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Preface

This book is a text, not a reference, on Point-set Topology. It addresses
itselfto the student who is proficient in Calculus and has some experience
with mathematical rigor, acquired, e.g., via a course in Advanced Calculus
or Linear Algebra.

To most beginners, Topology offers a double challenge. In addition to
the strangeness of concepts and techniques presented by any new subject,
there is an abrupt rise of the level of abstraction. It is abad idea to teach a
student two things at the same moment. To mitigate the culture shock, we
move from the special to the general, dividing the book into three parts:

1. The Line and the Plane
2. Metric Spaces
3. Topological Spaces.

In this way, the student has ample time to get acquainted with new ideas
while still on familiar territory. Only after that, the transition to a more
abstract point of view takes place.

Elementary Topology preeminently is a subject with an extensive ar-
ray of technical terms indicating properties of topological spaces. In the
main body of the text, we have purposely restricted our mathematical
vocabulary as much as is reasonably possible. Such an enterprise is risky.
Doubtlessly, many readers will find us too thrifty. To meet them halfway,
in Chapter 18 we briefly introduce and discuss a number of topological
properties, but even there we do not touch on paracompactness, com-
plete normality, and extremal dis¢onnectedness—just to mention three
terms that are not really esoterie.



vi Preface

In a highly abstract topic like ours, it aids a student to focus on a cen-
tral theme. The theme of our book is convergence. We show how, for
R" and for metric spaces in general, concepts such as “continuous” and
“closed” can be described in terms of convergent sequences. After that,
in any given set X we introduce convergence of nets relative to any given
collection w of subsets of X. This convergence leads in a natural way to
the notion of a topology. The idea behind this somewhat unconventional
approach is threefold.

First, it shows that the definition of “topology" is less artificial than it
seems to be. Without this preparation, the definition appears to stem from
an arbitrary selection of properties of the system of open sets in R", and
it is not clear why precisely these properties are the relevant ones. (The
reader who finds this a digression can skip Chapter 11; in Chapter 12, the
definition and some basic facts are repeated without the motivation.)

Second, it relegates the notion of “topology” to a place in the second
rank. When one studies a topological space, often the topology itselfis less
relevant than a subbase for it (the collection w in the sitnation described
above). A case in point is the product topology on a Cartesian product of
topological spaces: all that really matters is a subbase, and the fact that
this subbase generates a topology is quite immaterial.

Third, convergent nets form a very useful tool in Topology, deserving
much more attention than they generally get.

We do not assume previous knowledge of the axiomatic approach. As,
however, a rigorous theory of topological spaces must have a firm base
in Analysis, we start with a brief axiomatic treatment of the real-number
system, explaining what axioms are and what purpose they serve.

‘We do not assume previous knowledge of Set Theory either. (Indeed,
to be on the safe side, we have added a chapter on countability.) On
the other hand, Topology unavoidably leads to nontrivial set-theoretic
problems. Accordingly, in connection with the Tychonoff Theorem, we
pay close attention to the Axiom of Choice and Zorn's Lemma and their
role in mathematics.

The pace of this book is relaxed with a gradual acceleration. For in-
stance, the first three chapters and part of Chapter 4 can be relegated
to home reading for a well-prepared student. However, the easy initial
pace makes the first nine chapters a balanced course in metric spaces
for undergraduates. The book contains more than enough material for a
two-semester graduate course.

As with all mathematical learning, a substantial amount of practice is
indispensable. We offer exercises of varying degrees of difficulty. Some
are routine, others illustrate results of the text, and yet others go beyond
the text. We have carefully crafted these exercises. Accordingly, one will
find many of them, in particular the complicated ones, sectioned into
more digestible pieces with hints.



Preface vii

Finally, in most chapters we present an “extra,” a brief foray outside
Topology. A beginning student is apt to consider each branch of mathe-
matics as an autonomous unit, isolated from the rest, and also to think
that mathematics is 2 museum piece, something created in olden times
by our forefathers, that can be seen and even studied, but not touched.
Our purpose of the extras is to illustrate the many connections between
Topology and other subjects, such as Analysis and Set Theory. Also, in
our extras we try to show that Topology was and still is built by individu-
als, who sometimes made mistakes. We encourage the reader to consider
these extras to be part of the course. The extras are extra, not extraneous.
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What Topology
 Is About

CHAPTER

Topological Equivalence

1.1 Question

O~ (A MO

Which picture does not go with the others?

1.2

The last one, of course, but it is not so easy to describe the common
feature of the first six shapes that is lacking in the seventh. A satisfactory
description can be given in the language of Topology, the subject matter
of this book.

To give you some idea of what topology is, we return for a moment to
plane geometry. Suppose you have drawn a triangle with sides of 13, 14,
and 15 inches and by measuring you have found that it has an angle of
54°. Then you know that every triangle with sides of 13, 14, and 15 inches
must have a 54° angle, because all such triangles are congruent. Their
positions and orientations in the plane do not matter to a geometer, as
they would to a surveyor. Using an arbitrarily chosen term, we will say
that the geometer’s point of view is “higher” than the surveyor's. The

3



4 1. What Topology Is About

surveyor distinguishes among the following triangles, the geometer does
not:

@

One can adopt a higher point of view than the geometer’s: For certain
purposes, there is no sense in distinguishing

@

or (still higher)

&)

At this stage, the shapes differ considerably, but if you draw them on
pieces of rubber instead of paper, you can obtain them from each other
by stretching and bending:

0 -0
B B

Here, we arrive at the heart of the matter. Topology is the branch of math-
ematics in which the differences between the shapes of (3) are irrelevant,
precisely as those between the shapes of (1) are irrelevant in geometry.
The topologist's point of view is “higher” than the geometer'’s.
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Carrying the deformations a bit farther, we obtain shapes that no longer
have anything triangular about them:

©)

®

Thus, in the eyes of the topologist, the shapes

are the same; let us call them topologically equivalent [as the triangles in
(1) may be called geometrically equivalent]. :

From the square, by stretching and bending we obtain another series
of shapes:

®

But no amount of stretching will produce a closed ring:
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Here, something else is required, such as gluing two edges together. The
ring and the square are not topologically equivalent; they are as differ-
ent to the topologist as the square and the triangle are to the geometer.
Similarly, the square may be stretched

but to obtain two triangles

one would have to tear the rubber: The pair of triangles is not topologically
equivalent to the square.

1.3
“What has all this to do with mathematics? Stretching a piece of rubber is
hardly a mathematical operation. But the grids sketched in (4), (5), and
(6) suggest how the concept of topological equivalence can be defined
mathematically. Compare the first shape of (4) and the last of (5):

¢ d ¢
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Deforming the triangle T into the disk A yields a one-to-one correspon-
dence between the points a, b, ¢, . . . of the first and the points &/, ¥, ¢/, . . .
of the second, respectively. In other words, we have a bijection ¢ : T —
A. Due to the fact that our deformations do not allow tearing, if a point x
of T approaches the point f, then the corresponding point ' of A comes
close to f'. Mathematically speaking, this means that the bijection ¢ is
continuous. Similarly, its inverse, ¢~} : A — T, is continuous.

1.4

We define (provisionally): Two subsets of the plane, A and B, are topolog-
ically equivalent if there exists a bijective map ¢ : A — B such that both
@ and its inverse are continuous. The first six shapes drawn in 1.1 are
topologically equivalent to each other but not to the seventh. One can
give an exact proof of that once one has exact descriptions of the shapes
themselves.

1.5

The same definition is meaningful for subsets of three-dimensional space
or of a line. For instance, the intervals (0,1) and (~o0,0) of R are
topologically equivalent: The logarithm yields a continuous bijection
(0,1) = (—o0, 0) with a continuous inverse. Somewhat harder to see
is that the intervals [0, 1] and (0, 1) are not topologically equivalent. (Sup-
pose they are. Take a bijection ¢ : [0,1] — (0, 1) such that both ¢ and
@~! are continuous. On [0, 1], every continuous function attains a small-
est value. Let a be the smallest value of ¢. All values of ¢ lie in (0, 1), so
a € (0, 1). It follows that L a € (0, 1), so that ;@ must be a value of ¢. But

2
then, a cannot be the smallest value of ¢.)

Actually, we will go much farther and develop a theory that has the
plane, three-dimensional space, and the real line as special cases. First,
we must reconsider the concept of continuity.

Continuity and Convergence

1.6

From calculus you are, of course, familiar with continuity. However, most
calculus texts treat continuity in a very restricted way. Continuity of a
function of one variable is usually defined only if the domain of the func-
tion is an interval. A legitimate question in Topology is whether the sets
QN (0, 1)and QNJO, 1] are topologically equivalent. Contrary to what you
would expect after reading 1.5, they are, but a proof requires knowledge of
continuous functions with domain QN (0, 1). Here, calculus books let us
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down. And they provide hardly any information at all concerning maps
between subsets of R

Therefore, we start with a study of continuity on arbitrary subsets of
R; in Chapter 3, we look at R?. You may already know all this from an
Advanced Calculus course. In that case you may just skim over our first
three chapters. (Have a look at Theorem 1.12. If that is familiar terrain,
you may as well skip the balance of Chapter 1 except for 1.14, where we
fix some notations.)

1.7
Let D be a subset of R and let f be a function on D.
Take a point a of D. We say that f is continuous at a if

for every positive number &
there exists a positive § such that (%)
for all x in D N (a—$, a+6) : |[fX)—fla)| < e.

f is called continuous (without mention of any specific point of D) if f is

continuous at every point of D.

Examples 1.8
These definitions seem humdrum, but look at the following examples.

(i) Define a function f whose domain is Q by
) =1 if xeQ » < V2,
=2 if xeQ x> 2.

/2 is not a rational number, so the above formulas determine f(x)
unambiguously for every element x of Q.

Let 2 € Q. Then a # +/2, so the number & := |v2—a] is
positive. The interval (a—é, a+8,) lies either completely to the
left or completely to the right of +/2. In either case, f is constant
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on Q N (a—8y, a+3p):
forall x in Q N (a—8y, a+&) :  fx) = fla).

Hence, no matter what positive number ¢ one takes, the last line of
(¥) in 1.7 will be satisfied by 8§ = 6. Consequently, f is continuous at
a.

But a was an arbitrary element of the domain of f. Thus, f is a
continuous function.

(ii) Letg be any function whose domain is N; we show that it is necessar-
ily continuous at the point 3 of N. Indeed, let ¢ > 0 be given; we take
§ = 1.Foranyxin NN (3-3$, 3+6), we have x = 3, hence g(x) = g(3),
hence |g(x)—g(3)| < e

In the same way, of course, every function with domain N is
continuous at every point of N.

1.9
Closely related to the notion of continuity is the one of convergence of a
sequence. We recall a few definitions and elementary facts.

A sequence is a function whose domain is N. The sequence whose value
at n is x, will often be denoted by

X1, X2, X3, - - -
or
(Xn)nen.
For N e N, the N-th tail of the sequence x;, X3, . . . is the sequence

XNy XN+41y XN+42y -+ - -

Let (x,)neny be a sequence, and let a be a number. We say that the
sequence converges to a, or that a is a limit of the sequence if

for every ¢ > 0, the interval (a—e¢, a+¢)
, . 1)
contains a tail of the sequence.
This is the case if and only if
for every ¢ > 0,
there exists an N in N such that (2)

[xn—a] < ceassoonasn > N.

The latter formulation may be closer to the one you are used to, but both
definitions mean precisely the same thing.
Statements (1) and (2) will mostly be abbreviated as

Xp —> 4.
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1.10

As you know from Calculus, a sequence has at most one limit. Thus, we
may speak of “the” limit of a converging sequence (X,)neny and denote it
by

lim x,.
n-+00

There are a few simple rules for handling converging sequences:

Theorem 1.11
Leta,x %2, ...,by1,Y2 ... € R
@) Ifx, = a, then |x,—a| — 0, and vice versa.
(i) Ifxn — aand |yn—b| < |xp—al for all n, then y, — b.
(iii) Ifx, — a and y, — b, then X,-+Yyn — a+b and xyyn — ab.
(iv) Ifx, = aandifx, > 0 foralln, thena > 0.

(V) Ifxpn = a,Yn — band x, > Yy for alln, thena = b.

The following theorem establishes a connection between continuity and
convergence that will be a recurring theme in this book.

Theorem 1.12
Let D C R, let f be a function whose domain is D, and let a € D. Then the
conditions () and (B) are equivalent.

(@) f is continuous at a.
(B) For every sequence (xn),ey i D with x, — a, we have f(xn) — f(a).

Proof
(e) = (B) is easy: Let 21,3, ... € D, xn = a. We wish to prove f{x,) —
fla). Thus, let ¢ > 0. There exists aé > 0 such that

forall x in D N (a—6, a+8) :  |fl)—Aa)l < .
As x, — a there exists an N € N with
foralln> N: |x,—a| < 6.

Forn > N, we then have », € DN (a—$§, a+8) and, consequently, |f{x,) —
fla)l < e. This proves (B).

() = (a) is harder. Assume (B). Let g > 0. We need a positive
number & such that

forall xin DN (a—6,a+8) : |fl)~Aa)l < &. (%)
Consider the following hypothesis:
No positive number 8 satisfies (). (H)

We are done if we can show that this hypothesis is untenable, so, for a
while, let us suppose it is true.
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Then the positive number é§ = -1—53 does not satisfy (), i.e., it is not
true that for every x in D N (a— 35, a+ 15 ) We have |f[0)—~fla)] < &o.
Putting it differently, there must exist an x in DN (a— 15, a+ 55 ) without
f(*)—fa)l < ep; or there must exist an x in D N (a— -1—33 , a4 -1—3—0) with
-] = eo.

The choice § = -1—3—0 we made above was quite arbitrary. For every
n € N, we can observe that é§ = % does not satisfy (*), so that there must
exist an #, in D N (a— %, a+ 1) with |{x)—Ra)| = so.

We have now obtained a sequence x, %, . .. in D. This sequence con-
verges to a since |x,—a| < ;11- for all-«n. But the sequence f(x;), x2), . . .
cannot converge to f{a) since |f(x,)—f(@)| > & for all n. We see that (8) of
the theorem cannot hold.

We have obtained a contradiction from the hypothesis (H). Thus, we

]

have refuted (H) and our proof is finished.

As the function x > |x| is continuous, by the implication (@) == (8)
we have

if x, — a, then |x,| — lal.
Similarly,
if x, — a, then & — &%,

and so on.

1.13

By way of an application we show the product of continuous functions to
be continuous. Let f and g be functions on a domain D C R and let both
be continuous at a point a of D. Define h : D — R by h(®) = fix)g(x)
(x € D). Then h is continuous at a. Indeed, for every sequence (x,)nen in
D that converges to a, we have f{x,) — fla) and g(x») — g(a) [(¢) = (B)
of 1.12}, and, therefore, h(x,) — h(a) [1.11(iii)]. Then h is continuous at
a according to () = (@) of 1.12.

A Few Conventions

1.14
We close the first chapter with a list of notations and terminology to be
used in the sequel.

() The symbol
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(iD)

(i)

™

(vi)

(vii)

1. What Topology Is About

will indicate a definition. For instance,
X={@xeR:x¥+x* < 6}

means: We define X to be the set {x € R : x¥*+x® < 6).
If A and B are subsets of X, then

A\B:= [x e X : x € Abutx & B}.

We will often deal with maps between sets. Whenever we write “f
is a map of X into Y" or

f: X—Y

we mean that X and Y are sets and that f is a map whose domain
is X and whose values lie in Y. In particular, f{x) makes sense for
every ¥ in X (but we do not require that every element of Y be a
value of f). Thus, the sine function is a map R — R; the logarithm
is not.

A function is a map whose values are real numbers; its domain
may be any set.
IfAisasubsetofaset X

R An1538 11l

R defined by

3 T | 1w
fAisthe function iy 1 X —

1,():=1 if xea4,
14(%) =0 if x€X, x €A,
Occasionally, we denote by 1 the constant function whose value
is 1.
Suppose we have amap f : X — Y and a subset A of X. The
restriction of f to A is the map f|, of A into ¥

Fl@E) =flx) if xeA.
f and f|, are distinct functions (if A # X) and should not be con-
fused. For example, sin l(0,z/2) is increasing, but sin is not! Observe:
If A C X ¢ Rand if f is a continuous function on X, then f|, is
also continuous.
The formula

x— X +6x—1 (0<x<1) )
indicates the function f : [0, 1] — R defined by
)y =#*+6x—1 (0<x<1).

In a formula such as (1), we will always mention the domain; it is
bad manners to talk of “the function ¥ —> ** 4 6x — 1" and leave
it to the reader to figure out what the domain should be.

Iff : X - Rand g : Y — R are functions, then f+g and fz are the
functions

X — flx) + g(*) xeXnNny)
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and
x +—> flx)g(%) (xeXNY),
respectively.
(viii) Formapsf : X — Yandg : Y — Z, we have a composite map
gof : X —» Z:

EoN@ =¢g(fx) eX.
Observe: iff : X — Y,g: Y — Z,and h : Z — U, then the
maps (hog)of and ho (g of) are the same; we will denote this map
by

hogof.
(ix) Iff : X — Yand A C X, then
fla) = {f(x) : x € A};

this f{A) is a subset of Y.

(x) In 1.9 we have defined a sequence to be a function on N. We extend
this definition. For any set X, a sequence of elements of X is a map
of N into X. The sequence n > x, is also denoted

X1,%2,... OT (Xn)neN.

If X is a set, a family of elements of X is a map of some set into
X. A family s > %; (x € §) is often indicated as

(%s)ses-
(xi) If A and B are sets, by the Cartesian product
AxB
we mean the set of all pairs (a, b) witha € A, b € B:
AxB:={(a,b):aeAbe B}
(xii) Special attention is asked for the implication arrow
= .
It is used as a conjunction between two statements or formulas. By
A = B

(where A and B are entire sentences) we mean ‘B is a logical conse-
quence of A or “whenever we have A, B necessarily follows” This
does not say anything about the validity of A and B themselves. For
instance, if x is a real number, then

x>100 = x>5

regardless of whether x is, indeed, larger than 100.
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This may sound obvious, but notice that our use of = implies
the truth of strange formulas such as
3>100 = 3>5
and also
8>100 = 8>5
Using the implication arrow, a phrase like
|xn—al < € assoonas n > N
(occurring in the definition of convergence) may be abbreviated as
n>N = |¥—a| < e&.
We also have a double arrow: The formula
A & B
means: A = Band B = A. Example: Ifx € R, then

=8 = x=2.

Extra: Topological Diversions

Many puzzles and games have topological connotations.
A famous brainteaser is the “handcuff puzzle”:

Can you take off the black ring?

Topologically, there is no problem. The black ring is not linked to the
rest of the puzzle; it would come off if you could stretch it. But the puzzle
is made of metal. It does not stretch, and we are dealing with geometry,
not topology. Geometrically, there is a problem.

A more complicated puzzle of the same type is this one:
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It was invented in China, according to the story, by a famous warrior,
Hung Ming (181-234), who wanted to keep his wife entertained during
his absences. It appeared in Europe in the seventeenth century and got
the name “Meleda”

The following notorious puzzle is purely topological. Imagine three
houses and three wells. Can you connect each house with each well
without having two connections crossing?

In the sketch, we have indicated eight of the nine required connections,
but you can see that it is now impossible to connect the third house with
the third well without having two lines cross.

This problem is topological in that the positions of the houses and the
wells are irrelevant. If you can solve it for the configuration below
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)
v [

then, by drawing your solution on a rubber sheet and deforming it, you
see that you can solve it for the originally given situation.

Using topological arguments, one can prove that there is no solution,
when you draw your picture in a plane or on the surface of a ball. But if
the houses and the wells are on a planet that has the shape of a donut,

there is a way around it!

Actually, now you can add a fourth house and connect it (without
crossovers) to all three wells. Try it!

The “problem of the Koenigsberg bridges” was raised by the great Swiss
mathematician Leonhard Euler in 1736. The city of Koenigsberg (now
Kaliningrad) where he lived at the time was built on both sides of a river
and on two islands. The four parts were connected by seven bridges:
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= u.

Question: Can you make a walk that crosses every bridge once but not
more than one?

Again, a topological problem. The geographical details are of no
importance. Without any loss, you may stylize the picture like

North bank

Island <\/ Island

South bank

The entertaining game “sprouts” is described by Martin Gardner' in
Mathematical Carnival (Vintage Books, 1977).

The game begins with a number of spots on a sheet of paper. The play-
ers take turns making moves. A move consists of drawing a line beginning
at a spot and ending at a spot (possibly the same) and placing a new spot
anywhere along the line. The line may be straight or curved, but is not
allowed to cross itself or any previously drawn line or pass through an
already existing spot. No spot may have more than three lines emanating
from it. The first player who cannot make a move loses.

Starting with two dots, a game could develop as follows

-~ N

The game cannot go on indefinitely. If there are n spots at the start, there
can be at most 3n~1 moves. (Can you prove that?)

'In case you do not know of Martin Gardner, run to the library. You will need him
next time some barbarian tells you that mathematics can interest only mathematicians.
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Further Reading

Stewart, 1., The Topological Dressmaker, Scientific American, July 1993,
110-112.

Exercises

1.A. Recall that for a topologist the shapes sketched in (1)-(8) are essentially
identical; because they can be obtained from one another by continuous
deformations, they are “topologically equivalent” As J.L. Kelley expresses it
in his famous text-book General Topology: “A topologist is a man who doesn’t
know the difference between a doughnut and a coffee cup” (The book was
published in 1955; the spelling is outdated and so is the notion that there
are no women topologists.)

Similarly, a topologist would not distinguish between a straight line, such
as a letter “ /, " and a curved one, like an * S 7 Show that in the eyes of a

topologist
ONE
is the same as
wo
1.B. Imagine you take a strip of paper
10 inches
.A. Al
1 inch
B Bl

and stick the ends together.

B

u
o

What you get is a ring. If you cut it lengthwise,
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you obtain two narrow rings.

—

'. ’|
The following variation is harder to visualize. Take the strip, give it a
twist,

I
>

B

This time you get a so-called “Moebius strip” What happens if you cut it
lengthwise?

Think about it first. Then take a paper strip, some Scotch tape, and a pair
of scissors, and carry out the construction.

1.C. A rubber balloon

can be turned inside out. An ordinary balloon looks more or less like a ball,
but imagine a balloon shaped like a tire or (the surface of) a donut:
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P

Can you turn it inside out? The material is supposed to be extremely flex-
ible and you may widen the hole as much as you like, but without tearing
anything.

Again, first think it over, then try it. For an actual model, rubber is too
stiff. You can make a serviceable tire balloon from a square piece.of clear
plastic, 10 inches by 10 inches, say. You fold it and tape it together as follows:

(As befits true topologists, our sketches are not to scale.) You have made a
very flat tire. Make a hole in it, about 2 inches across, and strengthen the
hole with tape:

Now see if it is possible to completely evert the tire through the hole.

1.D. This exercise is a sequel to the preceding one. Unless you have finished that
one you are not allowed to read on.

You will have discovered that the tire can be everted. The process gives
you a crumpled wad of plastic, but after some smoothing, you can recognize
it as being a tire, just like the first. No surprise here: 1If you turn a sock inside
out you get a sock, not a glove. Still, something strange is occurring.

On a tire there are two types of circles: meridians and parallels.
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1.E.

meridians parallels

Take the tire you have made and paint a few meridians on it. Evert the tire.
The painted circles are on the inside, but you can still see them because the
plastic is clear. (If you have followed the instructions!) What has happened?

We return for a moment to the Moebius strip. An ordinary piece of paper has
two sides. Two ants on different sides can get together only if one of them
crawls over the edge. But on a Moebius strip they can find each other without
such acrobatics, as illustrated in this famous lithograph “Moebius Band II”
by M.C. Escher ((©1996 Cordon Art-Baarn-Holland. All rights reserved.)

IS T )
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There is a limerick about the Moebius strip that is well known in
mathematical circles and has to do with Exercise 1.B:

A mathematician confided

That a Moebius strip is one-sided
And you get quite a laugh

When you cut it in half:

It stays in one piece when divided.

The remarkable properties of the Moebius strip have inspired more
poetry, such as

The topologist’s child was quite hyper
Till she wore a Moebius diaper.

The mess on the inside

Was thus on the outside:

It was easy for someone to wipe her.
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The exercise is this: Show that the problem of the three houses and the
three wells on the Moebius strip can be solved. (It cannot on the ring made
at the beginning of 1.B 1)

1t is understood that the lines connecting the houses and the wells are
not to be drawn on the surface, any more than, say, the line y = x lies on
top of the x — y plane.
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CHAPTER

As you have seen in the previous chapter, continuity and convergence
are basic for topology, and calculus is not sufficient as a background. The
latter statement has a double meaning. We need more calculus-like the-
orems, especially on functions of several variables, but that is not all:
Topology also requires a more precise kind of reasoning than an intro-
ductory Calculus course. We will have to prove all of our theory and we
cannot afford to rely on pictures (although they will be an invaluable aid).
In this chapter, we lay the foundations for a rigorous theory in the form
of a system of axioms.

From Advanced Calculus or an equivalent course, you may already
have experience with the axiomatic method. In that case, it will hardly
be necessary for you to spend much energy on this chapter. You may still
want to look it over; quite possibly our terminology will differ from what
you have seen before and there is a good chance that the “Postscript”
contains something that is new to you.

2.1

Contrary to what you may expect, we are not going to define the term
“real number” You may view real numbers as points of a line or as end-
less strings of decimals or in any other way you like. Actually, what real
numbers are will be irrelevant to us, just as the shapes of the pieces are
irrelevant to a chess player.

What does matter to him are the rules of the game. Like him, we will
stick to a list of rules. Our rules will be the “Axioms of Analysis,” certain
mathematical statements in which the term “real number” occurs. We
hope you will find that with your personal interpretation of the term,

23
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these statements are true. We then proceed to draw conclusions from
these axioms. While doing so we use only strict logic and not, for instance,
our intuitive idea of real numbers. Thus, we will be certain that, having
agreed with the axioms, you will agree with the conclusions, even though
your “real numbers” may be quite different from ours.

If you dislike the rules of chess, you may adopt other ones. There is
nothing criminal about that, but you will not be playing chess. Similarly,
if you do not like our axioms, nothing prohibits you from inventing other
ones and developing a new branch of mathematics.

2.2

Axiom 1.

R is a set. Its elements are called numbers. 0 and 1 are numbers, 0 # 1.
To any pair ,y of numbers there are assigned a number x+y, called
their sum, and a number xy, their product, subject to the following rules.

(@) Ifx y € R, then x4y = y+=.

&) xy z e then x4z = x+(y+2).

(©) Ifx € R, then x+0 = x.

(@) If x € R, then there exists a unique element —x of R such that
x4(—x) = 0.

(e) Ifx, y € R, then ay = yx.

® Ifxy, z € R, then (xy)z = x(y2).

(8) Ifx, y,z € R, then x(y+2) = (xy) + (x2).

(h) Ifx € R, then x1 = x.

() If x € R and x # 0, then there exists a unique element x™! in R
such that xx~! = 1.

Our list of axioms is, as yet, far from complete, but let us sit back for a
moment and reflect on what we have.
First, do you find the statements (a)-(i) reasonable? If not, then you
are in trouble because the entire content of this book is built upon them.
But let us assume you are willing to accept them. You do not really
need absolute faith in their validity; it suffices for you to go along with us
while we explore their consequences.

Starting from Axiom I, one can begin to develop a rudimentary theory
of real numbers. One introduces notations and abbreviations such as

2 := 141,

x* = xx,

Xy 1= X 4 (=),
xX+y+z = x + (Y+2)



2. Axioms for R 25

and proves formulas like

(x+Y)? = ** + 2xy + ¥,

=y = (x+y)(x-y),

xy=0 == x=0 or y=0
As an illustration, we prove that x0 = 0 for every x:

0 @ 0y + 0 D (x0) + (x-+ (=)

(g)(x0+x) + (—%) Cg) (%0+x1) + (—x)

® 041 + (=% @ x(1+0)) + (=)

(.g)(xl) + (%) Q_Z_) x4+ (—-x)(i)o.

You might object that a formula like
x0 =0 (%)

is too obvious to require a proof, and you might well be right. The purpose
of the above maneuver was not to establish the validity of the formula but
to show that it is a necessary consequence of Axiom I.

2.3

Many formulas and theorems can be derived from the axiom, but they
are all of the same elementary nature as (), above. It would be a terrible
waste of time to actually carry out the proofs. Instead, let us consider the
axiom ruling the ordering <:

Axiom II.
< is a binary relation in R satisfying:

() fx <yandy <z thenx < z.

) fx<yandy < %, thenx = y.

(c) Ifx e R, thenx < x.

(@) ¥x,yeR thenx <yory <=z

(e) Ifx < yand z € R, then x+z < y+z.
) Ifx < yand 0 <y, then xu < yu.

At this stage, again one puts forward some notations:

X<y &> x=<yand x#y,

[a,b]:={x:a <x and x < b},
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x| = x if0 < %,
x| = —x ifx < 0,
and one proves, e.g.,
if x <y and y < z then x < z,
if x < y, then -y < —z,
0 <1,
x+y| < |x} + ly| forall x,y in R.

2.4
We use this opportunity to introduce a notation that may be new to you.
For any %,y € R, by

xXVy
we indicate the larger of the numbers x and y, by
XAY

the smaller Thus, 0 v1 = 1and 0 A1l = 0. For every x € R, we have
XV (—x) = || and x A (—X) = —|x].

v and A are operations in R, just like addition and multiplication. Actu-
ally, they obey the commutativity and associativity laws: forallx, y, z € R,
we have

XVy=yvex HEVYVz=xVv(yVz),
XANY=Ynx, @AYAZ=xAYA2).

Accordingly, we will write “x vy vz"and “x Ay A z" without provoking
misunderstanding.

2.5
Once more, many conclusions can be drawn from the axioms, but very
few are interesting. The upshot of it all is that most identities and inequal-
ities you know from high school algebra are consequences of Axioms I
and II.

“Most,” not “all” A formula such as

V23 =46

does not follow from our axioms, simply because they are not powerful
enough to ensure the existence of +/2, i.e., of a solution to the equation
x> = 2. Also, the axioms we have are insufficient to serve as a base for
calculus. Nothing would prevent us at this stage from defining derivatives
arzld integrals, but we would be unable to prove the existence of, say,
fi x vax.
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As a first step to overcome these difficulties, we present an axiom
establishing the natural numbers; before that, a definition. We call a subset
X of R hereditary if it has the property

if x € X, then x+1 € X.

Examples of hereditary sets are (0, c0), {1} U [2, 00), and R itself.

Axiom III.
N is a subset of R with the following properties:

(@ 1eN.
(b) Ifx,y € N, then x+y € Nand xy € N.
(c) If X is a hereditary subset of Rand 1 € X, then N C X.

This axiom deserves a moment of meditation. Part (¢) is intuitively
clear: If X is hereditaryand 1 € X, then 2 € X since 2 = 141, 3 € X since
3 = 241, etc. If you believe in mathematical induction you can actually
prove (c). However, relying on mathematical induction goes against the
rules of our game. By its very nature, induction deals with the positive
integers, hence with real numbers. Then it must follow from the axioms
and not have any a priori validity.

In fact, it is not hard to see that it really is a consequence of (c) of
Axiom III. The Induction Principle can be formulated as follows:

Suppose for every n € N a statement (or a formula) P(n) is

given. Suppose that
P(1) is true,
(IP)
whenever k € N and P(k) is true, then so is P(k+1).

Then P(n) is true for every nin N.

It is clear how one proves (IP): the set
X := {n € N : P(n) is true}
contains 1 and is hereditary; hence, N C X by (c).
2.6
Now that we have Axiom III we can define the terms “integer” and “ra-
tional numbes” introduce the letters “Z" and "Q),” and prove, for instance,

that N is precisely the set of all positive integers. Also, we can define
“sequence” and “limit” and prove the familiar theorems like

P (euckn) = 150 %+ 000, Ui
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However, we cannot prove that lim,,., o ™} = 0. It can actually be shown
that this formula is not implied by the axioms we have at this stage. We
need:

Axiom IV (Archimedes-Eudoxus).
For every x in R, there isan n in Nwith x < n.

Now we can show that n~! — 0. Indeed, take ¢ > 0. By the axiom,
thereisaP € Nwithe™! < P.Then [n~!—0| = n~! < gassoonasn > P.

Another consequence of the Archimedes-Eudoxus axiom follows:

Theorem 2.7
Let x € R. Then there exists a unique integer in the interval (x—1,x]. (This
integer is called the integer part or entire part of x and denoted [x].)

Proof
Choose M,N ¢ Nwith M > x, N > —x; then —N < x < M. Consider the
set
X:={neN:-N-1+n < x}.
This X is a subset of N, containing 1 but not equal to N itself; therefore, it
cannot be hereditary. Thus, there is an n withn ¢ X, n+1 € X:
neN —-N-l4n<zx —N+n > =z

Then, —N-1+4n is an integer in the interval (x-1, x].
As for the uniqueness: If p and g are integers in (x—1, ¥, then |p—g| €
Zand |p—gl < 1,s0|p—g| =0andp = g. ]

You probably knew the above theorem, if not its proof. The following
result may be new for you.

Theorem 2.8
() Ifx e R, thenx = }Ln;lo L’%Vl In particular, every number is the limit of a

sequence of rational numbers.
(ii) Every interval contains a rational number.

Proof

(i) For every n, we have nx—1 < [nx] < nx, so that x—% < L’%l < x.
Hence, lim L’%l = x, since lim 1 =0.
n-—>o0 n—>»00
(ii) Every interval has a subinterval of the form (a,b) with a,b €
Randa < b. Setc := “—‘zﬂl. By Axiom IV, there is an n in N with

1 < c—aandtherebya < ¢c—-1 < L%CJ <c < b,so L";CJ € (a,b)ﬂ(%
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2.9

Axioms -1V give meaning to all the general concepts you have encoun-
tered in calculus: limit of a sequence, sum of a series, limit of a function,
derivative, etc. We are not going to repeat all the definitions but will freely
use the terms whenever we need them.

The axioms are still insufficient to establish the existence of certain
specific objects such as the exponential function and the sine, or to prove
theorems like 'Hospital’s Rule and the Comparison Test for series. The
time has come for our last axiom, the keystone in our building.

Axiom V (Dedekind).
If A and B are subsets of R such that

() A# Dand B # O,
(b) AUB =R,
(c) forallae Aandb € B:a < b,

then there is a number ¢ for which

A = (—00,0), B=][c,00), or A= (-00,c] B=/(c 00).

Think about it for a while and decide if you find it acceptable. (Newton
might well have rejected it.)

2.10

Our axiom system is now finished. The whole body of calculus can be
derived from it. We are not going to do so, our subject being topology, not
analysis. There are, however, one or two theorems belonging to both dis-
ciplines and of those we will give precise proofs. Further on, in examples
and comments, we will occasionally use other results from calculus. For
their justifications we refer to texts on exact analysis.

Most applications of Dedekind’s Axiom follow more easily from this
less symmetrical variant:

Theorem 2.11 (Half-line Theorem)
Let L be a subset of R with the properties

D L#2 L#R,
(2) ifxeLandx < x,then¥ € L.

Then there exists a number ¢ with
(—~00,6) C L C (~00,¢].
Proof

A = L and B := R\L satisfy the requirements of Axiom V, so there isac
for which L is either (—o9, ¢) or (—o9, c]. B8
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2.12
A useful consequence of the Half-line Theorem is the “Least Upper Bound
Theorem,” probably familiar to you.

If X is a nonempty subset of R and if b € R, we call b an upper bound
for X if X C (—o0, b}, i.e., if

xeX = x<bh.

The upper bounds of the interval (0, 1) are precisely the elements of
[1, c0). The sets N and R have no upper bounds at all.

Theorem 2.13 (Least Upper Bound Theorem)
Let X be a nonempty subset of R that has upper bounds. Then among the
upper bounds for X there is a smallest one.

Proof

Let L be the set of all numbers that are not upper bounds for X. Triv-
ially, L # R. For any ¥ € X, we have x—1 € L, so L # &. It is obvious
that L has Property (2), mentioned in the Half-Line Theorem. Hence,
there is a number ¢ with L = (—o00,¢) or L = (—00,c]. In the first
case, clearly ¢ is the smallest upper bound. In the second case, the num-
bers ¢c+1, c+ % , C+ %, ... are upper bounds for X; then so is ¢ itself. This
means that the second case does not really occur. )

2.14
The least upper bound for a set X is also called the supremum of X, denoted

supX or Lub. X.

The sets (0, 1), [0, 1], and {1} all have supremum 1. We see that sup X may
or may not be an element of X. If it is, then it is the largest element of X.
Conversely, if X has a largest element, then that is sup X.

2.15
Let X C R, ¢ € R. We say that ¢ is adherent to X if

[c—e,c+elNX # @ foralle > 0.

Every element of X itself is adherent to X. Every real number is adherent
to Q, since Q intersects every interval [Theorem 2.8(ii)]. The number 0
is not adherent to N, as [— % , %] NN = @. It is, however, adherent to the
interval (0, 1).

If a set X has a supremum c, then c is adherent to X. Indeed, let e > 0.
Then c—¢ is not upper bound for X, so there is an x € X with c—e < x.
But ¢ is an upper bound, from which x < ¢. Now x € [c—¢, c+e] N X.

In 1.12, we have seen that continuity can be formulated in terms of
convergent sequences. In the same vein we have:
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Lemma 2.16
Let X C R, ¢ € R. Then c is adherent to X if and only if there is a sequence
in X converging to c.

Proof
If ¢ is adherent to X, then for every n € N, we can choose an x, in
XN[c—%,c+2). Thenx, %, ... € X andx, — c.

Conversely, if X contains a sequence xj,x, ... converging to c,
then for every positive ¢ there is an n with |x,—c| < ¢; then x, €
[c—e, ctel N X, a

Theorem 2.17 (Connectedness Theorem)
If A and B are nonempty subsets of R with R = A U B, then there is a number
that is adherent to both of them.

Proof
Take a € A and b € B. Without restriction, suppose a < b. Set

X=[xeA:x<bh)

X is nonempty (a € X) and has b as an upper bound. Let ¢ be its
supremum. Then ¢ is adherent to X, hence to A.
Take ¢ > 0. Obviously, c+¢e ¢ X. Thus, either ¢ci+-¢ € A (so thatc+e €
B)orc+e > b.Inany case, (c+€) Abliesin B and, of course, in [c—¢, c+¢].
Thus, ¢ is adherent to B. )

For just this once, we return to analysis and show how the above can
be used to prove a result that is well-known in calculus:

Theorem 2.18 (Intermediate Value Theorem)
Suppose f is a continuous function on an interval [a,b]. Let p be a number
such that

Ay sp=flt) or fla)zp=fb)
Then p is a value of f, i.e., there is a c in [a,b] with f(c) = p.

Proof
We extend f to a function g defined on all of R by

fl®)ifx € [a, b,

g(x) = |fla)ifx < q,
fib)ifx > b.
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! H

a b

The function g is continuous everywhere and we are done if we can show
that p is a value of g.

Applying the Connectedness Theorem tothe sets A := {x ¢ R : g(¥) =
p} and B := {x € R : g(*¥) < p}, we obtain a number ¢ that is adherent
to both A and B. By Lemma 2.16, ¢ is the limit of a sequence x;, x3, ...
of elements of A. Then g(¢) = limp_. g(*n), Wwhereas g(x,) = p for all n.
Hence, g(c) = p. By the same token, g(c) < p because ¢ is adherent to B.
Then g(c) = p. ]

It is this lemma that guarantees the existence of, e.g., +/2. (See 2.5.)
Taking f{x) := x* for 1 < x < 2 and observing that f{1) < 2 < f(2), we see
that the equation ¥* = 2 must have a solution in [1, 2]. Observing that

0<x<y = =<y,

we see that the equation has only one solution in [1, 2], or even in [0, c0).
The solution of the equation ¥* = 2 in [0, 00) is then denoted +/2.
The following result is of interest both for topology and for analysis.

Theorem 2.19 (Cantor’s Theorem)
Let

[a1, 1] D [a2,b2] D - -+

be a sequence of intervals such that limy,_, o by—an = 0. Then there exists
one and only one number c that lies in every [an,by]. (It follows that ¢ =
limy— 00 an = limy00 bn.)

Proof
First, observe that for all n and m,

an < b,

since a, < Gpem < bpam < bm. This means that every by, is an upper
bound for the set {a;, az, ...}. By 2.13, this set has a least upper bound,
c. Then a, < c for every n because c is an upper bound, and ¢ < b,, for
every m because ¢ is the least upper bound. |
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Extra: Axiom Systems

In principle, one can put together any group of statements, call them
“axioms,” and start proving theorems. Some axiom systems, however, turn
out to be more satisfactory than others. There is nothing particularly
sacred about the system we have presented, but it leads to an interesting
and fruitful branch of mathematics.

Still, it is to some degree arbitrary. Analysis has been developed in
order to obtain simple descriptions of natural phenomena, to perform
certain calculations, and thereby to predict, say, the positions of the plan-
etsin the sky, or the motion of a ball rolling down a slope. It isbased on our
intuitive concept of real numbers. This concept has been formed in the
course of history and there is no reason to assume that its evolution is fin-
ished. There have been times when only rational numbers were accepted
as, in any sense, existing. Axiom V (Dedekind's Axiom) was formulated in
1872. This does not mean that only by that time its truth was discovered,
but rather that in the course of the nineteenth century a choice was made
- a fashion was set, you might say. It would have been possible to reject
Axiom V and develop analysis in a different direction.! In fact, that has
been done. There is the so-called “nonstandard Analysis” in which our
Axioms I, II, and III are accepted, but the sequence 1, % , %, ... does not
converge. This theory is just as “valid” as ours; it is simply different and,
so far, less useful (although it does have its applications.)

Our choice of axioms is also arbitrary in another way.

Suppose a dissident mathematician reads through the preceding pages
and finds Axioms I, II, III, and IV acceptable but rejects the Dedekind
Axiom V. Out of curiosity, or amused by our absurdity, he reads on and
finds the Connectedness Theorem perfectly in accordance with his own
ideas. (After all, even such nonsense as Axiom V can lead to correct
results.) He then decides to build his own theory, based on Axioms I, II,
111, IV, and CT, our Connectedness Theorem.

We believe in his axioms. Then we must also believe in his conclusions,
assuming his logic is correct. Thus, his theory will be part of ours.

It turns out that from his axiom system he can actually prove the
statement we have called Axiom V. To see this, consider the following
passage from his notebook.

Tuke sets A and B with the properties (1), (2), (3) mentioned in V. By
my Axiom CT there is a number ¢ adherent to A and B. There exist
a,ay, ... € Awitha, — c. Ifb € B, then (by (3)) an < b for all n,
hence ¢ < b. Thus B C [c,00) and therefore [ — 00,c) C A. Similarly,
A C (= oo,c] and (¢,00) C B. This proves V.

'This is putting the cart before the horse. Historically, part of the theory came before
the axiomatization.
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It follows that our axioms are valid in his theory, and that, conse-
guently, our entire theory will be contained in his.

We see that the two theories are really the same. Once one has accepted
I, I1, 111, and IV as axioms, the choice between V and CT is just 2 matter of
taste. In this sense, the axiom systems I-II-III-IV-V and I-II-III-IV-CT are
‘equivalent.”

It can be shown that Axiom III [or rather, the statement that there exists
a set N C R with (a), (b) and (c)] and Axiom IV follow from Axioms I,
II, and V. Thus, the axiom system I-II-V suffices for our theory and is
equivalent to I-II-III-IV-V.

In the literature, various equivalent axiom systems for R are presented.
Practically all consist of Axioms I and II, and a third axiom, occasionally
with Axiom III and/or IV added. The most common combination is I-II-
S, where S is the “Least Upper Bound Axiom,” our Theorem 2.13. This S
is a consequence of our axioms, so our analysis encompasses the I-II-S-
theory. On the other hand, the books working with I-11-S invariably prove
Axioms IIT and IV right away, while Axiom V is essentially a special case
of S. Thus, our axiom system is equivalent to I-II-S.

Exercises

2.A. Prove that, forx, y,z € R:

(a) Ifx < yandy < z,thenx < z.

() Ifx < y, then -y < —x.

(©) (—xy = —(xy)-
[If you are unused to the axiomatic method, you may find it strange that
formulas like these have to be proved. As in the case of (x) of 2.3, the idea is
not to make sure that they hold for the system of real numbers you have in
mind but that they follow from the axioms. There are many mathematical
structures satisfying the axioms; doing the exercise will establish the validity
of (a)-(c) for all those structures.]

2.B. Give another proof of the identity x0 = 0 by starting with x0 = x(0 + 0).

2.C. Let X be a nonempty subset of R that has upper bounds and therefore has a
supremum. Let Y ¢ X and Y # @. Show that Y also has a supremum and
that sup ¥ < sup X.

2.D. Let X and Y be nonempty subsets of R such that
supX =3and sup¥ =5.
What can you say about sup(X U Y)? What about sup(X N Y)?

2.E. Let X be a nonempty subset of R. We call a number a a lower bound
for X if

xeX = x>a
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2.F.

2.G.

2.H.

2.1

2.4.

2.K

(i) Prove: If X has lower bounds, then among those there is a largest one
The largest lower bound of X is called the infimum of X,

infX or glb X

(ii) Let Y := {—=x : x € X}. Prove: If X has lower bounds, then ¥ has upper
bounds and

infX = ~(sup Y).

The interval (0, 00) has no smallest element: if x is any element of (0, o),
then %x is a smaller one. Thus, not every nonempty subset of R has a
smallest element. However, prove that every nonempty subset of N has a
smallest element. (Hint. Let X C N, X 3 @. Deduce from Exercise 2.E that
X has an infimum, ¢. Show that ¢ < [c]+1, so that there mustbe anx € X
with ¢ < ¥ < [c]+1. Prove that then x < [¢] < ¢ and that, consequently,

c=x€eX)

Let N € N be such that +/N is not an integer. Prove that then +/N is even
irrational. (Hint. Assume /N € Q. Then the set

X={@xeN:x/NeN)

is nonempty. Show that, if ¥ € X and ¥ := x/N — x[/N], then ¥ € X and
¥ < x. Use Exercise 2.F to obtain a contradiction.)
Thus, v2, +/3, +/5, . . . are irrational.

Show: Ifx € R is irrational and a € @, a $# 0, then a+x and ax are irrational.
Show that every interval contains an irrational number. (Use the irrational-
ity of /2, established in the previous exercise.)

Let
) =as+amx+ - +anx" xeR)

be a polynomial function, a, # 0. Suppose n is odd. Show that the
equation f{¥) = 0 has at least one solution in R.

Use the Intermediate Value Theorem to prove that if f : [0,1] — [0, 1] s
continuous, then there exists an x in [0, 1] with f{x) = .

Let x1, %2, . . . be real numbers such that

| —Xm| < for all n, m.
Show that the sequence (¥:)nen converges. (Hint. Apply Cantor's Theorem

with ap = #,— % and by = 2+ 1)
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CHAPTER

Subsequences

3.1

For a good understanding of this chapter, one has to keep in mind the
formal definition of a sequence as a function whose domain is N. This is
not going to prevent us from using the notations xp, 3, . . . and (X;)nen-

From a sequence x;, xz, ..., one obtains a “subsequence” roughly by
deleting terms. The main rule is that infinitely many terms must be left:
A subsequence of x;, xp, ... is a sequence in its own right. (A precise

definition follows in 3.2.)
For instance, the sequence

1,1,2,2,3,3,4,4, ...

has subsequences

1,2,3,4,586,7,...
and
1,1,3,3,55,7,....

It is against the rules to change the order of the terms or introduce new
repetitions: 2,1,4,3,6,5,...and 1,1,1,1, 1, ... are not subsequences of
the sequence 1,1,2,2,3,3,....

36
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3.2
If we start out with a sequence of numbers (or other objects)

X1, X2, X3, X4, X5, X5, X7, X8, . . .
and delete a few terms, then we have left a sequence
Xp, Xg, Xr, . . .

withp<g<r<---

This observation brings us to the formal definition.

Amapa : N - N (a sequence of positive integers) is called strictly
increasing if

(1) < a(2) < o3) < -

A sequence Y1, Yz, - - . is said to be a subsequence of a sequence x;, x, . . .
if there exists a strictly increasing e : N — N with

Yn = Xoqm) forall nin N,
ie. ify1,y2, ..., considered as a function N — R, is the composition of
X1, X3, . .. with some strictly increasing e : N — N.

N s

Ubge,
WA
strictly increasing o R
ce
My

N
For instance, a “tail” xy, *n+1, Xn+2, - . . (8€€ 1.9) is a subsequence of
X1, Xz, ... Obtained from a(n) = n+N-1 (n € N).
Formally, “the sequence 1, 2, 3, . . ." is the functionn > n(n € N), and
the strictly increasing maps N — N are precisely its subsequences.

Two simple remarks:

Lemma 3.3

If y1,y2, . . . is a subsequence of x1,Xa, ... and 21,23, . . . 1S a subsequence o
1 ! ¥

Y1.Y2, . - ., then 21,24, . . . is a subsequence of x,%;, . . ..

Proof

There exist strictly increasinga : N — Nand g : N — Nwith y, = %)
and zym = Ypm for all n, m. Then z, = Xapmy) = X@opy(m for all m, and
oo f: N — Nis strictly increasing. &

Lemma 3.4
Ifa: N — Nis strictly increasing, then a(n) > n for all n.
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Proof
By induction. B

3.5
One should take care not to confuse a sequence

X1, %, %3, ...
with the set of its entries
{x1, %2, %3, .. .}

A sequence always has infinite length, so to speak, but the set of the
entries may well be finite. Also, by changing the order of the terms, one
obtains a different sequence but with the same entries. (Still, we will
occasionally sin and speak of, e.g., a “sequence lying in [0, 1]

There is one situation where making the distinction verges on
pedantry. Theoretically, the expression “the sequence of all prime num-
bers” is meaningless: The prime numbers form a set, not a function on
N. However, any reasonabie person will understand that the sequence

2,3,57,11,13, ...
is meant and not, for instance,
3,3,3,211,37,3,....

More generally, without danger of confusion, one may identify the
infinite subsets of N with the strictly increasing sequences of positive
integers.

Theorem 3.6
Iflimy 00 X, = a, then all subsequences of x,,x2, . . . CONVErge to a.

Proof
(using the definition of convergence): Let i1, Y2, . . . be a subsequence of
X1, %, .. .. Take a strictly increasing « : N — N with y, = x,(,) for all n.

Lete > 0. Thereisan N € N with
n=N = |¥—a| < e.

For all m > N, we have a(m) = N by the previous lemma, so that

Zagmy—al < g, ie., [Yym—al < &.
Thus, Ym — a. |

3.7

A function f is said to be bounded if there exists 2 number K such that
all values of f lie in the interval [~K, K]. Thus, the sine function on R is
bounded; the exponential function is not (but its restriction to [0, 20] is).
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This definition is applicable to functions defined on arbitrary sets. In
particular, a sequence x;, xz, ... is bounded if there exists a number K
such that

;] < K foralln.

Every convergent sequence is bounded. Indeed, letx, — a. There isan N
such that |x,—a| < 1 for alln > N. Then |x,] < |aj+1 assoonasn > N,
and

%] < |1l + |x2] + -+ + |2y +af + 1

for all n.

1t is, of course, not true that every bounded sequence converges.
However, we do have the following important fact.

Theorem 3.8 (Bolzano-Weierstrass Theorem)
Every bounded sequence in R has a convergent subsequence.

Proof
Let (%n)nen be a sequence in R and let M e R be such that |x,| < M for
all n.

Consider the subset L of R defined by

yeL &= Yy <x, forinfinitely many values of n.

Ify € Landy < y, theny € L. Furthermore, —M € Land M ¢ L.
Hence, by the Half-line Theorem, there is a number ¢ such that

(—o0,6) C L C (—0o0,c].

We construct a subsequence converging to c.

Take ¢ > 0. Then c—¢ € L, so there are infinitely many values of n for
which c—¢ < x,. But c+¢ € L, so we can have c+¢& < x, for only finitely
many of those values. This implies that there are infinitely many values
of n with c—¢ < x, < c+e.

Now we make the subsequence. First, choose any (1) € N for which

c—-1< Xo(1) < c+1.

There are infinitely many values of n with c—-% < ¥ < c+-17:. Only

finitely many of them can be < «(1), so we can choose an ¢(2) € N for
which
c—3 <X < c+3 and «(2) > o(l).

Similarly, we can find an «(3) in N such that

1
3

and so on. We obtain a strictly increasinge : N — Nand x4y — ¢c. H

c—3 S < ¢+ and a(3) > «(2),
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The Bolzano-Weierstrass Theorem is a very useful tool in analysis. (In-
deed, assuming Axioms I and II of §2, it is equivalent to Axiom V.) We
apply it to prove a result you know from calculus.

Theorem 3.9
Let D be a closed bounded interval and let f:D — R be continuous. Then f
attains a largest value, i.e., there is a ¢ in D with

fley = fxX) foralxinD.

(Similarly, f attains a smallest value.)

Proof

(I) First, assume f isbounded. Then the nonempty set {f{(x) : x € D} has
upper bounds; let s be its supremum:

s := sup{flx) : x € D}.

Obviously, s = f{(x) for all ¥ € D; we are done if s is itseif a function
value.

For every n € N, s—n~! is smaller than s and hence s—n~! is
no upper bound of {f{x) : ¥ € D}. Then there is an %, in D with
s—n~! < f(x,). But, of course, f{x,) < s, s0

flxn) = s.

The sequence xy, x3, . . . has a subsequence xu(1), Xa(2), . - - CONVEIging
to some number ¢ in D. Then

fagny) = f).

But the sequence flx.)), [Xa(2)), - - - is a subsequence of f{x;), f{x2),
... and hence converges to s (Theorem 3.6). Thus, s = f{¢) and we
are done.

(II) We have proved the theorem for bounded functions. It is time to
drop that restriction: Let f be any continuous function on D. Define
g:D— Rby

g(®) :=tan"' flx)  (x € D).
Then g is continuous and bounded. Hence, there is a ¢ in D with
g(c) = g(x) for all x. Then f{¢) > f(x) for all x. a

In a sense, the second part of the above proof is void:

Corollary 3.10
On a closed bounded interval, every continuous function is bounded.
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Proof
Let f : D —» R be continuous, where D is a closed bounded interval.
Apply the previous theorem to the function x = |f{¥)]. B

Uniform Continuity

:é.:r::sider the following functions with domain (0, co):
fe) = x
8(%) = x (x > 0).
h(x) := **

‘We know that all three are continuous, butlet us compare their continuity

proofs. “Continuous” here means “continuous at every point of (0, co),” so

in each case, we have to take a € (0,00) and ¢ > 0 and find a suitable §.
For f, we choose § := ¢. If x € (0, o0) and |x—a| < §, then

f)—~fla)l = |x—al < § =e.
For g, we choose § := e/a. If x € (0, c0) and |x—a| < §, then
lg(x)—g(a)l = IWx—+al

|x—al 8
= = &.

T VEr/a  0a
For h, we choose § := +/a?+¢ — a. If x € (0, o) and [x—a| < &, then
[h(x)~h(@)| = |x—al |x+al
< 8(2a+8) = --- = &.

In the above, our choices for § were ¢, £4/a, and /a?+&—a, respectively.
You may notice that in the first case our § was independent of a, in the
other two cases it was not. Could we have obtained a § that was the same
for all a?

The answer is affirmative in the case of g. Taking § := &%, for all x €
(0, o) with |x—a| < & we have

g(%) = V% < Va+s < va + 8 = gla)+e,

g(@) = va < Vx+8 < VX + 5 = glH)+e,

and, therefore, [g(x)—g(a)| < &.
For the function h, however, we can see that it is impossible to find
a & that does not depend on a. Indeed, whatever positive number § we
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try, taking a = &6~! and x := a+ 18 we always have x € (0, 0) and
|x—a] < 8, but

h(x)—h(a) = (a+18)* —a® > as =e.

We see that in this respect the behavior of h differs from that of f and g.
We will say that f and g are “uniformly continuous” but h is not.

3.12
Let f be a function on a subset D of R. We call f uniformly continuous if

for every ¢ > 0 there exists a § > 0 such that
xyeD, x—yl <8 = |-l <e.

Think about this definition and check that the functions f and g of 3.11
are indeed uniformly continuous whereas h is not.

Every uniformly continuous function is continuous; apparently, the
converse is false. However,

Theorem 3.13
On a closed bounded interval, every continuous function is uniformly
continuous.

Proof
Let D be a closed bounded interval and let f : D — R be continuous.
Take ¢ > 0; we need a positive § such that

xyeD lx—yl <& = |fD-fWPl<e

Suppose such a & does not exist. Then, whatever positive § we try, there
will always be x and y in D with

lx=yl < & but |fH)-fYI 2 e.
Inparticularwetry 8 = 1,6 = 1,6 = },.... We see that foreveryn € N,
there exist x, and y,, for which

1
|Xn—Yn| < n but  [fx)~flyn)l = &

The sequence x;, x,, . . . has a subsequence xy(1), X«(2), - - - cOnverging to a
number ¢ in D. For each n,

1% | < ! < !
w(n) ~Ya(n) n = a(n)'
SO Yoy —> C. As f is continuous at ¢, we must have flxom)) — fC)

and f(Yamy) —> f(C), contradicting the fact that |f(xam)—f(Yom)| = € for
all n. a
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The Plane

All that we have been doing so far might well be classified as analy-
sis. Our first step in the direction of topology consists of extending part
of the above to functions of several variables. We restrict ourselves to
two variables, but you may find it worthwhile to keep an eye on further
generalization.

3.14
The coordinates of a vector x in R? will be denoted (x); and (#);:

x = ((D, (¥)-

The small parentheses are needed because we will often work with se-
quences of vectors x;, Xz, . . . and we wish to avoid confusion of the initial
element of such a sequence and the first coordinate of a vector x. Ad-
mittedly, the parentheses will clutter up our formulas, but we will use
coordinates sparingly.

As you know, for x € R? one defines the length of x to be the number

Izl == /(? + (3.

The (Cartesian) distance between two vectors, x and y, is

llx=yll,
the length of the difference x—y.

3\}61 iay that a sequence (*:)nen in R? converges to an element x of R?,
Xn —> X,
if
for every ¢ > 0, there exists an N € N such that
n=N == |[x—x|| < ¢
which means precisely the same as
Tim [z, —#]| = 0. )

Let (%)nen be a sequence in R? and let x € R2. For every n in N we
have

[Gn)1—(l < lXn—x]|.

Hence, if (¥) is true, then (x,); — (¥)1 and, similarly, (x,)2 = (%)2.
The converse is also true, since for all n

n=rll = y/ (Gon)= () + (o= 202)"
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Thus:
Theorem 3.16
Let x,%1,%y, . .. € R?. Then,
Xy = X &= (x> (1 and (%) = (X)2.
As a byproduct of this formula we obtain uniqueness of the limit: If
xp — x and x, — y, then x = y. This allows us to use the notation

lim x,.
N>

There are some easily verifiable rules, such as

if %, » xand y, — y,then x,+y, — x+y.

