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Preface

This is a textbook suitable for a year-long course in analysis at the ad-
vanced undergraduate or possibly beginning-graduate level. It is intended
for students with a strong background in calculus and linear algebra, and
a strong motivation to learn mathematics for its own sake. At this stage
of their education, such students are generally given a course in abstract
algebra, and a course in analysis, which give the fundamentals of these two
areas, as mathematicians today conceive them.

Mathematics is now a subject splintered into many specialties and sub-
specialties, but most of it can be placed roughly into three categories: al-
gebra, geometry, and analysis. In fact, almost all mathematics done today
is a mixture of algebra, geometry and analysis, and some of the most in-
teresting results are obtained by the application of analysis to algebra, say,
or geometry to analysis, in a fresh and surprising way. What then do these
categories signify? Algebra is the mathematics that arises from the ancient
experiences of addition and multiplication of whole numbers; it deals with
the finite and discrete. Geometry is the mathematics that grows out of
spatial experience; it is concerned with shape and form, and with measur-
ing, where algebra deals with counting. Analysis might be described as the
mathematics that deals with the ideas of the infinite and the infinitesimal;
more specifically, it is the word used to describe the great web of ideas
that has grown in the last three centuries from the discovery of the differ-
ential and integral calculus. Its basic arena is the system of real numbers,
a mathematical construct which combines algebraic concepts of addition,
multiplication, etc., with the geometric concept of a line, or continuum.

There is no general agreement on what an introductory analysis course
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should include. I have chosen four major topics: the calculus of functions
of one variable, treated with modern standards of rigor; an introduction
to general topology, focusing on Euclidean space and spaces of functions;
the general theory of integration, based on the concept of measure; and the
calculus, differential and integral, for functions of several variables, with
the inverse and implicit function theorems, and integration over manifolds.
Inevitably, much time and effort go into giving definitions and proving
technical propositions, building up the basic tools of analysis. I hope the
reader will feel this machinery is justified by some of its products displayed
here. The theorems of Dirichlet, Liouville, Weyl, Brouwer, and Riemann’s
Dirichlet principle for harmonic functions, for instance, should need no
applications to be appreciated. (In fact, they have a great number of ap-
plications.)

An ideal book of mathematics might uphold the standard of economy
of expression, but this one does not. The reader will find many repetitions
here; where a result might have been proved once and subsequently referred
to, I have on occasion simply given the old argument again. My justification
is found in communications theory, which has shown mathematically that
redundancy is the key to successful communication in a noisy channel. I
have also on occasion given more than one proof for a single theorem; this
is done not because two proofs are more convincing than one, but because
the second proof involves different ideas, which may be useful in some new
context.

I have included some brief notes, usually historical, at the end of each
chapter. The history is all from secondary sources, and is not to be relied
on too much, but it appears that many students find these indications of
how things developed to be interesting. A student who wants to learn the
material in the early chapters of this book from a historical perspective will
find Bressoud’s recent book [1} quite interesting.

While this book is meant to be used for a year-long course, I myself have
never managed to include everything here in such a course. A year and a
half might be reasonable, for students with no previous experience with
rigorous analysis. In different years, I have omitted different topics, always
regretfully. Every topic treated here meets one of two tests: it is either
something that everybody should know, or else it is just too beautiful to
leave out. Nevertheless, life is short, and the academic year even shorter,
and anyone who teaches with this book should plan on leaving something
out. I expect that most teachers who use this book might also be tempted
to include some topic that I have not treated, or develop further some
theme that is touched on lightly here.

Those students whose previous mathematical experience is mostly with
calculus are in for some culture shock. They will notice that this book is
only about 30% as large as their calculus text, and contains about one-tenth
as many exercises. (So far, so good.) But it will quickly become clear that
some of the problems are quite demanding; I believe that (certainly at this
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level) more is learned by spending hours, if necessary, on a few problems,
sometimes a single problem, than in routinely dispatching a dozen exercises,
all following the same pattern. I hope the reader is not discouraged by
difficulty, but rewarded by difficulty overcome.

This book consists of theorems, propositions, and lemmas (these words
all mean the same thing), along with definitions and examples. Most of
these are set off formally as Theorem, Proposition, etc., but some defini-
tions, examples, and theorems are in fact sneaked into the text between the
formally announced items. I have been persuaded to number the Theorems,
Examples, Definitions, etc. by one sequence. Thus Example 4.4 refers to
the fourth item in Chapter 4, where an item could be either a Theorem,
Proposition, Lemma, Definition, or Example. It would have been more log-
ical to have it refer to the fourth example in this chapter, but it would have
made navigation more difficult.

One of the important things that one learns in a course at this level is
how to write a mathematical proof. It is quite difficult to prescribe what
constitutes a proper proof. It should be a clear and compelling argument,
that forces a reader (who has accepted previous theorems and understands
the hypotheses) to accept its assertions. It should be concise, but not cryp-
tic; it should be detailed, but not verbose. We learn to do it by imitating
models. Here are two models from ancient Greece. Throughout this book,
the symbol B will mark the conclusion of a proof.

Theorem. There are infinitely many primes.

Proof. If p;,p2,...,p, are primes, let N = p1py---p, + 1. Then N is not
divisible by any p;, j = 1,2,...,n, so either N is a prime, or N is divisible
by some prime other than p;,p,,...,pn. In either case, there are at least
n + 1 primes. |

Note that this proof assumes a knowledge of what a prime number is,
and a previously obtained result that every integer N > 1 is divisible by
some prime. Note also that the last sentence of the proof, omitted above,
might be either to the effect that the hypothesis that the set of all primes
can be listed in a finite sequence p;,pa,...,pn has led to a contradiction,
or that we have given the recipe for finding a new prime for each natural
number, so that the sequence 2, 3, 7, 43,..., can be extended indefinitely.

Theorem. The square on the hypotenuse of a right triangle is the sum of
the squares on the two shorter sides.

Proof. If the sides of the triangle are a, b, and ¢, with ¢ the hypotenuse,
then the square of side a + b can be dissected in two ways, as shown below.
Removing the four copies of the triangle present in each dissection, the
theorem follows. ]

This is one of the rare occasions when I would accept a picture as a
proof. (Having once heen shown the proof, by a carefully drawn diagram,
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Figure 0.1. The Pythagorean Theorem.

that every triangle is isosceles, 1 could never again believe that pictures
don’t lie.) In this argument, the picture is clear and convincing. By the way,
there are few pictures in what follows, and they are all simple and hand-
drawn, meant to serve as a guide to simple ideas that are (unfortunately
but necessarily) being expressed in awkward or complicated notation. I
would urge the readers (of this or any other mathematics) to make their
own sketches at all times, preferably crude and schematic.

Acknowledgments. It is impossible to list all the writers and individuals
who have influenced me in the writing of this book, but for me the model
of analysis textbooks at this level has always been Rudin’s Principles of
Mathematical Analysis [11). The second half of this book (which was written
first) was greatly influenced by Spivak's Calculus on Manifolds [13], the
first clear and simple introduction to Stokes’ theorem in its modern form.
I was fortunate to read in manuscript Munkres’ excellent book Analysis on
Manifolds [10] while I was writing that earlier version, and profited from
it.

Many students found typographical errors and other infelicities in the
class notes which formed the first version of the first half of the book, and
I want to thank especially Andrew Brecher, Greg Friedman, Ezra Miller,
and Max Minzner for their detailed examination, and their suggestions for
that part. Eva Kallin made many useful criticisms of an earlier version of
the notes on which the second half of this book is based. I am grateful
to Xiang-Qian Chang, who read the entire manuscript, and pointed out a
great number of rough places.

The mistakes that remain are all my own. I would appreciate hearing
about them.
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1

Real Numbers

In this chapter, we describe the system of real numbers, deducing some
of their essential properties from the axioms for a complete ordered field.
Before doing so, we take a quick look at the ideas and notations of sets,
relations, and functions, sketch the construction of the integers and the
rational numbers (starting from the natural numbers), and indicate the
need for a field larger than the rational numbers. At the end of the chapter,

we sketch the proof of the existence and (essential) uniqueness of a complete
ordered field.

1.1 Sets, Relations, Functions

We assume no knowledge of formal set theory, but do assume familiarity
with the basic notations and elementary calculations. Thus, z € A means
that z is an element of A, A C B (also written B D A) means that x € B
whenever z € A. The sets A and B are equal if and only if A C B and
B C A. For any sets A, B, the intersection AN B and the union AU B are
given by

ANB={z:z€Aandz€ B}, AUB={z:z€ Aorze€ B},

where the “or” above is the nonexclusive “or,” that is, is understood to
mean “and/or.” The relative complement A\B is defined by

A\B={r:r€ Aand z ¢ B}.
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Here, £ ¢ B means that z is not an element of B; similar notations, such
as z # y or £ £ y, will be used later without comment. More generally, if
& is a collection of sets, i.e., a set whose elements are sets, we write

ﬂ A={z:z€ Aforevery A€ &},
Aca

U A={z:z € A for some A € &}.
Aca

The empty set @ has no elements; it enjoys the property @ C A for every
set A. When all the sets currently under consideration are subsets of some
set X (which will always be the case in what follows), we often write A
to stand for X\ A, and call it the complement of A. We will often make use
of the formulas

(=) - (=) -y

a€A a€A a€EA a€A

known as DeMorgan’s laws.

If X and Y are sets, their Cartesian product X x Y is the set of all
ordered pairs (z,y) with z € X and y € Y. The set of all subsets of a set X
is called the power set of X, and denoted by 2(X). We observe that 2(0)
is not empty; it has exactly ane element, @, and has two distinct subsets,
namely, 0 and {0}.

While the reader is undoubtedly familiar with the real and complex num-
bers, in this book we assume only the existence, and the familiar properties,
of the set N = {1,2,...} of natural numbers. We will show, at least in out-
line, how the more complicated number systems arise from N.

Given sets X and Y, a relation from X to Y is a subset R of X x Y.
We say R is a relation on X if Y = X. We write zRy if (z,y) € R. Three
kinds of relations have frequent applications.

1. A relation ~ on X is called an equivalence relation if it satisfies the
three conditions:

(a) forallz e X, z ~ z;
(b) if z ~ y, then y ~ z; and
(c)ifz~yand y ~ z, then z ~ z.

These properties are called reflerivity, symmetry, and transitivity, in
that order. The simplest example is of course the relation of equality.
If ~ is an equivalence relation on X, it partitions X into equivalence
classes: for each z € X, let C; = {y € X : y ~ z}. We call C; the
equivalence class of z. Since z € C; by (a), we see that X is the
union of all the equivalence classes. If there exists z € C; N C,, then
z ~ z and z ~ y; since this implies y ~ z by (b) and hence y ~ z
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by (c), we obtain y € C.. Another application of (c) shows that if
u ~ y, then u ~ z, i.e., that C; C C;. In the same way, C; C C,, so
C; = C,,. We summarize: either C; and C, are disjoint, or C; = Cy,.
Thus the distinct equivalence classes form a disjoint family of sets
whose union is X. It is common practice to denote the equivalence
class of an element z by [z], rather than C;.

. Arelation < on X is called a partial order if it satisfies two conditions:

(a) it is transitive, i.e., £ < y and y < 2 implies z < z; and
(b) forallz € X, z £ z.

When (a) holds, it is easily seen that (b) is equivalent to antisymme-
try if £ < y, then y £ z. A relation < on X is called a total order
if it is a partial order, and satisfies the further condition: for any =
and y in X, either z < y or y < = or £ = y (trichotomy). In view
of (a) and (b), these alternatives are mutually exclusive, so exactly
one of them holds. An example of a partial order is the relation of
proper inclusion on any family of sets. When < is a partial order on
X, we write x < y to mean that either £ < y or r = y. Some writers
define a partial order to be a relation < which is transitive and has
the property that z < y and y < z together imply that x = y; given
such a relation, one can define z < y to mean that z < y and = # y,
and find that < is a partial order in our sense.

. A relation f from X to Y is called a function if for each z € X
there is exactly one y € Y such that zfy. We write y = f(z), or
sometimes y = f,, to mean z fy. This definition of a function identifies
a function with its graph, and so furthers the program, popular among
mathematicians in this century, that all mathematical objects should
be sets. In practice, of course, almost everybody thinks of a function
from X to Y as a rule f which assigns to each £ € X an element
f(z) of Y. One never uses the relation notation zfy in respectable
society when f is a function. We write f : X — Y to mean that f
is a function from X to Y; here, X is called the domain of f, and
{f(z) : z € X} is called the range of f, or the image of f. We note
that the range of f is to be distinguished from the target space Y
of f. We say that f is surjective, or onto, if the image of f is all
of Y, and we say that f is injective, or one-one, if f(z) = f(y)
only when z = y. A function which is both surjective and injective
is called bijective. A bijective function is also referred to as a one-
to-one correspondence. The words map and mapping are synonyms
for function. We often use the notation f : £ — f(z). For instance,
f : n— n? is another way of saying that f is the function for which
f(n) = n?; the notation here suggests that the domain of f is either
the set of integers, or some subset of that set. A function z : N — X
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is also called a sequence in X; here, it is standard practice to use
the notation z, instead of z(n). If E: A — 2(X) is a function, we
speak of an indexed family of subsets of X; we usually write a — E,,
in this situation. When A = N, this means a sequence of subsets of
X. The symbols | J,c 4 Ea and ()¢ 4 Ea have the obvious meanings;
when A = N, it is customary to write | J,., En and (), E, instead.

1.2 Numbers

We are familiar with the set of natural numbers N. This set comes with an
algebraic structure and an order relation. That is, there are two operations
that assign a natural number to any given pair of natural numbers (i.e.,
maps of N x N — N), called addition and multiplication, and they have
familiar formal properties such as m + n = n + m for every m,n € N, etc.
There is also an order relation on N: we say m < n if there exists k € N
such that m + k = n. We emphasize the following property of this order
relation:

if A is a nonempty subset of N, then A has a least element,;
i.e., there exists a € A such that a <n for alln € A.

This fact, described technically by the phrase “N is well-ordered,” and
which is easily seen to imply that N is totally ordered by <, is easily seen
to be equivalent to the following, known as the principle of finite induction:

Let A be a subset of N, satisfying the two conditions: (a) 1 € A;
and (b) ifn€ A, thenn+ 1€ A. Then A=N.

A variant of this is equivalent, and sometimes convenient:

Let A be a subset of N, satisfying the two conditions: (a) 1 € A;
and (b’) if k € A for all k € N with k < n, thenn € A. Then
A=N.

The principle of induction is essential in proving many theorems, and we
assume at least some familiarity with this procedure.

The set Z of integers is sometimes obtained from N by the following
procedure. Let Z be the set of all ordered pairs (m,n) of natural numbers,
i.e.,, let Z =N x N. Define a relation ~ on Z by declaring (m,n) ~ (j, k)
if and only if m + k = n + j. This is easily seen to be an equivalence
relation. We define [m,n] to be the equivalence class of (m.n) for each
(m,n) € Z, and denote by Z the set of all such equivalence classes. We
give the name sntegers to the elements of Z. We define addition in Z by
[m,n] + [j,k] = [m + j,n + k]; to see that this makes sense, it must be
verified that if (m,n) ~ (m’,n’) and (j,k) ~ (j/, k'), then (m + j,n + k) ~
(m’ + j',n’ + k'), but this is very easy. We define multiplication in Z by
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the rule: [m, n|[j, k] = (mj + nk,nj + mk]. We define an order relation in
Z by (m,n] < [j, k] if and only if m + k < j + n. (We use the same symbol
here for the order relation in N and the order relation in Z, even though
this is not really correct; correctness can carry a high price in notation, and
finally even in comprehension.) Again, for the multiplication and for the
order relation to be well-defined, it must be verified that the definitions
yield the same result independent of the choice of representative for the
equivalence class. For any m € N, (m,m) ~ (1,1); we denote [1, 1] by 0.
We observe that for any m,n € N, [m,n] + [n,m] = [m + n,n + m| =
[1,1) = 0. If m > n there is some k € N with m = k + n, and we see that
(m,n) ~ (k + 1,1); similarly, if n > m, there is some k € N such that
(m,n) ~ (1,k+1). The map ¢ : k— [k + 1,1] of N — Z is injective, and
preserves all the structure of N. By this we mean that for all j,k € N, we
have ¢(5 + k) = ¢(j) + #(k), ¢(jk) = #(j)¢(k), and that if j < k, then
¢(3) < ¢(k). In other words, N’ = {[k + 1,1] : k € N} is an exact replica
of N; we have N’ = {2z € Z : z > 0}, the set of all positive integers. We
say that the map ¢ is an isomorphism of N onto N’. Henceforth, we shall
identify N with N’, i.e., regard N as a subset of Z. We write k to mean
[k +1,1], and —k for {1,k + 1].

This somewhat elaborate construction of Z was geared toward the result:
for any a,b € Z, there exists a unique ¢ € Z such that a = b+ c. An
analogous path lets us construct the rational numbers. We want to expand
the integers to a system which not only has addition, subtraction, and
multiplication, but division as well, i.e., where the equation az = b has a
solution z for any given a and b, provided a # 0. We let Q denote the set of
all ordered pairs (m, n) of integers such that n # 0, i.e., @ = Z x (Z\{0}).
We define a relation ~ on Q by the rule (m,n) ~ (j, k) means mk = nj. We
verify this is an equivalence relation, and let Q be the set of equivalence
classes. We call Q the set of rational numbers. We write m/n or 2 to denote
the equivalence class of (m,n). We make the definitions: (m/n)(j/k) =
(mj/nk), (m/n) + (j/k) = (mk + nj)/nk, and (m/n) < (j/k) if and only
if mk < nj when n and k are positive. We can verify that these definitions
make sense: they are independent of the choice of (m,n) in the equivalence
class m/n, etc., and for the order relation, we note we can always choose
n > 0 in writing an element of Q as m/n. Again, we observe that the map
m — m/1 is an injective mapping of Z into Q, which preserves all the
structure of Z. We henceforth identify Z with the subset {(m,1) : m € Z}
of Q. The construction of Q was engineered in view of the goal: for any
a,b € Q, with a # 0, there exists a unique ¢ € Q with ac = b.

It is frequently useful to use the “best” representation of a rational num-
ber, i.e., to write it as a quotient of integers without common factor. We
illustrate induction arguments by proving this can be done. Given q € Q,
consider

{keN:q=m/k for some m € Z} = {k € N: kq € Z}.



6 1. Real Numbers

This is a nonempty subset of N, hence contains a smallest element n. In
the representation ¢ = m/n, m and n have no common factor greater than
1; for if m = ij and n = kj, with j € N, j > 1, we would have q = i/k,
though k < n, which is impossible. If also m € N and mq € Z, it is easy
to see that m is an integer multiple of n.

1.3 Infinite Sets

A set F is said to be finite if for some n € N there exists a bijective
mapping ¢ from {1,2,...,n} to F. The natural number n here is uniquely
determined, and we call it the cardinality of F, written either as card F or
as #F.1f ¢ : j — z;, we have F = {z,,z,,...,2,}. We also call the empty
set finite, and assign it cardinality 0. If a set is not finite, it is infinite. If X
is an infinite set, there exists an injective mapping of the natural numbers
N into X. If there exists a bijective map of N onto X, we say that X is
countably infinite. Thus, X is countably infinite if and only if its elements
can be listed in an infinite sequence: X = {z,,z3,...}. We call a set E
countable if it is either finite or countably infinite; if X is infinite but not
countable, we say X is uncountable. If X is countably infinite, we also write
card X = Ry, pronounced “aleph naught.” We give just a few results about
countability.

1.1 Proposition. Every subset of N is countable.

Proof. Suppose A is an infinite subset of N. Define ¢(1) to be the smallest
element of A; since A is infinite, it is nonempty, so ¢(1) is well-defined by
the fundamental property of N. Having defined ¢(n — 1), set ¢(n) to be
the smallest element of {k € A: k > ¢(n — 1)}. Again, the set in brackets
is nonempty since A is infinite, so ¢(n) is well-defined. In this way, we
construct a map ¢ : N — A, and it is easy to check that this map is
bijective. ]

1.2 Corollary. Every subset of a countable set is countable.

1.3 Proposition. A set A is countable if and only if there exists an in-
jective map of A into N, if and only if there exists a surjective map of N
onto A.

Proof. It is trivial that if A is finite, there exists an injective map of A
into N and a surjective map of N onto A. Suppose that A is infinite. If
A is countable, there exists a bijective map g of N onto A, 80 f =g~ ! is
an injective map of A onto N. If there exists an injective map f of A into
N, then by the last proposition there exists a bijective map ¢ of f(A) onto
N, and then ¢ o f is a bijective map of A onto N, so A is countable. If
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g : N — Aissurjective, define f : A — N by taking f(a) to be the smallest
element of {n € N : g(n) = a}. It is easy to see that f is injective, so A is
countable. [ ]

1.4 Proposition. If A and B are countable, then so is A x B.

Proof. It suffices to prove this proposition for the special case A = B = N.
By Proposition 1.3, it suffices to produce an injective map f : N x N —
N. Let f be defined by f(m,n) = n + 2"*™. Then f is injective; for if
f(m,n) = f(j, k) with n > k, then we have

0<n—k=2k7_2mmcp,
and since n < 2" < 2™*™, we get from the above that
MM < KT < g A < gL,
It followsthgtn+m <k+j<n+m+1,s0n+m=k+j, and hence
n—k=2k+ —2n+m =0, Thus n =k, and m = j. ]

The more usual way to establish the last proposition is to list the elements
of N x N by listing in order the elements of the finite sets {(j, k) : j+k = n},
thus

(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3), (3,2),(4,1),...,
which gives a bijective map of N2 to N directly.

1.5 Corollary. The set Q of all rational numbers is countable.

Proof. The set Q is countable by Proposition 1.4 and Corollary 1.2, and
it follows from Proposition 1.3 that Q is countable.

1.8 Proposition. If A, is a countable set for each n € N, then A =
Ua2, An is countable.

Proof. For each n € N there exists a surjective map ¢, : N — A,,. Define
f : N2 = A by f(n,m) = ¢a(m). Then f is surjective, and since N? is
countable by Proposition 1.4, it follows that A is countable by Proposition
1.3.

1.7 Theorem. For any set A, there is no surjective mapping of A onto
P(A). In particular, if A is a countably infinite set, then P(A) is un-
countable.

Proof. Suppose that ¢ : A — P(A). Let B={a € A:a ¢ ¢(a)}. If
B = ¢(a) for some a € A, then a € B is impossible, since this would say
a € ¢(A), so a ¢ B. But also a ¢ B is impossible, since this would say
a ¢ ¢(A), so a € B. The only conclusion possible is that B # ¢(a) for
every a € A, so ¢ is not surjective. |
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1.8 Corollary. If X is the set of all mappings of N into {0,1}, i.e., all
sequences of zeros and ones, then X is uncountable.

Proof. For each A C N, let 14 : N — {0,1} be defined by 1,(n) = 1 if
n € A, and 14(n) = 0if n ¢ A. It is easy to check that the map A+ 1, is
a bijective map of 2(N) onto X, so it follows from the last theorem that
X is uncountable. ]

1.4 Incommensurability

The natural numbers are also called counting numbers; but from the ear-
liest historic times, they were used for measuring as well, for instance, for
measuring the length of a line segment. This application of course depends
on choosing a unit of length, and then marking off on the given line seg-
ment a sequence of subsegments of this unit length, these subsegments to
have only endpoints in common, while the segment to be measured is to
be the union of the subsegments. If this is impossible, i.e., if the last sub-
segment marked off extends beyond the endpoint of the original segment,
then hopefully a smaller choice of unit can rectify the situation. However,
it was discovered in classical Greece (ca. 400 B.C.) that there is no choice
of unit which makes the side and diagonal of a square simultaneously have
integral lengths: these quantities are incommensurable. The classical proof
cannot be improved:

Let s be the side, and let d be the diagonal of a square. Then
d? = 25? by the Pythagorean theorem. If s and d are integers,
then we may suppose them to have no common factor (in partic-
ular, we may suppose them to be not both even). But d? = 2s?
tells us that d? is even, and it follows that d is even (it is easy to
check that the square of an odd number is odd), so d = 2m for
some integer m. But then 2s2 = d?> = 4m?, whence 52 = 2m?,
80 82 is even, and hence s is even. This contradiction shows that
the hypothesis that d and s are integers is untenable. ]

This proof is remarkable in that the geometric hypothesis is reduced at
once to an algebraic one (d? = 2s?), and the rest of the argument is strictly
algebraic, or number-theoretic if you will: it is shown that the equation
z2 = 2 has no solution z in the rational numbers. Some readers may prefer
an argument whose methods are as geometric as possible. Here is such a
geometric proof:

Suppose that the side and diagonal of the square ABCD are
commensurable, so that for some choice of unit length the side
AB has length s and the diagonal AC has length d, where s and
d are integers. We shall produce another square, with strictly



1.4 Incommensurability 9

D C

A B R

Figure 1.1. Geometric proof of incommensurability.

smaller sides, whose side and diagonal also are integral. On the
diagonal AC of the square ABC D, mark off the point P which
is at distance s from A. Draw the line through P perpendicular
to AC, let Q be the intersection of this line with the side BC,
and let R be the intersection of this line with the line through
A and B. (See Figure 1.) We observe that the isosceles right
triangle AAPR is congruent to AABC, since each has sides
of length s. Hence the hypotenuse AR of AARP has length d,
and hence BR = PC = d — s. (We note that d — s < s, i.e.,
d < 23, since the line segment AC joining the points A and C
is shorter than the path made up of AB followed by BC.) But
BQ = BR, so CQ has length s — (d — s) = 2s — d, an integer.
Thus the isosceles right triangle ACPQ has a hypotenuse of
integral length, as well as sides which are of integral length
d — s, strictly smaller than those of AABC. Completing it to a
square, we have verified the claim made above. A repetition of
this construction, fewer than s times, leads to a contradiction,
since s < 1 is obviously impossible. |

The geometric proof above leads us to a different algebraic proof, perhaps
the shortest possible. We can argue as follows: if s and d are positive integers
with d? = 252, and s is the smallest possible, we consider m = d — s and
n = 2d — s. Since 8 < d < 23 is clear, we have 0 < m < s, and a quick
computation gives

n? = (25 — d)? = 48% — 4sd + d? = 2d® - 4sd + 25® = 2(d - 5)? = 2m?,

contradicting the minimality of s. This proof is indeed efficient, but rather
uncivil.
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The discovery of incommensurable quantities was a severe blow to the
Pythagorean program of understanding nature by means of numbers. (The
slogan of the Pythagoreans was “All is number.”) The Greeks developed
a sophisticated theory of ratios, presumably the work of Eudoxus, to work
around the problem that certain quantities, even certain lengths, could not
be reduced to numbers, as then understood. This theory anticipates the

development of the real number system by Dedekind and Cantor in the
nineteenth century.

1.5 Ordered Fields

In this section, we describe the formal properties that the set of rational
numbers possesses, along with one useful property that it lacks.

1.9 Definition. A field is a set K, containing at least two elements, to-
gether with two mappings of K x K — K called addition and multiplication,
and written (a,b) — a + b and (a,b) — ab, respectively, with the following
properties:

1. for alla,b,ce K, (a+b)+c=a+ (b+c);

2. for alla,be K,a+b=>b+a;

3. for all a,b € K, there exists ¢ € K such that a + c = b;
4. for all a,b,c € K, (ab)c = a(bc);

5. for all a,b € K, ab = ba;

6. for all a,b € K such that a + b # b, there exists ¢ € K such that
ac =b; and

7. for all a,b,c € K, a(b+ c) = ab+ ac.

The reader can observe that the first three properties refer only to ad-
dition, the next three only to multiplication, while the last connects the
two operations. The first and fourth are known as the associative laws, the
second and fifth as the commutative laws, and the last as the distributive
law. We now deduce a few properties from these axioms.

1.10 Proposition. In any field K, there exist distinguished elements 0
and 1 with the properties: a + 0 = a for alla € K,al =a for alla € K.
Ifa,be K anda+ b =a, thenb=0; ifa,b € K and ab = a, then either
a=0o0rb=1. Lastly,a0 =0 foralla € K, and 1 # 0.
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Proof. Let £ € K (K is not empty by assumption). By property 3, there
exists 0 € K such that £+ 0 = z. Now if a is any element of K, there exists
be K with b+ r = a; but then

a+0=(b+z)+0=b+(x+0)=b+z=a,

as claimed. Now suppose that a + b = a; there exists ¢ such that a + ¢ =0,
and it follows that

b=b+(a+c)=(b+a)+c=a+c=0.

Similarly, choose y € K with y # 0 (K has at least two elements by
assumption.) For any a € K, we have a + y # a, so by property 6 there
exists an element 1 of K such that y1 = y. Now for any a € K, there exists
by property 6 some b € K such that by = a; it follows that

al = (by)l = b(yl) = by = a,

as desired. Now suppose that ab = a and a # 0. Then there is some c € K
with ac = 1, and we have

1 = ac = (ab)c = (ba)c = b(ac) = bl = b,
as desired. Finally, if a € K, we have
a+ a0 =al + a0 =a(l+0)=al =a,

so a0 = 0. It follows that if 1 = 0, then a = al = 0 for all a € K, which
contradicts the assumption that K has at least two elements. |

1.11 Corollary. For each a,b € K, there is a unique ¢ € K such that
a + ¢ = b; we denote this element ¢ by b — a, or when b = 0, simply by —a.
Clearly, —(—a) = a for all a € K. Similarly, ifa € K, a # 0, there is a
unique b € K with ab = 1; we denote this element b as a”!, or 1/a.

We will not go on and list and prove all the usual commonplaces of
algebra, such as that —a = (—1)a for each a € K, or the general associative
laws which enable us to write a; +az +- - - +a, and a a3 - - - a,, without any
ambiguity. If the reader has never engaged in such exercises, this might be
a good time to do so. Observe that the symbols 0 and 1 are badly chosen;
we should write Ok and 1k to avoid confusion with the integers (or rational
numbers) 0 and 1. By paying attention to context, we will hopefully always
be clear what is meant. In fact, the fields we are most interested in can be
regarded as containing the rational numbers, so there is no danger.

Let K be a field, and a € K. We define na for each natural number n
inductively: 1a = @, and na = a + (n — 1)a for n > 1. It may happen that
pa = 0 for some p € N and a € K with a # 0 (this clearly occurs if and
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only if pl = 0, where 1 here is the element of K, not the natural number).
If p is the smallest natural number for which this occurs, we say that K has
characteristic p. If n1 # 0 for every n € N, we say that K has characteristic
0. Of course, our basic example Q is a field of characteristic 0.

Every field, according to Proposition 1.10, has the elements 0 and 1, and
the smallest field consists of exactly these two elements, with the addition
rule 1 + 1 = 0 and all the other addition and multiplication rules forced
by that proposition. But among fields with characteristic 0, the smallest
field is the field Q of rational numbers. Indeed, if K has characteristic
0, the map n — nl is an injective mapping of N into K. This injection
extends in the obvious way to the field Q of rationals, and this injection
i8 an isomorphism, i.e., it carries the addition and multiplication of Q to
the addition and multiplication in the field K. We identify the image of
this map with Q itself, i.e., regard Q as a subset of K. It is evidently the
smallest subfield of K.

1.12 Definition. An ordered field is a field K, together with a total order
relation < on K, satisfying the following conditions:

(a) ifa < b, then a + c < b+ c for every c € K; and
(b) ifa < b and 0 < ¢, then ac < be.

We write a > b to mean b < a, and a < b to mean: either a < bor a = b.
Similarly, a > b means that either a > bor a = b.

Taking ¢ = —a in (a) of the definition, we see that a < bimpliesb—a > 0,
and similarly b — a > 0 implies a < b.

1.13 Proposition. Let K be an ordered field. Then
(a) for eacha € K, a > 0 if and only if —a < 0;
(b) ifa < b and c <0, then ac > be;
(c) for each a € K, either a = 0 or a? > 0; and
(d) for each a € K, either a = 0 or na # 0 for every natural number n.

Proof. Suppose a > 0. Take ¢ = —a in condition (a) of Dvefinition 1.12 to
deduce that —a < 0. Since a = —(—a), this gives also that —a < 0 implies
@ > 0. Thus (a) is proven. Since ¢ < 0 implies —c > 0 by (a), we havea < b
implies a(—c) < b(—c) by (a) of Definition 1.12, which gives —ac < —bc or
ac > be by another use of (a). If @ # 0, then either @ > 0, when a% > 0
by property (b) of Definition 1.12, or —a > 0, when a? = (—a)? > 0. In
particular, 1 > 0, since 1 = 12, It follows that 1 +1 > 1 > 0 and by
induction that nl > 0 for every natural number n; in particular, nl # 0.
Thus na can be interpreted as the product of the positive element nl and
a, 5o na > 0 whenever a > 0, and na < 0 whenever a < 0. |
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Of course. part (d) of this proposition can be restated as: every ordered
field has characteristic zero.

1.14 Proposition. Let K be a field, and let P C K have the properties:
1. ifa,be P, thena+be P;
2. ifa,b€ P, then ab € P; and

3. for any a € K, exactly one of the alternativesa € P, —a € P,a=0
holds.

If we define the relation < by the rule: a < b if and only if b— a € P, then
K with < is an ordered field.

We leave the proof of this as an exercise. We note that the converse of
this proposition is also trivially true: if K is an ordered field, and we put

= {a € K : a > 0}, then P has the properties of the proposmon and
b<a1fand0nly1fa——b>0 as we have seen.

1.15 Example. It is evident that Q is an ordered field, with the usual
meaning of <. Here is a less obvious ordered field: let Q(X) be the field of all
rational functions in the indeterminate X. More precisely, consider the col-
lection of all expressions of the form p(X)/q(X), where p and q are polyno-
mials in the indeterminate X with rational coefficients, and ¢ # 0. Declare
two such expressions p;(X)/q,(X) and p2(X)/g2(X) to be equivalent if
P1(X)g2(X) = p2(X)q1(X), and let Q(X) be the set of equivalence classes.
The addition and multiplication in Q(X) are the familiar ones. To define
an order, we decree that a polynomial p(X) = ag+a1 X +a2X%+---+a, X"
is positive if ax > 0, where k is the smallest integer with ax # 0. Thus,
if ag > 0, then every polynomial of the form ap + ;X + -+ + a, X" is
positive, and in particular, the constant polynomial ag is bigger than any
polynomial b) X + --- + b, X™ without a constant term. Next we define
r(X) = p(X)/q(X) to be positive if either both p(X) and ¢(X) are posi-
tive, or both are negative. It is easy to see that this does not depend on the
particular choice of p(X) and g(X) used to represent r(X), and that the set
P of such positive elements has the properties of the last proposition. Of
course, we could have made such a construction starting with any ordered
field K instead of Q.

1.16 Definition. Let S be a subset of the partially ordered set X. We say
that M € X is an upper bound for S if x < M for all ¢ € S. Similarly,
we say that m € X is a lower bound for S if m < z for all x € S. We say
that M is a maximal element of S if M € S and there exists no x € S with
M < z. Similarly, m is a minimal element of S means that m € S and for
nor € S do we have r < m.
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We note that when X is totally ordered, a maximal element M of S
is an upper bound for S, and a minimal element of S is a lower bound.
There can be at most one maximal element of S in this case; for if also
M' € S and M’ is an upper bound for S, we would have M < M’ and
M’ < M,so M = M'. Similarly, there exists at most one minimal element
of S. Thus, M is a maximal element of S means M is the greatest element
of S, and m is a minimal element of S means m is the least element of S.
It is easy to see that if X is totally ordered, any finite subset F of X has
a greatest and a least element, denoted, respectively, by max{z : ¢ € F}
and min{z : r € F}.

Here are two simple examples, with X = Q. If S = {1/n : n € N},
then every ¢ € Q with ¢ > 1 is an upper bound for S, and 1 is a maximal
element of S. Every ¢ € Q with ¢ < 0 is a lower bound for S, while for any
q > 0 there exists n € N with 1/n < ¢, so ¢ is not a lower bound for S.
Thus the set of lower bounds for S is {g : ¢ < 0}. The greatest lower bound
for S is 0, but S admits no minimal element. Here is a more complicated
example.

1.17 Example. Let S={q€ Q:¢? <2}.If M2 > 2and M > 0, then M
is an upper bound for S; for if ¢ € Q and ¢ > M, then ¢® > gM > M? > 2,
80 ¢ ¢ S. Conversely, if M is an upper bound for S, then M > 0 and
M2>2 ForleS,soM>1>0.If M2 < 2, then for each n € N we have

(M+%)2=M2+—IT;(2M+%) 5M2+%(2M+1),

and we can choose n so that (1/n)(2M +1) < 2—M?2, which gives M+1/n €
S. Since M < M +1/n, this contradicts the supposition that M is an upper
bound for S. Thus M is an upper bound for S if and only if M > 0 and
M? > 2. Now if M? > 2, then (M — 1/n)? > 2 for some n € N, by a
calculation like the one just made. Thus a least upper bound for S would
be a number M > 0 with the property that M? = 2. As we saw in the last

section, there exists no such M € Q. Thus S has upper bounds, but no
least upper bound.

If K is an ordered field, it is easy to see that the set of upper bounds of
aset S C K is either empty or infinite; indeed, if M is an upper bound, so
is M’ for any M’ > M. We note that m is a lower bound for S (or minimal
element of S) if and only if —m is an upper bound for (resp., maximal
element of) the set —S = {—z : £ € S}. This observation makes it easy
to deduce generalities about lower bounds or minimal elements from the
corresponding generalities about upper bounds or maximal elements.

1.18 Definition. We say that K is a complete ordered field if K is an
ordered field with the property: given any subset S of K, if the set Mg of
upper bounds of the set S is nonempty, then Mg possesses a least element.
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In other words, the ordered field K is complete if and only if every subset
S of K which has an upper bound must have a least upper bound. It is an
immediate consequence that any subset S of a complete ordered field which
has a lower bound must have a greatest lower bound. Example 1.17 shows
that the ordered field Q is not complete. We shall use the word supremum
as a synonym for least upper bound, and infimum as a synonym for greatest
lower bound. The notations

supSor supz, infSor infzx
€S z€S

will denote the supremum, infimum respectively, of the set S. If S has no
upper bound, we write supS = +o00, and if S has no lower bound, we
write inf S = —o0. It is sometimes convenient to also take sup® = —oo and
inf@ = +o00. (After all, every z is an upper bound and a lower bound for
0.)

It turns out that there exists a complete ordered field (not an obvious
fact), and (essentially) only one. We sketch this result in a later section
of this chapter, and for now go on to study the properties of such a field,
assuming it does exist.

We introduce the following notation, to be fixed for the rest of the book:
let R be a complete ordered field. We call R the field of real numbers. We
define the set R of extended real numbers to be R with two more elements
adjoined, denoted +o0o and —oo, with the order relation of R extended by
the rule —oo < z < +o0o for all z € R. We will not at this time consider
any algebraic operations among elements of R; we emphasize that R is a
totally ordered set, but not a field.

1.19 Theorem. Let ¢ € R, € > 0. For any M € R, there exists n € N
such that ne > M.

Proof. Let S = {ne: n € N}. The theorem asserts that S is unbounded. If
on the contrary S has an upper bound, then by the definition of complete
ordered field, it has a least upper bound R. Then we have ne < R for every
n € N, since R is an upper bound for S, but, since R is the smallest upper
bound for S, there exists m € N with me > R—¢; this implies (m+1)e > R,
a contradiction.

1.20 Corollary. Let x € R. There exists a unique n € Z such that n <
z < n + 1; this integer n is called the largest integer in z, and denoted
by [z].

Proof. Suppose z > 0. By Theorem 1.19, {k € N : k > z} is not empty,
and hence there is a smallest integer n with n > z; evidently, [z] = n—-1. If
z <0, let m = min{k € N : k > —z}, which exists by the same reasoning;
it is easy to see that —m = [z]. 1
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The property of R described in Theorem 1.19 is known as the Archimed-
ean property. The property also holds for the field Q (and is trivial), but
it does not hold in every ordered field. For instance, it does not hold in the
field Q(X) discussed in Example 1.15 (or in R(X) for that matter), since,
for instance, X > 0 but nX < 1 for every n.

We next show that the rational numbers come arbitrarily close to any
real number. Again, we use only the Archimedean property of R.

1.21 Definition. A subset E of R is said to be dense in R if for any
r € R, and any € > 0, there existst € E withz —e <t < I +e.

1.22 Proposition. The rational numbers Q form a dense subset of R.

Proof. Let £ € R and ¢ > (. There exists n € N such that ne > 1, i.e.,
such that 1/n < e. Let m = [nx], som € N and m < nz < m + 1. Put
g=m/n;theng<zr<q+1/n,sor—e<g<z+e ]

The elements of R\Q are called irrational numbers. Here is a pretty
theorem of Dirichlet.

1.23 Theorem. If a is an irrational number, then
S={na+m:meZ neN}
is a dense subset of R.

Proof. Let us begin with the observation that if € € S and k is a positive
integer, then k§ + m € S for any integer m. To show that S is dense in
R, it suffices to show that for any positive integer IV, there exists £ € S
such that |§| < 1/N. For instance, if 0 < £ < 1/N, then given any t € R,
we first choose m € Z so that t + m > 0, then let k be the smallest
positive integer such that k§ > t + m; we have n = k§ — m € S, and
t<np<t+1/N.If -1/N < £ < 0, we can choose m so t + m < (),
and proceed in a similar manner. Now if N is a positive integer, let §, =
na — [naj, for n = 1,2,..., N + 1. (Here, as usual, [z] denotes the greatest
integer not greater than x.) We observe that: (i) 0 < &, < 1, and (ii) if
n < k, then & — &, € S (in particular, &, # £). Consider the N intervals
((i—1)/N,i/N) (i=1,...,N); in view of (i), and the fact that each &, is
irrational, each &, belongs to one of these intervals. But there are N +1 of
these &,,, so there must exist an interval ((¢ — 1)/N,i/N) which contains &,
and & for some n < k. But then £ = & — €&, € S by (ii), and |¢| < 1/N. B

1.6 Functions on R

The algebraic operations on R can be used to define many functions from
R (or subsets of R) to R. Thus, for each ¢ € R we have the constant



1.6 Functions on R 17

function £ +— ¢, and the functions £ — ¢ + z and z — cx; combining
these two ideas, we construct  — c + dz, for any given ¢,d € R. Itesating
these ideas, we obtain the polynomial functions p on R, where p(z) =
ap + a1 + azr? + --- + a,z™. Such a polynomial, we recall, is said to
have degree n if a, # 0 above; thus constant functions are polynomials
of degree 0, with one exception: the zero polynomial (with all coefficients
a; = 0) is said to have degree —oo. (This enables the rule that the degree
of a product is the sum of the degrees of the factors to be true without
exceptions.) Similarly, if f and g are functions from X to R, g # 0, we
define f/g by the formula (f/g)(z) = f(x)/g(z); the domain of f/g is, of
course, not all of X in general, but {r € X : g(z) # 0}. If p and ¢ are
polynomials, ¢ # 0, the function p/q is called a rational function. When
q # 0, the zero set of g is finite, as we see from the division algorithm for
polynomials: if the degree of ¢ is n > 0, then for any a € R we can write
g(xz) = (r — a)qi(x) + r(x), where the degree of r(x) is less than 1, i.e.,
r(z) is a constant. If g(a) = 0, it follows that r(a) = 0, i.e., that r = 0, or
q(x) = (r — a)q(x). Here the degree of g, is evidently n — 1. Since ¢q(b) =0
if and only if 6 = a or q;(b) = 0, we obtain inductively that ¢ has at most
n zeros.
Another useful function is |z|, defined by

|$|={ z ifx>0;
-z ifxr<O.

This function has, as is easily seen, the following properties: for all z,y € R,
leyl = |«llyl, |z +y| <zl + |y, x| > 0 unless x = 0.

We shall use these properties frequently throughout the rest of this book.

Related is the sign function: sgnx = z/|z| for £ # 0, and sgn0 = 0.
We note that z = |r|sgnz for all z € R. We will later want to use also
the functions £ — z* and z — z~, defined by z* = max{x,0} and r~ =
max{~-z,0}. We note that for any r, we have z* >0,z >0, r =z* -z~
and |z| = z* + z~. We denote by R, the set of nonnegative real numbers,
soR; = {z*:z € R}.

The power functions z — z" are defined on all R when n € N, and
they are injective when restricted to R, . Indeed, if 0 < z < y, we have
" < y". It follows that when n is odd, £ — z" is injective on R, since
(-x)* = —z™ for n odd. These simple remarks are valid in any ordered
field. The next theorem, which is a generalized complement to Example
1.17, uses the completeness of R in an essential way. We need the following
lemma:

1.24 Lemma. Letn € N, and c,y € R,z >0andy > 0. Ifz" < y, there
exists t > z with t" < y, and if 2" > y, there exists 0 < t < x with t™ > y.
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Proof. We recall the algebraic identity
" —a" =(b—a)b" ' +b" 2+ .- +a™7})
valid in any field. If 0 < a < b, this gives the inequality
b < a™ + (b—a)nd™"!.

If z" < y, taking a = r and b = z + h in this inequality (with h > 0) we get
(z+h)" < z*+hn(z+h)"" ! s0for 0 < h < 1 with h < (y—z™)/n(z+1)""1,
we have (r + h)" < y. Similarly, if 0 < h < z, takingb=zanda=z - h
in the inequality gives (x — h)™ > z"™ — hnz™"!, s0 if 2" > y and we take
0 < h <z with h < (z" — y)/nz""!, we get (x — h)" > y. i

1.25 Theorem. Let n € N. Then the map £ — z" of R, to R, is
bijective. In other words, for each y € R, y > 0, there exists a unique
ze€R,withz>0andz" =y.

Proof. We have already observed that the map is injective, so we have only
to prove that it is surjective, i.e., that for every y > 0, there exists z > 0
such that z” = y. The result is obvious when y = 0, so we assume now
thaty > 0.Let S= {t >0:t" < y}. Since 0 € S, S # 0. Furthermore, S is
bounded above. In fact, if t > 1 +y, we have t® > (1+y)" > 1+y >y, so
t¢ S:thust <1+ yforallt €S. Hence there exists a least upper bound
z for S. If z™ < y, there exists, by the last lemma, t > = with t" < y; but
then t € S, contradicting that x is an upper bound for S. On the other
hand, if z™ > y, there exists u with 0 < u < z and u™ > y. Now if t > u, it
follows that t" > y, 8o we conclude that t < u for all t € S, i.e., that u is
an upper bound for S. But u < z, so this is impossible. We conclude that
™ =y. ]

We denote the unique z > 0 with z* = y by y!/", or /Y- When n is
odd, and y < 0, there exists t > 0 with t" = —y, s0 (=t)" = (-1)"t" =y;
thus, when n is odd, there exists for every y € R a unique z € R with
" = y. We denote this number z by y'/". We can now define (for z > 0)
19 for any rational ¢ = m/n by z™/™ as (z™)'/™; we should show that this
does not depend on the particular choice of the representation ¢ = m/n,
that (z™)V/" = (1:’/")'", that z9*" = 92", and that 9" = (z9)" for any
rational ¢ and r, etc.

1.7 Intervalsin R

1.26 Deflnition. Let K be an ordered field. We say J is an interval in K

if J is a subset of K with the property: ifa < b < ¢ with a,c € J, then
be J.
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Note that this definition counts both K and @ as intervals. Note also
that each singleton set {a} is an interval. Given any a,b € K with a < b,
we define (a,b) = {z € K : a < £ < b}. (The danger of confusion of the
interval (a,b) with the ordered pair (a,b) is usually minimal. Some writers
consider it serious enough to use the notation ]a,b[ instead of (a,b), but
we'll risk it.) It is immediate that (a,b) is an interval; we call it the open
interval with endpoints a and b. Similarly, we define the closed interval with
endpoints a and b to be [a,b] = {r € K : a < = < b}, and two kinds of
semiclosed intervals: [a,b) = {r€e K:a<z <b}and (a,b)={z€ K:a<
z < b}. This does not exhaust the possibilities for intervals; we also note
that {z € K : z > a} is an interval, which we denote by (a, +00), as is {z €
K : = > a}, denoted by [a, +00). The intervals (—oo,b) and (—o0,b] are
defined in an analogous manner. We sometimes write (—o00, +00) instead
of K. We call (—oc,b] and [a, +00) closed intervals, and call (-o00,b) and
(a, +00) open intervals.

In the case of a complete ordered field, it is easy to classify all the in-
tervals, as follows. Let J be a nonempty interval in R. Let a = inf J, and
let b = sup J. We note —oo < a < b < +00, but a = +00 and b = —o0 are
excluded since J is nonempty. If a < z < b, then (from the definition of inf
and sup) there exist ¢,d € J with a < ¢ < £ < d < b, and it follows that
z € J. Thus J D (a,b). We have a < x < b for all x € J. If b < +00, there
are two possibilities: either b € J or b ¢ J. Similarly, if a > —oo, there
are the two possibilities. Thus we see that every nonempty interval J in R
must have one of the forms described above: (a,b) or (a,b] or [a,b) or [a,b]
or (—00,b) or (—oo,b] or (a,+00) or [a,+00) or (—o0, +00). The first four
of these are called bounded intervals, the next five are called unbounded.

1.27 Theorem. Suppose that for each n € N, J,, is a nonempty closed
bounded interval in R, with Jn4 C Jn for each n. Then (>, Jn # 0.

Proof. By hypothesis, each J,, has the form J, = [a,, b,] for some a,, b, €
R, a, < b,. In fact, we have a, < b,, for any m,n € N. For if k =
max{m,n}, we have Jx C J,, which implies a, < ax, and Jx C Jp,, which
implies by < bm; thus we have a, < ax < bx < by,. Let ¢ = sup{an, :n €
N}. Then a, < c for every n, and ¢ < by, for every m, so a, < ¢ < b, for
every n, i.e., ¢ € (e} Jn- |

The hypothesis that each J, is closed cannot be dispensed with in this
theorem, nor that each J, is bounded, nor that the ordered field involved
is complete. See the exercises at the end of this chapter. '

1.28 Theorem. The interval (0,1) in R is not countable.

Proof. Let E be a countable subset of (0,1), say E = {x),z2,...}. We make
the following practically trivial remark: given a nonempty open interval
(a,b) in R, and = € R, there exist ¢ < d such that [c,d] C (a,b) and x ¢
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|c, d]. By this remark, we can choose a; < b, such that z; ¢ [a;.5] C (0, 1).
Having chosen aj.b;.az,b2,...,an,b, such that ax < bx and zx ¢ [ax, by
for k = 1.2....,n, and such that [ax4+1,bk41] C (ak,bx) fork =1,....,n—1,
the remark enables us to choose an41 < bny41 such that [apiy,bn41] C
(an.bn) and 2,41 € [@n+1,bn+1]. Thus we have inductively defined for each
n € N a closed interval J, = [an, by], such that J,4+, C J, and z,, ¢ J,, for
every n € N. According to Theorem 1.27, there exists z € (., Jn. Since
ZTm ¢ (.=, Jn for every m € N, we conclude z ¢ E. Thus E # (0,1). B

1.8 Algebraic and Transcendental Numbers

1.29 Definition. A real number x is said to be algebraic if there exists a
positive integer n, and integers ag,a,,...,an, an # 0, such that

I 4+ a1z V4 - -+ a1z +ag = 0. (1.1)

We say that x is algebraic of degree n if n is the smallest positive inte-
ger for which r satisfies an equation of the form (1.1). We say that x is
transcendental if it is not algebraic.

We were motivated to expand from Q to R in order to be able to solve
the equation z2 = 2. We found that in R we could solve any equation
" = a, but that still leaves open the possibility that every real number is
algebraic. There are at least two ways to see that this is not so.

1.30 Proposition. The set of transcendental numbers is uncountable.

Proof. Let Ay be the set of all numbers x which satisfy an equation of the
form (1.1), with n + Z;=0 lej| < N. Clearly, each Ay is finite, since each
such equation has at most n solutions, and there are a finite number of
such equations. But [ J3/_, A is the set of all algebraic numbers. Thus the
set of algebraic numbers is the union of a sequence of finite sets, and hence
is countable. Since R is uncountable, the set of transcendental numbers is
uncountable. ]

It is perhaps a little disappointing that this existence proof for transcen-
dental numbers fails to exhibit a single one. Here is another approach. The
following theorem of Liouville says that algebraic numbers which are not
rational cannot be approximated too closely by rational numbers.

1.31 Theorem. Let x be an algebraic number of degree not more than n.
Then there exists a constant C such that for any integers p, q (¢ > 0) with
z # p/q, we have
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Proof. Let f(t) = a,t™ + an_1t"" ! + ... + ag, where a; is an integer for
Jj=0,1,...,n, such that f(z) = 0. Then f(t) = (¢t — z)g(t), where g is a
polynomial of degree less than n (with real coefficients). Since g has at most
n — 1 zeros, there exists § > 0 such that 0 < |t — z| < & implies g(t) # 0,
and hence also f(t) # 0. It is easy to see that there exists M such that
lg(t)] < M for all t with |t—z| < 6. For instance, if g(t) = 37—, b;t’, choose
N large enough so that [t—6,z+6] C [-N, N}, and take M = Z;‘;(: |b;|N.
Now suppose |z — p/q] < 6, x # p/q. Then g(p/q) # 0, so we have

P _ T = f(p/q) — a,p” + a,,-.p"“q + -+ aopq"
q g(p/q) q"9(p/q)

Now the numerator of this last fraction is an integer, and it is not 0, since
f(t) # 0 for 0 < |t — z| < 6. Hence the numerator has absolute value at
least 1, and we have

p 1
-£> .
’ q‘ - Mg
But if |z — p/q| > 6, then of course |t — p/q| > 6/q™, since ¢ > 1. Thus
taking any C smaller than both é§ and 1/M gives us the theorem. [ |

1.32 Example. Let 1, = %, and inductively define

Tpn =ZTp—1 + F
Then Tpym — Tp = 2- D 4 ..o 2=(n4m)! « 9. 2—(n+D)! for every
n,m. Let z = sup{z;,z3,...}. We have then z — z, < 2-2-("+1)! But
Zn = pa2~™ for some integer p. Thus we have (taking g, = 2™') inequalities
0<z—pn/gn <2-27""1/q" for every n. According to the theorem, this
is impossible if z is algebraic, so x is transcendental.

1.9 Existence of R

In this section, we outline the construction first given by Dedekind. Dede-
kind presented his real numbers as “cuts” of the line, i.e., as pairs of sets
of rationals, one set lying entirely to the left of the other, the union being
the set of all rationals. Nowadays, we dispense with one element of the
pair, since the left side of the cut carries all the information anyway. The
following sketch omits many, perhaps most of the details, which are rather
tedious.

1.33 Theorem. There exists a complete ordered field R. If R, and R,
are complete ordered fields, there exists an isomorphism of ordered fields
between them, i.e., there exists a bijective mapping ¢ : Ry — Ry which
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preserves the structure: for any =,y € R,, we have Y¥(z +y) = ¥(z) + ¥(y)
and Y(zy) = Y(z)Y(y); for any =,y € R, withz < y, we have ¥(z) < ¢:(y).

Proof. We define the set R to consist of all subsets a of the rational
numbers Q, having the properties:

(a) ifg€eaand r <gq,thenr € a;
(b) a has no greatest element; and
(c) 0#a#Q.

For each ¢ € Q, the set § = {r € Q : r < ¢} evidently belongs to R, and
the map g — § is clearly injective. We observe that each a € R is bounded
above, as a subset of Q. We define a < ( to mean that a is a proper
subset of 3. We define the suma+ 8bya+8={a+b:a € a, be 3}.
It is not hard to show that a + 8 € R. It is clear that a + 3 = 8 + a,
and that a + (8 + v) = (a + B) + 7. We next construct —a for any given
a € R, as follows: let @ be the set of all upper bounds for a in Q, with
the exception of the least upper bound, if that exists (a has a least upper
bound if and only if a = § for some g € Q). Define —a = {—q:q€ a}. It
is easy to verify that —a € R for each a € R, and that given any a € R,
B € R, the element v = ( + (—a) satisfies the equation a + v = 3. We
have verified the first three properties of a field (see Definition 1.9). We
next define multiplication in R; to do this, we first consider the case a > 0,
B > 0. For such a,3 we put af = {ab:a €a, a >0, be 3, b>0}UO0.
If a > 0 and 3 < 0 we define a3 = —a(—0), and if a < 0 and 8 < 0, we
put aff = (—a)(—3). We define Oa = 0 for all a. Again, it is clear that the
operation is commutative and associative (properties 4 and 5 of Definition
1.9). If @ > 0, we define 1/a ={1/g: g€ a}U{geQ:¢<0}.Ifa <0,
we define 1/a = —1/(—a). It is not hard to verify that a(1/a) = 1, and
more generally, that setting v = (1/a)g3 gives a solution to the equation
av = (3, whenever a # 0. Thus property 6 of Definition 1.9 is satisfied. It
remains to check the distributive law to see that R is a field. The path to
this is to first prove it for positive elements, then consider the several other
cases. Next, we have to check that R is an ordered field (see Definition
1.12). Since a < 3 is easily seen to be equivalent to 3 — a > 0, this follows
from the easy observation that a + 8 > 0 and a8 > 0 whenever a > 0
and 3 > 0. Finally, we have to prove that R is a complete ordered field.
Suppose that A is any subset of R. We define sup A to be | J,c 4. If A
is bounded above, say a < v for all a € A, there exists M € Q such that
a < M for all a € A (take any M € 7). This means that a < M for every
aca,everya€ A, 80 J,eqaC M, ie. sup A€ R. It is clear that sup A
is the least upper bound of A. The existence of R is thus established.

Note that if we leave out condition (c) in the definition of R, and put
+oc = Q and —oo0 = @, we arrive at R, the extended reals.
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Finally, we give a sketch of the proof of the uniqueness of R. If R; and
R, are complete ordered fields, we want to show that there exists an order-
preserving isomorphism ¥ of R, onto R;. Let Q; be the smallest subfield of
R; (7 = 1,2). Each Q, is isomorphic to the field of rational numbers Q, so
there exists an isomorphism ¢ of Q; onto Q. This isomorphism is unique,
and order-preserving. We now define a map ¢ of R; into R, as follows: for
z € Ry, let Y(z) = sup{e(q) : ¢ € Q1,9 < z}. We note this makes sense:
for any z € R;, there exists M € Q, with M > z, and hence M > q for
any ¢ < z; then ¢(q) < ¢(M) for every ¢ € Q, with ¢ < z, since ¢ is
order-preserving, so {¢(q) : ¢ € Q1,9 < z} has an upper bound in R;, and
hence a least upper bound. If z,y € R, with z < y, there exists ¢,7 € @
with £ < ¢ < 7 < y; it follows easily that ¥(z) < ¢(q) < ¢(r) < ¥(y), so ¥
is order-preserving, and in particular is injective. It is easy to see that v is
surjective: given y € Ry, let £ = sup{¢~1(q2) : g2 € Q2,92 < y}, and check
that ¥(z) = y. It remains to verify that ¢ is a field homomorphism, i.e.,
that ¥(z + y) = ¥(z) + ¥(y) and Y(zy) = Y(z)Y(y) for every z,y € R;.
We leave this to the reader.

1.10 Exercises

1. List all the subsets of 2(2(F(0))).

2. Show that a set X is infinite if and only if there exists a bijective map
of X to a proper subset of X.

3. Criticize the following proof by induction of the proposition, “Happy
families are all alike.” Consider a set consisting of one happy family. Obvi-
ously all its elements are the same. Suppose it has been shown that for a set
of n happy families, say {f1,...,fn}, we have fi = fo = --- = f,. Consider
a set {f1, f2,--.,fn+1} of n + 1 happy families. Then {fi, f2,...,fn} isa
set of n happy families, so fi = fo = --- = f,. Similarly, {f2, f3,..., fa+1}
is a set of n happy families, 80 fo+1 = --- = f2. Thus f,4+) = fi also, and
the set of n + 1 happy families are all alike. By the principle of induction,
we see that for any finite set of happy families, they are all alike. Since the
set of all happy families is finite, we conclude: happy families are all alike.

4. (The results of this exercise will be used in later chapters.) The bino-

mial coefficients (}) (pronounced “n choose k”) are defined for nonnegative
integers n and k by the formulas

n n!
(k) = _k!(n—-k)!’ k=0,1,...,n

where 0! = 1and n! =n(n—1)!forn=1,2,.... We put (}) = 0 for k > n.
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(a) Show that

)+ (-

1+z)" = zﬂ: (:):::"

k=0

fork=1,2,...,n
(b) Show that

for any nonnegative integer n, and deduce

(a+b)" = i (Z)a"b""‘

k=0
for any a,b.
(c) Find
n n n
(6)+ (2)+ (5)+
and

(1)) ()

5. Prove by induction that for any positive integers a, b, n,

a\ /b + a b 4t a\ (b fa+b
0/ \n 1)\n-1 nJ\0)  \ n
6. Prove, using induction or otherwise, that

nn+1)(2n+1)
L(2k-l)_n Zk2 nnt Dint )

7. Show that for each positive integer n,
LI I

\/' Ve vn
HINT: The identity vk + 1 — vk = (VE + 1 + Vk)~! might be helpful.

8. Which is larger, 99%° + 100° or 101%°? Try to answer without using a
calculator.

2(vn-1)<1 o4

< 2v/n.

9. Show that /10 and V15 are irrational. Better yet, show that if n € N,
then /i is either an integer or irrational.

10. Show that if a field K has characteristic p > 0, then p is a prime.
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11. Let K = {¢+rv2 : q.r € Q}. Show that K, with the operations it
inherits from R, is an ordered field with the Archimedean property.

12. The complex field C is defined to be the set R xR of all ordered pairs of
real numbers, together with the operations of addition and multiplication
given by the rules

(a,b) + (¢,d) = (a+ ¢,b+ d)
and
(a,b)(c,d) = (ac — bd, ad + bc).

(a) Show that C is a field, having a subfield isomorphic to R. (We will
denote this subfield also by R, sowing a crop of confusion that is
unlikely to ever be reaped.)

(b) Show that C cannot be made into an ordered field.
13. Let K be an ordered field, in which the Archimedean property is sat-

isfied. Show that if every bounded increasing sequence in A" has a least
upper bound in K, then K is a complete ordered field.

14. Find a bijective map from (0, 1) to R.
15. Find a bijective map from (0, 1) to [0, 1].

16. Deduce from Theorem 1.23 the slightly stronger result: if @« € R is
irrational, and M is any integer, then {na + m: n > M,m € Z} is dense
in R.

17. Show that for any a € R, there exist infinitely many rational numbers
m/n with |a —m/n| < 1/n?. This is a stronger, quantitative, version of the
proposition that the rational numbers are dense in R.

18. Give an example of each of the following:

(a) Nonempty intervals J,, in R (n € N) which are bounded, with J, 4, C
J, for each n, and N, Jn = 0.

(b) Nonempty intervals J, in R (n € N) which are closed, with J,+; C J,
for each n, and (N, Jn = 0.

(c) Nonempty intervals J,, = [an,bs] in Q (n € N) such that J, 43 C J,
for every n, and Mo, Jn =0

1.11 Notes

1.1 For a closer look at set theory, with an introduction to cardinal and or-
dinal numbers, I highly recommend Halmos [2]. An important point of
view among mathematicians (in fact, the dominant one) believes that
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1.2

1.3

1.4

1.5

1. Real Numbers

the foundations of mathematics lie in set theory. From this point of
view, it is natural to want to construct the set N of natural numbers,
with its order relation and algebraic structure, from a reasonable set
of axioms for set theory. In this book, the natural numbers are taken
for granted.

According to Whittaker and Watson {15], even the concept of negative
number was rejected by conservative mathematicians at surprisingly
late times. They cite authors of works on algebra, trigonometry, etc.,
in the latter half of the eighteenth century in which the use of nega-
tive numbers was disallowed, although Descartes had used them un-
restrictedly more than a hundred years before. The notations N (for
number), Q (for quotient), and R (for real) seem obvious to Fnglish
speakers, but Z may seem obscure. It derives from the German Zahl,
meaning number. Its use has become universal.

The ideas of countable and uncountable are due to Cantor, as indeed
is the whole idea of set. Theorem 1.4, for instance, is due to Cantor.
The problems of infinity of course presented themselves much earlier;
Galileo, for instance, discussed the apparent paradox that there are as
many even numbers as whole numbers, at the same time that there are
only half as many. Cantor, incidentally, was not led to the creation
of set theory by the desire for greater abstraction, but through his
research on the convergence of trigonometric series.

The discovery of incommensurability, or rather the fact that it had
gone so long undiscovered, had a great effect on Plato, for one. I quote
from Toeplitz [14]:

Plato puts considerable emphasis on the fundamental na-
ture of this discovery. In the Laws, at the point where he
assigns that mathematical discovery a place in higher school
instruction, he mentions that he first learned of it when he
was a comparatively old man and that he had felt ashamed,
for himself and for all Greeks, of this ignorance which “befits
more the level of swine than of men.” (Toeplitz. Calculus: A
Genetic Approach. Copyright University of Chicago Press,
Chicago, 1963)

The concept of field (Kérper in German, hence the conventional K
or k) seems to be due to Dedekind. Theorem 1.10 was probably first
proved by Eudoxus, who dealt of course with the prevailing Greek idea
of quantity, not quite (though close to) the modern idea of real num-
ber. Archimedes employed it, realizing its fundamental importance,
and explicitly credited Eudoxus with the theorem. Today, a reference
to the property of Eudoxus, as it should be called, would only earn a
blank stare.
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One imagines that the name absolute value, and the symbol |z|, go
back to ancient times. In fact, they were introduced by Karl Weier-
strass in 1859.

Theorem 1.27 is of fundamental significance; it could be used as the
basic “completeness” property of the real numbers, instead of the
“order completeness” that we have chosen. The uncountability of the
real numbers was first proved by Cantor, who gave two different proofs
at different times. We have followed his first proof; his other proof uses
a different method (the so-called diagonal argument).

Theorem 1.31, as already mentioned, is due to Liouville (1851), who
first. exhibited a transcendental number (the one given, or a close rela-
tive), and predated Proposition 1.30, which is due to Cantor. Cantor's
argument, which does not look constructive, can be seen to “exhibit”
a transcendental number; for the listing of the algebraic numbers as
in the proof of Proposition 1.30 can be used to provide a nested se-
quence of closed bounded intervals (with rational endpoints) whose
intersection contains no algebraic number. The supremum of the left
endpoints of these intervals is then a transcendental number which has
been “exhibited” in the same sense as the one in Liouville’s example.

It was shown by Hermite in 1873 that e is transcendental, and by
Lindemann in 1882 that w is transcendental. (The reader has heard
of e and 7 elsewhere; we will introduce e in the next chapter, and =«
later.) For a proof of Hermite’s theorem, see Herstein [5].

Dedekind developed his construction of real numbers in 1858, though
it was not published until 1872, the same year that Cantor published
on the same subject. Dedekind declared a real number to be a division
(a “Dedekind cut”) of the rational numbers Q into two nonempty sets,
L and R say, with the property that ¢ < r for every ¢ € L and r € R;
for convenience, we can also assume that L has no greatest element.
While it must have been obvious from the start that in working with
Dedekind cuts it sufficed to consider the left half of the cut, this
artifice seems to have been first suggested by Bertrand Russell, better
known to the world at large as a philosopher than as a mathematician.
Hardy was aware of this, but preferred (in his classic calculus text [3])
to carry on with a cut being defined as two intervals of rationals.
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Sequences and Series

2.1 Sequences

In the first chapter, we defined a sequence in X to be a mapping from
N to X. Let us broaden this definition slightly, and allow the mapping to
have a domain of the foorm {n € Z: m < n < p},or {n € Z : n > m},
for some m € Z (usually, but not always, m = 0 or m = 1). The most
common notation is to write n — z, instead of n — z(n). If the domain
of the sequence is the finite set {m,m + 1,...,p}, we write the sequence
as (zn)P_,,. and speak of a finite sequence (though we emphasize that the
sequence should be distinguished from the set {z, : m < n < p}). If the
domain of the sequence is a set of the form {m,m+1,m+2,...} = {ne€
Z : n > m}, we write it as (z,)%2,,, and speak of an infinite sequence.
Note that the corresponding set of values {z, : n > m} may be finite.
When the domain of the sequence is understood from the context, or is not
relevant to the discussion, we write simply (z,). In this chapter, we shall
be concerned with infinite sequences in R.

2.1 Definition. A sequence (z,)3%,, in R is said to converge to the limit
z € R, and we write z, — ¢ as n — 00, or lim,_.. , = x, or simply
limz, = z, if for every ¢ > 0 there exists ng € N such that z--¢ < r, < T+¢€
for every n > ng. A sequence which does not converge to any limit in R is
said to diverge. We say z, — +o00, or limz,, = +o0, if for every M € R
there exists ng € N such that z,, > M for every n > ng, and we say that
Zn, — —00, or limz, = —oo0, if for every M € R there exists ng € N such
that x, < M for every n > ng.
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Note that if z,, — +00, then (z,) diverges. A simple example of a diver-
gent sequence is given by putting z,, = (—1)™. We begin with a proposition
establishing a few basic rules for dealing with convergent sequences.

2.2 Proposition. Suppose that (c,) and (d,) are convergent sequences
in R, say lim, .o ¢, = C and lim,_.d, = D. Let a € R. Then the
sequences (acy), (cn + dy), and (cndy) are all convergent, and in fact

lim (ac,) =aC, lim(c, +d,)=C+ D, lim (c,d,)=CD.
n—00 n—00 n-—00

If D # 0, then for some k > m, d, # 0 for all n > k, and(l/d,.)
converges; in fact limp_.oo 1/dn = 1/D.

Proof. Let ¢ > 0. If a # 0, there exists ng such that |c, — C| < €/|a| for
all n > ng, and then |ac, — aC| = |allc, — C| < e for all n > ng. If a = 0,
this is trivial. Thus lim(ac,) = aC.

There exist n, and n; such that |¢, — C| < ¢/2 for all n >

|dn — D] < €/2 for all n > n,. Let ng = max{n,,n2}, and we have

n;, and

l(en +dn) = (C + D)| = |(en = C) + (dn — D)
<len=C|+|dn — D] <€/2+€/2=¢

for all n > ng. Thus lim(c, +d,,) = C + D.

Choose M > max{|C]|,|D|}. Choose n; so that |c, — C| < ¢/(2M) for all
n > ny, and ny so that |d, — D| < ¢/(2M) and |d,, — D| < M — |D| for all
n > ny. Then |d,| = |dn — D+ D| < |dn — D| + |D] < M for all n > n,.
For n > ng = max{n;,nz}, we have '

|cndn — CD| = |[(cn — C)dn + C(dn — D)|
< len = Clldn] +|Cllds — D
< M(len = C| + |dn — DY)
<e€/2+¢€/2=c¢€.

Thus lim(c,d,) = CD.

Finally, choose k so that |d, — D| < 2|D| for n > k; it follows that
|dn| > 3|D| for all n > k. Next choose ng > k so that |d — D| < |DJ%/2
for all n > ng. We have then for n > ng

1 1} _|D-dn
d, D|~ d,D

= rsz'ldn_D|<f.

Thus lim(1/d,) = 1/D. |

This proposition will be used quite frequently in the future, usually with-
out explicit citation. Another, even simpler, fact is the following:
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2.3 Proposition. If (z,)32,, is a convergent sequence in R, and for some
k € N wehavez, > 0 foralln > k, thenlimz,, > 0. Similarly, ifa <z, < b

for some a, b€ R and alln > k, thena < limz, <b.

Proof. If £, > 0 for all n > k, and L < 0, taking ¢ = |L| in the definition
of limit shows that L cannot be the limit of (z,). The second statement
follows from the first by considering the sequences (z, — a) and (b — z,)
and applying the last proposition.

2.4 Example. Let

PRSIV S S
T 2 3 n

for each n € N. Suppose that (s,) converges, say lims, = s. It is clear
from the definition of convergence that if s, — s, then also s, — s, but
we observe that

1 1 1

1
o>t =5,

Sm—smn =ttt T o 2n

so we would have C = lim(s2,, — 8,) > 1/2, using the last two propositions.
This contradiction shows that (s,) does not converge.

The next proposition presents a few examples of convergent sequences.
We will use two simple inequalities, which can be proved directly by induc-
tion on n, or (for t > 0) seen immediately from the binomial theorem.

2.5 Lemma. For every real t > —1, and every n € N, we have
(1+8)">1+nt, (1+t)">1+nt+ in(n- 1)t
when t # 0, the inequalities are strict for n > 1, n > 2, respectively.

The proof is left as an exercise.

2.6 Proposition. Ifa > 0, then na — +20 as n — oo, and a/n — 0 as
n — o00;ifa > 1, thena™ — 400, and if0 < b< 1, then b™ — 0, asn — oo.
Ifa > 0, then lim,_. o a'/™ = 1. Finally, lim,_.o, n'/" = 1.

Proof. That na — +00 as n — oo is simply a rephrasing of the Archimed-
ean property of R, i.e., of Theorem 1.19.

If € > 0, then Theorem 1.19 asserts the existence of ng such that nge > a,
and hence ne > a for all n > ng, which gives 0 < a/n < € for all n > ng, so
lim, . (a/n) =0.

Ifa>1,letd =a—1,806 > 0; thena™ = (1+6)" > 1+néb,soa™ — +0o
since ndé — +00.

[fOo<b<1,leta=1/b soa>1.1If € >0, then there exists ny such
that a™ > 1/e for n > ng, which is equivalent to 0 < 4" < € for n > ng, so
lim, .o 6" = 0.
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For n > 1, let 6, = n'/™ — 1; clearly, 6, > 0. Then
n=(1+6x)">1+nb+ in(n-1)62> In(n-1)82,

from which we conclude that 0 < 62 < 2/(n — 1). Given ¢ > 0, choose
no € N withng > 1+2/e%. Then 1 < n'/" <1+ [2/(n-1)]"/2 < 1+¢ for
every n > ng. Thus lim,_. n'/" = 1.

If a > 1, then 1 < a'/™ < n'/™ for every n > a, so lima!/™ = 1. Finally,
if0<a<1,letb=1/a,solima/" =1/limb'/™ = 1. ]

2.7 Example. Fix the integer b > 2, and £ € R, 0 < z < 1. Define
d, = [bz], so d; is an integer with 0 < d; < b, and put x, = d, /b, so
0 < x oy - 1/b having obtained such integers dy, ..., dx, and numbers
Ty,...,Tk,s0 that 0 < z—xx < b™*, we proceed to set dx+1 = [b¥+!(z—x)]
and Txy1 = Tk + dep1b~%71, so that inductively we obtain a sequence
(dn)32, such that 0 < z — z, < b™™, where each d,, is an element of
{0,1,...,b—1} and z, = dyb™! + dab"2 +--- +dpb~™. If z = z,, for some
n, then d,,, = 0 for all m > n. We write symbolically

1‘=0.d|d2...,

where each d; is an integer, 0 < d; < b, to mean that the sequence (z),
where zx = d1b~' +- .-+ dxb~*, converges to z. This is called a representa-
tion, or expansion, of z in the base b. When b = 10 this is called the decimal
expansion, when b = 2 the binary expansion, when b = 16 the hexadecimal
expansion. We have seen that any = € [0,1) admits a representation in
any base b. We observe that if z is a rational that can be expressed in the
form p/b™ for some integers p and n, there exist two representations of r in
the base b; one has the form 0.dyd;...d,000..., and the other looks like
0.dyd; ... (dy, — 1)(b—1)(b—1)(b—1).... The above procedure produces
the “terminating” expansion, when there is a choice, e.g., with b = 10 the
expansion of z = % is 0.5000. .. rather than 0.4999.... If £ does not have
the form p/b", the expansion is unique. We leave this fact as an exercise.

2.8 Example. Theorem 1.25 demonstrates that every positive real num-
ber has a square root, but does not show how to find it. Indeed, what does
it mean to “find” v/2, for instance? We know it is not a rational number. We
have seen that each real number has a decimal expansion, so one answer to
the question would be to display the decimal expansion of v/2, perhaps by
finding an explicit formula for the integer d,, in the nth place after-the dec-
imal point, or perhaps by finding an inductive procedure for determining
d,. Now we can interpret the truncated finite decimal expansions as being
a sequence of rational numbers which converge to the number represented
by the infinite decimal expansion. Any other sequence of rational numbers
converging to v/2 would be just as good in principle, and possibly better in
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practice, in that the nth term in the sequence might be much closer to v/2
than the decimal fraction 1.d1d;...d,. Here is one such sequence, which
‘represents the oldest known method for computing square roots.

Given a > 0, we define a sequence (z,) inductively, as follows. Choose
o >0andlet x4 = %(z,.-f—a/z,,) for n > 0. It is clear from the definition
of convergence that if z, — z, then also z,,,; — z, so that z = %(:r +a/z),
or 222 = 12 + a, that is 2 = a. It is also clear that z,, > 0 for all n, so

z > 0: thus z = v/a. To show that in fact (x,) does converge, we calculate
as follows:

1 a
15:.+1—\/Zi='2'(17-4“:‘:—)"\/fI

In particular, we see that z,41 > /a for all n, and z2 > a for every n > 1.
Similarly, we find that

Tn + a)?
Iﬂ+l+ﬁ=(_§_zﬂv
n

Zns1 —Va _ (x5 — \/‘1)1
Tnt1+Va  (Ta+ Va)?

By induction, it follows that for every n
Iy — \/E _ [ To— \/E 7
Tn + ﬁ - Tgo + \/a '
Now |z¢ — V/a| < z¢ + V/a, since g > 0 and y/a > 0. Thus equation (2.1)

implies that z,, — \/a as n — o0, and indeed, that the convergence is quite
rapid. We note incidentally that

(2.1)

In — Tn4l = Tn — %(zn +a/z,) = %(In —a/zn)
= %(Iﬁ —a)/z, 20,

so that z,,,; < z, for all n > 1. In particular, =, +/a < z; + Va < 2z, for
every n > 1. From this, and equation (2.1), we can write down the estimate

0< Va <oz (FoVve - (2.2)
S Th S e Zo + ‘/a . .

Thus this method seems to be a highly efficient method for calculating
square roots to any given degree of accuracy. For instance, with a = 10, we
might take a rough first guess zo = 3. We see easily that 3 < v/10 < 3.5, so
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|zo — va] < 1/2, and xq + /a > 6. Thus the estimate (2.2) gives us (after
we calculate 2r; = 19/3 < 7)

0<zpn—-vVa<7-127%

Thus x4 approximates v10 to an accuracy better than 10715, which should
be good enough for household use.

2.9 Definition. Let (a,) be a sequence in R. We say that (a,) is an in-
creasing sequence if a,, < a,4, for all n; we call it strictly increasing if
an, < ap4 for all n. Similarly, (a,) is called decreasing (or strictly de-
creasing) if a, > a,4 (resp., a, > an4y) for all n. A sequence is called
monotone if it is cither increasing or decreasing.

2.10 Proposition. If (a,)S%,, is an increasing sequence in R, then either
(an) is convergent, or a,, — +00 as n — oo.

Proof. If (a,) is not bounded above, for every M there exists k such that
ar > M; since (a,) is increasing, we have a, > ax > M for every n > k.
Thus a,, — oo as n — 0o. Suppose (a,,) is bounded above; then there exists
a least upper bound M for the set {a,, : n > m}. Givenany ¢ > 0, M —¢€ is
not an upper bound for {a, : n > m}. Thus there exists k with ax > M —¢;
since (a,,) is increasing, it follows that M — € < a,, < M for every n > k.
Thus, a,, — M as n — oo. ' [ |

2.11 Corollary. If (a,) is a decreasing sequence in R, then either (a,) is
convergent, or (a, ) — —00 as n — 00.

Thus every bounded monotone sequence converges.

