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Preface

The original version of this book, handed out to my students in weekly in-
stallments, had a certain rugged charm. Now that it is dressed up as a Springer
UTM volume, I feel very much like Alfred Dolittle at Eliza’s wedding. I hope
the reader will still sense the presence of a young lecturer, enthusiastically
urging his audience to enjoy linear algebra.

The book is structured in various ways. For example, you will find a test in
each chapter; you may consider the material up to the test as basic and the
material following the test as supplemental. In principle, it should be possible
to go from the test directly to the basic material of the next chapter.

Since I had a mixed audience of mathematics and physics students, I tried
to give each group some special attention, which in the book results in certain
sections being marked “for physicists” or “for mathematicians.”

Another structural feature of the text is its division into laconic main tezt,
put in boxes, and more talkative unboxed side tezt. If you follow just the main
text, jumping from box to box, you will find that it makes coherent reading,
a real “book within the book,” presenting all that I want to teach. You might
even learn linear algebra that way! But it is more likely that after reading the
main text of a chapter, you will feel the need of a friend, someone who can
explain things in more detail, give examples, and answer your questions. The
side text is meant to be the voice of this friend.

Regensburg, Germany, May 1994 KLAUSs JANICH
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CHAPTER 1
Sets and Maps
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1.1 Sets

Throughout your entire mathematical study, and particularly in this work, you
will be continuously involved with sets and maps. In an ordinary mathemat-
ical textbook these concepts occur literally thousands of times. The concepts
themselves are quite easy to understand; things become more difficult only
when we concern ourselves (from Chapter 2 on) with what in mathematics is
actually done with sets and maps. First of all, then, let us consider sets. From
Georg Cantor, the founder of set theory, comes the following formulation.

“A set is a collection into a whole of definite, distinct objects of our
intuition or of our thought, which are called the elements of the set.”

A set consists of its elements. If one knows all the elements, then one knows the
sct. Thus the “collection into a whole” is not to be understood as doing some-
thing special with the clements before they can form a set. The elemnents form,
are, and consbitule the set. and no more, Consider the following examples,
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= the set of natural numbers = {1,2, ... },

o = the set of nonnegative integers = {0,1,2, ... },
the set of integers,

= the set of rational numbers,

= the sct of real numbers.

FONZZ
I

The concept of a set consisting of no elements has turned out to be very useful.
This is called the empty set, for which the notation is as follows.

@ = the empty sct.

Next we introduce some signs and symbols, which one uses in connection with
sets. Thus we have

The element symbol €

The set brackets {...}

The subset sign C

The intersection sign N

The union sign U

The complementary set sign ~\
The product set sign x

Which among these signs is alrcady known to you? What do they represent,
when you simply make a conjecture from the names?
Let’s look at the clement symbol.

If M is a set and z is an element of M, then onec writes ¢ € M.
Correspondingly, y ¢ M mecans that y is not an element of M.

For example, —2 € Z, but —2 ¢ N.
For the sct brackets, sce the following box.

One can describe a set by writing its elements between two curly brack-
cts. This writing out of clements can happen in one of three ways. If the
sct has only a few clements, then one can simply write them all down,
scparated by commas, For example, {1,2,3} consists of the three num-
bers one, two, and three. Neither the order of the scquence nor whether
some clements arc repeated is of importance:

{1,2,3} = {3,1,2} = {3,3,1,2}.

The sccond possibility 1s to use periods to indicate clements that one
does not write ont. Thus {1,2,...,10} is immediately understood to
he {1,2,3,4,5,6,7,8,9,10}, and {1,2,...} to be the set of all natural

munbers.
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However, one should only use this procedure when certain that each observer of
the formula knows what the periods mean. For example, it would not be clear
how to rcad {37,50,...}. The third, most frequently used, and always correct
method is this: after the initial bracket, {, one first writes a letter or symbol,
which one has chosen to denote the elements of the set. One then makes a
vertical line, on the other side of which one states in terms of this symbol,
verbally or otherwise, what precisely are the elements of the set. Thus, instead
of {1,2,3}, one can write: {z | z integral and 1 < z < 3}. If the clements that
one wishes to describe already belong to a specific set for which one already
has a name, then one writes the property of belonging to the left of the vertical
line: {1,2,3} = { € Z |1 < z < 3}. This reads: “The set of all z from Z
with 1 less than or equal to z less than or equal to 3.”

To describe the third and most generally applicable way of using the
set brackets, let E be a property that cach z in a set X either has or
does not have. Then {z € X | z has property E} denotes the set of all
elements of X which have the property E.

We use the subset sign as described below.

If A and B are two sets, and if each element of A is also contained in
B, then one says that A is a subset of B, and writes A C B.

Thus, in particular, each sct is a subset of itself: M C M. Furthermore, the
empty set is a subset of each set: @ C M. For the scts introduced so far as
examples, one has & C {1,2,3} C {1,2,...,10} c NC N, CcZ cC Q C R.
In diagrams serving to illustrate the concepts introduced here, a set is often
represented by a closed oval shape, labeled by a lctter,
as in Fig. 1. Then M is meant to be the sct of points
M lying in the region “enclosed” by the oval. Sometimes,
for the sake of greater clarity, we shall also shade the
region where the points are elements of a set of interest
to us. For example, in Fig. 2 we apply shading to indicate
intersection, union, and difference (or complement) of
two sets A and B. In case you are not yet acquainted
with intersection, union, and complement, before reading
further 1t would be a good exercise to try to understand the definitions of N, U,
and \ in terms of the pictures in Figs. 2a, b, and <.

5 & &

Fig. 20, A0l Fig. 2h. AuB Fig. 2¢. A<

Fig. 1. A set M
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Definition: If A and B are two sets, then the intersection ANB (read
as “A intersection B”) consists of those elements that are contained in
both A and B.

Definition: If A and B are two sets, then the union AUB (“A union
B”) consists of those clements that are contained either in A or in B
(or in both).

Definition: If A and B are two sets, then the complement ANB (“A
minus B”) consists of those elements that while contained in A are not
contained in B.

When there are no elements “contained in both 4 and B,” doecs it make sense
to speak of the intersection A M B7 Certainly! Then we have AN B = @,
an example of the utility of the empty set. If @ were not admissible as a set,
then in defining A N B we would have to specify that there must exist some
common clement. Now think of what ANB = @ mcans?

Before moving on to maps, we want to discuss Cartesian products of sets.
To this end one must first define what is meant by an ordered pair of elements.

A pair consists in giving a first and a second element. If a denotes the
first and b the second element, then the pair is denoted by (a,b).

The cquality (a,b) = (a',b') therefore denotes that a = a' and b = V. This
is the essential difference between a pair and a two-clement sct: for the pair
the sequential order is important, for the set it is not. Thus onc always has
that {a,b} = {b,a}, but (a,b) = (b,a) only holds when a = b. A further
distinction is that there exists no two-element set {a,a} because {a,a} has
only one element, a. In contrast, (a,a) is a genuine pair.

Definition: The set A X B := {(a,b) | ac A, be B} of pairs is called the
Cartesian product of the sets A and B.

The symbol “:=" (analogously, “=: ) mecans
that the expression on the side of the colon is
first defined by the equation. Hence one does
not have to search through one’s memory to
decide if one already knows it or to what the
equation refers. Of course this should be clear

o
|
|
|
|
|
|
|
|
|
|
|
|
®
—_
e
o
-

AxB

|

from the context, hut the notation eases its
Fig. 3. Cartesian product Ax B reading.

In order to illustrate the Cartesian product,
one usually uses a rectangle and indicates A and I3 by intervals below and
to the left of this rectangle, as in Fig. 3. For cach o ¢ A and b ¢ D,
onethen “sees”™ the pair (a,0) as a pointin A - I These pictares have only a
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symbolic significance: they illustrate the situation in a very simplified way,
sincein general A and B are not intervals.
{o}xR Nonetheless, as aids to thought and visual-
ization, such diagrams should not to be dis-
(0,y)$====~--~~ *(z,) counted. One proceeds slightly differently
! when it is not a matter of consideringtwo
i sets A and B, but rather the special case
! A = B = R. Here one “draws” R? := RxR
(2,0) by sketching two mutually perpendicular
copies of the real line. The horizontal line
plays the role of R x {0} C R x R, the
vertical line that of {0} x R. An arbitrary
element (z,y) € R? is then formed from (z,0) and (0,y) as the diagram in
Fig. 4 shows.

Fig. 4. Cartesian product RxR

Analogous to the definition of pairs, one also has triples (a,b,c) and
n-tuples (a1,...,a,). If A;,... A, aresets, the set

Ay x -+ X Ap = {(a1,...,an) | a1 €41, ..., an€A,}
is called the Cartesian product of the sets Aj,...,A,. Particularly of-
ten in this book we shall have to do with the so-called R"; this is the

Cartesian product of n factors R:

R*:=Rx---xR.

R™ is thus the set of all n-tuples of real numbers. Of course, between R! and
R there is only a formal distinction, if indeed one wants to make one. For the
illustration of R3, as for R?, one uses the “axes” R x {0} x {0}, {0} x R x {0},
and {0} x {0} xR, but we only half draw them; otherwise, the picture becomes
difficult to read (see Fig. 5).

{0}x{0} xR

'af

{0} xRx {0}
Rx {0}x{0}
Fig. 5. Cartesian product RxRxR

Sich pictures are not memit to imply that R? is “the space” (physical or
geometrie): RY s and remaius thie set of all real nnmber triples.
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1.2 Maps

Definition: Let X and Y be sets. A map f from X to YV is a rule
which to each z ¢ X assigns precisely one element f(z) € Y. Instead
of “f is a map from X to Y,” one writes f : X — Y as an abbrevia-
tion. Frequently it is practical also to describe the association of a single
element z with its “image point” f(z) by means of an arrow, but in
this case, in order to avoid confusion, one uses another arrow, namely

What does one write when defining a map? Here there is a choice of formu-
lation. By way of example we use the map from Z to Ny that associates its
square to each integer. Then one can either write

Let f:Z — Ny be the map given by

f(z):=z% forall z € Z,
or, somewhat shorter,

Let f:Z — Ny be the map given by z — 22,

or, even shorter,
Consider f:Z — Ny, z — 22.

Finally, it is sometimes unnecessary to give the map a label; then one simply
writes

2
Z— Ny, z— 2%,

a very suggestive and practical notation.

One cannot avoid specifying which sets X and Y are involved (in our
example, Z and Ny ), and it is also not permissible to call our map simply z2.
This is the value of our map at the point z, or as one also says, the image of
z under the map, but not the mapping itself, for which we must choose some
other notation.

Addition of real numbers is also a map, namely

RxR — R
(z,y) — T +y.
One can (and should) describe all arithmetic operations to oneself in this way.
A mapping does not need to be given by a formula; one can also describe

the association in words, In order to distinguish between cases, one often uses
a large bracket. For example, the function f: R — R, defined by

1, if z is rational
I . . . .
0, if z is irrational,

is occasionally meutioned in analysis for one or another reason,
It & sequence of definitions, we shall now label some speetal maps as well
as concepts and constructions referving to maps,
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Definition: Let M be a set. Then one calls the map
Idy: M — M, z =z,

the tdentity on M. Sometimes one sloppily omits the subscript M and
simply writes Id, if it is clear which M is involved.

Definition: Let A and B be sets. Then one calls the map

m:AxXxB — A

(a,b) — a

the projection on the first factor (see Fig. 6).

(a,b) AxB

lm

Fig. 6. Visualization of the projection on the first factor

e a0

A

Q

/!

Definition: Let X and Y be sets and yy € Y. Then one calls the map

X —Y

r —r Yo
a constant map.

Definition: Let f: X - Y beamapand A C X, B CY. Then one
calls the set

f(4):={f(=) |z e 4}

the ¢mage set of A or “the image of A,” and the set
FY(B):={z | f(z) € B}

the pretmage set of B or simply the preimage of B.

FY(B) is read as “f minus 1 of B”. It is iiuportant to observe that in no
way have we defined f71(DB) using an “luverse map” 7' In this conneetion,
the symbol £ alone, without an adjoining (2), has no meaning,
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One can picture the concepts of image set and preimage set, shown in Figs.
7a and b, through the example of the projection onto the first factor of a
Cartesian product given in Fig. 6.

4 x f“(B)\x\\\ x
|’ |
— e Y
f(4) B
Fig. 7a. Image f(A) of A Fig. 7b. Preimage f~!(B) of B

The clements of f(A) are precisely the f(z) for = € A. However, it can also
happen that f(z) belongs to f(A) for some z ¢ A, namely when by chance
there exists ¢ € A with f(z) = f(z), as in Fig. 8.

(=)= S(2)
Fig. 8. It can happen that f(z)e f(A) for some z¢g A.

The elements of f~!(B) are precisely the elements of X that under the
map f land in B. With maps it can also happen that no element lands in B.
Well, then one has that f~1(B) = @.

Definition: A map f: X — Y is called injective if no two elements of
X are mapped onto the same element of V. It is called surjective, or
a map onto Y, if each element y € Y is an f(z). Finally, it is called
bijective if it is both injective and surjective.

Let X,Y,Z be sets and f,g maps X 4, ¥ % Z. Then in an obvious way one
can form a map from X to Z, which one writes as g o f, or in short form
as gf:

x L v 4z

z — f(z) — (9f)(z).

The rcason why ouce writes ¢ first in ¢ f (read “g following f7), even though
one las first to apply f, 18 that the inage of @ under the composition of maps
is g(f(.r)). We formulate this ax desevibed in the following hox.
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Definition: If f: X - Y and ¢: Y — Z are maps, then the compo-
sition gf is defined by X — Z, z — ¢(f(z)). If one has to deal with
several maps between different sets, it is often clearer to arrange them in
a diagram; for example, one can write themaps f: X - Y, g:Y — Z,
h:X — Z in the form f

X — Y

PR
Z

S

Ifmaps f: X -Y,g9g:Y —-B,h: X — A,and i : A — B are given, the
corresponding diagram looks like this:

x 1.y
hl lg
A—_*B

(3

Of course, more sets and maps can occur in such a diagram, it is certainly clear
enough what is meant by “diagram” without having to formalize this concept.

Definition: If in a diagram all maps between any two sets (including
compositions and possibly multiple compositions) agree, then one calls
the diagram commutative.

The abwram, for example, is commutative if and only if Zg f=ih S

If f: X —» Y is a map and one would like to construct an “inverse map”
from Y to X, which so to speak reverses f, then in general this fails for two
reasons. First, the map f does not need to be surjective, therefore for some’
y € Y there possibly exists no z ¢ X with f(z) = y, and hence onc does
not know which z to associate with y. Second, the map does not need to be
injective, and therefore for some y € Y there may be several x € X with
f(z) = y. But for amap Y — X, only one z is allowed to be associated to
each y. If, however, f is bijective, then there exists a natural inverse map that
we can define as follows.

Definition: If f: X — Y is bijective, the tnverse map to f is dcfined
by

7Yy — X,
f(z) — z.

Oue reads [ 1 cither as “f minns one” or as “f inverse,”
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~

Bijective maps will usually be denoted by the “isomorphism sign”
thus

*

fix S vy.

Just as a precaution, let me add one further remark about the concept of an
inverse map. Let f: X — Y beamap and B CY (see Fig. 9). You have just
heard that only bijective maps

have an inverse. However, expe- X —-—f"‘(B)
rience shows that beginners are
tempted to assume that every map
f ought “somehow” still to have

an inverse, and that f7!(B) has ! !

something to do with this inverse. fj i E

I agree that the notation suggests . o ! ! L
this, but it should still be possible ;

to distinguish between the bijec-

tive and nonbijective cases. When Fig. 9. Let f:X—Y be a map and BCY

f is indeed bijective, then f~1(B)

certainly has something to do with the inverse map, since you can describe it
either as the f-preimage of B or as the f~!-image of B. Clearly, one has ( f
assumed to be bijective):

f7iB)={z e X | f(z) e B} ={f""(y) |y € B}.

One final definition: the restriction of a map to a subset of the domain of
definition, shown in Fig. 10.

X

lf lflA

Fig. 16a. Map f:X—Y Fig. 10b. Restricted map f|4:A—Y

Y

Definition: Let f: X —» Y be a map and A C X. Then the map

flA:A — YV

a — f(a)

is called the restriction of f to A. One reads flA ax “f rvestricted
to A.”
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1.3 Test
(1) If for each a € A we have a € B, one writes

g AcCB g A=B O AuB

(2) For each set M, which of the following sets is empty?
0O MUM g MM a M\M

(3) As usual, represent A x B by a rectangle. How would one picture
{a} x B?
O a a

Fig. 11a. Fig. 11b. Fig. 11c.

(4) Which of the following statements is false? The map

IdM M — M
r — z
is always
O surjective O bijective O constant
(5) Let A, B be sets and A x B the Cartesian product. By projection onto
the second factor, one understands the map =, as:
0 AxB — A O AxB — B O B— AxB
(a,b) — b (a,b) — b b — (a,b)
(6) Let f: X — Y be amap. Which of the following statements implies that
f is surjective?

O f(¥)=X O f(X)=Y O fX)=Y

(7) Let X —f-> Y4 Z be maps. Then the map gf : X — Z is defined by
(1w g(f(e) 0w e flgl)) 0w — g()()
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(8) Let
Y

Lo
a
v

X

Z

be a commutative diagram. Then we have

O h=gf a f=nhg a g=rfh

(9) The map f : R\{0} — R~\{0}, z — % is bijective. The inverse map
F71 : R~ {0} — R~{0} is defincd by

Dx»———)% O z+ 2 Dz»———»—%

(10) R—>R, z— 22 is

O surjective but not injective
O injective but not surjective
O neither surjective nor injective

1.4 Remarks on the Literature

I imagine that the reader of the beginning of a first-year text is just starting
her or his studies and therefore might be interested in what a lecturer — in
this case, I — thinks of the relation between books and lectures.

Many years ago, as I was preparing the notes for my students, from which
this book has emerged, the books and manuscripts on linear algebra occupied
four feet of shelf space in the departmental library; today, they occupy more
than fifteen. According to mood one can find this reassuring or terrifying, but
one thing has certainly not changed: a beginning student in mathematics actu-
ally needs no textbook. The lectures are autonomous, and the most important
work for the student is her or his own lecture notes. This perhaps strikes you as
a task from mediaeval times. Take notes? Somewhere in the fifteen feet there
must be some book containing the material of the lectures. And if I don’t have
to write with the lecturer, then I can think much better with him — so you
say. Besides, you say to yourself: write? And what if I can’t decipher what is
written on the board? Or what if the lecturer writes so fast that I can’t follow
him?! And what if I'm ill and can’t come to the lecture? Then I'm stuck with
my fragmentary notes.

“Fean’t even apenk as fast as Jinich writes™ was one student s comment,

passed on to me,



Section 1.5: Exercises 13

So plausible appear these arguments, and yet they do not hold water. First
of all, on average no book in those fifteen fect will contain the “material of
the lectures.” Indeed, the large number of books and manuscripts on linear
algebra is more a sign that each lecturer prefers to go his own way. Of course,
many a lecture course is rooted in a given book or manuscript, and then you
should have the book, if only because the lecturer may leave gaps to be filled
from it. But even then you should take notes, and as soon as he makes use of
two books, you can be certain that he will follow neither of them exactly. If
you can’t write fast enough, you must train yourself to do so; if you can’t read
the board from the back of the room, you must look for a seat nearer the front;
and if you are ill, you must copy a colleague’s notes. Why this cffort? If not,
you will lose touch with the material, fall behind, and soon understand nothing
else being taught. Ask any older student if he has ever learned anything in a
lecture course in which he has not taken notes. It is as if information presented
to the eye and ear must first pass through the hand in order really to enter
the brain. Perhaps this is linked to the fact that in practicing mathematics,
you again have to write. But whatever the reason, experience proves it.

When you are really in the swing of a course of lectures, books will be very
useful to you, and for more senior year studies books are essential. You must
therefore learn to work with books, but as a novice you must not lightly let a
book tempt you away from direct contact with the course.

1.5 Exercises

1.1: If f: X — Y is a map, one calls the set {(z, f(z)) | z € X} the graph
Ty of f. The graph is a subset of the Cartesian product X x ¥ . In diagram
(a) it is indicated by a line. But the graph of a map cannot be an arbitrary
subset of X x Y since, for example, to each z there can only correspond one
f(z), and thus the line drawn in diagram (b) is not a graph. The exercise is to
draw graphs of functions with preassigned properties. For example, the graph
of a nonsurjective map is illustrated in (c).

() : () : (9):

/

mad
—
8
-
1
1
1
1
'
1]
i
1
1]
K

1
1
}
X x

FFig. 12a. Graph Fig. 12b. Nongraph Fig. 12¢c. Graph of
nonsurjective map

Give, in this fashion, exauples of graphs of maps £ with the following prop-
orbies:
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(i) f surjective, but not injective
(ii) f injective, but not surjective
(iii) f bijective
(iv) f constant
(v) f ncither injective nor surjective
(vi) X =Y and f=1dx
(vit) f(X) consists of only two clements

1.2: The inverse map f~! of a bijective map f : X — YV clearly has the
properties f o f~! = Idy and f~!'o f = Idx, since in the first case each
element f(z) € Y is mapped by f(z) — z — f(z) onto f(z), and in the
sccond case each z € X is mapped by z — f(z) — z onto z. Conversely, one
has the following (and the proof is the point of the exercise):

Let f: X - Y and g : ¥ — X be maps such that fg = Idy and
gf = Idyx, then f is bijective and f~ 1 =g.

(An injectivity proof runs like this: “Let z,2' € X and f(z) = f(z'), then
. Therefore z = z', and f is proved to be injective.” On the other hand,

the pattern for a surjectivity proof is: “Let y € Y. Choose z = ... . Then we
have ..., therefore f(z) =y, and f is proved to be surjective.”)
1.3: Let

f

A — B

be a commutative diagram of maps with a, 8 bijective. Show that g is injective
if and only if f is injective.

(We shall frequently meet this kind of diagram in the text. The situation
is then mostly: f is the object of our interest, « and 3 arc subsidiary con-
structions, means to an end, and we already know something about ¢. This
information about ¢ then tells us something about f. In solving this exercise
you will see into the mechanism of this information transfer.)



CHAPTER 2
Vector Spaces

2.1 Real Vector Spaces

Vector spaces and not vectors are the main topic of linear algebra. The elements
of a vector space are called vectors, and in order to explain the mathematical
notion of a “vector,” we first need the concept of a vector space. The individual
properties of vectors are irrelevent; what matters is that addition and scalar
multiplication in the vector space savf_igfjiﬂ certain axioms or rules. '

I will first illustrate these rules by means of an important example, indeed
a model example of a real vector space, R". The elements of this set are
the n-tuples of real numbers, and with numbers one can calculate in various
ways. Thus we can add n-tuples of real numbers together if we introduce the
following definition.

Definition: Let (z,,...,2,) and (y1,...,yn) be n-tuples of real num-
bers. We define their sum by

($17~--,97n)+(y17~--,yn) :=(-t1 +y1,"')‘tﬂ +yn)-

The sim s again an n-tuple of real nuuders, T a sinlar way one can define
what it means to umlliply an w tuple (rq,. .., 0,) by a veal munber A,
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Definition: Let A € R and (zi,...,z,) € R*. We define
A1y . oy 2n) 1= (A21,..., Azn) € R™

Since these computational operations amount simply to doing with each com-
ponent of an n-tuple what we otherwise do with individual numbers, from the
rules applying to numbers we derive corresponding rules applying to n-tuples.
Thus with regard to addition we note:

(1) For all z,y,z € R* wehave (z +y)+2=z+ (y +2).

(2) Forall z,y € R® wehave z +y=y+=z.

(3) If for the sake of brevity we write 0 for (0,...,0) € R", then for all
z € R* wehave z +0==x.

(4) If we write —(z1,...,2y) instead of (~z1,...,—2zn), then for all z € R
we have z + (—z) = 0.

(Hint on the notation: here z denotes an n-tuple of real numbers. We do not
have enough letters in order forever to reserve z for this purpose. Ahead, in a
quite different connection, we shall let z denote a real number lying between
—1 and 1. But in each case we will say to which set z belongs.)

For multiplication by real numbers we have

(5) For all A, € R and z € R® we have A(uz) = (Ap)z.
(6) For all z € R* we have 1z = .

Finally, both “distributive laws” hold for the “compatibility” of addition and
multiplication:

(7) For all A € R and z,y € R” we have A(z +y) = Az + Ay.
(8) Forall A\, € R and z € R® we have (A4 )z = Az + pz.

This was our first example: a small excursion into calculating with n-tuples
of real numbers. Now let us consider a quite different set, with whose elements
one can also calculate.

One calls a map X — R a real-valued function on X. Let M be the set of
real valued functions on the interval [-1,1], that is, M = {f | f : [-1,1] —» R}.
If f,g € M and )\ € R we define the functions f+g and Af by (f +¢)(z) :=
f(z) + g(z) and (\f)(z) := Af(z) forall z € [—1,1]. Then f+g¢ and Af are
again elements of M.

- 4

Fig. 13a. Manetion f IMig. 13h, Inetion g Fig. 13, Maction Sty
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The eight rules we have just listed for R" also hold for M: if we let 0
denote the element of M defined by 0(z) := 0 for all z € [-1,1], and —f the
element defined by (—f)(z) := —f(z), then for all f,g,h € M, A\,u € R we

have

1) (f+9)+h=Ff+(g+h)
) f+9=9+f

3 f+0=f

@) f+(=f)=0
(5) AMpf) =(w)f
6) 1f=f

(1) Mf+9)=A+Xg
@) A+p)f =X +pf
So far as the eight rules go, these functions behave in the same way as n-tuples

of real numbers, even though a single function considered on its own is quite
different to an n-tuple.

Definition: A triple (V,+, ) consisting of a set V', a map (called ad-
dition)

+:VxV —V
(z,9) ¥ z+y

and a map (called scalar multiplication)

cRxV — V
(\z) V— Az

is called a real veclor space if the following eight axioms hold for the
maps + and

(1) @+y)+z=z+(y+2) forall z,y,z€V.

2 z4+y=y+zforall z,yeV.

(8) There exists an element 0 € V' (called “zero” or the “zero vector”)
with z+ 0=z forallz e V.

(4) For each element r € V there exists an element —r € V' with
z+(—z)=0.

(5) Mupz)=(Ap)z forall \,peR,z€eV.

(6) lzx=z forall z e V.

() Me+y)=Ar+Ayforall A eR, z,yeV.

&) M+pz=Aztpuzforall \,peR,zeV.

I have already given you two examnples: the space (R™,+,+) of n-tuples of
real numbers, and the space (M, 4, +) of real functions on the interval [—-1,1].
And many more veetor spaces have their place in mathematics. Let us talk
nlmnl function spaces. In the (xumpl( ubove the finctions are defined on

[ TR B S I vnarinnt Tor the veclor space propoertics,
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The set of all real functions on an arbitrary domain of definition D with the
same addition and scalar multiplication becomes a vector space. But instead of
considering all functions on D, it is usually more interesting to study functions
on D with particular important properties. Thus there exist vector spaces of
continuous functions, vector spaces of differentiable functions, vector spaces of
solutions to homogeneous linear differential equations, and many more. One
cannot anticipate which function spaces one will meet later on.

This is similar for the spaces of n-tuples: often it is not a matter of consid-
ering all n-tuples, but only the space of those n-tuples satisfying a particular
system of homogeneous linear equations. Moreover, there exist many vector
spaces, the elements of which are neither n-tuples nor functions. You will be
meeting some of these soon — for example, vector spaces of matrices or vector
spaces of endomorphisms or of operators, and later on others, such as the vee-
tor space of translations of an affine space, tangent spaces to surfaces and other
manifolds, vector spaces of differential forms, and vector spaces, whose names
as yet mean nothing to you, like real cohomology groups or Lie algebras. And
this is only an enumeration of a few more or less concrete examples of vector
spaces. Often one has to do with vector spaces, for which in addition to the
axioms one has additional information (as for example with Hilbert or Banach
spaces) not necessarily, however, involving knowledge of individual properties
of the elements.

Because here we shall be doing linear algebra for the axiomatically defined
vector space concept above, and not for R"™ alone, it follows that already in
the first weeks and months of your university career you will learn something
essential about these various and in part difficult mathematical areas. This
is really great! And indeed mathematics has taken a long time to attain this
modern structural point of view. But you will perhaps suspect that we must
pay a high price for this. Surely linear algebra is much harder for an abstract
vector space than for R"? In no way, I reply — in many ways it is even
simpler and clearer. But we do not obtain the great advantages completely
free, and particularly at the start we must check certain statements for abstract
vector spaces, which are obvious for spaces of n-tuples or of functions. It may
appear strange and a little disturbing that such things have need of proof. The
following remarks are examples of this. But don’t worry; in Exercise 2.1 we
will clear things away.

Remark 1: In a vector space there only exists one zero vector, for if 0
and 0’ were zero vectors, we would have

0=0+40=0'+0=0

(by axioms 2 and 3).

Remark 2: In n vector spuce for each & there exiats only one -.r.
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ProoF:If x +a =0 and = + b= 0, we have

a+0 (axiom 3)
a+(z+b) (by assumption)
(a+z)+b (axiom 1)
=(z+a)+b (axiom 2)

a

=0+5b (by assumption)
=b+0 (axiom 2)
=b (axiom 3), and hence a=b. a

Notational convention: From now on, as usual, we shall simply write
z — y instead of z + (—y).

Before we pass to the next section (complex numbers and complex vector
spaces), I would like to draw your attention to an important peculiarity of
mathematical notation — namely, the frequent double meaning of symbols.
For example, we have labeled the zero vector as 0. This does not mean that
the real number zero, also written as 0, should be an element of the vector
space, but instead that in V there exists exactly one vector, the addition
of which “does nothing,” which is called the zero vector, and which like the
number zero is denoted by 0.

If we generally were to admit that, within a proof or within some other
context, one and the same symbol could have distinet meanings, then soon our
communication would break down. And each individual case of such double
meaning is of course a possible source of confusion, particularly for beginners;
this cannot be denied.

On the other hand, we must clearly take note of the fact that double mean-
ings cannot be completely avoided; in fact, mathematical literature is full of
them. Strict avoidance of double meanings would in the course of time lead
to such an overload of symbols, that even quite simple statements would sink
under their own weight. Because of its limited contents I could for a while
avoid all double meanings in this work, but then I would have to adopt some
very strange notational practices, which later on would give you difficulties in
making the unavoidable switch to normal mathematical fare.

But we shall be as sparing as possible with double meanings, avoid cases
with a real danger of confusion, and calmly name those cases which do oceur.
To label the zero vector with 0 is clearly such a case. It will be clear from the
context whether number or vector is intended. For example, if z,y € V and
z +y = 0, then this 0 is clearly a vector, etc. I would like at once to make
you aware of another case of double meaning: in what follows, instead of the
“vector space (V,+, +),” we shall mostly say the “vector space V.” This gives
the symbol V' a double meaninug both as the vector space and as the set V'
underlying the vector space.
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CHAPTER 2: VECTOR SPACES

2.2  Complex Numbers and Complex Vector Spaces

In many mathematical questions working with real numbers only resembles
studying point distributions on lines and finding no system:
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whereas working with complez numbers makes clecar what is going on. The com-
plex number system often makes possible decisive insights into the structure
and methods of “real” mathematics.
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Definition: By the field of complez numbers, one understands the
set C:= R? together with the two operations

+:CxC — C (“Addition”) and
«:CxC — C (“Multiplication”),

which are defined by

(z,y) +(a,b) :=(z +a,y +b) and
(z,y) - (a,b) := (za — yb, zb + ya).

Thus, addition is the same as in the real vector space R?, but on first sight
multiplication gives the impression of being arbitrary, and like one of those
formulae, which experience shows one tends to forget. Why not simply define
(z,y)(a,b) = (za,yb), which would seem to be the most obvious? This is best
explained by first introducing an alternative notation for the elements of RZ2.

Notation: Let R x 0 C C play the role of R, so that we write z € C
instead of (z,0) € C, and in this way treat R as a subset of C. In order
to distinguish the elements of 0 x R we shorten (0,1) to ¢, so that now
cach (0,y) can be written as yi and each (z,y) as = + yi:

3 +

2i 4mmmmmmmmmeeee t 3+4+2:

o
—
[\V)
w - - - - -
>
4]

Multiplication in € should satisfy the following: first of all it should be
associative, commutative, and distributive with respect to addition, that is,
for all u,v,w € C, we should have (uv)w = u(vw), uv = vu, and u(v+ w) =
uv+uw. All this would be satisfied by the multiplication (z,y)(a,b) = (za, yb).
Next, multiplication by a real number z should be “scalar multiplication” in
the real vector space R?, thus z(a + b)) = za + zbi. (This is already not
satisfied by (z,y)(a,b) := (za,yb).) Finally, and historically this was the real
motive for introducing complex numbers, the so-called “imaginary numbers”
yi were meant to serve as square roots for the negative real numbers, that is,
their squares should be negative real numbers! One achieves this by setting

i2 = —1. Now if a multiplication in C with all these properties does exist at
all, then necessarily (w4 yi)(n+ b)) = aat-yintabi+yili = wo—yb+ (ya+rb)i,
and this is where the formmla given in the defiuition or multiplication comes

from.
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There is more to say about the “inner mechanics” of complex multiplica-
tion (for example, multiplication by & is just rotation through 90°), but for
our purposes in linear algebra it suffices for the time being to note that one cal-
culates with complex numbers “exactly as” with real numbers. In particular,
the following properties of complex multiplication are important for us.

Remark: Complex multiplication C x C — C is associative, commu-
tative, and distributive; has a “unit”; and admits inversion of elements
distinct from zero. Restricted to R x C — C, it is the scalar multipli-
cation in R?, and to R x R — R C C the usual multiplication of real
numbers.

Expressed as formulae the properties set out in the first sentence of the above
remark say that: for all u,v,w € C we have (wv)w = u(vw), wv = vu,
u(v + w) = uv + uw, lu = u, and if u # 0, there exists a unique u™! € C
with ™1y =1.

Complezx vector spaces are defined analogously to real vector spaces:
one has only to replace R by C and “real” by “complex” in all instances.

Then C" := C x --- x C is an example of a complex vector space, exactly as
R" is one of a real vector space. The first four axioms, which have to do only
with addition in V, are taken over word for word. Perhaps it is better once
more to write out the whole definition.

DEFINITION: A triple (V,+, ) consistingof aset V,amap +: V xV -V,
(z,y)—»z+y,andamap +:CxV -V, (\,z) = Az, is called a complex
vector space if the following axioms hold:

(1) Forall z,y,2z € V wehave (z+y)+z=2z+ (y+2).

(2) Forall z,y € V wehave s +y =y + .

(3) There exists an element 0 € V so that, forall z € V we have 2 +0=z.
(4) For each z € V there exists —z € V with z + (—z).

(5) Forall A, € C and z € V we have \uz) = (Ap)z.

(6) For all z € V we have 1z = z.

(7) Forall A € C, z,y € V we have A(z +y) = Az + \y.

(8) Forall A,z € C, z € V we have (A + p)r = Az + px.

Instead of “real vector space” one also says “vector space over R,” and
insteac of “complex vector space,” we use “vector space over C.” If we
speak of a “vector space over F” in what follows, then we mecan that F
equals cither R or C.




24 CHAPTER 2: VECTOR SPACES
2.3 Vector Subspaces

If V is a vector space over F and U C V is a subset, then it is clear that
one can add clements of U together and multiply by elements of F, but this
is far from making U into a vector space. For example, it can happen that
z +y ¢ U, even though
z,y € U (sec Fig. 14), and [J r+ydU

if this is so, then the ad- B T
dition in V gives no map
UxU — U, as we would

need for a vector space U,
but only amap U xU - V.
First of all then we must re-
quire, if U is to become a
vector space through the V-  Fig. 14. Elements of UCV can be added, but this
addition and V-scalar mul- does not necessarily define an addition “in U.”
tiplication, that for all z,y € U and A € F we have z +y ¢ U, Az € U.
Moreover, we must make sure that U # @, since otherwise axiom 3 (existence
of zero) cannot be satisfied. But this is then enough, and the validity of the
axioms follows automatically. We will formulate this as a remark, but first we
give the definition.

Definition: Let V be a vector space over F. A subset U C V is called
a vector subspace (or just subspace for short) of V if U # @ and for
all z,y € U andall A\ e Fwehave z +y € U, Az € U.

Remark: If U is a subspace of V, then U contains the zero vector of
V, and for cach z € U the vector —z € V is contained in U also.

PROOF: One is tempted to say that this is obvious from U # @& and Az € U

for all A € F, z € U, since one can then put A = 0 or A\ = —1. For spaces
of functions or n-tuples this is indeed clear, but since (V, +, «) is an arbitrary
vector space, we must look for a proofthat 0.z =0 and (—1):z = —z, since

there is nothing in the axioms about this.

However, we have 0.z = (04+0).z = 0-z + 0-z by axioms 3 and 7,
hence 0 =0-2+(—0-z)=(0-2+0-z)+ (—0-z) by axiom 4. Therefore,
0=0-2+(0-z2+(—0-2))=0-2+0=0-z by 1 and 4, hence 0-z =0, as
we wanted to show. As a consequence we also obtain the other assertion, since
we now know that 0=0-z=(1+4+(-1))-z=1-z+(-1)-z=z+(-1)-z.
Thus z + (—1) -z =0, that is, (—1) -z = —=z. QO

Going through the eight axioms for U, one sees the following.

Corollary: If U is a subspace of V', then U together with the addition
and scalar multiplication inherited from (V) +, +) is itself a vector space
over F.
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In particular, {0} and V are themselves subspaces of V. In the pictorial
representation of R® as “space,” the subspaces other than {0} and R3? are the
“planes” and “lines” passing through the origin.

That the intersection of subspaces of V' is again a vector subspace of V' is
now too obvious as to deserve a formal proof. (Really?) But it is an important
fact, so we include it below.

Fact: If U;,U; are vector subspaces of V', then U; NU; is also a vector
subspace of V.

2.4 Test

(1) Let » > 1. Then R™ consists of

O n real numbers
O n-tuples of real numbers
O n-tuples of vectors

(2) Which of the following statements is not an axiom for real vector spaces?

O Forall z,y e V wehave c +y=y+z.
O Forall z,y,z €V wehave (z+y)+z=z+(y +2).
0O For all z,y,2 € V we have (zy)z = z(yz).

(3) For the multiplication of complex numbers we have (z + yi)(a + bi) =

O za+yhe
O zy+yb+(zb—ya)i
O za—yb+ (2b+ ya)

(4) In a vector space V over F scalar multiplication is given by a map

OVxV->F
OFxV -V
OFxF-TF

(5) Which formulation below can be completed correctly to give the definition
of the concept of a real vector space?

O A set V is called a real vector space if there exist two maps
+ :RxV - V,and « : RxV -+ V, so that tlhe following

cight axioms ace satisfied ...
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(6)

(7)

(8)

(9)

(10)

CHAPTER 2: VECTOR SPACES

O A set of real vectors is called a real vector space, if the following eight
axioms are satisfled ... .

0O A triple (V,+,+) in which V is a set and + and - arc respectively
maps VXV =V and RxV — V is called a real vector space if the
following eight axioms are satisfied ...

Which of the following statcments is true? If V' is a vector space over F
then

O {z+ylzeV,yeV}=V.
O {z+ylzeVyeV}=VxV.
O {dw|reFveVy=FxV.

Which of the following statements is true?

O If U is a subspace of V, then V \ U is also a subspace of V.

