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Preface

Broadly speaking, analysis is the study of limiting processes such as sum-
ming infinite series and differentiating and integrating functions, and in
any of these processes there are two issues to consider; first, there is the
guestion of whether or not the limit exists, and second, assuming that it
does, there is the problem of finding its numerical value. By convention,
analysis is the study of limiting processes in which the issue of existence
is raised and tackled in a forthright manner. In fact, the problem of exis-
tence overshadows that of finding the value; for example, while it might
be important to know that every polynomial of odd degree has a zero
(this is a statement of existence), it is not always necessary to know what
this zero is (indeed, if it is irrational, we may never know what its true
value is).

Despite the fact that this book has much in common with other texts
on analysis, its approach to the subject differs widely from any other text
known to the author. In other texts, each limiting process is discussed, in
detail and at length before the next process. There are several disadvan-
tages in this approach. First, there is the need for a different definition for
each concept, even though the student will ultimately realise that these
different definitions have much in common. Next, there is the repetition
of remarkably similar results and proofs (perhaps in the hope that by the
third or fourth time they will seem easier than before). Thirdly, a rigorous
development of ‘school mathematics’ (the exponential and trigonometric
functions, for instance—and this must surely be one of the initial aims in
teaching analysis) requires a combination of results taken from different
topics in analysis, and this means that in the conventional approach all
this has to be left until late in the development. Finally, and perhaps most
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vi Preface

significantly, in the traditional approach many students finish the course
feeling sure that all the ideas they have met have a common thread but
are unable to give substance to this feeling.

In this text, we shall define what is meant by a limit just once, and all
of the subsequent limiting processes will be seen as special cases of this one
definition. Accordingly, the subject matter attains a unity and coherence
that is missing in the traditional approach. As a by-product of this, we can
talk of differentiation, infinite series, continuity, and so on, as early as
we wish and, in particular, when we are discussing a careful treatment of
school mathematics. Lest those who know the subject should be worried
about the level of difficulty, let it be said now that the general definition
of a limit is no more complicated than the definition of an equivalence
relation (which is standard fare in almost all first-year university courses
in mathematics).

The plan of the book is as follows. Part I comprises two chapters; these
include some preliminary material on sets, and on real and complex num-
bers. Many readers will be able to omit most of the material in these
chapters. Part I1 starts with the definition of a limit and its basic properties
(in Chapter 3). Chapter 4 contains three basic results (the Intermediate
Value Theorem, the Mean Value inequality, and the Cauchy Criterion,
all of which are proved by bisection arguments. Chapter 5 contains a de-
tailed discussion of infinite series, including a treatment of unordered
sums (which fits well into the general notion of a limit). Part II ends
with Chapter 6, which contains a rigorous account of the exponential
and trigonometric functions up to and including the periodicity of the
exponential function of a complex variable. One of the benefits of this
approach is the availability of this material at an early stage. Parts I and
1T would suffice for a shorter course on the main ideas in analysis at this
level, and there can hardly be a better motivation for the analysis than
‘closing’ the gaps left in earlier treatments. Part III comprises the stan-
dard material in analysis, and even this progresses smoothly, since much
follows easily from the earlier basic ideas.

The ideas in this text have their roots in discussions of the limiting
processes (nets and filters) in topology around 1940 or so. These ideas
are given here in a form that (in the view of the author) is suitable for
teaching a first course in analysis. The material covered is the standard
material that would be found in any first ‘serious’ course in analysis.
Examples occur throughout the text, and there are routine exercises at
the end of each section.

Cambridge, England, United Kingdom Alan F. Beardon
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~ Foundations

PART

Chapters 1 and 2 contain a brief summary of the basic ideas on sets,
functions, and real and complex numbers. Many readers will be able to
omit these two chapters, apart perhaps from Section 2.3, in which we
discuss the Least Upper Bound Axiom for real numbers.






Sets and
Functions

CHAPTER

Abstract

This chapter contains a brief and informal discussion of sets and functions.
Real numbers will be discussed in Chapter 2, and they are used here only to
illustrate ideas.

1.1 Sets

We begin with a brief, informal introduction to the elementary ideas in
set theory, and we shall ignore completely the substantial difficulties
associated with a rigorous discussion. As far as we are concerned a set is
simply a collection of objects, and to define a set we must describe which
objects are in the collection and which objects are not. The objects in a
set are the elements, or members, of that set, and membership is such a
basic idea that there is a universal notation for it: ¥ € A means that x is
a member of the set A, and x € A means that x is not a member of A. To
avoid tedious repetition, each of the phrases is a member of, is an element
of, belongs to, lies in, or even just is in, are used interchangeably. Likewise,
the words class and family are sometimes used in place of set.

If the elements of a set are known explicitly, the set is referred to
by enclosing the list of the objects in braces { }; for example, the set
containing exactly the objects a, b, and c is {a, b, c}. If the set is given by
some defining condition, it is designated by braces enclosing a variable

3



4 1. Sets and Functions

and (separated by a colon) the condition of membership. For example,
{x € R : x > 0} is the set of objects x in the set R of real numbers
that satisfy x > 0. To check that this notation is clear, we confirm that
0¢({1,2,3}and -1 e {x e R: x <0}.

If every element of a set A is also an element of a set B, we say that
A is a subset of B, or that A is contained in B, and write A C B, or that B
contains A, and write B D A. Obviously, A C B if and only if for every
x, if x € A then x € B. Two sets A and B are equal when they have the
same members, and to show that A = B one must show both that A C B,
and that B C A. We say that A is a proper subset of Bif A C Band A # B.
Note that A C A, and that {x,y} = {y, x}. Also, {1, 2, 2} = {1, 2}, for any
member of one of these sets is also a member of the other; informally,
any repetition of an element is redundant.

There is a set with no elements; for example, {x € R : x # x}. Any
set with no elements is automatically a subset of every set and it follows
from this that if X and Y are sets without any elements, then X C Y and
Y C X, so that X = Y. Thus there is exactly one set with no elements; it
is called the empty set and is denoted by @. A set A is nonempty if A # @,
that is, if A has at least one element.

If A and B are any sets, we define their union A U B by the condition
that x € AU B ifand only if x € A or x € B. Note that in mathematics
we always use ‘or’ in the inclusive sense; that is, ‘P or Q' means P, or Q,
or both. We also define the intersection A N B of A and B to be the set of
objects that lie in both A and B; thus x € A N B if and only ifx € A and
x € B.Clearly, AUB =BUA and AN B = BN A. The two sets A and B
are disjoint if A N B = @&, and meet if A N B # @. Note that while disjoint
is standard terminology, meet is not.

These ideas generalise to any number of sets. First, given sets A, B, and
C, say, the union A U BU C is the set of objects that are in at least one of
these three sets, and their intersection ANBNC consists of those elements
that are in all of them. More generally, suppose that A;, Az, A3, ... are
sets. Then the sets

(e ] o0
U An' n An
n=1 n=1

denote the set of objects that lie in A, for at least one n, and the set of
objects that lie in A, for every n, respectively.

The set of elements in A but not in B is called the complement of B in
A and is denoted by A — B, or by A\B. Formally, x € A — B if and only
ifx € Aand x € B. Of course, A — A = @&, and A — B = @ if and only if
A C B. Note also that for any pair of sets A and B, A U B is the union of
the three mutually disjoint sets A — B, AN B, and B — A.
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Exercises

1. Showthat{x e R: -5 < 2 < 4} ={x e R: -2 < x < 2}.
2. Prove that A = Bifandonlyif A —-B=@and B— A = &.

3. Show that A —B = A —(ANB). Show that A— (A —B) C B, and give an example
in which A — (A — B) # B. Find, and verify, a necessary and sufficient condition
on A and B for A — (A — B) = B to be true.

4. Prove each of the following:
(AUBJUC=AU(BUC), (ANB)NC=AN(BNC),
(ANB)UC=(AUC)N(BUC), (AUB)NC=(ANC)U(BNC),
C—-(AUB)=(C-A)N(C—-B), C-(ANB)=(C-A)U(C-B).

5. The symmetric difference of two sets A and B is the set AAB of objects in exactly
one of the sets A and B. Show that

AAB=(AUB)—(ANB)=(A-B)U(B-A).
[See Exercise 2.1.7 for more on this topic.]

6. Show that if a set A contains exactly n elements, then the set of all subsets of
A has exactly 2" elements.

7. Let Ay, Az, ... be any sets. Show that

if and only if x € A, for all but a finite number of positive integers k.
Describe what it means for x to belong to

1.2 Ordered pairs

The reader will be familiar with the representation of a point in the plane
by an ordered pair (, y) of real numbers x and y. The numbers x and y are
the first and second coordinates, respectively, of (¥, y), and as the reader
knows, (¥, y) is not the same as (y, x). This description of an ordered pair
requires the notion of order (through the words ‘first’ and ‘second’), and
it is of theoretical interest to construct a definition of an ordered pair that
makes no prior assumptions about, or reference to, order. We begin with
a simple result about sets.
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Theorem 1.2.1.
Let X = {{a},{a,b}} and Y = {{c},{c,d}}. Then X = Y ifand only ifa = c

andb = d.

Proof

Ifa =candb =d, then X = Y. Suppose now that X = Y. As {c} € Y,
we see that {c} € X, so that {c} = {a} or {c} = {a, b}. As {a} and {a, b} both
contain a, {c} also contains a, so thata = c. As d € {c, d}, d belongs to one
of the elements of X, so thatd = a ord = b. Likewise, b = corb = d.
As a = c, these imply that b = d, and the proof is complete. |

The crucial property of an ordered pair that distinguishes it from a set
with two elements is that we can identify its ‘first’ and ‘second’ coordi-
nates, so that (a, b) = (¢, d) ifand only ifa = cand b = d. Theorem 1.2.1
provides a purely set-theoretic definition of a set with this property, for
if we define

(a,b) = {{a}, {a,b}}, (1.2.1)

then (a, b) = (¢, d) if and only if a = c and b = d. The important point
here is that (1.2.1) defines an ordered pair (a, b) without any reference to
the words ‘first’ and ‘second’. Given any two sets X and Y, the set of all
ordered pairs (¥, y), where x € X and y € Y, is denoted by X x Y and is
called the Cartesian product of X and Y.

Naturally, we should go on to discuss ordered triples (to represent
points in Euclidean space), ordered quadruples, and so on, and the sim-
plest way to do this is by induction. Given sets Xj, X3, . . ., we have already
defined what we mean by X; x X,. We now define what is meant by
X1 X X3 x --- x X, by the inductive definition

X1 X Xy X +or X Xn = (X1 x X2 X =+ X Xn_1) X Xn.

Exercises

b

. Show that (x, y) = (y, x) if and only if x = y.

2. Show that A x B=@ ifandonly if A = @orB=@.
3. Show that (A - B) x C = (A x C) — (B x C).
4. Show that

n=1

A X (ﬁBn) =ﬁ(A x By).
n=1

State and prove a corresponding result for unions.
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5. Show that

(ﬁ An) x (ﬁ Bn) = ﬁ (An X By).

n=1 n=1 n=1

Show also that the corresponding statement for unions is false.

1.3 Functions

The reader will be familiar with the idea of a function as a ‘rule’ that
takes an object x to another object f{x). We wish to place the definition
of a function on a firm foundation and to dispense with the undefined
term ‘rule’. The graph of a function f is the set of all ordered pairs (, f(x)),
so that two functions are identical if and only if their graphs are identical.
This observation is the key to our formal definition, for it implies that a
function and its graph are just two different representations of the same
object. As we have defined what we mean by an ordered pair, we can
now define a function by its graph without reference to the word ‘rule’.
Of course, not every set of ordered pairs is the graph of a function, and the
crucial requirement for such a set to be a function is that if (%, y) and (x, y")
are in the set, then y = y’ (that is, each y is uniquely determined by x).
These comments motivate the following formal definition of a function.

Definition 1.3.1.
A function f is a set of ordered pairs that has the property that if (x, y) and
(x,y)areinf, theny = y'.

As an illustration, the function f given by the formula f{x) = x?, where
x € R, is now represented by the set {(x, ¥*) : x € R}. We shall not persist
with this cumbersome notation, and we shall continue to use f{¥) = x?
or x — x? for this function. However, the point is that our definition
now has a firm foundation to which we can return if we need to. If f is a
function, and if (¥, y) is one of the ordered pairs in f, then y is uniquely
determined by f and ¥, so that we can replace it by the symbol f(x). In
this way f is a set of ordered pairs of the form (x, f{x)) and so is formally
identified with its graph. The notation f{x) is not obligatory; algebraists
often use xf (with functions ‘on the right’ and no brackets), and analysts
frequently use f, when the variable n is an integer. We shall sometimes
use fx in an expression in which the inclusion of too many brackets is
likely to distract the reader.

The domain of a function f is the set of x for which some pair (, y)
is in f, and the image of f is the set of y for which some pair (x, y) is
in f. If f has domain X and image Y, it is automatically a subset of the
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Cartesian product set X x Y, and we record this by referring to the func-
tion f : X — Y. While this notation is convenient and concise, it is too
restrictive, because although we usually know the domain of a function
f, only rarely do we know its image. More often, we only know a set that
contains the image of f, and to be more flexible we agree that in future,
the notation f : X — Y shall mean that X is the domain of f, and that Y
contains the image of f.
Given any subset E of the domain of f, we write

fE) = {f(x) : x € E};

then the image of f : X — Y is f{X), and {X) C Y. Iff{(X) = Y, we say
thatf : X — Y is surjective, and that f maps X onto Y; otherwise, we say
that f maps X into Y. Note the important implication thatif f : X — Y is
surjective, then every y in Y is of the form f{x) for some x in X.

Let f be a function. As f is a set of ordered pairs, we can always create a
new set, which we denote by f~!, of ordered pairs by reversing the order
in each pair in f; thus

fFl=1w»:®y efl

We emphasize that the inverse f ! of f always exists as a set of ordered pairs,
but it need not be a function. Naturally, it is of interest to determine when
f~1 is a function. A function f is injective, or is an injection (or, in older
terminology, is one-to-one) if, for all pairs (x,y) and (¥, y)inf,y = ¥
implies x = ¥'. An equivalent condition (that is perhaps easier to grasp)
isthatx # x’' implies y # y’ (so that distinct points map to distinct points).
The condition for f~! to be a function is that f be injective.

Theorem 1.3.2.
Let f be any function. Then f~! is a function if and only if f is injective,
and then f~! is also injective.

Proof

The statements that f~! is a function and that f is injective are both
equivalent to the statement that whenever (x, y)and (¥, y) areinf,y = ¢
implies that x = ¥. Thus f~! is a function if and only if f is injective.
Suppose now that f~! is a function. As (f~')~! is a function, namely f, by
what we have just proved, f~! is injective. n

In order to understand how the inverse function f~! ‘reverses’ the ac-
tion of f, we need to discuss the composition of two functions. Suppose
thatf : X — Y andg : Y — Z are functions. Then for each x in X there
is a unique y in Y such that (x, y) € f, and for this y there is a unique z in
Z such that (y, 2) € g (in more familiar language, y = f{x) and z = g(y)).
The composition gf is the set of ordered pairs (¥, z) formed in this way, and
it is an easy exercise to show that gf is a function from X to Z. Reverting to
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the usual notation for functions, (gf)(x) = g(f{x)), so that gf(¥) is obtained
by applying f first, and then g. It is now immediate that if f is an injective
function with domain X and image Y, then

Ff=txn:xexl, Fl={@y:yeyY)
or, more informally, f~!f is the identity map on X, and ff ! is the identity
map on Y. Note that ff~! # f~!f unless X = Y.
Functions that are both injective and surjective are sufficiently
important to warrant their own name.

Definition 1.3.3.
The function f : X — Y is a bijection from X to Y if it is both injective and
surjective.

It is immediate that if f : X — Y is a bijection, thenf™! : Y —» X isa
bijection. Also, the composition of bijections is a bijection.

Theorem 1.3.4.
If f:X — Y and g:Y — Z are bijections, then both gf:X — Z and
f~1g71:Z — X are bijections.

Exercises

1. Use the definition of a function to show that the composition gf, where
of ={(»,2): forsomey, (x,y) € f and (y, 2) € g},
of the two functions f : X —» Yandg : Y — Z is a function.
2. Prove Theorem 1.3.4.

3. Let N be the set of positive integers and E the set of even positive integers.
Show that f, defined by f{n) = n/2, is a bijection from E to N. [This shows that
there can be a bijection between a set and a proper subset of itself.]

4. Let N be the set of positive integers. Show that the functionf : Nx N - N
defined by f(m, n) = 2™3" is injective. Which property of the integers is being
used in your proof?

5. Letf : X — Y be any function. Show
() that f : X — Y is injective if and only if there is a functiong : Y - X
such that for every x in X, gf(x) = x, and
(ii) thatf : X — Y is surjective if and only if there is a function h : Y — X
such that for every y in Y, fh(y) = y.



Real and Complex
Numbers

CHAPTER

Abstract

The set of real numbers, whose existence is taken for granted, is described as
an ordered field that satisfies the Least Upper Bound Axiom. Complex num-
bers are introduced, and their basic algebraic properties are discussed. The
argument of a complex number is, however, left until later.

2.1 Algebraic properties of real
numbers

Real numbers are the the numbers that we have been familiar with since
a very early age, and they include the natural numbers 1, 2, . . ., the inte-
gers...,—1,0,1, ..., the rational numbers, or fractions (for example, 1/2
and 2/3), the irrational numbers (for example, ﬁ), and other ‘important’
numbers like 7 and e. We shall try to strike a balance between assuming
that properties of the real numbers are self-evident (for they are not) and
giving a formal treatment of the foundations of real numbers. Briefly,
we shall describe their defining properties but take their existence for
granted.

The most familiar properties of the real numbers are the algebraic
properties of addition (denoted by +) and multiplication (denoted by x),
and these are best described in the context of a group. A binary operation
o on a set G is a function that takes an ordered pair (, y) of elements of G

10
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to a third element x o y of G. A set G with a binary operation o is a group
if
(i) forallx,y,andzin G, (xoy)oz = xo (yo 2);
(ii) there is some (necessarily unique) ¢ in G such that for all ¥ in G,
X0E=X=¢€0X,

(iii) for each x in G, there is some ¥’ in G such thatx o X' = ¢ = ¥’ o x.
We emphasize that the operation o acts on the ordered pair (%, y), and
that we are not assuming that x o y = y o . If, in addition, we have

(iv) forallx and y in G, x o y = y o %, then G is said to be an abelian, or
commutative, group.

For brevity, we now write xy for x o y. It is easy to see that there can be
only one element with the property attributed to e in (ii), for suppose that
¢ also has this property. As e satisfies (ii), ée = ¢, and as ¢ satisfies (ii),
¢e = e. Thus & = e. We call e the identity (element) of G. Strictly speaking,
this argument should have been given before we stated (iii), which refers
to e. It is equally easy to see that for each x in G, there is only one element
x' as described in (iii); this is inverse of x. As ee = ¢, the uniqueness tells
us thate' = e.

The real numbers are an abelian group with respect to +, and the
nonzero real numbers are an abelian group with respect to x. Moreover,
there is the link

ab+c)=ab+ ac

between addition and multiplication. Any algebraic structure with these
properties is known as a field. More precisely, a field is a set F with
operations + and x such that

(F1) F is an abelian group with respect to +, with identity 0;
(F2) F* = {x € F : x # 0} is an abelian group with respect to x;
(F3) forallx,y,andzin F, x x (y + z) = (x x ) + (x x 2).

For brevity, we shall write xy for x x y, ¥? for xx, and so on. The identity
elements for + and x are denoted by 0 and 1, respectively, and, because
1 € F*, 0 # 1. The inverse of x with respect to + is denoted by —x, and
subtraction is given by x — y = x + (—y). The inverse of a nonzero y with
respect to x is denoted by y~!, and division by y is given by x(y~!). The
familiar notation x/y is also used for x(y™!).

Many familiar facts about real numbers are valid for a general field; for
example, we have the following result.

Theorem 2.1.1.
For all x and y in any field F,

(i) X0 =0 = Ox;
(i) xy =0ifandonlyifx =0o0ry = 0;
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(i) (= Ix = —=x

Proof
Forallx, x = x1 = x(1 4+ 0) = x1 4+ x0 = x + x0. If we now add —x to both

sides of this equation (and use the axioms for a field), we obtain
0=x+(—x) =x+ (—x) + x0 = 0 + x0 = x0.

Of course, 0x = x0 = 0.
Suppose now that xy = 0 and y # 0. Then y~! exists and by (i),

0=0" =y =xwy™ ) =x=x

We leave the proof of (iii) to the reader. |

The set R of real numbers is a field, as are the set of rational numbers,
the set of numbers of the form a + b+/2 with a and b rational, and the
integers modulo 3. In addition to its algebraic properties, R supports an
order > (which gives inequalities between numbers), and we discuss this
in the next section.

Exercises
In Questions 1-4, all elements are assumed to lie in some given field F.

1. Prove Theorem 2.1.1(iii).
2. Show that x> = y? ifand only if x = yor x = —y.
3. Show that —(—x) = x. Deduce that ¥* = (—x)?, and hence that (-1)? = 1.

4. Prove that —1 # 0, and that (—1)"! = —1. Show also that x = x™! if and only
ifx=1orx=-1.

5. Prove that {0, 1, 2} with arithmetic modulo 3 is a field in which 27! = 2.

6. Show that the set of numbers of the form a + b+/2, where a and b are rational,
is a field. [You should assume here that +/2 exists and is not rational.]

7. Let X be a nonempty set. Show that for each subset A of X, AA® = A and
AAA = . [See Exercise 1.1.5.]
Deduce that the class of all subsets of X with the binary operation AABis a
commutative group with identity 2.
Suppose that X = {1,2,...,9},A ={1,2,3,4,5},and C = {5,6,7, 8,9}. By
considering A~'AC, find all sets B such that AAB = C.
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2.2 Order

We can discuss order either in terms of the relation > or (equivalently)
in terms of the set of positive numbers, and we choose the latter. A field
F is an ordered field if there is a subset F* of positive elements of F such
that

(O1) if x and y are in F*, then so are x + y and xy;
(02) for each x in F, exactly one of x € F*, x = 0, —x € F* holds.

We say that x is negative if —x € F*. The Trichotomy Law (O2) implies
that every x is either positive or negative or zero, and that it is only one
of these.

Given an ordered field F, we introduce the usual relation >, namely
thatx > yifand only ifx —y € F*. Thus (in agreement with the familiar
terminology) x is positive if and only if x > 0. The relations <, <, and >
are now defined in the usual way. Once again, many familiar facts about
R are valid in this more general situation. For example, for every x, y, and
z,ifx > ythenx+z > y+z.Indeed, (x+2) — (y+2) = x — y and this is
in F*. The corresponding rule for multiplication has two cases: if x > y
and z > 0 then xz > yz, whereas if x > y andz < 0 then yz > xz. Now
take any xin F. Ifx € F* thenx? € F*.If —x € F*, then (—x)? € F*, and
as x2 = (—x)* (see Exercise 2.1.3), again ¥ € F*. If x = 0 then x? = 0.
We have now shown that for every %, x* > 0. In particular, as 12 = 1
and 1 # 0, we see that 1 > 0, and hence 1 € F*. From this we have
1+ 1 € F*, and so on, and because (from (02)) 0 € F*, we see now that,
for example, 1 + 1 + 1 # 0. Because of this, an ordered field cannot be a
finite set.

Exercises

1. Prove that in any ordered field, ifx > yandz > O thenxz > yz, and ifx > y
and z < 0 then yz > xz.

2. Show that {0, 1, 2} with arithmetic modulo 3 is not an ordered field.

3. Let F be an ordered field, and define the function x — |x| (of F into itself) by

x ifx > 0;
x| = i
—x ifx < 0.

Prove that for all xand y, [x — y| = |y — x| and |x + y| < |x| + |y|. Deduce that
-yl < |x—z| + |z — yl.

This provides a ‘distance’ on F without any prior geometric assumptions.
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2.3 Upper and lower bounds

The arithmetic and order properties of a field are not enough by them-
selves to establish many properties of R that we have accepted without
question in the past. It is not true, for example, that any ordered field
contains a solution to the equation ¥* = 2; indeed, the set Q of rational
numbers is an ordered field, yet as is well known, there is no rational
solution of x* = 2. We are forced to conclude that R must have some
additional property that Q fails to have, and that leads to the existence of
V2 (and much more). We turn now to this additional property.
A nonempty subset E of an ordered field F is

(i) bounded below if there is some a such that forallxinE, x > a;
(ii) bounded above if there is some b such that forall x in E, x < b;
(iii) bounded if it is bounded both above and below.

Any a satisfying (i) is a lower bound of E, and any b satisfying (ii) is an
upper bound of E. Note that upper and lower bounds of E need not be in E;
for example, 0 is a lower bound of the set of positive numbers but is not
itself positive.

If b is an upper bound of E, and if b < ¢, then c is also an upper
bound of E, and this suggests that we should seek the smallest possible
upper bound of E. Accordingly, we say that u the least upper bound, or the
supremum, of E if u is an upper bound of E and if u < b for every upper
bound b of E. There is a linguistic ambiguity here that can be a source
of confusion. We are not defining the least upper bound in the sense that
we are applying the adjective ‘least’ to ‘upper bound’, for we do not know
that there is a smallest object of this type (by analogy, we cannot talk
of the ‘least’ positive number). What we are doing is to define the entire
(inseparable) phrase ‘least upper bound’ (which might be better written
as least-upper-bound). Of course, when the least-upper-bound exists, it is
indeed the smallest possible upper bound, and this linguistic ambiguity
disappears.

While it is clear that any set E can have at most one supremum (for if u
and u’ are two such, thenu < v’ and v’ < u, so thatu = u’), it is not clear
that it actually has a supremum. In fact, it is not possible to derive the
existence of a supremum from the arithmetic and ordering properties of
the field, and in view of this, we introduce the following axiom.

The Least Upper Bound Axiom.
The set of R of real-numbers is an ordered field in which every nonempty
subset that is bounded above has a supremum.

With this we have reached our objective of characterising R, for this
defines R in the sense that any other set that has these properties is
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merely a relabelling of R. We omit both a formal statement and a proof
of this.

There is an analogous discussion of lower bounds, and as x < y if and
only if —y < -, this can be extracted (without further assumptions)
from the theory of upper bounds. The number £ is the infimum, or the
greatest lower bound, of a nonempty set E if £ is a lower bound of E and if
b < £ for every lower bound b of E. For emphasis, we state and prove the
theorem that corresponds to the Least Upper Bound Axiom.

Theorem 2.3.1.
Let E be a subset of R that is nonempty and bounded below. Then E has a
greatest lower bound.

Proof

Let E = {x € R : —x € E}. Take x in E; then —x € E/, so that E' # &.
Let b be a lower bound of E. If y € E' then —y € E, so that —y > b, and
hence y < —b. We deduce that the least upper bound, say k, of E’ exists,
and it is easy to see that —k is the greatest lower bound of E. We leave the
reader to complete the details of this proof. |

In order to appreciate both the necessity and the power of the Least
Upper Bound Axiom, we use it to prove the following two results.

Theorem 2.3.2.
The set N of natural numbers is not bounded above.

Theorem 2.3.3.
Each positive number a has a unique positive square root \/a.

Proof of Theorem 2.3.2.

Suppose that N is bounded above. Then N has a least upper bound, say N.
As N —1 < N, N — 1 is notan upper bound of N, so that there is some m
inNwithm > N —1. This, however, implies thatm+1 € Nandm > N,
and this is a contradiction. |

Observe that Theorem 2.3.2 yields the following fact.

Corollary 2.3.4.,
There is no smallest positive number.

Indeed, if x > 0, then 1/x is not an upper bound of N, so there is a
positive integer n with 0 < 1/n < x. This argument shows that Theorem
2.3.2 is equivalent to the assertion that 1/n — 0 as n — o0, a result that
is truly fundamental in any discussion of limits.
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Proof of Theorem 2.3.3.

ThesetE = {x e R: x > 0, x> < a} contains 0 and is bounded above by
1 + a. Thus E has a least upper bound, say k, where k > 0. Suppose now
that k2 < a. Then for for each positive integer n,

1 2
(k+—) =k2+-2—k+i25k2+.2_,$.i-_1. <a
n n n n

when n > (2k + 1)/(a — k?). As such n exist (by Theorem 2.3.2), we have
found a number k + 1/n that is in E and that is greater than k. As this
cannot be so, we conclude that k* > a. A similar argument shows that
k? < a, and hence that k* = a; we omit the details. The uniqueness is
clear. ]

Next, we state the Principle of Induction (see the Appendix for more
details) and the Binomial Theorem (which can be proved by induction).

The Principle of Mathematical Induction.

Suppose that a property P(n) of an integer n is true when n = 1, and that
for every positive integer n, if P(n) is true then P(n + 1) is true. Then P(n) is
true for every positive integer n.

The Binomial Theorem.
For any real numbers a and b, and any positive integer n,

. /n
n ki,n—-k
= b
@riy =3 (k)a ,
where 0! = 1, and the binomial coefficients are given by

n!

(%) = momw

Exercises

1. Theorem 2.3.3 guarantees that +/2 exists. Prove that it is not rational.

2. Given a nonempty set E of real numbers, let E' = {x? : x € E}. Show that E' is
bounded above if and only if E is bounded.

3. Suppose that the sets A and B are nonempty and bounded above. Write down
an expression for the supremum of A U B in the terms of the suprema of A and
B, and justify your answer.

4. Prove, by induction, that for n in N,

5 L 135...2n-1 _ 3
44n+1) - 246....(2n) “\V4@2n+1)’
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5. Show (i) by induction, and (ii) by using the Least Upper Bound Axiom, that
any set of n real numbers contains a largest element. Show also that it contains
a smallest element.

6. Use induction to prove Bernoulli's inequality that: if x > -1, then (1 + x)" >
1 + nx. Where do you need to know that x > —1 ? Give an example in which
1+nx > (1+x)"

2.4 Complex numbers

The Cartesian coordinate system on the Euclidean plane associates to
each point a unique ordered pair of coordinates. Instead of referring to a
point by its coordinates (¥, y), we can refer to it as a complex number x +iy.
There is nothing mysterious about this, and x + iy is simply another way
of writing (%, y). The set of complex numbers is denoted by C.

The addition and multiplication of complex numbers are defined by

@+ 1) + (¢ + ) = @+ 2) + iy + ),
(e + ig)(u + ) = Gt — yv) + iGw + yu),

and these lead to the following result.

Theorem 2.4.1.
The set C of complex numbers is a field.

Proof

The proof involves much tedious checking, and we only mention the key
facts. The identity element for addition is 0 + i0, and the additive inverse
of x + iy is (—x) + i(—y). In the context of a field, x + iy is nonzero if it is
not the additive identity 0 + i0, and this is so if ¥ and y are not both zero,
for x + iy = 040 if and only if (x, y) = (0, 0). The multiplicative identity
is 1 4+ 10, and if x + iy # 0 + 10, the multiplicative inverse of x + iy is

( 2 ) +i( Y
x2+y2 X2+y2 ’

The verification of the axioms for a field is straightforward, and we omit
the details. [ ]

Note that C cannot be made into an ordered field. Indeed, we saw in
§2.2 that if a is in an ordered field F, then a? > 0, so that there is no

solution in F of x> = —1. However, this equation does have a solution in
C, for

(0 +i1)?> = =1 4+i0 = —(1 + i0), (2.4.1)
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so that C cannot be made into an ordered field (in any way). This means,
and this is worth emphasizing here, that we cannot write down inequalities
between complex numbers. Depite this lack of order, there are immense
advantages in working in C. For example, in an ordered field only non-
negative numbers can have square roots, whereas in C, every number
has a square root (see Exercise 2.4.1).

The arithmetic of complex numbers allows us to regard each complex
number, say x + iy, as an expression in the algebraic symbols ¥, i, and y,
and to add and multiply complex numbers as though these symbols were
real numbers, but with the additional condition that i* = —1. Moreover,
as

(a+i0)+ (x+iy) = (a+ x) + iy,
(a + 10)(x + iy) = (ax) + i(ay),

it is not necessary to adhere strictly to the notation x + iy. In future, we
shall write x in place of x + i0, iy instead of 0 + iy, and x + i instead of
x + 1i, and this will not introduce any inconsistencies into our algebra.
As a consequence of this, we can regard the set R of real numbers as a
subset of C (this is the same as regarding R as the first coordinate axis in
the plane C). The existence of +/—1 (which caused much debate in the
distant past) is not a problem for us, for (2.4.1) can now be written as
i = —1.

Itis not necessary always to use the format x+ iy for a complex number,
and any single symbol will suffice. By far the most common symbol used
is z. We shall frequently write z = x + iy, where x and y are real, and
in future (and unless we state otherwise), we always assume that in any
expression such as this the variables x and y are real. We call x and y the
real part, and the imaginary part, of z, respectively, and we write x = Re[z],
and y = Im|z). The conjugate z of z is defined by z = x — iy, so that in the
plane, Z is the mirror image of z in the real axis. It is easy to see that

_z+zZ _z-Z

=2 YT

Before moving on, we remark that there is a Binomial Theorem for
complex numbers, namely that if z and w are complex numbers, then

E+w)' = Zn: (Z)zkw"‘k.

k=0

, ztw=z4+w, zZW=2Zw.

The proof, as in the real case, is by induction.

As a complex number is just a representation of a point in the Euclidean
plane, we already have a (geometric) concept of distance between com-
plex numbers. Let z = x¥ + iy and w = u + . Then the distance |z — w|
between z and w is the distance between the points (x, y) and (u, v) in the
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plane, so that we now take, as a definition,

Iz - wl = (x - W2 + (y — V)2
where the nonnegative square root is taken. In particular,

lz| = V*% + ¥,

and this is the modulus of the complex number z. The important formula

|z lw| = |zw|
follows directly from the identity
** + P)U? + vH) = (xu — yo)* + (x + yu)*. (2.4.2)
Also, and these are trivial, we have
=P, El=ld, 2=,
where in the last formula we are assuming that z # 0.
The properties of the distance given in the next result are used con-

stantly, and these must, of course, be derived from the algebraic definition
of distance and not taken as ‘self-evident’ geometric facts.

Theorem 2.4.2.
For all complex numbers zi, z;, and z3,

(i) |z1 — 22| > 0, with equality if and only if 2z, = z;
(i) |21 — 22l = |z2 — 211;
(iii) |z1 — z3l < |21 — 22| + |22 — z3l.

Proof
First, (i) and (ii) are trivial. Next, (iii) is equivalent to
|z + wl < |z| + |w], (2.4.3)

where z = z; — z; and w = z; — 23, 50 it suffices to prove this inequality.
Letz = x+ iy and w = u + iv. Then, using (2.4.2) with y replaced by —y,

Iz + w|* = (z + W)(E + W)
= |z)* + 2(xu + yv) + lw|?
< |z|% + 2z| lw| + |w|?
= (lz] + lwh*.

We now take the nonnegative square root of each side of this inequality
and obtain (2.4.3). The inequality (iii) in Theorem 2.4.2 is known as the
Triangle Inequality, because when interpreted geometrically, it implies
that the length of a side of the triangle (with vertices z;, z;, and z3) is not
more than the sum of the lengths of the other two sides. |
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We have seen that the Triangle Inequality is equivalent to the in-
equality (2.4.3), and we end with a useful corollary of this. For all z and

w,
Izl <lz —wl+|wl, [wl <|w-2z|+|z],
so that
|IZI - lel <lz - wl. (2.4.9)

After replacing w by —w we also obtain
IIZI - le| <z + wl. (2.4.5)

We end with a comment about the use of polar coordinates for complex
numbers. In elementary treatments of complex numbers we often find
the expressions

z=re®, z=r(cosf+isinb),

where r = |z|. We have already defined |z|, but there is a problem with 6.
What, for example, is an ‘angle’, and how do we measure ‘angles’ without
calculus? The solution to these difficulties is to defer any discussion of
the argument of z until after we have placed the theory of the trigono-
metric functions cos and sin on a firm analytic foundation (which we do
in Chapter 6). Then the argument of z can be defined in terms of the
inverse trigonometric functions sin~' and cos™!, still without depending
on the notion of an angle. As convenient as the argument of a complex
number is, it is not at this point justifiable or necessary.