2.12 Example. Let ¢, = (1 + 1/n)" for each n € N. Then (¢,) is an
increasing sequence. One way to see this is to recall the identity

b —a" =(b-a)d" ' +b %+ - +ba""24+a"")

valid for any a,b € R (or any field) and any positive integer r, which we
used to advantage in the first chapter. It gives the inequality

b < a" +r7(b—a)b ! (2.3)

whenever 0 < @ < b. Takinga =1+ 1/(n+ 1), b =1+ 1/n, and using
r =n + 1 in the inequality (2.3), we get

(n+1)b"

1
14+ = )¢ =bn+l < n+1
( n)c" oA n(n+1)

1
= C + — ,
n+1 ncn
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from which ¢, < cn4; follows at once. Furthermore, the sequence (c,,) is
bounded; in fact, taking a = 1 and b = 1 + 1/(2n) with 7 = n in the
inequality (2.3), we get

1\" 1 1\*! 1 1\"
1+ — 14+n— — - —
( +2n) < +n2n(1+2n) <1+2(1+2n) .

from which we get
1 n
(1 + %) <2,

80 Con < 4. Since (c,) is an increasing sequence, it follows that ¢, < 4 for
all n. Hence, by Proposition 2.10 it follows that (c,) converges. We denote
the limit by e. We have not seen the last of this number.

The notion of subsequence is fairly natural, but let us give a formal
definition.

2.13 Definition. A sequence (b,)5%, is said to be a subsequence of the
sequence (an);%,, if there exists a strictly increasing sequence (nk)z2, in

Z, such that by = a,,, for every k > p.

Let (a,)32, be a bounded sequence. For each m > k, let us set b, =
SUP,>m @n = SUP{@m,@m+1,8m+2,--.}. Clearly, (bm)3_, is a decreasing
sequence; each b,, € R since (an) is bounded above, and the sequence
(by) is bounded below, since the sequence (a,) is bounded below. By the
Corollary above, the sequence (b, ) is convergent; we call this limit the limes
superior, or upper limit, of the sequence (a,). The limes inferior or lower
limit is defined in an analogous way. If (a,,) is not bounded above, we put
its upper limit to be +oo, and if it is not bounded below, its lower limit is
said to be —oo. We summarize:

2.14 Definition. If (a,)>2, is any sequence in R, we define

limsupa, = inf sup a, = lim supa,
n—o0 m2kn>m M=% n>m
liminfa, = sup inf a, = lim inf a,
n—oo m>kn2>m m—oon2>m

One often sees the symbol lim used for lim sup, and lim for lim inf. We can
describe the upper and lower limits also in the following way:

2.15 Proposition. Let (a,) be a sequence in R. The following are equiv-
alent:

(a) limsupa,, = A; and

(b) for every A’ > A, a, < A’ for all but finitely many n; for every
A" < A, a,, > A" for infinitely many n.
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Proof. Suppose A = limsupa,. Then for any A’ > A, there exists m such
that sup,>,, an < A’, so, in particular, a, < A’ for all n > m. But since
SUP,>m Gn > A for every m, it follows that if A” < A, then for every m
there exists n > m with a, > A”. Thus (a) implies (b). Now suppose (b)
holds. Then for every A’ > A, there exists m such that a, < A’ for all
n > m, and hence sup,>,, an < A'; it follows that limsupa, < A’ for
every A’ > A, and hence that limsupa, < A. On the other hand, for any
A" < A, (b) assures us that for every m there exists n > m witha,, > A”. It
follows that for every m, sup, >,, an > A”, and hence that limsupa,, > A”.
Since this holds for every A” < A, it follows that limsupa, > A. Thus
limsupa,, = A. We have proved (b) implies (a). |

We leave it to the reader to formulate and prove the corresponding char-
acterization of the lower limit.

Some of the basic properties of the upper and lower limits are summarized
in the next proposition.

2.16 Proposition. If (a,,) and (b,) are sequences in R, then:
(a) limsup(—a,) = —liminf ay,;
(b) limsupca,, = climsupa, for any ¢ > 0,
(c) limsup(an + b,) < limsupa, + limsupby,;

(d) liminfa, < limsupa,, with equality if and only if (a,) is convergent,
in which case viimsupa,, = lima,; and

(e) if (bn) is a subsequence of (a,), then

liminf e, < liminfb, <limsupb, < limsupa,.
The proof of this proposition is left as an exercise.

2.17 Theorem. Every bounded sequence in R has a convergent subse-
quence.

Proof. Let (a,) be a bounded sequence in R. Let A = limsup a,,. We shall
construct a subsequence of (a,) which converges to A. By Proposition 2.15
there exists n; such that a,, > A - 1. Having obtained n) < ny < --- < ny
such that a,, > A-1/jforj = 1,2,...,k, we can find (by Proposition 2.15)
Nk41 > ng such that a,,,, > A—1/(k+ 1), thus defining the subsequence
(an,) inductively. We have A < liminfa,, < limsupa,, < limsupa, = A,
so lima,, = A. i

This very important theorem is known as the Bolzano—Weierstrass the-
orem. Of course, we could equally well have constructed a subsequence
converging to B = liminfa,. According to Proposition 2.16(e), any con-
vergent subsequence would have a limit between A and B.
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2.18 Definition. Let (a,) be a sequence in R. We say that (a,) is a
Cauchy sequence if for every € > 0 there exists ng such that |a, — am| < €
for every n,m > ng.

The next result is known as the Cauchy criterion for convergence.

2.19 Theorem. A sequence in R is convergent if and only if it is a Cauchy
sequence.

Proof. Suppose (a,) converges to A € R. Then for every € > 0, there exists
ng such that |a, — A| < ¢/2 for every n > ng. Then for every n,m > ny
we have |a, —am| = lan — A+ A —ap| < |lan — A] + |lam — A| < €, 50
(a,) is a Cauchy sequence. Less trivial is the converse. If (a,,) is a Cauchy
sequence, then for each ¢ > 0 there exists ng such that |a, — a,,| < € for
every n > ng, m > ng. Then a,, — € < a, < a,, + € whenever n > ny, so

an, — € < inf a, <liminfa, <limsupa, < sup a, < an, +¢,
n2no n2no

which gives limsup a,, — liminf a,, < 2¢. Since € > 0 was arbitrary, it follows

that limsupa,, = liminf a,, so (a,) is convergent. ]

2.2 Continued Fractions

This section is not needed for subsequent developments, and may be omit-
ted in a first reading.

Let aq be an integer, and let a, € N for each n € N. The expression

1

ag +
ay +

az + P 1

+ —

Qan
is called a continued fraction of order n; we shall denote it more concisely
as [ag; @y, ...,an]. Such an expression makes sense more generally if a; are
any real numbers, as long as a; # 0 for j > 0. We call [ag;a;,a2,...] an
infinite continued fraction; it denotes the sequence of continued fractions of
order n described above. We obtain an explicit representation of the finite
continued fractions as quotients of integers as follows. Define sequences
(pn) and (gn) by putting p_; = 1, ¢_1 = 0, po = ao, go = 1, and define

inductively for n > 1

Pn = QnPn-1 + Pn-2, (2.4)
n = @nGn-1+qn-2, (2.5)
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so that each p, and g, is a positive integer when each a,, is a positive
integer. We observe that

P _. P ajao+1 s + 1
— = Qo, —_—=— = )
9 N a +0 °Ta

and indeed we have in general:

2.20 Lemma. For every n > 0, and any positive reals a,,az,...,an,

),
Pn = [ag;ay,a2,...,a,).
n

Proof. We just observed the formula holds for n = 0 and n = 1. Assume
it holds for a particular n. Then

laoiar, ... an,an41} = [a0;a1,...,an-1,an + 1/an41]
_ (an + l/an+l)pn—l + Pn-2
B (@n +1/an41)qn-1 + gn-2
_Pn + Pn-1/an+1 _ @n41Pn +Pn-1

- an + Qn-l/an-H n+1qn + qn-1
— Pnt1
Gn+1 ’

completing the induction. ]
2.21 Lemma. For each n > 0, we have pp,_1Gn — Gn-1Pn = (—1)".
Proof. Using the defining equations, we have

Pn-1Gn — 9n-1Pn = pn—l(aHQn—l + qn—2) - QH—I(anpn—l + pn—-?)
= —(Pn-2Gn-1 — Gn-2Pn-1)

= (-1)"(p-190 — g-1P0) = (-1)". |

2.22 Corollary. If a, € N for each n, then the positive integers p,, and
gn have no common divisor greater than 1.

2.23 Corollary. For eachn > 1,

B qndn-1 ’

dn gn-1

2.24 Lemma. Ifa, € N for each n, then ¢, > (v/2)"~! for each n > 0.
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for all n, and hence that ¢, > 2¢,,_3. Iterating this estimate, we arrive at
G2n > 2"go = 2", and qan41 > 27q; > 27, and the lemma follows. |

Proof. Since ¢gn = angn-1 + gn—2 and a, > 1, it follows that ¢, > g,_,

2.25 Theorem. For any sequence (a,)3%, in N, and any ag € Z, the
infinite continued fraction [ag; a1, a2, . ..] converges.

Proof. By Corollary 2.23 and Lemma 2.24, we see that

Pntr _Pnl_ 1 g-(n-1),
dn+1  qn dn+1qn
which implies that (p,/q,) is a Cauchy sequence, hence convergent. 1

2.26 Theorem. For every irrational real number z, there exists a unique
infinite continued fraction which converges to .

Proof. Let ap = [z], the greatest integer not greater than z,800 < z—aq <
1. Define ry = (£ — ap)~?, 80 7y > 1, and let a; = [ry], 80 a; is & positive
integer. Having defined r,, and a,, = [ry,], we define r,,4, = (r, —a,) ! and
put dn41 = [rn41). Since z is irrational, we see that every 7, is irrational,
80 0 < r, —a, <1, and r,4, is well-defined, with r,,,; > 1. Now

z = [ag;ay,az,.-.,8n-1,Tn) (2.6)

for every n > 1. Indeed, £ = ag + 1/, = [ao; 1], and if the formula (2.6)
holds for some n, then using r,, = a, + 1/7,41, we get equation (2.6) with
n replaced by n + 1, so that (2.6) holds for all n. Now from equation (2.6)
and Lemma 2.20 we have
— TnPn-1+ Pn-2
Tndn-1 + gn-2
for n > 2. Correspondingly, we have the formula

Pn — @nPn—1 + Pn-2

Gn  Gndn-1+Qn-2’

so we have, after simplifying,

_ p_l — (Tn - an)(pn—lQn—2 — Qn—1Pn-2)
dn (TnGn-1 + @n-2)(@ngn-1 + gn-2)

8o that ) 1
Pn
<=<—,
‘z qn q'2' 2n-1
the last inequality coming from Lemma 2.24. Thus, p,/¢. — z, and the
existence is proved. To show uniqueness, suppose that we had two continued
fraction representations

z = [ag;a1,a2,...] = [ay; a},a),.. ]
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Clearly, a0 = ay = [z]. Suppose that we have established a; = aj for

J=0,1,...,n. Then (with an obvious notation) p; = p; and ¢; = ¢; for
0 < j < n as well. Putting rx = [ak; ax41,@k+2,-..], with the analogous
definition of r}, we have

. ST N )
z = [ag;a1,a2,...,8n,Tny1] = [ag; @1,09,...,07,Th 1)
so that we have

r= PnTn+1 + Pn-1 - pﬁ,r:,“ +P:._1 — Pnr:;-p.l + Pn-1
dnTn+1 + @n-1 QQTQ“ + q;._l Qn"':H.l + gn-1 ’

from which we can solve to get rn4y = 77,4, and hence an4y = [rn] =
[rts1] = an4y. Thus a,, = aj, for all n.

It is not hard to see that if x was rational, the process described above
would terminate after finitely many steps, and r would be represented by
a finite continued fraction.

Note that Theorems 2.25 and 2.26 establish a one-to-one cor-
respondence between the set of irrational numbers in (0, 1) and
the set NN of mappings of N into N. But we also have seen
(the binary expansion) that there is an injective mapping of the
irrational numbers in (0,1) into the set 2N of mappings of N
into {0,1}. Thus there is an injective mapping of NN into 2N.

2.3 Infinite Series

Given a sequence (an)3%,, in R, consider the associated sequence (8,)5,,
defined by

n
Sh=am +amy1+ - +aq = E QA
k=m

the number s, is called the nth partial sum of the infinite series Z:;m Qn,
and we say that the series converges if the sequence (s,) converges. If
lim, .o 8n = 8, we write Z:‘;m a, = 8. (Actually, this is an abuse of
language, since, properly, Y ... an denotes the sequence (8,,)3,,, rather
than its limit.) We also write Y " @, = £00 if limp_o0 8n = £00. Thus
the notion of infinite series is totally equivalent to that of infinite sequence;
given any sequence (8,)32,., we can realize it as the sequence of partial
sums of the series Zf___m an, where a,, = s,, and a,, = 8,, — 8,1 forn > m.
We shall often omit the limits of summation, i.e., write }_ a, instead of

Y o m @n, When m is either understood from the context or irrelevant.

2.27 Proposition. If }_ a, converges, then lima, = 0.
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Proof. If s, denotes the nth partial sum of the series }_ an, then the
convergence of (s,) to the limit s implies the convergence of (s,,_;) to the
same limit, which implies a,, = 8, — 8,1 — 0 as n — oo.

The necessary condition a,, — 0 is not sufficient for the series 3_a, to
converge; Example 2.4 shows that the series ) .- (1/n) diverges.

2.28 Proposition. If the series }_ a, and 3 b, converge, then so does the
series )_(an + bn); for any c € R the series 3_ ca,, converges, and we have

Z(an + bn) =Zan+zbn, zcan =CZan.

Proof. This follows immediately from the two corresponding facts about
sequences. 1

2.29 Proposition. Suppose that a, > 0 for each n € N. Then either
S 18n = +00 or the series converges.

Proof. If each a, > 0, then (s,) is an increasing sequence; thus this propo-
sition simply echoes Proposition 2.10.

In view of the last proposition, we can indicate the convergence of the
series Y _ a,, when every a,, > 0 by writing }_ a, < oo.

2.30 Corollary. If 0 < b, < a, for every n, and if Z:‘;, a,, converges,
then ¥ .- , b, converges.

Proof. If s, = Y p_,an and t, = Y ;_, bn, then evidently t, < s, for
every n, so (t,) is bounded if (s,) is bounded. [ ]

This last result is often used in the equivalent form: if }::‘;l b, diverges,
then so does }_,> , an.

2.31 Corollary. If ¥ |an| converges, then Y a, converges.

Proof. Recall the notation £+ = max{z,0} and z~ = max{-z,0} for any
z € R. Since 0 < a} < |a,| and 0 < a;; < |a,], we conclude from Corollary
2.30 that 3" a; and 3" a; converge. But a, = a} — aj, so it follows from
Proposition 2.28 that 3" a, converges. |

A series Y a, with the property that } |a,| < +o0 is said to be abso-
lutely convergent. The last corollary then states simply that an absolutely
convergent series is convergent. A series which is convergent but not abso-
lutely convergent is called conditionally convergent. The next corollary is a

trivial generalization of Corollary 2.30. We will refer to it as the comparison
test.
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2.32 Corollary. If there exist C > 0 and ng such that |b,| < Ca,, for all
n > ng, and }_a, < 0o, then Y_ b, converges (absolutely).

2.33 Example. The series Y . | 1/n (known as the harmonic series) was
seen to diverge in Example 2.4. It follows that } > | n~* diverges for s < 1.

2.34 Example. Consider the series 3 >, 1/n(n + 1); since 1/n(n+1) =
1/n —1/(n + 1), we see that

1 1

8p =

1
et L TRFl T Tard

+

N -
W=

[l Mnd
N =

(we say that the series telescopes), so that the series converges to 1. It
follows from the comparison test that the series Y-, 1/n? converges, since
1/n? < 2/n(n+ 1), and that its sum is less than 2. It then follows from the
comparison test that 3 .-, n~* converges for all s > 2.

The next example gives one of the most useful series with which to com-
pare other series.

2.35 Example. Consider the series Y- z", known as the geometric se-

ries. We have
n+1

i 1-z
_E k _
Sp = " = 1

when z # 1; it follows that s, — 1/(1 —xz) when |z| < 1; the series diverges
for || > 1 by Proposition 2.27. Thus Y_.> ;" = 1/(1—z) for |z| < 1, and
the series diverges for all other x.

2.36 Theorem. Let (a,) be a sequence, and let A = limsup |a,|'/™. If
A <1, then 32 | an converges absolutely; if A > 1, then 3, a, diverges.

Proof. If A < 1, choose z with A < £ < 1. According to Proposition 2.15,
there exists ng such that |a,,|‘/ " < z for all n > ng. Then |a,| < z™ for
all n > ng, and }_ z™ converges as we saw in the example above, so the
series Y a,, converges absolutely by the comparison test. Suppose now that
A > 1. Then, again by Proposition 2.15, there exist infinitely many n such
that |a,|!/™ > 1, and hence |a,| > 1. Hence }_ a,, diverges, by Proposition
2.27.

Note that Theorem 2.36 asserts nothing if limsup |a,|!/™ = 1. In fact,
this holds if a, = 1/n (Proposition 2.6), and hence if a, = 1/n2. As we have
just seen, the first of these gives a divergent series, the second a convergent
series. The assertion of Theorem 2.36 is known as the root test; the following
similar theorem is called the ratio test.



42 2. Sequences and Series

2.37 Theorem. Suppose that a, > 0 for all n. Let

. e Onyl . An+1
A = liminf 242 p = limsup 2X2.
an n

If g < 1, then Y a,, converges, and if A > 1, then Y a,, diverges.

Proof. If u < 1, choose z with 4 < £ < 1. There exists m such that
lans1/an — pul < £ — p for all n > m, and hence an+1/a, < z for all
n > m. It follows that a,4+1 < za, for all n > m, and inductively that
@mik < T*a,, for every k > 0. Thus a, < Cz" for all n > m, where
C = z7™am, and hence Y a, converges by the comparison test. If A > 1,
then there exists m such that an41/a, > 1 for all n > m, i.e., (a,)2,, is
an increasing sequence, so lima,, = 0 is impossible. (In fact, a,, — +, as
a closer look will tell you.) 1

2.38 Example. The series ) .. o " /n! converges absolutely for every r €
R; for putting a,, = |z|*/n!, we have an41/an = |z|/(n+1) =2 0asn — oc.
Thus the series converges absolutely for every z € R by the ratio test.

Consider the series
oo
IRt
—
= n!

Putting a, = n"|z|™/n!, we have

ans1 _ (n+1)"*! ! | = n+1
a,  (n4+1)! an T

n
£ 1) lal — elal,

as we saw in Example 2.12. Thus the given series converges absolutely for
|z| < 1/e and diverges for |z| > 1/e.

The next example shows a new way of establishing divergence of a series.

2.39 Example. Here is another proof that the harmonic series Y. ,(1/n)
diverges. We note that s; =1, 83 — 81 = %, 84— 83 = %-{—% > %,33-34 =
1+3+1+ 3>}, and, in general,

1 1 1 1

1
s —_— k—‘__=_
i w A R

8ok — Sok-1 =

n
Son = 8; + kz_:](szk - 82#—1) >1+ 'g'
Thus the series diverges to +00. This argument, based on the same idea as
our earlier proof of this fact in Example 2.4, can be generalized to check

many other series for convergence, as the next theorem shows.
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2.40 Theorem. If (an);2, is a decreasing sequence, with a,, > 0 for each
n, then 3_ an converges if and only if 3 2"a~ converges.

Proof. Since a,, > 0, the partial sums s,, of Z:;‘ a,, form an increasing
sequence, as do the partial sums t, of 3 n. ;2"az~. Now

Sk — Sok-1 = Qok-14] + -+ Qgk

gives
25 1ao0 < 89k — 89x1 < 28 lage,

since aj > a,4; for every j. Adding, we find

l n n
§z2ka2a < 92n — 8 < Z?k_'agu--n,
k=1 k=1

80 %t,. < 997 < ty—y + a;. Thus (s,) is bounded if and only if (t,) is
bounded.

2.41 Example. If s > 0, the sequence (n~*) is decreasing, so the last
theorem (known, by the way, as Cauchy’s condensation test) applies. Since
2n(2m)"" = 2n e = (2!7%)", we see that 3 n~* converges if and only if
2!-2 < 1, i.e., if and only if s > 1. This extends our earlier findings for
s<lands>2.

The next example shows yet another idea in establishing the convergence
of series.

2.42 Example. Consider the series } .. ,(—1)"an, where ap > an1 for
all n and lima,, = 0. Then for each n, 82, — S2n—2 = —@2n—-1 + a2n < 0,
8o (82,,) is a decreasing sequence, while 83,41 — S2n—1 = @2n — a2ny1 > 0,
80 (82n,—-1) i8 an increasing sequence. Since 8z, — S2n—1 = a2, > 0, we have
for all m < n (choosing k = max{m,n}) that

82m-1 < 82k—1 < 82k < S2p;

in particular, the monotone sequences (32, ) and (32,1 ) are bounded, hence
convergent, say to s’ and s”, respectively, and s’ > s”. But 32, — 82n-1 =
azn, — 0 as n — 00, so we conclude that s’ = s”, and the series is conver-
gent. Taking a, = 1/(n + 1), we see that the series 3 oo ((-1)"/(n+1) =
Yoo 1(=1)**1/n is convergent; as we have seen, it is not absolutely con-
vergent, so it is an example of a conditionally convergent series.

The next theorem can be regarded as a generalization of this example.

2.43 Theorem. Let (a,)3%, and (by)3%, be two sequences in R, let s8p, =
Y k=1 bk for each n € N, and suppose the following conditions hold:
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() Yoo lan — @ny1]| < 003
(b) (sn) is a bounded sequence; and
(c) an — 0 as n — oo.

Then Y27, anbn converges.

Proof. For any n > 1 and any p, we have

n+p n+p
E arby = E ak(sk — 8k-1)
k=n
n+p n+p
= E QkSk — E Ak Sk—1
k=n
n+p n+p—1
=E Ak Sk — E Qk+13k
k=n k=n-1
n+p-1
= § (ak — @k+1)3k + QnypSnip — AnSn_1, (2.7)
k=n

a formula which is called summation by parts, in analogy with a similar
formula for integrals. Now by hypothesis there exists M such that |s,| < M
for all n, and given € > 0 there exists ng such that |ax| < € for all £ > ng,
and such that Ef_’__no lax — ak+1| < €. From formula (2.7) we have for any
n > ng and any p,

n+p n+p-1
Z arbk| < Z lak — ak+1llsk| + |an+pllsnspl + lanllsn-1]
k=n

<MY o ~ aker] +2M sup a;|
k=n
< Me +2Me = 3Me,

which shows that the partial sums of the series Y_ axbx form a Cauchy
sequence, and thus the series converges. |

2.44 Corollary. If a,, > an4) for every n € N and lima, = 0, and if
(3"%=1 bx) is a bounded sequence, then 32 | anb, converges.
Proof. We have

Z lax — ak41| = Z(ak —@k41) = a1 — an41 < ay

k=1 k=1

for all n, so all the hypotheses of Theorem 2.43 are satisfied. |
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2.45 Corollary. If (a,) is a decreasing sequence, such that lima, = 0,
then Y (—1)"a, converges.

Proof. If b, = (—1)", the hypotheses of the last corollary are satisfied. §

2.4 Rearrangements of Series

2.46 Definition. A sequence (b,)3%, is called a rearrangement of the se-
quence (a,)5%, if there exists a bijective mapping ¢ : N — N such that

bn = ayn) for every n.

2.47 Theorem. If a, > 0 for every n, then }_a, = 3" by, for every rear-
rangement (b,) of (a,).

Proof. It suffices to show that Y b, < 5" a,, since (a,) is a rearrangement
of (bn) whenever (by,) is a rearrangement of (a,). Now if by = ay(x) for each

k, we have
n n N oo
D be=D o) S D an <) an,
k=1 k=1 n=1 n=1

where we took N = max{¢(1),...,#(n)}. Since this holds for every n, we
conclude Y by < 3" an,.

2.48 Corollary. If the series Y a, is absolutely convergent, then so is
3" by, for any rearrangement (b,) of (an), and 3_b, = 3_ an.

Proof. It is obvious that (Jb,]) is a rearrangement of (|a,|) whenever (by,)
is a rearrangement of (a,), so Y_ |bs| = Y_|an| < +00. Similarly, b} =

Y at,and Y b; =3 a,,s0
b= bt -b) =3 bt =Y b= at - an =) an,

as we claimed. [ |

A convergent series which remains convergent for any rearrangement is
called unconditionally convergent. The last corollary asserts that an abso-
lutely convergent series is unconditionally convergent. The converse is also
true.

2.49 Theorem. Let (a,) be a sequence in R which is convergent but
not absolutely convergent. For any extended real numbers a and 3, such
that a < f, there exists a rearrangement (b,) of (a,) such that, with
Sn = 2::1 b"’

liminfs, =a, limsups, =0.
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Proof. Since Y |a,| = +00, while }_ a, converges, we see that ) a}
Y a; = +oc. Let {n : an > 0} = {n1,nz,...}, and let {n : a, < 0}
{my,ma,...}, where n; < nz <---and m; <my <--.. Then

ia,.,‘ = Za,’[ = 400, (2.8)
ook:l
Zamk = - Za; = —00. (2.9)
k=1

Assume first that —00 < a@ < 8 < +00. The idea of the construction is
to list first just enough of the positive terms of the given sequence to get
a sum larger than g, then just enough of the negative terms to get a sum
less than a, and continue in this manner. Let’s do this in a more formal
manner. We define inductively two sequences of positive integers, (k;)7%;
and (1,)72,. as follows. Define k; to be the smallest positive integer k such
that Zj:x an, > f3; such k exist by virtue of (2.8), so k is well-defined.
Let [; be the smallest positive integer [ such that

ky !
E Qn; + E am; <a.
j=1 ij=1

Such ! exist by (2.9), so l; is well-defined. Define ¢(j) = njforj =1,... k),
and ¢(k; + j) = mj for j = 1,...,1;. Let Ny = k; + !;. Having defined
ki,....k; and ly,...,1;, and (i) for i = 1,...,N;, where N} = Y°I_, k;
N} = S L, and N; = Nj + N}, we l(ft, kj+1 be the smallest pos-
itive integer k such that va___’l Gy + Z:v:’;fﬂam > B. Such k exist
because of (2.8), so kj4, is well-defined. We ;mt O(N; +1) = oy for

J=1,...,nk,41. Similarly, we take l;,; to be the smallest positive integer

I such that ZN’”"“ a (,)+Z,_J,f“ am, < a.Inview of (2.9), 1,4, is well-

defined, and we put ¢(N; + k;) +1) = MN7 4 forj=1,...,my,,. In this
way, we define a bijective mapping ¢ of N on itself. Putting b; = a4y and
8n, = Y_i_; b, we have by the construction that sy, < aand 8N, +k,,, >0
for every j. Furthermore, we see that a — |b,| < s, < 3 + |b,| for all n.
Since lim b,, = 0 (since the convergence of 3" a,, implies a,, — 0 a8 n — 00),
we conclude that s,, > 3 for infinitely many n, while for any ¢ > 0 we have
8, < B + € for all sufficiently large n, so limsups,, = 3, and similarly we
get liminf s, = a.

If —o0o < a < ﬂ +00, we modify the above construction to get
2,’ b < a and Z +"’b > j for each j, to get limsups, = +o0o. A
similar modification of the argument takes care of the other cases where a
or (3 equals +oo0. 1
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2.5 Unordered Series

Let A be a set (perhaps uncountable), and let #(A) denote the collection
of all finite subsets of A (a notation to be used only in this section). If
T :a— Iois a function from A to R, then ) ., has an obvious
well-defined meaning for each F € #(A), in view of the commutative and
associative laws for addition in R.

2.50 Definition. Let x : a — z, be a real-valued function on A. We
say that the unordered series 3. 4, Ta converges to the sum s, and write
(with an abuse of language) Y, c 4 Ta = 8, if for every € > 0 there exists
Fo € #(A) such that

S ra-s

a€F

<e€

for every F € F(A) with F D Fy. Similarly, we say that 3_ . 4 Ta diverges
to +00, and write Z(,EA To = +00, if for every M € R there exists Fy €
F(A) such that 3, Ta > M for every F € F with F D Fo.

We remark that in the case A = N, the convergence of 3 .y Zn implies
the convergence of Z:‘;, T,; the converse, as we will see shortly, is false.

The next two propositions are quite straightforward, and their proofs are
omitted.

2.51 Proposition. Letz: A - R,y: A— R, andce R. If Y ., Ta
and Y, c 4 Ya converge, then so do 3 c 4(ZTa + ¥a) and Y-, c4(cTa), and

we have
Y @ty =D Tat D Yar D (@a)=c) Za

a€cA a€A a€A a€A a€A

2.52 Proposition. Let z : A — R, with z, > 0 for all a € A. Then

Y aca Ta either converges or diverges to +00, and

Y o= sup{z zo:Fe€ y(A)}.

a€A a€F

2.53 Theorem. Ifx : A — R, then Eae 4 Za converges if and only if
Y aca ITal converges.

Proof. If 4 |Zal converges, then )~ ., x} converges by Proposition
2.52, since z* < |z| for all z € R; it now follows from Proposition 2.51
that 3° . 4 Ta converges, since z = 2z* — |z| for all z € R.

Now suppose ) ., Ta converges to s. Then there exists Fy € F(A)
such that |3 crZa — 8| < 1 for every F € #(A) with F D Fp, and
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hence | Y cr Tal < 1+ || for every F € #(A) with F D Fy. Now for any
F € #(A), we have

Zl’o= Z Ta — 2 2051+|8|+ZI;.

a€F a€FUF,y a€ Fo\F a€Fy

since —x <z~ forallze€ R.Let P={a € A: z, > 0}. Forany F € F(A)
we have then

Yoat= > za<l+lsl+ )z,

a€F a€FNP a€Fy

HO Y. 4 T4 converges by Proposition 2.52, and hence 3 4 |x.,| converges
by Proposition 2.51, since |z] = 2zt — 1 for all z € R.

2.54 Corollary. If y_ . .z, converges, then {x € A : z, # 0} is count-
able.

Proof. Let S = {a € A: z, # 0}. If ), 4 ZTa converges, it follows that
Y aca lTal = M < 00, as we have just seen. Let S,, = {a € A : |za| > 1/n}.
Then S, is finite, in fact #S, < nM.But S = U;’°=l Sp, so S is countable.

|

2.55 Theorem. Let (A,;)3%, be a partition of A, ie., A=J,_, An and
AjNAx =0 forevery j# k. Letx: A — R. Then }_ . 4, To converges if

and only if
20
3 Y laal < o0, (2.10)

n=1 aEAn

and in this case, ) . A, Ta converges for every n and

ch,:f:(z :1:0). (2.11)

a€A n=1 ‘a€A,

Proof. Suppose (2.10) holds. If F € #(A), then there exists N such that
N
FC Uk:l Ak, so

Sl =3 Y <3 Y el <30T feal

a€F n=1a€FNA, n=1a€A, n=1a€A,

80 Y sea lTal < PR ZQGA,. |Tal < o0o.

Now if 3, 4 ZTa converges, 80 3_ ¢ 4 |Zal < 00, then 3 4 |Tq4| < o0
for every n. Given € > 0, there exists for each n a finite subset F,, of A,
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such that 3° cr |Tal > 3 ,ca, [Tal —€27". Fix N, and let F = U,’L] F,
Then

S S k< (F b+ )
n=1a€A, n=1 ‘a€kF,
N
= Izal+ Zzi <3 Ieal +e

a€F

Since this holds for every N,
.
2 lral 3 lwal+e,
n=1a€A, a€EA

and since ¢ > 0 was arbitrary, we have equation (2.11), with z,, replaced by
|ral, 80 (2.11) holds whenever x, > 0 for all . In particular, it holds with
T4 replaced by x} or by z. Using as usual z, = z} — =7 and Proposition
2.51, we get the validity of (2.11) in general. ]

2.56 Corollary. If r : N — R, then ) N Tn converges if and only if
Y ney |Znl| converges, and in this case, 3, cn Tn = Y o Tn.

2.57 Corollary. If z : A —» R, and (A,)32, and (B,)$%, are partitions

of A, then 377 | 3" 4 |Za| converges if and only if 3270, 3 cp.: |Zal
converges, and in this case

A special case of this occurs quite frequently.

2.58 Theorem. Let z,,, € R for all nonnegative integers n and m. Then

PRSI S S SRy B I

m=0n=0 k=0n+m=k n=0m=0
provided any one of the four iterated series is convergent when z,., is
replaced by |Tpm|-

ﬁMs

One standard application of the last theorem is to the multiplication of
infinite series.

2.59 Definition. Let (a,)%%, and (b,)3%, be sequences in R. The Cauchy
product of the series Y~ a, and }_ b, is defined to be the series }_ c,, where
€n =Y k_okbn_k forn=0,1,....
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2.60 Theorem. If the series } ;- an and > .. bn are absolutely con-
vergent, then so is their Cauchy product ¥ .. cn, and

fo o} 00 20
S en = (3 an) (300
n=0 n=0 n=0
Proof. Let r,,, = ayb,,. Then
e o] o0 o0 e ] oo [e <]
3 (3 teanl) = S (3 lanltont) = (3 tanl (X Ionl) < o0,
n=0 ‘m=0 n=0 ‘m=0 n=0 n=0
80 Theorem 2.58 tells us that
x 20 o o0 o0 .9
(Z an) (Z bm) = Z Z Tnm = Z Z anb,, = chv
n=0 m=0 n=0m=0 k=0n+m=k k=0
as was claimed. |
In fact, the Cauchy product converges if only }_ a, converges absolutely,

and then it converges to the product of the two series. But the Cauchy

product of two convergent series need not be convergent (see the exercises
below.)

2.6 Exercises

1. Prove Lemma 2.5.

2. Show that the following sequences (z,,) converge, and find their limits:

2 n.
ﬁ+...+m7

(b) zn = \/1_1(\;11+ - ﬁ)v

(c) 2o=0,z; =1, and z,, = %(zn_l + Zp-2) for n > 2.

1
(a) Inzﬁ"'

3.Let o = 1 and let z,43 = 1+ 1/x, for all n > 0. Show that (z,)
converges, and find its limit.

4. Suppose a > 0. Let z; = y/a, and define .,y = ya+z, forn > 1.
Show that z,, < 1+ y/a for all n, and that (z,) is an increasing sequence.
Then show that (z,) converges, and find its limit.

5. Let J={1:1st%}.Deﬁnef(z):—%a:’-l-x%-l,forzéJ.

(a) Show that f is strictly decreasing, i.e., that if z < y, then f(z) > f(y).
(b) Show that if z € J, then f(z) € J.
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(c) Show that |f(z) — f(y)| < jlz —y| for all z,y € J.
(d) Let 2o = 1, and Zn4+; = f(zn) for n > 0. Show that limz,, = V2.

(e) Show that (z3,) increases, and (z2,-1) decreases, to V2.

6. Suppose 0 < a < b. Define ag = a, by = b, and
8nt1 = Vapbp, bayy = %(an + bn)

for every n € N. Show that (a,) is an increasing sequence, that (b,) is a
decreasing sequence, and that both converge to the same limit.

7. Prove Proposition 2.16. Give an example where we have strict inequality
in (c) of this proposition.

8. Show that (n!)!/® — 0o as n — oo.

9. Use the Bolzano-Weierstrass theorem (Theorem 2.17) to give another
proof of (the nontrivial half of) Theorem 2.19.

10. Let (an)32, be a sequence in R.

(a) Show that if lima, = A exists, then lim(1/n)(a; +a2+:--+a,) = A4,
but that the converse is false.

(b) Show that if 3" ° | a, converges, then

nmeon k=1
— 1
11. Does the series Z converge?
o nyn
12. Show that
(o <]
Z(—l)"+l 2n+1
~ n(n+1)

converges, and find its sum.
13. Let (a,) be a sequence in R, with a, — A # 0 as n — co. Suppose
also that a, # 0 for every n. Show that the two series

0o 00

Z lan+1 = anl, Z

n=1 n=1

1 1

Gniyl G

either both converge or both diverge.
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14. Show that if a,, > 0 for every n, then

a .. . . a
2! < liminfa/™ < limsupa!/™ < limsup —*!.
n pa, p

an n

lim inf

Hence the root test is always decisive when the ratio test is. Of course,
there are many cases where the ratio test is easier to apply.

15. Show that if (a,) is a sequence in R, and a,r® — 0 for some r # 0,
then Y anz™/n! converges absolutely for every z € R.
16. Show that the series

20

1
Z n(logn)*

n=2

diverges for s = 1, but converges for every s > 1. [The logarithm func-
tion has not yet been defined, but for the purpose of this problem take for
granted the fact that there is such a function on (0, +00), with the proper-
tieslogz > O for all z > 1, and log(zy) = logz+log y for all z, y € (0, +¢).]
HINT: Use Proposition 2.40.

17. Show that if }_ |an — an41| < 00, then (an) converges, but not con-
versely.

18. Let (a,)?%, and (b,)2%, be sequences in R. Show that if ) _ b, converges
and Y lan, — an41| < o, then Y apb, converges.

19. Let (pn) be an increasing sequence of positive real numbers, with p, —
oo as n — oo, and (a,) a sequence of real numbers.

(a) Show that if }_ a, converges, then

1 n
—Zpkak—'o as n — oc. (2.12)
Pn

(b) Conversely, if 3 a, does not converge, show that there exists an in-
creasing sequence of positive numbers (p,) with lim p, = oo such that
equation (2.12) does not hold.

20. Show that if the sequence (a,) converges, then so does any rearrange-
ment of (a,), and to the same limit.

21. Let (a,) be a sequence of positive real numbers. Show that if }_a,
converges, then liminf,,_, ., na, = 0; show that if also (a,) is decreasing,
then lim, ., na, = 0.

—1\n
22. Let a, = \(/__2_1 forn =0,1,.... Show that Z::o a, converges, but
n

that the Cauchy product of }_ a, with itself diverges.
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2.7 Notes

2.1

2.2

23

2.4

The inequality (1 +¢)" > 1+ nt (for t > 0, n > 1) was first published
by Jakob Bernoulli. The most common conception of a real number
is probably that of an infinite decimal expansion, which Example 2.7
shows to be justified. However, taking this as the definition of real
number, while possible, would present several awkward points. For
instance, defining the sum and product of infinite decimals is not
trivial. The earliest use of the method of calculating square roots
described in Example 2.8 that we know of is found on clay tablets
dating to the Old Babylonian period (1800-1600 B.c.). It was also
known to Chinese and Arab mathematicians centuries before Newton,
yet it is still sometimes referred to as “Newton'’s method.” The symbol
e was introduced by Euler (as was also the symbol w). The Cauchy
criterion is sometimes also attributed to Bolzano.

For more about continued fractions, see, for instance, the little book
of Khinchin (7], or Hardy and Wright [4].

It is amusing that while we have established } ., 1/n = +oo0, the
proof of Theorem 2.40 gives the estimate san < n + 1, so that to get
a partial sum that exceeds 100 we would need more than 2! terms
of the series. Adding a million terms a second, this would take more
than 10 quadrillion years. '

Example 2.42 (the convergence of alternating series) was found by
Leibniz. Its generalization, Theorem 2.43, or at least Corollary 2.44,
is due to Dirichlet. The related Exercise 18 is due to Abel, for the
case of a bounded monotone sequence (a,).

The striking Theorem 2.49 (or at least the special case a = 3) is due
to Riemann.

It was shown by Mertens that if 3" a,, is convergent, Y_ b, is absolutely
convergent, and Y_ ¢, is the Cauchy product of }_ a, and }_ b, then
3" ¢, is convergent. It was shown by Abel that if all three series are
convergent, then Y cn = (3 an) (X ba). The sense of convergence
described in this section is a special case of the following. A directed
set is a partially ordered set with the property that given any z,
¥, there exists z such that £ < z and y < 2. A totally ordered set is
directed, as is the set F of all finite subsets of a set A, with the partial
ordering of set inclusion. Let I be a directed set, and let x : ] — R.
We say that (z,)aes is a generalized sequence in R, or a net in R.
We say that £, — L if for every ¢ > 0 there exists ag € I such that
|za — L| < € for every a € I with a > ag. This notion will appear
again in the definition of the Riemann integral later on.



54 2. Sequences and Series

2.6 Exercise 3, meant to be done by a direct approach, can also be treated
by the methods of Section 2, and then gives an evaluation of the
limit of (fn+1/fn), where (f,) is the sequence of Fibonacci numbers.
Exercise 5 is an example of finding a fixed point of a mapping by the
method of iteration. A generalization will be discussed later in the
context of metric spaces. The sequences in Exercise 6 were introduced
by Gauss, who called their common limit the arithmetic-geometric
mean of the numbers a and b. Exercise 19 is a theorem of Kronecker.



3

Continuous Functions on Intervals

In this chapter, we begin the study of continuous functions with the special
case of real-valued functions defined on an interval in R. The concepts we
develop here will be reexamined in a more general setting in later chapters.

3.1 Limits and Continuity

3.1 Definition. Let A C R, and let f : A — R. We say that f has the
right-hand limit L (L € R) at ¢, and write lim;_..4 f(x) = L, if there
exists b > c such that (c,b) C A, and for any € > 0 there exists 6 > 0 such
that |f(z) — L| < € for every € A satisfyingc < z < c+ 3.

We say that f has the left-hand limit L at c, and write lim,_,.— f(z) = L,
if there exists a < ¢ such that (a,c) C A, and for any ¢ > 0 there exists
6 > 0 such that |f(z) — L| < € for every ¢ € A satisfyingc—6 <z <c.

Iflimz_..4 f(z) and lim—.- f(z) both exist and are equal, we call their
common value the limit of f at c, and denote it by lim;_.. f(z).

We also want to consider the extended real numbers o0 in the roles of
c or L above.

3.2 Definition. Let A C R, and let f : A — R. We say lim;_..4 f(z) =
+00 if for every M € R there exists § > 0 such that (c,c + ) C A, and
f(z) > M for every z € (c,c + 6).

We say that lim; ., f(z) = L if for every ¢ > 0 there exists xo such
that (zg,+00) C A and |f(z) — L| < € for all > xy.
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The definitions of lim,_.._ f(x) = +oc, lim,—._» f(z) = L. etc., etc.,
follow the same pattern, and will be left to the reader.
We will often write f(a+) for lim;_.,+ f(z), and f(b—) for lim,_,_ f(x).

There is a convenient terminology which saves us from writing too many
e’'s and é's.

3.3 Definition. Let a € R and U C R. We say that U is a neighborhood
of a if there exists € > 0 such that (a —e,a+¢) CU. Ifa € A C R, we say
that V is a neighborhood of a relative to A if there exists a neighborhood
U of a such that V. = ANU.

We make three extremely simple remarks: every open interval (a, b) with
a < b is a neighborhood of ¢ for every ¢ € (a,b); if U is a neighborhood of a
and U C V, then V is a neighborhood of a; if U and V are neighborhoods
of a. thensois UNV.

We can rephrase the definition of limit as follows: let I be a neighborhood
of c.and f: I\{c} = R. We say lim,_.. f(z) = L if for every neighborhood
V of L there exists a neighborhood U of ¢ such that f(U\{c}) C V.

3.4 Example. Let R -+ R be defined by

1 if ¢ is rational
y-={ ~
/) 0 if t is irrational.

Then for all t neither f(t+) nor f(t—) exists. For the intervals (t,t + )
and (¢ — 6.t) contain both rational and irrational numbers, so with € = 1/2
and any L, the inequality |f(s) — L| < € for all s € (t,t + 6) (or for all
s € (t — 6.t)) is impossible for any 6 > 0.

3.5 Example. Let f : R — R be defined by f(t) = 1/n if t = m/n,
where m and n are integers without common factor, (n > 0), and f(t) =0
if t is irrational. Then lim,_., f(s) = O for every t € R. For given ¢ > (),
there exist only finitely many numbers m/n with n < 1/e in the interval
(t —1,t + 1), so there exists § > 0 such that (¢t — 6,¢) and (t,t + §) contain
no such numbers: thus f(s) < € for all s with 0 < |t — 3| < 6.

3.6 Proposition. Let I be an interval with endpoints a and b (a < b), and
let f be an increasing function on I. Then for every t € (a,b) the one-sided
limits f(t+) and f(t—) exist, and f(t—) < f(t) < f(t+). Furthermore,
fla+) and f(b—) exist (in the extended sense), with f(a) < f(a+) ifa € I
and f(b—) < f(b) ifbe I.

Proof. If t € (a,b), let A =sup{f(s):s€l, s<t}andlet B=inf{f(s):
se€ I, s>t} Clearly A < f(t) < B since f is increasing. For any ¢ > 0,
there exists sp € I with sg < t such that f(sg) > A—e. Since f is increasing,
it follows that A —e < f(3) < A for every s with sg < s < t,s0 A = f(t-).
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Similarly, B = f(t+). If t = a, let B = inf{f(s) : s € I, s > a} (possibly
B = —00). The same argument as before shows that B = f(a+). Similarly,
if t = b, the same argument shows that with A = sup{f(s) : s € I, s < b}
(possibly A = +), we have A = f(b-).

3.7 Definition. Let I be an intervalin R, c € I, and f : I - R. We
say that f is continuous at ¢ if for every ¢ > 0 there exists § > 0 such
that |f(x) — f(¢)] < ¢ for every x € I with |x — ¢| < 8. We say that f is
continuous on the interval I if it is continuous at every point of I.

Thus the function in Example 3.4 is not continuous at any point of R,
while the function in Example 3.5 is continuous at every irrational z, but
discontinuous at every rational q.

There are several equivalent ways to formulate the notion of continuity.

3.8 Proposition. Let I be an interval in R, c € I, and f : I — R. The
following are equivalent:

(a) f is continuous at ¢.

(b) lim,_.. f(x) = f(c). If ¢ is the left endpoint of I, this is to be read as
f(c+) = f(c), and if c is the right endpoint of I, this is to be read as
fle=) = f(c).

(c) For every neighborhood V of f(c) there exists a neighborhood U of
¢, relative to I, such that f(U) C V.

(d) For every neighborhood V of f(c), f~'(V) is a neighborhood of c,
relative to I.

(e) For every sequence (z,) in I with limz, = c, the sequence (f(z,))
converges to f(c).

Proof. The equivalence of (a), (b), (c), and (d) is a matter of looking at
the definitions of limit and neighborhood. We show the equivalence of (a)
and (e).

Suppose f is continuous at ¢ and (z,) is a sequence in [ with limz, = c.
Let € > 0. There exists § > 0 such that |f(z) — f(c)| < € for every z € I
such that |z —c| < 8. There exists ng such that |z, —c| < é for every n > ny.
It follows that |f(x,) — f(c)| < € for all n > ngy. Thus lim f(z,) = f(c) for
every sequence (z,) in I converging to c.

Now suppose that f is not continuous at c. Then there exists € > 0 such
that for every 6 > 0 there exists z € I with |[t—c| < § but |f(z) - f(c)| > e.
In particular, for every n there exists r, € I with |z, — ¢ < 1/n and
|[f(xn) — f(c)| > €. Then () converges to ¢ but (f(z,)) does not converge

to f(c).
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If f and g are real-valued functions defined on a set X, we can combine
them in various ways to obtain other functions on X: we define their sum
f+g by therule (f+g)(z) = f(x)+g(z), their product by the rule (fg)(z) =
f(z)g(z), and their maximum by max{f,g}(z) = max{f(z),g(x)}. The
function 1/f is defined by the rule (1/f)(z) = 1/f(z); its domain is {z €
X : f(z) # 0}. Similarly, we can define |f|, f*, f~ by composing f with
the appropriate map of R to itself.

3.9 Proposition. Let f and g be real-valued functions on an interval I,
andc € I. If f and g are continuous at ¢ € I, then f + g and fg are contin-
uous at c. If also f(c) # 0, then 1/ f is defined in a relative neighborhood
of ¢, and is continuous at c.

Proof. This is an immediate consequence of Proposition 3.8(¢) and the
corresponding properties for sequences (Proposition 2.1).

3.10 Example. It is obvious that constant functions are continuous ev-
erywhere, and the identity function z — z is continuous everywhere. Using
the last proposition, we conclude that every polynomial function is con-
tinuous everywhere, and that every rational function is continuous on its
domain. It is also trivial that the maps z — z*, 2 — z~, and z — |z| are
all continuous. The greatest integer function z — [z] is continuous at each
c ¢ Z, discontinuous at each c € Z.

3.11 Proposition. Let I be an interval in R, f : I — R, and c € I. Let
J be an interval in R with f(I) C J, and g: J — R. If f is continuous at
c and g is continuous at f(c), then the composition go f is continuous at c.

Proof. Let V be a neighborhood of g(f(c)). Then, since g is continuous
at f(c), g~ (V) is a neighborhood of f(c), relative to J, i.e., g~ (V) =
U N J, where U is a neighborhood of f(c) in R. Since f is continuous at c,
f~1(U) is a neighborhood of c relative to I. Since f(I) C J, f~'(¢g7}(V)) =
fTHU)Nf1(J) = f~Y(U). Hence (go f)~1 (V) = f~1 (g '(V)) = f’”'(Ug

is a neighborhood of c relative to I. Thus g o f is continuous at c.

3.12 Corollary. If f is continuous at c, then so are f*, f~, | f|, and p(f),
whenever p is a polynomial.

3.13 Proposition. If f is an increasing function on an interval I, then
D ={d € I: f is not continuous at d } is countable.

Proof. For any d € I, d not an endpoint of I, we know (Proposition
3.6) that f(d—) and f(d+) exist, with f(d—) < f(d) < f(d+),sod € D
if and only if f(d-=) < f(d+). Similarly, if a is the left endpoint of I
and a € I, then a € D if and only if f(a) < f(a+), and if I contains
its right endpoint b. then b € D if and only if f(b—) < f(b). For each
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d € D, the interval (f(d-), f(d+)) contains a rational number g4 (make
the obvious modification if d is an endpoint of I). If d,d’ € D withd < d',
then f(d+) < f(d'-), s0 g4 < q4. Thus the map d — g4 of D into Q is
injective; since Q is countable, it follows that D is countable. [ |

It is left as one of the exercises at the end of this chapter to show that
for any countable subset S of R there exists an increasing function on R
whose discontinuity set is precisely S.

3.2 Two Fundamental Theorems

The next two theorems are of use in many situations. They will be gener-
alized in a later chapter.

3.14 Theorem. A continuous real-valued function on a closed bounded
interval attains maximum and minimum values.

Proof. Suppose f : J — R is continuous, where J = [a,b] (¢ < b).
Let M = sup{f(z) : z € J}. If M = +00, there exists for each n € N
some z, € J such that f(z,) > n. According to the Bolzano-Weierstrass
theorem (Theorem 2.17) there exists a subsequence (zn,) of (z,) which
converges to some c¢; since a < r, < b for every n, we have a < ¢ < b.
According to Proposition 3.8(e), we have f(c) = lim f(z,,), but this is
impossible since f(z,,) > nx — +0c. Thus M < +00. Now choose, for each
n € N, z,, € J such that f(z,) > M —1/n. Since also f(z,) < M, we have
f(zn) = M as n — oo. The sequence (z,) has a convergent subsequence
(yn). Then (f(yn)) is a subsequence of (f(zn)), so f(y.) — M; but if
Yn — c, Proposition 3.8 assures us that f(y.) — f(c). Thus f(c) = M.
The proof that f attains a minimum value is similar, or can be deduced
from what we have proved by considering the function —f. ]

3.15 Theorem. If f is continuous on the interval |a,b], and f(a) < y <
f(b), or f(a) > y > f(b)), there exists x, with @ < = < b, such that
flx)=1y. '

Proof. We may assume that f(a) < y < f(b). Let E = {t € [a,}] :
f(t) < y}, so E is a nonempty (a € E) subset of [a,b]. Let £ = sup E, so
z € [a,b]. For each n there exists z, € E such that z - 1/n < z,, < z.
Thus f(z,) < y for every n. Since , — x, we have (by Proposition 3.8(e))
lim f(z,) = f(z), so f(z) < y. But f(b) > y implies (since f is continuous
at b) that there exists 6 > 0 such that f(t) > y for all t withb—-6 <t <b.
Thus z < b. Hence there exist t, € J with z < t,, and limt,, = z. Since
tn > x, we have t, ¢ E, ie., f(t,) > y, so f(z) = lim f(t,) > y. Thus
flz)=y. i
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This result is known as the intermediate value theorem. Another way to
express this fact: if J is an interval, and f : J — R is continuous, then
f(J) is an interval. The last two theorems together yield: if J is a closed
bounded interval, then f(J) is a closed bounded interval.

3.16 Theorem. Let I be a nonempty interval in R, and let f : [ — R be
continuous. If f is injective, then J = f(I) is an interval, and g = f~ ! is a
continuous function on J.

Proof. We have already observed that J = f(I) is an interval, just be-
cause I is an interval and f is continuous. The condition that f is injective
is equivalent to the condition that f is either strictly increasing or strictly
decreasing on I. Indeed, if f is neither strictly increasing nor strictly de-
creasing, there would exist a,b,c € I with a < b < ¢ such that either
fla) < f(b) > f(c) or f(a) > f(b) < f(c). If equality holds in any of these
inequalities. f is not injective. Suppose f(a) < f(c). If f(b) < f(a), The-
orem 3.15 tells us there exists t € (b.c) such that f(t) = f(a), so f is not
injective. If f(b) > f(c), Theorem 3.15 tells us there exists t € (a,b) such
that f(t) = f(c¢), so again f is not injective. The case where f(a) > f(¢) is
dealt with in an entirely analogous manner. Thus f injective implies f is
either strictly increasing or strictly decreasing. The converse is obvious.
The interesting part is the continuity of the inverse function g, whose
existence comes from the definition of injective. Let y € J, so y = f(r) for
some r € 1. Suppose f is strictly increasing (the case of f strictly decreasing
is treated in a similar fashion, or can be deduced from the strictly increasing
case by considering the function — f). Let V be a neighborhood of x relative
to I; we must show that g7}(V) = f(V) is a neighborhood of y relative
to J. If z is not an endpoint of I, there exist a,b € V witha < z < b.
Then f(a) < y < f(b) since f is strictly increasing, and for any z with
fla) < z < f(b) there exists (by Theorem 3.15) some ¢, a < t < b, with
f(t) = 2. Thus g~}(V) D (f(a), f(b)), s0 g~} (V) is a neighborhood of
y for any neighborhood V of ¢g(y). If z is an endpoint of I, say the left
endpoint, then y is necessarily the left endpoint of J, since f is strictly
increasing, and there exists b > x such that [z,b) C V. Then [y, f(b)) C J
is a neighborhood of y relative to J, and as before g=!(V) D [y, f(b)) is a
neighborhood of y relative to J. Thus g is continuous at y for any y € J.

As an application of this result, consider the function f : z +— =", which
is strictly increasing on R if n is odd, and strictly increasing on R* = [0, 00)
when n is even. The theorem not only tells us that f maps onto R when
n is odd, R* when n is even, i.e., gives a new proof of Theorem 1.13, but
also gives the bonus that the inverse function x +— z!/™ is continuous.
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3.3 Uniform Continuity

3.17 Definition. Let I be an interval in R, and let f : I — R. We say
that f is uniformly continuous on I if for every ¢ > 0 there exists & > 0
such that |f(s) — f(t)| < e for all s,t € I such that |s — t| < 6.

Thus, if f is uniformly continuous on I, then f is continuous on I, but
the converse need not hold. Consider the function f on (0,1) defined by
f(x) = 1/r. As we saw above, f is continuous at each point of (0,1). But
for any 6 > 0 we can find s and t in (0,1) such that |s — t| < § and
|f(s8) — f(t)] > 1. For instance, take any s < é and t = s/(1 + s). Clearly,
0<t<s,sols—tl=s8—-t<s <6 and 1/t — 1/s = 1. Thus there
exists no 6 fulfilling the job description when ¢ = 1, so f is not uniformly
continuous. Similarly, it is easy to see that the function t — t? is not
uniformly continuous on [0, 00). However, no such example exists when I
is a closed bounded interval.

3.18 Theorem. If I is a closed bounded interval, and f : - — R is con-
tinuous on I, then f is uniformly continuous on I.

Proof. If f is not uniformly continuous on I, there exists ¢ > 0 such that for
every 6 > 0 there exist s and ¢t in I with |s—t] < é but |f(s) = f(t)| > ¢. In
particular, for cach n € N there exist s, and ¢,, in I such that |s,,—t,| < 1/n
and |f(sn) — f(tn)] > €. According to the Bolzano—Weierstrass theorem
(Theorem 2.17) there exists a convergent subsequence (s,,) of (s,). Then
s = lims,, € I, since I is a closed interval. Since |t,, — sn,| < 1/ng <
1/k, we see that limt,, = s also. According to Proposition 3.8, f(s) =
lim f(sp,) = lim f(t,,), but this contradicts |f(s,,) — f(tn,)| = €. Thus
the hypothesis that f is not uniformly continuous is untenable.

This theorem will prove itself invaluable in the future. At this point, we
content ourselves with applying it to show that every continuous function
on a bounded closed interval can be approximated in a natural sense by a
function whose graph consists of a finite number of line segments.

3.19 Definition. Let f be a real-valued function on an interval I with
endpoints a and b. We say that f is linear if there exist c¢,d € R such that
f(t) =c+td for all t € I. We say that f is piecewise linear if there exists
a finite sequence (zx)p_o Witha = 19 < ) < -+ < x, = b such that the
restriction of f to (xx-1,xk) is linear, for k = 1,2,...,n.

We observe that if f is continuous and piecewise linear, then the restric-
tion of f to each [zx_y,zk] is linear.

3.20 Theorem. If f is a continuous real-valued function on the closed
bounded interval I, then for any ¢ > 0 there exists a piecewise linear
continuous function g such that |f(t) — g(t)] < e forallt e I.
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Proof. According to Theorem 3.18, there exists § > 0 such that |f(s) —
f(t)] < € for all 8,t € I with |8 —t|] < 6. Suppose [ = [a b] Choose
n > (b—a)/é, and set zx = a + (k/n)(b — a), for k = ..., M, SO
a =290 <xT) < - < Zp =0b, withzp —z4_, = (b—a)/n < & for
each k, 1 < k < n. Define g to be the piecewise linear function such that
g(zk) = f(zx) for each k, 0 < k < n. In other words, put

f(@x) = f(zi- 1)(t

Ik Tk-1

g(t) = f(zk-1) + Tk-1)

= f(zx- 1) +f( k) L

Tk Tk-1
for z41 <t < x4, 1 < k < n. Now for any t € I, there is some k
such that t € [zx—;,zi]. We observe that the value of g(t) lies between
the values at z,_; and zx of the function f, and therefore, by Theorem
3.15, g(t) = f(s) for some 8 € [zk—1,Zk]. Since |s — t| < §, we obtain

17(6) - g(O)] = 1£(t) - f(s)| < e. ]

3.4 Sequences of Functions

If (f,) is a sequence of functions, there are many ways that we might
understand the statement that (f,) converges to a function f. We briefly
consider two of these ways in this section.

3.21 Definition. Let (f,) be a sequence of real-valued functions on a set
X. We say that f, — f pointwise, or that f is the pointwise limit of the
sequence (fy,), if lim fo(z) = f(z) for every z € X.

In other words, f, — f pointwise if and only if for every £ € X and
every € > 0 there exists ng such that |f,(z) — f(z)| < € for every n > ny.

3.22 Definition. We say that f, — f uniformly on X, or that f is the
uniform limit on X of the sequence (f,), if for every € > 0 there exists an
integer ng such that |f(z) — fa(z)| < € for every £ € X whenever n > ny.

Comparing this to the definition of pointwise convergence, we see that
the difference is that ng can be chosen to work simultaneously for all z,
rather than choosing ng for each z separately.

It is clear that if f, — f uniformly, then f, — f pointwise, but the
converse need not hold. For instance, let f,(z) = z™ for z € [0,1]. Then
fo(z) = 0if0 <z < 1, but f,(1) =1 for all n. Thus f, — f pointwise,
where f is defined by f(z) =0 for 0 < z < 1, f(1) = 1. We note that f is
not continuous at 1. The convergence is not uniform, since if we take any
0 < € < 1, we can find for any ng some z € [0,1) such that z™ > ¢, ie,

fro(2) - flz) > €.
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Theorem 3.20 is equivalent to the statement that for any continuous
real-valued function on a closed bounded interval I, there exists a sequence
(gn) of continuous piecewise linear functions which converges uniformly on
Ito f.

3.23 Proposition. Let (f,) be a sequence of real-valued functions on a
set X. Then (f,) is uniformly convergent to some f if and only if it is
uniformly Cauchy, i.e., if and only if for every ¢ > 0 there exists ng such
that | fo(z) — fim(z)| < € for every n,m > ng and every x € X.

Proof. If (f,) converges uniformly to f, then for any ¢ > O there exists
ng such that |f(z) — fa(z)| < €/2 for every n > ng, every z € X, and it
follows that

lfmn(Z) = fa(2)] = | fon(2) — f(2) + f(2) = fa(2)|
< | fm(2) = f(@)| + |f(2) - fa(2)] <€

for all z € X whenever n,m > ny, so (f,) is uniformly Cauchy.

Suppose now that (fy,) is uniformly Cauchy. Then (fn(z)) is a Cauchy
sequence in R for each r € X, hence convergent for each £ € X. Let
f(z) = lim fp(z) for each z € X. Given € > 0, choose ng so that |fn(z) —
fm(z)| < €/2 for every x € X, whenever n,m > ng. Then, for every n > ng
and every r € X, we have

lfn(z) = (@) < |fn(2) = frm(@)] + | fm(2) = f(2)] < €/2 + | fm(2) - f(2)|

for every m > ng. Since lim f,,(z) = f(z), we can choose m so that | fr,(z)—
f(z)] < €/2, and it follows that |fn(z) — f(z)| < € for every n > no and
every r € X, i.e., that (f,) converges uniformly on X to f. 1

3.24 Theorem. Let ( f,) be a sequence of continuous real-valued functions
on the interval I C R. If f, — f uniformly on I, then f is continuous on I.

Proof. Let z € I and ¢ > 0. Choose n so that | f,(t) — f(t)| < €/3 for every
t € I, and then choose § > 0 so that |f,(y) — fa(z)| < €/3 for all y € I
with |y — x| < 6. Then for all y € I with |z — y| < 6 we have

|f(x) = fW)] = |f(2) = fa(x) + fa(2) = fu(¥) + fa(y) = F(W)I
<|f(2) = fa(@)] + | fn(z) = fa(W)] + | fa(y) — F(W)I
<e/3+e€/3+¢€/3=ck,

so f is continuous at z. |

We have seen an example where the lack of uniform convergence was
revealed by the discontinuity of the limit function. However, it is possible
for a sequence (f,) of continuous functions to converge pointwise to a con-
tinuous function f, and yet the convergence not be uniform. For instance,
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take fn(z) = 1/(nz) for € (0,1). For an example where the functions are
defined on a closed bounded interval, define

nx if0<z<1/n,
falz)={2-nz f1l/n<z<2/n,
0 if2/n<z<l.

Then each f, is continuous on [0, 1], the sequence (f,) converges to 0
pointwise on [0, 1], but max{f.(z) : 0 < £ < 1} = 1 for every n, so the
convergence is not uniform.

There is one special case where pointwise convergence to a continuous
function does imply uniform convergence.

3.25 Theorem. Let (f,) be a sequence of continuous real-valued functions
on a closed bounded interval I, and suppose (f,) is a monotone sequence,
i.e., that either f,(x) < fn41(x) for every n and every = € I, or that
falx) 2 fons:1(x) for every n and every x € I. If (f,) converges pointwise
to a continuous function f, then (f,) converges to f uniformly on I.

Proof. If (f,) is increasing, let g, = f — f,, or if (f,) is decreasing, let
gn = fn — f. Then (g,) is a decreasing sequence of continuous functions,
with limg,(z) = 0 for every = € I. We show that (g,) converges to 0
uniformly on 7, and this is equivalent to the uniform convergence on I of
(fr) to f. Let M, = sup{gn(z) : = € I}. Evidently M,,+; < M, for all
n. The uniform convergence of (g,) to 0 is equivalent to lim M, = 0. By
Theorem 3.14 there exists z,, € I such that g,(z,) = M,. According to the
Bolzano Weierstrass theorem (Theorem 2.17) there exists a subsequence
(zn,) of (zn) which converges to some z* € I. Since lim g,(z*) = 0, there
exists m such that g,(z*) < € for all n > m. Since g, is continuous, there
is a neighborhood U of z* such that g, (z) < € for all z € U. Choose k such
that z,, € U, and nx > m. Then g,,(Zn,) < gm(ZTn,) <€, ie., My, <,
and it follows that M, < € for every n > nx. Thus, (gn) converges to 0
uniformly on [.

Infinite series of functions are a special case of infinite sequences of func-
tions. We say that the infinite series of functions converges uniformly on
the set X if the associated sequence of partial sums converges uniformly
on X. The following is probably the most often used criterion for uniform
convergence; it is known as the Weierstrass M-test.

3.26 Theorem. Let (f,) be a sequence of real-valued functions on a set
X . If there exists a sequence of constants (M,) such that |f,(z)| < M, for
every z € X, and }_ M, < +oo, then Y f, converges uniformly on X.

Proof. The series Y fn(z) converges (absolutely) for every z € X by the
comparison test (Corollary 2.32). Let s,(z) = Y_y_, fe(z), and let s(z) =
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2:-.1 Sfx(x). For any € > 0, there exists m such that ZZ‘,’__mH M, < €; then
we have, for all n > m and every r € X,

> (=)

k=n+1

Is(z) — sn(x)| =

<Y @l Y Me<e

k=n+1 k=m+1

so that )_ f,, converges to s uniformly on X. ]

3.5 The Exponential Function

The series Y -, " /n! converges absolutely for every = € R, as we see by
applying the ratio test (Theorem 2.37). Let us denote its sum by E(x). We
note that the convergence is uniform on any bounded interval; in fact, for
all ¢ € [-L, L], we have

n n

1L,

n! n!
and the series Y M, converges, so the series for E(x) converges uniformly
by the Weierstrass M-test (Theorem 3.26). It follows (Theorem 3.24) that
E is continuous on any bounded interval in R, and thus continuous on
R. We also note that E is strictly increasing on [0, +00). The essential
property of the function E is expressed in the following proposition.

3.27 Proposition. For every z,y € R, E(x + y) = E(x)E(y).

Proof. We calculate

n=0 n=0 k=0
_ i y ZY_ sy
n=0k+j=n k! J' k=0 j=0 ' J'
= E(z)E(y),

where we used the binomial formula (Exercise 3 in Chapter 1), and Theorem
2.58. (]

3.28 Corollary. For all z € R, E(z)E(-z) = E(0) = 1; also, E is a
strictly increasing positive function on R, with

lim E(z)=+o00, lim E(z)=0.
£—+00 I ——00
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Proof. The equation E(0) = 1 is immediate from the definition of E; then
E(0) = E(z)E(—z) follows from the proposition, and obviously implies
E(z) > 0, since we already observed that E(z) > 1forz > 0. Ifz <y <
0, then E(-z) > E(-y) since —z > —y and FE is increasing on [0, 00),
so E(z) = 1/E(—z) < 1/E(-y) = E(y). The other cases of r < y are
immediate, so E is increasing on R. The definition of E gives the inequality
E(z) > 1+z for all z > 0, which shows that E(z) — +00 as z — +00, and
the relation E(—z) = 1/E(z) then shows that E(z) - 0asz — —oo. 1§

3.29 Proposition. E(1) =e.

Proof. Recall that e was defined as lim,_..o(1 + 1/n)" (Example 2.12).
Using the binomial formula, we have

(1+%)nzz":(:)(%)ki;%n(n-1)(n—2;)k---(n—k+1)‘

k=0

from which we see at once that (1 + 1/n)" < 3"}'_(1/k!) < E(1), which
implies that e < E(1). Fix the positive integer m. Then for any n > m, we

(1+3) =2 &-D0-D-0-5)
>3 5(1-) (-5

letting n — oo we get e > Y (1/k!), for every m, and then letting
m — oo we get e > E(1). |

In view of the last two propositions, we denote E(z) by e*, or sometimes
by expz. Since E is a strictly increasing map of R onto (0, +00), there
exists an inverse function defined on (0, +00) which we denote by log; log
is continuous by Theorem 3.16, it is strictly increasing, with log1 = 0,
lim; .o+ logz = —00, and lim; .4+ logz = +00, and satisfies log(zy) =
log z + logy for all z,y € (0, +00).

We also define b* for any b > 0, z € R, by b* = €*!°8%_ 1t is easy to
see that this agrees with our previous understanding of b when r is an
integer, or rational number. It is clear that = — b* is strictly increasing
when b > 1, strictly decreasing when b < 1. We further define (for b > 0,
b # 1), log, = logz/ logb, so that ¥ = z if and only if y = log, z.

3.6 Trigonometric Functions

For any R > 0, if a, = R?"/(2n)! we have an41/a, = R?/(2n +2)(2n +
1) — 0 as n — oo, 80 the series Zf;oa,. converges by the ratio test
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(Theorem 2.37).

3.30 Definition. The cosine and sine functions are defined by

2n b TIn+l
Z( (2 )'y SInT = 'g( )n (2n + 1)|

In view of the remark just made, these series converge absolutely for
every £ € R, so the functions are well-defined. The Weierstrass M-test
shows that both series converge uniformly on every interval [—R, R], so the
cosine and sine functions are continuous on R. We calculate, using Theorem
2.60,

n ( l)k 2k( l)n—k 2n-2k
@K (2n = 2k)

=3

n=0 k=0
2 (-1)"z N [2n
-Z:%) (2n)! kzo(ﬂc)

and, similarly,

( l)" 2k+1 (__l)n—kz2n—2k+l
sin ““:Ljog @k+ 1) (2n- 2k + 1)

(=122 &S (20 + 2

_Z (2n+2)! ;(2k+l)
( l)n 2n n-1 2n

-3 S 2 ()

Now n
o1+ =Y" (2:) (n>0)
k=0
and

2n
0o=-10" =S} @>21),
Seur(y) @

so adding and subtracting these equations we see that (for n > 1)
n n-1
2n 2n
() -rE ()
pyard 2k pard 2k +1

Thus we have

oo 2n 2n

cos’z =Y 22"N(- 1)"(2 3 sin x-—ZZQ" (- 1)"(2 Tk

n=0
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s0 adding and subtracting we get the equations

cos’r +sin’z =1, (3.1)

cos? z — sin? r = cos 2. (3.2)

The first of these formulas shows that |cosz| < 1 and |sinz| <1 for all
reR.

Now for z > 0, z"*2/(n+2)! < z"/n! if and only if 22 < (n + 1)(n + 2);
hence z"*2/(n + 2)! < z"/n! for all n > 1 if 0 < z < V6. Looking back
to Example 2.42 (the discussion of alternating series), we see that we have
the inequalities

P z2 3 ) .

E!——Tﬁ<l—-cos:r<—2?, x—-:;!-<sm:c<a: (3.3)
for all z with 0 < £ < /6. In particular, we have cos0 = 1 and cos2 <
1-22/2+2%/4' =1-2+2/3 <0. By the intermediate value theorem,
there exists t € (0,2) such that cost = 0.

3.31 Definition. We define 7 = 2 inf{t > 0: cost = 0}.

Since the cosine is continuous and cos0 = 1, we see that # > 0, and
the estimates above give m < 4. We will find better estimates later. The
inequalities above give sinz > 0 for 0 < z < V6, so sin(7/2) > 0. Since
cos(7/2) = 0 and cos? z + sin’ z = 1 for all x, we conclude sin(7/2) = +1.
From the equation cos? z — sin’x = cos2r proved above, we get cosm =
cos?(m/2) — sin?(n/2) = —1, which in turn shows sinm = 0. Using the
formula again, we find cos2n = 1, sin27 = 0.
From the defining equation for the sine function, we have

sin(z +y) = Z(_l)ﬂw

oyard (2n+1)!

n 2n
Z (=" ZH 2n+1 ghy2ntl-k
Zeanril 2\ &

2n+1 z* 2n+l k

—Z( l)nz * (2n+1— k)!

n=0

— (- 1)" 2k (_1)n—ky2n-2k+1
.,E—:o(z (2k)! (2n -2k +1)!
(=1)kg2k+1 (_1)n—ky2n-2k
k+1)! (20 - 2k)! )

= cosrsiny + sinz cos y.

53
k=0
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Similarly, we find

(z +y)*"
(2n)!

2n
2
( ") Zhy?nk
! k
k=0

2nk

(- 1)"2 i (2n %1

l)k 2k( l)u k, 2n—2k

(- - y
(z (2k)! (2n - 2k)!

n-1 (*1)k12k+1 (_l)n—ky2n—2k—l)

+§) 2k + 1) (2n -2k —1)!

= cosxTcosy — sinzsiny.

cos(r + y) -1~

p'jg

It
M3
=T
2=
=3
1M

From these formulas, we find that

sin(z + ) = sinzcosT + coszsinm = —sinz,

cos(r + 7) = coszxcosm —sinzsinm = —cosx,
and therefore
sin(z + 27) = sinzx, cos(z + 27) = cosz

for all z € R.

3.7 Exercises

1. Let f: R — R. If limp_o[f(z + h) — f(z — h)] = O for every z € R, does
it follow that f is continuous? If limy_o[f(z + h) + f(x — h) — 2f(z)] =
0 for every r € R, does it follow that f is continuous? Give proofs or
cournterexamples.

2. Show that if f : R — R satisfies the equation f(z + y) = f(z) + f(y)
for every z,y € R, and if f is continuous at (at least) one point, then
there exists ¢ such that f(z) = cx for all £ € R. HINT: Show that f is
continuous everywhere; let ¢ = f(1) and show that f(gq) = cq for every
rational q; deduce that f(x) = cx for every real z.

3. Prove that a polynomial (with real coefficients) of odd degree has at
least one real root.
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4. Let I be a bounded closed interval, and let f : I — I be continuous.
Show that there exists z € I such that f(z) = z. Are the hypotheses about

I both necessary?

5. Let I be an interval in R. For each t € I, let A4; denote the set of all
neighborhoods of t, relative to I. If f : I — R, define, for each t € I,

limsup f(t) = uigfy sup{f(s) : s € U},
liminf f(t) = su‘g’ inf{f(s):s8€U}.
Ues,

Thus —oo < liminf f(¢) < limsup f(¢) < +00. Prove the following:
(a) if ¢ > 0, then limsup(cf)(t) = climsup f(t) and limsup(--f)(¢t) =
— liminf f(t).

(b) limsup(f + g)(t) < limsup f(t) + limsup g(t), and equality need not
hold.

(c) limz_., f(x) = L if and only if
limsup f(t) = liminf f(¢t) = L.

6. The function f : I — R is called upper semicontinuous at t € I if f(t) >
limsup f(t), and upper semicontinuous in [ if it is upper semicontinuous
at each point of I. We abbreviate upper semicontinuous by u.s.c.

(a) Show that f is u.s.c. at t € I if and only if for every ¢ > 0 there exists
a neighborhood U of ¢, relative to I, such that f(s) < f(t) + € for
every s € U.

(b) Show that if J is a closed interval, then the function f defined by
ft)=1ifteJ, f(t)=0ift ¢ J, is us.c.on R.

(c) Show that if I is a closed and bounded interval, and f is u.s.c. on I,
then there exists ¢ € I such that f(t) < f(c) for every t € I.

(d) Define the notion of lower semicontinuous function. Deduce the ana-
logues for lower semicontinuous functions of (a), (b), and (c).

7. A real-valued function f on an interval I is called convez if it satisfies
the following condition: for every a,b€ I and every t,0 <t <1,

F((1 =t)a +1tb) < (1—t)f(a)+tf(b).
Let f be convex on I.

(a) Show that if I is open, then f is continuous.

(b) Show that if g is convex and increasing on an interval containing f(I),
then g o f is convex on I.
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8. Let S be a countable infinite subset of R, let n — g, be a bijective map
of N onto S, and define
f@my= 3 2

{n:gn<z}

for each z € R. Show that f is an increasing function, that f is continuous
at each £ ¢ S, and that f(¢g.+) — f(gn—) = 27". Taking S to be the set
Q of all rationals, we get an example of an increasing function which is
discontinuous at each rational, continuous at each irrational.

9. Show that if I is a bounded interval, and f : I — R is uniformly contin-
uous, then f is bounded.

10. Show that a bounded continuous function on a bounded interval need
not be uniformly continuous.

11. Let I be an interval in R, and suppose that f : ] — R is uniformly
continuous. Show that (f(z,)) is a Cauchy sequence whenever (z,) is a
Cauchy sequence in I.

12. Let f be uniformly continuous on the open interval (a,b). Show that
limg—qa4 f(t) and lim,_;_ f(t) exist, and hence that f can be extended to
a continuous function on [a, ).

13. Show that any piecewise linear continuous function f can be expressed
in the form

n
f(z) =a+bz+ chlx— Ty
k=0

for some constants a, b, 9, Z1,...,Zn, €C0,C1y--+,Cn.

14. Show that if (f,) and (gn) are uniformly convergent sequences of real-
valued functions on X, then (f, + g,) is also uniformly convergent on X,
but that (f,gn) need not be uniformly convergent.

15. For which real z is the series

z + 2n
l T
n=1

convergent? For which intervals I is the series uniformly convergent on I?

16. Show that the series

e 2
I tn
g( )

is uniformly convergent on every bounded interval in R, but is not abso-
lutely convergent for any z.
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17. Let I be an interval, and let f, : I — R for each n € N. Suppose
that z € I and every f, is continuous at z. Suppose that (f,) converges
uniformly on I to f. Show that if z, € I and z,, — z as n — oc, then
Jn(zn) — f(z) a8 n — oc.

18. Show that lim;_, o, z"e~% = 0 for any positive integer n, and show
that lim,; .o+ zPlogz = 0 for any p > 0.

19. Suppose that F : R — R is continuous, and has the property that
F(z +y) = F(z)F(y) for all z and y in R. Show that either F(x) = 0 for
all z € R or there exists b > 0 such that F(zx) = b* for all r € R.

20. Use the results of the last section to show that sin(7/2 — ) = cos r and
cos(m/2 — x) = sinz for all real x; show that sin(w/4) = con(n/4)  V2/2,
and sin(7/6) = cos(n/3) = 1/2.

3.8 Notes

3.1 Cauchy is often credited with the introduction of rigorous ideas into
analysis, but he frequently referred to infinitely small quantities, which
is not considered good form in standard analysis today. Here is a quote
from one of Cauchy’s books (1821):

The function f(x) will remain continuous with respect to =
between the given limits, if between these limits an infinitely
small increase of the variable always produces an infinitely
small increase of the function itself.

This is a far cry from the definition we use, which was first published
by Heine in 1872, and probably derives from the lectures of Weier-
strass. The state of rigor in the 1820s, and the growing desire for it, is
illustrated by Abel’s writing in 1826, “There is in mathematics hardly
a single infinite series of which the sum is determined in a rigorous
way.” Something like the modern idea of function was first given by
Dirichlet in 1837. It was Dirichlet who first considered the function
in Example 3.4. Many of the basic ideas in analysis that later became
common currency were first developed by Bolzano before 1820, but
his work did not become widely known until long after his death.

3.2 The intermediate value theorem was published by Cauchy; perhaps
in previous generations it was too obvious a geometric fact to require
proof. Bolzano had published a pamphlet devoted to this theorem,
but it did not receive wide attention at the time. Darboux observed
that a function need not be continuous to enjoy the intermediate value
property: an example would be the function defined by f(0) = 0 and
f(z) =sin(1/x) for £ # 0.
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The notion of uniform continuity possibly originates with Weierstrass.
Theorem 3.18 is due to Heine.

The notion of uniform convergence, and the fundamental Theorem
3.24, were found independently in the 1840s by Stokes, Seidel, and
Weierstrass. It was Weierstrass who who introduced the modern ter-
minology uniform (“gleichmaéssig”) in his lectures of that period.
Cauchy had erred in concluding too much from pointwise convergence,
but also came to the concept of uniform convergence in a paper of
1853. Theorem 3.25 is due to Dini.

The symbol e was introduced by Euler, who also found the series
expansion for the exponential function. Historieally, the logarithm
was developed before the exponential.

Euler also found the beautiful relation between the exponential and
trigonometric functions that becomes available when one expands
one’s horizons from the real to the complex numbers, expressed by the
formula e'? = cos z + isin z, valid for any complex number z. Taking
z = z real, this equation can serve as a definition of the trigonomet-
ric functions cosx and sinz, as, respectively, the real and imaginary
parts of e'*. The addition formulas for the trigonometric functions
then follow at once from the addition formula for the exponential:
e**" = e%e¥ for any z,w € C. This is proved word-for-word as is
Proposition 3.27, and the result is a much easier proof of the results
of Section 3.6.