3.17

Given a sequence xi, Xz, . . . of vectors, we define its subsequences to be
all sequences of the form Xu(1), Xa(2), - - -, where (1), @(2),... € N and
a(l) < @(2) < ---. Precisely as in 3.5: If a sequence (xp),,y CONVETgESs 10 X,

then so do all of its subsequences.
A sequence (xn)nen Of vectors is bounded if there exists a number M
such that

fxnll < M foralln.

This is the case if and only if the coordinate sequences (x1)1, (x2)1, (x3)1,
... and (x1)2, (%2)2, (%3)2, . . . are both bounded.

With Theorem 3.16, it is perfectly easy to see that every converg-
ing sequence is bounded. We also have a two-dimensional analog of the
Bolzano-Weierstrass Theorem 3.8:

Theorem 3.18
In R?, every bounded sequence has a convergent subsequence.

Proof
Let x), %3, . . . be a bounded sequence in R?.

Then the sequence of first coordinates (x1)1, (x2)1, - . . is bounded in R
and, hence, has a convergent subsequence. The reader is asked to verify
that this means that the sequence x;, ¥y, . . . has a subsequence y1, yz, - . -

for which

;}Lrglo (Ynh exists. €]

The number sequence (¥1)z2, (Yz)2: (U3)z, - - - is bounded and therefore
has a convergent subsequence. Thenthe sequence of vectors y1, Yz, ¥s, - - -
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has a subsequence z, 2, . . . such that
lim (z,); exists.
n—>0

But by (%)
lim (z,); exists.
n—0Q

Thus, the sequence z, 2z, . . . (@ subsequence of ¥, , xz, . . .) converges. E

3.19
Let f be a function whose domain is a subset D of R? and let a € D. We
say that f is continuous at a if

for every ¢ > 0, there exists a § > 0 such that
x€D, |x—all <& = |fO)-fla)l <.

This definition is in accordance with the one you know from calculus,
except for the fact that most calculus books require a priori that D contain
a disk centered at a.

As a result of our greater generality, for certain combinations of D and
a continuity may be vacuous. If, say, D = Z x Z and a = (3, 5), then
every function on D is continuous at a. Indeed, whatever function f and
whatever positive ¢ we take, with § = % we necessarily have

x€D, |x~al <8 = x=a = |X)-Aa) <e.

[This is the same phenomenon we have already observed in a slightly
different context in 1.8(ii).]

The following theorem is perfectly analogous to Theorem 1.12 and its
proof is nothing new either.

Theorem 3.20
Let D C R% f:D — R, and a € D. Then the conditions (&) and () are
equivalent.

() f is continuous at a.
(B) For every sequence (xn),en in D with x, — a, we have f(x,) — f(a).

Proof
() = (B). Letxy,xy,... € D, %, = a;lete > 0. There existsa§ > 0
such that [{x)—f(a)l < & for all x € D for which [lx—a| < &. There
exists an N € N such that |lx,—al < 68 for all n with n > N. Then
If(x:)—fla)] < eassoonasn > N.

(B) == (o) Let & > 0. We need a positive number § with

xeD, flxa—all <8 = |fX)-fla)l <=
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Suppose such a § does not exist. Then, for every § > 0, there exists an x
in D such that

lx—all < & but [f)—-Aa)l = e.

In particular, taking § = 1, § = 1,8 = },... we see that there exist
X1, Xz, ... in D with, for every n,

fxn—al < % but |f{x)~fa)l = e.

Thus, there is a sequence (X)nen in D for which x, — a but not f{x,) —
f(a@). Contradiction. |

3.21

From this theorem we see that, for instance, the product of two continuous
functions is continuous. Indeed, let D C R? a € D and let f and g be
functions on D, both continuous at a. Define h : D — R by

hivY s— fI\of v (
Xy k B

We claim that h is continuous at a. (This will not surprise you, but the
proof is of more interest than the statement itself.) To substantiate our
claim, we consider a sequence (x;)nen in D that converges to a. We wish
to prove h(x,) — h(a). But that is a simple consequence of the rules for
converging sequences we have listed in Theorem 1.11:

h(xn) = f(xn)g(xn) — f@)g(a) = h(a)'

You will see that, in precisely the same way, one can show that if
f : D - R is continuous at g, then so are, for instance, the functions

x > (x € D)
and [if f{x) # 0 for all x]

1
X > (x € D).

)

3.22

A function f on a subset D of R? is called continuous if it is continuous at
every point of D. Occasionally, we call f : D — R sequentially continuous
if

a, Xy, X,... €D
:‘ == flx,) - fl4).
Xp —> da
Apparently, continuity is the same as sequential continuity, and you may
wonder why we introduce two names for one concept. Bear with us for a
while. In Part III you will see our reasons.
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3.23

At this stage, we do not intend to set up an entire theory of continuous
functions on subsets of R?. We only wish to make two remarks, in the
spirit of Theorems 3.9 and 3.13.

In Theorem 3.9 we have proved that on a closed bounded interval D
every continuous function has a largest value. If you carefully read over
the proof (and the authors urge you to do s0) you will notice that all we
had to know about D was

every sequence in D has a subsequence
(8C)

converging to an element of D.

This means that the proof does not work only for closed bounded in-
tervals but for every set D that has the property (SC), called sequential
compactness.

It is really better than that. The proof of Theorem 3.9 does not really
use the fact that D is a subset of R: It works just as well for “sequentially
compact” subsets of R%. (Check it; do not trust us.)

One thing and the other lead to

Theorem 3.24
Let D be a sequentially compact subset of R?; let f:D —» R be continuous.
Then f attains a largest value.

(And a smallest. Hence, f is bounded.)

The same reasoning applies to Theorem 3.13 on uniform continuity;
its proof works for any sequentially compact subset of R or R2. (All one
really needs is a definition of uniform continuity for functions on subsets
of R?. It is left to the reader to provide one.)

Theorem 3.25
On a sequentially compact subset of R?, every continuous function is uniformly
CONtiNUOUS.

All this is vacuous as long as we do not have explicit examples of
sequentially compact sets in R?. Fortunately, they are easy to find.
Examples 3.26

(D) Let D be the “closed unit square” [-1, 1] x [—1, 1]:
D:=(x e R*: (x) € [-1,1],(®2 € [-1,1]}.

Take a sequence x;, ¥z, ... in D. It follows from Theorem 3.18 that
there is a subsequence y1, 3, . . . , converging to some y € R?. Isy an
element of D? Of course it is: Its coordinates are limits of sequences
in [~1, 1] and therefore lie in [-1, 1] themselves.
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(ii) Let D be the “closed unit disk”
(xeR: |zl < 1).

Again, any sequence xi, ¥z, . . . in D has a subsequence yi, yz, . . . that
converges to some y in R?. For the sequential compactness of D, we
need |lyll < 1. But [ylI? = @) + )] = liMnsoo(yn)? + ()] =
limye0 lynli* < 1.

Extra: Bolzano (1781-1848)

The history of mathematics reveals some oddities. Bernhard Bolzano's
place in the development of analysis is one of them. If due credit
were given by naming theorems and definitions after their discover-
ers, Cauchy sequences (see 7.2) would be called Bolzano sequences and
Theorem 4.28 would be cited as the Bolzano Closed Curve Theorem.
Introductory chapters to analysis textbooks would rename Dedekind's Ax-
iom (our Theorem 2.13) into Bolzano's Axiom. Weierstrass' name would
be dropped from the Bolzano-Weierstrass Theorem and Theorem 2.18
would be known as Bolzano’s Intermediate Value Theorem. Furthermore,
Bolzano would be credited for introducing the modern definitions of a con-
vergent sequence, a convergent series, continuity, and differentiability.
And there is much more. His thoughts on infinite sets bridge the period
from Galileo to Cantor (see Chapter 19), he constructed the set of real
numbers, was the first to recognize the need for an axiom such as our
Axiom V and he gave an explicit example of a continuous function that is
nowhere increasing or decreasing. (In Exercise 8.1 we prove the existence
of such a function.)

Bolzano was born and lived in the city of Prague in Bohemia, at
the time part of the Austrian-Hungarian Empire. The first half of the
nineteenth century was a period of political instability in Europe, start-
ing with the French Revolution and the Napoleonic Wars. Bohemia was
no exception. There was much resistance against the Austrian regime
and constant striving to obtain a higher level of autonomy, if not com-
plete independence. The atmosphere was hardly conducive to scholarly
pursuits.

Bolzano was no recluse. He studied Philosophy, Theology, and Mathe-
matics. After his doctorate (his thesis was on geometry) in 1805, he chose
to be a Catholic priest and was appointed a theology professor in Prague.
His desire for clarity and his sympathy for socialist ideas made him pop-
ular with the Praguers and unpopular with his superiors. In 1819, he was
fired because of his political activities and afterward he was accused of
heresy. Neither this nor his bad health kept him from being active. For
the rest of his life he was financially supported by friends, but between
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1817 and 1840 he had no opportunity to publish his mathematical and
philosophical ideas.

For mathematics, the age was also one of unrest. During the preced-
ing century, the basic results of calculus had become well known, but
there were no precise definitions and not much of the careful reasoning
we are accustomed. As a consequence, there were controversies about
interpretations of certain mathematical statements. Bolzano was the first
to provide modern rigor. He went through an enormous amount of work.
His total output (not all of a mathematical nature) is expected to fill 56
volumes.

The letdown is that his ideas went unnoticed for half a century. Every-
thing was discovered independently, but later, by others, who have gotten
the limelight. Most of the credit has gone to Bolzano's contemporary, the
Frenchman Augustin-Louis Cauchy (1789-1857). It is not without interest
to compare the two: Bolzano, living in isolation, ignored by the world,
and Cauchy, one of the world’s most famous scholars, who for his merits
was made a baron by King Charles X. Without disparaging Cauchy, we
must say that Bolzano introduced exactness before Cauchy did, and, un-
like Cauchy, strictly adhered to it. (Also, he seems to have been a nicer
person to have around.)

Further Reading

Russ, S., Bolzano's Analytic Programme, Mathematical Intelligencer 14,
1992, 45-53.

Exercises

3.A. Letf : [a, b] — R be a continuous function. Show that there exists a w in
[a, b] such that

b
| o = sorco-a)

(Hint. f attains a smallest value A and a largest value B. Show that A <
b
= [, ibdt < B)

3.B. Let (*n)nen be a bounded sequence in R that does not converge to 0. Show
that there must exist a subsequence that converges to some number different
from 0. (Of course, there may also be subsequences with limit 0.)

3.C. Let ] be an interval and f a differentiable function on J whose deriva-
tive is bounded. Show that f is uniformly continuous (Use the Mean Value
Theorem).
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Observe that boundedness of f’ is not necessary for uniform continuity
of f. Indeed, the function x +—> /x (x > 0) is uniformly continuous and
differentiable, but its derivative is not bounded.

3.D. The question of whether the function ¥ ~— #? is uniformly continuous is,
strictly speaking, meaningless as long as we do not specify the domain of
the function. For example, by Theorem 3.13,
x> 2  (xe[1,2])
is uniformly continuous, but from Corollary 3.10 we know that
X — x° (x € (0, oo))

is not. In this respect, uniform continuity is like boundedness (the logarithm
is bounded on [1, 2] but not on [1, c0)) and injectivity (x — #? is injective
on [0, o) but not on R).
Which of the following functions are (or is) uniformly continuous? You

may have use here for the result of the previous exercise.

(a) & —> logx (x € [1, 09)).

() x —> logx (x e (0, 1))

(c) x +—> sinx (x e R).

(@ x—sin/x (x> 1)

(€) x — cosx™! (0 <x<1).

O x— A+ (0<x<1).

3.E. Show that the subset
U, 3, 3.
of R is sequentially compact.

3.F. Leta, b, ¢ € R2. For a nonnegative number r, we say thata, b, and c liein a
disk with radius 7 if there exists a point x of R? such that

la—xl| <r, Ib—x|| <r, and [c—x| < 7.
(Here we allow a disk to have radius 0.) Show that the set
{r € [0,00) : a, b, ¢ lie in a disk with radius r}

has a smallest element. (Hint. Let rp be the infimum of the set. Show that
rp is adherent to the set and apply Theorem 3.18.)

a
@
a ®
\\\
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3.G. LetT" == {(x%,y) € R? : #%4y® = 1} and let f : ' — R be continuous. Prove
the existence of a point p of T for which f{p) = f{—p). (Hint. Consider the

function
t > f(t, V1-t2) — f(—t, =V 1—t%)
defined on [-1, 1].)

3.H. Let f be a function on R?
We call f separately continuous if for every a € R the functionsx — f(x, a)
and y — f(a, y) are continuous.
(i) Prove: If f is continuous, then f is separately continuous.
(ii) Consider the function fp : R? — R:

folmy) = o i (1) # (0,0),

+Y
fo(0,0) := 0.

Show that f is separately continuous but not continuous.



Curves in the
~ Plane

CHAPTER

So far, our arguments mainly dealt with analysis. In this chapter, we make
a bigger step in the direction of topology. In fact, we will prove a famous
topological theorem (Brouwer’s Fixed Point Theorem) and formulate a
second one (Jordan's Closed Curve Theorem). A complete proof of the
latter will be given in Chapter 16.

Curves

4.1

Suppose a ladybug walks on the patio from some point A to point B. As a
thought experiment, we use a marker and at each time ¢ (startingatt = 0
in A) mark the insect’s position with the number f:

When the ladybug arrives at B we have traced her path. The same effect,
tracing a path, can actually be achieved by following the slimy trail of a
slug:

52
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A

There is an important difference, though. By looking at the trail of the
slug, we probably cannot tell if it stopped at some point on the way and
did not move for half an hour; nor can we tell if it retraced its path back
and forth several times.

It is for those reasons that we are more interested in the map

t — position of the ladybug at time ¢ )
than in the path without the time evolution. To give an explicit example,
t = (cos 2mt, sin 2mt) (tef{0,1]

could be the description of the slug's voyage. The trail that is left is the
unit circle

fx e R*: ||xll = 1)

indistinguishable from the trail that would be left if the walk were
described by

t > (cos 4mt, sin 4mt) (te[0,1]
or
t > (sin 2mt, cos 2mt) (t € [0,1].

We will define a “curve” to be a description of a walk in the sense of ().
In mathematical language, a curve is a map defined on a closed bounded
interval I with values in R2. This is not our formal definition yet, because
we require the map () to be continuous. The following definition is just
what you expect.

:e%c Dc Randf : D — R2 We call f continuous at a point a of D if
for every ¢ > 0, there exists a § > 0 such that
Xx€D, [x—al <8 = -2l < &

f is said to be continuous if it is continuous at every point of D.

Precisely as in Theorems 1.12 and 3.20 we have equivalence of
continuity and sequential continuity:
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Theorem 4.3
Let D C R, f:D — R? and a € D. Then the conditions () and (B) are
equivalent.

(a) f is continuous at a.
(B) For every sequence x;,x;, . . . in D with x, — a, we have f(x,) — f(a).

Proof
Left to the reader. ]

4.4
LetD c Randf : D — R2? Forx € D, letfi(x) and f(x) be the coordinates
of the vector f(x):

) = (i), 2(®)  (x € D).

Then f; and f; are functions on D with values in R, the component functions
of f.

Ifa € Dand if x3, x;, . . . is a sequence in D that converges to a, then
(by Theorem 3.16)

flxn) = fla) <= fi(x) — f2(a) and fo(xn) — f2(a).

Consequently:

Theorem 4.5
LetD c R, f:D — R?% anda € D. Then f is continuous at a if and only if
both of its component functions are.

4.6
Now we can define curve officially: A curve is a continuous map I — R?
where I is a closed bounded interval in R.

Ify : I — R?is a curve, then we denote by y* the image of I under y:

Y=y tell

(y* is the trail left by the slug.)

If y : [a,b] — R? is a curve, then y(a) and y(b) are called the initial
point and the end point of y, respectively. (Occasionally, we will speak of
the initial and the end point of y*. In spite of our discussion at the start of
this chapter, much of our intuition about curves y will be guided by what
y* looks like.)

A curve y : [a, b] — R? is closed if y(a) = ¥(b).

Some examples of curves:
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o(t)=(2 cos t +cos 2t, 2 sint - sin 2t)

; (0" t" 2m)

oM =(¢,
¢ 11D

A curve may not be given by a simple analytic formula. The circum-
ference of the square [0,1] x [0,1] is the image of y* of a (closed)
curve y : [0, 4] — R? described by

) = (¢, 0) if 0<t<]l,
W =(1,t=1) if 1<t<2,
WO =(B-t1) if 2<t=<3,
W) = (0,4—f) if 3<t<4

(closed)

1(3) < 1(2)

¥(0)="v(4) (1)

The formula

v =(22) o=t=<1

describes a rather trivial kind of curve for which y* contains only one
point: a point curve.
It is no surprise that each of the pictures below is a y*:

X
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There is, however, one very disconcerting fact about curves that destroys
much of this intuition: the following picture is a valid y*.

This fact is important enough to discuss it in detail.

Theorem 4.7 (G. Peano)
There exists a curve y:[0,1] — R? such that y* = [0,1] x [0,1].

Proof

The construction of the curve y takes place in stages. At each stage we

simultaneously subdivide the interval [0, 1] and the square [0,1] x [ 1].
In stage 1, [0,1] is divided into four parts, [0, 3], [3, %], 3, 3]

and [2, 1], named Iy, I, I, and I3, respectively. Also, [0,1] x [0,1] is

divided into four equal parts as below.

83| 8
So | S
In stage 2, each I; and each §; is again divided into four parts,
Iy, ..., Iz and Sy, . . ., Si3. For instance, the subdivision of I; is as follows:
T o | Iz
{ { 1} i I
1 9 10 1 3
2 16 16 16 4

The subdivision of the square in this stage is

S33 | S30 | Szz | Szz
832 | Sz | S20 | S;n
Sor | Soz | S13 | S1z
Soo | So3 | S10 | Sm

In stage 2, we numbered the subintervals of [0, 1] from left to right. For the
subsquares we have to explain our procedure. Note that any two intervals
that are consecutive in

Ino, I, Ioz, To3, ho, - - -, I33
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have a common end point. We wish to number the subsquares such that
two squares consecutive in

Soo, So1, Soz, .- -, Sa3

border on each other. Second (as noted above), we want S5 C §; for
all i and j, precisely like I C I;. If we add one more wish, namely that
Soo and 833 lie in the lower and the upper left corners, respectively, the
numbering is forced on us. The following picture illustrates how the chain

of subsquares Sgg, Sor, - - -, S33 is fit into the big square:
Continuing in this fashion, in stage 3 we make intervals I, . . ., Iz and
squares Sy, . . ., Sy3. The chain of little squares now looks like
—H e
| ] [
il
NN I |
1L __; ]
L L r..l
melf=allacl ""1l
,1_1 i |

In stage n, we have 4" subintervals of [0, 1] and 4" subsquares of [0, 1] x
[0, 1]. Each subinterval and each subsquare are numbered by a string of n
digits from the set {0, 1, 2, 3}. If two intervals are neighbors, then so are
the identically named subsquares.

Now we construct the curve y : [0, 1] = [0, 1] x [0, 1]. The idea of the
construction is simply this: If a point x of [0, 1] lies in the interval I; _;,
we want p(x) to lie in the corresponding square §;, ;..

Take t € [0, 1). Choose i3, iz, ... in {0, 1, 2,3} such that t € I ;, for
every n. Then

S, D Sii; D Sigigis D 0+

It follows from Cantor's Theorem (2.19) that these squares have a com-
mon point, x, say. it would be rash to define p(f) := x because the
sequence i, iz, . .. may not be unique. (Indeed, for t = % we could have
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choseniy =1,z =i3=.--=30r4 = 2,i; =i3 =--- = 0.) However,
suppose that besides 1), i3, . . . and x as above, we have another sequence
Ju,jz,...in{0,1,2,3}anday € R?* such thatt € I;, ; and y € §;, , for
all n. Then, for each n, the intervals I ;, and I ; are either equal or
adjacent; then so are the squares §;,_;, and §;, j,; then [lx—y|| < 27"/5.
It follows that x = y.

We see that for every t € [0, 1], there is a unique ¥(t) € [0, 1] x [0, 1]
such that

tel, ., == W) ES.i. (%)

This defines our map y.

To see that y is continuous, take s, t € [0,1], s # t, |s—t| < 1. There is
ann € N with 4~ < |s—t] < 4™". Then s and ¢ lie in the same or in
adjacent intervals of stage n, so y(5) and () lie in the same or adjacent

squares of stage n. Then
I7)—y®Oll < 275 = 24/5 270D < 25 |s—t].

Thus, v is continuous.
To see that y maps the interval onto the square, take x € [0, 1] x [0, 1].
There exist i1, 4, ...1n {0, 1, 2,3} with x € §;,..;, for all n. Then

Iy D Lijyi, D Iijipiy O« -~
By Cantor's Theorem, these intervals have a common point t. It follows
from () that y(f) = x. |

4.8
There are many variations on this theme. We may for instance subdivide
triangles instead of squares:

This construction leads to a curve that fills a triangle.

A curve y for which y* contains an entire disk is called a Peano curve;
the specific one we made in the proof of Theorem 4.7 is the Hilbert curve.
When dealing with curves, one often has to add extra restrictions in order
to exclude Peano curves and remain close to the intuition. In this direc-
tion, it is helpful to observe that the Hilbert curve keeps turning back on
itself and, thus, is not injective. In fact, the reader can calculate that the

elements §, 1, and 2 of [0, 1] are mapped onto the same point of the
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square, namely its center. That is not accidental: Peano curves cannotbe
injective.

4.9
A "Jordan curve” is a curve that is injective except possibly at the end
points. More exactly, a curve y : [, b] — R? is called a Jordan curve if

=aqa or s=b
=bh t=a'

/T IO

not Jordan Jordan closed Jordan

Y& =Yt) == s=t or

In 4.10 - 4.12 we have a digression, discussing somewhat loosely a few
topics of interest which deal with curves.

4.10

An immediate observation about the circle is that it divides the plane into
two regions to each of which it is the boundary. This fact is intuitively so
clear that it may be a bit of surprise that the same fact is much harder to
see for some other closed Jordan curves. Consider this picture. Is P inside
the curve or outside?

Q

Of course, the point Q is outside the curve. If we slowly shift Q into the
direction of P, as indicated in the picture, we notice the following. As soon
as we cross the curve we are inside, and as soon as we cross it a second
time we are outside again. Continuing in this fashion we discover that P
lies outside the curve.

More generally, suppose we are working with a closed Jordan curve.
Given a point in the plane, not on the curve, we draw a halfline starting
at that point, in such a direction that nowhere the half'line is tangent to
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the curve. We count the number of intersections with the curve. If the
number is odd, we color the point red, otherwise we color it black. (The
points on the curve are left white.) The set of black points then is the
outside of the curve, the set of red points its inside.

For many closed Jordan curves this procedure works fine to distinguish
between inside and outside. This does not constitute a proof that it is
always applicable though.

It turns out that the following theorem is difficult to prove. In fact, at
this stage we cannot even present a good formulation.

Theorem 4.11 (Jordan’s Closed Curve Theorem; preliminary form)
Every closed Jordan curve divides the plane into two nonempty disjoint regions.

At the end of this chapter we will make the statement more precise.
We postpone our proof until Chapter 16; it requires machinery that we
have yet to develop.

4.12

Another example of the kind of topic that we are going to investigate is
provided by the game “Twixt" The game was sold by the Avalon Hill Game
Company in the seventies.

red line

--------------

----------------

---------------

----------------

...............

black line
black line

...............

...............

...............

---------------

--------------

red line

The game is played with red and black pegs and a board provided with
holes. There are two players, Red and Black. Players move alternately
by placing one peg of their own color in an empty hole that is not on
the opponent’s color line. Whenever a player has two pegs in a six-hole
rectangle as below, he is allowed to link them and thus form
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=

a barrier for his opponent. To win, a player must connect the lines of his
color by an uninterrupted chain of linked pegs. Obviously, once Black
has completed such a chain, he has a total barrier for Red. Putting it
differently, a chain for Black and a chain for Red always intersect.

Or do they? How would you go about proving it?

A red chain from one red line to the other may be described as a 8%,
where g : [0,1] — [0,1] x [0, 1] is a curve, beginning somewhere in
[0, 1] x {0} and ending in [0, 1] x {1}. Similarly, a complete black chain is
a y*, where y : [0,1] — [0, 1] x [0, 1] is a curve beginning in {0} x [0, 1]
and ending in {1} x [0, 1]. The previous discussion suggests that * and y*
necessarily intersect. But can we prove that? In Theorem 4.26 we will
present a proof. Curiously, it involves complex numbers and continuous
maps A — A where A is the “closed unit disk”:

A= {xeR?: x| <1).

The complex numbers appear only in a supporting role; they can be
avoided. The maps A — A, however, are vital.

Homeomorphic Sets

We are compelled for a short while to return to our general theory of
continuity. We have considered R-valued functions defined on subsets
of R and of R%. We have also worked with continuous R?-valued maps
defined on intervals. Now we are going to look at R%-valued maps defined
on subsets of R?. For the time being, there are no surprises. Indeed, 4.13
and 4.14 are as inevitable as Fate in a Greek tragedy.

‘Il,e%c:; C R?and f : D — R2. We call f continuous at a point a of D if
for every & > 0, there existsa d > 0 such that
xeD, |x—all <8§ = JfX)-fa)l < e
f is said to be continuous if it is continuous at every point of D.
4.14
Again (see Theorems 1.12, 3.20, and 4.3), continuity is the same as se-

quential continuity. This time we do not even bother to formulate a
theorem.
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As in 4.4, every f : D — R? gives rise to two R-valued functions
fi and f; on D, its component functions. f is continuous if and only if
fi and f; are.

With the aid of sequential continuity (or directly from the definition)
one easily proves:

Theorem 4.15
IfD,E C R%,iff: D — R?and g : E — R? are continuous, and if f(D) C E,
then g o f is continuous.

Examples 4.16
(i) For every ¢ in R?, we have a translation

T, :x+—> x+¢  (x € R,

Ifx,y € BR? then |T(x) — T}l = Jx — y. It follows that T is
continuous. (For given ¢ > 0, simply take § = £.) Observe that T is

bijective; its inverse is the translation T_,.

Myy,
/ Te(x) /Y( )
Te(y) My(x)
X dy 7!
’ / ’/ ) /
/ ’ 'II: - -~ ' 1 !
1y

(ii) For every real number y there is a multiplication
M, x> (x € RY).

For x,y € R?, we have |[M,()—M,W)ll = lyx—ywyll = |yl lx—yl. It
follows that M, is continuous. (For given &, take § such that [y|s < &;
if now [lx—al| < §, then [M,(x)—M,(a)ll < )Ify # 0, thenM, isa
bijection whose inverse is the multiplication My,

(iii) Take ¢ in R. The formula

Ro(%1, %) := (x1 cosa — ¥z sina , #; sina + x; cos )

describes a counterclockwise rotation over the angle o:
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N Ro(¥)
X
Ra(y)
ah
1
Rotations preserve distances: |[Rgx—Royl = |x—yll. Hence, Ry is

continuous (8 = g, again). R, is bijective; its inverse is R_,.
(iv) If ¢ and ¥ are continuous functions R — R, then the map R? — R?
defined by

(%1, %2) > (@(x1), ¥(*2)) (%1, %2) € R

is sequentially continuous, hence continuous. Let us consider a
special case that will be of use later. Define ¢ : R — Rby

o) =t if te]0,o00),
o(t) = —t* if t e (—oo,0).

-1

@ is easily seen to be continuous. It is bijective; its inverse map is
given by

o (s) = /s if s €0, 00),
@7 l(s) = —v/—s if s€ (—00,0),



64 4. CGCurves in the Plane

and is also continuous. (Do not take our word for all that.)
As a consequence, the formula

F(x1, %) = (p(21), 0(%2))  ((%1, %2) € R?)

determines a continuous bijection F : R? — R? with a continuous
inverse given by

F (o, 22) = (97 (%), 07 (%2)) (%1, %2) € R?).

4.17

We can now briefly return to our considerations of 1.1 and show that a

triangle and a square are “topologically equivalent” First, a definition.
Let D; and D, be subsets of R%. A bijective map f : D; — D, that

is continuous and has a continuous inverse f~! : D; — D; is called a

homeomorphism of Dy onto D,. If, for given D; and D;, such an f exists,

we say that D; is homeomorphic to Ds:

ifD] ~ Dz, then Dy ~ D,

(We then also say that Dy and D, are homeomorphic.)

If Dy, D;, and D3 are subsets of R? and iff : D, — Dz andg : D; — D3
are homeomorphisms, then their composition g o f is a homeomorphism
Dy — D3. (Why?) Thus,

if Dy ~ D and D, ~ D3, then Dy ~ Ds.

4.18

In Examples 4.16, we have obtained a number of homeomorphisms
R? — RZ From them, we can construct homeomorphisms between
proper subsets of R? as follows.

Let f be a homeomorphism of R? onto R2. Take a subset D of R?. The
restriction of f to D [see 1.14(v)] is a bijective map of D onto f{D) whose
inverse is the restriction of f~! to f{iD). As f and f~! are (sequentially)
continuous, so are their restrictions. (Think about this.) Hence, f|p is a
homeomorphism, and

D ~ fiD).
Example 4.19
We are interested in the closed unit disk
A:={xelR?: x| <1},
the closed unit square

8 :=[-1,1] x [-1,1],
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the diamond
D := {(%1, %) € R? : |x1] + [x2] < 1)
and the triangle

T :={(x1,%) €R2: %, 20, 2 > 0,x+x < 1}.

(1 NN
L s NV |

The rotation Ry followed by the multiplication M 5 maps the
diamond onto the square, i.e.,

Rr/4 M7

(M5 © Ry4)(D) = 8. Therefore, the diamond and the square are
homeomorphic:

D~ 8.

Not exactly startling. More interesting is what the map F of 4.16(iv) does
to the disk. Indeed, for x = (%, ;) € R?, we have

xeh &= X+x<1
& lp(a)l +lo(x)l =1 <= F(x) € D.

Thus, F(A) = D. Then the disk is homeomorphic to the diamond and,
therefore, also to the square:

A ~D, A~S.
Next, let R2 be the first quadrant, '
R,Z*_ = {(xl,xz) € RZ x>0, % > 0},

andset Ay == ANRZ:



66 4. Curves in the Plane

It is easy to see that F(RZ) = RZ, so that F(A;) = F(A) N FRZ) =
DNRZ = T. We obtain

] A+ ~ T.
On the other hand, if A is the “angle”
A= {(x, %) e R? : % > |x]),

then
XeEA & Fx)eA

(check this) and, therefore, F(A N A) = D N A. We have a chain of
homeomorphisms

showing that A, and D are homeomorphic.
Thus, the sets D, S, A, A, and T are pairwise homeomorphic.

Brouwer’s Theorem

So far it was relatively smooth sailing. We will have to work considerably
harder to prove the following powerful statement.
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Theorem 4.20 (Brouwer’s Fixed Point Theorem)
Let A be the closed unit disk. Let f : A — R? be continuous and such that
f(A) C A. Then there exists an element x in A for which f(x) = x (a fixed

point for f).

4.21 Intuitive proof
The exact proof, although only moderately complicated, does not show
very well what is going on. Therefore, we first do some reconnaissance,
without bothering much about exactness. The formal proof follows in
4.24,

Suppose we have a continuous map f : A — A where A is the closed
unit disk, and suppose f(x) # x for all x in A.

Fort € [0, 1], the point

Y(t) := (cos 2xt, sin 2nt)

lies on the unit circle. For each t, we draw an arrow from ¥(t) to f((t));
this arrow

Y ()

always points inward. If we let t increase from 0 to 1, we see y(t) describe
the circle in the counterclockwise direction and we see the arrow make a
complete turn. (It may not move regularly: It may lengthen and shorten
and it may shift back now and then, but the net result will be one full
turn.) Then the point

fr®) — v

describes a path in the plane that encloses the origin. Putting it differently,
for each t
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the vector f()(f)) — () makes a sharp angle with —(t); as t moves from 0
to 1, —p(t) turns once around the origin; then so does f(1(t)) — W(b).
Next, for r € [0, 1}, we consider the curve

Br() = f(rv(D)) — D).
B is the curve sketched in (%); it encloses the origin. If we let r shrink
from 1 to 0, the curve B, changes gradually without ever passing through
the origin. Consequently, every B, goes around the origin. However, By is
the point curve

t—>f0) (O<t=<1)

and does not go around the origin. Contradiction. [Or, if you prefer, for very
small r, B, is a curve in the immediate neighborhood of the point f{0) that
is not the origin, so B, cannot enclose the origin.]

4.22
To make an exact proof out of these considerations we will, for any closed
curve that does not pass through the origin, formally define its “winding
number” which counts how often the curve goes around the origin in the
counterclockwise direction. With B, as above, we will then show that the
winding numbers of 8; and By are 1 and 0, respectively, and that the wind-
ing number of 8, depends continuously on r. As winding numbers are
integers, we have a contradiction with the Intermediate Value Theorem.
In order to show what (intuitively) the winding number is, we sketch
a few curves indicating with each one its winding number n.

n=2 YA nz=-1 n=0

For the exact definition we need the “argument”
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A number ¢ is called an argument of the point x € R? x # 0, if
x = ||xf|(cos ¢, sin ¥),

i.e. if x| and ¢ form a set of polar coordinates for x. Every nonzero point
of R? has infinitely many arguments; any two of these differ by a multiple
of 2z, (Our use of the term “argument” may not be precisely the one you
have seen before.)

N
I\

9=E I Tn 9 =31 o 9=-F.In $=0,27,...

f Band =y

R e

Lety : [a, b] > R%be a closed curve, y(t) # 0 for every t. Ast increases
from a to b, ¥(t) moves through the plane, starting at y(a) and returning
to the same point. For every t, one can choose an argument 9(t) of y(t).
Is it possible to do so in such a way that #(f) depends continuously on
t? Intuitively, you would answer affirmatively. You would be right, but a
proof is not at all obvious.

Suppose we have such a continuous selection of arguments; i.e., sup-
pose we have a continuous function ¢ : [a,b] — R such that for
every t,

n&) = Ilv(H)ll{cos #(t), sin 9(1)).

As y(a) = y(b), we see that cos #(a) = cos ¥(b) and sin #(a) = sin ¥(b),
so that #(b) — #(a) is a multiple of 2x:

¥(b)—¥(a) = 2nn forsome n € Z.

For an example, consider the following curve:

Y(s1)
e

Y(s2)
( \ M\ N Y@ =y(b)

N S
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The intersections of y* with the coordinate axes are y(a), ¥(s1), ¥(82), - - -,
y(b), where a < 51 < s < -+ < b. Starting with #(a) = 0, we see that
necessarily 3(s1) = n/2, #(s2) = =, . .., ¥ (V) = 4. We obtain n = 2.

Looking at the picture, you will agree that 2 is also what we would
want the winding number of this curve to be. That is not accidental. Use
the same technique to “calculate” (27)~}(#(b) — ¥(a)) for the four curves
sketched at the beginning of this section and in each case you will find
the hoped-for winding number. Moreover, you will get some idea of why
this should be so.

As mathematicians we now define the winding number of a closed curve
¥ : [a, b] =~ R? that avoids the origin to be the integer (27)~}(3(b)—¥(a))
if ¢ is a continuous function and ¥(f) is an argument of /(f) for every t. (If
we have two such functions, then their difference is a continuous function
whose values are multiples of 2rr; then this difference is constant and the
winding number does not depend on the choice of #.)

Itis not at all evident that there always is such a function . Its existernce
is, however, an easy consequence of the following lemma.

Lemma 4.23
Let R be the square [0,1] x [0,1] in R%. Let g be a continuous map of R into R?
with g(x) # 0 for all x € R. Then there is a continuous %:R — R such that

8(®) = lg®ll(cos ¥(x), sind(x))  (x € R),

ie B(x) is an argument of g(x) for every x.

Proof

(1) Let us first assume ||g(x)|| = 1 for every x.
It will be convenient to identify the points of R? with the complex
numbers via the formula

(%1, x2) = x1+x21 (%1, % € R).

In particular, (v cos 2xt, v sin 27t) = re*™ for all r and ¢.
‘What we need is a continuous ¢ : R — R for which

gx) =™  (xeS).
It is easy to verify that
u=exp[isin'(Imu)] if ueC, [u/=1, Reu > 0. (*)

As R is sequentially compact [Example 3.26(i)], g is uniformly
continuous (Theorem 3.25), so there is an N in N with

Y,2€R, ly—z| < = g8 < 1.

N
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Therefore, ifx € Randn € {1,2,..., N}, then

g(%x)—g(n;1x> < 1,
i(w-l )) - < 1'

. E622)

g(%5t%)

and by (%),

g(n: = exp | isin™! (Im g(flx) ) .
s(%F %) s(*F %)

It follows that if we select any argument o of g(0) and define

= g5
9(%) = a+ y_sin”" (1 I ) (x € R),
n==l g( )

then ¢ is continuous and €™ = g(x) for all ».
(11) If we do not have ||ig(x)l| = 1 for all x, we simply apply the result of
(1) to the map

g(%)
gl

(x € R). 2 |

4.24 Proof
Now we prove Brouwer's Theorem. Let A be the closed unit disk, let
f : A — A be continuous and suppose f(x) # x for all x € A. We derive a
contradiction.

Let R be the square [0, 1] x [0, 1]. For (7, t) € R, define B,(t) as earlier;
in the language of complex numbers,

ﬁr(t) = f(rebnt) me

By Lemma 4.23, there exists a continuous function ¢ : R — R such that
forallr andt, 9(r,¢t)is an argument of B,(¢). Then for all »,

= (2m)"H(9(r, 1) — ¥(r, 0))
is the winding number of B,. Clearly, r — n, is continuous. Its values are
integers. Hence, by the Intermediate Value Theorem,

ny = M.

For each t, (0, t) is an argument of f{0), so #(0, )—¥(0, 0) is a multiple
of 2. Again by the Intermediate Value Theorem, (0, 1)—3(0, 0) = 0, so

Tlo=0.
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On the other hand, for all ¢,
2™ + Bu(O] = ™) < 1 = "™,

from which it follows that g, (t) and €™ cannot have the same arguments.
Thus, ¥(1, t)—2nt cannotbe amultiple of 2. The Intermediate Value The-
orem is easily seen to imply that #(1, 0)—2x < #(1, )—2xt < 91, 0)+2x,
from which

ny = 1.

Contradiction. B

4.25

Brouwer’s Theorem is not typical for the disk. In Exercise 4.19 we have
observed the existence of a homeomorphism of A onto the closed unit
square §, i.e. a continuous bijection T : A — S whose inverse T~} : § —
A is also continuous. Let us investigate what happens if f : S — S is
a continuous map. Then T~! o f o T is continuous A — A. Brouwer's
Theorem applies to T~ of o T and we get a pointxin Awith T~ of o T(x) =
x. Setting y = T(x), we obtain y € S and f{y) = y: Every continuous
map S — 8 has a fixed point.

When we reread the previous lines we see that § was not so special
either. Indeed, the same reasoning applies to every set that is homeo-
morphic to A. Thus, we get a whole bunch of subsets of R? that have the
property expressed in Brouwer's Theorem.

In 4.12, in connection with the game of “Twixt,” we formulated a prob-
lem whose solution had to wait for Brouwer's Theorem. Now we can give
a complete answer. (We permit ourselves the liberty of considering curves
defined on [—1, 1] instead of [0, 1].)

Theorem 4.26

Let B and y be curves from [—1,1] into a rectangle [a,b] x [c,d] with f2(~1) = c,
B2(1) = d, yi(—1) = a, and »(1) = b. Then B* intersects y*. (B1,B2,11,v2
are the component functions of B and y.)

4l BL)

¥(-1) v

BC-1)
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Proof
Assume B* N y* = @. Let S be the closed unit square [~1, 1] x [~1, 1]. For
(s, t) € 8, define (using the symbol Vv as in 2.4)

P M(s, ) = BN v 1BD — ()l
then M(s,t) > 0. Then we can make f : § — R? by

6,9 = 3 (=), n(9=Batt).

f is continuous and maps § into S. By Brouwer's Theorem, applied to S,
there exist§, t € [—1, 1] with f(§, £) = (§, f). But f actually maps $ into the
set {(4,v) € R? : |u| = 1 or |v| = 1} (the circumference of §), s0§ = *+1
or f = *£1. Suppose § = —1. Then

BO-nE _ _
MG, B
But 1(H)-n@B) = fi(D—n(-1) = Bi(H)—a = 0 and MG, ) > 0: contra-
diction. The assumptions § = 1, f = —1 and f = 1 lead in similar ways to
contradictions. "

The theorem shows the relation between the game of Twixt and
Brouwer's Theorem. In The game of Hex and the Brouwer fixed point the-
orem (American Mathematical Monthly 86 (1979), 818-827) David Gale
shows that a game similar to Twixt has even closer connections with the
theorem.

4,27
There are other ways of looking at Theorem 4.26. Suppose, for instance,
that y actually is a Jordan curve.

The situation is similar to that of our preamble to the Jordan Curve Theo-
rem. y* seems to divide the square into two parts: the points above and the
points below y*. The previous theorem says (more or less) that a curve
connecting a point below y* with a point above y* has to intersect y*.
We have encountered such a phenomenon before in Theorem 2.18.
Indeed, let f : [a, b] — R be a continuous function. The graph of f is the
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image of the Jordan curve

te (LAD) (¢t €[a b).

Iffla) < p < flb), then (a, p) lies above the graph and (b, p) lies below it.
These two points are connected by the horizontal line that is the image
of the curve s —> (s, p).

T

fib)

fle)r

] [}

a b

The Intermediate Value Theorem yields a point of intersection.

One could say that a curve such as y above disconnects the rectangle.
Two points in different parts cannot be connected by a 8* without crossing
y*. These observations lead to the following definition.

4.28
A subset U of R? is called path connected if for every pair of points x, y € U,
there exists a curve y : [a, b] = U with y(a) = %, (b)) = y.

It is quite obvious that the inside of a circle is path connected and so is
its outside. The upper half-plane {(s,t) € R? : ¢t > 0} is path connected,
but {(s, t) € R? : t # 0} is not. )

We can now be more precise about the formulation of Jordan's
Theorem, although its proof will have to wait. (See 16.28.)

Theorem 4.29 (Jordan’s Closed Curve Theorem; improved version)

In R?, the complement of the image of a closed Jordan curve is the union of
two disjoint nonempty sets, each of which is path connected.

Extra: L.E.J. Brouwer (1881-1966)

Luitzen Egbertus Jan Brouwer, born in the village Overschie in the Nether-
lands, became the second Dutch mathematician of worldwide fame.
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Before him, the Dutch had produced internationally influential artists
and scientists, but after Huygens in the seventeenth century, there had
not been a mathematician of his caliber.

Brouwer entered the mathematical arena just before a suitable basis for
a study of topology became generally accepted. This new area of mathe-
matics was as yet part of the study of Euclidean spaces, mostly R or R?.
The name for the arising aggregate of results was Analysis Situs (Latin for
analysis of location). Many of the problems in Analysis Situs had come
out of the nineteenth century as “easy to state but hard to work” Brouwer
successfully answered several of the open questions with unprecedented
precision, conciseness, and clarity.

At this stage in the book we are in a position to understand the problems
he attacked, if not their solutions. We describe four of them and note that
he solved all four (and others) in a two-year period.

e The Jordan Closed Curve Theorem. Oswald Veblen in 1905 was the first
to prove the theorem correctly, but in 1912, Brouwer generalized it to
higher dimensions (e.g., a subset § of R? that is homeomorphic to the
sphere {x € R3 : ||x|| = 1} divides R? into two connected parts each of
which has § as its boundary.)

e Invariance of dimension. We have seen that there exists a continuous
map of [0, 1] onto [0, 1] x [0, 1] (Peano’s curve; Theorem 4.7). Further-
more, Cantor had shown the existence of abijection [0, 1] — [0, 1] x [0, 1].
More generally, for any n,m € N one can show that there exist a con-
tinuous surjection and also a bijection of [0, 1]" onto [0, 1]". Can there
exist a continuous bijection if n # m? Such a continuous bijection would
automatically be a homeomorphism (Corollary 13.23). It is easy to see
that [0, 1] is not homeomorphic to [0, 1]?, but how about [0, 1]? and [0, 1]??
In 1910, Brouwer proved that [0, 1]* and [0, 1]" are homeomorphic only
ifn =m.

e Brouwer’s Fixed Point Theorem (1911) hasbeen immensely influential, not
only in topology but in many branches of mathematics, e.g., numerical
analysis. Again, he generalized the theorem to higher dimensions later.
e The “Lakes of Wada.” Imagine a map with three countries, each being
path connected. Many points will be on the border of two countries and
some may be at the border of three; intuition tells us that points of the
latter type are rare. Brouwer managed to produce an example of three
mutually disjoint path connected regions in the plane having precisely
the same boundaries! (A popular description of this example is known as
the “Lakes of Wada)

But Brouwer’s main interests were of a philosophical nature. The flurry
of topological activities that gave him his fame followed his Ph.D. thesis
(1907) “On the Foundations of Mathematics,” which was, in part, a plea
for a different way of doing mathematics. In it, Brouwer defends the idea
that mathematics is an individual activity of the human mind rather than
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the discovery of outside truths. In his 1908 article “On the Unreliability
of Logical Principles” he submits that the existence of a mathematical
object has not yet been proved if only its nonexistence has been refuted:
A construction is needed. In other words, Brouwer rejects the “argument
by contradiction” The consequences of that stance are stupendous. On
the one hand, many classical results, such as the Intermediate Value
Theorem, become false. On the other hand, in Brouwer’s concept of math-
ematics, “Let x be a real number” means, roughy speaking, “Suppose I
have an explicit way to calculate as many decimals of x as I like” which
is a very strong assumption. The result is that many Brouwerian theo-
rems are falsehoods in the eyes of other mathematicians. For instance, in
Brouwer's theory, every function defined on all of R is continuous!

Ironically (considering Brouwer's ambitions), whereas his topological
work has had a vast impact on the mathematical society, his philosophical
ideas have by and large been ignored. Few mathematicians have been
willing to give up a comfortable way of thinking.

Further Reading

Bell, E.T., Development of Mathematics, McGraw-Hill Book Company, 1945.

van Dalen, D., The War of the Frogs and the Mice, or the Crisis of the
Mathematische Annalen, Mathematical Intelligencer 12 (1990), 17-31.

Exercises

4.A. (i) Make a continuous map I' — I' without fixed points.
(ii) Show that I and [0, 1] are not “homeomorphic” in the sense 0f 4.17. (See
Exercise 2.J.)

4.B. Make a continuous function (0, 1] — (0, 1] without fixed points.

4.C. Let A bethe closed unitdisk, letI" ;= {z € C : |z] = 1]}. Letf be a continuous
function A — TI'. Show that for every A € I' there is a u € T with f{u) = Au.

4.D. Let A be the closed unit disk {x € R? : |x] < 1} and I" the unit circle
{z e C:|z| = 1}. Letf : A — I be continuous. Show the existence of a
continuous function # : A — R for which

fiX) =€°®  (xe A).

Postscript. We use this to prove the Main Theorem of Algebra: If N € N
and ey, ...an € C, then the equation

N b2 Nl ey =0

has a solution.
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4.E.

4.F

Let N, oy, ..., 0N be as above. Define P : C — Chy
PZy=2z" + 2" ' +... 4oy (z€C).
First, observe that for z 5 0,
1z7NP(Z)-1] < lenllzl™" + leallzl™® + - - - + Janllz™N.
Choose R > 0 such that jo;|R™! + - -+ + Jan|R™N < 1;then
lz7NP(z)-1 <1 if |zl = R *

Suppose P does not take the value 0. It follows from the exercise that there
exists a continuous ¢ : A — R with
—P(Rx) _ 900

E (€ 8.

x > €P®'N i 3 continuous map A - A. By Brouwer’s Theorem, there is
an x € D with x = €?®/N_Then |x| = 1 and

I W 50

¥ PR
Setting z := Rx, we obtain |z] = R and
2N P2)
[ Te
so that z7NP(2) = —|z7V||P(2)| € (—o0, 0), contradicting ().

(i) Show that there does not exist a continuous f : A — I' with

fX)==x (xel).

(Apply Brouwer's Theorem to x - —f(x).)

(ii) Deduce from (i): If g:A — A is continuous and g(x) = x forall x € T,
then A C g(A).

Hint. Supposeb € A, b € g(A). Show, by solving a quadratic equation,

that for every z € R?, z # b, there exists a unique positive number A(2)
with |b+A(2)(z—b)|| = 1. Show that z > b+A(2)(z—b) is a continuous
function j : R:\{p} — I with j(x) = % for all x € T'. Now derive a
contradiction by considering f :=jog.

As another application of Brouwer's Theorem we prove the following result,
due to O. Perron and L. Frobenius: Every 3 x 3 matrix whose entries are
nonnegative has a nonnegative eigenvalue.

(i) Let O be the “positive octant of the unit sphere” in R3:

O = (x € R®: {jx|l =1; all coordinates of x are > 0}.

Let T be the triangle described in Example 4.19. Show that the map
(5, 6) = (5, VE, /I=5—1) ((s, e T)

is a homeomorphism of T onto O.
(i) Apparently, O is homeomorphic to T, hence to A. It follows that every
continuous map O — O has a fixed point (4.25).
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Take a 3 x 3 matrix A all of whose entries are non-negative. If there
is an x in O with Ax = 0, then 0 is an eigenvalue of A. Show that,
otherwise,

m (xe€ 0

is a continuous map O — O and that A has a positive eigenvalue.
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5.1
We have some experience with the concept of continuity. Loosely
speaking, continuity of a function F means

(1) if two elements, x and y, of the domain of F are close together, then
the function values F(¥) and F(y) will be approximately equal.

So far, x and y have always been real numbers or points in RZ.
The same idea, however, crops up in very different circumstances.
Consider this statement:

(i) if two continuous functions on [0, 5] are close together, their integrals
will be approximately equal.

For instance, if |[{t)—g(t)] < g5 for all t € [0,5], then | fos fiHdt —
foz g(Hdtl < %, and if [f{()—g(t)l < g for all ¢, then | fos fivat —
Jo 8Bl = 555

The resemblance between (i) and (ii) is not merely superficial. In
statement (ii), one actually regards

h

as a function whose domain happens to be itself a set of functions (the
continuous functions on [0, 5]). Statement (ii) describes continuity of this
function

81
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r

just as Statement (i) describes continuity of F. Admittedly, it is vague—
but then, so is statement (i). We know how statement (i) can be made
more precise: “For every positive number &, etc” We can do the same
with statement (i), provided that we have a way to measure how far two
functions are away from each other.

Now, for this special case, it would not be overly difficult to do so,
but it turns out to be wiser to adopt a more general point of view. The
reason is that in mathematics, one encounters many statements similar
to statement (ii), such as:

(iii) If two parts of the plane closely resemble each other, they will have
approximately the same area.

(iv) If two convergent sequences differ little, they will have approxi-
mately equal limits.

(V) If two convergent series are almost the same, they will have
approximately equal sums.

(vi) Two continuous functions on [0, 1] that are close together will have
almost equal maximal values.

1t is possible to define “distances,” not only between numbers or points
of R? but also between functions, between sequences, and between
subsets of the plane. With the aid of such a definition, statements as
statements (ii)-(vi) can be made more precise. It is the aim of this chapter
to introduce a general concept of “distance” and to see how it may be
applied.

“Distance” has to do, not only with continuity, but also with conver-
gence. For example, if X1, X5, . . . are subsets of N and if

XHcXxcXsc-.

then in a very reasonable sense the sequence (X,)new may be said to
“converge” to its union |J,, X,: As N gets larger and larger, Xy begins to
look more and more like | J, X,,. Similarly, if

X30X%X% 05X D,

the sequence (Xy)neny Will “converge” to its intersection. We will see that
it is indeed possible to determine a notion of distance between subsets
of N describing these “convergences” in a natural way.

In daily life the meaning of the word “distance” is far from being
unambiguous.

At first sight it seems quite clear what is meant by the “distance” be-
tween two points, A and B, in a room: It is the length of a piece of string
spanned between A and B. But we use a different concept of “distance”
when A is an electrical outlet and B the spot where we want to put a floor
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lamp; and a mosquito flying from A to B and having to circumnavigate
the furniture uses a third "distance”

By the “distance” between two cities, say Amsterdam and Boston, one
usually means the length of a piece of string stretching from A to B over
the surface of the Earth, not the length of a needle stuck through the Earth.

B

Jupiter

Moon
/

When we look at the night sky and observe Jupiter being close to the
Moon, we are not thinking in terms of inches and miles: We mean that
a certain angle is small. The distance will be 5 degrees, say, not 5 billion
miles (or whatever). Actually, it would be more correct to speak of the
distance between two directions than between two celestial objects.

In each of these cases we deal with the distance between two “things’
(points in a room, cities, directions) and this distance can be expressed
by a number. In other words, we have a set and a real-valued function
acting on pairs of elements of it.

The mathematical approach is as follows.

5.2
Let X be a set, d a function on X x X with values in R. We call d a distance
function (or a metric) if for all x, y, z € X, Axioms M1-M4 are satisfied.

M1  d(xy) = 0.

M2 dix,y) =0 & x=y.

M3 d(xy) = dy, 2.

M4 d(x, z) < d(x,y) + d(y, 2) (“Triangle Inequality™).

These axioms can best be understood in terms of the mosquito example:
d(x, y) is the length of the shortest trip from x to y that is feasible for the
mosquito. The meanings of Axioms M1 and M2 are obvious. Axiom M4 is
intuitively clear, too: The mosquito has a possible path from x to z (via y)
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whose length is d(x, y) + d(y, 2), so the shortest path from x to z cannot be
longer than that. Axiom M3 is valid in the mosquito’s world if the length
of a trip is measured in feet but not if it is measured in seconds and there
is a constant draft in the room.

Asymmetric concepts of distance occur frequently: Just think of one-
way traffic or compare the distance from Christmas to New Year's Day
and the distance from New Year's Day to Christmas. Axiom M3 says that
we are only interested in the distance “between x and y,” not “from x to y”

If d is a distance function on a set X (or, rather, on X x X), the couple
(X, d) is called a metric space. In many cases, however, explicit mention of
the metric will be unnecessary and we use phrases like “let X be a metric
space.

In 5.3 and 5.5 we present examples of metric spaces. In each case it
turns out that the proofs of Axioms M1, M2, and M3 are very simple and
we only have to worry (sometimes) about the Triangle Inequality.

Examples 5.3

(i) The basic example is, of course, the absolute value metric or Euclidean
metricdg on R :

de(x, Y) == |x~yl xy eR).
(ii) Another metric on R is given by
d(x,y) := |tan™ x — tan™" y| (xy € R).
This d(x, y) represents the angle shown in the picture below:

In the sense of this “tan~! metric” the distance between any two
points of R is less than s, which makes it quite different from the
absolute value metric.

(iii) Take N € N; we consider RV. (If you feel uneasy with R*, do not
worry; the cases N = 2 and N = 3 are sufficient for our purposes.)
For x = (x1, %z, - . ., xn) € RN, we define its length:

Ix] == (22 + 22 + -+ +22) 1.
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InRY, as in R, we have the Euclidean metric dg:
de(%, ) = llx—yll (*y € RM).

To show that dg really is a metric, we have to check the Triangle
Inequality. (Statements M1, M2, and M3 are easy to verify.) For that,
we use the inner product.

The inner product of x = (%1, ...,xy) € RN andy = (y1,...,yn) €
RY is the number

xy) =xny1 + - +xyUn-
We need Schwarz’ Inequality:
xy < Il Iyl (xy e RY).
This inequality is a direct consequence of

Il Iy1? = (& 9)* = 1Y (ry—~xw)?
ij

which, in turn, can be calculated by brute force. (Any textbook on
linear algebra will give you a more elegant proof, however) From
Schwarz’ Inequality, for all ¥, y € RN one obtains

x+yll> = N2l + Iyl + 2(x, y)
< %% + Hyl? + 200 gl = (lxd-+lyih?,
from which

lx+yll < llxll + Nyl

From here to the Triangle Inequality is an easy step.
(iv) Let X be the unit sphere in R3:

X:={xeR: x| =1}
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We wish to introduce a metric d on X such that d(x, y) is the length
of the “straight" path from x to y that runs over the surface. This
length is equal to the angle xOy (measured in radians), i.e., the angle
between the directions Ox and Oy.

To arrive at a sound definition, recall that, intuitively, the inner
product of x and y [see Example (iii), above] equals ||x|| [lyll cosc,
where « is the desired angle. ||x|| and ||y| being 1, we obtain

cosa = (x,Y).

Together with the restriction 0 < « < o, this determines ¢;
apparently, @ ought to be cos™ (, y).
Thus, we are led to the definition

a(x, y) = cos{x, y) (*yeX).

Is this d a metric? Again, Axioms M1 and M3 are easy and Axiom
M2 is not complicated, but the Triangle Inequality requires work.
Letx,y,z € X, :=d(»,¥), B := d(y, 2), and y := d(x, 2), i.e.,

@ B,y e(0mn]
cosa = (x, y), cos B = (y,z), cosy = (¥, z).

We wish to prove y < e-+8. This is trivial in the case a+8 > &, so we
may assume a-+p € [0, n]. Then the desired inequality is equivalent
to

cos y = cos(a-+f).

The proof of this formula relies heavily on the properties of the
inner product:

(u+u',v) = (u, v) + (W, v)
(u, v+v) = (u,v) + (u, V)
(Au, v) = AMu, v) = (u, Av)

forallu,u/,v,v' e R®and A € R.
Define ¥, 2’ € R3 by

x = (cos@)y+x, z = (cospBy—z.
Then
(¥,2') = (x—(cos a)y, —z+(cos By)
= —(x, z)+(cos &){y, z)-+(cos B){x, y)—(cos a)(cos Ay, y)
= —CO0Sy + cosacos B + cosa cos f — cosa cos

= «— COS Y -+ COS & COs f.
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™

(vi)

In the same way,
1¥)? = (, %) = -+ = 1—(cos @)? = (sin &)?
so that, since 0 < « < 7,
%] = sina.
Similarly,
IZ'l = sin B.
But by Schwarz' Inequality, (¥, 2’} < ||x'|| ||2']l. It follows that
cos y > cosa cos § — sinasin B = cos(a-+f)
and we are done.

By P(N) we denote the set of all subsets of N. Examples of elements
of P(N) are

the set E = {2, 4, 6, ...} of all even positive integers,

the set P = {2, 3, 5,7, 11, ...} of all primes,

the set S = {1, 4, 9, ...} of all squares,
but also @ and N itself.

For A, B € P(N) we define d(4, B) as follows. If A = B, we set,
of course, d(A, B) := 0. Otherwise, we look for the smallest number
that is in one of the sets A and B but not in both; if that is m, then
(4, B) .= m™L,

Thus, d(E, P) = } because

1¢E and 1€ P,
2€E and 2¢€P,
3€E but 3eP
Observe that for A, B € P(N) and m € N we have
d(4,B) < m™! & AN[l,m]l=BN[l,m] *

To show that d is a metric, we only prove the Triangle Inequality.
Let A, B, C € P(N); we wish to show that

d(A, C) < d(A,B)+d(B, C).

Clearly, we may assume d(4, C) # 0. Then d(A, C) = m™! for some
m. By (%), AN[1, m] # CN[1, m]. It follows that AN[1, m] # BN[1, m]
or BN[1,m] # CNJ[1, m];butthen, d(A, B) > m~' or d(B, C) > m™'.
In any case, the Triangle Inequality holds.

