1 J errors are made, nearest neighbor decoding might 
"correct" the received word to the wrong codeword, and thus the errors 
will go undetected. (In a sense, employing v-error-correction turns each 
codeword into a "magnet" that attracts any received word that is within 
a distance of v, even if the received word "came from" a more distant 
codeword.) 
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This issue is important since, in practice, it is not uncommon to use a 
mixed strategy of both error correction, which may need to be restricted 
because it can be expensive in both time and money, and error detection. 
Accordingly, we have the following for mixed strategies. 

Definition Consider the following strategy for error correction/ detection. 
Let v be a positive integer. If a word x is received and if the closest code­
word c to x is at a distance of at most v, and there is only one such 
codeword, then decode x as c. If there is more than one codeword at 
minimum distance to x, or if the closest codeword has distance greater 
than v, then simply declare a word error. 

A code C is simultaneously v-error-correcting and u-error­
detecting if, whenever at least one but at most v errors are made, the 
strategy described above will correct these errors and if, whenever at least 
v + l but at most v + u errors are made, the strategy above simply reports 
a word error. □ 

Theorem 4.4.4 A code C is simultaneously v-error-correcting and u-error­
detecting if and only if d( C) > 2v + u + l. □ 

Proof We leave proof of the fact that if d(C) > 2v + u + l, then C is 
simultaneously v-error-correcting and u-error-detecting, as an exercise. 

For the converse, suppose that C has the desired error detec­
tion/correction properties but that d(C) < 2v + u. We will follow a line 
similar to that in the proof of Theorem 4.4.2. Since C is v-error-correcting, 
Theorem 4.4.2 implies that 2v + l < d(C). Let c and d be codewords in 
C with distance k = d(C) = d(c, d). Thus, c and d disagree in exactly 
k = d( c, d) positions, with 2v + l < k < 2v + u and we may assume as 
before that these positions are the first k positions. Consider the received 
word x that agrees with c in the first v positions, agrees with d in the next 
k - v positions and agrees with both in the remaining positions 

X = X1 · • • Xu Xu+ l · · · Xk Xk+ l · · · Xn .______,..._,_,,_,_, 
agree with c -: ,agree with d agree with both 

Noticethatd(c,x) = k-vandd(d,x) = v,andv + 1 <k-v<v + u. 
If c is sent and x is received, then error detection will fail since er­

ror "correction" will ensue. More specifically, since the number of errors 
in transmission lies between v + 1 and v + u, the prescribed strategy 
should simply report a decoding error. But instead, since d(x, d) = v, the 
prescribed strategy will decode x incorrectly as d. ■ 
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The Probability of a Decoding Error 

Let us take another look at the probability of a decoding error, using 
minimum distance decoding, with a binary symmetric channel. 

The binary code C = {000000, 111111, 111000} can easily be made more 
efficient by adding the codeword 000111, which would add one additional 
codeword at no cost to its minimum distance. This leads us to make the 
following de.finition. 

Definition An (n, M, d)-code is said to be maximal ifit is not contained 
in any larger code with the same minimum distance, that is, if it is not 
contained in any (n, M + 1, d)-code. □ 

It is intuitively clear that, given any code C, we may continually add 
new codewords to it until we get a maximal code C' containing C. The 
following characterization of maximal codes, whose proof is left to the 
reader, makes this even more obvious. 

Theorem 4.4.5 An (n, M, d)-code C code is maximal if and only if, for all 
words x, there is a codeword c with the property that d(x, c) < d. □ 

It is interesting to note that, if a particular (n, M, d)-code C is not max­
imal, there are advantages and disadvantages to enlarging it to a maximal 
code C'. On the one hand, C' is still l d; 1 j-error-correcting, which is good, 
and C' can encode more source symbols, which is also good. On the other 
hand, while C maybe able to correct more than L d;l J errors on occasion, 

C' will never be able to correct more than l d; 1 J errors. As a simple exam­
ple, consider the code C = {00000, 11000}, of minimum distance 2. This 
code is single-error-correcting, but will also correct many other errors. 
For instance, if 00000 is sent but 00111 is received, then 00000 is closer to 
the received word than 11000 and so correct decoding will take place, even 
though three errors were made. However, if we fill out C to a maximal 
code, then three symbol errors in a single word will always be decoded 
incorrectly. Thus, maximal codes are best when we are concerned only 
with a code's "guaranteed" error correction capability. 

As a result, it is more difficult to get a handle on the probability of 
decoding error with nonmaximal codes. For maximal codes, we can be a 
bit more precise. 

In the case of a maximal code, if a codeword c is transmitted, and if 
d or more symbol errors are made, so that the received word x has the 
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property that d(x, c) ::::: d, then x will be closer to a different codeword, 
and so minimum distance decoding will definitely result in a decoding 
error. Since the probability of making exactly k symbol errors in a binary 
symmetric channel with crossover probability p is 

(;)pk(l - pf-k 

we get the following lower bound on the probability of a decoding error 

n (n P (decode error) ::::: L k )pk(l - pf-k 
k=d 

On the other hand, any (n, M, d)-code C (maximal or not) is L d;1 J­
error-correcting. Hence, the probability of correct decoding is at least as 
large as the probability of making L d;l J or fewer errors, that is, 

Hence, 

L d-1 J 

P (correct decoding) > t (;)pk(l - Pt-k 
k=O 

L~J 

P (decode error) = 1 - P (correct decoding) < 1 - t (n)pk(l - pf-k 
k=O k 

We thus have both an upper bound and a lower bound on the 
probability of a decoding error. Let us summarize in a theorem. 

Theorem 4.4.6 For the binary symmetric channel using minimum dis­
tance decoding, the probability of a decoding error for a maximal ( n, M, d)-code 
satisfies 

L d-1 J t (n)pk(l - pf-k:::; P (decode error) :::; 1 - t (n)Pk(l - pf-k 
k=d ,k k=O k 

For a nonmaximal code, the upper bound still holds, but the lower bound 
m~Mt 0 

Example 4.4.9 Consider the binary repetition code Rep2( 4) = {0000, 1111} 
and a binary symmetric channel with crossover probability p = 0.001. 
Since this code is a maximal (4,2,4)-code, Theorem 4.4.6 gives the bounds 

(0.001 )4 :::; P (decode error) :::; 1 - (0.999)4 - 4(0.001 )(0.999)3 
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or 

10-12 :SP (decode error) < 5.992 x 10-6 

As you can see, this is quite good. Unfortunately, the code Rep2( 4) 
contains only two codewords and so it is not very useful. □ 

Exercises 

1. Consider the binary code C = {11100, 01001, 10010, 00111}. 

(a) C01npute the minimum distance of C. 

(b) Decode the words 10000, 01100, and 00100 using minimum distance 
decoding. 

2. In each case, construct a binary (n, M, d)-code with the given 
parameters (n, M, d) or prove that no such code can exist. 

(a) (8,2,8) 

(b) (8,3,8) 

(c) (3,9,1) 

(d) ( 4,8,2) 

(e) (5,3,4) 

3. Consider the code C consisting of all words in z; that have an even 
number of ls. What is the length, size, and minimum distance of C? 

4. Construct an explicit example to illustrate that simultaneous error 
detection and correction can reduce the error detecting capabilites of 
a code (Theorem 4.4.4.) 

5. Prove Corollary 4.4.3. 

6. Estimate the probability of a decoding error using the binary repetition 
code of length 5 under a binary symmetric channel with crossover 
probability p = 0.001. (Assume minimum distance decoding.) 

7. As we will see later in this chapter, one of the Hamming codes H 
has parameters (15, 211 , 3). Find an upper bound for the probability 
of a decoding error for this code, using a binary symmetric channel 
with crossover probability p = 0.001. (Assume minimum distance 

decoding.) 
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8. Does a binary (8,4,5)-code exist? Justify your answer. 

9. Does a binary (7,3,5)-code exist? Justify your answer. 

10. With reference to Theorem 4.4.4, prove that if d(C) > 2v + u + l, then 
C is simultaneously v-error-correcting and u-error-detecting. 

' 11. Prove that an (n, M, d)-code C code is maximal if and only if, for all 
words x i C, there is a codeword c with the property that d(x, c) < d. 

4.5 Perfect Codes and the Sphere-Packing 
Condition 

Some Examples of Codes 

Before continuing with the theory of codes, we should stop to describe 
some of the more famous families of codes, so that we will have something 
to use as examples. We will discuss these codes (and others) in detail in 
later chapters. The term perfect (as applied in these examples) is defined 
later in the section. 

The Repetition Codes 

We have already discussed the repetition codes, but let us include them 
here for completeness. The r-ary repetition code of length n is the 
(n, r, n)-code 

Repr(n) = {00 · · · 0, 11 · · · l, 22 · · · 2, ... , (r - l)(r - l) · • • (r - l)} 

consisting of r codewords, each oflength n. These codes are perfect l n; 1 J­
error-correcting codes. 

. ' 

The Hamming Codes 

The family of Hamming codes 1-ir(h) is probably the most famous of all 
error-correcting codes. These codes were discovered independently by 
Marcel Golay in 1949 and Richard Hamming in 1950. The Hamming codes 
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are perfect codes and have the advantage of being very easy to decode. 
However, these codes are only single-error-correcting, having minimum 
distance 3. 

Specifically, for each prime power rand for each h > 0, the Hamming 
code 1-ir(h) is an r-ary (n, M, d)-code with parameters 

h r - 1 n h 
n=--M=r- d=3 1 I I r-

The most common case by far is the binary case, where 

n = 2h - 1 M = zn-h d = 3 
I I 

Golay Codes 

In 1948, Marcel Golay introduced some very special codes, denoted by 
923 , 924, 911, and 912 that are now called Golay codes. The code 924 is a 
binary (24,4096,8)-code which, as we mentioned before, was used by the 
Voyager spacecraft to transmit color photographs of Jupiter and Saturn. 
The related code 923 is a perfect binary (23, 4096, 7)-code. 

The code 911 is a perfect ternary (11,729,5)-code, and 912 is a ternary 
(12,729,6)-code. The binary Golay codes are among the most important 
codes, for both practical and theoretical reasons. 

Reed-Muller Codes 
The Reed-Muller codes are a family of binary codes that have good prac­
tical value and nice decoding properties. For each positive integer m, and 
each integer r for which 0 < r < m, the r-th order Reed-Muller code 
R(r, m) has parameters 

1 ( "') ("') n = 2m M = 2 + I + ... + r d = 2m-r 
I I 

The first order Reed-Muller codes R(l, m) are perfect (2m,2m+ 1,2m-l)­
codes. The code R(l, 5) was used by Mariner 9 to transmit black and 
white photographs of Mars in 1972. 
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Spheres in Z~ 

Now let us return to a discussion of error correction. We can get a more 
geometric view of the error correction properties of a code by defining 
the concept of a sphere in Z~. 

Definition Let x be a string in Z~ and let p > 0. (P is the Greek letter 
rho.) The sphere S~(x, p) in Z~ with center x and radius pis the set of all 
strings in z; whose distance from xis at most p. In symbols, 

s;cx,p) = {y E z; I d(x, Y) < p} □ 

Example 4.5.1 The sphere S1(101,2) in Z~ consists of all binary strings 
oflength 3 whose distance from 101 is at most 2. Thus, 

S~(lOl,2) = {101,001,lll,100,011,000,110} □ 

Example 4.5.2 Figure 4.5.1 shows the set Z~. The words that lie in the 
sphere S~(lll,l) of radius 1 about the word 111 are shown as solid dots in 
this figure. (Note that a sphere need not look very round!) □ 

The Volume of a Sphere 

To determine the number of strings contained in a sphere S~(x, p), that 
is, the volume of S~(x, p), we take the sum of the number of strings at 

z 

001 

111 

. ' 

y 
FIGURE 4.5.1 
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distance k from 'x fork = o, 1, ... , p. Since there are (;)er - 1t strings 
that have distance k from a given string x oflength n, we get the following 
result. 

Theorem 4.5.1 The volume of the sphere S~(x, p) is 

V~(P) = :t(n)(r - Ii 
k=O k 

D 

Note that since the volume of a sphere S~(x, p) does not depend on the 
center x, we can use the notation v;(p). The volume of a sphere S~(x, p) 
in Z~ has the simpler form 

v;(P) = :t(n) 
k=O k 

which is just the sum of the first p binomial coefficients. 

Example 4.5.3 The volume of the sphere S1(llll,2) is 

V~\2) = 1 + (;) + ( ~) = 1 + 4 + 6 = ll 

Thus, there are 11 binary strings of length 4 whose distance from llll is 
at most 2. □ 

Error Correction and the Packing Radius of a Code 

Unfortunately, for n > 3, it is not possible to draw realistic pictures similar 
to Figure 4.5.1. However, we can get some representation of the situation 
for larger values of n by looking at Figure 4.5.2. (Of course, this figure is 
not metrically accurate-it is only intended as a guide to intuition.) 

The solid dots in this figure represent the codewords of an (n, M, d)­
code C, and the open dots represent all other words of length n. There 
is a sphere centered at each codeword of C. The common radius of the 
spheres is determined by the following simple rule: make the radius as 
large as possible as long as the spheres remain disjoint (that is, have no 
words in common). This radius has a name. 

Definition Let C be an r-ary (n, M, d)-code. The packing radius of C, 
denoted by pr(C), is the largest possible radius for a set of disjoint spheres, 
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0 0 0 (3 : 00 0 
0 

0 O O e 

0 0 
0 (B 0 • 0 

0 0 0 0 
0 

The minimum distance 
is between these two 
codewords FIGURE 4.5.2 

one centered at each codeword. We refer to the spheres S~(c, pr(C)), 
centered at each codeword c, as the packing spheres for C. □ 

The value of the packing radius depends on the minimum distanced 
of the code. If dis even, say d = 2t + 2, then we increase the radius of the 
spheres until just before two spheres become tangent, as shown on the left 
side of Figure 4.5.3. In this case, the packing radius is t = d-:;2 = l a;1 J. If 
d is odd, say d = 2t + l I then we increase the radius until just before two 
spheres overlap, as shown on the right side of Figure 4.5.3. In this case, 
the packing radius is t = a;1 = l a;1 J. 

Putting these two cases together gives the following. 

Theorem 4.5.2 The packing radius of an (n, M, d)-code is pr(C) 
ld;lj. □ 

d(C) = 4 = 2(1) + 2 
so t = 1 and C is 
single-error-correcting 

. ' 

00 
d(C) = 3 = 2(1) + 1 
so t=l and C is 
single-error-correcting FIGURE 4.5.3 
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We can now describe the error-correcting properties of a code 1n 
spherical terms. 

Corollary 4.5.3 A code C is exactly v-error-correctingif and only if pr(C) = 

~ □ 

Perfect Codes 

The following concept plays a major role in coding theory. 

Definition An r-ary (n 1 M 1 d)-code C = {c11 ... 1 cML with code alphabet 
A, is said to be perfect if any of the following equivalent conditions holds. 

1. Every string in An is contained in some packing sphere1 in symbols 

M 

An Cu s;ccilpr(C)) 
i= 1 

2. The union of the packing spheres is precisely An I in symbols 

M 

An= LJs;ccilpr(C)) 
i= 1 

3. The sum of the volumes of the packing spheres is equal to the number 
of strings in An, in symbols 

or 

□ 

We will leave it to the reader to show that all of these conditions are 
equivalent. The last condition (in part 3) is known as the sphere-packing 
condition. It can be used to determine the size M of a perfect code with 
given minimum distanced. 

Figure 4.5.4 illustrates a perfect code. It is perfect because the packing 
spheres perfectly cover all of the strings in An, with no overlap and leaving 
nothing out. In other words, the packing spheres form a partition of An. 
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This code is perfect FIGURE 4.5.4 

Example 4.5.4 The binary Golay code 923 has parameters (23,2 12 ,7). 
Substituting these numbers into the left-hand side of the sphere-packing 
condition gives 

3 (23) 212 . L = 212 c1 + 23 + 253 + 1771) = 212 • 2048 = 212 211 = 223 

k=O k 

and so the sphere-packing condition holds for this code. Thus, the Golay 
(23,212 ,7)-code is perfect. □ 

It is important to emphasize that, just because numbers n, M, and d 
exist that satisfy the sphere-packing condition does not mean that there 
is a (perfect) code with these parameters. There may, in fact, be no such 
codes at all, as we will see in a moment. 

The important problem of determining all perfect codes has not yet 
been solved. Of course, one approach to the problem is to try to find all 
solutions to the sphere-packing condition and then try to find all codes 
with these parameters. This monumental task has been only partially ac­
complished and we will now describe some of these solutions. Keep in 
mind that, just because we find one code that has a given set of param­
eters doesn't mean that there might not be other codes with these same 
parameters. 

Solution 1 The parameters (n, rn, 1) satisfy the sphere-packing condi­
tion. However, the only r-ary coae that fits these parameters is Z~ itself. 
In this case, the packing radius is 0, each packing sphere consists simply 
of the single codeword at the center and, while the code is perfect, it is 
not of much use, since no error correction is possible. 

Solution 2 The parameters (n, 1, 2n + 1) satisfy the sphere-packing 
condition. The set C = {O} consisting of the zero codeword alone is an 
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(n,l,?)-code, with undefined minimum distance, since there is only one 
codeword. However, if we set the minimum distance to 2n + l then the 

I 

parameters of the code C satisfy the sphere-packing condition. Again, this 
code is not of much use, having only one codeword. 

Solution 3 The parameters (2m + l,2,2m + 1) satisfy the sphere­
packing condition, when r = 2. Since the binary repetition codes 
Rep2(2m + 1) of odd length have these parameters, they are perfect codes. 
(The binary repetition codes are essentially the only binary codes with 
these parameters.) 

Solution 4 The parameters 

(
rh - l n-h ) ---,r ,3 
r-l 

where r is a prime power and h > 2, satisfy the sphere-packing condition. 
As we have mentioned, the Hamming codes have these parameters and 
are therefore perfect. However, the Hamming codes are not the only 
family of codes with these parameters. (See the exercises in Section 6.1.) 

A computer search was conducted by the well-known coding theorist 
J. H. van Lint in 1967. This search showed that the only solutions to the 
sphere-packing condition for 

n :=: 1000, d :=: 1000, r < 100 

besides those given by the families above are 

Solution 5 (23,212 ,7) 

Solution 6 (90,278 ,5) 

Solution 7 (11,36 ,5). 

It happens that there is no code with parameters corresponding to 
solution 6. (We will ask you to prove this, for linear codes, in the Exercises 
of Section 5.5.) Solutions 5 and 7 correspond to the Golay codes. 

Thus, we see that perfect codes are not only perfect, but are also rare. 
As further justification of this statement, it has been proven that the only 
perfect binary v-error-correcting codes, for v 2= 2, are the repetition codes 
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(which are not very useful) and the Golay code with parameters (23,2 12 ,7). 
This makes the Golay code very special indeed. 

Exercises 

1. Compute the following volumes. 
a) Vf (l) b) vf (2) c) V1(3) d) vf ( 4) e) vJ0 (lO) 

2. Prove Corollary 4.5.3. 

3. Show that a perfect code must have odd minimum distance. 

4. Verify that the conditions given in the definition of perfect code are 
equivalent. 

5. Show that the sphere-packing condition is satisfied by the parameters 
(n, M, d) = (n, rn, 1). 

6. Show that the sphere-packing condition is satisfied by the parameters 
(n,M, d) = (n, 1, 2n + 1). 

7. Show that the sphere-packing condition is satisfied by the parameters 
(n,M,d) = (2m + l,2,2m + 1), r = 2. 

8. Show that the sphere-packing condition is satisfied by the parameters 
(n, M, d) = c:~ll, rn-h, 3), for h ~ 2. 

9. Why are the binary repetition codes essentially the only binary codes 
with the parameters (2m + 1, 2, 2m + l)? 

10. Do your own computer search for solutions to the sphere-packing 
condition. 

. ' 

4.6 Making New Codes from Old Codes 

There are many useful ways to create new codes from existing codes. Let 
us discuss a few of the more important ways. 
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Extending a Code 

The process of adding one or more additional positions to all of the code­
words in a code, thereby increasing the length of the code, is referred 
to as extending the code. The most common way to extend a code is 
by adding an overall parity check. Let us consider the binary case. The 
weight w(c) of a binary word c is the number of ls inc. (For example, 
w(l001010) := 3.) 

IfC is a binary (n, M, d)-code, then we construct a new code as follows. 
To each codeword c in C, we add an additional bit in such a way that the 
resulting codeword has even weight. Thus, if c has an odd weight, we 
add a 1, and if c has an even weight, we add a 0. Denoting the resulting 
codeword by c, we have 

This is referred to as adding an even parity check to the code C. The 
resulting code Chas length n + land size M. 

The minimum distance of C may be either d(C) or d(C) + 1, depending 
on the parity of d(C). In particular, since all of the words in C have even 
weight, the distance between any two codewords in C is even (exercise). 
Hence, the minimum distance of C is also even. It follows that if d( C) is 
even then d(C) = d(C) and if d(C) is odd then d(C) = d(C) + 1. 

In either case, we have 

l d(°; -1 J = l d(°;- I J 

and so (alas) the error-correcting capabilities of the code do not increase 
by adding an even parity check. 

More generally, if the code alphabet of C is any finite field, say Zp 
where p is a prime, then we may adjoin an additional element to each 
codeword in C so that the sum of the elements of a codeword is 0. In 
symbols, if c = c1 · • • Cn then c = C1 · • · CnCn+l, where 
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and so 
n 

Cn+l = - Lei 
I= 1 

As an example, if c= 12314 is a codeword in a code over Zs, then since 
1 + 2 + 3 + 1 + 4 = 1 in Zs, adding an overall parity check gives the 
codeword c = 123144. 

Example 4.6.1 Adding an overall parity check to the binary code C = 
{00, 01, 10, 11} gives the extended code C = {000, 011, 101,110}. Notice that 
Chas minimum distance 1, but Chas minimum distance 2. □ 

Shortening a Code-The Cross-Sections of a Code 

Shortening a code refers to the process of keeping only those codewords 
in a code that have a given symbol in a given position (for instance, a 0 
in the first position), and then deleting that position. If C is an (n, M, d)­
code, then a shortened code has length n - 1 and minimum distance at 
least d. In fact, shortening a code can result in a substantial increase in 
the minimum distance and therefore in the error-correcting capabilities 
of the code, for it can eliminate codewords that are "poorly behaved" as 
far as distance is concerned. (We ask you to find an example of this in the 
exercises.) Of course, shortening a code does result in a code with smaller 
size, which is not so desirable. 

The shortened code formed by taking codewords with an s in the ith 
position is referred to as the cross-section Xi = s. We will have many 
occasions to use cross-sections in the sequel. 

Example 4.6.2 The code C = {0000, 0110, 0011, 1010, 1110} has mini­
mum distance 1. The cross-section x1 = 0 is obtained by taking all 
codewords that have a O in the first position and removing that position, 
giving {000,110,011}, which has minimum distance 2. □ 

The u(u + v)-Construction 

For binary codes, the u(u + v)-construction proceeds as follows. Sup­
pose that C1 is a binary (n, M1 , d1)-code and C2 is a binary (n, M2 , d2)-code. 
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(Note that both codes must have the same length.) Let 

C1 EB C2 = { c( c + d) I c E C1, d E C2} 

where the parentheses indicate juxtaposition and the plus sign indicates 
bitwise addition modulo 2 (that is, 0 + 0 = 0, 0 + 1 = 1 + o = 1, 1 + 1 = 0). 

For instance, if c = ll00 and d = 0ll0 then c + d = ll00 + 0ll0 = 1010 
and so c(c + d) = ll001010. 

We leave it as an exercise to show that C1 EBC2 has length 2n, size M1M2 

and minimum distance equal to min{2d1 , d2 }. The u(u + v)-construction 
is an important tool in constructing new codes and can be used to 
construct the Reed-Muller family of codes (see the exercises). 

Example 4.6.3 Let C1 = {00, 10} and let C2 = {00, ll}. Then 

C1 EB C2 = {0000, 00ll, 1010, 1001} 

which is a code oflength 4, size 4 and minimum distance 2. □ 

Equivalence of Codes 

Almost every branch of mathematics has at least one notion of equiva­
lence (not to be confused with equality). To state a few instances, in set 
theory, two sets are equivalent if they have the same size. In logic, two 
statements are equivalent if they always have the same truth value. In 
plane geometry, two figures in the plane are equivalent if one can be 
changed into the other by a rigid motion. In matrix theory, two matrices 
A and B are equivalent if there exits two invertible matrices P and Q 
such that B = PAQ. In elementary algebra, two equations are equivalent 
if they have the same solution set. In topology, two topological spaces are 
equivalent if there is a bijective continuous function between them. In 
differential geometry, two manifolds are equivalent if there is a bijective 
differentiable function between them. 

Let us now consider equivalence of codes. 

Definition Let C be an r-ary (n, M)-code over the alphabet A. Consider 
the following two-step procedure for transforming C. 

1. Permute the code symbols in each codeword in C, using a permutation 
er. That is, replace each codeword c = c1 c2 · · · Cn E C by the word 
Ca(l)Ca(Z) · · · Ca(n)· Denote the resulting code by D. 
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2. For each position i, permute the code symbols in the ith position of 
the codewords in D, using a permutation rri (possibly different for 
each position i). That is, replace each codeword d = d1 d2 · · · dn with 
rr1 (d1)rr2(d2) · · · rrn(dn), Call the resulting code E. 

A code E is said to be equivalent to a code C if E 'Can be obtained from 
C using the procedure above. □ 

Note that, since each of the steps in the procedure above is reversible, 
it follows that if Eis equivalent to C, then C is equivalent to E and so we 
may simply say that two codes are equivalent. 

Although the concept of equivalence is extremely important, we will 
not be using it directly to show that two codes are equivalent. However, 
we will use it to state certain uniqueness results. For instance, it has been 
proven that any binary code with the same parameters as the Golay code 
924 is equivalent to 9 24 . Thus, the Golay code 9 24 is, in this sense, unique. 

The following intuitive results are quite useful. We will leave the 
proofs for the exercises. 

Lemma 4.6.1 If the code alphabet A contains 0, then any code over A is 
equivalent to a code that contains the zero codeword O = 0 • • · 0. □ 

Theorem 4.6.2 Equivalent codes have the same parameters (l.ength, size, 
and minimum distance). □ 

Exercises 

1. Add an even parity check to the binary (5,4,3)-code 

C = {00000, 11100,00111, 11011} 

What are the parameters of the extended code? 

2. Describe the process of adding an odd parity check to a binary code. 
Let C be a binary code and let C be the result of adding an even parity 
check. What happens if you add an even parity check to C? What 
happens if you add an odd parity check to C? 

3. If all of the codewords in a binary code C have an even weight, show 
that all distances between codewords are even. Let C be a code and 
let C be the code obtained from C by adding an even parity check. 
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Prove that if d(C) is even, then d(C) = d(C) and if d(C) is odd then 
d(C) = d(C) + 1. 

4. What do you get when you take a cross section of a repetition code? 

5. Find the cross-section x2 = 1 of the code 

C = {0000, 0001, 0010, 0011 1 0100, 0101 1 0110, 0111, 1110, 1111}. 

What an~ the parameters of this code? 

6. Can taking a cross-section of a code result in getting two identical 
words? 

7. Let C be an r-ary (n, M, d)-code over the alphabet Zr. Form the cross­
sections Ci defined by x1 = i, for each i = 0, 11 ••• 1 r - l. Suppose that 
Ci is an (n - 1, Mi, di}code. Show that :EMi = Mand that di ::: d for 
all i. 

8. Let C be an r-ary (n, M, d)-code over the alphabet Zr, Show that, as 
long as d < n, then for some position i, there is a cross-section that 
has minimum distanced. What can happen if d = n? 

9. Construct a binary (7 1612)-code with a cross section that is a (6 14,3} 
code. 

10. Suppose that C is an (n, M, d)-code. Show that C is a cross-section of 
a larger code with parameters ( n + l, M + 2, 1). Thus, the minimum 
distance of a cross-section can be considerably larger than the min­
im um distance of the original code. Which are the "poorly behaved" 
codewords in this case? 

11. Construct C1 EB C2, where C1 = {00000000, 11000000} and C2 = 

{00000000, 11111000, 00011111}. What are the parameters of C1 1 C2 1 and 

C1 EB C2? 

12. Construct C1 EBC2, where C1 = {000, 001, 111} and C2 = {100,011,001}. 
What are the parameters of C1 1 C2, and C1 EB C2? 

13. Let C be a binary (n, M, d)-code. Let cc denote the set of complements 
of all codewords in C. 

(a) Show that d(c, de) = n - d(c, d) 

(b) Show that the minimum distance of the code CU cc is 

d(C U Cc) = min {d, n - dmax} 

where dmax is the maximum distance between codewords in C. 
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14. If C1 is an r-ary (n1, M1, d1)-code and Cz is an r-ary (nz, Mz, dz)-code 
over the same alphabet, then the direct sum C1 0 Cz is the code 

' that consists of all words formed by juxtaposing a codeword in C1 with 
a codeword in Cz. What are the parameters of the direct sum? 

15. Referring to the direct sum construction of the previous exercise, com­
pute C1 0 Cz for the codes in Exercise 11. Compare the parameters of 
C1 EB Cz and C1 0 Cz. 

16. Suppose that C1 is a binary (n, M1, d1)-code and Cz is a binary 
(n, Mz, dz)-code. Show that the u(u + v)-construction C1 EBCz has length 
2n, size M1Mz, and minimum distance equal to min{2d1, dz}. Hint 
for the latter part: consider two distinct codewords in C1 EB Cz, say 
u1 = C1 (c1 + d1) and Uz = Cz(Cz + dz). If d1 = dz, then show that 
d(u1, Uz) > 2d1. If d1 f dz, then consider under what circumstances 
the addition (modulo 2) of Ci to d1 (for i = 1 and 2) could wipe out a 
bit difference between d1 and dz. 

17. Let Cz be the ( 4,8,2)-code consisting of all eight binary words oflength 
4 that have even weight. 

(a) Construct C3 = Cz EB Repz( 4). What are its parameters? 

(b) What are the parameters of C4 C3 EB Repz(8)? 

(c) What are the parameters of Cs = C4 EB Repz(16)? 

(d) Show that we can construct a binary c2m, 2m+l I 2m-1)-code in this 
fashion. These codes are the first order Reed-Muller codes. 

18. Prove Lemma 4.6.1. 

19. Prove Theorem 4.6.2. 

20. If C is a code over Zp and C is the code obtained by adding an overall 
parity check, what is the relationship between the minimum distances 
of C and C? Find examples of ternary codes that exhibit each of the 
possibilities in your answer. 
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4. 7 The Main Coding Theory Problem 

Two of the most desireable goals in designing good r-ary (n, M, d)-codes 
are high efficiency, in the sense of having a relatively large number of 
codewords for a given length and high minimum distance, for good error­
correcting capabilities. Unfortunately, these goals are at odds with each 
other, and this is why designing optimal codes is a difficult process. (The 
other important goal in designing a good code is ease of encoding and 
decoding.) 

The Rate of a Code 

To get a meaningful measure of the efficiency of an r-ary (n, M)-code, 
consider that each of the M codewords can encode a single source sym­
bol. However, we may be comparing apples and oranges here unless we 
express the source symbols in the same r-ary units as the codewords. To 
be more specific, each codeword is an r-ary string oflength n and so we 
should also express the source symbols as r-ary strings. Solving rk = M 

fork tells us that we require r-ary strings oflength k = logr M. (This num­
ber may not be an integer, but that is not a problem since the discussion 
is purely abstract and the number k is used only in comparison between 
codes.) Thus, transmission takes place at the rate of logr M r-ary source 
units for every n r-ary code units. This leads to the following definition. 

Definition The transmission rate of an r-ary (n, M)-code C is 

log M 
R(C) = r 

n 
D 

Perhaps the best measure of the error-correcting capabilities of an 
(n, M, d)-code C is not the absolute number l d;1 J of errors it can cor­
rect, but rather the relative number of errors it can correct per codeword 
position. After all, correcting 100 errors per codeword, for example, may 
sound like a lot, but sounds much less impressive when the codeword 
length is 100 million! 

Definition The error correction rate of an (n, M, d)-code C is 

ld-lj 
o(C) = 2 

n 
□ 
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Let us consider some examples of these measurements. 

Example 4. 7.1 Consider the binary repetition codes Rep2(n), which 
have size 2 and therefore transmission rate 

log2 2 1 
R(Rep (n)) = -- = -

2 n n 

For n = 2u + l, the repetition code is u-error-correcting and can therefore 
correct up to u errors in each n-bit codeword, for an error correction rate 
of 

u u 
8(C) = = 

n 2u + l 

Notice that the numbers 2t+i form an increasing sequence that ap­
proaches ½. Thus, the longer the codeword length, the better the error 
correction, not just in absolute terms but also as a percentage of the code­
word length. On the other hand, we are stuck with encoding only two 
source symbols, no matter how long the codeword lengths, and so the 
transmission rate goes to 0. Thus, repetition codes have excellent error­
correcting potential (almost ½ the number of bits sent) but only at the 
cost of very low efficiency. The moral here is that simply repeating the 
symbols transmitted is not a smart way to proceed. D 

Example 4. 7.2 At one extreme, we could completely sacrifice effi­
ciency and use a code of size 1, which has perfect error-correction but 
transmission rate 0. At the other extreme, we could completely sacri­
fice error correction and simply use every r-ary word of length n as 
a codeword. Then we get a very high (indeed, the maximum possible) 
transmission rate 

R = logr rn = l 
n 

but absolutely no error correction. □ 

Example 4. 7.3 The Hamming. 'code 'Hr(h) has size M = rn-h and 
therefore rate 

n-h h 
'RfHr(h)) = -- = 1 - -

n n 

This is a good rate for large n and, in fact, approaches the maximum value 
1. However, all Hamming codes are but single-error-correcting and so the 
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error correctio'n rate is 

1 
8(Hr(h)) = 

n 
which tends to O as n gets large. □ 

The previous examples should make it clear that a compromise 
between transmission rate and quality of error correction is in or­
der. Unfortunately, coding theorists are still looking for a really good 
compromise. 

The Famous Numbers Ar(n, d) 

For given values of n and d, it is customary to let Ar(n, d) denote the 
largest possible size M (and, consequently, transmission rate) for which 
there exists an r-ary (n, M, d)-code. Thus, 

Ar(n, d) = max{M I there exists an r-ary(n, M, d)-code} 

Any (n, M, d)-code C that has maximum size, that is, for which M = 
Ar(n, d) is called an optimal code. The numbers Ar(n, d) play a central 
role in coding theory, and much effort has been expended in attempting 
to determine their values. In fact, determining the values of Ar(n, d) has 
come to be known as the main coding theory problem. 

Unfortunately, very little is currently known about the numbers 
Ar(n, d). Our goal here is to determine some values of Ar(n, d), for small 
values of n and d and to establish some general facts about these num­
bers. Note that, in order to show that Ar(n, d) = K, for some number K, it 
is enough to show that Ar(n, d) < K, and then find a specific r-ary (n, K)­
code C for which d(C) > d, which shows that Ar(n, d) > Ar(n, d(C)) > 
K. 

The following two results demonstrate how values of A 2(n, d) can 
be computed for small n and d. We will use Lemrria 4.6.1, which says 
that, given an (n, M, d)-code C, there is an equivalent (n, M, d)-code C' 
that contains the zero codeword. (If the code alphabet does not contain 
the symbol 0, we can simply replace one of the symbols by 01 without 
effecting the parameters of the code.) Hence, for the purposes of what 
follows, we may assume that our codes contain the zero codeword. 

Theorem 4.7.1 A2(4, 3) = 2 □ 
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Proof Let C be a (4,M,3)-code. By the remarks preceding this theorem, 
we may assume that C contains the zero codeword O = 0000. Now, since 
d(C) = 3, any other codeword c in C must satisfy d( c, 0) > 3, and so it 
must have at least three ls. This leaves five possibilities for additional 
codewords in C, namely 

1110, 1101, 1011, 0111 1111 

But no pair of these has distance 3 apart, and so only one can be in­
cluded in C. Hence, C can have at most two codewords, implying that 
A2(4, 3) ~ 2. Furthermore, since C = {0000, 1110} is a (4,2,3)-code, we 
have A2 ( 4, 3) :::-: 2, and so A2 ( 4, 3) = 2. ■ 

The proof of the following theorem shows how useful cross-sections 
can be in determining small values of Ar(n, d). 

Theorem 4. 7.2 A 2(5, 3) = 4 □ 

Proof Let C be a (5,M,3)-code and consider the cross-section C0 de­
fined by x1 = 0. We know that C0 has minimum distance d0 > 3 and 
since A2 ( 4, 3) = 2 and A2 ( 4, 4) = 2, it follows that C0 has size Mo < 2. 
Similarly, the cross-section C1 defined by x1 = 1 has size M1 < 2. Thus, 
M = M0 + M1 < 4 and A2(5, 3) < 4. On the other hand, the code 
C = {00000, 11100, 00111, 11011} has minimum distance d(C) = 3, and 
so A2(5, 3) > 4, proving the result. ■ 

As you might imagine, the approach used in the proof of Theorem 
4.7.2 will not go very far in determining values of A 2(n, d), and much 
more sophisticated methods are needed. Unfortunately, very few actual 
values of A 2(n, d) are known. Toble 4.7.1 summarizes most of our current 
knowledge. In some cases where we do not know precise values, a range 
of values is indicated. For instance, the entry 72-79 means that 72 < 

A2(10, 3) ~ 79. The source for this,table is Sloane (1982). 
Toble 4.7.1 contains only odd values of d. The following theorem, 

which we will prove later in this section, shows how to obtain values of 
A 2 (n, d), ford even, from this table. 

Theorem 4. 7.3 If d > 0 is even, then A 2(n, d) A2(n - 1, d - l ). □ 

As an example, A2 (9, 4) = A2 (8, 3) = 20. 



TABLE 4. 7.1 'Values of A 2 (n, d) 

n d=3 d=5 d=7 
5 4 2 -

6 8 2 -

7 16 2 2 
8 20 4 2 
9 40 6 2 
10 72-79 12 2 
11 144-158 24 4 
12 256 32 4 
13 512 64 8 
14 1024 128 16 
15 2048 256 32 
16 2560-3276 256-340 36-37 

Let us now turn to the establishment of some general results about 
the numbers Ar(n, d). Proof of the following simple result is left as an 
exercise. 

Theorem 4.7.4 

l. Ar(n, d) < rn for all l < d < n 

2. Ar(n, l) = rn 

3. Ar(n, n) = r □ 

The next result is often very useful. We leave its proof as an exercise. 

Theorem 4.7.5 For any n > 2, 

Ar(n, d) < rAr(n - l, d) □ 

In order to prove our next result, we need some definitions. 

Definition The weight w(x) of a string x in .Z~ is defined to be the 
number of nonzero positions in x. □ 

Definition The intersection x n y of two binary strings of length n is 
the binary string that has a 1 in those places for which both x and y have 
ls and has Os elsewhere. □ 

Note that the intersection x n y is formed by taking the modulo 2 
product of corresponding bits in x and y. 
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Example 4.7.4 

1. The string Oll 201021 in Z~ has weight 6. 

2. If x = llOOlO and y = lOllOO then x n y = 100000. □ 

Using the concept of intersection of strings, "Ye can express the 
distance between binary strings in terms of weight. 

Lemma 4. 7.6 If x and y are binary strings of length n, then 

d(x, y) = w(x) + w(y) - 2w(x n y) □ 

Proof Suppose that, among then places in x and y, there are au places 
in which both x and y have ls, there are a 10 places in which x has a 1 and 
y has a 0, and there are a 01 places in which x has a O and y has a 1. Then, 

d(x, y) = a10 + ao1 = (an + a10) + (an + a01) - 2an 

= w(x+) + w(y) - 2w(x n y) 

which proves the lemma. ■ 

Now we can prove the following result, which leads directly to a proof 
of Theorem 4.7.3. 

Theorem 4. 7. 7 Let d be an odd positive integer. Then a binary (n, M, d)­
code exists if and only if a binary ( n + I, M I d + I )-code exists. □ 

Proof If a binary ( n + I, M, d + I )-code C exists, then it is easy to 
construct a binary (n, M, d)-code. We simply take two codewords c and d 
in C with minimum distance d(c, d) = d + I, choose a position in which 
they differ and delete this position from every codeword in C. Since the 
shortened codewords corresponding to c and d are now at a distance d 
from each other, and no two codewords have distance less than d from 
each other, the resulting code is an (n, M, d)-code. 

As to the converse, suppose we have a (n, M, d)-code C, where d is 
odd. The code C created by adding an even parity check to C has length 
n + I and size M. Furthermore, since w(c) is even for all codewords in C, 
Lemma 4. 7.6 implies that 

- - -
d(c,d) = w(c) + w(d) - 2w(c n d) 

is even for all codewords c and d. Hence, the minimum distance d(C) is 
even. But clearly d :S d(C) :S d + I, and since dis assumed to be odd, we 
must have d(C) = d + I. Thus, C is an (n + 1, M, d + 1)-code. ■ 
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We leave a formal proof of Theorem 4.7.3 from Theorem 4.7.7 to the 
reader. 

Exercises 

1. Compµte a) w(0ll0101 ), b) w(l 20120), c) w(llll ). 

2. Compute a) 101101 n 111111 1 b) 1000 n 0111, c) 101010 n 010101 

3. Prove that d(x, y) = w(x + y) for all x, y E Z~ 1 where + is addition 
modulo 2. 

4. Find the transmission rate and the error-correction rate of the Golay 
codes. 

5. Find the transmission rate and the error-correction rate of the Reed-
Muller codes. 

6. Verify that A2(6, 5) = 2. 

7. Verify that A2(7, 5) = 2. 

8. Show that A2(8, 5) = 4. 

9. Show that A2(6, 3) = 8. 

10. Prove that Ar(n, d) < rn for all l ::; d < n. 

11. Prove that Ar(n, 1) = rn. 

12. Prove that Ar(n, n) = r. 

13. Is it true that we can construct a code of minim um distance dby taking 
any code of minimum distanced+ 1 and adding an appropriate word 

or words to it? 

