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Preface

These notes grew out of two courses, one given in the United States and
one given in Germany on the Fundamental Theorem of Algebra. The
purpose of these courses was to present a great deal of nonelementary
mathematics, all centered on a single topic. The Fundamental Theorem
of Algebra was ideal for this purpose. Analysis, algebra and topology each
have developed different techniques which surround this result. These
techniques lead to different proofs and different views of this impor-
tant result. It is startling how much mathematics can be introduced and
learned in this manner.

In the United States it was presented as a “capstone” course for upper
level undergraduates. Many of the topics were familiar to the students
but many were new. The goal of continually returning to a proof of the
Fundamental Theorem of Algebra gave a focus to a large body of (what is
at first glance) seemingly unrelated material. In addition, many nice ap-
plications, such as the insolvability of the quintic and the transcendence
of e and m could be introduced. We feel that undergraduates in such a
capstone course are an ideal audience for the book. Many departments
in the U.S. are adopting the idea of a summary course. In addition, the
book could serve as a foundation reference for beginning graduate stu-
dents. We also feel that the algebra sections, Chapters 2, 3, 6, 7, could be
used, with some additions from outside sources, as an alternative version
of an undergraduate algebra course or as a supplement for such a course.
The United States version of the course covered in one semester, with
some omissions, most of the material in Chapters 1 through 7. The whole
book could be covered at a relatively moderate pace in two semesters.



viii Preface

In Germany the material was presented to a class of potential teachers.
A high school (or in Germany, gymnasium) teacher should be exposed to
a wide range of mathematical topics. This material fulfilled this objective
for this audience. It is our hope that similar teacher training courses in the
U.S. might also adopt these notes. In the course in Germany, essentially
the whole book was presented in two semesters.

We wish to thank Nicole Isermann for her extremely careful proofread-
ing of the manuscript. We also wish to thank Kati Bencsath and Bruce
Chandler for reading preliminary versions and making suggestions, and
finally, we would like to thank Paul Halmos for his helpful suggestions.

Benjamin Fine, Fairfield University, United States
Gerhard Rosenberger, Universitat Dortmund, Germany
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~ Introduction
~ and Historical
cuavren  REMarks

The Fundamental Theorem of Algebra states that any complex poly-
nomial must have a complex root. This basic result, whose first accepted
proof was given by Gauss, lies really at the intersection of the theory of
numbers and the theory of equations, and arises also in many other areas
of mathematics. The purpose of these notes is to examine three pairs of
proofs of the theorem. The first proof in each pair is fairly straightforward
and depends only on what could be considered elementary mathematics.
However, each of these first proofs lends itself to generalizations that in
turn lead to more general results from which the Fundamental Theorem
can be deduced as a direct consequence. These general results constitute
the second proof in each pair.

Recall that a complex polynomial is a complex function of the form

P(2) = anz" + an12" ' + - - - + ao,

where ao, a3, . .., a, are complex numbers and n is a natural number.
A root, or zero, of this polynomial is a complex number z, such that
P(Zo) = 0.

The reasons for the different proofs of this result are due to the distinct
characteristics of complex polynomials. First of all, complex polynomials
are complex functions, that is, functions from C to C. As with real polyno-
mials, complex polynomials are everywhere differentiable and so in the
language of complex analysis are part of the class of entire functions.
In this context the Fundamental Theorem of Algebra is a direct conse-
quence of a general result called Liouville’s theorem. This result states
that an entire function that is bounded in the complex plane must be a
constant. In Chapters 2 anc 3 we wmtrodace the basic results on complex

1



2 1. Introduction and Historical Remarks

numbers and complex polynomials. We then use these to present a proof
of the Fundamental Theorem that utilizes only advanced calculus. This
proof suggests Liouville’s theorem. In Chapters 4 and 5 we then present
the results from complex function theory - specifically complex differen-
tiation, analytic functions, complex integration and Cauchy’s theorem -
needed to derive Liouville's theorem. From this we give our second proof
of the Fundamental Theorem of algebra.

In a different direction, a complex polynomial is an algebraic object.
In this context the Fundamental Theorem of Algebra can be phrased as,
“the complex numbers are algebraically closed.” In Chapter 6 we present
the results concerning construction of field extensions and then present
a proof of the Fundamental Theorem that depends only on the facts that
odd-degree real polynomials have real roots and that given an irreducible
polynomial f(x) over a field F, a field extension Fx* of F can be constructed
such that f(x) has a root in Fx*. This proof suggests the following gener-
alization. If K is a field where odd-degree polynomials have roots and
i = /-1, then K(i) is algebraically closed. The proof of this generaliza-
tion involves Galois theory. In Chapter 7 we present the basic results on
group theory and Galois theory needed to understand this proof.

Finally, a complex polynomial is a topological mapping. If we adjoin
the point at infinity to the complex plane we obtain a sphere, the Rie-
mann sphere $2. Since P(00) = oo for any complex polynomial P(z), P(2)
can be considered as a continuous mapping P : §2 — §2. Such topological
mappings have what is termed a winding number, indicating how much
the image of a curve C! on §? winds around when mapped to 2. In a sim-
ilar manner the function f(z) = z" winds the complex number z around
the origin. In Chapter 8 we first present a proof of the Fundamental The-
orem using the winding properties of f(z) = z" This is then generalized
to winding numbers of functions $2 — 82, from which the Fundamental
Theorem is re-obtained. To handle this last generalization we must in-
troduce some basic ideas and techniques in both point-set topology and
algebraic topology. This is done Chapters 8 and 9. This final proof requires
the most development and is therefore the least self-contained.

There are many variations of the proofs that we present. In a series of
appendices we give six additional proofs, each somewhat different from
those given in the main body of the notes. In Appendix A we give a mod-
ern version of Gauss's original first proof (see below). In Appendix C we
present three additional proofs arising out of complex analysis. These re-
quire a more detailed analysis of Cauchy’s theorem than the one given
in Chapter 5. This analysis is given in Appendix B. Finally, in Appendix
D we give two addditional topologically motivated proofs. These also de-
pend on the concept of winding number but differ from the two given in
Chapters 8 and 9.

We suppose that the reader has been introduced to advanced calculus
as least as far as Green's theorem; has studied some abstract algebra, in
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particular the definitions of groups,rings and fields, and has studied some
linear algebra, in particular the abstract definition of a vector space over
a general field. Beyond this we have tried to make these notes as self-
contained as possible. However, our goal is to arrive at an understanding
of the proofs of the Fundamental Theorem. Therefore, along the way we
have proved only those results that can be obtained directly and have left
more difficult results (such as the proof of the fundamental theorem of Ga-
lois theory) to the references. A note here about terminology. In standard
usage equations have roots, and functions and polynomials have zeros.
Historically however, the word root has been most often connected with
the Fundamental Theorem of Algebra. Therefore we use the term root
throughout these notes, and do not really differentiate between the zero
of the polynomial P(z) and the root of the polynomial equation P(z) = 0.

The first mention of the Fundamental Theorem of Algebra, in the form
that every polynomial equation of degree n has exactly n roots, was given
by Peter Roth of Nurnberg in 1608. However its conjecture is generally
credited to Girard who also stated the result in 1629. It was then more
clearly stated by Descartes in 1637 who also distinguished between real
and imaginary roots. The first published proof of the Fundamental The-
orem of Algebra was then given by D’Alembert in 1746. However there
were gaps in D'Alembert’s proof and the first fully accepted proof was
that given by Gauss in 1797 in his Ph.D. thesis. This was published in
1799. Interestingly enough, in reviewing Gauss's original proof, modern
scholars tend to agree that there are as many holes in this proof as in
D'Alembert’s proof. Gauss, however, published three other proofs with no
such holes. He published second and third proofs in 1816 while his final
proof, which was essentially another version of the first, was presented
in 1849.

In the main part of these notes we do not touch on Gauss'’s orig-
inal proof, which in outline went as follows. Since P(z) is a complex
number for any z € C and since z = x + iy with x,y € R we have
P(2) = u(x,y) + iv(x, y). The equations u(x, y) = 0 and v(x, y) = 0 then
represent curves in the plane R2. By a careful examination of the possible
functions u(, y), v(x, y) for acomplex polynomial P(z), Gauss showed that
the curves u(x, y) = 0, v(x, y) = 0 must have a common solution (o, Yo).
The complex number z, = x; + iyo is then a root of P(z). In Appendix A
we present a version of Gauss’s original proof.

The Fundamental Theorem of Algebra is actually part of a general
development in the theory of equations. The ability to solve quadratic
equations and in essence the quadratic formula was known to the Baby-
lonians some 3600 years ago. With the discovery of imaginary numbers,
the quadratic formula then says that any degree two polynomial over C
has aroot inC. In the sixteenth century the Italian mathematician Niccolo
Tartaglia discovered a similar formula in terms of radicals to solve cubic
equations. This cubic formuiz i$ now known erroneously as Cardano’s
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formula in honor of Cardano, who first published it in 1545. An earlier
special version of this formula was discovered by Scipione del Ferro. Car-
dano’s student Ferrari extended the formula to solutions by radicals for
fourth degree polynomials. The combination of these formulas says that
complex polynomials of degree four or less must have complex roots. In
the seventeenth century it became clear from the elementary properties
of continuous functions that all odd degree real polynomials must have
real roots. All these results lent credence to the Fundamental Theorem
which was mentioned by Roth in 1608 and conjectured by Girard in 1629.

From Cardano’s work until the very early nineteenth century, attempts
were made to find similar formulas for degree five polynomials. In 1805
Ruffini proved that fifth degree polynomial equations are insolvable by
radicals in general. Therefore there exists no comparable formula for de-
gree 5. Abel in 1825 1826 and Galois in 1831 extended Ruffini's result
and proved the insolubility by radicals for all degrees five or greater. In
doing this, Galois developed a general theory of field extensions and its
relationship to group theory. This has come to be known as Galois the-
ory (which we will discuss in Chapter 7). More about the history of the
Fundamental Theorem of Algebra can be be found in the article by R.
Remmert [R].



Complex
Numbers

CHAPTER

2.1 Fields and the Real Field

Recall that a field F is a set with two binary operations, addition, denoted
by +, and multiplication denoted by - or just by juxtaposition, defined on
it satisfying the following nine axioms:

(1) Addition is commutative: a + b = b + a for each paira, b in F.

(2) Addition is associative: a + (b +c¢) = (a+ b) +cfora,b,c € F.

(3) There exists an additive identity, denoted by 0, such thata +0 = a
foreacha € F.

(4) For eacha € F there exists an additive inverse denoted —a, such that
a+ (—a)=0.

(5) Multiplication is associative: a(bc) = (ab)c fora,b,c € F.

(6) Multiplication is distributive over addition: a(b + c) = ab + ac for
a,b,ce€F.

(7) Multiplication is commutative: ab = ba for each paira, b in F.

(8) There exists an multiplicative identity denoted by 1 ( not equal to 0)
such thatal = a foreacha in F

(9) For each a € F, with a # 0 there exists a multiplicative inverse
denoted by a™!, such thataa™! = 1.

A set G with one operation, + , on it satisfying axioms (1) through (4) is
called an abelian group . Axioms (1) through (6) define a ring, while (1)
through (8) define a commutative ring with an identity. Therefore, in
a more general algebraic context 2 field can be defined as a commutative

5



6 2. Complex Numbers

ring with an identity in which every nonzero element has a multiplicative
inverse.

A field can be considered as the most basic algebraic structure in which
all the arithmetic operations: addition, subtraction (addition of additive
inverses), multiplication, and division (multiplication by multiplicative
inverses) can be done.

Examples of fields include the rational numbers Q, the integers
modulo any prime p, denoted by Z,, and the field of real numbers
R. Another example of a field, which indicates the type of algebraic
extensions that we will be looking at later on, is the following:

ExampPLE 2.1.1
Consider the set

Q(vV2) = {a+bv2; a,b € Q).

On Q(+/2) define addition and multiplication via algebraic manipulation;
that is, if x = a + b+/2,y = ¢ + d+/2 then

x+y=(@+c)+ (b+d)V2
and
xy = (ac + 2bd) + (bc + ad)V/2.

To verify that Q(+/2) is a field we must show that is satisfies properties
(1) through (9). We leave most of this to the exercises and only show that
nonzero elements have multiplicative inverses.

First of all we can identify Q with {a + 0v/2; a € @} so that Q can
be considered as a subset of Q(+/2). From the definitions of addition and
multiplication it is clear that0 € Qand1 € Q are respectively the additive
and multiplicative identities in Q(+/2). Now suppose x = a + b+/2 with
x # 0. Thena and b are not both zero and since /2 is irrational, a% — 2b? #
0. Let X = a — b+/2. Then by a straightforward computation we have

XX = a’ — 2b°.
Now let

x a b2

Y= w2 T @222 a2 o

The value y is well-defined since a? — 2b? # 0. By computation it follows
that xy = 1 and hence y is the multiplicative inverse of x.

This example can be generalized to Q(+/d), where d is any rational
number that is not a perfect square. O

If F; is a subset of a field F that is also a field under the same operations
and identities as F we say *hat Fy is 2 subfield of F and F is an extension
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field of F;. As examples we have that Q is a subfield of Q(+/2) and also
a subfield of R.

If F; is a nonempty subset of a field F, then it will automatically satisfy
the associative, commutative, and distributive properties. Therefore, it
will be a subfield if it is closed under addition and multiplication, contains
0 and 1, and contains the additive and multiplicative inverses of any
element in it. We can summarize this by saying that it must be closed
under addition, subtraction, multiplication and division, in which case it
will automatically contain 0 and 1.

Theorem 2.1.1
Fy C F is a subfield if and only if Fy # @ and F; is closed under addition,
subtraction, multiplication, and division.

ExAaMPLE 2.1.2
Show that Q(+/2) is a subfield of R and therefore a field.
In example 2.1.1 and in the exercises we showed directly that Q(+/2)
is a field. Here we use Theorem 2.1.1 to accomplish the same thing.
Now, Q C Q(v/2), so Q(+/2) # 0. Therefore, to show that it is a field
we must show that Q(+/2) closed under the four arithmetic operations.
Suppose then that x = a + by/2 and y = ¢ + dv/2 withy # 0 and
a,b,c,de Q. Then:

xty=(axc)+ (bxdV2 e QW2)
sinceatceQ,bxtdeQ
xy = (ac + 2bd) + (bc + ad)v/2 € Q(v/2)
since ac + 2bd € Q,bc + ad €

av2

C
2 —2d2 (2 - 242

1y = € Q2)

€Q

) c

since Ty €qQ, Ty
From the last two facts it follows that x/y is in Q(+/2). Therefore Q(v/2) is
nonempty and closed under the arithmetic operations so it is a subfield
of R. O

Recall that a vector space V over a field F consists of an abelian group
V together with scalar multiplication from F satisfying:

() freViffeFveV.

@) fu+v)=fut+foforf e FuveV.
B) f+egv=fuv+guforf,ge FveV.
4 (fv=flgv)forf,ge FveV
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) lv=vforveV.

If F, is a subfield of F then multiplication of elements of F by elements
of Fy are still in F. Since F is an abelian group under addition, F can
be considered as a vector space over F;. Thus any extension field is a
vector space over any of its subfields. If F is an extension field of Fj, the
dimension of F, as a vector space over Fj, is called the degree of the
extension.

ExAMPLE 2.1.3

(1) Q(+/2) has degree 2 over Q since {1, v/2} form a basis.
(2) Risinfinite dimensional over @, so R is an extension of infinite degree
over Q. O

This second fact depends on the existence of transcendental num-
bers. An element r € R is algebraic (over Q) if it satisfies some nonzero
polynomial with coefficients from Q. That is, P(r) = 0, where

0 # P(x) =ap+ a1x + - - - + a,x" with a, € Q.

Any g € Q is algebraic since if P(x) = x — g then P(q) = 0. However,
many irrationals are also algebraic. For example /2 is algebraic since
x% — 2 = 0 has 4/2 as a root. An element r € R is transcendental if it is
not algebraic.

In general it is very difficult to show that a particular element is
transcendental. However there are uncountably many transcendental el-
ements (see exercises). Specific examples are our old friends e and . We
give a proof of their transcendence in Chapter 6.

Since e is transcendental, for any natural number n the set of vectors
{1,¢ €2 ...,€"} must be independent over Q, for otherwise there would
be a polynomial that e would satisfy. Therefore, we have infinitely many
independent vectors in R over Q which would be impossible if R had
finite degree over QQ.

We will return to these ideas later on. Now we must take a closer look at
the real field R, which satisfies certain special properties that are essential
for the Fundamental Theorem of Algebra.

First of all R, is an ordered field. By this we mean that there exists
a set of positive reals R* closed under addition and multiplication and
such that R satisfies the trichotomy law: if r € R then either r € Rt or
r = 0 or —r € R* and only one of these holds. This allows us to define
anorderonRbyx > yifx — y € Rt

Being an ordered field forces the square of any nonzero element to be
positive: if r € R then r? € R*, while if —r € R* then r? = (—r)? € R*
Therefore, only positive elements of R can have squareroots. In particular,
/—1 does not exist in R.
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ExAMPLE 2.1.4

Q, as well as any other subfield of R, is also an ordered field. However,
the integers modulo a prime, Z,, is not. Having a set of positive elements
closed under addition and multiplication and satisfying the trichotomy
law forces a field to be infinite. Therefore, ordered fields must be infinite,
and since Z, is finite it cannot be an ordered field. O

Next, R is Archimedean. Given x, y € R there exists a natural number
n such that nx > y. Q is also Archimedean.
Finally, R is complete in that it satisfies the least upper bound

property, (LUB property).

LUB Property
If S C R is bounded above, then S has a least upper bound s, (s < s,
foralls € §, and if s < s, for all s € Sthen s, < s1).

The LUB property is equivalent to either of two other properties that
are sometimes taken as the definition of completeness for R.

Cauchy Sequence Property

If {x,} is a Cauchy sequence in R, then {x,} must converge. Recall that a
Cauchy sequence is a sequence {x,} such that for all € > 0 there exists
N such that |x, — x| < eforallm,n > N.

Nested Intervals Property
If {I,} is a sequence of nested closed intervals (In4+; C I.) whose lengths
go to zero then there exists a unique point x, common to all the intervals.

Notice that Q is not complete. Consider the set S = {g € Q; ¢ < 2}.
Then S is bounded above by 3 in Q. However, S has no lub in Q for if it did,
it would have to agree with the lub in R which is the irrational number

V2.
The completeness property for R allows us to prove the intermediate
value theorem for continuous functions f . R — R.

Theorem 2.1.2 (Intermediate Value Theorem)

Let f:[a,b] — R be a continuous function. Iff(a) < k < f(b)or f(a) > k >
f(b), then there exists ¢ € (a,b) with f(c) = k. (A continuous function takes
any value between any two of its values).

Important for the Fundamental Theorem of Algebra is the following
corollary.
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Corollary 2.1.1
Suppose f:[a,b] — R is continuous and f(a)f(b) < 0. Then there exists a
value c witha < ¢ < band f(c) = 0.

To see the corollary notice that fla)f{b) < 0 implies that f{a) and f{b)
have different signs. Without loss of generality suppose f{a) < 0, f{b) > 0.
Then 0 is between f(a) and f(b), and the intermediate value thecrem
applies.

These special properties completely determine R up to isomorphism.
If R and S are rings, a function f : R — § is a homomorphism if it
satisfies:

Q) fin + 1) = in) + flrz) forn, r2 € R.
(2) finrz) = Ar)f(rz) forn, r; € R.

If f is also a bijection, then f is an isomorphism, and R and S are
isomorphic. Isomorphic algebraic structures are essentially algebraically
the same. We have the following theorem.

Theorem 2.1.3
Let F be a complete Archimedean ordered field. Then F is isomorphic to R.

2.2 The Complex Number Field

In the real numbers R, /=1 does not exist. Now we formally define i =
+/—1; that is i is a new element such that i = —1. Historically, i was
called the imaginary unit, but as we will see in the next section, i has a
very real geometric significance.

A complex number is then an expression of the form z = x + iy
with x,y € R. If x = 0,y # 0, so that z has the form iy, then z is called
a (purely) imaginary number. The set of complex numbers, denoted
by C, is then

C={x+iy;xyeR)

If we identify a real number x with the complex number x + 0 i, we see
that R C C as sets.

On C we define arithmetic by algebraic manipulation using the fact
that i2 = —1. Thatis, ifz=x + iy, w = a + i b then:

() zxw=(x+xa)+i(y D).
(i) zw = (xa — yb) + i(xb + ya).

(x+iy)(@+ib) = xa+i(ye) +i(b)+i*yb) = (xa—yb) +i(xb +ya)).
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ExAMPLE 2.2.1
Letz=3+4jw=7-—2jthen:

M z+w=10+2i.
@2)z-w=-4+6i.
() zw = 29 + 22i. O

It is easy to verify [see the exercises]that under these definitions C
forms a commutative ring with an identity and that R is a subring of C.
The zero is 0 € R, identified as 0 + 0 i, and the multiplicative identity is
1 € R identified with 1 4+ 0. In order for C to be a field we must have
multiplicative inverses. We now show how to construct these.

Definition 2.2.1
If z € C with z = x + iy, then the complex conjugate of z, denoted by
Z,1s Z = x — iy, and the absolute value, or modulus, of z, denoted by

|z, is |z| = /X2 + y?

EXAMPLE 2.2.2
letz=3+4iThenz=3—-4jand|z| = +v/9+16 =5. O

The following lemmas give the properties of the complex conjugate and
the absolute value, and from these we will be able to construct inverses.

Lemma 2.2.1
Let z,w € C. Then

(1) |zl = 0, and |z| = 0 if and only if z = 0.

@) lzw| = |z|lwl.
®3) lz+wl < |z| + |wl.

The proofs of these are straightforward computations and are left to the
exercises. Notice that these are precisely the properties of the absolute
value of real numbers, and so they will allow us to do calculus on C.

Lemma 2.2.2
Let zw € C. Then

Mz+tw=z+w.

() zw = )W)
@ z=z
@) 12l = |zl.

(5) Z = z ifand only if z is real.

Properties (1) through (4) are computations. For (5) suppose z = x+i y.
Then z = x — iy, and z = Z if and only if y = —y. But this is possible if
and only ify = 0, and then z = x + 0i and z is real.
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Now consider

2. Complex Numbers

Z=x+iYr-iy) =" -y’ =+ +y* = |z’

Therefore we have the following result.

Lemma 2.2.3
Ifz € C, then zZ = |z|?
From this lemma we can see that if z # 0, then

z |z]2
z— _— —— =
lzI2  |z|? '

and so we make the following definition.

Definition 2.2.2
1 = £ foranyz € Cwithz # 0.

z T |z

ExXAMPLE 2.2.3

letz=34+4ijandw =7 — 2i. Then

¢) 1 _ 345 _ 3 _ 4 :

: 32-{-42 2 2§7+12 i 134343 13 34

z _ _ . _ _ .
(2) ;—Z;—(3+4l) 53 53 —§+§1.

From the definition we now have division of complex numbers and

thus C is a field.

Theorem 2.2.1

C is a field. R is a subfield of C, and the degree of C as an extension field of R

is 2. Further, C is not an ordered field.

The degree being 2 comes from the easily observed fact that as a vector
space over R, {1, i} forms a basis. C cannot be an ordered field for the
following reason. In any ordered field F, 12 = 1 so 1 is positive. But then,
from the trichotomy law —1 must be negative and therefore, as explained

in the last section, cannot have a squareroot.

2.3 Geometrical Representation of

Complex Numbers

To each complex number z = x + iy we can identify the point (x, y) in
the xy-plane R2. Conversely, to each point (x, y) € R? we can identify the
complex number z = x + iy. Waen thought of in this way, as consisting
of complex numbers, R? is called the complex plane.
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Alternatively, we can think of the complex number z = x + i y as the
vector U = (,y), that is, the vector with representative starting at (0,0)
and ending at (x, y). In this interpretation | | is just the magnitude of the
vector (¥, y), which is just the distance from the point (%, y) to the origin.
The conjugate Z = x — j y is just the point (x, —y), which is the point (x, y)
reflected through the x-axis.

ExAMPLE 2.3.1
(see figure 2.1)

(x.y)=z
—>lz
(- =2
Figure 2.1. Geometrical Representation O

We can describe the arithmetic operations in terms of this geometrical
interpretation. Since addition and subtraction are done componentwise,
addition and subtraction of complex numbers corresponds to the same
vector operations as pictured in the diagram below.

ExaMPLE 2.3.2

-w

Z+w

Figure 2.2. Vector Operations a
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Multiplication by real numbers is scalar multiplication of two-
dimensional vectors. Geometrically this is a stretching. That is, if z €
C,r € R then:

(1) ifr > 0, rz = w, where w is the vector in the same direction as z with
magnitude |r]|z].

(2) ifr < 0,7z = w where w is the vector in the opposite direction as z
with magnitude |r||z|.

If z = x+ iy, then iz = —y + ix. That is, multiplication by
i takes the point (x,y) to the point (—y, x). Since the inner product
< (% Y), (Y, x) >= —xy + xy = 0, these vectors are orthogonal. Since
1i = i, multiplication by i corresponds to a counterclockwise rotation by
90° Therefore, i is not really “imaginary” in any sense, it corresponds to
a rotation.

Putting all this together we can give a complete geometric interpre-
tation to complex multiplication. Suppose z, w € C with z = x + jy.
Then consider zw = (x + iy)w = xw + iyw. Geometrically then, we
first stretch the vector w by x, then stretch the vector w by y and rotate
the second stretched vector by 90° counterclockwise. Finally we add the
resulting vectors (see Figure 2.3).

rz

iz

Figure 2.3. Complex Multiplication

2.4 Polar Form and Euler’s Identity

If P € R? with rectangular coordinates (x, y), then P also has polar coor-
dinates (7, 6) where r is the distance from the origin O to P and 0 is the

angle the vector OP makes with tre pesitive x-axis (see Figure 2.4).
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P(x, y)

AR

Figure 2.4. Polar Form

Here we restrict 6 to be in the range [0, 27) so that each point in R? has
only one set of polar coordinates. The rectangular coordinates (x, y) of a
point P are related to its polar coordinates (7, 6) by the formulas:

(i) x = rcosé.
(ii) y = rsiné.

(i) 7 = /x + 2. (2.4.1)

(iv) 6 = arctan(y/x) chosen in the appropriate quadrant.

If z = x + iy corresponds to the point (x, y) with polar coordinates
(7, 6), then from (2.4.1), z can be written as

z = r(cos 6 + isinf) (2.4.2)

This is called the polar form for z. The angle 8 is the argument of z,
denoted by Arg z, and in this context |z| is called the modulus of z.

EXAMPLE 2.4.1

Suppose z = 1 — j; then |z| = V2 and Arg z = arctan(-1) = 7n/4
since (1,-1) is in the fourth quadrant. Therefore, z = /2(cos(77/4) +
i sin(7n/4)). O

There is a very nice exponential way to express the polar form due to
Euler. Before we describe this, we must look more closely at the powers
ofi.

Now, i = —1s0i® = i’i = —i. Theni® = i®i = —i? = 1 and
therefore i> = i. From this it follows that the powers of i repeat cycli-
cally as {1,i,—1,—i}, and i" = {i" if and only if n = m (modulo 4).
For example, i = i* = —i. Further, the multiplicative inverse of any
power of i is another power of i, and so these powers form a group under
multiplication.

Lemma 2.4.1
The powers of i form a cyclic group of order 4 under multiplication.
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This result is actually a special case of a result about primitive nth roots
of unity that we will discuss in the next section.

If t is a variable, recall that the functions €, sint, cost have the
following power series expansions.

M e=1+t+t2/20 4. +t"/nt +---
(@) sint =t —t3/31 4+ 3/5! — -« + (1" /2n+ 1N+ -+ (24.3)
(3) cost =1 —t2/20 4 t4/4! — ... + (=) /(2n) + - - -

Now consider t = i 6 with 6 real, and substitute into (2.4.3) to find et®
(Although t is not a real variable, we do this formally.)

el =14+3G0+GE0/2'+...=1+(i6) —6%/21 —i6*/3! + - -

using the rules for the powers of i. Then
e =01-6%/21+6/414+ .- )+i(0 - /31 +6°/5! + - )
= cos(f) + i sin(6).

This is known as Euler’s identity.
Euler’s Identity
€i® = cos () + isin (6) for 6 € R.

Now, if r = |z| and 8 = Arg z, we then have

z = r(cos @ + isin6) = ret? (2.4.9)

This last identity makes multiplication of complex numbers very sim-
ple. Suppose z = 11€1%, w = r,ei% Then zw = r;1,€®+%) Breaking this
into components, we then have |zw| = |z||w| and Arg(zw) = Argz + Arg
w.

Lemma 2.4.2
Ifz,w € C, then |zw| = |z||lw| and Arg(zw) = Argz + Arg w.

Notice that Arg i = n/2, and multiplication i z rotates z by 90°. That
is, Arg (iz) = n/2 + Argz = Arg i + Arg z, which follows directly from
the lemma.

Euler's identity leads directly to what is called Euler’s magic formula.
Suppose 6§ = m. Then

el” = cos(m) + isin(m) = -14+0i= —1.

Put succintly, e +1 = 0.
Euler’s Magic Formula. ¢i” +1 = 0.

This hasbeen called a “magic” formulabecause the five most important
numbers in mathematics - 0, 1, ¢, i, 7 - a1e tied together in a very simple
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equation. If one thinks about how diversely these five numbers appear -
0 as the additive identity, 1 as the multiplicative identity, e as the natural
exponential base, 7 as the ratio of the circumference to the diameter of
any circle, and i as the imaginary unit, this result is truly amazing.

2.5 DeMoivre’s Theorem for Powers and
Roots

Ifz =rei® €e Candn € N, then z" = r‘ei™ Notice then that |z"| =
|z|" and Arg(z") = n Arg z. This is known as DeMoivre’s theorem for
powers.

DeMoivre’s Theorem for Powers
Ifz =rel® € Candn € N, then z" = r"ei™. In particular, |z"| = |z|" and
Arg(z") = nArgz.

EXAMPLE 2.5.1
Letz = 1 — j and let us find z'°.

Now, |z| = /2 and Arg z = 7n/4, so z = +/2¢17”% Therefore,
2 = (/2)%1 74 Now, (+/2)'° = 32, while 70n/4 = 167 + 3n/2 =
3n/2 (as angles). It follows than that z'© = 326372 = 32(cos(37/2) +
isin(3n/2)) = —32i. O

Notice that since Arg(z") = n Arg z, the function f(z) = z" winds the
complex number z around the origin. In Chapter 8 we give a proof of the
Fundamental Theorem of Algebra based on this observation.

Ifn € Nz e Cand w" = z then w is an nth root of z which we
denote by z!/" If r € R,r > 0 then there is exactly one real nth root
of r. If z = rei®, then w = r'/"ei®" satisfies w* = z and is one nth
root of the complex number z. However, if 22 < 27 for k € N, then

. 0421k . .
wr = r/mel =5 is also an nth root of z and is different from w. There are

precisely n values of k that produce different nth roots of z for example
k=0,1,...,n— 1. The n different nth roots of z are then

s 6+2nk
we =r""¢ "n k=0,1,...,n—1.

We have therefore proved the following theorem, which is known as
DeMoivre’s theorem for roots.

DeMoivre’s Theorem for Roots
Ifz € C,z # 0, then there are exactly n distinct nth roots of z. If z = rei®,
these are given by

« W427k

/ - = L)
we =7V T k=€, 1,.. ,n—1.
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EXAMPLE 2.5.2
Let z = 1 + i. Find the sixth roots of z.
Now |z| = +/2, Arg z = arctan 1 = 71/4 so z = +/2¢i™/* The sixth roots
of z are then
(1) wy = 212 5 = 21/12(cos(/24) + i sin(n/24)).
(2) wy = 2V1%:i — = 2"'2(cos(91/24) + i sin(9r/24)).
(3) way = 2126 7% = 2V12(cos(171/24) + i sin(177/24)).
(4) wy = 21268 "% = 2V/12(cos(25n/24) + i sin(251/24)).
(5) ws = 211261 *¥* = 21/12(cos(331/24) + i sin(331/24)).
(6) wg = 21261 " = 2/'2(cos(4171/24) + i sin(417/24)). 0
If z = 1, then an nth root, w, is called an nth root of unity. Since
|z| = 1, then |w| = 1 for any nth root of unity, and therefore the roots of
unity will differ only in their angles.

Corollary 2.5.1
There are exactly n distinct nth roots of unity given by

. 2k 2k . 2mk
wy=¢€n =cos| — ) +isin|{ — ), k=01,...,n—-1.
n n

Geometrically then, nth roots of unity all fall on a circle of radius 1 and
are located at the vertices of an inscribed regular n-gon with one vertex
on the positive real axis. In the Figure 2.5 we picture the six, sixth roots
of unity forming the vertices of a regular hexagon. For z # 0 with |z| # 1
the nth roots are at the vertices of a regular n-gon on a circle of radius
I Z|1/".

w3 | w2

-1=wd 1=wl

wS \ wb

Figure 2.5. Sixth Roots of Unity
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Let w = €12"/", the nth root of unity with the smallest positive angle.
This is called the principal primitive nth root of unity. The other nth
roots are the distinct powers of w, that is, {w, w?, w?, ..., w" = 1}. Further
these nth roots of unity form a group under multiplication. (Notice that
w is not the only primitive nth root of unity - see the exercises.)

Corollary 2.5.2
The nth roots of unity form a cyclic group of order n under multiplication.
They are generated by w, the nth root of unity with the smallest positive angle.

The result we looked at before concerning the powers of i is just a
special case of this corollary since i is the principal primitive fourth root
of unity.

Exercises

2.1. Verify that Q(+/2) is a field.
2.2. Solve the equation 3x + 7 = 6 in Z,3. (Hint: Find the value of 1/3 in Z,3).
2.3. Prove that Z,, is a field if and only if n is a prime.

2.4. Ifd € Q and d is not a perfect square show that Q(+/d) is a subfield of R.
(If d is a perfect square then Q(Vd) = Q.)

2.5. Letw® = 1, w # 1.Show then that 1 +w+w? = 0. (Hint: Factorw®—1 = 0.)

2.6. Letw® = 1, w # 1, so that from Exercise 2.5, 1 + w+w? = 0, oruw? = —1 —
w. Let Q(w) = {a + bw; a, b € Q}. Define arithmetic on Q(w) by algebraic
manipulation. Show that Q(w) is a subfield of C. (Hint: Use w? = —1 — w.)
What is the degree of Q(w) over Q?

2.7. This exercise is to show that there are infinitely many transcendentals.

(i) For n € N let P, =[all rational polynomials of degree < n }. Show that
P, is countable. (Hint: P, can be considered as all (n + 1)-tuples with
entries from Q. Recall that if A, B are countable then the Cartesian
product A x B is also countable.)

(ii) For n € N let Q, =[all roots for polynomials in P,). Show that Q,
is countable. (Hint:Use the facts that a polynomial of degree n has at
most n roots and countable unions of countable sets are countable.)

(iii) Let.Abe the set of algebraic numbers over Q. Show that A is countable.
(Hint: A = U7 Qn.)

(iv) Let T be the set of transcendental numbers over Q. Show that 7 is
uncountable. (Hint: R = AU 7. Suppose 7 were countable.)

2.8. Prove that the LUB property for R is equivalent to the nested intervals
property.
29 Letz=4+7ijw=6-1i.find
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2.10.
2.11.
2.12.

2.13.

2.14.

2.15.

2.16.

2. Complex Numbers

D z,w, |z, lwl.

(i) z + w, zw, z/w.

(iii) +/z (2 solutions).

(iv) z in polar form.

v z°

(vi) Solve the equation for Z: zZ + 6w = 1 — i..

Prove Lemma 2.2.1.
Prove Lemma 2.2.2.

In Exercise 2.9 multiply zw = 4w +1 7w and trace out the geometrical steps
on w.

In Exercise 2.9 multiply z and w by putting them in polar form. Estimate
Arg z and Arg w by calculator.

Letz = 1 + /3. Find:
(l) zZG
(ii) The five distinct fifth roots of z
(iii) Plot the answers to (ii) geometrically.

Let 1, w, w?, ..., w""! form a cyclic group G of order n. Show that w* also

generates G if and only if (k, n) = 1. (Hint: If (k, n) = 1 that is k and n are
relatively prime then 1 can be written as a linear combination of k and n.)

Let w = €*"® be the principal primitive eighth root of unity. What powers
of w also generate the group of eighth roots?
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3.1 The Ring of Polynomials over a
Field

IfF is a field and n is a nonnegative integer, then a polynomial of degree
n over F is a formal sum of the form

Px) =ap+a1x+ --- + anx" @31

witha; € Ffori =0, .., n, a, # 0, and x an indeterminate. A polynomial
P(x) over F is either a polynomial of some degree or the expression P(x) =
0, which is called the zero polynomial and has no degree. We denote
the degree of P(x) by deg P(x). A polynomial of zero degree has the form
P(x) = ag and is called a constant polynomial and can be identified
with the corresponding element of F. The elements a; € F are called
the coefficients of P(x); a, is the leading coefficient. If a,, = 1, P(x) is
called a monic polynomial. Two nonzero polynomials are equal if and
only if they have the same degree and exactly the same coefficients. A
polynomial of degree 1 is called a linear polynomial while one of degree
two is a quadratic polynomial.

We denote by F[x] the set of all polynomials over F and by F,[x] the set
of polynomials over F of degree less than or equal to n together with the
zero polynomial.

F[x] = {P(x); P(x) is a polynomial over F}. (3.2)
Fu[x] = {P(x) € F{x}; d-gP ) < nor P(x) = 0}. 3.3)
21
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We will see that F[x] becomes a ring with much the same properties as
the integers Z. We first define addition, subtraction, and multiplication
on F[x] by algebraic manipulation. That is, suppose P(x) = ao + a1x +
st anx", Q(x) = bp + hix + - - - + bpx™ then

P(x) + Q(x) = (a0 2 bo) + (a1 £ by)x + - - (3.4)
that is, the coefficient of ¥ in P(x) + Q(x) is a; + b,.
P(X)Q(X) = (aobo) + (a1bo + aoby)x + (aobz + arby + azbo)x*+
co o 4 (Anby )X 3.5)
that is, the coefficient of x' in P(x)Q(x) is (aob; + a1bi—1 + - - - + aibp).

ExaMPLE 3.1.1
Let P(x) = 3x2 + 4x — 6 and Q(x) = 2x + 7 be in Q[x]. Then

P(x) + Q(x) = 3x* + 6x + 1
and

P(x)Q(x) = (3x* + 4x — 6)(2x + 7) = 6x> + 29x% + 16x — 42. 0

From the definitions the following degree relationships are clear. The
proofs are in the exercises.

Lemma 3.1.1
Let P(x) # 0,Q(x) # 0 € F[x]. Then:

(1) deg P(x)Q(x) = deg P(x) + deg Q(x).
(2) deg (P(*) = Q%)) < Max(deg P(x), deg Q()).

In a ring R a zero divisor is a nonzero element r € R for which there
exists another nonzero element s € R with rs = 0. For example, in the
ring of integers modulo 6, Zg, the elements 2, 3 are both nonzero but
(2)(3) = 0 and hence both are zero divisors. A commutative ring with
an identity, having no zero-divisors, is an integral domain. Examples of
integral domains are Z, Q, R, C, and Z,, if p is a prime. In general, a field
must be an integral domain, as we show in the next lemma. Recall that
an element in a ring with a multiplicative inverse is called a unit.

Lemma 3.1.2
If R is a commutative ring with an identity and r € R is a unit, then r is not
a zero divisor. In particular, if R is a field, then R is an integral domain.

Proof

Suppose r € R is a unit and rs = 0. Since r is unit there exists r~! such
thatr~'r = 1. Thenr}(rs) = r"'0 = Owhile r !(rs) = r ')s = 1s = s.
Hence s = 0, and r is not a zero divisor.
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A field F is a commutative ring with an identity in which every nonzero
element is a unit. From the above, no nonzero element can be a zero
divisor, and hence F is an integral domain. [

We now obtain the following.

Theorem 3.1.1

If F is a field, then F[x] forms a commutative ring with identity (actually an
integral domain). F can be naturally embedded into F[x] by identifying each
element of F with the corresponding constant polynomial. The only units in
F[x] are the nonzero elements of F. Fy[x] forms a vector space of dimension
n+ 1over F

Proof

To verify the basic ring properties is solely computation and is left to the
exercises. Since deg P(x)Q(x) = deg P(x) + deg Q(x), it follows that if
neither P(x) # 0 nor Q(x) # 0 then P(x)Q(x) # 0 and therefore F[x] is an
integral domain.

If G(x) is a unit in F[x], then there exists an H(x) € F[x] with G(x)H(x) =
1. From the degrees we have deg G(x) + deg H(x) = 0 and since deg
G(x) > 0,deg H(x) > 0. This is possible only if deg G(x) = deg H(x) = 0.
Therefore G(x) € F.

Finally, from Lemma 3.1.1, F,[x] is closed under addition and subtrac-
tion and thus is an abelian group. Multiplication by elements of F doesn't
raise the degree, so F,[x] admits scalar multiplication from F and there-
fore forms a vector space over F. The set {1, x, ¥, ..., x"} constitutes a
basis, so dim(Fu[x]) = n+ 1. ]

A polynomial P(x) € F[x] can also be considered as a function P : F —
F via the substitution process. If P(x) = ao + a1x + - - - + a.x" € F[¥]
andt € F, then

PWy=ap+ajt+---+apt" €F

since F is closed under all the operations used in the polynomial. If the
field F is closed in some sense - such as the Cauchy sequence property -
this function is continuous. In particular, real and complex polynomials
are continuous functions, R - R, C — C, respectively.

If r € F, P(x) € F[x], and P(r) = 0 under the substitution process, we
say that r is a root of P(x) or zero of P(x). Synonymously, we say that,
r satisfies P(x). As pointed out in the introduction, many authors prefer
to use the word root for equations and the word zero for polynomials and
functions. Throughout this book we will use the word root. Historically,
this has been most often connected with the Fundamental Theorem of
Algebra. In the next section we will see that r being a root implies a certain
factorability property.
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3.2 Divisibility and Unique
Factorization of Polynomials

For a field F, the algebraic structure of the polynomial ring F[¥] is surpris-
ingly similar to that of the integers Z. Recall that Z satisfies the following
basic property, called the fundamental theorem of arithmetic.

Fundamental Theorem of Arithmetic
If z € Z, then z admits a factorization into primes. Further, this factorization
is unique up to ordering and unit factors.

In general, an integral domain R that admits unique factorization
(unique up to ordering and unit factors) into primes is called a unique
factorization domain abbreviated UFD. The fundamental theorem of
arithmetic then says that Z is a UFD. We will now show that for any field
F, the polynomial ring F[x] is a UFD. First we must define factorization
and primes.

Definition 3.2.1

If f{x), g(x) € F[x] with g(x) # 0 then g(x) divides f{x), or g(x) is a factor
of f(x), if there exists a polynomial g(x) € F[x] such that f{x) = g(x)g(x).
We denote this by g(x)|f(x).

If 0 # f{x) has no nontrivial, nonunit factors (it cannot be factorized
into polynomials of lower degree); then f(x) is an irreducible poly-
nomial, or prime polynomial. Clearly, if deg g(x) = 1 then g(%) is
irreducible.

The fact that F[x] is a UFD follows from the division algorithm for
polynomials, which is entirely analogous to the division algorithm for
integers.

Division Algorithm in F[x]

If0 # f(x),0 # g(x) € F[x] then there exist unique polynomials g(x),r(x) €
F[x] such that f(x) = q(x)g(x) + r(x) where r(x) = 0 or deg r(x) < deg
8(x). (The polynomials q(x) and r(x) are called respectively the quotient and
remainder.)

This theorem is essentially long division of polynomials. A formal proof
is based on induction on the degree of g(x). We omit this but give some
examples from Q[x].
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ExaMPLE 3.2.1
(a) Let flx) = 3x* — 6x? + 8x — 6, g(x) = 2x? + 4. Then
3x* —6x>+8x—-6 3
= —x% — 6 with remainder 8x + 18.
2x2 4 4 2
Thus, here g(x) = 3x% — 6, r(x) = 8x + 18.
(b) Let flx) = 2x° + 2x* + 6x° + 10x? + 4x, g(x) = ¥* + x. Then
2x5 + 2x* + 6x3 + 10x% + 4x
X +x

Thus here g(x) = 2x* + 6x + 4 and r(x) = 0. ]

=2x + 6x + 4.

