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Preface 

Algebra is abstract mathematics let us make no bones about it - yet it is 
also applied mathematics in its best and purest form. It is not abstraction for its 
own sake, but abstraction for the sake of efficiency, power and insight. Algebra 
emerged from the struggle to solve concrete, physical problems in geometry, and 
succeeded after 2000 years of failure by other forms of mathematics. It did this 
by exposing the mathematical structure of geometry, and by providing the tools 
to analyse it. This is typical of the way algebra is applied; it is the best and 
purest form of application because it reveals the simplest and most universal 
mathematical structures. 

The present book aims to foster a proper appreciation of algebra by showing 
abstraction at work on concrete problems, the classical problems of construction 
by straightedge and compass. These problems originated in the time of Euclid, 
when geometry and number theory were paramount, and were not solved until 
the 19th century, with the advent of abstract algebra. As we now know, alge­
bra brings about a unification of geometry, number theory and indeed most 
branches of mathematics. This is not really surprising when one has a historical 
understanding of the subject, which I also hope to impart. 

The bridge between Euclid and abstract algebra is the algebraic geometry 
invented by Fermat and Descartes around 1630. By assigning numerical coordi­
nates to points in the plane, they were able to restate many geometric problems 
as problems about polynomial equations. Thanks to 16th century advances in 
the treatment of equations, they found it easy to solve many problems, some 
of which had defeated the ancients. However, certain problems remained in­
tractable, particularly those involving equations of degree 2: 3. At first it was 
thought that improved technique would solve these too, but as time went by 
this hope faded, and a fundamental shift in thinking took place. By the end 
of the 18th century, mathematicians were considering the possibility of equa­
tions without solutions, or at least without solutions of a certain geometric type 
("constructible" solutions). 

Such a possibility calls for a more abstract level of algebraic thought. Instead 
of treating equations, it is necessary to treat properties of equations, since the 
goal is to recognise the property of solvability. Since the equations are polynomial 
equations, this amounts to studying the properties of polynomials. This was done 
very successfully by Lagrange, Gauss, Abel and Galois between 1770 and 1830. 
Their work was successful not only in solving the ancient construction problems, 
but also in creating the concepts that are the backbone of algebra today - rings, 
fields, and groups. 

However, these concepts were not very clear at the time. They were identified 
and disentangled from the old theory of equations only a century later, through 
the work of Jordan, Kronecker, Dedekind, Noether and Artin, and first presented 
to the general mathematical public in the Moderne Algebra of van der Waerden 
[1931]. The result was an algebra which, ironically, could live without geometry 
- and to some mathematicians that meant an algebra which should live without 
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geometry. Other mathematicians (and students!) were alienated and bewildered 
by this development, particularly those who were geometrically inclined. It is true 
that algebra was separated from geometry with the best of intentions. Some of 
the leading "separatists," in fact, were geometers who wanted to build rigorous 
foundations for algebraic geometry and topology, and this called for an algebra 
without any geometric assumptions. All the same, separation of algebra from 
geometry was a pedagogical mistake, and fortunately one from which we are 
beginning to recover. 

Since the great virtue of algebra is its power to unify topics from number 
theory to geometry, why not develop the subject with unification in mind? I 
hope that the present book demonstrates that such a unification is possible. It 
grew out of a course in Galois theory for 3rd year students at Monash Univer­
sity, but should in principle be accessible to anyone with a strong secondary 
school background, assuming this background includes the language of sets and 
functions. On the other hand, it should also be of interest to mathematicians 
who know the technicalities of abstract algebra but wish to know more about 
its historical context. Although it is no substitute for a comprehensive history of 
algebra (which has yet to be written), this book does try to locate the sources of 
the main ideas. They can be picked up on the fly from the references to the orig­
inal literature, in the name [year] format, or mulled over in the end-of-chapter 
discussions. Since the aim of the book is to lead the reader to better things, I 
hope these discussions will open the door to the great works by Gauss, Abel, 
Galois and others. Looking to the future as well as the past, there is also some 
discussion of recent developments and open problems. 

The book is divided into sections small enough to be digested in one sitting. 
There is at most one theorem per section, so theorems can be identified by their 
section numbers. For example, Theorem 8.4 refers to the theorem in Section 8.4. 
The most frequently used theorems have been given names rather than numbers, 
so that it will be easier to recall what they are about. Exercises are placed in 
small groups at the end of sections, in the hope that they will be more tempting, 
and less difficult, when the reader's mind is already on the right track. They 
include many interesting theorems that could not be squeezed into the main 
text. The starred sections contain material that can be omitted from a basic 
course. If time is short (as it is at Monash, where we have only 24 lectures), then 
Chapters 3 and 9 can also be omitted. 

I would like to thank Emma Carberry, Angelo di Pasquale, Helena Gregory, 
Mark Kisin, Sean Lucy, Greg Pantelides, Karen Parshall, Abe Shenitzer, Tanya 
Staley and Drew Vandeth for many corrections and improvements, Anne-Marie 
Vandenberg for her usual splendid typing, and my wife Elaine for her sharp-eyed 
proofreading. 

Clayton, Victoria, Australia John Stillwell 
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1 Algebra and Geometry 

1.1 Algebraic Problems 

The purpose of this chapter is to sketch the classical background of abstract 
algebra. I shall introduce some famous mathematical problems, translate them 
into problems about equations, then try to indicate the difficulties that stand 
in the way of their solution. One reason for doing this is to demonstrate that 
algebra is central to mathematics. It is the natural setting for some of the oldest 
mathematical problems and, as we shall eventually see, it provides the keys to 
their solution. A second reason, complementary to the first, is to demonstrate 

"the continuing relevance of classical mathematics. Even ancient mathematics 
is not dead or obsolete - it stays alive because its problems continue to stim­
ulate the creation of new concepts and techniques. The most fertile problems 
in mathematics are over 2000 years old and still have not yielded up all their 
secrets. 

The ancient mathematics I am talking about is encapsulated in Euclid's El­
ements, written around 300 Be to systematise the mathematics then known. 
Euclid's systematisation was so masterly that the Elements became the basic 
text for almost all mathematicians born before the 20th century. The fact that 
it no longer plays such a role is due to the tremendous growth of mathematics 
in the 19th century - particularly the growth of algebra. The Elements contains 
no algebra as we know it, though it does contain results that can be viewed as 
algebra with hindsight. In fact, the algebraic viewpoint reveals a hidden unity 
between different parts of the Elements that Euclid himself could not have fore­
seen. Thus both algebra and Euclid stand to gain by pooling their resources, as 
I hope to show in the present book. 

I shall begin by explaining what polynomials have to do with geometry. The 
first step is to explain the connection between geometric constructions and the 
fundamental operations of arithmetic. 

1.2 Straightedge and Compass Constructions 

The simplest geometric instruments are the straightedge, used to draw straight 
lines, and compass, used to draw circles. More precisely, the straightedge is used 
to draw the line through a given pair of points, and the compass is used to draw 
the circle with a given center (where the "point" is placed) and passing through 
another given point (where the pencil or pen tip is placed). Thus if certain 
points are initially given, further points may be constructed as the intersections 
of lines or circles through the initial points, then further lines and circles may 
be constructed through the newly constructed points, and so on. 

The distances between the initially given points may be regarded as given 
numbers, for example by taking one of the distances arbitrarily as the unit of 
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length. It then turns out to be possible to construct, as a distance between con­
structible points, any number obtainable from the given ones by the operations 
+, -, x, -+ (by a nonzero number) and J (of a positive number). Of course, a 
sign convention is needed in order to interpret certain distances as negative. 

Given lengths a and b, it is clear how to construct a + b and a-b. Namely, 
use the straightedge to construct a line containing the length a, then use the 
compass to transfer the length b to this line, adding and subtracting b by means 
of a circle of radius b about one end of a (Figure 1.2.1). 

a 
~ --4-----~------+-------~----

a+b 

Fig. 1.2.1. Addition and subtraction of lengths 

The construction of ab and alb depends on the construction of a perpendic­
ular M to a line L at a point P, which can be done as in Figure 1.2.2. It is then 
possible to draw the pairs of right-angled triangles shown in Figure 1.2.3, whose 
similarity shows that ab and alb are the lengths indicated. 

M 

L p Q p R Q R 

Fig. 1.2.2. Construction of a perpendicular 

To construct y'a we draw Figure 1.2.4, using the process of Figure 1.2.2 again 
to bisect the length a + 1 and hence draw the circle with diameter a + 1. The 
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altitude of va can be explained by the fact that all three triangles in Figure 
1.2.4 are similar right-angled triangles, since the angle at A is also a right angle. 
(The latter fact is explained by Figure 1.2.5, where the equal radii yield isosceles 
triangles, hence angles like those shown, which imply a + (3 = 7r /2.) 

ab 

a 

, _______ ~-----~J 
- V-

b b 

Fig. 1.2.3. Multiplication and division of lengths 

Fig. 1.2.4. Square root construction Fig. 1.2.5. Right angle in semicircle 

Now the numbers obtainable from 1 by +, -, x,..;- form the set of rational 
numbers Q. We shall call the set of numbers obtainable from Q by square roots 
of positive members as well as +, -, x,..;- the real quadratic closure of Q. Thus 
the numbers /3, 2 - /3, \12 - /3 all belong to the real quadratic closure of Q. 

Let us also call a number d constructible if there are points, constructible from 
a given pair unit distance apart, whose distance apart is d. Then the argument 
of this section shows that each number in the real quadratic closure of Q is 
constructible. In Section 1.3 we shall prove the converse of this proposition, thus 
obtaining an algebraic characterisation of the constructible numbers. 
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Remarks. The reason we say that the line drawing instrument is a straightedge, 
rather than a ruler, is to avoid any misunderstanding about the "construction" 
of lines. A straightedge has no marks on it, so all it can do is draw lines be­
tween previously constructed or given points, as specified in the definition of 
constructibility. A ruler, on the other hand, has marks which apparently enable 
us to find a line without knowing more than one point on it. 

For example, if the ruler has marks unit distance apart, then it can be used 
as in Figure 1.2.6 to find the line through P which meets the unit semicircle and 
its diameter at points Q, R unit distance apart. Or can it? 

o 
Fig. 1.2.6. The sliding ruler 

Since this involves simultaneous sliding and rotation of the ruler about P, it 
is not clear that Q, R are constructible. In fact, we shall eventually show that 
they are not, because construction of Q or R would solve the ancient problem 
of trisection of the angle. 

It is easy to see that the angles in Figure 1.2.6 are related as shown in Figure 
1.2.7, whence it follows that 

(3 = 7f - "/- a = 7f - 4,,/, 

and hence "/ = a/3. This "trisection" of a given angle is attributed to Archimedes 
(284-212 Be). However, the classical trisection problem is to construct a/3 for 
given a (Section 1.5), and we shall see that this is generally impossible (Section 
5.5). It follows that the points Q, R are generally not constructible, and thus the 
line PQR "found" by ruler is not a constructible line. 

Of course, one is free to study generalisations of the notion of constructibility 
which involve the use of rulers and other instruments. An absorbing and quite 
elementary account of this field may be found in Bieberbach [1952]. The fact 
remains, however, that the classical notion of constructibility has been the most 
fruitful for the development of algebra. The simple algebraic characterisation of 
constructible numbers has a lot to do with this. 
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Fig. 1.2.1. Trisection 

Exercises 

1.2.1 Describe how to bisect a given angle with straightedge and compass. 

1.2.2 Show that a quadratic equation with coefficients in the real quadratic 
closure of Q has its solutions in the real quadratic closure of Q, if they are real. 

1.3 The Constructible Numbers 

We can express the constructibility of a point P in terms of numbers by using 
the cartesian coordinates of P, the distances from P to a fixed pair of perpen­
dicu!ar axes OX and OY (Figure 1.3.1). There is a straightedge and compass 
construction of the perpendicular M from a given point P to a given line L. 

y 
x 

------ ------ ---. p 

y 

o x 

Fig. 1.3.1. Cartesian coordinates 

For example, bisect the segment Q R of L cut off by a suitable circle centered 
on P (Figure 1.3.2), using the method described in Section 1.2. 

In particular, if 0 and the line OX are given we can construct OY, and 

P = (x, y) is constructible 
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p 

M 

\.0 R/ 

~ 
I 

Fig. 1.3.2. Perpendicular bisector construction 

=} the perpendiculars from P to OX, OY are constructible 
=} x, yare constructible numbers. 

Now we are ready for the characterisation of constructible numbers promised 
in Section 1.2. 

Theorem. A number d is constructible {::} d belongs to the real quadratic 
closure oEQ. 

Proof. The proof of ({:::) is in Section 1.2. 
To prove (=}) it suffices to prove that the coordinates of any constructible 

point P are in the real quadratic closure of Q, since the distance between con­
structible points (al>bt), (a2,b2) is v(a2 - at}2 + (b2 - b1)2 and hence in the 
real quadratic closure of Q as well. 

If P is not one of the initial points, which we can take to be (0,0) and (1,0), 
then it is constructed as an intersection, and its coordinates are computable 
from the coefficients in the equations of the lines and/or circles being intersected. 
These coefficients, in turn, are computable from the coordinates of the points 
determining the lines and/or circles. Thus we have only to show that all these 
computations can be done by +, -, x, -7 (rational operations) and V' Well, the 
line through (al' b1) and (a2' b2) is . 

or 
(b1 - b2)x + (a2 - at}y = a2bl - b2al> 

and the circle with center (al' b1 ) and passing through (a2' b2) is 

(x - at}2 + (y - b1)2 = (a2 - at}2 + (b2 - b1)2, 

hence coefficients are computable rationally from coordinates. In the other direc­
tion, the coordinates of an intersection are computed from coefficients by solving 
linear or quadratic equations, hence by rational operations and square roots. 0 
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Exercise 

1.3.1 Find the intersections of the circle (x - ad2 + (y - bd2 = rr with the 
circle (x - a2)2 + (y - b2)2 = r~ using +, -, x,+- and V' (Hint: First form the 
difference of the two equations.) 

1.4 Some Famous Constructible Figures 

Nearly everyone who has played with a compass has probably discovered the 
following Figure 1.4.1, which immediately gives constructions of the regular 
hexagon and the equilateral triangle. It is of course also easy to construct a 
square, but the construction of a regular pentagon is not at all obvious. A con­
struction was discovered by the ancient Greeks. It can be based on the con­
structible number T = (1 + .../5)/2, which happens to be the diagonal of a regular 
pentagon of side 1 (Figure 1.4.2). 

Fig. 1.4.1. Hexagon construction Fig. 1.4.2. Regular pentagon 

To see why T has this particular value, draw two more diagonals as shown in 
Figure 1.4.3. Each diagonal is parallel to the opposite side by symmetry, hence 
ABDC is a parallelogram, hence CD = AB = 1. It follows that CE = T - 1, 
and, comparing ratios of corresponding sides in the similar triangles BCD and 
ECF, we get 

1 T-1 
= 

T 1 

This is equivalent to the equation T2 - T - 1 = 0, the positive solution of which 
is the required value, 

T = (1 + .../5)/2. 

The number T defines the so-called golden rectangle of height 1 and width T 

(Figure 1.4.4). Its characteristic property is that, when a square is cut off, the 
rectangle that remains has the same shape as the original, namely 

short side 
long side 

T-1 

1 
1 
T 
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A 

B ~----------3I D 7-1 

1 1 

Fig. 1.4.3. Pentagon dimensions Fig. 1.4.4. Golden rectangle 

B 

Fig. 1.4.5. Pacioli's construction of the icosahedron 

Fitting three golden rectangles together as shown in Figure 1.4.5 yields the 
icosahedron, a solid figure bounded by 20 equilateral triangles, a typical one of 
which is ABC. 

An easy application of the Pythagorean theorem shows that 

AB = BC = 1 (Exercise 1.4.1). 

The symmetry of the figure implies that the diameter of the sphere circum­
scribing the icosahedron is just the diagonal of a golden rectangle, and hence 
constructible. (This construction of the icosahedron is due to Pacioli [1509]. Pa­
cioli's book enthusiastically describes thirteen properties of T, his favourite being 
its occurrence in the regular pentagon.) 
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One of the most beautiful discoveries of ancient Greek mathematics is that 
there are just five solids bounded by equal regular polygons. This follows from 
the fact that the angle in a regular n-gon is (n - 2)7r / n, which implies that 
n = 3,4 or 5 for a bounding n-gon, since the sum of angles at a vertex must be 
less than 27r. Thus there are only five possible polygon combinations at a vertex: 
three, four or five 3-gons, three 4-gons or three 5-gons. The corresponding solids, 
called the regular polyhedra, are shown in Figure 1.4.6. 

Fig. 1.4.6. Tetrahedron Octahedron Icosahedron Cube Dodecahedron 

The regular polyhedra are studied systematically in Euclid's Elements, which 
culminates in a proof that for each of them the diameter of the circumscribing 
sphere is constructible relative to the side length of the polyhedron. 

Exercises 

1.4.1 Show that AB = 1 in Figure 1.4.5. 

1.4.2 Show that the diagonal of a golden rectangle is V(5 + ..;5)/2 . 

1.4.3 Find tetrahedra whose vertices are vertices of the cube and dodecahedron. 

1.4.4 By use of the cosine rule, show that AB = v'2 in Figure 1.4.7. 

T 1 

Fig. 1.4.7. Equilateral triangle with subdivided edges 

1.4.5 Deduce from Exercise 1.4.4 that there is an icosahedron whose vertices lie 
on the edges of an octahedron, dividing them each in the ratio of T to 1. 
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1.5 The Classical Construction Problems 

Long before the algebraic nature of constructible numbers was understood, the 
Greeks attempted to solve problems equivalent to the solution of cubic or higher 
degree equations. The most famous of these are the following. 

Duplication of the cube is the problem of constructing a cube with twice the 
volume of the unit cube. This amounts to solving the equation x3 = 2, which 
gives the side x of the cube with volume equal to 2. (The special number 2 in 
this problem comes from a legend that the oracle at Delphi posed the problem 
of doubling a cubical altar. In general one has the problem of "multiplication of 
the cube by n.") 

Trisection of the angle is the problem of dividing a given angle into three 
equal parts. (Recall from Exercise 1.2.1 that bisection of the angle is possible by 
straightedge and compass.) Constructing an angle () is equivalent to constructing 
cos (), as can be seen by describing a unit circle about the vertex of the angle and 
dropping a perpendicular as shown in Figure 1.5.1. Thus trisection is equivalent 
to constructing cos () when cos 3() is given. Since 

cos 3() = 4 cos3 () - 3 cos () 

this finally is equivalent to solving 

4x3 
- 3x = c 

for an arbitrary value of c = cos 3(). In particular, to trisect the (constructible) 
angle 7r /3 we have to solve this equation for c = cos( 7r /3) = 1/2. 

Fig. 1.5.1. Construction of cosO from 0 

The problem of trisection generalises to n-section, the most interesting case 
of which is n-section of the unit circle, or construction of the regular n-gon. This 
problem is equivalent to construction of the point (cos 2: ,sin 2:). By setting 
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z = cos 2: + i sin 2: (see also Section 3.7) this point may also be described 
algebraically as a solution of zn = 1. Since 

zn - 1 = (z - l)(zn-l + zn-2 + ... + z + 1) 

and we do not want the solution z = 1; the equation we really want to solve is 

zn-l + zn-2 + ... + z + 1 = O. 

Knowing that constructible numbers are obtained by (possibly nested) square 
roots, it is a reasonable guess that cubic problems, like duplication of the cube 
and trisection of the angle, are not solvable by straightedge and compass. How­
ever; the proof is still not obvious (see Chapter 5). In the case of the regular 
n-gon the answer is not even easy to guess; the n for which the regular n-gon is 

'constructible are combinations of mysterious primes (see Chapters 5 and 9). 
For the moment, the most important point to observe is that diverse geo­

metric problems reduce to the solution of polynomial equations. Understanding 
polynomial equations is therefore a more fundamental problem, and of interest 
in its own right. In Section 1.6 we shall review the progress that was made on 
this problem after the ancient solution of quadratic equations. 

Exercises 

1.5.1 Explain how to construct ?12 as the intersection of a parabola with the 
hyperbola xy = 1. 

1.5.2 Solve the equation z4 + z3 + z2 + z + 1 = 0 for z = cos 2; + i sin 2; by 
showing that the equivalent equation z2 + z + 1 + ~ + ;2 = 0 is quadratic in 
y = z + ~. Deduce that the regular pentagon is constructible. 

1.5.3 Similarly show that the equation z6 + Z5 + ... + z + 1 = 0 for z = cos 2; + 
i sin 2; is equivalent to a cubic in y = z + ~. 
1.5.4 Use your solution to Exercise 1.5.2 to find expressions for cos ~ and sin 2; . 

1.6 Quadratic and Cubic Equations 

The usual method of solving the quadratic equation - completing the square -
can also be viewed as "simplification by linear change of variable." The equation 

ax2 + bx + c = 0, 

or equivalently 
2 b c x + -x+ - = 0, 

a a 
or equivalently 

( 
b )2 b2 C x+- --+-=0, 

2a 4a2 a 

is simplified by the substitution y = x + i'a' The result is the equation 
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2 b2 -4ac 
y = 4a2 ' 

in which the first power of the variable is absent, so the solution is immediate on 
taking the square root of both sides. (Note that the expression b2 - 4ac, called the 
discriminant, determines whether ax2 + bx + c is a perfect square. This happens 

just in case b2 
- 4ac = 0, in which case x 2 + ~x + ~ = (x + 2~() 

In the case of the general cubic equation 

ax3 + bx2 + cx + d = 0, 

the analogous substitution y = x + 3
b
a yields an equation of the form 

y3 =py+q, 

where p, q are certain rational combinations of a, b, c, d. Thus the square of the 
variable is absent, but the equation is still not simple enough to solve immedi­
ately. The trick now is to substitute u + v for y, obtaining 

3uv(u + v) + u3 + v3 = p(u + v) + q. 

The left-hand side (u + v)3 has been given this particular arrangement in order 
to make it clear that the equation can be satisfied by setting 

3uv = p, u3 + v3 = q, 

which we are free to do by choosing v = p/3u and then solving 

u3 + (Jur = q. 

The latter equation is a quadratic in u3 , namely 

so we can indeed solve it and the solutions for u3 are 

Since v3 satisfies the same quadratic (notice the symmetric roles of u and v), we 
can assume without loss of generality that 

whence 

y = u + v = 3 ~ + J G) 2 _ (~) 3 + 3 ~ _ J (~) 2 _ (~) 3 

is the solution of y3 = py + q. 
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Exercises 

1.6.1 Show that the substitution y = x + an-l in anxn + ... + alX + ao = 0 
nan 

yields an equation in which the yn-l term is absent. 

1.6.2 (Bombelli [1572]) Reconcile the solution y = ?!2 + lli + ?!2 - lli of y3 = 
15y + 4 with the obvious solution y = 4 by showing (2 ± i)3 = 2 ± lli. 

1.6.3 (Viete [1591]) Show that y3 - py = q reduces to the form 4z3 - 3z = c 
by a suitable substitution y = mz, whence one has a "solution by trisection" by 
finding z = cos () where c = cos 3(). 

1.6.4 Compare the role of (q/2)2 - (p/3)3 in y3 = py+q with the role of b2 -4ac 
in ax2 + bx + c = O. 

1. 7 Quartic Equations 

To solve the general quartic equation 

we begin with the substitution y = x + 1a' which yields an equation of the form 

y4 + py2 + qy + r = 0, 

or equivalently 

Then for any z, 

(y2 + P + Z)2 = (py2 _ qy + p2 _ r) + 2Z(y2 + p) + Z2 

= (p + 2Z)y2 - qy + (p2 - r + 2pz + z2). 

We can make the quadratic Ay2 + By + C on the right-hand side a perfect square 
by choosing z so that B2 - 4AC = 0, which is a cubic equation for z. 

Thus z can be found by the method described in Section 1.6. We can then take 
the square root of both sides, and finally solve the resulting quadratic equation 
for y. 

Exercise 

1.7.1 Show that solving y4 + py2 + qy + r = 0 is equivalent to finding the 
intersection of the parabola y2 = x with another parabola. 
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1.8 Solution by Radicals 

The common feature of the solutions of quadratic, cubic and quartic equations 
is that they all express the solution in terms of the coefficients by means of 
+, -, x, +- and m th roots, in fact just square roots and cube roots. In general, 
an equation 

is said to be solvable by radicals if the solution is expressible in terms of ao, ... , an 
by means of the rational operations +, -, x, +- and mth roots V' t1, {I,'" . 

After the solution of cubic and quartic equations by radicals in the 16th 

century, the main goal of algebra was the solution of the general quintic (fifth 
degree) equation. There were so many unsuccessful attempts that eventually 
mathematicians turned to the more profound problem of proving that a solution 
of the general quintic by radicals is impossible. The proofs of this fact by Abel 
[1826] and Galois [1831] were a quantum leap in the development of algebra, a 
leap above the details of computation to a realm of powerful abstract con~epts. 
The power of these abstract concepts - groups, fields and dimension - lies in 
their ability to capture general features of computation, so that the existence 
of particular computations can be proved or disproved without attempting to 
carry them out. 

In the chapters that follow we shall develop these concepts from their roots 
in elementary arithmetic, so that their naturalness may be seen as well as their 
power. The concepts of field and dimension suffice, in fact, to settle the classical 
construction problems, as we shall see in Chapter 5. The concept of group is 
crucial in the proof that the general quintic equation is unsolvable, as we shall 
see in Chapter 8. It is also very helpful in determining which regular n-gons are 
constructible, as we shall see in Chapter 9. 

Exercises 

1.8.1 Assuming the de Moivre theorem cosnO±i sin nO = (cosO±i sin o)n, where 
i 2 = -1, show that cosnO is a polynomial p(cosO) in cosO. 

1.8.2 (de Moivre [1707]) Show that the equation p(x) - y = 0 relating x = cos 0 
to Y = cos nO has the solution by radicals 

(Thus "n-section of the angle" is solvable by radicals.) 
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1.9 Discussion 

The straightedge and compass have been the trademark of geometry since the 
appearance of Euclid's Elements around 300 BC. In the Elements, Euclid set 
the agenda and style of mathematics for the next 2000 years, and even the 
most radical new advances - theory of equations in the 16th century, analytic 
geometry and calculus in the 17th, and abstract algebra in the 19th - were in 
some sense an extension of Euclid. In the case of algebra, this should become 
clear as the present book unfolds. The most familiar aspect of the Elements' style 
is the axiomatic method, the "definition - theorem - proof" format. However, 
almost equally important is the algorithmic content, the "constructions," which 
are almost as common as the theorems. Sometimes a construction is part of the 
proof of a theorem, but often the construction stands alone: the whole point 
"being to prove that a certain figure can be constructed with straightedge and 
compass. Indeed, the Elements begins with the construction of the equilateral 
triangle and ends with the construction of the five regular solids. 

Euclid was aware that straightedge and compass construction involves ra­
tional operations and square roots, but he stopped short of describing the real 
quadratic closure of Q. Book X of the Elements contains a thorough discussion 
of quantities of the form a ± b-jC, J a ± b-jC and J Va ± -jC where a, b, CEQ, 
but not of any deeper nesting of square roots, since this is as far as one needs 
to go to construct the regular solids. For example, the side of an icosahedron 

inscribed in the unit sphere is !VlO(5 - vg) (see Heath [1925] vol. III, p. 489 
and E:;;:ercise 1.9.2 below). 

Why the restriction to straightedge and compass? Probably for the sake of 
simplicity, the same reason Euclid restricted his plane geometry to the properties 
of straight lines and circles. The restriction was not observed universally in Greek 
mathematics. Constructions using other curves were sometimes used in cases 
where straightedge and compass failed, as with the duplication of the cube and 
trisection of the angle. An interesting account of some of these constructions, 
and their influence on the modern theory of curves, may be found in Brieskorn 
and Knorrer [1986]. 

New light was thrown on construction problems with the development of 
algebra in the 16th century. Around 1500, in Bologna, del Ferro found the so­
lution to the cubic equation. The solution was rediscovered by Tartaglia in the 
1530s, and published in Cardano's Ars Magna [1545]. This book also gave the 
solution to the quartic equation, which was found by Cardano's student Ferrari. 
Complementing these Italian discoveries, the French mathematician Viete [1591] 
found that the solution of cubic equations is equivalent to trisection (compare 
with Exercise 1.6.3). Thus, by the beginning of the 17th century, algebra had 
matured to the point where it could become an equal partner with geometry. 

The partnership eventuated in the (independent) work of Fermat [1629] and 
Descartes [1637] on algebraic geometry. By representing curves by their now 
familiar "cartesian" equations, Fermat and Descartes were able to use algebra 
to solve geometric problems and vice versa. They took advantage of the ease 
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and freedom with which curves could be defined by equations to extend the 
range of constructions, intersecting 2nd and 3rd degree curves to find solutions of 
4th, 5th and 6th degree equations. This idea clarified and systematised some of the 
constructions found by the Greeks. For example, a duplication of the cube found 
by Menaechmus (around 350 BC) could be viewed as solving x3 = 2 by finding 
the intersection of y = ~X2 and y = ~ (compare with Exercise 1.5.1). However, 
the general notion of construction proved to be unwieldy and was abandoned 
around 1750. By that time it seemed clear that the solution of equations was 
best left to algebra, and that the theory of constructions was best confined to 
Euclid's geometry, where it had a natural place. Algebraic geometry could stand 
on its own feet as a theory of curves. 

Then in 1796 the 19-year old Gauss put the shine back on the straightedge 
and compass with an astonishing new construction - the regular 17 -gon. This was 
the first new regular polygon constructed since ancient times, and incidentally 
a big factor in Gauss's decision to become a mathematician. It was also one 
of the key events in the development of modern algebra, involving insight into 
the hidden, abstract properties of polynomials just as much as manipulative 
skill. Gauss expanded his discovery to a general theory of regular n-gons in his 
classic Disquisitiones Arithmeticae [1801]. Over the next few decades several such 
insights were gained by Gauss and his brilliant younger contemporaries Abel and 
Galois, as we shall see in later chapters. Between them they solved most of the 
classical problems of construction by straightedge and compass, and solution of 
equations by radicals. Strangely enough, the impossibility of duplication of the 
cube and trisection of the angle was first proved by an obscure mathematician, 
Wantzel [1837]. Wantzel also filled a gap in Gauss' theory of regular n-gons 
(see Chapter 5), and gave an explicit algebraic criterion for constructibility, 
previously only implicit in Descartes [1637]. 

Perhaps the most famous construction problem was settled by Lindemann 
[1882]. He proved the impossibility of "squaring the circle," the construction of 
a square equal in area to a given circle. This amounts to construction of the 
number 7r. We have omitted mention of squaring the circle until now because it 
is not in fact an algebraic problem. Lindemann showed that 7r is not the solution 
of any polynomial equation with integer coefficients. As we shall see in Chapter 
5, this means that 7r is not only not constructible, it cannot be expressed as any 
finite combination of rational operations and nth roots. 

In view of this result, it now seems fair to say that the Greeks were hopelessly 
out of their depth in attempting to square the circle. At the time, however, they 
had reason to suppose they could succeed. Hippocrates of Chios (around 450 
BC) made the remarkable discovery that certain regions bounded by circular 
arcs are squarable. The regions in question are called lunes because their shape 
is like that of a crescent moon. The generallune is bounded by two circular arcs, 
subtending angles 2(),2()' as shown in Figure 1.9.1. The simplest squarable case 
is where () = 7r/2,()' = 7r/4 (Exercise 1.9.1). 

Hippocrates discovered this, as well as two other squarable lunes, for which 
()/()' = 3,3/2. Two more squarable lunes were found by Wallenius [1766], with 
() /()' = 5,5/3. They were rediscovered by Clausen [1840]' who conjectured that 
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Fig. 1.9.1. A lune 

the five squarable lunes then known were the only ones with () / ()' rational. This 
turns out to be correct, and the proof is a relatively recent application of Galois 
theory (Cebotarev [1934], completed by Dorodnov [1947]). 

I suppose this means that squarable lunes are a fluke, but an interest­
ing fluke nevertheless. Perhaps they could even be ranked with the other 
two "famous fives" of constructibility theory: the five regular polyhedra and 
the five known primes p for which the regular p-gon is constructible, namely 
p = 3,5,17,257,65537 (see Chapters 5 and 9). 

Exercises 

1.9.1 Compute the area ofthe lune with () = 7r /2, ()' = 7r / 4. 

1.9.2 Deduce from Exercise 1.4.2 that the side of an icosahedron inscribed in 

the unit sphere is f. J 1O( 5 - y'5). 
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2.1 Natural Numbers 

The natural numbers 0,1,2, ... are the numbers used for counting. They are 
generated from 0 by the successor operation + 1 (add one). In other words, the 
set N = {O, 1,2, ... } of natural numbers is the closure of the set {O} under 
successor, that is, the intersection of all sets S such that 0 E S and n + 1 E S 
when n E S. This definition yields several logically equivalent properties of N 
known as induction. The most commonly used versions of induction are: 

I. If 0 E S, and if n + 1 E S when n E S, then N S;; S. 
II. If 0 E S, and if n + 1 E S when 0,1, ... , n E S, then N S;; S. 

III. If T S;; N is nonempty then T has a least member (that is, an nET such 
that the closure of {n} under successor includes all of T). 

We show these statements are equivalent by proving I =} II =} III =} I. 
(I =} II) is probably the trickiest. Suppose S satisfies the assumptions of II, 

that is, 0 E S, and n + 1 E S whenever 0, ... , n E S. To prove that N S;; S we 
consider 

S' = {n : 0, ... ,n E S} 

and prove instead that N S;; S'. Since 0 E S by I, we have 0 E S'. Moreover, 

n E S' =} 0, ... , n E S 

=} n + 1 E S by the assumptions of II 

=} 0, ... , n + 1 E S 

=} n + 1 E S'. 

Thus N S;; S' by I and, since S' S;; S, N S;; S. 
(II =} III). Suppose T S;; N and let S = N - T. If T has no least member then 

o E S, otherwise 0 is the least member of T. Also 

0, ... , n E S =} 0, ... ,n </. T 

=} n + 1 </. T otherwise n + 1 is the least member of T 

=} n+ 1 E S. 

Hence, by II, N S;; S and therefore T is empty. 
(III =} I). Suppose 0 E S, and n + 1 E S whenever n E S. Let T = N - S. 

Then 0 </. T since 0 E Sand 

O<nET=}n</.S 

=} n - 1 </. S by the assumptions of I 

=} n -1 E T. 

Hence T has no least member and therefore T = N - S is empty by III. Thus 
NS;;~ 0 
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We make use of induction in both definitions and proofs. An example of 
definition by induction is the following definition of the function +. 

m + 0 = m for all mEN 

m + (k + 1) = (m+k) + 1 for all m, kEN 

(0) 

(k + 1) 

The clause (0) defines m + n for n = 0 (and all mEN). Then clause (k + 1) 
defines m + n for n = k + 1 whenever m + n is already defined for n = k. Thus 
the set of n for which m + n is defined includes 0 and is closed under successor, 
hence it includes all n E N by version I of induction. Thus m + n is defined not 
only for all m, but also for all n, in N. 

P~operties P of functions defined by induction are naturally proved by in­
duction, that is, by proving that the set of n for which P holds includes 0 and 
'is closed under successor (hence is all of N). For example, we can prove the 
associative property of +, 

l+(m+n)=(l+m)+n 

by induction on n, showing associativity holds for n = 0 (the "base step") and 
that it holds for n = k + 1 whenever it holds for n = k (the "induction step"). 

Base step, n = 0: 

1 + (m + 0) = 1 + m since m + 0 = m by definition of + 
= (l + m) + 0 by definition of +. 

Hence associativity holds for n = O. 
Induction step, n = k + 1: 

1 + (m + (k + 1» = 1 + ((m + k) + 1) 
since m + (k + 1) = (m + k) + 1 by definition of + 

= (1 + (m + k» + 1 by definition of + 
= ((l + m) + k) + 1 if associativity holds for n = k 

= (l + m) + (k + 1) by definition of +. 

Hence associativity holds for n = k + 1 whenever it holds for n = k, and therefore 
it holds for all n. 0 

The basic properties of multiplication can also be proved by induction, start­
ing with the inductive definition m x 0 = 0, men + 1) = mn + m. In particular, 
one has the associative property of multiplication, l(mn) = (lm)n, which means 
that brackets are unnecessary for products as well as sums. 

Exercises 

2.1.1 Prove 0 + m = m by induction on m. 

2.1.2 Prove m + n = n + m (commutative property of +) by induction on n. 

2.1.3 Prove l(m + n) = lm + In (distributive property) by induction on n. 
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2.1.4 Define mn by induction. 

2.1.5 The Fibonacci numbers Fn are defined inductively by Fo = 0, Fl = 1 and 
Fk+2 = Fk+l +Fk. Prove by induction that 1+1/(1+1/(1+·· ·1)···) = Fn+l/ Fn· 

2.1.6 Prove by induction that 7n = 7Fn +Fn- 1 for each root 7+, L = (1±vi5)/2 
of the equation 72 = 7 + 1, and hence show that Fn = (7.+ - 7':.)/(7+ - L). 

2.2 Integers and Rational Numbers 

The natural numbers are closed under addition and multiplication but not un­
der subtraction (you can't take 7 from 3 ... ). To overcome this inconvenience 
we enlarge N to the set Z of integers by introducing a negative integer -n for 
each nonzero n E N (now renamed the set of positive integers). This element is 
called the additive inverse of n because n + (-n) = O. The definitions of addi­
tion, multiplication and additive inverse are extended to Z so that the following 
properties of natural numbers hold for all integers: 

m+n=n+m, mn =nm 

l + (m + n) = (l + m) + n, l(mn) = (lm)n 

l(m + n) = lm + In 

n + 0 = n, n x 1 = n 

n+ (-n) = 0 

( commutative) 

( associative) 

( distributive) 

( identity) 

(additive inverse) 

These properties define what is called a commutative ring with unit (the unit 
being 1 in this case). Since this is the only type of ring we shall consider in this 
book, we shall simply call Z a ring and refer to the above properties of Z as its 
ring properties. 

Subtraction is defined for all m, n E Z by 

m-n = m+ (-n), 

and the properties of subtraction then follow from the ring properties of Z. In 
particular, one finds that the additive inverse of n is unique, that -( -n) = n, 
and that (-1)(-1) = 1 (see Exercise 2.2.1). 

In principle, the negative integers are unnecessary, since all statements in­
volving them can be replaced by equivalent statements about natural numbers. 
For example, 3 -7 = -4 is equivalent to 3 -7 + 4 = O. But in practice they confer 
an enormous advantage the advantage of algebra over arithmetic by allowing 
the properties of subtraction to be used without restriction. For example, in Z 
one can say 

(m - n)(m + n) = m2 
- n2 

without adding "provided m 2': n," as one must when working in N. 
Since Z is itself not closed under division, it is similarly convenient to enlarge 

it to the set of rational numbers Q by introducing a multiplicative inverse n-1 for 
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each nonzero nEZ, with nn-1 = 1, and closing under multiplication. The defi­
nitions of addition and multiplication are extended to the resulting expressions 
mn-1 = min by 

ml m2 ml n2 + m2nl -+-=-----
nl n2 nln2 

and 

(the usual rules for adding and multiplying fractions). Then Q has all the ring 
properties of Z and, since min has the multiplicative inverse nlm, we have an 
r-1 for each nonzero r E Q with 

(multiplicative inverse) 

A ring with this additional property is called a field. 
Division is defined for all r, SEQ, s of. 0, by r +- s = rs-1. Thus Q is 

closed under +, -, x, +- (by nonzero elements). This is the ideal situation for 
computation, and indeed the field properties facilitate computation so greatly 
that they enable us to see things that are virtually invisible from the viewpoint 
of N. For example, the ability to solve linear equations in any number of variables 
leads to the invaluable concepts of vector space and dimension (see Section 5.3). 

Nevertheless, the rational numbers have no content not already implicit in the 
natural numbers, and one is often forced back to N in order to answer questions 
about Q. For example, the field properties of Q are no help in deciding whether 
there is x E Q such that x 2 = 2. The only way to decide is by attacking the 
equivalent question about N : are there m, n E N such that m 2 = 2n2? (See 
Section 3.1.) In Section 2.3 we return to N in order to develop an approach to 
such questions. 

Exercises 

2.2.1 Prove 

(i) l + m = l + n :::} m = n 
(ii) uniqueness of the additive inverse 

(iii) -( -n) = n 
(iv) (-l)n =-n 
(v) (-1)(-1) = 1. 

2.2.2 Does Q contain any commutative ring with unit, other than Z? 
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2.3 Divisibility 

The fact that N is not closed under division makes the problem of divisibility in 
N an interesting problem. In fact, it is the source of some of the most challenging 
problems in mathematics. 

We say that a E Z is divisible by b E Z (or that a is a multiple of b, or that 
b is a divisor of a, or that b divides a) if 

a = bc for some c E Z. 

We sometimes abbreviate this relation by bla, and also write b f a when b does 
not divide a. It is immediate that any n E N has divisors 1 and n, so we call 
these the trivial divisors of n. Divisors are sometimes called factors, particularly 
in the case where a is written as a product a = bl b2 .•• bk. The bis are called 
factors, and their product a factorisation, of a. A natural number p ::J:. 1 with 
no nontrivial divisors is called a prime number or simply a prime. We excll\de 1 
from the primes because it has exceptional properties which would spoil certain 
general statements, in particular unique prime factorisation (see Section 2.5). 

Two easy consequences of the definition of divisor are: a divisor of a divisor 
is a divisor, that is, if bla and clb then cia, and every natural number n > 1 has 
a prime divisor. 

The first assertion is immediate from the definition because 

bla ::::} a = be for some e E N 

clb ::::} b = cd for some dEN 

::::}a=cde 

::::} cia. 

And the second assertion follows from the first by choosing a nontrivial divisor 
m of n, if one exists, then a nontrivial divisor 1 of m, and so on. Since n > 
m > 1 > ... there must be a least divisor p in the sequence, by version III of 
induction (Section 2.1). Then p is prime, since it has no nontrivial divisor, and 
p is a divisor of n by the first assertion. 

The existence of prime divisors yields the first important theorem about 
primes. 

Euclid's Theorem. There are infinitely many primes. 

Proof. Given any primes Pl, ... ,Pk we can find another prime as follows. Con­
sider the natural number 

n = Pl" 'Pk + l. 
Then none of Pl, ... ,Pk divide n - they all leave remainder 1 - hence any prime 
divisor of n is a prime ::J:. Pl,'" ,Pk' 0 

Another consequence of prime divisors is a prime factorisation for each natu­
ral number n. If ql is a prime divisor of n, then n/ ql is a smaller natural number 
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with another prime divisor q2 and so on, hence (by another application of version 
III of induction) 

n = ql'" qs 

for some primes ql,"" qs. What is not clear, at this stage, is whether n is 
divisible by any prime::/:- ql, ... , qs (see Section 2.5). 

We have developed the fundamentals of divisibility in N rather than Z be­
cause primes are simpler to define in N. The definition of divisibility obviously 
applies equally well to Z. Likewise, one can define a prime in Z to be any integer 
with no nontrivial divisors; it is just that the trivial divisors of n E Z are ±1, ±n. 

In N we can say that a nontrivial divisor m of n satisfies 1 < m < n, as 
we did (implicitly) in proving that n has a prime divisor. In Z we have to say 
1 < Iml < Inl, where I I is the absolute value function defined by 

Iml = {m ~f m ;::: 0 
-m lfm < 0 

Exercises 

2.3.1 Show that if cia and clb then cl(a+ b), and note the role of the distributive 
property in the proof. 

2.3.2 Show that 2n - 1 is prime only if n is prime. Is the converse true? 

2.4 The Euclidean Algorithm 

Finding prime divisors of a natural number n is simple in principle - just try 
dividing n by all smaller numbers but in practice it is almost as laborious as 
counting up to n. It is not feasible to do it for a number n with, say, 1000 digits. 
It turns out to be much easier to find the greatest common divisor gcd( a, b) of 
two integers a,b. Moreover, the method by which this is done - the Euclidean 
algorithm - ultimately yields a better understanding of primes, not only in Z, 
but also in other algebraic domains with a concept of "divisor." 

The fundamental property of common divisors is that if cia and clb then 
cl(ma+nb) for any m, n E Z. The Euclidean algorithm is based on this property, 
together with the following property of natural. numbers which may be called 
the division property of N: for any a, bEN with b ::/:- 0 there are q, r E N such 
that 

a = qb + rand O:S r < b 

We call q the quotient, and r the remainder of a on division by b. 

A proof of the division property, which also gives a way to find r, goes as 
follows. If b > a then r = a (and q = 0). If a > b then subtract b from a 
repeatedly until a number r < b is obtained. We must reach such a number 
because otherwise a - b, a - 2b, a - 3b, ... form a set of natural numbers without 
least member, contrary to version III of induction. 0 
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With this algorithm for remainders in hand, we are ready for the Euclidean 
algorithm on natural numbers a, b > O. It begins by setting al = max( a, b), bi = 
min(a, b), in general computes 

ak+l = bk 
bk+l = rk = ak - qkbk where 0::::; rk < bk (remainder on division by bk), 

and halts when rk = o. 
Theorem. The last nonzero remainder rl = bl+! produced by the Euclidean 
algorithm is gcd(a,b), and 

gcd(a, b) = ma + nb for some m, n E Z. 