4

Differentiation

In this chapter we develop the basic theory of derivatives of real-valued
functions of one variable. The geometric motivation of the derivative of f at
c is that it is the limit of the slope of lines joining (c, f(c)) to nearby points
on the graph of f, as these points approach ¢, and therefore represents the
slope of a “line passing through two consecutive points” of the graph of f,

i.e., the tangent line. We can enjoy such language without succumbing to
it.

4.1 Derivatives

4.1 Definition. Let f : I — R, where I is an interval in R, and let z € I.
We say that f is differentiable at x if

n =16 _

ll_’z'

exists. (If z is an endpoint of I, the appropriate one-sided limit is intended.)
The limit f’(z) is called the derivative of f at .

It may happen that a one-sided limit

im (@ =1@ L @) - f@)
y=z+ Y-=T y=z- Y-
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exists; these will be called the right-hand derivative (or left-hand derivative)
of f at x. Evidently, the derivative of f at an interior point z of I exists if
and only if both one-sided derivatives exist and are equal.

It is clear that differentiability is a local property, in the following sense:
if f and g are defined in neighborhoods U and V of the point z, and if for
some neighborhood W of z, with W C UNV we have f(y) = g(y) for every
y € W, then f is differentiable at z if and only if g is, and f'(z) = ¢'(x).

The function ¢(y) = (f(y) — f(z))/(y — z) is defined in I\{z}, and
the definition says precisely that f is differentiable at z if and only if ¢
can be defined at z, i.e., extended to all of I, in such a way that the
extended function is continuous at z. We make this comment formally as
a proposition.

4.2 Proposition. Let f : I — R, where I is an interval in R, and let
x € I. Then f is differentiable at z if and only if there exists ¢ : I — R,
with ¢ continuous at z, such that f(y) = f(z) + (y — z)é(y) for ally € I.
In this case, f'(z) = ¢(x).

4.3 Corollary. If f is differentiable at z, then f is continuous at x.

Of course, a continuous function need not be differentiable. The simplest
example is perhaps the function |z|, which is not differentiable at 0. In fact,
a continuous function need not have a derivative at any point.

4.4 Example. Let f : R — R be defined by f(t) = |t| for -3 <t < 1,
and let f(t + n) = f(t) for every n € Z. Thus the graph of f consists
of a sequence of line segments. For each nonnegative integer n, define f,
by fn(t) = 47" f(4™t). Then the graph of f, consists of a sequence of
line segments, having slope +1. We note that f,(t + 4™") = f.(t) for all
t € R and every n > 0. Evidently, f, is continuous on R for every n. Since
|fa(t)] < 347", we see that the series Y .- fn(t) converges uniformly
on R (the Weierstrass M-test, Theorem 3.26) and hence g = Y "o fa
is continuous on R, by Theorem 3.24. We shall show that g is nowhere
differentiable. Fix t € R. For each n, choose h, = £4~"~!, with the sign
chosen so that 4"t and 4™(t + h,) lie in the same interval ['5‘, %L’] Then
we have f,(t + h,) — fa(t) = £h,, and in fact fi,(t + hn) — fi(t) = £h,
for m < n; but fi,(t + hy) = fia(t) for every m > n. Hence we have

(t+ha) —g(t) <~ fm(t+hn) = fmlt -
I e D e ar

m=0
where €, = £1 for m = 0,...,n. Thus the difference quotient (g(t + hn) —

g(t))/hn is an odd integer when n is even, and an even integer when n is
odd; since h, — 0 as n — 0o, the derivative ¢'(t) cannot exist.
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It is often convenient to rephrase the definition of the derivative as

. + h) - f(x)

! —_ l f(l.

fi(x) = lim —————,

which obviously has the same meaning as the equation in our definition.
This definition in turn leads to the following formulation:

4.5 Proposition. Let f : I — R, where I is an open interval, and let
x € I. Then f is differentiable at x if and only if there exists a linear
function L : R — R such that the function r, defined in a neighborhood of
0 by the equation f(z+h) = f(z)+ L(h)+r(h), satisfies limp_o7(h)/h = 0.

The word linear in this proposition is to be understood in the sense
of linear algebra, i.e., L(ah + bk) = aL(h) + bL(k) for all a,b € R, all
h,k € R. It is trivial that any such function has the form L(h) = Ah for
some constant A. For L meeting the requirements of the proposition, of
course the associated A = f’(z). The function L is called the differential of
f at z, and is usually denoted by df, if the point x is understood, or df;
if there are various points at which we consider the differentiability of f.
This way of looking at derivatives seems overly complicated now, but is the
route to understanding derivatives of functions on R" later. For now, we
content ourselves with the observation that the existence of the derivative
at r is equivalent to a “close fit” near x between the graph of f and the
straight line graph of the function f(x) + L.

4.2 Derivatives of Some Elementary Functions

4.6 Proposition. Let n € Z, and define f by f(x) = z" for all x € R, or
all z # 0 if n < 0. Then f is differentiable in R (or in R\{0} when n < 0),
and f'(x) = nz"~! for all z in the domain of f.

Proof. The cases n = 0 and n = 1 are especially obvious. If f(x) = C for
all z € R, then f(y) — f(z) =0 for any y,z € R, so f'(x) = 0 for every z.
If f(z) = z for all z, then f(y) — f(z) =y —z,s0 f'(z) =1 for all z. In
general, if f(z) = z™ for some n € N, then for fixed x we have

f@)-f@)=y"—z" =@y-2)y" " +y" 2z + - +2"7) = (y —2)e(y)
so f is differentiable at z and f'(z) = ¢(z) = nz"~ 1.
If f(z) = ™" for some n € N, then for any z # 0, y # 0, we have
n n

f) - fl@) = T = (y - 2)4(y).

z'lyﬂ

where
yn—l + yn—2z + cee + xﬂ—l

xnyn

o(y) = —

1
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so f'(z) = ¢(z) = —nz~™"'. Thus the formula f’(z) = nz"~! holds when-
ever f(z) = z" for some n € Z. |

We constructed the exponential and trigonometric functions in the last
chapter, using infinite series. The next two propositions use the functional
equations which they satisfy to compute their derivatives.

4.7 Proposition. If E(x) = e* for z € R, then E is differentiable in R,
and E' = E.

Proof. We have the formula E(z + h) = E(z)E(h) for all z,h € R, so

E(z + h) — E(z) E(h) -1
h A

from which we deduce that E’(z) exists for any z € R if and only if E’(0)
exists, and then E'(z) = E(z)E’(0). Now the formula

= E(zx)

gives the inequalities

o o}
1
1+:z<E(:1:)<1+.r+x"’22—n=1+:l:+:1:2

n=1

for any z with 0 < z < 1, since n! > 2"~! for all n > 2. Hence

1< w <l+4+h
h
forall h, 0 <h<1,so
lim EM) - EO _
h—0+ h

But for h < 0, we have

E(h)-E(0) _1/E(-h)—1 _ 1 E(h)-1

h h T E(R) Al
* E(h) - 1 E(k) -1
T W TERE
Thus E'(0) = 1, so E'(z) = E(z) for all z. |

4.8 Proposition. The functions sin and cos are differentiable in R, and
sin’ = cos, cos’ = — sin.
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Proof. We recall the inequalities (3.3) of the last chapter:

r? I ) z? 3 .
o< -8z < 5, -G <sinz<z,

valid for 0 < z < V6. It follows that
1_§3<1—cosz<l 1_£<sinz<l

2 4! 2 2’ 6 T
for all z with 0 < £ < /6, and hence for all z with || < v/6, and hence

that

. l—cosh . sinh
fim S =0, g S8 =1 (&)

Now for any z,h € R we have

sin(x+h)—sint . cosh-—1 sinh
h = smx-————Tl—-—— + cos :r:—-—h——
and
cos(x + h) —cosx cosh — 1 . sinh
a = cosz——p— —sinz =,
so the equations (4.1) give sin’(z) = cosz, and cos’(z) = —sinz. |

4.3 Convex Functions

4.9 Definition. Let f : I — R, where I is an interval. We say that f is
convex if for every a,b€ I and every t with0 <t < 1,

f(tb+ (1 —t)a) < tf(d) + (1 —t)f(a).

For a = b, the definition says nothing. If a < b, then a < tb+(1—-t)a < b;
conversely, for each z € (a,b), we can write z = tb + (1 — t)a by taking
t=(zx-a)/(b—a),s01—t=(b—z)/(b—a). Thus the following is a simple
restatement of the definition:

4.10 Proposition. Suppose that f : I — R, where I is an interval. Then
f is convex if and only if for every a,b € I and a < £ < b we have

12 < 222 50) + =2 (a) (42)

The geometric meaning of convexity is that the graph of f, between
(a, f(a)) and (b, f(b)), lies below the the line segment joining these two
points, the so-called “secant line” (for any a < b in the interval I). This
implies that the graph of f lies above this secant line, outside the interval
(a,b).
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4.11 Proposition. If f is a convex function on an interval I, and a < b <
c€ I, then

b-=zx
b_af(a) forb<zr<c

f(z) 2 g f(b) +

and
C —

f(z) 2

f(b)+ f(c) fora<z<b

Proof. If b < z < ¢, a change of notation in the inequality (4.2) gives

f6) < 222 f(a),

which is equivalent to

T—a b-=z
> .
f(@) 2 T 1)) + 7 f(a)
The other inequality follows similarly, when a < £ < b. ‘ |

4.12 Corollary. If f is a convex function on an open interval I, then f is
continuous on I.

Proof. If b € I, there exist a and c in I with a < b < c. Then the last two
propositions give the inequalities

I — a

2% rb)+

for b < z < c, from which it follows that f(b+) = f(b). Similarly,

rT—a b—=zx
) < T f(0) + S (@)

for a < £ < b, which gives f(b—) = f(b). Thus lim._; f(z) = f(b), so f is
continuous at b. 1

The hypothesis that I is open is necessary; for instance, the function f
on [0,1] defined by f(0) =1, f(t) =0 for 0 < t < 1 is convex. We next
observe inequalities among the difference quotients of a convex function.

4.13 Proposition. If f is convex on I, then

f@) = f(a) _ f(0) = f(a) _ f(b) - f(z)

T—-a - b-a - b—zx

(4.3)

whenevera,be I anda <z <b.
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Proof. Simply subtract f(a) from both sides of the inequality (4.2) to get
the left-hand inequality in (4.3), and subtract f(b) from both sides of (4.2)
to get the right-hand inequality. 1

The geometric meaning of the inequalities (4.3) is that the slope of the

secant line joining (a, f(a)) and (b, f(b)) for a convex function is increased
if b is increased, or if a is increased.

4.14 Theorem. Let f be a convex function on the open interval I. Then
the right- and left-hand derivatives of f at c exist for all ¢ € I; denoting
them by m,(c) and my(c), respectively, we have

m,(a) < my(c) < m,(c) < my(b)
whenever a < ¢ < b.

Proof. et c € I. For any t,u € I with t < ¢ < u, we have by (4.3) the

inequality
fle) - f(t) . f(u) - f(c)
c—-t ~— u-c '
so that
WCEF O (OR ) "
t<c c—t u>c u-—c

and in particular, both sides of this inequality are finite. Suppose that
s.v€ I,and s <t < c < u < v. Then from the left-hand inequality in (4.3)

we obtain
fw) = f(0) _ 1) = f(0)

-_— ,

u-—c v—c
so the function u — (f(u) — f(c)/(u — ¢) is increasing on I N (c, +20), and
hence
mte) = Jim, L1 _ g S0~ 10
exists. Similarly, the right-hand inequality in (4.3) gives
fle) = f(s) . flo) - f(V)

c— 8 - c—t

so the function t — (f(c) — f(t)/(c — t) is increasing on I N (—oo,c), and

therefore
f(c ) f(t) — sup flc) — f(¢)

my(c) = lim
l() t<c c—t

t—c—

exists. We have seen in (4.4) that m,(c) < m,(c), and that both are real
numbers, so they are the left- and right-hand derivatives of f at c. Finally,
suppose a < ¢ < b. Choose t € (a,c). Then

(@) < 1O =1@) _ 1 =10

t—a - c—-t

< mu(c),
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and choosing u € (¢, b) we get

) - 1) SO = fw) _
< 2R <

u-—=c

m,(c) <

1(b),

so everything is proven. |

4.15 Corollary. Let f be convex on the open interval I. Then there exists
a countable subset S of I such that f'(z) exists for all € I\S.

Proof. Let S = {r € I : f'(z) does not exist}. For each z € S, we have
my(z) < m,(r), so we can find a rational number ¢ = q(zr) such that
my(x) < ¢ < m.(r). If x,y € S and x < y, the inequality m,(x) < my(y)
from the last theorem shows that g(x) < q(y). Thus the map x — ¢(x) is
an injective map of S — Q, so S is countable.

4.16 Corollary. Let f be convex on the open interval I, and let ¢ € I.
For any m such that my(c) < m < m,(c), we have f(z) > f(c) + m(z — ¢)
forallz € I. ‘

Proof. If z > ¢, then f(zx)— f(c) > (x —c)m,(c) > m(z—c). If £ < ¢, then
f(e) = f(z) < (¢ — )my(c) < m(c — z), and the desired inequality follows
if we multiply by —1. For x = ¢, there is nothing to prove. |

This corollary says that at each point (c, f(c)) of the graph of f there
exists a straight line passing through that point, and lying below the graph
of f. Such a line is called a support line of f. If f'(c) exists, then there is
only one support line, and it is the line tangent to the graph of f, i.e., the
line through (c, f(c)) with slope f'(c).

4.4 The Differential Calculus

In this section, we obtain the short and simple set of rules for differentiating
any function made up from simpler functions by the algebraic operation. of
addition, multiplication, and division, and the functional operation of com-
position. This set of rules was originally termed the “calculus of derivatives”
or “differential calculus”; the term has now come to stand for the whole
theory of derivatives.

4.17 Proposition. Let f and g be real-valued functions on the interval
I, and suppose that f and g are differentiable at a point x € I. Then
f + g and fg are differentiable at z, and (f + g)'(z) = f'(z) + ¢'(x),
(f9)'(z) = f'(z)g(z) + f(x)g(x).
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Proof. By Proposition 4.2, we can write f(y) — f(z) = (y — z)¢(y) and
9(y) — 9(z) = (y — z)y¥(y), where ¢ and ¢ are continuous at z. Then

(f+9)w) = (f+9)(z) = f(y) +9(v) — f(z) — g(x) = (v — ) (d(v) + ¥(v))

and

(f9)(y) — (f9)(z) = f(y)9(y) — f(z)9(y) + f(z)9(y) — f(x)g(z)
= (y - z)(¢(¥)9(¥) + f(2)¥(v)),

and since the sum and product of functions continuous at z are again
continuous at x, Proposition 4.2 gives (f + g)'(z) = ¢(z) + ¢¥(z) = f'(z) +
g (z), and (fg)'(z) = ¢(z)g(z) + f(z)¥(z) = f'(z)g9(z) + f(z)g'(x). L

We note that the formula f'(z) = nz"~! when f(x) = =", established
above by direct calculation, can also be proved for positive n by induction
using the last proposition, and the trivial result for n = 1. It now follows
that for any polynomial function, i.e., f defined by f(z) = Y ;_,axz*, we
have f'(z) = Y p_, kaxz*~1.

The next result is known as the chain rule.

4.18 Proposition. Let I and J be intervalsin R, and f : I - R, f(I) C
J,and g : J — R. If f is differentiable at z, and g is differentiable at f(z),
then g o f is differentiable at z, and (g o f)'(z) = ¢'(f(z)) f'(z).

Proof. Let u = f(z). There exists ¢ : I — R, continuous at z, such that
fly) — f(z) = (y — x)¢(y) for all y € I, and there exists ¥ : J — R, such
that v is continuous at u, and g(v) — g(u) = (v — u)y(v) for all v € J.
Then, putting h = go f,

h(y) - h(z) = 9(f(W)) — 9(f(2)) = (f(¥) — f(2))¥(f(v))
= (y — 2)o(w)v(f(v)),

and since the composition of continuous functions and the product of con-
tinuous functions are continuous, it follows from Proposition 4.1 that h is
differentiable at z, with &'(z) = ¢(z)¥(f(z)) = ¢'(f(z)) f'(z). ]

The classical notation, introduced by Leibniz, used the language
of variables, a concept we have avoided in favor of numbers and
functions. This notation reads: if the variable y is a function of
the variable z, i.e., y = f(z), we denote f'(z) by dy/dx. This
notation has one great advantage: if also z = g(y), so that 2 is
indirectly a function of z, then

a _drdy
dz ~ dydr’
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a wonderful mnemonic for the chain rule. We can also make
sense of this notation using the notion of differentials introduced
in the first section of this chapter. To do this, we use z to denote
the identity function on R, i.e., z(t) = t for all t € R, rather
than having this letter stand for a real number, as we have been
doing. It is easy to see that the differential of this function is
the identity map of R again, i.e., dz(h) = hforallh € R. Let y
be a function, differentiable at c. Recalling that dy.(h) = y'(c)h
for all h € R, we see that in fact y’ = dy/dz, in the sense that
y¥'(c) = dyc(h)/dz(h), for any h # 0.

4.19 Example. Let f and g be real-valued functions on an interval I, and
suppose that, for all z € I, f(z) = [g(z)]" for some n € Z. Then if g is
differentiable at c, so is f, and f'(c) = n|g(c)]*~'¢’(c). In particular, with
n = —1 we find that (1/g)'(c) = —g’(c)/g(c)?>. Combined with the rule
for differentiating products, we find the formula (f/g)'(¢c) = [g(c)f'(c) —

fle)g'(©))/g(c)*.
Similarly, if f(z) = e9®) for all z € I, then f'(c) = f(c)g’(c).

4.20 Definition. Let I be an interval, and f : I — R. We say that f has a
local maximum (or local minimum) at c € I if there exists a neighborhood
U of ¢, relative to I, such that f(c) > f(x) for every x € U (respectively,
f(c) < f(z) for every x € U).

4.21 Proposition. Let f : I — R, where I is an interval. If f has a local
maximum or minimum at ¢ € I, where c is not an endpoint of I, and if f
is differentiable at c, then f'(c) = 0.

Proof. We may assume that f has a local maximum at c. Then there exists
6 > 0 such that f(t) — f(c) < 0 for every t with |t — c| < 6. It follows that

f(t) - f(c) <0
t—c -
for every t with c <t < c+ 6, so f'(c) < 0. But it also follows that
f(t) = f(c) >0
t—c -
for every t with c — 6 <t < c, so f'(c) > 0. Thus f'(c) = 0. ]

The next result is known as the mean value theorem of the differential
calculus, and is fundamental to the theory of derivatives.

4.22 Theorem. Let f : [a,b] — R be continuous on |a,b], and differ-
entiable in (a,b). Then there exists £ € (a,b) such that f(b) — f(a) =
f'(€)(b—a).
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Proof. Define the function g on [a, b] by

o) = 1) - f(a) - L@ g
Then g is continuous on [a, b] and differentiable in (a,b), and g(a) = g(b) =
0. We want to show that ¢’(§) = O for some £ € (a,b). If g(t) = 0 for all
t € (a,b), we may choose any £ € (a,b). Suppose g(t) > 0 for some t € {a,b).
By Theorem 3.14, there exists £ € [a, b] such that g has a maximum value
at £, and we must have £ € (a,b). According to Theorem 4.21, we have
g'(€) = 0. The argument if g(t) < 0 for some ¢ is similar. ]

4.23 Corollary. Let f : [a.b] — R be continuous on [a, b}, and differen-
tiable in (a,b). If f'(t) > O (respectively, f'(t) > 0) for all t € (a,b), then
f is increasing (respectively, strictly increasing) on [a,b]. If f'(t) < 0 (re-
spectively, f'(t) < 0) for all t € (a,b), then f is decreasing (respectively,
strictly decreasing) on [a,b). If f'(t) = 0 for all t € (a,b), then f is constant
on [a,b].

Proof. For any z,y with a < x < y < b, we can apply the last theorem to
get f(y) — f(z) = f'(€)(y — z) for some £ with z < £ < y. |

We remark that if we only know that f’(z) > 0, it follows that there
exists § > 0 such that f(y) > f(z) for all y with z < y < = + 6, and
fly) < f(z) if x — 6 <y < z (proof?), but it does not follow that f is
increasing on any interval containing z (see the Exercises.)

It does not follow from the existence of f'(z) in an interval that the
function f’ is continuous in that interval.

4.24 Example. Let ¢ : R — R be defined by g(0) = 0, and g(z) =
zsin(1/z) for  # 0. Let f(z) = zg(x). It is easy to see that g is continuous
at 0, as well as differentiable at any z # 0, so f is differentiable everywhere,
and f'(0) = ¢g(0) = 0. Since f'(z) = 2xsin(1/z) — cos(1/z) for x # 0, we
see that lim._¢ f’(x) does not exist, so f’ is not continuous at 0.

However, if f’ exists throughout an interval, it does have one property
associated with continuous functions, namely, the intermediate value prop-
erty.

4.25 Theorem. Let f : [a,b] — R be differentiable at each point of [a, b].
If f'(a) < y < f'(b), or if f'(a) > y > f'(b), there exists = € (a,b) such
that f'(z) =y.

Proof. We consider only the case f'(a) < y < f'(b); the other case follows
the same pattern, or can be deduced from this one. By the definition of the
derivative, there exists h, 0 < h < b — a, such that

fath - J@) ) g SOSOR)
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Define g : [a.b— h] — R by g(t) = (1/h)(f(t + h) — f(t)). Since f is differ-
entiable on [a, b], it is continuous there, and it follows that g is continuous
on [a,b - h]. Since g(a) < y and g(b— h) > y, it follows from Theorem 3.15
that there exists ¢ € (a,b— h) such that g(¢) = y. Applying the mean value
theorem (Theorem 4.22) we have

S (RSO (P

for some z € (c,c + h) C (a,b). |

We next establish an analogue of an earlier result for continuous func-
tions.

4.26 Theorem. Let f be differentiable in the open interval I, and suppose
f' > 0.in I. Then f maps I bijectively onto an open interval J, and the
inverse map g : J — I is differentiable in J, with ¢'(u) = [f'(g(u))]™! for
allue J.

Proof. According to Corollary 4.23, f is strictly increasing on I, and f
is continuous since it is differentiable, so (by Theorem 3.16) f maps I
bijectively onto an interval J, and the inverse map g : J — I is continuous.
We want to show that g is differentiable in J. Let u € J, so u = f(x) for
some x = g(u) € I. Since f is differentiable at z, there exists ¢ : | — R
such that ¢ is continuous at z, and f(y) — f(z) = (y — z)¢(y) for all
y € I. We note that ¢(z) = f'(z) > 0 and ¢(y) > 0 for all y # z since
f is strictly increasing. Then for any v € J, taking y = g(v), we have

9(v) — g(u) = (v — u)P(v), where Y(v) = 1/¢(y) = 1/¢(g(v)). As we
have seen, ¥ is well-defined on J, and 3 is continuous at u since g is
continuous, and ¢ is continuous at x = g(u). Thus g is differentiable at u,

and ¢'(u) = Y(u) = 1/¢(z) = 1/f'(z). i

Of course, the same conclusions can be drawn if we assume that f' < 0
on [.

4.27 Example. If we take f(z) = e*, then f' = f > 0 so Theorem 4.26
applies, yielding the fact that the inverse function g is differentiable every-
where on its domain (0, +00), with ¢'(x) = 1/f'(g(x)) = 1/f(9(z)) = 1/z.
Thus log’ z = 1/x.

Fix p > 0, and let f(x) = zP = eP'°8%. Applying the chain rule, Propo-
sition 4.18, we find that f'(x) = (p/z)eP'°8* = prP~!, thus extending the
formula from the case we earlier established (p € Z).

4.28 Example. Let

sinzx us s
r)=tanr = —— —=<r< =;
f(z) w2 32 5
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then using Proposition 4.17 we find

cosrcosx — sinz(—sinz) 1
cos? cos? z

flx)=

>0

for all z in the domain of f; clearly the range of f is the entire line R, and
the inverse function g satisfies

’ _ 1 — .
g(z)= @) ~ cos’(g(z));

using the identity 1/ cos? u = 14tan? u that follows from sin? u+cos?u = 1,
we find ¢’(z) = (1 + z2)7! for all z € R. The function g is called the

arctangent function, and we usually denote g(z) by arctan x, sometimes by
tan~! .

4.5 L’Hospital’s Rule

We begin with a generalization of the mean value theorem (Theorem 4.22).

4.29 Theorem. Let f and g be continuous real-valued functions on the
interval [a, b], differentiable in (a,b). Then there exists c € (a,b) such that

f'(c)lg(b) — g(a)] = ¢(c)[f(b) — f(a)].
Proof. Define ¢ : [a,b] — R by

o(t) = [£(t) — f(a)llg(b) — g(a)] + [g(b) — g(1)][f(b) — f(a)],

so ¢ is continuous on [a, b], differentiable in (a,b), and we see that ¢(a) =
{g(b) —g(a)][f(b)— f(a)] = @(b). It follows from Theorem 4.22 that ¢'(c) = 0
for some c € (a,b), and this gives the desired relation. |

The geometric interpretation of this theorem is that if t — (f(t),g(t))
(a < t < b) is a differentiable curve in the plane R?, there exists at least one
point on the curve where the tangent line is parallel to the line through
(a, f(a)) and (b, f(b)). We will discuss curves, surfaces, etc., and their
tangents in a later chapter.

4.30 Theorem. Let —0o < a < b < +00, and let f and g be differentiable
in (a,b), with ¢’(t) # 0 for all t € (a,b). Suppose that

_ f(z)
R Mo

where —oo < L < +00, and that either

L, (4.5)

fla+) =g(a+)=0 (4.6)
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or that
Jim. |g(z)| = +oo. (4.7)
Then
(=) _
z—a+ g(z)

Proof. We begin by observing that if a < s < t < b, we have g(t) — g(s) =
g'(v)(t — 8) for some v € (s,t), and hence g(s) # g(t). Therefore we can
deduce from Theorem 4.29 that there exists u € (s,t), such that

() = fls) _ f'(w)
g(t) —g(s) g'(u)
Let us first consider the case when L is a real number. Let ¢ > 0, and
choose n with 0 < n < e. There exists ¢ € (a,b) such that

f'(u)
g'(u)

for every u € (a,c), and hence from equation (4.8)

J(t) — f(s)
L-
TS 90 - g(s)
for every s,t witha<s<t<ec
Suppose that (4.6) holds. Taking the limit as s — a+, we have L —

e<L-n<f(t)/g(t) < L+n< L+eforeveryt,a <t < c Thus
lime—a4 f(t)/9(t) = L

Now suppose that (4.7) holds. We may suppose that g(s) — +oo as
s — a+, and that g(c) > 0. Take t = c in the inequalities (4.9), and
multiply by (g(s) — g(c))/g(s); provided this multiplier is positive, we get

o0)\ _ f() = f(©) e
“‘"”("g<s>)< O <‘“”’(‘ g<s>)'

For any 6§ > 0, we can find d with a < d < ¢ such that |f(c)|/g(s) < 6 and
g(c)/g(s) < & for all s with a < s < d. Then we have

f(s)
< —_—

9(s)
for all s € (a,d), and if § is chosen small enough, this implies that L — ¢ <
f(s)/g(s) < L + ¢ for all s € (a,d). Thus f(s)/g(s) = L as s — a+.

Next we consider the case L = +o00. Let M > 0. There exists ¢ € (a,b)
such that f’(u)/g¢’(u) > 2M for all u € (a,c), and it follows from equation

(4.8) that 1) - 166) )
f(t s
a0 =g M

(4.8)

€(L-nL+n)

<L+n (4.9)

(L-n)(1-96)-

<(L+n)(1-6)+6

(4.10)

whenevera < s<t<ec.
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If the hypothesis (4.6) holds, by letting s — a+ in (4.10) we obtain
f(t)/g(t) >2M > M for all t, a < t < ¢, and since M was arbitrary, we
have f(t)/g(t) — +o00 as t — a+.

Suppose now that the hypothesis (4.7) holds. We may suppose that
g(s) — +> a8 s — a+, and that g(t) > 0 for all t € (a,c). Choose
d € (a,c) such that |f(c)|/g(s) < 1/2 and g(c)/g(s) < 1/2 for every s
with a < s < d. We fix t = c in the inequality (4.10) and multiply by

1 —g(c)/g(s) to get
f(s) = f(c) ( _M)
as aMy! 9(s))’

£(5) gy 1

9(s) -2
whenever a < s < d. Since M was arbitrary, we conclude that f(s)/g(s) —
+ as 8 — a+.
The proof for the case L = —oo is left to the reader. ]

We stated Theorem 4.30 for limits from the right; of course, the corre-
sponding theorem for limits from the left is true. It can be deduced by a
simple change of variable, and does not need a separate statement.

4.6 Higher Order Derivatives

If f'(t) exists for every t in an interval I, we can raise the question of the
existence of the derivative of f’ at points of I.

4.31 Definition. Let f : I — R, where I is an interval. If f'(t) exists for
all t in some neighborhood (relative to I) of ¢ € I, and if the derivative
of f' at c exists, we denote it by f"(c). Inductively, we define f(©) = f,
f) = f’, and for each positive integer n we define f(™)(t), the nth order
derivative of f at t, to be the derivative at t (if it exists) of the function

f(n—l).

Thus the existence of f(™ in an interval I implies the existence, and
continuity, of f*) in I for k = 0,1,...,n — 1. One more notation:

4.32 Definition. Let f : I — R, where I is an interval. We say that f is
of class C" in I, and write f € C™(I), if f™ is defined on all of I, and is
continuous. We say f is of class C* if it is of class C™ for every n.

The main theorem involving higher order derivatives is the following,
known as Taylor’s theorem. It can be thought of as an extension of the
mean value theorem, or as a statement concerning the local approximation
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of an n-times differentiable function by polynomials of degree < n. From
the formula for differentiating the monomial z™, we quickly see that the
polynomial

(z —c)*

P(r) = ax o
k=0 ’

has the property that P“‘)((') = a; for 0 < k < n, and P(")(.r) = 0 for all
k > n, and all r. The polynomial P, in the next theorem (called the Taylor
polynomial for f at ¢) is thus the unique polynomial of order < n whose
kth order derivatives at ¢ agree with those of f at ¢, for each k < n. The
theorem gives a formula for the error made in approximating f by P,.

4.33 Theorem. Let I be an interval, and suppose that f : I — R satisfies
the condition that f("*+V(t) exists at each t € I. Fix c € I, and define

Pty =3 f“:(c)(t - ok,
k=0 '

Then for each x € I, there exists £ between c and x such that

(n+1)
f(z) = Pa(z) + f(nTl‘f!’(x — o, @)

Proof. Let
g(t) = f(t) = Pa(t) - C(t — ™1,

where C is chosen so that g(z) = 0. We observe that g has derivatives
up to order n + 1 on I, that g(c) = g'(c) = --- = g™ (c) = 0, and that
g ti(t) = f(r+1)(t) — C(n + 1)!. We also note that the conclusion of the
theorem can be stated as C = f(**1)(£)/(n + 1)! for some £ between c
and z, and hence is equivalent to the claim that g(®*1(£) = 0 for some
£ between ¢ and z. Now since g(c) = g(z) = 0, there exists by the mean
value theorem some &; between c and z such that ¢’(§;) = 0. Having found
& between c and z such that g(¥) (&) = 0, where 0 < k < n, we can find by
the mean value theorem &4, between c and &, such that g(s+V (&,,,) = 0.
Thus with £ = £,41, we have £ between ¢ and r with g(*+1)(¢) = 0. |

4.34 Example. Suppose f is a function on R satisfying the equation f’ =
kf, for some constant k. Then we find inductively that f(™)(t) = k™ f(t) for
all t, and every n. Since f is continuous, by virtue of being differentiable, we
see that f is of class C*. By Taylor’s theorem, we have for every positive
integer n and every z € R,

n

(D =10)

=0

Wl k)

n+1
b et
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for some £ between 0 and z. Let R > 0. Since f is continuous on [-R, R],
it is bounded there, say |f(t)] < M for —-R <t < R. Then

f(z) - (0)2 Kal

for all z € [-R, R}]. Thus

(|’¢33|)"+l (|k|R)"*!
Mo SM e

10 = 1o 3 &L,

n=0

the series converging uniformly on every bounded interval. In other words,
f(z) = f(0)e** for all € R. (An exercise asks you to prove this in a more
elementary way.)

4.7 Analytic Functions

4.35 Proposition. Let (a,)>2, be a sequence in R. Define R by the equa-
tion 1/R = limsup |a,|'/™, where we put 1/0 = +00 and 1/00 = 0. Then
for each c € R, the series

o o]

Z an(z —o)"

n=0

converges absolutely for every z € R such that |z — c¢| < R, and diverges
for every z with |t — c| > R.

Proof. This follows at once from the root test (Theorem 2.36). ]

We call a series of this form a power series, and the extended real R of the
proposition is called the radius of convergence of the power series. The next
result is that a convergent power series can be differentiated term-by-term.

4.36 Theorem. Let ), _,an(z—c)" be a power series with positive radius
of convergence R, and let I = (c — R,c + R). If f is defined by f(x) =
Yonoan(z — )" for z € I, then f is differentiable in I, and

fi() = nan(z—c)"!
n=1

forallzx €l.

Proof. It clearly suffices to consider the case ¢ = 0, I = (—R, R). Let
z € I. Choose r with |z| < r < R, and let 6 = r — |z|. For any y € I, we

have "
f) - f(z) = Zany —Zanz =Z an(y” - 2"

n=0 n=1
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since convergent series can be added term-by-term. Define ¢;(y) = 1 for all
y, and for n > 1 let ¢n(y) = Yopoo ¥y 1%, 50 g™ — 2" = (y — 7)¢n(y)
for all y, and every n > 1. We observe that if |y — z| < 6, then |y| < r
and |z| < r, so |¢n(y)| < nr"~!. Since r < R and '/ — 1 as n — oo,
the series 3_°- | na,r"~! converges. It follows by the Weierstrass M-test
(Theorem 3.26) that the series 3>, an¢n converges uniformly on J = {y:
ly — x| < 6}, and hence its sum ¢ is continuous on J. Since we have seen
that f(y) — f(z) = (v — )é(y), it follows that f is differentiable at x, and
fl(z) =¢(z) = 300 naz™ . 1

4.37 Corollary. If the power series 3 a,(z —c)" has a positive radius
of convergence R, then its sum f is a function of class C*™ on (c— R,c+ R),
and ax = f¥)(c)/k! for every nonnegative integer k.

Proof. The last theorem shows that f’ can be expressed as a power series
with radius of convergence R, and hence itself has a derivative of the same
kind. Clearly, f’(0) = a,. By induction, we prove that

f8(z) = Z n(n-1)---(n—k+1ay(z —c)"*
n=k
for every k and every z € (c — R,c+ R), and hence f(*)(c) = k! aj. |

4.38 Definition. Let I be an open interval in R, and let f : I — R. We
say that f is analytic in I if for each c € I there exists a sequence (an)3%,
in R, and 6 > 0, such that f(z) =Y an(z — c)" for all x with |z — ¢| < 6.

The last corollary implies that if f is analytic on I, then f € C°(I).
The converse to this statement is false.

4.39 Example. Define f: R — R by

_J0 for all z < 0,
(=) = {e“/’ for £ > 0.
Clearly, f(0+) = 0, so f is continuous at 0, and clearly f is of class C*®
when restricted to (—o00,0) or to (0, +00). We will show that f € C°(R);
it suffices to show that f(™(0) = 0 for all n, since this implies that f(»~1)
is continuous at 0, and hence everywhere. We begin by calculating
f(h)
h

= lim ze™* =0,
X —+00

lim
h—0+
so f'(0) exists and equals 0. Next we observe that f'(x) = z=2e~1/* for
z > 0, and, by an easy induction argument, that f(")(z) = p,(1/z)f(z)
for z > 0, where p, is a polynomial. Hence
(n)
lim S (k)

LA bt A | -1/h _ 13 -
Jm Jim (1/h)pn(1/h)e Jim zpn(z)e
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for every n. To show that this last limit is O it will suffice to show that
lim;_ 4 z¥e~% = 0 for every nonnegative k. But this follows at once
from the inequality e* > z**!/(k + 1)! for z > 0. (It would be overkill
to drag in L’Hospital’s rule at this point.) Thus f(™)(0) = 0 for every
n. But this shows that f cannot be analytic, for if f had a power series
representation f(z) = ) a.z" in a neighborhood (—6,8) of 0, we would
have a,, = f™(0)/n! = 0 for every n, which would give f(x) = 0 for all
T € (—46,6), contradicting the fact that f(z) > 0 for z > 0.

Our last result in this section says that a function given by a power series
converging in an interval is analytic in that interval.

4.40 Proposition. Suppose f(z) = Y .. an.x™, where the series con-
verges for —R < = < R. Then for each ¢ € (—R, R), there is a sequence
(bn) such that f(z) = Y jo, bi(z — c)*, converging for |z —c| < R — |c|.

Proof. Since

n

"=(r—c+c)" = Z (:)(1' —c)fc" 7k,

k=0

we have formally

ganx" = i ia,, (:)c""‘(:c - o)k

n=0 k=0

= Z an (Z)c""‘(z —c)
0<k<n

= Z E an (:)c""‘(:r —o)k.
k=0n=k

Thus, if we put

we have f(z) = Y 27 bi(z — c)*, provided that the interchange of order of
summation that we have carried out can be justified. Now if we let

00 n n—
Be= 3 lanl(} ) ",
n=k

we have |bx| < B, and

o0 20 00 n
Y Bit* =" Y lanl ( k) |c|" Ktk
k=0

k=0n=k
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Send ()lrte
k=0
l

=0
=)

n
= _ lanl(lcl + )",
n

=0

which converges for t > 0, |c| + t < R. Theorem 2.58, which justified the
equation above, now justifies the interchange of order of summation which
gives the desired equation

ibk(ft - C)k = ianl'n|

k=0 n=0

whenever |z —¢| + |c] < R. 1

We observe in passing that the converse to this theorem is false; a
function analytic in an interval (—R, R) need not have a power series
expansion converging throughout that interval. The function defined by
f(x) = 1/(1 + z2?) is perhaps the simplest example; it is analytic on all
of R, but its power series expansion at 0 converges only in the interval

(-1,1).

4.8 Exercises

1. Let f(0) = 0, and f(x) = z/(1 + €'/%) for £ # 0. Find the right- and
left-hand derivatives of f at 0.

2. Use Corollary 4.23 to show that if f is a differentiable function on an
interval I satisfying the equation f’ = kf, for some constant k, then there
exists a constant C such that f(x) = Ce*® for all x € I. HINT: Consider
the function g defined by g(x) = e ** f(z).

3. Show that the formulas for sin’ and cos’, together with the equations
sin0 = 0 and cos0 = 1, imply that sin?z + cos2z =1 for all z € R.

4. Let f(z) = (z2 = 1), and let g = f(™). Show that the polynomial g has
n distinct real roots, all in the interval [-1, 1].

5. Suppose that f is differentiable on (a,+00). Show that if f'(z) — L as
z — 400, where —0o < L < +00, then f(z)/z — L as £ — +o0o. Deduce
that if f(x) — M asx — +00, where M isreal, and f'(z) — L asz — +o00,
where —00 < L < 400, then L = 0.

6. If P(z) = Y_;_oakz*, and

ao+8 4. 4 0
0 2 n+1

=0,
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show that there exists £ with 0 < z < 1 and P(z) = 0.

7. Let f be differentiable on an interval I, and suppose that f’ is an in-
creasing function on I. Show that f is convex. Deduce that if f” > 0on I,
then f is convex.

8. Let p> 1, and put ¢ = p/(p — 1), 80 1/p + 1/q = 1. Show that for any
z >0,y >0, we have
¥
T <—+—
v p q

and find the case where equality holds.
9. Let a > 1. Show that for all z > 0,
1 1 Va-1
— < ,
14z 14az ~ a+1
with equality only for z = 1//a.
10. Let P(z) = z" + Y p_g axz*. Find

lim ([P(:c)]’/" )

11. Let S and C be real-valued functions on R, such that for all z,y

S(z +y) = S(z)C(y) + C(z)S(y),
C(z +y) = C(z)C(y) — S(x)S(y),
S*(z) + C%*(z) =1,
and such that limz_ S(z)/z = 1.
(a) Show that C(0) = 1 and S(0) = 0, and that for all z, S(—z) = —S(z)

and C(-z) =C(z) .

(b) Show that for all z,y
_ r+y rT—y

S(z) - S(y) = 20( )s( 5 )

and deduce that S is differentiable on R, and S’ =

(c) Find a corresponding formula for C(z) — C(y), and use it to show that
C is differentiable on R, with C' = S

(d) Show that S(z) = sinz and C(z) = cosz.

r—

12. Suppose that f is defined in an open interval containing z, and that

f"(z) exists. Show that
f'(z) = f(r +h)+ f(ha:2 h) - 2f(z)

Give an example where this limit exists, but f”(z) does not. HINT: Use
L’Hospital’s rule.
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13. Show that if f(™) = 0 in an interval I, and f(a) = f'(a) = --- =
f*"Y(a) = 0 for some a € I, then f = 0.

14. Suppose that k € R, k > 0, and that f is a real-valued function on
an interval I such that f”(z) exists for all z € I, and f"(z) + k*f(z) = 0
for all € I. Show that there exist constants A and B such that f(z) =
Acoskz + Bsinkz for all z € 1.

15. Let f € C™(I), where I is an interval, and let ¢ € I. Suppose that there
exists a polynomial P of degree < n such that

|f(z) = P(z)| < Clz — ¢**!

for some constant C. Show that P is the Taylor polynomial for f at ¢, i.e.,

16. Let f be a function of class C? on (0, +00), and let M; = sup |fV)(t)|
for j = 0,1,2. Show that M? < 4MpM,. HINT: Use the second-order Taylor
expansion about the point z to show that

M,
I (@) < hMg + =0

for every h > 0, and then choose h to minimize the right-hand side.

17. Let p € R, and let f(z) = (1 + z)? for —1 < £ < +o0o. Show that
the Taylor series 3 no  f(¥)(0)z* /k! converges to f(z) in the interval —1 <
<l

18. Show that if f is analytic in an interval I, and not identically zero, then
the zeros of f are isolated; that is, if f(c) = O for some c € I, there exists
6 > 0 such that f(t) # 0 for all t € I satisfying 0 < |t — c| < 6.

4.9 Notes

4.1 The notation f’(z) was introduced by Lagrange ; the related y = f(z)
was Newton's notation, and (as mentioned above) the dy/dzx notation
is due to Leibniz. The notation Df, or D, f(z), was introduced by
Arbogast in 1800, and has some real advantages. It is interesting that
the idea behind the integral goes back to ancient times (Archimedes,
for instance, calculated several nontrivial integrals), but the derivative
did not really arise before the seventeenth century. Example 4.4 is
due to van der Waerden (1930); the first continuous but nowhere
differentiable function was exhibited by Weierstrass in 1861 (but not
published before 1874). Bolzano is said to have found such an example
as early as 1830.
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The usual way in which the sine and cosine functions are introduced
in calculus courses is through the geometric notions of angle and arc
length; one establishes the crucial inequality sinz/z < 1 for x > 0
by comparing the area of a sector of a circle with that of a triangle
which it contains. The ideas of angle and arc length are still beyond
our scope, so we had to work with infinite series definitions of sine
and cosine.

Convex functions appear in very many contexts in mathematics. The
notion of convex function is related to that of convex set. A subset K
of the plane is called convex if with any two points which it contains
it also contains the entire line segment joining them. A function f is
convex if and only if the set {(x,y) : y > f(x)} of all points in the
plane lying above the graph of f is a convex set.

The mean value theorem is due to Lagrange. The special case where
fla) = f(b) = 0 is called Rolle’s theorem; Rolle proved that between
any two roots of a polynomial P(z) there lies a root of P’(z). In fact,
Rolle was strongly critical of the developing theory of calculus in his
day, and it is ironic that his name is associated with such a crucial
step in setting the calculus on a firm basis. The proof we gave of
the mean value theorem is due to O. Bonnet, and was first published
in 1868. Bonnet also proved mean value theorems for integrals, as
well as derivatives. Theorem 4.25 is due to Darboux. Theorem 4.26
generalizes to differentiable mappings from R" to R", as we shall see,
and the proof becomes noticeably more difficult.

The general form of the mean value theorem, Theorem 4.29, is due
to Cauchy. Theorem 4.30 is known as L’Hospital’s rule. It first ap-
peared in L'Hospital’s book, published in 1696, the first textbook of
the calculus. L’Hospital, whose name is often spelled L’Hopital or
I’'Hopital, was a French marquis who studied mathematics with Jo-
hann Bernoulli, and apparently acknowledged his debt to Bernoulli
for all the ideas of which he wrote an exposition. This book achieved
a wide readership; the next major calculus textbook was that of Maria
Agnesi (1748), best remembered today for the plane curve known as
the “witch of Agnesi.” Not long after, Euler wrote the books which
remained the standard for a long time.

Theorem 4.33 was first stated and proved by Lagrange in 1797. Taylor
had derived the formula for the power series expansion of a function
in 1715, by considering an expression in terms of finite differences and
passing to the limit.

The results of this section remain valid for complex functions, that
is, for functions 2;"‘;0 an(z — ¢)™ where a,, ¢, and 2 are all complex
numbers. In fact, this is the natural setting for the study of power
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series, and many striking results exist; but that is the subject of a
different course. One can also take power series where the powers are
of, for example, matrices. Thus, if A is an n x n matrix, it is useful to
form the matrix

X 4nAn
tA t"A
€ T

ne0 n:

which solves the system of differential equations x'(t) = Ax with
initial condition x(0) = x¢ by x(t) = e'4xg. Here is another example
of a “power series.” If f is a function analytic on R, then we can write

© (n) n
flx+h)y =) %)—h—

n=0

Let us use the notation Df for f', so D"f = f(); D is a function
whose domain and range is the set of functions analytic on R. Another
such function is the “translation operator” Ty, defined by (T f)(x) =
f(x + h). The Taylor expansion above then reads

o o]

(Taf)z) =)

n=0

h" D'lf(x)
n! ’

or on the operator level, T, = e"?. This discussion is merely formal

here, but in fact good sense can be made of the idea that translation

is the exponential of differentiation.
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The Riemann Integral

In this chapter we give an exposition of the definite integral of a real-valued
function defined on a closed bounded interval. We assume familiarity with
this concept from a previous study of calculus, but want to develop the
theory in a more precise way than is typical for calculus courses, and also
take a closer look at what kind of functions can be integrated. The integral
to be defined and studied here is now widely known as the Riemann integral;
in a later chapter we will study the more general Lebesgue integral.

5.1 Riemann Sums

5.1 Definition. Let [a,b] be a bounded closed interval in R. A finite se-
quence (Tx)}—, is called a partition of [a,b] ifa=z¢o <z <---<Tp,=0b.

It is clear that the set of all partitions of [a, b] is in a one-one correspon-
dence with the set of all finite subsets of (a,b), and this correspondence
induces a partial ordering among partitions.

5.2 Definition. Let 7 = (zx)7_, and 7’ = (y;)7=o be two partitions of
the bounded closed interval [a,b]. We say that =’ is a refinement of w, and
write# < 7', if {zo,Z1,...,Zn} C {V0, Y1, Um}-

5.3 Definition. Ifm = (zx)p., is a partition of [a, b], a selection associated
to m is a finite sequence (§x)r_, such that zx_) <& <z fork=1,...,n.
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If f is a real-valued function whose domain contains [a,b], 7 = (xx)}., is
a partition of [a,b], and 0 = (§x)i., is a selection associated to w, we put

S(f,mo) = f(&) @k — Th-1),

k=1

and we call S(f,n,0) a Riemann sum for the function f, associated to the
partition m and selection o.

The (Riemann) integral of f over [a,}] is the limit of Riemann sums, in
the following sense:

5.4 Definition. Let f be a real-valued function whose domain contains
[a,b]. We say that f is Riemann integrable over [a,b] if there exists a real
number I with the following property: for any € > 0, there exists a partition
mo of [a,b] such that for every partition ® > mg, i.e., every m which is a
refinement of mp, and every selection o associated to w, we have |S(f,®,0)—
I| < €. The number I is called the integral of f over [a,b], and denoted by

f:f, or f:f(:t)d:c.

Throughout this chapter, we will use the word integrable to mean Rie-
mann integrable, and will often say f: [ exists to mean f is Riemann
integrable over |a, b].

Since the number I, when it exists, is determined solely by the function f
and the interval [a, b}, the first of the two notations, f: f, is clearly logically
preferable to the second, [ : f(z) dx. Here the letter x serves a purely cere-
monial purpose, and may be replaced by any other letter;thus, f: f(t)dtor
/. : f(w) dw have the same meaning as |, : f(z) dz. Nevertheless, this second
notation has some practical advantages (besides being the notation most of
us grew up with). For instance, if we were to insist on the first notation for
integrals, fol (z? + zy + 1) dz would require a long-winded circumlocution
such as “for each y, define the function f, by f,(z) = 2 + zy + 1 for each
z € [0, 1], and consider fol "

5.5 Proposition. In order for f to be integrable over [a, b], it is necessary
that f be bounded on [a,b).

Proof. If f is integrable, there exists a partition 7 = (xx)p_, of [a,b] such
that |S(f,7,0) — f: f| < 1 for every selection o associated to w. But if f
were not bounded above on [a, b}, it would have no upper bound on some
interval (zx_),zx]; varying the choice & while leaving §; fixed for j # k, we
would obtain selections o with S(f, 7, o) arbitrarily large, a contradiction.
A similar argument shows that f is bounded below. ]
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5.6 Example. Not every bounded function is integrable. Consider the
function of Example 3.4 in Chapter 3:

1 if t is rational
t) = !
/@ {0 if t is irrational.

For any partition m = (zx)}_, of [0, 1], we note that each interval [xk_;, 7]
contains both rational and irrational numbers; thus for every partition 7
there exist selections o) and o, associated to m such that S(f,m,0;) =1
and S(f,m,02) =0. Thus fol f does not exist. We recall that this function
is discontinuous at every point.

5.7 Definition. Let f be a real-valued function whose domain contains
la,b], let # = (zx)}E_, be a partition of [a,b]. We define the upper sum of f
for the partition m to be

S(f,m) = sup{S(f,m, o) : o associated to 7},
and the lower sum of f for the partition 7 to be
S(f,n) = inf{S(f,m,0) : o associated to 7}.

It is clear that —oco < S(f,m) < §(f,m) < +oc, and that when f is

bounded, say m < f(t) < M for all t € [a, b], we have
m(b—a) < S(f,7) < S(f,7) < M(b-a).

We can refine this estimate as follows. Given the partition m = (zx)}_, of
la,b] and the function f on [a,b], let my = inf{f(t) : zk—1 <t < x4} and
M, = sup{f(t) : zx—1 <t < zi}. It is obvious that we have

S5(f,m) =Y Mi(zk — zx-1),  S(fim) =Y ma(zk — zk-1)-

k=1 k=1

We next show that every lower sum is less than or equal to any upper
sum.

5.8 Lemma. Let m and ' be partitions of [a,b], and suppose that n’ is a
refinement of w. For any function f defined on [a,b], we have

S(f,7) < S(f,7") < S(f,n') < S(f,~).

Proof. Suppose that 7 = (zx)f_o and 7’ = (y;)7Lo- Let Mi = sup{f(t) :
Tk-1 < t < x4} for each k, 1 < k < n. For each j, 1 < j < m, there exists
a unique k = k(j) such that zx_; < y; < zx. Let Fix = {j : k(j) = k} for
each k, 1 < k < n. We note that [z)_;,zx] = Ujen [yj-1,¥;), and hence
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that EJeF.(y) Yj-1) = xk — zk-1. Now if o = (§;)}~, is any selection
associated to the partition n’, we have .

m

S(f, ', o) = Zfe,xy,—y, .)—szs, - y1)

k= l]GF;,

SZZMI:( ]1)_ZM;¢Z Yi — ¥Yi-1)

k=13€Fs JEFu

= ZMk(:ck - xk-1) = S(f,m),
k=1

and it follows that S(f,n’) < S(f, 7). The proof that S(f,n’) > S(f, ) is
entirely similar. 1

5.9 Proposition. Let m; and w2 be any partitions of [a,b]. If f is a real-
valued function on [a, b}, then

§(fv ”l) < §(f7 7r2)'

Proof. There exists a partition 73 which is at the same time a refinement
of m; and a refinement of my; for instance, take the union of the finite sets
associated to m; and my, and list in increasing order. Then

Q(Iv 7l'|) s _.S:(f,ﬂa) .<_ §(f~:”3) S g(f' 7I'2)
by Lemma 5.8. |

5.10 Theorem. If f is a real-valued function on [a,b], then f: f exists if
and only if for every ¢ > 0 there exists a partition w of [a,b] such that
S(f,m) — S(f,m) < €. If (m,) is a sequence of partitions of |a,b] such that
S(f,mn) — S(f,ma) — 0 as n — o0, and oy, is a selection associated to m,
for each n, then f:f = limp—oo S(f, Tn,0n).

Proof. The necessity of the condition is immediate from the definition
of the integral. We prove the sufficiency. Let I = inf, S(f, ), where the
infimum is taken over all partitions 7 of [a,b]. By the last proposition, we
have

S(f,7) < I <S(f,m)

for every partition 7 of [a,b]. Given ¢ > 0, there exists by hypothesis a
partition 7 of [a, b] such that S(f,m) — S(f, M) < ¢, and by Lemma 5.8,
this inequality remains true when =g is replaced by any refinement 7 of .
Now for any refinement m of o and any selection o associated to m, we
have

S(f,7) < S(f,m,0) < S(f,m)
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as well as
S(f,m) <I<S(f,m),

so |l - S(f,m,0)| < 5(f,n) -~ S(f,7) < e. Thus f is Ricmann integrable
over [a,b], and f: f = I. The second assertion also follows immediately. §

5.2 Existence Results
5.11 Deflnition. If 7 = (zx)}_, is a partition of [a, b], we let
pu(r) =max{zx — k-1 : k=1,...,n};

() is called ihe mesh of the partition .

5.12 Theorem. If f is a monotone function on [a,b], then f: f exists.
Furthermore, if (1,)32, is any sequence of partitions of [a, b], with pu(7,) —
0 as n — oo, and if (0,) is any sequence of associated selections, then

S(f7 "uvon) - f: f(t) dt.

Proof. We assume f is increasing; an obvious modification of the argument
works for the case when f is decreasing. Let ¢ > 0. Choose a partition
7 = (Tk)p_o such that [f(b) — f(a)]u(r) < e. [For instance, one can choose
a positive integer n such that n > [f(b) — f(a) + 1](b— a)/¢, and define the
partition m = (zx)i_o by Tk = a + (k/n)(b—a), so Tk — zx—1 = (b—a)/n
for each k, 1 < k < n.] Then my = inf{f(t) : zk—1 <t < z&} = f(zk-1)
and Mj =sup{f(t): zx—1 <t < zx} = f(z), s0

S(f,m) = S(f,m) =Y _[f(=zk) — f(@e-1))(zk — k1)

k=1
< u(m) Y [f(z) - f(z1))
k=1
= u(m)[f(b) - fa)] < e
The theorem now follows from Theorem 5.10. |

The next example shows how to compute the value of f: f in a special
case; it shows that it can be convenient not to use the equally spaced
partition suggested in the proof above.

5.13 Example. Let f(t) = tP, for t > 0, where p # —1. Let us compute
f:’ f(t)dt for any b > 1. Fix a positive integer n, let § = b'/™, and let
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zi = 6%, for k = 0,1,...,n. Thus m = (zx)}_, is a partition of [1,b]. We
have

S(fim) =Y flae)(@x — Tho1)

I
Pl
M: I

6kp(6k _ 6’:—1)

x
Il

1

n

-1 Z 5Pk

k=1
6 — 146+
R T2
— B -1 (P
P+ 4. +6+1

(S )

°‘I

— p+1

(here we use p # —1)

Letting n — 0o, we have § — 1, so that these upper sums approach (b?*! —
1)/(p+1).

Since we have seen that flb f(t)dt exists, and is given by the limit of
any sequence of Riemann sums S(f, m,,0,) such that u(r,) — 0, it follows
that flb f(t)dt = (b**! —1)/(p+ 1) for any real p # —1.

5.14 Theorem. If f is a continuous real-valued function on [a,b], then
/. : f exists. Furthermore, f: f(t)dt = limy o0 S(f, Tn,0,) for any sequence
(mn) of partitions of {a,b] such that u(r,) — 0, and any sequence of asso-
ciated selections (o).

Proof. Let ¢ > 0. According to Theorem 3.18, f is uniformly continuous
on [a, b}, so there exists § > 0 such that |f(z) — f(y)| < €¢/(b— a) whenever
|z — y| < 8. Let # = (zx)}_, be any partition of [a, b] such that u(7) < 8.
Since |s—t| < § whenever z4x_; < 38,t < zx, we have |f(s)— f(t)| < ¢/(b—a)
for any s,t € [zk_1,zk), and hence My — my < ¢/(b — a), where M, and
my have their customary meanings. Thus

S(f,m) - S(f,m) = Y (Mk — mi)(zx — 2x-1)
k=1

n
€
< b_a;(zk —ZTk-1) =€,

S0 f: f exists by Theorem 5.10. ]

We recall that our example of a nonintegrable function was not contin-
uous at any point. It turns out that a bounded function is integrable if
and only if its set of discontinuities is sufficiently small, in a sense to be
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made precise in a later chapter, when we study measure theory. For now,
we content ourselves with the following result in this direction:

5.15 Theorem. Let f be a bounded function on [a,b], let D be the set of
discontinuities of f, i.e., the set of all z € [a, b] such that f is not continuous
at z, and suppose that for every ¢ > 0 there exists a finite collection of
disjoint intervals {(a;,b;) : 1 < j < m} such that D C |J]_,(a;,b;) and
> j=1(bj — a;) < e. Then f is integrable over |a, b].

Proof. The set C = [a,b]\U]_,(a;,b;) is easily seen to be the union of a
finite number of closed intervals, on each of which f is continuous. It follows
from Theorem 3.18 that there exists 6 > 0 such that |f(s) — f(t)| < €
whenever s and ¢ belong to a closed interval contained in C and |s - t] < 8.
Choose a partition ® = (rk)p. of [a,b] with the following property: for
each k, either [zx_1,zx] C C and x4 — zx—1 < 8, or [Tk—1,Zx] C [a;, b;] for
some j, 1 < j < m. Write k € G if the first alternative holds, and k € B
if the second holds. As usual, we let My = sup{f(t) : zx—1 <t < zx} and
my = inf{f(t) : zx—1 <t < zx}; also M = maxx M and m = ming my.
Then we have M}, — my < ¢ for k € G, and

Z(Ik = Zk-1) < Z(bj —a;) <€

keB =1

Hence

n

5(f,m) = S(f,m) =Y (M — mu)(zk — zk-1)

k=1
=D (My — my)(zk — Tx-1)
k€G
+ Z(Mk —mg)(Tk — Tk—1)
keB
<Y ez~ zko1) + D (M — m)(zk - T-s)
keG keB

<(b-a+ M -m)e.
Theorem 5.10 now shows that f: f exists. |

5.16 Corollary. If f is continuous at all but a finite set of points in [a, b],
then f: f exists.

Thus. for instance, f; sin(1/z) dz exists. Here we define the integrand to
have the value 0 at 0, or any other value.
It is clear that if f and g are functions on [a,b] such that {t € [a,}] :

f(t) # g(t)} is finite, then f:f = f:g (if either integral exists, then so
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does the other, and they are equal). The proof of the last theorem shows
that if f and g differ only on a set D with the property that for any ¢ > 0
there exist open intervals (a,,b ), 1<j<m,withDC U ~1(a;j,b;) and
3°(b; — a;) <€, then fa f= fo

There exists an increasing function f which is discontinuous at every
rational, as we saw in the exercises in Chapter 3. It is not hard to see
that the rationals in [0, 1] cannot be contained in a finite union of intervals
of total length less than one, so the last theorem does not apply, though
Theorem 5.12 tells us that fol f does exist. Thus the condition of the last
theorem is sufficient, but not necessary.

6.17 Theorem. If f : [a,b] + R, then f:f exists if and only if for every
€ > 0, there exist continuous functions g and h on [a,b] such that g(t) <

f(t) < h(t) for all t € [a,b], and [Ph— [ g <e.

Proof. If there exist such g and h, choose a partition = of [a, b] such that
S(h,m) < f: h+ e and S(g,7) > f:g —¢. Then S(h,7) — S(g,m) < 2¢, and
since

S(g,m) < S(f,m) < 5(f,m) < S(h, )
we get S(f,7) — S(f,m) < 2¢, so f is Riemann integrable by Proposition,
5.10.

Now suppose f is Riemann integrable. Let m = (z«)}_, be a partition of,
[a, b] such that S(f,7) < fbf+c/2 As usual, let My = sup{f(t) : x-1 <
t < zx} for k = 1,...,n. We will construct a piccewise linear contmuous
function h with h(!) > My on each [zx-1, k]

M, +

Myort

M*v/"'

Xyt X XM

Figure 5.1. The construction in Theorem 5.17.

Let & = (zk—1+xk)/2 be the midpoint of [zx_1,zk],and 0 < < p(w)/2.
We define the function h, as follows: if a < t < £, set hy(t) = M, and if
£ <t < b, set hy(t) = M,. The definition for h, on each interval [x,,Xx+1]
will depend on which of M, and My, is larger. If M < Mj,,, let

M, for & <t < T —

hy(t) = § Mg, for zx <t < &kyrs
(Mi(zk = t) + Mxyri(n—zx +t))/n forzx —n < t < xx.
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If My > M, we modify this definition in the obvious way: let

M, for & <t < x4,
hy(t) = ¢ Miya, for zx +n <t < &y
(Misr(t — za) + Mi(n —t + z)) /0 for T + 1 < t < iy
Then h, is continuous on [a, b}, h,(t) > f(t) for all t € [a,b], and

b n
[ e <307+ Y 0l — M,

k=1

so taking 7 sufficiently small, we get f: hy(t)dt < f: f(t)dt + e. Applying
this argument to the function — f, we obtain a continuous function k with
k > —f and f:k < - f:f + ¢, and taking g = —k we have a continuous ¢

withgsfandf:g>f:f—c. ]

The method of dividing the elements of a partition into a “good set” and
a “bad set” which we used in proving Theorem 5.15 can be used in other
situations.

5.18 Theorem. Let f be integrable over [a,b], with m < f(t) < M for
all t € [a,b). If ¢ is continuous on [m, M|, then g = ¢ o f is integrable over
[a,b].

Proof. Let € > 0. Since ¢ is continuous on [m, M], there exists (Theorem
3.18) 6 > 0 such that |¢(s) — ¢(t)| < € for all s,t € [m, M] with |s —
t| < é. Since f is integrable, there exists a partition m = (zx)}_, of [a,b]
such that S(f,m) — S(f,7) < €b. Let M, = sup{f(t) : Tx—; < t < zx},
M, = sup{g(t) : zxk—1 < t < x4}, and let my, m} be the corresponding
infima. Let G = {k : My — my < 6} and B = {k : My — my > 6}.
Let C = maxmn<i<cm d(t) — minn<ei<p ¢(t). Then |g(s) — g(t)| < € for all
s,t€[zx_1,xi]if k€ G,80 M —mj <cforallk € G,and M, - m} <C
for every k. Now

€6 > Z(Mk —my)(xk — Tk—1) > Z §(xp — Th-1);
k=1 ke B

it follows that 3, p(Zx — Txk—1) < €. Hence

S(g,7) — S(g,7) = Y (My — m})(zk — zh—1)

keG
+ Y (M}, — mi)(zk — Tk-1)
keB
<e Z(xk, - ZTk-1) +CZ(zk - Zk-1)
keG keB

<e(b—a)+Ce=(C+b-a)e.
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Since ¢ > 0 was arbitrary, it now follows from Theorem 5.10 that g is
Riemann integrable.

We list a few of the most useful special cases of this theorem.

5.19 Corollary. If f is integrable over [a,b], then f*, f~, |f|, and f? are
also integrable over [a, b).

5.3 Properties of the Integral

5.20 Proposition. If f and g are integrable over [a,b], and A and B are
real numbers, then Af + Bg is integrable over [a,b], and

./:(Af+Bg)=A/abf+B/abg.

Proof. If 7 is any partition of [a,b], and o any selection associated to ,
then S(Af + Bg,n,0) = AS(f,m,0) + BS(f,n,0), and the proposition
follows. |

5.21 Proposition. If f is integrable over [a,b], and m < f(t) < M for all
t € [a,b], then m(b—a) < f:f < M(b- a). In particular, if |f(t)] < M for
all t € [a, b, then |f2 f(t)dt| < M(b - a).

Proof. We already observed that m(b — a) < S(f,m,0) < M(b - a) for
every partition 7 and associated selection o, which implies the proposition.

5.22 Corollary. If f and g are integrable over [a,b], and f(t) < g(t) for
all t € [a,b)], then f: S(t)de < f: g(t)dt. If f is integrable over [a,b), then

[ﬂmﬂsfuwa

Proof. Since g(t) — f(t) > 0, Proposition 5.21 shows that

b b b
o< [0 -s@)a= [ swa- [ s0a,

which gives the first statement. Now =+ f(t) < |f(t)]. so the first statement
of the theorem implies the second statement. ]

Another consequence of the basic estimate in Corollary 5.22 is the fol-
lowing, known as the mean value theorem for integrals:
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5.23 Theorem. Let p be a nonnegative function integrable over [a,b]. If
f is continuous on [a, b, then there exists £ € [a, b] such that

b b
/ f()p(t) dt = f({)/ p(t)dt.
Proof. Let m = min{f(t) :a <t < b} and M = max{f(t) : a <t < b}.

(The existence of M and m comes from Theorem 3.14.) Since p(t) > 0 for
all t € [a, b], we have mp(t) < f(t)p(t) < Mp(t) for all t € [a,b], so

b b b
m/pmas/ﬂwwaSM/pmw

by Corollary 5.22. In particular, if f:p(t)dt = 0, then f: f()p(t)dt =0
also, and we can choose any £ for the desired equation. When f: p(t)dt > 0,

the number R
(G OL

2 p(t) dt
satisfies m < y < M, and hence by the intermediate value theorem (Theo-
rem 3.15) there exists £ with f(§) = y. 1

5.24 Theorem. If f and g are integrable over [a,b], then so is their prod-
uct fg. Furthermore,

(L) <(L7)([#) o

Proof. By Proposition 5.20, f + g and f — g are integrable over [a.b],
and hence by Theorem 5.18 so are (f + g)? and (f — g)%. Since fg =
(1/4)[(f +9)? — (f — g)?), another application of Theorem 5.20 tells us that
fg is integrable over [a, b].

Similarly, tf £ g/t is integrable for any positive number ¢, and hence so
is (tf £ g/t)%. From Propositions 5.21 and 5.20 we see that

b g 2 b 1 b b
05/(tfi-) =t2/ f2+—2/ 9212/ fg,
a t a t a a

from which we have
/fylﬁi(t/f2+t—2 92)
a a a

for every t > 0. If f: f% = 0, it follows (letting t — oc) that fuh fg =0,
so the inequality holds. When f: f2 > 0, we can choose t to make the two
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-1
terms equal, i.e., such that t* = (f: f2) f: g2. Then

(‘/abf.‘))2 < (tz/abfz)z _ (tg/.“’fz) (tlz /0592) =Lbf2£bg2,
establishing the inequality. .

The inequality (5.1) is known as the Schwarz, or the Bunyakovsky-
Schwarz, inequality. It is of great utility in a variety of situations in analysis.

5.25 Theorem. Let a < c < b, and let f be a function defined on [a, b].
The integral f: [ exists if and only if [{ f and f: f both exist, and in this

casef:f=f;'f+fcbf,

Proof. Let m = (zx)}_, be a partition of [a,b] which includes the point
c, say ¢ = Iy, for some 0 < n < N. Then (zx)}_, is a partition of [a,c],
and (:c,.+k),':’=__'0" is a partition of [c,b]. As usual, we put My = sup{f(t) :
ZTk-1 <t < xx} and my = inf{f(t) : zx—1 <t < zx}. Let f1 and f2 denote
the restrictions of f to [a,c] and [c, b], respectively. Then

n

S(f,m) = S(fim) = Y (Mx = mp)(zx — Tx-1)
k=1
N-n

+ ) (Mapy; = mnt;)(Ens; = Tntjo1)
i=1

= S(fim) = S(fi,7) + S(fam) — S(f2, 7).

Now if f: f exists, and € > 0, there exists a partition 7 of [a,b] such
that S(f,7) — S(f,7) < ¢ there is no loss of generality in assuming
that c is an element of w, in view of Lemma 5.8. The above shows that

S(f1,7) - S(fi, ™) < € and S(f2, ) — S(fa,7) < €. Thus [*f and [* f
exist. Conversely, if these two integrals exist, then we combine suitable
partitions of [a, ] and [c, b] to get a partition of [a, ], and use the equation
above to show f: f exists, and equals [ f + f: f- |

5.26 Definition. Let f be integrable over the interval [a,b], where a < b.
We define [, f = -f:f, and we define [ f = 0.

With this convention, we can now expand the scope of the last theorem
as follows:

5.27 Corollary. For any a,b,c,

/abf=/:!+[f,



110 5. The Riemann Integral

in the sense that if any two of these integrals exist, then so does the third,
and the equation holds.

Proof. We may reformulate the assertion of the theorem in a more sym-

metric manner as
b c a
[r+[ 1+ [ 1=0
a b c

in view of the definition above. In this form, we know it to be true when
a < b < ¢, and the left-hand side is unchanged by a cyclic permutation
of {a,b,c}, so it is true for the cases b < ¢ < a and ¢ < a < b. We check
that the interchange of a and b changes the expression into its negative,
hence again leaves it zero. This remains true for either of the other two
interchanges, since they can be achieved by a cyclic permutation followed
by the interchange of a and b. Thus all six permutations of {a,b,c} leave
the left-hand side equal to 0. Finally, if a = b or b = c or a = ¢, the result
is obvious. 1

The properties of the integral f: f we have obtained for the case a < b
remain true in general, with the exception of the inequalities obtained in
Proposition 5.21 and its corollary, which must be reversed if a > b. We
still have the basic inequality: if |f(t)] < M for all ¢ in an interval I, then
| [P F(t)dt| < M|b—a| for alla,b € I.

5.4 Fundamental Theorems of Calculus
Each of the next two theorems is often referred to as the fundamental

theorem of calculus.

5.28 Deflnition. Let f: ] — R. We say that F : I — R is a primitive of
fif F'(z) = f(z) foreveryz € I.

A primitive of f is also called an antiderivative of f, or an indefinite
integral of f.

5.29 Theorem. Let f be integrable over the interval [a,b]. If F is a prim-
itive of f, then [ f(t)dt = F(b) - F(a).
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Proof. Since F'(t) = f(t) for all t € [a,b], it follows that for any partition
T = (Zk)R=o Of [a,b], we have F(zx) — F(xk-1) = f(&k)(Tk — Tk-1) for
some &, € (Zx-1,Zx), by the mean value theorem (Theorem 4.22). Then
o = (&) is a selection associated to 7, and we have

S(fima) =Y f(&)(@k — Tx-1)

x
—

NE

(F(zk) = F(zx-1)) = F(5) - F(a).

x
1

1
If f is integrable over [a, b], it follows that f: f(t)dt = F(b) — F(a). 1

5.30 Theorem. Let f: I — R, where I is an interval, and suppose that
f is integrable over any closed bounded interval contained in I. Let a € I.
If F is defined by

F(z) = /I ft)dt

for each z € I, then F is continuous on I. If f is continuous at x € I, then

F'(z) = f(z)-

Proof. Let x € I. Let J be a closed interval contained in I which is a
neighborhood of z relative to I. Let M = sup{|f(t)|:t € J}. Then for any
h with £ + h € J we have

z+h T z+h
F(z +h) - F(z) = / £(t)dt - / F(t)dt = / £(t) dt,
a a x
in view of Corollary 5.27, and hence |F(z + h) — F(z)| £ M|h|. This shows
that F is continuous at . Now suppose f is continuous at x. Let ¢ > 0.

There exists § > 0 such that |f(t) — f(z)| < € for all t € I with |t — z| < 6.
Then for h with z + h € I and |h| < 6,

_ z+h
FetWF@) s =|i [ 1w 1)

-|z / 1) - fo)ae| < Fike =

Thus F'(z) = f(z). [

5.31 Corollary. If f is continuous on the interval I, and a € I, then F,
defined by F(z) = [ f(t)dt, is a primitive of f on I.

We can deduce Theorem 5.29 from Theorem 5.30, if we assume that f is
continuous, as follows.
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Define G(z) = fz f(t)dt for each x € I. By Theorem 5.30, we have
G'(z) = f(z) = F'(z) for every z € I, 80 (F — G)'(z) = 0 for every z € I,
so F -G is a constant functionon [, i.e., F(z)-G(z) = F(a)-G(a) = F(a)

for every z € I. In particular, [ f(t)dt = G(b) = F(b) — F(a). ]

The next result, known as integration by parts, can be very useful in
dealing with integrals.

5.32 Theorem. Let f and g be integrable over [a,b]. If F and G are
primitives of f and g, respectively, then

Anmwmm F(b)G(b) - Fla)Gla) - /f G(t) dt.
Proof. Since (FG)' = F'G + FG' = fG + Fg, Theorem 5.29 tells us that
/UQGM+F0ﬂmﬂ FB)G(b) - F(a)Gla),
and the result follows. ]

Another important tool in dealing with integrals is the change of vari-
ables.

5.33 Theorem. Let ¢ be of class C! on the interval |a, 8], with a = ¢(a)
and b = ¢(B). If f is continuous on ¢([a,3]) and and g = f o ¢, then

b s
[ 10de= [ g

Proof. Note that g is continuous on [a, 8]. Let F(z) = [ f(t)dt for x €
[a, 8], so F is differentiable on [a, b], and F'(z) = f(z) for all z € [a, b]. Then

= Fo¢ is differentiable in [a, 8], and G'(u) = F'(¢(u))¢’'(u) = g(u)¢’'(u)
for all u € |a, 8]. Hence

8 b
/mMMMM=cm-cm=Fw—nm=/fwm
as desired. (]

We observe that in this theorem, it is not necessary to assume that

¢(le, B]) C [a, ).
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5.5 Integrating Sequences and Series

5.34 Theorem. Suppose that f, is integrable over [a,b] for cach n, and
that f, — f uniformly on [a,b]. If f is integrable over [a,b], then

b b
nli_{x;c/ f,.(t)dt:/ f(t)dt.

Proof. Given € > 0 there exists ng such that |f,(t) — f(t)| < ¢/(b— a) for
all n > ng; then by Proposition 5.21 we have

b b b
[ roa- [Croa]=| [0 - s af <

for every n > ng. [ ]

5.35 Corollary. If f, is integrable over [a,b] for eachn,and f = 37 | fa,
where the series converges uniformly on [a, b], then, assuming f is integrable

over [a, b, \ o
/ =3 | 5

In fact, the assumption that f is integrable in the last theorem and
corollary is unnecessary (see the exercises at the end of this chapter), but
since this is rarely an issue in applications, we do not press the point.

5.36 Example. Let f,(zr) = z/n(x +n) for 0 < z < 1, n € N. Then
0 < fa(z) < 1/n(n + 1) for every z € [0,1], and as we saw in Chapter 2,
Yo 1/n(n + 1) = 1, so by the Weierstrass M-test, the series Y .., fn
converges uniformly on [0, 1] to some continuous function f, where 0 <
f(z) <1 for all z € [0, 1]. By Corollary 5.35, we have

0o 1 1
2_;/0 fulz)dz = /0 f(z)dz = 7,

where evidently 0 < 4 < 1. But
1 1
1
(Y SO T PR B2
o n(z+n) o\n T+n n n

N 1 N 1
> [ fa@rde =35 ~log(V+1)
n=1 n=1

a8 N — oo. Since log(N + 1) —log N — 0 as N — oo, we can also say

N
= —logN

n=1

as N — 0o. The number « is known as Euler’s constant.
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Using the fundamental theorem of calculus, we can obtain results about
differentiation from results concerning integration. Here is an example, for-
mulated for series; it is simple to deduce the companion theorem for se-
quences.

5.37 Theorem. Let (f.) be a sequence of functions of class C' on [a,b],
such that 3", | fn(c) converges for some c € [a,b], and suppose that }_ f,
converges uniformly on [a, b], to some function g. Then }_,> | fn converges
to a function f of class C! on [a,b], and f' = g.

Proof. Since each f], is continuous, we know that g is continuous by The-
orem 3.24. By Corollary 5.35, and using Theorem 5.29, we have

[swa=3 [ ferde =3 i) - o)
c n=1v¢ n=1

and since Y fa(c) converges, it follows that Y_ fn.(z) converges for each
z € [a,b), say to f(z). But we then have

1@-1@= [ "oty dt

for each z € [a, b], and hence by Theorem 5.30 we obtain that f'(z) = g(x)
for every z € [a,b).

5.6 Improper Integrals
In this section we consider certain integrals of the form f:o f(z)dz or

f: f(x) dz where f is not bounded on [a, b]; these are no longer defined as
Riemann integrals, and involve an extra limiting process.

5.38 Definition. Let f : [a,+00) — R be integrable over [a,b] for every
b > a. We say that the improper integral [ :° f(t) dt converges if

b
L=b—l!Too/a £(t)dt
exists, and we write [ f(t)dt = L in this case.
5.39 Definition. Let f : (a,b] — R be integrable over [c,b] for every

ce€(a,b). IfL = limg_.q4 f: f(t) dt exists, we say that f: f(t) dt converges,
and equals L.
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5.40 Example. The integral fol zP dr exists for p > 0, since z — 2P is
continuous on [0, 1], but fails to exist for p < 0, since the function is un-
bounded. However, for p # —1,

l .
lim ;z”dz::lim.l_t_b.f:=‘ 1/(p+1) ifp> -1,
+00 ifp<-—1,

50 J, 6—0 p+1

so the improper integral fol z~Pdz converges for p < 1, and diverges for
p > 1. It is easy to check that it also diverges for p = 1. Similarly, we
calculate that floo P dr converges for p > 1 and diverges for p < 1.

In this section we will only discuss improper integrals of the first kind.
There are analogous results for integrals of the second kind. By a change
of variable, each integral of the second kind can be transformed into one
of the first kind. There are of course complicated integrals of mixed type,
i.e., which involve both sorts of difficulties. An important example is the
gamma function integral

F(I):/ t="le"t dt.
0

When z > 1, this is simply an integral of the first kind defined above, but
when z < 0, the integrand is unbounded near 0, so foR t="le~tdt is itself
an improper integral, of the second kind. Such situations are generally easy
to deal with by writing the integral in question as the sum of two integrals
each of a pure type, in this case as

1 0o
r(z)=/ t""e"dt+/ t=le~t dt.
0 1

The theory of improper integrals of the first kind has many analogies to
the theory of infinite series. The next proposition follows at once from the
definition. The analogue for integrals of the second kind is obvious.

5.41 Proposition. If f and g are functions on [a, 00) which are integrable
over every [a,b), and the integrals fa°° f(t)dt and [ :° g(t) dt converge, then
for any A, B € R the integral [°(Af(t) + Bg(t)) dt converges, with value
A[Z f(t)dt + B [° g(t)dt.

5.42 Proposition. Let f be integrable over [a,b] for every b > a, and
suppose that f(t) > 0 for all t > a. Then either |, :° f(t)dt converges, or
JZ f(t)dt — 400 as z — +00, in which case we write [ f(t)dt = +oo.

Proof. The function F defined on [a, +00) by F(z) = f: f(t) dt is increas-
ing, since f(t) > 0 for all ¢t, so lim;_.o, F(t) = sup,>, F(t) exists, either as
a real number or +oo. ) |
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5.43 Corollary. Let f and g be functions on [a,00) which are integrable
over every interval [a,b], and suppose that |g(t)] < f(t) for all t > a and
that f:o f(t)dt converges. Then f:° g(t) dt converges.

