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To my father,
My first and greatest teacher



Preface to the Second Edition

There are three changes in the second edition. First, with the help of readers
and colleagues- -thanks to all—1I have corrected typographical errors and
made minor changes in substance and style. Second, I have added a few more
Exercises, especially at the end of Chapter 4. Third, I have appended a section
on Differential Geometry, the essential mathematical tool in the study of
two-dimensional structural shells and four-dimensional general relativity.

James G. SIMMONDS

il



Preface to the First Edition

When [ was an undergraduate, working as a co-op student at North Ameri-
can Aviation, I tried to learn something about tensors. In the Aeronautical
Engineering Department at MIT, I had just finished an introductory course
in classical mechanics that so impressed me that to this day I cannot watch a
plane in flight- - especially in a turn— without imaging it bristling with vec-
tors. Near the end of the course the professor showed that, if an airplane is
treated as a rigid body, there arises a mysterious collection of rather simple-
looking integrals called the components of the moment of inertia tensor.
Tensor— what power those two syllables scemed to resonate. I had heard the
word once before, in an aside by a graduate instructor to the cognoscenti in
the front row of a course in strength of materials. “What the book calls stress
is actually a tensor....”

With my interest twice piqued and with time off from fighting the brush-
fires of a demanding curriculum, I was ready for my first serious effort at
self-instruction. In Los Angcles, after several tries, I found a store with a book
on tensor analysis. In my mind I had rehearsed the scene in which a graduate
student or professor, spying me there, would shout, “You're an under-
graduate. What are you doing looking at a book on tensors?” But luck was
mine: the book had a plain brown dust jacket. Alone in my room, I turned
immediately to the definition of a tensor: “A 2nd order tensor is a collection
of n? objects that transform according to the rule .. .” and thence followed an
inscrutable collection of superscripts, subscripts, overbars, and partial deriv-
atives. A pedagogical disaster! Where was the connection with those beauti-
ful, simple, boldfaced symbols, those arrows that I could visualize so well?

1 was not to find out until after graduate school. But it is my hopc that.
with this book, you, as an undergraduate, may sail beyond that bar on which
I once foundered. You will find that I take nearly three chapters to prepare



X Preface to the First Edition

you for the shock of the tensor transformation formulas. I don’t try to hide
them—they’re the only equations in the book that are boxed. But long be-
fore, about halfway through Chapter 1, I tell you what a 2nd order tensor
really is—a linear operator that sends vectors into vectors. If you apply the
stress tensor to the unit normal to a plane through a point in a body, then
out comes the stress vector, the force/area acting across the plane at that
point. (That the stress vector is linear in the unit normal, i.c,, that a stress
tensor even exists, is a gift of nature; nonlinearity is more often the rule.) The
subsequent “débauche des indices™ that follows this tidy definition of a 2nd
order tensor is the result of exposing the gears of a machine for grinding out
the workings of a tensor. Abolish the machine and there is no hope of pro-
ducing numerical results except in the simplest of cases.

This book falls into halves: Algebra and Calculus. The first half of the first
half (Chapter 1) emphasizes concepts. Here, I have made a special effort to
relate the mathematical and physical notions of a vector. I acknowledge my
debt to Hoffman's intriguing little book, About Vectors (Dover, 1975). (But
there are points where we differ-— I disagree with his contention that vectors
cannot represent finite rotations) Chapter 2 deals mostly with the index
apparatus necessary to represent and manipulate vectors and tensors in gen-
eral bases. Chapter 3, through the vehicle of Newton’s law of motion, intro-
duces moving frames and the Christoffel symbols. To help keep the basic
kinematic ideas and their tensor generalizations in mind simultancously, I list
a number of equations in dual form, a device that [ have found successful in
the classroom. The last chapter starts with a homely example of the gradient
and builds to the covariant derivative. Throughout this chapter there are
applications to continuum mechanics. Although the basic equations (exclud-
ing electricity and magnetism) were known by the 1850%, it was only under
the spur of general relativity that tensor analysis began to diffuse into this
older field. (In my own specialty, shell theory, tensor analysis did not appear
until the early 1940, in the Sovicet literature, even though the underlying
theory of surfaces and their tensor description had been central to the under-
standing of general relativity.)

I have provided no systematic lists of grad, div, curl, etc. in various coor-
dinate systems. Such useful information can be found in Magnus, Oberhet-
tinger, and Soni, Formulas and Theorems for the Special Functions of Mathe-
matical Physics, 3rd enlarged edition, Chapter XII, Springer-Verlag 1966; or
in Gradshteyn and Ryzhik, Tables of Integrals, Series and Products, 4th edi-
tion, corrected and enlarged, Academic Press, 1980.

It is a happy thought that much of the drudgery involved in expanding
equations and verifying solutions in specific coordinate systems can now be
done by computers, programmed to do symbol manipulation. The interested
reader should consult “Computer Symbolic Math in Physics Education,” by
D. R. Stoutemyer, Am. J. Phys., vol. 49 (1981), pp. 85-88, or “A Review of
Algebraic Computing in General Relativity,” by R. A. d’Inverno, Chapter 16
of General Relativity and Gravitation, vol. 1, ed. A. Held, Plenum Press, N.Y.
and London, 1980.



Preface to the First Edition X1

I am pleased to acknowledge the help of three friends: Mark Duva, a
former student, who, in his gracious but profound way, let me get away with
nothing in class; Bruce Chartres, who let me filter much of this book through
his fine mind; and Ernst Soudek, who, though not a native speaker, tuned the
final manuscript with his keen ear for English.

Finally, my thanks to Carolyn Duprey and Ruth Nissley, who typed the
original manuscript, and then with patience and good humor, retyped what
must have seemed to be hundreds of petty changes.

JAMES G. SIMMONDS
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CHAPTER |

Introduction: Vectors
and Tensors

The magic of this theory will hardly fail to impose itself on anybody who has truly
understood it; it represents a genuine triumph of the method of absolute differen-
tial calculus, founded by Gauss, Riemann, Christoffel, Ricci and Levi-Civita.!

This little book is about tensor analysis, as Einstcin’s philosophers’ stone,
the absolute differential calculus, is called nowadays. I have written it,
though, with an eye not toward general relativity, but to continuum mechan-
ics, a more modest theory that attempts to predict the gross behavior of “the
masses of matter we see and use from day to day: air, water, earth, flesh,
wood, stone, steel, concrete, glass, rubber, ....”?

Continuum mechanics is a limiting case of general relativity; yet it is best
treated on its own merits. Viewed thus, there is a fundamental difference at
the foundations of the two theories. The geometry of continuum mechanics
is that of three-dimensional Euclidean space (E, for short) and the real line, R.
The geometry of general relativity is that of a four-dimensional Riemannian
manifold. (A sphere is a two-dimensional Riemannian manifold.) To those
who will settle for nothing less than a complete understanding of general
relativity (and who, therefore, will want to consult Gravitation, by Misner,
Thorne, and Wheeler), take heart. From the tools that we shall fashion comes
the gear to scale that pinnacle. And to those content to cultivate the garden
of continuum mechanics, let me say that, embedded within it, are intrinsically

! Albert Einstein, “Contribution to the Theory of General Relativity”, 1915; as quoted and
translated by C. Lanczos m The Einstein Decade, p. 213.

? Truesdell and Noll, The Non-Linear Field Theories of Mechanics, p. 1. Two outstanding intro-
ductory texts on continuum mechanics are A First Course in Rational Continuum Mechanics, 2nd
ed, by Truesdell and Continuum Mechanics by Chadwick.
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curved two-dimensional continua, called shells, that in dwarf form exhibit
nearly all of the mathematical foliage found in full-flowered general relativity.

In attempting to give mathematical form to the laws of mechanics, we face
a dichotomy. On the one hand, if physical events and entities are to be
quantified, then a (reference) frame and a coordinate system within that frame
must be introduced.® On the other hand, as a frame and coordinates are mere
scaffolding, it should be possible to express the laws of physics in frame- and
coordinate-free form, i.e. in invariant form. Indeed this is the great program
of general relativity.

In continuum mechanics, however, there are exceptional frames called
inertial; Newton’s Law of motion for a particle— force equals mass times
acceleration —holds only in such frames.* A basic concern of continuum
mechanics is therefore how laws such as Newton’s change from one frame to
another.® Save for Exercise 4.24, we shall not analyze changes of frame.
Rather we shall study how, within a fixed frame, the mathematical represen-
tation of a physical objcct or law changes when one coordinate system (say
Cartesian) is replaced by another (say spherical).

In what follows, I have assumed that you remember some of the plane and
solid geometry that you once learned and that you have seen a bit of vector
algebra and calculus. For conciseness, I have omitted a number of details
and examples that you can find in texts devoted to vectors. At the samc
time | have emphasized several points, especially those concerning the physi-
cal meaning of vector addition and component representation, that arc not
found in most conventional texts. The exercises at the end of each chapter are
intended to amplify and to supplement material in the text.

* A frame is 2 mathematical representation of a physical apparatus which assigns to cach event
¢ in the physical world # a unique place (i.c. point) in E; and a unique énstant on the real line
R. I like to imagine an idealized, all-sceing stereographic video camera mounted on 3 rigid.
mutually perpendicular rods. The rods have knife edges that interscet at a point and one of the
rods carries a scratch to fix a unit of length. The 3 knife edges (indefinitely prolonged) are
represented by a right-handed Cartesian reference frame Oxyz in E,, and one instant (arbitrarily
chosen) is taken as the origin of the real line. The exposed tape is a physical realization of a
Sraming (to usc the terminology of Truesdell, op. cit.), i.c. a map f from # to E4 x R.

A coordinate system in a frame assigns to each place a unique triple of real numbers (u, 1, w)
called spatial coordinates and to each instant a unique number ¢ call the time.

# Inertial frames are also special, but in a different way, in general relativity where frames are
coordinate systems! (and physics is geometry). An inertial frame may be introduced in gencral
relativity in the same way as a two-dimensional Cartesian coordinate system may be introduced
in an arbitrarily small neighborhood of a point on a sphere.

* To change frames means, for example, to tape the world with a copy of our super camera. If the
cameras arc in relative motion, then the two exposed tapes f and f, will map the same event e
into different places P and P in E, and into different instants T and T’ on R. Of course, the two
sets of knifc edges are represented by the same frame Oxyz and the cameras run at the same rate.
This change of frame is a speeial type of time-dependent map of E; x R into itself that preserves
the distance and elapsed time betwecn two cvents. When the elapsed time is zero, this transfor-
mation has the same form as 4 rigid body motion. Scc Exercise 4.19 and Truesdell, op. cit.
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Three-Dimensional Euclidean Space

Three-dimensional Euclidean space, E;, may be characterized by a set of
axioms that expresses relationships among primitive, undefined quantities
called points, lines, etc.® These relationships so closely correspond to the
results of ordinary measurements of distance in the physical world that, until
the appearance of general relativity, it was thought that Euclidean geometry
was the kinematic model of the universe.

Directed Line Segments

Directed line segments, or arrows, are of fundamental importance in Euclid-
ean geometry. Logically, an arrow is an ordered pair of points, (4,B). A is
called the tail of the arrow and B the head. It is customary to represent such
an arrow typographically as 4B, and pictorially as a line scgment from A to
B with an arrow head at B. (To avoid crowding, the arrow hcad may be
moved towards the center of the segment). Assigning a length to an arrow or
multiplying it by a real number (holding the tail fixed) are precisely defined
operations in E;.

Two arrows are said to be equivalent if one can be brought into coinci-
dence with the other by a parallel translation.” In Fig. 1.1, AB and CD are
equivalent, but neither 4B and EF nor AB and GH are.

The set of all arrows equivalent to a given arrow is called the (geometric)
vector of that arrow and is usually denoted by a symbol such as v. A vector
is an example of an equivalence class and, by convention, a vector is repre-
sented by any one of its arrows.

Equivalence classes are more familiar (and more useful) than you may
realize. Suppose that we wish to carry out, on a computer, exact arithmetic

F H
NN\
D E °
B
Figure 1.1.

® This was Hilbert's program: reduce geometry to a branch of logic. No pictures allowed! See,
for example, the discussion at the end of Eisenhart’s Analytic Geometry. Our approach, however,
shall be informal and visual.

7 A definition that makes no sensc on a spherc. Why?



4 I. Introduction: Vectors and Tensors

Figure 1.2.

operations on rational numbers. Then, for example, 2 must be read in as the
ordered pair of integers (2, 3). We test for the equivalence of two ordered pairs
of integers (¢, b) and (¢, d) stored within the computer by checking to see if
ad = be. In doing so, we are tacitly using the definition of a rational number
a/b as the equivalence class of all ordered pairs of integers (¢,d) such that
ad = bc.

In practice, it is expedient (and rarely causes problems) to confound a
“number”, such as two-thirds, with its various representations e.g., 2/3, 4/6,
etc. Likewise, we shall be using the term “vector” when we mean one of its
arrows (and vice versa), relying on context for the proper interpretation. Thus
in Fig. 1.2 we call any one of the equivalent arrows “the vector v,”

The length of a vector v is denoted by |v| and defined to be the length of
any one of its arrows. The zero vector, 0, is the unique vector having zero
length. We call the unit vector

v=v/v, v#0, (L.1)

the direction of v, 0 has no direction.

We may choose, arbitrarily, a point 0 in E; and call it the origin. The vector
x (of the arrow) from 0 to a point P is called the position of P. We shall
sometimes write P(x) as shorthand for “the point with position x.”

Addition of Two Vectors
Addition of two vectors u and v may be defined in two equivalent ways.®

A. The Head-to-Tail-Rule ( Fig. 1.3a). Take any arrow representing u, say
AB. For this choice there is a unique arrow BC representing v; u + v is
defined to be the vector of the arrow AC. This definition is convenient if one
wishes to add a string of vectors (Exercise 1.1), but commutativity is not
obvious. For reasons of symmetry it may be preferable to use the following.

8 The equivalence and uniqueness of the two definitions can be proved from the postulates of
Euclidean gcometry.
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C
A A
(a) B (b)
Figure 1.3.

B. The Parallelogram Rule (Fig. 1.3b). Let u and v be represented by any
two arrows having coincident tails, say 4B and AD. Then u + v is the vector
of the arrow AC, where C is the vertex opposite 4 of the parallelogram
having AB and AD as co-terminal edges.

Adding three or more vectors in this way is a bit awkward graphically, but
u + v + w has the following neat interpretation in three-dimensional space.
Let u, v, and w be represented by arrows AB, AC,and AD. Thenu + v + wis
the vector of the arrow, with tail at A, lying along the diagonal of the paral-
lelopiped having 4B, AC, and AD as co-terminal edges. See Exercise 1.2.

Multiplication of a Vector v by a Scalar «

Multiplication of a vector v by a scalar « is defined in an obvious way: if AB
is an arrow representing v, then «v is the vector of the arrow x4 B, (Recall that
in Euclidean geometry, we do multiplication with the aid of similar triangles).

The set of all geometric vectors, together with the operations of addition
and multiplication by a scalar, form a linear vector space. Other familiar
examples of linear vector spaces are the set of all polynomials of degree n, the
set of all solutions of a linear homogeneous differential equation of order n,
and the set of all m x n matrices together with appropriate definitions of
addition and multiplication by a scalar.

Things That Vectors May Represent

Many physical and kinematic objects—the displacement from one point to
another, a force acting on a particle, the finite rotation of a rigid body about
an axis— have direction and magnitude. We may represent these attributes
by vectors.? In doing so, we must keep in mind two fundamental points.

? A phrase such as “the vector f representing the attributes of a force” is a precise mouthful. For
platability we may pare it to “the vector f representing a force™ or even to “a force f” When the
context is clear, the tidbit “f” may suffice.
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0
Figure 1.4.

A. Different Types of Objects are Represented by Vectors That Belong to
Different Vector Spaces. Otherwise we could add, for example, a force to a
displacement. Nevertheless, for conciseness and clarity, we often place differ-
ent types of vectors in the same picture, as Fig. 1.4 that shows the position x,
the velocity v, the acceleration a, and the force f acting on a cannon ball flying
through the air.

B. Vector Addition May or May Not Reflect an Attribute of the Objects
Represented. For displacements, forces, or velocities, there are obvious phys-
ical analogues of vector addition; for successive finite rotations of a rigid
body about a fixed point, there is not. We shall say more about vector addi-
tion later.!?

Cartesian Coordinates

Thanks to Descartes, we may characterize three-dimensional Euclidean
space in algebraic terms as follows. Through the origin 0 draw three mutually
perpendicular (1) but otherwise arbitrarily chosen lines. Call one of these the
x-axis and on it place a point I # 0. The ray (or half-line) from 0 containing
1 is called the positive x-axis. OI is called the unit arrow along the x-axis and
we denote its vector by e,. Choose one of the remaining lines through 0, call
it the y-axis, and place on it a point J such that the length of OJ is equal to
that of OI. OJ is called the y-unit arrow and we denotc its vector by e,. The
remaining line through 0 is called the z-axis and, by arbitrarily adopting the
right-hand rule, we may place a unique point K on the z-axis'' such that the

19 Physically, there are differences in how displacements, forces and veloeitics add: displace-
ments follow the head-to-tail-rule, forces, at a common point, the parallelogram rule, while
velocities “add like vectors™ only because of the postulates of continuum mechanics concerning
moving frames. Velocities do not add like vectors in relativity theory.

1 This means that if we curl the fingers of our right hand from 0T to OJ, then our thumb will
point in the direction of OK.
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length of OK is equal to that of OI. OK is the z-unit arrow and e, denotes its
vector.

Any point P may be represented by an ordered triple of real numbers
(x, ¥, 2), called the Cartesian coordinates of P. The first number, or x-coordi-
nate, is the directed (1) distance from the yz-plane to P. Thus x is positive if
P lies on the same side of the yz-plane as does I and negative if it lies on the
opposite side; x is zero if P lies in the yz-plane. The second and third coordi-
nates, y and z, are defined in an analogous way. To indicate that a point P
has coordinates (x, y, z) we sometimes write P(x, y, z).

When a vector v is represented by the arrow whose tail is the origin 0, then
the coordinates of the head of this arrow, say (v,,v,,0,), are called the Carte-
sian components of v. We indicate this relation by writing v ~ (v,,v,,v,). Thus,
in particular,

e, ~(1,0,0), e,~(0,1,0, e ~(0,01) (12)
X ~ (x,¥,2) (1.3)

With a way of assigning Cartesian components (v,, v,,v,) {0 a vector v, and
vice-versa, we may easily deduce the following relations.

i) vl = /o2 + 0 + 02, (1.4)*2
by the Pythagorean theorem.

ii) If 2 is a real number, then

av ~ (0w, 0, 40, ). (1.5)

iii) Ifw~ (w,,w,,w,), then
viW~ (0, X w,v, Ewn, +ow,) (1.6)
1v) V=W, =W, U,=W, U,=W, (1.7)

These relations allow us to represent and to manipulate vectors on a com-
puter.

The Dot Product

The dot product of two vectors u and v, denoted by u-v, arises in many
different physical and geometric contexts.'® Some authors define the dot
product by the formula

'2 Here we arc deducing the algebraic properties of E; from its geometric ones. To go the other
way, which is easier in many respects, we define E, to be the set of all ordered triples of real
numbers (x, v. z) such thai the distance between any two points (x,, y,,z,) and (x,, y,,2,) is given
by

VO =Xl + (= 32+ (2 - 20
'3 There are certain technicalities to be considered when we try to interpret the dot product
physically. See the discussion at the end of the chapter.
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Ivl cos@U
Figure 1.5.
u-v=ullvjcosb, 0<0<m, (1.8)

where “0 is the angle between u and v.” This definition seems simple and
reasonable. But wait. If all we know is how to compute the length of a vector,
how do we compute 6? We can’t unless we turn (1.8) into the definition of 6.
Then we have no choice but to come up with a definition for u-v that is
independent of 6. Here goes.

If [u[]v] = O, take u-v = 0. Otherwise, consider Fig. 1.5, which may be
constructed using strictly geometric methods. The double-headed arrow indi-
cates that 8 is always nonnegative, regardless of the relative orientation of u
and v. As shown, v may be expressed as the sum of a vector |v| cos 8 &, parallel
to u, and a vector v, L to u. Take first the larger of the two right triangles in
the sketch and then the smaller to obtain, by the Pythagorean theorem,

[v|? = |v|*cos? 0 + |v,|?, (1.9)
v —ul®> = (Iv|cos 6 — [u])® + |v,|?
= |v|?cos? 8 — 2|u||v|cos @ + u)® + |v,|?

= —2ul|v|cos @ + |u]® + [v|? (1.10)*4

by (1.9). Comparing (1.8) with (1.10), we are led to the definition
u-v=S(lul? + [v2 = |v—ul?). (1.11)

Note that if {u[|v] = O, then u-v = 0, in agreement with our earlier definition.
fu=v,

vy = v (1.12)

Two vectors whose dot product is zero are said to be orthogonal (L).
To evaluate u-v on a computer, we need a component representation. This
is casy to find. If u ~ (u,,u,,u,)and v ~ (v, v,,0,), then, from (1.4) and (1.11),

wv=uo, +up, + U, (1.13)

!4 This result is usually called the law of cosines.
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Suppose that, without changing u or v, we were to introduce another set of
Cartesian axes. The components of u and v relative to the new axes would, in
general, be different, but would be right side of (1.13) change? The individual
terms, being the products of components, would, of course, but their sum
would not. Why? Because (1.11) defines u- v in terms of lengths and lengths,
in Euclidean geometry, may be defined without reference to coordinate axes.
We say, therefore, that the dot product is a geometric invariant.

Another key property of the dot product is that it is distributive with re-
spect to uddition, i.c.

(v+w=uv+uw, Yu, v, w. (1.14)

To prove (1.14) let w ~ (w,w,, w,). Then, by (1.13),
u v+ w=u (v, +w)+ul, +w)+ uv, +w,)
= U0, + Uy + U0, + U W+ UW, + UW,

=U'V+Uuw ]

This proof illustrates an important point: often, geometric facts are proved
most easily using Cartesian coordinates. Yet, as (1.14) is coordinate-free,
it must follow directly from (1.11). This is Exercise 1.7. Always try to inter-
pret formulas both algebraically and geometrically, for one of these
viewpoints, though awkward for proof, may lead to new insights or suggest
generalizations.

ProBLEM 1.1.

Ifu~(1,2,3)and v ~ (—3,1, —2), compute u-v and the enclosed angle.

SoLuTion.
From (1.13)

wv=(1(=3)+@Q)) + 3)(-2)= -7,
and from (1.8)

Hzcos"-i-Y-, <n
fuilv|
Now,
ul= 17427+ 32 = /4 ’
Wi=J(=32+17+ (-2 = /14
Hence

0 = cos™!(—7/14) = 120° = 2xn/3 radians,
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Cartesian Base Vectors

Given the Cartesian components (v,,v,,v,) of any vector v, (1.6) and (1.5)
allow us to set

(03,0, 0,) = (1,0,0) + (0,2,,0) + (0,0, 2,)

(1.15)
= 0,(1,0,0) + v,(0,1,0) + v,(0,0, 1).
Recalling (1.2) and (1.6), we infer that v has the unique representation
v=u.e +uv,€ + 0. (1.16)

The set {ex,e}.,ez} is called the standard Cartesian basis, and its elements,
the Cartesian base vectors. The Cartesian components of v may be referred to,
alternatively, as the components of v relative to the basis {e,,e e, }.

