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Preface

This is intended as a textbook on the history, philosophy and foundations
of mathematics, primarily for students specializing in mathematics, but we
also wish to welcome interested students from the sciences, humanities and
education. We have attempted to give approximately equal treatment to
the three subjects: history, philosophy and mathematics.

History

We must emphasize that this is not a scholarly account of the history of
mathematics, but rather an attempt to teach some good mathematics in a
historical context. Since neither of the authors is a professional historian,
we have made liberal use of secondary sources. We have tried to give ref-
erences for cited facts and opinions. However, considering that this text
developed by repeated revisions from lecture notes of two courses given by
one of us over a 25 year period, some attributions may have been lost. We
could not resist retelling some amusing anecdotes, even when we suspect
that they have no proven historical basis. As to the mathematicians listed
in our account, we admit to being colour and gender blind; we have not
attempted a balanced distribution of the mathematicians listed to meet
today’s standards of political correctness.

Philosophy

Both authors having wide philosophical interests, this text contains perhaps
more philosophical asides than other books on the history of mathematics.
For example, we discuss the relevance to mathematics of the pre-Socratic
philosophers and of Plato, Aristotle, Leibniz and Russell. We also have
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presented some original insights. However, on some points our opinions
diverge; so, in a spirit of compromise, we have agreed to excise some of our
more extreme views. Some of these divergent opinions have been expressed
in Anglin [1994] and Lambek [1994].

Mathematics

One of the challenges one faces in offering a course on the history and phi-
losophy of mathematics is to persuade one’s colleagues that the course con-
tains some genuine mathematics. For this reason, we have included some
mathematical topics, usually not treated in standard courses, for exam-
ple, the renaissance method for solving cubic equations and an elementary
proof of the impossibility of trisecting arbitrary angles by ruler and compass
constructions. We have taken the liberty of presenting many mathematical
ideas in modern garb, with the hindsight inspired by more recent develop-
ments, since a presentation faithful to the original sources, while catering
to the serious scholar, would bore most students to tears.

In Part I we deal essentially with the history of mathematics up to about
1800. This is because thereafter mathematics tends to become more spe-
cialized and too advanced for the students we have in mind. However, we
make occasional excursions into more modern mathematics, partly to re-
lieve the tedium associated with a strictly chronological development and
partly to present modern answers to some ancient questions, whenever this
can be done without overly taxing the students’ ability.

In Part II we deal with some selected topics from the nineteenth and
twentieth centuries. In that period, mathematics became rather special-
ized and made spectacular progress in different directions, but we confine
attention to questions in the foundations and philosophy of mathematics.

The more universal aspects of mathematics are sketched briefly in the
last five sections. We introduce the language of category theory, which at-
tempts a kind of unification of different branches of mathematics, albeit at
a very basic and abstract level.

Acknowledgements

The authors wish to acknowledge partial support from the Social Sci-
ences and Humanities Research Council of Canada, from the Natural Sci-
ences and Humanities Research Council of Canada and from the Quebec
Department of Education.

We wish to express our sincerest thanks to Matthew Egan for his un-
daunted dedication in typing and editing and to Mira Bhargava, Henri
Darmon and Ramona Behravan for their conscientious reading and criti-
cism of the manuscript.

W. S. Anglin and J. Lambek



Contents

0

Preface

Introduction

PART I: History and Philosophy of Mathematics

1

2

9

Egyptian Mathematics

Scales of Notation

Prime Numbers

Sumerian-Babylonian Mathematics
More about Mesopotamian Mathematics
The Dawn of Greek Mathematics
Pythagoras and His School

Perfect Numbers

Regular Polyhedra

10 The Crisis of Incommensurables

11 From Heraclitus to Democritus

11

15

21

25

29

33

37

41

47

53



viii Contents

12 Mathematics in Athens

13 Plato and Aristotle on Mathematics

14 Constructions with Ruler and Compass

15 The Impossibility of Solving the Classical Problems
16 Euclid

17 Non-Euclidean Geometry and Hilbert’s Axioms
18 Alexandria from 300 BC to 200 BC

19 Archimedes

20 Alexandria from 200 BC to 500 AD

21 Mathematics in China and India

22 Mathematics in Islamic Countries

23 New Beginnings in Europe

24 Mathematics in the Renaissance

25 The Cubic and Quartic Equations

26 Renaissance Mathematics Continued

27 The Seventeenth Century in France

28 The Seventeenth Century Continued

29 Leibniz

30 The Eighteenth Century

31 The Law of Quadratic Reciprocity

PART II: Foundations of Mathematics
1 The Number System
2 Natural Numbers (Peano’s Approach)

3 The Integers

59

67

71

79

83

89

93

97

103

111

117

121

125

133

139

145

153

159

163

169

173

175

179

183



Contents

4 The Rationals

5 The Real Numbers

6 Complex Numbers

7 The Fundamental Theorem of Algebra

8 Quaternions

9 Quaternions Applied to Number Theory
10 Quaternions Applied to Physics

11 Quaternions in Quantum Mechanics

12 Cardinal Numbers

13 Cardinal Arithmetic

14 Continued Fractions

15 The Fundamental Theorem of Arithmetic
16 Linear Diophantine Equations

17 Quadratic Surds

18 Pythagorean Triangles and Fermat’s Last Theorem
19 What Is a Calculation?

20 Recursive and Recursively Enumerable Sets
21 Hilbert’s Tenth Problem

22 Lambda Calculus

23 Logic from Aristotle to Russell

24 Intuitionistic Propositional Calculus

25 How to Interpret Intuitionistic Logic

26 Intuitionistic Predicate Calculus

27 Intuitionistic Type Theory

ix

187

191

195

199

203

207

211

215

219

223

227

231

233

237

241

245

251

255

259

265

271

277

281

285



X Contents

28 Godel’s Theorems 289
29 Proof of Godel’s Incompleteness Theorem 291
30 More about Godel’s Theorems 293
31 Concrete Categories 295
32 Graphs and Categories 297
33 Functors 299
34 Natural Transformations 303
35 A Natural Transformation between Vector Spaces 307

References 311

Index 321



0

Introduction

Remarks on prehistory

Long before written records were kept, people were concerned with the sea-
sons, important in agriculture, and the sky, which permitted them to read
off the passage of time. Everyone knows that the year is the time it takes
the sun to complete its orbit about the earth. (Copernicus notwithstanding,
mathematical readers will see nothing wrong with placing the origin of the
coordinate system at the center of the earth.) Also, a month is supposed
to be the time it takes the moon to go around the earth; at least, this was
the case before the lengths of the months were laid down by law. But what
about the week? Theological explanations aside, it is the smallest period,
longer than a day, that can be easily observed by looking at the sky: the
time it takes the moon to pass from one phase to another, from new moon
to half moon, from half moon to full moon, etc.

The days of the week are named after the sun, the moon and the five
planets visible to the naked eye: Mars (French mardi), Mercury (French
mercreds), Jupiter (French jeuds), Venus (French vendreds) and Saturn (En-
glish Saturday). The English Tuesday, Wednesday, Thursday and Friday
are named after the Teutonic deities which supposedly correspond to the
Roman gods after whom the planets were named.

In Hindu astronomy there are nine planetary deities, the graha. In addi-
tion to the seven associated with the days of the week, there are two others,
rahu and kebu, alleged to be associated with the so-called ‘nodes’. These
are the points where the orbits of the sun and the moon, when traced out
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on the firmament, intersect. (See Freed and Freed [1980].) The importance
of the nodes is that an eclipse of the sun or the moon can only occur when
both sun and moon fall on the nodes, to within 10°; according to an ancient
rule of thumb, this happens once in about 18.6 years.

At Stonehenge in England there is an imposing prehistoric monument,
dating from about 2,500 BC. The huge standing stones of the monument
were presumably used to sight the points on the horizon where the sun
and the moon, and perhaps Venus, rise and set at certain dates (Hawkins
[1965]). They are surrounded by a circle of 56 holes in the ground, and Fred
Hoyle [1977] has proposed the ingenious hypothesis that these were used
as a calendar and to calculate the dates of possible eclipses.

According to Hoyle, the idea was to move a sun marker two holes in 13
days, a moon marker two holes each day, and two nodal stones three holes
per year. The sun marker would thus complete an orbit in 364 days; the
discrepancy could be fixed by appropriate adjustments at midsummer and
midwinter. The moon marker would complete an orbit in 28 days, that is,
four weeks. Of course, this should really be 29.5 days, so adjustments might
have to be made each full moon and each new moon. The nodal stones
would take 56/3 years to perform a complete orbit. On those occasions
when both sun marker and moon marker were about to catch up with the
nodal stones, the presiding priest could risk predicting an eclipse.

Foreword on history

Even so-called ‘primitive’ societies may be engaged in some fairly sophis-
ticated mathematical activities, for example, the calculations involved in
kinship descriptions. (How many students can tell on the spot what ex-
actly is a second cousin three times removed?) For interested readers, we
recommend two recent books: Africa Counts by Claudia Zaslovsky and
Ethnomathematics by Marcia Ascher.

Mathematics, as usually conceived, begins with the development of agri-
culture in the river valleys of Egypt, Iraq, India and China. If we pay more
attention to the Near East than to the Far East, this is because the former
has provided us with more accessible records and because modern mathe-
matics can be traced back directly to it. We possess written records con-
cerning the state of mathematics in Egypt and Mesopotamia (Iraq) from as
early as about 2000 BC. Around 500 BC, mathematical knowledge spread
to the Greek world. This included not only modern Greece, but also the
coast of Asia Minor (modern Turkey) and Magna Grecia (southern Italy
and Sicily). About 300 BC, the center of mathematics moved from Athens
to Alexandria in Egypt, where it was to remain for the next 800 years; for
it was in Alexandria that all the books were kept.

Around 500 AD, mediterranean civilization finally came to a stop, per-
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haps because of the repeated impact of epidemic diseases. About 800 AD,
mathematics in the Alexandrian tradition resurfaced in India, which had a
long mathematical tradition of its own. The Arabs, aided by translations
of Greek texts, developed and transmitted mathematical knowledge from
India back to the mediterranean area and ultimately to Europe. During the
so-called ‘renaissance’, mathematics flourished in Italy and, aided by the
Chinese invention of printing, spread to Western and Central Europe. Of
course, today mathematics is being pursued in all the industrial countries
of the world.

Introduction to the number system

The historical and pedagogical development of the number system goes
somewhat like this:

Nt—-Q" - RtT—-R—-C—H.

Here Nt is the set of positive integers, the numbers used for counting,
known to all societies. Q7 is the set of positive rationals, namely, quotients
of positive integers, surely known to all agricultural civilizations. At one
time, they were believed to exhaust all the numbers, until the Pythagore-
ans discovered that the diagonal of a square was not a rational multiple
of its side. We use R* to denote the positive reals; these were certainly
used effectively by Thales, though the Greeks originally tended to regard
them as ratios of geometric quantities. A formal treatment, anticipating
the nineteenth century definition by Dedekind, was first given by Eudoxus
in Athens. The transition from R* to R, the set of all reals, positive, zero
and negative, took place in India and may be ascribed to Brahmagupta.
The set C of complex numbers was first considered by Cardano to describe
the intermediate steps in solving a cubic equation with real coefficients and
three real solutions. The set H of quaternions is named after their inventor
William Hamilton, who may have been preceded by Olinde Rodrigues and
perhaps even by Carl Friedrich Gauss.

Most of the advances in the development of the number system may
have been motivated by the desire to solve equations. Thus, the equations
2¢ =3, 22 =2, z+1=0and 22 + 1 = 0 led to the successive introduc-
tion of QT,R*, R and C, respectively. However, all polynomial equations
with complex coefficients do have complex solutions, so the introduction of
quaternions requires a different justification. They were motivated by the
desire to pass from the plane, describable by complex numbers, to three or
four dimensions.



Part I
Topics in the History and
Philosophy of Mathematics



1
Egyptian Mathematics

The Greeks believed that mathematics originated in Egypt. As to the rea-
son for this, opinion was divided. Aristotle thought that mathematics was
developed by priests, ‘because the priestly class was allowed leisure’ (Meta-
physics 981b 23-24). Herodotus believed that the annual flooding of the
Nile necessitated surveying to redetermine field boundaries, and thus led
to the invention of geometry. In fact, Democritus referred to Egyptian
mathematicians as ‘rope stretchers’. It may be of interest to note that the
Egyptians themselves believed that mathematics had been given to them
by the god Thoth. Our only original sources of information on the math-
ematics of ancient Egypt are the Moscow Mathematical Papyrus and the
Rhind Mathematical Papyrus.

The Moscow Papyrus dates from 1850 BC, about the time the Bible
dates the life of the patriarch Abraham. In 1893 it was acquired by V. S.
Golenishchev and brought to Moscow (Gillings [1972], p. 246). Problem 14
of this papyrus is by far the most interesting. It is the computation of a
truncated pyramid, a square pyramid with a similar pyramid cut off its top.
If a side of the base has length a and a side of the top has length b, then
the volume of the truncated pyramid of vertical height A is

h
V= g(a2 + ab + b?).
This is exactly the formula used by the Egyptians. Note that, if b = 0, we
get the formula for the volume of the complete pyramid.
The Rhind Mathematical Papyrus seems to be based on an earlier work.
It was written by one Ahmose in 1650 BC, about the time when, accord-
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FIGURE 1.1. Rhind Papyrus

ing to the Bible, Joseph was governor of Egypt. Alexander Henry Rhind
acquired it in Luxor, Egypt in 1858; the British Museum bought it from
his estate in 1865. Complete photographs of the papyrus can be found in
The Rhind Mathematical Papyrus edited by G. Robins and C. Shute.

The Rhind Papyrus opens by promising the reader ‘a thorough study of
all things, insight into all that exists, knowledge of all obscure secrets’. It is
a bit of a letdown to find that it is, in fact, a sequence of solved problems
in elementary mathematics, a sort of Schaum’s outline for aspiring scribes.
These scribes had to calculate how many bricks were needed to build a
ramp of a certain size, how many loaves of bread were required to feed the
labourers, and so on.

Problem 32 of the papyrus is an exercise in multiplication written as in

Figure 1.1.
Transcribing this into modern notation, we have
12 1
24 2
48 4 /
96 8 /
144 = the sum of the checked entries.

Clearly, this is a calculation to show that 12 x 12 = 144, using the fact
that 12 =4 + 8.

By doubling and adding, the Egyptians were able to multiply any two
natural numbers — without having to memorize multiplication tables! Some-
times they used a different, yet equivalent, method, as illustrated by the
following multiplication of 70 by 13:

70 13 /
140 6

280 3 /
560 1 /
910 = sum of checked entries.

We let the reader figure out why this works. The method of repeated
doubling can also be used for division. In the following example, we divide
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184 by 17 ( stopping at 136, as the next double exceeds 184):
17 1

34 2/
68 4
136 8 /

The Egyptians would first check off the last row and subtract 136 from
184, obtaining 48. They would then check off the row containing 34, the
highest multiple of 17 less than 48. Since 48 — 34 = 14 is less than 17, they
would now add up all the entries in the second column with check marks
beside them: 2 + 8 = 10. This gives the answer: the quotient is 10 and the
remainder is 14.

In carrying out these divisions, the Egyptians sometimes interspersed
doubling with multiplication by 10 (their language expressed numbers in
the base 10, just as ours does). For example, Problem 69 in the Rhind
Mathematical Papyrus is to calculate the number of ‘ro’ of flour in each
loaf, if 1120 ro of flour is made into 80 loaves. In other words, we are asked
to divide 1120 by 80:

80 1
800 10 /
160 2

320 4

sum of checked numbers = 14.

The Egyptians also knew how to extract square roots and how to solve
linear equations. They used the hieroglyph A much as we use the letter
 for the unknown. They used the formula (%)%r? for the area of a circle
(which implies 3.16 as an approximation to 7) and they did some interesting
work with arithmetic progressions. For example, Problem 64 of the Rhind
Papyrus is to find an arithmetic progression with 10 terms, with sum 10,
and with common difference 1/8.

In using fractions, the Egyptians were hampered by a curious tradition.
They insisted on expressing all fractions (except 2/3) as the sum of distinct
unit fractions of the form 1/n, n being a positive integer. Thus 2/9 would
be written as 1/6 +1/18 and 19/8 as 2+ 1/4+ 1/8. Even 2/3 is sometimes
written as 1/2 + 1/6.

For us it is easy to divide 5/13 by 12, but for the Egyptians this was a
substantial problem. To help with such problems, they had a table listing
unit fraction decompositions for fractions of the form 2/n, with n an odd
positive integer. This table (found in the Rhind Papyrus) gives 2/13 as
1/84+1/52 4+ 1/104. Since 5 = (2 - 2) + 1, Ahmose would write

5/13 2(1/8 +1/52 + 1/104) +1/13

1/4+1/26+1/52 +1/13.
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From this he would obtain
(5/13)/12 =1/48 +1/312 4+ 1/624 + 1/156.

Actually, any faction of the form 2/(2m + 1) can be expressed as a sum of
the unit fractions 1/(m+1) and 1/(m+1)(2m+1). Not that the Egyptians
always followed this recipe; for example, Ahmose wrote 2/45 = 1/30+1/90.

Recently, Paul Erdés proposed the following problem: show that, if n is
an odd integer greater than 4, then 4/n can be written as a sum of three
distinct unit fractions. The problem has not yet been solved. (See Mordell,
p. 287.)

Exercises

1. Derive the formula for the volume of a truncated pyramid from that
of a pyramid.

2. Explain why the above method for multiplying 70 x 13 works.
3. Find two ways of writing 1/4 as the sum of two distinct unit fractions.

4. If m is a positive integer, show that 4/(4m+ 3) can be written as the
sum of three distinct unit fractions.
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Scales of Notation

The ancient Egyptian language belongs to the Hamito-Semitic group of
languages. Like the Indo-European group, it contains a system of counting
by tens, undoubtably arising from the habit of counting using one’s fingers.
The notation used for writing numbers is also clearly based on the scale of
ten. For some reason, standard French departs from decimal nomenclature;
it expresses 97 as 4 times 20 plus 17. This seems odd, since it was the French
who introduced the decimal system for weights and measures.

Some African languages express numbers in the scale of five. One may
express natural numbers in any scale b, where b is an integer greater than
1, since every natural number is uniquely expressible in the form

a=ag+aib+ab?® +azb® + -+ a,b",
where 0 < a; < b (for i = 0,1,...,n). We write this more briefly as
a = (@nGn_1---a20100)p.

If there is no doubt which scale is in use, the subscript b may be dropped.

The Egyptians had a number system based on the scale of ten, but, as
we saw above, they often worked with scale two: to multiply by 12, Ahmose
expressed 12 as 4+ 8, that is, 22 + 23, or 12 = (1100)2. The Egyptians also
took b = 7 in some of their calculations (Gillings, p. 227), since there are
seven palms in a cubit. They had no symbol for zero; instead they used
special symbols for different powers of ten.

The binary scale (with b = 2) shows up in the Chinese Book of Changes
(1200 BC), a system of divination in which each six place binary number
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represents some concept. The digit 1 was associated with the male ‘yang’,
and the digit 0 with the female ‘yin’. The number 34 = (100010), was
supposed to represent ‘progress and success’. The binary scale also shows
up in the Hindu classification of meters in verse, about 800 BC. Finally,
it is of course used in the modern computer. The digit 1 is represented by
a current, and the digit O by the absence of a current. Number scales are
often found in recreational mathematics, as in the following three problems.

Six Weight Problem: A balance is a weighing apparatus with a central
pivot, a beam, two scales and a set of counter-weights that are placed
in one of the scales. Suppose we have some flour and we want to be
able to put it into bags weighing anywhere from one to sixty-three
kilograms. How can this be done using just six counter-weights?

Answer: Weights of 1, 2, 4, 8, 16 and 32 kilograms will allow you
to weigh any integral load from 1 t0 324+ 16+8+4+2+1 = 63
kilograms.

Four Weight Problem: This time, suppose we are allowed to put weights
on either scale. How can we weigh bags under 42 kilograms using only
four weights?

Answer: Choose weights of 1, 3, 9 and 27 kilograms, since any integer
a can be written uniquely in the form

a=ag+ a3+ a3’ + - +ap3",
where each a; is one of —1, 0 or 1.

The Game of Nim: This so-called Chinese game is played by two oppo-
nents, who take turns removing matches from several piles according
to the following rules:

1. A player must remove at least one match in a turn.

2. A player may remove any number of matches from a single pile
in a turn.

The player who removes the last match wins. Find a strategy for
winning this game.

Answer: Express the number of matches in each pile in the scale of
two and write these binary numbers one below the other. If, when it
is your turn, you can arrange it so that each column adds up to an
even number, then you can do the same in every subsequent turn and
you will win the game.