Exercises

1. Suppose that w = u + iv, where v # 0. Show that

2
/|w|+u v [lwl—u _
( 2 +1lvI 2 = w.

2. Show that for any complex numbers z and w,

1z + wi? + |z — w* = 2|2|% + 2|w|%

Interpret this in terms of the quadilateral in the plane with vertices 0, z, w,
and z + w.

3. Show (by induction) that |z; + 22 + - -+ + 2Zp| < |21] + |22] + - - - + |zal.
4. Show that
1+ 22+ + 20l 2 a1l = (|22l + -+ + lznl).
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Show also that forany rin {1, 2,...,n},

l+ 2tz 2 (a4 20) = (12l + oo+ L2al),
but that it is not always true that for any r,

o1+ 22+ + 20l 2 (Il 4o+ 12]) = (Il + -« + lznl).

5. Prove by induction that if z is any complex number with z # 1, then

1 — zn+l
l+z+22 4+ 42" = ————
1-2
Find a formula for 1 4+ 2z + 322 + - - - + (n — 1)z" and prove this by induction.

6. Suppose that z; + 2; + 23 = 2,2;23. Show that z,, z;, and z; cannot all lie above
the real axis.

2.5 Notation

We end this section by reminding the reader of the following notation
that will be in force throughout this book:

N denotes the set {1, 2, 3, ...} of natural numbers;
Z denotes the set of integers;

Q denotes the set of rational numbers;

R denotes the set of real numbers; and

C denotes the set of complex numbers.

Of course, N is also the set of positive integers.

Finally, for any nonempty subset E of R, the supremum, or the least
upper bound, of E (when it exists) is denoted by sup E or lub E. Likewise,
when it exists, the infimum, or greatest lower bound, of E is denoted by
infEorglbE.






Limits

PART

Chapter 3 contains an introduction to limits through one single definition
and many illustrative examples. These examples include sequences, se-
ries, continuous functions, derivatives and integrals. Chapter 4 contains
some elementary basic theorems about limits that are used in Chapter 5
to study infinite series. In Chapter 6 we place the theory of the exponen-
tial and trigonometric functions on a firm analytic foundation and then
use this to develop the argument of a complex number.






Limits

CHAPTER

Abstract
In this chapter we define what is meant by a limit. We give many examples
and prove some elementary theorems.

3.1 Introduction

Many results in analysis can be proved by using sequences. Informally,

a sequence is an infinite list of numbers; for example, 1, %, 3,.... The
notation ... is meant to imply that the omitted terms are exactly what

you would expect them to be, but as an appeal to each reader’s personal
expectation is unsatisfactory, it is desirable (and some would say essen-
tial) to write down the formula for the nth term of the sequence. For the
sequence given above, the formula is n/(n + 1). At this point we have
accepted, perhaps without even realising it, that a sequence is nothing
more that a function f defined on the set {1, 2, 3, ...}. This set carries its
natural order, namely 1 < 2 < 3 < -, and the terms in the sequence
are arranged in this order, namely f(1), {2), A(3), . . .. It is precisely this or-
der (inherited from N) that distinguishes the sequence f{1), {2), f(3), . . . from
the set {f{n) : n € N}. For example, if f{n) = 1 for all n, the sequence is
1,1,1,... and this is not the same as the set {f{n) : n € N}, for this set is
simply {1}.

25
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In addition to having a intuitive idea of what a sequence is, most readers
will have an intuitive notion of convergence and will accept that roughly
speaking, the sequence f{1), f(2), f(3), . .. converges to the value a if f{n)
gets arbitrarily close to a as n increases. Notice that the phrase ‘as n
increases’ only makes sense because the domain of the sequence is ordered.
The essential difference between a sequence and a general function is
that the domain of a function is a set, whereas the domain of a sequence
is an ordered set.

Analysis is the study of all limiting processes, and we propose now to
take a broader view and to study limits by allowing ourselves the freedom
to use functions defined on any ordered set. This mild generalisation allows
us to give a single general definition of a limit (that encompasses all the
examples one normally meets in analysis) and thereby brings to the dis-
cussion a greater economy, unity, and clarity than is otherwise possible.
We now embark upon a discussion of limits. First, we shall discuss which
types of ordered, or directed, sets are appropriate; then we shall define
what is meant by a limit and finally, we prove some elementary results
about the general limiting process.

3.2 Directed sets

This section is devoted to those orders or, as we shall call them, directions,
on a set that are fundamental to the limiting process. A direction > on a
set X is a relation that has much in common with the ordering relation
> (greater than) on R, and where for ‘greater than’ we write x > y, for
a direction we shall write x > y. There are, however, two very important
differences between > and >. First, the relation > is defined only on R,
whereas a direction > can be defined on any set. Next, and this is more
subtle, every pair x and y of real numbers are comparable in the sense
that either x > yorx = yory > x, but in the case of a direction, not
every pair x and y need be comparable. Although in many cases of interest
they so be, it is not necessary to insist that they so be, and by not doing
so we obtain much greater flexibility. We now give a formal definition of
a direction on a set.

Definition 3.2.1.
A relation > on a nonempty set X is a direction on X if > has the two
properties

@) forallx,y,andz in X, ifx > y and y > z then x > z;
(ii) for all x and y in X, there is some z in X withz > xand z > y.

If > is a direction on X, we say that > directs X, and that (X, >) is a
directed set. If x > y, we say that x dominates y. We emphasize again that
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we are not assuming that for all x and y eitherx > y, x = y, ory > x. In
the case of the usual direction > (greater than) on R, the fact that every
two numbers x and y are comparable means that the maximum max{x, y}
of the two numbers exists (and is either x or y). In the case of a general
direction, if x and y are not comparable we cannot find their maximum,
but the role of the maximum is taken over by the element z whose existence is
asserted in Definition 3.2.1(if).

The following examples illustrate the rich variety of situations covered
by the idea of a direction and in order to gain familiarity with the concept,
we strongly recommend that in each case, the reader verify that (X, >)is a
directed set.

(1) Let X = R, and define x > y if and only if x > y.

(2) Let X = R, and define x > y if and only ifx < y.

(3) LetX =(1,2,3,.. .}, and define x > y ifand only ifx > y.

(4) Let X =R, and define x > y if and only if |x| > |y|.

(5) LetX = {x € R : x # 0}, and define x > y if and only if |x| < |yl.
Note that here, > is not a direction on R, for Definition 3.2.1(ii) would
fail when x = 0 and y = 0. This is an important observation, which
has implications for limits, and we shall return to this point later.

(6) Let X be the set of subsets of R of the form (a, b), wherea < 0 < b
and

(aby={xeR:a < x < b}.

For AandBin X, define A > Bifandonly if A C B. Note that if A and
Barein X, thenANBisin Xand also ANB > A and ANB > B. In this
case, (—2,1) and (-1, 2) are elements of X that are not comparable.

(7) Let E be any nonempty set, let X be the set of finite subsets of E, and
define A > Bifand only if A D B.

(8) Let X be the set of real-valued functions on R, and for f and g in X,
define f > g if and only if for all x, f{x) > g(x). Again, not every f
and g in X are comparable.

Consider (for the moment, informally) the sequence given by the func-
tion f{n) = [n(n — 1)]"}. As f{n) is not defined when n = 1, it is natural
to restrict the domain of f to be the set {2, 3, 4, .. .}. For exactly the same
reason, we shall need to use corresponding subsets of a directed set X,
and these will be, of course, the set of elements x that dominate some
given element a. We call these sets the final segments of X.

Definition 3.2.2.
The final segment of (X, >) determined by the element w of X is the set
X(w) givenby X(w) = {x € X : x > w).

Just as {2, 3, 4, ...} inherits an order from N, so a final segment of X
inherits an order from X. This is confirmed in our next result.
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Theorem 3.2.3.
Suppose that (X, > )is a directed set and w € X. Then X(w) is nonempty,
and > is a direction on X (w).

Proof

The proofis easy, but this does not diminish the importance of the result.
First, we take x = w and y = w in Definition 3.2.1(ii) to conclude that
there is some z in X(w); thus X(w) # @. We must now show that > is
a direction on the set X(w). Because > is transitive on X (that is, (i) of
Definition 3.2.1 holds), it is also transitive on X(w). Suppose now that x
and y are in X(w). Then there is some z in X withz > x and z > y. As
z > x and x > w, we have z > w, so that z € X(w). Thus z € X(w),
z > x, and z > y, and this completes the proof that > is a direction on
X(w). |

We now give the basic rules for final segments; these are little more
than a restatement of the definition of a direction.

Theorem 3.2.4.
Let (X, > ) be a directed set and suppose that x and y are in X. Then

@) ifx > y then X(x) C X(y);
(ii) there is some z in X with X(z) C X(x) N X(y).

Proof

Suppose first that x > y. If z € X(¥) then z > ¥, so that z > y. This proves
(i). To prove (ii), recall that there is some z in X withz > xand z > y.
Thus, by (i), X(2) C X(x) N X(y). n

The idea of a direction on a set X can be conveniently, and informally,
illustrated in terms of ‘shadows’ Given a directed set (X, >), the final
segment X(xo) determined by x, is {x : x > X}, and this is illustrated in
Figure 3.2.1. The basic properties (i) and (ii) of Theorem 3.2.4 are then
illustrated in Figure 3.2.1 and 3.2.2, respectively.

Figure 3.2.1
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Figure 3.2.2

We end with some useful terminology. We shall say that a statement
P(x), where x lies in some directed set X, is true for almost every x, or that
it is eventually true, if it is true for all x lying in some finai segment X(xp) of
X. With this, we have the following result, which will be used frequently
throughout the text.

Theorem 3.2.5.

Let (X, > ) be any directed set. Suppose that P(x) is true for almost every
x and that Q(x) is true for almost every x, and let R(x) be the statement that
both P(x) and Q(x) are true. Then R(x) is true for almost every x.

Proof

There is some xp such that P(x) is true when x > xp, and there is some
xq such that Q(x) is true when x > x4. As > is a direction, there is some
xp such that o > xp and xy > xq. If x > xp, then x > xp and x > xq, S0

that both P(x) and Q(X) are true. n
.
Exercises
1. Verify that examples (1)-(8) are directed sets.
2. Let (X, >) be a directed set and suppose that x1, ..., x, are in X. Show (by
induction) that there is some y in X such thaty > x;forj=1,...,n.
3. Suppose that forj = 1, ..., n, the statement P;(x) is true for almost every x. Let

P(x) be the statement that Py(%), ..., P,(¥) are all true. Show that P(x) is true
for almost every x.

Suppose that P(x) is true for almost every x and that Q(x) is true for almost
every x. Let R(x) be the statement ‘either P(x) is true or Q(x) is true' Is R(x)
true for almost every x?

4. Suppose that (X, >) is a directed set. Show that the relation > defined by x > y
if and only if x > y or x = y is a direction on X that satisfies x > x.
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5. Let X be any set and let S be the collection of all nonempty subsets of X.
Which, if any, of the following definitions define a direction on X?
(i) A > Bifandonly if A C B;
(ii) A > Bifand only if A D B.

6. Let (X, >)be a directed set and let X, be a subset of X with the property that for
all x in X there is an xp in X such that xy > x. Show that (Xo, >) is a directed
set.

7. Show that the relation < in an ordered field F is a direction on F (thus every
ordered field is, in a natural way, a directed set).

8. Let (A, >4) and (B, >3) be directed sets. Show that each of the following is a
direction on A x B;
(i) >, where (a,b) > (a’,b") ifand only ifa >, a’ and b >p b’;
(ii) >, where (a,b) >, (@', V') if and only if either a >, a’, ora = a’ and
b>pb'.

3.3 The definition of a limit

As this book is devoted to a study of a variety of limiting process, it is
appropriate to begin with an informal discussion of limits. Most of us
have an intuitive idea of limits, and few would disagree with the assertion
that X2 — 0 as x — 0. There would also be little dissent that 1/n — 0
as n — oo, although here the situation is less clear because oo is not a
number, and this raises the question of what n — oo means. The answer
to this question lies at the heart of the limiting process. When we are
taking the limit of f{x) with respect to a variable x, we are not assuming
that x moves towards some preassigned quantity (although this often is
the case); instead, we are assuming that the variable x lies in a directed
set X and that x ‘moves’ in the given direction on X. This allows us to
consider the limit as n — oo without having to worry about the meaning,
or the existence, of 0o; all we need is the natural direction (given by >) on
the set N so that n can ‘move’ along N in this direction.

Suppose thatf is a function defined on a directed set X with direction >.
The intuitive idea of f tending to the limit & with respect to the direction
> is that f{x) is arbitrarily close to a when x has moved sufficiently far in the
direction >. As we wish to be precise, there are two phrases here which
need clarification, namely arbitrarily close to and sufficiently far in the
direction >, and we shall consider each in turn.

The phrase arbitrarily close to means that we can prescribe exactly how
close to « we require f{¥) to be; in other words, we can specify what
would be acceptable error if we were to take f{x) instead of @. This error
is specified in terms of the distance from «; we may require, for example,
that |[f{x) — @| < 1. In the definition of a limit we are being invited to
prescribe the acceptable error, which, naturally, we normally think of as
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being some small positive number. Custom dictates that this is almost
always denoted by the Greek letter ¢ (epsilon); thus, almost always, we
shall be requiring that given any positive ¢, |f(x) - o] < &.

The second phrase that required scrutiny is sufficiently far in the di-
rection >, and this is easily dealt with. By this we simply mean ‘lying in
some final segment X(x,). The definition of f{¥) — « should therefore
read something like this: we may specify any acceptable (positive) error,
say ¢, and then we can claim that there is some final segment X(x) such
that if x lies in X(xp), then f(x) lies within a distance ¢ of «. The formal
definition now follows.

Definition 3.3.1.

Let X be a set directed by >, and suppose thatf : X —» R(orf : X — C)is
any function. We say that f tends to the number a with respect to the direction
>, and write lim, f = «, orsimply f{x) — «, if given any positive number
¢, there exists some xp in X such that |f{X) — a| < & whenever x > xo.
An equivalent statement is that f{x) — « if given any positive number &,
|flx) — a| < ¢ for almost every x in X.

The rest of the text is devoted to a discussion of the limiting processes
that lie at the heart of analysis, namely the convergence of sequences
and infinite sums, the continuity of functions, and differentiation and
integration. Before we move on to discuss these substantial matters, we
pause to give four extremely simple examples of limits.

EXAMPLE 3.3.2.

The simplest function for which a limit exists is a constant function. If
(X, >) is a directed set and if f is the constant function on X with value c,
then lim, f = ¢. To verify this, take any positive &, and choose any x; in
X. Then |f{x) — c| = 0 < ¢ when x € X(x), so certainly lim, f =¢. 0O

ExampLE 3.3.3.

Suppose that X = N; let > be the usual ordering > (so that m > n if
and only if m > n), and let f{n) = 1/n. Then lim, f = 0. To prove this,
take any positive ¢, and choose an integer ny such that n, > 1/¢ (see
Theorem 2.3.2, and the remarks following Corollary 2.3.4). If n > n,
then |f{in) — 0] = 1/n < ¢, so thatlim, f = 0. We will normally write this
in either of the two forms

n—-o0o n O

Remark

Unless we state otherwise, we shall always assume that a direction > on
Nis >.
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ExampLE 3.3.4.

Let X be the set of nonzero real (or complex) numbers and let > be the
direction on X defined by x > y if and only if || < |y|. Let f{x) = x?; then
lim, f = 0. The geometric interpretation of > is that x > y precisely
when x is strictly closer to 0 than y is, so in less formal language, this
example shows that ¥* — 0 as x — 0. The proof is easy. Given any
positive number ¢, let § be any positive number satisfying § < 1 and
§ < & Ifx> dthen |x| < |§] =8 < 1, so that

x> —0| =% < |x| < 8§ < &;

thus lim, f = 0. We will normally write this in one of the forms

limx* =0, x*— 0.

x—0
There is one feature in this example that is worth mentioning explicitly.
We are examining the case when x — 0, and we have explicitly excluded
consideration of x = 0. This is a common feature of all limits, and the reason

for this lies in the comment in (5) in §3.2. a

ExamPLE 3.3.5.
We show that if |x| < 1, then

lim x" = 0.

n—00
Here, X = N, > is >, and we are claimimg that lim, f = 0, where for a
given x, f({n) = x". Note that x is given and that f is a function of n. The
case x = 0 is trivial. In the remaining cases, 1/|x] > 1, so that we may
write 1/|x| = 1 4 8, where § > 0. Then, using the Binomial Theorem,

1 1
XN =x" = ——— < —.
W'l = I Q4+ né
Now consider any positive number & and choose an integer ny satisfying
ny > 1/(&8). If n > ng (equivalently, n > np), then

1
— =71 —
) =0l = K" < — <&

as required. a

The alert reader may have noticed that Definition 3.3.1 does not assert
that f cannot tend to more than one limit. We now prove that it cannot,
and as this argument is typical of many of our arguments, the reader is
strongly advised to master it completely now.

Theorem 3.3.6.
Iflim, f = aandlim, f = B, thena = B.
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Proof

We shall suppose that @ # g and reach a contradiction. As @ # B, the
number ¢ defined by ¢ = |a — B|/2 is positive. As lim, f = «, there is
some xg such that |[{x¥) — «| < & whenever x > xp; and as lim, f = 8,
there is some x; such that |[f{x) — | < € whenever x > x;. Now, there is
some z in X such that z > xy and z > x;, and this implies that

2e = o — Bl < la— fl) +If2) — Bl < 2,

which is false. This contradiction completes the proof (in fact, we have
just repeated the argument used in the proof of Theorem 3.2.5 here).

Theorem 3.3.6 implies that if f tends to a limit, then the limit is
uniquely determined by X, >, and f. We shall usually denote this limit by
lim,. f, but if > is understood from the context, we sometimes abbreviate
it to lim f. If f tends to @, we write any of the expressions

foa f-aq liznf:ot, limf =«

depending on our mood, but always providing that the unspecified data
is clear from the context. |

We end this section with three simple but useful results about limits. In
each of these the existence of one limit is used to guarantee the existence
of another.

Theorem 3.3.7.
Suppose that f is defined on the directed set (X, > ), and that o and B are
constants. If f — a, thenf + 8 — a + B.

Proof
This follows immediately from the inequality

[0 + B) = (@ + B)| = ) - al. -

Theorem 3.3.8.

Suppose that f and g are defined on the directed set (X, > ), and that
f — 0. Suppose also that for some x, in X there is a positive M such that
I8(¥)| < MIf(%)| whenever x > x,. Theng — 0.

Proof

Given any positive number ¢, let &; = &/M. Then there is some x, such
that |f{x)| < & when x > x;. Now take x, such that x, > xo and x, > x;.
Thus |g(x)| < € when x > x,, so thatg — 0. |

Theorem 3.3.9.
Iflim, f = a, then lim,. |f| exists and is |a].
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Proof
This follows immediately from the inequality (2.4.4), namely

|0 = le| < 109 - .

Exercises

1. Show that if f{n) = 3n/(2n® + 1) on N, then lim, f = 0.
2. Show that limy_o x> +1 = 1.

3. Show that if f is defined on the directed set (X, >), and if lim f = «, then for
every constant M, lim, Mf = M.

4. Let X = N with the usual direction >, and let f(n) = (—1)". Show that lim f
does not exist.

3.4 Examples of limits

The sole purpose of this section is to give the reader an appreciation
of the great variety of limits encompassed by Definition 3.3.1. Readers
who are already familiar with the material should see immediately the
economy and coherence arising from the definition of a limit based on a
direction. We cannot emphasize too strongly that each of the following ten
definitions is a special case of Definition 3.3.1, and when we derive a result
from Definition 3.3.1, it will automatically hold in each of these ten cases. We
leave the reader to verify that in each of the following definitions, > is a
direction on the given set X, and that the given definition of the limit is
a direct rewording of Definition 3.3.1.

Definition 3.4.1: sequences

Let X = N, and define m > n if and only if m > n. A sequence is a
function f : X — R (or C), and this converges to « if given any positive
¢, there is an ng such that |{n) — a| < & whenever n > ny. If this is so,
we write either of

}Lr& i =a fn)—a

When we write a sequence as aj, az, . . ., we are considering a function
a : N - R and writing a, instead of a(n). A sequence may be a function
defined on, say, {N, N+ 1, N+ 2, .. .}; for example, the function 3/(n — 2)
is defined on {3, 4, . ..}, and in this case we still write

lim = 0.
n—-oco N —
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Definition 3.4.2: infinite series
The infinite series

00
D
n=1
of complex numbers a, converges to, or equals, « if and only if given any
positive ¢, there is an ng such that if n > ng then
(@ +:--+ay)—al <e

This is the same as saying that the sequence s, sz, . . . of partial sums given
by s, = a1 + - - - + a, converges to .
As a simple example, the identity
1= =1 - +x+22+- 4+ 29
shows that
Ixin+1

l4+x+x24+... 42— = .
A+x+x+ + x™) =]

1—x
Thus (see Example 3.3.5) if |x] < 1 then

[e.9] n 1
Zx T 1—x

n=0

Definition 3.4.3: the limit of f as x — 400
Let X be any subset of R that is not bounded above, and define x > y to
mean x > y. Then, for any function f : X — C, lim, f exists and is « if
given any positive ¢, there is an ¥y in X such that |f(X) — a| < & whenever
x > x (and, of course, ¥ € X). When this limit exists we write
Jim fi) =

Note that this definition includes Definition 3.4.1 (with X = N) as a
special case.

As an example,

. 3x?
im = 3,
x—+o0 x2 4 1
because if ¥ > /(3/¢) then
3x? 3| = 3 3
X2+ 1 Tyl e <°f

Definition 3.4.4: the limit of f as x — —oo

This is similar to Definition 3.4.3. Let X be any subset of R that is not
bounded below, and give X the direction > defined by x > y if and only
ifx < y. Then for any function f : X — C, lim, f exists and is  if given
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any positive ¢, there is an xg in X such that |f{x) —a| < ¢ wheneverx < x;
and x € X. When this limit exists we write

lim f(x) = a.

X—> =00

For example,

2nt

n-l-lr;noo nt —2 =2

Definition 3.4.5: the limit of f as [x| — oo

This is the natural combination of Definitions 3.4.3 and 3.4.4. Let X be
any unbounded subset of R or of C, and define x > yif (x| > |y|. Then for
any function f on X, lim, f exists and is « if given any positive ¢, there is
an xg in X such that [f{x) — «| < £ whenever |x| > |x| and x € X. When
this limit exists we write

lim flx) = a.
|x|—->+oo)(( ) o
As an example,
23 + 1
im =2
—>+00 x3 + 3
because

< &

23 +1 5 5
—_— - = < < —
x¥+3 % +3 7 % -3 7 |x1

when |x| > 2 and |x|> > 8/s. This example shows at the same time that
(22° +1)/(2* +3) — 2as|z| — oo in the complex plane, and also that the
sequence (2n°® + 1)/(n® + 3) converges to 2. It is important, and helpful, to
realise that there is no essential difference between these two cases.

Definition 3.4.6: the limit of f asx — a

Let X be a subset of R or C. A point a is a limit point of X if for every
positive r, there is a point x in X that satisfies 0 < |x — a| < r. Note that
the possibility x = a is explicitly excluded here. With this, we can define
a direction > on X by x > y if and only if |x — a] < |y — al (see (5)
following Definition 3.2.1), the geometric interpretation being that x > y
if and only if x is strictly closer to a than y is. Given a functionf : X — C,
lim, f exists and equals « if given any positive ¢, there is a point x; such
that |f{x) — a| < ¢ wheneverx € X and |x — a| < |xp — a|. When this limit
exists, we write either of

lgt;f(x):a, fX) >a as x— a

For example (see Example 3.3.4), x¥* - 0 asx — 0.
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We draw the reader’s attention to the fact that this definition can be
rephrased as follows: the limit lim, f exists and equals « if given any
positive ¢, there is a positive § such that |f{x¥) — a| < £ whenever x € X
and 0 < |x — a| < 4. Indeed, if a limit exists according to the given
definition, for a given ¢ we can take § to be |x, — a| (which is positive),
and so the limit exists according to this alternative definition. Conversely,
if a limit exists according to this alternative definition, we can choose an
xo with 0 < |xy — a] < § (such x; exist because a is a limit point of X),
and so obtain the existence of the limit in terms of the original definition.
In some sense, the conventional use of the number § is misleading; the
condition is really that x is compared with some x; by the inequalities
0 < |x—al < |x —al.

Definition 3.4.7: continuous functions

It is important to note that in the previous example, f need not be defined
at the point a, and even if it is, the value f{la) plays no role in determining
whether or not the limit exists, nor (if it does exist) what its value is. When
f is defined at a, the question of whether or not lim, f exists and is fla)
is a matter of continuity. Let X be any subset of R or C. Suppose thata is
a limit point of X, and let f be any function defined on the set X U {a} (if
a € X this set is just X). Then we say that f is continuous at a if and only
if lim,_,, f(x) exists and equals f(a).

According to the remarks in Definition 3.4.6, we can rewrite this in
the following form: f is continuous at a if for every positive ¢, there is a
positive § such that |f{x) — fla)l < ¢ whenever 0 < |x —a| < é. However,
in this case the inequality |{x) — f{a)| < e is trivially true when x = a, so
that in the definition of continuity (and only in this), we may replace the
double inequality 0 < |x — a| < & by the single inequality |x — a| < &.
Thus f is continuous at a if and only if given any positive ¢, there is a
positive § such that if |[x — a|] < § and x € X, then |{x) — f{a)| < &. For
example, the function x? is continuous at 0 because (as we have seen)
x2 > 0asx — 0.

Definition 3.4.8: derivatives
A function f definedon{x € R : |[x—a| < r}, wherer > 0, is differentiable
at a if

lim f(x) _ fta)

x—a X—a
exists according to Definition 3.4.6. If this is so, then its value is the deriva-
tive f'(a) of f at a. The same definition applies if f is defined on the subset
{z € C: |z — a] < r} of the complex plane, where a € C.

Let us confirm that if f{x) = x*, then f'(a) = 4a® (here, a and x may be

real or complex). Using the identity u? — v? = (u — v)(u + v) twice, we
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see that

xt —at

—4a®| = |(x + a)(** + a?) — 44|

X—a
= |(x — a)(** + 2ax + 3a%)|.

Imposing the condition |x — a| < 1 on x (if it is not already so restricted),
we have |x| < ja| + 1, and so for these x,

x4 —qat

— 443

<6 1)*|a — %|.
~_a < 6(lal +1)%|a — x|

The result now follows easily (or by Theorem 3.3.8). We have considered
this example in detail, but soon we will become much more efficient, and
distracting estimates such as these can usually be avoided.

One matter concerning derivatives is worth mentioning now. It is im-
mediate (and totally trivial) that if f is a constant function on R, say, then
f'(¥) = 0 for every x. It is not so obvious, however, that if f'(x) = 0 at
every point x of R, then f is constant on R. This is true, and it will be
proved in the next chapter.

Definition 3.4.9: the limit of f as x — a+
LetX ={xe€e R:a < x < b}, where a < b, and definex > yifx < y
(again, x > y if x is closer to a than y is). Then a is a limit point of X, and
for any function f on X, if lim, f exists and equals o we write

Xl_l)% fx) = a.
The + sign here indicates that the limit is being taken with the restriction
that x is larger than a. Explicitly, this limit exists if given any positive &,
there is a positive § such that |f{x) — «| < £ whenevera < x < a+éand
x € X. We call this a one-sided limit of f at a, and we say that this is the
limit of f as x tends to a from above.

Once again, if f is defined at a (and it need not be) the value of f(a)
plays no role in determining this limit. If f{a) is defined and if f{x) tends
to fla) as x — a+, f is continuous at a, and conversely.

Of course, there is a corresponding notion of a limit from below, and
as this presents no new ideas we omit the details; the notation used for
this is

lim f{x).

X—>a-—

As an example of these limits, let f{x) = x/|x| when x # 0. Then

Jmp ey =1, lip fi) = -1
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ExAMPLE 3.4.10: THE INTEGRAL.
Let f be any real-valued function defined on {x € R : a < x < b}, and
suppose that |[f{x)| < M there. We define the integral

b
/ flx) dx (3.4.1)
a
as the limit of sums of the form
n
SHX, T) = Y fit) (%1 — %), (34.2)
j=0
where X = {xg,x1,...%:}, T = {to, t1, ..., tn—1}, and
Aa=2Xx) <X < -+ <X < Xpp1=b, X <t < x4 (3.4.3)

To be more explicit, we consider the set P of all pairs (X, T) of this type
(with varying n) and define a direction > on P by (X;, T1) > (X, T) if
and only if X; D X (notice that T does not enter into this definition).
It is clear that > is a direction on P. Indeed, if (Xi, T1) > (X2, T2) and
(X2, T2) > (X3, T3) then X; O Xj, so that (X1, Tv) > (X3, Ta). Also, given
any pair (X;, Ty) and (X;, T2), each is dominated by (X; U X;, T) for any
appropriate T.

For a given f, the integral in (3.4.1) is now defined as the limit of the
function S¢(X, T) with respect to the direction > on P. If we rewrite this
without making an explicit reference to the direction - we see that the
integral in (3.4.1) exists and equals I if given any positive ¢, there is a pair
(Xo, To) such that

Y A —x)—1| < &

j=0

whenever X O X,. This simply says that the sums S¢(X, T) should be
close to some number I whenever the subdivision X of {(x : a < x < b} is
‘sufficiently fine’. O

Exercises

1. Show that (2n + 4)/(3n®> + 1) > 0 asn — +o0.

2. Show that if x| < 1, then nx* — 0 as n — +o0o (see Example 3.3.5). By
considering

(1 =221+ 2%+ 3% + - + mx"™,
show that

1

1+2x+3x% 4o = ——
SR e



10.

11.

3. Limits

. Show that f defined for -1 < x < 1 by

1 ifx #0,

o-|
0 ifx=0

is not continuous at 0.

. Show that f : R —» R, defined by

x if x is rational;

0|

0 if x is irrational,

is continuous at 0, but not at any other point of R.

. Suppose that f : R — R satisfies |f{¥)| < x¥? on R. Show that f is differentiable

at 0 and that f'(0) = 0.

. Let f(x) = /(x* + 1), where x € R. Show that limy, 4o f(¥) = 0.

. Suppose that f is defined on {x € R : a < x < b}. Show that f is continuous

at a if and only if lim,_, 44 f(x) exists and equals f{a).

. Letf{x) = |x|, where x € R. Show that f is not diffentiable at 0. Show, however,

that the one-sided derivative
x) — f(0
i )= A0)
=0+ x-0
exists and equals 1. [More generally, if the graph of a function has a ‘corner’,
the function will not be differentiable there, but sometimes the two one-sided
derivatives will exist.]

. Show that a is a limit point of the set X (see Definition 3.4.6) if and only if

there is a sequence x, x3, . . . of distinct points in X such that x, — a.
Show by induction that

Q+HA+20 +x7) - Q+2)=1-2""
Deduce that if |x| < 1, then

(e

[o+#)= =,

n=0 X

in the sense that the left-hand side is the limit as n — oo of

N
[Ta+2) =a+0a +30 +2)--- 0+ ).

n=0
Letf : R — Rand g : R - Rbe defined by g(x) = 0 for all x, and
0 ifx =0;
X) =
) 1 ifx # 0.
Show that

limet) =0, Jmf) = 1,
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but that
lim f(g(x)) = 0.

This example shows that the limit of a composition of functions may not be
what you might expect.

3.5 Sums, products, and quotients of
limits

In Example 3.3.3 we showed that 1/n — 0 asn — 0. By using the same
method, but with just a little more work, we could show, for example, that
(2/n)—(7/n*) — 0, and the reader could easily go on to create many more
examples of this type in which the argument is conceptually the same but
in which the details become increasingly more complicated. There must
be advantages, then, in developing a machinery that would enable us to
operate at the same simple conceptual level as the example 1/n while
avoiding the more complicated numerical details. The key to this lies in
understanding how limits combine with the arithmetic operations, and
this is our task now. We consider the sum and product first, and then the
quotient.
The sum f + g of two given functions f and g on X is defined by

(f +8)(®) = fl0) + g(®).

The addition on the right is the addition of real (or complex) numbers.
As the addition on the left is the addition of functions, we should, strictly
speaking, use a different symbol (such as @) for this, but convention, and
simplicity, demand otherwise. Similarly, we define the product f-g of the
functions f and g by

f-8)®) = fxXe(®.
The results concerning the limits of the sum and product of functions are
exactly what we would expect.

Theorem 3.5.1.
Suppose that f and g are defined on the directed set (X, > )andthatf — «
andg — B. Thenf +g — a+ Bandf.g — apf.

Proof
First, we consider f + g. For any x,

| +8)(®) — (¢ + B)| = |(fAx) — @) + (g(®) - B)|
< I®) — a| + lg(x) — Bl. (3.5.1)
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Given a positive ¢, there is some x; such that |f(x) —«| < e/2whenx > x;,
and there is some x; such that |g(x) — 8| < &/2 when x > x;. Now take w
with w > x; and w > x;; then ¥ > w implies that the right-hand side in
(3.5.1) isless than ¢, so that f + g — a + B.

We now consider the product function f-g. Let F(x) = f(x) — a and
G(%) = g(¥) — B, so that (directly from the definition) F - 0 and G — 0.
Because G — 0, there is some x; such that |G(x)| < 1 when x > x;. It
follows that |F(x)G(x)| < |F(x)| when x > x;, so that by Theorem 3.3.8,
F.G — 0. As

Ax)e(x) = F(x)G(x) + BF(x) + aG(x) + af,
we see now that f-.g — ap. |

Obviously, Theorem 3.5.1 extends (by induction) to any finite sum of
functions; if f; — aj forj =1,...,nthen

fl+“'+fn"‘>al+"'+a"' (352)

Similarly, it extends to finite products of functions, and also to the
following result.

Theorem 3.5.2.
Suppose that the functions fi.f3, . . . ,fn are defined on (X, > ), and that for
each j, fi — ¢;. Then, for any numbers a,, . . . ,an,

(afi +:- -+ anfn) = @by + - + anly.

There are many important corollaries of Theorems 3.5.1 and 3.5.2. As
a simple application, let g(z) = z. Then g(z) — g(a) as z — a. Applying
Theorem 3.5.1 to the product of g with itself k times, we see that (in less
formal language) z* — a* as z — a. Now applying Theorem 3.5.2, we
see that for any polynomial, say

p(2) = ag + a1z + @z> + - - + anz",

p(2) = p(a) as z — a. Recalling the definition of continuity, we see that
we have now proved the following result.

Theorem 3.5.3.
Every polynomial is continuous at every point of C.

Likewise, Theorem 3.5.2 implies the following results on continuity
and on differentiability.

Theorem 3.5.4.

Let s andt be any (real or complex) numbers, and suppose that the functions
f and g are continuous at a. Then so is the linear combination sf + tg, and
also the product function f-g.
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Theorem 3.5.5.

Let s andt be any (real or complex) numbers, and suppose that the functions
f and g are differentiable at a. Then so is the linear combination sf + tg, with
derivative sf'(a) + tg'(a), and also the product function f-g, with derivative
given by

(f-8) (@) = f'(@)g(a) + fla)g'(a).

The assertion concerning the linear combination sf + tg in both of
these results is a direct consequence of Theorem 3.5.2. The continuity of
the product function f-g is an immediate consequence of Theorem 3.5.1,
for this shows that if f — fla) and g — g(a), then f-g — fla)g(a). Next,
using the identity

fe(x) - flae(@) _ (f(x) fla)

X—a X -

§(x) — 8(@) )

—a

) e+ ) (E2=E

and Theorem 3.5.1, we obtain the existence of, and the given formula for,
the derivative of f-g.

The formula for the derivative of the product function provides an easy
proof (by induction) that if {z) = z", where n is a positive integer, then
f'(2) = nz""'. In particular, we now know that if

p(2) = ap + a1z + Azt + -+ + anz",
then
P (2) = a1 + 2a;z + 3a3z* + - - - + na,z" Y

here the g; and z may be real or complex.