14. Show that if e < d then Ar(n, e) > Ar(n, d). 

15. Prove that if d > 0 is even, then A2(n1 d) = A2(n - 1, d - 1 ). 

16. Prove that 

Ar(n, d) < rAr(n - 1, d) 

for any n > 2. Hint: let C be an (n, M, d)-code, where M = Ar(n, d) 

and let us assume for concreteness that the code alphabet is Zr = 
{0, 1, ... 1 r - l}. Among the r distinct cross-sections Ck defined by 
x1 = k, fork = 01 ••• r - 1, one of them has size at least Mir. 
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17. Show that ifthere exists a binary (n, M, d)-code with d even, then there 
also exists a binary (n, M, d)-code in which all codewords have even 
weight. Hint: use Theorem 4.7.7. 

18. Show that Ar(3, 2) = r 2 . Hint: let C be an optimal code and consider 
the cross-sections x1 = k, where k = 0, l, ... , r - l. What are the 
parameters of these cross-sections? 

19. Let C be an (n, M, d)-code 

(a) If C is not maximal, is it always possible to add codewords to C 
until the resulting code is maximal? 

(b) If C is not optimal, is it always possible to add codewords to C until 
the resulting code is optimal? 

(c) Give an example of a code that is maximal but not optimal. 

4.8 Sphere-Covering and Sphere-Packing 
Bounds 

Let us now tum our attention to some upper and lower bounds on the 
numbers Ar(n, d) that arise from considering spheres in Z~. 

Let C = {c1, c2 1 ••• 1 CM} be an optimal r-ary (n, M, d)-code over Zr. 
Thus M = Ar(n, d). Because Chas maximal size, there can be no string 
in Z~ whose distance from every codeword in C is at least d. For if there 
were such a string, we could simply add it to C, and thereby obtain an 
(n, M + 1, d)-code. 

Thus, every string in Z~ has distance at most d-1 from some codeword 
in C and so every string in Z~ is contained in at least one of the spheres 
S~(ci, d - l). For this reason, we say that the spheres S~(ci, d - l) cover 
the set Z~, in symbols 

M' 
zn cu Sn(c. d - l) r - r II 

i= 1 

Since IZ~I = rn, taking sizes in (4.8.1) gives 

M 

rn :S I LJ S~( Ci, d - l) I 
i = 1 

(4.8.1) 
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M 

< L IS~(ci, d - 1)1 
i = l 

M 

= Lv;(d-1) = v;(d-I)·M 
i = l 

Dividing both sides of this by v;(d - 1) gives 

rn 
----<M 
Vf(d-1)-

Since M = Ar(n, d), we arrive at the fo11owing result, ca11ed the sphere­
covering bound for Ar(n, d). 

Theorem 4.8.1 (The sphere-covering bound for Ar(n, d)) If v;(p) denotes 
the volume of a sphere of radius pin Z~, then 

rn 
---<A(nd) 
Vf(d-1) - r , □ 

The sphere covering bound is a lower bound for Ar(n, d). We can derive 
an upper bound for Ar(n, d) by similar methods. In particular, let C = 

{c1, c2, ... , cM} be an optimal (n,M, d)-code, and set e = Ld;1 J. Since the 
packing spheres S~(ci, e) are disjoint, we have 

M 

L IS~(ci, e)I < IZ~I 
i= l 

and since 1s;(ci, e)I = v;(e), this is equivalent to 

v;1(e) · M < rn 

Dividing by v;(e) gives 

rn 
M<-­

- v;ce) 

Since C is optimal, M = Ar(n, d) and so 

rn rn 
A(nd)<--=----

r I -v;ice) v;icLd;lj) 

This inequality is known as the sphere-packing bound for Ar(n, d). 
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Theorem 4.8.2 (The· sphere-packing bound for Ar(n, d).) If v;(p) 
denotes the volume of a sphere of radius p in Z~, then 

□ 

Combining the sphere-covering and sphere-packing bounds for 
Ar(n, d) gives 

Table 4.8.l(a-b) shows some computer generated values of these 
bounds for A 2(n, d), along with actual known values of A 2(n, d). We have 
taken advantage of the fact that A 2(n, d) is an integer to round up the 
lower bound and round down the upper bound. It is interesting to no­
tice that the sphere-packing upper bound tends to be much closer to the 
actual value than the sphere-covering lower bound. 

TABLE 4.8.1 (a) Bounds for A 2(n, 3) 

n lower actual upper 
5 2 4 5 
6 3 8 9 . 

7 5 16 16 
8 7 20 28 
9 12 40 51 
10 19 72-79 93 
11 31 144-158 170 
12 52 256 315 
13 155 512 585 
14 155 1024 1092 
15 271 2048 2048 
16 479 2560-3276 3855 
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TABLE 4.8.1 (b) Bounds for A 2(n, 5) 

n lower actual upper 
5 2 2 2 
6 2 2 2 
7 2 2 4 
8 2 4 6 
9 3 6 11 

10 3· 12 18 
11 4 24 30 
12 6 32 51 
13 8 64 89 
14 12 128 154 
15 17 256 270 
16 27 256-340 478 

Exercises 

1. What is the relationship between the sphere-packing bound and the 
sphere-packing condition? 

2. We have seen in Theorem 4.7.2 that A 2(5, 3) = 4. What does the 
sphere-packing bound give? How does this relate to existence of codes 
for solutions to the sphere-packing condition? 

3. Compute the sphere-packing and sphere-covering bounds for A2(7, 3). 

4. Compute the sphere-packing and sphere-covering bounds for A2(10, 5). 

5. Compute the sphere-packing and sphere-covering bounds for A2(13, 7). 
Compare with the values from Toble 4.8.1. 

6. Compute the sphere-packing and sphere-covering bounds for A2(14, 7). 
Compare with the values from Toble 4.8.1. 

7. Compute the sphere-packing and sphere-covering bounds for A2(15, 7). 
Compare with the values from Toble 4.8.1. 

8. Is there a binary (8,29,3)-code? Explain. 

9. Show that Ar(r + 1, 3) < rr-I. 
2 r-2 

10. Show that Ar(r + 1, 5) < ;_1 . 
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4.9 The Singleton and Plotkin bounds 

The sphere-packing bound is not the only useful upper bound on the 
values of Ar(n, d). In this section, we consider two additional bounds. 

Theorem 4.9.1 (The Singleton bound) 

Ar(n, d) < rn-d+l □ 

Proof Let C be an (n, M, d)-code. If we remove the last d - 1 positions 
from each codeword in C, the resulting shortened codewords must all 
be distinct. For if any two were identical, the original codewords could 
have differed only among their last d - 1 places, and hence would have 
a distance at most d - 1. Thus, there are as many shortened codewords 
as original codewords. But the number of shortened codewords is at most 
rn-(d-l) = rn-d+l _ Hence, Ar(n, d) = M < rn-d+l _ ■ 

Example 4.9.1 According to the Singleton bound, 

Ar(4, 3) < r 2 

On the other hand, the sphere-packing bound is 

r4 
Ar( 4, 3) < 4r _ 3 

Thus, for r > 4, the Singleton bound is much better than the sphere­
packing bound. □ 

In order to derive our final upper bound, we require the following 
lemma, whose proof is left as an exercise. 

Lemma 4.9.2 Let M be a positive integer. As k ranges over the integers 
from Oto M, the maximum value of f(k) = k(M - k) is M 2 / 4 when Mis even 
and (M2 - 1)/4 when Mis odd. . □ 

' 
Now let C = {c1, Cz, ... , cM} be a binary (n, M, d)-code, and consider 

the sum 

S = L d(ci, cj) 
i<j 

This is the sum of the distances between all pairs of codewords in C. 
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On the one hand, since d(ci, CJ) > d(C) = d, for all codewords ci and 
Cj, and since there are (~) pairs of codewords in C, we have 

S = ~d(ci, cj) ~ d(~) (4.9.1) 
l<) 

On the other hand, let us compute the sum S by looking at each 
position. Suppose the codewords in C have the form 

C1 = CnC12 · • • C1n 

C2 = C21 C22 · • • Czn 

Consider the first positions en, c21 , ... , cM1 from each codeword. If k 
of these bits are equal to 1, and M - k are equal to 0, then these bits will 
contribute exactly k(M - k) to the sum S. Now, according to Lemma 4.9.2, 
if M is even, then k(M - k) :::: M2 / 4 and if M is odd, then k(M - k) < 

(M2 - 1)/4. 
Of course, there is nothing special here about the first position, and 

we can make the same deductions for any of the n positions. Hence, the 
total contribution of all positions to the sum S is at most n(M2 / 4) for M 
even and n((M2 - 1 )/ 4) for M odd. Thus, 

for M even 

for M odd 

Putting this together with (4.9.1), we see that 

for M even 

for M odd 

After some algebraic simplification, we get, for n < 2d, 

M < -n { 
2d

2d for M even 

- 2J~ 1 - n for M odd 
(4.9.2) 

Bearing in mind that M is an integer, these can be combined into a single 
bound. (Yve leave the details of this as an exercise.) 
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TABLE 4.9.1 

Actual value Plotkin bound Sphere-packing bound 
n of A2(n, 7) on A2(n, 7) on A2(n, 7) 
7 2 2 2 
8 2 2 2 ' 
9 2 2 3 
10 2 2 5 
11 4 4 8 
12 4 4 13 
13 8 8 21 
14 16 16 34 
15 32 32 56 

Theorem 4.9.3 If n < 2d, then 

A,(n,d) < 2 l2d ~ nj □ 

Finally, this can be improved and extended somewhat by separating 
the cases where d is even and d is odd. We leave the details of this as an 
exercise as well. 

Theorem 4.9.4 (The Plotkin Bound) 

1. If d is even, then, for n < 2d, 

and for n = 2d, 

A 2 ( n, d) ~ 2 l d j 
2d-n 

A2(2d, d) = 4d 

(b) If dis odd, then, for n < 2d + 1, 

: l d+l j A2(n, d) < 2 
2d + 1 - n 

and for n = 2d + 1, 

A2(2d + l Id) < 4d + 4 □ 

Table 4.9.1 shows some values of the Plotkin bound, along with the 
sphere-packing bound. Although the Plotkin bound holds only for a rather 
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restricted range of values for n, it seems superior to the sphere-packing 
bound in that range. In fact, (as the table suggests) it is thought by some 
coding theorists that the Plotkin upper bound actually gives the true value 
of A 2(n, d) for n ~ 2d + 1, but this has not been proven. 

Exercises 

1. Show that A10(10, 3) < 100,000, 000. (See Example 4.4.4.) 

2. Compare the Singleton, Plotkin, and sphere-packing upper bounds for 
A2(7, 5). 

3. Compare the Singleton, Plotkin, and sphere-packing upper bounds for 
A2(8, 5). 

4. Compare the Singleton, Plotkin, and sphere-packing upper bounds for 

A2(9, 5). 

5. Compare the Singleton, Plotkin, and sphere-packing upper bounds for 
A2(15, 9). 

6. Write a computer program to compare Singleton, Plotkin, and sphere-
packing upper bounds for various parameters. 

7. Prove Lemma 4.9.2. 

8. Verify the inequalities in ( 4.9.2). 

9. Show that (4.9.2) leads to the Plotkin bound. 

10. The Plotkin bound can be improved and extended slightly by 
separating the cases where dis even and dis odd. 

(a) Show that, if d is even, then A 2(2d, d) = 4d. Hint: use Theorem 

4.7.5. 

(b) Show that, if dis odd and 2d > n - 1, then 

l d + 1 j 
A 2(n, d) ~ 2 d 

2 + 1- n 

(c) Show that if dis odd, then A2(2d + 1, d) ~ 4d + 4. 
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4.10 Information Theory Revisited-the 
Noisy Coding Theorem 

It is sometimes said that there are two main results in Information The­
ory. One is the Noiseless Coding Theorem, which we discussed in Chapter 
3, and the other is the so-called Noisy Coding Theorem, which we will now 
discuss. Both of these theorems were first presented by Claude Shannon 
in 1948. Since the Noisy Coding Theorem is far more complicated than its 
noiseless counterpart, we must be content to state without proof a simple 
version of the theorem. 

Recall that the transmission rate of an r-ary (n, M)-code C is defined 
by 

log M 
R(C) = r 

n 

and that this number is a measure of the efficiency of transmission of 
source data. 

Roughly speaking, the Noisy Coding Theorem says that, ifwe choose 
any transmission rate below a certain number, called the capacity of the 
channel, there exists a code that can transmit at that rate, and yet maintain 
an error probability P(decoding error) below some predefined limit. The 
price we pay for this efficient encoding is that the code size n may be 
extremely large. Furthermore, the known proofs of this theorem are not 
constructive. In other words, they tell us only that such a code must exist, 
but do not show us how to actually find these codes. 

For a binary symmetric channel with crossover probability p, the 
capacity is 

C(p) = 1 + plgp + (1 - p)lg (1 - p) 

where lg is the logarithm base 2. Let us formally state the Noisy Coding 
Theorem for binary symmetric cliannels. 

Theorem (The Noisy Coding Theorem for Binary Symmetric Channels) 
Consider a binary symmetric channel with crossover probability p and capac­
ity C(p). If R < C(p), then for any E > 0, there exists, for n sufficiently large, 
an ( n, M)-code C whose transmission rate is at least R, and for which 

P(decoding error) < E □ 
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For instance, when p = 0.01, we have C(0.01) = 0.919, and so we 
may transmit at a rate of almost 92 % , while at the same time keeping the 
probability of error as low as desired, that is, provided we are willing to 
make n and Mas large as required. 

Finally, we note that the Noiseless Coding Theorem holds for more 
general types of channels but, in general, it is very difficult to determine 
the capacity of an arbitrary channel. 





Linear Codes 
CHAPTER 

5.1 The Vector Space z; 
In this section, we discuss some basic notions of linear algebra from the point 
of view of coding theory. It is not our intention here to be complete, but only to 
cover those notions that are needed in this book. Also, all proofs are omitted. (It 
is hoped that the reader will supply proofs modeled after those from a standard 
linear algebra text.) Readers who have studied linear algebra should find most 
of these notions to be familiar, but we suggest reading this section carefully in 
any case. 

In this chapter, we study a special class of codes known as linear codes. 
Linear codes have several advantages over other (nonlinear) codes. In 
general, they are easier to describe than other codes, nearest neighbor 
decoding is easier to implement, and the coding and decoding of source 
messages is easier. For these reasons, linear codes are the most widely 
studied types of codes. 

In addition, the code alphabet of a linear code is a field. This offers 
the advantage that code symbols can be added and multiplied. 

It was mentioned in Chapter 1 that there is an essentially unique field 
Fq of size q for every prime power q = pm. However, for m > l, the fields 
Fq are more difficult to work with than the fields of prime size (when 

149 
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m = l ). In particular, if p is a prime, then Fp is just the integers modulo p 

Fp = Zp = {0, 1, 2, ... ,P - 1} 

However, ifn is not a prime, then Zn is not a field. Hence, Fq is not Zn, For 
instance, the field F4 is best represented in the abstract form {0, 1, a, a 2} 

where a3 = l and a + a 2 = 1. 
Since fields of non prime size are somewhat more complicated, we will 

restrict attention to the fields Zp. This costs us little since, for instance, 
while the Hamming codes are defined for all prime powers, the binary 
codes are the most important; the Golay codes are binary or ternary; the 
Reed-Muller codes are binary; and decimal codes are derived from codes 
over Zn. 

We can define two operations on the set z; of strings of length n 
over Zp. Addition modulo p is extended to strings simply by adding cor­
responding elements. In particular, if u = u1 Uz · · · Un and v = v1 v2 • · · Vn 
are strings in z;, then 

U + V = U1U2···Un + V1V2···Vn = (U1 + V1)(u2 + V2)··•(un + Vn) 

where the parentheses indicate juxtaposition. We can also multiply a 
string by a single code symbol. In particular, if a E Zp and u = 
U1U2 •··Un E z;, then 

au = a· (u1 U2 ···Un) = (au1)(au2) · · · (aun) 

In this context, the element a is called a scalar and the operation is 
known as scalar multiplication. 

Example 5.1.1 In Zj, 

1201 + 1212 = (1 + 1)(2 + 2)(0 + 1)(1 + 2) = 2110 

and 

2 · (1212) = (2 · 1)_(2 · 2)(2 · 1)(2 · 2) = 2121 
. ' □ 

The set z;, together with the operations of addition and scalar multi-
plication defined above, forms an algebraic structure known as a vector 
space. Let us give a formal definition. 

Definition Let F be a field ( such as Zp for p prime). A vector space 
over F is a nonempty set V, together with two operations defined as 
follows. One operation, called addition and denoted by +, is a binary 



operation on V. The other operation, called scalar multiplication and 
denoted by juxtaposition, is a function from :F x V to V (thus, we denote 
the scalar product of a E F and x E V by ax). Furthermore, these two 
operations satisfy the following conditions: 

Associative property: For all x, y, and z in V, 

X + (Y + z) = ( X + y) + z 

Commutative property: For all X and yin V, 

x+y=y+x 

Property of the zero vector: There exists an element O E V, called the 
zero vector, such that, for all x in V, 

O+x=x+O=x 

Property of negatives: For any x E V, there exists another element of 
V, denoted by -x and called the negative of x, for which 

x + ( - x) = ( - x) + x = 0 

Properties of scalar multiplication: For all x and yin V, and all a and fJ 

in:F, 

a(x + y) = ax + ay 

( a + fJ)x = ax + {Jx 

( afJ)x = a(fJx) 

lx = x □ 

If V is a vector space over a field :F, we refer to the elements of V as 
vectors and the elements of :F as scalars. The field :F is called the base 

field of V. 

Theorem 5.1.1 If p is a prime number, the set z; of all strings of length 
n over Zp, together with the operations of addition and scalar multiplication 

defi.ned earlier, is a vector space over Zp. □ 

Since each element of Z2 is its own negative, subtraction is the same 
as addition; that is, a - fJ = a + fJ for a,{J E Z2 . This property carries over 
to binary strings as well. In particular, 

x-y=x+y 
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for all x, y E Z~. Note that this holds in z; if and only if p = 2. Also, it is 
useful to note that, when the base field is Z2 = {O, 1}, scalar multiplication 
in Z~ is essentially trivial, since 

Ox = 0 and lx = x 

Subspaces of z; 
Since we are assuming that all p-ary codes have code alphabet Zp, a p-ary 
code C oflength n is just a nonempty subset of the vector space z;. It is 
a natural step to consider codes that are vector spaces in their own right. 
If you have studied vector spaces before, then you are no-doubt familiar 
with the following concept. 

Definition A nonempty subset S of z; is called a subspace of z; if the 
set S, together with the operations of addition and scalar multiplication 
inherited from z;, is itself a vector space. □ 

In order to tell whether a subset S of z; is a subspace using the def­
inition, it would be necessary to check each of the properties in the 
definition. However, there is a much simpler way. 

Theorem 5.1.2 A nonempty subset S of z; is a subspace of z; if and only 
if it satisfies the following two properties 

1. (closure under addition) 

x, y ES implies x + y ES 

2. ( closure under scalar multiplication) 

a E Zp, x E S implies ax E S □ 

In the language of codewords, a code C oflength n over Zp is a subspace 
of z; if the sum of two codewords is another codeword and if any scalar 
multiple of a codeword is another codeword. 

Note that, since a subspace S of z; is nonempty by definition, it con­
tains a string x. Hence, since S is closed under scalar multiplication, it 
must also contain the zero string Ox = 0. 

Note also that, when the base field is Z2 , all nonempty subsets ofZ~ are 
closed under scalar multiplication (but not necessarily under addition). 
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Example 5.1.2 To show that the subset S = {0000, 0100, 0010, 0110} of 
Zi is closed under addition, note that the sum of the zero string and any 
other string in S is clearly in S. In addition, since x + y = y + x, only 
one of these sums need be checked. The remaining possibilities are as 
follows 

0100 + 0010 = 0110 ES 

0100 + 0110 = 0010 E S 

0010 + 0110 = 0100 ES 

Hence, Sis closed under addition. Since the base field is Z2 , closure under 
scalar multiplication is automatic. Thus, S is a subspace of Z~. □ 

Example 5.1.3 The subset T = {0000, 0001, 1000, 0110} of Zi is not 
closed under addition because, for instance, 0001 E T and 1000 E T 
but 0001 + 1000 = 1001 e T. Thus, Tis not a subspace of Zi. □ 

Example 5.1.4 The set S = {000, 100,200,001, 002, 101, 102, 201, 202} is 
a subspace of Zi. It is easy to check that S consists of all strings in Zi of 
the form aO{J, where a and fJ range over the set of scalars Z3 = {0,1,2}. In 
symbols, 

Now, if x and y are in S, then x = a 10/31 and y = a20/J2, whence 

Similarly, 

for any a E Z3. Hence, S is closed under addition and scalar 
multiplication, and so it is a subspace ofZi. D 

Example 5.1.5 The set S = {O}, consisting of just the zero string is a 
subspace ofz;. Also, the set z; is a subspace ofitself. Verification of these 
facts is left as an exercise. D 
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Bases 

One of the most useful features of subspaces of z; is that it is possible to 
describe a subspace without having to list all ofits elements. The following 
definitions will help clarify this. 

' Definition Let x 1, x 2 , ... , xk be strings in z;, and let a1,a2, .. . ,ak be 
scalars (i.e., elements of Zp)- The string a 1x1 + a 2x 2 + · · · + akxk is 
called a linear combination of the strings x 1,x2, .. . ,xk, with coefficients 
a 1,a2, .. . ,ak, 

If all of the coefficients a 1 ,a2, ... ,ak are equal to 0, then we say that 
the linear combination a 1x 1 + a 2x 2 + · - · + akxk is trivial. Otherwise, it 
is nontrivial. □ 

Example 5. 1.6 In zt the string x = 2(010) + 121 + 3(140) = 411 is a 
(nontrivial) linear combination of 010, 121 and 140, with coefficients 2, 1 
and 3, respectively. □ 

The elements of the subspace 

S1 = {000,100,200,001,002, 101,102,201,202} 

of zt encountered in Example 5.1.4, can be described in terms of linear 
combinations as follows 

Because of this, we say that the set G1 = {100,001} generates the 
subspace S1. 

Definition Let S be a subspace of z;. A subset G c S is called a gener­
ating set for S if every string in Scan be expressed as a linear combination 
of the strings in G. More formally, a subset G = {g1 , ... , gd of Sis a gen­
erating set for S if, for any x E S, there exists scalars a 1, ... , ak E Zv for 
which 

To indicate that G = {g1, ... , gd is a generating set for S, we write S = (G) 
or S = (g1, ... , gk). D 

Example 5.1.7 The subset G = {0100, 0010} is a generating set for the 
subspace S = {0000,0100,0010,0110} of zt since any string in S can be 
written as a linear combination of strings in G. In particular, for the strings 
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not in G itself; we have 

0000 = 0100 + 0100 

and 

0110 = 0100 + 0010 

(Any string in G is clearly a linear combination of strings in G.) Hence, 

G = (0100, 0010} 

Notice that H = {0100, 0110} is also a generating set for S, but that 
K = {0000, 0100} is not a generating set, since there is no way to express 
the string 0010 as a linear combination of 0000 and 0100. □ 

As the next theorem states, any nonempty set of strings in z; is a 
generating set for some subspace of z;. 
Theorem 5.1.3 Let G be a nonempty set of strings in z;. The set of all 
linear combinations of strings in G is a subspace of z;, called the subspace 
generated by G, or the subspace spanned by G, and denoted by ( G}. □ 

It is not difficult to see that G1 = {100,001} and G2 = {100,001,101} 
are both generating sets for the subspace S = {000, 100,001,101} of Z~. 
However, G1 is a proper subset of G2 , and so, in some sense, it provides a 
more efficient description of S than does G2 • This leads to the following 
definition. 

Definition Let S be a subspace of z;. A generating set B of S is said 
to be a basis for S if it is a minimal generating set, in the sense that no 
proper subset of B also generates S. □ 

Example 5.1.8 The set B = {100,001} is a basis for the subspace S = 
{000, 100,001,101} of zr This follows from the fact that Bis a generating 
set for S and no proper subset of Bis a generating set for S. (The nontrivial 
proper subsets of B are { 100} and { 001}, and neither of these sets generate 
all of S.) □ 

Example 5.1.9 The set B = {e1 , e2 , e3 , e4 } = {1000, 0100, 0010, 0001} is a 
basis for Zi. This follows from the fact that any string x = u 1 Uz U3 U4 in Zi 
can be written in the form 

X = U1 (1000) + Uz(Ol00) + U3(0010) + U4(0001) 
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Hence, B is a generating set for zt On the other hand, it is easy to see 
that no proper subset of B can generate all of zt Hence, B is a basis for 
zt 

More generally, if ei denotes the string in z; with zeros in every po­
sition except the ith, where it has a l I then B = {e11 e 2 , ... , en} is a basis 
for z;. It is known as the standard basis for z;. ' □ 

One of the best ways to describe a subspace S of z; is to give a basis 
for it. Loosely speaking, a basis consists of "just enough" strings to de­
scribe all of the strings in S1 through linear combinations. However, it is 
important to keep in mind that, while any nonempty set of strings in z; 
is a generating set for some subspace of z; 1 not all sets of strings qualify 
to be bases. To explore this issue further, we require a definition. 

Definition The strings x 1 ,x2, .. . ,xk in z; are said to be linearly inde­
pendent over Zp if no nontrivial linear combination of these strings is 
equal to the zero string. In symbols, the strings x 1 ,x2, .. . ,xk are linearly 
independent if the equation 

holds only when a1 = 0, a2 = 0, ... 1 ak = 0. 
If x1,x2, .. . ,xk are not linearly independent over Zp, they are lin­

early dependent over Zp. Thus, x 1,x2 , .. . ,xk are linearly dependent if 
the equation 

holds for some set of coefficients, at least one of which is not zero. □ 

It is important to emphasize that when we say that a set of strings is 
linearly independent or dependent, we must specify the base field. For 
instance, the set {12,21} is linearly independent over Z5 but it is linearly 
dependent over Z3! (Check this for yourself.) Having said this, it is cus­
tomary, when the context is perfectly clear, to simply say that a set is 
linearly independent or linearly dependent. 

If the elements of the set S = {x1 , x 2 , ... , xk} are linearly independent, 
it is also customary to say that the set S is linearly independent. 

In order to determine whether strings x 1 ,x2 , .. . ,xk oflength n are lin­
early independent or linearly dependent, one usually starts by writing 
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the equation · 

and solving for the coefficients a 1 ,a2 , •• • ,ak. This generally leads to a sys-
tem of n equations in the k unknowns a 1,a2, .. . ,ak. If the only possible 
solution to this system is a 1 = 0, a 2 = 0, ... , ak = 0, then the strings 
are linearly independent. However, if there is a nonzero solution to the 
system, then the strings are linearly dependent. The following example 
illustrates the technique. 

Example 5.1.10 Consider the strings 1000, 1010, and 0110 in zt Suppose 
that 

(5.1.1) 

This equation can be simplified to 

a1000 + a20a20 + 0a3a30 = 0000 

or 

But two strings are equal if and only if corresponding elements are equal. 
Hence, this is equivalent to the system of equations in Z2 

a1 + a2 = 0 

a3 = 0 

a2 + a3 = 0 

The second of these equations tells us that a3 = 0. Combining this with 
the third equation shows that a 2 = 0. Then the first equation shows that 
a 1 = 0. Thus, the only way (5.1.1) can hold is if a1 = a2 = a3 = 0, and 
so the strings are linearly independent. 

On the other hand, consider the strings 1000, 1010, and 0010. The 

equation 

(5.1.2) 

This is equivalent to 
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or 

which holds if and only if a 1 , a 2 , and a 3 satisfy the system of equations 

a1 + a2 = 0 

a2 + a3 = 0 

But, this system is satisfied by a 1 = 1, a 2 = 1, a3 = 1. (Recall that, in zt 
1 + 1 = 0.) Since these numbers are not all zero, the strings are linearly 
dependent. Substituting these values into (5.1.2) gives 

1000 + 1010 + 0010 = 0000 □ 
Let us make a couple of remarks about solving systems of linear 

equations. You probably have experience in solving such systems, using 
Gaussian elimination (alias row reduction) for systems whose coefficients 
are real numbers. Fortunately, the properties of the real numbers that are 
used to justify Gaussian elimination apply when the coefficients come 
from any field. Thus, for instance, to solve the system of equations 

2x +y = 1 

x-y = 4 

over the field Zs, we first multiply the first equation by the inverse of 2, 
which is 2- 1 = 3 (since 2 • 3 = 1 modulo 5), to get 

X + 3y = 3 

x-y = 4 

Next, we subtract the first equation from the second, 

X + 3y = 3 

:-4Y = 1 . ' 
Since -4 = 1 in Zs, the second equation is just y = 1. Substituting this 
onto the first equation and solving gives x = 3 - 3y = 3 - 3 = 0. Low 
and behold, x = 0, y = 1 is actually a solution to the original system, 
although it may not look like it at first glance! 

The following theorem gives various ways to describe a basis, 
including the definition. 
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Theorem 5.1'.4 Let S be a subspace ofz;. A subset B = {x1, x 2 , . .. , xk} of 
S is a basis for S if and only if any one of the following equivalent conditions 
holds. 

l. (The definition) B is a minimal generating set for S. 

2. Bis linearly independent and a generating set for S. 

3. B is a maximal linearly independent set in S, that is, B is linearly 
independent and no proper superset of B is linearly independent. 

4. For every xES, there are unique scalars a 1 , ... , ak in Zp for which 

(note the word unique). □ 

Theorem 5.1.4 has some very important and useful consequences, 
two of which are described in the next theorem. 

Theorem 5.1.5 Let S be a subspace of z;. 
l. Any generating set G for S contains a basis for S1 that is, some subset of 

G is a basis for S. 

2. Any linearly independent subset A of S can be extended to a basis for S, 
that is, A is contained in a basis for S. □ 

In trying to show that a given set of strings is (or is not) a basis for 
a vector space, any of the equivalent conditions in Theorem 5.1.4 may 
be used. For instance, if B is a linearly independent set of strings in z; 
and if V = (B) is the subspace of z; generated by B, then B satisfies 
condition 2) of Theorem 5:1.4 and is thus a basis for V. In words, any 
linearly independent set of strings is a basis for the subspace generated by 
those strings. 

Example 5.1.11 Since the set B = {1000, 1010, 0ll0} is linearly 
independent (Example 5.1.10) and since B generates the subspace 

S = {0000,1000,1010,0110,0010,1110,1100} 

of Z~, it follows that Bis a basis for S. 
On the other hand, since D = {1000, 0ll0, Olll, lll0} is not linearly 

independent (1000 + 0ll0 + lll0 = 0000), it is not a basis for any subspace 
of z;. However, removing the string lllO gives 

E = {1000, 0ll0, Olll} 
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which is linearly independent and generates (D) (why?). Hence, E is a 
basis for (D). □ 

Example 5.1.12 To determine whether the set B = {111,123, Oll} is a 
basis for Z~, we may use condition 4) of Theorem 5.1.4. Let x = X1X2X3 

be any string in Z~ and set 

a1lll + a2l23 + a30ll = X1X2X3 

We must show that there is a unique solution a 1 ,a2,a3 to this equation. 
This equation can be written 

(a1 + a2)(a1 + 2a2 + a3)(a1 + 3a2 + a3) = X1X2X3 

which is equivalent to the system 

a1 + a2 = X1 

a1 + 2a2 + a3 = X2 

a1 + 3a2 + a3 = X3 

Subtracting the first equation from the others gives (in Z5) 

a1 + a 2 = X1 

a2 + a3 = 4x1 + X2 

2a2 + a3 = 4x1 + X3 

Subtracting twice the second equation from the third gives 

a1 + a2 = X1 

a2 + a3 = 4x1 + X2 

4a3 = X1 + 3x2 + X3 

Solving these equations from the bottom up gives 

a3 = 4-1cx1 + 3x2 + X3) = 4X1 + 2x2 + 4X3 

and 

and finally 

a1 = X1 - a2 = X1 + X2 + 4X3 

(5.1.3) 

(5.1.4) 

(5.1.5) 

(5.1.6) 

(5.1.7) 

(5.1.8) 

(5.1.9) 

(5.1.10) 

(5.1.11) 

Thus, there is a unique solution to this system and B is indeed a basis 
for~. 0 
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A subspace S of z; may have more than one basis. However, it is a 
remarkable fact that all bases of a given subspace have the same size. Thus, 
for instance, since G = {100,001} is a basis of S = {000, 100,001,101} (see 
Example 5.1.8), all bases of Swill have size 2. This allows us to make the 
following definition. 

Theorem 5.1.6 Let S be a subspace of z;. Then all bases for S have 
the same ,5ize. This size is called the dimension of S and is denoted by 
~m~. □ 

Example 5.1.13 

1. The subspace S of Example 5.1.8 has dimension 2. 

2. Since the standard basis B = {e 1, e2 , ... , en} has size n, we have 
dim(Z;) = n. Note that the dimension of z; is the same for all values 
of p, but the size pn of z; depends on both n and p. □ 

Generally speaking, to determine whether or not a subset B of a sub-
space S is a basis for S, we need to check two conditions-B must be 
linearly independent and it must generate S. The next theorem says that 
if B has the right size, then we need only check one of the two conditions. 

Theorem 5.1. 7 Let S be a subspace ofz; of dimension k. A subset B of S 
is a basis for S if and only if either of the following two equivalent conditions 
holds. 

1. B has size k and it is linearly independent. 

2. B has size k and generates S. □ 

This theorem would certainly have come in handy in Example 5.1.13. 
In particular, since dim(Z~) = 3 and since /Bl = 3, we need only check 
that B is linearly independent. In particular, we need only solve the 
system (5.1.4) when x1 = x2 = x3 = 0, which is considerably easier! 

Exercises 

1. Show that aO = 0 for any a E ZP. Show also that if ax = 0 for some 
a E Zp and x E z;, then either a = O or x = 0. 

2. Show that if a subset S of z; contains the zero string, then S must be 
linearly dependent. 
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3. Show that the set· S = {O}, consisting of just the zero string is a 
subspace of z;. Show that z; is a subspace of itself. 

4. Prove that every vector in z; has a negative. 

5. If we define multiplication of strings in z; by 

(u 1 • · · Un)(v 1 • · · Vn) = (u1 vi)··· (unvn) 

show that the product of two nonzero strings may be the zero string. 

6. Determine whether the following subsets are subspaces. 

(a) S = {000, 100,200,010,020, ll0, 120,210,220} C Z~. 

(b) S = {123,456,579} C Zr1 . 

(c) S = {000, 123,241,314,432} CZ~. 

7. Is the set E of all binary strings in Z~ with even weight a subspace of 
Z~? What about the set O of all binary strings of odd weight? What if 
the strings are not binary? 

8. Is the set S = {x E Z~ I first element of xis O} a subspace of zq? 

9. Is the set S = {x E Z~ I first element of x is 1} a subspace of Z~? 

10. Is the sets = {x = X1 ... Xn E z; I X1 = Xn} a subspace of z;? 

ll. Is the set S = {x = X1 · · · Xn E z; I X1 + X1 = O} a subspace of z;? Does 
it matter whether or not p = 2? 

12. Write out all of the elements of the set (lll, 101, 0ll} c zr 

13. Write out all of the elements of the set (1402} c Z~. 

14. Solve the following system over Z2 

a1 + a2 + a3 = 1 

a2 - a3 = 0 

ct1 + a2 = 1 

15. Solve the following system over Z2 

a1 + a2 + a3 = 1 

a2 - a3 + a4 = 0 

a1 + a2 = 1 

16. Solve the following system over Z3 
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a 2 - 2a3 = l 

2a1 + a 2 = l 

17. Solve the following system over Z5 

a1 + a2 + a3 = l 

2a1 + a2 + 3a3 = 3 

3a1 + 2a2 - a3 = 4 

18. Determine which of the following subsets are linearly independent 
and which are bases. For those that are linearly dependent, find a 
basis for (S) contained in S. 

(a) S = {101, 110} C Z~ 

(b) s = { 121 , 212 l c z~ 
(c) S = {413, 134} CZ~ 

(d) S = {110, 101, 010} CZ~ 

(e) S = {1001, 1111, 1010, 1011, 0011} C Zi 

Cf) s = {120, 112, 0121 c z~ 
(g) S = {120,112,011} CZ~ 

(h) S = {1111, 1231, 0123, 1001} C Zl 
19. Prove that a subspace of z; of dimension k has size pk. 

20. Prove Theorem 5.1.1. 

21. Prove Theorem 5.1.2. 

22. Prove Theorem 5.1.3. 

23. Prove Theorem 5.1.4. 

24. Prove Theorem 5.1.5. 

25. Prove Theorem 5.1.6. 

26. Prove Theorem 5.1.7. 

5.2 Linear Codes 

We can now define the most important and most studied type of code. 
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Definition A code C c z; that is also a subspace of z; is called a linear 
code. If Chas dimension k and minimum distance d(C) = d, then C is an 
[n, k, d]-code. When we do not care to emphasize the minimum distance 
d, we use the notation [n, k]-code. The numbers n, k, and dare called the 
parameters of the linear code. □ 

Note that a linear code C, being a subspace of z;, must contain the 
zero codeword 0. 

Note also the use of square brackets in the definition above. This no­
tation applies only to linear codes, whereas the notation (n, M, d)-code 
applies to all codes. For a linear code C, we may use both notations. The 
dimension k and size M of a p-ary linear code are related by the for­
mula M = pk. To see this, let B = {x1 , ... , xk} be a basis for C, then any 
codeword x can be written in the form 

for a unique set of scalars. Hence, the association x ~ ( a 1 , ... , ak) is a 
one-to-one correspondence from C to the set D of all ordered k-tuples 
with components in Zp. Hence, 

We can summarize as follows. 

Theorem 5.2.1 A p-ary linear [n, k, d]-code has size pk and is thus an 
(n,pk, d)-code. □ 

We need not justify the importance of linear codes any further than 
saying that the Hamming codes, the Golay codes, and the Reed-Muller 
codes that we will study in the next chapter are, all linear codes. However, 
let us consider some additional examples oflinear codes. We will use these 
simple codes to illustrate various concepts in the sequel. 

. 
Example 5.2.1 The binary code' C1 = {0000, 1011, 0110, 1101} is a sub­
space of Zi and so it is a linear code. Since B = {1011, 0110} is a basis for 
C1 , it follows that dim(C1) = 2. Hence, C1 is a [4, 2)-code. 

Since the strings 0121 and 2210 are linearly independent over Z3 , they 
form a basis for a ternary [ 4, 2)-linear code 

C2 = (0121, 2210) = {a(0121) + ,8(2210) I a,,B E Z3} 
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The set B ·= {1000011, 0100101, 0010110, 0001111} is linearly indepen-
dent over Z2 and so it forms a basis for a binary linear [7, 4]-code C3 (B). 
In fact, we will see that C3 is one of the Hamming codes. □ 

Example 5.2.2 Consider the binary linear code 

C = (11001, 01101, 10100) 

Since the codewords 11001, 01101, and 10100 are not linearly independent 
over Z2, they generate a linear code of dimension less than 3. In fact, 
since B = {11001, 01101} is a maximal linearly independent subset of 
{11001, 01101, 10100}, the code Chas basis Band therefore dimension 2 
and size 22 = 4. Hence, C is a binary (5, 2]-code. In fact, since all linear 
codes contain the zero codeword, we see immediately that 

C = {00000, 11001, 01101, 10100} □ 

The Minimum Weight of a Linear Code 

In order to determine the minimum distance for an arbitrary code C 

of size M, we need to check each of the (~) distances d(c, d) between 

codewords. The next theorem shows that for linear codes, we can greatly 
simplify this task. First we need a definition, and a simple lemma. Recall 
that the weight w(c) of a word is the number of places inc with nonzero 
entries. 

Definition The weight of a code C, denoted by w(C), is the minimum 
weight of all nonzero codewords in C. □ 

Lemma 5.2.2 If C is a linear code, then 

d(c, d) = w(c - d) 

for all codewords c and d in C. □ 

Proof This follows from the fact that the codeword c - d has nonzero 
entries precisely in those places where c and d differ, that is, in d( c, d) 
places. Hence, w(c - d) = d(c, d). ■ 

Theorem 5.2.3 If C is a linear code, then d(C) = w(C). □ 
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Proof Let c and d be codewords at minimum distance d(c, d) = d(C) 
apart. Then, 

d(C) = d(c, d) = w(c - d) > w(C) 

On the other hand, since w(C) is the minimum weight in C, there must 
exist a codeword e in C for which w(e) = w(C). Hence 

w(C) = w(e) = w(e - 0) = d(e, 0) > d(C) 

Combining the two inequaltities gives d(C) = w(C), as desired. ■ 

Example 5.2.3 The linear code C1 = {0000, 1011, 0110, 1101} of Example 
5.2.1 has minimum weight 2. Hence d(C) = 2. 

To determine the minimum weight of the code C2 of Example 5.2.1, 
we need to list all 9 codewords 

C2 = (0121, 2210) = {a(0121) + ~(2210) I a,~ E Z3} 

= {0000,0121,0212,2210,2001,2122,1120,1211,1002} 

Notice that the minimum weight of C2 (and hence the minimum dis­
tance) is 2 even though the weight of each basis codeword is 3. In general, 
there does not seem to be a simple way to deduce the minimum weight 
of a code directly from the minimum weights of the codewords in a basis 
for the code. 

We will leave it as an exercise to show that the minimum weight of 
the Hamming code C3 of Example 5.2.1 is 3. □ 

It is important to emphasize that Theorem 5.2.3 holds only for linear 
codes. This theorem implies that we can detemine the minimum dis­
tance of a linear code by checking the M codeword weights, rather than 
the (~) codeword distances. This is a significant savings in time, since 
(~) is on the order of M2 • (For example, a code of size M = 10,000 has 
( 10~00) = 49,995,000 codeword pai.r~!) 