As an example, suppose there are three piles containing 7, 5 and 3
matches. It is your turn. In binary notation, the piles contain the following
number of matches:
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111
1 01
1 1
To make the number of 1’s in each column even, you take a match from
the first pile, leading to

1 10
1 01
11

Your opponent takes 2 matches, say, from the third pile, leaving

110
1 01
1

You take two matches from the first pile, yielding
1 00
1 01
1

Your opponent then removes all the matches from the first pile, say,
resulting in
1 01
1
You now take 4 matches from the first pile, leaving just one match in
each pile. Your opponent has to take one of them, and you win by taking
the last match.
What is going on in the Six Weight Problem? It is easily seen that the
following three statements are equivalent:

1. Every integral load less than 64 kg can be weighed uniquely with 6
weights: 1, 2, 4, 8, 16 and 32 kg.

2. Every natural number less than 64 can be expressed uniquely as the
sum of distinct powers of 2.

3. Every natural number less then 64 can be written uniquely in the
scale of 2 with up to 6 digits, each 0 or 1.

A direct proof is quite easy, but a proof in the spirit of the 18th century is
more interesting. In preparation for this proof, let us look at the following
multiplication:

(1+22)(14+23) 1+ A +2") = 1422+ 23 + 205+ 20"+ 28+ 2% + 22104 .

Why are the coefficients of 2%, x4 and x> equal to 2, 0 and 1, respectively?
Because 5 = 2 + 3 can be written as the sum of some of 2, 3, 5 and 7 in
two ways (the first sum consists of one term only), 4 cannot be written as
the sum of some of 2, 3, 5 and 7 at all, and 3 can only be written as the
sum of these numbers in one way, the sum having one term. In general, the
coefficient of z™ will be the number of ways in which n can be written as
the sum of distinct members of the set {2, 3, 5, 7}.
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Now let us replace this set of numbers by the set {1, 2, 4, 8, 16, 32}
and consider

(L+2)(1+2?)(1 + ) (1 +2%)(1+2'%)(1 +2%) = if(n)ﬂv"'
=0

Then f(n) is the number of ways in which n can be written as the sum
of distinct powers of 2, up to 32. Clearly, f(n) = 0 when n > 64. What if
n < 64?7 The left-hand side can also be written

1—2% 1-2% 1—-2% 1-2'® 1-2% 145 1%

1l—2 1—-22 1—2% 1—28 1—216 1—g32 =~ 1-—¢
63

=l+z+z+---+258 = Zz"

n=0

Hence f(n) =1if n < 64.

Suppose, instead of stopping with 232, we form the infinite product
[122,(1 + z%"). Then we can show similarly that every natural number
can be written in the scale of 2.

Exercises

1. Write out a scale 7 multiplication table.
2. Show how to convert a scale 10 numeral to a scale 7 numeral.

3. Give a proof, in the spirit of the 18th century, that every natural
number can be written uniquely in the scale of 3. (Hint: form the
infinite product (14+z+2z%)(1+23+2°%)(1+2°+2'8)- .. and evaluate
it in two different ways.)

4. Likewise, show that any integer can be written uniquely as Zzzo ax3®,
where ax = —1,0 or 1.
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Prime Numbers

It would be impossible to write a history of mathematics without mention-
ing prime numbers, and it would be improper to give an account of prime
numbers without going into the history of mathematics. Prime numbers
enter into almost every branch of mathematics; they are as fundamental
as they are ubiquitous. Their history can be used as a framework for a
history of mathematics generally. In this chapter, we take a brief look at
the fascinating subject of primes.
The Egyptians might have written

From this, it follows that

and that

4 1 1 1

56712 60
The moral to be drawn from this is that, to express a/b as a sum of unit
fractions, it suffices to consider the case when b cannot be factored into
smaller numbers. An integer greater than 1 which cannot be factored into
numbers, all of which are smaller than the original integer, is called prime.

The first few primes are

2,3,5,7,11,13,17,19,23,29, 31,37, . ...
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Note that a positive integer is prime if and only if it has exactly two positive
integer divisors.

Early on, people noticed that a pile of small stones can sometimes be
arranged in a rectangle and sometimes it cannot. Thus, although we do
not have any record of this, the Egyptians probably knew the difference
between composite and prime numbers. Indeed, it is not impossible that
some Egyptian scribe may have noticed that, if every proper fraction of
the form 4/p, with p prime, and greater than 3, can be expressed as a sum
of three distinct unit fractions, then every proper fraction of the form 4/n,
with n any positive integer greater than 4, can be so expressed. (See the
problem of Erdés, mentioned in Chapter 1.)

It was the Greeks who first proved that the number of primes is infinite.
A proof is found in Euclid’s Elements (300 BC).

Euclid’s Lemma (Book VII Proposition 31):

Every integer n > 1 is divisible by some prime number.

Proof Among the divisors of n which are greater than 1, let p be the
smallest. Then p has no divisors other than 1 and p — any other divisor of
p would be a divisor of n as well — and hence p is prime.

Euclid’s Theorem (Book IX Proposition 20):

Given any finite list of primes pi,p2...pk, there is a prime not on this

list.
Proof: Consider the number n = p1ps - - - pr+ 1. Clearly, n is not divisible by
any of the primes on the list; for, upon dividing n by p;, we get remainder
1. From the lemma we know that n does have a prime factor ¢ (possibly n
itself). Hence there is a prime, namely, g, which is not on the list. QED.

In Proposition 14 of Book IX, Euclid proved that, if n is a square-free
positive integer (that is, one with no square factor other than 1), then n
has a factorization into primes which is unique (if you list the prime factors
in order of increasing size). However, it was not until 1801 that the unique
factorization was formally proved for any positive integer n. This was done
by Carl Friedrich Gauss (1777-1855) in his Disquisitiones Arithmeticae.
Although mathematicians used the unique factorization theorem long be-
fore 1801, and although almost any one of them could have found a proof
for it, Gauss was the first person actually to sit down and do so. Perhaps
the other mathematicians considered the theorem too obvious to be worth
proving. One way to prove that every positive integer greater than 1 has a
unique factorization into primes is as follows.

Proof of the Unique Factorization Theorem:

Let n be the smallest positive integer, if there is one, which has 2 (or

more) factorizations into primes:

n=pgr...=p'qdr ....

We assume the primes are written in nondecreasing order. By minimality
of n, p # p’ (or we could cancel off the p’s and get a smaller number with
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two factorizations). Without loss of generality, we may suppose that p’ < p.
Hence
p<p<g<r<.... (%)

Since n is not prime, n > p?, and hence n > pp’. By minimality of n,
n—pp’ has a unique factorization. Both p and p’ are factors of n—pp’ (since
n—pp =p(gr---—p') =p'(¢'r' ---—p)) and hence, for some positive integer
z,n—pp' = pp'z. This gives qr--- —p' = p’z, so that p’ is a factor of gr- - -.
Since gr--- < m, gr--- has a unique factorization into primes. Thus p’ is
one of g,r.... But this contradicts (x) above. For another proof, see Part
IT, Chapter 15.

Like Euclid, Eratosthenes of Cyrene (230 BC) worked at the University of
Alexandria. He suggested a method for making a list of all prime numbers,
which is called the ‘sieve of Eratosthenes’. His method is as follows: write
down all the positive integers greater than 1; cross out all multiples of
2 other than 2, cross out all multiples of 3 other than 3 which have not
been crossed out yet, etc. In the end, the numbers not crossed out from a
complete list of primes.

People often wonder whether there is a simple formula representing prime
numbers. For example, f(z) = 2% — 2 + 41 is prime for all integer values of
z from 0 to 40. While this might convince a physicist that f(z) is always
prime, unfortunately f(41) = 412.

In 1743, Christian Goldbach observed that a polynomial

f(x):‘10+alz+agx‘2—|—...+anzn

with integer coefficients ag,as,...,a, cannot represent primes only, that
is, the integers f(0), f(1), £(2),... are not all prime.

Indeed, if f(0) = p, then f(kp) is clearly a multiple of p for all integers
k. But, as k tends to infinity, so does the absolute value of f(kp). Hence,
for some value of k, f(kp) will be a proper multiple of p and therefore not
prime.

It therefore came as a great surprise to the mathematical community
when, in 1970, Yuri Matiyasevi¢ formed a polynomial f(z,y,z,....) with
integer coefficients, but in several variables, such that, when positive in-
tegers are chosen for z,y, z, ..., one gets all the prime numbers and only
the prime numbers as positive values of the polynomial. We shall say more
about this in Chapter 21 on Hilbert’s Tenth Problem in Part II.

In 1830 (in Théorie des Nombres Vol. 11, p. 65), A. M. Legendre noted
that, if w(z) is the number of primes less than or equal to z, then n(z) is
approximately equal to z/(log, x — 1.08366), where e = lim, o (1 + %)"
is the base of the natural logarithm (Chapter 26). We shall write logx
and assume the base to be e. He was not able to prove this. In 1896, two
mathematicians working independently proved that

mz) _
oo z/logz
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These two mathematicians were the Frenchman Jacques Hadamard (1865—
1963) and the Belgian Charles Jean de la Vallée Poussin (1866-1962). The
result they proved is called the Prime Number Theorem. It implies that the
nth prime is approximately equal to nlogn. For, if we let p, be the nth
prime, the equation implies that n is roughly equal to p,/log p,, so that

P = nlogp, = nlog(nlogp,) ~nlogn,

since nloglogp, can be neglected in comparison with nlogp, =~ p,.

It was Goldbach who conjectured that every even number greater than
2 is a sum of two primes. This conjecture has not yet been proved or
disproved. However, in 1937, the Russian mathematician I. M. Vinogradov
made some progress towards proving Goldbach’s Conjecture, by showing
that every odd integer greater than, say, 101" (or some similar bound) is a
sum of three prime numbers. Some progress in the Goldbach conjecture was
recently made by the Chinese mathematician Chen Jing-Run. He proved
that every sufficiently large (say > 10'°'°) even number has the form p+g,
where p is prime and q is either prime or the product of two primes. During
the so-called ‘cultural revolution’ in the sixties this kind of mathematics
was frowned upon in China for being far removed from any conceivable
application to industry or agriculture. Because he stubbornly stuck to his
esoteric research at the risk of neglecting his teaching, Chen Jing-Run was
discriminated against during the reign of the so-called ‘gang of four’ and
may have lost his academic position. After the overthrow of the gang of
four, he was rehabilitated and even declared a ‘hero of the revolution’.

At the moment (1995), one of the ‘hot topics’ in prime number theory
is cryptography. In its simplest form, the idea is this: the cipher key is
a product n = pq of two large primes, typically having 50 to 80 digits
each. Knowing n is enough to encode messages, but decryption requires
knowledge of the factorization. The integer n is made public (hence the
term ‘public key’) so that everyone can use the code to encipher messages.
Security is maintained, because only the intended recipient knows the key,
namely, the factorization pg, necessary to carry out the decryption. The
basis for this scheme is that it takes a very long time to factor products
of large primes and the war may well be over before the enemy succeeds
in doing so. (Try to factor the relatively small product 1,315,685,447, and
you will see that the enemy does not have an easy task.)

At the moment, much research is being done to find refinements of the
above idea, refinements that are at once economical and secure for those
who want to send secret messages. Much research is also being done to find
ways of using computers to factor very large numbers, and thus break the
codes based on the above idea.
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Exercises

1. Find the 25 primes less than 100 and express 100 as the sum of two
primes.

2. Prove that there exist 1,000 consecutive positive integers none of
which is prime. (Hint: start with 1001! + 2.)

3. Prove that there are infinitely many prime numbers of the form
4m — 1.

(Hint: consider n = 4919293 - - - g — 1, where the g¢; are primes of the
form 4m — 1, and show that not all prime divisors of n can be of the
form 4m + 1.)
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Sumerian-Babylonian Mathematics

The Sumerians were a people of unknown linguistic affinity, who lived in
the southern part of Mesopotamia (Iraq), and whose civilization was ab-
sorbed by the Semitic Babylonians around 2000 BC. Babylonian culture
reached its peak in about 575 BC, under Nebuchadnezzar, but most of the
mathematical achievements we shall discuss in this chapter and in Chapter
5 are much older, going back as far as 2000 BC — about the time when the
biblical patriarch Abraham was said to have been born in the Sumerian
city of Ur.

As we shall see, Mesopotamian mathematics is quite impressive. How-
ever, we should remember that, like the ancient Egyptians, the Mesopotami-
ans never gave what we would call ‘proofs’ for their results; the first people
to do so were the Greeks.

In representing numbers up to (and including) 59, the Sumerians and
Babylonians used a decimal system. For example, they wrote 35 as follows,
where we have approximated the original cuneiform figures by ours:

<<L YYY
YY

On the other hand, 60 is again denoted by Y, and so is 602, as well as

6071, 6072, etc. It is usually clear from the context which is meant. Here
are some further examples:

<< < = 30, or30/60=1/2;
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<YY = 12, or1/5;
Y << Y § Yo 84, or 7/5.

The Babylonian use of scale 60 was taken over into Greek astronomy
around 150 BC by Hipparchus of Nicaea and it is still used today in mea-
suring time and angles. To remove ambiguities in the above three examples,
we would write

30° or 30/,

12° or 12/,
1°24' or 124",

The scale 60, or sexagesimal system, was also employed for weights of
silver: 60 shekels = 1 mina; 60 minas = 1 talent. The prophet Ezekiel,
living in Babylon, wrote in 573 BC:

The Lord Yahweh says this: ... Twenty shekels, twenty-five shekels
and fifteen shekels are to make one mina (Ezekiel 45:9-12).

The later Babylonians even introduced a symbol for zero:

y s Y }}i Y 602+ 4 = 3604.

Ptolemy (150 AD) replaced this symbol by a small circle, probably from
the Greek word ‘ouden’, meaning ‘nothing’.

In order to divide, the Babylonians made use of the fact that a/b = a-b~!.
To this end, they constructed tables of inverses, like the one given in Table
4.1 (taken from Neugebauer [1969]). Note that the scribe did not list the
inverses of any integers having a prime factor other than 2, 3 or 5. It seems
he was afraid of repeating sexagesimals!

The Babylonians also had tables of squares, cubes, square roots, cube
roots, and even roots of the equations

(z+1) =a.

Their method for extracting square roots is sometimes called Heron’s method
after Heron of Alexandria (60 AD), who included it in his Metrica. Let a;
be a rational number between y/a and y/a + 1, where a is a positive non-
square integer; let an4+1 = (a,+a/ay)/2; then a, — /a asn — oo. Indeed,
ife=a; —+/a, we have 0 < e < 1 and

0 < any1 — Va < 2va(e/2v/a)?"

(see Exercise 4). As n — oo, this tends to 0.
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b 1/b |b 1/b
2 30 |16 345
3 20 |18 320"
4 15 |20 %
5
6
8

12/ 24 230"

10’ 25 224"

730" | 27 2'13"20”
9 640 |30 2

10 ¢ 32 1’5230
12 5 36 1'40”
15 4 40 1'30”

TABLE 4.1. Mesopotamian table of inverses (scale 60)

For example, if a = 2, a; = 3/2, then a; = 17/12 and a3 = 577/408. In
sexagesimal notation, 577/408 = 1°24’51”10"35"" . ... The fourth approx-
imation ag = 665857,/470832, which is 1°24/51”10"7"" ... in sexagesimal
notation. The difference between a4 and V2 is less than

24
22 <%§> <1072,

The Babylonian tablet YBC7289, dating from about 1600 BC, gives v/2 as
1°24'51710".

Exercises

1. Write 5000 in the Babylonian manner. (You may use our degrees,
minutes and seconds.)

2. Let a/b be a proper, reduced fraction (with a and b positive inte-
gers). Let e; = 60a/b and e,11 = 60(e, — [en]) — where [e,] is the
greatest integer less than or equal to e,. Prove that the Babylonian
sexagesimal expansion for a/b is

([ea][ez2][es] - - )so -

3. Express 1/7 as a repeating sexagesimal.

4. Prove by mathematical induction that
0 < anp1 —Va < 2va(e/2va)?".

5. Use the Babylonian method to find v/3 to within 6010,
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6. Let a/b be a proper, reduced fraction (with a and b positive integers).
Prove that a/b has an infinitely repeating sexagesimal expansion if
and only if b has a prime factor which does not divide 60.
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More about Mesopotamian
Mathematics

In Science Awakening I, B. L. van der Waerden quotes the beginning of
‘A08862’, a Babylonian clay tablet going back to about the same time as
the Rhind Papyrus:

Length, width. I have multiplied the length and the width,
thus obtaining the area. Then I added to the area, the excess of
the length over the width: 183 was the result. Moreover, I have
added the length and the width: 27. Required length, width and
area.

27 and 183, the sums; 15 the length; 180 the area; 12 the
width;

One follows this method:

27 + 183 =210, 2 + 27 = 29.

Take one half of 29 (this gives 143),

141 x 141 = 2104,

2105 — 210 = §.

The square root of 1/4 is 1/2.

141 + 1 =15, the length;

141 — 3 = 14, the width.

Subtract 2, which has been added to 27, from 14, the width.

12 is the actual width. I have multiplied the length 15 by the

width 12.
15 x 12 = 180, the area;
15-12 = 3;

180 + 3 = 183.
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What is going on here? In modern notation, we would write z and y for
length and width, respectively. The problem is to find a solution for the
simultaneous equations

zy+(z—y) =183 and z +y = 27.

The answer is given as z = 15 and y = 12. The scribe’s method is this:
consider
ry+z—y+r+y=2z(y+2) =210

Putting ¢’ = y + 2, we have zy’ = 210. On the other hand, adding the
factors of 210, we get

c+y =z+y+2=29

hence 3(z +y') = £(29) = 14%;

2 22’ /2
hence W = (144)% = 210%;
2 _ 2 / /2
hence = Zy Ll 210% —-210= % (the so-called discriminant);

hence

Addlng and subtractlng 2(a: +y’) and 2(z —v'), we get T = 141 + — =15
and ¢/ 14— - -2- = 14. Note that 14 is not really the w1dth but y =
Yy —2=14- 2 = 12 is. The scribe then computes the area and checks his
work. The scribe did not consider the possibility x = 14,y + 2 = 15, which
gives the second solution z = 14, y = 13. He did not know how to take the
negative square root of ;.

The Babylonians could solve many kinds of equations, including: ax =
b, 22 £ ax = b, 2% = a, 2%(z + 1) = a. They could also solve simultaneous
equations having the following forms:

r+y=a, zy=0"b

zty=a, 2 +y>=b.

They even managed to solve the following pair of equations:

23/7% + y2 = 3,200,000; Ty = 1200. (%)
As we saw just above, the Babylonians knew that
a? —b* = (a+b)(a—b).
They also knew that

(a+b)? = a? + 2ab + b°.
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Like the Egyptians, the Babylonians built pyramids, or ziggurats. If each
story of a ziggurat consists of a square platform measuring 1 x m x m, then
the volume of a ziggurat with a base of length n is

(Ixnxn)+-+(1x2x2)+1Ax1x1)=124+224+324... 4 n%
The Babylonians knew that the formula for this sum is
nn+1)(2n+1)/6,

a result also known to Pythagoras, but perhaps first proved by Archimedes.

According to the biblical story of the Tower of Babel, there was once
an attempt to build a ziggurat ‘with its top reaching heaven’. Perhaps the
people behind this project thought that there was only a finite distance be-
tween heaven and earth, or perhaps they thought that they could calculate
the sum of 12 + 22 + 32 4 ..., not realizing that the series diverges.

A remarkable fact about ancient Babylonian mathematics is that it
included not just the so-called theorem of Pythagoras, but a theory of
‘Pythagorean triangles’. (A Pythagorean triangle is a triple (z,y, z) of pos-
itive integers such that z2 4+ y? = 22, and thus z,y and z are sides of a
right angled triangle.) From a clay tablet called ‘Plimpton 322’ (dating
from 1900-1600 BC), we can deduce that the Babylonians used a result of
which the following is a modern version:

Suppose u and v are relatively prime positive integers, that is,
integers whose greatest common divisor is 1. Assume that not
both are odd and that u > v. Then, if @ = 2uv, b = u? — v? and
c =u? +v?, we have ged(a,b,¢) = 1 and a® + b? = 2.
Included in Plimpton 322 is the triangle (13500, 12709, 18541), which is
generated by taking u = 125 and v = 54.

The converse of the above theorem is also true. That is, if a,b and ¢
are relatively prime positive integers, with a even, such that a? + b? = ¢?,
then there are relatively prime positive integers u and v, not both odd,
such that a = 2uv,b = u? — v? and ¢ = u? + v%. It is not impossible
that the Babylonians knew this, but the earliest record we have of this
result is in the solutions of Problems 8 and 9 of Book II of the Arithmetica
of Diophantus (250 AD). Indeed, since Diophantus explained his ideas in
terms of special cases, it is correct to say that the first explicit, rigorous
proof of the converse of the Babylonian theorem was given only in 1738,
by C. A. Koerbero (Dickson [1971], Vol. II).