O There exists a subspace U of V for which V \ U is also a subspace,
but V N\ U is not a subspace for all subspaces U.

O I U is a subspace of V, then V \ U is never a subspace of V.

Which of the following subsets U C R" is a vector subspace?

OU={zeR"|z;=-=1z,)
O U={zeR"|z?=xsi}
OU={zeR* |z =1)

On restriction of scalar multiplication to the scalar domain R, a complex
vector space (V,+, ) becomes a real vector space (V,+,|R x V). In
particular, V := C can itsclf be regarded as a real vector space in this
way. Do the imaginary numbers U = {iy € C | y € R} then form a
vector subspace?

O Yes, because then U = C.

O Yes, because 0 € U and when X € R and iz,iy € U, we also have
z+y)eU and idz € U.

O No, because Ay does not need to be imaginary, since for example
12
14 =—1.

How many vector subspaces does R? have?

0 two: {0} and R?
O four: {0}, Rx 0, 0 x R (the “axes™) and R? itsell
[T infinttely many



Section 2.5: Fields 27

2.5 TFields

A section for mathematicians

Besides R and C there exist many other so-called “fields” that one can use as
scalar domains for vector spaces.

Definition: A field is a triple (F,+,.) consisting of a set F and two
rules of composition

+:FxF — F
Mp) — A+ (“Addition”)

and

«:FxF — F
() — (“Multiplication”)

which satisfy the following axioms:

(1) For all \,u,v € F we have (A + u)+v =X+ (p+v).

(2) Forall \,u e F wehave A+ pu=p+ A

(3) There exists an element 0 € F with A+ 0=\ forall A € F.

(4) Foreach A € F there exists an element —\ € F with A4+ (—\) = 0.

(5) For all A\, u,v € F we have (Ap)v = A(pv).

(6) For all \,u € F we have Ay = p).

(7) There cxists an element 1 € F, 1 # 0, such that we have 1A = A
for all A € F.

(8) For all A € F with \ # 0 there exists A™! € F with A~!A =1.

(9) For all A\, pu,v € F we have Mp+ v) = Ap+ v,

These nine properties are of course modeled on calculation with real or
complex numbers, and as a first approximation one can say that one calculates
in a field “just as” one calculates in R or C.

One can deduce easily from the axioms that the elements 0 and 1 named
in axiom 3 and axiom 7 are uniquely determined, so that we can speak of “the
zero” and “the one” (or “the unit”) of the field. Furthermore —\ and A™! are
uniquely determined for a given A; we have that (—1)A = —\, that Auy =0
if and only if A =0 or g = 0, and that (—1)(—1) = 1. We note this for the
convenience of the reader of the main text.

Fact: 0 and 1 are uniquely determined, likewise —\ and A™! for given
A. We have (=)A= =)\, (=1)(-1) =1 and \p =0 if andonlyif A=0
or #=0.
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If F is an arbitrary field, one defines the concept of a vector space over
F analogously to real vector spaces — replace R by F everywhere. In
this book, when we speak of vector spaces over F, then for the reader of
the Sections for Mathematicians we mean that F is an arbitrary field,
unless otherwise specified. In particular what we have formulated above
for “vector fields over F” holds for arbitrary fields and not only, as was
first given, for F=R and F=C.

Let me formulate the definition of a “field” in yet another way, which in
my view is easier to remember. This definition needs a little preliminary dis-
cussion, and therefore I have not used it in the main text. Thus: if anywhere
in mathematics you see an operation denoted by “+” (and this happens fre-
quently), then you can be reasonably certain that this operation is associative
and commautative, that is, for all z,y, 2 for which the operation is defined, we
have (1) 2+ (y+2) = (z+y)+2z and (2) z+y = y + z. If in addition
there exists a “neutral element” 0, and each z has its negative, then one calls
the set together with the operation + an abelian group (after the Norwegian
mathematician Niels Henrik Abel (1802-1829)).

DEFINITION: An abelian group is a pair (A, +) consisting of a set A and an
operation + : A X A — A, such that we have

(1) (a+b)+ec=a+(b+c)forall a,b,c € A.

(2) a+b=b+a forall a,be A.

(3) There exists an element 0 € A with a+0=a forall a € A.

(4) For each a € A there exists an element —a € A with a + (—a) =0.

The zero is then uniquely determined asis —a for a. The standard example
for an abelian group is Z, the abelian group of integers.

In principle it does not matter which symbol one uses for the operation; if
the four axioms are satisfied, we have an abelian group. However, two forms
of notation have become standard: first, the “additive” notation used in the
above definition. In the second, the “multiplicative” notation, one writes the
operation as + : G X G — G, (g,h) — gh, calls the neutral elcment 1 rather
than 0, and the “negative” g~ ' rather than —g. The definition as such remains
the same, so (G, ) is called a (multiplicative) abelian group, if

(1) (gh)k = g(hk) for all g,h,k € G.

(2) gh =hg for all g,h €G.

(3) There exists 1 € G with 1g=g forall g € G.

(4) For each g € G there exists g~ € G with g7lg=1.

With the notation introduced in this way, one can reformulate the definition
of a field as follows.

Note: (F,+, -) is a field if and ouly if (F, +) and (F\0, +) are abelian groups,
and the operations are distributive in the nsual sensey thus Mp+ ) = Ap+ v
and (g 4+ )X = pA 4 v forall A\ pu,v € F. ]
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In the analogy between field axioms and the properties of addition and
multiplication for rcal numbers, one must keep an eyc on one danger with the
field calculations. This is linked with the double meaning of 1 as a number and
as a field element. Thus, for the multiplicatively neutral element of a field, one
uses the notation 1, and one also denotes 1+ 1 € F by 2, etc. In this way each
symbol for a natural number has a double meaning as both a number and a field
element, and in the same way, n\ also has a double meaning for each A € F.
Taking n to be a natural number n) := A+ X+ .-- + X (n summands) has
to do with field eddition only, and one uses the same notation in an arbitrary
additively written abelian group. If, on the other hand, one takes n to be
the field element, then n\ has a meaning as a product in the sense of field
multiplication. Luckily this makes no difference, since for 1,2,... € F we have
A4+ A =1A41)=(1+ 1)\ = 2]\, etc., because of axiom 9, and therefore in
both interpretations n\ is the same field element. However, the element nA
can be zero, even though neither the number n nor the field element X is zero.
It can indeed happen that

14--+1=0¢PF

for an appropriate number of summands!

Definition: Let F be a field and 1 € F its unit element. For positive
natural numbers n we write n1 :=1+---+ 1 € F (n summands). If
nl # 0 for all n > 0 we say that F is a field of characteristic zero.
Otherwise the charactertstic of I is defined to be the smallest positive
number p such that pl = 0.

Remark: If the characteristic p of F is not zero, then it is a prime
number.

PROOF: Since 1 # 0 (axiom 7) p = 1 is not possible. If now p = p;p; with
p1 > 1, pa > 1, then we would have (pip2)l = (p11)(p21) = 0, hence either
p11 = 0 or pz1 = 0, contradicting the fact that p;ps is the smallest positive
number n such that nl =0. O

Examples: The fields R, C, and Q (the field of rational real numbers)
all have characteristic 0. If p is a prime number, then one can make
{0,1,...,p — 1} into a field F, by defining the sum and the product
to be the remainders of the usual sum and product on division by p.
(Example: 3-4 =12 in Z, 12 : 7 = 1 with remainder 5,s0 3-4=5
in F7.) The field F, has characteristic p. In particular, for F, = {0, 1}
define addition and multiplication by 04+0=0, 1+0=0+1=1, and
1+41=0,and 0:0=0-1=1-0=0, and 1-1 =1, respectively, thus
waking Fy uto a ficld of chavacteristic 2.
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2.6 What Are Vectors?

A section for physicists

From the mathematical standpoint this question has a simple but satisfactory
answer: vectors are the elements of a vector space. However, as a physicist you
are confronted with another point of view, when, for example, in the Berkeley
Physics Course [4], page 25, you read that “a vector is a quantity having
direction as well as magnitude.” What is meant here? What does this have to
do with the mathematical concept of vectors? Is it the same, only in different
words? Very legitimate questions, but not so casy to answer. The concept is
not completely the same, anyway.

For a closer explanation, I must examine the three words quantity, direction,
and magnitude. As a preparation let me begin with what one understands in
mathematics by the magnitude of a vector. Then we will return to our problem
and try to build a bridge between the mathematical and physical concepts of
a vector.

In the mathematical sense, vectors initially have no “magnitude,” but we
can give them a magnitude. Whether and how we do this depends on our
reasons for considering the vector space at hand in the first place. In those
parts of the first seven chapters of this book that are not specially directed
at physicists, we have no reason to equip vectors with a magnitude, because
the mathematical questions considered have nothing to do with magnitudes.
So for the moment let us jump across five chapters, right into Chapter 8,
where the Euclidean vector spaces, real vector spaces with an inner product,
are considered.

By the magnitude or norm or length of a vector r € R™, one understands
the number
llz|| := /22 +---+ 22 € R.

The reason for making this definition is given by Pythagoras’s theorem from
elementary geometry, depicted in Fig. 15.

T2

-

Fig. 15. Motivation for the definition of |z||

A vector ¢ € R" is then called a unit vector if we have
for example, ¢ ;= 75 Is a unit. veetor.
amplce, r

e =1.fx+#0,
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For two vectors z,y € R" one calls the number
(x,y) =nyi+--- + InlYn € R

the standard inner product of z and y.

We have (z,z) = ||z||* and also ||z + y||® — |lz — y|* = 4(z,y), so that,
interpreted in the elementary geometric sense, {z,y) = 0 means that the
diagonals z + y and z — y have equal length in the parallelogram gener-
ated by z and y. This means that this is a rectangle, and that z and
y are perpendicular to each other: {z,y) = 0 <= z L y. From this fol-
lows the elementary geometric significance of (z,y) for arbitrary vectors
z,y € R" distinct from zero: if we let e := ":—" and ¢ := “%ﬂ" and
Ae is the foot of the perpendicular from €' on to the line 0z, and if we
let a(z,y) denote the angle between
z and y, so that as a consequence
A = cosa(z,y), then e is perpendicular
to e'—\e. Therefore (e, e')—A{e,e) =0,
or {e,e') = \. But this means that

= cosa(z,y),

so that the inner product describes not
only lengths but also elementary angle
Fig. 16. Determining the angle be- mea..sures in R” (sce Fig. 16). In mathe-
tween two vectors z and y from their matics many other real vector spaces be-
inner product sides R™ are studied, and therefore one
introduces a general concept, which imitates the most important properties of
the standard inner product in R", as the following definition explains.

Definition: Let V be a real vector space. By an inner product on
V one understands a map V x V — R that is bilinear, symmetric, and
positive definite, that is, if the map is written as (v, w) + (v, w}, we have

(1) For each w € V the map (-,w) : V — R is lneer, which
means that we always have (v, + vg,w) = (v1,w) + {vz,w) and
(A, w) = A(v,w), and analogously for fixed v and (v, -} : V - R
(bilinearity). A

(2) (v,w) = (w,v) for all v,w (symmetry).

(3) (v,v) > 0 for all v, and {v,v) = 0 only for v = 0 (positive defi-
niteness).

For cach real vector space V' one can find such an inner product (, ), indeed
thiere are mauy of them - on R™ there also exist inuer products besides the
staudard one  and inorder to fix lengths of vectors and angles betweern themn
one s fivst to choose an inner prodnet.
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Definition: A Euclidean vector spaceis a pair (V,(,)) consisting of
a real vector space V and an inner product {,) on it.

Or one can also say that the vector space V' is given or comes equipped with
an inner product.

Definition: In a Euclidean vector space, ||v]| := 1/{v,v) is called the
magnitude or length of v, and for v # 0, w #0,

a(v, w) := arccos o w)

follllwll’

is called the angle between v and w.

So much for the magnitude of a vector from the mathematical point of
view, and I return to the problem, into which I have allowed myself to be led,
of analyzing the difference between the mathematical and physical concepts of
a vector.

This difference is connected with the fact that in physics there exists an
ever-present space of overwhelming importance, while linear algebra refuses
it “official recognition” as a mathematical object. This space is the actual
physical space in which we all find ourselves.

Unofficially, of course, this observation space is well known to mathemati-
cians. But if we are to take the points in this space to be “definite objects of
our intuition or of our thought,” our mathematical conscience will feel rather
uneasy. In the present discussion, however, we must ignore such philosophical
niceties and boldly declare the observation space to be sufficiently well defined.

This does not make the observation space A into a vector space — where,
for example, is its zero? But it is closely related to certain vector spaces.
Namely, if one chooses some arbitrary point O € A, and calls this the zero
or origin, then one can describe all points P € A as so-called position vectors

OP with respect to O. These are illustrated by arrows from O to P, can be
multiplied by real numbers, and added together as in the “parallelogram of
forces” shown in Fig. 17,

opP'

or
Fig. 17, Definition of addition Ap xAp—An

thus definmg a veetor space, whiclh we now denote by Ag. Morover, at auny
fixed pontt. O i space, plysies does not consider position veetors only, but also
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electric field strength vectors, velocity vectors, force vectors and many others.
By means of superposition and so forth, addition and scalar multiplication are
physically defined, making electric field strength vectors at the point O into
a real vector space £o, velocity vectors into a space Vo, force vectors into a
space Fo, and so on.

Although it is not customary in physics to give special names and nota-
tion to the vector spaces containing such vectors as elements, I have invented
these names here in order to use them in our comparison of the mathematical
and physical concepts of a vector. So far we see nothing problematic in this
comparison: we merely have a few concrete physical examples, Ao, £o, Vo,
Fo, etc., of the general mathematical concept of a real vector space in front of
us. Things become more interesting, however, when we consider the physically
measured magnitude of the phys1ca.1 vectors.

With every position vector 7 € Ao, with every clectric vector Ee éo,
etc., is associated a (phys1ca.1) magnitude |}, respectively |E|, etc. In general
th1s physical magnitude is not just a number but also has a physical dimen-
ston. (This use of the word dimension has nothing to do with the concept of
dimension in linear algebra, of which we will speak in the next section.) So,
for example, we do not have that |f] = 5 or |E| = 5, but |¥] = 5cm and
|E| = 5lts  Of course, a length-valued magnitude could easily be turned
into one whxch is real-valued; we need “only” to decide on a unit of measure.
But this is just what we want to avoid, since calculations with physical vec-
tors should not depend on such an arbitrary choice. Instead of building our
bridge by eliminating physical dimensions from physical formulae, we prefer
to introduce them into linear algebra! We do this in the following way.

We consider a length-valued scalar domain, as one can perhaps call it,
namely,

Rflength] := Rlcm] := {zcm | z € R}.

In an obvious way this is a vector space; the operations are given by
zem +yem = (z + y)em and A - (zem) = Azcem. In the mathematical
sense it is as “one-dimensional” as R itself. This length-valued scalar domain
is not just a formal construction, but is physically interpretable as the vector
space — not exactly of lengths, since what does a negative length mean? —
but of length differences. Note that by this construction of the length-valued
scalar domain we have in no way fixed the choice of a unit of measurement,
since R[cm] is preciscly the same as R[m], just as 5cm is precisely the same
as 0.05m. Thus, for position vectors we have || € Rfcm].

We do the same thing with all other physical dimensions; we have an elec-
tric field strength scalar domain R[*22], a velocity scalar domain R[B],
and so forth, all independent of the choice of units. We also want to have
the dimensionless scalar domain R itself as an example; we can write it as
R = R[1]. One can multiply these physical scalars together, for example,
S5cm-6 2= "°" = 30volt € R[volt]. You will not insist on long formal explanations
of cm - se¢ = sec-cm and £8 =1,

The essential point that distinguishes the physical from the mathematical
coneept of a vector concerns the relation of the different physical veetor spaces
Ao, €0, Vo. ... between cach other. As we liave seen, each of these real vee
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tor spaces has its own physical scalar domain, to which the magnitudes of its
vectors belong. But a physical vector space at the point O is also characterized
by its scalar domain: there do not exist several kinds of electrical field strength
vectors at the point O, distinguished somehow by the manner of their gener-
ation, but a vector at O with magnitude in R[volts/cm] is an element of £o.
Moreover, in physics it makes sense to multiply physical vectors by physical
scalars; one then obtains vectors with appropriately altered scalar domain. For
example, if one multiplies a velocity vector ¥ € Vo by a time interval, say by
5sec € R[sec], one obtains a position vector ¥ = 5sec- ¥ € Ao. Adopting
our notation for scalar domains for this kind of products, we would here have,
for example, Vo[sec] = Ao. In general, if Xo is a physical vector space at O
with scalar domain R[a] and if R[b] is another scalar domain, then we want
to write

Xo[b] = {bl—l‘l 7€ Xo}.

This is then the physical vector space with scalar domain R[ab]. Note that here
again we have not met any specification of a unit of measure, since different
units of measure are only distinguished by a real nonzero factor. In this way
all physical vector spaces at O are canonically related to each other. If Xo
and Yo have scalar domains R{a] and R[b], we then have Yo = Xo[s] and
Xo = Yol%]. In particular, if we so wish, we can describe them all by means of
the space of position vectors: Xo = Ao[%]. Each physical vector at the point
O 1is a position vector up to multiplication by some posstive physical scalar
factor. In this way it is possible to say that a physical vector, even if it is not
a position vector, has a “direction”: namely a direction in space!

If we look once more from our present position on the formulation: ¢ vector
s a quantity having direction as well as magnitude, we can clearly make the
distinction with the mathematical concept of a vector.

(1) A physical vector is a quantity with some physical origin. However general
this may be, it already expresses some other interpretation of a vector,
since the mathematical vector space axioms make no requirement as to
the origin or characteristic of the vectors.

(2) A physical vector has a magnitude, which is not part of the initial descrip-
tion of a mathematical vector. If, however, one introduces magnitudes by
means of the additional structure of an inner product, these are real
numbers, and not, as in physics, dimension-laden physical scalars.

(3) Finally, a physical vector has a direction in (physical) space, because the
physical vector spaces described above have a close relation to the position
vector space. There is no correspondence here with the mathematical
concept of a vector, since the axioms make no mention of a physical
space.

As is to be expected, these differences have further consequences. In the
Euclidean vector spaces of linear algebra, for exanple, the (real-valied) mag-
nitude is defined by the (equally real-valued) inner product: ||z|| = /(z, 2},
and converscly the inner produet can be reconstrueted from the magnitude:
(e, y) = |lv t yl|2 — |2 — y||*. In physies the inner prodoet & < 1f 15 formed
i parallel from the plysical vectors o and o, But i contrast to the imier
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product in linear algebra, ¥-@ is in general not a real number, but a physical
scalar. Moreover, ¥ and % do not need to belong to the same physical vector
space; for example, we are allowed to multiply position vectors & € Ao by
electrical vectors E € £o and obtain 7- E € Rivolts]. To what extent are
assertions about the mathematical inner product still applicable in _‘physms‘?
For example, it would be difficult to write 47- E = |7+ E|* — |F — E|?, since
the sum of a position and an electrical vector ma.kes no sense.

Perhaps in the telling of this tale you begin to wonder whether, as a physi-
cist, you are sitting in the right lecture hall. Shouldn’t linear algebra, insofar
as it is relevant for physicists, teach the basics of calculation with physical
vectors?

Not exactly. The real use of linear algebra for the working physicist is that
linear algebra, although elementary in itself, provides an essential tool for more
advanced branches of mathematics, which are indispensable for physics. Thus,
differential and integral calculus for several variables, and the theory of dif-
ferential equations, have considerable need of the lincar algebra dealing with
“mathematical” vector spaces, without mentioning the mathematical methods
of quantum mechanics or modern theoretical physics. For this reason you are
learning linear algebra, and not for a better understanding of the parallelo-
gram of forces. But this does not mean that “mathematical” linear algebra is
not applicable to calculations with physical vectors — even where these are
concerned with inner products. Let me finally say a few words on this.

Among the physical vector spaces at the point O is a particularly peculiar
one, namely the (physically) dimensionless vector space, for which we make
the notation

Uo = .Ao[c1 =&o[&] =" etc.

For vectors in this vector space, magnitude is actually real-valued. For example,
if 7 € Ao is a position vector with a magnitude of 5cm € R[cm], then the
dimensionless vector # := X . # has the magnitude | = 10 € R. This
has nothing to do with the choice of unit of length. Thus, this physically
determined, real-valued magnitude o — R fixes a genuinely mathematical
inner product, that is, if one defines

1., o
@ := Z(lE+ 9 - |7 -9,
the resulting map

Uo xUo — R

U,v) — U7
(@, )

is indeed bilinear, symmetric, and positive definite. In this way Up is made into
an Euclidean vector space according to the precise meaning of the mathemat-
ical definition. In the last analysis this depends on the fact that the Euclidean
axions hold in the obscrvation space: the mathematical theory of Euclidean
vector spaces applies directly to the physical vector space Uo without ifs aud
buts, withoul choice of units of measure or deed coordinntes, Because of
the comections between the physical veetor spaees, one has nevertheless entry
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to all other inner products between physical vectors. Namely, Ao = Up[cm],
o = uo[%], etc., and using the inner product on /o one obtains a compo-

sition (still called inner product)
Uola] x Uolb] — Rlab],

for example, Ao % £o0 — Rlvolt], (7, E) -7 E, independently of the choice
of units of measure. The Euclidean vector space o thus becomes a bridge
between linear algebra, in which the real-valued inner product is always formed
from two vectors in the same vector space, and calculations with vectors in
physics, in which vectors of different kinds are inner-multiplied together with
their product lying in some physical scalar domain.

For practical calculations with physical vectors it is often useful to introduce
coordinates. In mathematical linear algebra one also uses coordinates in some,
say, real vector space V. For this one first chooses a basis (see Chapter 3) of
vectors vy,...,v, of V, which means that each v € V can be expressed in a
unique way as v = \jv; +- - -+ A, v, by means of real numbers Ay,..., A,. The
AM,---,An are then called coordinates of v, and the lines g; := {Av; | A € R},
i=1,2,...,n, the coordinate azes of the space.

In calculations with physical vectors this is a little different, and again
the dimensionless physical vector space Up serves as a go-between. Thus,
for calculation with physical vectors one takes a basis of Up, usually three
mutually perpendicular unit vectors %,7,2 € Up, so that

and

I
—

2| =l = |2
Z-g=9-2=2-§=0.
How can we get such vectors? Well, for example, in the position vector space

one chooses three mutually perpendicular (and nonzero) vectors R, R,,
R. € Ao and lets

=]}
=Tt

-
. . R
F:= =, §:=2% and 2= F

- ==
|R:|’ |Ry| | B |

Because R, € Ao and |ﬁ,| € Rlcm], we have £ € Up and so forth. An
electrical vector_E; € £o in the direction R, does the same service for us,

again & = E,/|E,|.

|

=T}

If then ¥ € Up[a] is some physical vector with magnitude in the scalar
domain R[a], it can be written uniquely in the form

T= 0% +vy§+v,2
with coordinates vy, vy, v, € Rla], mid when one mner-uniltiplies botl sides

by &, one obtains

v oy,
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and analogously ¥ -y = v, and ¥- 2 = v,. For example, if E € & is an
electrical vector, one has

E=Ei+Ej+E.:

E,=E-i e R[¥t

cm J?
analogously for E, and E,. For the inner product of two physical vectors
@ € Uop[b] using bilinearity and -2 =g-§=2%2-2=1,
# = 0, one immediately calculates that

T W = vwz + Vywy + v;w, € Rlad)],
giving, for example,
7 E = r,Ey +1,E, +1,E, € Rvolt]

for the inner product of a position vector ¥ € Ao with an electrical vector
E € £p. This is the first of the useful vector tdentities on page 44 in the
Berkeley Physics Course [4]. The others involve the vector product, which
we will first consider in the next section. Note once more that introducing
coordinates does not presuppose introducing units of measure.

While I am talking about these foundational questions, the section gets
longer and longer, and I should take care that my book does not become lop-
sided. Nonetheless I must go into the question of what two physical vector
spaces at two distinct points O and O' have to do with each other.

Is £o the same vector space as £or 7 No. One can look at it from either the
mathematical or the physical point of view: a vector at the point O is not the
same as a vector at the point O'.

However, we can use translation of the observation space, to move each
position vector, and hence any other physical vector at the point O, to a
corresponding vector at the point O’.

Eo

s

Fig. 18. Physical vector spaces £0 and £,/ related by translation

One can also say that E and E' represent the same free vector. According
to one’s taste one can cither aceept the conecept of a “free” veetor as licreby
defined, or make use of a formal construction, suel ns taking o (ree physieal
veetor Lo consist. of all translates of 1o given “bound™ physienl veetor. The
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free electrical vectors then form a vector space &free, and analogously we have
Afree y Uiree, etc. It only lacks a choice of origin to turn a free physical vector
into a proper physical vector.

Why does one need free vectors? In physics, for example, it is often not a
single vector but a whole vector field that is of interest. An electric field in
some domain B C A in space associates an electrical vector from £¢ to each
point O € B (see Fig. 19).

“ﬁ\)_)_)’)——)—'”’
e —

Fig. 19. Example of a vector field (electric field outside a dielectric sphere)
We can describe such a field by means of a map
E:B- gfree .

Instead of several vector spaces £o, O € B, we then have to deal only with
one, which is more convenient. That we can be content with the free vector
E(O) € &jree is not because it had suddenly become unimportant where the
vector is situated, but because we know it: at O.

One can also use translation to move the dimensionless unit vectors ,, 2

to an arbitrary point, and hence consider them as free vectors. An electric ficld
E : B > &ee then becomes

E=E;2+E,j+ E.2,
where, however, the coordinates are now position dependent:
E; : B — R[¥l]

and similarly for y and z.
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2.7 Complex Numbers 400 Years Ago

Historical aside

Mathematicians were first seriously confronted with complex numbers in the
sixteenth century, when trying to solve equations. The simplest equations
where one encounters “roots of negative numbers” are quadratic equations.
However, it was not quadratic, but cubie, equations that forced the use of
complex numbers, and this for good reason. By way of example let us con-
sider the quadratic equation z? 4+ 3 = 2z. The solution formula for this type
of equation was known long before the

sixteenth century. In our example, it y
would say z = 1+ +/—2, which is a
meaningless expression, since one can-
not extract the roots of —2. The lack of
sense of the solution formula could not
disturb contemporary mathematicians
in the least, since it corresponds to the
fact that the equation actually has no
solution (see Fig. 20). The thought that
one might be able to artificially enlarge
the number domain so that previously
unsolvable equations would acquire so-
lutions, and one would have a uniform
theory of quadratic equations, is thor- Fig. 20. z?-2z+3=0 indeed has no
oughly modern and historically did not solution.

provide the pretext for discovering complex numbers. But the situation ap-
pears quite different, if one considers, say, the cubic equation 2% = 15z + 4.
In the sixteenth century one also found a solution formula for such equations,
which in this case reads

y=z2-2z43

2= {2+ VT2l + {/2- V=121,

Again we have a meaningless expression, but this time it does correspond to
the existence of the real solution z = 4. Sure, a root of —121 does not exist,
but if one were to proceed as if it did, and if in calculating with this “imaginary
number” one observes certain computational rules, then one can actually show
that 4/2 + v—121 + /2 — +/—121 = 4! The Italian engincer Rafael Bombelli
actually performed systematic calculations with complex numbers in this way
around 1560. However, mathematicians could not have been happy at first
with these “imaginary numbers.” On the one hand, they could not treat them
as a mere game, since with their help mathematicians were able to obtain
“genuine” (real) solutions of equations. On the other hand, they didn’t “exist,”
and not all mathematicians accepted the use of such “devices.” For a long
tine something niysterious elung to the complex mumbers  Leibniz expressed
that conplex mmubers were a kind of smanphibiaun hetween heing and not bemng,.
They were finnlly demystified i 1837 by the sl matlicidicinn and plysicist,
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W. R. Hamilton, who was the first to trcat complex numbers as they are
handled today — by giving rules for the manipulation of pairs of real numbers,

(My source for this “historical aside”: Helmuth Gericke, “History of the
Coneept of Number” (in German), sce [2] in our list of references.)

2.8 Remarks on the Literature

It is not easy for students new to a subjeet to use books, because each book has
its own system of notation, and there are small but irritating differences also in
the definitions. One does one’s best to arrive at a uniform terminology, but in
a subject like linear algebra, which is used in almost all areas of mathematics,
notational differences can hardly be avoided. When one considers that linear
algebra is used in subjects as different as the numerical solution of systems of
equations, homological algebra, and differential topology, for example, one has
to be thankful that so mnuch unity is still there!

“Getting into” a book parallel to the lectures requires patience, pen, paper,
as well as confidence in the quality of the book. You can certainly have this
confidence with P. R. Halmos, Finite-Dimensional Vector Spaces (no. [3] iu
our bibliography). Halmos is famous for his excellent expositional style: un-
derstandable, not dry and yet terse. Just try it! Qur Chapter 2 covers §§ 1-4
and §10 in Halmos  altogether just seven pages. Read these seven pages in
order to get acquainted with the book. Our notation agrees well with that of
Halmos. There are small differences: for example, instead of @, R, C, Z, we
write Q, R, C, Z; instead of “lincar manifold” we say “subspace.”

For the audience of my original lectures I added one special encouragement
that my present readers will not need, namely to accustom oneself as soon as
possible to reading textbooks written in English.

2.9 Exercises

Exercises for mathematicians

2.1: The rule z+ (y —z) = y, for example, does not appear among the axioms
of a vector space, but can be easily deduced from them:

z4+(y—z)y=z+(—z+y) (by axiom 2)

=(z—x)+y (axiom 1)
=0+y (axiom 4)
=y+0 (axiont 2)
=y (axiom 3).
So it would have bheen quite nonceessary to inelude o f () i oaong

the axioms. In setting np nn axiom system, one tries to choose the fewest and
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simplest axioms needed in order to deduce from them all the additional rules
that onc wants. Any usc of such an additional rule must of coursc be justified
by a proof that the rule actually is a logical consequence of the axioms,

But this does not mean that for each page of linear algebra you are bound
to write ten pages of “reduction to the axioms.” Given a little practice it can
be assumed that you would be able to carry out reduction of your calculations
to the axioms, and this does not need to be formally written out. You will gain
this practice in the present exercise.

Let V be a vector space over F =R or F = C, then for all z € V and all
A e [P, prove

(a) O4+z==z
(b) —0=0
(c) A=0
(d) 0z=0

(e) A2=0<=A=0 or z=0
) —z=(-1)z

In fact (a) through (f) hold for vector spaces over arbitrary fields. Working
out the proof in this generality is a useful exercise in the field axioms.

2.2: For o € F we define U, := {(zy,22,23) € F® | z; + x4 + 23 = a}. Show
that U, is a vector subspace of F® if and only if a = 0.

Fig. 21. For which o« is U, a subspace?

2.3: Let V be a vector space over F and U,,U;, be subspaces of V. Show
that if U, UU, =V, then Uy =V or U, = V, or both. (This is a particularly
pretty exercise. One can reduce the proof to three lines.)
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The x-exercise

The *-exercises have a higher level of difficulty, but they do not require a higher level of
knowledge than the regular exercises.

2*: If all the ficld axioms for (I, 4, +) (see the definition in Section 2.5) hold,
with the possible exception of (8), then one calls (F, +, +) a “commutative ring
with unit.” If in addition Ay = 0 only occurs if A =0 or g = 0, then F is
called a “commutative ring with unit element and no divisors of zero” or an
“integral domain” for short. Prove that every finite integral domain is a field.

Exercises for physicists

2.1P: Let (eq, e2, €3) be an orthonormal basis of a three-dimensional Euclidean
vector space. Let z,y be vectors with z = 3e; +4eg, |ly|| =5, and (y,e3) £ 0.
With these data calculate the cosine of the angle between z + y and =z — y.
What can go wrong if (y,e3) =07

2.2P: Let (ei,e2) be an orthonormal basis in a two-dimensional Euclidean
vector space, that is, ||er|| = ||e2]| = 1, {e1,e2) =0, and all vectors of ¥V have
the form Aje; 4+ Agez. Let o = ¢; 4+ e2. Show that V, := {v € V | {v,2) = a},
a € R, is a subspace of V if and only if &« = 0. Make a sketch to illustrate
the positions of e;,¢e2, and V.

2.3P: See Exercice 2.3 for mathematicians.



CHAPTER 3
Dimension

3.1 Linear Independcnce

Let V be a vector space over F, let vy,...,v, be vectors, and let Aq,..., A,
be scalars, which means v; € V and A; € F for : = 1,...,r. Then the vector
Avr + - + Arvy is called a linear combination of vi,...,v,.

Definition: Let vy,...,v,. € V. The set
L(vl,‘.‘,v,) = {Alvl + ~~+)\rvr | Ai € ]F} cV

of all linear combinations of vy,...,v, is called the linear hull of the
r-tuple (vi,...,v,) of vectors. For the “O-tuple” consisting of no vectors,

and denoted by @, we write L(@) := {0}.

Convention thus says that the zero vector can be constructed by linear
combination “from nothing.” If in what follows we talk of r-tuples of vectors,
the 0-tuple & is also considered admissible.

Since the sum of two linear combinations of v;,...,v, is again a linear

combination of vi,...,v,, because
(At 4 oo Apry) + (o + -+ v = (0 ) + - (A + ) or,

ard sinee, in addition, for caclt A € F the A-nmltiple of a linear combination
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of vi,...,v, is still such a linear combination, because

A(Alvl Foeee+ Ar'vr) = (AAI)vr R (AA,-)’U,-,

and since, finally, L(v1,...,v,) is not empty, L(vi,...,v,) is a subspace of V.
We record this as follows:

Fact: L(v,...,v,) is a subspace of V.

An r-tuple (v1,...,v,) of elements of a Vector space V is called linearly
dependent if one of these vectors is a linear combination of the others. So far as
the linear hull goes, one can omit this vector: the linear hull of the remaining
vectors is the same as the linear hull of (v1,...,v.). If (v1,...,v,) is not
linearly dependent, then one says that it is linearly independent. For practical
use of the concept of linear independence, a slightly different, more “technical”
formulation is in order. However, we will immediately convince ourselves that
these two formulations come down to the same thing.

Definition: Let V be a vector space over F. An r-tuple (vi,...,v,) of
vectors in V is said to be linearly independentif a linear combination
of (v1,...,vr) can only vanish if all the “coeflicients” vanish; that is, if
from Ajv; 4+ ++++ Arv, = 0 it necessarily follows that A; =--- = A, =0.
The 0-tuple @ is linearly independent.

Remark 1: (vy,...,v,) is linearly independent if and only if none of
these vectors is a linear combination of the others.

PROOF: We have two things to prove:

(a) (v1,...,v,) linearly independent => no v; is a linear combination of
the others.

(b) no v; is a linear combination of the others = (v,...,v,) is linearly
independent.

For (a) suppose that (vi,...,v,) is linearly independent. Assume that there
exists some ¢ with v; = A\jvp + -« + Aic1vic1 + A1t + -+ + Arvp. (This
is a generally accepted way of indicating the omission of the ith term in the
sum, even though it is not quite accurate say for i = 1.) But then the linear
combination

Mo+ 4 A1 vier + (Do + Adipaviga -+ Aoy

would also be zero, even though not all coefficients arc zcro, since —1 # 0.
This contradicts the lHnear independence of (vy,. .., v,.), proving (a).

For (b) suppose that none of the », is a linear combination of the renain-
g vectors i (onooen) Assiine thal (o 0.} i linearly devendent.
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Then there exist Aj,...,A, € F with A\; # 0 for at least one i and
A1v1 4+ -+ Arv, = 0. However, it then follows that

S U (= S - SO
] Ai 1 Ai i—1 Ai i+1 Ai Ty
s0 v; is a linear combination of the remaining vectors. This is a contradiction,
and so (b) is also proved. a

Definition: Let V be a vector space over F. An n-tuple (v,...,vy) of
vectors in V is called a basis of V, if the vectors are linearly independent
and L(vi,...,v,) =V,

If (v1,...,vs) is a basis, one can write each element v € V as a linear
combination v = Ajv1 + -+ + Ayvn, and thus “generate” or “span” (as one
says) the whole vector space by means of the vectors vi,...,v,. But this
already follows from L(vy,...,v,) = V, so why does one require in addition
that vy,...,v, be lincarly independent? This condition has the effect that
each v € V can be written in exactly one way as A\jv; + - + Ap¥p.

Remark 2: If (v1,...,v,) is a basis of V, then for each v € V there
exists exactly one (A1,...,A,) € F* with v=Auv1 + -+ + Apvn.

ProoF: Since L({vi,...,vn) = V, for each v € V there exists some such
(A1,...,An) € F™. Suppose that (A},...,Al) € F" is another, hence

v=Mv+ -+ AgUp = Ajvg 400 A An .

Then (A — M)vi + -+ + (An — Ap)vn = v — v = 0, and because of linear
independence of (v1,...,vn) it follows that A; — A} = 0, therefore A; = A} for
i=1,...,n. a

In a certain sense one can say that one knows a vector space if one knows a
basis of it. The R" is not a good example since we “know” it in any case, but
for the description of vector subspaces, for example, solution spaces for systems
of equations, giving a basis is often the best method — we will return to this
in Chapter 7, Systems of Linear Equations. More generally speaking, we will
need bases in order to translate problems of linear algebra into the language
of matrices.

The simplest concrete example of a basis of a vector space over F is the
so-called canonical basis (ei1,...,e,) of F*, where

€ = (1,0,...,0)
ez :=(0,1,...,0)

en = (0,...,0,1),
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3.2 The Concept of Dimension

We now want to introduce the concept of the dimension of a vector space, and
to talk about dimensions of subspaces and intersections of subspaces. Basic to
this is a rather “technical” lemma, the basis extension theorem. Later on, when
you are fully conversant with the basic concepts of linear algebra, this will be
absorbed into your general store of knowledge, and you will perhaps forget
that this item once had a special name — the “basis extension theorem.” But
at present it is the key to all the remaining concepts and results of this section
(not to forget the exercises).

Basis extension theorem: Let V be a vector space over F and let
V1yen,Vpy W1, .., ws be vectorsof V. If (vy,...,v,) is linearly indepen-
dent and L(vy,...,vsw1,...,w,) = V, then by suitably chosen vectors
from (wi,...,w,) one can extend (vi,...,v,) to a basis of V.

As a corollary we will obtain the exchange lemma.

Exchange lemma: If (v;,...,v,) and (wi,...,wy) are bases of V,
then for each v; there exists some wj, so that on replacing v; by w; in
(v1,...,v,) we still have a basis.

Let us postpone the proofs of both the basis extension theorem and its
consequence the exchange lemma until Section 3.4 — not that these proofs
are difficult, but because I will then go into certain questions of formulation,
which would make dry reading if you have not first seen how useful both results
actually are. So let us now turn to applications of the basis extension theorem
and the exchange lemma.

Theorem 1: If (v;,...,v,) and (w1,...,wm) are bases of V, then
m=n.

PROOF: Assuming that the bases have unequal lengths, say n > m, we would
be able to apply the exchange lemma repeatedly and trade all vectors of the
longer basis against vectors of the shorter, obtaining a long basis made of
vectors of the short one, in which therefore at least one vector would appear
twice, contradicting the linear independence of the basis. a

Thus any two bases of one and the same vector space are equally long, and
Theorem 1 justifies the following definition.

Definition: If the vector space V over F lias a basis (vy,...,v,,), then
n is called the dimension of V., abbreviated as dim V',
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Note: dimF” = n, because the canonical basis has length n.