The Generator Matrix of a Linear Code 

Another advantage of linear codes is that a p-ary linear [n, k]-code C can 
be described simply by giving a basis for C, which consists of k linearly 



The Generator Matrix of a Linear Code 16 7 __________ ___:_:.___::_~~.::..:....:....:_==-::::.=...:.....:=-=-----=--=-==-=-==--=--==~--

independent codewords in C, rather than having to list all of the pk in­
dividual codewords in the code. For a binary code of dimension 301 for 
instance, a basis has size 30 but the code size is 230 = 1,073, 741 1 824. 

It is customary to put the codewords of a basis for a linear code C into 
a matrix, as described in the following definition. 

Definition Let C be a linear code, with basis B = {bi, b 21 ... 1 bk} If 

bi = b11b12 ···bin 

b2 = b2i b22 · · · b2n 

then the k x n)-matrix 

bn bi2 bin 
b2i b22 b2n 

G= 

whose rows are the codewords in B, is called a generator matrix for 
C. □ 

Example 5.2.4 The code Ci of Example 5.2.1 has basis B = {1011 1 0110} 
and so a generator matrix for Ci is 

[ 
1 0 1 

Gi = 0 1 1 

The code C2 of Example 5.2.1 has generator matrix 

[ 0 1 2 1 ] 
Gz = 2 2 1 0 

The Hamming code C3 of Example 5.2.1 has generator matrix 

1 0 0 0 0 1 1 
0 1 0 0 1 0 1 
0 0 1 0 1 1 0 
0 0 0 1 1 1 1 

The next theorem follows from the results of Section 5.1. 

□ 
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Theorem 5.2.4 Let G be a matrix with elements in Zp, Then G is a genera­
tor matrix for some linear code C over Zp if and only if the rows of G, thought 
of as strings over Zp, are linearly independent. □ 

Exercises 

1. Is the r-ary repetition code Repr(n) linear? If so, give a basis, state the 
dimension, and find the minimum weight. If not, show why not. 

2. Is the code En consisting of all codewords in Z~ with even weight 
a linear code? If so, give a basis, state the dimension, and find the 
minimum weight. If not, show why not. 

3. Let C = {x1 · · · Xn E z; I x1 = O}. Is Ca linear code? If so, give a basis, 
state the dimension and find the minimum weight. If not, show why 
not. 

4. Let C = {x1 · · ·Xn E z; I x1 = l}. Is Ca linear code? Ifso, give a basis, 
state the dimension, and find the minimum weight. If not, show why 
not. 

5. Prove that, if c and d are binary strings, then w( c + d) is even if and 
only if w(c) and w(d) have the same parity. Is this true for nonbinary 
strings? 

6. Show that if C is a binary linear [n, k, d]-code, then the code C ob­
tained by adding an even parity check to C is also linear. What are the 
parameters [ri,k,d] of C? 

7. Prove that for a binary linear code C, either all of the codewords have 
even weight or else exactly half of the codewords have even weight. 
Is a similar statement true for ternary linear codes? 

8. Find three distinct bases for the binary linear code C = (111, 101,010). 

9. Find a basis for the binary linear code C = (11111, 11101, 00110, 00100). 

10. Write out all of the codewords for the binary code with generator 
matrix 

c-[~ ~ ~] 
and find the parameters of the code. 
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11. Write out 'all of the codewords for the binary code with generator 
matrix 

[ 
1 0 0 1 0 0 1 ] 

G= 0 1 0 1 0 1 1 
0 0 1 0 1 1 1 

and find the parameters of the code. 

12. Write ·out all of the codewords for the ternary code with generator 
matrix 

G=[O 1 2] 
2 1 0 

find the parameters of the code. 

13. Show that the minimum weight of the Hamming code C3 of Example 
5.2.1 is 3. 

14. Write out all of the codewords for the code C = {0123, 0314, 0432) 
over Z5 and find the parameters of the code. Hint: check for linear 
independence first! 

15. Is it possible to construct a binary linear (5,13)-code? Explain. 

16. Write out all of the codewords for the ternary code with generator 
matrix 

[~ ~ ~ ~] 
and find the the parameters of the code. Show that C is perfect. 

17. If C and D are binary linear codes of the same length, show that the 
u(u + v)-construction C EB Dis also linear. 

5.3 Correcting Errors in a Linear Code 

Nearest neighbor decoding involves finding a codeword closest to the re­
ceived word. If a code has no particular structure, it may be necessary to 
employ the "brute force" method of computing the distance from the re­
ceived word to each codeword. This may be impractical, if not impossible, 
for large codes. Fortunately, there are much better methods for decoding 



170 5. Linear Codes ------=--~~------------------

with linear codes, and we will devote much of the rest of this chapter to 
discussing them. 

Let C = { c1, c 2, ... , cM} be a p-ary [n, k, d]-code, with size M = pk, and 
let c1 = 0. We construct a table containing all strings in z; as follows. The 
first row of the table contains the codewords themselves, with c1 = 0 in 

\ 

the first position, 

I O I c2 I c3 I · · · I CM 

Next, we choose a string of smallest weight that has not yet appeared in 
the table, call it f2, and place it below 0. Then we add. f2 to each of the 
codewords in the top row of the table, and place the results in the second 
row, 

I ~21 ~: + Cz I ~: + C3 I : : : I ~; + cM I 
Again we choose a string of smallest weight that has not yet appeared in 
the table, place it in the first column, and fill out that row by adding this 
string to each codeword, 

0 Cz C3 ... CM 

f2 f2 + Cz f2 + C3 ... f2 + CM 

{3 {3 + Cz {3 + C3 ... {3 + CM 

Continuing in this way until all strings in z; are included, we arrive at a 
table of the form 

0 Cz C3 ... CM 

f2 f2 + C2 f2 + C3 ... f2 + CM 

{3 f3 + C2 {3 + C3 ... {3 + CM 

fq fq + Cz fq + C3 ... fq + CM 

where each string in the first column has minimum weight among all 
strings that follow it in the table. Such a table is referred to as a standard 
array for the linear code C. Each row of the array is called a co set of 
C, and the string in the first position in a given row is the coset leader 
for that coset. Hence, the coset leader has minimum weight among all 
strings in its coset (and in subsequent cosets). Note that any string in a 
standard array is the sum of the codeword at the top of its column and 
the coset leader at the far left of its row. 
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The following basic facts about standard arrays will be used repeat­
edly. 

Theorem 5.3.1 Let C be a linear [n 1 k]-code with standard array A. 

l. Every string in z; appears exactly once in A. 

2. The n7!mber of rows of A is pn-k_ 

3. Tiuo strings x and y in z; lie in the same coset (row) of A if and only if 
their difference x - y is a codeword. □ 

Proof First, we observe that the difference fi - £1 of two distinct coset 
leaders in A cannot be a codeword, for iffi - f; = c E C, then fi = f; + c. 
Assuming (as we may) that i > j, this says that the coset leader fi appears 
in the earlier coset whose coset leader is f;. But this is not possible by the 
rules for choosing a coset leader. 

For part 1 ), it is clear from the way standard arrays are constructed 
that every string in z; appears in A. (If a string is not yet in A 1 then we 
are not done constructing A.) To show that no string appears twice in 
A 1 we show that if fi + Cu = f; + Cv, then fi = f; and Cu = Cv. For if 
fi + Cu = f; + Cv, then fi - f; = Cv - Cu E C, which is not possible by 
the previous remarks unless i = j. But if i = j, then fi = f; and therefore 
Cu = Cv. 

We leave proof of part 2) as an exercise. As for part 3), if x and y are 
in the same coset, then we may write x = fi + Cu and y = fi + Cv and so 

Conversely, if (fi + Cu) - (f; + Cv) = c E C, then 

which is impossible unless i = j, whence fi + Cu and f; + Cv lie in the 
same coset. ■ 

Part 1) of the previous theorem can be summarized by saying that the 
cosets of C are disjoint, nonempty sets whose union is all of z;. In the 
language of set theory, the cosets of C form a partition of z;. 



172 5. Linear Codes __ __::__=------======----=-=--=--=-=------------------

Example 5.3.1 A standard array for the binary (4, 2]-code C1 

{0000, 1011, 0110, 1101} of Example 5.2.1 is 

0000 1011 0110 1101 
1000 0011 1110 0101 
0100 1111 0010 1001 
0001 1010 0111 1100 

Since pn-k = z4- 2 = 4, we know that the above array is complete. □ 

Standard arrays are not unique. For instance, in the array of the pre­
vious example, we could have chosen 0010 to be the coset leader for the 
third row of the array. This would have led to a different standard array 
for the code C1 . 

We now come to the purpose of standard arrays, which is to implement 
nearest neighbor decoding. 

Theorem 5.3.2 Let C be a p-ary [n, k]-code, with standard array A. For 
any string x in z;, the codeword c that lies at the top of the column containing 
xis a nearest neighbor codeword to x. □ 

Proof Consider a standard array 

0 Cz C3 ... CM 

f2 f2 + Cz f2 + C3 ... fz + CM 

f3 f3 + Cz f3 + C3 ... f3 + CM 

fq fq + Cz fq + C3 ... fq + CM 

Suppose that the received string is x = fi + Cj, We want to show that Cj 

has minimum distance to x among all codewords, that is, 

d(x, Cj) = min{d(x, c)} 
CEC 

Since d(x, c) = w(x - c), we have . ' 
min{d(x, c)} = min{w(x - c)} = min{w(fi + Cj - c)} 
CEC cEC cEC 

But since Cj-C f Cj-d for c f d, we conclude that as c ranges over all 
codewords in C, so does Cj - c, and so the last expression above equals 

min{w(fi + c)} 
CEC 
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which is the minimum weight among all strings in the coset containing 
x. But, according to the way that standard arrays are constructed, this 
minimum weight is w(fi)- Hence, 

min{d(x, c)} = min{w(fi + c)} = w(fi) = w(x - Cj) = d(x, Cj) ■ 
cec cec 

Notice that the difference x - c between the received string x and the 
nearest neighbor interpretation cat the top of the column containing x, 
is the coset leader for the coset containing x. This difference ( and hence 
this coset leader) is called the error string. 

Example 5.3.2 Referring to the code C1 and its standard array in Ex­
ample 5.3.1, if the string 0010 is received, this array gives the nearest 
neighbor interpretation 0110, with error string 0100. □ 

Note that, when using a standard array for nearest neighbor decoding, 
a received string is decoded correctly if and only if the error string is one 
of the coset leaders f1 = 0, f2, f3 , .. . ,fq. 

Moreover, nearest neighbor ties are always decided when using a stan­
dard array, since all received words are decoded. Thus, standard array 
decoding is complete decoding. In fact, nearest neighbor ties are mani­
fested in a standard array by the appearance of a string in a given coset 
with the same weight as the coset leader for that coset. For example, 
consider the binary code C = {000, 110} = (110). A standard array for C 

is 

000 110 

100 010 

001 111 

101 011 

Notice that both strings in row 2 have the same weight. There are two 
codewords with minimum distance 1 from the word 010 and so we have 
a nearest neighbor tie. However, this standard array decodes 010 as 110. 
If we had started the second row of the array with 010, the array would 
decode 010 as 000. We leave it as an exercise to prove that a linear code 
C admits ties if and only if any standard array for C has this property. 

Recall that if C is a linear [n, k, d]-code, then it is v-error-correcting, 
where v = l d;I J. Put another way, any errors that result in an error 
string of weight v or less are corrected. It follows that the coset leaders of 
any standard array for C must include all strings of weight v or less. Of 
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course, there may be other coset leaders as well. However, if C is also a 
perfect code, then no other errors are corrected and so the coset leaders 
of A are precisely the strings of weight v or less. (As an exercise, you may 
wish to derive the sphere-packing condition from this fact.) 

The Probability of Correct Decoding 

We can easily obtain an exact expression (as opposed to an upper or lower 
bound, see Section 4.4) for the probability of correct decoding using a 
linear [n, k]-code C, with standard array 

0 C2 C3 ... CM 

f2 f2 + C2 f2 + C3 ... f2 + CM 

f3 f3 + C2 f3 + C3 ... f3 + CM 

fq fq + C2 fq + C3 ... fq + CM 

Assuming a binary symmetric channel with crossover probability p, if a 
coset leader fi has weight w(fi), then the probability that a codeword picks 
up errors in precisely the positions where fi has ls is 

P (error string is ra = pw(f.)(l - Pt-w(f,) 

Summing this over all coset leaders, we get the following theorem. 

Theorem 5.3.3 Let C be a binary [n, k]-code, and suppose that the coset 
leaders in a standard array for Care f1,f2,f3, .. . ,fq. Then, assuming a binary 
symmetric channel with crossover probability p, the probability that a received 
string will be decoded correctly by the standard array is 

q 

P (correct decoding),= LPw(f,)(l - Pl-w(f.) 
i = 1 

Put another way, if we let wi be the number of coset leaders of weight i, then 
this probability is 

n 

P (correct decoding) = L wii(l - Pl-i 
i=O 
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□ 

Example 5.3.3 Consider the binary [ 4, 2]-code C1 = {0000, 1011, 0110, 1101} 
of Example 5.2.1, with standard array (from Example 5.3.1) 

~ 

0000 1011 OllO 1101 
1000 0011 1110 0101 
0100· 1111 0010 1001 
0001 1010 0111 1100 

Since Wo = 1, W1 = 3, w2 = w3 = W4 = 0, we have 

P (correct decoding) = (1 - p)4 + 3p(l - p)3 = (1 - p)3(1 + 2p) 

For example, if the crossover probability is p = 0.01, then 

P (correct decoding) = (1 - 0.01)3(1 + 0.02) ~ 0.9897 

Hence, P(decode error)= 1 - P(correct decoding)~ 0.0103. 
It is instructive to compare this with the alternative ofno encoding for 

error correction. Since I C1 I = 4, we can think of the source as consisting 
of the 4 symbols 00, 01, 10, and 11 and send these symbols as is, without 
encoding. In this event, the probability that a source symbol gets through 
without error is (1 - p)2 = 0.9801, which is less than P(correct decoding) 
using the code C1. □ 

In general, the problem of determining the number Wi of coset leaders 
of weight i is quite difficult, and in fact these numbers are not known 
for many important classes of codes. However, in the case of perfect 
codes, we can easily determine these numbers. We have already remarked 
that the coset leaders in a standard array for a perfect [n, k, d]-code are 
precisely the strings of weight v or less, where v = l d;1 J. Since there are 
(7) strings in Z~ of weight i, we have wi = (7) for O < i < v, and wi = 0 
for i > v. 

Theorem 5.3.4 Let C be a perfect binary [n, k, d]-code. The probability of 
correct decoding using any standard array is given by 

Ltt;• J 
P (correct decoding) = L (~ )Pi(l - pf-i 

i=O 1-
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□ 

Example 5.3.4 The binary Hamming code C3 of Example 5.2.1 is a 
perfect [7, 4, 3]-code. Hence, according to Theorem 5.3.4, 

P (correct decoding) = (1 - p)7 + 7p(l - p)6 = (1 - p)6(1 + 6p) 

Let us compare this with the probability of receiving correct infor­
mation without using error correction. Since IC3 I = 23 = 8, this code 
is capable of encoding eight source symbols. If we let these be the eight 
binary strings of length 3, the probability of receiving a source symbol 
correctly is 

P (correct receipt) = (1 - p)3 

The following table compares P(correct decoding) with P(correct 
receipt), for various symbol error probabilities. 

p P( correct decoding) P( correct receipt) 
0.1 0.8503 0.7290 

0.05 0.9556 0.8574 
0.01 0.9980 0.9703 

0.005 0.9995 0.9851 

The table clearly shows that using the code C significantly improves the 
probability of obtaining correct information, but at the expense of having 
to send 7 bits per source symbol rather than 3. □ 

Burst Error Correction 

You will recall that, in defining a communications channel (Section 4.1 ), 
we included the requirements that symbol errors be independent of time, 
that is, that P( ai received I ai sent} does not change with time and that 
the outcome of a given symbol transmission does not depend on previous 
symbol transmissions. While these assumptions make life a lot simpler, 
they are not always realistic. For instance, one could reasonably argue 
that, if a bit error occurs in the transmission of a certain bit, that error may 
very well have been the result of a phenomenon (electrical disturbance, 
for instance) that lasts longer than the time it takes to send a single bit, 
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and so adjacent bits are likely to be affected as well. Similarly, a defect 
on the surface of a compact disk, for instance, is likely to be larger than 
the amount of space it takes to store a single bit and so errors will tend to 
occur in bunches, rather than independently. 

This leads us to the concept of a burst error. It is our intention to 
define this concept and discuss a few simple results related to burst errors. 
However, codes that are good at correcting independent errors may do a 
poor job a,t burst error correction and vice-versa and so we will not pursue 
burst error correction beyond this short discussion (and an exercise or 
two). 

Definition A burst in z; of length bis a string in z; whose nonzero 
coordinates are confined to b consecutive positions, the first and last of 
which must be nonzero. □ 

For example, the string 0001100100 in Z1° is a burst oflength 5. Note 
that not all of the coordinates between the first and last ls need be 
nonzero. 

Note that if a linear code is to correct any burst of length b or less, 
then no such burst can be a codeword (why?). The next theorem gives an 
upper bound on the dimension of a linear code that contains no bursts of 
length b or less. 

Theorem 5.3.5 Let C be a linear [n, k]-code over '11..p, IfC contains no bursts 
of length b or less, then k < n - b. □ 

Proof Consider the set S of all strings in z; with Os in the last n - b 
positions. (The first b positions may contain any values, including 0.) 
Since the difference between any two strings in the same row of a standard 
array for C is a codeword, if any two distinct strings in S lie in the same 
coset of a standard array, then their difference would be a nonzero burst 
of length at most b lying in C, which is not possible since C is assumed 
not to contain any such bursts. Hence, the number of cosets of C, which 
is pn-k, must be greater than or equal to the size of S, which is pb. In other 
words, pn-k > pb, whence n - k ~ b. ■ 

We have seen that the more errors we expect a code to detect or cor­
rect the smaller must be the size of the code. The situation for burst error 

I 

detection is settled by the following result. 
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Theorem 5.3.6 If a linear [n, k]-code C can detect all burst errors of length 
b or less, then k < n - b. Furthermore, there is a linear [n, n - b]-code that 
will detect all burst errors of length b or less. □ 

Proof We leave it as an exercise to show that C can detect an burst 
errors of length b or less if and only if C contains no ,such bursts. Hence, 
Theorem 5.3.5 implies that k < n - b. To prove the second statement, we 
construct a generator matrix G of size ( n -b) x n for a linear [ n, n- b]-code 
C that can detect an bursts of length b or less. 

The matrix G is constructed in two parts. The leftmost part consists 
of the row matrices e 1 , ... , eb of length b, repeated as many times as is 
necessary to fin in n - b rows. The rightmost part consists of the identity 
matrix of size (n - b) x (n - b). For example, if n = 8 and b = 3, then 

1 0 0 1 0 0 0 0 
0 1 0 0 1 0 0 0 

G1 = 0 0 1 0 0 1 0 0 
1 0 0 0 0 0 1 0 
0 1 0 0 0 0 0 1 

(the line is just for clarity). Notice that the rightmost n - b = 5 columns 
of G form an identity matrix and the leftmost b = 3 columns, reading the 
rows, are e1, e2, e3, e1, e2. 

By the first statement of this theorem, we need only show that no 
linear combination of the rows of G is a burst of length b or less. Assume 
to the contrary that x = a1 r1 + · · · + an-brn-b is a burst oflength b or less. 
Notice that if ai f 0, then x has ai in the (i + b)th position. It fonows that 
the indices i for which ai are nonzero must lie within b consecutive values. 
However, for any b or fewer consecutive rows of G, the leftmost portion 
is just the matrices e1, ... , eb appearing in some order. For instance, in 
rows 2, 3, and 4, the leftmost portion of G1 is e 2 , e3 , e 1• The key point is 
that any b or fewer consecutive rows of G have no nonzero positions in 
common (either on the left or the right) and so, if ai is nonzero, then x 
has nonzero entries in those positions in which ri has nonzero entries. 
But the nonzero entries of ri are not confined to b or fewer consecutive 
positions. It fonows that an of the coefficients must be 0, implying that 
x = 0. This contradiction implies that no linear combination of the rows 
of G is a burst of length b or less. ■ 

Now let us consider burst error correction. 
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Theorem 5.3. 7 If a linear [n, k]-code C can correct all burst errors of length 
b or less, using a standard array, then k < n - 2b. □ 

Proof Our goal is to apply Theorem 5.3.5 (with b replaced by 2b). If 
2 < £ < 2b, then any burst x of length f, can be written as the difference 
X1 - Xz of two distinct bursts oflength at most b. For instance, if n = ll 
and b = 3, then the burst x = 00011101100 of length 6 can be written as 
the difference of a burst of length 3 and a burst of length 2 as follows 

00011101100 = 00011100000 + 00000001100 

Since C can correct x1 and x 2 , these strings must be coset leaders and 
therefore cannot lie in the same coset of any standard array for C. This 
implies that their difference, which is x, is not a codeword. Since a burst 
of length 1 cannot be a codeword, we may apply Theorem 5.3.5 (with b 
replaced by 2b), to get k :S n - 2b. ■ 

We have observed in the previous proof that if a code C can correct 
any burst error of length b or less, then no two such bursts can lie in the 
same coset of a standard array for C. Thus, by counting the total number 
of bursts oflength b or less, we get a lower bound on the number of cosets 
of C, and hence an upper bound on the dimension of C, quite different 
from that given in Theorem 5.3. 7. We leave proof of the following result 
as an exercise. 

Theorem 5.3.8 If a linear [n, k]-code Cover 'llp can correct all burst errors 
of length b or less, using a standard array, then 

k < n - b + l - logp[(n - b + l)(p- l) + 1) D 

In the exercises, we ask you to compare the quality of Theorems 5.3.7 
and 5.3.8. 

Exercises 

1. Show that the number ofrows in a standard array for a linear [n, k]-code 
over 'llp is pn-k. 

2. Consider the binary code C = {000, 100, 101, 111}. 1ry to construct a 
standard array for C. What went wrong and why? 
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3. Construct a standard array for the binary linear code with generator 
matrix 

[ 0 1 1 ] 
1 1 0 

Decode the words a) 111, b) 100. Find the probability of correct decod­
ing, assuming a binary symmetric channel with crossover probability 
p. Give an example of a single error that is decoded incorrectly. 

4. Construct a standard array for the binary linear code with generator 
matrix 

[ 1 0 1 1 01 ] 
0 1 0 1 

Decode the received words a) 11111 1 b) 00000, c) 01000. Find an 
example of a codeword and received word such that two bit errors 
have occurred with correct decoding and another example of two bit 
errors with incorrect decoding. Find the probability of correct decod­
ing, assuming a binary symmetric channel with crossover probability 
p. 

5. Construct a standard array for the ternary code C2 of Example 5.2.1. 

6. Let C be a linear [n, k, d]-code. Prove that C admits ties (that is, some 
word x has at least two nearest neighbor codewords) if and only if 
there is a row in any standard array for C that has a non coset-leader 
with the same weight as the coset-leader. 

7. Formulate Theorem 5.3.3 for a r-ary code C (r a prime) and a channel, 
with channel alphabet Zr, wherein the probability that a code symbol 
is changed to any other particular code symbol is p. 

8. How big is the standard array for the Hamming code C3 of Example 
5.2.1? Compute a set of coset leaders for this array. 

9. Write a computer program tq compute standard arrays for binary 
codes. Use it to compute a stan'dard array for the Hamming code C3 

of Example 5.2.1. 

10. Compute the probability of a decoding error for the binary Hamming 
code H 2(h), assuming a binary symmetric channel. What are the pa­
rameters (length, dimension, size, and minimum distance) of this code 
and what is this probability when p = 0.001 and h = 31 4, or 5? 
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11. Compute the probability of a decoding error under a binary sym­
metric channel with crossover probability 0.001 using the perfect 
binary (23,4097,7)-Golay code 923 • Compare this with the results of 
the previous exercise for the Hamming codes. 

12. Let C be a binary linear code. Let CC be the set of all complements of 
codewords in C. 

(a) Show that if 1 EC then C = cc. 

(b) If C is a linear code, is cc also a linear code? 

( c) Show that if C is a linear code, then so is C U cc. 

13. Suppose that C is ap-ary linear [n, k]-code that is capable of correcting 
any set of v or fewer errors, using a standard array. Thus, any error 
string of weight v or less must be a coset leader. Compute the number 
of strings of weight v or less and use that number to formulate an 
upper bound on the size of C. Does this look familiar? 

14. Let C be a linear code. Show that C can detect all burst errors of length 
b or less if and only if C contains no such bursts. 

15. Design a linear code oflength 11 that can detect any burst oflength 4 
or less. Give a generator matrix for your code. 

16. Can a linear [10, 5]-code correct all burst errors oflength 3? Explain. 

17. Prove Theorem 5.3.8. Hint: if N is the total number ofbursts oflength b 
or less, then since each burst must be in a different coset of a standard 
array for C, but none lie in C itself, we deduce that pn-k :::: N + 1. In 
order to compute N, let the bursts oflength b or less be divided into two 
types-those whose first nonzero entry lies somewhere within the first 
n-b + l positions and those whose first nonzero entry lies somewhere 
within the last b - l positions (that is, position numbers n - b + 2 
through n). Show that there are (n - b + l)(p- l)pb-l of the former 
type andpb-I_l of the latter. Hence, N + 1 = [(n-b + l )(p-1) + 1 ]pb-l. 

Complete the proof. 

18. How would you compare the quality of the bounds in Theorem 5.3. 7 
and Theorem 5.3.8? 
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5.4 The Dual of a Linear Code 

We have seen several ways of constructing new codes from old ones. Let 
us now describe another method-perhaps the most important one for 
linear codes. We begin with a definition. 

Definition Let x = x 1x2 • · · Xn and y = y1y2 · • · Yn be strings in z;, pa 
prime. The inner product of x and y, denoted by x · y, is the element 
of Zp defined by 

where the sum and product are taken in Zp (that is, modulo p). □ 

Example 5.4.1 The inner product ofx1 = 10012 and x 2 = 12122 in Z~ 
is 

X1 · X2 = (10012) • (12122) = 1 • 1 + 0 · 2 + 0 · 1 + 1 • 2 + 2 · 2 = 1 

The inner product of x3 = 1010 and x 4 = 1111 in Z~ is 

X3 · X4 = (1010) · (1111) = 1 · 1 + 0 · 1 + 1 · 1 + 0 · 1 = 0 0 

Notice that the inner product of two strings in z; is an element of Zp, 
and not another string in z;. The inner product satisfies some important 
properties, which are given in the next theorem. 

Theorem 5.4.1 For all strings x, y, z in z; and all a in Zp, 

1. X·Y = Y·X 

2. (x + y) · z = x • z + y · z 

3. (ax)· y = x · (ay) = a(x · y) □ 
Proof We will prove part 3), and leave the others as exercises. If x = 
X1X2 • • • Xn and y = Y1Y2 · · • Yn, then 

. ' 
= <XX1Y1 + <XX2Y2 + · · · + <XXnYn 

= a(X1Y1 + X2Y2 + · · · + XnYn) = a(x · Y) 

The proof that x • (ay) = a(x • y) is quite similar. ■ 

Definition Let x and y be strings in z;. If x • y = 0, we say that x and 
y are orthogonal. □ 
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Thus, the strings x3 and x 4 in Example 5.4.1 are orthogonal. 
For any a E z;, we let {a}l. denote the set of all strings in z; that are 

orthogonal to a. Thus, 

{a} l. = { x E z; I a · x = 0} 

This set is called the orthogonal complement of a. (The expression {a}l. 
is read 11a purp.11) 

Theorem ·5.4.2 For any string a in z;, the set {a}l. is a linear code. □ 

Proof Ifxandyarein{a}1., thena•x = Oanda•y = 0. Thus, Theorem 
5.4.1 implies that 

a · (x + y) = a · x + a · y = 0 

and 

a • (ax) = a( a • x) = aO = 0 

for all a E Zp, This shows that {a}l. is closed under both addition and 
scalar multiplication, and so it is a subspace of z;. ■ 

Note that if a = a 1a 2 ···an and x = X1X2 • • • Xn, then 

Hence, x is in {a}l. if and only if the equation 

(5.4.1) 

holds in Zp. 

Example 5.4.2 Consider the set {I }1., where = 1 • · • 1 E Z~. In this case, 

equation (5.4.1) is 

X1 + Xz + . . . + Xn = 0 (5.4.2) 

But, in Z2 , the sum on the left is equal to O if and only if an even 
number of the xis are equal to 1. Hence, 

{l}l. = {x E z; I w(x) is even} 

A binary string has even parity if it has even weight and odd parity if 
it has odd weight. Hence, {l}l. is the set of all strings in Z~ with even 
parity. For this reason, equation (5.4.2) is often referred to as an even 

parity check equation. □ 
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Toking a hint from the terminology in the previous example, we call 
equation (5.4.1) the parity check equation for the code {a}1-. 

We now generalize. 

Definition Let A = {a1, a2, ... , as} c z; be any code. The set 

A j_ = {a1 I a2, ... I as}j_ = {x E z; I X. ai = 0 for all i} 

is called the orthogonal complement of A. □ 

The proof of the following theorem is very similar to that of Theorem 
5.4.2, and is left as an exercise. 

Theorem 5.4.3 The orthogonal complement A 1- of any code A is a linear 
code called the dual code of A. □ 

We can describe the dual code {a1, a2, ... , as}1- as the solutions to cer­
tain equations, similar to equation (5.4.1). Before doing so, however, we 
need to make a notational point. Up to now, we have been using boldface 
letters to denote strings, for example, x = x1x2 • • • Xn, We will also use 
boldface letters to denote row matrices. Thus, for example, we may use 
x to denote both the string x1x2 • • • Xn and the matrix 

This should not cause any confusion since the context will make it clear 
whether we are talking about a string or about a matrix. 

Definition Let A = {a1 1 a2, ... 1 as} C z; and let 

The equations 

a1 = a11a12 · · · a1n 

a2 = a21a22 · · · a2n 

... 
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are called the parity check equations for the code A ..1 _ We can also write 
this in the matrix form 

= [00 · · · 0] 

(Note the transpose on the second matrix.) Letting A denote the matrix 
(aij), we can write this more concisely as 

xAt = o 

The matrix A is called a parity check matrix for the code A ..1. □ 

The following theorem is just a rewording of the relevant definitions. 

Theorem 5.4.4 Let A be a code. A string x = x1x2 · • • Xn is in the dual code 
A .1. if and only if its components x1 , ... 1 Xn satisfy the parity check equations 
for A .1.. Expressed in terms of the parity check matrix, we have 

A ..1 = { x E zn I xAt = 0} D p 

Example 5.4.3 Consider the binary strings a1 = 1110 and a2 = 1001. 
The parity check equations for the binary linear code C = {a1, a2}..1 are 

X1 -Xz -X3 = 0 
X1 -X4 = 0 

This system is easily solved to give C = {0000, 0110, 1101 1 1011}, which 
is none other than the linear code C1 of Example 5.2.1. A parity check 
matrix for this code is thus 

P1 - [ : 
1 1 0 ] 
0 0 1 

Let a1 = 0110 and a2 = 1201 be ternary strings. The parity check 
equations for the ternary code C = {a1, a2}..l are 

whose solutions are easily seen to be the 9 codewords in the code C2 of 
Example 5.2.1. A parity check matrix for this code is thus 

[ 0 1 1 0 ] 
Pz = 1 2 0 1 
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The parity check equations for the binary code {0111100, 1011010, 110100l}J_ 
are 

~ +~ +~ +~ =0 
X1 +X3 +X4 +X5 = 0 

We will leave it to you to show that this code is the Hamming code C3 of 
Example 5.2.1. A parity check matrix for the Hamming code C3 is thus 

P3 = [ ~ ~ ~ ~ ~ ~ ~ ] 
1 1 0 1 0 0 1 

□ 

The concept of a parity check matrix is very important, and so we 
make the following definition. 

Definition A parity check matrix for a linear p-ary [n, k]-code C is a 
matrix P with the property that 

c = { x E z; 1 xPt = o} □ 

Note that, unlike a generator matrix, we make no requirement that 
the rows of P be linearly independent. Of course, parity check matrices in 
which the rows are linearly independent are smaller and therefore more 
efficient than other parity check matrices. 

The following theorem gives some of the most basic properties of dual 
codes. 

Theorem 5.4.5 

1. If C and D are codes and C c D then CJ_ :) DJ_. (Note the reversal of 
inclusion.) 

2. Let C be a linear [n, k]-code over Zp, with generator matrix G. If G has 
rows {g1, g2, ... , gk} then CJ_ = {g1, g2, ... , gk}J_. In words, CJ_ is the set 
of all strings that are orthogona? to every row of G. In symbols, 

' 
CJ_ = {x E zn I xGt = O} 

p 

Thus, G is also a parity check matrix for CJ_. 

3. If C is a linear[n, k]-code then CJ_ is a linear [n, n-k]-code. In other words, 

dim(CJ_) = n - dim(C) 
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4. For any linear code C, we have c..l..l = C. □ 

Proof We leave proof of part 1) as an exercise. For part 2), since 
{g1, gz, ... , gk} C C, part 1) implies that c..l c {g1, g2, ... , gk}..1. The re­
verse inclusion follows from the fact that any string that is orthogonal to 
every basis string gi is also orthogonal to every linear combination of the 
basis strings, and hence to every codeword in C. 

For pa~t 3), let B = {b1, b 2 , ... 1 bk} be a basis for C. Consider the parity 
check equations 

bux1 + bi2x2 + + b1nXn = 0 

b21X1 + b22X2 + · · · + b2nXn = 0 

whose solutions are precisely the codewords in c..1. Since {b1, ... , bk} 
is linearly independent, we may appeal to a theorem of linear algebra 
(which we will not prove here) that says that there is a set ofk coordinates 
Xi1 1 ••• , Xik such that the above system is equivalent to a system in which 
each xi1 appears with nonzero coefficient in exactly one equation and the 
coefficient of Xi1 in that equation is 1. For example, if the coordinates 
happen to be x1 , ... , Xk, the equivalent system has the form 

X1 + d1k+IXk+l + ... + d1nXn = 0 
I I 

X2 + d2 k+1Xk+l + ... + dznXn = 0 
I I 

Xk + dkk+IXk+l + ... + dk,nXn = 0 
' 

where the coefficients diJ lie in Zp. In a system such as this one, we may 
assign any values to Xk+ 1, ... ,xn and then simply solve for X1, ... , Xk. Since 
there are p choices for each of the n - k variables Xk + 1, ... , Xn, there are 
pn-k solutions and so c..l has size pn-k and hence dimension n - k. 

For part 4), observe first that c..1..1 = (C..1)..1 is the set of all strings 
orthogonal to every string in c..l. But, by definition of c..1, all codewords 
in C are orthogonal to every string in c..1, whence C c c..1..1 _ According to 

part 3), 

dim(C..1..1) = n - dim(C..1) = n - (n - dim(C)) = dim(C) 
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It is a theorem oflinear algebra (which we ask you to prove as an exercise) 
that if a code Dis a subspace of a code E and if dim(D) = dim(E), then 
D = E. It follows that C = c..L..L. ■ 

Example 5.4.4 Consider the code C1 of Example 5.2.1, with generator 
matrix 

[ 
1 0 1 

Gi = 0 1 1 

According to Theorem 5.4.5, the dual code is given by the solutions to the 
parity check equations 

+X3 +X4 = 0 
Xz +X3 = 0 

In this system, we may assign any values to x3 and x4 and solve for x1 and 
x2 .Thesolutionsarecf = {0000,1110,1001,0111} = (1110,1001).Weleave 
it to the reader to check that each codeword in this code is orthogonal to 
each codeword in C1 = (1011, 0110). □ 

It might be useful to clarify the relationship between generator 
matrices and parity check matrices, which we do in the next theorem. 

Theorem 5.4.6 

l. Any matrix A is a parity check matrix for some linear code (perhaps the 
zero code). 

2. Any matrix with linearly independent rows is both a generator matrix and 
a parity check matrix. 

3. A generator matrix for a code C is a parity check matrix for the dual code 
c1-. 

4. Any linear code C has a parity check matrix. In particular, a generator 
matrix for the dual code c..L is a parity check matrix for C. □ 

Proof Theorem 5.4.4 tells us that, for any s x n matrix A with entries 
in Zp, the set : , 

{ x E z; I xAt = 0} 

is a linear code, with parity check matrix A. In fact, it is the dual code to 
the code consisting of the rows of the matrix A. This proves part 1). Part 
2) follows from part 1) and the fact that if the rows of a matrix are linearly 
independent, they form a basis for the code generated by these rows. Part 
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3) follows directly from part 2) of Theorem 5.4.5. Finally, suppose that C 
is a linear code and that the dual code c.1. has generator matrix G. Then 
G is a parity check matrix for the dual of c.1., which is c.1..1. = C. This 
proves part 4). ■ 

We will discuss later in this chapter a way to obtain a parity check 
matrix for a linear code directly from a generator matrix, without having 
to explicity compute the dual code and find a basis for that code. 

We now have two convenient ways to define a linear code C-by giving 
a generator matrix or by giving a parity check matrix. For instance, the 
code C1 of Example 5.2.1 has generator matrix G1 and parity check matrix 
P1 given by 

[ 
1 0 1 

Gi = 0 1 1 
l] [l 1 1 OJ 0 and P1 = l O O 1 

Thus, C1 is the set of all binary strings of length 4 that are linear combi­
nations of the rows of G1 and C1 is the set of all binary strings of length 
4 that are orthogonal to the rows of P1 . Either matrix completely defines 
the code. 

Self-Dual Codes 
If you studied linear algebra, you are probably familiar with inner prod­
uct spaces over the real or complex number fields. You also undoubtedly 
know that a nonzero vector over the reals cannot be orthogonal (perpen­
dicular) to itself. However, in dealing with the finite fields Zp, things are 
different. For example, the binary string 1010 is orthogonal to itself, since 

1010 · 1010 = 1 + 0 + 1 + 0 = 0 

In fact, it is possible for a code C to have the property that every codeword 
in C is orthogonal to every other codeword! Here is an example. 

Example 5.4.5 Consider the binary linear code 

C = (ll00, 00ll) = {0000, ll00, 00ll, llll} 

Since the basis codewords ll00 and 00ll are orthogonal to themselves 
and to each other, we have C c c.1.. But dim(C) 2 = dim(C.1.) and so 
C = c.1.. D 
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Definition A code C for which C = c..1 is said to be self-dual. □ 

In the exercises, we ask you to prove that a self-dual code must have 
even length and that, for every even number n, there is a binary self-dual 
code oflength n. It is also true (although we will not prove it here) that a 
ternary self-dual [n, iJ-code exists if and only if n is divisible by 4. 

Determining the Minimum Distance from a Parity 
Check Matrix 

As we have said, a linear code can be described either by giving a gener­
ator matrix Gora parity check matrix P. Both methods have advantages. 
For instance, it is easier to generate all codewords in a code C from a gen­
erator matrix-just form all linear combinations of the rows. We know that 
each linear combination is a distinct codeword and that all codewords are 
obtained in this way. On the other hand, to use a parity check matrix to 
generate all codewords requires solving a system oflinear equations over 
a finite field. However, it is easier to determine whether or not a given 
string is a codeword using a parity check matrix. 

We also mentioned that there does not seem to be a simple, direct 
method for determining the minimum weight of a linear code from a 
generator matrix. However, the following theorem shows that it is easy 
to do so from a parity check matrix. 

Theorem 5.4. 7 Let P be a parity check matrix for a linear [n, k, d]-code C. 
Then the minimum distance d is the smallest integer r for which there are r 
linearly dependent columns in P. (Here we are thinking of the columns of P 
as strings.) □ 

Proof Let the columns of P be denoted by p 1 , p 2 , ... , Pn• The crucial 
step in the proof is to note that, for any row matrix 

' Cz • • • Cn ] 

we have 

[ c1 Cz · · · Cn ] pt = c1 · (1st row of Pt) + c2 • (2nd row of Pt) 

+ · · · + Cn • ( nth row of Pt) 

= C1 · P1 + Cz · Pz + · · · + Cn · Pn 
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which is just a linear combination of the columns of P. Now suppose that 
r is the minimum number of linearly dependent columns. Then there 
exists constants c1 , ... , en, of which exactly rare nonzero, for which 

(5.4.3) 

Butthissaysthatc=c1 •··CnisinC.Sincew(c) = r,wegetd = w(C) < r. 
On the other hand, if c = c1 • • • Cn is a codeword of minimum weight 
d = w(C), then (5.4.3) holds, and we deduce that the d columns of P cor­
responding to the d nonzero elements Ci are linearly dependent. Hence, 
r < d. This shows that r = d. ■ 

Example 5.4.6 Consider the [10, 8]-code C over Zn, with parity check 
matrbc 

[ 111111111 1 ] 
p = 12345678910 

To show that any two distinct columns of Pare linearly independent, note 
that any two distinct columns have the form c1 = [~] and Cz = [t], where 
1 < a, b < lO and a I= b. Using string form, we see that the equation 

a(la) + f3(lb) = 00 

is equivalent to 

(a + f3)(aa + f3b) = 00 

which is equivalent to the system of equations 

a + /3 = 0 

aa + f3b = 0 

The first equation gives f3 = -a. Substituting this into the second equa­
tion gives aa - ab = 0, or a(a - b) = 0. But since a I= b, this implies 
that a = O, whence f3 = -a = 0. Thus, the only solution to this system 
is a = O, f3 = 0, and so the strings are linearly independent. 