As Theorems 3.5.1 and 3.5.2 are valid for all limits, similar statements
apply to sequences and series. Suppose, for example, that the sequences
a, and b, converge to a and b, respectively; then, from Theorems 3.5.1
and 3.5.2, the sequence anb, converges to ab, and for any constants s
and t, the sequence sa, + tb, converges to sa + tb. From this, we see
immediately that

o 00 o
$Y an+tY by=) (San + thy) (3.5.3)
n=0 n=0 n=0
in the sense that if the two sums on the left converge, then so does the
sum on the right, and equality holds.

Let us move on now to consider how the limiting process interacts with
division. By writing the quotient g(x)/f(x) as the product of g(x) and 1/f(x),
and using Theorem 3.5.1, we can immediately simplify the situation a
little and confine our attention to the function 1/f defined by

1/H@ = 1/f).
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We are surely anticipating that if f — « then
1/f > 1/a, (3.5.4)

but there are two problems with this. First, @ may be 0, and second, the
function 1/f is not defined at any x for which f{x) = 0. The way round
the first difficulty is clear: we assume at the outset that o # 0 (indeed,
this is forced upon us, as otherwise (3.5.4) has no meaning). Given this
assumption, the remaining difficulty disappears, for suppose thatf — «,
and ¢ # 0. Then there is some xg such that |[f(x) —«| < |a|/2 whenx > xq,
and as this inequality implies that

If)l = lal/2 > 0, (3.5.5)

there is no difficulty if we restrict 1/f to the final segment X(x;). We now
state and prove the result.

Theorem 3.5.6.

Suppose that f is defined on (X, > ), and that f — «, where a # 0. Then
there is some xy such that f(x) # 0 when x > xg, and if we restrict 1/f to be
defined on X (xo), then lim, (1/f) exists and equals a™!.

Proof

The existence of xy that leads to (3.5.5) has already been established. Now
let F be the function 1/f restricted to X(xp), and let 8 = 1/a. Using (3.5.5),
if x > xy then

e =f(x) 2|Ifx) — «af
|F(x) ﬁl - af(x) < |Ot|2 ’
and F — B is now a direct consequence of Theorem 3.3.8. a

With Theorem 3.5.6 available, we can now derive the familar formula
for the derivative of a quotient.

Theorem 3.5.7.
Suppose that f and g are differentiable at a, and that g(a) # 0. Then f/g
is differentiable at a, and

£\ Fl@e@ - fae'(@)
(g) @ = (@) ‘

Proof
This follows directly from Theorem 3.5.6 and the identity

() _f@\_(1L\f9-fa _(_f9 )g(x)—g(a)
x-—al\eg®  &@ g0 x-a ge@)  x—a _
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Exercises

1. Show thatasn — oo,
It +n-1
and +7n2 + 2
2. Suppose that f and g are continuous at a, and that g(a) # 0. Show that f/g is
continuous at a.

3
- =
4

3. Suppose thata set X contains the pointa, and thatf, defined on X, is continuous
at a. Suppose also that g is defined on f{X) and is continuous at f(a). Prove that
x > g(f(x)) is continuous at a.

4. Suppose that f : R — R is continuous at every point of R, and that f{la) > 0.
Show that there is some positive § such that f{x) > 0 whenever |x — a] < 4.
Now define g(x) = /f(x) (so that g(x) > 0 when |x — a| < §. Show that g is
continuous at a.

[Hint: u* = V2 = (u — v)(u + v) ]

5. Let f(x) = x* + 2ax + b, where %, a, and b are real with a®? > b. Show that

the equation f(x) = 0 has two solutions, and let x; be the larger of these.

Formulate (precisely) and prove a statement that justifies the assertion that ‘x
varies continuously with a and b’

3.6 Limits and inequalities

In this section we consider how limits interact with inequalities. It is not
true that if f{x) > 0 for all x, and lim, f = e, then ¢ > 0; for example, if
fin) = 1/n, then f(n) > 0 for every n, yet lim, f = 0. The corresponding
result for > is true, and this is our first result.

Theorem 3.6.1.

Let (X, > ) be a directed set and suppose that the real-valued functions f
and g are defined on X. If the limits lim,. f and lim, g exist, andifg(x) > f(x)
for all x in X, then lim, g > lim, f.

Proof

Let lim, f = « and lim, g = B. We suppose that @ > B and seek a
contradiction. Let ¢ = (a — B)/2, so that ¢ is positive. There is some x; in
X such that |f{x) — a| < £ when x > x;, and there is some x; in X such
that |g(x) — Bl < £ when x > x,. As > is a direction, there is some x3 that
dominates both x; and ¥;, so that

Ixs) —al < & Ig(x3) — Bl < &

It follows that 0 < g(x3) — flxz) < (B+¢€) — (¢ —¢&) =0 (sothat0 < 0),
and this is the contradiction we are seeking. ]
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The following special cases are worthy of special mention.

Corollary 3.6.2.

Suppose that f is defined on the directed set (X, > ), and suppose that
lim, f exists. If f(x) > « for all x, then lim, f > a. Iff(x) < B for all x, then
lim, f < B.

We come now to one of the most useful criteria that guarantee that
a limit exists. Given a real-valued function f defined on a directed set
(X, >), we say that f is

(i) increasing if x > y implies f{x) > f(y), and
(ii) decreasing if x > y implies f{(¥) < f(y).

While it might seem more natural to use nondecreasing and nonincreas-
ing here, in common with many authors we prefer the shorter phrase. We
shall also say that f is

(iii) strictly increasing if x > y implies f(x) > f(y), and
(iv) strictly decreasing if x > y implies f(x) < fy).

A real-valued function f is bounded above on X if there is some constant
M such that for all x in X, f{x) < M; that is, if the subset {f{x) : x € X} of
R is bounded above. Likewise, the function f is bounded below if this set
is bounded below.

The following result is arguably the most fundamental result of all
about limits. It is a powerful criterion for the existence of a limit, yet despite
this, its proof is extremely simple.

Theorem 3.6.3.
Suppose that f is a real-valued function defined on the directed set (X > ).
@A) Iff is increasing and bounded above on X, then lim, f exists and
lilnf = supff(x):x € X}. (3.6.1)

(i) Iff is decreasing and bounded below on X, then lim, f exists and

liInf = inf{f(x):x € X}. (3.6.2)

Proof

The hypotheses in (i) imply that the subset {f{x) : x € X} of Ris nonempty
and bounded above; thus it has a least upper bound, say «. It follows that
for any positive &, @ — ¢ is not an upper bound for this set, so that there
is some xp in X with flxg) > a — &. If x > xp, then

a—¢ < flxp) <flX) Sa < a+sg,
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so that for these x, |f{x) — @] < &. This means that lim, f exists and
equals a. The proof of (ii) is similar (using the greatest lower bound) and
is omitted. ]

As an application of this result, we see that if a,, is a sequence of real
numbers with the properties

(i) an < Gn4y foralln, and
(ii) an < M for all n,

then the sequence a, converges. As this is so important, and as we shall
refer to it often, we state it as a separate result.

Theorem 3.6.4.
If a sequence a,,az, . . . of real numbers is increasing and bounded above,
then it converges to sup{a,:n = 1,2, .. .}.

To illustrate the general applicability of Theorem 3.6.3 we also give
another corollary of it.

Theorem 3.6.5.
Suppose that f:R — R is increasing and bounded above. Then
lim,, 400 f(%) exists and is sup{f(x):x € R}.

Exercises

1. Suppose that each of the numbers a;,a;,...isin {0,1, 2, ..., 9}. Show how to
give a value to the infinite decimal expansion 0-a;a; - - -. Express the decimal
expansion 0-123123123 - - - as a rational number.

2. Use Theorem 3.6.3 to show that
X241

x—lToo x2 42 =1

3. Show thatif x > 1, the series

X 1

2 oA

n=0
converges to a value not greater than x/(x — 1).
4. Show that if the series 352, a, of positive terms a, converges, then a, — 0.
Deduce that if a and b are positive, then the series
L
n=0 a" + b"

converges ifand only ifa > 1orb > 1.
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5. Show that if a real-valued function f is increasing and bounded on the set
{x e R:a < x < b}, where a < b, then the limits

lip .l 09

exist. Which is the smaller of these limits and why?

3.7 Functions tending to infinity

Consider the two sequences given by 1,2,3,... and -1, -2, -3, .... Al-
though we have not yet defined what ‘a, - +o0’ and ‘a, - —o0' mean,
there must surely be some sense in which the first sequence tends to
+00, and the second sequence tends to —00, as n — 00. A real sequence
ay,az,...isamapa : N — R, and the phrase ‘n —» oo’ is meaningful
precisely because of the existence of the ordering > on N. It is more or
less self-evident, then, that if we wish to give a meaning to the phrase
‘an, — +00', we must use the fact that R is also a directed set ordered by
>. This leads naturally to the following definition.

Definition 3.7.1.

The real sequence a, tends to +o0 if for every real number k, there is an
integer ng such that a, > k whenever n > ny. The sequence a, tends to
—oo if for every real number k, there is an ng such that a, < k whenever
n > ng.

There are other rather obvious generalisations of this that accommo-
date other situations and we mention just a few now. In all of these cases
we are guided by the fact that we are considering a function mapping one
directed set into another. With these available, the reader should be able to
invent more definitions of this type.

Definition 3.7.2.

Let X = N with the ordering >; let C be ordered by the relation z > w
if and only if |z] > |w|. A complex sequence a, converges to oo, and we
write a, — 00, if given any positive number r, there is an integer ng such
that |a,| > r whenever n > nyg.

Definition 3.7.3.
(i) A function f : R — R tends to +00 as x — +o0 if for every real
number k, there is a real number x; such that f{x) > k whenever x > xg.
If this is so, we write

lim fx) = +o00.

X—>+400
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In this definition we have given both the domain and the image of f the
direction >.

(ii) The function f tends to —oo as x — +o0 if for every real number k,
there is an xp such that f{x) < k whenever x > x,. Here we have given
the domain of f the direction > and the image of f the direction <.

Definition 3.7.4.

A real-valued function f defined on {x € R : x > 0} tends to +o0 as
x — 0+ if for every real number k, there is a positive number § such that
fix) > k whenever 0 < x < 4. If this is so, we write

xl_Lr& flx) = +o0.

Exercises

1. Show that if f{(x) = 1/x when x > 0, then
xl—l'r(‘)]+ f(X) = oo

2. Let z; be a sequence of complex numbers. Show that z, —> oo if and only if
the sequence of real numbers |z,| — +o0.

3. Consider the directed sets (N, >) and (C, >) as in Definition 3.7.2. A complex
sequence (ay) is a map from (N, >) to (C, >). Show that a, — oo if and only
if given any number w in C, there is an integer ng in N such that a, > w
whenever n > ng.

4. Give N the usual ordering >, and define a direction > on R by m > n if
and only if |m| > |n|. Describe carefully which real unbounded sequences
ay, az, . .. have a limit in the sense of Definition 3.7.1.



Bisection
~ Arguments

CHAPTER

Abstract

This chapter contains three important results: (1) the Intermediate Value The-
orem (that if a continuous function takes the values a and b, then it takes all
values between a and b); (2) a function whose derivative is identically zero is
constant; (3) the General Principle of Convergence (which gives a necessary
and sufficient condition for a limit to exist). All of these are proved by the
repeated bisection of an interval.

4.1 Nested intervals

Aninterval is a subset I of R with the property thatifa and b are in I, then
all points between a and b are also in I. Intervals are used constantly in
analysis, and the following notation for the four possible types of bounded
intervals is standard:

[a,bj={xe R:a < x < b},
(ab)y={xeR:a < x < b},
[a,b)={x e R:a <x < b},
(a,b)={xeR:a < x<b)

We say that [a, b] is a closed interval, (a, b) is an open interval, and that (a, b)
and (a, b] are half-open half-closed intervals. Notice that a closed interval

50
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contains both of its endpoints, whereas an open interval contains neither
of them. Also, [a, a] = {a}, and (a,a) = @.
Next we list the five possible types of unbounded intervals:

(a,+0)={x e R:x > a},
[a,+0) ={x e R: x> a},
(o0, b) ={xe R:x < D},
(-0, b)={x € R:x < b},
(—o0, +0) = R.

Notice the introduction of the symbols +00 and —oo here. We are not
asserting that either is a real number, and they are used as a notational
convenience only. We say that the intervals (a, +00) and (—oo, b) are open
(they do not contain their single endpoint), whereas the intervals [a, +00)
and (—o0, b] (which do contain their single endpoint) are closed. Notice
also that (a, +o0) and (—o0, b) are final segments with respect to the
directions > and < on R.

A sequence of intervals Iy, I, ... is decreasing if I, D I D ---. Our
single concern in this section is whether or not the intersection 1 NLN. ..
of a decreasing sequence Iy, I, - - - of intervals is nonempty. The example

0 3)n( 3)n(© F)n-- (4.1.1)

shows that the intersection may be empty when each /, is a bounded
open interval, and the example

[1,400) N[2, +00) N [3, +00) N - - (4.1.2)

shows that the intersection may be empty when each I, is an unbounded
closed interval. It is of fundamental importance that the intersection is
nonempty when the I, are bounded closed intervals.

Theorem 4.1.1.
Suppose that 1,115, ... is a sequence of closed, bounded, nonempty
intervals, and that Iy D I, D I3 D ---. Then

nnLpNhLZN--- #@.

Proof

We write I, = [an, bn), where a, < by,. For every m and n, Iy C I, and
Imyn C Ly, sothata, < apmyn < bmyn < bpm. Thus, forallmandn, a, < bp,.
Keeping m fixed, we see that the sequence a, is increasing and bounded
above by b,,; thus by Theorem 3.6.4, a, — «, where a < b,,. Now, this
inequality holds for every m; thus the sequence b, which is decreasing
and bounded below by «, converges to some number 8, where a < B. We
deduce that an 5.2 < B < by, so that [a, 8] C I, for every n, and this
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shows that I; NI, N I3 N - - - contains the nonempty interval [, B]. In fact,
this intersection is [a, f8].

We now explain what we mean by the repeated bisection of the interval
[a, b) of length b — a and midpoint ¢, where ¢ = (b + a)/2. We say that the
intervals [a, ¢] and [c, b] are obtained from [a,b] by bisection. Suppose now
that the intervals Iy, I, ... in Theorem 4.1.1 are such that each I,,, is
obtained from I, by bisection. If ¢, is the length of I,, then £, = £,/2"!,
so that ¢, — 0, and this implies that in the proof above, « = B. This
proves the following refinement of Theorem 4.1.1.

Theorem 4.1.2.
Suppose that each interval I,,, in Theorem 4.1.1 is obtained from I, by
bisection. Then I N I; N I3 N - - - consists of a single point.

Exercises

. Show that in the proof of Theorem 4.1.1, L N, NI N - - = |a, B].
. Show that any interval in R must be one of the nine given types.

. Verify that the intersections in (4.1.1) and in (4.1.2) are empty.

BW N e

. The four (congruent) rectangles obtained by dividing a rectangle S; by the two
lines through its centre (in the obvious way) are obtained by subdivision of S;.
Formulate and prove a version of Theorem 4.1.2 for rectangles in the plane.

4.2 The Intermediate Value Theorem

Itis intuitively clear that a continuous function cannot pass between pos-
itive and negative values without passing through the value zero. We shall
now prove this and thereby obtain a sufficient condition for a continuous
function to have a zero.

Theorem 4.2.1: the Intermediate Value Theorem.

Let f be a real valued function that is continuous at each point of the
bounded closed interval [a,b). If y lies between f(a) and f(b), then there is
some point ¢ in [a,b] with f(¢) = y.

Proof

We may suppose that fla) < y < f{b), as the proof in the case where the
inequalities are reversed is similar. By considering f{¥) — y instead of f(x),
we may also suppose thaty = 0, fla) < 0, and f(b) > 0
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Now write ag = a, by = b, and let ¢y be the midpoint of [ay, bo]. Next,
we define the numbers a; and b, by

(i) a1 = ag and b, = ¢y if f{cy) = 0, and
(ii) ay = (¢ and bl = bo iff(CO) < 0.

Regardless of which of these holds, we then find that [a;, b1] C |[a, b]
and that fla)) < 0 < f{b;). We may continue this argument using [a;, b:]
instead of [ao, bo] and c; the midpoint of [ay, b1, and so on, and in this
way we obtain a decreasing sequence of intervals [a,, bx], each of which
is obtained from the previous one by bisection, with the property that
flan) < 0 < f(by).

By Theorem 4.1.2, the intervals [a,, b,] have exactly one point, say c,
in common, and a, = cand b, — c as n — 00. As f is continuous at c,
flan) = flc), and as fla,) < 0, we have f{c) < 0. Similarly, as b, — c we
have f{c) > 0, so that f{c) = 0 as required. |

We give one example to illustrate this result. The reader may care to
compare the proof of this with the (longer) proof of (the weaker) Theorem
2.3.3 that any positive number has a square root.

Theorem 4.2.2.
Every positive number a has a positive nth root.

Proof

Suppose thata > 0, and n is a positive integer. The polynomial p given
by p(x) = x" is continuous at every point of R, and p(0) < a < p(1 + a).
The Intermediate Value Theorem now implies that there is some ¢ in
[0, 1 + a] with ¢" = a; thus c is a positive nth root of a. n

Exercises

1. Show that every positive a has a unique positive nth root.

2. Show that every real polynomial of odd degree has at least one real root. Use
the bisection argument (on a computer) to find a real root of x* + 3x + 7 correct
to 3 decimal places.

3. Use a computer to find the positive cube root of 5 correct to three decimal
places.

4. Show that the real polynomial 2 + ax + b has two real roots if a®> > 4b.

5. Use the Intermediate Value Theorem to show that if a real-valued function f
is continuous at every point of an interval I, then f{I) is an interval. Deduce
that if f is continuous on an interval I, and if f(x) is rational for every x in I,
then f is constant on I. Is the same true if (%) is irrational for every x in I?



54 4. Bisection Arguments

6. Give an example of an open interval I and a continuous function f : I — R
such that f{I) = [0, 1).
7. Suppose that f : [0, 1] — R is continuous at every point of [0, 1].
(i) Show that if f{[0, 1]) C [0, 1] then f has a fixed point in [0, 1]; that is, there
is some x in [0, 1] such that f(x) = x.
[Hint: Consider f{x) — x at 0 and at 1.]
(ii) Show that if f{{0, 1]) D [0, 1] then f has a fixed point in [0, 1].

4.3 The Mean Value Inequality

We prove that if the derivative of a function is nonnegative on an interval,
then the function is increasing on that interval. As a corollary, we see that
a function whose derivative is identically zero is constant.

Theorem 4.3.1.
Suppose that the function f:I — R is differentiable at each point of an open
interval I, and thata € I, b€ I,anda < b.
) Iff'(x) < M for every x in I, then f(b) — f(a) < M(b — a).
(i) Iff'(x) > M for every x in I, then f(b) — f(a) > M(b — a).
(iii) If f'(x) < M for every x in I, then f(b) — f(a) < M(b — a).
@iv) Iff'(x) = M for every x in I, then f(b) — f(a) = M(b — a).

Proof
We suppose that f'(x) < M throughout I but that the conclusion in (i)
fails; then there are points a and b in I witha < b and

fib) - fa) = M(b — a). (4.3.1)
Let ¢ be the midpoint of [a, b]; then one of the inequalities
fB) - fle) 2 M(b — ©),  fie) - fia) = M(c — a)
must hold, since if neither of these holds, then
fb) - fla) = [fib) — flO)] + [f(0) — fla)]
< M( - c)+ M(c - a)
= M( - a),

contrary to (4.3.1). This shows that the inequality (4.3.1) is transmitted
from the interval [a, b] to one of the intervals {a, c] and [c, b] obtained
from [a, b] by bisection; we denote this interval by [a,, b,]. By repeating
this argument, we obtain an increasing sequence a, and a decreasing
sequence b,, where a, < by, both converging to a common limit xp in I,
such that for every n,

flbn) — Ran) = M(bn — an). (4.3.2)
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If a, = x, for infinitely many n, or if b, = x; for infinitely many n, we
can let n — oo in (4.3.2) and obtain f’(xy) = M, which is contrary to our
assumption.

Ifa, < x < b, forn > ny, say, then for each n, one of the inequalities

fibn) — fixe) = M(bn — x0), flxo) — flan) = M(x0 — an) (4.3.3)

holds, and clearly one of these must hold for infinitely many n. Letting
n — 00 we again obtain f'(xp) > M. The proof of (i) is complete, and (ii)
follows by applying (i) to the function —f(x) and using —M.

If f'(x¥) < M for x in I, then for every positive £ and every x, f'(¥) <
M + e. Applying (i) and then letting ¢ — 0 gives (iii), and (iv) is proved
similarly. |

Theorem 4.3.1 has the following useful extension. We recall that f is
increasing on an interval I if x < y implies that f{x) < f(y), and that f is
strictly increasing if x < y implies f{x) < f(y).

Theorem 4.3.2.
Suppose that the function f:I — R is differentiable at each point of an open
interval I, and thata € I, b€ I,anda < b.

@) Iff'(x) > 0 at each point of I, then f is strictly increasing on I.
(i) Iff'(x) < 0 at each point of I, then f is strictly decreasing on I.
(iii) Iff'(x) = O at each point of 1, then f is increasing on I.
(iv) If f'(x) < 0 at each point of I, then f is decreasing on I.

(V) Iff'(x) = 0 at each point of I, then f is constant on I.

Proof
Parts (i), (ii), (iii), and (iv) follow directly from Theorem 4.3.1 withM = 0.
Finally, (v) follows from (iii) and (iv). |

We end this section with the complex version of Theorem 4.3.2(v).

Theorem 4.3.3.
Suppose that f.C — C is differentiable and that f'(z) = 0 at every point z
of C. Then f is constant on C.

Proof
We write f = u+ iv, where u and v are real-valued functions of a complex
variable x + iy. Now, for any real x and x,,

U(x) — u(xo) fx) — flxo)
X — Xg X — Xpg

(because for any complex number { we have | Re[¢]l < |¢), and by letting
x — xo, we see that the real-valued function u(x) is differentiable on R

0=

<
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with u/(x) = 0 for every x. Thus, by Theorem 4.3.2, u is constant on R.
An entirely similar argument holds for the function x — u(x + iyp), for
any fixed yo; thus u is constant on each horizontal line in C.

Now let g(2) = —if(2) = v(2) — wu(2); then g'(2) = —if'(z) = 0 through-
out C, so by what we have just proved, v is constant on every horizontal
line in C. This shows that f is constant on every horizontal line in C.
Finally, let h(z) = f(iz). Then h'(2) = 0 for every z, so that h is constant
on every horizontal line. This means that f is constant on every vertical
line, so that finally, f is constant on C. |

Exercises

1. Use the function x* to show that the derivative of a strictly increasing function
may be zero at some point.

2. Suppose that f : R — R satisfies f(0) = 0 and f'(¥) = 1 for every x. Show that
for every x, f(x) = x.

3. Letf(x) = (1 +x)" — 1 —nx. Show that f is decreasing on (—1, 0) and increasing
on (0, +00). Deduce that if x > —1 then f(x) > f{0). Now consider Exercise
2.3.6.

4. Let f be defined by f(0) = 0, and for x # 0, f{x) = x + x* sin(1/x) [you may
assume familiarity with the function sin x here]. Show that f'(0) = 1, but that
f is not strictly increasing on any interval that contains 0.

5. Suppose that the complex-valued function f is differentiable on the set D,
where

D={x+iy:x > 0or y # 0},

and that f'(z) = 0 for every z in D. Prove that f is constant on D.
However, let u be defined in D by

x? ifx > 0;
u(x +iy) = { ¥ ifx<0andy > 0;
—x? ifx<0andy < 0.

Show (assuming a knowledge of partial derivatives) that

ou

dy
at every point of D, yet u(x + iy) is not independent of y.
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4.4 The Cauchy Criterion

Suppose that f is defined on a directed set (X, >) and that we wish to
show that lim, f exists. If we can guess the value, say ¢, of the limit, it is
usually easiest to estimate |f{x) — «| directly and so prove that {x) — «a.
However, there are many cases in which it is impossible to guess the limit
but in which we still wish to know that the limit exists; for example, we
may need to show that an infinite series converges even though we have
no idea of its value. In these cases we need a test for convergence that does
not depend on knowing the limit. The Cauchy Criterion is such a test, and
roughly speaking, it says that lim, f exists if and only if the variation of
f is arbitrarily small on some final segment X(xo).

Theorem 4.4.1: the Cauchy Criterion.
Suppose that f:X — C is defined on the directed set (X, > ). Then

(1) lim, f exists
if and only if

(i) for every positive &, there is some xp in X such that |f(x) — f(y)l < ¢
whenever x > xg and y > xp.

Proof

Suppose first that lim, f exists and equals «. Then, given any positive ¢,
there is an x in X such that |f(x) — a| < &/2 whenever x > xp. It follows
that if x > xp and y > xp, then

If) = )l < IRX) — el + le — flY)l < e/2 +¢&/2 =,

so that (ii) holds.

Now suppose that (ii) holds, and suppose also, for the moment, that
f is real-valued. First, we apply (ii) with ¢ = 1, so there is some x; such
that |[{x) — Ay)l < 1 whenx > x; and y > x;. Select any y withy > x;,
andleta; = fly) — 1, by = fly) + 1. Thus if x > x;, then f(X) € [a;, 1], or
equivalently,

(a) f maps X(x;) into [a;, b1] of length ¢, say.

As (ii) holds, there is some x; such that |f(x) — {y)| < ¢/3 whenever
x > x; and y > x;, and we may clearly assume that x, > x,;. If we trisect
the interval [a;, b, ] into three intervals [a1, ¢}, [c, 4], [d, b1 ] of equal length,
then we cannot have x > x;, y > x, f{x) € [a1, c], and f{y) € [d, 1] (for
then |f{x) — fy)| = €/3), so that f maps X(x,) into one of the two intervals
[a1,d), and [c, b1]. Thus there is a subinterval [ay, by] of [a4, by] such that
X2 > x, and

(b) f maps X(x;) into [ay, b;] of length 2¢/3.

The argument used to get from (a) to (b) can be repeated starting at
(b), and this yields a sequence x, in X such that f maps X(x,) into [a,, by],
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where
g <ap<---Lapn<-- by <---<bh < h,

and where lim a, = lim b, = ¢, say. Given any positive ¢, there is some
nsuchthatc — ¢ < a, < b, < ¢ + ¢. It follows that if x > x,, then
Iflx) — c| < ¢; thus lim, f exists and equals c.

It remains to show that (ii) implies (i) for complex-valued functions,
so suppose that f = u + iv, where u and v are real-valued functions. Now
if f satisfies (ii), then because

u) —u@)l = I - Yl @ - vl < Iftx) - ),

we see that both u and v satisfy (ii). Thus lim, u and lim, v exist, and so
too does lim, u + iv. ]

We have stated and proved the Cauchy Criterion, which is also known
as the General Principle of Convergence, for functions defined on an
arbitrary directed set, and we end this chapter by applying it to sequences
and infinite series. First, we rewrite the criterion explicitly in terms of
infinite series, then for sequences. We shall see in Chapter 5 that the
Cauchy Criterion provides a powerful test for the convergence of infinite
series.

Theorem 4.4.2: the Cauchy Criterion for infinite series.

The series Y e, an 0f complex numbers converges if and only if given any
positive g, there is an integer ng such that (a4 + - - - + a,| < & whenever
n>m2= ng.

Proof
This is a direct rewording of Theorem 4.4.1 when X = N and fin) =

ay+ .-+ ay.

Theorem 4.4.3: the Cauchy Criterion for sequences.

The sequence a, of complex numbers converges if and only if given any
positive &, there is an integer ng such that |a, — am| < € whenevern > m >
no.

Proof
Again, this is a direct rewording of Theorem 4.4.1. n

Exercises

1. Use the Cauchy Criterion to prove Theorem 3.6.4, that if a sequence of real
numbers is increasing and bounded above, then it is convergent.
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2. Use the Cauchy Criterion to prove that if f : (a,b) — R is increasing and
bounded, then the limits

g i 00
both exist.

3. Suppose that f is a function from (0, +00) to R. Show that
lim f(x)

Xx—>+00
exists if and only if given any positive ¢, there is a positive number R such that
Ifi®) — fly)l < e wheneverx > y > R.

4. Suppose that forn = 1,2,3,...,0 < a, < 1/2". Prove that }_, a, converges.
Now suppose that |b,| < 1/2". Show that }_, b, converges.



 Infinite Series

CHAPTER

Abstract

This chapter is devoted to a study of infinite series (both ordered and un-
ordered), absolute convergence, rearrangements of infinite sums, and double
series.

5.1 Infinite series

The definition of convergence of the infinite series

> an (5.1.1)

was given in Definition 3.4.2, and we begin by rewriting this without
mentioning a direction.

Definition 5.1.1.
The infinite series (5.1.1) converges to the number « if given any positive
¢, there is some integer ng such that

l(@+ar+---+ap) —a| <¢

whenever n > ny.
60
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If the series (5.1.1) converges to «, we write either of the expressions

o0
g+at+a+--=aq Zan=a.

n=0
Of course, a series may be the sum over any subset of the integers that is
bounded below, and providing that the range of summation is understood,
we often use the abbreviated form )", a,, or even just ) a,, for the series
(5.1.1). An infinite series diverges, or is divergent, if it not convergent. We
say that s, given by

spn=ap+a+---+ay

is the nth partial sum of the series, and the series converges to « if and
only if its sequence of partial sums converges to a.

It may come as a surprise to those meeting infinite series for the first
time that while we frequently need to know whether or not a given series con-
verges, we often have little or no interest in the actual value of the infinite sum;
in other words, the existence of the infinite sum is usually more important
than its value. Indeed, examples where we can obtain an explicit form for
the value of an infinite sum are very rare, and in most cases where the
value of the sum is important, we have to turn to computational methods
to obtain estimates of it.

It is obvious that if the series (5.1.1) converges to «, then the series a; +
a; + - - - converges to @ — ap. Repeating this, we see that the convergence
of an infinite series is unaffected by the addition, or the deletion, of a
finite number of terms. The inclusion, or the removal, of brackets in
an infinite sum is a little more complicated, and the problem here is
probably best explained by an example. Consider the series Y _,, a,, where

a, = [1 4+ (=1)] = 0 for every n. Clearly this series converges to 0.
However, if we write down the series as
a+a+az+---=[1+CFED+A1+CED]+HN+(ED)+--

and then remove the brackets [. . .], we obtain the series
1+ (-D+1+(C-D+1+(C-D+---,

which does not converge (for the sequence of partial sumsis 1,0, 1,0, .. ).
In short, we cannot remove brackets from an infinite series without some
Justification. 1t should be clear, however, that we can always introduce
brackets into a convergent series without destroying the convergence or
altering the value of the infinite sum. Indeed, the introduction of brackets
simply means that we are passing from a convergent sequence of partial
Sums to a sequence containing only some of the terms of the original
sequence, and this will necessarily converge to the same value.

Quite generally, if ) a, converges to @, thena, + - - - —a, — «, so that

=@+ - +ap))—(@+---+a,) >a—a=0.
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This shows that a, — 0 is a necessary condition for the convergence of
Y an. Thus, for example, )~ x" diverges when |x| > 1.

As the definition of convergence of the sum (5.1.1) is just a special
case of the general limit defined in Definition 3.3.1, it follows that the
general theorems about limits proved in Chapters 3 and 4 are applicable
to infinite series. For example, rewriting Theorem 3.5.2 in the context of
infinite series, we have the following result.

Theorem 5.1.2.
Suppose that Y_ a, and Y_ by, converge to a and B, respectively. Then for
any numbers s and t, the series Y (san + tby) converges to sa + tp.

As an example,
(2 1) N - N | 17
—t=)=2) =+ — =—.

If we apply Theorem 3.6.4 (that an increasing sequence of real num-
bers that is bounded above converges) to the partial sums of an infinite
series ), a, of nonnegative terms, we obtain the following primitive, yet
powerful, test for the convergence of an infinite series.

Theorem 5.1.3.
Suppose that for each n, a, > 0. Then Y_ a, converges if and only if there
is a positive M such that for each n,

a+az+ - +ag <M. (5.1.2)
Further, if this is so, then y_, a, < M.

This result justifies the use of the decimal expansion of a real number,
for it implies that any series of the form

Gn
., 5.1.3
%+ D o (5.13)
where ay € Z and the remaining g, are in {0, 1, ..., 9}, converges. This

follows from Theorem 5.1.3 because

a an 1
— PR — < a 9 — == 1
G+ o+t o St ,;,lok g +1,
and the value of the series in (5.1.3) is the value that we assign to the
infinite decimal expansion ay-a14a; . . ..
We shall often refer to Theorem 5.1.3 by saying that the partial sums
of the infinite series are bounded above. The following result illustrates the
use of Theorem 5.1.3, and it is an important example in its own right. In
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this example, we shall assume that we know what is meant by nk, where
k > 0 (this will be defined in Section 6.4).

Theorem 5.1.4.
The series

i 1 (5.1.4)
n=1

nk
converges if k > 1 and divergesif0 < k < 1.

Proof
The proof of divergence is based on the simple inequality

1 1 n+1 n 1 1
2n+1+“'+2n+122 - 27 n+1 =§'

This shows that

%1—1+1+(1+1)+ +(;+ +L)>Z
e T2 \3 4 21 41 2m 2’
and hence that )_ 1/n diverges. If 0 < k < 1, then

1 1

— < ——
n nk
so that (by Theorem 5.1.3) the series (5.1.4) also diverges for these k. For
an alternative proof of this part, see Exercise 5.1.7.

The argument for convergence is similar, for when k > 1,

1 LI 1 S22y
@iy Pty S @y ) S S \F)

so that the series converges when 2¥ > 2, thatis, whenk > 1. |

’

We have seen that if }_a, converges, then a, — 0. Example 5.1.4
shows that the converse is false, for }_ n~! is an example of a divergent
series Y _ a, in which a, — 0. Explicitly,

(i) if )_ an converges, then a, — 0, but
(i) a, — 0 does not imply that }_, a, converges.

We shall now state and prove several corollaries of Theorem 5.1.3.
Although these are used frequently, each is only a small step away from
the fundamental Theorem 5.1.3.

Theorem 5.1.5: the Comparison Test.
Suppose that for each n, 0 < a, < by, and that ¥_ b, converges to some
value B. Then )_ a, converges to some value A, where A < B.
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Proof

For eachn,a; +:---+a, < by +---+ b, < B, and the result follows
immediately from Theorem 5.1.3. A particularly simple case of this is
when there are constants £ and M with0 < £ < 1 and M > 0 such that
for each n, 0 < a, < M{". In these circumstances, Y a, converges. W

Theorem 5.1.6: the Ratio Test.
Suppose that Y a, is a series of positive terms, and that there is some £
with 0 < £ < 1 such that for each n, an41/a, < €. Then Y a, converges.

Proof

The hypotheses imply that a, < €"ap, and convergence follows by the re-
mark at the end of the proof of Theorem 5.1.5. Of course, as the alteration
of a finite number of terms in a series does not affect its convergence, it
suffices to assume that a,./a, < £ for all but a finite set of n. |

The following two examples illustrate these simple tests.

EXAMPLE 5.1.7.
We show that the series

gn(% +(—1)"-;-)n

ronverges. Writing a,, for the nth term, and noting that a, > 0, we have

On41 ___n+l .l_+(_1)"+11 < 5(n+1) 5_6_
an n 2 3 6n 7
when n > 35. The Ratio Test now implies convergence. O

ExAMPLE 5.1.8.
Consider the series

s n!
Zan, an = ;"

n=1
Clearly, for n > 2 we have 0 < a, < 2/n?, so that from Theorems 5.1.4
and 5.1.5, the series converges. Of course, we can if we wish obtain a
far better estimate of a, than a, < 2/n?, but if our only objective is to
establish convergence there is no need to do so. If we attempt to prove
convergence here by applying the Ratio Test, we obtain

-n
Qn41 = (1 + l) ,
an n

and the limiting behaviour of this will be discussed in Theorem7.2.3. O
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Tests for the convergence or divergence of infinite series in which some
of the terms are positive and some are negative are much more delicate. We
already have one such test, namely Theorem 4.4.2, which for emphasis
we restate here.