To decide if a given r-tuple (v1,...,v,) of vectorsin V islinearly dependent
or independent usually requires some calculations. It is thus nice to know that
in certain cases you need no calculation at all: each r-tuple with » > dimV is
linearly dependent.

Theorem 2: Let vy,...,v,. be vectors in V and » > dimV. Then
(v1,...,0,) is lincarly dependent.

PROOF: Let (wy,...,wy) be a basis of V. Then L(wi,...,wy) =V and as
a consequence L(vi,...,vpw1,...,wy) = V. Were (v1,...,v,) to be linearly
independent we could use the basis extension theorem to extend (vi,...,v,)
to a basis (by taking vectors from (wy,...,wy)). This basis would have length
at least equal to r, contradicting r > dim V. a

Thus, if one has to decide on the linear dependence or independence of some
r-tuple in V', one will routinely first look if perhaps » > dim V. Four vectors
in R?® are always lincarly dependent!

Theorem 2 also enables us to see that there exist vector spaces that have no
(finite) basis, and hence for which no dimension is defined. For this we consider
an example of a real vector space, already mentioned in Chapter 2. Let M be
the real vector space of continuous functions on [—1, 1]. For each integer n > 0
let fn € M be the function with the graph displayed in Fig. 22.

Then for each % the k-tuple .
(f1s---, fx) is linearly inde- 1+
pendent (because Ay fy + --- E
+ Arfr takes the value ) !
at the point 3(} + ) for :'
1<i<k) fnow M had a !
basis (v1,...,v,), then (by !
Theorem 2) k¥ < n, and this _; 0!
is clearly not possible for all :
k > 0. There is an extended
notion of possibly infinite
bases and one can show that in this sense any vector space has a basis. We do
not wish to explore this further here, but we adopt the following terminology.

I
—

1
n+1

Fig. 22. Graph of the function f,

Definition: If V possesses no basis (v,...,vs) for 0 < n < o0,
then V is called an infinite-dimensional vector space, and we write
dimV = 0.

The final object of study in this section is the dimension of subspaces of
finite-dimensional vector spaces, As answer to the obvious first question we
Liave the following remark.
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Remark 3: If V is finite-dimensional and U C V is a subspace, then U
is also finite-dimensional.

PRrOOF: If (vy,...,v,) islinearly independent, then » < dim V' by Theorem 2.
Hence there exists some maximal r, for which one can find a linearly inde-
pendent r-tuple (vi,...,v,) in U. But such an r-tuple will then also satisfy
L(v1,...,v,) = U and hence be a basis of U! To see this, note that for each
u € U the (r+1)-tuple (vi,...,v,,u) is linearly dependent, which means that
there must be some non-trivial linear combination

Avr 4o Ao +Au =0,

and we know X # 0, since otherwise Ajv; +- - ++A,v, = 0 would be a nontrivial
linear combination. Therefore

US v —)-\ivr € L(vi,...,vy),
and we have found a basis for U, showing that it is finite-dimensional. a

A basis (v1,...,v.) of U can always be extended to a basis of V': just apply
the basis extension theorem to (v1,...,vr, w1,...,wy), where (wi1,...,wy) is
abasisof V.If U g V, the basis (v1,...,v,) must be genuinely lengthened,
from which follows the next remark.

Remark 4: If U is a subspace of the finite-dimensional vector space V,
then dimU < dim V is equivalent to U # V.

Now let U; and U; be two subspaces of V. Then U; NU3 is also a subspace,
and we want to try to make some assertion about its dimension. First, one notes
that dim(U; NUz) cannot depend on dim U; and dim U alone (see Figs. 23a
and b).

Us
U

Fig. 23a. dim U)NU,=1 Fig. 23b. dim U;nUz=0

Thus the relative position of tlhic two subspaces to cach other also plays a role.
How can one make this precise? To start, we mtrodnee the coneept of the sum
of two subspacrs.
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Definition: If U,,U, are subspaces of V,
U+Us:={z+y|lzel,yel}CV

is called the sum of U; and U,.

Of course the sum U; + U, is again a subspace. In order to get used to
this new concept, consider why, for example, the statements U + U = U,
U+{0}=U,and U C U +U' are correct. If you have more time, also try to
understand why U+ U' =U << U'CU.

Theorem 3 (Dimension formula for subspaces): Let U; and U be
finite-dimensional subspaces of V', then

dim(U; N Us) + dim(U; + Usz) = dim Uy + dim Us.

Proor: This proceeds with the help of the basis extension theorem. First
choose a basis (v1,...,v.) of Uy N U, and then extend it once to a ba-
sis (v1,...,Vr,wy,...,ws) of U, and a second time to a basis (v1,...,v,,
Z1,...,2¢) of Us.

U

Us

Fig. 24. Suminary of the proof of the dimension
formula: first choose v, then w, and then z.
Now count.

Then (vi,...,0r,w1,...,Ws,21,...,2¢) Is & basis of Uy + Uz. Why? Clearly
L(vy,...,2:) = Uy +Us, and we have to show only that (v;,...,2) is linearly
independent. Suppose therefore that

AtV + o ApUp + w4 o paws + 121+ + vz = 0.

Then v zy + -+ 4142, € UyNU,, since it is certainly in Uz and lies in U; as
a consequencee of the cquation vyzy 4+ vz = =-Aywy—- -« — pw, . But then
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for suitable ay,...,a, we have 112y 4+« + vz, = ayvy + -+ + + v, bhecause
(v1,...,vy) is a basis of Uy NUz. From this it follows that all the v’s and a’s
are zero, beeause (v1,...,y, 21,...,2) is linearly independent. Hence

A:l’u:l_{""'+A"’u"—{"l'tlwl’i"""{"l‘a’l‘l)a=0a

implying thiat the A’s and u’s also vanish. These two steps show the de-
sired linear independence of (vi,...,2). Counting dimensions, we have
dimU;NU; =7, dimU; =r+3s, dimU; =r+t, dimU; +U; =r+s+t, from
which the formula to be proved follows, namely dimU, N Uz 4+ dim Uy + U,
=dimU; + dimUs. a

3.3 Test

(1) For which of the following objects does the description “linearly depen-
dent” or “linearly independent” make sense?

O An n-tuple (v1,...,v,) of elements of a vector space
O An n-tuple (v1,...,vs) of real vector spaces
O A linear combination Ajv1 + -+« + Apn

(2) Let vy,...,v, € V. What does L(vy,...,v,) = V mean?

O Each linear combination Ajv1 4 -« 4+ Apv, is an element of V.
O Each element of V is a linear combination A1v; + -+ + Ap¥y -
O The dimension of V is n.

(3) For linearly independent triples (v;,vq,v3) of vectors in V,

O (v1,v2) is always linearly dependent.

O (v;,vz) may or may not be linearly dependent, depending on the
choice of (v1,ve,vs3).

O (v;,vz) is always linearly independent.

4 e tth vector of the canonical basis o is defined by
The ¢th f th ical basis of F" is defined b

0 e =(0,...,...,0).
0 e =(0,...,1,...,0).
0 e=(,...,1,...,0).

(5) Which of the following statements implies the linear independence of the
n-tuple (v1,...,v,) of elements of V'?

O Mor+-+ A =0o0nlyif A\, =A== A, =0.

OKA=---=X,=0,then Ajvy + -+ Apv, =0.
O Mo+ -+ Ay, = 0 for all (Ay,...,A,) € F*.
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(6) In the basis exteusiou theorem a linearly independent r-tuple of vectors
is cxtended to a basis by means of vectors from an s-tuple of vectors
(assuming that the vectors taken together generate the space). What
docs the basis extension theorem say in the case r = 07

O I (wi,...,w,) is an s-tuple of vectors in V and L(w;,...,w,) =V,
then one can extend wi,...,w, to a basis.

O If (wy,...,w,) is linearly independent, then there exists a basis con-
sisting of vectors from (w,,...,w,).

O I L(w,,...,w,) = V, there exists a basis consisting of vectors from
(w1,...,ws).

(7) The vector space V = {0} consisting of zero
0O has the basis (0) O has the basis @ O has no basis

(8) If one were to define Uy — Uz := {z —y |z € Uy,y € Uz} for subspaces
Uy,Uz of V, then one would have

Q U, —U, = {0}.
a (Ul—U2)+U2=U1.
a uvu,-U;=U, +U,.

(9) One always has

O (Uy+Uz) + Us = Uy + (U2 + Us).
O Uy n Uz +Us) = (U 0nU) + (U NT3).
aun +(U2 n U3) = (U1 +U2)0(U1 +U3).

(10) Subspaces Uy,Uz of V are said to be transverse (to each other) if
Uy +U; =V. One calls codim U :=dimV —dim U the codimension of
U in V. For transverse U1,Us, one has

O dimU, +dimU; = dimU; NU;.
O dimU; + dimU; = codim U; N ;.
O codim U; + codim Uy = codim Uy N Us.

3.4 Proof of the Basis Extension Theorem
and the Exchange Lemma

A section for mathematicians

Proof of the Basis Extension Theorem: The theorem reads: “If V is a
vector space over I, if L(vy,..., v, wy,...,ws) =V, and if (vy,...,v,) is lin-
carly independent, then by suitably chosen vectors from (w, ..., ws) one can
extend (vy,...,v,) to abasis of V.” Here we allow the cases ¥ =0 and s =0,
(The empty “0-tuple” counts as being Linecarly independent, and L(2) = {0}.)
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We carry out the proof by induction on s. In the case s = 0 (start of the induc-
tion) there is nothing to prove, because (v1,...,v,) is already a basis. We must
show that if the theorem holds for s = n (inductive assumption) then it also
holds for s = n+ 1. Suppose therefore that we have (v1,...,vpw1,...,Wns1)
with L(vy,...,wp4+1) =V and (vy,...,v,) linearly independent.

¥ L(vi,...,v,) =V already, then (v1,...,v,) is a basis and the assertion
is proved in this case. Suppose therefore that L(vi,...,v,) # V. Then at least
one of the w; is not contained in L(vy,...,v,), because otherwise L(vy,...,v,)
would be L(vy,...,vr, w1,... ,wnt1), Whichis V.

For such a w; the (r41)-tuple (v1,...,v,, w;) is then linearly independent
since from Ajv; + -+ + A v, + Aw; = 0 it follows first that A = 0 (because
w; ¢ L(v1,...,v,)) and then that A, = .- = A, = 0 (because (vi,...,v,)
is linearly independent). By the inductive assumption one can now extend
(v1,...,v,, w;) to a basis of V by choice of suitable vectors from the n-tuple
(w1, ..y Wim1,Wig1,- .. ,Wnt1), S0 that the desired extension of (v1,...,v,) to
a basis of V has been achieved. a

With this proof on hand, let us discuss some questions of mathematical
formulation. In the theorem one has “ ... then by suitably chosen vectors
from (wy,...,w,) one can extend (v1,...,v,) to a basis of V.” In more com-
plicated mathematical situations one cannot manage with such a verbal de-
scription (which, however, does very well in simple cases!). What would more
formal notation look like? If one extends (vi,...,v,) by vectors a1,...,ar, one
naturally obtains the (r + k)-tuple (»1,...,v.,01,...,ax). But how does one
write that ay,...,ar are taken from (wi,...,w,)? One cannot simply write
wy,..., Wk, since this specifically describes the first k vectors of the s-tuple
(wi,...,ws).

If one wants to describe a k-tuple of vectors chosen from (w1,...,w,),
one must use indered indices. Each such k-tuple can be written as
(wi,,-..,wi, ), where the i, are integers with 1 < i, < ¢. If in ad-
dition one requires that no w; is used more than once, one must suppose
that the i, are pairwise distinct, that is, iy # ig for a # 8.

We could then formulate the basis extension theorem as follows: “If V is a
vector space over F, L(vy,...,v,wy,...,w,) = V and (vy,...,7,) is lin-
early independent, then either (v;,...,v,) is a basis or there exist pairwise
distinct integers iy,...,ix, with 1 < i, < s for @« = 1,...,k, such that
(viy.ev s ¥y wiy,. .., wi, ) is & basis.”

A second point of the proof that we wish formally to “fill out” con-
cerns the assertion that from wi,...,wn41 € L{vy,...,v,) it follows that
L(vi,...,vs) = L{vi,...,vp,w1,...,Wn41). Indeed this is clear, since on
one hand each Ajv; + -+ + Av, € L(v1,...,v,) can be written as the lin-
ear combination Ajv; + -+ + Arvy + Qwp + -+ + Owyyy, and conversely if
v=Av1 4+ Ar'ur’{"l“'wl o fn b1 Wy € L("h Ve 1“’n+l) is givun, we
nced “only” to express the w; as linear combinations of the vy 1o see that v iy
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also a linear combiuation of the v;. But if we really want to write everything
out we must use double indices.

If each w; must be written as a linear combination of (v,...,v,), the
coefficients must be so labeled that one immediately sees to which w; and
also to which v; they refer. One can, for example, write the coefficient
as A}, i=1,...,n+1, j = 1,...,r, where i is an upper index and not
an ith power. But one can also write the two indices next to each other:
Aij.

With this notation we can then say: “If wy,...,wp41 € L(vy,...,v,),
then w; = Apvy + -+ Aipvy, £ =1,..,,n+1, for suitable A;; € F.”

For a linear combination v of (vy,...,v,,w1,...,wpt1) we then have

V= AU+ + AU W ‘+ihnp1Wntl
= Av1+ + A0+ (A1 V14 # A0 )+ i1 (Ang 1,101+ +Ang1,r )

and collecting terms we obtain
v = (A1+1 014 i p1An41,1)V1+ - H A+ 1AL+ b1 Angl,r )V

and so v € L(vi,...,v.). Please observe that we could not have written
wi = Aj, 1+ o+ A vy

The conclusion of the proof reads: “By the inductive assumption there there-
fore exist, for some suitable k, pairwise distinct integers iy, a = 1,...,k—1,
with 1 € iy £ n+1 and iy # 1, such that (vi,...,v.,w;, wi,. .., wi,_,) is
a basis of V. This achieves the desired extension of (v;,...,v,) to a basis
of V.”

Proof of the Exchange Lemma: Let (vi,...,v,) and (w1,...,wn) be
two bases of V and ¢ € {1,...,n} chosen to be fixed. Then there must be
some j so that w; ¢ L(vi,...,%1-1,Vit1,...,Un). Otherwise we would have
L(vi,. .., ¥im1,Yi415. .., vn) D L{wy,...,wy) = V, which cannot be the case
since the linear independence of (vy,...,vy) implies that v; cannot be a linear
combination of (v1,...,%—1,%i41,...,Vn).

For such a j the n-tuple (v1,...,v_1,w;j,vi¢1,...,vp) is then linearly
independent, since from a relation

Apvr 4 Aim1iog A pw; 4 Aipa Ve o+ Anta =0,

it follows first that x4 = 0 and thenthat Ay =-.- = X, =0.

Since L(v1,...,Vi-1,Wj,Vit1,. .., Vs, ;) = V, we can apply the basis exten-
sion theorem to see that either (vi,...,vi_1,wj,vi41,...,7,) is itself already
a basis, or it becomes a basis on extending it by v;. Bnt the latter cannot
oceur, sinee wj, just as any v € V, is a lincar combination of (v,...,v,),
and henee (vy,.00 020,05, 041,00, v;) 18 hnearly dependent. Therefore
(D1, im0, 05 ey Dy ) 08 0 Dasis, n
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3.5 The Vector Product

A section for physicists

In mathematics and physics several sorts of “products” of two or more vectors
are considered. We have already heard of inner products, but there also exist a
cross or vector product, a tensor product, an exterior or alternating product, a
Lie bracket product and others. On closer inspection these turn out to be very
different. What additional structures and assumptions one needs, whether a
product is again a vector or a scalar, whether it must lie in the same vector
space as the factors or not, whether the factors have indeed to come from the
same vector space, whether the product remains unchanged on switching the
factors, or changes sign, or changes in some more drastic fashion, whether in
the presence of several factors one can insert brackets in an arbitrary way (as
one can do with numbers) — all this varies from case to case.

There is one thing, however, of which one can be rather certain about
“products”: they are multilinear, that is, if I replace one factor v by a sum
v; + vz, without altering the others, I obtain the sum of the products obtained
by using v; and v, together with the remaining factors. In the same way, if [
replace v by Av, A € R, again without altering the other factors, I obtain the
original product multiplied by A. Therefore, if one writes the factors as linear
combinations of basis vectors, one can work out their product knowing only
the products of the basis vectors.

In this section we wish to consider the vector product for physical vectors
(see Section 2.6), and in doing this we again start with the “dimensionless”
physical vector space U/, understood according to choice as Up or Upree. If &
and ¥ are two vectors from U, their vector product @ x ¥ is also in U; the
vector product is a bilinear map U x U — U, (&,7) — @ X v. In order to define
and calculate the vector product, we must know which of the orthonormal
bases £,{,Z of U are “right-" and which are “left-handed.” If £, 7, £, in this
order, point in the direction of the thumb, index finger, and middle finger of the
right hand, £,9,# is right-handed. Put another way: if the right thumb points
in the direction £ and the rotational direction indicated by the fingers is the
one that moves # through a quarter turn into §, then (£,9, £) is right-handed.
Refer to Figs. 25a and b for illustrations of these concepts.

T T
z z
Fig. 25a. (z,%,%) left-handed Fig. 25b. (£,5,%) right-handed

One could easily give equivalent deseriptions in turus of aserew, steering wheel,
taps, celestinl direetions, cte. The definition is neitlier nnelear nor unseientifie,
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but is nonmathematical in that it depends essentially on actual physical space,
since I cannot insert my hand into R3? or indeed into any other abstract three-
dimensional Euclidean vector space (V,(,)). In order to define the vector
product V x V — V, one must first mathematically imitate the natural phe-
nomenon of right-handedness by means of an additional structure in V' called
an “orientation.” At present we will not go into this; those already acquainted
with the concept of orientation can read the following theorem in terms of an
arbitrary three-dimensional oriented Euclidean vector space /.

Theorem (and definition of the vector product): There exists a
unique bilinear composition & x U — U, written as (i, %) — © X ¥, with
the following two properties:
(1) The composition is skew-symmetric, i.c., one has & x ¥ = —¥ x .
(2) If ¥ and ¥ are mutually perpendicular unit vectors, then @ x ¥ ex-
tends the pair (i, ) to aright-handed orthonormal basis (i, ¥, &x¥).
This composition is called the vector product.

The proof will help us to understand the vector product from both the compu-
tational and geometric points of view. We begin with the remark that, because
of the skew-symmetry, we must always have the following condition.

3) Exi=0

Also, because of (2), for a right-handed orthonormal basis (£, §, 2), the follow-
ing formulae must hold for all compositions satisfying (1) and (2).

Z X = —¢ x = 2,
)] §x2=-2x4§=1%,
ExE=—3x3=9y

But then we know the product for the basis vectors and, because of bilinearity,
for all vectors. Indeed, it is now clear that we can obtain our composition only
by means of the following formula.

(5) & x 0= (uzd + uyf + u:2) X (v,& + vy§ + vz 2)

P = (U — uvy)E + (U205 — Uz ) + (uavy — uyvs)E

The product defined by (5) is clearly bilinear, and it satisfies (1). We still
need to check (2). By the way, readers who can already work out three-row
determinants, cither because they have browsed ahead in Chapter 6 or because
they are not really beginners and only want to polish up their vector product,
will recognize that one can also formally write (5) as follows.
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Uy Uy U,
(5" Exv=det| v, v, v,
r 9y 2

(5" (@x?)-w=det| vy, v, v,
Wy Wy W

The latter is very useful, and full of geometric significance, since this mixed
product of the three factors #,¥, and w determines the volume of the paral-
lelotope (three-dimensional generalization of a parallelogram) spanned by %, ¥,
and w — up to a sign, which is given by the “handedness” of the three vectors.

But we should not pretend to know determinants already, and so instead
let us use (5) to give an elementary derivation of the next formula.

- - - -

(6) (@ x ) (u x o) = (i@ - w)(¥ - v) — (& - V)T )

One can either work it out, or argue as follows: both sides in the desired
equation (6) are linear in cach of the four variables, and so we only need to
check (6) for @,u',%,v' € {£,§,2}. For @ = ¥ or ' = v, both sides are
Zero anyway, so we may suppose that # # ¥ and u' # v'. Therefore, without
loss of generality, and because of symmetry, it remains only to check (6) for
(&,7,u,v") equal to (,9,%,7) or (£,§,§,%). Inthe first case, both sides equal
1, and in the second case, both sides are zero, verifying (6).

Readers with a knowledge of determinants will prefer to read (6) as shown
below.

-

(6') (ﬁ‘xﬁ')-(z?xz?):det(g,:-., g,:'i)

Similar useful formulae, which also follow from (5), appear here as (7)-(9).

1) (@x%) G =Fxd) a=(Fxd) 7

This implies (8) because of (3).

(8) FL(@x#) and #L(0 % )
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Furthermore, consider (9).

(9) @ x (7 x @) = (& - 57 — (@ - V).

As with formula (6), one proves (7) and (9) either by computation or by
relying on the lincarity in the three factors. Because of lmea.nty, one may
assume without loss of generality that «,¥,@ € {£,y,2}. For ¢ = ¥ = o
both formulae are trivially true; hence on grounds of symmetry only the cases
(£,2,9) and (,4,2) for (#,v,d) remain to be verified, and so forth. If one
uses determinants, (7) is immediately clear from (5") anyway.

In order to complete the proof of our theorem we have still to show that
(2) also follows from (5). So now suppose that #@ and ¥ are two mutually
perpendicular unit vectors. We have |¢x %] = 1 by (6) and # x ¥ perpendicular
to ¢ and ¥ by (8). But why is (&, ¥,4 x ) right-handed?

For readers who are used to the concept of orientation and who in U see
only an oriented three-dimensional Euclidean vector space, this follows from

(5") applied to @ = x 7. (The determinant is then positive, which implies
the right-handedness of (i, %, x ¥) in the mathematical sense, since (&, §, £)
was assumed to be right-handed.)

With physically defined right-handedness we argue as follows. Let @ be
the unit vector that extends (#,%) to a right-handed orthonormal system,
thus & = +4@ x ¢, but as yet we do not know the sign. We can however
change (%,9,£) into (&,%,w) by a continuous motion (“of the right hand”).
Let (#(t),v(t),w(t)) denote the moving system at time ¢. Then we certainly
have 4(t) x ¥(t) = L w(t), so that |&(t) x v(t) — w(t)| is either 0 or 2. But
initially this quantity is zero because & x §j = £, and thus by continuity it also
takes the value zero at the end, implying that @ x ¥ = 1. a

With this the theorem is proved and the vector product & x U — U is
defined. We have also learned that it is bilinear and has properties (1) through

(9).

Along with the vector product in U, the vector product of arbitrary physical
vectors is defined in a canonical manner by

Ula] x U[D] — U[ab]
(atl, b%) —— ab(¥ x ).

Its properties follow immediately from those of the vector product in the ori-
ented three-dimensional Euclidean vector space ¢/, which once again provides
the link between abstract linear algebra and physical vector calculus.

To define the vector product in an initially nonoriented abstract three-
dimensional Euclidean vector space, one must first “orient” the space. For
this one must arbitrarily choose some basis to be right-handed or positively
oriented  which other ones then count as right-handed is intuitively clear
and can mathematically be expressed by determinantal or motion conditions.
In the vector space of muuber triples it is customary to label the canonieal
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basis (e1, €2, ¢e3) as positively oriented; by (5) the vector product in R? is then
given by (10).

I n Tr2Yy3s — T3Y2
(10) 2o | x Ly | = zays —z1y3 | € R®
I3 Ys Ti1yY2 — T2

Correspondingly (1) through (9) hold.

Finally, we wish to derive the usual geometric dfscription of the vector
product from (6) and (7). With & = v’ # 0 and ¥ = v’ # 0, the next equation
follows from (6).

(11) |& x 3| = V]dl*|4]? — (@ - 9)?
= |i]|7]y/1 — cos? a(i, )

= |3 sina(d, ©)

Thus, for position vectors @, v € Ao, the magnitude
@ x ¥} € Rlcm?]

is just the area of the parallelogram spanned by @ and ¥ (see Fig. 26). This
can be extended to other cases: one
o) calls |i||7]sina(#,?) the “area” of
the parallelogram, even when 4, v are
not position vectors and |ié||7] lies
in some other scalar domain, or in
mathematical linear algebra in R.
By (8) @ x v is always perpendicular
to @ and ¥, and if & x ¥ # 0 then
0 || iz (#,7,% x ¥) is right-handed if this
concept is generalized in an obvious
Fig. 26. The area of the parallelogram can way from orthonormal to arbitrary
be calculated from |7|, |7], and a. bases. One can then make the follow-
ing statement.

e

If 4 and ¥ are linearly independent, % x ¥ is that vector perpendicular
to both # and ¥ with magnitude equal to the area of the parallelogram,
which extends (#,%) in a right-handed way. For linearly dependent vec-
tors 4, v, the surface area and hence the vector product are of course
zero.
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3.6 The “Steinitz Exchange Theorem”

Historical aside

In linear algebra textbooks the following theorem is often referred to as the
“exchange theorem of Steinitz.”

Theorem: If a vector space V has a basis of p vectors and if (v1,...,v,)
are linearly independent in V, then there exists a basis of p vectors for V, in
which vy,... ,v, all occur.

We have of course implicitly proved this theorem in our present chapter:
that there exists some basis containing v1,... ,v, follows from the basis ex-
tension theorem, and that this basis has length p follows from Theorem 1. For
Steinitz this theorem occurs in a work from 1913, and there reads as follows:

If the module M has a basis of p numbers, and contains r linearly in-
dependent numbers B,,...J,, then it also has a basis of p numbers, among
which the numbers 8,,... , B, all occur.

Translating Steinitz’s terminology into ours we obtain the theorem stated
above.

A witticism frequently quoted among mathematicians states that, if a the-
orem is named after someone, then this is a sign that the person so honored
was not the first to have proved this theorem. This appears to be true in this
case: in Schwerdtfeger [5] I found a footnote on page 23: “This theorem (Aus-
tauschsatz) is usually ascribed to E. Steinitz alone. It has been pointed out
however by H. G. Forder in his book “The Calculus of Extensions,” Cambridge
1941, p. 219, that H. Grassmann had published this theorem in 1862, i.e. 52
years before Steinitz.”

Well, Ernst Steinitz, who lived from 1871 to 1928 and was an important
algebraist, certainly had no intention to claim any originality for this theorem,
The work (in German) in which the theorem occurs is called “Conditionally
Convergent Series and Convex Systems,” and appeared in the Journal fuer die
reine und angewandte Mathematik (the so-called Crelle Journal), Volume 143
(1913), with a second part following in Volume 144. At the beginning of this
work, before attacking the actual subject, Steinitz gives a short introduction
to the basic concepts of linear algebra, including the exchange theorem. He
even apologizes for this, writing, “The foundations of n-dimensional geometry,
which are used here repeatedly, might have been assumed to be known. I
have preferred to repeat their derivation. Of course this is just a matter of
presentation. I believe that the way chosen here has its advantages and thus
may not appear to be superfluous.”

So we will certainly not do Steinitz justice if we only remember him as
the one who proved the exchange theorem. It is also obvious that such a
simple observation as the exchange theorem could no longer be regarded as a
noteworthy scientific result in 1913. You have only to think, for example, that
the theory of relativity had been conceived in 1905.

You will come across the names of many mathematicians, hecause their
names are attached to concepts and theoremns, Do not draw too many conelu-



sions about these mathematicians and the state of knowledge in their time.
Sometimes, the theorem is beneath the level of the name (as here for the
Steinitz exchange theorem), sometimes, on the other hand, a deep theorem
in modern mathematics is named after an old mathematician, who perhaps
only proved a special case. And this is what I really wanted to tell you in this
“historical aside.”

3.7 Exercises

Exercises for mathematicians

3.1: Let V be a real vector space and a,b,c,d € V. Suppose that

nw= a+ b+ c+d
vo=2a+2b+ c—d
v3y= a+ b+3c—d
= a — c+d
vy = — b+ c—d

Show that (v1,...,vs) is linearly dependent.

One can solve this exercise by expressing one of the v; as a linear combi-
nation of the other four. But there is also a proof in which one does not need
to do any calculations.

3.2: Let V be a vector space over F and U;,U; be subspaces of V. We
say that U, and U; are complementary subspaces if U; + U = V and
U, nU,; = {0}.

U

Us

Fig, 27, Example of complementary subspaces in K*

Of course, Uy =V and U, - {0} are also complementary to eacly other,



Show that if V is an n-cdimensional vector space over F and U; is a p-
dimensional subspace of V', then there exists a subspace U; complementary
to U;, and each such subspace Uz has dimension n —p.

3.3: In Theorem 2 we showed that in a finite-dimensional vector space V
a linearly independent r-tuple (v1,...,v,) can have length at most equal
to dimV. Now show that in an infinite dimensional space V there exists
some infinite scquence v;,v2,... of vectors, such that for each r the r-tuple
(v1,-.. ,v,) is linearly independent.

The x-exercise

3%: Given a complex vector space V one can make a real vector space from it
by simply restricting the scalar multiplication Cx V — V to R x V. Since on
restriction the concepts “linear hull” and “dimension” take on a new meaning,
instead of L, dim, we want to write L¢, dimc, or Lg, dimg, depending on
whether V is being considered as a complex or real vector space. Ezercise: For
each n > 0 determine for which pairs (r,s) of numbers there exists a complex
vector space and vectors (v1,... ,Vs) in it, such that r = dimg L¢(v1,... ,vn)
and s = dimg Lr(v1,... , V).

Exercises for physicists

3.1P: Exercise 3.1 (for mathematicians)

3.2P: Exercise 3.2 (for mathematicians)

3.3P: Consider the two lines g, and g; in R*® described by
gi'={pi+tvi|teR}, i=12

where

P = (1, 1, 2)
p2 = (03 _17 3)
v :=(2,0,1)
ve :=(1,1,1)

How large is the distance a between ¢; and g27

This exercise has to do with the vector product, for if ¢; € ¢, and ¢z € g7
are the two points on the lines at the shortest distance apart, i.e., ||¢1 —¢2|| = a,
then ¢, — ¢z € R® is perpendicular to both lines, that is, to their directions
»y and vy, (To check your solution: the thivd and fourth deciinal places of «
shonld he | and 2.)




CHAPTER 4
Linear Maps

v

4.1 Linear Maps

Until now we have always studied a single vector space V and various objects in
it, like r-tuples of linearly independent vectors, subspaces, bases, and so forth.
Now we want to consider two vector spaces V and W and study relations
between what is going on in V and W respectively. Such relations will be
described by “linear maps” or “homomorphisms.” A map f : V — W is called
linear if it is compatible with the vector space operations + and » in V and
W, that is, if it is irrelevant whether I first add two elements in V and then
map the sum, or if I first map them and afterwards add their images, and
similarly for scalar multiplication.

Definition: Let V and W be vector spacesover F. Amap f:V - W
is called linear, or a homomorphism, if for all z,y € V, A € F we
have

fx+y)=f(=)+ f(y)
f(Az) = Af(z)-

The set of homomorphisms from V to W is denoted by Hom(V, W).
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I
/Fact 1: The identity Idy : V — V is linear, and if V 5 W -5 Y are
linear maps, then gf : V — Y is also a linear map.

Fact 2: If for all f,g € Hom(V,W) and A € F, the elements f + ¢ and
Af in Hom(V,W) are defined in the obvious way, then with these two
operations Hom(V, W) is a vector space over F.

The “obvious” or “canonical way” consists in defining (f + ¢)(z) to be
f(2) + 9(z) and (Af)(x) to be Af(x).

For cach linear map f : V — W two subspaces of V and W, respectively,
are particularly important. The first is the image f(V') of V under f, or the
“image of f” for short, which is a subspace of W. The other is called the
“kernel of f,” which is the subspace f~1(0) = {v € V | f(v) = 0} of V. See
Fig. 28 for an example. They really are subspaces, as one sees immediately
from the definitions of subspace (in Section 2.3) and linear map.

Ker f

Im f

Fig. 28. Kernel and image of the linear map f:R?2—R? ,(z,y)(z—y,y—z)

Fact 3 and Definition: Let f : V — W be a linear map. Then the
image Im f := f(V) of f is a subspace of W, and the kernel

Kerf:={veV|f(v)=0}

of f is a subspace of V. The linear map f is injective if and only if
Ker f = 0, because f(r) = f(y) means z —y € Ker f.

Linear maps with certain particular properties have almost self-explanatory
special names.

Definition: A linear map f:V — W is called
a monomorphism if it is injective,
an epimorphism if it is surjective,
an:fsomorphism if it i§ BifEcavery
an endomorphism if V=W, and finally
an automorphism if it is bijective and V = W.
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The isomorphisms arc particularly important. That the composition go f of
two isomorphisms f : V — W and ¢ : W — Y is again an isomorphism is
clear from Fact 1. However, the following is worth noting.

Remark 1: If f : V — W is an isomorphism, then f~! : W — V is
also an isomorphism.

PROOF: Since f~! is again bijective, we must convince ourselves only that
f7! is also lincar. It follows immediately from the definition of a linear map
that for all z,y € V,\ € F, we have

S +9) =7 (f(2) + F(¥))
FHEO) = fFHf(2))-

If v,w € W and we write f~!(v) =z, f~}(w) =y, then this gives

)+ M w) =7 (v + )
/\f_l(v) = f1(\w)

for all v,w € W and A € F, which is the linearity condition for f~! — read
from right to left. a

In order to understand the importance of isomorphisms properly, you should
be clear about the following. Assume that we have some vector space V
containing various objects — subsets, subspaces, bases and the like. If now
¢V — W is an isomorphism, we can consider the images of our “objects” in

W (see Fig. 29).

Fig. 29. Isomorphism ¢ applied to some substructure of vV

These images in W then have the same linear properties as the original ob-
jects in V. Somewhat vaguely put, “linear properties” are those which can be
formulated in terms of the vector space data sets, addition, and scalar mul-
tiplication. Example: suppose that U,,U/; are two subspaces of V', and that
Ui N U, has dimension five. Then the subspace ¢(U;) N¢(Uz) of W also has
dimension five. Again: if (v1,...,v,) is a linearly independent r-tuple of vec-
tors in V', then (¢(v1),...,9(v,)) is also a lnearly independent r-tuple of
vectors in W,

Exanples of noulinear properties: suppose first that V. = R%. Then each
£ 0 Vois a pair of numbers. 1f @ 0 Vo Wik an isomorphism, () need
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not be a pair of numbers; W may perhaps be a vector space whose elements
are functions or the like. Next, suppose that V =W =R2?. Let U C R? be a
circle: U = {(z1,22) € R? | 22 + 22 =1}. If ¢ : R? — R? is an isomorphism,
it does not necessarily follow that ¢(U) C R? is a cirele (see Fig. 30). Thus
R? — R?, (z1,22) — (221,232) is such an isomorphism.

U w(U)

AN - TN
L/ N

Fig. 30. To be a circle is not a “linear” property
g P

I will not try to be more formal about the concept of a linear property. In time
you will come to know many examples of properties that are “invariant under
isomorphism.”

Another very important aspect of isomorphisms between vector spaces is
their use in relating linear maps with one another. Imagine for a moment that
we are interested in a particular linear map f : V — V, which, however, is
at first difficult to handle — possibly because V is a function space and f is
a complicated differential or integral operator from analysis. Imagine further
that we have some specific “linear questions” about the map f. For example,
is it injective or surjective, how big is the dimension of the image f(V'), do
there exist vectors v # 0 in V mapped to a multiple Av of themselves by f
(called eigenvectors), and the like.

Now in this situation it is sometimes possible to find some other vector
space V' and an isomorphism ¢ : V' & V, which turns f into an easily
understandable map f':=¢ o foy,

f

V——V

ke

Vi——— V'

for which we can immediately answer the analogous questions. These answers
can then be carried back by mecans of ¢ to f, in which we are really interested.
For example: if v' € V' is an eigenvector of f' with f'(v') = Av', then for
v = @(v') we also have f(v) = v, and so forth.

With this we end our little digression on the importance of the concept of
isomorphisii, and return again to the details of Chapter 4.

We now waut to assume that V' is finite-dimensional and to note some
general statements about Huear maps f: V- W connected with this. Who-
ever until now has felt a lack of exanples of linear maps will find the following
remark richly rewarding.
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Remark 2: Let V and W be vector spaces over F and (v1,...,vs) be
a basis of V. Then for each n-tuple (wy,...,w,) of vectors in W there
exists a unique linear map f:V — W with f(v;))=w;, i=1,...,n.

PROOF: For such “there exists a unique” statements it mostly happens that
one must prove existence (there exists one) and uniqueness (there exists at
most one) separately. In general it is better to start with uniqueness, since in
the course of the argument (suppose there exist two, then . . . ) one sometimes
arrives at an idea for proving existence. The other way around happens less
frequently. But I will admit that our Remark 2 is hardly a good example, since
here both parts of the proof are very easy.

(a) PROOF OF UNIQUENESS: Suppose that f, f' : V — W are linear maps with
f(vi) = f'(vi) = wi, i = 1,...,n. Then since each v € V can be written as
v=MAv + -+ Apv,, we have

f() = f(Mv1 +- + Anvn)
=Af(v1) + -+ Anf(vn)
=Mf(v) 4+ + A f'(va)
= f'(/\lvl + + Apvs) = f'(v).

Hence f(v) = f'(v) forall v e V.

(b): PROOF OF EXISTENCE: Since each v € V can uniquely be written as
v =MAv; 4+ -+ ApUy, we genuinely define a map f:V — W by letting

FOavi + -+ A0,) = Mwy + -+ + Apwg.
Clearly, f is linear and has the property f(vi) =w;, i=1,...,n. a

This innocent-looking and easy-to-prove remark has nevertheless a very
important content: complete information about a linear map is contained in
the tmages of the basis vectors! Take V = F" with its canonical basis and
W = F™ as an example. By Remark 2, to give a linear map F* — F™ is
the same as giving m-tuples wy,...,w, € F™, amounting to altogether n-m
numbers from F, in which the linear map is then encoded. This is the reason
why one can carry out effective computer calculations for linear maps, and why
one always tries to use theoretical considerations to reduce nonlinear problems
to linear ones.

Remark 3: Let V and W be vector spaces over F and let (v1,...,v,)
be a basis of V. A linear map f: V — W is an isomorphism, if and only
if (f(v1),...,f(vs)) is a basis of W.

Proor: If you first recall the definitions of “basis” and “isomorphism,” then
place the tip of your ball-point pen on the paper and move your hand a. little
the proof will flow out effortlessly. The terminology thinks for you! Sooner
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or later we must stop writing out such “proofs” every time. Just look at this
one:

(a): Let f bc an isomorphism. We first prove the linear independence of
(f(v1),..., f(vs)) in W. So let A\ f(v1) + -+ + Auf(vs) = 0. This means
F(Av1 4+ -+ A,vp) = 0 because of the linearity of f. Since f is injective and
f(0) = 0, we must have A\jv; + -+ + A,v, = 0. Since (v1,...,v,) is linearly
independent, it follows from this that \; = --- = A, = 0, and hence that
(f(v1),..., f(vs)) is linearly independent.

Now we show that L(f(v1),...,f(v,)) = W. Let w € W. Since f is
surjective, there exists v € V with f(v) = w. Since L(vy,...,v,) = V, there
exist A1,...,Ap € F with v = Ajv; + -+ 4+ Apvy,. Since f is linear, we have
w= f(v) = A1 f(v1)+-+-+ Ao f(v,), and so every element of W can be written
as a linear combination of f(v1),...,f(vn).