Proof. We have 0 < g*(t) < |g(t)] < f(t) for all ¢, so ffg*(t)dt <

foR lg(t)ldt < [ f(t)dt for all R,so [° g*(t)dtand [ °|g(t)| dt converge.
Since g = 2g* — |g|, it follows that f:o g(t) dt converges. 1

Again, the analogue for integrals of the second kind is obvious.

For example, since t*~'e™t < t*~! for t > 0, this corollary and the
example above shows that fol t*~le~tdt converges if and only if z > 0.
Since t*~le~t < Ce~t/? for some constant C and all t > 1, we see that
f;x' t*~le~t dt converges for all z. Thus the integral defining I'(x) converges
for all r > 0.

We say that the improper integral f:° Sf(t) dt is absolutely convergent. if
f:o | f(t)] dt converges. The last corollary, a comparison test for improper in-
tegrals, also contains the assertion that an absolutely convergent improper
integral is convergent. It is easy to construct an example of an improper in-
tegral which is conditionally convergent, i.e., convergent but not ahsolutely
convergent. For instance, one could define f(z) = (—1)"/n for [z] = n. Here
is a more natural example, an improper integral with many applications.

5.44 Example. Let f(z) = sinz/z for x > 0, f(0) = 1. Then f is continu-
ous on [0,oc), so f0°° f(z) dz converges if and only if flm f(x) dz converges.
Now integrating by parts (Theorem 5.32) we have

R _: R
/’ Slnde=COSI—COSR—/ cosz:zdl‘
1 T R 1 X

Since |cosz/z?| < 1/z% and [°(1/z%)dzx converges, we see that the in-
tegral flx (sinz/z)dx converges, and hence f0°° f(z)dz converges. On the
other hand, the integral fox |f(z)| dz diverges, since

/("“’" Isin:cld i/“‘“)" Isin:cld
—dr= —dr
" x kn T

k=1
n 1 (k+1)m
———— |sinz|dz
Tk + D) /k

v

k

= —l—/”sinzd:z
k l(k+l)7f 0
2

Pt (k+ 1)

s

3

which diverges to +oc as n — oo.
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The method used in this example can be generalized to prove an analog
of Theorem 2.43.

5.45 Theorem. Let f be continuous on [a,00) and let g be a function

of class C' on [a,oc). Let F(x) = [T f(t)dt for z > a. Suppose that the
following conditions hold:

(a) [°1g'(t)ldt < oo;
(b) F is a bounded function; and
(c) g(xr) - 0 asxr — oc.

Then [ f(x)g(z)dx converges.

Proof. Integrating by parts, we find

It R
J(£)g(x) de = F(R)g(R) - F(a)g(a) - / F(a)g'(x) dx;

a a

since F is bounded and f:o |¢’(z)| dz converges, the integral on the right
converges by Corollary 5.43, and since F is bounded and g(R) — 0 as
R — oo, the first term on the right approaches 0 as R — o0o. Thus

limpg oo faR f(x)g(z) dz exists. |

5.46 Corollary. Let f be continuous on [a,00) and let g be a function of
class C" on [a,00). Let F(x) = [ f(t)dt for £ > a. If g is decreasing and
g(z) — 0 as x — oo, and if F is bounded, then fa f(z)g(x) dx converges.

Proof. Since ¢g’(z) < 0, we have

R R
[ W@ids = - [*g(@)dz = g(a) - o(R) — gla)
a a
as R — oo, s0 [ |¢'(x)| dx converges, and the theorem applies. |

5.47 Corollary. If g is of class C! on [a,00) and g(z) decreases to 0 as
T — oo, then f:’ g(z)sinz dr and f:° g(x) cos x dx converge.

This corollary of course includes the last example. Here is another appli-

cation of it.

5.48 Example. We show that f cos(z2) dr converges. Using the change
of variable u = 22 (see Theorem 5.33) we find

R R?
cos(z? d:c=/ E)Egdu.
[ eotatae= [ 52

According to the last corollary, the integral on the right approaches a limit
20 2 . . . .

as R — oo, so f, cos(z?)dz converges; this implies the convergence of

I;° cos(z?) dz.
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If 3 a, is convergent, then a, — 0 as n — oc. Here the analogy between
series and improper integrals breaks down, as the last example shows. It
is not hard to show that the integral in this example is only conditionally
convergent. Here is an example of an absolutely convergent integral with
an unbounded integrand.

5.49 Example. Define ¢ : R — R by ¢(t) = (1 — |t|)*, and let
f(&) =" vno(2n?(t - n)).
n=1

Note that for any given t the series contains at most one nonzero term.
(The reader should sketch ¢ and f.) For every n,

n+1/2 1
[ 0= iz [ swa- vn

n-1/2 2n?’

80 f0°° f(t)dt =(1/2) 30, n~3/2 < 4+00. But f(t) does not approach 0 as
t — oo, in fact, sup,> g f(t) = +oo for every R.

5.7 Exercises

1. Using only the definition of the integral, show that (assuming the inte-
grals exist)

_:j(rz)a=2Laf(z2)h, /a zf(z?)dz = 0.

2. Show that if f is continuous on [0, 1], then

/2 %/ g
/o f(cosz)d:c:/o 2f(sin:c)d:t=%/0 f(sinz) dz

" f(cos® z)dz = n/’r f(cos® z) dz.
0 0

3. Show that if f is the function of Example 3.5, then f is integrable over
[0,1], and [ f(t)dt =0.

4. Find the limit, as n — oo, of
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5. Show that

6. Show that if f is integrable over [a,b], and zxn = a + k(b — a)/n for
k=1,2,...,n, then

n-—» 00

b
lim —men) - [ f@a.

7. Find all functions f on [0, 1] such that f is continuous on [0, 1], and
z 1 ’
[ roa= [ rea
0 z

8. Show that [ f(sinz)coszdz = 0 for any function f continuous on [0, 1].

for every z € (0,1).

9. Show that if 0 < L < R < 400, then

R
sinzx
/ d:c’

L

10. Let f be of class C! on [a, b, with f(a) = f(b) = 0. Show that

b b
[ at@@dz =3 [P

Deduce that if also [’[f(z)]?dz = 1, then

b b
/ [f' (@) dz - / [zf(z))?dz > L.

11. Let by p = fo (1 — )" dz, where m and n are nonnegative integers.
Show that
b = m!n!
™ (m4n+ 1)

HINT: Integrate by parts.

12. Let f be continuous in an interval I containing 0, and define
¢4 T
@) = [ 10 p@= [ o
and, in general, f,(z) = foz fn-1(t)dt for n > 2. Show that

fara(z) = /0 TE i a

for every n > 0. HINT: Integrate by parts.
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13. Use the last exercise to prove the following form of Taylor's theorem:

if f is a function of class C"*! on an interval I containing 0. then for all
r € I we have

_ 5~ fM00) 4 T ety (T =)
f(f)—kg:]—k!—f + A f (t)mdt

14. If f is continuous on [0,) and f(z) — L as z — oo, show that for
a>0.

a

lim f(nz)dz = alL.

n—oc 0

15. Suppose that f, is integrable over [a, b] for every n € N, and that (f,,)
converges uniformly on [a, b] to some function f. Show that f is integrable
over [a, b].

16. Let ¢, be nonnegative functions integrable over [—1, 1], satisfying the
conditions:

(a) f_ll oOn(t)dt =1 for every n; and
(b) for every 6 > 0, ¢, — 0 uniformly on [-1,-6] U [§,1].

Show that for every f which is integrable over [—1,1] and continuous at 0,
we have f_ll f(t)pn(t)dt — f(0) as n — oo.

17. Let f be a positive, decreasing continuous function on [0, +00). Show
that for each nonnegative integer m,

> sms [ rwas Y s,

n=m+1

and deduce that the improper integral f;o f(t) dt converges if and only if
the infinite series 3~ | f(n) converges.

18. Show that o -
/ St
o t?
converges if and only if 0 < p < 2. Show that for 0 < p < 2, the integrals

nn B t
I, = / 0T gt
( tr

n-1)x

have the properties I, = (—1)*|I,| and |I,4+1]| < |I,,] for all n € N.

19. Show that
bad 2 1 2
/ e tdt< —e*
z 2z

for all z > 0.
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20. Discuss the convergence of [ rsin(e”) dz.

21. Show that Theorem 5.34 fails for improper integrals, by exhibiting a
sequence (f,) of continuous functions. on {0,00), each vanishing outside
a bounded interval, which converges uniformly to 0 on [0, 00), such that
I fa =1 for cach n.

5.8 Notes

5.1

5.2

5.3

54

The integral sign was introduced by Leibniz (1675); it is a stylized S,
denoting something that originates from summation, but was used for
the indefinite integral only. The word integral was first used (1690) for
such “sums” by Jakob Bernoulli. The notation with upper and lower
limits of integration was introduced by Fourier in 1822, and rapidly
became widely adopted; Gauss never used this notation. Cauchy first
defined the definite integral as a limit in some sense of Riemann
sums, but only for continuous functions, and always sums of the form
Y f(x,-1)(zj — xj_1). The formulation we give of the definition of
integral is essentially due to Riemann, in the middle of the nineteenth
century.

The computation of Example 5.2 is due to Fermat, one of the great
number of ingenious calculations made in computing areas in the era
before the fundamental theorem of calculus became widely known.
The origins of integration really go back to Archimedes, or perhaps
earlier. Jordan (nineteenth century) defined the outer content of a
subset A of R to be the infimum of all sums };_,(bx — ax) where
A C Uk~ (ak,bx). We can thus rephrase Theorem 5.15 as follows: if
f i la,b] = R is bounded, and continuous, except at a set of points
having outer content zero, then f is integrable. The notion of content
has been superseded in our century by the notion of measure, which
we will discuss in a later chapter.

The inequality (5.1) was first published by Bunyakovsky in 1859 (in
French, in a St. Petersburg publication). It was rediscovered in 1885
by Schwarz. The inequality generalizes a similar inequality for finite
sums, published by Cauchy in 1821. Both results are subsumed in the
corresponding inequality for integrals defined by a measure, which
will be given in Chapter 10. The mean value theorem for integrals,
Theorem 5.23, was published by Dirichlet in 1837.

The fundamental theorem of calculus, along with a number of other
rules for dealing with derivatives and integrals, was independently
found by Newton and Leibniz; a famous priority war took place during
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the early eighteenth century. Actually, Isaac Barrow had previously
published Theorem 5.30.

Cauchy gave as a theorem the permissibility of integrating a point-
wise convergent series of functions term-by-term. The problem of jus-
tifying the term-by-term integration of a series of functions was first
recognized in the early nineteenth century, in connection with Fourier
series. Theorem 5.34 and its corollary for series is only the first of such
results; we will find more effective theorems in a later chapter.



Topology

In this chapter, we extend the notions of neighborhoods, convergent se-
quences, and continuous functions, which we have studied in the setting
of the real line, to more general situations. We are interested especially in
the setting of R4, the Euclidean space of dimension d, but it turns out
that the means by which we formulate and analyze the notions of conti-
nuity and convergence, and related ideas, carry over to much more general
settings, with little or no adaptation; as a result, we shall introduce some
fairly abstract notions right from the beginning.

6.1 Topological Spaces

6.1 Definition. Let X be a set. A topology on X is a collection .7 of
subsets of X, called open sets, having the following properties:

(a) If A is any set, and U, €  for every a € A, then UQGA Uy € T,
(b) IfU, € T for each a in some finite set F, then ﬂaep Usa € T; and
(c) X€e T andbe 7.

A topological space is a pair (X, J), where 7 is a topology on X.

We will usually write simply “X is a topological space” when no confusion
is likely; sometimes there is more than one topology to be considered for
X, and we have to be more careful.
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6.2 Example. On any set X, we can introduce two simple-minded topolo-
gies. The trivial topology on X consists of {0, X }. The discrete topology on
X is (X), i.e., every subset of X is declared to be open. Another artificial
topology: let a subset U of X be called open if and only if UT = X\U is
finite.

6.3 Example. We define a topology on R, called the usual topology, by
declaring those subsets of R to be open which can be expressed as unions
of open intervals. Thus, U C R is open if and only if for each p € U there
exists an open interval (a, b) with p € (a,b) C U. It is easy to check that the
collection of all such sets is a topology; we can obtain @ open by recognizing
it as the union of an empty collection of intervals (or if this is annoying,
declare @ to be open by special dispensation.) We define the usual topology
on E, for any subset E of R, by defining a subset A of E to be open if and
only if A = U N E for some open subset U of R.

6.4 Example. We can define a topology Z, on R by declaring the empty
set, R, and the unbounded open intervals (—00,a) (a € R) to be the open
sets. Similarly, we could define a topology .7} on R to be the empty set and
R, together with the collection of all (a,+o0) (a € R).

Since topologies on a set X are subsets of 22(X), there is a partial order
relation on the set of topologies on X: if Z; and %, are topologies on X, we
say that 7] is weaker than 9, or that %, is stronger than 9, if 7, C .7,.
The words coarser and finer are often used as synonyms for weaker and
stronger. respectively. We note that the trivial topology is weaker than
every topology, and the discrete topology is stronger than every topology.
Of the topologies on R mentioned above, we see that the usual topology
is stronger than both the topology Z, and the topology Ji; these two
topologies are not comparable. If Z is a topology on R which is stronger
than both 7, and J, then .7 is stronger than the usual topology.

6.5 Definition. Let X be a topological space, and r € X. We say that N
is a neighborhood of z if there exists an open set G such that x € G C N.
We say that z is an interior point of N if N is a neighborhood of .

Thus, a subset U of X is open if and only if U is a neighborhood of x for
every r € U, for if this is true, there exists for each £ € U an open set G,
with z € G; C U, so U = |J,¢y G= is open. We note that this definition
of neighborhood agrees with that of Chapter 3 for the case of R with its
usual topology.

Along with the concept of open set, there is the companion concept of
closed set.

6.6 Definition. Let X be a topological space. A subset F of X is called
closed if its complement FC€ = X\F is open.
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It is clear that the class of closed sets has the properties:

(a) if F, is a closed set for each a € A, then ﬂneA F, is closed;
(b) if Fy,..., F, are closed, then UL':‘, F}. is closed; and

(¢) X and 0 are closed.

Conversely, any collection of sets having the properties (a), (b), and (c)
can be used to define a topology (the set of their complements). It is often
convenient to describe a situation in terms of closed sets rather than open
ones.

6.7 Definition. If E is a subset of a topological space X, the closure of
FE is the intersection of all ihe closed subsets of X which contain E. We
denote the closure of E by E, or sometimes by cl E.

In view of (c) above, it is clear that E is closed, and since it is contained in
every closed set which contains E, it can be simply described as the smallest
closed set which contains E. Here is another characterization of E.

6.8 Proposition. If E' is a subset of a topological space X, and z € X,
then z € E if and only if U N E # O for every open neighborhood U of
(and hence for every neighborhood U of x).

Proof. If there is an open neighborhood U of z such that UN E = @, then
X\U is a closed set which contains E, and hence contains E, so z ¢ E. If
z ¢ E, then X \FE is an open neighborhood of £ which does not meet E. 1

6.9 Definition. Let X be a topological space, and let E ¢ X. We say
that x € X is a limit point of E if ENU\{z} # @ for every neighborhood
U of . A point of E which is not a limit point of E is called an isolated
point of E.

Thus the last proposition says that the closure of any set E consists of
the points of E, and the limit points of E. We note that a limit point of
E may or may not belong to E. In the special case E = X, we see that a
point x € X is an isolated point of X if and only if {x} is open.

6.10 Definition. If E is a subset of a topological space X, the interior
of E, denoted by E° or by int E, is the union of all open sets which are
contained in E.

It is easy to see that E° is open, and is, in fact, the largest open set
contained in E. We also note that E° consists precisely of all interior points
of E, as previously defined. It is not hard to show that the complement
in X of the interior of E is exactly the closure of the complement of E.
The set E\E° is referred to as the boundary of E; it is easy to see that the
boundary of E is empty if and only if E is both open and closed.
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6.11 Definition. Let X be a topological space, and let D C X. We say
that D is dense in X if D = X. More generally, we say that D is dense in
E, forsome EC X, if DD E.

Thus D is dense in FE if and only if for every £ € E and every neighbor-
hood U of z, DNU # 0.

For instance, the set of rational numbers is dense in R, as is the set of
irrational numbers. A topological space in which there exists a countable
dense set is called separable.

6.2 Continuous Mappings

The purpose of topological spaces is to have a setting for the notion of con-
tinuous mappings. The following definition expands the notion of continuity
given in Chapter 3 (see Proposition 3.8).

6.12 Definition. Let X and Y be topological spaces, and let f : X — Y.
We say that f is continuous at £ € X if f~1(N) is a neighborhood of = for
every neighborhood N of f(z). We say that f is continuous on A C X if f
is continuous at each z € A, and we say simply that f is continuous if f is
continuous at each z € X.

We can rephrase this definition without using the word neighborhood: f
is continuous at z if for any open V C Y with f(z) € V, there exists an
open subset U of X, with z € U, such that f(y) € V for every y € U.

6.13 Example. If f : X — Y is a constant map, i.e., there exists yo € Y
such that f(z) = yo for all z € X, then f is continuous. If Y has the trivial
topology, then every map of X into Y is continuous. If X has the discrete
topology, then every f : X — Y is continuous.

If X is a topological space, then the identity map of X is continuous.
More generally, if Z; and , are topologies on X, then the identity map
i:(X, %) — (X, %) is continuous if and only if 7 is weaker than 7.

6.14 Proposition. Let X and Y be topological spaces. If f : X — Y,
then f is continuous if and only if f~'(V) is open (in X) whenever V is
open (in Y ), if and only if f~'(F) is closed whenever F is closed.

Proof. Suppose f is continuous, and V is an open subset of Y. Let U =
f~1(V). Then V is a neighborhood of f(z) for each z € U, so U is a
neighborhood of z for each z € U, by Definition 6.12. Thus U is an open
subset of X.

Suppose next that f~!(V) is open whenever V is open. Then for each
z € X, and any neighborhood N of f(z), there exists an open V such
that f(z) € V c N;if U = f~(V), we have z € U, U is open, and
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U c f~}(N), so f~'(N) is a neighborhood of z. Thus f is continuous at =
for each z € X, i.e., f is continuous.

Finally, we remark that f~'(A€) = [f~1(A)|C for any set A and any
map f, so the condition that f~!(G) is open for every open G is equivalent
to the condition that f~!(F) is closed for every closed F. ]

6.15 Proposition. Let X, Y, Z be topological spaces, f : X — Y and
g:Y — Z. If f is continuous at z, and g is continuous at f(z), then the
composition g o f is continuous at z.

Proof. Let W be a neighborhood of g o f(z); then V = g~ }(W) is a
neighborhood of f(z) in Y, since g is continuous at f(zx), and therefore
(gof) "(W)=f "(¢97"(W)) = f (V) is a neighborhood of z, since f is
continuous. ]

6.16 Definition. Let X and Y be topological spaces, and let f : X — Y.
We say that f is a homeomorphism of X onto Y if f is bijective, and f
and f~! are continuous.

The identity map is a homeomorphism of any topological space onto
itself. If f : X — Y is a homeomorphism, then f~! : Y — X is also a
homeomorphism. We say that the spaces X and Y are homeomorphic if
there exists a homeomorphism from X to Y. Using Proposition 6.15, it is
easy to see that this defines an equivalence relation on any set of topological
spaces.

6.17 Example. The interval (-1, 1) is homeomorphic to R; for instance,
the map = ~ tannz/2 is a continuous bijective map of (—1,1) onto
R, whose inverse is (necessarily) continuous. Another homeomorphism of
(—1,1) onto R is given by taking f(z) = z/(1 — z?).

An interval [a,b) is not homeomorphic to any open interval (c,d) in
R. For if f : [a,b) — (c,d) is continuous and injective, then it is strictly
monotone, as we saw in the proof of Theorem 3.16. If f is strictly increasing,
then f(t) > f(a) > c for all t € [a,b), so f is not surjective, and if f is
decreasing, then f(t) < f(a) < d for all ¢, so f is not surjective. Similarly,
[a, b] is not homeomorphic to any interval (c,d) or [c,d), etc.

6.3 Metric Spaces

6.18 Definition. Let X be a nonempty set. A metric on X, or distance
function on X, is a map p: X x X — R with the following properties:

(a) p(z,y) = O for every z,y € X, with equality holding if and only if
r=y;
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(b) p(z,y) = ply, z) for every z,y € X; and
(c) plz,y) + p(y, z) > p(z, 2) for every z,y,z € X.
A metric space is a pair (X, p), where p is a metric on X.

We will usually abuse language by writing “the metric space X” instead
of the correct “the metric space (X, p)” when no confusion is likely. In those
situations where more than one metric is considered on the same set X, we
must of course use the proper language.

6.19 Definition. Let (X, p) be a metric space. For eacha € X and r > 0,
we define the open ball with center a and radius r to be the set

B(a,r) = {r € X : p(x,a) < r}.

6.20 Definition. Let X be a set, and p a metric on X. The topology on
X induced by p is defined as follows: G C X is called open if for every
a € G there exists § > 0 such that B(a,6) C G.

We note that an open ball is indeed an open set by this definition: for if
z € B(a,r), and we take § = r — p(z,a), so § > 0, then for all y € B(z, )
we have p(y,a) < p(y,z) + p(z,a) <6 +1 -6 =r,s0 B(z,6) C B(a,r). It
is not hard to check that the class of sets called open by Definition 6.20 is
indeed a topology on X.

On any set X, we can define a metric p by putting p(z,y) = 1 for
any =,y € X with £ # y, and p(z,z) = 0 for all z € X. This is called
the discrete metric, and the topology it induces is evidently the discrete
topology, since B(z,1) = {z} for every z € X.

The standard metric on R is given by p(z,y) = |z — y|; it is trivial to
verify that this is a metric, and that it induces the usual topology on R.

The most important examples of metric spaces are Euclidean space and
subsets of Euclidean space.

If X is any set, and d is a positive integer, we denote by X¢ the d-fold
Cartesian product of X with itself: X¢ = X x X x --- x X, which is also
described as the set of all finite sequences (z,...,zq), with z; € X for
j=1,...,d. The space R is known as d-dimensional Euclidean space. If
x = (zy,...,24) and y = (y1,---,¥d4), then the sum of x and y, and the
product of a scalar ¢ € R with x, are defined by

x+y=(z1+y1,....,Ta+ya), cx=(cxy,cT2,...,CLq)

and R? with these operations is a vector space. It is also endowed with a
standard inner product, given by

d
(x,y) = zzjyjs
i=1
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where x = (z1,...,Z4), ¥ = (y1,...,y4), and ¢ € R. It is easy to see that
for all x,y € R? and c € R,
(x+y,2z) = (x,2) + (y,2),
(ex,y) = e(x,y),
(x,y) = (y.x),

and that (x,x) > 0 for all x € R? with equality only when x = 0,
where 0 = (0,...,0). The inner product is also often denoted by x -y,
and sometimes called the dot product. We assume the reader to be familiar
with these notions. We define the length of x, or norm of z, to be |x| =

N\ 1/2 ;
(Z;‘_, :rf) = (x,x)'/2. It is evident that |x| > 0 for all x, with equality

only for x = 0. Of course, when d = 1 the length of z is the absolute value
of x, so there is no conflict of notation. The next proposition is called the
Cauchy inequality.

6.21 Proposition. For any x,y € R4, we have

[{x, ¥)| < |x|ly]-
Proof. We have

d d
0< > (ziy; — zm) = D (22y] + 2yl - 2zz,;)

ij=1 ij=1

= 2(x, x)(y,¥) - 2(x,y)?,

from which the desired inequality follows. |

6.22 Corollary. For any x,y € R%, we have |x +y| < |x| + |y|.

Proof. Using the Cauchy inequality, we get

Ix+y]* = (x+y,x+y) = (x,x) + {y,y) + (x,y) + (y,x)
2
< |x|? + lyl? + 2ix|lyl = (Ix] + lyl)",

and the desired inequality follows by taking square roots. [ |

6.23 Definition. The standard metric on R is given by p(x,y) = |x-y]|.
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It is an easy consequence of the last corollary that the standard metric on
RY is indeed a metric on R?. Having taken the conceptual leap in regarding
R as a “space” for d different from 1, 2, or 3, we might as well go farther,
and consider spaces of infinite dimension. The most natural example is
perhaps the following.

6.24 Example. Let f}f be the set of all sequences (z,)32; in R with the
property that "> z2 converges. It follows from the easy inequality (a +
b)? < 2(a® + b2) (a, b € R) that (z, + yn) € H whenever (z,) € K
a.nd (yn) € H, and thus K is a vector space over R. If x = (z,) and
= (yn) are elements of K, then, since |z,y,| < 2(1‘ + y2) for every n,
the series Y- | Tnyn converges (absolutely); we denote its sum by (x,y),
and call it the inner product of x and y. We define ||x|| = \/(x, x). Since
[kt rkyk|2 < (XCr=122) (Xho192) < IxI2llyll? for every n, we have
the inequality |(x,y)| < ||x|| ||ly]| for every x,y € H. Just as in the finite-
dimensional case, it follows that we have the triangle inequality ||x + y|| <
IIx|l + lly|l for every x,y € H. We define the distance between x and y
to be ||x — y||. Our intuition about distance will not often lead us astray
in thinking about }. In addition, we say that x and y are orthogonal if
{x.y) = 0, and our experience in the plane or 3-space will prove a reliable
guide in thinking about orthogonality in 3. The space H is known as
Hilbert space, and is often denoted by [? (pronounced “little ell two”).

Two different metrics on a set X may induce the same topology. For
instance, if p is a metric on X, and we put p'(z,y) = min{l, p(z, y)}, it is
easy to check that p’ is also a metric on X. Since B,(z,8) = By (z,9) for
any r € X and é € (0,1), where the meaning of the notation should be
obvious, it follows that the topologies induced by p and p’ are identical.

More generally, if there exists a constant C such that p’ < Cp, then the
topology induced by the metric p is stronger than the topology induced by
p'. For B,(x,6/C) C By(z,6) for any z € X and 6 > 0, so that if z is an
interior point of G with respect to p’, then z is an interior point of G with
respect to p; it follows that if G is open for the topology defined by p’, then
it is open for the topology defined by p. The inequality p’'(z,y) < Cp(x,y)
need only hold for all z,y € X such that p(z,y) < € (for some fixed ¢ > 0)
for this argument to work.

It is easy to see that if (X, p) and (Y, p’) are metric spaces, and f maps
X into Y, then f is continuous at £ € X if and only if for every ¢ > 0 there
exists § > 0 such that p'(f(z), f(y)) < € for all y € X with p(z,y) < 6.
This was our original definition of continuity for real-valued functions of
a real variable. We can also generalize the notion of uniform continuity to
the context of metric spaces in the obvious way.

6.25 Definition. Let (X, p) and (Y, p’) be metric spaces, and let f : X —
Y. We say that f is uniformly continuous if for every ¢ > 0 there exists
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6 > 0 such that p'(f(z), f(y)) < € for all z,y € X with p(z,y) < 6.

6.4 Constructing Topological Spaces

In this section, we give some standard ways to construct topologies, or to
form new topological spaces from old ones.

6.26 Definition. Let (X, ) be a topological space, and let Y C X. The
relative topology of Y is the collection Iy = {UNY : U € J}. We call
(Y, 9y ) a subspace of (X, 7).

It is trivial to verify that the relative topology is indeed a topology on Y.
An element of this topology is described as being relatively open, or open
in Y. Thus every subset of X is open in itself. If Y is an open subset of X,
then (and only then) the relatively open subsets of Y are the open subsets
of Y, i.e., those subsets of Y which are open (in X). If Y is a closed subset
of X, then (and only then) the relatively closed subsets of Y are just the
closed subsets of Y, i.e., the subsets of Y which are closed (as subsets of X).
If p is a metric on X, then the restriction of p to Y x Y is obviously a metric
on Y; the topology it induces on Y is precisely the relative topology. As
usual, when there seems no danger of confusion, we refer to Y as a subspace
of X, rather than the accurate (Y, Jy) as a subspace of (X, 7).

For example, we observe that {¢g € Q : |g| < V2} is neither open nor
closed in R, but is both open and closed in Q.

6.27 Definition. Let J be a topology on a set X. A base for F is a
collection 8 C Z with the property that for every U € Z, we have
U=U{Ge#:GcU}

For example, the open balls form a base for the topology induced by a
metric on X. In fact, the open balls of radius less than ¢ form a base for
any € > 0; also, the open balls of radius 1/n (n € N) also form a base. For
R, the collection {(¢—1/n,q+1/n): q € Q, n € N} is a base for the usual
topology. It is often useful to know that a topological space has a countable
base; such spaces are said to satisfy the second axiom of countability.

6.28 Proposition. Let X be a set. A family 9 of subsets of X is a base
for some topology on X if and only if the following two conditions hold:
(8) Uyeg U = X; and

(b) for every finite subset {U,,...,U,} of B, and every z € (;_, Ux,
there exists V € % such that x € V C (;_, Uk.
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Proof. If # satisfies the two conditions, we define Z to be the collection of
all U C X which are unions of sets in 4, along with the empty set. By the
first condition, X € Z, and it is obvious that .7 is closed under arbitrary
unions. Suppose that Gx €  for k =1,...,n, and let G = (;_, G«. For
each z € G, there exists for each k some Uy € 4 such that z € Uy C Gy
(this is the definition of 77), and the hypothesis then gives the existence of
V € 7 such that x € V C G. Thus G is the union of members of #. so
G € . Thus J is a topology on X. The proof of “only if” is left to the
reader. |

6.29 Definition. Let (X, .7;) be topological spaces, for j = 1,2,...,n.
We define the product topology on [[i_; Xx = X1 x Xz x --- x X, by
taking the collection {U, x --- x U, : U; € J;} to be a base.

Since
Uy x---xU )Ny x---xV)=UhNnVy x--- xUp, NV,

we see that the sufficient condition of Proposition 6.28 is satisfied, so
the definition makes sense: the collection named is indeed the base for
a topology. It is possible to define other topologies on the product space
X1 x -+ x Xp, but in the future the product topology will always be un-
derstood. If each X, is a metric space, with metric px, we can define the
product metric on X; x --- x X, by

p((x1,- ., Tn), (Y1) ¥n)) = lrsnggnpk(zk,yk)-
It is easy to see that the product metric induces the product topology.
It is also easy to see that the product topology on R", derived from the

usual topology on R, coincides with the topology on R" derived from the
standard metric.

If X =[Is., Xk, the map m of X to Xy defined by m(zy,...,2,) = 7
is called the kth coordinate projection on X.

6.30 Lemma. If X,..., X, are topological spaces, then for each k, the
coordinate projection Ty : H;'___l X; — Xi is continuous.

Proof. If V is an open set in X, then
w;l(V)=X1 X xXxVx-oxX,

which is open in X. ]

6.31 Proposition. Let X, Y;,...,Y, be topological spaces, and let Y =
[Te=, Y. Amap f : X — Y is continuous if and only if mio f is continuous
for each k, 1 < k < n.
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Proof. If f is continuous, then mx o f is continuous for each k by the last
lemma, and Proposition 6.15. Now suppose that 7 o f is continuous for
each k. Suppose V = ﬂ:__:l Vi, where Vj is open in Y} for each k. Then

n

fFUV)={re X i m(f(x) € Vi, 1<k <n}=[)(mo N (V)
k=1

and since my o f is continuous for each k, we know that (m o f)~1(V) is
open for each k (Proposition 6.14), and hence f~!(V) is open. Since any
open subset G of Y is the union of sets of this type, it follows that f~!(G) is
open in X for every open subset G of Y, so f is continuous by Proposition
6.14.

If 7 and ' are topologies on a set X, then Z N .9’ is again a topology
on X; more generally, if 7, is a topology on X for each a in some index
set A, then .7 =, 4 Za is again a topology on X, as is easily verified.
Evidently,  is the strongest topology on X which is weaker than every
Ja- Given any collection % of subsets of X, there is a unique weakest
topology which contains .%: it is the intersection of all topologies on X
which contain % (this is a nonempty collection of topologies, since the
discrete topology £?(X) is one such). We say that & is a subbase for the
topology 7, or that 7 is the topology generated by . if 7 is the weakest
topology containing .. If X is the union of sets in .#, then the collection of
all finite intersections of sets in . forms a base for the topology generated
by &.

If X is a set, Y a topological space, and f : X — Y, then there is a
weakest topology on X which makes f continuous, namely, f~!(.7), where
Z is the topology on Y. More generally, if X is a set,and {Y,:a € A}isa
collection of topological spaces, indexed by some set A, and if f, : X — Y,
for each a € A, there is a weakest topology on X for which each f, is
continuous; this is the topology generated by |J,c 4 fo Y(Z,), where 7, is
the topology that comes with Y,,. In other words, we take as a base for a
topology on X the collection of all sets of the form (), f ~Y(Ug), where
F runs through all finite subsets of A, and U, € 7, for each a € F.

An important special case of this idea (which will not be used later in
this book) is the construction of the product of an arbitrary collection of
topological spaces. If X,, is a nonempty set for each a in some (nonempty)
index set A, the Cartesian product [],. 4 X is defined to be the set of all
maps I : a — T, of A into |J,c 4 Xa with the property that r, € X, for
each a € A. A frequent case is when X, = X for every a, when [] ¢ 4 Xa
is also written X4. When A = {1,...,n}, then X4 reduces to X". We
see that RN is the set of all maps of N into R, i.e., all infinite sequences
(€n)3%, of real numbers, and if I = [0,1], then R’ denotes the set of all
real-valued functions on [0,1]. For each a € A, the map 7, : X — X,
defined by m4(z) = z, is called the ath coordinate function.
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If (Xa, Z,) is a topological space for each a € A, we define the product
topology on X = [],c4 Xa to be the weakest topology on X for which
each coordinate projection 7, is continuous. For each fixed a, n;!(s.7, is
the weakest topology on X which makes 7, continuous; so the product
topology on X is the topology generated by the collection of all sets of the
form m_ Y(U,), where a € A and U, € Z,. According to the remark made
above, a base for this topology then consists of all finite intersections of
such sets, i.e., of all sets having the form

{z € X :zq € U, for each a € F},

where F is a finite subset of A, and U, is open in X, for each a € F. Of
course, when A is finite, this reduces to the definition previously given. It is
important to notice that if U, is open in X, for each a € A, then ]‘[aeA Ua
is not necessarily open in X. The analogue of Proposition 6.31 is true: if
f:Y— ﬂae 4 Xa, where Y and X, are topological spaces for each a € A,
then f is continuous if and only if 7, o f is continuous for every a € A.
The proof of Proposition 6.31 carries over unchanged to this situation.

Besides being continuous, the coordinate functions on a product space
have another nice property.

6.32 Definition. Let X and Y be topological spaces, and let f : X — Y.
We say that f is an open mapping if f(U) is open for every open U. We
say that f is a closed mapping if f(C) is closed for every closed C.

We remarked above that f~!(G) is open for every G if and only if f~!(F)
is closed for every F, since f~1(AC) = [f~!(A)| for any map f, any A.
However, if f is an open map, it need not be true that f(F) is a closed set
whenever F i closed.

6.33 Proposition. If X = [],. 4 Xa is the topological product of the
topological spaces X, (a € A), then each coordinate projection m, : X —
Xa (a € A) is an open map.

Proof. Since f{({Uge g Us) = Ugep f(Up) for any function £, any collection
of sets {Us : 3 € B}, it suffices to show that 7,(U) is open for every U in
a base for the topology of X. Thus it suffices to show that m,(U) is open
when U = {z € X : 25 € Uy, 8 € F} when F is a finite subset of A, and
Uj is open in X for each 3 € F. But if a ¢ F, then n,(U) = X,, and if
a € F, then m,(U) = U,, 5o me(U) is open in either case. 1

The coordinate functions are not, in general, closed maps, as we see in
the example R2. The set F = {(z,y) € R?: zy = 1} is a closed subset of
R? (it is the inverse image of {1} under the continuous map (z,y) — zy
of R? — R), but 7, (F) = R\0, which is not a closed subset of R.



6.5 Sequences 135

6.5 Sequences

6.34 Definition. Let X be a topological space, and let (z,,) be a sequence
in X. We say that (z,) converges to z, and write r, — x as n — 00, or
that lim, .., x, = z, if x € X and for every neighborhood U of x there
exists ng such that z,, € U for every n > ng.

In general, a sequence in a topological space can converge to more than
one point. For instance, if X has the trivial topology, every sequence con-
verges simultaneously to every point in X. To avoid this kind of outrage,
we can restrict ourselves to better behaved topological spaces.

6.35 Definition. A topological space is called a Hausdorff space if for
every pair of points x,y € X with z # y, there exist disjoint open sets U
and V withze U andy e V.

In particular, if X is a Hausdorff space, each singleton set {x} is a closed
set. A metric space is a Hausdorff space. The proof of the next proposition
is very easy, and will be omitted.

6.36 Proposition. If X is a Hausdorff space, () a sequence in X, and
ifr, - and z, -y asn — oo, then x = y.

6.37 Proposition. If X is a metric space,z € X,and EC X, thenz € E
if and only if there exists a sequence (z,) in E which converges to z. In
particular, E is closed if and only if it contains the limits of all convergent
sequences in E.

Proof. If z, — z as n — oo, and U is any neighborhood of x, then
z, € U for all sufficiently large n; if (x,) is a sequence in E, it follows that
z € E. Conversely, if z € E, then for every n, there exists r, € E with
p(zn,x) < 1/n, so the sequence (z,) in E converges to z. i

6.38 Proposition. Let X be a metric space and Y a topological space. A
map f of X intoY is continuous at x € X if and only if for every sequence
(z5) in X such that limz,, = z, we have lim f(z,) = f(z).

Proof. Suppose f is continuous at z, and £, — £ asn — oo. Let N be ary
neighborhood of f(z). Then f~!(N) is a neighborhood of z, so there exists
np such that x, € f~!(N) for every n > ny, i.e., such that f(z,) € N for
every n > ng. Thus lim f(z,) = f(z). This part of the argument holds for
any topological spaces X and Y.

Now suppose that for every sequence (z,) in X with lim z,, = = we have
lim f(z,) = f(z). Let N be any neighborhood of f(z). If f~!(N) is not a
neighborhood of z, then for every n, B(z,1/n) ¢ f~!(N). Thus there exists
for each n some z, € X with p(z,,z) < 1/n and f(z,) ¢ N. Then (z,)
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converges to z, but (f(z.)) does not converge to f(z). This contradiction
shows that f~!(N) is a neighborhood of z for every neighborhood N of
f(z), so f is continuous at z. |

6.39 Definition. A sequence (z,) in a metric space is called a Cauchy
sequence if for every e > 0 there exists ng such that p(z,,z,) < € for every
n > ng and m > ny.

Just as in the special case of the real line, every convergent sequence
in a metric space is necessarily Cauchy; just as in the special case of the
rational numbers, the converse need not be true.

6.40 Deflnition. A metric space X is said to be complete if every Cauchy
sequence in X is convergent.

We have seen (Theorem 2.19) that R is complete. It follows easily that
R is complete for any positive integer d. For if (x,) is a Cauchy sequence in
RY, with xp = (Z1,n,- - -,Zd,n), then the inequality |T; ., —Zjm| < |Xn —Xm|
implies that each sequence (z;,)5%, (1 < j < d) is a Cauchy sequence in
R, hence convergent. If x = (z;,...,zq), where z; = limz; ,, then the
inequality |x — x,| < Vdmax;{|z; — z;,.|} shows that x, — x as n — oo.

6.41 Proposition. Let X be a complete metric space. A subspace E of
X is complete if and only if E is a closed subset of X.

Proof. Suppose E is complete. According to Proposition 6.37, for each
z € E, there exists a sequence (z,) in E with x, — = as n — oo. Then
(zn) is a Cauchy sequence in E, so converges in E,soz € E. Thus E C E,
so E is closed.

If E is closed, then every Cauchy sequence in E converges to a limit in
X since X is complete, and this limit is in E by Proposition 6.37, so E is
complete. 1

This chapter has so far consisted largely of definitions, straightforward
examples, and propositions which largely amounted to studying the defini-
tions. We now come to a theorem with some real content; it is not trivial
even in the case X = R.

6.42 Theorem. If X is a complete metric space, and G,, is a dense open
subset of X for each n € N, then (., Gn is dense.

Proof. We must show that for every p € X, any open neighborhood V
of p must contain points of ﬂ;'f’:, Gn. We shall do so by constructing for
each n an open ball B, = B(zn,€n) with the properties that B, C VnG,,

Bn41 C Gp N By, for every n, and (¢,) decreases to 0. Then, in particular,
we have B, ., C B, for all positive integers n and k, so p(zn,ZTn+k) < €n;
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it follows that (x,) is a Cauchy sequence, and hence, since X was assumed
complete, that (z,) converges to some r € X. Now since zx € B, for every
k > n, and B, is closed, it follows from Proposition 6.37 that x € B,, for
every n, and thus r € G,,N B,, for every n, so r € Vﬂﬂ:’:’:l G, as desired.

To obtain the sequence with these properties, we begin by observing that
since G is dense, VNG, # 0, so there exists x; € VNG,. Since VNG is
open, there exists €; such that B(z),2¢;) C VNG,. We put B; = B(z,€;).
Then B, C {y € X : p(y.11) < 61} C B(x1,2¢1) C V N G). Suppose that
By, ..., B, have been found, with I3, = I3(ir;,¢,), such that BycVvnG,
and (if n > 1) B, C B3,_1NGjfor j =2,...,n, and such that ¢; < %(]_l.
Then since G, is dense in X, there exists x4+, € Gn41 N B, and since
G4y is open, there exists €, 41 > 0 such that B(r,41,26,41) C Gy NB,.
Then €,4; < %(", and putting By = B(Zn41,€n+1) we have

—B—n+l - {y : p(yv$n+l) < fn+l} C B(In+h2fn+l) C Gn41 N By,

so the construction can be carried on. [ |

This theorem is known as the Baire category theorem. It has many ap-
plications in analysis, but for now we give only the following:

6.43 Theorem. Let (fi) be a sequence of continuous real-valued functions
on the complete metric space X. If (fx(x)) is a bounded sequence for each
z € X, then there exists a nonempty open subset V of X in which the
sequence (fi) is uniformly bounded, i.e., there exists M with |fi(x)] < M
for every k and every r € V.

Proof. Let U, = {r € X : |fr(z)] > n} for each pair of positive integers
k,n. Since fi is continuous, U , is open for every k,n, and hence G,, =
Urz Uk.n is open. Now for each z € X, there exists by hypothesis some
M, such that |fi(z)] < M, for every k, so x ¢ G, for n > M,. Thus
N>, Gn = 0. Then Theorem 6.42 tells us that some Gy is not dense in
X, so there exists an open subset Vof X, disjoint from G,. But this means
that |fx(x)| < n for every k, and every z € V. ]

Here is one more major result about complete metric spaces.

6.44 Theorem. Let X be a complete metric space, and suppose that f :
X — X has the property that there exists a < 1 such that

p(f(x), f(y)) < ap(x,y)

for every x,y € X. Then there exists a unique point x € X such that f(r) =
z. Ifxg € X, and x4y = f(x,) for every n > 0, then x = lim,, .00 Tp-
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Proof. We begin by observing that if f(x) = z and f(y) = y, then

p(z,y) = p(f(z), f(¥)) < ap(z,y),

which implies p(z,y) = 0, 8o y = z. Thus uniqueness of a fixed point for f
is proved.

We turn now to the existence. Choose any zg € X. Define the sequence
(z,) inductively by z,41 = f(z,). Then

A(Tn, Tnyr) = p(f(zn—l)v f(zn)) < ap(Tn_1,Tn)

for all n > 1, and it follows by induction that p(z,,Zn+1) < a™p(ze, z1).
Let C = p(z¢, ). Then for any positive integers n and k we have from the
triangle inequality (polygon inequality?) that

k k
, _ I i
P(Zn, Tnsk) < ;p(1n+]—lyzn+]) < j;a C<i—a
Thus (z,) is a Cauchy sequence in X, and since X is complete, there
exists z such that z, — z as n — oo. Since f is continuous, we have
f(z) = lim f(z,) = limz,4+; = z, and the existence of a fixed point for f
has been shown. |

A map with the above property is called a contraction map, and Theorem
6.44 is usually referred to as the contraction map principle. Here is a simple
example of how it can be used.

6.45 Example. Let I be a closed interval in R (not necessarily bounded),
and let f be a differentiable real-valued function on I, with f(I) C I.
Suppose that |f'(t)] < a for all t € I, where a < 1. Then the equation
f(z) = z has a unique solution in I, given by z = limz,,, where z, is any
point of I and z,41 = f(z,) for every n > 0. For the mean value theorem
tells us that |f(s) — f(t)] = |f'(€)(s — t)| for some £ between s and ¢, and

hence that |f(s) — f(t)| < a|s —t| for all 8,t € I. Now we apply Theorem
6.44.

Here is a more interesting example, which involves an infinite-dimensional
metric space.

6.46 Theorem. Let f : G — R be a bounded continuous real-valued
function on an open subset G of R?, and suppose that f satisfies a Lips-
chitz condition with respect to the second variable, i.e., that there exists a
constant M such that

|f(x,3n) = f(z,y2)] < M|y — 2l



6.5 Sequences 139

whenever (z,y,) and (z,y2) are points of G. Then for any (zo,yo) € G, the
differential equation y' = f(z,y), with the initial condition y(zo) = yo, has
a unique solution in some interval o — 8,z + 6]. In other words, there
exists 6 > 0, and ¢ : [xg — 6,20 + 6] — R, such that ¢(x9) = yo and
¢'(z) = f(z,¢(x)) for all x with |z — z¢o| < 6.

Proof. We aim to produce § > 0 and ¢ continuous on I = [z¢ — 6, z¢ + 6]
such that

z

#@) =w+ [ 1(t00)de
zo
for all z € I. By Theorem 5.30, we will have ¢/(z) = f(z,¢(z)), and
evidently ¢(zo) = yo.
Since f is bounded, there exists K such that |f(z,y)| < K for all (z,y) €
G. Now choose 6 > 0 such that Mé < 1, and such that

{(z,9): |z —x0| <6, ly — ¥ol < Kb} CG.

This is possible since G is open. Let I = [zo — 6, zo + ).

Let X be the space of all continuous functions g : I — [yo — K6, yo + K6},
and define the metric p on X by p(g, h) = max.es |g(t)—h(t)|. (By Theorem
3.14, p is well-defined.) It is easy to see that p is a metric on X, and
Proposition 3.23 and Theorem 3.24 show that X is complete. For g € X,
define the function T'g by

ToE) =w+ [ 1) at

for x € I. Then Tg is continuous (in fact, differentiable) on I (Theorem
5.30), and

I(Tg)(z) — 4ol =

/zf(t,g(t))dt

0

< Klzr — x| < K6,

so T maps X into X. Furthermore, we have for any g,h € X, and any
zel,

I(Tg)(z) — (Th)(z)| < < Mép(g,h),

/:[f(t,g(t)) - f(t,h(2))]dt

so p(Tg,Th) < Mép(g,h). Since M6 = a < 1, the map T is a contraction
map of X into itself, and Theorem 6.44 guarantees the existence of a unique
¢ € X such that T¢ = ¢. But if ¢ is any function satisfying ¢'(z) =
f (1:,45(:1:)) for all z € I, then ¢’ is continuous, so

x

8(z) - dlzo) = / "g(t)dt = / F(t. (1)) dt

0
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for all £ € I. Hence any solution of our differential equation with initial
condition satisfies

[o(z) — ol =

[ 10w dtl < K|z - 7ol < Kb

for all z € I, so # € X. Thus the solution found is the unique solution on

I |

6.6 Compactness

6.47 Definition. Let X be a topological space, E C X. An open cover
of E is a collection % = {U, : a € A} of open subsets of X such that
E C U,eaUa- If B C A, the collection ¥ = {U, : @ € B} is called a
subcover of Z if it is itself a cover.

6.48 Definition. Let X be a topological space. A subset K of X is called
compact if every open cover of K has a finite subcover.

It is clear that any finite subset of X is compact; if X has the discrete
topology, every compact set is finite. The next theorem, known as the
Heine--Borel theorem, gives a more interesting example.

6.49 Theorem. A closed bounded interval in R is compact.

Proof. Suppose I = [a,b], where —0o < a < b < +00, and suppose that
U = {U, : a € A} is an open cover of I. Let

E={zel:az]C UU(,, for some {a,...,an} C A}.

J=1

We want to show that b € E. Clearly, a € E (there exists a € A such that
aell,). Let c =supE, soa < c<b Now there exists 3 such that ¢ € Ug,
and since Uy is open, there exists € > 0 such that Ug D (¢ — €,¢ + ¢€).
There exists £ € E with £ > ¢ — ¢, since c is the least upper bound of

E. so there exist ay,...,a, such that {a,z] C Uy, Ua,- Then we have
la.e+¢/2) c UsUlUi_, Ua,- If ¢ < b, this contradicts the fact that ¢ is an
upper bound of E. If ¢ = b, this shows that be F. 1

We will give another proof of this important result, and expand our
repertory of compact spaces, later in this section. The next result is trivial,
but points out a great difference in the nature of being compact, as opposed
to, for instance, being open, or being closed.

6.50 Proposition. A subset of a topological space is compact if and only
if it is compact in itself (with the relative topology).
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The next result is reminiscent of Theorem 1.27.

6.51 Proposition. If X is a compact space, and (K,) a sequence of
nonempty closed subsets of X, with Knyy C K, for all n, then N, K,
is not empty.

Proof. Let U, = X\K,. Then YU, = X\ Kn, so if K, = 0, then
{Un : n € N} is an open cover of X. Since X is compact, this implies that
there exists m such that |J,_, U, = X, which is equivalent to(_, Kn = 0.
Since M, Kn = Km # 0, this is a contradiction.

6.52 Proposition. If K is a compact subset of the topological space X,
then every closed subset of K is compact.

Proof. If F C K is closed, then FC is open; if % is an open cover of F,
then ¥ = U {FC} is an open cover of K, and a finite subcover of ¥ (of
K) produces a finite subcover of % (of F). |

6.53 Corollary. Every closed bounded subset of R is compact.

6.54 Proposition. If X is a Hausdorff space, then every compact subset
of X is closed.

Proof. Let K be a compact subset of X. Since X is Hausdorff, for each
z € K€ and each y € K, there exist open sets U, and V;, such that
z € Uy, y € Viy, and Uzy NV = 0. Then for each z, the collection
{Vzy : y € K} is an open cover of K, and since K is compact, there exist
Y1,-.-,yn € K such that K C Uj_, Vzy,. Let U = N}, Uzy,; then U is
open, UNK =0, and £ € U. Thus KCisa neighborhood of each z € K€,
so K€ is open, which means K is closed. .

6.55 Corollary. A subset K of R is compact if and only if K is closed
and bounded.

Proof. We have already seen that if K is closed and bounded, then K is
compact. If K is compact, the last proposition shows that K is closed. Let
Un. = (=n,n) for each n € N; then K C U;—,Un, so K C U, Un for
some m, but this means K C U,, for some m, K is bounded. |

The next theorem leads to a generalization of Theorem 3.14.

6.56 Theorem. If X is a compact space, and if f is a continuous mapping
of X into a topological space Y, then f(X) is compact.

Proof. If % is an open cover of f(X), then f~ (%) = {f~'(U):U e %}
is an open cover of X. Since X is compact, there exist U;,...,U, € %
such that X = UJ]_, f~'(U;), and it follows that f(X) c Uj_, U;. 1
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6.57 Corollary. If X is a compact space, and if f : X — R is a continuous
function, then f takes a maximum and a minimum value on X.

Proof. By Theorem 6.56, f(X) is a compact subset of R. By the last corol-
lary, f(X) is closed and bounded. Then sup f(X) € f(X) and inf f(X) €
f(X), and this is the assertion of the theorem. 1

In general, the inverse of an injective continuous function need not be
continuous. For instance, if X = [0,27) and Y = {(z,y) € R? : 22 + 3 =
1}, the map f defined by f(t) = (cost,sint) is a continuous bijective map
of X to Y, but its inverse is not continuous. However, we have the following
result:

6.58 Corollary. If X is a compact space, Y a Hausdorff space, and f :
X — Y is continuous and bijective, then f~! is continuous, i.c., f is a
homeomorphism.

Proof. For each closed F C X, F is compact by Proposition 6.52, so f(F)
is compact by Theorem 6.56, and hence f(F) is closed by Proposition 6.54.
This says that if g = f~!, then g~'(F) is closed for every closed F C X,
and thus g is continuous by Proposition 6.14. ]

The next theorem generalizes Theorem 3.18.

6.59 Theorem. If f is a continuous map of a compact metric space X
into a metric space Y, then f is uniformly continuous.

Proof. Let ¢ > 0. For each z € X, there exists §(z) > 0 such that p(f(y) -
f(x)) < €/2 for all y € X with p(z,y) < 26(z). Since {B(z,6(x)) : = €
X} is an open cover of X, and X is compact, there exist z;,...,z, such
that X = {J]_, B, where we put B; = B(z;,é(z;)) for j = 1,...,n. Let
6 = min{é6(z;) : 1 < j < n}. If z and y are points of X with p(z,y) < 6,
then there exists j such that x € B;j, i.e., p(z,z;) < 6(z;). It follows that
Py, ;) < p(y, T) + p(x,7;5) < b(z5) + 6 < 26(z;), so p(f(z), f(z;)) < €/2
and p(f(y). f(z;)) < €/2, and hence p(f(z), f(y)) <e. |

6.60 Definition. If E is a subset of a metric space X, we define the diam-
eter of E to be diam E = sup{p(z,y) : =,y € E}. A subset E of a metric
space X is said to be bounded if diam E < +o0.

It is easy to see that E is bounded if and only if E C B(a,r) for some
a € X and some r > 0.

6.61 Definition. A subset E of a metric space X is said to be totally
bounded if for every € > 0, there exists a finite subset {z,,...,zn} of X
such that E C |J;_, B(zk,e€).
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A set F such that |J,cr B(z,€) D E is called an e-net for E. Thus, E
is totally bounded if and only if for every ¢ > 0 there exists a finite ¢-
net for E. In this definition, we get the same meaning if we demand that
{z1,...,2n} C E (see the exercises). The next proposition records some
basic facts about totally bounded sets; the easy proof is left to the reader.

6.62 Proposition. Any bounded set in R™ is totally bounded. If E is a
totally bounded subset of a metric space X, then

(a) E is bounded;
(b) E, the closure of E, is totally bounded; and
(c) any subset of F is totally bounded.

We remark that, in general, a bounded subset of a metric space need
not be totally bounded. For instance, if X has the discrete metric, then X
is bounded, in fact, diam X = 1, but if X is an infinite set, then no finite
collection of balls of radius 1 or less can cover X. Perhaps a more interesting
example is the closed unit ball in Hilbert space, B = {x € H : ||x|| < 1}. If
€, = (Onk)p2,, where dpx = 1 if k = n and 6xn = 0 for k # n, we note that
e, € B for every n, and ||, — e[| = V2 for all m # n. Thus any ball of
radius not greater than % can contain at most one of the elements e,, so
B is not totally bounded.

6.63 Theorem. A metric space X is compact if and only if it is complete
and totally bounded.

Proof. Suppose X is compact. For any € > 0, X = J,¢ x B(z,¢), so there
exist z,,...,Z, such that X = (Jg_, B(zx,€). Thus X is totally bounded.
Now suppose {z,} is a Cauchy sequence in X. Let A, = {zx : k > n}.
Then An41 C A, for every n, so (Proposition 6.51) (72, A, # @ since X is
compact. Let £ € [} A,. If € > 0, there exists ng such that d(zm,,z,) < €/2
for all m,n > ng, and B(z,¢/2) N A,, # @ (since x € A,,,), so there exists
m > np with d(z,z,,) < €/2, and it follows that d(z,z,) < € for every
n > ng. Thus z,, — = as n — 0o. We have proved X is complete.

Next, suppose that X is complete and totally bounded. Let {U, : a € A}
be an open cover of X. Since X can be expressed as the union of finitely
many sets of diameter < 1, if there exists no finite subcollection of {U, : a €
A} which covers X, there exists a set F; C X with diam F; < 1, such that
no finite subcollection of {U, : a € A} covers F;. We construct inductively
a sequence {F,} of subsets of X with the properties: (i) diam F,, < 1/n;
(ii) Fa41 C F;, for every m; and (iii) no finite subcollection of {U, : a € A}
covers F,. Such F,, exist since each F;, is itself totally bounded, hence can
be decomposed into a finite number of sets of diameter < 1/(n + 1), one
of which can be chosen as F,, ;. Now choose z,, € F,, foreachn. If m<n
and m < p, then z,,z, € Fr, 80 d(zp,T,) < 1/m: thus {z,} is a Cauchy
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sequence, 80 there exists £ € X such that z, — z as n — oc. Now there
exists 3 such that x € Ug, and since Uy is open, there exists ¢ > 0 such that
B(x.¢) C Ug. For some m, we have z,, € B(x,¢€/2) for all n > m: choosing
n > m such that also n > 2/¢, we have F,, C B(z,¢) C Ug, contradicting
that F,, is not covered by any finite subcollection of {U, : a € A}. Thus the
assumption that {U, : a € A} admits no finite subcover of X is untenable,
and we have proved X is compact. |

6.64 Corollary. A subset of R? is compact if and only if it is closed and
bounded.

Proof. By Proposition 6.41, a subset K of R is complete if and only if it
is closed, and as we remarked above, it is totally bounded if and only if it
is bounded. ]

Some other terminology: a subset E of a topological space is called rel-
atively compact, or precompact, if its closure is compact.

6.65 Corollary. A subset of a complete metric space is relatively compact
if and only if it is totally bounded.

6.66 Definition. A space X is said to be sequentially compact, or to
possess the Bolzano—Weierstrass property, if every sequence in X has a
convergent subsequence.

6.67 Theorem. A metric space X is compact if and only if it is sequen-
tially compact.

Proof. Suppose X is sequentially compact. Then X is complete, since if a
Cauchy sequence has a convergent subsequence, it is easily seen to be itself
convergent. To show that X is totally bounded, let ¢ > 0, and suppose
there exists no finite e-net. Choose z; € X. If B(x,,¢) = X we have
constructed a finite e-net, so there exists 5 € X such that d(z,, ;) > e If
B(z,,€) U B(z2,¢) = X, we have constructed a finite e-net, so there exists
r3 € X such that d(z3,z;) > € for j = 1,2. In this way, we may construct
an infinite sequence (z,) such that d(z,,z;) > € whenever n # j. Clearly,
such a sequence admits no convergent subsequence. Thus the assumption
that there exists no finite e-net is untenable, and we have shown that X is
totally bounded. We have shown that X is complete and totally bounded,
so X is compact.

Now suppose X is compact. Let (z,) be a sequence in X. Let A, =
{Zn.Zn+1,...} for each n. Then A, 4y C A, for every n, so Anp1 C A, for
every n; thus the sets (A,,) form a nested sequence of nonempty closed sets.
Since X is compact, (ow, An # 0, by Proposition 6.51. If z € (,—, A,
and € > 0, then B(z,¢) ﬁ A, # 0 for every n. Thus there exists n; > 1
such that d(z,,.7) < 1, there exists n; > n; such that d(z,,,z) < 1/2,
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and proceeding inductively we can find n; < ny < --- < nyp < --- such
that d(z,,,z) < 1/k for every k. Thus we have constructed a convergent
subsequence of (z,). ]

6.68 Definition. If X and Y are topological spaces, C(X,Y) will denote
the set of all continuous maps from X to Y. We abbreviate C(X,R) by
C(X).

6.69 Proposition. Let X be a compact topological space, and let Y be a
metric space. For f,g € C(X,Y), define d(f,g) = sup{p(f(z),9(z)) : z €
X}. Then d is a metric on C(X,Y), and the metric space (C(X, Y),d) is
complete if Y is complete.

Proof. The verification that d is a metric is routine. Suppose that Y is
complete, and suppose that ( f,,) is a Cauchy sequence in C(X,Y). Then for
each £ € X, p(fu(x), fm(x)) < d(fn, fm), s0 (fa(z)) is a Cauchy sequence
in Y, so there exists some point f(z) € Y such that f,(z) — f(z) asn —
00. We must check that f is continuous, and that d(f,, f) — 0 as n — oo.
Let £ € X, and ¢ > 0. There exists n such that p(f(z), fn(x)) < €/3, and
a neighborhood U of z such that p(f.(z), fa(y)) < €/3 for every y € U. It
follows that for every y € U,

p(f(2), f¥)) < p(f(2), fa(2))+p(fn(2), (1)) +P(fa(¥), f(¥)) < €.

Thus f € C(X,Y). Now given € > 0, choose ng such that d(f,, fim) < € for
all n,m > ng. Then for every z € X, we have

p(fa(x), f(2)) = "!i_{“ml’(fn(r)vfm(x))ﬁ €
for every n > ng; this says d(fn, f) < e |

The metric on C(X,Y) defined in the last proposition is known as the
uniform metric on C(X,Y), and the associated topology as the uniform
topology. We note that d(f,, f) — 0 if and only if (f,) converges uniformly
to f.

6.70 Definition. Let X be a topological space, Y a metric space, and ¥
a subset of C(X,Y). We say that & is equicontinuous at x € X if for every
€ > 0 there exists a neighborhood U of z such that p(f(z), f(y))< € for
every y € U and every f € #. We say that F is equicontinuous if it is
equicontinuous at each point of X.

6.71 Theorem. Let X be a compact space, and let Y be a compact met-
ric space. A subset # of C(X,Y) is totally bounded if and only if it is
equicontinuous.
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Proof. Suppose # is equicontinuous. Let ¢ > 0. For each £ € X, there
exists an open neighborhood U such that p(f(z), f(y))< €¢/3 for all y €
U: and all f € &. Since X is compact, there exist z,,...,r,, such that
X =U;.1Us,. Let

Z={(fx),...,f(zn)) : f€ F}C Y™

We give Y, the product metric introduced earlier:

A((1s--- yn)s (W11 ¥n)) = max{p(yk,yi) : 1 < k < n}

and observe that Y™ is totally bounded; indeed, if {y1,...,yn} is'an e-net
for Y, then {(yj,,...,¥j.) :1 < jx < N,1 < k < n} is evidently a finite
e-net for Y. It follows that Z, as a subset of Y", is totally bounded. Thus
there exist fi,..., fm € & such that for every f € & there exists some k,
1 < k < m, such that p(f(z;), fx(z;)) < €/3 for every j, 1 < j < n. Now
for any r € X, there exists j such that z € U;, and we then have

p(f(z). fi(z)) < p(f(2), f(25)) + p(f(2;), fi(x;5)) + p(fi(;), fu())
<e€/3+¢€/3+¢/3=c¢.

Thus {f1,....fm} is a finite e-net for &; we have shown that .F is totally
bounded.

Now suppose that .# is totally bounded, and let ¢ > 0. Then there exist
Niy-.. s fan € F such that for any f € F there exists j, 1 < j < n, with
d(f,f;) < €¢/3. If £ € X, for each j there exists a neighborhood U; of z
such that p(f;(z), fj(y)) < /3 for all y € U;. Let U = =1 Uj; then U is
a neighborhood of z, and for any f € &, choosing j so that d(f;, f) < €/3,
we have

p(f(z), f() < p(f(2), £i(x)) + p(£i(2), i (W) + p(£3(y), f(y)) < e.

Thus £ is equicontinuous at z for each z € X. ]

6.72 Corollary. Let & be an equicontinuous subset of C(X,Y'), where X
is compact and Y is a compact metric space. Then every sequence in ¥
has a uniformly convergent subsequence.

6.73 Corollary. If # is a pointwise bounded and equicontinuous family
of continuous real-valued functions on the compact space X, then every
sequence of functions in & has a uniformly convergent subsequence.

Proof. We need only observe that # is uniformly bounded, i.e., that there
exists M € R such that |f(z)| < M for every z € X and f € #. Then we
can regard # as a subset of C(X, [-M, M]), so Corollary 6.73 applies. §
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6.7 Connectedness

6.74 Definition. A topological space X is said to be disconnected if there
exist disjoint nonempty open sets U and V with X = UUYV. The space X
is said to be connected if it is not disconnected. A subset A of a topological
space X is said to be connected if A, with its relative topology inherited
from X, is connected.

The following proposition, whose proof is left to the reader, gives various
alternative ways to express the content of this definition.

6.75 Proposition. The topological space X is connected if and only if it
is not the union of two nonempty disjoint closed sets, or equivalently, if and
only if there exists no subset of X which is simultaneously open and closed,
other than X and @. The subset A of X is connected if and only if for every
pair U, V of open subsets of X such that ACUUV andUNVNA=0,
we have either ACU or ACV.

It is obvious that if X has the trivial topology, every subset of X is
connected, while if X has the discrete topology, the only connected subsets
of X are the singletons. Let us examine the situation in a more interesting
special case.

6.76 Theorem. A subsct A of R is connected if and only if it is an interval.

Proof. Suppose that A is not an interval, so there exist a,b € A, and
c¢ A, witha<c<b Let U= (-o00,c) and V = (c,+00). Then U and V
are open subsets of R, with ACUUV andUNV =0. Sinceac UN A
and b € V N A, we see from Proposition 6.75 that A is disconnected.

Now suppose that A is an interval, and that there exist open subsets U
and V of Rsuchthat ACU UV, UNVNA=0, and neither U N A nor
VNAisempty. Let a € UNA and b € VN A. We may assume a < b.
Since A is an interval, for each t with a <t < b, we have t € A, and hence
eithert € Uort € V. Let E = {t € [a,b] : t € U}, and let ¢ = supE.
Thena <c<bsoce A Ifce V,thenc > a,and (c—¢,c+¢) CV
for some ¢ > 0, since V is open. But since ¢ is the least upper bound of E,
there exists ¢t € (¢ — ¢,c] with ¢t € U. This contradiction shows that ¢ ¢ V.
Ifce U, then ¢ < b, and (c — ¢,c+ €) C U for some ¢ > 0, since U is open.
But then there exists t > ¢ with ¢t € [a,b] N U, contradicting the fact that ¢
is an upper bound of E. Thus our assumption that both ANU and ANV
are nonempty is untenable. Thus A is connected. 1

We have seen that the image of an interval under a continuous real-valued

function is again an interval (Theorein 3.15). Here is a generalization of that
theorem.
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6.77 Theorem. Let X and Y be topological spaces, and let f : X —» Y
be continuous. If X is connected, then f(X) is connected.

Proof. If f(X) is disconnected, there exist open subsets U and V of Y such
that f(X) c UuV, UNVNf(X)=0,andUNf(X) #0,VNf(X) ;é 0. But
then f~1(U) and f~'(V) are open since f is continuous, f~Y(U)uf~" (V) =

X since UUV D f(X), f/HU)Nf~HV) =B since f(X)NUNV =@, and
neither f~1(U) nor f~!(V) is empty. Thus X is disconnected whenever
f(X) is disconnected. [ ]

If E and F are connected sets with a point in common, then E U F is
connected. More generally, we have the following:

6.78 Proposition. Let X be a topological space, and suppose that E, is
a connected subset of X for every a € A. If (\,cp Ea # 0, then | J,c 4 Ea
is connected.

Proof. Let E = |J,c4 Ea, and suppose E C U UV, where U and V
are open subsets of X with ENU NV = (. By hypothesis, there exists
¢ € Naca Ea: we may assume ¢ € U. Now for every a € A, we have
E,cUuV and E,NUNV = §; since E, is connected, either E,NU =0
or E,NV =0. Sincece E,NU, we conclude E, cU. Thus Ec U. B

Another simple but useful fact about connected sets:

6.79 Proposition. If E is a connected subset of X, then E is connected.

Proof. If E is not connected, there exist nonempty sets F and C closed in
E with E= FUC and FNC = 0. Since E is closed, F and C are closed
(in X). Then EC FUC, and ENFNC = 0. Since E is connected, either
"EC For EcCC.Butthen EC F,or E C C, since E is the smallest
closed set containing E. Thus E is connected. 1

6.80 Definition. Let X be a topological space. For each z € X, let C;
be the union of all the connected subsets of X which contain z. Each C;
is called a component (or connected component) of X, or the component
in X of the point z.

6.81 Proposition. Let X be a topological space, and for each x € X let
C: be the connected component of x. Then:

(a) for each z € X, C, is connected and closed; and

(b) for any z,y € X, either C; =C, or C: NCy = 0.
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Proof. By Proposition 6.78, C; is connected, and by Proposition 6.79, C,
is connected; hence, by the definition of C;, C, C Cy, so Cy = Cy, and C,
is closed. If C; NCy # @, then C; U C, is connected by Proposition 6.78,
so C; UC, C C; by the definition of C;, so C, C C;, and symmetrically
C,C O, s0C, =C,. ]

If X is a discrete space, every subset of X is both open and closed, so
X (if it contains more than one point) is as far from being connected as
possible. In particular, the connected component of each x € X reduces to
{z}. But this property is shared by many nondiscrete spaces.

6.82 Definition. The topological space X is called totally disconnected
if the connected component of each x € X is {r}; equivalently, if every
connected subset of X is a singleton set. A subset E of a topological space
is called totally disconnected if it is totally disconnected with the relative
topology.

For example, the space Q of rationals, with its usual metric topology,
is totally disconnected, as is its complement in R, the set of irrationals.
Of course, a discrete subset of a topological space is totally disconnected.
The next example shows that a closed set which is as far from discrete
as is possible can still be totally disconnected. The set. constructed here is
known as the Cantor set.

6.83 Example. There exists a closed subset K of [0,1] such that K is
totally disconnected, but every point of K is a limit point of K. We con-
struct K as follows. For any closed bounded interval I = [a,b], we define
I' = [a,(2a+b)/3] and I” = [(a+2b)/3,b]; thus I’ and I” are the two closed
intervals remaining after we remove the open middle third of [a, b]; each has
length (b — a)/3. Now we define a sequence (K,)3%, of closed subsets of
[0, 1] inductively. Let Ky = [0,1]. Suppose we have obtained Kpo,..., K,
such that for 0 < j <n, K; = Ui}:l I; x, where each I, is a closed inter-
val of length 377, and I; x N1 = 0 for k # . Then define In412k-1 = I:I‘k

2"+l
and Inji2c = I),, and put Kny1 = Ux=y In+1,x- In other words, we

obtain K, ,; by removing the open middle third of each of the 2™ closed
intervals that make up K,. We define K = [, Kn. Since the intersection
of closed sets is closed, K is closed. Since K, contains no interval of length
greater than 3°", K contains no interval of positive length, and thus no
connected set consisting of more than one point. This also shows that K
has empty interior. Finally, if z € K, then for each n, z € I,, x for some k;
let z,, be the right endpoint of I, k, unless z is the right endpoint of I, ,
in which case let z, be the left endpoint. Then z,, € K for every n, and
0< |z, — x| <37™, s0 z is a limit point of K.

We observe finally that K is uncountable. We give an argument which can
be applied to any closed subset of a complete metric space which consists
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entirely of limit points. Suppose not, so K = {z; : j € N}. We construct
a sequence of open intervals (J,)3, with the properties J,4 C J, for
every n, J,N K # 0, diamJ, — 0, and z, ¢ Jn4;. Let J; be any open
interval containing z,. Having found J, with J, N K # @, there exist
at least two points in J, N K, since each point of K is a limit point of
K, and hence there exists an open interval J,,; such that J,4, C J.,
Jns1NK # 0, diam J, - < %diam Jn,and z, ¢ J,41. Choose y,, € J,NK;
then |yn — yn+x| < diam J, since ynikx € Jntk C Jn, 80 (yn) is a Cauchy
sequence, hence converges to some y. Since y, € K for every n, and K is
closed, it follows that y € K. But since z,, ¢ J,, for every m > n, y # =,
for every n. This contradiction shows that K is not countable. (An exercise
describes an alternate proof.)

6.8 Exercises

1. Let X be a metric space, and a € X, r > 0. Show that B(a,r) C {z €
X : p(z,a) < r}, and give an example to show that the inclusion can be
proper.

2. Let X be a topological space. Show that X\E° = X\E, for any £ C X.

3. Show that if the topological space X has a countable base, then every
base contains a countable base.

4. A Hausdorff space X is called a door space if every subset of X is either
open or closed. Show that if X is a door space, then X has at most one
limit point. Show that if £ € X is not a limit point, then {z} is open.

5. Let X be a topological space. For each E C X, the set of limit points of
E is called the derived set of E, and denoted E’. Show that for any E C X,
E’ is closed, and show that E/ = (E)'.

6. Let X be a topological space and £ C X. We say that r € X is a
condensation point of E if every neighborhood of r contains uncountably
many points of E. Suppose that X has a countable base, and that E is an
uncountable subset of X, and let C be the set of all condensation points
of E. Show that C is closed, that every point of C is a limit point of C,
and that E\C is countable. HINT: Let {U,} be a countable base for X, let
A = {n:Un,NE is countable}, and let G = |J,,c 4 Un- Show that C = X\G.

7. Let f be a continuous real-valued function on a topological space X.
Show that the zero set of f, Z(f) = {z € X : f(z) = 0}, is closed.

8. Let X be a tupological space, Y a Hausdorff space, and let f: X — Y
and g : X — Y be continuous. Show that {z € X : f(z) = g(x)} is closed.
Hence if f(r) = g(z) for all = in a dense subset of X, then f = g.
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9. Let X be a metric space. If z € X and E C X, define the distance from
z to E as p(z, E) = inf{p(z,y) : y € E}.

(a) Show that the function z — p(z, E) is uniformly continuous on X, for
each E C X, and that E = {z : p(z, E) = 0}.

(b) Deduce from (a) that if F is a closed subset of X, there exist open
sets G, (n € N) such that F = N%,G,,.

(c) If E and F are disjoint closed subsets of X, show that f, defined by

plz, E)

1@ = B + o, F)'

is a continuous real-valued function on X, with 0 < f < 1,and E =
F71({0}), F = f~1({1}). Deduce that there exist disjoint open sets U
and Vwith ECUand FCV.

10. Let X be a topological space, and let f : X — R. Show that the set C
of all points £ € X such that f is continuous at z is the intersection of a
countable family of open subsets of X.

11. Let X and Y be topological spaces, and let f : X — Y. Show that f
is continuous if and only if f(E) C f(E) for every E C X, if and only if
f~YE)c f~Y(F) forevery ECY.

12. Let X be a topological space, and let f : X — [—o00,+00). We say
that f is upper semicontinuous, abbreviated u.s.c., if f is continuous when
R U {~o0} is given the topology Z, of Example 6.4. Similarly, a mapping
f of X into R U {+o00} is called lower semicontinuous, or ls.c., if it is
continuous when the target space has the topology J;.

(a) Show that f : X — R is continuous (R having its usual topology) if
and only if f is both u.s.c. and l.s.c.

(b) Show that if f and g are u.s.c., then so are f + g and Af, for any real
A>0.

(c) Show that if & is any collection of u.s.c. functions on X, and g is
defined by g(z) = inf{f(z) : f € F}, then g is us.c.

(d) Show that f is l.s.c. if and only if — f is u.s.c., and deduce the analogues
of (b) and (c) for lL.s.c. functions.

13. A collection & of subsets of a set X is said to have the finite intersection
property if (\;_, F; # 0 for any finite subcollection {Fy, F3,..., F,} of &.
Show that a topological space X is compact if and only if for every collection
{Fa : a € A} of closed subsets of X which has the finite intersection
property, we have (|, 4 Fa # 0. .
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14. Show that if E is a totally bounded subset of a metric space X, then
for every € > 0 there exists a finite subset {z,...,z,} of E such that
E C U:=1 B(Ik,c).

15. Let (X, .7) be a compact Hausdorff space. Let 7’ be a topology on X
which is strictly stronger than 7, and let 7" be a topology on X which is
strictly weaker than .7. Show that (X,.7’) is Hausdorff but not compact,
while (X,.7") is compact, but not Hausdorff.

16. Let X be a compact Hausdorff space, and let f : X — R. The graph of

fistheset G(f) = {(z, f(z)) : ¢ € X} C X xR. Show that f is continuous
if and only if G(f) is compact.

17. Let X be a compact metric space, and f : X — X an isometry, i.e.,
p(f(z), f(y)) = p(z,y) for every z,y € X. Show that f is bijective. HINT:
Let Y = f(X), and suppose X\Y # 0. Let o € X\Y, and let 6 = p(z(.Y).
Define the sequence (z,) inductively by .4+, = f(z,) for every n > 0.
Show that p(z,.z,m) > 6 for all m < n.

18. Show that an upper semicontinuous function on a compact space as-
sumes a maximum value.

19. Prove Proposition 6.75.

20. A topological space X is called pathwise connected if for every z,y € X
there exists a continuous map « : [0,1] — X with v(0) = z and v(1) = ».
Show that every pathwise connected space is connected. Show that the
converse is false, by considering the following subspace of R2:

X = {(t,sin(1/¢t)) : t #0} U {(0,t): -1 <t < 1}.

21. A topological space X is called locally connected if for each x € X,
any neighborhood of r contains an open connected neighborhood of z.
(Equivalently, X has a base of connected sets.) Show that if X is locally
connected, and G is an open subset of X, then every component of G is
open.

22. Show that every open subset of R is the union of a disjoint sequence of
open intervals.

23. A subset C of R? is called convez if it has the following property: for
every x and y in C, and every real t with 0 < ¢t < 1, we have tx+(1 —t)y €
C. Show that the intersection of an arbitrary collection of convex sets is
convex. Show that a convex subset of R is connected.

24. Let X = {(z,y) € R? : either z or y is irrational}. Show that X is
connected.
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25. Show that the Cantor set K can be described as the set of all z € [0, 1]
such that £ = }"77 | an37 ", where a, € {0,2} for every n. Deduce that K
is uncountable.

6.9 Notes

6.1

6.2

6.3
6.4

6.6

The word topology in the title of this chapter is perhaps misleading, in
that it does not refer to the subject of study of topologists. Rather it is
the framework in which analysts study the notion of convergence and
continuity. The points of the topological spaces or metric spaces that
we are concerned with are likely to be functions. The subject is called
general topology, or point set topology. The concepts of neighborhood
and limit point were introduced by Cantor in his paper of 1872. The
basic role of open sets in the study of continuity and convergence in
general settings emerged only gradually.

Hausdorff in 1914, in the first book on general topology, defined con-
tinuity in terms of the concept of open set.

Metric spaces were introduced by Fréchet in 1916.

The topological product of infinitely many topological spaces was in-
troduced by Tychonoff in 1930; he proved the eponymous theorem
that the product of any collection of compact spaces is again com-
pact.

For metric spaces, all the topological notions can be defined in terms
of sequences, but this is decidedly not the case for general topological
spaces. A concept called nets or generalized sequences, however, does
suffice, and has the advantage of enabling us to use the intuition we
have developed for sequences. See the classic book of Kelley [6] for
more on this. The important role that completeness plays was first
put into evidence by Cauchy. Theorem 6.42 was proved by Baire for
R" in his 1899 thesis; it had previously been proved for R by Osgood,
who proved Theorem 6.43.

Bolzano stated the result that every infinite subset of a bounded in-
terval in R has a limit point, but apparently never wrote down a
proof. Weierstrass independently found this result, in the form that
every bounded sequence in R has a convergent subsequence. The word
“compact” meant “sequentially compact” until almost the middle of
this century; what we now call “compact” (the Heine-Borel prop-
erty) was introduced as “bicompact” by Alexandroff and Urysohn in
1924, and eventually took over as the dominant notion in the period
when attention was being paid more and more to topological spaces,
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rather than metric spaces. Many of the results in this section were
obtained by Alexandroff in the 1920s. In topological spaces, compact-
ness and sequential compactness are distinct notions; neither implies
the other. Hausdorff introduced the notion of total houndedness, and
proved Theorem 6.63. Total boundedness is surely a more intuitive
idea than sequential compactness, which in turn is easier to grasp
than compactness; however, compactness has proved its utility, and
become a central notion. Theorem 6.71 (actually, Corollary 6.73) is
due to Arzela and Ascoli, who found it independently in the 1880s.

The notion of connectedness is perhaps the most intuitive of all the
basic ideas of topology, certainly far more intuitive than compactness.
Yet there are surprising facts to be discovered about it, even at an
elementary level. For instance, Sierpinski constructed a subset of R?
which is connected, but becomes totally disconnected when one point
is removed.
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Function Spaces

In this chapter, we give a few applications of the results obtained in the
preceding chapters, especially the last chapter. The common ground is that
we are considering spaces whose points are functions, and functions on such
spaces.