In 5.5 we will consider a number of other metric spaces. At this stage
let us mention just one more: For any set X, we have the so-called



88 5. Metrics

trivial metric dy defined by

acy =y IV

5.4
In this Section we collect a few elementary observations. After that, we
present some more examples.

Let (X, d) be a metric space.

(i) For all x,y, z € X, we have the Second Triangle Inequality

ld(x, 2)—d(y, 2)| < d(x, y).

Indeed, by the Triangle Inequality
d(xl Z)-—d(y, Z) = d(x: y)

d(y, 2)—d(x, 2) < d(y, x).
But d(y, x) = d(x, ). The Second Triangle Inequality follows.
(ii) Fora € X and r > 0, the ball on a with radius r is the set
B(a):=B(a;r) ={xe X :dxa) < r}.

(iii) Let a, x1, x5, ... € X. We say that the sequence (x,)nen converges to
a, or that a is a limit of the sequence and write

Xn = 4,
if
}Ln;lo d(xn, a) = 0.
This is the case if and only if
for every ¢ > O thereisan N
withn = N == x, € Bg(q)
o1, to put it in yet another way,
for every & > 0, the ball B.(a)
contains a tail of the sequence.

The tails of the sequence xy, ¥z, . . . are the sequernces Xy, Xn+1, XN+2,
...;see 1.9.

If X is R or R? and if 4 is the Euclidean metric, then we have just
the convergence with which we are familiar.
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(i)

™

)

(viD

If the sequence (xp)neny Converges to a, then so does every
subsequence. (See Theorem 3.6.)

In any metric space, a sequence can have at most one limit. Indeed,
suppose x, — a and also ¥, — b. For all n,

0 < d(a, b) < d(a, xp)+d(xn, b) = d(xn, &)-+d(xn, D).

Consequently, d(a, b) = 0 and a = b.
Thus, we may speak of the limit of a sequence:
lim x,,.
n-»00
Notations such as "B,(a)" and “x, > a” are ambiguous because they
make no explicit mention of the metric involved. Occasionally, we
write
d-B.(a), #xn N a, d-lm z,.
n—»00

It is a trivial observation that any subset Y of X inherits an induced
metric dy:

dy(x,y) =dxy) (vyeY).
We have
dy-B;(a) = Y N B.(a) (aeY; r>0)

and, fora, x;,x;,... € Y,

dy d
Xn —> a4 & X —> 4.
We will not always write the subscript: For Y ¢ X, we now and then
speak of “the metric space (Y, 4)

As stated in (iv), we sometimes have to mention the metric we use.
On the other hand, certain sets carry “natural” metrics. In such cases,
mentioning the metric is pointless. Henceforth, when dealing with
R or RY, it will be tacitly assumed that we are using the Euclidean
metric dg. (Unless, of course, we say otherwise.)

The same applies to subsets of R and RY. The expression “the
metric space Q" will refer to the set Q endowed with the metric
induced by dg.

If (X', d") is a metricspace, amap f : X — X'is said to be an isometry

2(f,fy) =dxy) %y eX).

(X, d) and (X', d") are isomorphic (as metric spaces) if there exists a
surjective isometry f : X — X'. Such an f is bijective; its inverse is
again an isometry.
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Examples 5.5
(i) Let NeN; we look again at RY. For xeRY, let (x), (%)2, - - ., (¥)~ be
the coordinates of x. (See 3.14.)
Take a, X1, ¥, %3, . . . € RY. Just as in 3.14, one sees that
lxn—all — 0
if and only if
(xx)1 = (@, ()2 = (@2, -, ()N = (@) -

(iD)

(iii)

(iv)

In RY, Euclidean convergence simply is coordinatewise convergence.

Let d be the tan™! metric in R [5.3(ii)].

The balls Byp(0), Bs(0), and By(3) are each equal to the entire
space R. Thus, a ball may have many centers and many radiill (See
Exercise 5.B for a more interesting example.)

For a, x;,xz,... € R, we have

1

A(x;, a) » 0 <= tan"'x, — tan"l g

&= X —>a
&= dg(¥e, a) — 0.

Thus, two distinct metrics may determine the same convergence.

But if d; is the trivial metric on R [5.3(vi)], then the sequence
(*n)nen dp-converges to a if and only if there is an N with xy =
XN+1 = X4z = -+ - = a. (In the definition of convergence, take ¢ =
%.) Apparently, dp-convergence differs drastically from Euclidean
convergernce.

Consider the metric d on P(N) we have defined in 5.3(v).

For X, Y e P(N), d(X, Y) = d(N\X, N\Y). Thus, the complemen-
tation map X ~ N\X is an isometry P(N) — P(N).

IfX; c X, c X3 C..- ¢ NandX is the union of the sets X,,, then
X, — X in the sense of d. (See 5.1.) Indeed, takee > Oandm e N
such that m™! < &. We see that for large n,

X, N[1,m] =X N[l,m]
so that d(X,, X) < m™ < &.

In spite of the remark we made in 5.4(vi), sometimes one has use for
metrics on RN that are distinct from the Euclidean one. For instance,
on R? we have the metric d; defined by

Ai(x, Y) = [x1=h| + |x2—yal,
where x = (%1, %) and y = (Y1, ¥2)-
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From the point of view of convergence, there is little to choose
between d; and dg: It is easy to see that for all x, y € R?,

dl (xl y) =< Zd_rg(x, y):
de( y) < V2 di(x, y)

[or even di(x,y) < ~2Z de(%Y), de(xy) < di(y)]. Then d-
convergence is the same as dg-convergence. Geometrically, the
metrics differ: d;-balls do not look like dg-balls. (See Exercise 5.E.)

(v) (An unorthodox metric on the integers.)

Letx,y € Z. If x = y, we put d(, y) = 0. Otherwise, there is a
positive integer m such that x — y is divisible by 10™~! but not by
10™; then we set d(x, y) := m™!.

Thus,

d(123, 4623) =

1
3¢
d(10,0) = 1,
a3, 7) =1,
B, -7y = 3.
Observe that for all ¥,y € Zandp € N,
dix,y) < p~! <= 107 divides x—y.

This d really is a metric. Verification of Axioms M1, M2 and M3 is
no problem; let us look into the Triangle Inequality. Let x, y, z € Z;
we prove d(x, z) < d(x,y) + d(y, 2). We may assume d(x, 2) # 0. If
d(x, 2) = p~!, then 107 does not divide x—z; hence, it cannot divide
both ¥~y and y—z. Then, d(x,y) > p~! or d(y,z) = p~!. In either
case, we obtain the desired inequality.

We call d the 10-adic metric on Z.

To see just how unconventional this metric is, observe that
(relative to d-convergence)

110422143314 - = =1,
For a proof of this remarkable formula, put
Xp = 11142204 .- 4+ nn! (neN).

Inductively, one easily finds x,+1 = (n+1)! For every p € N, we see
that if n is large enough, x,+1 is divisible by 107, so that d(x,, —1) <
p~!. Consequently, x, — —1.

5.6
The following definitions are straightforward generalizations of earlier
ones.
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Let (X, d) and (X', d’) be metric spaces; letf : X — X'. Fora € X, we
say that f is continuous at a if

for every e > 0,

there exists a § > 0 such that
dix,a) < § = d(f®),fa) < e
f is simply called continuous if it is continuous at every point of X.
(Occasionally, one may have to speak of “d-d’-continuity.”)
We also have sequential continuity. We call f sequentially continuous at
aif
> ainX = flx,) > fa)inX".
Again, sequential continuity is the same as continuity:

Theorem 5.7
Let (X,d) and (X',d") be metric spaces. Let f:X — X' and a € X. Then ()
and (B) are equivalent:

(&) f is continuous at a.
(B) f is sequentially continuous at a.

Proof

(precisely as in Theorems 1.12 and 3.20):

() = (B) Letx),x,... € X and 2, — a. Take ¢ > 0. Let § be as in the
definition of continuity in 5.6. For large n, we have d(x,, a) < §; hence,

a(fx), fla) < e.

(B) = (@) Let ¢ > 0. We need a positive 8 such that
xeX dixa) <8 = df(x),Ra) < e

Suppose such a & does not exist. Then, for every positive number é there
isan x in X with

d(x,a) < & but d'(fx), @) = «.
In particular, for every n € N there is an x, € X with

d(xn, @) < n~! but d'(xn), fa)) = &.

Then x, — a but not f{x,) ~ fa). Contradiction. &

5.8

From this or from the definition of continuity, one easily proves: If (X,d),
(X',d", and (X,”d") are metric spaces and f:X — X' and g:X' — X" are
continuous, then so is the composite map g o f.

Examples 5.9
(X, d) and (X', d’) are metric spaces.
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(i) If X carries the trivial metric [5.3(vi)], then every map X — X' is
continuous.

(i) Let f : X — X'. We say that f is Lipschitz (or satisfies a Lipschitz
condition) if there exists a number K such that

d(fx), fy) <Kdxy) (xyeX).

Such a K is called a Lipschitz constant for f.
Every Lipschitz map is continuous.
(iii) In particular, every isometry is continuous.

(iv) For every a € X, the function
x> dx,a) (xeX)

is Lipschitz with Lipschitz constant 1 and therefore is continuous
[Second Triangle Inequality, 5.4(i).]

(v) LetX = X' = Z andletd and d' be the 10-adic metric of 5.5(v). Then
for every a € Z, the maps x +> x-4a and x > xa are Lipschitz (with
Lipschitz constant 1), hence continuous.

(vi) Let d be the metric on P(N) described in 5.3(v). Let D € P(N). For
all A, B € P(N),

d(AND,BND) < d(A, B).

(Check this.) Therefore, the map A — A N D of P(N) into P(N) is
Lipschitz, hence continuous. (So is the map A —» A UD.)

Extra: Camille Jordan (1838-1922)

Gutenberg invented the printing press, Bell invented the telephone, and
Herodotus is known as the father of history. Who invented topology?
Ifyou have made it this far into the book, you know that there is no sim-
ple answer to the question. Topology, as a discipline on its own, emerged
between two worlds, the one of Newton and the one of modern math-
ematics. At the divide, a complex pattern with various influences was
woven and mary players were at work. One of them was the Frenchman
Camille Jordan. Born at Lyons, he was admitted to the Ecole Polytech-
nique (School of Engineering) in Paris at age 17% . On his entrance
committee we find the famous Charles Hermite, incidentally one of the
few great nineteenth-century French mathematicians who themselves
had not been educated at the Ecole Polytechnique. After his studies, Jor-
dan chose to be an engineer for the French railroad, which somehow left
him ample time for mathematical research. His interests were very wide
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and included probability theory, bilinear and quadratic forms, crystallog-
raphy, analysis, and group theory. Here are some of his accomplishments
that are not too far away from the subject of this book.

e He was the first to give a formal definition of a “curve” in the plane
(1887). It is not without interest that his definition quickly and quietly
was accepted, which should be contrasted with the very slow acceptance
of Dirichlet's definition of a “function. In fact, none of his contemporaries
bothered to credit Jordan for the definition, which may indicate that it was
at hand but had simply not been writtenn down before. (Various special
curves had already been studied by other mathematicians.)

In Jordan's time, by the way, a plane curve was never represented by
one letter, indicating a map from an interval to the plane, but by two,
indicating the coordinate functions. In 1906, Maurice Fréchet in his doc-
toral thesis introduced the abstract notion of a metric space and thereby
opened the road to our one-letter notation for a curve.

Jordan's name remains in the Jordan-Brouwer Separation Theorem

and, indeed, in his Jordan curves.
e Jordan has priority to the attempted proof of what is now called the
Jordan Closed Curve Theorem. Not only did this require him to think
of totally new notions like domain and connectedness, but, more impor-
tantly than such technicalities, the effort shows how much mathematics
had progressed in the nineteenth century. Previously, we compared Jor-
dan's definition of a continuous curve with Dirichlet's definition of a
function. Here, we may draw the analogy with Bolzano's desire to prove
the Intermediate Value Theorem.

Even today, Jordan's Closed Curve Theorem is considered to be a deep
theorem and all elementary proofs (like ours) are more or less technical
at the least. A later branch of Topology, Algebraic Topology, has made
Jordan's Closed Curve Theorem a simple consequence of much more
general but equally technical results.

e Euler had pronounced the following result about polyhedra. Let P be
a polyhedron. If one calls F the number of faces of P, V its number of
vertices, and E its number of edges, one gets

2=F+4 V- E.

(Try it out for a cube.) In Lenseignement mathématique (“The Teaching
of Mathematics"), Lebesgue talks about ce malheureux théoréeme d'Euler,
which we do not know to translate better than that unpropitious theorem by
Euler. Unpropitious, because it took many generations of mathematicians
to discover what exactly a polyhedron is. The final definition and theorem
are due to Poincaré, but Lebesgue credits a lengthy memoir from 1866 by
Jordan with the first correct proof of Euler's statement; and many authors
today speak of the Euler-Jordan-Poincaré Theorem. We urge the reader
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to read the breathtaking book by Lakatos, Proofs and Refutations, which
analyzes the historical road of that theorem every step of the way.

Jordan's contributions do not stop there. He was the first to attempt
to define a measure of sets and he introduced and studied functions of
bounded variation, which no doubt you will encounter in another course.
Comnsequently, his name is honored with the Jordan Decomposition The-
orem of Measure Theory. By no means were his results restricted to
Analysis only. In Group Theory, we find the Jordan-Holder Theorem
and in Algebra you may have encountered Jordan’s Canonical Form. Jor-
dan made Galois’' work accessible to a wide audience and, at the turn of
the last century, his Traité des substitutions (1870) was as much a standard
in Group Theory as his Cours d/Analyse was in analysis.

Jordan followed Hermite as professor in Analysis at the Ecole Poly-
technique in 1873. It comes as no surprise that he (with Riemann and
Weierstrass) is considered one of the superteachers of the nineteenth
century. Jordan remained active at the Collége de France where he had
held a position concurrent with his professorship at the Ecole Polytech-
nique. When Jordan passed away at age 84, the world of mathematicians
had changed and Jordan had been one of the changers. He, perhaps, had
not been of the genius quality of Riemann before him nor did he pos-
sess the all encompassing knowledge of the younger Poincaré, but his
name became attached to as many as five beautiful theorems and he had
influenced generations of mathematicians to come.

Further Reading
Lebesgue, H., Camille Jordan, Lenseignement mathématique, Sér. 2, 3,
1957, 81-106. (In French.)

wilder, R.L., The Origin and Growth of Mathematical Concepts, Bulletin
of the American Mathematical Society, 59, 1953, 423-448.

Young, L., Mathematicians and their Times, North-Holland, Amsterdam,
1981.

Exercises

5.A. Show that in the metric space of Example 5.5(v):
(a) nlmgo 10" = 0.

®) lirg° 2" does not exist.
-+



96 5, Metrics

o
© 910" = ~1.
n=:1

5.B. Consider N x N as a metric space under the Euclidean metric. Sketch the
ball with center (1, 1) and radius % and the ball with center (2, 2) and radius
-g— . Show that the former is a proper subset of the latter.

5.C. Show that in R?, every ball contains a point P with rational coordinates and
also a point Q with irrational coordinates.

5.D. Let d be the metric on P(N) as defined in Example 5.3(v). Forn =1, 2, ...,
let

X, = (17, 2", 3", 4", .. ].
Show that in the sense of d the sequence X, X3, . .. converges.

5.E. (i) In 5.5(iv) we compared the metrics d; and dg on R% Show that the
formula

doo(®,Y) = Ix1—1| V |x2—Yya| (x = (x1,%2), Y = (yl.yz))
(with “ v " as in 2.4) defines a metric d on R? and that

doo(®, Y) < de(%,¥) < V2 deo(y) (ny € RY).

Deduce that d-convergence is dg-convergence.
(ii) Sketch the sets

{x : dg(x,0) < 1},
{x: di(x, 0) < 1},
{x : deo(x,0) < 1}.

Another metric on R? is the trivial metric, do. [See Example 5.3(vi).]
Sketch

{x : do(x,0) < 1).

5.F. Consider Z with the 10-adic metric [Example 5.5(v)]. Letx, — aandy, — b.
Prove x,+yn — a+b and x,yn — ab. [Example 5.9(v) might be of use.]

5.G. Let d be a metric in a set X. Prove that foralla, b, x,y € X,
ld(x, y)—d(a, b)| < d(x, a)+d(y, b).
Show
tmSa gy Db = A% yn) > dab).

5.H. Let (X', d") and (X,” d") be metric spaces; let X = X' x X”. Forx € X
we denote by ¥’ and x” its coordinates; thus: x = (¥, ") with ¥ € X’ and
X e X',
Forx,y € X, put
d(x, y) - di(x', yl) + d"(x,” yn).

(i) Prove that d is a metric on X;; it is called the sum-metric.
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(ii) Prove that, fora, x1, %, ... € X,
Xn 4a = A 4 & and x Dar
5.1. Let (X, d) be a metric space. Define d* : X x X — [0, co) by

A (e, y) = d(x,y) A 1.

(* A" as in 2.4.) Show that d* is a metric on X and that for g, x;,%;, ... € X,

d ar
X > a4 &= X d

Thus, for every metric there exists a bounded metric that determines the same
convergence.

5.J. Let (X, d) be a metric space.
(i) Forx,y € X, define

d'(xy) = Vd(x y).
Is d’ necessarily a metric?
(ii) Same question for

2
d/(x» Y= (d(x, y)) .
5.K. Let (X, d) be a metric space and A a nonempty subset of X. Define f : X —
Rby
fa(®) :=inf{d(x,a) : a € A}.

Intuitively, fa is the distance from x to A:

[5.9(iv) is the special case in which A consists of one element.] Show that
fa@® = fa@ +dxy) (%Y € X).
Show that f is Lipschitz with Lipschitz constant 1.

5.L. If h is a continuous function on [0,1] and fo1 [h(¥)ldx = 0, then h(x) = 0 for
all x & [0,1]. Indeed, define H(t) = [; [h(®)ldx (0 < t < 1). As H'(®) =

A
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fh(x)| = 0, H is increasing; but H(1) = 0 = H(0), so H must be constant.
Then |h(x)| = H'(x) = 0 and h(x) = 0 for all x.

Now the exercise.

By C[0, 1] we denote the set of all continuous functions on {0, 1]. For
f g € C[0, 1), define

i
hig) = [ o)-gei
0
(i) Show that d, is a metric on C[0, 1).
(ii) Is the map
1
dx
fo [0

a d,-continuous function C[0, 1] — R?
(iif) Show that the function

f= R0

is not d;-continuous. (Consider f,(x) = »" (x € [0, 1], n € N) and prove
that the sequence (fi)nen di-converges to the zero function.)



Open and Closed
- Sets

CHAPTER

In this chapter, (X, d) is a metric space.

Subsets of a Metric Space

6.1

We return to R and convergence of sequences in R for a moment. We
have seen in the Connectedness Theorem (2.17) that for every nonempty
subset A of R whose complement is also nonempty, there exists a number
that is adherent to both A and R\A. The set of all such points is called the
boundary of A, denoted

BA.
If a number is in 8A, then it also is in 3(R\A), and vice versa. Thus,
3A = J(R\A).

Using Lemma 2.16, we have a convenient description of the boundary:
A number c lies in the boundary of A if and only if there is a sequence in
A tending to ¢ and a sequence in R\A tending to ¢ as well.

Thus, 0 belongs to the boundary of the interval (0, %) because n~!—0
and —n~'—0. Similarly, % is in the boundary of (0, %). The boundaries
of N, Q, and R\ {0} are N, R, and {0}, respectively. [For Q, observe that
by Theorem 2.8(i) every number is the limit of some sequence (¥n)nen Of
rationals; then it is also the limit of the irrational numbers x, + n~'4/2.]

99
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6.2
We can define analogous notions in any metric space (X, d). Let A C X,
¢ € X. We say that ¢ is adherent to A if B,(c) N A # @ for every e > 0.
[Recall that B.(a) is the ball on a with radius g; see 5.4(ii).]

¢ is said to be in the boundary of A if it is adherent to both A and X\A.
The set of all points that are in the boundary of A is called the boundary

of A, denoted
dA.

Here too, we have
A = (X \A).

6.3
Let A C X. By definition, A is open in X if 3A C X\A and A is closed in

X if A C A. These definitions may seem somewhat mysterious but they

will be clarified in Theorem 6.6.
A point ¢ of X is said to be interior to A if there exists an & > 0 such

s oY

PR = T P Yy}
tnat B.,(cj C A.

6.4
The observations (i)-(iii) are immediate.

(D IfA; C A; C Xandc € X, then
cisinteriorto Ay == cisinteriorto A;

and

cis adherentto Ay == cisadherentto A;.

(ii) IfA € X and ¢ € X, then

cisinteriorto A == c € A,

¢ € A == cisadherentto A.

(i) IfA Cc X and ¢ € X, then

cisinterior to A <= c1is not adherent to X\A,

cis adherent to A <= ¢ is not interior to X\A.

From observation (iii) one sees that 8A consists precisely of those
points that are interior to neither X\ A nor A. Therefore:
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Theorem 6.5
If A C X, then X is the union of the following three sets that are pairwise
disjoint (but may be empty):

the set of points interior to A,
the set of points interior to X\A,
the boundary of A.

It follows that our definitions are more symmetric than they appear at
first glance. This is also reflected in

Theorem 6.6
If A and B are subsets of X that are each other’s complements, then

Aisclosedin X <= BisopeninX.

We leave the proof as an exercise.
The following facts tie the above notions together. Again, we leave the
proof to the reader.

Theorem 6.7

(i) For A C X, (@)-(8) are equivalent.

(o) Ais open.

(B) 8A C X\A.

(¥) Every point of A is interior to A.

(8) For every c € A there exists an ¢ > 0 with Bg(c) C A.
(i) For A C X, (@)-(8) are equivalent.

(e) A is closed.

(B) 8A C A.

(y) Every point of X that is adherent to A lies in A.

8 IfceXand B,(c)NA # D foralle > 0, thenc € A.

6.8
Let A be a subset of X. It is straightforward to prove.a generalization
of Lemma 2.16: A point ¢ of X is adherent to A if and only if A contains
a sequence that converges to ¢. This observation leads to an alternative
description of closedness:

A subset A of a metric space X is called sequentially closed if for every
sequence in A that converges in A the limitisin A, i.e., if

X1,%2,... €A
ceX = € A.

Xp —> C
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We see immediately that every closed set is sequentially closed and
vice versa. (Like sequential continuity, sequential closedness seems an
entirely redundant concept. Further on we will show our reasons for
introducing it.)

Examples 6.9

(i) Consider the metric space R. (Euclidean metric.) If ¢ € (0,1) and
if for ¢ we take the smallest of the numbers ¢ and 1—¢, thene > 0
and B,(c) C (0, 1). Thus, (0, 1) is open. [0, 1] is sequentially closed,
hence closed.

(i) At the end of 6.1 we have seen that in the metric space R, the
boundary of Q is R itself. Thus, we have neither 8Q C R\Q nor
9Q ¢ Q. This means that Q is not open, but not closed either. We
see that subsets of a metric space may be neither open nor closed. On
the other hand, they may be both open and closed, as we will see in
the next example.

(iii) Consider the trivial metriconasetX.[See 5.3(vi).] Then B,(a) = {a}
for alla € X. Consequently, every point of a subset A of X is interior
to A, but also, every point that is adherent to A lies in A. Thus, every
subset of X is both open and closed.

(iv) In the metric space R, no point is interior to Z, so Z is not open
in R. A point of R that is adherent to Z is an element of Z, so Z is
closed in R.

(v) The boundary of the whole set X is @. In our initial discussion in
6.1, we did not allow A to be all of R, but you might have noticed
that there was no restriction on A in our definition of “boundary”
As a consequence, we get that X is both open and closed in X.

(vi) Since there is no restriction on A, we also allow A to be @. This may
puzzle you for a moment, but if you apply the definitions ruthlessly,
you will find that 8¢ = @ and that & is both open and closed. (If
this juggling with the empty set worries you, read 6.27.)

(vii) If (X, d) is a metric space and a € X, then the set {a} is closed.

(viii) Every interval of the form [a, b] is (sequentially) closed in R. Con-
versely, the only bounded intervals that are closed in R are of the
type [a, b]. Our terminology of “closed” coincides with the earlier
use of that word in “closed bounded interval”

Also, the “closed unit disk” and the “closed unit square” (see Example
4.19) are closed subsets of R?.

Example 6.10
For most of the subsets of metric spaces that we have encountered so
far, you will have no problem determining their boundaries. We will now
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construct a subset of R that is a little more complicated. The construction
proceeds in infinitely many steps.

Instep 1, we take the interval [0, 1] and leave off the subinterval ( % , % ).
The remainder is the union of two intervals, [0, % Jand[ % , 1]. Instep 2, we
leave off the middle third of each of these. We are left with four intervals

of length 3:

[0, 5105 315 5108, 1]
In this way, in the n-th step, we obtain 2" intervals of length 3~"; their
union we call C,,. Trivially,

[0,1]3613623"'

The set we want to look at is the intersection
C:=[xeR:xeC,foreverynj,

called the Cantor set.

Observe that C is not empty: 0 and 1 lie in every C,, hence also in C.
So do % and %—, and the end points of the four intervals that constitute
Cy, and so forth. We see that C actually is an infinite set.

It is obvious that C, does not contain any interval of length more than
%; then neither does C. Similarly, C does not contain any interval of
length more than 37" for any n € N. But then C does not contain any
interval at all. Thus, no point of R is interior to C.

One easily sees that each C, is closed. It follows that C is closed. Indeed,
let ¢ € R be adherent to C. For every n, we have C C G, so that ¢ is
adherent to C,,, from which ¢ € C,. Then ¢ € C by the definition of C.

We note that the preceding argument applies to every sequence
of closed sets: If Ay, A;,... are closed, then so is A = {x : x €
Ay for every n}. Indeed, if ¢ is adherent to A, then it is adherent to ev-
ery A, because A C Ap; thenc € A, for every n; then ¢ € A. You can see
that this has nothing to do with the closed sets forming a sequence. The
same idea works for any collection of closed sets.

In behalf of the reader who is not familiar with sets of sets we digress
for a moment to introduce some notation and terminology.
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Collections of Sets

6.11
In itself there is nothing particularly troublesome about sets of sets, but
you have to watch them.
You will have no problem with specific instances such as the set of all
intervals, say, or the set of all circles in the plane. The elements of such a
‘set are themselves sets (intervals, circles) and consist of elements (num-
bers, points of the plane). But the terminology gets confusing: Whenever
you use the word “element”, you have to realize very clearly on which
level you are working.

To prevent confusion, we adapt our terminology. We avoid talking of

“a set of sets” but say “a collection of sets,” such as “the collection of all
circles” We do not say that a given circle “is an element” of this collection,
but that it “belongs to” the collection. We use Greek letters (o, @, ¢, .. .) to
indicate collections. If we want to express the fact that a set A belongs to

a collection «, we do not write “A € " but

A o
3 S i £ 2

‘and instead of “a C B” (where o and B are collections of sets), we write
alZ B

It should be understood that these notations do not make any substan-
- tial difference but are merely stylistic devices. The formula “A & a" does
not really mean anything else than “A € «," but it is intended to recall to
the reader that A is a set.

It is not always useful to do so. Sometimes, the nature of the object A
is irrelevant and it may be distracting to keep stressing that A is a set.
Actually, we have already been using formulas like “A € a" In Example
5.3(v) we considered P(N), the set of all subsets of N, and observed that the
set P of all prime numbers is an element of P(N). In our new terminology,
we could call P(N) the “collection” of all subsets of N and write “P £ P(N)"
to indicate that P “belongs to” P(N). However, when dealing with P(N) as
a metric space, we will prefer to consider P as a point in P(N) and ignore
its internal structure.

6.12
Let Y be a set and 8 a collection of subsets of Y. Assume 8 is nonempty,
i.e., there is a subset of Y that belongs to B. The union of 8,

Uﬂl

is the set

{ye Y :y e Bforsome B E 8},
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which is a subset of Y. Similarly, the intersection of B,

Na,
is
lyeY:yeBforevery B & B).

For instance, let Y be R and let Bbe the collection of all intervals [t, t+3]
where t € [0, 1]. Then

yeUB <« thereisat e [0,1] withy € [t, t+3]
and

ye(B < forallt €[0,1]wehavey € [t, t+3]
Thus, | J Bis [0,4] and () Bis[1, 3].

6.13
In the above we have required 8 to be nonempty. To avoid complications
further on, it is worthwhile to have a look at | J gand [ 8 for 8 = @.

As you can see, it is perfectly in line with the above to define

Ue = @.
‘(M @" is less straightforward. For nonempty 8, we have
MB=1{yeY:yeBforevery B E B}

Given an element y of Y, we might say that every B £ 8 subjects y to a
test (“Isy an element of B?"); if y passes all these tests, it gets membership
of the set [) 8. The smaller B is, the fewer tests have to be passed and the
larger () B will be. In the case 8 = @, there are no tests at all and every
y is automatically admitted to () B:

No =Y.

It seems paradoxical that () @ should be larger than | @, but that is what
happens if for B8 = @, we stick to the same definition we used for 8 # @.
It is the definition of (") @” that is accepted in set theory. The real trouble
with it is that it depends on Y. We cannot say what () @ is as long as we
do not specify our “universe” Y.

In the case of a nonempty B, such a problem does not occur. In 6.12
we have observed that [ JB = [0,4]and (B =[1,3]if Y = Rand 8 =
{[t,t+3] : 0 < t < 1}, but, trivially, |J B and |J B do not change if we
replace R by any other set Y (as long as § is a collection of subsets of Y,
of course).

We choose the coward's way out. We will not use () @.

6.14
As before, (X, d) is a metric space.
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Picking up the thread we left at the end of Example 6.10, we observe
that the intersection of any nonempty collection & of closed subsets of X
is closed. Indeed, let ¢ € X be adherent to () a. Then, for every A E ¢, ¢
is adherent to A (simply because [ C A), so ¢ € A; thus, ¢ € (Ja by
the definition of [ a.

With unions of closed sets we have to be more careful. We know that
in R, every subset with only one element is closed, and every subset of
R is a union of ohe-element subsets. But not every subset of R is closed.
Hence, not every union of closed sets is closed.

On the other hand, the union of a nonempty collection @ of open sets
is open: Letc € | Jw. Then there is a W £ w with ¢ € W; thus, ¢ is interior
to W, hence to | J w (because W C |J w).

How about intersections of open sets? In R, the intersection of the
open sets (—n~!, n™!) (n € N) is the set {0}, which certainly is not open.
‘However, any intersection of two open sets is open. To see this, take open
sets W; and W5, and let ¢ € Wy N W5: We wish to prove that ¢ is interior
to W1 N Wy Asc € W; and ¢ € Wy, there exist &, > 0 with B, (¢) ¢ W)
and e; > 0 with B.,(¢) C W,. If ¢ is the smaller of the numbers ¢; and &3,
then B:(¢) C B, (¢) C Wi and B,(¢) C Be,(€) C Ws, s0 B,(c) C Wi N W,

With this result, we can see that a union of two closed sets is always
closed: If A; and A; are closed, then X\A; and X\A; are open, hence so
is their intersection. But

(X\A) N (X\A4z) = X\(A1 U Ap). (%)

(Check this.) We see that the complement of A1 UA; is open. Then A; UA;
itself is closed.

We collect these results in a theorem:

Theorem 6.15
Let (X,d) be a metric space.

(O (@) The intersection of any two open subsets of X is open in X.
(ii) The union of any nonempty collection of open subsets of X is open
inX.

(I (i) The union of any two closed subsets of X is closed in X.
(i) The intersection of any nonempty collection of closed subsets of X
is closed in X.

6.16

Look back at our proof of the above theorem. We have proved (II)(i) as a
consequence of (I)(i), using the symmetry between openness and closed-
ness and formula (%) of 6.14. We can apply the same principle to derive
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(ID(i) from (I)(ii) (or contrariwise). Let us see how that is done, not be-
cause having two proofs is better than having only one, but because the
technique of the second proof is of importance.

Assume (I)(ii). Let @ be a nonempty collection of closed subsets of X.
The sets X\ A with A E « form a nonempty collection w of open sets. Then
U wisopen, so X\ |Jw is closed. But X\ | J w is precisely () «. Indeed, for
x € X we have

xeX\Uw & x¢ o
&= thereisno W Ew withx e W
&= forall W Ewwehavex & W
&=y forallA Eawehavex € X\A
<= forallAEawehavexe A
= xe()

6.17

Notice that we have defined what it means for a set to be open or closed
in X. Indeed, [0, 1] is not open in R, but it is open in the space [0, 1]U[2, 3]
(under the metric induced by the Euclidean one, of course). Thus, “open”
is a relative notion and, at times, when we want to be precise, we will use
“open in .. rather than just "open.

Having said this, we admit that from now on we will drop the
specification when the context makes it superfluous.

The same remarks can be made about the words “closed” “interior
“adherence; and “boundary,” all of which refer to relative concepts. (For
instance, as a subset of R, the Cantor set has no interior points; as a subset
of itself, it has many. In R, the boundary of [0, 1]is {0, 1}; in [0, 1] U [2, 3],
the boundary of [0, 1] is empty.)

Lemma 6.18
Every ball in a metric space is open.
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Proof
Leta € X, r > 0, ¢ € B.(a); we wish to prove that c is interior to B,(a).
That is easy. The number

g:=7r1~d(a,c)

is positive, and by the Triangle Inequality, B:(c) C B-(a). B

The proof of the following characterization of open sets is left as an
exercise.

Theorem 6.19
A subset of a metric space is open if and only if it is the union of a collection
of balls.

Similar Metrics

6.20
We return to convergence. For a € X and a sequence (X,)ney in X, the
formula limy..o ¥, = a means

Every ball with center a

ey

contains a tail of the sequence.
Aball is a particular example of an open set, so (1) is certainly true if

Every open set containing a )
contains a tail of the sequence. @
On the otherhand, if U isan opensetanda € U, then B,(a) C U for some
£. Hence, (1) also implies (2). Thus, (2) is equivalent to limy—o0 4z = 4.
These observations have the following consequences. Suppose d; and
d, are metrics on the same set X. Let us call d; and d, similar if

d| d2
Xn —> X &> X3 — X

[An example is given by the Euclidean and the tan~!metric on R; see
Example 5.5(ii).]

From the above, we see that this is the case if the notions “d;-open”
and “d;-open” coincide. The converse is also true. In fact, we have:

Theorem 6.21
For two metrics dy and d on X, conditions (&), (B), and (y) are equivalent.

(a) dy-convergence is dy-convergence. (dy and d, are similar.)
(B) The dy-open sets are precisely the d,-open sets.
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(¥) The dy-closed sets are precisely the dy-closed sets.

Proof

We have just seen (f) = (). The closed sets are just the complements
of the open sets; hence, () = (). Third, («) implies that d;-sequential
closedness is the same as d,-sequential closedness. Therefore, (¢) =

»- |

Suppose we have two sets, X and X', two similar metrics, d; and d, on
X, and two similar metrics, 4] and dj, on X'. Let f : X — X'. Continuity
of a map between metric spaces is the same as sequential continuity. It
follows that

f is dy-dj-continuous <= f is dp-dj-continuous.

Then it ought to be possible to describe continuity of f without explic-
itly mentioning metrics, in terms of open sets or closed sets only. We
proceed to do so.

6.22
First, we remind you of a notation. If f : X — X’isamapand A C X',
then

FHA) = {xeX: flx) € A).

f1(A) is called the inverse image of A under f. (Keep in mind that f is not
required to be injective: There may not be a map f~1.)

Let (X, d) and (X', &) be metric spacesand leta € X and f : X — X'.
We call f continuous at a if (see 5.6)

for every ¢ > Othereexistsaéd > 0

such that x € Bs(d) => f(¥) € B:(f(a)),
ie., if

for every ball B in X’ with center f(a),

a is interior to f ' (B).

Again, balls are special examples of open sets, and continuity of f at a is
equivalent to

for every open V C X' with fla) € V,

a is interior to £ (V).
and to

for every open V ¢ X' with fla) € V,

there is an open U C X witha € U C f~}(v).
(Check this.)
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We now have our description of continuity in the language of open
sets. The main results of 6.20 and 6.22 are the following:

Theorem 6.23
Let X and X' be metric spaces, a € X.

(i) A sequence in X converges to a if and only if every open set U in X with
a € U contains a tail of the sequence.

(i) f:X — X'is continuous at a if and only if for every open set V in X' with
f(a) € V, there exists an open U in X such thata € U C f~1(V).

The description of “global” continuity in terms of open sets is more
elegant:

Theorem 6.24
Let X and X' be metric spaces. For {:X —» X', conditions (), (8), and (¥) are
equivalent.

(&) f is continuous.

(B) For every open V C X', the set f~1(V) is open in X.
(¥) For every closed A C X', the set f~1(A) is closed in X.

The proof is left to the reader.

Interior and Closure

6.25
Before we end this chapter, we introduce some more terminology for
future reference.

Let Y C X. The closure of Y in X is the set of all points of X that are
adherent to Y; itis denoted clo(Y) or Y~ [oy, if we are forced to it, X-clo(Y)].
The interior of Y in X is the set of all points of X that are interior to Y; it is
denoted int(Y) or Y°. (Thus, Y°~ will be the closure of the interior of Y.)

Theorem 6.26
LetY C X.

() Y~ is the smallest closed set containing Y, i.e., Y~ isclosed; Y~ D Y; if
Adsclosedand A D Y, then A D Y™,

(i) Y° is the largest open set containedin Y, i.e., Y° is open; Y° C Y;if U is
openand U C Y, then U C Y°.

We leave the proof to you.
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The Empty Set

6.27
For readers who feel uncomfortable with @, the following discussion
might be useful.

Consider the statement

If x is a real number and ¥ > 1, then 3x > 2.

Its truth seems to be unassailable. Now try x = 2. Certainly, 2 is a real
number, so we get

If2 > 1, then6 > 2. €Y
Similarly, by choosing x = 1 and x = 0, we find

If1 > 1, then4 > 2. 2

If0 > 1, then0 > 2. €)

Are these conclusions valid? If you ask a nonmathematician, the answer
probably will be that all three statements are ridiculous and the question
of whether they are true is not applicable.

In mathematics the locution “if ..., then ... " has been given a more
precise meaning than in daily life. If A and B are statements, then
If A, then B (*)

is held to be true in each of the following cases:
A is true, B is true;
A is false, B is true;
A is false, B is false.

Thus, mathematically, statements (1), (2), and (3) are accepted as being
true. Note that the validity of () does not require any intrinsic connection
between A and B. For instance,

If2+2=4, thenmw >0

is a true statement.

(%) is true whenever B is true. Somewhat disturbingly, () is true when-
ever A is false. This brings us to the empty set. We see now that, forx € R,
we have

Ifx e @, thenx > 0;
Ifx € @, then sinx = 1;

etc.
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In short, any sentence of the form “if x € &, then A" is necessarily true.
(Provided that A represents a meaningful statement, “If x € @, then
x >="is still ridiculous.)

As an example, let (X, d) be a metric space. For x € X, we have

Ifxe @, thenB%(x) C @.

Consequently, @ is an open set. As @ clearly has no adherent points,
every point of X that is adherent to @ lies in @. Hence, & is also closed.

Extra: Cantor (1845-1918)

Georg Cantor worked all of his professional life at the university in Halle.
Halle was not one of the prestigious European universities, but it was no
lack of ambition on Cantor's side that he spent most of his life there. He
had always wanted to work in a better recognized research center. Part of
the blame can be put on his revolutionary insights. It is not easy to propel
ideas that are fundamentally contrary to the accepted norm. Moreover,
Cantor was brought up in a very religious environment and his person-
ality could be described as a little rigid in dealing with other people's
convictions. The resistance to his ideas was led by Leopold Kronecker
(1823-1891). still, in his lifetime, though, praise for his work started to
mount. David Hilbert (1862-1943) expressed his admiration: “Cantor has
created a paradise from which no one shall expel us” Cantor is the found-
ing father of set theory and the first who defined irrational numbers by
sequences of rational numbers. With Richard Dedekind (1831-1916) and
Karl Weierstrass (1815-1897), he worked on the foundations of analysis
as we now know it. The influence of his thoughts on twentieth-century
mathematics is profound and lasting,.

Cantor's first set theory paper was his 1874 paper on algebraic numbers.
An algebraic number is any real number that is a zero of a nonconstant
polynomial with integer coefficients. Cantor proved that the set of all
algebraic numbers can be put in a one-to-one correspondence with the
set of all positive integers. More importantly, he showed that the set of all
real numbers cannot be put in such a one-to-one correspondence. In the
words of Chapter 19, the set of real numbers is not equipollent with the
set of all positive integers. Encouraged by these successes, he introduced
the notion of equipollency of sets in 1878. Cantor proved that any RN
is equipollent to the set of all real numbers. He finishes the 1878 paper
with the conjecture that became known as the Continuum Hypothesis
(see Chapter 19).

The possibility of a one-to-one correspondence between an infinite
set and one of its proper subsets was not a totally new idea. It had
been observed earlier by Galileo, Leibniz, and Bolzano. The novelty of
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Cantor's contributions is his courage. Where the previous authors had
concluded a wasteland, he moved on to define infinite sets of equal power.
A comparison with Galileo is not as wild as it might seem on first sight.

Only with Weierstrass, the mathematical world as a whole came to
a generally accepted conclusion about a remnant of the olden days of
Newton: infinitesimals. Accrediting the existence of an actual infinity
has turned out to be equally important to the development of mathemat-
ics as the solidification of Calculus, begun by Cauchy and Bolzano and
completed by Weierstrass.

To solve the Continuum Hypothesis was not within Cantor's reach.
Growing increasingly frustrated about this and about the lack of gen-
eral recognition, Cantor had a nervous breakdown in 1884. From then
on, mental problems would remain part of his life. He was denied a
professorship in Berlin, vehemently opposed by Kronecker. Meanwhile,
outside Germany, Cantor's ideas were gaining support. The recognition
of sets as a notion underlying all of mathematics led to many entirely new
fields, of which topology is a good example. In spite of his mental illness,
Cantor continued to work hard. He instituted the German Mathematical
Society, founded in 1889, and was instrumental in establishing the first
International Congress of Mathematicians (1897) in Ziirich.

At the Second International Congress of Mathematicians in Paris
(1900), the Continuum Hypothesis was first among 23 problems that
Hilbert proposed as central to the development of twentieth-century
mathematics. The controversy between Kronecker and Cantor resurfaced
in a new battle about the foundations of mathematics. The debate was
settled, in a way, by work of Kurt Godel (in 1938) and Paul J. Cohen (in
1963).

Cantor died on January 6, 1918 at the psychiatric hospital in Halle.

Further Reading

Dauben, J.W., Georg Cantor, His Mathematics and Philosophy of the Infinite,
Princeton University Press, Princeton, NJ, 1979.

Young, L., Mathematicians and Their Times, North-Holland Publishing
Company, Amsterdam, 1981.

Exercises

6.A. The graphofamap f : X — Y is the set

Ry €X XY y=fa)
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(i) Let X, Y be metric spaces. We endow the space X x Y with the sum-
metric. (See Exercise 5.H.) Prove: If f : X — Y is continuous, then its
graph isclosedin X x Y.

(if) Define f : [0, c0) > [0, o0) by

fixy=x"1 if x>0,

f{0) := 0.

Show that the graph of f is closed in [0, o¢) x {0, oc) (although, of course,
f is not continuous).

6.B. We consider the set
1 1 1
X=1{1 =, =, ~-,...t U{0
BRI
as a metric space under the Euclidean metric.
(D) Prove: For every n € N, the singleton set (%) is open in X; the set {0}
is not open in X.
(i) Let Y C X. Prove: If0 ¢ Y, then Yisopenin X;if0 € Y, then Y is
closed in X. [Thus, every subset of X is open or closed (or both). Such

a metric enace is sometimes called a “door space "1

R SAGLALL SRall 10 SUINCULINCS L.

(iii) Letf : X — R. Prove:

f is continuous <= lim f ( ) = fl0).

Nk OO

6.C. Let Y be a subset of a metric space X. Prove that fora € X,
aedY <= 1y isnotcontinuousat a.
6.D. Let A be a subset of a metric space X. Prove
A isopenandclosed <= 08A = @.
6.E. (Sequel to 5.K.) Show that if A is closed,
fax) =0 & xeA.

6.F. Let f and g be continuous real-valued functions on a metric space X. Show
that {x € X : f{x) > g(x)} is open.

6.G. (i) Let X be a set and o a nonempty collection of subsets of X. Let T C X
and let 8 be the collection of all sets of the form A U T where A belongs
to «. Show that

UB=(Un)uT, NB=(Na)UT.

Hint: Prove thatforx € X,onehasx e | B &= x e (Ja)UT.

(ii) Part (i) was just a warm-up exercise for the following. Let f be a map
of a set X into a set Y. Let 8 be a nonempty collection of subsets of Y
and let & be the collection of all subsets of X of the form f~1(B), where
B belongs to . Show that

Ue=Ff(UB,  Ne=fT(NA.
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6.H.

6.1.

6.J.

6.K.

6.L.

6.M.

(iii) Letf be a map of a set X into a set Y. Let o be a collection of subsets of
X and 7 the collection of all sets f{S) where S belongs to ¢. Prove that

Uz = fUo).

Give an example showing that not always [t = f{{) o). (It is possible
to make one with only two sets belonging to o.)

Determine the interior, the closure, and the boundary of
(a) the interval [0, 1) in the metric space R;

(b) the interval [0, 1] in the metric space [0, 1;

(c) the set {m+nw : m,n € N} inR;

(@) theset{% + £ :mneN}inR;

(e) the set {(%, y) : 0 < x*+y? < 1} in R

(£ the set {(x,0) : x € R} in R

(g) the set {(m, n) : m,n € N} in R

(h) theset {(&, ) :m,n € N}inR2

Let (X, d) be a metric space, a € X, and r > 0. Show that
[x:dxa) <r}” Clx:d(xa)<r}
Give an example in which the sets differ.

Check whether each of the following formulas holds for all metric spaces
X, X', all continuous maps f : X — X', and all subsets A of X.

@) A7) C (AN

() AA™) D (fta)™.

© ) c i

@ f@an) > iy

Check whether each of the following formulas holds for every metric space
X and every subset Y of X.

@ (X\¥)~ = X\Y~.

() (X\Y)° = X\Y®.

© (X\V)~ = X\Y".

(@ X\Yy =X\Y".

Check whether each of the following formulas is true for every metric space
X and all subsets Y and Z of X. (Give a proof or a counterexample.)

@ YNy =Yy"nNnz .

b (YUZz) =Y Uz,

© (YNZyP =Y NnZze.

(@ (YUZP =Y UZ.

Let X be a metric space.
ForY,Z C X, we say that Y is dense in Z if

Yczcy .

A dense subset of X is simply a subset of X that is dense in X, i.e., a subset of

X whose closure is X itself. For instance, as every element of R is adherent

to Q (and Q C R), Q is dense in R. (So is R\Q); see the last lines of 6.1.)
Prove that, for Y C X, the following are equivalent:

(@) Yisdensein X,
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(B) Every element of X is the limit of a sequence of elements of Y.
(¥) Every nonempty open subset of X contains a point of Y.

6.N. (i) Let X be a metric space; let Y,Z C X be such that Y is dense in Z and
Z is dense in X. Prove that Y is dense in X.
(ii) Give an example of a metric space X and two dense subsets of X whose
intersection is not dense in X.
(iii) Let X be a metric space and Y a dense subset of X. Does it follow that
forevery A C X, YN Aisdensein A’?



Completeness

CHAPTER

7.1
We start with a problem from analysis.

If g is a continuous function on [0, 1], then its restriction to Q N [0, 1]
is continuous. Conversely, if f is a continuous function on Q N [0, 1], can
one always extend it to a continuous function g on [0, 1]? In general, one
cannot. Consider the function f defined by

f®) =0 if xeQnNI0,1], x < 1//2,
fly:=1 if xeQnN[0,1], x > 1/+/2.

Owing to the irrationality of 1/+/2, this f is continuous at every point of its
domain Q N [0, 1], but clearly it cannot be the restriction of a continuous
function on [0, 1].

Indeed, a continuous functions on [0, 1] must be uniformly continuous.
Then so is its restriction to Q N [0, 1]. (Check this.) Thus, we arrive at a
better question: If f is a uniformly continuous function on Q N[0, 1], can
one always extend it to a continuous function g on [0, 1]? This time the
answer turns out to be affirmative. We give the beginning of a proof; see
Theorem 8.11 for further details.

Take a number a in [0, 1] that does not lie in Q N [0, 1]. What value
should g have at a? There is a sequence x;, xz, ... in Q N [0, 1] that tends
to a. If a continuous extension g of f is at all possible, we must have

g(@) = lim g(x) = lim fixa).
17
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It seems a reasonable strategy to use such a formula to define g(a) for all
a € [0, 1] and then to prove that the resulting function g is continuous.
But can we? We would have to know that the sequence

f(xl)r f(xz)r O (*)

converges. It does, but that is not at all evident.

What we can see is that the terms of the sequence (¥) come close to
each other. Indeed, as f is uniformly continuous, there exists a § > 0
such that

%Yy eQN[01], x—yl <8 = |-yl < 107

There is an N such that [x,—a] < 8/2assoonasn > N.Ifnown,m > N,
then |¥,—%n| < &, 50 |f{%:)—fxm)| < 1073
In the same way, for any ¢ > 0 there is an N with

nm=>N = [flx)—flxm)l < &.

A sequence with this property is called a “Cauchy sequence” and we
will see that every Cauchy sequence in R converges (Theorem 7.6). One
encounters such sequences in many metric spaces, which is sufficient
reason to consider them in a general setting.

7.2
Let (X, d) be a metric space. A sequence (x,)nen in X is called Cauchy if
for every & > 0, there is an N in N such that

nmz=N = dx,xnm) < €.

There are various equivalent definitions. For one of them we need a
bit of preparation.

A nonempty subset ¥ of X is said to be bounded if the set {d(y,y") :
Y, ¥ € Y} hasupperbounds in R. (See 2.12.) Then we define the diameter
of Y to be the number

diam Y := sup{d(y,y") : y, ¥ € Y}.

By definition, the empty set is bounded and has diameter 0. Observe: If
Y isbounded and Z C Y, then Z is also bounded, and diam Z < diam Y.

If 21, %3, ... is a Cauchy sequence, then the set {x1,x;, ...} is bounded.
Indeed, there is a P in N such that d(x,, ) < 1 as soon as n,m > P.
Then,

A(xn, xp) < 1 +d(x, xp) + - - - + d(xp-1, %p)
for all n € N. The boundedness follows easily.
Lemma 7.3

For a sequence (Xn),.n in @ metric space (X,d), conditions (a), (B), and (¥)
are equivalent.
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(&) The sequence is Cauchy.
(8) Lim diam{n xs1, - .} = 0.
(¥) There exist &1,&,, . . . in [0,00) such that

lim &, = 0,
n—oQ

Ad(xn,xm) < gy forallm > n.

Proof

(a) == (B) Obvious, once you know that the diameters exist.

(B) = (¥) Take &, := diam{x,, %p41, - . -}.

(Y) = () d(xn, %)) < 2en ifn,m = N, &

7.4
Every convergent sequence is Cauchy. [Letx, — aande > 0. Thereisan N
such that d(x,, @) < &/2 for alln > N. Then d(x,, xn) < eforn,m > N.]
Not every Cauchy sequence converges. In the metric space (0, 1] (un-
der the usual metric), the sequence 1, 1, 1 ... is Cauchy, but not
convergent. It is true that (0, 1] can be extended to a larger metric space
in which the sequence does converge, but that is beside the point.
For another example, take Z with the 10-adic metric of Example 5.5(v).
Consider the sequence

1,131,111, 1111, .. .,
ie., x1, %3, ..., where
Xy =1+104+10% +--. + 10"

If n,m > N, then x,—x,, is divisible by 10V, so d(x,, xn) < N~!. Hence,
the sequence is Cauchy. Can it converge? Suppose a € Z and %, — d.
Then [see Example 5.9(v)] 9%, — 9a and 9x,-+1 — 9a+1. But 9%,+1 =
10" — 0, so 9a+1 = 0, which is impossible in Z!

7.5
We call a metric space (X, d) complete if every Cauchy sequence in X
converges (to a point of X). By the above, (0, 1] with the ordinary metric
and Z with the 10-adic metric are not complete. The standard example of
a noncomplete space is QQ: For every irrational number a, the sequence
[2a] [34]
[ ) 2 [} 3 ]
is Cauchy but (in Q) not convergent.
The prime example of a complete metric space is R.

Theorem 7.6
R and RN (Euclidean metrics) are complete.
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Proof

() Leta, x;, ...be a Cauchy sequence in R. As we have seen in 7.2, the
sequence is bounded. Then by the Bolzano-Weierstrass Theorem it
has a subsequence xu(1), X4(2), - . - that converges to some number a.
Take &y, &2, ... as in (¥) of Lemma 7.3. With Lemma 3.4 we obtain

A(xn, @) < d(xn, Xam)) + A(Xany, @) < &n + A(Xam), &)

for all n. Hence, x, — a.
(ID) Letx;, %3, ... be a Cauchy sequence in RY. As earlier, we indicate by
(%n): the ith coordinate of x,. For each i, we have

I(*n)i = ()il < lxn—xmll (mymeN)

so that the sequence (x1);, (*2)i, - . . is Cauchy in R. Let g; be its limit.
Thena := (a3, ..., ay)isanelement of RY, and x, — asince (%n);i —
a; for each i. &g

Theorem 7.7
A closed subset of a complete metric space is complete under the induced
metric. [See 5.4(V).]

Proof

Let X be a complete metric space and Y a closed subset of X. If xy, x5, . . .
is a Cauchy sequence in Y, then it is also a Cauchy sequence in X. Hence,
there is an a in X with ¥, — a. But Y is closed, soa € Y. B

7.8

A subset A of a metric space X is called dense in X if every nonempty open
subset of X contains a point of A. (This is in accordance with Exercise
6.M.)

Since in R every nonempty open subset contains an open interval, we
see that a subset of R is dense if it intersects every interval. For instance,
Q and R\Q are dense in R.

The following theorems express the fact that certain sets are “large” In
what sense this is meant we will discuss after the theorems.

Theorem 7.9 (Baire Category Theorem; first version)
If X is a complete metric space and Uy, Uy, . . . are open and dense subsets of
X, then their intersection is dense in X (although possibly not open).

Proof
Take an open set V which is nonempty. Our proof produces an element
ain VN (Mo, Un).

Take a; in the set V N Uy, which is nonempty because U; is dense in
X. Since V N U, is open, there is an &; > 0 such that the ball By, (a1) is
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contained in V N U;. Then, by Exercise 6.1
Bs(a1)” C VN UL
Next, take a; € B, (a1)NUz and e; > 0 with By, (az) C B, (a1) N Ug; then,
B, (a2)” C By () N Us.

Continuing in this way, we get a sequence a;, 4, . . . in X and a sequence
€1, 82,...in R with

Bs (an)” C B (@n-D)NU,CcVNUN---NUy

for each n. By making ¢, smaller if needed, we may assume thate, < n™!.
Then,

d(an, am) < n” ' forallm > n,

because a,, € Bg,(an) C Bi/n(an). Thus, a, az, ... is a Cauchy sequence
and converges to some a € X; but also

a e {an, an+], .. .}-‘ C Ben(an)ﬁ C V n U1 n “ e n Un
foralln, soa € VN (Mo, Un)- B

The following result is a reformulation of the above theorem.

Theorem 7.10
If a complete metric space is written as a union of countably many closed sets,
then at least one of those closed sets contains a ball.

Proof

Let X = |52, An with A, closed in X for all n. Then each X\A,, is open,
and (MNpey X\An = X\ Un.; A» = @. Thus, not every X\A, can be dense,
say, X\Ax is not dense. Then, for some nonempty open set V, we have

V N (X\Ay) = @, thatis, V C Ay; but then Ay contains a ball. B

7.11
Either of the above theorems is referred to as the Baire Category Theorem.
To explain where the word “category” comes from, we need the following.
A subset A of a metric space X is said to be nowhere dense in X if X has no
point interior to the closure of A; that is, A~ contains no ball. For instance,
N and the Cantor set are nowhere dense in R. The complement of a dense
open set is a closed nowhere dense set. A subset of X is called meager in
X if it is a union of countably many sets that are nowhere dense in X.
Every nowhere dense set is, of course, meager; but also @, which is not
nowhere dense in R, is meager in R.

The idea behind this definition is that nowhere dense sets are rather
small, and so are unions of “not too many” nowhere dense sets. The
following three observations may serve to illustrate this:
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(a) Every subset of a meager set is meager.
(b) Every union of countably many meager sets is meager.
(c) A complete metric space is not meager. (This is Theorem 7.10.)

Meager subsets of a metric space X are also called sets of the first category
in X; all other subsets of X are sets of the second category. As you notice,
these terms are not particularly descriptive; that is why we prefer the
word “meager”

Be careful, “meager” like “closed” but unlike “complete is a relative
term. Properly speaking, a set cannot be just “meager”; it can be “meager
in" a given metric space. The Cantor set is meager in R, not in itself.
Statement (c), above, really is a bit careless.

Examples 7.12
We discuss two examples of how to apply the Baire Category Theorem.

@) Q is not the intersection of countably many open subsets of R. Indeed, Q
can be written as {g1, gz, . . .}. If Q were equal to (e, Ur where each
U, is open in R, then (77, U, \{g,}) = &. However, Q C U, for all
n € Nand then all U, are dense. Then, all U,\{g,} are open and dense
(?), and according to the Baire Category Theorem their intersection
is nonempty (even dense).

(i) The indicator function of Q is not continuous on R. Somewhat more
can be said using (i), above: There does not exist a sequence f1,f2, . . .
of continuous functions on R such that f,(x) — 1g(x) for all x € R.
Indeed, if fi, f3, ... is such a sequence and U, is the inverse image
of (-;— , 00) under f,, then |J U, is open for each n, because fi, is
continuous. However,

mzn

NUwm=c

n=1 mzn

since fr(x) — 1g(#*) for all x € R. But according to (i), this is
impossible.

A more interesting (and harder) application of the Baire Category
Theorem is Exercise 8.1.

7.13

For a metric space (X, d), amap f : X — X is called a contraction ifitis a
Lipschitz map with Lipschitz constant strictly less than 1, i.e., if there is
aK < 1with

d(Rx), fy)) < Kd(x,y) for all x, y € X.

[See Example 5.9(ii).] As another application of completeness we have
the following theorem.
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Theorem 7.14 (Banach’s Contraction Principle or Banach’s Fixed
Point Theorem)

If (X,d) is a nonempty complete metric space and f:X — X is a contraction,
then there exists a unique x € X with f(x) = x (i.e., f has a unique fixed
point).

Proof
Let K < 1be a Lipschitz constant for f. Take x; € X (any x; will do) and
define a sequence (%p)neny by

Fnrt = fln). &)
Then, we have for every p > 1 that
A(xp41, %) = A(f%), fxp-1)) < Kd(%p, 2p-1).