(b): Let (f(v1),...,f(vn)) be a basis of W. First we prove the injectivity of
f.Let f(v) =0. Since (v1,...,vs) is a basis of V, there exist A1,...,\, € F
with v = A\yvy + -+ + A,v,. Then, because of the linearity of f, we also have
that Ay f(vi) + -+ 4+ Anf(vn) = 0, and because (f(v1),..., f(vs)) is linearly
independent, it follows from this that A\; = -+ = X, = 0. Hence v =0 and f
is injective.

Now we prove the surjectivity of f. Let w € W. Since f(v1),..., f(vs)
generate all of W, there exist Ay,..., A\, With w = X f(v1)+-- -4+ Af(v,). Let
v = A1+ ‘+Anv,. Then, because of linearity, f(v) = A1 f(vi)+- - +Anf(vy,)
= w, and f is surjective. O

Remarks 2 and 3 together have the following consequence.

Fact 4: Any two n-dimensional vector spaces over F are isomorphic.
(To say that V and W are isomorphic means of course that there is an
isomorphism f: V2 W.)

This is also very remarkable. “Up to isomorphism,” as one says, there exists
only one n-dimensional vector space over F! Nevertheless, it would be unwise
to study F" alone, since quite uninvited, all sorts of other concrete vector
spaces tumble across our path (solution spaces, function spaces, tangent spaces,
etc.), and in order to understand them and their relation with F*, we need
the general concept of a vector space.

Our last topic in this section will be a dimension formula. When in linear
algebra one has to deal with several vector spaces at the same time, it is often
very useful to have a formula giving a relation between the dimensions of the in-
dividual spaces. For example, in Chapter 3 we proved such a dimension formula
for subspaces Uy, Uz of V. Thus dim(U; NUs)+dim(U; 4+Uz) = dim U; +dim Us .
Now we want to obtain a dimension formula concerning linear maps.

Definition: Let f : V — W be a linear map. If the image Im f is
finite-dimensional, rk f := dimIm f is called the rank of f.
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Dimension formula for linear maps: Let V be a finite-dimensional
vector space and f : V — W a linear map. Then

dimKer f + rk f = dim V.

PROOF: Let n be the dimension of V and r the dimension of the kernel. We
extend a basis (vq,...,v,) of Ker f to a basis (v1,...,Vr, Vrs1,...,0,) of all
of V and put w; := f(v,4:) for : =1,...,n —r. Then we have

f(’\lvl + -+ /\nvn) = /\r+1w1 +-- 4+ /\nwn—-r,

and so the image of f is L(wi,...,wn—,). Moreover (w1, ...,wn—,) is linearly
independent, since from ayw; + -+ -+ ap—,wn—, = 0, say, it would follow that
a1Vrp1+ -+ ap_,v, € Ker f. Hence we would have a1v 41+ -+ ap—p¥y =
p1v1+- - +pev, for suitable py,. .., g, but (v1,...,vy,) islinearly independent
and thercfore all the a’s and p’s would have to vanish. Thus (w1,...,w,—y)
is indeed a basis of the image of f, and hence dimImf =n —r. O

As an application of the dimension formula, let us note the following fact.

Fact 5: A linear map between two spaces of the same dimension is
surjective if and only if it is injective.

4.2 Matrices

Definition: An m x n matriz over F is an array of mn elements from
F according to the following pattern

The a;; € F are called the coefficients of the matrix. The horizontally
written n-tuples (a1 ... aiy) are called the rows, and the vertically writ-
ten m-tuples

aj

Ay

are called the columns of the matrix (sce Fig. 31), The set of all m xn
matrices over F is denoted by M(m x n,F). J
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column

row

Fig. 31. Rows and columns in a matrix

Matrices play a role in various contexts in linear algebra. For the moment
they are of interest to us because of their importance for linear maps.

Definition: For = = (z;,...,z,) € F" define Az ¢ F™ by

n n n
Az = (Y a1ixiy Y, a2i%is. ..y D Gmili).
=1 i=1 i=1

There is another very suggestive way of writing this “operation” of a matrix
A on an element z € F*,

Notation: In connection with the operation of m x n matrices on n-
tuples it is customary to write the elements of F* and F™ as columns:

I
A1l ceenen A1n . a1+ 4+ A1y

Aml o veene Amn z An1ZT1 4+ AmnTh
n

Please look at this closely: in spite of its “rectangular” appcarence the
right-hand side is no m x n matrix, but only an m-tuple written as a column.

Before we come to the mathematics of the relation between matrices and
linear maps, let us make one further remark about the handling of the nu-
merous indices. Formulae, like that above for Az with many indices, can be
more easily remembered if one has certain mnemonics for them. The picture
in Fig. 32 provides such a mnemonic.

IMig. 32, Caleulating the ith cosuponent of Ar
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More explicitly, one can describe the construction of the colnn Az as
follows. One lays the column z repeatedly on the rows of A by giving it a 90°
turn like a stick. Then one multiplies the elements a;; and r; now lying on
top of each other and takes the sum: a;1 21 + -« + GinZsn .

Construction of the Ty - - .- Ty first
Ty - - Ty second
T, - .- T,
Ty - Iy
TEEEEE T, last component of Az

Of course, here one has to know that a;; lies in the ith row and the jth
column, and not the other way about. The first index is called the row indez
and the second the column indez. (Perhaps one can remember this designation
of the indices by thinking that one is accustomed to read in rows, and hence
that the rows, as the primary subdivision of the matrix, can lay claim to the
first index for themselves?) '

Theorem: Let A € M(m x n,F). Then the map

F" _)Fm

T — Az

is linear, and conversely, if f : F* — F™ is a linear map, there exists a
unique matrix A € M(m x n,F) with f(r)= Az forall z € F",
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The association of a matrix with its corresponding linear map thns defines
u bijective map M(m x n,F) — Homn(F",F™)! Hence one can interpret or
consider the m X n atrices as the linear inaps from F* to F™.

PROOF OF THE THEOREM: One immediately reads from the definition of Az
that A(z + y) = Az + Ay, and that A(\z) = M Az) for all z,y € F* and
A € F. The map given by z — Az is therefore linear. Now let f : F* — ™
be an arbitrary linear map. We must show that there exists a unique matrix
A € M(m x n,F), such that f(z) = Az for all z in F". We again divide this

“there exists a unique” proof between existence and uniqueness.

(a) PROOF OF UNIQUENESS: Suppose that A,B € M(m x n,F) and that
f(z) = Az = Bz for all £ € F". Then in particular for the “unit vectors” e;,
that is for

1 0
0 :

er=| . yerey Ep = 0 € F*,
0 1

we have Ae; = Be;,1=1,...,n. But what is Ae; ? Ae; is just the 7th column
of A, as Fig. 33 shows. Therefore A and B have the same columns and so are

equal.
A € Ae;

=

Fig. 33. Why Ae; is just the ith column of A

Let us write this out more formally. Let 6;1,...,6;, denote the components
of e;, thus
1 for i=3j
65 = .
0 for i#yj.
Then the kth component of Ae;, written as (Ae;)x, is given by

(Aei) = Z} ak;bij = aki,
=

and we have ap; = (Ae;)k = (Bei)y = bp; for all i = 1,...,n and
k=1,...,m. Therefore A= B.

(b) PROOF OF EXISTENCE: For each m X n matrix A, as we have just seen
from the uniqueness proof, the columns of the matrix are the images of the
unit vectors ¢; € F* for the map F* — F™, z — Az. “The columns are the
wnages of the unit vectors” is in any case a useful wotto in matrix arithunctic,
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Since we want to have Ar = f(z) for all z, in particular for z = e;, it follows
that we must define A so that

V1§
fled)=rvi=2{ : e F™

Umi

becomes the ith column. We therefore write

and hope for the best. At least we have obtained a matrix for which Ae; = f(e;)
for all 2 =1,...,n. But because of the lincarity of both f and the map given
by z — Az, it follows that A(\1e1 + -+ 4+ Anen) = f(A1e1 + -+ + Anen)
for arbitrary \; € F, and since (ey,...,ey,) is a basis of F*, this means that
Az = f(z) for all z € F™. O

What has all this to do with the linear maps from a vector space V into a
vector space W? Just this: if V and W are finite-dimensional vector spaces
and we choose bases (vy,...,v,) and (w1,...,wy) in V and W respectively,
then we can immediately interpret each linear map in the language of matrices.
To explain this, let me first give the following definition.

Definition: If V is a vector space over F, and (vy,...,v,) is a basis of
V', we say that the map

K" =, v

(Myeeirdn) — Mur 4o 4+ A0,

is the canonical basis 1somorphism. If some notation is necessary we
write @(y,..4,) for this isomorphism.

By Remarks 2 and 3 the basis isomorphism is precisely the uniquely determined
isomorphism mapping the unit vectors in F” to the vectors of the given basis.
If now (vy,...,v,) and (wy,...,wy,) are bases of V and W, respectively, and
f:V — W is a linear map, then

B ) © T 0 Boyevn)

is a linear map from F” to F™ and hence given by an m x n matrix A. A
commutative diagram is the clearest way to deseribe the comnection between

f and A.
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Definition: Let f : V — W be a lincar map between vector spaces
over F, and let (v;,...,v,) and (w,...,wn) be bases for V and W,
repectively. Then the matrix A € M(m x n,F) determined by the com-
mutative diagram

1% ————f—> w
@(v1,.00,0m) TE %T‘I’(wl,...,wm)
A

F* —

is called the matrix associated to f relative to the two chosen bases.

Hence if one has to consider linear maps between finite-dimensional vector
spaces, one can always pass to the associated matrices by choice of bases.
Conversely, one can always reconstruct f from the matrix A, since we have

R(unom) O AO R, oy =T

In particular, the correspondence between Hom(V, W) and M(m xn,F) given
by f— A and determined by choice of bases is bijective.

Passage to matrices is not only useful in the carrying out of concrete cal-
culations, but in the right circumstances it can even help with theoretical
considerations. We must realize one thing, howcver: in altering the bases omne
also alters the matriz that represents f. This is sometimes a blessing, since by
a cunning choice of bases one can arrive at very simple matrices, and is also
sometimes a curse, since the close observation of alterations brought about by
change of bases (“behavior under transformations”) can be both necessary and
tiresome.

4.3 Test

(1) A map f:V — W between vector spaces V and W over F is linear, if

O f(Az +py) = M(2) + pf(y) for all 2,y € V, A\ € F.
O f satisfies the eight axioms for a vector space.

O f:V > W is bijective.

(2) By the kernel of a linear map f:V — W one understands

O {weW]| f(0)=w}

O {f(v)|»=0)
O {veV]f(v)=0)
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(3) Which of the following statements are correct? If f : V — W is a linear
map, we have

0 f(0)=0.
O f(—z)=-zforallzeV.
O fv)=fA\)+ f(v) forall X e F,veV.
(4) A lincar map f:V — W is called an isornorphism if

O there exists a linear map ¢ : W — V with fg =Idw and ¢gf = Idy .
O V and W are isomorphic.
O for each n-tuple (vq,...,v,) in V, the n-tuple (f(v1),..., f(vs)) is
a basis of W .
(5) By the rank rk(f) of a linear map f:V — W, one understands

O dimKerf O dimImf O dimW

@ (%) (3)-
° (0) ° () © (3)

(7) The map R? — R?, (z,y) — (z +y,z — y), is given by the following
matrix (“The columns are the ...”):

oGa) o) o)

(8) Let V and W be two vector spaces with bases (v1,vz,v3) and (wq, wg,w3)
and let f:V — W be the linear map with f(v;) = w;. Then the “asso-
ciated” matrix is

111 100 0 00
O A=11 11 O A={0 10 O A=}0 0 0
111 0 01 0 00

(9) A linear map f:V — W is injective if and only if
O f is surjective. O dimKerf=0. O rkf=0.

10) Let f:V — W be a surjective linear map and dimV = 5, dimW = 3.
Then

O dimKerf >3.
O dimKer f is 0, 1, or 2 and each of thesc cases can arise.
0O dimKerf=2.
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4.4 Quotient Spaces

A section for mathematicians

Let V be a vector space over a field F and let U C V be a subspace. We want
to define the quotient “V over U,” or “V mod U,” and this will again be a
vector space over . We know that a vector space consists of three things: a
set, addition, and scalar multiplication. In our case the set will be denoted by
V/U, and hence we have to define the triple:

(a) the set V/U,
(b) the addition V/U x V/U — V/U,
(c) the scalar multiplication F x V/U — V/U.

Then, of course, we still have to check the eight axioms.

For (a):fz e V,let z+U :={z+u|u e U}, and define V/U to be the
set of all x4+ U, i.e.,

VIU :={z4+U|z eV}

Note that the elements of V/U are not those elements of V' that have the form
T 4 u with u € U, but each element of V/U is itself a set {z +u|u € U}.
Look at Fig. 34.

04+U=U z4+U=2'4+U

ikl

Fig. 34. The elements z+U of the quotient space are certain subsets of V.

Of course, U itself is also an element of V/U, namely 0 + U.

For (b): We wish to define additionin V/U by (z4+U)+(y+U) := (z+y)+U.
A strange difficulty appears here. Although we can write down this obvious for-
mula for the sum, we have to ask ourselves whether in this way (z+U)+(y+U)
is actually well defined, because it can happen that  + U = ¢’ + U even
though z # «'! Only when we have shown that witlhh o + U = ' + U and
y+U =9y +U wealsohave (z +y) + U = (&' + ') + U, are we allowed
to say that (2 +U) + (g + U) := (& + y) + U really defines a composition
VU x VIU - V/U.
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So let us check this. Assume £+ U =2'4+U and y+ U =y’ + U. Then
in particular, r itself,as z+0 € z+ U,isin '+ U and y in y' + U, which
means that there exist a,b € U with £ = 2'+ a and y =y’ + b, and hence

E+Y)+U=@E"+a)+W +b)+U
=@ +y)+(a+b)+U
={z+y +a+b+u|uel}.

But u € U implies v’ := a+b+u € U (since a,b € U) and, conversely,
each element u' € U can be written as ¢ + b+ u for some u € U, namely for
u=u'—(a+b). Hence

4+)+U={+y +(a+b4u)|uel}
={z'+y +u'|v €U}
=(z'4+y)+U.

FoR (c): Here again we must watch out for our operation being “well de-
fined,” if we put Mz +U):= Az 4+ U.lf z = 2’ +a with a € U, we have
Az 4+ U = Az’ + a4+ U = Az’ 4+ U, because U is a subspace. Hence the scalar
multiplication A(z + U) := Az 4+ U is well defined.

Are the eight vector space axioms satisfied for (V/U,+, -)? The validity of
axioms (1), (2), and (5)~(8) for (V/U, +, -) follows immediately from their va-
lidity for (V,+, -). Axiom (3) is satisfied for (V/U,+,-) with 0:=U € V/U,
and (4) with —(z + U) := (—z) + U. In this way we see that V/U is indeed a
vector space over F.

Remark and Definition: Let V be a vector space over F and U C V
a subspace. Let V/U be the set of all cosets z+U = {z+u|u € U} of
U, thus V/U = {z+U |z € V}. Then addition and scalar multiplication
for V/U are well defined by

(+U)+(y+0U):=(z+y)+U
Mz +U):=Xxz+U

for all z,y € V,\ € F. These operations make V/U into a vector space
over F, which is called the quotient vector space of V modulo U .

PROOF: Since U is a subspace of V,wehave z4+U = z'4+U & z—z' € U.
This easily implies that the operations are well defined. If one writes
0:=U € V/U and —(z+U) := (—z)+U, the validity of the eight vector
space axioms for V/U follows from the validity of the corresponding
axioms for V. Hence (V/U,+, -) is a vector space. O

Tt follows immedintely from the definition that V/V consists of a single el-
cement, since » 4+ V V for all & ¢ V. Therefore V/V s the veetor space
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consisting of zero only. At the opposite extrcme there is only a formal differ-
ence between V/{0} and V: the obvious map v — {v} defines an isomorphism
from V to V/{0}.

In order not to have to return to the definition in all arguments, it is useful
to remember two or three basic properties of quotient spaces.

Fact 1: The map

m:V — VJU

vi— v+ U

is an epimorphism with Kerw = U. (The map = is called the projec-
tion.)

Fact 2: If V is finite-dimensional, we have
dimV/U = dimV — dim U.

Lemma: If f:V — W is a linear map with U C Ker f, there exists a
unique linear map ¢ : V/U — W, for which the diagram

vV ——f—> w
l T

is commutative.

PROOF: In any event, such a ¢ must satisfy p(v+U) = f(v), so there cannot
he more than one. On the other hand, ¢ is well defined by (v + U) := f(v),
since f(v) = f(v + a) for @ € U follows from the linearity of f and
U C Ker f. Finally, the linearity of ¢ also follows from that of f, since
o0+ D) H (O + ) = S0 ) = F0) 1) = o0 +U) (o' + ), and
analogously for (A(v +U)).

Why does one need quotient spaces? In a first course of linear algebra they
are perhaps unnecessary. But in higher mathematics, particularly in algebra
and topology, quotients of all sorts occur so frequently that I thought it worth-
while to introduce you to this notion.

It would be quite understandable if you felt more at home with V and U
rathier than with V/U: a vector space whose vectors are subscts of another
vector space? However, later ou you will learu to regard U,V and U/V as
equal partners (“fiber, total space, annd basis®) i a geometrie or algebraic
situation, or even experience V/U as the really nselul object, for which ¥ and
U lwwve been ouly preliminary raw material,
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4.5 Rotations and Reflections of the Plane
A section for physicists

We consider the Euclidean vector space R? and ask ourselves the following
question: which linear maps R? — R? respect the inner product, that is, for
which 2 x 2 matrices A do we have (Az, Ay) = (z,y) for all z,y € R?? First
of all we shall attempt to answer this question by pictorial considerations. The
columns are known to be the images of the unit vectors; so we consider the two
unit vectors e; = (1,0) and e; = (0,1). The image vector Ae; of e;, shown
in Fig. 35, must have length 1, since ||Ae;}|2 = (Aey, Aey) = (e1,e1) = 1.

e/ \ (cosp,sing)
H

Ty
N

Fig. 35. The image Ae; of the first unit vector e

The angle swept out by e;, as we pass in the mathematically positive sense
(that is counterclockwise) to Ae; , may be called . Then, written as a column,
Ae; has the components cos ¢ and sing, hence we already know how the first

column of A must look,
__f[cosp =
T \sing */°

What happens with e2? Again we must have ||Aez|| = 1, and in addition
(Aeg, Aey) = (ez,e1) = 0, that is Aeg is perpendicular to Ae; . There arc thus
only two possibilities, as Fig. 36 shows.

Aez
Aey Aey
? ?
Aez
first case second case

IFig. 36. The two possibilitios for iimage Aey of the second nnit vector ey
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The angle formed by Aey with ey is either ¢ + % or ¢ — % Since from high
school mathematics we know that

cos(p+ F)= —singp
cos(p — F) = sing
sin(p + F) = cos
sin(p —~ )= —cose,

the second column is either

(-—-Slntp) or ( smcp)’
cos ¢ —cos @

and we have obtained the answer to our question.

Theorem: A 2 x 2 matrix A has the property

(Az, Ay) = (z,y)

for all z,y € R? if and only if there exists ¢ so that either

=(c?s<,o ——sm<p) or A=(C(')S'.,9 sm<p)
sin cosyp sing —cosg

holds.

Without pictorial arguments but assuming knowledge of sine and cosine,
we proceed as follows: let A = (a;;) and (Az, Ay) = (z,y) for all z,y € R2.
Since

(Aey, Aeq) = afl + a§1 =1 and (Aep, Aep) = afz + agz =1,

there exist real numbers ¢ and ¢ with a11 = cos¢, az) = sing, azs = cos ¥,
a12 = —sin®y, Then the relation (Ae;, Aep) = a11a12 +az1a22 = 0 implies that
—cospsiny + sing cos§ = sin(p — 1) = 0, hence that ¢ = 1 + k7r for some
k € Z. Thus, either cos = cost and sing = sin 9 (namely, if k is even) or
cos = —cosy and sing = —siny (namely, if k is odd). From this it follows
that A must be of the given form. Conversely, it is an easy calculation to check
that such a matrix respects the inner product, and the theorem is proved. O

Definition: The set of all 2 x 2 real matrices in the above theorem is
denoted by O(2) (from “orthogonal™); the subset

{AcO@)|A= (°°S‘P _Si“""), © ¢ R}

sing  cosg

is denoted by SO(2).
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If one considers where a given matrix A € O(2) maps the two unit vectors
e1,eg, and that from £ = Ay e; +)\gez it also follows that Az = A\; Aey + Az Acq,
it is easy to see the geometric mechanism behind A. And here there is an essen-
tial difference between the matrices from SO(2) and those from O(2)\.50(2).

Geometrically as a map R? — R2?, the matrix

A=(costp —sintp) e S0(2)

sin cos¢

describes a rotation about the origin — more precisely a rotation through
the angle ¢ in a mathematically positive sense; see Fig. 37.

/ N \
Ae; \
€1

Fig. 37. Rotation through the angle y between e, and Ae,

However, the matrix

=(°°S‘P Si“‘P) e O@)N50(2)

sing —cose

describes a reflection in the axis making an angle £ with R x 0; see
Fig. 38.

I'ig, 38, Refloction in the nxis bisceting the mgle @ hetween o nid Aeg
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Please note that by means of

R? — R?

(:1:1) (c.osga —sincp) (zl)
g sin cos ¢ T

we effect a rotation of all of R? through the angle ¢, not just a rotation of the
“coordinate system” and the giving of the coordinates of the point z “in” the
new coordinate system. This is something quite different! Let us have a look
at it.

Perhaps we can best understand the “introduction of new coordinates” for
a vector space if we forget for a moment the existence of the old ones. Let V
e a two-dimensional real vector space. A “coordinate system” is given by a
basis (v1,v2). One calls L(v1) and L(vg) the coordinate axes. Consider the
canonical basis-isomorphism @ : R? =, V, (A1,A2) — Mvs + Agvp. The
inverse map @' : V. = RZ, given by Ajv1 + Agvz — (A1, Ag), is then the
map that assigns coordinates to cach vector (see Fig. 39).

L(’Ul )

Fig. 39. Coordinates A\; and A; of v in the co-
ordinate system given by (v,v2)

Now, if V is the special case R?, and the basis for the “new coordi-
nates” results from rotating the canonical basis through an angle ¢, then

®:R? =, R? is the map given by
cosy —sing
sin ¢ cosg
(ns we have already described), and if one is interested in @' ;: R2 —» R?

hecause one wants to give each vector from R? its “new coordinates,” then
this map is given by the matrix representing a rotation through —¢, that is

cos@  sing
-8l cosp /]
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4.6 Historical Aside

The reasons for studying mathematics are most diverse. For readers with some
knowledge of German, I let Christian Wolff speak for himself, without further

comment on my part.

Mathematifdhed

LEXICON,

Darinnen

bie in allen Sheilen dex Mathema:

fidk iblichen Kunit- Worter
evFldvet,

Fut g%n:ftotic
Matbematifthen Wiffenfchafften

dienlidhe Nadyridheen ertheilet,
Audy

bie Sdyrifften
tonitde Raterie ausachibeet su finden,

Vorrede,

) §hhabe bey mir von Jugend auff

= 0 uncfdttlidye Begierde die
=9 BN Babeheit gerwif su exfennen und
Y] socrd gt Do
4

=25 dag man ber Sathematict eine
ungegtoeiffelte Geroifbeit sufcyreibe, nnd abfons
delich bie Algebra als cine vidytige Kunft vers
borgene Wabrheiten suentdecten rithme; Hinges
genausden fo viclfdltigen und twicdrigen Diei
nungen ber Gelehreenin anderenSadyen, die jur
Mathematicd nicht gehdren, und aus den feten
Aenderung, dicdarinnen vorgenommenverden,
mir aud) bagumabl genung begeeiflich twar, dbag
¢3 auffer bev Mathemiatict an ciner volligen G¢:
twigbeit meiftentbeils feble;  Crtvedte bey miv
bie Begierde sur Warbeit cine Licbe gur Dathes

angefiijves toerdens matic und fonderlicy cine Luft sur Algebra, um

U Begebeen Givaus geachen jufebhen, rwas bodh die Urfadyefeny, roarum man
. o inder Mathematict fo grofe Gemwifbeit habe,
Ehriftian Wolffen, unbd nady rvas vor Regeln man dafelbit dencle,
£. 9. H.1md . P. O wenn man verborgene Wabeheiten gum BVor:

- ' {dyeine bringen roill; damit idy midy deflo ficherer

Leipzig bemiihen modhte audy auffer der Mathematid

l
Bep Fob. Friedrich Sleditfcyens fect. Sobs. dergleidyen Getvipbeitsu fudben und die Wabes
1716 _ 42 peis

4.7 Exercises

Exercises for mathematicians

4.1: Let V and W be vector spaces over F, let (v;,...,v,) be a basis of V,
and let f:V — W be a linear map. Show that f is injective if and only if
(f(v1),..., f(vn)) is linearly independent.

4.2: Let F be a fleld and &, = {Ag+ Mt + - -+ Ast™ | A; € F} be the vector
space of polynomials in the indeterminate ¢ of degree < n with coefficients in
F. If f(t) € &, and g(t) € P, the product f(t)g(t) € Ppim is defined

in the obvious way. If it worries you that you don’t really know what an
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“ndeterminate” ix, and that therefore the whole definition of 147, itself hangs
rather in the air (and | actually expect that this does worry you), then you
can simply define 42, as F*+! | a polynomial as (Aog,...Ar), A; € F, and the
product by

(o5 An) (poy-vapm) = ( 3 Xipjeenes 25 i)

i4j=0 i+j=ntm

So we can avoid the “undetermined nature of the concept indeterminate” by
means of such a simple formalization, and having seen this, we return reassured
to the usual comfortable way of speaking and writing about polynomials.

We call (1,t,...,t") the canonical basis of £?7,. Determine the matrix of
the linear map %% — &4, f(t) — (2 —t)f(t) relative to the canonical bases.

4.3: By a finite chain complex C one understands a sequence of homonior-
phisms

In . f2 h fo

0 .fn+l Vn ‘/1 , ‘/0 R 0

with the property that f; o fiy1 = 0, ie, Im f;r 17 C Ker f;. The quotient
vector space H;(C) := Ker f;/Im f;., is called the ith homology group of
the complex. Show that if all the V; are finite-dimensional, then

f?(—l)" dimV; = f)(—l)" dim H;(C).

i=0 i=0

The x-exercise

4*: Suppose that in the following commutative diagram of vector spaces and
homomorphisms the two rows are “exact,” that is, Ker f; = Im f;,; and
Kerg; = Img;,, for 1 =1,2,3.

fa fs f f
Vi - Vi > V2 > V1 + Vo
surj.l% E‘lv’a Jv’z e‘ltpn inj.ltpo
W, - W3 + Wy » W + Wo
94 93 92 91

Suppose further that the “vertical® homomorphisms in the diagriun have the
propertios shown, thus ¢, 1s surjeetive, gy and @) ave isomorphisms, and pg
is injeetive, Show that under these conditions @y s i isomorphism,
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Exercises for physicists

4.1P: Exercise 4.1 (for mathematicians)

4.2P: Let (V,(,)) be a Euclidean vector space and let f : V — V be a
linear map. Show that (f(z), f(y)) = (z,y) for all z,y € V if and only if
| f(z)l| = |z]| forall z € V.

4.3P: Let (V,(,)) be a two-dimensional Euclidean vector space and let
f ¢V — V be an orthogonal linear map, i.e., {f(z), f(y)) = (z,y) for all
z,y € V. We further assume that f, without being the identity on V', has
a nontrivial fired point, that is, a vector vg € V0 with f(vp) = vp. Show
that relative to any orthonormal basis (e1,e2) of V', the matrix representing
f must be an element of O(2)\.50(2).



CHAPTER 5
Matrix Calculus

6|2 2|13
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5.1 Multiplication

In this section we will talk at length on matrix multiplication, but first a
word about addition and scalar multiplication in M(m x n,F). Instead of

211 .« B1p . eme
A= (a: o ) one can also write A = (aij)i=1...msj=1...n, Or if it is already
ml ¢+« Gmn

clear how many rows and columns A has, just simply A = (a;;). Addition and
scalar multiplication are defined element-wise, as follows.

Definition: Let (a;;), (bij) € M(m x n,F) and A € F. Then

(aij) + (bij) := (aij + bi;) € M(m x n,F), and
Aai;) == (Aaij) € M(m x n,F).

Fact 1: In this way M(m x n,F) becomes a vector space over F. Since
this vector space is only distinguished from F™" by the manner of writing
its elements (as a rectangle instead of in a long row or column), it has
dimension mn.

Fact 2: The map M(m x n,F) — Hom(F",F™), defined by associat-
ing the linear map z — Az of F* into F™ to ecach matrix A, is an
ismuorphism of vector spaces.
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Now for multiplication. Everything that we are going to say here about ma-
trices has two aspects: conceptual and computational, depending on whether
we regard matrices as linear maps F* — F™ or as arrangements of numbers.
We will use the same notation for both aspects, thus accepting another case
of “double mcaning.”

Convention: For matrices A € M(m x n,F) we denote the associated
linear map F" — F™ by the same symbol A, thus A : F* — F™,

Of course, this is not supposed to encourage you to think that a matrix and
a linear map are actually the same thing. But I do not need to spell out such
naive warnings; you already have some experience in the domain of double
meanings.

To assign a double meaning to one notation introduces certain obliga-
tions, particularly that no confusion must result. For example, if for matrices
A, B € M(m x n,F) we consider the map A+ B : F"* — F™, do we mean the
matrix sum as linear map, or the sum of the linear maps A4,B : F* — F™?
Never mind: in both cases this happens to be the same map, so here there is
no danger of confusion, and the same holds for AA, A € F.

Now we will use exactly the same pattern to define matrix multiplication:
the product of two matrices will coincide as linear map with the composition

B A
AB:F* —F™ — [,
What does this mean for the numerical evaluation of AB? Note, first of all,

that we are not going to multiply arbitrary matrices A € M(r x m,F) and
B e M(s x n,[F) together, since one can only compose

B A
F* — F*, F™ — F7
as AB, if s = m. Therefore the matrix product defines a map

M(r x m,F) x M(m x n,F) — M(r x n,F),
(4,B) — AB.

In order to determine the formula for AB, one must simply work out the image
of the jth unit vector: ¢; — Be; +— ABej, because this is the jth column
of AB

(,) b; aith; + - + a1mbm;
0 bmj arlblj +"'+armbmj

(compare with Section 4.2). Therefore, 3 j.., @ixbx; is the ith clement of the
jth column of AB. Let us use this formula as definition of the product in the
main text, and note its significance for the composition of linear maps as a

conseqgnence,
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Definition: If A= (a;x) € M(r xm,F) and B = (bg;) € M(m xn,F),
the product AB € M(r x n,F) is defined by

AB = (kZ airbgj) i=loar
=1 =1, ..n

Fact 3: As one can easily work out, the matrix product corresponds to
the composition of the associated linear maps; thus the diagram

B

F* —— ™

PN

IFT

is commutative. In particular our notation does not involve any danger of
confusion in connection with the apparently different definitions of AB
as matrix product and AB as composition of linear maps.

The same also holds if we describe homomorphisms between finite-
dimensional vector spaces by means of matrices relative to bases in
these spaces. If V, W, and Y are vector spaces and (v(,...,vs),
(wiy... wm), and (y1,...,yr), respectively, are bases for them, then
because of the commutativity of the diagram

f g

v —— W —/ Y

F"—i—»F’“—ﬁ——»F’

in which the vertical arrows are the basis isomorphisms, and A and B
are the matrices describing ¢ and f with respect to these bases, the
matrix AB corresponds to the homomorphism g¢f.

In connection with the explicit working out of a matrix product, note the
following pattern in Fig. 40.

A B

J
Fig. 40. Calenlation of the element c; of the product matrix (:=4AB

We interprel this by saying that the element lylug in the 1th row and jth
cohunn of the prodoet i calenlated from the fth row of A and jth cohunn
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of B by “matching together-multiplying-swinming up,” as has already been
explained in Section 4.2 for the application of an m X n matrix to an n-tuple
written as a column. Hence only the jth column of B plays a role in the jth
column of AB. For example, if the jth column of B is zero, so is the jth
column of AB, and similarly for the rows of AB and A.

Note also that the pattern visualizes which matrices can be multiplied: the
rows of A must be as long as the columns of B, if it is to be possible to form
the product AB, that is, A must have the same number of columns as B has
rows.

Fact 4: Matrix multiplication is associative: A(BC) = (AB)C, and
distributive with respect to addition: A(B + C) = AB + AC and
(A+ B)C = AC + BC. This follows from the corresponding properties
for linear maps.

These are properties that one expects of a multiplication. However, for
matrix multiplication there exist important departures from the rules for mul-
tiplying numbers.

Remark: Multiplication of (square) matrices is neither commutative
(there exist matrices with AB # BA) nor free of “zero divisors” (there
exist matrices A #0, B # 0, with AB =0).

PROOF: Choosing A = (g }), B = ((1) (1)), we obtain examples of
both

Definition: A matrix A is called invertible if the associated linear
map is an isomorphism. The matrix of the inverse map is then called the
matrix inverse to A and is denoted by A™!.

Using our accumulated knowledge of linear maps we can easily form a col-
lection of assertions about the inverse matrix.

Remarks on matrix inversion:

(1) Each invertible matrix A is square, i.e., A € M(n x n,F).
(2) If A e M(nxn,F) is invertible, thensois A~ and (A471)7! = A,
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(3) If A,B € M(n x n,[F) are invertible, then the product AB is also
invertible and we have (AB)™! = B~'A™!,

(4) If A,B € M(n x n,F) and E,, (or simply E) denotes the matrix
of the identity map F* — F™, i.e.

then B is the matrix inverse to A if and only if AB= BA=E,
and indeed the sharper statement (5) holds:

(5) f A,B € M(nxn,F), then AB=E& BA=E& B=A"",

PROOFS: Invertible matrices are square, since F* 2 F™ for m # n. Assertion
(4) follows from Exercise 2 of Chapter 1, and (2) and (3) are in any case clear;
sec

B A
Fr < Fr <+ F"
B! Al

It remains to prove (5). We know already that B = A~' implies the other two
statements. Therefore, suppose first that AB = E. Then A is surjective, since
for each y € F we have A(By) = Ey = y. Now apply Fact 5 from the end of
Section 4.1: this says that A must be even bijective. Hence A~! exists, and
it remains to check whether A~! = B. It suffices to show that not only does
AB = E but also BA = E. We have

BA=(A"'A)BA= AY(AB)A=A"'EA=A""A=E,

and therefore we have shown that AB = E <= BA = E so that (5) follows
from (4). |

Not so easy to find is a method for the explicit determination of A~!. We
will come back to this in Section 5.6.

5.2 The Rank of a Matrix

In Section 4.1 we defined the rank of a linear map f to be dimIm f. Cor-
respondingly, one takes the rank of a matrix A € M(m x n,F) to be the
dimension of the image of A : F* — F™. This nunber is also equal to the
maximal length of a linearly independent. »-tuple of colunmins of A4, sinee the
colunms, as inages of the unit vectors, generate i A, and henee, by the basis
extension theoren, there exists a basis of Iln 4 cousisting of columms of A,
and there ean exist. 1o longer linearly independent »-tuple of cohnnus (why?).
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Definition: If A € M(m x n,F), then
tkA:=dimIm(A:F* - F")

is called the rank of the matrix A. The maximal number of linearly
independent columns is called the column rank of A, and the maximal
number of linearly independent rows is the row rank of A.

Fact: The rank of a matrix is equal to its column rank.

Theorem: For each matrix A, column rank and row rank are equal.

PROOF: For the purposes of this proof we shall say that a row or column
is linearly superfluous if it can be expressed as a linear combination of the
other rows or columns. If we reduce the size of a matrix by omitting a linearly
superflous column it is clear that the column rank is unchanged. We will show
first that the row rank does not change either.

Assume that the jth column is linearly superfluous in the matrix A. Then
for each row or linear combination of rows, the j th entry is linearly superfluous
(in the one-dimensional space F!). This is clear: one forms the jth entry as a
linear combination of the remaining elements by using the same coefficients as
were used to express the jth column as a combination of the others.

From this it follows that a linear combination of rows from A is already
zero if the corresponding row combination without the jth column is zero.
Therefore, the matrix A and the matrix formed by omitting a linearly super-
fluous column both have the same number of linearly independent rows, that
is, the same row rank. This was what we wanted to prove first.

In the same way omission of a linearly superfluous row does not alter the
column rank (and of course not the row rank). Now we reduce the size of our
matrix by repeated omission of linearly superfluous rows and columns until
this is no longer possible. At this point we obtain a possibly much smaller
matrix A', which, however, still has the same row and column ranks as A.

That A’ has no linearly supcrfluous rows and columns implies that the rows
and columns of A’ are linearly independent: row rank equals the number of
rows, and column rank equals the number of columns. But then A’ must be
square, since the length of a linearly independent r-tuple of vectors cannot
exceed the dimension of the space. Hence row and column ranks are equal. O

&

This was a rather “pedestrian” sort of proof; Exercise 11.1 in Chapter 11
will be concerned with a more conceptual one.

5.3 Elementary Transformations

The so-called “elementary row and cohunn transformations” are in practice
perhaps the most important techniques in matrix ealeuhus, In this chapter we
need them to determine the rank; i the next chapter, for calenlations with
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determinants; and in Chapter 7 for the solution of systemns of lincar cquations.

Definition: There are three kinds of elementary row transforma-
tions for a matrix A € M(m x n,F), namely

(R1) the interchange of two rows

(R2) multiplication of a row by a scalar A #0, A € F, and

(R3) addition of an arbitrary multiple of one row to another row (not to
the samel).

Elementary column transformations (C1), (C2), (C3) are defined
analogously.

After a series of elementary transformations, a matrix may be scarcely rccog-
nizable. For example, observe how the following 3 x 3 matrix is “cleaned up”
by transformations of type (3):

111 111 111 110 1 00
22 2)—-t000)—-t0O0O0)—4t0O0O0)—}f0 00
3 3 3 3 3 3 0 00 0 0 0 0 00

In spite of these drastic changes, one important reminder of the original matrix
remains — namely, the rank.

Remark 1: Elementary transformations do not alter the rank of a
matrix.

It is clear that elementary row transformations do not alter the linear hull of
the rows, and thus not the row rank, since this is the dimension of the linear
hull. In the same way, elementary column operations do not alter the column
rank. Since the row and column ranks are equal, the truth of the remark
follows.

This remark leads to a marvelously simple procedure for the determination
of the rank of a matrix. But first, let’s introduce some terminology.

Definition: The elements a;; in a matrix are called the diagonal ele-
ments. The remaining elements a;; are said to lie “above” (respectively
“below”) the diagonal depending on whether : < j or i > j.

There are matrices for which one can simply read off the rank without further
calculation. The following remark describes one type of such matrices.

Remark 2: If A is a matrix with m rows in which the first r entries
on the diagonal are distinet from zero, while the last 1 — 7 rows as well
as all elements helow the dingonal vanish, then rk A = ».
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(In such a schematic representation for a matrix, the symbol * means that it
is irrelevant to the matter under discussion which elements occur in the region
marked *.)