The Interpretation of Vector Addition

It is essential to emphasize the distinction between vector addition, as a
reflection of a physical or kinematic attribute, and vector addition, as it is
used on the right side of (1.16). Suppose, for example, that v represents the
rotation of a rigid body about a fixed point. Let the direction and magnitude
of v represent, respectively, the axis and angle of rotation, using the right
hand rule to insure a unique correspondence. If this rotation is followed by
another, represented by a vector u, then it is a fact from kinematics that these
two successive rotations are equivalent to a single rotation that we may
represent by a vector w. However, in general, v + u # W, L.e., successive finite
rotations do not add like vectors.'® Nevertheless, the additions that appear on
the right hand side of (1.16) do make sense if we do not interpret the sum-
mands individually as rotations. Let me try to illustrate this point with a
simple analogy. Suppose that there are 20 students and 30 chairs in a class-
room. For statistical purposes we may speak of “ of a student per chair”
even though, physically, there is no such thing as 4 of a student. The students
and chairs arc represented by whole numbers and what we did to get a
statistic was to perform a mathematical operation on these whole numbers.
Vector addition does mirror a physical attribute when, for cxample, v in
(1.16) represents a force. It is an experimental fact that “forces add like vec-
tors.” See Exercise 1.3. In this case the mathematical decomposition of a
vector into components happens to have a direct physical interpretation. The
analogy here might be that of a dining hall in which there are 20 one-gallon

bottles of milk and 30 pitchers. Not only can we speak of “% gallons of milk

'* Rotations may also be represented by matrices. If the two successive rotations are represented
by the matrices V and U, then they are equivalent to a single rotation represented by the matrix
W = UV.u, v, or wmay be identified, respectively, with the single real cigenvector of U, V, or W,
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per pitcher,” we can also, physically, put } gallons of milk into each pitcher.
Here the mathematical operation of division of whole numbers has a physical
counterpart.

The Cross Product

The cross product arises in mechanics when we want to compute the torque
of a force about a point, in electromagnetics when we want to compute the
force on a charge moving in a magnetic field, in geometry when we want to
compute the volume of a parallelopiped or tetrahedron, and in many other
physical and geometric situations.'®

The cross product of two vectors u and v is denoted by u x v and defined
to be the right oriented area of a parallelogram having u and v as co-terminal
edges. That is,

[u x v| = |u||v|sin8, 0<O<n (1.17)

where the direction of u x v is that of the thumb on the right hand when the
fingers are curled from u to v. Two possibilities are indicated in Fig. 1.6.
From the definition of the cross product,

UXV=—VXu (1.18)

Further useful properties of the cross product follow from a geometrical
interpretation of the scalar triple product (u x v}-w. Consider the parallel-
epiped having u, v, and w as co-terminal edges and let vol (u, v, w) denote its

Figure 1.6.

'¢ The remarks made carlier concerning physical interpretations of the dot product apply to the
cross product as well. See the discussion at the end of this chapter.
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Figure 1.7.

volume. By regarding this volume as the limit of the sum of right parallel-
epipeds of vanishingly small altitude and identical bases, each base parallelo-
gram having u and v as co-terminal edges, we have

vol(u, v, w) = |(u x v)-w|. (1.19)"’

If (u, v, w), in that order, form a right handed system, as shown in Fig. 1.7,
then, by symmetry,

volmv,w) = (u x v)-w=(wWx uv=(vx w-u>0, (1.20)

i.e. (u x v)-w is invariant under cyclic permutation.
With the aid of (1.20), we shall verify that the cross product is distributive
with respect to addition:

Ux (V+W=uxv+uxw - (1.21)

To do so we usc the fact that two vectors are equal if and only if their dot
products with all vectors ¢ are equal.'® Thus,

[ux(v+w]c=(cxu(v+w),by(1.20)
=(cx u)v+(cxuw by(l.14)
= (ux v)-¢c+ (ux w-c by (1.20)
=(uxv+uxw-c by(l.14). ]

ProBLEM 1.2
Prove the vector triple product identity
(uxv)xws=(@mwv-—(v-wu (1.22)
without introducing components.
*7 We hardly need calculus to get this, Imagine a deck of identical cards, cach in the shape of a

parallelogram. The volume of the deck is its thickness times the area of the face of a card, and
this volume is obviously unchanged if the deck is sheared into the shape of a paralielepiped.

'8 Why? Well, if u = v, then, certainly u-¢ = v-¢ for all ¢. On the other hand, ifu-¢ = v-¢ for
all ¢ we can, in particular, take ¢ = u — v, which implies that u-¢ — v-¢ = (U — v} ¢ = (u ~ ¥}
(u — ¥} = |u — ¥|*’= 0. This in turn unplies thatu - v = 0, ic., u = v.
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SOLUTION,

The vector u x vis L to the plane of u and v. Therefore (u x v) x w, which is L to
u x v, must lie in the plane of u and v. That is,

(uxv)xw= Au + By, *)

where 4 and B are unknown scalar functions of u, v, and w. As the left side of (*)is L
to w, 1t follows that

0= Au-w+ Bv'w,
which implies
A= —C(v-w), B = C(u-w),
where C is an unknown scalar function of u, v, and w. Hence
(u x v) x w= Cu,v,w)[(u-w)v — (v-w)u]. (**)
In the special case u = w, (**) reduces to
(u x v) x u=C(uv,u)[|u)?>v ~ (v-uul. (***)

Take the dot product of both sides with v. Permuting the resulting scalar triple
product on the left, we have

(u x v)-(u x v) = Cuw,v,u)[Ju’|v]> — (u-v)*]. (***x)
But
(uxv)-(uxv)=|uxv?
= |ul?|v)?sin? @, by (1.17)
= [u|?|v}2(1 — cos?0)
= u]*|v|* = (u-v)?, by (1.8).

Comparing the last line of this expression with the right side of (****) we have that
Clu,v,u) = 1,

Now take the dot product of both sides of (**) with u. Permuting the resulting
scalar triple product on the left, we have

[ux(uxv)] w=Cv,w[(u wiv-u) —(v-wiu]
But (***) with C(u,v,u) = 1 implies that
[ux@xv)]w=(vuuw—|u’vw

Hence, C{u,v,w) = 1. 0

Another useful interpretation of the scalar triple product is in terms of
projected arcas. See Exercise 1.15.

How can we find the Cartesian components of u x v? This is not as easy as
the analogous problem for u- v. For one reason, u x v is a vector rather than
a scalar, and for another, u x v is a beast that lives in three dimensions only!
(There is an algebra created by Grassmann that gives meaning to objects
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such as u x v or u x v x w in higher dimensional Euclidean spaces where
they are called wedge products.) The straightforward (but tedious) way is to
note that repeated application of the distributive law (1.21) allows us to set

uxv=(ue, +ue +ue,)x (v.e +oe +,e,)
=u.v.e, X e +uue xe +uuve, xe,
+ u,v.@, X €, + u,v,e, X e, + u,v,e, x e,
+u.v.@, x e +ure xe +uuve xe, (1.23)

(Phew!) Bute, x e, =0,e.,x e, =€, e, x e, = —e, ctc. (Draw a sketch!)
Thus (1.23) reduces to

uxv=elur, —uv)+ewr, —uuv,) + ey, —uv) (124

An easy way to remember (1.24) is to write it as

e, e e
UXv=iu, U, ulj, (1.25)
v, v, U,

where the formal determinant is to be expanded about its first row.

From (1.24), (1.25), and the property of a determinant that interchanging
rows and column leaves the value unchanged and interchanging two rows (or
columns) changes the sign, we get the useful formulas

W, W, w, u, u, u, U, v, w,
wxvyw=|u u ul|=|v, v, v,|=|u v, wl.(126)
v, v, U, W, W, w, u, v, w,

PROBLEM 1.3.

Determine a unit vector e mutually L to the vectorsa ~ (1, —2,3)and b~ (—1,0,1)
using and without using the cross product.

SOLUTION.

In terms of the cross product, the vector we seek is

e= £ 220
“laxb|
From (1.25),
e. e e
axb=|1 -2 3| ~(=2-4,-2.
-1 0 1

Hence |a x b| = 2,/6, s0 that e ~ +(1/,/6,2/,/6,1/,/6).

To compute e without using the cross product, let e ~ (a,b,¢). Then e-a =a —
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2b +3c=0and e-b= —a + ¢ = 0, which implies that b = 2a and ¢ = a. Hence e ~
a(1,2,1). To make |e| = 1,set,a = +1/,/6.

Alternative Interpretation of the Dot and
Cross Product. Tensors

In physics we learn that a constant force F acting through a displacement D
does F- D units of work. Unlike displacement, force is never measured di-
rectly, only its effects (extension of a spring, change in the resistance of a
strain gauge, etc.). Also, force has different physical units from displacement.
This suggests that forces— more precisely, the vectors that represent forces—
lic in a different space than do displacements, If forces are measured in, say,
pounds and displacements in feet, then the unit x-arrows OI that we set up
arbitrarily in each space represent, respectively, one pound of force and one
foot of distance. Think now: how would you graphically compute F-D? You
might, first, bring the positive x, y, and z-axes of each space into coincidence
and next, since the OI’s were chosen arbitrarily, stretch or shrink one until it
coincided with the other. Finally, the length of the orthogonal projection of
F onto D would be multiplied graphically by |D| to obtain a number with the
units of foot pounds.

All of this imaginary pushing and shoving was to give F-D a geometric
meaning so that one could do graphical computations (an ancient art little
practiced nowadays.) Isn’t there a simpler way of looking at things that, while
not affecting numerical computation, better mirrors different types of physi-
cal objects? Yes there is: a force F may be thought of, mathematically, as a
representation of a linear functional that sends any vector D (a displacement)
into a real number (called the work of F through D).

Analogous but more ¢laborate considerations hold for the cross product.
For example, suppose that a force F acts at a point P with position x. Repre-
senting the torque about O as x x F leads to the notion of linear operators
that send vectors into vectors. Such operators are called 2nd order tensors.
The name tensor comes from elasticity theory where in a loaded elastic body
the stress tensor acting on a unit vector normal to a plane through a point
delivers the tension (i.e., the force per unit area) acting across the plane at
the point. See Exercise 1.20. Other important 2nd order tensors include the
inertia tensor in rigid body dynamics, the strain tensor in elasticity and the
momentum-flux tensor in fluid dynamics.

The simplest, nontrivial example of a 2nd order tensor that I can think of
is the following. Let the projection of a vector v on a vector u be denoted and
defined by

Proj,v = (v Bt (1.27)

The gecometric meaning of Proj,v is shown in Fig. 1.8. The left side of (1.27)
may be interpreted as the action of the operator Proj, on the vector v. The
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Proj v u

Figure 1.8.

right side of (1.27) tells us that Proj, sends v into a vector of magnitude v-a
in the direction of w. To qualify for the title tensor, Proj, must be linear. But
if # and y are arbitrary scalars and w is an arbitrary vector, then, by the
properties of the dot product,

Proj,(Bv + yw) = [(Bv + yw)-u]u
=(fv-u + yw-u)a
= f(v-u)u + p(w-a)u
= f Proj,v + y Proj,w, (1.28)

1., Proj, is linear and therefore is a tensor. Now work Exercise 1.5 to make
sure that you can apply this tensor in a concrete situation.

The form of the right side of (1.27) suggests the following generalization.
The direct product uv of two vectors u and v is a tensor that sends any vector
w into a new vector according to the rule

uv(w) = u(v-w). (1.29)'°
Thus, in particular,
Proj, = uu. (1.30)

Tensors such as Proj,,, that can be represented as direct products, are called
dyads. As we shall see, any 2nd order tensor can be represented as a linear
combination of dyads.

Definitions

To say that we are given a 2nd order tensor T means that we are told T’s
action on (i.c., where it sends) any vector v2°. Thus two 2nd order tensors S
and T are said to be equal if their action on all vectors v is the same. More

9 Many authors denote the direct product uv by u ® v.

22 The action of T on v will be denoted by Tv, T(v), or T-v, as convenient. To a fastidious
mathematician, the description of T is not complete without mention of its domain, the set of
vectors on which T acts, and its range, the space into which T sends these vectors. We shall
assume that the domain and range of a 2nd order tensor are obvious from the context, though
often they are different; c.g., the domain of the moment of inertia tensor is the space of angular
velocities, but its range is the space of rotational momenta (see Excrcise 4.22).
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formally,
S=T <« Sv=Ty, vy, (1.31)
or, equivalently,
S§=T <« uSv=u-Ty Yu, v, (1.32)

The zero and identity (unit) tensors are denoted and defined, respectively, by
Ov=0,Vv,and 1v = v, Vv.

The transpose of a 2nd order tensor T is defined as that unique 2nd order
tensor TT such that

uTv=v-Tha, Vuv (1.33)
A 2nd order tensor T is said to be

(@) symmetric if T =TT,
(b) skew (or antisymmetric) if T = —TT. (1.34)
(o) singular if there exists a v # 0 such that Tv = 0.

An arbitrary tensor T may always be decomposed into the sum of a symmet-
ric and skew tensor as follows:

T=3T+TH+4T-T9, (1.35)
T+T' = (T+TH" being symmetric and (T -~ T") = —(T = TN being
skew.
ProLEM 1.4,

Ifv ~(vy,v,,0,) and Tv ~ (—2v, + 3v,, —v,,0, + 2v,), determine the Cartesian com-
xs Yy Vg ¥
ponents of Ty,

SOLUTION.

Let T’ ~ {a,b,¢) and u ~ (, §,7). By definition, u- T"v = v- Tu for all vectorsu and v.
That is,

aa + fib + ye = v (=22 + 3y) + v(—7) + v + 28)
= a(—2v, + v;) + B(2v,) + 730, — v;). *
As u is arbitrary, the coefficients of %, 5, and y on both sides of (*) must match. Hence

TV ~ (=20, + v,,20,,3v, — v,).

The Cartesian Components of a Second Order Tensor

The Cartesian components of a second order tensor T fall out almost auto-
matically when we apply T to any vector v expressed in terms of its Cartesian
components. Thus
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Tv= T(Uxex + vyey + vzez)

= v, Te, + v,Te, + v, Te,, by the linearity of T. (1.36)

But Te,, Te,, and Te, are vectors and therefore may be expressed in terms of
their Cartesian components, which we label as follows:
Te, =T, e +T,e, +T,e (1.37)
Te, =T, e, + Tye, + Te, (1.38)
Te, = T.e.+ T.e, + ’E,:ez. (1.39)

The 9 coefficients T,,, T,,, ..., T, are called the Cartesian components of T.
We indicate this by writing T ~ T, where T7 is the matrix of coefficients
appearing in (1.37) to (1.39).

Here’s how to keep the subscripts straight: From (1.37) to (1.39), T,, =
e, Te, T, =e Te,elc

PROBLEM 1.5.

Determine the Cartesian components of the tensor T defined in Problem 1.4.

SOLUTION.

Applying T successively to e,, e, and e,, we have

Te, ~(—2,0,1) = —2(1,0,0) + (0,0,1)
Te, ~(0,0,2) = + 2(0,0, 1)
Te, ~(3,—1,0) = 3(1,0,0) — (0,1,0)
Hence,
-2 0 3
T~ 0 0 -1
1 2 0
PROBLEM 1.6,

If u ~ (uy,u,u,), then ux may be regarded as a 2nd order tensor whose action on
any vector v ~ (v, z,,0,) is defined by (1.24). Find the Cartesian components of u x.

SOLUTION.
Applying u x, successively, to e,, e,, and e,, we have, according to (1.24),
uxe, ~(0u,—u)= 1,(0,1,0) — 1,(0,0,1)

ux e, ~(—u,0,u) = -uf(l,00) +u,(0,0,1)
uxe ~(u,—u,0=ul1,0,0 - udl0,1,0)



The Cartesian Basis for Second Order Tensors 19

Hence
0 —-u, u,
ux ~| u, 0 —u,
-1 u 0

The Cartesian Basis for Second Order Tensors

Given the Cartesian components (v,,v,,v,) of a vector v, we recover the
vector via the rcpresentation v = v.e, + v,e, + v,e,. Given the Cartesian
components of a 2nd order tensor T, what is the analogous representation for
T?To save space we shall answer, first, in 2-dimensions. From (1.36) to (1.38),

Tv =0T e, + T, e)+v(T e + T,e) (1.40)

&
But v.e, = (v-e,)e, = e.e(v), etc. Thus

Tv = (Tice.e, + T, ece, + T ee + T ee)y, Yv. (1.41)
Because v is arbitrary, we infer fom (1.31) that

T= Txxexex + ’Ecyexey + Tvxeyex + Tvyeye,v- (142)

Is this representation unique? You bet. For suppose there is another, say

T=T,ee + T ee + T.ee +Tiee (1.43)

y »wey Ty

Then (1.42), take away (1.43), implies that
(T — Toee + (T, — To)ece, +-Jv=0, Vv, (1.44)
which is equivalent to
u[(T, — T, )ee + (T, — T,)ee, + - 1v=0, Vu,v. (145

Butifu=v=e, (145 reducesto T,, — T, = 0;ifu=e,v=1¢e,to T, —
T;, = 0, etc. Thus (1.42) and (1.43) must be identical.
In three dimensions, the conclusion is that, uniquely,

T= Txxexex + rlxyexey + thexez

+T,.e

pxy

e +T,ee +T.ee

yyry Yoy

+ szezex + nyezey + rI;zeZez' (146)

Thus the set {e.e.,e.e,, ... ee,} of the 9 possible direct products of the 3
Cartesian base vectors is a basis for the set of all 2nd order tensors. That is,
any 2nd order tensor can be represented as a unique linear combination of
these 9 dyads.
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Exercises

1.1, (a). Using graph paper, draw the five vectors
p~(LDg~(1,2,r~(21),s~(0,-3),t~(-11)

so that each has its tail at the origin.

(b). Using the head-to-tail rule for addition and graph paper, place the tail of q
at the head of p, the tail of r at the head of g, etc., and indicate the sum of the
five vectors as a vector whose tail coincides with that of p and whose head
coincides with that of t.

(c). What are the Cartesian components of the vector usuch thatp +q + -+ +
t+u=40?

1.2. Draw a careful perspective sketch illustrating that if w and v and then (u + v)
and w are added according to the parallelogram rule, the last sum will be the
diagonal of a parallelepiped having u, v, and w as co-terminal edges.

1.3. Describe in words and with a sketch an experiment to demonstrate that forces
add like vectors.

14. Hfu~ (2 -3,4) and v ~ (1,0, 1), compute u-v and the enclosed angle.
1.5.  Using the vectors given in Exercise 1.4, compute Proj,v and Proj,u.

1.6. Washington, D.C. lies roughly at latitude 39°N and longitude 77°W and Mos-
cow roughly at latitude 56°N and longitude 38°E. Taking the radius of the earth
as 4000 miles, compute the great circle distance between these two cities.

Hint: Imagine vectors from the center of the earth to the cities and use the dot
product.

1.7, Using (1.11), prove the distributive law (1.14) without introducing Cartesian
coordinates,

Hint: Use the fact that if a and b are co-terminal edges of a parallelogram, then
2|al® + 2|bl2 = |a + b|® + |a — b|% Apply (1.11) to u-(v + w) and in the result-
ing expressionsetv + w—u=(v—4u) + (w—3uy=a + b

1.8.  The Schwarz inequality
[u-v[ < |ullv| *)

is an example of a simple geometric fact that has a useful analog for functions:
if f and g are square integrable on an interval (a, b), then

j fgdx| < \/j fzdx\/j g*dx. (**)

(a). Prove (*) in three ways by using
(i). (1.25) and the fact that

Ju x v|* = 0.
(ii). the fact that the second degree polynomial
p(x) = |u + xv|?

is non-negative for all real values of x.
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1.12.

1.13.

1.14.

1.15.

1.16.

117

(iii). (1.11) and the fact from Euclidean geometry that the length of a side of
a triangle is greater than or equal to the difference between the lengths
of the other two sides,
(b). Use the analogue of (i) or (i) for functions to prove (**).

Let a and b be given three-dimensional vectors and x unknown. Without in-
troducing components, show that the unique solution of the linear algebraic
equations

x+axx=bhb (*)

x_b+(a'b)a+b><a
- l+aa

Hint: Set x = Aa + Bb + Ca x b and solve for A, B, C. To prove uniqueness,
note that if y is another solution of (*), then

x-yt+tax(x—y=0

What can you conclude from this last fact?

fa~(-2,1,00and b~ (3,2,1),
(a) Computea x b.
(b) find the equation of the plane spanned (i.e., determined) by a and b.

Given a point P(x,, ¥4, Z,) and a plane

II: Ax + By + Cz = D, (%)
derive a formula for the (shortest) distance from P to IT by using
{a). calculus to minimize (x ~ x4)* + (¥ — yo)* + (z — 2z,)? subject to (x).

(b). vector methods to construct a 1 from P to Il
Hint: Recall what N ~ (4, B, C) represents.

Hu~(,-1,2),v~(3,2,1),and w ~ (4, 1,7), compute

(a). uv(w) (b). vu(w) (c). wu(u)

Show that

@). (uv)" = vu

(b). for any vectorsa, b, ¢, (a x b) x ¢ = (ba — ab)(c).

Using either a calculus or geometric argument (a physical take-apart model is
extremely useful here), show that the volume of a tetrahedron with co-terminal
edges u, v, wis ()|(u x v)-w|.

Give a convincing (though not necessarily rigorous) argument to show that
(w x v)-W| is the area of the parallelogram with co-terminal edges u and v
projected onto a plane L tow.

Show that in 3 dimensions,
U=V < uxec=vVXxeVe

Let T be the tensor defined in Problem 1.4,
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(v-n) dt §

Figure 1.9,

(a). v~ (v,,0,0,) fill in the blanks.

Sv=3T+THv~ (—, —, —)

Av= 4T - Ty~ (~, -, )
(b). Determine the matrices of the Cartesian components of S and A.
(c). Find the Cartesian components of the vector @ such that A = @ %,

Let A be an arbitrary, 3-dimensional skew tensor.

(a). By expressing A in terms of its Cartesian components (and noting that only
3 of these can be assigned arbitrarily since A = — A7), find a vector @ such
that

Av = x v, Vv,

(b). Use the results of Exercise 1.16 to show that w is unique. w is called the axis
of A and is important in rigid body dynamics. See Excrcisc 4.20.

(c). Show that v Av = 0, Vv, in any number of dimensions,

(d). Show that Awm = 0. Check this result by using the numerical values ob-
tained in Exercise 1.17(c).

Let p and v denote, respectively, the density and velocity of a fluid at a given
point P in space at a given time t. If IT is a plane with normal n passing through
P, then the momentum flux across I'T at P and ¢ is defined to be pv(v-n) = pvv(n).
As indicated in Fig. 1.9, pv(v-n)dAdt is the momentum at P and ¢ carried across
an oriented differential element of area ndA in time dt. pvv is called the momen-
tum flux tensor at P and t.

(a). If v~ (v,,v,,0,), determine the Cartesian components of pvv.

(b). If v~ (3, —1,2)and p = 4 at a given point and time, determine the momen-

tum flux across the plane with normaln ~ (=1, 1,3).

As in Fig. 1.10, let ndA denote an oriented differential element of area at a point
P and time ¢ in a continuum (e.g. a fluid or solid) and let tdA denote the force
that the material into which n points exerts across dA4. tis called the stress at P
and t in the direction m; t, = Proj,t the normal stress, and t, = t — t, the shear
stress. By considering the equations of motion of a tetrahedron of the material
of arbitrarily small volume, instantancously centered at P, it can be shown that
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1.21.

1.22.

1.23.

1.24.

Figure 1.10.

t = Tii, where T = T7 is the (Cauchy) stress tensor at P and t.2! If

1 0 0
T~|0 3 -1
0 -1 3

and n ~ (1,2, — 1), compute the normal and shear stress.

The directions of principal stress are defined as those unit vectors x such that
Tx = Ax. Note that Ax is just the normal stress and that the shear stress is zero
in a principal direction. The determination of all possible values of A and the
associated directions x is an eigenvalue problem. You have seen such problems
in linear algebra. Find the eigenvalues i and the associated eigenvectors x for the
stress tensor T of the preceding exercise.