Using the division algorithm, the development of unique factorization
follows as in Z. We need the idea of a greatest common divisor, or ged,
and the following lemmas.

Definition 3.2.2

) Iff{x), g(%) € F[x], then d(x) € F[x] is the greatest common divisor,
or ged, of f{x), g(x) if d(x) is monic, d(x) divides both g(x) and f{x),
and if d; (x) divides both g(x) and f{x) then d, (x) divides d(x). We write
d(x) = (g(x), f(x)). If (x), g(x)) = 1, then we say that f{x) and g(x) are
relatively prime.

(2) An expression of the form flx)h(x) + g(x)k(x) is called a linear
combination of f(x), g(x).

Lemma 3.2.1
Given f(x),g(x) € F[x], then the gcd exists,is unique, and equals the monic
polynomial of least degree that is expressible as a linear combination of

f).8().

Finding the gcd of two polynomials is done in the same manner as
finding the gcd of two integers. That is, we use the Euclidean algorithm.
This is done in the following manner. Suppose 0 # f(x),0 # g(x) €
F[x]. Use repeated applications of the division algorithm to obtain the
sequence:

) = q(*)g(x) + r(»),
8(¥) = q(Hr(x) + n(x),
(%) = @2(X)n (%) + r2(),

Tk-1(X) = Gr+1(X)rk(X).
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Since each division reduces the degree, and the degree is finite, this
process will ultimately end. Let ri(x) be the last nonzero remainder poly-
nomial and suppose ¢ is the leading coefficient of rx(x). Then ¢~'r(x) is
the gcd. We give an example.

ExAMPLE 3.2.2
In Q[«] find the gcd of the polynomialsf(x) = x* —1 and g(x) = x* —2x+1
and express it as a linear combination of the two. O

Using the Euclidean algorithm we obtain
B 1= —2x+ 1) +2)+ (3x - 3),
X —2x+1= (3x—3)(1x— l)
= 3 3)

Therefore, the last nonzero remainder is 3x — 3, and hence the gcd is
x — 1. Working backwards we have

3x—3=x—1)—(¥*—2x+ 1)(x+ 2)

o)
1 1,
x—1= 5(x?'— - 30 =22+ 1)(x+2)
expressing the ged as a linear combination of the two given polynomials.

Lemma 3.2.2
(Euclid's Lemma) If p(x) is an irreducible polynomial and p(x) divides
f(x)g(x), then p(x) divides f(x) or p(x) divides g(x).

Proof
Suppose p(x) does not divide f(x). Then since p(x) is irreducible, p(x) and
f(x) must be relatively prime. Therefore, there exist h(x), k(x) such that

fEOh(®) + p(Ok(¥) = 1.
Multiply through by g(x) to obtain

8 Oh(x) + g(Xp(Rk(*) = 8(%).

Now, p(x) divides each term on the left-hand side since p(x)|g(x)f(x) and
therefore p(x)|g(x). [}

EXAMPLE 3.2.3
Show that x? + x + 1 is irreducible over Q[x] and R[] but not irreducible
over C[x].

Suppose f(x) = ¥* + x + 1 had a nortrivial factor in R[x]. Since deg
f(x) = 2, this factor must have degree 1 and f{x) would factor into two
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linear factors
flX) =2 + x+1 = (ax + b)(cx + d).

Then f(x) has a real root, namely —b/a. However, from the quadratic
formula the roots are

-1+ /3i -1 —4/3i
o= ———————, = —

2 2
which are both nonreal. Therefore, f{x) must be irreducible over R[x] and
also over Q[x].
A computation shows that in C[x], {x) = (x — w1 )(x¥ — w2) and therefore
it factors in Clx]. O

Theorem 3.2.1
If0 # f(x) € F[x], then f(x) has a factorization into irreducible polynomials
that is unique up to ordering and unit factors. In other words F[x] is a UFD.

The proof is almost identical to the proof for Z, and we sketch it. First
we use induction on the degree of f{x) to obtain a prime factorization. If
deg f(x) =1, then f{x) is irreducible, so suppose deg f{x) = n > 1. Iff{x) is
irreducible, then it has such a prime factorization. If f{x) is not irreducible,
then f{x) = h(x)g(x) with degg(x) < nand degh(x) < n. By the inductive
hypothesis, both g(x) and h(x) have prime factorizations, and so f{x) does
as well.

Now suppose that f{x) has two prime factorizations

) =pE" ..o = ()™ ... q()™

where pi(x),i=1,...,n,g(x),j = 1,...,t are prime polynomials. Con-
sider pi(x). Then p,(x)|g:(*)™ . . . ¢:(x)™, and hence from Euclid’s lemma,
pi(®)|gj(x) for some j. Since both are irreducible, p;(x) = cg,(x) for some
unit c. By repeated application of this argument we get that n, = m,. Thus
we have the same primes with the same multiplicities but perhaps unit
factors, proving the theorem.

This whole development could be done starting with just a ring R rather
than a field F. It can be proved that if R is a UFD, R[x] is also a UFD. Thus,
for example, Z[x] is a UFD. The proof is different and somewhat more
complicated than that for fields.

3.3 Roots of Polynomials and
Factorization

We now show that if f{x) has a root and deg f{x) > 1 then f(x) factors -
that is, f{x) is not irreducible.
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Lemma 3.3.1
If ¢ is a root of P(x) then (x — c) divides P(x) - that is, P(x) = (x — ¢)Q(x)
with deg Q(x) = deg P(x) — 1.

Proof

Suppose P(¢) = 0. Then from the division algorithm P(x) = (x — c)Q(x) +
r(x) where r(x) = O or r(x) = f € F, since deg r(x) < deg(x —c) = 1.
Therefore

P(x) = (x = )Qx) + f.
Substituting, we have P(c) = 0 + f = 0, and so f = 0. Hence P(x) =
(x — 0)Q(%). n

Corollary 3.3.1
An irreducible polynomial of degree greater than one over a field F has no
roots in F.

From this we obtain the following important theorem.

Theorem 3.3.1
A polynomial of degree n in F[x] can have at most n distinct roots.

Proof
Suppose P(x) has degree n and suppose c;, ..., c, are n distinct roots.
From repeated application of Lemma 3.3.1,

PX)=k(x—1c1)...(x —cn)

where k € F.Suppose cisany other root. Then P(c) = 0 = k(c—¢;)...(c—
cr)- Since a field F has no zero divisors, one of these terms must be zero:
¢ — ¢; = 0 for some i, and hence ¢ = c;. [ |

Besides having a maximum of n roots (with n the degree) the roots of a
polynomial are unique. Suppose P(x) has degree n and roots c;, .., ¢x with
k < n. Then from the unique factorization in F[x] we have

P =(x—c)™...(x — )™ Qi) . .. Q(¥),

where Q;(x),1 = 1, .., t are irreducible and of degree greater than 1. The
exponents m, are called the multiplicities of the roots c,. Let ¢ be a root.
Then as above,

c—c)™...(c—c)™Q(C)...Q(c) =0.

Now Qj(c) # 0 fort = 1, .., t since Qi(x) are irreducible of degree > 1.
Therefore, (¢ — ¢;) = 0 for semc i, ana hence ¢ = ¢;.
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Corollary 3.3.2
If P(x) € F[x] with deg P(x) = 2, then P(x) is irreducible if and only if P(X)
has no root in F.

Proof

Suppose P(x) is irreducible. Since deg P(x) > 1, P(x) can have no root in
F. Conversely suppose P(x) has no root in F. If P(x) were not irreducible
then it would factor into two linear factors,

P(x) = (@x + b)(cx + ).
But then P(x) would have the root —b/a € F. |

3.4 Real and Complex Polynomials

We now consider the underlying field to be R or C and consider real and
complex polynomials - that is, polynomials in R[x] and C[x] respectively.
We first need the following important result.

Theorem 3.4.1
A real polynomial of odd degree has a real root.

Proof
Suppose P(x) € R[x] with deg P(x) = n = 2k + 1 and suppose the leading
coefficient a, > 0 (the proof is almost identical if a, < 0). Then

P(x) = a.x" + (lower terms) and n is odd.
Then

1) limyoP(x) = limy_,0nx™ = 00 since a, > 0.
(2) limy_, _ooP(X) = lim,_, _canX’* = —00 since a, > 0 and n is odd.

From (1) P(x) gets arbitrarily large positively so there exists an x; with
P(x;) > 0. Similarly, from (2) there exists an x; with P(x;) < 0.

A real polynomial is a continuous real-valued function for all x € R.
Since P(x;)P(xz) < 0, it follows from the intermediate value theorem that
there exists an x3, between x; and x;, such that P(x3) = 0. [ |

As an immediate consequence we have the following corollary:
Corollary 3.4.1
If P(x) € R[x] is irreducible and nonlinear, then its degree is even. (We will

see later that it must be 2.)

Now we consider complex polynomials.
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Lemma 3.4.1
Every degree 2 complex polynomial has a root in C.

Proof
This is just the quadratic formula. If P(x) = ax* + bx + c, then the roots
formally are

_ —b + V/b? — dac . —b — V/b? — dac

2 =
2a 2a
From DeMoivre's theorem every complex number has a square root;

hence x,, ¥, exist in C. They of course may be the same, if b2 — 4ac = 0.
[

X1

To go further we need the concept of the conjugate of a polynomial
and some straightforward consequences of this idea.

Definition 3.4.1

If P(x) = ap + - -+ + axx" is a complex polynomial then its conjugate
is the polynomial P(x) = @y + - - - + anx". That is, the conjugate is the
polynomial whose coefficients are the conjugates of those of P(x).

Lemma 3.4.2
For any P(x) € C[x]

(1) P@ = P@) ifz € C
(2) P(x) is a real polynomial if and only if P(x) = P(x)
(3) If P(x)Q(x) = H(x) then H(x) = (P(x))(Q(x))

Proof

(1) Suppose z € Cand P(z) = ap + - - - + a,z" Then

P2)=ao+ - +an2" =do+ a1z + - - - + anz" = P(Z).

(2) Suppose P(x) is real then a, = @, for all its coefficients and hence
P(x) = P(x). Conversely suppose P(x) = P(x). Then a; = & for all
its coefficients and hence a; € R for each a; and so P(x) is a real
polynomial.

(3) The proof is a computation and left to the exercises. u

Lemma 3.4.3
Suppose G(x) € C[x]. Then H(x) = G(x)G(x) € R[x].

Proof

H(x) = GWG() = G(IGH) = GHG(X) = G()G(x) = H(). Therefore,
H(x) is a real polynomial. ]
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Lemma 3.4.4
If f(x) € R[x] and f(zo) = O then f(Zp) = 0; the complex roots of real
polynomials come in conjugate pairs.

Proof
f(zo) = 0 implies that f{zg) = 0. But then f(Zp) = 0. Since f{x) is real,
f%) = f(%), so flzo) = O. |

Notice that if zj is a root of f{x) € R[] then both (x — z,) and (x — Zp)
divide f(x).

Lemma 3.4.5
(x—2)(x—2) € R[x] forany z € C.

We leave the proof for the exercises. Notice that this now implies that
any real polynomial of degree < 3 completely factorizes over C.

Finally, to complete this section, we prove the following theorem,
which shows that to prove the Fundamental Theorem of Algebra we need
only to prove that real polynomials must have complex roots.

Theorem 3.4.2
If every nonconstant real polynomial has at least one complex root, then every
nonconstant complex polynomial has at least one complex root.

Proof

Let P(x) € C[x] and suppose that every nonconstant real polynomial
has at least one complex root. Let H(x) = P(x)P(x). From Lemma 3.4.3,
H(x) € R[x]. By supposition there exists a z € C with H(z;) = 0. Then
P(20)P(2p) = 0, and since C has no zero divisors, either P(z;) = 0 or
P(zo) = 0. In the first case z, is a root of P(¥). In the second case P(z,) = 0,
bu then from Lemma 3.4.2 0 = P(2) = P(Z9) = P(Z;). Therefore Z; is a
root of P(x). ]

Notice that this theorem is not the Fundamental Theorem of Algebra.
It only says that to prove the Fundamental Theorem we need only prove
it for real polynomials.

3.5 The Fundamental Theorem of
Algebra - Proof One

We now present the first proof of the Fundamental Theorem of Algebra.
This proofbased solely on advanced calculus and from advanced calculus
we need the next result.
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Lemma 3.5.1
Iff:D — R is continuous where D is a closed and bounded (compact) subset
of R?, then f(x,y) has a minimum and maximum value on D.

This is the two-dimensional version of the extreme values theorem
from elementary calculus, which states thatiff : [a, b] — Riscontinuous
then f{x) has a minimum and a maximum on [a, b]. More generally this
theorem holds for continuous functions f : R* — R on compact domains
for any n > 1. For a proof of Lemma 3.5.1, we refer the reader to any
advanced calculus text.

Theorem 3.5.1
(The Fundamental Theorem of Algebra) If f (x) € C[x], with f(x) nonconstant,
then f(x) has at least one complex root.

Our proof depends on the next two lemmas.

Lemma 3.5.2
Let f(x) € C[x]. Then |f (x)| takes on a minimum value at some point zo € C.

Proof

It is straightforward that as |x| — oo, If(x)| — oo. Since |f(x)| is large for

large |x| it follows that the greatest lower bound m of |f(z)| for z € C is

also the greatest lower bound in some sufficiently large disk |z| < r.
Since |f(x)| is a continuous real-valued function it follows from Lemma

3.5.1 that |f(x)| will attain its minimum value on this disk. ]

Lemma 3.5.3
Suppose f(x) € C[x] with f(x) nonconstant. If f(xo) # 0, then |f(xp)| is not
the minimum value of |f(x)|.

Proof
Let f{x) be a nonconstant complex polynomial and suppose x, is a point
with f{xg) # 0. Make the change of variable x + xo for x. This shifts x, to
the origin, so that we may assume that f(0) # 0. Next multiply f(x) by
f(0)~! so that f{0) = 1. We must then show that 1 is not the minimum
value of [f(%)I.

Let k be the lowest nonzero power of x occurring in f{x). Then f{x) can
be assumed to have the form

f(*) =1+ a¥* + terms of degree > k.

Now let @ be a k-th root of —a™!, which exists by DeMoivre’s theorem.
Make the final change of variable ax for x. Now f{¥) has the form

fiX) =1 — &K 4 ¥+ 8&(x) for some polynomial g(x).
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For small positive real x we obtain from the triangle inequality
IR < 11— &+ 2 gl
But x* < 1 for small real x, so this has the form
If)l <1 — X%+ ¥ gl =1 — ¥ - xlg)D).

For small real x, x|g(x)| is small, so then x, canbe chosen so that xg|g(xo)| <
1. It follows that x5(1 — xolg(%)]) > O, so then |f{x)l < 1 = |RO)|
completing the proof. [

Combining these two lemmas we obtain our first proof of the
Fundamental Theorem of Algebra.

Proof

Let f{x) be a nonconstant complex polynomial. From Lemma 3.5.2, |f(x)|
has a minimum value at some point Xy € C. Then from Lemma 3.5.3 it
follows that |f{xg)| = 0, and hence f{x;) = O for otherwise it would not be
the minimum value. Therefore, f{x) has a complex root. |

3.6 Some Consequences of the
Fundamental Theorem

In the final section of this chapter we look at some consequences of the
Fundamental Theorem.

Corollary 3.6.1
A complex polynomial completely factorizes into linear factors.

Proof

Let f{x) € C[x] and use induction on the degree. The corollary is clearly
true if deg f{x) = 1, since then f{x) is itself linear. Suppose deg f(x) = n.
From the Fundamental Theorem of Algebra, there exists a root xy, and
therefore (x — xp) divides f{x). Hence f{x) = (x — xp)g(x) withdegg(x) < n.
From the inductive hypothesis, g(x) factors into linear factors, so therefore
f(x) does also. |

Corollary 3.6.2
Suppose f(x) € C[x] with deg f(x) = n. Suppose the roots of f(x) are
X1,X2, . . - Xn (SOMe may be repeated). Then

f)=olz—2;...(x -x),aeC.
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Corollary 3.6.3

A real polynomial factorizes into degree 1 and degree 2 factors. Equivalently,
the only irreducible real polynomials are linear polynomials and quadratic
polynomials without real roots.

Proof
Suppose P(x) € R[x], then P(x) € C[x]. Suppose z, . . ., z, are its complex
roots, so that

PX)=a(x—2z)...(x — zn)

where here a € R, since ¢ is the leading coefficient of P(x).

If z; is real, then (x — 2,) is a real linear factor. If z, € R then its complex
conjugate Z; is also a root. But then (x — z)(x — z,) is a real factor of degree
two. [

Corollary 3.6.4
An irreducible real polynomial must be of degree 1 or 2.

The proof we presented for the Fundamental Theorem of Algebra will
motivate our second proof based on the more general Liouville’s theorem.
This states that an entire function, that is bounded in the complex plane
must be a constant. An entire function is a complex function that has a
complex derivative at every point in C. To understand this theorem we
must develop some complex analysis, that is, the calculus for complex
functions. We will do this in the next two chapters.

Exercises

3.1. Prove Lemma 3.1.1 - that is, if P(x), Q(x) € F[x], then deg P(x)Q(x) = deg
P(x) + deg Q(x) and deg (P(x) + Q(x)) < Max(deg P(x), deg Q(x)).

3.2. Verify that F[x] is a commutative ring by showing that the ring axioms hold.

3.3. Let S be a subring of the field F (such as Z in R). Let S[x] consist of the
polynomials in F[x] with coefficients from S. Show that S§[x] is a subring of
F[x]. Recall that to show a subset is a subring we must only show that it is
nonempty and closed under addition, subtraction, and multiplication.

3.4. The following theorem can be proved:
Theorem
Given (n + 1) distinct values xo,x1, . . . ,xn in a field F and (n + 1) other values

Yo41, - - - .Yn in F, then there exists a unique polynomial f(x) € F[x] of degree
<nsuchthatf(x)=y fori=0,1,...,n

The proof is from linear algebra. Suppose f(x) = ap+a;x+- - - + ap,x" with
the a; considered as variables. Using 9x) = y; set up the (n + 1) x (n + 1)
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3.5.

3.6.

3.7.

3.8.

3.9.

3.10.

3.11.

3.12.

system of equations:
ag+ayxp + - -+ anXy = Yo
ap + ayx, + ""i‘artx;l =W

apg + a1 x, + "'+anx::=yn

The matrix of this system (with the g; as unknowns) is called the Vander-
monde matrix, and if the x; are distinct it can be shown to have a nonzero
determinant and thus there exists a unique solution forag, a,, . .., an.

(a) Find the unique polynomial P(x) € R[x] of deg < 2 that satisfies P(0) =
1,P(1) = 2,P(2) = 2.

(b) Find the unique polynomial P(x) € Z;[x] of deg < 2 that satisfies P(0) =
1, P(1) = 2, P(2) = 2. Z7 is the field of integers modulo 7.

(a) Use the theorem in Exercise 3.4 to prove that if F is an infinite field and
f%), 8(x) € F[x] with f(s) = g(s) for all s € F, then f(x) and g(x) are the
same polynomial.

(b) Show this is not necessarily true over a finite field. (Hint: Consider
flx) =x+ 1,g(x) = ¥ + 1 in Z3x).)

Use the division algorithm to find the quotient and remainder for the
following pairs of polynomials in the indicated polynomial rings.

(@) filx) =2 + 5x% + 6x + 1,8(%) = x — 1 in R{x].

() fix) = x> + 5x% + 6x + 1, g(x) = x — 1 in Zs[x].

(©) flx) = 23+ 5x2 + 6x + 1,8(x) = x — 1 in Zy3[x].

Use the Euclidean algorithm to find the gcd of the following pairs of
polynomials in Q[x].

@ =224 +x—2,gx)=x—x* —x—2

O =2+ +x2+x+1,8x)=x -1

Suppose F is a subfield of K. Then from Exercise 3.3, F[x] is a subring of
K[x). Suppose f(x), g(¥), h(x) € K[x] and suppose f(x) = g(x)h(x). Prove: If
any two of these are in F[x], then so is the third.

Show that f{x) = x% 4+ x + 4 is irreducible in R[x] but completely factorizes in
Cix] and give its factorization. This same polynomial completely factorizes
in Z;3[x]; give its factorization there.

Formally carry out the derivation of the quadratic formula and show that it
holds over any field F of characteristic # 2 - that is, 2 # 0 in F. (Use the
completing the square procedure.) What is the problem with 2?

Prove part (3) of Lemma 3.4.2: If P(x), Q() are complex polynomials, then
PQ(x) = P(x)Q(x).
Show that if z € C, then (x — z)(x — Z) € R[x].
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4.1 Complex Functions and Analyticity

The proof given in the last section for the Fundamental Theorem of Alge-
bra depended only on the calculus of two-variable real-valued functions.
However, the proof suggests a more general result, called Liouville's the-
orem, which we will develop. From this result the Fundamental Theorem
of Algebra will then follow as a simple consequence.

In order to describe this approach we must introduce the basic ideas
of complex analysis, or complex variables. This refers to the area of
mathematics that endeavors to extend calculus to complex functions.

A complex function w = f{z) is a function f : C — C. Here
w,z € C and are then complex variables. Regarding the geometric
interpretation of C as the complex plane, a complex function is then
a mapping, or transformation of the complex plane into itself. If
z=x+1y = *y,w=u+1w, then u = u(x,y) and v = y(x,y) are
real-valued two-variable functions. Therefore associated to any complex
function are these two real functions.

w = f(2) = u(2) + (2) (4.1

The function u(z) is called the real part of f{z), denoted by Ref(z), and

v(2) is the imaginary part of f(z), denoted by Imf(z). Analytic (calculus)
questions about f{z) will in many cases be referred back to questions about

u(x, y) and v(x, y).
36
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EXAMPLE 4.1.1
Consider the complex function f[z) = 2z? Determine its real and
imaginary parts.

Suppose z = x + iy. Then z% = (x + iy)? = (¥* — y?) + i(2xy). Hence
here Ref(z) = x? — y* while Imf(z) = 2xy. ]

The essential concepts of calculus - continuity, differentiability and
integrability - all depend on limits so our development of complex anal-
ysis must start there. However, first, we introduce some necessary ideas
from the topology of the complex plane that may be familiar to the reader
from advanced calculus.

If zo € C then an open (circular) € - neighborhood of z, which we
denote by N(zo), consists of those points within an e distance of z.

Ne(z0) = {z € C; |z — 2| < €}.

A region is any subset of C. A region U C C is open if for each point
2o € U there exists some € - neighborhood of z, entirely contained in U.
A region C C Cis closed if its complement C’ is open. Equivalently, C is
closed if for every convergent sequence of points {z,} C C with z, — z,
thenz € C. Aregion U C C is bounded if U is contained in some disk of
radius r centered on the origin; that is, U C {z;|z| < r} for some r € R.
A closed and bounded region in C is called a compact region. Recall
from advanced calculus that a real valued function with compact domain
D is bounded on D and attains its extreme values (its max and min) on
D. Finally, an open region U is connected if any two points of U can
be connected by a finite sequence of line segments all lying entirely in
U, while it is simply connected if it is connected and the interior of
any simple closed curve lying entirely in U has only points from U. An
open connected region in C is called a domain. In figures 4.1 and 4.2 we
picture various types of regions.

The next region (Figure 4.2) is not simply connected because closed
curves going all around either of the two “holes” would contain points not
in the region.

Compact Region Connected Simply Connected
Region

Figure 4.1. Some Regions in C
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O

N

\_kj/

Connected but not simply
connected region

Figure 4.2. Some more regions in C

Now we define limits for complex functions in essentially the same
manner as for the one-variable real functions of elementary calculus.

Definition 4.1.1
lim,_,,, f{2) = wyifforalle > Othereexistsad > 0suchthat|f{2)—wo| <
€ whenever 0 < |z — zg| < 6.

Here, of course, the distances |f{z) — wy| and |z — 2| are distances in
C, and the approach is within a circular neighborhood of z,. Hence there
are infinitely many modes of approach.

All the basic limit theorems from elementary calculus - products,
sums, constants, etc. - carry over to this situation. To actually compute
limits we pass to the real and imaginary parts.

Lemma 4.1.1
Suppose f(z) = u(z) + iv(z); then
lim f(z) = zlLr?o u(z) + lzan;, v(2).

z—zg

ExAMPLE 4.1.2
Let f{z) = (*¥* + ¥?) + i(2xy). Find lim,_,14i f{2).
Then

lim flz)= lim (K +y*)+i i = -
SO = T T G =242

Using limits we can continue on to continuity and differentiability. 0

Definition 4.1.2

w = f(2) is continuous at z; if lim,_,,, f{z) = f{z). f(2) is continuous
on a region U if it is continuous at all points of U.

All the basic results on continuity for one-variable real functions (sums,
products, etc.) carry over to complex functions. Further, as with limits,
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questions of continuity are answered by looking at the real and complex
parts.

Lemma 4.1.2
f(2) = u(2z) + iv(2) is continuous at zo = (Xo,Yo) if and only if u(x,y),v(x,y)
are continuous real-valued functions at (xo,Yo).

Since complex polynomials are built up from only algebraic operations,
considered as functions C — C, they will be continuous everywhere in
C. Since |z"| — oo as |z] — oo, we have that |f{z)] - oo as |z| - oo
for any nonconstant f{z) € C[z]. Further, since |f{(2)| is then a continuous
real-valued function, it is bounded on any compact region. We summarize
all these facts. From now on we consider a complex polynomial as a
polynomial function on C.

Lemma 4.1.3
Let f(z) € C[z] then:
(1) f(2) is continuous everywhere in C.

(2) lim,_. If(2)] = oo if f(2) is non-constant.
3) If(2)| is bounded on every compact region in C.

We now define the complex derivative in exactly the same formal
manner as the real derivative.

Defintion 4.1.3
If f{z) is any complex function, then its derivative f'(z,) at z, € C is

f(Zo + AZ) - f(Zo)
Az

whenever this limit exists. If f'(zo) exists, then f{2) is differentiable there.
f(2) is differentiable on a whole region if it is differentiable at each point
of the region.

Fleo = fim,

As with limits and continuity, all the basic differentiation rules from
elementary calculus - sums, products, quotients, chain rule etc. - can be
shown to be valid for complex functions. In particular the power rule -
flz) = z" implies f/(z) = nz""! for n a natural number - follows purely
formally from the definition. Therefore, a complex polynomial must have
a derivative at each point of C.

Lemma 4.1.4
Iff(z2) = ao + a1z + - - - + anz" € C[z] then f'(2) exists at each point zg € C
and f'(z0) = a1 + - - - + nanzy ' Formally, if f(2) € C[z] and deg f(z) > 1,
then f'(z) € C[z] and deg f'(z) = deg f(2) — 1. If f(2) = ay is constant,
then f'(z) = 0.
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Recall that if y = f{) is a single-variable real function, then f'(xo) gives
the slope of the tangent at xo. The complex derivative can also be inter-
preted geometrically. We will do this in Section 4.3. First we introduce
some important general ideas.

Definition 4.1.4

w = f(2) is analytic (also called regular or holomorphic) at z, if f{2) is
differentiable in a circular neighborhood of z;. f{2) is analytic in a region
U if it is analytic at each point of U. If f{2) is analytic throughout C, then
it is called an entire function.

From Lemma 4.1.4 it is clear that each complex polynomial is an entire
function.

We will develop in the next section conditions on Re f{z) and Im f{2)
for analyticity. Before this, however, we present an example of a function
that has a complex derivative at a point zy but that is not analytic at z,.
To understand the example we need the following ideas.

Let f{(z) = u(2) + iv(z). Then we define

of du .o of ou . ov

= Xand L - & ;%
ax "k 'y

Lemma 4.1.5
Suppose w = f(z) is a real-valued complex function. Then if f'(z,) exists,

f(z0) = L (20) = I (20).

Proof
From the definition,
fz0 + Az) — f{zo)
Az
Since f{z) is real-valued, we must have f(z) = u(z) its real part. Then

flaoy= lim Y00t 8% Yo + AY) — u(x, Yo)
(Bx,8y)—(0,0) Az

fzo) = fim,

Since f'(zo) exists, the limit is independent of the mode of approach.
Approaching along a line parallel to the real axis we have Az = Ax, Ay =
0. Substituting this in the above we get

u(x + Ax, y) — u(x,y) _ ou  of

"(z0) = 1i —_ = =

f 0) A;r_?o Ax ox ox
Similarly approaching along a line parallel to the imaginary axis gives the
second part. [

ExXAMPLE 4.1.3

Let f(z) = |z|> We show that f’(0) exists but that f{z) is not analytic at
z=0.
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Suppose zo = 0 and f{z) = |z|? and consider

lim fzo + A2) — flzo) = lim M =0

Az—0 Az 6z—0 Az
Therefore, f'(0) exists and f'(0) = 0. We show, however, that it cannot be
analytic at 0.

Now, if z = x + iy, |2z|> = x% + y? If f'(z0) exists, then from Lemma
4.1.5, f'(20) = gL;(zo) = 2%y = %(zo) = 2yo. This then is possible only
if X = yo, and thus the derivative can only possibly exist along the line
y = xand hence does not exist in a circular neighborhood of 0. Therefore,
it is not analytic at 0. In the next section we will show that this function
is differentiable only at 0. O

4.2 The Cauchy-Riemann Equations

Suppose f(z) = u(z) + iv(2) is differentiable at z,. Then
f2) = lim u(zo + Az) + w(zo + Az) — (u(20) + w(20))
Az—0 Az
Since this limit exists, it is independent of the mode of approach. First
allow Az to approach 0 along a line parallel to the real axis. In this case
Az = Ax and Ay = 0. Then if z, = (x, Yo),

fz0) = lim u(xo + Ax, yo) + w(xo + Ax, yo) — (u(xo, Yo) + w(xo, Yo))
0) =

Ax—0 Ax
_ um_u0m4-A&y@-—u@myﬂ
Ax—0 Ax
v Ax, — V(xop,
+i lim (x0 + AX, yo) — V(Xo, Yo)
Ax—0 Ax

auz +_8vz
= — 11—
ax(c) aX(O)

Now allow Az to approach 0 along a line parallel to the imaginary axis.
In this case Az = iAy and Ax = 0. Then

im u(xo, yo + Ay) + i(xo, yo + Ay) — (u(xo, Yo) + (o, Yo))

f(ZO) = A]31/—>0 lAy
A —_
— lm u(xo, Yo + .y) u(xo, Yo)
Ay—0 1Ay
Y Ay) —
+i lim (%0, Yo + _y) V(Xo, Yo)
Ay—0 lAy

= g—Z(Z()) - l%(ZO)
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Since the derivative exists, these two expressions must be equal.
Therefore, at the point z we have
u d u
x oy Wy T m
These relations are called the Cauchy-Riemann Equations, or
Cauchy-Riemann Conditions, named after A.L. Cauchy who discov-
ered them in the early part of the nineteenth century and B. Riemann
who made them fundamental to the theory of complex analysis in the
latter part of the same century. Formally, if u(x, y), v(x, y) are real-valued
functions:

(4.2.1)

Definition 4.2.1
u(x, y), v(x, y) satisfy the Cauchy-Riemann Equations if

We have thus proved the following theorem.

Theorem 4.2.1
If f(2) = u(2) + iv(2) is differentiable at zo, then 5:, %, %, & all exist at zo

and satisfy the Cauchy-Riemann equations. Further,
u

& (20)-

, du v v _
f(20) = a(Zo)‘i‘la(Zo) = @(ZO)—I

More generally, if f(2) is analytic in some domain U then its real and
imaginary parts must satisfy the Cauchy-Riemann equations throughout
U. Further, if f{z2) = u(2) + iv(2) and u(z), v(z) have continuous partials
in U and satisfy the Cauchy-Riemann equations throughout U, then f{(2)
is analytic in U, which we now prove.

Let zo € U. We must then show that f’(zp) exists. Consider

lim u(zo + Az) + iv(zo + Az) — (u(20) + iv(20))

Az—0 Az
. Au + iAv Au . Av
= lim ——— = lim — +ilim —.
Az—0 Az Az—0 Az Az—0 Az

Since u(x, y), v(x, y) have continuous partials at (x, o), we have

A_8A+—auA+ Ax + ;A
ox Byy ! 28y

and

Av avA:»c+avA + €3Ax + €, A
= = — €3Ax .
9% 3 Y 3 €4QY



4.2. The Cauchy-Riemann Equations 43

Therefore, using the Cauchy-Riemann equations,

. Au +iAv

lim —— =

Az—0 Az
im = (% cax+ing) +iZ (Ax + iDy) + 8, A% + 5,0
az—0 Az ax( Y) ax( Y) ! 28Y ) -

Now, Az = Ax + iAy, so the above becomes

where §;,8; = 0as Az — 0.

Since |Ax| < |Az| and |Ayl < |Az|, we have [42]| < 1,|3¢] < 1,
and hence the final two terms in the limit above tend to zero with Az. It
follows then that at zo we must have

, du _ov
fla0) = 5 (@) + i (20),

and hence f{2) is differentiable at z,.
We summarize all these statements in the following theorem and its
corollary.

Theorem 4.2.2
(1) Suppose f(z) = u(z) + w(2). If f'(z0) with zo = (X0,Yo) exists, then the
partials of u(x,y),v(x,y) must exist at (xo,yo) and satisfy the Cauchy-Riemann
equations.

(2) Suppose f(2) = u(z) + v(2). If u(xy),v(xy) and their partials are
continuous at zop = (xo,yo) and satisfy the Cauchy-Riemann equations at
(%0.Y0), then f'(z0) exists, that is, f(z) is differentiable at z.

Corollary 4.2.1

Suppose f(2) = u(2) + iv(2) with u(x,y),v(x,y), and their partials continuous
on some open domain U C C. Then f(2) is analytic on U if and only if u,v
satisfy the Cauchy-Riemann equations.

EXAMPLE 4.2.1
Let f{z) = €* cosy + ie* siny. Show that f{z) is everywhere analytic and
f'(@ = f2).

Here u(x,y) = €cosy,v(x,y) = € siny. These are everywhere
continuous, differentiable, two-variable real-valued functions. There-
fore, to show that f{2) is analytic, we must show that they satisfy the
Cauchy-Riemann equations.

Now,

ou du ov ov
— =¢€‘cosy, — = —€'siny, -— = ¢siny, — = €' cosy.
o Sy N Y 3y Y
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Therefore, 3 = :}’—L and & = —di; for all points in C. Hence f{2) is
analytic everywhere in C.
Further, f'(z) = % +i = ¢ cosy + ie* siny = f{2). O

The function given in this example is actually the complex expo-
nential function f(z) = € To see this, suppose z = x + iy; then
€ = &' with x,y € R. Then ¢ = ¢'e¢¥ = e*(cosy + isiny) =
€' cosy + ie* siny from Euler's 1dent1ty From th1s example we see that
if flz) = €7, then f'(2) = ¢€* also, as we would expect for the exponential
function.

EXAMPLE 4.2.2
Using the Cauchy-Riemann equations show that f{z) = z? is everywhere
analytic and f'(z) = 2z.

Now, if z = x + iy, then f{z) = z? = (x + iy)? = x* — y% + i(2xy). Then
u(x,y) = x¥* — y%, v(x, y) = 2xy. Computing the partial derivatives, we
have

du du v v
— =2x, — = -2y, — =2y, — = 2x
ox ay ax ay
Clearly, these are then continuous and satisfy the Cauchy-Riemann
equations throughout C, and hence f{z) is everywhere analytic. Further,
du

v
f(&= — +i— =2x+i(2y) = 2(x + iy) = 2z.
ox ox 0

Corollary 4.2.2
(1) The only real-valued analytic functions are constants.
@) Iff' = 0 on a region U, then f(2) is a constant.

Proof
(1) Suppose f(z) is real-valued. Then flz) = u(z) with y(z) = 0. If f{2)
is analytic, it must satisfy the Cauchy-Riemann equations, so that 3“ =
g—; =O0and § = — & = 0. Therefore, 3 = & =0, and hence u(x, Y)
is constant, and therefore so is f(z)

(QIff =0 thenf = § +if = & —if = 0. This implies that
== % =0, andhenceboth u(x, y) and v(x, y) are constants.
Therefore, f(2) is constant. [ |

In example 4.1.2 we showed that although the function f{z) = |z|? is
differentiable at 0 it was not analytic at 0. From the above result we can
see that it cannot be analytic anywhere since it is real-valued and not a
constant.
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Definition 4.2.2
A real-valued function u(x, y) is a harmonic function if it has continuous
second partials and satisfies Laplace’s equation

d%u %u

T 70

The relevance to our discussion is via the following:

Lemma 4.2.1
If f(2) = u(2) + iv(2) is an analytic function, then u(x,y) and v(x,y) are
harmonic functions.

Proof
We leave the continuity of the second partials until later. Suppose f{z2) is
analytic; then it must satisfy the Cauchy-Riemann equations % = %
and % = - g—z . Since there are continuous second partials, the order of
partial differentiation can be flipped, so that

Pu _ Fv v Fu

a2 dyox  owdy  dy?
Therefore, gi—'; = ayz , or W + ‘g;" = 0, and so u(x, y) is harmonic. An
analogous argument shows that v(x, y) is harmonic. ]

In the context of the lemma, u, v are called conjugate harmonic
functions.

ExamPLE 4.2.3
Show that u(x, y) = y* — 3x%y is a harmonic function and find a conjugate
harmonic function v(x, y) such that f{z) = u + iv is analytic.

du u

Now £ = —6xy, % = 3y® — 3x? s0 327 —6y, @Z = 6y. Therefore,

%:% + g;—'z‘ = 0, and u(x, y) is harmonic.
Suppose v(x,y) is a conjugate harmonic function. Then from the
Cauchy-Riemann equations,

ou v du ov

a—x = al/ : @ = a
Consider first %’ = g’—; = —6xy and integrate with respect to y to obtain
v(x, y) = —3xy" + (),
where g(x) (the constant of integration) is a function of x alone. Then

ov ou
— = -3+ g(x) = —— = —3y% + 3x*
™ y"+8 (%) P Y~ + 3x
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This implies that g’(x) = 3x%, and now integrating with respect to x gives
g(¥) = x* + ¢. Any constant will work, so take ¢ = 0, and therefore
v(x,y) = x* — 3xy? is a conjugate harmonic to u(x, y), and

fl2) = (f* — 3¥%y) + i(x* — 3x%)

is analytic. O

4.3 Conformal Mappings and
Analyticity

Recall from elementary calculus that the derivative g'(xp) of the single-
variable differentiable real functiony = g(x) gives the slope of the tangent
to the curve y = g(x) at the point (xo, g(xo))- Thus g’(xo) gives the following
geometric information: first, it gives the direction, or angle, in which the
curve is moving at that point, and second, its magnitude gives the instan-
taneous rate of change of the curve. The complex derivative, and hence
analyticity also has a geometric interpretation, which we now discuss.

Definition 4.3.1
A curve y in C is a continuous function y : [a, b] = C given by

Wb = x(b) + iy(t), (4.3.1)

with x(t), y(t) real-valued functions on the real interval [a, b]. If x(t), y(t)
are differentiable at ty, then y is called a differentiable curve at t; and
then y/(to) = x'(to) +iy'(to). A curve is differentiable if it is differentiable
for all t € [a, b]. A curve is continuously differentiable if it is differ-
entiable and the derivative is also continuous on [a, b]. The curve \(t) is
regular at t; if y'(ty) # 0. The direction of y(t) at a regular point t, is
Arg y/(to)- In general, a regular curve is a curve that is regular at all its
points.

ExampLE 4.3.1
The curve p(t) = rcost + irsint = re",0 < t < 27, represents a circle
of radius r centered at the origin.

The derivative is y'(f) = —r sint + ir cost, which is never zero, so ¥(t)
is regular for all t.

Att = 0,y(0) = ir. Since this is purely imaginary, the argument is
n/2, as would be expected by looking at the circle in Figure 4.3.
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g(t)=rcost+irsint

g'(0) =ir

K -

Figure 4.3. A circleinC

More generally, a circle centered at z, of radius r is represented by
) =20+ 7€",0 <t < 2m. (4.3.2)

We will need this representation later on.

Suppose y,, ¥z are two curves in C with y1(t1) = y2(t2), and both y;, and
. are regular at t, t; respectively. Then the angle from y; to y; at this
common point is Arg y;(t2)— Arg y;(t).

Further, suppose y is a curve with values in a domain U C C, and
F:U — C. Then F o y is also a curve. If F has a complex derivative and
if y is differentiable at ty, then (F o y)'(ty) = F'(1(to))Y (to)- If v is regular
at to and F'(¥(tp)) # O, then F o y is regular at t,. O

Definition 4.3.2

Suppose U C Cand F : U — C. Then F is conformal, or isogonal, at
zy € U if for any curve y, regular at t;, where y(tg) = 2o, F o y is also
regular at t; and F preserves angles at z,. Preservation of angles means
that if 1 (t), y2(t) are two curves with values in U and y1(t1) = y2(t2) = 2o,
then the angle from y; to y; at zg is equal to the angle from Fo y; to Fo y;
at F(zp). If F is conformal throughout U, then it is called a conformal

mapping.

The relationship between conformality and analyticity is embodied in
the next theorem and its corollary.

Theorem 4.3.1
(1) If a continuous complex function f(z) on a domain U C C has a nonzero
complex derivative at zo, then f(z) is conformal at z,.

(2) Suppose f(2) is continuous on a domain U C C and conformal at
2, € U, and suppose the partials all exist and are continuous at z,. Then
f'(20) exists and is not zero.
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Proof
We prove part (1) and leave a sketch of the proof of part (2) to the exercises.
Suppose f(Z) is a continuous complex function with a nonzero
derivative at zp. We show that f is conformal at z,.
Suppose that y, y; are two regular curves with values in U andy1(th) =
va2(t2) = 2o. Since f'(z0) # 0, f o », f o y; are regular at ty, t5. Then the
angle from f o 1 to f o y; at f{z) is

A1g ((f 0 ¥2)'(t2)) — Arg ((f o 1) (t))
= Arg (f'(v2(t2))v2(t2)
— Arg (f'(n(t)yi(t))-

Recall that for z, w € C, Arg (zw) = Arg z+ Arg w. Therefore, the above
becomes

Arg (f'(va(t2))) + Arg (v3(t2))) — Arg (f (i (h)) — Arg (11 (t))-

However, y,(t2) = y1(t1), so this in turn becomes

Arg (¥5(t2)) — Arg (¥1(t1)),

which is the angle from y, to y; at z,. Therefore, f{z) preserves angles at
2z and is thus conformal at z,. [ |

Corollary 4.3.1

A continuous complex function f(z) for which all the partials exist and are
continuous is a conformal mapping on a domain U C C if and only if f(2) is
analytic on U and f'(2) # 0 on U.

Proof
If f(2) is analytic and f’(z) # O, then at each point z, € U, f'(z,) # 0.
Then from part (1) of Theorem 4.3.1, f{2) is conformal at z; and therefore
a conformal mapping on U.

Conversely, suppose f{z) is continuous and conformal at each point of
U. Then from part (2) of the theorem f’(zo) exists and is not zero for each
zo € U. Therefore, f(2) is analytic on U, and f'(2) # 0. |

Conformality is analogous to the use of the real derivative as a measure
of direction. There is a corresponding notion of the instantaneous rate of
change for complex functions.

Definition 4.3.3
Suppose f : U - C,U c C,z € U ,and M > 0. Then f(z) is a
magnification at z; by M if

lim IAzo + A2) — flzo)l _

Az 1Az]

M.
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.

.

Figure 4.4. ¢ as a conformal mapping

Clearly, if f'(zo) exists, then f(2) is a magnification at z, by |f'(z)|-
However, there is a partial converse, which we state as part (2) of the
next theorem.