PrROOF OF REMARK 2: Omitting those vanishing last m — r rows obviously
does not alter the rank, and the first » rows are linearly independent, because
A1(first row)+ Ay(second row)+: -+ Ar(rth row) = 0 implies A; = 0, because
a11 # 0, and then A = 0, because azg # 0, etc. Hence the row rank is r. O

The procedure for finding the rank simply consists of using elementary
transformations to bring the given matrix into the above form.

Procedure for determining the rank of a matrix:
Let A € M(m X n,F) be in the form given on the left:

ay) a1y
* . *
0 . 0 .
Qk—-1,k—1 Qg—1,k—1
[
a *
kk
0 B 0
0 B!

where a11 #0,...,ar—14—1 #0and Bisan (m—k+1)x(n—k +1)
matrix. If B =0, then kA =k—1.1If B # 0, there exists some a;; # 0
with ¢ > %k and j > k. If necessary, now exchange the ith and kth
rows and jth and kth columns, obtaining a matrix A' with a}; # 0.
By elementary transformations of type (R3) this can be brought into the
form shown on the right.

If one begins this process with k = 0 (which means that initially the
matrix does not have to satisfy any special conditions), and continues it
until the residual matrix, denoted B’, is either zero or has disappeared
altogether, then one obtains a matrix as in Remark 2. One knows the
rank of this matrix, and hence the rank of the given matrix A.




5.4 Tost

(1) Let A€ M(2x 3,F), B € M(2 x 3,F). Then

O A+BeM@2x3,F).
O A+ B e M(4x6,F).
O A+Be M(4x9,F).

(2) For which of the following 3 x 3 matrices A do we have AB=BA =101
for all B € M(3 x 3,F)?

1 00 0 01 1 11
O A=§0 10 g A=(010 O A4A=}1 11
0 0 1 1 00 111

(3) For A € M(m x n,F), we have

O A has m rows and n columns.
O A has n rows and m columns.
O The rows of A have length m and the columns of A have length n.

(4) Which of the following matrix products is zero?
1-1 2 3 —11) (23 1-1) (22
o (3)(4) = @EDGE) = 636
(5) Which of the following properties does matrix multiplication lack?

O associativity O commutativity O distributivity

(6) For A € M(n x n,F) we have:

O rk A = n = A is invertible, but there exist invertible matrices with
rkA #n.

O A isinvertible = rk A = n, but there exist matrices A withtk A = n,
which are not invertible.

0O rk A =n <& A is invertible.

7) Which of the following transformations cannot be made elementarily?
o (31)—(Gs)
3 (2 7)= (2 5)
o ()= (1)
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(8) Let A € M(m x n,F), B € M(n x m,F), so that we have

2 2 e

Let BA=E, (=Idw~ as linear map). Then

O m > n, A injective, B surjective.
O m < n, A surjective, B injective.
O m =n, A and B invertible (bijective).

(9) The rank of the real matrix

5 b b
5 5 5
5 5 5
is
a1 a3 as

(10) For A € M(m x n,F) with m < n, we always have
O tkA<m O m<rkA<n O n<rkA

5.5 How Does One Invert a Matrix?

A section for mathematicians

A good recipe for inverting matrices exists, but it is recommended that you
do not learn the recipe by heart, but rather note the principle on which it
rests. Then even if you find yourself with no more than a vague memory of the
principle, you will have a chance of reconstructing the recipe; but if you forget
one detail of the recipe, it is gone for good. Therefore, think once more about
multiplying matrices. We may assuine that we have n X n matrices, since these
are the only ones for which inversion comes into question.

|

A B

What happens with the product matrix AB, if one interchanges two rows in
A (not in B!)? It is clear that the same two rows will be interchanged in the
product matrix, for the :th row of the produet results from the 1th row of
the first factor by means of the kuown pattern of “combining™ it with the jth
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column of the second. In the same way mnltiplying the ithrowof A by A € F
has the same effect iu the product, and furthermore addition of a multiple of
the ith row to the jth row also carries over to the product. Hence one has the
following facts.

Fact 1: If for A,B,C € M(n x n,F) one has the equation AB = C,
and one carries out the same elementary row operations on A and C
obtaining A’ and C', then A'B = (C".

Since we know that AA™! = E, we can use this observation for our
problem.

Fact 2: If E is obtained by elcmentary row transformations from A, the
same row transformations change the matrix E into A™?!,

We have now to consider only how one actually turns an invertible matrix
A into the identity matrix by means of row transformations. Let us remind
ourselves of the types: (R1) was interchange, (R2) multiplication, and (R3)
addition of a multiple.

Procedure for matrix inversion:

Let A be an n x n matrix over F. First of all, if it is necessary, we try to
make the “leading” coefficient different from zero by interchanging rows.
If this is not possible, the first column is zero and A is not invertible.
Suppose, therefore, that a;; # 0. Then multiplying the first row by
A := 1/a,; replaces a;; by 1. Now add appropriate multiples of the first
row to the other rows, so as to bring A into the form

1
0

With this the first step is finished; in the second we try to reach the form

1(0
01
<10
010

For this we need to mterchange rows in order to have agy # 0, assumin
22 ’
that this is not already the case, without disturbing the first row.




If this eannot he done, the second colunm 18 a multiple of the first, and
the matrix is not invertible. Suppose that aye # 0. By multiplying the
second row by 1/a;; and by addition of suitable multiples of the second
to the remaining rows, we bring the matrix into the desired form, and
the second step is finished.

Either we can repeat this procedure n times, obtaining the identity
matrix F, or A shows itseclf to be noninvertible. If A is invertible, then
we obtain A~! by repeating the row operations turning A into E on
the rows of E in the same order.

I do not think that it is necessary to describe the kth step formally. If A
is genuinely invertible, then the lincar independence of the columns after k—1
steps guarantees the existence of an element ai # 0 with 7 > k, and one can
proceed. Here is an illustrative example, which you should work through for
yourself. There is no point in just “reading” through such a numerical example.

1 0 1 1
1 1 2 1
Lt A=| o 1 o 1| ¢ Mex4R)
1 0 0 2
Let’s do the calculation:
1 0 1 1 1 0 0 0
101 2 1 0 1 0 0
Start A‘(o “1 0 1)’( 0 0 1 0)—E
1 0 0 2 0o 0 0 1
1 0 1 1 1 0 0 0
0o 1 1 o)y [-1 1 0o o
Ist step (0 -1 0 1)( 0 0 1 0)
0 0 -1 1/ \=1 0 0 1
1 0 1 1 1 0 0 0
o 1 1 o)y [-1 1 0o o
2nd step (0 0 1 1)’ (—1 11 0)
0 0 -1 1/ \-1 0 o0 1
1 0 0 o0 2 -1 -1 0
0 1 0 -1 0 0 -1 0
3rd step (0 0 1 1)’ (—1 11 0)
o 0o o 2/ \—2 1 1 1
1 0 0 0 2 -1 -1 0
0 1 0 o -1+ 1 1
4th step E = , T S
0 0 1 0 o 1 1 1
o 0 o 1/ \-1 i I I
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Result: The matrix A is invertible, and one has

2 -1 -1 0

1 1 1

a7t 2 T2
o 1L r 1

2 2 2

1 1 1

-1 3 3 3

Agreed?

5.6 Rotations and Reflections (Continued)

A section for physicists

For ¢ € R we introduce, just for the following discussion, the abbreviated

notations

A = {COS® —sine e S0(2)
[ sing  cosy

. fcosp sin
B, := (simp —cosga) € 0(2)~\50(2)

The map A, : R? —» R? is thus rotation through the angle ¢, and B, is

reflection in the axis making an angle (/2 with R x 0.

How do these matrices behave with respect to multiplication, that is, what
are A,Ay, A,By, ByA,, and B,B,? Before doing the calculation let us
consider geometrically what must come out. If we first rotate through an angle
1 and then through an angle ¢, the combined rotation is through an angle

@ + 1 (see Figs. 41a, b, and c).

€3
Alll e A‘p A,/,el
Ay

¥ Ayger Y @
14 N o

21 ¥ N el

Fig. 41a. The unit vec- Fig. 41b. First step: ro- Fig. 4lc. Second step:

tors tation through ¢ rotation through o

Hence we must have A, Ay = A 1y:

cosy —sing costp —siny)

sing  cosep J \singp  cosyp )

cospcosy —sinpsinyg —cospsing —sinpcosyp |
singeosth + cospsing  —sinpsiny + cosypcostp |
cos(p +1p)  —sin(p + 1/')>

sin{g ) cos{e + 1) )7



where we have assumed, botl here and in what follows, that the “addition
theorem” for sine and cosine, namely,

sin(p + ¥) = sinp cos P + cos @ sin 4,
cos(p + 1) = cosp costh — sinsin ¢

is known. Next consider A,By: we first reflect in the axis with angle /2,
and then rotate through an angle ¢ (see Figs. 42a, b, and ¢). What happens
to the unit vectors (columns!)?

€2 Aq, B,/,el
B,/,el
ey -3 - Prad ”
AY
€
\ \\ A‘P B'I) 2
\\
A\
B,/,ez
Fig. 42a. The unit vec- Fig. 42b. First step: re- Fig. 42c. Second step:
tors flection in ¢/2 rotation through «

Geometrically this gives A, By = Byyy . If in doubt, multiply out the matrices

cosp —sing cosy sing \
sin cos singy —cosep )
cospcosy —sinpsiny cospsing +sinpcosy |
sing cosy + cospsiny sinpsing —cospcosy /

cos(p + 1) sin(e +9)) _
(Sin(so +¢) —cos(p + ¢)) = Boty:

But if we first rotate through an angle o, and then reflect in /2, as is shwon
in Figs. 43a, b, and c,

€2
A¢e2
€1
B,pA‘Pez
Fig. 43a. The unit vec- Fig. 43b. First step: ro- Fig. 43c. Second step:
tors tation through o reflection in /2

we arrive at ByAp = By_,. This is confirmed by
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cos siny cosp —sing ) _
sinyp —cosy sin ¢ cosp |
cospcosy +sinysing —cosysing + sinp cose
sin cos —cosysing —sinysing — cosy cos P

cos(pp — ) sin(yp—p)\ _
(6= o) =2

Since in general By, # By_,, we have here a further example of the non-
commutativity of matrix multiplication: A,By # B,Ay, so long as the axis
making an angle of (1 +¢)/2 with R x 0 is distinct from that making an angle
(¥ - ¢)/2.

Finally we want to see what happens when we compose two reflections witl
each other -— what is B, By, ? Figs. 44a, b, and c illustrate this effect.

€2 B‘,,B,/,eg
B,/,el -
et - - \‘ B¢B¢31
\‘/ B,/,ez
Fig. 44a. The unit vec- Fig. 44b. First step: re- Fig. 44c. Second step:
tors flection in ¢/2 reflection in /2

cos¢ sin ¢ cos singp}
singp —cosep sin —costp )

cOs@ costp + sinpsiny cose siny — sinp cos ¢
sing cosyp — cossiny  singsiny + cosy cos P

cos(p —9) —sin(p — )\ _
(Sin(S" —9) cos(p — ‘/’)) = Aoy

From this we see that B,By, = A,_y, and again B,By # BB, in general.

What to rememnber of these formulae? I propose that one should hold on
to AyAy = Auty, together with the following general properties of matrices
in O(2): rotation following rotation is rotation, rotation following reflection
is reflection, reflection following rotation is reflection, and reflection following
reflection is rotation,
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Complete the following scheme:
Rotation through a zero angle (Identity): Ay =
Rotation through 90°: Axr =
2

Rotation through 180°: A =

Reflection in R x 0 (“z-axis”): By, =

Reflection in the “half-angle axis” or “diagonal”: Br =
2

N’ N N N N N

Rotation through —90° (i.e., in a clockwise direction): A_m =(
2

)

What are the inverses of elements in O(2)? Because we have Ay = E, and
A,A_, = A,_p, = A and B,B, = A,_, = Ay, we recover what is geomet-
rically obvious, namely that A;l =A_, and B;l = B,. This is written as

follows: .
cosp —sing) cose sing
sing  cosy T\ —sing cosy

cosp  sing) _fcosp  sing
(sim,o —oosga) - (singo —cosgo) )
Thus the elements B € O(2)~S0(2) all have the property that BB = E,
or as linear maps that B o B = Idge. Such maps, which when applied twice
give the identity (which means that they are their own inverses), are called
involutions. Among the elements of SO(2) there are two further involutions
(which?).

Reflection in the “counter diagonal”: B r=
2

5.7 Historical Aside

How old would you estimate that matrix calculus is? Ten years, 100 years,
1000 years, maybe even known to the ancient Egyptians?

Matrix calculus is actually rather over one hundred years old; its originator
is the English mathematician Arthur Cayley. In the year 1855 scveral notes
by Cayley appeared in Crelle’s Journal; in one of these the label “matrix”
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appears for the first time for rectangular (and in particular for square) arrays
of numbers:

No. 3.

Remarques sur la notation des fonctions algébriques.

Je me sers de la notation

o B, ¥,
a': ﬂ'-v 7’:
a", A", 711,

pour représenter ce que j'appelle une mafrice; savoir un systéme de quan-
tités rangées en forme de carre, mais d'ailleurs tout a fait independantes (je ne
parle pas ici des matrices rectangulaires). Celte nolation me parait trés
commode pour la théorie des équations linéuires; j'écris par ex:

Ent.y=le B v ..Jlzye..)
o, B, ¥ ...
an, /3", 711 v

Three years later Cayley’s foundational work on matrix calculus appeared.
Of course, one had “known” about rectangular arrays of numbers for a long
time — one has only to think for example of Albrecht Diirer’s magic square,
appearing on the etching “Melancholia” from the year 1514. But what does
“know” mean here? Anyone who is familiar with numbers can write down
a rectangular array of numbers. Cayley’s conceptual achievement was that
by introducing matrices as mathematical objects in their own right, he was
the first to realize their potential for algebraic operations. The easy way, in
which we define new algebraic objects (“A vector space is a triple (V,+, +),
consisting of ... ”) today, does not have a long history. Before this numbers
and geometric figures were essentially the only objects of mathematics. It is
with this in mind that one must see the introduction of matrices.

5.8 Exercises

Exercises for mathematicians

5.1: Show that if A,B € M(n x n,F) then
tk A+ 1k B —n <1k AB < min(1k A, 1k B).

Hint: use the dimension formula for inear transformations.



5.2: Let (v1,v2,v3,v4) be lincarly independent clements of the real vector
space V. If

wy = vz —v3+2u4
we =  v1+2v,—vz3—vy
w3 = —vi+ vz+vztvy,

show that (w1, ws,w;) is linearly independent.

Here a theoretical argument, as in Exercise 3.1, is no help; it comes down
to the actual coeflicients and one must do the calculation. Hint: first show
that the linear independence of (wy,ws,w;) is equivalent to a certain matrix
having rank 3, and then use the procedure for determining rank to find the
rank of this matrix.

5.3: For which values of A, is the real matrix

1 A 00
A1 00
A=1g 210
0 0 A1
invertible? For these values of A determine the inverse matrix A;l .

The x-exercise

5*: Let V be a finite-dimensional vector space over F and f : V = V an
endomorphism. Show that if with respect to all bases f is represented by the

same matrix A, i.e.,, A= ®~1f® for all isomorphisms & : F — V, then
there exists some A € F with f = Aldy.

Exercises for physicists

5.1P: Give examples of two matrices A, B € M(6 x 6,R) with the following
properties: Tk A = rk B = 3, AB = 0. (Giving such matrices naturally entails
the proof (insofar as it is not obvious) that A and B do actually have the
stated properties.)

5.2P: Excrcise 5.2 (for mathematicians)

5.3P: Let ) . .
H, = (sm27rt smgt) for t € R.

cos2nt cos gt

For each ¢ with 0 < t < 12, determine the rank of the matrix H,, and in
particular determine those values of ¢ for which this rank equals 1.



CHAPTER 6
Determinants

6.1 Determinants

Each square matrix A over F has a determinant, det A € F. We need the
concept of the determinant in linear algebra first for certain considerations
(mainly theoretical) concerning matrix inversion and the solution of systeins
of linear equations. Later we will again meet the determinant in discussing
eigenvalues. Outside linear algebra the determinant is also important, for ex-
ample, in the integration of functions of several variables, since it is closely tied
to the concept of volume. But in the present chapter, we will simply consider
determinants as a tool in matrix calculus, thus you need to learn what the
determinant is and how to handle it.

Theorem 1 and subsequent definition: There is a unique map
det : M(n xn,F) - F

with the following properties:

(i) det is linear in each row,

(31) if the (row) rank is smaller than n, then det A =0,

(iii) detE=1.
This map det : M(n x n,F) — F is called the determinant, and the
number det A € F is called the determinant of A.




By “lincar in cach row” we mean the following: if all the rows except
the ith are given in somne inatrix scheme, cach element ¢ € F* gives an
extension to a complete n x n matrix A, : one has only to introduce z
as the ith row. The map det : M(n x n,F) — F is called linear in the
ith row if the map F™ — [ given by = — det A, is always linear.

This definition is of course no practical instruction for working out the deter-
minant of a given matrix. If you are still of the opinion that the most important
information about a mathematical object is a “formula” for “working it out,”
then you are certainly in the company of most educated laypeople, but as
a professional mathematician you ought to throw such prejudices overboard.
In most mathematical contexts where you come into contact with determi-
nants, it is not a matter of calculating the determinant of a given matrix to
two places of decimals, but rather of knowing the properties of the whole map
det : M(n x n,F) — F. (But please do not conclude from this that among
mathematicians it is good taste not to be able to work out a determinant!)

PROOF OF THE THEOREM. (a) Proof of uniqueness: in order to check that
there exists at most one map det : M(n x n,F) — F with the properties (i)
to (iii), we will first prove a lemma, which also has uses outside this proof, in
that it tells us how the determinant reacts to elementary row transformations.

Lemma: Let det : M(n x n,F) — F be any map with properties (i) and
(ii). Then the following holds:
(1) If the matrix A’ is obtained from A by interchanging two rows,
then det A' = — det A.
(2) If the matrix A’ is obtained from A by multiplying some row by
A eF, then det A’ = Adet A.
(3) If the matrix A' is obtained from A by adding a multiple of one
row to another row, then det A' = det 4.

PROOF OF THE LEMMA: Assertion (2) follows immediately from the linearity
of det in the rows.

For (3): Consider the matrix A", which we obtain from A if instead
of adding a multiple of one row to another, we replace this other row by
the appropriate multiple. Then rk A" < n, and therefore det A" = 0.
By linearity in the rows (here in the “other” row) it now follows that
det A’ = det A + det A" = det A.

For (1): Let 7 and j label the rows to be interchanged. If we add row j
to row i, by (3) we obtain from A a matrix A; with det A = det 4;, and
similarly from A’ a matrix A} with det A’ = det A}.

The matrices A; and A} formed in this way are distinct only in the ith
row: in the jth row they both have the sum of the ith and jth rows of A.
Because of linearity in the ith row we then have det A, + det A} = det B,
where B is a matrix whose {th and jth rows are both equal to the sum of the
ith and jth rows of A. Therefore, tk B < n, hence det. B = det Ay +det A| =
det A + det A' = 0, and thus det A' = —det. A. O




100

The lemina is now proved, and we continue in the proof of the uniqueness
assertion of Theorem 1. As a consequence of the lemma we have: if det and
det' are two maps with properties (i) and (ii), and the matrix A is obtained
from A by elementary row transformations, then det A = det’ A not only
tmplies, but is actually equivalent to, det A = det' A, since any elcmentary
row transformations can be reversed by elementary row transformations.

Let det and det’ next satisfy (i), (ii), and (iii). We want to show that
det A = det' A for all A € M(n xn,F). This follows from (ii) if A is such that
rk A < n. Suppose therefore that tk A = n. Then A can be changed by means
of elementa.ry row transformations to E; this is already known to readers of
Section 5.5 on matrix inversion, and otherw1se one proceeds by induction as
follows. If we already have

0 B

(for k < n), then by interchanging two of the last n — k rows we can make
the (k¥ + 1,k + 1) entry in the matrix nonzero. For if the first column of
B were trivial, the (k + 1)th column of the whole matrix would be linearly
superfluous, contradicting rank = n. Transformations of types (R2) and (R3)
then push the induction forward. Hence one can change A into E, and from
det E = det' E = 1 it follows that det A = det’ A. a

(b) Proof of existence: the existence of a map det : M(n x n,F) — F with
properties (i) — (iii) can be proved by induction. For n = 1 it is clear that
M(1 x 1,F) — F, (a) — a, has these properties. Now suppose that we have
already defined a determinant for (n — 1) x (n — 1) matrices.

Definition: If A € M(n x n,F), let A;; denote the (n — 1) x (n — 1)
matrix obtained from A by omission of the ith row and jth column.

With this notation and our inductive assumption we can now define a map
det : M(n xn,F) — F as follows. Choose some arbitrary but then fixed ; with
1<j <n, and set

det A := i(—l)"“aﬁ det A;;.

=1

We want to show that this map det : M(n x n,F) — F has properties (i), (ii),
and (iii).

Property (i): Linearity in the kth row of A follows since eael suammand

(~-1YHa,, det A::



has this linearity property. For k # i this is because det : M(n—1xn—1,F)
— [ has the corresponding property, and a;; does not depend on the kth
row. For k = ¢ note that

M(n xn,F) —TF
Ar— aij
is linear in the ith row, and A;; is independent of the ith row of A (which
has been omitted!).

jth column

ith row

kth row [

Fii 45, Dependence of a;; and A;; from the kth row of A has
to be considered separately for the case k=i and for the case k#i.

Property (ii): Let tk A < n. Then there exists some row that can be formed as
a linear combination of the others. From this it follows that by elementary row
transformations of type (R3) we can reduce this row to zero. A matrix with
a zero row has determinant zero -— this follows from linearity, which we have
already proved. We must therefore show that elementary row transformations
of type (R3) do not alter the determinant. Because we have already proved
linearity, it will suffice to show that the determinant of a matrix having two
equal rows vanishes. So let us assume that the rth and sth rows are the same
in A. Then by the inductive assumption,

Z(—l)“”.a;,' det 4;; = (—I)T'Har,- det A,; + (—1)"+’.a,,' det A,;,
1

because all other summands vanish, given that the A;; concerned have two
equal rows. How do A,; and A,; differ? If r and s are adjacent, then
A.; = A,; anyway, since when two equal rows are next to each other, it is
irrelevant which one we strike out. If there is exactly one other row between
the rth and sth rows, thus |r — s| = 2, then one can change A.; into Ay;j
by means of a single exchange of rows. More generally: if |r — 5| = ¢, one can
change A,; into A,; by means of £t — 1 such moves. Since by the inductive
assumption for (n—1)x(n—1) matrices interchange of rows changes the sign
of the determinant, and since a,; = a,; because of the equality of the rth
and sth rows, we have

det A= (~1)"Va,; det A,; +(—1)"Va,; det A,;
= (—1)r+ja,-,' det A+ (—1)"-"’-0,,.,'(—-1)r_'H'1 det Ay
=((-1)™ 4+ (=) )a, det A, = 0.
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E, = (1 ) = (6ij)ij=1,...,n s

where 6;; = 0 for i # j and 1 for ¢ = j (Kronecker symbol). Therefore
in the sum det E, = Zi(—l)i+j¢5;j det E,;;, there is only one summand dis-
tinct from 0, and this equals (—1)5+j555 det E,;;. But E,j; = E,_, hence
det E, = det E,,_; = 1, and this completes the proof. a

Property (iii): Here

6.2 Determination of Determinants

Even though the defining Theorem 1 has not given us a direct recipe for calcu-
lating determinants, in the course of the proof we have actually learned ways
to do this, in particular the “expansion formula.”

Column expansion formula: The formula for the determinant of an
n x n matrix A obtained in the above proof,

det A = Y (—1)"* g;; det A;;,
=1

is called the ezpansion of the determinant by the jth column.

Since for the (1 x 1) matrix A we have det(a) = a, for (2 x 2) matrices
expansion by the first column gives

det (Z 2) = ad — bc.

Once this subtraction of products formed by crossovers has become a habit,
we can easily work out determinants of three-row matrices by expansion, for
example by the first column:

This diagram is meant to illustrate the calculation

a1 a1z a13
det | a1 a2 a23 | =
agz1 asz asg

Q22 a2y Q2 Ay a2 g
ayy det — ay; det + ag, det .
a2 ayy ayy  yn



But alrondy for (4 x 4) matrices recursive expansion of the deterniinant by
nieans of an expansion formula has ccased to be economical. It still does good
service in certain situations; for example, by induction and expansion by the
first column we can easily prove the following facts.

Lemma: f A ¢ M(n x n,F) is an upper triangular matrix. i.e. all
elements beneath the diagonal are zero, or a;; =0 for i > j,

a1l

a’""

the determinant is the product of the diagonal elements:
det A = ayy ‘... " Apn.

Corollary (Procedure for computing determinants of large matrices): In
order to determine the determinant of A € M(n x n,F), use elementary
row transformations of types (R1) and (R3) (interchange of rows and
addition of row multiples to other rows) to change A into an upper
triangular matrix

which can always be done. If one has used r row interchanges,

det A=(—1)"det A’ =(-1)"a}; - ..." q,

nn°

6.3 The Determinant of the Transposed Matrix

Just as in Chapter 5 we spoke of row rank and column rank, we ought to
refer to the determinant defined in Theorem 1 as the “row determinant,” since
property (i) refers to rows (“linear in each row”). In the same way we can
define a “column determinant” by requiring the map M(n x n,F) — F to
be linear in each column and also to satisfy the cowditions of vanishing for
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matrices of rank < 7 and taking the value 1 for the identity matrix. However,
we will show that the column determinant equals the row determinant, and
hence that one does not need to introduce these names; one can simply speak
of the determinant — similarly to the rank. One can best formulate all this by
introducing the concept of the transposed matriz.

Definition: If A = (a;;) € M(m x n,F), then the matrix
At = (a,fJ) € M(n X m,F)

with af; := a;; is called the transpose or the transposed matriz for A.

Thus one obtains A* from A by writing the columns as rows:

t

One can also describe transposition as “reflection in the diagonal,” since each
matrix element a;; is moved from its (Z,j) position to the mirror image posi-
tion (7,1):

If one considers the matrix A as a linear map A : F* — F™, then the transpose
is a map in the opposite direction:

FVD (;4;'_ Fm,

because A* € M(n x m,F). This also fits with the transpose of a matrix prod-
uct Fr 2, pm 4, pr (first B, then A) being the product of the transposes

in the reverse order, F" B AL F, (first A?, then B*),

Remark: We have (AB)' = B'A!, since the elements c¢;; of the
product matrix C := AB are by definition ¢;; = 3, aivbij, hence

o — R R Lt
¢ij = 65i = 2op ajrbr = 3o Bipag; -




Furthermore it is also clear that transposition is linear, that is, (A+ B)! =
A+ B!, (AA) = AAY and that (A" = A. We do not need
through a seperate remark,

We can now formulate the goal of this short subsection in the language of
transposed matrices,

to emphasize thig

Theorem 2: We have det A = det A! for al] 4 € M(n x n,F).

PRrooF: Since row and column ranks arc equal, and since the jde

ntity matrix
Eis “symmetric,” that is, Et = E, by Theorem 1 we have to prove only that

det : M(n x ", F) > F is linear i the columns, However, the lincarity of det
in the jth colump follows from the column expansion formula,

det A = Z(—l)i+jaij det A,‘j,

because A;; does not depend on the Jth column of A, since this column has
been struck oyt! With this Theorem 2 is proved, O

With det 4 = det gt the formula for cxpansion b

y a COlLlInn, appth to
¢ 1l vVes u f f I
A . g >S US a row expa 15101 fog ]Illll(). O A

Row expansion formula: One cap also work out the determinant of
a1 n X n-matrix by means of “expansion by a row”:

det A = 2 (=1)"*g,; det A
J=1

6.4 Determinantal Formula for the Inverse Matrix

The row expansion formulg,
n . .
det A = Z (—-I)I_Ha,'j det Ay
Jj=1
has a certain similarity with the formula for matrix multiplication. In order

to put this more Precisely, for each Square matrix A we define the so-called
adjugate matrix A as follows,

Definition: For 4 € M(nxn, F) we define the matrix 4 ¢ M(nxn,F)
adjugate to A by

5,,» = (—1)i+j det Aj,‘ .
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Thus we obtain A as the matrix of (1 — 1)-row subdeterminants det A;;
(remember A;; results from deleting the ith row and jth column), modifie
by bringing in the chessboard parity (—1)!*7 and reflection in the diagonal:

det Ayg —det Ag1 { det A3y

~det A1 | det Ag2 | —det A3g

det A13 | ~det Agg | det Az3z

By the row expansion formula we then have det A = Z;.'z_l a;;a;i, and this
implies that the diagonal elements of the product matrix AA are all equal to

det A, What happens away from the diagonal? What is 3°7_; aij@;x , for fixed
i # k7 This is the heart of the matter: the kth column

a1k
?ink

of the adjugate matrix A does not notice if we alter the kth row of A in any
way, since Gjg = (—1)7t¥ det Ax;, and Ag; results from deleting row k (and
column j) from A. Therefore, we may just as well replace the kth row of A
by the ith, and expand the determinant of the resulting matrix A’ by its kth
row to find that

n
det A’ = Z a,'_,'?i,'k .
Jj=1

But det A’ is zero, because A’ has two equal rows! Thus we have proved the
next theorem,

Theorem 3: If A is the adjugate matrix to A ¢ M(n x n,F), then

det A
AA = '.. s
det A

and therefore for all matrices A with nonvanishing determinant we have

the inversion formula )
A= Lo
det A4
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For two- and three-row matrices this is a convenient way to work out A~!
explicitly. In particular, if ad — bc # 0, we have

a B\7'_ 1 d —b
c d T ad—bc\~-c a)’

6.5 Determinants and Matrix Products

In this section we want to prove that det(AB) = det A-det B for nxn matrices.
In particular, it would follow from this that matrices of rank n have a non-
vanishing determinant, because the dimension formula dimKer A +rkA =n
implies that such a matrix is invertible, and det A # 0 then follows from
det A- det A=! = det E = 1. However, we wish to use this fact in proving the
product formula det(AB) = det A-det B, and it is thus a good thing that we
already know it: see the following lemma.

Lemma: An n X n matrix is invertible, that is, has rank n, if and only
if det A #0.

PROOF: From the defining Theorem 1 we already know that rk A < n implies
that det A = 0. Suppose, therefore, that rk A = n. Then one can change A
into the identity matrix by means of elementary row transformations; we have
seen this, for example, in the proof of the lemma in Section 6.1. The reader
of Section 5.5 had seen it even earlier. Hence det A cannot be zero, because
otherwise the lemma in Section 6.1 would show that det E = 1 would also
equal zero, a

Theorem 4: For all A,B € M(n x n,F) we have

det AB = det A - det B.

PROOF: We want to draw Theorem 4 out of Theorem 1, almost without cal-
culations. First fix B and consider the map
f:M(nxnF)——>F
Ar—— det AB.

Then f has property (i) of the determinant: it is linear in the rows of A. For
if I only change the ith row of A, then in AB this only calls for an alteration
of the ith row, and with the remaining rows together with B held fixed,

F* —— "

(ith row of A) ——— (ith row of A3)
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is a linear map. Hence the assertion follows from property (i) of the deterini-
nant.

As a next property of f we note that f(A) = 0 if rk A < n. This is because
ImAB C Im A, and rk A < n therefore implies tk AB < n, hence f also has
property (ii) from Theorem 1.

Finally, we have that f(E) = det EB = det B. Thusif det B # 0, the map
given by A — (det B)~! det AB has all three properties (i), (ii), and (jii) from
Theorem 1; hence, (det B)~! det AB = det A, or det AB = det Adet B, as we
wanted to prove. It only remains to consider the case where det B = 0.

But then, by the previous lemma, rkB < n, hence dimKerB > 0 al
therefore dimKer AB > 0 as well (note Ker B C Ker AB). Thus tk AB < n.
and det AB = 0. We conclude that det AB = det A - det B holds in all cascs.

a

Corollary: If A is invertible, that is, if det A # 0, then
det A™! = (det 4)71,

since det A-det A~! =det AA™! =detE = 1.

6.6 Test

(1) The determinant is a map

0O M(n x n,F) — F given by the product of the diagonal elements.

0O M(n x n,F) — F, which is linear in the rows, vanishes on matrices
with less than maximal rank, and takes the value 1 on E.

0O M(n x n,F) — F*, which is given by a linear combination of rows,
vanishes on matrices with less than maximal rank, and takes the value
lon E.

(2) Let A, A’ € M(n x n,F) and let A’ be obtained from A by elementary
row transformations. Which of the following statements are correct?

O detA=0<= detA'=0.
O det A=detA’.
O det A= Adet A’ for some A € F, A #0.

(3) Which of the following assertions is correct? For A € M(n x n,F) we
have

O detA=0=—=1k A =0.
O dtA=0&=>1kASn-1.
O detA=0==>rkA=n.



(4)

(6)

(7)

(8)

(9)

10)

Which of the following statements holds for all A, B,C € M(n x n,F)
and all A € F?

O det(A+ B) = det A +det B.
O det AA = Adet A.
O det((AB)C) =det Adet Bdet C.

Which of the formulae below is called “expansion of the determinant of
A = (ai;) by the ith row”?

O detA = Z(—l)i+jaij det Ajj.

=1

O detA = i(—-l)i'*'ja,‘j detA,-,-.

=1
O detA = Z(——I)H'ja,',‘ det 4;;.
=1
1 0 1
det | 2 3 -1 =
0 1 1
a2 a4 ae

Let E ¢ M(n x n,F) be the unit matrix. Then the transposed matrix
E! =

A A A
det f A A A} =

A A A
ao a A o oa
det [ €5 % —singp\

sing cosep )
O cos2¢p a o 01
Which of the following assertions is (or are) false?

O detA=1= A=E.
0 det A=1= A isinjective as a map F* — F".
O det A =1= A is surjective as a map F"* — F»,
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6.7 Determinant of an Endomorphism

It is possible to define the determinant not only for an n x n matrix, but
also for an endomorphism f : V — V of an n-dimensional vector space.
One takes some basis (v1,...,v,) of V, uses the associated basis isomorphism
®(uy,...,v,) : F* 2 V in order to replace f by a matrix,

v —L v

ol ~19

A g,
and puts det f := det A. But is det A really well defined in this fashion? Could
another basis, hence another matrix, also mean another determinant for f?
The following lemma removes this doubt and thus makes possible the definition
of the determinant of an endomorphism.

Lemma and Definition: If f : V — V is an endomorphism of an
n-dimensional vector space, and if f is represented by the matrix A
relative to a basis (v1,...,vn) and by the matrix B relative to another
basis (v},...,v}), we have det A = det B =: det f.

PROOF: We introduce a third matrix, C', namely the one that connects
the basis isomorphisms ® and ¥’ in the diagram

\4

/
yaat
P

so that C := &1 0 &, Because we have A = & 1o fo & and
B=®""0f0®" B is the matrix product C~1AC:

f

V —— V

>l o N

F¢F —s F* — " —— "
c A c-t

Since the determinant of the product equals the product of the determi-
nants (Theorem 4 in Section 6.5), we have

det B = det(C™")det Adet C = det Adet(C™'C) = det A.
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For endomorphisms A : F* — F*, the determinant keeps its old meaning,
since we can choose & = Id.

By considering diagrams in which endomorphisms and matrices are linked
by basis isomorphisms, one can easily deduce the properties of the endomor-
phism determinant det : Hom(V, V) — F from those of the matrix determinant
det : M(n x n,F) - F. By way of example we note the following,

If V is an n-dimensional vector space over I, the map Hom(V,V) — F,
f — det f, has among others the properties:

(1) det f #0 <= f is an isomorphism,

(2) detgo f =detg-detf,

(3) detldy =1.

The fact that it is possible to define the determinant for endomorphisms,
without specifying a basis, indicates that there must be a more conceptual
approach to determinants than the somewhat technical one adopted here via
matrices. “Properly speaking” (which as usual means: in a certain sense) de-
terminants belong to multilinear algebre, to which you will be introduced in a
later course. You will then obtain a deeper understanding of the significance
of the notion. In the meantime, however, let us meet another useful formula
for the determinant of a matrix.

6.8 The Leibniz Formula

The Leibniz formula is

det A = Z.s sign(T)a1r1) - - - - Gnr(n)s
TES,
and in order to understand it one must know the meanings of S,, and sign(7)
for 7 € S, . The first is easy: S, denotes the set of bijective maps

r:{1,...,n} =, {1,...,n},

called the permutetions of the numbers 1 to n. As you must already know,
there exist n! := 1-2-... - n such permutations, since choosing 7(1) from
among n possibilities leaves (n — 1) for 7(2), etc. One needs to say rather
more about the “sign” of r, equal to 1.

A permutation that does no more than switch two adjacent numbers and
leave the remaining (n — 2) fixed, is a neighbor transposition. Clearly, one can
obtain any permutation by carrying out finitely many such transpositions, one
after the other — the librarian’s curse punishes those who practice this art. A
permutation obtained by means of an even number of such transpositions is
called even, the others are called odd, and the sign of a permutation is defined
by
+1 if  even,

-1 il 7 odd,

sign(r) = {
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Then sign(ld) = +1, and sign(o o 7) = sign(o) - sign(7). This follows since
if 0 and 7 are both even or both odd, then o o 7 is even, and if only one of
them, o say, is odd, then because ¢ = (0 0 7)o 771, their composition o o7
must also be odd, and analogously for 7.

All these considerations are very simple, but something essential is lacking,.
Without more information it is not immediately clear that any odd permuta-
tions exist. What? Surely a transposition is an example of an odd permutation?
Yes indeed, but this is not immediately obvious. We have need of a little trick.

In general we must expect a permutation 7 to change the order of some
pairs i < j, thus 7(j) < 7(2). Denote the number of such “order reversals” by
a(1), thus

a(r) := #{(3,3) | i <j, but r(j) < r(3)},

where the symbol # stands for “number.” If ¢ is a neighbor transposition,
then

aloor)=a(r) £1,

since o either creates an order reversal or undoes one. From this it follows
that a(7) is even or odd depending on whether the permutation 7 is even
or odd: sign(r) = (—1)*"). In particular, neighbor transpositions are odd,
and the same holds for more general transpositions of not necessarily adjacent
elements: if r numbers lie between i and j, the transposition exchanging i
and j is achieved by means of 2r + 1 neighbor transpositions.

Now we are in a position not only to read the Leibniz formula, but also to

prove it.
PROOF OF THE LEIBNIZ FORMULA: We need to prove only that the map
M(nxn,F) — F defined by the right-hard side has properties (i), (i1), and (iii),
which by Theorem 1 (in Section 6.1) characterize the determinant. Indeed, if
we do this without using the concept of a determinant, we have given a further
proof of the existence assertion of Theorem 1.