(a). Determine the matrix of the Cartesian components of the direct products
uv, uw, and vw, where u, v, and w are given in Exercise 1.12.

(b). Compute det(nv), det(uw), det(vw).

(c). Show that the determinant of the direct product of any two vectors is zero.

The trace of the direct product is denoted and defined by
tr(uv) = u-v, tr(uv + wx) = tr(uv) + tr(wx).

Use this definition and (1.46) to find an expression for tr T in terms of its Car-
tesian components.

The derivative of a second order tensor T, that depends on a single parameter ¢,
may be defined by the rule

Ta= (Ta) ¥ constant a. (1.47)

(a). By definition, T sends vectors into vectors. Show that T is also lincar and
hence a 2nd order tensor.

2! The set of all unit vectors is not a linear vector space (Why)? and so is not a suitable domain
for T. However, the definition and domain of the stress tensor can be extended in an obvious
way. as suggested by Noll: TO = 0, Tv = |v|Ty, Vv # 0.
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(b). If v ~ (v,,0,,0,), Where v may depend on t, and Tv ~ (=212, + 3t%,,
COS MY, U, + 2tv + \/l + t%v ) fill in the blanks:
Tv~( \ - ),

(¢). f T = xy, where x and y are functmns of t, what is T?

(d). Given the Cartesian components of T, how do we obtain those of T7

The composition or dot product of two second order tensors S and T is a 2nd
order tensor denoted by 8- T and defined by

S -Tv=S8(Tv), vv

(a). IfS =wxand T = yz, whatis §-T?
(b). If S and T are differentiable functions of ¢, show that

ST =8T+8T (1.48)
With reference to Exercise 1.18a and using (1.22), show that

(@x)Y =0 x(@x)=A*=o00 - (0 o)l (1.49)

and hence that

[o|? = —4tr A%

The inverse of a second order tensor. A function f is said to be one-to-one (1:1)
if f(x,)= f(x;)=>x, = Xx,. In this case f has a unique inverse /! such that
S HS(x)) = x, for all x in the domain of f. Moreover f(f ' (y)) =y for all
y in the range of f. If T is a 2nd order tensor, then Tv, = Tv, implies that
T(v, — v;) = 0, by linearity. If T is non-singular, this, in turn, implies that v, =
v,. That is, T has a unique inverse T ™! such that

T Tv=v, W

i (1.50)
T T 'w=w, VYw

(a). Show that T™! is linear (and hence a 2nd order tensor as the notation
presumes.)

(b). Show that (T H)" =(TH™!

(c). Show that the tensor defined in Problem 1.4 is non-singular.

(d). If w ~ (W, w,,w,), and T is the tensor in Problem 1.4, fill in the blanks:

Hint: Let T w o~ (a b, ¢) and note that the action of T on T~'w must equal
W,

A 2nd order tensor T is said to be positive definite if
xTx>0 vx # 0.

(a). Show that if T is positive definite, then all the eigenvalues of T must be
positive.
(b). Show that if T is non-singular, then T” - T is postive definite.



CHAPTER 1l

General Bases and Tensor
Notation

While the laws of mechanics can be written in coordinate-free form, they can
be solved, in most cases, only if expressed in component form. This requires
that we introduce a basis. Though the standard Cartesian basis is often the
simplest, the physics and geometry of a problem, and especially the so-called
boundary conditions, may dictate another. For example, if we wished to
study the temperature distribution in a body the shape of a parallelepiped,
we would choose most likely a basis consisting of vectors lying along three
co-terminal edges of the body. An aim of tensor analysis is to embrace arbi-
trary coordinate systems and their associated bases, yet to produce formulas
for computing invariants, such as the dot product, that are as simple as the
Cartesian forms.

General Bases

Let {g,,g,,83} denote any fixed set of noncoplanar vectors. Then any vector
vmay be represented uniquely as

3 .
v=u'g, +v’g, + v’gy =) v'g. 2.1
1

Used thus, the set {g,,8,,8,} is called a basis, and its elements, base vectors.
The base vectors need not be of unit length nor mutually 1. A basis is illus-
trated in Fig. 2.1,

To understand the representation (2.1) geometrically, we first consider the
2-dimensional case. In Fig. 2.2 we have drawn a typical vector v and a basis
{g,.8,}, 1.e, two fixed, non-zero, non-parallel vectors. Through the head of v

25
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93

Figure 2.1.

veg,

Figure 2.2

we draw a line parallel to g,. It will intersect the line along g, at some point
P. The vector of OP is then some unique scalar ¢' time g,. (Thus »' might be
negative though we have drawn the figure as if it were positive.) We construct
¢? in a similar way.

In 3-dimensions we are given a vector v and a basis {g,, g,, g, } all vectors
having a common tail 0. A plane passed through the head of v parallel to the
plane of g, and g, will intersect the line along g, in some point P. This
determines a unique scalar o' such that v'g, is the vector from O to P. In like
fashion we determine v? and v3.

The representation (2.1) is effected analytically as in the following.

PROBLEM 2.1,
Given
gl ~ (1, - 1,2)ygz ~ (O, 1- 1),33 ~ ('— 17 ""2’ 1)
v~(3,3,6),

find (v!, 02 v%).
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SOLUTION.

Equating corresponding Cartesian components on both sides of (2.1), i.e. applying
rules (1.5)-(1.7), we get

3=0p! —p?
3=—p' + 02 -2°
6 =20 + 12 + ¢’
Solving these simultaneous linear algebraic equations, we have

(L3 0%) = (2,3, - 1)

The Jacobian of a Basis Is Nonzero

Unless you are good at perspective, it may be difficult to sec from a sketch
whether three vectors form a basis. (In higher dimensions it is hopeless.) Is
there a numerical test for a set of vectors to be a basis? Yes, providing we
know their Cartesian components. As Problem 2.1 illustrates, the answer
hinges on whether a set of n simultaneous linear algebraic equations in n
unknowns has a unique solution. It does, as you well know, if and only if
the determinant of coefficients does not vanish. Let us rephrase this fact as
follows. If G = [g,,8,,...] denotes the #n x n matrix whose columns are the
Cartesian components of g,, g, ..., then {g,,8,,...} is a basis if and only if
det G # 0. Using almost standard terminology, we shall call G the Jacobian
matrix of {g,,8,,...} and J = det G the Jacobian of {g,,g,,...}.!

The Summation Convention

The summation convention, invented by Einstein, gives tensor analysis much
of its appeal. Observe in (2.1) that the dummy index of summation i is re-
peated. Morcover, its range, 1 to 3, is already known from the context of the
discussion. Therefore, without any loss of information, we may drop the
summation symbol in (2.1) and write, simply,

v =0'g,. 2.2)

“Dummy” means that the symbol i in (2.1) or (2.2) may be replaced by any
other symbol without affecting the value of the sum. Thus v'g, = v'g; = v*g,,
ctc. Replacing one dummy index by another is one of the first tricks a would-
be index slinger must learn,

We attach, however, one useful proviso: the summation convention applies

' The labet “Jacobian™ is usually applied when the components of g,, g,,... are partial deriva-
tives, a situation we shall meet in Chapter 111,
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only when one dummy index is “on the roof” and the other is “in the cellar”.
Thus v'v; = v'e, + v?0, + 0305, but o’ = o' or v20? or v3v®. Generally,
repeated roof or cellar indices occur in quantities that are not invariants or
not the components of invariants. (Cartesian tensor notation, discussed in

Exercise 2.21, is the one exception to this proviso.)

Computing the Dot Product in a General Basis

Suppose we wish to compute the dot product of a vector u = u'g; with a
vector v = v'g,. In doing so we must replace one pair of dummy indices, say
the second, by another. Otherwise, blind application of the summation con-
vention yields, incorrectly, u-v = u'v'g;-g, = u'v'g,-g, + u?v’g, g, +
u3v3g,-g,. The correct expression is

u'v=u'vig g
=u'v'g g +u'v’g g +u'v’g g,
+ulv'gy g+ +u’gs g (2.3)

This extended expression for u-v is a nine-term mess. We can clean it up by
introducing a set of reciprocal base vectors.

Reciprocal Base Vectors

What these are and how they simplify things is seen most easily in 2-dimen-
sions. Given a basis {g,, g, }, we represent, as before, the first factor'in the dot
product u-v as u = u'g, + u?g,. (In this two-dimensional example, formulas
are short enough that we do not need the summation convention.) However,
let us represent the second factor in the dot product in terms of some new
(and as yet unknown) basis {g',g?}, writingv = v,g' + v,g% Then

A2 25

u-v=(u'g, +u’g,) (0,8 +0,8%)
=u'vigg' +u'vyg, g’ +ulnig, 8 + g, gt
The idea is not to choose g' and g? so that the above expression reduces to
uv=u'v, + v,

Thus we require that g, 'g' =g,'g>=1and g, g* =g, g' = 0. Given g,
and g,, we may construct g!' and g* geometrically as follows:

As in Fig. 2.3a,draw a line | to g,. Since g! -g, = 0, g' must lie along this
line. Now adjust the direction and length of g' until g'-g, = 1, as indicated
in Fig. 2.3b. Repeat to construct g2,

With the geometry well-understood (especially after the completion of Ex-
ercise 2.22), we now develop an algebraic method (that a computer can use)
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(a) (b)
Figure 2.3

of constructing reciprocal base vectors in n-dimensions. This will take us on
a small detour before returning to the problem of simplifying the component
form of (2.3).

Let {g,.8,....} = {g;} be a basis. Then, det G # 0. As you recall from
matrix theory, this implies that G™! exists. The elements in the ith row of G!
may be regarded as the Cartesian components of a vector g', i.c.,

G'=| - = [gl7 gz’ ]1 = [gi]a

where T denotes transpose. (Consistent with this notation we may set G =

[g,] when we wish to regard G as a collection of column vectors.) The law of

matrix multiplication says that the element in the ith row and jth column of

G~'G is the sum of the products of corresponding elements in the ith row of

G ! and the jth column of G. Thus, G™'G = I is equivalent to the statement
R b ifi=j

g gj—éj-{o fie (2.4

The symbol &/ is called the Kronecker delta. It is ubiquitous in tensor anal-
ysis. The set {g',g?,...} = {g'} is called a reciprocal basis and its elements,
reciprocal base vectors. The name basis is justified because det G™! # 0.

PROBLEM 2.2.

Find the reciprocal base vectors for the basis given in Problem 2.1.

SOLUTION.

We must compute G ! and then read off the Cartesian components of g', g%, and g°.
A systematic way of computing G™! is to reduce G to I by a sequence of elementary
row operations (involving, possibly, row interchanges). This same sequence of opera-
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tions applied to I will produce G™'. We adjoin I to G and carry out these operations
simultaneously, as follows.

10 —111 0 0 10 ~1] 100

11 =21010]-|01 =3; 110

21 110 0 1 01 3]-201

(10 -1 1 00 1 0o L -1

Slo1 =31 1 1 0] - 1 o] =% L}

000 61 -3 -1 1 00 1] -} -1
3

Thus g' ~ (1/6)(3, — 1,1). 82 ~ (I/2(— 1, 1,1), g% ~ (1/6)( =3, — 1, 1).

The Roof (Contravariant) and Cellar (Covariant)
Components of a Vector

If {g;} is a basis then not only may we express any vector v as v'g,, we may
also represent v as a linear combination of the reciprocal base vectors, thus:

v=uog" (2.5

Breaking with tradition, we shall call the coefficients v' the roof components
of v and the g; the cellar base vectors. Likewise, in (2.5), the v; shall be called
the cellar components of v and the g’ the roof base vectors. The conventional
names for »' and v, are the “contravariant” and “covariant” components of
v—names that seem to me awkward and meaningless. “Roof” and “cellar”
also have mnemonic value in matrix theory where A,‘f i1s sometimes used to
denote the element of a matrix A thatsits in the ith row and jth column. The
following diagram indicates how to remember which is the row and which is
the column index:

R(ow) R R({oof)
AC(olumn) «r A(' «> AC(ellar)

PROBLEM 2.3.

Compute the cellar components of the vector v given in Problem 2.1.

SOLUTION.
Writing (2.5) in extended form and noting (2.4), we have
veg, = (08" + 0,8 + v;8°) 8
=v,g' 8 + 0,878 + 0387 8

=,.

But from the information given in Problem 2.1, v-g, = 3)(1) + 3)(—=1) +



Component Form of the Dot Product in a General Basis 31

(6)(2) = 12. Likewise,
vy =vg, =(3)0)+ )M+ (6)(1) =9
v3=vg=0)(-1+03)-2)+(6)(1)= -3
The solution of Problem 2.3 illustrates a useful fact:
v, =v'g. 2.6)
One would also hope that
vi=v-g\ 2.7

To get some practice with the Kronecker delta, let us establish (2.7) starting
from (2.2) and (2.4), but without writing out anything in extended form. (After
all, tensor notation is designed to keep things compressed.) Taking the dot
product of both sides of (2.2) with g/ we have

v-gl=(v'g) g
=vgg
= vi§}
= pJ, 0 29

Let’s take this derivation one line at a time. The second follows from the
first because (xu + v + *-) w = ou-w + fv-w + -+ The third line follows
because (2.4) obviously holds if i and j on both sides are replaced by any
other distinct symbols, say j and i. You’ve seen such renaming with functions
where, for example, f(x, y) = x/y implies that f(y, x) = y/x.

How is the last line in (2.8) obtained? Consider one of the possible values
that the free index j may assume in the preceding line, say 2. Then, summing
over the repeated index i, we have v-g2 = v'67 + 0?62 + v363. But 67 = 67 =
0 while 67 = 1. Thus the sum collapses to simply v?. The step from the next
to last to the last line of (2.8) shows that the Kronecker delta may be regarded
as a replacement operator. That is, multiplying v* by &/ replaces the index i on
v by the index j. Finally, note that v-g’ = v/ and v* = v-g' are equivalent
statements, just as f(x) = x? and z* = f(z) are.

Simplification of the Component Form of the Dot
Product in a General Basis

Let us return to the problem of simplifying the extended component form of
u-v. Referring both vectors to the same basis led to an explosion of terms
when we wrote (2.3) in extended form. Instead, let us set u = u'g; but v = v;g’.
Then

uv=u'yg-g =u'v;0! = u'v, = u'v, + utv, + u’vs, (2.9)
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a formula no more complicated than that involving the Cartesian compo-
nents of u and v. An alternative way to compute the dot product is to set
u = u,g' and v = v’g;. Then

u-v =yt (2.10)

PROBLEM 2.4.

Given u = 2g, — g, + 4g; and w = —3g' + 2g% — 2g°, compute u-v, w-v, w-v, and
u-w, where v and the cellar basis vectors are given in Problem 2.1 and the roof basis
vectors are given in the Solution to Problem 2.2.

SOLUTION.

The roof components of u are given, while the cellar components of v are given in the
solution in Problem 2.3. Thus, by (2.9),

wv=(2)(12) + (- 1)(9) + 4(-3) = 3.

The cellar components of w are given while the roof components of v are given in the
Solution to Problem 2.1. Thus, by (2.10),

wv=(-3(+2QC) +(-2(—1) =2
Finally, from (2.9)
uw=2(-3)+ (-2 + (-2 = —16.

Computing the Cross Product in a General Basis
Sometimes it is convenient to denote the roof and cellar components of a
vector v by (v) and (v),, respectively. With this notation,

uxv=(uxv)g (2.11)

To compute the cellar components of u x v we set u = u'g, and v = v’g;, so
obtaining

(uxv)=@WUxv)g,
=u'vi(g; x g,) &
= u'vle . (2.12)

The 3 x 3 x 3 =27 symbols ¢,; are called the cellar components of the
permutation tensor P (See Exercise 2.13). Let us examine their properties.
From (2.12) and (1.26),

€,,3 =(g, X g,) 8g;=J, theJacobian.

If we interchange two indices there is a change in sign, e.g., switching 2 and 3
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above yields
€132 =(8; X 83) 82=(8,%X81)8=—(8 x8)e&=—J,
and switching 1 and 2 in this expression yields
€3 =(8, %X 83)°8 =(8 x8g)eg=J

Moreover, if two or more indices are equal, €;;, = 0 because we can always
permute the vector triple product (g; x g;) g, so that the first term is the
cross product of a vector with itself.

In summary,

+J if (i, j, k) is an even permutation of (1,2, 3)
€= —J if (i, j, k) is an odd permutation of (1, 2, 3) (2.13)
0 if two or more indices are equal.
Thus, returning to (2.11), we have

ux v = ¢ uvigh (2.14)

PrOBLEM 2.5.

Givenu = 2g, — g, + 483, v = 28, + 3g, — 83, where the basis {g;} is given in Prob-
lem 2.1, compute the cellar components of u x v.

SOLUTION.

Let us write (2.12) in extended form for k = 1, taking note of (2.14).

0 0 0
(u x v), = guv! =¢{; u'v' + ;(Z:u‘vz + /,,u‘v3
0 0 J
+ &4, et + 54111421;2 + ¢4 u%0°

0 —J 0
33
+ 640! + 53/;11431;2 + &4, U7

= Ju?v? — u*v?).
The roof components of u and v are given, and from Problem 2.1,

1 0 -1
J=|~-1 1 =2| =6
2 1 1

Hence
(uxv), =6[(—1)(—1) = (4)(3)] = —66.
In like fashion, we find that for k = 2 and k = 3,
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(u x v); = J@r' —u'v?) = 6[(4)(2) — (2(—1)] = 60
(u x v)y = Jw'v? — ) = 6[(2Q(3) - (- 1)(2)] = 48.

To compute the roof components of u x v, we mimic the above procedure,
but use roof instead of cellar base vectors. We obtain

(u x v = €y, (2.15)

where u; and »; are the cellar components of u and v and the €”* are the 27
roof components of the permutation tensor defined as follows:

+J! if (i, j, k) is an even permutation of (1,2, 3)
et=(g xg)g=<-J" if (i, j, k) is an odd permutation of (1,2, 3)
0 if two or more indices are equal.
(2.16)

In other words, €,;, = J2€'*.
Here is an interesting identity connecting the components of the permuta-
tion tensor and the Kronecker delta that you are asked to establish in Exer-

cise 2.5:

o, o )
ete,, =6] o] o/|. (2.17)
o o0f o
If we expand the determinant and set r = k, we obtain
€€, = 6,0] — 816}, (2.18)

which is intimately related to the vector triple product identity, (1.22). See
Exercise 2.7.

A Second Order Tensor Has Four Sets of Components
in General

This comes about as follows. Given a second order tensor T and a general
basis {g;}, the action of T on each of the basis vectors is known, say

Tg.=T.

) J

(2.19)

Now each vector T; may be expressed as a linear combination of the given
basis vectors or their reciprocals. Choosing the latter, we may write

T, = T,;8" (2.20)

J

The 9 coefficients T;; are called the cellar components of T. Explicitly,

I, =g, Tg; (2.21)
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To represent T in terms of its components, we proceed just as we did in
Chapter 1. Thus if v is an arbitrary vector,

Tv = T(v’g;), representing v in the basis {g;}
= v/Tg,, because T is linear

v'T,g', by (2.19) and (2.20)

T,g'(g’ ). by (2.7)

= T;&'¢/(v), by (1.29). (2.22)
Asv is arbitrary, (2.22) implies that
T = T,gg, (2.23)

and we see that {g'g’} is a basis for the set of all 2nd order tensors.
Repeating the above line of reasoning, but with the roles of the cellar and
roof base vectors reversed, we have

Tg' =TV = Tig, T = Tigg, (2.25)

The 9 coeflicients T are called the roof components of T. In other words, the
T' are the components of T in the basis {g;g,}. The analogue of (2.21) is

TV = g'- Tg'. (2.26)

The alert reader will now realize that there are two additional sets of
components that can be defined, namely

T! =g Tg, (2.27)
and
T'=g; Tg. (2:28)

These are called the mixed components of T. The dots are used as distin-
guishing marks because, in general, T, # T;*. It is easy to show that T has the
following representations in terms of its mixed components:

T= T;gigj = E'igjgi, (2.29)

ie, the T are the components of T in the basis {g;g’} and the T}* are the
components of T in the basis {g’g;}.

Note that if T is symmetric, then T;; =g, Tg; =g;" T'g, =g, Tg, = T}..
Likewise T = T;* and T = T# However, T = T” does not imply that the
matrices [ T] and [ 7;*] are symmetric. See Exercise 2.23.

PROBLEM 2.6.

Compute the cellar, roof, and mixed components of the tensor given in Problem 1.4,
using the base vectors given in Problem 2.1 and the associated reciprocal base vectors
given in the Solution to Problem 2.2.
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SoruTiON.
We are given that

Tv~(-2v,+ 3v, —v,0, + 20)

and
g ~(L-12,g,~0,1,1),g,~(—1,-21).
Hence,
Tg, ~4,-2,-1), Tg, ~3,-1,2), Tg~(5, —1,-5),
and so
g, Tg, g Tg,; 4 8 —4
[T;]= [ Tg;] =| g, Tg, : -3 1 -6
: : -1 1 -8

From Problem 2.2,
g' ~(1/6)(3, —1,1), g% ~ (1/2)(— 1, 1, 1), g3 ~(1/6)(—3,—-1,1),

and so
g' Tg, g''Tg, - 13 12 1
[T]=[g" Tg]=|g*Te, o =we)| 21 -6 =33
: . ~ 11 -6 —19

Finally, we have
Tg! ~ (1/6)(—3, —1,1), Tg2 ~ (1/2)(5, = 1,1), Tg> ~ (1/6)(9, — 1, - 9),

yielding
0o 0 1
[)=1[g;Tel=|4 0 -1},
0 -1 -2
-7 51 23
[TV]=[g Tg'l=(1/36)] 9 —45 —45].
1 -39 =31
Change of Basis

Within a given frame, vectors and tensors are blissfully unaware of the bases
we choose to represent them. That is, they are geometric invariants. Under a
change of basis it is their components that change, not they themselves. A
major aim of tensor analysis is to provide recipes for computing new compo-
nents from old ones once a change of basis has been specified.

To concoct these recipes, let us start by assuming that each element of the
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new basis is a known lincar combination of the elements of old, say
g, =Ajg, +Alg, + Aigs. B, = Ajg + LB = (2.30)
We may summarize (2.30) in cither matrix or index form as
G=GA or §=Ag,. (2.31)

We shall need the inverse of (2.31) as well as the analogous relations between
the new and old reciprocal bases. As det G = (det G)(det A) and {g;} and {g,}
are bases, det 4 # 0. Therefore, A™' = [(47")}] exists so, from (2.31),

G=GA"' or g =(A"")g. (2.32)?

Furthermore, recalling that if a matrix B can be postmultiplied by a matrix
C, then each row of BC will be a linear combination of the rows of C, we have

G'=4"'G"' or gF=(4""g (2.33)
G'=AG"' or g=A@ (2.34)

The relations between the new and old components of any vector v follow
immediately because

b,=8,v=Algov, d'=gv=(4"")gv (2.35)

That is,
b, = Alv,, & =471l "(2.36)

Likewise, for any 2nd order tensor T,
T,=8 T8 = Alg. TAlg, T)=8"Tg=(4"")g" TAl, 037)
Ti=g, To = Alge T(A g, TV=§ T¥ = (4" g T(A)g
That is,
Tj= AT, T5=(A"DA0T,

al] k(g -1\ Tij ~1yig 4 -1 k (2.38)
Tl A A, TY = (A7 HA YT,

PrROBLEM 2.7.

if

and (v',0%,0%) = (2,3, - 1),

(=R
—_ O =

find (5!, £2, %),

2 An advantage of index notation over matrix notation is that the order of multiplication is
immaterial. Thus (4 ')i§, = §(A ")}, but, in general, GA ™ # 4 6.
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SOLUTION.