Theorem 4.3.2

(1) If f (2) is differentiable at z,, then f(z) is a magnification at zo by |f’(z0)|.
(2) Let U be a domain in C and f(2) a continuous complex function on

U. Suppose zo € UM > 0, and f(z) is a magnification at zy by M, and

suppose further that at zq all the partials exist and are continuous and f o y is

differentiable at to for any curve y differentiable at t, where zy = y(to). Then

either f(z) is differentiable at z,, or f(2) is differentiable at z.

EXAMPLE 4.3.2
Let f{z) = €. Show that this is a conformal mapping throughout C.

Now, f{z) = € = €* cosy +i€* siny is never zero in C. From our earlier
example we saw that f'(z) = € also. Therefore, f'(z) # 0 in C, and hence
it is conformal.

Further, f{z) = € maps the strip —m < y < 7 one-to-one and con-
formally onto the split plane that omits 0 and the negative real axis. We
indicate this in Figure 4.4. O

Exercises

4.1. Let fz) = 2°
(a) Determine the real and imaginary parts of f{z).
(b) Use the Cauchy-Riemann equations to show that f{z) is everywhere
analytic and f'(z) = 322
(c) Use the formal definition (as in elementary calculus) on z3 directly to
show that f'(2) = 222
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4.2.

4.3.
4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

4.12.
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Use induction and the product rule to show that if f{z) = z",n € N, then
fl(z) - nZ"_l

Show that the function f{z) = Z is nowhere differentiable.

Let f{z) be analytic. Show that g(z) = f{z) is not analytic unless f(2) is
constant.

Let flz) = (2¢% + y) + i(x* — ).

(a) What is {1 + 2i)?

(b) Evaluate lim,_,3-, f{2).

(c) At which points (if any) is f{2) differentiable?
(d) Is f{z) analytic anywhere? Why?

Show that the following functions are entire.

(@ flz) = Bx +y) +i(3y — x).
(b) flz) = e Y cosx +ie7Ysinx.

Show that the following functions are nowhere analytic.

@) fla) =xy +1iy.

(b) flz) = €Y cos x +ieY sin x. Here note the distinction with exercise 4.6 and
with the complex exponential function.

Show that each of the following functions is harmonic and find a harmonic
conjugate.

(@) u(x,y) = 2x — 2xy.

®) u(x,y) = 2x — x3 + 3xy?

Describe pictorially what the following curves look like.
(@ M) =@ +i)+4€*,0 <t < 2m

®) ) =t+it2,0<t<1.

© M) =2 +iln(t),1 <t < 2.

Let () = t+it2,0 <t < land yp(f) = 3 + 3€,0 <t < 2m. Then
»(1/2) = y2(0) = z. What is the angle between the two curves at this
common point?

(a) Prove formally that if lim,_,, f(z) = w; and lim,,,, g(2) = w;, then
lim,_, ;,(R2) + g(2)) = w1 + wa.

(b) Use part (a) to show that if f{2) and g(z) are continuous at zy then f{z) +
g(2) is also continuous at z,.

The complex trigonometric functions are defined by

. eiz —e e? + e—iz
singz= ———, cosz = ———
2i 2

(2) Use Euler's identity €' = cost + isint applied to a complex variable z
to show that these definitions are what you would expect.

(b) Using the derivative of the exponential function find the derivatives,
and show that if f{z) = sin z then f'(2) = cos z, and if f{z) = cos z then
f'(2) = —sinz.

The final exercises will sketch a proof of the second part of Theorem

4.3.1 that if f{z) is conformal at 7, then f(2) is differentiable at z; and

f'(20) # 0.
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4.13. Define the operator % by

3 1 a+ia
2z 2 \ & y/’

Let f{z) = u(z)+iv(2) be continuous in a region containing zp. Suppose at
zp the partials exist and are continuous. Prove that f{z) being differentiable

at zp is equivalent to % = 0 at zp. (Hint: expand out g—; and compare to the
Cauchy-Riemann equations.)

4.14. For a curve y regular at ty where y(tg) = zp and a continuous function f{2)
for which the partials exists and are continuous at zy and for which f o y is
also regular at tp, show that

g 3 N
(o V¥lto) = L o)y () + L ()7 D).

3 _ 1,2 ]
Here the operator o~ = (3 —13).

Now we give the proof of the theorem. For each real 8 define the curve
ve(t) = 2o + te® Then zy = y,(0) for all 8 and y,'(t) = €. Further, for all
real 6, ¢, the angle from yy to y at zp is ¢ — 6.

Since f{2) is conformal at zp, we have

¢ — 60 = Arg(f o yp)(to) — Arg(f o yo)/(to)-
Expanding using Exercise 4.14 and then rearranging, we get that
o | o df of e df
-0=¢- = =) - Arg| — = .
p—0=¢p—6+ Arg(az-i-e e rg az+e >
It therefore follows that
of | 2 df of | _2edf
= = )= Arg| = = }.
Arg(az” z Bl te =
Setting 8 = 0, we see then that every circle with center g—£ and radius
| -gé | is contained in the ray Arg (2) = Arg( gé + gé )- This is possible only if

the radius is zero, and hence | g%l = 0. Therefore, from Exercise 4.13, f{2)
is differentiable.
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5.1 Line Integrals and Green’s Theorem

In the last chapter we extended differentiation to complex functions. We
now move on to an appropriate theory of complex integration. From
this theory we will be able to give our second proof of the Fundamental
Theorem of Algebra.

Recall that if z = f(x, y) is a real-valued two variable function, there
are two appropriate notions of integration. First is the double integral
over a region R, ([, f{x, y)dA. This is an integral with respect to area and
is an integral of a two-variable function over a two-dimensional object.
Alternatively, we use line integrals which are integrals of a two-variable
function over a a one-dimensional object - a curve. It is the second inte-
gral - the line integral - that is most appropriate for complex functions.
We use the rest of this section to review the basic ideas of real line
integrals.

Definition 5.1.1
Suppose U is a domain in the xy-plane, y is a curve contained in U, and
flx, y) is a real-valued function defined on U. Choose successive points
Py = (X0,Y0), i = (x1,Y1),---, Pn = (%a,Yn) ON y partitioning y as in
Figure 5.1.

Then f{P) = fix,y) is defined. Let Ax, = x, — x;_; and form the
Riemann sum )", fix, ) Ax. Then the line integral of f(x, y) over y

52
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Ds; = arc length from
Pi-l to P.-

Pi
]

Figure 5.1. Line Integrals
with respect to x, denoted by fy flx, y)dx, is defined as

n
fy fix, y)dx = lim ; flxi, yi) Ax; (5.1.1)
whenever this limit exists independent of the partitioning points.

Analogously, if Ay; = y; —yi-1, the line integral of f{x, y) over y with
respect to y is

f flx, y)dy = Alim Zf(x,-,yi)Ayi. (5.1.2)
v y,—0 Py

Finally, if As; is the arc length along y from P;_; to P, then the line
integral of f{x, y) over y with respect to arc length is

/y flx, y)ds = /}ir_x}0§ fix, ) Asi. (5.1.3)

Continuity of f{x, y) over the region U and continuous differentiability
of the curve y are sufficient for the existence of the line integrals.

Lemma 5.1.1
If f(x,y) is continuous on U and y C U is continuously differentiable, then
the various line integrals exist.

The computation of the various line integrals reverts back to ordinary
integration. Suppose U(t) = x(t) + wy(t) = (x(t),y(t)) with t, <t < t;.
Then dx = X(t)dt, dy = y'()dt, ds = /x ()2 + y/(£)2dt. We then obtain by
substitution:

/ fix, y)dx = [ | fIx(). u()HX (Hdt. (5.1.19)
Y fo



54 5. Complex Integration and Cauchy’s Theorem
f) ’
/f(x, y)dy = f fx(t), y(t))y'(t)dt. (5.1.2)
14 to

f flx, y)ds = f " R, YOI ¥ (D + y'(t)dt. (5.1.3)
Y to

Further, if the curve y is given explicitly as y = g(x) from x = a to
x = b, then dx = dx, dy = g'(x)dx, ds = /1 + g’(x)?dx, and the above can
be rewritten as:

b
/f(x,y)dx =/ f(x, g(x))dx. (5.1.1")
Y a

b
f fox, )y = f flx, (g (%)db. (51.2%)
y a

b
ff(x, y)ds = f flx, g(x))y/1 + g'(x)%dx. (5.1.3")
y a

For the remainder of this Chapter we will consider only continuously
differentiable curves. Hence the word curve is to be interpreted as a
continuously differentiable curve.

We illustrate these computations in the next examples.

ExAMPLE 5.1.1
Evaluate the line integral [ 2xydx + (x* — y*)dy, where y is the curve
givenby x(t) =t> — 1, y(t) =t +1,0 <t < 1.

Here dx = 2tdt, dy = 2tdt, so

1
f 2xydx + (X — yH)dy = f 2(t% — 1)(t* + 1)2tdt
Y 0

1
2 _ 2 42 2 __E
+/0 (" = 1) = (¢ + 1))2edt = — —.

EXAMPLE 5.1.2
Evaluate the line integral fy(y3 — 3xy?)dy where y is the curve given by
y=220<x<1.

Here dy = 4xdx so,

1
f @ - 3xS)dy = f ((2x*)° — 3x(2x*))axdx
14 0

1
= / (3247 — 48:x)dx = — 22
0 7
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EXAMPLE 5.1.3
Evaluate the line integral fy yds, where y is the curve givenby y = g(x) =

Jx 0 <x<6.

Here ds = /1 + g'(x)? 1+ gx so,

/yds——f A L

] . 3]
= - 1 2 = —
zfo( Fax)idx =

a

Line integrals appear in physics most often in the following context.

Suppose F(x, y) = P(x,y) i +Q(x, y) j is a continuous vector force function
acting in the plane. (Here i and j are the standard unit vectors). Then the
work done in pushing a particle along a curve y subject to this force is

W= /P(x, y)dx + Q(x, y)dy. (5.1.49)
12

An expression of the form P(x, y)dx + Q(x, y)dy, where P(x,y), Q(x, y)
are real-valued functions is called a first-order differential form.

Recall that if f{x, y) is a real-valued function with first-order partials,
then its total differential is

df = —f + ¥ dy. (5.1.5)

T

Thus the total differential of a two-variable function is a first-order dif-
ferential form. Notice that if y is a curve with initial point P, and terminal
point P;, then by substitution in the definitions,

14

That is, the line integral of a total differential depends only on the end-
points. We say that fy df is independent of path, a concept we will return
to.

In general, a first-order differential form Pdx 4+ Qdy is exact if it is the
total differential of some function f(x, y). In this case P(x,y) = ¥ and

ax
Qx,y) = % . Assuming P, Q are continuous we would then have
P ¥f _ ¥ aQ
dy oxdy  odyox  ox
This condition turns out to be sufficient for exactness as well.

Lemma 5.1.2
If P(x,y),Q(xy) are continuous, then Pdx + Qdy is exact if and only if
P _ aQ

¥y &
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The next example illustrates how to determine a function f(, y) such
that df = Pdx + Qdy when Pdx + Qdy is exact. A formal proof of Lemma
5.1.2 is based on this technique.

ExaMPLE 5.1.4
Show that (x* + 3x%y)dx + (x* + y*)dy is exact and determine a function
flx, y) for which it is the total differential.

Here P(x,y) = (¥ + 3x%),Q(x,y) = (¥* + y°) and therefore § =

3x2, 2 = 3x* Hence from Lemma 5.1.2 it is an exact first order
differential form.
Suppose
2 3, .3 of 3f
df = Pdx + Qdy = (x* + 3x%y)dx + (x +y)dy— P @
Then
d
a£ 3 +3xy)and—1r > +y%)

First integrate P(x, y) = % with respect to x to obtain

f ( + 3x*y)dx = x*/4 + 3y + g(y).

Therefore, fx, y) = x*/4 + x*y + g(y) where g(y) is a function of y alone.

Differentiating this expression with respect to y it follows that % =
2+ gy = Qxy) = x¥* + y*. This implies that g’(y) = y* and hence
8(y) = y*/4 + c. Putting all this together we finally have that

fix,y) = x*/4 + 3y + y*/4 + c.
0

We now discuss Green’s theorem which may be thought of as a result
that expresses the relationship between the two types of integration for
two-variable functions (multiple and line). More generally, and outside
the scope of these notes, at every dimension (number of variables) there
are analagously two types of integrals and a version of Green's theorem.

Definition 5.1.2

A simple closed curve is a curve (1) : [, b] — C such that y(a) = y(b)
but (1) # ¥(t2) for no other pair ty, t; € [a, b]. Basically this is a curve tht
is the union of two curves having only their endpoints in common, that is,
there is only one point of self-intersection and it occurs at the endpoint
of the interval of definition. (See Figure 5.2.)
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Simple closed curve Non-simple closed
curve

Figure 5.2. Closed Curves

The Jordan curve theorem says that a simple closed curve divides
the plane into two regions, an interior and an exterior. This seemingly
obvious fact is surprisingly difficult to prove.

Theorem 5.1.1

(Green's Theorem) Suppose R is a region in C whose boundary oR is a
simple closed curve. Suppose further that P(xy),Q(x,y) are continuously
differentiable functions on a domain U containing R and dR. Then

forevan=[ [ (5 -5)

where the line integral is taken around R in the counterclockwise direction.

Green's theorem can be extended to more general regions than those
whose boundary is a single simple closed curve. For example if G is a
region whose boundary dG consists of a finite number of simple closed
curves, no two of which intersect,Green’s theorem then is still valid - that

1S
Q dP
Pdx + Qd =/f(———)dA.
ic Wy G \ ox Yy

where the line integral over the boundary is defined as the sum over each
boundary curve, each directed so that the region G is on the left.

ExaMPLE 5.1.5

Green’s theorem applies to the region R in Figure 5.3, where the line
integral would be counterclockwise around the outer boundary curve
and clockwise around the izner boundary curves. O
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Figure 5.3. Region for Green'’s Theorem

We prove Green's theorem when the region R is rectangular and then
give an example.

Proof
Suppose R is the rectangular regiona < x < b, ¢ < y < d. This is pictured
in Figure 5.4.

(a.d) %) (b, d)
Cs R G,
(av C) C| (b, C)

Figure 5.4. Figure 5.4 Rectangular Region

We prove separately that

JdP
ressyic = [ [ La
fim 22 e 2
aQ
L Y)ad =f/—dA
$ ampay= [ [ 3
Consider first

f/ —dA = /[—dydx /(P(xd) P(x, ¢))dx.

and
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Now consider

fQR P(x, y)dx = fc | P(x, y)dx + fc z P(x, y)dx + fc 3 P(x, y)dx + fc ‘ P(x, y)dx

where C; is the side from (g, c) to (b, ¢), C; is the side from (b, c) to (b, d),
C; is the side from (b, d) to (a, d), and C, is the side from (q, d) to (q, ¢).

Now, along C; and C,, dx = 0, while along C;,y = c and along C3,y =
d. Therefore,

g resapax= [ renapae+ [ Py

b a b
= [ rooas+ [ rosaxie = [0 - pox
a b a

—-/;b(P(x,d)—P(x,c))dx=—fL %dA.

An analogous argument works to show that
aQ
f Q(x,y)dy = ff a—-dA
3R R 0X [

The proof of Green's theorem in general can be accomplished by
subdividing the region R into a grid of rectangles.

ExAMPLE 5.1.6

Verify Green’s theorem when P(x,y) = 4y, Q(x,y) = 5x, and R is the
region bounded by the unit circle centered on the origin. Hence 9R is
given by /(t) = €" = cost + isint, 0 <t<2m

Here %3- =5, aP = 4, s0 3 = 1. Hence it follows that
ff(———) ffdA—Area(R)—Jt
Now, dR is the unit circle, so x(t) = cost,dx = —sintdt, y(t) =

sint, dy = cos tdt. Hence

2n
f Pdx + Qdy = f 4 sint(—sint)dt + 5 cos t cos tdt
3R 0

2r 2r
= f (5cos’t — 4sin® f)dt = f (5 — 9sin?H)dt = .
0 0 O

Green's theorem and exactness are closely connected to the concept of
independence of path. This will play a fundamental role also in complex
integration.
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Definition 5.1.3

Suppose P(x,y),Q(x, y) are defined on a domain U containing a curve y.
Then [ Pdx + Qdy is independent of path if the value of the integral
depem{s only on the endpoints of y not on the curve itself.

Theorem 5.1.2
Suppose P(x,y),Q(x.y) are continuously differentiable functions on a domain
U. Then the following are equivalent:

(1) P(xy)dx + Q(xy)dy is exact.
) fy Pdx + Qdy is independent of path for any curve y in U.
(3) fy Pdx + Qdy = 0 for any simple closed curve y in U.

Proof

Suppose P(x, y)dx + Q(x, y)dy is exact. Then there exists a function f{x, y)
with df = Pdx + Qdy. If Py, P, are two points in U and y is any curve in
U with endpoints Py, P;, then

dex + Qdy = /df = f(P1) — f{Po)-

14 14

Therefore, fy Pdx + Qdy is independent of path. Hence (1) implies (2).
Suppose fy Pdx + Qdy is independent of path for any curve y in U. Let

y1 be a simple closed curve. Let Py, P; be two points on y; and let y4; be the

curve traversed along y, from Py to P; and let y;; be the curve traversed

along y; from P, to P; as pictured in Figure 5.5.

&1 gn

471

Figure 5.5. Independence of Path

From the independence of path criterion we have

f de+Qdy=f Pdx + Qdy, or /
Yn )4V

v

de'l‘Qdy—/ Pdx + Qdy = 0.

)4F]
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On the other hand, the original curve y, is precisely yn — y12, and so

dex+Qdy=/ de+Qdy—f Pdx + Qdy = 0.
4]

m )4 P
Therefore, (2) implies (3).
Finally, suppose [ Pdx + Qdy = 0 for any simple closed curve y in U.
Then from Green’s theorem

f-/x;rfmory(% B %)dA =0.

Since this holds for any simple closed curve, it holds for any region in U
bounded by a simple closed curve in U. This is possible only if

aQ oP aQ oP
_ — — = T — —= —
ox dy dx dy
Therefore, Pdx + Qdy is exact, completing the proof. [

5.2 Complex Integration and Cauchy’s
Theorem

Using the theory of real line integration we can define the complex
integral.

Definition 5.2.1
(a) Suppose f{t) = u(t) + iv(t) is a continuous complex function defined
on the interval t; < t < t;. Then we define

_[ h flnat = [ h u(t)dt + 1 [ ) v(t)dt. (5.2.1)

(b) Suppose f{z) = u(z) + iv(2) is a continuous complex function and
) = x(t) + iy(t), to <t < t, is a curve with y(t) in the domain of f(z).
Then f{¥(t)) is a continuous complex function of the real variable t, and
we define the complex contour integral, or complex line integral, by

[ sz = [ sirenv o (5.2.2)
Y fo

This definition of the complex contour integral is independent of the
parametrization of the curve in the following sense. Suppose y; : [to, t1] =
C with tg < t; and ¥z : [0, 1] = C with so < s,. Then y; is equivalent

to y, if there exists a continuously differentiable bijection ¢ : [to, ;] —
[So, s1] with y2 = y1 o ¢ and (1) > Ciorall t € [to, t1]. Now if ,, y2 are
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two equivalent curves with values in an open region U C C and f(2) is
continuous in U, then

dz = dz,
. fl2) /;zf(z)
since y;(t) = y1(#(D))¢' (D).

If we write f{z) = u(z) + iv(z) and Y(t) = x(t) + iy(t), then y/()dt =
¥ (H)dt + iy (t)dt = dx + idy = dz. Substituting, we then have

f(2)dz = (u + w)(dx + idy) = udx — vdy + i(udy + vdx).

Therefore, we can rewrite the definition of the complex contour
integral as

f flz)dz = / (udx — vdy) + i / (vdx + udy). (5.2.3)
14 14 14

ExAaMPLE 5.2.1
Evaluate fy z3dz, where y is the straight line segment from (0, 0) to (1, 1).

Now, z% = (x + iy)® = x* — 3xy? + i(3x%y — y*), while the straight line
segment from (0, 0) to (1, 1) is given by p(t) = t+it, 0 < t < 1. Therefore,
ff(z)dz = /(udx —vdy) + i/(vdx + udy)

Y 4 Y
= f (' — 3xy")dx — 3y — Yy +1 / (3x"y — y’)dx
14 14

+ (¥ - 3xy%)dy

1 1
= f (2 = 3t})dt — (33 — t3)dt + i / (3t* — t3)dt + (3 — 3t%)dt
0 0

1
=/ —4tdt = —1.
0

From the basic results on line integration all the standard integration
properties carry over to the complex integral.

O

Lemma 5.2.1
Let f(z),8(2) be continuous complex functions, a,B € C. Then:

1) f,, of (2) + Bg(2)dz = a [, f(2)dz + B [, g(z)dz.

) 1 [, f(2)dzl < [, If(2)Ildzl.

(3) fy |dz| = arc length of y.

(4) IfIf(2)l < M ony and L = arc length of y, then | fy f(z)dz| < ML.



5.2. Complex Integration and Cauchy’s Theorem 63

Suppose F(z) = U(z) + iV(2) is analytic in a regmn contammg a curve
y and suppose further that f{z) = F'(z). Then flz) = & +i% and

ff(z)dz f(ade— —dy) fy(i—:dx+ aaly) (5.2.4)

using (5.2.3). From the Cauchy-Riemann equations, §& = 2 and & =

— & and therefore,
*u _du _ v ¥V _ ¥V _FU
xdy  oydx o2 xdy  dydx o2

Hence both integrals on the right-hand side of (5.2.4) are independent of
path. Therefore, if y goes from z, to z, this implies that

ff(Z)dZ = fF'(Z)dZ = F(Z]) - F(Zo). (525)
Y Y

This is the complex version of the fundamental theorem of calculus.
Lemma 5.2.2

Suppose F(2) is analytic in a region U and f(z) = F'(z). Then if y is any
curve in U with endpoints zg,z;,

ff(Z)dZ = F(Z]) — F(Zo).
Y

Corollary 5.2.1

" . 5 A
f dz = £5 |2 = 45 — 2 for any natural number n and any curve y

wzth endpoints zo ,21-

EXAMPLE 5.2.2
Evaluate [ zdz, where y is the straight line segment from (0, 0) to (1, 1).
Here the endpoints of y are 0 and 1 + i, and hence using Corollary

5.2.1 we have
1+
4
z
/z3dz = — =
% 4 0

Notice that this of course agrees with what we computed directly in
Example 5.2.1.
As an immediate consequence of Lemma 5.2.2 we see that

/F’(z)dz =0
v

for any closed curve y. We now generalize this to analytic integrands.
Consider

Q+9* _
=

fyf(z)dz = fy(wix - véy) + i/y(vdx + udy)
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with f{z) analytic in a region U containing y. From the Cauchy-Riemann
equations,

u W u

wo Wy
Therefore, if these partials are continuous in U, it follows that each
of the differential forms in the integral above is exact, and hence

the line integrals are independent of path. It follows that under these
conditions

/ flz)dz = 0 (5.2.6)
Y

for any simple closed curve y contained in U. This result was orig-
inally given by Cauchy in the early 1800’s. Goursat, later in the
century, proved that the analyticity of f{z) alone was sufficient (the
proof does not depend on the continuity of the partials and thus is
stronger than what can be obtained from Green's theorem). This is
then what is termed Cauchy’s theorem or the Cauchy-Goursat the-
orem. In appendix B we give a formal proof of the extended Goursat
result. O

Theorem 5.2.1
(Cauchy's Theorem) Let f(z) be analytic throughout a simply connected
domain U and suppose y is a closed contour entirely contained in U. Then

/}:f(z)dz = 0.

We close this section by proving that Cauchy’s theorem implies
that every analytic function is itself the derivative of another analytic
function.

Theorem 5.2.2
Let f(2) be analytic throughout a simply connected domain U. Then f (2) =
F'(2) for some function F(z) analytic in U.

Proof

Let zo be a fixed point in U. For any curve y in U and beginning at z,
it follows from Cauchy’s theorem that the value of the integral f f(2)dz
depends only on the endpoint of y. To see this suppose y, Y1 are twoycurves
beginning at z; and ending at z; as in Figure 5.6.
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g
s
2

g

Figure 5.6. Independence of Path

Let y, be the closed path going out along y and back to z, along ;.
Since f{2) is analytic throughout U we have from Cauchy's theorem

/n fiz2)dz = 0 = /, fiz)dz — : flz)dz.

Hence

/y fl2)dz = [y | fl2)dz.

Now let F(2) = fzi flw)dw. From the above discussion this is well-
defined, and now we show that F'(z) = f{2).

P = m TEHAD@ _ g, L ( [ o - [ ,«(w)dw)

z—0 Az Az—0 Az .

1 z+48z
= lim — flw)dw.
b6z—0 Az [,
Since f{2) is analytic, it is continuous, and then it can be shown (see
the exercises) that
z+48z
flwydw = (f2) + €)Az,
¥4
where € — 0 as Az — 0.
Therefore,
z2+4z

lim L flw)dw = f(2),

Az—0 Az [,

and hence F'(2) = f(2). ]
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5.3 The Cauchy Integral Formula and
Cauchy’s Estimate

Using Cauchy’s theorem we can establish the following fundamental
result known as the Cauchy integral formula.

Theorem 5.3.1
(Cauchy Integral Formula) Let f(z) be analytic in a simply connected domian
U containing a simple closed contour y. If zy is any point interior to y, then

_1 [ e
flzo) = 2mi _/)-, z—zodz'

where the integral is taken in a counterclockwise direction around y.

Before giving the proof of Theorem 5.3.1, let us note that this theorem
implies that the values of a function that is analytic in U within the in-
terior of a curve y in U are completely determined by the values on the
boundary of y. Thus analyticity forces this extremely strong relationship
between values on the boundary of such curves and values in the interior.

Proof
(Theorem 5.3.1) Let Cp be a circle of radius ry centered at z. If rg is small
enough, C, will be interior to y as pictured in Figure 5.7.

Figure 5.7. Ring-Shaped Region

The function g(z) = % is then analytic in the ring-shaped region
bounded by y and Cy,. Hence by Cauchy's theorem

fz) fa) . _
./,:Z——;odz_./c.,z——?odz_o' (5.3.1)
S0
(S oo [ LD,

»L1 Z—2p
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Then

M gy oy [ 2 o [ TS0,

y 2~ 20 c.,Z—ZO Co zZ — 2

(5.3.2)

Now, on Cy, z = zy + ree'! and dz = irge'dt, so

dZ 2
/ =if dt = 2mi.
Co 2~ 20 0

Since f{z) is continuous at zo, if we choose ry small enough, we would
have |f(z) — flzo)l < € within |z — zg| < 7, (inside Cp). Then

|f wddsf Ij‘(z)—ﬂzo—)l-|dz|< E2717'0=27t45.
Co Co

z — zg |z = zol To

Thus the absolute value of the second integral in (5.3.2) can be made
arbitrarily small. Its value must therefore be zero and hence

f@a . ..
) z — 2 dz = 27[1/(20). -

ExampLE 5.3.1
Evaluate y ;dztg, where y is any simple closed contour not containing
z=-3inits interior

Let f{z) = ;13- If ¥ does not contain z = —3 in its interior, then f{z) is
analytic on y and its interior. Therefore, from the Cauchy integral formula
dz dz
f Z - —= = D4, = 2mif3).
y 2¢—9 y 2+3)(z-3) y2—3

Therefore, this value is 27i/6.
Recall from advanced calculus that if g(x,t) is a differentiable
two-variable function and

b
f(t) =-/; g(x, t)dt

then
b3
fi(H = fa aif(x, t)dt.

That is, if a function is defined by integrating a two-variable differ-
entiable function with respect to one variable, then its derivative is the
integral of the partial derivative with respect to that variable.

Now let us apply this idea to the Cauchy integral formula to obtain an
expression for the derivative of an analytic function. We have

GNP

yz.‘..‘_,

1
ﬂo)——
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Differentiate inside the integral with respect to zo to obtain

1 f(2)
’ = — —7 _dz. 5.3.3
Fe) = 50 | Gomp (533)

Inductively, we can differentiate this with respect to zp to obtain the
formula

gy = T f2)
f(z0) = o fy = 2oy 639

Hence we have established the following corollary to the Cauchy
integral formula.

Corollary 5.3.1
Let f (z) be analytic in a simply connected domain U containing a simple closed
curve y. If zg is interior to y then an expression for the n — th derivative is

mye b flz)
f( )(ZO) T 2mi _/;, (z — zo)"*! dz.

In particular, this shows that if f{2) is analytic in a region U, then it has
derivatives of all orders in U.

Corollary 5.3.2
If f(2) is analytic in a simply connected domain U, then it has derivatives of
all orders in U.

Recall that an analytic function is the derivative of another analytic
function. As a consequence of Corollary 5.3.2 it follows that the derivative
of an analytic function is again an analytic function.

Corollary 5.3.3
The derivative of an analytic function is itself analytic.

We note here the contrast with real-valued functions on R. For func-
tions y = f{x) with x, y € R it is possible to be differentiable but not twice
differentiable. In general, a function f : [a,b] = R is of class C" if it is
n-times differentiable. For each n, C"*! is a proper subset of C" - that
is there are n-times differentiable functions that are not (n + 1)-times
differentiable.

The class C* consists of those functions that are infinitely many times
differentiable. Examples include €* and sin x. Corollary 5.3.2 says that
for complex functions, being analytic in a region implies C® in that
region.
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Real analytic functions are those functions represented by conver-
gent Taylor series. Clearly, such functions must be C*° However, there
are C*™ functions that are not real analytic. This is again not the case
for complex functions. Being analytic in a region implies a Taylor series
expansion in that region.

Theorem 5.3.2

Let f(2) be analytic at all points within a circle Cy of radius rq centered at z.
Then within Cy,f (2) is represented by a convergent Taylor series centered at
Zo- that is, for all z within Gy,

f2) = flzo) + f'(20)(z — 20) + --- +

()
g_%zo). (z—20)" + ...

Finally the Cauchy integral formula leads us to Cauchy’s estimate
which will be instrumental in our next proof of the Fundamental Theorem
of Algebra.

Theorem 5.3.3

(Cauchy's Estimate) Suppose f(z) is analytic in a simply connected domain
U containing the circle Cy of radius rq centered at zy. If M is the maximum
value of |f (z)| on Cy, then

n'M
If™(20)| < ~

0

In particular, if |f (z)] < M within and on Cy then
M
IF'(2l < —
LO]
for all z interior to Cy.

Proof
From Corollary 5.3.1

! Mn!
1F (20 slz% f _E__ 4 < Z;I

Go (Z _ ZO)n+l

dz

Go (Z — Zo)n+1

On Cy, z = zg + 1o€", dz = irpe'dt, so

dZ 2r
f e — f ro—ne—ml‘dt
Co (Z - ZO) 0

Hence |f("(z0)| < % [ |

— —-n
= 271,
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5.4 Liouville’s Theorem and the
Fundamental Theorem of Algebra -
Proof Two

Based on Cauchy’s estimate we can now prove Liouville’s theorem from
which we easily obtain our second proof of the Fundamental Theorem of
Algebra.

Theorem 5.4.1
(Liouville's Theorem) Suppose f (z) is entire and |f (2)| is bounded for all values
of z € C. Then f(2) is a constant.

(2) More generally, if |f")(2)| is bounded throughout C, then f(z) is a
polynomial of degree at most n + 1.

Proof
Suppose f{z) is entire and |f{z)| < M for all z € C. Then from Cauchy's
estimate on a circle of radius r centered at the origin,

, M
If'(2)I < -

Since f(2) is entire, we can letr — oco. Therefore, |f'(z)| = 0 and hence
f'(2) = 0. This of course implies that f{z) must be a constant, completing
part (1).

For part (2), if If(W(2)| < M for all z € C, then again from Cauchy's
estimate

e < X
Y

on any circle of radius r centered at the origin. Again, by letting r — oo
we would obtain that f("*1)(z) = 0 and hence f(")(z) is a constant. Then
f{2) is a polynomial of degree at most n + 1 by antidifferentiation. [

Suppose P(z) is a complex polynomial. If deg P(z) > 1 then P(2) is a
nonconstant entire function with the property that |P(z)| — oo as |z| —
oo. Combining these facts with Liouville’s theorem gives us a proof of the
Fundamental Theorem of Algebra.

Theorem 5.4.2
(Fundamental Theorem of Algebra) Let P(z) be a complex polynomial of degree
> 1. Then P(z) has at least one complex root.

Proof
Suppose P(z) is a complex polynomial, and let f{z) = #z) . If P(2) had no
complex root, then f{z) would also be an entire function.
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Since |P(z)| — oo as |z] — oo, there exists M, r > 0 such that |P(z)| >
Mif|z] > r. This implies that for |z| > 7,|f2)| = iﬁlzﬁ < - Iffl2)
were entire, it would be continuous and thus bounded on the compact set
|z| < r.It follows that if f{ z) were entire it would be bounded throughout C.
From Liouville's theorem it would then follow that f{z) must be a constant.
However, then P(z) would also be a constant, which is a contradiction.
Therefore, P(z) must be zero for at least one value of z € C. |

What we actually proved above is that if f{z) is a nonconstant entire
function with the property that |f(z)] — oo as|z| — oo, then f{Z) has
at least one zero in C, that is a point z; € C with f{zg) = 0. However
a careful study of entire functions shows that such a function must be
a polynomial. Specifically, polynomials can be characterized as entire
functions that are infinite at infinity. For more along these lines we refer
the reader to the book of Ahlfors [A].

5.5 Some Additional Results

We close this chapter by giving two additional results. While these are not
directly relevant to the Fundamental Theorem of Algebra they are part
of the same general development.

The first called Morera’s theorem gives a partial converse to Cauchy’s
theorem. Specifically if a continuous function has a zero integral over
every simple closed curve in a region it must be analytic.

Theorem 5.5.1

(Morera’s Theorem) Suppose f(z) is continuous throughout a simply connected
domain U and [ f(2)dz = 0 for every simple closed curve y interior to U.
Then f(z) is anaiytic throughout U.

Proof
The proof is essentially the same as the proof of Theorem 5.2.2.

Let z; be a fixed point in U. For any curve y; beginning at z,, the value
of [, flz)dz depends only on the endpoint of y, since [ f(z)dz = 0 for
every simple closed curve y interior to U. Therefore,

F2) = f i flw)dw

is well-defined. As in the proof of Theorem 5.2.2 we can show that F'(2) =

f@).
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Since F(2) is differentiable throughout U, it is analytic and hence f{2)
is the derivative of an analytic function. Therefore, from Corollary 5.3.3,
f(2) is analytic. u

The second result, which we just state, is called the maximum modu-
lus theorem. This says that for an analytic function on a compact domain
its maximum modulus must occur on the boundary.

Theorem 5.5.2

(Maximum Modulus Theorem) If f(z) is nonconstant and analytic through-
out a bounded domain D and continuous on the boundary of D, then |f(z)|
assumes its maximum value on the boundary of D, never at an interior point.

The proof depends on the maximum-modulus principle, which
states

If f{z) is nonconstant and analytic in a domain U, then very
neighborhood in U of z, € U contains points z with |f{2)| > |f(2o)I.

In appendix C we will use the maximum principle to fashion another
proof of the Fundamental Theorem of Algebra.

5.6 Concluding Remarks on Complex
Analysis

In the past two chapters we have developed many ideas and techniques
in complex analysis and used them to produce our second proof of the
Fundamental Theorem of Algebra. The key tool in this development was
really Cauchy'’s theorem which began the series of results leading to Liou-
ville’s theorem and then our second proof. As mentioned in Section 5.2,
Goursat actually proved a much stronger version of Cauchy's theorem.
In Appendix B we return to complex analysis and take a more detailed
look at Cauchy’s theorem and then at the maximum modulus principle.
Using this, we then in Appendix C give three additional complex analytic
proofs of the Fundamental Theorem of Algebra. In the next two chapters
we look at algebraic proofs of this theorem.

Exercises

5.1. Evaluate the following line integrals:

@ fy(xz + y)dx + (x — y*)dy, where y is the straight line segment from (0,0)
to (2,3).
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5.2.

5.3.

54.

5.5.

5.6.

5.7.

5.8.

5.9.

(®) [,(** — 2y)dx + (2 + y*)dy, where y is the curve y* = 4x — 1 from
(1/2,1) to (3/4, 2).

© fy ‘/x + (3y)§ds, where y is the curve y = %x:" fromx =0tox = 3.
(@ [, +y*)dx+ (¥ — y*)dy, where y is the curve y : x(t) = t2 + 3, y(t) =
t-L1<t=<2
<+, . . _ el
(e) [, Mm , where y is the closed curve y : x = cost,y = sint,0 <t <
2m.

Show that the following integrands are exact first-order differential forms
and evaluate the integral by finding an appropriate antiderivative.

(@) [, (¥* + 2y)dx + (2x + 2y)dy, where y is a curve from (1,1) to (5,3).

® fy(e" cos y)dx — (€&* sin y)dy, where y is a curve from (0,0) to (=, 7).

Verify Green's theorem when

(@) P(x,y) = =Y, Q(x, y) = x, and R is the unit rectangular region 0 < x <
,0<y<l1.

(b) P(x,y) = xy, Q(x,y) = —2xy, and R is the rectangular region 1 < x <
2,0<y=<3.

Verify (using Green’s theorem) that if R is a region bounded by a simple
closed curve dR then

Area(R) = / xdy.
aR

Evaluate the following complex integrals:

(@) [, fz)dz, where f{z) = (y — ¥) — 3x%i and y is the straight line segment
fromz=0toz=1+1.

(b) [, flz)dz, where flz) = 22 and p(t) = 2¢",0 <t < .

z

Show directly that
f “  _oiand [ —%  —oifn=23,..
G 2~ 20 c (2 — 20)"

if Cy is the circle y(t) = zo + 7", 0 < t < 2. (See how this compares with
the Cauchy integral formula.)

Let y be the boundary of the square region —2 < x < 2, —2 <y < 2 taken
counterclockwise. What are the values of the following integrals and why?

@ [, %S/Zdz
() fr mdz'
©) fy 5 dz.

4

@ J, e=twr &
If f{z) is analytic within and on a curve y with z in its interior, show that
’
F@ gy [ LD,
y 2% y (2 —20)
Show that the real function flx) = ¢~  is C*® atx = 0 but not real analytic

atx = 0.



Fields and Field
Extensions

CHAPTER

6.1 Algebraic Field Extensions

We have now given two proofs of the Fundamental Theorem of Algebra.
Both of these involved much more analysis (calculus) than algebra. The
first relied on the analytic properties of two-variable real-valued functions
from advanced calculus as well as the continuity of real polynomials while
the second proof followed from the theory of complex analysis. We now
turn to a more algebraic approach to the Fundamental Theorem of Al-
gebra. Eventually we will prove, in the language of this approach, that
the complex number field C is an algebraically closed field, a concept
equivalent to the fundamental theorem.

If F and F’ are fields with F a subfield of F’, then F’ is an extension
field, or field extension, or simply an extension, of F. F’' is then a
vector space over F (see Chapter 2) and the degree of the extension is
the dimension of F’ as a vector space over F. We denote the degree by
|F' : F|. If the degree is finite, that is, |F’ : F| < 00, so that F’ is a finite-
dimensional vector space over F, then F’ is called a finite extension
of F.

From vector space theory we easily obtain that the degrees are
multiplicative. Specifically:

Lemma 6.1.1

IfF C F' C F”" are fields with F" a finite extension of F, then |F':F| and
|F":F’| are also finite, and |F":F| = |F".F'||F’:F)|.

74
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Proof
The fact that |F’ : F| and |F” : F’| are also finite follows easily from
linear algebra since the dimension of a subspace must be less than the
dimension of the whole vector space.

If|F : F| = nwithey,...,a, abasis for FF over F, and |[F" : F| =m

with B, ..., Bn a basis for F” over F' then the mn products {«;f;} form
a basis for F” over F (see the exercises). Then |[F” : F| = mn = |F" :
F'||F’ : FI. |

In the case of the lemma we say that F’ is an intermediate field (when
F and F” are understood) and F is the ground field.

ExAMPLE 6.1.1
(See Example 2.1.3) C is a finite extension of R, but R is an infinite
extension of Q. O

Our basic approach is to study extension fields whose elements are
roots of polynomials over a fixed ground field. To this end we need the
following definition.

Definition 6.1.1
Suppose F' is an extension field of F and « € F' Then « is algebraic over
F if there exists a polynomial 0 # p(x) € F[x] with p(a) = 0. (« is a root
of a polynomial with coefficients in F.) If every element of F” is algebraic
over F, then F' is an algebraic extension of F.

If @ € F' is nonalgebraic over F then « is called transcendental over
F. A nonalgebraic extension is called a transcendental extension.

Lemma 6.1.2
Every element of F is algebraic over F.

Proof
Iff € Fthenp(x) = x — f € F[x]and p(f) = 0. [

The tie-in to finite extensions is via the following theorem.

Theorem 6.1.1
IfF' is a finite extension of F, then F' is an algebraic extension.

Proof
Suppose @ € F' We must show that there exists a nonzero polynomial
0 # p(x) € F[x] with p(e) = 0.

Since F’ is a finite extension, |F’ : F| = n < oo. This implies that
there are n elements in a basis for F’ over F, and hence any set of (n + 1)
elements in F’ must be linearly depsadent aver F.
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Consider then 1,e,@?,...,a" These are (n + 1) elements in F’ and
therefore must be linearly dependent. Then there must exist elements
fo, fir - .., fu € F not all zero such that

fotfig+ -+ fae" = 0. (6.1.1)

Let p(¥) = fo + fix + --- + fux" Then p(x) € F[x] and from (6.1.1)
p(e) = 0. ]

EXAMPLE 6.1.2
C is algebraic over R, but R is transcendental over Q.

Since |C | = 2, Cbeing algebraic over R follows from theorem 6.1.1.
More directly, if z € C then p(x) = (x — z)(x — 2) € R[x] and p(z) = 0.

R (and thus C) being transcendental over Q follows from the existence
of transcendental numbers such as e and 7 (see Chapter 2).

If o is algebraic over F, it satisfies a polynomial over F and hence an
irreducible polynomial over F. Since F is a field, if f € F and p(x) € F[x],
then f~!p(x) € F[x] also. This implies that if p(e) = 0 with a,, the leading
coefficient of p(x), then p;(¥) = a;,'p(¥) is a monic polynomial in F[x] that
« also satisfies. Thus if « is algebraic over F there is a monic irreducible
polynomial that « satisfies. The next result says that this polynomial is
unique. O

Lemma 6.1.3
If @ € F' is algebraic over F, then there exists a unique monic irreducible
polynomial p(x) € F[x] such that p(a) = 0.

This unique monic irreducible polynomial is denoted by irr(a,F).

Proof

Suppose fla) = 0 with 0 # f{x) € F[x). Then f{x) factors into irreducible
polynomials. Since there are no zero divisors in a field, one of these fac-
tors, say p1(x) must also have « as a root. If the leading coefficient of p; ()
is a, then p(x) = a;'p1(*) is a monic irreducible polynomial in F[x] that
also has « as a root.

Therefore, there exist monic irreducible polynomials that have « as a
root. Let p(x) be one such polynomial of minimal degree. It remains to
show that p(x) is unique.

Suppose g(¥) is another monic irreducible polynomial with g(e) = 0.
Since p(x) has minimal degree, deg p(x) < deg g(x). By the division
algorithm

809 = q(p() + r(x) (6.1.2)
where r(x) = 0 or deg r(x) < deg p(x). Substituting « into (6.1.2) we get

gle) = a(a)p(e) + r(a),
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which implies that r(e) = 0 since g(a) = p(e) = 0. But then if r(x) is not
identically 0, & is a root of r(x), which contradicts the minimality of the
degree of p(x). Therefore, r(x) = 0 and g(x) = g(x)p(x). The polynomial
g(x) must be a constant (unit factor) since g(x) is irreducible, but then
g(x) = 1 since both g(x), p(x) are monic. This says that g(x) = p(x), and
hence p(x) is unique. |

Suppose a € F’ is algebraic over F and p(x) = irr(a, F). Then there
exists a smallest intermediate field E with F C E C F'such thata € E. By
smallest we mean that if E is another intermediate field witha € E’ then
E C E'.'To see that this smallest field exists, notice that there are subfields
E' in F' in which @ € E’ (namely F’ itself). Let E be the intersection all
subfields of F’ containing « and F. E is a subfield of F’ (see the exercises)
and E contains both « and F. Further, this intersection is contained in any
other subfield containing « and F.