Proof. Since any common divisor of ak, bk is also a divisor of ak+! = bk and 
bk+1 = ak - qkbk (by the fundamental property of common divisors), we have 

gcd(al,b l ) = gcd(a2,b2) = ... = gcd(al+l,bl+1). 

And gcd(al+l,bl+l ) = bl+1 because al+! has zero remainder rl+! on division by 
bl+!. 

Thus 
gcd(a, b) = gcd(al+l, bl+d = bl+!. 

Also, each ak+1 = bk and bk+! = ak - qkbk is a linear combination of ak, bk with 
integer coefficients. It follows by induction on k that ak+1 and bk+l are linear 
combinations of al = a, bi = b with integer coefficients, and in particular this is 
true of bl+! = gcd(a, b). 0 

There is no need to generalise the Euclidean algorithm to negative integers 
since obviously gcd( a, b) = gcd( ±a, ±b), and hence one may always arrange to 
work with natural numbers. However, the coefficients m, n such that gcd( a, b) = 
ma+nb certainly can be negative, hence Z is a more appropriate place to discuss 
greatest common divisors. 

Exercises 

2.4.1 Show that the gcd may also be obtained by a "subtractive" form of the 
Euclidean algorithm which computes 

until az = bl • 

ak+1 = max(ak,bk) - min(ak' bk) 

bk+! = min(ak' bk) 

2.4.2 Find gcd(15, 28) in the form 15m + 28n. 

2.4.3 Use the Euclidean algorithm to show that gcd(Fn+!' Fn) = 1, where Fn is 
the nth Fibonacci number. Also find l, m such that lFn + mFn+1 = l. 

2.4.4 Show that an equation ax + by = c, where a, b, c E Z, has a solution 
x,y E Z {::} gcd(a,b)lc. 

2.4.5 Use gCd(PIP2 ... Pn,PIP2 ... Pn -1) to give another proof that PI,P2, . .. ,Pn 
are not all the primes. 
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2.5 Unique Prime Factorisation 

The gcd is relevant to the study of prime numbers because gcd(a,p) is p or 1 
when p is prime, since 1,p are the only natural number divisors of p. Hence, if 
a is not a multiple of the prime p then gcd(a,p) = 1. When combined with the 
representation of the gcd obtained from the Euclidean algorithm, this simple 
observation about primes leads to the following: 

Prime Divisor Lemma. IE p is prime and plab then pia or plb. 

Proof. Suppose that a is not a multiple of p, so that 

1 = gcd(a,p) = ma + np for some m, n E Z. 

Multiplying both sides by b we get 

b = mab + npb. 

Now p divides ab by hypothesis, and p plainly divides npb, thus p divides both 
terms on the right-hand side. Hence p divides the left-hand side, b. D 

It follows by repeated application of this lemma that if plql ... qk then plql or 
... plqk. The lemma goes back to Euclid's Elements, Book VII, 30 but the follow­
ing consequence (nowadays considered to be more important) first appeared in 
Gauss [1801], article 16. It is often called the fundamental theorem of arithmetic. 

Unique Prime Factorisation Theorem. The factorisation of each natural 
number into primes is unique (up to the order of factors). 

Proof. Suppose Pl ... Pr = ql'" qs are two prime factorisations of the same 
number. Since the prime Pl divides the left-hand side it also divides ql .. , qs, 
and hence Pllql or ... or Pllqs by the lemma. Since one prime divides another 
only if they are identical, it follows that Pl = qi for some i. 

We can therefore cancel Pl = qi from each side and repeat the argument. 
Eventually the last factor is cancelled from one side, and the last factor from 
the other side must be cancelled with it, since a product of primes cannot equal 
1. Hence the prime factors Pl, ... ,Pr are the same (up to order) as the prime 
factors ql,"" qs. D 

We can now see why the number 1 is excluded from the primes by definition. 
Factorisations involving 1 are not unique, for example 2 = 1 x 2, hence unique 
prime factorisation fails if we include 1 among the primes. 

Exercises 

2.5.1 Suppose n = p~l .. , p~r where Pl,"" Pr are the distinct primes that 
divide n. Show that min {:? m = ptl ... p~r, where each di :S ei. 

2.5.2 Deduce formulas for gcd(a, b) and lcm(a, b) in terms of the prime powers 
in a and b, where lcm( a, b) denotes the least common multiple of a, b. 

2.5.3 Show that gcd( a, b )lcm( a, b) = abo 
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2.5.4 Generalise the proof of the prime divisor lemma to show that if rlab and 
gcd(a, r) = 1 then rib. 

2.6 Congruences 

As mentioned in Section 2.3, the fact that Q is closed under division is very 
useful, but it does not help us understand the divisibility properties of integers. 
Q provides a ratio min of any integers m, n with n i= 0, and hence gives no 
indication whether n actually divides m. What we need is a system containing 
a more faithful reflection of integer division. Such a system emerges from the 
concept of congruence. 

We say that a, b E Z are congruent mod n E Z if n divides a - b, and we 
express this relation by the equation-like expression 

a == b (mod n) 

called a congruence mod n. The word "mod" is short for "modulo," and the 
number n is sometimes called the modulus. The relation == of congruence indeed 
has the same fundamental properties as equality, namely 

a == a (mod n) 

a == b (mod n) ::::?- b == a (mod n) 

a == b (mod n) and b == c (mod n) ::::?- a == c (mod n) 

(reflexive) 

(symmetric) 

(transitive) 

as one may easily check. For example, transitivity follows because nl(b - a) and 
nl(c - b) ::::?- nl(c - b) + (b - a), that is, nl(c - a). The difference between == and 
= is that numbers a, b congruent mod n are not necessarily identical but instead 
they have a common property - that of leaving the same remainder on division 
by n. 

Thus the congruence notation offers the possibility of computing facts about 
divisibility in the same way that we manipulate equations. This possibility is 
realised by the following result, which justifies addition and multiplication of 
congruences. 

Theorem. If al == b1 (mod n) and a2 == b2 (mod n) then 
(i) al + a2 == b1 + b2 (mod n) 
(ii) ala2 == b1b2 (mod n). 

Proof. (i) This is straightforward from the definition. 

al == b1 (mod n) ::::?- nl{al - b1 ) 

a2 == b2 (mod n) ::::?- nl(a2 - b2) 

::::?- nl{al - bt) + (a2 - b2) 

::::?- nl{al + a2) - (b1 + b2) 

::::?- al + a2 == b1 + b2 (mod n). 
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(ii) It is easiest to begin with the special case 

a == b ( mod n) =} ae == be (mod n) and ea == eb (mod n). 

This holds because 

a == b (mod n) =} nl(a - b) 

=} nlc(a - b) 

=} nl(ea - eb) and nl(ae - be) 

=} ea == eb (mod n) and ae == be (mod n). 

Now to prove the general case we argue as follows: 

al == bl (mod n) =} ala2 == bla2 (mod n) by the special case e = a2 

a2 == b2 (mod n) =} bla2 == bl b2 (mod n) by the special case e = bl 

=} ala2 == bl b2 (mod n) by transitivity. 

27 

o 
To illustrate the kind of information obtainable by manipulation of congru­

ences, we use congruences mod 9 to explain the ancient rule of "casting out 
nines": a number (written as usual in base 10 notation) is divisible by 9 {::} the 
sum of its digits is divisible by 9. . 

If am ... al ao is the base 10 notation for a number n, then 

n = lOmam + ... + lOal + ao. 

Now since 10 == 1 (mod 9), we get 10k == 1 k == 1 (mod 9) by multiplication of 
congruences, and hence, by addition of congruences as well, 

n = lOmam + ... + lOal + ao == am + ... + al + ao (mod 9). 

In particular, 

n == 0 (mod 9) {::} am + ... + al + ao == 0 (mod 9), 

that is, 9 divides n {::} 9 divides the sum of the digits of n. 

Exercises 

2.6.1 Use congruences mod 3 to show that 

3 divides n {::} 3 divides the sum of the digits of n. 

2.6.2 Use congruences mod 11 to show that 

11 divides n = am ... alaO {::} 11 divides (-l)mam + ... - al + ao. 

2.6.3 Show that it is valid to subtract congruences with the same modulus. 

2.6.4 Find an example with ae == be (mod n), with e :j:. 0 (mod n), but with 
a ¢ b (mod n) (that is, division of congruences is not always valid). 

2.6.5 Use congruences mod 4 to show that a2 + b2 = e2 cannot hold for a, b odd 
and e even. 
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2.7 Rings and Fields of Congruence Classes 

A helpful notation for the set of integers congruent to a mod n is 

nZ + a = {nk + a : k E Z}, 

which we call the congruence class of a mod n. Two numbers a, b are congruent 
mod n if and only if they have the same congruence class, that is, 

a == b (mod n) ~ nZ + a = nZ + b. 

Thus instead of working with the congruence relation between numbers we can 
work with the more familiar equality relation between congruence classes. What 
makes the latter option particularly attractive is that we can define sum and 
product of congruence classes, and hence treat them as ordinary algebraic ob­
jects. 

The sum of the class of al and the class of a2 is defined to be the class of 
al + a2, and their product is the class of ala2: 

(nZ + al) + (nZ + a2) = nZ + al + a2 

(nZ + al)(nZ + a2) = nZ + ala2. 

These definitions are meaningful; that is, they are independent of the represen­
tatives al,a2 of nZ + al,nZ + a2, thanks to Theorem 2.6 on the addition and 
multiplication of congruences. For example, to show that the sum is meaningful 
we have to show that 

and this is so, because it is equivalent to addition of congruences 

by the equivalence (*). We similarly show that the definition of product is mean­
ingful by appeal to multiplication of congruences. 

The sum and product of congruence classes inherit ring properties from the 
sum and product of integers. For example, the sum of congruence classes is 
commutative because 

The other ring properties are verified similarly, bearing in mind that the zero 
congruence class is nZ + 0 = nZ, and the unit congruence class is nZ + 1. 

In fact, more is true. We actually have: 
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Theorem. The set of congruence classes mod n is a ring under the sum and 
product of congruence classes. This ring is a field if n is prime. 

Proof. The ring properties all follow from the ring properties of Z, in the same 
way that commutativity of sum was shown above. 

Also, a congruence class nZ + a has a multiplicative inverse ~ gcd( a, n) = 1. 
The argument goes as follows: 

nZ + a has a multiplicative inverse 

~ (nZ + a) (nZ + b) = nZ + 1 for some b E Z 

~ nZ + ab = nZ + 1 for some b E Z 

~ ab == 1 (mod n) for some b E Z 

~ ab - 1 = kn for some b, k E Z 

~ ab - kn = 1 for some b, k E Z 

~ gcd(a,n) = 1 

(using Theorem 2.4 that gcd( a, n) = ab - kn for some b, k E Z for C~), and 
the fact that a common divisor of a, n also divides ab - kn for (=:})). Now if n 
is prime, gcd( a, n) = 1 for each a not a multiple of n, that is, for each nonzero 
nZ + a. Hence each nonzero congruence class has a multiplicative inverse. 0 

When gcd( a, n) = 1 we also say that a and n are relatively prime. 
The ring of congruence classes mod n, that is, the n-element set {nZ, nZ + 

1, ... ,nZ + n -1} under the sum and product operations, is often written ZjnZ. 
One may also view it as the result of imposing the relation "n = 0" on Z. The 
class nZ + m consists of all numbers that "become equal" to m when n is set 
equal to O. ZjnZ is also called the quotient of Z by nZ, hence the use of the 
quotient symbol j. We shall see many other examples of quotient constructions 
in algebra from Chapter 4 onwards. 

The second part of the theorem says that Z/pZ is a field when p is prime. Is 
the converse true? The exercises below show that it is. 

Exercises 

2.7.1 Show that Z/4Z contains nonzero elements whose product is zero (zero 
divisors). 

2.7.2 Show that Z/nZ contains zero divisors, and hence is not a field, whenever 
n is not prime. 

2.8* The Theorems of Fermat and Euler 

The fact that Z/pZ is a field when p is prime has remarkable consequences, 
justifying the claim at the beginning of Section 2.6 that congruences give a better 
understanding of integer division. One such consequence is known as Fermat's 
little theorem (to distinguish it from the more famous "Fermat's last theorem"). 
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Fermat's Little Theorem. Ifp is prime and gcd(a,p) = 1 then 

aP-
1 == 1 (mod p). 

Proof. Consider the congruence classes mod p of a, 2a, ... , (p - 1 )a. We shall 
show that these are distinct and nonzero, and hence they are all the p - 1 
nonzero congruence classes mod p. The reason is that gcd(a,p) = 1, so a has 
a multiplicative inverse mod p, by Section 2.7. If we multiply the classes of 
a, 2a, ... , (p - l)a by the inverse of a, we get the distinct nonzero classes of 
1,2, ... ,p-1. Hence the classes of a, 2a, ... , (p-1)a are also distinct and nonzero. 

Thus the congruence classes mod p of a, 2a, ... , (p -l)a are the same (though 
possibly in a different order) as the classes of 1,2, ... ,p - 1. It follows that 

a x 2a x ... x (p - l)a == 1 x 2 x ... x (p - 1) (mod p). 

Now since 1,2, ... , p - 1 are relatively prime to p they all have multiplicative 
inverses mod p. Multiplying both sides of the congruence by these inverses, we 
can cancel 1, 2, ... ,p - 1, obtaining 

aP- 1 == 1 (mod p). D 

This proof is essentially a modernisation of a proof given by Euler [1761]. 
Fermat [1640'] only stated the theorem but it seems likely that he found a proof 
using the binomial theorem, perhaps like the one suggested in the exercises that 
follow. Euler did not use the language of congruences, which was introduced by 
Gauss [1801], but he did use the concept of a multiplicative inverse. He also 
noticed how this concept could be used to generalise the theorem to congruences 
modn. 

As above, we need gcd(a, n) = 1 so that a has a multiplicative inverse mod 
n. We cannot use all the classes of 1,2, ... , n - 1 mod n, only those that have 
inverses mod n. These are the classes of the m such that gcd(m, n) = 1, and the 
number of them is denoted by ¢(n), called the Euler phi function. 

Euler's Theorem. If gcd(a, n) = 1 then 

a<!>(n) == 1 (mod n). 

Proof. If we multiply the classes ofthe m such that gcd(m, n) = 1 by a, we get 
¢(n) distinct nonzero classes mod n, by the same argument as in Fermat's little 
theorem. Thus the classes represented by the am, where gcd(m, n) = 1, are the 
same as the classes represented by the m. It follows that 

product of the am == product of the m (mod n), 

and cancellation of the numbers m from both sides which we can do since they 
were chosen to be invertible - yields 

a<!>(n) == 1 (mod n). D 

The relationship between Fermat's little theorem and Euler's theorem is 
echoed in many developments we shall see later (particularly in the sections 
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marked *). It is typical of the distinction between the "prime case" and the 
"general case." We shall also see that the field properties of ZlpZ, and indeed 
Fermat's little theorem, have important implications for polynomial division 
(Sections 4.7,4.8*,4.9*). 

Remark. Fermat's little theorem offers an interesting way to prove that a par­
ticular number n is not prime without finding any divisors of n. Namely, find a 
number a relatively prime to n such that a n - 1 ¥:- 1 (mod n). Such a number a is 
called a "witness" to the fact that n is not prime. Finding a witness is not just 
an interesting possibility - it is also practical, because for large numbers n it is 
actually faster to compute an-I, mod n, than to find divisors of n. The secret is 
to form the powers a 2, a4 , a 8 , a 16 , ••• by repeated squaring, and then build the 
exponent n - 1 by adding suitable powers of 2. For example, to build a100 one 
forms the product a64a32a4. Also, of course, all multiplications are done mod n, 

so that intermediate results are never much larger than n. 
The other fact contributing to the general success of this method is that the 

number 2 is usually a witness; that is, 2n - 1 ¥:- 1 (mod n) for most nonprime n. 
The first counterexample is n = 341 (see Exercise 2.8.4). 

Exercises 

2.8.1 Show that p divides the binomial coefficient m = k!(:~k)! when k i- O,p 
and p is prime. 

2.8.2 Deduce from Exercise 2.8.1 and the binomial theorem that, for p prime, 

(a + 1)P == aP + 1 (mod p) 

2.8.3 Deduce by induction on a that 

aP == a (mod p) 

for any natural number a, and hence that 

aP-
1 == 1 (mod p) 

when gcd(a,p) = 1. 

2.8.4 Show that 2340 == 1 (mod 341), and hence that the converse to Fermat's 
little theorem is false. 

2.8.5 Is 3 a witness that 341 is nonprime? 

2.8.6 Find 1(341), and check that 2<1>(341) == 3<1>(341) == 1 (mod 341). 



32 2 The Rational Numbers 

2.9* Fractions and the Euler Phi Function 

The values of ¢(n) fluctuate wildly and are generally difficult to compute. Never­
theless, ¢ also has some pleasantly regular behaviour which is easily interpreted 
(and proved) in terms of fractions. There is a natural connection between the 
two because ¢(n) is the number of reduced fractions n'ln where 1 ::; n' ::; n; that 
is, the fractions with gcd( n', n) = 1 and hence in "lowest terms." 

Theorem. If m and n are positive integers with gcd( m, n) = 1 then 
(i) Ldln ¢(d) = n, 
(ii) ¢(mn) = ¢(m)¢(n). 

Proof. (i) Consider the n fractions n'ln for 1 ::; n' ::; n. When n'lnis reduced to 
lowest terms, the result is a fraction d' I d for some divisor d of n and some d' ::; d 
which is relatively prime to d. For fixed d, the total number of such fractions 
d'id is ¢(d), by definition of ¢. It is also clear that each fraction d'ld, where din, 
results from reducing some n'ln. 

Thus to prove that n = Ldln ¢( d) it remains to show that distinct reduced 
fractions d' I d and e' I e (originating from divisors d and e of n, though this doesn't 
matter) represent distinct rational numbers. 

Of course, this is a familiar property of fractions, but it can be proved from 
first principles as follows. Suppose d' I d = e' I e and hence 

d'e = de'. 

This implies d'lde', and hence d'ie' since gcd(d',d) = 1. Similarly e'ld' and hence 
d' = e'. But then we also have d = e. 

(ii) Consider the ¢(m)¢(n) sums ~' + ;' where 1 < m' < m with 
gcd(m',m) = 1 and 1::; n'::; n with gcd(n',n) = 1. Now 

m' n nm' +mn' 
-+-=----
m n mn 

and the numerator nm' +mn' is relatively prime to mn. Suppose on the contrary 
that a prime P divides both mn and nm' + mn'. Since plmn and gcd(m, n) = 1 
we have plm or pin. If plm then plmn', hence plnm' = (nm' + mn') - mn', hence 
plm' since p t n by the assumption that gcd(m, n) = 1. This contradicts the 
assumption that m'lm is reduced. There is a similar contradiction if pin. 

Thus nm:t:n' is also reduced. Can we get all the ¢( mn) numerators r of 
reduced fractions with denominator mn in this way? The answer is yes. To find 
m', n' such that 

r = nm' +mn', 

first find mil, nil such that 

1 = nm" + mn", 

using the Euclidean algorithm and the fact that gcd( m, n) = 1 (compare with 
Section 2.4). Then let 
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m' = rm", n' = rn". 

Notice that no prime p divides both m' and m, otherwise it also divides r, 
contrary to the assumption that r Imn is reduced. Thus m'lm is reduced, and 
similarly, so is n'ln. 

The m', n' we have just found are not necessarily in the ranges 1 :::; m' :::; m, 
1 :::; n' :::; n originally considered. However, if m* == m' (mod m) and n* _ 
n' (mod n) are chosen in the required ranges the resulting numerator 

r* = nm* +mn* 

= n(m' + km) + m(n' + in) for some k, i E IE 

== nm' + mn' (mod mn). 

Thus we do obtain the ¢>( mn) different congruence classes of numerators r from 
the ¢>(m)¢>(n) congruence classes of pairs (m', n'), which is enough to show 
¢>(mn) = ¢>(m)¢>(n). 0 

The relation ¢>( mn) = ¢>( m )¢>( n) when gcd( m, n) = 1 was discovered by Euler 
[1761] and has since been proved in many different ways. The idea of interpreting 
it in terms of fractions seems to be due to Kronecker; see Kronecker [1901], 
p.125. In his book (a set of lecture notes edited by Hensel after Kronecker's 
death), there is another proof of (ii) which uses (i) and induction (see Kronecker 
[1901], p.245, or the exercises below). In Chapter 6 we shall give a more abstract, 
but simpler, proof which also throws light on an ancient result known as the 
Chinese remainder theorem. A relationship between ¢> and the Chinese remainder 
theorem was first observed by Gauss [1801], article 38. In article 39 of the same 
work Gauss also discovered part (i) of the theorem above. 

Exercises 

2.9.1 Using the fact that m = :Edlm ¢>(d) , n = :Eeln ¢>(e) , show that 

mn = ¢>(m)¢>(n)+¢>(m) L ¢>(e)+¢>(n) L ¢>(d)+ ¢>(d)¢>(e). 
eln,e<n dlm,d<m dlm,d<m,eln,e<n 

2.9.2 Assuming gcd(m, n) = 1, show that 

mn = L ¢>(f) = L ¢>(de). 
limn dlm,eln 

2.9.3 Use Exercise 2.9.2 and induction on de < mn to show 

mn = ¢>(mn) + ¢>(m) L ¢>(e) + ¢>(n) L ¢>(d) + ¢>(d)¢>( e), 
eln,e<n dlm,d<m dlm,d<m,eln,e<n 

and hence deduce from Exercise 2.9.1 that 

¢>(mn) = ¢>(m)¢>(n) when gcd(m, n) = 1. 
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2.10 Discussion 

Euclid's Elements is not only a textbook of geometry, but also the first text­
book of number theory. Book VII introduces the concepts of divisors and prime 
numbers, and proves most of their basic properties. Proposition 2 proves the cor­
rectness of a simple form of the Euclidean algorithm for finding gcd - repeatedly 
subtracting the smaller number from the larger instead of dividing by it. Since 
any common divisor of a, b is also a divisor of a - b, it is clear that repeated sub­
traction gives the gcd just as well as repeated division (though generally more 
slowly). The advantage of the "division" form of the algorithm is that it works 
in certain domains where division with remainder cannot always be achieved by 
repeated subtraction, for example, in rings of polynomials (see Chapter 4). 

Despite its early start, number theory did not become a mature discipline un­
til around 1800, with the publication of the first systematic books on the subject: 
Legendre's Essai sur la Tbeorie des Nombres [1798J and Gauss's Disquisitiones 
Aritbmeticae [1801J. Indeed, up to the 18th century most of the important con­
tributions to number theory had been made by two mathematicians: Diophantus 
(around 250 AD) and Fermat (1601-1665). The surviving writings of Diophantus 
are nowhere near as general and methodical as the Elements. On the face of it 
they contain nothing but special solutions to special equations. However, these 
equations and their solutions contain the seeds of much of number theory up 
to the time of Gauss, the story of which is well told in Weil [1984J. Fermat, in 
particular, became interested in number theory through reading a book of Dio­
phantus' works edited by Bachet [1621J. Fermat himself worked in the manner 
of Diophantus, occasionally revealing his solutions but not his general methods, 
so it was left to Euler, Lagrange and Legendre in the 18th century to prove many 
of the results claimed or conjectured by Fermat. Their works, and particularly 
the problems they left unsolved, were the main source of inspiration for Gauss. 

Gauss's Disquisitiones marks a turning point in the development of number 
theory because of its appreciation of foundations (such as unique prime factori­
sation) and abstract algebraic structure (such as congruences, inverses mod p). 
As mentioned above, Gauss was the first to recognise the importance of unique 
prime factorisation, even though Euclid had come very close to its proof and 
other mathematicians were surely aware of it when they spoke of "the" prime 
factors of a number. Likewise, the notion of congruence is implicit in earlier 
number theory (for example Fermat's little theorem) but Gauss was first to see 
that the notion was so pervasive as to deserve its own notation. His own mo­
tivation, as he explains in Section I of the Disquisitiones, was the problem of 
deciding whether a given polynomial equation p(x) = 0 has a rational solution. 
In many cases a rational solution can be shown to be nonexistent by considering 
congruences modulo a suitable m. 

Gauss gives the example p(x) = x3 - 8x + 6, for which 

p(x) == 1,4,3,4,3 (mod 5), when x == 0,1,2,3,4 (mod 5). 

It follows that p(x) =I- 0 for any integer x, and hence p(x) =I- 0 for any rational x 
also. The explanation of the last step (assumed known to the reader by Gauss) 
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is that we can assume a rational x to be min for relatively prime integers m, n. 
Then if p(mln) = 0 we have 

(mln)3 - 8(mln) + 6 = 0 

hence m 3 = 8mn2 - 6n3 = n2(8m - 6n). Since n divides the right-hand side it 
must divide m 3 , hence any prime divisor of n divides m, by the prime divisor 
property (Section 2.5). This contradicts the assumption that m, n are relatively 
prime, unless n = 1. Thus any rational solution min is in fact an integer solution 
m. The same argument - rational solution implies integer solution - works for 
any equation with integer coefficients and leading coefficient 1. 

The Disquisitiones became the bible of the next generation of number the­
orists, particularly Dirichlet, who kept a copy of it on his desk at all times. 
Dirichlet's lectures became a classic in their turn when edited by Dedekind as 
the book Vorlesungen iiber Zahlentheorie. The first edition appeared in 1863 
(four years after Dirichlet's death) and the book gradually changed character 
as Dedekind added appendices in subsequent editions. The final (4th) edition 
contains as much Dedekind as Dirichlet. As one would expect from his absorp­
tion in the Disquisitiones, Dirichlet took pains to clarify and extend the ideas of 
Gauss. In particular, he gave a simpler treatment of the fundamentals, using the 
Euclidean algorithm. However, Dirichlet also made great strides into territory 
where Euler and Gauss had taken only the first steps the theory of algebraic 
numbers. 

An algebraic number is one that satisfies an equation 

with integer coefficients ao, al, ... , an (or, equivalently, with rational coeffi­
cients). Algebraic numbers are not in general rational, as we shall see in Chapter 
3, but despite this they have many properties in common with the rationals. In 
particular, there are fields of algebraic numbers, and each such field has a ring 
of algebraic integers. Algebraic integers happen to be the numbers that satisfy 
equations of the form (*) with integer coefficients and an = 1, though this def­
inition hardly enables one to guess how the algebraic integers of a given field 
will behave. It turns out that in many cases they behave like ordinary integers 
- admitting unique factorisation into "primes," for example. This makes it pos­
sible to enjoy the greater possibilities of factorisation available with algebraic 
integers and still draw conclusions about ordinary integers. For example, Euler 
[1770], p.450, was able to show that there are no positive integers x, y, z such 
that x3 + y3 = z3 (an instance of "Fermat's last theorem") with the help of the 
factorisation 

( I+R)( l-R) x3 - Z3 = (x - z) x + 2 z x + 2 z. 

Dirichlet proved some of the fundamental theorems about algebraic integers, 
but it was Dedekind who isolated the underlying field and ring properties which 
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explain their similarities with ordinary integers. By making the algebraic struc­
tures of number theory the object of study, Dedekind paved the way for abstract 
algebra. His immediate successors, Weber and Hilbert, still spoke of algebraic 
number theory rather than ring theory, but the next generation, led by Emmy 
Noether and Emil Artin, left number theory behind. The definitive account of 
their teaching, van der Waerden's Moderne Algebra [1931]' was the first of the 
"groups, rings and fields" books that are now standard. 

It was no doubt an advantage to study rings abstractly as long as their origins 
in algebraic number theory were still well known, as they were to Noether and 
Artin in the 1920s. Today, however, it is probably necessary to reiterate that 
ring theory grew out of the attempt to model the theory of algebraic integers on 
the theory of ordinary integers. It is therefore not surprising that Z is a good 
example of a ring, and one may look to Z for guidance when investigating the 
properties of other rings. In Chapter 4 we shall see that several key properties 
of Z are reproduced in quite a different setting, the ring of polynomials over a 
field. This is not even a "modern" discovery, but goes back to Stevin [1585]. 

Dedekind's reflections on the nature of integers did not end with their al­
gebraic properties. He was also the first to recognise the fundamental role of 
induction in N. Of course induction has been present, in some sense, from the 
beginning of number theory. Euclid used it unconsciously, for example in proving 
that any natural number A has a prime divisor (Book VII, 31). He noted that 
the process of taking divisors of divisors must eventually halt, otherwise 

an infinite series of numbers will measure the number A, each of 
which is less than the other: which is impossible in numbers. (Heath 
[1925]' vol. 3, p.332.) 

Thus he is appealing to version III of induction as we have described it in Section 
2.1. The first to use induction in the "base step, induction step" format was 
Pascal [1654], who proved several propositions about Pascal's triangle in this 
way. However, even Gauss and Dirichlet used induction only as an occasional 
proof technique, without recognising its special character. 

Dedekind arrived at a deeper understanding by asking "Was sind und was 
sollen die Zahlen?" (the German title of his book [1888], which can be translated 
as "What are numbers and what are they for?"). He came to the conclusion that 
the essence of the natural number concept is the process of closure under the 
successor operation, which entails the inductive property of N. He also realised 
that this property makes it possible to define + and x, so that all of number 
theory really depends on induction (Dedekind [1888], Theorem 126). This radical 
rethinking of the nature of number was possible only with the help of the set 
concept (observe the definition of "closure" in the first paragraph of Section 
2.1). In fact many of Dedekind's contributions to mathematics stem from his 
introduction of sets as mathematical objects. For example, it was his idea to work 
with congruence classes, as algebraic objects, rather than with the congruence 
relation on Z (Dedekind [1857]). He also used sets to give an elegant definition 
of real numbers, as we shall see in Chapter 3. 
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Exercises 

2.10.1 Show that the polynomial equation 8x3 - 6x = 1 arising from trisection 
of the angle 7l'/3 (Section 1.5) has a rational solution only if y3 - 3y = 1 has 
a rational solution. Show that the latter equation has no rational solution by 
showing y3 - 3y =1= 1 (mod 2) for any integer y. 

2.10.2 Show that the equation anxn + ... + alx + ao = 0 has a rational solution 
x = rls (in lowest terms) only if rlao and sian. 

2.10.3 Use Exercise 2.10.2 to give another proof that 8x3 - 6x = 1 has no 
rational solution. 
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3.1 Irrational Numbers 

The rational numbers are beautifully suited to arithmetic, being closed under 
+, -, x, -;-, but they are inadequate for geometry. Their inadequacy is exposed 
by the Pythagorean theorem, according to which the diagonal x of the unit 
square (Figure 3.1.1) satisfies x 2 = 12 + 12 = 2. We can see that no rational 
number x satisfies this equation as follows. 

x 
1 

1 

Fig. 3.1.1. Diagonal of the unit square 

To satisfy x2 = 2 by x = min, where m, nEZ, we need to satisfy 

m 21n2 = 2 

and hence 
m 2 = 2n2

• 

Now it follows from unique prime factorisation (Section 2.5) that the prime 
factorisation of m2 contains an even number of 2s (twice the number of 2s in 
m), and similarly so does the prime factorisation of n2 • But then the prime 
factorisation of 2n2 contains an odd number of 2s, and hence (by unique prime 
factorisation again) 2n 2 cannot equal m 2. 

Thus the number x = J2 is irrational. Or perhaps we should say: if the 
number J2 exists it is irrational. The question of existence will be taken up in 
Section 3.2. 

Similar arguments show that V3, V5, V6, ... are irrational. In fact ifd is irra­
tional for any integer d which is not an nth power. In particular {12 is irrational 
because m 31n3 = 2 implies m 3 = 2n3 , which is impossible because the number 
of 2s in the prime factorisation of m 3 is 3xsomething whereas the number of 2s 
in the prime factorisation of 2n3 is 1 + 3xsomething. 

A more elaborate argument, still dependent on unique prime factorisation, 
shows that there is no rational solution to the equation x3 - 3x - 1 = 0 arising 
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from trisection of the angle 1r/3 (Section 1.5 and Exercise 2.10.1). It goes as 
follows. 

Suppose for the sake of contradiction that x3 - 3x - 1 = 0 is satisfied by 
x = min where m, n E Z and (without loss of generality) that m and n have no 
common divisor. Substituting x = min in the equation we get 

m 3 m 
- -3- -1 =0 
n 3 n 

or 

or 

m 3 = n2 (3m + n). 

The last equation shows that any prime divisor of n divides the right-hand side, 
hence it divides m 3 , hence it divides m (by the prime divisor lemma, Section 
2.5). Since m, n have no common divisor by hypothesis, we must have n = 1, 
and so the last equation simplifies to 

m3 =3m+ 1 

or 

m(m2 -3)=1. 

But the product of two integers m, m 2 - 3 cannot be 1 unless both are ±1, which 
is impossible. 

This contradiction shows that there is no rational solution. 

Exercises 

3.1.1 Prove that v'3 is irrational. 

3.1.2 Prove that if.jd = min with m, n E Z then each prime factor in d occurs 
to an even power, hence d is a square. 

3.1.3 Similarly prove that if \Id is rational then d is an nth power. 

3.1.4 Is 10glO 2 rational? Investigate conditions under which loga b is rational. 

3.1.5 Find two irrational numbers whose sum is rational. 

3.1.6 Show that if e = 1 + fr + ~ + ... +;h + ... is rational then n!e is an integer 
for some n. 

3.1. 7 Express n!e as an integer plus --Ll + ( )l( 2) + ... , and show that the n+ n+l n+ 
latter series has sum less than 1. 

3.1.8 Deduce from Exercises 3.1.6 and 3.1.7 that e is irrational. 
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3.2 Existence and Meaning of Irrational Numbers 

One possible reaction to the discovery of irrational lengths in geometry is to say 
that lengths are not numbers, but something else. It is then possible to maintain 
that all numbers are rational, but one is obliged to develop a separate arithmetic 
of lengths. This was actually done by the Greeks, and they successfully developed 
an arithmetic of lengths by using comparison with rational lengths. 

Since rational multiples of the unit length can approximate any length arbi­
trarily closely, an irrational length A is completely determined by the rational 
lengths r < A. For example, length J2 is determined by the rational lengths r 
such that r2 < 2. If J.l is another irrational length, determined by the rational 
lengths s < J.l, then A + J.l is determined by the rational lengths r + s, and AJ.l is 
determined by the rational lengths rs (we are assuming all lengths are positive 
here, for simplicity). This is the essence of the arithmetic of lengths developed 
by Eudoxus around 350 Be and called the "theory of proportions" (see Euclid's 
Elements, Book V). 

In 1858 Dedekind noticed that irrationals could be realised without the help 
of geometry by using sets of rational numbers. Since the set of positive rationA.ls 
r with r2 < 2 determines J2 , for example, one may as well say it is J2, and 
save the trouble of realising J2 by a line. Similarly, one can define v'3, .ij2 etc. 
to be certain sets of rationals. It is not always easy to state the condition for 
membership in the set, but any irrational corresponds to a "gap" in Q, and hence 
to a partition of Q into a left set L of rationals less than the gap, and a right set 
R of rationals greater than the gap. Observing this, Dedekind [1872] defined an 
irrational number A to be a partition of Q into non-empty sets L)" R).. such that 

(i) each member of L).. is less than all members of R).., 
(ii) L).. has no greatest member and R).. has no least member, 

thus neatly capturing all irrational numbers. 

Of course, the set L).. alone determines A, as does R).. alone, and it is actually 
useful to view A in this "one-sided" way (see Sections 3.3 and 3.5). The inclusion 
of both L).., R).. simply makes the definition a little easier to state (see Exercise 
3.2.2), and perhaps helps to emphasise the nature of A as the "gap" between L).. 
and R)... 

Exercises 

3.2.1 Use the formula :f = 1- ~ + t - ~ + ... to obtain a condition for a rational 
r to belong to the lower set L for 1r. 

3.2.2 Find conditions equivalent to (i) and (ii) above, but mentioning only the 
left set L)... 
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3.3 The Real Numbers 

Dedekind's definition of irrational numbers is probably as natural and simple 
as possible, but it does make irrationals look very different from rationals, and 
we want to view them as the same type of object, namely real numbers. This 
difficulty is easily overcome by viewing each r E Q as itself a partition of Q, with 
left set Lr = {q E Q: q < r} and right set Rr = {q E Q: q 2:: r}. Thus we define 
a real number A to be a partition of Q into non-empty sets L>.., R>.. such that 

(i) each member of L>.. is less than all members of R>.., 
(ii) L>.. has no greatest member. 

(Alternatively, one can drop (ii) altogether and allow two representations of each 
rational A.) When the real number A is viewed as the partition (L>.., R>..) it is 
called a Dedekind cut. The set of real numbers is denoted by R 

As Dedekind pointed out, [1872]' p.2, when real numbers are defined in this 
way they behave like points on a line they have a "left-to-right" order without 
gaps. The ordering of real numbers A = (L>.., R>..), f..l = (Lp, Rp) is defined by 

(which is consistent with the ordering of Q because if q, r E Q we have q :::; r {:} 
Lq ~ Lr). It follows that 

A < f..l {:} L>.. ~ Lp and L>.. =f. Lw 

Thus if A < f..l there is a rational q E Lp which is not in L>.., that is, A < q < f..l. 
The informal reason there are no gaps in IR is that any such gap would correspond 
to a gap in Q, and all such gaps have already been filled by real numbers. The 
rigorous development of this idea goes as follows. 

Theorem. If IR is partitioned into sets L, R such that any member of L is 
less than all members of R then either L has a maximum member or R has a 
minimum member. 

Proof. Suppose IR is partitioned into sets L, R as in the hypothesis of the theo­
rem. This partition of IR induces a cut (Lp, Rp) in Q where 

Lp = {l E Q: l < some A E L}, 

Rp = {r E Q : r 2:: some pER}. 

If the real number f..l = (Lp, Rp) is less than some vEL we have f..l < l < v for 
some l E Q, by the definition of:::;, hence l E Lp by definition of Lp and we have 
the contradiction l :::; f..l. Similarly, f..l cannot be greater than any a E R. 

Thus f..l is either the greatest member of L or the least member of R. 0 

The absence of gaps in IR demonstrates the complete success of Dedekind's 
definition of real numbers. Not only has IR been defined without appeal to the 
line, it has all the properties required for it to serve as a definition of the line. 
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Dedekind called the absence of gaps in lR its "continuity," and the property is 
nowadays called completeness. 

An equivalent formulation of the completeness of lR is that every bounded set 
8 ~ lR has a least upper bound, that is, a number J.L such that A E 8 =} A :::; J.L, 
and K, < J.L =} K, < A for some A E 8. The J.L in the proof above is just the least 
upper bound of L, and similar reasoning shows L/L = {l E Q : 1 < some A E 8} 
to be the least upper bound of any bounded set 8 ~ R 

Exercises 

3.3.1 Explain how each decimal expansion (finite or infinite) determines a real 
number. 

3.3.2 Does this help to explain why 0.999 ... = I? 

3.4 Arithmetic and Rational Functions on lR 

lR inherits the rational operations +, -, x, -7 from Q in a natural way. For ex­
ample, if A = (L>., R>.) and J.L = (L/L' R/L) then A + J.L is defined by the cut (L, R) 
where 

L = {l + m : 1 E L>., mE L/L}' 

If A, J.L E Q this agrees with the usual + on Q, because 

A = least member of R>., 

J.L = least member of R/L' 
A + J.L = least member of R. 

To define multiplication it is easiest to begin with A, J.L > 0 and to represent them 
by cuts (Lt, Rt), (Lt, Rt) in the positive rationals Q+ = {r E Q : r :::: o}. Then 
AJ.L is defined by the cut (L+, R+) in Q+ where 

L+ = {lm: 1 E Lt,m E Lt}. 

We can then construct the corresponding cut (L, R) in Q by expanding L+ to 
L with the negative rationals. The definition of multiplication can finally be 
extended to all reals with the help of the following definition of -A. If A = 
(L)., R>..) then -A = (-R>., -L>.), where 

-8 = { -8 : 8 E 8} for any 8 ~ Q. 

With these definitions it is easy to check that lR inherits the field properties from 
Q. 

This is only to be expected. What we really want to know is how lR behaves 
under the irrational operations, such as V, that motivated its construction in 
the first place. Dedekind remarked that the arithmetic of cuts made possible the 
first rigorous proof that -I2"v'3 = J6 (Dedekind [1872], p.22). Indeed, it makes 
possible the first rigorous proof of the existence of nth roots. The best approach 
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to these results seems to be through the theory of continuous functions, a theory 
which is also fundamental to the algebra of complex numbers (see Section 3.7), 
hence we shall pause at this point to review the basic properties of continuous 
functions on R 

A function f : IR. -t IR. is called continuous at a E IR. if, for any E > 0, there 
is a 8 > 0 such that 

Ix - al < 8 =} If(x) - f(a)1 < E. 

We can express this more intuitively by saying that f(x) becomes "arbitrarily 
close" to f(a) when x is "sufficiently close" to a. The simplest examples of 
functions continuous at a are constant functions f(x) = c and the identity 
function f(x) = x, which obviously satisfy the condition (*) at each a E R 

We shall call a function continuous if it is continuous at each point of its 
domain. Thus the identity and constant functions are continuous. The same is 
true of any function composed from them using +, -, x, +, that is, any rational 
function, by the following theorem. 

Theorem. If f and 9 are continuous then so are f + g, f - g, f 9 and f / g. 

Proof. To prove the continuity of f + 9 we have to find, for given E > 0, a 8 > 0 
such that 

Ix - al =} If(x) + g(x) - f(a) - g(a)1 < E. 

Since 

If(x) + g(x) - f(a) - g(a)1 If(x) - f(a) + g(x) - g(a)1 

< If(x) - f(a)1 + Ig(x) - g(a)1 

it suffices to find a 8 > 0 such that 

Ix - al < 8 =} If(x) - f(a)1 < E/2 and Ig(x) - g(a)1 < E/2. 

By the continuity of f we can make If(x) - f(a)1 < E/2 for Ix - al < 81, say. 
And by the continuity of 9 we can make Ig(x) - g(a)1 < E/2 for Ix - al < 82 , 

say. Hence it suffices to take 8 = min(81 , 82 ). The continuity of f - 9 is proved 
similarly. 

To prove the continuity of fg we have to make If(x)g(x) - f(a)g(a)1 < E. 

The trick is to use 

If(x)g(x) - f(a)g(a)1 = If(x)g(x) - f(x)g(a) + f(x)g(a) - f(a)g(a)1 

< If(x)lIg(x) - g(a)1 + Ig(a)lIf(x) - f(a)l· 

We can assume If(x)1 ~ some constant A, say If(a)1 + 1, by confining x to some 
distance 8A from a. Then it suffices to make 

Ig(x) - g(a)1 < E/2A and If(x) - f(a)1 < E/2Ig(a)1 

which we can do as above by appealing to the continuity of f and g. 
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To prove the continuity of f / g, having proved the continuity of products, it 
suffices to prove the continuity of 1/ g. To do this we have to make 9(~) - 9[0:) < 10. 

Since 

1

1 1 I Ig(x)-g(a)1 1 
g(x) - g(a) = g(x)g(a) = Ig(x)llg(a)llg(x) - g(a)l, 

and since g(a) I- 0 if a is in the domain of l/g, we can make Ig(x)1 2: some 
constant B > 0 by confining x to some distance DB from a. Then it suffices to 
make Ig(x) - g(a)1 ::; Blg(a)I€, which we can do by the continuity of g. 0 

Exercise 

3.4.1 Prove V2vf3 = J6 using the definition of product of Dedekind cuts. 

3.5 Continuity and Completeness 

As mentioned in Section 3.3, Dedekind used the word "continuity" to describe 
the absence of gaps in JR, not to describe a property of functions, as we now do. 
But where does the concept of a continuous function come from, after all? It 
comes from trying to capture the notion of a function whose graph has no gaps. 
It is clear from the case of a strictly increasing function (Figure 3.5.1) that a 
function whose graph has no gaps has to be continuous in the 10-0 sense. But 
the proof that the graph of a continuous function has no gaps depends on the 
"continuity," that is, the completeness, of JR. 

f (a)+e 

f (a) 
---r----------~-+---------

a 

Fig. 3.5.1. Graph of a continuous function 

A precise formulation of this "no gap" property of continuous functions is in 
the following theorem. Notice how convenient it is to express completeness as 
the existence of least upper bounds. 
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Intermediate Value Theorem. If f is continuous at all points of a closed 
interval [a,,8J = {x: a:::; x :::;,8} and if f(a) < 0 and f(,8) > 0 then there is a 
"I E [a,,8J such that fb) = o. 
Proof. Let S = {JL E [a,,8J : f < 0 on [a, JL]}. Then S is bounded above by 
,8, and hence it has a least upper bound "I by Section 3.3. We shall show that 
fb) = 0 by showing that the possibilities fb) > 0 and fb) < 0 lead to 
contradiction. 

If fb) = v > 0 then by continuity of f we can find a 8 > 0 such that 
f(x) > 0 for "I - 8 < x < "I + 8 (take E = v/2). In particular f(JL) > 0 for some 
JL < "I, contrary to the definition of "I (that f < 0 on [a, JLJ for all JL < "I). 

If fb) = cp < 0 we can similarly find a 8 > 0 such that f(x) < 0 for 
"I - 8 < x < "I + 8. Since f < 0 on [a, JLJ for any JL < "I by definition of "I it 
follows that we also have f < 0 on [a, JLJ for some JL > "I, which is also contrary 
to the definition of "I. 0 

Corollary (existence of nth roots). For any A > 0 and integer n > 0 there 
is a "I such that "In = A. 