Using the row reduction algorithm, we find that

-+ 13
At=| 1 -1 -1
-3 U3

Hence, from (2.36),,

“H+ WA+ M=) =3
=R+ (-HA+(-D(-1)=0
==+ +A(-D =14

i

ﬁ’
62
63

PRrOBLEM 2.8.

Using the change of basis defined by the matrix A in Problem 2.7, compute T,, and
T,%, where T is defined in Problem 2.6.

SoLuTion.
From (2.38), , we have
Ty = AJAI Ty + ATy, + AIT)y)
+ ANA Ty + ATy, + A} T;3)
+ ANAI T, + A( Ty, + A} Tyy)
T = ALA "R + (AT + (4T3
+ A LA NG + (AT + (47T
+ AALATNT + (A YT+ (ATRT0)

The mixed and cellar components of T are given in the Solution to Problem 2.6 and
the elements of the matrices 4 and A™! in the statement and Solution of Problem 2.7.
Thus all we need do is plug and chug:

T = QL@ + Q)®) + (- D(=4] + (DID(=3) + @)D + (= 1)(-6)] = 53.

13

T = @QU-HO + (D@ + DO + DI-5O) + DO + G) (-] = - -

Exercises

2.1. Which of the following sets of vectors is a basis?
(‘d). g~ (49 6’ 2)5 82 ~ (1103 1)’ g3~ (1’ 35 0)
(b) gy ~ (1, 1,0), g ~ (0, 2, 2)’ g3~ (3a0’ 3)
(C)' gl ~ (1, 1’ 1)’ gz ~ (13 - 1, 1)’ gl& ~ (-1, 1’ - 1)
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22

23

24.

25.

26.

27.

2.8.

29.

2.10.

211

212,

Letg, ~(~1,0,0), g, ~(1,1,0), g5 ~(1,1,1) and v ~ (1,2, 3). Compute the re-
ciprocal base vectors and the roof and cellar components of v.

First simplify and then carry out explicitly any implied summations:
(@). .t (b). 87fv* (¢). 68 (d). € dprt.

The vectors g,, g5, g3, given in Exercise 2.2 form a basis. If the roof components
of u and v are (2,2, 1) and (— 3, 1, 2) respectively, compute the three cellar com-
ponents of u x v,

Establish (2.17) by first setting (i, j, k) = (p,q,r) = (1,2,3) and then arguing
about the value of both sides when ijk and pgr are various permutations and
combinations of (1,2, 3).

(a). Establish (2.18) by expanding the determinant in (2.17) by, say, its first row
and then setting r = k.
(b). Use (2.18) to show that e'*¢,;, = 26}

Establish the vector triple product identity (1.22) by first computing the roof
components of u x v and then the cellar components of (u x v) x w. Finally, usc
the identity (2.18).
Components of the identity tensor. Let
g;=8-8. g¢'=¢g-8g
Using the fact that 1v = v for all v, show that the various components of 1 are
Ly=gy 1=8, 1i=9, 11=4"
Thus
1=¢gg. =gg
Raising and lowering of indices. Show that
g =g%, 8 =gug v =g"n, v =gt
T', - gik'I;‘j, T = gikrI;‘J, '];j _ gikT’;’ etc.
As indicated, the effect of multiplying 2 component of a vector or tensor by g™
and summing on & is to raise or lower an index. Thus, for example, the index on
v, is raised, becoming an i, by multiplying v, by g*.
Noting that [ g;;] = G”G, show that
(a). det[g,]=J?
(b). g%y, = 9;.
Show that
@). g x g; = €8
(b). g“ = jeg x g,
If u=u'g, = ug, find formulas for the four different components of the 2nd

order tensor u x . Use the following notation and procedure.

(ux);=g-uxg)=u(g xg)= "'“'fukgkz
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2.13.

2.14.

2.15.

2.16.

I1. General Bases and Tensor Notation

A 3rd order tensor is a linear operator that sends vectors into 2nd order tensors.
Any 3rd order tensor may be represented as a linear combination of triads. A
triad is a direct product of three vectors (u, v, w), denoted by uvw and defined by
its action on any vector x as follows:

uvw- X = uv(w-Xx).

Here is where the dot product, as a contraction operation, comes into its own.
The double dot product of a triad acting on a dyad is a linear operator that
produces a vector according to the rule
uvw - xy = u(w-x){v-y).
Finally, and obviously, we define the triple dot product of a triad acting on a
triad as a linear operation that produces a scalar, according to the rule
uvw - xyz = (w x){v-y)(u-2).
The 3rd order permutation tensor may be denoted and defined by
P =e,ge's"
Show that
(a). P--wyu=u-(v xw)
(b). Pvu=uxy
(¢) Pru= —ux.
(d). Let 1 x 1 be the 3rd order tensor defined by

u(Ixl)v=uxy Vuyv
Show that P = —1 x L.

Show, using (2.17), that

(a x b)(c x d) =da(b-c) + cb(d-a) — db(c-a) — ca(d-b)

+ [(@a-c)b-d) — (a-d)(b-c)]1
=T8S ~-(iT--9)1, (2.39)

where, recalling Exercise 1.13(b),

S=ba—ab=(axbh)x, T=dc—cd=(c xd)x.
This result is useful in describing finite rotations. See Exercise 2.19.

Any change of basis §; = A’g, can be effected by a nonsingular 2nd order tensor
B such that §; = Bg;. Show that

(a). B, = Al

®). g=B")g

An orthogonal tensor Q satisfies QTQ = 1,ie. Q7 = Q7.

(a). Let Q@ = [e;-Qe;], where {e,} is the standard Cartesian basis. Show that
Q"0 =1

(b). Show that det Q = + 1. Hint: det AB = (det A)(det B) (If det Q@ = + 1, Q is
called a proper L tensor or rotator)

(c). Show that under the L change of coordinates §; = Qg,, the cellar and roof
components of 1 (i.e., g;; and g*) are unchanged.
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217.

2.18.

(d). Explain why the columns or rows of Q may be regarded as the Cartesian

components of mutually L unit vectors.
e). If S _
Q=0ge = Q}'g‘fgt,

show that
Q" = 0';e’s = Qj'zig’,
and hence that
0./Q% = ¢},
A reflector is an L tensor H that reflects vectors across a plane with normal n, as

indicated in Fig. 2.4.
(a). Show, geometrically, that

H=1- 2 (2.40)

Hint: What vector when added to v gives Hv?
(b). Show that H? = 1.

(c). With the aid of Cartesian components, show that det H = — 1. (Hint: take
e, = fi).
(d). If m ~ (1, —2,3),and v ~ (v,, v, ,), fill in the blanks:
Hv ~( . , )

(e). If uand v are distinct unit vectors, show that

uv + vl — uu — vv

H=1+ (2.41)

l—uv
is a reflector that sends u into v and v into u.

A 3-dimensional rotator R is characterized by an axis of rotation, with direction
e, and an angle of rotation 0, reckoned positive by the right-hand rule, Fig. 2.5
shows a vector u that has been rotated about e through ¢ into the vector v = Ru.

Hv

Figure 2.4.
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2.19.

2.20.

II. General Bases and Tensor Notatio

ex (e xu)

exu

Figure 2.5.

(a). By resolving v into components along the three mutually L vectors
exu and e x (e x u), show that v=u + (sinf)e x u + (1 — cos)e :
(e x u) = (cosu + (1 — cosB)e(e-u) + (sinO)e x u, and hence that

R = (cos )1 + (1 — cosN)ee + (sinf)e x. (2.4

(b). Show that Re = e.

(¢). Using Cartesian components, show that det R = + 1.
Hint: takee, = e,

(d). Show that

R”T = (cos )1 + (1 — cosf)ee — (sinO)e x
(e). Show that in terms of the finite rotation vector
r = 2 tan(0/2)e, (2.4
R=(1+4-07'[(1 -4l +irr+rx). (2.4

(The advantage of introducing r is that (2.44) is a rational function of th
components of r; the disadvantage hits when 0 = n.)
). Ifr ~ (1,1, 1), compute ¢ and the matrix of Cartesian components of R.

Given two non-parallel, three-dimensional unit vectors u and v, show, by takir
sinfe = u x vand using (2.39), that the rotator that sends uinto v about an ax
1 towuand vis given by

R=1+vww—uv+(l+uvy)'[(uy+vwuv)—(uu+vw] (24

As (2.45) is free of the cross product, it is valid in any number of dimension
(With (2.40) and (2.41), or (2.42) and (2.45), we can construct, in two differe
ways, 1 tensors with determinant equal to —1 or + 1, respectively.)

Find the 2 x 2 matrix of the Cartesian components of the rotator that sends «
into the unit vector e, cos 0 + e, sin 0.
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221. Cartesian tensor notation means writing all indices as subscripts and may be
used whenever g' = g;. Show that this happens if and only if g; = Qe;, where Q
is an L tensor. Invariant forms are often most casily established by introducing
the standard Cartesian basis {e;} and using Cartesian tensor notation. Thus,
with the aid of (2.18),

(u x ¥) (U x v) = €406, U,U, = (8,0, — 0,8, )u;vu,0,

= ub U, — ULyt = (- u)(vey) — (- v)>

222. Given a basis {g,,g,,83 ], explain the geometrical construction of the reciprocal
basis {g', g%, g°}.
223. Given the 2-dimensional 2nd order tensor T¥ ~ (v, — v,,v,), where v ~ (v,,v),
(a). Determine its symmetric and skew parts, S and A.
(b). If g, ~(1,0) and g, ~ (1,1), compute the matrices [T3], [T;], [S!;] and
[S;']. Are these last two matrices symmetric?

224 Let {g;} be a basis, T any 2nd order tensor, and set h; = Tg;.

(a). Show that T = h,g’.

(b). Show that L(h,g' — g'h;) is the skew part of T.

(). If T is 3-dimensional, show that ig' x h; is the axis of its skew part. (See
Exercise 1.18).

(d). If {g;} is the basis given in Problem 2.1 and h; ~ (1,0, ~1), h, ~ (2,1,0),
h, ~ (0,1, 1), compute the Cartesian components of T and the axis of its
skew part. Note that {g'} is given in the solution to Problem 2.2,

225. Show that the rotator R defined by (2.42) has the alternative exponential repre-

sentation
R=e*"=1+fex + ((Z?;;)Z + (0e3>!< ? + (2.46)
as follows:
(a). Noting that
uxw=@uxvw and uxl=ux (2.47)
in the sense that
uxw) x=@Wmxvwx and (uxI)-x=uxx, VX
show that (1.49) implies
ex)’=ee—~1, (ex)’= —ex, (ex)= —(ex) = —(ee—1),...,
that is,
@x)"=(-1y*"ee—1), (ex)'=(-1ex, n=12.... (¥
(b). In (2.42) set (cosO)1 =1 — (1 — cosO)1 and use (*) and the Taylor series
expansions
B B UL

to obtain (2.46).
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2.26.

2.27.

2.28.

II. General Bases and Tensor Notation

If e is fixed, R is a function of @ only. Find a 1st order differential with initial
condition for R(0).

Just as any non-zero complex number z can be represented in the polar form
z = re', r > 0, so any non-singular 2nd-order tensor T has the pelar decomposi-
tion

T=V-R=V e,

where V is a positive definite and R is a rotator. Given T, use your knowledge
of linear algebra to explain how you would first compute V and then R.

Work Exercise 2.5 and then, using the same arguments,
(a). Show thatif A = [A5]is a 3 x 3 matrix, then (2.17) generalizes to

A, AL AL
e, detd=|A) Al All. (2.48)
AL A% A

(b). What is the generalization of (2.18)?

{c). Show that by setting g = j and r = k in (2.48) and expanding the determi-
nant on the right side, we obtain the Cayley—Hamilton Theorem (“a matrix
satisfies its own characteristic equation”):

ALAL AL — (AN ASAL + (1/2)[(AF)* — AfAK] A}, — (det A)3, = O (2.49)
which, in index-free form, reads

A~ (r A)A% + (1/)[(tr A)® —tr A2]A — (det )T = 0.  (2.50)



CHAPTER I

Newton’s Law and Tensor
Calculus

Newton’s Law of Motion is studied in introductory courses in calculus, phys-
ics, and dynamics. Being familiar, fundamental, and simple, Newton’s Law is
an ideal vehicle for introducing many of the key ideas in tensor calculus.

In its most primitive form, Newton’s Law states that, in an inertial frame,
the motion of a mass-point p obeys

f=m%, 3.n!

where f is the force acting on p, m is its mass, X is its position with respect
to a fixed origin O in the inertial frame, and a dot— Newton’s notation—
denotes differentiation with respect to time.

Rigid Bodies

Rigid bodies in classical mechanics are composed of mass-points that remain
afixed distance apart and exert on one another mutually parallel forces only.
It may be inferred from (3.1) that such bodies obey the gross form of Newton's
Law,

F=L, (3.2)
where F is the net external force acting on the body,
L =MX (3.3)

is its linear momentum, M is its mass, and X the position of its center of mass.?

! According to Truesdell, Newton never stated his law in this form; Euler first did!

% See, for example, Goldstein's Classical Mechanics, 2nd ed.

45
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It may also be inferred from (3.1) that a rigid body of classical mechanics
obeys the equation of conservation of rotational momentum,

X xF+T=R,, (34)

where T is the net torque on the body and R, is the rotational momentum
about 0.

In continuum mechanics, (3.2) and (3.4) are taken as postulates, valid for any
body, while (3.3) follows from the definition of center of mass; rigid bodies are
defined by a special constitutive assumption, without any reference to “atom-
ic” forces. See Exercises 4.19 and 4.22.

Combining (3.2) and (3.3), we obtain

F = MX, (3.5)

This law, though a gross one, yields, by itself, useful results for the motion of
bodies that are nearly rigid and either nearly spherical or else rotating at a
known rate, and small in the sense that their diameters are much less than the
scale of the field of interest. I have in mind raindrops falling on my head, golf
balls soaring over fairways, a record throw of a shot (but not one of a javelin
or discuss), a satellite tumbling in space, or an asteroid orbiting the earth.

As (3.1) and (3.5) are of the same form, we shall work with (3.1), but leave
the physical interpretation open.

New Conservation Laws

The simplicity of (3.1)-- the coordinate-free form of Newton’s Law —suggests
the following manipulations.
(a) Take the dot product of both sides of (3.1) with x to obtain

f-x=mk-x=(Imxx) =k (3.6)

In words, the external power (f- X) is equal to the rate of change of kinetic
energy (k).

(b) Take the cross product of both sides of (3.1) with x and note that x x X =
0 to obtain

to=xxf=XXxmX=(xxmx) =f,, 3.7

i.e., the torque t, about the origin is equal to the rate of change of the
rotational momentum r, about the origin.
(c) If there exists a potential v(x) such that

f-x= -0, (3.8)
then f is said to be conservative, and (3.6) implies that

k +v=¢ aconstant, (3.9
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i.e.,, energy is conserved. Often we can solve simple problems with the aid
of (3.9) and thus avoid having to solve a differential equation. See Exer-
cise 3.2.

{d) Sce Problem 3.2.

Nomenclature

The set of all points C occupied by a mass-point p between two times, say a
and b, is called the orbit of p. The point on C occupied by p at time ¢ may be
denoted by P(¢). If C is represented in the parametric form

C:x = R(0) = 2(e, + P(0)e, + 2(t)e,, a <t <b, (3.10)°

then the vector function R is called the ¢rajectory of p, and x the radius vector
to C.
If x is differentiable, then

x = ¥p), a<t<hb, (3.11)

is called the velocity of p (at t) and |9(¢)| its speed. & is said to be smooth at ¢
if X is continuous at ¢ and smooth (everywhere) if X is continuous for all
te(a,b)*

If & is smooth, then #(¢) is tangent to C at P(t). This follows immediately
from the definition

00 = tim XX Ax = R0+ A1) — R()
ar—o At

and from Fig. 3.1, which shows that the vector Ax/At, being parallel to the
vector Ax from P(t) to P(t + Ar), must approach the direction of the tangent
linc at P(t) as At — 0.

The length s along a smooth trajectory, measured from a point P(t,), satis-
fies the differential equation

dside = |9(1)], s(ty) =0, (3.12)

t
§ = J [¥(7)| dr. (3.13)
f
If x 1s differentiable, then

3 Here and henceforth we adopt a useful notation: if f denotes a function, then its value at t is

. A " . N -
denoted by either f{1) or f, the latter notation to be used whenever the functional form of f is not
important.

4 Note that a smooth trajectory nced not have a smooth orbit. Consider a point p on the rim of
a rolling wheel. Its trajectory is smooth but its orbit, a cycloid, is not: at points where p touches
the ground, the velocity is zero but the orbit has a cusp.
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AX /Nt

Pt + aAt)

P(t)

Figure 3.1

Figure 3.2,

% =v=4a() (3.14)

is called the acceleration of p (at t).

PROBLEM 3.1,

If ® is smooth, show that the area swept out by x as t varies from a to b is given by

1 b
A(b,a) = J Ix x X|dt. (3.15)

SOLUTION,

From Fig. 3.2 it is scen that the area of the shaded triangle, being half the area of the
parallelogram having x and Ax as co-terminal edges, is given by

AA = 3]x x Ax|.
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As 2|v| = |av], AA/At = }|x x Ax/At]. Hence, in the limit as At — 0,
dAjdt = §1x x x|, (3.16)°
which implies (3.15).

PROBLEM 3.2.
Show that in a central force field (f parallel to x)

{i) x lies in a plane.
{ii) Kepler’s Law holds: x sweeps out equal areas in equal times.

SoLuTioN.
{i) If { is parallel to x, then x x { = o and (3.7) implies that
X X X =¢, (3.17)
a constant vector. Thus
X‘e=xXXx)=x(xxx)=0, (3.18)

i.e., x lies in a plane. ) R
1t follows from (3.15) and Problem 3.1 that dA/dt = }|e|. ie., A(t + At) — A(t) =
1lc]At. This is Kepler’s Law.

(ii

~

Newton’s Law in Cartesian Components

The four conservation laws derived under (a)-(d) are simple and useful and
epitomize the virtues of expressing the laws of mechanics in coordinate-free
form. However, except in special cases, these conservation laws alone cannot
provide all of the details of the motion of a mass-point. To extract full infor-
mation from Newton’s Law, we must express (3.1) in component form. In
specific cases, we try to choose a coordinate system in which the components
of fsimplify.

In the simplest case, the Cartesian components of f are known functions of
position and time, so we set

f=/fe + /e + fe. (3.19)
From (3.10)
X = Xe, + je, + e, (3.20)
whence
Se=mX, f,=mj, [ =mi (3.21)

* For those who like a little more precision and detail: Assume that X = lim Ax/Az exists at P(1).
Then the right side of (3.16) exists at P(z). By the triangle inequality, |4|x x x| — 1{x x Ax/A1]] <
ix x X — x x Ax/A1ll = §|x x (X — Ax/A1)] < L|x||x — Ax/A1] -0,
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Newton’s Law in Plane Polar Coordinates

To study the motion of a planet about the sun or, more generally, the motion
of a point-mass under any central force (say a ball-bearing, attached to a
rubber band, whirling around on a horizontal, frictionless table), we would
want to introduce plane polar coordinates (r,0) defined by

x =rcos 6, y = rsinf. (3.22)

With the change of variables (3.22), the position of a mass-point takes the
form

x = R(r,0) = rcosfe, + rsinfe,, | x=%@w)= %'w)e, (3.23)°

where r and 6 are unknown functions of time. By the chain rule,
v =X = (OX/Or)i + (0x/00)0. } v = (Ox/0u)u’ (3.24)
From (3.23),

g, = 0x/ér = cos e, + sinfe,
g = Ox/ou’ = (0x*/du')e,. (3.25)

gy = 0X/00 = —rsinfe, + rcosfe,.

|
|
|
:
|

Since
|
cos) —rsing| | ,
= yeee) = det ¢
J(gr’ gO) sin 0 rcos f) } J(gl ) € [x,j] (3_26)
= r’

{g,.g,} is a basis at every point of the plane except the origin. (Such excep-
tional points are the bane and beauty of many useful coordinate systems.
Often the field equations of physics and mechanics admit solutions that are
singular at exceptional points. Sometimes these solutions must be discarded
on physical grounds. Yet other times they represent such useful idealizations
as sources, sinks, vortex lines, concentrated forces, or black holes!)

We shall call g, and g, the cellar base vectors of the (r, 0) coordinate system,’
and denote their coefficients in (3.24) by

o =F v =0 l vt = a'. (3.27)

¢ A number of equations that follow have two parts, separated by a vertical dashed line. The
right half represents the general tensor form and will be discussed presently.

? Here and henceforth we omit the qualifier “aside from exceptional points™ whenever we speak
of the cellar (or roof) base vectors of a coordinate system.
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8 - curve

Figure 3.3.

These are the roof components of v. With this notation, (3.24) reads

=0'g, + vg, l =v'g;. (3.28)

The geometric interpretation of g, and g, is simple. Through any fixed
point P, with polar coordinates (r,, 0,), except the origin, there passes a uni-
que r-coordinate curve with the parametric representation %(r, 6, ), and a uni-
que O-coordinate curve with the parametric representation R(r,,0). By the
same argument we used to show that v = X is tangent to the curve traced out
by x as ¢ varies, g, = 0x/0r and g, = 0x/00 are tangent, respectively, to the
curves traced out by x as r or @ varies. Fig. 3.3 shows the r- and §-coordinate
curves that pass through a typical point P and the associated base vectors g,
and g,. Also indicated is the decomposition (3.28).

The Physical Components of a Vector

The physical component of a vector w in the direction of a vector u is defined
to be w- . Thus if v’ and v*® denote, respectively, the physical components
of v in the directions of the roof base vectors

g = cosfe, +sinfe, g°=r""(—sinbe, + cosfbe,), (3.29)
then from (3.27) and (3.28)
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v{')-_—v-‘g'z.—v'::f |
I oD = v-g' = vi/|gl|. (3.30)
@ = v-‘go = rp? = ré. |

These expressions agree with the ordinary definitions of radial and angular
velocity.

To compute the acceleration in plane polar coordinates, we differentiate
(3.28) with respect to time, so obtaining

a=V=ig +08 + 0% + 0%, | a=dyg +vE. (30

The Christoffel Symbols

The compute g, and g, we must use the chain rule for, by (3.25), g, and g, are
functions of r and 0 and these, in turn, are (unknown) functions of t. Thus

g, = (dg,/0r)F + (0g,/00)0

|
=vr rr+vo r, ":: au/au}d"
. g, .go . } g = (0g:/ou’) (3.3
8o = (08e/0r)F + (0ge/00)0 = v'g;;
=08y, + v"g,,',,, |

where a comma indicates partial differentiation with respect to the variable(s)
whose index (indices) follow it. Being derivatives of vectors, g, ,, 8.4 = 8.
and g,, are themselves vectors. Therefore each can be written as a linear
combination of g, and g, say

g, =I8+Tg

(3.33)

800 = Too8, + Toogs.

The coefficients of g, and g, in (3.33) are called the Christoffel symbols of the
(r, 8) coordinate system. Substituting, (3.33) into (3.32), we have

|
|
|
g.0= 8. = I8 + Ilsg, i| 8= 8= r{"jgk
|

g = 0'(Tg, + T%g0) + (T, + TYg,) |'
i g = vjr,i‘jgk' (3.34)

8o = v"(Treg, + Tloge) + v°(Thog, + The80) I

Finally, we place these relations into our expression for the acceleration,
(3.31), and coliect coeflicients of g, and g,, to obtain

8 Note that g, = X0 = Xg = Bp.- ;

8.j= Xy = Xji = 8j.
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a=[¢"+ (70" + Tev®)o" + (Tgv" + Ther®) 0,

+ 6%+ (T8 0"+ TE0%) 0" + (M0 + %% 0% g,

= .k
=agy.

| (3.35)

|
I a = (¢* + v'v'T¥)g,
|

P [’} |

=d g,. + a gg. |

We call a" and a® the roof components of a in the (r, 0) coordinate system.