It follows that for all p € N,

A(xp41, %p) < KP7V (2, 21). @)
Then, forallm < n

A(%n, 2m) < d(%n, %n—1) + A(Xn—1, Xn—2) + - -+ + d(Hms1, Xm)
< (K™2 4+ K" 4 - 4 K™ Dd(xg, 1)

< ( i KI) d(X2, Xl)

le=m—1
Km—-l
= 1% A(x2, x1).

Thus, (xn)nen is a Cauchy sequence. By the completeness of X, there exists
an x € X such that x, — x. For every n, we obtain from (1) and (2)

A(ftx), x) < d(fx), fxn)) + d(Xng1, %a) + d(%n, %)
< Kd(x, x,) + K™ d(xa, %) + d(xn, %)

As d(x, %;) — 0and K*™! — 0, we have d(f(x), *) = 0, and f(x) = x.
For the uniqueness, note that if f{x) = ¥ and y) = y, then

d(x y) = d(f), fv) < Kd(x,y)
and, thus, d(x,y) = 0 and x = y. B

Example 7.15
LetK < 1andletf : R — Rbe a differentiable function for which

Iff(®¥)| < Kforallx e R.
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It then follows from the Mean Value Theorem that f is a contraction.
Thus, the equation

fx) =x
has one solution in R. Moreover, as we can see from the above proof, for
every a € R, the sequence

a, @), f @), f (F (f@)), -

converges to this solution.

For a remarkable application of the Contraction Principle to a
differential equation, see 8.9.

Extra: Meager Sets and the Mazur Game

In 7.11 we have observed that for subsets of a complete metric space X,
meagerness is a kind of smallness, as is shown by the following properties:

(a) Subsets of meager sets are meager.
(b) Unions of countably many meager sets are meager.
(c) The entire space X is not meager.

It is sometimes convenient to say that “most” elements of X have a
certain property if the elements that do not have the property form a
meager set. For example, Q is a meager subset of R, so “most” real numbers
are irrational.

Meager sets turn up in many places in Topology and Analysis. For
instance, as you may know, the derivative of a differentiable functiononR
need notbe continuous everywhere; but it can be shown to be continuous
at “most” points of R. For another example, in Exercise 3.H we considered
separately continuous functions on R? and we saw that such a function
might not be continuous everywhere. However, a separately continuous
function has to be continuous at “most” points of R2.

Meager sets are also valuable tools for certain proofs and construc-
tions—for instance, to make continuous functions on [0, 1] that are
differentiable at no point of [0, 1]. What actually happens there is that
one considers the set of all continuous functions on [0, 1], puts a suitable
metric on it, and shows that “most” continuous functions are nowhere
differentiable. (In Exercise 8.1 we apply this technique to obtain a re-
lated result. If you are interested in continuous nowhere differentiable
functions, see 8.10.)

For a very different situation in which meager sets come up, we need
an excursion into the theory of games.

Consider this game for two players, Red and Black. Nine counters are
placed on a table. A “move" consists of taking away one or two coun-
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ters. Starting with Red, the players alternately make such moves until all
counters are gone. The player who takes the last one wins the game. Who
would you prefer to be, Red (the first player) or Black?

No matter how smart Red is, Black can always beat him by following
this recipe: If Red in his first move takes x counters, Black takes 3 — x;
that is allowable and leaves six counters on the table. If Red now takes y
of them, Black takes 3 — y, leaving three counters. Red takes z, Black the
remaining 3 — z, and wins. You see that Red is defenseless: Black has a
‘winning strategy

The same game with ten counters instead of nine has a different out-
come. This time, Red can open by taking one counter, thereby reducing
the game to the previous one with the crucial difference that now their
roles are reversed. By adopting the second player's strategy for the nine-
counter game, Red is sure to win. In the ten-counter game the first player
has a winning strategy.

In 1928 the Polish mathematician Stanislaw Mazur proposed a certain
collection of infinite games, one for each subset of R. The “Mazur game”
for a set A runs as follows. (For convenience, we present a slight mod-
ification of the original version.) There are two players, Red and Black.
Red opens the game by choosing a closed interval I; of length at most 1;
Black chooses a closed interval I; of length at most 1/2, contained in I;
Red chooses a closed interval I3 C I of length at most 1/3; and so on.
Together, they build a sequence

LhOoDLDILz D -

of intervals. By the Cantor Theorem (2.19) the intersection of all these
intervals contains precisely one number. Red wins if this number belongs
to the set A, Black if it does not.

Question: Does either player have a winning strategy?

If, say, A is [0, 1], Red has an easy job; by choosing I; = [0, 1] his
victory is certain. If A is Q, Black can always win by doing the following.
The elements of Q can be put into a sequence g, 4z, g3, - . - - Now after
Red has selected I, Black chooses I so that it does not contain g;. In
his next turn, he makes sure that g; € I, and so on. The number in the
intersection of all intervals I,, cannot be g; or gz or ... ; in short, it lies
outside Q and Black wins.

For many sets, it is unknown if Red or Black has a strategy, but there is
one fairly general result that brings us back to meager sets: If A is meager,
Black has a winning strategy; if R\A is meager, Red has one. Let us prove
the first part.

Suppose A is meager. A is contained in the union of closed sets
Aj, Az, ..., each with empty interior. Red selects his first interval, [} =
[a, b], say. As A; has empty interior, the open interval (a, b) cannot be
entirely contained in A;, so (a, b)\A, is a nonempty open set. Now Black
can choose I so that I; C (a, b)\A;; then, in particular, I, N A; = @.
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In the next round, he can make sure that I, N A; = @, and so on. The
resulting number cannot lie in any A, and therefore is not an element of
A. You see that this procedure gives Black a winning strategy.

You can verify for yourself that Red has a strategy if R\A is meager.

Whatever set A is, it is clearly impossible for both players to have
winning strategies. You might expect that in any case either Red or Black
has one, but it is not as simple as that. In our Extra in Chapter 17 we
discuss a set-theoretic assumption, the Axiom of Choice. If you accept
this axiom as being true (and most mathematicians do), you can prove
that there exist sets A for which neither player has a strategy. If you reject
the Axiom of Choice (a point of view that is respectable, if not popular),
you might prefer the “Axiom of Determinateness” that says that for every
Mazur game, one player has a strategy.

In mathematics there is nothing frivolous about games and strategies.
An extensive and growing part of mathematics is “game theory.” It was
started in 1944 by John von Neumann and Oskar Morgenstern. Dealing
almost exclusively with finite games, it has wide applications, e.g., in eco-
nomics, sociology, and politics. (In 1994 the Nobel prize for economics
was awarded to three game theorists.) The terminology of infinite games
is occasionally very enlightening in set theory.

Further reading
Oxtoby, J.C., Measure and Category, Springer-Verlag, New York, 1970.

Exercises

7.A. We know that the Euclidean metric and the tan~! metric on R determine
the same convergent sequences. [See Example 5.5(ii).] Show that they do not
determine the same Cauchy sequences and that, in fact, R is not complete
relative to the tan~! metric.

7.B. Let X be the unit sphere in R3:
X={xeR:|x|=1)
On X we consider the Euclidean metric dg and the “surface-metric” d:
d(x,y) :=cos"xy) (xye€X).

[see Example 5.3(iv).]
Show that dg and 4 define the same convergent sequences.
Show that they also define the same Cauchy sequences.
Show that (X, d) is complete.
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7.C. Forx,y € N, set 8(x, y) = lx—yl/xy.
(i) Show that é is a metric, similar (see 6.20) to the Euclidean metric on N.
(ii) Show that (n)nen is a Cauchy sequence for § but not a Cauchy sequence
for the Euclidean metric dg.
(iii) Show that (N, dg) is complete, whereas (N, §) is not.

7.D. Equip [0, 1) with the metric
Y

x
1—x 1—y

ax, y) =

Is the metric space ([0, 1), d) complete?

7.E. Let Y be a subset of a metric space (X, d) and let dy be the induced metric
in Y. [See 5.4(v).]
Prove: If the metric space (Y, dy) is complete, then Y is d-closed in X.
(Compare with Theorem 7.7. Apparently, for subsets of a complete metric
space, completeness and closedness are synonymous.)

7.F. (i) Consider the linear system of equations

anx +---+ anxy = b
: : : ()
amx; +---+ annxy = by
Writing
ci=1—ay for ie{l,...,N},
cix = —ag for i,kel{l,...,N}, i#k
we see that (%) can be rewritten as
N
xi=;Cikxk+bi (i=1,...,N). (%)

Show that () has a unique solution in case
Dk <1
ik

(Apply the Contraction Principle to a suitable map f : RY — RV, Use
the Cauchy-Schwarz Inequality to prove that f is a contraction.)

(ii) Prove the same result (with the same condition on the ci) for the
nonlinear system of equations

N
X = Z sin(cgxx) + bi G=1,...,N).
k=1

7.G. A point a in a metric space X is called isolated if {a} is an open set. Thus, R
and @ have no isolated points; in N, every point is isolated.
Let X be a nonempty complete metric space and assume X is countable:

X = {Xl,Xz, - }
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For every n € N, define U, := X\{xn}. The sets U;, Ua, ... are open (why?)
and have empty intersection. Deduce from the Baire Category Theorem that
some {x,} has to be open.

Thus: Every nonempty metnc space that is complete and countable has an
isolated point.

Let X be a metric space, A C B C X.
(i) If B is meager in X, must A be meager in X?
(i) If A is meager in B, must A be meager in X?
(iif) If A is meager in X, must A be meager in B?
(iv)-(vi) As for (i)-(iii), but with “nonmeager” instead of “meager”
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CHAPTER

8.1

In analysis, one often has to do with a sequence fi, f3, . . . of functions con-

verging to a function g, and the question arises of whether the integrals

of the f, over some given interval [a, b] converge to the integral of g.
Consider the functions f, on [0, 1] defined by

fu(t) = nt"(1—t™) (t €0, 1]D.

We have f,,(f) — 0 for every t, but not fol fa(Hdt — 0. Indeed,
1 1
f fa(dt = n f (" —t¥)dt
0 0

( 1 1 ) n? 1

=N - = —_ -

n+l 2n+4l (n+1)(2n+1) 2

At a first glance, this phenomenon seems strange, but a look at the graphs
of the functions (see next page) is enlightening.

A sequence fi, f3, . . . of functions on a set S is said to converge pointwise
to a function g if f,(s) — g(s) for every s € S.

Apparently, pointwise convergence does not entail convergence of the
integrals. In the present section we consider a metric do, on the set of all
continuous functions on a given interval such that d.-convergence is
better behaved relative to integration.

It pays to take a more general point of view and consider functions
defined on an arbitrary nonempty set, not necessarily an interval or not

129
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even a subset of R at all. We will see then how abstract topological meth-
ods can be applied to problems in advanced analysis (e.g., differential
eguations).

Throughout this section S is a nonempty set.

8.2
A function f on § is bounded if the set of its values is bounded, i.e. if there
exists a number M such that

)l =M forallse S. )

By I°(S) we denote the set of all bounded functions on S.

Take f e I%°(S). Formula (%) is equivalent to saying that M is an upper
bound of the set {|f(s)| : s € §}. By the Least Upper Bound Theorem,
among those upper bounds there is a smallest one. That number we call

I llo:
Iflle isthe smallest M satisfying (),

or

Iflloo = sup{|f(s)l : s € S}

Lemma 8.3
Let f,g € 1°(S). Then f+g [the function s +> f(s)+g(s)] belongs to I°(8) and

If +glloo < Iflleo + lIgllco-

Proof
Set M := ||fllo and N := |ig|l. For all s € S we have

IF+8)(®) = Ifis)+e(s)l = IS)I+1g(s)l = M+N.
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The lemma follows. B

8.4
Similarly, if f, g € I%°(S), then f—g € I*°(S). This observation enables us
to define

dw(f,8) = If—8lw (£ g €1%(9).

(The resemblance with the Euclidean metric on RY is evident.) One easily
verifies that do, is 2 metric.
Forall f,g € I°(S) and s € S, we have

18)—8(s)| < dwo(f, 8)-

Hence, dwo-convergence implies pointwise convergence. The converse is false,
as can be seen from the example at the beginning of this section. There,
we had the functions f, : t = nt"(1—t") on the set [0, 1]. The sequence
converges to the zero function pointwise. But for every n,

doo(ﬁ'u 0) = an”oo - Sup{‘fn(t)l 1te [0: 1]}

As fo(t) = 0 for every t, lIfull is simply the largest value of f, on
[0, 1], which by the usual calculus techniques is seen to be n/4. Thus,
Aoo(fn, 0) — 00!

To get an insight in the difference between pointwise convergence and
do-convergence, imagine we are given functions g, fi, f2, ... on S. If we
wish to show that f, — g in the sense of dy, then, given a positive ¢, we
have to find an N such that for alln > N,

Ifn—glle < &

ie.,

Ifa(s)—g(s)l <& foralls.
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On the other hand, if we want to prove pointwise convergence, then
we are confronted with an s and an ¢, and we need an N such that for
alln > N,

Ifa(8)—8(s)l = &

For pointwise convergence, N is allowed to depend on s; dw-convergence
requires an N that does the job for all s at a time and that is much harder.
The difference between pointwise and de-convergence is not unlike that
between ordinary and uniform continuity: See 3.11.

For functions g, f1, f2, - . . on S, we say that

fn— g uniformlyon S
or also that
fu(8) — g(s) uniformly for s € S

iflfa—8llec — 0. Forbounded functions, this is precisely dw-convergence,
but uniform convergence does not presuppose boundedness. Thus, we
can say that

Vs24n-1 — |s| uniformly for s € R

because 0 < +/s24+n-! — 5] < n~1 for all s and n.
The feedback to the opening of this section is easy to give:

Theorem 8.5
Let [a,b) be an interval, g,f,f2, . . . continuous functions on [a,b] such that
fn = g uniformly. Then,

/a ’ fu(tdt — /a ’ g(bat.

Proof
As |fu(1)—8(D)| < doo(fn, ) for all t, we have

b b
l fa fa(Hdt — fa g(t)dt‘ < (b—a)doo(fr, 8)- .

What we have here is really a precise rendering of the phenomenon
we vaguely described in 5.1: Integration is a continuous function X — R
if by X we indicate the set of all continuous functions on [a, b] endowed
with the metric d.

Another application of uniform convergence:

Theorem 8.6

Let (X,d) be a metric space and let fi.f2, . . . be a sequence of functions on X,
converging uniformly to a function g. Suppose every f, is continuous. Then,
soisg.
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Proof
Takea € X, & > 0; we want to finda é > 0 such that

lg(x)—g(a)l < ¢ forall x € Bs(a).

As |Ify—gllee — 0, there certainly exists a P € N with
€

- < =,
Ifr—8lloo 3

As fp is continuous at a, there is a § > 0 such that

I (—fr(@)] < -’7’3- for all x € By(a).
This 8 does the trick: For x € Bs(a), we have
le()—g(@)] = lg()—fp(D)] + Ife(D—fe(@)| + Ifr(@)—g(a)]
< llg—frlleo + Ife(®X)—fr(a)l + lIfp—8lloo

e & &
< 3 + 3 + 3= &. -

Observe that the pointwise limit of the continuous functions f, : t > "
(t € [0, 1)) fails to be continuous. Observe also that even uniform con-
vergence does not preserve differentiability: At the end of 8.4 we have
seen that the nondifferentiable function s +> |[s| is a uniform limit of
differentiable ones.

For further applications of uniform convergence, we need:

Theorem 8.7
Under d, 1°°(8) is a complete metric space.

Proof
Let fi, f2, . . . be a Cauchy sequence in I®(8):

”fm"‘fn"w <g, forall m>n,

where g, — 0.
Take s € 8. If m,n € Nand m = n, then

fn()~fa(®] = Ifin—falloo < n- 1)

It follows that fi(s), f2(s), . . . is a Cauchy sequence in R. Let its limit be
g(s).

Thus, we obtain a function g on 8. If in (1) we let m tend to infinity,
we see that

1g()—fa(S)] < &n 3]
for alln and s. Upon takingn = 1, we find |g(s)] < Ifi(®)l+&1 < Mfill + &1,

so that g € I°°(8). Then, (2) implies ||g—fullc < enforalln,sof, — gin

the sense of duo. |
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For a closed bounded interval [a, b], we denote by
Cla, b]

the set of all continuous functions on [a, b).

Theorem 8.8
Under de, Cla,b] is a complete metric space.

Proof

We know (Corollary 3.10) that Cla, b] is contained in I%°([a, b]), s0 deo
is in fact a metric on C[a, b]. It follows from Theorem 8.6 that C[a, b] is
(sequentially) closed in I*°([a, b]). Then, by the completeness of I°([a, b]),
Cla, b] is complete, too. (Theorem 7.7.) B

8.9
Let us see how this can be applied to differential equations.
We will show that there exists one and only one function k on [0, 1]

antialeston ~
Odlidolyllizg

[h’(t) = costh(t) (¢t €]0,1)]), “
sk

h(0) = 0.
If h satisfies (%), then h is continuous, and for all s € [0, 1], we have
h(s) = h(0) + fy W' ()dt. Thus, () implies
h e C[0,1],
s (%)
h(s) = / cos th(t)dt (s € [0,1]).
0

Conversely, it is perfectly easy to see that every function h for which (%)
holds is a solution of (*). Thus, we are done if we can prove that there
exists precisely one h satisfying ().

For every f € C[0, 1], we define a function f~ on [0, 1] by

f(s) = / costf(tydt (s € [0, 1]).
0
Then, f~ is continuous. Hence,

fe=Ff (eCpo1) O]

is a map C[0,1] — CJ[0, 1]. What we have to prove is that there exists
precisely one h in C[0, 1] for which h = h™. In other words, we want to
show that the map defined by (1) has precisely one fixed point.

Now CJ[0, 1}is a complete metric space under do,. Hence, by the Banach
Contraction Principle (7.14), we are done if the map (1) happens to be a
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contraction. We proceed to show that it is, and that actually

doo(f™,8™) < 3d0(f, 8)

for all f and g in C[0, 1].
Take f, g € C[0, 1]; let K := deo(f, g)- Then

fin—e®l =K (t€[0,1]
and we wish to show that
IF~ ()-8~ ()l < 3K (s €0, 1]).
We need the inequality
{cosu — cosv| < |u—vj (u,v € R),
COS U — COSV

(following from the Mean Value Theorem, applied to

u—v
For every s in [0, 1], we have

If~ ()&~ () =

8 S
/ cos tf{)dt — / cos tg(t)dtl
0 0
8§
= ! / (cos tf(t) — cos tg(t))dtl
0
S
< / |cos tf(t) — cos tg(£)|dt
0
S
< / |efie) — tg()]dt
0
8§
5/ tK dt = 1Ks® < 1K,
0
and we are done.
8.10
As another application of the Contraction Principle, we prove the
existence of a continuous function on [0, 1] that is nowhere differentiable.

For X, we take the set of all continuous functions f : [0,1] — [0, 1]

with {0) = 0, {1) = 1. For every f € X, there exists one f~ : [0,1] = R
with

) = A3 if 0<tx<i,
=%+ if2-3) if §<t<i,
fr=L1+3f3t-2) if Z=<t<l
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3 , ;
1 b e,
z s
0 f 1 0 1 p~ 2 1
3 3

Then, f~(0) =0, f~(3) = 3,f~(%) = 1, and f~(1) = 1. We see that [~
is continuous and is, in fact, an element of X.

Iff, g € X and if M is a number such that [{t)—g(f)| < M for all ¢, then,
clearly, |f~()—g™~ ()| < M for all t. Thus,

do(f~,87) < 2do(f,g) (g € X).

Therefore, the map f +~ f~ is a contraction of X. Now, as uniform
convergence implies pointwise convergence, X is a (sequentially) duo-
closed subset of C[0, 1]. Then, X is a complete metric space. By the Banach
Contraction Principle, there isanh € X with h = h™,

Certainly, h is continuous. We prove that & is nowhere differentiable.

To this end, we observe that for alln € N,

’h(k"l)—h(%)[zz*" (k=12 ...,3" )

3n

A proof is easily given by induction. The crucial observation is that for
each n and for k € (1, 2,...,3"}, the numbers (k—1)3" and k37" both
lie in [0, ] or in [}, 4] or in [£, 1], according to whether k < 3" or
3" < k<23"0r2.3" < k.

Now take a € [0,1]. For n € N, there exists a k in {1,2,...,3"}
with (k—1)3™" < a < k3™". It follows from (%) that the interval
[(k—1)37™, k3~"] contains a number t, (e.g., one of the end points) such
that

[h(ta)—h(a)| = 27"
But, [t,—al| < 377, so

h(tn)—h(a)
th—a

lim

n=>00

= o0

and h cannot be differentiable at a.
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Look back at the problem posed at the beginning of Section 7: If f :
QnN[0, 1] — Ris uniformly continuous, can one extend it to a continuous
function on [0, 1]? We now have enough tools to show that the strategy
we have outlined really works.

Theorem 8.11
Let Y be a dense subset of a metric space X and let f be a uniformly continuous
map of Y into a complete metric space X'.

(i) There is a unique continuous g:X — X' whose restriction to Y is f. This
g is uniformly continuous.
(i) If f is Lipschitz, so is g. If f is an isometry, so is g.

Proof

(D) Let d and d’ be the metrics of X and X'. For simplicity of notation,
writey' = f{y) ify € Y. Letussay that an elementa of X is associated
with a b in X’ if there exist y;, Yz, . .. in Y with

Yyn—a and y, - b.

Leta € X. There exist yy, Yz, . . . in Y with y, — a. We claim that
Y1, Yo, - - - is a Cauchy sequence. Indeed, lete > 0. Thereisad > 0
such that

xyeyY, dxy) <8 = dHy) <e O)

we have d(yn, Ym) < 8§, from which d'(y;, y,.) < &. Thus, y1,¥5, ...
is Cauchy, hence convergent. We see that every a € X is associated
with some b € X',

If a € X is associated with elements b and ¢ of X', there exist y;,
Y2,.--, 21,22, ... € Ysuchthaty, — a,z, - a,y, = b,and z, — c.
Then the sequence y1, 21, Yz, 22, . - - converges to a. By what we have
just seen, the sequence yi, 2, Y3, 23, . . . must also converge. Hence,
b = ¢. We see that every a € X is associated with at most one element
of X'.

Define g : X — X' by the requirement that, for a € X, g(a) be
the element of X’ with which a is associated. It is clear that if f hasa
continuous extension X — X', this must be g. It is also clear that g is
an extension of f. We are done if g is uniformly continuous.

Let ¢ > 0. Choose a positive § such that (%) holds.| Let xy € X
and d(x,y) < §; we prove that d'(g(x), 8(y)) < e. (The uniform con-
tinuity follows.) There exist x1, x2,...,Y1,Y2,-.- € Y with x, — x,
Yn = Y % = 8(x), and ¥, — ). As d(xn, yn) — d(x,Y) (see
Exercise 5.G), we have d(x,,y») < ¢ for all sufficiently large n,
so that d'(x),, y,) < ¢ for all sufficiently large n. But, d'(x}, y,) —

a'(g(x), 8(y)), so d'(g(x), 8(¥)) < e

AS Y1, Y2, - . . is Cauchy, there is an N such that for all n,m > N,
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(i) If f is Lipschitz with Lipschitz constant K, then in (¥) we can take
8 = K™lg. It follows that g also has Lipschitz constant K. If f is
isometric, then [in the notation of the final part of the proof of (i)]

A(xn, Yyn) = d'(%,, ), so d(x, y) = d'(g(x), g(¥))- B

8.12

Let (X, d) be a metric space, preferably not complete. Let us call a metric
space (X', d") an “extension” of (X, d) if X C X' and d(», y) = d'(x,y) for
allx,y e X.

We wish to extend (X, d) to a complete metric space (X~, d™). We also
wish X~ to be no larger than is necessary. It would be nice if X™ could be
made to consist solely of limits of Cauchy sequences in X, ie., if X were
a dense subspace of X~

It turns out that such an (X™, d™) can be constructed, but by marginally
moderating our wishes, we can save an amount of dull work. Instead of
wanting (X, d™) to be an extension of (X, d) itself, let us be satisfied if it
is an extension of a space that is isomorphic to (X, d). (See 5.4(vii).) As a
reward, we will obtain a uniqueness result: All spaces (X, d™) that meet
our wishes are mutually isomorphic.

8.13

We define formally: A completion of a metric space (X, d) is a pair con-
sisting of a complete metric space (X™,d™) and an isometryj : X — X~
such that j(X) is dense in X~. [Then, X~ is an “extension” of the space j(X)
that is isomorphic to X.]

Theorem 8.14
Every metric space has a completion.

Proof
Let (X, d) be a metric space, X # @. With every x € X we connect a
function f, on X by

R =dxn  (teX).

[See Exercise 5.9(iv).] By the Second Triangle Inequality (5.4(i)), for all
x,y € X we have

FO-HOI <dxy) (teX)

so that fi—fy € I°(X) and |Ifi—fyll, < d(x,y). Better than that, we also
have [Ifi~fyllo Z Ife)—fo(W)| = d(x, y). Thus,

"ﬁt”f_;{ "oo =dx Y) * y € X).
Now choose e € X and define j : X — 1%°(X) by

J@ = firfe  (x€X)
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It is easy to see that j is an isometry: For all ¥ and y,

deo (%), i) = Mfife) — =l = Ifi—fill = d(x, ¥).

Let X’ be the closure ofj(x) in I°°(X), and d' the metric on X’ induced by dw.
By Theorem 7.7 and the completeness of I®(X), (X/, d') is complete. HE

As for the uniqueness:

Theorem 8.15

Let (X ,d) be a metric space and let ((X1,61),j1) and ((X2,dz),j2) be completions
of (X,d). Then, (X1,dr) and (X3,dz) are isomorphic as metric spaces. More
precisely, there exists an isometry j of X; onto Xy such that j o ji = j,.

) M) ¢ X
/

X ]

\

) C X

Proof

ji has an inverse j;! : j;(X) — X.Thenj; oj;! is an isometry j,(X) — Xz.
By Theorem 8.11, j; oj;' extends to an isometry j : X; — X,. Trivially,
joj = ja. As X is isomorphic to j(X;) and X; is complete, so is j(X;). Then
j(X1) must be closed in X; (Exercise 7.E). But, j(X1) D j2(X) and j2(X) is
dense in X,. Hence, j(X;) = X3, i.e., j is surjective. B8

Extra: Spaces of Continuous Functions

For a nonempty metric space X, let us denote by C(X) the set of all con-
tinuous functions X — R. This C(X) is not just a set; it comes with a lot
of structure. It is profitless to try and define the term “structure;” but from
some examples you will get the idea.

There is an addition: The sum of two continuous functions is a con-
tinuous function. More formally, if f, g € C(X), then f + g € C(X), where
f + g is the function

x = %)+ 8(%) (x € X).

Similarly, there is a multiplication. If, for f, g € C(X), we let f e g denote
the function

x> flogld) (ke X),
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thenfeg € C(X). (This f e g is called fg in the main text. We momentarily
change the notation because further on it will be convenient to have a
symbol for the multiplication at our disposal.)

Addition and multiplication are examples of structure on C(X). The
structure of a different character is the “ordering” For f,g € C(X), we
write

f=g (1)
as an abbreviation for
fx) <g(x) forall x € X.

< is a binary relation on C(X): For certain combinations of f and g the
formula (1) will be valid; for others, not.
Let us focus on e for a while. Consider the following question.

How many elements f exist
in C(X) for whichf e f = f?

There are at least two, namely the constant functions with values 0 and

1; so much we can say in general, Looking further, however, we see that

the answer depends on X. It is “two" if, say, X is R, but “four” if X is
[0, 1] U [2, 3]. Thus, the answer tells us something about X.

Problem (as yet very vague): Supposing we know everything about e
that there is to be known, how much information about X can we deduce?

Suppose we have two metric spaces, X and Y, and suppose there is
given a “homeomorphism’ ¢ : X — Y;i.e, abijectivemapg : X — Y
such that both ¢ and its inverse are contlnuous To every function f :
X — R corresponds a function f Y - R:

f=fop

Then, f is continuous if and only if f is, and the correspondence

fef  (Fecw)
is a bijection of C(X) onto C(Y). This bijection behaves very nicely relative
to the multiplication. Indeed, for f, g, h € C(X) we have
feg=h « feZ=nh.

Returning to our question (2), we see that there are precisely as many
functions in C(X) that are equal to their own squares as there are in C(Y).
(fef=fifandonlyiffef =f.)

More generally, every property of the multiplication in C(X) is shared
by the one in C(Y).

This brings us to the concept of “isomorphism.” For two metric spaces,
X and Y, we say that C(X) and C(Y) are e-isomorphic if there exists a
bijection f + f of C(X) onto C(Y) such that

feg=h & ?o?:ﬁ

(2)
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for all f, g, h in C(X). Then the multiplications of C(X) and C(Y) have all
properties in common. As far as multiplication is concerned, you might
call C(X) and C(Y) “congruent.”

The problem we put in italics, above, can now be made slightly more
precise: If C(X) and C(Y) are e-isomorphic, how closely must X and Y
resemble each other? We have just seen that X need not be equal to
Y: For C(X) and C(Y) to be e-isomorphic, it suffices that X and Y be
homeomorphic. Remarkably, the converse is also true: C(X) and C(Y) are
e-isomorphic if and only if X and Y are homeomorphic. In this sense, the
multiplication on C(X) contains much information about X.

The addition does not: One can show that C(X) and C(Y) are +-
isomorphic if, for example, X is [0,1] and ¥ = [0,1] U [2, 3]. For the
ordering, the result is again positive. If we call C(X) and C(Y) <-isomorphic
if there is a bijection f — f of C(X) onto C(Y) with

f<g = f<% (fgecE)

then C(X) and C(Y) are <-isomorphic if and only if X and Y are
homeomorphic.

Further Reading

Gillman, L. and M. Jerison, Rings of Continuous Functions, Springer-Verlag,
Heidelberg, 1976.

Exercises
8.A. Which of the following sequences (fn)nen converge(s) uniformly? Make
sketches.
x -
®) () = mae™
(©)  ful®) = ntx(1—x2)" O<x<1; neN).
@  fulr) = mxQ—ty"
xn
@ == ]

8.B. Define f, : R —> Rby
fa(®) = el (x e R).

Show that the sequence (f,,)nen converges pointwise but not uniformly, and
that the limit function is continuous.
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8.C.

8.D.

8.E.

8.F.

8. Uniform Convergence

Letf,fi,f2, ... and g, g1, &2, - . . be functions on a set §; let f;, — f uniformly
and g, = g uniformly.
(i) Show that forall A, 1 € R,

An + ugn = Af + pg  uniformly.

(ii) Suppose there exists a number K such that |f,(s)] < K and [ga(s)| < K
for all n and s. Prove that

fngn = f&  uniformly.
[The boundedness condition mentioned in (ii) is not redundant: Taking
S =Rand fo(s) = %, fs) = 0, and gn(s) = g(s) = s, one has f — f and
gn — g uniformly but not f,g, — fg uniformly.]

Let (X, d) be a metric space and suppose d is bounded, i.e., there exists a
number M such that

dix,y) <M forall x,y e X.

In Exercise 5.K, for every nonempty subset A of X we have made a function
fA X >R by

fa(x) == inf{d(x,a) : a € A};
and we have seen that f, is continuous. It is clear that
fa®) <M forall A and =

Let C be the collection of all nonempty closed subsets of X.
(i) Show (using Exercise 6.E?) that the formula

8(A,B) = lfa~falle (A, BEC)

defines a metric § on C. (This 8 is called the Hausdorff metric.)
(ii) Show that the map

a+ {a}
is an isometry of X into C.

Let (X, d) be a metric space; let f : X — X. It is easy to get the impression
that f is already a contraction if

nyeX x¢y = d(f0,fW) < dxy) Q!

Take X := [1,00), flX) = x + L (x € X).
(i) Show that X is complete. (Euclidean metric.)
(ii) Show that f maps X into X and has the property ().
(iii) Show that f has no fixed point. [Then by (i) and the Contraction
Principle 7.14, f cannot be a contraction.]

By c¢p we indicate the set of all number sequences that converge to 0. We
know that all convergent sequences are bounded (Theorem 3.6), so ¢p is a
subset of I*°(N).

Show that ¢g is deo-closed in I°(N).

Show that the metric space (cg, deo) is complete.
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8.G.

8.H.

8.1.

By ¢ we indicate the set of all convergent number sequences. Convergent
sequences are bounded (Theorem 3.6), so ¢ is a metric space under duo.

Forx = (%1, %p,...) € ¢, put

L(®) = Hm x;

then L is a function ¢ — R. Prove that L is dw-continuous. [See 5.1(iv).]
For f e C[0, 1], let M(f) be the largest value taken by f.

Show that

IM()-M@)l = If-gle (& €CI0, 1]

and that the function M : C[0, 1] — R is d-continuous. [See 5.1(vi).]
We consider C[0, 1], endowed with the metric de.

For every interval I C [0, 1], let A[I]be the set of all continuous functions
f :10,1] — R that are increasing on I, i.e., for which

wyel x=y = flx) <Ay

and B[I] the set of all continuous functions on [0, 1] that are decreasing on
I
(i) Show that for every interval I C [0, 1], the sets A[I] and B[I] are closed
and have empty interior.
(i) LetI;, I, ... be the intervals [0, $], (3,1}, [0, 1. (%, 1. (4,1}, [0, 1.
[1, 2] .... Deduce from the Baire Category Theorem that

i3
c[0,1] # | _JAlI]u | Bila)-

(iii) Now show that there exists a continuous function on [0,1] that is neither
increasing nor decreasing on any subinterval of [0, 1].



Sequential
Compactness

CHAPTER

9.1

For subsets of R and R?, we have defined sequential compactness in Chap-
ter 3. The same definition is meaningful in the setting of metric spaces
in general.

Let (X, d) be a metric space. We call a subset Y of X sequentially compact
if every sequence of elements of Y has a subsequence that converges to
an element of Y. The last clause, “to an element of Y is vital: In R, the
interval (0, 1] is not sequentially compact, as the sequence 1, 1, 1,...
has no subsequence with a limit in (0, 1].

In 6.17 we have seen that the property of openness is not “intrinsic”: A
set is (or is not) open as a subset of a metric space. [0, 1] is open in [0, 1]
but not in R. Sequential compactness is different, as is apparent from the
definition. The statements “[0, 1] is sequentially compact in [0, 1}” and
“[0, 1] is sequentially compact in R” have the same meaning.

In Example 3.26 we have considered examples of sequentially compact
subsets of R?. It follows from the Bolzano-Weierstrass Theorem that every
closed bounded subset of R (such as the Cantor set; see Example 6.10) is
sequentially compact. Other examples will follow in Examples 9.7(ii) and
9.11 and Exercises 9.F and 9.H. First, a few simple remarks, either very
elementary or immediate generalizations of earlier results.

Theorem 9.2
Every closed subset of a sequentially compact metnc space is sequentially
compact.

144
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Proof

Let X be a sequentially compact metric space and Y a closed subset of X.
Every sequence in Y has a subsequence converging to a point of X. As Y
is (sequentially) closed, this limit lies in Y. B

Theorem 9.3
On a nonempty sequentially compact metric space, every continuous function
attains a largest value and is bounded.

Proof
Precisely as in Theorem 3.9, Corollary 3.10, and Theorem 3.24. |

Theorem 9.4
On a sequentially compact wmetric Space, every continuous function is
uniformly continuous.

After Theorems 3.13 and 3.25, the reader will be able to supply both
a reasonable definition of “uniformly continuous” and a proof of the
theorem.

Theorem 9.5
Every sequentially compact subset of a metric space X is closed in X.

Proof
Let X be a metric space and let Y C X be sequentially compact. We show
Y to be sequentially closed. (See 6.8.) Let Y1, Yz, ... € Y, a € X, and
Yn — a. The sequence y1, Y2, . - - has a subsequence converging to a point
of Y. But every subsequence of y1, yz, . . . converges to a [5.4(iii)]. Hence,
aeY.

Theorem 9.6
A subset of R or RY is sequentially compact if and only if it is both closed and
bounded.

Proof for RY

() Let Y C RY be sequentially compact. We have just seen that Y must
be closed. The function # — [|x}] is (sequentially) continuous on
RY; then, by Theorem 9.3, it is bounded on Y. It follows that Y is a
bounded set.

(II) Conversely, suppose Y C RY is closed and bounded. Take a sequence
in Y. If we can show that it has a convergent subsequence, then, by
the closedness of Y, the limit of such a subsequence must lie in Y,
and we are done. Thus, it suffices to prove that in RY every bounded
sequence has a convergent subsequence.
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That has been done in Theorem 3.18 for N = 2. It is easy to see
how repeating the argument given there yields a proof for arbitrary
N. (If you are not convinced, another proof will follow in Exercise
9.A)

Examples 9.7

(i) Many closed bounded subsets of R and RN are easily recognizable as
such. The obvious examples are the closed bounded intervals of R,
and the unit disk and the unit square in R?; we have known of their
sequential compactness since Section 3.

(i) In R3, the “unit sphere” 8 := {x € R : ||x|| = 1} is bounded and (se-
quentially) closed, hence sequentially compact under the Euclidean
metric dg. In 5.3(iv), we have considered a different metric on S,
namely

d(x,y) = cos™ (%, ).

We can now show that S is also sequentially compact relative to this
meiric d. Indeed, let x;, %3, ... be a sequence in 8. This sequence
has a subsequence y1, y2, . . - that dg-converges to some y € S. Then,
YU ¥) = @ Y) = 1, 50 d(Yn, y) = cos™ {Yn,y) — cos™'1 = 0 and
the sequence y1, Yz, - - - also d-converges to y.

(iii) It is, of course, not to be expected that in every metric space, all
closed bounded subsets are sequentially compact. In fact, if dy is the
trivial metric on some set X [see 5.3(vi)], then every subset of X is
closed [Example 6.9(iii)] and bounded, but only the finite subsets are
sequentially compact.

9.8

The next few pages deal with collections of sets. The reader may wish
to look back at 6.11 and 6.12 for the relevant terminology and notations
such as Eand C.

Let X be a metric space—or, for that matter, any set. A collection w of
subsets of X is said to cover X, or to be a cover of X, if every point of X lies
in a set that belongs to w, i.e., if X = (J w (e.g., the intervals of length 1
cover R.)

A cover of X is finite, simply if only finitely many sets belong to it.

If w and o' are covers of X, we call o’ a subcover of w if o' C w (e.g., let
X be R, let w be the collection of all intervals, and let ' be the collection
of all closed intervals of length 1.)

9.9

A metric space X is called totally bounded (or precompact) if for every
g > 0, X canbe covered by finitely many subsets that each have diameter
< ¢ (See 7.2.)
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Observe: If X is totally bounded, then so is every subset of X.

A totally bounded space X is bounded: Cover X by nonempty sets
X3, ..., Xy with diam X,, < 1 for each n; choose x; € Xi,...,xy € Xn.
Then, forallx, y € X,

d(x, y) < 2 + max{d(x,, xn) :n,m=1,..., N}
InRY allbounded sets are totallybounded, as is easy to see. This is not the
case in, say, I°°(N) with the metric de: Let X be {f € I(N) : |Ifil, < 1}.
Then, X isbounded, but it contains the indicator functions of all one-point

subsets of N, and no two of these indicator functions can lie in one set
with diameter less than 1.

Theorem 9.10
A metric space (X,d) is sequentially compact if and only if it is complete and
totally bounded.

Proof

(1) Assume (X, d) is sequentially compact.
Let %1, Xz, . . . be a Cauchy sequence:

d(xn, xm) < & if mz=n,

where ¢, — 0. By compactness, there is a strictly increasinge : N —
N such that x4(ny — a for some a € X. As a(n) > n for all n, we have
A(%n, Xam)) < &n and thereby
A(xn, @) < &n + A(Xam), @)-
Hence, x, — a. This proves the completeness.
Let ¢ > 0. Suppose X cannot be covered by finitely many sets of
diameter &. Then X cannot be covered by finitely many balls of radius

&/2. 1t follows that we can make an infinite sequence ai, dz, ... in X
such that

az ¢ Beja(ar),
az & Besa(a1) U Besa(ag),

etc.
For all m and n with m $# n, we have d(am,an) > &/2. Then,
the sequence aj, a3, ... cannot have a convergent subsequence.
Contradiction.

(II) Assume that (X, d) is complete and totally bounded. Let x;,;,... €
X. We wish to obtain a convergent subsequence. We may assume (?)
that the set § := (%, %, .. .} is infinite.

Cover X by finitely many subsets with diameter at most equal to
1. At least one of these must contain infinitely many elements of S.
Hence, S has an infinite subset §; for which diam-§; < 1. Similarly,



148 9. Sequential Compactness

§; has an infinite subset §; with diam §; < %, and so forth. Thus,
there is a sequence of infinite sets

§O08D028 D

with diam §, < p™ for each p. Choose (1) € N with x,qy € S.
As 8; is an infinite set, there are infinitely many indices n with
X, € 8y; choose a(2) € N such that x4 € S and «(2) > «(1).
Similarly, take an «(3) with x43) € 83 and «(3) > «(2); and so

on. Then, Xy, Xa(2), - - - is @ subsequence of x;, %3, .. .. It is Cauchy

since d(Xa(n), Xam)) < p~! as soon as n, m > p. By completeness, it

converges. L
Example 9.11

Let I®°(N) be the set of all bounded functions on N. In 8.4, we imposed on
I®(N) the metric dy, that determines uniform convergence. Consider the
subset

K:={fel®N):0<fin)<n! foreveryn € N}.
We claim that under the metric induced by dy, this K is complete and
totally bounded, hence sequentially compact. Indeed, I*°°(N) is complete
(Theorem 8.7) and K clearly is (sequentially) closed in I°°(N); so, by The-
orem 7.7, K is complete. As for the total boundedness, let N € N; we show
that finitely many balls of radius 1/N cover K. Consider the set Ky of all
g € K with
neO1 2 N.—ll for every n
g( ) ) N ) N AR | N 1 ry *

Ifg € Ky, then g(n) = 0 assoonasn > N, so Ky is a finite set. The balls
Bi/n(g) with g € Ky cover K.

Corollary 9.12
Every sequence of functions N — [0, 1]has a subsequence that converges
pointwise.

Proof
Let f1, f2, . . . be functions of N into [0, 1]. Define functions f, f7,... on N

by
ffm)=n"'"f(m) (neN).
By Example 9.11, the sequence fY¥, f5, . . . has a subsequence faty fay

... that converges in the sense of dy, i.e., uniformly, and therefore
pointwise. Then fy), farz), - . - cOnverges pointwise. B

9.13
For another description of sequential compactness we need some new
terminology. Let X be a set and w a nonempty collection of subsets of X.
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We say that w is finitely bound (or, has the finite intersection property) if
N EN, A, ...,ANEw = AN...NAy # D.

Obviously, this is the case if w has nonempty intersection; that is, if there
is a point of X that lies in every set belonging to w. The converse is false:
If X = R and w consists of the intervals [x, 00) (¢ € R), then w is finitely
bound but has empty intersection.

Observe: If w is finitely bound, then @ cannot belong to w.

Theorem 9.14
Let X be a metric space. Then, conditions (c), (B), and (y) are equivalent.

(o) X is sequentially compact.

(B) Every finitely bound collection of closed subsets of X has nonempty
intersection.

(v) Every cover of X by open sets has a finite subcover. (See 9.8.)

Proof

Let d be the metric of X.

(x) == (B) Let ¢ be a finitely bound collection of closed subsets of X.
Take ¢ > 0. As X is totally bounded (Theorem 9.10), we can cover X

by finitely many balls of radius ¢, say, Xi, ..., Xy . We claim that there

mustbe anm € {1, ..., M} with

X intersects every set of the collection ¢.

Otherwise, for every m, there is an A, £ ¢ such that X,,, N A,, = &. Then
A; N --. N Ay contains a point z. As z lies in every A,,, it cannot lie in
any X,,. Contradiction.

Thus, for each n in N, there is an x, in X with

By/m(%y) intersects every set of the collection ¢. (%)
We obtain a sequence x;, %3, . ... This sequence has a subsequence xq(1),
Xy(2), - - - CONVErging to some a € X. We claim that a lies in every set that

belongs to ¢.

Indeed, let A £ ¢. We show that a is adherent to A (so thata € A since
A is closed). Let ¢ > 0. Choose n € N so large that xun) € Bes2(a) and
a(n)~! < /2. Then,

Bl/a(n)(xd(n)) C Be(a),

so that B:(a) N A # @ by (%).

(B) = (o) Take asequencex;, xz, ... inX.Forn € N, let A, be the closure
of {x,, x,41, .. .}. Then, {A1, A;,...) is a collection of closed subsets of X.
It is finitely bound since A; D A; O - - - and no A, is empty. Hence, there
is a point a of X that lies in every A,,. We proceed to make a subsequence
of %y, x2, . .. that converges to a.
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As a € A, there is an o(1) € N with d(x,y,4) < 1. As a € Auay+,
there is an o(2) € N with «(2) > a(1) + 1 and d(xs(), 4) < 1. Similarly,
there is an @(3) € N with o(3) > «(2) + 1 and d(*), 4) < 3, and so
forth. We obtain a subsequence xy(1), %«(2), - - - of 1, X3, . . . With X4(n) — a.
(B) = (¥) Let wbe a cover of X by open sets; we look for a finite subcover.
The sets

X\U (UEw

form a collection ¢ of closed sets. For every x € X, there isa U £ o with
x € U, and, therefore, there is an A £ ¢ with x € A. Thus, ¢ has empty
intersection. By condition (B), ¢ cannot be finitely bound. Hence, there
exist Uy, ..., Uy E @ with

E\U) N -+ N (X\Uy) = 2,

ie., X = U, U...U Uy and we have our finite subcover.
The proof of the implication () = () we leave confidently to the
reader. B2

Extra: The p-adic Numbers

By Zjp we mean the set of all sequences x;, xz, 3, ... with x, € {0, 1, 2, 3,
..., 8, 9} for every n, such as the sequences of the decimals of e and 1/7:
7,1,8,2,8,... and  1,4,2,8,5,....

The elements of Zy, are called 10-adic integers. With special purposes in
mind, we change the notation: Instead of

X1, X2, %3, .- .,
we write
.. X3XoX).
Thus, a := ...82817 and b := ... 58241 are 10-adic integers.

We introduce an addition and a multiplication in Zq like this:

(-2 I S I ]
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You get the idea. Just to show that we are not cheating, we describe a
more exact way to give the definitions.

For ¥ € Zyg and n € N, by [x], we indicate the positive integer that is
given by the final n digits of x. Thus, with a and b as above,

[a]s = 817, [b]s = 241.

Now compare the above multiplication of a and b with the ordinary
multiplication of the integers [a]3 and [b]s:

[} 3
8 218 1 7 '8 1 7
3 1
5 812 4 1 12 4 1
: | ——
. 8 218 1 7 '8 1 7
i ¥
31 216 877 3 216 8
5 6 3i4/9 1 6 314
V8 1 9 6!8 9 7
) +
1
3

You see what happens: If ¢ is the (somewhat informally defined)
product of a and b, then
[cls = [ak[b]s + (a multiple of 10%).

This observation leads to a formal definition of the multiplication: The
product of two 10-adic integers x and y is the 10-adic integer z satisfying,
forallN € N,

[z}n = [%]n[y]n + (a multiple of 10™).

(It is easy to see that there is precisely one such z.) Similarly, the sum of
x and y is the 10-adic integer u with

[l = [#]n + [y]n + (a multiple of 10™)

for all n.

You can now prove that these operations satisfy formulas completely
analogous to (a), (b), (€), (), and (g) of our Axiom Iin 2.2. (Commutativity,
associativity, and distributivity.)

With an ordinary non-negative integer p we associate a 10-adic integer
P as follows: Write p in the usual way as a finite string of digits, then let
it be preceded by an infinite string of zeros. Thus,

385 = ...000000385.
Then, for all x € Zy
x+0=gz x1 =z,

analogous to (c) and (h) of Axiom 1. You will readily see that we have the
natural analog of (d): For every x, there is a unique —x with x 4+ (—x) = 0,
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e.g.,
—...82817 = ...17183.

For every p in {0,1, 2, ...}, we have made a 10-adic integer ¥ . We can
extend the definition to all integers by

Fi=—p (p=-1,-2,..)
Then
rta=p+4, pd=rq9 (v4q¢<).
In Zy, we have no analog for (i) of Axiom I, as there is no 10-adic
integer y with 0y = 1.
You may be wondering what all this has to do with metric spaces. The

connection is the following. We define a metric d on Z; by setting, for
XY € ZIUI

ax,y) =0 if x=y,

1

d(x,y) :=m™ if x—y endsin precisely m~1 zeros.

Then for p,q € Z, d(P, q) is precisely the *10-adic distanice” between p
and g in the sense of Example 5.5(v); in other words, the map p — P is
an isometry relative to the 10-adic metric on Z. As a metric space, Zq is
complete and even sequentially compact. Indeed, it is a completion of Z
(under the 10-adic metric).

It is not difficult to see that d-convergence is “coordinatewise”: If x, x;,
X3, ... € Zyg, then

d(xn, X) = 0 <= [x)1 = [x] for large n, and
[%a]2 = [X]2 for large n, and
[%:]3 = [x]3 for large n,
etc.

It follows that addition and multiplication are continuous. Note that
d(x, ¥) = d(x+z, y+z) for all x, y, and z. In particular,

d(x, y) = d(x~y,0) (% y € Zy).

We have seen that division does not work well in Z,¢: You cannot divide
T by 10 (but you can divide by 7). Something can be done by extending
Zyo to Qyp, the system of “10-adic numbers” A 10-adic number is obtained
by taking a 10-adic integer and adding a “decimal point” and finitely many
digits, e.g.,

...82817.23 or ...28514.4 .

It is then understood that ... 514.3 and ... 514.300 are the same 10-adic
number, and also that ... 2817 = ...2817.0 (so that Zyy C Qo).
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Addition and multiplication have natural _extensions to Q1g, and the
10-adic number ... 0000.1 is the inverse of 10. The metric can also be
extended; for instance, by defining for x, y € Qyq,

dx, y) =d(x—y,0) if x—~y € Zy,
d(x, y) =] if XY & Zm.

Then, as in Zyg, addition and multiplication are continuous.

In Qyo, one can divide by 10 and even, less obviously, by 7 for every
p € Z, p # 0, but not by every nonzero 10-adic number. However, we
can get farther by discarding the decimal system. We know how to cal-
culate in, say, base 7. (What makes 7 more interesting than 10 is that
it is a prime number.) Let Z; be the set of all strings ... x3x%; of ele-
ments of {0, 1, 2, 3, 4, 5, 6}. Introduce addition and multiplication in Z, as
we did in Z;p, but now working in base 7. Next, make the set (Q; of all
“7-adic numbers!” This Q@ can be turned into a metric space with contin-
uous addition and multiplication having all the desirable properties and
admitting division by every nonzero 7-adic number.

This construction opens an entire new world. In Q,, you can study
convergence of series and differentiation of functions, and you can solve
differential equations; in short, you can build up a new calculus. In many
respects, this calculus is just like the one you know (the Chain Rule holds,
for instance), in others it is weird. (Some nonconstant functions have
derivative zero everywhere, and ) n! converges.)

In the same way, for every prime number p, you can make the system
Qy of p-adic numbers and do p-adic analysis.

Further Reading

Bachman, G., Introduction to p-adic Numbers and Valuation Theory,
Academic Press, New York, 1964.

Exercises

9.A. Let Y be a closed bounded subset of RV, Show that Y is complete and totally
bounded, hence sequentially compact. (This is the proof we announced in
Theorem 9.6.)

9.B. Let (X', d") and (X,” d") be metric spaces and X := X’ x X", In Exercise 5.H,
we have defined a metric d on X by

d(x, y) e d’(xl,yl) + d”(x,” yll)
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9.C.

9.D.

9.E.

9.F.

9.G.

9.H.

9.1

9. Sequential Compactness

forx = (¥, x") € Xandy = (¥, y") € X. Prove: If (X', d") and (X, d") are
sequentially compact, then so is (X, d). (Hint: look at the proof of Theorem
3.18)

Let (X, d) be sequentially compact. Show that there exist a, b € X such that
d(a,b) = d(x,y) forall x,y € X.
Let A be a subset of a complete metric space X. Prove that
A is precompact <=> A" is compact.

Let (X, d) be a totally bounded metric space.
(i) Prove that there exists a sequence By, By, . . . of balls with the following

property:
For every open set U and every a € U,
there is an n such thata € B, C U.

Hint: For every N € N, choose a finite set Xy such that the balls By /n(x)
with ¥ € Xy cover X. Show that foralla € X and r > 0, there exist an
N € Nand an x € Xy for which a € By/n(x) C B:(a).

(ii) Take By, By, ... as in (i). For each n, let a, be a center of B, and define
a function f, on X by

fu(®) =d(x,a,) (x € X).
[By Example 5.9(iv), f is continuous.] Prove that, forx, y € X,

x=y <& fo(X) = fuly) forevery n.

Prove the following theorem. If X is a sequentially compact metric space and f
is a continuous map of X into a metric space Y, then f(X) is sequentially compact
and a closed subset of Y.

Take K as in Example 9.11. We know that uniform convergence implies
pointwise convergence. Show that in K, the converse is also true. [Hint: If
g€ K, NeN, and

RD—-gMI = N7 Ifi)—g@)l = N7%, ..., IAN)—g(N)l < N7,
then do(f, g) < N71)

Consider the set P(N) of all subsets of N under the metric d introduced in
Example 5.3(v). For A € P(N), we define the function f3 : N - Rby

fa(® =n"114(n) (meN).

Show that A + fa is an isometry of P(N) into the set K mentioned in
Example 9.11. Prove that P(N) is sequentially compact under the metric d.

(On P(N) and the Cantor set.)

In Example 5.3(v), we defined a metric d on P(N), the collection of all sub-
sets of N (see the previous exercise also) and in Example 6.10, we considered
the Cantor set C. We will now see that P(N) and C are homeomorphic.
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We introduce a collection of intervals:
I:=1[0,1}

if ] = [a, b], then Jp := [a,a-i- b;a], L= [b-— —lz—g—-g,b].

Jo > < J1

Thus, the set C; of Example 6.10is Iy U I;, Cg is Ip U Iy U I1p U Iy, and so
forth. If i1, 13, . . . is any sequence of zeros and ones, then the intervals
Iil i Ii;izl Ii|i2i3l e

form a shrinking sequence whose intersection consists of one element of
the Cantor set.

i)
(i) Show that for every subset A of N, there exists a unique real number x4
such that for every m € N,

i] = ].A(l), i = 14(2),.. S im = lA(m) == Xa € Liji, ip-

Show that the formula A + x4 describes a bijection P(N) — C.
Prove: If A, B € P(N) and m € N, then

d(A,B) < m™' &= there existiy, iz, ..., inm
with x4, 8 € Iijiy.im:
and
|%a—xg] < 3™™ = d(A,B) < m™! => |xg—xp| <3™.

Deduce that both the map A + x, and its inverse are continuous. Show
that (’P(N), d) is sequentially compact.
(ii) Show that for all iy, 13, . .., im the left end point of Ls,..., is

20037 + 1372 4 oo i3,
Now prove

X =2 i L3 (ae P)-

n=1

Is % an element of the Cantor set?
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CHAPTER

10.1

So far, we have been studying aspects of metric spaces such as conver-
gence, continuity, open and closed sets, completeness, and sequential
compactness. We know that sometimes two distinct metrics on a certain
set detetmine the same notion of convergence. In 6.20, we have called
such metrics “similar” A good example is formed by the Euclidean and
the tan~! metrics on R; see Example 5.5(ii).

In Theorem 6.21 we have seen that two similar metrics lead to the
same concepts of openness and closedness. Notions such as convergence,
openness, and closedness are called “topological” Sequential compact-
ness trivially belongs to the same category. Completeness does not: R
is complete under the Euclidean metric but not under the tan~! metric
(Exercise 7.A).

When one studies topological properties of metric spaces, the metric s,
to some extent, extraneous. Like a coordinate system in a vector space, itis
occasionally helpful for carrying out a proof but often not really relevant
to the matter at hand. It turns out that “topology” without explicit mention
of the metric is surprisingly simple, once you get used to the abstraction.

10.2

How does one begin with “topology without a metric"? A metric on X
basically is a list giving you for every pair of points of X a number: Their
distance. Instead of starting with such a list, one might also start with a
catalog of the convergent sequences or of the open sets. By Theorem 6.21
either one contains all the “topological” information there is in the metric.

156
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That is just what we are going to do in Part III, basing ourselves on
the catalog of open sets. We will use the opportunity to introduce a wide
generalization of our theory.

Inadequacy of Sequences

Examples 10.3
We have set up the theory of metric spaces in order to provide precise
formulations for some vague notions of continuity and convergence. If
you lock back at the examples described in 5.1, you will see that some of
them have been incorporated in the theory or in the exercises. The other
ones could be treated similarly. One only has to devise suitable metrics.
All the same, one occasionally runs across a type of continuity or
convergence that is not generated by a metric. We give two examples.

(i) Let S be a nonempty set and F(S) the set of all real functions on S.
In Chapter 8, we have briefly considered pointwise convergence. For
8 f, fa ... € F(S) we say that
frn — g pointwise
if
fa(s) — g(s) forevery s € S.

This definition yields a very natural mode of convergence in F(S). Is
there a metric behind it? Does there exist a metric d on F(S) such that

d-convergence = pointwise convergence?

It turns out that the answer depends on the size of the set S. If]
say, 8 contains only one element, sp, then pointwise convergence
of fi, fa, . . . to g boils down to fr(So) —> g(80) so that we may take the
metric

d(f, 8 = Ifso)~glso)l  (f g € F(S)).

More generally, the answer to our question is affirmative whenever S
is finite or even countable (Exercise 10.H). Itis not when § is uncount-
able. Indeed, if there exists a metric d on F(S) that determines pointwise
convergence, then S must be countable.

Proof
If sy, 83, . . . are pairwise distinct elements of §, then the sequence of
indicator functions
Lisy Yy e - -
tends to the zero function 0 pointwise (why?), so

d(l(sn), 0) — 0.
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(i)
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Therefore, theset (s € S : d(1;g, 0) = 107!} cannot contain an infinite
sequence of distinct elements, hence it must be finite. In the same
way, for every N € N the set Sy := {s : d(1jy, 0) = N~} is finite.
Then, § US; U. .. is countable. (See Theorem 19.8.) But §; US; U. .. =
{s:d(1g,0) > 0} =S8 &®

Another example involves continuity.

In Exercise 3.H, we have considered the phenomenon of separate
continuity for functions on R?. We have seen that every continuous
function R? — R is separately continuous and we have obtained a
separately continuous function fy that is not continuous.

In contradistinction to separate continuity, the ordinary (Eu-
clidean) continuity is sometimes called joint continuity.

Separate continuity is a legitimate object of study, behaving much
like the forms of continuity we have considered earlier. For instance,
sums and products of separately continuous functions are separately
continuous. However, separate continuity is not generated by any metric:
There is no metric d on R? such that for functions on R? separate
continuity is the same as d-continuity.