Cauchy’s Criterion for infinite series.

The series ag + a; + a; + - - - of complex numbers converges if and only if
given any positive €, there is an integer ng such that |am4y + -+ + anl < €
whenever n > m > ny.

The next test, known as the Alternating Series Test, depends crucially
on the terms in the series having alternating signs.

Theorem 5.1.9: the Alternating Series Test.
Suppose that the real numbers a, satisfy ap > a, > a; > --- > 0, and
that a, — 0 as n — oo. Then the series Z,";O( — 1)"a, converges.

Proof
Letsm =ap — a1 + az + - -- + (—1)"am. It is clear that
8] <8 <S8 =<--, 8 =8 =28 =",

for example, s; — ss = ag — a; > 0 and sg — s4 = ag — as < 0. Next,
observe that

81 < Sp+1 = Szp — Gpt1 < Szp < So,

so that the two sequences sy, sz, 84, - . . and sy, 83, S5, . . . both converge. As
S2p — S2p+1 —> 0, the two sequences have a common limit «, say, so that
Sp —> a as n — oo. The proof is complete. n

We end with an example to illustrate the Alternating Series Test.

ExamPLE 5.1.10.
The Alternating Series Test shows that for each positive k the series

o~ (D"

converges. O
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Exercises

1. Show thatif|a,| < M for each n, then the following two series are convergent:
I S

=2 oaEn

2. By considering a linear combination of the two series
X n 1

show that the first series converges to 2.

3. Show that the first of the three series

1 1 = 1
Z nn+1)’ Z nn+ ND(n+2)’ Z n(n + D(n + 2)(n + 3)

n=1 n=1 n=1

converges to 1. Evaluate the second and the third series.

4. Show that if |x| < 1 then

, %2 »2 %2 0 ifx = 0;
x° + =

T+2 T a2 T A+ T T 14 o< <.
This shows that an infinite sum of continuous functions need not be a continuous
function!

5. Show that for any complex numbers d and z,

1 - (1 + nd)z"™+! L -2

2, ... "
1+(Q+dz+(Q+2d)z" +---+ (1 +ndz" = = (1 - 2y

Deduce that if |z} < 1 then

1
14224322 +42%+ .- = —— .
+2z+32° +42° + a7

6. Use Cauchy's Criterion to prove the Alternating Series Test.

7. Use Cauchy’s Criterion to prove Pringsheim's Theorem, namely that if a; >

a; > --- > 0and if ¥ a, converges, then na, — 0. Deduce that ¥ n~!
diverges.
Show, more generally, that if ay > a, > --- > 0 and if a, > 1/n for

infinitely many n, then )_ a, diverges.

8. Suppose that0 < x, < 1forn = 1,2,.... Show that if )" x, converges, then
sodo Y x2 and ¥_ xn/(1 — x,). Are either of the converse statements true?

9. By finding a formula for the partial sums, show that if |x| < 1, then

if |x] < 1;

if (x| > 1.
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5.2 Unordered sums

As the definition of convergence of an infinite series ), a, includes the
phrase ‘n > ng', it depends explicitly on the usual ordering of N, and it
would perhaps be more natural (and honest) to refer to it as an ordered
sum. Unordered sums occur in probability theory, where one considers a
set Q of ‘events’, each with a probability, such that the the probabilities
sum to 1. Now usually there is no natural ordering on Q, so before we can
sum the probabilities, we have to construct an order on Q. This usually
presents no problem, except that it is then necessary to check that any
other ordering of  would yield the same sum (as otherwise, we would
have achieved nothing).

As we are concerned with elegance as well as truth, it seems unsat-
isfactory to have to introduce an order and then immediately show that
the order is irrelevant, and we prefer an alternative approach, which we
shall now develop, in which order plays no role at all. Given a nonempty
(unordered) set X and a function f defined on X, we shall define the
unordered sum

2.

xeX

The properties of addition of complex numbers guarantee that we can
add any finite set E of complex numbers, in any order, to obtain a unique
value. It follows that if f is a complex-valued function defined on a set X
and if E is a finite subset of X, then we can attach a unique value to the

finite sum
> f).

X€E

Now let §(X) be the collection of all finite subsets of X, and for any pair A
and B of finite subsets of X, define A > Bifand only if A D B. Then, as is
easily checked, > is a direction on S(X) and we can define the function
F:8(X) - Chby

FA) = ) _ ().

XEA

Definition 5.2.1a.

The unordered sum y_, .y f(¥) of f over X is the limit of F with respect to
> whenever this limits exists.

It is instructive to rewrite this definition without explicit mention of
the direction »>.
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Definition 5.2.1b.
The unordered sum Y, . f(X) exists and equals « if given any positive &,
there is a finite subset E of X such that

Y i) -«

XEA

< &

whenever A is a finite subset of X and A D E.

Immediately we see that if the two sums

d o, D e®

xeX xeX

exist, then for every pair of constants « and B,

Y lef) + BeD] =Y )+ B 8X)

xeX xeX xeX

in the sense that the sum on the left exists and equals the expression on
the right.

The reader will no doubt have noticed that we now have two different
definitions of infinite sums over the set N of positive integers, namely
the sum

> an (5.2.1)

defined in terms of the sequence of partial sums (and explicitly depending
on the order > on N) and the unordered sum

Y an (5.2.2)

neN

in which we are summing over the set N but deliberately ignoring the
order > on this set. We shall compare these two sums (which are not the
same; see Exercise 5.2.1) in the next section, but we ask the reader to be
patient, for this will be much easier after we have proved a few simple
results about unordered sums. We do emphasize, however, the difference
between the notation (5.2.1) for the ordered sum and the notation (5.2. 2)
for the unordered sum.

We end with three results about unordered sums, and we shall apply
these frequently in the rest of this chapter. Loosely speaking, the first
of these confirms in a very general way that if we do order X, then the
corresponding ordered sum is independent of the chosen order.
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Theorem 5.2.2.
Suppose that the unordered sum Y _ .y f(X) exists and equals a. Suppose
also that Ey E,, . . . is a sequence of finite subsets of X such that

oo
E,CE,CEC:--, UE,.:X.
n=1
Then
lim > f(x) (5.2.3)
n—-oo XGEn

exists and equals a. In particular, if F\,F;, . . . satisfies the same properties as
the Ey, then

lim flxy] = lim ] . (5.2.4)
fim | 2| = tim | O

Proof
Given any positive ¢, there is a finite subset K of X such that

Zf(x)—a <e

X€EA

whenever A is a finite subset of X with A D K. Clearly, there is some
integer N such that Ey D K. Thus, forn > N, E,, D K, and hence

Zf(x)—a < e

X€E,

This shows that the limit in (5.2.3) exists and equals a. Given this, (5.2.4)
is obvious. .

The next result gives a sufficient condition for an unordered sum to
exist.

Theorem 5.2.3.
Let X be any set, and let f:X — C be any function. Then the following are
equivalent:

(i) the sum ), ., f(x) exists;
(ii) the sum Y,y If (x)| exists;
(iii) there exists a constant M such that for every finite subset A of X,

2vea (A = M.

It is clear that this result has the following corollary.
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Corollary 5.2.4.
Suppose that the unordered sum y_, .y f (%) exists. Then for any subset Y
of X, the unordered sum Y, f(X) exists.

Proof of Theorem 5.2.3.

First, the equivalence of (ii) and (iii) follows from the general Theorem
3.6.3 on limits of functions that are monotonic with respect to a direction
>. To be explicit, write

F*(4) = )_If9).
X€EA
If B > A then B D A, so that F*(B) > F*(A). Thus, from Theorem 3.6.3,
the limit of F* exists (that is, the sum in (ii) converges) if and only if the
function F* is bounded above, and this is (iii).

We note that as (i) and (ii) are the same statement when f is nonneg-
ative (f > 0), the theorem has been proved for nonnegative functions.
This observation will enable us to show that (iii) implies (i).

We suppose now that f satisfies (iii) and write f = u + iv. As |u| < |f]
and |v| < If], it is clear that u and v satisfy (iii). Next, define the functions
ut and u™ by

1

ut(x) = -lz-(lu(x)l +u(®), u (@)= = (u@l - u®),

[\°8}

so that u(x) = u*(x) — u~(x) and
0 <ut(® < |lu)l, 0=<u () < |ux).

As u satisfies (iii), so do u* and u~. And as (i) and (iii) are equivalent for
nonnegative functions, we can now conclude that u* and u~ satisfy (i),

and hence that
Y ut@ =Y uw @ =) u®

xeX xeX xeX

exists. The same argument shows that the coresponding sum for v exists.

Thus, finally,
Z u(x) + iZ v(x) = Zf(x)
xeX

xeX xeX

exists. This proves that (iii) implies (i).
Next, we show that (i) implies (iii). From (i), there is a number « (the
value of the sum) and a finite subset K of X such that

DA -«

x€B

<1
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when B is finite and B O K. Now take any finite subset A of X and let

At ={xe A:x €K flxX) =20},
AT ={xeA:x €K, fx) < OL

As f(x) > 0 when x € A*, and as A* and K are disjoint, we have

YRl =) 9
x€At XEA™
=2 -2 f®
x€A*UK xeK
< Z ) —a| + a—Zf(x)
x€A*UK xeK
< 2.

A similar argument holds for A~, so finally, we have

Yl < Y IRl

X€EA x€KUA
= Y IO+ DI+ Y Ifx)
X€EA* xeK X€A™
<4+ ) If9
xeK

<5+ |al.
This shows that (i) implies (iii), and the proof is complete. n
Exercises

1. Let X = Nandletf : X — R be defined by f{n) = (—1)'/n. Show that the
sum (5.2.1) exists but that the sum (5.2.2) does not.

2. Suppose that a;, az, . .. are such that }_, |a.| converges. By appealing to The-
orem 5.2.3 and then taking E, = {1, 2, ..., n} in Theorem 5.2.2, show that the
sum ), a, converges.

Show that

at+a+as+az3+as+ag+as+---
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converges and equals a; + a; + a3 + - - -. Formally, we define a function ¢ :
N —» Nby

@(3n) = 4n;
eBn+1)=2n+1,
o(Bn+2) =4n+ 2.

Show that ¢ is a bijection of N onto itself, and convince yourself that the series
given above is ay1) + ap2) + dpay + -+ -

3. Show thatif0 < a < 1and 0 < b < 1, then the unordered sum

am bll
(m,n)eNxN

exists. What is its value?

4. Let Z denote the set of integers. Show that the unordered sum
1

2 2
(mn)eZxZ m# +n®+1

diverges.
5. Show that the sum
1
(m,n)eNxN (mz + nZ)k

converges if and only if k > 1. What can you say about the sum
1

2 2 2)k
(mn,p)eNxNxN (m +n +p)

5.3 Absolute convergence and
rearrangements

Many tests for convergence of a series apply only to series with nonneg-
ative terms. If some of the terms in a series )_ a, are negative, we can
apply these tests to the modified series Y po, las|, and in this section we
shall see why this is a useful thing to do.

Definition 5.3.1.
We say that the infinite series ) ., an is absolutely convergent if the series
Y >, lan| converges.

We begin by comparing the following three forms of convergence of
infinite sums over the set N of positive integers. First, we have the ordered
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sum
Y an. (5.3.1)

This is defined in terms of the sequence of partial sums and depends
explicitly on the ordering > on the integers. Next, we have the ordered
sum of absolute values, namely

o0
Y 1anl, (5.3.2)
n=1

which is used in the definition of absolute convergence. Finally, we have
the unordered sum

> an (5.3.3)
neN

in which we are summing over the set N but deliberately ignoring the
order >. The relation between the three series is given in the next result.

Theorem 5.3.2.
The two sums

Y an, Y lanl (5.3.4)
neN n=1

are both convergent or both divergent. If they are both convergent, then
Y ro | an is also convergent,

i an =) an, (5.3.5)

n=1 neN
and
o0 o0
Y an| =) lanl. (5.3.6)
n=1 n=1
Proof

Theorems 5.1.3 and 5.2.3 show that the sums in (5.3.4) converge or di-
verge together, for they are both equivalent to the existence of some
constant M such that for all n,

lai] + lazl + - - - + lan| <= M.

Suppbse now that the sums converge. Then we may apply Theorem 5.2.2
with

X=N, E,=(1,2,...,n, fin)=an
and this gives (6.3.5).
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Finally, for any numbers a;, a, . .., a,,
lar + -+ ap| < lal + -+ lanl.

Now by definition,
o0
larl + -+ + lanl > Y lanl,
n=1
and from Theorem 3.3.9,

lay + -+ anl —

n=1

The inequality (5.3.6) now follows because inequalities involving < are
preserved under limits (see Theorem 3.6.1). ]

The following result is an immediate consequence of Theorem 5.3.2
(see also Exercise 5.3.5).

Theorem 5.3.3.
An absolutely convergent series is convergent.

An ordered series may be convergent but not absolutely convergent, and
such a series is said to be conditionally convergent. The reason for this
name is that if }_ a, is conditionally convergent, then the unordered sum
associated with it does not converge; thus the convergence of }_ a, is
conditional on the particular order in which the a, are summed. The
following example illustrates this point.

EXAMPLE 5.3.4.
Consider the series

] 1+1 1+1
2 3 4 5 '

We know that this series converges and that it is not absolutely convergent
(see Example 5.1.10 and Theorem 5.1.4). According to Theorem 5.3.2, the
unordered sum
> EF
n

neN

must diverge, and it is easy to see directly that this is so. Indeed, as }_ 1/n
diverges, given any positive K, there is a finite set of (positive) terms of
the series whose sum exceeds K, so that the unordered sum does not
exist. ’
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Suppose that we now form the ordered sum but take the terms in a
different order; for example, let us form the series

1 1 1 1 1 1

Let s, be the sum of the first n terms of the original series, and let o, be
the sum of the first n terms of the modified series. Then

. _:{:‘ 1 1 1 )
T \2k+1  4k+2  4k+4

=i 1 1
=2 (2(2k+ 1) 2(2k+2))

k=0
1

- 82,1.
2

As 0n41 — 0, — 0, it is now easy to see that the modified series converges
to a value that is half that of the original series! This is a general phe-
nomenon; if we sum the terms of a conditionally convergent series in a
different order, we may well get a different answer! O

We turn now to a more careful discussion of this phenomenon and dis-
cuss what we mean by a rearrangement of an infinite series. Informally,
a rearrangement of the infinite series

a+a;+as+--- (5.3.6)

is simply the ordered infinite sum obtained by placing the terms of the
series in a different order. For example, if for every odd integer n we
interchange n and n + 1, we arrive at the rearranged series

a+a+as+az+---. (56.3.7)

We emphasize that in a rearrangement, we are summing the same function
n — a, on N, but we are placing a different direction (or order) on N; in
the case of (5.3.7), this directionis 2 < 1 < 4 < 3 < -.-. There is no
reason to suppose that a series and a rearrangement of it converge or
diverge together, nor that if they both converge their sums are equal. In
fact, neither of these need be true; there are examples of a convergent
series with a divergent rearrangement, and examples of a series and a
rearrangement of it that converge to different values. The good news is
that if a series is-absolutely convergent (equivalently, and preferably, if the
unordered sum exists), then the series, and every rearrangement of it, converge
to the same value, namely the value of the unordered sum.

The conventional treatment of this topic in texts on analysis avoids
reference to unordered sums, but as we have just seen, these do have
a part to play, Indeed, it is the value of the convergent unordered sum
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that plays the key role here, and an ordered sum, taken over any order
whatsoever, always converges to this fundamental value.

A formal definition of a rearrangement of a series follows. After that,
we state and prove the invariance of the sum under rearrangements.

Definition 5.3.5
A series by + by + b3 + - - - is a rearrangement of the seriesa; +ax +az + - - -
if there is a bijection ¢ of N onto itself such that b, = agn,.

Theorem 5.3.6.
If a series Y ov | an is absolutely convergent, then every rearrangement of
it converges to the same value, namely the value of the unordered sum.

Proof
Let the rearrangement be given by the bijection ¢ : N — N, and let

E,=1{1,2,...,n}, Fn=1{¢6(),¢Q2),...,¢(n)}

As these sets satisfy the conditions of Theorem 5.2.2, the desired result
follows immediately from this theorem. u

We end this section by mentioning a result that shows the striking
effect of rearranging conditionally convergent series. We omit the proof
(which is not difficult).

Theorem 5.3.7.

Suppose that the series Y a, is convergent but not absolutely convergent.
Given any real number «, there is some rearrangement of 3 a, whose sum is
a.

In short, by suitably rearranging a conditionally convergent series (for

example, }_(—1)"/n), we can force the sum to be x, or ﬁﬁ, or whatever
we want! An example of this behaviour was given in Example 5.3.4, and
another occurs in Exercise 5.3.2.

Exercises

1. Let s be the sum of the series

]1+11+1
2 3 4 5

The point of Example 5.3.4 would be lost if s = 0. Show that s # 0.

2. Show that the series
1 1 1 1 1
1,+'3-—§+E+';"z+'”
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converges to the value 3s/2, where s is given in Exercise 5.3.1.
3. Construct a rearrangement of the series in Exercise 5.3.1 that diverges.

4. We know that the series Y (—1)"/n is convergent but not absolutely
convergent. Show that the series }_(—1)"/n" is
(i) divergent if and only if t < 0;
(ii) convergent if and only ift > 0;
(ii) absolutely convergent if and only if ¢t > 1.

5. Give a direct proof of Theorem 5.3.3 (that an absolutely convergent series is
convergent) by applying Cauchy’s Criterion (Theorem 4.4.2) to the inequality

[@m + Amyr + -+ + anl < |G| + |Gnga] + - + |an].

6. Let )_, an be a series of real numbers, and define
+_ 1 - _1
a, = '2° (Ianl +an), a,= "2' (Ianl - an)'

Show that }_, a, is absolutely convergent if and only if both of the ordered
sums )_, at and ), a; converge.

5.4 The Cauchy Product

We are concerned here with the question of whether or not
(a0 + a1x + azx* + - - Y(bo + bix + byx* + - - )
= (aobo) + (aob1 + a1bo)x + (aoby + aiby + azbo)x* + - - -, (5.4.1)
or, more generally, whether for given series 3, a, and Y, by,
(@+a+ay+az+--Ybo+bi+by+by+---)
= (aobo) + (aob1 + a1by) + (aoby + ar1by + azbg) + ---.  (5.4.2)
The series on the right-hand side is the Cauchy Product of the two series

on the left.

Definition 5.4.1.

The Cauchy Product of the seriesag +a; +ax +---and by + by + by + - - -
is the series

o0
Z Cn, Cn = Ggbp + a1bp_1 + - - - + anby. (5.4.3)

n=0

We shall discuss (5.4.1) later in the text and concentrate now on (5.4.2).
However plausible (5.4.2) may seem, it may be false, and we begin with
an example of this type.
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EXAMPLE 5.4.2.
Let a, and b, be given by

an = b, = ) n=0,1,2
n—n—m, =0,1,4,....
The Alternating Series Test shows that the series )_ an, and }_ b, converge.
However, for each m we have
m
1
aobm + aibm—1 + -+ - + am_1by + ambp = (=1)" .
obm + ai1bm—1 m-1b1 + ambo ();x/k+l\/m—k+l
The Arithmetic-Geometric Mean inequality (namely that if x > 0 and
y > 0, then (x — /§)? > 0, so that x + y > 2./xy) shows that

Wk+1vm—k+1<m+2.

Thus
2(m+1
'aobm + a]bm_] + ct + am_]bl + ambol Z L—) 2 l’
m+ 2
and it follows from this that the Cauchy Product diverges. a

The example in Exercise 5.4.1 is one in which the two series ), a, and
3", bn diverge but their Cauchy Product converges. The same example
gives an instance in which the Cauchy Product converges, yet the series

agbg + aghy + a1bg + aoby + a1by + azbg + - - - (5.4.49)

diverges, and this emphasises the fact that the series (5.4.4) is not the
Cauchy product of the two series (the reader may recall earlier comments
about removing ‘brackets’ from convergent series). Despite these negative
examples, we expect (5.4.2) to hold in some circumstances, and indeed it
does.

Theorem 5.4.3.
Suppose that the series

i an, i Dn (5.4.5)

n=0 n=0
are absolutely convergent and that their sums are A and B, respectively. Then
their Cauchy Product

ch, Cn = aobn + a1bn-1 + - - - + anbo,
n
is absolutely convergent and its sum is AB.

Proof
We consider the set

X={mn:mn=2012,..}
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and the function f : X — C defined by f{im, n) = a,b,. Because the
series in (5.4.5) are absolutely convergent, Theorem 5.2.3(iii) implies that
Y vex fX) exists. Now let

Ry={(mn):0<m=<p, 0=n=<p}, Tp={mn):0<m+n=<gq}

It is clear that these sets satisfy the hypotheses placed on the sets E, in
Theorem 5.2.2, so that

lim Z f(m, n)_hm Z flm, n).

p=o0 (m,n)eR, (m n)eT,
The desired result now follows, as

D> fimn)=(ao+ - +an)(bo+ -+ by),

(m,n)eR,

which tends to AB, while

Y fimmn)

(mn)eT,

is just the partial sum of the Cauchy Product of }_ a, and }_ by. |

We end with a simple application of Theorem 5.4.3. We know that if
|z] < 1, then

00
2 "=

=0

It follows that

1 2
( ) =1+2z243224---,
1-2z

because the expression on the left must be the Cauchy Product }_ ¢, of
Y z" with itself, and

en=2"2"+2'2"T + .+ 2"+ 220 = (n+ 1)2"

Exercises

1. Show thatifap = 2, bp = —1, and, forn > 1, a, = 2" and b, = 1, then }_ a,
and ¥ b, diverge, whereas thelr Cauchy product converges. Show also that in
this case the series (5.4.4) diverges.

2. Express (1 — 2)73, where |z| < 1, as a series ap + @12 + apz* + - - -

3. Show that (5.4.1) holds if || < 1 and if for some constant M and all n, |a,| < M
and |b,| £ M.
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4. Assuming that both of the series converge, show that

oo 00
1-% Z Spx" = Z anx",

n=0 n=0
where s, = ag + a; + --- + a,. This shows that if 0 < a, < 1and0 < x < 1
then
Yoeo(@o +ar + - +ax" 1

= =
o AnX" 1—x

and so is independent of the choice of the a,,.
Assuming now that the series are absolutely convergent, verify this result
by considering the Cauchy Product of }_ a,x" and }_ x".

5. Find the Cauchy Product of 3" ; 1/(2" n!) with itself.

5.5 Iterated sums

Suppose that a,,,, is defined when m and n are in N. It will be helpful to
visualise these numbers arranged in an array as follows:

an anz a3
a; Q4 ax

as as; ass (5.5.1)

Leaving aside questions of convergence for the moment, we ask whether
or not the two iterated, or repeated, sums

> (Z “mn) Y (Z amn) (5.5.2)
m=1 \n=1 =1 \m=1

are equal. This is the same as asking whether or not summing over the
rows in (5.5.1) and then adding the results is the same as summing over
the columns and then adding these results. To persuade the reader that
there is work to be done, we begin with an example in which the two
sums in (5.5.2) are not equal.

EXAMPLE 5.5.1.
Let the infinite array of the an, be as follows:

-0 = O
o=~ OO0

coc~=o
|
=
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The sums over the first, second, ... columns are —1, 0, 0, . . ., respectively,
so that the second sum in (5.5.2) is —1. Likewise, the first sum in (5.5.2)
is 1. Thus in this case, and despite the fact that all of the first sums reduce to
finite sums, the two sums in (5.5.2) are not equal. O

We come now to a positive result.

Theorem 5.5.2.

Given numbers ay, where mn € {1,2,...}, suppose that there ex-
ists a positive number M such that for all finite sets of pairs (m,n), say
{(mi,m), . .. ,(Mk,nk)}, we have

|am1,n1' + -+ |amk,nk! < M. (5.5.3)
Then
o0 o0 o0 [o¢]
) ( am.n) =y (Z am,n) : (5.5.4)
=1 \n=1 n=1 \m=1
Proof

By Theorem 5.2.3, (5.5.3) is equivalent to the convergence of the
unordered sum

Amn-
(m,n)eNxN

Thus, if this sum is «, say, then given any positive ¢, there is a finite
subset, say K = {(u1, v1), . . . (4r, vr)}, of N x N such that

Z Amn — €| < €

(mn)eA

whenever A is a finite subset of N x N with A D K. It follows that if p and
q exceed each y; and each v;, then

{((mn):0<m=<p 0<n<gqg} DK,

so that
2 q
S amn) —ef <&
n=1 \m=1
For each n in the finite set {1, 2, . . ., p}, the bracketed term converges (as

g — o0) to the infinite sum Y - _; amn, so by the linearity of limits over
finite sums, we obtain

< e&.

£ ($on)

n=1 m=1
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This shows that the sum on the right-hand side of (5.5.4) converges to the
value a. The same argument shows that the other sum does too, and the
proof is complete. |

Exercises
1. Show that if |z] < 1, then

0 nz" 0 "
Z 1 —2z" _Z (1_2;1)2

n=1 n=1

[Hint: express one series as a repeated sum and justify the interchange of order
of summation.]

2. Show that if |z] < 1, then
8 1622 + 242° o 8 82> + 8z

1-2 1422 1-2 T (=22 (1+2z2)2 0 (1 - 28

3. Let amy = (—=1)"*"/(mn), where m,n = 1,2,.... Show that the unordered

sum
Z Ann

(m,n)eNxN

4+

fails to exist, but that
N N
131_1:120 mz=1 ; QAmn, ,,Z._:l (Z amn) ) nz_: (}; amn)
all exist.

4. Let > be the lexicographic order on N x N, so that (m, n) > (p, q) if and only
ifm > p,orm = pandn > g. Show that the function f : N x N — C given
by f(m, n) = an » tends to a limit with respect to > if and only

5 (5 an)

n=1 \m=1

exists.



 Periodic
- Functions

CHAPTER

Abstract

In this chapter we combine the ideas developed so far to put the theory of
the exponential, logarithm and trigonometric functions on a firm analytic
foundation. With these, we can define the argument and the logarithm of a
complex number.

6.1 The exponential function

We define the function exp : C — C by the series

o0 2z ZZ Z3
expz=nz=:0;?=1+z+—z-!-+§!~+-~, (6.1.1)
where by definition, 0! = 1. If z # 0 and if n is sufficiently large, then
n+1
< jz|"*/(n+ 1) _ |z| < _l_’
- 1z|"/n! n+1 2

so that by the Ratio Test, this series is absolutely convergent, and hence
convergent, for each z in C. The number e is defined by

_ l—wl—l ] 1 1
€ = exp —HZ;;!—- + +§E+§E+"',

and e = 2:7182.... The series (6.1.1) is sometimes denoted by €. How-
ever, later we shall define what is meant by a? (a ‘to the power’ b), and

83
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this definition will then assign a value to €. It is then a theorem that (in
a certain sense) €€ = exp z, so it seems best not to confuse the issue now
by referring to the series in (6.1.1) as €.

Our first result is that the function exp is differentiable, and therefore
continuous, at every point of C.

Theorem 6.1.1.
The function exp is differentiable, and hence also continuous, at each point
of C. Further, for each z, exp’ (2) = expz.

Proof

We need a simple inequality that is based on the Binomial Theorem. Take
any complex numbers a and z and suppose that |z| < 1. Then, using the
Binomial Theorem,

l(a+2)" —a" - nza"'| =

zn: (:)Zkan—k

k=2

2 (n
< 2Py (k) la|"~

k=2

< 1221 + lal)".
This inequality implies that if z # 0 and |z| < 1, then

@+ —a"
- Z nlz Z(n_l)u

Z (a+2)" —a™ — nza"!
n! z

exp(a +z) —expa
z

—expa

(e 1
< — n
< § : — (1 +lal)
< |zl exp(1 + lal).

As |z) exp(1 + |a]) = 0 as z — 0, the proof is complete. |

The next result in this section is one of the really important results in
analysis, and we give two quite different proofs.

Theorem 6.1.2.
Forallaandbin C, exp(a + b) = expa expb.
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The first proof.
We define a function F by

F(2) = exp(a + b + z) exp(—2).

A calculation shows that F'(z) = 0 for all z, so that by Theorem 4.3.3, F
is constant on C. As F(0) = exp(a + D), we see that for all z,

exp(a + b + z) exp(—z) = exp(a + b),
and the result follows by letting z = —b. |
The second proof.

As the series for exp a and exp b are absolutely convergent, we have (from
Theorem 5.4.3)

o0
expa expb = ch,

n=0

where Y _ ¢, is the Cauchy Product of the two series. As

_ n ak bn—k _ (a+b)"
C"‘é(?&)((n-k)!)’ o

the stated result follows. ]

Corollary 6.1.3.
For all complex z, exp z exp ( — z) = 1. In particular, exp z # 0.

Proof
The identity follows from Theorem 6.1.2 whena = zand b = —z, and it
shows that exp z # 0. ) |

It is clear that if x is real, then expx is real, and the next result
summarises the main properties of the function exp : R - R.

Theorem 6.1.4.
The function exp :R — R is a strictly increasing map of R onto (0, + 00).

Proof
The definition of exp shows that if x > 0, then expx > 1. This in turn
shows that if t > 0, then

exp(x +t) = expxexpt > expx,
so that exp is strictly increasing on R. Next, for all real x,

expx = exp(x/2) exp(x/2) = [exp x/2]* > 0
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because exp(x/2) # 0. Finally, ify > 0, then
exp(—1/y) < y < expy

(see Exercise 6.1.1), so that from the Intermediate Value Theorem, there
is some x in [—1/y, y] such that exp x = y. This completes the proof. W

The complex version of Theorem 6.1.4 is deeper, and we state this now
although we shall have to defer completion of the proof until later.

Theorem 6.1.5.
The function exp maps C onto {z € C:z # 0}.

Proof

Let C* = {z € C : z # 0}. We have seen that for any z, exp z # 0, so that
exp certainly maps C into C*. Further, it is easy to see that if w € exp(C),
then {tw : t > 0} C exp(C). Indeed, w = exp 2, say, and by Theorem
6.1.4, there is some r with expr = t, and then

exp(r + zp) = exprexpzo = tw.

1t would be sufficient, then, to show that the circle C given by |w| = 1
lies in the image of exp, but this is not so easy. n

It is not hard to see that | exp z| = 1 if and only if z = if for some real
0, so that exp maps the imaginary axis into C. We have to work harder
to show that exp actually maps the imaginary axis onto C, and again this
is a problem about the argument of a complex number. However, we
record that the proof will be complete once we know that exp maps the
imaginary axis onto the circle C.

Exercises

1. The definition of expy shows that if y > 0 then y < expy. Deduce that if
t > Othent > exp(—1/¢t).

2. Show that if x is real, then expx > 1 if and only if x > 0.
Suppose that z = x + iy. Show that

|expz| = expx, €XpZ = expz.
Deduce that | exp z| = 1 if and only if z = if for some real 6.

3. Let k be any positive integer. Show that there is some x such that expx > x*
when x > xx. Deduce that x™* expx — 400 asx — +00.

4. Suppose thaty > 0, and let x be the unique real number such that expx = y
(see Theorem 6.1.4). For t > 0 define y' = exp(tx). Show that
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(l) ytys - yt+s;
() @) =y*
(i) ¥° = 1;
(iv) ift, — t, where t > 0, then y" — y' asn — oo.

6.2 The trigonometric functions

The elementary approach to trigonometric functions in terms of angles is
unsatisfactory for a variety of reasons. For example, it requires us first to
define what we mean by an angle and then learn how to measure angles
(which we would normally do by using calculus to measure lengths of
curves). We shall now consider the trigonometric functions sin and cos
defined analytically (on the complex plane, and without any reference to
geometry) by the infinite series

sinz:z—§?+§—7!+~- (6.2.1)
and
z2  z4 8
cosz=l—z+z!-—a+---. (6.2.2)

These series converge absolutely for all z (by comparison with the series
for exp |z|). One of the great advantages of using complex numbers here
is that we have the following identities available to assist us in our study
of trigonometric functions of a real variable.

Theorem 6.2.1.
For all complex numbers z,

1
sinz = % [exp(iz) — exp(—iz)]; (6.2.3)

1
cosz = o [exp(iz) + exp(—iz)]; (6.2.49)
exp(iz) = cosz + isinz. (6.2.5)

Proof
Clearly, (6.2.3) and (6.2.4) follow immediately from the definition of sin,
cos, and exp as series, and these imply (6.2.5). For example,

exp(iz) + exp(—iz) X zM" [ 14 (-1)"
2 T &= 2

n=0

] = COSs Z.



88 6. Periodic Functions

Many of the familiar properties (from elementary accounts) of the
real functions sin and cos can now be proved without effort and also for
complex values.

Theorem 6.2.2.
The functions cos and sin are differentiable on C, and for all z, sin’ (z) =
cos z and cos’ (z) = sin z.

Theorem 6.2.3.
For all complex numbers z and w,

sin(w + z) = sinwcosz + coswsinz
cos(w + z) = Cos W cosz — sin wsin z.

Also, for all z, cos? z + sin® z = 1.

The proofs are by algebraic manipulation. Theorem 6.2.2 follows di-
rectly from Theorem 6.1.1, (6.2.3), and (6.2.4). The addition formulae in
Theorem 6.2.3 are immediate consequences of the addition formula for
exp and (6.2.5). For example,

4i(sin w cos z + cos w sin 2)
= [exp(iw) — exp(—iw)][exp(iz) + exp(—iz)]
+ [exp(iw) + exp(—iw)]exp(iz) — exp(—iz))],
and this readily simplifies to 4i sin(w + z). Finally, the last statement in
Theorem 6.2.3 follows directly from (6.2.3) and (6.2.4). For an alternative
proof of this, see Exercise 6.2.4.

In the next section we shall discuss the zeros of sin, a definition of 7,
and the periodicity of sin, cos, and exp.

Exercises

1. Show that for all complex z, cos(—z) = cos z, sin(—z) = — sin z, and
sin2z = 2sinzcosz, cos2z = cos? z — sin® z.
2. Prove Theorem 6.2.3 by considering the Cauchy products of the series.

3. Prove Theorem 6.2.2 directly by using the same argument as in the proof of
Theorem 6.1.1.

4. Show that sin? z + cos? z has derivative zero throughout C, and deduce that
for all z, sin? z 4+ cos?z = 1.

5. Prove De Moivre's Theorem that for every complex z,

(cosz + isin 2)" = cosnz + isinnz
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Deduce that if 8 is real, then
cos nf = Re[(cos @ + isin 6)"].
By using the Binomial Theorem, show that
cos nf = P,(cos6),

for some polynomial P, of degree n.
Express cos 46 as a polynomial in cos 6.

6. Suppose that 8 is real, and let w = exp(if). Show that
€080 + €020 + - - - + cosnf = Re[w + w? + - - + w").

By summing the series on the right, show that
sin(n + 1)
1 +2[cos + cos 20 + - - - + cos nf] = ——L—Tl)—
sin 50

7. Exercises 6.2.5 and 6.2.6 give information about the function cos. Find and
prove the corresponding results for the function sin.

8. To what extent are the statements in Exercises 6.2.5, 6.2.6, and 6.2.7 true for
complex values of 6?
9. The hyperbolic functions sinh and cosh are defined as follows:
inh z = 2 2P 7 bl z2 z5
sin z—z+§+-5—!+;?+~-, coshz = +E+:ﬁ+a+~~.
Prove that both of these series are absolutely convergent for all real z and that
for all real z,
(i) coshz + sinhz = exp z;
(ii) cosh(—z) = cosh z, and sinh(—z) = —sinh z;
(iii) sinh’(2) = cosh z and cosh'(2) = sinh z;
(iv) cosh?z — sinh?z = 1.
10. Show that if z = x + iy, then
| cos z|? = cos? x + cosh? y;
| sin z|? = sin? x + sinh? y.