Proof. Consider the function f(x) = xn - A on the closed interval [0,1 + AJ. 
It follows from Theorem 3.4 that f(x) is continuous for all x in [0,1 + AJ. We 
clearly have f(O) = -A < 0, and f(l + A) = (1 + A)n - A> 0 (consider the two 
cases A < 1 and A ;:::: 1 separately). 

Hence by the intermediate value theorem there is a "I such that fb) = 
"In - A = 0, that is, "In = A. 0 

Another important consequence of completeness is the following theorem, 
which we shall generalise to the plane in Section 3.7. 

Extreme Value Theorem. If f is continuous on [a,,8J then f attains maxi­
mum and minimum values on [a,,8J. 

Proof. We first prove that f is bounded on [a, ,8J. 
Suppose on the contrary that f is unbounded on [a,,8J. Then it is unbounded 

on at least one of the intervals [a, "'!,BJ (lower half of [a, ,8]), ["'!,B,,8J (upper half 
of [a,,8]). Let [a1,,8d be the lower of the two halves on which f is unbounded, 
and argue similarly on [a!, ,81], obtaining a half [a2' ,82J of [a1, ,81J on which f is 
unbounded, and so on. 

In this way we obtain a sequence of intervals [a!, ,81J :J [a2, ,82J :J [a3, ,83J :J 
. .. with a single common point A. In fact A is the least upper bound of 
{a1' a2, ... } because 

and ,8i - ai becomes arbitrarily small as i increases. Now, by definition of A, any 
of its neighborhoods A - 8 < x < A + 8 contains an interval [ai, ,8iJ on which f is 
unbounded. But this is absurd, since f is continuous and therefore we can make 
If(x)1 :::; Ifb)1 + E by suitable choice of 8. 

This contradiction proves that f(x) is bounded and hence the set {f(x) : 
x E [a,,8]} has a least upper bound JL. Now for the coup de grace. If f(x) does 
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not take the value p then J.L-~(x) is continuous on [a,.8] by Theorem 3.4 and 

unbounded since f(x) takes values arbitrarily close to p. This contradicts the 
boundedness of continuous functions just proved! Hence f attains a maximum 
value, p. 

Similarly, f attains a minimum value. 0 

Exercises 

3.5.1 Use the intermediate value theorem to show that any odd-degree polyno­
mial equation with real coefficients has a real root. 

3.5.2 Show that any continuous f which maps [a,.8] into itself has a fixed point, 
that is, a'Y such that fb) = 'Y. 

3.6 Complex Numbers 

Complex numbers are objects of the form a + i.8 where a,.8 E IR and i2 = -1. 
There is of course no i E IR whose square is -1, so this is a further extension of 
the number system. The set {a+i.8 : a,.8 E IR} of complex numbers is denotecl by 
C. There is a unique extension of +, -, x, -;- to C satisfying the field properties, 
since if these properties hold we necessarily have 

(a1 + i.81) + (a2 + i.82) = (a1 + (2) + i(.81 + .82), 
(a1 + i.81)(a2 + i.82) = (a1 a 2 - .81.82) + i(a1.82 + a2.81) 

(using the fact that i 2 = -1). Conversely, it can be checked that the sum and 
product defined by these equations have the field properties. 

A nice application of the field properties of C is to show that a product of 
sums of two squares, (at + .8~)(a~ + .8~), is itself a sum of two squares. Viewing 
at +.8~ and a~ +.8~ as differences of two squares in C, we get the factorisations 

whence 

ai + .8r = ai - i2.8r = (a1 - i.81)( a1 + i.81), 
a~ + .8~ = a~ - i2.8~ = (a1 - i.82)( a2 + i.82), 

(ai + .8n(a~ + .8~) = [(ai - i.81)(a2 - i.82)][(a1 + i.8I)(a2 + i.82)] 
= [a1 a2 - .81.82 - i( a1.82 + a2.81 )][a1 a2 - .81.82 + i( a1.82 + a2.81)] 

= (a1a2 - .81.82)2 + (a1.82 + a2.81)2. (*) 

Once discovered, of course, this identity between real numbers can be checked 
by multiplying out both sides. However, it does look a lot more natural in C. 

Since each a + i.8 E C is uniquely determined by the pair (a,.8) of reals, we 
can interpret C as the set of points (a, .8), that is, as a plane. Just as the real 
number a captures the intuitive idea of a point on a line, the pair (a,.8) captures 
the idea of the point in the plane with cartesian coordinates a,.8. 
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We shall now sketch how the arithmetic of C captures the geometry of the 
plane. Naturally, the basic definitions are motivated by background knowledge 
of geometry. Nevertheless, it is a surprise to see how geometrically effective + 
and x become when combined with i = A . 

The distance of a point z = a + i{3 from 0 = (0,0) is captured by its absolute 
value 

Izl = 10'. + i{31 = J0'.2 + {32. 

This is motivated by the Pythagorean theorem (see Figure 3.6.1). More generally, 
IZ2 - zll captures the distance between Zl and Z2, and there is an algebraic proof 
of the triangle inequality: 

Another important property of absolute value is 

which comes from the identity (*) when Zl = 0'.1 + i{31 and Z2 = 0'.2 + i{32. 

a+ifJ 

f3 

Fig. 3.6.1. Distance from the origin 

With this natural definition of distance, addition and multiplication turn out 
to be geometrically significant mappings of the plane. Addition of a constant 
0'.+ i{3 is simply the translation of the plane sending every point (x, y) a constant 
distance, to the point (x + a, y + (3). To understand multiplication by 0'.+ i{3, we 
first rewrite it in its polar form 

0'.+ i{3 = 10'. + i{31 (10'. ; i{31 + 10'. ~i{3l) , 
which is the product of the real number 10'. + i{31 = J 0'.2 + {32 and the complex 
number IO++i~1 = ~ + ~ of absolute value 1. Multiplication by 1000+i{31 

(> tfJ (>2+/32 (>2+/32 

is the mapping called dilatation of the plane by factor 10'. + i{3l. It magnifies all 
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distances by the constant factor 10: + i,Bl. Multiplication by I~!!gl is called a 
rotation of the plane about O. Thus multiplication in general is the composite 
of a dilatation with a rotation about O. 

The "rotation" terminology can be reconciled with intuitive geometry by 
observing that any complex number of absolute value 1 can be written in the 
form cos B + i sin B, and that 

(x + iy)(cosB + i sin B) = (xcosB - ysinB) + i(xsinB + ycosB) 

is indeed the point to which x+iy is sent by a counter-clockwise rotation through 
B. However, now that we are constructing geometry from JR., rather than the other 
way round, we have to eschew geometrically defined functions like cos and sin. 
A more direct justification for the term "rotation" is that multiplication by any 
complex number of absolute value 1 fixes the origin and preserves all distances 
(see Exercises). 

Exercises 

3.6.1 If x', y' are defined by x' + iy' = (x + iY)(A + ill) show that 

(x; - X~)2 + (y; - y~)2 = (AX2 - AXI -ILY2 + ILYI)2 + (ILX2 -ILXI + AY2 - AYI)2 

and that this 

Conclude that multiplication by a number A + ill of absolute value 1 preserves 
distances. 

3.6.2 Prove the triangle inequality. (Hint: it may help to reduce to the special 
case ZI = 0, Z2 E JR. by suitable translation and rotation.) 

3.6.3 Suppose 100+i,B1 = h+i81 = 1 and (0:+i,B)3 = ,+i8, so that multiplication 
by 0: + i,B is a rotation that "trisects" multiplication by , + i8. Show that the 
relation between 0: and, is 40:3 - 30: =, (compare with Section 1.5). 

3.6.4 Show that any composite of translations, rotations and dilatations of the 
plane is a function of the form J(z) = az + b. Is the converse also true? 

3.7 Regular Polygons 

The relationship between rotation and the multiplication of complex numbers 
throws new light on the nature of the regular n-gon. It enables us to justify the 
claim, made in Section 1.5, that constructing the regular n-gon is equivalent to 
constructing the solutions of 

zn-l + ... + z + 1 = 0. 

Indeed, it will become clear that the existence of the regular n-gon is equivalent 
to the existence of solutions to (*). 
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We take the plane to be te, choose the unit of length so that the n-gon is 
inscribed in the unit circle {z : Izl = I}, and choose the real axis so that one 
vertex is at z = 1. The other vertices result from 1 by a sequence of rotations, 
that is, multiplications by some ( with 1(1 = 1, and hence they form a sequence 
of complex numbers 1, (, (2, ... ,(n-1 where (n = 1. Of course we have in mind 
that ( = cos 2: + i sin 2: (Figure 3.7.1), but in accordance with our program of 
constructing geometry from numbers we avoid using cos and sin. The only thing 
we need to know about ( is that (n = 1, reflecting the fact that the product of 
n rotations (multiplications by () returns each vertex to its starting point, and 
hence equals multiplication by 1. Bearing in mind that 

C - 1 = (( - 1)(C-1 + ... + (+ 1) 

and ( =11; we see that (n-1 + ... + (+ 1 = O. Thus if the regular n-gon exists 
tn te, there is a complex number ( satisfying (*). 

, , 

Fig. 3.7.1. Vertices of the regular n-gon 

Conversely, does a solution ( of (*) yield a regular n-gon? Well, not just any 
solution will do. For example, the solution z = i of 

z7 + z6 + ... + z + 1 = 0 

gives a regular 4-gon (with vertices i, i2 , i 3 , i4 = 1), not a regular 8-gon. In 
general, if n = md a solution ( of (*) may satisfy not just (n = 1 but' also 
(d = 1, in which case ( gives at most a d-gon, not an n-gon. To get an n-gon we 
need what is called a primitive nth root of unity, a ( = (n such that (;:: = 1 but 
(~ =11 for d < n. In this case (n, (;, ... ,(;::-1,1 are distinct and may be taken 
as the vertices of the n-gon. 

When n is a prime p, then any solution ( of (*) is a primitive pth root of 
unity, because if (d = 1 and d < n we have (dm = ((d)m = 1 for any integer 
m, and by taking m to be the multiplicative inverse of d, mod p (see Section 
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2.7), we get 1 = (dm = (1, which is a contradiction. Thus when n is prime the 
existence of the regular n-gon follows from the existence of any solution to (*). 
In this case we can also prove (see Section 4.7) that Zp-l + ... + Z + 1 has no 
non-trivial factorisation with rational coefficients. We call Zp-1 + ... + Z + 1 
the pth cyclotomic polynomial ("cyclotomic" is from the Greek word meaning 
"circle-dividing") and denote it by <pp(z). 

When n is not prime the left-hand side of (*) factorises into polynomials with 
integer coefficients, one of which, <pn(z), is satisfied only by primitive nth roots 
of unity. We shall not go further into this here, though Exercises 3.7.3 and 3.7.4 
give some clues. 

At any rate, assuming the existence of a <pn(z) satisfied only by primitive nth 
roots of unity, we can say that the existence of the regular n-gon follows from 
the existence of solutions to the equation 

called the nth cyclotomic equation. Thus it is now possible to base the regular n­
gon on algebraic properties of complex numbers, rather than geometric intuition. 
We shall realise this possibility in Section 3.8, by showing that all polynomial 
equations have solutions in <C. 

Exercises 

3.7.1 Defining integers an ,!3n by 

(3 + 4i)n = an + if3n for n = 1,2,3, ... , 

show by induction on n that 

an == 3 (mod 5) and f3n == 4 (mod 5). 

3.7.2 Deduce from Exercise 3.7.1 that (~ + ~i)n ¥- 1, that is, the point ~ + ti 
on the unit circle is not a root of unity. 

3.7.3 Use the fact that 

zn-l + ... + z + 1 = (zn - l)/(z - 1) 

to find a factorisation of zn-l + ... + z + 1 when n is not prime. 

3.7.4 Defining <pn(z) inductively by 

<Pl(Z) = z -1, <pn(z) = (zn -1)/I1 <Pd(n) for n> 1, 
din 

show that <P4(Z) = z2 + 1 and <P6(Z) = z2 - Z + l. 
3.7.5 If gcd(m,n) = 1 and the regular m-gon and the regular n-gon are con­
structible, show that the regular mn-gon is constructible. 



3.8 The FUndamental Theorem of Algebra 51 

3.8 The Fundamental Theorem of Algebra 

The statement that every polynomial equation with coefficients in C has a so­
lution in C is called the fundamental theorem of algebra. All known proofs, 
however, depend on the non-algebraic concept of continuity. This is not surpris­
ing, and it is certainly no excuse to omit the theorem from a book on algebra! We 
shall now give a proof which uses a minimum of algebra, based on a generalisation 
to C of the extreme value theorem of Section 3.5. (The minimum of continuity 
required to prove the theorem seems to be the intermediate value theorem, used 
in Section 3.5 to prove solvability of the special equation xn = >. E ~.) 

The first step is the following lemma, which depends only on the geometric 
properties of C. 

,d' Alembert '8 Lemma. If p( z) is a nonconstant polynomial and p( zo) =1= 0 then 
any neighborhood of Zo contains a Zl such that Ip(zdl < Ip(zo)l. 

Proof. We let Zl = Zo + Llz, where Llz is a complex number to be determined 
so that Ip(Zl) I < Ip(zo)l, that is, so that p(zt} is nearer to the origin than p(zo). 
If 

then 

p(zo + Llz) = anzo + an_lzo- 1 + ... + alZO + ao + A1Llz + A2(Llz)2 + ... 
for some constants At, A2 , • •• (not all zero, since p is nonconstant) 

= p(zo) + ALlz + E, 

where A = Ai(Llz)i-l contains the first nonzero Ai and lEI is small compared 
with IALlzl when ILlzl is small (because E contains the higher powers of Llz). 

It is then clear from Figure 3.8.1 that by choosing the direction of Llz so 
that ALlz is opposite in direction to p(zo), and choosing ILlzl so that lEI is much 
smaller than IALlzl, we get P(Zl) = p(zo) + ALlz + E closer to 0 than p(zo), that 
is, Ip(Zl)1 < Ip(zo)l. 0 

Now to prove the fundamental theorem we consider the real-valued function 
Ip(z)1 of z in C. Using the obvious definition of continuity of a function f at 
wEe, namely 

Iz - wi < 8 =} If(z) - f(w)1 < E, 

one sees that the identity and constant functions are continuous. Arguments like 
those in Section 3.4 prove the continuity of sums and products of continuous 
functions, hence a polynomial p(z) is continuous and so is Ip(z)l. 

The analogue of the extreme value theorem (Section 3.5) for C, that a con­
tinuous function If I on a closed disc Izl :::; ~ attains a maximum and a minimum, 
has an analogous proof by construction of a sequence of nested squares with a 
single common point. Figure 3.8.2 gives the idea. 

We shall now prove the fundamental theorem by showing that the minimum 
of Ip(z)l, over a sufficiently large disc Izl :::; R, is zero. (If Ip(z)1 = 0 then, 
necessarily, p(z) = 0.) 
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o 

Fig. 3.8.1. A suitable choice of ..1z 

Fig. 3.8.2. Nested squares 

Fundamental Theorem of Algebra. If p( z) is a polynomial in z with coef­
Hcients in C then there is a number c E C with p(c) = O. 

Proof. Let p(z) = anzn + an_lZn- 1 + ... + alZ + ao. Then for Izl sufficiently 
large, lanznl is large in comparison with lan_lZn- 1 + ... + alZ + aol, so Ip(z)l, 
like lanznl, increases with 14 Suppose this happens for Izi ?: R. 

Since Ip(z)1 is continuous, it takes a minimum value over the disc Izl :::; R, at 
z = c say. Now if the minimum Ip(c) I ¥- 0 we get a contradiction by d'Alembert's 
lemma as follows. If Icl < R, so c has a neighborhood inside the disc Izl :::; R, 
then the Zl in this neighborhood with Ip(Zl)1 < Ip(c) I contradicts the minimality 
of Ip(c)l. If Icl = R, then the Zl with Ip(Zl)1 < Ip(c)1 contradicts minimality in 
the disc if IZII :::; R, and it contradicts the increase of Ip(z)1 if IZII > R. 

Thus Ip(c) I = 0 and hence p(c) = O. 0 

Remark. An important result related to the fundamental theorem, but much 
more elementary, is the following: 
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Factor Theorem (Descartes [1637], p.159). If p(z) is a polynomial and 
p(e) = 0 then p(z) = (z - e)q(z) for some polynomial q(z). 

Proof. For each positive integer m we have the factorisation 

zm _ em = (z _ e)(zm-l + zm-2e + ... + zem- 2 + em- 1 ), 

which may be verified by multiplying out the right-hand side. Thus if 

p(z) = anzn + ... + alZ + ao 

we have 
p(z) - p(e) = an(zn - en) + ... + al(z - e) 

= (z - e)q(z) 

for some polynomial q(z). And since p(e) = 0 by hypothesis this gives p(z) = 
(z - e)q(z). 0 

Corollary. If p(z) has degree n then the equation p(z) = 0 has at most n 
solutions. 

Proof. Given one solution z = e we have 

p(z) = (z - e)q(z), 

in which case the other solutions are the solutions of q(z) = O. Since q(z) has 
degree n - 1, the corollary follows by induction on degree. 0 

Notice that the proof of the factor theorem does not involve the continuity 
of polynomials, only their algebraic properties. The algebraic setting of the the­
orem will be explored in the next chapter, where it will be proved again and 
generalised. 

Exercises 

3.8.1 Suppose that p(z) has real coefficients. Show 
(i) p( 0: + i,B) = 0 =} p( 0: - i,B) = 0 when 0:,,B E 1R.. 

(ii) p(z) factorises into real linear and quadratic factors. 

3.8.2 Find the real quadratic factors of x4 + 1. 

3.9 Discussion 

The effective use of the set concept in mathematics probably begins with 
Dedekind's definition of real numbers in 1858. As mentioned in Section 2.9, 
Dedekind went on to use sets systematically as mathematical objects, giving 
meaning to previously dubious, unrecognised or ill-defined concepts. Set theory 
has now become indispensable in this role, but its effectiveness does not end 
there. It has also contributed a remarkable proof technique - the diagonal ar­
gument - which gives the simplest known proof that not all real numbers are 
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algebraic. Nonalgebraic, or transcendental, numbers were first discovered by Li­
ouville [1844]. He was able to show that the number 

00 

2:= lOn
! = 0.1100010000 ... 

n=l 

is transcendental by proving a theorem on the approximation of algebraic num­
bers by rationals. A construction of transcendental numbers by set theory was 
given by Cantor [1874], using nothing but the definition of algebraic numbers. 
In his paper [1891] he introduced the diagonal argument which makes the proof 
even simpler. 

The definition of algebraic numbers is required only to establish a one-to­
one correspondence between them and the natural numbers.' One first lists the 
equations 

that define algebraic numbers in order of a quantity Cantor called their "height," 
namely 

Since ao, al,' .. ,an are integers there are only finitely many equations of a given 
height. Hence, listing them in order of increasing height gives a sequence in 
which each equation appears at some natural number position. Then if each 
equation (*) is replaced by its roots (finitely many, by Section 3.8), the result 
is a sequence in which each algebraic number appears at some natural number 
position. This gives the desired one-to-one correspondence between the set of 
algebraic numbers and N. 

The diagonal construction is now used to show that, for any infinite list 
XO, Xl, X2, . .. of real numbers, it is possible to construct a real number X not 
on the list. The simplest way is to take the decimal expansions of xo, Xl, X2,'" 

and make X differ suitably from each Xn in the nth decimal place. For example, 
one can let the nth decimal place of X be 2 if the nth decimal place of Xn is 
1, and let it be 1 otherwise. (This avoids getting a decimal expansion which is 
ultimately 000 ... or 999 ... , and hence possibly equal to some X n , though differ­
ently expressed.) This construction is called "diagonal" because it involves just 
the digits along the diagonal in the obvious tabulation of the decimal expan­
sions of xo, Xl, X2, .... If the diagonal digits are underlined the construction of 
X =I XO, Xl, X2, ... might look like this, for example: 

Xo = 3 . .Q101O .. . 

Xl = 0.11111 .. . 

X2 = 1.14142 .. . 

X3 = 2.2222.2 .. . 

X4 = 1.25992. .. . 

X = 0.12211 ... 
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In particular, when xo, Xl, X2, ••• is a list of all real algebraic numbers, X is a 
transcendental number. 

One could even compute a particular transcendental number by listing the 
equations (*) according to some rule, computing their real solutions in order 
and to a sufficient number of decimal places, and then obtaining the successive 
decimal places of X as above. Admittedly, one would not learn anything inter­
esting about X by doing this - it merely shows that Cantor's proof is not a pure 
existence proof. If one wants to see a comprehensible transcendental number 
then one needs to prove something about algebraic numbers, such as Liouville's 
approximation theorem. Even more work is required to show that the familiar 
numbers e and IT are transcendental. The Lindemann [1882] proof of the tran­
scendence of IT, mentioned in Section 1.9, is based on analytic methods developed 
by Hermite [1873] to prove the transcendence of e. (Of course, none of this is 
intended to belittle the diagonal construction. It is not only the quickest route to 
transcendental numbers, it also reveals the extraordinary fact that JR is a strictly 
larger set than N, in the sense that N cannot be put in one-to-one correspon­
dence with R The other constructions of transcendental numbers give no hint 
of this.) 

The question of existence versus construction also arises with the fundamen­
tal theorem of algebra. Early attempts to prove the theorem were incomplete, 
mainly because they failed to reckon with the existential part of the proof -
usually an application of the extreme value theorem or the intermediate value 
theorem. The proof given above, which requires the extreme value theorem, is 
based on results ofd'Alembert [1746] and Argand [1806]. They glossed over the 
existence of the extreme value. Likewise, proofs by Laplace [1795] and Gauss 
[1816] require the intermediate value theorem, but gloss over it. Mathematics up 
to this time had not encountered a situation where existence was not obtained 
by an explicit construction. The first to recognise the need for the intermedi­
ate value theorem was Bolzano [1817]' but he was unable to prove it rigorously 
because he lacked a definition of real numbers. 

Only after definitions of JR (such as Dedekind's) became known could Weier­
strass [1874] give rigorous proofs of the intermediate value theorem and the 
extreme value theorem, and thus complete the proof of the fundamental theo­
rem of algebra. As can be seen from Section 3.5, the proofs are quite simple, 
but not constructive. This is unavoidable for general continuous functions. For 
polynomial functions it is possible to construct the required value by an infinite 
sequence of approximations, but not simple. 

Fortunately these practical difficulties are irrelevant when it comes to study­
ing the behavior of algebraic numbers. We do not need to know the decimal 
expansion of v'2 , for example, to know that 

(V2)2 = 2, 

(V2)3 = 2V2, 

(V2)3 + V2 = 3V2, etc. 
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All the algebraic properties of /2 are consequences of the equation x 2 = 2 
satisfied by x = /2 . Similarly, the behavior of any algebraic number O! follows 
from a polynomial equation p(x) = 0 satisfied by x = O!. The fundamental 
theorem of algebra is relevant only when one wants to know that there is a 
number satisfying a given polynomial equation p(x) = O. The existence and 
construction of an abstract solution of p( x) = 0 is almost a triviality, as we shall 
see in Section 4.5. All we need is a little experience with polynomials, which will 
be acquired in Sections 4.1 to 4.4. 

The contrast between the construction of an abstract algebraic solution of 
p(x) = 0 and the construction of a complex number solution makes it more 
understandable why the "fundamental theorem of algebra" is given short shrift 
in most algebra books. It is not so much a theorem about polynomials as a 
theorem about the complex numbers. Since the complex numbers are defined by 
the "infinitary" methods of analysis (Dedekind cuts or convergent series), it is 
not surprising that the fundamental theorem requires such methods for its proof. 

There is even some historical justice in this conclusion. The first serious 
attempts to prove the theorem, beginning with d'Alembert [1746], actually had 
the aim of solving a problem in calculus - the integration of 1/p(x). To do this 
it suffices to factorise p(x) into linear or quadratic factors; the integration can 
then be completed by the method of partial fractions. Early versions of the 
fundamental theorem, such as Gauss [1799], explicitly asserted the factorisation 
of a real polynomial into real linear or quadratic factors. To see what this has 
to do with complex roots, see Exercise 3.8.l. 

The special case of this integration problem where p(x) = xn - 1 also led 
to the first result relating the regular n-gon to the equation xn - 1 = O. Cotes 
[1722] found a geometric realisation of the factorisation of xn - 1 into real linear 
and quadratic factors by interpreting the roots of xn - 1 = 0 as points on the 
unit circle. 

Exercise 

3.9.1 Find the real quadratic factors of xn -1 by suitable grouping of the linear 
factors, obtained by de Moivre's theorem. 
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4.1 Polynomials over a Field 

Up until now we have viewed polynomials as functions of a real or complex 
variable x. This viewpoint is important for the fundamental theorem of algebra 
(Section 3.8), for example. Quite a different insight is obtained if, as in high­
school algebra, we refrain from giving any interpretation to the letter x, and 
simply study the formal behavior of polynomials under +, - and x. Since 

(ao + alX + a2x2 + ... ) + (bo + blx + b2x2 + ... ) 
= (ao + bo) + (al + bdx + (a2 + b2)X2 +"', 

(ao + alX + a2x2 + ... ) - (bo + blx + b2x2 + ... ) 
= (ao - bo) + (al - bl)x + (a2 - b2)X2 + ... 

and 

(ao + alX + a2x2 + ... ) x (bo + blx + b2x2 + ... ) 
= aobo + (aobl + albo)x + (aOb2 + albl + a2bo)x2 + ... 

it becomes clear that the behavior of polynomials is really the behavior of their 
sequences of coefficients. In fact, we could define a polynomial to be a sequence 
(ao, aI, a2, ... ) with only a finite number of nonzero terms, and define +, -, x 
on sequences to agree with the equations above: 

(ao, aI, a2,"') + (bo, bI, b2, ... ) = (ao + bo, al + bI, a2 + b2," .), 

(ao, aI, a2,"') - (bo, bl , b2"") = (ao - bo, al - bl , a2 - b2, .. . ), 

(ao, aI, a2,"') x (bo, bI, b2, ... ) = (aobo, aObl + albo, aOb2 + albl + a2bO," .). 

This is actually convenient for computer algebra, but for humans it seems better 
to continue using the letter x. To emphasize its purely formal, place-holding role, 
x is called an indeterminate. 

At any rate, it is clear from this discussion that the properties of polynomials 
depend entirely on the set from which their coefficients are chosen. The set 
of coefficients should be closed under +, -, x to allow us to form +, -, x of 
polynomials, hence it should at least be a ring. The set of polynomials in an 
indeterminate x with coefficients in a ring R is denoted by R[x]. It follows easily 
from the equations above that R[x] itself is a ring, hence we speak of the ring 
R[x] of polynomials. For example, Z[x] is the ring of polynomials in x with 
integer coefficients. 

Z[x] unfortunately lacks some of the properties of familiar rings like Z, no­
tably the property of division with remainder. It turns out that to perform 
division of polynomials with remainder (long division) one has to be able to di­
vide coefficients. Thus the problem can be rectified by going from Z[x] to Q[x], 
and in general by considering the ring F[x] of polynomials with coefficients in 
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a field F. Mostly we will be concerned with fields F ~ C, the so-called number 
fields, but crucial use will also be made (in Sections 4.7 and 4.9*) of polynomials 
with coefficients in the finite fields Zip'll, from Section 2.7. 

Exercises 

4.1.1 Use long division of polynomials to find quotient and remainder when 
x2 + 1 is divided by 2x + l. 
4.1.2 Are there a reasonable "quotient" q(x) and "remainder" r(x) in Z[x] such 
that x2 + 1 = q(x)(2x + 1) + r(x)? 

4.1.3 Show that F[x] is not a field. 

4.2 Divisibility 

The definition of divisibility in F[x] is the same as the definition of divisibility 
in 71" namely, if f, 9 E F[x] then 

9 divides f {::} f = gh for some h E F[x]. 

In fact, apart from some obvious differences which arise at the outset, the theory 
of divisibility in F[x] is very similar to the theory of divisibility in Z. We can 
therefore take advantage of our experience with 71, (Chapter 2) to penetrate 
quickly to the important theorems (Sections 4.3 and 4.4). 

The obvious differences between 71, and F[x] are in the units (the elements 
that divide everything) and the measure of size (in 71" the absolute value). The 
units in 71, are ±1, whereas the units in F[x] are all the nonzero elements of F 
(the "constant" polynomials). From this it is clear that absolute value is not an 
appropriate measure of size in F[x], but fortunately there is another measure -
the degree of the polynomial, that is, the exponent of the highest power of x. 

The concept of degree is crucial to the following property, which unlocks the 
whole theory of divisibility in F[x]. 

Division Property of F[x]. Iff, 9 E F[x] and 9 =f. 0 then there are q, r E F[x] 
with 

f = qg + rand degree(r) < degree(g). 

Proof. Consider the set of natural numbers {degree(f - qg) : q E F[x]}. By 
version III of induction (Section 2.1), this set has a least member. Let n be the 
least member and let f - qg be a polynomial of degree n. Thus 

f - qg = anxn + lower degree terms. 

Also suppose 
9 = bmxm + lower degree terms. 

Now if n 2: m the polynomial f - qg - ;::, xn-mg = f - q'g has lower degree 
than f - qg, contrary to the definition of n. 

Thus there is an r = f - qg E F[x] with degree(r) = n < degree(g) = m. 0 
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The brief but essential appearance of division in this proof - forming :; 
is the reason we require F to be a field. The use of induction is essentially 

a condensation of the long division process for polynomials, which subtracts 
multiples qg of 9 from f, with q chosen so as to repeatedly remove the highest 
degree terms from f. 

The division property gives a less computational proof of the factor theorem 
of Section 3.8. 

Factor Theorem. If p(x) E F[x] and p(c) = ° for some c E F then p(x) = 
(x - c)q(x) for some q(x) E F[x]. 

Proof. By the division property, with g( x) = x - c, 

p(x) = (x - c)q(x) + r(x) 

for some r(x) E F[x] with degree(r) < degree(x - c), hence r(x) = constant, k E 
F. Substituting x = c we get 

o=p(c)=r(c)=k, 

and therefore p(x) = (x - c)q(x). o 
An element c such that p(c) = ° is called a root of the equation p(x) = 0, or 

simply a root of p(x). 

Corollary. Ifp(x) E F[x] has degree d then p(x) has at most d roots in F. 

Proof. For each root c there is a factor x - c of p( x), and a polynomial of degree 
d cannot have more than d such factors. 0 

The analogue of a prime in F[x] - a polynomial divisible only by constants 
or by constant multiples of itself - is called an irreducible polynomial. We often 
say irreducible over F to emphasize the field of coefficients available for divisors. 
For example, x 2 - 2 is irreducible over Q but not over JR, since 

x 2 
- 2 = (x - V2)(x + V2) and ± V2 f/. Q but ± V2 E lR. 

With the help of the concept of irreducibility we can generalise the factor theorem 
above to the case where c does not necessarily belong to F. The generalisation 
tells us, for example, that x2 - 2 is a factor of any rational p( x) satisfied by 
x = J2. 
General Factor Theorem. If p(x) E F[x] and p(c) = 0, and if h(x) E F[x] 
is an irreducible polynomial such that h(c) = 0, then p(x) = h(x)q(x) for some 
q(x) E F[x]. 

Proof. First we show that an irreducible h(x) E F[x] with root c is unique up to 
a constant factor. To do this, suppose h*(x) E F[x] is an irreducible polynomial 
of minimal degree such that h*(c) = 0, and consider the following consequences 
of the division property. 
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h(x) = q*(x)h*(x) + r*(x) 
where q*(x), r*(x) E F[x] and degree(r*) < degree(h*) 

~ 0 = h(c) = q*(c)h*(c) + r*(c) 
~ r*(c) = 0 since h*(c) = 0 

~ r*(x) = 0 since degree(r*) < degree(h*) and h* is of minimal degree 

~ q*(x) = constant, since h is irreducible. 

Thus all irreducible h(x) satisfied by c are constant multiples of a fixed h*(x), 
and hence of each other. 

If we now divide p(x) by h(x) the division property gives q(x),r(x) E F[x] 
with 

p(x) = h(x)q(x) + r(x) and degree(r) < degree(h), 

and r(x) = 0 by the minimality of h(x) we have just established. Thus 

p(x) = h(x)q(x) with q(x) E F[x], 

as required. o 
It is obvious that a divisor of a divisor is a divisor, and that dividing by 

a nontrivial divisor lowers degree, hence it follows as in Z that any f E F[x] 
factorises into irreducibles. Also as in Z, factorisation into irreducibles is not 
quite unique, but it is unique up to constant factors, as we shall see in Section 
4.3. 

Exercises 

4.2.1 Exhibit infinitely many irreducibles in F[x], none of which is a constant 
multiple of another. 

4.2.2 Call f E Q[x] a minimal polynomial (over Q) for a E C if f(a) = 0 and 
g(a) =1= 0 for each 9 E Q[x] of lower degree than f. Use the division property to 
show that if hE Q[x] and h(a) = 0 then f divides h. 

4.2.3 Deduce from Exercise 4.2.2 that 

f E Q[x] is minimal for a E C {::} f(a) = 0 and f is irreducible over Q. 

4.2.4 Find a minimal polynomial for a = 1 + v'2 over Q. 

4.2.5 Show that 1 + v'2 = J3 + 2v'2. 

4.2.6 If J r + sVi is the root of an irreducible quartic f E Q[x] and J r + sVi = 
Va + v'b, where a, b, r, s, t E Q, show that the set of four elements ± J r ± sVi 
is the same as the set of four elements ±Va ± v'b. (Hint: find rational quartics 

satisfied by J r + sVi and Va + v'b and use uniqueness.) 
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4.3 Unique Factorisation 

Thanks to the division property, the Euclidean algorithm works in F[x] the 
same way as in N. Beginning with polynomials f,9 we divide f by 9 and let 
II = 9, 91 = remainder when f is divided by 9, thus obtaining an II "larger" 
(in degree) than 91. At each subsequent stage k the "larger" polynomial fk is di­
vided by the "smaller" polynomia19k = fk+l, obtaining a remainder 9k+l which 
is "smaller" than !k+l' Since "size" (degree) cannot decrease indefinitely, even­
tually 9k divides !k exactly, in which case 9k = gcd(f, 9) by the same argument 
as for N. 

Moreover, since both new polynomials 

are linear combinations of the old with coefficients in F[x] we can conclude, as 
in N, that 

gcd(f, g) = uf + vg for some u,v E F[x]. 

The analogue of the prime divisor lemma (Section 2.5) is that if an irreducible 
P divides f9 then P divides f or P divides 9, and the proof is exactly the same 
as for N. One only has to bear in mind that if f is not a multiple of P we can 
say 1 = gcd(f,p). Of course any nonzero constant can now be taken as the gcd 
of f and p, but 1 is certainly allowed. 

Finally, this lemma gives unique factorisation into irreducibles much as the 
prime divisor lemma gives unique factorisation in N. We suppose 

are two factorisations into irreducibles, and conclude that PI divides some qi. 
It no longer follows that qi = PI, only that qi = CiPI for some Ci E F, but 
this is good enough. We can then cancel PI from the equation, leaving Ci in 
place of qi on the right-hand side. Repetition of the process until all of PI, ... ,Pr 
are cancelled leads to the conclusion that they are the same (up to order) as 
Clql, ... , csqs for some CI, ... , Cs E F (in particular, r = s). Thus we have: 

Theorem. Factorisation of a polynomial into irreducibles over a field F is 
unique up to order and constant factors. 0 

Exercises 

4.3.1 Show that any factorisation k(x - ad", (x - an) of a polynomial into 
linear factors is unique (up to the order of factors). 

4.3.2 Formulate a unique factorisation theorem for polynomials with real coef­
ficients. 
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4.4 Congruences 

In F[x], as in Z, the meaning of f == 9 (mod l) is that l divides f - 9. The basic 
properties of congruence follow as before, but now using the ring properties of 
F[x]. In particular 

f == f (mod l), 
f == 9 (mod l) =} 9 == f (mod l), 

f == 9 (mod l) and 9 == h (mod l) =} f == h (mod l), 

/l == 91 (mod l) and h == 92 (mod l) =} /l + h == 91 + 92 (mod l), 

/l == 91 (mod l) and h == 92 (mod l) =} /lh == 9192 (mod l). 

The latter two properties imply, as in Section 2.7, that we can define + and x 
of congruence classes of polynomials. The congruence class of f E F[x] mod lis 

IF[x] + f = {lk + f : k E F[x]}, 

and the sum and product of congruence classes are defined by 

(IF[x] + f) + (IF[x] + g) = IF[x] + (f + g) 

(IF[x] + f) x (IF[x] + g) = IF[x] + (f x 9), 

hence they inherit the ring properties from F[x]. 
Finally, we find as in Section 2.7 that 

IF[x] + f has a multiplicative inverse <=> gcd(f, l) = 1, 

using the validity of the Euclidean algorithm in F[x] (Section 4.2) to show that 

uf + vl = 1 for some u, v E F[x] <=> gcd(f, l) = 1. 

The Euclidean algorithm gives the (~) direction, the (=}) direction holds be­
cause a common divisor of f, l is also a common divisor of uf + vl, that is, of 
1. 

Now if l is an irreducible polynomial p we have gcd(f,p) = 1 for each f :f:­
o (mod p), hence we have the following analogy with Z mod a prime: 

Theorem. The set F[xl/lF[x] of congruence classes mod l E F[x] is a ring 
under the sum and product of congruence classes. This ring is a field if l is 
irreducible. 0 

Exercises 

4.4.1 Show that each f E F[x] is congruent mod l E F[x] to a polynomial of 
degree less than degree(l). 

4.4.2 Show that if f, 9 E F[x] have degree less than degree(l) and f =1= 9 then 
f :f:- 9 (mod l). 

4.4.3 Show that F[xl/lF[x] has zero divisors when l is not irreducible. 
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4.5 The Fields F(a) 

From now on we shall write a polynomial p E F[x] as p(x) to avoid confusion 
with a number p (and similarly for polynomials denoted by other letters). 

The fields F[xl/p(x)F[x] for irreducible p(x) E F[x] are analogous to the 
fields Z/pZ for prime p E Z, but they are actually more familiar, at least when 
F is a familiar field such as Q. F[x]/p(x)F[x] is the same as the field F(o:) 
that results from adjoining a root 0: of p( x) to F, that is, the closure of F U { 0: } 

under +, -, x, -;- (by a nonzero element). In particular, if F ~ C then we can take 
0: E C by the fundamental theorem of algebra (Section 3.8), so F[xl/p(x)F[x] 
has a concrete interpretation F(o:) as a field of numbers. 

Before studying an example, note the use of brackets. Square brackets are 
used for the ring F[x], that is, the closure of F U {x} under +, -, x ; round 
brackets (or parentheses) are used for the field F(o:), that is, the closure of 
F U {o:} under +, -, x,-;-. 

Example. Q[xl/(x2 - 2)Q[x]. 

We recognise this field as Q( v'2) by interpreting x as v'2 . This interpretation 
gives all polynomials in the congruence class of f(x) the value f(v'2), since they 
all differ from f(x) only by multiples of x2 -2, which is zero when x = v'2. Thus 
the elements of Q[xl/(x2 - 2)Q[x] correspond to certain numbers in Q( v'2). 

In fact, they correspond to numbers of the form a + bv'2 , where a, b E Q, 
since each f(x) E Q[x] is congruent to an element of the form a + bx, namely 
its remainder on division by x2 - 2. And the numbers a + bv'2 , a' + b'v'2 
corresponding to different remainders are also different, by the irrationality of 
v'2 . (If a + bv'2 = a' + b'v'2 we must have a = a' and b = b', because if b =1= b' 
we have the contradiction v'2 = (a - a')/(b' - b) E Q, and if b = b' then a = a'.) 

Moreover, every number in Q( v'2) is of the form a + bv'2 with a, bE Q. One 
way to see this is to check that numbers of this form are closed under +, -, x, -;-. 
This is easy for +, -, x and for -;- it follows from the fact that 

1 1 a - bv'2 
a + bv'2 . a - bv'2 

a b 
a2 _ 2b2 h. a+ bv'2 

Thus the correspondence between congruence classes in Q[x]/(x2 - 2)Q[x] and 
numbers in Q( v'2) is one-to-one. Finally, the correspondence preserves sums and 
products. The value of a sum f (x) + g( x) is the sum f ( v'2) + g( v'2) of the values, 
and value of a product f(x )g(x) is the product f( v'2)g( v'2) of the values, hence 
corresponding elements have the same algebraic behavior. 0 

A one-to-one correspondence which preserves + and x is called an isomor­
phism (of fields, in this case). It captures the sense in which Q[xl/(x2 - 2)Q[x] is 
the "same" as Q( v'2). By generalising the correspondence between polynomial 
classes and their values we can similarly find an isomorphism expressing the 
"sameness" of F[xl/p(x)F[x] and F(o:) whenever p(x) E F[x] is irreducible and 
0: is a root of p(x). 
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Theorem. If F is a field, p(x) E F[x] is irreducible over F, and a is a root of 
p(x), then F[x]/p(x)F[x] is isomorphic to F(a). 

Proof. First consider the evaluation map a : F[x]-- F(a) defined by 

a(f(x)) = f(a). 

This map a preserves + and x and gives the same value f(a) to all members 
of the congruence class p(x)F[x] + f(x) of f(x). Hence a induces a map IJ : 

F[xJ/p(x)F[x] -- F(a) defined by 

lJ(p(x)F[x] + f(x)) = f(a), 

which also preserves + and x. It remains to show that IJ maps F[xJ/p(x)F[x] 
one-to-one onto F(a). 

Now if p(x) has degree n, each congruence class p(x)F[x] + f(x) has a unique 
member of the form ao + alx + ... + an_lXn- l with ao,· .. ,an-l E F, namely 
the remainder when f(x) is divided by p(x). The corresponding elements ao + 
ala + ... + an_lan- l are distinct, because if 

and some ai =f a~ then (ao - a~) + ... + (an - a~)xn-l is a nonzero polynomial 
satisfied by a, contrary to the minimality of irreducible polynomials found in 
Section 4.2. Thus IJ is one-to-one. 

Finally, IJ is onto F(a) because each element of F(a) is of the form ao + 
ala+·· ·+an_lan- 1. Elements of this form comprise a subset of F(a) obviously 
closed under +, -, and closed under x because an, an+! , ... can be rewritten 
as combinations of 1, a, ... , an- l using the equation p(a) = O. To show closure 
under -;- it suffices to find an inverse of any ao + al a + ... + an-l an- l . The 
inverse is necessarily the value bo + bla + ... + bn_lan- l of the polynomial 
bo + b1x + ... + bn_lxn- l inverse to ao + alX + ... + an_1Xn- 1 mod p(x), since 

1 = a(1) = a((ao + alX + ... + an_1Xn-l)(bo + blx + ... + bn_1xn- 1)) 

= a(ao + alx + ... + an_lXn- l )a(bo + b1x + ... + bn_lxn- l ) 

= (ao + ala + ... + an_lan- 1 )(bo + b1a + ... + bn_lan- 1) 

by definition of a and its preservation of x. o 
The proof contains the following useful description of F(a) - which on the 

face of it is a set of rational functions of a - as a set of polynomials in a. 

Corollary. If p(x) E F[x] is irreducible and of degree n then 

F(a) = {aD + ala + ... + an_lan- l : ao,··. ,an-l E F}. 0 

Remark. If F is a field in which not every polynomial p( x) has a root, we 
may wonder where to find a root a of p(x). The theorem tells us that, when 
p(x) is irreducible, we need look no further than the field F[xJ/p(x)F[x]. In 
F[xJ/p(x)F[x] the congruence class of x satisfies p(x) = 0 by definition, and the 
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theorem says that this congruence class has the same algebraic behavior as any 
concrete toot Ct. It is rather amusing to have a root of p(x) for the asking, so 
to speak, but there is a small catch - we have to know that p(x) is irreducible, 
otherwise F[xl/p(x)F[x] is not a field. We turn to the problem of recognising 
irreducibility in the next two sections. 

Exercises 

4.5.1 Show that if x 3 - 2 is not irreducible over Q then x 3 = 2 has a rational 
root. 

4.5.2 Conclude from Exercise 4.5.1 and Section 3.1 that 

Q(~) = {a + b~ + c( ~)2 : a, b, CEQ} 

4.5.3 Show that X4 - 4 = 0 has no rational root but that X4 - 4 is not irreducible 
over Q. 

4.6 Gauss's Lemma 

Gauss's lemma answers a natural question about polynomials with integer coef­
ficients, that is, polynomials in Z[x]. If 

f(x) = xn + an_lXn- 1 + ... + alX + ao, 

where ao, al, ... , an-l are integers, and if f(x) has a factorisation 

f(x) = g(x)h(x) 

where 

g(x) = xr + br_1xr- 1 + ... + b1x + bo, h(x) = XS + Cs_IX
s

-
1 + ... + CIX + Co 

are in Q[x], must bo, ... ,br-b Co, ... ,Cs-l be integers? (The restriction to poly­
nomials with leading coefficient 1, or monic polynomials as they are called, is 
necessary to avoid trivial counterexamples.) 