Proof
Suppose we have such a metric d. Let us write the elements of R? as
column vectors. By Example 5.9(iv), the function

) =4(C) ()

is d-continuous, hence separately continuous. It follows that

((5) @)=

By a similar observation, we see that for every n, the function

v=a(()())

is continuous, so that we can choose a number b, with

() (5) < @

0<by,<nl 3)

a-3m (3") = (o) @

Now (3) implies that one can make a continuous functiong : R — R
with ¢(n™!) = b, for all n:

~

1

By (1) and (2),
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Let fy : R? — Rbe the separately but not jointly continuous function
mentioned in Exercise 3.H, and define

i0)-4L5) (()-x)

f1 is separately continuous, hence d-continuous. Then, (4) implies

0 1/n . by 1
0 =fl(o> = ,}g&ﬁ(b ) = ,}Lrilofo(b ) =7

Contradiction. o

10.4

The contents of 10.1 suggest that we might do well to reconsider the
theory of metric spaces and stress the system of all open sets rather than
the metric itself. In Example 10.3, we have seen that the whole idea of a
metric space may have been too restrictive. In Part III, we will combine
these two thoughts and study convergence and continuity in “topological
spaces,’ structures of which metric spaces are particularly simple cases.
The remainder of the present chapter is preparative to that. We introduce
a more general concept of convergence than we have been using so far,
replacing sequernces by so-called “nets” It is true that within the context
of metric spaces, there is little demand for nets. They do occur now and
then (as we will see), but the authors' main purpose in introducing them
here is to achieve that in familiar territory the reader can get acquainted
with a new tool that farther on will be indispensable.

Examples 10.5
Up to now we have considered limits of sequences only. From Analysis,
however, we know other types of limits, such as

sinx /x sinx

lim ——, lime™*, lime™, lm ——o.
x-+0 X x40 X—>00 Ixl—>co X
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Can they be extended to metric spaces?
The first two do not cause substantial problems. They are special
instances of
lim f(x),
&
where A is a subset of a metric space- X, f is a map of A into a metric
space X', and ¢ € X. The reader will have little difficulty in inventing a
good interpretation. The only trouble is that the value of the limit may
not be unique; see Exercise 10.D.
The other two limits,

lim and lim,
X+ 0O |x]—> 00

are niot of this type. In the fringes of Analysis there are still other limit-like
constructions. We consider two of them.

(i) Let [a, b] be an interval in R. A partition of [a, b] is a finite sequence
of numbers

P = (tg,t;,...,tN)
with
a=ty <t <.+ < ty=Dh

Take a continuous function f on [a, b]. For every partition P =
(to, t1, ..., tn) of [a, b] we set

Sp = f(t))(ti—to) + t)(t2—t1) + - - - + ftw)(tn—tn-1)-

If we let the partition P become finer and finer, so that the t,
come closer and closer together, then the number Sp approaches the
integral of f:

b
Sp —-—-)/ f(t)dt.

In some sense, the “Riemann sums” Sp converge, but they do not form
a sequence. [See Example 10.11(iv) and Exercise 10.F]
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(ii) Another instance involves the definition of a sum
2t

where I is an infinite set (not necessarily N) and for everyi € I,
is a number. For every finite subset F of I, we consider the “partial

sum”
Sp = Z t;.
ieF
The idea now is that Y t; is approximated by Sr if only F is “large
iel

enough! The numbers Sy somehow converge, although they do not
form a sequence (even if I = NI). [See also Example 10.11(v), and
Exercise 10.G.]

For each of the “convergences” we have mentioned, one can devise
good and intuitively clear descriptions without going into any new theory
of limits. Nevertheless, we prefer to take another point of view. We will
define convergence of “nets” and then see how it can be applied in the
above cases.

Convergent Nets

10.6
A direction in a nonempty set T is a binary relation > in T that is transitive
and inductive, i.e.:

D1 Ifr,o,7" € T,v > 1t and ¢’ > 7/, then t > 7.
D2 Forallt, 1, € Tthereisat € Twitht > ryand 7 > 1,.

Our basic examples are the relations > and > in N. For less conventional
examples, let T be the collection of all finite subsets of N and let > be D;
or let T be Z and define 7; > t, if and only if 7, is a multiple of ,.

A directed set is a pair (T, >) consisting of a nonempty set T and a
direction > in T.

10.7

Let X be a set. A net in X is a map T — X where (T, >) is a directed set.
Thus, a sequence of elements of X is a net. Precisely as we have used the
notation (x,)nen for a sequence, we will denote the net

T —> X (reT)
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by
(x)zeT.

[See 1.14(x).] The direction is not shown in the notation, but it is an
essential part of the definition. Properly speaking, a net in X is a triple
consisting of a set T, a directionin T, and amap T — X.

10.8
Let (T, >) be a directed set. For all t € T, let P(7) be some statement or
formula. We say that

P(7) holds for large T

if there exists a t, € T such that P(7) holds for all t € T with t > 1.
For example, consider the directed set (N, =). Let (X, d) be a metric
space, a, xy, Xz, ... € X. Then x, — a if and only if

for every & > 0, we have
d(xn, a) < & for large n.
10.9

Let (X, d) be a metric space, (¥;).er 2 netin X, and a € X. We say that the
net converges to a and that a is a limit of the net, and we write

X —> a (%)
if
for every ¢ > 0, we have
d(x,, a) < ¢ for large t.

Obviously, convergence of sequences is a special case. For another special
case, let T be (0, 00), directed by the relation =. If f : (0, 00) — R and
a € R, then the formula

D) —a
as defined in (%), above, means
for every e > 0, there exists a 7, > 0 such that
121 = |[f[t)—al<e¢
which in everyday language is just

i =a

Before discussing some examples in detail, we show that a net in a
metric space has at most one limit.
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Theorem 10.10
Let (%:),er e a net in a metric space (X,d). Let a,b € X and x; — a and
X, = b. Thena = b.

Proof
Take € > 0. There exist ; and 1, in T such that
T>17 == d(*,a) <e¢,
T>1, = d(x,Db) < e
By Property D2 of > (the inductivity) there exists a t with ¢ > 1, and
T > 1,. It follows that d(a, b) < 2s.
This is true for every ¢ > 0. Hence, d(a,b) = 0 anda = b. B
The theorem allows us to use the notation
limx, =a
T
as synonymous to

Xy —> QA.

Examples 10.11
() We have already seen how we obtain the classical
b 00

for f : (0,00) - R.
(ii) Take T := R\{0} and define a direction > in T by (watch out!)

-1 &= Il < Il
For a function f on R\{0} and a € R, we have
Aty —a

in the sense of 10.9(x) if and only if

for every & > 0, there exists a 7, # 0 such that

T#0 7l < [ = I{D~al < e
which is precisely the

iy ) = o

known from Calculus.
(i) With T = Rand

T >17 & | >inl
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we get

I}ll—r*noo 1)
forf: R— R.
Consider (i) of Example 10.5. Let T be the set of all partitions of [a, b].
For partitions P = (tg, t1, ..., tn) and Q = (8, 51, - - ., SM), One says
that P is a refinement of Q if {tg, t1, . . ., tn} D {Sq, 81, . - ., Sm}; we then
write

P> Q.

The relation > is a direction in T. For a continuous function f on
[a, b], we obtain a net (Sp)per in R. This net canbe shown to converge
to the integral of f. (See Exercise 10.F)

(Also, see Exercise 10.G.) For (ii) of Example 10.5, we let T be the
collection of all finite subsets of I, directed by D. This leads to the

definition:
§ = Z t;
el

if
for every ¢ > 0 there is a finite Fy C I with
F ¢ I F finite
= IZ t; — Sl < g,
F D Fy ieF

Convergent nets generalize convergent sequences. Moreover, they oc-
cur more or less naturally. Still, the definition would be sterile unless at
least part of the theory of sequences canbe generalized too. We give three
examples of such generalizations; there will be more in the next chapter.

Theorem 10.12
Let X be a metric space; let Y C X and a € X. Then a is adherent to Y if and
only if there exists a net in Y that converges to a.

Proof

If ais adherent to Y, then we already know that a is the limit of a sequence
in Y, and sequences are nets. Conversely, assume there is a net (x;)rer
in Y with x; — a. For every ¢ > 0, there exists a 79 € T for which

T>1 = X € B(a);

consequently, Bs(a)NY # @. - |

We can also describe continuity in terms of convergent nets.
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Theorem 10.13
Let X and X’ be metric spaces; let f : X — X' anda € X. Then, f is continuous
at a if and only if

% —>amX = fx)—> fa)inX. ()

Proof
Let d and d’ be the metrics in X and X'.

Assume f is continuous at 2 and let x; — a; we prove f{x;) — fla). Let
g > 0. There exists a § > 0 such that

dix,a) < 8§ = d(fx),fa) < e

For large 7, we have d(x;, a) < §, hence d'(f(x;), @) < e.
Conversely, if (%) holds, then f certainly is sequentially continuous
and therefore continuous at a. &

In Theorem 6.23 we have described convergence of a sequence in
terms of the system of all open sets. That can also be done for nets. As a
consequence, similar metrics allow the same convergent nets.

Theorem 10.14
Let X be a metric space, let (%), a netin X, and let a € X. Then, x; — a
if and only if

every open set U containing a

contains x. for large .

Proof
Suppose ¥, — a and let U be open, a € U. There is an ¢ > 0 with
B.(a) C U. For large t, we have x; € B(a), hence x, € U.

For the reverse implication, just note that every ball is open. B

Extra: Knots

In Chapter 1 we have seen that a triangle in R? can be continuously
deformed into a square or a disk. Topologically, these shapes are indis-
tinguishable. In the more formal language we have developed since, we
say that the triangle, the square, and the disk are homeomorphic.

This may have left the impression that two homeomorphic subsets of
R? can always be obtained from each other by a continuous deformation.
However, consider the sets
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each consisting of a circle and a dot. They certainly are homeomorphic,
but we cannot change the first into the second in the sense of Chapter
1—at least as long as we stay within the plane. We could easily do it by
going into three-dimensional space.

Given two topological spaces, a quite natural question is whether they
are homeomorphic. The question whether they can be deformed into
each other is not a priori meaningful; the whole idea of deformation
presupposes a fixed surrounding space, such as the plane or three-
dimensional space. Given such a “universe; the question makes good
sense.

A knot is a subset of R® that is homeomorphic to a circle, such as a
plane circle itself [(i) in the picture, below] or the cloverleaf [(ii) and (iii)].
(Usually one assumes some differentiability, but let us not worry about
details.)

O © &

(i) (iii)

Knot theory deals with deformations of knots. Let us call two knots equiva-
lent if within R3 they can be deformed into each other. The basic question
of knot theory is: Given two knots, how can one find out if they are equiv-
alent? (There seems to be some arbitrariness in the choice of R? as the
surrounding space, but there is a good reason. In R?, there is not enough
room for nontrivial knots at all; in R*, there is so much room that all knots
can be obtained by deforming a circle.)
Obviously, the cloverleaf (ii) is equivalent to (iv), but how about (v)?

C) ) <\\~/\//

(g

(iv) ™)

The following sequence illustrates how (ii) can be obtained from (v):
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This is not really difficult to do. But how about (i) and (ii): Are they
equivalent? A bit of experimenting with a piece of string suggests they are
not, but that does not prove anything except, possibly, lack of ingenuity.

Heinrich Tietze (whose name heads Chapter 15) proved in 1908 that
the circle (i) and the cloverleaf (ii) are not equivalent. In 1914, Max Dehn
showed that the cloverleaves (ii) and (iii) are not equivalent either. [No,
you will not get (iii) from (ii) by flipping it over. Try it out and see what
happens.]

How does one go about proving that it is impossible to change one knot
into another by deforming? The mode of attack for Tietze, Dehn, and
others since them has been the following. (Sorry, we have to be vague.
Details tend to be very technical.) Try to assign to every knot K an integer
n(K) in such a way that a small enough deformation will not change the
integer. A continuous deformation is a combination of small deformations
and therefore will not change the integer either. Hence, if K; and K, are
knots and n(K;) # n(Ky), then K; and K, will not be equivalent.

Such a function K +— n(K) is called a "knot invariant” In the above,
we said that n(K) had to be an integer, but that was only by way of an
example. Invariants can also be sets, polynomials, or more abstract objects
such as groups. Accordingly, knot theory ties in with diverse topics (e.g.,
graph theory, group theory, number theory, and functional analysis).
Knot theory is an active branch of mathematics with a lot of unsolved
problems and, although such an event is rare, as recently as 1984 a new
knot invariant was discovered by V. Jones.

Further Reading
Jones; V.E.R., Knot Theory and Statistical Mechanics, Scientific American,
Nov. 1990, 52-57.

Moran, S., The Mathematical Theory of Knots and Braids, An Introduction,
North-Holland, Amsterdam, 1983.

Stewart, I., Knots, Links and Videotape, Scientific American, Jan. 1994,
134-136.

Exercises

10.A. Under the ordering >, the interval [0, 1] is a directed set. Let (Z)reo) bea
net in some metric space. Show that the net converges.
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(A side comment: Observe that on [0, 1], the relation > isnot a direction.)

10.B. Let (S, >) and (T, >) be directed sets. Form the Cartesian product § x T,
consisting of all pairs (o, T) witho € 8, € T. For (0, r) and (¢/, ) in S x T,
define

(6,0) > (0',1) &> o>0 and 7> 7.

Show that in this way S x T becomes a directed set.
Now suppose (%,)oes and (y:)rer are nets in R, converging to x and y,
respectively. Show that the net (Xs+Y:)(o,1)esxT CONVErges to x+y.

10.C. Let w be the collection of all open subsets of R that contain +/2. Define the
relation > on w by

UV & UCV

(We do mean “ C ")

Show that > is a direction in w.

Suppose (x1)uew is a net in R with xy € U for every U. Show that this
net converges to +/2.

10.D. Let (X, d) and (X', d’) be metric spaces. Let ¢ € X, A := X\[c}.
(i) Letz € X’. Give a sensible definition of the formula

ll_l;r} x) =2z
XEA

(ii) Suppose c is an isolated point of X. (See Exercise 7.G.) Show that the
above formula holds for every z € X'.

10.E. Let T be the collection of all nonempty bounded subsets of R?. Define the
relation > in T by

A>=B &= ADB.
(i) Show that > is a direction.

(ii) For A E T, let

. 1 .
Uap :=1nf[m .(X,y)GA}.

Show that the net (us)agT converges to 0.
(iii) ForAE T, let

:(x,y)eA}.

w -—inf{ !
A 1+ x|

Does the net (wa)agT converge to 0?

10.F. [Refers to Examples 10.5(i) and 10.11(iv).] Let f be a continuous function on
[a, b]. Show that the net (Sp)per described in Example 10.11(iv) converges

to fab f(x)dx. Hint: Let ¢ > 0. By (uniform) continuity, there existsaé > 0
such that

%y €lab)lx—yl =8 = |-yl <e
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10.G.

10.H.

Take any partition Py = (tg, t1,..., ty) with t,—t,—; < § for each n and
prove

b
P> Py = [Sp wf f(D)dx] < e(b—a).

[Regarding Example 10.11(v).] Let T be the collection of all finite subsets of
N. The relation D is a direction in T.
Let ty, tz, ... be a sequence of real numbers. For F £ T, put

S = Z t.
ieF
We obtain a net (Sf)r = r in R. We investigate convergence of this net.
o0
(i) Assume t; = 0 for every i, and }_ & = S. Show that, then, the net

- =1

N
converges to S. (Hint: Let & > 0. There exists an N € Nwith > # >

i=1
S—e. Note that % t < Sforall M € N))

(ii) But now consi;;alr the case t; = (1)1~ (i € N). You know from
Calculus that i t; exists and equals In 2. Show that, however, the net
(SP)FeT doeslznlot converge. (Hint: Suppose Sy — § for some S € R.
There is an Fy £ T such that

FET,FODF = |88 —S8] < 1.
Deduce that
FET,FDF = Spm < 2.
Obtain a contradiction from the known fact that &) +t3 + 5 +- - - = 00.)

For any set §, let F(S) be the set of all real-valued functions on §. In Example
10.3(i), we saw that if § is uncountable, then pointwise convergence is not
determined by any metric on F(S). In this exercise, we address ourselves
to the countable case.

(i) First, let Sbe a finite set:

S= {811821--'13N}

with s, # Sp as soon as n # m. Then F(S) is essentially RN. Make
a metric d on F(S) such that d-convergence is precisely pointwise
convergence.

(ii) Now let S be countably infinite:

§= {ShSZ:"'}

with s, 5 spm as soon as n = m.
Let K be as in Example 9.11:

K :={f € I°(N) : 0 < f{n) < n”! for every n}.
By Exercise 9.G, uniform convergence is the same as pointwise con-
vergence for sequences in K. To every f € F(S) we assign a function f’
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on N:

n

’ 1 -
fiin) = p (z + tan 1f(s,,)> (n € N).
Show that f’ € K for every f € F(S), that the formula
aff.8) = If' —&'ll

defines a metric d on F(S), and that for sequences in F(S), d-convergence
is just pointwise convergence.

10.I. As we have seen in Example 7.12(ii), 1g is not the limit of any sequence
of continuous functions on R. It is, however, the limit of a net. In fact,
any function g : R — R is the limit (pointwise) of a net of continuous
functions. To prove this, take a function g on R.

Let F be the set of all finite nonempty subsets of R. The relation

VoW & VOW

is a direction in F. To each V € F we assign a continuous function fy as
follows. Let 51, s2, ... Sy be the elementsof V, 53 < s < --+ < sy. Then,
for fy we take the function with the following properties:

itsvalue at s, isg(sn) (n=1,...,N);
on (~09, §1] it is constant;
on [sy, 00) it is constant;

on each interval [sy, sn41] it is a polynomial of degree < 1.

L i | 1 ]
8 Sy SN

(Do not bother to set up a nice formula defining fv.)
Show that the net (fy)ver converges to g pointwise.



Transition to
~ Topology

CHAPTER

We start working on the program that was indicated in the preceding
chapter: We wish to reorganize and extend the theory of metric spaces,
suppressing the metric and emphasizing the collection of the open sets.
There will be much talk of convergence of nets. In case you are still
wary of nets, you can mitigate the culture shock by mentally substituting
“sequence” for “net” For the time being, the difference will be irrelevant.
You will be fairly warned as soon as the nets become essential to the plot.

Generalized Convergence

11.1
Let X be a set and w any collection of subsets of X, called “lumps”

You may think of X as a metric space, the lumps being the open sets,
but X could also be a plane and the lumps the triangles, or X could be Q
and the lumps its finite subsets.

For a net (#;)rer in X and an element a of X, we define

Xy —> 4

every lump U containing a
contains x, for large t.

In such a situation, we will say that the net converges to a and that a is
a limit of the net. Often, at least in the beginning, we will have to indicate

171
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the collection of sets we work with and use the terms “w-convergence”
and “e-limit” and write

w
Xp —> d.

Examples 11.2

@
(i)

(iif)

)

™)

If (X, d) is a metric space and the lumps are the d-open sets, then, of
course, w-convergerce is precisely d-convergence (Theorem 10.14).
Again, we let (X, d) be a metric space, but this time the lumps are
the d-balls.

If a net (%;):er is w-convergent to a point 4, then for every e > 0
we have

X € B(a) for large

because B(a) is a lump that contains a. Hence, w-convergence im-
plies d-convergence. But the converse is also true. Indeed, if (¥;)rer
is d-convergent to a and if U is a lump (= a ball) containing a, then
U D Bs(a) for some § > 0 (Lemma 6.18), so that x, € U for large .
Thus, w-convergence is the same as d-convergernce.

Let X be any set and let the lumps be the singleton subsets of X. (A
singleton is a set that has exactly one element.) For a net (X;)rer in X
and an element a of X, we see that

x; —> a <= thereisa 1y € T such that

x. = a forall T > 7.

This means that w-convergence is the same as convergence
relative to the trivial metric; see 5.4(vi).

Let X be any set and let the only lump be X itself. We now come to
the disconcerting observation that in this world, every element of X
is a limit of every net in X.

Obviously, this convergence is not generated by any metric (pro-
vided that X contains more than only one element) and our new
concept of convergence is really more general than the one of Part I1.
By the same token, onie may well ask if we have not overreached our-
selves. Is there any sense in a convergence theory with nonunique
limits? Remarkably, there is. Such convergences occur naturally in
various branches of mathematics, as diverse as abstract algebra and
probability theory. (Admittedly, the above example is somewhat
extreme.)

One more example to show that we are not just talking general ab-
stract nonsense. It is a bit harder than the previous four. In Example
10.3(i) we have seen that pointwise convergence in the space F(S) of
all functions on a set § is not covered by the theory of metric spaces
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if § is, for instance [0, 1]. We will see that our new “theory” is more
suitable.

For X, we take, of course, F(S). If U is an open subset of R and if
s € §, we put

Us := {f € F(8): f{(s) € U}.

These sets Us; (U C R open; s € §) are going to be the lumps.
Let (fr)rer be a net in F(S) and let g € F(S). We will show that

fi => g &= fi(s) = g(s) forevery seS.
Indeed, we have

fi =g = ifUjisalumpandg € U,
then f; € U for large ©
<= ifse s ifU CRisopenandg(s) e U,
then fi(s) € U for large 7
<= foreverys: f U C Risopenandg(s) € U,
then f;(s) € U for large t
<= foreverys: fi(s)— g(5).

11.3

Every collection w of subsets of X generates a convergence. The following
observation is immediate from the definition if w; is a subcollection of w;,
then wy-convergence implies w;-convergence.

Two distinct collections of subsets may well generate the same con-
vergence. This is illustrated by (i) and (ii) of Example 11.2. Euclidean
convergence in R is generated not only by the collection of all open sets
but also by the collection of all balls. In general, when a collection w of
subsets of X and a metric d on X are such that

w d
Xp —> X &= X —> X,

we say that w and d are compatible. Thus, any metric d is compatible with
the collection of all d-open sets, and also with the collection of all d-balis.

11.4

Our program for the present chapter is as follows. Let @ be a collection
of subsets of a set X. Starting from w-convergence as defined in 11.1, we
introduce notions such as “w-adherent point,” “w-boundary,” “w-open set,’
in complete analogy to what we did for metric spaces in Chapter 6. Each
time we will see that the new concept coincides with the old in the case
when w is compatible with a metric. Once we have established the new
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definitions, we will develop a theory that closely parallels the one we
have for metric spaces.

11.5
Let o be a collection of subsets of X.

Take A C X. An element ¢ of X is said to be w-adherent to A if there
exists a net in A that w-converges to c.

Every element ¢ of A is w-adherent to A. (Take any directed set T' and put
% :=cforallt € T\)

By virtue of Theorem 10.12, if w is compatible with a metric d, then
w-adherence is the same as d-adherence.

11.6
The w-boundary of a set A C X,

A,
is the set of all points of X that are w-adherent to both A and X\ A. Trivially,
A = HX\A)

MRS S b
By definition, a subset A of X is w-open if A C X\A, and w-closed if
8A C A.
From the closing lines of 11.5, we see that if w is compatible with a
metric d, then the w-boundary is the d-boundary, w-openness is the same
as d-openness, and w-closedness is the same as d-closedness.

Theorem 11.7
If A and B are subsets of X that are each other’s complements, then

A isw-closed <= Bisw-open.

Proof
9A = 8B. |

Theorem 11.8
Let w be a collection of subsets of X. Let A C X.

(i) The set of points w-adherent to A is precisely A U dA.
(i) A is w-closed if and only if every point w-adherent to A is an element of
A.

Proof

If c is w-adherentto Abutc € A, thenc € X\A, so ¢ is w-adherent to X\ A,
from which ¢ € 8A. This essentially proves (i). Part (i) is an immediate
consequence. 2]

The w-open sets form a collection w*.
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Lemma 11.9

(i) @ T o* i.e., every set belonging to w is w-open.
(i) w-convergence and w*-convergence are the same.

Proof

(i) Let U £ o. Suppose U N 8U contains a point ¢. As ¢ is w-adherent
to X\U, there is a net (x;)er in X\U that w-converges to ¢. But, as ¢ €
U, by definition of w-convergence this means that x, € U for large .
Contradiction.

(ii) It follows from (i) that w*-convergence entails w-convergence. Con-
versely, let (¢)cer be a net in X that w-converges to ¢ € X; we show that it
w*-converges to ¢. Take W E o* and ¢ € W. We wish to prove that there
isat € T such that

ceT o>1 = x;6&W.

Suppose no such t exists; i.e., suppose that for every r € T we have a
7 € T with

7 >17 but x. éW.

Thus, we obtain anet (xy).er in X\ W. This net is easily seen to w-converge
to c. Indeed, take U € wand c € U. Thereisa rp € T with

TeT, T>17 = x ¢l
Then,
TeT, 1>17 = T>1 == xyel
Hence, xy —> ¢. Then, ¢ is w-adherent to X\W. But X\W is w-closed
(Theorem 11.7), so ¢ € X\W [Theorem 11.8(ii)]. Contradiction. B
11.10

@) It follows that w* is the largest collection of sets that generates w-
convergence. Indeed, if ¢ is any collection of sets such that

@ w
Xy —> X & Xy —> X,

then the g-open sets are just the w-open sets, i.e., ¢* = w*. But¢ [ ¢*,
50 ¢ [ w*.
(ii) By (ii) of 11.6, w-openness is the same as w*-openness, so w* = (@*)*.

Theorem 6.15 has a straightforward extension:

Theorem 11.11

(M) (i) The intersection of any two w-open subsets of X is w-open.
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(i) The union of any nonempty collection of w-open subsets of X is
w-open.

(1) (@) The union of any two w-closed subsets of X is w-closed.
(i) The intersection of any nonempty collection of w-closed subsets of
X is w-closed

Proof
We start with (1)(i). Let U and V be w-open.

Suppose U N V contains a point ¢ of (U N V). As ¢ is w-adherent to
X\(U N V), there exists a net (%;)rer in X\U N V that w-converges to c.
But w-convergence is w*-convergence, and U and V belong to w* and both
contain c¢. Therefore, there exist 7y, Ty € T with

teT 1y = x €U,
teT, t>17w => X €V,

Taking any v € T with v > tyand t > 7y, we obtain x, € UN V.
Contradiction.

This proves (I){i). Now {II){) is a simple consequence: If A and B are
w-closed, then X\A and X\B are w-open; then so is their intersection,
which is X\(4 U B); then A U B is w-closed.

By a similar technique, (I)(ii) will follow from (II)(ii), so it suffices to
prove (II)(if). That is easy to do. Let « be any nonempty collection of w-
closed sets. Let ¢ be w-adherent to () o; by Theorem 11.8(ii), we are done
if we prove ¢ € (). Now for every A € «, ¢ is w-adherent to A (since
(e C A),soc € A, again by Theorem 11.8(ii). Hence, ¢ € [ a. 2]

11.12
A coliection g of subsets of X is called a topology on X if

T1 The intersection of any two sets belonging to ¢ again belongs to ¢.
T2 The union of any nonempty subcollection of p belongs to ¢.
T3 @ and X belong to ¢.

It is easy to see that @ and X always are w-open. Thus:

Theorem 11.13
For any collection w of subsets of X the w-open sets form a topology in X.

11.14
Next, we consider continuity. Let w be a collection of subsets of a set X
and o’ a collection of subsets of aset X'. Letf : X — X',

We say [ is w-w'-continuous at a if

%2 amX =3 flx) > fla)inX.
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From Theorem 10.13, we see that if X and X’ are metric spaces and w
and o' determine the metric convergences, then w-o’-continuity is just
the familiar metric continuity.

Of course, we say that f is w-w'-continuous if it is w-w'-continuous at
every point of X.

The generalization of Theorem 6.24 proceeds without trouble:

Theorem 11.15

Let X,w,X', and o' be as above. For f:X — X', the following conditions (),
(B), and (y) ave equivalent:

(c) f is continuous.

(B) For every o'-open set V C X', its inverse image f~1(V) is w-open.

(y) For every o'-closed set A C X', its inverse image f~1(A) is w-closed.

Proof

(@) => () Let A C X' be w'-closed. Let a € X be w-adherent to f~1(A);
we prove a € f~1(A). There is a net (x;)cer in f~1(4) with x, = a. Then
fixe) = fla) in X’ and f(x;) € A for every 7, 50 fla) € A and a € f~1(A).
(B) = () Let x, — x in X. To prove that f{x;) — f(x) in X’, take an
w'-open V C X’ with f(x) € V. Then, f~}(V) is w-open and x € f~}(V).
Hence, for large 7, we have x, € f~}(V) and f{x,) € V.

(B) <= (¥)isleft to the reader. B

11.16
Following 6.25, we define the w-interior of a subset A of X,

int(A) or A°,

tobe the union of all w-open sets that are contained in A. It is itself w-open
and, therefore, is the largest w-open set contained in A.
Also, the w-closure of A,

clo(A) or A7,

is the intersection of all w-closed sets that contain A; it is the smallest
w-closed set containing A.

11.17
In the case when w is compatible with a metric d, the w-closure and the
w-interior are just the d-closure and the d-interior, respectively.

For this situation, Theorem 6.26 gives us an alternative description of
A™: It is precisely the set of all points adherent to A. The same is the case
in our present, more general situation, as we will prove in Lemma 11.18.

First, an observation on sequences and nets. So far in this chapter,
we could have done everything with converging sequences without ever
mentioning nets. We could have introduced sequentially adherent point
and sequentially open and closed sets. The sequentially open sets form
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a topology, and it makes sense to define the sequential closure. It is,
however, not generally true that elements of the sequential closure of A
are sequentially adherent to A; we present a counterexample in Example
11.27.

Thus, for a good extension of Theorem 6.26, sequences are insufficient.
Nets will do, as we proceed to show.

Lemma 11.18
Let w be a collection of subsets of X. For A C X and ¢ € X, the following
conditions are equivalent:

(&) ¢c € A™; e, cis an element of every w-open set containing A.
(B) cis w-adherent to A.
(y) A intersects every w-open set that contains c.

Proof
The equivalence of (¢) and (y) is a beginner’s exercise in set theory.
The implication (8) == («) follows from Theorem 11.8(ii). We prove
(3) == (B), and this is where the nets come in,

Assume (y). We construct a net in A that w-converges to c. (Fair
warning: The underlying directed set is going to be a bit strange.)

The w-open sets containing ¢ form a collection w;. If two sets both
belong to w;, then so does their intersection. It follows that we can define

a direction > in o by
Wi > W, = W; CW..

(Note the direction of the inclusion symbol C.) For every W & w, by (¥)
we can choose a point xw with

xw € WNA.

In this way, we have obtained a net xw)we W, in A. We show that this

net w-converges to ¢. That is very easy to do: Let Wy £ w and ¢ € W,.
Then, Wy E w,. For every W £ o, with W » W;, we have W ¢ W, and
therefore xyw € W C Wy, Hence,

WEw W>W, = 2xywe W,

and we are done. B

Topologies

11.19

We have essentially completed our program of extending the theory
of metric spaces. There still remain things to be said about, say, inte-
rior points and dense sets, but they are more or less routine exercises.
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(See Chapter 12.) Compactness is a different matter; we treat it more
extensively in Chapter 13.

In the balance of the present chapter, we elaborate on the relation
between w and o*, the topology of all w-open sets. In particular, we de-
scribe a simple way to construct w* directly from w without intervention
of convergence. We will also see that w* is equal to w as soon as w is a
topology.

We look back at our starting-point: metric spaces. Let d be a metric
on X and let w be the collection of all balls. Then w-convergence is the
same as d-convergence [Example 11.2(ii)], so w-openness is d-openness
and o* is the collection of all d-open sets. The d-open sets are precisely
the unions of balls (Theorem 6.19). Thus, in this situation, for U C X we
have

U Ew* &= Uisthe union of (%)
a subcollection of w.

The relation between o and w* is not always as simple as that. For
instance, let X be R and let w be the collection of all intervals of length 2.
The intervals (0, 2) and (1, 3) belong to w and therefore are w-open; then,
so is their intersection. Thus, (1,2) E o*, but, of course, (1,2) is not a
union of intervals of length 2. Still, the situation (%) occurs often enough
to merit special attention.

Ilja;:zg;) and o be collections of subsets of X. We say that w is a base for ¢ if
UEg@ &= U isthe union of
a subcollection of w.
Thus, in a metric space, the balls form a base for the topology of all open

sets. (The open sets themselves form another one.)

11.21
For a less formal language, we fall back on our earlier terminology and
call the sets belonging to w "lumps,” again. Then, w is a base for ¢ if

UE¢ <= Uisaunion of lumps.

In practice, how do we go about to prove that a given set U is a union of
lumps? On the one hand, if it is, then for every point a of U, there exists
alump W with

aeW and wWcU

On the other hand, if for every a € U, we can find such a lump W, then
U is a union of lumps (e.g., U is the union of all lumps that are contained

inU).
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Apart from the case of metric spaces, we have the following situation
in which (%) of 11.19 is pertinent.

Lemma 11.22
Let @ be a collection of subsets of X such that

X Eo, @
W, W Ew = W;NW,; Eo. 2)
Then, w is a base for the topology of all w-open sets.
Proof
We use the terminology of the lumps.
On the one hand, every union of lumps is a union of w-open sets
[Lemma 11.9(i)], hence it is itself w-open. Conversely, let U be an w-open

set; we wish to prove that U is a union of lumps. Take a € U; in view of
11.21, we are done if there exists a lump W with

aeW and W cCU.

(The following reasoning is quite analogous to our proof of Lemma 11.18.)
The lumps containing a form a collection w,:

WEw, & Wisalump,ae W.
By (1), this collection is not empty; by (2), it is directed if we define
Wi > Wy & W; C W,

For every W E w,, choose a point xy of W, subject only to the
restriction that, if possible, xw lies in X\U:

Xw € W,
xw € X\U if W intersects X\U.

The points xyw form a net in X. This net w-converges to a. (Indeed, if
VEwanda € V,then V E w,, andxw € Vassoonas W > V.) AsU
is w-open, it follows that xyw € U for large W. (“Large” in the sense of >1)
Take any W with xy € U. Then, we do not have xy € X\U, so W does
not intersect X\U. But then, W C U and we are done. B

Corollary 11.23
If w is a topology in X, then w consists precisely of the w-open sets.

For any collection w of subsets of X, we can construct «* as follows:



Topologies 181

Theorem 11.24
Let w be a collection of subsets of X. Form the collection o by

either U = X
UEo" & .
or U = Wy N...N Wy for certain Wy, ..., Wy E w.

Then, o is a base for the topology of all w-open sets.

Proof
oo’ C o soo* C o™ C o™ but 0™ = w*. Hence, w* = o™.

Thus, w-convergence and w"-convergence are the same. Then, the w-
open sets are precisely the w™-open sets. Now clearly,

XEo
U, U Ee" = UiNnU; Ew”.

By Lemma 11.22, o is a base for the topology of the v -open (= w-open)
sets. a8

The above gives a concrete way to build w* out of w: Form finite in-
tersections; add X; form arbitrary unions. There is also a more abstract
description of w*:

Theorem 11.25
Let w be a collection of subsets of X. Then, w* is the smallest topology
containing w, That is,

(i) w* is a topology; o T w*;
(i) if p is a topology and w = @, then w* .

Proof
For (i), see Theorem 11.13 and Lemma 11.9(i). For (ii), if ¢ is a topology
and w C @, then " T ¢, hence (by Theorem 11.24) o* T ¢. - |
11.26

If ¥ is a topology in X and w is a collection of subsets of X, one says that
w is a subbase for ¥ (or that v is the topology generated by w) if ¥ is the
smallest topology containing w. Apparently, this is the case if and only if
¥ = w*; i.e., ¥ consists of the w-open sets.

Every collection w of subsets of X is a subbase for a topology (constructible
by forming finite intersections, adding X, and then forming arbitrary
unions).

Every base for a topology v is also a subbase for . (Why?) Every
topology is a (sub)base for itself.
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Example 11.27

We owe the reader an example showing that sequences are not enough to
have a good generalization of Theorem 6.26. (See 11.17.) In this section
we present a set X with a collection o of “lumps” (not at all artificial) and
a subset A such that the set A® of all points that are sequentially adherent
to A is not sequentially closed (and therefore cannot be the sequential
closure of A).

For X, we take F(IR), the set of all functions on R. We let w be as in Exam-
ple 11.2(v), so that w-convergence is the familiar pointwise convergence.
Let A be the set of all continuous functions. Choose an enumeration
{41, gz, - . .} of Q and let x,, be the indicator of the finite set {g1, . . ., gn}. As

x;l(t) = ’};lfl;lo G‘k't‘q'l R e_kIt_qM (t € R; ne N),

each x, lies in AS. Furthermore,
x, — lg pointwise.

Butlg € A®, as we have seen in Example 7.12(ii), so A® is not sequentially
closed.

Extra: The Emergence of the
Professional Mathematician

King Ptolemy I, in what is called the Golden Age of Greek Mathematics,
paid the greatest minds of his days to live, teach, and do research in the
so-called Museum of Alexandria. The Marquess de 1'Hopital (1661-1704)
could easily afford private lessons in mathematics from Johann Bernoulli
(1667-1748). He even bought “his" theorem (I'Hopital's Theorem) from
Bernoulli. Euler was paid by Frederick the Great and Catherine the Great
in Berlin and St. Petersburg, respectively. Cauchy, while in Prague in
exile from French turmoil, tutored the son of Charles X. Who is paying
mathematicians and for what?

The slow rise of universities in Western Europe in the late Middle Ages
did not immediately lead to separate mathematics departments. It is in-
teresting that the first mathematicians who pointed in the direction of
topology, the Germans Gauss, Listing, and Moebius, all lived in a time
when universities changed radically. Both Moebius and Listing were stu-
dents of Gauss. Gauss and Moebius held positions as astronomers at the
universities of Goettingen and Leipzig, respectively, while Listingbecame
professor of Physics in Goettingen.

Moebius was only 16 years old when a few miles away from his home-
town the Prussians were crushed by Napoleon's army in the battle of
Jena (1806). The defeated Prussians became part of a cultural revolution
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that is nowadays described as neohumanism. Universities that formerly
had few departments started to develop Chairs for new subjects. Botany,
chemistry, and mathematics became entities of their own. University
professors were required to organize seminars in their specialty serving
the purpose of both research activity as well as a chance for students to
get to the front of current knowledge. This change in organization of uni-
versities turned out to be very fortuitous. As the arts started to blossom
with Beethoven, Goethe, Schiller, and others, so did mathematics. Gauss,
Moebius, and Listing saw these changes happen during their lifetimes as
mathematicians in a nonmathematics university chair. The effects would
become obvious in the next generation. Berlin has been among the first
to make Professors serve this dual role of researcher and teacher and
Berlin became the center of the mathematical universe. Weierstrass and
his students investigated the foundations for analysis at the same time
as others pursued ideas from the previous generation that would lead to
Topology. With mathematics recognized as a separate discipline, a mul-
titude of new directions was soon to be pursued. This development has
continued unabated into'this century and has led to another Golden Age
for mathematics. There is no need to predict the future.

Further Reading

Fauvel, J., R. Flood and R. Wilson, Mdbius and his Band, Oxford University
Press, Oxford, 1993.

Exercises

11.A. A pseudometric on a set X is a function d on X x X satisfying Axioms M1,
M3, and M4 mentioned in 5.2, but possibly not, Axiom M2. It still follows
that d(x, x) = 0 for all ». For instance, let X be C[0, 1] and

d(f, &) = If0) — (0
or let X be the set of all integrable functions on [0, 1] and

1
d(f, g) = /0 If%) — g(x)ldx.

If d is a pseudometric on X, one can define d-balls and d-open sets
precisely as we did for a metric, and one easily sees that every d-ball is
d-opemn.

(i) Now let di, dy, ... be pseudometrics on some set X. Let » be the
collection of all subsets U of X with the property

there is a k such that U is dy-open.
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Show that for a net (¢ }rer in X andx € X
X —> X &= di(xr, ) = 0 for every k.

(ii) An example. Let C(R) be the set of all continuous functions on R.
A sequence fi, fa, ... in C(R) is said to converge locally uniformly to
f € C(R) if for every closed bounded interval {a, b]

fu = f uniformly on [a, b].
Fork € Nandf, g € C(R), put
a(f, 8) = I ==kl -
Show that each dy. is a pseudometric, and that, if we take w as in (i),

fo —> f &= f, — f locally uniformly.

11.B. Let F(R) be the set of all functions on R. For Z ¢ R and f € F(R), put

Bz(f) = {g € F(R) : flz = glz}.
Observe: if Z),2Z;,... CRand Z = { .y Zn, then for all f

Bz(f) = ﬂ Bz, (f)-

neN

Let o be the collection of all subsets U of F(R) with the property
for every f € U, there exists a
countable Z C R with Bz(f) C U.

(i) Prove that w is a topology on F(R).
(ii) Prove: If Uy, Uy, ... Ew, then ) Uy E w.
neN

(iii) Prove: If f,fi,f2,... € F(R) and f;, —> f, then f € {f1, 2, - . -}. (Hint:
Otherwise there would exist x1, x3, .. . € R with f{x1) # fi(x), fixz) #
fa(x2), and so forth Take Z := {x;, x3,...}.)

(iv) Now show that, relative to o, every subset of F(R) is sequentially
closed, but not every subset is closed. (Singleton sets are not open.)
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In Chapter 11, we have completed the transition from metric spaces to
topological spaces. Starting from a set X and a collection w of lumps in
X, we have introduced notions such as "w-convergent” and “w-open” The
collection of all w-open sets is a topology (Theorem 11.13). Then, in Corol-
lary 11.23 we saw that a topology is a very natural collection of lumps to
take for w.

Accordingly, in the remainder of this book, the focus will be on
topologies.

One can (and most textbooks do) take topologies as the starting point
instead of convergence. Tb underscore that position, we open this chapter
with repeating the definition of “topology” Subsequently, we present a
synopsis of the previous chapter, but this time proceeding from the notion
of a topology.

If you have read Chapter 11, the sections 12.1 through 12.14 will have
nothing new to offer beyond a few minor items of terminology. Have a
glance at the definitions of “topological space” (12.1) and “neighborhood”
(12.9), consider the examples in 12.2, and resume reading at Example
12.15. In case you do wish to read the intervening sections, you should
know in advance that the definitions given there may look quite different
from those of Chapter 11 but are equivalent to them.

If you have skipped the previous chapter, Chapter 12 will be your in-
troduction to the subject of topological spaces, self-contained except for
some proofs for which due reference will be given.

187
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12.1
A collection w of subsets of a given set X is called a topology on X if it
satisfies the requirements:

T1 The intersection of any two sets belonging to w again belongs to w.
T2 The union of any nonempty subcollection of w belongs to w.
T3 @ and X belong to w.

A topological space is a pair (X, o) consisting of a set X and a topology @
on X. Often, we will not bother to mention the topology and just say “the
topological space X" instead of “the topological space (X, w)! Confusion
will never arise.

Examples 12.2

(D If d is a metric on X, the d-open sets form a topology, the so-called

d-topology. [See Theorem 6.15(1).] This example is fundamental for
the following theory. A topology w [or the topological space (X, w)]
is called metrizable if there exists a metric d such that w is the d-
topology.

If X is a subset of RN and dg is the Euclidean metric on X, then the
topology of all dg-open subsets of X is called the Euclidean topology
on X.

(i) If X is any set, the collection of all subsets of X is a topology on X,
the discrete topology. It is metrizable. [See Example 6.9(iii).]

(iii) For any set X, the collection of subsets whose only members are @
and X is the indiscrete or trivial topology. It is not metrizable if X
contains at least two elements.

(iv) Take a set X and let w consist of

the empty set @ and

the complements of the finite subsets of X.

Then, w is a topology. It is the discrete topology in case X itselfis a
finite set.
(v) Let X be R and let @ consist of

the empty set,
the entire space R, and

all intervals (a, oo) with a € R.

Then, o is a topology.
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(vi) Let X be R. The subsets U of R with the property
for every a € U, there exists
an e > 0 for which [a,a+¢) C U

form a topology w,. Every set that is open relative to the Euclidean
metric belongs to w,; so does the interval [0, 1).

12.3

Let (X, w) be a topological space. A subset of X is open if it belongs to w;
it is closed if its complement belongs to . (In the literature, these are the
standard definitions of “open” and “closed”; in Chapter 11 the statements
are contained in Corollary 11.23 and Theorem 11.7.) The union of two
closed sets is always closed; any intersection of closed sets is closed.

12.4

We make two observations concerning these definitions and, indeed, most
definitions in this chapter. First, we do not keep mentioning the topology.
We will not say “w-open,” “w-closed,” and so on unless we must. Second,
most terms we are going to introduce extend terminology we already
have at our disposal for metric spaces. If d is a metric on X and w is the
d-topology, then the words “open” and “closed” as defined above mean
precisely “d-open” and “d-closed” You may expect a similar consistency
in the rest of this chapter.

12.5
Let (X, w) be a topological space. If (¥;);er isanet in X and a € X, the net
is said to converge to a,

X —> 4,
and a is called a limit of the net if
forevery U Ew witha € U,
there exists a tp in T such that
Te€T t>1 = x €U
An element a of X is adherent to a subset Y of X if there is 2 net in Y that

converges to a. (See Theorem 10.12 for the metrizable case.)

Lemma 12.6
Let (X,w) be a topological space andlet Y C X and a € X. The following are
equivalent:

(«) aisadherentto Y. i
(B) ais an element of every closed set that contains Y.
(¥) Whenever W C X isopenanda € W, then WNY # &,
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Proof
See Lemma 11.18. ]

12.7
Let Y be a subset of a topological space X.
The closure of Y,

clo(Y), or Y7,

is the intersection of all closed sets that contain Y; it is the smallest closed
set containing Y. The interior of Y,

int(Y), or Y°,

is the union of all open sets that are contained in Y; it is the largest open
set contained in Y. (See 6.25 for the metrizable case.)
Trivially,

YecYcCYT,
Yisclosed 4= V=Y~ <& YOV,
Yisopen <<= Y=Y° <= YcCVY°

It follows from Lemma 12.6 that Y™ is precisely the set of all points of X that
are adherent to Y. Hence, Y is closed if and only if every point adherent
to Y actually is an element of Y.

An important conclusion is that the convergence determines the
topology:

Corollary 12.8
If w and o' are topologies on X such that

’

w w
Xy —> O &> X —> a

for all nets (%;)rerin X and alla € X, thenw = o',

Proof

By the last line of 12.7, the w-closed sets are precisely the o'-closed sets,
so the w-open sets are precisely the o’-open sets. &
12.9

Let Y be a subset of a topological space X.

We say that a point a of X is interior to Y, or that Y is a neighborhood
of a if there exists an open set U with a € U C Y. Clearly, this is the
case if and only if a € Y°. Thus, Y is open if and only if every point of Y
is interior to Y, i.e., if and only if ¥ is a neighborhood of every element
of Y.
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12.10
Let Y be a subset of a topological space X.
The boundary of Y,

ay,

is the set of all points of X that are adherent to both Y and X\Y. In other
words,

Y =Y  NEX\V)".
From 12.7, it is clear that (X\Y)™ = X\Y?, so
Y = Y\Y"
We have
BY = 8(X\Y),
Yisopen &= YNi¥ =g,
Yisclosed <= 9Y CY.
The sets Y°, (X\Y)°, and 8Y are pairwise disjoint; their union is the whole
space X.
12.11
(See 11.20.) A collection ¢ of subsets of X is a base for a topology w if
YEw <= Y istheunionof
some subcollection of .
Equivalently:
YEw <= foreverya e Y thereis
a WeEepwithaeWCVY.
An example: If d is a metric on X, the d-balls form a base for the d-topology.
(Theorem 6.19.)

12.12
(See 11.26.) Let X be any collection of subsets of X. Form a collection w
of subsets of X by

YEw <= Y =g foreverytopology ¢
for which A T .

It is straighforward to verify that w itself is a topology. (For example, let
Yy, Y2 E . If ¢ is any topology with A C ¢, then ¥1 E ¢ and ¥; E ¢, so
Y1 NY; E ¢. Hence, Y1 N Y; E w.)

This w is the smallest topology containing A; that is
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(a) wis a topology; A T w;
(b) if p is a topology and A C ¢, thenw T ¢.

We say that A is a subbase for w, or that w is the topology generated by X.
Observe that every base for w is a subbase.

An explicit construction of w out of A is described in:

Theorem 12.13
Let )\ be a subbase for a topology w on a set X. Form the collection A" consisting
of the sets

X,
[Wln...nWNwhereNeNandWl,...,WN E A

Then A" is a base for w.

Proof
Define a collection &' of sets by

Y Ew <<= Y isthe union of
some subcollection of A",
ie.,
Y Ew &= foreverya € Y there is
a WEA withae WC Y.

We wish to prove that o’ = w.

A is a subcollection of w. Then, so are A" and o’. (Use the first
description of w’.) We now have o' T w.

If ¢ is any topology on X and A T ¢, then w [T ¢. Thus, we will
have w T o if only o' is a topology. To prove that it is, we apply the
second description of &’. From it, we see immediately that o' satisfies the
requirements T1 and T3 for a topology. Now, let Y7, Yz £ o'; we prove
Y1NY;, Ew. Takea € Y1 NY,y. As Yy, Y, E o, there exist Wy, Wy £ A"
witha € W; C Y, anda € W, C Y;. The nice thing about A" is that from
Wy E A" and W, = A" it follows that Wy N W, = A", Further, we obviously
havea € W; N W, C Y3 N Ys. This concludes our proof. B

In each of the examples in Example 12.2, we have determined a topol-
ogy w by giving an explicit condition that is necessary and sufficient for
a set to belong to w. It is comparatively rare that one can do so: mostly,
one can only describe a subbase.

Actually, for many purposes a subbase contains enough information
and knowledge of the complete topology is redundant. A case in point
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is convergence, as we will see in the next theorem. (Another instance is
continuity; Theorem 12.18.)

Theorem 12.14
Let A be a subbase for a topology w on X. Let (%;),.r beanetinX andx € X.
Suppose that for every W £ A with x € W, we have

x, € W forlarge .

Then the net converges to x.

Proof

Take U £ w with x € U. With A" as in Theorem 12.13 we know that there
isaW g A" forwhichx e W C U.If W = X, then, trivially, x, € U for
all r. Otherwise, W is an intersection Wi N .- - N Wy of sets belonging to
A. For every Wy, there is a 1, € T such that

T Ty == X € Wy
Take 19 € T'with o > tp, (n =1, ..., N). Then,
T>Tp => X, EWiN.- - NWy=WCCU.

Example 12.15

[Reprise and extension of Example 11.2(v).] Let Sbe a set and let F be a set
of realvalued functions on § (e.g., Sis [0, 1] and F consists of all bounded
functions [0, 1] = R). A net (f;):er in F is said to converge pointwise to a
function f € F if

fi(8) = f(s) forevery se€S.
We show that there is a topology w on F such that w-convergence is
precisely pointwise convergence. (Of course, there is, at most, one such
topology.)
For every open set U C R and every s € §, let
Us:={f € F:f(s) e UL
The sets U, form a collection A of subsets of F:
A= {Us:UCR open,s e S}

This A is a subbase for some topology w on F.
Take a net (fi)rer in F andletf € F.

Suppose f; — f. Let s € S. If U is an open subset of R that contains
fs), then f € Us E A T w; hence, for large T we have f; € U, i.e,
f:(8) € U. Consequently, f; — f pointwise.

Conversely, assume f; — f pointwise; we prove w-convergence. Let
f € Us £ A; by the previous theorem, we only have to show that f; € Us
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for large . That is not difficult to do: U is an open subset of R containing
s, hence f;(s) € U for large .

Thus, w has the desired property. We call o the topology of pointwise
convergence.

Next, we look at continuity:

Theorem 12.16
Let (X,w) and (X',w") be topological spaces; let f:X — X'. Then the following
conditions on f are equivalent:

(&) If x; — xin X, then f(x;) — f(x) in X'.
B) IfV EW, thenf~Y(V) E .
(¥) IfA C X' is closed, then f~(A) is closed in X.

Proof

(¢) => (). Letx € X be adherent to f~!(A); we are done if we can prove
that x € f~'(A) (last part of 12.7). There is a net (¥:)rer in f~}(A) that
converges to x; then, f{x;) — f(x). As f{x;) € A for all T and A is closed,
we have f{¥) € 4, ie, x € f7(4).

(¥) == (P) is an elementary exercise.

(B) = (&) Let ¥, — xin X. Let V E o’ and f(x¥) € V. Then x lies in the
open subset f~1(V) of X. Hence, forlarge r € T, we have x, € f~1(V), i.e.,
flx:) e V. |

12.17

If (X, w) and (X', ") are topological spaces andf : X — X', we call f con-

tinuous (o1, in times of stress, w-w'-continuous) if it satisfies any one, hence

all, of the conditions above. [The textbooks usually choose condition (8).]
Observe that for b € X', the constant map

X+ b xeX)

is always continuous. If w is the discrete topology [Example 12.2(ii)],
then every map X — X' is continuous.

If (X, w), (X', 0, and (X,” 0") are topological spaces, a composition of
a continuous map X — X’ and a continuous map X’ — X" is continuous.

Subbases can be a help in determining continuity:

Lemma 12.18
Let (X,w) and (X',w") be topological spaces; let f:X — X'. Suppose there is a
subbase ) for o such that

weN = (W) Eo.

Then, f is continuous.
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Proof

Let ¢’ be the collection of all subsets W of X’ for which f "} (W) Ew. Itisa
simple set-theoretic exercise to show that ¢’ is a topology. Furthermore,
A ¢. Hence o T ¢, 1ie,

WEo = fT{(W)Ew.

This means that f satisfies (8) of Theorem 12.16. |

12.19
A topology o’ in X is weaker than w (and w is stronger than o) if o’ C w,
ie., if the identity map of X is w-w’-continuous. If o’ is weaker than w and
not equal to it, then o' is strictly weaker than w (and w is strictly stronger
than w"). Thus, in R, the Euclidean topology is strictly weaker than the
discrete topology but strictly stronger than the indiscrete one.

If (X, w) and (X', ") are topological spaces, amap f : X — X’ is called
a homeomorphism if

f 1is bijective, and
forall YCX: YEw & fIAVEW.
(See 4.17.) This is the case if and only if

f isbijective, and
f and f! are continuous.

Two topological spaces, (X, o) and (X', ®"), are said to be homeomorphic if
such a homeomorphism exists. For instance, under the Euclidean topolo-
gies, the intervals [0, 1] and [0, 2] are homeomorphic. If (X, d) and (X', d')
are metric spaces, then a surjective isometry X — X’ is a homeomorphism
relative to the topologies determined by the metrics d and d'.

If (X, d)and (X', d') are metric spaces and if we have abijectivef : X —
X' that is an isometry, then the inverse map f~! : X’ — X automatically
is an isometry too. One might think for a moment that, similarly, the
inverse of abijective continuous map mustbe continuous. Even for metric
spaces, however, that is false: Consider the case X = X' = R where f is
the identity map, d is the trivial metric [d(x, y) = 1 as soon as x # y], and
d’ is the Euclidean metric. (See, however, Corollary 13.23.)

12.20
If (X, d) is a metric space, then every subset Y of X is naturally endowed
with a metric dy:

dy(xy) ==dxy) (xyeY).

[See 5.4(v).] A similar thing can be done for topological spaces.
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Let w be a topology on a set X and let Y C X. Consider the collection
of sets

wy ={UNY:UEw).

It is not difficult to see that wy is a topology on Y. (For example, Y E wy
because ¥ = X N Y and X £ w.) This topology is known as the rela-
tive topology, the restriction topology, the subspace topology, or the induced
topology.

Henceforth, subsets of topological spaces will tacitly be endowed with
the relative topology.

Theorem 12.21
Let (X,w) be a topological space, Y C X.

@) If (#)erisanetinY andx € Y, then
wy w
Xy —> X — Xy —> X,

(i) Let (X',w") be a topological space; let f:X — X' be w-w'-continuous. Then
the restriction of f to Y is wy-w'-continuous.

Proof

(i) Suppose we have w-convergence. Take V Ewy andx € V. Thereisa
U E owwith V = UN Y. For large t, we have x, € U, and, of course,
x, € Y; hence, x; € V.
Conversely, if we start out with wy-convergence and if xeU E o,
then xeUNY Ewy, sothatx, € UN Y C U for large t.
(ii) follows directly from (i). =

Corollary 12.22
Let (X, d) be a metric space and Y C X. If w is the d-topology on X, then
wy is the dy-topology on Y.
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Proof
If (% )rer isanetin Yand x € Y, then
wy w
Xp —> X = Xy —> X

d dy @
= Xy —> X > Xy > X,

A special case: If Y ¢ X c RV, then the Euclidean topology on Y is
the restriction of the one on X.

Theorem 12.23 (Glue Lemma; first version)
Let (X,w) and (X',w") be topological spaces; let f:X — X'. Suppose there exists
a finite sequence X3, . . . X of closed subsets of X with

X=XU...UXyN;

for each n the restriction of f to X, is continuous.
Then f is continuous.
Proof
Let A C X' be w'-closed; we prove f~1(A) to be w-closed. To do this, it
certainly suffices to show that each intersection f~(A) N X, is w-closed.

Take n € {1,..., N}. If (x;)rer is 2 net in f~1(A) N X, w-converging to

x € X, then x € X, because X, is w-closed and f(x;) — f{x) because the

restriction of f to X, is continuous. As f(x,;) € A for all r, we have f{¥) € A
and x € f71(A) N X,. B

See Exercise 12.G for another form of the Glue Lemma.

Extra: Map Coloring

One of the famous problems of mathematics was, in a sense, settled in
1976.

G
&
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Above, we have a map of a continent on some distant planet. There
are eight countries on it. Suppose you are asked to color this map in the
usual fashion, so that no two adjacent countries get the same color. If you
have eight crayons at your disposal you can do it, of course. You don't
really need eight: There is no reason why A, E and H should not get the
same colot, so six crayons would be enough. Can you do it with fewer
colors? Yes: Let A, E and H be red, B and F blue, C and G yellow, and D
purple. Four colors suffice. You cannot do it with three, since A, B, C and
D all border each other.

In 1852, Francis Guthrie, a student at Edinburgh, noticed that for all
maps he tried four colors were enough. The "Four Color Problem” was
born: Are four colors sufficient for every possible map? (It is understood
that all countries consist of one piece. Two countries must get distinct
colors if they have a common frontier; in the map above, the countries C
and F may be colored the same.)

Guthrie's brother communicated the problem to his mathematics
teacher, Augustus de Morgan, and so it reached a wider audience. It was
soon proved by Percival Heawood that no map requires more than five
colors. After thai, many partial results and false proofs were published,
but only in 1976, Kenneth Appel and Wolfgang Haken, two mathemarti-
cians then at the University of Illinois, showed that, indeed, four colors
always suffice. Since then, we have the Four Color Theorem.

Many extensions of the theorem have been proved. For instance, if
every country consists of two pieces (that have to get the same color, of
course), then twelve colors are enough, and there are maps that need
twelve. See lan Stewart's article The Rise and Fall of the Lunar M-pire in
the April 1993 issue of the Scientific American.

We have formulated the problem for a continent, but planets are balls.
How many colors does one need for a globe? It is not difficult to see that
the answer is the same: four is enough, three is not.

You can also consider the problem on other surfaces, such as the torus
(the surface of a donut):
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Asyou see, here you have five countries, each bordering each: four colors
are not sufficient. Indeed, for a torus the magical number is not 4 but 7!
This “Seven Color Theorem” for a torus was proved by Haerwood as early
as the end of the Nineteenth century.

It has been shown by Ringel (1959) that only six colors are needed for
the Klein bottle. (See 14.7.)