Property (i), linearity in the rows, is satisfied by each of the n! summands
and therefore by their sum. Property (iii) is also satisfied, since if A is the unit
matrix, only one summand differs from zero, namely sign(Id)-611-.. . 6nn = 1.
Thus it remains to prove that the right-hand side of the Leibniz formula van-
ishes as soon as the (row) rank of A is less than n. For this it suffices, as at the
analogous point in the proof of Theorem 1, to prove it for matrices A with two
equal rows. Suppose that row ¢ and row j are equal. If o is the transposition
switching ¢ and j, and A, is the set of even permutations, we can write the
right-hand side of the Leibniz formula as

Z.A (sign(7)air(1) - - - Gpr(n) + SIEO(T 0 0)G1r0(1) - - Guro(n))
TEA,

But the summand ay7(g(1)) " - * Gpr(o(ny) results from ay-(1) - ... - Gpr(n) by
replacing the ith factor airy by @ir(j) ad aj ;) by ajr(i). Because of the
supposed equality of the rows («ip == aj for all &) this alters nothing, and
the conclusion follows from sigu(r o) = - wigu(r). ]



6.9 Historical Aside

How unobvious it once must have been to consider matrices as mathematical
objects in their own right is shown by the fact that the theory of determinants
is indeed much older than that of matrices themselves. Determinants were
first defined by Leibniz in connection with the solvability of systems of linear
equations -— namely in a letter to "Hospital dated 28 April 1693. The term
“determinant” was introduced by Gauss in his “Disquisitiones Arithmeticae”
(1801).

6.10 Exercises

Exercises for mathematicians

6.1: If A € M(n x n,F), any matrix obtained by the possible deletion of
some rows and columns is called a submairiz of A. Show that the maxi-
mum number of rows, which occurs in a square submatrix with nonvanishing
determinant, equals the rank of A.

Hint: Take another look at the proof of the theorem “row rank = column
rank” in Section 5.2, and think of the relation between rank and determinant
(lemma in Section 6.5).

6.2: Calculate the determinant of the n X n matrix

1

1

The expansion formula for determinants, say by the first column, gives the
induction step.

6.3: Let M(n xn,Z) denote the set of n xn matrices with integral coeflicients.
Let A € M(n xn,Z). Show that there exists B € M(n x n,Z) with AB = E
if and only if det A = 1.

The x-exercise

6*: Two bases (v;,...,v,) and (v},...,v]) of the real vector space V are said
to be compatibly oriented if the automorphism f: V — V defined by v; — v}
has positive determinant. The sct of all bases compatibly oriented with a fixed
base (vr,...,vy) is called an orientation of V. Eacli o dimensionnl real vector




1Y

space V with 1 < n < oo has precisely two orientations. (It has proved useful
to give the zero-dimeusional vector space {0} two orientations, too, by calling
the numbers +1 “orientations” for {0}. But this has nothing to do with the
present exercise.)

By choosing one of the two orientations, one is “orienting” the vector space.
More formally: an oriented vector space consists of a pair (V,or), with V an
n-dimensional real vector space and “or” one of its two orientations. The bases
belonging to the chosen orientation are then said to be positively oriented.

The present exercise concerns the impossibility of so orienting all k-dim-
ensional subspaces, that no sudden “switch” in orientation occurs. Prove the
following:

Let 1 < k < n and V be an n-dimensional real vector space, without
loss of generality V = R"™. Then it is impossible simultaneously to orient all
k -dimensional subspaces U C V so that each continuous map

(viyeeervr) 1 [0,1] 2 V x-+- XV,

which associates a lincarly independent k-tuple (vi(t),...,vi(t)) to each
t € [0,1], and which starts positively oriented, also stays positively oriented,
i.e. that (vi(t),...,vk(t)) is a positively oriented basis of its linear hull for
all ¢, provided that this is true for ¢ = 0.

Exercises for physicists

6.1P: Exercise 6.1 for mathematicians.
6.2P: Excrcise 6.2 for mathematicians.

6.3P: This exercise refers back to Section 3.5. Now that we are acquainted
with determinants, deduce property (5") in Section 3.5 from definition (5),
and property (7) from (5").



CHAPTER 7
Systems of Linear Equations

7.1 Systems of Linear Equations

Let A:(ai]') € M(m xn,F} and b:(bl,...,bm) € F'™ . Then

ATy 4 ATy = b

Am1Ty + -+« CmnTpn = b,

is called a system of linear equations for
cients in T, The z,,...

are all zero, the system i

As in the Previous sections we consider the matrix 4 € M(m x n, F) as a

of equations then reads as

linear map A4 : Fr _, FP, 2 Az The system
Az = p.

Definition: The solution set of the system of equations associated to
(4,5) is defined to be

Sol(A4,8) := {z e |4 < b}.
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Instead of Sol(A,b) we could have written A~'({b}) or, as is usual for
preimages of singleton sets, A~1(b). Of course the system of equations is said
to be solvable if the solution set is nonempty.

In the present section we will collect those remarks and observations about
systems of linear equations, which follow straight away from our accumulated
knowledge of linear maps and matrices.

Remark 1: Az = b is solvable if and only if
a1y -+ Q1n ann - G b
k| )= Do
Gmn1 " Gmn aGmi ° Gmn bm

ProOF: The columns of A generate the image of A, so if b € Im A, that
is if Az = b is solvable, b can be expressed as a linear combination of the
columns. Therefore the column rank of A does not change if one adjoins b as
the (n +1)th column. Conversely, the columns of the augmented matrix (A, b)
generate a subspace V C F™ containing both Im A and the vector b. From
the rank condition dimV = dimIm A it follows that Im A = V', hence that
belmA. a

Remark 2: If 2o € F* is a solution, that is, Arg = b, then

Sol(A,b) =z + Ker A := {0 + z | z € Ker A}.

ProoF:If r € Ker A, then A(zo+z) = Az = b, hence g+ € Sol(A,b).
Conversely, if v € Sol(4,b), then A(v — ) = Av — Az = b~ b=0,
hence v — zg € Ker A, and therefore v = z¢ + z for some z € Ker4 O

Sol(A, b) 5

Ker A

ImA

IYig. 46. Ar=b is only solvable if d¢ta A4 (Remack 1) and
then solntion sel is o bemshide of Ker A4 (Renark 2),
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Fact 1:If z, is a solution of Az = b and (vy,...,v,) is a basis of Ker A,
then
Sol(A,b) = {xo + Mv1 +...+ Av- | X €eF}

Here r = dimKer A = n —rk A.

The relation dim Ker A = n —rk A follows from the dimension formula for
linear maps. Remark 2 also implies the following statement.

Fact 2: A solvable system of equations Ar = b is uniquely solvable if
and only if Ker A =0, that is, Tk A =n.

For the most important case, namely n = m (square matrix), we therefore
have the statement below.

Fact 3: If A is square (“n equations in n unknowns”), the system of
equations is uniquely solvable if and only if det A # 0.

In this case, therefore, solvability does not depend on b at all: for each b there
exists precisely one solution. But this is clear: A : F* — F" is bijective and
the solution is nothing other than z = A~'b. We now want to look at this
“generic case,” namely det A # 0, more closely.

7.2. Cramer’s Rule

If det A # 0, there exists an explicit determinantal formula for the solution =z
of the system Az = b, obtained as follows. Since Az is the linear combination
of the columns of A with coefficients equal to the unkowns z;,...,r,, we can
write Az = b in the form

a Q1n by
T : +- -t zn : =1
An1 Ann bn
We want to discover a formula for the unknown z; and for this exploit a little

trick. Bring the column b over to the other side and subtract it from the ith
summand. This gives

an Tiayi — by ary
20 B I : +odx, b 1] =0,

Any Lilty; — by, L]




Seetion 7.2, Criuner's Rule 123

so the columns of the matrix
an -+ (zien —b1) o an.
(273 B (ziavn' - bn) 0 Qpn

are linearly dependent, and its determinant vanishes. Because of the linearity
of the determinant in the zth column, we now have that

a1 ' QGlp ain - b ane
z; det : : —det : : =0,

Gp1 ' Qpn Gp1 o bn 0 @an

where, as indicated, the determinant of the second matrix is obtained from A
by replacing the ith column by b. Therefore we have the following theorem.

Theorem: If det A # 0 and Az = b, then

ay; - bl EEEIY 3PN
det :
o A1 bn Qpn
ri=
a1y e Aln
det :
Apy  crtrerre Apn

fori=1,...,n.

Thisis Cramer’s rule, a peculiarly impractical method for solving systems
of linear equations. However, Cramer’s rule is of great mathematical interest,
since it shows how the solution changes as one alters the “data” A and b of
the system. With the help of the expansion formula or the Leibniz formula for
the determinant, we can, for example, use Cramer’s rule to show that small
changes in (A, b) only lead to small changes in z. This can be made precise
with ¢ etc. and is an important result. Put another way: Cramer’s rule may
be not very practical for solving a particular given system, but for studying
{A,b) — z as a map

{AeMnxnF)|detA#£0} xF* —— F"

it is very useful udeed.



7.3. Gaussian Elimination

Let us now turn to the procedure for the practical solution of systems of linear
equations, namely Gaussian elimination. If we alter such a system by either
interchanging two equations, multiplying an equation by A # 0, or by adding a
multiple of one equation to another, we do not change the solution set: clearly
the solutions of the old system are also the solutions of the new, and since each
of the steps can be reversed, the converse also holds. This observation lies at
the root of Gaussian elimination.

Fact: If we change the augmented matrix

A |b

by means of elementary row transformations into a matrix

Al

then Sol(A, b) = Sol(4',¥).

In contrast, clementary column transformations do introduce some changes
to the solution sct. For example, if one interchanges the first two columns,
then one recovers the solution set for the old system from that of the new by
interchanging the first two components in each solution n-tuple (z;,...,z,).
It would indeed be possible to use column transformations as an aid to simpli-
fication, but then (other than with row transformations) we must keep track
of these transformations, since finally we would have to retransform the cal-
culated solutions of the simplified system into the solutions of the original
system.

Gaussian Elimination for the Solution of Systems of Linear
Equations. Let A € M(n x n,F), b € F*, and det A # 0. Start with
the augmented matrix

and if necessary use an interchange of rows to make the (1,1) or upper
left matrix entry different from zero. Then add suitable multiples of the
first row to the others, in order to kill the elements of the first coluinn
lying below the diagonal. This concludes the first step.




After the kth step (k < 2 — 1), the (k4 1)th proceeds as follows: by a

suitable row interchange among the last » — k rows, if necessary, arrange

for the (& + 1,k + 1) matrix entry to be nonzero. By addition of suitablce

multiples of row (k+1) to those underneath it, kill all elements in column

(k 4+ 1) lying below the diagonal. This concludes the (k + 1)th step.
After the (n — 1)th step the matrix will be of the form

I ...... , I
ay a1, |0

a,. b,

with af; #£ 0 for «+ = 1,...,n. We obtain the solution of Az = b by first
putting

Tn =
aﬂﬂ

and then solving recursively for the remaining unknowns:

1
R 2 1) )
Tn-1= 7 (bn—l a’n—l,nxﬂ)a
n—1,n—1
1
T 1) o ot
Tn-2= (bp2 p—2,n Tn =~ Gpg,n—1 Tn-1)s
n—2,n—2

and so forth.

As an example, let us solve the system of equations

-z 4+ 2z + T3 = -2
3.’131 - 8.’)32 - 2.’)33 = 4,
N + 4z; = -2

We start Gaussian elimination by writing down the augmented matrix:

-1 2 1 -2

3 -8 -2 4

1 0 4 -2

-1 2 1 -2

1st step 0 -2 1 -2
0 2 35 —4

-1 2 1 -2

2udstep 0 -2 1 -2
0O 0 6 -6



Result: z3 = é —6) = —

e smvenan IQUATTIONSY

The solution therefore is z = (2, 3,-1).

Where in this process do we actually make use of the assumption that
det A # 07 Well, if detA = 0, we cither fail to be able to carry out one
of the steps, because it is not possible to make the diagonal element under
consideration nonzcro, or the last diagonal element a,, vanishes. How one can
still use Gaussian elimination to solve arbitrary systems of linear equations is
a matter to be discussed in Section 7.5 after the test.

7.4

(1)

(2)

(3)

(4)

Test

A system of linear equations with coefficients in F is a system of equations
of the following kind:

any +---+ apry = b
O : : ¢ withaj; el b eF
@n1Zn +- 4+ Gy = by
anZit +-o 4 AGpTi, = b
O : : : withaj; €, b; ¢ F
@n1Zn1 + -+ Gpplap = by
ez 4+ 4 a1pTn = by
| : : : with ai; € F, b; ¢ F
n1T1 +--- + Gppz, = b,
If one abbreviates a system of linear equations as Az = b, then

O Ae M(mxn,F), beFn.

O Ae M(mxn,F), b e F™.

O AeM(mxnF),beF*orbekm (not fixed).

A system of linear equations Az = b is called solvable if

O Az =1bforall x e F*.
O Az =b for precisely one z ¢ F*.
O Az = b for at least one = < F".

If b is one of the columns of A, then Az =bis
O solvable in all cases

O unsolvable in all cases
O sometimes solvable, sometimes unsolvable, depending on A and b
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(8)

(6)

(7)

(8)

(9)

10)

Let Az = b be a systen of cquations with square matrix A (n equations
in n unknowns). Then Az =b is

O uniquely solvable
O solvable or unsolvable, depending on A, b
O solvable, but perhaps not uniquely, depending on A, b

Suppose once more that A € M(n x n,F), that is, A is square. Which
of the following conditions is (or are) equivalent to the unique solvability
of Ax = b:

O dimKerA=0
O dimKerA=n
OrkA=n

Let A € M(n x n,F) and det A= 0. Then Az =bis

O solvable only for b =0
O solvable for all b, possibly nonuniquely
O solvable only for some b, and then never uniquely

Here is a more subtle question. Remember dimKer A+rk A = n for nxn
matrices? Good. Now let A be an n X n matrix and let Az = b have two
linearly independent solutions. Then

0O rk A < n, and the case tk A =n can occur.
O rkA<n-—1, and the case rk A =n — 1 can occur.
O rk A <n—2, and the case Tk A = n — 2 can occur.

Let A be a square matrix with no initial assumptions on det A. If in
the process of Gaussian elimination in order to obtain a solution to the
system of equations Ax = b the first step fails, this implies that

O A=0.
O the first row of A is zero.
O the first column of A is zero.

Let A be an n x n matrix with det A # 0. What is the significance
of being able to carry out Gaussian elimination without once having to
interchange rows?

O A is an upper triangular matrix (nothing below the diagonal).
O a;i#0fori=1,...,n.
O The principal minor determinants

det((aijYi j=1,...,r)

are nonzero for r =1,,..,n,



e ver LENIVA K TAJUATIONS

7.5 More on Systems of Linear Equations

Once again we want to consider a system of equations Az = b, but this time
we do not assume that det A # 0, and A does not even need to be square. Let
A e M(m x n,F) and b € F™. In order to determine Sol(A,b) exphcltly, we
proceed in four steps (A)—(D) as follows.

(A) Start as for Gaussian elimination, that is, proceed as if A were square
and det A # 0. Continue as long as possible. Then after ¢ steps the augmented
matrix has the form

! !
ay by

where the first ¢ diagonal elements are nonzero, but no interchange among the
last m —t rows can fill the (¢+41,t+1) place with a nonzero element. In short,
perform Gaussian elimination until it stops.

(B) Now we try and refloat the stranded Gaussian elimination with the help
of column interchanges from among the last n — ¢ columns of A. (But doing
this means interchanging some of the unknowns -— make sure to keep track of
the original positions of the variables!)

So long as the matrix B' does not vanish completely, we can continue the
Gaussian process, finally reaching a matrix of the form

ai by
*
0
_ayy
0 :
A
with af; #0,...,a!. #0. Of course we may have m —r =0 or n —r = 0.

(C) At this point one can see whether or not there exists a solution: yes if
Y1 = -+ = blj, =0, otherwise no. Let’s assume the system is solvable. Then
we can simply discard the last m — r equations; this has no effect on the
solutions set. There remains a system of equations with an auginented matrix
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of the form

r T S b
\ J . J
YT
r k

where T (for “triangular”) is an invertible upper triangular matrix
g p g

"
a1

"
rr

and S = (845 )i=1...r,j=1...k i just some r X k matrix. We write the n unknowns
of this system as

Yi,-- -3 ¥r 215+ -5 2k

in order to remind ourselves that these are not our original unknowns
Z1,...,Zs, but, due to the column exchanges during the procedure, only
a permutation of then.

The system of equations now reads Ty + Sz = b and is easy to solve. We
get a particular solution wo € F* of it, together with a basis (w1,...,w;) of
the kernel of (T,.5) (that is a basis of the solution space of the homogeneous
system Ty + Sz = 0) by starting from the pattern

Y1 Y11|¥12 Yik
Yr Yr1lYr2 Yrk
]
- |0 _ |1

wy = w1, yWe =
: 1
k
0] L

nd determining w¢ from

"
an,

0
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and the jth basis vector w; from

" . o
a1, Y1 815
: *
0 .
n ' J
Qrp | | Yri —Srj
for j = 1,...,k. Here, as with Gaussian elimination for an invertible matrix,

we start from the bottom, thus y, := b"/a",., etc. The wy,...,w; genuinely
r rr

belong to the kernel of (T, S) : F* — Fr; by construction they are linearly
independent, and since by the dimension formula the dimension of the kernel
is n —r = k, they indeed form a basis.

(D) Finally we transform the vectors
Wy, W1,-.., Wk € F"

into vectors
13
Vo, V1,...,V € F",

by restoring in each vector the original order of the components. That is what
we needed the bookkeeping on the column interchanges for. Then

SOI(A,b) = {vo + Ao+ Ao I A € F}
is the solution set of our original system of equations.

It is of course possible to solve the system without recourse to column
interchanges. Then the unknowns, which we had labeled as y,...,y, and
z1,..., 2k, remain mixed together in the original sequence z,..., z, . Instead
of arriving at the form (7, 5), the matrix of the system will then evolve into
the slightly more complicated row-step form.

7.6 Captured on Camera!

A section for physicists

Suppose that we have a billiard table, covered not with green baize but with
graph paper. Suppose further that two coordinate axes are marked as shown
below:
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A camera mounted above the table is positioned to view the whole surface in
sharp focus.

The camera has a fixed shutter speed ty, which may be approximately equal
to one second, but we do not know its value precisely. It matters only that
it does not alter from picture to picture, but always equals ¢y. Suppose that
we are now given a number of billiard balls Ky, K}, K3,..., which can be
distinguished from each other by color or in some other way. Let the balls have
masses My, M,..., and suppose that the mass M is known. The problem is
to use the given data to determine the masses of the other balls.

Thus we want to use collision experiments and the “conservation of linear
momentum” law (Berkeley Physics Course, Chapter 6) to obtain information
about the involved masses. We use the camera to determine the speed and
direction of the balls before and after impact. Evaluation of the measured
data then leads to systems of linear equations, whose solvability we already
know something about for “physical reasons.” It is intriguing to compare these
physical reasons with their mathematical counterparts, and at cach moment
to ask oneself whether it is possible to separate the physical from the purely
mathematical argument.

Let us consider a simple case: the determination of M; and M, from
two snapshots. If the balls Ky, K;, and K, move free of any exterior forces
with speeds wg,v1,v;, then collide and after the collision move with speeds
wg, w1, W2, then conservation of momentum tells us that Myvg+Mivi+Mavy =
Mywo + Mywy + Maw,. If in particular K; and K, were at rest before the
collision, then

Miw; + Myw, = Mg(vg — wg). (*)

With the tools at our disposal we cannot measure v; and w;, but we can
measure the distances travelled by the balls in time ¢y. We proceed as follows:
we position K; and K, somewhere on the table, say at the origin of the
coordinate system. Then we set Kp rolling toward K;, and take the first
picture. After the collision we take the second.

c— %yé)
) %
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Superimposed and schematized, the images appear as follows:

//
\

Now read off the vectors vgto,wito,wete, and wety € R%[em]. Conservation
of momentum gives (multiply (*) by to)

Miwity + Mawato = Mo(’vgtg - wotg).
Introduce the following notation for the data and measured values:

M,' =x; gm
’w,‘to = (an' cim, asg cm)

Mo(’votg - wgto) = (b] gm - ¢, b2 £m - cm).
Then the z;,ai;, and b; are real numbers, and we have

a1 + a1px2 = b

a317) + age9 = by,

a system of linear equations for unknowns z; and r;. From the physical point
of view we know beforehand that the system of equations must be solvable,
and indeed must have a solution for which z; > 0 and z; > 0. Observe that
here we are dealing with a genuinely physical argument (applicability of the
law of conservation of momentum in the present situation); mathematically we
can only decide on the solvability of the system of equations when we know

that
k (au am) =k (an a2z b ) .
a1 a2 an a2 b

However we can still say mathematically that the system is uniquely solvable if
and only if the vectors wito and wyty (the columns of the coefficient matrix)
are linearly independent, that is do not point in the same or directly opposite
directions. The collision must therefore occur in such a way that K; and K,
move in different directions, otherwise we cannot uniquely determine M; and
M, . In particular, none of the balls must remain motionless, for otherwise one
column would be zero, rk A « 2, and the system of equations not uniquely
solvable — all for mathematical reasons. From the physical point of view it is
also clear that one learns nothing about the mass of a ball if it does not move
from its initial position and thus is twice photographed there. But reflect on
why this clearly physically correct statement does not provide a logically sound
proof for the nonunique solvability of the system of eqnations i sneli a case.



Scetion 7,8: Rewarks on the Litepature 133

In conclusion, let me pose the following question: what is the smallest nun-
ber of collision experiments that one needs in order to set up a system of linear
equations to uniquely determine the masses of K,,..., K, (assuming the right
kind of collisions)?

It is clear that 2 collision experiments sufficc, if n is even, and 2t if n
is odd: one needs only to determine the masses for pairs of balls, But if one is
allowed to perform collision experiments with several balls at the same time,
can one make do with a smaller number?

7.7 Historical Aside

Reference [7] in the bibliography refers to a German translation of a Chinese
book from the first century B.C. with the title “Nine Books of Arithmetic Tech-
nique.” And in Book VIII, “Rectangular Table” (!) appears none other than
Gaussian elimination for the solution of systems of linear equations. The only
difference is that the Chinese, used to writing from top to bottom, also write
the rows of the matrix vertically, and as a result work with elementary column
rather than with elementary row operations in order to bring the coefficient
matrix into triangular form.,

7.8 Remarks on the Literature

With the help of Gaussian elimination you will be able to solve numerically
any given system of linear equations — in principle, that is, just as in principle
anyone who knows the relation between keys and notes can play the piano.
However, in reality there are difficult problems associated with the numerical
solution of large systems of linear equations arising in the applications. There is
a large literature in this area and new research works are continually appearing.

In order to obtain a first impression of numerical linear algebra, take a look
into any of the standard works found on the library shelves. Don’t worry —
you are not being asked to work through them! Forget for a moment that you
are a beginner, and just flip through the pages. It will become clear to you
that in order to inderstand numencal methods, it is esscntial to master the
basic theoretical results in a first-year Linear algebra course. But you will also
realize that it takes 1nueh wore to beeome a snecessful nierieal proflessional,
ad you will look forward to your fulnre conrses in numerieal matheralics.



7.9  Exercises

Exercises for mathematicians

7.1: By determining rauks, decide whether the real systemn of equations below
is solvable, and if so work out the solution set:

Ty + 223 + 323 =1
4z, + 522 + 625 =2
Tz, +8xy + 925 =3
Sz, +7x2+9x3 =4

7.2: Apply Gaussian climination to the following rea] system of equations,
decide if it is solvable, and if so determine its solution set:

Ty - T + 2I3 - 3I4 = 7
4z, + 3z3 + Ty = 9
2z, - Sxy T3 = -2
Jz; — T2 — 3 4 22y = _»

7.3: Prove the following:

Theorem: If ¢ CPF”isa subspace and z ¢ F™, there exists a system of
equations with cocflicients in F, having n equations and n, unknowns, whoge
solution get equals ¢  [J.

The x-exercise

T*: We say that two fields, F, F', are isomorphic (written F =~ F), if
there exists a “feld isomorphism” f:F - P, Le, a bijective map with
flz +y) = flz) + f(y) and flzy) = f(x)f(y) for all %,y € F. Show that if

a system of linear equations with coefficients in has exactly three solutions,

Exercises for Physicists

TAP: Let

MTr et ar,z, = b,
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be a system of linear equations with real cocfficients. Let {, ) : R® x R* — R
be an inner product, and suppose that with respect to this product the column
vectors

Qni
are perpendicular to b. Suppose further that b # 0. Show that the system is
not solvable.

7.2P: Exercise 7.2 (for mathematicians)

7.3P: Provide the mathematical reasons why it is impossible to determine the
masses by the method described in Section 7.6, if none of these (not even M)
is known beforehand.



CHAPTER 8
Euclidean Vector Spaces

8.1 Inner Products

If one wants to study geometric problems, in which lengths and angles play a
role, then the data given by a vector space no longer suffice, and one has to
equip the vector space with “additional” structure. The additional structure
one needs for metric or Euclidean geometry in a real vector space is the inner or
“scalar” product. By this we do not mean the scalar multiplication RxV — V',
but a new kind of composition, V x V — R.

Definition: Let V be a real vector space. An tnner productin V is a
map V xV — R ,(z,y) — (z,y) with the following properties:
(i) Bilinearity: for each = € V the maps

(-,z}):V—R {(z,):V—R
and
v+— (v, 1) vi— (z,v)
are linear.

(il) Symmetry: (z,y) = (y,z) forall z,y € V
(iii) Positive definiteness: (z,z) > 0 for all z # 0.
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In short one says that {, ) is a positive definite symmetric bilinear form on
V. Because of the symmetry, it would have been enough to give just one of
the linearity conditions in (i).

Definition: A Fuclidean vector spaceis a pair (V,(,)) consisting of
a real vector spacc V' and an inner product (,} on V.

Without further ado we shall speak of a “Euclidean vector space V” —-
a double meaning for V' — similar to the way in which we always write V

instead of (V,+,-).

Important example: The inner product defined by

(,):R"xR* — R
(z,y) — T+ +zpyn

is called the usual or standard inner product on R",

Here is another, quite different, example: let V' be the real vector space of
continuous functions from [—1,1] to R. Then, for example,

o) = [ @)z

defines an inner product. In fact, for any real vector space one can find an inner
product, and not only one, but infinitely many (unless V={0}). In the casc
of R*, for instance, the standard inner product is only the most obvious. For
example, (z,y) — (Az, Ay) fulfills the three conditions for an inner product
for any fixed invertible n x n matrix A.

Definition: If (V,(,)) is a Euclidean vector space and = € V, then by
the norm of z one understands the real number |z|| := 1/(z,z) > 0.

In R™ with the usual in-
ner product we have ||z|| = N/
24+ a2, Nexlt ”we v Tg
would like to define the an-
gle between two nonzero el-
ements z,y in a Euclidean I
vector space V. (Note: not
“dctermine” or “calculate,”
but first of all define!) This will be done by means of the formula (z,y) =
Izl |||l cos (e, y), 0 S «(ix,y) S w. But before this can be used as a defi-

nition for a(r,y), we must show that -1 < :""y < 1. This is called the

v

Iy

Fig. 47. Norm in the standard inner product on R?
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Cauchy-Schwarz inequality.

Theorem 1 (Cauchy-Schwarz inequality): In each Euclidean vector
space V we have |(z,y)| £ ||z|| ||yl forall z,y € V.

PROOF: For y = 0 this is trivial. Let y # 0. We now apply a small trick:
set = %’ll) € R and calculate

0 £ (z — A,z — My) = (z,2) — 2X(z,y) + A (v,7)

z,y)> z,y)?
= llelf* - 2(Ilyﬁz * (Ilyﬁz
(z,y)*
== 2_ .
=1 = “ape

Therefore, (z,y)? < [|z]|?||ly||*, and as required |(z,y)| = |lz[| lyl|]. O

Theorem 2: If V is a Euclidean vector space, the norm |..| : V = R
has the following properties:

(i) |zl 20 forallz.

(ii) |z]| =0<&=2z=0.
(iil) IAz]] =|A -llz]] forallzeV,AeR.
(iv) llz+ul £ llzll +llyl foralz,yeV.

Property (iv) of the norm is called the triangle inequality.

PROOF: (i)-(iii) are clear from the definition. For the triangle inequality
we have

l=I1? + 20z llllyll + llyll®

(el + llylly* =
2 ||zl +2(z. ) + lyl* = ||z + yII*

by the Cauchy-Schwarz inequality. Therefore, ||z| + ||y]| 2 |lz +y]. O

Inequality (iv) is called the “triangle inequal- b
ity” for the following reason. If a,b,c € V

one takes |[a — b||,|la — c||, and ||b - ¢] to

be the lengths of the sides of the triangle

with vertices a,b,c. The triangle inequality a

applied to £ = @ — b, y = b — ¢ then says

that [la - C“ < lla =38 + 16— ¢, ie., the Fig. 48. In a Euclidean vector
length of one side is less than or equal to the space the triangle inequality
sum of the lengths of the other two sides (see la=cli<lla=bl+le=cll holds true.
Fig. 48). But notc that the statenient that the length of the segment from a
to b equals JJa = B| is not o theoreus but . definition,

c
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Definition: For two nonzero clements x,y in the Enclideat vector space
V', one defines the angle a(z,y) formed by z and y by

('777 y)
=22 0L g
cosofz,y) e fofz,y) S

(Because of the Cauchy-Schwarz inequality, we have

1< Smy o
~ =iyl =

and since the cosine defines a bijective map cos : [0,7] — [—1,1], the
angle o(z,y) is welldefined by the above requirements.)

8.2 Orthogonal Vectors

Definition: Two elements v, w of a Euclidean vector space are said to be
orthogonal or perpendicular to each other (written vlw), if (v,w) = 0.

The definition of a(v,w) for nonzero vectors implies that, if (v,w) = 0, then
the angle between v and w is 90°.

The label “orthogonal” is applicable to many concepts associated with Eu-
clidean vector spaces; among others we have “orthogonal complement,” “or-
thogonal projection,” “orthogonal transformation,” and “orthogonal matrix,”
sec below. Put very generally, orthogonality means “compatibility” with the
inner product. But of course this vague general explanation is not meant to

replace the precise individual definitions.

Definition: If M is a subset of the Euclidean vector space V, then
Mt :={veV|vLluforall u € M} is called the orthogonal comple-
ment of M. Instead of “v L u for all u € M” one can use the shorter
notation v L M.

Remark: M+ is a subspace of V.

PROOF: ML # &, since 0 1 M, and if z,y € M+ and X € R, then
z+4+y € M' and Az € ML follows immediately from the linearity of

(-,u): V-=R. O
Definition: An r-tuple (v,...,v,) of vectors in a Euclidcan vector
space is said to be arthenormal or an orthonormal system if ||u;]| =1,

i=1,...,r,and v; L vj for i # 5. (Expressed differently: (v, v;) = 6.,)
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If, for instance, r,y,z are the three

TN “edge vectors” of a cube sitting at the

f:\ ™y origin of R® with edge length equal to
U o E 1, then (z,y, 2) is an orthonormal sys-

! “yY ' tem (pairwise mutually perpendicular

i ! vectors of length 1). See the diagram in

z & iy Fig. 49. (But the pair (z,y) and even

(2) alone are also orthonormal systems:

an orthonormal system need not be a

0 basis.) In arguments with an orthonor-

Fig. 49. An orthonormal system (z,9,2) mal system wvi,...,v,, one repeatedly

uses the same little trick, namely to apply the operation (- , v;} to both sides
of an equation. Look at its use in the proofs of the following three lemmas.

Lemma 1: An orthonormal system is always linearly independent.

PROOF: Let (v1,...,v,) be orthonormal and A\jv; +--- + A.v; = 0. Then
(Mot 4+ Ao, ) = X(vviy =Ai=0fori=1,...,r. 0

Lemma 2: (Expansion with respect to an orthonormal basis): If
(v1,-..,vn) is an orthonormal basis of V, then for each v € V we
have the “expansion formula”

v= i;(v,v.-)v.-.

PROOF: We know that v is expressible as v = ¢yv; + -+ + ¢,V,, because
(v1,...,vn) is a basis. If we apply (-, v;) to both sides of this equation, we
obtain (v,v;) = ci{vi,v;) =c¢; foreach 1 =1,...,n. 0

Lemma 3: If (v1,...,v,) is an orthonormal system in V and U :=
L(vi1,...,v;) denotes the subspace spanned by the orthonormal system,
then each v € V can be uniquely expressed as a sum v = u + w with

velU and w € UL, Indeed

u = i (v, vi)v;

i=1

and hence w = v — Y I_, (v, v;)v;.

PROOF: Thefact that v can be expressed in at most one way as a sum v = u+w
with v € U and w € UL follows from the positive definiteness of the inner
product, because if v = v + w = u' +w' with u,u’ € U and w,w' € UL then
(u—v)+(w—w')=0and (v — ', w—w)=0, hence (u -2, u—u')=0.
This implies that u — v’ = 0, and as a consequence w — w' = 0 also.
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This holds for any subspace U of V', even if it were not generated by a
finite orthonorinal system. But we use our assuinption in the existence part of
the proof.

Any u € U can now be written as u = cjv1 + -+ + ¢y, and all we have to
do is to find coefficients ci,...,c, such that the vector w :=v —u isin UL,
But w € UL means (w,v;) = 0 for i = 1,...,r,, that is, if {v,v;)—(u,v;) =0,
or ¢; = {v,v;}. See Fig. 50.

g
<

U=L(vw,...,v)

U.L

Fig. 50. Splitting a vector into its U and UL components

In these three lemmas we have always assumed that the orthonormal sys-
tem is given. But how does one obtain orthonormal systems? For this there
exists, for example, the Gram-Schmidt orthonormalization process, in which
one successively changes an arbitrary linearly independent r-tuple of vectors
¥1,..., %, into an orthonormal system %;,...,7,, and in such a way that the
first k£ vectors of each system always span the same space:

Uk = L(’Ul,...,’vk)= L(fl\;l,...,:l\)'k)

for k = 1,...,r. Of coursc one begins by “normalizing” the first vector v,
thus 9; := v1/||v1||. But it does not suffice to normalize all of the v;, since
then one would have achieved length 1 but not mutual orthogonality. Rather,
before normalization we must replace the vector vgy1, as in Lemma 3, by its
component wg4+1 € Ui perpendicular to Ug. By the inductive assumption,
Uy is spanned by the orthonormal system (%1,...,%,), and Lemma 3 gives us
the explicit calculation formula

k
Wrt1 1= Vg4 — 3 (Vk41, Vi) V;

i=

for a vector that is perpendicenlar to Uy, and which together with o, . .., v
spans the space Ugyr. We need only to normalize this veetor in ovder to obtaiu
f;k+l B
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Gram-Schmidt Orthonormalization Process: If (vi,...,v,) is a
linearly independent r-tuple of vectors in a Euclidean vector space V,
then by defining ¥; := v1/||v1|| and using the recursion formula

k41 = by (V41,01

’i;k-f-l = E PO
lvr+1 — 3in (Vrta, Bi) il
for k = 1,...,r — 1, we obtain an orthonormal system (¥1,...,7,).
The first £ vectors vy,...,Ur span the same subspace as the original
v1,...,V. In particular, if (v;,...,v,) has been a basis of V, then

(v1,..-,7,) is an orthonormal basis of V.

In particular, in any finite-dimensional Euclidean vector space it is possible
to find some orthonormal basis, and therefore the unique decomposition of
v € V into U and Ut components (Lemma 3) is indeed applicable for each
finite dimensional subspace U of a Euclidean vector space. One calls the map
v +— u orthogonal projection on U, as Fig. 51 illustrates.

Corollary and Definition: Let V be a Euclidean vector space and U
be a finite-dimensional subspace. Then there exists a unique linear map
Py :V — U with Py|U =1dy and Ker(Py) = UL. This map Py is
called the orthogonal projection onto U.

|\

\\U.L

Fig. 51. Orthogonal projection onto U.

PROOF: Each map Py with the required properties would induce & decompo-
sition

v=Py(v) + (v— Pu(v))
of v into a U and U+ component. Thus, even if U is not finite-dimensional,
there exists at most one such map. If we now choose an orthonormal basis
(v1,...,v,) in U, we are prompted by the construction in Lemma 3 to define

Py(v) = i; (v, vi)vi,

and this linear map Py : V — U clearly has the right propertics. |
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Corollary: If U is a subspace of a finite-dimensional Euclidean vector
space V,and UL =0,then U =V,

PRroOF: Py : V — U is always surjective, and since Ker(Py) = UL = 0,
also injective. Hence Py is bijective, and therefore U = V follows fromn

Py|U =1dy. O

In the next section we will introduce the notion of orthogonal maps. From a
consistent terminology you might expect orthogonal projections to be orthogo-
nal. But alas! Instead of defending the terminology I shall take cover, declaring
that I am not to blame.

8.3 Orthogonal Maps

Definition: Let V and V' be Euclidean vector spaces. A linear map
f:V = V' is said to be orthogonal or isomeltric if

(f(v)7 f(w)) = (v7w)

for all v,w € V.

Fact: An orthogonal map is always injective, since if v € Ker f, we have
(0,0) = (v,v). Thus for finite-dimensional Euclidean spaces, orthogonal
endomorphisms are necessarily automorphisms.

This follows from the dimension formula dimKer f 4+ dimIm f = dimV,
showing that f is surjective, too, and hence an isomorphism.

Definition: We denote the set of orthogonal isomorphisms of a Euclidcan
vector space V by O(V). Instead of O(R™), where R™ is equipped with
the standard inner product, we use the shorter form O(n). If in the
usual way the elements of O(n) are considered as n x n real matrices,
O(n) C M(n x n,R), these matrices are called orthogonal matrices.

Remark: Let V,V' be Euclidean vector spaces, and let (v;,...,v,) be
an orthonormal basis of V. Then a linear map f: V — V' is orthogonal
if and only if (f(v1),..., f(v,)) is an orthonormal system in V'.

ProoF: If f is orthogonal, then (f(v:), f(v;)) = (vi,v;} = 6. Conversely,
if we assume that (f(v), f(v;)) = 8, then it follows for v := TAn; and
w = Lujvy; € V, that (f(v), f(w)) = (f(EXivi), F(Epjvj)y = (TA f(vi),
Epif(0))) = 8005 = i, Ay (o, 05) = (B0, Spyu,) = (v,m). [
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Corollary: A matrix A € M(n x n,R) is orthogonal if and only if the
columns (images of the unit vectors!) form an orthonormal system with
respect to the usual inner product in R™, that is, if A*A = E holds.

If we denote the columns of A by s;,...,8,, the s; arc the rows of A!, and
the element in the (z,7) position of the product A*A thus equals (s;,s;):

1

Si

AlA = I

1

Using our knowledge of invertible matrices, we can draw some immediate con-
sequences of this.

Fact: For A € M(n x n,R), the following conditions are equivalent:
(i) A is orthogonal.

(ii) The columns form an orthonormal system.

(i) A'A=E.

(iv) A isinvertible and A~ = A'.

(v) AA'=E.

(vi) The rows form an orthonormal system.

Fact and Definition: It follows from A'A = E that det A* - det A =
(det A)2 = 1, and hence that det A = £1 for all A € O(n). A matrix
A € O(n) is called a special orthogonal matrizif det A = +1. The
set of special orthogonal matrices is denoted by SO(n).

8.4 Groups

If we compose two orthogonal matrices A,B € O(n) by means of matrix
multiplication, we again obtain an orthogonal matrix AB € O(n). And
(AB)C = A(BC) for all A,B,C € O(n), as indeed for all matrices in
M(n x n,R). Furthermore, O(n) contains a multiplicatively “ncutral” ele-
ment, namely the unit matrix E, and for cach A € O(n) there exists an
orthogonal matrix A~! in O(n) with AA™! = A~!A = E, the inverse matrix
to A. Because of these properties the pair

(0(n), 0(n) x O(n) — O(n)),

consisting of the set O(n) and the operation of matrix multiplication, is called a
group. The concept of a group is of fundamental importance in all mathematics,
not only in algebra, even though it is an “algebraic” concept. You will see how,
m the inaterial already covered, we have met a whole colleetion of gronps.
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Definition: A group is a pair (G, ) econsisting of a set G and a map

GxG—G

(a,b) — ab

such that the following three axioms are satisficd:
(1) Associativity: (ab)c = a(bc) for all a,b,c € G,
(2) Existence of a neutral element: there exists an ¢ € G with
age=cea=aforall acG.