On the other hand, the first three columns of P, thought of as strings, 

are linearly dependent, for we have 

10(11) + 2(12) = 13 

in Z11 . Therefore, according to Theorem 5.4.7, Chas minimum distance 

3. □ 
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The Gilbert-Varshamov Bound 

Recall that Ar(n, d) denotes the largest possible size M for which there 
exists an r-ary (n, M, d)- code (linear or nonlinear). Recall also the sphere­
covering lower bound on Ar(n, d), is given by 

rn 
--- <A (n d) 
v;(d - l) - r I 

It happens that we can improve upon this bound, in some cases, by 
considering linear codes and using Theorem 5.4. 7. First, let us take an­
other quick look at the sphere-covering bound. In attempting to construct 
an (n, M, d)-code, we could simply pick any string c1 for the first code­
word. The second codeword c2 can be any string provided that it does not 
lie in the sphere S~(c1 , d - l ). The third codeword can be any string pro­
vided that it does not lie in either of the spheres S~(c1 , d-1) or S~(c2 , d-1 ). 
We can continue to pick codewords c1 , ..• , CM in this manner until the 
spheres S~(c1 , d - 1), ... , S~(cM, d - l) cover all of Z~. But this cannot 
happen until the sum of the volumes of these spheres is at least the size 
of Z~, that is, until 

M · v;( d - l) :::: rn 

Thus, we can always form an (n, M, d)- code with M :::: rn IV~(d - l ). This 
proves the sphere-covering bound. 

For linear codes, rather than picking codewords directly, we pick 
columns for a parity check matrix P. To construct a linear [n, k, d]-code, 
we pick n columns of length n - k, with the requirement that no d - l 
of these columns are linearly dependent. The latter amounts to saying 
that no column is a linear combination of d- 2 (or fewer) of the previous 
columns. 

The first column of P can be any nonzero string in z~-k. In general, 
we must choose the ith column (for i > 2) of P so that it is not a linear 
combination of any d - 2 (or fewer) of the previously chosen columns. 
For a particular choice of j S d ~ 2 of these i - 1 columns, there are 
(p - l Y choices for nonzero coefficients to form linear combinations of 
these columns. Since there are ( 11) choices of j columns, the number of 
linear combinations (with nonzero coefficients) of exactly j columns is 

( i - 1) 
j (p - 1y 
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Summing this over j = l, . , , , d - 2, we see that the number of linear 
combinations of d - 2 or fewer columns is 

Since the total number of strings oflength n - k is pn-k, we deduce that, 
excluding tp.e zero column as well, there are enough strings left to choose 
the ith column provided that Ni + 1 < pn-k, It follows that we may 
form the entire parity check matrix of n columns if Nn + l < pn-k, But 
Nn + l = v;-1(d - 2) and so we have established the following result, 

Theorem 5.4.8 (Gilbert-Varshamov bound) There exists a p-ary linear 

[n, k, d]-code if 

pn 
pk< v;-1 cd - 2) 

Thus, if pk is the largest power of p satisfying this inequality, we 
have Ap(n, k) > pk. The inequality displayed above is known as the 

Gilbert-Varshamov inequality. □ 

A simple example will show that the Gilbert-Varshamov bound is bet­
ter than the sphere-covering bound. However, note that since it was 
derived using linear codes, it applies only to radixes of prime power, 
whereas the sphere-packing bound applies to all radixes, 

Example 5.4. 7 The sphere-covering lower bound says that 

25 
A 2 (5, 3) ~ (5) ( 5) = 2 

1 + 1 + 2 

On the other hand, the Gilbert-Varshamov bound says that there exists a 

binary linear ( 5, 2k 1 3)-code if 

25 
2k < ---

1 + G) = 
32 

5 

and so we may take k = 2, showing that there is a binary linear (5,4,3)­
code, whence A2(5, 3) > 4. Indeed, Tuble 4.8.l(a) shows that A2(5 1 3) = 4 
and so, in this case, the Gilbert-Varshamov bound is exact. D 
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Exercises 

1. Compute the following inner products 

(a) (10110) · (11000) in Z2 

(b) (12120) · (20212) in Z3 

( c) (12345) • (67890) in Zn 

( d) x • xc in Z2 

2. Verify that x • y = y • x and (x + y) • z = x · z + y · z, for all x, y, 
Z E z;. 

3. Prove that the orthogonal complement A 1. of a nonempty subset A of 
z; is a linear code. 

4. Solve the second set of parity check equations and confirm that the 
solutions give the code C2 of Example 5.2.1. 

5. Show that the code Al. of Example 5.4.3 is the Hamming code C3 of 
Example 5.2.1. 

6. Prove that if C c D, then DJ. c cl.. 

7. Show that {a1 1 a2 1 ••• 1 as}l. = (a1 1 a2 1 ••• , as)l.. 

8. Find the dual code cf of the code C2 in Example 5.2.1 by solving the 
parity check equations. 

9. Find the dual code of the repetition code Repp( n). 

10. Find the dual code of the Hamming code C3 of Example 5.2.1 by 
solving the parity check equations. 

11. Show that the code C2 has minimum distance 2 by using Theorem 
5.4.7 and the parity check matrix P2 given in Example 5.4.3. 

12. Find the minimum distance of the binary code with parity check 
matrix 

[ 
1 0 0 1 ] 

P= 0 0 l 1 
'0 1 0 1 

13. Find the minimum distance of the binary code with parity check 
matrix 

0 1 
1 0 p = [ ~ ~ 

0 1 1 1 
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14. Show that the Hamming code C3 has minimum distance 3 by using 
Theorem 5.4.7 and the parity check matrix P3 given in Example 5.4.3. 

15. Find a parity check matrix for the repetition code Repr(n). 

16. Prove that if Dis a subspace of a code C and dim(D) =dim(C) then 
D = C. 

17. Show that if C is a binary self-dual code then all codewords in C have 
even weight and 1 EC. 

18. A linear code C is self-orthogonal if C c c.1. Prove that a linear code 
C, with generator matrix G, is self-orthogonal if and only if the rows 
of G are orthogonal to themselves and to each other. 

19. Prove that the length of a self-dual code must be even. What is the 
dimension of a a self-dual code? Prove that, for any even number 
n, there is a binary self-dual code Cn of length n. Hint: construct a 
generator matrix for Cn. 

20. A linear code C is self-orthogonal if C c c1-. Let G be a generator 
matrix for a p-ary linear code C, where p = 2 or 3. Show that C is 
self-orthogonal if and only if distinct rows of G are orthogonal and 
each row of G has weight divisible by p. 

21. Determine the Gilbert-Varshamov lower bound on A2(6 1 3) and 

compare it with the actual value. 

22. Determine the Gilbert-Varshamov lower bound on A2(7, 3) and 

compare it with the actual value. 

23. Determine the Gilbert-Varshamov lower bound on A2(8, 5) and 

compare it with the actual value. 

5. 5 Syndrome Decoding 

One of the advantages of parity check matrices is that they can be used 
for efficient implementation of nearest neighbor decoding. 

Definition Let P be the parity check matrix for a code C c z;. The 
syndrome S(x) of a string x in z; is the product xP1• □ 
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Example 5.5.1 The code C1 of Example 5.2.1 has parity check matrix 

[ 1 1 1 01 ] 
Pi = 1 0 0 

The syndrome of the string x = 0111 is 

S(x) = xPt = [ 0 1 1 1 ] 

1 1 
1 0 
1 0 
0 1 

= [ 0 1 ] □ 

According to the definition, a syndrome S(x) is a row matrix. However, 
it will be convenient to also consider the syndrome as a string. Thus, with 
regard to the previous example, we may also write S(x) = 01. 

Note also that the parity check equation xPt = O is equivalent to 
S(x) = 0 and so x E C if and only if its syndrome is 0. Let us record 
this simple result in a theorem, along with a few simple properties of the 
syndrome. Proof of these properties is left as an exercise. 

Theorem 5.5.1 Let P be the parity check matrix for a linear code C c z; 
and let S be the syndrome function for P. Then, for all x, y E z; and a E Zp, 

l. if P has size m x n, then S(x) E z; 
2. S(x + y) = S(x) + S(y) 

3. S(ax) = aS(x) 

4. x E C if and only if S(x) = 0. □ 

The main importance of the syndrome comes from the following 
theorem. 

Theorem 5.5.2 Let C be a linear code. 'Two strings x and y are in the 
same coset of any standard array for C if and only if they have the same 
syndrome. □ 

Proof A standard array for C ha§ the form 

0 Cz C3 ... CM 

f2 fz + Cz fz + C3 ... fz + CM 

f3 f3 + Cz f3 + C3 ... f3 + CM 

. . 
fq fq + Cz fq + C3 ... fq + CM 
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Let x = fi + Ck.and y = fj + ce. Then 

and similarly, 

S(y) = S(fi) 

Thus, S(x) = S(y) if and only if S(fi) = S(fj), that is, S(fi - fj) = 0. But 
the latter is equivalent to fi - fj E C, which happens if and only if i = j, 
that is, if and only ifx and y lie in the same coset of the array. ■ 

How do we use Theorem 5.5.2 in nearest neighbor decoding? Recall 
that, under nearest neighbor decoding, the error string e in a received 
word x is the coset leader of the coset containing x and that the nearest 
neighbor codeword is c = x - e. But, the syndrome of x is equal to 
the syndrome of e and since the syndromes of the coset leaders are all 
distinct, we can find e simply by comparing the syndrome of x to the 
syndromes of the coset leaders. 

Thus, we need only a list of coset leaders and their syndromes, which 
we refer to as a syndrome table for C 

cosetleader syndrome 
0 0 
f2 S(f2) 
f3 S(f3) 

fq S(fq) 

Now, nearest neighbor decoding can be implemented by the following 
simple algorithm. 

1. Compute the syndrome S(x) of the received string. 

2. Compare it with the list of syndromes of the coset leaders. If 
S(x) = S(fi), then fi is the error string and c = x - fi is a nearest 
neighbor codeword. 

What could be simpler? 

Example 5.5.2 Consider again the parity check matrix 

[ 1 1 1 0 ] 
Pi= 1 0 0 1 



198 ___ ~5~-~L~m~e~M:.___::C~o~de~s:_ _____________________ _ 

for the code C1 of Example 5.2.1. A standard array for the code C1 is 

0000 1011 0110 1101 
1000 0011 1110 0101 
0100 1111 0010 1001 
0001 1010 0111 1100 

and the syndrome table is 

cosetleader syndrome 
0000 00 
1000 11 
0100 10 
0001 01 

If, for example, the string x = 1110 is received, its syndrome is S(lllO) = 
[lllO]Pt = 11. Checking the syndrome table, we find that the correspond­
ing coset leader is f = 1000. Hence, a nearest neighbor codeword to x is 
X - f = 0110. □ 

One final note. We have seen that a standard array for a p-ary [n, k]­
code Chas pn-k rows. If Pis a parity check matrix for C and P has linearly 
independent rows, then it has size ( n- k) x n and therefore each syndrome 
xPt is an element of z;-k. Since Iz;-k1 = pn-\ we conclude that the set 

of syndromes is precisely the entire space z;-k. (This is illustrated in 
Example 5.5.2.) 

Exercises 

1. How many rows are there in a syndrome table for a p-ary [n, k, d]­
code? Can you read this number directly from the size of a generator 
matrix? Of a parity check matrix? 

2. Let P be the parity check matrix for a linear code C c z;. Show that 
(a) S(x + y) = S(x) + S(y) for any strings x and y in z; and (b) . 
S(ax) = aS(x), for any a E Zp. 

3. Use the parity check matrix P3 in Example 5.4.3 to construct a syn­
drome table for the Hamming code C3 of Example 5.2.1. Use the table 
to decode the strings a) 1101101, b) 1111111, c) 0000001. 
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4. Construct a.syndrome table for the repetition code Rep3(3). Use it to 
decode the strings a) lll, b) 121, c) 120. 

5. Use the parity check matrix P2 in Example 5.4.3 to construct a syn­
drome table for the ternary code C2 of Example 5.2.1. Use this table 
to decode the strings a) 0ll0, b) 2222, c) 2012. 

6. Write a computer program to construct a syndrome table, given a 
parity check matrix for a code. 

7. In Section 4.5, we promised that we would ask you to show that there is 
no binary linear (90,278 , 5)-code. Please do that now. Hint: Since such 
a code C, if it exists, must be perfect, the coset leaders are precisely 
the strings in z~o that have weight at most 2. Suppose that r of the 90 
coset leaders of weight 1 have syndromes of odd weight. How many 
have syndromes of even weight? How many of the coset leaders of 
weight 2 have syndromes of odd weight? How many coset leaders 
have syndromes of odd weight? Show that this number is also equal 
to 211 . Is there a solution for r? 

5.6 Equivalent Linear Codes 

A linear code C can be described by giving a generator matrix or by giving 
a parity check matrix. The question naturally arises as to how we might 
obtain a parity check matrix from a generator matrix, and vice-versa. 

In order to give a practical answer to this question, we introduce the 
concept of equivalent linear codes (we have already seen one definition 
of equivalence that applies to all codes). Suppose that C is a linear code, 
with generator matrix 

bn b12 bin 
b21 b22 b2n 

G= 

Thus, the rows b 1 , b2, .. . 1 bk form a basis for C. 
If we interchange any two rows of G, the resulting matrix will still 

generate C, since interchanging two rows simply amounts to changing the 
order of the basis strings. Similarly, multiplying a row of G by a nonzero 
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scalar results in another generator matrix for C, as does adding a scalar 
multiple of one row to another row. In particular, we have the following 
theorem, whose proof is left as an exercise. 

Theorem 5.6.1 Let G be a generator matrix for a linear code C. If any of 
the following operations are performed on the rows of G, the resulting matrix 
is also a generator matrix for C. 

l. Interchange any two rows of G. 

2. Multiply any row of G by a nonzero scalar. 

3. Add a multiple of one row of G to another row of G. 

These three operations are known as elementary row operations. □ 

In the parlance of linear algebra, this theorem says that any matrix that 
is row equivalent to G is also a generator matrix for the code C. 

Note that adding one row of G to another is a special case of an 
elementary row operation, as is subtracting one row of G from another. 

Example 5.6.1 Since the rows of the matrix 

are linearly independent over Z3 , this matrix is a generator matrix for a 
ternary [5, 3]-code C. Adding 2 times the first row to the second row of G 
gives 

[ 
1 2 1 2 1 ] 

G1 = 0 0 0 1 2 
2 0 0 1 2 

which, according to Theorem 5.6.1, is also a generator matrix for C. □ 

According to Theorem 5.6.1, elementary row operations do not change 
the code. However, in general, if we perform similar operations on the 
columns of G, the resulting matrq will no longer generate the code C. 

On the other hand, if G generates C, and if we interchange two 
columns of G, or multiply a column of G by a nonzero constant, the 
code D generated by the resulting matrix will have the same parameters 
(length, size, and minimum distance) as C. That is, if C is an [n, k, d]-code, 
then so is D. In a sense then, Dis "just as good" as C. This leads us to our 
next definition. 



Definition L~t C be a linear code, with generator matrix G. If any of 
the following operations are performed on the rows or columns of G, 
the code generated by the resulting matrix is said to be scalar multiple 
equivalent to C. 

1. Interchange any two rows of G. 

2. Multiply any row of G by a nonzero scalar. 

3. Add a multiple of one row of G to another row of G. 

4. Interchange any two columns of G. 

5. Multiply any column of G by a nonzero scalar. 

We refer to these operations as the five elementary matrix opera­
&~. □ 

We leave it as an exercise to show that if two linear codes are scalar 
multiple equivalent, then they are also equivalent in the sense of Chapter 
4. (But the converse of this statement is not true.) 

In order to discuss the importance of scalar multiple equivalence, we 
need some preliminary remarks. 

Definition A k x n matrix A is in left standard form ifit has the form 

A = [I k I Mk,n-k] 

where Ik is the identity matrix of size k x k, and Mk,n-k is a matrix of size 
k x (n - k). □ 

For example, the matrices Mand N below are in left standard form, 
but the matrix Pis not. 

[ 
1 0 0 1 1 ] [ 1 0 1 1 ] 

M=[~ O ~ 2 ~],N= 0 1 0 0 0 ,P= 0 1 0 0 
l l 00110 0011 

There are advantages to describing a linear code by means of a gen­
erator matrix that is in left standard form. Unfortunately, not all linear 
codes have such a generator matrix. However, as the next result shows, 
all linear codes are scalar multiple equivalent to codes that do. 

Theorem 5.6.2 Let G be a generator matrix for a linear code C. Then it is 
possible, by applying the five elementary matrix operations, to bring G to left 
standard form. Therefore, C is scalar multiple equivalent to a code that has a 
generator matrix in left standard form. □ 
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Proof Once we have proven the first statement of the theorem, the 
second statement follows from the definition of scalar multiple equiva­
lence. To prove the first statement, we describe a step-by-step method for 
bringing a generator matrix G to left standard form. ■ 

' 

Procedure for Bringing a Generator Matrix to Left 

Standard Form 

Let G be the generator matrix 

b11 b12 bin 
b21 b22 b2n 

G= 

We proceed one column at a time. 
Column 1: To prepare the first column, first make certain that the (1,1)­
th entry in the matrix is a 1, which can be done as follows. Since G is a 
generator matrix, the rows of G are linearly independent and so no row 
consists entirely of Os. Hence, by interchanging columns if necessary, 
we can arrange it so that the (1,1)-th entry is nonzero. If this entry is 
a then multiply the first row by the inverse a-1 in Zp, which turns the 
(1,1)-th entry into a 1. Next, zero-out the other entries in the first column 
by subtracting an appropriate multiple of row 1 from each of the other 
rows. The resulting matrix has the form 

0 Ck2 C7rn 

Column 2: Since the rows of G a~e linearly independent, so are the rows 
of G1. It follows as above that we can, by interchanging columns if nec­
essary, insure that c22 is nonzero. Multiplying the second row by c;} will 
turn this entry into a 1. The second row can now be used to zero-out all 
other entries in column 2. Note that since the first column has only Os 
below the first row, zeroing-out the entry c12 will not affect the (1,1)-th 
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entry, which wpl remain a 1. The resulting matrix has the form 

1 0 0 

O 1 d23 

O O d33 

This process may be continued until a matrix in left standard form is 
obtained. Let us consider an example. 

Example 5.6.2 Let us bring the ternary generator matrix 

G ~ [ 
1 2 2 0 n 1 0 1 1 
0 1 1 2 

into left standard form. 
Column 1: Interchange columns 1 and 2. 

u 1 2 0 n 1 1 1 
0 1 2 

Multiply row 1 by 2-1 = 2 (in Z3). 

u 2 1 0 0 ] 1 1 1 1 
0 1 2 1 

Subtract row 1 from row 3. 

u 2 1 0 n 1 1 1 
1 0 2 

Column 2: Subtract 2 times row 2 from row 1. Then subtract row 2 from 

row 3. 

l 1 0 
0 1 
0 0 

2 2 
1 1 
2 1 
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Column 3: Multiply row 3 by 2-1 = 2. 

[ 
1 0 2 
0 1 1 
0 0 1 

Subtract 2 times row 3 from row 1. Then subtract row 3 from row 2. 

[ 
1 0 0 1 2 ] 
0 1 0 2 1 
0 0 1 2 0 

This matrix is in left standard form, and we are done. □ 

One of the advantages of describing a linear code by means of a gen­
erator matrix in left standard form is that such a description makes it easy 
to encode and decode source messages. We will discuss this matter in de­
tail in the next section. Another advantage is that it is easy to construct a 
parity check matrix from a generator matrix that is in left standard form. 

Theorem 5.6.3 The matrix G = [h t B] is a generator matrix for an 
[n, k]-code C if and only if the matrix 

P = [ - Bt I In-k] 

is a parity check matrix for C. 

Proof Let 

G= 

1 0 
0 1 

0 0 0 1 bk] 
I 

Then P has the form 

-

P= 
...... -bk2 0 1 

-bk n-k O 0 
I 

0 

0 

1 

□ 

We want to compute the matrix product gipt, where gi is the ith row of 
G. Thejth entry of this product is the product of gi and thejth column of 
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pt, which is th~ jth row of P (in column format). Hence, this entry is 

[O · · · 1 · · · Obil · · · bi,n-k] 

-bkJ 
0 

1 

0 

This shows that the matrix product gipt is the zero matrix. 
Now suppose that G is a generator matrix for C. If Dis the code whose 

parity check matrix is P, then the syndrome of gi is gipt = 0 and so gi E D. 

Since this holds for all rows of G, we must have C c D. But since the n-k 
rows of P are linearly independent, the dual code D1-, which has P as a 
generator matrix, has dimension n - k. It follows that 

dim(D) = n - dim(D1_) = n - (n - k) = k = dim(C) 

Hence C = D, which shows that P is a parity check matrix for C, as 
desired. 

Finally, suppose that Pis a parity check matrix for C. Then since the 
syndrome of each row of G is 0, each row of Gisin C and since the k = 
dim(C) rows of G are linearly independent, G is a generator matrix for 
C. ■ 

Example 5.6.3 Harking back to Example 5.2.4, the generating matrix 
for the code C1 of Example 5.2.1 was seen to be 

[ 
1 0 1 

Gi = 0 1 1 

This matrix is in left standard form and so the corresponding parity check 

matrix is 

0 ] 
0 0 1 
1 1 
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as noted in Example 5.4.3. Similarly, the Hamming code C3 of Example 
5.2.1 has generating matrix 

1 0 0 0 0 1 1 
0 1 0 0 1 0 1 
0 0 1 0 1 1 0 
0 0 0 1 1 1 1 

which is also in left standard form. Hence, a parity check matrix for C3 is 

[ 
0 1 1 1 1 0 0 ] 

P3 = 1 0 1 1 0 1 0 
1 1 0 1 0 0 1 

D 

Example 5.6.4 Recall from Example 5.6.2 that the generator matrix 

G=[~~ ~~~] 
1 0 1 2 1 

for a ternary (5, 3]-code can be brought into the left standard form 

[ 
1 0 0 1 2 ] 

H= 0 1 0 2 1 
0 0 1 2 0 

Since this process required the use of column operations, the code D 
generated by H is not the same as the code C generated by G. However, 
the codes C and D are scalar multiple equivalent. By Theorem 5.6.3, D 
has parity check matrix 

p = [ -1 -2 -2 1 0 ] = [ 2 1 1 1 0 ] 
-2 -1 0 0 1 1 2 0 0 1 

Hence, C is scalar multiple equivalent to a code with parity check 
matrixP. D 

A matrix of the form A = [M l_h] is said to be in right standard form. 
Note that the parity check matrix obtained from Theorem 5.6.3 is in right 
standard form. Thus, it is easy to go back and forth between generator 
matrices in left standard form and parity check matrices in right standard 
form. 

Moreover, if P is any parity check matrix for C, applying any of the 
five elementary matrix operations results in a parity check matrix for a 



Exercises 207 ------------------------=--~-=----

scalar multiple. equivalent code. Furthermore, we can bring any parity 
check matrix with linearly independent rows into right standard form with 
such operations. Therefore, given a parity check matrix for a linear code, 
we can obtain a scalar multiple equivalent code with parity check matrix 
in right standard form, and then use Theorem 5.6.3 to obtain a generator 
matrix in left standard form. 

Exercises 

1. Suppose that C is an (n, p, n)-code over 'llp. Show that C is scalar 
multiple equivalent to the repetition code Repp(n). 

2. Prove Theorem 5.6.1. 

3. Find a generating matrix in left standard form for the ternary code C2 

of Example 5.2.1 and compute the corresponding parity check matrix 
for this code. 

4. Find a parity check matrix for the binary code C with generator matrix 

[ 1 1 1 ] 
1 0 1 

5. Find a parity check matrix for the binary code C with generator matrix 

[ ~ ~ ~ ~ ] 
0 1 1 1 

6. Find a parity check matrix for the code C over 'll7 with generator 
matrix 

[ 
1 2 3 4 5 ] 
1 0 2 0 3 
2 3 4 0 0 

7. Let En be the binary code oflength n that consists of all codewords of 
even weight. Find a generator matrix for En in left standard form and 
a parity check matrix for En. 

8. We know that every generator matrix G is also a parity check matrix. 
Is every parity check matrix a generator matrix? 
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9. Prove that performing any of the five row or column operations men­
tioned in this section on a parity check matrix produces a parity check 
matrix for a scalar multiple equivalent code. 

10. Prove that if Pis a parity check matrix but the rows of Pare not linearly 
independent, we may remove some rows from P and still have a parity 
check matrix for the same code. ' 

11. Let C be a binary linear code with generator matrix G. Let C be the 
code obtained from C by adding an even parity check. Describe a 
generator matrix for C. 

12. Let C be a binary linear code, with parity check matrix P. Let C be 
the code obtained from C by adding an even parity check. Describe a 
parity check matrix for C. 

13. Apply elementary row operations to the following parity check matrix 
for a binary code C 

to obtain another parity check matrix in right standard form. Use this 
matrix to find a generator matrix for the code C. 

14. Show that if two linear codes are scalar multiple equivalent, then they 
are also equivalent in the sense of Chapter 4. 

5. 7 Source Encoding with a Linear Code 

Up to now, we have spent much of our time discussing efficient methods 
for implementing nearest neighbor decoding, which is designed for er­
ror correction. We have not yet addressed the issue of how to encode 
source messages and, once errors are corrected, how to "decode" the 
corresponding code messages bacR into source data. 

Before continuing, we must face a slight conflict in terminology, re­
garding the word decoding. We have been using the term decode to stand 
for the application of a decision rule to replace a received word with a 
codeword. However, the term decode is also used to refer to the process 
of replacing a codeword with the original source data that it represents. 
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(This usage is :r:nore in line with the term encode, which means to repre­
sent a source message by a codeword.) To avoid confusion, let us refer to 
this as source decoding . 

Source information may first be encoded for efficient transmission us­
ing, for example, a Huffman encoding scheme. Since Huffman encoding 
schen1es produce variable length codewords, the output of an efficiency 
encoder would, in this case, be a sequence of binary strings of varying 
lengths. This output can then be grouped into strings of a constant length 
k, for the purpose of further encoding to correct errors in transmission. 

For instance, the source message CODES can be encoded using the 
Huffman codes in To.ble 2.1.1 to get 

00000/1001/10100/010/0011 

(the slashes are for readability) and this can be broken into 7 source strings 
oflength 3 

000/001/001/101/000/100/011 

Thus, in general, for the purpose of error correction, we may think 
of the source information as consisting of strings in z;, which we will 
refer to as source strings. (Even if the original source information is not 
first encoded for efficiency, we can still identify the source messages with 
strings in an appropriate z;.) 

Since an [n, k]-code C over Zp has size ICI = pk, it is capable of en­
coding all source strings in z;. In fact, if G is a generator matrix for the 

[n, k]-code C, then we can encode the source strings = s1s2 · · · sk E z; as 
the codeword sG. 

Example 5. 7.1 Consider the binary (5, 3]-code C with generator matrix 

1 1 
0 1 
0 1 

Since dim(C) = 3, it is capable of encoding all source strings in zt For 
example, the codeword for the source strings = 111 is 

c = sG = [ 1 1 

1 1 

0 1 
0 1 

1 0 0 ] 
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or, in string notation, c = 01100. D 

Thus, encoding with a linear code C amounts to simply multiplying 
the source string by a generator matrix for C. Unfortunately, in general, 
source decoding is not quite as simple. 

Example 5.7.2 Consider the code in the previous example. Suppose 
that we have received a string x and corrected it for errors to get the 
codeword c = 11001. What was the source string? 

To answer this question, we set s = s1 s2s3 and solve the equation 
sG = c, or in matrix notation 

ss] u 1 1 1 

~ ] ~ [ 1 [ S1 Sz 0 1 0 1 0 0 1 ] 

0 1 1 

Toking the product on the left gives 

[ S1 + Sz S1 S1 + Sz + S3 S1 + S3 S1 + s2] = [l 1 0 0 1] 

Since two matrices are equal if and only if their corresponding entries 
are equal, this leads to the system of equations 

S1 + Sz = 1 

S1 = 1 

S1 + Sz + S3 = 0 

S1 + S3 = 0 

S1 + Sz = 1 

We will leave it to you to show that the only solution to this system is 
s1 = 1, s2 = 0, s3 = 1, and so the source string is s = 101. □ 

The previous example shows that, in general, in order to perform 
source decoding, we must solve a system oflinear equations. It is worth 
pointing out that, since the string c obtained from the nearest neighbor 
decision rule is a codeword, and since every codeword corresponds to a 
unique source string, the system· of equations in question must have a 
unique solution. (In the language oflinear operators, the operator G has 
rank k and hence is an isomorphism from z; onto the code C.) 

Unfortunately, for a large code, solving the corresponding system of 
equations can be a formidable task. However, when the generator matrix 
G has left standard form, the task becomes extremely simple. 
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Let C be an. [n, k]-code with generator matrix Gin left standard form 

1 0 0 bn b1n-k 
' 

0 1 0 b21 b2n-k 
G= ' 

0 0 1 bk 1 bkn-k 
' ' 

Then, because the left portion of G is an identity matrix, ifs = s1 s 2 • • • sk 

is a source string, its codeword c = sG has the form 

where X1, Xz, ... , Xn-k are in Zp, In other words, the source messages is a 
prefix of the codeword for s. This makes source decoding almost trivial, 
for all we have to do is read the first k symbols from the codeword c to 
get the source s! 

Example 5. 7 .3 Consider our old friend the Hamming [7, 4]-code C3, 
with generator matrix 

1 0 0 0 0 1 1 

G3 
0 1 0 0 1 0 1 

= 0 0 1 0 1 1 0 
0 0 0 1 1 1 1 

which is in left standard form. To encode a source strings = s1s2S3S4 1 we 
multiply s on the right by G 

1 0 0 0 0 1 1 

c = sG = [ S1 S4] 
0 1 0 0 1 0 1 

S2 S3 0 0 1 0 1 1 0 

0 0 0 1 1 1 1 

= [ S1 S2 S3 S4 Sz + S3 + S4 S1 + S3 + S4 S1 + S2 + S4 ] 

and soc = s 1s 2s 3s4(s2 + s3 + S4)(s1 + S3 + S4)(s1 + s2 + S4). As expected, 
the first 4 elements of c are just the elements of the source string s. 

Now, ifwe are given a codeword to decode, say c = 1001100, then we see 
immediately that the source string is s = 1001. □ 

Source encoding with a generator matrix in left standard form makes 
some of the concepts involved stand out more clearly. In particular, if C 
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is a [n, k]-code, the source encoding process is 

The extra n-k elements x1, x2 , ••• , Xk of the codeword care present only 
to correct errors in transmission, for they certainly contribute nothing to 
the meaning of the source message. In other words, x1 , x2, ... , Xn-k is the 
redundant data that we spoke about in the introduction to this book. The 
number n-k of redundant symbols is often referred to as the redundancy 
of the code. On the other hand, when we encode with a generator matrix 
that is not in left standard form, the redundant data is "mixed in" with the 
source information, so that retrieving the latter (i.e., source decoding) 
requires considerably more computation. 

The use of parity check matrices that are in right standard form also 
has some interesting features. Let us illustrate with an example. 

Example 5.7.4 Consider the binary [7, 3]-code C, with parity check 
matrix 

1 1 1 1 0 0 0 

P= 
0 1 0 0 1 0 0 
1 0 1 0 0 1 0 
0 1 1 0 0 0 1 

which is in right standard form. A string x = x1x2 • • • x7 is in C if and only 
if xPt = 0, that is, 

1 0 1 0 
1 1 0 1 
1 0 1 1 

[ X1 Xz ... X7] 1 0 0 0 = [ 0 0 0 0 ] 
0 1 0 0 
0 0 1 0 
0 0 0 1 

Toking the product on the left, we-get . ~ 
[ X1 + Xz + X3 + X4 Xz + X5 X1 + X3 + X5 Xz + X3 + X7] = [ 0 

which is equivalent to the system of parity check equations 

X1 + Xz + X3 + X4 = 0 

Xz + X5 = 0 

0 0 0 ] 
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X1 + X3 + X5 = 0 

Xz + X3 + X7 = 0 

which has a nice form due to the right standard form of the parity check 
matrix. In fact, since -1 = 1 in Z2 , we may write these equations in the 
form 

and so 

X4 = X1 + Xz + X3 

Xs = Xz 

X5 = X1 + X3 

X7 = Xz + X3 

C = {x1x2x3(x1 + Xz + X3)x2(x1 + X3)(x2 + X3) I x 1,x2,x3 E Z2 } 

This description of C is very pleasant, for we can easily generate code­
words from it by just picking values for x1 , x2 , and x3 and substituting, or 
we can easily determine whether or not a given string is a codeword. □ 

Exercises 

1. Ifwe wish to encode all source strings in Z~ using the binary code C = 
(1000, 1011, 1110), what is the maximum value of k? Use a generator 
matrix for C in left standard form to encode the source string 1. 

2. Ifwe wish to encode all source strings in Z~ using the ternary code C = 
(1020, 1211, 1120), what is the maximum value of k? Use a generator 
matrix for C in left standard form to encode the source string 1. 

3. Ifwe wish to encode all source strings in Z~ using the binary code C = 
(1000, 1101, 0101), what is the maximum value of k? Use a generator 
matrix for C in left standard form to encode the source string 1. 

4. Assume that, for a binary code C, the generator matrix 

G= 

was used for source encoding. Decode the codeword 11001. 
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5. For the ternary code C2 of Example 5.2.1, assume that the generator 
matrix 

[ O 1 2 l] 
Gz = 2 2 1 0 

' was used for source encoding. Decode the codeword 1211. 

6. Assuming that the generator matrix G3 for the Hamming code C3 is 
used for source encoding, decode the codewords a) 1010101, b)lllOOOO, 
c) 1111111. 

7. The Hamming code C3 has parity check matrix 

P3 = [ ~ ~ ~ ~ ~ ~ ~ ] 
1 1 0 1 0 0 1 

Use this matrix to determine the form of a codeword c = c1 · • • c7 in 
C3 . Now consider the matrix H obtained from P3 by adding the first 
row of P3 to each of the other rows of P3 . Use this parity check matrix 
to describe the codewords in C3 • Show directly that these describe the 
same code. 

8. Use the parity check matrix 

[ O 1 1 OJ 
1 2 0 1 

for the ternary code C2 to describe the codewords in C2 . Reconcile this 
with the description of C2 given in Example 5.2.1. 

9. A (not necessarily linear) (n, pk)-code C over Zp is called system­
atic if there are k coordinate positions i1 , ... , ik with the property 
that, by restricting the codewords for these k positions, we get all 
pk possible strings oflength k over Zp. The set {i1, ... , ik} is called an 
information set and the codeword symbols in these positions are 
called information symbols:• , 

(a) Show that the binary code C = {0000, 0110, 1001, 1010} is system­
atic. What is the information set? 

(b) Show that the binary code D = {000, 100,010,001} is not 
systematic. 

(c) What is the significance of a code being systematic? 
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10. If the codes C and D are equivalent, is the probability of a decoding 
error the same for both codes? Be careful here about the channel! 





Some Special Codes 
CHAPTER 

6.1 The Hamming and Golay Codes 

The r-ary Hamming codes Hr(h) are probably the most famous of all error­
correcting codes. These codes were discovered independently by Marcel 
Golay in 1949 and Richard Hamming in 1950. They are perfect, linear 
codes that decode in a very elegant manner. We shall construct these 
codes by constructing their parity check matrices. Hamming codes exist 
for any prime power radix rand for any integer h > 0. However, we will 
construct these codes only for prime r. (The construction is essentially 
the same for prime powers r as for primer.) 

According to Theorem 5.4.7, the minimum distance of a linear [n, k]­
code with parity check matrix Pis the smallest integer d for which there 
exists d linearly dependent columns in P. Hence, the parity check matrix 
of an [n, k, 3]-code has the property that no two of its columns are linearly 
dependent, that is, no column is a scalar multiple of another column, but 
some set of three columns is linearly dependent. 

For a given code alphabet Zp (p a prime), we can easily construct 
such a parity check matrix P with h rows, and with the maximum possible 
number of colurnns. First a bit of terminology. If a string over 'llp is thought 
of as a p-ary number, we refer to the leftmost nonzero position as the most 
significant position in the number. For instance, the most significant 

217 
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position in x = 00210 is position 3. Also, the value in the most significant 
position is called the most significant value. (The most significant value 
ofx is 2.) We also use these terms to refer to the topmost nonzero position 
and value in a column of a matrix. Now, for the columns of P, we take 
the p-ary representations of those positive integers,, in increasing order 
starting with 1, that have most significant value 1. Some examples will 
make this clear. 

For p = 2, the most significant value is always a 1, so we don't need 
to worry about this and we can simply take the binary representations of 
the positive integers 1, 2, .... For instance, when h = 3 rows, we get 

[ 
0 0 0 1 1 1 

H2(3) = 0 1 1 0 0 1 
1 0 1 0 1 0 

whose columns are the binary representation of the numbers 1, 2, 3, 4, 5, 
61 and 7. For p = 3, we must skip those integers whose most significant 
value is 2. If h = 3, for instance, we get 

[ 
0 0 0 0 1 1 1 1 1 

H3(3) = 0 1 1 1 0 0 0 1 1 
1 0 1 2 0 1 2 0 1 

1 1 1 1 ] 
1 2 2 2 
2 0 1 2 

The first column of H 3(3) is the ternary representation of the number 1. 
However, the ternary representation of 2 is 002, which must be skipped 
since its most significant value is 2. The ternary representations of 3, 4, 
and 5 have most significant value 1 and so form the next three columns 
of H3(3). The ternary representation of 6 is 020, which must be skipped, 
and so on. 

The matrices Hp(h) are called Hamming matrices. We now establish 
some facts about the Hamming matrices. 

" 1 Fact 1 The Hamming matrix Hp(h) has size h x n, where n = ~..=-1 . 

Since Hp(h) was constructed using columns oflength h, it hash rows. 
Th count the number of columns in Hp(h), observe that the most signifi­
cant position of a column of Hp(h) can be any number between 1 and h. 
If the most significant position ism, then the column consists ofm -1 ze­
ros, followed by a 1, followed by h - m additional symbols, each of which 
can be any of the p symbols in Zp. Hence, there are ph-m columns with 
most significant position m. Summing over m ranging from 1 to h, the 
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total number or columns of Hp(h) is 

Fact 2 The rows of Hp(h) are linearly independent over Zp. 
This can be seen by observing that each of the column matrices 

e1, ... , eh is a column of Hp(h). We leave details of this as an exercise. 

Fact 3 No two distinct columns of Hp(h) are linearly dependent. 
To see this, consider two distinct columns of Hp(h), written in row 

notation, say 

c = 0 · · · 0 lei · · · ch-u-l and d = 0 · · · 0 ld1 · · · dh-v-1 
'-v-' '-v-' 
u zeros v zeros 

Clearly, if u f v, then c and d do not have the same number of leading 
Os, and so neither can be a scalar multiple of the other. But if u = v 
and c = ad, for some a E Zp then comparing the u + 1st positions gives 
1 = al and so a = 1, implying that c = d. Since distinct columns of 
Hp(h) contain distinct numbers, this cannot happen. Hence, no column 
is a scalar multiple of another column. 

Fact 4 The first three columns of Hp(h) are linearly dependent. 
The first column of Hp(h) is always O · · • 01, the second column is 

always O • • • 010 and the third column is always O · · · Oll, which is the sum 
of the first two columns. 

The previous facts lead to the following theorem. 

Theorem 6.1.1 The Hamming matri.x Hp(h) is a pari.ty check matri.x for 
a linear [n, k, d]-code Hp(h) over Zp with parameters 

Ph -1 
n=--k=n-hd=3 

p- 1 I I 

This code is called the p-ary Hamming code with parameter h. Thus, 
Hp(h) is an exactly single-error-correcting code. □ 

The binary case is by far the most common, where H 2(h) is a binary 
linear [n, k, d]-code, with parameters 

n = zh - 1, k = n - h, d = 3 
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The following table shows that the size M = zn-h of the binary Hamming 
codes gets large very fast. 

h n = zh - 1 M = z2 11 -l-h 

2 3 2 

3 7 16 
4 15 2048 

5 31 67,108,864 
6 63 1.44xl017 

The Hamming codes are special, partly because they are perfect and 
easy to decode and partly because they are "unique" in the sense that 
any linear code C with the same parameters as a Hamming code is scalar 
multiple equivalent to that Hamming code. Proof of this statement is left 
as an exercise. We also ask the reader, in the exercises, to show (with some 
help) that there are nonlinear codes with the same parameters as some 
of the Hamming codes. 

Decoding with a Hamming Code 

The form of the Hamming matrices Hv(h) allows for perhaps the most 
elegant decoding procedure of any code. This is especially true for the 
binary Hamming codes, which we discuss first. 

Theorem 6.1.2 If a codewordfrorr: the binary Hamming code 1-l2 (h) suffers 
a single error, resulting in the received word x, then the syndrome S(x) = 
xH2(hY is the binary representation of the position in x of the error. □ 

Proof If the error string is ei, then S(x) = S(e1) = eiH2(hY is the ith 
column of H2(h), which is just the binary representation of the number 
L ■ 
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Example 6.1.1 Using the binary Hamming code H2(3), suppose x = 
1011000 is received. The syndrome is 

0 0 1 
0 1 0 
0 1 1 

S(x) = [ 1 0 1 1 0 0 0 ] 1 0 0 = [ 1 1 0 ] 
1 0 1 
1 1 0 
1 1 1 

which is the binary number 110binary = 6decimal• Hence, if a single error 
occurred, it must have been in the 6th position of the codeword and so 
c = x - e6 = 1011010 is the nearest neighbor codeword. □ 

In the nonbinary case, an error in the ith position produces an error 
string of the form aei, for some nonzero a E Zp, The syndrome of the 
received word x = c + aei is thus 

which is a times the ith column of Hp(h). But, since the most significant 
value of any column of Hp(h) is equal to 1, the first nonzero entry in 
the syndrome is al = a. Multiplying the syndrome by a-1 gives the ith 
column of Hp(h). Comparing this with each column of Hp(h) gives the 
value of i. Let us state this more formally in a theorem. 