All of the above is part of “Combinatorial Topology” If you are inter-
ested, read more about it in Graphs and Digraphs by G. Chartrand and
L. Lesniak, or in the delightful Initiation to Combinatorial Topology by M.
Fréchet and K. Fan.

We said that the Four Color Problem was settled “in a sense” The
trouble with the solution is this. Using conventional (but far from sim-
ple) mathematical methods, Appel and Haken reduced the problem to a
straightforward mathematical calculation that still had to be performed.
However, that calculation is so complicated that no one in his (or her)
lifetime could possibly do it. A machine could, and did.

Does that count as a proof? Why not? you may say. Mathematicians
use tools such as pencils and chalk all the time; then why not a computer?
But our pencils do not tell us that something is true; we are not asked to
believe them. Is a proof a proof if it requires trusting a computer?

Further Reading
Chartrand, G. and L. Lesniak, Graphs and Digraphs, Wadsworth &
Brooks/Cole, Pacific Grove, California: 1986.

Fréchet, M. and K. Fan, Initiation to Combinatorial Topology, Prindle, Weber
and Schmidt, Pacific Grove, California: 1967.

Lam, C.W.H., How Reliable Is a Computer-Based Proof? Mathematical
Intelligencer 12 (1990), 8-12.

Exercises

12.A. Which of the following collections of subsets of [0, 1] are topologies on [0, 1}?

(@ o ={A:AC(0,orA=]0,1]}

() w;:=1{A:A CQN[0,1]orQN[0,1] C A).

(©) w3 :={A:AA C A).(Here AA:=[xy:x € Ay € A})

(@) w4 :={A: (A+A)N]0,1] C A}. (Here A+A := {x+y : x € A,y € A})
(&) ws:=={A:0¢& AorA=][01].

B wg:={A:0cAorA=0a).
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12.B.

12.C.

12.D.

12.E.

12.F.

12. Topological Spaces

We consider two topologies on R: the topology w generated by the Euclidean
metric and the topology ' having the collection of all intervals [a, b) as a
(sub)base.

Show that a function f : R — R is &'-w-continuous if and only if

lifn fiX) = @) foreverya e R.
xya

Show that all w-w'-continuous functions R — R are constant.

(i) Take K as in Example 9.11. In Exercise 9.G, we have seen that
for sequences in K uniform convergence coincides with pointwise
convergence. Show that the same is true for nets.

(ii) By

[0, 1"

we indicate the set of all functions N — [0, 1]. To each f & [0, 1]V we
assign f' € K by

fim=n"n) (meN.
For f, g € [0, 1]N, put
af, ) = If'—&'lloo-

Show that d is a metric on [0, 1]V and that for netsin [0, 1] d-convergence
is the same as pointwise convergence.

The topological space [0, 11, provided with the d-topology, is called the
Hilbert Cube. (Its topology is characterized by the property that topological
convergence is precisely pointwise convergence.)

Let (X, w) be a topological space and Y a subset of X. We provide Y with

the relative topology wy.

(i) Prove that for a subset Z of Y, the wy-closure of Z is just the intersection of
Y with the w-closure of Z. Give an example showing that the wy-interior
of Z may not be the intersection of Y with the w-interior of Z.

(i) Show: If Y is w-closed, then a subset of Y is wy-closed if and only it it is
w-closed. If Y is w-open, then a subset of Y is wy-open if and only if it is
w-open.

(On the relative topology.) Let (X, @) be a topological space, ¥ C X. Show
that if ¢ is a (sub)base for w, then

oy ={UNY :UE g
is a (sub)base for wy.

Let X be a topological space and C(X) the set of all continuous functions
X - R
(i) Prove

iff, g, € C(X), then f+g € C(X), fg € C(X), and f v g € C(X).

(f+g, fg, and f v g are the functions x > fx)+g(x), x = fx)g(x), and
x > %) v g(x), respectively. Hint: Use nets.)
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12.G.

12.H.

12.1L

12.J.

12.K.

(ii) Prove:iffi, f2,... € C(X) and if f is a function on X such that f, — f
uniformly (8.4 and Theorem 8.6), then f € C(X).

(i) Prove the Glue Lemma, Second Version: Let f be a map of a topological
space X into a topological space X' and let there exist a collection ¢ of open
subsets of X whose union is X, such that for every Y & ¢ the restriction of
f is a continuous map Y —~ X'. Then, f is continuous

(i) Show that the theorem obtained from the above by changing “open”
into “closed” is false.

Let X be a topological space. Let f be a function X — R such that for all
a € R, the sets

fx:flx) >al and {(x:f(x) < a)
are open. Prove that f is continuous.

(See Exercise 6.M.) Let X be a topological space. For Y C Z C X, we say
that YisdenseinZifZ ¢ Y~. Thus, YisdenseinX ifand onlyif Y~ = X.
(i) For Y C X, prove that the following are equivalent:
(o) Yisdensein X.
(B) Every element of X is the limit of a netin Y.
(¥) Every nonempty open subset of X contains a point of Y.
(ii) Let Y be a dense subset of X and let U be an open subset of X. Show
that Y N U is dense in U.
(iif) Show thatif Y ¢ Z C X, if Y isdense in Z and Z is dense in X, then
Y is dense in X.
(iv) Show [directly or from (ii) and (iii)] that if Uy and U, are open dense
subsets of X, then Uy N U, is (open and) dense.

Let X be a topological space.
(i) Show thatif Y is a closed subset of X with empty interior, then 3Y = Y.
(ii) Show that for every subset Y of X, 9Y is closed and 88Y has empty
interior. [Hence, with (ii), 899Y = 83Y.]
(iii) Give an example of a subset Y of R with 89Y $# 8Y (Euclidean
topology).

Let (X, o) be a topological space with the property
ifUy,Us, ... Ew, then ﬂUn E o.
n

(A nontrivial example is presented in Exercises 11.B and 13.G.)

Show thata functionf : X — Riscontinuous ifand only if {x : f{x) = a}
is open foreverya € R.

Show that the pointwise limit of any sequence of continuous functions
on X is continuous.
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Compact Spaces

13.1

Up to this point, it has been easy to transfer definitions and results from
the theory of metric spaces to the theory of topological spaces. In fact,
only once (in connection with Theorem 11.18) we have had a problem.
With the introduction of compactness, we encounter a new difficulty.
For metric spaces, we have defined sequential compactness, a concept
going back to the Bolzano-Wejerstrass Theorem (3.8). Its strength and
applicability rest on Theorems 9.10 and 9.14. Theorem 9.10, however, is
not salvageable in the setting of topological spaces. Indeed, the definition
of “totally bounded” is contingent on the existence of a metric. As to
Theorem 9.14, the definition of “sequentially compact” can be carried to
the stage of topological spaces verbatim: A topological space X is called
sequentially compact if every sequence of elements of X has a convergent
subsequence. Similarly, the other players in Theorem 9.14 can act a part:
Conditions (8) and () of Theorem 9.14 make perfectly good sense in a
topological space.

Unfortunately, if we set the stage like that, the play has no happy
end. Although (B) and () are mutually equivalent, we will obtain an
example of a sequentially compact space without () (Example 13.5) and
much later, in Example 17.13 an example of a space that has property (y)
without being sequentially compact. So we have a dilemma. Should we
focus on sequential compactness or on property (¥)?

202
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This dilemma was more acute in the days when the theory of topologi-
cal spaces was still in its infancy. Since then, (¥) has become the accepted
norm, whereas sequential compactness has turned into a bit player.

13.2
A topological space X (or its topology) is called compact if every cover of
X by open sets has a finite subcover. (See 9.8 for the terminology.)

Examples 13.3

(i) For metric spaces, compactness is equivalent to sequential com-
pactness. (This is Theorem 9.14.) (However, see Examples 13.5
and 17.13.) The compactness of [0, 1] is known as the Heine-Borel
Theorem.

(ii) A space with the indiscrete topology [Example 12.2(iii)] is compact.
(iii) A space with the discrete topology is compact if and only if it is finite.
(iv) Under the topologies of (v) and (vi) of Example 12.2, R is not

compact.

(v) For any set X, the topology introduced in Example 12.2(iv) is
compact.

Theorem 13.4
For a topological space X, the following are equivalent:

(o) X is compact.
(B) Every finitely bound collection (see 9.13) of closed subsets of X has
nonempty intersection.

Proof
We leave the proof to you. &

Example 13.5
A sequentially compact space that is not compact:
For a function f : [0, 1] — R, set 8(f) := {t € [0, 1] : f{) # 0}.
Let X be the set of all functions f : [0, 1] — R for which
f(t) € [0,1] forevery t € [0, 1];
§(f) is countable.
X is a subset of the set of all functions on [0, 1]. We endow X with the

topology w of pointwise convergence (see Example 12.15). Then, for
fifi,fa ... € X, we have

fo 2> f &= fu® — fit) forall te[0,1]

To prove sequential compactness, take a sequence fi, fz, + - - in X. The
set 8 := S(fi) US(f2) U - - - is countable. By an easy extension of Corollary
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9.12, the sequence of restrictions fils, f2ls, . . . has a subsequence that con-
verges pointwise (on S). It follows that the sequence fi, f2, . . . itself has
a subsequence g1, gz, . . - such that imy,_, gn(t) exists for all t € 8. Since
gn(t) = 0(n € N)assoon ast € §, we see that the sequence g1, g, - - .
converges pointwise on all of [0, 1], hence converges in the sense of w.
To see that X is not compact, with every t € [0, 1] we associate the set

Ay={feX: flt)y =1}

The sets A; (t € [0,1]) form a collection of closed subsets of X that is
finitely bound but has empty intersection.

13.6
Thus, the conditions mentioned in Theorem 13.4 are not equivalent to

every sequence in X has a convergent subsequence.

That was to be expected; sequences will have to be replaced by nets.
Indeed, there is a notion of “subnet” that makes compactness equivalent
to

every net in X has a convergent subnet.

Such a notion turns out be quite sophisticated. Let us see how we should
define subnets. (If you are not particularly interested in the motivation of
the definition, you may as well skip the discussion and continue reading
13.9.)

First, subnets ought to have the nice properties of subsequences. It
seems reasonable to ask that for any net (x;)er, we have the following:

(a) (*:)cer is a subnet of itself.

(b) Every subnet of a subnet of (*;).er is itself a subnet of (x;)rer-

(€) If (x;)rer converges to a point x, then so does every subnet.
Moreover, subnets should furnish a description of compactness:

(d) A topological space is compact if and only if every net has a
convergent subnet.

13.7
Our first attempt at a definition: A subnet of (x;);er is a net (x;);es, where
S is a subset of T. On second thought, we add the condition that S be
directed. Even so, however, this definition fails to ensure (c), even for
T = N: The net (n™1),en in R converges to 0, the net (n™!),e1,2,3 does not.
Looking back at the definition of “subsequence” (3.1), we see that it
might be wiser to define a subnet of (x;)rer to be a net (xu(r))rer, where
is a suitable map T -+ T. For subsequences, we required o to be strictly
increasing. For subnets, that will not do. To see this, let T be the interval
(0, 1), directed by <, and (1) = 1/2 (1 € T); then, (€");er isanetin R
that converges to e, but (e?)er converges to 1.
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If a subnet of (x;)rer is going to be (Xyw))rer With @ : T — T, what
property of « will guarantee (c)? From the existence of a 1o € T satisfying
a formula of the type

T>T = X€...,
we wish to be able to infer that there is a 7; with

T>T = Xgm) €....
This will be okay if

for every 1y, there exists a 7y

()
suchthatr > 1, = o(7) > 1.
In the case of (sub)sequences (T = N), this can be formulated as
lim a(7) = 0. (%)

T—>00

For subsequences (see 3.1), we required « to be strictly increasing. That
condition implies (#x), of course, but it is unnecessarily restrictive. What
makes subsequences work is really ().

Accordingly, for subnets we are going to adopt (%). Unfortunately, if
we define the subnets of (x;):er to be the nets (xor)rer Withe : T — T
satisfying (), we do not get our wish (d), as the following example shows.

Example 13.8
In Exercise 12.C, we have seen that there is a metric d on the set

X :=[0, 1]
such that d-convergence is pointwise convergence and that X is sequen-
tially compact, hence compact. We define a net (f;)rer in X as follows.

For the index set T, we take the set of all nonempty countable subsets of
[0, 1], > being D. For every T € T, choose an f; : N — [0, 1] with

T = (1), 2), .. .}.

Our object is to show that there isno« : T — T satisfying (x) of 13.7 and
such that (fo(s)rer converges.

Suppose we have such an o and fury — g € X. Choose a metric d for
the topology of X. For every n € N, there is a 0, € T such that

teT,tD0n = dfuw 8 <n.

Now, 0 := |J, on is an element of T. If 7 € T and T D 0w, then v D oy,
for all n, from which fy) = g. Thus,

TeT, 100, = oa=1{gl),?, ...} ¢y

[0, 1] being uncountable, there is an x in [0, 1] that does not lie in
{g(1), 8(2), .. .}. Property (%) of « implies the existence of a 1 € T with

teT,ton = of®)DxegD)e?)...} @
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But (2) contradicts (1).

The solution to our problem is drastic. We abandon the idea that the
index set of the subnet has anything to do with that of the net. The follow-
ing definition of “subnet” is not the only one that exists in the literature,
but it will suffice for our purposes.

13.9
A net (Yo)oes is said to be a subnet of a net (2)cer if there exists a map
o : S — T such that

(@) Yo = Xu(e) for every o € §;
(b) forevery 1y € T, there isa oy € S with
o> 0p =3 (o) > .

13.10

(i) We have a similar diagram as in 3.2:

s
W
o X
net
T

(i) Property (b) of @ may be interpreted as
o> 00 == oaf0)—> 0.

(iii) Let (xn)nen be a sequence. Every subsequence is a subnet, but there
are also subnets that are not sequences, or even have uncountable
index sets. For an example, we can take S := [1, 00) and define «(0)
to be the entire part of o.

(iv) In Definition 13.9, we have used the same symbol > for the direction
in T as well as the direction in 8. Such ambiguity generally is unde-

_sirable, but we tried to avoid cluttering up an already convoluted
definition.
(v) Our definition fulfills our wishes (a), (b), and (c) of 13.6. In Theorem
13.13, we prove that it also yields (d). The following terminology will
help.

13.11
Let (x:)-er be a net in a topological space X. An element x of X is called
a cluster point of the net if

for every open set U containing x and every p € T,

thereisat € Twitht > pand x, € U,
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which is the case if and only if
xeclo{x, : T >1} foralltge T.

Apparently, the cluster points of a net form a closed set. Every limit
of a net is a cluster point.

Lemma 13.12
Let (%) be a net in a topological space X; let x € X. Then x is a cluster
point of the net if and only if the net has a subnet converging to x.

Proof
The “if" is virtually trivial. To prove the “only if" assume x is a cluster
point of the net.

Let S be the set of all pairs (U, ) where U is an open set containing x
and t € T, x, € U. The definition

U, Y>> U1 < UcCcUand >+

renders § a directed set. (The inductivity of > follows from the fact that
x is a cluster point.) Define a net (Y y,»)v.nes PY

y(U,‘L’) = Xr.

This net is a subnet of the given net (x;)rer viathe mapa : (U, 7) = 7
and is easily seen to converge to x.

Theorem 13.13
A topological space X is compact if and only if every net in X has a cluster
point (hence, if and only if every net has a convergent subnet.)

Proof
(D) Suppose X is compact; let (x;);er be anet. For v € T, put
A = clofx, : T > 1}.

These sets A, form a finitely bound collection of closed sets. By com-
pactness, its intersection is nonempty. But the intersection consists
precisely of the cluster points of the net (x;)rer.

(II) Suppose every net has a cluster point. Let o be a finitely bound collec-
tion of closed sets. Let o be the collection of all finite intersections
A1 N---N Ay of sets belonging to «. With

A>B & ACB (4,BEdM,

o is a directed set. For every A £ o, choose an element x, of A.
Then, (x4)agan is a net, having a cluster point, ¥, say. Forall A £ o,
we have x € clo{xg : BE o, B > A} C cloA = A. Hence, x € [ «.

|
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We have defined compactness as a property of topological spaces.
There is also a notion of compactness of sets as subsets of a topological
space.

13.14
Let (X, ) be a topological space and let A be a subset of X. We call A
w-compact if it has the following property:

for every subcollection ¢ of w for which A C (g,
there exist N € Nand Us,..., UvEgwith A C Uy U...U Uy.
For A = X, this definition is in accordance with the one given in 13.2.
Long ago (6.17), we observed that some topological notions are “rela-

tive”: the set [0, 1]is open if considered as a subset of the space [0, 1]U[2, 3]
but not as a subset of R. Compactness is different:

Theorem 13.15

et

Let (X,w) be a iopological space and let A C X. Then A is w-compact if and
only if the topological space (A,w,) is compact.

Proof
Suppose A is w-compact. Let ¢ be a cover of A with w4-open sets. We show
that ¢ has a finite subcover.

Let

¢ ={UEw: UNA E ¢}

By the definition of w4, every set V belonging to ¢ is of the form U N A
for some U E w; then, V ¢ U and U E ¢;. Hence, A C |J ¢;. Because A
is w-compact, there exist Uy, ..., Uy E ¢; such that

ACU U-.-UUx.
But then,
A= (U NA)U---U(UxyNA)

and each U, N A belongs to ¢. We have the desired finite subcover.
The proof of the converse (ws-compactness implies w-compactness) is
simpler; we leave it to you. &

We now collect some properties that have made compactness useful.

Theorem 13.16
Let (X,w) be a compact topological space.

(i) Every closed subset of X is compact. (Compare Theorem 9.2.)
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(i) Iff is a continuous map of X into a topological space X' and A is a compact
subset of X, then f(A) is compact. (Compare Exercise 9.F)

Proof

(i Let A C X be closed. Take a net (x;).er in A. By the compactness of
X, the net has a subnet (y,)qes that w-converges tosome y € X. As A
is closed, we have y € A. Then, y, — y in the sense of w,. It follows
that A is w,-compact, hence w-compact.

(if) Let o' be the topology of X’; we prove flA) to be w'-compact. Take a
subcollection ¢ of o’ with A) C |J ¢. Then,

F':UEg

is a subcollection of w whose union contains A. As A is w-compact,
there exist Us, ..., Uy E ¢ with

ACf N UNU---UFf Y UN.
Then, f{A) C U, U...U Uy. B

Corollary 13.17
IfX is a nonempty compact space, then every continuous functionX - R
is bounded and assumes a largest value. (Compare Theorem 9.3.)

Proof

Let f : X — R be continuous. By Theorem 13.16(ii), f{X) is a compact
subset of R. Then, f{X) is bounded and closed, and therefore contains its
supremum. ]

Hausdorff Spaces

Our list of useful properties of compact spaces is not yet complete. There
will be more in Theorem 13.22 and Corollary 13.23, after the introduction
of the Hausdorff property.

This property is so natural that Felix Hausdorff made it a part of his
definition of a topology. We have seen that a net in a topological space
may have more than one limit. In spaces with the Hausdorff property,
this cannot happen.

13.18
A topological space X is said to have the Hausdor{ff property (or to be a
Hausdorff space) if for every pair of elements a, b of X with a # b, there
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exist open sets U and V with

13. Compactness and the Hausdorff Property

aeUandbeV,
UnNnv=g.

Example 13.19

(i) Every metrizable space is Hausdorff. Indeed, let d be a metricon X.

Take a,b € X, a # b. Let

v e 1 Ar. 1A
7= sa(a, o).

Then r > 0, and the open balls B,(a) and B.(b) have empty

intersection.

(ii) Let S be any set and F(S) the space of all functions on S. Under the
topology of pointwise convergence (Example 12.15), F(S) is Haus-

dorff. Proof. Take f,g €

F(8) and f # g. There is an sp € § with

f(so) # g(80)- There exist open intervals I,] ¢ R with f(sg) € I,
g(sog) € JyandINJ = @. The sets U := {h € F(S) : h(sp) € I} and
V := {h € F(S) : h(so) € ]} are open in F(S). (They belong to the
subbase described in Example 12.15.) Cleatly, f € U, g € V, and

unNnv =g@.

(iii) The space described in Example 12.2(v) is not Hausdorff, the one in

(vi) is.

Theorem 13.20

A topological space X is Hausdorff if and only if no net in X has more than

one lirnit.,

Proof

First, let X be Hausdorff. Suppose we have a net (X;);er in X with limits
a and b while a # b. Choose open U, V C X such thata € U, b € V, and
UNV = @. There exist 71, 72 € T for which

T>T7 => x €U,

T>T = x € V.

Butthereisat € Twitht > 7y andt > 1;. Thenx, € UNV. Contradiction.
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Now assume that X does not have the Hausdorff property. Leta, b € X
be such thata # bbut UNV s & for all open sets U and V witha € U
and b € V. Consider the set

T:={UV): U Vareopen,ac Ube V]
Define a direction > on T by
U, vY> (U, V) < U CU and V' CV.

For every (U, V) € T, choose an element xy,vy of U N V. Then, we have
a net (¥, v)w,ver- If Uo is any open set containing a, then (Up, X) € T
and

U, V) > (U, X) = =xuyw €U C Up.

Hence, our net converges to a. Similarly, it converges to b. Thus, we have
a net with at least two limits. |

Theorem 13.21
In a Hausdorff space, every finite set is closed.

Proof

Let X be a Hausdorff space. It is enough to show that for every a € X
the set {a} is closed, i.e., X\{a} is open. But X\{a} obviously is a union of
open sets. |

The combination of compactness and Hausdorffness works wonders:

Theorem 13.22

(i) A compact subset of a Hausdorff space is closed.
(ii) A continuous map from a compact space into a Hausdorff space maps
closed sets onto closed sets.

Proof

(i) Let A be a compact set in a Hausdorff space (X, ®). Let (%;):er be
a net in A, w-converging to x € X; we are done if we can prove
x € A. As (A, w,) is compact, the net has a subnet that w,-converges
tosomey € A. This subnet is w-convergent to x but also to y [Theorem
12.21(D)]. Limits being unique in X, we obtain x = y € A.

(i) Let X be a compact space and X’ a Hausdorff space. Let f : X — X'
be continuous and let A be a closed subset of X. Then A is com-
pact [Theorem 13.16(1)]; hence, f{4) is compact [Theorem 13.16(ii)};
hence, f{A) is closed in X’ [Theorem 13.22(1)]. |

Corollary 13.23

A continuous bijective map from a compact space onto a Hausdorff space
is a homeomorphism.
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Proof

Let f be a continuous bijection from a compact space X onto a Hausdorff
space X', andletg : X' — X be itsinverse. We wish to prove the continuity
of g. Tuke a closed subset A of X; we are done if g~!(4) is closed in X'.
But g71(A) = flA) and f{A) is closed [Theorem 13.22(ii)]. |

Two other important results on compact Hausdorff spaces are Ury-
sohn’s Metrization Theorem (15.16) and a version of the Baire Category
Theorem (15.17).

Extra: Hausdorff and the Measure
Problem

Felix Hausdorff (1868-1942) was born in Wroclaw, now in Poland, but in
those days was in the Kingdom of Prussia. He started his career as an as-
tronomer, working at the observatory of Leipzig, Germany, and writing a
thesis on the absorption oflight in the atmosphere. Starting in 1901, he was
a professor of mathematics at the universities of Leipzig and, after that,
Bonn. He always remained interested in applied as well as pure mathe-
matics. (He also wrote poetry and philosophy, under the pseudonym of
Paul Mongré.) In 1942, faced by the threat of deportation to one of Hitler's
concentration camps, he committed suicide.

To us, Hausdorff is of importance as one of the Founding Fathers of
Topology, as pure a branch of mathematics as you can get.

His Mengenlehre (“Set Theory”) of 1914 marks one of those instances
where a whole subject comes of age by the appearance of a single book.
Before that, the knowledge of Topology, or Analysis Situs, as it was called,
had been scattered and diffuse. Hausdorff was able to pick the essentials
of it, make the right generalizations, add a substantial amount of new
material, and set the standard for times to come. Even now, his book is
still a readable introduction to Topology.

We have already mentioned two of this contributions: the Hausdorff
metric (Exercise 8.D) and, of course, the Hausdorff property. Hausdorff
also introduced a notion of “dimension” to metric spaces. By his defini-
tion, the dimension of RN is N, as is only reasonable; Q and R\Q have
dimensions 0 and 1, respectively. Further, he studied what is now called
the Hausdorff Maximal Principle, a set-theoretic statement equivalent to
the Axiom of Choice and Zorn's Lemma; see the Extra of Chapter 17.

We cannot refrain from mentioning a bit of work Hausdorff did in a
different field of mathematics, Measure Theory.

Intuitively speaking, every bounded subset X of R? has a well-
determined area, u(X), say, and for all X and Y:
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(a) u(X) =0,

®) pXUY)=pu@X) +u(NifXNY =g,

© wu(T(X)) = u(X)if T is an isometry R* — R?,
(@ #([0,1] x [0,1]) = 1.

In the same way, one expects every bounded subset of R? to have a vol-
ume, obeying similar rules. (The word “measure” in the title is a general
term covering “area,” “volume, and similar notions.) It is gquite another
matter, however, to prove that such an “area function” X — u(X) and a
“volume function” exist. Hausdorff obtained the following results:

(D There exists an area function satisfying (a)-(d). That may sound unin-
teresting, but there is a snag: There exist many area functions. According
to all of them, the area of a rectangle is the product of the sides and the
area of a disk with radius R is wR?, but you can make exotic sets to which
distinct area functions assigns distinct areas.

(II) There are no volume functions! There is no way to way to assign to
every bounded subset X of R* a number u(X) such that the rules (a)-(d)
(adapted for R3) hold.

Actually, in 1924 the Polish mathematicians Stefan Banach and Alfred
Tarski proved the following disconcerting fact, deservedly known as the
Banach-Tarski paradox. It is possible to take the closed unitball B := {x €
R3 : ||#ll < 1}, cut it into five pairwise disjoint subsets, move these pieces
around a bit, and then reassemble them in such a way that you obtain
two disjoint balls of radius 1 each. (Doesn't that knock your socks off?)

Ifthere existed a volume function, such a feat would be impossible: The
volume of the ball B would equal the sum of the volumes of the five pieces.
Moving them (= applying isometries) would not change the volume; but
after reassembling, the total volume would be twice the volume of B.

The Banach-Tarski paradox has been widely generalized. If physics
were as easy as mathematics, you could, as it is sometimes put, cut a
pool ball into finitely many pieces and use them to make a life-size (and
solid) statue of Hausdorff.

Further Reading

Wagon, S., The Banach-Tarski Paradox, Cambridge University Press,
Cambridge, 1986.

Exercises

13.A. Let (X, w) be a topological space.
(i) Show that the union of any two compact subsets of X is compact.
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13.B.

13.C.

13.D.

13.E.

13.F.
13.G.

13. Compactness and the Hausdorff Property

(ii) The intersection of two compact sets may fail to be compact. For an ex-
ample, let X be [0, 1] and let w be the topology w described in Exercise
12.A. Show that [0, 1) and (0, 1] are w;-compact, but their intersection
is not.

(iii) Show that the intersection of two compact subsets of X is compact as
soon as « is Hausdorff.

Let w be the Euclidean topology on R. The definition of w can be stated as:

a subset U of R belongs to w if and only if for every a € U, there exists an

& > 0such that (a—e, a+e)\U is empty. Now, let o’ be the collection of all

subsets U that have the following somewhat weaker property: For every

a € U, there exists an ¢ > 0 such that (a—eg, a+£)\U is countable.

(i) Show that o’ is a topology, strictly stronger than w. Show that ¢’ is
Hausdorff but not discrete.

(ii) Show that every countable subset of R is w'-closed. Deduce that all
w'-compact sets are finite.

Let X be a compact metrizable space. Use Exercise 9.E(ii) to prove that X is
homeomorphic o a closed subspace of the Hilbert Cube [0, 1]V. (See Exercise
12.C)

(Conversely, as the Hilbert Cube itself is compact, metrizable, so are all
of its closed subspaces.)

Let (x:):eT be a net in a compact topological space X; leta € X and suppose
the net does not converge to a. Show that the net has a subnet converging
to a point distinct from a.

Let wy be a compact Hausdorff topology on a set X. Use Corollary 13.23 to
show:

If w is a topology on X that is strictly stronger than wg, then w is Hausdorff
but not compact. If w is a topology on X that is strictly weaker than wy, then @
is compact but not Hausdorff.

Show that the restriction of a Hausdorff topology must be Hausdorff.

Let w be as in Exercise 11.B. Show that w is Hausdorff, not discrete, and
that every w-compact subset of R is finite.



1 4 Products ahd
 Quotients

CHAPTER

14.1

In the past, we always dealt with a set that a priori carried a topology. In
this chapter, we consider two situations where a set is given a topology
that is natural under the circumstances.

(1) Suppose we are given a family (Y3, f)ier of pairs, each consisting of a
topological space Y; andamap f; : X — Y;. A topology on X is consid-
ered suitable if it makes every f; continuous. Such topologies always
exist. Indeed, it is clear that the discrete topology is suitable; under
it, every map of X into any topological space will be continuous. In
general, if a certain topology is suitable, then so is every stronger
topology. We will see (Theorem 14.4) that there exists a topology @
on X such that the suitable topologies are precisely the topologies

stronger than w.
X h © %
f2¥ \ h[f
2 % X

Situation (I) Situation (IT)

A
Y
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As an example, let X be a subset of a topological space Y and f the
natural embedding of X into Y. If our family consists of only the pair
(Y, f), @ turns out to be the relative topology [Example 14.6(1)].
(II) Now suppose we have a family of pairs (Y, fi)ier where each Y; is a
topological space and f; a map from Y; into X. Again, we may call
a topology on X suitable if it makes every f; continuous. This time
the indiscrete topology (X, @} certainly is suitable. Every sufficiently
weak topology will be suitable. We will obtain a result similar to the
above: There exists a topology @ on X such that the suitable topologies
are precisely the topologies weaker than w.

Product Spaces

14.2
Situation (I) is really quite simple. X is a set and I is a set; for everyi € I,
there are given a topological space Y;andamap f; : X — V.

Let w be any topology on X. The statement

every f; is w-continuous €)Y

clearly is equivalent to

for every i and every open U C V;,

£~Y(U) belongs to w.
Thus, if ¢ is the collection of sets

¢:={fY(U):ieI; U C Y open)},
then (1) is equivalent to: ¢ T .
14.3

Let X, I, Y;, fi, and ¢ be as above. The topology w, on X generated by ¢ is
called the weak topology generated by the family (i, fier-

From 14.2 and 14.3 we infer:

Theorem 14.4

Let X be a set. Let I be a set; for every i € I, let Y; be a topological space and f;
amap from X into Y;. Let w, be the weak topology on X generated by (Y;,f)ic;-
Then, wy is the weakest topology on X for which every f; is continuous. More
than that: If o is any topology on X, then

every f; is w-continuous <= w is stronger than w,.

The above description of w, is not particularly enlightening. However:
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Theorem 14.5
Let X,1,Y;.fi, and w, be as in Theorem 14.4. If (), .r isanetinX and x € X,
then

tl)p .
¥ —> x &= foreveryiel,
fix) = fi(x) in Y.

Proof
Using Theorem 12.14 we see that statements (x)-(¢) are equivalent:

(@) *: — xin the sense of w,.

(B) If W Ep(pasinl4.2) and x € W, thenx, € W for large 7.

(¥) Ifie I, U C Yiisopen, and x € f;(U), then #; € ' (U) for large t.
(6) Foralli, if U C Y;is open and fi(¥) € U, then fi(x,) € U for large 7.
(¢) For every i, fi(x:) — fi(x) in the topology of Y;. B

Examples 14.6

(i) Let Y be a topological space. Let X C Y andletf : X — Y be the
map ¥ > x (x € X). The (trivial) family (Y, f) induces a weak toplogy
w, on X. A subbase for w, is

o :={f(U): UCYopen} = {UNX:U C Y open}.

This ¢ is already a topology, viz. the relative topology (12.20). Thus,
wp is the relative topology.

(i) Let Sbe a set. Let X be any set of functions § — R. Every element s
of § determines a function §; : X — Rby

&N =fls) (eX.

The family (R, &;)ses induces a weak topology w, on X . If (fi)rer is a
netin X and f € X, then by Theorem 14.5 we have

f =5 f &= fi(s) = f(5) forevery s e S.

Apparently, the weak topology is the topology of pointwise conver-
gence (Example 12.15).

14.7

Let X; and X; be topological spaces. We form their Cartesian product
X; x X5, the set of all pairs x = (%3, ) with x; € X; and x; € X,. We have
coordinate maps p; : X3 X X; — Xy andp; : X; x X; — X3, givenby

@ =x, p@=x (x= (%)X x Xa).

The weak topology w, on X; x X; determined by the family (Xi, pi)iep,2)
is known as the product topology; it is the weakest topology that makes both
coordinate maps continuous.



218 14. Products and Quotients

14.8
It follows from Theorem 14.5 that w,-convergence is “coordinatewise con-
vergence”: for a net (¥;):er in X3 x X3 and an element x of X; x X; we
have

o,
X —> X &= (%1 — %1 and (x)2 —> x2.

Hence, if Y, ¥ are topological spaces and X; is homeomorphic to V;
(i = 1, 2), then Xj x X; is homeomorphic to Y1 x Y2. More generally, a
pair of continuous maps X; — Y; and X; — Y» determines in a natural
way a continuons map X; x X; — Y3 x Y,

A subbase A for the product topology on X; x X; is formed by the sets
p7Y(U) (U ¢ X; open) and p;'(V) (V C X; open), i.e., the sets U x X;
(U € X; open) and Xj x V (V C X; open).

Xz
UxV

x X

U X, X U X

The collection A" (terminology of Theorem 12.13) is easily seen to be
{(UxV:UCX, open, V C X, open}.

Thus, these “rectangles” U x V form a base for the product topology.

Examples 14.9

(i) The product topology on R x R is just the Euclidean topology on R2.
(Consider coordinatewise convergence.)

(ii) Tuke a subset A of the open upper half-plane {(,y) € R? : y > 0}.
If we identify R? with the plane {(3,y,2) € R® : z = 0}, then by
rotating A around the x-axis we obtain a subset X of R:

X = {(x,y 2) € R®: (x, Vy2+2?) € A).

€%

y - axis
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Let I" be the unit circle
I = {(u,v) € R? : 4% = 1).
The formula

((x ), (u, V) > (% yu, yv)

defines a bijection A x I' — X that is easily seen to be a
homeomorphism.

(iii) For instance, let A be a circle. Then X is shaped like a tire or (the
surface of) a donut. (See the picture on the previous page.) As A is
homeomorphic to I', X is homeomorphicto I' x I.

A topological space homeomorphic to I' x I' is called a torus. Product
topological spaces inherit many properties from their factors:

Theorem 14.10
Let Xy ,X; be topological spaces. If Xy and X; are Hausdor(f, then so is X7 X Xj.
If Xy and X5 are compact, then so is X3 x X.

Proof

Suppose X; and X; are Hausdorff. Take x = (x;,x;) and y = (41, ¥2) in
X; x X, with x 3 y. Either &, 3% y; 0T X2 3 y; let us assume the former.
There exist disjoint open subsets U and V of X; withx; e Uandy; € V.
Then U x X3 and V x X; are disjoint open subsets of X; xX;, andx € U xX;
andy € V x X,.

Now suppose X; and X, are compact. Let (x;).er be a net in X; x
X»; it suffices to prove the existence of a convergent subnet. Every x,
is a pair ((%)1, (%:)2). In X, the net ((%:)1) ., has a subnet ((*e@))1)ycs
converging to some element a; of X;. In X3, the net ((Xa(a))z),, s has a
subnet ((¥a(p()2) ep CONVeTGING to some a; € X;. Then, (*a(s(ep) ex i 2
subnet of (;)-er and converges (coordinatewise) to (ai, az).

Quotient Spaces

14.11

Now let us turn to the Situation (II) of 14.1. We work with a set X, a
family (Yi)ier of topological spaces, and foreachiamap f; : Y; — X. For
a topology w on X, we see that all maps f; are continuous if and only if

Uew = foreveryi f'(U)isopenin;
ie., if and only if w is a subcollection of

wg == {U : U C X; for every i, ;' (U) is open in Y3}.
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Now w, happens to be a topology. Indeed, it is easy to see that w, satisfies
T1 and T3 0of 11.12 or 12.1. We sketch a proof of T2. Let ¢ T wg,; we prove
U¢ E w,. Take i € I; we have to show that £ (| ¢) is open in Y;. But
£ (U ¢) is the union of all sets f;!(U) with U € ¢, and these sets are
open in Y; because ¢ C wj.

Thus, we have a topology w, on X, the strongest for which every f; is
continuous.

w,-convergence is not as easily described as wy-convergence. On the
other hand:

Theorem 14.12
Let X, (Yi,f)ie; and w, be as above. Let g be a map of X into a topological space
Z. Then, g is wy-continuous if and only if every g o f; is continuous X; — Z.

7
\/

X

N

Og

Proof

Of course, if g is continuous, then so is every gof;. Now assume that g of; is
continuous for every i. Let W be an open subset of Z and let U := g~(W).
For every i, £ (U) = (g o f)~}(W), so £ }(U) is openin ¥;. Then U E w,.
Consequently, g is continuous. |

Example 14.13
Let X be R2. Every real number ¢ determines two maps, f; and f° of R
into R2:

fe(® = @0, f@®:=(€x (xeR).

The family of all pairs (R, f;) and (R, f©) definles a topology w, on R%. A
function g : R? — R is continuous relative to w, if and only if for every
¢, the functions

x> g(x,¢) and x> g(c X)

are continuous; i.e., if and only if g is separately continuous in the sense of
Exercise 3.H and Example 10.3(ii). This brings separate continuity under
the umbrella of Topology.
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14.14
Mostly, in Situation (II), the family (Y, fi)ier contains only one pair (Y, f)
and f is surjective:

Let Y be a topological space and f a map of Y onto a set X. Then

wg = {U:U CX;f'(U) isopenin Y}

is a topology on X, the so-called quotient topology induced by Y and f. It
is the strongest topology on X that makes f continuous.

A map g of X into a topological space Z is continuous relative to w, if
and only if the composite map g o f of Y into Z is continuous.

14.15

For an intuitive understanding of the quotient topology, we return to some
constructions we discussed in the exercises of Chapter 1. Again, take a
rectangular strip of paper:

A Al

B B'

You can form a ring by gluing the ends AB and A’B’ together, or a “Moebius
strip” if you first give the strip a twist:

A=A A =B
B =B B=A
ring Moebius strip

ring Moebius strip
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It is easy to give a mathematical description of a subset of R? that “looks
like" a ring, e.g.,

(xyD)eR : XP+yf=1 -1<z<1).

It is considerably harder to describe a Moebius strip in similar terms.
However, the difficulties fall away if we agree that we are not interested
in its geometrical but only in its topological properties. By using the quo-
tient topology, we can construct a topological space that merits the name
“Moebius strip”

Mathematically speaking, our piece of paper is a rectangle in R?, the
unit square § = [—1, 1] x [~1, 1], say. After twisting and gluing, we end
up with some subset M of R3. We may not know precisely what M is,
but we do know that our manipulations result in a (sequentially) con-
tinuous surjection F : § — M. This F is bijective except that for every
Y € [~1,1], the points (—1, ) and (1, —y) get the same image in M. Sur-
prisingly, that is all the information we need. It completely determines
the topological structure of M and even enables us to construct a space
that is homeomorphic to M.

Note that the TESLU.DLIUIJ. of F to the subset (—1, 1] x [—1 ljofSisa
bona fide bijection g : (—1,1] x [-1,1] - M. Now, g~} o F is a map
f:8—(=1,1]x[-1, 1]

fay) =@y for xe(-1,1}ye[-1,1]

Q)
=Ly =(@1,-y) for ye[-1,1].

§=1[1,1] x[1,1]

|

X = (1,11 x[1, 1]

We do not know M, F, or g, but we know f, and that is enough for
our purposes. Indeed, let X be the set (1, 1] x [—1, 1] endowed with the
quotient topology induced by f. Asgof (= F) is continuous, soisg : X —»
M. Furthermore, X is compact, being the image of S under a continuous
map, and M is Hausdorff. Hence, g must be a homeomorphism (Corollary
13.23) and X is homeomorphic to the Moebius strip!

All this was done under the assumption that our physical manipula-
tions with the strip of paper can be given a mathematical meaning, but
our next step is obvious: We define a Moebius strip to be any topological
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space that is homeomorphic to X, i.e., to the space (—1, 1] x [~1, 1] under
the quotient topology induced by the map f given by ().

This, of course, only raises the question if we can find a Moebius strip
in R3, so that, for instance, “the” Moebius strip will be metrizable. As
a matter of fact, we can do so by a procedure that is really the above
argument turned upside down.

Define F : S — R3by

F(x, y) = ((2+xy) cos mx, (2+xy) sin mx, (1—|x])y).
Clearly, F is continuous, and one can verify that for (x, y) and (', y") in S,

Fix,y) = F(x,y) <= flx,y) = f£,y).
It follows that

g:flr ) — Firy) (% y) €8)

is a bijection of X onto F(S). By Theorem 14.12, g is continuous. Then,
X being compact and F(S) being Hausdorff, g is a homeomorphism and
F(8) is a Moebius strip!

14.16
According to the mathematical parlance, the Moebius strip is obtained
from the rectangle S by “identifying” the points (1, y) and (1, —y) for
each y € [-1,1]. This technique is used quite frequently as a formal
equivalent of gluing.

Again, let us start with a rectangle. We form a ring, or, let us say, a tube,
by gluing the left and right edges together. If we bend this tube and do
some more gluing, we obtain a torus-like object:

)

Taking for our rectangle the unit square § = [—-1, 1] x [~1, 1] our manip-
ulations amount to “identifying” (-1, y) with (1, y) for every y € [—1,1]
and (x, —1) with (x, 1) for every x € [-1, 1].

Following the ideas expounded above, we consider the set

8o == (=1,1] x (-1,1};
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we map S onto Sy by
F(x,y) = (% ) if (%, y) € So,
F(-1L,y) =1,y if-1<y=<i,
Flx,-1) := (x, 1) if—-1<x=<1,
F(—1,-1):=(1,1),

and we impose the quotient topology on Sg.
We expect the resulting topological space to be a torus. [See Example
14.9(iii).] Indeed, the formula

g : (x ¥) — ((cos mx, sin %), (cos ny, sin 1y))
defines a bijection g : Sy — I' x I'. Following the last lines of 14.15, one
easily shows g to be a homeomorphism.

Example 14.17
Things get more interesting when the quotient space is not so simple.

P P>

A

torus ?

The diagram on the left suggests the construction of the torus out of a
rectangle, as carried out in 14.16. Can we interpret the other one? Mathe-
matically, there is no problem. In the unit square § = [~1, 1]x[~1, 1], one
wishes to identify (-1, y) with (1, y) fory € [~1, 1]and (x, —1) with (~z, 1)
for x € [~1, 1]. This can be done as follows. Take Sy := (—1,1] x (-1, 1]
and define a surjection F : § — Sg:

Fxy) = (xy) if (%, y) € S,
F-L,p=>0y f-1<y=<1l,
F(x,—1) = (-x,1) if-1<x<1,
F1,-1):= (1, 1),

[Watch the inequality signs! We need F(x, y) € S, for all (x, y).] Under the
quotient topology induced by F, S is a topological space K, the so-called
Klein bottle.

So far, so good. But we run into trouble if we try to visualize the Klein
bottle in our three-dimensional space. As we did in 14.16, we can first
form the tube and then try to stick the bounding circles together:
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N
]

UG

N

You see the problem: the directions of the circles do not match. Giving
the tube a twist before bending it, the way one twists a candy wrapper,

= (5

does not help: It will not change the directions. Cheating a bit does help:

1t is now easy to match the circles, and, in fact, this is the way the Klein
bottle is usually pictured.

Actually, one can prove that no subset of R® is homeomorphic to the
Klein bottle. It can, however, be found in R*. Consider f : § — R* defined

by
xy) = ((I-Hxl) cos iy, (1+{x}) sin 7y, sin mwx cos %y_ , 8in rx sin _néu_) .

This f is continuous, and for (%, y), (¥, y") € S, one can verify that
fay) =, y) = Fxy)=FEFY)

Then F(x, y) /> f(», ¥) is a bijection of K onto f{S), which, as before, is a
homeomorphism.
We have seen that the Klein bottle can be obtained from a cylinder
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FI

Bl

by identifying A with A, B with B’, and so on. On the cylinder, draw
straight lines from C to G’ and from G to C'. On the Klein bottle, C is the
same point as €', and G is G, so that the two lines together form a loop, a
topological circle. If we cut the bottle along this loop, we get two pieces:

As you see, each of these pieces actually is a Moebius strip! Thus, you
can get a Klein bottle by taking two Moebius strips and gluing their edges
together. (Note that the edge of a Moebius strip is indeed a topological
circle,)

A mathematician named Klein

Thought the Moebius strip was divine.

He said: “If you glue

The edges of two,

You'll get a weird bottle like mine”

Extra: Surfaces

Consider the following topological spaces:
- a straight line;
- the graph of the functionx — [x] (x € R);
Group I
- an infinite helix;

- a circle;
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- a plane;

- an infinite cylinder;
Group 11
- a sphere;

- a torus.

It will be clear what the difference is between the spaces of Group I
and those of Group II. Mathematically, the spaces of Group I are one-
dimensional, the other ones two-dimensional.

/SN O

If A is one of the spaces of the first group and a is any point of 4,
then in the neighborhood (in a nonmathematical sense) of a, the space A
looks like an open interval. It may be bent or kinked, but, topologically,
it is an interval. We can formally define a topological space A as one-
dimensional if every point of A is contained in an open subset of A that is
homeomorphic to an open interval (or to R, if you prefer). A space that
looks like the figure

is not one-dimensional in this sense; neither is the interval [0, 1]. Simi-
larly, a space is two-dimensional if every point is contained in an open set
that is homeomorphic to an open disk in the plane, or, equivalently, to
RZ. In the same way, one can define n-dimensionality for n > 3.

There are many variations of these definitions in the literature. Some
of them allow dimensions that are not integers. According to the one due
to Hausdorff, the Cantor Set (see Example 6.10) has dimension 1/3; here,
we are in the realm of “fractals,’ which belongs to geometry rather than
topology. We are not going to worry about those but stick to the notions
we have just introduced.

One-dimensional spaces are also called curves, two-dimensional ones
surfaces. (Asis often the case, the terminology is not unambiguously fixed.
You will notice that the word “curve” here has another meaning than in
the main text of the book.) The spaces of Groups I and II, above, are easily
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recognized as curves and surfaces. It is harder to see that the Klein bottle
is a surface. The following picture, in the style of those in Example 14.17,
helps:

-/ L/ \J
(

©

/

£ A (]

(Actually, there is more symmetry in the Klein bottle than you may
think. If 2 and b are points of the Klein bottle, there is a homeomorphism
of the bottle onto itself that maps a onto b. Thus, no point of the bottle is
in any topological sense special.)

Extensive studies have been made of curves and surfaces that are both
connected and compact. Every connected compact curve turns out to
be homeomorphic to a circle. There are many connected compact sur-
faces, though. We already know the sphere and the torus, and one easily
visualizes donut-like objects with two, three, or more holes. (Compact-
ness precludes the presence of infinitely many holes.) These are the
so-called “orientable” (connected, compact) surfaces. Topologically speak-
ing, there is precisely one for each number of holes, a sphere having
zero holes. Apart from them there are certain “nonorientable” surfaces
such as the Klein bottle and the projective plane (Exercise 14.G). All are
homeomorphic to certain subsets of R*.

The n-dimensional spaces were first studied by the German mathe-
matician Bernhard Riemann (1826-1866). Two-dimensional spaces played
a role in his 1851 thesis on complex function theory: The graph of a con-
tinuous function C — C is a 2-dimensjonal subset of C? (= R*). Three
years later, he published his work on n-dimensional spaces, which rapidly
became very influential in the development of mathematics. An exten-
sive theory of such spaces was set up and turned out to yield precisely
the geometrical background Einstein later needed for his general theory
of relativity.

Exercises

14.A. Let(Xi, 4;) and (X3, d2) be metric spaces. Show that the product topology on
Xy x X, is metrizable and is, in fact, the d-topology where d is the sum-metric
on X7 x X3. (See Exercise 5.H.)

14.B. A topological space (X, w) is called completely regular if for every closed
subset A of X and every a € X\A, there exists a continuous function f on
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14.C.

14.D.

14.E.

X such that
flay=1; flx)=0 forevery x € A.

Let (X,w) be completely regular. Let C(X) be the set of all w-continuous func-
tions X — IR. Show that w is precisely the weak topology induced by the family

R, Hrecn-
The graph of amap f : X — Y is the set

Gr=((xyeXxY: y=Ffx)

(i) Let f be a map of a topological space X into a compact space Y and
suppose the graph of f is closed in the product topology of X x Y.
Prove that f must be continuous. (With Exercise 13.D, show that f
preserves convergence of nets.)

(ii) To show the relevance of the compactness of Y, give an example of
a noncontinuous function [0, 1] — R whose graph is closed.

(iif) Now, let f be a map of a topological space X into a Hausdorff space
Y and suppose f is continuous. Show that it has a closed graph.

Let (X, ®) and (X', o) be compact Hausdorff spaces. Let f : X — X’
be surjective and w-w'-continuous. Prove that ' is the quotient topology
induced by X and f. (Can you use Exercise 13.E?)

(Regarding Example 14.13.) For (a,b) € R and ¢ > 0, define
P.(a,b) = {(x, D) : |x—al < e} U {(a,y): ly—b| < &}.

b +e -
L Pg(a,b)
b-gt
a‘- € é a ;.8 Maltese cross

We will say that a subset U of R? is P-open if for every (g, b) € U, there
exists a positive ¢ such that P.(a, b) C U.
(i) Show that the P-open sets form a topology @, on R2.

(ii) Show that w, is precisely the topology obtained in Example 14.13.

(iii) Show that w; is stronger than the Euclidean topology and that the
“Maltese cross’ is P-open but not open in the Euclidean sense. The
“Maltese cross” is the set of all points (%, y) for which -1 < » < 1,
-1 <y < 1land

lxl < $lyl or |yl < 3l¥l or (xy)=(0,0).

[The “Plus-plane” was discovered by the (sadly ignored) Roman mathe-
matician Gaius Plus Minus (46B.C-A.D.19) See the footnote to page 219 of
Morris Kline's Why the Professor Can't Teach, St. Martin's Press, New York,
1977)]
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14.F. (i) If we take a piece of string and tie the ends together we get a loop.

14.G.

(i)

CD

Somewhat more scientifically: If in the unit interval [~1, 1], we “iden-
tify” —1 with 1, we obtain a space that is homeomorphic to a circle.
Give an explicit example of a map F of [~1, 1] onto the unit circle
I := {x e R? : |]x| = 1) that is bijective except that F(~1) = F(1),
and show that the quotient topology is just the natural topology of T.
Show that if in the closed unit disk A := {x € R? : |lx]] < 1} we
identify all points of the boundary I' with each other, we obtain a
space homeomorphic with the “sphere” {y € R?® : |ly|| = 1}. [Hint:
Consider the map F : A — R defined by

F(x) = (asCllxl), #s(lIx1), cos ]

where s is the continuous function R — R with s(t) = t~! sinnt if
t# 0, 5(0) =m.]

The projective plane is the topological space I1 obtained from the unit
square § by identifying (—1,y) with (1, —y) for y € [~1,1] and (x, ~1)
with (—x, 1) for x € [~1, 1].

Show that there is a set in R that is homeomorphic to the projective plane.
(There is none in R3.) To this end, consider the map F : § — R*:

F(x, y) = (2+xy)(cos mx, sin 7%, cos my, sin my).
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Urysohn’s Lemma

15.1
The objects of our study, topological spaces, display a great diversity.
From the point of view of Analysis, one often is interested in continuous
(R-valued) functions on them. For familiar spaces such as R and R?, we are
used to an abundance of continuous functions. On the other hand, there
exist nontrivial topological spaces that admit no nonconstant continuous
functions. For an example, see Exercise 15.H.

1t is somewhat of a miracle that for a large collection of topologi-
cal spaces, including the compact Hausdorff ones, there are plenty of
continuous functions.

What do we mean by “plenty”? The following considerations lead to a
useful interpretation of the word.

Let X be a topological space, and A and B subsets of X. We say that
A and B are separated by continuous functions if there exists a continuous
f : X — R such that

fX)=1 forall x € 4, flx) =0 forall x € B. e}

This can be the case only if the closures of A and B are mutually disjoint.
Indeed, if (1) holds (and f is continuous), then the closed set f~1({1})
contains A, hence contains A~, so f = 1 everywhere on A~; similarly,
f = 0 everywhere on B™.

We say that X "admits plenty of continuous functions” if all sets that
could possibly be separated by continuous functions actually are. More

231
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precisely, the condition is:

ifA,BCXand A" NB~ = @, then

A and B are separated by continuous functions,
This condition clearly amounts to the same as

if A, B are disjoint closed subsets of X, then

A and B are separated by continuous functions.

Metrizable spaces admit plenty of continuous functions. For a proof,
suppose A and B are disjoint closed sets in a metrizable space X. Without
restriction, assume that neither is empty. Choose a metric for the topology
of X. For every x € X, we denote by fa(x) and fz(x) the distances from x
to A and B, respectively. (See Exercises 5.K and 6.E.) Then,

_ )

fa(®) + fa(%)

is a continuous function that is 1 everywhere on A and 0 everywhere
on B.

We have already hinted that compact Hausdorff spaces admit plenty
of continuous functions, too. That is surprising, because, unlike metric
spaces, compact Hausdorff spaces have inherently nothing to do with the
real-number system.

X >

15.2

Suppose A and B are disjoint closed subsets of a topological space X. How
could one go about constructing a continuous function f withf =1on A
and f = 0 on B? In the following, we appeal to your intuition, but at the
same time, we present a precise mathematical reasoning, constituting a
proof of a theorem that we will pull out of the hat afterward. (Lemma
15.6).

First, a little shift of perspective. Put A; := A and Ap := X\B . Then,

Ay isclosed, Ag isopen, A; C Ay,

and we try to obtain a continuous f : X — Rwithf = lonAj;andf =0
off Ag.
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We intend to build up a function the way one makes a wedding cake,
layer by layer. The top level of the cake is going to lie above the region 4,
at height 1, while outside Ay, on the rim of the plate, the cake will have
height 0. Our construction takes infinitely many steps, the idea being
to make an increasing sequence fo, fi, f2, ... of functions that become,
as it were, more and more continuous. (We do not recommend that you
actually use the complete recipe for the next wedding.)

We start out from a cake of height 1 on A; but 0 elsewhere:

-

The corresponding function fp on X is given by

As our first step, we choose a set A;/; "between” A; and Ag; above the
new region A1/7\4:, we give the cake height :
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The height of the cake is now described by the function f;:
1 if xe A,
AR = |1 if xeAip\Ag,
0 if x¢& An.

This kind of interpolation is typical for our construction. In the second
stage, we choose sets Asyq and Ayy4 with

Ay C Azyy C Az C Aryg C Ag;

we make a four-layer cake:

A

=~ N

and a function f:

1 if x € A,
fa(x) = | k/4if x¢e Ara\Ag+rys (k=1,2,3),
0 if x¢ A1/4.

Probably, with a real wedding cake one would stop here. The mathe-
matical construction, however, can be continued indefinitely. At stage n,
we obtain 2"+1 sets

A; CApgnayp—n C - C Az C Ayn C A (%)
and a function f, given by
1 if xe A,
fa(®) = [ k2™T"if % € Apg\Agiyz (k=1,...,2"-1)
0 if x¢& Agn.

It is elementary that fy < fi < f2 < .-+, that the sequence converges
pointwise to some function f : X — [0, 1], and that

fu f < fut2™™ forevery n.

(Thus, the convergence is even uniform.) Obviously, f = 1 on A; and
f =0onX \Ao.
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15.3

So far, we have ignored all topological matters and, of course, there is
absolutely no reason for f to be continuous. To ensure continuity during
the construction, we will have to avoid the eventuality sketched next:

The question seems to be whether we can keep the boundaries of the sets
mentioned in (*) mutually disjoint.
For Y,Z C X, write Y « Z in the case

YcZ and 3YNaZ=2.
One easily sees that
YKZ & Y CZ.

The relation <« is transitive: If ¥; « Y2 and V; « Y3, then V7 « Y3.
We want to have

Ay K Ay, )
A € Az K Ag, 0
Al K Az K Az K A K Ay, 2
and so on.

Formula (0) is correct, as A, is closed and Ay is open. The possibility to
pass from (0) to (1) and then on to (2), (3), ... is the following nontrivial
property of the topological space X:

if Y7, Y2 € X and V; « Y3, there exists

*
aZ CXsuchthat V1 € Z <€ Y,. S

This property is called normality. A more conventional (also more
convenient) description follows.

15.4

A topological space X is normal if for any two disjoint closed subsets A

and B, there exist disjoint open sets U and V suchthatA C Uand B C V.
This property is equivalent to (%) of 15.3; see Exercise 15.A.
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Normality follows from the existence of “plenty” of continuous func-
tions. [Take a continuous f with f = 1 on A, f = 0 on B and let

U:={x:flx) > $}and V := {x : f[x) < 3}.] We proceed to show

that the reverse is also true.

15.5
We continue our construction 15.3, assuming X to be normal, hence
assuming ().

Starting from the valid formula (0), by normality we can choose
A1z, Azsa, Avss, . .. SO as to ensure the truth of (1), (2),. .. At, say, stage 3
of our construction, we have

Ay K Azs K Agrg K+ K Ay K A K 4g
and the function f; is given by
1 if xe Ay,
(X)) = | k/8if x € Arg\Agsrys (k=1,...,7),
LG if xé A1/s.
In other words,
8
fi= % Z Yais
k=1
Take a € X. For at least seven values of k, we have a ¢ 0Ays. For such
k, the indicator of Ay/s is constant on some open neighborhood of a (viz.

/g 0T X\Ayg.) It follows that there exists an open neighborhood U of a
with

xelU = |AR-fH@ < i

More generally, for every n € N there is an open neigborhood U, of a
such that

x€Uy =3 |(@d—fu(a)] <27
In view of the inequality f, < f < fu + 27" (last lines of 15.2), we see that
xelUpn = IfH-fa)l=<32™.

Consequently, f is continuous.
The net result of all this is:

Theorem 15.6 (Urysohn’s Lemma)

Let X be a normal topological space. Let A and B be disjoint closed subsets
of X. Then, there exists a continuous function f:X — [0,1] such that f = 1
everywhere on A and f = 0 everywhere on B.
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Thus, normality implies the existence of “plenty” of continuous
functions and vice versa. (See the beginning of 15.5.)

Theorem 15.7
Metrizable spaces and compact Hausdorff spaces are normal.

Proof
For metrizable spaces, we have normality because disjoint closed sets are
separated by continuous functions.

Suppose X is a compact Hausdorff space. Let A and B be disjoint closed
subsets of X. For all x € A and y € B, choose open sets Uy, and Vy, with

XE Uy, YEVy UynVy=a.