(3) Existence of inverses: for each a € G there exists an a™! ¢ G with

aa '=ala=c.

Note that an initial axiom (0): “for a,b € G we also have ab € G” only
becomes superfluous, because it is already included in the assumption that “.”
is a map from G x G — G. If, however, as is often the case, one starts out from
an operation into a larger set only containing G as a subset, then one actually
has to check (0). As an example, consider theset G={z e R |} <z < 2}
with the operation of multiplication of real numbers. Even though axioms
(1),(2), and (3) hold, (G,-) fails to be a group, because the operation does
not remain “inside G™: % 3= i— > 2.

Definition: If a group (G, -) has the additional property of being “com-
mutative,” that is

(4) ab=ba forall a,b € G,
then (G,-) is called an abelian group.

Remark: A group (G,:) contains a unique neutral element e, and the
inverse clement a™! is unique for each a € G.

PROOF: If ea = ae = ¢'a = ae’ = a for all @ € G, then in particu-
lar e’ = e, because €' is neutral, and ee’ = €', because e is neutral.
Hence e = €¢'. If a € G is given and ba = ab = ca =: ac = ¢, then

c=c(ab) = (ca)b =eb=b. a

Notation: As you will expect, one just writes G instead of (G,-). Fre-
quently the neutral element is denoted by 1. For abelian groups one often
writes the operation as “addition,” that is, as

(a,b) —r a+b
instead of (a,b) + ab, and correspondingly then denotes the neutral

elanent by 0 and the element inverse to ¢ by —a. In principle, one could
do this for any group, it for nonabeliau gronps it is not cnstownary.




146

CHAPTER 8 BUCLIDEAN VECTOR Spachs

Examples of groups:

. (Z,+) is an abelian group.

NS A LN

(R,+) is an abelian group.,

(R~{0},+) is an abclian group.

If (F,+,-) is a field, then (F,+) is an abelian group.

If (F,+,-) is a field, then (F\{0},-) is an abelian group.

If (V,+,") is a vector space over I, then (V, +) is an abelian group.

If M is a set, Bij(M) the sct of bijective maps f: M — M and o
is the symbol for composition of maps, then (Bij(M),0) is a group.
The neutral clement is the identity.

Frequently you will come across groups in which the elements are special bi-
jective self-maps of a set M, and thec operation is the composition of these
maps, that is, “subgroups” of Bij(M), so to say. Scc the following examples

8-12.

10.
11.
12,

Fact: f G C Bij(M) and Idy € G andif fog e G, f~! € G for all
fig € G, then (G,0) is a group.

Further examples: In the following examples of groups, the operation
is defined by the composition of maps:
8.
9.

GL(V), the group of automorphisms of a vector space V' over F.

GL(n,F) := GL(F"), the group of invertible n x n matrices over
F, called the general linear group.

SL(n,F) = {A € GL(n,F) | det A = 1}, the special linear group.
O(n), the orthogonal group.
SO(n), the special orthogonal group.

8.5 Test

(1) An inner product on a real vector space is a map

O (,):VxV-R
O (,):VxV -V
O(,):RxV -V

(2) Positive definiteness of the inner product means that

O (z,y) >0=r=y,
O (z,2) >0=a0#0.
0 () >0forall r eV, » £0O,
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3)

(4)

(6)

(7)

(8)

(9)

Wlich of the following statements is (or are) correct?

O If (,): R® x R* — R is an inner product on the real vector space
R™, then (z,y) = Ziy1 + -+ + Tays for all 2,y € R".

O If (,):R"x R® — R” is an inner product on the real vector space
R™, then (z,y) = (Z1y1,...,Tayy) for all z,y € R".

O If one defines {z,y) := z1y1 + - + Toyn for all z,y € R"™, then one
obtains an inner product on R”*.

By the orthogonal complement UL of a subspace U of the Euclidean
vector space V, one understands

OULt={uelU|ull)}.
OUt:={zeV|zLU}.
OUt:={zeV|zLU and ||z| =1}.

Let V = R? with the standard inner product. Which of the following
tuples of elements of V forms an orthonormal basis?

O ((1,-1),(-1,-1))
a ((—1>0)7(07_1))
0 ((1,0),(0,1),(1,1))

Which of the following conditions on a linear map f : V — W of one
Euclidean space into another is equivalent to f being orthogonal?

O (f(=), f(y)) >0 for all z,y € V.

O (z,y) =0 <= (f(2), f(v)) = 0.
Q I f@)I = lle| for all z € V.

For which subspaces U C V is the orthogonal projection Py : V — U
an orthogonal map?

O for each U O onlyfor U=V O onlyfor V = {0}

Which of the following matrices is (or are) orthogonal?

01 1 -1 11
o(de) e(a) e ()
Which of the following arguments correctly explains why (N, +) fails to
be a group?

O For natural numbers we have n + m = m + n, but this is not one of
the group axioms, so (N, +) fails to be a group.

O The operation N x N — N, (n,m) — n + m, is not defined for all
integers, because the negative numbers do not belong to N. Therefore,
(N, +) fails to be a group.

O The third group axiom (existence of inverses) is not satisfied, since, for
exawmple, for 1 € N there exists no n € N with 14 n = 0. Thercfore,
(N, +) fails to be group.
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(10) For k > 0 we have
O SO(2k) C O(k).
O SO(2k) C O(2k), but SO(2k) # O(2k).
O SO(2k) = O(2k), because (—1)%* =1.

8.6 Remark on the Literature

If circumstances allow, namely if the instructor is not limited in his decisions
either by powerful sevice requirements or by the syllabus, he will arrange his
course to reach as quickly as possible the goal he has set for himself and his
students. In particular, this can give a sharp twist to the course in the direction
of algebra. You will first realize that you are in such a course if the fundamental
algebraic structures such as groups, rings, and fields are formally introduced
at the outset, and then (an unmistakable sign) instead of vector spaces over
fields, the more general modules over rings appear.

In this situation you can only use the present text as a supplement or as
contrasting material, and although it grieves me to lose you as a customer or
even reader, it is my duty to advise you to go and find yourself a more suitable,
more algebraically conceived textbook.

8.7 Exercises

Exercises for mathematicians

8.1: Prove Pythagoras’s theorem: if
the three points a, b, c n a Euclidean
vector space form a right-angled tri-

angle, that is if a — ¢ L b —c, then Fig, 52. Is foct®+lbmcl ot

2 2 2 ig. 52. Is |la—cll®>+|lb—cli®>=|la—b
||a, - c|| + ”b - c[[ - ””’ - b” (%ee arlnghonest vers?oncof the Pcythag‘:)rean
Fig. 52). theorem?

3
8.2: Give R? the inner product (z,y) := Y aijTiy;, where
ij=1

— DN
oo

2

A=1|1

0

(That this is actually an inner product is not part of the exercise, and may

be assumed.) Calculate the cosines of the angles between the canonical nnit
vectors in R3,
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8.3: Show that the 2 x 2 matrices A € O(2), whose coeflicients take ounly the
values 0,+1 and —1, form a nonabelian group.

Three x-exercises

8.1*: For z = (z1,...,%5) € R*n > 2, define |z| := max; |z;|. Show that
there exists no inner product (,) on R", for which {r,z) = |z|? for all
z € R™.
8.2%: Let V be the real vector space of all bounded real sequences,

Vi= {(.’E,‘),‘=1’2,_, | z; € R and 3¢ € R with |.’E.| < cfor all 1,}

Then

obviously defines an inner product on V. Find a proper vector subspace U G V
with U+ = {0}.

8.3*: Let M be a set. Show that if (Bij(M),0) is abelian, then M has fewer
than three elements.

Exercises for physicists

8.1P: Exercise 8.1 (for mathematicians)

8.2P: Use the Gram-Schmidt orthogonalization process to find an orthonormal
basis for the subspace

U:=L((—3,-8,3,3),(-5,-5,7,7),(4,-2,0,6))
of R, where R? is given the usual inner product.

8.3P: Let V be a Euclidean vector space. Show

(a) fp:R — V and o : R — V aredifferentiable maps, then {p, %) : R — R,
t — (p(t),¥(t)) is also differentiable, and we have

(@21} (1) = (B(1), D(2)) + ((1), B(2))-

(1) ¥ ¢: R -V is differentiable and |Jo|| is constant, then o(t) 1 o(t) for
all t ¢ R,
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Hint: Differentiability of a map (“curve”) of R into a Euclidean vector space
is defined exactly as for real-valued functions: the map ¢ : R — V is said to
be differentiable at tg, if the limit

L £ = ¢(to) _

t—to t—1tp

$(to)

exists. This means that there exists a vector vy € V (which will be ¢(¢)), such
that for each € > 0 there exists § > 0, such that for all ¢ with 0 < [t —to| < 6,

we have
Ilso(t) — ¢(to)

< €.
t—tp

voI



CHAPTER 9
Eigenvalues

VARV,

9.1 Eigenvalues and Eigenvectors

Definition: Let V be a vector space over F and f : V — V be an
endomorphism. By an etgenvectorof f associated with the etgenvalue
A € F, we mean a vector v # 0 from V with the property f(v) = Av.

Lemma: If A is the matrix of f : V — V with respect to the basis
(v1y.++,vs) of V, then A is in “diagonal form,” that is

(with zeros away from the diagonal), if and only if v; is an eigenvector
for the cigenvalue A; for 1 =1,...,n.

PROOF: We know that the relation between the endomorphism f and
the matrix A is given by the isomorphism @ : F* — V mapping ¢; onto
v; in the commutative diagram -

Vv —— V
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The columns of the diagonal matrix are A;e;, hence A is in diagonal
form if and only if Ae; = Aje;. Now use the isomorphism & to translate
this into an equivalent condition on f:

Ae.- = )\,-e,- — <I>(Ae,-) = <I>()\,-e.-) — f(@(e.-)) = )\,‘@(C,‘)

since o A = fod. But &(e;) = v;! a

Definition: Endomorphisms for which a basis of eigenvectors exists are
therefore said to be diagonalizable.

To have a basis of eigenvectors greatly facilitates the study of an operator,
because with respect to this basis the operator not only seems to be simple, but
actually is so. However, it is not always possible to find such a basis. Figures
53, 54, and 55 depict three rather typical examples for F := R and V := R2,

v e v f(v)# M
v f(v)
1
f('vZ) \‘/
Fig. 53. Reflection Fig. 54. Rotation through  Fig. 55. Shear (; :)

an angle 0<p<nm

The reflection does have a basis (v1,v2) of eigenvectors, the eigenvalucs are
A1 = 1 and Ay = —1, and with respect to this basis the associated matrix

takes the diagonal form (1 _1 ) . Rotation through an angle 0 < ¢ < 7 clearly
has no eigenvector, still less a basis of eigenvectors. For the shear, only the
(nonzero) vectors on the r-axis are eigenvectors (with the eigenvalue A = 1).
Hence there is no basis of eigenvectors.

Fact: A vector v # 0 is an eigenvector of f: V — V for the eigenvalue
A € F if and only if v € Ker(f — Aldv).

An obvious fact, because (f — Ald)(v) =0 just means f(v) — Av =0. But in
all its triviality this observation has required a little trick — to think of the
identity Id : V — V and of writing v as Id(v). A number A € F is then an
eigenvalue if and only if f— AId is not injective, that is if and only if the kernel
does not consist of zero alone.

Definition: If ) is an eigenvalue of f, the subspace
E) :=Ker(f — Ald)

of V is called the eigenspace of f for the eigenvalue A, and its dimnen-
sion is called the geometric multiplicity of the cigenvalue.
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It is clear that the eigenspaces for distinct eigenvalues only meet in the zero
vector, for if v # 0 and A # p we cannot have f(v) = Av = pv. But more is
true.

Lemma:If vy,..., v, areeigenvectors of f for the eigenvalues A1,...,Ar,
and A; # A; for i # j, then (v1,...,v,) is linearly independent.

PROOF: Start of the induction: the 1-tuple (v;) is linearly independent,
because by definition eigenvectors are nonzero. Inductive assumption:
the assertion is correct for r = k. Now let (vy,...,v54+1) be a (k + 1)-
tuple of eigenvectors for the eigenvalues A, ..., Agy1, with A; # A; for
1 # J,and let ayv; + -+ + arp1vi41 = 0. By applying f respectively
multiplication by Ar41 to this relation we obtain the pair of equations

a1 A101 + oot ok p1 Apg10k41 =0
a1 Akp1v1 + .o 01 Akp1vk41 = 0.

By subtraction we have the equation
a1(A1 — Apg1)vr + - + oAk — Apgr )i = 0,

which no longer contains vi+i1, and to which therefore we can apply the
inductive assumption stating that v1,...,v; are linearly independent.

Therefore, we have aj(A1 — A1) = -+ = oA — Ag41) = 0, and
because A; # A; for i # j, this implies @y = -+ = a; = 0. Hence
ar+1Vk+1 = 0, and therefore ar4y = 0 also. a

Put somewhat sloppily: eigenvectors for different eigenvalues are linearly inde-
pendent.

In particular, an endomorphism of an n-dimensional vector space can have
at most n distinct eigenvalues, and if it does have this many, it is certainly
diagonalizable. This is not, however, a necessary condition for diagonalizability;
more precisely we have the following corollary of the lemma.

Corollary: Let f : V — V be an endomorphism of an n-dimensional

vector space over F, let A;,...,A, be its distinct eigenvalues and
nyy...,ny their geometric multiplicitics. Let (vi”,...,v\) be a ba-

sis of the eigenspace for A;. Then the (ni+...+n,)-tuple

(vil),...,vg‘),...,vir),...,vg)
is linearly independent. In particular, the sum of the geometric multi-
plicitics is at most n and f is diagonalizable if and only if this sum
equals n.
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Proor: If ¥ i, YorL, af)vfj) = 0, then by the lemma each of the vec-
tors Y ii, afc')vfc') ¢ E),; equals zero, and because (vi'), e, vs.')) is lin-
early independent, all the coefficients ai') vanish. Thus by putting bases
of all the eigenspaces together, we have indeed obtained a linearly inde-
pendent (ny + - - - + n,)-tuple of vectors, which therefore will be a basis
in the case that ny +--- 4+ n, = n.

Conversely, if f is assumed to be diagonalizable, then a basis of eigen-
vectors exists, and if m; denotes the number of eigenvectors for the
eigenvalue A; in this basis, then clearly m; < n;, hence

n=my+---4+m.<n1+--+n.<n.

From this it follows that n; 4+ --- + n, = n and as a byproduct that
m; =nig. a

In broad outline we now see how one has to set about finding a basis of eigen-
vectors. In the first step one looks for all values of A € F, for which f— AId is
not injective -— these are the cigenvalues. In the second step one dcterniines a
basis of the eigenspace Ker (f — AiId) for each eigenvalue A;,...,A,. Putting
these bases together, if f happens to be in any way diagonalizable, will give
the desired basis of V' consisting of eigenvectors of f.

9.2 The Characteristic Polynomial

Again let V be an n-dimensional vector space over F. We posec the practical
problem: for which A € F is the endomorphism f—AId: V — V not injective,
hence A an eigenvalue? From the dimension formula for linear maps we know
that the rank and kernel dimension add together to give n, so that f — Ald
has a nontrivial kernel if and only if rk(f — AId) < n, and this, as we know,
will be the case if and only if the determinant of f — Md vanishes.

Fact 1: If f : V — V is an endomorphism of a finite-dimensional
vector space over F, then A € F is an eigenvalue of f if and only if
det(f — AId) = 0.

In order to work out the determinant, one chooses some basis of V and con-
siders the n x n matrix A associated to f :

Vv —— V

<§T§ ET(P
F* A +

(If, as frequently is the case, Vois already equal to F7 ) this step is of conrse
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unnecessary, since we can work with the canonical basis, with respect to which
f is already given as a matrix A.) The matrix of f — Ald is then A — AE,
where E is the unit matrix. One thus obtains A — AE from A by subtracting
A from each diagonal term. Using the definition of the determinant of an
endomorphism (see Section 6.7), one then has the following fact.

Fact 2: If f is decribed by the matrix A with respect to some basis of
V, then

ail -—-A ayo ain
a ax — A ... azn
det(f — AId) = det mo 2
QAn1 An2 vee Qup — A

This determinant, which depends on A and which interests us because of
the eigenvalues, is called the characteristic polynomial Py of f.

Lemma and Definition: If f : V — V is an endomorphism of
an n-dimensional vector space over F, then there exist coefficients
ag,.-.,8n—1 € F with

det(f — AId) = (=1)"A" + @n_1 A" + -+ + a1 A + ag =: Py(A)
for all A € F. Py is called the characteristic polynomial of f.

Proo¥: If A and B are n X n matrices, then det(A — AB) has the form
det(A—AB) =c,A" +---+c1X + co

for suitable cg,...,¢, € F. This follows immediately by induction on
n, using the expansion formula for the determinant: the start of the
induction (n = 1) is trivial, and if we expand det(A — AB) by the first
column, for example, then the {th summand is just

(=1)"*(air — Abi1) det(A; — ABi;)
(see the expansion formula in Section 6.1), and we can apply the inductive
assumption to det(A;; — AB;1).

Hence it only remains to show that in the special case B := E,
occurring in Fact 2, we may take ¢, = (—1)". But this also follows
by induction, again using expansion by the first column: the first sum-
mand (a1; — A)det(A;; — AE11), where A;; and Ej; are obtained
from A and E by deleting the first row and column, is inductively of
the form (—1)"A" + terms of lower degree in A. The other summands
(=1)1+a;; det(Aqy — AE; ), by the remarks above on A — AB, also in-
volve only lower powers of A, and so det(A — AE) = det(f — AId) is of
the required form. a
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Corollary: The eigenvalues are the zeros of the characteristic polynomial.

For F = R or C and n = 2, the zeros of the characteristic polynomial
Py(A) = A 4 a1 X + ap are easy to determine: since A% 4+ a1A + ap =
(A + %L)2 - 5412 + ag, they equal the two numbers A, ; = —%(al ++/a? —4day),
as we may say, although strictly speaking in the case a? = 4ay there is only
one eigenvalue, and if F = R and a? < 4ay, no eigenvalue at all. In concrete
applications n is very often equal to 2.

There is, of course, a lot more to say about polynomials in general, but for
the specific aims of the present first-year linear algebra text we need to know
only one thing: the so-called fundamental theorem of algebra.

Fundamental Theorem of Algebra: Each complex polynomial of de-
gree n > 1, that is, each map P : C — C of the form

P(z) = cpz" +--- + €12 + o,

with n > 1, ¢g,...,¢n € C, and ¢, # 0, has at least one zero.
For a proof, see [1].

Corollary: For n > 1 each endomorphism of an n-dimensional complex
vector space has at least one eigenvalue.

In Chapter 10 we will use this result in the proof of the theorem about the
principal azes transformation for a self-adjoint endomorphism of a Euclidean
vector space (and in particular for a symmetric matrix).

9.3 Test

(1) In order to be able to discuss the “cigenvalues” of alinearmap f: V — W
at all, f must be

O epimorphic (surjective)
0O isomorphic (bijective)
O endomorphic (V = W)

(2) The vector v # 0 is called an eigenvector for the eigenvalue A if
f(v) = Av. If instead f(—v) = Av, then

O —v is an eigenvector for the eigenvalue A.
O v is an eigenvector for the eigenvalue —A.
O —v is an eigenvector for the eigenvalue —A.
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(3) If f: V = V is an endomorphism and A is an cigenvalue of f, then by the
eigenspace Ey of f corresponding to the eigenvalue A, one understands

O the set of all eigenvectors for the eigenvalue A
O the set consisting of all eigenvectors for the eigenvalue A, together
with the zero vector

O Ker(AId)

(4) Which of the following three vectors is an eigenvector of

_ 21 . B2 29
f_(O 1).R — R27?

2 1 2
> (1) > (3) > ()
(5) Let f:V — V be an endomorphism of a finite-dimensional vector space,
and let A,..., A, be the distinct eigenvalues of f. Then

O dimEx, + -+ dimEx, = A ++--+ Ay
O dimEy, +-»+dimE), <n.
O dimEy, +---+dimEy, > n.

(6) Let f:V =, V bean automorphism of V' and A an eigenvalue of f.
Then

O X is also an eigenvalue of f~!,
0O —) is an eigenvalue of f~!.
O 3 is an eigenvalue of f71.
(7) An endomorphism f of an n-dimensional vector space is diagonalizable
if and only if

O f has n distinct eigenvalues.
O f has only one eigenvalue whose geometric multiplicity equals n.
O n equals the sum of the geometric multiplicities of the eigenvalues.

(8) The concepts of eigenvalue, eigenvector, eigenspace, geometric multiplic-
ity, and diagonalizability have been defined for endomorphisms of (some-
times finite-dimensional) vector spaces V. Which further “general as-
sumption” on V have we tacitly made here?

O V is always a real vector space,
O V is always a Euclidean vector space.
O no extra assumption; V is just a vector space over F,

13

(9) The characteristic polynomial of f = (_2 0

):‘Cz-—*(ﬁ2 is given by
O Pr(A)=A2+X+6.

O Pr(A)=A2—=A+6.

O P\ =-A+7,
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(10) If f,g: V — V are endomorphisms and there exists some ¢ € GL(V)
with f = ¢ge ™!, then f and g have

O the same cigenvalues
O the same eigenvectors
O the same eigenspaces

9.4 Polynomials

A section for mathematicians

If F is an arbitrary field and one considers polynomials in one “indeterminate”
A as expressions of the form P()) := ¢, A" 4+ - + 1A + ¢g, where n > 0
and the ¢; belong to F, then one must distinguish between the polynomial
P()) and the polynomial map P : F — F defined by it. This is not just
pedantry; it can genuinely happen that polynomials with distinct coefficients
€0,--1,C, and ¢,..., ¢, give the same polynomial map. Here is an example:
if F=F; = {0,1} is the field of two elements introduced in Section 2.3, then
the two polynomials P(A) ;= A and P()) := A? define the same polynomial
map Fy — Fy, since 0-0 =0 and 1-1 = 1 both hold. One can produce
many other examples in this way, and analogously for other finite fields, But
for fields with snfinitely many elements we have the following lemma.

Lemma for Equating Coefficients: If F = R or C (more generally,
a field with infinitely many elements), and P:F — F has the form

PA)=c, A"+ -+ear+c

with coefficients cg,...,¢n € F, then these coefficients cg,...,c, are
uniquely determined by the map P.

Definition: If in addition ¢, # 0, then P is called a polynomial of
degree n.

For F = R or C you may well already have come across the lemma in a calculus

course. But it really belongs to the theory of systems of linear equations. If

one chooses n 4 1 distinct elements Ay,...,Ap41 € F, the n 4+ 1 equations
enAl -+ ek + co = P(X)

form a untquely solvable linear system for the unknowns ¢y,...,¢y. This is
because the coefficient matrix of the system has nonzero determinant:

AP A1
det V= 'H_(AJ‘ - )
My o A 1)
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(VANDERMONDE determinant — sneaky inductive proof). Therefore, the coef-
ficients ¢g,. .., ¢y, of a polynomial of degree at most n are uniquely determined
by its values at n 4 1 distinct points. In particular, a polynomial of degree n
can have no more than n zeros.

In what follows, the field F is R or C, or more generally a field with
infinitely many elements.

Lemma: If P()) is a polynomial of degree n,n > 1, and Ag € F is one
of its zeros, then

PA)=(A—20)QM)

for some well-determined polynomial @ of degree n — 1.

PROOF: P(A + Aq) is clearly a polynomial of degree n in A with a zero
at 0, hence of the form

P(A-I—Ao = a")\"+---+a1)\ :A'(G"A"_l +-..+a1).
Substituting A — Ag for A, we have

PO) = (= Xo)an(d = 2)" 4ok a) = (A= 20)QO). g

In practice, a better way to determine the coefficients b,_1,...,bp of Q is
directly to compare the coefficients of P(A) and (A — Ag)@Q(A). From
end™ + oo = (A= Ag)(Ba—1 A" 4o 4 Bo)

we first read off b,—; = ¢,, and then with the recursion formula

br—1 = ex + Aobx
work our way downward to get bn,_1,bn—2,...,b0 (called “division of P by
the linear factor (A — Ag)”).

If Q also has a zero, we can again split off a linear factor, and so we
continue until the process stops. From the fundamental theorem of algebra, it
therefore follows that over the complez numbers one can completely decompose
a polynomial into linear factors. More precisely, we have the following corollary.

Corollary and Definition: Each complex polynomial P splits into
linear factors, that is, if P(A) = €xA™ 4+ +-+ 4 ¢co with ¢g # 0, and
Al,. ..y Ar € C are the (pairwise distinct) zeros of P, we have

P(A) = e ,1:[10\ )™

with well-determined exponents we; > 1, called the multiplicities of the
ZCTOS.
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In particular, if V is an n-dimensional complex vector space, f: V — V
an endomorphism, and A;,..., A, its distinct eigenvalues, we have

Ps(A) 1= det(f — Ald) = (~1)" sljl( LT

The m; are called the algebraic multiplicities of the eigenvalues A;,
in contrast to the geometric multiplicities n; := dim(Ker ( f — X;Id)), the
dimensions of the eigenspaces.

We always have n; < m;, since if one extends a basis of an eigenspace, say
for the eigenvalue A;, to a basis of V, then with respect to this basis f will
be represented by a matrix of the form

A1
.
A1
A=
0 *
—

ny

and therefore the factor (A — A;) appears in the linear factorization of
Ps(X) = det(A — AE) at least n; times.

The geometric multiplicity may be genuinely smaller than the algebraic;

the shear matrix
11
01

provides an example. The (unique) eigenvalue A = 1 has geometric multiplicity
1 and algebraic multiplicity 2.

The sum of the algebraic multiplicities is clearly the degree n of P¢. Since
we already know (see Section 9.1) that an endomorphism is diagonalizable if
and only if the sum of its geometric multiplicities equals n, it follows from
n; < m; that the following condition holds.

Remark: An endomorphism of a finite-dimensional complex vector space
is diagonalizable if and only if the geometric multiplicities of its eigen-
values agree with the algebraic multiplicities.
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9.5 Exercises

Exercises for mathematicians

9.1: Determine the cigenvalues and associated eigenspaces for the following
2 x 2 matrices over both the fields F = R and F = C:

00 01 01 01 0 -1 01
0 0/°\1 0/2\0 0/°\4 3/ 1 0/)’\-5 4/
9.2: A subspace U of V is said to be invariant under an endomorphism f

if f(U) C U. Show that the eigenspaces of f™ := fo---0 f are invariant
under f.

9.3: Let RN denote the vector space of real sequences (@n)n>1. Determine the
eigenvalues and eigenspaces of the endomorphism f: RN — RN given by

(an)nZI L (an+1)n21-

Two x-exercises

9.1*: Since we can both add and compose endomorphisms of V it makes
sensc to use the polynomial P(t) = ag -+ a1t + -+ + ant®, a; € F to define an
endomorphism P(f) =as +a1f+ -+ a,f":V — V. Show that if A is an
eigenvalue of f, then P()) is an eigenvalue of P(f).

9.2*: Let 7 : {1,...,n} — {1,...,n} be a bijective map (permutation). Let
fx : R® — R™ be defined by fz(21,...,2n) := (Zx(1),++ . Tn(n))- Determine
the set of eigenvalues of fr.

Exercises for physicists

9.1P: Exercise 9.1 (for mathematicians)

9.2P: Suppose that the endomorphism A4 : V — V of the two-dimensional
vector space V has only one cigenvalue A, and let E) denote the associated
eigenspace, Show that Aw —Aw ¢ E) for all w e V.

9.3P: Let V be the real vector space of twice differentiable functions
f : R — R. Determine all the eigenvalues of the second derivative

d?
ga VoV



CHAPTER 10
The Principal Axes Transformation

10.1 Self-Adjoint Endomorphisms

The name principal azes transformation comes from the theory of conic sec-
tions. For the plane hyperbola illustrated above, a principal axes transforma-
tion would, for example, be an orthogonal map or transformation P : R? — R?
that rotates the coordinate axes to the pair of dotted lines marking the two
“principal” axes of the hyperbola. However, we will not be concerned with
this geometric aspect, but rather with the mathematically equivalent and very
important problem of finding an orthonormal basis of eigenvectors for a self-
adjoint operator on a finite-dimensional Euclidean vector space.

Definition: Let (V,(,)) be a Euclidean vector space. An operator or
endomorphism f : V — V is said to be self-adjoint if (f(v),w)
= (v, f(w)) for all v,w € V,

Two immediate consequences of the self-adjointness condition show that
the chances of constructing an orthonormal basis of eigenvectors are good.

Fact 1: Any two eigenvectors v and w of a self-adjoint operator f corre-
sponding to distinct eigenvalues A # p are orthogonal to each other, since

(f(v),w) = (v, f(w)) implies (M, w) = (v, pw), thus (A — p){v,w) = 0.
Fact 2: If v is an eigenvector of the self-adjoint operator f: V — V,
then the subspace v := {w € V | w L v} is invariant under f, that is,

Fvt) C vt since (f(w),v) = (w, f(v)) = (w, M).




Does it not follow at once that we can inductively construct an orthonor-
mal basis of eigenvectors for the n-dimensional vector space V ? If v is some
eigenvector of the self-adjoint operator f : V — V and dimV = n, then
by inductive assumption there exists an orthonormal basis (v1,...,vs—1) of
eigenvectors for the obviously self-adjoint operator

flot vt — ot

b

and need we not only to take v, := v/||v|| in order to obtain the desired
orthonormal basis (v1,...,vys), as illustrated in Fig. 567

Vn—1

U1

\

Fig. 56. Finding an orthonormal basis by induction

We could argue in this way, if we could only be sure that there always exists
“some” eigenvector v in the first place! This is not quite so trivial as the two
previous facts, but it does happen to be true and will be proved in Section 10.2.

10.2 Symmetric Matrices

We know that with respect to some basis (v;,...,v,) of a vector space V
over F, each endomorphism f:V — V can be described in terms of a matrix
A:F" — F* related to f by the commutative diagram

V — V

¢Te ¢Te
A
F* — "
in which @ := ®,, . , ), the previously defined basis isomorphism, maps the

canonical unit vectors e; onto ®(e;) = v;. Watching ¢; on its two possible
routes in the diagram from the lower left to the upper right:

fivst route:  ¢; — 0y = f(v))

n
second router ;v Aej v Y

P W5y,
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(recall that Ae; = 31—, aije; is the jth column of A), we conclude that
f(vj) = X aijoi-
This quick formula, which is often used to define the matrix associated to f,

can be applied in eny n-dimensional vector space. Let us now, more specifically,
consider Euclidean vector spaces,

Remark: If (V,(,)) is a Euclidean vector space and (v;,...,v,) is an
orthonormal basis of V', the matrix A of an endomorphism f:V — V
is given by ai; = (vi, f(v;)}.

ProoF: Expanding f(v;) in terms of the orthonormal basis, we obtain
f(v;) = S5 (vi, f(v;))vi, from which the claim follows, |

Corollary: If (v1,...,v,) is an orthonormal basis for the Euclidean
vector space V, an operator f:V — V is self-adjoint if and only if its
matrix A with respect to (v1,...,v,) is symmetric, i.e. ai; = aj;i.

PrOOF: Because a;; = (v;, f(v;)), the symmetry of A just means that
the self-adjointness condition holds for the basis vectors, and hence it
certainly is necessary. Because of the bilinearity of the inner product it
is also sufficient. O

If we want to see this written down, we note that for arbitrary vec-
tors we get (f(v),w) = (f(C 1, zivi), Z}'=1y5v,-) = 2:j=1-"7iyj(f(”i)’"j) =
2:,-=19?iy5 (vi, f(v;)) = (v, f(w)).

Symmetric matrices and self-adjoint operators on finite-dimensional Eu-
clidean spaces are therefore closely related; in the special case of V := R"
with the standard inner product they are indeed the same, as onc reads off
from (Az,y) = Zi,’ a;;z;y;. Thus general statements about self-adjoint oper-
ators in finite-dimensional Euclidean spaces always include statements about
symmetric matrices and vice versa. We will now use this in the proof of the
main technical lemma for the principal axes transformation.

Lemma: Each self-adjoint endomorphism of an n-dimensional Euclidean
vector space V with n > 0 has an cigenvector.

PROOF: It is enough to prove the theorem for symmetric real n x n

matrices
A:R*" —R"

since if A := ®o fo®~! is the matrix of a self-adjoint opcrator f: V — V
with respect to an orthonormal basis, A is symmetric, and if z € R
is an eigenvector of A for the cigenvalue A € R, then v := ®(z) is an
eigenvector of f for the same A,
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r

The eigenvalues are the zeros of the characteristic polynomial. How can
we show that there exists A € R with P4(\) =07

Real polynomials do not need to have zeros in R, but who at this point
would not appeal to the one existence theorem for polynomial zeros that
we have, namely the fundamental theorem of algebra? So at least there
exists a complex number

A=vy+iweC

with P4(A) = 0. This complex number is therefore an eigenvalue of the

endomorphism
A:C" —C"

of the complexr vector space C" given by the same matrix A. This means
that there exists some nonzero vector

2y T + it
z=}f | = : eC”
Zn T, + iyn

with Az = Az, ie., A(z +iy) = (v + tw)(x + iy), or separating real and
imaginary parts:

Az = vyr—wy and

Ay = vy +wz.

Admittedly, at this moment we do not know whether considering this
complex vector will help us, or whether by invoking the complex numbers
we have been led astray from our real problem. But until now we have
not used the symmetry of the matrix A at all, and before throwing away
the two vectors x,y € R™ as useless, let us at least write down what the
symmetry condition

(Az,y) = (z, Ay)

may have to tell us, namely

(vz —wy,y) = (2,7y + wz),

thus
v(z,y) — Wy, y) = 7(z,9) + w(z, )

w - (I=I” + llyl*) = 0.

But since = + iy = z # 0, it follows from this that w = 0 and hence
A =+ € R. Great! So the characteristic polynomial kas a rcal zero after
all. O
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10.3 The Principal Axes Transformation
for Self-Adjoint Endomorphisms

We have already seen indicated in Section 10.1 how the existence of an or-
thonormal basis of eigenvectors would follow from the existence of eigenvec-
tors for self-adjoint operators. Having proved this existence lemma we can now
harvest the following theorem.

Theorem: If (V,(, )) is a finite-dimensional Euclidean vector space and
f:V =V is a self-adjoint endomorphism, there exists an orthonormal
basis of eigenvectors of f.

ProoOF: Induction on n = dimV. For n = 0 the theorem is trivial
(empty basis). Inductive step: let n > 1. By the lemma there exists an
eigenvector v, and by the inductive assumption an orthonormal basis
(v1,.-.,vp—-1) of eigenvectors for

flot vt — vt

Put v, :=v/||v||. Then (v1,...,v,) is the required basis. |

Corollary (Principal axes transformation for self-adjoint op-
erators): Given a self-adjoint endomorphism f : V — V of an n-
dimensional Euclidean vector space, it is always possible to find an or-
thogonal transformation

-3

P.R* =V

(“principal axes transformation”), which reduces f to a diagonal matrix
D:=P~ 1o foP of the form

M
. N
A,

Here ),...,A, are the distinet eigenvalues of f, the number of each
appearing on the diagonal being cqual to the geometric multiplicity.

In order to obtain such a P, we simply take an orthonormal basis of eigenvectors
ordered in such a way that eigenvectors for the same eigenvalue are adjacent.
The basis isomorphism ®(,, .. ,.) =' P then has the required property.

In particular, for V := R™ with the usual inner product we hiave the fol-
lowing corollary.
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Corollary (Principal axes transformation for symmetric real
matrices): If A is a synunctric real n x n matrix, there is an orthogonal
transformation P € O(n), such that D ;= P~ AP is a diagonal matrix
with the eigenvalues of A as diagonal entries, each appearing with its
geometric multiplicity.

Anticipating an important generalization, which you may meet in a later
course on Functional Analysis, we have the following reformulation.

Corollary (Spectral decomposition of self-adjoint operators): If
f:V = V is a self-adjoint endomorphism of a finite-dimensional Eu-
clidean vector space, A1,..., A, its distinct eigenvalues, and Py : V - V
the orthogonal projection onto the eigenspace Ey, , then

f=% AP
k=1

0 Ex, = Ker (f — Ald)

L
Ey,

Fig. 57. Orthogonal projection P, onto the kth eigenspace

PRroOF: It suffices to show that both sides have the same effect on cigen-
vectors of f, since there exists a basts of eigenvectors. Suppose, therefore,
that v is an eigenvector for the eigenvalue A;. Then f(v) = Ajv, and

Py(v) {v for k=j
V)=
. 0 for k#j,

because eigenvectors for distinct eigenvalues are orthogonal to each other.
Therefore, Y ;_; A Pr(v) = Ajv = f(v). O

If one has to apply the prineipal axes trausforiation i practice, the self
adjoint endomorphixim is usnally already iu the form of a symmetrie matrix A
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Otherwise, use some arbitrary orthonormal basis to represent f by a symmet-
ric matrix A. The “recipe” for carrying out the principal axes transformation
then reads as follows.

Recipe: Let A be a real symmetric n x n matrix. In order to find a
principal axes transformation P € O(n) for A carry out the following
four steps:

FIRST STEP: Form the characteristic polynomial P4()) := det(A — AE)
and determine all its zeros, that is, the eigenvalues Aq,...,A, of A.

SECOND STEP: Determine a basis (wik), e, ws.’i)) of the eigenspace E,,

for each ¥ =1,...,r by applying Gaussian elimination (Section 7.5) to
solve the system of equations (A — A\ E)z = 0.

THIRD STEP: Orthonormalize (wik) yrees ws.’?) by the Gram-Schmidt pro-
cess (Section 8.2), obtaining an orthonormal basis (v%, ..., vy,

FOURTH STEP: Putting these bases together gives an orthonormal basis

Mo ")

(vl,...,v,.):=(v yrrey nl"",vl ERRE} n,)

of V', made up of eigenvectors of A, and we get the desired

as the matrix with columns v;,...,v,.

10.4 Test

(1) An endomorphism f of a Euclidean vector space is said to be self-adjoint
if, for all v,w € V, we have

8 (f(v), f(w)) = (v, w).
8 (v, f(w)) = (f(v),w).
O (f(v),w) = (w, f(v)).

(2) I A,..., A, are eigenvalues of a self-adjoint endomorphism, A; # A; for
t # j, and v; is an eigenvector for A;, ¢ =1,...,r, then for : # j

O X LlA O v Lo | E,\.._LE,\J-
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(3)

(4)

(6)

(7

(8)

(9)

Let V be a finite-dimensional Euclidean vector space. The assertion that
for each invariant subspace U/ C V also U+ is invariant under f holds

O for each self-adjoint endomorphism of V
O for each orthogonal endomorphism of V
O for each endomorphism of V'

Which of the following matrices is symmetric?
001 2 0

O O

oo wr
N~ oo
oo wr
—E-R N
oo wr
—E-R N
wh oo
[N

00 4 0
1 2 0 3
3 4 0 4
Let A be areal nxn matrix and z € C* a complex eigenvector, 2 = z+iy
with z,y € R", for the real eigenvalue A. Suppose that y # 0. Then

O y € R" is an eigenvector of A for the eigenvalue ).
O y € R"™ is an eigenvector of A for the eigenvalue A,
0O if z #0, then y € R™ cannot be an eigenvector of A.