Deduce that given any positive k, there is a positive yo such that if |y| > yo,
then | sin(x + iy)| > kand | cos(x + iy)| > k.

6.3 Periodicity and &

How should we define n? We could use either of the known formulae

P 1 1 1 ? 1 1 1 1

=1l — =4 = = = 4... — = = = 4 = 4 ...

3 35Tyt FecEtatataet
(see Chapter 11), or we could use geometry and define 7 as the angle

sum of a triangle, or perhaps as the length of the circumference of a
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circle divided by the length of its diameter. In fact, the best way is to
avoid lengths and angles altogether and to define w in terms of the zeros
of the function sin. As the zeros of sin are intimately connected with the
periodicity of the functions sin, cos, and exp, we shall at the same time
establish their periodicity. Before following this path, we remark that it
is not at all obvious that sin has any zeros (apart from 0).

Theorem 6.3.1.

There is a positive number, which is denoted by mt, such that for all real x,
sinx = 0 if and only if x is an integral multiple of n. Further, for all real x,
sin (x + 27) = sin x and cos (x + 271) = cos x.

Proof
If0 < x < /6, then

X x> X
sinx = x—a + il +--- >0,

X2 x4 Xﬁ x8 XZ x4
cosx=1—-— — 4+ — -] ——-—}—-— . <1 = — 4+ —.

and

2! 4 6! 8!

This shows that cos +/6 < —1/2, and as cos 0 = 1, the Intermediate Value
Theorem implies that cos has at least one zero in the interval (0, v/6).
However, as

cos’x = —sinx < 0

when 0 < x < /6, cos is strictly decreasing in this interval, so that cos
has exactly one zero, say n, in the interval (0, «/5), and cosx > 0 when
0 < x < n. Assinn > 0 and sin® n + cos? n = 1, we see that sinn = 1,
and the addition formulae now show that

cos2n = -1, sin2n =0, cos4n=1, sin4n=0. (6.3.1)
Now, if 0 < ¥ < n, thensinx > 0 and
sin(x + n) = cosx > 0.

It follows that sinx > 0 when 0 < x < 2p and sin 2y = 0; thus 2n is the
smallest positive zero of sin.

We now define w by w = 2n. Then the periodicity of cos and sin follows
immediately from the addition formulae and (6.3.1), and it is easy to prove
by induction that for every integer n,

sinnt =0, cosnm = (-1)".
Finally, if nm < ¥x < (n+ 1)r, then sinx # 0, for
0 < sin(x — nx) = sinxcosnwr = (—1)"sinx,

and this completes the proof. |
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We remark that the familiar features of the graphs of sin and cos are
now available to us. Indeed, on the interval [0, 7/2], sin x increases from
0to 1, and cos x decreases from 1 to 0. With this information, and the fact
that sin(/2) = 1 and cos(w/2) = 0, the addition formulae provide the
general features of the graphs in the range [7/2, 27], and the rest follows
by periodicity.

We turn now to a discussion of the corresponding properties for cos
and sin as functions of a complex variable. First we show that the zeros of
sin in C are precisely those that we have already found in R, and after that we
examine the periodicity of these and the exponential function. In general,
the complex number w is a period of the function f if fz + w) = f(2) for
all complex numbers z. It is clear that 0 is a period of every function and
that the set P(f) of periods of f is an additive group (that is, the sum and
difference of periods of f are also periods of f).

Theorem 6.3.2.
The zeros of sin in C are nrw, where n € Z.

Theorem 6.3.3.
The set of periods of the functions sin and cos is {2nm:v: € Z). The set of
periods of exp is {2nmi:n € Z).

Proof of Theorem 6.3.2.
It is sufficient to show that if z € C and sinz = 0, then z is real. To do
this we introduce the hyperbolic functions sinh and cosh on C by

exp(z) — exp(—2)

sinh z = —isin(iz) = 3

and

exp(z) + exp(—2)
2 ’

cosh z = cos(iz) =

and note that cosh? z — sinh®>z = 1. Now, ifz = x + iy, then
| sin z|> = | sin x cos(iy) + cos x sin(iy)|*
= | sin x cosh y + i cos x sinh y|?
= sin? x cosh? y + cos? x sinh? y
= sin® x(1 + sinh® y) + (1 — sin? x) sinh® y
= sin® x + sinh? y.

As sinh y is real when y is real, this shows that if sinz = 0, then sinhy =
0. Thus exp(2y) = 1, and as exp is strictly increasing on R, this shows
that y = 0 as required. |



92 6. Periodic Functions

Proof of Theorem 6.3.3.

First, the addition formulae (which are valid for complex numbers) show
that each integral multiple of 2x is a period of sin and of cos. Suppose
now that w is a period of sin. Then

0 = sin0 = sin(0 + w) = sinw,
so that w = nx for some integer n. It follows that
1 = sin(n/2) = sin(n/2 + w) = cosw = (—1)",

so that n is even and w is an integral multiple of 2. A similar proof shows
that each period of cos is an integral multiple of 2.

Finally, the addition formula for exp shows that exp is never zero and
that w is a period of exp if and only if expw = 1. Now, this is so if and
only if

exp(w/2) = exp(—w/2),

and this is equivalent to sin(w/2i) = 0. Theorem 6.3.2 now shows that w
is a period of exp if and only if w is an integral multiple of 2i. ]

Exercises

1. Verify that sin is increasing on [0, n/2], decreasing on [n/2,3n/2], and
increasing again on [37/2, 27).
2. Show that sin(n/6) = 1/2 and that cos(n/4) = 1//2.

3. Show that for all real x, coshx > 1.

6.4 The argument of a complex number

We begin with a definition.

Definition 6.4.1.
Suppose that z is a nonzero complex number. Then 6 is a value, or choice,
of arg z if and only if z = |z| exp(if).

We are not assuming here that 6 is real; it is, but this follows from this
definition.

Theorem 6.4.1.
The set of values of arg z is {6y + 2nm:n € Z} for some real 6.
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Proof
First, if ; and 8, are any two values of arg z, then
exp(ith) .
= —s = 6, — 67),
exp(i62) exp (% 2)

so that from Theorem 6.3.3, 6; — 6; = 2nx for some integer n. It remains
to show that there is one real choice of argz. As —1 < x/|z| < 1, the
properties of cos guarantee that there is a unique ¢ in [0, 7] such that
cos ¢ = x/|z|. From this we obtain

so that

|z} exp(—igp) ify < 0.

It follows that either ¢ or —¢ is a choice of argz, and the proof is
complete. |

l | exp(ig) ify > 0;

We end by showing that it is impossible to define a choice of the
argument that varies continuously with z on the unit circle. This is ge-
ometrically self-evident, and it is of great significance in the theory of
functions of a complex variable.

Theorem 6.4.2.
There is no continuous choice of arg z on the circle given by |z| = 1.

Proof
We suppose that for each z on the circle we can make a choice, say 6(z), of
arg z that varies continuously with z, and we shall reach a contradiction.
For each z with |z| = 1, we then have z = exp i6(2).

For each real t we write z(t) = exp(it), so that

exp(it) = z(t) = exp [ie(z(t))],
and from this and Theorem 6.4.1 we deduce that
t = 6(z(t)) + 2nN(),

where N(t) is an integer that may depend on t. Now as t — 6(z(t)) is a
continuous function of ¢, so too is N(t). As N(t) takes only integer values,
the Intermediate Value Theorem implies that it is constant, say with value
N, and this shows that

7 — 0(2(7)) = 2N = —n — 6(z(—n)).

This is false, as z(w) = z(~x), and the proof is complete. |
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Exercises

1. Show thatarg (1 + i) = n/4.

2. By considering (5 — i)*(1 + i) show (with a suitable interpretation of tan~') that

n a1 af 1
— = 4tan - ) —-tan — ),
4 5 239

where tan z = sin z / cos z. Give another proof of this using the formula
tana + tanb
tan(a + b) = I +

—tana tanb’
Prove also that

p 1 1
— =2tan"'{ = tan~f = ).
2 (3>+ (7)

3. Suppose that z = x + iy and that x # 0. Show that if 6 is a value of arg z, then
tan @ = y/x, but that not every solution of the equation tan ¢ = y/x need be a
value of arg z.

4. Suppose that 6, and 6, are choices of arg z and arg w, respectively. Show that
61 + 6, is a choice of arg zw.

5. Let n be an integer. Show that z" = 1 if and only if z = exp(2rik/n) for some
integer k.

6. Show that if n is a positive integer and if w # 0, then w has exactly n nth roots.

7. Show (in the proof of Theorem 6.4.2) that t — 6(z(t)) is a continuous function
of t.

6.5 The logarithm

We now define the logarithm, and the real powers, of a positive num-
ber. We know that exp is a strictly increasing map of R onto the interval
(0, +00).

Definition 6.5.1.
The function log : (0, +00) — R is the inverse of the functionexp : R —
(0, +o0).

Theorem 6.5.2.
(!) The function log is a strictly increasing differentiable map of (0, + 00)
onto R, and at each positive a, log' a = 1/a. Further, for all positive x and y,

log(xy) = log(x) + log(y). (6.5.1)
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Proof
We know that log maps (0, +00) onto R and that log is strictly increasing
because exp is. If ¥ and y are positive, then

exp[log x + log y] = exp[log x] exp[log y] = xy = exp(log xy),

so that (6.5.1) holds.

We know that exp is differentiable on R with exp’(x¥) = expx > 0.
Thus, by the Mean Value Inequality (Theorem 4.3.1), ifa < 0 < b and
a <t <b,then

expa < expt < expb,
so that
expt —exp0
t—0
Given any positive ¢, decrease ¢ if necessary so that0 < ¢ < 1, and then
suppose that |x — 1| < &. We apply (6.5.2) with

expa < <expb. (6.5.2)

a=1log(l—¢), t=logx, b=1log(l+¢)

and obtain
l—-¢< i
log x

<1+g

and this shows that (x — 1)/logx — 1 as x — 0. As this implies that
logx/(x — 1) — 1 as x — 0, we see that log is differentiable at the point
1, and log'(1) = 1. Now consider any positive a. Then
log(a +x) —loga _ log(1 +x/a) 1 (log(l + x/a))
x - x T a x/a

and as the term on the right tends to 1/a as x — 0, we see that log is
differentiable at a with derivative 1/a there. ]

Definition 6.5.3.
Ifa > 0and b € R, then
a® = exp(blog a). (6.5.3)
This definition justifies the familiar (but perhaps puzzling) formula

a® = 1, and it also shows that ¢! = exp(1) and, more generally, that
€* = exp x. At last, the series in (6.1.1) may now be denoted by e*.

Exercises

1. We have used a” for the product of a with itself p times, and it is necessary to
show that this does not conflict with the definition of a” in (6.5.3). Suppose that
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a > 0 and that p is a positive integer. Show that a” defined by (6.5.3) satisfies
a' = a and a?*! = aa? (hence the two definitions are consistent). Show also
that a7 defined by (6.5.3) is the multiplicative inverse of a”.

. Suppose that n is a positive integer and that a > 0. Show that

er (2] -

This shows that a'/" defined by (6.5.3) is indeed the positive nth root of a.
. Suppose thata > 0 and that b and c are real. Show that

loga® = bloga, a"a‘ = a®*, (ab)c = ab.

. Show thatifa > 0Oand b > 0 then gl°8? = ploga,

. We define the logarithm Logz of a nonzero complex number z as the set of
values log |z| + i, where 6 is any value of the argument of z (see Exercises 6.3).
Show that

Log1 = {2nmi : n € Z},
Log(—1) = {(2n + Dmi : n € Z},

Logi = {(2n + %)m’ :n €z},

Log (1 + i) = {logvZ + (2n + 1/4)ni : n € Z).

. For any nonzero complex number z and any complex number w, we define z*
as the set of values

exp (w[log lz| + iO]),

where 6 is any value of the argument of z. Show that, for example, z!/2 is a set

with exactly two elements, say u and v, where u? = z = 2.

Show that
i =f{exp(2n— 1/2)n : n € Z},
€™ = {— exp(2nn?) : n € Z}.
Note that ¢ = —1 only in the sense that —1 is one of the infinitely many values

taken by €.
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PART

Analysis is the study of limiting processes, and in Chapters 7 to 10 we
discuss sequences, continuous functions, and differentiation and integra-
tion. The material here is standard, as are most of the proofs. In Chapter
11, we collect together a variety of results that are concerned with 7, e,
and n!.






-~ Sequences

CHAPTER

Abstract

We discuss convergent sequences, give some examples, and then prove the fun-
damental result that every bounded sequence has a convergent subsequence.
This is then used to prove that every nonconstant complex polynomial has a
complex root. Finally, we discuss what is meant by a sequence converging to
00.

7.1 Convergent sequences

We recall the definition of a convergent sequence from Chapter 3.

Definition 7.1.1.

A sequence is a function (real- or complex-valued) defined on the set N
of positive integers ordered by the relation >. The sequence f converges
to the number a if given any positive ¢, there is an integer ng such that
Ifln) — al < € whenever n > ny.

A variety of different notations for sequences are in common use. Se-
quences are often written, for example, as x,, a,, or s,, these simply
being an alternative notation for f{n). Other notations are x;, %3, %3, . . .,
and (x, : n = 1). The notation {x, : n > 1} is, however, unacceptable
because this defines a set and not a sequence (if x, = 1 for every n,
then {x, : n z 1} is the set containing the single element 1). Of course,

99
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we can equally well consider sequences defined on any set of the form
(NN+1,N+2...}
Again, we recall the following result from Chapter 3.

Theorem 7.1.2.
Suppose that a, — a, and that b, — b. Then for all constants o and 8,

aa, + Bb, - aa + b, apb, — ab.

In particular, if p is a polynomial, then p(a,) — p(a). Further, ifb # 0, then
an/b, — a/b.

Note that more generally, if f is defined in some interval (a —r,a + 1)
and if f is continuous at a, then f{(x,) — fla) for every sequence x, that
converges to a. This is true because given any positive ¢, there is a positive
8 such that |[{x) — {a)| < & whenever |x — a|] < §, and also |x, —a| < 8
for all sufficiently large n.

We also mention Theorem 3.6.4 (on bounded monotonic sequences)
and Theorem 4.4.3 (the Cauchy Criterion), each of which gives a criterion
for a sequence to be convergent. The reader should review these two
important theorems now.

We begin our discussion with some simple examples.

ExamPLE 7.1.3.
We show that

i Aot
n—oco 2n3 4+n:
(for when n is very large, this ratio is approximately 4n3/2n%). Now,

4n*+2n—-1  4+42/n*—1/n®  p(1/n)

2n3 +n2 2+ 1/n ~ g(1/n)’

where p(x) = 4 + 2x2 — ¥® and g(x) = 2 + x, so that from Theorem 7.1.2,

an’+2n—1 _p(/m)  p(O) _ 4 _
23 +n2  g(1/n) qo) — 2 7 o

EXAMPLE 7.1.4.
For another example of this type, observe that

. 3n’+4n+7 . p(l/n)  p(0)
——— I —_— =L =3
;Hglo nz—4n+4 lim q(1/n) q(0)

where p(¥) = 3 + 4x + 7x* and g(x) = 1 — 4x + 4x* = (2x — 1)?. In this
example, g(1/n) = 0 when n = 2, so that the original sequence is only
definedon {n: n > 3). O

’
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EXAMPLE 7.1.5.
We show that

i 2" 4+ nd
nLngo 2"+ n

=1. (7.1.1)

In this case,
2" +nd 1+ n%/2"
Q

M+n  14n/20

providing that

The Binomial Theorem shows that if n > 6, then

=1 +1) = i(:)m"-k > (’;) > (—"-'é"—s)f

k=0
so that
n _nd 6! n®
0< — < — < ——.
2" S (n-5)
As this upper bound tends to 0, this establishes (7.1.1). O

ExamPLE 7.1.6.
We shall show that the sequence a,, defined inductively by

a = ‘/-Z-. apyr = \/2+vam

converges to some real number ¢, and we shall show how to find .
First, a straightforward argument by induction shows that for all n,
V2 < a, < 2. Next,

2 2
Opyy = Oy = /Gn = o/Cn-1,
so another argument by induction shows that
V2=a<a;<---<ap<-<2.

1t follows from this that a, — «, say, where V2 < @ < 2, and it only
remains to identify a. As

(@r1 = 2)* = an,

we see that (o? — 2)? = «, and a little algebra shows that this is equivalent
to

(e = 1)(@® + o — 30 — 4) = 0.

Asa # 1, we have fla) = 0, where flx) = 23 + x* — 3x — 4. If x > /2,
then

fl®) =32 +2x—3>3+2v2 >0,
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so that f is strictly increasing for x > /2. As f{+~/2) < 0, there is a unique
root of f in the interval [ﬁ, 2], and this root must be «. We have not found
a explicitly, but it can be estimated numerically to within any prescribed
error by the methods described in Section 4.2. O

Exercises

1. Show thatifk is a positive integer andif 0 < x < 1,thenn*x" — 0asn — oo.

2. Use the identity X2 — y* = (x + y)(x — y) to show that if a and b are positive,
then vVn2 +a —~ v/nZ+b — 0asn — oo. Discuss the case when a or b is

negative.
Find the limitof vVn?2 + n—nasn - 0.
3. Show that

n 1
li —_— =1
n—lToo ; k(k +1)

4. Prove that the sequence a, a;, . . . given by

1 1 1
a, = S e+
Ay R n+n
converges to some number a, where } < a < 1.

5. Suppose that the sequence x;, x2, . . . converges to . Show that the sequence
Y1, Y2, ... defined by

x4+

Yy =
Yn n

also converges to a. Give an example in which the sequence y,, converges but
the sequence x,, does not.
Show also that if each x, is positive, then (x,x; - - - %,)//" — a.

6. Suppose that a; = 1, by = 2 and that

1
by = 3 (an + bn). Ant1bpyr = 2.

Show that a; < a; < a3 < --- < by < by < by, and deduce that both
sequences a, and b, converge to v/2.

7. Suppose thatp > 0, a; > 0, and

1
an+1 = i (an+ ‘ap;n)

Show that a, > /p, and deduce that a, — /p.

8. Suppose thata, > 0, a; > 0 and that a4z = /@n@n+1- Show that if a, — ¢,
then ¢ = (a1a$)!/3. Now prove that a, — (a,a2)"/3.
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9. Suppose that a; = 3 and that a,4+1 = (3a, + 3)/(a, + 3). By considering

an+1 — ~/§
ans1 + V3’

find a formula for a,, in terms of a; and n, and deduce that a, — /3.

10. Show that for each real x,

2n 1 if x is rational;
lim lim | cos (m!nx) =
M= +00 \ n— +00 0 if x is irrational.

7.2 Some important examples

This section contains some useful and interesting examples of sequences
that involve nth powers, nth roots and n!. For more results of this nature,
see Chapter 11. Our first result concerns the nth root a!’* of a.

Theorem 7.2.1.

The sequence n'/"

converges to 1. Also, for any positive a, a'’™ — 1.

Proof
As n'" > 1, we can write nV/" = 1 + t,,, where t, > 0. The Binomial
Theorem gives

nn-1

n= (l +tn)n > %tﬁ,
so that
2
0 <ty < .
n-1

We deduce that t, — 0, and hence that n'/" — 1.
Suppose now thata > 1.If n > a, then 1 < a'’* < n!/", so that
a'’" - 1.1f0 < a < 1, then (1/a)'/" — 1, so that

1/n 1

a =W—)l,

and the proof is complete. u

Theorem 7.2.3.
For each real x,

n
(1+ i) — expx
- .
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Proof
This is clearly true when x = 0, so we may suppose that x # 0. We know
from Theorem 6.5.2 that the function y > log y is differentiable aty = 1
with derivative 1 there. Thus, as y — 0,
.].(M_) — 1.
Y
We write y = x/n; then

'I n
X n X n

Y
so that
. x\"
lim log (l + —) =x.
n—00 n
As the function exp is continuous at x, the result follows. ]

The next result is a little more complicated.

Theorem 7.2.4.
We have

Proof
We write a, = n"/n!, so that from Theorem 7.2.3 (with x ='1),

n
ant1 =(n+1) e

Qan n

It is sufficient, then, to prove the following more general result. |

Theorem 7.2.5.
Suppose that a, > 0 and that an41/a, = M. Then al/™ - M.

Proof
Clearly M > 0. Given any positive &, there is an integer N such that if

n > N, then an; < (M + €)ay, and hence that
ap < ¢(M + &),
where ¢ depends on N, M, and ¢. Suppose now that a}’® > M + 2¢. Then
M+ 8" >an > (M+e]+¢e)" = ne(M+ )",

so that n < ¢(M + &)/e. It follows that given ¢, if n > ¢(M + £)/¢, then
al’® < M + 2e.
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If M = 0, then for these n, 0 < al/" < M + 2¢ = 2¢, and the result
follows. If M > 0, we can write b, = 1/a, and then from the argument
above,

1 1+ Me 1

bl/n<____ £ = <
" _M+ M M — M2%¢

for all sufficiently large n. For these n, al’® > M — M2, and the proof is
complete. (]

Theorem 7.2.4 is a weaker version of a famous result known as Stirling’s
formula, which is discussed (with Theorem 7.2.4) in Section 11.4. We say
that the two sequences a, and b, of positive terms are asymptotic, and
write a, ~ b, as n - oo if a,/b, — 1. Stirling’s formula is that

nt ~ (-E)n 2mm. (7.2.2)

Exercises

1. Show that if the sequence x3, X3, . . . satisfies n=% < x, < r* for some positive
number k, then x}/* — 1.

2. Let ¢, (%) = x"e™*. Show that ¢, is increasing for 0 < x < n and decreasing for
x > n. By comparing ¢,(n) with g,(n + 1), and ¢,41(n) with ¢,41(n + 1), show

that
1 n 1 n+1
(1+—) <e<(l+—) .
n n

Deduce that (1 +1/n)" — e.
The Mean Value Inequality implies that if 0 < a < b, then

bn+] — an+l < (n + 1)(b _ a)bn.
Use this to show that (1 + 1/n)" is increasing with n.

3. Show that the inequality n'/" > (n + 1)/("*1) is equivalent to the inequality

l n
n > (l + —) )
n
and deduce that the sequence n'/" is eventually decreasing.

4. Show that if a, ~ by, then a}/" ~ b}/". By taking a, = (n + 1)" and b, = n",
show that the converse is false. Show that Stirling’s formula (7.2.2) implies
(7.2.1).

5. Show that (n!)l/"2 — 1land nVv® — 1.
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7.3 Bounded sequences

We begin with the definition of a bounded sequence.

Definition 7.3.1.
A (real or complex) sequence x), 3, . . . is bounded if there is some real
number M such that for every n, |x,| < M.

Every convergent sequence is bounded, for all but a finite number of terms
in the sequence lie within a distance 1, say, of the limit. Evidently, not
every bounded sequence converges, but a bounded increasing sequence
does converge, as does abounded decreasing sequence. We now ask, What
can we say about a sequence that is bounded but neither increasing nor
decreasing?

To answer this question we introduce the notion of a subsequence of
a sequence (x, : n > 1). The sequence x, is a function on N, and a
subsequence of this is the same function, but restricted to some infinite
subset {n;, ny, ...} of N. For example, the sequence 2,4, 6, ... is a sub-
sequence of the sequence 1,2, 3,4, ..., as is the sequence 12,2%,33, .. ..
It is clear that if the sequence x, converges to «, then so does every
subsequence of x,. However, there may be many subsequences of x,
that converge (to different values), while the sequence x, itself does not
converge. For example, the sequence 0,1,0,1,0,1,... has the conver-
gent subsequences 0,0,0,...and 1,1, 1, ..., and also the subsequence
0,0,1,0,0,1,..., which does not converge. Of course, any subsequence
of a subsequence of x, is itself a subsequence of x,,.

We can now state the main result of this section, and as this is so
important, we give two proofs.

The Bolzano-Weierstrass Theorem.
Every bounded complex sequence has a convergent subsequence.

Proof

We prove this first for real sequences. Let x,, be a bounded sequence with,
say, a < x, < b for every n. The proof is based on the method of bisection
discussed in detail in Chapter 4. Starting with the interval [a, b}, we let
the midpoint be c. If there are infinitely many values of m for which
*m € [a,c], then we write @y = a and b; = c; if not, the interval [c, b]
must have this property, and we write a; = ¢ and b; = b. We have now
constructed an interval [a;, by, obtained from [a, b] by bisection, such
that x,, € [a1, by] for infinitely many values of m. We can repeat this
process starting now with the interval [a;, b, ] to obtain an interval [ay, b;]
with similar properties; then again starting with [a3, b;] and so on. In
this way we can construct a sequence of intervals I, I, = [an, by, that
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satisfies the hypotheses of Theorems 4.1.1 and 4.1.2 and such that for all
N, Xm € [an, by for infinitely many values of m.

The sequence ay, is increasing and bounded above, the sequence b, is
decreasing and bounded below, and both converge to a common limit ¢,
say. It is now easy to construct a subsequence of x, that converges to a.
We select an integer n; such that x,, € [a), b1]. Next, as ¥, € [a, b,] for
infinitely many choices of m, there is certainly one such choice of m, say
n,, such that n, > n,. For the same reason, there is an integer n3 such
that n3 > n; and x,; € [a3, b3], and so on. This provides a subsequence
(%« : n = my, ng, n3,...) of the sequence x, with the property that

%, — |l < (b— a)/2*.

It is now clear that the subsequence (x, : n = n;, ny, ...) converges to «,
and the proof for real sequences is complete.

Now let z,, be a complex sequence with, say, |z,| < M for all n. We write
Zy = X, + iy, and observe that [x,| < M and |y,] < M. We now apply
the Bolzano-Weierstrass Theorem (for real sequences) to the sequence x,,
and conclude that there is a subsequence, say (x,, : n = ny, ng, ...), of %,
that converges to some value x*.

Now consider the sequence (y, : n = ny, ny,...) (which is a sub-
sequence of the sequence Yy, Yz, - . .). We apply the Bolzano-Weierstrass
Theorem (for real sequences) to this and conclude that it has a sub-
sequence, say (yn : n = pi,p2,...), that converges to some y*. As
(% : n = py,pa...) is a subsequence of the convergent sequence
(xn : n = ny, ny,...), it converges to x*, so that finally,

_ . " .
zpl_xpl+lypl—-)x +iy.

This completes the first proof of the Bolzano-Weierstrass Theorem. B

A real sequence is said to be monotonic if it is either an increasing
sequence or a decreasing sequence. As any bounded monotonic sequence
converges, the Bolzano-Weierstrass Theorem (for real sequences) is an
immediate corollary of the following result, which is of interest in its
own right.

Theorem 7.3.2.
Every real sequence has a monotonic subsequence.

Proof

Let ay, ay, . . . be a real sequence. We suppose first that for every m, the
set

{am, Gmi1, Gmya, - - .} (7.3.1)

has a greatest member (which need notbe unique). Pick any one of these,
and let it be a,(m,. Clearly, u is a map of N into itself, and by construction,
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p(m) = m, so that u(m) - +00 as m — 00. Thus there is a sequence n;
of integers such that

nm<n<n<---, pm)<upumn)<umn)<---,

and it follows that a,(y,), u(n,), . - . is a subsequence of the original se-
quence. Moreover, this subsequence is decreasing because if p > g, then
Aup) < ug) for

Aup) = Max{ap, apy1, Aps2, - . .} < max{ag, dg41, 8g42, - - .} = Q).

The remaining case is when one of the sets (7.3.1) has no greatest
member, and by discarding a finite number of the a;, we may assume
that this is so when m = 1. In this case, given any integer r, there is an
integer s with s > r and

as > max{a, ..., a}.

1t is now obvious that the sequence a;,a; ... has an increasing
subsequence. ]

Exercises

1. Our proof of the Bolzano-Weierstrass Theorem uses the result for real se-
quences to derive the result for complex sequences. Show how the following
gives a direct proof for complex sequences (which therefore includes the case
for real sequences as a special case). Let 2z, be a bounded complex sequence
with |x,| < M and |y,| < M, say. Subdivide this square (centred at the origin
with sides of length 2M) into four congruent squares. Show that one of these
smaller squares must contain z, for infinitely many values of n. Repeat this
subdivision process to obtain a sequence of squares Q;, Qa, . . . such that (a)
Q DQ D>Q D---,and (b) thelengthd, of the diagonal of Q, tends to 0.
Deduce that Q; N Q2 N Qs - - - consists of a single point, say w, and that there
is a subsequence of z, that converges to w.

You have now proved a two-dimensional version of the Bolzano-Weierstrass
Theorem. A similar proof will be valid in R?, and indeed in any dimension.

2. Use Theorem 7.3.2 to give a proof of the Bolzano-Weierstrass Theorem for
sequences in Euclidean 3-space.

3. We can arrange the set of rational numbers in a sequence in the following way.
We start with 0, then list the finite number of rationals p/q with |p| + Ig9] = 1,
then those with |p| + |g| = 2, and so on. This construction provides us with
a sequence 1y, 1, . . . of rational numbers. Show that for each real number a
there is a subsequence of ry, 13, . . . that converges to a.

4. Let x, be any sequence in [0, 1}, and let E be the set of points Y such that there
is some subsequence of x,, that converges to y. Suppose that y1, y2, ... are in E
and that y, - y. Show thaty € E.
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Deduce that there is no sequence x, in [0, 1] for which E = (0, 1/2].
Construct a sequence x, in [0, 1] for which E = {0,1, 1, %, §,.. }.

7.4 The Fundamental Theorem of
Algebra

Let p be the polynomial
p(2)=as+az+ - + apz", (7.4.1)

where the a; are complex numbers. If a, # 0 the degree of p is n, and p
is constant if and only if n = 0. The polynomial p is a real polynomial
if each g; is real; otherwise, we say that p is a complex polynomial. There
are real polynomials, for example ¥* + 1, that have no real zeros, and one
of the great advantages of working with complex numbers is that there,
the situation is completely satisfactory, for all nonconstant polynomials
have zeros. This powerful result is known as the Fundamental Theorem
of Algebra.

Fundamental Theorem of Algebra.
Every nonconstant polynomial has a zero.

It is very easy to see that this result implies that every complex poly-
nomial factorises into a product of linear factors. Let p be given by (7.4.1).
The Fundamental Theorem of Algebra guarantees that there is some z;
such that p(z;) = 0, and then

p@) =p@) - p@) = Y a(z" - z5).

k=0
As

X —zF = -2)E + 2% 4+ 22 4 Y,

we can now express p in the form

p(2) = (z = 21)q(2),

where g is a polynomial of degree n — 1. We now apply this argument to
g, and then continue this process until we have found that

P =an(z —21)(2z —22) (2 — 24) ;

in other words, every complex polynomial of degree n is the product of a
constant factor and n linear factors of the form z — z;. In this sense, every

complex polynomial of degree n has n complex zeros, although of course,
they may not be distinct.
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Our proof of the Fundamental Theorem of Algebra uses the number
B =gl {ip(2)l : z € C).

It is clear that 8 = 0, and that if p has a zero, then 8 = 0. However, it is
not at all clear that if 8 = 0, then p has a zero (for we do not yet know that
there exists any z with |p(z)| = B). Our proof depends on the following
three propositions in which n > 0 and a, # 0in (7.4.1).

Proposition 7.4.1.
If 1z > 2(laol + a1l + - - - + |anl)/|anl, then

Ip(2)l > lan.z"|/2.

Proposition 7.4.2.
There is some ¢ such that |p($)| = B.

Proposition 7.4.3.
If Ip(20)| = B, then p(z0) = 0.

Proposition 7.4.1 confirms that |p(z)| is large when |z| is large, so that
if |p(2)| is close to B, then z must lie in some bounded part of the complex
plane. This enables us to use the Bolzano-Weierstrass Theorem to prove
Proposition 7.4.2, and the proof is completed by Proposition 7.4.3.

Proof of Proposition 7.4.1.
If z satisfies the given inequality, then |z| > 1, so that
lan2"| = (a0 + a1z + - - - + an_12"7") = p(2)|

< (laol + lar| + - - - + lan-11)12"7 M| + |p(2)|

< |an,2"|/2 + |p(2)I.
The given inequality for |p(z)| now follows. ]
Proof of Proposition 7.4.2.
The definition of B implies that for each positive integer k there is a
complex number z; such that

1
Bslp@E)l =B+ 3 B+

This defines a sequence z, 23, z3, - . . of complex numbers, and by Propo-
sition 7.4.1, there is some positive number R such that for each k, |z¢| < R.
The Bolzano-Weierstrass Theorem guarantees that there is subsequence
2k, 2k,, - - - Of the sequence zx that converges to some point {. As p is
continuous at ¢,

QI = l.l_igg Ip(z)! =B.
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as required. |

Proof of Proposition 7.4.3.

We suppose that p(zo) # 0 and shall show that |p(z)] > B. We begin by
performing several elementary transformations so as to simplify the anal-
ysis that follows. First, let q(2) = p(2o + 2)/p(20). Then q is a polynomial
of degree n with g(0) = 1 so, that for some constants bj,

q(2) = 1+ bez" + -+ + baz",

where by # 0 and b, # 0. Next, choose o such that o¥ = 1/by, and let
Q(2) = q(o2). Then

Q@) =1+ 25+ cenz" + - + caz”,

say, where ¢, # 0. We shall show that there is some w with |Qw)| < 1,
and then

B = Ip(z0 + ow)| = 1QW)I.Ip(20)] < Ip(20)

as required.

To construct w, choose any t satisfying t(Ick1l + -+ + lcnl) < 1 and
0 <t < 1,and let w = texp(ni/k). Then w* = —t* < 0, |w| =t < 1,
and

IQW)I < 11 + W + lekn W+ + -+ + cu”|
<=1+ leel + - + leal)

1— 54k

=1

A

as required. u

Exercises

1. Show that every real polynomial of odd degree has at least one real zero. For
every positive odd integer n construct a real polynomial p with only one real
zero (that is not a multiple zero of p).

2. Suppose that a polynomial p(x) is divisible by x — a and that its derivative p'(x)
is divisible by (x — a)™. Show that p(x) is divisible by (x — a)™*!.

3. Let P(z) = ao + mz + -+ + a,z", whereap > a1 > --- > a, > 0. By
considering (1 — 2)P(2), show that P has no zeros in {z : |z| < 1}.

4. Show that1+ 2+ - +n = 1n(n+ 1). Find a cubic polynomial p such that
for all n,

P =12+4+22+... 4 n%
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Show more generally that if k is a positive integer, then 1%¥ + 2K + ... 4 n¥
is a polynomial pi in n of degree k + 1.

7.5 Unbounded sequences

We recall the definition of a real sequence tending to +00 (or —oo) from
Section 3.7. We shall now extend the real line R by adjoining two points
400 and —oo. Formally, we take any two objects not in R, label these
points +00 and —o0o, and form the union

Ry = R U {400, —00}.

We call R, the extended real line. It is important to realise that we are
not saying that 400 and —oo are real numbers (they are not), nor are we
saying that we can perform algebraic operations with them. However, we
can extend the ordering of R to R, by defining +o00 to be larger than every
other point of Ry, and —oo to be smaller than every other point of Ry
These conventions allow us to restate earlier results in this new setting.
For example, we have the following theorem.

Theorem 7.5.2.
Any monotonic sequence in R, converges to some point of Ry

Proof

The reader should note that this proof depends only on the ordering of
R and does not involve any algebraic operations at all. We may suppose
thata; < a; < ---. If a, is bounded above by some real number, then as
we have seen, a, converges to some point in R. If a, has no upper bound
in R, then given any k, there is some a, witha, > k. Then a, > k when
n > p, so thata, —» +o0. ]

We emphasize that there is nothing new here; we are simply introduc-
ing and adopting a more flexible terminology. In this new setting, the
Bolzano-Weierstrass Theorem reads as follows.

Theorem 7.5.3.
Every sequence in Ry, has a convergent subsequence.

This result implies that any real sequence has a subsequence that con-
verges to some real number or a subsequence that converges to +0c or a
subsequence that converges to —oo.