Let y € B. The sets Uy (x € A) cover A, and as a closed subset of
a compact space, A is compact [Theorem 13.16(i)]. Hence, there exist
X1, ..., Xy € A with

A C Uy = Uy U U U,
Setting
Vyi= Vay N N Vi
we have open sets U, and V,, for which
ACUy, yeV, Unv,=a.

This can be done for every y € B. The sets V,, cover the compact set
B, so there exist i1, . . ., Yu such that

BCV:i=V,U---UV,,.

Put

U= Uy N ---NUy,.
Then, U and Vareopen, A CU,BC V,andUNV = @. B
15.8

There are many terms denoting special types of topological spaces. Some,
such as “compact” and “Hausdorff are commonplace. “Normal” is not one
of those. Normally (if the word may be used here), the present authors do
not give in to the temptation to introduce such relatively obscure terms.
For the purposes of this book, the definition of normality is not impor-
tant. The main facts are contained in Theorems 15.7 and 15.6: Metrizable
spaces and compact Hausdorff spaces are normal, and normal spaces
carry enough continuous functions to separate disjoint closed sets.
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Interpolation and Extension

15.9

The condition () of 15.3 that made the proof of Urysohn’s Lemma work
is of a sandwich type: Between any two sets of certain characteristics,
there is another set with some special property. Many consequences
of Urysohn's Lemma follow more easily from a similar theorem that
is of sandwich type itself. For its formulation, we need the concept of
semicontinuity:

15.10
Let X be a topological space. A function f : X — R is called lower
semicontinuous if for all t € R, the set

xeX: flX)<t}
is closed. f : X — R is called upper semicontinuous if for all t € R,
xeX:flx)=1i}

is closed.
lower semicontinuous upper semicontinuous

We collect a few simple observations on semicontinuity in the next
theorem. The proofs are left to the reader.

Theorem 15.11
Let X be a topological space.

(i) Let A C X. Then, 1, is lower semicontinuous if and only if A is open,
and 14 is upper semicontinuous if and only if A is closed.
(i) Let f:X — R. f is lower semicontinuous if and only if for every t € R,

the set
xf(0) > t)

is open. f is upper semicontinuous if and only if for every t € R,
(x:f () < 1)

is open.

(iil) A function f:X — R is continuous if and only if it is both lower and
upper semicontinuous. (Follows from (ii) and Exercise 12.H.)
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(iv) If f and g are lower semicontinuous functions on X, then so are
x> f) Vv g(x)
and
x> f(®) A (%),
(See 2.4 for v and A.) A similar statement holds for upper semicontinuity.

15.12

In the sketch, below, the dashed curve represents an upper semicontin-
uous function g, and the dotted curve, a lower semicontinuous function
h. For all x, we have g(¥) < h(X).

The following theorem will produce a continuous function between g
and h.

Theorem 15.13 (Hahn-Tong Interpolation Theorem)

Let X be a normal topological space. Let g: X — Rand h:X — R be upper and
lower semicontinuous, respectively, and assume g(x) < h(x) for all x € X.
Then, there is a continuous f-X — R with g(%) < f(x) < h(x) for all x.

Proof

It will be convenient to have some simple notations at our disposal. Let
j and k be functions on X. We write j < k if j(¥) < k() for all x € X. We
define functionsj v k andj A kby

JVk:xr— j(X) v k() (x e X),
JA kx> j(X) A k() (x € X).
For functions jg, ..., jy on X, we let
Max jn
denote the function
X > jo() VAE) V - - Vjin() (x € X).
Now we turn to the proof itself. Let 0 be the zero function on X.
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We may assume that 0 < g < h < 1. Indeed, choose a strictly
increasing continuous bijection ¢ : R — (0, 1), e.g,,

o) =1 + ltan™l() (teR).

Then ¢ o g and ¢ o h have the same semicontinuity properties as g
andhand 0 < gog < ¢ oh < 1. Furthermore, if f; is a continuous
functionon X and g o g < fy < ¢ o h, then f maps X into (0, 1), so
¢! o fy is a continuous functionand g < ¢l o fy < h.

(A simple special case.) Let A C X be closed, U C X open, and
A C U. Then, 1, and 1y are upper and lower semicontinuous,
respectively, and 0 < 1, < 1y < 1. The existence of a continuous
function f : X — [0,1) with 1, < f < 1y now is guaranteed by
Urysohn's Lemma (15.6).

Returning to the general case (but with the assumption 0 < g <
h < 1), we first show that for every § > 0, there exists a continuous
function f for which

g-81 < f < h+dl.

far snme N
A

TATZ AT ok a pvnad ke n i £ — N1
triction(?), suppose § = N~ forsome N ¢ N.

Yy .lthULlL 1G0
Fort € R, we introduce the abbreviations
{

[g=1]:={xeX:8(x)21),
[h>t]l:={xeX:hx >t}

We have

g—tSl < max n81[gzn,5] < max n81[h>,,5_5] < h-61. (*)

n n

The second and third of these inequalities are elementary. For the

first, it is enough to observe that for every x € X, there exists an n

with 78 < g(¥) < né+8 and that then, g(x)—8 < 18 = ndligzns(¥).

For each n, it follows from (II) that there exists a continuous f; :
X — R such that

ligons < fo < Ipsns-gps
with these n, we obtain from (%)
g—81 < maxnéf, < h+61.
Take f := max, néf,.
Let é and f be as in (III). Then
g=<gVv({f-1)<hA(f+81) <h.

Observe that g’ := g v (f—681) and b’ := h A (f+81) are upper and
lower semicontinuous, respectively [Theorem 15.11(iv)] and that
h—g' < (f+61) — (f—61) = 261. Thus, for any § > 0 we can obtain
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an upper semicontinuous g’ and a lower semicontinuous %’ such
that

g<g =h=h,
W—g' < 281.
(V) We are almost there. Inductively, we see that there exist se-

quences g1, gz, - - - and hy, hy, ... of upper and lower semicontinuous
functions, respectively, such that for all n,

E<si<; < <gS<hy=<:---<hy<h £h,
hp—gn, < 2771,

Apparently, both sequences converge pointwise (and even uni-
formly) to a function f with

gn < f S hy (n e N).

Then, g < f < h. For every t € R, the sets {x : f{x) > t} and
{x : flx) < t} are closed, since

(x: ) =ty =[x : 809 = 1),

n

(r: f) < th = ){x: ha(®) < 1),
n
Thus, f is both upper and lower semicontinuous, hence continuous
[Theorem 15.11(iid)]. B

15.14

We have used Urysohn's Lemma to prove the Hahn-Tong Interpolation
Theorem. On the other hand, Urysohn's Lemma is a special case, as we
have seen in Part (II) of the proof, above.

Theorem 15.15 (Tietze-Urysohn Extension Theorem)

Let X be a normal topological space. Let A C X be closed and let f be a
continuous function on A with values in a bounded interval [a,b). Then, there
exists a continuous f:X —> [a,b] with fy(x) = f(X) for all x € A. (See also
Exercise 15.B.)

Proof
Defineg,h : X — Rby
fo()if x € A, fo(®) if x € A,
§(x) = . h(x) = .
if x €A, b if x € A.

Then, g(x) < h(x) forallx € A. It is nothard to verify that g is upper semi-
continuous and h is lower semicontinuous. By the Hahn-Tong Theorem,
there is a continuous f : X — R with g(x) < f(x) < h() for all x. Then,
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a < flx) < b for all x, whereas for x € A, we obtain f3(¥) < fl¥) < fo(X),

ie., fa(®) = f(7).

One important application of the Tietze-Urysohn Theorem is the proof
of the Jordan Closed Curve Theorem in the next chapter. Another one is:

Theorem 15.16 (Urysohn’s Metrization Theorem)
Let X be a compact Hausdorff space whose topology has a base consisting of
only countably many sets. Then, X is metrizable.

[Conversely, in a compact metrizable space, the topology has a
countable base; see Exercise 9.E(i).]

Proof
Let U;, Us, . .. be the sets belonging to a countable base for the topology
of X. For certain combinations of i and j, it will happen that

Urnuy = .

For each such pair (i, ), applying Urysohn’s Lemma we choose a con-
tinuous function f; : X — [0,1] with f; = 1 everywhere on U; and
fy = 0 everywhere on U;. There are only countably many pairs (i, ),
so we have only countably many functions f;. We arrange them into an
infinite sequence

81,82y -+

(Repetitions are permitted.)

Ifa,b € X and a # b, there is an n with g,(a) # gn(b). Indeed, by
Urysohn's Lemma, there exists a continuous h : X — [0, 1]with h(a) = 1,
h(b) = 0. Since the sets Uy, Uy, . . . form abase for the topology, there exist
i and j for which

aeU Clx:h(x)> 2%}, belUCx:h(x < i}

Then, U7 N U] = &, so in the sequence g1, gz, . . ., there is a g, with
gn=1lonU andg, =0on U . In particular, gn(a) = 1 and g,(b) = 0.
1t follows that the formula

(28]
5,y =) 27ga(®-8W)l  (myeX)
n==1
defines a metric § on X.
Now let w be the given topology on X. For every b € X, the function
x +> 8(x, b) is a uniform limit of w-continuous functions, hence is itself
w-continuous. Therefore,

if % —> b, then &(x,b)— 0.
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This means that the identity map of X is w-8-continuous (if the mixed
notation can be excused.) Now under o, X is compact; under the é-
topology, X is Hausdorff. Hence, by Corollary 13.23 the identity map
of X is a homeomorphism relative to w and the é-topology, i.e., w is the
s-topology. |

Another consequence of the normality of compact Hausdorff spaces
is the following:

Theorem 15.17 (Baire Category Theorem; second version)
Let X be a compact Hausdorff space. If Uy, Us, . . . are open and dense subsets
of X, then their intersection is dense. (Compare Theorem 7.9.)

Proof
Let Wy be a nonempty open set; we prove WoN U NU; N -+« % .

As U, is dense, Wy N U; contains an element x. Now, {x} « Wy N Uy,
so (by normality) there is an open set Wy withx € W, C Wi € W N U;.
In particular, W; is nonempty.

Similarly (replace Wy by Wi and U, by Us), there exists a nonempty
open set W, for which W, € W;NU,. Inductively, one obtains a sequernce
Wo, Wi, W3, ... of nonempty open sets such that W, C W,_; N U, for all
N e N. As X is compact, there is a point ¢ of X that lies in every W,,.
Then, a € Wy and a € U, for all n. B

15.18

Things may go wrong without the Hausdorff property [but see Exercise
12.1(i)}. Forn € N, let U, := {n, n+1, n+2, ...}. Together with the empty
set, the sets Uy, Uy, ... form a compact topology on N; each U, is open
and dense, but their intersection is empty.

Extra: Nonstandard Mathematics

The real numbers are the primary source of inspiration for Topology and
Analysis. The most familiar geometric representation of R is a straight
line. That picture of the real numbers is helpful but not without prob-
lems. In particular, it is impossible to see what happens “far away” and
the thought process of extending the segment indefinitely raises ques-
tions. For instance, is it possible that, far away on this extended line, real
numbers can be found that are larger than every natural number?

The answer is “no” if we base our ideas about the real numbers on the
axioms of Chapter 1. Similarly, no real positive nonzero number is closer
to zero than the reciprocals of all natural numbers. This has not prevented
mathematicians from thinking about infinitely large and infinitely small
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numbers. In fact, Leibniz phrased his inventions in Calculus in terms of
such infinitesimals.

Although physicists never really discarded the intuition of the in-
finitely small, the foundations of Analysis, completed at the end of the
nineteenth century, seemed to put their mathematical use to the rest.
However, in 1962 Abraham Robinson discovered a way to revive infinitely
large and infinitely small elements. He gave the system of real numbers
in which such numbers figure the name

nonstandard real numbers;

in notation: *R, a system containing not only all real numbers but also,
for every x in R, infinitely many elements between x and (x, c0) and
between (—o0, ¥) and x; in addition, there are infinitely many elements
to the right and to the left of R. As one avails oneself of the complex
numbers to solve, say, ¥2 = —1, *R can be used in Calculus or wherever
infinitely small or infinitely large numbers appeal to the intuition. Thus,
*R does not simply and radically do away with R. Rather, *R is a more or
less natural extension of R.

All this would be useless if the nonstandard real numbers *R would
behave differently than what you are used to. They don't: *R satis-
fies Axioms I and II of Chapter 2. It contains R and therefore N. The
Archimedes-Eudoxus is not just thrown overboard. What happens is
roughly the following. Ordinarily, when we do Analysis, from the real
number system we construct a variety of objects such as the order rela-
tion <, the sine function, or the Euclidean metric. All these objects have
their counterparts in Nonstandard Analysis, the study of the nonstan-
dard real numbers. Thus, in *R, there is an ordering *<, extending < in
the sense that,

x<y = x<y (RyeR)
there is a function *sin : *R — *R, extending the sine:
(*sin)(x) = sinx (x € R),

and so forth. Every subset X of R determines a subset "X of *Rwith X C "X
(and even X = *X N R).

By the so-called Transfer Principle, all valid formulas about real num-
bers have their star versions, valid for nonstandard numbers. For instance,
forallxin R,

sin 2x = 2 sinx cos x;
the Transfer Principle guarantees that for all x in *R:
*sin2x = 2%sinx *cosx.

(Here, we sweep a major difficulty under the carpet: What is a “formula"?
A sensible answer can be given, but we are not going to do so.)
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Back to our axioms. *R does not precisely obey Axiom N but it obeys
its star version:

for every x € *Rthereisann € *Nwithx < n.

(We really ought to write “*<” instead of * <, but let's not bother.)

An element x of *R is said to be infinitely large if n < |x| forallnin N
(not *N). x is called infinitely small if |x| < n~! for all nin N.

Some simple facts:

e *N contains infinitely large elements.

o If x € R and n € *N is infinitely large, then £ is infinitely small.

e For every x in *R that is not infinitely large, there exists a unique
element y of R (called the standard part of x) such that x — y is infinitely
small; we then write x = y.

o If f is a function on [0, 1], it has a nonstandard counterpart *f that is
a *R-valued function on *[0, 1] (which is {x € *R : 0 < x < 1}). This *f is
an extension of f.

e f is continuous if and only if

xxy = (=Y *®ye01).

It is the latter feature that makes nonstandard Analysis interesting for
Topology. It replaces a complicated concept of continuity by one that is
much simpler and appeals to the intuition.

We should mention here that nonstandard methods are not confined
to the real-number system. The whole idea carries over to metric spaces
and, to a lesser extent, to topological spaces.

Once the machinery has been set up, nonstandard methods some-
times give a better insight and can lead to suprisingly easy proofs for
theorems about “standard” situations. As an example, we give a proof of
the Intermediate Value Theorem (2-18):

Let f : [0,1] — R be continuous, and f{0) < 0 < f{(1). We wish to
establish the existence of an x € [0, 1] with f{x) = 0. Clearly,

foreveryn € N, thereisak e N
withk <n andf(-k-—;l) <0< f(ﬁ-)
The Transfer Principle guarantees that

for every n € *N, thereisak € *N
with k < nand (*f)(%‘l) <0< (*f)(g)_

Take any infinitely large n in *N and choose a corresponding k. As k < n,

k is not infinitely large and has a standard part: x.

f@ = ~ (k) z 0. &)
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fo 3 ; k=l o k A
n is infinitely large, so == ~ . ~ x and
fo) = CFIE ~ (%) < o. @

From (1) and (2), it follows that f{x) = 0, since f{x) € R.

Further Reading

Hurd, A.E. and P.A. Loeb, An Introduction to Nonstandard Real Analysis,
Academic Press, London, 1985.

Exercises

15.A.

15.B.

15.C.

15.D.

(See 15.4.) Show that a topological space X is normal if and only if it satisfies
(#) of 15.3.

Prove the following alternative version of the Tietze-Urysohn Theorem: If
A is a closed subset of a normal space X and if f; is a continuous function
on A (not necessarily bounded), then f; extends to a continuous function
on X.

Hint: The obvious start is to apply Theorem 15.15 to the function
tan~! ofy. This will yield a continuous g : X — [~-n/2,n/2], but the
trouble is that g might take the values /2 or —n/2. However, the set
B := {x : |g(*)| = n/2} is closed and does not meet A, furnishing another
occasion to use the normality of X.

(A converse to Theorem 15.15.) Let X be a topological space. Suppose that
for every closed set A C X, every bounded continuous function A — R
can be extended to a continuous function X —» R. Show that X must be
normal.

We have obtained the Tietze-Urysohn Extension Theorem (15.15) as an
application of the Hahn-Tong Interpolation Theorem, which is a conse-
guence of Urysohn's Lemma. The following is a more direct proof of the
Tietze-Urysohn Theorem from Urysohn's Lemma:

Let A be a closed subset of a normal space X. Let f be a continuous
function A ~> [0, 1]. By Urysohn's Lemma, there is a continuous g : X —
[0, 1] with

g=0 on {xeA:flx)< i}
g=1 on {(xeA:flx)= %}

Show that 0 < flx) — %g(x) < % for all x € A. Now construct a sequence
&1, &, - - - of continuous functions on X such that }_ g, converges uniformly
o

and flx) = Y_ gu(x) for x € A. Thus, f has a continuous extension X —
Ne=.
[0,1].
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15.E.

15.F.

15.G.

15.H.

(On semicontinuity.)
(i) Letf be alower semicontinuous function on a compact space X. Prove
that f attains a smallest value.
(ii) Let X be a topological space, F a set of lower semicontinuous function
on X, and g a function on X such that

gx)=sup{f(x) : f e F} (xeX).

Show that g is lower semicontinuous.

(iif) Let X be a normal Hausdorff space (or let X be a completely regular
space; see Exercise 14.B). Show that every bounded lower semicontin-
uous function on X is the pointwise supremum of a set of continuous
functions.

Let X be a metrizable compact space and Y a Hausdorff space such that there
exists a continuous surjection f:X — Y. Then Y is metrizable. Prove that.

Hint: By Exercise 9.E(i), the topology of X has a base ¢ consisting of
only countably many sets. Let @ be the collection of all sets Uy U --- U Uy
with N € Nand Uy, ..., Uy E ¢. This @ is countable and a base for the
topology of X. For U &£ @, put

U = Y\fX\D).

Show that each U’ is open in Y and that {U’ : U £ @} is a base for the
topology of Y.

Prove the following theorem. If f is a map of a compact Hausdorff space X
onto a set Y such that the set

{(x, %) e X x X : fX) = flx")}

is closed in the product topology of X x X, then the quotient topology of Y is
(compact and) Hausdorff
A proof can be given along these lines:
@) IfA C X is closed, then so is f~1(f{A)).
(if) If A C X is closed, then f{A) is closed in the quotient topology.
(iif) For every a € Y, the set {a} is closed.
(iv) If U € X is open, then U’ = Y\f{IX\U) is open in the quotient
topology.
(v) The quotient topology is Hausdorff. (Use (iii) and the normality of X.)

If X is a topological space, we say that the continuous functions separate the
points of X if for all a, b € X with a s b, there exists a continuous function
f on X for which f{a) # f{(b). It is easily seen that such a space must be
Hausdorff. The converse is false, however. There exist Hausdorff spaces
whose points are not separated by continuous functions. The following is
a particularly unpleasant example, one of the Frankenstein monsters of
Topology.
LetX :={(x)) €cQ@xQ:y=0})ForueRandr > 0, put

L) = {x0)e X : |x—ul <7}
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Let w be the collection of all subsets U of X with the property:
For every (a,b) € U, thereisane > 0

such that I(a+bv/3) U I.(a—bv/3) C U.

(i) Show that forallu € R and r > 0, I;(¥) belongs to w, and that for all
(a,b) € X and & > 0, the set

{(a, B)} U I(a+b+/3) U I(a—b/3)

belongs to w.
(ii) Show that w is a topology. This is the topology we now put on X.
(iii) Show that X is a Hausdorff space.
(iv) Letu € Rand r > 0. Prove that the closure of I,(u) is
{(ah)eX:a+bV3 e [u—r, u+r}or a-bv3 e [u—r, u+rl}.

(Make a sketch.) Deduce that for allu, v € Randr, s > 0, the closures
of the sets I(4) and I;(v) have nonempty intersection.
(v) Use (iv) to prove:

If U, V are nonempty open sets in X, then U™ N V™ # @.

(vi) Now show that all continuous functions on X are constant.



16 Connectedness

CHAPTER

Basically, the notion of connectedness is very easy to grasp. In R?, the set

is connected; the set

is not. There are various ways to translate this idea into mathematical
terms. In this chapter, we discuss two of them. The first is the one to
which mathematical usage has reserved the term “connectedness”; the
second is the “path connectedness” we have already mentioned in Chap-
ter 4. Connectedness (in the strict sense) is the more basic of the two;
its definition goes back directly to the notion of a topological space. Path
connectedness is intuitively more accessible but less elementary; it relies
on properties of the real-number system.

249
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Both notions and the knowledge we build up about them in the first
part of this chapter will come together in our proof of the Jordan Closed
Curve Theorem (16.28).

Connected Spaces

16.1

We define a topological space (X, ) to be connected if @ and X are the
only subsets of X that are both open and closed. For a subset A of X, we
say that A is connected if (A, w,) is connected.

The following lemma provides a characterization of connectedness
that is usually easier to apply than the above definition. We will often
employ it. It provides a characterization of connected spaces in terms of
continuous functions.

Lemma 16.2
A topological space X is connected if and only if every continuous function
X — {0,1} is constant.

Proof
By Exercise 16.A, the continuous functions X — {0, 1} are the indicators
of the subsets of X that are both closed and open. The lemma follows. H

Examples 16.3

(1) LetXbe (0, 1)U(2, 3) with the usual topology. (0, 1) and (2, 3) are open
in X, so (0, 1) is open but also closed in X. Thus, X is not connected.

(ii) Let A be a subset of R, neither @ nor R. By the Connectedness Theo-
rem 2.17, A and X\ A have a common adherent point. It follows that A
and X\ A cannot both be closed, so that A cannot be closed and open.
Therefore, R is connected. More generally, we have:

Theorem 16.4
R and all of its intervals ((a,b),(a,b},[a,b],(a,00), . . .) are connected.

Proof
By the Intermediate Value Theorem (2.18), every continuous function on
an interval that takes the values 0 and 1 must also take the value % . B

16.5
For the definition of path connectedness, we recall a bit of terminology
from Chapter 4, at the same time putting it into a more general context.
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A curve in a topological space X is a continuous map of a closed bounded
interval into X. If ¢ : [a,b] — X is such a curve, then ¢ is said to be a
curve from g(a) to ¢(b) or a curve connecting p(a) and ¢(b); ¢(a) and ¢(b)
are the end points of ¢; and

¢* = {p(t) : t € [a,D]}.

X is called path connected if for any two points u, v € X, there exists a
curve in X with end points u and v. (Then there isa curve ¢ : [0,1] = X
with ¢(0) = u, ¢(1) = v.)

A subset U of X is path connected if under the relative topology U is a
path connected topological space.

R and all intervals are easily seen to be path connected. So are RV
(N € N) and all balls in RY.

Theorem 16.6
Every path connected topological space is connected.

Proof

Let X be a path connected topological space and let f : X — {0, 1} be
continuous. Letx, y € X. Thereexistsacurve ¢ : [0, 1] — X with ¢(0) = x
and ¢(1) = y. Then, f o ¢ is a continuous map [0, 1] — {0, 1}. But by
the Intermediate Value Theorem (2.18), such a map is constant and in
particular

f o @)0) = (f o 0)(D)-

In other words, flx) = fly). But x and y were arbitrary, so f must be
constant. B

Thus, R? and, indeed, every RY is connected.

Example 16.7
Not every connected space is path connected, though. An example is
furnished by the so-called “topologist’s comb without zero™:

Bz By By




252 16. Connectedness

Let
A:={x0):0<x<1}
B.:={(}¥):0<sy=<1} (nel),
C={0y:0<y=<1

o0
x=4u|JB.UC

n=1

[Note that (0, 0) € X.] The topology on X is Euclidean.

We first show that X is connected. Assume f : X —» {0, 1} is continuous
and f{1, 0) = 0. Then, f = 0 on the (connected!) horizontal interval A. By
the same token, f is constant on each B, hence f = 0 on each B,,. Finally,
for 0 < y < 1, we have f{0,y) = liMmp00 {1, 4) = 0. Thus, f = 0 on all
of X.

This establishes the connectedness of X. We claim that X is not path
connected. In fact, we will show that there is no curve in X with end
points (1, 0) and (0, 1). Suppose ¢ : [0,1] — X is a curve, ¢(0) = (1, 0),
and ¢(1) = (0, 1). The function

t = first coordinate of (%)

is continuous [0, 1] — [0, 1] and takes the values 0 and 1. By the Inter-
mediate Value Theorem, for any n € N the number s, := (% + 3)
is a value of this function. But (sn, 0) is the only point of X whose first
coordinate is s,. It follows that (s, 0) € ¢* for every n. Now, ¢* is closed in
R? [Exercise 9.F or 13.16(ii)] and (s, 0) — (0, 0), so (0, 0) € ¢*. However,
(0, 0) € X. Contradiction.

A continuous walk from a point inside a set A to a point outside A must
hit the boundary A:

Lemma 16.8

Let A be a subset of a topological space X andp € A. Let ¢ be a curve in X
connecting p with a point outside A. Then, * N 3A # &. Moreover, there is
a curve in ¢* N A~ that connects p with a point of 8A.
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Proof
Without restriction, we assume that the domain of ¢ is [0, 1] and ¢(0) = p.
Let

r = inf{t € [0, 1] : o(t) € A}
and g := ¢(r). Then, g € dA and t = ¢(tr) (0 < t < 1)is a curve in
A U {g}, hence in ¢* N A™, connecting p and q. B

The following observations will be useful.

Theorem 16.9
Let X and Y be topological spaces and let f:X — Y be continuous. If A C X
is connected, then so is f(A).

Proof
Let g : flA) — {0, 1} be continuous. Then g o f maps A continuously into
{0, 1}, so g o f is constant on A and g is constant on f{A). B

Theorem 16.10
Let X be a topological space. Then every connected subset of X has a connected
closure.

Proof
Let A C X be connected. Take a continuous function f : A~ — {0, 1}.
Then, f is constant on A, hence on A™. ]

Theorem 16.11
Let a be a collection of connected subsets of a topological space and suppose
there is an Ay in o such that

ANAy# @ forall AEa.

Then | a is connected.
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Proof

Letf : |Ja — {0,1} be continuous. For every A E ¢, f is constant on A.
The given condition implies that for each A, the value of f on A equals
the value of f on Ag. Hence, f is constant on | J«. ]

16.12
We apply Theorem 16.11 in the following way.

Let X be a topological space. For each ¥ € X, let C, be the union of
all connected subsets of X that contain ». By Theorem 16.11, C, is itself
connected. Thus, C, is the largest connected subset of X containing x.

Ifx,y € X and C, N Cy # @, then, again by Theorem 16.11, C; U Cy
is connected, so C;, U Cy = Cy and Cy = C,. Thus, the sets Cy form a
“partition” of X:

Their unionis X;

they are pairwise disjoint.

@
For that reason, the sets C, are called the components of X. As a
consequence of Theorem 16.10 we have:

Theorem 16.13
Every component of a topological space is closed.

16.14
In order to obtain similar results for path connectedness, we need the

following. Let X be a topological space.
If 1, 92 : [0,1] — X are curves and ¢; (1) = ¢2(0),

01

0
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we define a curve ¢; - @2 : [0,1] - X by

o(2f) fo<t<

=<
(o1 - @2)(t) = .
2

1
2
pa(2t-1) ifi <t<1.
Then,
(1 - 02)" = ¢1 Ugj.

With the aid of this observation, one easily proves the following analog
of Theorem 16.8:

Theorem 16.15
Let a be a collection of path connected subsets of a topological space and
suppose there is an Ag in o such that

ANAg# @ forall AEa.

Then, | « is path connected.

IS

O—e
9
16.16

Asin 16.12, for each x € X we have a largest path connected subset P, of
X containing x. These sets P, form a partition of X and are called the path
components of X. It follows from Theorem 16.6 that P, is connected, so
that P, C C,. Thus, every component of X is a union of path components
of X.

Example 16.17

Path components can fail to be closed. Consider the topologist's comb
without zero, described in Example 16.7. It is connected but not path
connected. Hence, it has only one component but at least two path
components. (How many does it have?)

From Theorem 16.15, one sees that A U | Joo, By, is path connected.
Its closure (in the topological space X) is X itself. Thus, the analog of
Theorem 16.10 falls through: The closure of a path connected set may
not be path connected.
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Although not every connected set is path connected, for open sets in
R" the two concepts are equivalent:

Theorem 16.18

Let N € Nand let U C RY be open. If C is a component of U, then C is an
open subset of RN, C C U, and C is path connected. In particular, if U is
connected, then U is path connected.

Proof
For a € U, let P, be the path component of U containing a.

If a € U, there is an ¢ > 0 such that the ball B,(a) := {x € R¥ :
llx—all < &} is contained in U. As Bg(a) is path connected, it follows that
Be(a) C P,. Thus, every path component of U is open in RV.

C is a union of path components of U, hence is open in R¥.

C is closed in U (see 16.12), so C = C~ N U, the bar denoting closure
in the topological space RN. Hence, 3C = C™\C° = C™\C = C™\U C
U-\U = 3U.

To prove that C is path connected, take a € C. Then, P; is open in
RN, hence open in C. But C\P, is a union of path components of U, and
therefore also open in RY and in C. Thus, P, is open and closed in C. As C
is connected and P, # @, we have C = P,, i.e., C is path connected. &

The Jordan Theorem

We now return to a promise we made at the end of Chapter 4, to prove
the Jordan Closed Curve Theorem. We claimed there that for any closed
Jordan curve w in R? the set R?\w* is the union of two disjoint nonempty
path connected sets. The following turns out to be no harder to prove.

Theorem 16.19 (Jordan Closed Curve Theorem)
Let w be a closed Jordan curve in R%. Then, the set R*\w* has two components,
one bounded and one unbounded, each of which has w* as its boundary.

(This version of the Jordan Theorem implies our earlier one, Theorem
4.29. Indeed, w* is a closed set [see Exercise 9.F and Theorem 13.16(ii)]
and by Theorem 16.18, the components of R?\w* are path connected.)

A proof of the theorem requires considerable preparation; we conclude
it in 16.28. In the meantime, we will obtain some related results of inde-
pendent interest. (Theorem 16.21 and Corollary 16.22.) For the rest of
this chapter, the scene is set in R?. Thus, U™, U°, and 3U will be the
closure, the interior, and the boundary of U, respectively, relative to the
topological space R2.
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16.20

Before turning to the proof proper, we prepare the ground by making a

few general remarks about (images of) curves and their complements.
Suppose ¢ is a curve in R?, not necessarily Jordan or closed Jordan.

(i) ¢* is a closed bounded subset of R?. [See Exercise 9.F and Theorem
13.16(ii).]

(ii) Hence, the components of R?\¢* are path connected open subsets
of R%. (Theorem 16.18).

(iii) If U is a component of R?\¢*, then 8U C ¢*. Indeed, by Theorem
16.18, U C (R:\¢*) = 8(¢*) C ¢*.

(iv) Take R > 0 such that ¢* C {x € R? : ||x| < R}. The set {x € R? :
llxll > R} is path connected [Exercise 16.H(a)], hence contained in
one component of R%\¢*. Thus, R?\¢* has exactly one unbounded
component.

(v) Let T be a homeomorphism R? — R?. Then, T o ¢ is a curve in R?
and (T o ¢)* = T(¢*). If U is a component of R*\p*, then T(U) is a
component of R®\(T o ¢)* and 8(T(U)) = T(8U). These observations
will allow us to impose additional conditions on ¢ without jeopar-
dizing the generality. Thus, when we find it convenient to assume
0e¢*org* C{x:lxl| <1}, we may do so.

(vi) Similarly, when it seems to be useful, we may assume the domain
of our curve ¢ to be the interval [0, 1].

Theorem 16.21
If ¢ is a Jordan curve in R? that is not closed, then R?\¢* is connected.

Proof
Let ¢ : [0,1] — Rbe a Jordan curve; let U be the unbounded component
of R?\p* [16.20(iv)]. We propose to prove that U is all of R*\p*; then, R?\¢*
will be connected. Thus, we are done if we can prove that every point of
R? lies in ¢* U U. One easily sees that it suffices to show that 0 € ¢* U U
[an application of 16.20(v)].

Furthermore, as ¢* is a bounded set, we may assume

o* C{x e R?: ||x|| < 1}. ¢))
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By Corollary 13.23, ¢(t) +— t is a continuous function ¢* — [0, 1],
that can be extended to a continuous function f : R? — [0, 1] [Tietze's
Extension Theorem, (15.15)]. Setting F := ¢ o f, we obtain

F :R?* - ¢* is continuous,
F(x) = x for x € ¢”.

R? is the union of two closed sets, R®\U and U~, the complement and
the closure of U, respectively. For x in their intersection, we obtain x €
U C ¢* [16.20(iii)] and, consequently, F(¥) = x. Thus, we can define
G:R? - R?by
F(x) if x € RA\U,
G = [ ) \

X if xe U™
According to the Glue Lemma (12.23), G is continuous. Observe that
G(X) € ¢* UU forallx € R 2
Indeed, if x € R*\U, then G(¥) = F(x) € ¢*;ifx € U, then G(x) = x € U.
For x € R? with x|l = 1, we have x € U [see (1), above], so that
G(x) = x. It follows from Exercise 4.E(ii) that 0 is a value of G. Thus,
0ep*UU
which is what we wished to prove. 2|

Corollary 16.22
Let U be a nonempty open subset of R? and suppose there is a Jordan
curve ¢ with 83U C ¢*. Then, U is unbounded and U = R?\8U.

Proof
The interior of ¢* is empty (Exercise 16.1). In particular, U ¢ ¢*, Choose
a € U, a & ¢*. For every x € R?*\¢* by the theorem there is a curve
in R%\¢* connecting a and x. Such a curve does not meet 89U, so x € U
(Lemma 16.8).

We see that R*\¢* C U. It follows that U is unbounded. Since ¢* has
empty interior, it also follows that the closure of U is R?. Hence, UU8U =
R%?and, as U N8U = @, U = R*\aU. B

From Corollary 16.22 we obtain part of the Jordan Theorem:

Corollary 16.23
Let w be a closed Jordan curve in R?, If U is a component of R?\w*, then
U = w*.

Proof
It follows from Theorem 16.18 that 83U C 8(R?*\w*) = dw* C w*. Now
suppose w* ¢ 8U. For simplicity, assume the domain of w is the interval
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[0,1]. As 8U is closed, the set
{t € [0,1]: w(t) € AU}

is a closed subset of [0, 1], not equal to [0,1]. Hence, there exists a
subinterval [r, s] of [0, 1] such that

r<t<s = ()€U

y(s-1) =afs) r W(0) =(0) =an(l)

—
y(r) = o)

Define ¥ : [s—1,7] - R%by

w(t+1) if s-1<t=<0,
v(o) = .
w(f) if 0<t<r.

Then, ¢ is a Jordan curve and 8U C *. By Corollary 16.22, 83U = U® D
w*. Contradiction. B

16.24
Our proof of the Jordan Theorem is based on an extension of Theorem
4.26 to an “infinite rectangle’

Let A be the strip [-1,1] x R in R?; let ¢ be a Jordan curve in A4,
connecting the points (—1, 0) and (1, 0), such that all points of ¢* except
these end points lie in the open set (—1,1) x R.

North

(-1,0) lao
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All points of A whose second coordinates are sufficiently large belong to
the same path component of A\¢*. We denote this path component by

(A\¢™)n;

its points are said to lie north of ¢*. In a similar way, we define the
southern path component

(A\g")s
whose points lie South of ¢*.

Theorem 16.25
In the situation described above, A\¢* has precisely two path components:
(A\@")y and (A\g)s.

Proof
We have to show that (A\¢*)y and (4 \¢*), are distinct and that their union
is all of A\@*.

The first follows easily from Theorem 4.26. Indeed, s
(A\g*)s. Take b € ( 00) so large that ¢* C [~1,1]x [P,
(A\¢™)x and (0, —b) € (A\p*);, so there is a curve y in A\qa connectmg
(0,Db) and (0, —~b). For some number ¥’ > b, we have y* C [~1,1] x

[V, D).
I |
—— . b

\\ ‘\’ - "b
L p

Then, the points (0, b") and (0, —b") can be connected by a curve in
A\p* that stays within the rectangle [—1, 1] x [—b', b']. This contradicts
Theorem 4.26.

Next, take p € A\p*; we show that it lies either north or south of ¢*. As
R?\¢* is (path) connected (Theorem 16.20), there is a curve A in R?\¢*
connecting p with a point outside A. By Lemma 16.8 there is a curve in
A*N A, hence in A\¢*, connecting p with a point g of 8A. Now, g is neither
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(-1, 0) nor (1, 0) (since g € A* C R%\p*), so g lies north or south of ¢*.
Then, so does p. H

16.26
Ifw : [0, 1] = R?is a closed Jordan curve, then the formulas

o) == w(}), V(O =ol-{) (0,<t<D)

©(1/2) o(1) =y(1)

©(0) =a(l) 9(0) =y(1) v

define two Jordan curves, ¢ and . They have the same end points; apart
from these, ¢* and ¢* are disjoint, and o* = ¢* U ¥*.

Conversely, if we start with two Jordan curves ¢ and ¥, such that ¢ and
Y¥r have the same end points but otherwise ¢* and ¢* are disjoint, then we
can find a closed Jordan curve w with o* = ¢* U ¥*. (Namely, ...?)

Thus, for certain purposes, a couple of Jordan curves, suitably linked,
will serve as well as one closed Jordan curve. This idea will be applied
in 16.27. There, we will consider two linked Jordan curves, ¢ and ¢, and
see how they divide the plane. The results will be used in 16.28.

For the time being, we restrict ourselves to the special situation de-
scribed in (%) and (%%), below. Occasionally, our language will be a bit
informal, but there is not going to be any ambiguity or imprecision.

A is the vertical strip [~1, 1] x R.
e is the point (1, 0).
¢ and ¥ are Jordan curves, both connecting —e and e. ()

—e and e are the only points in ¢* N ¢*; except for them,
¢* and ¥* are contained in the open set (—1, 1) x (-1, 1). |
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The set (y-axis) N (¢* Uy*) is bounded, closed, and nonempty; it follows
easily that it has a highest point, n, and a lowest point, s. We assume

n e ¢g*. (%%)

(The alternative assumption. n € ¥*, is, of course, not really different.)

16.27

(I) Walking to the north from n, one arrives in the region (A\¢*)y with-

out touching upon ¥*; hence, n € (A\Y*)y. Every point of ¢* except

—e and e can be reached from n by a walk along ¢* that does not
cross Y* either, so

@*\[—e, €} lies north of *. ¢y}

Similarly, if' s € ¢*, then ¢*\{—e¢, ¢} lies south of ¥*, which is impos-
sible in view of (1) and Theorem 16.25. Thus, s € ¢* so thats € ¥*.
From this, it follows that

P*\{—e, e} lies south of ¢* (2)

precisely as (1) follows from ().




The Jordan Theorem 263

(II) Our next step is to show that R?\(¢* U ¥*) has a bounded component.

(1I1)

The sets (y-axis) N ¢* and (y-axis) N ¥* are closed, bounded,
nonempty, and mutually disjoint. By an elementary consideration,
there exist points a and b with

a € (y-axis) N ¢*, b € (y-axis) N ¥*, }

3
between a and b there is no point of ¢* U ¥*. ©

Choose a point p between a and b.

1
1
I
]
I
}
§

Then, p € R%\(p* U ¥*). Let Uy be the component of R?\(¢* U ¢*)
that contains p. We wish to show that Uy is bounded.

Suppose Uy is unbounded. Then Uy is the unbounded component
of R?\(¢* U ¥*), from which Uy ¢ A. There is a curve in Uy con-
necting p with a point outside A. Hence, by Lemma 16.8, there is a
curve A in Up N A, hence in (A\¢*) N (A\¥*), that connects p with a
point g on one of the vertical lines bounding A.

From a we walk due north or south to p, then follow A* until we
reach g. Our walk has not touched upon ¥* and has started north of
Y*. [This follows from (1).] Thus, g lies north of ¥* and its second
coordinate must be positive. Similarly, we can go from b to p and
then to g without meeting ¢*; as b lies south of ¢*, so must g and its
second coordinate is negative. Contradiction.

Now we can prove that R2\(¢* U ¥*) has precisely one bounded
component.

Take a, b, p, Up as in (II). We know that Uy is abounded component
of R%\(¢* U ¥*). Suppose there is another bounded component, U.
Then, UNUy= 9.

Recall from () that ¢* U ¢* is contained in the “square” [-1, 1] x
(—1,1). Let f be the point (0, 1) of R2. This f lies north of ¢* and y*,
whereas —f lies south of them. The walk

from f to n via the y-axis,

from n to a via ¢*,

from a to b via the y-axis,
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from b to s via ¥*,
from s to —f via the y-axis

yields a curve y connecting f with —f. The points due north of n and
those due south of s lie in the unbounded component of R?\ (¢* U ¢*)
and therefore not in U. The points of ¢* and ¢* do not lie in U either;
and the points between a and b lie in the set U, that is disjoint from
U. Thus,

Y'NU = 2.
Let B be the horizontal strip R x [~1, 1].

f‘

i
o

S

o e e @) e i o o o ot o e ]
@
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Proceeding as in Theorem 16.25, we see that B\y* has two path com-
ponents, {B\y*); and (B\y*)y, containing —e and e, respectively. As
y* is a closed set, all points near —e lie in (B\y*)g, all points near e
in (B\Y*)w-

Now it is easy to obtain a closed Jordan curve w with w* = ¢*Uy*.
(See 16.26.) It follows from Corollary 16.23 that ¢* U y* = o* = 8U.
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In particular, —e and e lie in 9U, hence in U~. Choose x and y in U
so close to —e and e that x € (B\y*); and y € (B\y*)y. Then, x and
y can be connected by a curve in U but not by any curve in B\y*.
Because U C B, we see that

yViNU # 2.

Contradiction.

16.28
It is now easy to prove the Jordan Closed Curve Theorem (16.19). Let w
be a closed Jordan curve in R2.

M

(In

First, assume
w* C[—1,1] x (-1, 1), w* N 3A = {~¢, e}

with A, e, —e as in 16.26. In view of considerations such as set out in
16.20, we may assume the domain of @ to be the interval [0, 1], and
we may also assume w(0) = —¢, w(%) = e. The formulas

o) = w(35), YO :=ol-3) (0=st<l)

define Jordan curves ¢ and v satisfying (%) of 16.26 with o* =
¢* U ¢*. By, if necessary, interchanging the names “ ¢ " and “ ¥ ” we
can ensure (%), too. Then, the conclusion of the Jordan Theorem is
guaranteed by Corollary 16.23 and by (II) and (III) of 16.27.
Now we turn to the general case. We are done if we can find a
homeomorphism T : R? — R? such that

T(w*) C[-1,1] x (=1,1), T(@*)N3A = {—¢,e¢}.
[See 16.20(v).]
w* being a compact subset of R?, there exist a and b in w* with
la=bll = llx—yll forall »y € w*.

There is amap T; : R? — R? that is a composition of a translation,
a rotation, and a scalar multiplication such that

T(a) = —e, Ti(b)=e.

(In terms of complex numbers, T is the map z > 2—3-}7-(_5’7;-'"—1-’2 .) This
T} multiplies all distances with the same factor, so

2 = |[(—e)~ell = flu—v]] forall u,ve Ty(e").

In particular, forallu € T1{w*)we have |lu—el| < 2and lutel < 2.
It follows that T)(w*) is contained in the area shaded in this picture:
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N
N\

If T is the linear map with matrix

(o)

(T shrinks in the vertical direction), then T := T3 o T} satisfies the
requirements. L

Extra: Continuous Deformation of
Curves

A problem one is often faced with in Topology is to determine whether two
given topological spaces are homeomorphic. The obvious way to prove
that they are is by constructing a homeomorphism, as we did in Example
4-19. To show that they are not, one usually looks for a “topological” prop-
erty that one of the spaces has and the other does not have. For instance,
[0, 1] is not homeomorphic to R since [0, 1] is compact, whereas R is not.
[0, 1] is not homeomorphic to the circle I' because removal of a suitable
point (e.g., 3) from [0, 1] creates a disconnected space, whereas removal
of any one point from I" does not.

Often, more sophisticated methods are required. Is the plane, R?,
homeomorphic to the “punctured plane,” R*\{0}? To decide that we need
a construction that we have already used in 4.21, our informal proof of
Brouwer’s Fixed Point Theorem. There, for every numberr in[0, 1] we had
a closed curve 8, : [0, 1] — R? and by varying r, we let the curve change
gradually. Such a family (8;)r¢0,1) of closed curves is called a “continuous
déformation of the curve 8y into the curve 8,

The general definition runs as follows. Suppose X is a topological space
and o and B are closed curves [0, 1] — X. A continuous deformation of «
into B (or a homotopy from a to B) is a continuous map

(7,8) = ¥r(S)



Extra: Continuous Deformation of Curves 267

of [0, 1] x [0, 1] into X such that

Vo=, Y1 = ﬂ;
¥ (0) = (1) for every r.

Then, for each r, y, is a closed curve in X. As r runs from 0 to 1, the curve
« is gradually distorted until B is obtained.

« is called homotopic to B if such a continuous deformation exists. Then,
B is also homotopic to «, so that one may reasonably say that « and g “are
homotopic”

In R?, every closed curve (with domain [0, 1]) is homotopic to every
other one. Indeed, if & and B are closed curves [0, 1] — R?, the formula

v (8) = ra(s) + (1-nB(s) (st €[0,1]

defines a homotopy from g to a.

In the topological space R?\{0}, the situation is more interesting. It
follows directly from Lemma 4.23 that any two homotopic curves in R\ {0}
have the same winding number. (It is to be understood that the connecting
homotopy takes all of its values in R?\{0}.) Thus, the curves

s > (cos 2ws, sin2ns) (s € [0,1])
and
s (1,0) (se€(0,1)

are not homotopic in R?\{0}.

It follows from the above that R? and R?\{0} are not homeomorphic.

The same technique can be used to prove, for instance, that the unit
sphere in R? is not homeomorphic to a torus. It is not too difficult to
show that on the sphere, every closed curve is homotopic to a point
curve, whereas on the torus, continuous deformation of a curve that “goes
around” can only produce curves with the same property.

The concept of homotopy has led to various generalizations and the-
ories, implying, e.g., that for n > 2, the spaces R" and R™"\{0} are not
homeomorphic. But here we are at the beginnings of Algebraic Topology.

Further Reading

Rotman, Joseph J., An Introduction to Algebraic Topology, Springer-Verlag,
New York, 1988.

Greenberg, M. and J.R. Harper, Algebraic Topology: A First Course,
Benjamin Cummings, Reading (Mass.), 1981.
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Exercises

16.A.

16.B.

16.C.

16.D.

16.E.

16.F.

16.G.

16.H.

16.1.

16.J.
16.K.

Let A be a subset of a topological space X. Prove:
1, iscontinuous <=3 8A =@ <= A isclosed and open.

() LetT be the circle {x € R? : |jx]| = 1}. Show that forevery a € I"the set
I"\{a} is connected. Deduce that I" and [0, 1] are not homeomorphic.

(i) Prove (in a similar way?) that the intervals (0, 1) and (0, 1] are not
homeomorphic.

Let A and B be nonempty closed subsets of a topological space X such that
A UBand A N B are connected. Show that A and B must be connected, too.
(Hint: First remark that A N B # @; then argue by contradiction.)

What if A and B are not assumed to be closed?

Prove that if (X,w) is a connected topological space and if o' is a topology on
X that is weaker than w, then (X,w') is connected.

(i) Let.A be a connected subset of [0, 1] containing more than one element.
Let a := inf A, b := sup A. Show that (a,b) C A C [a, b}.
(ii) Describe the connected subsets of R,

(i) Show that if a connected metric space has more than one point, then
it has uncountably many points. (Use the Tietze-Urysohn Extension
Theorem.)

(ii) Show that the topological space described in Exercise 15.H, which is
Hausdorff and countably infinite, is connected.

(Compare Lemma 16.8.) Let C be a connected subset of a topological space
X. Suppose Y is a subset of X such that CNaY = @. Show that Y is contained
either in the interior of Y or in the interior of X\Y.

Which of the following subsets of R? are path connected?
(@) {x e R?: |lx|| > 37).
M) () e R? : ¢t < &%).
() {(e™* cost, e sint : t > 0} U {(0,0)}. (Sketch! Note that if J is an
interval and ¢ : ] — R? is continuous, then ¢(J) is path connected.)

Letg:[0,1}] = R? be continuous and injective, p* := {p(t) : t € [0, 1]}

(i) Fora € R?and ¢ > 0, put I'((a) = {x € R? : ||x~al = &}. Show
that there can exist no a and ¢ such that I';(a) C ¢*. (Observe that by
Corollary 13.23, ¢ is a homeomorphism of [0, 1] onto ¢*.)

(ii) Show that, as a subset of R?, ¢* has empty interior.

Show that if X and Y are connected topological spaces, then X x Y is connected.

We use the word “clopen” as an abbreviation for “closed and open’” Let a
be a point of a compact Hausdorff space X. Show that the intersection of all
clopen subsets of X that contain a is precisely the component of a. [Hint: Let A
be that intersection. The component of a is connected; infer that it must be
contained in A. Show that we are done if we can prove A to be connected.
Suppose it is not. As A is closed, it is a union of two disjoint nonempty
closed subsets of X, A, and A;. By normality (Theorem 15.7), there exist
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16.L.

16.M.

disjoint open set Uy and U; with Ay C Uy, A2 € Us. Use compactnss to
show that U; U Uz must contain a clopen set U containing a. Prove U N Uy
and U N U, to be clopen and derive a contradiction.]

Let X be a topological space. The conditions “X has only one component”
and "X has only one closed-and-open subset’ are equivalent. This obser-
vation, in conjunction with Theorem 16.12, suggests that components are
always open. Give an example of a topological space with a component
that is not open.

InR? lete:=(1,0), Cp:= ((x,n}): ~1 <x < 1} and
X=|JCUlelU (e}
neN

Make a sketch of the set X. Show that f{—€) = fle) for every continuous
f : X — {0, 1} and that, nevertheless, —e and ¢ lie in distinct components
of X.



Tychonoff’s
~ Theorem

CHAPTER

17.1

‘We have had occasion before to use the product X; x X; of two sets, X; and
X;. This X; x X; is defined to be the set of all pairs (x;, ¥z) with x; € X; and
x; € X3. In a similar way, one makes the product of three or more sets: If

Xy, ..., X, are sets, then X; x - -- x X,, consists of all n-tuples (x1, - - -, x,)
with x; € X; for each i. Even for an infinite sequence Xj, X3, ... of sets, it
makes sense to introduce the product X; x X; x -- -, or

[1x

ieN

as the set of all sequences (x;, x3,...) with x; € X; for all 1.

For example, if A is a set, then [];,y A will simply be the set of all
sequences of elements of A. In 1.9, we have considered such a sequence
as a map N — A. In this language, [];y A is the set of all such maps.
Furthermore, if X;, X3, ... are subsets of A, then [[; X: consists of all
elements of [ [,y A whose ith “coordinates” lie in X; (i € N), so we may
regard [,y X: as the set of all maps f : N — A with f{1) € X;,2) €
Xz, ..., the map f being identified with the sequence (1), 2),...).

17.2
It turns out to be useful to define products of even larger families of sets.
Let A and I be sets. By

[Ja or 4,

iel

270
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we denote the set of all maps I — A. Furthermore, if (Xi)ies is a family of
subsets of A, we define
[[%=fea’:fi) e X foreachi eI} ()
iel
This set is the Cartesian product of (X)ier.
Observe the (trivial) fact that [],.; X; depends only on I and the family
(Xier, not on A. Indeed, if B is another set containing every X;, then

{f € Al : f(i) € X, for every i € I}
is identical with
{f € B': f(i) € X; for every i € I}.
This means that we have actually defined [[;.; X; for any family of sets
(X)ier: All we need is one set A containing all X;'s as subsets, and for that

we can always take their union. Explicitly, for any family (Xi)iesr of sets,
[Tie; Xi is the set of all maps f : I — |, X: that have the property

f(i) e X; forevery i el

17.3
Let (Xi)ier be a family of topological spaces, X = [],.; Xi. Forevery i € I,
we have a “coordinate map" p; : X — X

)= (feX).
The product topology on X is the weak topology induced by the fam-

ily (Xi, piier- (See 14.3.) It is the weakest topology on X that makes all
coordinate maps continuous.

17.4

(i) As we have seen in Theorem 14.5, a net (f)rer in X converges in
the sense of the product topology to an element f of X if and only if
pi(fy) = pi(f) for every i. In other wozrds,

fi—>f &= f(D)— f{i) forevery i.

Convergence in the product topology is coordinatewise convergence.
(Compare Example 12.15.)
A subbase for the product topology is

7'(U):iel; UCX open).
(See Exercise 17.B.)
(i) IfI = (1, 2}, then X = X; x X3; the product topology defined above
is precisely the one introduced in 14.7.
(i) IfX; = Rforeveryi, then X is the set of all functions on I; the product

topology is the topology of pointwise convergence. See [Example
14.6()].
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(iv) For each i, let ¥; be a subset of X;, considered as a topological space
under the relative topology. Then [] ¥; is a subset of [ | X;. The prod-

iel iel

uct topology of H Y; is precisely the relative topology induced by the
product topology of H X;.

The product topology inherits certain properties from the topologies
on the factor spaces. A famous result in this area is the following.

Theorem 17.5 (Tychonoff’s Theorem)
Let (X);; be a family of compact topological spaces. Then, [ ;¢ X; is compact
in the product topology.

A proof of this theorem requires an excursion into Set Theory: We need
a result known as “Zorn's Lemma. If you are familiar with this lemma,
you may now go to 17.12. Otherwise, you are in for some hard work.

17.6
Let S be a set. A collection y of subsets of S is called a chain if

A/ Bey == ACB or BCA.

(The empty collection is taken to be a chain.) Every subcollection of a
chain is a chain.

An example: The intervals (—a, a) witha > 0 form a chain of subsets of
R. The collection of all intervals is no chain, since neither of the intervals
(0,2) and (1,3) is contained in the other.

The set-theoretic tool we need is the following special case of Zorn's
Lemma, to be proved in 17.11:

Lemma 17.7
Let S be a nonempty set. Let there be given a collection of subsets of S, called
the “beautiful sets” Suppose

Every chain consisting of beautiful sets has a beautiful union. )

Then there is a maximal beautiful set.

17.8
Some explanation is in order. A maximal beautiful set is a beautiful set M
that is not contained in any strictly larger beautiful set, i.e., that has the

property
if A is beautiful and M C A, then M = A.

For an example to illustrate Condition (%), let S be R? and let us call a
subset A of R? “beautiful” if the function ¥ —> ||x]| is constant on A. Let
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y be a chain of beautiful sets; we prove | y to be beautiful. To this end,
take a, b € | y; we wish to show that ||al] = [|b]|. There exist A E y and
BeEywitha € Aand b € B. As y is a chain, either A C Bor B C A;
hence, eithera, b € Bora, b € A. In any case, |lall = ||b|| because B and
A are beautiful.

This proves (). The maximal beautiful sets whose existence the
lemma guarantees are, of course, the circles centered at 0.

17.9
For subsets A and B of a set S, we put

A < B
ifA ¢ Band A # B. If ¢ is a collection of subsets of § and C C §, we put
={AEa:A < Cl

Lemma 17.10

Let 8 be a set. For every collection y of subsets of S, let there be given a subset
T(y) of 8. A nonempty collection « of subsets of S is called a “ladder” if it has
the following two properties.

(a) For every nonempty subcollection y of «, we have [y E y.
(b) For every A E o, we have T(ay) = A
Define the collection w by

A Ew <= A belongs to some ladder.

Then w is a ladder.

(The definition of “ladder” is entirely unnatural. Its only excuse
is that it works, We use the word with due respect to the towers of
Dugundji.)

Proof

First, observe that ladders exist: The one-set collection {T(2)} is one.
Condition (a) says that if y is a nonempty subcollection of a ladder, then
among the sets belonging to y, there is a smallest one.

(D) Every ladder is a chain. Indeed, let @ be a ladder and let A, B & o.
Upon applying (a) to y := {4, B}, we see that A N B is either A or
B, soeither A C B or B C A.

(I) If ¢ is a ladder, C C §, and @ # o, then T(eg) E a. Proof: Let
y be the nonempty collection {A E « : A £ C} and let B be the
smallest set belonging to y. Then, B E y [ «, so we are done if
T(a¢) = B, which will be the case if ¢ = ap. Take A E «; we prove
A< C &= A<BIfA < B, thenB ¢ A, so A £y, from which
A < C.Onthe otherhand, BE y,s0B #£ C; hence, if A < C, then
B ¢ A, sothat A < B according to (I).
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(II1) If @ and B are ladders, then o T B or B C «. Proof: Suppose not. The
collectionso\B = {AEa:ARE Blandf\a . ={BES:BE «}
are both nonempty. Let A be the smallest set in «\B, and B the
smallest set in f\a. Obviously, A # B, so we may assume A ¢ B.

IfCisasetand C < B,thenA ¢ C(since A ¢ B)and B ¢ C, s0
C Ea\p and C & f\a. Therefore, ag = Bp. As & [Z B, it follows that
ap # a. Hence, by (I), T(ap) E a. But T(ag) = T(fs) = B & «.
Contradiction.

(IV) IfeisaladderandC C §,CE o, thene :=={AEa: A CC}isa
ladder. (It is straightforward that o/, = a4 for every A E o)

(V) wis a chain. Proof: Let A, B £ w. There exists ladders @ and § with
A E o and B £ B. Because of (III), we may assume « C . Then
A,BEB soACBorBC Aby (D).

(VI) If ¢ is a ladder and A E ¢, then w4 = a4. Proof: As o C w, trivially
we have a4 T w,. For the reverse, take By belonging to w,s. Choose
a ladder Bwith By £ 8. By (IV), #' := {B E B : B C By} is a ladder.
As By < A, weseethat A Ef,soa [Z f. Then B’  abecause of
(I11), so that By E o and By E ag4.

VII) Now we can prove o to be a ladder.

Let ¥ be a nonempty subcollection of w. Take A & y and let e be
a ladder containing A. As w is a chain, so is y. If A is the smallest
set belonging to y, we are done. Otherwise, y, is a nonempty sub-
collection of ws, hence of a4 [by (VI)]. Then, y4 contains a smallest
set, which is also the smallest set in y.

Finally, take A E w. If ¢ is a ladder containing A, then, again bg

(VD), T(wa) = T(ea) = A.

17.11
With the aid of this lemma, we prove Lemma 17.7:

The union of the empty chain is @, so @ is a beautiful set.

Suppose there is no maximal beautiful set; i.e., for every beautiful set
A, there exists a beautiful set B with A < B. To make Lemma 17.10
applicable, for every collection y of subsets of § we choose a subset T(3)
of 8, subject only to these requirements:

T(¥) is beautiful;
if Jy is beautiful, then Jy < T(3).