Things are not really as complicated as they appear because a number of
the Christoffel symbols vanish. From (3.25)

g.=0 {
8. =8, = —sinfe, +cosfe,=r'g, | g;=x%e, (3.36)
8 = —rcosfe, — rsinfe, = —rg,. | = xRut g,

|
Comparing (3.33) with the above, we have, by inspection,

M=Th =T =Th=0 |
| T%=x5uk, (3.37)
[lg=r Y Th= —r, !
so that the formula for a with v* =  and v® = 0 reduces to
a=(F—r)g, + (0 + 2r il)g, I a = (i* + iiixtut g, .
=a'g, + a’g,. | = d'g. '
Note that the physical components of the acceleration in the directions of
g and g, are given, respectively, by
a"=a g =a =Fi-rh? =
| a9 =a§=@"+uuT)/lgl (3.39)
a® =a-g° = ra® = rf + 270, I
formulas that you will recognize from calculus, physics, and dynamics.

To get the component form of f = ma, we assume that the roof compo-
nents of f are known. Then Newton’s Law may be written as

f8 + f'8o = m(a'g, + a’gy). { f'g; = ma'g; (3.40)
But {g,,g,} is a basis, which implies that
f" = ma" = m(F — rb?) | fi= m@t + araer )
(3.41)

1% =ma® = m6 + 2r '#9). |

Now the motive for introducing polar coordinates in the first place was the
expectation that, in a central force field, the component form of Newton’s
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Law would simplify. And indeed it does. Note that in (3.41),, 6 + 2r 70 =
r~2(r20)y. Hence, if f® = 0, r*0 = r,, a constant— Kepler's Law! Combined
with (3.41),, this relation allows us to reduce the determination of the orbit
of a mass-point to the solution of a first order differential equation, provided
that f" depends on r only. See Exercise 3.7.

General Three-Dimensional Coordinates

A convenient way to describe the position of a satellite orbiting the earth is
to give its distance p from the center of the earth, its co-latitude ¢ (i.c., the
co-latitude of a point on the earth’s surface directly beneath the satellite), and
its azimuth 6 from a non-rotating plane IT through the polar axis. Such a
system of spherical coordinates (p, ¢, 0) is defined by

x = psingcos
y = psingsinf (3.42)
zZ = pcosd,

where (x, y, 2) is a set of Cartesian coordinates with its origin at the center of
the earth and the xy- and xz-planes coincident, respectively, with the plane of
the equator and the plane I1. With the restrictions 0 < p, 0 < ¢ < n,0< 6 <
2=, the transformation (3.42) becomes 1:1, except along the z-axis which is a
locus of exceptional points.

A study of the vibrations of a triclinic crystal in which the atoms of a cell
lie at the vertices of a parallelepiped provides another example where a
coordinate system other than Cartesian is preferable. Here we might intro-
duce oblique Cartesian coordinates (u, v, w) defined by

x=Alu+ Ao+ Alw
y=A%u + Adv + Alw (3.43)
z=Aju + A3v + A3jw,

where —oc < u, v, w < o0. The constants Aj- would be chosen so that the
coordinate curves are parallel to the skewed lines along which the atoms
lie. As det[4}] # 0, the transformation is 1:1 and there are no exceptional
points.

Still other problems (for example the determination of the trajectory of a
particle rising in a hot, tall chimney) call for circular cylindrical coordinates
(.6, z), defined by

x =rcosf, y=rsinf, z=z (3.44)
where 0 <r, 0 < 0 < 2r, —o0 < z < . This transformation is 1:1 except

along the z-axis.
Equations (3.42) to (3.44) are each examples of a coordinate transforma-
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tion of the form
x = Xu,0,w), y=Pu,o,w), z==2uv,w). (34%)

Instead of using different letters to denote different coordinates, let us set
x=x',y=x%z=x>and u=u', v = u?, w=u’. (The superscripts repre-
sent indices, not powers.) Then (3.45) reads

xl = ﬁl(ul’uZ,u:l)
x? = 22u',u?,u’) (3.46)
x? = 23, u? u?).

Each of these relations is of the same form. We emphasize this by rewriting
(3.46) as
xt= %W, utu), i=123 (3.47)

However, there is no need to continually remind ourselves that we are work-
ing in 3-dimensions. Indeed, the beauty of tensor notation is that it reveals
those relations that hold in any (finite) number of dimensions. Thus we shall
drop explicit reference to the range of the free index and so replace (3.47) with

xt = %', u? u®). (3.48)

One final compression of notation. Let us agree that in the argument of a
function, a sequence of variables such as u', u?, u® may be replaced by a single
symbol, say u’. The only provision is that the symbol for the index (j in this
case) be distinct from the symbols for any other indices in the term in which
%' appears. This boils (3.48) down to its essence:

xt = %)) (3.49)

The index j in (3.49) may be called an argument index.

Newton’s Law in General Coordinates

Newton’s law in general coordinates is obtained by mimicking the steps that
led us from the expression for the position of a mass-point in polar coordi-
nates, (3.23), to the formula for its acceleration in terms of roof components
and cellar base vectors, (3.38). Our first thought is that things are bound to
be more elaborate. However, because we refuse to tie ourselves to any partic-
ular coordinate system, certain features of our equations that are common to
all coordinate systems come into focus, each cluster of formulas exhibiting a
simple pattern that is captured by tensor notation.

Several of the equations that follow have a counterpart in polar coordi-
nates, indicated by an equation number in brackets. Each of these latter
equations has its generalized tensor form listed on its right. Your rcspect lor
the economy of tensor notation will grow as we proceed.

We begin by relabelling the Cartesian base vectors as follows:
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e, =e, € =¢€, e =¢, (3.50)

With the change from Cartesian to general coordinates defined by (3.49), the
representation for the position of a mass-point takes the form

x = &) = X' (u)e, + 22(u')e, + 23 (u)e,
= (e, (3.51) [3.23]

As x depends on the u’ and these, in turn, arc (unknown) functions of ¢, we
have, by the chain rule,

v =% = (0x/0u" )i’ + (Ox/ou?)u? + (Ox/duyi’
= (Ox/0u'yu’. (3.52) [3.24]

The three vectors
g = ax/’aui - x‘i - X'k[ek (353) [325]

are called the cellar base vectors of the u’~coordinate system. They form a
basis at any point P where J(g,,g,,83) # 0 and are tangent to the associated
coordinate curves that pass through P. We represent these base vectors by
arrows with tails at P, although occasionally, as with the Cartesian base
vectors e, we shall place the tails at the origin. Fig. 3.4 is typical.

ProBLEM 3.3.

Compute the cellar base vectors and the Jacobian for the system of spherical coordi-
nates (3.42).

SOLUTION.

When dealing with specific three-dimensional coordinate systems, it is frequently
more tidy, typographically, to revert to using distinct letters for different coordinates,
Thus, with

X = xe, + ye, + ze,

Figure 3.4.
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we have, from (3.42) and (3.53),

g1 = g, = X, = singcos e, + sin gsin fe, + cos e, (3.54)

g = 84 = X4 = pcosgcosle, + pcosgsinfle, — psin de, (3.59)

g: =g = Xy= —psingsinde, + psingcosfe, (3.56)
sin g cos 0 sin g sin 0 cos ¢

J(8,,84.8) = | pcosgcosf pcosgsing —psing| = p*sing.  (3.57)
—psingsin®  psingcos? 0

The coefficients
vl = (3.58) [3.27]

of the g, in (3.52) are called the roof (or contravariant) components of v. In the
new notation defined by (3.53) and (3.58), the component representation for
the velocity reads

v =0'g,. (3.59) [3.28]

The physical components of v in the directions of the reciprocal base vec-
tors g' are, by definition,

VO =v-g = v-gilg| = o'/lg']. (3.60)° [3.30]

To compute the acceleration, we differentiate (3.59) with respect to time, so
obtaining

a=v=7og+0'g (3.61) [3.31]

The g; are functions of the general coordinates which, along the trajectory,
are (unknown) functions of time. Thus, by the chain rule,

g, = (0g,/ou")u' + (0g;/ou’)i® + (Og./ou)u
(Ogi/ow )i’
= vig,, (3.62) [3.32]

where we have used, successively, the summation convention, the comma
convention for partial differentiation, and (3.58).

The vectors g, ; can be expressed as linear combinations of the g, in the
form

8ij= riljgl + rizjgz + g, = g, (3.63) [3.33]

Note that g, ; = &?x/0u’du’ = d*x/ou'du’ = g;,, ie., g ; is symmetric in the
indices i and j. This implies that I'f; = I'%,. The Tj; are called the Christoffel
symbols of the u’-coordinate system.

Substituting (3.63) into (3.62) and (3.62) into (3.61), we obtain for the accel-

? Recall that two dummy indicies on the same level (on the roof in this case) are not to be
summed over.
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eration,
a = d'g, + v'o TYg,. (3.64)
We now throw a move that is typical in tensor analysis: we change the
dummy index in the first term on the right from i to k. This allows us to write
a = v*g, + v'o'Tjg,
= (0% + v'v'TY)g, = a'g.. (3.65) [3.35]
The a* are the roof components of a (with respect to the basis {g,}).
The physical components of a in the directions of the reciprocal base vec-
tors g' are, by definition, and from (3.58) and (3.65),
a = a-g' = al/lg| = (' + wruil)/|g. (3.66) [3.39]

When f is represented in terms of the basis {g,}, Newton’s Law, f = ma,
takes the form
ftg, = ma*g, (3.67) [3.40]

which implies that
¥ = ma* = m(a* + W'a’TE). (3.68) [3.41]

Computation of the Christoffel Symbols

Computation of the Christoffel symbols in any specified coordinate system
is straightforward. Indeed, there exist computer programs that do this by
manipulating symbols-—not numbers —just as we are about to do.

(a) Start from (3.51) and compute the Cartesian components of g; ;.

(b) Compute the roof base vectors, ic. find the inverse of the Jacobian
matrix.

(c) Take the dot product of both sides of (3.63) with g?, p being a free index.

This yields g - g, ; = I'{;g” - g, = I'}{;0f = I';. Or, renaming the free index,

ry=g"g.; (3.69)

PROBLEM 3.4.

Compute the Christoffel symbols for the u’-coordinate system defined by

SOLUTION.

As mentioned earlier, when dealing with specific coor dinate systems, it often simplifies
the typography to set x = x', y = x%, ..., x!, = x,, 8, = g,. etc. Thus, recalling our
abc’s, we have
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(a) x = & (u)e; ~ (ur, wiu? — v?).
g, ~ (©,0,2u), g,~ w0, —-20v), g,~(0,2w0)
..~ 00,2, g, ~(,00), g..~(000
8.~ 0.0,-2), g,.~0,00)
8w ~ (0,2,0).

v u 0
b G=|0 0 2w/| andhence J = 4w(u® + v?)
2u -2v 0

Rather than carry out the simultaneous row reduction of [G|I] to obtain [7|G™'],
it is simpler, since we are dealing with a 3 x 3 matrix, to use the formula (no sum on
iorj)

G =J (= )MM,], (3.70)
where M, is the determinant obtained from G by deleting its ith row and jth column.
(See Hildebrand, Methods of Applied Mathematics, 2nd ed., pp. 16-17.) Thus

4vw 0 2uw g’
G =J duw 0 —2ow | ~| g°
0 22’ + 27 0 g"

(¢) From (a) and (b)
Ciu = 8" 8uu = J ' [@ow)(0) + (0)(0) + (2uw)(2)]
= uf(u® + v*)
T =g g = J ' [(@w)(1) + (0)(0) + (2uw)(0)]
= vfu® + v?).
Continuing in this fashion, we find that
=, =T, =u/W® + %), Ty, =T, =/ + %)
e, = tw,

while the remaining 11 Christoffel symbols are all zero.

An Alternative Formula for Computing
the Christoffel Symbols

An alternative formula for computing the Christoffel symbols is
T4 = 29" Gips + 9ipi — Giio) 3.71)

where, as explained in Exercise 2.8, g7 = g’ g/ and g, = g;- g, are the roof
and cellar components of the identity tensor 1. This formula has two advan-
tages over (3.69),
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First, it is applicable as it stands to general relativity where the indices
range from 1 to 4 and where the g;;—there called the covariant components
of the metric tensor —reflect the distribution of matter in the universe.

Second, (3.71) is efficient in orthogonal coordinates, i.e., in coordinate sys-
tems where the g; are mutually L (though not necessarily of unit length). In
an orthogonal coordinate system, the matrix [g,,] is diagonal, as is [¢"]. In
this event, (3.71) reduces to

r?j = %gkk(gik‘j + G — Giju) (3.72)
This formula may now be broken into 4 mutually exclusive cases.
(@) i, j, and k are distinct. In this case,
l"{.‘j-=0, i#j#k#I (3.73)

because [ g,;] is diagonal. In n-dimensions there are n(n — 1)/2 Christoffel
symbols of this type.
(b) i and j are distinct but k is not. In this case, because I'f; = I'*, and g,; = 0,

r:j = %giigu“ja i (3.74)

In n-dimensions there are n(n — 1) Christoffel symbols of this type.
(c) i and j are equal but distinct from k. In this case g, = g; = 0 and (3.71)
reduces to

Th= —39"gus k#i (3.75)

In n-dimensions there are n(n — 1) Christoffel symbols of this type.
(d) i, j, and k are all equal. Then

Ii= %gﬁgu.r (3.76)
In n-dimensions there are n Christoffel symbols of this type.

Before deriving (3.71), let us illustrate the above results.

ProprLEM 3.5.

Compute the Christoffel symbols in spherical coordinates.

SOLUTION.

From (3.54) to (3.56),

28,8 '8 88 o 0
[g9;]1= : Bs°8s 85 B |=]|0 p? 0
. 28 0 0 p?sin?
Hence, by Exercise 2.10(b),
1 0 0
[¢91=[g,1"=|0 p* 0
0 0 plesc?g
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Taking cases (a)—-(d) in order, we have

(a) rz;— raa—o F13—F’,,_0,Ff2=rf,¢=0
(b) riz = r,w = zg 911 2 = 2(1)(0) =0

Iﬂ13 =TI%= zg 911.3 = 2(1)(0) =0

ri = Tﬁp = %922922,1 = Jz'(P“ %)(2p) = Pfl

[Z,=T%%= %922922.3 ={p H(0) =

n, = rgp = zg 913 =X "20902¢)(2psin2¢) =

I, =05 =14 9332 4(p~2csc? ¢)(2p% sin g cos §) = cot ¢
) Iy, = g = zg 9220 = - @2p)= -p

[y =Tf=—1g"g33, = —3(1)(2psin? ¢) —psin?g

r%l = F;'?,, = —%922911.2 = —"(P-Z)(O)
[ =T = —39°%9332 = —3p ) (2p? Smaﬁcosm = —singcos¢
rs = rfzp = —1gg,,3= —3p csc?9)(0) =0

ri, = r‘;a = “12933922.3 = —%(P'ZCSCZM(O) =0
(d) F},=F zg ‘]111*‘1(1)(0)

F§Z=F$¢=éq ‘]zzz—z(P )() 0

M3, =0%= z.‘] 933.3 = z(P csc ¢)(O) 0.

While these results are fresh in our minds let us work another problem.

PROBLEM 3.6.
Compute the roof and physical components a® and a'® of the acceleration vector
in spherical coordinates.
SOLUTION,
From (3.65),
a* =62 + (v")T%, + 20'0%T2, + 20'0%T2, + (02)T%, + 20%0°T%5 + (03)T3,.

From Problem 3.5 we see that the only non-zero Christoffel symbols in the above
expression are I'f , {=TI"3,) and I'};. Thus, with a® = a?, etc. we have

a® =i* + 207°T8, + (1°)2Tg,
=@ + 2p ' pd — 0?sin g cos ¢.
Again, from Problem 3.5, g?- g% = g2 = p "% Hence |g®| = p ! and we obtain
a'? = a@ = a2/|g?| = pd + 2pd — pb?sing cos .
Note that the physical component a'®, unlike the roof component a®, has the dimen-

sions of acceleration, {length/(time)?].

To derive (3.71) note first that
Giju = @ 8k = 8in & + 8 8jws 3.77)
which, with the definition (3.63) of the Christoffel symbols, takes the form

guk rikgp g] + r)kgp gl - rkgp] + r_’;kgpx (378)
Next interchange i and k and then j and k in (3.78) to get
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9eji = Thigp; + Thgpm-
Gy = Thigm + Thig,

Now add (3.78) to (3.79), and subtract (3.79), from the resulting sum. As
% = I'E;, etc, there follows

(3.79)

Gijk T Gji — Gy = 2T hg - (3.80)

Finally, multiply both sides by g% and sum on the repeated index j. As
g%g,; = 04, the resulting expression reduces to

It = ’l’gqj(gij,k + Guji — Gin.jh (3.81)
which is just (3.71) with the indices relabeled.

A Change of Coordinates

A change of coordinates from a u’-system to, say, a &i*-system is defined by a
transformation of the form

wl = ik, (3.82)

In what follows we shall assume that (3.82) is 1:1 and continuously dif-
ferentiable except, possibly, at certain exceptional points. For example, a
change from circular cylindrical coordinates (r, 8, z) to spherical coordinates
(p, ¢, 0), as indicated in Fig. 3.5, takes the form

r=psing (3.83)
0=10 (3.84)
z = pcos g, (3.85)

where 0 < p, 0 < ¢ < 7,0 < 0 < 2z, p = 0 being the only exceptional point.
Suppose that the various components of a vector v or a second order
tensor T are known in the u/-system. How do we compute the corresponding

Y2

Figure 3.5.
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components in the #*-system? As we saw in (2.36) and (2.38), this can be done
once we have expressed the base vectors §; = éx/0i’ as a linear combination
of the base vectors g; = dx/du’ or vice versa. But if, initially, x = &(u’), then
by the chain rule

8, = (Ox/0u)ou' joid + (0x/0u*)ou?/0a’ +
= Ju'/on’g,. (3.86) [3.36]'°
Thus (3.86) is of the same form as (2.31) with
Al = ou'/ow. (3.87)

Of course, now, in gencral, the A} vary from point to point. It is also apparent
from symmetry-—just reverse the roles of u/ and @#*—that

(A7Ys = on'jou’. (3.88)
It therefore follows immediately from (2.36) and (2.38) that

= (Qu'/oilyv;, ¥ = (OF'/ou’)r’ (3.89)
= (0u*/0a')(0u®/0a)) T,
= (0u'/ou*)(Qur/oa’) T, (390)
= (Qutjow’) (0u'/ouP) Ty
T = (0 /ouk) (0 /0u?) T*.

These formulas are important enough to be boxed. Many texts on tensor
analysis virtually start by taking (3.89) and (3.90) as the definitions of co- and
contravariant vectors and co-, contravariant and mixed tensors of 2nd order.
That is, any collection of objects (v,, v,,...), or v, for short, is said to represent
a covariant vector providing its components transform according to (3.89),
with similar definitions for contravariant vectors ¢, covariant tensors T;;, etc.
This viewpoint is taken sometimes in general relativity and in the theory
of shells and membranes because in both cases one is dealing with curved
continua.

ProBiLem 3.7.

Suppose that in circular cylindrical coordinates, a 2nd order tensor T has the mixed
components

2 -1 1
[T'1={0 1 2
30 -2

at the point r=1, 0 = n/4, z = -\/3, Find the component 7;' of T in spherical
coordinates.

' To obtain the 2nd line of (3.36) from (3.86), take i = k, j = p and 4° = x".
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SOLUTION.
With (u',u?, u?) = (r,0.2) and (#',3%,@%) = (p, ¢, 0), we have, from (3.83) to (3.85),

or/ép  Oridp Or/d0 sing pcosgp O
[ouk/0ul] =| 00/0p 00/69 060/66| = O 0 1.
dz/0p 0z{G¢ Oz/00 cosp —psing O

Either by inverting this matrix or else by inverting (3.83) and (3.85) and then comput-
ing dp/dr, etc. we obtain:

dp/dr dp/o0 Opjoz sin¢ 0 cos ¢
[éa'/our] = | d¢/dr 0¢/60 O¢foz | =|p'cosg 0O —p 'sing].
d0/er  00/00 00/0z 0 1 0

From (3.90),,
;' = (2a' fou?) [ T P(@u*/03*)]
= (0" /ouM) [T, (0u'/0i®) + T; (0u?/00?) + -]
+ (0" Jou) [T, 2 (Bu'/oi?) + -+ 1
+ (0a" /oud)[ - + T3 (0u®/0i%)]
= (sing)[T'(pcosg) + T3'(—psing)]
+(cos ) [T’ (pcosg) + T3> (—psing)].
At the given point, p = 2,sin ¢ = 4, and cos¢ = —\/5/2. Hence,

~ 1 . .
' = (2) [Q(=/3) + (N(= DT+ (=/3DIBN=/3) + (=(~=1)] =4 - 2,/3.

Transformation of the Christoffel Symbols

The transformation of the Christoffel symbols is a bit elaborate but straight-
forward. By definition

0, = 8" (og,/00"). (3.91)
From (2.33) and (3.88),
g = (0 /0u)gP. (3.92)

Furthermore, from (3.86),

o, @ (out

2"~ oa*\ o B

A ou? 0g,
= oo T o gt

(3.93)

But the base vectors g, are functions of the " which, in turn, are functions of
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the @#* according to the given change of coordinates (3.82). Hence, by the
chain rule and the definition of the Christoffel symbols,

og, _ og, ou"
ot ou” o
ou”

Substituting (3.94) into (3.93), and (3.93) and (3.92) into (3.91) and noting that
g’-g, = 07 and g”- g, = 47, we obtain

.. (7&"((72u” ou? du’ l"”).

(] . + —
oa‘a*  owl onk v

*= A (3.95)
Because of the underlined term, the new Christoffel symbols are more then
just a linear combination of the old. This is why the Christoffel symbols
cannot be regarded as the components of a 3rd other tensor (and therefore
why some authors write {* } instead of I'};). Whenever Cartesian coordinates
can be introduced'!, (3.95) provides a useful, alternative way of computing
the Christoffel symbols —take the old coordinates u' as a set of Cartesian
coordinates x’ and the new coordinates @' as a set of general coordinates u".
Since the Christoffel symbols vanish in any set of Cartesian coordinates,
(3.95) reduces to
i 2.,p
- X (3.96) [3.37]

k ., g —
K OxP ouwlout

Exercises

3.1. Cite three different sources that define inertial frame. Then give a definition in
your own words.

3.2. A ball-bearing of mass m is shot into the air vertically from a spring-loaded
cannon whose muzzIle is flush with the ground. The spring is linear with spring-
constant k and is retracted a distance D from the muzzle. If the spring imparts
all of its stored encrgy to the ball-bearing, how high does the ball-bearing fly?
Neglect air drag and take the force of gravity to be constant.