7.1 The Weierstrass Polynomial Approximation
Theorem

Continuous real-valued functions on an interval can be quite nasty, for
instance, nowhere differentiable, but polynomial functions are as pleasant as
possible: their values are easily computable, they can be easily differentiated
and integrated, they vanish at only a finite number of points, etc. Therefore,
it is a very pleasant fact that any continuous real-valued function on a closed
bounded interval in R can be uniformly approximated by polynomials. The
following theorem is know as the Weierstrass polynomial approximation
theorem. '

7.1 Theorem. The polynomial functions are dense in C([a,b]), with its
uniform topology.

Proof. The assertion of the theorem is that for any continuous real-valued
function f on the closed bounded interval [a, b], and any ¢ > 0, there exists
a polynomial function p such that |p(zx) — f(z)| < € for every z € [a,}];
equivalently, there exists a sequence (p,) of polynomials which converges



156 7. Function Spaces

uniformly to f on [a, b]. We begin by proving a special case. We denote the
identity function by z; thus z(t) =t for t € R.

7.2 Lemma. There exists a sequence (g, ) of polynomials which converges
uniformly to |z| on [~1,1].

Proof. Let g9 = 1, and inductively define g4 = }[z? + 2¢, — ¢2] for
n > 0. Clearly, every ¢, is a polynomial. We note that if |z] < ¢,, < 1, then

Gn — Gn+1 = 3(2qn — 2% — 2g0 + ¢2) = 3(¢2 — %) > 0,
and
dn+1 — l.’L" = %(iz - 2'1" + 2qn °(I?.) = %[(1 - I‘tl)2 - (1 “%)2]»

so if || < gn < 1, we have |z| < gn4+1 < gn < 1. Since ‘qo = 1, it follows by
induction that |z| < gn+1 < g for all n. Hence (gn(t)) converges for every
t € [-1,1: if ¢ = limgn, we have ¢ = }[z% + 2¢ — ¢?], and thus ¢? = z2.
Since ¢ > 0, we have ¢ = |z|. Since the continuous functions ¢,, decrease
to the continuous function |z|, we know by Dini’s theorem (Theorem 3.25)
that the convergence is uniform. |

7.3 Lemma. For any ¢ € R, there exists a sequence (p,) of polynomials
which converges to |x — c| uniformly on every compact subset of R.

Proof. By Lemma 7.2, we can find for each n € N a polynomial Q,, such
that |Qn(t) — lti| < 1/n? for all t € [—1,1]. Let pn(t) = nQa((t — c)/n);
then lp,.(t) -t - c” < 1/n for alln > [t} + |cl- ]

Returning to the proof of Theorem 7.1, let A be the set of all functions
f : R — R with the property that for any € > 0 there exists a polynomial
p such that |f(t) — p(t)] < € for all t € [a,b]. It is quite easy to see that
if f,g € A and a,b € R, then af + bg € A (in other words, A is a vector
space over R). Since u* = %(u+ |u]) for any u € R, it follows from Lemma
7.3 that the function (z — ¢)* belongs to A for any ¢ € R, and hence that
any function of the form

g=A+Zm‘,(:x:—cJ)+ (7.1)
j=1

belongs to A. But any piecewise linear continuous function on [a,b] can be
expressed in the form (7.1). Indeed, if g is piecewise linear on [a, b}, there
exists a partition (c;)]-o of la,b], and m; € R for j = 1,2,...,n, such that
g(t) = f(cj-1) + m;(t — cj—y) for all t € [¢j—_1,¢;], 1 < j < n. But then we
have

9(t) = fla) + Y_m;(t —c;1)*

i=1
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for all t € [a,b)], i.e., g has the form (7.1) with A = f(a). Now given any
f € C([a, b]), there exists a piecewise linear continuous function g such that
lg(t) — f(t)] < €/2 for all t € [a,b] (Theorem 3.20), and, by what we have
just proved, a polynomial p such that |p(t) — g(t)] < €/2 for all t € [a,b];
then we have |f(t) — p(t)| < € for all ¢t € [a,}). |

We now turn to the space of all real continuous functions on a compact
space, and establish some sufficient conditions for a subset of this space of
functions to be dense. For the proof of the next theorem, it is convenient
to introduce some new notation. :

7.4 Definition. Ifa,b € R, we put avb = max{a, b} and aAb = min{a, b}.
If f,g: X - R, wedefine fVg: X — R by (fVg)zx) = f(z)Vg(r),
z€ X,and fAg: X - R by (fAg)(x) = f(z)Ag(x), z € X.

7.5 Theorem. Let X be a compact topological space, and let £ be a
subset of C(X) having the following properties:

(a) if f,g€ &, and a,b € R, then af + bg € £,
(b) if f,ge &, then fVvge £ and fAg € ¥;

(c) for any z,y € X, with = # y, there exists f € ¥ with f(x) # f(y);
and

(d) each constant function belongs to .
Then % is dense in C(X).

Proof. We remark that condition (a) says that & is a vector space, with
the usual operations on functions; condition (b) is often described with the
words “.¥ is a lattice”; condition (c) is described by “& separates points.”
Thus the theorem says that any vector lattice contained in C(X) which
separates the points of X and contains the constants, is necessarily dense
in C(X).

We observe that conditions (a), (c), and (d) imply the following: if z,y €
X with z # y, and if a,b € R, then there exists f € £ such that f(x) =a
and f(y) = b. For by (c) there exists g € £ with g(r) = « and g(y) = /3,
where a # 3. By (a) and (d), for any s,t € R we have sg +t € &. It
is trivial to choose s and t such that f = sg + t satisfies f(x) = a and
fly) =b.

Now to the proof of the theorem. Let f € C(X) and ¢ > 0. We must
produce g € Z with ||f — g]| < ¢, i.e., with f(z) — € < g(z) < f(x) + €
for every z € X. We proceed as follows. For each z,y € X, there exists
gzy € &£ with g;y(z) = f(r) and g;,(y) = f(y). Since f and g,, are
continuous, there exists an open neighborhood U,y of y such that g;,(2) <
f(2) + ¢ for all z € Uy, Since X is compact, there exist y1,y2,...,yn such
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that X = U;_, Uzy,- We put gz = gzy, A -+ A gsy,. Then g, € £ by
hypothesis (b), gz(z) = f(z), and g-(z) < f(z) + € for every z € X. Since
f and g, are continuous, there exists an open neighborhood V; of z such
that g-(z) > f(z) — € for every z € V;. Since X is compact, there exist
Z1,...,Zm such that X = U;"=l Vz,. Define g = g;,V---Vg; .. Theng € 2,
g(z) < f(2) + € for every z € X, and g(z) > f(z) —eforevery z€ X. §

This theorem is due to Stone. From it we can deduce another approxi-
mation theorem, which contains the Weierstrass approximation theorem as
a special case. It is known as the Stone-Weierstrass theorem.

7.6 Theorem. Let X be a compact topological space, and suppose that
A C C(X) has the following properties:

(a) if f,g€ A, and a,b€ R, thenaf + bg € A;

(b) if f,g € A, then fg € A;

(c) for any z,y € X, with ¢ # y, there exists f € A with f(z) # f(y);
and

(d) each constant function belongs to A.
Then A is dense in C(X).

Proof. It is clear that the closure 4 of A in C(X) satisfies the same
conditions (a)-(d), so we can assume that A is uniformly closed. We notice
that conditions (a), (c), and (d) are taken unchanged from Theorem 7.5,
so it suffices to show that f Vg € A and f A g € A whenever f,g € A.
(Of course, one of these suffices, since a Vb = —(—a) A (—b).) We make the
following remark: since

aVvb

_ a+b+ la — b| oAb = a+b |a-b

2 2’ T2 2’

and |a| = aV (—a), conditions (a) and (b) of Theorem 7.5 are equivalent to
(a) and the condition: if f € &, then | f| € . Now conditions (a) and (b) of
our theorem imply that if g € A and p is a polynomial with real coefficients,
then p(f) € A. According to Lemma 7.3, we can find polynomials P, such
that P,(z) converges uniformly to |z| on any interval [-M, M] in R. It
follows that P,(f) converges uniformly on X to |f|. Thus A satisfies all the
hypotheses of Theorem 7.5, and is closed, so A = C(X). ]

7.7 Corollary. Let K be a closed and bounded subset of R". Then the set
P(K) of polynomials p(z,,...,zs) in the coordinate functions x,,...,ZTn
is dense in C(K).

Proof. We need only observe that A = P(K) satisfies the hypotheses of
the last theorem. 1
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7.2 Lengths of Paths

Let (X, p) be a metric space. By a path in X, we will mean a continuous
map f : I — X, where I is a closed bounded interval in R. We want to
define the length of a path in X, and it is natural to do it as follows.

If f:[a,b] — X is a path in X, and 7 = (t;)7_, is a partition of [a, b]
(see Definition 5.1), we define

L(f,m) =" p(f(t;), f(ti-1))
i=1

and define the length of f by
L(f) = sup{L(f,n) : m a partition of [a, b]}.

(We think of L(f) as the supremum of the lengths of polygons inscribed in
f.) We say that f is rectifiable if L(f) < +o0. It is clear that L(f) = 0 if
and only if f is a constant path.

Let & be the set of all rectifiable paths in X with domain [0, 1]. We
define

d(f,9) = sup{p(f(t),g(t)) : 0 <t <1}
for f,g € 2. As we saw in the last chapter, this is a metric on 2. Con-
vergence in this metric is just uniform convergence of functions.

The map L : & — R is not continuous. For instance, let us define
g:R—Rbyg(t)=1-|1-2t|for 0 <t <1, and set g(k +t) = g(t) for
k <t < k+1 (k€ Z). Define the path f, in R? by fa(t) = (t,g(nt)/n)
for 0 < t < 1. (The reader might make a quick sketch.) Then L(f,) = v/5
for every n, as is easily checked, but (f,) converges uniformly to the path
f, given by f(t) =(t,0),0<t<1,and L(f)=1.

However, the map L does have the property, called lower semicontinuity,
described in the next theorem.

7.8 Theorem. If fy € 2 for each k € N, and (fi) converges uniformly
to f, then L(f) < liminf L( fi).

Proof. Let A < L(f). There exists a partition m = (t;)}.o of [0, 1] such
that A < L(f,m) = 3°7_, p(f(t;-1), f(t;)). For any € > 0, if g € & and
d(f,g) < €¢/n, we have

p(f(t5), £(t5-1)) < p(£(t;),9(8;)) + p(9(t5), 9(ti-1)) + p(g(t;-1), £(25-1))

and hence
n

L(g,m) =Y p(g(t;), 9(ti-1))

Jj=1

> " p(f(t-1), £(t;)) — 2 = L(f,m) — 2 > A - 2€.
i=1
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Thus L(g) > L(g,m) > A — 2¢. Now if (fx) converges to f uniformly, there
exists kg such that d(f, fx) < €¢/n for all k > ko, and hence L(fir) > A — 2¢
for all k > kg. Thus liminf L(fx) > A — 2¢. Since ¢ > 0 was arbitrary, we
have liminf L(fx) > A. Since A was an arbitrary number smaller than L(f),
we conclude liminf L( fx) > L(f).

The next theorem says that in a compact metric space there always exists
a shortest path between any two points. The proof will use the following
lemma:

7.9 Lemma. For any g € &, there exists g* € & with the properties:
(a) g*(0) = ¢g(0) and g*(1) = g(1);
(b) L(g") = L(g); and
(c) for all t,¢’ € [0,1], p(g"(t), " (t)) < L(g)lt — ¥'|.

Proof. Let g, be the restriction of g to the interval [0,¢], and let A(¢) =
L(g¢). It is clear that X is an increasing function on [0, 1], with A(0) = 0
and A(1) = L(g). Furthermore, A is continuous. For given ¢ > 0, we can
choose a partition 7 = (t;)7_, of [0, 1] such that L(g,7) > L(g) — ¢. Since
¢ is uniformly continuous, there exists § > 0 such that p(g(t),g(t')) < €
whenever |t — t'| < 6, and we can also assume that t; — ¢t;_; < 6 for
1<j<n Suppose 0 <t <t'<landt —t<n=minft; —t;_1}. 1
claim that A(t') — A(t) < 3e. Suppose not. Then the restriction h of g to
[¢t,t'] has length L(h) > 3¢. Hence there is a partition 7’ of [t,t'] such that
L(h,n') > 3e. Now since t' —t < t; —t;_; for every j, 1 < j <mn,tandt
belong to either the same or, at worst, two adjacent intervals [¢;-,,t;]. Let

7" be the partition obtained by throwing together the points of 7 and n’.
Then

L(g,n") > L(g,7) — p(g(t;-1),9(t)) — p(g(t'), g(t;41) + L(h,7")
> L(g) —e—¢€—e+ 3¢ = L(g),

which is impossible. Thus A is continuous on [0, 1], and hence is a surjective
map of [0,1] onto [0, L(g)].

We next define a map ¢ : [0,L(g)] — [0,1] by ¢(s) = inf{t € [0,1] :
A(t) = s}. If X is strictly increasing, then of course ¢ = A~!, but A need
not be strictly increasing (g may “stop to rest” in some subinterval of [0, 1]).
In any case, ¢ is well-defined since A is surjective. We define §(s) = g(¢(s)).
Then §: [0,L(g)] — X is continuous (even though ¢ need not be), and in
fact we have for 0 < 3,8’ < L(g),

p(3(s),3(s")) = p(g(t), g(t)),

where A(t) = s and A(t') = . It follows that p(g(s),g(s’)) < |s' - s] for all
s,8' € [0, L(g)]. Tt is clear that §(0) = g(0) and g(L(g)) = g(1). (We call
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g the reparametrization of g by arc length.) Now let g*(t) = §(L(g)t) for
t € [0,1]. It is easy to see that g*(0) = g(0) and g*(1) = g(1), that L(g*) =
L(g) = L(g), and that p(g°(t),g*(t')) < L(g)|t — | for all t,t' € [0,1]. 1§

7.10 Theorem. Let X be a compact metric space, and let p,q € X. Let
& be the set of all g € & with g(0) = p and g(1) = q. If & # 0, then
there exists f € & such that L(f) < L(g) for every g € &.

Proof. Let D = inf{L(g) : g € &}, and let (g,) be a sequence in . with
L(gn) — D as n — oo. Using the last lemma, we obtain a sequence (g;;) in
&% with L(g;) = L(gn) which also satisfies the condition

P(9n(1), 9:(t")) < L(ga)it — t']

for all ¢, ¢’ € [0, 1]. But this condition implies that (g;,) is an equicontinuous
sequence of maps of [0, 1] into the compact metric space X, and hence by the
Arzela- Ascoli theorem, Theorem 6.71, there exists a uniformly convergent
subsequence (g;,, ). If f is the limit of this subsequence, we have by Theorem
7.8 that L(f) < liminf L(g,,) = D, and the theorem is proved. 1

7.3 Fourier Series

In this section and the next, it will be convenient to use complex numbers,
which we have mentioned in this book so far only in passing. Recall that the
complex number field C is the set R2, endowed with its natural addition,
and the multiplication law (a, b)(c,d) = (ac — bd, bc + ad), and that C is a
field, with the subfield {(a,0) : a € R} being identified with the real field
R. We then write 1 for (1,0), 0 for (0,0), and set i = (0, 1), so that i? = —1.
Each complex number z can be expressed uniquely in the form 2 = z + iy,
with z,y € R, and we set Z = z — iy, and call Z the complex conjugate,
or simply conjugate, of z. We observe that z + Z = 2z, z — Z = 2iy. We
call = the real part of 2z, and denote it by Rz, and y the imaginary part
of z, denoted by Jz. The norm |z| = /2 + y2? of a complex number z is
called its absolute value or modulus. We observe that |z|? = 22 + y? = 23.
The inequality |z + w| < |z| + |w| is a familiar fact about R2. We note that
zw = (Z)(W), and consequently |zw| = |z| jw|. Any complex number z can
be written in the form z = r\, where 7 > 0 and |A| = 1; if z # 0, then
r = |z| and A = 2/|2| are uniquely determined, while if 2 = 0, then r = 0
and A can be any number of absolute value 1.

We will deal in this section with complex-valued functions of a real vari-
able, not functions of a complex variable, the subject matter of an entirely
different course.

If f: X —>C,thenu=Rfand v=Sf map X into R, and f = u + iv.
When X is an interval in R, we can discuss the derivative of f at a point,
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or the integral of f over the interval; our previous definitions make sense
in the context of complex-valued functions. It is very easy to see that when
f : I — C, I an interval in R, with u = Rf and v = Qf, then f'(t)
exists if and only if u’(t) and v'(t) exist, and f'(t) = u'(t) + iv'(t) in this
case. Similarly, f:f exists if and only if f:u and f:v exist, and f:f =

) : u+i f:v in this case. It is obvious that if f and g are complex-valued
functions on [a, b] which are Riemann integrable, then f + g is again such

a function, and f:(f +g) = f:f +f:g. It is very easy to see also that for
any constant ¢ € C, f:(cf )=c f: f. It is not as trivial to establish the

useful inequality
b
[ e

To see this, choose A € C with |A| =1 and /\f:f > 0. Then

/abf(t)dtl =IA/:f(t)dt= /ab,\f(t)dt

= sn/b Af(t)dt = /bPR(Af(t))dt

b
< / F(0)]dt.

b b
< / IAF(t)] dt = / |£(t)] dt.

We say that a function f: R — Y is periodic, with period T, or simply
T-periodic, if f(t+T) = f(t) for all £. In this definition, Y may be any set.
Obviously, a constant function is periodic, with every T as period. If Y is
a metric space, and f : R — Y is periodic and continuous, then either f is
constant, or f has a smallest positive period, and every period of f is an
integer multiple of this one (we leave the proof as an exercise.) It is obvious
that sums and products of complex-valued T-periodic functions are again
T-periodic, as are pointwise limits of such functions. We note that if f is
T-periodic, then the function t — f(tT) is periodic with period 1.

The reader can easily verify that for any a € R, f:+T g(t)dt = f(;’ g(t)dt
whenever g is T-periodic and integrable over some interval of length T.

Examples of functions with the period 27 are the sine and cosine func-
tions, and hence any function of the form

N
f(t)=A¢+ Z(A,, cos 2mnt + By, sin 2wnt), (7.2)

n=1

is periodic, with period 1; we will refer to such functions as trigonometric
polynomials, of degree < N.

We will make use of the complex exponential function, which we define
by the rule e = cost + isint. We note that |e*| = 1 for all t € R, and
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that if A € C and |A| = 1, then there exist t € R such that A = e*; t,
of course, is not uniquely determined, only up to addition by an integer
multiple of 2r. Thus any z € C can be expressed in the form z = re*
with 7 > 0 and t € R; any such t is called an argument of z. Clearly, we
have eit = ¢~ **. The addition laws for the trigonometric functions which we
obtained in Chapter 3 quickly lead to the identity e'(*+*) = e**e®*, which
is sufficient to justify the notation. We note that cost = }(e' + e~*), and
sint = 5;(e'* —e™'*). Hence the trigonometric polynomial described in (7.2)
can also be expressed in the form

N

&)= cae®™™, (7.3)

n=—N

with co = Ag, cn = }(An — iB,) and c_pn = 3(An + iB,) for n > 0.
Conversely, any function of the form (7.3) can also be expressed in the
form (7.2) by taking A9 = ¢p and A,, = ¢ + c—p, By = i(cn — c_,) for
n > 0. We note that in this correspondence, the coefficients A,, and B,, are
real if and only if ¢, = 7.

7.11 Proposition. Let f be a trigonometric polynomial,

N N
— 2mint __ 29 i
f(t) = n;’v Cne =3 + g(a" cos 2mnt + by, sin 27nt).

Then, for any a € R,

a+1
Cn =/ f(t)e™?™"dt, -N<n<N, (7.4)

a

and, consequently,

a+l a+l
ap = 2/ f(t)cos2nntdt, b, = 2/ f(t)sin2wntdt. (7.5)

Proof. It suffices to observe that
a+1 .
ikt 5, J1 ifk=0,
/ e ‘““{o ifk#0

a

to verify equation (7.4).We deduce Equation (7.5) by using the relations
p =Cp +C_p, by = i(c, — c_p). |

We will fix the following notation for the rest of this chapter:

7.12 Definition. Let # denote the set of all 1-periodic complex-valued
functions on R which are Riemann integrable over bounded intervals, and

let € denote the set of all continuous 1-periodic complex-valued functions
on R.
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7.13 Definition. For each n € Z, let e, : R — C be defined by e,(t) =
62'"“.

For each f € @, define f : Z — C by

fn= /ol fen= [ e

and call f, the nth Fourier coefficient of f. The series Y20 __ fne2™"* is
called the Fourier series of f; it is to be regarded as the sequence of partial
sums (s, ), where

8"(17) = Z fkeZ'nkz

k=-n

forn=0,1,2,....

7.14 Proposition. Let f,g € ®. Then (f +g), = fn + §n; if ¢ € C,
(cf)p = cfui if fa is defined by fu(t) = f(t - a), then (fa), = e"2"" f..

Proof. We leave the first two statements to the reader. For the last state-
ment, we can compute

: 1 . a+1
(fa),l = / f(t- a)e—2nn¢ dt = / ft- a)e—-Zmnt dt
0 a
1
0
as claimed. '

From Proposition 7.11 we see that if f is a trigonometric polynomial,
then the Fourier series of f converges to f at each point; in fact, we have
8o, = f for every n > N, if N is the degree of f. In general, a Fourier series,
even the Fourier series of a continuous function, need not converge at every
point. If the Fourier series of a function f does converge at a point ¢, there
is no guarantee that it converges to f(t). In fact, if we change the definition
of f at one point, the Fourier coefficients remain unchanged. However, we
will show that for a reasonably nice function f, the Fourier series of f does
converge uniformly to f. First, we establish that a continuous function is
determined by its Fourier series.

7.15 Theorem. Let f € €. If fo =0 for every n € Z, then f = 0.

Proof. Suppose that f € €, f # 0, with f, = 0 for every n; using
Proposition 7.14, we can assume that f is real-valued, and f(0) > 0. Then

there exist 6 > 0 and ¢ > 0 such that f(t) > € for all t € (—4,6). Since

fn =0 for all n, we see that f_lgz f(t)g(t)dt = 0 for every trigonometric
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polynomial g. We construct a sequence of real trigonometric polynomials
(gn) with the properties: (a) gn(t) > 1 for all t € (=6,6); (b) |gn(t)] < 1
for 6 < |t| < %, and (c) gn — +o0o uniformly on [—§’,6’] for any &' < 6.
With such g,, we readily find that fl/QQ f(t)gn(t)dt — +00 as n — oo, a

contradiction. It suffices to set gn(t) = [g(t ]" where g(t) = 1 + cos 2nt —
cos 2mé. Since cos 2mt < cos 276 for 6 < |t| < < , we see that —cosé < g(t) <
1for 6§ < |t| <1, while g(t) > 1+ cosé’ —c056 > 1for |t] <6 < 6. |

7.16 Corollary. If f,g € € and f, = §n for all n, then f = g.

Proof. If h = f — g, then h € € and h,, = 0 for every n, so h = 0 by the
last theorem. |

7.17 Corollary. Let f € €. If the Fourier series of f converges uniformly,
then it converges to f.

Proof If v,, — g unlformly, then s,e_j converges uniformly to 0 ge—_k, SO
(q,,)k = f” Sn€ .k — 0 ge-x = gx. But by Proposition 7.11, (s,,)k = fi

for all n > k, so we conclude that g, = fk for all k£, and hence by the last
corollary, that g = f. |

7.18 Definition. If f,g € #, we define their inner product as

l ————
(f.9) = /0 ()90 dt

and the 2-norm of f by ||f|l, = (f, /)2

Since &, = e_p, for every n, we can now write f, = (f, e,) for each f € Z
and n € Z.
We summarize the properties of this complex inner product:

7.19 Proposition. For all f € &, ||fll, = 0, and |cfll, = |c|||fll, for
any c € C. If f € €, then ||fll, = 0 only if f = 0. For any f,g € &,
(f,9) = (g, f). For fixed g, the map f — (f,g) is linear, i.e.,

(a1h +cafa,9) = ar(fr,g) + c2(f2,9)

for any fy, f,9 € & and any c;,c2 € C. The Schwarz-Bunyakovsky in-
equality holds: |(f,g)| < | fll,llgll, for all f,g € Z; if f,g € €, then equality
holds if and only if f and g are linearly dependent.

Proof. We omit the easy proofs of the first few statements. To verify the
inequality, we observe that for any A € C,

0<|If = Al = (f = Ag. f — Ag)
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= (f»f - Ag) - ’\(g’f - ’\g)
={f =29, f) = Xf = Ag,9)
= (£, f) = Mg, f) = M/J,9) + 1A*(9,9).

Let A = t(f,g), with t real. Then we have

2tI(f, )17 < IFII3 + 1S, 9) P llgll2-

If (g,9) = 0, then we have

2t/(f, 902 < I£113

for every real t, which gives (f,g) = 0. If ||g|l, # 0, we can choose t =
1/llgll3, obtaining
2/(f,9)1°
llgll2

which again gives |(f,9)|*> < IflI3llgll3.
We note that equality holds if and only if either ||g||, = 0 or || f—Ag|l, = 0,
which for continuous f and g implies that f = Ag. |

(£, 9)?

2
< fI3 +"“§'IE—

7.20 Corollary. For any f,g € Z, we have ||f + gll, < | fll2 + llgll,-
Proof. We have

If+gll =(f +9.f +9) = IflI3 + (f,9) + (9, ) + lgll;
< IS+ 20 £l lgllz + lgla = (1FNz + lglla)®,

and taking square roots gives the desired result. 1

It follows at once that p; defined by p2(f.g) = ||f — gll, is a metric
on ¢, and a pseudometric on . (That is, on Z it has all the properties
of a metric except that p2(f,g9) = 0 does not imply that f = g.) Since
Ifll; < 1] for all f € %, uniform convergence implies convergence with
respect to the metric p;. Convergence in the metric p is also called mean-
square convergence. Because the inner product for functions shares the
formal properties of the familiar inner product of vectors in R? or R3, our
intuition for low-dimensional spaces can serve as a reliable guide in thinking
about infinite-dimensional spaces such as Z or €.

7.21 Definition. If f,g € %, we say that f and g are orthogonal, and
write f 1 g, if (f,g) = 0. A subset . of Z is called orthogonal if f,g € &
and f # g implies f 1 g; & is called orthonormal if . is orthogonal and
also ||fll, =1 for every f € &.



7.3 Fourier Series 167

For example, the set {e, : n € Z} is an orthonormal set, as we saw in
the proof of Proposition 7.11.
Another interesting orthonormal set: let 7 : R — C be defined by

_f1 ifo<t<i,
'(‘)“{ 1 ifi<t<],

and r(t + n) = r(t) for all n € Z. Define r,, (n € N) by
ra(t) =r(2""'t), teR.

It is easy to see that {r, : n € N} is an orthonormal set in %; in fact,
it has the stronger property: if ¢ : R® — R is an arbitrary function,
then (g(ry,...,7n),7x) = O for every k > n. These functions are called
Rademacher functions.

We next observe that the Pythagorean theorem holds in %.

7.22 Proposition. If f,ge & and f 1 g, then || f +g||§ = ||f||§ + ||g||§.
Proof. Look at the proof of the last corollary. ]

Of course, this generalizes to any number of summands.

7.23 Corollary. If f,,..., fn € #, with f; L fi whenever j # k, then
A DM
k=1 k=1

Proof. Since f, L E:;; fx, this follows by induction from the preceding
proposition. |

2
2

7.24 Proposition. Let F be a finite set, and suppose {¢, : a € F} is an
orthonormal set in X. If f € &, and co = (f,®a) for each a € F, then
9 = Y_qeF Caba has the following properties:

(a) f—g L @, for each a € F; and
(b) ifh=3,crdaba, whered, € C (a € F), then
If = RI3=11f—gll3+ ) lda — cal’;
a€F
in particular, ||f — hll; > ||f — gll, unless h = g.
Proof. We have, for each a € F,

(f - gv¢a> = (f,¢a) - (g»¢a)
=ca—)_(cadn ba)

BEF
=Cq = Ca =0,
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which establishes (a). Now it follows that f — g L g — h, so by Proposition
7.22 it follows that

If=hi3=1f-glZ+lg—hI3=1f-gl3+ D lda - cal?,

a€F

where we used Corollary 7.23 to evaluate ||g — hj|,. ]

The next Corollary is known as Bessel’s inequality.

7.25 Corollary. Let {¢, : a € A} be an orthonormal set in #. For any
feR, Y callfita)l® <ISI3

Proof. Taking d, = 0 in the last proposition shows that 3~ . [(f, da)|? <
IUllg for every finite subset F of A, which is what this corollary states. #

Taking the orthonormal set in the last corollary to be the trigonometric
system {e, : n € Z}, we obtain the classical Bessel inequality:

7.26 Corollary. If f € &, then 3,z |fal? < |IfI2.

The next corollary, which is an immediate consequence of the last, is
known as the Riemann-Lebesgue lemma.

7.27 Corollary. If f € #, then f, — 0 as |n| — cc.

7.28 Definition. We say that f : [a,b] — C is piecewise smooth if there
exists a partition (zx)p_, of [a,b] such that

(a) f'(t) exists for all t € (zx—1,zk) for every k, 1 < k < n; and

(b) for each k, the restriction of f' to (zx—1,zx) has a continuous exten-
sion to [Tx_1, zk].

For instance, a piecewise linear function is piecewise smooth.

7.29 Theorem. Let f € €, and suppose that the restriction of f to [0,1]

is piecewise smooth. Then the Fourier series of f converges uniformly on
R to f.

Proof. Using integration by parts (Theorem 5.32) over each of the intervals
[zk-1,zk), and adding, we obtain for n # 0,

1 1
. 1 ,
—2mint ’ —27int
/0 f(t)e dt = _27rin/o f'(t)e dt,
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S0 fn = f 'L/2min. (Since f’ is bounded and continuous except at finitely
many points, f' € A, and f' is well-defined.) Hence

Zl.fu f()l'*'z If "I

nez n )‘0

1 1 1/2 S 1/2
< |f(0)l + 5;(2 ﬁ) (}: £l )
n#0

n#0

by the Cauchy-Schwarz inequality. Since Zf;l n~2 < oo, and from Corol-
lary 7.26 we know Y |f’,|> < oo, we obtain }_|fn| < 00, so the Fourier

series 3 o fuen converges uniformly on R by the Weierstrass M-test. By
Corollary 7.17, the sum of the series is f. |

7.30 Theorem. For every f € ‘€, there exists a sequence of trigonomel lru
polynomials which converges uniformly to f.

Proof. We can assume that f is real-valued. Let ¢ > 0. By Theorem 3.20,
there exists g, a continuous piecewise linear real function on [0, 1], such
that |f(z) — g(z)| < ¢/2 for all z € [0, 1]. Clearly, g can be chosen so that
g(0) = g(1), so the l-periodic extension of g, which we still denote by g,
belongs to € and satisfies || f — g|| < ¢/2. By Theorem 7.29, there exists a
trigonometric polynomial h with ||g — k|| < €/2, and thus ||f — h|| < €. The
theorem follows. |

7.31 Theorem. For every f € %, there exists a sequence of trigonometric
polynomials which converges to f in the mean square metric.

Proof. We may assume that f is real-valued. Let € > 0. Let M = sup|f(t)|.
By Theorem 5.17, there exists a continuous function g on [0, 1] such that
fol |f(t) — g(t)| dt < €2/(2M); clearly, we can choose g with g(0) = g(1), so
that the 1-periodic extension of g to R is continuous, and also we can take
g with |lg|| < M (replace g by max{—M,min{g, M}} if necessary). Then

1 1
/ £(0) = g(t)2dt = / 1£(8) - gONF() - g(t)] dt
0 0

1
<oM /0 £(t) - g(®)dt < €2,

so || f —gll, < €. By Theorem 7.30, there exists a trigonometric polynomial
h with ||g—hl| < ¢, and hence ||g—h||, < ¢, and thus we have || f—h]|, < 2e.
The theorem follows. ]

We can now sharpen Bessel’s inequality (Corollary 7.26) to an equality,
which is known as Parseval’s relation.



170 7. Function Spaces

7.32 Theorem. For every f € %, the Fourier series of f converges to f
in the mean square, and

I£13 =D 1ful® (7.6)

Proof. Let ¢ > 0, and !et sn be the nth partial sum of the Fourier series
of f,i.e, sp = r__, frex. By Theorem 7.31 there exists a trigonometric
polynomial g with ||f — g||, < €. By Proposition 7.24, || f — snll, < ||f - gll,
for every n > m, where m is the degree of g. That proposition also tells us
that ||f — sallZ = | fl3— k- _, |fx|?, s0 that Parseval’s relation follows. @

7.4 Weyl’s Theorem

Recall that for any real number z, [z] denotes the greatest integer in z, i.e.,
[z] € N and [z] < z < [z] + 1. We define (z), the fractional part of r, by
(z) = = — [z]. If £ is an irrational real number, then {(n€) : n € N} is dense
in {0, 1], by Dirichlet’s theorem (Theorem 1.23). We devote this section to
proving the following stronger result, known as Weyl’s theorem:

7.33 Theorem. If§ € R is irrational, then

lim L#{keN:1<k<n, (k)€ ab]}=b-a

n—oo M

forany0<a<b<l.

Proof. Define, for each n € N, the map L,, : # — C by
1 n
La(f) = -3 f(k€).
k=1

If ¥ is the periodic extension of the indicator function of the interval [a, b},

i.e., ¥ is defined by
_ {1 if(t) € a,b],
“”‘{Oiuw¢mwh
then
Lo(w) = %#{k EN:1<k<n,(kE) € [a,b]),

and fol Y(t)dt = b — a. We shall prove that for any f € #, L.(f) —

f,,' f(t)dt as n — oo, thus proving a generalization of the theorem.
We begin by observing two obvious properties of the functions L,. These
are:
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(a) for any f,g € # and any c,d € C, Lp(cf +dg) = cLa(f) + dL,(9);
and

(b) if f,9 € # and f < g, then Ln(f) < Ln(g).

We first prove a special case of the generalized theorem: if f is a trigono-
metric polynomial of period 1, i.e., f(t) = YNy cke?™*, then Ln(f) —
fol f(t)dt as n — oo.

In view of (a) above, it suffices to prove this when f(t) = ex(t) = €27k,
We note that [ ex(t)dt = 0if k # 0 and [ eo(t)dt = 1. Now if k # 0,
then €2™*€ £ 1, since £ is irrational, so

1 n , c?mk( 1- e')wink(
L.(ex) = — elwunk{ -
wlek) =~ 3
m=1

n 1 — e2mikE '
Thus, for & # 0,
n |1 — e2mikg|

which approaches 0 as n — co. When k =0, L,(ep) =1 = fol eo(t) dt. Our
special case is proven.

Now let f € #. We suppose, without loss of generality, that f is real-
valued. By Theorem 5.17, there exist continuous functions g and h on
[0,1}) with g < f < h and fol h(t)dt — fol g(t)dt < e. It is easy to see
that we can choose such g and h such that g(0) = g(1), h(0) = h(1), so
that they can be extended to be continuous 1-periodic functions on R.
Now by Theorem 7.30 there exist trigonometric polynomials p and q with
lg —e—pll < eand ||h +¢€—gq|] < e Then we have p < f < q and

Jya(t)dt — [} f(t)dt < 2, [y f(t)dt — [y p(t)dt < 2e. Since Ln(p) —
Jo p(t)dt and La(g) — [y a(t)dt, from La(p) < La(f) < Ln(q) we get

/lf(t)dt—2c</lp(t)dt
0 0
< liminf L,(f) < limsup L,(f)
1 1
5/0 q(t)dt</0 £(t) dt + 2¢,

and since € > 0 is arbitrary, we see that L,(f) — fol f(t)dt asn —oo. 1

7.5 Exercises

1. Show that if f is a function of class C! on [a,b], and € > 0, there exists
a polynomial p such that

sup{|f(t) — p(t)| + |f'(t) = P'(t)| : t € [a,b]} <.
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2. Let I = {XA € C:|A| = 1}. To each f € C(I'), we can associate the
function f oe, i.e., t — f(e2™), in €. Note that f oe; is a trigonometric
polynomial if (and only if) f is (the restriction to I" of) an ordinary poly-
nomial in the coordinate functions z and y of R2. Use this idea and the
Stone—Weierstrass theorem to give another proof of Theorem 7.30.

3. Deduce Theorem 7.1 from Theorem 7.30.

4. If A is an algebra of complex-valued functions on a compact space
X, which separates points and contains the constant functions, A is not
necessarily dense in C(X,C) (compare Theorem 7.6). For example, let
X ={z € C:|z| = 1}, and let A be the set of all polynomial functions, i.e.,
functions of the form p(z) = Y_§_, ckz*. Show that |p(z) — 2| > 1 for all
z € X and every polynomial p. HINT: Observe that foh(l—e"p(e“)) dt =1
for any polynomial p.

5. Show that the Taylor series for v/1 — x converges uniformly for 0 < x <
1, and deduce another proof of Lemma 7.2.

6. Suppose that f : [0,1] — R is continuous, and that fol f()trdt = 0 for
every positive integer n. Show that f = 0.

7.Let f : [a,b] — X be a path in the metric space X, and let ¢ be a
continuous strictly increasing function on [c, d], with ¢(c) = a and ¢(d) = b.
If g = f o ¢, show that L(g) = L(f).

8. Let Y be a metric space. Show that if f : R — Y is periodic and

continuous, then either f is constant or there exists a smallest positive
period of f.

9. Show that if f : R — C has periods T and T3, then mT] + nT; is a
period of f for every pair of integers m,n. Deduce that if f is continuous,
then either f is constant or T, /T, is rational.

10. Let A be the collection of all finite subsets of N. We define a collection
of functions, {W, : a € A}, called the Walsh functions, as follows. We
put Wy = 1. If a is a nonempty finite subset of N, say a = {k;,...,kn}
(ki < k2 < -+ < ky) we define W, = 7,7k, ---7,, where () is the
sequence of Rademacher functions.

(a) Show that {W, : a € A} is an orthonormal set in 2.

(b) Show that if n is a positive integer, and f € % is constant on each
interval [(k — 1)27",k2~") (k € Z), then f is a linear combination of
a finite number of Walsh functions.

(c) Show that if f € 2, and (f, W,) = 0 for every a € A, then || f||, = 0.
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11. Calculate the Fourier coefficients of the function f € % defined by
f(t) =t for 0 < t < 1. Use Parseval’s theorem to deduce the value of

Tl n-2.

12. Calculate the Fourier coefficients of the function g € € given by g(t) =
|¢| for —% <t< % Use your result to check your answer in the last exercise
for 22, n~2, and also to evaluate Y oo, n™%.

13. Let f € #, and sn(z) =Y p__, fn€e2"i"=_ Show that

1/2
(@) = [ f(z—t)Da(t)dt,
/2

where
_ sin(2n + 1)t

sin wt
14. Show that if f € R, and f(t) = 0 for all t € (a,b), then the Fourier

series of f converges to 0 uniformly in any closed interval [c,d] C (a,b).
HINT: Use the last exercise.

Dn(t)

15. Show that if f € %2 has a continuous derivative in an interval (a,b),
then the Fourier series of f converges to f uniformly in any closed interval
[e,d] C (a,b). HINT: Use the last exercise, and Theorem 7.29.

16. Let 0, (z) = (1/(n+1)) ¥p_o 3k(x), where sk is the kth partial sum of
the Fourier series of f. Show that

1/2
oan(z) = f(x = t)Kn(t)dt,
/2

where

1 sin?(2n + )7t

Kn(t) =
n(t) n+1 sin? mt

17. With the notation of the last exercise, show that if f € €, then (0,)
converges uniformly to f. This provides another proof of Theorem 7.30.

18. Show that if f,g € %, then

(f,9) = Z jng.—n-

nezZ

7.6 Notes

7.1 Weierstrass published Theorem 7.1 in 1886; he may well have known
it for some time. The proof given is that of Lebesgue (1898). There
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7.2

7.3

7.4
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are many other proofs; especially worth citing is that of Serge Bern-
stein (1912), whose proof draws on ideas from elementary probability
theory. The Weierstrass theorem was generalized in many ways over
the years before Stone obtained Theorem 7.6 in 1937. The proofs of
Theorems 7.5 and 7.6 given here were published by Stone in 1947.
Other proofs, and generalizations of these theorems, have since been
given. One of the attractive early generalizations of the Weierstrass
theorem was found by Miintz in 1914, and improved upon by Szész a
year or two later. It says that if 0 = pg < p1 < p2 < --- is a sequence
of real numbers, then the set of all linear combinations Z:=0 cxxP* is
dense in C([0, 1)) if and only if Y52, p; ' = +oo.

In a later chapter, we will consider the length of a smooth (continu-
ously differentiable) curve, as a special case (k = 1) of the volume of
a k-dimensional manifold.

The subject of trigonometric series, and especially Fourier series, is a
vast one, and we have given only the smallest taste of this subject.
It has played an important role in mathematical history ever since
Fourier asserted, in the early years of the nineteenth century, that
“any” function could be expanded in a Fourier series. Among the
significant developments spurred by Fourier’s ideas (which were not
received with enthusiasm by the mathematical establishment of the
day) was the modern concept of function, which probably began with
Dirichlet, and the whole theory of sets, initiated by Cantor to deal
with problems about trigonometric series. A good place to learn more
is Korner's book [8]. Fourier theory continues to be a central area in
mathematical research today.

The theorem which is now called Weyl’s theorem was discovered in-
dependently around the year 1909 by Bohl, Sierpinski, and Weyl. It
is a special case of the ergodic theorem.
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If f is a real-valued function on an interval (a, b), we recall that f is differ-
entiable at the point c € (a,b) if

i 10 = £()

twc ‘t-—c

exists; if it does, we denote its value by f’(c), and call it the derivative of
f at c. In the last chapter, we remarked that this definition makes sense
for a complex-valued function on (a,b). If f : (a,b) — R" is a vector-
valued function on (a,b), the same definition still makes perfect sense. If
f = (f1,-..,fa), we see that f’ exists if and only if f] exists for each j,
1 < j < n, and that in this case, f' = (f],..., fn). If we try to extend
the definition in another direction, however, we run into trouble. If f is a
real-valued function defined in some neighborhood of the point ¢ € R",
the definition above makes no sense for n > 1, since we can't divide by
vectors. We are led to the right idea by focusing our attention not on the
number f’(c), which as we know represents the slope of the tangent line to
the graph of f, but on the tangent line itself, which is the graph of a linear
function.

Linear maps (synonyms: mappings, transformations) from R" to R™
can be regarded as an especially simple subset of the set of all mappings
from R™ to R™; in this chapter, we begin by studying linear maps (i.e.,
reviewing linear algebra). We then find that a fairly wide class of maps can
be approximated locally by linear maps, and thereby become accessible to
analysis.
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8.1 Linear Algebra

In this section, we review some of the basic notions concerning linear map-
pings of vector spaces. With the possible exception of the last part of this
section, all of the material should be quite familiar.

Let us recall some basic notions and results from linear algebra. Let V
and W be vector spaces over the real field R, and L : V — W. We say that
L is linear if L(sv +tw) = sLv + tLw for all s,t € R and v,w € V. (It
is customary with linear maps to write Lv instead of L(v), and to write
LM for the composition Lo M of L and M.) Let L : V — W be a linear

map, and suppose that v;,...,v, is a basis for V. Thus each element v of
V has a unique expression as a linear combination of vy,...,v,,
mn
v = E vvj,
J=1

where we have used superscripts rather than subscripts to keep track of
the components of v. It follows that Lv = Y v/Lv;. If also wy,...,wy,
is a basis for W, we can write each vector Lv; as a linear combination of
Wiy yWpm,

m
Lv]-=2a;w, (F=1,...,n)
i=1

and thus find that

n n m m n
Lv:ZijvJ=Zvj2a;w,=2(2a;v’)w‘. (8.1)

1=1 1=1 i=1 =1 ‘j=1
It is customary to visualize the set A = {a; ti=1,...,m;j=1,...,n} of

mn real numbers as a rectangular array, with m rows and n columns, the
number a occupying the position in the ith row (from the top) and jth
column (from the left). Such an array is called an m x n matriz, and in this

case, we speak of the matrix of L, with respect to the bases v,,...,v, and
Wi....,Wu. Thus,
ai aé - aé
. al a2 oo a
A=d]=| . "
ai' a3y’ ap
We can write A = [L] to indicate that A is the matrix associated to

the linear transformation L; this notation implies a prior understanding of
which bases v,...,v, and wy,...,w,, for V and W are being used. When
V =R" and W = R™, there are the so-called “natural” bases: let e; denote
the n-tuple (or m-tuple) having 1 in the jth position and 0’s elsewhere.
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When L is a linear mapping from R" to R™, [L] will denote the matrix of
L with respect to the natural bases, unless some other bases are specifically
indicated. Each choice of basis for V gives rise to an isomorphism of V
with the space R™; our superscript subscript notation for matrices implies
that the n-tuple [v] = (v!,...,v") € R", corresponding to the vector
v =Y vlv; € V, is to be thought of as a column vector, i.e., a matrix with
n rows and 1 column.

Suppose that U is a third vector space, with basis u,,...,u,, and that
M : U — V is another linear map, with the corresponding matrix [M] =
= [b}]. Then the composition LM is a linear map of U into W, and we
find ‘

(LM)u, = L(Mu;) = L (Z bka)

k=1

= g bk 2; ajw;
& ()

i=1

which gives rise to the notion of matriz product: if A = [a}] is an m x n
matrix, and B = [b}] is an n x p matrix, their product AB is defined to
be the n x p matrix C = [c}], where ¢j = ¥_;_, a}b%. This “multiplication
law” for matrices gives the desirable formula [LM] = [L][M] when L and
M are linear mappings whose composition is defined, and [L], [M], [LM]
are the corresponding matrices with respect to some choice of basis for each
of the three spaces involved. Since the associative law L(MN) = (LM)N is
an immediate consequence of the definition of composition, the associative
law for matrix multiplication follows.

We note that the multiplication law applies to the product of an m x n
matrix and an n x 1 vector, and that Lv is represented by the column
vector [Lv] = [L][v]. In particular, when V = R" and W = R™, and
we use the natural bases, we cannot distinguish between v and [v], nor
between Lv = L(v) and the matrix product [L][v].

We note that if f : R® — R is linear, then the matrix of fisal xn
matrix, i.e., a row vector: [f] = [f1,..., fa], where f; = f(e;) for j =
1,...,n. In this case, f(v) = [f][v] is the product of the 1 x n matrix [f]
with the n x 1 matrix [v]. If we associate to [f] the column vector

vl
v2

f=[f]=

we see that f(v) = f.v for all v€ R", where f - v denotes the usual inner
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product in R"™. In general, if A = [a;»] is an m x n matrix, we denote by

A! the n x m matrix [b}], where b} =a],for 1 <j<n,1<j<m; Ais
called the transpose of A.

8.1 Definition. Let L : V — W be a linear transformation, where V and
W are vector spaces of dimension n and m, respectively. The sets

R =H,={weW:w=Lv forsomev eV}
and
N =AM ={veV:Lv=0}
are called the image and kernel of L, respectively.

The image and kernel of L are also referred to as the range and null
space of L. respectively. It is easy to see that £ and A" are subspaces of W
and V, respectively. The fundamental theorem of linear algebra is perhaps
the following:

8.2 Theorem. With the notations just introduced,
dim % + dim A = dimV.

Proof. Let v,,..., v, be a basis for 4; we may extend it to a basis for
V, i.e., there exist vx4;,...,Vn such that vy,...,v, is a basis for V. Let
w; = Lv; for j = k+1,...,n. I claim that wg,;,...,w, form a basis of
Z. First of all, they span %; if w € &, then w = Lv for some v € V,
and we may write v = E;l=1 v/v; for some scalars v!,...,v". Then, since
Lv; =0for j =1,...,k, we have

w=Lv=iijvj= Zn: vLv, = i vw,.

j=1 j=k+1 j=k+1

Thus, wg4y,..., W, span Z. Also, these vectors form a linearly indepen-
dent set; for if &+!,... ¢ are scalars such that Z;=k+l dw; = 0, then
we have

n ) n .
L3 ov)= Y ow=o,
i=k+1 I=k+1

80 3 p,1¢v; € A. But then there exist scalars al,...,a* such that
Yo v, = Z;;l.a"vj. Since vi,...,V, are linearly independent, this
implies that every ¢/ (as well as every a’) is 0. 1

The dimension of the kernel of L is called the nullity of L, and the
dimension of the image of L is called the rank of L. The mapping L is
called nonsingular if it has nullity 0; this is equivalent to L being injective
(one—one). The mapping L is surjective (onto) if and only if it has rank m.
We deduce immediately from the last theorem:
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8.3 Corollary. Suppose that L : V — W is a linear mapping, where
dimV = dimW = n. Then L is injective if and only if L is surjective;
nonsingularity is equivalent to invertibility.

Let #(V, W) denote the set of all linear transformations from the vector
space V' to the vector space W; we write £(V) for £(V,V). The assign-
ment of a matrix to each linear transformation enables us to regard each
element of Z(R",R™) as a point of Euclidean space R"™, and thus we
can speak of open sets in Z(R",R™), of continuous functions of linear
transformations, etc. The usual metric on R®™ can be described in matrix
terms as follows: the distance from S to T is ||S — T'||.,, where the “trace
norm” of the linear transformation T is defined by

ITIE, = " (a})" = tra‘a,

L)

where A = [a}] is the m x n matrix [T}, A* denotes the transpose of A, and
tr B denotes the trace of the square matrix B: trB =}, bj

A perhaps more natural way to define the distance between linear trans-
formations is by using the so-called “operator norm” defined by
IT)| = sup{|Tv|: v € R", |v|<1}. (8.2)
It is not hard to verify that this definition is equivalent to

IT|| = inf{C > 0:|Tv| < C|v| for all v € R"}. (8.3)

The finiteness of ||T|| is easy to see, and it is obvious that ||T|| = 0 if and
only if T = 0. In fact, we have the following comparison:

8.4 Lemma. IfT € Z(R",R™), then
1T < Tl < VTV

Proof. Let A = ai] be the matrix of T. Let v € R™, with |v| = 1. If
v=Y,vke, s0 Y, (vX)? =1, then

—_—

m 2 m n 2
|Tv|? = Z ajvke;| = (Z aivk)
Jj=1k=1 7=1 “k=1
< Z(Z(ai)z) ( (v")z) (Cauchy inequality)
j=1 “k=1 k=1
i\2
=) _(a)" =ITIZ,
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so ||T|| < |IT|l,,- On the other hand, since Z;’;l(ai)z = |Tex|? < |IT|? for
every k, 1 < k < n, we have

n m
iv2
ITIZ =) (al)” < nIITI?,

k=1j=1

proving the other inequality. ]

We leave it to the reader to show that the sup and inf in (8.2) and
(8.3) are actually max and min, i.e., that they are attained. The next
proposition lists the basic properties of the operator norm. We note that
these properties are shared by the trace norm. We leave the proof to the
reader.

8.5 Proposition. For every S,T € Z(R",R™), Re Z(R™,R!),ce R.
we have:

(@) IS+ Tl < ISl + Tl
(b) llcT|l = || Il and
(c) RS < RIS

8.6 Proposition. The space Z(R",R™), with the distance function p
defined by p(S,T) = ||S — T||, is a complete metric space.

Proof. Property (a) of Proposition 8.5 shows that the distance function
satisfies the triangle inequality; the other properties of a metric are trivially
satisfied. Lemma 8.4 shows that a sequence in Z(R", R™) is Cauchy, or is
convergent, in the metric defined by || - || if and only if it is Cauchy (resp.,
convergent) in the metric defined by || - ||,,. Since Z(R", R™) is certainly
complete in the metric defined by the trace norm (the usual Euclidean
metric of R™™), it follows that it is complete in the metric defined by the
operator norm. ]

The next proposition is interesting, though not essential for our applica-
tion of linear algebra to the study of more general mappings. As usual, |
will denote the identity mapping of R™.

8.7 Proposition. If L € Z(R"), and ||I — L|| < 1, then L is invertible,
- -1

and |\I - L=Y| < IT = LI(1 = IT - LII) -

Proof. Let T=1—-L,so ||T|| =t < 1. Let S, = Y oo T*; then

m+p m+p

ISm = Smenll = 1{| D T*[ < > T
k=m+1 k=m+1
oo
tm+l
< k_
< Yy —

k=m+1
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using properties (a) and (c) of Proposition 8.5. Thus, {Sn} is a Cauchy
sequence in Z(R"); it follows from Proposition 8.6 that S,, — S for some
S € Z(R"™). In particular, taking m = 0 above, we find

t
- <
I =Syl <

for every p, and hence ||[I — S|| < t/(1 —t). Now LS,, = (I = T)S,, =
I - Tm+l‘ S0

I - LS| = limoo Ml = LSm|| = lim [[T™*!| =0,
i.e.,, LS = I. Since LS, = S,,L for every m, we have also SL=1. . |

8.8 Corollary. Let S,T € #(R"). If T is invertible, and ||S — T|| <
|IT-1||-!, then S is invertible, and

-1 -1 c?
157 =T < IS - Th—gr =77
where C = ||T™!||.
Proof. Since
W =ST ' =T =-8)T M| <IT-SHIT I <1,

it follows from Proposition 8.7 that ST~! is invertible. If U = (ST")_I.
we have S(T~'U) = (ST~1)U = I, 80 T~!U is a right inverse for S; also,
the equation U(ST"!) = I gives US =T which leads to T~'US = I, so
T-'U is also a left inverse for S. Now ||S™! = T~} = |T-WU - T <
|||l = U]); from Theorem 8.7 we have the estimate ||/ - U|| < t/(1-1),
where t = ||I -~ ST~!||; since t = ||T~}(T - S)|| < ||T YT - S|, we easily
deduce the estimate of the corollary for ||S~! — T71|. ]

This corollary says that the set of invertible elements is an open
subset U of Z(R"), and that the map T — T ! is a continuous
map of U onto itself. In fact, the proof shows that ! can be
expressed as a power series in T; on the matrix level, this says
that each entry in [T~!] can be expressed as a power series in
the n? entries of [T). Another way to see these facts is to use the
theory of determinants; a matrix A is invertible if and only if
det A # 0, and det A, being a polynomial in the coefficients of A,
is certainly a continuous function on £ (R"), s0 {A : det A # 0}
is open. Furthermore, the coefficients of A~! can be expressed
(using Cramer’s rule) as rational functions of the coefficients
of A, so the map A — A~! is a very nice kind of continuous
function.
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8.2 Differentials

The following definition of differentiability seems to have been first used
by Maurice Fréchet, in the early years of this century, and then in the
context of mappings between infinite-dimensional vector spaces. It is the
universally accepted definition today.

8.9 Definition. Let U C R", and f : U — R™. We say that f is diffcren-
tiable at the point p € U if p is an interior point of U, and there exists a
linear mapping L : R® — R™ such that

1
lim Ihl( (p+h) — f(p) — Lh) = 0. (8.4)
Remark. The linear map L of the above definition is unique, when it
exists. For if M is another linear map such that (8.4) holds, then

llm Lh - Mh
lim IhI( ) =

but then for any fixed k # 0, and t > 0, we have

(L(tk) - M(tk)) = —

—(Lk — Mk),

Itkl
so letting t — 0 we conclude that Lk = Mk; since k was an arbitrary
nonzero element of R™, we conclude that L = M.

We say that T : R,, — R™ is an affine map if it has the form x — c+ Lx,
for some ¢ € R™ and linear map L : R® — R™. Thus Definition 8.9 says
roughly that a function is differentiable at p if it can be approximated near
p by an affine function.

8.10 Definition. Iff is differentiable at p, we denote the linear map L of
Definition 8.9 by dfp, and its matrix with respect to the standard bases of
R" and R™ by f'(p). We call df;, the differential of f at p.

Notation and terminology vary widely in this subject. Some authors refer
to dfy, as the derivative of f at p, or the Fréchet derivative; df is sometimes
denoted by Df, or by f’, the symbol we have reserved for its matrix. The
matrix f'(p) is often called the Jacobian matriz of f at p; its determinant
(when n = m) is the Jacobian determinant, or simply the Jacobian, of f at
p, and denoted by Je(p).

It is easy to see that if f : R® — R™ is itself a linear map, then f is
differentiable everywhere, and df, = f at every point p. It is also easy
to see that when m = n = 1, the definitions we have given agree with
the familiar ones. Suppose n = 1, so f is a vector-valued function of one
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variable: f(t) = (fi(t), ..., fm(t)). Then we see that f'(t) is an m x 1 matrix,
or column vector; in terms of coordinates, we see that

£(®)
e < | 50

(0

so that our definition reduces to the previously familiar one. The next result
is also extremely simple, and we omit the proof.

8.11 Proposition. Iff and g are differentiable at p, then so is f + g, and
d(f + g)p = dfy + dgp; if f is differentiable at p and c is a constant, then
cf is differentiable at p, and d(cf)p = cdfp.

8.12 Proposition. Let f : U — R™, where U is an open set in R™.
Iff = (fi,...,fm), then f is differentiable at p if and only if each f;
(j =1,...,m) is differentiable at p, and in this case we have

df(h) = (dfi(h),...,dfm(h))
(where both sides are to be evaluated at p), or in terms of matrices,

b
tp)=| 2"

fm(P)
(here, each fi(p) is a 1 x n matrix, i.e., a row vector of length n).
This proposition is easy to prove, using the inequalities

m

| < <Z .

1‘5“;’?7» laj| < la| < , l|‘IJ|'
J=

which make statements about limits of vectors equivalent to statements
about limits of their coordinates. We next observe that differentiability at
a point implies continuity at that point.

8.13 Proposition. If f is differentiable at p, and C > ||dfp||, then there
exists 6 > 0 such that |f(p+h) —f(p)| < C|h| for all |h| < é. In particular,
f is continuous at p.

Proof. Let e = C — ||dfp||, so € > 0; by Definition 8.9 there exists § > 0
such that

If(p + h) — f(p) — dfph| < [h|
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whenever |h| < é. It follows that
If(p + h) — f(p)| < |dfph| + €lh| < (||dfp]| + €)|h| = Clh,

as claimed. { |

8.14 Proposition. Let U be an open set in R™. Suppose f : U — R has
a local maximum or minimum at p € U, and that f is differentiable at p.
Then df, = 0.

Proof. Suppose that f has a local maximum at p, so that there exists
6 > 0 such that f(q) < f(p) for all q € U with |q — p| < 6. Let L = dfp;
then f(p + h) — f(p) = Lh + r(h), where r(h)/|h| — 0 as h — 0. For
any v € R™, and t > O sufficiently small, we find (taking h = tv above)
that L(tv) + r(tv) <0, or Lv < r(tv)/t, so letting t — 0 we have Lv < 0;
replacing v by —v, we also find that Lv > 0, so Lv = 0. Since v was an
arbitrary vector in R™, we have shown that L = 0, as desired. The case
where f has a local minimum reduces to the case we considered by looking
at the function — f. |

The next result is known as the chain rule; when m = n = 1, it reduces
to the chain rule of elementary calculus.

8.15 Theorem. Let U C R*, V C R™, andlet f : U - R™ and g :
V — RF. Suppose that f is differentiable at p € U, that q = f(p) € V,
and that g is differentiable at q. Then g o f is differentiable at p, and
d(gof)p = dgq o dfp.

Proof. Since f is differentiable at p, and g is differentiable at q = f(p),
we know that p is an interior point of U and q is an interior point of V, so
p is an interior point of the domain U Nf~!(V) of gof. Let T = df,, and
S = dgq; we want to show that, setting

r(h) = (gof)(p+h) - (gof)(p) - STh,
we have r(h)//h| — 0 as h — 0. Let
re(h) = f(p+h) - f(p) - Th
for all h such that p+ h € U, and
rg(k) = g(q + k) — g(q) — Sk

for all k such that q + k € V. Then by Definition 8.9, |r¢(h)|/|h| — 0 as
h — 0, and |rg(k)|/|k| — 0 as k — 0. Let k = k(h) = f(p + h) — f(p).
Then |k| < C|h| for |h| sufficiently small, if C > ||T||, by Proposition 8.13;
it follows that

rg(k(h))

|h| — 0
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as h — 0. Now

(gof)(p+h)—(gof)(p) =g(q+k)—g(q) = S(k) + rg(k)
= S(Th + re(h)) + rg(k),

$0 that
r(h) = S(re(h)) + rg(k)
and hence |r(h)]| [re(h)| | Irg(k)
r re r
= < |SIl—= + -2
which - 0ash — 0. !

8.3 The Mean Value Theorem

We have seen in Chapter 4 that one of the most useful theoretical tools in
dealing with derivatives of functions of one variable is the mean value the-
orem. Here is a version of the mean value theorem for real-valued functions
of several variables.

8.16 Definition. Ifa, b € R", we put
[a,b]={(1-t)a+tb:0<t <1},

and refer to [a, b] as the line segment from a to b.
A subset E of R" is called convex if [a,b] C E whenever a € E and
beE.

When n = 1, this notation conflicts with the standard usage of [a, b] if
a > b; let us live with the risk.

8.17 Theorem. Let E C R™, and suppose that f : E — R is differen-
tiable at each point of E. If [a,b] C E, then there is a point ¢ € |a,b] such
that f(b) — f(a) = dfc(b — a) = f'(c)(b - a).

Proof. Let ¢(t) = tb + (1 — t)a, so that [a,b] = {¢(t) : 0 < t < 1}.
We observe that ¢/(t) = b — a. Let g(t) = f(¢(t)); according to Theorem
8.15, g is differentiable at each point of {0,1], and dg, = dfy(, o do;, or
g'(t) = f'(¢(t))(b — a). Applying the mean value theorem, Theorem 4.22,
we find there exists ¢, 0 < ¢ < 1, such that g’(c) = g{1) — ¢(0). This
translates, with ¢ = ¢(c), to the statement f(b) — f(a) = f'(c)(b—a). 1§

8.18 Corollary. Let U be a convex open set in R", and let f : U — R.
Suppose that f is differentiable at each point of U, and that ||dfp| < M
for all p € U. Then

|f(b) — f(a)| < M|b - a|
for all a,b € U.
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There is no mean value theorem for vector-valued functions of several
variables, but a vector-valued version of the estimate in the last corollary
does hold, and is very useful.

8.19 Corollary. Let U be a convex open set in R* and f : U — R™. If
f is differentiable at each point of U, and if ||dfy]| < M for every p € U,
then we have |[f(b) — f(a)] < M|b — a| for alla,b e U.

Proof. Let u € R™, |u| =1, and define ¢ : R™ — R by ¢(t) = u-t. We
note that d¢ = ¢ at each point, since ¢ is linear, and ||d¢|| = ju] = 1. Now
define g = ¢ o f. Then dgp = do¢g(p) o dfp, by the chain rule, and so

lldgpll < lidol| lldfpll = lldfp|l < M.
Applying the last corollary, we have
u- (f(b) - f(a)) = g(b) — g(a) < M|b —a|

for every unit vector u € R™. But we may choose such a unit vector u so
that u - (f(b) — f(a)) = |f(b) — f(a)|. ]

8.20 Corollary. Let U be a connected open set in R*. Iff : U — R™ is
differentiable at each point of U, and f'(p) = O for every p € U, then f is
constant.

Proof. Fix pp € U, and let V = {p € U : f(p) = f(po)}. Then V
is nonempty, and V is closed in U since f is continuous. Furthermore,
V is open: for if p € V, we may choose an open ball B centered at p
which lies entirely in U; the last corollary applies, with M = 0, to yield
If(q) — f(p)| = O for every q € B, so B C V. Thus V is open, as well as
closed. Since U is connected, it follows that V = U. |

8.4 Partial Derivatives

Let U be an open set in R", and f : U — R. If p = (p1,....pn) € U,
then (for j = 1....,n) the function t — f(p1,...,pj-1,t,Pj+1,-...Pn) i8
defined in an interval (p; — 4, p; + &) for some 6 > 0, so it makes sense to
ask if it has a derivative at p;; if it does, we call that derivative the jth
partial derivative of f at p, or the partial derivative with respect to the jth
courdinate function z;, and denote it by D; f(p), or by (0f/0z;)(p). We
may define the partial derivatives of a vector-valued function, i.e., a map
f:U — R™, in the same way. In other words,

. f(p+he;)—f

provided this limit exists.
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8.21 Proposition. Let U be open in R™, and suppose that f : U — R™
is differentiable at p € U. Then D;f(p) exists for each j, 1 < j < n, and
dfp(h) = 37 W D,f(p), for h = (h',... A").

Proof. If L = dfy,, we are given that
£(p + he) — £(p) = L(he,) + r(h),
where r(h)/h — 0 as h — 0. Since L is linear, we have

f(p + he;) - f(p)
h

r(h)
h

= L(e;) + ——

which shows that D;f(p) exists and equals Le;. It follows that

n n n
Lh = L(z hie,) =Y hLej =) hD;f(p),
i=1 j=1 j=1

as claimed. |

This proposition can also be formulated as a description of the ma-
trix f’(p) of the linear transformation df, associated to the map f =
(fis---y fm), namely,

f'(p) = [Dif(p) Daf(p) -+ Duf(p)],

where D;f is the column vector [D; fi, ..., D;fm]*, that is
‘oW = D (o) = i
(f'(p)), = D;fip) = 9z’

where the left-hand side denotes the entry in the ith row and jth column
of the matrix f’(p). Let us express the chain rule (Theorem 8.15) in terms
of partial derivatives. In the situation of Theorem 8.15, if h = go f, we
have h'(p) = g’(f(p)) f'(p), and thus

D;hi(p) = Y_(Dgi) (£(p))(D; fi)(p)-

k=1
With the classical notation, it is customary to write yx = fi(x1,...,Tn)
and z; = g;(¥1,...,Ym), and write the chain rule (suppressing the points

at which functions are to be evaluated) in the form

0z; e
Z).’I?J g Yk o.t_,
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8.22 Example. The converse of Proposition 8.21 is false: the existence
of the partial derivatives of f at a point, or even throughout an entire
neighborhood of a point, does not imply that f is differentiable at the
point. Indeed, it does not even imply that f is continuous at the point.
Consider the example

2st e 2, 42
f(syt)={g2—+t2 if s+t > 0;
0 ifs=t=0.
It is easy to see that f is differentiable at each point other than the origin,
and that D, f(0,0) = D,f(0,0) = 0, since f(s,0) =0 = f(0,t) for all real
s and t. But f(t,t) =1 for all t #£ 0, so f is not even continuous at (0,0).

However, with a slightly stronger assumption, we can deduce differentia-
bility.

8.23 Theorem. Let U be open in R™, and let f : U — R. Suppose that
for each j, 1 < j < n, D;f exists in a neighborhood of p € U, and is
continuous at p. Then f is differentiable at p.

Proof. Let r(h) = f(p+h) - f(p) — 37_, " D, f(p); we must show that
r(h)/lh] — 0 as h — 0. Let k; = Y7_, he, for j = 1,...,n, and let

ko = 0. Thus k; = h'e, and k,, = h. By applying the mean value theorem
in one variable n times, we find

n

r(h) =) _[f(p+k;) - f(p+k;-1) - W D; f(p))

=1

=) [f(p+k;_1+he;) - f(p+k;_1) - WD, f(p)]
ij=1

=S w([D,f(a;) - Dif(p)],
1=1

where q; = p + k;_; + 87h’e; for some 67 € (0,1). By hypothesis, we can,
given any € > 0, find 6 > 0 such that |D;f(q) — D; f(p)| < ¢/n whenever
la — p| < 6. Now if |h| < §, it follows that |k;| < & for each j, and hence
that |q; — p| < 6 for each j. We conclude that

Ir(h)| < =3~ K| < elh|
Jj=1

whenever |h| < 6. |

If f:Q — R, then D; f(p) exists for p in some (possibly empty) subset
U of Q, so it is possible that Dy D; f(p) exists at some p € U, for some
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k. This is a second-order partial derivative. Similarly, we can have partial
derivatives of order r for any positive integer r; such a partial derivative will
have the form Dj, Dj, - -- D;,_f, where each j; is an integer from {1,...,n}.
It is customary to write D?f for D;D; f, etc. The notation

of
6xj,azj, s 81:,-,
is also commonly used. The following result makes it much easier to deal

with higher order partial derivatives.

8.24 Theorem. Let Q2 be an open set in R", let f : ! — R, and suppose
that D;f, D;f and D;D;f exist in a neighborhood of p € 2, and that
D;D; f is continuous at p. Then D;D; f(p) exists, and, in fact, D;D; f(p) =
D.D,;f(p).

Proof. We may assume without loss of generality that n = 2, ¢ = 1,

and j = 2. Let p = (a,b), and choose § > 0 so that (s,t) € Q whenever
|s—a] < éand|t—bl <é. Let

A(h,k) = f(a+ h,b+ k) — f(a+ h,b) — f(a,b+ k) + f(a,b). (8.5)
Then
A(h,k) _ . Daf(a+hb) — Dyf(a,b)

Jim, fim —hk = A, h = D1D:f(a,b),
and similarly
. A(hk)
'll_%'l‘l_f‘f}) “hE DD, f(a,b),

provided, of course, that this limit exists. Let g(t) = f(a + h,t) — f(a,t).
Then g is differentiable on the interval [b,b + k] (or [b + k,b] if £ < 0),
and g'(t) = Daf(a + h,t) — D2f(a,t). Now, by the mean value theorem
(Theorem 4.22), we have

A(h, k) = g(b+ k) — g(b) = kg’ (b + pk)
for some 0 < p < 1. Another application of the mean value theorem gives
Dyf(a+ h,b+ uk) — Daf(a,b+ pk) = hDy D, f(a + Ah,b+ pk)

for some 0 < A < 1. Combining these last two equations, we get

A(h,k
(hk ) DyDaf(a+ Ah,b + k).
Since DD, f is continuous at (a,b), we see that
A(h, k)

(h.k)l—»m(o.o) hk = DiD2f(a,b),

and this is more than we need to obtain the desired conclusion. [ |
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8.25 Definition. Let f : @ — R, where Q is an open set in R"*. We say
that f is of class C" in Q, or f € C"(R), if all the partial derivatives of
f of order r exist and are continuous throughout Q. (This implies that all
partial derivatives of order less than or equal to T exist and are continuous.)
We say that f is of class C™ if f is of class C" for every positive integer .
We define C°(f2) to be the set of all continuous functions on Q.

Thus
cQ)o>C () D---oC" () dDCTHH(Q)
and C*(2) =N, C (). Similarly, we say that a vector-valued function
f is of class C" if f = (f1,..., fm) where each f; is of class C".

If f is of class C”, r > 1, then by a repeated application of Theorem 8.24
any mixed partial derivative of order r of f can be brought into a standard
form:

D;,Dy,---D; f =Dy Dy --- D~ f,
where the nonnegative integers a; are obtained by a; = #{k : jx = i}.
It is clear that 3", a; = r here. In the context of partial derivatives, an
n-tuple a = (a,...,a,) of nonnegative integers is called a multi-indez,
and k = Y _ a, is called the order of a, and written |a|. The corresponding
partial derivative has multi-index notations:
aa
DyDg - Dnf=Df = 0L

We note that for any multi-index a, |a| = r, there are many ways to write

D as Dj, --- D; . How many ways? Well, we may select the a; positions

where jx =1 in
T\ _ r!
ag - (11!(1‘—(]])!

ways; the ag positions where jx = 2 may be chosen from among the re-
maining r — a; available gpots in

(r—al) _ (r—ay)!
as T ag! (r—a; —a3)!

ways, and so on. Combining the possibilities, we find that the number of
distinct ways of expressing D as a sequence of first-order partial deriva-

tives is
T ! 7!
a a olay!an!’

which is called a multinomial coefficient.

The muiti-index notation makes it easier to deal with polynomials in n
variables; if x = (z,...,Z,), we write x* as shorthand for the monomial
z7'x3? - - 23~. Thus, the general polynomial in n variables, of degree < r,
has the form 3°, . cax®.

The following theorem, known as Taylor’s heorem in n variables, may be
regarded as a generalization of the mean value theorem.
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8.26 Theorem. Let U be an open convex set in R™, and suppose that
f:U — R s a function of class C™!', r > 0. Ifpe U andq=p+h e U,
we have the Taylor formula: there exists 8, 0 < 6 < 1, such that

fl@)= )" E{ff—‘-’lh‘w > D;i(,—oﬂh". (8.6)
lal<r ) lal=r+1 :

Proof. Fix p+h € U, where h = (hy,...,h,), and define g(t) = f(p+th)
for 0 <t < 1. Then g is of class C"*! on an interval containing [0, 1], so by
Taylor's theorem for functions of one variable (Theorem 4.33), we have

“(0) , gm+V(e)
k! (r+1)

" af
fp+h)=g(1)=Y"2 8.7)
k=1

for some 6, 0 < @ < 1. But according to the chain rule,

g'(t) =) Dif(p + th)h,,

i=1

g"(t)=>)_D;, (Z Dif(p + th)h.—)h, = Y D;D;f(p+ th)hh;,

j=1 i=1 =1

and, in general,

9™ (t)= Y D;,Dj,--Dj, f(p + th)hj by, --- by, (8.8)

Jue-Jn
=Y ((’i)uﬂ f(p + th)h®. (8.9)
la|l=k

Substituting (8.8) into equation (8.7), we obtain the desired formula. @

The first term on the right in equation (8.6) is called the Taylor poly-
nomial of order r for f at p; it is the unique polynomial P,(x) of degree
< r with the property D*P,(p) = D*f(p) for every a with |a| < r. The
proof is left as an exercise. Other versions of Taylor’s theorem give different
expressions for the remainder term f(q) — Pr(q).

8.5 Inverse and Implicit Functions

Let U be an open set in R™, and let f : U — R™ be differentiable at
p € U. If f is injective, and maps U onto an open set V in R™, it does
not follow that the inverse function g : V — U is differentiable at p. [The
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simplest example is with n = m = 1, and f(t) = t3. It is easy to see that f
is everywhere differentiable, and maps R bijectively to itself, and that the
inverse function g is continuous everywhere (g(t) = t'/3 for all ¢, of course),
but g is not differentiable at 0.] Indeed, it is a simple consequence of the
chain rule that if the inverse function g to f is differentiable at q = f(p),
then dfy must be invertible; for by Theorem 8.15, we have df(p) o dg(q) =
I, and dg(q) o df(p) = I, where I, and I,, are the identity mappings of
R™ and R", respectively.

This incidentally shows that necessarily m = n in this situa-
tion. This is hardly surprising, but the corresponding fact in
the context of continuous mappings is rather deep; it turns out
to be not at all easy to show that there is no bicontinuous map
of an open set U in R" onto an open set V in R™ when n # m.
Differentiable functions are much easier to understand than the
most general continuous functions.

The following theorem is called the inverse function theorem:

8.27 Theorem. Let §) be an open set in R™, and let f : 2 — R™ be a
mapping of class C", r > 1. If p € Q, and df}, is invertible, then there exists
a neighborhood U of p such that f is one-one on U, V = f(U) is open, and
the inverse g of f|y is of class C".

Proof. The proof is notationally much simpler when we make some simple
normalizing assumptions, so we first prove:

8.28 Lemma. Let Q2 be a neighborhood of 0 € R", and suppose that
f : Q — R" is differentiable in 2, with f(0) = 0, dfe = I, and that df is
continuous at 0. Then there exists a neighborhood U of 0 such that:

(a) for all sy, 83 € U, |f(s;) — f(82)| > 381 — s2;
(b) f(U) contains a neighborhood V of 0; and

(c) there is a function g : V — U such that f(g(t)) =t forallt € V,
and such that g is differentiable at O, with dgo = I.

Proof. From the continuity hypothesis, we know there exists 6 > 0 such
that ||I — df,|| < § for all s with |s| < 6. Let U = {s : |s| < §}. Define
F(s) = 8—f(s) fors € U. Then dF = I—df, s0 ||dF4|| < % for alls € U. Now
for every s8;,82 € U it follows from Corollary 8.19 that |F(s;) — F(s2)| <
3ls1 — 82|, s0

|f(s1) — f(s2)| = Is1 — 52 — [F(s1) — F(s2)]}
2 |s1 — s2| — |F(s1) — F(s2)|
> |81 — 82| — 3|81 — 82| = 381 — s2).
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We have established (a).

Choose ¢ with 0 < 4¢ < 6, and let V = {t : |t| < ¢}. Let K = {s:
|s] < 4e}, so K is a compact subset of U. Let t € V. Define the real-
valued function ¢ on K by ¢(s) = |f(s) — t|2. Clearly, ¢ is continuous
on the compact set K, s0 it assumes a minimum on K. Now if |8] = 4,
then |£(8)| 2 [8]/2 = 2¢, so p(8) > (2¢ — |t])? > €. On the other hand,
©(0) = |t|? < €2. Hence ¢ assumes its minimum value at an interior point
s of K. Hence we have dyp(s) = 0. Now an easy calculation shows that

Dyp(s) =2 _(fi(s) — t;) D, fi(s)
i=1

for j = 1,...,n, in other words, that df,(f(s) — t) = 0. Since df, is non-
singular, this implies that f(s) = t. Thus f(U) D V, and we have proved
(b).

For each point t € V, we put g(t) to be the point s € U for which
f(8) = t; this point exists by (ii), and is unique in consequence of (i). The
inequality of (i) shows that |g(t;) — g(t2)| < 2|t, — t2|; in particular, that
g is continuous in V. Now f(h) = h + r(h), where r(h)/|h| - 0 as h — 0.
Hence

|g(h) — h| = |g(f(h) — r(h)) — g(f(h))| < 2/r(h)],
which shows that g is differentiable at 0, with dgo = I, i.e., (c) holds. I

Here is another proof of (b). Choose € so that 0 < 2¢ < 6, and
put V.= {t:|t| <€}, K = {8:]|s| < 2¢}. Given t € V, define
the function F by F(s) = t + 8 — f(8); then dF = I — df, so
||[dFs|| < 1/2 for all s € U. Hence, by Corollary 8.19, we have

|F(s1) — F(s2)| < i1 — 8] (8.10)

for all 8y,82 € U. In particular, if 8 € K, then |F(s) — F(0)| <
3isl, so [F(s)| < 1(Is| + |t]) < 2¢; thus, F maps K into it-
self. Inequality (8.10) says that F is a contraction mapping of
K into itself; since K is complete (as a closed subset of R")
the contraction mapping theorem (Theorem 6.44) tells us that
F has a (unique) fixed point 8 € K, but F(8) = s means
f(s) = t. Thus f(U) D V. The advantage of this proof over
the one above is that it carries over to the case of differen-
tiable mappings between infinite-dimensional complete normed
linear spaces, whereas the proof above relies essentially on the
mapping having domain a subset of R", since it uses the com-
pactness of closed bounded sets.

The proof of Theorem 8.27 is obtained from Lemma 8.28 by an affine
change of variables. Let q = f(p). Define maps ¢,9 : R® — R™ by ¢(x) =
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x - p, ¥(y) = df;'(y — q). Thus ¢(p) = 0 = %(q), ¢'(p) = I, ¥'(q) =
f'(p)~!. Define F on the open set ¢(2) by F = ypofo¢~'. Then F(0) = 0,
F' is continuous at 0 and F'(0) = I. Applying Lemma 8.28, we find there
exist open neighborhoods Uy and Vj of 0, and a map G : Vy — Up, such
that F o G = Iy, and G is differentiable at 0. Define V = y~!(V;) and
U=¢"1o0F (Vp) =f}(V). Then U and V are open neighborhoods of
p and q, respectively. Define g = ¢~! 0 G 0 1); then g is differentiable at q,
and g(V') = U. Also,

fog=(¥ 'oFo¢) (¢ 'oGoy)=Iy.

Applying the argument with p replaced by x € U, we conclude that g is
differentiable at every y € V. Hence by the chain rule, if y = f(x), then
f(x)gy)=1,s0g = (f’)_l. Since the elements of A~! are C* functions
of the elements of A for any matrix A, it follows that g’ is of class C*, and
thus g is of class C**!, whenever f’ is of class C*. Since f is of class C,
taking k = r — 1 shows that g is also of class C". ]

The following diagram may make it easier to follow the argument just
given:

peU - qevV

L |»

0 € Uy LR 0eV

We close this chapter with the very important implicit function theorem.
The reader should first go through the proof of this theorem thinking of
the special case n = m = 1. The notation in the statement of the theorem
indicates that we are identifying R"*™ with R"® x R™.