The answer to this question is yes, as Gauss showed in the Disquisitiones. His 
proof may be clarified with the help of the concept of content of a polynomial 
in Z[x] - the gcd of its coefficients - as pointed out by Dedekind [1871], p.466. 
We denote the content of f E Z[x] by 1(1). 

Content Theorem. If g(x), h(x) E Z[x] then I(g(x)h(x)) = I(g(x))I(h(x)). 

Proof. By dividing each polynomial by its content we can reduce to the case 
where both g(x) and h(x) have content 1, in which case we want to prove that 
I(g(x)h(x)) = 1. Suppose 

g(x) = brxr + ... + blx + bo, h(x) = csxs + ... + CIX + Co, 

and suppose for the sake of contradiction that a prime number p divides 
I(g(x)h(x)), that is, p divides each coefficient of g(x)h(x). 
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By hypothesis, there is a least i such that p does not divide bi , and a least j 
such that p does not divide Cj. But then the coefficient of xi+j in g(x)h(x), 

boci+j + b1Ci+j-l + ... + bicj + bi+lCj-l + ... + bi+jco 

is not divisible by p, since p divides all terms except bicj. This contradiction 
shows that I(g(x)h(x)) = 1. 0 

This theorem has two pleasant corollaries, the first being Gauss's lemma 
itself, and the second a sharper unique factorisation theorem for Z[x] than we 
have for Q[x]. 

Gauss's Lemma. If g(x), h(x) E Q[x] are monic polynomials and g(x)h(x) E 

Z[x] then g(x), h(x) E Z[x]. 

Proof. Multiply g(x), h(x) by an integer m so that mg(x), mh(x) E Z[x]. Since 
g(x)h(x) E Z[x] and g(x)h(x) is monic, I(m2g(x)h(x)) = m 2 • On the other 
hand, I(m2g(x)h(x)) = I(mg(x))I(mh(x)) by the content theorem. Thus 

I(mg(x))I(mh(x)) = m2
• 

But I (mg( x)) and I (mh( x)) divide the leading coefficient m of mg( x) and mh (x), 
hence both are::; m. It follows that in fact I(mg(x)) = I(mh(x)) = m and 
therefore g(x), h(x) E Z[x]. 0 

Unique Factorisation in Z[x]. The factorisation of a polynomial into irre­
ducibles over Z is unique up to order and ± signs. 

Proof. Given f(x) E Z[x] we first factorise f(x) over Q[x] into 

f(x) = rl1(x)··· A(x) where r E Q and 11,···, A are monic. 

Then if we multiply each fi(X) by the lcm ni of the denominators of its coeffi­
cients, and r = min by its denominator n we get 

where each ft(x) = ndi(x) is a polynomial in Z[x] with content 1. Taking 
contents on both sides, it follows from the content theorem that 

Since I (f (x)) is an integer, nnl ... nk must divide m, with quotient m * E Z, say. 
Thus we can divide both sides of the factorisation (*) in Z[x] to get 

f(x) = m* fi(x)··· fZ(x) 

- a factorisation of f(x) in Z[x] differing from the irreducible factorisation in 
Q[x] only by constant factors. Since the latter is unique, up to constant factors, 
the same is true of factorisations in Z[x]. 

But if we now view a constant m* as a zero degree polynomial of content 
m*, it follows that factorisation in Z[x] is unique up to order and ± signs, being 
necessarily a product of an integer with polynomials of content 1. 0 
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Exercise 

4.6.1 Show that if f E Z[x] has a factorisation f = gh with g, h E Q[x] then f 
factorises in Z[x] into rational multiples of g, h. 

4.7 Eisenstein's Irreducibility Criterion 

The question of irreducibility of integer polynomials over Q is not settled in 
practice by Gauss's lemma. A polynomial f(x) E Z[x] still has infinitely many 
potential factors g(x), h(x) E Z[x]. One needs, say, a bound on the size of their 
coefficients in order to decide the existence of nontrivial factors in a finite number 
of steps. There are in fact ways of doing this, and they are a common feature 
,of computer algebra systems. However, they are laborious to use by hand. An 
alternative is to use a criterion which does not apply in all cases, but which often 
gives the result at a glance. The best known of these is the following. 

Eisenstein's Irreducibility Criterion. If 

and p is a prime that divides each ai, and p2 does not divide ao, then f(x) is 
irreducible over Q. 

Proof. Suppose on the contrary that there is a nontrivial factorisation f (x) = 
g(x)h(x) where 

By Gauss's lemma (Section 4.6) we can assume that g(x), h(x) E Z[x]. Now 
consider the polynomials /(x),g(x), h(x) that result from f(x), g(x), h(x) by 
reducing their coefficients ai, bj , Ck mod p. 

Since any relation between the ai, bj , Ck involving +, -, x yields the corre­
sponding relation between their corresponding congruence classes ai, bj , Ck mod 
p, it follows from the definition of product of polynomials (Section 4.1) that 
J(x) = g(x)h(x). 

This is a relation between polynomials with coefficients in Z/pZ, and Z/pZ 
is a field (Section 2.7), hence unique factorisation of polynomials holds (Section 
4.4). Since /(x) = xn , this means g(x) = xr,h(x) = XS. That is, all but the 
leading coefficients of g(x) and h(x) are congruent to 0 (mod p). In particular, 
bo == 0 (mod p), Co == 0 (mod p) and therefore ao = boCo is divisible by p2, 
contrary to hypothesis. 0 

Eisenstein's irreducibility criterion shows immediately that x3 - 2 and x5 - 2 
are irreducible over Q (take p = 2). We can also use it in certain cases where the 
nonleading coefficients have no prime divisor p, by suitable transformation of 
the polynomial. An important example is the pth cyclotomic polynomial, whose 
roots we saw in Section 3.7 to be vertices of the regular p-gon. 
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Theorem. When p is prime the polynomial 

pp(z) = Zp-l + ... + z + 1 

is irreducible over Q. 

Proof. Instead of pp(z) we consider the polynomial f(y) = pp(y + 1), which is 
irreducible over Q if and only if pp(z) is. Since 

zP -1 
pp(z) = --1 

z-
we have, by the binomial theorem, 

f(y) = (y + l)P - 1 

Y 

= ~ [y p + (p) Y p-l + ... + ( p ) y + 1 - 1] 
y 1 p-1 

= yp-l + (~)yP-2 + ... + (p ~ 2)y + (p ~ 1), 
where (P) = p(p-l),,:(p-i+ 1) for 1 < i < p - 1 and in particular ( p ) = p. 

• .! - - p-l 

Since (~) is an integer it follows that its denominator i! divides its numerator 
p(p-1) ... (p-i+ 1). And since i! does not have the factor p it follows by unique 
prime factorisation (Section 2.5) that the factor p of the numerator is a divisor 
of (~). Since p2 does not divide (P~l) = p, f(y) satisfies Eisenstein's criterion 
and hence is irreducible over Q, as required. D 

Exercises 

4.7.1 Transform x3 - 3x - 1 into a polynomial which satisfies Eisenstein's crite­
rion, and hence give another proof that x3 - 3x - 1 = 0 has no rational solution 
(compare with Section 3.1). 

4.7.2 Prove the following generalisation of Eisenstein's criterion. If f(x) = 
anxn + ... + alX + ao E Z[x] and p is a prime that divides each ai except 
an, and p2 does not divide ao, then f(x) is irreducible over Q. 

4.7.3 Prove the "back-to-front" Eisenstein: if f(x) = anxn+ .. ·+alx+aO E Z[x] 
and p is a prime that divides each ai except ao, and p2 does not divide an, then 
f(x) is irreducible over Q. 

4.7.4 Show that the equation y3 + y2 - 2y - 1 = 0 for the regular heptagon 
(Exercise 1.3.3) is irreducible, by substituting x + 2 for y. 

4.7.5 Show that x4 + 1 is irreducible over Q by means of a suitable substitution, 
but that it factorises into a product of quadratics over Q( .)2). 

4.7.6 Find the monic polynomial whose roots are ±V2 ± J3 and show that it 
is irreducible over Q. 

4.7.7 Find the minimal monic polynomial for i V 50 - 1Oy'S (the side of the 
icosahedron in the unit sphere, see Section 1.9). 
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4.8* Cyclotomic Polynomials 

The irreducibility prooffor pp(x) = x p- 1 + .. '+x+1 obviously works only when 
p is prime. As mentioned in Section 3.7, when n is not prime the polynomial 
x n - 1 + ... + x + 1 factorises into nontrivial polynomials with integer coefficients, 
and the roots of one of these polynomials, Pn(X), are precisely the primitive nth 
roots of unity. We shall now establish this property of Pn(x), the nth cyclotomic 
polynomial, leaving the proof of its irreducibility until Section 4.9*. 

The factor theorem (Section 3.8 or 4.2) tells us that a polynomial is deter­
mined, up to a constant factor, by its roots (and their multiplicities, in the case 
of multiple roots). Hence there is exactly one monic polynomial with given roots. 

Theorem. The monic polynomial Pn(x) whose roots are the primitive nth roots 
of unity has integer coefficients. 

Proof. Since the equation xn - 1 = 0 has the n distinct roots (n, (;, ... ,(;: = 1, 
it follows by the factor theorem that 

xn - 1 = (x - (n)(x - (~) ... (x - (;:). 

For each power (~ there is a least positive integer d such that (;:)d = 1, namely 
the least d such that id = kn for some k. Thus each (~ is a primitive ~h root 
of unity for some d. Also, din, because (~d = 1 only if id = kn for some k, and 
gcd(k, n) = 1 because d is least. Conversely, for each divisor d of n, each ~h root 
of unity is a power of (n, in fact a power of (;:/d. 

Thus the factors (x - (~) of xn -1 in (*) can be partitioned into the products 

II 
( a primitive dth root of 1 

for the divisors d of n, and hence 

xn - 1 = II Pd(X). 
din 

(x- () 

It is clear from its definition that each Pd(X) is a monic polynomial. 
We now argue by induction on d that each Pd(X) has integer coefficients. 

Since PI (x) = x-I, obviously, this is true for d = 1. Supposing it true for each 
d < n, it remains to show that 

Pn(Z) = (xn - 1)/ II Pd(X) 
dln,d<n 

has integer coefficients. 
We denote by q(x) the polynomial ildln,d<n Pd(X), which is monic and with 

integer coefficients since the Pd(X) are (by induction). Letting 

q(x) = xr + qr_lxr-1 + ... + qlX + qo, 

Pn(x) = asxs + as_lxs- 1 + ... + alX + ao, 
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and using the equation 

to solve successively for aD, al, ... , as, we see aD, al, ... ,as E Q and as = 1. But 
then it follows from Gauss's lemma that in fact aD,' .. ,as E Z, which completes 
the induction. 0 

A few other properties of Pn(X) (and of the Euler ¢ function) fall out of this 
proof: 
(i) The degree of Pn(x) is ¢(n), 
(ii) Ldln ¢(d) = n, (compare with Section 2.9*), 

(iii) The coefficients of Pn(x) can be calculated inductively, beginning with 
Pl(X) = x -1 and using the fact that 

Pn(X) = (xn - 1)/ II Pd(X). 
dln,d<n 

The first few cyclotomic polynomials are 

P2(X) = x + 1, 

P3(X) = x2 + X + 1, 

P4(X) = X2 + 1, 

P5(X) = x4 + x3 + X2 + X + 1, 

P6(X) = x2 - X + 1, 

P7(X) = x6 + x5 + x4 + x3 + x2 + X + 1, 

ps(x) = X4 + 1, 

Pg(x) = x6 + x3 + 1, 

PlO(X) = X4 - x3 + x2 - X + 1. 

The coefficients are certainly integers; they even seem to be restricted to the 
values 0, 1 and -1. In fact this restriction is false, but it is a surprisingly long 
way to the first counterexample: 

Exercises 

4.8.1 Prove statements (i) and (ii) above. 

4.8.2 Check that the primitive 8th roots of unity are indeed the roots of ps(x) 
as given above. 
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4.9* Irreducibility of Cyclotomic Polynomials 

We do not know the coefficients of the cyclotomic polynomial gin{x) well enough 
to prove its irreducibility via Eisenstein's criterion, except in the case where n is 
a prime p. However, we can use the idea from the proof of Eisenstein's criterion, 
reducing the coefficients of gin modulo a prime p. As before, this drops us into 
the world (ZjpZ)[x] of polynomials with coefficients in the field ZjpZ, where 
unique factorisation rules. A proof of irreducibility can then be pushed through 
with the rather surprising intervention of calculus - or something like it - in the 
following lemma. 

Lemma. If p is a prime not dividing n, then xn - 1 has no repeated factors in 
(ZjpZ)[x]. 

Proof. For any polynomial 

h(x) = arxr + ar_1Xr- l + ... + alX + ao 

we define the formal derivative of h( x) to be 

Dh(x) = rarxr- l + (r - 1)ar_lxr- 2 + ... + al. 

It can be checked directly from the definition (Exercise 4.9.1) that D satisfies 
the "product rule" 

This implies that 

D(f(X)2g(X)) = f(x)2 Dg(x) + 2f(x)Df(x)g(x), 

which has the divisor f(x) in common with f(x)2 g(x). Thus any h(x) with a 
repeated factor f(x) has that factor in common with Dh(x). 

But D(xn - 1) = nxn- l =1= 0 in (ZjpZ)[x] since p t n. Hence xn - 1 and 
D(xn - 1) have no nontrivial common divisor (the only divisors of xn- l are 
powers xm , which do not divide xn - 1), and therefore xn - 1 has no repeated 
factor in (ZjpZ)[x]. 0 

Our strategy now is to reduce gin(x) modulo a prime p not dividing n, and 
show that a factorisation of gin (x) implies a multiple factor of the reduced poly­
nomial ~n(x), and hence of xn - 1. Another idea from Section 4.7 that assists 
in the proof is the fact that (a + b)P = aP + bP in ZjpZ, since p divides all the 
binomial coefficients m for 1 :::; i :::; p - 1. It follows that if 

g(x) = arxr + ... + alx + ao 

then 
g(xt = a~xrp + ... + aixP + a~ in (ZjpZ)[x] 

= arxrp + ... + alxP + ao 

=g(xP ) 

since each af = ai in ZjpZ by Fermat's little theorem (Section 2.8*). 
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Theorem. For each n ~ 1,Pn (x) is irreducible over Q. 

Proof. Suppose Pn(x) = f(x)g(x) where f(x),g(x) E Q[x] are monic. Then in 
fact f(x), g(x) E Z[x] by Gauss's lemma (Section 4.6). Without loss of generality 
we can assume f(x) is nontrivial and satisfied by a primitive nth root of unity, 
(. If p is a prime not dividing n then (P is also a primitive nth root of unity, and 
hence a root of f(x) or g(x). 

If (P is a root of g(x) then ( is a root of g(xP), hence f(x) divides g(xP) 
in Q[x], by the general factor theorem of Section 4.2, hence in Z[x] by Gauss's 
lemma. Suppose 

g(xP) = f(x)h(x) where h(x) E Z[x]. 

Reducing this equation mod p (as in the proof of Eisenstein's criterion) we get 

J(x)h(x) = g(xP) = g(x)P in (Z/pZ)[x], 

by the remark preceding the statement of the theorem. Since unique factorisation 
holds in (Z/pZ)[x] by Section 4.3, any irreducible factor of /(x) divides g(x)P 
and hence g(x). It follows that /(x),g(x) have a common factor in (Z/pZ)[x]. If 
we now reduce the equation Pn(x) = f(x)g(x) mod p we get 

4'n(x) = J(x)g(x), 

which shows that 4'n(x) has a multiple factor in (Z/pZ)[x]. But then, by Section 
4.8, so has 

xn - 1 = IT 4'd(X) , 
din 

contrary to the lemma. 
Thus (P is a root of f(x) for each prime p not dividing n. Any m relatively 

prime to n is a product m = P1P2 ... Pk of such primes, and since the above 
argument shows f(l;,) = 0 =? f(I;,Pi) = 0 for any root I;, of f(x), we get 

for each of the ¢>( n) values of m, 1 ~ m < n, which are relatively prime to n. This 
means f(x) has degree ~ ¢>(n) and hence f(x) = Pn(x), so Pn(x) is irreducible. 
o 
Exercises 

4.9.1 Check that D(h1(x)h2(x)) = h1(x) . Dh2(x) + Dh1(x) . h2(x). 

4.9.2 Use D to show 
(i) ax2 + bx + c has a multiple root ¢} b2 - 4ac = 0, 
(ii) x3 - px - q has a multiple root ¢} (p/3)3 - (q/2)2 = 0 (compare with 

Exercise 1.6.4). 
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4.10 Discussion 

The idea that a polynomial is just the sequence of its coefficients is not a modern 
one. In the late 16th century, when the first systems of algebraic symbolism 
were being tried, some authors avoided the use of a letter for the unknown by 
writing just the sequence of coefficients and, next to them, the corresponding 
exponents. For example, Bombelli [1572] would express the polynomiaI2x3 +x+4 
by 2 .: 1 2- 4 ~ , and Stevin [1585] would express it by 2@ lCJ)4@. Clearly, it 
remains only to list the coefficient 0 for any missing powers in order to dispense 
with exponents and represent the polynomial by its coefficients alone. Stevin 
also observed the analogy between polynomials and integers, and introduced the 
Euclidean algorithm for finding the gcd of two polynomials. 

The creation of a root of p(x) in the field F[x]/p(x)F[x] is due to Kronecker 
11887], though an interesting special case was given by Cauchy [1847]. Cauchy 
was unhappy about the definition i = A , and proposed instead to handle 
complex numbers as polynomials in lR[xl/(x2 -l)lR[x]. In other words, introduce 
an indeterminate x that satisfies x 2 = -1. All polynomials then reduce to the 
form a + (3x with a, (3 E lR, and these expressions have the same algebraic 
behavior as a+i(3. In fact, if the polynomial a+(3x is represented by the sequence 
(a, (3) of its coefficients, one obtains a representation of complex numbers by 
ordered pairs of reals already given by Hamilton [1837]. 

Kronecker wanted to eliminate not only A but irrational real numbers as 
well. He illustrated the process of elimination in his paper [1887] by t~e example 

4(x3 
- a3

) == (x - a)(2x + z + a)(2x - z + a) (mod Z2 + 3a2
) 

"whereby the introduction of A in the factorisation of x 3 - a3 is avoided,"as 
he put it. (Recall from Section 2.10 that Euler used this factorisation to prove 
that x3 + y3 = z3 has no solution in positive integers.) Kronecker felt that this 
was the only way to study irreducible equations, because he did not believe in 
irrational numbers! He opposed the use of infinite sets, such as Dedekind cuts, 
and aimed to express all mathematical concepts in terms of finite sequences of 
integers. He is famous for saying: "God made the natural numbers, all the rest 
is the work of man." (According to the obituary by Weber [1893], Kronecker 
said this in a speech in 1886.) He is also said to have told Lindemann, a propos 
of the transcendence of 1r: "Of what use is your beautiful proof, since irrational 
numbers do not exist?" 

As Kronecker probably realised, the reduction of mathematical concepts to 
finite sequences of integers can only be done in certain limited domains (which 
he happened to be interested in), such as algebraic number theory. Even then, it 
does not necessarily make the theory easier to understand. It means, for exam­
ple, working with the congruence relation rather than with congruence classes. 
This is one reason Kronecker's work is harder to follow (for most people) than 
Dedekind's. 

Actually, quite a lot was known about the arithmetic of irrational algebraic 
numbers even in ancient Greece. Enough to prove, for example, that the numbers 
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a + bV2 , with a, b E Q, form a field. Book X of Euclid's Elements contains the 
key proposition that 1/ (a + by'c) is of the form a' + b' y'c, along with many other 
propositions in the same "algebraic" vein. Of course these are lengths in Euclid, 
not numbers; the field concept is absent, and the proofs are entirely geometric. 
However, it is hard to believe that Euclid really thought this was geometry -
more likely the results were just expressed that way because geometry was then 
the accepted language of mathematics. Sir Thomas Heath, the eminent Greek 
scholar and editor of the Elements, even speculated on the existence of a lost 
method by which such results were first discovered: 

That the Greeks must have had some analytical method which sug­
gested the steps of such proofs seems certain, but what it was must 
remain apparently an insoluble mystery (Heath [1925], p.246). 

Finding such a lost method is not out of the question. A lost method of 
Archimedes was found (amazingly) in 1906, revealing that Archimedes' geomet­
ric theorems on areas and volumes were actually discovered by reasoning about 
infinitesimals (Heath [1912]). 

The first statement and proof of Gauss's lemma is in the Disquisitiones, 
article 42. Gauss uses it in article 341 to give the first proof that xp - 1 + ... + x + 1 
is irreducible when p is prime. The simpler proof using Eisenstein's criterion 
is due to Eisenstein himself. He gave it as an illustration in the paper which 
introduces his criterion, Eisenstein [1850]. The main object of the paper is to 
prove irreducibility of the equation for n-section of the lemniscate, the analogue 
of the cyclotomic equation for the curve (x2 + y2) 2 = x2 - y2. This curve is called 
the lemniscate (from the Greek word for ribbon) because of its doubly-looped 
shape (Figure 4.10.1). 

Fig. 4.10.1. The lemniscate 

Jakob Bernoulli [1694] discovered that the lemniscate is analogous to the 
circle in the sense that its arc length is given by the integral of 1/v'1 - x\ 
whereas the arc length of the circle is given by the integral of l/v'l - x 2 • This 
analogy played an important role in the development of the theory of elliptic 
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functions (see for example Stillwell [1989]), and Gauss hinted (Disquisitiones, 
article 335) at an analogy between n-section of the lemniscate and n-section of 
the circle. Abel [1827] took the hint and proved the astonishing theorem that 
n-section of the lemniscate is possible for precisely the same n as n-section of 
the circle. 

The first proof of the irreducibility of Pn(x) was given by Kronecker [1854]. 
Dedekind [1857'] gave a much simpler proof, similar to the one given in Section 
4.9*. 



5 Fields 

5.1 The Story So Far 

We are now on the brink of solving several of the problems posed in Chapter 
1, so it is a good time to review what we know. In Chapter 1 we looked at 
constructibility by straightedge and compass, and found that the constructible 
numbers result from 1 by closing under +, -, x, -T (hence they form a field) and 
square roots of positive numbers. At the same time, we found that the solution 
of certain geometric problems reduced to the solution of cubic' or higher degree 
equations not obviously solvable by +, -, x, -T and square roots. In particular, 
duplication of the cube requires solution of the equation x3 - 2 = 0, and construc­
tion of the regular p-gon requires solution of the equation xp

-
l + ... + x + 1 = O. 

In Chapter 4 we found that the equations hex) = 0 in question are irreducible 
over Q, that is, hex) has no nontrivial factors in Q[x]. This means, by Section 
4.5, that Q[xl/h(x)Q[x] is a field in which the indeterminate x behaves like a 
root a ofthe equation hex) = O. The elements of Q[xl/h(x)Q[x] are represented 
by the polynomials an_lxn- l + ... + alX + ao, where ao, at, . .. , an-l E Q and 
n = degree ( h), since such polynomials are precisely the remainders that occur 
on division by hex). Since h(a) = 0, the elements of Q(a) are of the form 
an_lan- l + ... + ala + ao for the same reason. 

For example, the field Q(?'2) is the set of numbers a2( ?'2)2 + al?'2 + ao 
where ao, al, a2 E Q, corresponding to the congruence classes in Q[xl/(x3-2)Q[x] 
represented by the polynomials a2x2+alx+ao. Thus Q(?'2) is three-dimensional 
over Q in the sense that it takes three coordinates ao, at, a2 E Q to specify 
a member of Q( ?'2). In the same sense, Q((p) is (p - I)-dimensional over Q 
because (p satisfies the irreducible equation xp

-
l + ... + x + 1 = 0 of degree 

p - 1. Dimension will be defined precisely in Section 5.4. 
The dimension of a field turns out to be the information we need to decide 

whether ?'2 and (p are constructible. We ask: can a field generated by square 
roots have dimension 3? (Or, in the case of (p, can it have dimension p - 1 for p 
prime?) The answer is easily obtained by a theorem of Dedekind (Section 5.5), 
which permits the calculation of dimension under quite general conditions. 

5.2 Algebraic Numbers and Fields 

The field Q(a) obtained by adjoining a number a to Q was defined in Section 4.5 
to be the closure of Q U {a} under the operations +, -, x and -T (by a nonzero 
number). Another description of Q(a) is 

Q(a) = {f(a)/g(a) : f(a),g(a) E Q[a] and g(a) i- OJ, 

that is, the quotients of polynomials in a with rational coefficients. On the one 
hand, polynomials f (a), g( a) in a with rational coefficients certainly belong 
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to the closure of Q U {a}, hence so does their quotient. Conversely, the set 
of quotients f(a)/g(a), where f(a),g(a) E Q[a] and g(a) ::f. 0, is closed under 
+, -, x and -;- (by a nonzero number). These quotients are the rational functions 
with coefficients in Q (see also Section 3.4), evaluated at a. 

It is known that certain numbers, such as 7r, do not satisfy any polynomial 
equation h(x) = 0 for h(x) E Q[x]. For such transcendental numbers a the 
description of Q(a) as the rational functions of a is the simplest possible. 

If, on the contrary, a satisfies an equation h(x) = 0 for some h(x) E Q[x] 
then a is called an algebraic number, and Q( a) can be described as a set of poly­
nomials in a. Namely, suppose without loss of generality that h(x) is irreducible 
over Q (we can always take an irreducible factor satisfied by a). Then it follows 
from the corollary in Section 4.5 that 

Q(a) = {an_lan- l + ... + ala + ao : aO,al, ... ,an-l E Q} (*) 

where n = degree(h). 
It is meaningful to define the degree of a over Q as n = degree(h) because 

of the general factor theorem of Section 4.2, which shows that the irreducible 
polynomials satisfied by a differ only by constant factors. In particular, they all 
have the same degree, so the degree of a can mean only one thing. 

For example, J2 has degree 2 over Q because J2 satisfies x 2 - 2 = 0 but (by 
the irrationality of J2) no linear equation with rational coefficients. Similarly, 
o has degree 3 over Q by Exercise 4.5.1. 

It turns out that degree is also a meaningful concept for the field Q(a), 
though this is not so obvious since the number a defining Q(a) is nowhere near 
unique. The meaningfulness of the degree of a field will be shown in Section 5.3. 

Exercises 

5.2.1 Show that Q(1 + J2) = Q( J2). 
5.2.2 Show that J2, J3 E Q( J2 + J3). 
5.2.3 Using the fact that 2 cos 2: = (n + (;;:-1, or otherwise, show that all the 
numbers cos 2: ,COS ~ , cos ~ , ... belong to the field Q( cos 2:). 

5.3 Algebraic Elements over an Arbitrary Field 

The idea of an algebraic number can be generalised to any field F by saying that 
a is algebraic over F if a satisfies an equation g(x) = 0 where 9 E F[x]. If a is 
not algebraic over F then a is called transcendental over F. As in Section 5.2, 
any a which is algebraic over F has a well-defined degree over F, equal to the 
degree of any irreducible 9 E F[x] such that a satisfies g(x) = O. 

For example, ~ has degree 2 over Q( J2) because it satisfies x2 - J2 = 0 
but does not satisfy any linear equation over Q( J2) (Exercise 5.3.1). 

The result F( a) of adjoining a to F is the closure of FU { a} under +, -, x, -;-, 
and we know from the corollary in Section 4.5 that 
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F(a) = {an_Ian- l + ... + ala + ao : aO,al, ... ,an-l E F} 

when n is the degree of a over F. We also know that a need not be a number 
and F need not be a number field. For any irreducible polynomial 9 E F[x] one 
can simultaneously create a root of g(x) = 0 and adjoin it to F by constructing 
the field F[xJl g(x)F[x], in which x itself satisfies g(x) = 0 by definition (Section 
4.5). 

A further useful generalisation is F(al, ... , an), which can be defined as 
F(ad ... (an), that is, the result of adjoining al,"" an to F in that order. The 
result is actually independent of the order, by the following theorem. 

Theorem. F(al, ... ,an) is the closure of F U {al,'" ,an} under +, -, x, +. 
Proof. We argue by induction on n. The result is true by definition for n = 1, 
so assume inductively that 

Then 

F(al, ... , ak+d = F(al,"" ak)(ak+d by definition 

= closure(F( a!, ... ,ak) U {ak+d) by n = 1 case 

= closure(closure(F U {a!, ... ,ak}) U {ak+d) by induction 

= closure(F U {a!, ... ,ak+d), 

which completes the induction. 

Exercises 

5.3.1 Show that {12 f/. Q( J2). 

5.3.2 Show that Q( J2 + J3) = Q( J2, J3) (compare with Exercise 5.2.2). 

5.4 Degree of a Field over a Subfield 

o 

The degree of a field E over a field F is defined to be the dimension of E as a 
vector space over F. Thus some readers will be able to relax and lean on their 
knowledge of linear algebra at this point. However, for those who do not have 
such knowledge, the following is a self-contained treatment of the tiny amount of 
linear algebra we actually need. (Even experts may be interested to note that we 
are applying linear algebra to the highly nonlinear algebra of algebraic numbers.) 

If E, F are fields with E ;2 F we call E an extension (field) of F and call F 
a subfield of E. E is said to be finite-dimensional over F if there are elements 
E 1, ••• ,En E E such that any E E E has the form 

E = hEI + ... + inEn where h, ... , in E F. 

The elements El,"" En are said to span E over F. 
For example, the elements 1, J2 span Q( J2) over Q because each member 

of Q( J2) has the form a + bJ2 with a, b E Q, by Section 4.5. More generally, 
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if a is an algebraic number of degree n then 1, a, ... , a n - l span Q(a) over Q 
because each member of Q(a) has the form ao + ala + ... + an_lan - l where 
aO,al, ... ,an-l E Q, also by Section 4.5. 

Elements El, ... ,En E E are said to be independent over F if there are no 
!I, ... , fn E F, not all zero, such that 

!IEI + ... + fnEn = O. 

Otherwise El,.'" En are said to be dependent over F. 
For example, 1, a, ... , a n - l E Q(a) are independent over Q because if 

aD, aI, ... , an-l E Q are not all zero then ao + ala + ... + an_lan - l =I- 0 by 
definition of the degree n of a (Section 5.1). In the special case of Q(.;2) the 
independence of 1,.;2 is equivalent to the irrationality of.;2 (see Exercise 5.4.1). 

An independent spanning set El,"" En is called a basis for E over F. Thus if 
a is of degree n then 1, a, ... , a n - l is a basis for Q(a) over Q. The key property 
of bases is that they all have the same size, as we shall prove below using the 
followi~g lemma. It is here that the field properties of F are crucial, inasmuch 
as they permit the solution of sets of linear equations. 

Lemma. A system of equations 

ailXI + ... + ainXn = 0, i = 1, ... ,m, 

where m < n and the aij E F, has a nonzero solution XI, ... ,Xn E F. 

Proof. We argue by induction on m, the case m = 0 being trivial. Suppose then 
that the lemma is true for m < k and that we are given 

ailXI + ... + ainxn = 0 for i = 1, ... , k (k) 

with k < n. The equations (k) certainly have a nonzero solution Xl, •.. ,Xn E F 
if all aij = O. 

If some aij =I- 0 we can assume an =I- 0 by suitable renaming of unknowns 
and reordering of equations. We can then reduce the system (k) to the form 

anXI + al2x2 + ... + alnxn = 0 

b22x2 + ... + b2nxn = 0 
(k- 1) 

by replacing the ith(i > 1) equation of (k) by (lstequation - :~~ X ithequation) 
if ail =I- 0, and otherwise leaving it unchanged. 

The last (k - 1) equations of system (k - 1) have a nonzero solution 
X2,' .. ,Xn E F by induction, and we can substitute this solution in the first 
equation and solve for Xl E F since all =I- O. This completes the induction. 0 
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Theorem. Any two bases of E over F have the same number of elements. 

Proof. It will suffice to show that if fl' ... ,fn is a basis for E over F then any 
al, ... , an+l E E are dependent, because this implies that one basis cannot 
have more elements than another. 

Given al, ... ,an+l E E, suppose that they have the following representations 
in terms of the basis elements. 

ai = ailfl + ... + ainfn where ail, ... , ain E F. (1) 

We wish to find Xl> ... ,Xn+l E F, not all zero, such that 

(2) 

By (1), this is the same as 

(allfl + ... + alnfn)Xl + ... + (an+l,lfl + ... + an+l,nfn)Xn+l = 0, (3) 

or 

(allXl + ... + an+l,lXn+l)fl + ... + (alnxl + ... + an+l,nXn+l)fn = O. (4) 

Since fl' ... ,fn are independent, their respective coefficients in (4) must all be 
zero. Thus Xl, ... , X n + 1 have to satisfy the n equations 

aliXl + ... + an+l,iXn+l = 0 for i = 1, ... ,n. (5) 

Since there are more unknowns than equations, the lemma gives us a solution 
Xl>"" Xn+l E F, not all zero, as required for the dependence of al>"" an+l. 

o 
Thus it is meaningful to define the dimension of E over F as the size of 

any basis for E over F. It is denoted by (E : F). In particular, if a is an 
algebraic number of degree n then (Q(a) : Q) = n because Q(a) has the basis 
1, a, ... ,an-lover Q. Motivated by this example, the dimension of any field E 
over F is also called the degree of E over F. Finally, we also say that an extension 
of finite degree is algebraic because of the following corollary to the theorem. 

Corollary. If (E : F) = n then each fEE is algebraic (of degree:::; n) over F. 

Proof. Since any n + 1 elements of E are dependent, this is true in particular 
of 1, f, ... ,fn. Hence they satisfy an equation 

where ao, ... ,an E F are not all zero. In other words, f satisfies g( x) = 0 where 
g(x) E F[x] is of degree:::; n. 0 

This concludes our treatment of linear algebra. Readers who already knew it 
should now resume paying attention. We are about to study the effect of varying 
the base field F - something not usually done in linear algebra, but crucial in 
the theory of fields. 
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Exercises 

5.4.1 Show that 1, J2 are independent over Q. 

5.4.2 Show that 1, V3 are independent over Q( J2). 

5.5 Degree of an Iterated Extension 

81 

The result E = F( aI, ... , ak) of adjoining several elements a1, ... , ak to a 
field F appears very difficult to compute. For example, what is the degree of 
Q( {/2, {Y3)? It is not even clear that the degree is finite, since the element 
{/2 + {Y3 in particular is not obviously the root of a polynomial with rational 
coefficients. Such questions may be answered by viewing F( aI, ... , ad as the it­
erated extension F(a1) ... (ak) (as it was originally defined, in Section 5.3), and 
considering the extensions by aI, by a2, ... , byak separately. Then the problem 
is reduced to computing the combined effect of two field extensions, say from F 
to B (B for "between") and from B to E. 

The effect of two extensions is captured by the following theorem. 

Dedekind Product Theorem. IE E ;;2 B ;;2 F are fields with E1, ... ,Em E E 
a basis for E over Band (31, ... ,(3n E B a basis for B over F, then the mn 
products Ei(3j form a basis for E over F. In particular, 

(E: F) = mn = (E : B)(B : F). 

Proof. Since any E E E is expressible in the form 

E = b1E1 + ... + bmEm where b1, ... ,bm E B, 

and each bi E B is expressible in the form 

bi = fil(31 + ... + fin(3n where fi1, ... , fin E F, 

we have 

and hence the products Ei(3j span E over F. 
To show that they are independent over F, suppose there are aij E F with 

o = "2:. aij Ei(3j 
i,j 

= (au(31 + ... + a1n(3nh + ... + (am1(31 + ... + amn(3n)Em· 

Since Ei has coefficient ail(31 + ... + ain(3n E B, it follows from the independence 
of E1, ... , Em over B that 

ai1(31 + ... + ain(3n = 0 for each i. 

But then it follows from the independence of (31, ... ,(3n over F that each aij = 0, 
as required. 0 
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This theorem gives a surprisingly easy way to answer questions about the 
degree of sums of surds, such as those posed at the beginning of this section. It 
is immediate that the degree is finite, and its exact value can be obtained with 
the help of irreducibility information. 

Example. Q( 0, ~). 
Viewing Q( 0, ~) as the result of two extensions, Q to Q(~) and Q( ~) 

to Q( ~)( 0), we observe: 

(i) (Q(~) : Q) = 5 because ~ satisfies x 5 - 3 = 0 and x 5 - 3 is irreducible 
over Q (for example by the Eisenstein irreducibility criterion, Section 4.7). 

(ii) Any a E Q(~) has degree 1 or 5 over Q since 

Q( V3) ;2 Q(a) ;2 Q:::} (Q( V3) : Q) = (Q( V3) : Q(a))(Q(a) : Q) 

:::} (Q(a) : Q) = 1 or 5 (the only divisors of 5). 

(iii) x3 - 2 is irreducible over Q, hence none of its roots are in Q(~) by (ii). 
This implies x3 - 2 is also irreducible over Q( ~), since a factorisation would 
have a linear factor, implying a root in Q( ~). Thus (Q( ~)( 0) : Q( ~)) = 3. 

(iv) (Q( 0, ~) : Q) = 5 x 3 = 15 by (i) and (iii). 

(v) Hence any element ofQ( 0, ~), in particular 0+~, has degree:S 15 
by Corollary 5.4. 0 

This last result is a special case of the following corollary to the theorem. 

Corollary. If a, f3 are algebraic numbers then so are a + f3, a - f3, af3 and a/ f3 
(for f3 =1= 0). 

Proof. Suppose degree ( a) = m and degree(f3) = n. All the numbers in question 
belong to Q( a, f3) and 

(Q(a,f3): Q) = (Q(a,f3): Q(f3))(Q(f3): Q) by the theorem 

:Smn 

since (Q(a,f3) : Q(f3)) :S degree(a) = m and (Q(f3) : Q) = degree(f3) = n. Thus 
all members of Q( a, f3) are of degree :S mn by Corollary 5.4, and hence are 
algebraic. 0 

Remark. By applying the Dedekind product theorem to iterated extensions, and 
varying the order in which elements are adjoined, we can sometimes establish 
irreducibility of polynomials over fields other than Q. The above example does 
this, in a roundabout way, in showing that x3 - 2 is irreducible over Q( ~). A 
more telling example is the field Q( {/2, i). On the one hand we have 

(Q( {/2, i) : Q) = (Q( V'2, i) : Q( V'2))(Q( V'2) : Q) 

with 
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(Q( {/2, i) : Q( {/2)) = 2, 

because i does not belong to the real field Q( ~), and 

(Q(~): Q) = 4, 

83 

because x4 - 2 is irreducible over Q by Eisenstein's criterion. On the other hand 
we have 

and hence 

(Q(~,i): Q) = (Q(~,i): Q(i))(Q(i): Q) 

= (Q(~,i): Q(i)) x 2 

(Q({/2,i): Q(i)) = 4. 

Thus ~ has degree 4 over Q(i) and hence X4 - 2 is also irreducible over Q(i). 

Exercises 

5.5.1 Deduce from Exercise 5.4.2 that (Q(v'2, J3): Q(v'2)) = 2 and hence that 
(Q( v'2, J3) : Q) = 4. 

5.5.2 Deduce from Exercises 5.5.1 and 5.4.2 that v'2 + J3 has degree:::; 4, and 
find a fourth degree polynomial in Q[x] satisfied by it. 

5.5.3 Show that the polynomial found in Exercise 5.5.2 is irreducible (use Eisen­
stein after making a suitable substitution), and hence give another proof that 
(Q( v'2, J3) : Q) = 4, using Exercise 5.3.2. 

5.5.4 Show that (Q(n) : Q(cos 2;)) = 2 for n > 2, and hence show that the 
degree of cos 2; is ¢>(n)/2. Use this to give new proofs (different from Exercises 
4.7.1 and 4.7.4) that cos 2; and cos ~ have degree 3. 

5.5.5 For which integers n is cos 2; rational? 

5.6 Degree of Constructible Numbers 

We are now poised to show that the classical construction problems are unsolv­
able. We know from Section 1.3 that any constructible number a is obtained 
from rational numbers by +, -, x, -;- and V' hence a lies in a field Q( aI, ... , an) 
where al is the square root of a rational number and each ai+1 is the square 
root of an element of Q(al, ... , ai). This puts a severe restriction on the degree 
of a, as the following theorem shows. 

Theorem. IE aI, ... ,an are numbers with a~ E Q and a~+ 1 E Q( aI, ... , ai) 
for each i, then the degree of Q( all ... ,an) is a power of 2. The degree of any 
a E Q(al, ... , an) is also a power of2. 

Proof. Since each ai satisfies a quadratic equation over Q( aI, ... , ai-I) (over 
Q when i = 1) we have 

(Q(al, ... , ai) : Q(al, ... , ai-d) = 1 or 2 for each i. 
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Hence by the Dedekind product theorem (Section 5.5) 

(Q(al,"" an) : Q) = (Q(a}, ... , an) : Q(al,"" an-d) 

X (Q(al,"" an-d : Q(al,"" a n-2)) 

X (Q(al) : Q) 

= 2m for some natural number m ::; n. 

If a E Q(al,'" ,an) the Dedekind product theorem also gives 

Thus (Q(a) : Q) is a divisor of 2m and hence also a power of 2. 

Corollary 1. The problem of duplication of the cube is unsolvable. 
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Proof. As we know from Section 1.5, this problem is equivalent to construction 
of the number {n. However, {n has degree 3 by the irreducibility of x3 - 2 over 
Q (Section 4.7), and 3 is not a power of 2, so {n is not constructible. 0 

Corollary 2. The problem of trisection of the angle is unsolvable. 

Proof. We know from Section 1.5 that trisection of the special (constructible) 
angle 7r /3 is equivalent to construction of the root cos ~ of 8x3 - 6x - 1 = O. 
The reducibility of this equation over Q is equivalent to that of the equation 
y3 _ 3y - 1 = 0 satisfied by y = 2x, which is in turn equivalent to that of the 
equation z3 + 3z2 - 3 = 0 satisfied by z = y - 1, and the latter is evidently 
irreducible by Eisenstein's criterion (Section 4.7). Thus cos ~ has degree 3, and 
it is therefore not constructible. 0 

Corollary 3. If p is prime then the regular p-gon is constructible only if p - 1 
is a power of 2. 

Proof. We know from Sections 1.5 and 3.7 that construction of the regular p-gon 
is equivalent to construction of a solution of the equation 

Zp-l + ... + z + 1 = O. 

We also know from Section 4.7 that this equation is irreducible when p is prime. 
Thus its solutions are of degree p - 1, and hence constructible only if p - 1 is a 
power of 2. 0 

It was shown by Gauss [1801], article 365, that the regular p-gon is indeed 
constructible whenever p - 1 is a power of 2. This result is easier to prove when 
the concepts of group theory have been brought into play, and we shall therefore 
postpone it until Chapter 9. Primes p for which p - 1 is a power of 2 are actually 
of the form 22h + 1 (see Exercises 5.6.1 and 5.6.2) and are called Fermat primes. 
Only five of them are known, namely 3, 5, 17, 257, 65537, corresponding to 
h = 0, 1, 2, 3, 4. 
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The connection between primes p = 22h + 1 and regular p-gons was not 
known to Fermat, and in fact his interest in these primes was based on a mistake. 
Observing that 22h + 1 is prime for h = 0,1,2,3,4, Fermat [1640] conjectured 
that 22h + 1 is prime for all natural numbers h, thus realising the dream of a 
simple function whose values are all prime. Alas, Euler [1738] found that 641 
divides 225 + 1, and since then divisors of many more numbers 22h + 1 have been 
found. It may well be that there no more prime values of 22h + 1 whatever. Yet 
Fermat was onto an interesting source of primes all the same. It is quite easy 
to show (Exercise 5.6.3) that gcd(22m + 1, 22n + 1) = 1 when m =I n, hence the 
prime divisors of 22m + 1 are different from those of any other 22n + 1. Amongst 
other things, this gives a new proof that there infinitely many primes (Goldbach 
[1730]). 

Exercises 

5.6.1 Show that x2n+1 + 1 = (x + 1)(x2n - x 2n- 1 + ... - x + 1). 

5.6.2 Deduce from Exercise 5.6.1 that 2k + 1 is not prime if k has an odd divisor 
2n + 1, hence that 2k + 1 is prime only if k = 2h. 

5.6.3 Assuming that a prime p divides 22m + 1, so 22m == -1 (mod p), deduce 
that 22n == 1 (mod p) for n > m, and hence that p does not divide 22n + 1. 

5.7* Regular n-gons 

Theorem 5.6 also enables us to say that a regular n-gon is constructible only if 
¢(n) is a power of 2, sin'ce a primitive nth root of unity has degree ¢(n) by the 
irreducibility of the cyclotomic polynomial <pn(x) (Section 4.9*). However, this 
is not very informative until we know how to compute ¢(n). 

Lemma. If n = p~l p~2 ... p~k is the prime factorisation of n then 

Proof. Since the factors p~l, p~2 , ... ,p~k are relatively prime, it follows from 
Section 2.9* that 

¢(n) = ¢(pil) ... ¢(p~k), 

and hence it remains to evaluate ¢(pi) for a prime p. There are pi positive integers 
m ::; pi, and of these only the pi-l multiples of p have a nontrivial divisor in 
common with pi. Hence 

and the lemma follows. o 
, We can now decide when ¢( n) is a power of 2, and hence when the regular 

n-gon is constructible. 