Theorem 6.1.3 Suppose a codeword from the Hamming code Hp(h) suffers 
a single error, resulting in the received word x, and let a be the most significant 
value of S(x). If the column of Hp(h) containinga-1S(x) is the ith column, then 
the error string is aei and the nearest neighbor codeword to xis x - aei. □ 

Example 6.1.2 Using the ternary Hamming code 1i3(3), the syndrome 
of the received word x = 1101112211201 is 

[ 1 1 0 1 1 

=[2 0 1]=2[1 

1 2 2 1 1 2 0 1 ] H3(3Y 

0 2 ] = 2 x (7th column of H i3)) 

It follows that the error string is 2e7 and the nearest neighbor codeword 

lS 

X - 2e7 = }}0}}}021120} □ 
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The Hamming codes are indeed remarkable codes, especially when 
it comes to decoding. Also, the transmission rate of the Hamming code 
'Hp(h) is 

k h 
R('Hp(h)) = - = l - -

n n 

which tends to the maximum possible value of 1 as n gets large. 
Unfortunately, the error correction rate of Hp(h) is 

ld-1 J l 
8(C) = 2 = -

n n 

which tends to the worst possible value of Oas n gets large. 

The Simplex Codes 

Since the Hamming codes have some special properties, it is not sur­
prising that their dual codes also have special properties (although these 
codes are much less well known). We will restrict attention to binary 
codes. The dual of the binary Hamming code 'H2(h) is called the simplex 
code S(h). Since the rows of the matrix H2(h) are linearly independent, 
this matrix is a generator matrix for S(h). 

The simplex code S(h) has length n = zh - l and dimension h. To 
determine the distance properties of the simplex codes, we observe that 
the generator matrix H2(h + 1) can be obtained from two copies of the 
matrix H 2(h) as follows 

0 0 1 1 1 
0 

H2(h + 1) = 
H2(h) H2(h) 

(6.1.1) 

0 . ' 
Now, any codeword c in S(h + l) is a sum of some of the rows of 

H2(h + 1 ). Hence, c has the form c = aab, where a is a sum of rows of 
H2(h) (and possibly the zero row) and is therefore a codeword in S(h), a 
is either a O or a 1 and b is equal to a or a + I = ac, depending upon 
whether or not the first row of H2(h + 1) is included in the sum. Thus, 
we have two cases. 
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Case I If the ·sun1 constituting c does not involve the first row of H 2(h + 
1) then c = a0a 1 where a E S(h). 

Case 2 If the sum constituting c does involve the first row of H 2(h + 1) 
then c = alac, where a E S(h). 

These cases are summarized in the following theorem, which completely 
describes the simplex codes. 

Theorem 6.1.4 The simplex code S (h) can be described as follows. 

1. S(2) = (011, 101) = {000 1 011 1 101,110} 

2. For any integer h > 2, 

S(h + l) = {aOa I a E S(h)} U {alac I a E S(h)} □ 

Theorem 6.1.4 can be used to establish a very interesting fact about 
the distances between codewords in a simplex code. We leave the proof 
as an exercise. 

Theorem 6.1.5 The simplex code S(h) is a [2h - l, h 1 2h- 1]-code with 
the property that the distance between every pair of distinct codewords is 
2h-l. □ 

Thus, not only is the minimum distance of a simplex code S(h) equal 
to 2h-l I which is rather large, but the distance between every pair of dis­
tinct codewords is 2h-1 • (This accounts for the small size of the simplex 
codes.) Figure 6.1.1 shows the simplex code S(2). 

011 

llO 

000 FIGURE 6.1.1 The simplex code S(2) 
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Golay Codes 

There are a total of four Golay codes-two binary codes and two ternary 
codes. We will define these codes by giving generating matrices, as did 
Marcel Golay in a one-page paper published in 1949. (Golay gave no hint 
as to how he obtained these generator matrices. However, there are other, 
more motivating ways to define these codes, although these methods 
require more mathematical structure than we have developed.) 

The Binary Golay Code Qz4 

The binary Golay code Q24 is a [24, 12, 8]-code whose generator matrix has 
the form G = [Ii2 I A], where 

A= 

1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
1 1 
1 1 
1 1 1 
1 1 1 
1 1 
1 
1 
1 1 

1 1 
1 1 
1 

1 

1 
1 

1 
1 1 

1 1 
1 1 

1 

1 
1 

1 

1 
1 

1 

1 
1 

1 

1 
1 

1 
1 

1 1 1 
1 1 1 

1 1 1 1 1 1 1 

1 
1 

1 
1 
1 

1 1 1 1 1 1 1 

and where dots have been used in place of Os in the hope of increasing 
readability. We will show that 924 has minimum weight 8 through a series 
of simple facts. 

Lemma 6.1.6 The Golay code 92.4, is self-dual, that is, 9l = Q24 . □ 

Proof It is straightforward (but boring) to check that, if r and s are 
rows of G, then r · s = 0. Hence, 924 C 9l. Since Q24 and 9l both have 
dimension 12, they must be equal. ■ 

Proof of the next result is left as an exercise. 

Lemma 6.1. 7 The matrix [A I 11 2] is also a generator matrix for Q24 . □ 
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Lemma 6.1.8 · The weight of every codeword in 924 is divisible by 4. □ 

Proof It is easy to see by counting that the weight of every row of G is 
divisible by 4. If rands are rows of G, then 

w(r + s) = w(r) + w(s) - 2w(r n s) 

But w(r n s) - r · s = 0 mod 2, and so w(r + s) is also divisible by 4. It is 
now easy t? construct a proof by induction that the weight of any sum of 
rows of G is divisible by 4. We leave details of this to the reader. ■ 

Lemma 6.1.9 The Golay code 924 has no codewords of weight 4. □ 

Proof We take advantage of the two generating matrices G1 = [h 2 I A] 
and G2 = [A I 112] for 924 . Suppose that c E 924 and consider the left 
half L and the right half R of c. (Thus c = LR, where L and R are strings 
of length 12.) Since any nontrivial linear combination (i.e., sum) of the 
rows of G1 has a left half of weight at least 1, we deduce that w(L) > l. 

Similarly, using G2 , we get w(R) ~ l. However, if w(L) = 1, then c must 
be a row of G1 , none of which has weight 4. Similarly, if w(R) = 1 then c 
cannot have weight 4. Assume that w(L) > 2 and w(R) :'.'.: 2. Then c can 
have weight 4 if and only if w(L) = 2 and w(R) = 2. But this happens if 
and only if c is the sum of precisely two rows of G1 , which can be ruled 
out simply by checking that no sum of any two rows of G1 has weight 
4. ■ 

Since the weight of any codeword in 924 is divisible by 4, but not equal 
to 4, we must have w(924 ) > 8. On the other hand, the second row of G 
has weight 8 and so we have proved the following. 

Theorem 6.1.10 The binary Golay code 924 is a [24, 12, 8]-code. □ 

Decoding with the Binary Golay Code Qz4 

Since 924 is a [24, 12, 8]-code, syndrome decoding would require that we 
construct (and check) a table with 

224 

- = 212 = 4096 
212 

syndromes. On the other hand, using the structure of 924 1 we can 
considerably reduce the work involved in decoding. 
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Since 924 is self-dual, the matrices G1 = [I12 I A] and G2 = [A I I12] 
are both parity check matrices. Suppose that 3 or fewer errors occur in 
the transmission of a codeword, and let x be the received word and e be 
the error vector. Thus, w(e) < 3. Let us write e = fg, where f and g have 
length 12. We can compute the syndromes of the ~eceived word using 
both parity check matrices as follows 

1 [I12] S1 = eG1 = [f I g] A = f + gA 

(we are mixing matrix and vector notation here) and similarly 

S2 = eG~ = [f I g] [~] = fA + g 
Ii2 

Now let us examine the possibilities. 

1. If w(f) = 0 and 1 S w(g) < 3, then e = Og = 0S2 and 

w(S1) = w(gA) ::: 5, w(S2) = w(g) < 3 

The first inequality following from the fact that the sum of any 3 or 
fewer rows of[J12 I A] has weight at least 8, of which the contribution 
of the first half of the rows is at most 3. 

2. If 1 S w(f) < 3 and w(g) = 0, then e = fO = S10 and 

w(S1) = w(f) < 3, w(S2) = w(fA)::: 5 

3. Ifw(f)::: 1 and w(g) > 1, then w(S1)::: 5 and w(S2) > 5. 

Thus, if either syndrome has weight at most 3, we can easily recover the 
error vector e. If w(S1) and w(S2) are both greater than 3, we know that 
one of the following holds 

a) w(f) = 1 and w(g) = 1 or 2. 

b) w(f) = 2 and w(g) = 1. 

Let ei be the vector of length 12 with a 1 in the ith position and zeros 
elsewhere. Under case a), we have· f = ei for some i and so 

Yu = (x + euO)G~ = (e + euO)G~ = (eig + euO)G~ = eiA + g + euA 

Under case b), we have f = e1 + e1 for some i f j and so 

Yu= (x + euO)G~ = (e + euO)G~ 

= ((ei + e;)g + euO)G~ = eiA + e1A + g + euA 
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Suppose we make the above computations for all u = l, ... , 12. 
If case a) holds, then w(yu) = w(g) = 1 or 2 precisely when u = i; 

otherwise, W(Yu) > 4. On the other hand, if case b) holds, then w(yu) ::: 4 
for all u. Thus, we can distinguish between the two cases and, if case 
a) holds, we can determine both the error position i (and thus f) and 
the second half g = Yi of the error string, by looking at the 12 strings 

Y1, · · · 1 Y12-
If case b) holds, we make a similar computation using Gi. In this case, 

f = ei and g = ei and so 

which has weight w(zu) = w(ei) = 1 if u = j and weight w(zu) ::: 5 for 
u f j. Thus, we may easily pick out both i and j in this case, by looking 
at the 12 strings z1, ... , z12. 

In summary, if at most three errors occur, then we can decode 
correctly by computing at most the 26 syndromes 

(a task still best done by computer). 

The Binary Golay Code Q 23 

Let Q23 be the code obtained simply by throwing away the last coordinate 
of every codeword in the Golay code Q24 . This process is called punc­
turing the code Q24 . The resulting punctured code has length 23 and, 
since the distance between codewords in Q24 is greater than 1, all of the 
punctured codewords are distinct, so Q 23 has the same size as Qz4. It is 
clear that puncturing a code cannot increase the minimum distance nor 
decrease it by more than 1 and so d(Q23) = 7 or 8. But the parameters 
[23, 12, 7] satisfy the sphere-packing condition and so d(Qz3) = 7. Thus, 
the Golay code Q23 is a perfect binary [23, 12, 7]-code. 
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The Turnary Golay Codes 

The ternary Golay code 912 is the code with generating matrix G = [h I BJ, 
where 

0 1 1 1 1 1 
1 0 1 2 2 1 
1 1 0 1 2 2 

B= 
1 2 1 0 1 2 
1 2 2 1 0 1 
1 1 2 2 1 0 

We will leave proof of the following as an exercise. 

Theorem 6.1.11 

1. The ternary Golay code 9 12 is self-dual, that is, 9~ = 912-

2. The matrix B satisfies B = Et. 

3. 912 is a [12, 6 1 6]-code. 

4. The ternary code 9n, obtained by puncturing 912 in its last coordinate 
position, is a perfect [11, 61 5]-code. □ 

Uniqueness of the Golay Codes 

In 1968, the coding theorist Vera Pless showed that any binary linear code 
with the same parameters as 924 must be equivalent to 924 . In 1975, P. 
Delsarte and J.-M. Goethals extended this result, by showing that any 
binary code (linear or nonlinear) with the same parameters as 924 is 
equivalent to 924 . (Actually, they showed that if such a code contains the 
zero codeword, then it must be linear, and so by the result of Pless, it must 
be equivalent to 924.) These authors also established the uniqueness of the 
other Golay codes. (In 1973, S. L. Snover also established the uniqueness 
of 923 .) Let us state their results. : , 

Theorem 6.1.12 

1. Any binary (24,2 12,8)-code is equivalent to the Golay code 924 . 

2. Any binary (23,212, 7)-code is equivalent to the Golay code 923 . 

3. Any ternary (12,36,6)-code is equivalent to the Golay code 912 

4. Any ternary (11,3 6 ,5)-code is equivalent to the Golay code 9n. □ 



Theorem 6.1.12 can be summarized by saying that any code that has 
the parameters of a Golay code is equivalent to a Golay code. 

Perfect Codes Revisited 

We are now in a position to appreciate the following remarkable result 
(various parts of which are due to van Lint, Tietavainen, Best, and Hong) 
concerning the existence of perfect codes. As we have seen, the code 
consisting of a single codeword, the entire space, and the repetition codes 
are all perfect. These are referred to as the trivial codes. All other codes 
are nontrivial. 

Theorem 6.1.13 

1. For alphabets of prime power size, all nontrivial perfect codes C have the 
parameters of either a Hamming code or a Golay code. Furthermore, 

(a) if C has the paramteres of a Golay code, then it is equivalent to that 
Golay code. 

(b) if C is linear and has the parameters of a Hamming code, then it is 
equivalent to that Hamming code. However, there are nonlinear perfect 
codes with the Hamming parameters. 

2. Over any alphabet, the only nontrivial t-error-correcting perfect code with 
t > 3 is the binary Golay code 923. □ 

Notice that there are some gaps in Theorem 6.1.13. With regard to 
alphabets of prin1e power size, it is not known how many nonequivalent, 
nonlinear perfect codes there are with the Hamming parameters. (It is 
believed that there may be many thousands.) In 1962, Vasil'ev discovered 
a family of such codes, which we discuss in the exercises. 

More generally, it is still not known whether there are perfect double­
error-correcting codes over any alphabet whose size is not a power of a 
prime. (It is conjectured that there are none.) The issue of how many 
nonequivalent single-error-correcting perfect codes may exist seems to 
be extremely difficult. 

The previous theorem can be rephrased from the point of view of 
error correcting capabilities as fol1ows. 
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Theorem 6.1.14 

1. (For at least three-error-correcting codes) Fort > 3, any nontrivial perfect 
t-error-correcting code is equivalent to the binary Golay code 923 . 

2. (For double-error-correcting codes) Over alphabets of prime power size, 
all nontrivial perfect double-error-correcting codes' are equivalent to the 
ternary Golay code 911 . 

3. (For single-error-correcting codes) Any nontrivial perfect single-error­
correcting code C over an alphabet of prime power size has the parameters 
of a Hamming code. Moreover, if C is linear, it is scalar multiple equivalent 
to a Hamming code. However, there are nonlinear codes with Hamming 
parameters that are not equivalent to a Hamming code. □ 

Exercises 

1. Use the binary Hamming matrix H 2(3) to decode the words a) 1111000, 
b) 1. 

2. Use the ternary Hamming matrix H 3(3) to decode the words a) 
1111000222222, b) 2222100000000. 

3. Write out the Hamming matrix H 2(2) and use it to decode the word 
101. 

4. Write out the Hamming matrix H 3 (2) and use it to decode the words 
0120 and 0010. 

5. Write out the Hamming matrix H 2(4) and use it to decode the word 
111110000011111. 

6. How many columns of the Hamming matrix H 3 (4) have a 0 in the 
first row? Write out these columns. 

7. Show that the Hamming codes are perfect . . ' 
8. Show that the rows of the Hamming matrix Hp(h) are linearly 

independent. 

9. Apply elementary row operations to the parity check matrix H 2(3) to 
obtain another parity check matrix in the right standard form [A I !J]. 
Use this matrix to find a generator matrix for the Hamming code 
H2(3). 
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10. Let M be the matrix obtained by adding an additional column of Os to 
the left end of the Hamming matrix H 2 (h). Describe the pattern of Os 
and ls in the rows of M. Show that the Hamming code H 2 (h) contains 
the codeword 1 and that the complement of every codeword in H 2(h) 
is also in 'H2(h). 

11. Show that if C is a linear code with the same parameters as that of 
Hp(h), then C is equivalent to 'Hp(h). Hint: let P be a parity check 
matrix for C with linearly independent rows. Multiply each column 
of P by the inverse of the value in the most significant position of that 
column. What can you say about the columns of the resulting matrix? 

12. We remarked in the text that if C is a linear code with the same pa­
rameters as the Hamming code H2(h), then C is equivalent to 'H2(h). 
We now construct a binary nonlinear code V(h) (first constructed by 
Vasil'ev in 1962) with the same parameters as the Hamming code 
H 2(h). Let n = zh - 1. Let f : H 2(h) ➔ Z2 be the function defined by 
f(l) = 1 and f ( c) = 0 for all c f l. Let wt : z; ➔ Z2 be the function 
defined by wt(x) = 0 if x has even weight and wt(x) = 1 if x has odd 
weight. Now let 

V(h) = {x(x + c)(wt(x) + f(c)) Ix E z;, c E 'H2(h)} 

Show that V(h) is a binary (n, M, d)-code, where n, M, and d are the 
Hamming parameters 

n = zh+l M = z2n-h d = 3 
I I 

Show also that V(h) is nonlinear. Hint: consider the codewords that 
come from a Hamming codeword c and its complement cc. Show that 
V(h) is not equivalent to 'H2(h). 

13. Use the fact that the Hamming code 'H2(h) is perfect to determine the 
number of codewords of weight 3. Hint: consider the strings of weight 
2 in z; and the packing spheres in which they lie. 

14. Verify that 

0 

H 2 (h + 1) = 
H2(h) 

0 1 1 
0 

0 

1 

H2(h) 
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15. Prove that the simplex code S(h) is an [2h - 1, h, 2h- 1]-code with the 
property that the distance between every pair of distinct codewords 
· 2h-l IS . 

16. Prove Lemma 6.1.7. Hint: use the fact that 924 is self-dual. 
\ 

17. How large is the syndrome table for the Golay code 924? 

18. Prove Theorem 6.1.11. Hint for part 3): Let c be a codeword in 912 
and let c = LR, where L and R are strings of length 6. Show that 
G1 = [h I B] and G2 = [-B I h] are both generator matrices for 912-
Now, if w(c) ~ 5, then we must have w(L) ~ 2 or w(R) < 2. If, for 
instance, w(L) < 2, then c is a linear combination of at most two rows 
of G1 . Is this possible? 

The Nordstrom-Robinson Code 

In the next exercises, we define and discuss the Nordstrom-Robinson code. 
This code has the interesting property that it has strictly larger minimum 
distance than any linear code with the same length and size. Hence, it shows 
that linear codes may not be as good as nonlinear codes. Incidentally, the 
Nordstrom-Robinson code was first defined by Alan Nordstrom using trial 
and error, when he was but a high-school student! 

19. Recall that 924 has generator matrix G = [112 I A], where A is given 
earlier in this section. Show that, by permuting columns and using 
elementary row operations, the matrix G can be brought to the form 

1 0 0 0 0 0 0 1 
0 1 0 0 0 0 0 1 
0 0 1 0 0 0 0 1 * 
0 0 0 1 0 0 0 1 
0 0 0 0 1 0 0 1 

G' = 
0 0 0: ,O 0 1 0 1 
0 0 0 0 0 0 1 1 

0 
0 

Os 0 * 
0 
0 
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where the asterisks represent some values. Note that the eighth col­
umn is the sum of the previous seven columns. Hint: Any seven 
columns of G are linearly independent and some eight columns of 
G are linearly dependent. Thus, the code C with generating matrix G' 
is equivalent to Qz4. 

20. Show that there are 8 x 32 = 256 codewords in C whose first eight 
coordinates are one of 

0000 0000 
1000 0001 
0100 0001 
0010 0001 
0001 0001 
0000 1001 
0000 0101 
0000 0011 

21. The Nordstrom-Robinson code N is the code whose codewords are 
obtained from the 256 words from the previous exercise by deleting 
the first eight coordinate positions. Hence, N has length 16 and size 
256. Show that N has minimum distance 6, and so is a (16,256,6)­
code. (It is possible to show that A2(16, 6) = 256 and so the code N is 
optimal. Hint: show that d(N) > 6 and use Plotkin's bound to show 
that d(N) < 6. 

22. Show that there is no linear (16,256,6)-code. Hint: Suppose that C 
is such a code. Delete the last coordinate position to get a linear 
(15,256,5)-code C1 . The cross-section x1 = 0 of this code is a lin­
ear (14,128,5)-code C2 . The cross-section x1 = 0 of C2 is a linear 
(13,64,5)-code C3 . Rearrange the coordinate positions if necessary to 
get a generating matrix of the form 

1 1 1 1 0 0 0 0 0 0 0 0 ] 

G2 

Show that G2 is the generator matrix of a linear [8, 5, 3)-code. Can such 

a code exist? 
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6.2 Reed-Muller Codes 

Reed-Muller codes are one of the oldest families of codes, and have been 
widely used in applications. For each positive integer m, and each integer 
r satisfying 0 :s r < m, the rth order Reed-Muller code R(r, m) is a binary 
linear code with parameters 

n = 2m M = 21+(~')+···+(~) d = 2m-r 
I I 

We will restrict attention to the first order Reed-Muller codes R(m), which 
are binary linear (2m, 2m+l, 2m-1)-codes. As mentioned earlier, the code 
R(S) was used by Mariner 9 to transmit black and white photographs 
of Mars in 1972. There are many ways to define the Reed-Muller codes. 
We choose an inductive definition, since this definition makes it easy to 
establish the basic properties of the codes. 

Definition The Reed-Muller codes R(m) are binary codes defined, for 
all integers m > 1, as follows. 

1. R(l) = Z~ = {00, 01, 10, 11} 

2. Form 2: 1, 

R(m + 1) = {uu I u E R(m)} U {uuc I u E R(m)} 

In words, the codewords in R(m + 1) are formed by juxtaposing each 
codeword in R(m) with itself and with its complement. □ 

To demonstrate the virtues of an inductive definition, note that R(l) 
is a linear (21 , 22 , 2°)-code in which every word except O and I has weight 
2°. We can easily extend this statement to the other Reed-Muller codes 
by induction. 

Theorem 6.2.1 For m > 1, the Reed-Muller code R(m) is a linear 
c2m I 2m + 1 

I 2m-) )-code for which every codeword except O and 1 has weight 
2m-1_ :, □ 

Proof The result is true for R(l ). Assume it is true for R(m) and con­
sider the code R(m + I). We leave it as an exercise to show that if R(m) 
is linear then so is R(m + I). It is evident from the definition that the 
length of R(m + 1) is twice that of R(m) and so 

len(R(m + 1)) = 2. 2m = 2m+l 
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Moverover, since each of the sets {uu I u E R(m)} and {uuc I u E R(m)} 
has size !R(m)I and since these sets are disjoint, it follows that 

IR(m + 1 )I = 2 · IR(m)I = 2 · zm+l = zm+Z 

Finally, assuming that all codewords in R(m) except O and 1 have weight 
zm-1 , consider a codeword c E R(m + 1 ). If c = uu is different from 0 or 
1, then u f O or 1 and so 

w(c) = 2w(u) = 2 · zm-l = zm 

If c = uuc then we must consider some cases. If u = 0 then c = 01, 
which has weight zm. If u = 1 then c = 10, which also has weight zm. 
Finally, if u f O or I then, since w(uc) = zm - zm-i = zm-i = w(u), we 
again have 

w(c) = 2w(u) = 2 · zm-l = zm 

In all cases, w(c) = zm. Thus, R(m + 1) is a linear czm+l, zm+ 2 , zm)-code, 
and the proof is complete. ■ 

Example 6.2.1 According to the definition, R(2) = {0000, 00ll, 0101, 
0ll0, 1010, 1001, llll, ll00}. Note that 

R,-U[~n 
is a generator matrix for R(2). □ 

The inductive definition of R(m) also allows us to define generator 
matrices for these codes. 

Theorem 6.2.2 

1. A generator matrix for R(l) is 

R1 - [ ~ ~ ] 

2. If Rm is a generator matrix for R( m ), then a generator matrix for R( m + 1) 

lS 

-[O ···Oil··· 1] Rm+l - Rm Rm 
(6.2.1) 
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□ 

Proof The first part is clear. Note that, if the rows of Rm are linearly 
independent, then so are the rows of Rm+ 1 . For if any sum 

' 

of the rows of Rm+ 1 is O, then this sum clearly cannot consist of just the 
first row. Hence, the sum of the left halves of the rows is a nontrivial sum 
(i.e., not all Os) of rows of Rm that is equal to 0, which is not possible 
since the rows of Rm are assumed to be linearly independent. Thus, by 
induction, we conclude that each of the matrices Rm+ 1 is a generator 
matrix (for some code). 

Let C be the code whose generator matrix is the matrix on the right 
side of(6.2.1). We want to show that C = 'R(m + 1). Ifr is a row in Rm, 

then rr and rr + 01 = rrc are both in C. It follows that if u is any sum 
of rows in Rm, that is, any codeword in 'R(m), then uu and uuc are both 
in C. Hence, 'R(m + 1) c C. But Chas the same dimension as 'R(m + 1) 
and so 'R(m + 1) = C, as desired. ■ 

Example 6.2.2 Using the matrix R2 from Example 6.2.1 (which also 
comes from R1 using Theorem 6.2.2), we have 

0 0 0 0 1 1 1 1 
0 0 1 1 0 0 1 1 
0 1 0 1 0 1 0 1 
1 1 1 1 1 1 1 1 

□ 

Theorem 6.2.2 can be used to describe the generator matrices Rm 

directly, both in terms of their rows and their columns. We leave proof of 
the next theorem for the exercises. 

Theorem 6.2.3 

l. The rows of Rm can be described as follows. The first row of Rm consists 
of a block of 2m-1os followed by a block of 2m-11s 

2"'- 10s 2"'- 11s ---- ----0· · · 0 1 · · · 1 
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The next row' of Rm consists of alternating blocks of Os and ls of length 
2m-2 

2"'- 20s zm-2 1s zm-20s zm-2 1s 
,-"-.._ ,-"-.._ ,-"-.._ ,-"-.._ 

Q ... Q l·•·l Q ... Q l···l 

In gener0,l, the ith row of Rm consists of alternating blocks of Os and ls 
of length 2m-i, The mth row of Rm thus consists of alternating Os and ls 
(blocks of length 2m-m = 1). The last row of Rm is a row of all ls. 

2, The columns of Rm can be described as follows. Excluding the last row of 
Rm, the columns of Rm consist of all possible binary strings of length m 
which, when read from the top down as binary numbers, are O, 1, ... , 2m -
1, in this order. □ 

The following table gives the parameters for R(m), for some small 
values of m. Note the large minimum distance, but small size, of these 
codes. 

codeword code 
.. 

m1n1mum 
m length (2m) Size (2m+l) distance (2m- i) 

2 4 8 2 
3 8 16 4 
4 16 32 8 
5 32 64 16 
6 64 128 32 
7 128 256 64 
8 256 512 128 

It is interesting to compare the characteristics of the Reed-Muller 
codes with those of the Hamming codes. For approximately the same 
codeword length (2m for Reed-Muller, 2m - 1 for Hamming), the code 
size of Reed-Muller (2m+ 1) is significantly smaller than that of Hamming 
(22m-i-m). With the Hamming codes, we pay for the large code size with 
a minimum distance of only 3 (and thus only single-error correction). 
For the Reed-Muller codes, the relatively large minimum distance grows 
along with the code size. 
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Decoding with Reed-Muller Codes 

Since R(m) is a czm, zm+l, zm-1)-code, it is capable of correcting 

l2m-1 _1J = zm-2 -1 
2 

errors. However, a standard array for R(m) has 

2"' _z __ = z2"'-m-l 
zm+l 

rows. For instance, to correct seven errors, we need m = 5, in which case 
there are 67,108,864 cosets in a standard array! Thus, decoding using a 
syndrome table is time consuming, even for sma11 values of m (such as 
the one used by Mariner 9). Fortunately, there are better ways to decode 
when using a Reed-Mu11er code. 

We wi11 describe a special type of majority logi,c decoding, ca11ed Reed 
decoding, that applies to Reed-Mu11er codes. The idea behind majority 
logic decoding is quite simple. Consider a linear code C, with basis B = 

{b1, b2, ... , bk}. Suppose a codeword c = c1 • · · Cn is sent. Since Bis a basis, 
there exist scalars ai E Z2 for which 

Suppose we find a way to compute the coefficient a 1 directly from the 
coordinates Ci in, say, four different ways, and that each way uses different 
coordinates. For instance, suppose that (for n = 8) 

<X1 = C1 + C5 

CX1 = Cz + C5 

CX1 = C3 + C7 

<X1 = C4 + Cs 

Now imagine that the received word x = x1 • • • Xn has a single error. We 
attempt to compute a 1 four times, using the coordinates of x, as fo11ows 

CX1 = X1 + X5 

CX1 = Xz + X5 

CX1 = X3 + X7 

CX1 = X4 + Xs 
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The point is that, if only one error has occurred, only one of the i\\S will 
not equal the corresponding Ci and so only one of these four equations 
will not give the correct value of a 1 . Put another way, the majority (in 
this case 3) of the equations will give the correct value of a 1 . Doing this 
for each of the coefficients ai enables us to recover the codeword c. This 
is majority logic decoding. 

Although we will discuss the general case Rm here, it might help to 
follow the procedure to keep an eye on the generator matrix 

0 0 0 0 1 1 1 1 
0 0 1 1 0 0 1 1 
0 1 0 1 0 1 0 1 
1 1 1 1 1 1 1 1 

as we proceed. 
Suppose a codeword c = c1 • • • Cn is sent. If the rows of Rm are denoted 

by r1, ... , rm+l, then 

for some scalars ai E Z2 . For reasons described earlier, we would like to 
find as many expressions for the coefficients ai as possible. Suppose that 
xi is a string that is orthogonal to every row of Rm except the ith row, and 
Xi · ri = 1. Then 

Xi· c = Xi· (a1r1 + · · · + am+1rm+i) 

= a 1(xi · r1) + · · · + am+1(xi · rm+1) 

To find such a string Xi, suppose that ri = ro · · · rin· Then 

and so, 

If eu + ev is to be our candidate for Xi 1 then we must have 

if k = i 
ifk f i 
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Of course, the sum of two bits is equal to 1 if and only if the bits differ. 
Hence, this will happen if and only if the uth column and the vth column 
of Rm differ in the ith row and agree in all other rows. 

For instance, in R3 , if i = 1 then consider the first and fifth columns. 
The entries in row 1 are different and so 

( e1 + es) · r1 = e1 · r1 + es · r1 = 0 + 1 = 1 

but the entries in any other row rk(k f l) are the same and so 

( e1 + es) · rk = e1 · rk + es · rk = 0 

Thus, for each row i, we want a pair of columns that are identical 
except in their ith row. We refer to such a pair of columns as a good pair 
for the ith row. Let us summarize. 

Lemma 6.2.4 If (u, v) are the column numbers of a good pair for the ith 
row of Rm, then for any codeword 

we have (for i = 1, . .. , m), 

ai = ( eu + ev) · c □ 

Since the last row of Rm consists of all ls, all pairs of entries in this row 
are equal and so the last row has no good pairs! (Do not dispair, we will 
deal with the last row later.) On the other hand, the last row will never 
give any trouble in finding good pairs for the other rows and so, for now, 
we can simply ignore the last row. 

In fact, let R~ be the matrix obtained from Rm by removing the last 
row. A good pair of columns for the ith row has the form 

/31 /31 

/3i-1 f3i-1 

0 and 1 (6.2.2) 
/3i+ 1 f3i + 1 

f3m f3m 
We refer to the column on the left as the 0-half of the good pair and the col­
umn on the right as the I-half. According to Theorem 6.2.3, the columns 
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of R'm consist of the binary representations of the numbers 0, 1, ... , 2m - 1, 
in this order. Hence, for any value of the f3is, there are two columns in 
R'rrz of the form (6.2.2). Moreover, since the 1-half is a bigger number than 
the 0-half, the 1-half lies to the right of the 0-half in the matrix. 

To determine how far to the right, observe that, as binary numbers, 

/31 · · · /3i-11/3i+l · · · f3m = /31 · · · /3i-10/3i+l · · · f3m + 0 · · · 010 · · · 0 

= /31 · · · /3i-10/3i+l · · · /3m + 2m-i 

and so the two halves have distance 2m-i apart. 
Thus, we can get all good pairs for the ith row as follows. Toke all 

columns of Rm that have a 0 in the ith row as 0-halves. If a 0-half is in 
column j, then the corresponding 1-half is in column j + 2m-i. 

Tusting this on the matrix R3 , we get the following good pairs: 

For row 1, we have 2m-i = 23- 1 = 4 and so the good pairs are 

( Col 1, Col 5), ( Col 2, Col 6), ( Col 3, Col 7), ( Col 4, Col 8) 

For row 2, we have 2m-i = 23- 2 = 2 and so the good pairs are 

( Col 1, Col 3), ( Col 2, Col 4), ( Col 5, Col 7), ( Col 6, Col 8) 

For row 3, we have 2m-i = 23- 3 = 1 and so the good pairs are 

( Col 1, Col 2), ( Col 3, Col 4), ( Col 5, Col 6), ( Col 7, Col 8) 

Thus, exactly half of the columns of Rm are 0-halves for the ith row 
and the other half of the columns are the corresponding 1-halves. In 
particular, there are exactly 2m-l good pairs for each row. 

Now imagine that a codeword 

is sent. Using the 2m-l good pairs for row i, we get 2m-l expressions for 
ai (for i < m). Specifically, if c = c1 · · · Cn and if (Col u, Col v) is a good 

pair for row i, then 

ai = (eu + ev) · c = Cu + Cv 

If (Cols, Col t) is another good pair for row i, then 

ai = ( es + et) · c = Cs + Ct 

wheres, t, u, and v are distinct, and so each of these 2m-l expressions for 
ai involves different positions in the codeword c. 
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Thus, if no more than 2m-2 - 1 errors occur, then at most 2m-z - 1 of 
the coordinates ci are incorrect, and so at most zm-z -1 of the expressions 
for ai are incorrect. This means that at least 

2m-l - czm-2 - 1) = zm-2 + 1 
\ 

of these expressions give the correct value of ai. In particular, a majority 
of the expressions are correct. It follows that we can get the correct value 
of cxi by computing the 2m-1 expressions for cxi and taking the majority 
value. 

The final step is to obtain the coefficient CXm+l · If at most 2m-z - 1 
errors have occurred in receiving x, then the error string e = x - c has 
weight at most 2m-z - 1. Letting d = cx1r1 + · · · + cxmrm, we have 

There are two possibilities. If CXm+l = 0 then e = x - d and if CXm+I = 1 
then e = (x - dy. Thus, if w(x - d) < 2m-2 - 1, we decode CXm+l as 0 
and if w((x - dY) < 2m-z - 1, then we decode CXm+l as 1. (If neither of 
these cases occur, then more than 2m-2 - 1 errors have occurred and we 
canjust admit a decoding error.) 

Thus, Reed decoding can correct up to 2m-2 - 1 errors, as promised 
by the minimum distance of the code R(m). The decoded codeword is 
referred to as the majority logic codeword for the received word x. Let us 
consider an example. 

Example 6.2.2 Suppose that (unbeknownst to us) the codeword 
11001100 from the (8,16,4)-Reed-Muller code R(3) is sent, but the received 
word is x = X1 • · • Xs = 11011100. (One error has occurred and so Reed de­
coding should correct it.) The good pairs for each row of R3 were comp~ted 
earlier: 

Row 1: (Col 1, Col 5), (Col 2, Col 6), (Col 3, Col 7), (Col 4, Col 8) 

Row 2: (Col 1, Col 3), (Col 2, Col 4), (Col 5, Col 7), (Col 6, Col 8) 

Row 3: (Col 1, Col 2), (Col 3," Col 4), (Col 5, Col 6), (Col 7, Col 8) 

Thus, if 

is the majority logic codeword, the expressions for cx1 are 
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Ct1 = Cz + C5 

Ct1 = C3 + C7 

Ct1 = C4 + Cs 

The majority logic equations for ai are found by replacing Ci (whose 
values we do not know) with xi (whose values we do know) to get 

Ct1 = X1 + X5 = 0 

a1 = X2 + X5 = 0 

a1 = X3 + X7 = 0 

Ct1 = X4 + Xs = 1 

Thus, the majority logic decision is a 1 = 0. The majority logic equations 
for a 2 are 

a2 = X1 + X3 = 1 

Ctz = Xz + X4 0 

a2 = Xs + X7 = 1 

a2 = X5 + Xs = 1 

and so the majority logic decision is a 2 = 1. The majority logic equations 

for a 3 are 

a3 = X1 + X2 = 0 

a3 = X3 + X4 = 1 

Ct3 = X5 + X5 = 0 

a3 = X7 + Xs = 0 

and so the majority logic decision is a3 = 0. Thus, 

Since the complement of this string has weight 1 ~ 23 - 2 - l I we decode 
a 4 as 1. It follows that the majority logic codeword is 

C = r2 + 1 = 11001100 

which is indeed the codeword sent. □ 
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Exercises 

1. Show using the definition that if R(m) is linear, then so is R(m + l ). 

2. Show that R(m + 1) = R(m) EB Rep(2m), where EB is the u(u + v)­
construction. 

3. Show that the ith row of Rm (for i :S m) consists of alternating blocks 
of Os and ls oflength 2m-i and that the last row of Rm is 1. 

4. Show that, if we ignore the last row of Rm, the columns of Rm consist 
of all possible binary strings of length m which, when thought of as 
binary numbers, represent the numbers 0, 1, ... , 2m - 1 in increasing 
order. 

5. Find a parity check matrix for R(2). 

6. Show that the binary string O · · • 010 · · · 0 of length m, with a 1 in the 
ith position from the left, is equal to 2m-i when thought of as a binary 
number. 

7. Find a parity check matrix for R(3). 

8. Assuming the Reed-Muller code R(3) is used, decode the received 
word 01111100. 

9. Assuming the Reed-Muller code R(3) is used, decode the received 
word 11000001. 

10. Assuming the Reed-Muller code R(3) is used, decode the received 
word 01101001. 

11. What do you expect to get from the majority logic equations if you 
apply Reed decoding to a codeword? 

12. Find all good pairs for the rows of R4 • Decode the received word 0111 
0110 1110 0010 (the spaces are for readability). 

13. The higher order Reed-Muller codes can be defined as follows. 

(a) The zero order Reed-Muller codes are defined, form > 0, by 
Ro(m) = Rep2(2m). · ~ 

(b) The first order Reed-Muller codes are defined, as in the text, for 
m :::: 1, by R1 (m) = R(m). (This is just to set the notation.) 

(c) For any r :::: 2, then rth order Reed-Muller codes are defined, 
for m :::: r, by 



________________ T_h~e_S~i~n~~~e~-E=rro~r~-=D~e~te=c~t1=·n~g~I=S=B~N~C~o=d=e:_ ___ 245 

Rr(m + 1) = Rr(m) E9 Rr-1(m) 

where E9 is the u(u + v)-construction. 

Show that Rr(m) has parameters 

[2m, 1 + (7) + ... + (7), 2m-,] 

where the sum for the dimension is taken to be 1 if r = 0. 

6.3 Some Decimal Codes 

In this section, we discuss some interesting decimal codes, that is, codes 
over the alphabet Z.10. Since 10 is not a prime number, the set Z10 is not 
a field. To work around this problem, we first define codes over Z.11 , and 
then "reduce" them to decimal codes. 

The Single-Error-Detecting ISBN Code 

The well-known ISBN code is used on nearly all recently published books. 
(As we will see, the ISBN code is not quite a decimal code.) Every book 
has a number associated with it, known as its International Standard Book 
Number, or ISBN. (This number generally appears on the back cover of 
the book.) An ISBN is a 10-digit number, such as 

0-387 - 97812 - 7 

The first digit of an ISBN indicates the language of the book, which in this 
case is 0, for English. The next group of digits (387) stands for the pub­
lisher, which in this case is Springer-Verlag. The next group of numbers 
(97812) is the book number, assigned by the publisher. The final digit is 
a redundant check digit, designed to detect errors. Since the hyphens do 
not have any relevance to error detection, we will ignore them and treat 
an ISBN as a string of length 10 over Zn. 

Given the first 9 digits of an ISBN, say x = x1 · · · x9 , the tenth digit X10 1 

called the check digit, is the solution, in Z 11 , of the equation 

x1 + 2x2 + 3x3 + · · · + 9xg + l0x10 = 0 
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In fact, since -10 = 1, solving for the check digit gives (in Zn) 

For instance, in the ISBN given above, the check digit is 
\ 

1·0+2·3+3·8+4•7+5·9+6·7+7·8+8·1 +9·2 = 7 

If the check digit is equal to 10, the letter Xis used in its place. Thus, 
for example, 0-201-02988-X is a valid ISBN. Note that all other digits in an 
ISBN are decimal digits (by definition), but because the last digit may be 
X, an ISBN is not really a decimal codeword. 

In the language of coding theory, we construct the ISBN code as 
follows. Let C be the linear code in Z~f with parity check matrix 

P = [ 1 2 3 4 5 6 7 8 9 10] 

This code is a [10, 9, 2)-code over Zn, of size 11 9 . Let I be the code obtained 
from C by removing all codewords that have a 11 10" in any position, except 
possibly the last. The codewords in I are precisely the ISBNs and so we 
refer to I as the ISBN code. We leave it as an exercise to show that I is 
a nonlinear (10, 109 , 2)-code. 

We now show that the ISBN code I can detect any single error, as well 
as any transposition of two digits in a codeword. As to the former, suppose 
that an ISBN codeword c is sent, but that a string x, containing a single 
error, is received. If the error is in the ith position, then the error string 
is uei where u f 0 and x = c + uei. The syndrome of xis 

S(x) = S(ueJ = uS(eJ = u · i 

which is the product of two nonzero elements of the field Z11 and is 
therefore nonzero. Thus, a single error is detected by the presence of a 
nonzero syndrome. (It is interesting to note that, if the size of the error is 
known, then its position can be determined from the syndrome. Similarly, 
if the position is known, then th~ size can be determined.) 