This smallest subfield has a very special form.

Definition 6.1.2
Suppose « € F' is algebraic over F and p(x) = im(a, F) = ap+ay1x+-- - +
An1 X! 4 x". Let

Fl@) = {fo +ha +--- + fim1e" ' fi € F).

On F(«) define addition and subtraction componentwise and define mul-
tiplication by algebraic manipulation, replacing powers of @ higher than
a" by using

n 1

"= —ag—ae —---— ap1@"”

Theorem 6.1.2

F(e) forms a finite algebraic extension of F with |F(a):F| = deg irr(e,F). F(a)
is the smallest subfield of F’ that contains the root a. A field extension of the
form F(a) for some a is called a simple extension of F.

Proof
Recall that F,_i[x] is the set of all polynomials over F of degree < n —
1 together with the zero polynomial. This set forms a vector space of
dimension n over F. As defined in definition 6.1.2, relative to addition
and subtraction F(e) is the same as F,_i[x], and thus F(c) is a vector
space of dimension deg irr(e, F) over F and hence an abelian group.

Multiplication is done via multiplication of polynomials, so it is
straightforward then that F(e) forms a commutative ring with an iden-
tity. We must show that it forms a field. To do this we must show that
every nonzero element of F() has a multiplicative inverse.

Suppose 0 # g(x) € F[x]. If degg(x) < n =degirr(a, F), then g(e) # 0
since irr(e, F) is the irreducible polynomial of minimal degree that has «
as a root.
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If h(x) € F[x] with deg h(x¥) > n, then h(e) = hy(e), where h(x)
is a polynomial of degree < n — 1, obtained by replacing powers of «
higherthan o" by combinations of lower powers using

"= —ag— g — - — ap_jat L.

Now suppose g(a) € F(e), g(a) # 0. Consider the corresponding poly-
nomial g(x) € F[x]of degree < n—1. Since p(x) = irr(e, F)is irreducible, it
follows that g(x) and p(x) must be relatively prime,that is, (8(%), p(x)) = 1.
Therefore, there exist h(x), k(x) € F[x] such that

gEOM(x) + p(Dk(x) = 1.
Substituting « into the above we obtain:

g(@)h(a) + p(e)k(a) = 1.
However, p(a) = 0 and h(a) = hy (@) € F(), so that

gla)h (o) = 1.
It follows then that in F(@), h;(@) is the multiplicative inverse of g(e).
Since every nonzero element of F(a) has such an inverse F(a) forms a
field.

F is contained in F(e) by identifying F with the constant polynomials.
Therefore, F(a) is an extension field of F. From the definition of F(a), we
have that {1, e, o?,...,a"" !} form a basis, so F(a) has degree n over F.
Therefore, F(e) is a finite extension and hence an algebraic extension.

If F C E C F' and E contains «, then clearly E contains all powers of «
since E is a subfield. E then contains F(«), and hence F() is the smallest
subfield containing both F and a. ]

ExAMPLE 6.1.3
Consider p(x) = x* — 2 over Q. This is irreducible over Q but has the root
o = 23 € R. The field Q(e) = Q(2!/3) is then the smallest subfield of R
that contains Q and 2'/3

Here

Qo) = {go + g + anzz gi € Qand o = 2}.

We first give examples of addition and multiplication in Q(a).
Letg =3+ 4a+ 502, h=2—a+co? Then

g+h =05+ 3a+ 6a?
and
gh = 6 — 3a + 30 + 8a — 4a* + 4¢3 + 1002 — 503 + 50
= 6+ 50 + 9a% — o + 5a*
But o® = 2, so @ = 2¢, and then

gh = 6 + 5a + 92 — 2 + 5(2a) = 4 + 15a + 9a2
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We now show how to find the inverse of h in Q(«).
Let h(x) = 2 — x + x2, p(x) = »® — 2. Use the Euclidean algorithm as
in Chapter 3 to express 1 as a linear combination of h(%), p(x).

B_2=0(E—x+2)x+1)+(—x—4),
X —x4+2=(—x—4)(—x+5) + 22.
This implies that
22= (¥ —x+2)A+ (*+1)(~x+5)) = ((** - 2)(—* + 5))

or
1
1= — (¥ — x + 2)(—* + 4x + 6)] — [(x® — 2)(—x + 5)).
Now substituting & and using that o® = 2, we have

1
1= 2 [(@? — @+ 2)(—e? + 4a + 6)]
and hence

1
hl= —(-a?+4 )
22(a+a+6) .

Now suppose «, B € F' with both algebraic over F and suppose
ir(e, F) = ir(B, F). From the construction of F(a) we can see that it
would be essentially the same as F(f). We now make this idea precise.

Definition 6.1.3
Let F', F” be extension fields of F. An F-isomorphism is an isomorphism
o : ' > F”such that o(f) = f for all f € F. That is, an F-isomorphism is
an isomorphism of the extension fields that fixes each element of the
ground field. If F’, F” are F-isomorphic, we denote this relationship by
F/ g FII

F

Lemma 6.1.4
Suppose a,B € F' are both algebraic over F and suppose irr(a,F) = irr(B,F).
Then F(c) is F-isomorphic to F(f).

Proof

Define the map o : F(a) - F(B) by o(e) = Bando(f) = f forall f € F.
Allow o to be a homomorphism - that is preserve addition and multipli-
cation. It follows then that o maps fo + fie + - - - + fna"™! € Fla) to fo +
fiB+ -+ fuf"! € F(B). From this it is straightforward that o is an
F-isomorphism. |

Ifa, B € F’ are two algebraic elements over F, we use F(a, B) to denote
(F(@)(B). F(e, B) and F(f, @) are F-iscmorphic so we treat them as the
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same. We now show that the set of algebraic elements over a ground field
is closed under the arithmetic operations and from this obtain that the
algebraic elements then form a subfield.

Lemma 6.1.5
If o, € F' are two algebraic elements over F, then a + B,aB, and o/ B are
also algebraic over F.

Proof

Since ¢, B are algebraic, the subfield F(e, ) will be of finite degree over
F and therefore algebraic over F. Now, ¢, B8 € F(a, ) and since F(a, f) is
a subfield, it follows that ¢ + B, @B, and a/B are also elements of F(e, B).
Since F(a, B) is an algebraic extension of F, each of these elements is
algebraic over F. |

Theorem 6.1.3

If F' is an extension field of F, then the set of elements of F' that are algebraic
over F forms a subfield. This subfield is called the algebraic closure of F
in F

Proof
Let Ap(F’) be the set of algebraic elements over F in F'. Ap(F') # 0
since it contains F. From the previous lemma it is closed under addi-

tion, subtraction, multiplication, and division, and therefore it forms a
subfield. ]

We close this section with a final result, that says that every finite
extension is formed by taking successive simple extensions.

Theorem 6.1.4
IfF' is a finite extension of F, then there exists a finite set of algebraic elements

ay, ... ,0 suchthat F' = F(ay, . . . ,ay).
Proof
Suppose |F’ : F| = k < oo. Then F’ is algebraic over F. Choose an

o € Fay € F Then F C F(a1) C F' and |F' : F(ey)| < k. If the degree
of this extension is 1, then F’ = F(e), and we are done. If not, choose an
a; € F',a; € F(ey). Then as above F C F(ey) C Fley, @) C F' with |F' :
F(ay, a2)| < |F' : F(ay)|. As before, if this degree is one we are done;
if not, continue. Since k is finite this process must terminate in a finite
number of steps. [
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6.2 Adjoining Roots to Fields

In the previous section we assumed that we began with an extension
field and then considered algebraic elements in that extension. The next
result, due to Kronecker, is fundamental because it says that given any
irreducible polynomial f{x) € F[x] we can construct an extension field F’
of F in which f{x) has a root.

Theorem 6.2.1

(Kronecker's Theorem) Let F be a field and f (x) € F[x] an irreducible polyno-
mial over F. Then there exists a finite extension F’ of F where f(x) has a root.
Further, if a is a root in some extension F” with irr(a,F) = f(x), then F' is
Fisomorphic to F(c).

Proof
To construct the field F’ we essentially mimic the construction of F(a) as
in the last section.

Suppose f{x) = ap + a1x + - - - + a,x" with a,, # 0. Define « to satisfy

ao+a+---+ ad” =0.
Now define F’ = F(a) as in the last section. That is,

F@)={o+ha+---+ fu0d" Y f € F).

Then on F(«) define addition and subtraction componentwise and define
multiplication by algebraic manipulation, replacing powers of « higher
than o" by using

—ag — o — - - - — an_la"_l

Gn

o" =

F' = F(a) then forms a field of finite degree over F - the proof being
identical to that of the last section. The difference between this construc-
tion and the construction in Theorem 6.1.2 is that here « is defined to be
the root and we constructed the field around it, whereas in the previous
construction o was assumed to satisfy the polynomial and F(e) was an
already existing field that contained a. [

The field F’ constructed above is said to be constructed by adjoining
the root o to F.

ExamPLE 6.2.1
Let flx) = ¥ + 1 € R[x]. This is irreducible over R. We construct the field

in which this has a root.
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Let ¢ be an indeterminate with o> + 1 = 0 or o> = —1. The extension
field R(«) then has the form

R(e) = {x+ ay; v,y € R, o = —1}.

It is clear (see Chapter 2) that this field is R-isomorphic to the complex
numbers C, that is, R(a) = R(i)) = C. O

The construction of the field F(e) in Theorem 6.2.1 is actually part of
a much more general algebraic approach. Although we will not need this
general approach further in these notes, we outline it here and then show
how it applies to Theorem 6.2.1.

Definition 6.2.1
Let R be a commutative ring (*). A subring I C R is an ideal if rI C
Iforallr € R.

(*) (Ideals can also be defined for noncommutative rings, but this is
not necessary for us here.)

EXAMPLE 6.2.2

In the integers Z, let nZ = {nz; z € Z} be the set of all multiples of n.
Then nZ is a subring and if m € Z, m(nz,) = n(mz;) € nZ, so nZ is an
ideal. O

EXAMPLE 6.2.3
Let R be a commutative ring and let r € R. Let (r) = {rr; 7, € R} =all
multiples of r in R. Then () forms an ideal (see the exercises) called the
principal ideal generated by r.

Note that in this language nZ is just the principal ideal (n) in Z. O

EXAMPLE 6.2.4
Let R be a commutative ring, I C R, an ideal and let r € R. Define

(r.)={nr+1u;n €R,i €I}.

Then (7, I) forms an ideal (see the exercises) called the ideal generated
by rand I. 0

Definition 6.2.2

Let I C Rbe an ideal. A coset of I in R is a subset of the form r + I forr
a given element in R. We denote the set of all cosets of the ideal I C
Rby R/I.

Lemma 6.2.1
The set R/1 of cosets of I in R partition R
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Proof

On R define the relation r; ~ r, ifr; — r, € I. This is an equivalence
relation, and therefore its equivalence classes partition R. For r € R the
equivalence class [r] is precisely the coset r + I. [ ]

Given an ideal I C R define on R/I:

(l) (7’1 +I):|:(7’2 +I) = (7’1 :trz)-I-I
@ (m+Drz2+D=(nr)+1

The fundamental result, which is a straightforward verification, is then:

Theorem 6.2.2

Given a commutative ring R and an ideal I C R, then the set of cosets R/I
forms a commutative ring under the operations defined above. The coset 0 + I
is the zero element of R/I, while if R has a multiplicative identity 1 then the
coset 1 + I is the multiplicative identity for R/I. The ring R/I is called the
quotient ring, or factor ring of R modulo the ideal I.

EXAMPLE 6.2.5
Consider the ring of integers Z and the ideal nZ. Let Z/nZ be the set of
cosets of nZ in Z.

If ,x, € Z, then x; ~ xifx; — x, € nZ, that is if n|x; — x;.
Therefore, there will only be different cosets for different remainders
when dividing by n. It follows that there will be one coset for each
x € Z,0 < x < n — 1. Addition and multiplication of cosets is then
done via addition and multiplication modulo n, so that Z/nZ = Z, —
— the integers modulo n. O

Definition 6.2.3
Anideal I C R is a maximal ideal ifI # Rand (r,]) = Rforanyr € R,
réel

Lemma 6.2.2
Suppose R is a commutative ring with an identity. Then R/I is a field if and
only if I is a maximal ideal.

Proof

Suppose I is a maximal ideal. We show that R/I is a field. R/I is a commu-
tative ring with an identity, so we must show that each nonzero element
has a multiplicative inverse.

For r € Rlet7 = r + I be its corresponding coset. Now let 7 € R/I,
7# 0. Then7 = r + I with r € I since 0 = I is the zero element of R/I.
Since I is maximal, (r, I) = R and therefore 1 € (r, I). It follows that there
exist r; € R, i; € I such that ryv +i; = 1. In terms of cosets then,

nrel+lornr=1=1inR/L
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Therefore, 7, is the multiplicative inverse of ¥ and hence R/I is a field.
Conversely, suppose R/I is a field. We show that I is maximal. Suppose
re R, r ¢ 1. Then7 # 0, so there exists r, € R with 7r; = 1 in R/I. This
implies thatr,r € 1+1, orrir +i; = 1. This implies further that1 € (7, I).
Ifs € Rthens.1 = s € (r, ) since (r, ) is an ideal. Hence R C (7, I), and
since (r, ) C R we have (r, I) = R. Therefore, I is 2 maximal ideal. B

Now we show how this development relates to the field extension the-
orem. Suppose F is a field and suppose f(x) € F[x] is an irreducible
polynomial over F. Now, F[x] is a commutative ring with an identity.
Consider (f{(x)), the principal ideal in F[x] generated by f(x).

Suppose g(x) € (flx)), so that g(x) is not a multiple of f(x). Since f(x)
is irreducible, it follows that (f{x), g(x)) = 1. Thus there exist h(x), k(x) €
F[x] with

RCOx) + K(XgE) = 1.

The element on the left is in the ideal (g(x), (f{x)), so the identity, 1, is in
this ideal. Therefore, the whole ring F[x] is in this ideal. Since g(x) was
arbitrary, this implies that the principal ideal (f{x)) is maximal.

Let F' = F[x})/(f(x)). From Lemma 6.2.2, F’ is a field, and since F C
F[#], it follows that F C F’ Let ¥ be the coset of x. Then f(%) = f(x) = 0
in F’, so X is a root in F' Here the overbars represent cosets. We have
therefore constructed a field F’ in which the irreducible polynomial f(x)
has a root.

6.3 Splitting Fields

We have just seen that given an irreducible polynomial over a field F
we could always find a field extension in which this polynomial has a
root. We now push this further to obtain field extensions where a given
polynomial has all its roots.

Definition 6.3.1

If 0 # f(x) € F[x] and F’ is an extension field of F, then f(x) splits in F’,
(F’ may be F) if f(x) factors into linear factors in F'[x]. Equivalently, this
means that all the roots of f(x) are in F’.

F'is asplitting field for f(x) over F if F' is the smallest extension field
of F in which f(x) splits. (A splitting field for f(x) is the smallest extension
field in which f(x) has all its possible roots.)

F' is a splitting field over F if it is the splitting field for some finite
set of polynomials over F.
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Theorem 6.3.1
If0 # f(X) € F[x), then there exists a splitting field for f(x) over F.

Proof

The splitting field is constructed by repeated adjoining of roots. Suppose
without loss of generality that f{x) is irreducible of degree n over F. From
Theorem 6.2.1 there exists a field F’ containing & with fla) = 0. Then
f(X) = (x—a)g(x) € F'[x] with deg g(x) = n— 1. By an inductive argument
8(x) has a splitting field and therefore so does f{(x). |

In the next chapter we will give a further characterization of splitting
fields. Here we now return to some ideas introduced in Section 6.1.

Recall that if F’ is an extension of F, the set of elements of F’ algebraic
over F forms a subfield called the algebraic closure of F in F’. More gen-
erally, we say that a field F’ is algebraically closed if every nonconstant
polynomial in F'[x] has a root in F’.

Note that in this language the Fundamental Theorem of Algebra says
that the complex number field C is algebraically closed.

The next result gives several clearly equivalent formulations of being
algebraically closed.

Theorem 6.3.2
Let F be a field. Then the following are equivalent:

(1) F is algebraically closed.

(2) Every nonconstant polynomial f(x) € F[x] splits in F[x].

(3) F has no proper algebraic extensions,that is there is no algebraic field
extension Ewith F C Eand F # E.

Definition 6.3.2
An extension field F’ of F is an algebraic closure of F if F' is algebraic
over F and F’ is algebraically closed.

EXAMPLE 6.3.1

For this example we assume the Fundamental Theorem of Algebra - that
is, that C is algebraically closed. Note that C is not the algebraic closure
of Q since C is not algebraic over Q. However, the complex algebraic
numbers Ac, that is, the set of complex numbers which are algebraic
over Q, is the algebraic closure of Q.

To see this, notice that Ac is algebraic over Q by definition. Now we
show that it is algebraically closed. Let f{x) € Ac[x]. If « is a root of (%),
then @ € C, and then « is also algebraic over Q since each element of Ac
is algebraic over Q. Therefore, @ € Ac and Ac is algebraically closed.

More generally, if K is an extension field of F and K is algebraically
closed, then the algebraic closure of F in K is the algebraic closure
of F. O
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Given a polynomial f{x) € F[x] we have seen that we can construct
a splitting field. The next result, whose proof depends on the axiom
of choice, indicates that this procedure can be extended to obtain an
algebraic closure for any field.

Theorem 6.3.3
Every field F has an algebraic closure, and any two algebraic closures of F
are F-isomorphic.

6.4 Permutations and Symmetric
Polynomials

To obtain our third proof of the Fundamental Theorem of Algebra we
need the concept of a symmetric polynomial. In order to introduce this
concept we first review some basic ideas from elementary group theory.

Definition 6.4.1

A group G is a set with one binary operation which we will denote by
multiplication, such that

(1) The operation is associative, that is, (g182)83 = 81(g2g3) for all
81,82,83 €G.

(2) There exists an identity for this operation, that is, an element 1 such
that 1g = g foreach g € G.

(3) Each g € G has an inverse for this operation, that is, for each g there
exists a g~! with the property that gg=! = 1.

If in addition the operation is commutative, (g182 = 8281 forallg;, g2 €
G), the group G is called an abelian group. The order of G is the number
of elements in G, denoted |G|. If |G| < oo, G is a finite group. H C
G is a subgroup if H is also a group under the same operation as G.

Equivalently, H is a subgroup if H # @ and H is closed under the operation
and inverses.

Groups most often arise from invertible mappings of a set onto itself.
Such mappings are called permutations.

Definition 6.4.2
If T is a set, a permutation on T is a one-to-one mapping of T onto itself.
We denote by St the set of all permutations on T.
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Theorem 6.4.1

For any set T, St forms a group under composition called the symmetric
group on T. If T, T, have the same cardinality (size), then Sp = St,. If T is
a finite set with |T| = n, then St is a finite group and |St| = n!.

Proof

If St is the set of all permutations on the set T, we must show that com-
position is an operation on St that is associative and has an identity and
inverses.

Let f,g € Sr. Then f, g are one-to-one mappings of T onto itself. Con-
siderfog : T — T.If f og(t1) = f o g(tz2), then f(g(t))) = f(g(t2)) and
g(t)) = g(t2), since f is one-to-one. But then t; = t; since g is one-to-one.

If t € T, there exists t; € T with f{t;) = t since f is onto. Then
there exists t; € T with g(t;) = t; since g is onto. Putting these together,
flg(tz)) = t, and therefore f og is onto. Therefore, f og is also a permutation
and composition gives a valid binary operation on Sr.

The identity function 1(t) = t forallt € T will serve as the identity for
Sr, while the inverse function for each permutation will be the inverse.
Such unique inverse functions exist since each permutation is a bijection.

Finally, composition of functions is always associative and therefore
Sr forms a group.

If T, T) have the same cardinality, then there exists a bijection o :
T — Ty. Define a map F : St — Sr, in the following manner: if f € Sr,
let F(f) be the permutation on T; given by F(f)(t1) = o(flc™'(t))). It is
straightforward to verify that F is an isomorphism (see the exercises).

Finally, suppose |T| = n < oco. ThenT = {t;,...,t,}. Eachf € Sy can
be pictured as

f= tp -+ Mg )
ftr) --- fit) )
For t; there are n choices for f{t,). For t; there are only n — 1 choices since
f is one-to-one. This continues down te only one choice for t,. Using the

multiplication principle, the number of choices for f and therefore the
size of St is

nn—1)---1=n.

For a set with n elements we denote Sr by S, called the symmetric
group on n symbols. |

EXAMPLE 6.4.1
Write down the six elements of S; and give the multiplication table for

the group.
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Name the three elements 1, 2, 3. The six elements of S3 are then:
1=t 23 oY 23) (! 2 3)
“\1 2 3)'"7\23 1) \31 2
_(1 2 3) (1 23y _(123
“=\2 1 3)% \3 2 1)¢=\1 3 2

The multiplication table for S; can be written down directly by doing
the required composition. For example,

ac_123 123_123_d
“\2 31 21 3) \3 2 1) ™

To see this, note thata:1 — 2,2 - 3,3 > 1;¢:1 > 2,2 > 1,3 —»
3andscac:1— 3,2 > 2,3 > 1.

It is somewhat easier to construct the multiplication table if we make
some observations. First,a? = band a® = 1. Next, ¢ = 1,d = ac, e = a’c
and finally ac = ca®

From these relations the following multiplication table can be con-
structed

1 a a ac a‘c

1 1 a a®* ¢ ac d’
a a a* 1 a a* ¢
a® a2 1 a ad* ¢ ac
c c a* ac 1 a* a

To see this, consider, for example, (ac)a? = a(ca?) = a(ac) = a’c.
More generally, we can say that S; has a presentation given by

3

S =<a,ca’=c2=1,ac =ca’ >

By this we mean that S; is generated by g, c, or that S; has generators
a, ¢ and the whole group and its multiplication table can be generated by
using the relations a® = ¢? = 1, ac = ca? 0

An important result, the form of which we will see later in our work
on extension fields, is the following.

Lemma 6.4.1

Let T be a set and T\ C T a subset. Let H be the subset of Sy that fixes
each element of T, - thatis, f € Hiff(t) =t forallt € Ty. ThenHisa
subgroup.
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Proof

H # @ since 1 € H. Now suppose hj, h; € H. Lett; € Ty and consider
hy o hz(t) = hy(hz2(t)). Now hy(t) = t; since h; € H,butthenh; () =t
since h; € H. Therefore, h; o h, € H and H is closed under composition.
If h; fixes t; then hl'1 also fixes t; so H is also closed under inverses and
is therefore a subgroup. |

We now apply these ideas of permutations to certain polynomials over
a field.

Definition 6.4.3
Lety, ... , yn be (independent) indeterminates over a field F. A polyno-
mial flyy,...,Yn) € F[y1, ,Yn]is asymmetric polynomialiny;,,... ,
Yn if {1, . - ., Yn) is unchanged by any permutation o of {y;, . . ., yn}, that
is, f(ylr s 'y") = f(a(yl)r SR U(y"))'

If F C F' are fields and «;,...,a, are in F’, then we call a poly-
nomial fla;, ,ayn) with coefficients in F symmetric in «, ..., ay, if
flay, ..., ay) is unchanged by any permutation o of {a, . . ., a,}

EXAMPLE 6.4.2

Let F be a field andfo,fl € F. Let h(yl,yz) = ﬁ)(yl + yz) +f1(y|yz)
There are two permutations on {y, y2}, namely o, : y1 = y1,Y2 = Y2

and oz : y1 — Y2,Y2 = Y-
Applying either one of these two to {y;, y2} leaves h(y,, yz) invariant.
Therefore, h(y, y2) is a symmetric polynomial. O

Definition 6.4.4
Let x,y1, ..,Yn be indeterminates over a field F(or elements of an
extension field F’ over F). Form the polynomial

p(x!yll e 'yn) = (x —yl) st (X _yn)

The ith elementary symmetric polynomial s, in yy,...,yn fori =
1,...,n,is (—1)'a, where g; is the coefficient of "™ in p(x, yi, . . ., Yn)-

EXAMPLE 6.4.3
Consider y, Y2, y3- Then

P, 1, Y2,Y3) = (X — Y1)(x — y2)(x — y3)

=X — () + Y2 +Y3)X + (Y2 + N3 + Y2ys)x — Yiyays.

Therefore, the three elementary symmetric polynomials in y;, Y2, y3
over any field are

Q) sy =y +y2 +ys.
(@) s2 = y1yz + iys + Y2ys.
®B) s3 = Y1y2ys3-
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In general, the pattern of the last example holds for y, . . ., yn- That is,

Si=Yyi+y2+---+yn
S2 =YYz +nys +--- + Yn-1Yn
3 = Y1y2y3 + Y1iyays + - -+ - +Yn—2Yn—1Yn

Shn = Y1.--Yn- 0

The importance of the elementary symmetric polynomials is that any
symmetric polynomial can be built up from the elementary symmet-
ric polynomials. We makethis precise in the next theorem called the
fundamental theorem of symmetric polynomials. We will use this
important result several times, and a complete proof for it will be given
in Section 6.7.

Theorem 6.4.2

(Fundamental Theorem of Symmetric Polynomials) If P is a symmetric poly-
nomial in the indeterminates yi, . .. yn over F, that is, P € Flyi,.. ,Yn]
and P is symmetric, then there exists a unique g € F[y,...,yn] Such
that f(yi,....Yyn) = 8(51,---,5x). That is, any symmetric polynomial in
Y1, - - - Ynis apolynomial expression in the elementary symmetric polynomials
myy, ... ,Yn-

From this theorem we obtain the following two lemmas, which will be
crucial in our next proof of the Fundamental Theorem of Algebra.

Lemma 6.4.2
Let p(x) € F[x] and suppose p(x) has the roots a,, . . ,ay in the splitting field
F' Then the elementary symmetric polynomials in «;, . . . ,a, are in F.

Proof
Suppose p(x) = fo + fix + - - - + fux" € F[x]. In F'[x], p() splits, with roots
ay,...,0n, and thus in F'[x],

PR) = fa(x — 1) ... (x — a).

The coefficients are then f,(—1)'s,(ay, - - -, @), where the s, (a1, ..., an)
are the elementary symmetric polynomials in a;, , an. However,
p(x) € F[x], so each coefficient is in F. It follows then that for each i,
fa(=1)s(a1,.. ,ay) € F, and hence si(e, . . . yan) € Fsincef, e F. N
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Lemma 6.4.3

Let p(x) € F[x] and suppose p(x) has the roots ay, . . . .y in the splitting field
F'. Suppose further that g(x) = g(x,a1, . - . ,@) € F'[x]. Ifg(x) is a symmetric
polynomial inay, . . . ,ap, then g(x) € F[x].

Proof

If g(x) = g(x, o, . . ., ay) is symmetric in ¢y, . . . , @,, then from Theorem
6.4.2 it is a symmetric polynomial in the elementary symmetric polyno-
mialsina;, ..,a,. From Lemma 6.4.2 these are in the ground field F, so
the coefficients of g(x) are in F. Therefore, g(x) € F[x]. ]

6.5 The Fundamental Theorem of
Algebra - Proof Three

We now present our third proof of the Fundamental Theorem.

Theorem 6.5.1

(Fundamental Theorem of Algebra) Any nonconstant complex polynomial has
a complex root. In other words, the complex number field C is algebraically
closed.

The proof depends on the following four lemmas, three of which we
have discussed earlier. The crucial one now is the fourth, which says that
any real polynomial must have a complex root.

Lemma 6.5.1
Any odd-degree real polynomial must have a real root.

Proof
Recall that this was Theorem 3.4.1 and was a consequence of the
intermediate value theorem.

Suppose P(x) € R[x] with deg P(x) = n = 2k + 1 and suppose the
leading coefficient a, > 0 (the proof is almost identical if a, < 0). Then

P(x) = a,x" + (lower terms)
and n is odd. Then,

(1) limysoP(X) = limy,0anx™ = 00 since a, > 0.
(2) limy— _ooP(x) = limys_oa,X" = —00 since a, > 0 and n is odd.

From (1), P(x) gets arbitrarily large positively, so there exists an x; with
P(x) > 0. Similarly, from (2) there exists an x, with P(x;) < 0.
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A real polynomial is a continuous real-valued function for all x € R.
Since P(x;)P(x;) < 0, it follows from the intermediate value theorem that
there exists an x3, between x; and x,, such that P(x3) = 0. ]

Lemma 6.5.2
Any degree-two complex polynomial must have a complex root.

Proof
Recall that this was Lemma 3.4.1 and was a consequence of the quadratic
formula and of the fact that any complex number has a square root.

If P(x) = ax’* + bx + ¢, a # 0, then the roots formally are

_ —b + Vb? — dac . —b — Vb? — 4dac

2a 2= 2a

From DeMoivre's theorem every complex number has a squareroot,
hence x;, x, exist in C. They of course may be the same if b*> — 4ac =
0. ]

Xy

Lemma 6.5.3
If every nonconstant real polynomial has a complex root, then every
nonconstant complex polynomial has a complex root.

Proof
This was Theorem 3.4.2 and depended on the concept of the conjugate
of a complex polynomial (see Section 3.4).

Let P(x) € C[x] and suppose that every nonconstant real polynomial
has at least one complex root. Let H(x) = P(x)P(x). From Lemma 3.4.3,
H(x) € R[x]. By supposition there exists a zop € C with H(z)) = 0. Then
P(20)P(20) = 0, and since C has no zero divisors, either P(z)) = 0 or
P(20) = 0. In the first case z is a root of P(x). In the second case P(z;) = 0.
Then from Lemma 3.4.2 P(2y) = P(Z;) = P(Zo) = 0. Therefore, 7; is a
root of P(x). [

Now we come to the crucial lemma.

Lemma 6.5.4
Any nonconstant real polynomial has a complex root.

Proof
Letflx) = ap + aix+  + a,x" € R[x]withn > 1,a, # 0. The proof is
an induction on the degree n of f{x).

Suppose n = 2"g where g is odd. We do the induction on m. If m = 0
then f{x) has odd degree and the theorem is true from Lemma 6.5.1.
Assume then that the theorem is true for all degrees d = 2¥g' where
k < mand g’ is odd. Now assume that the dcgree of f(x) is n = 2™q.
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Suppose F’ is the splitting field for f{x) over R in which the roots are
ay, ..., a,. This exists from our discussion in section 6.3. We show that
at least one of these roots must be in C. (In fact, all are in C but to prove
the lemma we need only show at least one.)

Let h € Z and form the polynomial

H(x) = [ J(x — (@ + o + haiey)).
i<j
This is in F'[x]. In forming H(x) we chose pairs of roots {a;, o}, so the

number of such pairs is the number of ways of choosing two elements
out of n = 2™q elements. This is given by

2"g)(2"q - 1)

= zm—lq(zmq _ l) — zm—lqr

2
with ¢’ odd. Therefore, the degree of H(x) is 2™ ¢
H(x) is a symmetric polynomial in the rootsaj, ..., a,. Since ay, . . ., ay

are the roots of a real polynomial, from Lemma 6.4.3 any polynomial in
the splitting field symmetric in these roots must be a real polynomial.

Therefore, H(x) € R[x]with degree 2"~ !¢’. By the inductive hypothesis,
then, H(x) must have a complex root. This implies that there exists a pair
{a,- , a,-} with

a; + o, + ha;a, € C.

Since h was an arbitrary integer, for any integer h; there must exist
such a pair {a,, o;} with

o +a; + hlaia,- e C.

Now let h; vary over the integers. Since there are only finitely many
such pairs {a,, a;}, it follows that there must be at least two different
integers h,, h; such that

z1 =i +ao,+ maiej € Cand z; = a; + o + iy € C.

Then z; — z; = (h — h2)ae, € C and since hy, h; € Z C C it follows
that a;e; € C. But then ha,e) € C, from which it follows that o; + ; € C.
Then,

PX)=Fx—a)(x—q) = X — (o + a))x + a,q; € C[x].

However,p(x) is then a degree-two complex polynomial and so from
Lemma 6.5.2 its roots are complex. Therefore, «,, @, € C, and therefore
fx) has a complex root. [ |

It is now easy to give a proof of the Fundamental Theorem of Algebra.
From Lemma 6.5.4 every nonconstant real polynomial has a complex
root. From Lemma 6.5.3 if every nonconstant real polynomial has a com-
plex root, then every nonconstant complex polynomial has a complex
root proving the Fundamental Theorem.
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6.6 An Application - the
Transcendence of ¢ and =

Recall that an algebraic number is an ¢ € C that is algebraic over Q,
that is, a complex number for which there exists a rational polynomial
0 # p(x) € Q[x] with p(a) = 0. We saw in this chapter that the set A
of algebraic numbers forms a subfield of C. A transcendental number
is an element of C — A. In Chapter 2, Exercise 2.7, we proved that the
algebraic numbers are countable, and therefore there are uncountably
many transcendental numbers. However this was purely an existence
proof and to show that any particular complex number is transcendental
is extremely difficult. In this section we use the Fundamental Theorem
of Algebra and the techniques developed in this chapter, to prove that the
important mathematical constants e and  are transcendental.

The existence of transcendental numbers was first proved by Liouville
in 1844, who showed that the number g = Zl‘:] 107" is transcendental.
Hermite in 1873 proved that e is transcendental, while Lindemann did
the same for  in 1882.

First we need some preliminary material. Suppose a € C is algebraic,
then there exists 0 # f{x) € Q[x] with fla) = 0. Since Q is a field, we
can clearly take f(x) to be monic. Thus there exists an irreducible monic
polynomial p,(x) € Q[x] of minimal degree that has « as a root. We call
this the minimal polynomial of « over Q.

A primitive polynomial is an integral polynomial f{x) = a,x" +-- -+
ap,n > 1,a, # 0,all aq, € Z, and gcd(a, ...,an) = 1. If a is algebraic
with fle) = 0, f(x) € Q[x], then by first multiplying the coefficients of f(x)
by a large enough integer to make them all integral and then dividing
through by the gcd of the coefficients we can find a primitive polynomial
p(x) with p(a) = 0. This gives us the following lemma.

Lemma 6.6.1

a € Cis an algebraic number if and only if there exists a primitive polynomial
p(x) € Zjx]) with p(a) = 0.

Suppose p(x) = x* + ap_1¥" 1 +--- 4+ag,n > 1,a, € Q, is the minimal
polynomial of @ over Q. Then by the Fundamental Theorem of Algebra
we have a splitting of p,(x) over C, that is,

Pe(@)=(x—01)...(x —ay),, e Cfori=1,...,n
We have a@ = q; for one j € {1,.. ., n}. Since p,(x) is irreducible over Q
we have py(x) = po,(x) fori = 1,...,nand a; # ¢, fori # j. If some

a, were a multiple, nonsimple root of p,(x) then «, would also be a root
of the formal derivative p/(x) and hence of the greatest common divisor
d(x) € Q[x] of p,(x) and p{x}. The qegrac of d(x) is positive but smaller
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than the degree of p,(x), since d(x) divides p,(x), which contradicts the
irreducibility of p,(x).
The complex numbers a;, . . ., ay, are called the conjugates of @ over Q.

Lemma 6.6.2
If a € C is an algebraic number, then its conjugates ay, . . . ,a, over Q are
exactly the zeros of an irreducible integral polynomial

qq(x) =bux"+---+bhix+ by € Z[X],

withn > 1,b, > 0and ged (by, . . . ,bn) = 1. Further, n = degree of pa(X).
The polynomial g,(xX) is called the entire minimal polynomial of «
over Q.

Note that g,(x) = rp.(x) for some r € Q.

Definition 6.6.1

A complex number « € C is an algebraic integer if there exists a monic
integral polynomial with « as a root. That is, there exists f{x) € Z[x] with
fX) =x" 4+ by x4+ ---+bo,bi € Z,n>1,and fla) = 0.

Lemma 6.6.3
Ifa € C is an algebraic integer, then all its conjugates «;, . . . ,a, are also
algebraic integers.

Proof

Let f{x) € Z[x] be a monic polynomial with fla) = 0. Since ps(x) = pq, (%),
fori = 1,...,n we have py,(X)If(x) fori = 1,...,n. Hence fla;) = O for
i=1,...,n |

Corollary 6.6.1
Ifa € Cis an algebraic integer, then its entire minimal polynomial is monic.

Proof
Let f{x) € Z[x] be a monic polynomial with fla) = 0. Then also f{a,) = 0
for all the conjugates. Then there is a primitive integral polynomial h(x) €
Z[x] and an r € Q with rgu(x)h(x) = f(x). It follows easily that r = *1
since go(¥) and h(x) are primitive and f{x) is monic. Hence gqo(¥) is also
monic.

If @ € C is an algebraic integer and o, . . ., ay, are its conjugates, then

(x—a)...(x —on) =x"— ;X" -+ (-1)"s, € Z[x];

where s; = si(e, - .., @) is the ith elementary symmetric polynomial
in a;,.. ,an (see the previous section). It follows that the elementary
symmetric polynomials iausc be integers. From the main theorem on
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symmetric polynomials it follows that any symmetric polynomial in the
conjugates of an algebraic integer must be an integer. From this we get
the following, which extends to algebraic integers the closure properties
of general algebraic numbers.

Lemma 6.6.4
Suppose a,B € C are algebraic integers. Then so are a + B and af.

Proof
Let @y = a,...,a, be the conjugates of @ and B, = B,..., Bn the
conjugates of B. Let

fl) = n ﬁ(x —(@+B)=x"""+ Appm1 X o dy.

i=1 j=1

The coefficients dx are symmetric functions in ¢, B, and therefore from
the remarks above we have dx € Z. (Notice the similarity to the argument
that we used in Lemma 6.5.4). Therefore, a + B is an algebraic integer.
We treat ¢ — B and af analogously. [ ]

Corollary 6.6.2
The set of algebraic integers forms a subring of C. Further, the field of algebraic
numbers is the quotient field of the ring of algebraic integers.

Theorem 6.6.1
€ is a transcendental number, that is transcendental, over Q.

Proof
Let f{x) € R[x] with the degree of f{x) = m > 1. Let z; € C, z, # 0, and
Yy :[0,1]1 = C, ®t) = tz,. Let

I(z) = /y e " f(z)dz = ( /0 21) e 2 f(z)dz.
14

By ( foz ')y we mean the integral from 0 to z; along y. Recall that

([ ) &~ fle)dz = ~flz) + €f(0) + (/ ) &7 (2)dz.
0 Y 0 y

It follows then by repeated partial integration that

M I(z1) = € 37, fO0) — 320 fO(21).

Let |f|(%) be the polynomial that we get if we replace the coefficients
of f(x) by their absolute values. Since |¢#~?| < €*7? < 2], we get

(2) II(z1)| < |z11e2YfI(lz1 1)

Now assume that e is an algebraic number, that is,

(3 go+qe+---+gne" =0forn > 1 and integers qo # 0, qy, . .., gn,
and the greatest common diviscr of ge_ G, .. ., gn, is equal to 1.
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We consider now the polynomial flx) = x»"}(x — 1) ... (x — n)’ withp
a sufficiently large prime number, and we consider I(z;) with respect to
this polynomial. Let

J = qol(0) + quI(1) + - - - + gnI(1).
From (1) and (3) we get that

m

J==> > afOk),
)=0 k=0

where m = (n + 1)p — 1 since (go + g1 + - - - + gn€")(X_ o FP(0)) = 0.

Now, fO(k) = 0ifj < p,k > 0,andifj < p — 1 then k = 0, and
hence f0)(k) is an integer that is divisible by p! for all j, k except forj =
p —1,k = 0. Further, f*~1(0) = (p — 1)!(—1)"P(n'),and hence, ifp > n,
then f~1)(0) is an integer divisible by (p — 1)! but not by p!.

It follows that J is a nonzero integer that is divisible by (p — 1)! if
P > lgolandp > n.Soletp > n,p > Igol, so that |[J| > (p — 1)

Now, [f|(k) < (2n)™ Together with (2) we then get that

71 < laalelfI(1) + - - - + |gnIne”|fI(n) < P
for a number ¢ independent of p. It follows that
-D=ll=d,
that is,
cP1
Gy G-

. . o s . p-1 R
This gives a contradiction, since ﬁ — 0 asp — oo. Therefore, € is

transcendental. [ |

We now move on to the transcendence of 7. We first need the following
lemma.

Lemma 6.6.5

Suppose a € C is an algebraic number and f(x) = a.x" + --- + ao,n >
l,a, # 0,and all a, € Z (f(x) € Z[x]) with f(a) = 0. Then aya is an
algebraic integer.

Proof
- - - -1
al flx) = alx" +al lap " - +al ag

- -1
= (anx)n + an—l(anx)n ! +--- +a:: Qo

= g(anx) = 8(Y) € Z{y]
where y = a,x and g(y) is monic. Then g(a,a) = 0, and hence a,« is an
algebraic integer. [
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Theorem 6.6.2
7 is a transcendental number, that is, transcendental over Q.

Proof
Assume that 7 is an algebraic number. Then 6 = ir is also algebraic. Let
6, = 6,0,,...,60,be the conjugates of 8. Suppose

p(®) = qo + @ix + - - + gax’ € Z[x],qa > 0, and gcd(qo, - - -, qa) = 1

is the entire minimal polynomial of 6 over Q. Then 6, = 6,6;, ,6, are
the zeros of this polynomial. Lett = g4. Then from Lemma 6.6.5, t6, is an
algebraic integer for all i. From €™ + 1 = 0 and from 6, = ir we get that

A+ +e%)...a+e)=o0.

The product on the left side can be written as a sum of 24 terms ¢€?,
where ¢ = €6, + - -- + €464,€, = 0 or 1. Let n be the number of terms
€10y + - - - + €40, that are nonzero. Call these ), . . ., @,. We then have an
equation

Ag+e+---+e"=0

with g = 29 — n > 0. Recall that all ta,, are algebraic integers and we
consider the polynomial

fo) =tP¥  x—ay)P... (x — o)’

with p a sufficiently large prime integer. We have f{x) € R[x], since the
«a, are algebraic numbers and the elementary symmetric polynomials in
oy, - .., 0, are rational numbers.

Let I(z) be defined as in the proof of Theorem 6.6.1, and now let

J =I(ey) + - - - + I(ay).
From (1) in the proof of Theorem 6.6.1 and (4) we get

m m n
J=-a) fO0)=3 % O,
1=0 1=0 k=1
withm=mn+1)p -1
Now, >_p_, fU(ax) is a symmetric polynomial in ta,,. ., ta, with in-
teger coefficients since the te, are algebraic integers. It follows from the

main theorem on symmetric polynomials that " /| fO(ay) is an

integer. Further, f)(ax) = 0 forj < p. Hence Y " >0 | () is an
integer divisible by p!.

Now, f0)(0) is an integer divisible by p! if j # p — 1, and f@~1(0) =
(p—D(=t)P(a1 . . . an) is an integer divisible by (p — 1)! but not divisible
by p!if p is sufficiently large. In particular, this is true ifp > |t7 (o1 ... an)l
andalsop > q.



6.7. The Fundamental Theorem of Symmetric Polynomials 99

From (2) in the proof of Theorem 6.6.1 we get that
U1 < leale®™IfiQlenl) + - - - + lemle'*!|f|(Janl) < ¢

for some number ¢ independent of p.
As in the proof of Theorem 6.6.1, this gives us

-]l =,
that is,
p—1
< |71 <cS
(p — 1) (p — 1)
This as before gives a contradiction, since (;':—_11), — Oasp — oo
Therefore, 7 is transcendental. |

6.7 The Fundamental Theorem of
Symmetric Polynomials

In our last proof of the Fundamental Theorem of Algebra we used the
fact that any symmetric polynomial in n indeterminates is a polynomial
in the elementary symmetric polynomials in these indeterminates. We
used this important result, called the fundamental theorem of symmetric
polynomials, again in our proofs of the transcendence of e and 7. In this
section we give a proof of this theorem.

Let R be an integral domain with x;, ..., x, (independent) indeter-
minates over R and let R[xy, ..., x,] be the polynomial ring in these
indeterminates. Any polynomial f{x,, . .., xx) € R[xy, ..., x,] is composed
of a sum of pieces of the form ax}' . .. xr with a € R. We first put an order
on these pieces of a polynomial.