86 

Theorem. The regular n-gon is constructible only if n is of the form 

n = 2m pIP2 ... Pk 

where P!'P2,'" ,Pk are distinct Fermat primes. 
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Proof. Suppose n = p~Opil ... p~k is the prime factorisation of n with Po < PI < 
... < Pk. Then 

¢(n) = p~O-I(pO -1)pi1
-

I (PI -1) ... p~k-I(Pk - 1) 

by the lemma, and if the regular n-gon is constructible there is an lEN such 
that 

2l = p~O-I(pO - l)pi1 -
I (PI -1) ... p~k-I(Pk -1). 

It follows by unique prime factorisation in N (Section 2.5) that 
(i) Po has a nonzero exponent io - 1 = m only if Po = 2, 

(ii) the remaining Pj have exponents ij - 1 = 0, 
(iii) each of PI - 1, ... ,Pk - 1 is a power of 2, that is, P!, ... ,Pk are distinct 

Fermat primes. 0 

It is easy to see (Exercise 5.7.1) that if the regular Pi-gons are constructible 
then so is the regular 2m pi ... Pk-gon. Thus the converse of the theorem - that 
the regular n-gon is constructible if n = 2m PI ... Pk for distinct Fermat primes 
PI, ... ,Pk - reduces to the constructibility of the regular p-gon for each Fermat 
prime p. As mentioned in Section 5.6, we shall establish the latter construction 
in Chapter 9. From it we shall deduce that the n-section of an arbitrary angle is 
constructible if and only if n = 2m , generalising the argument against trisection 
used in Section 5.6. " 

Exercises 

5.7.1 Show that if gcd(p, q) = 1 and the regular p-gon and q-gon are con­
structible, then so is the regular pq-gon, and also the regular 2m pq-gon. 

5.7.2 Use Exercise 5.5.4 and the Lemma 5.7* to show that cos 2: is of degree 3 
only for n = 7,14,9,18. Also find the n for which cos 2: is of degree 4. 

5.8 Discussion 

Wantzel [1837] proved that duplication of the cube and trisection of the angle 
by straightedge and compass are impossible. These historic results can actually 
be proved by quite elementary methods. For example, it can be proved that 0 
is not expressible in terms of rational numbers and square roots by induction 
on the depth of nesting of J signs. According to Bieberbach [1952], p.123, the 
number theorist Edmund Landau (1877-1938) discovered a proof of this kind 
while he was still a student. The exercises that follow pick out the main steps. 

The 2000 year hiatus between statement of the problem and its negative 
solution is even more surprising in view of the progress made by Euclid in Book 
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X of the Elements. As mentioned in Section 3.9, Book X contains many results 
about numbers of the forms a+by'C, J a + by'C and J Va ± y'C where a, b, CEQ. 
They include the fact that a+by'C = a' +b' y'C ::::} a = a' and b = b' when y'C (j. Q 
(Proposition 79). This is one of the key steps in showing ?12 is not constructible. 
However, Euclid failed to consider arbitrary nesting (probably because his theory 
was intended for the regular polyhedra) and he did not compare his irrationals 
with cubic irrationals (for the same reason). 

The first to prove inexpressibility of a cubic irrational by particular square 
roots was Fibonacci [1225], who showed that the roots of x3 + 2x2 + lOx = 20 
are not any of Euclid's irrationals. He did not prove that the roots are noncon­
structible because, like Euclid, he did not consider arbitrary nesting of square 
roots. It seems that mathematicians were not prepared to consider nested radi­
cals of arbitrary complexity until the 19th century. 

The idea of measuring the complexity of a radical expression a by the dimen­
sion of the field Q( a) is due to Dedekind. He developed it in the supplements 
he wrote for Dirichlet's Vorlesungen iiber Zahlentheorie between 1871 and 1893. 
(The theorem I have called his "product theorem" appears on p.473 of his work 
[1893] with the remark that "one easily sees" that the products of basis elements 
form a basis for an iterated extension.) It is one of the mysteries of mathematical 
history why the ideas of linear algebra - independence, basis, dimension were 
not abstracted earlier than this. They had been implicit in European mathe­
matics for at least two centuries, and in Chinese mathematics for nearly two 
millennia (the Nine Chapters of Mathematical Art, around 300 AD, uses the so­
called "Gaussian elimination" method for solving systems of linear equations). 
It is only when linear algebra is viewed abstractly that the concepts of basis and 
dimension - and their applications to the nonlinear algebra of algebraic numbers 
- come to light. 

Wantzel [1837] also extended the results of Gauss on regular p-gons. In par­
ticular, he showed that the regular p-gon is constructible only when P is a Fermat 
prime. This filled a gap in Gauss [1801], where the result is claimed but only the 
(harder) converse is proved. More generally, Wantzel showed that the regular 
n-gon is constructible only when n = 2m PI ... Pk where PI, ... ,Pk are distinct 
Fermat primes. He did this without knowing the irreducibility of Pn(x), instead 
observing that constructibility of the pil ... ptk-gon, for any primes Pj > 2, im-

plies constructibility of each p~i -gon (by selecting suitable verti~es). This reduces 
the irreducibility problem to the special case of Pq(x) for q = p;i, which Wantzel 
was able to handle by a slight modification of Gauss's proof that pp(x) is irre­
ducible for P prime. 

As we have just mentioned, proving constructibility of the regular p-gon when 
P is a Fermat prime is harder than proving nonconstructibility when P is not. The 
proof of Gauss [1801], article 365, uses ingenious manipulations of certain sums 
of roots of the cyclotomic equation pp(x) = O. Some important concepts are 
involved, but they are obscured by complicated notation. More polished proofs 
may be found in Hadlock [1978] and Koch [1991]' though they labor under the 
same notational difficulties. To obtain a conceptually clearer proof we need to 
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study not just the dimension of fields but also their symmetry - the extent to 
which different field elements can have the same algebraic behavior. 

The next chapter paves the way for this by investigating what it means for 
two rings or fields to "look the same," or for two elements to have the "same be­
havior." Clarification of these concepts has many benefits. Among other things, 
it gives a deeper understanding of the Euler phi function and its role in the study 
of regular n-gons. 

Exercises 

5.7.1 If Fo = IQ and Fk+l = {a + by'ck : a, bE Fk} for some Ck E Fk, show that 
each Fk+l is a field. 

5.7.2 Show that if a, b, C E Fk but y'c ¢ Fk then a + by'c = 0 ¢} a = b = O. 

5.7.3 Suppose ?'2 = a + by'c where a,b,c E Fk, but that ?'2 ¢ Fk. (We know 
?'2 ¢ Fo = IQ.) Cube both sides and deduce that 

2 = a3 + 3ab2c and 0 = 3a2b + b3c. 

5.7.4 Deduce from Exercise 5.7.3 that also ?'2 = a - by'c , which is a contra­
diction. 

5.7.5 Show that Fibonacci's equation x3 + 2X2 + 10x = 20 has no rational root 
and hence that its roots are not constructible. 
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6.1 Ring and Field Isomorphisms 

In Section 4.5 we introduced the concept of isomorphism to formalise the sense in 
which Q[xJl (x2 - 2)Q[x] and Q( \1'2) are the "same." It is now time to investigate 
the concept of isomorphism more widely, and we shall begin by extending the 
definition of isomorphism to rings. 

Rings R, R' are said to be isomorphic (from the Greek for "same form") if 
there is a one-to-one function a from R onto R' which preserves + and x, that 
,is 

O'(a + b) = O'(a) + O'(b) for all a, bE R, 
O'(ab) = O'(a)O'(b) for all a, bE R. 

Such a function a is called an isomorphism. It follows from the preservation of + 
and x that an isomorphism preserves all ring characteristics, and if R is a field 
it also preserves the field characteristics. In fact, we have the following theorem. 

Theorem. If a maps ring R onto ring R' and preserves + and x, then a also 
preserves - , a and 1. If R is a field then a also preserves -;-. 

Proof. For any a E R we have the following implications, which yield preserva­
tion of 0 and O'(a - b) = O'(a) - O'(b): 

a=a+O 
=} O'(a) = O'(a + 0) = O'(a) + 0'(0) by preservation of + 
=} 0 = 0'(0), subtracting O'(a) from both sides 

=} 0 = O'(a + (-a)) = O'(a) + 0'( -a) by preservation of + 
=} O'(-a) = -O'(a) 

=} O'(b - a) = O'(b + (-a)) = O'(b) + 0'( -a) = O'(b) - O'(a). 

Since a is onto R' and we assume each ring has a 1 (compare with Section 2.2), 
there is some a E R such that 0'( a) = 1. Then we get preservation of 1 as follows: 

1 = O'(a) = O'(a x 1) = O'(a) x 0'(1) = 1 x 0'(1) = 0'(1). 

Finally, if R is a field then there is a b-1 for each b =1= 0 and 

1 = O'(bb- 1
) = O'(b)O'(b- 1

) by preservation of x 

=} O'(b-1 ) = O'(b)-l 

=} O'(ajb) = O'(ab- 1 ) = O'(a)O'(b- 1
) = O'(a)O'(b)-l = O'(a)jO'(b). 0 

Corollary. If Z ~ R, R' then 0'( n) = n for each n E Z. If R is also a field then 
O'(r) = r for each r E Q. 

Proof. Considering natural numbers first, we have: 
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nEN=}n=1+1+···+1 
=} o-(n) = 0-(1) + 0-(1) + ... + 0-(1) = 1 + 1 + ... + 1 = n 
=} 0-( -n) = -n by preservation of -

Thus n E Z =} o-(n) = n. Finally, if R is a field then min E R for each m, n E Z 
and we have 

o-(mln) = o-(m)lo-(n) = min. o 
The corollary shows that the only isomorphism of Q into Q is the identity. Thus 
to find interesting examples of isomorphisms the nearest place to look is Q(a), 
where a is an irrational algebraic number. 

Example. The function 0- : Q( V2) -t Q( V2) defined by 0-( a + bV2) = a - bV2 
when a, b E Q is an isomorphism. 

The fact that 0- is one-to-one (and indeed well defined) follows from unique 
representation of elements of Q( V2) in the form a + bV2, which in turn follows 
from the irrationality of V2 (compare with Section 4.5). Since it is likewise true 
that each element of Q( V2) is expressible in the form a - bV2 with a, b E Q, 0-
is onto Q( V2). Thus it remains to show that 0- preserves + and x. This can be 
checked by direct calculation: 0- preserves + because 

o-((al + bl V2) + (a2 + b2V2)) = o-(al + a2 + (b l + b2)V2) 

= (al + a2) - (bl + b2)h 

= (al - bl h) + (a2 - b2h) 

= o-(al + bl h) + 0-(a2 + b2h), 
and 0- preserves x because 

o-((al + bl h)(a2 + b2h)) = 0-(aIa2 + 2bIb2 + (aIb2 + bIa2)h) 

= (aIa2 + 2bIb2) - (a Ib2 + bIa2)h 

= (al - bl h)(a2 - b2h) 

= o-(al + bl h)0-(a2 + b2h). 

An alternative to this computational proof is to use the isomorphism 

Q(h) -t Q[xl/(x2 
- 2)Q[x] 

found in Section 4.5, which sends V2 to (the congruence class of) x. Recall that 
we actually showed Q[xl/(x2 - 2)Q[x] to be isomorphic to Q(a) for any root a 
of x2 - 2, hence we also have an isomorphism 

Q[xl/(x2 
- 2)Q[x]-t Q(h) 

sending x to -V2 . Combining the two, 

Q(h) -t Q[xl/(x2 
- 2)Q[x]-t Q(h) 

where 
h I-t X I-t - h, 
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we get an isomorphism 0- : Q(~) ....... Q(~) with o-(~) = -~. It follows that 

o-(a + b~) = o-(a) + o-(b)o-(~) by preservation of +, x 

= a + bo-(~) by preservation of Q 

=a-b~, 

so this is the same as the isomorphism given above. D 

The idea of using Q[xl/(x2 - 2)Q[x] as an abstract bridge connecting Q(~) 
to Q(~) in a nontrivial way easily generalises to a field F(a). We shall prove a 
general theorem to this effect in the next section, and use it to construct more 
examples of nontrivial isomorphisms. 

Exercises 

6.1.1 Give an example of a function 'ljJ mapping a ring R onto a ring R' which 
preserves + and x (a homomorphism, see Section 6.8) but which is not one-to­
one. 

6.1.2 Show that any homomorphism 'ljJ of one field onto another is an isomor­
phism. (Hint: It suffices to show that 'ljJ cannot send a nonzero element to 0.) 

6.1.3 Show that the function o-(x) = xP is an isomorphism of the finite field 
Zip'll onto itself. 

6.1.4 Is Q(~) isomorphic to Q( v'3)? 

6.2 Isomorphisms of Q(a) and F(a) 

The isomorphism of Q( ~) sending ~ to - ~ shows that the two roots of x2 - 2 
have the "same algebraic behavior" in a precise sense. The following theorem 
shows that any two roots of the same irreducible polynomial in Q[x] have the 
same behavior, in the sense that they correspond under an isomorphism of fields. 
Conversely, algebraic numbers that correspond under an isomorphism are roots 
of the same irreducible polynomial. 

Conjugation Theorem. If a, [3 are algebraic numbers then a, [3 satisfy the 
same irreducible h(x) E Q[x] ¢:? there is an isomorphism 0- : Q(a) ....... Q([3) with 
o-(a) =[3. 

Proof. (::::}) If a, [3 are roots of the same irreducible h(x) E Q[x] then Theorem 
4.5 gives isomorphisms 

Q(a) ....... Q[xl/h(x)Q[x] ....... Q([3) 

which send 
a I-t X I-t [3. 

The composite 0- : Q(a) ....... Q([3) of these isomorphisms is therefore an isomor­
phism with o-(a) = [3. 
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(-¢:::) If a: Q(a) ~ Q(jJ) is an isomorphism with a(a) = 13, let h(x) E Q[x] 
be the irreducible monic polynomial satisfied by a. Applying a to the equation 
0= h(a) we get 

0= a(O) = ah(a) = h(a(a)) 

since a preserves +, x and Q. Namely, if 

then 
ah(a) = a(am)(a(a))m + ... + a(al)a(a) + a(ao) 

= am(a(a))m + ... + aw(a) + ao 

= h(a(a)). 

Thus a(a) = 13 is also a root of h(x). o 
This theorem gives many isomorphisms for which the preservation of + and 

x would be laborious to check directly. 

Example 1. a : Q( ~) ~ Q( (3~) with a( ~) = (3 ~ is an isomorphism. 

This is because ~,(3 ~ are both roots of the polynomial x3 - 2, which is 
irreducible over Q (for example by Eisenstein's criterion). 0 

The opposite direction of the theorem gives 

Example 2. The only isomorphism a : Q( ~) ~ Q(~) is the identity. 

This is because the only roots of x3 - 2 are ~,(3 ~ and (j~, and the 
latter two are not real, hence not members of Q( ~). 0 

I call the theorem the conjugation theorem because the roots aI, a2, ... of 
an irreducible h(x) E Q[x] are called conjugates of each other. This generalises 
the use of the word "conjugate" in "complex conjugate" (complex conjugation 
a+bi f-+ a-bi is an isomorphism C ~ C) and "conjugate surds" (when a, b, CEQ 
and Vc is irrational, a + bVc f-+ a - bVc is an isomorphism Q(Vc) ~ Q(Vc))' 
Thus the theorem may be interpreted as saying that the isomorphisms of Q( a) 
onto other number fields are all "conjugations." 

There is a generalisation to fields F(a), whose statement and proof become 
clear once one realises that the only property of Q used in the proof of the 
conjugation theorem is that a(a) = a for all a E Q. 

General Conjugation Theorem. If a, 13 are algebraic over F then a, 13 satisfy 
the same irreducible h(x) E F[x] {:? there is an isomorphism a : F(a) ~ F(f3) 
with a(a) = 13 and a(a) = a for all a E F. 

Proof. (=?) Using the isomorphisms from Section 4.5 

F(a) ~ F[xl/h(x)F[x] ~ F(f3) 

which send 
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(and also fix each a E F), we get a composite isomorphism a : F(a) -+ F(f3) 
with the required properties. 

{-¢=) Given an isomorphism a : F(a) -+ F(f3) with a(a) = 13 and a(a) = a 
for all a E F, we apply a to the equation 0 = h(a) and get 0 = h(a(a)) = h(f3), 
using the fact that a(a) = a for the coefficients a of h(a). 0 

The general conjugation theorem enables us to find isomorphisms of com­
plicated fields Q(a, 13, ... ) by viewing them as F(a), where F is simpler. Bear 
in mind that an isomorphism a of Q(a, 13, ... ) is determined by the values of 
a(a), a (13) , ... , since for any rational function f(a, 13,· .. ) E Q(a,f3, ... ) we have 

af(a,f3, ... ) = f(a(a),a(f3), ... ) 

by the preservation of +, -, x, -;- and coefficients a E Q. 

Example 3. There is an isomorphism a : Q(?'2, (3) -+ Q(?'2, (3) with a(?'2) = 
?'2, a((3) = (§. 

View Q(?'2,(3) as F((3), where F = Q(?'2). Now (3,(§ (the complex cube 
roots of unity) are the roots of x 2 + x + 1, which is irreducible over F = Q(?'2) 
because F is real and the roots of x2 + x + 1 are not. Thus it follows from 
the general conjugation theorem that there is an isomorphism a of F((3) = 
Q( ?'2,(3) with a((3) = (§ and a(a) = a for all a E F, in particular a(?'2) = ?'2. 
o 

Example 4. There is an isomorphism a: Q(?'2, (3) -+ Q(~, (3) with a(?'2) = 

(3?'2, a((3) = (3· 

View Q(?'2,(3) as F(?'2), where F = Q((3). Since ?'2, (3?'2 are roots of 
x3 - 2, it suffices to show that x3 - 2 is irreducible over F = Q((3). We know 
that x3 - 2 is irreducible over Q (for example, by Eisenstein's criterion), which 
means that its roots all have degree 3 over Q (Section 5.2). If x 3 - 2 is not 
irreducible over Q((3) it has at least one linear factor (x - something) in Q((3), 
which means that at least one of its roots is in Q((3). This is impossible because 
(3 is of degree 2 over Q (as a root of x 2 + x + 1), hence all elements of Q((3) 
have degree ~ 2 over Q by Section 5.4. 0 

Exercises 

6.2.1 Deduce from the irreducibility of x4 - 2 over Q(i) (Section 5.5) that 
a(~) = i~, a(i) = i defines an isomorphism ofQ(~, i). Also find a nontrivial 
isomorphism that fixes ~. 

6.2.2 Find the conjugates of a = J2 + J3 by finding all roots of the minimal 
polynomial X4 - lOx2 + 1 for a found in Exercise 5.5.3. 
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6.3 Extending Fields and Isomorphisms 

The general conjugation theorem of Section 6.2 can be complemented by a the­
orem about isomorphisms of F(o:) which do not fix all the elements of F, but in 
fact extend arbitrary isomorphisms of F. Such isomorphisms may be found by 
observing how an isomorphism r of F propagates through the construction of 
F(o:) as F[x]jh(x)F[x] in Section 4.5. The first step is the following lemma on 
the extension of r from F to F[x], which we shall also use in Section 6.5*. 

Lemma. An isomorphism r : F -+ r F of fields extends to an isomorphism 
r: F[x] -+ rF[x] by setting r(x) = x. 

Proof. If f(x) = ao + alX + ... + amxm E F[x] we define 

rf(x) = r(ao) + r(adx + ... + r(am)xm. 

Thus if 

we have 
rg(x) = r(bo) + r(b1)x + ... + r(bn)xn, 

and it follows immediately from the fact that r(a+b) = r(a) +r(b) for a, bE F 
that 

r(f(x) + g(x)) = r f(x) + rg(x). 

Similarly (but with a bit more calculation, and using the additional fact that 
r(ab) = r(a)r(b) for a,b E F), we find 

r(f(x)g(x)) = rf(x)rg(x). 

Finally, since r is one-to-one on F it follows that rf(x),rg(x) have the same 
coefficients only when f(x),g(x) have. Thus r is also one-to-one on F[x], and 
hence an isomorphism. 0 

Thus the natural extension of r : F -+ r F to a map F[x] -+ r F[x] is an 
isomorphism. The theorem is obtained by showing that the latter isomorphism 
determines a one-to-one correspondence between the congruence classes of F[x] 
mod h(x) and the congruence classes of rF[x] mod rh(x), and hence an isomor­
phism of F(o:) = F[x]jh(x)F[x] onto rF[x]/rh(x)rF[x]. 

Isomorphism Extension Theorem. If 0: is algebraic over a field F then any 
isomorphism of F extends to an isomorphism of F(o:). 

Proof. If 0: E F there is nothing to prove, so suppose 0: <t F and that 0: satisfies 
an irreducible h(x) E F[x]. 

If r : F -+ r F is an isomorphism, we consider the extended isomorphism 
r : F[x] -+ rF[x] given by the lemma. Since r preserves +, - and x it follows 
that 

f(x) - g(x) = q(x)h(x) => r f(x) - rg(x) = rq(x)rh(x), 

and the converse also holds since r is one-to-one. Thus 
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f(x) == g(x) (mod h(x)) {:} rf(x) == rg(x) (mod rh(x)) 

and hence we have a one-to-one correspondence 7 between congruence classes 
defined by 

7(h(x)F[x] + f(x)) = rh(x)rF[x] + rf(x). 

Since r preserves + and x of representatives f(X),7 preserves + and x of 
their congruence classes, and hence it is an isomorphism of F[xl/h(x)F[x] onto 
rF[xl/rh(x)rF[x]. 

Moreover, for congruence classes of elements a E F we have 

7(h(x)F[x] + a) = rh(x)F[x] + Ta. 

That is, 7 sends the class of a E F in F[xl/h(x)F[x] = F(a) to the class of ra, 
and hence it is an extension to F(a) of the isomorphism r of F. 0 

Example 1. Isomorphisms of Q( v'2, va). 
We can view Q( v'2, va) as an extension of either Q( v'2) or Q( va). Viewing 

it first as F( va), where F = Q( v'2), we look at what happens when we extend 
the isomorphism T1 of Q( v'2) such that r1 (v'2) = -v'2. The adjoined element 
va does not belong to Q( v'2), otherwise 

va = a + bh for some a, bE Q( h), 

and then 
3 = (a + bh)2 = a2 + 2b2 + 2abh 

which yields the contradiction 

In _ 3 - a2 - 2b2 

v2 - 2ab E Q. 

Thus we can extend r1 to an isomorphism 71 of F( va) = F[x]j(x2 - 3)F[x] and 
by construction 71 (va) = va because 71 (x) = x and x = va or - va. Thus 71 
is an isomorphism of Q( v'2, va) such that 71 (v'2) = -v'2, 71 (va) = va. 

The analogous construction beginning with the isomorphism r2 of Q( va) 
such that r2( va) = -va yields an isomorphism 72 of Q( v'2, va) such that 
72 (v'2) = v'2 , 72 (va) = -va . We get a third isomorphism as the composite 
7172, which changes the signs of both v'2 and va. And fourthly, of course, there 
is the identity isomorphism which leaves v'2 and va unaltered. 

Now we can check that any isomorphism of Q( v'2, va) onto itself is One of the 
four just found. Any isomorphism a of Q( v'2, va) is determined by the values 
of o'(v'2) and o'(v'2), as we observ£d more generally for Q(a,,B, ... ) in Section 
6.2. The value 0'( v'2) must satisfy 

(o'( h))2 = 0'( h)O'( h) = 0'( hh) = 0'(2) = 2, 

hence 0'( v'2) = ±v'2 , and similarly 0'( va) = ±va . This gives four possibilities 
for a, and they are exactly the possibilities realised by the isomorphisms already 
round. 0 
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In Example 1 we can get away with the naive interpretation of x (as v'3 
or -v'3) because the polynomial hex) = x2 - 3 satisfied by x is unchanged 
by the isomorphism r of F[x]. In F[xl/h(x)F[x], x is a root of x2 - 3, and in 
rF[xl/rh(x)rF[x] it is a root of r(x2 - 3), which also equals x2 - 3. In general, 
the numerical interpretation of x will be different in rF[xl/rh(x)rF[x] because 
rh(x) will be a different polynomial. The point is brought out by the following 
example, suggested to me by Angelo di Pasquale. 

Example 2. An isomorphism of Q( -Y2). 

We can view Q( -Y2) as F( -Y2), where F = Q( V2), and construct an isomor­
phism r extending the isomorphism r : F ~ F defined by r( V2) = -V2. Again 
rex) = x, however, the numerical interpretation of x changes between F and 
rF. Why? Because the irreducible polynomial satisfied by -Y2, x2 - V2 E F[x], 
changes to r(x2 - V2) = x2 + V2. Hence in rF[xl/r(x2 - V2)rF[x], x sat­
isfies r(x2 - V2) = x2 + V2, which is not satisfied by x = -Y2. We have to 
interpret rex) = r( -Y2) as a root of x2 + V2, say r( -Y2) = i-Y2, and then 
r( V2) = (r( -Y2))2 = -V2 as required. 0 

Remark. The theorem is still true when a is not algebraic over F, and in fact a 
bit simpler. In this case F(a) is isomorphic to the field F(x) ofrational functions 
in x with coefficients in F (compare with Section 5.1), so it is only necessary to 
generalise the lemma from F[x] to F(x). We do not carry this out because we 
do not need the result. However, we shall be looking at isomorphisms of rational 
function fields, for other reasons, in Section 6.5*. The theorem itself plays a brief 
but important role in Chapters 8 and 9. 

Exercises 

6.3.1 Give another proof that the mappings r1, r2 of Q( V2, v'3) are isomor­
phisms by using the general conjugation theorem of Section 6.2. 

6.3.2 Give yet another proof, by viewing Q( V2, v'3) as Q( V2 + v'3) and inter­
preting r1 and r2 as conjugations of V2 + v'3 (using Exercise 6.2.2). 

6.3.3 Use extensions to give another proof that the mappings in Examples 3 
and 4 of Section 6.2 are isomorphisms of Q(~, (3). 

6.3.4 Show that six combinations of values of O'(~) and 0'((3) are possible 
for an isomorphism of Q(~, (3) onto itself, and that all six actually occur for 
composites of the isomorphisms found in Section 6.2. 

6.3.5 Show that any isomorphisms of Q(cos 2;) are isomorphisms of Q((n). 
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6.4 Autornorphisrns and Groups 

An obvious property of isomorphisms, already used in the last theorem and 
elsewhere, is that the inverse 0"-1 of an isomorphism 0" is also an isomorphism, 
as is the composite 0"10"2 of isomorphisms 0"1 and 0"2. In this and the following 
section we shall frequently construct new isomorphisms from old by composition 
and inversion. In particular, we shall use the idea to construct automorphisms 
of a ring R, that is, isomorphisms of R onto itself. 

Automorphisms are the most manageable isomorphisms, because not only 
are the composite and inverse of automorphisms of Ragain automorphisms of 
Ii, there is also an identity automorphism of R, namely the identity function 1 
defined by l(r) = r for all r E R. The fundamental properties of automorphisms 
under the operation of composition are 

0"( 0"' 0"") = (0"0"')0"" (associativity) 

which is true for composition of any functions, 

0"1 = 10" = 0" (identity) 

which is the characteristic property of the identity function, and 

(inverse) 

which is the characteristic property of inverse functions. 
These three properties define a group of one-to-one functions under the oper­

ation of composition. In general, a group is any set of objects under an operation 
with the associative, identity and inverse properties. However, there is a theorem 
of Cayley (Section 7.2) which shows that any group is essentially the same as a 
group of one-to-one functions under composition. Thus there is no loss of gen­
erality in assuming the group operation to be function composition. We shall in 
fact be interested only in groups of automorphisms of fields, but even these turn 
out to be quite general. They include all the finite groups, and some particularly 
interesting examples will be exhibited in Chapter 7. 

Exercise 

6.4.1 Without assuming that group elements are functions, deduce from the 
three properties of a group that 

0"0"1 = 0"0"2 =} 0"1 = 0"2 

0"0"1 = 0"1 =} 0" = 1 
-1 

0"0"1=1 =} 0"=0"1 

( cancellation) 

(uniqueness of identity) 

(uniqueness of inverse) 
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6.5* Function Fields and Symmetric Functions 

Just as the ring Z of integers may be extended to the field Q of rational numbers 
by forming quotients of integers, each ring F[x] of polynomials may be extended 
to a field F(x) of rational functions by forming quotients of polynomials. We 
can generalise further, to any finite number of indeterminates, by first forming 
the ring F[Xl' ... ' xn] = F[Xl] ... [xn] of polynomials in Xl, ... , Xn, and then the 
field F(Xl, . .. , xn) of quotients of these polynomials. Here F can be any field. 

In Chapter 8 we shall be interested in the field Q(Xl, ... , xn) and its subfield 
Q(ao, al,···, an-d, where ao, at, ... , an-l are polynomials in Xl, ... , xn defined 
by 

(X - Xl) ... (X - Xn) = xn + an_lxn- l + ... + alx + ao. 

We shall see that the relationship between these fields is the key to deciding 
whether the general nth degree equation 

is solvable by radicals. The present section gives an optional preview of '.;his 
relationship. 

The first thing to observe is that each permutation a of Xl, ... , Xn extends to 
an automorphism of Q(xt, . .. , xn), namely the mapping a of Q(xt, .. . , xn) that 
sends each rational function f(xt, . .. , xn) to f(a(xl), . .. , a(xn)). This mapping 
obviously preserves + and x, and it is one-to-one because it is inverted by the 
mapping a-I that sends each function g(xt, ... , xn) to g(a-l(xl), ... , a-l(xn )). 

A key property of these permutation automorphisms a is that they fix the 
polynomials ao, at, ... , an-I, that is, a(ai) = ai for each ai. This is because ai 
is the coefficient of Xi in the expansion of (x - Xl) ... (X - x n ), which is the 
same as (x-a(xl))··· (x-a(xn)) for any permutation a. More surprisingly, the 
converse is also true: any automorphism of Q(xt, ... , xn) fixing ao, at, ... , an-l 
is the extension of a permutation a. The proof is a simple combination of the 
technique of extending an isomorphism from F to F[x] (Lemma 6.2) with unique 
factorisation in F[x] (Theorem 4.3). 

Theorem. An automorphism a of Q(Xb ... , xn) fixes ao, at, .. . , an-l {:} a is 
the extension of a permutation of Xt, ... , Xn . 

Proof. For any automorphism a of Q(xt, ... , xn) consider its extension (also 
called a) to Q(Xl, ... ,Xn)[x] such that a(x) = x. Then 

a fixes ao, ... , an-l {:} a fixes xn + an_lxn- l + ... + alX + ao 

{:} a fixes (x - Xl) ... (X - xn) 

{:} (X - a(xI))··· (X - a(xn)) = (X - Xl)··· (X - Xn) 

{:} a permutes Xl,···, X n , 

by the unique factorisation of polynomials in Q(Xt, .. . , Xn)[X]. o 
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Functions fixed by permutations of Xl, ... , Xn are called symmetric, and 
the particular polynomials ao, aI, ... ,an-l are called the elementary symmet­
ric functions. The symmetry of ao and an-l is particularly plain because 

A remarkable theorem, apparently due to Newton [1707], states that every sym­
metric function of Xl, ... , Xn is in Q( ao, aI, ... , an-I). This called the fundamen­
tal theorem of symmetric functions. In fact, Newton proved the stronger result 
that any symmetric polynomial is a polynomial in aO, ... , an-l (see Exercise 
6.5.1). A more conceptual proof of the fundamental theorem is obtainable from 
Galois theory (Exercise 9.3.4). 

Exercise 

6.5.1 Give a proof by induction that a symmetric polynomial f in XI. ... , Xn is 
a polynomial in ao, .. . ,an-l as follows: 

(i) Defining a~, ... , a~_l by 

show that the a? are symmetric in Xl, ... ,Xn-l and, by an induction hy­
pothesis on n, that 

is a polynomial g(a~, ... ,a~_l). 

(ii) Show that 

vanishes for Xn = 0, hence is divisible by Xn. 

(iii) Deduce, by symmetry, that p( Xl, ... , xn) is divisible by all Xi, and hence by 
ao· 

(iv) Deduce that 

where h is symmetric. 

(v) Assuming, by induction on degree, that h is a polynomial in ao, .. ·, an-I. 
conclude the same for f. 
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6.6* Cyclotomic Fields 

Probably the most important algebraic extensions of Q are the cyclotomic fields 
Q( (n) where (n is a primitive nth root of unity (Section 3.7). They are intimately 
involved in the study of nth roots, since the nth roots of any a E C are of 
the form y'a, (n y'a, ... ,(;:-1 y'a where y'a denotes a particular nth root of a, 
and the following information is relevant (though not strictly necessary) for our 
investigation of solution by radicals in Chapters 8 and 9. 

Theorem. The automorphisms ofQ((n) are the functions ak : Q((n) -+ Q((n) 
such that ak((n) = (k where 1:::; k:::; nand gcd(k,n) = 1. 

Proof. As we know from Section 6.4, any automorphism a of Q( (n) is determined 
by the value of a((n), and 

(a((n))n = 0'((;::) = 0'(1) = 1. 

Thus a((n) is an nth root of unity and therefore 

a((n) = (~ where 1:::; k < n. 

Also, since (~ i- 1 for 1 :::; d < n we must have 1 i- (a( (n))d = (~d and hence 
kd t=. 0 (mod n). Thus k is invertible mod n and hence gcd(k, n) = 1 by Theorem 
2.7. 

Conversely, if gcd(k, n) = 1, then (~ is a primitive nth root of unity, hence 
a root of the cyclotomic polynomial <pn(x), by definition of <Pn (Section 4.8*). 
Since <Pn (x) is irreducible, by Section 4.9*, we have an isomorphism 

by the conjugation theorem of Section 6.2. o 
This theorem is essentially equivalent to the irreducibility of <pn(x), since 

irreducibility is relatively easy to prove from the assumption that ak((n) = (~ 
defines an automorphism of Q((n) when k is relatively prime to n (see Exercises). 
Note that, in the special case where n is a prime p, the function ak((p) = (; 
defines an automorphism of Q((p) for k = 1,2, ... ,p - 1. 

Note also that the number of automorphisms of Q((n) is the same as its 
dimension over Q, namely, the degree <p(n) of <pn(x). This fact is part of the 
relationship between groups and fields that will unfold in Chapters 7, 8 and 9. 

Exercises 

6.6.1 Suppose I(x) E Q[x] is a nontrivial irreducible factor of <pn(X) such that 
I((n) = 0 and suppose that 

I(x) = (x - (n)(x - (;') ... (x - (:t) in Q((n)[x]. 

If an isomorphism a of Q((n) is extended to Q((n)[x] by setting a(x) = x, show 
that 

0'1 (x) = (x - a((n))(x - 0'((;')) ... (x - a((:t)) 
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is just a permutation of the factorisation of f(x). 

6.6.2 Deduce from Exercise 6.6.1 that f(x) contains each factor (x - (~) where 
gcd(k,n) = 1, and hence that f(x) = Pn(x) up to a constant factor, so Pn(X) is 
irreducible. 

6.6.3 Show that for each k relatively prime to n there is an automorphism ak 

of Q( cos 2:) defined by ak (cos 2:) = cos 2~7r, and that every automorphism of 
Q(cos 2:) is of this form (compare with Exercise 6.3.5). 

6.6.4 How many of the automorphisms ak of Q( cos 2:) are actually distinct? 
Compare this number with the value of (Q(cos 2:) : Q) found in Exercise 5.5.4. 

6.6.5 Using Exercise 6.6.4 or otherwise, find fields Q( cos 2:) with automorphism 
groups of three and five elements. 

6.7* The Chinese Remainder Theorem 

Most of the ring isomorphisms in this book are actually field isomorphisms, or 
else simple extensions of field isomorphisms to rings. However, there is one that 
really is about rings. It comes from reflecting on an ancient discovery known as 
the Chinese remainder theorem. 

In the Chinese Mathematical Classic of Sun Tzu (around 300 AD), a method 
is given for finding a number r, given its remainders r mod m and r mod n 
by relatively prime integers m and n. The implication is that, given r mod m 
and r mod n, the value of r mod mn is uniquely determined. This much (or 
its obvious generalisation to any number of relatively prime integers m, n, ... ) 
is the classical Chinese remainder theorem. However, not only does the pair 
(r mod m, r mod n) determine r (mod mn), it turns out that any two integers 
rand s can be added or multiplied (mod mn) by adding or multiplying their 
remainder pairs term by term, that is, forming (r + s mod m, r + s mod n) or 
(rs mod m, rs mod n). 

This further discovery indicates that the underlying reason for the Chinese 
remainder theorem is an isomorphism, between the ring ZjmnZ and the set of 
pairs (r mod m, r mod n) under term by term addition and multiplication. The 
latter structure is called the direct product of the rings ZjmZ and ZjnZ and is 
denoted by (ZjmZ) x (ZjnZ). In general, if A and B are any two rings their 
direct product is the set 

A x B = {(a, b) : a E A, bE B}, 

with + and x defined by 

(aI, bl ) + (a2' b2) = (al + a2, bl + b2) 

(al,bl ) x (a2,b2) = (ala2,blb2). 

It is easily checked (Exercise 6.7.1) that A x B is a ring under these operations. 
Thus the "real" Chinese remainder theorem is the following theorem about iso­
morphic rings. 



102 6 Isomorphisms 

Chinese Remainder Theorem. If gcd(m,n) = 1 then the map p(r) = 
(r mod m, r mod n) is an isomorphism of Z/mnZ onto (Z/mZ) x (Z/nZ). 

Proof. It is immediate from the definition of p and the definition of + and x in 
(Z/mZ) x (Z/nZ) that p preserves + and x. To see that p is one-to-one suppose 
that p(r) = p(r'), that is, that 

(r mod m,r mod n) = (r' mod m,r' mod n). 

It follows from the preservation of + (and hence -) that 

p(r - r') = (0,0), 

that is, r - r' is divisible by both m and n. Since gcd(m, n) = 1, it follows that 
mn divides r - r', hence r = r' in Z/mnZ. 

Finally, p must be onto (Z/mZ) x (Z/nZ) since Z/mnZ has mn members 
and so has (Z/mZ) x (Z/nZ). 0 

This version of the Chinese remainder theorem also yields the multiplicative 
property of the Euler phi function, previously proved (with greater difficulty) in 
Section 2.9*. Quite an impressive bonus, since the classical Chinese remaiilder 
theorem said nothing whatever about phi! 

Corollary. If gcd(m, n) = 1 then </>(mn) = </>(m)</>(n). 

Proof. Recall from Section 2.8* that </>( r) is the number of integers k, 1 :::; k :::; r, 
that are relatively prime to r, and also the number of such k with a multiplicative 
inverse mod r. 

Thus </>(mn) is the number of invertible elements of Z/mnZ and hence, by 
the Chinese remainder theorem, the number of invertible elements of (Z/mZ) x 
(Z/nZ). But it follows from the definition of multiplication in (Z/mZ) x (Z/nZ) 
that a pair (k, l) is invertible if and only if k is invertible in Z/mZ and l is 
invertible in Z/nZ. Since Z/mZ has </>(m) invertible elements and Z/nZ has 
</>(n), the number of such pairs is </>(m)</>(n). 0 

In view of this corollary, it seems that the ring isomorphism version of the 
Chinese remainder theorem is a distinct improvement, since it unifies the clas­
sical theorem with the previously separate theorem that </>(mn) = </>(m)</>(n). 
Incidentally, the latter theorem is also enriched in this version - the equality of 
</>( mn) and </>( m )</>( n) is actually a consequence of a group isomorphism, between 
the group of invertible elements of Z/mnZ and the group of invertible elements 
of (Z/mZ) x (Z/nZ). This isomorphism is simply what remains of the ring iso­
morphism after the noninvertible elements and the + operation are forgotten. 

Exercises 

6.7.1 Check the ring properties (Section 2.1) of the direct product. 

6.7.2 Show that solving the simultaneous congruences 

x == a (mod m), x == b (mod n) 
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is equivalent to solving a linear equation in integers, which can be done by using 
the Euclidean algorithm to find gcd(m, n). 

6.8 Homomorphisms and Quotient Rings 

Mappings of rings that preserve + and x are called homomorphisms. They need 
not by any means be one-to-one. An important type of example is the evaluation 
map that sends each polynomial p(x) in a polynomial ring F[x] to its value p(a) 
at x = a. Evaluation obviously preserves + and x, but it is one-to-one only if a 
is transcendental over F, that is, if p(a) -# 0 for each p(x) E F[x]. If h(x) E F[x] 
is a polynomial satisfied by a, then all multiples of h(x), that is, all members of 
h(x)F[x], are sent to 0 by the evaluation map. 

We have met this situation previously (Section 4.5) when h(x) is irreducible, 
in which case h(x)F[x] consists of all polynomials that evaluate to 0, and there 
is a one-to-one correspondence between the congruence classes h(x)F[x] + p(x) 
and the values p(a). Generalising this example, we can reinterpret any homo­
morphism 'Ij; of a ring R as an isomorphism on the set of "congruence classes" 
of R modulo the class of elements that 'Ij; sends to O. 

The technical language used to describe the general situation is the following. 
If 'Ij; : R -t R' is a homomorphism of ring R onto ring R' then the set 

'Ij;-1(0) = {r E R: 'Ij;(r) = O} 

is called the kernel of 'Ij;. It is often denoted by ker 'Ij;. For each a E R we let 

'Ij;-1(0) + a = {r + a: r E 'Ij;-1(0)} = {r + a: 'Ij;(r) = O} 

and call it the congruence class of a (mod ker'lj;). It is the equivalence class of a 
under the relation 

s == t (mod ker'lj;) 

defined by s - t E ker'lj;. 

Lemma. If al == b1 (mod ker'lj;) and a2 == b2 (mod ker'lj;) then 

al + a2 == b1 + b2 (mod ker'lj;) and ala2 == b1b2 (mod ker'lj;). 

Proof. This follows by the argument used in Section 2.6 to prove the corre­
sponding properties of congruence mod n in IE, except that instead of using the 
fact that the multiples of n are closed under sums and integer multiples we use 
the fact that ker'lj; is closed under sums and multiples by members of R. Namely, 

rl E ker'lj;, r2 E ker'lj; '* 'Ij;(rt} = 0, 'Ij;(r2) = 0 

'* 'Ij;(rl + r2) = 'Ij;(rl) + 'Ij;(r2) = 0 + 0 = 0 

'* rl + r2 E ker'lj;. 

r E ker'lj; '* 'Ij;(r) = 0 

'* 'Ij;(kr) = 'Ij;(k)'Ij;(r) = 'Ij;(k) x 0 = 0 

'* kr E ker'lj; for any k E R. 0 
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It follows from the lemma that + and x are well defined on congruence 
classes by 

('¢-l(O) + a) + ('¢-1(0) + b) = '¢-1(0) + (a + b) 

('¢-1(0) + a)('¢-l(O) + b) = '¢-1(0) + ab, 

and that the congruence classes form a ring under these operations, since they 
inherit the ring properties from R (the same way + and x are defined on con­
gruence classes mod n and inherit the ring properties from £1:). The ring of 
congruence classes is denoted by R/ ker '¢ and we have: 

Isomorphism Theorem for Rings. If '¢ is a homomorphism of ring R onto 
ring R' then the ring R/ ker '¢ is isomorphic to R'. 

Proof. The main step is to see that if ,¢(a) = a' then the congruence class 
'¢-1(0) + a of a is simply 

,¢-l(a') = {s E R: ,¢(s) = a'}. 

On the one hand, 

sE,¢-l(O)+a=}s=r+a where '¢(r) =0 

=} '¢(s) = '¢(r) + '¢(a) = a'. 

On the other hand, 

'¢(s) = a' =} ,¢(s) = ,¢(a) 

=} 0 = '¢(s) - '¢(a) = ,¢(s - a) 

=} s - a E '¢-l(O) 

=} s E '¢-1(0) + a. 

Thus we have a one-to-one correspondence between classes ,¢-l(a') E R/ker,¢ 
and elements a' E R'. This correspondence preserves + and x because if '¢( a) = 
a', '¢(b) = b' then the class '¢-l(a' + b') is 

'¢-l('¢(a) + '¢(b)) = '¢-l('¢(a + b)) = '¢-l(O) + (a + b), 

and similarly ,¢-l(a'b') = '¢-l(O) + abo D 

Corollary. A homomorphism '¢ : R --t R' is an isomorphism {::} ker,¢ = {O}. 

Proof. If ker,¢ includes elements other than 0 then '¢ is not one-to-one. Con­
versely, if ker '¢ = {O} then the congruence class of each a E R consists of a 
alone, hence '¢ is one-to-one. D 

Remarks 
(1) The only properties of ker,¢ needed to show that sum and product of 

congruence classes mod ker,¢ are meaningful are: 

a, bE ker,¢ =} a + bE ker,¢, 

a E ker,¢,k E R =} ka E ker,¢. 
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Thus if I is any subset of R closed under sums and under products with members 
of R we shall be able to define a ring R/ I of congruence classes mod I. This is a 
useful point of view, though actually no more general, because any such subset is 
in fact the kernel of a homomorphism - the so-called canonical homomorphism 
'IjJ : R --t R/I defined by 'IjJ(r) = 1+ r = {i + r : i E I}. 

(2) The notation 71,/n71, we used in Section 2.7 for the ring of congruence 
classes mod n can now be seen as an instance of the notation R/ I. Here we have 
R = 71" 1= n71, = {nr : r E 71,}, which is obviously closed under sums and under 
products with elements of 71,. 