33, Ifx =te, + tle, + t’,, —ov <t < o, find: a) X; b) X.
34 Let
x=R0), a<t<f
be the parametric equation of a curve C. If x is differentiable, the velocity v = X

may, in view of (3.12), be represented in the form

! Not possible on intrinsically curved continua such as balloons.
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v =|v|t = §t. (3.9

t is called the unit tangent to C. (At points along C where v = 0, t is undefined,
but the representation (3.97) remains valid since, at such points, v = Ot = 0.) If §
and t are differentiable functions of 1, then

X=v=a=35§t+s§t=a, +a,. (3.98)

a, is called the path acceleration and a, the centripetal acceleration. Note that if
we differentiate both sides of the identity t-t = 1, we obtaint-t + t-t = 0. Thus
t-t = 0, which implies that a, and a, are orthogonal.
(a). Show that

a,= (K %/%X X)X, a =% x(&x Q%X (3.99)

(b). Compute a, and a, for the curve in Exercise 3.3.
If we regard the unit tangent t as a function of arc length s, then we may always
represent t' = dt/ds in the form

t =|t|¢ =«n (3.100)
Kk is called the curvature of C and n, which is the direction of t', the unit normal

to C.
(c). Using the chain rule, show that

a_= ks’n
and, from (a), that
K= ]x x X|%|°. (3.101)

(d). Compute « for the curve in Exercise 3.3.
(e). The unit vector b =t x nis called the binormal to C.
Show that b’ (=db/ds) and n’ may be expressed in the form

b= —1n (3.102)
n = —«xt + th. (3.103)

The scalar 7 is called the torsion of C.
(f). Show that

T =(x x %) ¥/|x x %%
(g). Compute 1 for the curve in Exercise 3.3
The three linear, first order, vector-valued differential equations (3.100), (3.102),
and (3.103) are called the Serret- Frenet equations and are fundamental in the
study of space curves. Given k and 7 as functions of arc length, the solution of
the Serret- Frenet equations determine a curve uniquely to within a rigid body
movement. Sce Struik, Differential Geometry, 2nd ed., Sect. 1- 8.

The parametric equation
H:x = a(cosOe, + sinle,) + ble,, 0 <0< 2n,

represents a segment of a right-handed circular helix that lies on and wraps once
around a right circular cylinder of radius a.
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3.6.

3.7.

Figure 3.6.

(a). Compute the arc length s along H as a function of 6, startingat 6 = 0.
(b) Compute the curvature and torsion of H.

A rigid whirling arm with a tilting seat at its end may be used to reproduce
accelerations that a person might feel on a ride in an amusement park or in an
air or spacecraft. With reference to Fig. 3.6, the location of the center of the head
of the person seated in the tilting chair is

X = (a + hsing)e, + hcosge,,

where a, h, and e, are constant but ¢ and e, may vary with time. Let {e,, e, e,}
be a rigid frame attached to the chair, where

€, =€.C0S¢p —e,sing, €, =esing+ecosp, e =e, xe,.
The acceleration of the head may be expressed as
a=a,e, + a,e, + a,e,.
Express a,, a,, and q, in terms of 0, ¢ and their time derivatives.

Carry out the following steps to reduce the determination of the orbit of a

mass-point in a central force field to two successive quadratures:

(a). User r?0 = ry to reduce (3.41), to a 2nd order differential equation in r.

(b). Multiply the equation so obtained by F, assume that /" = v'(r), and show
that the resulting equation can be cast into the form ( ) = 0.

(c). Integrate, solve for 7, and write the resulting equation in separable form,
thereby reducing the solution for r to a quadrature.

(d). With r = #(¢) in hand, how would you find 8 = (1)

Compute the roof base vectors {g!,g.g°} = {g”.g%,g°} in spherical coordi-
nates (p, ¢, 0). (Hint: Since the cellar base vectors are mutually 1, g# = ig,, etc.)
Check your answers by computing the matrix [¢g*] = [g' g/] and comparing
your result with the same matrix computed in the Solution to Problem 3.5.
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39.

3.10.

311

312

III. Newton's Law and Tensor Calculus

For the (4, v, w) coordinate system defined by

X=u+w
y=vl—w
z=u®+u,
compute:
(a). The cellar base vectors
8.5 B> Bu-

(b). The reciprocal base vectors at
=1, p=1 w= -1

(¢). The Christoffel symbols at any point.
(d). The roof components of the acceleration vector.
(). The physical components a®, a® atu = —1l,p=1,w= —~ 1.

Assume that we are in two dimensions. Given the transformation
X =u— v

, -0 <u<aw, 1<,
y=u-+u,

compute

(a). The base vectors g, = g, 8, = &,

). The reciprocal base vectors.

). The 6 Christoffel symbols I'}; = I'¥,,, F{Z Iv, et

(d). The roof components a* = a* and a® = a? of the accelcration vector.

). The physical components a* and a®.

(). If f = uvg,, write down the component form of Newton’s Law in the up-
coordinate system.

By differentiating both sides of g'-g; = &/, show that

;= —Thg" (3.104)
Let C be a smooth curve having, in general coordinates, the parametric equa-
tion C: u® = 2'(t), a < t < b. By definition, the square of the differential clement
of arc length is ds® = dx - dx, where x = &(2'(t)) is the position of a point on C.
By the chain rule,

dx = (Ox/0u')(du'/dt)dt = gu'dt,
)
dx-dx = (gu'dr)- (g;u'd1)

= g, uulde?. (3.105)
The distance along C between two points P(t;) and P(t,) is therefore equal to
j \/guu 1/ dt. Because of this relation, the gy especially in general relativity,
are sometimes referred to, collectively, as the metric tensor.

Let 6 = ¢ = 1,0 < t < 7 denote the parametric equations of a curve lying on
a sphere of radius R. Express the length of C as a definite integral.
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313

314

3.15.

3.16.

3.17.

318

Compute the roof components of the vector v ~ (x* + y?,z, —2) in spherical
coordinates, (3.42).

Compute the 6 Christoffel symbols of the two-dimensional up-coordinate sys-
tem defined by

X = 2(’""0, y = "(’3'”2”.

Generalize Exercise 3.14: Determine formulas (using matrix notation if you
prefer) for the Christoffel symbols of the u’/-coordinate defined by

x' = clexp(Aiw!),
where [A}] is a constant matrix. (Recall: no sum on i on the right because i

appears twice on the roof.)

(a). Determine the transformation x* = 2‘(u’) such that I'j, = , 8], where the o,
are constants.

(b). Does there always exist a transformation of the form x! = 2{(u’) such that
the I'; take on arbitrarily prescribed values? (Hint: First try special two-
dimensional examples.)

A class of 3-dimensional cylindrical coordinates is defined by a transformation of
the form!2

X +iy = f(u+iv)
zZ=w,
where f is an analytic function. Recalling that
JSlutivy=x,+iy,=y,=ix,

show that

(‘d). g — lgv = (e, — ie)\)f"

(b). the coordinate system is L.

© J=I11P

() Buw = iBow = (8~ 18)S"/S> Buw — I8 = @ + i8IS"/S

@ Iu=T,=-T0=R0f"/f)Tu=-Ti= T =201"1)

where & denotes “The real part of” and .# denotes “The imaginary part of”.
Compute the Christoffel symbols and sketch a few of the coordinate lines in the
plane z = 0 for

(f). parabolic cylindrical coordinates, defined by

f=fu+iv), —-x<u<w, O0<up
(g). elliptic cylindrical coordinates, defined by
S =cosh{u+w), 0<u 0O0<v<2n
(h). bipolar cylindrical coordinates, defined by
[ =coth(u +i), -w<u<owx, O<v<m

Express Newton’s Law in component form in elliptic cylindrical coordinates.

12 z is the 3rd Cartesian coordinate and not the complex variable x + iy.



CHAPTER IV

The Gradient, the Del
Operator, Covariant
Differentiation, and the
Divergence Theorem

Suppose that you had a topographical map of a piece of land and wanted
to indicate at a spot P on the map the slope m of the land in a direction t.
This could be done by drawing a vector mt from P, as indicated in Fig. 4.1.
Obviously, if the terrain is smooth but not level, there is one direction from
P in which the slope is a maximum. This is called the direction of steepest
ascent.’ The associated vector is called the gradient of the elevation at P. If
you draw a contour line through P, you will realize that the gradient at P
must be L to this contour.

The Gradient

This 2-dimensional example suggests the following definition in n-dimen-
sions. Let f(x) be given in some region of E,.? The gradient of { at X is the
vector having the direction and magnitude of the maximum increase of f with
respect to distance away from X. We shall denote the gradient of /' by Vf and
represent it by an arrow with its tail at the head of x. When we wish to
emphasize that Vf is a function of position, we shall write V f(x).

The gradient arises in many physical contexts. In the theory of heat trans-
fer, Fourier’s law of heat conduction for a materially isotropic body states
that the heat flux at a point is proportional to the negative of the temperature
gradient at that point: ¢ = —~kVT, k > 0. In ideal fluid flow (no vorticity), the

' A1 a dome-like peak, all dircctions are directions of (zero) steepest asceni. Cone-like peaks are
cxcluded by our assumption of smoothness.

2 Such a function is sometimes called a scalar field. Likewise, vector and tensor functions may
be referred to as vector and tensor fields, respectively.

71
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Figure 4.1.

velocity at any point in the fluid is equal to the gradient of a potential:
v = V¢. And in the torsion of prismatic bars, the shear stress vector acting at
any point on a cross section is equal to the cross product of a unit vector k
along the axis of the bar with the gradient of a stress function: T =k x V.

The first aim of this chapter is to express Vf in a concise form, valid in any
coordinate system. To this end, it is convenient to introduce the gradient
indirectly, as follows.

Let a set of general coordinates be defined by a transformation of the form
x' = %i(u’). The position x of a point P is then a function of the u’’s and,
therefore, so is f. Further, let C be a smooth curve having the parametric
representation

C:ul=d¥s), a<s<hb, 4.n

where s is arc length. For example, in circular cylindrical coordinates, the
helix H of Exercise 3.5 is described by

H:r=a, 0=s/c, z=bs/c, 0<s<2nc,

where a and b are given constants and ¢ = \/a* + b*.

Along C, f is a function of s via the u/’s. Assuming that the partial deriva-
tives of f with respect to the u’’s exist, we may compute the rate of change of
f with respect to distance along C by the chain rule:

df of du' of du?
ds~ ou' ds = 0u* ds
df du'

=t 4.2
ou' ds “2)
The left side of (4.2) is a scalar invariant called the directional or path deriva-
tive of f. It depends on f(x) and C, but not on the coordinate system used to
specify x and C—if f is temperature and C represents a mountain trail, I
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need only a thermometer and a pedometer to measure df/ds. On the other
hand, the terms on the right side of (4.2) are evidently coordinate-bound. To
interpret these terms geometrically, let &(s) denote the position of points on
C and recall from the preceding chapter that t = ®'(s) is a unit tangent to C.
As x' = %(u’) and, on C, u/ = @’(s) we have, by the chain rule,

t = (Ox/0u')(du'/ds) = gt'. 4.3)

Thus, with our short-hand notation for partial derivatives, (4.2) takes the
form

dfjds = f;t'. 4.4)

A glance at (2.10) shows that the right side of (4.4) is simply the dot product
of t with the vector

Vf=1f.g, (4.5)
ie.,
dfids = Vf-t. (4.6)

To justify our presumptuousness in denoting f ;' by V, we note that if the
right side of (4.4) is evaluated at a fixed point P,, then only the t”s change
when one curve through P, is replaced by another. f; at P, is merely the
partial derivative of f with respect to u’ evaluated at u’, the zth coordinate of
P,. That is, df/ds at P, is a function of t but not Vf. Becduse dfjds = Vf-t,
df/’ds i$ a maximum when t is aligned with Vf and, because |t| = 1, the value
of this maximum is just |Vf]. Thus Vf fits the geometric definition of the
gradient given at the beginning of the chapter.

ProBLEM 4.1.
If
S =xy+yz + zx,

compute Vf and |Vf| at (12,5, —9). Compute the corresponding cellar components of
V in circular cylindrical coordinates.

SOLUTION.
Noting that
Je=ytz fy=x+z f.=y+x
and evaluating these partial derivatives at (12,5, —9), we find that
Vi~ (=4,3,17), |Vfl= /(=92 + 3 + (17)* = /314,
In circular cylindrical coordinates.

S =r*sinOcosf + rzsinf + rzcos?.
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Hence, by (4.5), the cellar components of Vf are
f,=2rsinficosf + zsinf + zcos o
fo=rcos?0 — r’sin®f + rzcosf — rzsin 9
f.=rsinl + rcos@.

The point P, with Cartesian coordinates (12,5, —9) has circular cylindrical coordi-
nates (13, tan "' 5/12, —9), so that at P,,

Sr=@A3)(5/13)(12/13) + (= 9)(5/13) + (- 9(12/13) = —-33/13
fo=56, f =17

Alternatively, we can apply (3.89), with v; = f,. In this case (3.89), reduces to the
chain rule:

of _ouof
oal  oal du'
With (@', 4%,a@°) = (r,0,2) and (u',u?,u>) = (x, y,2), it follows that at P,
bt = f, = f.(0x/0r) + [,(2y/or) + f.(6z/ér)
= f.cosf + f,sind
= (—~4)(12/13) + (3)(5/13) = —33/13,

etc.

Equation (4.6) reveals another important property of the gradient: If / is smooth in
aneighborhood of a fixed point P,(x,), then Vf(x,)is 1 to the surface f(x) = f(x,) at
P,. Why? Because f is a constant on all curves lying in the surface. Hence at P,, on
any smooth curve C, passing through P, ,

(dfl/ds)* = Vf(x*)’ l* = Os (47)

Figure 4.2.
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where t, is the unit tangent to C, at P,. Fig. 4.2 illustrates (4.7) for curves C{’ and C{?
having distinct unit tangents t’ and t'.

ProBLEM 4.2.
Find the Cartesian coordinates of that point P,(x,) on the ellipsoid.

2 2 2
X y V4

jl 32

where the outward normal vector has Cartesian components (1, 1,1).

SOLUTION.

From (4.5)
Vf ~ (2x,y/2,2z/9).

As V/ points to the outside of the ellipsoid (why?), we seek a positive constant k and
2 VECLOT X, ~ (X, ¥y Z,) Such that Vf(x,) ~ (2x,,¥,/2,22,/9) = k(1,1,1). Thus x, =
k/2, v, = 2k, z, = 9k/2. Since x, must lic on the ellipsoid, (k?/4) + k* + (9k*/4) = 1.
This equation has the positive solution k = 2/,/14. Hence x,, ~ (1,4,9)/,/14.

Linear and Nonlinear Eigenvalue Problems

Linear and nonlinear eigenvalue problems arise in nearly every branch of
mechanics and physics. A simple but typical problem —simple to state, that
is—is to determine the possible shapes of an idealized, having chain when
its upper end is spun at a constant rate about a vertical axis. Approximate
solutions to such problems may be sought by attacking related finite-dimen-
sional problems, obtained from the original problem by applying some dis-
cretation procedure such as the finite element method. Often, the finite-
dimensional problems can be phrased as follows: Find those points on the
n-dimensional surface f(x) = 0 whose distance from the origin is stationary.
If f is smooth, this form of the problem may be recast as an eigenvalue
problem involving Vf and given a simple geometric interpetation. The idea
may be illustrated in two-dimensions.

A typical smooth curve f(x) = 0 is shown in Fig. 4.3. At any point P(x)
where a circle centered at the origin is tangent to f(x) = 0, Vf must be paral-
lel to x. That is, there is some scalar A such that

Vi(X) = ix. (4.8)

Values of 4 satisfying (4.8) are called eigenvalues and the associated solutions
for x, eigenvectors. If f is a quadratic function of the Cartesian components
of x, then Vf becomes a linear operator or tensor, and (4.8) reduces to the
familiar eigenvalue problem studied in linear algebra.
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f=0 ~. Vfx)

Figure 4.3.

PRrOBLEM 4.3,

Find the point(s) on the graph y = 1/x* closest to the origin.

SorLuTioN.
Let f = x*y — 1. Then Vf ~ (4x?y, x*) and (4.8) reduces to the two scalar equations
4x3y = ix and x* = Ay.

(Note that these equations constitute a nonlinear eigenvalue problem.) As x # 0
(why?), the first equation yields 4 = 4x2y. Thence, from the second, x? = 4y? or x =
+2y. The points we seek must lie on f(x) = 0. Hence 16y°> — 1 =0 or y = 167'*,
Thus there is only one eigenvalue, i = 16%°, but two associated eigenvectors, x ~
(£16Y72°16°1/%), each lying the same distance, 16“”5\/5, from the origin.

The Del Operator

The Leibniz notation df/ds has two advantages. It allows us to manipulate
the path derivative of f as the quotient of two differentials and it allows us to
think of the path derivative of f as the result of applying the linear differential
operator d/ds to the function f. This second interpretation (but not the first!)
carries over to Vf: application of the del operator V to f produces Vf.

The component form of the del operator,

V = g'd/ou’, (4.9)

follows immediately from (4.5).
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The Divergence, Curl, and Gradient of a Vector Field

The divergence, curl, and gradient of a vector field ¥(u’) arise by taking the
three possible vector products of V with v. Thus we have

(@).

(b).

(©).

The dot product
Vov=g v, (4.10)

This is a scalar field called the divergence of v (sometimes denoted by
divv).
The cross product

Vxv=g xv, 4.11)
This is a vector field called the curl of v (sometimes denoted by curl v).
The direct product

Vv=gv, (4.12)

Because dv/ds = (Ov/ou')(du'/ds) = v (g' t) = (V)T -t, we call (Vv)T (and
not Vv) the gradient of v (sometimes denoted by grad v).

By taking V as the second factor in the above vector products, we arrive at
the scalar, vector, and tensor operators v'V, v x V, and vV. All of these are
used in continuum mechanics. We shall show presently how v- V arises,

ProBLEM 4.4.

Ifv=ze, + xye, + xyze,, compute V-v,V X v, and Vv.

SOLUTION.

v,=ye, +yze, v, = xe, + xze, v_=e, + xye, and, in Cartesian coordinates,
1 2 3
g'=e,g"°=¢,g =e,. Hence

Viv=e, v, +e v, +e-v,
=0+ x+xy=1x(1+y)

Vxv=e xv, +e,xv, +e XV,
= (ye, — yze,) + (xze,) + (¢,)
= xze, + (1 — yz)e, + ye,.

Vv=ewv, +ev, +ev,
= ye.e, + yze.e,
+ xe.e, + xze.e,

+ e,e, + xye.e,.
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In heat transfer V- q, cvaluated at a point P, measures the ratc of heat outflow from
a neighborhood of P, where q is the heat flux vector. In fluid dynamics, V-(pv),
evaluated at a point P, measures the rate of decrease of mass in a neighborhood of P,
where p is the mass density and v is the fluid velocity. In solid mechanics, V-u,
evaluated at a point P, measures the change in volume of the particles in a neighbor-
hood of P when P undergoes a displacement u.

The curl and gradient of a vector field have other important physical interpreta-
tions. In fluid dynamics, the vector @ = V x v is called the vorticity. The change from
point to point of @ is 2 measure of the amount of friction or viscosity in the flow, while
the symmetric tensor D = [ Vv + (Vv)"], called the strain-rate, determines complete-
ly the change in shape of an arbitrarily small neighborhood of particles centered,
instantaneously, at a point P. In classical fluid dynamics, a knowledge of D at P
allows the stresses in the fluid in a neighborhood of P to be calculated.

The Invariance of V-v, V x v, and Vv

The invariance of V-v, V x v, and Vv is implied by our coordinate-free nota-
tion, but, of course, must be proved. This can be done either by introducing
the component form of these expressions and then showing that their values
are the same in every coordinate system or else by giving definitions for these
expressions that are coordinate-free. For brevity we illustrate the two ap-
proaches with V- v.

Let u/ = u/(ii*) define a second set of coordinates. Computing V-v in the
#'-coordinate system via (4.10), we have,

V-v =g (0v/di'). (4.13)
By the chain rule
Vv = g{(dv/oul)(ou’/oi")
= g/ (dv/du’), by (2.34) and (3.87). (4.14)
This is just (4.10) with j instead of i. Thus, whether (4.10) or (4.14) is used
to compute V-v, the values obtained will be the same. That is, V-v is an
invariant.

The second way of establishing this invariance is to show that at any point
P

Vo= limj v-ndA/VolR as |R|| = 0. (4.15)
2R

Here R is a region of diameter ||R| enclosing P and having a piecewise
smooth boundary ¢R with an outward unit normal n and differential element
of surface area dA. As the integral in (4.15) can be defined without reference
to a coordinate system, V-v must be invariant. Equation (4.15) is a conse-
quence of the divergence theorem that we shall consider later.



The Covariant Derivative 79

The Covariant Derivative

The covariant derivative appears automatically when we express v in terms
of the roof components of v. Thus

Vi= (ngj),i
= vig; + v'g;,
=v'g; + v'Thg,
= (% + Tip))g,. (4.16)
With the abbreviation
Vo = ok + T/, 4.17)
(4.16) rcads
v, = Vg (4.18)

The symbol V,v* is called the covariant derivative of v* (with respect to u'). It
has been defined so that the component form of v ; in general coordinates looks
the same as it does in Cartesian coordinates, save that the partial derivative
operator 8/3u' is replaced by the covariant derivative operator V.

To compute the covariant derivative of other objects, we insist on the
following two properties:

(@) The covariant derivative of an invariant, e.g. a scalar, a vector, or a 2nd
order tensor, coincides with its partial derivative.

(b) The covariant derivative of a product follows the same rule as does the
ordinary derivative.

Thus, consider the dot product ¢ = u'v = u’v; of two differentiable vec-
tors. It follows, with the aid of (4.17), that

¢ = (ujvj),i
= ulv; + uy;;
=V — r;'ikuk)vj + ujvj_,-
= vo;Vad + u* (v — Tho) 4.19)

But if conditions (a) and (b) are to be fulfilled, we must have, with a renaming
of dummy indices, ¢; = v;V;u’ + u/V,v;, whence

Vio; = v, — Top. (4.20)

In Exercise 4.5, you are led to the definition of the covariant derivative of the
components of a tensor and in Exercise 4.16, you are asked to derive (4.20) in
a different way.

Again, by (a), v, = V,v’g; = V,0,8’, which, together with (b), (4.17), and
(4.20), implies that
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Vg =g, ~Tig=0 Vg =g/ +Tig =0, (4.21)

i.e., the base vectors g; and g’ are covariantly constant.
From (b) and (4.21),

Vigp) =Vig;-g) =g Vg +g-Vg. =0, etc, (4.22)

i.e., the components of the identity tensor 1 are covariantly constant.

Finally, we note that the covariant derivative is defined on Riemannian man-
ifolds (where the g;; determine everything). Why? Because V, = ¢/0u’ +
{terms involving the Christoffel symbols} and these latter terms, by (3.71),
depend on the g;; only. However, though 0%/0u‘ou’ = 0*/0u’du’ (when ap-
plied to a sufficiently smooth function), V,V; # V,V, unless the Riemannian
manifold is flat. For a proof you should consult a more extended text such as
McConncll’s Tensor Analysis. We shall also touch on this point in the last
section of this chapter on Differential Geometry.

The Component Forms of V-v, V x v, and Vv

The component forms of V-v, V x v, and Vv follow readily with the aid of the
above results. In particular, whenever V is applied to an invariant, we may,
by (a), take V = g'V,. Thus we have for the:

(a) Dot product
V.v=g"Vivg)
=g gV’
= 6/V,v/
= Vo' = o} + Tjol. (4.23)
Now it is a remarkable fact (see Exercise 4.17) that
Th=J", (424)
where J is the Jacobian. We therefore obtain the extremely useful formula

Vov=J7'JvY),. (4.25)

PROBLEM 4.5.

Compute V-v in spherical coordinates in terms of the roof and physical components
of v.

SOLUTION,

From (3.57), J = p?sing. Hence, with v=u’g, + v’g, + v°g,, we have, from
(4.25),
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1 a ) G, . d .
Vv = pfsinqﬁ[(?p(pz singv?) + é«q»)(p2 sin ¢v®) + 56(”2 smq)v")].