The fact that the ISBN code can detect transpositions can be seen 
as follows. Suppose that an ISBN c = c1c2 · · · c10 is sent, but that Ci and 
Cj (with Ci f Cj) get transposed during transmission. Then the received 
string is 
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(>Ve have assumed that i < j.) Hence, the error is 

e = 0 · · · 0( cj - ci)0 · · · ( Ci - Cj)0 · · · 0 

and the syndrome of x is 

S(x) = eP1 = i·(c1-ci) +j•(ci-cj) = (c1 -ci)(i-J) 

But since i I j and ci I c1, again we get a nonzero syndrome in Zn. Thus, 
a transposition of digits is also detected by means of a nonzero syndrome. 

A Single-Error-Correcting Decimal Code 

Next, we discuss a single-error-correcting decimal code that has a par­
ticularly nice method for correcting errors-one that does not require a 
syndrome table. 

When we think of nice decoding in a single-error-correcting code, we 
think of Hamming codes-so let us start with the Hamming code 'Hn(2), 
which is an 11-ary linear [12, 10, 3]-code with parity check matrix 

[ o 1 1 1 1 1 1 1 1 1 1 1] 
Hn = 1 0 1 2 3 4 5 6 7 8 9 10 

Now we shorten this code in the first and last coordinates, taking the 
double cross-section x1 = 0, xn = 0, which has parity check matrix 

p = r 1 1 
L O 1 

1 1 1 1 1 1 1 1 ] 
2 3 4 5 6 7 8 9 

and is a linear [10, 8, 3]-code. LetDbe the decimal code obtained from this 
code by removing all codewords that have a 10 in any position. We leave it 
as an exercise to show that Dis a nonlinear code with minimum distance 
3 over Z 10 . It is possible to show, using a formula known as the Principle 
of Inclusion-Exclusion that D has size 82,644,629. (See the exercises.) 

Let us see how we might correct single errors in D. Suppose that 
a codeword c is sent, but that an error occurs of the form uei, where 
u I 0. Denoting the syndrome (taken modulo 11) of the received word 
x = c + uei by S(x) = [st], we have 

[ s t ] = S(x) = ueiP1 = [ u u(i - 1) ] 
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Thus, assuming a single error, we see immediately that the magnitude 
u of the error is the first coordinate s. To determine the position of the 
error, we solve the equation t = u(i - 1) for i (in Z 11 ), which gives i = 
u-1t + l = s- 1 t + l. Thus, the error string in this case is se8-1t+l· 

' Example 6.3.1 Suppose that x = 1274235110 is received. The syn-
drome of xis S(x) = 48 and sos = 4, t = 8 and s-1 t + l = 3. Hence, the 
error string is 4e3 and the codeword is x - 4e3 = 1234235110. □ 

While the decimal code Dis single-error-correcting and double-error­
detecting, it is not simultaneously single-error-correcting and double-error­
detecting. However, it is capable of simultaneously correcting single 
errors and detecting transposition errors. 

To see this, suppose that a codeword c = c1 c2 · • • c10 is sent, but that 
Ci and CJ (with Ci f CJ) get transposed during transmission. Then the 
received string is 

(Yve have assumed that i < j.) Hence, the error is 

and the syndrome of x is 

Note that the first component is 0 and, since i f j and Ci f CJ, the second 
component is nonzero. 

Thus, to decode with D, we first compute the syndrome S(x) = [st], 
taken modulo 11, and then proceed as follows. 

1. Ifs = t = 0, assume that no' error has occurred. 

2. Ifs f 0 and t f 0, assume that the error string is se8-1t+ 1 . 

3. lf s = 0 and t f 0, assume that a transposition error has occurred. 

This procedure guarantees that all single errors are corrected and all 
transposition errors are detected. 
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A Double-Error-Correcting Decimal Code 

We now turn our attention to constructing a double-error-correcting dec­
imal code. Naturally, as the error-correcting capabilities of the codes 
increase, so does their complexity. We begin with a definition. 

Definition For m ~ 2, let a1, a 2 , ... , am be elements of a field. The 
matrix 

1 1 1 

a1 az am 

V(a 1, az, ... , am) = az 
I 

az 
2 

az m 

m-1 
al 

m-1 
az m-1 am 

whose ith column consists of the successive powers of the element ai, is 
called a Vandermonde matrix. □ 

Vandermonde matrices play an important role in many areas of math­
ematics. We are primarily interested in these matrices because, when the 
elements ai are distinct, the columns (and rows) of the matrix are linearly 
independent. 

The easiest way to prove this is to use a standard result from linear 
algebra involving determinants, which we state without proof. (If you are 
not familiar with determinants, just read the statements of the next two 
theorems. 

Theorem 6.3.1 If A is an m x m matrix with nonzero determinant, then 
the columns (and rows) of A are linearly independent. □ 

Theorem 6.3.2 The determinant of the Vandermonde matrix V(a1, az, ... , 

am) is 

D(a1, az, ... 1 am) = n (aj - ai) 
i<j 

Hence, if the ais are distinct, the determinant is nonzero and the columns (and 
rows) of V(a 1, a2 , ... , am) are linearly independent. □ 

Proof First note that, if two of the ais agree, then two columns of the 
Vandermonde matrix are identical and the determinant is 0. So let us 
assume that the ais are distinct. Consider the matrix formed by replacing 
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the element am by a variable x, 

1 1 1 
a1 a2 X 

V(a 1,a2 1 ••• ,am-1,x) = 
a2 

1 
a2 2 

x2 

m-1 
al 

m-1 
a2 xm-1 

Expanding the determinant of this matrix along the last column gives 

where the coefficients Ai do not involve x. Hence, D(a1 , a2, ... , am-1, x) 
is a polynomial in x of degree at most m - 1. Notice also that the co­
efficient Am-I is obtained by striking out the last row and column of 
V(a1, a 2 , ... , am-I, x) and taking the determinant of the remaining matrix. 
But this matrix is V(a1 , a2, ... 1 am-1) and so 

Now, ifwe replace x by ai for any i < m - 1, then the ith column and 
the mth column ofV(a1, a2, ... , am-I, x) will agree and so the determinant 
will be 0. In symbols, 

for all i = 1, ... , m-1. This shows that the polynomial D( a1 , a2, ... , am-I, x) 
has m - 1 distinct roots a1, ... , am-I and therefore must have degree ex­
actly m - 1. It follows that a1 , ••• , am-I is a complete set of the roots of 
D(a1, a2 1 ••• , am-1, x) and so 

D(a1, a2, ... , am-1, x) = Am-1 (x - a1)(x - a2) · · · (x - am-I) 

= D(a1, a2"> ... , am-i)(x - a1)(x - a2) · · · (x - am-I) 

Setting x = am gives 

An inductive argument can now be used to complete the proof. (Details 
of this are left as an exercise.) ■ 
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Now consider the matrix 

1 1 1 1 

p = 1 2 3 10 
1 22 32 102 

1 23 33 103 

Since any four columns of P form a Vandermonde matrix with distinct 
elements, any four columns of P are linearly independent. However, the 
first five columns are linearly dependent. Since the rows of Pare linearly 
independent (exercise), it follows that P is the parity check matrix of a 
linear (10, 6, SJ-code over Zn. Let Ebe the code obtained by removing all 
codewords that have a 10 in any position. Then E is a nonlinear code 
of length 10 and minimum distance 5 over Z10 (exercise) and so it is 
double-error-correcting. We leave it as an exercise to show (again using 
the Principle of Inclusion-Exclusion) that E has size 683,024. 

As to decoding with E, suppose a codeword c is sent and at most 2 
errors occur. Thus, the error string has the form uei + vei, where u, v E Z10, 
with i < j. The syndrome of the received word x = c + uei + vei is 

S(x) = (uei + vei)Pt = [ u + v ui + vj ui2 + vj2 ui3 + vj3 ] 

(All computations are made over Zn.) Letting S(x) = [s1 s2 s3 s4], we get 
the system 

U + V = S1 

ui + vj = s2 

ui2 + vj2 = S3 

ui3 + vl = S4 

(6.3.1) 

In order to solve these equations, we multiply each of the first three 
equations by i and subtract the equation following it, to get 

v(i - J) = is1 - s2 

vj(i - j) = 1S2 - S3 

vj2 ( i - j) = is3 - S4 

Notice that squaring the middle equation gives 

2·2c· "2 c· )2 V ] l - J J = 1S2 - S3 
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and multiplying the first and third equations gives 

Equating these two expressions for v2j2(i - j)2, we get 

(is2 - s3)2 = (is1 - s2)(is3 - S4) • 

which is equivalent to 

(s~ - S1S3)i2 + (s1S4 - S2S3)i + s~ - S2S4 = 0 (6.3.2) 

Going back to (6.3.1) and multiplying by j instead of i leads to the same 
equation. Hence, the positions i andj of the errors can be found by solving 
(6.3.2). Once we know the values ofi and j, the values of u and v can be 
found by solving the first two equations in (6.3.1 ). 

For convenience, let us write 

A = s~ - S1S3, B = S1S4 - S2S3, C = s~ - S2S4 

so that the error locations i andj are the solutions to the equation 

Ax2 +Bx+ C = 0 (6.3.3) 

The polynomial Ax2 + Bx + C is called the error locator polynomial. 
Now let us consider the possibilities. 

Case 1 If no errors occur, then the syndrome S(x) will be zero. 

Case 2 If exactly one error occurs, then the syndrome is 

S(x) = [ u ui ui2 ui3 ] 

which is nonzero. Also, A = 0, B = 0 and C = 0 and so the error locator 
polynomial is the zero polynomial . 

. ' 
Case 3 If exactly two errors occur, then u, v f O and i f j. It follows 
that the error locator polynomial cannot be the zero polynomial. To see 
this, suppose that A = 0 and C = 0 (which implies that B = 0). A little 
manipulation shows that this is equivalent to 

Sz 
=).. 
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for some constant A. Hence, S4 = A 3 s 1, s3 = A 2 s 1 and s 2 = >..s1 and 
equations (6.3.1) become 

U + V = S1 

ui + vj = ).s1 

ui2 + vj2 = )... 2s1 

ui3 + vj3 = )...3 s1 

Multiplying the first of these equations by A and equating with the second 
gives UA + VA = ui + vj, or 

u(). - i) = v(j - A) 

Similarly, multiplying the second equation by A and equating with the 
third gives ui). + vj). = ui2 + vj2 , or 

ui(A - i) = vj(j - A) 

Comparing these equations shows that i = j, a contradiction. Hence, one 
of A or C is not O and the error locator polynomial is nonzero. 

We can now describe a double-error-correcting decoding procedure. 
Let the syndrome of the received word be S(x) = [s1 s2 S3 S4). 

Step 1 If S(x) = 0, assume no errors have occurred. 

Step 2 If S(x) f O but the error locator polynomial is the zero poly­
nomial, assume that one error has occurred, whose magnitude is s1 and 
whose location is s11 s 2 . That is, the error string is s1 es;-1 82 . 

Step 3 If S(x) f O and the error locator polynomial is nonzero, assume 
that two errors have occurred, whose locations are given by the roots 
of the error locator polynomial. After finding these roots, use the first 
two equations in (6.3.1) to find the magnitudes of the errors. If the error 
locator polynomial has no roots in Zn, then more than two errors must 
have occurred. 

Before looking at an example, we emphasize that the error locator 
equation must be solved in the field Z.11 , not in the field of real numbers! 
Fortunately, since Z11 has size 11, the roots can be found simply by trying 
all 11 possibilities. Alternatively, since the quadratic formula holds in any 
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field except Z2 , we have 

-B± JB2 -4AC 
i,j = -------

2A 

To use this formula, a table of square roots in Z11 , created by squaring 
' each element of Zn, is very handy. (For example, since 52 = 3, we have 

,J3 = 5. We leave computation of such a table to the reader. 

Example 6.3.2 Suppose x = 3235556411 is received. The syndrome is 
S(x) = [2 8 10 7]. Since A = 0, B = 0 and C = 0, we assume that there 
is one error, with magnitude 2 and location 2-1 • 8 = 6 • 8 = 4. Hence, the 
error string is 2e4 and the decoded word in c = x - 2e4 = 3233556411. 

Now suppose x = 4739688119 is received. The syndrome in this case 
is S(x) = [l 7 10 10] and so A = 6, B = 6, C = 8. Hence, the error 
locator equation is 

6x2 + 6x + 8 = O 

whose solutions are the error locations 

-B ± JB2 - 4AC 5 ± .Jg 
iJ" = ------ = --- = 5±3 = 2 8 
' 2A 1 ' 

The magnitudes of the errors are given by the solutions to the equations 

u + V = 1 

2u + 8v = 7 

which are u = 2, v = 10. Thus, the error string is 2e2 + 10e8 and the 
decoded codeword is c = x - (2e2 + 10e8) = 4539688219. 

Finally, suppose x = 1111037407 is received. The syndrome is S(x) = 
[5 10 4 4] and so A = 3, B =· 2, C = 9. Hence, the error locator equation 
is 

3x2 + 2x + 9 = 0 

whose solutions are the error lo~ations 

-B± JB2 -4AC 
i,j = -------

2A 

9± ✓6 

6 

However, the number 6 does not have a square root in Z11 , as can be 
seen by squaring all elements of Z11 . Hence, more than two errors have 
occurred. □ 
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It is probably worth mentioning that, even though this decoding pro­
cedure may sometimes tell us that more than two errors have occurred, it 
is not simultaneously double-error-correcting and triple-error-detecting. 
For it is possible that three errors errors may occur but the resulting 
received word has distance 2 from the wrong codeword. 

Generalizations 

The last two codes presented here can be generalized. Actually, these 
codes are very special cases of codes known as BCH codes, named after 
their discoverers RC. Bose, D.K. Ray-Chaudhuri, and A. Hocquenghem. 
The BCH codes form an extremely important class of codes for several 
reasons. For instance, they have good error-correcting properties when 
the length is not too great, they can be encoded and decoded relatively 
easily and they provide a good basis upon which to build other families of 
codes. In any case, to define the BCH codes requires fairly sophisticated 
algebraic tools and so we will not do so here. However, we do want to take 
at least one step in that direction. 

Let d < n < p - 1, where pis a prime. We want to construct a linear 
code B of length n and minimum distanced over Zp. To do so, consider 
the matrix 

1 1 1 1 
1 2 3 n 

P= 1 z2 32 n2 

1 zd-2 3d-2 nd-2 

where all elements are in Zp. Notice that, for p = 11, n = 10 and d = 5, 
we get the parity check matrix used to define the double-error-correcting 
code E. Let Bp(n, d) be the code over Zp with parity check matrix P. Thus, 
the code E is the set of all codewords in Bn (10, 5) that have coordinates 

in Z10. 
Since any d -1 columns of P form a Vandermonde matrix with distinct 

elements (this is why we need n < p - 1 ), we conclude that any d - 1 
columns of P are linearly independent. On the other hand, since P has 
only d - 1 rows, we may appeal to a result of linear algebra that says 
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that the maximum number oflinearly independent columns is the same 
as the maximum number of linearly independent rows to conclude that 
no d columns of P are linearly independent. Hence, Bv(n, d) is a linear 
[n, n-d + 11 d]-code over Zp, Since the parameters of the code Bv(n, d) give 
equality in Singleton's bound for Ap(n, d) we get the,following theorem. 

Theorem 6.3.3 If p is a prime and d < n ~ p - 1, then the code Bp(n, d) 
defined above is an optimal [ n, n - d + l I d]-code over Zp and so 

□ 

Actually, the above construction can be extended to any prime power 
p and so Theorem 6.3.3 holds for any prime power pas well. 

Exercises 

1. Prove that the ISBN code I is a nonlinear (10, 109
1 2)-code. 

2. Compute the ISBN check digits for the numbers 
a) 0-387-94180 b) 0-19-859678 c) 0-13-283796 

3. Show that the single-error-correcting decimal code D is nonlinear and 
has minimum distance 3. 

4. Finish the proof of Theorem 6.3.2. 

5. Assuming that the single-error-correcting code D is used, decode the 
received words 
a) 0118246792 b) 4511156214 c) 4535797952 

6. Show that the first five columns of the matrix 

1 1 1 1 

P= 
1 2 3 10 
1 22 32 102 
1 : 23 33 103 

are linearly dependent. 

7. Why do you suppose it is important to consider trasnposition errors, 
especially in a decimal code? 

8. LetPbe the parity check matrix that gives rise to the code E. Verify that 
the first five columns of P and the rows of P are linearly independent. 
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9. Show that'the code E has minimum distance 5. 

10. Show that the code D has size 82,644,629. Hint: If S1, ... , Sn are fi­
nite sets, the Principle of Inclusion-Exclusion gives a formula for the 
size of their union U = S1 U • • • U Sn in terms of the sizes of various 
intersections of these sets. In particular, 

IUI = L ISd- L ISi n s11 + Li<J<k isi n s1 n Ski-••• 
i i<j 

... + ( - 1 )" + 1 1 S1 n ... n Sn I 

(Notice that the sum alternates in sign.) Now, let C denote the linear 
[10, 8)-code over Z11 with parity check 

p = [ 1 1 1 1 1 1 1 1 1 1 ] 
0 1 2 3 4 5 6 7 8 9 

that was used to obtain the code D. Let Si be the set of all codewords 
in C that have a 10 in the ith position. Show that, in this case, the sum 
is 

( 10) 7 (10) 6 (10) IUI = 1 11 - 2 11 + ... - 8 

and that this sum is equal to 131,714,252. Since U is the set of all 
codewords in C that have a 10 in at least one position, the size of Dis 

1c1-1u1. 
11. Use the hint for the previous exercise to compute the size of the 

double-error-correcting code E. 

12. Construct a table of square roots in Zn. 

13. Assuming the double-error-correcting code Eis used, decode the fol­
lowing words a) 1208680845 b) 7189385648 c) 1251913347 
d) 1211837417 e) 5149608219 

14. Show that the linear code that gave rise to the code Dis optimal by 
considering the Singleton bound. Hence, A 11 (10, 3) = 11 8 . 

15. Show that the linear code that gave rise to the code E is optimal by 
considering the Singleton bound. Hence, An(l0, 5) = 11 6 . 

16. Show that the linear code B is optimal by considering the Singleton 

bound. 
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6.4 Codes from Latin Squares 

There is a strong connection between coding theory and a branch of math­
ematics known as combinatorics, which can be (very) loosely defined as 
the study of finite sets and their subsets. Let us explore one aspect of this 
connection. Throughout this section, we will let Sq denote a set of size q. 

Consider codes oflength 4 and minimum distance 3 over Sq, Suppose 
C is such a code, of size M. Since d(C) = 3, no two codewords can agree 
in their first two coordinate positions. Since there are q2 possibilities for 
the first two coordinates, we have M < q2. (This argument is precisely 
the one used to prove the Singleton bound.) Thus, 

Aq(4, 3) < q2 

If there exists a ( 4, q2, 3)-code C, then the first two coordinates must 
yield all of the q2 pairs of elements of Sq, so we can write C in the form 

C = {ijaiJbiJ I all i,j E Sq} 

In order for C to have minimum distance 3, every pair of codewords 
must have distance at least 3. Put another way, every pair of coordinate 
positions must yield q2 distinct pairs. In particular, 

1. the ordered pairs (i, aiJ) for all i,j E Sq, must all be distinct. 

2. the ordered pairs (j, aiJ) for all i,j E Sq, must all be distinct. 

3. the ordered pairs (i, biJ) for all i,j E Sq, must all be distinct. 

4. the ordered pairs (j, biJ) for all i,j E Sq, must all be distinct. 

5. the ordered pairs (aiJ, biJ) for all i,j E Sq, must all be distinct. 

Let us consider the first two of these conditions. Let A = (aij) be the 
q x q matrix whose (i,j)th entry is aiJ· The index i is the row number 
of the entry aiJ and the index j is the column number. To say that the 
ordered pairs (i1, ai1Ji) and (iz, aiz12 ) are distinct is to say that if i1 = i2 then 
ai1J1 f aizJi. Put another way, if:t;-Vo entries aiiJi and aizJ2 of A lie in the 
same row (i1 = i2), then they must be distinct. Similarly, condition 2) is 
equivalent to saying that if two entries of A lie in the same column, they 
must be distinct. We are now ready for a definition. 

Definition A Latin square of order q over Sq is a q x q matrix over 
Sq with the property that the elements in each row are distinct and the 
elements in each column are distinct. This is equivalent to saying that 
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each row contains all q of the elements of Sq (in some order) and similarly 
for each column. □ 

For instance, the matrix 

is a Latin square of order 3 over Z3 = {0, 1, 2}, since every row and every 
column of the array contains all three numbers 0, 1, and 2. Similarly, the 
matrix 

0 1 2 3 
1 2 3 0 
2 3 0 1 
3 0 1 2 

is a Latin square of order 4 over Z4 = {0, 1, 2, 3}. 
Thus, we have shown that the ordered pairs (i, aij) are distinct if and 

only if the matrix A = (aij) is a Latin square. In the language of Latin 
squares, we can now say that 

C = {ijaijbii I all i,j E Sq} 

is an optimal (4, q2, 3)-code over Sq if and only if 

1. the matrix A = (aiJ) is a Latin square over Sq. 

2. the matrix B = (biJ) is a Latin square over Sq. 

3. the ordered pairs (aiJ, bij) are distinct. 

Latin squares have applications in various areas of applied mathemat­
ics, such as in the theory of statistical experiments. For example, imagine 
a drug company wants to test the effects of three drugs on human sub­
jects. In order to get the most reliable information possible, the company 
wants to test each drug on each subject over a period of several days. For 
simplicity, let us assume that there are three subjects in the experiment. 
Then one possible schedule is shown in the following table, where the 
three drugs are simply denoted by 0, 1, and 2. 

Day 1 Day 2 Day3 
Subject 1 0 1 2 
Subject 2 , 2 0 .l 

Subject 3 2 0 1 



260 ___ __:6~-~S~o~m=e=--=SEp~ec=i=al~C~o~d~e~s-------~-------------

Notice that, precisely because this table is a Latin square, on each day 
(column) all three drugs are tested, and each subject (row) tests all three 
drugs. 

The pattern used to create the previous two examples of Latin squares 
can be generalized to create larger Latin squares as follows. Toke the first 
row to be the numbers 0, 1, 2, ... , q - 1, in order 

012 · · • q -1 

The second row is obtained from the first by rotating it one position to 
the right, wrapping the last number around to the first column 

0 1 2 q-1 
q-1 0 1 q-2 

Each subsequent row is created in a similar manner, to get 

0 1 2 
q-1 0 1 
q-2 q-1 0 

1 2 3 

q-1 
q-2 
q-3 

0 

This construction proves the following theorem. 

Theorem 6.4.1 For all positive integers q, there exists a Latin square of 
order q. □ 

Now we need to deal with the last condition for the existence of an 
optimal (4, q2, 3)-code, namely, that the ordered pairs (aii, bij) for i,j E Sq, 
are distinct. 

Definition Two la tin squares i 1' = ( aij) and L2 = (biJ) over Sq are said 
to be mutually orthogonal Latin squares (abbreviated MOLS) if the q2 

ordered pairs ( aii, bi1-) are distinct. □ 

Put another way, two Latin squares are orthogonal if, when we super­
impose the squares to form an array whose (i,J)th entry is the ordered 
pair (aiJ, bi1), the resulting array has distinct entries. 
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Example 6.4~ I The Latin squares 

and 

are orthogonal, since the nine corresponding ordered pairs are 

[ 
(0,0) (1,1) 
(1, 2) (2, 0) 
(2, 1) (0, 2) 

and these ordered pairs are distinct. 

(2,2)] 
(0, 1) 
(1, 0) 

(6.4.1) 

□ 

Mutually orthogonal latin squares also have important applications. 
For instance, referring to our earlier example involving drugs, suppose 
that a drug company wants to test three types of decongestants and three 
kinds of antihistamines. In order to observe any combined effects of the 
two types of drugs, the company would like to test all possible combi­
nations on its subjects. One possible schedule would be to employ table 
(6.4.1) as follows 

Day 1 Day2 Day3 
Subject 1 (0,0) (1,1) (2,2) 
Subject 2 (1,2) (2,0) (0,1) 
Subject 3 (2,1) (0,2) (1,0) 

For instance, on Day 2, subject 2 receives decongestant number 2 and 
antihistamine number 0. In this way, each subject tests each drug, each 
drug is tested each day, and all pairs of drugs are tested in combination. 

We can now state the following theorem. 

Theorem 6.4.2 The code 

C = {ijaiJbiJ I all i,j E Sq} 

is an optimal ( 4, q2 , 3)-code over Sq if and only if A = (aiJ) and B = (biJ) is a 
pair of mutually orthogonal Latin squares. □ 

Corollary 6.4. 3 A q-ary ( 4, q 2, 3)-code exists if and only if a pair of 
mutually orthogonal Latin squares of order q exists. □ 

We are now left with the question of whether or not a pair of MOLS 
exists for every positive integer q. The answer is "almost." We first settle 
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the question for prime powers q = pm. We will leave it as an exercise to 
show that there is no pair of MOLS of order 2. However, that is the only 
exception as far as prime powers go. 

Theorem 6.4.4 If q is a prime power, but q f 2, then a pair of MOLS of 
\ 

order q exists. □ 

Proof Let Fq = {) .. 1 , ... , Aq} be the field of size q. (Recall that for any 
prime power q, there exists an essentially unique field of size q.) Let a 
and /3be distinct nonzero elements of Fq, and consider the q x q matrices 
A = (a9-) and B = (bii) defined by 

where i,j range over all elements of Fq. Let us show that L1 = (aij) and 
L2 = (bij) are MOLS. 

To show that L1 is a Latin square, observe that if two entries Ai + <XAj 
and Ai+ CXAj' in the same row of L1 but different columns (j f j') are equal, 
then 

Ai + CXAj = Ai + CXAj' 

Subtracting Ai and then multiplying both sides by a-1 (a is assumed 
nonzero), gives Aj = A/, which implies that j = j', a contradiction. A 
similar argument shows that entries in the same column are distinct. In 
a similar way, L2 is a Latin square. 

To see that L 1 and L 2 are mutually orthogonal, consider the q2 ordered 
pairs (aij, bij) = (Ai + <XAj, Ai + /3Aj)- If (aij, bij) = (ak1, bk1) 1 then 

(Ai + CXAj,Ai + /3Aj) = (Ak + CXAf.,Ak + /3A1,) 

This is equivalent to the syste·m of equations 

Ai + CXAj = Ak + CXAf_ 

Ai + /3lj = Ak + /3A1, 

Subtracting the second equation from the first gives 

or 
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But since a f · /3, we get 

Aj - Ae = 0 

and so j = .e. Using this in the first equation of the system gives 
i = k. Hence, the ordered pairs (aij, bi}) are distinct, and L1 and L2 are 
MO~. ■ 

Example· 6.4.2 Let Fq = Z 5 and let a = l, f3 = 2. Then, according to 
the previous theorem, 

0 1 2 3 4 
1 2 3 4 0 

L1 = (i + J) = 2 3 4 0 1 
3 4 0 1 2 
4 0 1 2 3 

and 

0 2 4 1 3 
1 3 0 2 4 

L2 = (i + 2;) = 2 4 1 3 0 
3 0 2 4 1 
4 1 3 0 2 

are MOLS. The 5-ary ( 4,25,3)-code associated with these MOLS is 

C = {0000,0112,0224,0331,0443,1011,1123, ... ,4320,4432} D 

The next theorem shows how to go from prime powers to other 
integers. 

Theorem 6.4.5 If a pair of MOLS of order m and a pair of MOLS of order 
n exist, then a pair of MOLS of order mn also exists. □ 

Proof The idea of the proof is a lot simpler than its precise description. 
Let A 1, A2 be MOLS of order m andB1, B2 be MOLS of ordern. We construct 
MOLS C1 , C2 of order mn. Since C2 is constructed from A2 and B2 in exactly 
the same way as C1 is constructed from A1 and B1, we will just deal with 
the latter. Let A1 = (aij), B1 = (bij) and C1 = (ciJ), 

It will help to make a definition. By aij 0 B1, we mean the matrix 
formed by replacing each entry buv in B1 by the ordered pair ( aij, buv)-
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Thus, 

(aii' b11 ) (aii' h12) 
(aii' b21) (aii' h22) 
(aii' b31) (ai}' b32) 

(aii' h13) 
(aii' h23) 
(aii' b33) 

' 

Now we form C1 in blocks by "expanding" each entry aiJ of A1 into the 
block aii 0 B1 . An example may help to make this clear. 

For the sake of illustration only, let 

Then C1 is the 6 x 6 matrix 

(a, a) 
(a, d) 
(a,g) 
(y,a) 
(Y, d) 
(y,g) 

(a, b) 
(a, e) 
(a, h) 
(y, b) 
(Y, e) 
(Y, h) 

(a, c) 
(a,f) 
(a, i) 
(Y, c) 
(y,f) 
(y, i) 

(/3, a) 
(/3,d) 
(/3,g) 
(8 1 a) 
(8 1 d) 
(8,g) 

(/3, b) 
(/3, e) 
(/3, h) 
(8 1 b) 
(8 1 e) 
(8 1 h) 

(/3, c) 
(/3,f) 
(/3 I i) 
(8 1 c) 
(8,f) 
(8, i) 

We will leave it as an exercise to explain why C1 is a Latin square and 
why C1 1 C2 is a pair of MOLS. ■ 

Since any positive integer q can be written in the form 

e1 e2 ek 
q = P1 P2 '' 'Pk 

where Pi < P2 < · · · < Pk are prime numbers, Theorems 6.4.5 and 6.4.4 
imply that there is a pair of MOLS of order any positive integer q with the 
exception that, if p 1 = 2, then e1 must be greater than 1. In other words, 
q must have the property that if 2 I q then 4 I q. (The symbol I stands for . ' 
divides.) We leave it as an exercise to show a positive integer q has this 
property if and only if it has the form q = 4u + r, where r = 01 1 or 3, 
that is, if and only if q = 01 1 or 3 modulo 4. Thus, we have established 
the following result. 

Theorem 6.4.6 If q = 0, 1 or 3 (mod 4), then there exists a pair of MOLS 
of order q. □ 
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This still leaves open the question of existence of a pair of MOLS for 
q = 2 (mod 4), that is, for q = 2, 6, 10, 14, .... It was not until 1960 that 
three mathematicians named Bose, Shrikhande, and Parker settled the 
remaining case as follows. 

Theorem 6.4. 7 There exists a pair of MOLS of order q if and only if q f 2 

and q f 6. □ 

The proof of Theorem 6.4.7 is rather complicated, and we will not go 
into it here. However, this result, together with Corollary 6.4.3 gives the 
following. 

Theorem 6.4.8 

l. There exists a q-ary ( 4, q2 , 3)-code for all q except q = 2 and q = 6. 

2. Aq( 4, 3) = q2 for all q except q = 2 and q = 6. □ 

We leave it as an exercise to show that A2 ( 4, 3) = 2. It has also been 
shown that A 6 (4, 3) = 34. We thus have all values of Aq(4, 3). 

Theorem 6.4.9 

1. Aq(4, 3) = q2 for all q f 2, 6 

2. A2(4, 3) = 2 

3. A5(4, 3) = 34 □ 

Exercises 

1. Prove that there is no pair of MOLS of size 2 x 2. 

2. With reference to Theorem 6.4.5, explain why C1 is a Latin square and 
why C1 , C2 is a pair of MOLS. 

3. Prove that, for a positive integer q, the properties (1) if 2 divides q 
then so does 4 and (2) q = 0, l or 3 modulo 4 are equivalent. Hint: 
any number q can be written in the form q = 4u + r, where the 
remainder r = 0, l, 2, or 3. 

4. Show that A2 ( 4, 3) = 2. 

5. Construct a Latin square of order 5. 
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6. Show that the matrices 

1 2 3 4 1 2 3 4 
4 3 2 1 3 4 1 2 

A= 
3 

andB = 
4 3 2 1 2 1 4 

3 4 1 2 2 1\ 4 3 

form a pair of MOLS. Write down the codewords in the (4,16,3)-code 
associated with this pair of MOLS. 

7. Construct a pair of MOLS of order 5. Describe the (4,25,3)-code 
associated with this pair of MOLS. 

8. Use a pair of MOLS of order 3 to construct a pair of MOLS of order 9. 

9. A transversal of a Latin square L of order q is a set of q locations, 
no two of which are in the same row or column, that have distinct 
entries. For exan1ple1 in the Latin square 

the underlined locations (3,1), (2,2), and (3,1) form a transversal. 
Find two more transversals in this matrix. (It is a theorem that a 
Latin square has an orthogonal mate if and only if it has q disjoint 
transversals, as in this case.) 

10. Show that Aq(3, 2) = q2 using Latin squares. 

11. We can generalize the results of this section as follows. Consider an 
( n, q2 , n - l )-code C over Sq of the form 

C { .. c1) cz) cn-2) I 11. . s } = 1.Jaii _a11 • • • aii a 1.,J E q 

The Singleton bound gives Aq(n, n - l) < q2 and so such a code (if it 
exists) would be optimal. A set of MOLS of order q is a set of Latin 
squares of order q, every pair of which is a pair of MOLS . . ' 
(a) Show that C exists if and only if there exists a set of n - 2 MOLS, 

that is, a set of n - 2 Latin squares with the property that every 
pair of these Latin squares is mutually orthogonal. 

(b) Show that, if q is a prime power; then there exists a set of q - l 
MOLS. Hint: Let Fq = {A. 1 , ... , Aq} be the field of size q. Gener­
alizing the proof of Theorem 6.4.4, consider the q x q matrices 
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Ak = C a&k)) and B = (bij) defined by 

(k) 
aij = Ai + AkAj 

(c) Show that each pair of the Aks is a pair of MOLS. 

(d) Show that, if q is a prime power and n < q + l, then Aq(n, n- l) = 
q2. 

(e) Prove that there are at most q- l Latin squares in any set of MOLS 
of order q. Hint: Suppose that {L 1 , ... , Lr} is a set ofMOLS. Explain 
why we may relabel any of the Latin squares Li without affecting 
the orthogonality of the set. Thus, we may assume that the first 
row of each Li is [1 2 3 • • • q]. Consider the (2, 1 )-th entry in each 
Li. Can any of these entries be a 1? Can any of these entries be the 
same? (Incidentally, part b) shows that there are the maximum 
number q - l of MOLS of order q when q is a prime power. It has 
not yet been determined what the maximum possible number of 
MOLS of order q is when q is not a prime power.) 

12. Another type of combinatorial object that gives rise to codes is the 
so-called projective plane. Here is an example. The sets of points and 
lines shown in Figure 6.4.1 is referred to as the projective plane of 
order 2 or the Fano plane. It is an example of a combinatorial design. 
Let us denote the lines in this figure by l1 = 14, l2 = 16, -€3 = 46, 
.e4 = 15, -€ 5 = 26, .e6 = 34, -€ 7 = 25. Notice that each line is incident 
with exactly 3 points, and each pair oflines meets at exactly 1 point. 

1 

4 5 6 
FIGURE 6.4.1 
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The incidence matrix of this plane is the matrix A = (aiJ) for which 

aiJ = 
{1 ifline .f,i contains point j 

0 otherwise 

This matrix is the 7 x 7 matrix 

1 1 0 1 0 0 0 
1 0 1 0 0 1 0 
0 0 0 1 1 1 0 

A 1 0 0 0 1 0 1 
0 1 0 0 0 1 1 
0 0 1 1 0 0 1 
0 1 1 0 1 0 0 

Show that the binary code consisting of the rows r 1, ... , r 7 of A and 
the complements of the rows of A is a nonlinear (7,16,3)-code. Show 
also that it is perfect. 



CHAPTER 

An Introduction to 
Cyclic Codes 

7 .1 Cyclic Codes 

An introduction to coding theory would not be complete without some 
discussion of cyclic codes, which form the most important class oflinear 
codes. Indeed, the binary Hamming and all Golay codes are equivalent 
to cyclic codes, as are many of the important known codes. However, a 
thorough study of cyclic codes requires more abstract algebra than we 
wish to assume of the reader and so we will tread lightly here. 

The definition of cyclic code is very simple. 

Definition The right cyclic shift of a string x = x1 • • · Xn is the string 
XnXi • • • Xn-I obtained by shifting each element to the right one position, 
wrapping the last element around to the first position. 

A linear code C is cyclic if whenever c E C then the right cyclic shift 
ofc is also in C. □ 

To conserve ink, we will often refer to the right cyclic shift of a word 
x simply as a right shift of x. 

As an immediate consequence of this definition, if C is a cyclic code 
and c E C, then the string obtained by shifting the elements of c any 
number of positions (with wrapping) is also a codeword in C. Also, a code 
is cyclic if and only if whenever c = coc1 · · · Cn-1 is a codeword, so is the 
word c1 • · · Cn-1 co, obtained by a left cyclic shift. 

269 
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l 

Example 7.1.1 The binary code C = {000, 101,011, 110} is cyclic, since 
the right cyclic shift of each codeword is another codeword. 

Note that the binary code D = {0000, 1001, 0110, 1111} is not cyclic, 
since shifting 1001 gives 1100, which is not in C. However, Dis equivalent 
to a cyclic code, for if we interchange the third and.fourth positions, the 
result is an equivalent code E = {0000, 1010, 0101, 1111}, which is cyclic. 
Thus, a noncyclic code may be equivalent to a cyclic code. □ 

Example 7 .1.2 We mentioned that the binary Hamming codes are 
equivalent to cyclic codes. Consider the Hamming code 7-l2 (3), with parity 
check matrix 

[ 
0 0 0 1 1 1 1 ] 

H 2(3) = 0 1 1 0 0 1 1 
1 0 1 0 1 0 1 

It is clear that c = 1000011 is in 7-l2 (3) since cH2 (3)1 = 0. However, the 
shift 1100001 is not in 7-l2 (3), since it is not orthogonal to the first row 
of H 2(3). Thus, 7-l2 (3) is not cyclic. However, consider the linear code C 
whose parity check matrix is obtained by reordering the columns of H 2 (3) 
to get 

[ 
1 0 0 1 0 1 1 ] 

P= 0 l O 1 1 1 0 
0 0 1 0 1 1 1 

We leave it as an exercise to find a generator matrix for this code and 
show that C is cyclic. Hence, 7-l2(3) is equivalent to a cyclic code. 

We will see a bit later that the ternary Hamming code 7-l3 (2) is not 
cyclic, nor is it equivalent to a cyclic code. □ 

-. ' 
Codewords as Polynomials 

To get a better understanding of cyclic codes, it pays to think of strings as 
polynomials. In particular, to each string c = c0c1c2 · • • Cn-l over 7Lp, we 
associate a polynomial, with coefficients in 7Lp, as follows 
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Note that, as is customary, we start the indexing of the elements of the 
string at 0, rather than 1, so that the element ck is the coefficient of the 
kth power of the variable x. 

Note that addition and scalar multiplication of strings corresponds to 
the analogous operations for polynomials. That is, if the string c corre­
sponds to the polynomial p(x) and if d corresponds to the polynomial 
q(x), then the sum c + d corresponds to the polynomial sum p(x) + q(x). 
In symbols, 

c + d ~ (c0 +do)+ (c1 + d1)x + (c2 + d2)x2 + •· · + (cn-l + dn-i)xn-I 

= p(x) + q(x) 

Similarly, if a is a scalar, then 

ac ~ (aco) + (ac1)x + (acz)x2 + · · · + (acn-i)xn-I = ap(x) (7.1.1) 

Because of these facts, we may simply think of strings as polynomials, 
and vice versa. 

To be more formal, the set Pn(Zp) of all polynomials of degree less 
than n, with coefficients in Zp, is a vector space, under the operations of 
addition of polynomials and scalar multiplication of polynomials by ele­
ments of the alphabet ZP. Moreover, if C is a linear code oflength n, then 
the association (7.1.1) associates with each codeword c EC a polynomial 
p(x) E Pn(Zp)- Moreover, this association preserves the operations of ad­
dition and scalar multiplcation and so we may think of C as a subspace 
of Pn(Zp)- (For those who have studied abstract algebra, the association 
in (7.1.1) defines an isomorphism of C onto a subspace of Pn(Zp) and so 
C is isomorphic to a subspace of Pn(Zp)-) 

Thus, we may think of a codeword of length n as a polynomial of 
degree less than n and a linear code C of length n over Zp as a subspace 
of Pn(Zp)-

Example 7.1.3 Referring to the codes in Example 7.1.1, the binary code 
C takes the form C = {O, 1 + x2 , x + x2 , 1 + x}, where O is the zero 
polynomial. The code E takes the form E = {O, 1 + x2 

1 x + x3, l + x + 
xz + x3}. □ 

Since addition and scalar multiplication of codewords is addition and 
scalar multiplication of polynomials, it is natural to ask how we might ex­
press the process of performing a right cyclic shift in terms of operations 
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on polynomials. Notice that multiplying a codeword 

by x gives 

2 'n xp(x) = CoX + C1X + · · · + Cn-1X 

which has some resemblence to a right cyclic shift, and indeed would be 
a right cyclic shift if we replaced xn by x.0( = 1 ). 

But we can do exactly this by dividing xp(x) by xn -1 and keeping only 
the remainder; that is, by taking the product xp(x) modulo xn - l. 