Form the ladder w as in Lemma 17.10. Let O := T(w).
Forevery A E w, we have A = T(w,), so A isbeautiful. By the property
(%) of Lemma 17.7, | J w is beautiful, so [ Jw < O. In particular, O Ew.
However, by adding the set O to the collection w, we obtain a collection
o' = w U {0} that is easily seen to be a ladder. [If A E w, then T(w}) =
T(wa) = A, whereas T(wp) = T(w) = 0.] Hence, by the definition of o,
we have o' [ w, s0 O E w. Contradiction. 2]
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After this set-theoretic digression we return to Topology.

17.12
We proceed to prove Tychonoff's Theorem 17.5.

In this proof, we simply write “I1" instead of “T ;"

Let the symbol “co” represent a mathematical object that is no element
of any X;. For each i, put X" := X;U{co}. By adding the set X;” to the given
topology w; of X;, we obtain a topology w;” := w; U {X]7} on X[7; then, «;
is the relative topology on X; induced by w;". Consequently, the product
topology on I1X; is the relative topology induced by the product topology
on INX;.

In X{", every net converges to co. Hence, in I1X;" every net converges
to the constant map i~ co (i € I).

Let (f)rer be a net in I1X;; we are done if we can prove it has a cluster
point in I1X;. (See Theorem 13.13.) The set Z of all cluster points of the net
in TIX]” is nonempty; it contains, for instance, the constant map i — ©o
(i € I). We intend to prove

ZNILX; # o.
Forg, g € Z, putg > g if
foreveryie I: g(i) = &) or g()) = oo.

The relation > is transitive. (See 10.6.) We call a subset A of Z “beautiful”
if > is inductive on A; i.e., if

81,82 € A = thereisag € Awithg > g1,8 > g2.

If y is a chain of beautiful sets, then | J y is beautiful. (Proof: Let g1, g; €
U y. There exist Ay, Az E y with g; € A, g2 € Az. We have A; C A, or
Az C Ajp;assume A; C Ay. Then gy, g2 € Az, so there is a g in A,, hence
in{Jy, withg > g1, 8 > g.) It follows from Lemma 17.7, our version of
Zorn's Lemma, that there is a maximal beautiful set, A, say.

Ifi e Iandifg, g2 € 4, g1(}) # 00, and g(i) # 00, then it follows from
the inductivity of > on A that g;(i) = gz(?). Thus, there isag e I1X;" such
that

B(Q) = g(i) wheneveriel, g € A, g(i) # oo;
() =00  wheneverie Iandg(i) =ocoforallg € 4.

We show thatg € Z N [1X;.

Under >, A is a directed set. It is essentially trivial that for each i, the
net (g(f))g <z converges to g(7) in X{7; hence, the net (g),z converges to
g € IIX{". But Z, the set of all cluster points of (f;):er, is closed in ITX[".
(See 13.11.) Therefore, g € Z.

To prove that § € ILX;, take j € I; we show g(j) # oo. Suppose g(j) =
co. The net (fi)rer has a subnet converging (coordinatewise) to g. By



276 17. Tychonoff's Theorem

the compactness of Xj, this subnet in turn has a subnet (f,)oes such that
(f2()), s cOnverges to some x; in X;. Define g’ € I1X; by

g = x;
¢ ==E() for i#]

Then f] — g’ coordinatewise, sog’ € Z.Forallg € A, wehaveg' > g > g.
It follows that A U {g'} is a beautiful set, hence is equal to A. In particular,
g € A, sothat (by the definition of §) 8(j) = &'(j) # oo. Contradiction. H

Example 17.13

A compact space with a sequence that has no convergent subsequence.
Let P(N) be the collection of all subsets of N. By Tychonoff's Theorem,

the space X := {0, 1}P®™ is compact under the product topology. Define

fi,f2 f3,...€ Xby
fa(A) = 1,4(n) (n e N).

Suppose the sequence (fu)nen has a convergent subsequence (fagn))nen-
Then, for every A C N the number sequence fa1)(A), fuz)(4), - . ., which
is )

» 1 " 1a(e(D), 14 (@), . .,
con\;erges. We get a contradiction-by choosing A = {a(2), a(4), «(6),...}.

- Extra: The Axiom of Choice

In Chapter 2, we have considered axioms for the real-number system, the
rules of the game called Analysis. Playing the game, one uses not only
those rules but also logic and set theory. Other branches of mathematics
are played according to other rules, but the logic and the set theory remain
the same. Both have been studied intensively and both are themselves
games.with fixed rules. The average mathematician does not bother with
these any more than the average engineer is concerned with the axioms of
Analysis; but that is deplorable. As a postscript to this chapter, we discuss
one of the axioms of set theory.

Various axiom systems for set theory have been proposed. One of the
most widely used is the system ZF, called after Ernst Zermelo and Adolf
Fraenliel. The axioms of ZF basically are elementary ways to make new
sets out of old. They will, for instance, guarantee that for any set X, the
objects ¥ with Y C X form again a set, which then is called P(X).

There is, however, one set-theoretic operation we have carried out re-
peatedly that is not validated by the rules of the ZF-game. It relies on
the so-called Axiom of Choice. This axiom can be added to ZF, creating
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the game of set theory as it is usually played, but some mathematicians
reject it because they find it makes the game meaningless.

Suppose A and B are nonempty sets. The fact that A is nonempty
means that there exists an a with a € A. Similarly, there exists a b with
b € B. Then the pair (a, b) is an element of the Cartesian product A x B.
Consequently, A x B is nonempty.

Similarly, Cartesian products of three, four, or nineteen nonempty sets
are nonempty. But how about infinite products? Suppose (A;)er is any
family of nonempty sets. The definition of the Cartesian product A :=
[ ;e Ai makes good sense within the framework of ZF, but is A nonempty?
The intuitive approach is like this: For each i, there is an g; in A;; the map
i~ g;is an element of A. Actually, that is what we have done quite often
in this book. One early instance is Lemma 2.16, where we proved that
fX C R, c € R, and ¢ is adherent to X (i.e., X N [c—e¢, c+€] # @ for all
¢ > 0), then there is a sequence in X converging to ¢. Our reasoning was:

1 1
For each n € N, take a point x, in X N I:c—-;{,c-i—;jl.

Then x;, %, ... X and », — ¢.

You see what happens: For each n, we know that the set X, := X N
[c=1,c+1]is nonempty. What we need is a sequence xy, %z, . .. with x, €
X, for each n, ie., a function on N whose value at n lies in X,, (i.e.,, an
element of [, .y Xn)-

The statement

If (Ai)ier is a family of nonempty sets,

then the Cartesian product H A; is nonempty

el
is known as the Axiom of Choice,
AC.

Our proof of Lemma 2.16 relies on it.

But AC is not implied by the axioms of ZF. The trouble is that AC
merely claims that a certain set is nonempty without providing a con-
struction of an element of it. The ZF axioms are different in kind. For
instance, they do not merely say that for every set X, there exists a set
P(X) with certain properties; they precisely describe what objects are ele-
ments of P(X). In terms of ZF, you can completely describe the Cartesian
product itself, but not any particular element of it. The axioms of ZF are
constructive; the Axiom of Choice is much vaguer. It is so vague that a
considerable number of mathematicians do not accept it. (Many others
use it whenever it is convenient and simply refuse to think about it.)

That does not make AC worthless. In fact, one can show that, in a
sense, it cannot do any harm.
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Everyone who wants to do mathematics may choose his or her own
axioms. However, it would be silly to take axioms that lead to contradic-
tions. If from your axioms for certain objects a and b, you can prove both
formulas “a = b" and “a # b" then you might not have made a mistake
in your proofs you might have chosen an unfruitful axiom system. An
axiom system that leads to contradictions is called inconsistent. For quite
some time, there was a problem whether ZF together with AC might be
inconsistent. In 1938, Kurt Gédel showed that it is not, provided that ZF by
itselfis not inconsistent. Thus, adding AC to ZF is not “wrong” (Somewhat
disconcertingly, Paul Cohen proved in 1963 that if by nonAC we mean
“AC is false! then adding nonAC to ZF does not create inconsistency
either!)

In our extra to Chapter 2 we mentioned equivalence of axioms. Within
the framework of our Axioms I-II-III-IV, Axiom V was equivalent to CT, the
Connectedness Theorem. A similar situation occurs regarding the Axiom
of Choice. There are various statements that, within ZF, are equivalent to
AC. One of them is Tychonoff's Theorem, T. In 17.11, we proved it from
ZF and AC. It is not particularly difficult to show that, conversely, AC
follows from ZF and T. This is how it is done:

Let (Ap)ie; be a family of nonempty sets. Choose an object co that does
not lie in any A;. For each i, put A} := A; U {oo}. The collection of (three)
sets

{2, A, {o0}}
is a compact topology on A;". By T, A* := [] A{ is compact. For each {,
put «
Xi:={f e AT : fi) € A}.

As A; is closed in A}, X; is closed in A*. Now,

H A = ﬂ Xi,

iel el
so that, by virtue of compactness, we are done if we can prove that the
collection of sets {X; : i € I} is finitely bound. Let F be a finite subset of

I. Then, the finite product [, A; contains an element, f;, say. Defining
f e Atby

fii) = fo(i) ifieF,
fli)y =00 ifi#F,

we have f € X; foreachie F.

Let us agree to work with ZF.

From the above, we see that AC and T are equivalent. Observing that
our proof of T in 17.11 ran via Lemma 17.7 (and Lemma 17.10, which
does not use AC), we note that, actually, AC = Lemma 17.7 = T =
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AC, so that Lemma 17.7 and AC are equivalent, too. We have mentioned
Zorn's Lemma as a more general statement than Lemma 17.7. For the
benefit of readers who are used to work with partially ordered sets, we
discuss Zorn's Lemma and show its equivalence with AC.

Zorn's Lemma, Z, is:

If X is a nonempty partially ordered set in which
every totally ordered subset has an upper bound,
then X has a maximal element.

Lemma 17.7 is a special case: Simply let X be the collection of all beautiful
sets, partially ordered by inclusion, and see what happens.

On the other hand, assuming 17.7, we can prove Z: Let § be the collec-
tion of all subsets of X. Say that a subset of X is “beautiful” if and only if
it is totally ordered. It is not too hard to prove that (*) of Lernma 17.7 is
fulfilled. Hence, X has a maximal totally ordered subset, Xy. This X, has
an upper bound, a, say. Then, a is easily seen to be a maximal element
of X.

Thus, in ZF, Zorn's Lemma is equivalent to the Axiom of Choice.

How did people “invent” or “discover” AC? We gleaned most of the
history of AC below from a very detailed answer to that question in the
book by Moore, listed in Further Reading.

This history of the Axiom of Choice has many of its roots in the early
stages of Analysis and Topology. The existence of mathematical objects
of one generation is shaped by the knowledge of its ancestry as much as it
molds the shape and form of things yet to come. Sometimes, in the course
of new constructions, hidden arguments or assumptions creep in. Some
of these hidden assumptions seem so plausible that they go undetected
for many generations. Meanwhile, a network of consequences —let us call
them unproved theorems—will result. At the morment that introspection
into the assumptions of a previous age reveals the concealed weakness,
the shock can be considerable. In mathematics, the shock was never as
big as in 1904, when Zermelo revealed the Axiom of Choice.

It had intruded very slowly and well hidden, into arguments far before
1904. Since antiquity, it had been good practice (and no Axiom of Choice
is needed) to choose one unspecified element from a set. In the early
nineteenth century, mathematicians (e.g., Cauchy and Bolzano) started
to choose an infinite number of unspecified elements from a set. By 1893,
when Jordan published the second edition of his Cours d'Analyse, the
usage of the hidden assumption was widespread.

At the same time, Cantor had moved his interests from Analysis to Set
Theory. Initially, he proposed as a “law of thought” that every set can be
well-ordered. (If you do not know what that means, sorry, we are not go-
ing into details here.Exercise 17.E provides the connection with AC.) His
proposal found little approval and, around 1890, Cantor started to believe
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that he might be able to prove that law of thought. He was not successful.
Then, in 1904, Zermelo provided a proof and he acknowledged right away
that he was using the Axiom of Choice. The storm had been unleashed.
The criticisms ranged from outright rejection (Baire and Borel in France,
Brouwer in the Netherlands, and Peano and Levi in Italy) to words of
caution (Lebesgue in France). The defense pointed to the abundant use
of the Axiom before. Zermelo himself, in his 1904 paper, rightfully re-
marked that “it is used everywhere in mathematical deductions without
hesitation” Others (Fréchet and Poincaré) were of the opinion that it was
a mere matter of definition. Ironically, some of the harsher critics were
only slow to recognize how they had (unknowingly) used the Axiom in
their own work. Hadamard, who at the Ecole Polytechnique had taken
the torch from Jordan, was particularly adamant in his defense of the
Axiom of Choice. Fréchet, a student of Hadamard’s, published his thesis
in 1906 on arbitrary sets equipped with a metric. Thus, the psycholog-
ical barrier to study sets of which the elements need not be specified
was taken at about the same time that arbitrary choices of unspecified
elements was formally proposed as a valid enterprise. In the same pe-
riod, Lebesgue revolutionized measure theory, again focusing on sets in
general and axiomatics to streamline the results. On top of all that, Zer-
melo himself, in 1908, presented an axiomatic approach to Set Theory
itself.

Hausdorff's 1914 treatise on Topology marks the end of an era. Between
1906 and 1908, Hausdorff became convinced by Zermelo's argument
and he accepted the free use of the Axiom of Choice. It also was his
opinion that one should not waste time on foundational discussions. Con-
sequently, he did not keep book of when and how he used the Axiom.
With that attitude, he set the tone of topological research to come. Topol-
ogists very quickly advanced with little or no gualms about the Axiom of
Choice. In a period of less than 10 years, all sequential notions, as initi-
ated by the study of metric spaces, were replaced by constructs in which
sequential arguments were no longer fundamental. In 1923, Alexandroff
and Uryschn proposed the definition of compactness which was about to
replace Fréchet's notion of sequential compactness. In 1930, Tychonoff
proved that every product of copies of [0, 1] is compact, as a by-product of
investigating the embedding of 2 Hausdorff space in a compact one. Cech
saw in 1937 that these results could be generalized and proved what is now
known as Tychonoff's Theorem. Kelley proved in 1950 that Tychonoff's
Theorem is equivalent to the Axiom of Choice.

Further Reading

Moore, G. H., Zermelo’s Axiom of Choice, its Origins, Development and
Influence, Springer-Verlag, New York, 1982.
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Exercises

17.A. Show that the product of any family of Hausdor{f spaces is Hausdorff.

17.B. Let (Xi)ier be a family of topological spaces. By a box in [[;.; Xi, we mean

17.C.

17.D.

17.E.

a set of the form [, Yi where Y; is an open subset of X; for each i. If I
consists of two elements, these boxes form a base for the product topology
(14.8.) It is easy to see that the same is true whenever the set I is finite.
However:

Show that a box [, Y3, if nonempty, is open in the product topology if
and only if Y; # X; for only finitely many i.

Let (Xi)ier be a family of topological spaces and X = [], X:.
(i) Takeg € X,j e I andx € X;. Define f : X; — X by

()@ =) i),
(fe0)n = =

(Make a sketch for I = {1, 2}.) Show that f is continuous.
(ii) Take go € X and let

G := (g € X : g({) # go(f) for only finitely many i}.

Show that G is dense in X.

(iii) Now prove that the product of any family of connected topological spaces
is connected.

Prove that the product of countably many metrizable spaces is metrizable. [By
Example 10.3(i), products of uncountably many spaces give problems.]

Hint: For n € N let X, be a metrizable space. Put X := [,y X We
view an element x of X as a sequence (x3, ¥y, . . .). It follows from Exercise
5.1 that for each n, there is a metric d, on X, that determines the given
topology of X, and has its values in [0, 1]. Define

D(x,Y) := sup{n~dn(xn, yn) : n € N} (x,y € X).
Show that D is a metric on X.
In Exercise 12.C, we have put a metric d on [0, l]N, determining the

topology of pointwise convergence. Use this metric to prove that on X the
D-topology is the product topology.

(An excursion into Set Theory, meaningful only if you have some experi-
ence with ordered sets.) An ordering of a set S is a well-ordering if every
nonempty subset of § has a smallest element. Example: the usual ordering
inN.

If (X))ier is a family of nonempty sets and if a well-ordering of Uier Xi 1s
given, then

i+~ the smallest element of X;

is an element of [ |;; X;, obtained without the Axiom of Choice.
The statement

Every nonempty set admits a well-ordering
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is known as the Well-Ordering Theorem, W. By the above, W implies AC
(assuming ZF). Actually,

W <= AC

To see this, let S be a nonempty set. AC claims the existence of a map 2,
assigning to every subset V of S that is not § itself an element A(V) of S\ V.
For any nonempty collection y of subsets of S, let T()) be the subset of S
given by

T = Uy U {aUn) ifUy # S

T(y) :=§ if Jy = 8.

Now proceed using the language of Lemma 17.10:
(i) Show: if & is a ladder, then so is & U {T(e)).
(i) Infer that Jw = §.
(iif) Hence, for every s € §, we can define V(s) to be the smallest set in @
that contains s. Then | wv) does not contain s. Deduce that

T(@v) = Uy Ulsh  (s€ ).
(iv) Prove that s = V(s) is an injection § — w and that the formula
51 < s5; if and only if V(s;) C V(sz)

defines a well-ordering < of S.
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A Smorgasbord
 for Further Study

CHAPTER

18.1
Our theory is essentially completed. The present chapter is devoted to
secondary matters.

First, we have often made use of nets. Indeed, in Chapter 11, nets have
formed our pathway to topologies. With some justification, it might be
said that in our setup topologies form a tool to study convergence of nets.
It is only fair to point out alternatives. This we do in 18.2 and 18.3.

Next, we have striven to avoid a surfeit of terminology. The vocabulary
of even elementary parts of Topology is staggering and its use in the
literature is annoyingly inconsistent. We have attempted to stick to the
bare necessities. If you are going to study the subject in some depth, you
will need many technical terms we have not mentioned. In 18.4 through
18.8, we present an abbreviated dictionary.

18.2
A frequent alternative to nets is formed by filters. A filteronaset X is a
collection A of subsets of X with the following properties:

IfAEALandA CBC X, thenBE A;
IfA;, A2 EA thenA1NA; EX
D EA

If, on X, a topology w is given, a filter A is said to converge to a point
a of X if every neighborhood of a belongs to A. The converging filters

285
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determine the topology. Indeed, a subset U of X is open if and only if U
belongs to every filter that converges to a point of U.

18.3

Yet another approach to Topology is due to Casimir Kuratowski in hisbook
Topology. For a set X, we assume that there is given a so-called “closure
operator” which assigns to each subset Y of X another subset, denoted
Y4, such that the following rules are obeyed:

% = @;

Y c Y2 forevery Y;

Y24 = Y2 forevery Y;

(YUZ)® =Y2UZzZ? forevery Y and Z.
Then the collection

£ a ‘=(
a0 3

X\Y : ¥ = Y%

is a topology on X, and for every ¥, Y2 is the wp-closure of Y. Conversely,
if w is any topology on X, then the operator ¥ + Y~ is a closure operator
in the above sense.

An interesting puzzle associated with taking complements and closures
is due to Kuratowski also. He showed that by starting with one subset
of a topological space and repeatedly applying closure and complement
operations, one can get at most 14 sets. The puzzle is: Find subsets of R
for which exactly 14 sets result.

In the following, X is a topological space.
Countability Conditions

18.4
Let a € X. We say that X has a countable base at a if there exists a se-
gquence Vi, V3, ... of neighborhoods of a such that every neighborhood of
a contains a V.

X is said to be first countable (or to satisfy the first axiom of countability)
if it has a countable base at each of its points.

X is second countable (or satisfies the second axiom of countability) if its
topology has a countable base.

X is separable if it contains a countable dense subset (e.g., R is separable,
as Q is countable and dense in R).

Every second countable space is first countable; so is every metriz-
able space. For metrizable spaces, the second axiom of countability is
equivalent to separability. See Exercise 18.A.
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Separation Conditions

18.5
Besides Hausdorffness, many other “separation” properties have been
singled out. Unfortunately, there is little agreement as to the terminology.
We adopt the formulations of Kelley's General Topology, but we warn the
reader that there is no uniformity in the literature.

X is called regular if for every closed subset A of X and for every b €
X\A, there exist disjoint open sets U and V suchthat A C Uand b e V.

X is completely regular (see Exercise 14.B) if for every closed subset A
of X and every b € X\A, there exists a continuous function f : X - R
such that f = 0 everywhere on A but f{b) is 1.

b A

Every completely regular space is regular. (Take U:=({x : f{¥)< 1}, V:i={x:

f(%)> 1}.) Every metrizable space is completely regular. See Exercise 18.B.
X is normal (15.4) if for every pair of disjoint closed subsets A and B,

there exist disjoint open sets U and V suchthat A C Uand B C V.
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Metrizable spaces and compact Hausdorff spaces are normal (Theorem
15.7).

X is a Ty-space if for all a, b € X with a # b there exists an open set U
witha € U and b ¢ U. This is the case if and only if all singleton sets {c}
are closed. Hausdorff spaces (sometimes called T-spaces) are T,. Normal
T,-spaces are completely regular [Urysohn's Lemma (15.6)].

There are also Ty-spaces, Ts% -spaces, and an entire z0o of Tsomething-
spaces, not to mention Fréchet spaces, Urysochn spaces, completely
normal spaces, fully normal spaces, and perfectly normal spaces, but
we are not going to bother with them.

Compactness Conditions

18.6

X is sequentially compact (13.1) if every sequence in X has a convergent
subsequence. Some sequentially compact spaces are not compact (Exam-
ple 13.5); some compact spaces are not sequentially compact (Example
17.13).

On a compact space, every continuous function is bounded [Theorem
13.16(iii)]. In general, X is called pseudocompact if all continuous functions
on X are bounded. Every sequentially compact space is pseudocom-
pact. (Copy the proof of Theorem 3.9.) Hence, there exist noncompact
pseudocompact spaces.

X is countably compact if every cover of X by countably many open sets
has a finite subcover. X is Lindeldf if every cover of X by open sets has a
countable subcover. Thus,

compact = countably compact + Lindel6f,

The following two definitions have a slightly different character. X is
locally compact if every point of X has a compact neighborhood. (Prime
examples are, of course, R and RZ.) X is o-compact if it is a union of
countably many compact subsets. (The prefix “o-" is often used to indicate
countability.)

Compactifications

18.7
A compact Hausdorff space X is called a compactification of X if X is a
dense subset of X.
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Only completely regular Hausdorff spaces have compactifications [(i)
and (iii) of Exercise 18.B]. .

If X is a compact Hausdorff space, its only compactification is
X itself. A locally compact Hausdorff space X that is not compact
has a compactification obtainable by adding one point to X; see
Exercise 18.G.

At the other end of the spectrum, there is a compactification that is,
in some way, as large as possible. Suppose X is completely regular. Then,
there exists an essentially unique compactification BX of X, its Stone-Cech
compactification, with the property that every continuous map of X into
any compact Hausdorff space Y can be extended to a continuous map
BX — Y. (Inparticular, if X is any compactification of X, then the identity
map X — X extends to a continuous map X — X, which is easily
seen to be surjective. In this sense, BX is the largest compactification
of X.) Even for a simple space like N, the Stone-Cech compactification
is an extremely complex object. For more information, we advise the
reader to turn to the glorious book Rings of Continuous Functions by L.
Gillman and M. Jerison and its sequel, The Stone-Cech Compactification
by J. Walker.

Connectivity Conditions

18.8
In Chapter 16, we have already considered connectedness (16.1) and path
connectedness (16.5).

We say that X is locally (path) connected if the (path) connected open
subsets form a base for the topology.

X it totally disconnected if no component of X (see 15.12) contains more
than one element; it is zero-dimensional if a base for the topology is formed
by the subsets that are both open and closed. Hausdorff zero-dimensional
spaces are totally disconnected.

18.9

Many other topological terms are to be found in the standard texts such as
the ones by Kelley and Dugundji. If you are interested in Patho-topology
(Does there exist a locally compact and pseudo-compact zero-dimensional
Hausdorff space that is not compact?), you will enjoy Counterexamples
in Topology by L.A. Steen and J.A. Seebach. This wonderful little book
presents several diagrams depicting valid implications and a host of con-
crete topological spaces with unexpected properties. (Example 15.H is
one of those.)
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Extra: Dates from the History of General
Topology

1619 Descartes discovers what is now called the Euler-Poincaré formula.
(See the Extra of Chapter 16.)

1676 Gottfried Wilhelm Leibniz (1646-1716) uses the words geometria situs
(geometry of location) and foresees the importance of its study.

1687 Newton's Principia Mathematica on calculus.

1737 Leonhard Euler (1707-1783) discusses the problem of the Koenigs-
berg bridges.

1799 Carl Friedrich Gauss (1781-1848) publishes his thesis containing the
first proof of the Main Theorem of Algebra, making a passing remark
on topological aspects.

1805 Bernhard Bolzano publishes his thesis on geometry and starts
modern rigor in analysis. (Intermediate Value Theorem: R is
connected.)

1833 Gauss states: Of the geometry of position which Leibniz had initi-
ated and to which it remained for only two geometers, Euler and
Vandermonde, to throw a feeble glance, we know and possess, after
a century and a half, very little more than nothing.

1852 The Four-Color Problem is formulated.

1865 August Ferdinand Moebius (1790-1868) studies the Moebius strip.

1866 Death of Bernhard Riemann, the first to use topological technigues
in analysis.

1873 James Clerk Maxwell uses topology in his study of electromagnetic
fields.

1878 Georg Cantor (1845-1918) proves that for all n and m there exists a
bijection of R" onto R™.

1895 First paper fully devoted to the theory of Topology by Henri
Poincaré (1845-1912) with the title Analysis Situs and introducing
algebraic methods.

1906 Maurice Fréchet (1878.1973) in his thesis introduces abstract metric
spaces.

1911 Luitzen Brouwer proves that R” and R™ are homeomorphic only if
n=m.

1914 Hausdorffs book “Mengenlehre”

1920 Stefan Banach introduces normed vector spaces.

1923 Alexandrov and Urysohn introduce compactness.

1937 Cech proves the Tychonoff Theorem.

1976 Appel and Haken prove the Four-Color Theorem:.

The following are the main architects of the theory expounded in this
book. With each name we mention one or two keywords, indicating a con-
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nection with Topology, not necessarily the most important contribution
to Mathematics.

Paul Alexandroff: 1896-1983, Russia, Compactness, contributions to
Algebraic Topology.

Kenneth Appel: 1932-, United States, Four-Color Theorem.

René Baire: 1874-1932, France, Baire Category Theorem.

Stefan Banach: 1882-1945, Poland, Banach's Contraction Principle.

Bernhard Bolzano: 1781-1848, Prague (now in the Czech Republic),
Bolzano-Weierstrass Theorem.

Emile Borel: 1871-1956, France, Heine-Borel Theorem.

Luitzen Brouwer: 1882-1966, the Netherlands, Brouwer Fixed Point
Theorem, Intuitionism.

Georg Cantor: 1845-1918, Germany (Halle), Cantor set, founder of Set
Theory.
Augustin-Louis Cauchy, 1789-1857, France, Foundations of Analysis.

Paul Cohen: 1934- , United States, Continuum Hypothesis, Axiom of
Choice.

Richard Dedekind: 1831-1916, Switzerland, Germany (Braunschweig),
Dedekind’s Axiom.

Peter Lejeune Dirichlet: 1805-1859, Poland, Germany (Berlin, Goettin-
gen), Definition of “function” Analysis.

Leonhard Euler: 1707-1783, Russia (St. Petersburg), Germany (Berlin),
Koenigsberg Bridges, Analysis.
Abraham Fraenkel: 1891-1965, Germany, Israel, Set Theory.

Carl Friedrich Gauss: 1777-1855, Germany (Goettingen), Fundamental
Theorem of Algebra.

Hans Hahn: 1879-1934, Austria, Germany, Extension theorems for
continuous functions.

Wolfgang Haken: 1928, United States, Four-Color Theorem.

Felix Hausdorff: 1868-1942, Germany, Axioms for Hausdoff topological
spaces.

Eduard Heine: 1821-1881, Germany (Halle), Heine-Borel Theorem,
Uniform Continuity.

David Hilbert: 1862-1943, Germany (Goettingen), Hilbert Cube.
Camille Jordan: 1838-1922, France, Closed Curve Theorem.
Felix Klein: 1849-1925, Germahy (Erlangen, Goettingen), Klein Bottle.

Rudolph Lipschitz: 1832-1903, Germany (Berlin, Bonmn), Lipschitz condi-
tion.
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John Listing: 1808-1882, Germany (Goettingen), First book on Topology.

James Clerk Maxwell: 1831-1879, United Kingdom (Aberdeen, London),
Vector fields, founder of Electromagnetism.

August Moebius: 1790-1868, Germany, Moebius Band.
Henri Poincaré: 1854-1912, France, Founder of Algebraic Topology.
Bernhard Riemann: 1826-1866, Germany (Goettingen), Surfaces.

Hermann Schwarz: 1843-1921, Switzerland, Germany (Goettingen, Ber-
lin), Schwarz Inequality.

Karl Weierstrass: 1815-1897, Germany (Berlin), Exact Analysis.

Ernst Zermelo: 1871-1953, Germany (Goettingen), Switzerland, Set
Theory.

Max Zorn: 1906-1993, United States, Zorn's Lemma.

Exercises

18.A. (Concerning separability and the second axiom of countability; see
Theorem 15.16.)
(i) Show that the second countability axiom implies separability.
(ii) Show that every totally bounded metric space is separable. (In particular,
compact metrizable spaces are separable.)
(iii) Show that if (X,d) is a metric space and D is a dense subset of X, then the
balls Bym(a) withn € N, a € D form a base for the d-topology.
(iv) Use (i) and (iii) to prove that a metrizable space is separabie if and only
if it is second countable.
(v) Deduce that if X is a metrizable space, then every subset of X is separable
under the relative topology.
(vi) For nonmetrizable spaces, one has to be more careful. Consider the
following collection w of subsets of R:

AEw << 0€A or A=0.

Show that w is a topology on R. Show that {0} is w-dense in R, so that
(R, w) is a separable space, but that R\{0} is not separable under the
relative topology.

18.B. (Completely regular spaces; see also Exercise 14.B.)
(i) Show that compact Hausdorff spaces are completely regular (Urysohn's
Lemma).
(i) Show, without using deep theory such as Urysohn's Lemma, that
metnizable spaces are completely regular.
(iii) Show that subspaces of completely regular spaces are completely regular.
(iv) Let S be a set. Show that RS is completely regular under the product

topology
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18.C. (Countably compact spaces.)
(i) Show that X is countably compact if and only if the following is true:

If Ay, Ay, ... are nonempty closed sets

and Ay D Az D ..., then (A, # @.
n

(ii) Deduce that sequentially compact spaces are countably compact.

(iii) Show that countably compact spaces are pseudocompact.

(iv) Show that for metrizable spaces, compaciness, sequential compaciness,
pseudocompactness and countable compactness are the same. [Hint:
Show, if a;, a3, ... is a sequence with no converging subsequence,
then (an, Any1, Gnaz, - ..} is closed for every n. Deduce that count-
able compactness implies (sequential) compactness. Now, assume X
is not countably compact. By (i), there exist nonempty closed sets
Ay D Az D --- with empty intersection. For each n, choose a contin-
uous f : X — [0,27"with A, = {x : fu(x) = 0} [Exercises 5.K and
6.E].) Then, 1/ 3 f, is an unbounded continuous function.]

18.D. (Local compactness, o-compactness.) Show that Q is o-compact, not locally
compact.

18.E. (The Lindelof property and the second countability axiom.)
(i) Show that second countable spaces are Lindelof. (Let {U, : n € N} be

a countable base for the topology of X and let ¢ be a cover by open
sets. Let N := {n € N : U, is contained in a set that belongs to ¢}. For
n € N, choose Wy, E ¢ with U, C W,. Show that (W, : n € N}isa
cover of X.)

(ii) Show that a Lindeldf metric space is separable. (For p € N, cover X by
balls with radius p~'.)

(iii) Now use Exercise 18.A(iv) to prove that for metrizable spaces the notions
of Lindeldf, second countable, and separable are equivalent.

18.F. (Locally compact Hausdorff spaces.)
(i) Prove that if X is a locally compact Hausdorff space and a € X, then every
neighborhood of a contains a compact neighborhood of a. [Hint: Let K be
a compact neighborhood of g, let U C X be open, and a € U; we wish
to show that U contains a compact neighborhood Ky of 2. Show that we
may assume U C K. Apply Urysohn's Lemma to obtain a continuous
function f on K with fla) = 1, f = 0 everywhere on K\U. Show that
Ko = {x € K : f{*) = 1} satisfies the requirements.]
(ii) Use (i) to prove that every open subset of a locally compact Hausdorff
space is locally compact (in the relative topology).

18.G. (The one-point compactification.)
Let (X, w) be a noncompact locally compact Hausdorff space, e.g., R?.
Let oo be a mathematical object that is not an element of X and put oX :=
X U {oo}. Show that

@ = o U {eX\K : K is a compact subset of X}
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18.H.

18.1.
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is a topology on aX, that the topological space (X, &) is compact Hausdorff,
that X is dense in aX, and that w is the relative topology on X induced by &.
The space (X, @) is called the one-point (or Alexandroff) compactification
of (X, w). It is not hard to see that the one-point compactification of R is
homeomorphic to a circle, that of B? to the sphere {x € B3 : x| = 1}.

(Local connectedness.)

(i) Observe that a discrete space with at least two points is locally
connected but not connected.

(i) In Example 16.7, we saw that the “topologists comb without zero” is
connected. Prove that it is not locally connected.

(Disconnectedness.)
(i) Show that Q and the space considered in Examples 5.3(v) and 5.5(v) are
zero-dimensional.
(i1) Show that a compact Hausdorff space is zero-dimensional if and only if it
is totally disconnected (Use Exercise 16.E.)
(iii) Show that every open subset of a locally connected space is locally
connected.
(iv) Let X be a locally connected space. Prove that every connected component
of X is open.



CHAPTER

19.1

19 Countable Sets

If X is the set of people I want to invite for dinner and Y is the set of my
chairs, then it is important for me to know whether X and Y have the

same size. The obvious way to find out is to count them.

But whatifX and Y are infinite sets? Does it make sense, for example, to
ask whether there are as many positive integers as they are real numbers
in the interval [0, 1]? At first sight, it might seem that nothing can be said

except that both N and [0, 1] have infinitely many elements.

19.2

Georg Cantor took a different view. Even for finite sets, counting is a
brute-force method that is not always the natural one. Suppose X and Y

consist of the left and the right legs of a millipede,

295
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or X is the set of all prime numbers less than 10° and Y is the set of their
squares. Then, we see at a glance that X and Y are equally numerous, sim-
ply by pairing each element of X with one element,of Y. Mathematically

.-

speaking, we make a bijective map of X onto Y:

Extending this idea to infinite sets, Cantor proposed to call two sets
equipollent if there exists a bijective map between them and to interpret
equipollency of sets as their “having the same size”

It then becomes a nontrivial question whether N and [0, 1] “have the
same size” and, interestingly, it turns out that they do not: [0, 1] is strictly
“larger” than N. [See Example 19.5(iii).] Thus, Cantor’s definition enables

us to distinguish various kinds of infinity!

19.3
It leads to unexpected phenomena.
Let E be the set of all squares of positive integers:

E:={1,4,916,...).

Centuries before Cantor, Galileo had already pointed out that although E
seems much smaller than N, there exists a bijection between them:

1 2 3 4

¢ T ¢ ¢
1 4 9 16

In a similar way, the interval (0, 1) is only a small portion of (0, c0), but
the formula

X
X >

0 1
1= 0<x<1

establishes a bijection between them: (0, 1) and (0, oo) are “equipollent”
The following picture illustrates the situation:
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X
1-x

In this sense, “equipollency” does not reflect our intuitive idea of
“equal size! Nevertheless, the mathematical world has, after a consid-
erable struggle, accepted Cantor’s suggestion. Equipollency has become
an important concept.

This section of the book considers in particular sets that are equipollent
with the set N of all positive integers.

19.4
An "enumeration” of a set X is an arrangement of the elements of X into
a finite or infinite sequence

Xy1,%2,...

without repetitions. More formally, the definition runs as follows.
First we define the initial intervals of N to be

o Nitself,
o the empty set, and
e thesets{1,2,...,n} wheren ¢ N.

An enumeration of a set X is a bijective map of some initial interval of
N onto X. Such a bijection f effectively puts the elements of X into a
sequence without repetitions:

A2, . ...

A set X is called countable (or enumerable) if there exists such an enu-
meration, i.e., if X is equipollent with some initial interval of N. Other
sets are uncountable. We may distinguish two types of countable sets:

o the finite sets (e.g., the empty set);
o the sets that are equipollent with N itself. These are said to be countably
infinite.

If X and Y are equipollent sets and one of them is countable, then so
is the other. Every pair of countably infinite sets is equipollent.
Examples 19.5

(i) Trivially, N is countably infinite. By Galileo's paradox, the set of all
squares of positive integers is countably infinite. So is the set Z of all
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(i)

(iid)

(i)
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integers, as one sees from the formula
Z=1{0,1,-1,2,-2,3,-3,...}.
More formally, one can define f : N — Zby
fn) = g if n iseven,

fn) = 1—_2_—72 if n is odd,

and show that f is a bijection.

Finite sets are not countably infinite, of course. More interesting is
the observation (also due to Cantor) that the collection P(N) of all
subsets of N is not countable. The proof of this statement is so simple
that it leaves one with a feeling of being cheated: Suppose there is a
bijection f of N onto P(N). Consider the set

A:={neN:n¢éfn).

Take any positive integer n. If n € f{n), thenn € A ;30 A # fin);ifn €
fln), thenn & A, and again A # f(n). Thus, for every positive integer
n, we obtain A # f(n). But then, f is not surjective. Contradiction!
Observe that the injectivity of f has not played a role. We have
actually proved that no map N — P(N) can be surjective.
In a similar way, we show that the interval [0,1] is uncountable by
proving that there is no surjection of N onto [0, 1]. Let f : N — [0, 1];
we will obtain an element of [0, 1] that is no value of f.
First, choose a subinterval [a;, b;] of [0, 1] with

bi—a; <571, A1) €[m, 0]

If you see that this can be done, you will agree that there is a
subinterval [a3, b;] of [a1, 1] with

by—az <57%,  f2) € [az, b2),

and that we can continue and form a sequence of intervals
[0,1] D [a1, 1] D [az, b2] D -

such that for alln
bp—ay, < 57",  f(n) € [an, bn].

By Cantor’s Theorem, (2.19), there is a number ¢ that lies in every
[an, br). Then, ¢ € [0,1] and f(n) # c for all n, so that f cannot be
surjective.

Every subset of N is countable. Proof: Let X ¢ N. As every finite set
is countable, we may assume X is not finite. Then, for every finite
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subset Y of X the set X\Y is a nonempty subset of N, hence has a
smallest element (Exercise 2.F). Now define f : N — N as follows:

f(1) := the smallest element of X,

f(2) := the smallest element of X\{f{1)},

f(3) := the smallest element of X\(f(1), f(2)},
etc.

Then, f is an injection N — X; we are done if f is surjective. Suppose
peXandp ¢ {f(1), f(2),...}. Then for every n € N, we have

p € X\{f(1), 2),..., fin—-1)}
and therefore f{n) < p. Then, all values of f lie in the finite set
{1,2,...,p}. Contradiction.

Theorem 19.6
Let X and Y be sets; let X be countable. Then in each of the following situations
Y is countable:

() There exists an injective map ¥ — X.
(i) There exists a surjective map X — Y.

[1t follows from (i) that every subset of a countable set is countable.)
Proof
Choose a bijection f : I — X where I is a suitable initial interval of N.

(i) Letg : Y — X be injective.
Then f~! o g is an injection Y — N, hence a bijection Y — A where

A={f"ody):ycY)

Y and A are equipollent and A is countable [Example 19.5(iv)]; then
sois Y.
(ii) Let h : X — Y be surjective.
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ho fisasurjection] — Y.Definej: Y — I by

j(y) := the smallest element of {n € I : (h o j)(n) = y}.
Then j is an injection of Y into the countable set I, so Y is countable
by (i) of this theorem. L

Example 19.7
N x N, the set of all pairs (m,n) with mn € N, is countable. Indeed, the
formula

(m, n) —> 273"

establishes an injection N x N — N,

The following diagram suggests an enumeration of N x N (that has
nothing to do with the injection we just mentioned):

11) (1.2) 1,3) (1,4)
yd S
/ / e e
(2 1 (2,2) 23) (2,49
(3 1) (3,2) (3:3)
(4 1) (4,2)
(5,1)
Theorem 19.8

If each of the sets X1,X>, . . . is countable, then so is their union.

Proof
For each n, choose an initial interval I,, of N and a bijection f,, : I, = X,.
DefineJ] ¢ N x Nby

J={n1:iel)
and define g : ] = U, ey Xn:
gn, 1) = fu(D) neN; iel).

As a subset of the countable set N x N, J is countable. Furthermore, g
is surjective. Hence, | J, .y Xn is countable according to Theorem 19.6(ii).
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(Note that g might not be injective, as the sets Xi, X3, ... might not be
pairwise disjoint.) B

Example 19.9
Q is countable. Indeed, for n € N let
Q= {% kel

Each Q, is countable, being equipollent with Z [see Example 19.5(i)] and
Q = UnEN Qn.

Extra: The Continuum Hypothesis

We have seen that [0, 1] is not countable. It follows that [0, 1] is not a subset
of any countable set, so that, e.g., R cannot be countable. Actually, R and
[0, 1] are equipollent. We can see that as follows.

For two sets, A and B, let us write

A=B

if A and B are equipollent. If A, B, and C are sets, A = B, and B = C, then
A = C.
It is not difficult to make a bijection (or even a homeomorphism)
between R and the interval (0, 1):
R = (0, 1).

Consider the function f : R — R defined by

H== (™m=123..),

) =x if x¢€({l, %, -13-,...}.
f is injective, so f{X) = X for every X C R. Now, f maps [0, 1] onto [0, 1)
and (0, 1] onto (0, 1). As, obviously, [0, 1) = (0, 1], we obtain

R=(0,1)=(0,1]=[0,1) = [0, 1].
Less simple, but still provable is:
R = P(N).
If A and B are sets, we put
A<B

if A is equipollent with a subset of B. Clearly, this is the case if and only
if there exists an injective map of A into B. Therefore,

A<B B<C = A<C
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A set A is infinite if and only if N < A.
A famous result in Set Theory is the Cantor-Schroeder-Bernstein
Theorem:

A<B B<A = A=B.

We outline a proof:
As A is equipollent with a subset of B, we may as well assume that A
is a subset of B. Let g be an injective map B — A. Define

C := B\A;
X:=CUg(C)Ugg(C) Vsglgle(CNV...;
= B\X.

Then X = C U g(X). The sets C and g(X) are disjoint, because g(X) C
g(B) ¢ A. Thus,

C,g(X) and Y are pairwise disjoint.

Now, g(X) = X. Asg(X)NY = GandXNY = g, it follows that g(X)UY =
XUY.Bu, gX)UY = (X\C)U (B\X) = B\C = 4, s0 A = B.

If X is an infinite subset of R, then N < X < R. The Continuum
Hypothesis (CH) is the statement:

Every infinite subset of R is equipollent with either N or R.

In other words: Every uncountable subset of R is equipollent with R itself.

For a longtime, one of the celebrated problems of Set Theory was: Isthe
Continuum Hypothesis true? In a famous lecture in 1900, David Hilbert
published a list of the most important problems of the mathematics of that
time. (Most have been solved since then.) His first question was about the
truth of the Continuum Hypothesis. The answer turns out to be yes and
no. Although CH might seem different in character from the Axiom of
Choice we discussed in Chapter 17, the situation is the same: In 1938,
Kurt Godel showed that CH is consistent with ZF and even with ZF + AC;
in 1963 Paul Cohen proved the same for the negation of CH. In ZF, the
Continuum Hypothesis is both irrefutable and unprovable!

The Continuum Hypothesis has curious consequences. We mention
one. To get its import you should realize that countable sets are really
very small in comparison with R. Indeed, if X is a countable subset of R,
then X\R is always equipollent with R itself. (If you own as many dollars
as there are real numbers, you may lose an infinite amount of money and
you will never know the difference.)

Sierpifiski has shown that the Continuum Hypothesis entails the
existence of a subset A of R? such that

for every horizontal line L the set L N A is countable,
for every vertical line M the set M\ A is countable.
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In other words, you can paint part of the plane red and the rest blue in
such a way that every horizontal line is almost entirely red and every
vertical line is almost entirely blue!

Further Reading
Smullyan, R., Satan, Cantor and Infinity, Alfred A. Knopf, New York 1992.



A Farewell to the
~ Reader

There are two classics that every budding topologist or analyst should take
in hand from time to time. These are the books by Kelley and Dugundji
listed in the “Literature!” In fact, these are the works that professional
mathematicians refer to, when needed, in their research papers. Kel-
ley’'s General Topology is intended for an education with Analysis in mind
primarily, while Dugundji's book also contains a treatment of Algebraic
Topology.

For examples and counterexamples of a rich variety of properties, there
is the book by Steen and Seebach: Counterexamples in Topology.

Gillman and Jerison's Rings of Continuous Functions pursues in
grandeur the interactions between topological properties of a space and
algebraic properties of the set of all continuous functions on it. Highly
recommended reading!

If you have become interested in Set Theory, there is no better place
to start reading than P. Halmos’ Naive Set Theory.

A subject we have occasionally come across is Algebraic Topology.
If you want to know more about it, consider the books by Rotman and
Greenberg and Harper mentioned in the Extra of Chapter 16.

For the historical development of mathematics, one should consult
the books by Bell and Kline but not without a warning: Bell's writing is
wonderful but not always reliable in its facts. The history of Topology does
not seem well researched. For a starting point to more information the
reader might want to consult the articles Topology: Geometric, Algebraic
by E. Scholz (pages 927-938 in Companion Encyclopedia of the History of
Philosophy of the Mathematical Sciences, Volume 2, Routledge Inc., London
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1994) and Thpology: Invariance of Dimension by Joseph W. Dauben (pages
939-946 in the same Encyclopedia).

Once you have come as far as the end of this book, assuming you have
enjoyed the journey, you will enjoy every new (and old) issue of the Amer-
ican Mathematical Monthly and the Mathematical Intelligencer. The authors
of this book consider these their favorite journals. As to the present book,
they were particularly inspired by recent proofs of the Jordan Closed
Curve Theorem [Monthly 91, (1984), 641-643], Zorn's Lemma from the
Axiom of Choice [Monthly 98, (1991), 353-354], Tychonoff's Theorem
[Monthly 99, (1992), 932-934] and an example of a nowhere differentiable
continuous function [Monthly 98, (1991), 411-416].
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Index of Symbols

X, —> 4
im0

= (definition)

A\B

14,1

fla (restriction)

e

o (composition)

flA) (image)

X1, X3, . .. (sequence)
(®n)nen (Sequence)
(%s)ses (family)

A x B (product of sets)
=, &= (implication)
V,A (maximum, minimum)
[ ](nteger part)

sup, l.u.b. (supremum)
inf, g.1lb. (infimum)
(3)1,(¥)2 (coordinates)
y* (image of curve)

A (unit disk)

§ (unit square)

I" (unit circle)

(X, d) (metric space)

dg (Buclidean metric)

llixll (ength)

1.9, 3.15, 5.8
1.9, 4.16
1.14(0)
1.14(i)
1.14(iv)
1.14(v)
1.14(vi)
1.14(viii)
1.14(ix)
1.14(%)
1.14(x)
1.14(x%)
1.14(xi)
1.14(xii)
2.4

2.7

2.14

2.E

3.14

4.6, 16.5
4.19

4.19

4.A

5.2
5.3(1), 5.3(iii)
5.3(iii)
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{x, y) (inner product)
P(N) (subsets of N)

dy (trivial metric)

B, (a),B(a; 1) (ball)

dy (induced metric)

doo (uniform metric)

0A (boundary)

C (Cantor Set)
AEaaC B

UaeNe

f~1(A) (inverse image)
clo(4),A™ (closure)
int(A),A° (interior)
diam Y (diameter)

I%°(8) (bounded functions)
Ifloo

(T, >) (directed set)

x; — a (convergent net)
F(8) (functions on §)

w* (w-open sets)

o" (finite intersections)
wy (relative topology)
Gr (graph)

Y K Z (Y™ C 2%

C, (component)

Py (path component)

AI

[ie; Ai (Cartesian product)

Index of Symbols

5.3(iii)

5.3(v)

5.3(vi)

5.4(i1)

5.4(v)

5.E, 8.4

6.2, 11.6, 12.10
6.10

6.11

6.12

6.22

6.25, 11.16, 12.7
6.25, 11.16, 12.7
7.2

8.2

8.2

10.6
10.9,11.1,12.5
11.2(v)

11.9

11.24

12.20

14.C

15.3

16.12

16.16

17.2

17.2
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Absolute value metric, 5.3(i)

Adherent, 2.15, 6.2, 11.5, 12.5

Algebra, Main Theorem of,
4.D

Archimedes-Eudoxus Axiom,
2.6

Argument, 4.22

Axiom of Choice, 17(Extra)

Baire Category Theorem, 7.9,
7.10, 15.17

Ball, 5.4(ii)

Banach's Contraction
Principle, 7.14

Banach's Fixed Point
Theorem, 7.14

Banach-Tarski Paradox,
13(Extra)

Base, 11.20, 12.11

Bolzano-Weierstrass Theorem,
3.8

Bottle, Klein, 14.17

Bound, finitely, 9.13

Bound, upper, 2.12

Boundary, 6.2, 11.6, 12.10

Bounded (function, sequence),
3.7,3.17, 8.2

Bounded (set) 7.2

Bounded, totally, 9.9

Brouwer's Fixed Point
Theorem, 4.20

Cantor, 19.2

Cantor Set, 6.10

Cantor Theorem, 2.19

Cartesian distance, 3.14

Cartesian product, 1.14(xi),
17.2

Category (first, second), 7.11

Cauchy sequence, 7.2

Clopen, 16.E

Closed (curve), 4.6

Closed (set), 6.3, 11.6, 12.3

Closed, sequentially, 6.8

Closed unit disk, 4.19

Closed unit square, 4.19

Closure, 6.25, 11.16, 12.7

Closure operator, 18.3

Cluster point, 13.11

Compact, 13.2, 13.14
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Compact, sequentially, 3.23,
9.1,13.1

Compactification, 18.7

Compactification, Alexandroff,
18.G

Compactification, one-point,
18.G

Compatible, 11.3

Complete, 7.5

Completely regular, 18.5

Completion, 8.13

Component (of a topological
space), 16.12

Component, path, 16.16

Component function, 4.4

Composite map, 1.14(viii)

Connected, 16.1

Connected, locally, 18.8

Connected, path, 4.27, 16 5

Connectedness Theorem, 2.17

Continuous, 1.7, 3.19, 3.22,
4.2, 4.13, 5.6, 11.14, 12.17

Continuous, jointly, 10.3(ii)

Continuous, separately, 3.H

Continuous, sequentially,
3.22, 5.6

Continuous, uniformly, 3.12

Continuum Hypothesis,
19(Extra)

Contraction, 7.13

Contraction Principle,
Banach’s, 7.14

Converge(nt), 1.9, 3.15,
5.4(ii), 10.9, 11.6, 12.5, 18.2

Converge pointwise, 8.1, 12.15

Converge uniformly, 8.4

Countable, 19.4

Countable base, 18.4

Countably compact, 18.6

Countably infinite, 19.4

Cover, 9.8

Curve, 4.6, 16.5

Curve, closed, 4.6

Curve, Hilbert, 4.8

Index of Terms

Curve, Jordan, 4.9
Curve, Peano, 4.8
Curve, point, 4.6

Dedekind Axiom, 2.9
Deformation, 16(Extra)
Dense, 6.M, 7.8, 12.1
Dense, nowhere, 7.11
Diameter, 7.2

Directed set, 10.6
Direction, 10.6
Disconnected, totally, 18.8
Discrete topology, 12.2(ii)
Disk, closed unit, 4.19
Distance, Cartesian, 3.14
Distance function, 5.2

End point, 16.5

ntire part, 2.7

Enumerable, 19.4

Enumeration, 19.4

Equipollent, 19.2

Euclidean metric, 5.3(i),
5.3(iif)

Euclidean topology, 12.2(i)

Extension Theorem,
Tietze-Urysohn 15.15

Family, 1.14(x)

Filter, 18.2

Finite intersection property,
9.13

Finitely bound, 9.13

First axiom of countability,
18.4

First category set, 7.11

First countable, 18.4

Fixed point, 4.20

Fixed Point Theorem,
Banach’s, 7.14

Fixed Point Theorem,
Brouwer’s, 4.20

Four Color Problem, 12(Extra)

Function, 1.14(jii)



Index of Terms

Galileo, 19.3

Generated (topology), 12.12

Glue Lemma (first version),
12.23

Glue Lemma (second version),
12.G

Graph, 6.A

Hahn-Tong Interpolation
Theorem, 15.13
Halfline Theorem, 2.11
Hausdorff metric, 8.D
Hausdorff property, 13.18
Hausdorff space, 13.18
Heine-Borel Theorem, 13.3
Hilbert Cube, 12.C
Hilbert Curve, 4.8
Homeomorphic, 4.17, 12.19
Homeomorphism, 4.17, 12.19
Homotopic, 16(Extra)
Homotopy, 16(Extra)

Implication arrow, 1.14

Increasing sequence, strictly,
3.2

Indicator, 1.14(iv)

Indiscrete topology, 12.2(iii)

Induced metric, 5.4(v)

Induced topology, 12.20

Induction Principle, 2.5

Inductive relation, 10.6

Inequality, Schwarz', 5.3(iii)

Inequality, Triangle, 5.2

Infimum, 2.E

Initial interval of N, 19.4

Initial point, 4.6

Inner product, 5.3(iii)

Integer part, 2.7

Interior (of a set), 6.3, 6.25,
11.16, 12.7

Interior (point), 12.9

Intermediate Value Theorem,
2.18
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Interpolation Theorem,
Hahn-Tong, 15.13

Intersection (of collection of
sets), 6.12

Intersection property, finite,
9.13

Inverse image, 6.22

Isolated point, 7.G

Isometry, 5.4(vii)

Isomorphic (metric spaces),
5.4(vii)

Joint continuity, 1.3(ii)
Jordan Closed Curve

Theorem, 4.11, 4.28, 16.19
Jordan curve, 4.9

Klein bottle, 14.17
Knots, 10(Extra)
Koenigberg bridges, 1(Extra)

Lakes of Wada, 4(Extra)

Large (“for large "), 10.8

Least Upper Bound Theorem,
2.13

Length, 3.14

Limit, 1.9, 5.4(iii), 10.9, 11.1,
12.5

Lindeléf, 18.6

Lipschitz (condition), 5.9(ii)

Locally compact, 18.6

Locally connected, 18.8

Locally path connected, 18.8

Locally uniformly, 11.A

Lower bound, 2.E

Lower semicontinuous, 15.10

Lump, 11.1

Main Theorem of Algebra, 4.D
Maltese Cross, 14.E
Maximal (set), 17.8
Mazur game, 7(Extra)
Meager, 7.11



312

Metric, 5.2
Metric, absolute value, 5.3(i)
Metric, Euclidean, 5.3(i),
5.3(iif)
Metric, Hausdorff, 8.D
Metric, induced, 5.4(v)
Metric, tan™, 5.3(ii)
Metric, 10-adic, 5.5(v)
Metric space, 5.2
Metrizable, 12.2(i)
Metrization Theorem,
Urysohn, 15.16
Moebius strip, 14.15

Neighborhood, 12.9
Net, 10.7

Nonstandard, 15(Extra)
Normal, 15.4, 18.5
Nowhere dense, 7.11

One-point compactification,
18.G
Open, 6.3, 11.6, 12.3

p-adic number, 9(Extra)

Partition, 10.5

Path component, 16.16

Path connected, 4.28, 16.5

Path connected, locally, 18.8

Peano curve, 4.8

Peano Theorem, 4.7

Perron-Frobenius Theorem 4.F

Plus Minus, 14.E

Plus plane, 14.E

Point curve, 4.6

Pointwise convergence, 8.1,
10.3, 12.15,17.4

Pointwise convergence,
topology of, 12.15

Precompact, 9.9

Product, Cartesian, 1.14(xi),
17.2

Product topology, 14.7, 17.3

Index of Terms

Projective plane, 14.G
Pseudocompact, 18.6
Pseudometric, 11.A

Quotient topology, 14.14

Radius, 5.4(ii)

Regular, 18.5

Regular, completely, 14.B, 18.5
Relative topology, 12.20
Restriction, 1.14(v)
Restriction topology, 12.20

Schwarz' Inequality, 5.3(iii)

Second axiom of countability,
18.4

Second category set, 7.11

Second countable, 18.4

Second Triangle Inequality
5.4()

Semicontinuous, 15.10

Separable, 18.4

Separate continuity, 3.H, 10.3

Separation by continuous
functions, 15.1, 15.H

Sequence, 1.9, 1.14(x)

Sequence, Cauchy, 7.2

Sequentially closed, 6.8

Sequentially compact, 3.23,
9.1, 13.1

Sequentially continuous, 3.22,
5.6

o-compact, 18.6

Similar (metrics), 6.20

Singleton, 11.2

Space, metric, 5.2

Space, topological, 12.1

Sphere, unit, 5.3(iv)

Square, closed unit, 4.19

Stone-Cech compactification,
18.7

Strictly increasing sequence,
3.2
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Strictly stronger (weaker)
topology, 12.19

Stronger topology, 12.19
Stronger topology, strictly,
12.19
Subbase, 11.26, 12.12
Subcover, 9.8
Subnet, 13.9
Subsequence, 3.2, 3.17
Subspace topology, 12.20
Sum-metric, 5.H
Supremum, 2.14
Surface, 14(Extra)

T;-Space, 18.5

T2-Space, 18.5

Tail (of a sequence), 1.9,
5.4(iii)

tan™! metric

Ten-adic metric, 5.6

Tietze-Urysohn Extension
Theorem, 15.15

Topological space, 12.1

Topologist’'s comb without
zero, 15.7

Topology, 11.12, 12.1

Topology, Euclidean, 12.2(i)

Topology, product, 14.7, 17.3

Topology, quotient, 14.14

Topology, weak, 14.3

Torus, 14.9(iii)

Totally bounded, 9.9
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Totally disconnected, 18.8

Transitive relation, 10.6

Triangle Inequality, 5.2

Triangle Inequality, Second,
5.4(i)

Trivial metric, 5.3(vi)

Trivial topology, 12.2(iii)

Twixt, 4.12

Tychonoff's Theorem, 17.5

Uncountable, 19.4

Uniform continuity, 3.12

Uniform convergence, 8.4

Union (of collection of sets),
6.12

Unit disk, closed, 4.19

Unit sphere, 5.3(iv)

Unit square, closed, 4.19

Upper bound, 2.12

Upper semicontinuous, 15.10

Urysohn's Lemma, 15.7

Urysohn's Metrization
Theorem, 15.16

Weak topology, 14.3

Weaker topology, 12.19

Weaker topology, strictly,
12.19

Winding number, 4.22

Zero-dimensional, 18.8
Zorn's Lemma, 17.7, 17(Extra)