(3) The isomorphism theorem really is a theorem about rings because any 
homomorphism 'IjJ of a field F onto a field F' is already an isomorphism. Just 
consider any nonzero a E F. Then a-1 exists and the theorem in Section 6.1 
shows 

1 = 'IjJ(1) = 'IjJ(aa- 1
) = 'IjJ(a)'IjJ(a- 1

), 

hence 'IjJ(a) =1= O. Thus ker'IjJ = {O}, and therefore 'IjJ is an isomorphism by the 
corollary. 

This fact helps to explain the overwhelming importance of isomorphisms in 
the theory of fields. While the structure of a ring can often be elucidated by a 
homomorphism onto a simpler ring - recall how we learned about the structure 
of 71, in Chapter 2 by mapping it onto 71,/n71, - the only option for fields is to 
consider isomorphisms. For many fields, the automorphism group holds the key. 
As Galois discovered, groups are more tractable than fields because they too 
possess "simplifying" homomorphisms. 

Exercises 

6.8.1 Verify that if I ~ R is closed under sums, and under products with ele­
ments of R, then the map 'IjJ(r) = 1+ r is a homomorphism with kernel I. 

6.8.2 Find a natural homomorphism 71, --t (71,/m71,) x (71,/n71,) , and hence give 
another proof of the Chinese remainder theorem. 

6.9 Discussion 

The concepts of isomorphism and homomorphism emerged only gradually in 
algebra, being observed first for groups around 1830, for fields around 1870 and 
for rings around 1920. In his memoir on the solvability of equations, Galois [1831] 
implicitly analysed groups by means of homomorphisms. We shall say more 
about this in Chapters 7, 8 and 9. His groups are in fact automorphism groups 
of fields, though he did not see them that way, having constructed them directly 
from permutations of the roots of equations. The two examples he mentions 
specifically are the general equation of degree n, where the permutations are all 
permutations of the n roots, and the cyclotomic equation <pp(x) = 0 for p prime, 
where he finds the p - 1 automorphisms O"k ((p) = (; for k = 1, ... ,p - 1 (tacitly 
assuming Gauss's theorem that <pp(x) is irreducible). 
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The term "conjugation" was introduced by Cauchy [1821], Chapter VII, §1, 
for the isomorphism a + bi ~ a - bi of Co 

The first to use the term "isomorphism" was Jordan, in his Traite des Substi­
tutions [1870], the first textbook on group theory. As the title suggests, groups 
were then viewed concretely as groups of one-to-one functions (substitutions) 
under composition. The motivating examples, as for Galois, were permutations 
of the roots of equations. Jordan was strongly influenced by Galois and his book 
is a thorough development of the group theory only sketched or hinted at in 
Galois' work. Jordan used the word "isomorphism" for both isomorphisms and 
homomorphisms, but distinguished between the two by calling them "isomor­
phismes hol0E3driques" and "isomorphismes meriedriques" respectively. 

In the 1870s Dedekind also began writing up his reflections on Galois theory 
(which he had lectured on as early as 1857/8) in his supplements to Dirichlet's 
Vorlesungen iiber Zahlentheorie ([1871] - [1893]). He realised that the group 
concept alone did not give a good explanation of Galois theory - it had to 
be complemented by the concept of field, which he was the first to identify 
and name. He chose the name "Korper," which also means "body" in Ger­
man, because it "denotes a system with a certain completeness, fullness and 
self-containment" (Dedekind [1893], §160). He reinterpreted Galois' groups as 
automorphism groups of fields by observing that a permutation of the roots 
aI, ... , an of an equation extends to an automorphism of the field Q( aI, ... , an) 
they generate. He even used the word "permutation" for any field isomorphism 
(Dedekind [1893], §161). 

As mentioned in Section 2.9, the concept of ring emerged much later than 
this, in the 1920s, when it was finally recognised as a useful generalisation of in­
tegers, polynomials and algebraic integers. The concept is nevertheless implicit 
in Dedekind, who discovered the fundamental concept of ideal while investigat­
ing the integers of cyclotomic fields. The reason for the term "ideal" is a long 
story, but the concept turns out to be the same as the kernel of a ring homo­
morphism. The credit for recognising this, and the general importance of rings 
and homomorphisms, seems to be due to Emmy Noether. 

Emmy Noether is one of the most influential figures in 20th century math­
ematics, but her influence is hard to trace precisely, due to her scarcity of 
publications and generosity in giving credit to others. She used to say: "Es 
steht alles schon bei Dedekind" ("Everything is already in Dedekind") but it 
was her genius to make explicit the ideas which were only implicit in her pre­
decessors (rather like Dedekind himself did). Her ideas became widely known 
mainly through van der Waerden's Moderne Algebra [1931], the first of the 
"groups, rings and fields" algebra books. Van der Waerden [1975] credited most 
of the ideas in the book to lectures of Emmy Noether in Gottingen 1924/25 
and 1927/28, and lectures of Emil Artin in Hamburg 1926. Emmy Noether's 
important paper [1929], which contains the isomorphism theorem for rings, was 
also based on notes taken by van der Waerden at her course in 1927/28. A more 
general ring isomorphism theorem is given in Noether [1927]' and she says it is 
implicit in the work of Sono [1917] (a hard-to-find Kyoto University publication 
I have not seen). 
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The Chinese remainder theorem is an excellent illustration of the power of 
the ring concept, but also of its slow emergence. Figure. 6.9.1 shows the first 
known statement of a Chinese remainder problem, in Sun Tzu's Mathematical 
Classic, around 300 AD. A full translation may be found in Libbrecht [1973], 
p.269, but the data is easily picked out from the two columns on the right (the 
text is read in columns, from right to left). 

Fig. 6.9.1. The Chinese remainder problem 

"Counting by threes (indicated by writing the character";:' for 3 twice), the 
remainder is 2 (.:::), counting by fives (:Ii. :Ii.), the remainder is 3 (..;:.), counting 
by sevens (--t ...t:), the remainder is (.:::)." The third column from the right gives 
the answer 23 (.::: -t- ";:'). 

The Chinese understood how to reduce such problems to linear equations, 
and how to solve them using the Euclidean algorithm. The connection with the 
Euler phi function seems to have gone unnoticed until Gauss [1801], article 38, 
used a one-to-one correspondence between the integers x < mn and relatively 
prime to mn and pairs (y, z) with y relatively prime to m and z relatively prime 
to n to prove 

¢(mn) = ¢(m)¢(n) 

when m is relatively prime to n. The correspondence was probably not observed 
to be a ring isomorphism until the 1920s, but I have been unable to find exactly 
when this happened. 



7 Groups 

7.1 Why Groups? 

The concept of group came up briefly in Section 6.4, when we observed the 
following three properties of one-to-one functions from a set to itself: 

91 (9293) = (9192)93 

91 = 19 

99-1 = 9-19 = 1 

(associativity) 

(identity) 

(inverse) 

where 1 denotes the identity function and 9-1 denotes the inverse of function 
9. This is perhaps an unusual way to introduce the group concept, but it does 
help explain the prevalence of groups in mathematics. Sets and functions are 
the raw material for the construction of all abstract mathematical objects and, 
among the major concepts of algebra, the group concept is closest to pure set 
theory. This is confirmed by Cayley's theorem (Section 7.2), which shows that 
any binary relation with the associative, identity and inverse properties can be 
modelled by composition of one-to-one functions. 

Still, if groups only came up in set theory one would not expect to meet them 
very often. What is more interesting is the prevalence of groups at the everyday 
level of numbers and geometric figures, and that groups defined at the set level 
can often be recognised as "everyday" groups. We shall see in this chapter that 
many automorphism groups of fields are actually small, easily understood groups 
from number theory or geometry. If group theory is the path to enlightenment in 
field theory, then these examples light the way. For this reason, we shall devote 
most of the chapter to examples, proving only such theorems as are absolutely 
fundamental. 

The definition of group that encompasses all examples is the following. A 
9rouP is a set G together with a function G x G -+ G, denoted by juxtaposition, 
an identity element 1 E G, and for each 9 EGan inverse 9-1 E G, with the 
properties 

91(9293) = (9192)93 for all 91,92,93 E G, 

91 = 19 = 9 for all 9 E G, 

99-1 = 9-19 = 1 for all 9 E G. 

The reason for using this notation is of course to conform with the example of 
function composition, or with the example of number multiplication, which is 
where the notation originated. This notation, called multiplicative notation, is 
not always the most convenient. Its main rival is additive notation, in which the 
binary operation is written as +, the identity element as 0, and the inverse of 9 
as -9. In additive notation the group properties are therefore 
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g1 + (g2 + g3) = (gl + g2) + g3 

g+O=O+g=g 

9 + (-g) = (-g) + 9 = O. 

109 

Since number multiplication and addition have the properties just enumerated, 
it follows that any set of numbers closed under x and +- is a group under 
multiplication, and any set of numbers closed under + and - is a group under 
addition. 

For example, Q-{O},lR-{O} and C-{O} are groups under x;Z,Q,lR and C 
are groups under +. These are certainly "everyday" groups, but they are atypical 
in some respects. 

In the first place they are infinite, and all the automorphism groups we shall 
meet are finite. In the second place they are abelian, that is, g1g2 = g2g1 (in the 
multiplicative notation) or gl +g2 = g2+g1 (in the additive notation) for all gl, g2 
in the group. Abelian groups are quite important - in fact the additive notation 
is often reserved for them - but they are not typical of group theory, which is 
largely about coping with nonabelian operations. We shall therefore have to look 
a little beyond ordinary arithmetic for instructive "everyday" groups. 

The nearest source of finite abelian groups is in arithmetic mod n, as we shall 
see in Section 7.3. The nearest source of finite nonabelian groups is in geometry, 
as we shall see in Section 7.4. 

Exercises 

7.1.1 Give more concise definitions of ring and field (Section 2.2), in terms of 
the concept of group. 

7.1.2 Is Z a group under subtraction? 

7.2 Cayley's Theorem 

We now wish to back up the claim from Section 7.1 that any group can be mod­
elled by a group of one-to-one functions under composition. The functions are 
constructed explicitly from the group elements to produce a group isomorphic 
to the original, in the appropriate sense of "isomorphism" for groups. An iso­
morphism 'IjJ of group G onto group G' is a one-to-one function that preserves 
the group operation, that is, 

(It follows that 'IjJ also preserves the identity element and inverses; see Exercise 
7.2.1 which follows.) 

The functions corresponding to group elements are very natural and may be 
illustrated by the group Z under addition. Corresponding to each m E Z is the 
one-to-one function m+ that adds m to each 1 E Z, namely, 

m+ (l) = m+l. 
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The functions m+ are different for different m, and the correspondence preserves 
sums because the composition of n+ with m+ is the function 

n + m + (l) = (n + m) + l = (n + m) + (l) 
that adds n+m to each l E Z. The proof of Cayley's theorem is a straightforward 
generalisation of this idea. The only point where the general case requires more 
thought is in showing that the function 9 x corresponding to 9 E G (we will use 
multiplicative notation now) is one-to-one and onto G. This follows from the 
group properties of G. 

Cayley's Theorem. Any group G is isomorphic to a group G' of one-to-one 
functions from G onto itself. 

Proof. Let each 9 E G correspond to the "left multiplication by g" function 9 x 
defined by 

9 x (h) = gh for all h E G. 

Then we have a correspondence '¢(g) = gx between G and the set G' of left 
multiplication functions. The correspondence is one-to-one because if g1 ::j:. g2 
the functions g1 x and g2 x are different, for example g1 x (1) ::j:. g2 x (1). And 
the correspondence preserves products because 

gl x (g2 x (h)) = glg2h = glg2 x (h), 

that is, 
'¢(gt}'¢(g2) = ,¢(glg2)' 

Thus the group G is isomorphic to the group G' of functions under composition 
- if G' is indeed a group. This actually follows on general grounds (see the 
Exercise) but it can also be seen directly because: 

(i) each gx in G' is a one-to-one function from G onto G. 
The function gx is one-to-one because 

9 x (hI) = 9 x (h2) =} gh1 = gh2 =} hI = h2 

by cancellation of g. It is onto G because each g1 EGis 9 x (g-l gl ). 
(ii) G' is closed under inverses. -

In fact the inverse of 9 x is 9 -1 x, because 

g-l x 9 x (h) = h = 1 x h. 

(iii) G' is closed under products. 
As we have already seen, gl x g2 x (h) = glg2 x h. o 
Exercise 

7.2.1 Suppose G is a group and '¢ maps G onto a set G' so that 

,¢(glg2) = ,¢(gl),¢(g2), 

where juxtaposition of '¢(gt} and ,¢(g2) denotes a certain binary operation on G'. 
Verify that G' is a group under this operation, with '¢(1) the identity element 
and '¢(g-l) the inverse of '¢(g). 
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7.3 Abelian Groups 

A group G is abelian if 

9192 = 9291 for all 91, 92 E G. 

The examples of Z, Q, IR. and C under addition, mentioned in Section 7.1, are 
all infinite abelian groups. Important examples of finite abelian groups are con­
tained in the finite rings and fields Z/nZ and Z/pZ (Section 2.7), and in the 
roots of unity. 

The elements of Z/nZ form an abelian group under addition, called the cyclic 
9rouP Cn. Imagine the congruence classes nZ, nZ + 1, ... ,nZ + n -1 arranged in 
a circle, then addition of nZ + m corresponds to rotation through m places. An 
isomorphic form of Cn is the set {I, (n," . ,(;:-1} under multiplication, where 
(n = cos 2: +i sin 2: is an nth root of! (Section 3.7). The special case n = 2 gives 
C2 as the group {I, -I} under multiplication. In general, the group elements lie 
on the unit circle in the plane C, and multiplication by (~ really rotates the 
elements through m places. Figure 7.3.1 shows this form of Cn for n = 5. 

1 

Fig.7.S.1. Elements of Cs 

The invertible elements of Z/nZ form an abelian group under multiplica­
tion, which we denote by (Z/nZ) x . We noticed in Section 6.6* that there is a 
one-to-one correspondence between the invertible elements k of Z/nZ and the 
automorphisms (Tk((n) = (~ of Q((n). Now that we have group structure in 
mind, it is also easy to notice the following: 

Theorem. The automorphism group ofQ((n) is isomorphic to (Z/nZ) x . 

Proof. It suffices to show that the product of the automorphisms (Ti((n) = (~ 
and (Tj((n) = (~ corresponding to i,j E Z/nZ is the automorphism (Tij((n) = (:/ 
corresponding to ij. Indeed it is, because 

o 
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In the special case where n is a prime p, (ZlpZ) x happens to be cyclic, though 
the proof is far from obvious (Section 8.7). The difficulty lies in finding a number 
whose powers mod p include all of 1,2, ... ,p - 1. (See also Exercises 7.3.1 and 
7.3.2.) 

Given two abelian groups A, B, a third is obtained as their direct product 

A x B = {(a, b) : a E A, bE B} 

under the obvious group operation on pairs: 

(ab b1 )(a2, b2) = (ala2,b1b2). 

If lA, lB are the respective identity elements of A, B then (lA,lB) is the 
identity of Ax B. Also, the inverse of (a,b) is (a-l,b-1). 

The simplest nontrivial direct product is C2 x C2 , and it is not isomorphic to 
a cyclic group (Exercise 7.3.3). C2 x C2 also arises as the automorphism group of 
Q( v'2, J3). We know from Section 6.3 that the automorphisms a of Q( v'2, J3) 
correspond to the four sets of values a( v'2) = ±v'2 , a( J3) = ±J3. In other 
words, a does two things: it multiplies v'2 by ±1, and it multiplies J3 by ±1. 
We can therefore represent a by the pair (a, b) of multipliers. It is easy to S'Ole 
that the product of automorphisms then corresponds to the product of pairs 
defined above, hence the group of automorphisms is isomorphic to the group of 
pairs (±1, ±1), that is, to C2 X C2 • 

Exercises 

7.3.1 Show that the congruence classes of 1, 2, 3, 4 mod 5 form a cyclic group 
under multiplication. (Consider the powers of 2.) 

7.3.2 Show that the congruence classes of 1, 2, 3, 4, 5, 6 mod 7 form a cyclic 
group under multiplication. 

7.3.3 Show that there is no 9 E C2 X C2 for which 1, g, g2, g3 are distinct, hence 
that C2 x C2 is not cyclic. 

7.3.4 Show that C2 x C3 is isomorphic to C6 • 

7.3.5 Under what conditions is Cm x Cn cyclic? 

7.3 .. 6 Give examples of n for which (ZlnZV is not cyclic. 

7.4 Dihedral Groups 

The simplest nonabelian groups are the dihedral groups Dn for n ~ 3. Dn is the 
symmetry group of the regular n-gon, that is, the group of motions of the n-gon 
that map it onto the same region in space. These include the n rotations through 
multiples of 271" In about the center of the n-gon; also rotation through 71" about 
an axis of symmetry, which exchanges the front and back of the n-gon. When 
this exchange is followed by a rotation, n new positions are attainable; hence Dn 
has 2n elements. Since both front and back come into view under these motions, 
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the n-gon is sometimes called a dihedron (two faces), and this is why the group 
is called dihedral. 

The n-gon is considered to exist only for n 2: 3, hence D3 is the smallest 
dihedral group. If r denotes the clockwise rotation through 271'/3, and f (for 
"flip") the rotation through 71' about the vertical axis of symmetry, then the 
six elements of D3 can be represented by the corresponding positions of an 
equilateral triangle ABC whose initial position is labelled 1 (Figure 7.4.1. The 
shading represents the back of the triangle. ) Note that r f must be interpreted 
"f, then r." We write products of group elements in right to left order because 
we wish to view them as functions. Order is now important because fr =j:. r f. 
By applying f to the picture for r one sees in fact that fr = r2 f. 

A C B 

LLL 
B 1 C A r B C A 

A B C 

C f B A rf C 

Fig. 1.4.1. Symmetries of a triangle 

A similar argument shows that fr = rn- 1 f =j:. r f in each Dn , hence each Dn 
is a nonabelian group. 

Some groups Dn arise quite naturally as automorphism groups of fields. 

Example. D3 is the automorphism group of Q(~, (3). 

Since Q( ~,(3) consists of rational functions of ~ and (3, an automorphism 
a of Q(~, (3) is determined by the values of a(~) and a((3)' 

Also (a(~))3 = a(2) = 2, hence a(~) is ~, (3~ or (j~ (the three 
cube roots of 2). And (a((3))3 = a(l) = 1, hence a((3) is (3 or (j (the two cube 
roots of 1 other than 1). This gives six possible a which in fact are composed 
from the following al and a2: 
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0"1 ( ~) = (3~, 0"1(3) = (3, 

0"2(~) =~, 0"2(3) = (5· 

7 Groups 

It was found in Section 6.2 that 0"1 and 0"2 are automorphisms, so it follows that 
there are six automorphisms of Q(~, (3). We now have to set up a correspon­
dence between these six automorphisms and the symmetries of an equilateral tri­
angle. The vertices of the triangle are staring us in the face: A = ?12, B = (3?12 . 
and C = (l?l2. Computing 0"1 (A), O"l(B), 0"1 (C), we find that 0"1 rotates A,B, C; 
moving A to B, B to C and C to A. Similarly, we find that 0"2 flips the triangle 
around the real axis by exchanging B and C (Figure 7.4.2). Thus the six auto­
morphisms of Q(?I2, (3) correspond to the six symmetries of the triangle ABC. 
Since products are preserved by definition of the correspondence, we have an 
isomorphism as claimed. 0 

Fig. 7.4.2. Automorphisms of Q( ?'2, (3) 

Exercise 

7.4.1 Show that the automorphisms of Q( {12, i) (previously encountered in Ex­
ercise 6.2.1) form a group isomorphic to the symmetry group of a square. 
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7.5* Permutation Groups 

Permutation is just another word for a one-to-one function from a set to itself, 
most often used when the set is finite. The group of all n! permutations of 
an n-element set is called the symmetric group and is denoted by Sn- These 
permutations came up in Section 6.5* as the automorphisms of Q(X1,"" xn) 
that fix the elementary symmetric functions ao, ... , an-1 of Xl,"" Xn, with the 
permuted objects being the n indeterminates Xl, ... , xn. Thus the theorem in 
Section 6.5* can be restated as the following theorem about groups. 

Theorem. The automorphisms of Q(Xl, ... ,xn ) fixing ao, ... , an -1 form a 
group isomorphic to Sn. 0 

Sn was first studied because of its property of fixing the symmetric functions 
of Xl, ... ,Xn. An important group contained in Sn is the alternating group An, 
most concisely defined as the group of permutations that fix the function 

L1(X1, ... ,Xn) = II(xi-Xj). 
i<j 

This function is not symmetric, and hence An is not all of Sn. 
An element of Sn not in An is the permutation a that exchanges Xl and X2 

and leaves the remaining Xi fixed. This permutation replaces the factor (Xl -X2) 
of L1(Xl, . .. ,xn) by (x2-xd = -(X1-X2) and exchanges each other (Xl-Xi) with 
(X2 - Xi), thus replacing L1(Xl, . .. ,xn) by -L1(Xl, .. . , xn). The sign change can 
be traced to the single factor, namely (Xl -X2), whose subscripts are reversed in 
order by a. In general, a permutation a reverses the sign of a factor (Xi -Xj) if the 
subscripts of a(xi) and a(xj) are opposite in order to i, j. Hence L1(Xl, ... ,xn) 
is fixed if a reverses the order of subscripts in an even number of factors, and 
otherwise L1(Xl, ... ,xn) is replaced by -L1(Xl, . .. ,xn). In the first case we say 
a is an even permutation, and in the second case we say it is odd. Thus An is 
the group of even permutations of Xl, . .. , Xn. 

Forgetting about the letter X, we can say that a permutation a of {I, 2, ... ,n} 
is even if it produces an even number of order reversals, that is, if there are an 
even number of pairs i,j such that i < j {::} a(i) > a(j). This gives a quick 
diagrammatic way to recognise evenness of permutations. Just write the sequence 
1,2, ... ,n twice, in parallel rows, and draw a line from each i in the top row 
to 0'( i) in the bottom row. Then a is even if and only if the lines have an even 
number of crossings. 

For example, the "3-cycle" a of {I, 2, 3} defined by 0'(1) = 2, 0'(2) = 3, 
0'(3) = 1 is even because its diagram (Figure 7.5.1) has two crossings. The 
reason that this works in general is that each crossing corresponds to an order 
reversal. 

Exercises 

7.5.1 Show that each a E Sn is a product 7172 .• • 7 r where each 7i is a trans­
position - a permutation that exchanges two elements and fixes the rest. (Hint: 
7l, ... ,7r can be read off the diagram of a.) 
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1 2 3 

1 2 3 

Fig. 7.5.1. Diagram of a 3-cycle 

7.5.2 If n ~ 3, show that a product of two transpositions in 8n is also a product 
of 3-cycles. Deduce that the elements of An are precisely the products of 3-cycles. 

7.5.3 Show that each transposition (i,j) is a product of transpositions of the 
form (k, k + 1). 

7.5.4 Show that each transposition (k, k + 1) is a product of (1,2) and powers 
of the n-cycle (1,2, ... ,n). 

7.6* Permutation Groups in Geometry 

It follows from the proof of Cayley's theorem (Section 7.2) that any group G 
of n elements is isomorphic to a group of permutations of n things, and hence 
contained in 8n . This is an occasionally useful insight but not a very deep one, 
since the n things are simply the members of G. It also doesn't tell us that 8n 

is anything but a general purpose container for finite groups. We might learn a 
lot more by looking for permutations which represent G more economically, in 
other words, seek the smallest 8m containing a copy of G. This idea pays off 
handsomely for the symmetry groups G of the regular solids, revealing that the 
first few 8n and An actually belong to geometry. 

The first interesting case is 83, which turns out to be the same as the dihedral 
group D3 • This can be seen from the six positions of the triangle in Figure 
7.4.1, which correspond to the six permutations of the vertex set {A, B, C}. 
Since the product of motions corresponds to the product of permutations, this 
correspondence is an isomorphism between D3 and 83' 

This discovery prompts us to investigate how rotations of the tetrahedron 
(Figure 7.6.1) permute its vertex set {A,B,C,D}. A rotation through 27r/3 
about the vertical line through A leaves A fixed and cycles B, C and D, hence it 
is an even permutation. By combining this rotation with the analogous rotation 
that fixes B and cycles C, D and A, one eventually obtains all 12 even permu­
tations of {A, B, C, D}. But only 12 positions ofthe tetrahedron are obtainable 
by rotation, since a position is determined when one knows which of the four 
faces is on the bottom (say) and which of its three vertices is in front (say). Thus 
we have a one-to-one correspondence between positions and even permutations 
of {A, B, C, D}, hence the group of rotations of the tetrahedron is isomorphic to 
A4 • 
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A 

D 

Fig. 7.6.1. Tetrahedron 

The cube (Figure 7.6.2) has eight vertices, but it is not necessary to represent 
its rotations by permutations of eight things. Rotations yield only 6 x 4 = 24 
positions, determined by which of the six faces is on the bottom and which of its 
four vertices is (say) at the left front. Since 24 = 4! this is actually the number 
of permutations of four things, and four things materialise as the four pairs 
of opposite vertices, marked by A, B, C, D in Figure 7.6.2. Again one eventually 
finds, by rotating the cube enough, that each position of the cube corresponds to 
a different permutation of {A, B, C, D}. Thus the group of rotations of the cube 
is isomorphic to 8 4 . (To test this, think of a random permutation of A, B, C, D 
and see whether you can find your permutation on the boundary of one of the 
faces in Figure 7.6.2.) 
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Fig. 7.6.2. Cube 
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Finally, consider the dodecahedron (Figure 7.6.3). It has 20 vertices, which 
may be partitioned into five tetrahedral sets, like the four points marked A in Fig­
ure 7.6.3 (which are the vertices of a regular tetrahedron). There are 12 x 5 = 60 
possible positions of the dodecahedron, since there are twelve pentagonal faces. 
It turns out, miraculously, that each corresponds to a different, even permuta­
tion of the five tetrahedral sets. This happens to be all the even permutations 
of five things - half the 5! = 120 permutations of five things hence the group 
of rotations of the dodecahedron is isomorphic to A5 • 

Fig. 7.6.3. Dodecahedron 

Remarks. It can be left to the reader to check that exactly half the permu­
tations of three or five things are even, since this is a routine computation. 
However, there is a much shorter general explanation why An is half the size 
of 8n , which will be given in the next section. It is also possible to explain the 
appearance of all the permutations (in A4 , 84 and A5 respectively) more briefly 
than actually finding them all (on the tetrahedron, cube and dodecahedron re­
spectively). However, in this case the explanation has no useful generalisation, 
so we shall leave the interested reader to look it up in Lamotke [1986] p.18, or 
Coxeter [1961], p.273. The discovery of permutation groups in geometry seems 
to have occurred as a spinoff from more complicated investigations of polyno­
mial functions in geometry, arising from the representation of the sphere as the 
completion of C by the point 00 (see Klein [1876]). Several more years passed 
before Klein [1884] presented a direct interpretation of A4, 84 and A5 as groups 
of rotations. 

The function Ll(Xll X2, X3, X4) left fixed by A4 is very helpful in analysing 
nested square roots of the form vir + sy't, where r, s, t E Q. In particular, it 

gives a proof that the side h/1O(5 - )5) of the icosahedron inscribed in the 

unit sphere is not of the form Va ± Vb for a, bE Q (see Exercises 7.6.3 - 7.6.6). 
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Exercises 

7.6.1 The rotation group of the octahedron is isomorphic to 8 4 and the rotation 
group of the icosahedron is isomorphic to A5 . Explain why. 

7.6.2 Suppose the faces of an octahedron are coloured black and white alter­
nately, that is, so that each edge separates a black face from a white face. Show 
that the group of rotations which preserve the face colours is isomorphic to A4 • 

7.6.3 If 0: = v'r + s-Jt with r, s, t E Q, let 0:' = v'r - s-Jt and show that 

'and hence that 

..1(0:,0:', -0:, -0:') = 40:0:'(0: - 0:')2(0: + 0:')2 

= 24s2tv'r2 - s2t 

..1(0:,0:', -0:, -0:') E Q {:} v'r2 - s2t E Q. 

7.6.4 Show, on the other hand, that if a, bE Q then 

L1( Va + Vb, Va - Vb, -Va - Vb, -Va + Vb) E Q. 

7.6.5 Deduce from Exercises 7.6.3, 7.6.4 and 4.2.6 that a root v'r + s-Jt of an 
irreducible quartic f(x) E Q[x] is of the form Va ± Vb (where a, b, r, s, t E Q) 
only if v'r2 - s2t E Q. 

7.6.6 Conclude, using Exercise 4.7.7, that the side of the icosahedron inscribed 
in the unit sphere is not of the form Va ± Vb for a, b E Q. 

7.7 Subgroups and Cosets 

A group H contained in a group G is called a subgroup of G. A subgroup H 
decomposes G into sets of the form 

gH = {gh : h E H} where g E G 

called left cosets of H. Since G may not be abelian we also have to consider right 
cosets 

H 9 = {hg : h E H}, 

though usually one can stick to one type or the other. 
A simple but important example is the subgroup nZ = ink : k E Z} of Z 

(with addition as the group operation). The cosets of nZ in Z are nothing but 
the congruence classes mod n : nZ, nZ + 1, ... , nZ + n - 1 (Section 2.7). They 
are written in additive notation, and as right cosets, though in this case the right 
coset nZ + g equals the left coset 9 + nZ since + is commutative. 

Cosets help us to dissect the structure of G because of the following theorem. 
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Theorem. For any 91, 92 E G the cosets 91 H, 92 H of a subgroup H are of equal 
size and are either identical or disjoint. 

Proof. The coset 91H = {91h : h E H} is mapped onto 92H = {92h : hE H} 
by the function 92911 x (compare with Section 7.2). This function must be one­
to-one since it is inverted by the function 919:;1 x : 92H -t 91H. Thus there is a 
one-to-one correspondence between 91H and 92H and hence they are the same 
size. 

If 91H,92H have a common element 9 then 9 = 91h1 for some h1 E H and 
also 9 = 92h2 for some h2 E H. Thus 91h1 = 92h2 and therefore 91 = 92h2hl1 
(multiplying both sides on the right by h11

). It follows that 

91H = 92h2hl1 H = 92(h2hl1 H) = 92H 

since h2hl1 E H and therefore h2hl1 H = H (recall from Cayley's theorem that 
left multiplication by a group element maps the group onto itself). 0 

A famous corollary to this theorem is the result known as La9range's theorem: 

Lagrange's Theorem. If H is a subgroup of a finite group G then the size of 
H divides the size of G. 

Proof. Denote the size of G by IGI and the size of H by IHI. By the theorem, 
G is partitioned into disjoint cosets of size IHI, hence IHI divides IGI. 0 

We can use the partition into equal sized cosets to prove that An is half the 
size of Sn, as claimed in Section 7.6. The relevant property of An is that the 
product of odd permutations a1, a2 is even, since if a1, a2 both change the sign 
of Ll(Xb .. . ,xn ) then a1a2 fixes it. It follows that any odd permutation a can be 
written as the product of a fixed odd permutation T and the even permutation 
T- 1a, hence a E TAn. Thus An has only two left cosets in Sn, An itself and 
TAn, and since these have equal size, An is half the size of Sn. The size IGI of a 
group G is also called the order of G. 

The number IGI/IHI of cosets of a subgroup H of a finite group G is called 
the index of H in G and denoted by [G : H]. The index has a multiplicative 
property like the dimension (E : F) of a field E over a subfield F (Section 5.4) . 

. Index Product Theorem. If G ;2 H ;2 K are groups with G finite, then the 
index [G: K] = [G: H][H: K]. 

Proof. [G: K] = IGI/IKI = (IGI/IHi)(IHI/IKi) = [G: H][H : K]. 0 

Exercises 

7.7.1 If G is any finite group and 9 E G, show that the powers 1,g,g2, ... form a 
subgroup of G. (The size of this subgroup, which is the least n such that gn = 1, 
is called the order of g.) 

7.7.2 Deduce from Exercise 7.7.1 that the least n such that gn = 1, is a divisor 
of IGI. Also that glGI = 1. 

7.7.3 Deduce from Exercises 7.7.1 and 7.7.2 that if IGI is a prime p then G is 
isomorphic to Cpo 
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7.7.4 By considering the group G of nonzero elements of Z/pZ under x, deduce 
from Exercise 7.7.2 that a¢.O (mod p) =} aP- 1 == 1 (mod p) (another proof of 
Fermat's little theorem, see Section 2.8*). 

7.7.5 Is there a similar explanation of Euler's theorem? (Section 2.8*) 

7 .8 Normal Subgroups 

If H is a subgroup of G we know from Section 7.7 that G is partitioned into 
cosets glH, g2H, .... Reflecting on the special case where G = Z, H = nZ and the 
cosets are the congruence classes mod n, we might attempt to define a product 
of cosets by 

giH· gjH = gigjH 

(analogous to the sum of congruence classes). If meaningful, this product inherits 
the group properties from G and makes the set of cosets into a group, called the 
quotient G / H of G by H. In particular, the identity element of G / H is the coset 
1· H = H. However, the product of cosets is not always well defined. 

If it is, consider the coset map 'IjJ(g) = gH from G to G/H. The elements 
sent to H by 'IjJ are precisely the h E H. On the other hand, ghg-1 goes to 

gH . hH . g-1 H = gH . H . g-1 H = gH . g-1 H = gg-1 H = H, 

so ghg- 1 E H for all 9 E G, hE H. Making the obvious abbreviation gHg-l for 
{ghg- 1 : h E H}, we find 

ghg- 1 E H for all 9 E G, hE H =} gHg- 1 ~ H for all 9 E G 

=} gH ~ Hg, 

multiplying both sides on the right by g. Repeating the argument with g-1 in 
place of 9 yields Hg ~ gH, hence in fact H has the property that gH = Hg for 
all 9 E G. Such a subgroup is called normal. 

Conversely, if H is normal and glH = g~H, g2H = g~H then 

g1g2H = glg~H since g2H = g~H 

= glHg~ since g~H = Hg~ 
= g~Hg~ since glH = g~H 

= g~g~H since H g~ = g~H. 

Thus the product giH'gjH = gigjH is well defined. We have proved the theorem: 

Theorem. H is a normal subgroup of G if and only if the cosets gH for 9 E G 
form a group G / H under the product 

o 

The problem of non-normal subgroups only arises when G is a nonabelian 
group, which is also when we have the most trouble dissecting the structure of G. 
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In the groups that arise in Chapter 8 we shall be able to deal with this problem 
by finding subgroups H "large enough" to make G / H abelian. 

Examples from our present repertoire are the groups D3 = 83 and A4 . 

As we saw in Section 7.4, D3 is not abelian since r f ¥- fro However, the 
subgroup C3 = {I, r, r2} contains half of D3 and therefore its only other left 
coset is fC3 = {j, fr, fr2} = D3 - C3 . Since the right coset C3 f also equals 
D3 - C3 , we necessarily have fC3 = C3 f. In fact any coset of C3 is either C3 or 
D3 - C3 , so gC3 = C3g for any 9 E D 3 . Thus C3 is a normal subgroup of D3 and 
D 3 /C3 has two elements, which means that D 3 /C3 is isomorphic to the abelian 
group C2 (for example by Exercise 7.7.3). 

This argument shows, more generally, that any subgroup H which is half the 
size of a finite group G is a normal subgroup of G, since its only cosets are H 
and G - H. In particular, each An is a normal subgroup of 8n, and 8n/An is 
isomorphic to C2 • 

Finding proper normal subgroups of An is more of a challenge, and indeed we 
succeed only with A4 • It has a normal subgroup isomorphic to C2 x C2 , consisting 
of the identity and the three permutations that simultaneously transpose two 
pairs (the latter correspond to half turns of the tetrahedron fixing the midpoints 
of opposite edges). Since A4 has twelve elements and C2 x C2 has four, it follows 
that A 4 /(C2 x C2) has three elements, so it is necessarily isomorphic to C3 . 

Exercises 

7.8.1 Show that the subgroup {I, f} of Dn is not normal for all n 2:: 3, and give 
examples of cosets whose product is not well defined. 

7.8.2 Check that the copy of C2 x C2 in A4 , described above, is normal. 

7.8.3 Show that A4 has no subgroup with six elements (which shows, inciden­
tally, that the converse of Lagrange's theorem is false). 

7.8.4 If H is a subgroup with only two cosets in an infinite group G, is H 
normal? 

7.9 Homomorphisms 

A map 'ljJ from a group G onto a group G' is called a homomorphism if it preserves 
products, that is, if 

Immediate conseqliences of this definition are: 
(i) 'ljJ preserves 1 because 

'ljJ(g) = 'ljJ(g . 1) = 'ljJ(g)'ljJ(l) =? 1 = 'ljJ(I), 

multiplying both sides by 'ljJ(g)-l on the left, 
(ii) 'ljJ preserves inverses because 
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The prototype of a homomorphism is the coset map 't/J : G -+ G / H defined 
by 't/J(g) = gH when H is a normal subgroup of G. The coset map preserves 
products because 

by definition of the product of cosets. In fact, any homomorphism 't/J of G onto 
G' can be viewed as a coset map if we take H to be the kernel of 't/J: 

ker't/J = {g E G: 't/J(g) = I}. 

This emerges from the proof of the following theorem, which is the group ana­
logue-of the theorem about rings in Section 6.8. 

Isomorphism Theorem for Groups. IE't/J is a homomorphism of group G 
onto group G' then ker't/J is a normal subgroup of G and G / ker 't/J is isomorphic 
to G'. 

Proof. Since't/J is onto G' the elements g' E G' are in one-to-one correspondence 
with the following subsets of G: 

't/J-1(g') = {g E G: 't/J(g) = g'}. 
In particular, 1 E G' corresponds to 

't/J-1(1) = {g E G: 't/J(g) = I} = ker't/J. 

And if 't/J(g) = g' then 

't/J-1(g') = (ker't/J)g = g(ker't/J) 

because 

g* E (ker't/J)g {:} g*g-l E ker't/J 

{:} 't/J(g*g-l) = 1 

{:} 't/J(g*)'t/J(g-l) = 1 since 't/J is a homomorphism 

{:} 't/J(g*)'t/J(g)-l = 1 since 't/J preserves inverses 

{:} 't/J(g*) = 't/J(g) = g' 
{:} g* E't/J-1(g'), 

and similarly, 

g* E g(ker't/J) {:} g* E't/J-1(g'). 

Thus ker't/J is a normal subgroup of G and its cosets are the sets 't/J-1 (g') for 
g' E G'. Finally, the correspondence g' J-----+ 't/J-1(g') preserves products because 

't/J-1(g~g~) = glg2(ker't/J) = gl (ker 't/J) . g2(ker't/J) = 't/J-1(g~)'t/J-1(g~), 

hence it is an isomorphism of G' onto G/ker't/J. o 
Some of the normal subgroups mentioned in Section 7.8 appear naturally as 

kernels of homomorphisms. At the same time, of course, their cosets appear as 
the inverse images of nonidentity elements. 
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Example 1. The permutation sign homomorphism. 

An is the kernel of the sign homomorphism Sn -t C2 = {I, -I} that sends 
a permutation U to -1 if U changes the sign of L\(Xl"'" xn) and to 1 if it does 
not (compare with the definition of An in Section 7.5). Thus each Sn (for n :2: 2) 
has a homomorphism onto C2 • The set of odd permutations, the inverse image 
of -1, is the other coset of An. D 

The purpose of homomorphisms, as we mentioned when ring homomorphisms 
came up in Section 6.8, is to "simplify" a structure by mapping it onto smaller 
structures. By mapping a group G onto a smaller group G' by a homomorphism 
we simplify G by "factoring out" the normal subgroup ker ¢. Of course, finding 
¢ is theoretically equivalent to finding ker ¢, but in an actual situation the ho­
momorphism of G may be more obvious than the normal subgroup. One such 
situation is the following. 

Example 2. The restriction homomorphism. 

G is a group of automorphisms of a field F, and F' ~ F is a field mapped 
onto itself by each U E G. Then each U E G has a restriction to F' - the map 
u' = ulF' of F' that agrees with u there - which is an automorphism of F', and 
the restrictions u' form a group G' of automorphisms of F'. The restriction map 
IF : G -t G' has the homomorphism property u!U21FI = uIIFIU21FI because 
uIIFIU21F'(f') exists for each f' E F', since each u maps F' onto itself, and 
obviously 

uIIFlu2IFI(f') = Ulu2(f') = UIU21F' (f'). 

Thus G' is a "simplification" of G obtained by factoring out the kernel of the 
restriction homomorphism. This homomorphism is one of the keys to the rela­
tionship between field structure and group structure, which will be investigated 
in Chapters 8 and 9. For the moment we shall just illustrate how it works with 
the group G of automorphisms of F = Q( {12, (3). 

As we have seen in Section 7.4, G is generated by the automorphisms Ul and 
U2, where Ul( {12) = (3{12, Ul((3) = (3 and U2( {12) = {12, U2((2) = (? Both 
of these map the subfield F' = Q((3) onto itself. Thus we have a restriction 
homomorphism I F' sending Ul, U2 respectively to the automorphisms u~ ((3) = (3 
(the identity) and U~((3) = (§ of F'. The latter automorphisms form a group 
G' isomorphic to C2, since (u~)2 is the identity. This is confirmed by factoring 
G by the kernel of IF" which is indeed the normal subgroup {l,UI,Un - the 
automorphisms of F that fix (3 (and hence all elements of F') - with quotient 
isomorphic to C2 • D 

The use of homomorphisms is often more efficient than the use of normal 
subgroups and their cosets. Compare the two approaches in the following case 
(which will come up again in Chapter 8). 

Example 3. Abelian quotient groups. 

We shall prove: if G/H is abelian then x,y E G =? x-1y-1xy E H. 

(i) Proof using cosets. 
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Since G / H is the group of cosets 9 H for 9 E G, and since G / H is abelian, we 
have 

x-Iy-IxyH = x-I Hy-l HxHyH by definition of the product of cosets 

= X-I HxHy-1 HyH since the cosets commute 

= x-Ixy-IyH by definition of the product of cosets 

=1H 

=H. 

Hence x-Iy-Ixy E H. 

(ii) Proof using a homomorphism. 
Since G / H is abelian, there is a homomorphism 'l/J : G ........, abelian group, with 
kernel H. 

'l/J(X-Iy-Ixy) = 'l/J(X)-I'l/J(y)-I'l/J(X)'l/J(y) since'l/J is a homomorphism 

= 'l/J(X)-I'l/J(X)'l/J(y)-I'l/J(y) since the 'l/J values commute 

= 1. 

Hence x-Iy-Ixy E ker'l/J = H. 

Exercises 

o 

7.9.1 What relationships between automorphism groups are revealed by restrict­
ing the automorphisms of Q( J2, v'3) to Q( J2)? 

7.9.2 Consider the effect of restricting the automorphisms of Q( (n) to Q( cos 2:) 
(compare with Exercise 6.6.3). What is the kernel of the restriction map? 

7.10 Discussion 

The group concept has historical origins in number theory and geometry as well 
as in the theory of equations. For example, we have seen how Euler [1761] used 
inverses mod p to prove Fermat's little theorem (Section 2.8*). In geometry, Euler 
[1776] proved that the product of two rotations in ]R3 is again a rotation, thus 
paving the way for studying the symmetry of regular solids via their rotation 
groups. However, the importance of inverses and closure under products was not 
recognised until late in the 19th century, when the general group concept was 
finally identified. Between 1770 and 1870 group theory was almost entirely the 
theory of finite permutation groups arising in the theory of equations. 

This theory was started by Lagrange in his [1771], a lengthy analysis of the 
nth degree equation and the effect of permutations on rational functions of its 
roots. Lagrange realised, without explicitly formulating the group concept, that 
understanding the general equation of degree n depended on understanding Sn 
and its subgroups. He saw that Sn is the group fixing the symmetric functions 
of the roots Xl, .•. , xn , and that other functions of Xl, ... ,xn , arising in the 
process of solving the equation, are fixed by subgroups. It was left to Galois 
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to discover the precise subgroup structure that enables solution by radicals, as 
we shall see in Chapter 8. However, Lagrange managed to explain the known 
solutions of cubic and quartic equations (Sections 1.6 and 1.7) in terms of the 
structure of 83 and 84 • In particular, he discovered the exceptional nature of A4 
and its subgroup isomorphic to C2 x C2 • He viewed the latter as the group fixing 
the function XIX2 + X3X4. 

In the course of these investigations Lagrange discovered that the size of any 
subgroup of 8n divides the size n! of 8n . What we now call Lagrange's theorem is 
actually due to Jordan [1870], p.25. Jordan generously attributed the theorem to 
Lagrange after observing that Lagrange's proof (partitioning into cosets) applies 
equally well to any finite group. 

The function L1(Xb ... ,xn) = I1i<j(Xi - Xj) fixed by An is a square root 
of a function called the discriminant. Since the permutations in 8n that change 
the sign of L1(XI, ... , xn) leave its square fixed, the discriminant is fixed by 
all permutations in 8n . It follows, by the fundamental theorem of symmetric 
functions (Section 6.5*), that the discriminant is a polynomial in the coefficients 
ao, ... ,an-l of 

Xn + an_Ixn- 1 + ... + alX + ao = (x - Xl) ... (X - xn). 