Definition In the set Pn(Zp) of all polynomials of degree less than 
n, the operation of multiplication modulo xn- l is defined by taking 
the ordinary product, then dividing by xn - l and keeping only the 
remainder. □ 

Let us denote by Rn(Zp) the set of all polynomials of degree less than 
n, with coefficients from the set Zp, and with the operations of addition 
of polynomials, scalar multiplication of a polynomial by an element of 
Zp and multiplication modulo xn - l. If we do not need to emphasize 
the alphabet Zp, we will simply denote this by Rn. Note that taking the 
product modulo xn - l is very easy, since we simply take the ordinary 
product and then replace xn by 1. As an example, in R4(Z2), 

(x.3 + X.2 + l)(x.2 + l) =XS+ X.4 + X.3 + l 

= x.4 . X + x.4 + x.3 + l 

= 1 · X + l + x.3 + l 

= X.3 + X 

It is important to note that, since the polynomials in Rn(Zp) have 
coefficients in a finite field, their properties are different from those of the 
polynomials with coefficients in the field of real numbers. For instance, 
in 1?.,4(Z2), since any multiple of -2 is equal to O and since -1 = + 1, we 
have 

(x - 1 )4 = x.4 - 4x3 + 6x2 - 4x + 1 = x.4 + 1 = 0 

Thus, the product of nonzero polynomials may equal the zero polynomial. 
This cannot happen when the coefficients come from the field of real 
numbers. 
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We can now think of a linear code C over an alphabet Zp as a subspace 
of the vector space Rn(Zp)- In addition, if p(x) E C, then the right cyclic 
shift of p(x) is the polynomial xp(x). Shifting the elements ofp(x) twice is 
equivalent to multiplying by x2 , to get x2p(x). In general, applying k right 
cyclic shifts is equivalent to multiplying the polynomial (codeword) by 
xk_ 

We can now say that a linear code C C Rn is cyclic if and only if 
p(x) E C implies xp(x) E C. Proof of the following result is left as an 
exercise. 

Theorem 7.1.1 A linear code C c Rn is cyclic if and only if p(x) E C 
implies that f (x)p(x) E C for any polynomial f(x) E Rn. □ 

In the language of abstract algebra, the set Rn, together with the oper­
ations of addition, scalar multiplication, and multiplication modulo xn-1, 

is called an algebra and any subset C of Rn that is a vector subspace and 
also has the property described in the previous theorem is called an ideal 
of Rn. That is, the cyclic codes in Rn are precisely the ideals of Rn. 

The Generator Polynomial of a Cyclic Code 

It happens that the cyclic codes in Rn can be described very simply. 
Before doing so, we need a bit of notation. The leading coefficient of a 
polynomial p(x) is the coefficient of the largest power of x that appears 
in the polynomial (with nonzero coefficient). If the leading coefficient of 
p(x) is equal to 1, we say that p(x) is monic. 

Now suppose that C is a cyclic code. Letg(x) be a polynomial of small­
est degree in C, among all nonzero polynomials in C. Multiplying g(x) by 
a scalar if necessary, we can get a monic polynomial in C, so assume that 
g(x) is also monic. If p(x) E C then we may divide p(x) by g(x) to get 

p(x) = q(x)g(x) + r(x) 

where the remainder r(x) is either the zero polynomial or else has degree 
less than that of g(x). However, since r(x) = p(x)-q(x)g(x) EC, and since 
g(x) has the smallest degree of any nonzero polynomial in C, we deduce 
that r(x) must be the zero polynomial. Thus, p(x) = q(x)g(x); that is, p(x) 
is a multiple of g(x). Conversely, any multiple of g(x) is a codeword in 
C and so C consists precisely of the multples of g(x). We will use the 
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notation ( (g(x))) to denote the set of all multiples of g(x). Thus, 

C = ((g(x))) = {f (x)g(x) If (x) E Rn} 

Moreover, the polynomialg(x) is unique, in the sense that there is only 
' one polynomial in C that is both monic and has the smallest degree among 

all nonzero polynomials in C. For if h(x) also has these properties, then 
by what we have just learned, there is a polynomial q(x) for which h(x) = 
q(x)g(x). But since h(x) and g(x) have the same degree, the polynomial 
q(x) must.be a constant and since h(x) and g(x) are both monic, we get 
q(x) = l, whence h(x) = g(x). Let us summarize. 

Theorem 7.1.2 Let C be a cyclic code in Rn. Then there is a unique poly­
nomial g(x) in C that is both manic and has the smallest degree among all 
nonzero polynomials in C. Moreover, C = ((g(x))). □ 

In the language of abstract algebra, the set ( (g(x))) is called the ideal 
generated by g(x) and so the previous theorem says that any cyclic code 
C is generated by a single polynomial g(x). This polynomial is called the 
generator polynomial of C. Also, a cyclic code has one and only one 
generator polynomial. 

Example 7.1.4 Referring to the cyclic code C = {O, 1 + x2 , x + x2 , 1 + x} 
in Example 7.1.3, we have (since x3 = l) 

0 = 0 • (1 + x) 

1 + x2 = x2 • (1 + x) 

X + x2 = X · (l + x) 

1 + X = l · (1 + x) 

and so C = ( (1 + x)). Since 1 + x has minimum degree in C, it is the 
generator polynomial for C. . 

' Notice also that 

0 = 0 · (1 + x2) 

1 + x2 = 1 • (1 + x2) 

x + x2 = x2 • ( 1 + x2) 

1 + X = X • (l + x2) 
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and so C is also generated by the polynomial 1 + x2 . However, since this 
polynomial does not have minimum degree in C, it is not the generator 
polynomial for C. □ 

The moral of the previous example is that a cyclic code may be gen­
erated by different polynomials, but has only one generator polynomial. 
From now on, whenever we write C = ( (g( x)}}, we will mean that g( x) is the 
generator polynomial for C. 

It is very easy to characterize those polynomials that are generator 
polynomials. 

Theorem 7.1.3 A manic polynomial p(x) E Rn('llp) is the generator 
polynomial of a cyclic code in Rn('llp) if and only if it divides xn - l. □ 

Proof Suppose first that p(x) is the generator polynomial for a cyclic 
code C. Dividing p(x) into xn - l gives 

xn - l = q(x)p(x) + r(x) 

where the remainder r(x) is either the zero polynomial or has degree 
less than that of p(x). However, in Rn, the polynomial xn - l is the zero 
polynomial and so, interpreting this equation as being in Rn, we have 

r(x) = -q(x)p(x) E C 

It follows that r(x) must be the zero polynomial, since no nonzero 
polynomial in Chas degree less than that of p(x). Thus, p(x) I xn - l. 

For the converse, suppose that p(x) I xn - l. Thus, xn - l = a(x)p(x) 
for some polynomial a(x) in Rn. Note that dega(x) = n-degp(x). Let C 
be the cyclic code generated by p(x). Suppose further that C = ((g(x))), 
that is, g(x) is the generator polynomial for C. Since g(x) E C, we have 

g(x) = f(x)p(x) 

for some polynomial f(x) in Rn- Multiplying by a(x) gives, in Rn, 

a(x)g(x) = a(x)f(x)p(x) = f(x)(xn - l) = 0 

However, if degp(x) >degg(x), then dega(x) = n-degp(x) < 
n-degg(x), that is, deg a(x)g(x) < n and so it cannot be equal to 
O in Rn (since there is no reduction modulo xn - l ). It follows that 
degp(x) = degg(x) and since p(x) is monic, we actually have p(x) = g(x), 
whence p(x) is the generator polynomial for C. ~ 
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Theorem 7.1.3 is very important, for it tells us that there is precisely 
one cyclic code in Rn for each factor of xn - l, and that this accounts 
for all cyclic codes. Thus, we can find all cyclic codes in Rn by factoring 
xn - l. Before considering an example, we need a definition. 

Definition A nonconstant polynomialp(x) in Rn is irreducible if when­
ever p(x) = a(x)b(x) for polynomials a(x), b(x) in Rn, then at least one of 
a(x) or b(x) must be a constant polynomial. □ 

In other words, a nonconstant polynomial in Rn is irreducible if it 
cannot be factored into nonconstant polynomials. Thus, by factoring xn - l 
into manic irreducible factors, we can get all manic divisors of xn - l. 

Example 7.1.5 The polynomial x3 - 1 factors into irreducible factors 
over Z2 as follows 

x3 - 1 = (1 + x)(l + x + x2) 

Hence, the factors of x3 - 1 are 1, 1 + x, l + x + x2 and x3 - 1 itself. Thus, 
a complete list of binary cyclic codes of length 3 is 

Co = ( (1)) = R3 = Z~ 

C1 = ((1 + x)) = {0, 1 + x, x + x2, 1 + x2} = {0001 ll0, 0ll, 101} 

C2 = ((1 +x+x2)) = {0,1 +x+x2} = {000,111} 

C3 = ((x3 - 1)) = {0} = {000} D 

We have seen that if g(x) is the generator polynomial for a cyclic code 
C, then C consists of all polynomial multiples of g(x). We can easily obtain 
a basis for C from g( x). 

Theorem 7 .1.4 Let C be a nonzero cyclic code in Rn with generator 
polynomial g(x) = go + g1x + · · · + gkxk, of degree k. Then Chas basis 

B = {g(x),xg(x), ... ,xn-k-lg(x)} 

and generator matrix . ' 
go g1 g2 gk 0 0 0 
0 go gl gz gk 0 0 

G= 0 0 go gl g2 gk 

0 
0 0 0 go g1 gz ... gk 
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whose n - k rows each consist of a right cyclic shift of the row above. Note 
also that dim(C) = n-deg g(x). □ 

Proof We know that any codeword in Chas the form c(x) = a(x)g(x) for 
some polynomial a(x). Since g(x) I xn -1, we may write xn- 1 = h(x)g(x). 
Dividing a(x) by h(x) gives 

a(x) = f(x)h(x) + r(x) 

where, as usual, the remainder r(x) is either O or has degree less than that 
of h(x). Multiplying this by g(x) and noting that h(x)g(x) = 0 in Rn, we 
get 

c(x) = a(x)g(x) = f(x)h(x)g(x) + r(x)g(x) = r(x)g(x) 

and so, if c(x) is not the zero polyomial, then r(x) -/ 0 and so c(x) = 
r(x)g(x) is a multiple of g(x), where the polynomial r(x) has degree at most 
degh(x)-1 = n-k-1.Itfollowsthatr(x) = r0 +r1x+•·•+rn-k-1Xn-k-I 

and so 

c(x) = rog(x) + r1xg(x) + · · · + rn-k-iXn-k- 1g(x) 

is a linear combination of the elements of B. Hence, B spans C. We leave 
it as an exercise to show that B is linearly independent, whence it is a 
basis for C. 

Since the string versions of the polynomials in B are the rows of G, it 
follows that G is a generator matrix for C and since IBI = n - k, it follows 
that dim(C) = n - k. ■ 

Example 7.1.6 Let us find all ternary cyclic codes oflength 4. Over Z3 , 

the polynomial x4 - 1 factors into irreducible factors as follows 

x 4 - 1 = (x2 - 1 )(x2 + 1) = ( - 1 + x)(l + x)(l + x2) 

Incidentally, to see that 1 + x.2 is irreducible, we note that if not, then it 
would factor into linear factors and thus would have at least one root in 
Z3 = {O, 1, 2}. But none of the elements of Z3 is a root of 1 + x 2 and so 
1 + x2 is irreducible over Z3. 

It follows that there are a grand total of 23 = 8 factors of x4 -1 over Z3, 

corresponding to eight distinct cyclic codes. Here is a list of the factors 
and their corresponding generator matrices. 

1. Factor: 1 
Generator matrix: !4 
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2. Factor: -1 + x 

[ ~] 

1 0 n Generator matrix: -1 1 
0 -1 

3. Factor: 1 + x 

u 1 0 n Generator matrix: 1 1 
0 1 

4. Factor: 1 + x2 
. [ 1 0 1 01 

] 
Generator matnx: 0 1 0 

5. Factor: ( -1 + x)(l + x) = -1 + x2 

. [ -1 0 1 0 ] Generator matnx: 0 _ 1 0 1 

6. Factor: ( -1 + x)(l + x2) = -1 + x - x2 + x3 

Generator matrix: [ - 1 1 -1 1 ] 

7. Factor: (1 + x)(l + x2) = 1 + x + x2 + x3 

Generator matrix: [ 1 1 1 1 ] 

8. Factor: -1 + x4 

C = {O} 

It is clear from this exhaustive list that the two cyclic codes of di­
mension 3 have minimum distance 2 and so the ternary Hamming 
[ 4, 3, 3]-code 1t3(1) is not equivalent to a cyclic code, as mentioned 
earlier. D 

We have seen that the cyclic codes in 'Rn correspond precisely to the 
factors of xn - l in 'Rn. Thus, from a theoretical standpoint, we have 
solved the problem of finding a11 cyclic codes. However, from a practical 
viewpoint, the problem of efficiently factoring xn -1 is a con1plicated one, 
which we cannot go into here. For reference, we include the following 
short list of factorizations of xn - l over Z2 • 

Factorization of xn-1 over Z2 

x3 - l = (x + l) (x2 + x + 1) 

x5 - l = (x + l )(x4 + x3 + x2 + x + l) 
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x7 - l = (x + l)(x3 + X + l)(x3 + x2 + 1) 

X9 - l = ( x + l) (x2 + x + l) (x6 + x3 + 1) 

x 11 - 1 = (x + l)(x10 + x9 + · · · + 1) 

x13 _ l = (x + l)(x12 + xn + ... + l) 

x1s - 1 = (x + l)(x2 + X + l)(x4 + X + l)(x4 + x3 + l)(x4 

+ x3 + x2 + X + l) 

xl7 _ 1 = ex+ l)(xB + XS + x4 + x3 + l)(x8 + x7 + x6 + x4 + x2 + X + l) 

x19 _ l = (x + l)(x1a + x17 + ... + l) 

x21 _ 1 = (x + l)(x2 + X + l)(x3 + x2 + l)(x3 + X + l)(x6 + x4 

+x2 + X + l)(x6 +XS+ x4 + x2 + 1) 

x23 - 1 = (x + l)(xn + xg + x7 + x6 + xs + x + l)(x.11 + x10 

+ x6 + xs + x4 + x2 + 1) 

xzs _ 1 = (x + l)(x4 + x3 + x2 + x + l)(xzo +xis+ x10 + xs + l) 

Note that further factorizations can be obtained from the fact that, over 

Z2, 

Thus, for instance, 

The Check Polynomial of a Cyclic Code 

We have seen that the generator polynomial g(x) of a cyclic code C c Rn 
divides xn - l. Hence, we may write 

xn - l = h(x)g(x) 

where h(x) E Rn. The polynomial h(x), which has degree equal to the 
dimension of C, is referred to as the check polynomial of C. Since the 
generator polynomial g(x) is unique, so is the check polynomial. The 
following theorem shows why the check polynomial is important. 

Theorem 7.1.5 Let C be a cyclic code in Rn, with check polynomial h(x). 
Then a polynomial p(x) E Rn is in C if and only if p(x)h(x) = 0 in Rn, □ 
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Proof Note first that h(x)g(x) = 0 in Rn. If p(x) is a codeword, then 
p(x) = f(x)g(x) for some polynomial f(x) and so p(x)h(x) = f(x)g(x)h(x) 

= 0 in Rn. Conversely, if p(x)h(x) = 0 in Rn then let us write 

p(x) = q(x)g(x) + r(x) 

' where r(x) = 0 or deg r(x) < degg(x). Multiplying by h(x) gives (since 
h(x)g(x) = 0) 

0 = p(x)h(x) = q(x)g(x)h(x) + r(x)h(x) = r(x)h(x) 

and since deg[r(x)h(x)] < deg[g(x)h(x)] = deg (xn - l) = n, we deduce that 
r(x) must be the zero polynomial. Hence, p(x) = q(x)g(x) E C. ■ 

From the check polynomial h(x) of a cyclic code, we may obtain a 
parity check matrix. Suppose that C is a cyclic [n, k]-code, with check 
polynomial h(x) of degree k. The problem is to relate the polynomial 
product p(x)h(x) in Rn, which is 0 precisely for codewords p(x), to the 
scalar product of strings. Since we are dealing with a product in Rn, the 
easiest coefficients ofp(x)h(x) to determine are those of xk, ... , xn-1, since 
they do not involve any "wrap around." In particular, for a codeword c(x) = 
Co + c1x + · · · + Cn-iXn-1, these coefficients must be 0, and so we get 

cohk + c1hk-1 + · · · + ckho = 0 

c1hk + c2hk-1 + · · · + Ck+1ho = 0 

Cn-k-lhk + Cn-k-2hk-1 + · · · + Cn-1ho = 0 

In string language, any codeword c = c0c1 • • • Cn-I is orthogonal to the 
string h = hkhk-1 · · · ho0 · · · 0 and to the first n - k - l right cyclic shifts 
ofh. In symbols, c is orthogonal to the rows of the (n - k) x n matrix 

hk hk-1 hk-2 

0 hk hk-l hk-2 

H= 0 0 

0 0 0 

ho 0 

ho 

0 

0 

ho 

0 

0 

0 

ho 

Hence, these rows lie in CJ_. Since the rows of Hare linearly independent 
(because hk = l ), it follows that H is a generator matrix for a code D for 
which D c c1-. However, dim(D) = n - (n - k) = k and so D = c1-. 
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Thus, H is a generator matrix for CJ_ and hence a parity check matrix for 
C. Let us summarize. 

Theorem 7 .1.6 If C is a cyclic code with check polynomial h(x), then the 
matrix H defined above is a parity check matrix for C. □ 

Example 7.1.7 Referring to Example 7.1.6, let C be the ternary cyclic 
code with generator polynomial g(x) = -1 + x and generator matrix 

G - [ i 
The check polynomial is 

1 
-1 
0 

0 
1 

-1 

x4 -1 
h(x) = --- = l + x + x2 + x3 

-1 + X 

and so a parity check matrix for C is 

H=[l 1 1 1] 

For the code with generator polynomial g(x) = 1 + x2 , the check 
polynomial is h(x) = -1 + x2 and so a parity check matrix is 

H= [ 
-1 
0 

0 1 0 ] 
-1 0 1 

Hamming Codes as Cyclic Codes 

□ 

We have already seen that the binary Hamming code 'H2(3) is equivalent 
to a cyclic code and that the ternary Hamming code 'H3(1) is not. In order 
to show that all binary Hamming codes are equivalent to cyclic codes, we 
need to take a slightly different look at cyclic codes. Since this is not the 
place to go into a detailed discussion, we will be deliberately sketchy. 

Let n be an odd positive integer and consider the polynomial xn - l 
over Z 2 • It is possible to show that xn - l can have at most n roots in any 
field containing Z2 as a subfield. Moreover, there is a field :F containing 
Z2 as a subfield that contains all of the roots of xn - l. These roots are 
known as the nth roots of unity over Z2 . 

It is not hard to show that the nth roots of unity are distinct, that is, 
that xn - l has no multiple roots. For if not, there would be a root r E F 
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for which 

xn - l = (x - r)2p(x) 

Toking the derivative of both sides (this is legitimate even for polynomi­
als over finite fields) gives (since 2 = 0 in any field containing Z2 as a 
subfield) 

\ 

nxn-l = 2(x - r)p(x) + (x - r)2p'(x) = (x - r)2p'(x) 

Making the substitution x = r results in nrn-I = 01 which is not possible 
unless n is divisible by 2. Since we are assuming that n is odd, it follows 
that xn - l has no multiple roots. 

Thus, there exists a field :F containing Z2 as a subfield that contains 
all n distinct roots of the polynomial xn - l. Moreover, it can be shown 
that there is a root~ with the property that all of its powers, together with 
the zero element, constitute the entire field :F, in symbols, 

:F = {O, 1,~1~2, • • • 1 ~k} 

where l:FI = k + 2. The determination of k is a bit beyond our scope. 
However, when n has the form 2r - 11 it turns out that k = 2r. The 
element ~ is called a primitive field element of :F. 

Now let us consider the set C of all polynomials in Rn for which ~ is 
a root 

C = {p(x) E Rn Ip(~) = O} 

If xn - l can.be factored into a product of irreducible polynomials 

xn - l = m1 (x) · · · ms(x), 

then~ is a root of one of these polynomials, say mi(x). Hence, any p(x) E C 
shares a common root (namely~) with the irreducible polynomial mi(x). 
It follows that p(x) is divisible by mi( x) and that, moreover, C is precisely 
the set of polynomials that are divisible by m1(x). In other words, C is the 
binary cyclic code with generator polynomial mi(x). 

Of course, the length of C is n = 2r - l. It is possible to show that 
the degree of the generator polynomial mi(x) is r and so the dimension 
of C is n - r. Finally, it is easy to see that no polynomial p(x) for which 
p(~) = 0 can have weight less than 3 (as a binary string). Hence, the 
minimum distance of C is at least 3, which implies that it must be equal 
to 3 (by the sphere-packing condition). Hence, C is a linear code with the 
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same parameters as the Hamming code H 2(r) and is therefore equivalent 
to H2(r). This shows that the binary Hamming codes are equivalent to 
cyclic codes. 

Exercises 

1. Let C be a linear code with basis B = {b1, ... , bk}. Show that if the 
right cyclic shift of each basis codeword bi is also in C, then C is cyclic. 

2. Show that a code is cyclic if and only if whenever c = c0c1 • · • Cn-I is 
a codeword, so is the word c1 · · • Cn-1c0 , obtained by a left cyclic shift. 

3. Find a generator matrix for the code C in Example 7.1.2. (Hint: note 
that P has the form P = [I I A].) Show that the code C is cyclic. 

4. Prove that a linear code C c Rn is cyclic if and only if p(x) E C implies 
that f(x)p(x) E C for any polynomial f(x) E Rn. 

5. Find the generator polynomial for the binary cyclic code E = {O, 1 + 
x2 , x + x3 , 1 + x + x2 + x3 }. Find all polynomials in E that generate E. 

6. With reference to Theorem 7.1.4, show that Bis linearly independent. 

7. Find all distinct binary cyclic codes oflength 4. 

8. Find the check polynomial h(x) for each of the codes in Example 7.1.6 
and verify that h(x)c(x) = 0 for all codewords c(x). (You can take 
advantage of the basis for each code given in the example.) 

9. Prove that if C is a cyclic code in Rn with check polynomial h(x) of 
degree k, then the polynomial hr(x) = xkh(x- 1), called the reciprocal 
polynomial of h(x), is the generator polynomial of the dual code c1-
(that is, after multiplying by a suitable constant to make it manic). 

10. Find the check polynomial and a parity check matrix for each code 
in Example 7.1.6. 

11. Determine all of the binary cyclic codes oflength 5. 

12. Show that, for any prime p, the p-ary repetition code Repp(n) is cyclic. 
Find the generator polynomial for this code. 

13. Show that the binary code En consisting of all codewords of length n 
that have even weight is a cyclic code. Find the generator polynomial 
for En, 
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14. If g(x) is the generator polynomial of a cyclic code, show that g(x) has 
nonzero constant term. Does the polynomial xkg(x) also generate the 
code? Is it a generator polynomial? 

15. Let C = ( (g(x))) be a binary cyclic code. If C contains at least one 
word of odd weight, show that the set E of all ,codewords in C with 
even weight is also a cyclic code. What is the generator polynomial 
for E? 

16. How many cyclic codes of length n are there over 'llp? Express the 
answer in terms of the number of irreducible factors of xn - 1 . 

17. Let h(x) be the check polynomial of a cyclic code C. Is CJ_ = ( (h(x)) )? 
If not, what can you say? 

. . ' 



Answers to Selected 
Odd-Numbered Exercises 

Section 1.1 

1. 
€93 0 1 2 03 0 1 2 
0 0 1 2 0 0 0 0 
1 1 2 0 1 0 1 2 
2 2 0 1 2 0 2 1 

3. a) 1 b) 1 c) O d) O e) 1 f) 2 

5. (~)44 = 17,920; (~)(~)33 = 15,20 

7. (~)26 + (~)25 + (~)24 = 496 
9. G)cr - 1/ 

11. Since addition is performed elementwise, we need only consider four pos­
sibilities in each case. 
For part a), 
(0 + Of = oe = 1 = 0 + oe 
(1 + Of = le = 0 = 1 + oe 
(Q + } f = } e = Q = Q + } e 

(1 + 1 f = oe = l = 1 + 1 e 
For part b), 
oe + oe = 1 + 1 = 0 = 0 + 0 
} e + oe = Q + } = } = } + Q 

Qe + } e = } + Q = } = Q + } 

le+ le = 0 + 0 = 0 = 1 + 1 

285 
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Section 1.2 

1. Since 26 = 64 and 27 128, the minimum length is 7. 

3. There are only two encoding functions: a) f(a) = 0,f(b) = 1 and b) g(a) = 
l,g(b) = 0. 

5. n! 

7. The codes of maximum codeword length n over a set A of sizer are preciseli 
the subsets of An, Since a set of size k has 2k subsets and since IAnl = 1~='; 
the answer is 

For r = 2 and n = 5, this number is 263 ~ 9 x 1018 . 

Section 1.3 

1. Yes. Let x be a sequence of codewords. Read x from left to right. 
a) Ifwe encounter a 0, this must represent the codeword 0. 
b) If we encounter a 1 followed by a 0, this must represent 10. 
c) If we encounter a 1 followed by another 1, the sequence 11, to­

gether with the next 2 elements, uniquely determines which codeword is 
represented. 

3. Yes. Let x be a sequence of codewords. Read x from right to left. 
a) If we encounter a 0, it must be the codeword 0. If we encounter a 1, 
count the number of ls before encountering a 0. Any string of five ls must 
be the codeword 11111. Otherwise, the number of ls before the O uniquely 
determines the codeword. 

5. No. The string 110110 can be interpreted as itself or as the sequence 1101 10 
. ' 

7. The codeword lengths do not satisfy Kraft's inequality, so there is no such 
code. 

9. a) N(l) = 1, N(2) = 3. 
b) The N(k) strings of codewords of length k bits can be divided into two 
disjoint groups - those that begin with a codeword of length 1, namely 
with the codeword O and those that begin with a codeword of length 2, 
namely 10 or 11. Since there is only one possibility for the former and two 
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possibilities for the latter, we get 

N(k) = N(k - 1) + 2N(k - 2) 

c) Letting N(k) = ci leads to the quadratic equation a2 - a - 2 = 0, whose 
solutions are a = -1, 2. Checking in the original equation, we find that 
( - 1 i and zk are both solutions and that a( - 1 i + b2k is a solution for 
numbers a and b, to be determined by the facts that N(l) = 1 and N(2) = 3. 
This gives -a + 2b = 1 and a + 4b = 3, whose solution is a = ½, b = j. 
Hence, N(k) = ½ ( - 1 l + i (2k). 
d) N(l) = 1, N(2) = 2, N(3) = 5, N(4) = 9, N(5) = 18. 

Section 1.4 

1. Suppose that C is not uniquely decipherable. Then there is a string x over 
the code alphabet A that can be written in two different ways as a sequence 
of codewords 

We may assume that c1 / d1, for otherwise, we can just remove this code­
word and consider the remaining portion of the message. (Sooner or later, 
we must run into a situation where Ci I di, since the two representations of 
x are assumed to be different.) But then either len(c1) < len(d1), in which 
case c1 is a prefix ofd1 , or len(c1) >len(d1), in which case d1 is a prefix of 
c 1 . In either case, we conclude that C fails to have the prefix property and 
so is not instantaneous. 

3. No, since 10 is a prefix of 1011. 

5. No. Each codeword oflength 5 must begin with 11. But there are only 23 = 8 
binary strings of length 5 that start with 11. 

7. A word oflength n has n prefixes, including itself. 

9. No, by Kraft's Theorem. 

11. Yes. C = {00, 01, 100,101, 1100, 1101, 11110, 11111} 

13. Yes. C = {O,l,2,3,40,41,42,43,4401 441 1 442,4430,4431,4432} 

15. Twelve additional codewords oflength 6. {O, 10, 1100, 1101xy, 1110xy, llllxy}, 

where x, y E Zz. 



288 Answers to Selected Odd-Numbered Exercises ---------=-=:=::....:..---=-=-=-....:...::.....__:_____:__:~----------------

Section 2.1 

I. Scheme I has average codeword length 2.9, whereas scheme 2 has average 
codeword length 3. Hence, scheme I is more efficient. 

3. 110 (1 + 2 + ... + 9 + 9) = 5.4 

5. By minimizing the sum of the lengths of all codewords. 

Section 2.2 

1. A ➔ 1100, B ➔ 111, C ➔ 0, D ➔ 10, E ➔ 1101; len= 2.2, sav= 27% 

3. A ➔ ll00, B ➔ 10, C ➔ 0, D ➔ ll01, E ➔ lllO, F ➔ llll; len= 2.4, 
sav= 20% 

5. A ➔ 101, B ➔ 100, C ➔ 0ll, D ➔ 010, E ➔ 001, F ➔ 000, G ➔ llll, 
H ➔ lllO, I ➔ l101, J ➔ llll; len= 3.4, sav= 15% 

9. The Huffman tree must have exactly 3 levels. The probability distribution 
lP1,Pz,p3,p4} must satisfy Pi + Pi ~ Pk and Pi + Pi ~ Pe where {i,j, k, l} = 
{l, 2, 3, 4}. 

ll. Suppose there are n source symbols. If we combine s nodes into 1 on the 
first step and then we reduce the number of nodes on the top level bys - 1. 
Suppose we need u additional steps to get to exactly r nodes on the top 
level. Each of these u steps will reduce the number of nodes on the top 
level by r - 1. Hence, we must have 

n - ( s - 1) - u(r - 1) = r 

or 

s-= n-(u + l)(r-1) 

Since 2 ~ s ~ r, the first reduction size sis uniquely determined by the 
condition 

.. ' 
s = n mod (r - 1 ), 2 ~ s ~ r 

Once s is determined, we may determine u from the first equation above 
tobe 

n-s+l-r n-s 
u = ----- = ---1 

r-1 r-l 

The total number of steps to construct the Huffman tree is u + 2. 
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13. a) The average codeword length of (C,f) is 

1 11 1 
AveCodeLenHuff2(C,f) = - Llen(f(sJ) -T 

n i=l n 

and since AveCodeLenHuff2(C,f) is minimum among all instantaneous 2 
encodings, so is T. 
b) It is clear from the construction of a Huffman tree that the bottom level 
of the tree contains only sibling pairs associated with source symbols. Let 
c and d be the codewords of sibling pairs on the bottom level of the Huff­
man tree. Since a source symbol on level k has codeword length k - 1, we 
conclude that c and d have length L and the corresponding nodes lie on 
level L + 1. Moreover, since they are sibling pairs, they differ only in their 
last positions. 
c) Let c = c 1 · · · cL-l 0 and d = c 1 · · · cL_ 1 l be the codewords of maximum 
length guaranteed by the previous part. Suppose (for the purposes of con­
tradiction) that there is a codeword e = e1 • · · e111 oflength m :S L - 2. Let 
D be the code derived from C by deleting the codewords c, d, and e and 
adding the codewords f = c 1 • • • cL-l, e0 and el. Since deleting codewords 
cannot destroy the prefix property, we need only be concerned about the 
additions. Adding f does not destroy the prefix property since a prefix of 
f is also a prefix of c and so is not a codeword. Adding e0 and el does not 
destroy the prefix property because we removed e. Thus, D has the prefix 
property and is therefore instantaneous. However, the next change in the 
sum of the codeword lengths is 

-L - L - m + L - 1 + m + 1 + m + 1 = m + 1 -L < 0 

and so there has been a net decrease in total codeword length, which is 
impossible in view of part a). Hence, all codewords in C have length Lor 
L -1. 
d) Let the top level of a complete binary tree be level 0. Then there are at 
most 2k nodes on level k, fork = 0, 1, 2, .... Thus, since 

zk < a2k :'.S zk+ 1 

we see that the source nodes all lie on levels k and k + 1 and while there 
may be none on level k, there is at least one on level k + 1. It follows that 
L=k+l. 
Since there are n nodes, we have u + v = n = a2k_ Also, ifwe were to add 
an additional node pair to the bottom of each of the source nodes on level 
k, then we would get 2u nodes on level k + 1 and so 2u + v = 2L = 2k+ 1 . 

It follows that u = 2k+l - a2k = 2"c2 - a) and v = n - u = zk+lca - 1). 

e) k + 2 - i 



290 Answers to Selected Odd-Numbered Exercises 
------------------------

Section 3.1 

1. 0.918 

3. lga - ¾ 

5. Since the sum that defines the entropy consists only' of nonnegative terms, 
the entropy is 0 if and only if each term is 0, which happens if and only if 
P(s) = 1 for some source symbols. 

7. The entropies are a) lg 12 for tossing a coin and rolling a die, b) lg 8 for 
tossing three coins, and c) lg 16 for tossing four coins. Thus, the most in­
formation comes from tossing four coins and the least from tossing three 
coins. 

g H 7 1 24 11 1 24 5 1 24 1 1 24 . =24g7+24gu+24g5+24g 

Section 3.2 

1. a) If 0 < x < 1, then we apply the mean value theorem to the interval 
[x, l] to get 

lnx - lnl 1 
- > 1 

x-1 z 

for some z E (x, 1). Multiplying both sides by the negative number x - 1 
gives the desired inequality. For x > 1, the mean value theorem gives 

lnx - lnl 1 
----=-<l 

x-1 z 

for some z E (1, x). Multiplying by x-1 gives the desired inequality. (The re­
sult is clearly true for x = 1.) As for equality, the functionf(x) = ln x-x + 1 
hasf(l) = 0andalsohasf'(x) < 0forx > landf'(x) > 0forx < I.Hence, 
it can be 0 nowhere else. 
b) This follows from part a) and the change of base formula lg x = 
(ln x)I (ln 2). -: , 

3. H(½ + x) = (½ + x) lg n ~x) + (½ - x) lg C½~x) = H(½ - x) 

5. The change of base formula for logarithms is logrx = \~;_;; and so 

q 1 q log l 1 q 1 H (S) 
S '°"' '°"' sp -- -- '°"'Pi·logs- -- s H,,( ) = L..,,Pilog,,- = L..,,Pi __ , L..,, --

i=l Pi i=l log5 r log5 r i=l Pi 1og5 r 
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7. We may first write the lemma in the form 

q q 

LPilg Pi ~ LPilg ri 
i = 1 l=l 

Using both sides as exponents of 2, we get 
q q 

TT vf' :::: fl rf' 
i=l 1 = 1 

Now let ri = P1X/ LPJXJ. Since "£ ri = l, we may substitute into the 
previous inequality to get 

Il pf' ~ Il (A Xi:' , = .1 x TT (pixif' = 
i=l i=l (L;PJ /f L;PJ J i=l 

1 

Canceling the common factor and rearranging gives the desired inequality. 
Equality holds throughout if and only if it holds in the lemma, that is, if 
and only if ri = Pi for all i. This is equivalent to Xi = LJ PJXj for all i, which 
is equivalent to saying that all of the Xis are equal. 

Section 3.3 

1. For S, we have a ➔ 0, b ➔ l, with average codeword length 1. For S2 , we 
have 

aa ➔ Ol0,ab ➔ 0ll,ba ➔ 00,bb ➔ l 

with an average codeword length per source symbol of;~ = 0.84375. For 
S3 , we have 

aaa ➔ 11100, aab ➔ 11101, aba ➔ 11110, baa ➔ 11111 

abb ➔ 100, bab ➔ 101, bba ➔ 110, bbb ➔ O 

with an average codeword length per source symbol of ~~~ = 0.82292. 

Section 3.4 

1. H 2(S) = ~- A Huffman encoding is a-+ 00, b ➔ 01, c-+ 1 with average 
codeword length of~- Hence, H2(S) = MinAveCodeLen2(S). 

3. The 100th extension S 100 . We would need 2100 ~ 1.3 x 1030 codewords! 

5. Yes. 
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Section 4.1 

l.O•~•O 

? • 1 •? 

/ 
le l ► el -p 

3. Because the input completely determines the output. 

5. Because if a O is received, it is equally likely that a O or a 1 was sent, and 
similarly if a 1 is received. Thus, knowledge of the output tells us nothing 
about the input. 

7. Reverse the outputs, that is, change a Oto a 1 and a 1 to a 0. 

Section 4.2 

1. Let Ek be the event that Ck is sent over the channel and let A be the event 
that x is received. Apply Bayes' Theorem. 

3. a) P(010 received! 000 sent)= (0.99)2(0.01) = 0.009801 
P(OlO received! 001 sent)= (0.99)(0.01 )2 = 0.000099 
P(OlO received! 111 sent)= (0. 99)(0.01 )2 = 0.000099 
Decode as 000. 
b) P(llO received! 000 sent)= (0.99)(0.01 )2 = 0.000099 
P(llO received! 001 sent)= (0.01)3 = 0.000001 
P(llO received! 111 sent)= (0.99)2(0.01) = 0.009801 
Decode as 111. 

5. a) P(010 received! 000 sent)= (0.99)2(0.008) = 0.0078408 
P(OlO received! 001 sent)= (0.99)(0.008)2 = 0.00006336 
P(OlO received! 111 sent)= (0.008)2(0.99) = 0.00006336 
Decode as 000. 
b) P(lO? received! 000 sent)= (0.008)(0.99)(0.002) = 0.00001584 
P(lO? received! 001 sent)= (0.008)(0.99)(0.002) = 0.00001584 
P(lO? received! 111 sent)= (0.99)(0.008)(0.002) = 0.00001584 
A three-way tie! 
c) P(??O received! 000 sent)= (0.002)2(0.99) = 0.00000396 
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P(??0 received! 001 sent)= (0.002)2(0.008) = 0.000000032 
P(??0 received! 111 sent)= (0.002)2 (0.008) = 0.000000032 
Decode as 000 

Section 4.3 

1. a) 5 b)"8 

3. a) 11200 b) tie c) 00111 d) 01221 

5. If i f f then P(ai I aj) = ~=f. If a codeword c and a received word x, both 
oflength n, differ in exactly k places, then 

P(x received I c sent) = pn-k ( 1 - p)k 
r-1 

Since p > ~=-f, this probability is larger for larger values of n - k, that is, 
for smaller values of k. Hence, the probability is maximized when k, the 
Hamming distance, is as small as possible. 

7. Channel alphabet {0,1}. Let P(0 received I O sent)= 0.1, P(l received! 0 
sent)= 0.9, P(l received! 1 sent)= P(0 received! 1 sent)= 0.5. Code C = 
{001, 011}. Suppose that 000 is received. Then 

P(000 received I 001 sent) = (0.1 )2(0.5) = 0.005 

P(000 received I 011 sent) = (0.1)(0.5)2 = 0.025 

Thus, it is more probable that the codeword farther from 000 was sent. The 
key here is that it is more likely that a O is changed into a 1 than not changed 

at all! 

Section 4.4 

1. a) d(C) = 3 b) 10010, 11100, tie (decoding error) 

3. Length = n, size = 211 - 1 , d = 2. 

5. First we prove part 1). Recall that Theorem 4.4.2 says that d(C) :::::_ 2v + 1 
if and only if C is v-error-correcting. If C is exactly v-error-correcting then, 
by Theorem 4.4.2, we have d(C) :::::_ 2v + 1. However, if d(C) ::: 2v + 3 then 
Theorem 4.4.2 would imply that C is (v + 1)-error-correcting, which is not 
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the case. Hence, 2v + 1 ::S d(C) ::s 2v + 2. For the converse, suppose that 
d(C) = 2v + 1 or d(C) = 2v + 2. Then Theorem 4.4.2 says that C is v-error­
correcting. However, if C were (v + 1 )-error-correcting, then Theorem 4.4.2 
would imply that d(C) ~ 2v + 3, which is not true. Hence, C is exactly v­
error-correcting. We may rephrase the first part of Corollary 4.4.3 by saying 
that a code C with odd minimum distance is exactly v-error-correcting if 
and only if d(C) = 2v + 1 and a code with even minimum distance is 
v-error-correcting if and only if d(C) = 2v + 2. Setting s = 2v + 1 and 
t = 2v + 2, this is equivalent to saying that a code C with odd minimum 
distance is exactly 8; 1 -error-correcting if and only if d(C) = s and a code 
with even minimum distance is 1; 2-error-correcting if and only if d(C) = t. 
But, since sis odd, we have L s;1 J = s;1 and since tis even, L 1; 1 J = 1; 2 . We 
can now combine the two cases into one-which is precisely the statement 
of part 2) of the corollary. 

7. P(decode error)::S 1 - (0.999)15 - 15(0.001)(0.999)14 = 0.000104094 

9. No. We can assume that any such code contains the zero codeword 0 
0000000. Then any other codeword must have at least five 1 s. We may also 
assume that one of the codewords is c = lllllxy. But any other codeword 
d with at least five 1 s will have at least three positions in which there is a 1 
in common with c. Hence, d(c) ::S d(c, d) ::S 4, a contradiction. Hence, the 
best we can do (size-wise) is a (7,2,5)-code. 

11. Suppose that C is maximal, but that, for some string x e C, we have d(x, c) ~ 
d for all codewords c in C. Then we may add the string x to the code C and 
still have a code with minimum distance d. On the other hand, if for all 
words x e C, there is a codeword c with the property that d(x, c) < d and 
ifwe try to add a word x to C, the minimum distance of the code would be 
less than d. 

Section 4.5 

1. a) 6 b) 51 c) 175 d) 256 e) 510 (no computation necessary) 

3. Suppose that C is an (n, M, 2e)-cdde. Let c and d be codewords of minimum 
distance 2e apart and suppose (as we may) that they differ in the first 2e 
positions. Let x be the word that agrees with c in the first e positions, agrees 
with din the next e positions, and agrees with both c and din the remaining 
positions. Then d(c, x) = d(d, x) = e. The triangle inequality can be used 
to show that no other codeword is closer to x. However, the packing radius 
of C is pr(C) = L 2e;1 J = e - 1 < e and so no packing sphere contains x, 
whence C is not perfect. 
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5. Plugging into the left side of the sphere-packing condition gives 

which is equal to the right side. 

7. Plugging into the left side of the sphere-packing condition gives (with the 
help of the binomial theorem) 

Now, the binomial theorem says that the "complete" sum is 

2m+l 2 L ( m + l ) = 22m + 1 

k=O k 

but since, for any k satisfying O ~ k ~ m, we have 

( 2m + 1 ) = ( 2m + 1 ) 
k (2m + 1) - k 

and ask runs through Oto m, the expression 2m + 1 - k runs (backwards) 
through m + l to 2m + 1, we see that 

Hence, the "top half' of the complete sum is equal to the "bottom half', 
whence 

as desired. 