According to a tablet found in 1936 in Susa, an ancient city in what is
now Iran, the Babylonians sometimes used the value 3% for m. At other
times, they seem to have been satisfied with 7 =~ 3. It has been suggested

that this Babylonian usage is behind 1 Kings 7:23-24:

He [Hiram of Tyre] made the basin of cast metal, ten cubits
from rim to rim, circular in shape and five cubits high; a cord
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thirty cubits long gave the measurement of its girth. Under its
rim and completely encircling it were gourds; they went around
the basin over a length of thirty cubits.

But perhaps the basin was hexagonal and not circular!

Exercises

. Consider the simultaneous equations zy + z —y = a and z +y = b,

where a and b are given integers. What is a necessary and sufficient
condition on a and b so that z and y will be integers?

. Solve the simultaneous pair (*) (from a Susa tablet).

. Prove by mathematical induction that

12422432+ +n?=n(n+1)(2n+ 1)/6.

. Rabbi Nehemiah (150 AD) was unhappy with the idea that the Bible

had used a very inaccurate value for 7 and he suggested that ‘the di-
ameter of 10 cubits included the walls of the basin, while the circum-
ference excluded them.’ Assuming that he was right, and assuming
that the Bible used a perfectly accurate value for 7, how wide was
the wall (or rim) of the basin?

. Prove that if a triangle has sides of lengths a, b and ¢, and if a® +b? =

2, then the triangle is right angled.

. Prove the Babylonian theorem for Pythagorean triangles.

. Prove the converse of the Babylonian theorem for Pythagorean tri-

angles.

. In 1901, L. Kronecker gave the first proof that all positive integer so-

lutions of a®+b? = ¢? are given without duplication by a = 2uvk, b =
(u? —v?)k, ¢ = (u?+v?)k, where u,v and k are positive integers such
that u > v, u and v are not both odd, and u and v are relatively
prime. Prove Kronecker’s theorem.

. The 15 Pythagorean triangles in Plimpton 322 have angles which

approximate the 15 whole number angles from 44° to 58° inclusive.
Find a Pythagorean triangle, with relatively prime sides, one of whose
angles is within 2/5° of 47°. (Hint: see Anglin [1988].)
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The ancient Greek world was not confined to what we now call Greece, but
extended to Ionia (western Turkey) in the east, southern Italy and Sicily
in the west, and later to Alexandria (Egypt) in the south. Not surprisingly,
Greek philosophy and mathematics began in Ionia, where the influence
of the older civilizations of the east (e.g., Babylon) was greatest. Later,
political events caused many Greeks to emigrate from Ionia to Italy, and
this became the center of intellectual life for a while. After the war between
a Greek coalition and the Persians ended in the defeat of the latter (490
BC), philosophy and mathematics flourished in Athens. Ultimately, after
the founding of Alexandria (331 BC), it was there that most of the major
scientific developments took place until about 500 AD.

The first Greek mathematician and philosopher is Thales of Miletus (600
BC). According to Proclus, Thales visited Egypt and brought back the
knowledge of geometry from there. He may also have been influenced by
Indian thought via Persia. He is said to have predicted the solar eclipse
which occurred over the Near East in May of 585 BC. To do this, he may
have made use of observations which the Babylonians had accumulated
over many centuries.

Plato repeats a story about Thales being an absent-minded professor,
who was so preoccupied with celestial matters that he did not observe
what was in front of his feet and once fell into a well (Theaetetus 174a).
According to other anecdotes, however, Thales could turn his mind to prac-
tical matters when necessary. He constructed an almanac and he used the
theory of similar triangles to calculate the distance of ships from shore and
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the height of pyramids. To impress his business minded fellow citizens, he
once cornered the market in olive oil and, incidentally, made himself rich.

Thales’s name is associated with a number of elementary theorems in
geometry:

1. a circle is bisected by a diameter;
the base angles of an isosceles triangle are equal;
when two lines intersect, vertically opposite angles are equal;

the angle-angle-side congruence theorem;

oL w N

the angle subtended by a diameter of a circle is a right angle (that is,
if A, B, C are points on a circle and AC is a diameter, then ZABC
is a right angle).

Theorem 5 is called Thales’s theorem. To prove this he also had to know
the following:

6. the sum of the angles in a triangle is equal to two right angles (or, as
we now say, in slavish imitation of the Babylonians, 180°).

All of these theorems must have been known empirically by the Egyptians
and Babylonians. The reason they are associated with Thales is not that
he discovered them, but that he was the first to prove them. This was the
essential difference between pre-Greek and Greek mathematics: the Greeks
established the logical connections among their results; they gave the first
abstract proofs in mathematics.

As a philosopher, Thales is known for his statement that everything is
made of water. How should we interpret this, and what is its relevance to
mathematics?

As we look around us, we observe that there are two kinds of things: those
that can be counted, such as pebbles and cows, and those that can only
be measured, such as butter and water. This physical distinction between
‘discrete’ and ‘continuous’ is reflected on a linguistic level: it is perfectly
correct to say ‘one cow, two cows’ but it sounds rather odd to say ‘one
butter, two butters’, to put it mildly (however, see Exercise 5). We call
the former sort of nouns count nouns, and the latter mass nouns. To some
extent, this distinction is a convention. For example, in modern English,
we can count peas but not rice, while a hundred years ago, ‘pease’ was not
a plural but a mass noun. (A hundred years from now, ‘rice’ may be the
plural of ‘rouse’.)

A question which physicists are still working on is this: is the material
universe ultimately countable — consisting of discrete, unconnected frag-
ments — or is the material universe ultimately continuous — that is, should
it be understood in terms of a connected continuum? If the first, how do we
explain the unity of nature, how do we understand the continuity of change
and motion? If the second, how do we explain the diversity of nature, how
do we understand the individuality of distinct, single objects?
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This issue was addressed by more than one Greek thinker. As we shall
see, Pythagoras and Democritus took the view that reality is basically
discrete. They then tried to understand apparently continuous entities in
terms of discrete entities (e.g., lengths as ratios of whole numbers). Thales,
on the other hand, took the view that ‘all is water’. In other words, the
material universe is best understood in terms of a single substance, namely,
water. (Here we are using the word ‘substance’ not in the Aristotelian sense
of ‘individual entity’, but in the more common sense of ‘material having
uniform properties’.) Thales had undoubtedly noticed that ice and steam
are both forms of water, but we do not know why he picked water as
the fundamental substance. (It has been suggested by Marxist historians
that this was so because his city Miletus was a maritime power.) What is
important is not that Thales overlooked the possibility of, say, there being
90 different substances, but that he raised a fascinating problem about the
universe, which has not been resolved to this day.

Other Ionian philosophers agreed with Thales that there was a single
substance, but not that it was water. Anaximenes of Miletus (550 BC)
identified the primal substance as air. Heraclitus of Ephesus (500 BC) held
that everything is made of fire. Anaximander was a follower and compatriot
of Thales, who like Thales, took the view that the universe is best under-
stood in terms of a single substance. Unlike Thales, he did not think this
substance was water. He thought it was something he called the Infinite.
The Infinite could take on the forms of earth, water, air, and fire. Today
we might refer to solid, liquid, gas and energy, respectively.

Exercises

1. Let ABC be a triangle, and let d be a straight line through A parallel
to BC. Assuming that the ‘alternate angles are equal’, prove that the
sum of the angles of ABC equals two right angles.

2. Prove the Theorem of Thales, using Exercise 1 and the theorem that
the base angles of an isosceles triangle are equal.

3. Prove the converse of Thales’s Theorem: if A, B and C are points on
a circle and /ABC is a right angle then AC is a diameter.

4. How would you measure the height of a pyramid (or tree, for that
matter), using similar triangles?

5. Some nouns like ‘rice’ are definitely count nouns. We cannot say ‘two
rices’. Other nouns are more problematic. ‘Whisky’ is normally a mass
noun, but ‘two whiskies, please’ is perfectly good English (meaning
two glasses of whisky). Some languages have many fewer count nouns
than English. For example, in Indonesian it is incorrect to say ‘two
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cows’; you have to say ‘two tails of cow’, as we might say ‘two head of
cattle’. (It is amusing to note that our mass noun ‘cattle’ is itself ul-
timately derived from the Latin word ‘caput’ meaning ‘head’.) Write
an essay on the distinction between count nouns and mass nouns and
its relevance to mathematics.
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Pythagoras and His School

Pythagoras (570-500 BC) was born in Samos, a Greek island off the coast of
what is now Turkey. According to ancient sources (Iamblichus, Porphyry
and Diogenes Laértius), he traveled and studied in the Persian empire,
which extended then from northern Greece to the Indus Valley and in-
cluded ancient Mesopotamia. We know (Plimpton 322) that the Babyloni-
ans understood what is now called the ‘theorem of Pythagoras’, although
the latter may have given the first proof. Pythagoras may have learned the
theory of ‘Pythagorean triangles’ from the Babylonians.

According to the above mentioned sources, Pythagoras also studied un-
der the Zoroastrian priests, the so-called ‘Magi’. However, judging from his
belief in reincarnation and his vegetarianism, it is more likely that he was
influenced by Hindu tradition. Even his mathematics has an Indian flavour.

About 525 BC, Pythagoras emigrated to Croton (modern Crotone) in
southern Italy, where he founded a society, half-way between a political
party and a religious cult, which came to be known as the ‘Pythagorean
Brotherhood.” Some members of this society were admitted to an inner
circle consisting of the so-called ‘mathematicians’.

The word ‘mathematics’ was in fact introduced by Pythagoras. The first
part of this word is an old Indo-European root, related to the English word
‘mind’. The modern meaning of ‘mathematics’ is due to Aristotle.

Whereas Thales had claimed that ‘all is water’, Pythagoras taught that
‘all is number’. For Pythagoras this implied that everything could be un-
derstood in terms of whole numbers and their ratios. In particular, he
implicitly expected that every line segment was a whole number or a ratio
of whole numbers (in terms of a given unit length). It seems that the dis-
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FIGURE 7.1. Pythagorean star and the fourth triangular number

covery of the irrationality of the diagonal of the square of side 1 was made
by his followers and that Pythagoras himself was not aware of this.

In his philosophy, Pythagoras reserved a special place for the number
10. He called it the ‘divine number’, noting that 10 is a triangular number
and realizing that the five-pointed ‘Pythagorean star’ (Figure 7.1) has 10
vertices.

The Pythagoreans ascribed all their mathematical discoveries to Pythago-
ras, but there is not, in fact, a single theorem which we can safely credit
to him. For example, in his preface to the Introductio Arithmetica, written
by a Pythagorean, Nichomachus of Gerasa (100 AD), Iamblichus (300 AD)
credits Pythagoras with a knowledge of the amicable pair 220 and 284.
(Two natural numbers are amicable if each is the sum of the proper divi-
sors of the other.) However, we have no way of knowing for certain whether
amicable numbers had been recognized as early as 500 BC. Yet, according
to a famous anecdote, when someone challenged his slogan ‘all is number’
by asking ‘then what is friendship?’, Pythagoras replied that friendship is
as 220 is to 284.

Leaving behind the shadowy figure of the Master, let us review the ac-
complishments of his followers. Although they were primarily a religious
and political group, they did a fair amount of work in arithmetic, geom-
etry, astronomy and music — the four subjects later forming the medieval
quadrivium. (In the university curriculum of the Middle Ages, these sub-
jects were meant to follow the ‘trivial’ subjects: grammar, rhetoric and
logic.)

Theorem of Pythagoras

The Pythagoreans are probably responsible for the proof found in Euclid’s
Elements, Book I, Proposition 47. They also found a proof of the converse
of the theorem of Pythagoras.

Means

They examined the relationships between the following means:
arithmetic (3(a + b) ), geometric (v/ab) and harmonic (2ab/(a + b)).
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FIGURE 7.3. Triangular numbers

Perfect Numbers

They found a formula giving perfect numbers. See Chapter 8.

Regular Solids
They discovered the dodecahedron. See Chapter 9.

Irrationality of /2

They discovered that the square root of 2 is not rational. They used the
integer solutions of 2 —2y? = %1 to find approximations to it. See Chapter
10.

Figurative Numbers

They found proofs for several algebraic relations by means of studying
figurative numbers. For example, looking at the sequence of squares, ex-
pressed in terms of ‘arrays of pebbles’ (Figure 7.2), they noticed that
n?4+(2n+1)=(n+1)? and hence 1 +3+5+---+ (2n — 1) = n%

Fitting two ‘triangular numbers’ into a parallelogram, they noticed that
the nth triangular number is Fn(n + 1).

Looking at the sequence of triangular numbers, expressed in terms of
pebble arrays, they realized that the difference between the (n + 1)th and
nth triangular number is just n + 1. From this they concluded that 1 +2+
3+ - +n = the nth triangular number = n(n + 1). See Figure 7.3.

The study of figurative numbers is alive and well today. For example,
recently some very advanced mathematics was used to show, for the first
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time, that there are exactly six triangular numbers that are products of
three consecutive integers (See Tzanakis and de Weger [1989)].)

Exercises

1. How might a Pythagorean have derived the fact that the angle at the
tip of his star is 36°7

2. Check that 220 and 284 are amicable. If 12,285 is one member of an
amicable pair, find the other.

3. Prove that the sum of the first n cubes is the square of the sum of the
first n numbers. (Use mathematical induction or construct a square
figure with sides of length 1 + 2 + --- + n and divide it into figures
whose areas are the first n perfect cubes.)
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Perfect Numbers

The Pythagoreans were interested in perfect numbers, that is, numbers
such as 6 and 28, which are equal to the sum of their proper divisors. They
may also be described as numbers which are amicable with themselves.
Nowadays we usually speak about the sum of all the divisors of a positive
integer n, including n itself. If o(n) denotes this sum, then n is perfect if
and only if o(n) = 2n. As the culmination of Book IX of the Elements (300
BC), Euclid proved that any positive integer of the form

n=2""12m —1)

is perfect, whenever 2™ — 1 is prime. This fact had probably been discov-
ered by the Pythagoreans.

Proof of Proposition IX 36 (Perfect Number Theorem):

If p = 2™ — 1 is prime, then the divisors of n = 2™~!

p are
1,222 ..., 2™t po2p 2%, ..., 2™ p

(thanks to unique factorization). The sum of these divisors is thus
o(n) = (1+2+422+---+2771)(1+p)

(2"~ 1)(1+p)

2(2m71(2™ — 1)) = 2n.

Even though 2™p is not square-free, Euclid did have a rigorous proof of
the special case of the unique factorization theorem which is used in the
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2| 107 9689
3| 127 9941
5| 521 | 11213

7| 607 | 19937
13 | 1279 | 21701
17 | 2203 | 23209
19 | 2281 | 44497
31 | 3217 | 86243
61 | 4253 | 132049
89 | 4423 | 216091

TABLE 8.1. Values of m making 2™ — 1 prime

above proof, and he also had a rigorous proof for the formula for the sum
of a geometric progression (IX 35).

An integer of the form 2™ — 1 can only be prime if m is prime. For if
m = ab with a,b > 1, we have the factorization

2ab 1= (241 _ 1)((2a)b—1 + (2a)b—2 4429 4 1)

into two factors greater than 1. The converse is not true. Although 11 is
prime, 2! — 1 is not; for 211 — 1 = 2047 = 23 x 89.

Primes of the form 2™ —1 are called Mersenne primes, after Father Marin
Mersenne (1588-1648). In the preface of his Cogitata Physico-Mathematica
(1644), Mersenne correctly stated that the first 8 perfect numbers are given
by the values m = 2,3,5,7,13,17,19 and 31. He also claimed that 267 — 1
is prime, and hence 266(267 — 1) is perfect. Here he was wrong. In 1903,
Frank Nelson Cole gave a lecture which consisted of two calculations. First
Cole calculated 267 — 1. Then he worked out the product

193,707,721 x 761,838,257, 287.

He did not say a word as he did this. The two calculations agreed, and Cole
received a standing ovation. He had factored 267 — 1 and proved Mersenne
wrong.

Edouard Lucas (1842-1891) found a very efficient way of testing whether
2™ — 1 is prime. Let u; = 4 and up41 = ufl — 2. Thus up = 14, u3 = 194
and ug = 37,634. If m > 2 then 2™ — 1 is prime just in case 2™ — 1 is a
factor of u,,_1. For example, since 2° —1 is a factor of 37,634 it follows that
25 — 1 is prime (and hence 24(25 — 1) = 496 is perfect). (For an elementary
proof of Lucas’s Theorem, see Sierpinski [1964].)

Thanks to Lucas’s test — and the modern computer — we know, since
about 1985, that 2™ — 1 is prime when m has the 30 values given in Table
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8.1. The Greeks knew just the first four Mersenne primes and Mersenne
discovered eight more. Before 1950, only the first 12 Mersenne primes were
known. Then, with the help of ever more powerful computers, 18 more
came to light. (Even after writing this, we learned of three more, corre-
sponding to m = 110,503, m = 756,839, and m = 858,433. The last of
these Mersenne primes has 258,716 digits.) We still do not know whether
there are infinitely many Mersenne primes. Nor do we know if there are any
odd perfect numbers. What we do know is that every even perfect number
has the form given by Euclid. This was first proved by Leonhard Euler
(1707-1783). His proof was as follows.

Proof that every even perfect number has Euclid’s form:

Suppose n is an even perfect number. Then we can write it in the form
2m~lg with ¢ odd and m, ¢ > 1. Each divisor of n has the form 2"d where
0<r<m-—1and dis a divisor of gq. Therefore

o(n)=1+2+...+2" Ho(qg) = (2™ - 1)a(q).

Since n is perfect, 2™q = o(n) = (2™ — 1)o(q).

Since 2™ — 1 is odd, 2™ must divide o(q), say o(q) = 2™k, hence
g = (2™ — 1)k. Among the divisors of ¢ are ¢ itself and k. These are
different, since m > 1, and their sum is 2™k, which is the sum of all the
divisors of g. Therefore, g has exactly two divisors and so is prime, hence

=land ¢g=2"-1.

Perfect numbers are of interest not only as a challenge to computer pro-
grammers, they also play role in religious mysticism. For example, following
Philo of Alexandria, Augustine writes in the City of God:

Six is a number perfect in itself, and not because God created
all things in six days; rather, the converse is true. God created
all things in six days because this number is perfect, and it
would have been perfect even if the work of six days did not
exist.

In a recent book on Sufi mysticism, it is stated that 6 is the first ‘com-
plete’ number and 28 is the second. Evidently, ‘complete’ here means ‘per-
fect’.

Apparently, the Pythagoreans knew only one amicable pair of numbers.
Although Euler found 60 such pairs, the second smallest pair (1184, 1210)
was only discovered in 1866 by Nicolo Paganini.

The Arabic mathematician Thabit ibn Qurra (826-901) gave a general
procedure for discovering many amicable pairs, analogous to Euclid’s pro-
cedure for discovering perfect numbers. See Exercise 5.
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Exercises

1. Prove that every even perfect number, except 6, is the sum of the
first 2% odd cubes, for some k.

2. Show that, if m and n are relatively prime positive integers, then
o(mn) = a(m)o(n).

3. Show that, if p is prime, o(p*) = (p*** - 1)/(p - 1).
4. Obtain a formula for o(n) in terms of the prime factorizations of n.

5. Prove the result of Thabit ibn Qurra: if p = 3x2t*1 —1,¢ =3x2t -1
and r =9 x 22t*!1 — 1 are odd prime numbers, then m = 2!+1pg and
n = 2!*1r are amicable.

6. Find two amicable pairs with the help of the above procedure.



9
Regular Polyhedra

The Pythagoreans knew that there are three ways to tile a plane (e.g., a
bathroom floor) using congruent regular polygons. Indeed, since once can
dissect a polygon with p sides into p — 2 triangles, the sum of the angles
of such a polygon is (p — 2)180°. Thus each angle of a regular ‘p-gon’ is
(p — 2)180°/p. If ¢ such angles meet at a point, then

q(p — 2)180°/p = 360° ,

which may be simplified to yield the Egyptian problem: 1/2 = 1/p + 1/q.
Since p and q are integers greater then 2, we must have one of the following
three possibilities:

p g
3 6
4 4
6 3

The first of these gives the tiling with equilateral triangles, the second
the tiling with squares, and the last the tiling with regular hexagons. No
other regular polygon can be used to tile the plane.

A polyhedron is regular if its faces are congruent regular polygons and if
the same number of faces meet at each vertex. Five regular polyhedra are
the following:

e the cube, bounded by 6 squares, with 3 edges at each vertex,

e the tetrahedron, bounded by 4 equilateral triangles, with 3 edges
meeting at each vertex,
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FIGURE 9.1. The Pythagorean solids

e the octahedron, bounded by 8 equilateral triangles, with 4 edges at
each vertex,

e the icosahedron, bounded by 20 equilateral triangles, with 5 edges at
each vertex,

o the dodecahedron, bounded by 12 regular pentagons, with 3 edges at
each vertex (see Figure 9.1).