8.29 Theorem. Let 2 be an open set in R**™, and let f : # — R™ be
a mapping of class C", r > 1. Let p = (a,b) € Q, and let £ be the “level
surface” of f through p:

L={qeN:f(q)=f(p)}
Define S € Z(R™,R™) by S(h) = dfp(h,0) and T € Z(R™) by T(k) =
dfy,(0,k). Suppose that T is invertible. Then there exist a neighborhood U

of p € R"*™, a neighborhood W of a in R®, and a mapping g : W — R™
which is of class C", such that

TNU = {(s,g(s)) :s € W}.

Furthermore, dgs = —T™!S.
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Proof. We may assume f(p) = 0. Define the map F : @ — R"*™ by
F(s,t) = (s,f(s,t)); clearly, F is of class C" in (2, and we can easily verify
that

dF(h,k) = dF(h,0) + dF(0,k) = (h,df(0,k)),

and, in particular, dFp(h, k) = (h, Tk), so that our hypothesis guarantees
that dF, is nonsingular. We can thus apply the inverse function theorem:
there exists a neighborhood U of p (contained in ), and a neighborhood V
of F(0) = (a,0) in R**™, such that F maps U one one onto V, and such
that the inverse mapping G of V onto U is of class C". We may assume

Figure 8.1. The construction in Theorem 8.29

(shrinking if necessary) that V has the form V = {(s,t) : |s—a| < ¢, |t| < ¢}
for some € > 0. Let W = {s € R" : |s — a| < ¢}. Since G(s, f(s,t)) = (s, t)
for all (s,t) € U, it follows that G has the form G(u,v) = (u,¢(u,v))
for all (u,v) € V, where ¢ : V — R™ is a mapping of class C". Define
g: W — R™ by g(s) = ¢(s,0). Then, for any (s,t) € £NU, we have

(s,t) = G(s,0) = (s, ¢(s,0)) = (s,g(s)),
i.e., t = g(s). Conversely, if s € W, then
f(s,g(s)) = f(s,¢(s,0)) = 0.

It is a routine application of the chain rule to find an expression for the
differential of the explicit function g. The equation f(s,g(s)) = 0 which
holds throughout a neighborhood W of a can be read as f o H = 0, where
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H(s) = (s,g(s)) = G(s,0). Then dfy, o dHa = 0; but it is easy to see that
dHq(h) = (h,dga(h)), so we have

dfp o dHg(h) = Sh + T(dga(h)) = 0,
or dg‘h = —T—]Sh- '

The hypothesis that T is invertible is equivalent to the assertion that the
last m columns of the matrix f/(p) are linearly independent. If this matrix
is only assumed to have rank m, then there exist m linearly independent
columns, and a permutation transformation changes the situation to that
hypothesized in the theorem. In terms of matrices, we have g’(a) = —B~! A,
where A, the matrix of S, is the m x n matrix formed from the first n
columns, and B, the matrix of T, is the m x m matrix formed from the
last m columns, of f’(p).

With the classical notation, this can be expressed as follows: let y; =
Zn4j for j =1,...,m; then

where
@_ — a(ylv‘“vyWI) — 2&
ox  O(z1,...,xp) Oz;
is the Jacobian matrix of y = g(x) and the right-hand side refers to the
matrices
9 9t
OIJ' ’ Oy,- !
respectively.

8.6 Exercises

1. Prove Proposition 8.5.

2. The trace norm of a linear map is usually much easier to compute than
the operator norm. Find ||L|| and ||L||;, when L : R? — R? has the matrix

1 1
w=[o 1)
3. Let T € Z(R"). Show that the series

k=0 k!
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converges to an element of Z(R"™), which we denote by eT. Show that
if S,T € Z(R") and ST = TS, then e5*T = eSeT. Deduce that eT is
invertible for every T € Z(R").

4. Show that if T € Z(R") and ||[I — T|| < 1, then there exists S € £Z(R")
such that €5 = T. Find an example of an invertible T € #(R") such that
there is no S with e = T..

5. Let 2 be open in R", and suppose that f and g are real-valued func-
tions differentiable at p € 2. Show that fg is differentiable at p, and that
d(f9)p = f(p)dgp + 9(p)dfp.

6. Let f : R — R" be differentiable, and suppose that |f(t)| = 1 for all real
t. Show that f'(t)-f(t) = O for all t. What is the geometric meaning of this?

7. Let p, V, T be positive real variables, connected by the relation pV = kT,
where k is a positive constant. Then each of p, V, T is an (implicitly defined)
function of the other two variables. Show that

Op OV oT _

£ =]

8V aT op

Show that this equation holds if we only assume the relation F(p,V,T) =0
for all p, V, T in the domain of F, for some function F of class C' with
D;F(p,V,T) # 0 for all p,V,T and j = 1,2,3.

[The aim of this problem, found in calculus texts, is to demonstrate
that the Leibniz “fraction” notation for derivatives can lead to paradoxical-
looking results when used for partial derivatives; it also intends to induce
a preference in the reader for the notion of function over the notion of
variable. The equation is the ideal gas law from freshman physics.]

8. If f: Q2 — R, where § is open in R", and if u is a unit vector in R",
the directional derivative of f at p in the direction u is defined as

f(p + hu) - f(p)
h .

Duf(p) =, lim
(a) Show that if f is differentiable at p, then D, f(p) exists for every unit
vector u, and Dy f(p) = dfpu.
(b) By considering the function f : R2 — R defined by
st
84 + 12

for (s,t) # (0,0), and f(0,0) = 0, show that f need not be differen-
tiable at p even if D, f(p) exists for every unit vector u.

f(svt) =
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9. A function f : R*\{0} — R is called homogeneous of degree k if f(tx) =
t* f(x) for every x € R®, x # 0, and every t € R, t > 0. Show that if f is
homogeneous of degree k and differentiable, then Z;=1 7’ D; f(x) = kf(x).

10. Show that if f : @ — R, where Q2 is an open subset of R", and if each
partial derivative D, f exists at every point of 2 and is bounded, then f is
continuous in . HINT: Imitate the proof of Theorem 8.23.

11. Let f : R?\0 — R? be defined by

s2—t2 st
fs,t) = (32 +127 52 4 t2> )
Find the rank of dfy, for all p # 0. Describe the image of f.
12. Define f o R? by f(0,0) = 0, and

st(s? — t2)
82 +t2

f(s,t) =

for (s,t) # (0.0). Show that f is of class C! in R2, and that the mixed
partial derivatives D, D, f and D, D, f exist at every point of R2, but that
Dy D7 f(0,0) # D2Dy £(0,0).

13. Let @ = (ay,...,an) and B = (6,...,3,) be multi-indexes, and let
x = (ry,....Tq) be the identity map of R" (i.e., let z; be the jth coordinate
function on R", for j = 1,...,n). Observe that dr, - {0,...,1,...,0] (the

row vector with all elements 0 except for 1 in the jth place), and that
df = 3°7_, D;f dz;. Show that

' ifa=0:
o= {3t 270

Deduce that if ¢, € R for each a with |a| < r, then

P(x) = Z 3#"

la|<r

is the unique polynomial of degree < r satisfying D® P(0) = ¢, for each a
with |a] <.

14. Show that continuity of the differential is essential in the inverse func-
tion theorem by considering the function f : (-1,1) — R defined by
f(0) = 0 and f(t) = t + 2t%sin(1/t) for t # 0. Show that f is every-
where differentiable, and even that f’ is bounded, that f/(0) = 1, but that
f is not injective in any neighborhood of 0.

15. Show that if U is open in R™, and f : U — R™ is continuously differ-
entiable, with f'(p) nonsingular for every p € U, then f(U) is open.
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16. Let f : R — R? be defined by
f(z,y) = (e® cosy, e* siny).

(a) Show that f is injective on the strip {(z,y) : -7 < y < w}.
(b) If g is the inverse function, find g'(0,1).

17. Let f : R? — R? be defined by f(z,y) = (z? — y?,2zy). Show that df},
is invertible for all p # 0. Find an explicit formula for the inverse function
g which the inverse function theorem says exists in a neighborhood V of
(1,0) = f(1,0).

18. Define g : R? — R? by g(z,y) = (ycosz, (z + y)siny), and f : R? —
RS by f(l‘, y) = (12 - yv31' - 23/, 2Iy + yz)‘

(a) Show that g maps a neighborhood of (0, 7/2) bijectively to a neigh-
borhood of (7/2,7/2).

(b) If h=fog™!, find the matrix h'(r/2, 7/2).
19. The equations

uz — 2e"* =0,
u—1x2- y2 =0,
v —zylogv —1=0,
define z (implicitly) as a function of (1, v), and (u, v) as a function of (., y),
thus z as a function of (z,y).
Describe the role of the inverse and implicit function theorems in the
above statement, and compute

0z
%(07 8).

2

(Note that whenz =0and y =e,u=¢€*,v=1,and 2 = 2.)

8.7 Notes

There are many good texts on linear algebra, and we have run through
some familiar results largely to establish some notation and terminology;
the last theorem in the first section, and its corollary, have an analytic
flavor, and may well have not been mentioned in the usual linear algebra
course. Determinants, mentioned in passing in this section, will play an
important role later on. It is interesting that the theory of determinants
was developed before that of matrices; it has its roots in the eighteenth
century (and was studied in China independently of any contact with Eu-
ropean mathematics). The Swiss mathematician Cramer found his famous
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rule in 1750, but no general definition of determinants seems to exist be-
fore Cauchy (1815), and a definition immediately recognizable to modern
readers first appeared with Jacobi (1841). Jacobi was above all an analyst,
and all determinants to him were functional determinants (which Sylvester
(1853) called Jacobians: the name has stuck.) Cayley, also in 1841, enclosed
the array in two straight lines, and made major contributions to the theory;
a few years later, he and Sylvester created matrices.

I know little about the developments that led to the inverse function
theorem and the implicit function theorem, two quite important theorems
that seem not to be attributed to any individual. Jacobi had shown that a
set of n functions of n variables are functionally related if and only if their
functional determinant (Jacobian) vanishes identically. The notion of rank
of a matrix first appeared in the work of Sylvester some years later.
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Measures

In Chapter 5 we defined the Riemann integral of a real function f over a
bounded interval [a, b] by

b n
[ 1@z =1im 3 1)@, - 2,-0),
a i=1

where r;_; < §; < z; for each j, and the limit is taken over increasingly
fine partiticns a = rog < 1 < --- < x, = b of the interval. We found that
this limit existed whenever f was continuous on [a,b], in fact, whenever
f was bounded, with a set of discontinuities D which was “small,” in the
sense that for any € > 0, there existed a finite collection of open intervals
{(ak,bx) : k = 1,...7} such that

DcC U(ak,bk) and Z(bk —ax) <e.
k=1 k=1

This is a fairly rich class of functions, including as it does not only every
continuous function, but also some functions which have infinitely many,
even uncountably many, discontinuities (recall that the Cantor set is small
in the above sense.) However, the class of Riemann integrable functions
does have at least one glaring weakness: it is not stable under pointwise
convergence. That is, if f,, is Riemann integrable for each n, and if f,(z) —
f(z) for every z, a < £ < b, it is entirely possible that f is not Riemann
integrable. (For instance, take a = 0 and b = 1, and set f,(z) = 1 if
r = m/n! for some integer m, and f,(r) = 0 otherwise. Then each f, is
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Riemann integrable, and f,, converges pointwise to the function f, where
f(z) = 1if z is rational, and f(z) = O when z is irrational. We have seen
that f is not Riemann integrable.) It would be agreeable to have a way of
integrating functions which, while giving the same result when applied to
continuous functions, has the property that the ordinary limit processes of
analysis can be carried out freely. Also, it would be nice to have a less ad
hoc treatment of the integration of unbounded functions, or functions on
unbounded intervals, than we were able to give before. Finally, we want
to develop integration in R™ for n > 1, and the Lebesgue theory that we
are about to develop makes it possible to do this with the same ease as
for n = 1. In fact, the theory makes it possible to do integration in a very
general setting. The definition of integral that we will introduce in the next
chapter is based on the theory of measure, pioneered at the end of the last
century by Emile Borel. This is a mathematical model applicable to the
geometric notions of length, area, or volume, and to the physical notion
of mass. It is also an appropriate mathematical model for the notion of
probability, when “events” are interpreted as sets.

9.1 Additive Set Functions

It turns out to be impractical to try to assign a “length” to every subset of
R, for instance. We will have to content ourselves with having a reasonably
large class of “measurable sets.” The next two definitions clearly single
out the most essential property of measurement: that an object can be
measured by breaking it up into smaller pieces, measuring those, and adding
the results.

9.1 Definition. Let X be a set. A collection «& of subsets of X is called
an algebra if:

(a) 0 e o,
(b) if A€ o, then A€ € of; and
(c) ifAe & and Be of, then AUB € &.

Thus, an algebra of subsets of X is a nonempty collection closed under
the operation of complementation, and closed under union. Since AN B =
(A€ UBY)%, an algebra is also closed under the operation of intersection.
Also, an obvious induction argument generalizes (c) above to the statement

n

that | J;_, A; € & whenever A,,..., A, € &. The two simplest examples

of algef')ra.s are the trivial algebra {0, X}, and 2(X), the collection of all
subsets of X.
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9.2 Definition. Let u be a function whose domain is an algebra &/ of
subsets of X. We say that u is finitely additive, or simply additive, if
w(AU B) = u(A) + u(B), whenever A,B € o and ANB = 0.

We observe that if y is finitely additive on <, an easy induction argument

shows that
n n
w(U 40) = 3 utan)
k=1 k=1

whenever A,,..., A, are pairwise disjoint elements of .

Note that we carelessly omitted to say what kind of values the set func-
tion g took. Well, all that is needed is that there be some meaning for
addition; values in R or R™, for instance, would make sense, or values
which were linear transformations on some (fixed) vector space. However,
the kind of values we will restrict ourselves to in the sequel are nonnegative
extended real values; i.e., u(A) is to be either a nonnegative real number,
or the symbol oo, with the addition rule t + oo = 0o + t = oo for any t.
We note that if u is additive, then for any A, B € & with A C B we have
B =AU (BN A°), so u(B) = u(A) + u(BN A€) > u(A). We express this
property with the phrase “u is monotone.” Note also that if u is additive,
then u(@) = 0, unless u(A) = oo for every A.

9.3 Example. Let X be any nonempty set, and define 4 on 2(X) by
u(A) = #A, the number of points in A, if A is finite, and u(A) = oo if A is
infinite. We call this set function counting measure on X. It is easily seen
to be additive.

9.4 Example. Let X be any nonempty set, fix £ € X, and define 4, :
P(X) - Rbyb,(A) =1ifx € A, and 6,(A) = 0if r ¢ A. This set
function is called the unit point mass at r. It is clearly additive.

9.5 Example. Let X = R, and let .# be the collection of all semiclosed
intervals (a, b}, where —00 < a < b < 00, together with the open intervals
of form (a,00). (The case a = b was included so that § € #.) We note
that # is closed under finite intersections, but not under complements or
finite unions. Let & be the class of all sets which can be expressed as finite
unions of sets in #. Then & includes the complement of every element of
#, and hence is closed under complements as well as intersections. Thus
& is an algebra. Let pu((a,b]) = b— a. Every A € & can be expressed as a
disjoint union of intervals in #: A =Jj_, I;, with [, € F and ;N1 = 0
for j # k. We can define u(A) to be Z;=| u(1;), provided we show that
this sum depends only on A, and not on the particular decomposition into
disjoint intervals. This can be done; we omit the details. Thus we can assign
a “length” to each set in &,
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9.6 Example. We can generalize the last example to R™. Let X = R",
and let # be the collection of all semiclosed “intervals” of the form

={(:c,,...,1:,,):aj <zTj Sbj,j: 1,...,"},

where —> < a; < b; < +oc for j = 1,...,n and we interpret z; < b; as
z, < x if b; = . (We may occasionally use the more compact notation

= {x : a < x < b}.) We observe that # is closed under intersections,
but not under complements or unions. Let & be the class of all sets which
can be expressed as finite unions of sets in #. We can check that the
complement of any I € # is an element of &, and it follows that & is an
algebra. If I is an interval as above, define (/) = H;:l(bj —ay). Thus u is
the usual “volume” of a box in R™. Now every A € & can be expressed as a
finite union of disjoint intervals Iy € #; we want to define u(A) = 3 p(lx),
but in order to do this, we must show that this formula is unambiguous.
In other words, it must be shown that if

r 8
A=UL=Umn
j=1 k=1
where Iy,..., I, are pairwise disjoint intervals, as are I{,...,I,, then

S oul;) =" uy).
j=1 k=1
This can be done without much difficulty, but we omit the argument here.

9.7 Example. Again, let X = R, and let & be the algebra of Example
9.5. Let g be a nondecreasing real function on R, and define the set function
Hg by pg((a,b]) = g(b) —g(a), and pg(A) = 3-7_, pe([;) if A is the disjoint
union of Iy, ..., I, with each I; € .#. One can show that u  is well-defined
(that pg(A) is independent of the particular decomposition of A into inter-
vals), and is finitely additive. Any finitely additive 4 on & which is finite
on bounded intervals is of the form p, for some nondecreasing g. Simply
define g(z) = p([0,z)) for z > 0, and g(z) = —u([z,0)) for z < 0.

9.2 Countable Additivity

The last two definitions carry the absolutely minimal properties of our
intuitive idea of measure. They are not sufficiently restrictive to enable us
to deal effectively with limit processes, so we impose further conditions.

9.8 Definition. A collection & of subsets of X is called a -algebra if the
following hold:
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(a) D e o;
(b) A€ € of whenever A € o; and
(c) if Ay € o fork =1,2,..., then UT;lAk € .

In other words, a o-algebra is an algebra which is closed under countable
unions. The algebras {, X} and 2?(X) are o-algebras, while the algebras
of Examples 9.5 and 9.6 are not. By taking complements, one sees that
a o-algebra can also be described as an algebra closed under countable
intersections. :

It is not hard to see that the intersection of any nonempty collection of
algebras (or o-algebras) of subsets of X is again an algebra (or o-algebra).
In particular, given any class . of subsets of X, we may take the inter-
section of all algebras (resp., o-algebras) of subsets of X which contain »*
(this is a nonempty collection since it contains $?(X)); this is the smallest
algebra (resp., o-algebra) which contains .#, and we refer to it as the alge-
bra (resp., o-algebra) generated by . In Examples 9.5 and 9.6 above, the
algebra & is exactly the algebra generated by the collection #. We could
describe the algebra generated by % more constructively, as the set of all
finite unions of finite intersections of sets in .¥ and their complements. If
& consists of the singletons (sets with exactly one point) in X, then the
algebra generated by .# consists of the sets which are either finite or have
finite complement, and the o-algebra generated by .% consists of those sets
which are either countable or have countable complement. In general, it is
not so easy to describe the sets in the o-algebra generated by a family &.

9.9 Definition. Let X be a topological space. The o-algebra generated
by the closed subsets of X is called the Borel algebra, or the class of Borel
sets of X.

Thus, every closed set is a Borel set, and every complement of a closed
set, i.e., every open set. Every countable intersection of open sets is a Borel
set, and every set which can be expressed as a countable union of such
countable intersections, etc., etc.

The o-algebra & of subsets of R generated by the intervals (—o0, a] is the
Borel algebra; for any interval (a, b} can be expressed as (—oo0, bjN(—00, a|°,
s0 (a,b] € &, and any open interval is the union of intervals (a, b,), so any
open interval, and hence any open set, belongs to 9. Thus every Borel
set belongs to #4; on the other hand, since every (—o0,a] is closed, every
member of & is a Borel set. If we restrict ourselves to intervals (—oo, a]
with a rational, we still get all Borel sets. Similarly, the o-algebra generated
by the semiclosed intervals # of Example 9.6 coincides with the Borel sets
of R™; so does the o-algebra generated by bounded open intervals with
rational endpoints, for instance. It is hard to think of a subset of R™ which
is not a Borel set, but there are plenty of them.
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9.10 Definition. Let p be a set function whose domain is a class & of
subsets of a set X, and whose values are nonnegative extended reals. We
say that u is countably additive if

u(g Ak) = gl‘(Ak)

whenever (Ay) is a sequence of pairwise disjoint sets in & whose union is
also in of . (If o is a o-algebra, the last clause can of course be omitted.)

A measure on X is a countably additive nonnegative set function whose
domain is a o-algebra of subsets of X.

The set functions of Examples 9.3 and 9.4 above (counting measure, the
unit point mass) are easily seen to be measures. If x is defined on 4(X) by
u(A) =0 if A is finite, and p(A) = oo if A is infinite, we have an example
of a finitely additive set function which is not countably additive (assuming
X is infinite.) The set function x4 of Example 9.5 above can be shown to be
countably additive; we don’t call it a measure because its domain is not a
o-algebra.

A measure on a topological space X whose domain is the Borel algebra
is called a Borel measure. (Be warned though, that some authors use Borel
measure to refer to a measure defined on the Borel sets with the additional
property that compact sets have finite measure.)

We next observe that the countable additivity property can also be ex-
pressed as the “continuity from below” of the set function pu.

9.11 Proposition. Let u be a finitely additive set function, defined on the
algebra &/. Then u is countably additive if and only if it has the following
property: if A, € & and A, C An+1 for each positive integer n, and if
Unei An € &, then p(Une ) An) = limp_.oo pu(Ay).

Proof. Suppose u is countably additive. If we set B; = A, and B, =
Ap\A,_; for n > 1, we see that A, = U}_, Bk, and that the sets By are
pairwise disjoint, so

n
) B) = Jim, 3 w(Be) = lim p(An).

Cz

u(f_JAn) = u

k

Now suppose that u is finitely additive, and has the “continuity from
below” property. If {A,} is a sequence of pairwise disjoint sets in &, and
we put B, = Ug-; Ak, then B, C By for every n, so u(B,) — u(B),
where B = |J—, Bn = Upw; An. But since u is finitely additive, u(B,) =
S ko1 #(Ak), 50 p(Bn) = Y pe, #(Ak). Thus p is countably additive.  §

Here are some ways to get new measures from old ones.



9.2 Countable Additivity 207

9.12 Proposition. Let o be a o-algebra; if p, v are measures on &,
te€ R,, and A € &, then the following are measures on & :

(a) p+ v, defined by (p + v)(E) = u(E) + v(E);
(b) tu, defined by (tu)(E) = tu(E); and
(¢) pa, defined by pa(E) = p(ANE).

We leave the proofs to the reader. We can obviously generalize item (a)
in this list to any finite sum of measures.

The collection of nonnegative set functions with domain & have a natural
order relation: if ;4 and v are nonnegative set functions with the same
domain &, we say p < v if u(A) < v(A) for every A € &f. Similarly, we
can define the set function x4 V v, the maximum of x4 and v, by the natural
(n vV v)(A) = max{u(A),v(A)}; this idea extends to taking the supremum
of an arbitrary collection of such set functions (all having the same domain
&, of course). In general, if 4 and v are measures, it does not follow that
1V v is a measure. (The reader is invited to give a simple example where
it is not even finitely additive.) However, we have the following result:

9.13 Theorem. Let o be a o-algebra of subsets of the set X, and let
A be a collection of measures with domain &. Suppose that .# has the
property: for any j, 2 € .# there exists us € .4 such that u, < pz and
uz < p3. If v is defined by v(E) = sup{u(FE) : un € A}, then v is a measure
on & .

Proof. Certainly, v is a well-defined, nonnegative set function with domain

&/; what we must prove is that v is countably additive. Let {A,} be a
disjoint sequence in &/. Then for each u € #, we have

u(@ An) = gumn) < i V(An),

whence - -
U(U A,.) <Y v(An). (9.1)
n=1 n=1

We have not yet used the key hypothesis. Fix the positive integer n, and
for each k, 1 < k < n, choose ¢, with ¢, < v(Ai). By the definition of v,
there exists for each k some px € # with pux(Ax) > cx. By the hypothesis
of the theorem (extended to n elements of .# by an obvious induction)
there exists u € # such that ux < pufor k=1,...,n. Then

ch < Zﬂk(Ak) < Z#(Ak) = #(U Ak) < V(U Ak),
k=1 k=1 k=1 k=1 k=1



208 9. Measures

and since ¢, < v(Ax) were arbitrary, we conclude that

n

S v < u(g A,.) < u(g Ak)

k=1
for every n, and hence that

o<

v(Ax) < V(O Ak). (9.2)

k=1 k=1

Combining inequalities (9.1)s and (9.2), we see that v is countably additive,
and thus a measure. |

9.14 Corollary. Let {u,} be a nondecreasing sequence of measures, and
define u by u(A) = sup pun(A). Then p is a measure.

9.15 Example. Here is an application of Theorem 9.13. Let X be any
set, and suppose p : X — [0,00). Define the set function p with domain
P(X) by u(A) = > ,cap(x). Then u is a measure. For u = supppur,
where the sup is taken over all finite sets F, and ufr, defined by ur =
Y zer P(T)6z, is a measure in view of Proposition 9.12. When p(z) = 1, we
recover the counting measure of Example 9.3 above. In the general case,
we have theorems about series of positive terms, which we met in Chapter
2. For instance, if X is the disjoint union of countably many subsets X,

we have o
S op@) =3 )

zeX n=1z€X,

as a special case, when X = N x N, we obtain, whenever a,,n, > 0, that

oo 0o oo oo 0o
E E Amn = E E Amn = E E Qmn,
m=1n=] n=1m=1 k=2m+n=k

in particular, the convergence of any of these three double series implies
the convergence of the other two.

9.3 Outer Measures

It i8 often a nontrivial task to construct measures. For instance, we can
define the length of any open subset of R without any trouble, since each
open set has a unique expression as a disjoint union of countably many
open intervals, and from there we can easily find the only candidate for
the length of a closed set; but there is no obvious way to express a Borel
set in terms of open and closed sets, so that we can write a formula for
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its length. There is no canonical way to express an open set in R? as the
disjoint union of intervals, and thus no obvious way to define the area of
an open set in R2. We begin by considering a class of set functions which
lack (in general) the desired additivity property of measures.

9.16 Definition. Let X be a set. An outer measure on X is a nonnegative,
extended-real valued function p* whose domain consists of all subsets of
X, and which satisfies:

(a) u*(0) =
(b) if A C B, then u*(A) < u*(B); and
(c) for any sequence (A,) of subsets of X, we have

n ('g An> < gu‘(a‘in)-

Property (b) is generally referred to as monotonicity, and property (c)
as countable subadditivity. The next lemma describes a general method for
constructing outer measures.

9.17 Lemma. Let € be a collection of subsets of the set X, having the
property that there is a countable subcollection of € whose union is X.
Let A be a nonnegative real-valued function whose domain is €. If u* is
defined by p*(9) =0, and

p(A) = inf{i ACr):Cn €€, G Cn D A}. (9.3)

n=1 n=1
for AC X, A#0, then u* is an outer measure on X.

Proof. The hypothesis guarantees that the set on the right-hand side of
equation (9.3) is not empty; if we agree that the inf of the empty set is
+00, we can dispense with it. Properties (a) and (b) of Definition 9.16 are
obviously satisfied; the issue is countable subadditivity. Let A, be a subset
of X, for each positive integer n. Let ¢ > 0. For each n, we may choose
Cnk €€ (k=1,2,...), such that

[o o} [o o}
AnC |JCax and 3" MCak) < H(An) + 57,
k=1 k=1

according to (9.3); then (since the countable family {Cp x : n,k = 1,2,...}
covers (Joo, An) it follows that

U A,) < Z,\(c,, K=Y MCnx)

n=1k=1
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<D WA +e27) =Y u(An) + e
n=1

n=1

and since ¢ > 0 was arbitrary, the lemma is proved. |

9.18 Example. The single most important example of the construction
given by Lemma 9.17 is Lebesgue outer measure on R™, which is obtained
by taking € to be the class of all bounded open intervals {x : a < x < b},
and

M{a <x <b}) =[]®; - a;).
j=1
We denote Lebesgue outer measure by m*. We would obtain the same outer
measure by taking € to be the set of all bounded intervals in the class /
of Example 9.6, and A to be the u of that example.

Let us verify that m*(I) = A(I) for any interval I. First of all, it is clear
that m*(I) < A(I), by considering coverings by a single open interval. Let
a < A(I). Then we can find a closed bounded interval J C I, with A(J) > a.
Now if {Ck} is any sequence of open intervals whose union contains I,
then by the Heine-Borel theorem there exists n such that J C U:zl Ck.
Then A(J) < E',‘ A(Ck) (for finite unions, this is elementary), and hence
AMJ) < Y22 MCk), 80 a < A(J) < m*(I); since a was an arbitrary
number with a < A(I), we conclude A(I) < m*(I), and thus m*(I) = X([).

9.19 Example. Let g be a nondecreasing real-valued function on R, and
define A, on the collection of bounded open intervals by A\, ((a,b)) =
g(b—) — g(a+). (Recall that g(a+) is defined as limy_04 g(a + h), the limit
from the right at a; similarly, g(b—) is the limit from the left of g at b.)
The outer measure u4 obtained by application of Lemma 9.17 is known as
the Lebesgue-Stieltjes outer measure associated to g. The reason for using
g(b—) — g(a+) instead of just g(b) — g(a) will appear later.

9.20 Example. Another important example of an outer measure on R" is
obtained as follows: fix a nonnegative real number p. For each 6 > 0, let €}
be the collection of all subsets C of R™ with diam C < . Define A\s(C) =
(diam C)P, and let ;" be the resulting outer measure. It is obvious that
X (A) < 5 (A)if 0 <8 < 6. Let

H#*(A) = lim X5 (A) = sup 5 (A);
40 6>0

from Theorem 9.13, or directly, we see that J#* is again an outer mea-
sure, it is called Hausdorff p-dimensional outer measure on R". The same
idea makes sense in any separable metric space. With p = 0, we recover
the “counting measure” of Example 9.3 above. With p = 1 (the original
version of this construction, due to Carathéodory), we get a definition of
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length which can be shown to coincide with the usual idea for paths. It was
Hausdorff's great idea not only to consider values of p different from 1, but
to consider values of p which are not integers. It is not hard to see that if
H,(E) = 0, then MG (E) = 0 for every ¢ > p. The Hausdorff dimension of
E is defined to be sup{p > 0 : J#,(E) > 0}. It is not hard to verify that
the Hausdorff dimension of a countable set is 0, that of a rectifiable curve
is 1, that of an open set in R™ is n. But this notion of dimension does
not always yield an integer; for instance, the Hausdorff dimension of the
Cantor set turns out to be log 2/log3.

9.4 Constructing Measures

We now show how to obtain measures from outer measures. The following

definition may seem artificial, but it turns out to be a very useful technical
tool.

9.21 Definition. Let X be a set, and let u* be an outer measure on X.
We say that a subset E of X is p*-measurable if, for every A C X, we have

j1*(A) = p*(ANE) + p* (AN EC). (9.4)

In other words, a pu*-measurable set splits every set up into two pieces
on which p* is additive. Of course, we always have

p*(A) < p*(ANE) + u" (AN EC)
since u* is subadditive; it is the opposite inequality which is at issue. Let us

note that this is immediate when u*(E) = 0, so every set of outer measure
0 is measurable.

9.22 Theorem. If u* is an outer measure on X, and .# is the collection of
all u*-measurable subsets of X, then .# is a o-algebra, and the restriction
of u* to .# is a measure on X.

Proof. We begin by showing that .# is an algebra. It is obvious that
0 € .#, and that EC € .# whenever E € .#. Suppose that E € .« and
F € .#. Then for any A C X, we have

u*(A) = p*(ANE) + p* (AN EC),
and using AN EC in the role of the test set A in (9.4), also

p(ANEC)=p*(ANECNF) + p* (AN E€ N FC),
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substituting, we have

u(A)=pu(ANE)+u (ANECNF)+u* (AN EC N FC),
whence, using the subadditivity of x* and DeMorgan’s law,

p*(A) 2w ((ANE)U(ANECNF)) +p(ANEC N FC)
=p*(AN(EUF)) +p*(AN(EUF))

which proves that E U F is u*-measurable (as we saw above, the opposite
inequality is automatic). Thus # is an algebra.

We next establish the formula: for any F, ..., E, € #, with E,NE, =
when j # k, and any A C X,

p(An|J Ej) =) _uw(ANE;). (9.5)

j=1 Jj=1

We proceed by induction. When n = 1, this is simply the definition of
M. Suppose that (9.5) is established for some integer n, and suppose that
E,,...,E,+ are pairwise disjoint u*-measurable sets. Let F = U E;.
Then F is pu*-measurable, since .# is an algebra. Applying the cntenon
(9.4) to the “test set” A’ = AN (U"+l E\) and the measurable set F, and
observing that A’ N F¢ = AN E,,, we have the desired formula (9.5) for
n + 1, concluding the proof that (9.5) holds for all n. Taking A = X, we
have, in particular, established that u* is finitely additive on ..

Now let {E,} be a pairwise disjoint sequence of u*-measurable sets, let

F, = Uk , Ex, and let F =J;2, E,.. Then, for any A C X, we have

p(A) =p’
>ut

n=1

ANF,) +u*(ANFE)
ANF,) +u*(ANFC) since u* is monotone

,\A

w (ANEy) +u* (AN FC) by (9.5)

k=1
for every positive integer n, whence

o<

Z *(ANEy) +u* (AN FC)

...

u(ANF)+u* (AN FC)

proving that F € .#. Now an algebra which is closed under countable
disjoint unions must be, in fact, closed under arbitrary countable unions;
thus we have established that # is a o-algebra, and (taking A = F above)
that u* is countably additive on .. ]
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9.23 Definition. Let m* be Lebesgue outer measure on R" (see Example
9.18). An m*-measurable set will be called Lebesgue measurable, and the o-
algebra of Lebesgue measurable sets will be denoted by .# . The restriction
of m* to # will be called Lebesgue measure, and denoted by m.

We note that any E C R™ with m*(FE) = 0 is Lebesgue measurable, and
m(E) = 0, but that we do not yet know that intervals are measurable. We
recall that the Cantor set C C R is a subset, for each positive integer n, of
a set C,, which is the union of 2" disjoint closed intervals, each of length
3~". Thus m*(C,) < (2/3)", and it follows that m*(C) = 0. In particular,
C is Lebesgue measurable.

9.24 Theorem. Suppose that the outer measure u* was constructed from
a set function A and a “covering class” € by the procedure of Lemma 9.17,
but with the special circumstance that € is an algebra, and A countably
additive on €. Then each E € € is u*-measurable, and u*(E) = A(E).

Proof. Let £ € ¢, and A C X. For any ¢ > 0, there exist F,, € € such
that

AcC|JF. and p(A) <) MF) <p’(4)+e
n=1 n=1

Set F| = Fy, and F, = I"',.\(l_];:;ll Fi) for n > 1 (i.e., “disjointify” the
sequence). Then since F, C F, for each n, and )X is additive on the algebra
€, we have

W)+ €2 YOMFD)

n=1

= f:[,\(p; NE) + A(F, N E°)]

n=1

> p*(ANE) +u* (AN E®),

which, since € > 0 is arbitrary, shows that E is u*-measurable. Now, obvi-
ously, we have u*(E) < A(E); taking A = E above, we see that

u'(E) > Z MENFL) = ME),

using the countable additivity of A on €. 1

9.5 Metric Outer Measures

Theorem 9.24 gives us a way of extending a countably additive set function
from an algebra to a o-algebra containing it, but we will not exploit this im-
portant result in the sequel. We will instead use the next theorem, to avoid
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the preliminary stage of constructing a countably additive set function in
the process of constructing Borel measures. We want yet more terminology.

9.25 Definition. Let (X, p) be a metric space. If subsets A and B are
subsets of X, we say that A and B are well separated if

inf{p(z,y):z € A, y € B} > 0.

9.26 Definition. We say that the outer measure u* on the metric space
X is a metric outer measure if it satisfies the condition

u* (AU B) = p*(A) + u*(B)

for any pair of sets A, B which are well separated.

9.27 Theorem. Let u* be a metric outer measure on the metric space X .
Then every Borel set is u*-measurable.

Proof. We separate out the essential part of the argument as:

9.28 Lemma. Let u* be a metric outer measure on the metric space X,
and suppose that {E,} is a sequence of sets in X with E, C E,,, for all
n, with E = {J,_, En. If E,, and E\E,,, are well separated for every n,
then p*(E) = limu*(E,).

Proof of Lemma. Since E,, C E, ,,, the sequence (u’(E,.)) is increasing,
so L = limu*(E,) exists. Since u*(E,) < u*(E) for every n, it is clear
that L < u*(E). If L = oo, the opposite inequality is free, so let us assume
that L < oo. Let A; = FE, and A, = E,\E,_; for n > 1. Then A,
and |Jg~,.,, Ax are well separated, so (by an obvious induction from the
condition of Definition 9.26) we have, for any m,

D u(Azay) = #'(U AZn—l) <u(Eam-1) <L
n=1 n=1

and

Z“.(AQH) = “‘(U A2n) < ﬂ‘(E2m) < L
n=1

n=1

from which we see that the series Y.~ | u*(An) converges. Then from

wE) = (B0 U A) SwBD+ 3 w0

k=n+1 k=n+1

we deduce that u*(E) < lim u*(E,). ]
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Returning to the proof of the theorem: it suffices to show that each closed
set F in X is pu*-measurable. Let A be any subset of X, and let E = A\F
and E, = {r € A: p(z,y) > 1/n for all y € F}. Clearly, E, C E,4; for
all n. Since F is closed, for any z ¢ F, we have p(z,y) > § > 0 for every
ye F,so|JE, = E.fz € E,, and y € E\E,,,, there exists z € F such
that p(y,z) < 1/(n+ 1), but p(z,2) > 1/n, so p(z,y) 2 p(z,2) — p(2,y) >
1/n - 1/(n + 1); thus E, and E\E,,, are well separated for every n.
Applying the lemma, we have u*(E) = lim u*(E,). But since F and E,
are well separated, we have u*(A) > u*(F U E,;) = u*(F) + u*(E,) for
every n, so passing to the limit we have u*(A) > u*(F) + p*(E). Thus F
is u*-measurable. [ |

It is easy to see that m® is a metric outer measure (Exercise: prove this!),
and hence, by Theorem 9.27, we know that every Borel set is Lebesgue
measurable. (We will see later that not every Lebesgue measurable set is'a
Borel set.) We saw earlier that m*(I) = A(I) (the length, or volume, of I)
for every interval I; thus Lebesgue measure is an extension of the natural
notion of volume, from the class of intervals to the o-algebra of all Lebesgue
measurable sets, a class which includes all Borel sets, and all subsets of sets
of measure zero.

It is also not hard to see that p-dimensional Hausdorff outer measure
is a metric outer measure (see the exercises at the end of this chapter),
so every Borel set is measurable with respect to this outer measure; the
measure obtained by restricting to the measurable sets is called, of course,
p-dimensional Hausdorff measure.

9.6 Measurable Sets

In this section, we discuss the relation between Lebesgue measurable sets
and Borel subsets of R"; it turns out that every Lebesgue measurable set
differs from some Borel set by a set of measure zero. We then show that
not every subset of R is Lebesgue measurable, and, in fact, give a stronger
version of that statement.

9.29 Theorem. If A is a Lebesgue measurable subset of R", there exist
Borel sets F and G, with F C A C G and m(G\A) = m(A\F) = 0. We
may take F to be the union of a sequence of compact sets, and G to be the
intersection of a sequence of open sets.

Proof. We establish first:

9.30 Lemma. For any bounded measurable set B in R", and any ¢ >
0, there exist compact K and open U, with K C B C U, such that
m(U\K) < e.
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Proof. From the definition of the outer measure m*, we see that there
exists an open U D B with m(U) < m(B) + %e. Let I be a bounded
open interval containing B; there exists an open V, with I D V D I\B,
such that m(V) < m(I\B) + %e. Since B is measurable, we know m(/) =
m(B) + m(I\B), so

m(I\V) = m(I) = m(V) > m(I) - m(I\B) — % =m(B) - %

Let K = I\V: K is closed in I, since V is open, and a subset of I3, hence of
B, so K is in fact closed; since it is also bounded, K is compact. We have
K c Bc U, and m(U\K) = m(U\B) + m(B\K) < ¢, as claimed. ]

Returning to the proof of the theorem, given any measurable set A, we
may write A as the union of a disjoint sequence of bounded measurable
sets A,. for each n, and each positive integer j, we can find, according to
the lemma, compact K, ; and open U, ; such that K, ; C A, C Uy, ; and
m(Un,;\Kn,;) <27"/j. Let F =, ; Kn,;. Then F C A and

m(A\F) = > m(Ax\ | Kn.;)
n=1 1=1

since the A, are disjoint. Now, since m(A,\K5 ;) < 1/j, it follows that
m(An\U, Kn ;) = 0 for each n, and therefore m(A\F) = 0. Let G; =
U>_, Un,;. Then G; is open, G; D A, and

mG\A) £ Y m(Un,\An) < <.

n=1

Thus, putting G = [, G, we have A C G and m(G\A) = 0, as desired. 1§

Thus, every measurable set is “essentially” a Borel set, in the sense that
the set-theoretic difference is a null set for Lebesgue measure. It is a fact
(which we have not yet shown, but will appear in the exercises in the next
chapter) that there exist Lebesgue measurable sets which are not Borel
sets. Another, less constructive way to prove this runs roughly as follows:
it can be shown that the class of Borel sets in R can be put in one-to-
one correspondence with the real numbers, as can the Cantor set C; since
m(C) = 0, every subset of the Cantor set is measurable, and thus there are
as many Lebesgue measurable sets as there are subsets of R; but there is
no one-to-one correspondence between any set and the set of all its subsets
(Theorem 1.7).

Next we show that not every subset of R is Lebesgue measurable. The
same statement applies to R™ for any n, of course. We begin with a remark
whose proof is completely obvious.
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9.31 Proposition. Lebesgue outer measure is translation invariant; i.e.,
for any subset A of R", and any x € R", m*(A+x) = m*(A), where A+x
denotes {a + x : a € A}.

9.32 Proposition. There exists a subset of R which is not Lebwgue mea-
surable.

Proof. The argument we give really takes place in the circle, rather than
the line. Let us define an operation (“addition mod 1) on the interval
[0,1), as follows: for 0 < x < 1,0 <y < 1, define

T+y, fr+y<l;
(€ =
Ty {x+y—1, ifz+y> 1.

It is a simple consequence of Proposition 9.31 that if A C [0,1) and z €
[0,1), we have m*(A ® ) = m*(A). Now define a relation on [0,1) as
follows: say that = ~ y if and only if £ — y is a rational number. It is easy
to see that ~ is an equivalence relation, and thus decomposes [0,1) into
equivalence classes { E, }aey; thus,

(0,1)= |J Eay and EaNEg=0 fora#p.
a€J

Now let A be a set which contains exactly one point from each E, (the
existence of such a set is the content of the “axiom of choice” of formal
set theory). Let {g1,q2,...} be an enumeration of the rational numbers in
[0,1). Then A has the following properties:

(ADg;)N(A®qx) =0 whenever j # k;

UAQQJ' =[0’1)'

Indeed, if z®q; = y ® g, then £ —y = gx — g; (up to an integer), so T ~ y;
but if £ and y are elements of A, this implies z = y, and hence j = k.
Similarly, for any z € [0, 1), there exists a € A such that z ~ a,ie., T —a
is rational; then = a @ q, where ¢ = £ —a or  — a + 1 is a rational in
[0,1). Now it is apparent that the set A cannot be Lebesgue measurable,
for if it were, countable additivity would imply that

m([0,1)) = Zm(Aeq,) = Zm(A)

j=1 j=1
which is, of course, impossible since the right-hand side is either 0 or co. 1l
This example of an unmeasurable set is striking, but there is an even

more striking example. We first prove a lemma which is interesting in its
own right.
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9.33 Lemma. If A is a Lebesgue measurable subset of R, with m(A) > 0,
then A~ A = {z —y: z,y € A} contains a neighborhood of 0.

Proof. We can assume m(A) < oo without loss of generality. Then there
exists a sequence of open intervals {I,} such that

Ac|JIn and ) m(ln) < {m(A).
n=1 n=1

Now, if m(AN I;) < 3m(Iy,) for every n, then
oC 3 [o ]
< <=
m(A) < ;mun nAa) <3 ; m(In) < m(A),

a contradiction. Thus there exists an interval I such that m(INA) > 3m(I).
Now if |z| < %m(l), then £ € A—A. For if not, then (A+x)NA = 0; but then
m((INA)+z)U(INA)) = 2m(INA) > 3m(I). Since m(IU(I+z)) < 3m([),
this is a contradiction. |

9.34 Theorem. There exists a subset A of R with the property that ANB
is unmeasurable for every Lebesgue measurable set B with m(B) > 0.

Proof. Let £ be irrational, and let G = {n + m& : m,n € Z}. We recall
that G is dense in R (Dirichlet’s theorem, Theorem 1.23). We imitate the
previous construction of an unmeasurable set, with the countable dense
subgroup G of R playing the role that Q played. Thus, we observe that for
any two real numbers z and y, either z+G = y+G or the sets z+G and y+G
are disjoint; using the axiom of choice, there exists a set X which meets
each coset £ +G in exactly one point. Thus (r+G)N(y+G) =0ifz,y € X
and r # y, and X +G = R. We define H = {2m+nf : m,n € Z},so Hisa
subgroup of G, and G\H = H+1.Let A= X+ H. Then A® = X + H+1.
We make the following observation: A — A and A¢ — A are disjoint from
H + 1. For instance, if A — A meets H + 1, there exist z,,zo € X and
hyi,h2,hs € H such that z; + h; — (x2 + hy) = hz + 1; this implies that
Ty —T3 = h3+1+hy—hy € G,s0x; = x4, and hence that hy —hy —hz =1,
which is impossible. Similarly, if AC — ACk meets H +1, there exist x;, 3 €
X and hy,ha,hy € Hsuchthat z; + hi+1 - (zo +h+2+1) = hg + 1,
which again leads first to x; = x5, and then to h, — hy = hz + 1, which is
impossible. Since (as is easy to see) H +1 is dense in R, we see that neither
A — A nor A® — A€ contains any interval. Thus any measurable subset of
either A or A must have measure 0, according to Lemma 9.33. Hence if B
is any measurable set with m(B) > 0, and AN B is measurable, then also
B\(ANB) = BN AC is measurable, so 0 < m(B) = m(BNA)+m(Bn A°)
implies that either AN B or A N B has positive measure, contradicting
what we have proven. Thus AN B is not measurable for any measurable B
with m(B) > 0. ]
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9.7 Exercises

1. If 1 is a finitely additive real-valued set function on the algebra &, then
WMEUF) = u(E)+p(F)—-pn(ENF). Can you write a corresponding formula
for u(E U F UG)? for arbitrary finite unions?

2. Show that if u is a measure with domain &/, and E,, € & for each
positive integer n, then

“(,Q En) < ;; H(Ey).

(In other words, countable additivity implies countable subadditivity.)

3. Show that if u is a measure, with domain &, and if E,, € o with
E.,1 C E,, for every n, and if u(E;) < oc, then

,,(ﬂ F) = lim yu(Ey).

n=1
Show that this conclusion may be false if we leave out the assumption
K(Ey) < oo.
4. For any sequence of subsets E, of a set X, we define

o0 0o

liminf E, = | J ﬂ En.

n=1m=n
Let u be a measure, with domain &/. Show that for any sequence {E,} of
sets in &, we have u(liminf E,;) < liminf u(E,).

5. For any sequence of subsets E, of a set X, we define

limsup E,, = ﬁ G E,.,

n=1m=n

i.e., as the set of points which belong to E,, for infinitely many n. Let u be
a measure, with domain . Show that if {E,} is a sequence of sets in o
such that 327 | u(En) < oo, then p(limsup Ey) = 0.

6. A real number z will be called a Liouville number if, for each positive
integer n > 2, there exist integers px and gi, with gx — +o00, such that

.1
a

Pk

O0<|z——

(We showed in Chapter 1 that Liouville numbers are transcendental.) Show
that the set of Liouville numbers has Lebesgue measure 0.
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7. For each subset E of [ = [0,1], define m.(E) =1 - m*(I\E); m.(E) is
called the inner measure of E. Show that E C I is m*-measurable if and
only if m*(E) = m.(E). HINT: Show that if m*(E) = m.(FE), then for any
interval J C I we have m*(J) = m*(J N E) + m*(J N E®).

8. Let u be a measure, with domain &. Define, for E and F in &,
p(E,F) = u((ENFC)U(FNE®)).

Show that p is a pseudometric on &, i.e., that p(E, F) = p(F, E) for all
E.F € &, and that p(E,F) < p(E,G) + p(G,F), for any E,F,G € & .

9. Let u be a measure on a set X with domain &. Let /" = {N € & :

u(N) = 0}, and let A& be the collection of all subsets of elements of 4.
Let & = {EUN : E € o,N € A}. Show that & is a o-algebra, and
that u has a natural extension to a measure i with domain &, such that
if E € o and fi(E) = 0, then every subset of E belongs to &.

10. Show that if X and Y are topological spaces, and f : X — Y is a
continuous mapping, then f~!(B) is a Borel set in X whenever B is a
Borel set in Y. HINT: Consider {E C Y : f~}(E) € #(X)}, where #(X)
is the o-algebra of Borel sets in X.

11. For each subset A of the positive integers N, let s,(A) = #{k € A :
k < n}, and define
d(A) = lim

sn(A)

n—oo n ’

provided this limit exists. Let & denote the collection of those A for which
this limit exists. (We call d(A) the density of A.)

(a) Show that d is not countably additive on «.
(b) Show that & is not an algebra.

HINT: Let A be the set of even numbers, and define B by the rule: k € B
if either k is even, and 22" < k < 22"*! for some n, or k is odd and
22n-1 < k < 22", Which of A, B, AN B are in &7

12. Show that for any € > O there exists a dense open subset G of R such
that m*(G) < e.

13. Let p be a measure, defined on the o-algebra of Borel sets of a metric
space X, such that u(X) =1, and u({z}) = 0 for every z € X. Show that
for any z € X and any ¢ > 0, there exists an open neighborhood U of
z with p(U) < e. If X is separable, show that there exists a dense open
subset G of X with u(G) < e.
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14. We call a number r € [0,1] satanic if the decimal expansion of r con-
tains somewhere the sequence 666; in other words, if x = Z‘,” apl0k,
where ax € {0,1,...,9} and there exists n such that a, = ap4+1 = ap42 = 6.
Show that “almost all” numbers in (0, 1] are satanic, i.e., that m([0,1)\S) =
0, where S is the set of satanic numbers.

15. Show that Lebesgue Stieltjes outer measure is a metric outer measure.

16. Show that Hausdorff p-dimensional outer measure is a metric outer
measure.

17. Let g be a nondecreasing function on R, continuous from the right,
and let 4 = p, be the Lebesgue-Stieltjes measure associated with g (see
Example 9.19 for the definition of Lebesgue-Stieltjes outer measure). Show
that u((a,b]) = g(b) — g(a) for every a < b.

18. Show that there exists E C [0, 1] such that
m*(E) =m*([0,1)\E) = 1.

HINT: Use the construction of Theorem 9.34.

9.8 Notes

9.1 The word field is often used in this context instead of algebra, espe-
cially in probability theory; similarly, one often sees the term o-field
used instead of o-algebra.

9.2 Emile Borel showed in 1895 that there is a measure on the o-algebra
generated by the open intervals in R which agrees with the usual
length of intervals. Radon first discussed the idea of measure in spaces
more general than R"™.

9.3 Lebesgue had introduced Lebesgue outer measure in 1902, but the
general notion seems to have originated with Carathéodory in his 1918
book. Carathéodory introduced one-dimensional Hausdorff measure in
1914; the general idea was published by Hausdorff in 1919.

9.4 Definition 9.4 and Theorem 9.22 are due to Carathéodory. Theorem
9.24 was first proved by Fréchet in 1924; the proof given was found
(independently) by Hahn and Kolmogorov, the latter in his ground-
breaking book on probability (1933).

9.5 The concept of metric outer measure, and Thecorem 9.27, are due to
Carathéodory. Metric outer measures are also known as Carathéodory
outer measures.
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9.6

9.7

9. Measures

The existence of a nonmeasurable set was first demonstrated by Vitali

in 1905. Theorem 9.34 was proved by Van Vleck (an American) in
1908.

The result of Exercise 5, known as the first Borel-Cantelli lemma,
is frequently used in probability. Lebesgue defined inner measure for
bounded subsets of R, and defined a bounded set to be measurable if
its inner and outer measures agreed.
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Integration

We now turn to the topic of integration. While our main interest is in
Lebesgue integration in R", we develop the general theory of integration
with respect to an arbitrary measure—-it is not harder to do, and there will
be occasion to use the extra generality.

10.1 Measurable Functions

Until further notice, let X be a set, & a o-algebra of subsets of X, and p a
measure with domain &. Let R denote the set of extended real numbers.
The algebraic operations on R extend partially to R = [—o00, +00]): we put

(a) oo+t =200 ift € R;

(b) +00 + (+00) = +00, and (—00) + (—00) = —o0;
(c) t(xoo) = too if t > 0, t(+oo) = Foo if t < 0;
(d) 400 + (—00) is undefined; and

(e) 0-(%o0) =0.

While (a)-(d) are natural choices, reflecting our experience with limits,
we take special note of (e), which is a convention not derived from any
theorem about limits.

10.1 Definition. Let f : X — R. We say that f is o/ -measurable if:
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(a) f~N(+)€ &, f71(-o0) € #; and
(b) f~Y(U) € & for every open U C R.

When there is no possibility of ambiguity, we will simply say measur-
able, instead of &-measurable. The following lemma offers us a menu of
convenient tests for measurability:

10.2 Lemma. For any f : X — R, the following are equivalent:
(a) f is &/-measurable;
(b) {z: f(z) >t} € o for every real t;
(c) {z: f(z) <t} € o for every real t;
(d) {z: f(z) <t} € & for every real t;
(e) {z: f(z) >t} € o for every real t; and

(f) f~Y(B) € o whenever B is a Borel set in R, or when B = {+00} or
B = {-o0}.

Proof. Clearly, (a) implies (b), since
{z: f(z) >t} = 7 ({+o0}) U F7((t, +0)).

Clearly, (b) is equivalent to (c), since {z : f(z) <t} = {z: f(z) > t}€.
We see that (c) implies (d) by observing that

{z: flz) <ty = |J{=: fl&) <t—1/n}.

n=1

Clearly, (d) is equivalent to (e) in the same way that (b) is equivalent to
(c)-

Suppose that (e) holds. Since f~!({+00}) = Ny=,{z : f(z) > n}, and
S~ 1({-20}) is the complement of |3, {z : f(z) > —n}, we see that the
sets f~1({4+00}) and f~1{{—o00}) belong to «/. Now consider the family
@ of all subsets G of R such that f~!(G) € &. It is clear that & is a o-
algebra. Since (e) holds, ¢ contains every interval [t, +00) in R; it follows
that ¢ contains every Borel set (see the discussion after Definition 9.9), so
(f) holds.

Obviously, (f) implies (a). i

10.3 Lemma. If f is measurable, so are |f| and f2. If f and g are mea-
surable, so are f + g and fg. If f, is measurable for n = 1,2,..., then so
are sup fy,, inf f,, limsup f,, liminf f,.

Proof. Use the last lemma, and observe
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(a) {z:|f(x)l <t} ={x: f(z) € (-t.)};

(b) {z: f(x) <t} = {z: f(z) € (V1 V)} for t > 0;

(©) {z: (f+9)(z) <t} =Useqlz: f(x) <t -gq, g(z) < q};

d) fg=2((f+9?-(f-9)?)

(e) {z:sup, fu(z) >t} =U,{z: fu(z) > t}h

(f) {z:inf, fu(z) <t} =Un{z: fn(z) < t}; and

(g) limsup f, = inf, sup,,>, fm, and liminf f, = sup, infrn>n fm. ]

We also remark that if f is measurable, so are f* and f~. For instance,
f* = 3(f +1f), so Lemma 10.3 applies.

10.4 Definition. For cach subset A of X, we define the characteristic
function or indicator function of A by

_f1, ifreA;
1"(”)‘{0, ifz ¢ A.

It is obvious that 1, is o/-measurable if and only if A € &.

10.5 Definition. A real-valued function f on X is called simple if it as-
sumes only finitely many distinct values.

It is easy to see that f is simple if and only if f can be expressed as a
finite linear combination of indicator functions; if ¢y, ..., ¢, are the distinct
values of f, and A; = {z : f(z) = ¢;}, then f = 3 7 c;14, is one such
expression, which we call the canonical representation of f. Clearly, f is
measurable if and only if each A; € & in the canonical representation of f.

10.6 Lemma. If f is a nonnegative measurable function, then there exists
a sequence (f,) of nonnegative simple measurable functions, such that 0 <
fr(x) € fas1(z) for all n € N and all z € X, and such that lim f,(z) =
f(zx) for all £ € X.

Proof. It suffices to put

n2"

k-1
fn = Z —2—"1—'1An.,‘ + nlBu,
k=1

where A, x = {z: (k- 1)27" < f(z) < k27"} and B, = {z : f(z) > n}.
It is routine to verify that the sequence (f,) has the desired properties. 1§l
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10.7 Corollary. If f is a measurable function, then there exists a sequence
of simple measurable functions which converges pointwise to f; when f is
bounded, there is such a sequence where the convergence is uniform.

Proof. We apply Lemma 10.6 to the functions f* and f~. Note that if
the function f in Lemma 10.6 is bounded, then the construction yields
simple f, with f(z) — fa(z) < 27" for all n > sup f, so the convergence is
uniform. [ |

10.8 Definition. Suppose P(zx) is a proposition, for each x € X. We say
that P(z) holds almost everywhere (abbreviated a.e.) or for almost all =
(abbreviated a.a. x) if the set F = {z : P(x) is false} € & and u(F) = 0.
If there is more than one measure that might be referred to, we write a.e.
(u) or p-a.a. x.

Here is an example of the usage.

10.9 Theorem. If f is a Lebesgue measurable function on R™, there exists
a Borel measurable function g such that f = g a.e.

Proof. The phrasing here implies that the measure p is taken here to be
Lebesgue measure m. The theorem asserts that there is a Borel measurable
g such that m{x : f(z) # g(z)}) = 0. This is true if f = 14, where A is
Lebesgue measurable, by Theorem 9.29, so it's true for any simple Lebesgue
measurable f. By Corollary 10.7, combined with Lemma 10.3, it follows for
any Lebesgue measurable f. |

10.2 Integration

In this section we define the integral of certain functions, with respect to a
measure u. We begin with nonnegative simple functions, extend to nonneg-
ative measurable functions, and then to the class of summable (integrable)
functions. This section also includes the three basic limit theorems of in-
tegration theory: the monotone convergence theorem, Fatou’s lemma, and
the dominated convergence theorem.

10.10 Definition. Let f be a nonnegative simple measurable function.

If f = Y k_,ckla, is the canonical representation of f as a finite linear
combination of indicator functions, we define

/fdﬂ = chﬂ(Ak)-
k=1

/Afdu=/ufdu.

If A € of, we define
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We observe that 0 < [ fdu < oo, and that [ fdu = 0 if and only if
u(Ax) = 0 for each k with ¢x # 0, i.e., if and only if f = 0 a.e., while
J fdi < oo if and only if u(Ax) < oc for each k such that cx # 0. (Recall
our convention that 000 = 0.)

10.11 Lemma. If f and g are nonnegative simple measurable functions,
then:

a) [fdp< [gdnif f <g;

(b) J(f+9)du= [ fdu+ [gdu;

(c) f(tf)du =t [ fdu for each t > 0; and

(d) the function E — [ fdp is a measure on & .
Proof. Let

m n
f=zale,y g=zbk13,,
1=1 k=1

be the canonical representations of f and g. We see that X = U;';l Aj =
Uk=1 Bk, each of these unions being disjoint. Then

/fd/t =Y a;u(A;) = a; Y u(A;NBx) = a,u(A;N By)
j=1 1=1 k=1

7.k

and, similarly,
/gd# = bep(A; N By).
ik
Suppose f < g. Then for each j, k, we see that a; < by whenever A;N By #
@,s0 [ fdu < [gdpu, and (a) is proved.
Now let {c1,...,¢c-} be the distinct values assumed by f + g. Then

Ju+a =3 cuts+a=ah
=1

= ic.-u( U AjﬂBk)

i=1 a,+be=c,

—-Zr‘, E (A; 0 By)

a;+br=c;

= "(a; + be)u(A; N By)
J.k

u;u(A; ﬂBk)+ZZbkpA N By)

[V]s
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=Zajﬂ(Aj)+Zbkﬂ(Bk) = /fdﬂ'*'/gdﬂy
1=1

k=1

so (b) is proved. The truth of (c) is obvious, and (d) is an immediate
consequence of Proposition 9.12. ]

We now extend the domain of integration to a larger class of functions.

10.12 Definition. If f is a nonnegative measurable function, we define
/fdp = sup{/gdu :0< g< f, gsimple measurable}.
As before, we define fA fdu tobe [ fladp, for any A€ o .

It is trivial that 0 < [ fdp < +oc, that [ fdu < [ gdu whenever f < g,
and that [ fdu retains its previous meaning when f is simple.

10.13 Proposition. If f > 0 is a measurable function, then [ fdu =0 if
and only if f =0 a.e.

Proof. If f =0 a.e., then g = 0 a.e. whenever 0 < g < f,so [ fdu =0.
Now suppose that [ fdu = 0, and let E = {z : f(z) > 0}. Then E =
U._, En, where E, = {z: f(z) > 1/n}. Let g, = (1/n)1g,; then g, is a
simple measurable function with 0 < g, < f, so (1/n)u(E,) = [gandp <
J fdu=0. Thus u(E,) = 0 for each n € N, and hence u(E) = 0. ]

The next theorem generalizes Lemma 10.11(d).

10.14 Theorem. Let f > 0 be a measurable function, and define the set
function v on & by v(A) = [, fdu. Then v is a measure on & .

Proof. Let . be the set of all simple measurable functions g, with 0 <
g < f. For each g € .7, define the set function vy by v (A) = fA g dy; each
vy is a measure, by Lemma 10.11(d), and v = sup{y, : g € .#}. We observe
that if g < h, then vy < uy,; also, for any g, h € 7, we have max{g, h} € .7
Thus. if # = {v, : g € #}, then A is a collection of measures satisfying
the hypotheses of Theorem 9.13, and it follows from that theorem that v
is a measure. 1

Before extending the definition of the integral to a larger class of mea-
surable functions, we obtain a key result about passing to the limit under
the integral sign. It is known as the monotone convergence theorem, and is
due to Beppo Levi.
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10.15 Theorem. If (f,) is a sequence of measurable functions, with 0 <
fn < fn+1 for every n, then

/ lim f,du = lim /f,,du.
n-—oo n—oo

Proof. We note that f = sup,, f, is measurable by Lemma 10.3, so [ fdu
is defined. Since f, < fa41, we have [ fody < [ foy1dp, so lim [ f, du
exists (in R), and since f, < f for every n, lim [ fodu < [ fdu. The
reverse inequality is not as trivial.

Let g be a simple measurable function, with 0 < g < f. Fixe, 0 < e < 1.
Let A, = {z € X : fa(z) > (1 — €)g(z)}, and observe that A, C A1
for all n, since the sequence f,, is monotone increasing. Also, observe that
Un, An = X, since lim f, = sup f, > g. Hence

/fnd#Z/Anfnduz (1-¢) A"gd,,;

since E — |, £ 9du is a measure by Lemma 10.11, it follows from Proposi-
tion 9.11 that lim [ fodu > (1 - €) [ gdu for every € > 0. It follows that
lim [ fodp > [ gdpy; since g was any nonnegative simple function with
g < f, it follows that lim [ f,du > [ fdp. ]

We note that this theorem gives an alternate proof of Theorem 10.14
above, based on the observation that 14 is the limit of the increasing se-
quence {14, }, if A is the union of the increasing sequence {A,}.

10.16 Corollary. If f > 0 and g > 0 are measurable functions, then .

Ju+aau=[rdu+ [odu

Proof. Choose, using Lemma 10.6, simple f,, which increase to f, and
simple g, which increase to g. Then f, + gn are simple, and increase to
f+g;since [(fan+gn)dp = [ fandp+ [ gn du by Lemma 10.11, this corollary
now follows from Theorem 10.15. |

We next give another very useful result relating pointwise limits and
integration. The following theorem is known as Fatou's Lemma.

10.17 Theorem. If (f,) is a sequence of nonnegative measurable func-
tions, then

/lim inf fody < lim inf/f,. du.
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Proof. Let g, = inf;m>n fm; then each g, is a nonnegative measurable
function, gn < gn+1 for each n, and lim g,, = liminf f,, so

/lim inf f,du = /lim gndp = lim/g,. du

by the monotone convergence theorem (Theorem 10.15). But for any m >
n, we have gn < fm, 50 [gndpu < [ fmdp, and so

/yndﬂs inf /fmdu,
m2>n
so lim [ gn dp < liminf [ f, dp. ]

10.18 Definition. Let f be a measurable function. We define

[raw=[rtau- [ 1 an,

if at least one of the integrals on the right is finite. We say that f is
integrable, or summable, and write f € L(u), if both [ f*du < +0o and
J f~du < +00, so that [ fdu is a real number.

10.19 Proposition. If f is a measurable function, then f is summable if
and only if [ |f|dp < +o0. If f is summable, g is measurable, and |g| < |f|,
then g is summable.

Proof. Since |f| = f* + f~, Corollary 10.16 shows that f € L(u) if and
only if |f| € L(p). It follows that if f € L(n) and if g is a measurable
function with |g| < |f|, then g € L(u). 1

10.20 Proposition. The summable functions form a vector space, and
integration is a linear operation on L(u); i.e., if f,g € L(p) and ¢ € R,
then cf € L(p) and f + g € L(u); furthermore, [(cf)du = ¢ [ fdu and
[(f+9)du=[fdu+ [gdp.

Proof. The statements regarding cf are trivial. Since |f + g| < |f] + |gl,
f+g is summable whenever f and g are, by Proposition 10.19 and Corollary
10.16. NOWf+g=(f+g)+ —(f+g)— =f+—-f- +g+ —g'—'so

(o)t +f +g - =(f+g9) ™ +f*+g",
so by Corollary 10.16 it follows that

/(f+g)+du+/f-du+/g-du=/(f+g)-du+/f+du+/g+du.
which leads to the desired [(f + g)du = [ fdu + [ gdp. |

The third and last of the major results about passing to the limit under
the integral sign is known as Lebesgue’s dominated convergence theorem.
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10.21 Theorem. Suppose that ( f,) is a sequence of measurable functioné,
that f, — f, asn — oo, and that |f,| < g for all n, where g is summable.
Then f is summable, and [ fdp = limp .o [ fndp.

Proof. The summability of f follows from Proposition 10.19, since |f| < g,
and g is summable. Since g+ f,, > 0 for every n, we can apply Fatou’s lemma
(Theorem 10.17) to get

Jodux [rau= [to1)dn <timinf [(g% /) du

Now
Iiminf/(g+f,.)du= /gdu+liminf/f,,d;t

and

liminf/(g—-f,.)du:/gdy—-limsup/f,.du

as we saw in Chapter 2; utilizing linearity (Proposition 10.20), we have

limsup/f,, du < /fdu < Iiminf/f,. du,
which gives the theorem. |

Theorem 10.21, as well as Theorem 10.15, refer to pointwise convergence:
the hypothesis is that f,(z) — f(z) for every x € X, as n — o00. It is easy to
see that the hypothesis may be weakened to almost everywhere convergence:
fa(x) — f(z) for all z € Y, where Y € & and u(X\Y) = 0. For if we put
gn =1y fn and g = 1y f, then g, — g everywhere, and [ gndp = [ fadpu,
etc. We note that some sort of condition beyond pointwise convergence
(such as monotonicity in Theorem 10.15, or the dominating function in
Theorem 10.21) is necessary in order to “pass to the limit under the integral
sign.” For instance, with X = [0,1] and ¢ = m (Lebesgue measure), if
fa = nl(g,1/n), we see that fn(z) — O for every z, but [ f,dm = 1. This
example shows incidentally that the inequality in Fatou’s lemma may be
strict, even when the liminf is a limit.

10.3 Lebesgue and Riemann Integrals
In this section we fix a closed bounded interval [a,b] in R, and examine

the relation between the Riemann integral [ : f(z) dz studied in Chapter 5
and the Lebesgue integral [ fdm = f[a,b] fdm.

10.22 Proposition. If f is continuous on [a,b], then [ : f(z)dz = [ fdm.
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Proof. Let us call a function g : [a,b] — R a step function if there exists
a partition (zk)r_o of [a,b], and a sequence (ck)}.; such that g(t) = cx for
all t € (zk—1,zk), 1 < k < n. Step functions are a special case of simple
functions, and it is very easy to see that if g is a step function, then the
Riemann and Lebesgue integrals of g coincide. Now if f € C({a, b]), there
exists a sequence of step functions (g, ) which converges uniformly to f (see
the proof of Theorem 3.20). It follows that f: f(z)dz = lim f: gn(z)dz (by
Theorem 5.34), and that [ fdm = lim [ g, dm by the analogous theorem
for Lebesgue integrals, or by the dominated convergence theorem. ]

10.23 Theorem. A bounded real-valued function on [a, b} is Riemann in-
tegrable if and only if it is continuous at almost every point of [a, b]; in this
case, its Riemann integral and Lebesgue integral are equal.

Proof. Let f be a bounded real function on [a,b]. Let Z = {g € Cla,b] :
g< f},and let = {h € Cla,b] : f < h}. The classes  and &£ are not
empty, since f is bounded. We set

fo=sup{g:9€ ¥} and f*=inf{h:he}.

We observe that for any real ¢, {z : f*(z) < t} = Upee{z : h(z) < t},
which is open in [a,b] since every h € % is continuous. Similarly, for any
real t, {z : f.(z) > t} is open in [a,}]. In particular, we see that f* and
f. are Borel measurable, with f, < f < f*. If f*(z) = f.(z), then for any
€ > 0 the set

{v: 1/ -f@)N<e}d2{y: fy) <fl@)+e}n{y: fuly) > f(z) — €}

is a neighborhood of z, so f is continuous at z. Conversely, if f is continuous
at z, it is not hard to construct a function h €  with h(z) < f(z) + €
for any given € > 0, so f*(z) = f(z); similarly, f.(x) = f(z). Thus f is
continuous at z if and only if f.(x) = f*(z). Since f. < f < f*, it follows
that if f* = f, a.e. then f = f* a.e., and hence f is Lebesgue micasurable,
and [ fdm = [ f*dm = [ f.dm.

Suppose that f is Riemann integrable. We see from Theorem 5.17 that

/abfzsup{/abg:ge..?}=inf{/:h:h€%},

o Jof < [fodm < [f*dm < [P f. Hence [ f*dm = [ f.dm, and thus
f* = f. a.e. by Proposition 10.13, so f is continuous almost everywhere.
We next observe that there exists a sequence (h,) in % such that
hns1 < hq for every n, and limh,(z) = f*(z) for every z € [a,b]. In-
deed, we know there exists a countable subset 2 of C([a,b]) which is dense
in C([a, b)), with its usual topology of uniform convergence. (We can take 2
for instance to be the set of polynomials with rational coefficients.) Then
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it is clear that f* = inf{h : h € 2nw}. f 2N % = {H,H,,...},
we can take h, = min{H,, Ha,...,H,}, and have the desired sequence.
Similarly, there exists a sequence (g,) in & with g, < gn41 for all n,

and limg,, = f. pointwise. It follows from the monotone convergence the-
orem that [ f*dm = lim [ h,dm, and [ f.dm = lim [ g, dm. Hence if
f* = f., there exist continuous functions ¢ < f and h > f such that
Jhdm — [ gdm < €. By Theorem 5.17, f is Riemann integrable. 1

10.4 Inequalities for Integrals

In this section, we obtain a handful of inequalities which are very useful in
many situations in analysis. The first is known as Chebyshev’s inequality.

10.24 Proposition. Let f be a nonnegative measurable function, and let
t be a positive real number. Then

wz: S@ 2N <7 [ fau

Proof. If A = {z : f(z) > t}, then t14 < f, so tu(A) < [ fdu from the
definition of the integral. |

We remark that we gave this argument earlier, in proving Proposition
10.13. The next result is called Jensen’s inequality.

10.25 Theorem. Let p be a measure, with u(X) = 1. If f is a summable
function on X, taking values in an interval J, and ¢ is a convex function

on J, then
v(ffdu) < /w(f)du-

Proof. Let ¢ = [ fdp; since u(X) = 1, we see that ¢ € J, 50 ¢(c) is defined.
Because ¢ is convex, there exists (see Corollary 4.16) a real number m with
the property that

o(y) > p(c)+m(y—c) forallye J;

in other words, such that the line with slope m through the point (¢, ¢(c))
lies under the graph of ¢. It follows that

o(f(2) 2 ple) + m(f() - ) (10.1)

for all z € X. This implies that [[p(f)]” dp < oo, so [@(f)du is well-
defined. Integrating the inequality (10.1), and using the fact that [ dp = 1,

we arrive at
[onraunz ot = ([ rau)
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as was to be proved. Note that the possibility that [ ¢(f)du = +o0c is not
excluded.

10.26 Corollary. Letp; > 0,5 =1,...,n, with)_p; = 1. If p is a convex
function on the interval J, and z; € J for j = 1,...,n, then

W(Z IJP]) < Z w(z;)p;-
1=1 i1=1

This corollary follows from Theorem 10.25 if we take X = {1,...,n},
and define u({j}) = p;.

10.27 Corollary. If u is a measure with u(X) = 1, and f is a nonncgative
summable function on X, then

exp(/logfdu) < [ rau

Proof. Apply Theorem 10.25 with o(x) = ¢”, and with log f playing the
role of f. Note that the case [ log f du = —o0 is not excluded; the inequality
is of course then trivial (we take exp(—oc) = 0 by convention). ]

Taking X = {1,...,n}, and u({j}) = 1/n for each j, the last corollary
reduces to the inequality

n 1/n 1 n
(=) s2%=
=1 ™=

which is the classical inequality of the geometric and arithmetic means. The
next inequality is sometimes referred to as Liapounov’s inequality.

10.28 Corollary. Let i be a measure with u(X) =1 and 1 < p < oo.
Then for any nonnegative measurable f, we have

(fraw) < [rran

Proof. Take J = [0,00) and ¢(z) = zP in Theorem 10.25. ]

10.29 Theorem. Letpe R, 1 < p < 00, and let ¢ = p/(p - 1). If f and
g are nonnegative measurable functions, then

s ([ra)" (fra)"
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Proof. If [ g%du = oo, then the inequality is trivial. If [g%du = 0, then
g = 0 a.e., and again the result is trivial. The inequality is unaffected if we
multiply g by a constant, so we may assume that [ g9du = 1. Define the
measure 0 by 0(E) = [, g?du; then 6(X) =1, and [hdo = [ hg?dp for
any measurable function h. In particular, we have '

_/fydu = /fy""'y"llu = /fy""da

1/p
< (/ frgti-or da) (by Corollary 10.28)

1/p
= (/ fP dﬂ) (since p + q = pq),

which was to be proved. [

10.30 Definition. Let 1 < p < oo. We say that f € LP(u) if f is measur-
able and [ |f|Pdu < oo; we define the LP-norm of f as

i, = ( f w’dp)w.

We say that f € L°°(pu) if there exists C < +oo such that |f| < C a.e. (u);
we define || f||, to be the infimum of all such C.

The next result is known as Hélder’s inequality. We note that when p = 2,
then also ¢ = 2, and the theorem becomes the Schwarz (Cauchy-Schwarz-
Bunyakovsky) inequality. We note that taking g = 1, we can deduce Corol-
lary 10.28 from the Holder inequality.

10.31 Corollary. Let f € LP(u) and let g € L9(p), where (1/p)+(1/q) =
1. Then fg is summable, and

|[ s92u] <711l

Proof. If 1 < p < oo, this follows at once from Theorem 10.29. If p = 1,
then ¢ = 0o, and the result is obvious. |

10.32 Theorem. Let 1 < p < +00. If f and g belong to LP(u), then so
does f + g, and || f + gll, < IIfll, + ligll,-

Proof. The cases p = 1 and p = oo are trivial, so assume 1 < p < 0o. The
integrability of |f + g|? follows from the elementary inequality (a + b)? <
2P(aP +bP), valid for any positive numbers a and b. We will make use of the
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following calculation: if o > 0 is any measurable function, and ¢ = p/(p—1),

then
1/q (p-1)/p
g = ([rermran) "= (fwan) " =g

Using the Holder inequality, we have
15+ a1 = [1+ 9P 1S + gl

< [1+0 01+ )
<UL, 107+ g, + Nl s + g7,
= (Ifll, + gl ) If +glz~?,

so dividing both sides of this equation by ||f + g||£‘l yields the theorem.
(If IIf + gll, = 0, there was nothing to prove.) |

The result of the last theorem is known as Minkowski’s inequality. Let us
define the distance between two elements of LP(u) by p(f,9) = ||f — gl
Obviously. p(f.g) > Ofor all f and g in LP(u), and p(f, f) = 0; Minkowski’s
inequality easily implies that p(f,h) < p(f,g) + p(g,h) for any f,g,h €
LP(u). Thus p is a pseudometric on LP(u); it fails to be a metric because
p(f,g) = 0 does not imply that f = g. It does, of course, imply that f =g
a.e. (i), and we usually slur the distinction between functions which are
equal and those which are merely equal almost everywhere. To obtain a
true metric space, one can consider the set of equivalence classes under the
relation =, defined by f = g if and only if f = g a.e. (1). We next show
that this metric space is complete.

10.33 Theorem. Let f, € L” for each n € N. If the series }_ || fall,

converges, then there exists F € LP such that the series ) f, converges to
F in L?, i.e., such that

n
F-Y f
k=1
Proof. Let F,, =3 ¢_, fc and G, = Y_;_, | fkl, 80 |Fn| < G, for every n.

Obviously, {G,} is an increasing sequence; denote its limit by G. Thus G
is a measurable function, 0 < G < oo. By Minkowski's inequality we have

(foran) "< &( [inran)” < i el = M < o0

for every n: by the monotone convergence theorem (Theorem 10.15) we see
that [ GPdu = lim [ G% du < MP < oo (in particular, that G < oc almost

—0 asn— o0.
P
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everywhere). It follows that the series 3" f, converges absolutely a.e. (u),
i.e., that F,, — F a.e., where F is a measurable function with |F| < G, so
F € LP. Also, we have

oo oo
IF-Fl=|Y fi|< Y Ifl<G,
k-nil k=ntl

0 |F — Fu|P < GP for every n. Thus we can apply the dominated conver-
gence theorem (Theorem 10.21) to conclude that [|F — FujPdp — 0 as
n — oo.

10.34 Corollary. For each p, 1 < p < o0, LP is a complete metric space;
that is, if (gn) is a Cauchy sequence in LP, then there exists g € LP such
that ||g — gnll, — 0 as n — oo.

Proof. Choose an integer n; such that [|gn — gmll, < 1/2 for all n,m > ny;
inductively, choose ny < nz < --- such that ||gn,,, — gn.ll, < 2~ for every
k. Let fk = Gnik ~Ine_1>» where gno = 0’ so "fk"p < 2_k and 2::1 fk = Gny-
By Theorem 10.33 there exists g € LP such that ||g—gn, ||, — 0 as k — oo.
Since {gn} is Cauchy, it follows also that ||g — gnll, — 0 as n — oo. |

Theorem 10.33 and Corollary 10.34 are both known as the Riesz-Fischer
theorem.

10.5 Uniqueness Theorems

The construction of Lebesgue measure was natural and intuitive, given that
the goal was to have countable additivity, while retaining the elementary
idea of the volume of a rectangular parallelepiped (at least, one with sides
parallel to the coordinate planes—we have yet to see that Lebesgue measure
is invariant under rotations). It is worthwhile to see that in fact there is only
one Borel measure on R™ which does this. We will prove some much more
general results, since the effort is about the same. We begin by developing
a powerful technical tool.