For example, the discriminant of the quadratic 

x2 + alX + ao = (x - XI)(X - X2) 

= x2 - (Xl + X2)X + XIX2 

is 

(Xl - X2)2 = (Xl + X2)2 - 4XIX2 = a~ - 4ao, 

as we have already seen in Section 1.6. The discriminant is so called because 
it discriminates between equations with repeated roots (discriminant = 0) and 
those with distinct roots (discriminant "# 0), as is obvious from the definition of 
L1(Xb .. . ,xn ). The result just mentioned means that we can decide whether a 
given equation has repeated roots by computing a polynomial in its coefficients. 

Functions such as L1(Xb ... , xn ), which undergo only a sign change (at most) 
under permutations of Xl, ... ,Xn were called alternating functions by Cauchy 
[1815]. In this paper Cauchy began to isolate the group properties of permuta­
tions, defining the product of permutations and the identity permutation. Among 
the products he singled out the powers of a permutation, and showed that each 
permutation has a power equal to the identity. 

The latter property was taken as an axiom by Cayley [1854], in the first 
attempt to define the abstract group concept. Cayley assumed a finite set of 
elements, closed under an associative operation he wrote as product, with an 
identity element he wrote as 1, and such that each element 0 satisfies on = 1 for 
some n. This of course implies that 0 has the inverse on-I, but the concept of 
inverse apparently did not yet suggest itself as a useful primitive notion. 

The concept of inverse was still lurking below the surface when Kronecker 
[1870] wrote down axioms for finite abelian groups. Kronecker's axioms were 
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associativity, commutativity, identity and - instead of inverse - cancellation. His 
statement of cancellation is that 

()' =I- ()" =} ()()' =I- ()()" for any (), 

which of course is equivalent to 

()()' = ()()" =} ()' = ()" for any (). 

This implies that any () has an inverse, as follows. The sequence (), ()2, ()3, ... must 
eventually contain a ()S equal to an earlier ()r, by finiteness (this was Cauchy's 
argument), in which case ()s-r = 1 by cancellation. Thus cancellation implies 
Cayley's axiom, and hence an inverse of (). 

As mentioned in Section 7.3, Kronecker's paper contains a proof that every 
,finite abelian group is isomorphic to a direct product of cyclic groups. This was 
the first theorem about groups directly inspired by number theory. Kronecker 
needed the theorem to analyse finite abelian groups arising in number theory, in 
his case the so-called ideal class groups, but the groups (7l.jn7l.)X are an equally 
good example. The latter are not obviously direct products of cyclic groups, but 
in fact they have cyclic factors related to the prime factors of n (see for example 
Ireland and Rosen [1982]' p.44). 

In the 1870s geometry also began to influence group theory. The discovery 
that the polyhedral groups are A4 , 84 and A5 was made by Klein [1876J, but more 
important was his Erlanger Programm [1872], which emphasised the unifying 
role of groups in geometry. Groups turn up everywhere in geometry - groups of 
motions, projections and homeomorphisms for example - and they are mostly 
infinite groups. This brought the concept of inverse out into the open, because 
the cancellation property is not sufficient to guarantee the existence of inverses 
in an infinite associative system (for example N under addition). The existence 
of inverses was finally stated explicitly by Klein's student Dyck in Dyck [1883J, 
a paper which grew out of the study of symmetries of infinite tessellations. 

As mentioned in Section 6.9, the concepts of isomorphism and homomor­
phism were introduced by Jordan [1870J. In fact, immediately after introducing 
them, on p.56 of his book, Jordan essentially proves that the kernel of a homo­
morphism is a normal subgroup. He therefore comes very close to the isomor­
phism theorem for groups, but it seems that this theorem (like the corresponding 
one for rings) was not clearly formulated until the 1920s. 
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8.1 Galois Groups 

In Chapters 6 and 7 we observed that the automorphisms of any field form a 
group, reflecting the "algebraic symmetry" of the field. In many cases we were 
able to recognise the group in question, by its abstract structure, as one of the 
standard groups from number theory or geometry. Some of the groups identified 
were the following (with sections where the identification was made shown at 
the right): 

Field Automorphism group Section 

Q(V2) C2 (6.4) 
Q(~) {I} (6.2) 
Q((n) (ZjnZV (6.6*) 
Q(V2, v'3) C2 XC2 (7.3) 
Q(~,(3) D3 (7.4) 

We have also generalised this idea to the automorphisms of a field E tha~ fix 
a subfield F, thus obtaining a group which reflects the symmetry of E rel­
ative to F. In Sections 6.5* and 7.5* we saw that Sn is the group of au­
tomorphisms of Q(Xl,"" xn) which fix the elementary symmetric functions 
ao, ... , an-l of Xl, ... , Xn and hence the subfield Q(ao, ... , an-d. In Section 
7.5* we also defined An to be the subgroup of Sn fixing TIi<j(Xi - Xj), which 
means that An is the group of automorphisms of Q( Xl, ... , xn) fixing the subfield 
Q(ao, ... ,an-l,TIi<j(Xi - Xj)). 

In general, we say that an automorphism a : E ~ E fixes a field F C;;; E 
if a(a) = a for all a E F. Since a(a) = a implies a = a-l(a), the inverse 
of an automorphism fixing F also fixes F. And if al(a) = a and a2(a) = a 
then ala2(a) = a, hence if al and a2 fix F so does ala2. Thus the set of 
automorphisms a of E that fix F is closed under inverses and products and 
therefore is a group. It is called the Galois group of E over F and we denote 
it by Gal(E : F). (Many authors denote it by Gal(EjF) , making use of the 
mathematical pun "Ej F" for "E over F." I believe it is already confusing enough 
to have the j sign used both for quotients of numbers and quotients of groups 
or rings.) 

All the automorphism groups in the table above are Galois groups over Q, 
since Q is fixed by any automorphism of a field E ;2 Q (Corollary 6.1). Thus we 
can rewrite the results in the table, using the ~ sign for isomorphism, as 

Gal(Q( V2) : Q) rv C2 , 

Gal(Q( {!2) : Q) rv {I}, 
Gal(Q((n) : Q) ~ (ZjnZ) x , 

Gal(Q( V2, v'3) : Q) ~ C2 x C2 , 

Gal(Q( {!2, (3) : Q) ~ D3 , 
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and the results of Sections 6.5* and 7.5* are 

Gal(Q(XI, ... ,xn):Q(ao, ... ,an_I)) ~ Sn, 

Gal(Q(xI, ... ,xn):Q(ao, ... ,an-I,II(xi-Xj))) !:;< An. 
i<j 
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The latter results may be expressed by saying that Q(XI, ... , xn) has Sn 
symmetry over Q(ao, ... ,an-I), but only An symmetry over its extension 
Q(ao, ... ,an-I,TIi<j(Xi - Xj)). The Galois group detects a "halving" of rela­
tive symmetry when the element TIi<j(Xi - Xj) is adjoined. 

Similar reductions in relative symmetry are detected by the Galois group 
when elements are adjoined to the bottom field Q in the earlier examples. 

Of the four automorphisms a of Q( J2, J3), found in Section 7.3, only the two 
with 0'( J2) = J2 fix Q( J2). Hence Gal(Q( J2, J3) : Q( J2)) has two members 
and it is necessarily isomorphic to C2 . 0 

Example 2. Gal(Q(?'2, (3) : Q) ~ D3 , Gal(Q(?'2, (3) : Q( (3)) ~ C3 • 

Of the six automorphisms a of Q( ?'2, (3), found in Section 7.4, only the three 
with 0'(3) = (3 fix Q(3). Hence Gal(Q(?'2, (3) : Q(3)) has three members and 
it is necessarily isomorphic to C3 . 0 

These examples suggest that when E results from F by adjoining m th roots, 
the group Gal(E : F) is in some sense "easily decomposed." The symmetry of 
E relative to F breaks down in small, easy stages as mth roots are adjoined. We 
shall make this idea precise in Section 8.3, after discussing its bearing on the 
problem of solution by radicals in Section 8.2. 

Proving that the general nth degree equation is not solvable by radicals, 
when n 2: 5, is of course one of the main goals of this book. The ability of the 
Galois group to reflect adjunction of radicals is crucial to the proof. However, 
only the concept of Galois group is involved, not the theory of polynomials and 
irreducibility used to compute some of the specific Galois groups above. The little 
group theory we need can be developed from scratch using just the fundamental 
properties of normal subgroups and homomorphisms from Sections 7.8 and 7.9. 

Exercises 

8.1.1 Find the Galois groups of Q( {/2, i) over Q, Q( J2) and Q(i). 

8.1.2 Find Gal(Q(?'2,(3): Q(?'2)). 

8.1.3 Interpret Gal(Q(?'2, (3) : Q(3)) as the group of rotations of a triangle. 
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8.2 Solution by Radicals 

Recall from Section 1.8 that the general problem of solution by radicals was to 
express the roots of 

in terms of the coefficients ao, ... , an-1 using a finite number of operations 
+, -, x, -;- and y', fI, ~, .... The elements obtained from ao, ... , an-1 by the 
operations +, -, x, -;- form the coefficient field Q( ao, ... , an- d. An element ob­
tained by a finite number of operations y', fI, ~, ... lies in an extension field of 
Q(ao, ... , an-1) obtained by a finite number of radical adjunctions. We say that 
adjunction of an element a to a field F is radical if there is a positive integer m 
such that am = f E F, in which case a may be denoted by the radical expression 
'f/l. The result F(a1)'" (ak) = F(a1"'" ak) of the k radical adjunctions ai to 
F(al, ... , ai-1) is called a radical extension of F. Thus the problem of solution 
by radicals is to find a radical extension of the coefficient field Q(ao, . .. , an-1) 
which includes the roots Xl, ... , Xn of (*), and hence contains the root field 
Q(Xl, ... ,xn). 

For example, the formula for the solution of the general quadratic equation 
(Section 1.5) 

-a1 ± v'a~ - 4ao 
X1,X2 = 2 

shows that Q(Xl,X2) is contained in the radical extension Q(ao,al, v'a~ - 4ao). 
In fact, adjoining the radical v'a~ - 4ao to Q(aO,a1) gives exactly the field 
Q(X1,X2)' On the other hand, solution of the general cubic equation (Section 
1.6) gives a proper extension of the root field involving imaginary cube roots 
of unity, due to the presence of cube roots in the formula. For this reason, we 
should not expect a radical extension of Q(ao, ... , an-1) to equal Q(Xl, ... , xn) 
- the question is whether it can contain it. 

Further light is thrown on the problem by viewing ao, .. . , an-1 as functions 
of indeterminates Xl, ... , Xn, defined by the identity 

(x - Xl)'" (x - Xn) = Xn + an_1Xn-1 + ... + a1X + ao. (**) 

As the reader may recall from Section 6.5*, ao, ... , an-1 are polynomials in 
Xl, ... , Xn called the elementary symmetric functions: 

ao = (-ltx1" 'Xm 

an-1 = -(Xl + ... + xn) 

By viewing the general nth degree polynomial in x as the left-hand side of 
(**), rather than the right-hand side, the problem becomes: extend the field 
Q(ao, ... , an-1) of functions ao = (-1)nX1 ... Xn,···, an-1 = -(Xl + ... + xn) 
by radicals until it includes Xl,.' . , Xn . When the solution of the quadratic is 
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viewed in this way, it becomes obvious why the radical var - 4ao is important, 
and why Q(XI,X2) = Q(aO,al, var - 4ao). Namely, 

Jar - 4ao = V(Xl + X2)2 - 4XlX2 = V(Xl - X2)2 = ±(Xl - X2). 

Thus var-4ao E Q(XI,X2). Conversely, both XI,X2 E Q(ao,aI,Var-4ao)' 
since the latter equals Q(XlX2, Xl + X2, Xl - X2). 

Since ao, ... , an-l E Q(XI, ... , xn), a radical extension of Q(ao, . .. ,an-l) 
containing Q(Xl, ... , xn) is also a radical extension of Q(XI, ... , xn). This is a 
good place to start proving something, because Q(XI, ... ,xn ) is symmetric with 
respect to Xl, ... ,xn in the following sense (compare with Section 6.5*): 

Proposition. Any permutation a of Xl, ... ,Xn extends to an automorphism of 
'Q(Xl, ... , xn). 

Proof. The extension of a to Q(XI, ... ,xn ) is defined for each rational function 
f(Xl, ... ,xn) of XI, ... ,Xn by 

af(xI, ... ,xn) = f(axl, ... ,axn). 

This map is one-to-one and onto Q(XI, ... , xn) because it is inverted by a-I, 
and it preserves + and . x because if 

f(xI, .. . , xn) = g(XI, . .. , xn) + h(xI, . .. , Xn) 

then 

and if 

then 

o 

A radical extension E of Q( Xl, ... , xn) is not necessarily symmetric in this sense. 
For example, Q(Xl,X2,.JXl) contains a square root of XI, but not of X2, hence 
there is no automorphism exchanging Xl and X2. However, we can restore sym­
metry by adjoining y'X2 as well. The obvious generalisation of this idea gives a 
way to"symmetrise" any radical extension E of Q(XI, ... , xn): 

Theorem. For any radical extension E of Q(XI, ... ,xn ) there is a radical ex-
tension E ;;2 E with automorphisms a extending all permutations of Xl, ... , X n . 

Proof. For each adjoined element, given by a radical expression e(xI, ... ,xn), 
and each permutation a of XI, ... , Xn, adjoin the element e(axI, ... , aXn). Since 
there are only finitely many permutations a, the resulting field E ;;2 E is also a 
radical extension of Q(Xl, ... ,xn). 

This gives a one-to-one mapping (also called a) of E onto E , sending each 
f(Xl, . .. ,xn) E E (a rational function of XI, . .. , Xn and the adjoined radicals) to 
f(axl, ... , axn), and this mapping is obviously an automorphism of E extending 
the permutation a. 0 
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The reason for wanting an automorphism a extending each permutation of 
Xl, ... ,Xn is that ao, ... ,an-l are fixed by such permutations, hence so is every 
element of the field Q(ao, ... , an-I)' The symmetry expressed by the theorem 
can therefore be restated as a property of Galois groups: 

Corollary. If E is a radical extension of Q(ao, ... , an-I) and E :2 Q(Xl,"" xn) 
then there is a radical extension E :2 E such that Gal(E : Q(ao, ... , an-d) 
includes automorphisms a extending all permutations of Xl, ... , Xn-

Proof. This is immediate from the theorem and the fact that a radical exten­
sion of Q( ao, ... , an- d containing Q( Xl, ... , xn) is also a radical extension of 
Q(XI, ... ,xn ). 0 

In short, a solution of the general nth degree equation (*) by radicals entails 
a radical extension E of the coefficient field Q(ao, ... , an-I) which is "fully sym­
metric" in Xl,"" X n . On the other hand, the radical extensions we know from 
Section 8.1 seem to have rather limited symmetry, with each radical extending 
the Galois group by only a small step. This suggests a way to prove nonexistence 
of solutions by radicals, at least for n 2: 5, by showing that radical extensions 
have less than full symmetry in Xl, ... ,xn . In Section 8.3 we shall show that 
the Galois group Gal(F(al"" ,ak) : F) of any radical extension has a special 
structure, called solvability, inherited from the sequence of adjoined radicals ai' 
Then in Section 8.4 we shall show that this structure precludes full symmetry 
in Xl, ... ,Xn , when n 2: 5, thus completing the proof. 

Exercise 

8.2.1 Consider the extension E = F(Xl) of F = Q(ao, . .. ,a4)' Show 
(i) a E Gal(E : F) is determined by the value a(xl)' 

(ii) a(xl) is a root of X5 + a4x4 + ... + ao = 0, hence IGal(E : F)I :::; 5. 
(iii) If some Xi i= Xl occurs as a(xl) for a a E Gal(E : F) then each Xi i= Xl 

occurs as a a(Xl)' 
(iv) If all Xi E E then E = F(Xl, ... ,X5), hence not all Xi E E. Why? 
(v) Gal(E: F) = {I}. 

8.3 Structure of Radical Extensions 

To simplify the derivation of this structure, we shall show that certain assump­
tions about the adjunction of radicals ai in the construction of a radical extension 
F(al,"" ak) can be made without loss of generality. 

First, we can assume that each radical ai adjoined is a pth root for some 
prime p. For example, instead of adjoining ~ we can adjoin first va = (3, then 
ifTJ. Second, if ai is a pth root we can assume that F(al,"" ai-d contains 
all pth roots of unity in F(aI,"" ak) unless ai itself is a pth root of unity. 
If this is not the case initially, we simply adjoin a pth root of unity ( i= 1 to 
F( aI, ... ,ai-d before adjoining ai (in which case F( aI, ... ,ai-I, () contains all 
the pth roots of unity: 1, (, (2, ... ,(p-l). With both these modifications the final 
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field F(al, ... , ak) is the same, and it remains the same if the newly adjoined 
roots ( are included in the list al, ... , ak. Hence we have: 

Any radical extension F(ab"" ak) is the union of an ascending tower of 
fields 

F = Fo ~ Fl ~ ... ~ Fk = F(al,"" ak) 

where each Fi = Fi- l (ai), ai is the p}h root of an element in Fi- l , Pi is prime, 
and Fi- l contains all p}h roots of unity in Fk unless ai is itself a p}h root of 
unity. 

Corresponding to this tower of fields we have a descending tower of groups 

Gal(Fk : Fo) = Go ;2 G l ;2 ... ;2 Gk = Gal(Fk : Fk) = {I} 

where Gi = Gal(Fk : Fi ) = Gal(Fk : Fi-l(ai)) and 1 denotes the identity 
automorphism. The containments follow from the definition of Gal(E : B), for 
any fields E ;2 B, as the group of automorphisms of E fixing each element of B. 
As B increases to E, Gal(E : B) must decrease to {I}. The important point is 
that the step from G i - l to its subgroup G i , reflecting the adjunction of the p}h 
root ai to F, is "small" enough to be describable in group-theoretic terms: Gi 

is a normal subgroup of G i - b and Gi-dGi is abelian, as we shall now show. 
To simplify notation further, we set 

so the theorem we want is: 

Theorem. If E ;2 B(a) ;2 B are fields with a P E B for some prime p, and 
if B contains all pth roots of unity in E unless a itself is a pth root of unity, 
then Gal(E : B(a)) is a normal subgroup of Gal(E : B) and the quotient group 
Gal(E : B)/Gal(E : B(a)) is abelian. 

Proof. By the isomorphism theorem for groups, it suffices to find a homomor­
phism of Gal(E : B), with kernel Gal(E : B(a)), into an abelian group (that 
is, onto a subgroup of an abelian group, which of course is also abelian). The 
obvious map with kernel Gal(E : B(a)) is restriction to B(a), IB(a), since by 
definition 

a E Gal(E : B(a)) {::} aIB(a) is the identity map. 

The homomorphism property, 

a'aIB(a) = a'IB(a)aIB(a) for all 0",0' E Gal(E: B), 

is automatic provided aIB(a)(b) E B(a) for each b E B(a), that is, provided 
B(a) is closed under each a E Gal(E : B). 

Since a fixes B, aIB(a) is completely determined by the value a(a). If a is a 
pth root of unity ( then 

(a(a))P = a(aP) = a((P) = 0'(1) = 1, 

hence a(a) = (i = a i E B(a), since each pth root of unity is some (i. If a is not 
a root of unity then 
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(O"(a))p = O"(aP ) = aP since aP E B, 

hence O"(a) = (ja for some pth root of unity (. It follows that (j = O"(a)ja E E, 
whence ( = (j)k E E where k is the inverse of j mod p. Then ( E B by 
hypothesis, so again O"(a) E B(a). Thus B(a) is closed as required. 

This also implies that IB(a) maps Gal(E : B) into Gal(B(a) : B), so it now 
remains to check that Gal(B(a) : B) is abelian. If a is a root of unity then, as we 
have just seen, each O"IB(a) E Gal(B(a): B) is of the form O"i, where O"i(a) = ai, 
hence 

O"iO"j(a) = O"i(aj ) = aij = O"jO"i(a). 

Likewise, if a is not a root of unity then each O"IB(a) E Gal(B(a) : B) is of the 
form O"i where O"i(a) = (ia, hence 

O"iO"j(a) = O"i(ja) = (i+ia = O"jO"i(a) 