In the Timaeus (53-58), Plato explains the composition of the physical
universe in terms of these five regular polyhedra. The cube is associated
with earth, the tetrahedron with fire, the octahedron with air, the icosa-
hedron with water and the dodecahedron with the whole cosmos. Plato
explains the boiling of water by means of a ‘chemical equation’, which we
might write as

Fy+Woy — 245 + 2F.

That is, fire, with 4 faces, combines with water (20 faces) to produce 2 air
atoms (each with 8 faces) and 2 fire atoms (each with 4 faces). Note that
the numbers balance.

Such theorizing is very much in the spirit of the Pythagorean teaching
that ‘all is number’. Indeed, historians attribute the theory of the Timaeus
to Pythagoras himself (Guthrie [1987]). It seems, however, that Pythago-
ras himself may not have known about the dodecahedron. According to
one account, Hippasus (470 BC) was expelled from the Pythagorean or-
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1/p+1/q E F V Polyhedron
2/3 6 4 4 tetrahedron
7/12 12 8 6 octahedron

7/12 12 6 8 cube
8/15 30 20 12 icosahedron
8/15 30 12 20 dodecahedron

WA Ww W
W Ut W W

TABLE 9.1. The regular polyhedra

der because, having discovered the dodecahedron, he failed to ascribe his
discovery to Pythagoras.

When Plato proposed that the creator, whom he called the ‘demiurge’,
used the regular polyhedra when forming the universe, he may not have
been that far off. The tetrahedron, cube and octahedron can be found in
nature as crystals. The octahedron, icosahedron and dodecahedron occur
as the skeletons of certain radiolarians (a type of microscopic sea animal).

Are there only five regular polyhedra? Yes. In fact, a proof of this is
found at the end of Euclid’s Elements (300 BC). This proof is based on the
fact that if ¢ regular p-gons meet at a vertex, then the sum of the g angles
in the ¢ faces is less than 360°. This is proved rigorously in Proposition
21 of Book XI of the Elements, but it can be seen intuitively by imagining
someone cutting the g edges and flattening the angle. For example, the
three angles at the vertex of a cube clearly add up to 270°, which is less
than 360°.

In general, for a regular polyhedron whose faces are regular p-gons, with
q faces meeting at each vertex,

q(p —2)180°/p < 360°,

which may be simplified to yield 1/2 < 1/p 4+ 1/q. We can easily see that
there are just five possibilities for p and g, as in Table 9.1. (In the table, E
is the number of edges the polyhedron has, F' the number of faces, and V
the number of vertices.)

We have not as yet explained how the numbers E, F and V in our table
are calculated. It so happens that these numbers are related by a simple
formula, even when we consider an arbitrary polyhedron, regular or not.
Here are some examples:

F V E
cube 6 8 12
tetrahedron 4 4 6
pyramid 5 5 8
prism 5 6 9
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FIGURE 9.2. Cross-section of an icosahedron

We note that in each example
F+V -E=2.

This is in fact a general rule, valid for all polyhedra. While it may first
have been noted by Descartes, it was only proved by Euler and is known
as Euler’s formula. We shall give a proof in Chapter 30 of Part I.
Now suppose we are looking at a regular solid in which each face has
p edges and in which g edges meet at each vertex. It follows immediately
that
pF = 2FE, qV =2FE.

Substituting F' = 2E/p ahd V = 2FE/q into Euler’s formula, we obtain
2E/p+2E/q—E =2,

and, after dividing by 2F,
1/p+1/q—1/2=1/E.

This allows us to calculate F from p and ¢, and then F and V.

The ancient Greeks were fascinated by the five regular solids. Without
the help of trigonometry or calculus, they managed to prove all their basic
properties. Book XIII of the Elements (300 BC) is devoted to showing that,
for each of these five solids, there is a sphere passing through all its vertices.
In each of the five cases, Book XIII calculates the ratio of the side of the
regular polyhedron to the radius of this ‘circumscribing’ sphere.

For example, if one cuts an icosahedron in half, cutting along a side,
the resulting cross-section is as in Figure 9.2. AF and CD are edges; AC
and DF are diagonals in the regular pentagons formed by the sides of
the icosahedron. (You may have to construct an icosahedron to see this.)
Thus, if AF and CD each have unit length, AC and DF each have length
-;—(1 + v/5). The diameter of the circumscribing sphere is CF, which is the
hypotenuse of the right triangle with sides CD and DF. Thus CF? =

12+ (3(1 + V/5))?%, and hence the radius of the sphere is /306 + V5).
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Exercises

1.

Construct a dodecahedron, e.g., by taping together 12 identical reg-
ular pentagons cut out of cardboard.

Show that the radius of a sphere passing through the vertices of a
dodecahedron with side 1 is (v/3 + v/15)/4.

Show that the volume of a dodecahedron of side 1 is (15 + 7+/5)/4.

Given a polyhedron, not necessarily regular, in which exactly 3 edges
meet at each vertex. Show that V =2K, F =3K and F = K + 2 for
some positive integer K.

Under the condition of the previous exercise, if F}, is the number of
faces with p sides, show that

> (6-p)F, =12.

p

. If all faces of a polygon are hexagons or pentagons and if three

edges meet at each vertex, prove that the number of pentagons is
twelve. (There are molecules of such a shape with twenty hexagons,
called ‘buckyballs’, a form of carbon called ‘buckminster fullerene’.
See Chung and Sternberg [1993].)
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The Crisis of Incommensurables

Two lengths a and b are said to be commensurable if there exist positive
integers p and g such that a/b = p/q. When the Pythagoreans claimed
that all things are numbers, they probably meant to imply that all pairs of
lengths are commensurable. They were aware of the fact that, if a vibrating
string is divided into two parts, of lengths a and b, so that a melodious tone
is produced, then a and b are commensurable.

Unfortunately for the Pythagoreans, they soon discovered that the diag-
onal of a square is not commensurable with its side. A simple proof of this is
found in Aristotle’s Prior Analytics 41a23-30. Let ABCD be a square, say
of side AB = 1. By the Theorem of Pythagoras, the diagonal AC measures
/2. Suppose v2 = AC/AB = p/q, where p and q are positive integers. We
may assume, without loss of generality, that p and ¢ are relatively prime.
In particular, they are not both even. Now p? = 2¢?%, so that p? is even. As
the Pythagoreans well knew, the square of an odd number is odd and the
square of an even number is even. Thus, from the fact that p? is even, it
follows that p is even. Putting p = 2r, we have 2¢*> = (2r)2, hence ¢ = 2r2.
But this means that ¢ is even as well, contradicting the fact that p and ¢
are relatively prime. Thus, the assumption that AC and AB are commen-
surable must be false. Today we would express this result by saying that
V2 is irrational.

The Pythagoreans tried to keep this discovery a secret, as it seemed to
undermine their whole philosophy. Some say that it was Hippasus, whom
we met before, who leaked the secret, and that he drowned in a shipwreck
as a punishment for having done so. It seems that Hippasus was the Trotsky
of the Pythagorean society.
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b c

FIGURE 10.1. The distributive law

a b

FIGURE 10.2. Binomial expansion (a + b)? = a? + 2ab + b?

The Greeks did not have infinite decimals. They did not know how to
handle a number like v/2 in an arithmetical or algebraic fashion the way
we do now, although it has recently been claimed that they could represent
real numbers by continued fractions. They did, however, know that v/2
was a length, and they turned to geometry for an understanding of it. The
problem of incommensurables was one of the reasons that they preferred
to do what we would call algebra in a geometric manner.

For example, the distributive law a(b + ¢) = ab + ac was thought of as
an addition rule for areas of rectangles, as in Figure 10.1.

Euclid put it thus:

If there are two straight lines, and one of them be cut into any
number of segments whatever, the rectangle contained by the
two straight lines is equal to the rectangles contained by the
uncut straight line and each of the segments (Elements II 1).

The law (a + b)? = a2 + 2ab + b? is illustrated in Figure 10.2. We shall
refrain from putting this law into words.
However, as a third example, we again quote Euclid:

If a straight line be cut into equal and unequal segments, the
rectangle contained by the unequal segments of the whole to-
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gether with the square on the straight line between the points
of section is equal to the square on the half (Elements II 5).
This is equivalent to the identity (a + b)(a — b) = a® — b?.

The Pythagoreans found ways of approximating /2 as closely as could
be desired by rational numbers. Using our modern algebraic notation, we
can express their method as follows.

If 22 — 2y? = %1, with z and y positive integers, then z2 is approximately
equal to 2y?, so that x/y is approximately equal to V2. More precisely,

(z/y = V2)(z/y+ V2) = 2*/y* — 2 = £1/4?
so that
z/y - V2 =%1/(P(z/y + V2)).
Since z/y + V2 > 1, it follows that
lz/y - V2| < 1/4*.

Thus, if we can find positive integer solutions of 2% — 2y? = +1 with y
sufficiently large, then we can find rational approximations to v/2 as close
as we please.

To find positive integers z and y such that z2 —2y? = +1, the Pythagore-
ans proceeded as follows. Putting

a; = 1, bl =1
and defining inductively
An+1 = Qn + 2by,, bn+1 = apn + by,

they obtained the following table:

1] 1] 1] 1

21 3] 2| 3/2
31 7| 5] 7/5
4017 |12 17/12

etc., in which the last column contains successive approximations to v/2.
Indeed, it is not difficult to prove by mathematical induction that

a2 —2b2 = (-1)".

This is surely true when n = 1, so suppose it holds for n. Then

al =202, = (an+2bn)% —2(an + bn)?
= a2 +4dapb, + 462 — 222 — dayb, — 262
= —a2+2b?

~(=D" = (-1
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Thus our proof by mathematical induction is complete.

This method, but not the above proof, is explained verbally by Proclus
in commenting on a passage in Plato’s Republic. Today, it is easy to obtain
explicit formulas for the numbers a,, and b,. First, one proves by mathe-
matical induction that

an +baV2 = (1 +V2)".
Replacing the square root by its negative, one obtains
an — b2 = (1—V2)".

Therefore,

an = 31+ VR + (1= VA,

1 n n
b = 5514V — (1 V2.

Although the Pythagoreans did not know it, they had actually found
all solutions of the equations 2% — 2y? = £1 in positive integers. Suppose,
for example, z? — 2y% = 1. Let n be the largest natural number such that
(1+v2)" <z +yv/?2, then

(14+V2)" <z+yV2 < (1+ V2"

Multiplying this by (1 — v/2)® = a, — b,+/2 and assuming that n is even,
we obtain

(1) 1< (z+yV2)(an — bpV2) < 1+ V2.
Taking reciprocals of this, we get
(2) — 1< (—z+yvV2)(an +baV2) <1 - V2.
Adding (1) and (2) and dividing by 2v/2, we obtain
0 < ya, — xb, < 1/V2.

Since ya, — zb, is a whole number, it must be 0, hence ya, = zb,. Now
we know that = and y are relatively prime, and so are a,, and b,, . It easily
follows that = = a, and y = b,,, where n is even.

If n is odd or if 22 — 2y? = —1, we proceed similarly.
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Exercises

1. Prove that the decimal expression of v/2 is not ultimately periodic.

2. Prove that the following numbers are not rational: \/§, Y2 and
log, 2.

3. If a,b,c and d are integers and a + bv/2 = ¢ + dv/2, show that a = ¢
and b =d.

4. Solve the following equations for positive integers:

2 -4yt =1, 22-3 =1
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From Heraclitus to Democritus

Heraclitus of Ephesus (in western Turkey) flourished about 500 BC, Par-
menides of Elea (in southern Italy) about 480 BC, Zeno of Elea about
460 BC, Empedocles in Sicily about 440 BC, Democritus of Abdera (in
north-eastern Greece) about 420 BC.

In the Metaphysics (986b4-8), Aristotle tells us that the Pythagoreans
had a list of opposites: one, many; finite, infinite; male, female; etc. It
was perhaps this list which led Heraclitus to his view that everything that
happens is the result of a struggle between opposites. He proclaimed that
all change is the result of strife.

Heraclitus believed that everything is in flux. It was he who asserted
that one cannot step into the same river twice. Not surprisingly, he thought
the fundamental substance was fire, and declared that all matter can be
transformed into fire (and vice versa), just as all goods can be exchanged for
gold. Did he anticipate the modern discovery that mass can be transformed
into energy?

Heraclitus has had a great deal of influence on the twentieth century,
largely through the nineteenth century Prussian philosopher Hegel. Influ-
enced by Heraclitus, Hegel taught that the universe is a sort of debating
society in which ‘thesis’ and ‘antithesis’ are forever struggling to produce
a ‘synthesis’. Marx adopted this philosophy, giving it a materialistic slant,
and the views of Heraclitus ended up forming part of the official doctrine
of Marxist governments, now much in decline.

Heraclitus has had less influence on logic. On one occasion he expressed
his doctrine of continual change by saying that the river we step into both
is and is not the same. Yet, in most logical systems, any statement of the
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FIGURE 11.1. Positron as an electron travelling backwards in time

form ‘p and not p’ is regarded to be false. Hegelians sometimes adopt a
similar mode of speech, claiming that ‘a is not always equal to a’. Needless
to say, this doctrine has not been applied to mathematics.

Yet Marxist philosophers try to understand not only history, but also
mathematics in terms of a dialectic process. According to Lenin, subtrac-
tion is the antithesis of addition, yielding arithmetic as a synthesis, and
integration is the antithesis of differentiation, the synthesis being calculus.
Quite recently, the American mathematician Lawvere has suggested that
a foundation of mathematics be built on a dialectic process in which the
striving opposites are so-called ‘adjoint functors’, but this concept is too
technical to be explained here.

Parmenides took the view opposite to that of Heraclitus, proclaiming
that nothing changes, that change is an illusion: from the point of view
of the ‘goddess’, the past and the future are all there at the same time.
This is a bit like the view of the modern physicist and his four-dimensional
space-time, in which the ever-changing events are replaced by unchanging
world-lines.

Richard Feynman has recently shown that this way of viewing the uni-
verse allows one to give a more elegant and instructive explanation of cer-
tain fundamental processes. For example, to explain how an electron and
a positron annihilate each other, giving rise to a v ray, we may take it
that the positron is an electron traveling backwards in time, having been
deflected with a 7 ray splitting off. Simultaneous pair creation is explained
similarly. One may even speculate that there is only one electron in the
universe. See Figure 11.1.

Zeno was a disciple of Parmenides. He produced four arguments attempt-
ing to prove that motion is impossible, his so-called ‘paradoxes’. What he
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really showed was that if you do not allow infinite processes, what we now
call ‘limits’ in mathematics, then you cannot use mathematics to analyze
motion. These arguments, found in Aristotle’s Physics 239b5-240a18 and
233a21-31, are the following.

1. A point moving from 0 to 1 on the number line first covers a distance
of 1/2, then a distance of 1/4, then a distance of 1/8, and so on. After
n steps, it has covered a total distance of 1/2 4+ 1/4+ ...+ 1/2" =
1 —1/2™. From the fact that there is no n such that 1 —1/2" =1,
Zeno concluded that the point will never reach 1. In other words,
motion from 0 to 1 is impossible.

Today we get around Zeno’s difficulty with the help of the notion of
‘limit’. But this is a fairly sophisticated concept; according to nine-
teenth century mathematicians, the meaning of ‘lim, o f(z) =a’is
as follows: for every real € > 0, there exists a natural number k such
that, for all n > k, |f(n)— a] < e. While the ancients may have had
an intuitive notion of what is meant by a limit, the rigorous definition
was surely beyond them.

2. Achilles and the tortoise are engaged in a race along a measured line.
Achilles starts at 0, but the tortoise is given a head start, at 1, since
Achilles runs twice as fast as the tortoise. Thus, when Achilles arrives
at the point 1, the tortoise is at 1+ 1/2; when Achilles arrives at the
point 1 + 1/2, the tortoise is at 1+ 1/2 + 1/4, and so on. In general
when Achilles gets to 2 — 1/2"~!, the tortoise is at 2 — 1/2", just
a little bit ahead. From this Zeno concludes that Achilles can never
catch up with the tortoise. If it looks like Achilles catches up with
the tortoise, that only means that motion is an illusion.

The modern solution to this paradox is the same as the solution to
paradox (1): lim, 00 (2 — 1/2771) = lim,, 00 (2 — 1/27).

3. Since, at any instant, a flying arrow is in exactly one place, Zeno infers
that, at that instant, it is motionless. (Indeed, if you took a high-speed
photograph of the arrow, it would look as if it was perfectly still.) One
is tempted to conclude that the speed of the arrow is 0, that it is not
really moving.

The argument seems to be that the speed dz/dt = 0 because dz = 0.
But this would only follow if dt # 0. If we assume that an interval of
time is an actually infinite set of (equal) instants, then each instant
has zero duration, and dt = 0. But then we could equally well infer
that dz/dt = 17, since 0 = 17 x 0.

Zeno’s argument works only if you assume that time is basically dis-
crete, there being some smallest, finite ‘quantum’ of time (e.g., 1/21°°
seconds). During each quantum of time, the arrow would be motion-
less, for if it moved, say, from 0 to 1, there would be a time before
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it got to 1/2, and a time after, and the quantum of time would be
divisible into two parts. Hence it really would not be moving. If there
were some n such that every interval of time exceeds 1/2™ seconds,
then Zeno would be right: motion is an illusion.

In writing the speed as dz/dt, we used the notation of the 17th cen-
tury philosopher and mathematician Leibniz. He conceived of dx and
dt as infinitesimals and thought of dz/dt as their actual ratio. The
great Newton essentially shared this view, even though his notation
was different. Infinitesimals were believed to be quantities which are
infinitely small, yet unequal to zero. This idea was attacked by the
18th century philosopher Berkeley as being absurd, and 19th century
mathematicians agreed with him. They redefined the ratio dz/dt as

@ = lim bz
dt  t—0 6t
where 6z and 6t are not necessarily small.

It was only in the middle of the 20th century that Abraham Robinson
pointed out that infinitesimals may be introduced by fiat, just like the
square root of —1, as their existence does not lead to a contradiction.
Indeed, consider the following infinite collection of inequalities:

O<dr,dr<1,dr<1/2, dz<1/3, .... (%)

Suppose we can derive a contradiction from this infinite collection.
Now, it is generally agreed that a mathematical proof can have only
a finite number of steps, this being part of the very definition of
proof. Therefore, the proof of a contradiction from the assumptions
() can only mention a finite number of them, say the last being
dr < 1/n. But this finite collection of assumptions does not lead to
a contradiction, as dz = 1/(n + 1) satisfies all of them.

. In Zeno’s fourth argument there are three rows of people:

A A A A

—

B B B B
— C C C C

The A’s are stationary, the B’s are moving to the right and the C’s
are moving to the left, at the same speed. Now suppose it takes a
B one instant of time to pass an A, then it will take him half an
instant of time to pass a C. It follows, that there is no such thing as
an instant, if by that we mean an indivisible ‘quantum of time’: time
is infinitely divisible, it is a substance.
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In summary, we may not agree with Zeno that there is no motion, but
we must credit him with probing into the very foundation of mathematics
and physics.

Empedocles is important in experimental science and cosmology. He
demonstrated that air is a substance by pushing an inverted tumbler into
a tub of water; the water did not rush in to fill the apparent vacuum. He
recognized not only the four traditional substances, earth, water, air and
fire, but postulated two other: love and strife. He believed that, as long
as love prevails, the cosmos contracts, but when strife prevails, it expands.
Thus he seems to have anticipated modern astronomers in realizing that
our universe is in an expanding phase. As his last experiment, he leaped
into a volcano to demonstrate his immortality.

Democritus finally did away with substances and replaced them with
atoms. These were assumed to be physically but not geometrically, indivis-
ible. They were indestructible and constantly moving, the space between
them being empty. The number of atoms was infinite, but they differed
in shape and size. In the 19th century, people thought they had identified
the atoms of Democritus; but then, in the early 20th century, Rutherford
showed that the so-called atoms were divisible after all. It might have been
wiser to reserve the word ‘atom’ for our electrons and quarks, if these indeed
turn out to be the ultimate constituents of matter.

Democritus was a determinist, he believed that everything that happens
must happen. He wrote books on geometry, which have been lost. He is said
to have emphasized the importance of proofs and to have discovered (or
rediscovered) how to calculate the volume of a pyramid or cone by taking
one third of the base area times the height. It is curious that Marx wrote
his doctoral dissertation on Democritus and not on Heraclitus.



12
Mathematics in Athens

After an alliance of Greek cities defeated the Persians in 490 BC, Athens
became, for over a hundred years, a great center of civilization. There are
things about it we do not like: Athens exacted tribute from its allies, and
the leisurely life of its leading citizens was based upon slavery. Nonetheless,
one can safely say that the degree of civilization achieved by the Athenians
around 400 BC has rarely, if ever, been surpassed in the history of the
world. Because we must confine our attention to mathematics, we shall
touch on only one of the many areas in which cultural development took
place.