10.35 Definition. A class 2 of subsets of a set X is called a w-system if
it is closed under finite intersections, i.e., if ANB € & whenever A,B € &.
A class & of subsets of a set X is called a A-system if it contains X and is
closed under proper differences and increasing limits, i.e., if:

(a) X € &;
(b) If AC B, with A and B in &, then B\A € £; and

(c) IfA, € &£ and A,, C A, for every positive integer n, then |J{° A, €
£.
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Some examples of 7-systems: all open intervals in R™, or all bounded open
intervals, or all bounded left-open and right-closed intervals with rational
endpoints; or all intervals of the form {x : —oo < z; < a,}, or just those
with rational a;. It is obvious that any o-algebra is both a m-system and a
A-system, and the converse is nearly as obvious.

10.36 Lemma. If & is both a w-system and a A-system, then & is a
o-algebra.

Proof. Using (a) and (b), we see that & is closed under complementation,
and hence under finite unions, so & is an algebra. If (A,) is a sequence
in &, then B, = |J;_, Ax € & for each n, and B, C Bqnyi, %0 by (c) we
have ), An = U, Bn € &. Thus & is a g-algebra. ]

The next result is the tool we want; it is known as Dynkin’s w-\ theorem.

10.37 Theorem. If the A-system £ contains the m-system &, then it
contains the o-algebra generated by .

Proof. Let & be the intersection of all A-systems containing 2. It is easy
to see that & is a A-system, with @ C & C #. I claim that & is a
n-system. For each A € o, let ¥4 = {B € & : ANB € &}; it is easy to
see that &, is a A-system, for any A € &. It is also clear that if A € 22,
then ¥4 O . Thus ¥4 = o whenever A € 2, since & is the minimal
A-system containing 4?. But this says that AN B € & whenever A € 2
and Be &, ie., that A€ ¥g whenever A€ 2 and B€ &f. Thus 2 C ¥
for all B € &, so again it follows that ¥ = & for every B € &/, but this is
just the assertion that & is closed under intersections, i.e., is a m-system.
It follows from Lemma 10.36 that o is a o-algebra. 1

10.38 Theorem. Let & be a w-system, and let of be the o-algebra gen-
erated by 2. If p and v are finite measures with domain & such that
w(X) =v(X) and u(A) = v(A) for every A € P, then u = v.

Proof. Let Z = {A € & : u(A) = v(A)}; the claim is that ¥ = &, and by
Theorem 10.37, it suffices to show that .# is a A-system. Now if A and B are
in 2, and A C B, then u(B\A) = u(B) — u(A) = v(B) — v(A) = v(B\A),
since y and v are finite. Thus B\A € £. If A =J,-, An, where A, € &
and A, C Ap4, for every n, then

u(A) = limpu(A,) = limv(A,) = v(A)

(using Proposition 9.11), so A € £. Since we were given X € ., it follows
that Z is a A\-system. ]
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The hypothesis in the last theorem that u and v are finite cannot be
omitted. [Consider, for instance, 4 counting measure on R, and v defined
by v(A) = quq 14(q) (in other words, v is counting measure on the
rationals Q, regarded as a measure on R). Then p(A) = v(A) = oo on
all open intervals, a w-system which generates the Borel sets, but certainly
1(A) does not equal v(A) for every Borel set.] However, it can be weakened
enough to cover the cases we are most interested in.

10.39 Corollary. Let & be a m-system, & the o-algebra generated by
2, and p a measure with domain . Suppose that X = |J;Z, K, where
K; € 2, K; C Kjy1, and u(Kj) < +oo for each j. If v is a measure with
domain of such that v(A) = u(A) for all A € P, then p = v. '

Proof. Define the measures u; and v; by u;j(A) = u(AN Kj), vi(A) =
V(AN K;) for A € &. Then Theorem 10.38 gives u; = v; for each j, and
Proposition 9.11 tells us that

u(A) = lim p;(A) = lim v;(A) = v(A)
j—00 j—o0
for every A€ &. ]

We single out the special case of Corollary 10.39 which interests us the
most.

10.40 Corollary. If 4 and v are Borel measures on R" such that u(I) =
v(I) < oo for every bounded interval I, or just for every bounded interval
with rational sides, then p = v.

We are now in a position to quickly prove that (the restriction to Borel
sets of) Lebesgue measure is essentially the only Borel measure on R"
which is translation invariant, and finite on bounded sets.

10.41 Theorem. If y is a Borel measure on R™ which is translation in-
variant and finite on bounded intervals, then there is a constant C such
that u(A) = C m(A) for every Borel set A.

Proof. Let I = [0,1)" = {(z1,...,%2) : 0 < z; <1, 1 < j < n} and
let C = p(I). Let ki,..., k, be positive integers, and let J = {0 < z; <
1/kj, 1 < j < n}. Then I is the union of (kik;---ky) translates of J,
which are pairwise disjoint, so u(I) = ky ---kou(J), ie., u(J) = Cm(J).
Now any interval [a,b) with rational sides, i.e., with b; — a; rational for
each j, 1 < j < n, is the disjoint union of translates of such a J, so the
measures ;4 and Cm agree on all such intervals. By Corollary 10.40, u and
Cm agree on all Borel sets.
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10.6 Linear Transformations

Theorem 10.41 allows us to obtain a change-of-variables formula.

10.42 Theorem. Let T : R® — R" be a nonsingular linear transforma-
tion. Then m(T(A)) = |det T|m(A) for every Borel set A.

Proof. Let u7(A) = m(T(A)) for every Borel set A. (We note that T(A)
is Borel whenever A is Borel, since T-! is continuous, so this definition
makes sense.) It is clear that ur is a measure, and since

pr(A + x) = m(T(A + x)) = m(T(A) + Tx) = m(T(A)) = ur(A),

we see that ur is translation invariant. By Theorem 10.41, we conclude
that there exists Cr such that uyr = Crm. Now it is clear that if S and
T are two such transformations, then Cst = CsCr. If O is an orthogonal
transformation, i.e., if O'O = I, or equivalently, |Ox| = |x| for all x €
R", then O(B) = B, where B = {x € R" : |x| < 1}. It follows that
to(B) = m(B), and since 0 < m(B) < oo, we conclude Co = 1. Recall
that det O = %1, since 1 = det(0O'O) = det O*det O = (detO)%2. If D is a
transformation represented by a diagonal matrix, with nonnegative entries
dj,and I = {x: 0<x,$11<]<n}thenDI) {x:0<z; <
dj, 1 < j < n}. It is then clear again that Cp = did2---d, = det D. We
now apply one of the more interesting theorems in linear algebra: any linear
transformation T on R™ can be expressed in the form T = O, DO, where
O, and O, are orthogonal, and D is diagonal with nonnegative entries. We
have Cr = Cp,CpCo, = det D = |det T, as claimed. 1

Another proof of this theorem would express T as the product
of elementary matrices, permutation matrices, and a diagonal
matrix, corresponding to the usual way in which one computes
determinants or solves systems of linear equations by elemen-
tary row operations. This is a more direct and elementary proof,
but I wanted to call your attention to the factorization theorem
used above.

10.43 Corollary. IfS is a subspace of R", withdim S < n, then m(S) =

Proof. We can find a nonsingular transformation which maps S into the
hyperplane {x : z; = 0}, which obviously has measure zero. The corollary
now follows from Theorem 10.42. ]

10.44 Corollary. If T is any linear transformation of R™ into itself, and
A is a Lebesgue measurable set in R™, then T(A) is Lebesgue measurable,
and m(T(A)) = |det T|m(A).
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Proof. If T is singular, this follows from the last corollary. Assume T
nonsingular; by Theorem 9.29 we can express A as the union of a Borel set
and a set of measure zero; the set of measure zero is a subset of a Borel set
of measure zero, and the corollary follows from Theorem 10.42. 1

We remark that if A is a Borel set in R™, and T: R® — R™ is linear, it
does not follow that T(A) is a Borel set.

Theorem 10.42 has an equivalent formulation in terms of integrals, rather
than measures.

10.45 Theorem. If T : R® — R" is an invertible linear transformation,
and f is a measurable function on R™, with either f > 0 or f summable,
then

/fdm=|detT|/fonm.

Proof. If f = 1,4, where A is a measurable set in R™, then foT = 1r-1(4),
SO

/fdm =m(A) = |detTim(T~'(A)) = |detT|/f0Tdm,

and the theorem is true for such f. Then it holds, by the linearity of inte-
grals, for any simple measurable f, and then by the monotone convergence
theorem, for any nonnegative measurable f, and finally, by consideration
of f = f+ — f~, for every summable f. ]

10.7 Smooth Transformations

The next theorem deals with a more general change of variable result than
Theorem 10.42 or Theorem 10.45.

10.46 Theorem. Let U and V be open subsets of R™, and suppose y is a
continuously differentiable bijective map of U onto V', such that ¢~ is also
continuously differentiable. Then, for any nonnegative measurable function
f on 'V, we have

/ fdm = / (fop)|J,ldm, (10.2)
v U
where J, = det ¢’ is the Jacobian determinant of p, and, in particular,

m(p(d) = [ 1J,ldm (103)

for every measurable set A C U.
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Proof. We observe that equation (10.3) is just the special case of equation
(10.2) obtained by taking f = 1,(4). We also observe that it suffices to con-
sider Borel measurable functions, since every Lebesgue measurable function
is almost everywhere equal to a Borel measurable function (Theorem 10.9).
We carry out the proof with a short sequence of lemmas. Let us introduce
some terminology and notation. A cube with center £ is a set of the form

Q={xeR":§-h<z;<&+h 1<j<n}

(This describes a “half-open” cube, which will be convenient for our pur-
poses. Closed and open cubes are defined similarly.) If Q is a cube with
center £, and € > 0, let Q¢ denote the concentric cube with sides multiplied
by 1 + ¢; thus, for the cube Q above,

Q={xeR":§{-(1+e)h<z; <&+ (1+e)h, 1 <j<n}.
It is clear that m(Q¢) = (1 + €)"m(Q) for any cube Q.

10.47 Lemma. For each § € U, let T; be the affine map approximating ¢
near £, i.e., Tg(x) = @(§) + ¢’ (§)(x — §). For any compact subset K of U,
and any ¢ > 0, there exists 6 = 6(K,¢€) > 0 such that, for any cube Q C U
with center £ in K and diameter < 6, we have

p(Q) C Te(Q°). (10.4)

Proof. Let M = sup¢cg (@) ~1(€)]l; since K is compact and ¢’ is con-
tinuous, we know M < oc. The definition of the derivative of a map-
ping tells us that for any > 0 there exists § = 6(£,7) > 0 such that
lp(x) — Te(x)} < nix — €| whenever 0 < |x — £| < 8. Since K is compact,
and ¢’ is continuous, we can choose § = §(n) so that this holds for every
£ € K. It follows, since T{ly - T{lz = [¢’(€)]"(y — z), that

ITg o(x) = x| = [T Hp(x) = Te(x))| < Malx ~ €|,

80 that, if 7 > 0 is chosen sufficiently small (n < ¢/(M/n) will do), we
have T{'w(x) € Q°, or equivalently, p(x) € T¢(Q*), whenever x € Q with
Q a cube of diameter less than 6 and center § € K. |

10.48 Lemma. If B is a Borel subset of U, then
m(e(8) < [ V,ldm. (10.5)

Proof. Let C be a compact subset of ¢(B), and put K = ¢~ !(C), so K is
a compact subset of U. Let € > 0. For each i € N, let K; = {x: p(x,K) <
1/i}, where p(x, K) = inf{|x — y| : y € K}. Then K; is compact, and for
sufficiently large i, say i > iy, K; C U. We note that K;,, C K; for all
i, and (N, K; = K. Since the function A — fA |J,ldm is a measure, and
Sk, [oldm < oo for i > iy, it follows that [, |J,|dm = lim [, |J,|dm.
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—

Figure 10.1. A picture for Lemma 10.47.

Hence there exists i > io such that [, |J,|dm < [, |J,|dm + €. Since
K, is compact, the continuous function J, is uniformly continuous on K,
so there exists 8 > 0 such that |J,(x) — Jo(y)| < € for all x,y € K; with
|x —y| < 8. We may assume that § < 8(K,, ¢) of Lemma 10.47; we may also
assume that § < 1/1, so that every cube Q of diameter less than 6 which
meets K is entirely contained in K. Since K is bounded, we can ﬁnd a
finite disjoint sequence of cubes Q,...,@Qn such that: (i) K C U, 1 @y
(ii) Q; N K # @ for each j; and (iii) dlam Q; < 6 for each j. Then we have
C =p(K)C (p(U;Vzl Q;), a disjoint union, so (denoting the center of Q;
by &;)
N

m(C) < m ( (LNJ ))=Zm(¢(o,-))

IA

™= an

m(Te,(Q5)) (by Lemma 10.47)

| det ' (&;)| m(Q;) (by Theorem 10.42)
1

J

(l + ')"le(EJ)l m(QJ)

i M)z

J

5(1+()"§/QJ(|J¢|+c)dm

<(1+ e)"/ (14| + €) dm
K,
Since [y |Jo|dm < Jic |Joldm + ¢, and € > 0 was arbitrary, we conclude

that
m(C)S/ |J¢|dm$/ |Jo|dm.
K B

Since C was an arbitrary compact subset of p(B), it follows from Theorem
9.29 that m(p(B)) < [ 1J,| dm. |
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10.49 Lemma. For every nonnegative Borel measurable function f on V,
we have

/fdms‘/(foga)lJMdm. (10.6)
v U

Proof. When f = 14, where A is a Borel subset of V, this is exactly
the statement of the last lemma, with B = ¢~!(A). Hence (10.6) holds
whenever f is a nonnegative simple Borel measurable function, and taking
monotone limits, it holds for every nonnegative Borel measurable f. 1

We conclude the proof of Theorem 10.46 by recasting the last lemma,
with p~! now playing the role of ¢, and (f op)|J,| in the role of f. For any
differentiable maps  and v, the chain rule tells us that (poy)’ = (¢’ o)y,
and taking determinants, it follows that J oy = (J, 0 9¥)Jy. Hence, for any
nonnegative Borel measurable function f on V,

/(!ov)lJvldms/(fovosa")(lJvlow")le-uldm
U v

=/Vf|JW-.|dm=/Vfdm,

so that we have, in fact, equality in (10.6), i.e., we have established (10.2),
and the theorem is proved. ]

10.8 Multiple and Repeated Integrals

Finally, we turn to the very important topic of computing integrals over
R"™ by repeated integrals over R. We fix for now the positive integers k
and [, and put n = k + [; we identify R® with R* x R’. If f is a function
defined on R™, and y € R', we denote by f(-,y) the function on R* such
that £ — f(z,y); f(z,) is defined in an analogous manner, for z € R*.
(We are dropping the convention of boldface letters for points of R" in this
section.)

10.50 Lemma. If f is a Borel measurable function on R", then for every
y € R’ the function f(-,y) is Borel measurable on R¥, and for every = € R,
the function f(z,-) is Borel measurable on R'.

Proof. In view of Corollary 10.7, it suffices to prove the lemma when f
is a simple Borel measurable function, and hence it suffices to prove the
lemma when f = 1,4, where A is a Borel set in R™. Let & be the collection
of all Borel sets A in R™ such that the lemma holds for 14. If A has the
form A = B x C, where B is a Borel set in R* and C is a Borel set
in R, then 14(z,y) = 1p(z)1c(y) for any z € R*, y € R}, and it is
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obvious that A € 4. If A; € 4 and A; C A4, for j = 1,2,..., then for
A= U, A;, we have 14 = lim1, , 14(z,-) = lim14,(z,), etc., and so
clearly Ac 4. If Ac 4, Be 4, and A C B, then it follows that B\A € ¢,
since 1g\4 = 1 — 14. Obviously, R" € ¢, so ¢ is a A-system, containing
all intervals, and thus by Theorem 10.37, ¢ consists of all Borel sets, as
was to be proved. |

10.51 Theorem. If f is a nonnegative Borel measurable function on R",
then the functions F and G defined by

F@ = [ f@dm 6w = [ f6)dm

are Borel measurable, on R* and R!, respectively, and we have

/fdm:/ Fdm = Gdm.
R~ R* R!

Proof. Using Lemma 10.6 and Theorem 10.15, it suffices to prove the
theorem when f is simple, and hence it suffices to prove it for the special
case f = 1,4, where A is a Borel set in R™. Let ¢ again denote the collection
of all “good” sets, i.e., all Borel A such that the theorem holds for f = 14.
If A= B x C, where B and C are Borel sets in R* and R/, respectively,
then f(z,-) = 1g(z)1c, so F = m(C)1p; similarly, G = m(B)1c, so

/Rdem=/R'de=m(B)m(C)=/R"fdm‘

so A € 4. Thus, in particular, every interval in R™ belongs to the class
9. If AJ' € 4 and AJ' C Aj+1 for j = 1,2,..., then UjAj € Y, asis
easily seen from the monotone convergence theorem (Theorem 10.15). Let
K; = {z € R" : |z;] < j, 1 < i < n}. For each positive integer j, let &;
denote the set of all Borel sets A such that ANK; € 4. If A € ¥ for every
j, then A € ¢, since A is the union of the increasing sequence (A N K;).
But it is easy to see that each & is a A-system; for if A and B are in ¥,
with A C B, then 14 = 1p — 1,4, and the integral of 14 over any K
is finite, as are the corresponding integrals over the projections of K; onto
R* and R/, so we can subtract (this subtraction was not available to us in
¢, that's why we “localized”). Thus each &; is a A-system, containing the
w-system of all intervals, and hence &, is the algebra of all Borel sets. It
follows that 4 contains all Borel sets. |

The more familiar way to write the conclusion of Theorem 10.51 is by
using “dummy variables”:

L [ @nanerane) = [ [ ) dna) dm),
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both sides being equal to [. f(x,y)dm(z,y). It is important to realize
that the conclusion of Theorem 10.51 does not require that the integrals in
question are finite. However, without the hypothesis that f is nonnegative,
we do require the integrability of f.

10.52 Theorem. Let f be a Borel measurable function on R™ and sup-
pose that f is summable, or, what is the same according to Theorem 10.51,
that either

/ / |f(z,y)| dm(y) dm(z) < +o0
r* JR!

or

[ [ 1@l dm@) dm@) < +oc.
Rt JR*

Then f(z,-) is integrable for almost all z € R*, f(.,y) is integrable for
almost all y € R!, and

/m /R f(x,y)dm(y) dm(z) = /R fdm
=/}y /m f(z,y) dm(z) dm(y).

Proof. It suffices to apply Theorem 10.51 to the functions f* and f~. §

Theorems 10.51 and 10.52 are usually referred to as Fubini’s theorem,
but we will call them theorems of Fubini-Tonelli (see the notes at the end
of this chapter.) These theorems were stated for Borel functions; naturally,
we want to use these theorems when the given function f is only known
to be Lebesgue measurable. The correct theorem then becomes somewhat
clumsier to state, since it is no longer true that f(z,-) is measurable on
R' for every z € R, but only almost every z, etc. The validity of the
interchange of order of integration in this case follows from Theorems 10.51
and 10.52 and the fact (Theorem 10.9) that any Lebesgue measurable f

is equal almost everywhere to a Borel measurable function g. We omit the
details.

The discussion above can be transferred to the following setting: let X
and Y be sets, equipped with o-algebras & and 4, respectively, and let u
and v be measures with domains &, 2. We let & x # denote the o-algebra
of subsets of X x Y generated by {Ax B: A € o, B € 9#}. Assume u and
v are o-finite, i.e., that X = (J72; X;, with X; € & and u(X;) < oo for
each j, and a similar statement for Y. Then there exists a (unique) measure
A=uxvon X xY, with domain & x 8, such that A\(A x B) = u(A)v(B)
for every A € &, B € #, and

Jran=[([ 1@ (o)) avta) = [ (/e du(y)) du()
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for any & x %-measurable f which is either nonnegative or A-summable.
The o-finiteness condition is necessary here; if X = Y = (0,1}, p is
Lebesgue-Borel measure and v is counting measure, then for f = 1p,
where D = {(z,y) : ¢ = y}, we have [ f(z,y)dv(y) = 1 for every
x, so [ [ f(z,y)dv(y)du(z) = 1, but [ f(z,y)du(z) = 0 for all y, so
J [ f(z,y)dp(z)dv(y) = 0.

The Fubini Tonelli theorem is one of the most frequently used tools
in analysis. Here is one application, a generalization of the integration-by-
parts formula (Theorem 5.32). We will write [ : f(z) dz for f[a'b, f dm when
m is Lebesgue measure on R, and denote Lebesgue measure on R? by m;.

10.53 Theorem. Let f and g be summable over the interval [a,b], and
suppose F(x) = F(a) + [ f(y)dy, and G(z) = G(a) + [ g(y)dy. Then

b b
/ F(x)g(z)dz = F(b)G(b) — F(a)G(a) - / G(z)f(z)dzx.

Proof. Let T = {(z,y) : a <y < z < b}. Then

/ab F(z)g9(z)dz = /: (F(a) +/: fly) dy)g(z)dx

= [ 170 G)st) dma(z.s) + Fla) [ (o) da
-/ b / " (@) dz f(4) dy + F(@)[G() - G(a)

-/ "66) - G W) dy + F@IG() - Gla))

= F(b)G(b) — F(a)G(a) — /ab G(z)f(z)dz,

as claimed. |

10.9 Exercises

In the following exercises, & is a o-algebra of subsets of a set X, and u is
a measure with domain &/. Measurability will refer to measurability with
respect to &, unless otherwise indicated.

1. Show that if f : X — R is measurable, and g : R — R is continuous,
then g o f is measurable.
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2. Let C be the Cantor set, so z € C if and only if there exist a,, € {0,2}
such that z = Y27, an3™". Define fo : C — [0,1] by

ad a > a
n n
fO(Z 3_'!) = on+1’

n=1 n=1

Show that fo is surjective. Show that f; can be extended to a continuous
nondecreasing map f of [0, 1] to itself. (The function f is known as the
Cantor function.)

3. Use the example of Exercise 2 to show that if f is continuous on [0, 1]
and A is a Lebesgue measurable subset of [0, 1], it need not follow that
f(A) is Lebesgue measurable.

4. Let F(z) = 1(x + f(z)), where f still denotes the Cantor function.

(a) Show that F is a strictly increasing continuous function mapping [0, 1]
onto itself, so that G = F~! is a continuous map of [0, 1] onto itself.

(b) Show that B = G~(C) is a Borel set, and m(B) = 1

(c) Show that there exists a Lebesgue measurable set E C [0, 1] such that
G~ !(E) is not measurable. This gives an example of a Lebesgue mea-
surable set which is not a Borel set. Show that there exists a Lebesgue
measurable function g such that g o G is not Lebesgue measurable.
(Compare Exercise 1.)

5. Use Fatou's Lemma to do Exercise 4 of the last chapter. Use the mono-
tone convergence theorem to do Exercise 5 of the last chapter.

6. Let f be a nonnegative measurable function, and let v(A) = [, f du for
each A € o/. Suppose f is summable, i.e., that v(X) < oo. Show that v is
continuous with respect to u in the following sense: for each ¢ > 0, there
exists 6 > 0 such that v(A) < ¢ for every A € & with u(A) < 6. HINT: If
not, there is some ¢ > 0 such that for every n there exists A,, € 7 with
u(Ap) < 27" and v(A,) > €. Let A = limsup A,, (see the exercises in the
last chapter). Show that v(A) > € and u(A) = 0, which is impossible.

7. Suppose u(X) < oo. Let f be a measurable function, and define F :
(0,00) — [0,00] by F(t) = u({z : |f(z)| > t}. (F is sometimes called the
distribution function of f.)

(a) Show that if [|f|Pdu < oo for some p > 0, then F(t) < Ct™P for
some constant C, and all ¢ > 0. (The assumption u(X) < oc is not
necessary for this part.)

(b) Show that [ |f|du < oo if and only if 300, F(n) < oo.

(c) Show that if there exists a constant C such that F(t) < Ct™P for all
t>0,then [|f|"du<ocforallr,0<r<p.
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8. With the notation of the last exercise, show that if f € L(u), then
tF(t) — 0 ast — +oo.

9. Let {f,} be a sequence of measurable functions. Show that if

S [1aldu < oo,
n=1

then Y o, fn converges a.e. to a summable function, and

/(ifn)du=§/fndu-

n=1

In particular, if f, > 0 for every n, then }_ [ f, du < oo implies ¥ fn < 00
a.e.

10. Let f be integrable with respect to Lebesgue measure on R. Define
F(z)= flo'rl fdmfor £ >0, and F(z) = — f[z.ol fdmfor z < 0.

(a) Show that F is continuous on R.
(b) Show that if F(z) = 0 for all z, then f =0 a.e.

11. Let {fn} be a sequence of measurable functions. We say that (f,) con-
verges in measure to f if for every ¢ > 0,

p({z: 1f(z) — fa(z)| > €}) =0  asn— oo.

Show that if u is a finite measure, and f, — f a.e., then f,, — f in measure.
Give an example of a sequence which converges in measure, but does not
converge a.e.

12. Let {fn} be a sequence of measurable functions, and suppose that for
every € > 0,

Z;t({z D fa(x)] > €}) < oo.
n=1
Show that f, — 0 a.e.

13.1f f : X — R™, we say that f is measurable if f~!(U) € o for every
open U C R™. Show that f = (f,..., fn) is measurable if and only if fj is
measurable for k = 1,2,...,n. We say that f is integrable if each component
f is integrable, and define [fdu = ([ fidu,..., [ fndp). Show that if f
is integrable, then | [ fdu| < [ |f|dp.

14. Let f : R® — R be integrable, and € > 0. Show that there exist disjoint
compact sets Ki,..., K, in R", and real constants ci,...,c., such that if
we put h = Z;=1 ¢jlk,, then we have [|f — h|dm < e. Show that there
exists a continuous function g, vanishing outside a bounded subset of R",
with [ |f — gldm <.
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15. Use the result of the last exercise to show that if f is integrable on R™,
then

/[f($+t)—f(1)|dx—»d ast — 0.

16. Show that

n

lim, (1+ %)ne"hdx -1

n—2c

17. Show that if f,, f areintegrable, and f, — f a.e., then [|f,—f|du — 0
as n — oc if and only if [ |fa|dp — [|f|dp as n — oco. HINT: Reread the
proof of the dominated convergence theorem.

18. Suppose u(X) = 1, and that f and g are positive measurable functions
such that fg > 1 a.e. Show that [ fdu- [gdu > 1.

19. Suppose u(X) < oo. For each bounded measurable f on X, show that
the function p — log || f||, is convex on (0, 00).

20. Suppose p(X) = 1. Let f be integrable, and let p(r) = ||f||,. Show
that o is increasing on (0,00), and that lim,_,¢ p(r) = exp(f log |f|du)
and lim, . o(r) = || fll -

21. Show (by a symmetry argument) that

1
m{x:0< s <2< < <) = —

and deduce (by using a linear transformation) that
n 1
m({x€R :z,-ZO,Z:t,-Sl}):E.

22. Let x; = (zj,...,z}) € R", j = 0,...,n. Let K be the convex set
spanned by x;,...,x,, l.e.,

K={> t;x;:t; 20, Y t;=1}.

Show that m(K) is the absolute value of

I(I) z} . :L‘:.

—' det. : :
n! n n n
o Iy Tn

1 1 1

23. Explain the formula m(A) = [[rdrdf for area in polar coordinates,
in terms of the contents of this chapter.
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24. Use the Fubini-Tonelli theorem to show that the graph of a measurable
function has measure zero.

25. Let f(z,y) = (2% — y?)/(z? + y*)? for 0 < z,y < 1. Compute and
compare the iterated integrals

/Ol/olf(r,y)dzdy and /ol/ol f(z,y) dydz.

Reconcile your result with the Fubini-Tonelli theorem.

26. Let f be a real-valued function on R2, with the properties that f(-,y)
is Borel measurable for each y, and f(z,-) is continuous for each x. Show
that f is Borel measurable.

27. Let f be a measurable function, and E a measurable subset of R*. Use
the Fubini- Tonelli theorem to show that

/|f|Pdm=/°°ptP-‘m{er:|f(x)|>t}dt.
E 0

{The integrand involves the distribution function of Exercises 7 and 8.)

28. Let f and ¢ be integrable functions on R". Show that for almost
all z € R", the function y — f(z — y)g(y) is integrable. Let h(zx) =
[ f(z — y)g(y)dm(y). Show that h is integrable, and that [|h|dm <
([1f1dm) ([ |gldm). (The function h is called the convolution of f and
q.)

29. Use the results of this chapter to compute w, = m(B"), where B"
is the unit ball in R™. HINT: Obtain a formula for w,42 in terms of wy,.
Clearly, w; =2, and wg = 1.

30. Let f : U — R be of class C?, where U is an open set in R2. Let
(' = {x € U : df(x) = 0}; C is called the set of critical points of f.
Show that f(C), the set of critical values of f, has measure 0. HINT. Let
™ = AU B, where B = {x € C : D;D;f(x) = 0, i,j = 1,2}, and
| = C\B. Show that m(A) = 0 by using the implicit function theorem,
ind that m(B) = 0 by using Taylor's theorem.

10.10 Notes

I'he modern approach to integration began with Lebesgue's thesis, in 1902.
['he approach taken here is somewhat different from that of Lebesgue,
hut the underlying idea of measurable functions, and sums of the form
N expt(Ex) was there from the beginning. Lebesgue dealt originally only
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with functions on the line, and Lebesgue measure. The extension to in-
tegrals in any dimension space, even infinite-dimensional space, occurred
gradually over the following decades.

There are other approaches to the Lebesgue integral which have their
advantages. One approach, originating with the work of Daniell (1917-18),
begins with a linear functional I defined on a space & of functions on a
set X, for instance, the Riemann integral thought of as a linear functional
on the continuous functions on [a, b], or perhaps just on the space of step
functions. It is assumed that I is positive, i.e., that I(f) > 0 forevery f € &
with f > 0, and that I is continuous in the following sense: if f, € & and f,
decrease to 0 pointwise, then lim(f,) = 0. One then extends the functional
to the class of limits of increasing sequences in &, then to differences of
functions in this class, etc. The integral is then defined on a large class of
functions without explicitly invoking the concept of measure; finally, one
can define the measure of a set as the integral of its indicator function.
Such a program is carried out, for instance, in [12].

When n = 2, the statement of Corollary 10.26 reduces simply to the
definition of a convex function; the original proof of this corollary (by the
Danish mathematician J.W.L. Jensen) was by induction on n, and the orig-
inal proof of Theorem 10.25 was by reducing it to the corollary. The integral
inequality of Corollary 10.27 is also known as the inequality of the arith-
metic and geometric means. Holder proved his inequality for finite sums,
deriving it from an equivalent inequality of Rogers, and F. Riesz extended
it to integrals. Minkowski proved his inequality (actually, a different, less
symmetrically stated inequality equivalent to what we call Minkowski's in-
equality) for finite sums; the deduction from Hoélder’s inequality, and the
extension to integrals, are due to Riesz. Another proof of the Holder in-
equality begins with the elementary inequality ab < aP/p + b%/q, valid for
a,b > 0; integrated, this yields [ |fg|dp < 1if [|f|Pdp = [|g|%dp = 1,
and the general case follows by homogeneity.

The change of variable formula (Theorem 10.46) is due to Jacobi.

As we menticned, Theorem 10.52 is usually referred to as Fubini’s theo-
rem. It was well-known in the nineteenth century that f: fcd f(z,y)dzdy =

f: f: f(z,y) dydz when f is continuous on the rectangle {a <z < b, ¢ <
y < d}; it was proved by Lebesgue in 1904 for f a bounded measurable
function. Fubini stated the theorem for not necessarily bounded measurable
functions in 1907, but his proof was unconvincing. The first proof gener-
ally regarded as correct was given by Tonelli in 1909. Whose name should
be attached? The appellation “Fubini-Tonelli theorem” may be coming
into use.
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Manifolds

In this chapter we formulate the notion of a manifold, which generalizes
the familiar ideas of a (smooth) curve or surface. The intuitive idea of a
curve in R? or R3 is that of a subset C of R? or R3 which locally looks
like a segment of the real line; in other words, if p € C, there should be
a neighborhood U of p in R? and an interval (a,b) in R, together with a
bijective map a : (a,b) — C NU which is bicontinuous. If p is an endpoint
of C, the interval (a,b) should be replaced by an interval {a,b) or (a,b].
This formulation is purely topological, i.e., defined in terms of continuity;
we want to restrict our attention to differentiable curves, which should
mean that a and a~! are required to be differentiable. We have to explain
what we mean by a~! being differentiable, since its domain is not an open
subset of R3. We will also formulate the notion of the tangent space to a
differentiable manifold, generalizing the familiar ideas of tangent line to a
curve or tangent plane to a surface, and discuss the idea of orientation.

11.1 Definitions

Notation. Throughout this and the following chapters, we will denote by x
the identity function on R™ (or its restrictions), and denote the associated
coordinate functions by z!,z2,...,z"; thus, for example, r2(a,,...,a,) =
az. This annoying use of superscripts will make it awkward to write poly-
nomial functions, but will make some complicated expressions a little easier
in later chapters. When n = 2 or 3, we will sometimes use z, y, and z to
denote the coordinate functions. In Chapter 8, we defined the notion of



254 11. Manifolds

differentiability of a function at a point which was interior to its domain.
We now want to extend the idea of differentiability.

11.1 Definition. Let A be a subset of R*. A map f : A — R" is said to
be of class C” if for each p € A, there is an open neighborhood U of p in
R*, and F of class C™ defined in U, such that F(q) = f(q) for allq € UNA.
We say that f is smooth if it is of class C*>°. A function f : A — B is called
a diffeomorphism if f is bijective, and both f and f~! are smooth.

It is clear that if A is open, this definition gives the same meaning to
the class C™ as we had before. In general, if f is smooth on A C Rk,
the differential df of f is not well-defined (except at interior points of A),
since the extended map F is not uniquely determined. For instance, if
A = {(s,t) € R?: t = 0}, the 0 function on A is the restriction to A of the
coordinate function z? (the function y) as well as the 0 function on R2.
But if A is contained in the closure of its interior, and f is of class C! on
A, then df, and its matrix f’, are unambiguously defined on A.

Notation. Let RX = {u € R* : ux > 0}; we refer to R% as the upper
halfspace in Rk,

It follows from the remark above that if f is smooth in an open subset
V of R% | then df is well-defined in V.

11.2 Definition. Let k be a positive integer. A k-dimensional manifold (or
simply k-manifold) in R™ is a subset M of R™ with the following property:
for each p € M, there exists a map a, satisfying:

(a) if k > 1, the domain V,, of a is an open subset of R* or R'i;
ifk =1, V, is an open subset of R or R, or R_ = (—0,0);

(b) a is a smooth map of V,, into R", and its differential da. is nonsin-
gular at each point t € V,; and

(c) a is injective on V,, its image Uy, = a(V,) is an open subset of M
containing p (i.e., U, is open in the relative topology of M), and o™}
is continuous on U,.

The space R® could only be interpreted to mean a zero-dimensional
vector space, thus consisting of one point, {0}. Then (a) and (b) above are
automatically satisfied, and only (c) has content: it asserts that a(0) is an
open subset of M. Thus we arrive at the definition:

11.3 Definition. A manifold of dimension 0 in R™ is a subset M of R"
which consists entirely of isolated points.
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If we replace the word “smooth™ by C" in Definition 11.2, we arrive at
the idea of a manifold of class C™. When r = 0, we have the notion of
topological manifold. We will stay with the concept of C* manifold.

Any map a having the properties (a)-(c) of Definition 11.2 is called a
local coordinate for M at p, and the image U, of a will be referred to as a
coordinate patch at p. Obviously, such an a is also a local coordinate for M
at q, and U, is a coordinate patch at q, for any q € U,. It is straightforward
to see that any open subset of a coordinate patch is also a coordinate patch,
or to put it another way, the restriction of a local coordinate to an open
subset of its domain is also a local coordinate. It follows that a (relatively)
open subset of a k-manifold in R" is again a k-manifold in R".

11.4 Lemma. If «r is a local coordinate for the manifold M in R", then

a~! is smooth on U,.

Proof. Let p € U,, and suppose p = a(t). Since a(t) is nonsingular,
the vectors a’(t)e,,...,a’(t)e, are linearly independent; hence, there exist
vectors Vg4, ..., Vy such that

Ol(t)e], (RN ,a'(t)ek, Vk+1y--+3yVn

form a basis for R". Define a map G of V, x R*~* — R" by

G(uy,...,u,) = aluy,...,ug) + Z u;v,;

J=k+1
it is evident that G is smooth, and that
, _fa(uy,.. . uk)e; if1 <5<k
G(ul,...,un)eJ—{vj fkt1<j<n.

Thus G'(t,0) is nonsingular, so according to the inverse function theorem
(Theorem 8.27), there exists an open neighborhood V of (t,0) in R™ which
G maps injectively onto an open set U, with p € U, and a smooth F defined
on U such that F o G is the ldentlty on V.But if q € UNM, then q =

a(uy,...,ux) = G(uy,...,u,0,...,0), so F(q) = (u1,...,u,0,...,0) =
(a=1(q),0); thus a~! agrees on U n M with the restriction of the smooth
function (Fy,..., Fy), i.e., a™! is smooth. |

11.5 Corollary. Let M be a k-manifold in R*. Amapf: M — R™ is
smooth on M if and only if f o a is smooth on V,, for every local coordinate
a for M.

Proof. If f is smooth (see Definitior: 11.1) there exists, for each p € M, a
neighborhood U of p in R™ and a smooth F : U — R™ such that F = f
on MNU. Then foa = F oa is also smooth, for any local coordinate a.
On the other hand, if f o o is smooth in V,, then since a~! is smooth in
Ua by Lemma 11.4, it follows that f = (foa)oa™! is smooth in Uy. B
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11.6 Definition. Let M be a manifold in R™. For each pair a and 3 of
local coordinates such that U, NUg # 0, let Vog = B~ (U, N Up), and
define the transition function @ags : Vag — Vga by was = a1 0 3.

It is clear that V,3 is an open subset of Rk or R’i, and that ¢, maps
V. bijectively to Vjzq; evidently, gp;:, = @pa- Applying Lemma 11.4, and
the chain rule, we see that y,p is smooth, and since it has a smooth inverse,
that ¢/, ; is always nonsingular. In other words, @qs is a diffeomorphism of
Vas onto Vg,

11.7 Definition. Let M be a manifold in R*. We say that p lies on the
boundary of M, and write p € M, if p € M and there exists a local coor-
dinate a at p such that V, C Ri, and p = a(u) withu = (u;,...,uk-1,0).

We observe that if p € M, and 3 is any local coordinate at p, then
V3 C RX and z¥(37!(p)) = 0. (Recall that z* denotes the kth coordinate
function in R*.) For if p = B8(t) = a(u), and t is in the interior (relative
to R*) of V3, then @,5(t) = u, and by the inverse function theorem, there
is an open neighborhood N (in R*) of t which p,s maps onto an open set
(in R¥) containing u; but if t lies in the interior (relative to R*) of V3, this
implies that u lies in the interior of V,,, contrary to the definition of M.

11.8 Lemma. If M is a manifold of dimension k in R™, then OM is a
manifold of dimension k — 1, with empty boundary.

Proof. Let p € 9M, and let a be a local coordinate at p. Let V5 = {u €
R*-!: (u,0) € V,}, so V4 is an open set in R*~!. Define & : V5 — M
by &(u) = a(u,0). It is easy to verify that & is a local coordinate at p for
oM.

11.9 Example. Any open subset U of R" is a manifold of dimension n
in R™®; one coordinate patch suffices, with the identity map serving as
local coordinate (global, in this case.) The halfspace R7} is a manifold of
dimension n; again, one local coordinate suffices. The boundary 8U of an
open set U is empty; of course, bdry U, the boundary of U regarded as a
subset of the metric space R", is not empty unless U = R™. We see that
dR7 = bdry R} = R"~! x {0}, a manifold of dimension n — 1 in R™.

11.10 Example. If V is an open set in R*, and f : V — R"~* is a smooth
map, then the graph of f,

{(t.f(t)) : t e V}
is a k-manifold in R™. For instance, M = {(t,sin(1/t) : t # 0} is a one-

dimensional manifold in R2. This example shows that the closure of a
manifold need not be a manifold.
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11.11 Example. The closed ball B® = {u € R" : |u| < 1} is a manifold
of dimension n in R". This time more than one local coordinate is needed.
Here is one way to cover B™ with coordinate patches: let Vo = Uy =
{u : |u] < 1}, and let ag be the identity map. Define ¢ : R® — R by
g(u) = (1 = up) = 77 u?. Then

V={u:g(u)>0,0<u, <1}

is an open subset of R} . We put V| = ... = V,, =V, and define
a](u) = (V g(“)’“lv"')un-—l)v
a?(“) = ('— g(u)sulv---vun—l)y

03(“) = (ulv V g(“)s“?v"'!un—l)v

a'ln(u)= (uly---vun—l)— g(u))’

and observe that |a;(u)|> = 1 — u,, so a; maps V into B", and V N
{un = 0} into S™~! = {u € R" : |u| = 1}. It is clear that each a; is
injective. We verify that o) is nonsingular in the case j = 2n: writing
an = (f1,...,f"), we have D;f* = 6k for 1 < j<n,1<k<mnso0
det(ah,)(u) = Do f*(u) =1/ (2\/g(u)) > 0. Thus aj,, is nonsingular, and
since each a; is the composition of a2, with a permutation of coordinates
and possibly a reflection in the last coordinate, each aj is nonsingular. Now
the inverse function theorem tells us that each a; is an open map, so all the
requirements for a local coordinate are satisfied. We note that if ju| = 1,
then u; # 0 for some j, so u € ax(V) for k = 2j — 1 or k = 2j. In this
example, we see that 9B™ = S™~! = {u € R" : |u| = 1} is the boundary of
B™ in the usual sense. We could have covered B™ with just two coordinate
patches, instead of 2n + 1, but the procedure chosen seems natural, and
generalizes to a large class of manifolds. See Theorem 11.17 below.

11.12 Example. The set M = {(u;,uz,u3) :uf+u3 =1, -1 <u3 <1}
is an example of a 2-manifold (or surface) in R3; it is easily covered by four
coordinate patches. You can check that 8M is the union of the two circles
{u?} +u3 =1, uz = 1} and {u? + u = 1, uz = —1}, which, of course, is
not the boundary of M in the usual sense: bdry M = M, as is easily seen.

11.13 Example. Let 0 < a < b and consider the map f : R? — R3
defined by

f(s,t) = (bcoss,bsins,0) + acost(cos s,sin 8,0) + asint(0,0,1);

the image of f is a 2-manifold without boundary (a two-dimensional torus
in R3), and the restriction of f to any small enough open set is a local
coordinate. It is not hard to see that M is obtained by rotating the circle
{(b+ acost,0,asint) : 0 < t < 2w} about the z-axis.
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11.14 Example. Again, let 0 < a < b, and now define g : R x [~a,a] —
R3 by

g(s,t) = (bcos s, bsin 8,0) + t(sin g(coss, sin s,0) + cos %(0, 0,1));

the rectangle [0,27) x [—a,a] is mapped by g onto the image M of g in a
one—one way, the segment 27 x [—a, a] is mapped onto the same line segment
{(1,0,t) : —a <t < a} as the segment 0x [—a, a], but this segment is traced
out now in the opposite direction. This compact surface is known as the
Moibius strip, or Mdbius band. You can check that OM is the 1-manifold
{g(s,a) : 0 < s < 4n}, which is the diffeomorphic image of a circle.

11.15 Example. Let f : R — R? be defined by f(t) = (t2,t3). Then
M = f(R) is not a manifold, even though f is a bijective smooth map
of R onto M, and has a continuous inverse; f fails to be a coordinate
because f'(0) = (0,0), so that f~! is not smooth. In fact, if a is any
smooth map of an open V C R into M, with, say, a(0) = (0,0), then
necessarily a’(0) = (0,0). To see this, write a = (g, h); since g(t) > 0
for all t € V and g(0) = 0, it follows that ¢’(0) = 0. Since h? = ¢*, we
have 2h(t)h’(t) = 3¢%(t)g'(t) for t € V, and hence 2h'(t) = 3¢} (t)g’(t), s0
h’'(0) = 0. Thus a’(0) = 0; there exists no local coordinate for M at (0,0).

11.16 Example. One can construct a subset M of R2, such that M =
f(V), where V is an open interval in R and f is a smooth mapping of V' into
R?, such that f is one-one on V, and f’ is never O (thus, is nonsingular),
yet M is not a manifold. Take M to be a lemniscate, for instance, (i.e., a
figure eight, if you’ve forgotten). Let V = R, and

£(t) = (t(1+t2) t(l—t’)).

1+t4 7 1484 )’

verifying the assertions is not at all hard, but a sketch tells the story best.
The problem here is that f~! is not continuous on M; if we removed the
origin from M, we would be left with a manifold. (By the way, M is de-
scribed in polar coordinates by the equation 72 = cos 20; can you verify
this?)

11.2 Constructing Manifolds

11.17 Theorem. Let 2 be an open set in R™, and let ¢ be a smooth
real-valued function on Q. Let M = {p€ Q: p(p) 20}, andT = {p€ N:
¢(p) = 0}. Suppose M # @, and that dpp, # 0 for every p € I'. Then M is
an n-manifold, and @M =T. In particular, T is an (n — 1)-manifold in R".
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Proof. Let Uy = {p : ¢(p) > 0}; then Uy is open, and the identity map
serves as a local coordinate. Let p € T'; since dpp # 0, there exists k,
1 < k < n, such that Dyp(p) # 0, and we may suppose k = n. Let
F(u) = (u1,...,un—_1,(u)); then F is a smooth map of Q into R", and
dFy, is nonsingular, since its determinant is D,.gp(p) Hence, by the inverse
function theorem, there exists a neighborhood U of p such that F maps U
dlﬂ'eomorphlcally onto an open set V in R™; if U = M NU, then F(U) =
=Vn R7. Thus a = F~! is the desired local coordinate at p. Since
"(F(p)) = () we see that p € OM. ]

The reader should examine Example 11.11 above in the light of this
theorem.

It is easy to see that 9M C bdry M in general; in the setting of Theorem
11.17, we have equality in the important special case that M is compact.
This is left as an exercise.

11.18 Theorem. Let §? be an open set in R", let f be a smooth mapping
of 2 into R™%, and let M = {p € 2 : f(p) = 0}. If f' has maximal rank
at each point of M, i.c., f' has rank n — k everywhere in M, then M is a
manifold of dimension k, with empty boundary.

Proof. Let p € M. The hypothesis is that the linear map d,f maps R"
onto R*~*. Without loss of generality, we can suppose that ex;1, ..., e, are
mapped to a linearly independent set (i.e., a basis) in R"~* (i.e., the last

— k columns of f'(p) are linearly independent). According to the implicit
function theorem (Theorem 8.29), there exist an open neighborhood U of
p in R™, an open set V in R¥, and a smooth function g : V — R"~*, such
that M NU = {(u,g(u)) : u € V}. Thus the map a : V — R" defined by
a(u) = (u,g(u)) is a local coordinate for M at p. |

Another look at the proof of Lemma 11.4 will convince you that any
k-dimensional manifold without boundary in R" is locally of the form de-
scribed in Theorem 11.18. In the course of proving that lemma, we found,
for any p € M, a neighborhood U of p in R", and smooth functions
Fi,...,F, such that M NU = {q € U: Fep(q) = = F.(q) = 0}.
The map (Fk+1,...,Fn) had a derivative of maximal rank since the map
(Fi,...,F,) had a nonsingular derivative.

If we drop the hypothesis in Theorem 11.18 that f' has maximal rank,
then M is not necessarily a manifold (of course, it might be: consider
f(u,v) = u?), as shown by the example f(u,v) = uv, for instance. A more
claborate example is the set M of Example 11.16, which can also be de-
scribed as {(u,v) : (u2+v?)? = u?—v?}. Another example: f(u,v) = u® -2
(see Example 11.15).



260 11. Manifolds
11.3 Tangent Spaces

If M is a manifold of dimension £k > 1 in R*, p € M, and a a local
coordinate at p, a(t) = p, then da¢(R*) is a k-dimensional subspace of
R" (since da¢ is nonsingular.) Furthermore, this space does not depend on
the choice of local coordinate a; for if 8 is another local coordinate at p,
B(u) = p, then, as we have seen, 8 = aoypa,g, where @, is a diffeomorphism
of the neighborhood V, g of u onto the neighborhood Vj, of t; since (dpag)u
is nonsingular, it maps R* onto itself, so dag and dfB, = day o(d@ap)u have
the same range.

11.19 Definition. Let M be a manifold of dimension k in R", and let
p € M. If a is a local coordinate with a(t) = p, we refer to the subspace
day(R*) as the tangent space to M at p, and denote it by Tp(M). The
elements of Tp(M) are called tangent vectors at p to M.

11.20 Definition. Ifv € R" and for every T € Tp‘(M) we havev 1 7 (i.e,
{(v,7) = 0, where (-, ) refers to the usual inner product in R"), we say that
v is normal to M at p; the set of normal vectors thus forms a subspace of
dimension n — k of R™.

Although we have defined the tangent space Tp(M) to be a
linear subspace of R"™, we visualize it as the affine subspace
p+ Tp(M), i.e., as having its origin located at p. Thus, T,(M)
is to be regarded as distinct from Tq(M) if p # q, even if da and
d( happen to have the same range for some local coordinates o
at p and  at q. A better definition of the tangent space would
then be: To(M) = (p.dae(R*)). We have chosen the sloppier
form in order to avoid excessive notation.

We give the following definition for more accuracy:

11.21 Definition. If M is a k-manifold in R™, we define the tangent bun-
dle of M to be the set

T(M)={(p,h):pe M, he T,(M)}.

Thus T(M) is a subset of R?"; it is not hard to see that T(M) is a
manifold of dimension 2k. For instance, if « is a local coordinate for M at
p. with a(t) = p, then a local coordinate for T(M) at (p, h) is furnished by
the map (a,day) of V, x R* to T(M). Thus, T(M) is locally diffeomorphic
to the Cartesian product U, x R*. In general, though, it is not true that
T(M) is diffeomorphic to M x R*. A map X : M — T(M) with the
property that X(p) € Tp(M) for all p € M is called a vector field on M; it
may be continuous, or smooth, in the sense that these words apply to any
map of M into R?",
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We can form the tangent space without explicit use of local coordi-
nates, as the next proposition shows. It also provides some justification
for the terminology, since it is a familiar idea that the tangent vector to a
parametrized curve t — ~y(t) is its derivative 4'(t).

11.22 Proposition. Let M be a k-manifold in R™, k > 1, and suppose
PEM,p ¢ M. Ifh € R", then h € T,(M) if and only if there exists
€ > 0 and a smooth v : (—¢,¢) — M, with v(0) = p and 4’'(0) = h.

Proof. Recall that 4'(0) is the matrix of the linear map dy : R — R",
in other words, is the (column) vector dyo1 = lim,—o(¥(s) — 7(0))/s, the
usual derivative of a function of one variable. Let a be a local coordinate
at p, with a(t) = p. If h € Tp(M), so h = o/(t)k for some k € R¥, let
v(s) = a(t + sk). Then v'(0) = o'(t)k by the chain rule. On the other
hand, if h = 4/(0) for some smooth map «v : (—¢,€) — M, with v(0) = p,
then put I' = a™! o y (we can assume v((—¢,¢€)) C Us,, by using a smaller
¢ if necessary). Since ¥ = a o', we have 7'(0) = o/(t)["(0) € Tp(M). B

When p € M, this proposition is no longer true, since we can’t be sure
that t + sk € V,, for —e < s < ¢, or even for 0 < 3 < ¢. However, we can
show that if h € T,(M), then either h or —h is of the form +'(0), for some
smooth v : [0,€) — M, with v(0) = p. We omit the (easy) details.

Suppose f is a smooth function on the k-dimensional manifold M in R®
(see Definition 11.1). Thus, given a point p € M, there is a neighborhood
U of p in R™ and a smooth function F defined on U, such that F = f in
UN M. When k < n, F is not uniquely determined, and, in general, we
may have F and G smooth in U, with F = G on M NU but dF, # dG,.
The next proposition shows that df, makes sense as a linear function on
Tp(M).

11.23 Lemma. Let M be a k-dimensional manifold in R™, and p € M.
If F is smooth in a neighborhood U of p, and F = 0 on U N M, then
dFgp(h) = 0 for every h € T, (M).

Proof. We can assume that U is a coordinate patch, say U = U,, and that
a(t) = p. Then F o a vanishes identically on V,, so its derivative vanishes
at t; by the chain rule, we then have dF, oday = 0, i.e., dFp(h) = 0
whenever h = da, (k) for some k € R*; this is exactly the statement of the
Lemma. |

11.24 Proposition. Let M be a manifold in R™, and let f be a smooth
real-valued function on M. There is a (unique) map df which assigns to
each p € M a linear map df, : To(M) — R, with the property that
dfp(h) = dFy(h) for every h € T, (M) and every smooth function F defined
in a neighborhood U of p such that F = f on M NU.
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Proof. If F and G are smooth functions in a neighborhood U of p such
that F =G = f on M NU, then the lemma applied to F' — G shows that
dFph = dGph for every h € Tp(M). 1

If M is a manifold in R™, and f : M — R™ is smooth, then applying
Proposition 11.24 to each coordinate of f shows that dfy is a well-defined
linear map of Tp(M) into R™.

11.25 Proposition. Let M be a k-manifold in R™, and let N be a j-
manifold in R™. Iff : M — R™ is a smooth map, with f(M) C N, then
dfy (Tp(M)) C Typ)(N), for every p € M.

Proof. See the exercises at the end of this chapter. |

We can use the last lemma to obtain yet another characterization of the
tangent space in an important special case.

11.26 Proposition. Let 2 be an open set in R", and let f be a smooth
mapping of  into R*~*. If f' has maximal rank at each point of M =
{p € Q: f(p) = 0}, so that according to Theorem 11.18, M is a manifold
of dimension k, then for each p € M, we have

To(M) = {h € R™ : f'(p)(h) = 0}.

Proof. See the exercises at the end of this chapter. |

11.4 Orientation

11.27 Definition. Let V be a vector space of dimension k over R. If
(vi,...,vk) and (wy,...,wy) are (ordered) bases for V, we may write
w; = ZL, a)v,; we say that (v1,...,vk) and (wy,...,wy) have the same
orientation if det (a}) > 0.

It is easy to see that this defines an equivalence relation on the set of all
ordered bhases, and that there are exactly two equivalence classes. We call
these the two orientations of V.

Let us say that the basis (wy,...,wy) is a deformation of the basis
(vi....,vy) if there exists a continuous one-parameter family of bases to
which these belong; in other words, if there exist continuous functions f; :
[0,1] — V, 1 < j <k, such that f;(0) = v; and f;(1) = w; for each j,
and such that (f(t),...,fk(t)) is a basis of V for each ¢, 0 < t < 1. Let
f;(t) = 3_i_, a}(t)vi, and let A(t) = det(a;;(t)). Since the determinant of
a matrix is a continuous function of its entries, and each a® is a continuous
function, A is a continuous function on [0, 1] which never vanishes, and
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A(0) = 1, hence A(1) > 0. Thus any basis to which (vy,...,vx) can be
deformed has the same orientation. It is a good problem in linear algebra
to show that in fact (vy,...,vx) can be deformed into any basis with the
same orientation.

Consider the special case V = R*. The orientation to which the natural
basis (ey, ..., ex) belongs will be called the usual orientation of R¥; a basis
with the same orientation as the natural basis is often said to be positively
oriented or, when k = 3, to define a right-handed system of coordinates. If
V is a proper subspace of R", it is impossible to single out either orientation
as the “usual” one.

If M is a k-manifold in R", and a is a local coordinate, then a defines an
orientation on each tangent space Ty, p € U,; we refer, naturally enough,
to the orientation of the basis (a/(t)e;,...,a'(t)ex), where p = a(t), of
Tp. This idea leads to the following definition:

11.28 Definition. We say that the manifold M is orientable if there is a
collection O of local coordinates for M such that:

(8) UaeoUa = M; and

(b) ifa,B € € and UoNUs # O, then a and (3 define the same orientation
on T, (M), for each p € U, N Uj.

By an orientatign of M, we will mean a collection O satisfying (a), (b),
and also:

(c) if B is a local coordinate on M such that 3 and o define the same
orientation on Ty, for every a € O such that U, N U # 0 and every
peU,nNUg, thenB € 0.

In other words, an orientation of M is a maximal collection of local coor-
dinates satisfying (a) and (b). Finally, by an oriented manifold we mean a
manifold M, together with an orientation of M.

This idea makes sense for manifolds of dimension > 1. We define an

orientation on a zero-dimensional manifold M to be a function on M which
takes the values £1.

The next lemma shows that orientability and orientation can be defined
without any explicit reference to the tangent space.

11.29 Lemma. The manifold M is orientable if and only if there is a
collection O of local coordinates for M such that:

(a) for each p € M, there is an a € 0 with p € U,; and
(b) ifa,B € O and UaNUp # O, then det ¢, 5 > 0 in V,5.
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Proof. Let a and /3 be local coordinates, and suppose p = a(t) = G(u).
Then, since the orientation of Ty, defined by a is the orientation of the
basis (Auy, ..., Au,) for any positively oriented basis (u,,...,ux) of R¥,
where A = a’(t), and since § = a 0 p,g in a neighborhood of u, we see by
the chain rule that a and 3 define the same orientation at p if and only
if det ¢/, 5(u) > 0. The equivalence of conditions (a) and (b) of the lemma
with those of Definition 11.28 is now clear.

11.30 Proposition. If M is an orientable manifold, there exist at least
two distinct orientations of M; if M is connected, there are exactly two.

Proof. If € is a collection of local coordinates satisfying (a) and (b) of
Definition 11.28 (or Lemma 11.29), it can be enlarged to satisfy (c) of
the definition in the obvious way. That is, there exists an orientation on
any orientable manifold. If a is a local coordinate on M, with domain
V,, a neighborhood of 0 € R* or Ri. define @ with domain V,, = {t:
(-8, ty, ... te) € Vo, }, by a(ty, ..., tx) = a(-t;,ty, ..., 1) (here we use
the special dispensation in Definition 11.2 for V,, in the case k = 1). It i
not hard to see that U,, = U and that a and & define opposite orientations
at each point of U/, Henee, 0 = {a : v € 6} is an orientation of Al distinet,
from @. We will call it the orientation opposite to @, But suppose that Af
is connected, and that @ and @' are orientations of M. For any a ¢ 0,
de 0, and p e U,NUg, let ,5(p) = sgn det ¢, 3(u), where p = (u).
Clearly, £,5 is a continuous function on U, N Ug. But if v and 6§ are any
other local coordinates at p, with y € 6 and § € 6’, then e,3(p) = £45(P),
since (as is easily seen) p,5 = Yya © Pas © Ygs. Thus we may define the
continuous function € : M — {—1,1} unambiguously by e(p) = €as(P),
where a and 3 are local coordinates at p with a € € and 8 € €”. Since M
is connected, either e = +1 on M or € = —1 on M. But this means that
either &' = € or that 6’ = 0. 1

11.31 Lemma. If M is an orientable manifold, so is OM.

Proof. We may assume that M has dimension k£ > 1. We proceed as in
Lemma 11.8. For any local coordinate a at p € M, let V,, = {ue R*"1:
(u,0) € V,} and &(u) = a(u,0). Let 8 be another local coordinate at p.
Then V,; and Vj, are open subsets of RX , 80 zx (pas(t)) > 0 for t € V,p,
with equality holding if tx = 0. It follows that Dy (zk(ag))(t) > O if
t € V3 and ¢, = 0. Since

det ¢,5(u,0) = det ¢ ;(u) Dy (zk(¥ap))(u,0) > 0,

it follows that & and 3 induce the same orientation on Tp(OM) whenever
a and § induce the same orientation on Ty, (M).

Convention. If M is an oriented manifold of dimension k, we define the
positive orientation of M to be & = {& : a € O} if k is even, and the
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opposite orientation if k > 1 is odd. (Here we are using the notation of
Lemma 11.31.) If £k = 1, we take the orientation on &M which is +1 at
points p where V, C (—00,0], and —1 at points p where V, C [0, +00),
where a is a local coordinate at p belonging to the given orientation of M.

The reason for this mysterious convention will appear later.

Any n-manifold in R™ is orientable; we take the standard orientation of
M to be the collection of all local coordinates a such that det a’ > 0 on
Va. (In other words, the standard orientation is the orientation obtained by
using the identity map as local coordinate.) But if k < n, a manifold of di-
mension k in R™ need not be orientable. The basic example is the Mdbius
strip (Example 11.14 above). (Showing that the Mébius strip is not ori-
entable is a good exercise.) Next we give a characterization of orientability
for a hypersurface, as we call an (n — 1)-manifold in R".

11.32 Proposition. If M is a manifold of dimension n — 1 in R", then
there is a one-to-one correspondence between orientations of M and con-
tinuous unit normal vector fields on M.

Proof. Let a be a local coordinate for M. We associate to each p = a(t) €
{7, n unit. normal vector v(p) as follows: since Tj, has ditnension n - 1, there
are exactly two unit vectors orthogonal to it. Choose v(p) to be the one
such that
(v(p),a'(t)es,...,a'(t)eq,—1)

is positively oriented. It is clear that the map p — v(p) is continuous
(in fact, smooth) on U,, and easy to see that we get the same v(p) if we
replace a by any local coordinate at p which defines the same orientation
on Tp. Thus, if € is an orientation, we get a globally defined continuous
unit normal vector field v. Conversely, given such a normal vector field,
we can define the associated orientation to consist of all local coordinates
a such that (v(a(t)),a’(t)e;,...,a’(t)e,—1) is positively oriented, for all
t € V,. It is straightforward to check that if a and S satisfy this condition,
then they define the same orientation on T}, for any p € U, N Up, so this
class of local coordinates is indeed an orientation of M.

Remark. If M is a manifold of dimension n in R", we consider M to be
oriented with the standard orientation; then the associated positive orien-
tation of M (described by the convention above) is the one for which the
associated unit normal vector always points out of M.

11.5 Exercises
1.Let 0 < a < b, and let f : R? — R3 be the map defined in Example

11.13. Let £ be an irrational real number, and define g : R — R3 by
g(t) = f(t,&¢).
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(a) Show that g is smooth and injective, with g’(t) # O for all t € R.
(b) Show that g(R) is a dense subset of the manifold of Example 11.13.

(c) Show that g(R) is not a manifold, but g(J) is a 1-manifold in R? for
any bounded interval J C R.

2. Show that if M is a compact manifold in R", then OM is also compact;
if also M is n-dimensional, then @M = bdry M.

3. Let U be an open set in R", and suppose that I’ = bdryU = U\U is
an (n — 1)-manifold, with 8" = 0. Show that M = U UT is an n-manifold.
Give an example where OM #T.

4. Show that if M and N are k-manifolds in R", it does not follow that
M U N is a k-manifold. Give some sufficient conditions for M U N to be a
manifold.

5. Prove Proposition 11.25. (You may find Proposition 11.22 helpful.)

6. Prove Proposition 11.26.

7. Let M be a k-dimensional manifold in R”, and g a smooth function on

M. Show that if g has a local maximum (or minimum) at p € M, then
dgp = 0.

8. Let Q be an open set in R™, f = (f!,...,f*) : @ — R* a smooth
map, M = {p € Q : f(p) = 0}, and suppose that f'(p) has rank k at
each p € M. Let G be a smooth function defined in an open set in R"
containing M, and let g denote the restriction of G to M. Show that if
g has a local maximum (or minimum) at p € M, then there exist scalars

Ao Ar such that dGp = Zf:l Aj df";. (The numbers A, are known as
Lagrange multipliers.)

9. Let A be a symmetric n X n real matrix, and define G : R* — R by
G(t) = (At,t); let g: S*! — R be the restriction of G to the unit sphere
S"~! = {t € R" : |t| = 1}. Use the last exercise to show that if g attains
a maximum (or minimum) value at a point t, then t is an eigenvector for
A, i.e., that there exists A € R such that At = At.

10. Let M and N be 2-manifolds in R3. Show that if the tangent spaces
to M and N do not coincide at any point of M N N, then M N N is a
1-manifold, and the tangent line to MNN at p € MNN is the intersection
of the tangent planes to M and N at p.

11. Let M and N be manifolds in R", with dimensions k and [, respectively,
and suppose that k+1 > n. Let p € MNN. We say that M and N intersect
transversally at p if dim[Tp(M) N T,,(N)] = k + | — n. Show that if M
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and N intersect transversally at each point of M N N, then M N N is a
manifold.

12. Identify the set M, of n x n matrices with R"” in the obvious way, i.e.,
by listing the rows one after the other. Let O(n) be the set of all orthogonal
matrices.

(a) Show that O(n) is a compact manifold, without boundary, of dimen-
sion ln(n -1).

(b) Show that T is a tangent vector to O(n) at I (the identity mamx) if
and only if T is skew-symmetric, i.e., T = —T.

13. Show that the Mdébius strip is not orientable.

14. Let M be a compact n-manifold in R?, and let p € M. If v is a
unit normal vector to M at p, show that one of the following alternatives
holds:

(i) there exists 6 > 0 such that p+tv ¢ M forall0 <t < §; or
(ii) there exists 6 > O such that p+tvr e M forall 0 < t < 6.

We say v points out of M if (i) holds. Verify the remark made after Propo-
sition 11.32.

11.6 Notes

Mathematicians first began the systematic study of curves and surfaces
with the tools of analysis in the latter part of the eighteenth century. The
pioneering figures in this new subject of differential geometry were above
all Monge and (a little later) Gauss. The daring step of imagining higher-
dimensional objects with somehow the essential character of surfaces, i.e.,
manifolds of dimension greater than two, was first taken by Riemann. Rie-
mann had previously, in his investigations of complex function theory, come
to the idea of an abstract surface, i.e., a surface not presented as a subset
of R3 (or any R™ for that matter, but that issue did not arise).

It is not uncommon in the literature to see the word “manifold” used
only in the sense of manifold with empty boundary; in such cases, what we
have called simply a manifold is referred to explicitly as a manifold with
boundary, or sometimes bordered manifold.

It can be shown that a connected 1-manifold is diffeomorphic to either
the circle S! = {(u,v) € R? : u?2 + v = 1} or to an interval J C R.
This is an elementary fact, but hardly trivial. The reader is invited to find
a simple proof. A proof can be found in [9)]. In particular, any compact
connected 1-manifold with empty boundary is diffeomorphic to the circle.
There is also a classification of compact 2-manifolds with empty boundary;
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any such surface which is orientable is diffeomorphic to the 2-sphere, with
some number g > 0 of “handles” attached (attaching one handle to a
sphere produces a torus, for example). Classification of manifolds of higher
dimension is much more difficult (in general, impossible for dimension > 4)
and is a lively area of research.



12
Multilinear Algebra

12.1 Vectors and Tensors

Throughout this chapter, V will denote a vector space of dimension n over
the reals.

12.1 Definition. We denote by V* the space £ (V,R) of all linear func-
tionals on V. The elements of V* are sometimes referred to as covectors.

Thus, a € V* means that a : V — R, and a(av + bw) = aa(v) + ba(w)
for every a,b € R and every v,w € V. The space V* is called the dual
space, or conjugate space, of V; it is itself a vector space, with the natural
operations of functions (to wit, (a + B)(v) = a(v) + B(v), etc.).

When V = R", it is common practice to write the elements of V as
column vectors (n x 1 matrices). Let e; be the jth standard basis vector,
i.e., the column having 1 in the jth place and zeros elsewhere. Given any
a € R™* we put a; = a(e;), and find that for any x = }_z7e;, we have
a(x) = Y zla(ej) = Y ajz’. As we saw in Chapter 8, if we write the n-
tuple a = (a;) as a row vector (1 x n matrix), then a(x) is just the matrix
product ax. Let & denote the row vector with 1 in the kth place and 0
clsewhere; we see that é!, ..., é&" form a basis for R™* and that é"(e,- = 6;‘,
where 6}‘ is the Kronecker delta, standing for 1 if j = k and for 0 if j # k.
We generalize this observation.

12.2 Theorem. If (u,,...,u,) is a basis of V, then there exists a basis
(a',...,a") of V*, called the dual basis to (uy,...,u,), with @’ (ux) = 6].
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Proof. Define the elements u',...,a" of V* as follows: if x = }_] z7u;,
then @*(x) = z* for k = 1,...,n. Evidently, each G* is a well-defined lin-
ear function on V, and @*(u;) = 6%. Suppose that Y} a;&’ = 0; then
(X a;w)(ux) = 0, which gives ax = 0 for every k. Thus u',...,a"
are linearly independent. If a € V*, let a; = a(u;), and observe that
a(x) = Y 2a(u;) = Y ajz? = (¥ a;w?)(x) for every x € V, i.e., that
a =Y Ta;w. Thus (@',...,0") span V", and thus form a basis of V*. 1§

12.3 Corollary. The spaces V and V* have the same dimension.

12.4 Corollary. If x € V, and x # 0, there exists a € V* such that
a(x) #0.

12.5 Proposition. There is a natural isomorphism of V onto V**.

Proof. By “natural,” we mean one that does not depend on the choice
of a basis; the isomorphism of V and V* found above was obtained by
first choosing a basis. For each x € V, define f(x) : V* — R by the
rule f(x)(a) = a(x). That f(x) is a linear function on V* is simply the
definition of addition and scalar multiplication in V*; thus f(x) € V**. It's
easy to see that f: V — V** is linear:

flax + by)(a) = a(ax + by) = aa(x) + ba(y) = af(x)(a) + bf(y)(a),
so f(ax + by) = af(x) + bf(y). If f(x) = 0, then a(x) = 0 for every

a € V*, s0o x = 0 by the last corollary; thus, f is injective, and since
dimV** = dimV by the previous corollary, f is also surjective, i.e., an

isomorphism. [ ]
12.6 Corollary. If (a!,...,a™) is a basis of V*, then there exists a basis
(ui.....u,) of V such that o (ux) = 6}, i.e., such that o/ = w’.

12.7 Definition. Let r be a positive integer. By a covariant tensor of rank
r on V, we mean a map a : V™ — R which is linear in each variable sepa-
rately. We denote the set of covariant tensors of rank r on V by the symbol
T", or T"(V™*) if there is more than one vector space under discussion.

Thus, we ask that for each j, 1 < j < r, for any real t, and any set of

vectors vl,...vj,v; ...,Vy, we have
a(vi,.. Vi + V), v) = a(Vi, oy Vi Vi) Fa(Vi, ., Vi, V)
and

a(vy, ..., tvj,...,v,) = ta(vy, ..., Vvy).

We see that a covariant tensor of rank 1 is simply an element of V*. A
covariant tensor of rank 2 is a bilinear function on V x V; an example of
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such a tensor is an inner product on V, i.e., an element v € T? with the
additional properties that y(x,y) = v(y, x) for all x,y € V, and ~(x,x) >
0, equality holding only if x = 0.

There is also a notion of contravariant tensor. In this book, we will only
consider covariant tensors, and will often omit the adjective covariant.

It is clear that T" is a vector space, with the natural operations of func-
tions. There is also a multiplication of tensors, in a natural way. If a and
3 are elements of V*, we can combine them to get a tensor of rank 2 as
follows: let v(v,w) = a(v)3(w); we call v the tensor product of a and g3,
and write v = a ® (. A similar construction is possible with tensors of any
rank.

12.8 Deflnition. If a is a tensor of rank r and 3 is a tensor of rank s, we
define their tensor product a ® (3 by the formula

a®B(Viy.o oy Vers) = (Vi ooy V) B(Vegty - -y Vrgs)

It is clear that a ® 3 is a tensor of rank 7 + 8. It is quite obvious that
the tensor product is associative, i.e., that (a ® 8)® v =a ® (8 ® 7) for
any three tensors a, 8, v of any ranks.

Another notation for the space T” of tensors of rank r is

T =V'®---V*
Ny e
r times

but this does not mean that every tensor of rank r is the product of r
tensors of rank 1 (linear functionals).

12.9 Theorem. If (u,,...,uy,) is a basis for V, then the set
(0" ® @& :1<j<n,...,1<j <n} (12.1)
is a basis for T". In particular, the dimension of T" is n".
Proof. It is immediate from the definition of the tensor product that
W' ® - @ W (U, ... uk,) =60
where the multi-index Kronecker delta is defined by
6jle'r — 6716j7 .--6j' = { 1 if (jlv' . ,jr) = (klv' ”»kr);
kke ki Tka T 0 otherwise.

If ¢;,...;, are scalars such that

> ¢ 50 @@ =0,

it follows that ¢;,.. j, = 0 for all jy,..., jr. Thus the set of tensors (12.1) is
lincarly independent.
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Let a be a tensor of rank r and define, for each r-tuple ji,...,jr,
Qj,...j5, = a(ujl, ey u,»,).

Then given any vectors vy,...,v, € V, we have, for j = 1,...,r, an ex-
i — 5"k k — k(v . o
pansion v; = ) /', viuk, where vj = @*(v;), from which multilinearity

gives
a(vy,...,Vy) = Zv{'v;’--~v£'a(uj,,...,uj,)
=) a;, ;@ @ - @W(vy,...,Vr),

where the sums are taken over all possible r-tuples (ji,. .., Jr). This shows
that the set (12.1) spans the space of tensors of rank r. ]

It is convenient to extend the concept of tensor to the case r = (): a tensor
of rank 0 will mean a scalar. Thus tensors of rank 0 form a space of dimen-
sion n°. The tensor product of a scalar with a tensor will be interpreted as
the usual product.

12.2 Alternating Tensors

12.10 Definition. We say that a € T" is alternating if a(v,,...,v,) =0
whenever there exist j # k such that v; = vy.

We denote the set of all alternating tensors of rank r by the symbol A",
or A"(V*) if there is any chance of confusion with tensors defined on some
other vector space.

This definition allows every tensor of rank 0 or 1 to be classified as
alternating. If a and 3 are tensors of rank 1 (i.e., elements of V*), the
2-tensor a ® # — 3 ¥ a is alternating.

12.11 Proposition. Ifa € A" and1< j <k <r, then for all v;,...,v,,
we have

(Vi Vi1, Vi Vigly oo s V=1, Vs Va1, -y Vi) = —a(Vi, ..., Vy).

Proof. It is obviously sufficient to establish the formula in the case r = 2.
We have, using linearity in the second variable,

a(v,w) =a(v,v) + a(v,w) = a(v,v + w),
a(w,v) = a(w,v) + a(w,w) = a(w,v + w),

and hence, by linearity in the first variable,

a(v,w) + a(w,v) =a(v+w,v+w)=0,
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whence a(v,w) = —a(w, V). ]

We remark that if a tensor has the “antisymmetry” property described
in Proposition 12.11, it is evidently alternating; for if z € R and = = -z,
then £ = 0. If we were to consider vector spaces over a field of characteristic
2, however, the properties would not be equivalent.

12.12 Proposition. If a € A", and vy, ..., v, are linearly dependent ele-
ments of V, then a(v,,...,v,) =0.
Proof. There exist scalars ¢!, ...,c", not all 0, such that Z;=1 dv;=0.

Let k = max{j: ¢/ # 0}. If k = 1, then v, = 0, and the desired conclusion
follows since a is multilinear. If k > 1, we can write vy = Z_’;;: b’v,-, where
W = —c’/ck, and hence

k-1
a(vl,...,v,)=a(vx,...,vk_1,E V'V, Vi, o0 V)
Jj=1
k-1
= E Va(vi,...,Vk=1,Vj, Vkt1y---, Vr)
J=1
=0,
since « is alternating. |

12.13 Corollary. Ifr > n, then A" = (0).

Proof. If r > n, any set of r vectors in V is linearly dependent. ]

Let S, denote the set of permutations on r letters, i.e., the set of all
one-one mappings of {1,2,...,r} onto itself. It is a familiar fact that S, is
a group with r! elements.

12.14 Definition. Let o € S,. We put

é(o) = [ sen (o(k) - o(5)),
i<k
and call (o) the sign of 0.

We recall that sgn z is the sign of z, i.e.,

_fz/lz| ifz#0;
ng_{o if z = 0.

12.15 Proposition. Suppose 7 € S, is a transposition, i.e., there exist
1 <i< j <7 such that 7(i) = j, 7(j) =1, and 7(k) = k unless k = i or j.
Then e(7) = —1.
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Proof. We note that 7(k) < 7(l) whenever k < [, except in the cases where
k=iandl < j,orl =] and i < k (or both); there are 2(j — ) + 1 such
cases, 50 €(7) = (=1)%1 = —1. |

12.16 Proposition. For any o, T € S, we have e(o7) = (0)e(7).

Proof. We observe that
elor) = H 58N ((”T)(klz — (.OT)U))

j<k —J
a(r(k)) = a(7(5)) (k) — 7(j)
J,k (k) — 7(j) k—3j
_ (r(k)) — o (r(4)) 7(k) - 7(j)
,Ufg"( (k) = 7(3) ),U,fg ( =7 )
am)——ol) (k) = 7(J)
,[!:g“( ot ) e (%5552)
= e(o)e(T
which was to be proved. |

Suppose 0 € S;, and 0 = Ty ---Tx, Where each 7; is a transposition.
Then by Propositions 12.15 and 12.16, we have e(o) = (—1)*. Now any
permutation can be expressed as a product of transpositions, and in many
different ways; according to what we have just observed, it always takes
an even number, or it always takes an odd number. This is not an obvious
fact.

12.17 Definition. Let a be a tensor of rank r, and o € S,. We define a
new tensor °a of rank r by the formula

“a(vi,...,Vr) = a(Voy, - -1 Vo(r))
for all vy,...,v, €V.

Evidently, the map a — °a is a linear mapping of T" onto itself, for any
o € S;, and it is easy to see that “"a = ?("a) for any o, T € S,. We can
restate Proposition 12.11 above in the form: if a € A", (r > 1),and 7 € S,
is a transposition, then "a = —a. Hence, if 0 € S,, and ¢ = 7} - - - 7, where
each 7; is a transposition, we can conclude that %a = ( —-1)*a. In other
words:

12.18 Proposition. If a is an alternating tensor, and o € S,., then °a =
e(o)a.
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12.19 Definition. If a is a tensor of rank r, we define

Aa = Z e(o) %a;

a€S,
we call Aa the alternation of a, and refer to A as the alternation operator.
For instance, with V = R", if a = & ® &*, then
Aa(v,w) = a(v,w) — a(w,v) = vVw* — vFu’,
ie., A(& ® &F) = & @ &k — &* ® & . Similarly, we compute that

A wé? weé’)(u,v,w) = u'v’w? — u'vdw? + u?iu!
—u2v'w® + wdv'w? — B!,

which is the 3 x 3 determinant made from the first three coordinates of u,
v, and w.

The next proposition sums up the basic properties of the alternation
operator; up to a constant factor, it is a projection of T™ onto A".

12.20 Proposition. For any a € T", and 7 € S,, we have:
(a) "(Aa) = &(T)Aa;
(b) Aa is an alternating tensor,
(c) if a is alternating, then Aa = r!a; and
(d) ATa = ¢(T)Aa.

Proof. For any a € T", 7 € S,, we have

"(Aa) = T( 2 e(o) "a) = 2 e(r)e(ro) a

0€ES, o€ES,
=¢(7) Z £(0’) " a = ¢(r)Aa.
a'Esv-

Thus (a) is proved. We observed earlier that (a) implies (b). If « itself is
alternating, then Aa = r!a, since by Proposition 12.18 every one of the r!
terms in the defining sum is equal to a. Finally, (d) is proved in exactly
the same way as (a). |

Notation. We will denote by a single capital letter a finite sequence (or-
dered r-tuple) of integers from {1,...,n}; thus, I = (4,,...,i,); we put
|I| = r, the length of I. We say that I is increasing if i} < iz < --- < ,.
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12.21 Definition. Let (uy,...,u,) be a basis for V. We put
W =A@E"®---®a"),
for each r-tuple I = (iy,...,1,).
12.22 Proposition. The set
(@’ : |I| = r, I increasing } (12.2)
forms a basis for A"(V*).