We recall that v = v-g' = vi/|g!| = v‘/\/gii, where the repeated index is not to be
summed. Thus, with the aid of the solution to Problem 3.5,

P = p?, ¥ = pr?, v® = psingv?,
so that, with all products differentiated explicitly,
Splod ) @)
V'v= O,L,),p + 2,,)(0) + E a_‘i... + Cit,q? v(é) ,L, (EEA, N
dp p p 0¢ p psing 00
(b) Cross product
Vxv=g x Vg

=g x g/'Viy,
= e*V.,g, (4.26)
i.e., the roof components of the cross product are given by
(V x vt =€e*V,p,. (4.27)
(c) Direct product
Vv = g'Vi(v,g’) = V,0,8'g’, (4.28)

ie., the covariant derivatives Vv, are the cellar components of the tensor
Vv. Likewise the Vv’ are one of the two mixed sets of components of Vv
because we may also write

Vv = g'V,(v'g;) = V,v'g',;. (4.29)

The Kinematics of Continuum Mechanics

The kinematics of continuum mechanics describes the motion of continuous
distributions of matter, called bodies. Each particle X in a body is identified
with a point P that moves through E,. At time ¢, the set of all such points
determines a region S(t) called the shape of the body at ¢. Suppose that § is
known at some particular time, say t = 0. Let y be the position of P at time ¢
and x its position at t = 0. Then a motion of the body is a transformation of
the form

y=9(x1, x=%x0), xeS$(0), —ov<t< . 4.30)

If distinct particles are not to coalesce in the course of their motion, then we
must demand that the transformation be 1:1. This means that for each y in
the range of the motion, there exists a unique x given by an inverse transfor-
mation of the form
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X = R(y,1), yeS(1), —o0 <t < o0. 4.31)

Except at wavefronts (where fields such as temperature, velocity, or stress
may jump), we assume that the functions § and & have a sufficient number of
derivatives for the various field equations of continuum mechanics to make
sense. (Some of these field equations appear in Exercises 4.6, 4.8, 4.13, 4.31,
and 4.32))

The velocity of a particle with position x at t = 0is denoted and defined by

vy =9.x0=%x1) (4.32)
and its acceleration by
a=v=9,(x1)=4(x1) (4.33)

In classical elasticity, the behavior of a body depends on the deviation of
its present shape from its initial shape, so all field variables arc taken as
functions of t and x, which are called referential or Lagrangian coordinates.
Classical fluid mechanics, in contrast, assumes that the behavior depends
only on the rate of change of the present shape. The initial shape being
irrelevant, one usually regards all field variables as functions of ¢ and y, which
are called spatial or Eulerian coordinates. In particular, from (4.31) and (4.32),
the velocity field takes the functional form

v =YXy, 1), 1) = ¥(y, 1). (434

As a consequence of this relation, the formula for computing the acceleration
must be modified, because v now depends on ¢ both explicitly through its
second argument and implicitly through its first argument y.

Because motion occurs in E,, we may always introduce a Cartesian basis
{e;}. Then, with x = x'e;, y = y'e; and v = v'e;, we have, by the chain rule,

. av (7y' N Ov
Taviar ot
=olv, +v, 4.35)

Recall the invariant operator V = g'V,. As mentioned earlicr, we can, given a
vector v, form a new invariant operator v-V = v'V,. Applied to any field F
(scalar, vector, or tensor), this new operator must produce the same resuit
regardless of the coordinate system in which we express it. In the Cartesian
coordinate system (y', y%,3*), v'V,v = v'v ;. Hence (4.35) can be cast into the
invariant form

a=(vVjv+v, (4.36)

The first term on the right is called the convective acceleration and the
second term the local acceleration. The convective term accounts for the fact
that even in steady flow (v, = 0), there can be acceleration as, for example,

when an incompressible fluid flows through a converging nozzie. The differ-
ential operator
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( V=V +09/0y (4.37)

that appears in (4.36) is sometimes called the material derivative; F gives the
rate of change of F as we ride through the flow on a particle.

PRrROBLEM 4.6.

Compute the acceleration of a particle using cylindrical Eulerian coordinates. Express
the answer in terms of the physical components of the velocity.

SOLUTION.
With v = v*g, and a = a*g,, the component form of (4.36) rcads
ak = piV* + vk,

where V,v* is given by (4.17). One can verify easily that the only non-zero Christoffel
symbols in circular cylindrical coordinates (r, 8, z) are '}, = —rand I'?, = r . Thus

Vool =vy =0¢,, Vior=vd +TiHpd =0l +r ?

<]

ta
=
|

=v, + L =vy—n?, Vpl=v3 +T3 0" =0vh+r "
Voot =03 =07, V=103 =15
Vye!l = o7, Vi =vh, Vi =i
In extended form
a' = 'V, 0! + 07Vt + 03V ! + 0, ete
That is,
a = v, + P — rf) + v, + 0
a® = v (0% + r'f) + oY + r ") + v + 0
a® = ved + v + vl + ol

The relation between the roof and physical components of a vector u in circular
cylindrical coordinates, namely u™ = u", u® = ru'®, u'® =, is found in the same
way as we found (3.30) in two-dimensional polar coordinates. Hence,

a® = v 4+ r YOS — ) + oD + 0D, ete

The Divergence Theorem

The divergence theorem is the main tool for deriving the local (differential)
equations of continuum mechanics from global (integral) statements of the
fundamental laws. For example, if p and v denote, respectively, the density
and velocity field of a fluid streaming through a fixed, closed region R of
space, then conservation of mass requires that
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ﬁ(J‘ pdV)_,:j pv-ndA. (4.38)
R JR

Here ¢ is time and R is the boundary of R, assumed to be piecewise smooth
with outward unit normal n. Because (4.38) must hold for all regions R, it
may be shown that the Divergence Theorem implies

Pt V(py)=0 (4.39)

in the neighborhood of any point P where the density and velocity fields are
sufficiently smooth.

Most large calculus texts establish the Divergence Theorem in Cartesian
coordinates.® In 2-dimensions it states that;

f (P,+Q,)dxdy = f Pdy — Qdx, (4.40)
R ¢R

where P and Q are differentiable functions of x and y and R is some simply-
connected region in the xy-plane with a simple, piecewise smooth boundary

OR:x =2(t), y=9(t), a<t<p (4.41)
The right side of (4.40) is short-hand for

s
j LP(R(), 9(0)9'(1) — QX (1), $() X' ()] dt. (4.42)

Our aim is express the Divergence Theorem first in invariant form and
then in general coordinate form, To this end, let us assume that JR can be
parameterized by its arc length s (measured from some point on @R in some
direction along ¢R). Being piecewise smooth, R has a unit tangent t every-
where, except at a finite number of points. Furthermore, being simple and
closed, ¢R has an inside and an outside. Let s increase in such a way that
n =t x e, points toward the outside of dR. With v = Pe, + Qe,, the inte-
grand in (4.42) reduces to v'n. We also recognize that P . + Q , = V-v. Fi-
nally, to disguise the Cartesian coordinates completely, we denote the differ-
ential element of area dxdy by dA, thereby reducing (4.40) to the invariant
form

IV'vdAzf v nds. (4.43)
R R

Our treatment of dA has been, admittedly, cavalier. Whatever its precise
definition,* d 4 must be an invariant for the simple reason that everything else
in (4.43) is!

* E.g. Thomas and Finney. Calculus and Anaiytic Geometry, 8th ed.
* See Buck, Advanced Calculus, 3rd ed., or Spivak, Calculus on Manifolds.
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To express (4.43) in coordinate form, we set v = »'g, and n = n,g’. Then
V-v = V' and v-n = v'n,. What about the clusive d4? I think that the eas-
iest way to derive a coordinate-bound expression for dA4 is to return to basics.

Recall that the left side of (4.43) is merely a symbol for the limit of a sum of
the form

S =Y #(x;,¥,)Ax Ay, (%,V,)€R; < R. (4.44)
Here ¢ = V-vand

Ry={(xVIx, <x<x;+Ax, y; < y < y; + Ay} (4.45)

is a Ax by Ay rectangle whose Southwest corner is the point (x;, y;), where
x; = iAx and y; = jAy, i, j = 0, +1, +2,....

In forming the sum S, a rectangular grid is chosen for convenience. Any
other will do provided only that the diameter of its largest cell can be made
arbitrarily small. Under the change of coordinates

X = X(u,v), y= fu,v), (4.46)

R becomes the image of some region R* in the us-plane, and a rectangular
grid in the up-plane will map into some curvilinear grid in the xy-plane
(Fig. 4.4). An element R}, of the rectangular grid in the uv-plane is mapped
into some curvilinear quadrilateral Q,; in the xy-plane. As in Fig. 4.5, the
area of Q,; is approximated by the area |g, x g,|Au Av of the parallelogram
having two co-terminal edges at the point (%(u;), §(v;)). But |g, x g,| =
X,V — VXl = [J(u;,v;)l, the absolute value of the Jacobian of the trans-
formation (4.46) at (;,v;). Thus the sum S may be approximated by a new
sum of the form

S* =Y (@, 5)| J(uy, v;)| Au Ao, (5, 5,)eRE = R*, (4.47)
whose limit, as Au, Av — 0, we denote by (z. ¢|J|dudv. Hence
dA = |J(u,v)|dudv. (4.48)

The coordinate form of (4.43) is therefore

lv =|Aul= R,’] ny
\
ov (v J
\
uj u X=

Figure 4.4.
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Figure 4.5.

f Vo'l J| dut du? = f v'n,ds, i=1,2. (4.49)
R* éR

Analogous considerations in 3-dimensions show that the invariant and
coordinate forms of the divergence theorem are, respectively,

f V-vdef v'ndA (4.50)
R R
and
J V,-v‘lJldu'duzdu3zf o'n| K| dv' dv?. (4.51)
R* R

On the right side of (4.51), it is assumed that the surface dR is represented in
the parametric form

dR: x = R(v*), a*<v* < b’ o=1,2 (4.52)

with (K| = |0x/dv" x 0x/dv?|.

The arguments that lead from the global form of conservation of mass,
(4.38), to its local form, (4.39), may now be spelled out. If pv is differentiable
throughout R then, by the divergence theorem, the right side of (4.38) may be
replaced by the integral over R of V- (pv), giving

f [p, + V-(pv)]1dV = 0. (4.53)
R

Now mass is conserved in all regions R. Hence, if we assume further that the
integrand in (4.53) is continuous, it follows, because R is arbitrary, that the
integrand must vanish, i.e., (4.39) must obtain. Why? Because if there were a
point P, in the flow where (4.39) failed to hold, then, because p, + V-(pv) is
assumed to be continuous, it would be of one sign in some small ball centered
at P,. Taking R to coincide with this ball, we would get a contradiction.
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Differential Geometry

Differential Geometry is the study of how curved surfaces differ from planes;
it is a beautiful subject with manifold physical applications.

Intrinsic Differential Geometry, the guts of general relativity, deals with
those properties of a surface that can be inferred from measurements made
within the surface—its so-called metrical properties. For example, a cone is
intrinsically identical to a plane because (after being cut along a generator) it
can be rolled into the latter without being stretched. Thus an obscrvant ant®,
marching along a chemically marked triangle on a sheet of paper, would
note, upon returning to its starting point, that it had turned through 2x
radians, but would have no idea whether it was living on a cone, a cylinder,
or a plane.

Extrinsic Differential Geometry, indispensable in continuum mechanics in
the theory of shells, regards a surface as embedded in Euclidean space and
measures its properties relative to some reference frame in this space. We
shall adopt this latter viewpoint, but will point out strictly intrinsic results
(which are useful in the study of general relativity).

The simplest, most symmetric surface in 3-dimensional Euclidean space is
the sphere: finite but unbounded, identical in every part. This perfection is
reflected in its Cartesian equation:

Sy:xt 4+ yr+ 22 =02 (4.54)

The form of (4.54) not only implies that the equation of a sphere with respect
to a frame Ox, x,... x, in n-dimensional Euclidean space is

Secv Xt X3+ +xg =1 (4.55)
but (4.55), in turn, suggests the more general class of quadric surfaces
Qn-1t Ayxix; = 1, (4.56)

where the A,;;’s are constants and a repeated index is to be summed from 1
to n.

Gaussian Surface Coordinates

In the first section of this chapter, we learned that, in 3 dimensions, the
gradient of a function f(x), evaluated at a point on the surface f(x) =
constant, was a vector normal to that surface. Thus, for a quadric surface Q,,
we set f(x) = x-A-x = |, wherc A = 4,;¢;¢;, and thereby obtain

Vf(x) = 2A x providing f(x)= 1. (4.57)

It is this last constraint, to which we must always recur because the compo-

* No doubt a relative of the ant in Gravitation, by Misner, Thorne and Whecler.
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nents of x are not independent, that makes it so difficult to extract informa-
tion about surfaces specified in the form f(x) = constant. Therefore, to sim-
plify life, we henceforth assume that any 3-dimensional surface S we wish to
study is given in the parametric form

Six=R%wv), y=9Puv), z=72urv), (uv)eD. (4.58)

Here, the pair of real numbers (4, v) are called Gaussian surface coordinates
and belong to some domain D in the uv-plane. For example, that portion E
of the ellipsoid in Problem 4.2 lying in the first octant may be specified by

E:x =sinucosy, y=2sinusiny, z=3cosu, O0<u v<n/2 (459

In keeping with standard tensor notation, we shall, just as we did in going
from the extended notation of (3.45) to the compact notation of (3.49), replace
the three equations in (4.58) by the single expression

S:x'=%'(u"), u%eD, (4.60)

where it is understood (until further notice) that, while Latin indices range
from 1 to 3, Greek indices range from 1 to 2. Often, we shall work with the
alternative vector parametric form

S:x = &u®) = 2'(u%)e;, u*eD. (4.61)

We shall assume that the function &(u*) is smooth enough for all subsequent
differentiations to be valid.

The Cellar Base Vectors

If we fix u? in (4.61) and let u' vary, then, just as we saw in Chapter III, the
cellar base vector g, = dx/0u' = x, is tangent to the u'-coordinate curve,
x = %(u', constant). Likewise, the cellar base vector g, = dx/0u® = x , is tan-
gent to the u*-coordinate curve. The mongrel notation g,, which a purist
might insist on re-writing as g’,, has the advantage that the boldface re-
minds us that g, is invariant under a change of 3-dimensional coordinates
within the Euclidean frame Ox, x, x; while the subscript reminds us that g, is
coordinate-dependent on S, transforming in a cellar-like (i.e., covariant) way.
Let us verify this last assertion. Under a (differentiable, non-singular) change
of variables

u* = %@, (4.62)
we have, by the chain rule, ?
Jdx  O0x du® ou®

g, = = = Py .63

8 = 0ad = ous oa? ~ B oa’ (4.63)

which, by definition, is just the law of transformation on a surface for an
object with one cellar index.
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Non-Degenerate Surfaces

If u! and u? are functionally related in (4.61), for example, if they enter only
in the combination u' + (%)% then (4.61) represents a curve. To avoid this
possibility, we shall require {except perhaps at isolated points such as x =
y =0, z =3 on the ellipsoidal surface E in (4.59)] that g, =x, and g, =
X , be non-zero and non-parallel, a condition we can express as (g, |g,| >

g, - 8, or
g = det[g, g;] > 0. (4.64)

The Metric Tensor

The differential of x is denoted and defined by

dx = x du* = g, du* (4.65)
and the first fundamental form of S is denoted and defined by
I=dx-dx =g, gzdu*du’. (4.66)
The metric tensor on S is denoted and defined by the direct product
G = g°g,, (4.67)

where, in analogy with our definition of roof base vectors in Chapter 11, the
roof base vector g* is defined implicitly by

N
In terms of the cellar components of the surface metric tensor,
Gap = 82" G 85 = & 8p- (4.69)
the first fundamental form reads
I = g,pdu®du®. (4.70)

Geodesics
Let P and Q be two fixed but arbitrary points on § and let
Ciu*=4a%t), a<st<bh 4.71)

be the parametric equations of some curve on § joining P and Q. Then, by
(4.65) and (4.69)—see also Exercise 3.12 —the distance along C is given by

I b B
Spg = f Jdx dx = f Gupti®i? dt. (4.72)
C a
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A geodesic Gpy is a curve that minimizes the distance between P and Q.
Finding Gy, is a problem in the Calculus of Variations and forms a vast
chapter in the book on Differential Geometry.

Rather than attempting to introduce enough of the Calculus of Variations
to derive the differential equation for a geodesic,® we shall, instead, keeping
physical applications in mind, give a direct alternative derivation of these
equations. This derivation is based on the mechanical principal that, of all
possible static positions of a greased string stretched between P and Q and
forced to lie in the surface S, the actual position(s) is that which mimizes the
length of the string, But, because the string is greased and at rest, the force at
any point exerted by S, which holds the string in equilibrium, can have no
component tangent to S. This fact gives us an alternative way to derive the
following differential equation for Gp,.

For convenience, we replace the parameter ¢ in (4.71) by arc length s so that
along G, we have the unit tangent

T = X'(5) = x ,du*/ds = g,7°% 4.73)

The force exerted at any point in the string by the material to the right of this
point can be represented as T(s)z(s), where T is the tension. If f(s) denotes the
force per unit length exerted on the string by the surface, then the balance of
forces on a differential element ds of the string requires that d(Tr) = fds. That
is

b4

Tt+ Tt =f. (4.74)

But f can have no component tangent to S. Thus, in particular, z-f= T +
Tt v = 0. Because 7 is a unit vector, 77’ = 0; hence T’ = 0, i.e,, the tension
is necessarily a constant. More generally, we must have g’ f = 0; hence, from
(474 with T" = 0,

g't=0. (4.75)

This purely geometric condition is the differential equation for our geodesic!
To express (4.75) in component form, we differentiate (4.73) with respect to
s and insert the result into (4.75) to obtain

g - (g, d%/ds + g, 51°1%) = 0. (4.76)

Now g’-g, = 8;. Moreover, the expression g”-g, 5 should (faintly?) ring a
bell—it’s just the right side of (3.69) with Latin indices replaced by Greek
ones. By adopting the definitions and machinery for Christoffel symbols de-
veloped at the end of Chapter I, we have, by (3.69) and (3.71),

[p=8 8
= %gyi'((lax,a + Gpaa = Gupa)s 4.77)

® See, for example, Advanced Calculus for Applications, 2nd ed, Section 7.8, by Hildebrand.
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where g7* = g’ g* Thus (4.76) takes the form
duijds + Ipret? = 0. (4.78)

The definition (4.17) of the covariant derivative holds in any number of
dimensions. Thus, replacing Latin indices by Greek ones and noting that
dt?/ds = (dt"/du®)(du®/ds) = t),7% we may re-write (4.78) as

1V, 1" = 0. (4.79)

When attempting to solve these two equations (y = 1, 2), we must remember
that the price for using arc length as the independent variable is that we must
enforce the constraint 7-7 = g,,7°t# = 1 at every value of s.

Now consider a small bead that slides without friction along the surface S
under no external forces save those exerted by $ to keep the bead from fly-
ing off. With a prime (as above) denoting differentiation with respect to arc
length s and a superior dot denoting differentiation with respect to time ¢ (as
in Chapter III), we have, by the chain rule,

=15, X=1§+15% (4.80)

But if there is no friction, the force exerted by S on the bead can have no
component tangent to S. Thus, in particular, X = § = 0, so that the path
acceleration of the bead is zero. More generally, g’+% = 0 which, because
§ = 0, reduces to g”- T = 0, the geodesic equation (4.75).

If the equation of the geodesic is expressed as u® = 4%(t), then, to obtain a
differential equation for u®, we first re-write (4.80) in the component form

X = g% X =g it + g, % (4.81)
Then g”- % = O implies that
i’ + lgutu? = 0. (4.82)

This is precisely of the same form as the acceleration of a particle in a set of
3-dimensional curvilinear coordinates which appeared as the coefficient of
the mass m on the right side of (3.68). But there is more: If we let the Greek
indices range from 1 to 4, then (4.82) is precisely the differential equation that
describes the motion —the so-called world line— of a mass point in general
relativity.’

The Gaussian Curvature: An Intrinsic Invariant
Suppose that our ant lives on a surface S, such as a sphere, that cannot be
unrolled into a plane. Without leaving S, can it deduce that its world is

curved? The answer is yes if the ant knows the theorem we shall now develop.

" For a fascinating account of Einstein's struggles to perfect the equations of general relativity
sec the biography Subtle is the Lord ... by Abraham Pais,
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Consider any three points 4, B, and C on S that comprise the vertices of a
unique geodesic triangle, ABC; ie., A, B and C can be connected by unique
geodesics. (This is not always possible if A4, B and C are too far apart. For
example, if S is a sphere and two of the points are the north and south poles,
then there are an infinity of geodesics of equal length, the meridians, connect-
ing the poles.) So that our ant has a fixed background against which to
measure how much it turns in its triangular promenade, we assume that there
is a continuously differentiable unit vector field 4 tangent to and defined over
S in some neighborhood of ABC. This vector field, which is in no way unique,
is simply a useful auxiliary that will make no appearance in our final results.

On the sides of ABC we set

A= 1tcosf + vsin#, (4.83)

where v is an outward unit normal to ABC lying in S and L to 7 and where
cos ! = A>T and sin 0 = i-v. Differentiating both sides of (4.83) with respect
to arc length s, we have

A= (—1s8in0 + vcos 0)8’' + T cos O + v sinb. (4.84)

Because 7 and v are unit vectors, T- 7 = v-v = 0. Moreover, because 7: v = 0
and because the sides of ABC are geodesics, n* 1" = —t-v = 0. Thus, dotting
both sides of (4.84) with the coefficient of ¢, we have

0" = (—7sin0 + vcosB)- 3/ = [(x A — (z-X)A] v (4.85)
If we set 4 = A%, then, by steps analogous to those that took us from (4.75)
to (4.79), we arrive at
gl =12V, 0 (4.86)
Thus, noting that 7%z, = ;5 — v*v;, we have
(T A v = 1,271V, AP)vy = A5(V, AP v, — v ivi(V, 2Py, (487)
and
(T )2 v = 1,0V AN A0y, = (VA0 — vy (V4P iy, (4.88)
If these expressions are inserted into the right side of (4.85), then the last
terms on the right of (4.87) and (4.88) cancel, lecaving
0" = (A°V, A" — 28V, 2%)v,. (4.89)

Let arc length along the geodesic triangle ABC be measured counterclock-
wise from A4 and let s, denote the distance along the boundary of ABC from
A to B, s, the distance from A to C, and s, the length of the perimeter of ABC.
Then, integrating both sides of (4.89) around ABC, noting that the integra-
tion of " must be broken into three integrals because 6 has jump discon-
tinuitics at the vertices of ABC, and using the 2-dimensional version of the
divergence theorem given by (4.43), namely
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f V,v*dA =f vy, ds, (4.90)
R 2R
we obtain
0| +0/°C + 0™ = | Kada, (491)
0 Sp S ABC

Here s* = lim(s + |¢[) as ¢ = 0, and
K = V,(A*V, 20 — APV,4%)
= JOV,V, i — 20V, V4%,

the term V;4°V, A% — V APV, 4* = det(V;A%) being zero because 4| = 1. Sec
Exercise 4.26. Now the left side of (4.91) is independent of the coordinate
system on § and the unit vector field 4. Therefore, despite appearances, the
same must be true of the right side. Moreover, as the various calculations
leading to (4.91) depended only on vectors tangent to S and the Christoffel
symbols (which are defined in terms of derivatives of the components of the
metric tensor), we conclude that K, the Gaussian curvature, is an intrinsic
inpariant. Unfortunately, it takes some mathematical gymnastics to derive an
intrinsic formula for K directly from (4.92). Instead, we shall soon take an
indirect route to such a formula via some extrinsic differential geometry, but
along the way we shall encounter many interesting things including the ori-
gin of the nature “curvature”,

Suppose that our peripatetic ant, crawling around ABC keeping the inte-
rior of ABC to its left, measures the following change in its orientation at cach
vertex of ABC:

AU = O0(s5) — 0(sg ), AO-=0(s¢) — O(s¢), A8, =2n + 0(07) — O(s ).
(4.93)

(4.92)

Substituting these numbers into (4.91), the ant obtains the following special
case of the celebrated Gauss--Bonnet Theorem:®

21 — (A8, + Alp + AB,) = f K dA. (494
ABC

If the left side of this expression is not zero, the ant concludes that its habitat,
the geodesic triangle ABC, cannot be unrolled into a planc. Why? Because
otherwise one could introduce a set of rectangular coordinates ' = x and
u? = y such the first fundamental form of the surface reduced to I = dx* +
dy?. In such a case all the Christoffel symbols are zero and hence V42* = 1%
which, by the second line of (4.92), yields K = 0.