One of the first mathematicians who worked in Athens was the sophist
Hippias (420 BC), from Elis on the west coast of Greece. In a dialogue
sometimes ascribed to Plato, we hear Socrates (469-399 BC) teasing Hip-
pias about his mathematics:

Socrates: And tell me, Hippias, are you not a skilful calculator
and arithmetician?
Hippias: Yes, Socrates, assuredly I am.

Socrates: And if someone were to ask you what is the sum of
3 multiplied by 700, you would tell him the true answer in a
moment, if you pleased?

Hippias: Certainly I should.

Socrates: Is not that because you are the wisest and ablest of
men in these matters?

Hippias: Yes.
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Hippias discovered a curve called the quadratriz, which can be used for
trisecting an arbitrary angle, and also for constructing a square equal in
area to a given circle. He described the quadratix as follows: imagine that
side AD of the unit square ABCD moves down at a rate of 1 unit per
second towards the side BC' (on the ‘bottom’ of the square). Imagine that
side AB rotates about B at a rate of 1/4 revolution per second towards
BC, so that, after 1 second, both AD and AB coincide with BC. At any
time t (0 <t < 1), the two moving sides meet at a point P. The set or
locus of these points P is the quadratrix.

In terms of our modern analytic geometry and trigonometry, we would
put it this way: the point P has coordinates

((1—t)/tan(90°(1 — t)), 1—¢)

so the equation of the quadratrix is y = z tan(90°y), with 0 < y.

To divide an angle of, say, 60° into 3 equal parts, it is enough to place it
in standard position, with its vertex on the origin, and one arm along the
positive z axis. If the other arm meets the quadratrix at (a,b), we find the
point P where y = b/3 meets the quadratrix. The angle between the line
joining P to the origin and the positive x axis is 20°.

Furthermore, as y tends to 0, z = y/ tan(90°y) tends to 2/7, and so the
quadratrix can be used to ‘square the circle’.

This highly ingenious method was criticized — by Plato, it seems — on
the grounds that it is more elegant to use only straight lines and circles in
the solution of mathematical problems. One ought to carry out geometric
constructions using only a ruler (for drawing straight lines) and a compass
(for drawing circles); using a quadratrix was considered to be cheating.

However, as Pierre Wantzel (1814-1848) was the first to prove, it is not
possible to trisect an arbitrary angle using only straight lines and circles.
One has to use some other tool — such as the quadratrix. Hippias was
right and Plato was wrong; although by insisting on ruler and compass
constructions he raised an interesting and challenging problem, which we
shall discuss in Chapter 14.

In order to understand the Greek contribution to the beginnings of anal-
ysis, it is important to know how they attacked, and finally solved, the
problem of the area of the circle. Antiphon the sophist (425 BC) was one
of the early Athenian mathematicians who worked on this problem. He
suggested that the area of the circle be calculated in terms of the regular
polygons inscribed in it. (The regular m-gon is the polygon with m equal
sides and angles.)

Using the assumption that the area of the union of pairwise disjoint
sets equals the sum of their areas, it is not hard to show that an inscribed
square takes up more than 1/2 the area of a circle, and an inscribed regular
octagon takes up more than 3/4 of the area of the circle. Indeed, as the
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ancient Greeks realized (Euclid’s Elements XII 2), one can use what we call
‘mathematical induction’ to show that an inscribed regular 2™-gon takes
up more than 1 — 1/2"~1 of the area of a circle.

If we inscribe a regular 2™-gon in a circle, its longest diagonals are diam-
eters of that circle. The Greeks knew that the area of a regular 2™-gon is
proportional to the square on its longest diagonal — a result which follows
from the fact that the area of a triangle with given angles is proportional
to the square of its longest side — and from this it follows that, insofar as a
circle is like a regular 2™-gon, its area is proportional to the square on its
diameter. Indeed, somewhat later than Antiphon, Eudoxus (408 — ca. 355
BC) gave a rigorous proof that the area of a circle is, in fact, proportional
to the square on its diameter.

Antiphon boldly claimed that a circle simply is a regular polygon (with
a large number of sides). In making this claim, Antiphon entered a lively
discussion, started by Zeno (450 BC) and others, about whether space is
continuous or discrete. If space is discrete, then there is some minimum
area e. If n is so large that 1/2"~! of the area of the circle is less than e,
then an inscribed regular 2™-gon, in taking up more than 1 —1/2"~! of the
area, actually takes up all the area.

Another early Athenian mathematician who worked on the geometry of
the circle was Hippocrates, who came from the Greek island of Chios, near
present-day Turkey. (He is not to be confused with the physician, famous for
his oath, who came from Cos.) Hippocrates, it is said, had been swindled in
business and came to Athens about 430 BC to recover his property through
legal action. The case dragged on, and Hippocrates used the time to study
philosophy and supported himself by teaching geometry.

Hippocrates was responsible for much of the material in Books IIT and
IV of Euclid’s Elements. He called the square of a quantity ‘dynamos’,
hence our ‘power’. He pioneered the custom of reducing one theorem to
another and may have been one of the first to use the method of reductio
ad absurdum in mathematics.

He was also the first to find the precise area of a region bounded by
curves, as we shall now see. Construct semicircles on three sides of a right
triangle. By the converse of the theorem of Thales, the semicircle on the
hypotenuse passes through the vertex at the right angle. The semicircles
on the other two sides of the right triangle are supposed to lie outside the
triangle. (See Figure 12.1.) The areas included in the two smaller semicir-
cles, but not in the semicircle on the hypotenuse, are called lunes (after the
crescent moon).

Hippocrates argued as follows. If the vertices of the triangle are A, B and
C, with the right angle at C, then AC? + CB? = AB? (by the theorem of
Pythagoras). Since the area of a circle is proportional to the square on its
diameter, the area of a semicircle is likewise proportional to the square on
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A B

FIGURE 12.1. Lunes of Hippocrates

FIGURE 12.2. Doubling the square

the diameter. Therefore the sum of the areas of the semicircles on AC' and
C B equals the area of the semicircle on AB. Subtracting the areas where
the semicircles overlap, we may conclude that the sum of the areas of the
lunes equals the area of the right triangle. That is, since semicircle AC plus
semicircle C'B equals semicircle AB, it follows that

lune AC + lune C'B = triangle ABC = %BC x AC.

Hippocrates also contributed to the problem of ‘doubling the cube’. This
was the problem of determining the length x such that 22 = 2, preferably
using only the geometry of straight lines and circles.

Legend has it that, during the plague of 430 BC, the Athenians consulted
the oracle of Delos for help. The oracle replied that they should double the
altar of Apollo, a marble cube, in size. When the plague refused to abate,
the oracle explained that the Athenians had doubled the edges of the cube,
not its volume. Although the Athenians did not succeed with this task, at
least not according to the methods acceptable to Plato, the plague seems
to have stopped anyway.

Hippocrates noted that one could double the volume of a cube, with
edge one unit in length, if one could find quantities x and y such that
1/z = x/y = y/2; for then z3 would equal 2. However, he did not succeed
in constructing these quantities in a way that satisfied Plato (who wanted
to use only straightedge and compass).
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Socrates (469-399 BC) was the mentor of Plato. As Plato portrays him
in the dialogue Meno, Socrates claimed that all knowledge is recollection.
In an argument with Meno on the nature of virtue, Socrates bet him that
he could make his slave ‘remember’ a geometric construction and its proof.
Asked to double the unit square, the slave, who was completely ignorant
of geometry, first offered to double its side, but was soon led to admit his
error. Then Socrates got him to look at the figure of a square with the
midpoints of its four sides all joined to each other (Figure 12.2) and soon
persuaded him to ‘remember’ that it is the square on the diagonal of the
inner square which has double its area.

As a young man, Plato (429-349 BC) was a disciple of Socrates. After the
latter’s death, Plato travelled to Africa, where he visited Heliopolis, now a
suburb of Cairo, and Cyrene in Lybia. There he studied with Theodorus,
who had proved the irrationality of the square roots of the nonsquare in-
tegers less than 18. Plato also went to Italy and became acquainted with
Archytas (428-347 BC), the head of the Pythagorean school. Archytas also
had ‘doubled the cube’, but he did so by going beyond the geometry of
straight lines and circles.

Plato returned to Athens in about 380 BC and founded the famous
Academy. At the entrance of this school was the inscription: let no one
ignorant of geometry enter here.

The importance of Plato in the history of mathematics is due not so
much to any mathematical contribution of his own as to the influence he
exerted on others. It was he who insisted that a ‘proper’ solution involve no
curves other than the circle ( Timaeus 34a). It was he who emphasized the
importance of clear definitions and postulates. Finally, Plato strongly en-
couraged people to study mathematics because he believed that this study
would help them become wise and therefore virtuous. The five Platonic
solids, or regular polyhedra, were not discovered by Plato, but he discussed
them in the Timaeus.

Plato had a brilliant student, Theaetetus, who died in battle in 369 BC,
and to whom he dedicated a dialogue. It was Theaetetus who showed that
the square root of a natural number is irrational if and only if the natural
number is not a square ( Theaetetus 147c-148b). Theatetus also studied the
regular polyhedra, and worked on the theory of proportion. According to
van der Waerden [1985], Theaetetus was responsible for Books X and XIII
of Euclid’s Elements.

The most important Athenian mathematician at this time was Eudoxus
of Cnidus, another small Greek island near modern Turkey. Eudoxus lived
from 408 to 355 BC, and distinguished himself in astronomy, medicine,
geography and philosophy — as well as mathematics. Like Plato, he studied
astronomy in Heliopolis, and mathematics with Archytas in Tarentum (in
what is now southern Italy). As a young man, Eudoxus studied in Plato’s
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Academy, commuting on foot from Piraeus, the harbour district. Later he
engaged in a philosophical controversy with Plato; it seems that Eudoxus
anticipated the Epicurean position that humans strive to maximize pleasure
minus pain.

In mathematics, Eudoxus was responsible for Books V and XII of Eu-
clid’s Elements. Book V deals with the theory of proportion. Today, might
define the proportion ‘a is to b as ¢ is to d’ (written a : b :: ¢ : d) as an
equation a/b = ¢/d, and we would say that the proportion held just in case
ad = bc. However, this presupposes our theory of the real number field. It
presupposes that we already have some way of understanding what it is to
multiply two irrational numbers. Eudoxus was starting from scratch. He
could not use multiplication to define proportion because it was in terms
of proportion that he defined multiplication. Eudoxus used his theory of
proportion to prove the basic laws of multiplication, such as commutativity
and associativity. The definition on which he based his development of the
number system was the following:

a:b:c:dif and only if, for all positive integers p and g,

pa > gb if and only if pc > qd,

and likewise with > replaced by <.
If we take a/b and ¢/d to be positive real numbers, this statement asserts:

e the set of rationals above a/b = the set of rationals above ¢/d
e the set of rationals below a/b = the set of rationals below ¢/d,

thus anticipating the modern definition of real numbers due to Dedekind.

Actually, Eudoxus assumed that a,b,c and d are geometric quantities.
For example, a and b could be arcs of circles and ¢ and d could be angles.
This is another reason why he did not write ad = be; for how do you
multiply an arc by an angle?

One particular ratio Eudoxus was interested in arose from the following
problem; to divide a segment AB by a point H so that AB/AH = AH/HB,
that is, the whole is to the larger part as the larger part is to the smaller.
Taking AH = z and HB = 1, we obtain the quadratic equation z2—z—1 =
0, so that, upon discarding the negative solution, we find z = (1 + v/5)/2.
This, or sometimes its reciprocal (—1 + v/5)/2, is known as the golden
section.

Eudoxus also gave a proof that the area of a circle is proportional to
the square on its diameter (Euclid’s Elements XII 2), by inscribing regular
polygons with 2™ sides in both circles and taking n sufficiently large.

Finally, we should mention Menaechmus (350 BC), another student of
Plato’s. Menaechmus discovered the conics — the ellipse, hyperbola and
parabola — and used them to ‘double the cube’. Using modern analytic
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geometry, we can express his solution to the ‘Delian problem’ in the follow-
ing simple fashion: the parabolas y = %1’2 and z = y? intersect at a point
whose y coordinate is the cube root of 2. In his ‘doubling of the cube’,
Menaechmus did not stick to straight lines and circles. Indeed, as already
mentioned, in 1837, Pierre Wantzel showed that it is not possible to obtain
a segment of length equal to the cube of root of 2, using only the geometry
of straight lines and circles. We shall give a proof of this in Chapter 14.

Exercises

1. Prove that the inscribed regular 2"-gon takes up more than 1—1/2"~!
of the area of the circle.

2. If the diameter of a circle is d, prove that the area of the inscribed
regular 2"-gon is 2"~ 3d?sin(7 /2" 1).

3. Prove the theorem of Theaetetus that a natural number has an irra-
tional square root if and only if it is not a perfect square.

4. Using the definition of proportion given by Eudoxus, show that a :
b:c:difandonlyifd:c::b:a.
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Plato and Aristotle on
Mathematics

Plato (427-347 BC) believed that the objects in the universe fall into two
very different classes, the material and the immaterial. A chair or an ox
belongs to the class of material things. A soul or a number belongs to the
class of immaterial things. The drawing of a square belongs to the material
realm but the square itself belongs to the immaterial realm. Plato says of
the students of geometry that they

make use of the visible forms and talk about them, though they
are not thinking of them but of those things of which they are
a likeness, pursuing their inquiry for the sake of the square as
such and the diagonal as such, and not for the sake of the image
of it which they draw (Republic 510d).

For Plato, the class of material things is characterized by change, uncer-
tainty, ignorance and imperfection. The drawing of a square can be erased
and it is doubtful whether its angles are each exactly 90° or whether its
sides are perfectly straight.

On the other hand, the class of immaterial things is characterized by their
constancy and perfection and by our certain knowledge of them. The square
‘as such’ has sides which remain perfectly straight forever. Its properties
can be deduced with infallible rigour. We can know with absolute certainty
that its diagonals are equal.

Scientists understand change and motion in the universe in terms of
unchanging formulas or laws. Plato had a similar outlook ( Timaeus 52-58).
Moreover, he stressed that the formulas or laws have an existence of their
own, independent of the material universe.
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According to Plato, mathematical objects are not the only immaterial
objects. Other immaterial objects are God, goodness, courage and the hu-
man soul (Republic 380d-383c). However, the best way to begin to know the
immaterial realm is to do mathematics. One is to study number theory ‘for
facilitating the conversion of the soul itself from the world of generation to
essence and truth’ (Republic 525¢). One is to study geometry ‘to facilitate
the apprehension of the idea of good’ (Republic 525¢).

Plato believes that the truths of mathematics are absolute, necessary
truths. He believes that, in studying them, we shall be in a better position
to know the absolute, necessary truths about what is good and right, and
thus be in a better position to become good ourselves.

Platonism as a philosophy of mathematics is the view that at least the
most basic mathematical objects (e.g., real numbers, Euclidean squares)
actually exist, independently of the human mind which conceives them.
Their properties are discovered, not created.

Aristotle (384-322 BC) was a student of Plato, but he disagreed with
him about the nature of mathematics. In Book XIII of the Metaphysics,
Aristotle asserts that

conclusions contrary alike to truth and to the usual views follow,
if one is to suppose the objects of mathematics to exist thus as
separate entities (Metaphysics 1077a).

For Aristotle, a word like ‘two’ is not a noun designating an abstract object
but rather an adjective describing a concrete object (the two yard ladder,
a two year period).

Whereas Platonism is quite compatible with the view that there are ac-
tually infinite lines and sets with an infinite numbers of elements, Aristotle
is a staunch finitist. He would have rejected Cantor’s ‘aleph-null’ (Meta-
physics 1084a); he would have rejected infinitesimals (Physics 266b); he did
reject infinite sets and infinite magnitudes (Physics III). For Aristotle, the
geometer can have as much as he needs of an infinite line but he cannot
have the whole line in its infinite totality.

Under the influence of Plato, Aristotle formulated a principle according
to which every (mathematical) statement is either true or false, but he
had his doubts when it came to applying this principle to the everyday
temporal world. He wondered whether a statement like ‘there will be a sea
battle tommorrow’ is either true or false (On Interpretation 9). How can
it be true if the battle may not occur? How can it be false if the fight is a
real possibility?

Like the view of the 20th century ‘intuitionists’, Aristotle’s view is human-
centered. The reality of numbers has to do, not with some alien heaven,
but with the way we describe our surroundings. The infinite must be re-
jected because we humans work in a finite way. The truth about certain
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propositions may be left in abeyance if it is, for the moment, inaccessible
to human beings.

Aristotle also had something to contribute to the old problem that had
divided the Ionic philosophers from those based in Italy: whether the uni-
verse is made up of substances or atoms, whether things should be measured
or counted. He pointed out that when we talk about a loaf of bread or a
glass of wine, bread and wine are measured, but loaves and glasses are
counted. He asserted that we measure matter by counting its forms.

Exercise

How might Aristotle answer Zeno’s arguments against motion?
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Constructions with Ruler and
Compass

Ancient Greek mathematicians were haunted by three problems:
I doubling the cube, that is, finding the cube root of 2;
IT trisecting any given angle, say an angle of 60°
(of course some angles are easily trisected, for example, one of 90°);
III squaring the circle,
that is, constructing a square equal in area to that of a given circle.

Assorted solutions to these problems were proposed at various times,
but these did not conform to the rules of the game, presumably laid down
in Plato’s Academy, that only constructions with ruler and compass be
admitted. (Actually, we only know that Pappus attributed these rules to
Plato more than 600 years later.) Moreover, the ruler could only be used for
joining two points and the compass could only be used for drawing a circle
with a given point as center and a given segment as radius. The reader will
have no difficulty in carrying out the following constructions with ruler and
compass:

(a) to bisect a given angle;

(b) to find the right bisector of a given segment;

(c) to draw a line through a given point parallel to a given line;
(d) to construct an equilateral triangle.

If we adopt a given segment as our unit of length, we can represent any
positive real number by a segment, actually by the ratio of this segment to
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1 a b a

FIGURE 14.1. Finding ab and a/b

a 1

FIGURE 14.2. Constructing root of a

the unit segment. With the help of ruler and compass, the Greeks were able
to perform the following arithmetical operations on positive real numbers:
adding, subtracting (the smaller from the larger), multiplying, dividing and
extracting square roots. The first four of these are called rational opera-
tions.

Indeed, for addition and subtraction this is obvious. To find = = ab one
considers the proportion

z:b=a:1

and to find £ = a/b one considers the proportion
z:1=a:b.

In both cases, the problem is that of finding the fourth proportional to
three given lengths, which can easily be done, following Thales, with the
aid of similar triangles, using only ruler and compass constructions. See
Figure 14.1.

To find ¢ = \/a, one looks at the proportion

l:z=zx:a.

Here the problem is that of finding the mean proportional of two given
lengths, which the Greeks solved ingeniously by ruler and compass con-
structions, as illustrated by Figure 14.2, which exhibits the semicircle on a
segment of length a + 1.

To attack problem II, the trisection problem, we would nowadays use
trigonometry. First note that we can construct an angle if and only if we
can construct its cosine. If = 60°/3 = 20°, then cos 36 = cos60° = 1/2,
as is seen from Figure 14.3.
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D

A B
FIGURE 14.3. The cosine of 60°

In Figure 14.3, ABC is an equilateral triangle and CD = AC. It easily
follows that the angle at B is 60°, the angle at D is 30° and the angle BAD
is 90°, hence cos60° = AB/BD = 1/2.

Now

cos36 = cos(20 +6) = cos20cosf — sin26sinf
= (cos?# —sin?f)cosf — 2sin@ cosfsinf
= cos’f — 3sin?@cosf = cos®f — 3(1 — cos? ) cos b

= 4cos®6 — 3cosé.

Thus we want to solve the equation 8 cos® § — 6 cos = 1. Putting 2cosf =
u, we obtain the cubic equation

w—3u—1=0.

The question is therefore whether a solution of this cubic equation can be
expressed in terms of rational operations and square roots. We shall return
to this problem in the next chapter. First let us look at a problem which
the Greeks were able to solve by their methods.

One of the highlights in Euclid’s Elements is the construction of a regular
pentagon, equivalently, that of an angle of 360°/5 = 72°. Today we would
attack this problem too with the help of trigonometry; for an elegant argu-
ment we may even invoke complex numbers. Let § = 72°, then 50 = 360°,
hence, by de Moivre’s Theorem,

(cosf + isinf)® cos 50 + isin 50
€0s 360° + i sin 360°
14140

1.
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Thus, we wish to solve the equation 2® = 1, that is,
(z=1)(*+22+224+241)=0,
where z = cosf + isin . Note that 2~ = cosf — isiné, so that
2c0s0=z2+z2""'=u

say. Clearly, z = 1 is not a satisfactory solution, so our problem reduces to
solving
A4+ +2+1=0.