9. Let C = {c, d} be a binary (2m + 1, 2, 2m + 1)-code. Since Chas minimum 
distance equal to its length, the two codewords must differ in every position. 
By interchanging corresponding bits in the two codewords in any given 
positiqn, we can arrange it so that one of the resulting words is the zero word 
O = 0 • • • 0. Hence, the other word must be I = 1 · · · 1 and the new code 
is Rep2(2m + 1 ). Thus, C is just the repetition code after some "relabeling" 
of the symbols in fixed positions. (There are different codes with the same 
parameters where you cannot relabel the symbols and turn one code into 
the other.) 
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Section 4.6 

1. C = {000000, 111001, 001111, 110110}. Parameters are (6,4,4). 

3. Let c and d be codewords in C. Suppose that a) c and d both have ls in 
a positions, b) c and d both have Os in f3 positions, c) c has a O and d 
has a 1 in y positions, and d) c has a 1 and d has a O in 8 positions. Then 
d(c,d) = y + 8. Also, a + 8 = w(c) is even and a + y = w(d) is even. Since 
a + 8 and a + y are both even, 8 and y must have the same parity and so 
d( c, d) = y + 8 is even. This proves that the distance between every pair 
of codewords is even. For the rest, suppose that d(c, d) = d(C). Let c be 
the word obtained from c by adding an even parity check and similarly 
ford. Thus, d(c, d) = d(c, d) or d(c, d) = d(c, d) + 1. First suppose that 
d(C) is even. Thus d( c, d) is even and since all distances in C are even, we 
must have d(c, d) = d(c, d), whence d(C) = d(C). Now suppose that d(C) 
is odd. Then d( c, d) is odd and since d(c, d) is even, we must have d(c, 
d) = d(c, d) + 1, whence d(C) = d(C) + 1. 

5. This cross-section is D = {000, 001, 010, 011, 110,111} with parameters 
(3,6,1). 

7. Since Mi is the number of codewords in C that have an i in the first position, 
if we sum Mi over all possible values of i, we must get the total number 
of codewords in C. Thus, LMi = M. For the rest, if Di is the code formed 
from C by taking only those codewords with an i in the first position, then 
Di is a subset (subcode) of C and so its minimum distance ei cannot be 
smaller than that of C, that is, ei :::: d. But, every codeword in Di has the 
same element in the first position (namely, an i). Therefore, removing this 
position does not affect the distances between words and so di = ei :::: d. 

9. {0000000,0000111,0111000,0111111,1101010,1010101}. (Build the smaller code 
first.) 

11. C + 1 EB C2 = {000000000000000, 0000000011111000, 

0000000000011111,1100000011000000, 

1100000000111000, 1100000011011111 

13. For part a), since d(c, d) + d(c, de) is the number of places where c and 
d differ plus the number of places where c and d agree, we get d( c, d) + 
d(c,de) = n.Forpartb),letD = cuce_Wehaved(C) = dandsincetaking 
the complement of all words does not change any distances between words, 
we also have d(Ce) = d. Thus, the only way that d(D) could be different 
from d(C) is if d(c, de) < d(C) for some pair of codewords c and din C. But 
by part a), 

min{d(c, de)} = min{n - d(c, d)} = n - max{d(c, d)} = n - dmax 
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Thus, if n - 'dmax 2: d(C) we have d(D) = d(C) and if n - dmax < d(C) then 
d(D) = n - dmax• Hence, d(D) = min{d, n - dmaxl-

15. C1 0 C2 has parameters (16,6,2), which is not as good as C1 EB C2, since 
C1 EB C2 is single-error-correcting but C1 0 C2 does not correct any errors! 

17. First note that C2 = {0000, OOll, 0101, ono, 1001, 1010, llOO, llll} 
and Repz(4) = {0000, llll}. Hence, C3 ={00000000, 00001lll, OOllOOll, 
00111100,01010101,01011010,01100110,01101001, 10011001,10010110, 10101010, 
10100101, noonoo, ll oooon, llllllll, llllOOOO} is a (8, 16 ,4)-code. Further­
more, C4 is a (16,32,8)-code and Cs is a (32,64,16)-code. More generally, 
since Repz(2k) is a (2\ 2, 2k)-code, if Ck is a (2\ 2k+I, 2k-1)-code then 
Ck+ 1 = CkEB Repz(2k) is a (2k + 2k, 2k+ I . 2, min{2 . 2k-I, 2k})-code, that is, a 
c2k+I, 2k+z, 2k)-code. 

19. Let C1 and C2 be equivalent codes, where 

C1C2···Cn E C1 ifandonlyifrr1(ca(l))rr2(ca(Z))···Jrn(Ca(n)) E C2 

It is clear from the definition that the equivalent codes have the same length 
n. Moreover, since the functions Jri and a are one-to-one, the codes have 
the same size. In particular, c1c2 · · · Cn = d1d2 · · · dn if and only if Ci = di for 
all i, which happens if and only if 

Ca(1)Ca(2) · · · Ca(n) = da(l)da(2) · · · da(n) 

and this holds if and only if 

rr1(Ca(l))rr2(Ca(Z)) · · · 7l"n(Ca(n)) = rr1(da(l))rr2(da(2)) · · · 7l"n(da(n)) 

Since permuting the positions or the code alphabet has no effect on 
distances, we have d(C1) = d(Cz). 

Section 4.7 

1. a) 4 b) 4 c) 4 
3. Note that x + y has a O in the kth position if and only if x and y have the 

same value in the kth position. Hence, the weight ofx + y is precisely the 
number of positions in which x and y differ, which is d(x, y). 

5. R(R(r, m)) = [1 + C7) + ... + C1)] 12m, 8(R(r, m)) = c2m-r-l - l)/2m for 

r < m, 0 for r = m. 
7. Let C be a binary (7, M, 5)-code with OE C. Then all other codewords must 

have weight at least 5. If 1 E C then C = {O, I}. If 1 i C then note that 
the farthest apart two strings of length 7 and weight at least 5 can be is 4. 
Hence, C can have at most one other (nonzero) codeword and so M ~ 2. 
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9. Let C be a binary (6, M, 3)-code and consider the cross-sections Ci defined 
by x1 = i (i = 0, 1 ). These codes have length 5 and minimum distance at 
least 3, and since A 2(5, 3) = 4, and A 2(5, 4) = A 2(5, 5) = 2 they have size 
at most 4. Hence, A 2 (6, 3) :S 4 + 4 = 8. To find an optimal code, let us 
first try to construct the aforementioned cross-sections in such a way that 
words from different cross-sections are "reasonably" far apart. We start with 
an optimal (5,4,3)-code D 1 = {00000, 11100, 00111, 11011}. Next, create D 2 by 
switching the first elements of each codeword in D 1 ( change Oto 1 and 1 to 0) 
and also switching the last elements. Thus, D 2 = {10001, 01101, 10110, 01010}. 
The resulting code has the same parameters as D 1 ( corresponding positions 
in two codewords of D2 are different if and only if they are different in D 1) 

and so is also optimal. In addition, the distance between any codeword 
in D 1 and any codeword in D 2 is at least 2. Therefore, if we adjoin a O to 
the front of each codeword in D 1 and a 1 to the front of each codeword in 
D 2 , the resulting eight words forms a code with parameters (6,8,3). Thus, 
A2(6 1 3):::: 8. 

11. Certainly Ar(n, 1) :S r11 • But the code Z~ has length n, size r11 and minimum 
distance 1. 

13. No. The binary code C = {000,111} has minimum distance 3 but there is no 
way to add words to C to get a code with minimum distance 2. 

15. According to Theorem 4.7.7 (with some slight modifications), if dis even 
then a binary (n - 1, M, d - 1 )-code exists if and only if a binary (n, M, d)­
code exists. Hence, if C is an optimal (n, A 2(n, d), d)-code, there is an (n -
1, A 2(n, d), d-1 )-code D, whenceA 2 (n, d) .:S A 2(n-1, d-1 ). Similarly, if C is 
an optimal (n-1, A 2(n-1, d-1), d-1 )-code, there is an (n, A 2(n-1, d-1 ), d)­
code D, whence A 2(n - 1, d - 1) :s A 2(n, d). Putting the two inequalities 
together gives the result. 

17. If there exists a binary (n, M, d)-code C with d even, then by Theorem 4.7.7 
there is a binary (n - 1, M, d - 1 )-code D. Add an overall parity check to D 
to get a binary (n, M, d)-code with all codewords of even weight. 

19. a) Yes. If you cannot add a new word to C without decreasing its minimum 
distance then it is, by definition, maximal. Moreover, since A 11 is a finite 
set, the process of adding new codewords must stop, and the result will be 
a maximal code. b) No. Recall \hat A 2(6, 3) = 8. Now consider the code 
C = {000000, 011100, 000111, OllOll, 100000, llllll}. (We formed this code 
by adjoining a Oto the front of an optimal (5,4,3)-code and then including 
the codewords (100000, llllll) designed to "spoil" the resulting code.) The 
code Chas minimum distance 3 but cannot be enlarged to an optimal code. 
For we cannot add any new codewords that begin with a O (and preserve 
the minimum distance) the cross-section x1 = 0 is an optimal (5,4,3)-code 
and we cannot add any additional words that begin with a 1 (and preserve 
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the minimum distance) since any such words would have to have weight 
at least 4 (because of 100000) and at most 3 (because of llllll ). c) The code 
C above is maximal but not optimal. 

Section 4.8 

1. Setting ·the inequality sign in the sphere-packing bound to an equal sign 
gives the sphere-packing condition. 

3. covering bound 5; packing bound 16 

5. covering bound 3; packing bound 21 

7. covering bound 4; packing bound 56 

9. If n = r + 1 and d = 3, then 

v;(ld;lj) = v;+l(l) = 1 + r;lcr-1) =r2 

and so the sphere-packing bound is 

Section 4.9 

7. The function f(x) = x(M - x), defined for all real numbers x, has a global 
maximum at x = ¥. If M is even, this is also the maximum over the integers 
from0toM,whencef(k) ~fC¥) = (~)2.IfMisodd,sincethegraphoffis 

symmetric about the line x = ~, we deduce that f(M~l) = f(M; 1 ) = M
2
4-

1 

is the desired maximum. 

9. Let us write a = zLn. Then (4.9.2) implies that 

L2aJ 
M< - L2aJ - 1 

for M even 
for M odd 

Suppose first that k :S a < k + ½ for some integer k. Then L2aJ = 2k and 
2 LaJ = 2k = L2aj. Thus, regardless of the parity of M, we have M :S 2 LaJ, 
as desired. Now suppose that k + ½ :S a < k + 1. Then L2aJ = 2k + 1 and 
2 LaJ = 2k. If Mis odd, then we have M :S L2aJ - 1 = 2k = 2 LaJ and if M 
is even, then M :s L2aj = 2k + 1 implies that M :S 2k = 2 LaJ, as desired. 
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11. If dis odd, then A2(2d + 1, d) = A2(2d + 2, d + 1) and we may apply the 
results of part a) ( with d replaced by d + 1) to get 

A2 (2d + l,d) = A2 (2d + 2,d + 1):::: 4(d + 1) 

as desired. 

Section 5.1 

1. Ifa = 0 then we have 

aO = (a + a)O = aO + aO 

and so aO = aO-aO = 0. If a I 0, then for any x E z; we have 

aO + x = aO + a(a-1x) = a(O + a-1x) = a(a-1x) = x 

and similarly x + aO = x. It follows from the definition of O that aO = 0. 
For the second statement, if ax = 0 and a I 0, then we may multiply both 
sides by a-1 and use the properties of scalar multiplication to get 

X = <X-1(ax) = <X- 10 = 0 

Hence, if a I O then x = 0. Thus, one of a or x must be zero. 

3. Since O + 0 = 0 and aO = 0 for all scalars a (by an earlier exercise), we 
deduce that {O} is closed under addition and scalar multiplication and is 
therefore a subspace of z;. It is clear that the entire space z; is closed 
under addition and scalar multiplication and so it too is a subspace of z;. 

5. Let a E Zp be nonzero and let x = aO and y = Oa. Then xy = (aO)(Oa) = 

00 = 0, even though x and y are nonzero. 

7. Yes. If c, d E E then w(c + d) = w(c) + w(d) - 2w(c n d) is even as 
well. Hence, E is closed under addition and is therefore a subspace. No, 
for w(lll) and w(lOO) are odd but w(lll + 100) = w(Oll) is even. In the 
nonbinary case, the sum of twQ even weight strings may have odd weight. 
For example, 012 + Oll = 010 o~er Z3 . 

9. No, for we have 1 + 1 = 0 and so Sis not closed under addition. 

11. Sis a subspace of z; for all p. When p = 2, S = Z~. 

13. {0000,1402,2304,3201,4103} 

15. <X1 1 + /3, <Xz = /3, <X3 = 0, a 4 = /3, where f3 = 0 or 1. 

17. a1 = 1, a2 = 2, a3 = 3. 
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19. If S is a subspace of z; of dimension k, then a basis for S has size k, say 
B = {b1, b2, ... , bk}. Since any string x in S has the form 

x = a1b1 + ··· + akbk 

for a unique sequence of coefficients a 1 , ... , ak, there are as many strings 
in S as there are sequences of coefficients. But there are p choices for each 
of the k coefficients in the sequence and so there are p . p . .. p = pk such 
sequences. Hence I S I = pk. 

Section 5.2 

1. Yes, since Repr(n) = (1). The set {l} is a basis and Rep,.(n) is an [n, 1 ]-code 
with minimum weight n. 

3. Yes, since C is closed under addition and scalar multiplication. A basis for 
C is {e2, ... , en}, where ek is the binary string with a 1 in the kth coordinate 
and Os elsewhere. Hence dim(C) = n - 1. The minimum weight of C is 1. 

5. The formula w(c + d) = w(c) + w(d) - 2w(c n d) shows that if w(c) and 
w(d) have the same parity then w(c + d) is even; otherwise it is odd. For 
nonbinary strings, as an example, we have 120 + 110 = 200 over Z3 and so 
this statement does not hold. 

7. If not all of the codewords in C have even weight, then let o E C have 
odd weight. Consider the subset E of C consisting of all codewords of even 
weight. The subset 0 = {e + o I e E E} of C has the same size as E (for 
if e 1 + o = e2 + o, then e 1 = e2 and so the elements of 0 are distinct), 
Moreover, each codeword in 0 has odd weight (since "even + odd = odd"). 
We claim that O is the set of all codewords in C with odd weight. For if d 
has odd weight, then d + o has even weight and so belongs to E; that is, 
d + o = e for some e E E, whence d = e + o E 0. Thus, E is the set of all 
even weight codewords and 0 is the set of all odd weight codewords and 
I E I= I O 1- Since C = EU 0, we deduce that exactly half the codewords 
in C have even weight. A ternary linear code must have size a power of 
3, which is odd. Hence, this statement cannot possibly be true for ternary 
codes. 

9. {11111,11101,00110} is a basis for C. 

11. C ={0000000, 1001001, 0101011, 0010111, 1100010, 1011110, 0111100, 1110101}. 
(This is the set of all possible sums of the basis codewords, including the 
empty sum 0000000.) This is a [7, 3, 3]-code. 

13. Use the generator matrix to write out all 16 codewords and check the weight 
of each codeword. 
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15. No, binary linear codes have size a power of 2. 

17. Codewords in C EB D have the form c(c + d) so 

c1(c1 + d1) + Cz(c2 + d2) = (c1 + c2)(c1 + Cz + d1 + d2) 

is in C EB D. Hence, C EB Dis closed under addition and is therefore a linear 
code. 

Section 5.3 

1. Since every string in z; appears exactly once in a standard array A for a 

linear (n,pk}code C over Zp, the number q of rows in A satisfies qpk = I 
z; I = p 11 and so 

Pn 
n-k q= =p pk 

3. A standard array is 

000 011 110 101 
100 111 010 001 

The string 111 is decoded as Oll and the string 100 is decoded as 000. 
Finally, 

P(correct decoding) = (1 - p)3 + p(l - p)2 = (1 - p)2 

If 000 is sent but 001 is received, the received word will be incorrectly 
decoded as 101 (rather than reporting a tie). 

5. A standard array for the ternary (4, 2]-code C2 of Example 5.2.1 is 

0000 0121 0212 2210 2001 2122 1120 1211 1002 
1000 1121 1212 0210 0001 0122 2120 2211 2002 
0100 0221 0012 2010 2101 2222 1220 1011 1102 
0010 0101 0222 2220 2011 2102 noo 1221 1012 
2000 2121 2212 121b' 1001 1122 0120 0211 0002 
0200 0021 0112 2110 2201 2022 1020 1111 1202 
0020 0111 0202 2200 2021 2112 1110 1201 1022 
1010 1101 1222 0220 0011 OJ02 2100 2221 2012 
0110 0201 0022 2020 2111 2202 1200 1021 1112 

7. The theorem holds with no change, since we 
probability that the error string is a coset leader. 

are still computing the 
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11. This probability is 

(0.999)23 + 23(0.001 )(0.999)22 

+ ( 2:) (0.001 )2(0.999)21 + ( 233) (0.001 )3(0.999)2° 

= 0.999999991 

which is significantly larger than that of the Hamming codes in the previous 
exercise.· 

13. The number of strings of weight v or less is the volume of the sphere 
s;co, v), which is 

15. 

V n 
v;cv) = L . (p - l)i 

i=D 1 

Since the number of cosets in any standard array for C is pn-k, and since 
each of the v;1(v) strings is the coset leader of a distinct coset, we must 
have pn-k :::: v;(v). Since M = pk is the size of C, we have 

M < --1!_ 
- v;(v) 

This is none other than the sphere-packing bound (for a linear code). 

A generator matrix for such a code is 

1 0 0 0 1 0 0 0 0 0 0 
0 1 0 0 0 1 0 0 0 0 0 
0 0 1 0 0 0 1 0 0 0 0 
0 0 0 1 0 0 0 1 0 0 0 
1 0 0 0 0 0 0 0 1 0 0 
0 1 0 0 0 0 0 0 0 1 0 
0 0 1 0 0 0 0 0 0 0 1 

17. For a burst of the first type, there are p - l choices for the first nonzero 
entry and p choices for each of the remaining b - l entries. Since there are 
(n - b + 2) - 1 = n - b + l choices for the location of the first nonzero 
entry, we deduce that there are (n - b + l )(p - l )Pb-I possible bursts of 
this type. A burst of the second type is simply any string of the form Oy 
where O is the zero string of length n - b + l and y is a nonzero string 
of length b - 1. But there are pb-l - l such nonzero strings y. Hence, 
N + 1 = [(n-b + l)(p-1) + l]Pb-l_ Finally, sincepn-k:::: N + 1, we have 
pk~ pn /(N + 1) and, taking logarithms, 

k~n-logp(N+l) 

The result follows by substituting the computed value of N + 1. 
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Section 5.4 

1. a) 1 b) 0 c) 3 d) 0 

3. Ifx and y are in Al. then, for any a EA, 

(x + y) - a = x - a + y - a = 0 + 0 = 0 

and so x + y E A 1.. Thus, A 1. is closed under addition. If a E Zv then 

(ax)• a = a(x - a) = aO = 0 

and so A 1. is closed under scalar multiplication. Hence, A 1. is a linear code. 

7. Since {a1 , a2 , ... , as} ~ (a1 , a2 , ... , as), the results of the previous exercise 
imply that (a1 , a2 , ... , as)..L ~ {a1 , a2 , ... , as}..1.. For the reverse inclusion, let 
x E {a1, a2 , ... , as}..1.. Then x · ai = 0 for all i = 1, ... , s. Since any element 
a of (a1 , a2 , ... , as) is a linear combination of the a/s, we have 

x-a = X•(a1a1 + a2a2 + ··· + asas) 

= a1(x · a1) + a2(x · a2) + · · · + as(x · as) = 0 

we see that xis orthogonal to every element of (a1 , a2 , ... , as), that is, x E 

(a1 , a2 , ... , as)..1._ Hence, (a1 , a 2 , ... , as)..L = {a1 , a 2 , ... , as}..L_ 

9. Repp(n)l. = {x = X1 ... Xn E z; I X1 = -(x2 + ... + Xn)} 

11. Coll= col2 and so there is a set of two columns that are linearly dependent, 
whence d = 2. 

13. Every pair of columns is linearly independent but coll+ col2 = col4 and so 
d = 3. 

-1 1 0 0 0 
-1 0 1 0 0 

15. -1 0 0 1 0 

-1 0 0 0 1 --
L . ' 

17. Suppose C is a binary self-dual code. If c E C then w(c) = c - c = O in 
Z2, whence w(c) must be an even integer. Since all codewords have even 
weight, we have c · 1 =w(c) mod 2 and so c • 1 = 0, which implies that 
1 E C..L = C. 

19. Since C = c..1., we have dim(C) = n-dim(C..1.) = n-dim(C) and so 
2-dim(C) = n, whence n is even. A generator matrix for C11 is the 
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(n x 2n)-matrix 

1 1 
1 1 

1 1 

that has Os everywhere except where indicated. It is clear that every row 
of Gn is orthogonal to itself and to all other rows and so C11 ~ C;. But 
dim(C) = i and so dim(C.L) = n-dim(C) = ¥ =dim(C) and so C = c.L_ 

21. The Gilbert-Varshamov inequality is 2k < 3
3
2 and so we may take k 3, 

whence A2(6, 3) ~ 23 = 8, which is the exact value. 

23. The Gilbert-Varshamov inequality is 2k < 4 and so we must take k 1, 
whence A2(8, 5) ~ 2. The exact value is 4. 

Section 5.5 

1. The number of rows is I z; I / I C I= p 11 /pk = pn-k. A generator matrix 
G has k rows and n columns so the number of rows in a syndrome-coset 
leader table isp#cols G-#rows c. We cannot read the size ofa syndrome-coset 
leader table directly from the size of a parity check matrix, however. 

3. The parity check matrix for the Hamming [7, 4, 3]-code C3 is 

[ 
0 1 1 

P3 = 1 0 1 
1 1 0 

1 
1 
1 

1 0 
0 1 
0 0 

A syndrome-coset leader table for this code is 

coset leader syndrome 
0000000 000 
1000000 Oll 
0100000 101 
0010000 llO 
0001000 lll 
0000100 100 
0000010 010 
0000001 001 

a) llOllOl is decoded as 1101001, b) 1111111 is decoded as itself, c) 0000001 
is decoded as 0000000. 
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5. A syndrome table is a) 0110 is decoded as 0000, b) 2222 is decoded as 2122, 
c) 2012 is decoded as 1002. 

7. If r is the number of coset leaders of weight 1 with odd weight syndromes, 
then 90 - r have syndromes of even weight. Now, a coset leader of weight 
2 has the form ei + ej, and since S(ei + ej) = S(ei) + S(ej), the weight of 
the former is odd if and only if the weights of S(ei) a~d S(ej) have different 
parity. Hence, there are r(90 - r) coset leaders of weight 2 that have odd 
parity syndromes. But since the set of syndromes is precisely the set Z12 and 
since half of these strings have odd weight, we get r + r(90-r) = 211 = 2048. 
But this has no solutions in positive integers, as can be seen by trial and 
error. 

Section 5.6 

1. Since C has size p, it has dimension 1. Let {c} be a basis for C, where 
c = C1 · · · c11 • Hence, C = {(ac1) · · · (ac11 ) I a E Zp} and 

G = (c1 Cz Cn] 

is a generator matrix for C. Now, if Ci = 0 for some i, then all codewords in C 
will have a 0 in the ith position, which implies that the minimum distance 
of C is at most n - 1. Since d(C) = n, we conclude that Ci f 0 for all i. 
Now, if c1 f 1, then we may multiply the ith column of G by c;- 1 , which 
will turn the ith entry into a 1. By doing this for all columns, we get the 
matrix G' = (1 1 1] , which is the generator matrix for Repp(n). 

3. G = [ ~ ~ ~ ~ l P = [ ~ ~ ~ ~ ]-

5 G - l ~ [ ~ iJP-[1 IO I] 

7. It is easy to see that a parity check matrix for E 11 is P 1 1 1 . 
The generator matrix that leads to this parity check matrix is 

G= 

-. 
' 1 0 0 1 

0 1 0 1 

0 0 1 1 

which consists of an identity matrix of size n - 1 with an additional column 
at the far right consisting entirely of ls. 
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11. Let g1 and g2 be rows of G and let g1 = g1 E and g2 = g28 be the corresponding 
codewords in C, where E and 8 equal O or 1. If w(g1) and w(g2) have the 
same parity, then E = 8 and since in this case E + 8 = 0, we have g1 + g2 = 

(g1 + g2)0. But w(g1 + g2) is even in this case, and so g1 + g2 = (g1 + g2)0 = 
g1 + g2. Similarly, if w(g1) and w(g2) have different parity, then E f- 8 and 
so E + 8 = 1. Hence, g1 + g2 = (g1 + g2)1. But w(g1 + g2) is odd in this case, 
and so g1 + gz = (g1 + g2)l = g1 + gz. Thus, in either case, g1 + gz = g1 + gz. 
We may now extend this to any sum (i.e., linear combination) of the rows 
of G. Thus, if c E C has the form 

where ai = 0 or 1, then 

C = a1g1 + · · · + akgk 

This shows that, by appending an even parity check to each row of G 
(thereby increasing the number of columns by 1 ), we get a matrix whose 
rows generate C. It is easy to see that the rows are still linearly independent 
and so the new matrix is a generator matrix for C. 

13. By performing the following elementary row operations on P: a) add row 2 
to row 1, b) add row 1 to row 3, c) add row 3 to row 2, we get the matrix 

[ 
0 1 1 1 
1 0 1 1 
1 1 0 1 

1 0 0 ] 
0 1 0 = [A I J3] 
0 0 1 

which is in right standard form. Hence, a generator matrix for the code C 

is 

[ I 

0 0 0 0 1 

n t 0 1 0 0 1 0 
G = [!4 I -A ] = ~ 0 1 0 1 1 

0 0 1 1 1 

Section 5.7 

1. The maximum value of k is 3. To encode 1, we have 

[ 1 1 1 1 1 ] 

so 1 is encoded as 1111. 
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3. Note that {1000,1101} is a basis for C, whence the maximum value of k is 2. 
To encode 1 we have 

[ I 

and so 1 is encoded as 1101. 

0 0 0 ] 
I O I [ I I 0 I ] 

5. Since [ I 2 ] G = [ 1 2 1 1 ] , we see that 1211 is source decoded as 
12. 

7. From the matrix P3 , we deduce that each codeword has the form (/3 + y)(a + 
y)(a + f3)(a + f3 + y)af3y, where a,{3,y E Z2. From the matrix H, we deduce 
that each codeword has the form (/3' + y')(a' + f3 1)(a1 + y')a'(a' + /3' + y')f3'y', 
where a' 1/31 , y' E Z2. These are the same, as can be seen by letting a' = 
a + /3 + y, /3 1 = f3 and y' = y and substituting. 

9. a) The information set is {1,3} as can be seen by underlining these positions 
in each codeword: {0000,0110,1001,1010}. The underlined bits are 00, 01, 10, 
11, which is all 4 binary strings of length 2. b) By simply writing down 
the strings of length 2 obtained by crossing out one coordinate, we get 
{00,10,01,00}, {00,10,00,01} and {00,00,10,01}, none of which is all of Zf 
Hence, C is not systematic. c) If a code is sytematic, we may easily encode 
source strings by embedding them in codewords without any changes. 

Section 6.1 

I. a) The syndrome is S(llllO00) = [100] and since IO0binary = 4aecimal the 
nearest neighbor codeword is 1111000 - e4 = 1110000. b) The syndrome is 
S(l) = [000] and so the error string is 0, that is, 1 is a codeword. 

3. H2(2) = [ ~ ~ ! l The syndrome of 101 is S(l01) = [10l]H2(2)1 = [IO] 

and since IObinary = 2aecimal, the word 101 is decoded as 101 - e2 = 111 . . ' 
5. H (4) = [ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ! ! ! ! l 

2 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

The syndrome oflllll00000lllll is [111110000011111 ]H2( 4)1 = [1010] and 
since 1010binary = lOaecimal, the nearest neighbor codeword is lllll00000lllll­
e10 = 111110000111111. 
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7. Plugging into the left side of the sphere-packing condition gives (with the 
help of the binomial theorem) 

rn-h 1 + ---(r - 1) ( r 11 - l ) 
r-1 

which is equal to the right side. 

9. By performing the following elementary row operations to H2 (3): a) add 
row 2 to row 1, b) add row 1 to row 3, c) add row 3 to row 2, we get the 
following parity check matrix in right standard form 

p = u 1 1 1 1 0 

~ ] = [A I I,] 0 1 1 0 1 
1 0 1 0 0 

Hence, a generator matrix for 1t2(3) is 

[ 1 

0 0 0 0 1 

n t 0 1 0 0 1 0 
G = [I4 I -A ] = ~ 0 1 0 1 1 

0 0 1 1 1 

11. Following the hint, the matrix Q obtained from P by multiplying each col­

umn by the inverse of the most significant symbol has n = ~~1
1 columns, 

each of which has most' significant symbol 1. Since n is the total number 
of strings of length h with most significant symbol 1, the matrix Q has the 
same columns as the corresponding Hamming matrix. Hence, C is scalar 
multiple equivalent to that Hamming code. 

13. First note that no word of weight 2 is a codeword, since it has distance 
2 from the codeword 0. Consider the packing spheres S~(c, 1) about each 
codeword. Ifx is a word of weight 2, then it must lie in one of these spheres, 
say S~(c, 1). It is clear that cf 0. Since d(O, x) = 2 and since d(x, c) = 1, 
we see that d(c, 0) = 3, that is, c has weight 3. Thus, any word x of weight 
2 lies in a packing sphere centered at a codeword of weight 3. Moreover, 
no such word x lies in more than one such sphere, since no word can have 
distance 1 from two distinct codewords. Also, there are precisely 3 words of 
weight 2 in each sphere with center c of weight 3. (These words are found 
by deleting one of the three ls inc.) Hence, the number of codewords of 
weight 3 is equal to the number of words of weight 2 in Z~ divided by 3, 
that is, 

G) 
N = # codewords of weight 3 = 

3 

n(n - 1) 

6 
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At first, it seems like the latter might not be an integer, but recall that n has 
the form n = 211 - 1 and so 

(2 11 - 1)(211 - 2) 
N= 

6 

(211 - 1)(211-1 - 1) 

3 

Now, 211 - 1 - 1 can always be written in the form 3u + r, where r = 0, l 
or 2. But if r = 2, we get 211 - 1 - 1 = 3u + 2, or 211 - 1 = 3u + 3, which is 
not possible since 2h-l is not divisible by 3. Hence, r = 0 or 1. But if r = 0 
then 211 - 1 - 1 is divisible by 3 and if r = l then 211 - 1 = 2(2 11 - 1 - 1) + 1 = 
2(3u + 1) + 1 = 6u + 3 is divisible by 3. 

15. We prove this by induction on h. For h = 2, the result follows simply by 
checking each pair of codewords. Assume it is true for h and let c and d be 
codewords in S(h + l ). There are four cases to consider. 
If c = aOa and d = bOb, then 

d(c, d) = 2d(a, b) = 2 · 211- 1 211 

If c = alae and d = bl be, then 

Ifc = aOa and d = blbe, then, since d(a, be) = 211 -1 -d(a, b) = 2h -1 -
2h-l = 2h-l - 1, we get 

d(c, d) = d(a, b) + 1 + d(a, be) = 211 - 1 + 1 + 2h-l - 1 = 2h 

The case c = alae and d = bOb is similar and so in all four cases, we get 
d(c, d) = 211 • This completes the proof by induction. 

17. The table has ~:: = 4096 rows. 

19. By permuting columns if necessary, we can arrange it so that the first 8 
columns c 1, ... , c8 are linearly dependent. Elementary row operations can 
then be used to put the identity matrix h in the upper left hand corner, 
with Os below in rows 8 through' 12. Moreover, the eighth column must be 
the sum of columns 1 through 7, for otherwise it is a sum of fewer columns, 
which would imply that fewer than eight columns are linearly dependent. 

21. Since the codewords in N are formed by removing at most two 1 s from 
words of weight at least 8, the codewords in N have weight at least 6. 
Plotkin'sbound givesA 2 (16, 7) ::S 4-A 2(14, 7) ::S 4-16 = 64 and soN cannot 
have weight 7 or more. 
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Section 6.2 

1. Assume that R(m) is linear. Let c, d E R(m + 1). There are four cases to 
consider. Case 1: If c = uu and d = vv, where v E R(m)then 

c + d = uu + vv = (u + v)(u + v) E R(m + 1) 

Case 2: If c = uu and d = vvc, where u, v E R(m) then 

c + d = uu + vvc = (u + v)(u + vc) = (u + v)(u + vt E R(m + 1) 

Case 3: If c = uuc and d = vv, where u, v E R(m) then 

c + d = uuc + vv = (u + v)(uc + v) = (u + v)(u + v/ E R(m + 1) 

Case 4: If c = uuc and d = vvc, where u, v E R(m) then 

c + d = uuc + vvc = (u + v)(uc + vc) = (u + v)(u + v) E R(m + 1) 

Thus R(m + 1) is closed under addition and so is linear. 

3. This is certainly true for the matrix R1 . Assume the ith row of Rm consists 
of alternating blocks of Os and 1 s oflength 2m-i and the last row is 1. From 
(6.2.1) we see that the first row of Rm+l consists of alternating blocks of Os 
and ls oflength 2m = 2Cm+ l)-l and the last row of Rm+l (which is row m + 2) 
is 1. The ith row of Rm+ 1 , where 2 ::::: i ::::: m + 1, consists of two copies of the 
(i - 1 )-st row of R 111 which, by assumption, consists of alternating blocks of 
Os and ls oflength 2m-(i-l) = 2Cm+l)-i_ Hence, Rm+l has the desired form. 

5. P = [ 1 1 1 1] 

7. Interchange the fourth and fifth columns of R3 and bring the resulting 
matrix to left standard form by row operations. Then interchange the fourth 
and fifth columns again to get 

[ 

1 1 

p = 1 1 
1 0 
0 1 

1 1 0 
0 0 1 
1 0 1 
1 0 1 

0 0 
1 0 
0 1 
0 0 

9. a 1 = 1, a 2 = 1, a 3 = 0, x-(a1r1 + a2r2 + a3r3) = 11111101 soa4 = 1, giving 
c = r1 + r2 + 1 = 11000011. 

11. All of the majority logic equations give the correct value of the coeffi­
cients ai. 

13. We proceed by induction on r. For r = 0, we have Ro(m) = Rep2(2m), 
which has parameters [2 171 , 1, 2111 ], as required. We have already seen that the 
first order codes R 1(m) have parameters [2 171 , m + 1, 2171 - 1], also as required. 
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Assume that Rr-i(m) has parameters 

for all m :::: r - 1 and consider the codes Rr( m ). If m 
Rr(r) = zr, which has parameters [2m, 2111, 1 ]. Since 

1 + (7) + ... + (:) = zm 

r, then Rr(m) 

these are the required parameters. We must now proceed by induction on 
m (for r fixed.) Suppose that Rr(m) has the required parameters 

and consider the code Rr(m + 1) = Rr(m) EB Rr-1(m). Recalling the 
parameters of a u(u + v)-construction, we see that Rr(m + 1) has length 

len(Rr(m + 1)) = 2len(Rr(m)) = z.zm = zm+l 

The size of Rr(m + 1) is 

I Rr(m + 1) I= I Rr(m) II Rr-1(m) I= zdim(R,(m))+dim(Rr-1(m)) 

and so its dimension is 

dim(Rr(m + 1)) = dim(Rr(m)) + dim(Rr-1(m)) 

= 1 + (7) + · · · + (~) + 1 + (7) + · · · + (r: 1) 
Sl. nee (18n) + (8

1_n1) (m + 1) C b · th t t t = s , we an com 1ne ese erms o ge 

(m 1+ 1) + .. _ + (m r+ 1) dim(Rr(m + 1 )) = 1 + 

Finally, the minimum distance is' 

d(Rr(m + 1)) = min{Zd(Rr(m)), dim(Rr-1(m))} 
= min{z-zm-r 1 zm-1·+1} = zm+l-r 

Thus, if Rr(m) has the required parameters, so does Rr(m + 1). This 
proves that Rr(m) has the required parameters for all m:::: r. 
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Section 6-. 3 

1. The ISBN code is nonlinear since, for example, the sum of two ISBN code­
words that both begin with a 5 has a 10 in the first position and so is not in 
'I. Since we may choose any digits for the first nine positions of an ISBN, 
there are 109 possible ISBNs. Hence, 'I has length 10 and size 109 . Finally, 
the minimum distance of 'I is no smaller than the minimum distance of the 
linear code from whence it came and so d(T):::: 2. Since there are ISBNs of 
weight 2, we conclude that d(T) = 2. 

3. The code D is nonlinear since, for instance, c = 2000000045 is in D but 
Sc = (10)000000093 is not in D. The minimum distance of Dis not less 
than the minimum distance of the linear code from whence it came and so 
d(D):::: 3. But there are codewords in D of weight 3 and so d(D) = 3. 

5. a) 0111246792 (error 7e4) b) 4511156514 (error Bea) 
c) 4535797953 (error e10) 

7. Trasnpostiion erorrs are one fo teh msot common errosr made when tpying 
or wrtiing demcial digits. 

9. The linear dependence of the first five columns of P shows that c = 
(10)454(10)00000 is in the code with parity check matrix P. Multiplying this 
by 3 gives a codeword with no 10s and thus a codeword in E of weight 5. 

13. a) 1218681845 b) 7289985648 c) 1211923347 d) 1211637417 e) more than 
two errors 

Section 6.4 

1. Assuming the set S2 = {l, 2}, there are only two Latin squares, 

and these are not orthogonal. 

3. Write q = 4u + r where r = 0, 1, 2 or 3. Suppose first that r = 0, 1 or 3. We 
want to show that if 2 I q then 4 I q. If 2 I q then since 2 I 4u we must have 
2 I r. Hence, r cannot equal 1 or 3 and so must equal 0, that is, q = 4u, 
which is divisible by 4. For the converse, suppose that if 2 I q then 4 I q. 
We must show that r f 2. But if r = 2 then q = 4u + 2 which is divisible 
by 2. It would follow that 4 I q, in which case 4 I (q - 4u), that is, 4 I 2, a 
contradiction. Hence, r f 2. 
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1 2 3 4 5 
2 3 4 5 1 

5. 3 4 5 1 2 
4 5 1 2 3 
5 1 2 3 4 

7. LetS5 = Z5 . Leta = 1, f3 = 2 in the proofofTheorem'6.4.4. Then A = (i + j) 
and B = (i + 2j). Hence, 

0 1 2 3 4 0 2 4 1 3 
1 2 3 4 0 1 3 0 2 4 

A= 2 3 4 0 1 andB = 2 4 1 3 0 
3 4 0 1 2 3 0 2 4 1 
4 0 1 2 3 4 1 3 0 2 

9. The other two transversals are (1,1), (2,3), (3,2) and (1,2), (2,1), (3,3). 

Section 7.1 

1. Any codeword c EC is a linear combination of basis codewords 

c = a1 b1 + · · · + ak bk 

But if we denote the right cyclic shift of a string x by x', then 

I b' b' c = a1 I + . . . + a1,.,- k 

and soc' is also in C. 

3. Referring to the hint, a generator matrix is G = [-At I I], that is 

1 
1 
1 1 0 0 1 0 

~ ~ ~ ~ ~ ] 
0 1 0 0 0 1 

To see that C is cyclic, observe that the right cyclic shift of each row of G 
is orthogonal to each row of P and so is in C. It follows that the right cyclic 
shift of any codeword in C is in C. 

5. E has generator polynomial 1 +· x2 . The polynomial x + x3 also generates, 
but 1 + x + x2 + x3 does not. 

7. The polynomial x4 - l factors into irreducible factors over Z 2 as follows 

x4 -1 = (1 + x)4 

Hence, the possible factors of x4 - l are 1, 1 + x, l + x2 , 1 + x + x2 + x3 

and x4 - 1. Thus, a complete list of binary cyclic codes of length 4 is C0 = 
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((1)) = 'R,4 =· Zi 
C1 = ((1 + x)) = (1 + x, x + x2 , x2 + x3 ) = (1100, 0110, 0011) 
C2 = (((1 + x2)) = (1 + x2 , x + x3 ) = (1010, 0101) 

C3 = ((1 + x + x2 + x3 )) = (1 + x + x2 + x3) = (1111) 
C4 = ((x4 - 1)) = {0000} 

9. If h(x) = ho + h1x + · · · + hkxk then hr(x) = hk + hk_1x + • • • + h0xk_ Now, 
x11 - l = h(x)g(x) and so 

hr(x)g,-(x) = xkh(x- 1)x11 -kg(x- 1) 

= x>l[h(x-1)g(x-1)] = x11 cx-11 - 1) = 1 - X11 

and so hr (x) divides x11 - 1, which implies that h01 hr (x) is the generator 
polynomial for a c clic e D with eneratqr matrix H-1 as given iIL the 

r 1xt. But t ··is is also the parity-check matrix for C an so D = C -.-

11. {O}, ((1 + x)), ((1 + x + x2 + x3 + x4 )), z~. 
13. Let C = ((-1 + x)). Then C is cyclic and has dimension n - 1. In addition, 

the parity check polynomial for C is h(x) = 1 + x + x2 + • • • + x11 - 1 and so 
a parity check matrix for C is H = [11 · · • 1 ]. It follows that every codeword 
in Chas even weight and so C = E11 (since the latter also has dimension 
n - 1). 

15. Since a right cyclic shift of a word of even weight also has even weight, the 
code Eis cyclic. Since IEI = ICl/2, the code E has dimension dim(C) - 1, 
and so its generator polynomial p(x) is a linear multiple of g(x), and so 
p(x) = xg(x) or p(x) = (x + 1 )g(x). But the former is not possible, since a 
generator polynomial has nonzero constant term. Hence, p(x) = (x + 1 )g(x). 

17. c.L = (h,-(x)) is equivalent to ((h(x))). 
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