Proof. Observe that if I = (4;,...,%,) and J = (j1,...,Jr) are increasing
sequences, then

a'(uj,,...,u;,) =A@@" ®- - ®@ua")(uj,,...,uj)
= Z e(0)i" @ - @ (uy,,,,,---,5,,,)
gES,
=55,

the Kronecker delta, and hence, using Proposition 12.20, that for any r-
tuples I and J, not necessarily increasing,

ﬁ'(u,l,...,uj,)=65,

where €/, the “Kronecker epsilon,” is defined to be 0 unless the sequence I
is a rearrangement of the sequence J, and to be €(0), if the permutation o
transforms / to J. It is now easy to see that the set (12.2) is linearly inde-
pendent, for if a = 3~ ¢!, then a(uj,,...,u;,) = cy, for each increasing
J = (J1,---,Jr); it follows that a = 0 only if every ¢; = 0. Using The-
orem 12.9 and Proposition 12.20, we see that {ii/ : all r-tuples I} spans
A". By Proposition 12.20 (d), we see that @/ = 0 unless I contains no
index twice, i.e., unless I is a permutation of an increasing r-tuple; for if
a = @' with i; = i\ for some j # k, then "a = a for a transposition 7, so
Aa = e(1)Aa = —Aa. The same proposition shows that if I = o(J), then
@/ = g(o)a’. Thus the set (12.2) spans A", and hence is a basis. ]

12.23 Corollary. The dimension of A" is (7), forr =0,...,n.

Proof. There is a one-to-one correspondence between increasing sequences
of length r in {1,...,n} and subsets of {1,...,n} with cardinality r; the
number of such subsets is (), so this is the dimension of A" by the last
proposition. ]

In particular, we see that A™ is one-dimensional, and is spanned by the
alternating tensor a'? ",
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12.3 The Exterior Product

We next introduce a multiplication of alternating tensors; it is easy to see
that the tensor product of alternating tensors is usually not alternating.

12.24 Definition. If a € A" and 3 € A®, we define

aAB=A(3,®E),
T

s!

soaAB € A™t*, We refer to aA (3 as the exterior product or wedge product
of a and f3.

If r =0 or s =0, we see that a A 3 is just the usual product of a scalar
and a tensor, since Aa = r'a, A3 = s! 8. We will soon see that the factors
1/r! and 1/s! serve another useful purpose.

12.25 Proposit.ionf If a is a tensor such that Aa = 0, then
Al@®B)=A(B®a)=0
for every tensor 3.
Proof. Let r be the rank of a and let s be the rank of 3. Let
T={1€84s:7(§)=jforj=r+1,...,r+s},

so T is a subgroup of S,,,, isomorphic in an obvious way to S,. Observe
that for 7 € T, "(a ® 8) = "a ® B. The left cosets of T partition S,,,, so
we may choose ay,...,0p such that

P
o;TNoxT=0if j#k and Sy, =|Jo;T.
i=1

Then

Aa®B) = ) €(0)(a®pf)

UESr+J

=YY elo;7) (@ ® B)

j=17€T

3 <o) a’(z ()a®5)

J T€T

P

z;je(a,-)a’(z () *aw)

1
J=1 TES,
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M 1

o) ([T etr7a] @0)

TES,

(o)’ (Aa® B) = 0,
1

J

as was to be proved.

To see that also A(3®a) = 0, we observe that S®a = “(a® ), where o is
the permutation which sends (1,...,r+8) to(r+1,...,7+s,1,...,7), and
recall that A %y = (o)A~ for any tensor 7y of rank t and o € S; (Proposition
12.20); thus A(a ® 8) = 0 implies that A(B® a) = 0.

12.26 Corollary. Suppose that a, a’ are tensors of rank r such that Aa =
Aa’. Then A(a ® 3) = A(a’ ® B) for every tensor (3.

Proof. We have A(a ® ) — A(a’ ® 8) = A((a — &') ® B) = 0, since
A(a—-a')=0. 1

12.27 Theorem. The exterior product is associative: for any a € A",
B € A%, and v € A, we have

(@anB)Ay=an(BAy) = "th( a®B®7) (12.3)
Proof. Since a A (3 is alternating, we have
aAhp _ _ a®ﬂ'
(r+s)!_aAB_A ris!’

it follows from the last corollary that

(aAﬁ)M=A(‘“"‘” @%)

(r+s)!
a®pB _~v
= A( r!s! ® -t_i)
and, similarly, that
BR®Y
rean=a(SeZET),
and since the tensor product is associative, the proof is complete. |

The formula (12.3) above obviously extends to a product of any number
of factors; in particular, we have

c‘"l Aﬁ‘? Aeee /\ﬁir = A(ﬁil ®."®ﬁir) = ﬁil"'ir'
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12.28 Proposition. Ifa € A", B € A®, thenaAB = (-1)""8Aa.

Proof. Let o be the permutation
(1,....7t+8)—(r+1,...,7+s,1,...,7)

so that 3 ® a = ?(a @ §). It is easy to calculate that e(o) = (—1)"*, and
from Proposition 12.20 we deduce that 3 A a = e(o)a A (.

12.29 Proposition. A finite subset {a!,...,a"} of V* is linearly inde-
pendent if and only ifa' A--- Aa" #0.

Proof. Suppose that a',... a" are linearly dependent. If a' = 0, it is
obvious that a'A---Aa” = 0. If a* = o’ forsome i < j, thena'A---Aa" =0
by the last proposition and associativity. If a! # 0, there is some k, 1 <
k < r, such that o* is a linear combination of al,...,a*~!. Then

k-1
a'AonadE =o' A AR A (cha’)
i=1

k—
Z o Aa*TAdd =0.

Next suppose that al,...,a" are linearly independent. Then they can
be extended to a basis of V*, am_i 80, _by Proposition 12.2, there exists a
basis v;,..., v, of V such that o’ = vJ for j = 1,...,r. But then

a' A AQ" (Vi V) =1,

soalA---Aa" #0. |

12.30 Example. Let us seec what all this algebra looks like when V' =
R3. The spaces A! and A? are both three-dimensional; A! = V* can be
identified with R3 viewed as row vectors, and A2 has as a basis the set
" =é?néd, n? =& Aél, and n® = é! A &2. We calculate easily that if v
and w are elements of A!, then the components of ¥ A W in terms of the
basis 7!, 2, n3 form a row vector which coincides with the familiar cross
product of the row vectors v, w. We calculate also that if v/ (j = 1,2,3)
are any three row vectors, then

VIAVIAYS —Zv'vzuse""
1,5,k
= (detv}) &',

in other words, that the exterior product of three row vectors corresponds
to the triple scalar product of the vectors.
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12.4 Change of Coordinates

12.31 Definition. Let W and V be finite-dimensional vector spaces, and
let A: W — V be a linear transformation. The adjoint of A is the linear
map A* of T"(V*) into T"(W*) defined by

(A*a)(wy,...,w,) = a(Aw),..., Aw,)
for every a € T"(V*) and all wy,...,w, € W.

Suppose that x;,...,Xx, is a basis for V, that y;,...,ym is a basis for
W, and that Ay; = 3 }_, akxi (i.e., that (a%) is the matrix of A with
respect to the given bases.) Let us calculate the matrix of A* with respect
to the induced bases for the spaces of tensors over V* and W*.

Let us take first the case r = 1. Suppose a € V* and ¢, = a(xx), so
a =3} ckx*. We can write A*a = 377, d;¥7. Our object is to express
the coefficients d; in terms of the coefficients cx. Suppose w € W. Writing
w =37, wy;, we have

(A*a)(w) = a(Aw) = ) wa(Ay;)

i=1

in other words, d; = Y _ 1a ceforj=1,...,m.

The case of general r is just as easy to calculate, although the notation
gets a little thick. Suppose now that a is a tensor of rank r, and that

We want to find the coefficients dj; ...;, in the expression

A'Q': Z d]l]rle®®er

jlv"'vj"
in terms of the coefficients c;,..;.. To this end, let w;,...,w, € W, and
write
m
= Zw;‘yk G=1,...,7)
k=1
80 that

n m

Z w"Ay;c = Z Z w"akx.,

i=1 k=1
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and hence
n m n m
a(Aw,....,Aw,):a(E E m:"a;“x.-,....,z E wf'a;"rx.r)
n=1k;=1 iy=1k,=1
i
= E E wh .. wk ak sy oXiyy ey X))
k,-ll, s

}: } : i k k
cu lrakl akr ! "'wrr)

| SRTEN P
which expresses that
Aa= Y di.kFM @ ®Fh,
kl....,kr
where ‘ ,
K, = Z ay, Ay Ciyigs (12.4)
ooy
the formula we were after.

Calculations such as we have just made would look cleaner, or at
least would use less ink, if we adopted the Einstein summation
convention: if the same index occurs as both a subscript and
superscript in a monomial, summation over all values of that
index is understood. Thus the transformation law we have just
obtained for the components of covariant r-tensors would be
written simply
dk,--vk, = a;“ .. -a;c"c,"....-,
using the summation convention.

Let us next calculate the transformation rules for alternating tensors. If
a € A7(V*), we can write

a= Zlcli', A’a = Z,dJS'Jv
1 J

where the primes indicate summation over (strictly) increasing r-tuples.
We want to express the coefficients d; in terms of the c;. Since A*a =
S crA*x!, and
Akl = A (A" ® - @ %))
=A(A*(X" ® - ®X'))

-A(Za‘l... "ryh@...@yir)
= Z Z e(a)a, m J«(r)yn A ijr'

GGSr
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we conclude that d; = Z" c,A’J, where

I _ i . i,
Ay = Z G(U)ajo(” a.‘la(r,’

og€ES,

in other words, A5 is the determinant of the r x 7 matrix formed from
the rows numbered i,,...,i, and the columns numbered j,,...,j, of the
matrix (a}). Especially interesting to us is the case m = n = r; the spaces
A™(V*) and A"(W?*) are one-dimensional, and the action of A* is simply
multiplication by det(a}). Some authors define the determinant of a linear
transformation A : V — V as the adjoint map A* restricted to A™(V*).

The most important special case of all these transformation formulas is
probably the case where W = V and A is the identity transformation. Then
the formulas we have derived are those which express the components of
a given tensor with respect to a new basis in terms of the old components
and the matrix effecting the change of basis.

12.5 Exercises

1. Which of the following functions on R* x R4 is a tensor?
(a) a(x,y) = z'y! + 2y + ziy'.

(b) a(x,y) = (x-y)%

(¢) a(x,y) = ' + 22 + 23y + o%y*.

2. Explain how an inner product on the n-dimensional vector space V gives
rise to an isomorphism of V with V*. Use this to associate with any inner
product v on V, in a natural way an inner product ¥ on V*.

3. Let V be an n-dimensional vector space with an inner product ~. Let
Vi....,Vn be a basis of V, let v!,..., V" be the associated dual basis, and
let T be the isomorphism of V onto V* that the inner product gives rise to.
Let g;x = v(v;.vk) and let g¢’¥ = 5(v7,v¥). Show that (gjx) is the matrix
of T with respect to the given bases, and that (¢’*) is the inverse matrix
to (gjk)-

4. Compute £(0) when o is the element of S5 defined by
o0(j)=2j+1 (mod5) (1<j<05).

How many terms are there in the product defining (o)? Express o as the
product of transpositions, as economically as you can.

5. A tensor a of rank r is called symmetric if “a = a for every o € S,.
Show that the set of all symmetric tensors of rank r forms a subspace of
T", and find its dimension.
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6. Let a be the tensor of rank 3 on R* defined by

a(x,y.z) = 2?24 + 3y 22

Find Aa, and express in terms of the standard basis &/ (|I| = 3) for A3,

7. Show that if & € A', then a A a = 0. Give an example of a € A? such
that o Aa # 0.

8. Show that every covariant tensor o has a unique expression of the form
« = 8 +~, where /3 is alternating and Ay = 0.

9. An alternating r-tensor « is called elementary, or an r-covector, if there
exist v!,...,v" in V* such that

=VvIA- AV (12.5)

According to Proposition 12.29 such an a # 0 if and only if v!,..., V" are
linearly independent. If a # 0 has the form (12.5), define

Wo={xeV:¥(x)=0, j=1,...,7}.

Show that W, is a subspace of V, and that it depends only on a, and not
on the particular representation (12.5). Show that W,, = Wy if and only if
there exists a nonzero constant c such that a = ¢f.

10. Let w be a nonzero element of A™. Show that for each a € A", a # 0,
there exists # € A"~ " such that a A 8 = w. Is # unique?

11. Define an inner product on A™ = A"(R"™*) by decreeing that the stan-
dard basis elements &/ form an orthonormal set. Show that for each r,
0 < r < n, there is a linear map w — *w of A" onto A™™" with the
properties:

(a) | *w| = |w| for every w € AT;
(b) wA *w = |w|?e'?"™; and
(€) **w = (=1)""""y for all w.

Here we use the usual notation: |w|? = (w, w).

12.6 Notes

Multilinear algebra seems to have begun in the middle of the nineteenth
century in the work of Grassman and Mdébius. Grassman introduced the
exterior product for multivectors. His work remained obscure for many
years, but the algebra of alternating multilinear forms (the direct sum of
all the A%) is called the Grassman algebra today, a term first introduced by
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E. Cartan in the 1920s. The theory of tensors, covariant and contravariant,
developed gradually in the latter part of the century; it was systematized
and popularized most notably by Ricci and Levi-Civita in their work on
differential geometry at the turn of the century and later. The position of
Grassman’s multivectors as alternating tensors became clear only gradually.
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Differential Forms

Having studied tensors and alternating tensors from the purely algebraic
point of view, we now consider functions whose values are tensors, or es-
pecially, alternating tensors. These are called tensor fields, and alternating
tensor fields are called differential forms. They have many applications in
geometry and analysis, as well as physics.

13.1 Tensor Fields

13.1 Definition. Let U be an open subset of R™. A vector field in U is
a map of U into R"; a tensor field of rank r is a map of U into T"(R"*).
A differential form of degree r (or briefly, r-form) in U is a map w of U
into A"(R™"); in other words, a tensor field of rank r which is alternating
at each point.

Thus, if w is a differential form of degree r in U, then w : p — wp, where
wp is an alternating r-linear function on R". In particular, a tensor field of
rank 0, or differential form of degree 0 in U, is simply a real-valued function
on U. A tensor field w of rank 1, or differential form of rank 1, is simply a
covector field: it assigns to each point p € U a linear function wp on R",
which may be identified with a row vector of length n.

13.2 Definition. Let w be a tensor field of rank r in U. We say that w is
of class C* if the real-valued function p — wp(V1,...,Vy) is of class C* Jor
every vi,...,V, € R™.
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Notation. Recall that 7 denotes the jth coordinate function on R"; thus,
z/(ay,....an) = a;. If f is a differentiable real-valued function on U, then
dfp is a linear mapping of R" to R, for each p € U, given by

n

dfp(h',....h") =) _(D;f)(p)W,

=1

so df is a 1-form in U; if f is of class C*, then df is a 1-form of class C*¥~!.
We observe also that dz{,(h‘,...,h") = hJ, or in other words, dz’ is a
constant mapping of U into R™*: it assigns to each p € R" the element &’
of the basis dual to the natural basis e;,...,e, of R". Thus if w is any 1-
form in U, then w can be expressed uniquely in the formw = 3°7., f, dx?,
where the f; are real-valued functions in U. Since, as we saw in the last
chapter, the alternating tensors &', with I an increasing r-tuple, form a
basis of A"(R"*), we see that if w is an r-form in U, then w can be uniquely
expressed in the form
w= Z,a, dz!,
1

where the prime indicates that the sum is over all increasing r-tuples I =
(i1,...,iy), each a; is a real-valued function on U, and dz! =dz* A--- A
dz'~. It is easy to see that w is of class C* if and only if each function a;
is of class C*.

In particular, if f is a differentiable function, we have the formula

df =) (D;f)de) =) %dr".
j=1 i=1

It will be convenient for us to consider mainly functions and forms of
class C'*°; as before, such functions or forms will be called smooth.

Notation. We denote the space of all smooth r-forms in the open set U of
R"™ by Q"(U).

13.2 The Calculus of Forms

The algebraic operations on alternating tensors naturally give rise to the
analogous operations on forms; thus, if w is an r-form in U, and f is a real-
valued function in U, then fw is the r-form defined by (fw)p = f(p)wp; if
w and 5 are r-forms, then w + 7 is again an r-form, defined by (w + 77)p =
wp + Np; if w is an r-form, and 7 is an s-form, then w A7 is the (7 + s)-form
defined by (w A n)p = wp A np. The algebraic operations on smooth forms
result in smooth forms, obviously. Our next definition extends the mapping
[ — df of Q°(U) into QY (V).
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13.3 Definition. Let w = ' a;dz’ be a smooth r-form in U. We define
the (r + 1)-form dw by

dw =Y (das) A dz’
1

and call it the exterior differential of w.

13.4 Proposition. The exterior differential has the following properties:
(a) d is a linear map of Q" (U) into Q"*+!(U);
(b) ifwe Q" (U) and n € Q*(U), then
dwAn)=dwAn+(-1)wAdn;
(c) for any w € Q"(U), d(dw) =

Proof. The linearity of d is quite obvious. We prove (b) first for the case
r = 8 = 0: if a and b are smooth functions in U, then

d(ab) = ) Dj(ab)dz’ =Y _(bDja + aD;b)dz’ = bda +adb
J J

which is (b) for this case (recall that the wedge product when one factor is
of rank 0 is taken to be the ordinary product by a scalar). Now, in general,
ifw=3"ardz! € Q(U), and n = 3_"b,dz’ € Q*(U), we have

d(w A ) ((2 ardal) (S ds’) )
J
= Z Z d(arby dx’ /\dIJ)
r v

(using the linearity of d), and for each I, J we have
d(arby dz’ Adx’) = d(asby) Adz! Adz’!
= (byda; +aydby) A dz’ Adx’
=byda; Adz' Adz’ +a;dby Adz' Ada?!
= (das Adz") A (bydz’)
+(~1)"(ar dz’) A (dby A dz”),
where we used Proposition 12.28 for the last equality, which gives (b).

Assertion (c) essentially is a formulation of the equality of mixed partial
derivatives. If f is a smooth function, then

A4 = (L Da de*) = 3 dDag) n et
k=1

n

E(i D, (D,J)dr’) A dz*

k=1 =1
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=Y (D;Di — DiD;)f dz’ Adz* =0,
i<k

thus establishing (c) for the case 7 = 0. In the general case, we have
d(da; Adz') = d(da;) A dz" + (-1) da; A d(dz")

from (b); but d(da;) = 0 as we have just seen, and d(dz’) = 0 by the
definition of d. It follows that d(dw) = 0 for any smooth w. |

13.3 Forms and Vector Fields

Since A"(R™*) is one-dimensional, to each n-form on U we can associate
a real-valued function on U. Since A"~!(R"*), as well as A'(R"*) = R"*,
is a space of dimension n, to each (n — 1) form on U, as well as to each
1-form on U, we can associate a vector field on U. We next spell out such
a correspondence, and relate it to the differential operator d.

13.5 Definition. Let wo = dz! A --- Adz™; for each j, 1 < j < n, we put
7 =(-1yYdz' A---Adr? P AdZITE A - AdE™

The mysterious factor (—1)7 can be justified by the relation dz? A7’ = wy,
for each j, 1 < j < n. We note that dz? An* = 0if j # k.
" Every w € Q"(U) can be uniquely expressed in the form w = gwg, where
g is a smooth function on U. We denote g by &(w). Every w € Q" 1(U)
can be uniquely expressed in the form w = 3°7_, g;7, where each g; is a
smooth function on U. Let us then define the map ® of Q" !(U) to the
space ¥ of smooth vector fields on U by ®(w) = (g1, - ., gn). Similarly for
1-forms: if w = Y7 g; dz7, let ®(w) be the vector field (g;,...,9gn). The
correspondence P lets us interpret the differentiation operator in terms of
vector fields. For instance, if w = 3" g; 77, then

dw = ?:_;dg,- A = g(ki(Dkgj)dxk> AY = (J}: ngj)w(,.

=1

In vector analysis, one defines the gradient of the function g to be the
vector field

gradg = (Dyg, ..., Dng),
and the divergence of the vector field g = (g1,...,gn) to be the function

n
divg = Zng,-;

=1
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thus we have
®(dg) = gradg, ®(dw) = div P(w)

for smooth functions g and smooth (n — 1)-forms w. We summarize in the
diagrams:

Q 4 o -t 4, gn
Jia |e le l’
c> €5y vy & o

In the special case n = 3, the mapping d : Q' (U) — Q%(U) can also be
interpreted in terms of vector fields. If w = 2:1’ gk dz*, then

3 3
dw = (Z(D]gk)dl'j) Adzk = Z(ngh - Dkg,-)dr" A dz*
k=1 Vj=1 i<k

= (Dag3 — D3g2) dz? A dz® — (Dyg3 — D3gy) dz' Adz®
+ (Dlgz - ngl)d.’t] A d.’v?;

thus, we see that when w is a smooth 1-form in R3, we have
®(dw) = curl ®(w),
where the curl of a vector field g = (g1, g2, g3) in R3 is defined by
curl g = (D293 — D3g2, D3g1 — D193, D1g2 — D2g1)

(sometimes denoted by Rot g). The diagram for n = 3 is thus

QO __"__,Ql_‘_i__’92__£__’93

lw 10 10 10
cx ¥4 y = y &Y (oo

Other notations use the vector operator “nabla”

0 06 8
V=(£'o—y'a)’

using this symbol, we can write
gradg=Vg, divg=V-g, curlg=V xg,

where the - is the formal dot product or inner product, and x refers to the
cross product of vectors in R3; in our terminology,

g xh=28(2"'(g) A&\ (h).
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13.4 Induced Mappings

Suppose now that V' is an open set in R™, that U is an open set in R", and
that f is a smooth map of V into U. Then f induces a map f* : Q"(U) —
Q7 (V), as follows:

(FW)p(Vi, - ., Ve) = wrpy (E(PIV1, -, E (PIV2).
In other words, f* is obtained by putting together the adjoint maps [f'(p)]*
of A"(R"*) — A"(R™*) induced by the linear maps f’'(p) of R* - R™ at
each point p of V' (see Definition 12.31).
Let us calculate the meaning of f* in terms of coordinates. Note that

(fdz')p(v1,...,vy) = dz’ (F'(p)v1,.... ' (P)V,)
=(df** A---Ad ")p(vl,... v Ve,

since f'(p)v is the vector with coordinates df;(v), .y dfg(v). It follows

that
f* (Z'c, d:c’) =Y (erof)df’, (13.1)
I 1

where we write df’ for df*' A--- A df' when I = (iy,...,i,). Consider, in
particular, the special case r = n = m. Now df* = 3_(D; f*) dz’, so

1 n a.fl
df' A--- A df =( azhdz“) - (Zazhdh)

J1=1 Jn=1

= E‘( ) Lo dz' A--- A dz"

al n
o€ ( ) 61;”( )
= de t( of )dz’ -Adz"

= (detf')dz! A--- Adz™,

so that in view of (13.1) we have
f*(w) = (detf)wof =Jrwof, (13.2)
a formula which will be basic.
13.8 Proposition. The map f* is linear, and satisfies:
(a) f*(wAn) = (f*w) A (f*n) for any w € Q"(U), n € Q*(U); and
(b) f*(dw) = d(f*w) for any w € Q"(U).
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Proof. If A: V — W is a linear map of vector spaces, the induced map
A* of tensors is linear, and preserves the tensor product (and hence the
wedge product on alternating tensors); this establishes the linearity of f*,
and assertion (a). But to verify (b) we only need to observe that d(df'* A
-+« Adf*r) = 0 by Proposition 13.4, that (b) holds when w is a 0-form by
the chain rule, and use the formula (13.1) above for f*w. |

The next proposition follows easily from the definition, and the chain
rule. We omit the proof.

13.7 Proposition. Iff : V — U andg: W — V are smooth, whereU, V,
and W are open sets in R®, R™, and R', respectively, then (fog)* = g*of*.

13.5 Closed and Exact Forms

13.8 Definition. Let w € Q"(U). We say that w is closed if dw = 0. We
say that w is exact if there exists n € Q"= (U) such that w = dn.

Proposition 13.4 shows that the closed r-forms make up a subspace Qf of
the vector space 2"(U), and that the exact r-forms constitute a subspace
QO = d(27 ') of Q. The quotient space Q7/QL is called the de Rham
cohomology group of U. We will not discuss this topic beyond giving the
following fundamental theorem, known as Poincaré’s lemma.

13.9 Theorem. Let U be a convex open set in R™, and let r be a positive
integer. Then every closed r-form in U is exact; in other words, ifw € Q"(U)
and dw = 0, then there exists 5 € "~(U) such that dn = w.

Proof. Fix a point xg € U. Let
U = {(x,t) € R"*! : tx + (1 - t)xo € U}.
Then U is an open set, since U is open, and U D U x [0,1], since U is

convex. We begin by constructing a map J : Q1) — Q(U) as follows:
each @ € Q"*!(U) has a unique expression in the form

o= Y arde’ + ¥ 'bjdz’ ndz™H, (13.3)
I|=r+1 |J|=r

where the primes indicate that the sums are taken over all increasing in-
dices, and I, J are from {1,...,n}. We put

1o = Z'(/ol b,;(-,t)dt)dx".
J
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Because U O U x [0,1], the integrals involved are well-defined, and are
smooth functions on U, s0 Jw € 2"(U). We note that

d(0@) = Zg( /b,( t)dt)da:’/\d:t"

zi:( / (D;b5)(:, t)dt)da:’ Adz’, (13.4)

the interchange of differentiation and integration being justified by the
bounded (even uniform) convergence of the difference quotients to the
derivative. On the other hand, if & € Q7(U), then

I(do) = J(ZIda, Adz!
I
+Y aby Adz? A dz"“)
J
= J(Z,(D,.Ha,)dz"“ Adz!
4
+3 zn:(D,-bJ)d:H Adz? A d:c"“)

J j=1

=(-1)" Z' (_/ol(DnHal)(’»t) dt)dz’

’ 3 ' . . j J
+ ; J;(/o (Djba)( ,t)dt)dx’ Adz
= (-1 Y [as( 1) - ar (-, 0))da + d(I), (13.5)
1

where we have used the fundamental theorem of calculus and equation
(13.4) above. Define the maps g; : U — U (i = 0,1) by gi(x) = (x,1); then
9;(dz’) = dz’ for 1 < j < n, and g} (dz"*!) = 0, s0 g]@ = Y_j(as 0 g;)dz’,
if & has the form of (13.3) above. Thus equation (13.5) can be rewritten as

Nda) = d(J@) + (-1)"[giw — gg@)- (13.6)
Now let F : U — U be defined by F(x, t) = tx+(1-t)xp, 80 F* : Q" (U) —
Q"(U). Given w € Q"(U) with dw = 0, set @ = F*w and n = (-1)""17@.
By equation (13.6) above,
dn = £J(do) + g1& — gg@. (13.7)

Since di = d(F*w) = F*(dw) = 0, and since g{@ = g} F*w = (Fog;)*w, we
see that g]& = w (since F og, is the identity map of U) and g§@ = 0 (since
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F o go is the constant map x — xg). Hence we conclude from equation
(13.7) that dn = w. |

13.6 Tensor Fields on Manifolds

Let M be a k-manifold in R™. By a tensor field of rank r, or a differential
form of degree r, on M we mean a function w which assigns to each p € M
an element wp of T"(T3(M)), or respectively, of A™(T3(M)). We say w is
smooth if for every local coordinate a for M the induced tensor field (or
differential form) a*(w) is smooth in V,,. We denote by 2" = Q"(M) the
set of all smooth r-forms on M. It is clear that Q7 is a vector space, and
the wedge product w A7n € Q"** whenever w € Q" and 7 € Q°.

Let us observe that to check smoothness, it suffices to verify that for
every p € M there exists a local coordinate a with p € U, such that a*(w)
is smooth,; for if 3 is another local coordinate with p € Ug, then 8 = aoypap
in Vo3, where @op is a diffeomorphism of V,5 onto Vj,, so 8* = o
and thus 3*(w) is smooth if and only if a*(w) is smooth.

Let a be a local coordinate for M and let y = a~!,soy = (y!,...,3%) is
a smooth mapping of U, to V,. Since yoa is the identity map of V,, dyoda
is the identity map of R*, so dy'(a’(t)e;) = 6} for i,j = 1,...,k. That is,
dyp,...,dys form a basis of T3 (M), dual to the basis o/(t)e!,...,a'(t)ex
for Tp(M) (here, p = a(t)). Thus, every r-form w in U, can be expressed
in the form w = 3¢/ dy’, where the sum is over all increasing r-tuples
I = (i1,...,i,), each c; is a real function in U,, and dy’ is the abbreviation
for dy*' Ady'? A--- Ady'r. It is clear that w is smooth if and only if each
¢y is a smooth function; indeed, a*(w) = Z'(cl oca)dt! A--- Adtrin V,.
We define dw by putting it equal in U, to Z' dc; A dy'; the verification
that the resulting (r + 1)-form is independent of the choice of a is routine,
and will be omitted. The notions of closed and exact forms are applicable
to forms on manifolds. Let us call a coordinate patch U, on M convez if
the corresponding V, is convex. We see from the Poincaré lemma that if w
is a closed form on M, then the restriction of w to any convex coordinate
patch is exact; this fact can be phrased as: closed forms are locally exact.

13.10 Example. Besides differential forms, other tensor fields on mani-
folds are of interest. We mention here only one kind of example. A Rie-
mannian structure on the manifold M is a smooth tensor field v of rank
2 on M such that vp is an inner product on Tp(M) for each p € M. Any
smooth tensor field of rank 2 can be expressed in local coordinates in the
form v = 3 gi; dy* ® dy’, where each g;; is a smooth function in the coor-
dinate patch U,; v gives an inner product at each point if and only if the
matrix (g;;) is symmetric and positive definite at each point. We note that
gi;(p) = v(d'(t)e;,a'(t)e,;), where p = a(t). If v is the natural Rieman-
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nian structure, i.e., the restriction to T (M) of the usual inner product on
R"™, we see that

2. da* da*

ot o

gij = (D,a',Dja’) =

where a = (a!,...,a").

13.7 Integration of Forms in R

If U is an open set in R™, each w € Q™*(U) can be, as we have remarked
earlier, expressed uniquely in the form w = gdz! Adz? A --- A dz™, where
g is a smooth function in U; so it seems that talking about n-forms in U
is an unnecessarily complicated way of talking about functions in U. The
advantage of forms over functions appears only when we consider coordi-
nate systems other than the usual rectangular coordinates; it appears in
the context of integration.

13.11 Definition. Let w be an n-form in the open set U C R"*, so w =
gdz' A--- Adz™ = guwy; let A be a measurable subset of U. We define [, w

to be [, gdm, where m is Lebesgue measure on R", provided this integral
exists.

Thus, for instance, f x w is well-defined whenever w is continuous and K
is a compact subset of U.

13.12 Lemma. Let U and V be open sets in R™, and let ¢ be a one-one
smooth mapping of U onto V', such that det ¢’ > 0 everywhere on U. Then
for every continuous n-form w on V', and every compact subset K of U, we

have
/ w=/ Yrw.
»(K) K

Proof. If w = gdz! A--- Adz™, then
P'w=(gop)dp' A---Adp™ = (go ) (detp’)dx' A--- Adz"

by formula (13.2) above, so the lemma is just a restatement of the change
of variables formula (Theorem 10.46) from Chapter 10:

[ gam= [ gop)idety/|m,
J(K) K

since the Jacobian of ¢, det ¢, is assumed positive. 1

In the next chapter, we will develop integration of forms over manifolds,
based on this lemma.
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13.8 Exercises

1. Characterize the smooth functions f on R™ with the property dr' Adf =
0.

2. Let g be a smooth function in the open set U C R". Characterize the
smooth functions f in U with the property df A dg = 0.

3. Find the exterior differential of:
(a) r'dz! + z2dz? + .- " dz™;
(b) z%dz! — z!dr?;
(c) xdy ANdz + ydz Adz + zdz A dy;
(d) f(z,y)dz.

4. Show that if w and 7 are closed forms, then so is w A 7. Show that if w
is closed and 7 is exact, then w A 7 is exact.

5. Suppose that w € Q(U). Show that if there exists a function f, smooth
and never zero in U, such that fw is closed, then w A dw = 0. [Such an f
is called an integrating factor for w.]

6. Show that a closed 0-form in a connected open set U C R™ must be a
constant function. Conclude that if 7 is an exact 1-form, and p € U, that
there exists a unique function g such that dg = n and g(p) = 0.

7. Let U = R?\{0}, and consider the following elements of Q!(U):
_zdz +ydy _zdy-ydz
- 2 + y2 ' - 2 + y2 .

Show that w and 7 are closed, that w is exact, and that 7 is not exact.

8. Translate the formula d(dw) = 0 and the Poincaré lemma into theorems
about vector fields in R3.

9. Let w be a smooth k-form in the open set U C R". Suppose that
vo,...,Vkx € R", and define the smooth functions f and g; (j =0,...,k)
in U by
f(p) = dwp(vo, ..., V)
and
9i(P) = wp(vo,---,Vj,..., V&),

where the hat indicates that the vector with index j is to be omitted. Show
that

k
fp) = _(~1YVg;(p) - v;.

J=0
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10. Let w be the 2-form on R3 given by
w=zdyAdz+ydz Adz + zdz A dy,

and let f be the mapping of R? into R3 defined by
f(u,v) = (sinucosv,sinusinv,cosu).

Calculate f*(w), and then calculate [, f*(w), where

D={(u,v):0<u<m 0<v<2n}.

13.9 Notes

While Grassman’s work of 1844 used his new algebra to study geometry
(the first geometry of higher dimensions), and Cayley, in the same period,
used his more accessible algebra for similar purposes, the theory of ten-
sor fields began with Riemann’s general theory of manifolds (1854), and
was developed by Beltrami and Christoffel in the following decades. The
formalism of tensors (originally called the “absolute differential calculus”)
is due to Ricci, and was developed by Ricci and his student Levi-Civita.
The name “tensor calculus” is apparently due to Einstein, whose general
theory of relativity made tensor calculus famous all over town. The use of
differential forms as a fundamental concept of differential geometry is due
to Elie Cartan, in our century.
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Integration on Manifolds

In this chapter, we define the integral of a k-form over a compact ori-
ented k-manifold, and prove the important generalized Stokes’ theorem,
which can be regarded as a far-reaching generalization of the fundamen-
tal theorem of calculus. We also define the integral of a function over a
(not necessarily oriented) manifold, and describe the integral of a form in
terms of the integral of a function. The classical theorems of vector analysis
(Green's theorem, divergence theorem, Stokes’ theorem) appear as special
cases of the general Stokes’ theorem. Applications are made to topology
(the Brouwer fixed point theorem) and to the study of harmonic functions
(the mean value property, the maximum principle, Liouville’s theorem, and
the Dirichlet principle).

14.1 Partitions of Unity

We begin by constructing a very useful gadget, the purpose of which is to
help us pass from the local to the global.

14.1 Theorem. Let {U,}aca be a collection of open sets in R™ and let

U = Uqaea Ua- There exists a sequence {¢;}32, of real-valued functions
with the following properties:

(a) each ¢; € C°(R"), and vanishes outside a compact subset of Ua, for
some a = aj) € A;
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(b) for each compact subset K of U, ¢; = 0 on K for all but finitely
many j; and

(c) for each j, 0< ¢; <1, andz:jd;j =1.
Proof. We carry out the proof with a sequence of lemmas.

14.2 Lemma. For any open set U C R™, there exists a sequence of com-
pact sets (K;)2, such that K; C int K;, for every i and J;o, K; = U.

Proof. Let K; be the set of all points p satisfying the two conditions:
B(p,1/i) € U and |p| < i. The verification that (K;) has the desired
properties is easy. 1

14.3 Lemma. There exists a sequence (V;)7=, of open balls, such that:
(a) U=U,;V;:
(b) for each j, there is some a € A such that V; C U,; and

(c) for each compact K C U, KNV; =0 for all but finitely many j.

Proof. Let (K;) be the sequence of Lemma 14.2. Let Ly = K, and let
L, = K,a\int K, for i > 1; thus U = |J, L;, and L; N K;_, = @. For each
p € L,, there exists an a € A with p € U,. Since U, and I\( ) are open,
there exists § > 0 such that the open ball V,, = B(p, §) satisties Vi, C U,

and VN K;_, = 0. Since L; is compact, we can choose a finite set F such
that L. C Uper, Vo- Then {V;, : p € U2, Fi} is a countable collection of
open balls, which may be enumerated as (V;)52,. Properties (a) and (b)
are immediate. If K is any compact subset of U, then K C K,, for some
m, since | Jint K, = U. Since Vp N Ky = @ if p € F; with i > m, we see
that V, N K = 0 for all but finitely many j. 1

14.4 Lemma. Let V = {u: |u — p| < §} be an open ball in R™. There
exists a function ¢ of class C*™ on R™ such that ¥(u) > 0 ifu € V, and
¥(u) = 0 wheneveru ¢ V.

Proof. Consider the function g on R, defined by

0 ift<o,
90 ={g-ar0 150
Then g(t) > 0 for all t > 0, and g is of class C*°, as we saw in Example
4.39. Let f(t) = g(1 — t); then f is of class C*>°, f(t) = 0 for t > 1, and
f(t) >0 for t < 1. Finally, put

v = 7 (520).

It is clear that i has the desired properties. 1

We now return to the proof of Theorem 14.1. Let (V; )52, be the sequence
of open balls of Lemma 14.3. For each j, let 4; bea functlon as described in
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Lemma 14.4, so v is of class C*, vanishes outside V; (which is contained
in a compact subset of some U,), and is strictly positive in V. If N is any
bounded open set with closure contained in U, only finitely many V; meet
N, so ¢ = Zj ¥; is well-defined, and of class C*°, on U. Furthermore,
¥ > 0 everywhere on U. We put ¢; = v; /4. It is clear that (¢;)32, has
the desired properties. 1

14.5 Definition. A collection of functions (¢; 5=, with the properties of

Theorem 14.1 is called a C™ partition of unity, subordinate to the covering

{Un}OGA of U.

A related idea is the cut-off function.

14.6 Corollary. Let K be a compact subset of the open set U in R".
There exists a function ¢ € C°(R™) such that ¢ = 1 on K and vanishes
outside a compact subset of U, with 0 < ¢ < 1 everywhere.

Proof. Let (¢,)72, be a partition of unity, subordinate to the trivial cover
{U}. Since K is compact, J = {j : ¢;(u) # 0 for some u € K} is finite, by
property (b) of Theorem 14.1. Then ¢ = Z]‘EJ ¢; has the desired proper-
ties. [

Here are two typical applications of partitions of unity.

14.7 Proposition. Let A be a subset of R™. If f is a smooth function on
A, then there exists an open set U and a smooth function F on U, such
that AC U and F(t) = f(t) for all t € A.

Proof. According to Definition 11.1, for each p € A there exists an open set
Up and a function Fy, which is smooth in Up and agrees with f on ANUp.
Let U = UpeA Up and let (¢;)72, be a C* partition of unity subordinate
to the cover {Up : p € A} of U. For each j, there exists p = p(j) such
that ¢; vanishes outside a compact subset of Up; thus the function ¢;Fy
vanishes outside a compact subset of Up, and so may be regarded as a
smooth function on U (i.e., identify it with its extension by 0 to all of U).
Put F = Y ¢;Fp(;): it is straightforward to see that F' has the desired

properties. |

14.8 Proposition. Let M be a manifold of dimension k in R™. Then M
is orientable if and only if there exists a nonvanishing k-form on M; more
precisely, if and only if there exists an open set W containing M, and a
smooth k-form w in W, such that at each p € M the restriction of w(p) to
Tpo(M) (an element ofA"(T;(M))) is not 0.

Proof. If there is such an w, we can define an orientation & of M as
follows: if « is a local coordinate at p € M, a(t) = p, let a € O if
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w(a’(t)e;,...,a'(t)ex) > 0. (If k = n, we already used this method to
define an orientation of M, having available in that case the form w =
dr, A--- Adzy,.)

Now suppose that M is orientable; let & be an orientation of M. For
each p € M, let a € O be a local coordinate at p, with a(t) = p. Then
a'(t)er,...,a’'(t)ei are linearly independent vectors in R", so there exists
wp € A¥(R™*) such that wp(a’(t)ey,...,a'(t)ex) = 1. (If vy, ..., v, are lin-
early independent, there exist v/ € R™* (1 < j < k) such that v/(v;) = §/;
then ¥! A-.- A¥*(vy,...,vk) = 1.) Since a is smooth, there is a neighbor-
hood V;, of t, contained in V,, such that wp(a’(u)e;,...,a’'(u)ex) > 0 for
all u € V;,. Let W, be a neighborhood of p in R" such that a=}(W,) C V.
Ifq € WonM, and 3 € O is a local coordinate at q, say 3(d) = q = a(u),
then

wp(B'(d)ey, ...,  (a)er) = det g, 5(1) wp(a'(u)ey,...,a'(u)er),

where ¢, is the transition function, so 8 = a o gap; since det(y,5) >
0, we see that wp(f'(d)ey,...,A'(u)ex) > 0. Let W = |J,cp Wp. Let
(#;)32, be a partition of unity subordinate to {Wy, : p € M}; thus for
each j, ¢, is a smooth function vanishing outside a compact subset of
Wp, for some p = p(j). Define w by w = 3. ¢jwp(j). Since the sum
is locally finite, w is a smooth k-form in W. For any q € M, and any
local coordinate B € O at q, say with B(u) = q, we have ¢;(q) > 0
and wp(8'(u)ey,...,B'(u)ex) > 0 whenever q € Wp,; since }_.¢; = 1
everywhere, we conclude that w(q)(G'(u)ey,...,3 (u)ex) > 0. ’{hus w is
never 0 on any Tq(M), as was to be proved. 1

14.2 Integrating k-Forms

Next we turn to the main goal of this chapter: to define the integral of a
k-form over an oriented k-manifold, and to prove the generalized Stokes’
theorem.

Recall that we defined (at the end of the last chapter) the integral of a
k-form 7, defined in an open subset V of R, by [, n = [, gdm, where
n = gdz' A--- Adz* and m denotes Lebesgue measure on R*, provided
this latter integral exists. We can use the same definition with V' open in
R, instead of R*.

14.9 Lemma. Let M be an oriented k-manifold in R", where 1 < k < n.
Let w be a continuous k-form in R™, vanishing outside a compact set K.
Suppose a and 3 are local coordinates for M, and K C U, N Ug. Then

/V. a*(w) = /v, B* (w).
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Proof. The hypothesis on w assures us that the integrals in question are
well-defined. We observe that

/V” B (w) = ./vaa B (w) = /Voﬁ(aow"p)'(“’)
= / Pas(a®(w))

Van

=/v,,.""“’)=/v° o (),

using Lemma 13.12, and taking account of the fact that det ¢, ;3 > 0 when
a and [ are coordinates for the oriented manifold M. |

This lemma makes the following definition possible:

14.10 Definition. Let 1 < k < n. Let M be a k-dimensional oriented
manifold in R™ and a a local coordinate for M. If w is a continuous k-
form on R™ which vanishes outside a compact subset of U,, we define

Jyw= fVa a®(w).

A function or form which vanishes outside a compact set is said to have
compact support. (The support of a function or form f is the smallest closed
set F such that f vanishes outside F.) We can now use a partition of unity
to extend this local definition to a global one.

14.11 Definition. Let M be an oriented k-manifold in R" and let w be
a continuous k-form which vanishes outside a compact set. Let (¢;)52, be

a partition of unity subordinate to the collection {U, : a € 0}, where O
is the orientation of M. We define

-5 Lo

We observe that the sum has only finitely many nonzero terms, since w
has compact support. Let us also observe that this definition makes sense,
i.e., that it does not depend on the choice of partition of unity. Suppose
that (¥x)52, is another partition of unity subordinate to {U, : a € 0}.

Then
;/M djw = %:/M(Ek: Vi) 5w
EE [
- /, CUREDY [ v
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the interchanges of summation with summation and integration being jus-
tified by the fact that all sums are finite sums. Thus [, w is well-defined.

It is clear that [, w depends only on the values of w on M:if w(p) = n(p)
for every p € M, then [, w = [,, 7. In fact, we see that more is true; the
integral depends only on the action of w on the tangent space of M. That
is, if w and 7 are k-forms on R" such that

W(p)(T], v »Tk) = U(P)(le .- »Tk)

for every p € M and every 7y,...,7x € Tp(M), then wa = [y (For in
this case, we have a*(w) = a*(n) for any local coordinate a.) Thus we have
actually defined the integral of a k-form on M, although we have always
referred above to forms defined in open sets containing M.

The next theorem generalizes Lemma 14.9.

14.12 Theorem. Let M and N be oriented k-manifolds in R™ and sup-
pose that g is a diffeomorphism of M onto N, ie., that g : M — N is
smooth and bijective and that g~! is also smooth. Then for any smooth
k-form w on N, vanishing outside a compact set, g*w is a smooth k-form

on M, and we have
/ w= / g w.
N M

Proof. If a is a local coordinate for N, then a = g o 8 for some local
coordinate 3 for M, with V3 = V,, (namely, 3 = g~! oca). We may assume
that w vanishes outside a compact subset of U,. Then

/Nwzf‘/oa.wzlvo(goﬂ)‘w=/Vﬂﬁ‘(g‘w)=/MS.W»

as claimed. |

We have put aside the case k = 0. Recall that a O-manifold is just a
subset M of R" such that no p € M is a limit point of M; then a subset of
M is compact if and only if it is finite. Recall that an orientation on M is
a function £ : M — {1,-1}. If g is a O-form (i.e., a function) on M which
vanishes outside a compact subset of M, i.e., outside a finite subset of M,
we make the natural definition:

/M 9= ;E(pj )9(p;)-

Suppose that f is a one-one smooth mapping of the closed interval [a, b]
into R", such that f'(t) is nonsingular for all ¢ € [a,b]. Then M = f([a, b])
is a compact 1-manifold and M = {p,q}, where p = f(a) and q = f(b).
(It can be shown that every connected compact 1-manifold in R™ with
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nonempty boundary arises this way.) We can take as local coordinates
on M

a(t) = fa + t), teV, =[0,b-a),
B(t) = f(b+1t), teVs=(a—»,0]

and it is easy to check that ¢ 4(t) = 1 for all ¢, so these local coordinates
define an orientation on M. With this orientation, the induced orientation
on OM is given by e(q) = +1, €(p) = —1. If g is any smooth 0-form (i.e.,
smooth function) on M, then

/M dg = /M rg = [ drg
b
- / (g0 £)(t)dt = g(q) — 9(p) = /a 9

This is the case k = 1 of the next result, which is known as Stokes’ theorem
for manifolds.

14.13 Theorem. Let M be a compact oriented manifold of dimension k,
and let w be a smooth (k — 1)-form in an open set containing M. Then

Jut= fou®

If OM = 0, we take the right-hand side of this equation to be 0.

Proof. Let & be the orientation of M and let (¢;)72, be a partition of
unity subordinate to {U, : a € 6}. Then, since w = >, $jw, we have

/de= /M d(2¢,~w) = /M Zd(¢jw)=2 /M d(¢;w),

the interchange of summation with integration or with exterior differenti-
ation being justified by the fact that the sums are finite. Also,

~/8Mw= ;-/OMq}jw

according to Definition 14.11. Thus it suffices to prove the theorem for the
special case that w vanishes outside a compact subset of U, for some local
coordinate a € 0. Let n = a*(w), so 1 is a smooth (k — 1)-form in V,,
vanishing outside a compact subset of V,, and dn = d(a*w) = a*(dw). We
may regard n as a smooth (k — 1)-form on R* or R%, by extending it to
be 0 outside V,,. Then

/dw:/dn or/dn, /w:/ 7.
M R* R* oM OR*
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Thus we have reduced the proof of Stokes’ theorem to verifying the fol-
lowing special cases:

14.14 Lemma. Ifn € Q%~'(R) vanishes outside a compact subset of R,
then [g.dn = 0. If n € Q*~'(R%) vanishes outside a compact subset of

R%, then fn’; dn = fan: 7.
Proof. Let
W =(-1)*1dz' A Adz? T AdITU A - AdaF

for 1 < j < k. Then 7n,...,nx provide a basis for A*-1 at each point of

R*, 50 we can write
k
n=3Y_ gv,
i=1

where g, is a smooth function for each j. Since dz? AP =dz' A--- A dz*,

we see that .

dn = Z(D,g.,-)d:l:l A--Adzk.

=1

So if n € 2~ 1(R¥) vanishes outside a compact set, we have

k
Lk dn:;Lh(ngj)dm,

and this integral can be computed by iterated integrals over R, in any
order. But, by the fundamental theorem of calculus,

/ (D,g,)(u,t,v)dt = g;(u,+0o0,v) — g;(u, —00,v) =0,

for any j, 1 < j < k, and any u = (uy,...,uj_1), v = (¥j41,...,Uk).
(For gj(u,t,v) = 0 for all u,v if |t| is sufficiently large.) It follows that
Jaedn=0.

Similarly, if n € 2%~1(RX ) vanishes outside a compact subset of R% , we

have
+00 poo oo k
d =/ / / (D;g;)(u) du, - - - dug,
/R.: 7 0 —o0 —oo; ’ J) ! *

where again the integrals can be computed in any order. Integrating the
term Dj;g; first with respect to uj, we get 0 as above, for any j, 1 < j < k;
the remaining integral is

/ [w(Dkgk)m,t)dtdm(u),
R*1 J0



14.3 The Brouwer Fixed Point Theorem 305

and o
/0 (Dige)(u,t)dt = ge(u,00) — ge(u, 0) = —g(u,0),

since gi vanishes outside a bounded set. Thus we have
dn = —/ gk (u, 0) dm(u).
R Rr-1

Now we compute
k
L= [ o
aR% jo1Jomy

Since dz* = 0 on OR%,, we see that 7/ = 0 on 8RX for 1 < j < k, and thus
the integral reduces to one term:

/ ne= / ot = £(=1)+ f 9x(1,0) dm(u),
8R% aRY RA-1

where the sign +1 is determined by the orientation given to bRi. Now
recall the convention made in Chapter 11 about the orientation of M; it
was designed for the express purpose of having fan'; 9N = — Jga1 gdm,

so that the lemma is proved, and with it the formula of Stokes is established.
]

14.3 The Brouwer Fixed Point Theorem

In this section, we use Stokes' theorem to prove the following theorem,
known as Brouwer’s fixed point theorem. Recall from Chapter 11 the no-
tations B® = {x € R" : |[x| < 1} and S""! = {x € R" : |x]| = 1}; we
observed there that B™ is an n-manifold and S*~! = §B™.

14.15 Theorem. Let f be a continuous map of B™ into itself. Then f has
a fixed point: there exists p € B™ such that f(p) = p.

We shall approach this theorem with some preliminary results.

14.16 Lemma. There is nosmoothmapg : B® — S™~! with the property
that g(p) = p for every p € S™~1.

Proof. Suppose that such a g = (g',...,g") exists. Let

w=Y (-1 de' A AdTI A A dT”,

=1
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50 w is a smooth (n — 1)-form in R™, with dw = ndz! A --- A dz™. We
observe that

g (w)= Z(—l)i'lgj dgl Aee- /\EEI\ .-+ Adg™,
j=1
so that g*(w) = w on S™~! (since g is the identity map on S™~!), while
d(g"(w)) = g"(dw) = ndg' A--- A dg".
But the equation

n .
> (@) =1
j=1
on B™, which expresses the fact that g maps B™ into S™~!, implies that
> ¢dg =0
j=1

throughout B", so that the differentials dg!, ...,dg" are linearly dependent
at each point of B", and hence (Proposition 12.29) dg! A --- A dg™ = 0
identically in B™. Applying Stokes’ theorem, we have

/ w= dw=n dz:‘/\-~/\dx"=nm(B"),
su-—l B» Bn

but, on the other hand,

/s,._,w = /s"_ls'(w)
=/B"d(g'(w))
=/nndgl/\---/\dg"=0,

a contradiction. :

14.17 Theorem. Let f : B® — B" be a smooth mapping. There exists
P € B™ such that f(p) = p.

Proof. If f(p) # p for every p € B™, we can construct a smooth g : B™ —
S™~! such that g(p) = p whenever p € S™!, as follows: for each p € B",
we put

g(p) = p +t(p - f(p)),

where the nonnegative number t = t(p) is chosen so that |g(p)| = 1. An
examination of this condition shows that it is equivalent to a quadratic
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equation in ¢t which has exactly one nonnegative solution t; furthermore,
g(p) = p if and only if t = 0 if (and only if) |p| = 1. One also sees that the
discriminant of this quadratic is strictly positive, so that the solution ¢(p)
is a smooth function of p, and hence the resulting function g is smooth.
Applying the last lemma, we have reached a contradiction. ]

To deduce Theorem 14.15 from Theorem 14.17, we use the next two
lemmas.

14.18 Lemma. Iff : B® — B" is continuous and ¢ > 0, there exists a
smooth g : B® — B™ such that |g(p) — f(p)| < 2¢ for every p € B™.

Proof. Apply the Weierstrass polynomial approximation theorem to each
component of f to obtain h : B" — R" with each component of h a
polynomial, such that |h(p) — f(p)| < € for every p € B". Then put
g(p) = h(p)/(1 + €), and we have g(B™) C B" and |f(p) — g(p)| < 2¢ for
every p € B™. |

14.19 Lemma. Suppose that g is a continuous map of B™ into itself for
each positive integer k, and that gx(px) = px for some px € B™. If (gk)
converges uniformly to f, then f(p) = p for any limit point p of (px)-

Proof. Let € > 0. There exists a neighborhood N of p such that |f(p) —
f(q)| < € for all q € N, and there exists m such that |f(q) — g«(q)| < ¢ for
all q € B™, whenever k > m. If k > m is chosen so that |px — p| < ¢ and
Pk € N, it follows that

I£(p) — Pl = If(P) — f(Pk) + f(Pk) — Bk (Px) + &k (Px) — PI
< |f(p) — £(px)l + |£(Px) — 8k (Px)| + [Pk — P|
<e+€+e€=3e

and since € > 0 was arbitrary, it follows that f(p) = p. 1

Proof of Theorem 14.15. By Lemma 14.18, there exists a sequence
(8k)5>; of smooth maps of B™ into itself, such that g, converges uni-
formly to f on B™. By Theorem 14.17, for each k there exists p, € B"
with gx(px) = Pk. Since B™ is compact, there exists a limit point p of
{p«}, and the theorem follows by applying Lemma 14.19.

14.4 Integrating Functions on a Manifold
In this section, our goal is to define the notion of k-dimensional volume

in a manifold of dimension k. The simplest case is a k-dimensional linear
subspace of R". Let a,,...,a, be a set of k vectors in R". We begin by
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finding a formula for the “k-dimensional volume” of the “box” spanned by
aj,...,ak,

k
B(al,...,ak) = {thaj :0 < tj < 1}
j=1

which meets our minimum expectations. These expectations are: if each
of the vectors a; lies in the subspace {p : z7(p) = 0if j > k}, then we
want the volume of B(a,,...,ax) to be the usual volume (i.e., Lebesgue
measure) of the corresponding box in R¥; furthermore, the volume of a box
should be invariant under rotations and reflections. The desired formula is
found in the following proposition. Let A be the n x k matrix [a,...,ak].

14.20 Proposition. Let .#, i« denote the set of n x k real matrices, where
1<k <n. Let V(A) = [det A'A]/? for A € M, . Then V is the unique
nonnegative function on .#y, y which satisfies the conditions:

(a) V(TA) = V(A) whenever T is an orthogonal n x n matrix; and

(b) if
(2]

where B € # i and 0 is the (n — k) x k matrix of zeros, then
V(A) = |det B|.

Proof. Note that det A'A is a positive semi-definite matrix, since
(A'Ax,x) = (Ax, Ax) >0

for every x € R¥, 5o that det A4 > 0, and V is well-defined. (If k = n,
then, of course, det A'A = (det A)?, so V(A) = |det A|.) If T € M, is
orthogonal, then T'T = I, the n x n identity matrix, so det{(TA)!(T A)] =
det(A'T*T A) = det(A*A), and property (a) follows. If A has the form de-
scribed in (b), then A*A = B!B, so det(A'A) = det(B'B) = det B'det B =
(det B)?, and property (b) holds. Now if F' : .#, x — [0, 00) has the proper-
ties (a) and (b), and A € 4, x, we can always find an orthogonal T' which
maps the space spanned by the k columns of A into R* x {0}, i.e., such

that B
TA= [ 5 ]
so F2(A) = F2(TA) = | det B|? = det(B!B) = det(A'A). |

We note that the matrix A*A has the inner product (a;,a;) as the entry
in the ith row and jth column; det A*A is called the Gram determinant.

14.21 Lemma. Let C € .#j x, A € My i, and let B = AC. Then V(B) =
|det C|V(A).
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Proof. We have

V2(B) = det(B'B) = det((AC)!(AC))
= det (CH(A' A)C)
= (det C)2 det(A'A) = (det C)2V2(A),

and the lemma follows. [ |

14.22 Definition. Let A be an n x k matrix, and let I = (iy,...,%),

where 1 < i) < iy < --+ < ix < n. We denote by A! the k x k matrix
formed with the rows of A numbered i,,...,ix. Thus, (A')), = a3 for
1<jm<k.

14.23 Proposition. The volume V(A) of the box spanned by the columns
of A can also be computed by the formula

vi(a)= Y 'det[(a')al] = 3 (det A')?,

=k 1=k
where the sum is taken over all increasing k-tuples I.

Proof. The formula is trivial for k = 1 or k = n, but not so obvious for
1 <k <n Let A€ #,, and define F : (R*)* = R by F(b;,...,b) =
F(B) = det B' A. Similarly, define G : (R")* — R by

Gby,....be) =G(B) = 3 "det[(B")' A"] = 3 (det B')(det A").
1=k 1

It is obvious that F and G are each linear in each variable separately,
i.c., are tensors of rank k. Suppose b; = e;, for some {j;,...,jx} = J C
{1,...,n}. Then B! has a row of zeros for every I # J, so det B! = 0
for I # J, and thus G(B) = det((B’)*A”). But, in fact, B'A = (B7)*A’
for such B, so we conclude F(B) = G(B) for all such B, and hence, by
linearity, for every B € .#, . In particular, F(A) = G(A). |

The motivation for the next definition should be clear; if a is a local
coordinate for the manifold M, the image under a of the k-dimensional
box

{t : l{) < t < 26 + hj} =to + B(h'e,,.. . ,h"ek)

in' V, is “approximated” in R™ by the k-dimensional box
a(to) + B(h'e'(to)er, ... . h*a’ (to)ex),
which has k-dimensional volume

V(B(h'a'(to)ey, ..., h*a(to)ex)) = h' ---h*V(a/(to)).
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14.24 Definition. Let M be a k-manifold in R", and let a he a local
coordinate for M. If ¢y : M — R is a Borel function vanishing outside a

compact subset of U,, such that v is either bounded or nonnegative, we
define

/M vav = [ wav = /V W)V (1) dmt)

Since V(a') is a positive continuous function on V,, the right-hand side of
the above equation is well-defined under the hypothesis on . It is not hard
to verify that the value does not depend on the choice of local coordinate
a. This follows from Lemma 14.21 above, and the usual change of variables
formula for integration in R™. It is trivial that the map ¥ — [,, ¥ dV is
linear, and order-preserving.

14.25 Definition. Let M be a k-manifold in R™, and suppose ) : M — R
is either a nonnegative Borel function, or a bounded Borel function which
vanishes outside a compact subset of M. Let (¢;)j=, be a C™ partition
of unity subordinate to the collection of all coordinate patches for M. We

define
YdV = / apdV.
/M XJ: M o5¥

The right-hand side above makes sense since each ¢, vanishes outside a
compact subset of some coordinate patch, and since there are only finitely
many nonzero terms, except in the case when all terms are nonnegative.
The verification that the result is independent of the choice of partition of
unity is exactly the same as the corresponding fact concerning the definition
of fM w when w is a k-form. Taking 1 to be an indicator function, we can
define the volume of any Borel subset of M: if A is a Borel subset of M,

V(A) = /M 14dV.

We will sometimes write Vi instead of V if we are in a context where there
is more than one dimension to consider.

Note that we have defined a volume measure on any manifold, and can
integrate any positive Borel function, whether or not the manifold is ori-
entable; to integrate forms, an orientation is essential. We next show that
the integral of a k-form can, in fact, be expressed as the integral of a func-
tion with respect to k-dimensional volume.

14.26 Lemma. Let T be a k-dimensional linear subspace of R", and let
(uy,...,ux) be an orthonormal basis of T. Ifw € A*(R™*) and a,, ... ,a; €
T, we have

w(ay,...,ar) = £V(ay,...,ar)w(uy, ..., ux);
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the sign is positive if (a;,...,ax) is a basis of T having the same orien-
tation as (uy,...,ux), and negative if (a,,...,ax) is a basis of T having
the opposite orientation to that of (uy,...,ux). If (a,,...,ax) is linearly
dependent, the sign is irrelevant, since both sides are zero. In particular, if
(ay,...,ax) is also orthonormal, then w(a,,...,a;) = tw(u,,...,ux), the
sign being determined by the orientations.

Proof. Express each a; as a linear combination of uy, ..., ux:
a, =Y bu,  (G=1...k)
1

so that
w(ay,...,a) = Zb{'leo--b{"‘w(uh,....u]k)
DI Al AL RN IS
= det Bw(uy,...,ux),

where, of course, B is the k x k matrix (b;), and we used the “Kronecker
epsilon” symbol: .
et =¢€(o)

if there exists a permutation o such that j; = o(i) for ¢ = 1,...,k, and
otherwise equals 0. If (a,,...,a) is a linearly independent sequence, then
det B > 0 if and only if it has the same orientation as (u;,...,ux). In
particular, if (a;,...,ax) is orthonormal, then B is an orthogonal k x k
matrix, and det B = %1, according to whether it preserves orientation
or not. In general, we can find an orthogonal n x n matrix O such that
Ouj =ej for j =1,...,k. Then

(det B)? = det(B'B) = V¥(Oay,...,Oax) = V(ay,. .., az).
Thus |det B| = V(a,,...,ax). [ |

Now suppose that M is a compact oriented k-manifold in R", and w a
continuous k-form on M. Let F, be the real-valued function on M defined
by F,(p) = w(uy,...,ux), where (uj,...,ux) is any positively oriented
orthonormal base for T,(M). The last lemma shows that this number is
independent of the choice of basis. Since we can find u;(p) which depend
smoothly on p € M and are orthonormal at each p in a coordinate patch
U, by applying the Gram-Schmidt process to the columns of a’(t) (with
a(t) = p), we see that F,, is a continuous function on M. The last lemma
shows that if a is a local coordinate for M, then

wacey(a’(t)er,...,a'(t)ex) = V(a'(t)) F,(alt)),

and it follows that
/ w= / F,dvV,
M M

so that integrals of forms can be viewed as integrals of functions.



312 14. Integration on Manifolds
14.5 Vector Analysis

Let T be an oriented (n—1)-manifold in R™ (also called a hypersurface). Let
a be a (positively oriented) local coordinate for I'. In Chapter 11 we showed
there exists a smooth unit normal vector field v on I'; now we construct
v more explicitly. Let a; = a;(p) = a’(t)e; for p = a(t), p € U,, and
let A be the n x (n — 1) matrix [a; ---ap-1]. Thus A is a smooth matrix-
valued function in U,. Let A* be the (n — 1) x (n — 1) matrix obtained by
deleting the ith row of A (thus, A* = A! with our previous notation, where
I=(1...., ... k).) Define the vector field v, on U, by

Vo, = Z(—])j"((l(:t Ale,.

J=1

14.27 Proposition. The vector field v = v,, is snooth in U,, and |v| =
V(A) - 0; for each p € U, v(p) L Tp(I'); (v,ay,...,a,.y) is a positively
oriented basis of R™ at each point of U,. .

Proof. The smoothness of v is obvious, and |v|? = 37 | det A7|? = V(A)
by Proposition 14.23. Let B = |v,ay,...,a,_1]. Expanding by cofactors of
the first column, we find

det B = Z(—l)”'v’ det A7 = Z(vj)2 =|v|? >0,

j=1 5=1
80 (v,a;,...,a,-1) is positively oriented. For any 7, 1 < i < n -1, we have
n .
a-v= Za{(—l)’"ldetA’ =detla; a; -+ a,_]=0.
=1
Since a,,...,a,_; form a basis for T,(T"), we have v 1 T (T'). ]

It follows that v = v/|v| is the unique unit normal vector to I' which
makes (v,a;....,a,-;) a positively oriented basis for R". We have now
prepared the machinery to interpret Stokes’ theorem in terms of vector
fields when M is an n-manifold in R™. The following theorem is known as
the divergence theorem:

14.28 Theorem. If M is a compact n-manifold in R™ and g is a smooth
vector field on M, then

/divng:/ g-vdV,
M am

where v is the outward unit normal vector on OM.
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Proof. Let (as before)
W= (=1Y"'de' A---AdDI A -+ Adz™,

for j=1,...,nand letw =3, g;n’. Thus w is a smooth (n — 1)-form on
M, and

— n - n 391 1 n_ ga . .
dw_jz:‘ldgj,w’— (1=1$) dz’ A---Adz" = (divg)dz' A... Ada".

Thus [, v divgdV = I} » dw. We may suppose that the restriction to M of
g€ = (91,-..,9n) vanishes outside a compact subset of a coordinate patch
U., where a is a local coordinate for 9M. We observe that

7(ar,...,8n-1) = (—1) " det A’

for any (n — 1) vectors ay,...,a,-; in R"; we take a; = a(t)e;, so A =
a'(t). Then we have

fu= L (o)
- /V 3" 0, (a(0) (a'()) dm(t)
@ J
- / 3 g5 (a(t)) (—1) " det 49 (t) dm(t)
Va ')

- /V (g5 (a(®)¥* (a(t)) dm(t)
|

=/ g-vdV.
M

According to Stokes’ theorem, [, dw = [5,, w. |

We close this section with an application of the divergence theorem to
the Laplace operator.

14.29 Definition. Let f be a function of class C? in an open set in R™.
We define A f, the Laplacian of f, by

n
Af =) D}f=divgrad .
Jj=1

We say f is harmonic if Af = 0.
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The following formulas are known as Green’s identities.
14.30 Theorem. Let M be a compact n-manifold in R™, and let u and

v be smooth functions in an open set containing M. Let v denote the unit
normal vector field on OM. Then

Ou
/M audV / (vAu + Vv - Vu)dV, (14.1)
ov du
/(;M (u(—,); - vé;) dV = /M(uAv —vAu)dV. (14.2)

Here, du/dv = Vu - v; this is called the normal derivative of .

Proof. Observe that div(vVu) = Vv - Vu + v Au. Apply the divergence
theorem (Theorem 14.28) to the vector field ¥Vu to get the first formula;
interchange the roles of u and v, and subtract, to get the second. [ |

14.6 Harmonic Functions

Throughout this section, we let M denote a compact n-manifold in R",
so that D = int M is a bounded open set, and I' = M is a compact
(n — 1)-manifold. We will develop the basic properties of functions which
are harmonic in D and smooth on D = M.

14.31 Lemma. If u is a smooth function on M which is harmonic in D,
then

Ou
a-—u dV =0.
Proof. Take v = 1 in Green's formula (14.1). |

Let w, = V(B™) = m(B") be the n-dimensional volume of the unit ball
in R". (We computed the value of w, in an exercise in Chapter 10.) Let
0n = Vyu_1(S" 1) be the (n — 1)-dimensional volume of the unit sphere in
R". We will write B(p,r) for the closed ball of center p and radius r, and
S(p,r) for its boundary; we will further abbreviate B(0,r) to B(r), and
5(0.r) to S(r). We note that V(B(p,7)) = war" and V(S(p, 7)) = oar™ L.

14.32 Lemma. For each n € N, 0, = nw,,. If u is harmonic in an open
set containing B(r), thén

1 1
VB Jsin * TV = VBE) Jay MV
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Proof. Let v(x) = |x|2. Applying Green's identity (14.2) with these func-
tions, taking M = B(r), and observing that Av = 2n, and that dv/dv = 2r,
we find that

/ (2ru - ,.29'1) dV,._ = / (2nu — vAu)dV,,
S(r) ov B(r)

and taking hold of Au = 0 and Lemma 14.31, we see that

r/ udV,_1 =n/ udV,. (14.3)
S(r) B(r)

Taking u - 1 and r 1 here, we have a,, — nw,,, and dividing both sides
of (14.3) by V(B(r)) = wnr™ we obtain the lemma. ]

The next result is known as the mean value theorem for harmonic func-
tions. We write do for dV,_; on S(r).

14.33 Theorem. Let u be harmonic in D, and suppose p € D and r > 0,
with B(p,r) C D. Then

1 1
u(p) = ———¢ / udo = — / udm.
Onr™ S(p.r) wnT™ JB(p.r)

Proof. We may assume without loss of generality that p = 0. Suppose
n > 2. Let v(x) = |x|2~"; it is not hard to verify that Av = 0 in R"\{9}.
Fix ¢, 0 < € <7, and let M, = B(r)\int B(e), so that M, is an n-manifold
in R" and M, = S(r) U S(¢). Applying Green's identity (14.2), we get

ov du
/am, (u;,)-‘—l - vg;) do =0,

since 1 and v are each harmonic in M,. Since

for 0 < t < r by Lemma 14.31, and v is constant on S(r) and on S(e), we
have

Now the outward normal vector v is equal to x/|x| on S(r) and —x/|x| on
S(€), so Bv/Ov = (2 —n)r' " on S(r) and —(2 — n)e'~™ on S(¢). Thus we

have
r""/ udo =e""/ udo,
S(r) S(e)
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for every ¢ € (0,7), or

1 1
0_—(5(1')) /s(r)uda = ——0(5(6)) /S(c)uda (14.4)

for every € € (0,7). But

1
o(5(€)) Js(o) udo ~u(0)

1
o_(S(e)) /S(c)(u - u(0)) do

< sup |u(x) — u(0)],

Ix|<e

and since u is continuous at 0 we conclude that

1
—a(S(e)) s(()uda — u(0) ase—0.

This, combined with (14.4) above, proves the first equation asserted by the
theorem, and the second follows from Lemma 14.32. Thus the theorem is
proved for n > 2. If n = 2, then for v = |z|>~™ = 1, we have unfortunately
that the normal derivatives of v vanish identically, so this argument fails;
but taking v = log |x|, we can repeat the argument word for word to get
the desired conclusion. ]

One consequence of the mean value property of harmonic functions, ex-
pressed in Theorem 14.33, is the mazimum principle.

14.34 Theorem. Let u be harmonic in the connected open subset D of
R", and suppose that u attains a maximum or a minimum at some point
p of D. Then u is constant in D.

Proof. We may assume that u has a minimum at p (else consider —u),
and that u(p) = 0 (else consider u — u(p)). Let V = {q € D : u(q) = 0}.
Then V is closed in D since u is continuous. Furthermore, if q € V, and
6 > 0 is small enough so that B(q,68) C D, we have

/ udm =0
B(q,5)

by Theorem 14.33, but u > 0 in B(q, §) (indeed, throughout D), so we have
u =0 a.e. (m) in B(q,é). Since u is continuous, {t € B(q,9) : u(t) > 0} is
open, 8o we conclude this set is empty, i.e., B(q,8) C V. Thus, V is open
as well a8 closed in D, and since D is connected and V is nonempty, we
conclude that V = D.

Another important consequence of the mean value property is the fol-
lowing, known as Liouville’s theorem:
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14.35 Theorem. Suppose u is harmonic and bounded in all of R". Then
w is a constant function.

Proof. Let p € R"; for each r > 0, we have

1
[u(p) — u(0)| = / udm — udm
WaT™ \JB(p.r) B(0,r)
1
= - / udm udm
WnT™ |JB(p.r)\B(0.r) B(0.r)\ B(p.r)
< ——2CA(r),
wnT

where C is an upper bound for |u| and we put A(r) = m(B(0,7)\B(p,7)).
(So A(r) = m(B(p,r)\B(0,7)) as well.) Now for all r > p = |p|, we have

B}(IO,r) D B(p,r—p),s0 A(r) < m(B(r))-m(B(r-p)) = wa(r"—(r—p")).
Thus

ju(p) ~ u(0)] < 26722 _ae (1 — (1 - (o/r)]
for every r > |p|, so u(p) = u(0) for all p € R". 1

The next result gives a characterization of harmonicity in terms of the
first-order partial derivatives of a function.

14.36 Lemma. Let u be a smooth function on M. Then u is harmonic in
D if and only if

/Vu-VvdV=/Vu-Vvdm=0
M D

for every smooth v which vanishes on T'.

Proof. Suppose u is harmonic, and v is smooth and vanishes on I'. Then
from Green's formula (14.1)

Ou

r v 31/

we deduce that f a Vu - VodV, = 0. Conversely, if u is smooth and this
cquation holds whenever v is smooth and vanishes on I', we conclude that
Jps vAudV,, = 0 for every smooth v vanishing outside a compact subset
of D. If Au is positive (say) at some point of D, it is positive throughout
some disk A C D. But as we have seen, there exists a smooth function v
which is positive in A and vanishes outside A, which gives [, p vAudm > 0.
It follows that Au = 0 everywhere in D. 1

dV,._i =/ (Vu- Vv +vAu)dV,
M

Our final theorem is usually referred to as the Dirichlet principle. It
seems to be due to Riemann.
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14.37 Theorem. Let f be a smooth function defined on I', and let # be
the class of all smooth functions u on M whose restriction to I' is f. If
u € Z, then u is harmonic in D (i.e., u solves the Dirichlet problem with
data f) if and only if u minimizes the Dirichlet integral in the class % :

/ |Vul2dm < / |Vv|2dm for every v e &.
M M

Proof. Let u € #. If vis smoothon M, thenv € & ifand only ifw = v—u
vanishes on I'. We have

/ |Vu2dm = / |V(u+ w)|?dm = / (IVul? + |Vw|? + 2Vu - V) dm
M M M

so that if u is harmonic, we see by Lemma 14.36 that the last term on the
right above vanishes, so

/|Vu|2dm < /IVv|2dm

for every v € #. Conversely, suppose that this last inequality holds. Then
for every w vanishing on I', the function

F(t) = / |V (u + tw)|? dm
M
attains its minimum value at ¢t = 0. But
F(t) = / (|Vu|2 +2tVu - Vw + t2|Vw|2) dm,
M

so F'(0) = 2fM Vu - Vwdm = 0, and since this holds for every smooth w
vanishing on I', Lemma 14.36 tells us that u is harmonic in D. ]

14.7 Exercises

1. Let M be a one-dimensional oriented manifold in R™. (In fact, every
one-dimensional manifold can be oriented, but we don’t prove this here.)
Show that there exists a unit tangent vector field t on M; show that any
such field defines an orientation of M.

2. Let M be an oriented one-dimensional manifold in R". It is usual to
write ds instead of dV when k = 1. Let w be a smooth 1-form defined in an
open set containing M, and let g be the associated vector field (g = ®(w)
in the notation of Chapter 11). Show that

/w:/ g - tds.
M M



14.7 Exercises 319

3. Let M be a compact oriented 2-manifold in R3, and let g be a smooth
vector field defined in an open set containing M. Prove the classical theorem

of Stokes:
/ g~tds=/ (curlg) - vdo,
OM M

where ds is the one-dimensional volume element on M, do is the two-
dimensional volume element on M, and t and v are the canonical unit
tangent vector on JM and unit normal vector on M, respectively.

4. Let M be a compact oriented k-manifold in R™. Suppose that w is a
smooth (k — 1)-form on M, with dw = 0, and u is a smooth function on M
which vanishes on M. Show that

/ du ANw = 0.
M

5. Let M be a compact oriented k-manifold in R™. Suppose that w € 2'(M)
and n € (M), where i + j + 1 = k, and suppose that n vanishes on OM.

Show that
/w/\dn:(—l)“’/ dw A 1.
M M

6. Let U = R"\{0}, and let S = S™~! be the unit sphere in R".

(a) Show that if w € Q"~'(U) is exact, then [qw = 0.
(b) Construct an example of a closed w € Q*~1(U) such that [gw # 0.

7. Let M be the Mobius strip, as described in Example 11.14 in the chapter

on manifolds. Let

rdy — ydx
x? + y?

]

50 w is a stooth 1-form in an open set of R3 which contains M. Show that
dw = 0, but that fom w = 4n. Reconcile this result with Stokes' theorem.

8. Use the Brouwer fixed point theorem to prove the following theorem of
Perron Frobenius: if A = [a;] is an n x n matrix with nonnegative entries,
then there exists v € R™ with v > 0 for all j and Z;':l v/ = 1 such that
Av = v. (It might be convenient to prove this first with the additional
assumption that 3°7_, a} = 1 for every i.)

9. Use the formulas of this chapter to find the two-dimensional volume (i.e.,
surface area) of the torus described in the chapter on manifolds.

10. Let M be a compact n-manifold in R", so M is the closure of a bounded
open set D, and I' = OM is a compact hypersurface in R". Evaluate fl X-V.
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11. Find the compact 2-manifold M in R? with area 7 for which

/ ydr+ (3z - ) dy
oM
is maximal.

12. Find all functions f which are harmonic in R™*\{0} and which have the
form f(|x|) = g(|x|) for some g which is smooth on (0, ). (Functions of
this form are called “radial.”)

13. Let u be a smooth function with compact support on R2. Show that
for all x € R2, we have

ux) = 5- [ duty)log|x - yldm(y).

HINT: Apply Green's theorem, with M = {y : 6§ < |y — x| < R}, where R
is large and 6 > 0 is small; let § — 0.

14. Let g be a smooth function on R? with compact support, and define u
by

u(x) = 2—17; /Rz g(y) log |x — y|dm(y).

(a) Show that u is smooth on R2. HINT. Use dominated convergence to
justify differentiating under the integral sign.

(b) Show that Au = g.

15. Let n > 3, and let u be a smooth function vanishing outside a compact
subset of R™. Show that for all x € R"™,

Au(y)
R [x —y|"2
here ¢, is a constant depending only on n. HINT: Apply Green’s theorem,

with M = {y : § < |y — x| < R}, where R is large and § > 0 is small; let
6—0.

u(x) = cn dm(y);

16. Let g be a smooth function on R", n > 3, vanishing outside a compact
set. and define u by

9(y)
u(x) = ¢ / ————dm(y),
" Jre Ix - yn-? )
where c,, is the constant of the last problem.

(a) Show that u is smooth in R™. HINT: Use dominated convergence to
justify differentiating under the integral sign.

(b) Show that Au =g.
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14.8 Notes

The earliest form of what we know as Stokes’ theorem (in the language of
this chapter, the case of a 2-manifold in R?), is due to George Green, a
self-taught mathematician, who published it in 1828. It was rediscovered 11
years later by Gauss (Green's work was not widely known before Thomson
had it reprinted in 1846). It was also rediscovered by Ostrogradski, who
seems to be the first to publish the divergence theorem for domains in 3-
space. According to Spivak [13], the first statement of the classical Stokes’
theorem (the case of a 2-manifold in R3) is found in a letter from Thomson
(later Lord Kelvin) to Stokes, in 1850. Stokes gave the theorem as a problem
in a prize examination at Cambridge, beginning in 1854, and by the time
of his death the result was universally known as Stokes’ theorem. Proofs
were published by Thomson, and by Maxwell in his treatise on electricity
and magnetism (the subject also of Green's essay.) The theorem is also
attributed to Ampere.

The concept of partition of unity is due to Dieudonné; it is I think a very
elegant way to avoid the difficulties of partitioning the manifold into small
pieces; in specific instances, computation is however more practical by the
latter procedure.

Brouwer proved his fixed point theorem around the year 1910. It was one
of the starting points for the twentieth century development of topology,
and has found many applications in analysis.

It can be shown that the k-dimensional volume measure we defined on a
k-manifold M in R" is in fact (up to a constant multiple) the k-dimensional
Hausdorff measure restricted to M.

The study of harmonic functions is also known as potential theory (the
word potential in this context originating again with Green). It originated
in the eighteenth century, flourished in the nineteenth century with the
results described in this chapter and many others, and is still going strong.
The proof of Liouville’s theorem that we gave was found in the 1960s by
Nelson.
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