Dividing by 22, we write this as
2dz+l+2t4272=0.

Now z+ 27! = u, hence 22 + 2+ 272 = u?, so that 22 + 272 = u — 2. The
equation to be solved then becomes

wW+u—-1=0.
Discarding the negative solution, we find

~14+V5
U=,

a number which we recall from Chapter 12 as the golden section.

Of course this is not how the Greeks attacked the problem, as they
did not know about complex numbers, and, at the time of Euclid, had
not yet invented trigonometry. Nonetheless, our analysis shows that they
could construct the angle 6, since 2cosf = (-1 + v/5)/2 involves only
rational operations and square roots. Indeed, when Euclid constructs a
regular pentagon in Book IV, Proposition 11, by what looks to us like a
rather complicated method, he makes use (via Proposition 10) of the earlier
construction of the golden section in Book II, Proposition 11 (taken up once
more in Book VI, Proposition 30). The Greeks could of course construct
squares and regular hexagons, but one problem they did leave open was
the following:

IV constructing a regular heptagon, that is, a seven sided figure.

By the same method we just employed for constructing a regular pen-
tagon, we can see that this problem reduces to the following cubic equation
in u = 2cos(360°/7):

w¥+ul-2u-1=0.
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Although the ancient Greeks did not know this, the only arithmetical
operations that can be carried out with ruler and compass constructions
are rational operations and square root extractions and, of course, com-
binations of such. To understand why this is so, we have to make use of
analytic geometry, which was only developed in the seventeenth century by
René Descartes.

His pioneering idea was to represent every point in the plane by a pair of
real numbers (z,y) and to observe, conversely, that every such pair repre-
sents a point. Unlike the Greeks, we need not confine z and y to be positive:
if we use the modern rectangular coordinate system, z is negative in the
second and third quadrant, y is negative in the third and fourth quadrant.
We can now say that a straight line consists of all points (z,y) satisfying
an equation of the form

ar +by+c=0,

where a,b and ¢ are given real numbers, and a circle consists of all points
(z,y) satisfying an equation of the form

2+’ +drtey+ f=0.
Now what happens when we perform the following operations:
1. join two given points,
draw a circle with given center and radius,

intersect two straight lines,

W N

intersect a circle and a straight line,

5. intersect two circles?

(1) Suppose the given points are (z1,y1) and (x2,y2). Then we easily see
that the straight line has the equation

(y1 —y2)z + (22 — 1)y + (T1y2 — T2y1) = 0,
in other words, an equation of the form
ax+by+c=0,

where a,b and c are expressed in terms of the given quantities x1, y1, 2, ¥2
by means of the operations of addition, subtraction and multiplication.

(2) Suppose the center is (o, 3) and the radius is p, then the equation of
the circle is

(z— )+ (y—B)* =p°,
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that is,
2?2 +y? — 20z -20y+a®+ 32 -p?=0.

Thus the equation of the circle is of the form
2+ +dr+ey+ f=0,

where d,e and f are again expressed in terms of the given quantities a, 8
and p by means of addition, subtraction and multiplication.

(3) To find the intersection of two given straight lines, we must solve the
pair of equations:
ar +by+c=0,

drz+by+c =0.
We obtain the solution

el =cb _ad -adc
T e VT T —ab
(It is assumed that ab’ —a'b # 0, otherwise the two lines are parallel or even
coincide.) Again we see that the new quantities z and y are obtained from
the given quantities a, b, ¢,a’,b’ and ¢’ by means of the rational operations,
including division.

(4) To find the intersection of a circle and a straight line, we must solve
the pair of equations:
ax+by+c=0,
2 +y*+dz+ey+ f=0.
Assuming, for example, that b # 0, we get

_a_ ¢
Y=73"7%

from the first equation. When we substitute this into the second equation,
we obtain a quadratic equation:

Az’ + Bz +C =0,

where A, B and C are expressed by means of the rational operations in
terms of the given quantities a, b, ¢, d, e and f. In particular, A = 1+a?/b* >
0. Finally, solving for z, we obtain:

—B ++vB? - 4AC
T = oA .
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Here z is expressed not only by means of the rational operations, but also
requires a square root. Note that, if B2 — 4AC = 0, the line is tangent to
the circle and, if B2 — 4AC < 0, it does not meet the circle at all.

(5) To find the intersection of two circles, we must solve the pair of
equations:
2 +y? +drtey+ f=0,

2?2+ +dz+ey+f =0

By subtracting, we may here replace the second equation by the linear
equation
d-d)z+(e—e)y+f-f =0,

so the situation is the same as that already treated under (4) above. The
last equation represents the straight line passing through the two points of
intersection of the given circles, or, if the given circles merely touch, their
common tangent. Of course, it may also happen that the two circles have
no common points at all.

We had seen earlier that geometric constructions with ruler and compass
allow us to carry out the rational operations and to extract square roots.
We have now shown the converse: combinations of rational operations and
square roots are the only arithmetical operations which can be carried out
in this way. That is, when we perform ruler and compass constructions
(1) to (5), we only get lengths that can be expressed in terms of the op-
erations +, —, X, /, and V- To solve problems I to IV by ruler and
compass constructions is thus equivalent to expressing the real numbers
¥/2, c0s20°, /7 and cos(360°/7) by rational operations and square roots.

Exercises

1. Show how to carry out the constructions (a) to (d) in the text, using
ruler and compass only.

2. Carry out a ruler and compass construction of the golden section

(-1++/5)/2.

3. To construct a regular heptagon one has to find the angle § = 360°/7.
Show that u = 2 cos # satisfies the cubic equation

wWHu—2u—1=0.
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The Impossibility of Solving the
Classical Problems

The ancient Greeks were unable to solve problems I to IV using ruler
and compass constructions, for a good reason: it cannot be done. Con-
cerning problem III, this was shown only in 1882 by C.L.F. Lindemann
(1852-1939), who proved that 7 is not an algebraic number, which implies,
in particular, that /7 cannot be constructed by rational operations and
square roots. His method was based on an earlier proof by Hermite, who
had shown that e = lim,,— oo (1 + ;l-l)" is not algebraic.

Problems I, IT and IV have one thing in common: they can all be ex-
pressed by cubic equations, namely,

w—-2=0 ®*-3u—-1=0, W¥+u? -2u—-1=0.

(For the last see Exercise 3 of Chapter 14.) First let us make sure that they
have no rational solutions. (For the first equation we already know this.)

Lemma 15.1. If a,2™ + apn_12" ' 4+ .- + a1z + ap = 0 is a polynomial
equation with integer coefficients, then any rational solution is of the form
p/q, with p a factor of ag and q a factor of a,. In particular, when a, = 1,
any rational solution will be an integer and a factor of ag.

Proof: Let p/q be a rational solution, where ¢ # 0 and ged(p,q) = 1.
Putting z = p/q in the equation and multiplying by ¢™, we obtain
anp™ + an_1p" g+ +apq" =0.

Since p divides all the terms except possibly the last, it must divide the
last term also. Since ged(p, ¢) = 1, it follows from the unique factorization
into primes that p divides ag. Similarly, ¢ divides a,,.
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It follows from the lemma that the only possible rational solutions of the
equation u3 — 2 = 0 are u = £1 or u = %2, all four of which are quickly
seen not to be solutions. Similarly, the only possible solutions of the second
and third equations are u = 1, which are also seen not to work. We may
conclude that solutions to these three equations cannot be expressed by
means of rational operations alone, but there remains the possibility that
they can be expressed with the help of square roots.

Over the years, many people have tried their hand at problems I and II.
For example, the much envied Casanova worked on doubling the cube and,
even today, there are still many determined angle trisectors. However, in
1837, Pierre Wantzel (1814-1848) showed that none of /2, 2cos20°, and
2¢0s(370°/7) can be expressed in terms of rational operations and square
roots and, therefore, that problems I, IT and IV cannot be solved by ruler
and compass constructions.

To give a simple exposition of why this is so, we shall introduce a more
modern concept, that of a field. For our purposes, a field is a set of numbers,
real or complex, which contains the number 1 and which is closed under
the rational operations. (There are other fields, but we shall not need them
here.) In particular, the rationals form a field Q and so does Q[v/2], the
set of all numbers of the form a + bv/2, where a and b are rational. More
generally, if F is any field, then so is F[\/c], where c is a given element of
F, by which we understand the set of all numbers of the form a + by/c with
a,be F.

It is clear that F[y/c] is closed under addition, subtraction and multipli-
cation. To show that it is also closed under division, we assume that /c is
not in F, otherwise there would be nothing to prove, and that a + b/c # 0.
We calculate

11 a—by/c a-by/c  a =b
a+b\/E_a+b\/EXa—b\/E_a2—b20_a2—b2c+a2—b20\/z’

which is again of the form a’ + b'\/c with a’,% € F. A small argument is
necessary to check that a? — b?c # 0.

We can now say that a real number u is constructible with ruler and
compass, equivalently, expressible by rational operations and square roots,
if and only if there exists a sequence of fields

Q=FKCchc---CF,

such that Fiy1 = Fi[\/Ck] with ¢ € F and u € F,.

Proposition 15.2. Suppose f(z) = 23 + a2x? + ayx + ag is a cubic poly-
nomial with coefficients in a field F. Suppose further that the equation
f(z) = 0 has a solution in F[\/c| with ¢ € F. Then it already has a solu-
tion in F.

Proof Let £; = a + by/c be the given solution with a,b € F. Then
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(x1 — a)? = b%c, hence z? + pr; + ¢ = 0 with p,q € F. Dividing f(z)
by the polynomial 22 4+ pz + g, we obtain

f(z) = (@ +pz + q)(z + d) + (ex + f),

where the quotient is z + d with d € F and the remainder is ex + f with
e, f € F. Since f(x;) = 0 and z2 +pz; +¢ = 0, we deduce that ex; + f = 0.
If e # 0, then z; = —f/e € F and we need look no further. If e = 0, then
also f = 0, hence z + d is a factor of f(z). But then f(—d) = 0 and so
x9 = —d € F is the required solution.

Corollary 15.3. If a number expressible by rational operations and square
roots satisfies a cubic equation with rational coefficients, then this equation
must have a rational solution.

Proof: Suppose the cubic equation f(z) = 0 has no rational solution. Then,
by Proposition 15.2 with F = Q, it has no solution in Q[/c1] with ¢; €
Q. Again, by the Proposition with F = Q[/c;], it has no solution in
Q[y/c1][y/ez2] with ¢; € Q[y/c1]. Continuing in this way, we see that it has
no solution in Q[y/c1] - - - [\/€x] for any n, where cx € Q[\/c1] - - - [\/ck_1] for
1 < k < n. Thus it has no solution expressible by rational operations and
square roots.
Since the cubic equations

wW-2=0, v®*-3u—-1=0, v®*+u>-2u—-1=0

have no rational solutions, as we verified earlier, we can now infer from
Corollary 15.3 that they have no solutions expressible in terms of rational
operations and square roots. In view of Chapter 14, we may therefore con-
clude that problems I, IT and IV cannot be solved using only ruler and
compass constructions. In summary:

Theorem 15.4. It is impossible to double a cube, to trisect an arbitrary
angle or to draw a regular heptagon by ruler and compass constructions.

We have seen that the Greeks were able to draw regular polygons with 3
or 5 sides, but not with 7 sides. The question arises, for which primes p is
it possible to construct a regular p-gon using ruler and compass only? Carl
Friedrich Gauss showed that this is possible whenever p is a prime of the
form 2™ 4+ 1 and Wantzel proved the converse. Gauss was so pleased with
his discovery that he wanted a regular 17-gon inscribed on his tombstone.
His request was not carried out, but a regular 17-gon was inscribed on a
monument to Gauss in Braunschweig, Germany.

Odd prime numbers of the form 2™ + 1 are called ‘Fermat primes’, after
Pierre de Fermat (1601-1665). It is easy to prove that 2™ + 1 cannot be
prime unless n has the form 2%.
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To see this, one makes use of the identity
1= (z+ ) -2 1)

for odd b. If n = ab and b is odd, put = 2% and infer that 2* + 1 is a
factor of 2" + 1. Unless b = 1, it follows that 2% +1 is an odd proper divisor
of 2™ + 1 different from 1, so 2™ + 1 cannot be prime. Thus, if 2™ + 1 is
prime, n cannot have any odd proper divisors other than 1, hence n must
be a power of 2.

Fermat was under the impression that 22" 11 is prime for all natural
numbers k. Euler later found that 22° + 1, a ten digit number, is divisible
by 641. An easy, though tricky, way of seeing this is as follows:

22 = 16 x 2%8 = (641 — 5%)2%8
= 641m — (5 x 27)*
= 641m — (641 — 1)*
= 641m — (641n + 1)
641(m —n) — 1,
where m and n are integers, hence 22 +lisa multiple of 641.

At the moment, the only known Fermat primes are 3, 5, 17, 257, and
65,537, corresponding to k = 0,1,2,3 and 4, respectively. Not surprisingly,
two people in the 19th century tried to break records by actually construct-
ing regular polygons with 257 and 65,537 sides.

For k=5, 6, ..., 22, it is known that 22° + 1 is composite.

It follows from the work of Gauss and Wantzel that a regular polygon
with m sides can be constructed by ruler and compass if and only if

m=2"py - p,

where k > 0 and p1,---,p; are distinct Fermat primes.

Exercises

1. If a,b € F but \/c € F, show that a + by/c is either 0 or possesses an
inverse in F[y/c].

2. If d € F[,/c], show that any element of F[,/c|[v/d] satisfies an equation
of degree 4 with coefficients in F.

3. Explain how the Greeks could construct regular polygons with 15 and
60 sides. ’

4. If n is a positive integer, show that an angle of n degrees can be
constructed with ruler and compass if and only if n is a multiple of
3.
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Euclid

The city of Alexandria, on the mediterranean coast of Egypt, was founded
by Alexander the Great in 332 B.C., who brought Greeks, Egyptians and
Jews to settle there. One of his generals, Ptolemy I, made Alexandria the
capital of his kingdom and founded a dynasty consisting of a long line of
rulers, also named ‘Ptolemy’ and ending with the reign of the famous queen
Cleopatra, who picked the wrong side in a Roman civil war.

Ptolemy established a university in Alexandria, called the ‘Museum’,
which was soon to acquire a library holding more than 600,000 papyrus
scrolls. For well over 600 years, Alexandria was to be the mathematical
and scientific center of the world, with only some schools of philosophy
surviving in Athens, although, after the extinction of the Ptolemaic line
with Cleopatra, Alexandria was ruled by Rome. It was ultimately conquered
by the Arabs in 641 AD.

The first chair of mathematics at the Museum was occupied by Euclid
(330 to 275 BC), said to have been a student of a student of Plato. Apart
from a couple of anecdotes, we know little about his life, and some ancient
authors even thought he was a committee, like the 20th century Nicolas
Bourbaki. According to one anecdote, Euclid told the impatient king that
‘there is no royal road to learning’. According to another, he gave a small
coin to a student who demanded to know the practical value of the lectures
he had been attending.

Euclid wrote a number of books, on optics, music, astronomy etc., but
his fame rests on the Elements, a collection of 13 so-called books (which we
would now call chapters), which presented the foundations of all the math-
ematics known in his day. Nothing like this was to be published again, until
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the middle of the 20th century, when Nicolas Bourbaki issued a collection
of books that purported to cover the elements of all the mathematics we
study now.

None of the theorems contained in the 13 books can with certainty be
ascribed to Euclid himself. It is believed that the Pythagoreans, including
Archytas, were responsible for much of what appears in Books I, II, VI,
VII, VIII, IX and XI and that Hippocrates was behind Books III and IV.
For Books V and XII we are to thank Eudoxus, and Books X and XIII are
said to be based on the work of Theaetetus.

However, the logical organization of the Elements is undoubtedly Euclid’s
contribution. Its success can be measured by the fact that, after more than
2,000 years, it was still used as a textbook in British schools. Moreover,
throughout the ages, its structure was often imitated. Thomas Aquinas
used a similar axiomatic presentation in his Summa, Newton’s Principia is
written in the style of the Elements and Spinoza’s Ethics follows its logi-
cal arrangement. Undoubtedly the Elements has been the most influential
scientific textbook in history.

Euclid’s grandiose plan was to deduce all of mathematics from a small
number of initial definitions and assumptions. The assumptions are sub-
divided into azioms, dealing with mathematics in general, and postulates,
dealing with geometry in particular.

His treatment illustrated the ideal described by Aristotle at the begin-
ning of his Posterior Analytics: sure knowledge is obtained by the rigorous
deduction of the consequences of basic truths. To Euclid, these basic truths
were either definitions or basic assumptions, largely assertions of unique ex-
istence. Let us take a closer look at his definitions, axioms and postulates.

The Elements begins with a list of 23 definitions, of which we will mention
the first four:

1. A point is that which has no parts.
2. A line is length without width.
3. The extremities of a line are points.

4. A straight line is a line which lies evenly with the points on itself.

These statements are not definitions in the modern sense, though they
make it clear that a point has no extension, that a line is not necessarily
straight and that it is of finite length. Today we prefer to regard points
and straight lines as undefined primitive concepts and leave the definition
of curved lines to more advanced mathematics. The obscurity of Definition
4 may be due to the translation.

Euclid’s axioms are intended to apply to all of mathematics, not just
to geometry. A typical axiom asserts: ‘If equals are added to equals, their
sums are equal.’” One cannot quarrel with this statement, though today
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we might derive it from axioms of equality and the view of addition as an
operation.
Euclid lists five postulates, which we shall now state and comment upon.

I. To draw a straight line from any point to any other point.

Presumably this means that there exists a unique straight line joining
two distinct given points. Thus, a ‘straight line’ cannot be interpreted as
referring to a great circle on a sphere, as there are many great circles
joining two antipodes, e.g., the meridians passing through the two poles
on the globe. The way to get around this objection is to identify antipodal
points; one then obtains elliptic geometry, which also satisfies Postulate I.

I1. To produce a finite straight line continuously in a straight line.

Here ‘continuously’ is usually interpreted to imply ‘indefinitely’, thus
ruling out not only spherical, but also elliptic geometry.

ITI. To describe a circle with any center and any distance [as radius].

Like Postulate I, this is a construction, or unique existence statement,
the word ‘circle’ having previously been defined, in Definition 15, as ‘a
plane figure contained by one line [i.e. curve] such that all the straight lines
falling upon it from one point among those lying within the figure are equal
to one another.” It would appear that by a circle Euclid means not just its
circumference but also its interior.

IV. That all right angles are equal to one another.

The status of this assertion as a postulate is rather dubious, and it has
been argued, already in antiquity, that it should be listed as an axiom
instead.

V. That, if a straight line falling on two straight lines makes the interior
angles on the same side less than two right angles, the two straight
lines, if produced indefinitely, meet on that side on which are the
angles less than two right angles.

This is the most famous of Euclid’s postulates and it is to his credit that
he recognized its significance. It will be discussed at length in Chapter 17.

It is on these definitions and assumptions that Euclid plans to erect his
impressive edifice of logical deductions. Here is how he begins:

Proposition 1.
On a finite straight line to construct an equilateral triangle.

In his proof he considers a segment AB and constructs circles with centers
A and B and radius AB. He then considers the point C in which the two
circles intersect and goes on to show that AABC is equilateral.
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This proof falls short of modern standards of rigour. In general, two
circles may meet in two points, touch at one point, or not meet at all. In
the present situation, they do, in fact, meet in two points; but this does
not follow from Euclid’s explicit assumptions.

Book I concludes with proofs of the Theorem of Pythagoras and its
converse. Euclid is careful to show that there is a square on the hypotenuse,
before discussing its properties. This is interesting, in view of Legendre’s
later proof that the existence of such a square implies Euclid’s Postulate
V.

To prove the Theorem of Pythagoras, Euclid uses a theory of area. Nowa-
days we are tempted to define the area of a rectangle as ‘length times width’.
This presupposes a theory which explains what it means to multiply two
irrationals. Euclid approached the question of area from a more elementary
point of view. He began with the idea that two polygons have the same area
if they first can be dissected into triangles which can be reassembled, as
in a jigsaw puzzle, to form a polygon exactly like the second polygon. It is
only in Book VI, after Euclid has presented Eudoxus’s theory of irrationals,
that the length times width formula is justified.

However, in Book II, Euclid gives geometric treatments of certain basic
algebraic identities, such as a(b+c¢) = ab+ ac, using the areas of rectangles
to handle products. He also gives a proof of a statement equivalent to what
we now call the Law of Cosines.

Book III discusses the basic properties of the circle. Euclid goes to great
length to give rigorous proofs. For example, in spite of the fact that it is
‘obvious from the diagram’, Euclid offers a demonstration of the fact that
the points on a chord of a circle lie in the interior of the circle. Euclid is
not always successful in his attempt at rigour, but it is clear that he does
understand the need for it.