Proof
We begin with a sequence a, of points in Ry. If a, = 400 for infinitely
many n, then we have a subsequence in which all terms are +o0, and
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this subsequence clearly converges to +00. The same is true if a, = —00
for infinitely many n, so we may now assume that for some ng, a, € R
whenever n > ny. Since the convergence or divergence of a subsequence
is unaffected by the addition or deletion of a finite number of terms in
the sequence, we may suppose that a, € R for every n. In this case,
Theorem 7.3.2 guarantees the existence of a monotonic subsequence,
and by Theorem 7.5.2, this converges to some point in Ry,. The proof is
complete. n

The introduction of ‘infinity’ into the complex plane is a little different
because C is not ordered. In this case, we introduce a single ‘point’ oo and
form the union Cy, which we call the extended complex plane.

Definition 7.5.4.

The complex sequence z, tends to oo in Co,, and we write z, — 00, if for
every positive number R, there is an integer ng such that |z,| > R when
n > ng.

Note that this definition is based on the direction > in C defined by
z > wif and only if |z| > |w|.

We end with a warning. Before this new terminology is used, we (and
those we are communicating with!) must be clear about which space we
are working in. The example a, = (—1)"n will clarify this. As a real
sequence, this does not converge to any point in R, though it does have
a subsequence converging to +o0o and another subsequence converging
to —0o. However, as a sequence in Cy, it converges to 0o. This example
serves to emphasize the fact that oo in C, is quite distinct from either of
the points +o00 and —o00 in Ry.

Exercises

1. Show thatlogn — +o00, and that log1/n — —o0, asn — oc.

2. Let )" a, be a series of nonnegative terms. Show that this series converges
to a point of Ry, in the sense that the sequence of partial sums necessarily
converges to a point in Ry,.

3. Forn=1,2,... define

an = (1 — cos(log n)) log n.

Show that a,, has a subsequence converging to 0, and also a subsequence con-
verging to +00. Show also that a,41 — a, — 0, and deduce that given any
positive number «, there is a subsequence of a, that converges to a.
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7.6 Upper and lower limits
Let ay, be a real sequence, and suppose that for all n, |a,| < M. For all n,
let
b, = sup{an, Gnt1, Gnz, - - -},
, (7.6.1)
Cn = inf{ay, ans1, Gnaa, .. ).
Then, for all n, ¢, < b,, and
by 2b, 2b3 > -2 —M,

Gt <c2=<c¢c3=<---=<M,

IA

so that b, — bandc, — ¢, say. AS ¢y < Cmin < Dmsn < by, for every m
and n, we see thatc < b.

Definition 7.6.1.
The upper limit of the sequence a, is b as defined above, and its lower limit

is c. We write these as

¢ =liminfa, b=Ilimsupa,.
n—00 n—00

The significance of these numbers is that whereas lim a, need not
exist, the upper and lower limits always exist. Moreover, as the next result
shows, their values determine whether or not the sequence a, converges.

Theorem 7.6.2.
Let (an) be a real bounded sequence. Then (ay) converges if and only if

lim inf a, = lim sup a,,
n—00 n—00

and if this is so, then lim,._, «, a, is this common value.
Proof
If a, — «, say, then for any positive &,
a—¢c<a,<a+e¢ (7.6.2)
for almost every n, so that in the notation of (7.6.1),
a—e<cp<b, <oa+e (7.6.3)

This shows that 0 < b — ¢ < 2¢, so thatb = c.
Suppose now that b = ¢, and denote this value by a. Then (7.6.3) holds
for almost every n; thus (7.6.2) does also, and thisshows thata, — «. W
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Exercises

1. Show that the sequence a, given by a, = [3 + (-1)"})/2 has lower limit 1 and
upper limit 2.

2. Suppose that @ = lim inf,_.o a,; and g = lim sup, _, o, ax. Show that given any
positive ¢, there is an integer ng such thata, € [@ — ¢, B+ €] whenever n > n,.
Interpret this when a = 8.

Show also that ifa, € [ao, Bo]for all but a finite set of n, then [, Bo] D [, B].

3. Suppose that a, is a real sequence that has a subsequence converging to «.
Show that

liminfa, <« < limsupa,.
n—00 n—00

4. Let b, be a subsequence of a,,. Show that

liminf a, < liminfb, < limsupb, < limsupa,.
00 n—00 n—00

n— n—00

5. Show that for any real sequences a, and b,,,

lim sup(a, + by) < limsupa, + limsup b,,.
n—00 n—00 n=»00

Give an example in which a strict inequality holds here.
Formulate and prove the corresponding result for lim inf.

6. Let a, = sin n. Show that

liminfa, = -1, limsupa, =1.
n—00 n— 00



- Continuous
- Functions

CHAPTER

Abstract

The main properties of continuous functions are discussed, including the
stronger notion of uniform continuity and the continuity of an infinite sum
of continuous functions.

8.1 Continuous functions

We have already defined what we mean by a function being continuous
(Definition 3.4.7), and this is as follows.

Definition 8.1.1.

Suppose that E is a subset of R, or of C, and let a be a point of E. Then
a function f : E — C is continuous at the point a if given any positive
number ¢, there is a positive number 8 such that |{x) — f{a)] < & whenever
|x —al < §and x € E. If f is continuous at every point of E we say that
f is continuous on E. If f is not continuous at the point a, we say that f is
discontinuous at a.

There is one special (but artificial) situation in which every function
on E is continuous at a point a. The point a is an isolated point of E if
there is a positive number p such that every point of E other than a is at
a distance at least p from a; this means that

{x:|x—al < p} NE = {a}.
116
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In this case, we let § = p regardless of the choice of ¢; then x € E and
|x—a| < §implies that x = a, so that |f{x) — fla)| < ¢, and f is continuous
ata. In short, every function is continuous at every isolated point of its domain.
In the case when a is not an isolated point of E, a function f on E is
continuous at a if and only if lim,_,, f{¥) exists and equals f{a).

ExXAMPLE 8.1.2.

This example is a special case of our general definition, but it is worth
stating explicitly. Suppose that f is defined on the real interval [, b]; then
f is continuous at a if given any positive ¢, there is a positive number §
such that |[{x) — f{a)l < ¢ whenevera < x < a+éand x € [a,b]. A
similar statement can be made about the endpoint b.

If f and g are defined on a set E and are continuous at the point a in
E, then so are the sum and product functions

x> ) +8(), x> flXe(x).

If g(a) # 0, then the quotient function x — f{x)/g(x) is also continuous
at a, provided that we restrict this function to the set {x € E : g(x) # 0}.
These are trivial if a is an isolated point of E, and otherwise they follow
from our earlier general results (for example, Theorem 3.5.1). We have
already seen many examples of continuous functions; for example, all
polynomials, the exponential function, and the trigonometric functions
sin and cos are all continuous on C.

There is a close relation between the continuity of a function f at a
point and sequences converging to this point. The next result is a precise
statement of this.

Theorem 8.1.3.

Suppose that f is defined on a set E and that a € E. Then f is continuous
at a if and only if, for every sequence x, converging to a, the sequence f(xy)
converges to f(a).

Proof

Suppose first that f is continuous at a. Then, given any positive ¢, there is
a positive & such that |f(x) — f(a)| < € whenever |x—a| < dandx € E. Now
take any sequence x, that converges to a. Then there exists an integer ng
such that when n > nyg, |x, — al < & and hence |f{x,) - fla)l < &. This
shows that f(x,) — fa) as n — oo.

To complete the proof we show that if f is not continuous at a, then
there is some sequence x, converging to a for which f{x,) does not con-
verge to f{a). The denial of continuity at a is an important statement in its
own right, and it means that the assertion ‘given any positive ¢, there is
a positive 8 such that |{x) — fla)l < £ whenever |x —a| < §and x € E’
is false. In turn, this means that there is some positive number &, with the
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property that for every positive 8, there is some x satisfying |x — a| < §,
x € E, and |[f(X) — f(a)| = €. As this holds for every choice of §, we may
take § to be 1,1/2,1/3,... in turn, and let y, be any one of the values
of x corresponding to the choice § = 1/n. Then |y, — a| < 1/n, and
Iflyn) — @)l = &1, so that y, — abut fy,) does not converge to fla). This
completes the proof. |

We end this section with an example to show that points of discontinu-
ity and the points of continuity of a function need not be isolated. This
example has many points of interest in it and is well worth studying.

ExamPLE 8.1.4.
We shall show that if ry, 5, . . . is any sequence of distinct real numbers,
then there is a function f : R — R that is discontinuous at each r, and

continuous at every other point of R. Forn =1, 2, .. ., define
L9 0 ifx < ry;
X)) =
n 1/2" ifx > r,,

and
flx) = Z fa(%).
n=1

For each x, the terms in this series satisfy 0 < fu(x) < 1/2", so that by the
Comparison Test (Theorem 5.1.5), the series converges. Thus f certainly
exists as a function from R to R.

We shall now show that if a is any real number that is not equal to any
rn, then the function f is continuous at a. Take any positive ¢, and find
an integer N such that

o~ ! <e
om . 9N :
n=N+1 2n 2
Now choose a positive § such that none of the numbers ry, r,, . .., ry lie

in the interval (a — 8, a + 8). The significance of this choice is that if
x € (a—8,a+d), thenforn=1,..., N, we have fo(x) = fa(a). It follows
that if x € (a — 8, a + §), then

o0

Y fa® = fal@)

n=N+1

If) - @l =

00

Y 1fa® — fa(@

n=N+1

1A

1

SZ:’Z_"

n=N+1
< §,
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so that f is continuous at a.
We shall now show that f is discontinuous at each ri. To do this we
write

=1 Y L]+

n=1,n#k

The argument given above (applied to the sequence r, with the single
term r, removed) shows that the infinite sum on the right is continuous
at rr. It follows that f is continuous at ry if and only if fi is, and this is
not so. O

An amusing special case of this example is that there exists a function
f : R — R that is continuous at every irrational number and discon-
tinuous at every rational number. To see this we have only to show that
we can include all of the rational numbers in a sequence ry, r3, .. .. First
consider the positive rational numbers; each positive rational can be ex-
pressed in a unique way as the fraction p/q where p and g are positive,
coprime integers. Further, for each integer k there are only finitely many
fractions p/q with p + g = k. We can now list the positive rationals; we
start with those rationals for which p 4+ q = 2 (there is only one of these,
namely 1), then follow with those with p + q = 3 (these are 1/2 and
2/1), then those with p + g = 4, and so on. Suppose now that this list is
81, Sz, 83, . . .; then the sequence

0; 81, —81,82, =82, . ..

lists all rational numbers (and only these), and every rational occurs once
and only once in the list.

Exercises

1. Let f be a complex-valued function defined on a set E containing the point a,
and let f = u + iv. Show that f is continuous at a if and only if both u and
v are continuous at a. [Thus we may restrict our attention to discussing the
continuity of real-valued functions.]

2. Suppose that the graph of a continuous function f : R — R has a chord with
a positive slope (so that for some a and b, a < b and f{a) < f(b)) and a chord
with a negative slope. Show that the graph of f has a horizontal chord (so that
for some a and b, a < b and f(a) = f(b)). [Recall Theorem 4.2.1.]

3. The ‘ruler’ function f is defined on [0, 1] by

1 ifx =0;
fly=4q1/2" ifx = k/2", where kisoddandn = 0,1, 2,.. ;

0 otherwise.



120 8. Continuous Functions

Show that f discontinuous at every point of the form k/2". At which points is
f continuous? [The name ‘ruler function’ is given because this is the pattern
of marking on rulers marked in inches rather than centimetres.]

4. Suppose that f : R — R satisfies the equation
fx +y) = f¥) + fy)

for every x and y in R. Suppose also that f is continuous at some point xy in
R. Show that f is continuous at every point of R, and deduce that f{x) = xf(1).
[There exist functions satisfying this equation that are not continuous at any
point of R.]

5. Explain how the function f(p/q) = 273 enables us to list the positive rational
numbers p/q in a sequence.

8.2 Functions continuous on an
interval

In this section we consider conclusions that can be drawn simply from the
assumption that a function f is continuous on a closed bounded interval.
We recall the Intermediate Value Theorem (Theorem 4.2.1), namely that
if f:]a,b] — R is continuous, and if y lies between f(a) and f(b), then there
is some c in [a,b] such that f(¢) = y. The next two theorems are direct
consequences of this result.

Theorem 8.2.1.
Suppose that f:[0,1] — R is continuous. If either f([0,1]) C [0,1] or
f([0,1]) D [0,1], then f has a fixed point in [0,1].

Theorem 8.2.2.
Let I be an interval in R, and suppose that f is continuous on I. Then the
image f(I) is also an interval.

Proof of Theorem 8.2.1.

The function F given by F(x) = f{x) —x is continuous on [a, b}, and F(y) =
0 if and only if f{y) = y (that is, y is a fixed point of f). If f{[0, 1]) C [0, 1],
then F(0) > 0 and F(1) < 0, so that Theorem 4.2.1 implies the existence
of a y with F(y) = 0. If f{{0, 1]) D [0, 1], there are points u and v in [0, 1]
with f{u) = 0 and f{v) = 1. Then F(u) < 0 and F(v) > 0, and again, there
is some y with {y) = y. u

Proof of Theorem 8.2.2.
To show that f{I) is an interval, we take any a and B in f(I) witha < B.
Then there are distinct points a and b in I with fa) = « and f(b) = 8.
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We may assume that a < b (for a similar argument holds when b < a),
and the Intermediate Value Theorem then implies that for any value y
between « and B, there is some ¢ in [a, b] with f{c) = y. This shows that if
a and B are in f(I) with @ < B, then [a, 8] C f{I), and this completes the
proof. n

The function f(x) = 1/x defined on the interval (0, 1) shows that a
continuous function on a bounded interval need not be bounded there.
The function f{x) = x on (0, 1) shows that even if a continuous function
on a bounded interval is bounded, it need not take a maximum value
there (there is no y in (0, 1) such that f{x) < f{y) for every x in (0, 1)). In
view of these examples, the following theorem is of considerable interest.

Theorem 8.2.3.
Suppose that f:I — R is continuous, where I is a closed, bounded interval.
Then there are points u and v in I such that for allx in I, f(u) < f(x) < f(v).

This result is usually referred to by saying that a function that is con-
tinuous on a closed, bounded interval is bounded and attains its bounds
there.

Proof

We show first that there is some number M; such that f{x) < M, forall xin
[a, b). Suppose not; then for each n, there must be some x, with f{x,) > n.
The Bolzano-Weierstrass Theorem guarantees that there is a subsequence
of the sequence xy, say xp,, Xp,, . . ., converging to some pointa in[a, b}. As
f is continuous at a, Theorem 8.1.3 implies that f{x,) — fla) asj — oo,
and this clearly contradicts the assumption that for all n, f(x,) > n.

Now let

M = sup{f(x) : x € [a, b]}.

If f(x) # M for any x, then the function g(x) = 1/[M - f(x)] is defined
and continuous on I, and so by what we have just proved, there is some
m such that, for all x, g(x¥) < m. As this implies that

fRY<M-(1/m) < M,

this is a contradiction. We deduce that for some v, {v) = M. The result
about lower bounds can be proved in exactly the same way. |

Theorems 8.2.2 and 8.2.3 combine to give the following result.

Theorem 8.2.4.
Suppose that f is real-valued and continuous on the interval [a,b). Then the
image f([a, b)) is a closed, bounded interval.
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We end with the (important) remark that that essentially the same
argument as that used in the proof of Theorem 8.2.3 proves a similar
result for functions defined on subsets of the complex plane. For example,
we have the following result.

Theorem 8.2.5.

Suppose that the function f is complex-valued and continuous on the rect-
angle R = {x + iy:a < x < b, ¢ < y < d). Then there are points w; and w,
in R such that for all z in R,

Iflw)l < 12l < Iftwa)l.

Exercises

1. Complete the remaining part of the proof of Theorem 8.2.3.

2. Give an example of a function described in Theorem 8.2.4 in which neither
f(@) nor f{(b) is an endpoint of f{[a, b]).
3. In each of the following cases, give an example of a bounded open interval 1
and a continuous function f : I — R with the given property:
(i) f(I) is bounded and closed;
(i) f(I) is unbounded and closed;
(iii) A1) is bounded and open;
(iv) fI) is unbounded and open;
(v) A is bounded, but neither open nor closed.

4. Prove Theorem 8.2.5. Find points w; and w; when f{z2) = expzanda=¢ =0
andb=d =R.

8.3 Monotonic functions

A function is monotonic on an interval I if it is either increasing on I or
decreasing on I. We shall only consider increasing functions, but similar
results hold for decreasing functions.

Theorem 8.3.1.
Suppose that f:I — R is strictly increasing on the interval I. Then
f1f ) — I is continuous on f(I).

Remark

This is often stated with the assumption that f is continuous in I, but this
is not necessary. In particular, f{I) need not be an interval. See Exercise
8.3 for more information.
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Proof
As f is strictly increasing on I, it is injective on I, so that each of the
functions f : I — f{ll) and f~! : {I) — I is a bijection.

We shall now show that f~! is continuous at any point y of f{I), and
the reader is urged to interpret the following argument on a diagram. As
y € 1), there is a point ¢ in I such that f{c) = y. We shall assume that y
is not an endpoint of f{I) (the argument is entirely similar when it is), so
that c is not an endpoint of I. Now choose a positive number ¢ such that
[c—¢&c+¢€lCI, andlet

8 = min{fic) — flc — &), lc + &) — flc)} > 0.
Ify € f{I) and |f(c) — y| < §, then
Re-&)<floy—-6<y<fle)y+68<fc+e),
so that |[f~1(y) — f~!(¥)| < e, because
fln —e=c—e<fl@<cte=f"+e

This proves that f~! is continuous at the point y. ]

The discontinuities of a monotonic function are of a rather special type,
and we end this section with a brief discussion of these. Suppose that f is
increasing on [a, D], but not necessarily continuous there, and select any
c with a < ¢ < b (the argument can easily be modified to include the
cases ¢ = a and ¢ = b). The function f is increasing on the interval [a, c]
and is bounded above there by f{¢c); thus, by Theorem 3.6.3,

fo(e) = xl_ig\_f()t) = sup{f(x) :a < x < c) (8.3.1)
exists. In a similar way,
fr(c) = lirg_f(x) = inf{f{x) : ¢ < x < D}. (8.3.2)

Because f(c) is an upper bound of the set in (8.3.1) and a lower bound of
the set in (8.3.2), we have

f=(©) = fle) < f+ (o).

There need not be equality here; both inequalities are strict when, for
example, f is defined by flx) = —1 whenx < 0, f{0) = 0, and f{x) = 1
when x > 0. The significant feature of an increasing function f is that
its one-sided limits exist at every point ¢ (this is not true for general
functions), and this allows us to define the jump of f at ¢. The jump js(c)
of f at ¢ is defined by

Jr(©) = f+(0) — f-(o),

and a typical situation is illustrated in Figure 8.3.1.
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filop-———————===—- /
fofp-----==----—- _%
£40) ~——-~7___-'
1 | | R
a c b
Figure 8.3.1

The following result is now immediate.

Theorem 8.3.2.

Suppose that f is increasing on [a,b], anda < ¢ < b. Then f is continuous
at c if and only if jr(c) = 0.

Let us now consider the jumps of f at distinct points. We suppose that
a < ¢ < d < band select any x withc < x < d. Then

fla) = f~(©) = fa(0) = fix) < f-(@) = fr(d) < f(b),
so that
Jr(©) + jr(d) < fib) - fla).

More generally, for any distinct points ci, .. ., ¢m, in (4, b)

i) + -+ +jr(em) = fb) — fla).

1t follows that for a given f, there is only a finite number of points at
which the jumps exceeds any given positive value; again, nothing like
this can be said of a general function on [a, b).

Exercises

1. Give the details of the proof of Theorem 8.3.2.

2. Suppose that f is a strictly increasing map of an interval I onto an interval J.
Prove that f : I — J and f~! : J = I are both continuous.
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3. LetE =[-1,0)U[1, 2] and define f : E = R by

X if—1 <x< 0
fto =

x—1 ifl <x<2.
Use Theorem 8.3.1 to show that f is continuous on E. Now prove this directly.

4. Suppose that f is increasing on [a, b] and that there are k distinct points where
the jump of f is at least t. Show that k < [f(b) — f(a)})/t. [This means that
the discontinuities of f can be listed in a sequence, listing the points x where
jr(®) = 1 first, and then the x such that 1/2 < js(x) < 1, and so on.]

5. Construct a bijection f : E; — E;, where E; and E; are subsets of R, such that
f is not continuous on E; and f~! is not continuous on E;.

8.4 Uniform continuity

Uniform continuity is stronger than continuity. We shall begin by defining
uniform continuity; then we shall compare it with continuity and discuss
its geometric significance.

Definition 8.4.1.
A function f defined on E is uniformly continuous on E if given any positive
g, there is a positive § such that |f(x¥) — f(y)| < € whenever x and y are in
Eand |x — y| < é&.

A casual glance may suggest that there is no difference between con-
tinuity and uniform continuity, but a simple example will convince the
reader that there is.

EXAMPLE 8.4.2.

The function f{x) = x? is continuous on R, and we shall now show that it
is not uniformly continuous on R. Let us suppose that it is; then (taking
e = 1) there is a positive number § such that [x¥* — y*| < 1 whenever
|x — y|l < 8. Taking y = x + 8/2, this implies that éx < 1 for all positive
x, and this is false. O

What, then, is the difference between a function being continuous on
a set E and uniformly continuous on E? Suppose for the moment that a
function is continuous at every point of R. Then, given any point a in
R and any positive ¢, there is a number § such that if |x — a| < §, then
Ifx) — fld)| < e. Now the value of § here depends (obviously) on f and &,
but it also may depend on the point a. Indeed, if f is differentiable at a, we
would expect (roughly) to take § to be ¢/|f’(a)|, and this certainly depends
on a. By contrast, the definition of uniform continuity says that given a
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positive ¢ there is a positive § (which can only depend on the data given
so far, namely f and ¢, but not any points), such that if |x — y| < 8§ then
%) — f(y)l < &. In fact, uniform continuity means that in some sense, if
we take any two points ¥ and y whose distance apart is less than §, and
then move them (keeping them the same distance apart) anywhere in the
set E, the inequality |f(¥) — fla)l < & will remain valid throughout this
motion. It is, of course, an immediate consequence of the two definitions
that if f is uniformly continuous on a set, then it is continuous there.

There are circumstances under which continuity implies the stronger
property of uniform continuity, and the most important case of this is
given in the next result.

Theorem 8.4.2.
If a function f is continuous on [a,b], then it is uniformly continuous on
[a,b).

Proof

Assume that there is some continuous function f : [a,b] — R that is
not uniformly continuous on [a, b]. Then there is some positive & such
that for all positive §, there are points x and y in E with |x — y| < § but
If*) — fly)| = €. Taking é to be (in turn) 1,1/2,1/3, ..., we find that there
are sequences x, and yy, in [a, b] such that

1% — ynl < ,'11'1 f(%n) — flyn)l = &. (8.4.1)

By the Bolzano-Weierstrass Theorem, there is some subsequence of x,
converging to «, say, and clearly, a € [a, b]. We denote this subsequence
by x,, where n € {n;, ny, n3, ...}, and then from (8.4.1), the corresponding
subsequence of y, also converges to «. We deduce that

flxn) — flyn) = &) — fla) =0,

and this contradicts (8.4.1). The proof is complete. u

Exercises

1. (i) Show that the function f : (0,1) — R given by f{x) = 1/x is continuous but
not uniformly continuous on (0, 1).
(ii) Show that the function f : [0, +00) — R given by f(x) = »? is continuous
but not uniformly continuous on [0, +00).

2. Prove carefully that if a function f is uniformly continuous on a set E, then it
is continuous at every point of E.

3. Suppose that the function f : R — R is differentiable and that for every x in
R, |f'(x)] < M. Show that f is uniformly continuous on R.
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4. Show that the function f(x) = x¥2sin(1/x), and f(0) = 0 is uniformly
continuous on [0, 1] but has unbounded derivative there.

5. Prove that if a function is continuous on a closed bounded rectangle in C, then
it is uniformly continuous there.

8.5 Uniform convergence

Suppose that we have a sequence of functions fy, f1, f2, . . ., all defined on
the same set E, and that for each x in E, the infinite series

o0
) =Y fa(®
n=0
is convergent. Can we conclude that if each f, is continuous at a point a,
then the function f is also continuous at a? Unfortunately, the answer is
no. Indeed, if we define fy, fi, . .. on [0, 1] by fu(x) = ¥" — x"*1, then

) +AE) + -+ fa(x) =1 %",
so that

1 if0<x<1;

fiy = {0 ifx =1.

We shall now introduce a stronger form of convergence of infinite se-
ries of functions, known as uniform convergence, and then show that
this stronger form is enough to guarantee that the infinite sum f is con-
tinuous at any point at which all of the f;, are. The difference between
convergence and uniform convergence is analogous to the difference be-
tween continuity and uniform continuity. In the case of continuity, the
parameter § depends, or does not depend, on the point in question; here
it is the integer ny that depends, or does not depend, on the point.

Definition 8.5.1.

Suppose that fi, f2, f3, . . . are all defined on E, and that for each x in E the
series

) =) fa(®

n=1

converges. We say that this series is uniformly convergent on E to f if given
any positive ¢, there is an integer ng such that for all n > ng and all x in
E,

A + @) + - + fu(®)] - D) < &
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Similarly, we say that the sequence Fi, F», ... of functions converges
uniformly to the function F on E if, given any positive ¢, there is an integer
no such that foralln > np, and all x in E,

|Fn(®) - F®)| < e

There is an immediate, and rather obvious, sufficient condition for
uniform convergence. As

K@ +H@+ - +HE - =] X @] < Y 1K@
k=n+1 k=n+1

it is clear, for example, that if |fy(x)| < 1/2" then }_, f, is uniformly
convergent on E, for then we have

L@+ LE+ -+ f(® - W) < "2'1;{

More generally, the same is true if we replace 1/2" here by the nth term
of any convergent series, and this leads us to the following result.

Theorem 8.5.2.

Suppose that fi,f2.f3, - . . are defined on E and that there is a constant M
and a convergent series Y_ a, of nonnegative terms such that for all n and for
all x in E, |f,(¥)] < May,. Then the series ) _,, fn is uniformly convergent on E.

Remark

The inclusion of M in this result is irrelevant (for the series ) Ma, con-
verges if and only if }_ a, does), but we have included it for historical
reasons, as the test is often referred to as the Weierstrass M-test.

Proof
Given any positive ¢, choose an integer N such that
M(any1 +anyz +--2) < &
Then forn > N and all x,
i) + @) + - + fa(®) = O] < M(ans1 +anez + ) < €
as required. u

The next result confirms that uniform convergence is sufficient to
ensure that an infinite sum of continuous functions is continuous.

Theorem 8.5.3.

Suppose that fi.f2.f3, . . . are defined on E, that each f, is continuous at a |
point a in E, and that Y, f, is uniformly convergent on E to the function f.
Then f is continuous at a. ’
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Proof
It is simplest to write the proof in terms of the functions F, defined by

Fo(®) = i(®) + L(®) + -+ - fa(®).

Clearly, each F, is defined on E and is continuous at a. We begin by
estimating the difference |f{x) — f{a)|, for we want this to be small when
x is close to a. Now, for any k,

If%) = Ra)l < IfiX) = Fx(¥)| + |Fk(¥) — Fe(@)| + |Fx(a) — fla)l. (8.5.1)

Given any positive ¢ we now choose ng such that for all x in E and all n
with n > ny, If(¥X) — Fa(%)l < €/3. This is possible by the assumption of
uniform convergence. We now take k in (8.5.1) to be ng; then

%) = A@)| < |Fny(¥) = Fuo(@)| + 26/3. (8.5.2)

Finally, holding n, fixed and using the same ¢, there is some positive §
such that |Fy,(x) — F(a)| < €/3 whenever |x — a| < 8. Using this with
(8.5.2) now shows that if |[x —a| < §, then |f(x) —fla)| < &, and this proves
that f is continuous at a.

There is an interesting way of writing the conclusion of Theorem 8.5.3
that shows why it is not entirely elementary. The conclusion in Theorem
8.5.3 is that

Jim, (i 9) = fim (fim P9 .

ExAMmPLE 8.5.4.

We illustrate Theorem 8.5.3 by returning to Example 8.1.4, in which we
considered the continuity of a series ) f, of functions f, based on a se-
quence ry, of real numbers. We showed there that the function ), fu(¥)
was continuous at all points except the r,,. We recall that in this example,
If(®)l < 1/2" throughout R, so that by Theorem 8.5.3, }_, fa(x) converges
uniformly on R. It follows that this sum is continuous at every point at
which each f, is continuous; thus the series is continuous at every point
except the points r,,. 0

Exercises

1. Show that the sequence f;; given by f,,(x) = x" is uniformly convergent to 0 on
any interval of the form [0, a], where 0 < a < 1. Show that it is not uniformly
convergent on the interval [0, 1).

2. Show that the series
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is uniformly convergent, and hence continuous, on R.

3. Let fp(¥) = x"(1 — x) on [0, 1]. Show that for each x, f,,(x) = 0asn — oo. Does
fn = O uniformly on [0, 1]?
[Hint: uniform convergence will occur if and only if the maximum value of
fnon [0, 1] converges to 0.]

4. Show that the series
o 1
converges when x > 1. Show also that this series converges uniformly on any

interval of the form [a, b], where a > 1, but not on any interval of the form
@, b}.

5. Show that the series Y oo o ¥(1 — )"
(i) converges when x € [0, 2),
(ii) is continuous at each point of (0, 2),
(iii) is not continuous at 0, and
(iv) is not uniformly convergent on [0, 2).

6. Show that the series Y _po o ¥"(1 — 2™)
(i) is convergent when x € [0, 1},
(ii) is uniformly convergent on each interval [0, a], where 0 < a < 1,
(iii) is not uniformly convergent on [0, 1].



 Derivatives

CHAPTER

Abstract

The definition of a derivative is reviewed, and the basic results concerning
the Mean Value Theorem, the differentiability of inverse functions, and power
series are discussed.

9.1 The derivative

Much of our discussion of derivatives (Definition 3.4.8) applies equally
well to real- or complex-valued functions of a real or complex variable. A
function f defined in some open interval in R containing the point a is
differentiable at a if the limit

i 00— f1@)

x—a X—Qa

9.1.1)

exists. The value of the limit is the derivative of f at a and is denoted by
f'(a). Similarly, a function f defined in some disc {z : |z — a| < r} in the
complex plane C is differentiable at a if the limit

2>a z-—a
exists, and again it is denoted by f'(a).

131
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If f is differentiable at a, then it is continuous at a; this follows directly
from the fact that
) - ) = s — o) (2ZA2) <oy =,
where here, x may be a real or complex variable. Further, we have already
found (in Theorems 3.5.5 and 3.5.7) the rules for finding the derivative of
alinear combination, a product, and a quotient of differentiable functions.
Let us suppose now that f is defined on some open interval I con-
taining a and that f’(x) exists for all x in I. We ask whether or not f’ is
differentiable at a, and if it is, its derivative, the second derivative of f at a, is
denoted by f”(a) or f¥(a). Higher-order derivatives are defined in the ob-
vious way, and the nth derivative is denoted by f")(a). Of course, entirely
similar remarks (and notation) apply to the derivatives of complex-valued
functions.

Exercises

1. Suppose that f is defined on an open interval I, a € I, and f(x) < f(a) for every
x in I. Show that

oy — i @2 — @)

o = g, R <
and

f(a) = hrg_flﬁi_x%:_@ >0

so that f'(a) = 0.Show also that if f{x) > f{b) for every xin I, where b € I, then
f'(b) = 0.

2. Use induction to prove Leibnitz’s Theorem that if f and g are n times
differentiable at y and if h(x) = f{x)g(x), then so is h, and

n

ACEDD (Z)f‘“(y)g‘"**)(y).

k=0
3. Discuss the first, second, and third derivatives of the function
) = x(x + |xD(1 — x + |1 — x|).

4. Let n be a positive integer, and suppose that f{x) = ¥" when x > 0 and f(x) =
—x" when x < 0. How many times is f differentiable at 0?

5. Suppose that fy, . .., f, are defined and never zero on an open interval I, and
let F(x) = fi(0)f2(%) - - - fa(%). Show that
PR _ A, ., L@
Fx® M fa(®)
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6. Suppose that we have a mass distribution spread along R and that we can find
the mass u(I) of any interval I. A natural definition of the density p(xo) of the
mass distribution is

x0) = lim @,
o(%o) 70

where I is an open interval of length £(I) that contains x5, and where this limit
is taken over all such I as £(I) — 0. Strictly speaking, we let X be the class of
open intervals that contain x, with the direction > given by I > ] if and only
if I C ], and then p(x) is the limit of u(I)/¢(I) with respect to the direction >.

An alternative definition is to take any a with a < xp, let M(x) be the mass
in the interval [, x], and define the density p; (x0) to be M’(xp) when this exists.

The first definition is more natural from a physical point of view, for it says
that the mass in any small interval containing x, is approximately the multiple
P(Xo) of its length. Show that the two definitions are equivalent in the sense
that p(x) exists if and only if M’(x) exists, and that when they both exist they
are equal.

9.2 The Chain Rule

We shall now discuss the important Chain Rule for the derivative of a
composite function f{g(x)).

Theorem 9.2.1: the Chain Rule.

Suppose that g is defined in some open interval containing a, that f is
defined in some open interval containing g(a), and that g'(a) and f'(g(a))
exist. Then the composition h(x) = f(g(x)) of f and g is differentiable at a,
and

(@) = f(g@)e'(@).
We might try to prove this by letting x tend to a in the identity

h(x) — h(@) _ (f(g(x)) - f(g(@) ) (g(x) G )
x—a g(x) — 8(@) x—a )

and it is here that an inherent weakness in our definition of the derivative
appears. The problem is that our definition involves division, and we
cannot guarantee that g(x) — g(a) # 0, even when x s a. Indeed, this
‘identity’ has no meaning when g(x) = g(a), and such functions do exist
(see Exercise 9.2.3). Another very good reason to avoid division is that
ultimately (though not in this text) we wish to discuss the derivatives
of maps from, say, R3 to itself, and for this we must seek an alternative
definition, for clearly we cannot divide vectors by vectors.

It is apparent, then, that there must be an advantage in rewriting our
definition of a derivative so as to avoid division, and this is easily done.
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As the derivative f’(a) is the slope of the tangent to the graph of f at a,
the solution is simple: we reject the slope and instead use the tangent
itself. The most general straight line L through the point (a, f{a)) is of the
form y = f(a) + A(x — a), and this is tangent to the graph of f precisely
when A = f'(a). Starting afresh, we can define f’(a) as that value of A that
makes L the ‘best approximation’ to the graph of f, and these comments
lead to the following alternative definition of a derivative.

Definition 9.2.2.

Suppose that f is defined on some open interval I containing a. Then f
is differentiable at a if and only if there is some constant A and some
function ¢ : I — R such that

%) = fla) + A(x — a) + (x — a)e(x), (9.2.1)

where g(a) = 0 and g(x) — 0 as x — a. Further, (9.2.1) can hold for at
most one value of A (see below), and this value of A is defined to be the
derivative f'(a) of f at a.

We are obliged to show that our two definitions of the derivative are
equivalent. First, if (9.2.1) holds, then

) -fla _ . _
lim g = lm (A+e@®) = A4, (9.2.2)
so that f is differentiable in the sense of (9.1.1) and f'(a) = A. This
shows that (9.2.1) can hold for at most one value of A. Conversely, if f is
differentiable in the sense of (9.1.1), we define the function ¢ by g(a) = 0,
and for x # a,

f&)-fa _

— = -f@.

Then from (9.1.1), ¢(x) — 0 as x — a, and then (9.2.1) follows with
A = f’(a). The two definitions (9.1.1) and (9.2.1) are therefore equivalent.
Of course, an entirely similar discussion holds for complex functions of
a complex variable.