since ( E B and therefore ( is fixed. Hence in either case Gal(B(a) : B) is 
~~~ 0 

The property of Gal(F(al"" ,ak) : F) implied by this theorem, that it has 
subgroups 

Gal(F(al, ... ,ak): F) = Go :2 G I :2 ... :2 Gk = {I} 

with each Gi normal in Gi- l and Gi-l/Gi abelian, is called solvability of 
Gal(F(al, ... , ak) : F). 

Exercises 

8.3.1 Let E = F(xt) be as in Exercise 8.2.1. Show that if E is contained in a 
radical extension of F then so is F(Xi) for each i and hence so is F(xl, . .. ,X5) = 
Q(Xl,'" ,X5)' 

8.3.2 Illustrate the need to adjoin pth roots of unity before other pth roots 
with the subgroups Gal(Q( {12, (3) : Q( (3)) and Gal(Q( {12, (3) : Q( {12)) of 
Gal(Q( {12, (3) : Q). 

8.4 Nonexistence of Solutions by Radicals when n 2: 5 

As we know, this amounts to proving that a radical extension of Q(ao, ... , an-l) 
does not contain Xl, ... , Xn or, equivalently, Q( Xl, ... , Xn). We have now reduced 
this problem to proving that the symmetry of the hypothetical extension E 
containing Xl. ... ,Xm given by the corollary to Theorem 8.2, is incompatible 
with the solvability of Gal(E : Q(ao, ... , an-I)), given by Theorem 8.3. Our proof 
looks only at the effect of the hypothetical automorphisms of E on Xl, ... ,Xn , 

and hence it is really about the symmetric group Sn of all permutations of 
Xl. ... ,Xn. In fact, we are adapting a standard proof that Sn is not a solvable 
group, given by Milgram in his appendix to Artin [1942]. Apart from some basic 
group theory, this proof involves only the notion of a 3-cycle (x, y, z), which is a 
permutation () of objects x, y, z, ... such that ()(x) = y, ()(y) = z, ()(z) = X and 
all other objects are fixed. 
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Theorem. When n ::?: 5, a radical extension oflQ(ao, . .. ,an-d does not contain 
IQ(XI, ... ,xn ). 

Proof. Suppose on the contrary that E is a radical extension of lQ(ao, ... ,an-I) 
containing IQ(Xl, ... ,xn ). Then E is also a radical extension of IQ(XI, ... ,xn ), 

and by the corollary to Theorem 8.2 there is a radical extension E ;2 E such 
that Go = Gal(E : lQ(ao, ... , an-d) includes automorphisms a extending all 
permutations of Xl,'" ,xn . 

By Theorem 8.3, Go has a decomposition 

Go ;2 GI ;2 ... ;2 Gk = {I} 

where each Gi +1 is a normal subgroup of Gi and Gi-I/Gi is abelian. We now 
show that this contradicts the existence of the automorphisms a. 

Since Gi-I/Gi is abelian, Gi is the kernel of a homomorphism of Gi- 1 onto 
an abelian group, and therefore (compare with Section 7.9, Example 3) 

We use this fact to prove by induction on i that, if n ::?: 5, each G i contains auto­
morphisms a extending all3-cycles (xa, Xb, xc). This is true for Go by hypothesis, 
and when n 2: 5 the property persists from G i - l to G i because 

where a, b, c, d, e are distinct. Thus if there are at least five indeterminates Xj, 

there are a in each G i which extend arbitrary 3-cycles (Xa,Xb,Xc), and this 
means in particular that G k f {I}. 

This contradiction shows that IQ(Xl, ... ,xn ) is not contained in any radical 
extension of lQ(ao,.' . ,an-I) when n 2: 5. 0 

Corollary. The general equation of degree n 2: 5 is not solvable by radicals. 

Proof. Immediate from the theorem above and the formulation of solution by 
radicals in Section 8.2. 0 

Remarks. 85 does have one proper normal subgroup, A5 , and the quotient 
85/A5 is the abelian group C2 • However, the chain 85 ;2 A5 cannot be continued 
because A5 has no proper normal subgroup. This remarkable result can also 
be proved by considering 3-cycles (see Exercises 8.4.3 and 8.4.4), though with 
rather more trouble. It can also be shown that any chain of normal subgroups 
with abelian quotients must begin with 85 ;2 A5, hence A5 is the real obstruction 
to solvability of 85 , 

It follows from the solution of the general cubic and quartic equations by 
radicals (Sections 1.6 and 1.7), and Section 8.3, that 83 and 84 are solvable. This 
can also be proved directly, of course (Exercise 8.4.2), for example by studying 
the subgroups of 83 and 84 we have already found (Section 7.8). 
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Exercises 

8.4.1 Deduce from Exercises 8.2.1, 8.3.1 and the theorem just given that the 
group Gal(E : F) can be solvable, even equal to {I}, without E being contained 
in a radical extension of F. 

8.4.2 Find decompositions of 83 and 84 into subgroups that demonstrate their 
solvability. 

8.4.3 Suppose that H -:j: {I} is a normal subgroup of A5 , and recall (from 
Section 7.5.2) that A5 consists of all products of 3-cycles. Show 
(i) Any a E H is either a 5-cycle, a 3-cycle or a product of two disjoint 2-cycles 

(transpositions) . 
(ii) If a = (a,b,c,d,e) E Hand /3 = (a,b,c), then /3a/3-1a-1 E Hand 

/3a/3-1a- 1 is a 3-cycle. 
(iii) If a = (a,b)(c,d) E H is a product of disjoint 2-cycles, and /3 = (a,b,e), 

then /3a/3-la- 1 E Hand /3a/3-la-1 is a 3-cycle. 
(iv) Hence H includes a 3-cycle. 

8.4.4 Deduce from Exercise 8.4.3 that if H is a nontrivial normal subgroup of 
A5 then H includes all 3-cycles and hence is all of A5. 

8.5* Quintics with Integer Coefficients 

It is not at all obvious that unsolvability of the general equation of degree n ~ 5 
implies unsolvability of any particular equation with numerical coefficients. The 
problem is that the roots all"" an of a particular polynomial p(x), from Q[x] 
say, do not necessarily have the symmetry of the indeterminates Xl, ... , X n , which 
are fully symmetric virtually by definition. Recall from Section 8.2 that "full sym­
metry" means that each permutation of Xl, ... ,Xn extends to an automorphism 
of Q(Xll"" xn). The root field Q(all"" an) of a polynomial p(x) does not 
necessarily admit this many automorphisms, but it does admit a promising set 
of automorphisms when p( x) is irreducible: 

Theorem. IE p(x) E Q[x] is irreducible, with roots al, ... , an, then for each 
pair ai, aj there is an automorphism O'ij of Q( aI, ... ,an) with O'ij (aj) = aj. 

Proof. We know from the conjugation theorem of Section 6.2 that there is an iso­
morphism O'ij of Q( ai) onto Q( aj) with O'ij (aj) = aj. It then follows from the iso­
morphism extension theorem of Section 6.3 that O'ij extends to Q( aI, ... ,an), by 
adjoining the first root ak not in Q(ai), then the first root am not in Q(ai' ak), 
etc .. 

Moreover, the values O'ij(ad, ... , O'ij(an) must be distinct roots of p(x), 
hence they are just the roots al, ... , an again, possibly in a different order. 
This means that the extended isomorphism O'ij is onto Q(al,"" an), and hence 
it is an automorphism. 0 

A group G of permutations of aI, ... ,an with the property described in 
the theorem - that G includes elements sending any ai to any aj - is called 
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transitive. Thus the theorem says that the root field of an irreducible polynomial 
has a transitive group of automorphisms. Unfortunately, this is not enough to 
guarantee automorphisms extending all permutations of Q1, ... , Qn. For example, 
the root field Q( (5) of x4 + x 3 + x 2 + X + 1 has automorphisms sending each root 
(~ to each other root (g (1 ::; i, j ::; 4), but there are only four automorphisms 
altogether (namely, ak(5) = (g for k = 1,2,3,4). 

It turns out that this shortage is avoided whenever the automorphisms in­
clude a transposition - an automorphism that exchanges two roots Qi, Qj and 
leaves the others fixed. We shall prove this result in the next section. Meanwhile, 
we construct an example of a quintic (fifth degree) irreducible polynomial whose 
root field actually admits a transposition. 

Example. The polynomial x5 - 4x + 2 is irreducible, and complex conjugation 
is an automorphism of its root field which exchanges two roots and leaves three 
roots fixed. 

Eisenstein's irreducibility criterion with p = 2 shows that x5 - 4x + 2 is 
irreducible. Since the derivative 5x4 - 4 has two real roots, the real graph of 
y == x5 - 4x + 2 has two turning points. Then the sign changes of x5 - 4x + 2 
between x = - 2, 0, 1 and 2 show that it has three real roots Q1, Q2, Q3. The other 
two roots (31, (32, which exist by the factor theorem and the fundamental theorem 
of algebra (Section 3.8), must therefore be nonreal. They must also be complex 

conjugates of each other, because if 0 = (35 - 4(3 + 2 then 0 = 7l - 4/3 + 2 by 
applying complex conjugation to both sides. 

Since complex conjugation fixes the real roots QI, Q2, Q3 and exchanges (31, (32 
it is a permutation of {QI, Q2, Q3, (31, (32}, and hence maps Q( Ql, Q2, Q3, (31, (32) 
one-to-one onto itself. It also preserves + and x, of course, and therefore is an 
automorphism. 0 

Exercises 

8.5.1 Find some other irreducible quintic polynomials with three real roots, 
hence with root fields admitting transpositions. 

8.5.2 Find some irreducible quartic polynomials whose root fields admit trans­
positions. 

8.5.3 Show that the root field of x3 - 2 is Q(~, (3), and that it admits a 
transposition when viewed as Q( ~,(3~, (1 ~). 
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8.6* Unsolvable Quintic Equations with Integer 
Coefficients 

Now that we have the quintic polynomial x5 - 4x + 2 whose root field admits a 
transposition, we can prove that the equation x5 - 4x + 2 = 0 is not solvable by 
radicals. It suffices to prove the following lemma about permutation groups. 

Lemma. IE p is prime and G is a transitive subgroup of Sp which includes a 
transposition, then G = Sp. 

Proof. View Sp as the group of permutations of the set {I, 2, ... , p} and define, 
for each i E {I, 2, ... ,p}, 

class of i = {j : (i,j) E G}, 

where (i,j) denotes the transposition that exchanges i and j. Any two of these 
classes are either identical or disjoint. If, say, k is in the classes of m and n then 
(m, k) E G, (n, k) E G and hence (m, n) = (m, k) . (n, k) E G, so the two classes 
are the same. 

Moreover, any two of these classes are the same size. In fact, if O'k is a permu­
tation in G such that O'k(l) = k (such a permutation exists by the transitivity 
of G) then O'k maps the class of 1 one-to-one onto the class of k. The key to this 
fact is the formula 

O'k' (l,i)· 0'T;1 = (k,O'k(i)), 
which is easily checked when one remembers to read the product of three terms 
from right to left. It follows from the formula that 

i E class of 1 * (l,i)EG 

* O'k . (1, i) . 0'T;1 E G 

* (k,O'k(i)) E G 

* O'k(i) E class of k. 
A similar argument shows that 

i E class of k * 0'T;1 (i) E class of 1, 

hence O'k is the one-to-one correspondence claimed. 
It follows that the size of each class divides p, the size of {I, 2, ... ,p}, and 

hence is either 1 or p since p is prime. If we now assume, without loss of generality, 
that (1,2) is a transposition in G, then the class of 1 has at least two elements, 
1 and 2. Hence there is only one class - of p elements - and this means that G 
includes each transposition (i,j). 

Finally, we recall that every permutation is a product of transpositions. This 
can be proved, for example, by expressing each permutation 0' as the product of 
disjoint cycles - first (1,0'(1),0'2(1), ... ), then (i,0'(i),0'2(i), ... ) where i is the 
least number not in the first cycle, etc. - then expressing an arbitrary m-cycle 
as a product of transpositions, namely 

(i1,i2, ... ,im) = (il,im)(il,im-l)· .. (il,i2). 0 

With this lemma in hand, the proof that x 5 - 4x + 2 is not solvable by radicals 
is now just a recapitulation of the main results of the last four sections. 
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Theorem. The equation x5 
- 4x + 2 = ° is not solvable by radicals. 

Proof. This equation is the example of Section 8.5*, where it was found to have 
three real roots a1> a2, a3 and two nonreal roots (31, (32 which are complex con­
jugates. It follows from Theorem 8.5* that the root field Q(a1' a2, a3, (31, (32) has 
a transitive group of automorphisms, and from the example in Section 8.5* that 
this group includes a transposition. Hence it follows from the lemma just given 
that there are automorphisms of Q( a1, a2, a3, (31, (32) extending all permutations 
of the roots. 

But then it follows from the proof of Theorem 8.4 that Q( a1, a2, a3, (31, (32) is 
contained in no radical extension of Q. In particular, the roots a1, a2, a3, (31, (32 
are not all expressible by radicals. 0 

Exercises 

8.6.1 Show that the dihedral group D4 is isomorphic to a transitive subgroup 
of 84 which includes a transposition. 

8.6.2 Show that the field Q( V'2, i) (whose automorphism group is D4 by Exercise 
7.4.2) is the root field of an irreducible quartic polynomial. 

8.7* Primitive Roots 

The necessary condition for solvability by radicals, namely solvability of the 
Galois group, can be tightened up considerably. The abelian quotient groups 
Gi-l/Gi can be taken to be cyclic. We shall prove this in Section 8.8, but before 
doing so it is of interest to see why this is true of the particular groups constructed 
in Section 8.3. Each group Gi-l/Gi constructed there is either a subgroup of 
ZjpZ under addition mod p, that is, a subgroup of the cyclic group Cp , or of 
ZjpZ - {a} under multiplication mod p. 

Now a subgroup of any cyclic group Cm can be seen to be cyclic by the 
following argument. View Cm as {a, 1,2, ... ,m - 1} under addition mod m, and 
let d be the least nonzero member of a subgroup H. Then 0, d, 2d, ... E H by 
closure under addition. If H includes any element nd + r with ° < Irl < Idl we 
also have r E H by closure under subtraction. This contradicts the minimality 
of d, hence H is the cyclic group {a, d, 2d, ... }. 

In view of this fact, to show that Gi-l/Gi is cyclic in Section 8.3 it only 
remains to show that (ZjpZ) x is cyclic. This is a special case of the next theorem, 
that F - {a} is a cyclic group under multiplication for any finite field F. The 
proof of this theorem depends on the following lemma about abelian groups. The 
crucial concept in its proof is the order of an element u in an abelian group, the 
least m such that mu = u + u ... + u (m times) equals 0. 

Lemma. If elements a,b of an abelian group are such that order ( a) = m, 
order(b) = nand gcd( m, n) = 1 then order( a + b) = mn. 

Proof. Certainly mn( a + b) = mna + mnb = 0, hence 
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where 

order ( a + b) =I- mn 

=} l(a + b) = la + lb = 0 for some l < mn 

=} ra + sb = 0 for some 0:::; r < m, 0:::; s < n 

r = remainder of l on division by m, 

s = remainder of l on division by n, 

are not both zero since l < mn = lcm(m, n), and in fact they are both nonzero 
otherwise order(a) = r < m or order(b) = s < n. 

=} ra = -sb 

=} rna = -snb = 0 since nb = 0 

=} order(a) = mlrn 

=} mlr since gcd(m, n) = 1 

and this is a contradiction since 0 < r < m. o 
Corollary. If a is an element of maximal order in a finite abelian group A, then 
order(b)lorder(a) for any other element b EA. 

Proof. Suppose on the contrary that bE A is such that order(b) f order(a), so 
that there is some prime p with 

order(a) = piq, order(b) = pir where p f q, rand i < j. 

Then b' = rb has order pi which is relatively prime to the order q of a' = pia, and 
hence a' + b' has order piq > order(a), contrary to the maximality of order(a). 
o 
Theorem. IfF is a finite field then F - {O} is a cyclic group under multiplica­
tion. 

Proof. F - {O} is an abelian group because it is closed under x and + , and x 
is commutative. Let a E F - {O} be an element of maximal order, d. This means 
that a is a root of the polynomial xd - 1, and the powers 1, a, a 2 , ••• , a d - 1 are 
distinct. These powers are also roots of x d - 1, so xd - 1 has d distinct roots. 

If F - {O} =I- {I, a, ... ,ad-I}, suppose (3 is another element of F - {O}. The 
order of (3 divides the order of a by the corollary, and hence (3 also satisfies 
xd - 1 = o. This contradicts the fact that a polynomial of degree d over a field 
F cannot have more than d roots in F (Section 4.2). 0 

The classical case of this theorem, conjectured by Euler and proved by Gauss 
[1801], is where F = 'lllp'll. In this case the element a is called a primitive root 
mod p and the order of a is p - 1. The indirect way its existence is proved leads 
one to suspect that questions about primitive roots may be difficult. Indeed they 
are. For example, it is not known whether 2, or any other particular number, is 
a primitive root for infinitely many p. Gauss [1801]' article 315, was interested 
in the p for which 10 is a primitive root, because these are precisely the p for 
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which the decimal expansion of l/p has period p - 1 (see Exercises below). It is 
likewise unknown whether there are infinitely many such p. 

Exercises 

8.7.1 Show that the period of the decimal expansion of l/n is the least exponent 
e such that lOe == 1 (mod n). 

8.7.2 Deduce from Exercise 8.7.1 that the decimal expansion of l/n has period 
n - 1 {:? n is prime and 10 is a primitive root mod n. 

8.7.3 Is it always true that order(a + b) = lcm(order(a),order(b)) in a finite 
abelian group? 

8.8 Finite Abelian Groups 

The following lemma is the key to a tighter definition of a solvable group. By 
breaking down a finite abelian group into cyclic "steps," it points the way to a 
breakdown of any solvable group into cyclic "steps." 

Lemma. Each finite abelian group A admits a decomposition into subgroups 

A = Ao :2 Al :2 ... :2 Al = {I}, 

such that each Aj-dAj is cyclic of prime order. 

Proof. If Ao is not already cyclic of prime order, let Al be a maximal proper 
subgroup of Ao. That is, Al t= Ao, and there is no group B strictly between Al 
and Ao. Since Ao is abelian, any subgroup is normal, hence we have the coset 
homomorphism 

'Ij;: Ao ~ Ao/AI 

with kernel AI. I claim that Ao/AI is cyclic of prime order. 
If it is not cyclic, then any 9 t= 1 in Ao/AI generates a nontrivial cyclic 

subgroup G = {1,g,g2, .. . }, which is not all of Ao/AI. But then B = 'Ij;-I(G) is 
a set strictly between Al and Ao, and it is easily checked that B is closed under 
products and inverses, hence a group. This contradicts the choice of Ai> so 
Ao/AI is in fact cyclic. It follows similarly that Ao/AI has prime order, because 
if Ao/AI has order pq and generator 9 then the powers of gP form a proper 
nontrivial subgroup G of Ao/AI. 

Thus we have found a subgroup Al of Ao with the required property. We can 
now repeat the argument with Al in place of Ao, and obtain A2 , A3 , etc., also 
with the required properties. Since each Aj is strictly smaller than Aj - I , in a 
finite number of steps we reach Al = {I}. D 

Now if Gi - 1 :2 Gi are groups with Gi normal in Gi - 1 and Gi-dGi = A 
abelian, we can decompose the space between Gi - I and G i into cyclic "steps" 
by "pulling back" the decomposition of A given by the lemma. To be precise, 
we have the following: 
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Theorem. If a finite group G admits a decomposition into subgroups 

with each Gi normal in G i - I and Gi-dGi abelian, then it admits a finer de­
composition 

Gi - 1 = HiO ;;2 Hil ;;2 ... ;;2 Hi! = Gi 

with each Hij normal in Hi,j-I and Hi,j-d Hij cyclic of prime order. 

Proof. Let A be the finite abelian group Gi-dGi and let X : Gi - 1 ~ A be 
the coset homomorphism with kernel Gi . Consider the decomposition of A into 
subgroups 

A = Ao;;2 Al ;;2 ••• ;;2 Al = {I} 

with each Aj-dAj cyclic of prime order, given by the lemma. 
If we let Hij = X-I (Aj) then each Hij is a group and 

X-I(A) = Gi - I = HiO;;2 Hil ;;2 ••• ;;2 Hi! = Gi = X-I({l}) 

because 

Thus it suffices to show that Hij is a normal subgroup of Hi,j-l with Hi,j-d Hij 
cyclic of prime order. Equivalently: find a homomorphism of Hi,j-l onto a cyclic 
group of prime order, with kernel Hij . 

We already have the homomorphism X of Hi,j-l onto Aj - I, and a homomor­
phism 1/J of Aj - I onto Aj-dAj with kernel Aj . Hence 1/Jx is a homomorphism 
of Hi,j-l onto the cyclic group Aj-dAj of prime order, and its kernel X-I(Aj ) 
is H ij , as required. 0 

Corollary. A finite group G is solvable {::} G admits a decomposition into sub-
groups 

G = Ho ;;2 HI ;;2 ••• ;;2 Hm = {I} 

with each Hn normal in Hn- I and Hn-dHn' cyclic of prime order. 

Proof. (::::}) is immediate from the theorem. 
( ~) is immediate from the definition of solvable group in Section 8.3, since 

cyclic groups are abelian. 0 

The narrower definition of solvability given by this corollary will be exploited 
in the next chapter. There we will show that an equation is solvable by radicals 
if its root field has a solvable Galois group G, and in fact the cyclic "steps" of 
prime order p in the decomposition of G correspond to pth roots. In particular, 
it will follow from the breakdown of abelian groups into cyclic "steps" that any 
equation with abelian Galois group is solvable by radicals. A theorem equivalent 
to this was discovered by Abel [1829]. In honour of this discovery, Kronecker 
introduced the term "abelian fields" for fields with abelian Galois group over 
Q, from which we derive the term "abelian groups." Kronecker also made the 
remarkable discovery that every abelian field is contained in a cyclotomic field 
(Kronecker [1853]; the proof was completed by Weber [1886]). 
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Exercise 

8.8.1 Give an example of abelian groups Ao, Al with Ao/AI ~ em and Al ~ en 
but Ao '1 em x en· (Thus it does not follow from the lemma - at least, not 
obviously - that any finite abelian group is the direct product of cyclic groups.) 

8.9 Discussion 

Galois theory has had an enormous influence on the development of algebra, 
and also on the way it is taught. As was mentioned in Section 7.10, most of 
the fundamental concepts of group theory are prerequisites for Galois theory, 
and one .can now see why. The concept of normal subgroup is crucial to an 
understanding of radical extensions, and also for the understanding of Sn that 
shows the impossibility of solvability by radicals. The very term "solvable group" 
gives away its origin in the theory of equations. The word "abelian," too, comes 
from a class of equations studied by Abel [1829], as we have just seen. 

However, it seems to be one of the laws of mathematical history that if a 
concept can be detached from its origins, it will be. This is particularly true 
of the group concept, for which the definition is simple and for which examples 
are more readily available in number theory and geometry than the theory of 
equations. No doubt this is why most algebra texts treat groups before they 
treat fields. Even the present treatment is not very faithful to the history of the 
subject, because some modern concepts are simply too efficient to do without. 
It is therefore worth saying a few words about the history of Galois theory and 
its influence on the rest of algebra. More detail can be found in the books of 
Edwards [1984] and Tignol [1988], and in the article of Kiernan [1971]. Edwards 
is also worth reading for his translation of Galois' fundamental memoir [1831]. 

The first reasonably complete proof of the unsolvability of the general quintic 
equation by radicals was given by Abel [1826]' after incomplete attempts by 
Ruffini [1799] and [1813]. Ruffini and Abel observed the special properties of 
permutations of five things underlying unsolvability of the quintic, but did not 
express them in group theoretic language. 

The great contribution of Galois was to identify the group concept and to see 
how it clarifies the situation. It enabled him to analyse the problem of solution 
by radicals in complete generality and to find a criterion for solvability which 
has unsolvability of the general quintic as just one of many corollaries. Galois 
[1831] found that a solvable equation has a solvable group by much the same 
route we used in Section 8.3. He broke down the process of adjoining radicals 
to adjunctions of pth roots, with pth roots of unity adjoined before other pth 

roots, and showed that the corresponding group theoretic step was passage to 
a normal subgroup with cyclic quotient. However, he used the solvable group 
criterion only as a stepping stone to one he thought would appeal more to his 
contemporaries - that an equation is solvable by radicals if and only if any two 
of its roots rationally determine all the others. (See Tignol [1988], p.381 for a 
modern proof of this theorem.) 
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It is understandable that Galois felt the group concept was too foreign, and 
the concept of solvable group perhaps too complicated, to provide an attractive 
criterion for solvability of equations. In the algebra of his time, Galois' root cri­
terion was both elegant and surprising. Unfortunately, his proof was too sketchy 
to be understood by his referees, and it was not published in Galois' brief lifetime 
(he died after a duel in 1832, aged 20). In the 1840s Liouville studied the proof 
and became convinced it was correct, so he published Galois' paper in 1846. This 
brought the group concept to the attention of other mathematicians, and over 
the next two decades it was assimilated to the point where Jordan could write 
his Traite des substitutions et des equations aJgebriques [1870], a book inspired 
by Galois theory in which group theory takes over almost completely. In par­
ticular, the Traite states solvability of groups as the criterion for solvability of 
equations, for the first time, and begins the investigation of solvable groups in 
their own right. The Traite also stresses the concept of simple group, which was 
important in early proofs of unsolvability by radicals, and has since become a 
topic of spectacular interest in the theory of finite groups. 

A group is called simple if its only quotients are itself and {I}; equivalently, if 
its only normal subgroups are itself and {I}. Perhaps the best way to understand 
the concept is to think of a simple group as one that admits no "simplification," 
that is, no homomorphism onto a smaller nontrivial group. "Simple" does not 
mean uncomplicated! About the only uncomplicated examples are the cyclic 
groups Cp for prime p. The first interesting example of a simple group is A5 , and 
its simplicity was in fact used in early proofs of the unsolvability of the quintic. 
Apparently a direct proof that 85 is not solvable was not noticed until later. 
Many algebra textbooks are still under the influence of Jordan's Traite in the 
sense that they prepare for Galois theory by an extensive study of solvable and 
simple groups. While this is unnecessary, it is perhaps excusable in the light of 
modern discoveries about simple groups. 

Apart from a few infinite families, such as the An for n :2: 5, finite simple 
groups are extraordinarily rare and hard to find. A complete list was obtained 
only in the last decade, and some steps in the 10,000+ page proof still remain 
to be published. One of the key "details" is the 250 page proof of Feit and 
Thompson [1963] that every group with an odd number of elements is solvable. 
One could say that the classification of finite simple groups is the deepest (and 
most mysterious?) theorem in mathematics to date. 

As we have mentioned in Section 7.10, Galois groups were viewed as groups of 
permutations of the roots of equations until the 1870s, because the field concept 
did not emerge until that time. Certainly, there is not much difference between 
the group of automorphisms of a field E and its restriction to a set of basis 
elements of E. This is particularly noticeable in Sections 8.4, 8.5*, 8.6"', where 
we are interested only in the wayan automorphism permutes certain elements of 
the field, and we use the word "transposition" indifferently for both permutations 
and automorphisms. The advantage of the field concept is its independence of a 
particular equation or a particular basis, which enables one to see its invariant 
properties, such as dimension. As Dedekind realised, the property of dimension 



8.9 Discussion 145 

alone is strong enough to settle questions like the constructibility of ?"2 (Section 
5.6). 

Dedekind developed the field concept in his supplements to Dirichlet's Vor­
lesungen [1871-1893]. The 1893 edition (§166) contains the definition of Galois 
groups as automorphism groups of fields. It is interesting that Dedekind pays a 
kind of tribute to the original concept of Galois group by calling automorphisms 
"permutations." In fact, he even calls an isomorphism of a field onto a different 
field a "permutation." 

However, Dedekind's definition is not simply a translation ofthe permutation 
group concept into the language of fields. In the field setting, new and useful 
properties of the Galois group become apparent. For example, Dedekind [1893J, 
§165, discovered that, under reasonable conditions, the size of Gal(E : F) is the 
same as the dimension (E : F) of E over F. This result prompted a new approach 
to Galois theory, emphasising connections with linear algebra and playing down 
the role of polynomials. This approach is due mainly to Emil Artin, though in 
Artin's book [1942] the polynomials are still present to a greater extent than 
is theoretically necessary. In particular, Artin uses them to prove his so-called 
"fundamental theorem of Galois theory," although a polynomial-free proof is 
possible (see, for example, the appendix to Tignol [1988]). Since our interest is 
.very much in polynomials, we have not adopted Artin's approach in this book. 
Our proof of the fundamental theorem of Galois theory is in Section 9.3. Nothing 
like this theorem appears in the work of Galois, but it does help to clarify the 
converse direction of his solvability criterion, which we have yet to prove. 
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9.1 The Theorem of the Primitive Element 

The unsolvability of general polynomial equations of degree ;::: 5 leaves us with 
very little to say about solvability of general equations, that is, equations with 
indeterminate coefficients. The general linear, quadratic, cubic and quartic equa­
tions are solvable - and that's it. The investigation of solvability is much more 
fruitful in the domain of equations with numerical coefficients, where there are 
solvable equations of arbitrarily high degree. For this reason, all fields in this 
chapter are assumed to be number fields, that is, subfields of C, unless 
there is an explicit statement to the contrary. We shall be particularly 
interested in number fields of finite degree over Q, which we know from Chapter 
5 to be of the form Q( al, ... , ak) where al, ... ,ak are algebraic numbers. 

As a first step in the study of such fields we show that they can be simplified 
to the form Q(a). More generally, we show that if E, F are fields with (E : F) 
finite then E = F(a) for some a E E called a primitive element. This ties up a 
loose end from Section 5.3 where we called (E : F) = n the degree of E over F 
whether or not there was an element a E E of degree n over F with F(a) = E. 
The existence of such an element for number fields goes back to Lagrange, Abel 
and Galois and is called the theorem of the primitive element. 

The proof depends on the lemma below, which is most easily proved with the 
help of calculus. It is possible to get around the calculus by checking a certain 
algebraic identity (see Exercise 9.1.1 and also compare with Section 4.9*), but 
as long as we are dealing with number fields this is unnecessary extra work. 

Recall from the factor theorem of Sections 3.8 and 4.2 that each root a E F 
of a polynomial f(x) E F[x] corresponds to a factor x - a of f(x). We say that 
f(x) has a multiple root a if the factor x - a is repeated. 

Lemma. IE f E F[x] is irreducible over the field F ~ C then f has no multiple 
root in C. 

Proof. Suppose on the contrary that over C 

f(x) = (x - a)2g(x). 

Then the derivative 

!,(x) = (x - a)2g'(x) + 2(x - a)g(x) = (x - a)((x - a)g'(x) + 2g(x)), 

and hence f(x), f'(x) have a common divisor x-a. Thus gcd(f(x), f'(x)) has 
degree;::: 1, and of course the gcd also has degree < degree(f), since degree(f') 
= degree (f) - 1. 

Now if f(x) = Li aixi E F[x] then f'(x) = Li iaixi-l E F[x] also, hence we 
can find gcd(f(x), f'(x)) in F[x] by the Euclidean algorithm. Since the gcd is a 
proper divisor of f, this contradicts the irreducibility of f. D 
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Theorem of the Primitive Element. IE E, F ~ C are fields with (E : F) 
finite then E = F(a) for some a E E. 

Proof. Suppose (E: F) = n. Then by Section 5.4 we have E = F(al, ... ,an) 
where each ai E E is a root of some fi(X) E F[x] of degree ~ n. It obviously 
suffices to show that if 13,"1 E E then F(f3, "I) = F(a) for some a E E. 

Since F is a number field it is infinite and hence there is acE F such that 

13 + c'Y =I- f3i + c'Yj 

for all roots f3i of g(x) and 'Yj of h(x), where g(x), h(x) E F[x] are irreducible 
polynomials satisfied by 13, "I respectively (see Corollary 5.4). Namely, take c 
unequal to any of the solutions y = (13 - f3i)/("(j - "I) of 13 + Y'Y = f3i + Y'Yi. We 
let a = 13 + C'Y. 

Now the polynomials h(x) and g(a - ex) in F(a)[x] have "I as a common 
root, and it is their only common root by choice of c. This has the following 
implications for the irreducible monic polynomial for "I, f(x) E F(a)[x]. On the 
one hand, f(x) divides both h(x) and g(a - ex) by the general factor theorem 
(Section 4.2). On the other hand, f(x) has degree 1, since it has no multiple 
roots by the lemma and only one root is common to h(x) and g(a - ex). It 
follows that f(x) = x - "I and hence "I E F(a). But then 13 = a - C"f is also in 
F(a), hence F(f3, "I) = F(a) as required. 0 

Remarks 

1. The theorem of the primitive element can be generalised far beyond number 
fields. As already indicated, the calculus in the proof of the lemma can be avoided 
by defining the derivative of Eaixi to be Eiaixi-l and proving the product rule 
algebraically. However, we also need the derivative to be nonzero, and for this 
the field F has to be one in which each element iai =I- 0 when ai =I- O. The term 
iai really means ai + ai + ... + ai (i times), so an equivalent statement is that 
each sum 1 + 1 + ... + 1 =I- 0 in F. Such a field is said to be of characteristic 
zero. A field of characteristic zero obviously has infinitely many elements, which 
takes care of the other point needed for the proof, hence we can conclude that 
the theorem of the primitive element holds for any field of characteristic zero. 

The function field Q(XI,' .. ,xn ) is of characteristic zero, and it is of finite 
degree, n, over its subfield Q(ao, ... , an-I). Hence it follows from the gener­
alised theorem that there is a primitive element an E Q(Xl, ... ,xn) such that 
Q(Xl,'" ,xn) = Q(ao, ... ,an-d(an). In fact, an can be any "totallyasymmet­
ric" function of xl. ... ,xn, such as Xl + 2X2 + 3X3 + ... + nxn. This result is a 
tribute to the insight of Lagrange, Abel and Galois, since expressing Xl, ~ .. , Xn 
directly as rational functions of ao, ... ,an-l and a chosen asymmetric an is 
extremely difficult, even for n = 3. 

2. Counterexamples to the theorem occur in certain fields not of characteristic 
zero, but they are somewhat artificial. (See Dummit and Foote [1991], p.509, for 
one.) 

3. In the case of finite fields, where both the lemma and the assumption of 
infinitely many elements break down, the theorem of the primitive element is 
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nevertheless true. In fact, we know that the nonzero elements of a finite field 
F(/3, ,,/) are powers of a single element a - a primitive root as it was called in 
Section 8.7*. This obviously implies F(/3,"/) = F(a). 

Exercises 

9.1.1 Show that J2 + J3 is a primitive element for tQ( J2, J3). 
9.1.2 Show that if a1,' .. ,ak are algebraic numbers, then there are integers 
n1,.·., nk such that tQ(a1,"" ak) = tQ(n1a1 + ... + nkak). 

9.1.3 Prove (fg)' = fg' +gl' algebraically, taking the derivative of f(x) = EaiXi 
to be I'(x) = Eiaixi-1 by definition. 

9.1.4 If f(x) = (x - (1)'" (x - an), where a1,"" an E C, find an expression 
for I' (x) and hence show that 

(Ll(all'" ,an))2 = ±!'(a1)'" !'(an), 

where Ll2 is the discriminant defined in Section 7.10 and the sign is (_1)n(n-1)!2. 

9.1.5 Deduce from Exercise 9.1.4 that the discriminant of f(x) = xn -1 is ±nn. 

9.1.6 Use Exercise 9.1.5 and the fact that Ll E tQ((n) to deduce that tQ((n) 
contains the field tQ(.J±Ti) when n is odd, in which case the sign is (_1)(n-1)!2. 

9.1.7 Show that J2 E tQ((s), and hence conclude that each quadratic field 
tQ( v'n), where nEZ, is contained in some tQ( (q) (a special case of the Kronecker­
Weber theorem mentioned in Section 8.8). 

9.2 Conjugate Fields and Splitting Fields 

We know of cases where the Galois group Gal(E : F) fails to give any information 
about the structure of the field E over F. For example, Gal(tQ( {12) : tQ) = {I} 
even though tQ( {12) has degree 3 over tQ. In other cases, Gal(E : F) does seem 
to capture the structure of E over F. For example, Gal(tQ( J2) : tQ) has two 
elements and the degree of tQ( J2) over tQ is 2. We can explain and remove this 
discrepancy by looking beyond the automorphisms of E to the isomorphisms of 
E over F. 

A field E ~ tC may be isomorphic to various subfields of tC, and the various 
fields a(E) ~ C onto which E is mapped by isomorphisms a are called conjugate 
fields of E. As we shall see, they correspond to conjugate elements a(a), in the 
sense of Section 6.2, where a is a primitive element for E over F. If all isomor­
phisms are onto E we call E self-conjugate or normal. As usual, we relativise 
these notions to a subfield F of E by considering the isomorphisms a that fix 
F. Then the fields a(E) are called conjugate fields of E over F, and if they all 
equal E we call E normal over F. 

For example, we get the isomorphisms a of tQ( {12) by setting a( {12) equal 
to {12, (3 {12 or (5 {12. These are the only possibilities since a must fix all ra­
tionals and therefore (a( {12))3 = a(2) = 2. Thus there are three isomorphisms 
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of Q( ~), correctly reflecting the degree (Q(~) : Q). The Galois group does 
not pick them up because they are onto three different conjugate fields, Q( ~), 
Q((3~) and Q((~~). 

The isomorphisms of E over F always reflect (E : F) correctly, as we see by 
generalising the above argument. 

Lemma. If E, F ~ C are fields with (E : F) finite then the number of isomor­
phisms of E over F is (E: F). 

Proof. Let E = F( a) by the theorem of the primitive element (Section 8.1) and 
let p(x) E F[x] be an irreducible polynomial satisfied by a. Then 

(E: F) = degree(p) by Section 5.4 

= number of distinct roots of p( x ) 

by Lemma 8.1 and the fundamental theorem of algebra (Section 3.8). On the 
other hand, each isomorphism a of E = F(a) over F is given by the value of 
a(a) (see Section 6.2), and it follows by applying a to p(a) = 0 that p(a(a)) = 0, 
since a fixes the coefficients of p(x). Thus a(a) is one of the (E : F) roots ai of 
p(x). Conversely, each ai determines an isomorphism ai with ai(a) = ai, namely 
the composite of the isomorphisms 

F(a) -? F[x]/p(x)F[x] -? F(ai) 

we get from Section 6.2. Thus the number of isomorphisms is (E : F). 0 

The proof of the lemma also helps to explain why only isomorphisms reflect 
the degree of Q( ~), whereas automorphisms suffice for Q( -/2). Only one of 
the three isomorphisms of Q(~) is onto Q(~) because only the root ~ of 
p( x) = x3 - 2 is in Q(~). The other two roots, (3 ~ and (~~, are outside 
Q(~) and hence the corresponding isomorphisms are onto different conjugate 
fields. The irreducible polynomial x 2 - 2 satisfied by -/2, on the other hand, has 
both its roots ±-/2 in Q( -/2), hence the corresponding isomorphisms are onto 
Q( -/2) and hence are automorphisms. 

This explanation generalises beautifully to isomorphisms of E over F. We say 
that E is a splitting field (of J) over F if E = F( at, ... ,an) where at, ... , an 
are the roots of some f(x) E F[x] (in which case f(x) factorises completely, or 
"splits," into linear factors over E; this is the reason for the name). Then we 
have the following theorem. 

Theorem. If E, F ~ C are fields with (E : F) finite then 

E is normal over F {::} E is a splitting field over F. 

Proof. (=» Let E = F(a) and let p(x) E F[x] be an irreducible polynomial 
satisfied by a. It follows as in the lemma that each isomorphism ai of E over 
F is given by ai(a) = ai where ai is a root of p(x). Since E is normal over F, 
that is, each ai(E) = E, it follows that each root ai = ai(a) of p(x) is in E, and 
hence E = F(a) = F(at, ... , an) is the splitting field of p(x) over F. 
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C'*=) Suppose E = F(a1, ... ,an) is the splitting field of p(x) E F[x], so 
a1, ... , an are roots of p(x). Applying an automorphism a to each p(ai) = 0 as 
in the lemma we find that a(ai) is a root of p(x) and hence a(ai) E E since E is 
the splitting field of p(x). Then, since any E E E is a rational function in the ai 
with coefficients in F (Section 5.3), it follows that a(E) ~ E, that is, a(E) = E. 
o 
Exercises 

9.2.1 Why is Q(3{/2) =I- Q(i{/2)? 

9.2.2 Show that E is normal over F <=> IGal(E: F)I = (E : F). 

9.2.3 Show that a field E of finite degree over F is contained in a field E* which 
is normal over F. 

9.2.4 Use the isomorphisms of Q()2, V3) (Section 6.3) 
(i) to show that Q()2, V3) is normal over Q, 

(ii) to find all four roots of the minimal polynomial for )2 + V3. 
9.2.5 Express Q( {/2, (3) as a splitting field. 

9.2.6 Illustrate the (~) direction of the theorem above with the fields E = 
Q(Xl, ... ,xn) and F = Q(ao, . .. , an-I), and compare with Section 6.5*. 

9.3 Fixed Fields 

The group of automorphisms of a field E fixing a subfield F is of course a crucial 
concept of Galois theory, the Galois group Gal(E : F). Just as crucial is the fixed 
field of a subgroup H of Gal(E : H): 

Fix(H) = {E E E: a(E) = E for all a E H}. 

Fix(H) is indeed a field because if a fixes a, /3 then a fixes a + /3, a - /3, a/3 
and a/ /3. And Fix(H) is necessarily between E and F, that is, E 2 Fix(H) 2 F, 
so we call it an intermediate field. Conversely, for any intermediate field B (B 
for "between") the group Gal(E : B) is necessarily a subgroup of Gal(E : F), 
since isomorphisms of E fixing B necessarily fix F. The same remark shows that 
a field E normal over F is also normal over B, a fact which is important in 
the proof of the theorem below. This theorem shows that the concepts of Galois 
group and fixed field are "inverse" to each other in the case of a field E normal 
over F. 

First Fundamental Theorem of Galois Theory. If E, F ~ C are fields with 
E normal over F then 
(i) Fix(Gal(E: B)) = B for each field B, E 2 B 2 F, 

(ii) Gal(E: Fix(H)) = H for each subgroup H of Gal(E : F). 

Proof. (i) It is immediate from the definition of fixed field that if B' = 
Fix(Gal(E : B)) then B' 2 B. Suppose that a E B' - B. Thus every auto­
morphism of E fixing B also fixes a. On the other hand, since a (j. B the degree 
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of 0: over B is ~ 2, hence there are at least two isomorphisms T of B(o:) over 
F, sending 0: to the different roots of the p(x) E F[x] satisfied by 0:. For one of 
these, T( 0:) =1= 0:. 

Now, viewing E as B(o:)(j3) by the theorem of the primitive element (Section 
9.1), extend T to an isomorphism a of E (Section 6.3). Since T fixes B so does a, 
and since E is normal over F it is normal over B. This means a is onto E and 
hence an automorphism, contradicting the assumption that every automorphism 
of E fixing F also fixes 0:. 

(ii) Let H = {aI, ... ,ar }, let E = F(o:) and consider 

For each a E H the set {aal, ... ,aar} = {al, ... ,ar} (compare with Cayley's 
theorem, Section 7.2), hence we also have 

This shows that the coefficients of f (x) are fixed by each a E H, and hence 
f(x) E Fix(H)[x]. 

It follows that al (0:), . .. , ar(o:) include all the conjugates of 0: over Fix(H), 
hence al, ... , ar are all the isomorphisms of E = Fix(H)(o:) over Fix(H). Since 
they are in fact automorphisms we have 

Gal(E : Fix(H)) = {al, ... ,ar} = H. o 

The fact that the maps B 1--+ Gal(E : B) and H 1--+ Fix (H) are inverses 
of each other means that, for normal extensions E of F, there is a one-to-one 
correspondence between intermediate fields B, E 2 B 2 F, and subgroups H of 
Gal(E : F). This correspondence is called the Galois correspondence. The first 
fundamental theorem is in fact usually expressed as the existence of the Galois 
correspondence. 

Remark It follows from part (ii) of the theorem that any finite group H can be 
realised as Gal(E : F) for number fields E 2 F. First one uses Cayley's theorem 
to realise H as a subgroup of Sn, and hence as a subgroup of Sp for any p > n. 
Then one constructs an irreducible polynomial f(x) E Q[x] of prime degree p > n 
with exactly two nonreal roots, as in Section 8.5*. The argument used in Section 
8.6* for p = 5 shows quite generally that the automorphism group of the root 
field E of f (x) is Sp. Finally, if we take F to be the fixed field of H, viewed as a 
subgroup of this automorphism group, then we get Gal(E: F) = H, as required. 

The great open question of Galois theory is whether an arbitrary finite group 
H can be realised as Gal(E : Q). Some of the results obtained so far will be 
discussed in Section 9.9. 

Exercises 

9.3.1 Find the three intermediate fields between Q( v'2, y'3) and Q, and the 
corresponding subgroups of Gal(Q( v'2, y'3) : Q). 
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9.3.2 Show that if E is of finite degree over F (not necessarily normal) then 
there are only finitely many intermediate fields. 

9.3.3 Deduce from the proof of the theorem that (E : B) = IGal(E : B)I for any 
field B between E and F, where E is normal over F. 

9.3.4 Deduce from Exercise 9.2.6 and the Galois correspondence that any sym­
metric rational function of Xl, ... ,Xn is a rational function of the elementary 
symmetric functions aO,'" ,an-I. 

9.3.5 Does it easily follow that a symmetric polynomial in Xl, ... ,Xn is a poly­
nomial in ao, ... , an-I? (Remember, this was the result of Exercise 6.5.1.) 

9.4 Conjugate Intermediate Fields 

It is no coincidence that the word "normal" applies to fields as well as groups. 
We are about to show that they denote matching concepts under the Galois 
correspondence. Actually we shall prove the more general result that conjugate 
intermediate fields correspond to conjugate subgroups, where subgroups Hand 
H' of G are called conjugate when 

H' = gHg- I for some 9 E G. 

Thus a normal subgroup (Section 7.8) is simply a self-conjugate subgroup, and 
the correspondence between normal intermediate fields and normal subgroups is 
established by the following theorem. 

Second Fundamental Theorem of Galois Theory. If E, F ~ C are fields 
with E normal over F then intermediate fields B, B' are conjugate over F 

{:} Gal(E : B), Gal(E : B') are conjugate subgroups of Gal(E : F). 

Proof. (=}) Suppose B' = T(B), where T is an isomorphism of B over F. Suppose 
that E = F(a) (by Section 9.1) and hence E = B(a). Then by Section 6.3 we 
can extend T to an isomorphism 0' of E over F, and since E is normal over F, 
0' is in fact an automorphism, that is, 0' E Gal(E : F). Thus B' = O'(B) and I 
claim that Gal(E : O'(B)) = O'Gal(E : B)O'-l. Indeed, 

X E Gal(E : O'(B)) {:} X E Gal(E : F) and X((3') = (3' for all (3' E O'(B) 

{:} X E Gal(E : F) and X(O'((3)) = 0'((3) for all (3 E B 
{:} X E Gal(E : F) and O'-IXO'((3) = (3 for all (3 E B 
{:} O'-IXO' E Gal(E : B) 

(<= follows because an element of Gal(E : B) necessarily belongs to Gal(E : F)) 

{:} X E O'Gal(E : B)O'-l. 

(<=) Suppose Gal(E : B') = O'Gal(E : B)O'-l for some 0' E Gal(E : F). It follows 
from the equivalence just worked out that O'Gal(E : B)O'-l = Gal(E : O'(B)) , 
and hence Gal(E : B') = Gal(E : O'(B)). But then it follows from the Galois 
correspondence that B' = O'(B), that is, B' is conjugate to B. 0 
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Corollary. If E, B, F ~ <C are fields with E normal over F and E "2 B "2 F 
then B is normal over F {:} Gal(E : B) is a normal subgroup of Gal(E : F), in 
which case Gal(E : F)jGal(E: B) ~ Gal(B : F). 

Proof. The normality equivalence is immediate from the fact that normality is 
the same as self-conjugacy for both groups and fields. The group isomorphism 
Gal(E : F)jGal(E : B) ~ Gal(B : F) results from a natural homomorphism 
from Gal(E : F) onto Gal(B : F) with kernel Gal(E : B) (compare with Section 
7.9, Example 2). 

The homomorphism is the restriction to B map lB. For any a E Gal(E : F) 
we define alB to be the function on domain B that agrees with a there. It is 
routi:qe to check that alB is an isomorphism of B over F, and since B is assumed 
normal over F it follows that alB is onto B and hence a IBE Gal(B : F). 
Conversely, any T E Gal(B : F) extends to a E Gal(E : F) by the argument in 
the (=}) direction of the theorem, hence IB is from Gal(E : F) onto Gal(B : F). 
And it is a homomorphism because if a, a' E Gal(E : F) we have 

aa'IB(,6) = aIBa'IB(,6) since aIB(,6) E B for all ,6 E B. 

Finally, 
ker(IB) = {a : a E Gal(E : F), a fixes B} = Gal(E : B) 

as required. o 
What we have called the first and second fundamental theorems are often 

combined into a single "fundamental theorem of Galois theory." There is also 
an enhancement, which we shall not need, equating the relative dimension of 
intermediate fields with the relative size of the corresponding Galois groups. To 
be precise, if Bl "2 B2 are fields between F and its normal extension E, and if 

then 

This is easily deduced from Exercise 9.3.3, the Dedekind product theorem, and 
the corresponding index product theorem (Section 7.7). 

Exercises 

9.4.1 Find the three conjugate non-normal subgroups of Gal(Q(~, (3) : Q) = 
8 3 (compare with Section 7.4), and the corresponding conjugate fields. 

9.4.2 Find a field between Q( ~,(3) and Q which is normal over Q. 

9.4.3 Prove that (BI : B2) = [H2 : HI], where B I, B 2, HI, H2 are as described 
above. 

9.4.4 Use the enhancement of the fundamental theorem, and the fact that 
Gal(Q((p) : Q) ~ Cp- I for an odd prime p (Why?), to show that Q((p) contains 
a unique field E with (E : Q) = 2. 
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9.4.5 Deduce from Exercises 9.4.4 and 9.1.6 that the quadratic field E C Q(p) 
is Q( y':EP). 

9.4.6 Use Exercise 1.5.2 to show in particular that Q(J5) C Q(5). 

9.5 Normal Extensions with Solvable Galois Group 

We now have enough Galois theory to be able to prove a converse to the necessary 
condition for solvability of equations found in Chapter 8. To make this a true 
converse we shall first revise the necessary condition for solvability so that it 
becomes a condition on normal extensions. 

If f(x) E Q[x] is solvable by radicals then the argument of Section 8.3 shows 
that the field Q(al, ... , an), where at, ... , an E C are the roots of f(x), has 
solvable Galois group over Q. Since Q(al, ... , an) is the splitting field for f(x) 
we can now add, by Section 9.3, that Q(al, ... , an) is normal over Q. Hence if 
f(x) E Q[x] and f(x) = 0 is solvable by radicals then the roots of f(x) lie in a 
normal extension of Q with solvable Galois group. To prove the converse, that if 
the roots lie in a normal extension of Q with solvable Galois group then f (x) = 0 
is solvable by radicals, it therefore suffices to show that any normal extension of 
Q with solvable Galois group is contained in a radical extension of Q. 

In the present section we shall use Corollary 9.4 to reduce this assertion to 
the special case of an extension with cyclic Galois group. 

Theorem. If E, F are number fields and E is normal over F with Gal(E : F) 
solvable, then there are fields F = Fo ~ Fl ~ ... ~ Fk = E with each Fi normal 
over F i - 1 and Gal(Fi : Fi-d cyclic of prime order. 

Proof. Solvability of Gal(E : F) means that there are groups Gal(E : F) = 
Go 2 G1 · .. 2 Gk = {I} with each Gi normal in Gi - 1 and Gi-dGi cyclic of 
prime order (Section 8.8). Let Fi = Fix(Gi ). Then 

where F = Fo by the Galois correspondence since E is normal over F. E is also 
normal over each Fi , and F i - 1 . The Galois correspondence says Gal(E : Fi ) = 
G i , which is therefore a normal subgroup of Gal(E : F i - 1) = Gi - 1. It follows, 
by Corollary 9.4, that Fi is normal over F i - 1 and hence, by Corollary 9.4 again, 

which is cyclic of prime order by hypothesis. o 
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9.6 Cyclic Extensions 

Having broken down our normal solvable extension E of F into steps F = Fo ~ 
Fl ~ ... ~ Fk = E such that each Fi is normal over Fi- 1 and Gal(Fi : Fi- 1 ) is 
cyclic of prime order, it remains to show that each such step is "small enough" 
to be described by adjunction of a pth root. The situation is the mirror image of 
the one described in Section 8.3, where a radical extension was broken down into 
adjunctions of pth roots, and these steps proved "small enough" to be described 
group-theoretically. 

Unfortunately, we again have trouble with roots of unity. We are only able to 
prove that Fi is a radical extension of Fi- 1 when (p E Fi- 1 , where p is the order 
of Gal(Fi : Fi-d. We shall carry out the proof of this special case here, then use 
it in Section 9.7 to show that any normal solvable extension is contained in a 
,radical extension, which meets our goal of Section 9.5. The present situation is 
definitely more difficult than that of Section 8.3. There we knew what the group 
was and had only to prove it abelian. Here we have no idea what the pth root 
is, and it is hard to believe it can be conjured out of Cp = Gal(Fi : Fi - 1 ). An 
ingenious way of doing this, with the help of (p, was discovered by Lagrange 
[1771]. 

Theorem. If Fi is normal over Fi- b Gal(Fi : Fi-d ~ Cp for p prime, and 
(p E Fi- b then Fi = Fi- 1 ( {ffJ) for some f3 E Fi- 1 • 

Proof. Since Gal(Fi : Fi- 1 ) has p elements, and all isomorphisms of Fi over 
Fi- 1 are onto Fi by normality, it follows by Lemma 9.3 that (Fi : Fi- 1) = p. 
Since p is prime it follows from the Dedekind product theorem that there is no 
proper intermediate field, and hence Fi = Fi-1(a) for any a E Fi - Fi- 1. Thus 
it suffices to find some {ffJ E Fi - Fi- 1 with f3 E Fi- 1· 

Choose any a E Fi - Fi- b so Fi = Fi-1(a), and let Gal(Fi : Fi- 1) = 
{I, a, a2 , ••• ,aP- 1}. Consider the numbers 

aj = a + (ta(a) + ... + (~P-l)jaP-l(a) for 0::; j ::; p -1. (*) 

Since (p E Fi - 1 is fixed by a we have 

and therefore 

a(aj) = a(a) + (ta2 (a) + ... + (~P-l)ja 
= (;jaj, 

a(dJ) = ((;jaj)P = (;jPaI] = aI]. 

Thus aI] belongs to the fixed field of a, which is Fi- 1 by the normality of Fi over 
Fi - 1 and the Galois correspondence. 

This suggests we take f3 = aI], however, this is no use if aj E Fi- b which is 
why we have left the value of j open so far. We can show that some aj f/. Fi - 1 

by the following trick. 
Notice that when k =1= 0 the set {1, (;, ... , (~p-l)k} of coefficients in the kth 

"column" of (*) equals {1, (p,' .. , (~-l} since p is prime, and hence sums to 0 
by the cyclotomic equation (Section 3.7). Thus we have 
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It follows that some (Xj tJ. Fi- 1 , so we take i3 = (X} for this particular j. 0 

9.7 Construction of the Radical Extension 

At last we are in a position to construct a radical extension containing a given 
normal solvable extension. In Section 9.5 we broke down the given extension E 
of F into steps 

with each Fi normal over Fi- 1 and Gal(Fi : Fi-d cyclic of prime order, Pi, say. 
In Section 9.6 we showed how to find a i3i E Fi- 1 such that Fi = Fi- 1 ( vViJi) in 
the special case where (Pi E Fi - 1 • 

We now construct a radical extension of F which contains E by retracing 
the steps Fo, F1 , ••• , Fk , but adjoining numbers (Pi where needed. The key to 
the successful adjunction of numbers (Pi is the following lemma. 

Lemma. If Fi is normal over Fi- 1 with (Fi : Fi- 1) = Pi then Fi((pJ is normal 
over Fi- 1((pJ with (Fi((pJ : Fi- 1((Pi)) = Pi· 

Proof. Fi normal over Fi- 1 

=} Fi is the splitting field of some f(x) over Fi- 1 by Section 9.2 

=} Fi((pJ is the splitting field of (xPi - l)f(x) over Fi- 1 

=} Fi((Pi) normal over Fi- 1 by Section 9.2 

=} Fi ((Pi) normal over Fi- 1 ((Pi) by definition of normality. 

Now if E1, •.• , Em is a basis for Fi over Fi- 1 it follows from the Dedekind product 
theorem that the elements Ej(;i span Fi((pJ over Fi- 1 , and hence over Fi- 1((pJ. 
But the (;i E Fi- 1 ((PJ, so in fact E 1, ••• ,Em span Fi ((Pi) over Fi- 1 ((PJ, and 
therefore 

(Fi((pJ : Fi-1((Pi)) ::; (Fi : Fi- 1 ) = Pi 

On the other hand, since Fi((Pi) ;2 Fi- 1((pJ ;2 Fi- 1 and Fi((Pi) ;2 Fi ;2 Fi- 1 

the Dedekind product theorem gives 

and also 

Then since (Fi- 1((p) : Fi- 1) ::; degree((pJ = Pi - 1 it follows that Pi divides 
(Fi((pJ : Fi- 1((pJ), and therefore (Fi((pJ : Fi- 1((Pi)) = Pi. 0 
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Theorem. If E is a normal solvable extension of F then E is contained in a 
radical extension of F. 

Proof. Let F = Fo ~ Fl ~ ... ~ Fk = E be the fields given by Section 9.5, 
where Fi is normal over Fi-l and Gal(Fi : Fi- 1) is cyclic of prime order Pi. It 
follows that (Fi : Fi- 1) = Pi by Section 9.2, since the automorphisms of a normal 
extension are all its isomorphisms. Then it follows by the lemma that Fi (Pi) is 
normal over Fi-1(p,) and (Fi(p,) : Fi-1(p,)) = Pi. 

It follows, in turn, that the isomorphisms of Fi (p,) over Fi- 1 (p,) are all 
automorphisms, and IGal(Fi(p,) : Fi-1(p,))1 = Pi by Section 9.2 again. Since 
Pi is prime this means Gal(Fi(p,) : Fi-1(p,)) = Cpp because CPi is the only 
group with Pi elements (a nontrivial cyclic subgroup cannot have less than Pi 
elements by Lagrange's theorem, Section 7.7). Then Section 9.5 gives 

This shows that by extending F = Fo by the successive radicals (PI' PV131, 
(P2' PV1J2, . .. '(Pk' PV7Jk we obtain a radical extension containing Fk = E, as 
required. 0 

Corollary. If f(x) E Q[x] has a splitting field E over Q, and Gal(E : Q) is 
solvable, then f(x) = 0 is solvable by radicals. 

Proof. Since any splitting field is normal (Section 9.2), it follows from the the­
orem that E is contained in a radical extension of Q. In particular, the roots 
of f(x) = 0 are in this radical extension and hence are expressible in terms of 
rational numbers and radicals. 0 

9.8 Construction of Regular p-gons 

In Section 5.6 we showed that, when P is prime, the regular p-gon is constructible 
only if p-1 is a power of 2. The proof used the fact that construction of the p-gon 
is equivalent to construction of (p, and that (Q(p) : Q) = P -1 = 2m when pis 
constructible. Since Q(p) is the splitting field of xP - lover Q, hence normal, 
we can now use properties of normal extensions to prove a converse theorem. In 
fact we can prove the following result. 

Theorem. If E is a normal extension of F with (E : F) = 2m and Gal(E : F) 
abelian then E is a radical extension of F by square roots only. 

Proof. We shall prove this for any number fields E and F by induction on m. 
The theorem is trivial for m = 0 and easy for m = 1. In the latter case E = F(a) 
by Section 9.1 and a satisfies a quadratic equation since (E : F) = 2, hence a 
is expressible by a single square root. We therefore suppose m > 1 and that 
the theorem is true for all k < m, and suppose we are given a normal E with 
(E: F) = 2m and Gal(E: F) abelian. 

There are 2m isomorphisms of E over F by Lemma 9.2 and since E is normal 
these isomorphisms are all onto E and hence IGal(E : F)I = 2m. We now find 
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a proper nontrivial subgroup H of Gal(E F). If Gal(E : F) is cyclic, say 
{I, 0-, 0-2 , . .. ,0-2

m
-l}, let H = {I, 0-2 ,0-\ ..• ,0-2m-2}. If Gal(E : F) is not cyclic 

let 0- be a nonidentity element and let H be the cyclic subgroup consisting of 
the powers of 0-. 

Since E is normal over F, the field Fix(H) is strictly between E and F by 
the Galois correspondence (Section 9.3). This gives us extensions with 

since 

(E: Fix(H)) = 2k < 2m 

(Fix(H) : F) = 21 < 2m 

(E: Fix(H))(Fix(H) : F) = (E : F) = 2m 

by the Dedekind product theorem. Both of these extensions are normal. E is 
normal over Fix(H) because E is normal over F. Fix(H) is normal over F 
because it corresponds to the subgroup H of Gal(E : F), which is a normal 
subgroup because Gal(E : F) is abelian. Finally, Gal{E : Fix(H)) is abelian 
because it is a subgroup of Gal{E : F), and Gal{Fix(H) : F) is abelian because 
it is a quotient group of Gal(E : F) by Section 9.4. 

Thus it follows by induction that Fix(H) is a radical extension of F by square 
roots only, and that E is a radical extension of Fix( H), and hence of F, by square 
roots only. This completes the induction. 0 

Corollary. (p is constructible if p is prime and p = 2m + 1 

Proof. In this case E = Q((p) has degree 2m by Section 5.1, and its Galois group 
over F = Q is abelian by Section 8.3. Thus it follows from the theorem that (p 
is expressible in terms of rational numbers and square roots. The square roots, 
however, may be applied to negative numbers. To show that (p is constructible, 
that is, of the form (p = a + i/3 where a,/3 are in the real quadratic closure of Q 
(Section 1.2), we have to investigate the square roots of complex numbers. 

Suppose 
V"(+i8= a+i/3. 

Then 

and hence 
a 2 

- /32 = ,,(, 2a/3 = 8. 

Substituting /3 = 8/2a in the first of these gives 

4(a2 )2 - 4"(a2 - 82 = 0 

which has the solution 

a = V"( + V ~2 + 8
2 

Since V"(2 + 82 ::::: hi, this expression for a involves square roots only of positive 
reals, and hence so does the corresponding expression /3 = 8/2a. Induction on 
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the number of square roots in (p = a + i(3 then shows that a, (3 are in the real 
quadratic closure of Q. Thus (p, and hence the regular p-gon, is constructible 
when P = 2m + 1. D 

Exercise 

9.S.1 Give another proof that if a + i(3 is constructible so is v'a+T/3, using the 
polar representation a + i(3 = rei8 . 

9.9* Division of Arbitrary Angles 

Recall from Section 5.6 how we showed that trisection of arbitrary angles is not 
constructible. We took the constructible angle n 13 and showed that one-third 
of it, n 19, is not constructible. Now that we know 2n Ip is constructible for any 
Fermat prime p, and that 2n In is not constructible unless n = 2m pI ... Pk for 
distinct Fermat primes PI, ... ,Pk (Section 5.7*), we are in a position to generalise 
the argument against trisection to the following: 

Theorem. Constructible n-section of arbitrary angles exists {:} n is a power 
of 2. 

Proof. ({=) If n = 2m then n-section reduces to a series of bisections, and 
bisection of an arbitrary angle is done by the construction shown in Figure 
9.9.1. 

, , , 
, ""'----.,J ... 

," \ I , \' 
....... / ,),0'" 
,---'" 'I , 

Fig. 9.9.1. Bisection of an angle 

( :::::?) Conversely, if n is not a power of 2 then n = pq for some odd prime p. It 
suffices to show that p-section of arbitrary angles is not constructible, because 
construction of an n-section implies construction of a p-section (by laying q 
copies of the n-sected angle side by side). 

If P is not a Fermat prime then an angle which cannot be p-sected is 2n, since 
2n is constructible but 2nlp is not (by Theorem 5.7*). If P is a Fermat prime 
then an angle which cannot be p-sected is 2n Ip, since 2n Ip is constructible (by 
Theorem 9.8) but 2nlp2 is not (again by Theorem 5.7*). D 
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9.10 Discussion 

The theorem of the primitive element, which is so important for the approach 
to Galois theory in this chapter, was also important for Galois. His version of 
it is the first substantial result in his memoir [1831]. It states that the root 
field Q(al,"" an) of an irreducible p(x) E Q[x] can be expressed in the form 
Q(nlal + ... + nkak) where nl,"" nk are suitably chosen integers. One of his 
referees, Poisson, judged Galois' proof to be insufficient, but noted that it could 
be saved with the help of Lagrange [1771], no.lOO (see Edwards [1984], p.103). 
Lagrange does indeed have a theorem which easily implies the existence of a 
primitive element (see Rotman [1990], p.99). Thus the theorem of the primitive 
element has a pedigree in Galois theory as long as that of the symmetric group. 
Even when Dedekind began to modernise Galois theory in his work [1893], the 
theorem of the primitive element retained a leading role (Theorem VI of [1893], 
§165). This was possible because Dedekind's concern, like ours in the present 
chapter, was with number fields. 

Dedekind's successors, Emmy Noether and Emil Artin, were not content to 
restrict Galois theory to such fields, and saw the theorem of the primitive el­
ement as an obstacle to greater generality. According to Weyl [1935], Emmy 
Noether "disdained to employ a primitive element in the development of Ga­
lois theory." Artin [1942] found that by extending Dedekind's ideas from linear 
algebra it became possible to prove a "fundamental theorem of Galois theory" 
for general field extensions without use of a primitive element. His approach re­
quires a division into the "separable case" (where irreducible polynomials have 
no repeated roots) and the contrary "inseparable case" (where the theorem of 
the primitive element is not necessarily valid). This approach has had many 
followers, but there seems to be a growing recognition that it is unnecessarily 
general for beginners. The recent Algebra by Artin's son Michael (Artin [1991]) 
returns to using a primitive element for the development of Galois theory. 

As a matter of fact, the place of primitive elements in Galois theory is very 
neatly marked out by a theorem of Steinitz [1910] (§14, Theorem III). The inspi­
ration for Steinitz's theorem is the rather surprising consequence of the Galois 
correspondence, for number fields, that a finite degree extension E of F has only 
finitely many intermediate fields. As suggested by Exercises 9.2.3 and 9.3.2, this 
is because E lies in a normal extension E* of F, also of finite degree. It follows 
that IGal(E* : F)I = (E* : F) is finite and, by normality, fields between E 
and F correspond to some of the finitely many subgroups of Gal(E* : F). To 
construct the finite degree normal extension E* one of course expresses E as 
F(a), and adjoins the finitely many images of a under isomorphisms of E. Use 
of a primitive element is unavoidable here, because it is in fact equivalent to the 
property being proved. Steinitz's theorem is that a finite degree extension E of 
F has finitely many intermediate fields if and only if E = F(a) for some a E E. 
(For an accessible proof see Rotman [1990], p.50.) 

The problem of realising a given finite group as Gal(E : Q) was apparently 
posed by Dedekind, though I have been unable to find the statement of it in 
his works. It is relatively easy to prove that any finite abelian group can be 
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realised in this way (see for example Dummit and Foote [1991J, p.514). Perhaps 
the most impressive result so far is that of Shafarevich [1954J, which says that 
every solvable group is realisable. This means that every group that could occur 
as the Galois group of a solvable equation actually does occur. It also means that 
the remaining "problem groups" are the nonsolvable groups, and particularly the 
simple groups. Now that we have a complete list of finite simple groups (assuming 
the 10,000+ page proof is correct!) there is keen interest in realising particular 
simple groups as Galois groups over Q. For a report on recent progress, see Serre 
[1992J. 

The expressions o+($a(o:)+ .. -+dp-1)j aP-l(o:) used in Section 9.6 are called 
Lagrange resolvents because expressions of this type were used, in a somewhat 
similar way, by Lagrange [1771J. In nos. 6 to 8 of this work he used them to 
give a symmetric solution of the general cubic equation. Here is the gist of his 
method. Suppose the roots of the cubic X3 + a2x2 + al x + ao are Xl, X2, X3 and 
consider the resolvent 

tl = Xl + (2 X2 + d X3. 

Let t2, ... ,t6 be the terms obtained from tr by permuting Xl, X2, X3 nontrivially. 
Then the coefficients of 

f(x) = (x - tr)··· (x - t6) 

are symmetric in Xl, X2, X3 and hence polynomials in ao, aI, a2 by the fundamen­
tal theorem of symmetric functions (Section 6.5* and Exercise 9.3.4). Moreover, 
it turns out that f (x) is quadratic in X3, and hence its roots are expressible as 
radicals in ao, ab a2. Finally, Lagrange recovers the original roots XI, X2, X3 as 
linear combinations of the tiS. 

Expressions similar to Lagrange resolvents (but involving just roots of unity) 
were used by Gauss [1801J in his proof that the regular p-gon is constructible 
when p is a Fermat prime. As we know from Section 5.7*, this determines the 
constructible n-gons - namely, as those for which n is the product of a power 
of 2 by distinct Fermat primes. Unfortunately, we do not know whether there 
are any Fermat primes beyond 3, 5, 17, 257, 65537. Thus we have to admit that 
this classical geometric problem is not completely solved. We know something 
the Greeks didn't know - that the problem is really one about prime numbers, 
and that it can be solved in cases they couldn't solve - but we still don't know 
much about Fermat primes. 

Deciding whether 65537 is the last Fermat prime may well tax the best 
mathematicians of the future. In the meantime, there is a smaller problem about 
65537 which has also not been solved: express (65537 in terms of square roots! 
Expressions for (17 and (257 were worked out early in the 19th century, and a 
Professor Hermes of Gottingen is said to have spent lO years in an unsuccessful 
attempt to compute (65537. Apparently the computations became too big for 
him. Surely today, with computer algebra systems, this should no longer be a 
problem. If 65537 is indeed the last Fermat prime, whoever computes (65537 

should earn at least a footnote in the history of mathematics. 
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