Book IV gives constructions for various regular polygons. It culminates
with a treatment of the regular 15-gon. This achievement remained un-
surpassed until 1796, when Carl Friedrich Gauss (1777-1855) found a con-
struction for the regular 17-gon.

In Book V, Euclid uses Eudoxus’s definitions of proportion to deduce an
arithmetic for line segments. The ‘commutativity of multiplication’ is the
subject of Proposition 16.

In Book VI, Euclid uses the material of Book V to derive the basic
properties of similar triangles. The book concludes with the theorem that
the length of a circular arc is proportional to the angle it subtends at
the center of the circle. In talking about ‘arclength’, Euclid is implicitly
presupposing the ‘completeness’ of the plane.

Books VII to IX present some elementary theorems of number theory.
Included are proofs for Euclid’s Algorithm (VII 2), the unique factorization
of square-free integers (IX 14), the infinitude of primes (IX 20), the formula
for the sum of a geometric progression (IX 35), and the formula for even
perfect numbers (IX 36).
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Book X is occupied with what we might call ‘field extensions of degree
4 over rationals’. Euclid is interested in knowing when an expression like
V7 + 26, which looks like it has ‘degree 4’ is actually equal to an expres-
sion like 1 + v/6, which involves only one ‘layer’ of square roots.

Book XI derives the basic theorems of solid geometry. A ‘cone’ is defined
in terms of the revolution of a right triangle. A ‘cube’ is ‘a solid figure
contained by six equal squares’. Proposition XI 21 says that ‘any solid angle
is contained by plane angles [whose sum is] less than four right angles’. This
proposition is used at the end of Book XIII to show that there are at most
5 regular polyhedra.

Book XII is the masterpiece of Eudoxus. Without the help of calculus,
he manages to give a rigorous treatment of the volumes of the pyramid,
cone and sphere.

Book XIII is the apex of the Elements. For each of the five regular poly-
hedra, Euclid derives the ratio of its side to the radius of the sphere in
which it is inscribed. Although Euclid failed to give a complete theory of
regular polygons — for example, the construction of the regular 17-gon is
missing — he succeeded in giving a complete theory of regular polyhedra.

Euclid’s Flements, or watered down versions of it, was used for over 2,000
years in universities and schools to teach not only geometry but also rigor-
ous thinking. Not long after World War II, a reaction against this program
set in and educators decided that geometry was not the appropriate place
for training in logic. Anyway, they argued, Euclid was not rigorous enough
and Hilbert’s rigorous treatment (Chapter 17) was too cumbersome. So
geometry was swept away in favour of ‘New Mathematics’. The French
mathematician Dieudonné, one of the founding members of the Bourbaki
group, suggested that linear algebra should replace what he contemptu-
ously called ‘the theory of the triangle’.

Exercises

1. True or false? If two triangles have the same area, you can cut one of
them up into little triangles, which can then be placed side by side
to form a triangle congruent to the second triangle. Give a reference
or a reason for your answer.

2. How did Euclid construct the regular 15-gon?
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Non-Euclidean Geometry and
Hilbert’s Axioms

The parallel postulate V, Euclid’s fifth postulate, seems less natural or
convincing than the others. Ever since Euclid’s time, people have felt that
it ought to be deducible from Euclid’s other postulates I to IV or from
some logically equivalent set of axioms.

Noteworthy attempts to prove Euclid’s fifth postulate were made by Pro-
clus (410-85 AD), Saccheri (1667-1733), Thibault (1775-1822), and many
others. We now know that these attempts were doomed to fail. Postulate V
is independent of I to IV and one of Euclid’s contributions to mathematics
was his implicit recognition of this fact by presenting V as an axiom.

Given ‘absolute geometry’ (that is, the geometry based only on postulates
I to IV) there are a number of important statements equivalent to the
parallel postulate:

e Through a point not on a line there is exactly one line parallel to that
line — Playfair.

e Every segment is a side of a square (with four right angles) — Leg-
endre.

Not every pair of similar triangles is congruent — Wallis.
e Every triangle has a circumcircle — Legendre.

o There is at least one triangle whose angle sum is 180° — Legendre.

(Heath notes that the first of these is due to Proclus.)
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The search for a proof of the parallel postulate led to the discovery of
many such equivalent statements, but each one was felt to be insufficiently
‘self-evident’ or ‘basic’ to count as a proper Euclidean axiom. What was
really wanted was a deduction of postulate V from postulates I to IV alone.

Gauss may have been the first person to suspect the truth. In a letter
to Franz Taurinus, written in 1824, Gauss says that he is sure that the
parallel postulate cannot be proved.

Consider the alternative postulate:

(H) Through any point not on a line, there are at least two
lines through that point and parallel to that line.

If we replace Euclid’s parallel postulate by (H), we get the axioms of ‘hy-
perbolic geometry’. It seems that Gauss believed hyperbolic geometry to
be consistent.

The first person to publish results in hyperbolic geometry was the Rus-
sian N. I. Lobachevsky (1793-1856), of the University of Kasan, in 1829. In
the same year, essentially the same results were discovered independently
by the Hungarian J. Bolyai.

It was not until 1868 that it was proved that postulates I to IV do not
imply postulate V. In that year, E. Beltrami (1835-1900) gave a Euclidean
model for hyperbolic geometry. This showed that, if hyperbolic geometry
contained any logical contradiction (for example, the assertion that both
(H) and V are true), then that contradiction could be translated into a
contradiction in Euclidean geometry. Since, presumably, there is no incon-
sistency in Euclidean geometry, there is none in hyperbolic geometry either.

In 1882, in the first article ever published in Acta Mathematica, Henri
Poincaré (1854-1912) gave a sketch of a second Euclidean model for hyper-
bolic geometry. This model goes as follows. We interpret ‘point’ as ‘point of
the Cartesian plane in the interior of the unit circle 22 4+ y? = 1°. We inter-
pret a ‘line’ to mean either a ‘diameter of the unit circle (minus endpoints)’,
or else ‘a circular arc in the interior of the unit circle and orthogonal to it’.
(Two arcs are ‘orthogonal’ if they intersect at right angles.)

‘Betweenness’ is defined in the obvious way. Segment equality is defined
as follows. Let AB be a ‘segment’, that is, part of a diameter or orthogonal
arc. Let A€ be the endpoint of that diameter or orthogonal arc which is on
A’s side of the diameter or arc. Let B¢ be the other endpoint. Let

d(AB) = (AB®/BB®)(BA°/AA®),

where the segments on the right of this equation are ordinary Euclidean
segments. Then two Poincaré segments AB and CD are ‘equal’ if and only
if d(AB) = d(CD).

The ‘angle’ between two Poincaré lines is the Euclidean angle between
their tangents through the point where the lines meet. Angle equality is
defined in the usual way.
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Given the usual definition of the ‘circle’, it turns out, somewhat surpris-
ingly, that ‘circles’ in the Poincaré sense are ordinary circles. It is just that
their Poincaré centers are not where you would expect.

Using Steiner’s geometry of ‘inversion’, one can prove that, under this in-
terpretation, postulates I to IV are theorems in Euclidean geometry. How-
ever, postulate V, so interpreted, is not; through the center of the unit
circle, for example, one can draw many ‘lines’ which do not meet a given
orthogonal arc.

If V followed from I to IV, then V interpreted in the Poincaré sense,
would both hold and not hold. We would have a statement about Euclidean
lines and circles (related to the unit circle) which was both provable and
disprovable relative to I to IV. Thus, assuming that I to IV are consistent,
so are I to IV together with (H).

The reader can find the details of the ‘proof by inversion’ on pages 402 to
407 of volume 1 of Eves [1963]. Note that, although Eves uses logarithms
in his proof, the reasoning is just the same if one drops them. (Eves uses
logarithms because he wants the smallest ‘distance’ to be 0, not 1, and
because of some results he aims to derive in a later section of his book.)

Nowadays people consider not only hyperbolic, but also ‘elliptic geome-
try’. This was developed by Riemann in 1854, but is not to be confused with
the more general ‘Riemannian geometry’, which we shall discuss below. In
elliptic geometry, the straight lines are finite, and there are no parallels. A
‘point’ is like a pair of points on a sphere, and a ‘line’ is like a great circle
on that sphere. Unfortunately, elliptic geometry does not satisfy postulate
I1, according to the way we interpreted ‘continuously’.

The attitude of modern mathematicians is that one can vary the pos-
tulates of Euclid at will, constructing as many different geometries as one
wishes. In the 19th century, this was a radical idea. People thought of
Euclid’s axioms as necessary truths about space, and hence truths which
underlay the whole of astronomy and physics.

A modern physicist uses whichever geometry suits his purposes. Accord-
ing to the general theory of relativity, space-time is a four-dimensional
Riemannian geometry, but with its curvature varying from place to place,
depending on the local density of matter. The sum of the angles of a tri-
angle might be two right angles (as in Euclidean geometry) if one was in a
vacuum; however, if matter were present, the angle sum would differ from
two right angles (as in non-Euclidean geometry), on account of the bending
of light rays under the gravitational influence of that matter. Ideas such
as these would have amazed mathematicians living in the early part of the
19th century.

We have seen in the last chapter that Euclid’s postulates were not really
adequate to describe the system he had in mind. Surprisingly, it was only
in 1899 that Hilbert gave a completely adequate axiomatic description of
three-dimensional Euclidean space. Since Hilbert required 21 postulates, or
‘axioms’ as he preferred to call them, we shall only state some of them here



92 17. Non-Euclidean Geometry and Hilbert’s Axioms

to give the flavour of his work.

Hilbert deals with the following undefined concepts: point, line, plane, in-
cidence (between points and lines, between points and planes, between lines
and planes), order (a ternary relation of ‘betweenness’ for three collinear
points) and congruence (a binary relation between ‘segments’, which are
themselves defined in terms of betweenness).

He lists seven axioms of incidence. For example, the first two can be
combined to say this:

‘Given two distinct points A and B there is a unique line a such that A
lies on a and B lies on a.’

He lists five axioms of order. For example, the first of these says this:

‘If B is between A and C then B is between C and A.

More significant is his fifth axiom of order:

‘If A, B, and C are three non-collinear points, and if a is a line which
meets the segment AB, then a also meets the segment AC or the segment
BC”>

He lists six axioms of congruence; for example the second one says

‘If AB= A'B’ and AB= A"B"” then A’B'=A"B"

He lists two axioms of continuity. The first of these is the so-called axiom
of Archimedes: ‘If e and f are geometric quantities and e # 0, then there
is a natural number n such that ne > f.’

The second is his controversial axiom of completeness. He only reluc-
tantly added it to the French translation of his lecture notes when it became
apparent that otherwise one still could not deduce Euclid’s Proposition 1.
It was later simplified by Bernays as follows:

‘No points can be added to a straight line so that all other postulates
remain valid.’

Exercises

1. How does one use the parallel postulate to show, in Euclidean geom-
etry, that every triangle has a circumcircle?

2. Show that, in the Poincaré model, there is exactly one line through
any two distinct points. That is, prove, in Euclidean geometry, that,
given any two points in the interior of a circle, there is exactly one
other circle which goes through those points and is orthogonal to the
first circle.

3. ‘The true geometry is the one which is the simplest and most beau-
tiful.” Write a short essay on this statement, saying something about
the relation between the simple, the beautiful and the true.
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Alexandria from 300 BC to 200 BC

The school of mathematics established by Euclid in Alexandria produced
some first rate mathematicians in the third century BC Among them were
the following:

e Aristarchus of Samos, 310 — 250 BC,

e Archimedes of Syracuse, 287 — 212 BC,
e Apollonius of Perga, 260 — 190 BC,

e Eratosthenes of Cyrene, 275 — 195 BC.

Aristarchus came from Samos, the same Greek island Pythagoras came
from. He gave an interesting application of mathematics to astronomy. Let
SEM be the triangle whose vertices are the sun (5), the earth (F) and the
moon (M) (Figure 18.1). Aristarchus noted that when the moon is at its
first quarter, the angle SME is a right angle. This is why we see exactly
half of the part of the moon’s surface that faces the earth. When the moon
is in its first quarter, one can see the sun and the moon together in the sky,
at the same time. Thus Aristarchus was able to measure the angle SEM.
He found it to be 29/30 of a right angle. (A more accurate value is 0.9981
of aright angle.) Constructing a right triangle with an acute angle of 29/30
of a right angle — there is a ruler and compass construction for this —
Aristarchus found that the ratio of its short side to its hypotenuse is about
1/19. He concluded that the distance from the earth to the sun is about
19 times greater than the distance from the earth to the moon. Had his
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FIGURE 18.1. Relative distances of the sun and moon

measurement of the angle SEM been correct, he would have found that
SE is about 400 times SM.

His calculation would have been easier had he used trigonometry, which
was only developed a century later. If ZSEM = 87°, then ZESM = 3° =
/60 radians, hence EM/ES = sin(r/60) ~ 7 /60 &~ 1/19, as the sine of a
small angle is approximately equal to that angle when expressed in radian
measure.

Since the apparent sizes of the sun and the moon are approximately
equal, as is seen during a solar eclipse, their actual diameters are in the
same ratio as their distance from the earth.

By looking at the shadow cast by the earth upon the moon during a
lunar eclipse one may also compare the size of the moon with that of the
earth. (Since the sun is far away, the size of the earth is approximately the
same as that of its shadow.) Aristarchus found

diameter of the earth N
diameter of the moon

The actual figure is about 4. According to Plutarch, Aristarchus also pro-
posed the hypothesis that ‘the earth moves in an oblique circle about the
sun at the same time as it turns around its axis’. It seems that Copernicus
suppressed his acquaintance with the work of Aristarchus!

Although Archimedes is assumed to have studied in Alexandria, his pro-
ductive life was spent in Syracuse. We shall leave him to Chapter 19.

Apollonius (260-190 BC) came from Perga in the south of what is now
Turkey. He wrote a treatise on conics which contained 400 propositions.
These were arranged in eight books, four of which survived in the original
Greek, and three of which survived in Arabic translation. We do not read
this treatise anymore, because we feel we can do the same things more
easily using analytic geometry.

According to the modern definition of a conic section, it is the set of
all points P in the plane such that P’s distance from a fixed point, called
the focus, bears a constant ratio to its distance from a fixed line, called
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the directriz. This ratio is called the eccentricity. Apollonius did not give
this definition and it is doubtful whether he was aware of the eccentricity,
which is used to classify conic sections as follows: ellipses have eccentricity
< 1 (in particular, a circle has eccentricity 0), parabolas have eccentricity
=1, and hyperbolas have eccentricity > 1.

Apollonius also wrote a treatise on ‘Tangencies’ in which he showed how
to give a ruler and compass construction for a circle tangent to three given
circles.

Eratosthenes of Cyrene (in North Africa) became the chief librarian at
Alexandria. He was interested in many things: philosophy, poetry, history,
philology, geography, astronomy and mathematics. We have already men-
tioned his sieve for constructing the list of primes. Eratosthenes also in-
vented the Julian calendar, with every fourth year containing an extra day,
and he calculated the size of the earth. Perhaps the reason his students
called him ‘beta’ (the second letter of the Greek alphabet) was that, al-
though he studied many different things, he never considered himself the
leading expert in any one field. It is reported that, in his old age, Eratos-
thenes went blind and committed suicide by starvation.

Eratosthenes’s greatest achievement was the measurement of the circum-
ference of the earth. Eratosthenes correctly assumed that, since the sun is
so far from the earth, those of its rays which hit the earth can be regarded
as parallel. (Here he used the result of Aristarchus.) Eratosthenes knew that
Syene (present day Aswan) is almost exactly on the Tropic of Cancer, that
is, at noon on midsummer’s day (June 21), the sun is directly overhead, as
could be witnessed from the bottom of a well. Eratosthenes observed that
at Alexandria, at noon on midsummer’s day, the sun was 360°/50 from the
point directly overhead. He argued that this same angle was subtended at
the center of the earth by the arc joining Alexandria to Syene, which is due
south of Alexandria. According to Euclid (theorem VI 33), the length of
an arc of a circle is proportional to the angle it subtends at the center. So
all Eratosthenes had to do was to measure the distance from Alexandria to
Syene. This he found to be 5,000 stadia, a stadium being the length of the
famous Olympic track. Eratosthenes concluded that the circumference of
the earth is to 5,000 stadia as 360° is to 360°/50, and hence the circumfer-
ence is 5,000 x 50 = 250, 000 stadia (Figure 18.2). As the Olympic stadium
is about 180 meters, this would make the circumference of the earth about
45,000 kilometers.

Eratosthenes’s calculation of the circumference of the earth is remarkably
accurate. The correct value is almost exactly 40,000 km; in fact, the kilo-
meter was originally defined as 1/40,000 of the circumference of the earth.
Had Columbus known this, he might never have set out on his journey or
called the inhabitants of the New World ‘Indians’.
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FIGURE 18.2. Circumference of the Earth in stadia
Exercises

1. Obtain the equation of a conic section with focus (a,0), directrix the
y axis and eccentricity e.

2. Suppose you know the actual size of the moon. What is a simple
way of finding its distance from the earth — without using anything
Eratosthenes could not have used.
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Archimedes

Archimedes (287-212 BC) was the greatest applied mathematician and
physicist before Newton. Many stories are told about him. One story re-
lates that, while he was taking a bath, Archimedes suddenly discovered a
simple way of determining the ratio of gold to silver in a gold-silver al-
loy. Elated by his discovery, he leapt from the bath, and ran through the
streets of Syracuse, shouting ‘eureka!’ (which means ‘I have found it!’).
Unfortunately, he had forgotten to get dressed.

It was no accident that Archimedes made his discovery in a bath. Suppose
you have an object made of gold and silver weighing m ounces. Suppose
you wish to determine the number z of ounces of gold which the goldsmith
has put into it. If g is the density of gold and s is the density of silver, the
volume of the object is (z/g) + (m — z)/s. What Archimedes realized was
that, by immersing the object in a rectangular bath tub, and observing the
increase in water level, you can easily determine its volume v. Solving for
z in the equation

v=(z/g) +(m—-1)/s,

you obtain the mass of gold in the object. Thanks to his mathematics,
Archimedes was able to tell his friend, King Hieron of Syracuse, whether
the goldsmith had cheated the king by charging him for pure gold, while,
in fact, using a certain percentage of silver for his crown. Newton, the first
modern physicist to surpass Archimedes, centuries later, was to perform a
similar task in unmasking counterfeiters.

When Syracuse was besieged by a Roman army, Archimedes constructed
various machines to help defend his city. As well as catapults and cross-
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bows, Archimedes designed devices which dropped huge stones on the Ro-
man ships. He even constructed a crane which could lift a ship from the
water, and drop it back in, stern-first. When Syracuse finally fell (212 BC),
the Roman general Marcellus gave orders to bring Archimedes to him un-
harmed. These were not obeyed. Archimedes, it seems, was slain by an
unknown soldier. There are various accounts of this story; the best known
is that by Plutarch in his biography of Marcellus. Who today would know
of Marcellus were it not for Archimedes?

Archimedes wrote on many subjects: the circle, the parabola, the spiral,
the sphere, the cylinder, arithmetic, mechanics, statics and hydrostatics.
One of his more interesting books, the Method, was rediscovered only in
1906.

By considering a regular 96-gon inscribed in a circle, Archimedes showed
that 7 < 3%. By considering a regular 96-gon circumscribing a circle, he
showed that 3% < 7. He was aware that one could calculate 7 to any
desired accuracy by letting the number of sides of the regular polygon tend
to infinity.

He proved that the area of a circle is 772 and that the volume of a sphere
is %m":*. He knew how to calculate the area bounded by a parabola and a
chord, the area of a sector of a spiral, the volume of an ellipsoid of revolu-
tion, the volume of a segment of a sphere, the centroid of a hemisphere and,
perhaps most remarkably, the volume common to two equal right circular
cylinders intersecting at right angles. All these are calculus problems and,
indeed, Archimedes was using what we would now call the technique of
‘integration’.

As an example of Archimedes’s mathematics, let us see how he proved
that the area of a circle is 7r2. He started with the following assumptions
and theorems:

1. Circles and circle segments have areas.

2. The area of a set of pairwise disjoint triangles and circle segments
equals the sum of the areas of those triangles and circle segments;
thus if we dissect a circle into triangles and circle segments, the area
of the circle is the sum of the areas of the triangles and circle segments
into which it has been dissected; also the area of the circle is greater
than the sum of the areas of any proper subset of those triangles and
circle segments.