&gx) =

ExAMPLE 9.2.3.
Suppose that f(x) = x~! forx # 0. If a # 0 then

1 (x-a) (x—a)
= - +
a a? a’x

) =

and this is of the form (9.2.1) with A = —1/a? and g(x) = (x — a)/a’x. We
deduce that f is differentiable at a with f'(a) = —1/a?. O

We are now in a position to prove the Chain Rule.
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Proof of the Chain Rule.

We write A = g’(a) and B = f’(g(a)) and restrict x to an interval about a on
which f(g(x)) is defined. Definition 9.2.1 implies that there are functions
8 and ¢ with

lim §(x) = 0 = §(a), yl_l;g& ,6(Y) =0 =£(g(a)

such that
fly) = flg(@)) + By — 8(®) + (¥ — 8(@))e(y),
g(x) = g(a) + A(x — a) + (x — a)d(x).
We now replace y in the first expression by g(x) and use the second
expression; this gives (after a little simplification)
h(x) = h(a) + BA(x — a) + (x — a)E(x),

where

E(x) = Ba(x) + As(g(x)) + 8(x)e(g(x))-
As E(a) = 0 and E(x) — 0 asx — a, the Chain Rule has been proved. We
remark that when we substitute g(x) for y, we need to know that g(g(x)) is
defined, and it is for this reason that we have insisted that ¢(y) be defined
when y = g(a).

Exercises

1. Let f{x) = exp(tlogx) = x', where x > 0 and ¢ is real. Show that f'(a) = ta'1.
Suppose now that t > 0. What is the derivative of g, where g(x) = ¢*?

2. Suppose thatf'(x) = Af(x)onRandthatf(0) = 1. By considering f(x) exp(—Ax),
show that f{x) = exp(Ax).

3. Let

x* sin i
8(x) = (1/%) ifx #0,
ifx=0.
Show that g is differentiable at 0 and that g’(0) = 0. Show further that g'(x)
exists for every x but that g’(¥) is not continuous at the origin.
Show also that every open interval containing 0 contains a point x with
x # 0 but g(x) = g(0).

9.3 The Mean Value Theorem

In this section we discuss the Mean Value Theorem and some of its imme-
diate consequences. Geometrically, the Mean Value Theorem says that
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given the straight line segment joining the points (a, {a)) and (b, (b)),
there is some point ¢ between a and b such that the tangent to the graph
of f at ¢ is parallel to the segment. The special case when the segment
is horizontal (that is, when fla) = f{b)) is known as Rolle’s Theorem, and
the conclusion is then that f'(c) = 0 for some c in (a, b). As we shall
see, these two versions are equivalent to each other. We remark that the
Mean Value Theorem is stronger than Theorem 4.3.1, but whereas The-
orem 4.3.1 extends to higher dimensions, the Mean Value Theorem does
not. For example, the function f{z) = expz satisfies f{0) = fl2m), yet
there is no z (anywhere) for which f'(z) = 0.

Theorem 9.3.1: the Mean Value Theorem.
Suppose that f:[a,b] — Ris continuous on [a,b] and differentiable on (a,b).
Then there is some point ¢ in (a,b) such that

flc) = @;—:—z@. 9.3.1)

Proof

First we prove Rolle’s Theorem. Suppose that f satisfies the hypotheses
of the Mean Value Theorem and that f{a) = flb). By Theorem 8.2.3, f
assumes its maximum value at some point, say v, of [a, b], and also its
minimum value at, say u. If {u) = f{v), then f is constant and (9.3.1)
holds, so we may suppose that f{u) # f(v). In this case one of the values
flw) and f(v) is not equal to fla), and we may suppose that f[v) # fla) =
f(b). Thena < v < b, so that f'(v) exists, and as v gives a maximum value
of f, we have f'(v) = 0 (see Exercise 9.1.1). As (9.3.1) holds with ¢ = v,
we have now proved Rolle’s Theorem.

Now consider the case in which f{a) # f(b). The function

b —_
o =10 - (2L2) - )

satisfies the hypotheses of the Mean Value Theorem and F(a) = F(b).
We deduce that there is some c in (a, b) with F'(¢) = 0, and as this is
equivalent to (9.3.1), the proof is complete. u

An important corollary of the Mean Value Theorem is that if f'(x) = 0
throughout (a, b), then f is constant on (a, b) (see Theorem 4.3.2). There
is a stronger Mean Value Theorem that contains the first version as a
special case (with g(x) = x).

Theorem 9.3.2: the Second Mean Value Theorem.
Suppose that f and g are continuous on [a,b] and differentiable on (a,b).
Then there is some point c in (a,b) such that

[8(B) - g(@)}f'(c) = [b) — @)g'(©). (9-3.2)
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Proof
We define the function F by

F(x) = [8(P) — g(@)Ifx) = [fb) - AD)]s(*)-

As Rolle’s Theorem is applicable to F, there is some ¢ with F'(c) = 0, and
this is (9.3.2). [

We end this section with an application of the Mean Value Theorem
(see Exercise 9.3.5 for a similar application).

Theorem 9.3.3.

Let I be an open interval containing a, and suppose that f:I1 — R is
continuous and that f is differentiable on I except possibly at a. If f'(x) — A
as x — a, then f is differentiable at a and f'(a) = A.

Proof
Suppose that x € I and x # a. Then by the Mean Value Theorem,
f(x) - f(a) !
T Al = —A
— IF'(e) ~ Al

for some ¢ between a and x. The conclusion is now obvious, for |f'(c) —
A| < & when x is sufficiently close to a.

Exercises

1. Use the Mean Value Theorem to show that if p > 0 then the polynomial
X3 + px + q has at most one real zero. Now show that it has exactly one real
zero.

2. Let

f) =
ifx = 0.

Show that f’(x) exists for every x. Show also that f'(0) = 1, but that f is not
increasing in any interval containing the origin.

{ x+2:%sin(1/x)  ifx #0,

3. Suppose that the functions f, g, and h are differentiable at each point of R, and
define the function F by

fie)y flay ftx
Fx) = |gb) g(a) g(»
h(b) h(a) h(x)

(a 3 x 3 determinant). Show that F(a) = F(b). What is the result of applying
Rolle’s Theorem to F? What does this become in the special cases (i) h(x) = 1
and (ii) h(x) = 1 and g(x) = x?
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4. Show that the polynomial

2 X X"
=1- - - = -1\'—
p(x) X+ 3 3 + + (-1 "

has exactly one real zero if n is odd, but none if n is even.

5. Suppose that f and g are differentiable on some open interval containing the
origin, that f{0) = 0 = g(0), and that

im f_(x) =«
x=0 g'(x)
Show that

lim @ =«
=0 g(x)

Mllustrate this with a discussion of the function x™! sin x.
Discuss the existence or otherwise of the two limits when g(x) = x and

x+xtsin(1/x)  ifx # 0,
ifx =0.

6. Suppose that f is differentiable at each positive x and that f'(x) > a as x —
+00. Show that f(x)/x — a as x — o0 and interpret this geometrically.

fix) =

7. Suppose that f is twice differentiable on R and that for all », |[f{x)] < A and
IfA(x)| < B. Show that, for all x, |f'(¥)| < 2+/AB.

9.4 Inverse functions

Throughout this section we suppose that a function f is strictly increas-
ing and differentiable throughout an open interval I in R. In this case, f{I)
is an open interval, and there is a strictly increasing continuous inverse
function f~! : {I) — I (see Theorems 8.2.2 and 8.3.1). If f~! is differ-
entiable at the point f{a), then using the identity f~!(f{x)) = x and the
Chain Rule,

Y (fa)f' (@) = 1. (9.4.1)

This shows that f~! cannot be differentiable at any point f{a) where f'(a) =
0, and flxX) = x® and a = 0 is the classic example of this situation. Of
course, (9.4.1) does not imply that (f 'Y (f(a)) exists when f'(a) # 0, for
its existence was assumed when deriving (9.4.1). However, it does, as we
shall now show.

Theorem 9.4.1.
Let I be an open interval, and let f:I — R be strictly increasing and
differentiable throughout I. If a € I and f'(a) # 0, then f~! is differentiable
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at f(a) and
Yy = L
U ) (f(a)) f/(a) :
Proof
For all x in I,
fix) = fla) + (x — A)[f'(@) + &(x)), (9-4.2)

where g(a) = 0 and ¢(x) = 0 as x — a. Let b = fla), and take any y in
fiD) with y # f(b). Then y = f() for some x, so writingg = f~!, (9.4.2)
gives
8(y) —8®) _ 1
y-b f'(@) + &(8(v)
Now f’(a) # 0 and £(g(y)) — 0 asy — b (because g is continuous), so
the result follows. |

Exercises

1. Explain carefully the last step in the proof of Theorem 9.4.1, namely that as
y— b e(gy) — 0.

2. Find the derivative of x!" by regarding it as the inverse of the function x — x".

3. The function sin : (—n/2, n/2) — (-1, 1) is strictly increasing and so has an
inverse x — sin! x. Show that sin~! is differentiable on (~1, 1) and that its

derivative is 1/4/1 — x2,

4. Lettan x = sin x/ cos x when |¥| < /2. Show that tan~! is a strictly increasing,
continuous map of R onto (—n/2, n/2), and that

2l = ——
dx ()—l+x2

Let a, be a real sequence. Show that a, — +oc if and only if tan~! a, —
/2.

9.5 Power series

Motivated by the discussion of exp, sin, and cos in Chapter 6, we turn
now to discuss the general power series

i anz". (9.5.1)
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Our first task is to determine where the series (9.5.1) converges.

Theorem 9.5.1.
There is a number R, satisfying 0 < R < 400, such that the series (9.5.1)
converges absolutely when |z| < R and diverges when |z| > R.

A comment about the inequality 0 < R < +o0 is required. When
R = 0, this result means that the series diverges whenever z # 0 (and
it clearly converges when z = 0). When R = 400, the result is to be
interpreted as saying that the series converges for all z. This is the case,
for example, for the series for exp z.

Definition 9.5.2.
R is the radius of convergence of the series (9.5.1).

Proof of Theorem 9.5.1.
First, we define R. Let B be the set of nonnegative numbers r for which
the sequence [ag|, |a1|7, |az|r?, ... is bounded above. Obviously, 0 € B,
and if r; € Bthenr € Bwhenever0 < r < r;. Let R = sup B, where we
write R = 400 when B is not bounded above.

Suppose now that z satisfies |z| < R. Then |z| is not an upper bound
of B, so there is some r in B with |z] < r < R. Asr € B, there is some M
such that for all n, |a,|r" < M. It follows that

n
lanz"| < M ('—E—') , (9.5.2)

so that by the Comparison Test, the series (9.5.1) is absolutely convergent.

Conversely, suppose that (9.5.1) is convergent. Then a,z" — 0, so
certainly the sequence |ag|, |a1|lz|, |az}lz|%, . . . is bounded. Thus |z| € B,
so that |z| < R. This shows that if |z| > R, then (9.5.1) diverges, and this
completes the proof. |

Theorem 9.5.1 makes no claim about the convergence or divergence of
the series (9.5.1) at points on the circle {z : |z| = R}, and simple examples
show that a great variety of possibilities exist. Consider, for example, the
following three series:

00 o0 n [~ n
n 4 -1z
z", -, =

n=0 n=0 " n=0 n

All three series have radius of convergence 1; however,

(1) the first series diverges at every point of |z] = 1 (because when |z| =
1, |z"| does not tend to 0);

(2) the second series converges at every point of |z| = 1 (by comparison
with the series Y 1/n?); ‘
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(3) the third series converges when z = 1 and diverges when z = —1.

We turn now to the question of continuity and differentiability of a
function given by a power series. The argument leading to (9.5.2) shows
that if R is the radius of convergence of the series (9.5.1) and if R” < R,
then the series converges uniformly on the smaller disc {z : |z| < R’}
(see Theorem 8.5.2). Thus, by Theorem 8.5.3, the series is continuous
there and hence is continuous at every point zg with |zg] < R. We omit
the details, for the continuity will follow from differentiability, which we
establish below. There is, however, a general point to be made here. It
is not in general true that if a series is uniformly convergent on each of
the sets E, Ey, . . ., then it is uniformly convergent on their union E; U
E; U -- - (by analogy, a function may be bounded on each E; but not on
their union). It follows, then, that although the series (9.5.1) is uniformly
convergent on each disc {z : |z| < R’}, where R’ < R, it may not be
uniformly convergent on the disc {z : |z| < R}.

We have already seen that term-by-term differentiation is valid for the
power series for exp, sin, and cos, and we now show that for the general
series (9.5.1),

d o0 o0

% (Z anz" ) = Z napz"!. (9.5.3)
n=0 n=1

In particular, the series (9.5.1) is continuous at every point in the circle

|z] < R. There is, however, a question here: how do we know that the

series on the right-hand side of (9.5.3) converges when |z| < R? The

following theorem answers all these matters.

Theorem 9.5.3.
Suppose that the series (9.5.1) has radius of convergence R. Then the power
series

00
) naz! (9.5.4)
n=1

also has radius of convergence R, and the function defined by (9.5.1) is
differentiable in the disc {z:|z] < R} with derivative given by (9.5.3).

Proof
First, for any positive numbers r and §,

1 1
~lanlr™ < mlanlr™™ < Slanl(r + 8)". (9.5.5)

Now let R’ be the radius of convergence of (9.5.4). If r < R’ then the
central sequence in (9.5.5) is bounded; hence so is the sequence on the
left, so that r < R. Thus r < R’ implies that r < R, so that R* < R.
Suppose now that r < R, and choose a positive § such that r + § < R.
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Then the sequence on the right, and hence also the central sequence, in
(9.5.5) is bounded. Thus r < R implies that r < R/, so that R < R’. Thus
R =R

We now show that term-by-term differentiation of the series (9.5.1) is
valid. First, exactly as in the proof of Theorem 6.1.1, we see that if |z| < §,
then

n
l(w +2)" — w" — nzw"| =) (:)Izlklwl"'k

k=2
ol LA THEI I S—
SZ(k)IZM |w]
_ el
< 5 (wl + 9"

Now denote the series in (9.5.1) by f{z), and choose any w with |w| < R.
Next, choose a positive § such that {w|+ 8 < R, and then restrict z so that
|z] < 8. This implies that |w + z| < R, and for all such z,

= ian[(w +2)' —w" - nzw"“]

n=2

w+2)— fw) -z i napw"~!
n=1

o0
< Z lanl|(w + 2)" — w" — nzw"™!|

n=2
('Z') X_; (] + 8"

As the series ) a,(lw| + 8)" is absolutely convergent, say to the positive
number W, it follows that if |z| < §, then

o0
fiw +2) — fw) — 2 ) nanw™'| < |21 (W/82),
n=1
so that
f(w +2) - f(W) - n—1
—_— Z na,w
as z — 0. The proof is complete. |

Of course, we can apply Theorem 9.5.3 again and again to the same
power series, and in this way we obtain, for each positive integer k,

o (Zanz ) = in(n-— D (n=k+ Da,z"*

n=0 n=1
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Exercises

1. Show, by using Theorem 9.5.3, that

1 2
( ) =142z2+4+322 4.
1—-2z

2. Find the radius of convergence of each of the following power series:

(o]

zn 2“ 3" 5)1 n
2 G - RGene )

00

Z"
EE: 51 4 71 ! (

n=0

sl

Vo (e

n=0

3. Suppose that Y oo a.z" has radius of convergence R. Show that for every
positive integer k, the series

z nana"

also has radius of convergence R.

4. Suppose that ¥"o ; a.z" has radius of convergence R. Given a positive integer
k, find the radius of convergence of each of the series

00
Zanzkn' Z:(an)k n

n=0 n=0
5. Show that
o n
~n+1

has radius of convergence 1. Show also that every arc of positive length on the
circle |z| = 1 contains points at which this series diverges.

9.6 Taylor series

Our task here is to find conditions under which we can express a real-
valued function f by its Taylor series; that is, we ask, When is

Mg
fx%) = Z G )( —a)"? (9.6.1)

n=0 n!
There are two matters to be resolved here; first, does the Taylor series
converge (we assume, of course, that all derivatives of f exist), and sec-
ond, if it does, is its sum equal to f? The second question should not be
dismissed as an excessive concern for detail as there are functions for

which the Taylor series converges, but not to the value f{(x).
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First, we consider an expansion of f in a finite Taylor series. It is suf-
ficient to take a = 0 and to consider a function f defined on some open
interval I = (—r, r). We shall assume that all derivatives of f of all orders ex-
ist throughout I, and initially it will simplify matters greatly if we assume
that

fl0) = f10) = ... = fM(0) = 0. (9.6.2)

As we shall see shortly, this is harmless. With this assumption, we take
any nonzero x in I and create the function F(f) by the formula

FO) =fi+@x-0f 0+ (x~ )f ()+A(x H™!, (9.6.3)

where A is a constant uniquely determined by the condition F(x) = F(0).
This and (9.6.2) yield
flx) = Aax"*L
We now apply the Mean Value Theorem to the function t — F(t) and

conclude that there is some c, lying strictly between x and 0, such that
F'(c) = 0. After a little elementary algebra, this yields

f(n+l)(c)
D

so finally,

f(n+l)(c) n+1
= —= . 9.6.4
9= G (9-6:4)
This simple form is due to the assumption (9.6.2).
We are now ready to generalise (9.6.4) to functions that are not con-
strained by (9.6.2). Suppose, then, that all derivatives of f of all orders
exist throughout I, and define the function g by

(k)
8(¥) = flx) - [Zf ©) ¢ ]

k=0

As the condition (9.6.2) applies to g, it follows that g satisfies (9.6.4) (with
f replaced by g), and this shows that there is some ¢ between x and 0 such
that

f! "’(0) ) i

f) = f0) + Z S CETRAE (9.6.5)
This is a finite Taylor expansion of f, and it is a finite sum whose last
term may be considered as the error term containing an ‘unknown’ point
¢. Note that this may be considered as an extension of the Mean Value

Theorem that corresponds to the case n = 0.
Clearly, the same result holds at any point a. Indeed, if f is defined
on an open interval I and if all derivatives of f exist throughout I, then
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for any a in I, we can define h by h(x) = f{la + x) and then apply (9.6.5)
to h. Thus we obtain the finite Taylor expansion of f as described in the
following theorem.

Theorem 9.6.1.

Suppose that f is defined on some open interval I containing a and that all
derivatives of f exist throughout 1. If x € I and x # a, then there is some ¢
between x and a such that

) = f@ +Z @, A )

(n+ 1)

-af + (x — a)tl. (9.6.6)

This is the major step in proving our next result, namely that certain
functions can be expanded in an infinite Taylor series.

Theorem 9.6.2.

Suppose that f is defined on some open interval I containing a and that all
derivatives of f exist throughout I. Suppose also that there is some M such that
for allintegers n and all t in I, |f"™(¥)| < M. Then (9.6.1) holds.

Proof

The error term (containing ¢) in the expansion (9.6.6) satisfies
f‘"*”(c) (- a)"“ - (x - a)n+l ,
(n+ 1) - (n+ 1)

and this upper bound tends to 0 as n — o0, for it is the nth term in the
(convergent) series for M exp(x — a). Lettingn — oo in (9.6.6), we obtain
(9.6.1).

We end this section by using a different technique to prove the Binomial
Theorem for a nonintegral power.

Theorem 9.6.3: the Binomial Theorem.
Suppose that t is a real number and —1 < x < 1. Then

I+ =1+tx+ t(tz_! Doy o 13)‘0 i) BV (9.6.7)

We write the Binomial coefficents used in this expansion as

(:,) _ t(t—-l)...n(!t—n+1)' ((t)) -1
and as

(n+ l)(n;- 1) =+n% -(1;2+1()t' —1 - (;ta)(t -
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these satisfy the identity

n + 1)(’1:L 1) + n(;) = t(;) (9.6.8)

Proof of Theorem 9.6.3.
The Ratio Test shows that the series in (9.6.7) converges absolutely when
|¥| < 1, and we denote its sum by s(x); thus

s(x) = g (;)x".

Theorem 9.5.3 implies that §'(x) is obtained by term-by-term differentia-
tion, and this with (9.6.8) implies that

(1 + 2)s'(x) = Z ()"‘+Z ()

n=1

- ()G

n=2

=t+2[(ﬂ+ Dy 1)+ ()]

tio (;)x"

n=i

= ts(x).

Now define g(x) = (1 + x)~'s(¥). A straightforward calculation shows that
g'(x) = 0 whenever |x| < 1, so thatg is constant on (—1, 1). This constant
must be g(0), which is 1, so finally, we see that as claimed, for all such x,
s(®) = (1 + x)". u

Exercises

1. Show that the radius of convergence of the series in (9.6.7) is 1.
2. Show (as stated in the proof of Theorem 9.6.3) that g'(x) = 0 whenever || < 1.
3. Suppose that the functions s : R - R and ¢ : R — R satisfy
S =c(®), @ =-s(®), sX)?+c?=1.
Show that for all %,

1 N
s(x) = s(O)Z n )' D (0 )Z (Z(n +)1)' PR
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4. Use (9.6.6) to show thatfor 0 < x < 1,

X (—1 n+1
tog1 49 = 3 E
n=1 n
and also that
1 1 1
log2=1—=+=——+ - —
o8 t3-31%s

See Exercise 10.6.2.



Integration

CHAPTER

Abstract

We introduce the integral as the limit of approximating sums and then use the
upper and lower sums to give a criterion for integrability. Properties of the
integral are then discussed.

10.1 The integral

We recall Definition 3.4.10 of the integral of f : [a, b] - R as the limit of
sums of the form

n
SH(X, T) = Y _ (%541 — %), (10.1.1)
j=0
where X = {xo,x1,...%,}, T = {to, 1, ..., tn_1}, and
A=X) <X <+ <X <Xq41=Db, ¥=t=<x (10.1.2)

This limit is taken with respect to the direction > defined on the set of
all pairs (X, T) by (X1, T1) > (X, T) if and only if X; D X.

We call any pair (X, T) a partition of [a, b] (although often we simply
refer to X as the partition), and the sum in (10.1.1) is called the approx-
imating sum for the partition (X, T). To be quite clear, let us rewrite this
definition without any reference to the direction >.

148
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Definition 10.1.1.
The bounded function f : [, b] — R is integrable on [a, b] with integral I
if given any positive ¢, there is a partition X, of [a, b] such that |S¢(X, T) —
Il < & for every partition (X, T) such that X D X,.

We denote the integral I of f by expressions such as

fabf, fabf(x)dx, fabedx.

Because the integral is defined as a limit, the following three results follow
immediately from Theorems 3.5.3 and 3.6.1 and Corollary 3.6.2.

Theorem 10.1.2,
Suppose that f and g are integrable on [a,b]. Then for any real constants a
and B, the function af + Bg is integrable on [a,b] and

/ab(af+ﬂg)=afabf+ﬁfabg. (10.1.3)

Theorem 10.1.3.
Suppose that f and g are integrable on [a,b] and that, for all x in [a,b),

f(x) < g(x). Then
b b
f f< f g (10.1.4)
a a
Theorem 10.1.4.
Suppose that f is integrable and that for all x in[a,b], m < f(x) < M. Then

m(b—a)sfbfsM(b—a).

Next, we reassure ourselves by proving the following result, which will
be familiar to all those who have studied integrals before.

Theorem 10.1.5.

For all constants ay, . . . ,ax, we have
y y ¥ Y+
+ax+ - -+ ax|dx = a=+---+a .
ﬁ[% 1X + k] aoy+:2+ +k(k+1)
Proof

It is obvious that if f is a constant function, say with value k, on [a, b},
then §¢(X, T) = k(b — a) for every (X, T). Thus the constant function k
is integrable with integral k(b — a). By virtue of Theorem 10.1.2 we have
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only to prove that for any nonnegative integer m,

Y ym+l
fo Adr= S (10.1.5)

The proof is based on the following inequality, which follows directly
from two applications of the Mean Value Theorem: if 0 < u <t < v,
then

vm+l _ um+1

2,,m-1
< m(v — u)v .
m+1 =m( )

el Ul )

Now consider any partition (X, T) of [0, y], so that (10.1.2) holds with
a =0and b = y, and let f{x) = x™. Then

m+1 = ym+1 — !l = }:( I»ﬁl _ m+1
j=0
so that
m+1 ym+1 n
m+1 Sp(X, T)' “lm¥1 on(xl*l — %)L

IA

n xm+l — ym+l
J+1 i
% [m——i—l_ = G =y

j=0

n
< Z m(xi1 — %)2y"

j=0
<my"max{x. —%:j=0,...,n}

We are now finished, for given any positive ¢, we choose a partition Xp
of [a, b] such that for this partition, x,1 — ¥ < &/my™. Then, for any
partition (X, T) for which X D X, we have

m+1

m+1

< ¢

= §(X, T)

as required. n

Next, we show that the integral is unaffected by changing the value of
a function f at a finite number of points.

Theorem 10.1.6.

Suppose that f and g are bounded real-valued functions defined on [a,b]
and that f(x) = g(x) except at a finite set of points. If f is integrable on [a,b),
then so is g, and the two integrals are equal.
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Proof
We begin by showing that the function

1 ifx = c,
h(x) =

0 ifa<x<bandx #c,
where a < ¢ < b, is integrable on [a, b] with integral 0. Take any positive
ewitha < ¢c—¢ < ¢+¢ < b, and let X, be the partition {a, c — ¢, c + ¢, b}.
As h(x) = 0 when x # ¢,

0 < Sp(Xo, T) = 2¢h(ty) < 2¢.

Clearly, the same inequality holds for Sp(X, T) whenever X D Xo; thus h
is integrable with integral 0. The given result now follows immediately,
because for suitable constants a; and suitable functions h; of this type,

8(x¥) = flx) + ahi (%) + - - - + axhi(x). -

We end with an example of a function that is not integrable.

ExampLE 10.1.7.
We shall show that the function

1 if x is rational,
) = L
0 if x is irrational
is not integrable on [0, 1]. We suppose that it is, and let its integral be
I. Then there is a partition Xp of [0, 1] such that |Sp(X. T) — I| < 1/2
whenever X is a partition with X O X,. Thus, for any choices, say T’ and
T” of T, we have

18f(Xo, T) — S¢(Xo, T < 1S5(Xo, T) — I| + |I — S(Xo, T")| < 1.

However, by taking every ¢ in T' to be rational we have S¢(X,, T') = 1,
and by taking every t; in T” to be irrational we have Sy(Xo, T") = 0. This
is a contradiction, so f is not integrable on [0, 1].

Exercises

1. Show that f : [0,2] — R definedby f{x) = 0if0 < x < 1 and f(x) = 3 if
1 < x < 2is integrable on [0, 2], and its integral is 3.

2. Suppose that f is continuous and nonnegative on [a, b]. We shall see later (The-
orem 10.3.1) that f is then integrable on [a, b]. Assuming this, show that if

f: f = 0, then f{x) = 0 for every x in [a, b).
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3. Suppose thata < ¢ < b. Show that if f is integrable on [, ¢] and on [c, b], then
it is integrable on [a, b).

4. Suppose that g : [0,1] — R is defined by g(x) = 0 if x is irrational, and
g(x) = 1/q if x = p/q, where p and q are positive coprime integers. Show that
g has infinitely many discontinuities in [0, 1], but that g is integrable there.
What is the integral of g?

10.2 Upper and lower integrals

We now take a different view of the integral of a function f, namely as the
area under its graph, and obtain this by approximating it from above and
below by collections of rectangles. Suppose that f : [a, b)] — R satisfies
Ifix)] < M on [a, b). For each partition (X, T) given, say, by (10.1.2), we
define

m; = glb{f(x) : % < x < xj,1},
M; = lub{f(x) 1 < x < x0)

see Figure 10.2.1.

=

a=xy X Xy X3 x4=b

Figure 10.2.1

Definition 10.2.1.
The lower sum L(f, X) and the upper sum U(f, X) for the partition X of [a, b]
are given by

LX) = D mis1 = %),
]

uff, x) = Z_Mj(xj+1 - %)
1
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Observe that as m; < f(tj) < M; for each j, we have the inequalities
—M(b — a) < L(f, X) < S(X, T) < U(f, X) < M(b — a). (10.2.1)

Further, if we add a single new partition point to a partition X to form a
new partition X', it is clear that

L(f, X") = L(f, X), U(f, X") < U(f, X).

By adding a finite number of partition points one at a time, we find that
if X C X', then

L(f, X) < L(f, X') < U(f, X") < U(f, X). (10.2.2)

The lower sum L(f, X) gives a lower bound of the area under the graph
of f (see Figure 10.2.1, where L(f, X) is the area of the shaded region),
while U(f, X) gives an upper bound of this area. As L(f, X) is bounded
above, for varying X, by M(b — a), we can take the supremum over all
values of L(f, X) for varying X, and this will represent the best possible
approximation from below to the area under the graph of f. This supremum

is sufficiently important to warrant its own name, and there is a parallel
discussion with U(f, X).

Definition 10.2.2.
The upper integral and the lower integral of f over [a, b] are defined by

-b b
/ f = inf U(f X), f = sup L(f, X),
a X —a X
respectively.

It is important to understand that the upper and lower integrals always
exist (even when f is not integrable), and they represent the best upper
and lower approximations to the area under the graph of f between a and
b. Moreover, it is easy to see from (10.2.2) that they always satisfy the

inequality
b -b
/f_<_[ f. (10.2.3)
-a a

Indeed, given any partitions (X, T) and (X', T"), we see from (10.2.2) that
L(f, X) < L(f, X UX") < U(f, X UX") < U(f, X").
Thus U(f, X") is an upper bound of all L(f, X) (as X varies), so that

b
f < UM, X).

This means that the lower integral is a lower bound of all upper sums, so
that (10.2.3) follows. The significance of the upper and lower integrals is
described in the following important result.
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Theorem 10.2.3.
Suppose that f is bounded on [a,b]. Then the following are equivalent:
(i) f isintegrable;
(ii) the upper and lower integrals of f are equal,;
(iii) given any positive ¢, there is a partition Xy of [a,b] such that
‘L(f,Xo) - U(f,Xo)I < €.

In addition, when f is integrable, its integral is the common value of the upper
and lower integrals.

Proof

Suppose first that (ii) holds, and denote the common value of the upper
and lower integrals by I. Thus, given any positive ¢, there are partitions
X; and X, such that

I—e/2< LX) <I <UQF X)) < I+¢/2
Then, from (10.2.2),
I—e/2 < LEX UX) <UL X UXy) < I +¢/2,

so that (iii) holds when X, = X; U X,. This shows that (ii) implies (iii).

Now suppose that (iii) holds. Given a positive ¢, let Xy be the partition
described in (iii). Now, (10.2.2) implies that for any partitions (X;, T)) and
(X, T2) with X; D X, and X; D X,, we have

L(f, Xo) < L(f, X1) < §(X1, Th) < U(f, X1) < U(f, Xo),
and similarly for X5, so that
|Sp(X1, T1) = S¢(X2, T2)| < U(f, Xo) — L(f, Xo) < &.

As this is the Cauchy Criterion for the existence of the integral (as a limit),
we deduce, from Theorem 4.4.1, that f is integrable. This shows that (iii)
implies (i).

Finally, suppose that (i) holds. Then, given any positive ¢, there is a
partition X such that

< €.

soum- [

Now choose the points t; in T such that for each j, f{tj)) > M; — . Then

S(X, T) = ) fit) — %) > U, X) — &b — a),

j=0
so that

-b b
f fAx)dx < U(f, X) < (X, T) + &b — a) < ff(x)dx+s(l+b—a).
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As the upper integral and the integral are numbers (independent of &),
we may let £ tend to zero and conclude that

_bf(x)dx < fbf(x)dx.

An entirely similar argument gives

b b
[ rode< [ gwan
a -a
and these, with (10.2.3), yield (ii). The proof is now complete. |

Remark

Because condition (iii) is so important, we rewrite it in a slightly more
explicit form. Theorem 10.2.3 implies that f is integrable if and only if
(ili) for every positive ¢, there is a partition X, of [a, b] such that

Y M — m)(xin — %) < &

j=0

Exercises

1. Let f{x) = x* on [0, 1]. Construct a partition X of [0, 1] such that 0 < U(f, X) —
L(f, X) < 1073 and verify that this is so.

2. Use Theorem 10.2.3 to give a direct proof of Theorem 10.1.6.

3. Use Theorem 10.2.3 to show that the function in Exercise 10.1.7 is not
integrable.

4. Letf : [0, 1] —» Rbe defined by
0 ifx=0,

D" ifl/n+1) < x<1/n
Show that f is integrable on [0, 1].

o= |

5. Letf : [0, 1] = R be the function defined by f{x) = 0 when x is irrational, and
f(x) = 1/q when x = p/q, where p and g have no common factors (except 1).
Show that f is integrable on [0, 1], and that [ f = 0.

[Hint: take any positve integer m and consider the set of x where f{x) > m.]

10.3 Integrable functions

We begin with two theorems that guarantee a plentiful supply of
integrable functions.
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Theorem 10.3.1.
Suppose that f and g are integrable on [a,b]; then so are the functions |f (x)|
and f(x)g(x). Further,

b
< f IR0 di

[abﬂx)dx

Theorem 10.3.2.
(1) If f:[a,b] = R s increasing on [a,b] then it is integrable on [a,b).
(ii) If f:[a,b] — R is continuous on [a,b] then it is integrable on [a,b).

We shall need the following preliminary result (which we leave the
reader to prove).

Lemma 10.3.3.
Suppose that f:[c,d] - R satisfies m < f < M. Then for all x and y in
[c.d],

O -If@I =M-m;
(i) f()? = f)* < 2(Im| + IM)(M — m).

Proof of Theorem 10.3.1.
If we apply Lemma 10.3.3 to any interval [x, x;41] arising from any
partition X of [a, b], we obtain the inequalities

0 < U(Ifl, X) = L(If, X) = U(f, X) — L(f, X);
0 < U(f2, X) — L(f*, X) < 2(Iml + IMD[U(f, X) — L(f, X)),

and the integrability of |f| and f?> now follows directly from Theorem
10.3.1. Suppose now that f and g are integrable. Then so too are f + g and
f — g, and hence also

(f(X)J;g(X))Z N (ftx) ;g(x))z‘

As this function is f{x)g(x), this too is integrable.

The inequality given in Theorem 10.3.1 is a straightforward con-
sequence of the inequality —|f{x)] < Ax) < IAx)|, for this implies
that

—jab Rl dx < fabf(X)dx < f: ) d,

and this is equivalent to the given inequality. |
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Proof of Theorem 10.3.2.
Take any partition (X, T) of [, b]. Then

0 < U(f,X) - L(f, X) = )_(Mj — m)(%1 — %), (10.3.1)

j=0

and, from Theorem 10.2.3, it suffices to show that by choosing a suitable
(X, T) this can be made less than any given &. Roughly speaking, the proof
of (i) corresponds to making each term (¥, — ;) small, while the proof
of (ii) corresponds to making each term M; — m; small.

We consider (i) first. Given any positive €, choose a partition X such
that each term (xj;1 — %)) is at most &/[f{(b) — f(a)]. As f is increasing, we
have f{x)) < f(t) < fxj+1) whenx; < t < x4, so that mj = f(x) and
M; = f(%j41). In this case,

UL X) — LA X) = D _[f%41) — f))(xis1 — %)

=0
= fib) f fa) ;[ﬁxiﬂ = fix)]
]=
= é.

Thus iff is increasing on [q, b}, then it is integrable there. If f is decreasing,
then —f is integrable and so too is f.

Now suppose that f is continuous on [a, b]. Then f is uniformly con-
tinuous there (Theorem 8.4.2), so that given any positive ¢, there is a
positive & such that if x and y are in [a,b] and if [x — y| < §, then
Ix) — iy)l < &/(b — a). Now select a partition Xy such that for each
Jj, X%i+1 — %j < 8. Then for every partition X with X D X,, we have

0 < U(f, X) — L(f, X)
= Z(M;‘ = m)(Xj+1 — X))
j=0

IA

£ n
a2 Y (% — %)

=0

=€,

so that f is integrable. n

Theorem 10.3.1 has the following corollary.
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Theorem 10.3.4.
Suppose that f is integrable on [a,b), and a < ¢ < b. Then f is integrable
on both [a,c] and [c,b), and

[r=[s+[r

Proof
It is easy to see that the functions g and h defined by
) 1 ifa<x<cg, . . )
X) = , X)) =1 - g(x),
& 0 ifc < x <b. ) &

are integrable on [a, b]. Thus f(x)g(x) and f{(x)h(x) are integrable on [a, b],
and as f(x) = f(x)g(x) + fx)h(x), we have

b b b
f fXHadx = f f(X)e(x) dx + f fAX)h(x) dx.
a a a
Further, it is easy to see that as

f(x) ifa<x<eg,

f¥e(x) = {

0 ifc<x<b

is integrable on [a, b], (%) is also integrable on [a, ], with

[ o= [ ’ fo60 .