The piece ax) ...x» with a # 0 is called higher than the piece

n

bx’;' ... xn with b # 0 if the first one of the differences
il _jl; iz _jZI D) in _jn
that differs from zero is in fact positive. The highest piece of a polynomial

fix, .. , x,) is denoted by HG(f).

Lemma 6.7.1
For f(xy,...,xn),8(X1, .., Xn) € R[xi,...,x,] we have HG(fg) = HG(f)
HG(g).
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Proof

We use an induction on n, the number of indeterminates. It is clearly true
for n = 1, and now assume that the statement holds for all polynomials
in k indeterminates with k < n and n > 2. Order the polynomials via
exponents on the first indeterminate x; so that

fx, - X)) = Xide(xa, - xn) + X B (X2, -, Xn)
+ -+ do(x2, - - ., xn),

glx, .., x) =xV¥s(x2, ,x)+ X W (X2 - - -, Xn)
+ -+ Yolxz, ..., xn)-

Then HG(fg) = x,**"HG(¢,V¥s). By the inductive hypothesis HG(¢,¥s) =
HG(¢,)HG(¥s)- Hence

HG(fg) = x " HG(¢,)HG(¥s) = ({HG($.))(\HG(¥5)) = HGNHG(8)-g

Recall (see Section 6.4) that the elementary symmetric polynomials in
n indeterminates x;, .., x, are

si=x1+xz2+ -+ X
S2 = x1x2 + x1x3 + - - - + Xn_1Xp,

S3 = X31X2X3 + X1X2X4 + - -+ - +Xp_2Xpn_1Xn,

Sn=x1...xn.

These were found by forming the polynomial p(x,x1,...,x:) = (x —
x1)...(x — xn). The ith elementary symmetric polynomial s, in x;, . .., xx
is then (—1)'a,, where g; is the coefficient of X"~ in p(x, x;, . . ., xp).

In general,

Sk = E Xi\ Xi, « - - Xiy,y

y<np<--<y,l<k<n

where the sum is taken over all the (}) different systems of indices
i],...,ikWithil < iz < - < lk

Further, a polynomial s(x;, ,x,) is a symmetric polynomial if
s(x1, ..., xy) is unchanged by any permutation o of {x;,. ., x,}, that is,

S(x1, ..., %q) = s(o(x1), - .., 0(xx)).

Lemma 6.7.2

Inthe highest piece ax’f‘ ... X a # 0, of a symmetric polynomial s(x1, - - - xn)
we haveky > ky > --- > k..
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Proof
Assume that k, < k for some i < j. As a symmetric polynomial,
. . K
S(x1, ..., %n) also must then contain the piece ax',“ R A x)k X,
which is higher than axf‘ .. .xf" R A .xk, giving a contradiction. W
Lemma 6.7.3
ky—ky J2—ks kn-1—kn _k -
The product s;' "*sy' " ... 8,1 sk with ky > kp > --- > k, has the

- s K K
highest piece x;' x5 . . . x"

n

Proof
From the definition of the elementary symmetric polynomials we have
that

HG(s;) = (xixz... %), 1 <k <n,t > 1.
From Lemma 6.7.1,

HG(P ey gt hnghny = )k agyleh (g LRy

* ¥n— n n—1
(21 ... %) = x’f'x’z(2 o -
Theorem 6.7.1
Lets(xy, - .. ,X1) € R[xy, . .. ,xn) be a symmetric polynomial. Then s(xy,. . .,xn)
can be uniquely expressed as a polynomial f(s;, ..,sn) in the elementary

symmetric polynomials s,, . . . ,s, with coefficients from R.

Proof

We prove the existence of the polynomial f by induction on the size of
the highest pieces. If in the highest piece of a symmetric polynomial all
exponents are zero, then it is constant, that is, an element of R and there
is nothing to prove.

Now we assume that each symmetric polynomial with highest piece
smaller than that of s(xy, ..., x,) can be written as a polynomial in the
elementary symmetric polynomials. Let ax’,‘l ...x a # 0, be the highest
piece of s(xy, .. ., x,). Let

1—k2 kn—l_kn k,.

k
t(xy, ..., xn) = 8(x1,...,%x) — as; S8, S,

Clearly, t(x;, , x») is another symmetric polynomial, and from Lemma
6.7.3 the highest piece of t(x;, .., xy)is smaller than that of s(x,, . . ., x,).
Therefore, t(x;, . .., x,) andhence s(x;, .., x,) =t(x, ..., x,,)+as,' IR
s’,:"_‘l‘_k"sﬁ" can be written as a polynomial in sy, . . ., Sp.

To prove the uniqueness of this expression assume that s(x;, ,x,) =
fisi,---,sn) = 8(S1,---,8)- Then f(s;,...,8x) — g(s1,. ,Sx) =
h(sy, ..., Sn) = §(x1, . . ., %) is the zero polynomial in x,, . . ., x,,. Hence,
if we write h(s;, , sp) as a sum of products of powers of the sy, . .., sy,
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all coefficients disappear because two different products of powers in the

Si, - -

., sn have different highest pieces. This follows from previous set of

lemmas. Therefore, f and g are the same, proving the theorem. [

Exercises

6.1.

6.2.

6.3.

6.4.

6.5.
6.6.

6.7.

6.8.

6.9.

6.10.

Letp(x) = x* + x + 1.

(a) Show that p(x) is irreducible over Q.

(b) Letabe aroot of p(x). Letg =2+, h =1 —a € Q(a). Find g + h, gh,
and h™!

(c) Solve the linear equation 2g 4+ h = 5 in the field Q(a).

Assume that a, B are both algebraic over F and suppose irr(e, F) = irr(B, F).
Verify that the map given in the proof of Lemma 6.1.4 is indeed an F-
isomorphism.

Let R be a commutative ring and r € R. Let (r) = {rir; r; € R}. Verify that
(r) is an ideal.

An ideal I is a prime ideal if I # R and whenever ryr; € I eitherr, € I or

r el.

(a) Show that mZ is a prime ideal in Z if and only if m is a prime.

(b) For any commutative ring R with identity show that if I is a prime ideal,
then the factor ring R/I is an integral domain.

If F is a field, show that the only ideals in F are the whole field and (0).

Let] C Rbeanidealandr € R, r ¢ I. Verify that (r,]) = Inr +1;;n €
R, i} € I} is an ideal.

Let F C E C F'. If {a), ..., a,} is a basis for E over F and {f;,...,Bn}isa
basis for F’ over E, then the mn products {a,,} are a basis for F’ over F.

Hint: To show that {«,8,} is a basis for F’ over F we must show that they
(1) span F’ over F and (2) that they are independent.

To show (1): Letg € F' Theng = €181 + --- + emBm with e; € E, since
{B1,.-., Bm} is a basis of F’ over E. Now use linear expansion for each ¢; in
terms of {, ..., a,} and collect terms.

To show (2): Suppose finf1 + --- - + fin@nBfm = 0. Combine terms
in each B, first and then use the independence of the {B,}. Then use the
independence of the {o;} in each coefficient.

Let K be an algebraic extension of E and E an algebraic extension of F. Then
K is an algebraic extension of F.

Let F’ be a finite extension of F Let a € F’ with n = deg irr(e, F). Then n
divides |F’ : F|.

Let F ¢ D, where F isa field and D is an integral domain with the same mul-
tiplicative identity. D is then a vector space over F. If D is finite-dimensional
over F then D is a field
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6.11. Write down the first five elementary symmetric polynomials.

6.12. Let D3 be the group of symmetries of an equilateral triangle.
(1) Show that |D3] = 6.

(2) Write down a multiplication table and a presentation for Ds.
(3) Show that S3 = Dj.

6.13. Let D4 be the group of symmetries of a square. Show that |D,| = 8 and find
a presentation for D,. Show that D, Z S,. In general, what do you think a
presentation for the group of symmetries of a regular n-gon is?



Galois Theory

CHAPTER

7.1 Galois Theory Overview

In the last chapter we gave an algebraic proof of the Fundamental Theo-
rem of Algebra. This depended on the facts that we could always construct
a splitting field for a given polynomial, that odd degree real polynomials
have real roots, and that complex numbers always have squareroots, im-
plying that any quadratic polynomial is solvable in C. In this chapter we
give a proof suggested by the last proof but involving the more general
ideas of Galois theory.

Galois theory is that branch of mathematics that deals with the in-
terplay of the algebraic theory of fields, the theory of equations and
finite group theory. Much of the foundation for Galois theory, involving
algebraic extensions of fields, was introduced in the last chapter.

This theory was introduced by Evariste Galois about 1830 in his study
of the insolvability by radicals of quintic (degree 5) polynomials, a result
proved somewhat earlier by Ruffini and independently by Abel. Galois
was the first to see the close connection between field extensions and
permutation groups. In doing so he initiated the study of finite groups.
He was the first to use the term group, as an abstract concept although
his definition was really just for a closed set of permutations.

The method Galois developed not only facilitated the proof of the in-
solvability of the quintic and higher powers but led to other applications
and to a much larger theory as well. In this chapter, however, we will only

examine those parts of the theory relevant to the Fundamental Theorem
of Algebra.

104



7.2. Some Results From Finite Group Theory 105

The main idea of Galois theory is to associate to certain special types
of algebraic field extensions called Galois extensions a group called the
Galois group. The properties of the field extension will be reflected in
the properties of the group, which are somewhat easier to examine. Thus,
for example, solvability by radicals can be translated into a group prop-
erty called solvability of groups. Showing that for every degree five or
greater there exists a field extension whose Galois group does not have
this property proves that there cannot be a general formula for solvability
by radicals.

The tie-in to the theory of equations is as follows: If f{x) = 0 is a
polynomial equation over some field F, we can form the splitting field K.
This is usually a Galois extension, and therefore has a Galois group called
the Galois group of the equation. As before, properties of this group
will reflect properties of this equation.

Galois theory depends in part on the theory of finite groups, and so
in the next section we review some of the basic necessary results from
this theory. In Section 7.3 we introduce the properties of normality and
separability of field extensions that define Galois extensions and in the
subsequent section develop the Galois group and its construction. We next
summarize all the results in the fundamental theorem of Galois the-
ory which describes the interplay between the Galois group and Galois
extensions. With all the machinery in place, in Section 7.6 we give our
fourth proof of the Fundamental Theorem of Algebra. Finally, we close
the chapter by giving two additional applications of Galois theory. The
first is a sketch of the proof of the insolvability of the quintic, while the sec-
ond is a discussion of certain geometric ruler and compass constructions
and their algebraic interpretations.

Since our aim is to arrive rather quickly at the main results of Ga-
lois theory and then give our fourth proof of the Fundamental Theorem
of Algebra many of the more difficult proofs along the way will be
omitted.

7.2 Some Results From Finite Group
Theory

In this section we review some basic results from finite group theory.
Recall (see Section 6.4) that a group G is a set with one binary operation
(which we will denote by multiplication) such that

(1) The operation is associative.
(2) There exists an identity for this operation.
(3) Each g € G has an inverse for this dperation.
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If, in addition, the operation is commutative, the group G is called an
abelian group.The order of G is the number of elements in G, denoted
by |G|. If |G| < oo, G is a finite group. H C G is a subgroup if H # 0
and a group under the same operation as G. Equivalently, H is a subgroup
if H # @ and H is closed under the operation and inverses.

As we indicated in Section 6.4 groups most often arise from invertible
mappings of a set onto itself. Such mappings are called permutations.
The group of all permutations on a set with n elements is called the
symmetric group on n symbols, denoted by S,,.

As a variation of permutation groups we obtain automorphism groups.
Recall that if R and § are algebraic structures (groups, rings, fields, vec-
tor spaces etc.) then a mapping F : R — § is a homomorphism if it
preserves the algebraic operations. By this we mean:

(1) finir2) = f(n)f(r2) if R, S are groups.

(2) fln + r2) = fin) + f{rz) and firir2) = fir)f(r2) if R, S are rings or
fields.

(3) fini + r2) = fln) + f(r2) and ficry) = cf(r;) with ¢ an element of the
scalar field if R, S are vector spaces

A homomorphism f : R — § that is also a bijection is an
isomorphism.

Definition 7.2.1
If R is an algebraic structure then an automorphism of R is an isomor-

phism o : R — R. We let Aut(R) denote the set of automorphisms on
R.

ExAaMPLE 7.2.1

Let G be a cyclic group of order n. Suppose g is a generator so that G =
{1,842 ...,8""). Recall that if (k, n) = 1, then g¥ is also a generator, so
the mapping

O'Zg—)gk

will define an automorphism of G by making this map a homomorphism.
Further, for any automorphism o the generator g is mapped to g; where
& is another generator. Therefore,

Aut(G) = {o; 0 : g —» g~ with (nk)y=1}

It follows that |Aut(G)| = ¢(n), the number of positive integers less than
n and relatively prime to n. 0

EXAMPLE 7.2.2

Consider the complex numbers C. Let o be an automorphism of C. For
all such automorphisms it follows that 6(0) = 0,0(1) = 1, o(-1) = —-1.
Therefore, o(i%) = (0(i))* = —1 and hence {i) = +i.



7.2. Some Results From Finite Group Theory 107

Since 1, i form a basis for C over R, the images of 1, i will completely de-
termine an automorphism. Hence there are precisely two automorphisms
of C, namely those given by

o1 : 1 = 1,i — i, the identity automorphism

oz2:1—>1,i—> —i.

O

EXAMPLE 7.2.3

Consider the finite field Z,, where p is a prime. ThenZ, = {0, 1, ...,p—1}
with the arithmetic operations done modulo p. Let o be an automorphism.
Since o(1) = 1, it follows that o(n) = n for all integer multiples of 1. Hence
o(x) = x for all x € Z,. Therefore, the only automorphism on Z,, is the
identity and the automorphism group is trivial. O

Theorem 7.2.1
For any algebraic structure R the set Aut(R) forms a group under composition
called the automorphism group of R. If § is any substructure of R, then
those automorphisms o € Aut(R) that fix S, that is, o(s) = s forall s € S
form a subgroup.

EXAMPLE 7.2.4
Let p be a prime and G a cyclic group of order p. We show that Aut(G) is
also cyclic and of orderp — 1.

Let Z, be the finite field of order p as in the last example. Its additive
group is cyclic of order p and so isomorphic to G under the isomorphism
1 — g, where gis agenerator of G. Since Z,, is a field, its nonzero elements
form a group under multiplication. We will call this group U.

From Example 7.2.1, any automorphism of G is determined by the
image of a generator

o:g— g~ where (k,p) = 1.

In terms of the isomorphism with the additive group of Z,, this is then
given by

o:1— k, wherek # 0.

This automorphism then behaves just like multiplication by k in Z,, and
so Aut(G) is isomorphic to the multiplicative group U of Z,. We show that
U is cyclic.

Now, [U| = p—1,soy?~! = 1 forally € U. Let mbe the maximal order
of any element in U, som < p— 1. Ify € U has order g, then g|m (see the
exercises). Hence, if y? = 1, theny™ = 1. It follows that y™ = 1 for all
y € U. Therefore, each y € U is a root of the polynomial P(x) = x™ — 1.
This is a polynomial over a field, so it can have at most m roots. However,
it has at least p — 1 roots som > p — 1. Therefore, m = p — 1, and U has
an element of order p — | and ther-fore i cyclic. O
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We now discuss the subgroup structure of a finite group. If G is a group
and H a subgroup of G recall that a left coset of H in G is a set gH =
{gh; h € H) for some g € G. Similarly, a right coset is Hg = {hg; h € H}
for some g € G. It can be shown that the set of left (right) cosets partition
G, and each has the same size as the subgroup H. It follows that there are
the same number of left and right cosets. This number is called the index
of H in G, denoted by |G : H|. Applying these ideas to finite groups, we
get Lagrange’s theorem.

Theorem 7.2.2

(Lagrange's Theorem) Let G be a finite group and H be a subgroup. Then
|G| = |G:H||H|. In particular, both the order of a subgroup and the index of
a subgroup divide the order of a finite group.

One interesting historical note. Lagrange died about twenty years be-
fore the word “group” was ever used. What Lagrange actually proved was
a result, equivalent to what is now called Lagrange’s theorem, on closed
sets of permutations.

EXAMPLE 7.2.5
We show that every finite group of prime order is cyclic.

Let p be a prime and G a finite group of order p. Let x € G,x # 1,
and let H =< x > the cyclic subgroup generated by x. From Lagrange's
theorem, the order of H divides the order of G. Hence |H| = 1 or p, since
p is a prime. If |[H| = 1, then x = 1, contradicting that x # 1. Therefore,
|H| = pand H = G and G is cyclic.

The above argument also shows that a finite group of prime order can
have no nontrivial proper subgroups. O

We now examine certain special types of subgroups called normal sub-
groups. From these we can build factor groups. These stand in the same
relation to group theory as ideals and factor rings are to ring theory (see
Section 6.2).

Definition 7.2.2

If G is a group, H C G a subgroup, and g € G, then g 'Hg forms a
subgroup, called a conjugate of H. g normalizes H if g~'Hg = H. The
set of elements that normalize H is called the normalizer of H in G
denoted by Ng(H). H is a normal subgroup denoted by H « G, if every
g € G normalizes H, that is, g7'Hg = H forall g € G.

Notice that if H « G then g~'Hg = H. This implies that Hg = gH,
or in other words the left coset gH is the same as the right coset Hg. We
summarize some of the properties of conjugation, normalizer and normal
subgroups in the following two lammas.
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Lemma 7.2.1
The following are equivalent:

(1) H<G.

(2) The only conjugate of H in G is H.

(3) Each left coset of H is also a right coset.
(4) Ng(H) = G.

Lemma 7.2.2
Let H C G be a subgroup. Then:

(1) Any conjugate of H is isomorphic to H.
(2) Ng(H) is a subgroup of G and H <« Ng(H).
(3) |G:Ng(H)| is the number of distinct conjugates of H in G.

EXAMPLE 7.2.6
In an abelian group G every subgroup H is normal, since g~'Hg =
H(g™'g) = H.

At the other end of the spectrum are simple groups. These are groups
that have no proper nontrivial normal subgroups. For example, a cyclic
group of prime order is simple, since it has no proper nontrivial subgroups
whatsoever.

Simple groups are really the building blocks for finite groups, and there
is a vast theory of finite simple groups. Much of the work has gone into
the proof of what is called the classification theorem for finite simple
groups. This theorem gives a complete “listing” of all the finite simple
groups. It turns out that any finite simple group is either a member of one
of a finite number of infinite families of groups that are well described or
is one of a finite number of isolated examples called sporadic groups. The
proof of this theorem, at this point in time, takes over twelve thousand
published pages. O

EXAMPLE 7.2.7
Suppose |G : H| = 2. We show that H < G.

Let g € H, then there are two left cosets namely H = 1H and gH.
These partition G, so that

G=HUgH

with this being a disjoint union. A similar statement is true for right cosets,
so that

G = HUHg.

Since these are disjoint unions, it follows that gH = Hg, or g"'Hg = H.
As a specific example of this, consider the symmetric group on three

symbols S3. In Example 6.4.1 we saw that |S3] = 6 and that there is an

element of order 3. By Lagrange's thec:em the cyclic subgroup generated
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by this element has index two and is thus normal. This subgroup is called
Aj - the alternating group on three symbols. In a similar way, for each
n, there is a subgroup of S, of index two (not cyclic for n > 3 however)
called A, the alternating group on n symbols. A, consists of the even
permutations (see Exercise 7.18). O

Normal subgroups allow us to form factor groups. Suppose H « G.
Then let G/H = set of cosets of H in G. Since each left coset is also a
right coset, we don’t need to specify left or right. On G/H define

(s1H)(82H) = g182H.

Since Hg; = g;H and HH = H, this operation is well-defined and allows
us to obtain a group.

Lemma 7.2.3
If H « G, then G/H forms a group called the factor group, or quotient
group, of G modulo H.

Nomal subgroups and factor groups are closely tied to homomor-
phisms.

Definition 7.2.3

Iff : G - H is a homomorphism, then the kernel of f, denoted by ker
f is the set {g € G; f{g) = 1}. The image of f, denoted by Im f is the set
{h € H; f(g) = h for some g € G}.

The notions of kernel, image, normal subgroup, and factor group
are all tied together by the following theorem, which is called the first
isomorphism theorem.

Theorem 7.2.3
(First Isomorphism Theorem) (1) If f:G — H, is a homomorphism then
ker f « G, Im f is a subgroup of H, and
G/kerf = Imf

(Note: If f is onto, then G/ker f = H, and H is called a homomorphic
image of G).

(2) If H « G, then there exists a homomorphism f:G — G/H such that ker
f=HandImf = G/H.

Finally, for our proof of the Fundamental Theorem of Algebra we need
some facts about p-groups and p-subgroups when p is a prime.

Definition 7.2.4

If p is a prime, then a p-group is a group G where every element has
order a power of p. If G is finite, this jmvlies that |G| = p” for some n.
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Lemma 7.2.4
If G is a finite p-group of order p", then G has a subgroup of order p"~' and
hence of index p.

Notice that this lemma can be considered as a converse of Lagrange'’s
theorem for p-groups. In general, Lagrange's theorem says that the order
of a subgroup divides the order of the group. However, it does not imply
that for any divisor of the order of the group there is a subgroup of that
order. As a consequence of Lemma 7.2.4 this is true, however, for all finite

p-groups.

Corollary 7.2.1
If G is a finite p-group, then for each divisor of |G| there is a subgroup of G of
that order.

We also need the Sylow theorem which provides a partial converse for
Lagrange'’s theorem.

Definition 7.2.5

Suppose G is a finite group with |G| = p™ea, with p a prime and with
(p,@) = 1. Then a p-Sylow subgroup is a subgroup of order p™ (a
maximal p-subgroup of G).

Theorem 7.2.4
(Sylow Theorem) Let G be a finite group of order p™a with p a prime and with
(r,@) = 1. Then:

(1) G has a p-Sylow subgroup.

(2) All p-Sylow subgroups in G are conjugate.

(3) Any p-subgroup of G is contained in a p-Sylow subgroup.

(4) The number of p-Sylow subgroups is congruent to 1 modulo p and divides
|G| and hence divides «.

EXAMPLE 7.2.8
We show that no group of order 12 is simple.

As a consequence of part (2) of Theorem 7.2.4, if there is only one
p-Sylow subgroup in G it must be normal. Now, |G| = 12 = 2%3. We
show that there is either only one 3-Sylow subgroup or only one 2-Sylow
subgroup.

The number of 3-Sylow subgroups is of the form 1 + 3k and divides
4, so there exists either one or four 3-Sylow subgroups. If there is only
one it is normal so suppose that there are four. Each of these has order 3,
and therefore they intersect trivially. It follows that these four subgroups
cover eight elements in G, not including the identity.

Each 2-Sylow subgroup has four elements. There is only trivial inter-
section between the elemerts it the 2-3ylew subgroups and those in the
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3-Sylow subgroups. If there were more than one 2-Sylow subgroup there
would be more than three additonal elements outside the eight within
the 3-Sylow subgroups. This is impossible since G contains only twelve
elements. Therefore, there must be only one 2-Sylow subgroup and hence
it must be normal. O

7.3 Galois Extensions

Galois theory deals with certain special types of finite algebraic exten-
sions. In particular, we need two special properties - separability and
normality. Normality is the simpler one so we discuss that first. For
the remainder of the chapter all extensions are to be considered finite
extensions.

Definition 7.3.1
K is a normal extension of a ground field F if K is a splitting field over
F.

Several facts about normal extensions are crucial for us. These are
given in the next theorem.

Theorem 7.3.1
Suppose K is a normal extension of F and suppose F C E C K C F, where
F is an algebraic closure of F. Then:

(1) Any automorphism of F leaving F fixed maps K onto itself and is thus an
automorphism of K leaving F fixed. Thus any isomorphism of K within
F leaving F fixed is actually an automorphism.

(2) Every irreducible polynomial in F[x] having a root in K splits in K.

(3) K is a normal extension of E.

The other major property is separability. This concerns multiplicity of
roots.

Definition 7.3.2
If a is a root of f(x) then & has multiplicity m > 1 if f{x) = (x — «)"g(¥),
where g(a) # 0. If m = 1, then « is a simple root otherwise it is a
multiple root.

Now, suppose K is a finite extension of F and « € K. Then « is sepa-
rable over F if a is a simple root of irr(e, F). K is a separable extension
ifevery a € K is separable over F.

Thus in a separable extension of F, if « € F, then « is not a multiple
nonsimple root of its irreducible polynomial.
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Although separability is an essential property for Galois extensions it
will not play a major role in the Fundamental Theorem of Algebra since
the ground fields we work with are extensions of Q, R, or C. All these fields
have characteristic zero and this forces any extension to be separable (see
Section 6.6).

Definition 7.3.3

A field F has characteristic n if n is the least positive integer such that
(n)(1) = 0in F. We denote this by char F = n. If no such n exists, we say
that F has characteristic zero denoted by char F = 0.

ExaAmPLE 7.3.1
char Q = char R = char C = 0, and thus any extension of these has
characteristic zero.

On the other hand, char Z, = p, and thus any extension of Z, also has
characteristic p. O

We give some simple facts about characteristic.

Lemma 7.3.1
The characteristic of a field is zero or a prime.

Proof

Suppose char F = n # 0. If nis composite then n = mk, withm < n and
k < n. Then (n)(1) = (mk)(1) = ((m)(1))((k)(1)) = 0. A field has no zero
divisors, so either (m)(1) = 0 or (k)(1) = 0 contradicting the minimality
of n. ]

Lemma 7.3.2

Ifchar F = 0, then F contains a subfield isomorphic to Q. If char F = p, then
F contains a subfield isomorphic to Z,,. In particular, a field of characteristic
zero must be infinite.

Proof

We show the prime case; the zero characteristic case is similar. Sup-
pose char F = p. Since F is a field, it has an identity 1. Let E =
{(n)(1); n € Z}. Since char F = p, E = {0,1,(2)(1),..., (p — 1)(1)). It
is then straightforward to check that the map (k)(1) — k from E to Z,, is
an isomorphism. |

The relevance of characteristic to separability is the following theorem.

Theorem 7.3.2
Any extension of a field of characte-istic zero must be a separable extension.



114 7. Galois Theory

In fact, any extension of a finite field is also separable so the only
bad cases are infinite fields of characteristic p. For our purposes, what is
important is that any extension of Q, R, or C is separable.

Separable extensions are essential to the interplay between field ex-
tensions and group theory because of the following two results, for the
second of which we give the proof.

Theorem 7.3.3
If K is a finite separable extension of F, then the number of automorphisms
of K fixing F is finite and equal to the degree |K:F|.

Theorem 7.3.4
(Primitive Element Theorem) If K is a finite separable extension of F, then K
is a simple extension. That is, K = F(a) for some a € K.

Proof
Since K is a finite extension, K = F(a,...,a,) for some elements
ai,...,a, € K. By induction, it is enough to show that if K = F(a, f),

then K = F(y) for some y € K.
Let n = |K : F|. From Theorem 7.3.3 there are then n automorphisms

o1, ...,0, of K fixing F. Form the polynomial
p(x) = [J(0:(e) + 20,(8) = 0(@) — x0,()).
i#j

This is not the zero polynomial, so there exists a ¢ € K with p(c) # 0.
Then the elements o,(a + ¢f),i = 1,...,n, are distinct. It follows that
F(a + cB) has degree at least n over F. But F(a +¢f) C F(e, f), and F(a, B)
has degree n over F. Therefore, F(e, B) = F(a + cfB).

If K = F(a), a is called a primitive element of K over F. |

With these properties introduced we can define Galois extensions.

Definition 7.3.4
A Galois extension of F is a finite separable normal extension, that is, a
finite separable splitting field over F.

Notice that if F has characteristic zero, then a Galois extension is just
a finite extension splitting field over F.

Suppose that F is a field of characteristic zero, so that all extensions
are separable, and suppose that f{x) € F[x] is an irreducible polynomial.
If K is the splitting field for f{x) over F, then K is a Galois extension of F.
K is called the Galois extension of F relative to f(x).

We close this section by summarizing what we know so far about Galois
extensions.
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Suppose F C E C K C F with K Galois over F and F an algebraic
closure of F. Then:

(1) K is also Galois over E.

(2) The number of automorphisms of K fixing F is equal to the degree
IK : FJ.

(3) Any isomorphism of K within F fixing F is actually an automorphism
of K.

(4) K is a simple extension of F.

7.4 Automorphisms and the Galois
Group

We now introduce the Galois group and discuss the interplay between
the group theory and the field extensions. We suppose that K is a finite
extension of F. Recall from Section 7.2 that Aut(K) forms a group and that
the elements of Aut(K) that fix F form a subgroup. If K is Galois over F,
this subgroup is the Galois group.

Definition 7.4.1

Let K be a Galois extension of F. Then the group of automorphisms of K
that fix F is called the Galois group of K over F, denoted by Gal(K/F).
If H is a subgroup of Gal(K/F), we let K¥ denote the elements of K fixed
by H.

Since K is Galois over F, it is separable, and then from Theorem 7.3.3
we have:

Lemma 7.4.1
|Gal(K/F)| = |K:F].

If E is an intermediate field, then K is also Galois over E. Those auto-
morphisms in Gal(K/F) that also fix E form a subgroup. Thus Gal(K/E) is
a subgroup of Gal(K/F). Conversely, if H is a subgroup of Gal(K/F), then
KH is an intermediate field and Gal(K/K") = H.

Lemma 7.4.2
Suppose F C E C K with K Galois over F. Then:

(1) K is Galois over E and Gal(K/E) is a subgroup of Gal(K/F).
(2) IfH is a subgroup of Gal(K/F), then E = K" is an intermediate field and
Gal(K/E) = H.
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Proof
Part (1) is clear. For part (2) we must show three things: that K¥ is a field,
that F C K", and that Gal(K/K") = H.

Since H C Gal(K/F), every element of F is fixed by each element of
H. Therefore, F ¢ K" and hence K" is not empty. To show that it forms
a field we must show closure under the field operations.

Suppose ki, k; € K ando € H. Then o(k;) = ki, 0(kz) = kz and so
o(ky £ kz) = o(ki) £ o(kz) = ki  kp. Therefore, k; + k; € K" Similarly,
o(kikiY) = a(ki)(o(k))* = kiky!, for k; # 0. Hence kik;' € K for
k, # 0 and therefore, K'' is an intermediate field.

Finally, if E = K", then Gal(K/E) consists of those automorphisms of
K that fix E. But by definition E consists of those elements of K fixed by
elements of H. Therefore, Gal(K/E) = H. [

Corollary 7.4.1
The map t:H — K! from subgroups H of Gal(K/F) to intermediate fields is
a bijection.

From the previous results we have that if F € E C K with K Galois
over F, then K is Galois over E. The question naturally arises as to when E
is also Galois over F. E is separable over F, so the question then becomes
when is E a normal extension. This has the simple and elegant answer
that E is a normal extension if and only if the corresponding subgroup of
Gal(K/F) is a normal subgroup.

Lemma 7.4.3
Suppose F C E C K with K Galois over F and suppose E = K Then E is
Galois over F if and only if Ha Gal(K/F). In this case

Gal(E/F) = G/H = Gal(K/F)/Gal(K/E).

The proofs of all these lemmas can be done directly but can also be
done somewhat more easily by using the following theorem of Artin.

Theorem 7.4.1
(Artin) Let K be a field and G a finite group of automorphisms of K with

|G| = n. Then K is a finite Galois extension of F = K¢ and its Galois group
s G.

Proof
A separable polynomial is one with no multiple roots. If @ is a root of
a separable polynomial f{x), then irr(e, F) divides f(x), so « is separable
over F.

Suppose F = K® anda € K.Letg, ..., g be a maximal set of elements
suchthatg)(a), ..., g(e)ars all distinct. Ifg € G, then {gg(e), .. ., g8, (o)}
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is a permutation of the set {g) (@), . . ., 8-(a)}, since g is an automorphism
andtheset{g, ..., g,} is maximal. Therefore, « is a root of the polynomial

r

f) = [ J(x - gi@)).

1=1

Further, f(x) is fixed by any g € G. Hence the coefficients of f{x) lie in
F = K© Since the g;(a) are distinct, f{x) is separable, and hence every
a € K is a root of a separable polynomial of degree < n with coefficients
in F. Therefore, K is a separable extension of F. Further, since f{(x) splits
into linear factors K is a normal extension. Therefore, K is Galois over F

Since K is separable over F, it is a simple extension, say K = F(y).
But y is a root of a polynomial of degree < n, and thus |K : F| < n. But
G CGal(K/F), since G consists of automorphisms of K fixing F. Therefore,
K : F| = |Gal(K/F)| > |G| = n. It follows that |K : F| = n, and G must
be the whole Galois group. [ |

The results we have just outlined are the main results in Galois theory.
In the next section we summarize them and give examples. For now,
we examine the Galois group of a polynomial. We suppose here and in
the remainder of the section that F has characteristic zero, so that all
extensions are separable.

Definition 7.4.2

Let f{x) be an irreducible polynomial over F and let K be the splitting field
for f{x). Then K is Galois over F, and the corresponding Galois group is
called the Galois group of the polynomial.

We examine this Galois group in more detail. Let K be any algebraic
extension of F. Suppose a € K with irr(e, F) its irreducible polynomial.
Any other root @ of irr(e, F) is called a conjugate of a. Now, suppose K
is Galois over F and o €Gal(K/F). Since o fixes F it also fixes irr(a, F) €
F[x], and hence o(a) must be another root of irr(a, F). Therefore, any
o €Gal(K/F) maps elements to their conjugates.

Now, let f{x) € F[x] be irreducible, with roots a,,...,a, in K. If
o €Gal(K/F), o fixes f(x) and so maps this set of roots onto itself. There-
fore, we have two facts: any o €Gal(K/F) permutes the roots of irreducible
polynomials, and conjugates of roots of irreducible polynomials are also
roots. We also have the following.

Lemma 7.4.4
If K is Galois over F with |K:F| = n, then Gal(K/F) is a subgroup of the
symmetric group Sy.
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Since |Gal(K/F)| = n by Cayley’s theorem it is a permutation group
on itself and so a subgroup of S,. What is important is how the per-
mutations from Gal(K/F) are obtained. Since K is a finite extension,
K = F(ey, ..., ) for elements a, . . ., @, € K. Those permutations that
map aj, . . ., @, onto conjugates will lead to automorphisms and will give
the elements of the Galois group. We illustrate this with an example.

ExAMPLE 7.4.1
Consider the splitting field of x* + 1 over Q. In C this factors as (x* +
i)(x* — i), so this polynomial has four roots in C namely

1+ - 1—-1i
w), = =\/;, wz = = wy,

V2 V2
—1+4i . —1—i

=1w,w=
V2 T 2

Notice that w; is a primitive eighth root of unity, and w} = w;,0; =
w4,wf = a)z,cuis =1.

Therefore, w, is a primitive element of K over Q, irr(w;, Q) = x* + 1,
and K = Q(w:). It follows that |[K : Q| = 4. Let us examine the Galois
group.

Since w; is a primitive root an automorphism o is completely deter-
mined by its action on w;. There are exactly four elements in the Galois
group and four possible conjugates of w;. Mapping w; onto each will
determine the four different automorphisms.

Suppose 0;(w;) = @. Then o, fixes w3, w}, ®!, and thus o, fixes K and
is therefore the identity.

Suppose 0z(w1) = w; = ). Then 03(w;) = 02(0]) = 0 = ;. Simi-
larly, 02(w3) = ws, 02(ws) = w3. Therefore, the automorphism o, is given
by the permutation

= w3

w3 =

W) = W2,W; > W), W3 > Wy, Wy > W3.

The same type of analysis gives that the two remaining automorphisms
are given by the permutations

g3 : W) = W3,W3 —> Wy, W3 —> W), Ws —> W3.
04 : W) > Wy, W7 > W3,W3 > W2, Wy —> W.

Checking, we see that each of these permutations has order 2. The
group G = Gal(K/Q) then has the presentation
G =< 03,03; 0’% = U:f = (0203)2 =1>

It is easy to see that this group is then abelian and equal to Z, x Z,, the
direct product of two finite cyclic groups of order 2. This group is usually
referred to as the Klein 4-group.
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Another way to see the structure of Gal(K/Q) is as follows. Notice that
since @1 = /i € K, theni € K. It follows that 1 + i € K, and hence
%Lfi = 2 € K. Therefore, Q(i, ﬁ) C K. Since |Q(i, ﬁ) : Q| = 4, it
follows that K = Q(i, +/2). Now, irr(i, Q) = x* + 1, so the conjugates of
i are +i, while ir(+/2,Q) = x* — 2, so the conjugates of /2 are ++/2.
Therefore, the four possible automorphisms in Gal(K/Q) are given by:

01 : i = i, /2 > +/2, the identity automorphism
0y i —i,v/2 > V2

03:1'—»1',\/5—»—\/5:

01— —i,ﬁ—) —2.

It is very clear here that each automorphism has order 2. O

7.5 The Fundamental Theorem of
Galois Theory

We now summarize the results of the last two sections into one theorem
called the fundamental theorem of Galois theory. We then give some
applications of the theorem and in the next section our fourth proof of
the Fundamental Theorem of Algebra.

Theorem 7.5.1

(Fundamental Theorem of Galois Theory) Let K be a Galois extension of F
with Galois group G = Gal(K/F). For each intermediate field E let T(E) be
the subgroup of G fixing E. Then:

(1) t is a bijection between intermediate fields containing F and subgroups of
G.

(2) IfH is a subgroup of G and E = K¥, then t(E) = H.

(3) K is Galois over E, and Gal(K/E) = t(E).

(4) |G| = IK:F].

(5) |E:F| = |G:t(E)l. That is, the degree of an intermediate field over the
ground field is the index of the corresponding subgroup in the Galots group.

(6) E is Galois over F if and only if t(E) <« G. In this case

Gal(E/F) = G/t(E) = Gal(K/F)/Gal(K/E).

(7) Thelattice of subfields of K containing F is the inverted lattice of subgroups
of Gal(K/F).
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Parts (1) through (6) have already been discussed. We say a little more
about part (7). By the lattice of subfields of K over F we mean the complete
collection of intermediate fields and their interrelationships. Similarly for
the lattice of subgroups. One is the inverted lattice of the other, since in
the field case if E is a subfield, the degree |K : E| is the order of Gal(K/E),
while its index is the degree of |E : F|. Therefore, the subfields are from
above in the lattice while the subgroups are from below. That is, we have
the following diagram, where Gal(K/K) = {1}, the trivial group.

K «— Gal (K/K)
U n
E «— Gal (K/E)
U N
F «— Gal (K/F)
We then illustrate this with three examples.
EXAMPLE 7.5.1
Consider the splitting field K of x* + 1 over Q. As we saw in example 7.4.1,

K = Q(i, +/2). Then |K : Q| = 4, and the Galois group is Z; x Z,. There
are then four automorphisms in Gal(K/Q), given by:

1:i— 0,42 > /2,

a:i—»i,ﬁ—)—\/i,
r:i—»—i,\/_Z——>«/§,
ot:i—»—i,«/z—>—\/_2_.

Each of these has order 2, and therefore there are five total subgroups
of G = Gal(K/Q), namely,

{1}, H, = {1, }, H; = {1, 01}, H3 = {1, 0}, G.

We exhibit the five intermediate fields. The fixed field of G, is precisely
Q while the fixed field of {1} is all of K. Now, consider H3. Since i € K and
Q@) C K, IK : Q)| = 2, so Q(i) will correspond to a subgroup of index
2 and thus order 2. Now, o fixes i but not +/2. Therefore, o fixes Q(7) but
not all of K, so the fixed field of Hj is Q().

Similarly, Q(ﬁ) C K, and then Q(ﬁ) is the fixed field of H;.

Finally, since i, V2 € K, it follows that iv/2 € K, so Q(iﬁ) C K. Since
in(iv/2, Q) = 22 + 2, 1Q(iv/2) : Q| = 2. The automorphism o7 fixes iv/2;
hence Q(iv/2) is the fixed field of H,. We illustrate these relationships in
Figures 7.1 and 7.2. 0
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K=0(,V2) =k
0(2) =k 0(iV2) =k o) = k'
0=kKC

Lattice of Subfields

Figure 7.1.
/ G \
H, H, Hy
{1}

Lattice of Subgroups

Figure 7.2.

ExXAMPLE 7.5.2

Let K = Q(+/2, +/3). This is the splitting field of (x — 2)(x* — 3) over
Q, so K is Galois over Q. Since |Q(+/2) : Q| = 2 and /3 ¢ Q(v/2), we
have |K : Q| = 4. The Galois group can then be described by the four
automorphisms

1 «/i—»ﬁ,ﬁ—* ~/§.
0: V2> V2,43 > -3,
T: 42 > —+/2,4/3 > V3,
ot : V2 > —v2,/3 > -3,

Itis easy to see that this group is Z; x Z, and is isomorphic to the Galois
group of the previous example. Thus different field extensions of the
same ground field can have isomorphic Galois groups. The corresponding
subgroups and fixed fields are given below.

Ho = {1} = fixed field is K = Q(+/2, V3);
H, = {1,0} = fixed field is Q(v/2);

H, = {1, 1} = fixed field is Q(V'S);
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Hs = {1,0t} = fixed field is Q(+/2v/3) = Q(/6);
H, = G = fixed fieldis Q

ExampLE 7.5.3
As a somewhat more complicated example, consider the splitting field K
of x* — 2 over Q.

Over C,x* — 2 = (x* — V2)(x* + ¥/2), so if w = 2!/4, the four roots are
w, iw, —w, —iw. Therefore, iw/w = i € K so Q(i,w) C K. But x* — 2 splits
in Q(i, w), so K = Q(i, w).

Now, Q(w) has degree 4 over Q, and i ¢ Q(w), since w € R. Therefore,
IK : Q(w)| = 2, since we are adjoining i, and hence |[K : Q| = 8.

The four conjugates of w are o, iw, —w, —iw, while the conjugates of i
are i. Therefore, the eight automorphisms in Gal(K/Q) are

l:w— wi1—1,
o:w— w1 — 1,
o’ w—> —wi—>i
03:w—>—iw,i—>i,

T:0—> wi—> —i,
ot : w — w, 1 = —I,
ozr:w—>—w,i—>—i,
3t —iwi—> —i

A computation shows that6* = 1, 7% = 1, and ot = 763 The group is
then D,, the dihedral group of order 8 that represents the symmetries of

a square. This group has the presentation
Dy=<o,16'=1,1"=1,0r = 0% >

There are ten total subgroups of D,. We list them below with the
corresponding fixed fields. Notice that w? = +/2 € K, so Q(i, v2) C K.

H, = {1} = fixed field is K = Q(i, w)
H; = {1,0,0% 0% = fixed field is Q(),
Hy = {1,0°} = fixed field is Q(i, v/2),
Hy = {1, 1} = fixed field is Q(w),

Hs = (1,0t} = fixed field is Q(w + iw),
Hg = {1, 0%t} = fixed field is Q(iw),

H; = {1,0%} = fixed feld is Qo — iw),
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Hg = {1, 0% 1,0%t} = fixed field is Q(ﬁ),
Hg = (1,0% o1, 037} = fixed field is Q(iv/2),
Hy,y = Dy = fixed field is Q.

7.6 The Fundamental Theorem of
Algebra - Proof Four

We now come to our fourth proof of the Fundamental Theorem of Alge-
bra. This will use the Galois theory machinery built up in the previous
sections.

Theorem 7.6.1
(Fundamental Theorem of Algebra) The complex number field C is alge-

braically closed. That is, any nonconstant complex polynomial has a root
inC.

Proof

If f{x) € C[x), we can form the splitting field K for f{x) over C. This will
be a Galois extension of C and thus a Galois extension of R, since C is a
finite extension of R. The Fundamental Theorem of Algebra asserts that
K must be C itself, and hence the Fundamental Theorem of Algebra is
equivalent to the fact that any nontrivial Galois extension of C must be
C.