3. Given any circle, there is a straight line segment which is longer than
the perimeter of any polygon inscribed in the circle, and shorter than
the perimeter of any polygon circumscribing the circle; this is the ‘cir-
cumference’ of the circle. (The first person to give the name 7 to the
circumference of the circle with unit diameter was not Archimedes,
but William Jones, in 1706.)
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4. Given any areas e and f, there is a natural number m such that
me > f; (this assumption is found at the beginning of Archimedes’s
‘On the Sphere and the Cylinder’, so it is often called the ‘Axiom of
Archimedes’; however, it is also found at the beginning of Book V of
Euclid’s Elements and, even earlier, at 266b in Aristotle’s Physics).

5. A regular 2™-gon inscribed in a circle takes up more than 1 —1/2"~1
of its area; a regular 2™-gon circumscribed about a circle has an area
less than 1+ 1/2"~2 of that of the circle.

6. The area of a circle is proportional to its diameter squared (see Eu-
clid’s Elements XII 2).

Using these assumptions and theorems, Archimedes derived the formula
for the area of a circle by first obtaining two contradictions:

(A) Suppose the circle has area greater than that of a right triangle T
whose legs equal the radius and circumference of the circle.

By (4) and (5) we can find a natural number n such that

circle area — inscribed regular 2™-gon area < circle area — area of T
and hence
area of T' < 2™-gon area.

Let AB be a side of the inscribed regular 2"-gon, and ON a perpendicular
from the center O of the circle to AB (with N being the midpoint of AB).
Then ON is less than the radius of the circle. Using (3), we have

2"-gon area = 2"(3AB-ON)
= 1(2"AB)ON
< %circumference X radius
= areaof T.

Contradiction. Thus (A) must be rejected.

(B) Suppose the circle has area less than T.

By (4) and (5) there is a natural number n such that the area of T >
circumscribed regular 2"-gon area. However, if AB is a side of the circum-
scribing regular 2"-gon, then, by (3),

2"-gon area = 2"(3AB X circle radius)
> %circumference x radius
= areaofT.

Contradiction. Thus (B) must be rejected.
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Since (A) and (B) must be rejected, it follows from Aristotle’s ‘Law of
the Excluded Middle’ that (C) the area of the circle equals that of a right
triangle whose legs equal the radius and circumference of that circle. In
other words,

circle area = % circumference x radius.

The expression on the right-hand side is of course 772 (see (6) above).

Archimedes’s proof of this formula was the culmination of about two
hundred years of previous work on the circle, beginning with Antiphon
(425 BC).

Archimedes, working in Syracuse, would communicate his results to the
mathematicians back in Alexandria. He became annoyed when, suspiciously
often, they claimed that they had made the same discoveries. To fool them,
Archimedes included some false results in a book on the sphere and the
cylinder, but history does not reveal the outcome. To challenge the math-
ematicians at Alexandria, Archimedes posed the following problem (which
we have ‘translated’ into modern algebraic notation).

The sungod had a herd of cattle consisting of w white bulls, g grey bulls, b
brown bulls and s spotted bulls, as well as w’, ¢/, b’ and s’ cows of matching
colours. What was the total number of bulls and cows if

s=w-—"5g/6 =g—9b/20 = b — 13w/42,

w' =7(g+4¢')/12, g =9(b+1')/20,
b =11(s+5")/30, s’ =13(w +w’)/42,

and w + g is a square and b + s is a triangular number?

It is a curious triumph of tradition that Archimedes used the Egyptian
method for representing the fractions appearing in this problem as sums
of reciprocals of positive integers. Aside from the last two restrictions, we
have here seven equations in eight unknowns, which cannot be solved by
algebraic methods alone. However, if one is looking for positive integer
solutions, such problems are called ‘Diophantine’, after the mathematician
Diophantus, who will appear about 500 years after Archimedes. We sketch
how a solution may proceed, though the reader will have to fill in many
details.

From the equations

s=w—>5g/6 =g—9b/20 = b — 13w/42
we find that, for some positive integer m,

w = 2226m, g = 1602m, b= 1580m, s = 891m.
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From the next four equations, we find that there is some natural number
k such that

m = 4657k, w' = 7,206,360k, ¢ = 4,893,246k,

b = 3,515,820k, s’ =5,439,213k.

If w+ g is a square then 4(957)(4657)k is a square. Since 4657 is prime and
957 is the product of two distinct primes, it is easy to show that this occurs
only if k has the form (957)(4657)t2, where t is an integer. If b+s is triangu-
lar, then 2471m has the form n(n + 1). Thus 8(2471)(4657)(957)(4657)¢>
has the form 4n? + 4n. In other words, to find an integer solution to
Archimedes’s Cattle Problem, we have to find an integer solution to

(2n 4 1)? — 8(2471)(957)(4657%)t% = 1.

The mathematicians at Alexandria were not able to solve this problem.
Indeed, it was not solved until 1965, when H. C. Williams, R. A. German
and C. R. Zarnke used a computer to generate the 206,545 digit answer. The
answer was published for the first time in 1980-1981. The reader can find
the full 206,545 digit answer printed in Harry L. Nelson’s article ‘A Solution
to Archimedes’ Cattle Problem’, Journal of Recreational Mathematics 13,
pp. 164-176.

It is impossible to do full justice here to Archimedes’s important contri-
butions to physics. Let us only mention that he developed the theory of
the lever and investigated the properties of floating bodies.

Exercises

1. Let a and b be positive real numbers. Archimedes proved that z3 —
az? + (4/9)a?b has a positive root if and only if a > 3b. Do the same.

2. If, in a cube of side 1, two cylinders, each of diameter 1, are con-
structed so that their axes are perpendicular, show that the volume
common to these cylinders is 2/3.

3. Prove that a regular 2™-gon circumscribed about a circle has an area
less than 1 4+ 1/2"72 of that of the circle.

4. Find the least positive integer solution of 2 — 5y% = 1.

5. Let B be a point in straight line segment AC. Construct three semi-
circles with diameters AB, BC and AC, all on the same side of AC.
The area which is in the semi-circle on AC but not in either of the two
smaller semi-circles is called the ‘arbelos’ (or ‘shoe-maker’s knife’).
Archimedes found the area of the arbelos, in terms of AB and BC.
Do the same.
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6. Justify the existence of the numbers m and k in the above solution
of the Cattle Problem.

7. If Archimedes were alive today, would he have a moral obligation to
help his country design nuclear weapons or would he have a moral
obligation not to help them design nuclear weapons? Support your
answer with reasons related to the role of science in human history.
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Alexandria from 200 BC to 500 AD

In this chapter we discuss the more important mathematicians who worked
in Alexandria after 200 BC:

e Hipparchus of Nicea, born about 180 BC,
e Heron of Alexandria, about 60 AD,

Menelaus of Alexandria, about 100 AD,

Ptolemy of Alexandria, died in 168 AD,
e Diophantus, about 250 AD,
e Pappus, about 320 AD.

Less significant as mathematicians, but nonetheless important in the his-
tory of the subject are

e Nicomachus of Gerasa, about 100 AD,
e Hypatia, died in 415 AD,

e Proclus, 410 - 485 AD,

e Boethius, 475 — 524 AD.

Hipparchus came from Nicea, a town near present day Istanbul, which
was to be the site of the great Church Council of 325 AD. Hipparchus made
many contributions to astronomy. He calculated the duration of the year
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to within 6 minutes, the angle between the ecliptic and the equator, the
annual precession of the equinoxes, the lunar parallax, the eccentricity of
the solar orbit, etc. He knew that the moon moves only approximately in a
circle with center at the earth, a better approximation being an ‘epicycle’.
The same was true of the sun. Hipparchus suggested that epicycles of higher
orders were necessary to describe the motions of the planets.

In mathematics his great contribution was the founding of trigonometry.
He drew up a table giving for each angle with vertex at the center of a circle
of radius 1 the length of the chord it cuts off in the circle. For example,
suppose ZAOB is 30°, with O the center of the circle, and OA = OB =1
two radii of the circle. Then the chord in question is the segment AB. This
has length 31.06/60, so, in the table of Hipparchus, we would find

chord (30°) = 31.06/60.

In modern terms, chord(x) = 2sin(z/2).
To construct this table, Hipparchus made use of formulas which we would
express as follows:

sin(z £ y) =sinzcosy + coszsiny

and
2sin?(z/2) = 1 — cosz.

Heron is known for the formula, probably discovered by Archimedes,
which expresses the area of a triangle in terms of the lengths a,b and c of
its sides. If s = (a + b+ ¢)/2, this formula gives the area of the triangle as

V/s(s —a)(s — b)(s — c).

We shall meet this formula again when we discuss the mathematics of India.

Menelaus was the first to study spherical trigonometry. He is also known
for the following theorem, which is found in his Spherica.

Menelaus’s Theorem:

Let ABC be a triangle. Suppose D is on the line through B
and C, F is on the line through A and C, and F is on the line
through A and B. Suppose that either two or none of D, E, F
are on sides of the triangle. Then D, E, F are collinear if and
only if BD-CE-AF =CD - AE - BF.

Proof: Suppose D, E| F are collinear, in line [. We may suppose ! does not
pass through A, Bor C. Let A’, B’,C’ be points in [ such that AA’, BB’,CC'
are all perpendicular to {. Then BD/CD = BB'/CC', CE/AE = CC'/AA’
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1| al 10| ¢ || 100 | p
210820k} 20| c
31130 A} 300]|T
4 (6 || 40 | p |[ 400 | v
5|€e |50 | v | 500 | ¢
6(f | 60]¢]| 600]| x
71C |7 |o| 700 | ¥
8| mn | 8 | 7] 800 | w
916 (9| ¢q| 900

TABLE 20.1. Ptolomaic notation

and AF/BF = AA’/BB’. Multiplying the three equations together we ob-
tain the result.
The converse is easy.

As his Tetrabiblos shows, Ptolemy was a keen believer in the superstition
called astrology. In spite of this, he did for astronomy what Euclid had done
for geometry and arithmetic: he wrote the definitive textbook, known by
its Arabic name, the ‘Almagest’ or ‘Greatest’. Like Hipparchus, Ptolemy
gave a table of chords.

Book I of the ‘Almagest’ contains ‘Ptolemy’s Theorem’: in a cyclic quadri-
lateral, the product of the diagonals is equal to the sum of the products of
the two pairs of opposite sides. He used Greek letters to denote numbers.
Curiously, however, he retained two Phoenician letters, corresponding to
Latin f and g, which had actually disappeared in Greek. He also added one
symbol at the end, giving him a total of 27 symbols, which allowed him to
represent the numbers 1 to 9, 10 to 90 and 100 to 900. He also made use
of a small circle to denote zero. In his tables, he employed the Babylonian
system to denote not only angles, as we still do, but also lengths as had
Hipparchus before him. Thus he wrote

120°0°0" = pk| o |o,

chord 1° = 1°2'50" = «|Bv.

So he took the radius to be 1.

His underlying decimal notation was based on the alphabetic code in
Table 20.1. We have substituted the Latin letters for 6 and 90 and omitted
the symbol for 900.

In 250 AD, in Rome, Plotinus was teaching his version of Platonism.
At the same time, in Alexandria, Diophantus was writing the Arithmetica.
This originally contained 13 books. Until 1973 we had only six of these,
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but then three more were discovered in an Arabic translation going back to
the ninth century. (See Jacques Sesiano, Books IV to VII of Diophantus’s
Arithmetica.)

These 13 books consisted of solutions to algebraic problems. The solu-
tions are all rational numbers. Some of the equations or systems of equa-
tions are indeterminate and often there is more than one rational solution.
Diophantus, however, is usually content to give just one solution. Note
that what we now call a ‘Diophantine equation’ is one whose unknowns are
not just rational but integers. Diophantus, however, accepted any rational
solution.

As an example, let us consider problem 9 of Book II. The problem is
‘to divide a given number which is the sum of two squares into two other
squares.’ That is, given rationals a and b, find a nontrivial rational solution
of

2 +y? =a? + b2

Diophantus takes the special case where a = 2 and b = 3, but his solution
is easily generalized. He writes:

Take (x + 2)? as the first square and (mz — 3)? as the second
(where m is an integer), say (2z —3)2. Therefore (22 +4x +4)+
(422 49— 12z) = 13, or 522+ 13 — 8z = 13. Therefore x = 8/5,
and the required squares are 324/25 and 1/25.

Note that, to get the general solution, m should be any rational number.

An interesting question is whether Diophantus was aware of the alge-
braic rules that lay behind many of his solutions. In Book III, problem 19,
Diophantus notes that 65 is a sum of two squares in two ways since 65 ‘is
the product of 13 and 5, each of which numbers is the sum of two squares’.
From this we can deduce that he knew that the product of two integers,
each of which is a sum of two squares, is itself a sum of two squares, and
in two ways. Did Diophantus also know the stronger proposition that

(a® +b%)(c® + d?) = (ac F bd)? + (ad % be)? ?

Basing himself just on the remark which we have quoted from Book III,
problem 19, T. L. Heath conjectured that Diophantus did know this identity
(see page 105 in Heath’s translation of the Arithmetica). The person who
first published the algebraic identity, however, was Abu Jafar al-Khazin
(950 AD), and, later, Fibonacci gave it in his Liber Quadratorum (1225
AD).

Diophantus was the first to make systematic use of a symbolic notation
for algebraic expressions. He denoted + by juxtaposition, — by the symbol
N and = by ! . He wrote

KV for 3,
AV for z2,
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s for z! (s for the plural),
M for 2.
For example, .
A"y M B8
stands for 3z% + 12, while

K assT NAYE M @ lsa
represents the equation
(23 +8z) — (5z% + 1) = z.

In 320 AD, the Roman Empire had its first Christian emperor, Constan-
tine, after whom the Eastern Roman capital was named Constantinople. In
Alexandria, Athanasius was defending the divinity of Jesus against Arius,
who asserted that Jesus was like God, but not equal to him. (The differ-
ence between these two words in Greek consisted of one letter, the Greek
letter iota. We have preserved this difference in Mathematics, when we
distinguish between ‘homeomorphism’ and ‘homomorphism’.)

Meanwhile in Alexandria, Pappus was writing his encyclopaedic Collec-
tion of earlier mathematical works. The school of mathematics had de-
clined, and Pappus was its last, lone member.

The ‘Theorem of Pappus’ appears in Book VII of the Collection. It is
far more important than Pappus realized. It expresses the commutativity
of multiplication and is fundamental to projective geometry. Hilbert made
use of it as a key theorem in his presentation of Euclidean geometry. The
theorem of Pappus can be proved with the help of the theorem of Menelaus
as follows.

Theorem of Pappus: Given points ABC on one line, A’B’C’ on an-
other, the three points of intersection P = BC' N CB’, Q = AB' N BA’
and R = CA’' N AC’ are collinear (Figure 20.1).

In stating this result, we have assumed that BC' and CB’ etc., are not
parallel. We shall also assume that ABC and A’B’C’ meet at a point X
and that none of the other lines in the diagram are parallel.

Proof: Let ABNB'C =U, ACCNA'B =V and B'Cn AC' = W. We
apply Menelaus’s Theorem five times to the triangle UVW. Since A’CR,
BC'P, AB'Q, A’B'C’, and ABC are all collinear, we have

VR-WC-UA"=RW -CU - A"V,

VC'-WP.-UB=C'W-PU- BV,
VA-WB .-UQ = AW - B'U - QV,
VC'-WB' -UA' =C'W.-BU- AV,



108 20. Alexandria from 200 BC to 500 AD

FIGURE 20.1. Pappus’s Theorem

VA-WC.-UB =AW .CU - BV.

Multiplying the first three equations and dividing by the product of the
last two, we obtain

VR-WP.-UQ=RW - PU - QV.

The result now follows by another application of Menelaus’s Theorem. Note
that the argument makes use of the commutativity of multiplication.

When CD and EF are parallel, the proof proceeds in a similar fash-
ion. However, one uses, not Menelaus’s Theorem, but the theory of similar
triangles. We leave the details to the reader.

Among the minor mathematicians of this era was Nicomachus (100 AD)
from Palestine. He was a Pythagorean, and he published a book on number
theory, which is the basis for many of our speculations about the nature of
‘Pythagorean’ mathematics.

Hypatia (d. 415) was the daughter of Theon of Alexandria, who had
put out an edition of Euclid’s Elements and a commentary on Ptolemy’s
Almagest. Hypatia wrote commentaries on Apollonius and Diophantus.

According to Socrates Scholasticus (380-450 AD) in Chapter 15 of Book
VII of his History of the Church, Hypatia was murdered by a mob in the
course of an anti-pagan riot. This tragedy is sometimes blamed on the
Christian bishop, Cyril, but there is no evidence to support this accusation.
The 19th century author C. Kingsley wrote a fascinating historical novel
Hypatia, which makes this story come to life.
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Another minor mathematician at this time was Proclus. He studied in
Alexandria and then worked in Athens. He wrote a commentary on the
first book of Euclid, which contains valuable information about the history
of Greek mathematics.

Boethius studied in Athens but lived in Rome. He is most famous for his
De Consolatione Philosophicae, which he wrote in prison, about 525 AD
His Arithmetic and Geometry were standard textbooks in the Middle Ages.
Unfortunately, they contained much less mathematics than the Elements.

In 529 AD, the emperor Justinian closed the pagan schools of philosophy
at Athens. The ‘Dark Ages’ of Europe had begun.

It is interesting that we do not know of many mathematicians of the
period (50-500 AD) converting to Christianity. It seems that the Academy
at Athens and the University at Alexandria both rejected the new religion.
An interesting dialogue between reason and faith might have taken place,
but, as it turned out, it was only in the later Middle Ages that thinkers,
such as Aquinas (1250 AD), advanced philosophies that were influenced by
the Elements as well as by the Bible.

When the Arabs conquered Alexandria in 641 AD, there probably was
not much left of the famous library. However, according to an often re-
peated story, dating back to Moslem sources in the 13th century, it was
the Arabs who destroyed it. Their commander, Amru, was willing to spare
the library, but was dissuaded by Caliph Omar I, who argued thus: ‘If the
books of the Greeks confirm what is written in the Koran, they are super-
fluous; if they contradict the Koran, they are dangerous. In either case they
should be destroyed.” The story continues, saying that the books served to
heat the furnaces of the public bathhouses for six months! An almost iden-
tical story is told about another library in Persia. What was the origin
of these stories? According to Bernard Lewis, in a Letter to the Editor,
The New York Review of Books 37, Number 14 (October 27, 1990), they
were invented to justify the destruction of a completely different library, a
collection of Fatimid books, deemed to be heretical by the orthodox Sunni
Sultan Saladin in the 12th century.

Exercises

1. Prove Heron’s formula.

2. Give the details of the converse in the proof of the Theorem of
Menelaus.

3. Find all the integer solutions of z2? +y? = 22 by using the same tech-
nique as Diophantus did in problem 9 of Book II of the Arithmetica.
(Hint: the given equation has a solution in the integers if and only if
z'? +y'? = 12 + 02 has a corresponding solution in rationals.)
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4. Find an infinite family of rational solutions to x2 4+ y? = 22 (Arith-
metica IV 1 (Sesiano)).

5. Prove a version of the Theorem of Pappus in case BC’ and AB’ are
parallel.
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Mathematics in China and India

Not much is known about the development of mathematics in China before
contact with the West was established. The ‘Arithmetic in Nine Sections’
(‘Chiu Chang Suan Shu’) was written before 200 AD. Like the Rhind Pa-
pyrus, it is a list of problems and solutions. Chapter 8 shows how to solve
n linear equations in n unknowns, using a method which is essentially the
same as Gaussian elimination. One system which is solved is the following:

3z+2y+z2 = 39,
2r+3y+2z = 34,
T+2y+3z = 26.

The Chinese interest in systems of linear equations was perhaps linked
to their interest in magic squares. The square

4 9 2
3 5 7
8 1 6

was supposedly brought to humankind on the back of a tortoise from the
River Lo in the days of Emperor Yu. Its ‘magic’ property is that all rows
and columns and the two diagonals have the same sum.

A ‘Chinese Remainder Problem’ was solved by Sun Tsu (400 AD):

divide by 3, the remainder is 2;

divide by 5, the remainder is 3;

divide by 7, the remainder is 2;
what will be the number?
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Only one of the infinitely many solutions is given, but Sun Tsu’s method
allowed him to give as many others as he wanted.

Tsu Ch’ung Chih (475 AD) gave upper and lower bounds for 7. He used
the method of Archimedes, but he obtained sharper estimates. In the ‘Nine
Sections of Mathematics’ (1247), Ch’in Chiu Shao (Qin Jiushao) found a
root of

z* — 76320022 + 40642560000,

using what is in effect Horner’s method (rediscovered by William Horner
in 1819). In the ‘Precious Mirror of the Four Elements’ (1303), Chu Shih
Chieh (Zhu Shijie) gives ‘Pascal’s Triangle’ (also known in India and later
rediscovered by Pascal in 1653).

In the 16th and 17th centuries, Christian missionaries from Europe en-
tered China, introducing Western mathematics (e.g., the theory of loga-
rithms). Today