8 See Differential Geometry, 2nd ed, by Struik.
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Some Extrinsic Geometry

The examples we have considered in this section involving a surface S-—a
stretched string, the frictionless motion of a bead, the change in orientation
of an ant crawling around a geodesic triangle —have all required that we
study how vectors change along curves on S. Our focus has been intrinsic in
the sense that our vectors have had no components normal to S and, more-
over, only the in-surface components of their changes have been examined.
We now expand our outlook and consider how an arbitrary Euclidean vector
v defined on § changes as we move over S.

In 3-dimensional Euclidean space, E,, any vector may be represented in
the basis {g;}. However, the two surface basis vectors g, do not span E; so
that, if we wish to use them to represent an arbitrary vector v, we must aug-
ment them with a third independent vector n. The most obvious choice for n
is onc of the two unit nrormal vectors to S at a point with coordinates u®. (Of
course, for m to exist at such a point, S must be smooth and not have a ridge

or be cone-like there.) For definiteness we choose
g1 xg g xg s

n= = o= 36,,8° % gh. (4.95

gy x gl Ig' x g P )

Here— see the analogous 3-dimensional definition (2.13)--
Jg ifa=1,=2
=3 —Jg fa=2p=1 (4.96)
0 fa=p=0

are the cellar components of the surface permutation tensor ®. Thus, we may
represent any vector v in the form

v = v’g, + vn (4.97)

Assuming that everything in sight is differentiable, we find from this expres-
sion that the rate of change of v along the u?-coordinate curve is

V= v‘f‘,,ga + V0 + Vg, 4+ V0 (4.98)

Just as we saw in Chapter 11 when we computed the acceleration v of a
particle in a curvilinear coordinate system, so we sec here that the change in
v has two parts: the change in the components of v one would see if the frame
{g,.n} were momentarily frozen- the first part of (4.98) --and the change
produced by the change in the frame itself—the sccond part of (4.98). In 3
dimensions we were able to set g, ; = I'f;g,. However, because the g, do not

1

span E,, we have instead Gauss’ equations
8.5 = Tis8, + byn or Vg =byn (4.99)
The Christoffel symbols are defined by (4.77) and
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by=bp =X =08 = —Nyg,. (4.100)

Incidentally, because n-n = 1 and hence, n;-n = 0, (4.100) tells us that n
changes along a coordinate curve according to Weingarten’s equation:

Vin=n,= —byg* or B=-Vn=bh,g%g (4.101)

Here, V = g*V, and B is the symmetric curvature tensor of S. The adjective
“curvature” means that, if we fix a point P, on S with normal n, and pass a
plane through n,, then the intersection of this plane with S will be a plane
curve C with curvature - B -7 at P,, where 7 is a unit tangent to C. See
Exercise 4.27.

In terms of the surface covariant derivative operator V,, we may, with the
aid of (4.99), express (4.98) in the form

Viv = (Vyo* — bio)g, + (v + v7byy)n. (4.102)

(Note that B = B” implies that b% = ¢*’b,;, = g*’b;. = b;. That is, as we
noted in Chapter II, the two possible mixed components of a symmetric
2nd-order tensor arc identical.) Further, applying the operator V to v yiclds,
by (4.102), the 2nd-order tensor

Vv = (Vpo© — b,’,‘v)g”ga + vy +0? w)g"n_ (4.103)
Upon contraction, we have
V-v=V,* — 2Hy, (4.104)

where H = b2 is the mean curvature of S. If v is tangent to S, then v = 0 and
Vv = V,v* which is sometimes called the surface divergence of v If v is the
surface gradient of a scalar ¢, i.e., if v= V¢ = g°¢ . then (4.104) yields

V-Vg = g*V,4 , = Ag, (4.105)

which is called the surface Laplacian (or Beltrami’s second differential) of ¢.

The Gaussian Curvature Revisited

We end this section and the book by showing how the Gaussian curvature K
can be expressed in terms of the curvature tensor B or, alternatively. in
terms of the components of the metric tensor G and its derivatives (up to the
second order), thus establishing Gauss’ famous Theorema egregium. Warning:
In what follows, there is a plethora of indices and the dummies will be re-
named without comment. Caveat emptor!

Let @R be an arbitrary, smooth closed curve on S, parameterized by arc
length s and enclosing a region R on S. Let T = g, be a unit tangent to ¢R
and let v = 7 x n = v%g, be an outward unit normal to ¢R so that t* = g%y,
Then, by (4.101), the divergence theorem (4.90), and the fact that, as in 3
dimensions, the components of the permutation tensor are covariantly con-
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stant— Exercise 4.28— we have

Ozf n'ds
IR
= —f b, g't"ds
¢R

) c*b)g vy ds

i
S

= f s“”V,,(b;‘g,.)dA. (4.106)
R
But ¢R (and thereforc R) is arbitrary. Henee, assuming that the integrand in
the last line of (4.106) is continuous and noting (4.99), we conclude that
e*P[(V4b))g, + b)b,n] = 0. (4.107)

Now the coefficient of n is symmetric in » and § while ¢** is anti-symme-
tric. Moreover, an equation of the form w’g, = 0 implies that w* = 0. Thus,
(4.107) reduces to the Codazzi equations

e**V,b} = 0. (4.108)

Finally, let us return to our arbitrary unit vector field = 47g,. Integrating
A around ¢R, we have, with the aid of the divergence theorem and (4.99),

0:f 2 ds
‘R

xf(m&+i%nﬂﬁ
* (4.109)

:f [(V,A")g, + A7b,n]eP v ds
‘R
= f eP*[(VyV, A7 — A%, b))g, + (b, V, A7 + b, Vpi7 + A Vb )n] dA.
R
But, by symmetry in « and § and by the Codazzi equations (4.108), the

cocfficient of n in the last line of (4.109) vanishes. Thus, assuming that the
coefficient of g, is continuous within R, it follows, because R is arbitrary, that

ePH(VpV,A7 = A%b,, b)) = 0. (4.110)

Multiplying both sides of this equation by ¢,,2*, summing on repeated in-
dices (as always), and noting that ¢ = — %% we have

e, IV VAT = 2FA%s, b, b (4.111)

Referring to equation (4.143) of Exercise 4.26, we see that, because | 4] = I, the
left side of (4.111) is equivalent to our initial expression for the Gaussian
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curvature, (4.92). We also see by equation (4.141) of Exercise 425 that the
right side of (4.111) reduces to det[b;]. But the b§ are just the mixed compo-
nents of the symmetric curvature tensor B. Thus,

K = detB. (4.112)

Our final task is to deliver the promised intrinsic formula for the Gaussian
curvature. Following the beaten path--no heresy here— we observe that if
x(u®) has continuous third partial derivatives, then X ,;, = g, 5, = &,.,4» Which
is equivalent to the compatibility condition

ef'g, 5, = 0. 4.113)
Using the equations of Gauss and Weingarten, (4.99) and (4.101), we expand
the compatibility condition into
8”(1—:0& + bap“) y
= 6P [(Thy, + T4 T2 — byb}gy + (b, + Tayb, )n] = 0. (4.114)

The coefficient of m vanishes because of the Codazzi equation, (4.108). The
vanishing of the cocfficient of g, yiclds
eP (I8, ., + ThTh) = ePb,b). (4.115)

To bring K into the act, note that equation (4.140) of Exercise 4.25 implies
that £#7b,,b} = g,,£"* K. Thus, multiplying both sides of (4.115) by 39*¢,,,
we reach our goal-—an intrinsic formula for the Gaussian curvature:

K = 39%¢c,.6"(Thp, + o)), (4.116)

a formula upon which many variations may be rung and wrung.®

Exercises

41. Iff= .vcyz\/);i”{L y2, compute df/ds at (1, — 2, 3) in the direction of v ~ (2,1,2).

4.2, The mean value theorem: A region is said to be convex if a straight line joining
any two points in the region lies wholly within the region. (Compare Figs. 4.6a
and 4.6b)

(a). If P(a) and Q(b) are points in a convex region R, show that

Six=(-nNa+th 0gt<1

is a parametric equation of the line segment S joining P and Q.
(b). If 1 is a differentiable function of position in R, show that

fb) — f(a) = Vf(x,) (b — a),

where x,, is the position of some point on S.

? See. Struik, op. cit.
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43.

4.4.

4.5.

4.6.
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(a) convex (b) non-convex

Figure 4.6.

Hint; On S,;/'(,Q(IJJ = f(t). Applying the ordinary mean value theorem of
calculus to f.
If f = xy + yz + zx, compute the cellar components of Vf in
(a). spherical coordinates (3.42)
(b). the oblique Cartesian coordinates
X=u+w y=0-—Ww, Z=Uu+0+w

Just as the action of a dyad uv on a vector w may be denoted and defined by
uv-w = u(v-w), so the action of a vector w on the dyad uv may be denoted and
defined by w-uv = (w-u)v. By setting uv = u'v*g;g,, establish the identity

V-(uy) = (V-u)v + (u-V)v.

(a). We were led to the definition of the covariant derivative of the roof compo-
nents of a vector field ¥(u/) by setting v, = (v'g;),; = V,v’g; and carrying out
the indicated partial differentiation. Likewise, we may define the covariant
derivatives of the roof components of a tensor field T(u’) by setting T, =
(r*g;g.). = V;T"g;g,. Show that

V,T* = T + T4, T + I% T @.117)
and hence that the divergence of a tensor field takes the component form
V- T=¢gT,=VT*,.

(b). Assuming for simplicity that T = T7 and setting T = T/g,g" = Tj,g’g". pro-
ceed as in part (a) to show that

VI =T+ LTe - T (4.118)
and
Vil = Ty = Th T — VAT, 4.119)

In continuum mechanics, the linearized equations of motion of a body may be
written

VT +f= pi, T=T, (4.120)

where T is the stress tensor (see Exercise 1.20), f is the body force vector per unit
volume and u is the particle displacement.
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4.1.
48

49.

4.10.

4.12.

4.13.

(a). Write out these equations in component form in Cartesian coordinates,
where

T=T.ee,+ ’I;yexey +or,f=fie, + - andu=ue + .
(b) Do the same in circular cylindrical coordinates, where
T=T"gg +Tgg+ - f={g +  andu=u'g + .

(c). Express the roof components of Tin (b) in terms of its physical components.
T, T etc.

Show that V- (pl) = Vp,

The equations of motion of an ideal gas may be expressed in the coordinate-free
form

pv=pv, + p(v-V)v= —Vp,

where ¢t is lime, p is the density, v is the velocity and p is the pressure. With the
aid of (4.39) and Exercises 4.4 and 4.7, show that we may cast this equation into
the conservation form

(pv), + V- (pvw + pl) = 0.

(This form is useful in numerical work. The term pvv will be recognized from
Exercise 1.19 as the momentum flux tensor.)

Establish the identities

(a). Viu-v) = (Vu) v + (Vv):u
(b). Vifvy=(Vf)yv+ Vv
(C). V(TC)*C(VT)

where T is a seccond order tensor field and ¢ is any constant vector.

Use 4.9(b) and (4.37) to show that the equation of conservation of mass can be
rewritten in the form p + pV v = 0. (This equation gives us two equivalent
ways to definc an incompressible fluid, viz. p = 0 or V- v = 0. The second may be
preferable in that it is strictly a kinematic condition, i.c. it does not involve a
material property of the fluid.)

. The Laplacian, denoted and defined by V? = V-V, is one of the most pervasive

operators in physics and continuum mechanics.

(a). Show that V2f = ¢V,

(b). Compute V2 in Cartesian, oblique Cartesian, circular cylindrical, and
spherical coordinates.

Establish the identitics
{a) V-(Vu) =V,  (b). V- (V)7 = V(V-u), {c). tr(Vu)=V-u

The linear field equations for elastically homogeneous and isotropic bodies con-
sist of the equations of motion 4.120, the stress-strain relations

T = Atr(E)1 + 2uE, (4.121)



4.14.

4.15.

4.16.
4.17.

4.18.

4.19.
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and the strain-displacement equations
E = i[Vu+ (Vu)T]. 4.122)

In (4.121), 4 and yu arc constants called the Lameé coefficents. By substituting
(4.122) into (4.121) and the resulting expression into (4.120), and noting Exer-
cises 4.4 and 4.9, show that

(A + w)V(V-u) + uV?u + f = pii.

These are called the Navier equations.

Assuming that ¢ and v are differentiable, show that

(a). Vpv) = Vv + ¢gV-v.
(b). Vx(@v)y=Vg xv+ ¢V xw
(<) V(pv) = Vov + ¢Vv.

(Sece Exercise 1.23). The trace of a 2nd order tensor T is denoted and defined by
uT="Tgg="T.
(a). Show that
T ="T)=g"T;=g,;T".

(b). Show that tr T is an invariant, i.e., that T = T,/ under the change of coordi-
nates u/ = @/(i*).

(Equating a roof and cellar index of the mixed components of a tensor produces

the components of a new object called a contraction of the tensor. Thus, in (b),

the scalar tr T is the contraction of T. If U = U, g;g;g", then the vectors UYg,

and UY,g; are both contractions of U.)

Derive (4.20) by setting v, = (v;g7); and using (3.104).

Use (3.71), Exercise 2.10, and the following observations to establish (4.24):

(a). If det[g,;] is expanded about the row (or column) containing the element
gij» the coefficient of g;; is J2g". This follows by applying (3.70) to the matrix
G’

(b). If a determinant is regarded as a function of its elements, then, by the chain
rule,

odet[g,;]
Cak

04y
.—_J2 -7y
9 G

Compute V2§ in parabolic-, elliptic-, and bipolar cylindrical coordinates, as
defined in parts (), (g), (h) of Exercise 3.17.
A Rigid Body Motion 'y = rt(x,t) preserves distance between particles, i.e.

Jr(x,t) — r(& 1)) = |x — &), —ou <t < w,x, EeS(0).

Show that any such motion must be of the form

rx,1)=c(t) + Q@t)x, ¢0)=0, QO =1, (4.123)
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4.20.

4.21.

where ¢ is an arbitrary time-dependent vector and Q is an arbitrary time-depen-
dent rotator (see Exercise 2.16).

Hints:

(a). Setr(x,t) =r(0,1) + g(x,t) and note that r(0,0) = g(0,t) = 0 and g(x,0) = x.
(b). Show that |g(ax, )] = |a]|x].

(c). Use (1.11) to show that g preserves dot products, i.e.,

g(x,1)-8(&, 1) = x-§, x, £eS(0).

(d). Show that g is linear by showing that |g(x + &,1) — g(x,t) — g(&, 1))* = 0.
(e). Rename r(0,t) and g(x,1) to arrive at (4.123).

The velocity in rigid body motion: Starting from (4.123), show that
¥ =¢(1) + o) x (y — ¢l@)). (4.124)

Hint: Differentiate (4.123) with respect to time, express x in terms of y and ¢, and
differentiate both sides of Q- Q" = 1 to show that Q- QT is skew and that o is
its axis. (Sec Exercise 1.18a.)

The gross equations of motion of a body, mentioned in the introduction to
Chapter III, arc obtained as follows.

Let p(x) denote the mass density of a body Bin its initial shape S(0) = S,,. By
definition, the mass of B is

M-_—J pdV. (4.129)
So

Let (4.30) describe the motion of B in an inertial frame with origin O. The
linear momentum of B is then defined by

L=J pde-—(J pde), (4.126)
S So

and ils rotational momentum with respect to O by

R(,=J py x ydV. (4.127)
SO
The center of mass of B is the vector
X=M“‘J pydV. (4.128)
Sa
(a). Show that if we set
y=X +12, (4.129)
then
J prdV =0 (4.130)
So
and
R(,:MXxX+J pz x 2dV. 4.131)
So
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(b). Show that (3.4) reduces to

T= (j Pz X idV) =R, (4.132)
So

R is called the rotational momentum about the center of mass of B.

4.22. The moment of inertia tensor appears when we compute the rotational momen-
tum of a rigid body, i.e., a body capable of undergoing rigid motions only.
(a). Let the origin of the inertial frame coincide with the center of mass of the
body at t = 0. With reference to Exercise 4.19 and (4.128), show that

X=¢ 2=0x, =0 x 2

(b). Show thatz x 2 = Q-[(x-x)1 ~ xx]- Q%w and hence, since Q is a function
of t only, that
R.=Q-1-Q70, (4.133)

where

1 =J‘ p(x)[(x-x)1 — xx]dV (4.134)
5

]

is the moment of inertia tensor.
If p is a constant, compute the Cartesian components of | for
(c). A sphere of radius a.
(d). A rectangle parallipiped of dimension a x b x ¢ with the alignment of axes
shown in Fig. 4.7.

4.23. Recalling that in the preceding exercise
Q- Q'=wx, (4.135)
show that
Q7Q = (Q"w) x. (4.136)

Hint: In order, show that Q" is an cigenvector of Q7 Q; that the representation
g p

Figure 4.7.
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4.24.

4.26.

4.27.

4.28.

4.29.

(4.136) is unique, and that, from Exercise 1.26,
Q7w = o =1r Q70 =tr - aT.
Euler’s equations of motion for a rigid body are
T* =w* x1-0* + 1-0*. (4.137)
Show that (4.137) follows from (4.132), (4.133) and (4.136) upon setting
w=Qw* R.=Q R} T=Q T* (4.138)

(Physically, these equations may be regarded as a change from an inertial frame
to a non-inertial, body-fixed frame. See the comments at the beginning of Chap-
ter I and Goldstein, op. cit))

. (@) If 4 =[A43]is a 2 x 2 matrix, show that the analogue of (2.48) is

£, det A = A3AL — A AL (4.139)
(b). Show that (4.139) implies
e¥detd =" A5A! (4.140)
and hence that
det A = (1/2)6,,6™ 4545, (4.141)

Use the 2-dimensional versions of (4.24) and (4.119) to show that V.e,, = 0, ie.,
that the cellar components of the 2-dimensional permutation tensor are covari-
antly constant. Also show from (4.95) that &, = (g, % g¢)'n and hence that
V,&,4 = 0 follows from this expression with the aid of (4.99) and (4.101).

(a). Using the 2-dimensional analogue of the identity (2.18), show that
AV AP — AV, A" = g, MV, A, (4.142)

(b). Take the covariant derivative of (4.142) with respect to u® and use (4.141) to

show that
V,,(/“,“‘V,A” — AV A%) = g% ARVRV AT + 2det(Vy47), (4.143)

Note that if 4,4% = 1, then 2,V44® = 0 which implies that det(V,2.*) = 0.
Why?

“uy

Let a plane intersect a surface S in a curve C. If 7 is a unit tangent to C, show
that the curvature at any point of C is given by 7- B - 7, where B is the curvature
tensor.

Let S be a surface of revolution given in the vector parametric form
S:x = r(s)e(0) + z(s)e,, a<s<hbh,
where s is arc length along a meridian and
e, =e.cosl + e,sinf.
The cellar base vectors may be represented as

g, =g =e (0)cosa(s) + e,sina(s) and g, =g, = r(s)ey)(d),
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4.30.

4.31.
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where

cosa = r'(s), sino = z'(s)
and

e = —e,sinf + e cost.

In the following, leave your answers in terms of r, « and (if appropriate) deriva-
tives of a.

(a). Find n, the unit normal to §.

(b). By computing g, ., 8.4, and g, , and expressing your results in the form

8. = I8, + Thg, + b0, etc,

read off the Christoffel symbols and the cellar components of the curvature
tensor B.

(¢). Compute the mean and Gaussian curvatures of S.

(d). What is the expanded form of the Codazzi equations, (4.108)?

Show that the solution for the differential equation for a geodesic on a surface
of revolution can be reduced to quadrature.

The 2-dimensional analogue of a string is a membrane, a 2-dimensional material
continuum that can support tangential forces only. We assume that the mem-
brane is in static equilibrium under external pressure and —if the membrane is
notclosed like a ballon—boundary forces. Modeling the membrane as a surface
S, let @R be an arbitrary, piecewise smooth curve on § enclosing a region R and
let N ds aenote the force exerted by the material outside of dR across a differen-
tial element of arc length. Finally, let pdA denote the external force acting on a
differential element of area of S. Then, force and moment equilibrium of the
material comprising R require that

J Nds+J pdA =0 and J xdes+JxxpdA=0, (4.144
R R 2R R

where x is the position of points on § from a fixed origin O.

(a). Let v be an outward unit normal to JR, tangent to S. Introduce a set
of Gaussian coordinates u* on § and apply (4.144), to a triangle whose
sides consist of two differential elements of the coordinates curves of length
\/g“ du! and \/_2122 du?, respectively, intersecting at an arbitrary point on
S, and a third side of length ds with outward normal v = v°g, = v, g% As-
suming that N = N(u#, v), show that

N = N, (u*)v* = N*(u#)v,, (4.145)

where
N, = N’ g'/\/g"")/g'" and N, =N@’.g/g?2)/\/g*2 (4.146)
Hint: First show that N(uf,v) = —N(u®, —v). Then note that g’/)/c;’m1 isa

unit normal to the u?-coordinate curve and, by projection, \/g;-,; du® =

v‘(g‘/\/é‘ '), ete.
(b). Substitute (4.145) into (4.144),, apply the divergence theorem, and invoke
the arbitrariness of the region R and continuity to derive the vector differen-
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4.32.

4.33.

4.34.

tial equation of membrane force equilibrium,
V,.N*+p=0. (4.147)

Likewise, show that if we substitute (4.145) into (4.144), and use (4.147), we
obtain the vector algebraic equation of membrane moment equilibrium,

g, x N*=0. (4.148)
(c). Because N and hence N* is tangent to S at every point, we may set
N* = Nefg,. (4.149)
Representing the external pressure as
p=p'g. + pn, (4.150)
show that (4.147) and (4.148) take the component forms
VNF 4+ p*=0, byN*+p=0 N¥=N* (4.151)

A seap film is a membrane that can support only a constant normal tension T;
and an external normal pressure p, i, in a soap film, N*¥ = T,¢** and p* = 0.
Show that in this case (4.151), ; are satisfied identically while (4.151), reduces to

H=-2p/T,, (4.152)

where H is the mean curvature of the film. (Of all surfaces spanning a simple,
piecewise smooth space curve &R, a minimal surface has the least area. If a wire
has the shape of @R, then a pressure-free soap film which spans this wire will
adjust itself to minimize its energy which is proportional to its area. Thus, using
a mechanical principle as we did to relate a tightly stretched greased string on a
surface to a geodesic, we conclude from (4.152) that a minimal surface has zero
mean curvature.)

Suppose that a surface can be specified in the form
Siz=2%(x,y), (x,y)eD.

(a). Compute the cellar base vectors g, = g, and g, = g,, the Christoffel sym-
bols, I'}, = I'},, etc, and the cellar components of the curvature tensor,
by, = b, etc.

xXx

(b). Compute the mean and Gaussian curvatures, i and K.
(c). Set H = 0, thus oblaining Lagrange’s equation for a minimal surface,
(0 + 23z, —22,2,2,,+(1+2%)z,,=0 (4.153)
Show that if we set
ky = byg” x n+ (1/4)(ePg, 8,0, (4.154)

then the Gauss and Weingarten equations of surface theory, (4.99) and (4.101)
may be written in the form

B.p =38 t ky x g, (4.155)
and

n,=k,xn (4.156)
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