Let K be any finite extension of R with |[K : R| = 2™g, (2,9) = 1. If
m = 0, then K is an odd-degree extension of R. Since K is separable over
R, itis a simple extension, and hence K = R(«), where irr(a, R) has odd
degree. However, odd-degree real polynomials always have a real root,
and therefore irr(e, R) is irreducible only if its degree is one. But then
a € R and K = R. Therefore, if K is a nontrivial extension of R, m > 0.
This shows more generally that there are no odd-degree finite extensions
of R.

Suppose that K is a degree 2 extension of C. Then K = C(«a) with deg
irr(ee, C) = 2. But complex quadratic polynomials always have roots in C
so a contradiction. Therefore, C has no degree 2 extensions.

Now, let K be a Galois extension of C. Then K is also Galois over R.
Suppose |K : R| = 2™q,(2,q) = 1. From the argument above we must
have m > 0.LetG = Gal(K/R)be the Galois group. Then |G| = 2™g, m >
0, (2, ) = 1. Thus G has a 2-Sylow subgroup of order 2™ and index g. This
would correspond to an intermediate field E with |[K : E| = 2™ and |E :
R| = g. However, then E is an odd-degree finite extension of R. It follows
that g = 1 and E = R. Thexefose, {K : ) = 2" and |G| = 2™
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Now, |K : C| = 2! and suppose G, = Gal(K/C). This is a 2-group. If
it were not trivial, then from Lemma 7.2.4 there would exist a subgroup of
order 2™~% and index 2. This would correspond to an intermediate field E
of degree 2 over C. However from the argument above C has no degree 2
extensions. It follows then that G, is trivial, thatis, |G,| = 1,50 |[K : C| =1
and K = C completing the proof. |

As in our previous proofs, we have actually proved a more general
result. In the above proof, outside of Galois theory, we used two facts:
odd-degree real polynomials always have real roots, and degree 2 complex
polynomials have complex roots. Using these two facts as properties we
could prove the following generalization.

Theorem 7.6.2

Let K be an ordered field in which all positive elements have squareroots.
Suppose further that each odd-degree polynomial in K[x] has a root in K.
Then K(i) is algebraically closed, where i = v/—1 is a root of the irveducible
polynomial x* + 1 € K[x].

7.7 Some Additional Applications of
Galois Theory

Galois theory was developed primarily as a tool for handling the proof of
the insolvability by radicals of quintic polynomials. In this section we out-
line this proof. As mentioned in Chapter 1, the problem of solvability by
radicals has a long and interesting history. The ability to solve quadratic
equations and in essence the quadratic formula was known to the Babylo-
nians some 3600 years ago. With the discovery of imaginary numbers the
quadratic formula then says that any degree-two polynomial over C has
a root in C. In the sixteenth century the Italian mathematician Niccolo
Tartaglia discovered a similar formula in terms of radicals to solve cubic
equations. This cubic formula is now known erroneously as Cardano’s
formula in honor of Cardano, who first published it in 1545. An earlier
special version of this formula was discovered by Scipione del Ferro. Car-
dano’s student Ferrari extended the formula to solutions by radicals for
fourth-degree polynomials.

From Cardano’s work until the very early nineteenth century, attempts
were made to find similar formulas for degree 5 polynomials. In 1805
Ruffini proved that fifth degree polynomial equations are insolvable by
radicals in general - thus there exists no comparable formula for degree 5.
Abel in 1825-1826 and Galois in 1831 extended Ruffini’'s result and proved
the insolubility by radicals for all degrees 5 or greater.



7.7. Some Additional Applications of Galois Theory 125

In order to apply the Galois theory we must translate solvability by
radicals into a group property, that is, a property that must be satisfied
by the corresponding Galois group.

Definition 7.7.1
G is a solvable group if it has a finite series of subgroups

G=G1D2G2D0G;3...0G, =1,

with Gi;1 < G, and G;/ G4, abelian. Such a series is called a normal series
for G, and the terms G;/G;4; are called the factors of the series. The
definition can then be put concisely as: A group G is solvable if it has a
normal series with abelian factors.

It can be shown that the class of solvable groups is closed under
subgroups, factor groups, and finite direct products. That is if G, H, are
solvable groups, then so are any subgroups of G or H; any factor groups
of G or H, and the direct product G x H.

Now, we must determine what is meant by solvability by radicals in
terms of field extensions.

Definition 7.7.2

K is an extension of F by radicals if there exist elementsay, ..., a, € K
and integers n, ..., n, such that K = Fley, ..., ,), with @' € F, and
o € Flay, ..., @), fori=2,...,r. Apolynomial f(x) € F[x]is solvable
by radicals over F if the splitting field K of f(x) over F is an extension
by radicals.

The key result tying these two concepts - solvability of groups and
solvability by radicals - is the following.

Theorem 7.7.1
Suppose K is a Galois extension of F with char F = 0. Then if K is an extension
of F by radicals, Gal(K/F) is a solvable group.

Therefore, to show that it is not possible in general to solve a poly-
nomial of degree 5 or greater by radicals, we must show that for any
n > 5 there exists a polynomial of degree n whose Galois group is not
solvable. The Galois group is always contained in a symmetric group, and
the following can be proved.

Theorem 7.7.2
For any n > 5 the symmetrc 2roup S, 18 rot a solvable group.
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Therefore, we could show the insolvability by radicals by exhibiting for
each n a polynomial whose Galois group is the whole symmetric group
S,.. This is what is done.

Lety, ..., Yyn be independent transcendental elements over Q and let
K = Q(y, ---,yn)- Let sy, .. , s, be the elementary symmetric polyno-
mials in y;, , Yn (see Section 6.4) and let F = Q(s, . .., S»)- Then K is
a Galois extension of F and Gal(K/F) = §,.

Theorem 7.7.3

Letyy, . . . ,Yn be independent transcendental elements over Q. Then the poly-
nomial f(x) = [, (x—y.) is not solvable by radicals over F = Q(sy, . . . ,Sp),
where sy, . . . sy are the elementary symmetric polynomials in yy, . . . Yn.

As a final application we indicate the impossibility of certain geometric
ruler (straightedge) and compass constructions. Greek mathematicians
in the classical period posed the problem of finding geometric construc-
tions using only ruler and compass to double a cube, trisect an angle,
and square a circle. The Greeks were never able to prove that such con-
structions were impossible but were able to construct solutions to these
problems only using other techniques, including conic sections. In 1837,
Pierre Wantzel, using algebraic methods was able to prove the impossibil-
ity of either trisecting an angle or doubling a cube. With the proof that 7 is
transcendental (done by Lindemann in 1882 - see Section 6.6) Wantzel's
method could be applied to showing that squaring the circle is also im-
possible. We will outline the algebraic method. As in the insolvability of
the quintic, we must translate into the language of field extensions. As a
first step we define a constructible number.

Definition 7.7.3

Suppose we are given a line segment of unit length. An « € R is con-
structible if we can construct a line segment of length |¢| in a finite
number of steps from the unit segment using a ruler and compass.

Recall from elementary geometry that using a ruler and compass it is
possible to draw a line parallel to a given line segment through a given
point, to extend a given line segment, and to erect a perpendicular to a
given line at a given point on that line. Our first result is that the set of
all constructible numbers forms a subfield of R.

Theorem 7.7.4
The set C of all constructible numbers forms a subfield of R. Further, Q C C.

Proof
Let C be the set of all constructible numbers. Since the given unit length
segment is constructible, we have. 1 £ C. Therefore, C # @, and thus
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to show that it is a field we must show that it is closed under the field
operations.

Suppose «, B are constructible. We must show then that o £ B, a8, and
a/B for B # 0 are constructible. If ¢, B > 0, construct a line segment of
length |a|. At one end of this line segment extend it by a segment of length
|B]. This will construct a segment of length « + 8. Similarly, ife > B, lay
off a segment of length | B| at the beginning of a segment of length |«|. The
remaining piece will be @ — B. By considering cases we can do this in the
same manner if either « or B or both are negative. These constructions
are pictured in Figure 7.3. Therefore, « + B are constructible.

a b a

@ - 2 @ -0~ 4

a+b

Figure 7.3. Constructibility of o + 8

In Figure 7.4 we show how to construct af. Let the line segment OA
have length |a|. Consider a line L through O not coincident with OA. Let
OB have length |B] as in the diagram. Let P be on ray OB so that OP has
length 1. Draw AP and then find Q on ray OA such that BQ is parallel to
AP. From similar triangles we then have

|OP| _ |OA| N 1 al
OBl [oQl I8l |oQl
Then |OQ| = |«||B], and so apB is constructible.

Figure 7.4. Constructibility of «f

A similar construction, pictured in Figure 7.5, shows that a/BforB#0
is constructible. Find OA, OB, OP as above. Now, connect A to B and let
PQ be parallel to AB. From similar triangles again we have

1 10Ql _ lal

BT e o e
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Hence o/B is constructible.

0

Q A

Figure 7.5. Constructibility of «/8

Therefore, C is a subfield of R. Since char C = 0, it follows that Q C
C. |

Let us now consider analytically how a constructible number is found
in the plane. Starting at the origin and using the unit length and the
constructions above, we can locate any point in the plane with rational
coordinates. That is, we can construct the point P = (qi, g2) with g, g2 €
Q. Using only ruler and compass, any further point in the plane can be
determined in one of the following three ways.

(1) The intersection point of two lines each of which passes through two
known points each having rational coordinates.

(2) The intersection point of a line passing through two known points
having rational coordinates and a circle whose center has rational
coordinates and whose radius squared is rational.

(3) The intersection point of two circles each of whose centers has ratio-
nal coordinates and each of whose radii is the square root of a rational
number.

Analytically, the first case involves the solution of a pair of linear
equations each with rational coefficients and thus only leads to other
rational numbers. In cases two and three we must sclve equations of the
form x2 + y> + ax + by + ¢ = 0, with a,b,c € Q. These will then be
quadratic equations over Q, and thus the solutions will either be in Q or
in a quadratic extension Q(J/a) of Q. Once a real quadratic extension of
Q is found, the process can be iterated. Conversely it can be shown that
if o is constructible, so is /a. We thus can prove the following theorem.

Theorem 7.7.5

If y is constructible with y € Q, then there exists a finite number of elements
ay,...,0y € R with a =y such tret ﬁ)t‘. i = 1, . ,r,Q(al, . ,a,) isa
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quadratic extension of Q(e, . . . ,ai—1). In particular, |Q(y):Q| = 2" for some
n>1.

Therefore, the constructible numbers are precisely those real numbers
that are contained in repeated quadratic extensions of Q. We now use
this idea to show the impossibility of the three mentioned construction
problems.

EXAMPLE 7.7.1

It is impossible to double the cube. This means that it is impossible,
given a cube of given side length, to construct using a ruler and compass,
a side of a cube having double the volume of the original cube.

Let the given side length be 1, so that the original volume is also 1.
To double this we would have to construct a side of length 2!/> However
1Q(2"3) : Q| = 3 since irr(2'/3,Q) = x* — 2. This is not a power of 2 so
2173 is not constructible. O

EXAMPLE 7.7.2
It is impossible to trisect an angle. This means that it is impossible in
general to trisect a given angle using only a ruler and compass.

An angle 8 is constructible if and only if a segment of length | cos 6| is
constructible. Since cos(nr/3) = 1/2, n/3 is constructible. We show that it
cannot be trisected by ruler and compass.

The following trigonometric identity can be proved

cos(36) = 4 cos’(6) — 3 cos(b).

= 0.

X3 -

Let a = cos(zr/9). From the above identity we have 4o® — 3 —
The polynomial 4x* — 3x — } is irreducible over Q so irr(e, Q)

3x — 1.1t follows that |Q(e) : Q| = 3, and hence « is not constructible.

Therefore, the corresponding angle /9 is not constructible. Therefore,
n/3 is constructible, but it cannot be trisected. O

|| ~or=

EXAMPLE 7.7.3
It is impossible to square the circle. That is it is impossible in general,
given a circle, to construct using ruler and compass a square having area
equal to that of the given circle.

Suppose the given circle has radius 1. It is then constructible and would
have an area of . A corresponding square would then have to have a side
of length /7. But 7 is transcendental, so /7 is not constructible. O

The other great construction problem solved by Galois theory was the
construction of regular n-gons. A regular n-gon will be constructible for
n > 3ifand only ifthe angle 27/n is constructible, which is the case ifand
only if cos 27r/n is constructicle. The algetraic study of the constructibility
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of regular n-gons was initiated by Gauss in the early part of the nineteenth
century.

7.8 Algebraic Extensions of r and
Concluding Remarks

Suppose F is a finite field extension of the real numbers R. From the proof
of the Fundamental Theorem of Algebra it follows that either F = R or
|F : R| = 2 and F = C. Thus the Fundamental Theorem of Algebra can
also be phrased in the following way.

Theorem 7.8.1
If F is a field extension of R with |F:R| > 1, then |[F:R| = 2and F = C.

If we extend somewhat the definition of a field we can obtain a further
classification of extensions of the reals. A division ring is an algebraic
structure with the same properties as a field but in which multiplication
is not necessarily commutative. That is, it is a ring with an identity where
every nonzero element has a multiplicative inverse. Thus every field is a
division ring but as we will see below there are noncommutative division
rings. A noncommutative division ring is called a skew field. If F is a field
and F C D where D is a division ring, then D is still a vector space over
F. Further there is a multiplication in D so that each nonzero element
has a multiplicative inverse. The identity in F must be an identity for the
division ring. In this case D is called a division algebra over F. Here the
elements of F will commute with all elements in D.

We now give a method to construct a class of skew fields. Suppose F is
a field in which no sum of squares can be zero. That is, if x} + - - - + x2 =
0 with xy,...,x, € Fthenx, = 0fori = 1,...,n. A field satisfying
this is called a totally real field. Consider now a vector space Hfr of
dimension 4 over F with basis 1, i, j, k. We identify 1 with the identity
in F and then build a multiplication on Hr by defining the products of

the basis elements. Let i# = j2 = k = —1 and ijk = —1. This will
completely define, using associativity, all products of basis elements. For
example, from ijk = —1 we have ij = —k™! = k since k2 = —1. Then

ik = i(yj) = (1)j = —j. It is easy to show that ij = —ji, so that this product
is noncommutative.

A general element of Hr has the form f, + fii + f5j + fak. Multiplica-
tion of elements like this is done by algebraic manipulation using the
defined products of basis elements. We thus get a product on Hg. It is a
straightforward computaciz+. to prove the following theorem.
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Theorem 7.8.2

For a totally real field F, Hr forms a division algebra of degree 4 over F. Hp
is called the quaternion algebra over F.

The only difficulty in the proofis to show the existence of inverses. This
is done just as in the complex numbers and we leave it to the exercises.

The quaternions H are the quaternion algebra over the reals. That is,
H = Hg. This algebra consists of all elements rg+r i+ ryj+r3k withr; € R.
Identifying R with the first component we get that R C H. Therefore, H
is a finite skew field extension of R. The following theorem says that this
is the only one.

Theorem 7.8.3

Let D be a finite-dimensional division algebra over R of degree greater than 1.
IfDis a field, then |D:R| = 2 and D = C. If D is a skew field, then |D:R| = 4
and D = H.

Proof

If D is a field the result is just the reformulation of the Fundamental
Theorem of Algebra so we consider the case where D is a skew field. We
outline the proof below and leave the details to the exercises.

(1) If Dis a skew field extension of R, it must have degree at least 4. As
in the field case every element is a root of a polynomial with coefficients
in R. If the degree is 3, there is a root in R, and if the degree is 2, the
resulting extension must be commutative and thus isomorphic to C.

(2) If D has degree four over R, then it has a basis 1, ¢, €2, €3. We can
show that the nonreal basis elements must satisfy quadratic polynomials
over R and thus can be chosen to behave like the imaginary unit i. Thus
€2 = €2 = ¢2 = —1. By the noncommutativity of D we can obtain that
e1e; = €3 and thus D = H.

(3) If D is a division algebra over R of degree n + 1, then as above
there is a basis 1,¢),...,6, with 2 = —1,i = 1,. ., n. We can then
show that for each pair i,j with i # j we have e;e; + ¢je; € R. From this
we can then show that we can replace e; by €, with e, €, + e;e; = 0.(If
ere2 + ;61 = 2¢ € R set €, = (e2 + ce1)/+/1 — ¢2.) We can then show that
this leads to a contradiction if n > 3. (We may choose e3 = €,€;. Then
let a; = eigj + gje;, and so a;; = 0. Then —2e4 = aiser + azez + asées,
violating the independence of the basis). |

We have now completed our algebraic lock at the Fundamental Theo-
rem of Algebra. In this approach the theorem was really saying something
about algebraic extensions of the reals. Although the proofs were al-
gebraic, they were still dependent on the continuity properties of real
polynomials and hence or. *he cumpletencess of the reals. In the next
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two chapters we examine two topologically motivated proofs of the
Fundamental Theorem.

Exercises

7.1.

7.2,
7.3.

7.4.
7.5.

7.6.

7.7.

7.8.
7.9.

7.10.
7.11.

7.12.

7.13.

7.14.

7.15.

7.16.

Prove Theorem 7.2.1. If R is any algebraic structure, then Aut(R) forms a
group. Further, if S is a substructure, then Aut(S) is a subgroup of Aut(R).

Let G be a cyclic group of order 6. Determine the structure of Aut(G).

If G is a finite group and H is a subgroup, show that Ng(H) is a subgroup
and |G . Ng(H)| is the number of distinct conjugates of H in G.

If G is abelian and H is a subgroup, show that G/H is also abelian.

Suppose p, g are distinct primes withp > g. If G is a group of order pg, then
G has a normal p-Sylow subgroup.

Let F be a finite field. Show that F has p" elements for some prime p. (Hint:
Since |F| < oo char F # 0 so its prime subfield is Z,. F is then a vector
space over Zp).

(@) Leta =1+ V2. What is irr(e, Q) and |Q(e) : Q|?
(b) Let @ = +/3 + /7. What is irr(e, Q) and |Q() : Q|?

Show that Q(+/3 + +/7) = Q(+/3, +/7). (Hint: Compute the degrees).

Suppose |E : F| = n and p(x) € F[x] is irreducible over F Then if deg p(x)
and n are relatively prime then p(x) has no roots in E.

Suppose |E : R| < oo, thenE =RorE =C.

Determine the Galois group and the lattice of subfields for the splitting field
of x> — 6 over Q.

Let G be a finite group. Show that G = Gal(K/F) for some field F and Galois
extension K.

If G is a group and g, 8, € G, then the commutator of g,, g;, denoted by
[81,82) is ;18281 lgz‘ ! The commutator subgroup of G, denoted by G’ is the
subgroup generated by all commutators.

(a) Prove that G’ is a normal subgroup of G.

(b) Prove that G/G' is abelian.

(c) Show that if G/H is abelian then G’ C H.

If G is solvable and H is a subgroup of G, then H is also solvable. If H is
normal in G, then G/H is solvable.

Let o = rp + nii + rj + r3k be a real quaternion, that is, « € H. Define its
conjugate @ = rg — i + raj + r3k. Show that a@ is real and then use this to
define an inverse for each nonzero quaternion.

Fill in the details that for = iotally real ficid =, Hr forms a division algebra.
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7.17. Fill in the details of the proof of Theorem 7.8.3.

7.18. Let S, be the symmetric group on n symbols. S, then can be considered
as the group of permutations on {1, 2,...,n}. A permutation o € S, is a
cycle of order k if there exists a subset {i},13,...,i#} of (1,2, ..., n} such
that o(iy) = iz,0(i2) = i3,...,0(ix) = 1) (o starts at i; and then cycles
through {iy, i, ..., i} and then back to ;). For example the permutation

3 6

4 6 3
with any integer in it and then listing the images in order. Thus the 3-cycle
3 4 6

4 6 3
(a) Prove that every permutation in S, is a product of disjoint cycles. (Hint:
Suppose o € S. Start with 1 and trace out what happens to o(1), o(o(1).
Eventually it will have to cycle back to 1. Then go to the smallest integer

left out of this cycle.) For example (; § ? ; i) = (123)(45)

is a cycle of order 3 within Sg. We denote a cycle by starting

would be expressed as (346)

(b) A transposition is a cycle of order 2. Prove that every permutation
in S, can be expressed as a product of transpositions (not necessarily
disjoint). (Hint: Show that every cycle can be written as a product of
tranpositions.)

(c) Show that the set of permutations in S, that can be written as a product
of an even number of transpositions forms a subgroup of S, of index 2.
This subgroup is called the alternating group on n symbols denoted
by A,. In general a permutation is an even permutation if it can be
expressed as an even number of transpositions and odd otherwise. Thus
the alternating group is the subgroup of even permutations.
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8.1 Winding Number and Proof Five

We have now seen four different proofs of the Fundamental Theorem
of Algebra. The first two were purely analysis, while the second pair
involved a wide collection of algebraic ideas. However, we should realize
that even in these algebraic proofs we did not totally leave analysis. Each
of these proofs used the fact that odd-degree real polynomials have real
roots. This fact is a consequence of the intermediate value theorem, which
depends on continuity. Continuity is a topological property and we now
proceed to our final pair of proofs, which involve topology.
Consider the curve

Nt) =20 +7re",0 <t < 2nm.

Geometrically, this is a circle that winds n times around the point z,. We
make this more precise. If we integrate then we get

l 2nr ireil‘
- / T a=n
Zm y Z2— 2 2m

The number n is called the winding number of the curve y aound z.
More generally, if y is any closed continuously differentiable curve in C
and zo € C — image y, then it can be shown that

2) 1 f dz
n = —
(y' 0 2m yZ—Zo

is an integer, called the winding number of y around z,.

134
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Now we consider the function g(z) = z" Let C, be the circle z =
re',0 < t < 2m, of radius r about the origin. On this circle then, z* =
r"e™. Ast runs from 0 to 27, z winds once around the circle. At the same
time, nt runs from 0 to 2nm, and so z" winds n times around the circle of
radius r* We say that the function z" has winding number n about the
origin.

We now use this idea of winding number to fashion our fifth proof
of the Fundamental Theorem of Algebra. First we must generalize the
idea of the winding number of a function. If y is a closed continuously
differentiable curve and f : C — C is a continuous function, then f{y) is
also a closed curve. We say f winds the closed curve y, n times around z,
if f{y) has winding number n around z,. Most important for us is when y
is a circle.

Now, if f{z) and g(z) are sufficiently close on a circle C, of radius r
around the origin, then both f{z) and g(z) will wind C, the same number
of times about the origin. That is, if |f{z) —g(2)| < € for some small enough
€ on a circle of radius r, then f{C;), g(C,) have the same winding number
around the origin.

Although the above fact can be made precise, we will just exhibit it by
using what is now called the fellow-traveler property. Surprisingly, this
idea has become very important in geometric group theory. Consider two
travelers tied together by a rope. If one traveler {f(z)} traverses a circle
around the origin, the fellow-traveler {g(z)} will also, following a different
path, provided that the length of the rope {€} is less than the radius of the
circle. We illustrate this with a picture (Figure 8.1).

Rope ()
- Fellow-traveler’s path

£(2)

Traveler’s path

2

Figure 8.1. Fellow Traveler Property

We now give our fifth proof of the Fundamental Theorem of Algebra.

Theorem 8.1.1 (Fundamental Theorem of Algebra)
Any nonconstant complex rolumovaz! has 2 somplex root.
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Proof
Suppose f(z) = anz" + - - - + ap with a, # 0 and n > 1. In searching for a
root we can without loss of generality assume that a, = 1, so that

fi2) = 2"+ ap12" ' + - - - + ay.

Ifag = 0, then z = 0 is a root so we may assume that ag # 0.
Recall that f{2) is then a continuous function C — C . Further,
n

lim — =1

o flz)

and so for a sufficiently large circle C, we have
12" — f(z)] < Ar" (8.1.1)

with0 < A < 1andz onC,.

For any r > 0, z" winds C, around the origin n times. Therefore from
the fellow-traveler property f(z) will also wind a sufficiently large C, also
n times around the origin.

For a small enough radius 7, f(z)=a, on C, so f{C,) makes a small loop
around ag and will not wind around the origin at all. Since f{(2) is continu-
ous, f{C,) will depend continuously on r. Since f{C,) has winding number
0 for a small radius r and winds n times around the origin for larger 7,
there must be an intermediate radius r; with f{C,,) passing through the
origin. It follows then that there must be a point z, on C,, with f{z9) = 0,
proving the theorem. [

In the next chapter we extend this proof to a general topological proof
of the Fundamental Theorem of Algebra. Tb do this we must introduce
some basic concepts and results from topology.

8.2 Topology - an Overview

Topology is the name of a major branch of mathematics that arises in
large part from the so-called topological properties of the complex plane.
Literally topology means the analysis or science of position and in older
texts one finds the term analysis situs used synonymously with topology.

A topological property of the complex plane is one that involves conti-
nuity. These properties include such concepts as open set, closed set,
compact set, and connected set. Topology deals then with properties
preserved by continuous bijections, although of course a more general
definition of continuity is necessary. Most generally, topology is then the
study of topological spaces, which can be thought of as the most arbi-
trary spaces where continuity can be defined. We will make this precise
in Section 8.4.
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Historically, topology has followed two principal developmental paths
and approaches, which do overlap. The first of these paths is from ge-
ometry. In this approach a topological space is viewed as a generalized
geometric configuration, with two such configurations being equivalent
if they can be continuously deformed into each other. This led topology
to obtain the title “rubber sheet geometry” with two objects being topo-
logically the same if they can be manipulated into each other without
tearing. Thus, a circle is in a sense topologically the same as any closed
curve, and a torus (inner tube) is topologically the same as a sphere with
a handle (jolly jumper). We picture these in Figure 8.2.

—
Circle Simple closed curve
B e
Torus
Sphere with handle
Figure 8.2.

Modern topology goes far beyond this rubber sheet geometric ap-
proach; tearing, cutting, and pasting are all permitted as long as they
are done in a continuous manner. However, the ideas of rubber sheet
geometry persist.

In this geometric approach the emphasis is on the spaces themselves.
This approach has led to the development of homology and homotopy the-
ory (discussed in the next chapter) and the topological theory of manifolds
(spaces that look “locally” like Euclidean space).

The second path topology followed generalizes analysis. Here the pri-
mary emphasis is on centinuous funciions and their properties. The
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spaces themselves are regarded as just the domains of these functions.
This approach has led to the development of “generalized” Euclidean
spaces - Banach spaces and Hilbert spaces - over which a theory of
differentiation and integration can be constructed.

Topology has many sub-branches and it breaks roughly into two broad
subcategories. The first is called point-set topology. This deals with
the study of topological spaces directly. It is this approach that we will
follow in this chapter. The second is algebraic topology. Here topological
spaces and structures are studied in terms of algebraic objects (groups and
rings) associated with them. We will see this approach, which will lead
to our final proof of the Fundamental Theorem of Algebra, in the next
chapter.

8.3 Continuity and Metric Spaces

As indicated in the last section, topology and topological properties arise
from the concept of continuity. Here we first review and then extend this
concept.

Recall that a single variable real-valued function y = f{x) is continu-
ous at a point x if for any € > 0 there exists a§ > 0,(which depends
on € and xp), such that |f{x) — f{x)| < € whenever 0 < |x — x| < §. The
function y = f{x) is continuous on an interval [a, b] if it is continuous at
each point of [a, b]. Notice that in the above definition, the absolute val-
ues are used to measure distance along the real line, so the definition can
be rephrased in the following manner: Given € > 0 there existsaé > 0
such that the distance between f{x) and f{xp) is less than € whenever the
distance between x and x; is less than é.

As we saw for complex functions in Chapter 4, this definition can be
extended almost verbatim to real-valued functions defined on R? That
is, let Py = (%o, Yo), then a real-valued function z = f(x, y) is continuous
at P, if for any € > 0 there exists aé > 0 (again depending on € and Py)
such that [f(x, y) — f{xo, yo)| < € whenever |(x, y) — (%0, Yo)l < 8.

The second absolute value above refers to distance in R2. Let us restate
this in terms of distance, and this restatement will serve as a take-off point
for extending the concept. Firstofall, in either the real line R, or the plane
R?, let d(x, y) refer to the distance between the two points x, y. Then, a
function z = f(P) from R? to R is continuous at P, € R? if for any € > 0
there exists a § > 0 such that d(f(P), f{Po)) < € whenever d(P, Py) < 8.
(Note that the first d refers to distance in R, while the second d is distance
in IRZ.) Further, as for single-variable functions, z = f{P) is continuous on
some subset in R? if it is continuous at each point of this subset.
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It is clear then that the definitions for continuity in R and R? can be
extended to any n-dimensional real space R", provided that distance can
be measured.

Definition 8.3.1

Let P = (%1,...,%2), P, = (y1,-..,Yn) € R". Then the distance from P,
to P, denoted by d(Py, P,), is

d(py, P;) =

Notice that this is just the generalization of the distance formula in
R? 1t is straightforward (see the exercises) to verify that this definition
of distance will then satisfy all the basic properties ordinarily associated
with distance.

Lemma 8.3.1
Let d:R" x R" — R be the distance function on R" defined as above. Then:

(1) d(Pl,Pz) > OfOY all Pl,Pz € Rn, and d(Pl,Pz) =0 ifand only ifPl = Pz.
(2) d(Pl,Pz) = d(Pz,P]) fOV all P,,P; € R"
(3) d(P1,P2) < d(P1,P3)+d(P3,P;) for all P1,P,,P3 € R" (triangle inequality).

Now that we have defined a distance function, we can define
continuity. Further the range of a continuous function need not be in R.

Definition 8.3.2

Letf : R" — R™. Then f is continuous at P, € R" if for any ¢ > 0
there exists a § > 0 such that d(P, Py) < 8 implies that d(f(P), f{P,)) < e.
The function f is continuous on a subset U C R" if it is continuous at
each point of U.

In all of the above discussion, the only necessity for defining continuity
was the ability to measure distance. We now abstract this to consider
general spaces where distance can be measured.

Definition 8.3.3
Let M be a nonempty set. A metric , or distance function on M is a
functiond : M x M — R satisfying

(1) d(x,y) = 0 forallx,y € M, and d(x,y) = 0 ifand only if x = y.

(2) d(x,y) = d(y, x) for all pairs x, y € M.

(3) d(x,y) < d(x,2)+d(z, y) for all triples x, y, z € M (This is the triangle
inequality).
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A metric space is a pair (M, d) consisting of a set M and a metric d
defined on it. The elements of M are called the points of the metric space.

EXAMPLE 8.3.1
(1) For any n > 1,R", n-dimensional real space, forms a metric space
with the metric defined as in Definition 8.3.1. R" with this metric is called
n-dimensional Euclidean space.

(2) Let C%a, b] be the set of all continuous functions on the closed
interval [a, b]. If f(x), g(x) € C°[a, b}, define

b 1/2
d(f(x), 8(x)) = ( fa If(x) —8(X)|2dx)

This then defines a metric on C%a, b] (see the exercises), and so C%[a, b}
equipped with this metric becomes a metric space.

(3) Let C%a, b] be the set of all continuous functions on the closed
interval [a, b] . Now, if f(x), g(x) € C°a, b], define

d(f(x), 8(x)) = max ap)If(x) — 8(H)|-

This also defines a metric on C%a, b}, and so again C%[a, b] becomes a
(different) metric space with this metric.

These last two examples show that a set may have more than one
metric defined on it. In particular, any set M can be made into a metric
space by defining d(x,y) = 0 if x = y and d(x,y) = 1 if x # y. However,
in most cases this is not a very interesting metric. O

The second two metric spaces in Example 8.3.1 are specific cases of
a general type of space arising from certain types of real vector spaces.
These play an important role in analysis so we briefly introduce them.

Definition 8.3.4

Let V be a vector space over the real numbers R. Then an innei product
on Visa function <, >: V x V — R satisfying

(1) <xx>>0forallx € V,and < x,x >= 0 if and only if x = 0 (the
zero vector).

(2) < x,y >=< y,x > for all pairs of vectors x,y € V.

(B) < x+y,z >=< x,z > + < y,z > foralltriplesof vectors x, y,z € V.

4) <ax,y>=a < xy>forx,ye Vanda € R.

An inner product space is a vector space V with an inner product
defined on it.
Anormon Visa function | | : V — R satisfying

(1) |x| > 0forallx € V, and |x| = 0 if and only if x = 0.
(2) lax| = |a||x| forall x € V,a € R.
(3) Ix +yl < Ix| + |yl for all pairs of vectorsx, y e V
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A normed linear space is a vector space V with a norm defined on it.

EXAMPLE 8.3.2
R" is an inner product space, where if P, = (x1,..., %), P2 = (41, - - -, Yn),
then

n
< P, P >= Zx,-y,-.

i=1

Further, R" is a normed linear space, where |P;| = (3 I, x?)'/2

That these actually define an inner product and a norm on R" is
straightforward. However, R" serves as a sort of generic example. Fur-
ther, notice that if P,, P, € R" then d(P,, P;) = |P, — P,| for the norm

defined as above. 0

These vector spaces are relevant to our discussion because of the
following results.

Lemma 8.3.2
Any normed linear space V is a metric space, where d(x,y) = |x — y| for
xyev.

Proof
Define d(x,y) = |x — yl. Then d(x,y) > 0 and d(x,y) = 0 if and only if
x = y follows directly from the norm property (1). Similarly, d(x,y) =

Ix—yl = | —-1lly—x| = d(y, x). Finally, d(x,y) = |x—y| = |[x—z+z—y| <
|x — z| + |y — z| = d(x, 2) + d(y, 2). |
Lemma 8.3.3

Let V be an inner product space. For any v € V define [v| = ( < v,v > )12

This then defines a norm on V In particular any inner product space is then
a normed linear space and further then must be a metric space.

Proof
As in the proof of Lemma 8.3.2, this involves using the inner product
properties to get the norm properties.

lvl = (< v,v >)%, s0 |v| > 0 (since < v,v >> 0), and |v| = 0 if and
only ifv = 0.

lov] = (< av,av >)Y2 = (@ < v,v >)2 = |al(< v,v >)
leel[v].

To get the final property we need the following important result,
true in any inner product space, the proof of which is sketched in the
exercises. [

172 _
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Cauchy-Schwarz Inequality
In any inner product space V, for any u,v € V,

| < wuv > =< lulv

Now

’

lu+ v =< u+v,u+v>=<uu>+2< uUuv >+ <yv>
<<uu>+2|<uyv>||+<uvv>
< lul? + 2lullvl + * = (lul + [v])?
Taking squareroots we then get
lu + vl < lul + ||,

completing the proof.
Both R" and the space C°[q, b] introduced in Example 8.3.1 are inner
product spaces.

Theorem 8.3.1
Let C°[a,b] be the set of all continuous functions on the closed interval [a,b).
For f(%),8(%) € C°[a,b] define

b
< fig >= / flx)g(x)dx.

Then C%a,b] is an inner product space and therefore a normed linear space
and hence a metric space.

Proof

Addition, subtraction, and real scalar multiplication of continuous func-
tions preserves continuity. Therefore, C%[a, b] is a real vector space. To
show that it is an inner product space we must now show the inner
product properties.

Q) < ff >= f2(fx)2dx = 0.If < f,f >= 0, then [*(fx))2dx = 0,
which implies that f{x) = 0, since f{x) is a continuous function.

@) < f,g >= [} figdx = [7 g()ftx)dx =< g,f >

@) < of, g >= [} ofieg(¥)dx = o [} flx)g)dx = o < fig >

(4) < f +gh >= [J(flx) + gx)h(x)dx

= [P fohe)dx + [P gh()dx =< f,h > + < g h > |

We now return to our main discussion. Since continuity relied only on
distance, we can define continuity in any metric space.

Definition 8.3.5
Let (My, di), (M2, d2) be metric spaces. A function f : M; — M, is con-
tinuous at x;, € M, if for anv € > 0 there exists a § > 0 such that
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d(flx), {xo)) < € whenever d(x, x,) < 8. The function f is continuous on
M, if it is continuous at each point of M;.

In order to extend these ideas to more general topological spaces, we
must remove the dependence on the distance function. To accomplish
this we introduce some other ideas.

Definition 8.3.6

Let (M, d) be a metric space. If x, € M, then an open ball of radiuse > 0
centered on Xy, denoted by S.(x,) is the set {x; d(x, x)) < €}. AsetS C M
is an open set if for all x, € S there exists an open ball centered on x,
entirely contained in S. A set C C M is a closed set if its complement C’
is an open set.

Recall that these definitions generalize the concepts of open and closed
regions in the complex plane as discussed in Chapter 4.

Theorem 8.3.2
Let (M,d) be a metric space. Then:

(1) Any union of open sets is open.
(2) Any intersection of finitely many open sets is open.

This theorem can be put succintly by saying that in any metric
space the class of open sets is closed under arbitrary unions and finite
intersections.

We use these ideas to remove the distance function from the conti-
nuity definition. First of all, if x € S with S open, then § is called an
open neighborhood of x. The next lemma is just a restatement of the
continuity definition in terms of open balls.

Lemma 8.3.4

A function f:M; — M, is continuous at xo € M, if for each open ball S¢(f (x0))
centered on f(xo) there exists an open ball Ss(xo) such that f(Ss(x0)) C
Se(f (x0))- Equivalently, for each open neighborhood S of f(xo), the pull-back
F7Y(S) is an open neighborhood of xq.

The second part of the above lemma we can then extend.
Lemma 8.3.5
A function f:M; — M, is continuous on M, if for each open set O C M,,

f71(0) is an open set in M;.

In the next section we will take Lemma 8.3.5 as the definition of conti-
nuity. Before continuing, we would iika ¢ g¢ over some other ideas that
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the reader may be familiar with from analysis. These will not play a role
in our final proof of the Fundamental Theorem of Algebra, but we want
to tie them together with the above discussion.

We defined closed sets as being the complements of open sets. Most
people first encounter closed sets as sets that contain their boundaries.
These ideas are reconciled via the following concepts, which we just state.

Definition 8.3.7

Let (M, d) be a metric space and (x,) a sequence of points in M. Then
x, — x if for any € > O there exists an N such that foralln > N, x, €
Se(xo). If S C M, then x € M is a limit point of S if x, — x for some
sequence in S. The point x, € § is an interior point if there exists an
€ > 0 such that S¢(x) C S. The boundary of S consists of all the limit
points of S that are not interior points.

Theorem 8.3.3
Let (M,d) be a metric space. Then C C M is closed if and only if C contains
all its limit points.

Finally, in our definition of continuity the § depended on both the
given € and the particular point xo. In metric spaces we can strengthen
this.

Definition 8.3.8

Afunctionf : M; — M, is uniformly continuouson M, if foranye > 0
there exists a § > 0, depending only on €, such that d(f(x1), f{xz)) < €
whenever d(x;, x2) < 8.

Clearly being uniformly continuous implies being continuous. In R”
the converse is true over nice enough domains.

Theorem 8.3.4

Let f:R" — R™ be continuous on M C R" If M is closed and bounded
(compact), then f is uniformly continuous on M.

Uniform continuity is really a metric property. When we remove the
metric, as we will do in the next section, we essentially lose the concept
of uniform continuity.

8.4 Topological Spaces and
Homeomorphisms

In the last section we disciizsed the idea of a continuous function from
one metric space to another. The definition was formulated in terms of
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the metrics on each space but then reformulated in terms of open sets.
What we wish to do now is remove the reliance on the metric but still
allow continuity. To do this we must have a collection of open sets, and
this leads us to the concept of a topological space.

Definition 8.4.1
Let X be anonempty set. A topology on X is a class of subsets T satisfying

(1) The empty set @ and the whole set X are in T.
(2) The union of any class of subsets in T is in T.
(3) The intersection of any finite class of subsets in T is in T.

Thus a topology is a class of subsets, closed under arbitrary unions
and finite intersections. A subset in T is called an open set, while the
complement of an open set is a closed set.

A topological space is a set X together with a topology on it. The
elements of X are referred to as points, and the topology is called the
class of open sets of X.

In any metric space the class of opens sets is closed under arbitrary
unions and finite intersections and therefore constitutes a topology.

Lemma 8.4.1
Any metric space is a topological space. In particular, R" and more generally
any inner product space, is a topological space.

Not every topological space is a metric space. We give some other
examples.

ExampLE 8.4.1
Consider any nonempty set X, and let T be the class of all subsets of X.
Then T is a topology on X, called the discrete topology. O

ExampLE 8.4.2
Let X be any nonempty set and let T = {0, X}. Then T is a topology on
X. O

EXAMPLE 8.4.3

Let X be an infinite set and let T consist of the empty set @ and every
subset whose complement is finite. Then T forms a topology (see the
exercises), called the cofinite topology on X. O

An obvious question to ask, given so many diverse examples of topo-
logical spaces, is which are in fact metric spaces. A general topological
space X is metrizable if there exists at least one metric on X whose open
sets coincide with the given pology. In ths next section we will state
sufficient conditions for metrizability.
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We can now extend the concept of continuity.

Definition 8.4.2
Suppose X, Y are topological spaces and f : X — Y Then f is a con-
tinuous function, or continuous mapping, if f~(O) is an open set in
X whenever O is an open set in Y. Therefore, continuous functions pull
back open sets to open sets.

The function f : X — Y is an open mapping if f(V) is an open set in
Y whenever V is an open set in X. Therefore, open mappings preserve
open sets.

Definition 8.4.3
A homeomorphism between two topological spaces X, Y is a one-to-one
continuous function of X onto Y (thus a bijection) that is also an open
mapping. Equivalently, we could define this as a continuous bijection
whose inverse is also continuous.

If there exists a homeomorphism f : X — Y we say that X, Y are
homeomorphic spaces.

Homeomorphism plays the role in topology that isomorphism played
in algebra. That is homeomorphic spaces are essentially “topologically
the same”. The basic classification problem in topology is to classify
(distinguish) topological spaces up to homeomorphism.

8.5 Some Further Properties of
Topological Spaces

Before moving on to algebraic topology and our final proof of the Fun-
damental Theorem of Algebra we mention some further results and
properties from point-set topology. In particular we consider four prop-
erties: separation, metrizability, compactness, and connectedness.
These are all motivated by corresponding ideas in the Euclidean spaces
Rn

Any metric space M has the following separation property. Consider
two distinct points x,y € M. Then there exist disjoint open sets O, Oz
with x € Oy, y € O;. This s clear from Figure 8.3. We just draw open balls
about x and y whose radii sum to less than the distance from x to y, which
is nonzero, since x and y are distinct.

From this it is clear that any point in a metric space is itself a closed set.
With a little work (see the exercises) we can extend this to the following
property: Given a metric space M and two disjoint closed subsets F;, F; in
M, there exists disjoint open scts Oy, O, with F; C Oy, F; C O,. We now



8.5. Some Further Properties of Topological Spaces 147

r+ry<d(x,y)

Fine/Rosenberger
Figure 8.3
S/S

Figure 8.3.

generalize these ideas to topological spaces, and from this we can then
give sufficient conditions to ensure metrizability.

Definition 8.5.1
(1) A topological space X is a T;-space if each point is a closed set.

(2) A topological space X is a Hausdorff space (or T,-space) if given
each pair x, y of distinct points in X there exist disjoint open sets Oy, Oy
withx € Oy, y € O,.

(3) A topological space X is a completely regular space (or T3-space)
if X is a Ty-space with the additional property that given a closed set F
and a point x € F there exists a continuous function f : X — [0, 1] such
that flx) =0andf = 1onF.

(49) A topological space X is a normal space (or T4-space) if X is a
Ty-space with the additional property that given disjoint closed subsets
Fy, F; in X there exist disjoint open sets Oy, O with F; C Oy, F; C O;.

Theorem 8.5.1
For a topological space, normality implies complete regularity implies
Hausdorff implies T.

From complete regularity on down the above theorem is straight-
forward. The fact that normality implies complete regularity is a
consequence of a result called Urysohn’s lemma (see the exercises). Fur-
ther, from the discussion above we have that any metric space is normal
and hence completely regular and Hausdorff.

Using the separation axioms, we can give criteria to guarantee
metrizability. Recall from the last section that a topological space X
is metrizable if there exists at least one metric on X whose topology
coincides with the given tcpoicgy on X.
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Definition 8.5.2

If X is a topological space, an open base or open basis for X is a class B
of open sets such that any open set is a union of sets from B. A second-
countable space is a topological space with a countable open base.

Second countability together with normality are enough to ensure
metrizability.