Remembering that we can change the value of a function at one point
without altering its integral (so that we may take h(c) = 1), we can argue
for h as we have argued for g and obtain the given result.

Exercises

1. Prove Theorem 10.3.4 by using the equivalence of (i) and (iii) in Theorem
10.2.3.

2. Show that if f is bounded on [a, b} and is continuous at all but a finite set of
points in [a, b], then f is integrable on [a, b).

3. Fork=0,1,...,nletxy = a+k(b— a)/n. lllustrate these points on a diagram.
Suppose that f : [a, b] > R is continuous. Use the uniform continuity of f
together with Theorem 10.2.3 to show that

1 n b
Jim, & 30 = [ an
k=1 a
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Deduce that for each positive integer r,

) "+2"+.--4+n" 1
lim - = .
n—00 nr+! r+1

4. Show that if f is continuous on [a, b] and that

b
[ fwseax = o
a
for all functions g that are continuous on {a, b], then f(x) = 0 for all x in [a, b].

5. Suppose that g is increasing on [a, b} and that f is continuous on [g(a), g(b)].
Show that x — f(g(x)) is integrable on [a, ).

6. Suppose that f is nonnegative and continuous on the interval [a, b], and let M
be the least upper bound of {f{(¥) : x € [a, b]}. Show that

b 1/n
i, [f e “"] =M

10.4 Integration and differentiation

In this section we examine the interaction between integration and dif-
ferentiation. The first two results describe the precise sense in which
integration and differentiation act as inverse operations.

Theorem 10.4.1.
Suppose that f:[a,b] — R is continuous, and for each x in [a,b], define

F(x) = /a fe) dt.
Then F is differentiable on [a,b] and F'(x) = f(x).

Remark
Any function F with F’ = f is said to be an indefinite integral of f.

Theorem 10.4.2.
Suppose that f is differentiable, with a continuous derivative f', at each
point of [a,b]. Then

b
[ o= -na.
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Proof of Theorem 10.4.1.
We know from Theorem 10.3.4 that F is defined on [a, b] with, of course,
F(a) = 0. Next, ifa < x < x + h < b, then (from Theorem 10.3.4)

n — x+h
R D = ([ poa) o

1 x+h
-+ [ o -t
X
As f is continuous at x, given any positive ¢ there is a positive § such that

if |t — x| < §, then |f{t) — f{x)| < & It follows that if 0 < h < §, then
IH) — Aix)] < ewhen0 <t < h, so that

x+h
< % f If(H) - Rx)ldt < e.

1 x+h
3 [ - senar

This shows that if 0 < h < §, then

Rt i) - F hz — x| < &
The same argumemt holds whena < x—h < x < band whenx = a or
x = b, and the result follows. [ ]

Proof of Theorem 10.4.2.
This is easy. We define a function F by
y
R = ) - @) - [ rod
a

Theorem 10.4.1 implies that F'(y) = 0 for every y in (a, b), and this means
that F(y) is constant on [a, b]. We deduce that F(b) = F(a) = 0, and this
proves the result. ]

Theorem 10.4.2 provides a method, known as integration by parts, for
integrating products of functions. Given suitable functions u and w, we
know that

(W) = ¥ (HwE) + uEW' (),
so that from Theorem 10.4.2,

b
[u(x)w(x)]z = /; (u@w(x)) dx

b b
= / u' (w(x) dx + f u(Xw'(x) dx.

Replacing w’ by v, and letting V = w (so that V is an indefinite integral
of v), this leads directly to the following result,
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Theorem 10.4.3: integration by parts.
Suppose that u is differentiable and that v is continuous on [a,b), and let V
be an indefinite integral of v. Then

/a ) dx = [u(x)V(x)]: - /a ’ U () V(x) dx.

Finally, we mention the rule for a change of variable inside the integral
sign. The Chain Rule is that for suitable functions f and g,

a
—Re(9) = f'(eCNe (),

and this is the basis for the next result.

Theorem 10.4.4.
Suppose that the functions f and g satisfy

(1) f’ exists and is continuous on [a,b);
(ii) g maps [c,d] into [a,b] with g(c) = a and g(d) = b;
(iii) g’ exists and is continuous on [a,b).
Then
b d
[ 1= [ feoema

Proof
Consider the function

8(Y) Y
R = [ R - f Re(ne'(t) e

defined on [c, d]. The hypotheses imply that F'(y) = 0 for each y (after
using the Chain Rule on the first integral), so that F is constant on [c, d].
This gives F(d) = F(c) = 0, and this is the required result. n

Exercises
1. Show that

b
/ exp x dx = exp(b/a).
a

2. Use Theorem 10.4.2 to show that

[" dt
— =logx.
1 ¢t

3. Use Theorem 10.4.2 to provide a proof of Theorem 10.1.5.
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4. Regard log x as the product 1 x log x, and hence find

X
/ log t dt.
1

d b n
a‘/; t" dt.

Making appropriate assumptions about the functions f, g, and , find and verify

a formula for
h(x)
i / t" dt.
dx Jo

Check that your formula reduces to your answer in the first part of the question.

5. Find

6. Evaluate j;)' xe* dx.

10.5 Improper integrals

In this section we shall briefly consider integrals of the type

+00
f(x) dx. (10.5.1)
a
Our first task is to attach a meaning to this (for clearly we cannot subdivide
the interval {x : a < x} into a finite number of intervals of finite length).
The definition is the obvious one; namely, we say that the improper
integral (10.5.1) exists, or is convergent, if and only if the limit

R
Jim, [
exists, and when it does, the value of the integral in (10.5.1) is this limit.
Notice that this defines the integral in (10.5.1) as a ‘double limit’; the first
limiting process gives rise to the integral from a to R, and the second is
needed to let R — +00. The first two results follow immediately from
Theorem 3.6.3 and Theorem 4.4.1., respectively.

Theorem 10.5.1.

Suppose that f is integrable on each interval [a,R], where R > a, and that
f(x) = 0 when x > a. Then the indefinite integral (10.5.1) exists if and only
if there is a constant M such that for all R,

j;Rf(x)dst.
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Theorem 10.5.2.
Suppose that f(x) is defined on {x:x > a}. Then the indefinite integral

(10.5.1) exists if and only if given any positive ¢, there is a number p such that

[Rﬁx)dx

< &

whenever R > r > p.

There is one more result in this section, and this has an immediate
application to infinite series.

Theorem 10.5.3: the Integral Test for series.
Suppose that f(x) is decreasing and nonnegative on {x:x > 0}. Then the
indefinite integral and the infinite series

+00 +00
fydx, Y fn,
0 n=1
are both convergent or both divergent.

Proof
Because f is monotonic, it is integrable on every interval [a, b], where
a>0.1Ifn <x <n+1,then f{n) > flx) = fin+ 1); so that

n+1
fin+1) < f fx) dx < fin).

We now sum the terms in this inequality forn =1, 2, ..., N and obtain
N+1

Y+ )+ +AN+1) < fl)dx < 1) + fi2) + - - - + AN).
1

The result now follows, since the infinite sum converges if and only if
the partial sums are bounded above, and by Theorem 10.5.1, the same is
true of the integral. |

ExampLE 10.5.4.
For any positive number t, we have, for all sufficiently large n,
1 1 1

<

Now, Y 1/n diverges, whereas Y_ 1/n!*' converges, so it is of interest to
determine whether the series

= 1

Z nlogn

n=2
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converges or diverges. In fact, a simple application of Theorem 10.5.3
shows that it diverges, for we need only note that (by making the
substitution y = log x)

/R dx /IogR dy
2 xlogx g2 Y

= log(log R) — log(log 2)
— +00

asr — 0. 0O

Exercises
1. Show thatift > 0, then (10.5.2) holds for all sufficiently large n.

2. Show that if ¢ > 0, the first of the two series

00 00
> i L wie]
4 n(logn)!*¢’ 44 nlogn loglogn

converges. Does the second series converge or diverge?

3. Does

&

/0
COnVCI‘ge.

4. A function f{(x) is absolutely integrable on {x : x > 0} if the integral

/ " ooy ax

converges. Show that if this is so, then the integral in (10.5.1) converges.[This
mimics the difference between convergent and absolutely convergent series.}

Give an example of a function for which the first, but not the second, of the
following two integrals converges:

[Trow [ e
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10.6 Integration and differentiation of
series

This section is concerned with the important question of deciding when

the assertions
b 00 00 b
/a (Zf"(")> dx=) (/a fn(X)d?C). (10.6.1)

n=1 n=1
d e 0 d
- n dx = — (%) dx 10.6.2
2 (;f(X)) ;(dxf(X) ) (106.2)

are valid. To impress upon the reader the need for care, we begin with
examples in which (10.6.1) and (10.6.2) fail. First, we note that if

Fa(®) = A(x) + -+ + fa(%),
then (10.6.1) and (10.6.2) are equivalent to

/ab (Jlrgo Fn(x)) dx = lim ( /a R dX) (10.6.3)

d lim F, = li d F,

& (MA@ = Jim (3 Fe).
Of course, we can change from the version containing infinite series to
that containing sequences, or back again, at will.

and

ExampLE 10.6.1.
For n > 2, let F,, be defined by
0 if0 <x <1/n,
Fa(X) =1 n ifl/n < x < 2/n,
0 if2/n<x<1.
The reader should sketch the graph of this function and confirm that

! 2 1
V/';Fn(X)dX'—'Vl(;—;;):1,

thus the right-hand side of (10.6.3) is 1. However, for each x,
r}grolo Fu(¥) =0, (10.6.4)
and this shows that (10.6.3) fails. We now verify (10.6.4). First, if x = 0,

then Fr(¥) = 0 for all n, so (10.6.4) holds when x¥ = 0. Now suppose that
0 < » = 1, and choose an integer N such that N > 2/x. If n > N then
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2/n < x, so that F,(x) = 0. This shows that (10.6.4) holds for all xin [0, 1],
so we conclude that (10.6.1) is not always true. O

ExampLE 10.6.2.
Let f, : R — R be defined by

-1/n ifx < —1/n,
Fa¥)={x if -1/n <x < 1/n,
1/n ifx > 1/n.

It is clear that F'(0) = 1 for every n and that F,(x) — 0 for every ¥, so
that at x = 0,

d (. o (4
p (}Lrglo F,,(x)) =0#1= ’}Lngo (dxF,,(x)) .

In this example, (10.6.2) fails. O

Of course, we want to obtain conditions under which (10.6.1) and
(10.6.2) are true, and we now turn to these. The problem with the se-
quence Fy, in Example 10.6.1 is that although F,(x¥) — 0 for each %, there
is no value of n for which the function F, is close to 0 for all x. Indeed, as
Fn(3/2n) = n, we see that although F,(x) — 0 for each x,

n—=00 \g<x<1

lim (sup F,.(x)) = +o00.

This problem is overcome by the use of uniform convergence (see
Definition 8.5.1 and also Exercise 10.6.1).

Theorem 10.6.3.
Suppose that the real-valued functions f, on [a,b] converge uniformly to the
function f on [a,b], and that f f,.f2, . . . are all integrable on [a,b]. Then

/ ) dx / o) ax

Proof
This is the sequential version of (10.6.1), and the proof is very easy. Let

8n = sup fa(® — R0

x€[a,b]
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so that §, — 0. As f and each f, are integrable, so is |f,(¥) — f{*)l, and

_/;bfn(x)dx - fab)‘(x)dx j;b[f,,(x) - f(x)]dxl

b
< f fu(x) — f)] dx

b
sfandx
a

< 8u(b — a).

Thus, given any positive &, we may choose ng such that if n > ny, then
8, < &/(b — a). Then, ifn > no,

< g,

/abfn(x)dx—f:fmdx

and this is the required result. |

We shall only prove the corresponding theorem for (10.6.2) in its
simplest form.

Theorem 10.6.4.
Suppose that

(i) the functions fy:[a,b] — R are differentiable on [a,b), and each f, is
continuous there;
(ii) the sequence fn(a) converges to some value «;
(iii) the sequence f, converges uniformly to some function g in [a,b).

Then the sequence f,, converges to some function f on [a,b)], and
lim £2(9) = £'(%).
Proof
As f, converges uniformly to g on [a, b], and as each f, is continuous on

[a, D), we deduce that g is continuous, and hence integrable, on [a, b]. Now
let

G(x) = /a g dt.

The uniform convergence of f;, to g, and the continuity of the f; and f,,
now guarantee that

50 - fu@ = [ i~ [ g = Geo.
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We deduce that
fu(¥) = a+ G(x) = f(x)
and also that
fa(®) > 8() = f'(%)
as required. |
We end with the remark that the version of Theorem 10.6.3 that applies

to infinite series rather than sequences leads to the result that providing
one stays within the region of convergence of the power series, we have

n+1
f(;_oan )dt gan 1

The corresponding result for derivatives of power series has already been
established (in Theorem 9.5.3).

Exercises

1. Suppose that the f, are integrable on [a, b} and that f, — f uniformly on [a, b).
Use (i) and (iii) of Theorem 10.2.3 to show that f is also integrable on [a, b].[Thus
the hypothesis that f is integrable can be deleted from Theorem 10.6.3.]

2. By considering 1 — x + %> — x> + - .., show that if |x| < 1 then

log(l + %) = Z e

n=1

3. By appealing to Theorem 10.6.4 (and giving details), verify that

l)n+] n

— sinx = cosx.
dx

4. Using the Binomial Theorem (Theorem 9.6.3) and Theorem 10.6.4 (and giving
details), verify that for all real ¢, and |x| < 1,

% A+ =t +x""

5. For each real x and positive integer n define f,,(x) = x/(1 + nx?). Find functions
g and h such that for each x,
lim fo(x) =g(®),  lim f;(x) = h(x).
For which values of x is h(x) = g'(x)?
6. For each real x and positive interger n let fy(x) = 1/(1 + n?x%). Find a function
f such that for each x, fo(x¥) = f{x) as n — oo. Show that

‘/; l fa(x)dx — j; l f(x)dx
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but that f, does not converge uniformly to f on [0, 1].

7. Show that for each positive integer g,
n ]
29 3, _ (29)!
/; (cosx)“dx =rm g

(see (11.2.2)). What is the value of the integral if 2q is replaced by 2g + 1?
Deduce that

lf”62wsxdx=§: 1 .
7w Jo = (n)?
8. For each real x and positive integer n let fu(x) = ¥¥*/(1 + x*"). Show that for
each x, fu(x) converges to some value f(x) as n — 00, and draw the graphs of f
and (for large n) f,. On which intervals [a, b] does f;; converge uniformly to f?
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CHAPTER

Abstract
We prove various interesting formulas concerning m, y, €, and n!.

11.1 The number ¢

We recall the number e defined by
R
€= —.
—n

Theorem 11.1.1.
The number e is irrational, and e = 2-7182 . . ..

Proof
As

L SR i 11
n+1)  (n+2) (n+ D& (n+ 1) nn’

we have the double inequality
LI S <1t st oot =+ — (ILLI
n T T < ntat ot a T am @

This enables us to estimate e to any desired accuracy, and we can show,
for example, that e = 2.7182 . ... Now suppose that ¢ = p/q, where p and

170
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q are coprime integers. Theng > 2 and

1 1 1 1 1
q!(l+ T +.-+ a) <gle< q!(1+ T R a)+ 7
However, this cannot be so, as both the term on the left and g'e are
integers, and their difference is less than 1/qg. |

Perhaps the most striking formula involving e and = is
eiﬂ = —1

but this must be interpreted with care. While the (less impressive) formula
exp(ir) = —1 is true, the number e (= 2.718...) raised to the power in
has infinitely many values, only one of which is —1 (see Exercise 6.5.6).

Exercises

1. Use (11.1.1) to show that 2.7182 < e < 2.7183.

2. Show that if each a,, is 0 or 1, and if a, = 1 for infinitely many n, then

is irrational.

3. Show that
o0
/ x"e ¥ dx = n!
0

11.2 The number n

We shall now show how to evaluate &, which, we recall, was defined (in
Chapter 6) as the smallest positive zero of sin. We shall also prove that 7
is irrational, and we relate 7 to the length of a circle by the usual formula.
We begin with the following formula (due to John Wallis, 1616-1703).

Wallis’s formula:

3 1°3°3°T':°3°5°3°" (11.2.1)

First, we must explain what we mean by this infinite product. If x > 0
then 1 + x < exp ¥, so that given a sequence a, of nonnegative numbers
such that 3~ a, converges to A, we have the inequality

(A +a))(1+a) --(1+as) <exp(as + a2 +---ap) < expA.
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It follows that the sequence (1 + a;)(1 + az) - - - (1 + ay) is increasing and
bounded above by exp A, and so converges. We use the symbol [] for the
product (as we use Y_ for the sum), and we write

[Ta +an - ﬁ(l + a).
k=1 k=1

To obtain (11.2.1), we define the a, by
2n __2n —14 1
2Zn—1 2n+1 4n? -1’
so that Y a, converges, and the right-hand side of (11.2.1), namely
= 2k 2k
Q(Zk—l ' 2k+1)'

exists as a real number. Wallis showed that this real number is 7/2.
To prove (11.2.1), we consider, forn =0, 1, 2, .. ., the integrals

1+a, =

n/2
In =/ sin” x dx. (11.2.2)
0

First,
Iy=n/2, I =1. (11.2.3)
Next, if n > 1, then

n/2
— 2 (cin?
O—L dx(sm x cos x) dx

n/2
= f [nsin®! x(1 — sin®x) — sin"*! x] dx,
0

so that the I, satisfy the relation
(n 4 Dlpgy = nln;y.
In conjunction with (11.2.3), this yields, fork = 1,2, ..,

p=--2.2... %2 T (11.2.4)

and

Dkpp=5 22 —— (11.2.5)

Now, for 0 < x < n/2, we have

sin™2 x < sin"t! x < sin™ ¥,

so that
n+2

I <] <, = —
n+2 = int+l = in n+1

Inyz,
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and hence I,y1/Ine; — 1. It follows that Ip41/I, — 1, and this is
(11.2.1). |

Next, we define the length of the circle C given by x*> + y*> = 1 to be
the limit, as n — o0, of the length L, of a regular n-gon inscribed in C.

Theorem 11.2.1.
The length |C| of C is 2.

Proof

A simple calculation shows that for any real 6,
|1 — exp(i0)| = 2sin 6/2,

so that L, = 2nsin(n/n). As

i 4
lim 20X =lim(1—x—+x—_...>=1

x—0 X x—0

(for when |x| < 1 the term in brackets differs from 1 by at most ex?), we
see immediately that

in 7/
IC| = lim L, = lim 27:(8"”’ ") = 2.
n—00 n—o00 n/n

We now describe a method of calculating 7 used by Archimedes (circa
260 B.C.). We begin with a regular hexagon h; inscribed in C and a regular
hexagon H; circumscribed on C: see Figure 11.2.1.

2+yt=1

Hy
hy

Qe

Figure 11.2.1



174 11. m, v, e andn!

For each n, where n > 2, we construct (i) a regular polygon h, with
3 x 2" sides, inscribed in C, and such that the vertices of h, are among
the vertices of h,1, and (ii) a regular polygon H, with 3 x 2" sides, cir-
cumscribed on C, and such that the points of tangency of Hy,; to C are
among those of H,. For brevity, we also use h,, and H, for the lengths of
these polygons.

Now, by Theorem 11.2.1, h, — 27, and (see Exercise 11.2.1)

hy < h) < hy < --- < H3 < Hy < Hj. (11.2.6)

Next, we shall show that

[ 2m 2h,H
Pns1 = hy h——:"? Hpa1 = h—_’L—I; (11.2.7)
n n n n

As h, — 2m and, say, H, - H, (11.2.7) shows that H, — 2w, and & can
now be estimated from above and below by implementing these iterative
formulae on a computer.

The proof of (11.2.7) is straightforward. Writing k, = 3 x 2" and § =
nt/ky, the polygons h, and H,, consist of k, segments of lengths 2 sin § and
2 tan @, respectively, so that

h, = 2k, sin 6, H, = 2k, tan 6,
Rui1 = 4kp sin(6/2),  Hp1 = 4k, tan(6/2).

With these, (11.2.7) follows immediately from the trigonometric identities

sinftan @ sin @
= = tan(6/2
sinfd + tan 8 1+ cosé n(6/2)
and
2tan@ 2 1

tan6+sin®  1+cos® cos?(6/2)

We end this section with a proof that & is irrational.

Theorem 11.2.2.
The number  is irrational.

Proof
For each real t and each nonnegative integer n, let

1
In(t) = f_ 1(1 — x%)" cos(tx) dx.

If we integrate by parts twice (treating the cases t = O andt # 0
separately), we obtain, for n > 2, the difference relation

EIn(t) = 2n(2n — DIpr () — 4n(n — 1)1, _,(1) (11.2.8)
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Although (11.2.8) enables us to find an explicit form of any particular
In(t), the following information is sufficient. u

Lemma 11.2.3.
There are polynomials P, and Q,, each with integer coefficients and of
degree at most 2n, such that

2l (8
—mﬁ = Pu(t) sint 4 Qu(t) cost.
Proof
The proof is by induction using (11.2.8) and is left to the reader. ]

It is now easy to see that 7 is irrational, for suppose that n/2 = b/a,
where a and b are positive integers. Then

n!

(bzrl+l ) In(b/a) = a®*[Pu(b/a) sin(b/a) + Qu(b/a) cos(b/a)]

= a’™*'p,(b/a)

because sin(b/a) = 1 and cos(b/a) = 0. By considering the series for
exp b?, we see that b*"/n! — 0, and as |I,,(f)| < 2 for all ¢, we see that for
all sufficiently large n,

|a®" 1 Py(b/a)| < 1.
However, as a®"*!P,(b/a) is an integer, for these n we have

2n+1

0 = a*™'Py(b/a) = (bn' ) In(b/a),

so that I,(b/a) = 0. This is a contradiction, for
1
I(b/a) = In(n/2) = / (1 — #%)" cos(nx/2)dx > 0,
-1

so finally, we conclude that x is irrational.

Exercises

1. Verify (11.2.6). The Triangle Inequality gives h, < hp41. Use the formula for
tan 26 in terms of tan 6 to show that H,;; < Hp, and hence that H,, — H, say.
Now use (11.2.7) to show that H, — 2x, and deduce that for all n, h, < 27 <
H,.

2. Show that if |x| < 1, then

‘ d 1

— tan"lx = .
dx 1422
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Expand the term on the right as a power series and integrate term by term to
derive Gregory's formula:

+ 2
5

tan'x=x - =
3

Combine this with Question 6.4.2 to estimate 7.

11.3 Euler’s constant y

In this short section we define Euler’s constant y.

Theorem 11.3.1.
The sequence

y,,=l+%+...+%—logn

converges to a number known as Euler’s constant y, and y = 0-5772 . . ..

Proof
Forn=2,3,...let

an=log(nfl)— % (11.3.1)

Thenay+---+a, = 1 —yy, soitis sufficient to show that ) a, converges.

However, as
! t ! 1 1
[t [ (5D a-a
o n(n—19 0 n-—t n

we have

f‘ t 1 1
0<ay,= —_— it < ———— < —,
o n(n—1t) 2nin-1) ~ n?

so that Y a, converges as required. n
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Figure 11.3.1

Exercises

1. Show that ay, is the area of the shaded region in Figure 11.3.1, and deduce that
05 <y, < 1.

11.4 Stirling’s formula for n!

For any sequences a, and by, we write a, ~ b, when a,/b, — 1, and
with this we can state

Stirling’s formula:

n
n! ~ (S) 2nn.

We begin with an alternative proof (see Theorem 7.2.4) that
n
n! 1/n ~ -,
()" ~ =

This is weaker than (and is implied by) Stirling’s formula, but its proof
will serve as an introduction to our proof of Stirling’s formula.
To estimate n! we observe that

logn! =log2+1log3 + .-+ logn,
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and that
n 2 n
f]ogxdx:j logxdx+-~+/ log x dx
1 1 n-1

< log2+1log3+---+logn

3 n+1
< j logxdx+~-+/ log x dx
2 n

n n+1 2
=j logxdx+f logxdx——f log x dx.
1 n 1

As
n n n n
f logxdx=[xlogx-x] =log(—) +1, (11.4.1)
1 1 €

we see that

n\" n\" 2 2 n+1
1+log(z) < logn! < ]og(;) ——]og(z) —l—/ log x dx.
n

This simplifies to

1 (n!)l/ne 1 /l1+]
" <log[ ” << log 4 + i log x dx

Finally, as

n+1 1 1
n Jn n

(see Exercise 11.4.1), we find that

log[e_(ﬁi_l)_]_/_n_] - 0,

and applying the exponential function (which is continuous), we obtain
the desired result.

Proof of Stirling’s formula.
We have to prove that the sequence v, defined by

e'n!
n"y/n

converges to /2, and the proof is divided into the following three steps.

Up =

Lemma 11.4.1.
The sequence Vn converges to some v, where v > 0.
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Lemma 11.4.2.
v >0

Lemma 11.4.3.
v =427

Proof of Lemma 11.4.1.
A computation shows that v; > v, > v3, and this suggests that we try to
prove that v, is decreasing. Now, the inequality v, > v,y is equivalent
to

e"n! e"tl(n+ 1)

> '
nyn o (n+ Dn+ 1

which, after a little simplification, is equivalent to

1 1
1 1+ — — 11.4.2
og(+n)>n+l/2 ( )
To prove this, we consider the function
=1 1 —
¢(x) = log(l +%) - >=—,

which is defined when x > —1. As
4 1 1
1+x (24 1+x 14+x+x/4

when x > 0, and as ¢(0) = 0, we see that ¢(x) > 0 when x > 0. In
particular, ¢(1/n) > 0, and this is (11.4.2). We have now shown that
Un > Up41; thus v, converges to some v, where v > 0. |

>0

¢ =

Proof of Lemma 11.4.2.

We write u, = log v, and show that u, is bounded below; thenv > 0. As
the graph of log x lies underneath its tangent at any point, we see that for
all positive x and a,

logx < loga + =7 (11.4.3)
a

An analytic proof of this is suggested in Exercise 11.4.2. Integrating both
sides of (11.4.3) over the interval [k — },k + 1], where k is an integer
with k > 2, yields

k+1/2
f log xdx < logk,
k=1/2

and hence

n+1/2
f logxdx <log2+---+logn =logn!.
3/2
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Using (11.4.1), this shows that

1

n n n+ 3 3/2
log n! z]og(;) +j logxdx+l—/ log x dx
n 1

> lo (")n+llo n+ A
z log P 2 4 )
say, so thatu, > A,andv > expA > 0. n

Proof of Lemma 11.4.3.
We recall the formulae (11.2.4) and (11.2.5) for the integrals I, defined in
(11.2.2). Now

3 5 2k-1 =& (2K)! /4

12k=—.—.6.--T-E—W.E
and
e 2 46 2k 2%(K)?
T 3057 T 2k+1 @k+ )

AS Ipy1/Ix = 1, these show that

(nn222n /12n+1 (2n+l)7r
vZn = (27!)' f J_

so that v = /2. [ ]
Exercises

1. Show that x/¢* — 0 as x — +00. Deduce that n~! log(n + 1) — 0 asn — 00.

2. For positive x and a, let
o(x) = f—%ﬁ + loga — log x.

Show that ¢ has a minimum at x = a, and hence derive (11.4.3).

3. Use the proof of Theorem 7.2.4 given above to show that if n > 2, then

e n < n < e
(n + l)l/n n+1 (n!)l/n 41/n !
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11.5 A series and an integral for =

In this section we sketch proofs of the following two results:
= 1 n?
~ =L (11.5.1)
; n? 6

and

o0
] e 2 dx = ﬁ . (11.5.2)
o 2

In fact, it is known that for each positive integer k,

1

2k
) a2k = TR

n=1

where ry is rational, but no such formula is known for odd powers. In this,
the last section in the book, we merely sketch the proofs of these results.

It is possible to prove (11.5.1) by using real functions of a real variable,
but we prefer the following method which introduces ideas that are of
interest in their own right. We recall that

Now, the zeros of sinz are the points nwr, where n € Z, and by using
the theory of infinite products, it is possible to express sin z as an infinite
product, namely

San—Zn<1— m)

Assuming this, we see that P,(2) — sinz as n — oo, where

2
Pn(z)-zn (1 - m_zyr_z)

2 (1 1 2n+1
=Z_ﬁ("1—2 +ot ;1-2-)+~-+anz” .

Now, P, converges uniformly to S in some neighbourhood of the origin,
so that (from the theory of functions of a complex variable) for each m,
the mth derivative of P, at the origin converges to the mth derivative of
sin at the origin. Taking m = 3, we obtain (11.5.1).
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In order to prove (11.5.2) we need the theory of double integrals (which
can be handled much like double sums). In fact, we need to know that

P (o) o0
ffe—(x‘+y‘)/2 dxdy 2/ (/ e-—(x2+y2)/2 dx) dy
y=0 x=0
®© 2 fad 2
— f (e—y /2/ e—x /2 dX) dy
y=0 x=0
0 2
= (/ 6—12/2 dX) ,
0

where the firstintegral is taken over the first quadrant. In order to evaluate
this integral, we regard it as a repeated integral with respect to polar
coordinates (r, 6), where dxdy = rdrdf. We integrate with respect to 6
first, and then with respect to r (by making the substitution s = r?), and
in this way we obtain (11.5.2).

Exercises

1. Complete the following steps to show that

® sin x b 4
/ ==
0 X 2

(i) Let

n/2 o /2 o
sin px sin gx
1,,=/ nPY o, 1p=f N9% o5 x dx.
0 simx 0 sinx

By considering sin(2n + 1)x and sin(2n — 1)x, show that
7
- =1 = =1 = =,
) 1 =h=h=]
(ii) Show (using by integration by parts) that for each positive integer n,

n/2 1
. . cos x
lim sinnx| — — — dx = 0.
n—>o0 Jo X sin x

(iii) Deduce that
n ™2 sin 2nx " siny
2 — lim de=1lim [ Y gy
2 n—-o0 Jo X n—00 Jo ]

(iv) Finally, show that

R .
s
Ny dy.




~ Appendix:
~ Mathematical
 Induction

The construction of the real numbers usually starts with Peano’s axioms
for the integers. Next, one develops the arithmetic of the integers; then the
rational numbers are introduced as ordered pairs of integers; and then,
finally, one constructs the real numbers, either as suitable sequences of
rational numbers or by the so-called Dedekind cuts of rational numbers.
In any event, the end product is a set of objects that is an ordered field
in which the Least Upper Bound Axiom holds and that is denoted by R.
In this construction (and this is the usual one) Mathematical Induction
appears as one of Peano’s axioms.

In this text (as in many others) we have chosen to avoid these founda-
tional matters and start with the assumption that we have a set, R, which
we call the set of real numbers, which is an ordered field in which the
Least Upper Bound Axiom holds. The question now is whether or not we
have implicitly included Mathematical Induction in our assumptions. In
short, do we still have to incorporate it as an axiom, or is it now a theo-
rem? The answer is that it is a theorem, and our aim here is to sketch its
proof.

We say that a set A of real numbers is inductive if1 € Aandifx+1 € A
whenever x € A. Such sets exist, for example, the set of positive real
numbers. It is clear that the intersection 2 of all inductive sets is itself
an inductive set; thus  is inductive, 1 € Q, and if A is inductive, then
Q C A. The Principle of Induction for the set Q is now a triviality.

The Principle of Mathematical Induction.

Suppose that A C Q,1 € A, and that x + 1 € A whenever x € A. Then

A=Q.

183
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Proof
Let A satisfy the given hypotheses. Then A is inductive, so that Q C A.
But by assumption, A C ; thus A = Q. ]

Of course, this is not yet the familiar Principle of Induction, but our
problem has shifted. We have proved the Principle of Induction for , and
it now only remains to identify Q as the set of positive integers. Note
that because {x € R : x > 1} is inductive, it contains 2, so that every
element y in Q satisfies y > 1. In particular, this already shows that 1 is
the smallest member of Q.

The set Z of integers is, by definition, the additive subgroup of the
real numbers that is generated by 1 or, more precisely, the intersection
of all additive subgroups of R that contain the element 1. To derive the
Principle of Mathematical Induction for N, we have to show that Q2 = N,
and this is a consequence of the following result (where —€2 is defined by
x € —Q if and only if —x € Q).

Theorem A.
Z = QU {0} U ( — Q). In particular, 1 is the smallest positive integer.

For this, we need two preliminary results.

Lemma 1.
Q={1}JU{x+ 1l:x € Q).

Proof

Let A = {1} U {x+ 1 : x € Q}. We begin by showing that A is inductive.
First, 1 € A. Now suppose that a € A. Then eithera = lora = x + 1,
where x € Q. In both cases, a € L, so that

(i) A C L, and
() a+1eaA.

Now, (ii) shows that A is inductive, and hence 2 C A. We have now
proved that A = Q. ]
Lemma 2.

LetT = QU {0} U ( — Q). Then

(a) T isinductive;
b ifxeTandy e Q, thenx+y € T;
(c)ifxelTandy € Q,thenx —y € T.

Proof
We prove (a). First, by definition, 1 € I'. Now take any x in T'; then either
x € Qorx = 0or —x € Q. In the first case, ¥ + 1 € Q (because Q
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is inductive). In the second case, x + 1 = 1 € Q. By Lemma 1, the
third case implies that either —x = 1 (in whichcase x +1 =0 € N or
—x = r + 1 for some r in Q (in which case x + 1 = —r € I'). Thus in all
cases, x +1 € QUT =T, so that (a) holds.

We now prove (b). Take xinT"and let A = {y e Q : x +y € T}. We
want to show that A = I'. By Lemma 1, 1 € A. Now take y in A; then
x+yeTl,sothatx+y+1 €T, whencey+ 1 € A. Thus A is inductive,
so that Q C A; whence A = Q. The proof of (¢) is similar. n

Proof of Theorem 1.

As Z is inductive, Q C Z. Thus (because Z is an additive group) I' C Z. It
remains to prove that I' is an additive group, for then, as 1 € I, we must
have Z c T, and hence Z = T", which is the desired conclusion.

As 0 € T'and as —x € " whenever x € T, in order to show that T is a
group we have only to show that it is closed under addition. Take any x
and y inT. Now, eithery € Q,y =0,or—-y € Q. Ify € Q,thenx+y e T
by Lemma 2(b). Ify = 0, thenx+y = x € I". If —y € Q, thenby Lemma
2(c), x — (—y) € TI'. The proof of Theorem 1 is complete. |

Finally, we have

Theorem B.
Every nonempty set of positive integers has a smallest member.

Proof
Let A be a nonempty subset of 2, and define

B={xeQ: forallain A, x < a}.

Choose any element a; of A. Thena; + 1 € B (fora; + 1 < a is false).
However, as q; isin A, itis in @, so thata; + 1 € Q. It follows that B # (,
and hence (as B C Q) that B is not inductive.

As Bis not inductive and as 1 € B, there is some bin Bwithb+ 1 € B.
Now, b + 1 € B implies that there is some « in A with@ < b+ 1, and
becauseb € B,b < a;thusb < a < b+ 1. However, Z is an additive group
that respects addition, and as b € B C Q C Z, we see that b — « is an
integer in the range [0, 1). By (1), b = «, whence « € B, and this implies
that « is the smallest member of A. This completes the proof. n
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cosh, 89
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directed set, 26
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divergent, 61
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e = 2.7182, 83
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empty set, 4
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exp, 83

exp x, 103
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Family, 3
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triangle inequality, 19
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