Theorem 8.5.2 (Urysohn Embedding Theorem)
If X is a second-countable normal space, then X is metrizable.

The proof of Theorem 8.5.2 is based on embedding (hence the name)
such a space into the metric space R*® This is the space consisting of all
sequences {xj, .. ., Xn, . . .} of real numbers such that 221 |x,]? converges.
On this space we define the metric as follows: if x = {x1,.. ,x,,...},y =
Wi, .. Yn, ...}, thend(x, y) = (L2, |4 —u.|?)"? This clearly generalizes
the metric on R” for finite n. If a space is embeddable in a metric space,
it is itself a metric space.

The third property we consider is compactness. The Heine-Borel the-
orem in R? states that if C is a closed and bounded subset of R?, then any
covering of C by open sets has a finite subcovering. As a consequence of
this theorem we obtain that continuous real-valued functions on closed
and bounded domains are uniformly continuous. The Heine-Borel the-
orem and the statement on uniform continuity can be extended to any
finite-dimensional real space R" The general version of this property in a
topological space is called compactness. In a topological space X a class
of open sets {O,} is an open cover of X if X C U,0,. A subcover is a
subclass that is also a cover.

Definition 8.5.3
A topological space X, or more generally a subset of X, is compact if
every open cover has a finite subcover.

The Heine-Borel theorem can then be rephrased as:

Theorem 8.5.3 (Heine-Borel)
A subset of R" is compact if and only if it is closed and bounded.

Compact spaces play an important role in topology. We mention two
very nice results.

Theorem 8.5.4
Any compact Hausdorff space is v.orwol.
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Theorem 8.5.5

Let X be a compact space and f:X — Y a continuous function. Then the
image of X is compactin Y.

Since subsets of R" are compact if and only if they are closed and
bounded, the above result implies that any continuous real-valued func-
tion on a compact set mustbe bounded. In particular, if f{z) is a continuous
complex function then the values |f{(2)| on any closed ball about the origin
must be bounded.

The final property we look at is connectedness. Intuitively, a con-
nected topological space is one that is in one piece. This property is
closely tied to the intermediate value theorem, which has played such
a large role in our proofs of the Fundamental Theorem of Algebra.

Definition 8.5.4

A topological space X, or more generally a subset Y of X, is connected if
whenever X = O, U O; with O,, Oz open and O, N O, = @, then one of O,
or O; must be empty: that is, X is connected if it cannot be decomposed as
the union of two nonempty disjoint open sets. A decomposition into two
nonempty disjoint open sets, when possible, is called a disconnection.

The ties to the intermediate value theorem are as follows.

Theorem 8.5.6
A subset Y C R is connected if and only if Y is an interval.

Theorem 8.5.7
If X is connected and f:X — Y is continuous, then f(X) is connected.

Corollary 8.5.1
If f:R — R is continuous, then the image of an interval is an interval.

Notice that Corollary 8.5.1 is completely equivalent to the intermediate
value theorem and can be generalized.

Corollary 8.5.2

Suppose f:D — R is continuous, where D is a connected subset of R" Then
f assumes any value between any two of its values.

Exercises

8.1. Prove Lemma 8.3.1 - that is, distance in R" satisfies all the basic metric
properties.
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8.2.

8.3.

8.4.

8.5.

8.6.

8.7.

8.8.

8.9.

8.10.

8.11.

8.12.

8. Topology and Topological Spaces

Let C%a, b] be the set of all continuous functions on the closed interval
[a, b). If f{x), g(x) € C%[a, b), define

b 1/2
a0, 82)) = ( [ o - g(x)|2dx)
Prove that this defines a metric on C%[a, b] (Example 8.3.1), and so C%[q, b]

equipped with this metric becomes a metric space.

Let C%a, b] be the set of all continuous functions on the closed interval
[a, b). Now, if f{x), g(x) € C%a, b] define

d(fix), 8(x)) = max (op)If(%) — 8(x)I-

Prove that this also defines a metric on C%a, b], and so again C%[g, b)
becomes a (different) metric space with this metric.

Show that n-dimensional real space R” forms an inner product space, where
ifPp = (x1,...,%), P2 = (1,...,Yn), then

n
< P, P >= ley,

i=1

Prove the Cauchy-Schwarz inequality - that is, in any inner product space
V, for any u, v € V then,

| < wv>| =< ulll

(Hint: Consider < u — tv,u — tv > witht € R. Thenlett = %2> )

<yu> °
Prove Theorem 8.3.2 - that is, in a metric space (M, d)
(1) any union of open sets is open and
(2) any intersection of finitely many open sets is open.

Let (M, d) be a metric space. Then C C M is closed if and only if C contains
all its limit points (Theorem 8.3.3).

Let X be an infinite set and let T consist of the empty set @ and every subset
whose complement is finite. Show that T then forms a topology (Example
8.4.3). T is called the cofinite topology on X.

Prove that given a metric space M and two disjoint closed subsets Fj, F in
M there exist disjoint open sets Oy, O; with F; C 0y, F, C O,. (Hint: Prove
first that in M if x € F with F closed, then there exists an € > 0 such that
d(x,y) > eforally € F.)

Show that in any topological space complete regularity implies Hausdorff,
which in turn implies Tj.

Urysohn's lemma says that in any normal space X, given disjoint closed
subsets A, B there exists a continuous function f : X — [0, 1] with f{A) =
0, f{B) = 1. Use this to show that normality implies complete regularity.

Prove that in a Hausdorff space, given a point x and a compact subset F
disjoint from it, then they cat be separaied vy disjoint open sets. (Hint: For
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each f e F construct disjoint open sets Oy, Of such thatx € Oy, f € Of. F
is then contained in the union of the Oy, and then use the compactness.)

8.13. Prove that a compact subspace of a Hausdorff space is closed. (Hint: Use
the previous exercise.)

8.14. Prove that a subset of R is connected if and only if it is an interval.

8.15. Show that the fact that the image of an interval in R under a continu-
ous function is again an interval is equivalent to the intermediate value
theorem.

8.16. Prove that the image of a compact set under a continuous map is compact
(Theorem 8.5.5).
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CHAPTER

9.1 Algebraic Topology

In the last chapter we gave our fifth proof of the Fundamental Theorem of
Algebra by considering the winding numbers of polynomials. This led us
to a discussion of topology and topological spaces. Now we present a more
general proof modeled on the last one. To do this we must introduce and
develop some of the basic ideas and techniques of algebraic topology.

Recall that topological spaces X, Y are homeomorphic if there exists a
bijection f : X — Y such that both f and f~! are continuous. The main
problem in topology is to classify topological spaces up to homeomor-
phism. Algebraic topology is that branch of topology that attempts to
solve this classification problem by assigning algebraic objects, primarily
groups, to topological spaces. This assignment is done in such a manner
that homeomorphic spaces correspond to isomorphic algebraic objects.
Then if the corresponding algebraic objects can be shown to be noni-
somorphic, the related topological spaces are nonhomeomorphic. The
algebraic task is usually easier than the corresponding topological one, so
by this change into an algebraic environment the classification problem
is somewhat simplified.

Algebraic topology deals with finding algebraic topological invari-
ants. A topological invariant is something (object, number, property)
associated to a topological space that remains invariant (unchanged)
under homeomorphism. An algebraic topological invariant is then an al-
gebraic object associated to a topological space that remains invariant
under homeomorphism.

152
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There are two general methods for finding groups associated to topo-
logical spaces - homotopy theory and homology theory. We discuss
homotopy theory first.

If X, Y are topological spaces andf : X — Y, g : X — Y are contin-
uous maps, then roughly, f is hometopic to g if f can be continuously
deformed into g, a notion that we will make precise in Section 9.3. The
spaces X, Y are homotopic, or homotopically equivalent if there exist
continuousmapsf : X — Y,g : Y — X such thatf og ishomotopicto the
identity map on Y and g o f is homotopic to the identity map on X. Very
roughly, homotopy can be pictured geometrically as follows: X is homo-
topic to Y if X can be continuously deformed and then shrunk, stretched,
or pinched to Y. If X, Y are homeomorphic they are clearly homotopic.
However, spaces can be homotopic without being homeomorphic. For ex-
ample the annular region pictured in Figure 9.1 is homotopic to the circle
but not homeomorphic to it.

Annular Region Circle

Figure 9.1. Homotopic but not Homeomorphic

A homotopy invariant is a property of topological spaces preserved
under homotopy. In Section 9.3 we introduce a group called the funda-
mental group that captures the homotopy properties of a space and that
is a homotopy invariant.

Homology theory deals with topological spaces by considering them
as combinatorial objects called simplicial complexes. Roughly, an n-
simplex is an object similar to a polyhedron in n-dimensional real space.
A simplicial complex is built up in a special way (see Section 9.4) from
such simplices. If a general topological space can be built up from pieces
that make it homeomorphic to a simplicial complex then this is called a
simplicial decomposition, or triangulation, of the space. This combi-
natorial approach was initiated in pioneering work of Henri Poincare at
the very end of the last century.

From the simplicial decomposition we can construct a sequence of
abelian groups called the homology groups. Generally, homotopy is a
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stronger invariant then homology so that two spaces that are homotopi-
cally equivalent will have the same homology theory. We will make this
more precise in Section 9.4.

9.2 Some Further Group Theory -
Abelian Groups

The algebraic objects used in algebraic topology are primarily groups.
Before proceeding further we must review some further group theory.
In particular, we give a structure theorem for finitely generated abelian
groups. This depends on the construction of direct products of groups.

Definition 9.2.1

Suppose H and K are groups. Then their direct product, denoted by H x
K, is the set {(h, k); h € H,k € K} under the operation (h, k;)(hz, k2) =
(hihg, ki k2). It is straightforward to verify that H x K forms a group.

In the next lemma we summarize the results concerning direct prod-
ucts that are most relevant to our subsequent study. The proofs are
straightforward and are left to the exercises.

Lemma 9.2.1
Suppose G = H x K. Then:

(1) Hy = H x {1},K; = {1} x K are normal subgroups of G isomorphic to
H K respectively. Further, G = H\K, and H; N K, = {1}.

(2) H x K is finite if and only if both H and K are finite.

(3) H x K is abelian if and only if both H and K are abelian.

From the above lemma, part (1), we have that H and K can be con-
sidered as normal subgroups of H x K. We can invert the process and
start with subgroups of a given group G. If they satisfy the properties of
Lemma 9.2.1, part (1), then G is the direct product of these subgroups.

Lemma 9.2.2
Suppose G is a group and H,K are normal subgroups of G satisfying
(1) G = HK, that is, G is generated by all products {hk;h € H ,k € K},
(2HNK = {1}.
Then G = H x K. In this case we say that G is the direct product of its
subgroups H K.

We now turn our attention to abelian groups. Notice that from Lemma
9.2.1 direct products of abelian groups are themselves abelian. Recall that
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a group G is cyclic if it has a single generator g. In this case G consists of
all distinct powers of g. Clearly, cyclic groups are abelian, and therefore
direct products of cyclic groups are also abelian. (They may or may not
be cyclic - see the exercises.)

If a cyclic group has infinite order, it looks like the integers Z under
addition. We will now use Z to denote an infinite cyclic group. If a cyclic
group has finite order n, then it looks like the integers modulo n, Z,,
under addition, and we will now use Z, to denote a finite cyclic group of
order n.

If G is any group and n is a natural number, by G" we mean the direct
product of n copies of G - thatis, G x G.. x G. Thus Z" is the direct
product of n infinite cyclic groups. Direct products of infinite cyclic groups
play an essential role in the structure of abelian groups and so we give
them a special designation.

Definition 9.2.2
A free abelian group F of rank n is a direct product of n copies of Z.
That is,

F=Zx...x2=27"
IfF is free abelian and gy, . . ., g, are elements of F such that
F=<g >Xx<g >X%x ..X <§g, >,

theng, ..., g, are called a basis for F.

The terminology, basis and rank, is meant to mirror the corresponding
terminology in vector spaces. Along these lines we have the following,
which generalizes to free abelian groups several vector space properties.

Lemma 9.2.3
Let F be free abelian of rank n. Then:
(1) The number of elements in any basis is unique and equal to n.
(2) Ifg1, - - - .gn is a basis, then each f € F has a unique representation

f=g"...8m,

with each m; an integer.
(3) IfH is a subgroup of F, then H is also free abelian, and rank H < rank
F.

The terminology free comes from the following categorical formula-
tion of a free abelian group. This theorem essentially says that a free
abelian group with basis gi, . . ., g» is the freest (least restrictive) abelian
group that can be generated e g;, . . ., gn.
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Theorem 9.2.1

Let g, . .. .8n bea set of elements in an abelian group G. Then G is free abelian
with basis g, . . . .gn if and only if each mappingg, — H, .8« — Hinto
an abelian group H can be extended to a unique homomorphism of G to H.

An abelian group is torsion-free if it has no elements of finite order. It
is a torsion group if every element has finite order. In an abelian group
G all the elements of finite order form a subgroup, necessarily normal
since G is abelian, called the torsion subgroup, denoted by tG.

Lemma 9.2.4
If G is abelian, all elements of finite order form a subgroup.

Proof

Let tG = {g € G; g of finite order}. Now, 1 € (G, so tG is nonempty.
Suppose g1,82 € tG. Then there exist ny, n; with g' = g5*> = 1. Then
(g1g2)"™ = (8" )™(g)™ = 1, since G is abelian. Hence, g1g; has finite
order and so g1g; € tG. Similarly, (g7")" = (g")™! = 1,508 € (G.
Therefore, tG is a subgroup. [ ]

A group G is finitely generated if it has a finite system of generators.
For abelian groups we get the following.

Lemma 9.2.5
If G is a finitely generated torsion abelian group then G is finite.

Proof
We will show this for two generators. The general case then follows easily
by induction.

Suppose g, g2 generate G. Since G is a torsion group, both g;, g2 have
finite order, say n, n; respectively. Now, ifg € G,theng = g)'g5 - ..gr8>,
since g1, g2 generate G. Since G is abelian, we can put all the occurrences
of g, together and all the occurrences of g; together so that

g = g185, for some integers t, s.

Since this holds for all g € G, the number of elements of G is bounded by
the product of the number of choices for t and the number of choices for
s. Since g has order ny and g; has order ny, this product is n; n,. Therefore,
|G| < myn; and hence G is finite. |

We mention that the corresponding statement for nonabelian groups
is not true. That is, there exist finitely generated groups where every
element has finite order but that are infinite. The Burnside problem
asks whether an n-generator group, where every element has finite order
bounded by some other integer m, must be finite. In general this also has
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a negative solution. We refer the reader to the survey article by Gupta [G]
for a discussion of this.

Armed with these ideas we now state the fundamental theorem for
finitely generated abelian groups. We outline its proof in a series of
lemmas, however, we leave out most details. A very understandable com-
plete discussion is in the book of Rotman [R]. After the outline of the
proof, we will give an example of the use of this theorem.

Theorem 9.2.2
(Fundamental Theorem for Finitely Generated Abelian Groups) Let G be a
finitely generated abelian group. Then G has a unique (up to ordering of
factors) decomposition as a direct product of a free abelian group of finite rank
and finite cyclic groups of prime power order.

The rank of the free abelian factor of G is an invariant of G called its Betti
number.

As indicated, the following lemmas, 9.2.7 through 9.2.11, outline the
proof of Theorem 9.2.2.

Lemma 9.2.7
If G is a finitely generated abelian group, then G is a direct product of cyclic

groups.

Lemma 9.2.8
If G is a torsion-free finitely generated abelian group, then G is free abelian of
finite rank.

Lemma 9.2.9
If G is a finitely generated abelian group, then G = tG x(free abelian).

Lemma 9.2.10
If G is a finite abelian group, then G is a direct product of subgroups of prime
power order.

If p is a prime, then a p-group is a group where every element has
order a power of p. Clearly, from Lagrange’s Theorem if a finite group
has prime power order then it is a p-group.

Lemma 9.2.11
If G is a finite abelian p-group, then G is a direct product of cyclic p-groups.
Further, this decomposition is unique up to ordering of the factors.

We now give an example of the use of the theorem.
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EXAMPLE 9.2.1
We classify all abelian groups with Betti number 3 and torsion group of
order 180.

Suppose G is such an abelian group. Then

G = tG x (free abelian)
=tG x Z3,

since the Betti number is 3. Since |tG| = 180, we must then classify all
finite abelian groups of order 180.

The prime factorization of 180 is 22325. Therefore, the possible group
factorizations into cyclic groups of prime power order are:

(l) Zzz X Z32 X Zs.

(2) Zz X Zz X Z32 X Zs.

(3) Zy x Z3 x Z3 x Ls.

(4)Zy x Zy x L3 x Z3 x Zs.

Putting the two parts together, we see that there are precisely four
possible abelian groups with the desired characteristics, namely:

(1) Zy2 x Zy: x Zs x Z3

(2) Zz X Zz X Z3z X Zs X Z3.

(3) Zzz X Z3 X Zg X Zs X ZB.

(9)Zy x Zy x Zy x Z3 x Zs x Z3. 0

Before returning to topology we mention one more set of ideas from
group theory. In an abelian group G the product ghg~'h~! is always the
identity for any elements g, h € G. In general this is not true. If G is a
non-abelian group, with g,h € G and ghg~'h~! = 1 then gh = hg and
we say that g and h commute. The collection of products of this sort
in G describes how far from abelian the group is. We describe this more
carefully.

Definition 9.2.3
Let G be a group. If g,h € G, then their commutator, denoted [g, h]
is the product ghg~'h~!. Clearly g and h commute if and only if their
commutator is trivial.

The commutator subgroup of G, denoted by [G, G] or G, is the sub-
group of G generated by all the commutators from G. Again, clearly G is
an abelian group if and only if its commutator subgroup is trivial.

Theorem 9.2.3
Let G be a group. Then G’ is a normal subgroup of G, and the quotient group
G/G' is abelian. Further, if H is a normal subgroup of G with G/H abelian,
then G’ C H.

Hence, G/G' is the largest abelian quotient group of G. We call G/G' the
abelianization of G, and denote this by G
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Proof

By definition G’ is a subgroup. We must show that it is normal. Let x € G
and consider

x Mg hjx = x'ghg'h~'x
= x"'gax T g h T x = [x g, x M) € G

Therefore, every conjugate of a commutator is again a commutator,
and hence G’ is normal. [ ]

Now consider the quotient G/G’ Suppose u = gG’',v = hG’. Then
uu~'v™! = ghg™'h™1G’ = [g, h]G' = G since [g, h] € G'. But this implies
that in G/G’ the commutator (u, v] = uwu~'v~! = 1, and hence G/G' is
abelian.

Finally, suppose G/H is abelian. Let g, h € G and consider the cosets
gH,hH. Then

ghH = hgH,

since G/H is abelian. But then ghg™'h™'H = H, or [g,h]H = H. This
implies that [g, h] € H for all commutators, and hence G’ C H.

9.3 Homotopy and the Fundamental
Group

We now introduce homotopy and from this build our first algebraic in-
variant, the fundamental group. Intuitively, if X, Y are topological spaces
andf : X —» Y,g: X — Y are continuous maps then f is homotopic to g
if it can be continuously deformed into g. We make this precise. For the
remainder of this chapter we let I = [0, 1] be the unit interval on the real
line R. Notice also that if X, Y are topological spaces, then their Cartesian
product X x Y can also be made into a topological space by taking as a
basis for the open sets in X x Y all sets of the form O, x O,, where Oy, O,
are open in X, Y respectively (see the exercises).

Definition 9.3.1

Given topological spaces X, Y and continuous maps f : X - Y,g: X —
Y, then f is homotopic to g if there exists a continuousmap H : X xI —
Y such that H(x,0) = f{x) for all x € X and H(x,1) = g(x) for all x € X.
The mapping H is called a homotopy. In this case g is also homotopic to
f via the homotopy Hi(x,t) = H(x,1 — t), so we say in general that f and
g are homotopic.
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To understand this definition consider the interval I as a time param-
eter space. By this we mean that at each point t € [0, 1] we consider the
map H,(x) = H(x, t) as a continuous map from X to Y at time t. At time
t = 0, Ho(x) = f{x), while at time t = 1, H;(x) = g(x). The continuity of
H(x, t) represents the continuous deformation with time.

As an example, suppose X = [a,b] C Rand Y = R? Then f g rep-
resent paths in R? If they were homotopic, we would have a picture as
in Figure 9.2. The dashed paths represent the paths at intermediate time
values.

fix)=H(x,0)

gx)=H(x, 1)

Figure 9.2. Homotopy of Paths and Maps

We have seen that if f is homotopic to g, then g is homotopic to f.
Hence homotopy is a symmetric relation on continuous maps from X to
Y. Further, it is a transitive relation. That is, if f is homotopic to g and
g is homotopic to h, then f is homotopic to h. To see this, suppose Hp
is the homotopy from f to g and H; the homotopy from g to h. Then
H; : X x I = Y givenby

Hy(x,t) = Ho(x,2t), if0 <t <

N | -

1
HZ(X, t) = Hl(x, 2t — 1), if E <t<l1

gives the homotopy from f to h. Since clearly a map is homotopic to itself,
the above comments show that homotopy is an equivalence relation on
maps from X to Y. The equivalence classes are called homotopy classes
of maps.

We now extend the concept of homotopy from maps to whole spaces.

Definition 9.3.2

Two topological spaces X, Y are homotopically equivalent, or homo-
topic, if there exist continuous maps f : X - Yandg : Y — X such
that the composition gf is hemnaiupic wr the identity map on X and fg is
homotopic to the identity map on Y
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Very roughly, two spaces are homotopic if they can be continuously
deformed and then pinched or shrunk into each other. Clearly homeo-
morphic spaces are homotopic, but there exist homotopic spaces that are
not homeomorphic. An example was pictured in Figure 9.1. An annular
region is homotopic to a circle but not homeomorphic to it.

Just as for maps, homotopy is an equivalence relation on topologi-
cal spaces. Thus, we have homotopy classes of spaces. A homotopic
invariant is a topological property preserved under homotopy. Thus,
all spaces within a particular homotopy class have the same homotopy
invariants.

A topological space is contractible if it is homotopic to a single
point. For example, the interior of the unit disk in R? is contractible.
All contractible spaces are homotopic to one another.

We now construct the fundamental group of a space. This will be an
algebraic homotopy invariant. A path in a general topological space X is
a continuous map a : [0,1] = X. If x; € X, then a loop, or closed path,
based at x; is a path « with ¢(0) = «(1) = xp, that is, a path with x; as
both its starting and ending point.

Let x, be a fixed point of X and let C(X, xp) denote the set of all loops
based at x,. We define an operation on the homotopy classes in C(X, xo)
to form a group.

First of all, if «, B are loops at xy3, we define their product af to be
the loop that first goes around & (actually the image of ) and then goes
around B. As a function we can express this as

af(x) = a(2x), if0 <t < l,

N

af(x) = B(2x — 1), if% <t<l.

We picture some of this in Figure 9.3.

Xg

a goes first around a and then around
Figure 9.3. Product of Loops
This product of loops based at x, is preserved by homotopy. That is, if

a is homotopic to a; and B is homotopic to B, then af is homotopic to
a1 B1. Further, this product is associative up to homotopy. This means that
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if a, B, y are all loops based at xy, then (af)y is homotopic to a(By). We
summarize all these statements.

Lemma 9.3.1
Suppose «,B,y are loops based at xy. Then:

(1) If « is homotopic to a; and B is homotopic to B, then aB is homotopic
to ay B;.

(2) (¢B)y is homotopic to a(By).

If @ is a loop at xo, let [@] denote its homotopy class. Hence, [a] consists
of all loops based at xy homotopic to . Define [¢][B] = [«f]; that is, the
product of two homotopy classes of loops is the homotopy class of the
product of class representatives. From Lemma 9.3.1 we can conclude that
this is a well-defined operation on the set of homotopy classes. Further,
from the second part of that lemma it follows that this is an associative
operation on the set of homotopy classes. Let IT,(X, x;) denote the set
of homotopy classes of loops based at x;. We now have a well-defined
associative operation on I, (X, xp).

Let e denote the identity loop at xp, that is, e(t) = x, for all t € [0, 1].
Then e« = ae = « for any other loop based at xp, and hence [e][a] =
[@](e] = [@], and therefore, [€] is an identity on IT,(X, xo). Finally, if & is a
loop at xp, define @™!(t) = (1 — t); that is, @™! is the loop traversing a in
the opposite direction. We can show that aa~! and o'« are homotopic to
e, and hence [@a™'] = [¢~'a] = [€]. Therefore, each element of I, (X, xo)
has an inverse. We thus have on I, (X, x;) a well-defined operation that is
associative, has an identity, and under which there is an inverse for each
element. It follows that IT, (X, xp) forms a group.

Theorem 9.3.1

The set I1;(X,x0) of homotopy classes of loops based at xy € X forms a group
under the operation [a][B] = [aB]. It is called the fundamental group of X
based at x;.

The above definition depends on the base point x,. We can in many
cases remove this restriction. Suppose x; € X and suppose that there is
a path p in X from xo to x, that is, a continuous functionp : [0,1] - X
with p(0) = xo, p(1) = x1. Then Iy (X, %) is isomorphic to I, (X, x;) with
the isomorphism being given by [«] — [p~'ap]. This is pictured in Figure
9.4.

Theorem 9.3.2

If x0,x1 are two points in the space X that are connected by a path p, then
nl(X,Xo) = l'll(X,xl).
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o plop

xp N
p

Figure 9.4. Isomorphism of IT; (X, x) and I, (X, x;)

A topological space X is path-connected if any two points xg, x; € X
can be connected by a path. We then get the following important corollary
to Theorem 9.3.2.

Corollary 9.3.1

If X is path-connected, then I1,(X,x) = I1,(X,x;) for any pair of points
X,x1 € X. It follows that in this case there is really only one fundamental
group associated with X. We call this the fundamental group of X and
denote it by Ty (X).

For the remainder of this section we consider only path-connected
spaces.

If the space X is contractible, then IT; (X) = {1}. Further, if IT;(X) = {1}
then every loop in X can be shrunk to a point. Such a space is called
simply connected. We now give some examples.

ExaMmPpLE 9.3.1
(1) The unit disk in R?, or more generally any solid sphere in R", is
contractible and therefore simply connected.

(2) For n > 1 the n-sphere 8" C R™! is simply connected but not

contractible. Recall that for n > 0 the n-sphere is " = {(x;, ..., xn+1) €
RG24+ 22 +---+x2,, =1} O
ExAMPLE 9.3.2

Consider the circle 8! C R?. Fix a base point on this circle and an orien-
tation for paths. Any loop that does not go all the way around the circle
is homotopic to a point. If a loop goes around a circle more than once but
not twice, it is homotopic to a loop that goes around exactly once. Further,
loops that go around exactly once are all homotopic. In general, if a loop
is homotopic to a loop that goes around the circle exactly n times, we
say that this loop has winding number n. All loops of the same winding
number are homotopic.

With these ideas it follows that the homotopy classes of loops on the
circle are precisely those loops with winding numbersn = 0,1, 2, ... and
their inverses. The inversz of 2 i25p witn winding number n also winds
n times, but in the opposite orientation. We say this has winding number
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(—n). Further, multiplication of loops is just addition of winding numbers.
Thus, multiplication of homotopy classes here behaves like addition of
integers, and hence we obtain that the fundamental group of the circle is
infinite cyclic:

mn,(sH = z.

ExampLE 9.3.3
Consider a torus T as in Figure 9.5.

Figure 9.5. Torus

General loops are homotopic to loops that wind around the inside circle
M and then the outside circle O. Such loops thus have a winding number
around M and around O. Further, loops around M and around O commute.
It follows that I, (T) is free abelian of rank two, that is,

HI(T)=ZXZ

This result can also be obtained from the following. The torus T can
be considered as a product space of two circles T = 8! x S! It can be
proved that if X, Y are path-connected spaces, then

H,(X X Y) = l'l,(X) X l'l,(Y)

Therefore,

M(T) =M x Mi(SH=2Z x Z. -

Finally, an example to show that not every fundamental group is
abelian.

ExAaMPLE 9.3.4
Consider a figure eight curve in R? as in Figure 9.6.
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Figure 9.6. Bouquet of Two Circles

As in the case of the torus, a loop is homotopic to a product of loops
around one circle and then the other. However, since the curve is planar
and one-dimensional, loops around the top circle do not commute with
loops around the lower circle. Let & be a loop that winds once around
the top circle and B a loop that winds once around the bottom circle with
given orientations. Then a general loop is homotopic to a loop of the form

a™B™ ... o™ B™ for integers ny, my, . . . Nk, My.

Such a loop is called a word in «, B, and the corresponding group is called
a free group of rank 2. This is nonabelian and not to be confused with a
free abelian group of rank 2. We won't discuss these groups further here
but refer to [Ro] for details.

More generally, a planar figure consisting of n circles touching at a sin-
gle point is called a bouquet of n circles and the resulting fundamental
group is a free group of rank n. O

The fundamental group is a homotopy invariant. In particular if X, Y
are path-connected spaces and h : X — Y is a continuous map then
for each loop @ in X, h(e) is a loop in Y. Thus h defines a map h* :
M,(X) — M,(Y) by h*[e] = [h(«)]. This map can be shown to be a group
homomorphism.

Theorem 9.3.3

If X,Y are path-connected spaces and h:X — Y is a continuous map, then
h*:I,(X) — I,(Y) by h*[a] = [h(e)] is @ homomorphism. If h is a home-
omorphism, then h* is an isomorphism. Further, if X,Y are homotopic then
I, (X) is also isomorphic to I1;(Y).

ExAMPLE 9.3.5
Consider an annular region A as in Figure 9.1. Since A is homotopic to a
circle, we have

M;(4) = M(s") = Z. 0
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We mention that every group G can be considered as the fundamental
group of a two-dimensional complex. Thus, in an abstract sense the study
of group theory is really the study of fundamental groups. We refer the
reader to either [Ro] or [C-Z] for a complete discussion of this.

We close this section by mentioning that there is a Galois theory asso-
ciated to fundamental groups of spaces that is similar to the Galois theory
of fields that we introduced in Chapter 7. We briefly describe this.

Definition 9.3.3

Let B, X be path-connected spaces. Then B is a covering space of X if
there exists a map p : B — X, called a covering map, such that for each
x € X there exists an open neighborhood U of x such that each connected
component of p~!(U) is homeomorphic te U under p.

Now, p : B — X defines a homomorphism p* : I1,(B) — I1;(X).
The covering map condition implies that this map is one-to-one, so I, (B)
can be considered as a subgroup of I1;(X). Now, if x is a particular base
point in X then several (possibly infinite) points b, may map onto x.
The groups I1,(B, b;) are all isomorphic and correspond to a complete
set of conjugate subgroups in I1;(X). Conversely, given a complete set
{H,} of conjugate subgroups in I1;(X), we can construct a path-connected
covering space B with I1;(B) = H,. The simply connected covering space
V of X corresponding to the trivial subgroup {1} is called the universal
covering space of X. We summarize these results, which are known as
the Galois theory of covering spaces in Theorem 9.3.3.

Theorem 9.3.4
(1) Let B be a path-connected covering space of a path-connected space X with
covering map p. Then:

@ p*:1;(B) — I (X)isaninjection so that I1,(B) can be considered
as a subgroup of Iy (X).

(i) Ifx € X and p~'(x) = (b} C B, then p*(I1;(B,b,)) forms a
complete set of conjugate subgroups in I (X).

(2) Given a complete set {H;} of conjugate subgroups in I;(X), there exists

a path-connected covering space B of X such that I1,(B) = H;.

9.4 Homology Theory and
Triangulations

In Euclidean n-space R" consider the standard unit vectors ¢ =

(1,0,...,0),&z = (0,1,...,0),...,ea = (0,0,...,1). Let A, =
(0,0,...,0) be the origir, and fcr1 < g < nlet A, be the convex hull
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ofei, ..., e541. This is the set of vectors in R” described by

{ueR":u=ae + -+ ag1€g4,

g+l
g, €R0<ag,<11<i<g+1 and Zai:l}'

i=1

Thus Ay is a point, A; a unit interval, A; a triangular region, Aj a solid
tetrahedron, and so on. A g-dimensional simplex in R" is any subset
homeomorphic to A,. In a general topological space X a g-dimensional
simplex is again any subset D C X homeomorphic to A,.

To build an algebraic invariant from these simplexes we must place an
orientation on them. Now, let Py, P, . . ., P, be n+1 independent points in
R". By this we mean that the vectorsu; = PyP), up = PyP;, ..., uy = PyPy
are linearly independent vectors. An oriented 0-simplex is just a point
and so is homeomorphic to Ay. An oriented 1-simplex is a directed line
segment PyP; with the convention that PyP; = —P, P,. This is equivalent
to orienting A;.

To define higher dimensional oriented simplexes we need some ideas

. . 1 2 ... n\. o
about permutations. A permutation (i ; ; ) is even if it can
1 | n

be decomposed into an even number of transpositions (see Exercise
7.18) or odd otherwise. This is equivalent to the sum of one less than
each cycle length (again see Exercise 7.18) being even or odd. Hence

(1 2 3) = (123) is even, but (1 2 3) = (12) is odd. Similarly,

2 31 21 3
1 2 3 45 . . han the fi 1
231 5 4)= (123)(45) is odd since one less than the first cycle

length is 2, one less than the second cycle length is 1, so the sum is 3.
Now, an oriented 2-simplex is a subset of R" homeomorphicto A; and
thus homeomorphic to a triangular region with a prescribed orientation
on the three vertices. This is equivalent to giving a directed sequence of
three points PyP, P;. Now, P, P, P, gives the same orientation while PyP,P;
gives the opposite orientation. In general Py P, P, = P,P;Py if the permuta-

tion ( 1 ]2 i) is even and PyP,P, = —P,P,P; if the permutation is odd.

PDPlpz = P]PzPo - P2P0P] = —P0P2P1 - PlPopz == —P2P1P0.

In general an oriented g-simplex is a subset of R" homeomorphic to
A, with a prescribed orientation on its vertices. This is equivalent to des-
ignating the simplex as a directed sequence of points PP, . .. P, as above
with PP, ... P; = %P, ... P, depending on whether the corresponding
permutation is even or cdd. We will now designate an oriented g-simplex
by a sequence of points such as #,P; . . . P,. For a general topological space
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an oriented g-simplex is a homeomorphic image of an oriented g-simplex
in R" with the orientation preserved.

For the g-simplex PyP; ... P, we use the notation PyPy P...Pyto
denote the (g — 1)-simplex formed by omitting the point P,. We then
have:

Definition 9.4.1
Suppose PyP; ... P, is an oriented g-simplex. Then fori =0, ..., g its ith
face is the oriented (g — 1)-simplex given by

(-1)'RoPy ... P,... P,

Thus, a g-simplex has (g + 1) faces.

For example, the oriented 3-simplex PP, P,P; has the 4 faces P, P,P;,
—PyP,P3, PyP,P3, —PyP;P,.

For a 0-simplex we define its boundary d, to be the empty simplex,
which is denoted by 0. Thus 3y(Py) = 0. For g > 1 we define the bound-
ary 9, of the g-simplex PyP; . .. P, to be the formal sum of its faces. That
is,

Definition 9.4.2
If PyP; ... Py is an oriented g-simplex with g > 1 then its boundary 3, is

9
34(PoPy ... P) = Y (-1)PoPr...B. .P,

=1
For the first four dimensions we have:

(1) 3(Po) = 0.

(2) 01(PoP,) = P, — P,.

(3) BZ(POP,PZ) = PP, — PyP, + PyP;.

€)) 33(P0P1P2P3) = PyP,P3 — PyP,P; + PyP,P; — PyP,P;,.

In applying a boundary operator to a formal sum of faces we do it
additively. Thus, for example,

(PiP; — PoPy) = 3,(P1P;) — 3,(PoP1)
=P, —-P —(Pr—F)=P,—2P, +PF,.
The following result is crucial to our construction of homology groups. It

says that if we apply the boundary operator twice we always get 0.

Lemma 9.4.1
For any g-simplex we have 3;_,3, = 0. Hence by additivity 3,_, 3y, applied to
any formal sum of g-simpicaes always gves 0.



9.4. Homology Theory and Triangulations 169

Proof
We show this for a 2-simplex. The computation for a 3-simplex is left to
the exercises while the general case follows in the same manner.

Let PoP, P; be an oriented 2-simplex. Then

013(PoPy P;) = 0;(PyP, — PoP, + PyP)
= 0y(P1P;) — 81(PoPz) + 0:(PoP)
=Ph-Pb—-P+P+P-PF

= 0. n

Many geometric figures in R", in particular polyhedra, are built up
in a very nice way from simplexes. These figures are called simplicial
complexes, which we formally define below. First for a g-simplex we
define its subsimplexes to be the set of all faces, all faces of faces, all faces
of faces of faces, etc. without regard to orientation. Thus, for example, the
set of subsimplexes of PyP,P,P; is

PyP,P3, PoP;P3, PyPy P3, PoP1 P,
POPIIPOPZpP0P3rPIPZ:PIP3;P2P31P0:P10P2'

Definition 9.4.3
A simplicial complex in R" is a subset satisfying the following
conditions:

(1) It is a union of oriented simplexes. Notice that in R" the maximum
dimension of a possible simplex isn — 1.

(2) Each point belongs to only finitely many simplexes.

(3) The intersection of two different (up to orientation) simplexes is
either empty or one of the simplexes or a subsimplex of both.

In Figure 9.7 picture (A) is a simplicial complex in R?, while picture
(B) is not since it violates (3).

(A) (B)
Simplicial Complex Not a Simplicial Complex

Figure 9.7. Simplicial Complexes

We now extend this definition to general topelogical spaces. As indi-
cated before, an oriented g-simplex i1 an arbitrary topological space X is a
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homeomorphism of an oriented g-simplex in some R™! with orientation
preserved. Its faces and subsimplexes are carried into the corresponding
faces and subsimplexes in X. Notice that in general there would be no
bound on the dimension of a possible simplex.

Definition 9.4.3’
Let X be a topological space. Then a simplicial complex in X is a subset
Y satisfying:

(1) It is a union of oriented simplexes. (In distinction to R” there is no
maximum dimension of a possible simplex.)

(2) Each point belongs to only finitely many simplexes.

(3) The intersection of two different (up to orientation) simplexes is
either empty or one of the simplexes or a subsimplex of both.

If there is a maximum dimension g on the simplexes in Y, then Y is
called a g-dimensional simplicial complex.

If X is a topological space that has a collection of subsets so that it can
be built up as a simplicial complex, then we say that we have a simplicial
decomposition, or triangulation, of X. It is from a simplicial decompo-
sition of a space X that we will build our next algebraic invariant. First
we give two examples in R" of triangulations.

EXAMPLE 9.4.1

Consider S! the unit circle in R? Then a triangulation as a 1-dimensional
simplicial complex is pictured in Figure 9.8. The O-simplexes are Py, P, P,,
while the 1-simplexes are PyP;, Py P;, P,P,.

Py

Py P,

Figure 9.8. Circle Triangulation o

EXAMPLE 9.4.2

Let T be a torus. We can represent this in the plane by a rectangle with
the sides identified, as in Figure 9.9. To recover the torus, fold the top side
onto the identified bottom side to get a cylinder and then identify the top
circle of the cylinder with the heticim circle
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A triangulation of the torus is then pictured in Figure 9.10 where we
triangulate the bounding circles as in the circle in Example 9.4.1 and then
form the resulting triangles. O

'

> )— o 0

P > P

Figure 9.9. The Torus in the Plane

M
P > P
2 4
1 3 5
6 8 10
(o) (0]
7 9 11
12 14 16
13 15 17
4 > P
M

Figure 9.10. Triangulation of a Torus

Now we build groups from a triangulation. The spaces X we consider
are simplicial complexes, and we also add the following finiteness con-
dition: At each dimension g, there are only finitely many g-simplexes in
X. This is not essential, but it is all we need for our applications and for
the Fundamental Theorem proof. So now suppose X is a simplicial com-
plex with the above condition. For eachn = 0,1,2,...... let Cy(X) be
the free abelian group of rank equal to the number of n-simplexes. We
call this the n-dimensional chain group. An element of C,(X) is called
an n-dimensional chain. Suppose X has t, n-simplexes D}, D2, ..., Di,.
Then we can consider these as a basis for C,(X). Hence, an element of
Cn(X) can be considered as a sum

mD} + myD? + ... + m,D},, with m; arbitrary integers (9.4.1)

(Note that since C,(X) is an abelian group, it is standard to employ additive
notation, that is, to consider the group operation as addition.) Thus an
n-dimensional chain is a sum of the form (9.4.1).

If D is an n-simplex in X, then its boundary 3,D¥, as defined earlier, is
asum of (n— 1)-simplexes. Thus é,1% ¢ &,_,(X). This boundary operator,
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dy, is defined on all elements of a basis, so it can be extended to a homo-
morphism of the whole group. Hence the boundary homomorphism
is

On : Cn(X) - Cn—l(X)p
given by
dn(myD} + myD2 + ... + mD})) = mdn(D}) + - . . + m9(D},).

From Lemma 9.4.1 we have that 3,19, : Co(X) — Cn_2(X) is always
the trivial homomorphism.

The kernel of 9, consists of all n-chains whose boundary is zero. We
call these the n-dimensional cycles. The kernel is then a subgroup of
Cn(X), called the n-dimensional cycle group, denoted by Z,(X).

The image of Cyp41(X) in C,(X) under 3,4, is called the n-dimensional
boundary group, denoted by B,(X). Thus, an n-chain is in B,(X) if it
is the boundary of an (n + 1)-chain. From the fact that 3,9,4+1 = 0 we
have that B,(X) must be a subgroup of Z,(X), that is, each n-dimensional
boundary is an n-dimensional cycle.

Since all these groups are abelian, all subgroups are normal, and hence
Bn(X) is a normal subgroup of Z,(X). Therefore, we can form the quo-
tient group Z,(X)/B,(X). This quotient group is called the n-dimensional
homology group, denoted by H,(X). We summarize all this.

Definition 9.4.4
If X is a simplicial complex with the above condition, then:

(1) Cu(X) is the n-dimensional chain group, which is the free abelian
group with basis the n-simplexes in X.

(2) 3 : Cu(X) = Cu1(X) is the boundary operator, which is
the homomorphism formed by extending the boundary operator on
simplexes.

(3) Zx(X) is the n-dimensional cycle group, which is the kernel of
the boundary homomorphism 3, : C,(X) = Cu_1(X).

(4) By(X) is the n-dimensional boundary group, which is the image
of Cp41(X) in Cy(X) under the boundary homomorphism 9,4, .

(5) Ha(X) is the n-dimensional homology group, which is

Zn(X)/ Ba(X).

Two cycles in C,(X) that differ by a boundary - that is, lie in the same
coset of B,(X), are said to be homologous.

These definitions appear to depend on the particular triangulation of
the space X. That is, if X had a different simplicial complex then per-
haps the homology groups might be different. The following important
invariance theorem says that this cannot be true and is really where the
strength of the combinatorial topological approach lies.
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Theorem 9.4.1

Suppose X is a topological space that has a simplicial decomposition. Then
the homology groups determined from this decomposition are isomorphic to
those determined by any other simplicial decomposition of X.

Homology is also a topological invariant, actually a homotopy invari-
ant. Each continuous map f : X — Y defines a map on simplexes and
can be extended to a homomorphism between homology groups. This is
similar to what we did for the fundamental group in the last section. If this
continuous map is a homeomorphism then the resulting homomorphism
is an isomorphism.

Theorem 9.4.2

Suppose X, Y are topological spaces with simplicial decompositionsand h:X —
Y is a continuous map. Then h induces a homomorphism h*:Hp(X) — Hy(Y)
for all n. If h is a homeomorphism, then h* is an isomorphism. Further, if X, Y
are homotopic then the homology groups are also isomorphic.

The last statement in Theorem 9.4.2 says that homotopy is a
stronger invariant than homology, that is, homotopic spaces cannot be
distinguished by homology.

9.5 Some Homology Computations

Before moving on to the homology of general spheres and Brouwer de-
gree, which are the basis for our final proof of the Fundamental Theorem
of Algebra, we give some elementary examples of homology calculations.
To find the homology of a space X we need a simplicial decomposition -
any one will do, from Theorem 9.4.1. This is in most cases quite difficult,
so consequently many techniques and results have been developed to
aid in the computation of homology. We mention several of these that we
will use in our examples.

If X has a g-dimensional simplicial decomposition, that is, no simplexes
of dimension higher than g, then clearly H,(X) = 0ifn > g.

Next, if X is a contractible space, then it is homotopic to a point. Since
homotopy preserves homology, the homology of a contractible space is
the same as the homology of a point P. Clearly, Zy(P) = Z while By(P) = 0
since P is O0-dimensional. Therefore, Hy(P) = Z, and H,(P) = 0ifn > 1.

Theorem 9.5.1
If X is a contractible space, then Hy(X) = Z and H,(X) = 0ifn > 1.
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Now, if the space X is not connected, it will decompose into a disjoint
union of connected pieces. These are called the connected components
of X. Suppose X has a simplicial decomposition. Then within each of
these connected components each vertex point P is a cycle. Further, if
Py, Py, ..., P, are the vertices within a component, then

Pi=Py+ (P —F)+---+ (Px — Pr-1).

Now, each P, — P, is aboundary and hence in By(X). Therefore, each vertex
is in the same coset of By(X). It follows that Ho(X) = Zo(X)/Bo(X) is just
free abelian of rank one with a basis of a single vertex. The same would
be true within each other connected component. Therefore, we have the
following result.

Theorem 9.5.2
If X is a simplicial complex with n connected components, then

Ho(X) = free abelian of rankn = Z"

Finally, the following result can be proved. This not only allows a
computation of H; when II, is known but gives a relationship between
homology and homotopy. Recall that if G is a group, its abelianization is
G® = G/G’ (see Section 9.2). If G is abelian, then G = G.

Theorem 9.5.3
If X is a path-connected simplicial complex then

H(X) = M ()%
If T} (X) is abelian then Hy(X) = I1,(X).

ExaMPLE 9.5.1
We compute the homology of the circle S!. A triangulation was given in
Figure 9.8. Clearly, the homology of S! is the same as the homology of a
triangle, the boundary of a 2-simplex.

Since §' is connected it has one connected component and we have
Ho(S8') = Z. Further, since 8! is 1-dimensional, Hn(S') = 0 forn > 1.

We saw in Section 9.3 that IT,(§8') = Z which is abelian. Therefore,
H,(8") = I1,(8") = Z. We could also obtain this result directly from the
triangulation.

Ci(8") is free abelian with basis PyP;, P,P;, P,P,. A 1-chain is then of
the form

myPoPy + myP, P, + m3P, P, for integers my, my, ms.

The only way the vertex P, will be eliminated in forming the boundary is
ifm) = —m,. Similarly, the only way P, willbe eliminated is if m3 = —mj.
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It follows that a 1-cycle must have the form
m(P()Pl — PiP; + PzPo), meZ.

Thus, any cycle must be a multiple of the single 1-chain PoP; — P, P, + P, P,,.
It follows that Z,(§') = Z. Now, B(S') = 0, since there are no 2-chains,
so Hy(S8)) = Z,(8')/By(S') = Z. 0O

EXAMPLE 9.5.2

Consider the 2-sphere §2 Just as S! could be triangulated to look like a
triangle, $? can be triangulated to look like the surface of a tetrahedron,
as pictured in Figure 9.11.

Py

Figure 9.11. Triangulation of the 2-Sphere

Now, this is connected, so Hy(8*) = Z. Any loop on the surface of a
sphere can clearly be shrunk to a point, so that I (§%) = 0. From Theorem
9.5.3, then, H;(S?) = 0. Since this is 2-dimensional, we have H,(§%) = 0
ifn > 2. We now consider Hy(S?).

A 2-chain has the form

my PoPy Py + maPy P, Py + maP; P3Py + myP3PyPy, m; € Z.

If this were a cycle, the common edge of the faces PyP,P,, Py P,P3, which
is P, P;, would have to be eliminated. This would imply that m; = —m,.
By an identical argument on the other faces we then have that a cycle
must have the form

m(P()Ple — PiP,P; + P,P3Py — P3POP1), m e Z,

that is, a multiple of a single 2-chain. It follows that Z,(S%) = Z. We have
By(8%) = 0, since it is 2-dimensional and there are no 3-chains. Then
Hy(8?) = Z5(S?)/B3(S%) = Z.
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Hence in summary,
Ho($%): =Z;
H, (8 = Z;
H, (8 =0ifn #0, 2.

EXAMPLE 9.5.3
Consider a torus T. A triangulation was pictured in Figure 9.10. T is con-
nected, so Ho(T) = Z. The group I1,(T) was free abelian of rank 2, so
HMEN((T)=ZxZ

A 2-chain is a sum of the seventeen triangles (2-simplexes) pictured
in Figure 9.10. As in the argument for the circle and in the argument for
the sphere, the only way the common edge of triangles numbered 1,2
will cancel in taking the boundary is if the coefficients are of the same
magnitude but of different signs. If we let T,,.. , Ty7, denote these 2-
simplexes then this argument leads to the fact that a 2-cycle in T is a
multiple of Ty, — T, + T3 — - - - + T7. It follows that Z,(T) = Z, and since
By(T) = 0, the torus being 2-dimensional, we have H,(T) = Z.

Finally, Ho(T) = 0ifn > 2. O

EXAMPLE 9.5.4

Consider X to be a figure eight - bouquet of two circles as seen in Figure
9.6. If we triangulate each circle as in Example 9.5.1 we get a triangulation
of this figure as a 1-dimensional simplicial complex.

Since this figure is connected Ho(X) = Z. The group I1,(X) is a free
group of rank 2 (see Section 9.3). The abelianization of such a group is
free abelian of rank 2. Therefore, H,(X) = I1,(X)*® = Z x Z. Finally,
Hu(X)=0ifn > 1. 0

9.6 Homology of Spheres and Brouwer
Degree

We saw in Example 9.5.2 that if n > 1, then H,(8%) = 0if n # 2, and
H,(8%) = Z. This is a general property of spheres that is crucial in form-
ing our final proof. Recall that an n-sphere is a set homeomorphic to
8" = {(x0,---, %) € R™; 22 + --- + 22 = 1}. In general, an n-sphere is
homeomorphic to the surface of an (n + 1)-simplex. Thus, the 1-sphere
' is homeomorphic to a triangle, the 2-sphere §2 is homeomorphic to
the surface of a tetrahedron, and so on. By extending and refining the
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arguments used in Examples 9.5.1 and 9.5.2, the following can be proved.
We refer to [Be] for a detailed proof.

Theorem 9.6.1
Let S" be an n-sphere with n > 1. Then Ho(S™) = Z, and for q > 1,

Hy(S") = Z,
Hy(8") =0ifn #gq.

Now, suppose §", £" are two n-spheres, and consider a continuous map
f 8 — ZT" This induces a homomorphism f* : H,(S") = Hy(Z").
From Theorem 9.6.1, H,(S") is infinite cyclic. Suppose « is a generator of
Hu(S™). Similarly, H,(Z") is infinite cyclic and suppose B is a generator.
Then since f* is a homomorphism, f*(«) is an integer multiple of 8. That
is

f*(@) = mp for some integer m.

The number m is called the Brouwer degree, or degree, of the map f
We abbreviate this by deg(f). Intuitively, deg(f) is the algebraic number of
times that the image f{S") winds around X"

The following three results on degree are the critical ones for the proof
of the Fundamental Theorem of Algebra. The proofs are lengthy and we
leave them out. They can be found in [H-Y].

Lemma 9.6.1
The degree of a continuous map is independent of the simplicial decompositions
of 8" and T".

This lemma is needed because even though H,(S") and H,(X") are
both infinite cyclic, the action of f on the cycle a generating H,(S") may
be different for different simplicial decompositions. The lemma says that
in mapping to another sphere, up to homology this does not happen.

Lemma 9.6.2
(1) The degree of a continuous map f of an n-sphere S" into an n-sphere "
depends only on the homotopy class of f In particular, two homotopic maps
f:8" —> X" g:8" — X" have the same degree.

2 Iff:S" > X" g:8" — X" are two continuous maps with deg(f) =
deg(g), then f and g are homotopic.

This lemma serves to classify completely, up to homotopy, the contin-
uous mappings between n-spheres. In particular, the homotopy classes
are in one-to-one correspondence with the integers.
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Theorem 9.6.2
Iff:8" — X" and deg(f) # 0, then each point of £" is in the image of f(S").

This last theorem will be the key result in our final proof.

Before closing this section, we state a famous result due to Brouwer -
the Brouwer fixed point theorem - that also is proved using Brouwer
degree. If f : X — X, then a fixed point for f is a point xy € X such that

f(x0) = xo.
Theorem 9.6.3
(Brouwer Fixed Point Theorem) Let D" be the n-ball, that ts, the interior and

boundary of the unit sphere S"™! C R". Suppose f:D" — D" is a continuous
map. Then f has at least one fixed point.

9.7 The Fundamental Theorem of
Algebra - Proof Six

We can now give our final proof. Consider a unit sphere $? tangent to the
complex plane C at the origin (0, 0, 0) as in Figure 9.12.

N(O©,0, 1)

(0,0,0)

p(w)

Figure 9.12. Stereographic Projection

We map this sphere onto C in the following manner. Let N = 0,0,1)
be the north pole, and for any point w € §? — N form the line joining
w to N. This line will intersect C in a unique point p(w). This mapping
is called stereographic projection. The equations for this map can be
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explicitly derived (see [A]), but all we need is that p is a continuous bi-
jection between C and §? — N. If we identify the north pole N with oo,
then p is a bijection of all of §2 with C U co. The map p can be shown to
be conformal, and thus S§? provides a conformal model of the extended
complex plane C U co. When we look at §2 in this manner, it is called the
Riemann Sphere.

Theorem 9.7.1

Stereographic projection p provides a conformal bijection between S? and C U
00.

Now, suppose P(z) = ap + a1z + - -+ + anz", a, # 0, is a nonconstant
complex polynomial of degree n. Since we are trying to find a root of
P(2) and a, # 0, we can without loss of generality assume that a, = 1.
Therefore, consider P(z2) = ap + a1z + --- + 2", n > 1. Since P(c0) =
00, P(2) can then be considered as mapping the Riemann sphere to the
Riemann sphere, that is, P(z) is a continuous map §2 — §2. As such it has
a Brouwer degree m. We first show that its Brouwer degree is the same as
its polynomial degree.

Lemma 9.7.1
P(z) is homotopic to the map f(z) = 2"

Proof

Let H(z,t) = z"+ (1 — t)(@o + mz + -+ + ap1 2" ') forz € C,t € [0, 1]
and H(oo, t) = oo for t € [0, 1]. Clearly, H(z, t) is continuouson C x I —
C. Now, lim,_, . H(z,t) = oo = H(oo,t) for all t € [0, 1], so H(z,t) is
continuous from (CUo0) x I — CU 00, and thus from §? x I — §2. Since
H(z,0) = P(z) and H(z, 1) = z", this defines a homotopy. |

Lemma 9.7.2
The Brouwer degree of f(z) = z" is n. Thus for complex polynomials, Brouwer
degree and polynomial degree coincide.

Proof
Consider the two triangulations of $? (considered as C U 0o0) pictured in
Figure 9.13.

Under f{z) = z" the n-shaded pieces in figure (A) are mapped onto the
one-shaded piece in figure (B) in an orientation-preserving fashion. It is
clear then that f will map a cycle in the triangulation (A) to n times the
cycle in triangulation (B). Therefore, the degree of z" is n. ]

Theorem 9.7.2
(Fundamental Theorem of Algebra) Suppose P(z) is a nonconstant complex
polynomial. Then P(z) has & complex rost.
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27/n
==
——

(B)

Figure 9.13. Winding of f(z) = 2"

Proof

Suppose P(z) = ao+ @z + - - - +anz" Since P(z) is assumed nonconstant,
n > 0anda, # 0. Therefore, as before we can assume that a, = 1. From
Lemma 9.7.1, P(z) is homotopic to f{z) = z", and therefore, from Lemma
9.7.2 and Lemma 9.6.2, P(2) has Brouwer degree n # 0. From Theorem
9.6.2 each point of §? is then in the image of P(z). In particular there exists
at least one point zg € 82 with P(z,) = 0. Since P(00) = 00, it follows that
29 € C. [ |

9.8 Concluding Remarks

This completes our final topological proof and the last of the three pairs
of proofs toward which these notes were directed. Notice that in the topo-
logical situation both the straightforward proof given in Section 8.1 and
the final proof given in the last section involved the use of winding num-
ber. Notice also that for the Fundamental Theorem of Algebra we really
didn't need the full power of general Brouwer degree, only Brouwer de-
gree for 2-spheres. In Appendix D we present two additional topologically
motivated proofs that are slightly different variations on this theme.

Exercises
9.1. Prove that if H and K are groups, then their Cartesian product H x K is also
a group under (h, k)(hi1, k1) = (hhy, kk;).
9.2. Prove Lemma 9.2.1.

9.3. Prove Lemma 9.2.2.
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9.4.

9.5.

9.6.

9.7.

9.8.

9.9.
9.10.
9.11.

9.12.

9.13.
9.14.
9.15.

Prove that if p, g are relatively prime integers, then Z, x Z, is cyclic. This
shows that the direct product of cyclic groups can be cyclic.

Show that Z; x Z; is not cyclic. This shows that the direct product of cyclic
groups may not be cyclic.

Prove that every finitely generated abelian group is a direct product of cyclic
groups. (Hint: Show it for two generators.)

Prove that a finite abelian group is a direct product of abelian p-groups.
(Hint: In G consider all elements of order a power of p for p a prime dividing
the order of G. Show that this is a subgroup and G is the direct product of
all the subgroups of this form for all primes dividing the order of G.)

Give a complete classification of all finite abelian groups of the following
orders. (i) 25 (ii) 45 (iii) 37 (iv) 1284

Show that if X, Y are homeomorphic, then they are homotopic.
Show that all contractible spaces are homotopic.

Describe a general element of the fundamental group of a bouquet of n
circles.

Suppose IM;(X) = Z; x Z3. Up to homotopy, how many possible covering
spaces of X can there be?

Determine the homology of a bouquet of n circles.
If PyP, P;P; is a 3-simplex, verify that 8,83(PoP; P.P3) = 0.

Compute the homology of two tangent 2-spheres.



A Version of
 Gauss's
erennx | Original Proof

Gauss's first proof of the Fundamental Theorem of Algebra was essentially

different from any of the six that we have looked at up to this point.

This original proof was given in his Ph.D. dissertation of 1799, and his

fourth proof, published in 1849, is another presentation of the first. In

this section we give a relatively modern version of Gauss's original proof.

This demonstration borrows freely from the book of Uspensky [U].
Suppose

) =2"+ an12" + -+ + ag

is a nonconstant complex polynomial. As before, we can assume that the
leading coefficient is 1 and the constant term aq is nonzero. Further, we
can assume that n > 2. The case n = 1 is just a linear polynomial and
thus clearly has a root, while the case n = 2 is handled by the quadratic
formula. With the assumption that n > 2 suppose the coefficients are
given in polar form by

an-y = A(cosa +isina),a,_; = B(cos B + isin f), ...,
., ap = L(cos A 4+ isin})

and the variable z = r(cos ¢ + i sin ¢). The polynomial f{z) can be written
in terms of its real and complex parts (see Chapter 4) as

flz) = T(@) +iU(). (A1)

Using DeMoivre's theorem and the polar representation of the
coefficients, T and U can be expressed explicitly in terms of r and ¢ as

T =r"cosng + Ar" "' cos((n — ¢~ a) +--- + Lcos A, (A2
182
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U=r"sinng + Ar"'sin(n—1¢p +a)+---+Lsinr. (A.3)

To prove the Fundamental Theorem of Algebra we must show that
there exists a point zo where T\(z,), U(2o) are simultaneously zero.
First of all, it is possible to find a real number R such that forr > R,
™ —V2(Ar"' + B2 4 ... 4 L) > 0. (A.4)

To see this, let S be a real constant greater than all the magnitudes
A,B,...,L. Thentake R =1 + +/2S.Ifr > R, thenr > 1 + +/2§, and so

1 — Y28 > 0.Sincer >R > 1,wehavethat + + L +.--+ L < L.
It follows then that
1 1 1
M1—-vV28(= 4+ = +---+ —)) >0

(1= VaS(~ +  +-o- 4 )

hence
M —V280" - 41) > 0

and so

r— J2(Ar" + B2 ...+ L) > 0.

Second, the circumference of a circle of radius r > R will consist of 2n
arcs, inside of which T takes alternately positive and negative values as
in Figure A.1.

T<0

T>0
Py
Figure A.1. T on a Circle of Radius r

To see this, consider & = 47/n, and on a circle of radius r > R consider
4n points Py, Py, .. ., P4y with respective arguments 6,36, ..., (8n —
3)6, (8n — 1)6.

The arguments corresponding to Py, and Pzy; are ¢ = (4k +1) 5~ and
¢’ = (4k + 2) 7, . It follows that

1
cos(ng) = (—i)* 7 and cos(r¢'y = (-1)" —.

&.-.
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Multiplying the corresponding values of T by (—1)* and (-1

respectively we obtain
n

(—1)T = r—z + (=1)*Ar"1 cos((n — 1)p + &) + - - - + (—=1)*L cos A

/2

rn

/2

+---+ (=1)**'LcosA.

(—D)T = + (-1 Ar"! cos((n — 1)¢' + a)

Replacing (—1)* cos((n — 1)¢ + @), ..., (—1)* cos A, and (—1)**! cos((n —
1)¢' + @), ..., (=1)"*! cos A by —1 we get the following inequalities:

rn

- 14
(-1)'T > 7 — AR — ... -1,
)T > T AR L.
V2

The right sides of both of these inequalities are positive by the choice of
R, thus proving the original statement.

Now, since T varies continuously with ¢, it follows that it will be zero
at least 2n times on the circle. Suppose there are 2n zeros at the points
Qop, Qi, - - . , Qzn-1, which have arguments between 6, 36, 56, 76, . . ., (8n —
3)6, (8n — 1)8 respectively. Let ¢ = tan(¢/2), and then

cos ¢ 1-¢ sin ¢ 2
= — ,sin¢ = .
1+ ;2 1+ cZ
Now letz = r( :—;g +1i lf_‘cz )- Then if we consider the original polynomial
f(2), its real part T becomes
_ Pan({)
A+

Here p;,(¢) is a real polynomial of degree no higher than 2n. Since this
polynomial has 2n zeros, it must be of degree exactly 2n, and there can
be no other roots. Therefore, Qp, Qi, .. , Qzn—; are the only points on this
circle where T, vanishes and hence the positive and negative values of T
alternate on this circle, as pictured in Figure A.1.

Thirdly, the values of the imaginary part U are positive at Qp, Q, . . .,
Q2n-2 and negative at Q;, Qs, ..., Qzp—1- The argument ¢ of Qi lies be-
tween (4k + 1)m/4n and (4k + 3)n/4n. It follows that (—1)* sin(ng) >
1/4/2. Multiplying U by (—-1)* and replacing (—1)*sin((n — 1)¢ +
@), ..., (—1)" sin A by —1 we have the inequality

(=1)*U > (1) sin(ng) — AR — ... — L

and hence also the inequality
(- 2 =

V2

—AR™' —... L.
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The right-hand side is positive by the choice of R and therefore the sign
of U at @ is (—1)*

Now choose a circle T" of radius r > R. Its circumference is divided
into 2n arcs by points Q, . . ., Q2,-1 between which the sign of T alter-
nates. As we expand the radius of the circle I" the arcs QyQ;: Q1Qz; etc.
sweep out 2n regions extending to infinity within which T has alternately
positive and negative values and these regions are separated by curves
on which T = 0. Borrowing from Gauss and Uspensky’s treatment, call
the regions outside of I' where T > 0 seas and the regions where T < 0
lands. The curves where T = 0 are then seashores. The n seas and n
lands extend themselves into the interior of I' across the various arcs.
Starting from Q;, move along the seashore so that the land is always on
the right heading inward. We must eventually exit I', and when we cross
it again the land must still be on the right. If the circumference is fol-
lowed counterclockwise, lands and seas alternate. It follows then that we
must exit I' heading outward at an even point Qax, that is at Q;, or Q,
etc. Thus there is a continuous path y leading from Q; to some point Qz.
On path y, T = 0. At Q;, U < 0, whereas at point Qx, U > 0. Since U
is a continuous function along the path y, at some point on y it takes the
value 0. At this point T, U are both zero, which gives the existence of a
root.
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Figure A.2. Lands and Seas for a Certain Fifth-Degree Polynomial
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The picture in Figure A.2 illustrates this for a special polynomial of
degree 5 studied by Gauss. Starting from Q,, we move along the shore
to Q;. At Q, U < 0, while at Q;, U > 0. Along the shore T = 0, so
there must be a point, marked A in the figure, where U = 0. This point
represents a root. Similarly, the points B, C, D represent roots. The point
C is a double root while the others are simple roots.



- Cauchy’s
 Theorem
wrrenoix | REVISited

In Chapter 5 we gave our second proof of the Fundamental Theorem of
Algebra based on Liouville's theorem in complex analysis. This in turn
was based on Cauchy'’s theorem which says that if f{2) is analytic in some
domain U, then fy f(2)dz = 0 for any closed continuously differentiable
curve y in U. At that time we gave a proof that depended on Green'’s
theorem which in turn depended on the fact that f'(z) is continuous.
This was Cauchy’s original proof. However, we mentioned that Goursat
removed this restriction. In this section we return to this important the-
orem and give a proof of the Cauchy-Goursat theorem for star domains.
In Appendix C, using some of the ideas we develop here, we will give
three additional complex-analytic proofs of the Fundamental Theorem of
Algebra.

A domain U in C is path-connected if any two points z;, z; € U canbe
connected by a curve totally in U. Further, an open region U C C is path-
connected if and only if for any two points z;, z; € U there is polygonal
curve between z,, z;. (By a polygonal curve we mean a curve made up of
finitely many straight line segments. In the case of an open region this
polygonal curve can be taken so that the linear pieces are parallel to the
coordinate axes.)

We must extend somewhat the concept of line integrals. Let U be a
regioninCandlety; : [a;, b)) > U C C,a; < b;, 1 = 1, 2, be two curves
in U such that y;(b1) = y2(a2). Then the sum y = y; + y; in U is defined
as the curve

vila,bp —az + b > U

187
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where
nt) = yni(t) ift € [a1, by] and
y(t) = )/Z(t +a2 - b]) ift € [bhbz — az + bl]

Analogously, we can define the sum y; + y; + - - - + ym of finitely many
curves in U. This addition of curves is associative.

Acurve y : [a,b] = C,a < b, is called piecewise continuously dif-
ferentiable if there are finitely many continuously differentiable curves
W, .-.,¥Ym sSuch that y is the sum y = y; + --- + yn, that is, there are
points a;,az, ..., am+; Witha = a; < az < --- < amy1 = b such that
¥ is a curve with domain |[g;, ai11],1 < i < m, and is continuously dif-
ferentiable. For example, each polygonal curve is piecewise continuously
differentiable.

Now let U be an open region in C and y : [a,b] — U a curve that is
the sum y = y; + - -+ 4+ ym of finitely many continuously differentiable
curves yi, - . ., ¥m- Suppose f : U — C is a continuous function. Then we
define the line integral

f flz)dz = Z f fl2)dz.
The arc length of y = 3 + - -+ + ym as above is defined by L(y) =
L(y1) + -+ + L(¥m), where as in Chapter 5 we have
L(y) =/ |dz| fori=1,...,m.
Y

If Ifiz)] < M on y, then from Lemma 5.2.1 and the definition it follows
that

| | < ML,
Y

For the remainder of Appendices B and C we assume always that a
curve is piecewise continuously differentiable as defined above.

Definition B.1
A subset M C C is starlike if there is a point z; € M such that for each
z € M, the line segment z;z is contained in M. z, is called a center of M.
Clearly, starlike sets are path-connected.

U C Cis a star domain if U is open and starlike.

ExAMPLE B.1

The following sets are all star domains.
(a) C or R with center 0.
(b) Any open circular region.
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(c) H = {z; Imz > 0} with center i.
@DC =(z;z¢éRorze R,z > 0}. O

Definition B.2
Let U C Cbe open and f : U — C be continuous. An analytic function
F :U — Cis a primitive function for f in U if F' = f.

We obtain from Chapter 5 and the above definitions that if F is a
primitve function for f in U, then

[ @iz = [ Faiz = Foren - Foreon,
1 4 14

where (t1), Y(to) are the endpoints of the curve y. Hence, if a continuous
function has a primitive function in U, it satisfies Cauchy’s Theorem.
Goursat’s proof consists essentially in showing that any analytic function
in a star domain has a primitive function. We first must relate integrability
to the existence of primitive functions.

Definition B.3
Let U c Cbe open. Then f : U — C is called integrable in U if f is
continuous in U and if f has a primitive function in U.

Theorem B.1
(Criteria for Integrability) Let U be a domain and f:U — C continuous in U.
Then the following are equivalent:

(1) f is integrable in U.

(2) For each closed curve y in U we have [ f(z)dz = 0.

If (2) is fulfilled, fix a point z; € U and for each z € U choose a curve y
from z, to z. Define

= dz, U.
F(2) /y fl2)dz, z €
Then F(2) is a primitive function for f(z) in U.

Proof
(1) clearly implies (2), so we must only show that (2) implies (1). Further,
it is enough to show that F(z) as defined in the statement is a primitive
function of f{z). Thus, we must show that F'(z) = f{z) forallz € U.

Since [, f{z)dz = O for each closed curve y in U, the function F(2) is
well- deﬁned (see Theorem 5.2.2). The proof is then the same as the proof
of Theorem 5.2.2.
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F(2) = lim Kz + Az) - F(2)

Az—0 Az
1 z+A0z z
= Allr—l;lo E( 3 flw)ydw — ]; 0 fAw)dw)
z+40z
= lim — flw)dw.

Az—>0 Az z

Since f{z) is continuous, it can be shown (see the exercises in Chapter
5) that

z+40z
/ flw)dw = (f(2) + €)Az,

where € > 0 as Az — 0.
Therefore,
z+Az

lim flw)ydw = f(z),

Az—0 f,

and hence F'(2) = f(2). |

We now show that in a star domain U the integrability of f{z) follows
from the fact that f,, f(z)dz = 0 for the boundary of any triangle A in U.

Theorem B.2

(Triangle Criterion for Integrability) Let U be a star domain with center z,
and let f:U — C be continuous. If

flz)dz = 0
a

for the boundary dA of each triangle A C U with z, as a vertex, then f(z) is
integrable in U.
Further, the function

F(2) = [ flz)dz

PA174

is a primitive function for f(z) in U, and in particular, [ f(z)dz = 0 for any
closed curve y in U.

Proof

F(2) is well-defined, since z;z C U for all z € U. Letc € U be fixed and
choose z € U such that the triangle A with vertices z,, z, ¢ is contained
in U. We picture this in Figure B.1. Since [, f(Z)dz = 0, we get that

F(2) = F{¢) + / Fwdw.
[

¥4
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Figure B.1. Triangle Criterion

Then as in the proof of Theorem 5.2.2 and Theorem B.1 we get that F is
a complex differentiable function with F'(¢) = f{c) for ¢ € U. |

We can now give the key criterion in Goursat's proof of the extended
Cauchy theorem.

Theorem B.3
(Integral Lemma of Goursat) Let U C C be open and f:U — C be analytic.
Let A C U be a triangle. Then

fm)‘(z)dz =0.

Proof
First we mention two elementary geometrical facts. Let A be any triangle
and let L stand for length.

(1) Max,,.ealw — z| < L(3A).

(2) L(3AY) = %L(&A) for each of the four congruent subtriangles A’
formed by drawing the line segments connecting the midpoints of the
sides of A. These subtriangles are pictured in Figure B.2. [ ]

Now define v(A) = [, f(z)dz. We draw the line segments connecting
the midpoints of the sides of A to get four congruent subtriangles A,,
v =1, 2, 3, 4 as in Figure B.2. We then have

4

4
Y(A) = .; /a ) flaydz =) v(Ay),

v=1

since the integrals over the connecting lines occur twice with different
signs and thus cancel. We picture the situation in Figure B.3.
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4|

5]

3

Figure B.2. Congruent Subtriangles

=

Figure B.3. Congruent Subtriangles
From the four integrals we choose one with maximal absolute value
and let A! be the triangle for this chosen integral. Then
lv(A)| < 4lv(Ah|.

Now we apply the same division and selection procedure to obtain a
second subtriangle A% with

lv(A)] < 4ju(AY)| < 4%jv(AD)).
If we continue in this manner we get a descending sequence
A'D>A*D .- A" D -
of bounded closed triangles with
lv(A)| < 4"[v(AM,n=1,2,...

From the second elementary geometrical remark made at the start of
the proof we have that

1
LEA™) = —L(@EA),n=1,2...

From the nested rectangles property in R? we have that the intersection
N2, A" contains exactly one point ¢ € A. Since f(2) is analytic there is a
continuous function g : U — C with

fiz) = flc) + f'()(z — ¢) + (2 — ¢)g(2), z € U with g(c) = 0.
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From the existence of primitive functions we have that
fle)dz = 0 and / f'(c)(z —c)dz =0 for alln > 1.
aan ann
Hence we have that

v(A™) = / (z — 0)g(2)dz,n > 1.
aan
This gives

V(A™) < maxean(lz — cllg(2))L(OA™).

From the first elementary geometrical fact mentioned, this inequality
leads to

U(A™) < (L(AA™)max,eannlg(2)l,n = 1,2,...
Altogether, we get that
[v(A)| < 4"v(A™)| < L(3A)Y?max,eanng(@),n =1,2,...

Since g(c) = 0 and g(2) is continuous at c, it follows that for each € > 0
there isad > 0 with |g(2)| < € on the ball B;(c) of radius § centered on c.
For this § there is a positive integer ng such that A" C Bs(c) for n > ny.
Hence |g(2)| < € on the boundary of A" for all n > ny, and hence

[v(A)| < (L(3A))%e.

Since L(dA) is fixed and € > 0 is arbitrary, it follows that v(A) = 0,
proving the theorem.

We now have the general Cauchy’s theorem for star domains. This is es-
sentially the same theorem as was stated in Chapter Five. However in the
proof we outlined there, we used Green's theorem, which assumed that
the derivative f'(z) was continuous. This turns out always to be the case.
However, it is a consequence of the general Cauchy-Goursat theorem
which just assumes that f{z) is analytic.

Theorem B.4

(Cauchy-Goursat Theorem for Star Domains) Let U C C be a star domain
with center zy and let f:U — C be analytic. Then f(2) is integrable in U, and
the function

Fiz)= | flz)dz

ZpZ

is a primitive function for f(z) in U. Further, it then follows that

fy fiz)dz = 0

for any closed curve y in U.
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Proof
We have [, f{z)dz = 0 for the boundary 9A of each triangle A C U. The
result then follows directly from the criterion for integrability. n

We give an example of Cauchy’s theorem for star domains. Let C~ =
{ze C;z € Rorz > 0}. C™ is a star domain with center 1. Let f{z) = 1/z.
Then f{z) is analytic in C~ and f-(1/2)dz is a primitive function for f(z).

Choose a curve from 1 to z = re® as follows: take first the line segment
on R from 1 to r and then the circular arc along z = re*® from r to z. Then

dz rodt 6 . it
f —=/ —+/ Tz.—dt:logr+i6,
1z 2 1 t 0 rett

the main branch of the complex logarithm function in C~

Using the Cauchy-Goursat theorem, Cauchy’s integral formula and the
Liouville theorem follow as in Chapter 5. From this we obtained our sec-
ond proof of the Fundamental Theorem of Algebra. In Appendix C we use
some other results in complex analysis to give three additional analytic
proofs.
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Complex Analytic
Proots of the
Fundamental

APPENDIX ThCOI'Cm Of
- Algebra

The complex analysis proof for the Fundamental Theorem of Algebra that
we gave in Chapter 5 was based on Liouville’s theorem (Theorem 5.4.1).
In this appendix we give three additional proofs not based on this result.
We need two preliminary results. The first is a direct consequence of the
Cauchy integral formula (Theorem 5.3.1).

Lemma C.1

(Mean Value Theorem and Inequality for Complex Integrals) Let U C C be
open, f:U — C be analytic, and let B = B,(zo) be a circular disk of radius
r > 0 centered on zy and contained in U. Then using the parametrization
¥(t) = zo + re",0 < t < 27, for 3B we get

2
flz0) = —21— flzo + ref)dt (Mean Value Theorem)
T Jo

and

Iftzo)] < maxslfl  (Mean Value Inequality).

The second preliminary result that we need is called the growth
lemma.

Lemma C.2
(Growth Lemma) Let p(2) = ap + a1z + - - - + anz" be a complex polynomial
of degree n > 1 (so0 a, # 0) Then there exists an R > 1 such that for all
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z € C with |z| > R we have

1
ElanIIZ"I < Ip@)| = 2laxllzI".
In particular, it follows that |p(z)| — oo as |z| — oo.
Proof
Let 7(z) = laol + laillz] + - - - + lan-allz]"™! Then
lanllz]" — 7(2) < |p(2)| < lanllz]" + 1(2)

by the triangle inequality. If [z| > 1, then we have r(z) < k|z|""!, where
k= Zf:ol |a;|, because |z|' < |z|*! for i < n and |z| > 1. Therefore we
get the stated result with

R = max {1, 2k|an|™'}. u

We can now give our three new proofs. Again, we want to prove that
any nonconstant complex polynomial has a complex root.

Proof Seven

Letp(z) = ap + a1z +- - - +a,z" be a complex polynomial of degree n > 1

and assume that p(z) has no zero in C. As in Chapter 3 (see 3.4.1) let
p2)=a +az+--- +az"

Then p(Z) = p(z) for all z € C, and hence g(z) = p(2)p(2) has degree 2n
and no zero in C. Further, g(x) = [p(x)|* > 0 for x € R.

Since $ is analytic in C, we get from Cauchy’s Theorem that for all
r>0
0= f LI / & (&)
- le@PE )y 8@ '

where y,(f) = re",0 < t < 7, is the semicircle of radius r centered on 0.
This is pictured in Figure C.1.

Yr

-r 0 r

Figure C.1. Semicircle in Proof Seven

By the growth lemma we have

ar

el e aAlat
@ < Miz
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with M = 2|a,|™2 for |z| > r, r sufficiently large. Then for such r we get
that

dz 1
|f — | < max,,| — |nr < aMr~@n-D),
Yr g(z g(Z)

that is,

lim — =0,
= Jy, 8(2)

since n > 1. But then from (C.1) we must have

. f "
lim _— =
r—o0 J_, |p(X)[?

But this is impossible, since [p(x)[? > 0. ]
Proof Eight

Letp(z) = ap + a1z + - - - +a,z" be a complex polynomial of degree n > 1
and assume that p(z) has no zero in C. Then |f(2)| = Iﬁ is analytic in C,

and hence by the mean value inequality we have

fl0) = maxag, If2)|

for each circular disk B,(0), r > 0, centeredon 0. By the growth lemma we
have lim,_, « |f{2)| = 0, and hence f{0) = 0 contradicting f{0) = p(0)~! #
0. |

Our final proof depends on the maximum minimum modulus prin-
ciple, which we mentioned in section 5.5. This is a consequence again
of the Cauchy integral formula. Here we repeat it and two important
corollaries and then give proof nine.

Theorem C.1
(Maximum Modulus Principle) Suppose f(z) is nonconstant and analytic in
a domain U. Then every neighborhood in U of z; € U contains points z with

If @) > If (z0)l-

Corollary C.1

(Maximum Principle) Suppose f(2) is analytic in a domain U and assume
that there is a point zy € U that is a local maximum for f(z), that is, there is
a circular disk B¢(zp) C U with |f(2)| < |f(20)| for all z € Be(zp)- Then f(2)
is constant in U.

Corollary C.2

(Minimum Principle) Suppose f(z) is analytic in a domain U and assume
that there is a point zy € U that is a local v-irum for f(2), that is, there is a
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circular disk B¢(z9) C U with |f(z0)| < |f(2)| for all z € B(zo). Then either
f(2) = Oor f(2) is constant in U.

We need one other fact for the ninth proof. Since a polynomial over a
field can have only finitely many zeros (see Chapter 3) it follows that a
nonconstant complex polynomial p(z) can be nowhere locally constant.
That is there cannot be an open region U C C with p(z) constant on U,
for if p(z2) = c for all z € U, then the polynomial g(z) = p(z) — ¢ has
infinitely many zeros.

Proof Nine

Let p(z) = ap + a1z + - -- + a,2z" be a complex polynomial of degree
n > 1. For each r > 0 let U, = B,(0) the closed ball of radius r centered
on 0. Each U, is a compact set and since p(z) is continuous, |p(z)| has a
minimum at some point z, € U,. Since |p(z)| — oo as |z]| - oo, we can
choose an R sufficiently large such that this minimum point zx is in the
interior of Ug. To see this choose an s > 0 so that |p(2)| > |ag] = Ip(0)I
for |z| > s. Choose R > s. Then on the boundary of Ur we have |p(z)| >
Ip(0)l, and hence the minimum on the compact set Ur must be in the
interior.

Therefore, we have a zx € Interior U, with |p(zr)| < |p(2)| for all z €
Uk.- Since zp is in the interior, there exists an e > 0 such that U; = B(zg),
the closed ball of radius € centered on zg, is contained in Ugz. However,
p(2), being everywhere analytic, is analytic on U;, and further, |p(z,)| <
[p(2)| for all z € U,. From the minimum principle either p(zr) = 0 or p(z)
is locally constant on U;. As mentioned above, a nonconstant polynomial
can be nowhere locally constant, and therefore p(zz) = 0. |
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In this final appendix we present two more topological proofs depending
on winding number. The first is really a version of the Brouwer degree
proof given in Chapter 9, while the second is a more formal presentation of
the simple winding number argument given at the beginning of Chapter 8.

Recall that a loop in the unit circle §! is a function f : [0, 1] — S! with
fl0) = f1). As we saw in Chapter 9, the fundamental group IT,(S?) is
infinite cyclic, and hence each loop in S! has associated with it an integer
m called its degree, or winding number. This can also be described
as 1/2m times the change in the argument of z as z moves around the
image of f in §', which if f is regular is equal to 1/27 [ ..o Z.1fgisa
homotopic loop in 8!, then f and g have the same degree, and if h = fg
then degree(h) = degree(f) + degree(g). The map §' — §! given by
z — z" clearly has degree n.

The set C — {0} is homotopic to an annular region, which in turn can
be deformed into §! Thus, any loop in C — {0} is homotopic to a loop
on 8! and thus has a degree. We call this the degree, or winding number,
of the loop around 0. In general, if zy € C — {0}, the degree, or winding
number, of a loop f{f) around z, is the degree of the loop g(t) = f{t) — z.
The comments on homotopy and addition of degrees all carry over to
general loops in C — {0}. Our proof ten of the Fundamental Theorem of
Algebra involves the following important result.

Theorem D.1
(Rouche’s Theorem) Let f,g;[0,1] — C be loops such that |g(t) < If(t)| for
all t. Then f and f + g have the same degree.
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Proof

The conditions insure that both f and f + g map on C — [0]. Consider
H(t, u) = f{t) + ug(t). Then H(t, u) is a homotopy in C from H(t, 0) = flH
to H(t, 1) = f{t) + g(t)- The conditions on f{t), g(t) further guarantee that
there is no choice of (t, u) with H(t, u) = 0. Hence H(t, u) is a homotopy
in C — {0}. Therefore, f and f + g are homotopic and hence have the same
degree. [ |

Proof Ten

Let p(z) = ap + a1z + - - - + a,2" be a complex polynomial with a, # 0.
For each r > 0 let p, : ' - C by p,(2) = p(rz)- Then for any r the map
H(z,u) = p(zru) is a homotopy from p, to p, in C. If the polynomial p(2)
were never zero, this would be a homotopy in C — {0} and hence p, and
po would have the same degree. Now, py is a constant so it has degree 0.
We will show that there is an R such that pr has degree n. It will follow
that n = 0, and therefore p(z) is a constant.

Suppose R > max(1, ) ;_, % ). Then for all z with |z|] = R we have

n—1 n-1 n—-1
k k -1
1> a2 <Y laxllzlf < O laxkl)lzI™ < lanllzl”
k=0

k=0 k=0

It follows then from Rouche’s theorem that pr has the same degree as the
function on 8! sending z to a,R"z", which has degree n. Since pr and py
have the same degree, it follows that n = 0 and therefore, if p(z) has no
roots, p(z) is a constant. |

The final proof is similar to the above but without recourse to Rouche’s
theorem.

Proof Eleven

As before, let p(z) = ap + a1z + - - - + a,z" be a complex polynomial with
a, # 0. Without loss of generality we can assume that a, = 1. For each
r > 0let

bl p(re?™)
p(m) Ip(re¥)|

If p(2) has no roots, then each of the two fractions in (D.1) is well-defined
and has absolute value 1. Therefore, p,(t) € S! for each r > 0 and each
t € [0, 1]. Now, po(t) is the constant loop in S' The first fraction gives an
initial point to the loop p,(t), while the second fraction projects the loop
p(re?™) in C — {0} onto S!

Now, let H(t, u) = pn(t). This gives a homotopy in §' from p,(t) to py (1),
and hence for each r, both p, and p, have degree 0. We show that there
is a value R where pg(t) has degrze n.

pr(t) = (D-1)
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Let $ = max(1, |4, ..., |an-1]) and let R = (n + 1)S. Let f{t) = Re*™
be the circle of radius R centered on 0 and let g(z) = z". Then g(f(t)) =
R"e*™" is a loop with winding number n on a circle of radius R around
the origin. Consider the distance from g(f(t)) to p(f(t)) for any t. We have

() — PR = IRD" — (RO" + Gnaa O™ + - -+ + a0)]
< lanafO)" 7 + -+ - + laol
< lanalifity" 1 + - - - + laol
< lan-1IR™™ + -+ + |ag|

< R R o " pcr
n+1 n+1 n+1
This implies that for each t, p(f(t)) lies in a disk of radius R" centered on
q(f(t)). In particular, then, there is aline segment from p(f{t)) to g(f(t)) that
does not go through the origin. This is in essence a version of the fellow-
traveler property mentioned in Chapter 8. This says that the function

K(t, w) = ug(f(t)) + (1 — u)p(f(t)) is never zero for u € [0, 1],t € [0, 1]. Let
K t
K(0, ) |K(t, u)|
By a straightforward computation we have that H(t, 0) = pr(t), H(t, 1)
is the loop r(t) = €*™™, which has winding number n, and H(0,u) = 1
for all u. Therefore, H(t, u) is a homotopy in §' from H(t,0) = pr(t) to

H(t, 1) = r(t). It follows that pr(t) has degree n. Since it also has degree
0, we must have that n = 0 and p(z) is constant. [ |
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UNDERGRADUATE TEXTS IN MATHEMATICS

The Fundamental Theorem of Algebra siates that any complex polynomial must hove o
complex root. This basic result, whose first accepted proof was given by Gauss, lies really
at the intersection of the theory of numbers and the theory of equations and arises also
in many other areas of mathematics. The purpose of this book is to examine three pairs
of proofs of the theorem from three different oreas of mathematics: abstract clgebra, com-
plex analysis, ond topology. The first proof in each pair is fairly straightforward ond depends
only on what could be considered elementary mathematics. However, each of these first
proofs lends ifself to generalizations which in turn lead to more general results from which
the fundomental theorem can be deduced as a direct consequence. These general results
consfitute the second proof in each pair. To arrive ot each of the proofs, enough of the gen-
eral theory of each relevant area is developed to understand the proof. In addition fo the
proofs and techniques themselves, many applications, such os the insolvability of the guin-
tic and the transcendence of ¢ and 1t are presented. Finally, a series of appendices give
six additional proofs including @ version of Gauss’s original first proof.

The book is infended for junicr/senior-level undergraduate mathematics students or first-
year groduate students. It is ideal for o “ capstone” course in mathematics. If could also be
used as an alternative opprocch fo an undergroduate obstrad olgebra course. Finally, be-
cause of the breadth of topics it covers it would also be ideal for o groduate course for
mothematics feachers.
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