For a real symmetric matrix A to carry out the principal axes transfor-
mation means finding

0 a symmetric matrix P so that P~ AP is diagonal
00 an orthogonal matrix P € O(n) so that P~ AP is diagonal
O an invertible matrix P € GL(n,R) so that P~ AP is diagonal

Let V be an n-dimensional Euclidean vector space and U C V be a
k-dimensional subspace. When is the orthogonal projection P: V — U
self-adjoint?

O always Oonlyfor 0<k<n Oonlyfor 0<k<n

Does there exist an inner product on R" for which the shear is self-
adjoint?

O No, because 1) is not diagonalizable.

1
01
O Yes, let {z,y) := 2191 + T1y2 + 22

O Yes, because the standard inner product already has this property.

Let f:V — V be a self-adjoint operator and let (v1,...,v,) be a basis of
eigenvectors with ||v;]| =1 for : =1,...,n.Is (v1,...,vs) then already
an orthonormal basis?

O Yes, by definition of an orthonormal basis.

O Yes, becanse the eigenvectors of a self-adjoint operator are orthogonal
to each other.

O No, becanse the cigenspaees do not need to be one-dimensional,
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(10) If a symmetric real n x n matrix A has only one eigenvalue A, then

O A is already diagonal.
O a;j=Aforalli,j=1,...,n.
O n=1.

10.5 Exercises

Exercises for mathematicians

10.1: Carry out the principal axes transformation for the symmetric matrix

2 1 1
A=}|1 2 —-1];
1 -1 2

that is, find an orthogonal matrix P € O(3) so that P*AP is diagonal.

10.2: Let V be a finite-dimensional real vector space. Show that an endomor-
phism f:V — V is diagonalizable if and only if there exists an inner product
(,) on V for which f is self-adjoint.

10.3: Let V be a Euclidean vector space and U C V a finite-dimensional

subspace. Show that the orthogonal projection Py : V — U is self-adjoint,
and determine its eigenvalues and eigenspaces.

The x-exercise

10*; LetV be a finite-dimensional Euclidean vector space. Show that two
self-adjoint endomorphisms f,g : V — V can be diagonalized by the same
orthogonal transformation P : R™ = V if and only if they commute, ie.,
satisfy fog=go f.

Exercises for physicists

10.1P: Exercise 10.1 (for mathematicians)

10.2P: Carry out the principal axes transformation for the symmetric matrix
A= (c9scp smtp).
sing —cosg

10.3P: Determine the ditension of the subspace Sym(n, R) of M(n x n, R).



CHAPTER 11
Classification of Matrices

11.1 What Is Meant by “Classification”?

In order to have an overview of a large and perhaps complicated collection
of mathematical objects, it is often necessary to ignore certain properties,
insofar as these are irrelevant to the matter concerned, and to concentrate
on identifying the essentially distinct objects. To some extent it is arbitrary
which properties are regarded as “essential”; indeed this depends on the kind
of overview for which one is looking. And what does it mean to “ignore” certain
properties? And how does one express “essentially the same” and “essentially
distinct” in a mathematically sensible way? This last point is the subject of our
first definition. We start from the assuinption that the objects to be classified
form a set M, for example, a set of matrices or a set of subsets of R.

Definition: Let M be a set. By an equivalence relation on M one
understands a relation (formally a subset R C M x M, but instead of
(z,y) € R one writes  ~ y and speaks of the “equivalence relation ~"),
which satisfies the following three axioms:

(1) Reflexivity: z ~z forall z € M

(2) Symmetry: z~y &S y~zx

(3) Transitivity: s ~yand y~z=>z~2

Example: Let V' be a vector space over F and U C V' be a subspace.
Wedefine ~yonV by ¢ ~y y: x—y € U. Then ~y is an equivalence
relation.
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ProOOF:

(1) Reflexivity:z ~y z,sincex—z=0¢€ U.

(2) Symmetry: c~yyor—yelU&Sy—crelU &y~yez.

(3) Transitivity: z ~y yand y ~y 2 > s —y € U andy—2z € U
S>(z-—yY+@y—2)eU=z—2zelU=>z~2 |

Definition: Let ~ be an equivalence relation on M. For z € M the

subset [z] := {y | z ~ y} C M is called the equivalence class of =

with respect to ~.

Remark: (i) |, ylz] = M and (ii) z]N[y]| # G &z ~y & [z] = [y].

PROOF: (i) is trivial since z € [z] because of axiom 1. For (ii):

[] N [y] # @ = there exists some z € [z] N [y]
= there exists some z with z ~ z and y ~ 2
= there exists some z with z ~ z and z ~ y by axiom 2
= z ~y by axiom 3.
On the other hand:
z~y=>(z~a<+=y~a) byaxioms2and3
= [z] = [y].
Finally,
[zl =[y) >z ez] Ny by axiom 1
= [z] N [y] # 2. o

For obvious reasons one calls a set of subsets of M, such that each two are
disjoint and whose union is M, a decomposition of M. The set {[z] |z € M}
of equivalence classes is an example of such a decomposition.

Example: If U is a subspace of V and ~y is defined as above by
T~y y:&zx—y €U, the equivalence classes are called the “cosets” of
U,thatis, [t]=c+U={z+u|u e U}.

Intuitively one may think of such a decomposition as putting the elements of
the set into pigeonholes, one pigeonhole for each equivalence class, thus tidying
up the originally messy set. This is what classification is about! In order to be
more specific, we nced names for the set of pigeonholes and for the process of
putting the elements into them,

Definition: By the quotient of M by ~ , one understands the set
M/~ :={[z] | z € M} of equivalence classes, and the map 7= : M — M/~
mapping r to [z] is called the canonical projection of the equivalence
relation ~.
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The choice of an equivalence relation on M s tle cliofee of the point of view
from which one wants to obtain a “classification,” our strategy for the tidying
up of M : equivalent clements go into the sanie pigeonhole,

But with the choice of the equivalence relation, the classification is not yet
done; on the contrary, the work is just starting. We want to get an overview
on how many pigeonholes there are, and what is in them and how to decide in
which pigeonhole a given element belongs.

What this exactly amounts to is not so easy to explain; “classification” is
no rigorously defined term, but it has something of the indeterminacy of the
spoken word “overview.” But let me try anyway.

Explanation: Let ~ be an equivalence relation on a set M. Classi-
Sfying the set M according to ~ or, as one says, up to ~, amounts to
“understanding,” “seeing through,” “looking over,” or “coming to grips
with” M/~ , and where possible with 7 : M — M/~ also. Two common
variants that realize this somewhat vague concept are

(a) classification by means of characteristic data, and
(B) classification by representatives

as follows:

(A) CLASSIFICATION BY CHARACTERISTIC DATA: essentially this consists
of finding a “well-known” set D (for example, the set Z of integers or
the like) together with a surjective map ¢ : M — D with the property
z ~ y <> ¢(z) = ¢(y), which means that the map

M/~ — D

2] — ¢(2)

is well defined and bijective. In this case one says that ¢(z) is a char-
acterizing datum for r with respect to ~.

One then “understands” M/~ and 7 in the sense that we have a

commutative diagram
Wl \‘

M/~ —/ D

in which one understands ¢ and D.

For a simple illustrating example, lct M be the set of all finite subsets of R?.
For X,Y € M we definc X ~ Y :<=> there exists a bijectivemap f: X — V.
Then one obtains a classification of M according to ~ by characteristic data,
if one takes D := N and «(X) := #X, the munber of clements contained
in X.
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(B) CLASSIFICATION BY REPRESENTATIVES: essentially this consists of
finding some “easily understood” subset My C M so that

Mo : My = M/~

is bijective. This means that for each x € M there exists a unique
representative ro € M, with £ ~ r¢. So My contains exactly one
sample from each equivalence class. If we can explicitly describe how to
find this representative for any given £ € M, so much the better.

Again, for a simple example, let M be the set of pairs (z,U) consisting of an
element = € R? and a one-dimensional subspace U of R%. In M we introduce
an equivalence relation by defining (x,U) ~ (y, V) to mean that there exists
an automorphism ¢ of R? with ¢(z) =y and o(U)=V.If My C M is the
set consisting of the three sample elements ((0,0),R x 0), ((1,0),R x 0), and
((0,1),R x 0), then 7|My : My — M/~ is bijective, and we also know how
to find the represcntative for any given (z,U) € M, since

(2,U) ~ ((0,0),R x 0) <=> 7 = 0
(z,U0) ~((1,0),Rx0) <=z #0,z e U
(z,U) ~((0,1),R x0) <=z ¢ U.

In this way we have arrived at a classification by representatives. Figures 58a,
b, and c illustrate the three elements of My .

e r = (0, 1)
z=0 0 z=(1,0) 0
Fig. 58a. First represen- Fig. 58b. Second repre- Fig. 58c. Third repre-

tative sentative sentative

The following four sections, 11.2-11.5, are concerned with classification
problems for matrices,

11.2 The Rank Theorem

Until now we have spoken in a very general way about equivalence. For matrices
the word is also used in a more special sense.

Definition: Two m x n matrices A, B € M(m x n,F) are said
to be equivalent, written A ~ B, if there exist invertible matrices
P e M(n xn,F) and Q € M(m x m,F) with B=Q"1AP.
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The condition says that the diagram

A
F" F™

Pl =a
B
F* —— ™
is commutative. It is clear that this sort of equivalence defines an equivalence
relation on M(m x n,F): reflexivity, symmetry, and transitivity are easily
checked. This is the simplest and coarsest equivalence relation for matrices

that has any interest. The associated classification problem is solved by the
rank theorem.

Rank Theorem: Two m x n matrices A and B are equivalent in the
sense above if and only if they have the same rank.

PROOF: It is clear that equivalent matrices must have the same rank,
since then Im B is mapped by the isomorphism @ onto Im A. Suppose,
conversely, that we are given that rk A = rk B. We construct P and Q
in the following manner. First choose a basis v1,...,vr—r of Ker B and
extend it to a basis (v1,...,v,) of all F*. Then

(w1,...,wy) := (BVn—rs1,...,Bvy)

is a basis of Im B, which we can in turn extend to a basis (w1,...,ws)
of ™. We do the same thing for A, obtaining the bases (v},...,v)) and
(w!,...,w!,), respectively, of F* and F™. Now let P and @ be the iso-
morphisms taking the unprimed into the primed bases. Then QB = AP
holds for the basis vectors vi,...,v,, and hence for all v € F". 0

The rank is therefore a characteristic datum for the classification of m x n
matrices up to equivalence, and since all ranks between zero and the maxi-
mum possible rank rmax := min(m,n) do occur, the rank defines a bijection
M(m xn,F)/~ == {0,...,7max}.

At the same time we can give a classification by representatives or, as one
says, normal forms. For example, we can choose the m x n matrices of the
form

1 .

1 =: Emx»

with 0 < r £ rmax = min(m, n) as normal forms, and then each m x n matrix
is equivalent to precisely one of these normal forms, namely to the one with
the same rank. To “bring” or to “rednce” A to its normal formn meaus in this
context just to find invertible matrices P and Q with Q7' AP = E"*" . The
proof of the rauk theorem shows how this can he done.



176 CHAMTEI L CLASSIFICATION OF MATRICES

11.3 The Jordan Normal Form

If we are interested in n Xn matrices as endomorphisms of F" | then we will not
be happy with the coarse classification of the previous section, because it takes
no account of the finer properties of endomorphisms, such as the eigenvalues
and the characteristic polynomial. The appropriate equivalence relation here
is the similarity of matrices.

Definition: Two n x n matrices A, B are said to be similar if there
exists an invertible n x n matrix P making the diagram

A
F* —— "

st eTP
[

commutative, i.e., B = P"1AP,

Similarity is again clearly an equivalence relation. Similar matrices are cer-
tainly “equivalent” in the sense of the previous section, but the converse is
false because, for example, similar matrices must have the same characteristic
polynomial.

The classification of n X n matrices up to similarity is not as simple as the
rank theorem, and in this first-year text I will merely state rather than prove
the result, and then only for the case F := C, that is, only for complex n x n
matrices. But even if you will meet the proof only later or, if mathematics is
not your major, maybe necver, at least the thcorem will give you a feel for the
nature of complex endomorphisms,

The individual building blocks for normal forms are of the following type.

Definition: Let A be a complex number and m > 1. The m x m matrix

Al
Jm()‘) :=( 1)
1

is called the Jordan block of degree m for the eigenvalue A.

As an endomorphism of C™ the Jordan block Jn,(A) clearly has only the
eigenvalue A, and the dimension of the eigenspace is the smallest that an
eigenspace can have, namely 1. For m > 2 such a Jordan block therefore is
not diagonalizable; indeed one can say that it is as nondiagonalizable as a
complex m x m matrix can be.
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Jordan Normal Forni Theorem: If A isu complex 1 xn matrix, and
if A\...., A € C arce its distinet cigenvalones, then for cach A = 1,...,r
there exist uniquely determined positive natural numbers 1y and

mgk) < m,(zk) <4 <L m(n'i)
with the property that there exists an invertible complex n x n matrix
P such that P7'AP is the “block matrix” obtained by adjunction of

the Jordan blocks

TN L (W) T A T (Ar)

along the diagonal.

Thus the kth eigenvalue Ag contributes a smaller block matrix, let us call

it By, built up from ny single Jordan blocks:

Al
1 m,

o

el

Bk = .)\k

A 1
. k
' 1 m(nk)

The whole Jordan normal form of A is then

!
B, > mgl)
1=1

(2)
™m;

B,

Py

()

“Ii

g\(—/ \_~ A N —
I1~3
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Apart from the fact that there is no prescribed order for the eigenvalues of a
complex matrix, the theorem gives us a similarity classification for complex
n x n matrices by representatives in normal form, and the set of eigenvalues
together with the information that associates with each eigenvalue the ordered
sequence of numbers specifying its Jordan blocks provides characteristic data.
Only if each Jordan block has dimension 1 is A diagonalizable.

11.4 More on the Principal Axes Transformation

The theorem on the principal axes transformation for self-adjoint operators
in finite-dimensional Euclidean vector spaces solves a further classification
problem for matrices, namely that of symmetric real n X n matrices up to
orthogonal similarity.

Definition: If Sym(n,R) denotes the vector space of symmetric real
n X n matrices, then two matrices 4,B € Sym(n,R) are said to be
orthogonally similar if there exists an orthogonal matrix P € O(n)
with B = P~1AP.

Orthogonal similarity is an equivalence relation on Sym(n,R). From the the-
orem on principal axes transformations we immediately obtain a classification
by means of normal forms.

Theorem: Each symmetric real n X n matrix is orthogonally similar to
exactly one diagonal matrix,
M
A=
An

with A} < .- < A,. These A,..., A, are the eigenvalues of A, each
occuring with its geometric multiplicity.

The eigenvalues with their geometric multiplicities therefore form a
characteristic datum and give a classifying bijection:

Sym(n,R)/~ = {A e R"| A\ <--- < A}

11.5 The Sylvester Inertia Theorem

The Sylvester inertia theorem is a classification theorem for symmetric real
n X n matrices; it solves the classification problem for quadratic forms on R®,
and therefore on each n-dimensional real vector space V.
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Definition: If V is a real vector space und b: VXV — R is asymmetrice
bilinear fonn, then

:V—R
v —> b(v,v)
is called the quadratic form on V associated to b. Note that b can

be recovered from ¢, since the bilinearity of b implies

b(v + w,v + w) = b(v, v) + b(w,v) + blv, w) + b(w, w),

and since b is symmetric,
1
b(v,w) = E(q(v + w) — q(v) —- g(w)).

Hence one can also call b the bilinear form associated to ¢.

What have quadratic forms to do with matrices? If (v1,...,v,) is a basis
of V and we write v = 1v; +-- -+ Ty, then again because of the bilinearity
and symmetry of b we have

o) = v, o) = (S v, D ayoy) = > (o, v5)iz,

i,5=1

and we therefore make the following definitions.

Definition: The symmetric matrix A given by a;; := b(vi, v;) is called
the matriz of the quadratic form q : V — R with respect to the
basis (v1,...,V5).

Notation and Remark: For A € Sym(n,R) let Q4 : R* — R denote
the quadratic form given by

Qa(z) == ¥ aijziz;.
1,71
So if A is the matrix of ¢ : V — R with respect to (vy,...,v,), and &
is the basis isomorphism R" & V for this basis, then

q

V — R

o=
R

is commutative.

Why does one need quadratic forins? Among the many uses of quadratic
forus in mathematics T want to single ont oue for your attention, which
yon will soon come across in an analysis course. From differential ealeulus
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in one variable you know what information is carried by the second derivative
f"(z0) concerning the behavior of f near a “critical point” (f'(z¢) = 0). If
f'(zo) > 0 (f"(z0) < 0), then the function has a local minimum (maximum)
at z¢, and the question only remains open if f"(z¢) = 0, in which case one
needs additional information about the higher derivatives. In differential cal-
culus in several variables the situation is similar, but the Taylor polynomial of
degree two at a critical point is no longer simply f(zo) + (1/2)f"(z0)£2, but
is in n variables:

f(10)+2 ila a (10)616.1,

thus given by the constant term f(zo) and a quaedratic form with the matrix

_1 0% f
%5 5 By )
In one variable it is easy to see from the sign of f"(z¢) how £ — (1/2)f" (z0)€?
behaves. But for the symmetric matrix A, if this does not by chance have a
particularly simple form and instead stands there full of numbers, it is at first
hard to see what is going on. For this one needs a little quadratic form theory,
to which we now turn again.

Definition: Let ¢ be a quadratic form on the n-dimensional real vector
space V. A basis (vy,...,vn) of V for which the matrix A of ¢ has the
form

(0 < 7,3 and r + s < n) shall be called a Sylvester basis for ¢.

With respect to such a basis the quadratic form takes the simple enough form:

2_ 2 2
Q@101+ Tatn) = 2] 4 Ty =Tl

Sylvester Inertia Theorem: For a quadratic form ¢ on an n-dim-
ensional real vector space V there always exists a Sylvester basis. The
numbers r and s of positive and negative entries in the associated diag-
onal matrix are independent of the choice of the Sylvester basis.

Definition: We say that r + s is the renk and r — s is the signature
of the quadratic form.,
ProoF: (a) Existence of the Sylvester basis: we find such a basis by

induction on n, rather as in the principal axes transformation, only this
time it is much easier. The theorem is trivial for ¢ = 0; let us suppose
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g # 0. Then there must he a vector » € V' with ¢(v) = £1, and this is
all we need for the inductive step. If b is the symmetric bilincar form of

¢, then
U:={weV]|bw,w)=0}

is an (n—1)-dimensional subspace of V' (this follows from the dimension
formula for the map b(v,:) : V — R ,w — b(v,w)). By the inductive
assumption ¢|U has a Sylvester basis (uy,...,%,_1), and we only need
to add v in the right place in order to obtain a Sylvester basis for all
of V.

(b) r and s are well defined: the quantity r can be defined independently
of bases as the maximum dimension of a subspacc of V' on which ¢
is positive definite. In order to see this, take some Sylvester basis and
consider the subspaces V; and V_y spanned by the first r and last
n —r vectors respectively. Then ¢|Vy is positive definite, but each higher
dimensional subspace U must by the dimension formula meet V_ o non-
trivially. Therefore ¢|U cannot be positive definite. Analogously, s is the
maximum dimension of a subspace on which ¢ is negative definite. O

Now consider quadratic forms on R". What does it mean for two matrices
A, B € Sym(n, R) to have quadratic forms that only differ by an isomorphism
P of R®, in the sense that the diagram

R*  Qa
PIE R

-

R* ©s

cominutes, that is Q5 = Q40 P? To sce this, it is convenient to interpret each
n-tuple z € R™ as an n x 1 matrix or column, and thus the corresponding
transposed 1 X n matrix z! as a row.

Remark: If one writes + € R® as a column, then the 1 X 1 matrix
Qa(z) equals the product

Qa(z)=2"A.x
ay; -+ QGin I
=(1,...,%5) I N

Gn1 ‘' Qnpn Tn

and since the rule (XY)* = Y'X’ holds for transposed matrices,
QB = Q4 0 P is cquivalent to r'Bx = r'P!'APz being satisfied for
all z € R" or

B =TP'AP.
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This describes the effect of a “coordinate transformation” P on the matrix
of a quadratic form.

From Qg = Q4 o P we can see that B is just the matrix of Q4 with
respect to the basis formed from the columns of P. The Sylvester inertia
theorem therefore implies the following corollary.

Corollary: If symmetric real n x n matrices A and B are called equiv-
alent if their quadratic forms are related by a coordinate transforma-
tion, i.e. if there exists P € GL(n,R) with B = P'AP, then each
A € Sym(n,R) is equivalent to a unique normal form

with 0 <r,s and r 4+ s < n.

In this way we obtain a classification by representatives.

In contrast to the classification of symmetric matrices up to orthogonal
similarity in Section 11.4, for the equivalence relation now being studied there
are, for each fixed n, only finitely many equivalence classes: the pair (r,s) is
a charateristic datum and gives us a bijection

Sym(n,R)/~ —» {(r,s)|0<r,sandr+s <n}.

Note that orthogonally similar symmetric matrices A and B have equiva-
lent quadratic forms, since P € O(n) implies that P~! = P*, so B = P 'AP
implies that B = P'AP.

If one has used the principal axes transformation to bring a symmetric
matrix into diagonal form, one can of course read the Sylvester characteristic
data 7 and s from it: these are the numbers of positive and negative eigen-
values counted with their multiplicities. But there is a much more convenient
way of finding the Sylvester normal form, and it avoids the determination of
eigenvalues altogether.

For this we recall the observation made in Section 5.5 that elementary row
transformations on the left-hand factor of a matrix product XY reproduce
themselves on the product matrix. Analogously, the same is true for column
transformations on the right-hand factor.

Moreover, if P, results from P, by an elementary column transformation,
then of course P§ results from P} through the corresponding row transfor-
mation, since transposition interchanges rows and columns. For the product
matrix P}AP;, passage to P{AP; thus means that we carry out the column
and corresponding row transformations simultaneously. We shall refer to this
as an elementary symmetric transformation. We now have all the ingre-
dients for the following recipe.
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Recipe for finding the Sylvester normal forim: H oue wies a finite
sequence of elementary syminetric transforations to reduce a symmetric
real matrix A to some Sylvester normal form,

then this is in fact the Sylvester normal form of A, because if one applies
the corresponding column transformations alone to the unit matrix E,
one obtains a matrix P € GL(n,R) with P*AP = §, so the columns of
P form a Sylvester basis for A.

If one isinterested only in 7 and s and not in P, then it suffices to use
elementary symmetric transformations to bring A into diagonal shape:
r and s are the numbers of positive and negative diagonal elements.

11.6 Test

(1) Which of the following properties of an equivalence relation is (are) not
fulfilled for the relation on R defined by ¢ < y?

O Reflexivity 0O Symmetry 0O Transitivity

(2) We define an equivalence relation on Z by “n ~m & n —m is even.”
How many elements are there in Z/~?

O1 o 2 O infinitely many

(3) If two m xn matrices A and B have the same rank, there exist invertible
matrices X and Y so that

O AX =BY 0O AX=YB O XA=YB

01

(4) Are the 2 x 2 matrices A = (1 2) and B = (0 N

2 4\ . .
) similar?
O Yes, hecause B = 2A.
O Yes, beeanse they have the same rank,
O No, beeause they have distinet eigenvalues,
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(%)

(6)

(7

(8)

(9)

(10)

Caarrer H CLASSIFICATION oF MaTiicns
2 3 4
How does the Jordan normal formof A= | 0 2 5 ] look?
0 0 2
2 2 0 2 1
a 2 a 21 a 2 1
2 2 2

Is the Jordan normal form of a real symmetric n x n matrix always

diagonal?

O Yes, because it can be brought into diagonal form by means of the
principal axes transformation.

O No, because a symmetric matrix can also have fewer than n distinct
eigenvalues. The argument in favor of the answer “Yes” is unsound,
since O(n) # GL(n,C).

O The question has no meaning and therefore does not deserve an an-
swer, since the Jordan normal form theorem is stated not for real but
for complez n x n matrices.

Starting from a quadratic form ¢ : V — R one obtains the associated
bilinear symmetric form b from

O b(v, w) = 3a(v +w) — g(v —w)).

O bv,w) = %(q(v) + g(w)).

O b(o,w) = Hg(v) + g(w) — (v — w)).

What is the matrix for the quadratic form ¢ : R* — R given by
q(z,y,2) = 42® + 62z — 2yz + 8227

4 0 6 4 0 3 2 0 3
o0 0 -2 o jfo o0 -1 a 0 0 —1
6 —2 8 3 -1 8 3 -1 4

Is the rank r + s of a quadratic form ¢ : V — R equal to the rank of the
matrix A representing ¢ with respect to some basis?

O Yes, since r + s is the rank of the Sylvester matrix 5 of ¢, and we
have § = P'AP.

O No, r + s is only the maximal rank of a matrix representing g¢.

O No, the rank of A is r — s, because s is the number of entries equal
to —1.

Let A be a symmetric real 2 x 2 matrix with det A < 0. How does the
Sylvester normal form of A look?

o (")
o (" L)

O We cannot decide this from det A < 0 alone. We need at least one

further piece of information in order to determine the two quantities
r and s,
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11.7 Exerciscs

Exercises for mathematicians

11.1: The proof of the rank theorem in Section 11.2 is given in terms of the
column rank and makes no use of the fact that this coincides with the row
rank. Show that the rank theorem implies this agreement as a corollary.

Hint: the equality (XY)* = Y*X! for transposed matrices (see the remark
in Section 6.3) follows, without relying on the rank theorem, directly from the
definition of transposition. Therefore one may use it here.

11.2: In the theorem in Section 11.3 about the Jordan normal form we are
explicitly given a Jordan matrix with eigenvalues Ay, ..., A, and Jordan blocks
with degrees mgk) <-- L m(,.'f,) for the eigenvalue Aj. Determine the geomet-
ric and algebraic multiplicities of the eigenvalues of this matrix.

11.3: Usc syminetric transformations to determine an invertible 3 x 3 matrix
P so that for

A=

—
[
—

P'AP is in Sylvester normal form.

The x-cxercise

11*: A property of real n X n matrices shall be called “open” if all matrices
A with this property form an open subset of M(n x n,R) = R™. Determine
the openness or nonopenness of the following properties:

(a) invertibility

(b) symmetry

(c) diagonalizability

(d) tk(A) <&k

(e) tk(A) > &

Exercises for physicists

11.1P: For the symmetric real 5 x 5 matrix

i
_—
— et
— ot ok
—

1
1
1
1
I
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determine the diagonal matrix that would result from applying the principal
axes transformation, and find the Sylvester normnal form.

Given the particular simplicity of the matrix A, do not calculate but merely
think (what is the image of A, what does A do to vectors in Im A, etc.).

11.2P: Determine the rank and signature of the quadratic form defined on R3
by Q(z,y,2) 1= z? + 8zy + 2y? + 10yz + 322 + 12r2.

11.3P: Exercise 11.3 (for mathematicians).



CHAPTER 12
Answers to the Tests

The charts indicating the correct answers are followed by comments to the indi-
vidual questions. These comments should help to close those gaps in knowledge
revealed by an incorrect answer.

CHAPTER 1 TEST

1 2 3 4 10

4]
[«
-3
oo
©o

(1) Read the definition on page 4.
(2) Look at the figures on page 3.

(3) Read the text on page 2 (for the definition of {a}), read the definition of
the Cartesian product on page 4, look at the diagram on page 4, and let
b move while keeping a fixed.

(4) “Constant” does not mean that a map “does nothing” (as one could
perhaps say of Idps), but that all £ € M are mapped to a single point.
Reread the definition of a constant map on page 7.

(5) Reexamine the definition of projection onto the first factor (page 7) and
if necessary, also that of the Cartesian product on page 4.

(6) Reread the definitions of f(A) and f~!(B) on page 7.

(7) Read the definition of ¢gf on page 9. The expression g{z) is not even
defined, sinee g is defined ou Y, and the third answer is meaningless.

(8) Oue can only follow the arrows in two ways going from X to Y. Read
the definition of a connnutative dingram on page 9.
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(9) f~! must map 1/z to =z, therefore 1/x to 1/(1/x), therefore ¢ to 1/t.
(10) Not injective since, for example, (—1)? = (4+1)%; not surjective since, for

example, —1 # 22 for all z € R. Reread the definitions of injective and
surjective on page 8.

CHAPTER 2 TEST

1 2 3 4 5 6 7 8 9 10

(1) Reread the definition of R™ in Chapter 1, page 5.
(2) No vector multiplication is involved in the definition of a vector space.
(3) Multiply out (z — yi)(a + b) and observe that i2 = —1.

(4) “Scalar multiplication” (not to be confused with the “inner” or “scalar”
product defined on a Euclidean vector space; see Section 2.4) does
not mean the multiplication of scalars with each other (in which case
F x F — F would be the correct answer), but of scalars with vectors,
thusamap FxV —» V.

(5) Read the definition of a real vector space on page 17 again. Answer 2 does
not make sense, but it is important to realize the distinction between the
first and the third answers.

(6) Recall the definition of X x Y in Chapter 1.

(7) Each subspace of V must contain the zero of V' (compare the proof of
the remark in Section 2.3).

(8) In all three examples it is true that U # @, and in the first two it is
also true that Az e U if z e U and A € R, but only the first satisfies
z+yelUforal z,y e U.

(9) In the complex plane C the imaginary numbers iy = (0,y) form the
y-axis, and therefore it is not true that U = C. The third answer would
have been correct, if it had been asked whether U were a subspace of the
complex vector space C.

(10) Each line through the origiu is also a subspace, not just the two axes.
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CHAPTER 3 TEST

(1) Reread the definition of linear independence on page 44.

(2) If necessary reread the definitions of basis (page 45) and dimension (page
46).

(3) From A1vi 4+ Agve =0 it always follows that Ajvi + Agve +0.v3 =0,
hence )\1 = )\2 =0.

(4) (e1,:+* ,es) in the third answer would also be a basis, but not the
canonical basis. In case you chose the first answer, read the definition
of F* =F x .-« x F on page 5 and then that of a basis, page 45.

(5) As we have often argued, 0-v = 0 (see, for example, page 24) and 1.v = v
(axiom 6 on page 17). Therefore, the second statement says nothing about
V1,...,Vy, and the third implies that v; = .. =v,, = 0.

(6) Reread the basis extension theorem on page 46, and if necessary reflect
on the statements about the 0-tuple @ on page 43.

(7) Combine the definition of a basis on page 45 with the statement about
the 0-tuple on page 43.

(8) We do have y € U, & —y € Us,; therefore, Uy — U; would again be
nothing else but the set of all sums z +(—y) of an element from U; with
one from U,.

(9) In order to have a simple example showing that the second and third
answers are false, let V = R? and let Uy, Uz, and Us be the two axes
and their bisector.

10) Here the dimension formula says that dm U, +dim U, = n+dian Uy NU,
(Theorem 3, page 49), from which it follows that the third answer is
correct. The falsity of the first two follows alveady from the exanple
Vv=U U, K.
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CHAPTER 4 TEST
1 2 3 4 5 6 7 8 9 10
X X X X
X X X X
X X X X

(1)

2

3)

(4)

(8)

(6)
()

(8)

If welet A=p =1 (or p =0), the linearity of f follows from the first
assertion (compare the definition on page 62). Conversely, from linearity
it follows that f(Az + py) = f(Az) + f(py) = Af(z) + pf(y). The other

two answers make no sense.

Even someone who knows only what a linear map is, and who has for-
gotten the definition of Ker f, can guess why the first two answers will
be wrong. f(Az) = Af(z) implies f(0) =0 (Iet A =0), hence according
to the first two answers Ker f would be equal to {0} for all linear f.
Compare to Fact 3 and Definition on page 63.

Here there are two correct answers. The last does not make sense, since
f(A) is not even defined. f(—z) = —f(z) follows from —v = (—1)v (see
page 43).

The first assertion implies that f is bijective, hence that f is an isomor-
phism (compare to Exercise 1.2). The third answer would be correct if
instead of writing “each n-tuple” one were to write “each basis” (com-
pare to Remark 3 on page 66). The second answer says nothing about

7.

Of course one cannot guess this, one has to know it. See the definition on
page 67.

Reread pages 69 and 70.

If we write (z,y) as a column, we have

L - ! and 0 - 1
0 -1 1 1)’
giving the matrix (_} i), since the columns of the matrix are the

images of the unit vectors.

Rercad the definitions on pages 72 and 73 and the text between thewn.
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(9) Theright answer comes out of Fact 3 (page 63). The first auswer resembles

(10)

Fact 5 (page 68), but for this one must presuppose that V' and W have
the samne finite dimension.

The dimension formula for maps gives it, for here n = 5 and rk f = 3.

CHAPTER 5 TEST

(1)

2)

3)

(4)

(5)

(6)

(7

1 2 3 4 5 6 7 8 9 10
X X X X X X
X X X
X
Reread the definition of matrix addition on page 85.
1 00
Compare with test question (8) from Chapter 4: { 0 1 0 | is the
0 01

matrix of the identity F* — F?, and the composition of any map with
the identity always gives this map. If one wants to see this in “matrix
language,” one applies matrix multiplication (see Figure 39 on page 87)
to our case. One obtains counterexamples to the other answers by taking
B to be equal to the matrix of the identity.

I am always hesitating myself. Perhaps the following helps: the first index
is the row index, and correspondingly the m in M(m x n,F) gives the
number of rows.

Multiplication of matrices. Look at the definition on page 87, and read
the text on pages 87 and 88. Learn it by heart as soon as possible.

Does everything become clear if I spell out what the three words mean?
Associativity: (AB)C = A(BC); commutativity: AB = BA; distributiv-
ity: A(B 4+ C) = AB + AC and (A + B)C = AC + BC whenever these
sums and products are defined. Not yet? Reread the remark on page 88.

For a matrix A € M(n x n,F) of rank n, the map A : F* — F" is
surjective (see the definition on page 90). Now recall that for linear maps
between F" and F"® injectivity and surjectivity are the same (Fact 5 on
page 68).

rk <; .17) = 2, but rk (; g) = 1; now compare with Remark 1 on

page 91,
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(8) From BA = E it follows that A is injective and B surjective, because
Az = Ay = BAz = BAy & z = y, and y = B(Ay). However, B
does not need to be injective, nor A surjective, and m > n can gen-
uinely happen. Example: let m = 3,n = 2, A(z1,23) := (21, %2,23), and
B(z1,2,23) := (21, %2).

(9) Recall the concept of linear incpendence in Chapter 3. What does the
“maximum number of linearly independent columns” mean? (Compare
with the definition on page 90.)

(10) Rank = row rank = maximum number of linearly independent rows:
always smaller than or equal to the number of rows, therefore rk A < m.
(Comparc with the definition, fact and theorem on page 90.)

CHAPTER 6 TEST

(1) Compare Theorem 1 and the definition on pages 103 and 104.

(2) The determinant is invariant under row transformations of type (3) (com-
pare the definition on page 91), but type (1) alters the sign. For type (2)
(multiplication of a row by A # 0) the determinant is multiplied by A
(compare the lemma on page 104). Therefore the first and third state-
ments are correct.

(3) Compare the lemma on page 112.

01
=4, but det A + det B = 2. Remark on the

(4) Counterexample to the first answer: A = B = (

2 0
0 2
second: det AA = A" det A, for multiplying only one row by A already
multiplies the determinant by A. The correctness of the last answer fol-
lows from Theorem 4, page 112.

L 0), because then

det(A + B) = det

(5) The first answer gives a valid equation, but it refers to expansion by the
jth column. Reread the two expansion formulae on pages 107 and 110.

(6) Expanding by the first column (see page 107) gives

3 -1 01
detA—l-(let(1 1)—2-(let(1 1)-~1-4—2-(—1)—6.
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(7) Definition on page 109,
(8)

rk <1 = det

> 5 >
S 3> >
S 3> >
S 3> >
S v >
> > >

I

=

(9) cos?p +sinfp =1,

11 01
but detA = 2—1 = 1, For the other two answers, sce the lemma in
Scetion 6.5.

(10) Countcrexample to the first statement: A = <2 1> # <1 0> = E,

CHAPTER 7 TEST

1 2 3 4 5 6 7 8 9 10

(1) The first two examples are also systemns of lincar equations, but of a very
special kind and not written in the usual way. See page 120,

(2) A € M(mxn,F) has m rows and n columns, therefore by the definition
on page 69 it carries amap A : F* — F™. Hence Ax € " for »r € F";
anything else doesn’t work.

(3) See page 121.

(4) In the augmented matrix

(A =| A |[b

b is then linearly superfluous (sce the beginning of the proof that row
rank = cohtmu rank, page 90), and therefore rk A = rk (A4, b) (by Remark
1 on page 121). If, morcover, the jth column of A equals b, then clearly
o= (0000 10 0), with the T the Jth position, is a solution of
Ar - b,
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(8)

(6)

(7

(8)

(9)

(10)

CHAPTREN 120 ANSWERS 1O rig TRsTs

Why should Az = b be always solvable? For A = 0 € M(n x n,F)
and b # 0, for example, assuredly not. For n equations in n unknowns,
Remark 1 on page 121 applies as well.

For A € M(n x n,F), we have:
dimKerA=0&rkA=n<& A:F* — F" is bijective

(compare with the commentary for Question (6) in Test 5). On the other
hand, dim Ker A = n simply means that A= 0.

11

Counterexample to the first two answers: let A = 11

>.ThenA.t=b

9 ; . Az = b can be uniquely
solvable only if Ker A = {0}; sce Remark 2 on page 121,

is solvable for b = (2 , but not for o =

If dim Ker A = 1, it is still possible for z¢ 4+ Ker A to contain two lincarly
independent elements, as shown in Figure 59.

Ker A Sol(4, b)

Fig. 59. Linear independent solutions

Therefore we can have tk A = n—1, but rk A = n is impossible, since in
this case Az = b would be uniquely solvable, The second answer is thus
correct, and the other two false.

For A = 0 one cannot carry out the first step, but impossibility to do
the first step does not imply that the whole matrix vanishes, only that
the first column must be zero.

The first condition is not nccessary, the second is neither necessary (ex-

11 110
ample < 1 0> ) nor sufficient (example | 1 1 1 })
011
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CHAPTER 8 TEST
1 2 3 4
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(1) Compare with the definition on page 136.

(2) The second assertion is certainly a consequence of positive definiteness,
but is not equivalent to it. Consider property (iii) on page 136.

(3) Given the answer to Question (1), the second statement is meaningless,
and the first is a mistake frequently made by beginners. There are many
inner products for R™ other than the one given by (z,y) = ziy1+. .. ol -

(4) See the third of the four definitions on page 139.
(5) Since dimR? = 2 the third answer must be wrong. For the first we do

have ((L_l)a(_la_l)) = 0, but ”(L—l)” = ”(_L_l)” = \/§ # 1.

Compare to the last of the four definitions on page 139.

(6) Apart from physicists, who have already worked this out as an excreise
in Chapter 4, you will not find it so easy to see the correctness of the
third answer. It follows from (z,y) = (1/4)(Jiz + y{i%> — ||z — yl[*). The
second answer, although not correct, is not so far off the mark. For such
maps we always have f(z) = Ap(z) forall z € V and some A € R and
a suitable orthogonal map ¢.

(7) Orthogonal maps are always injective (see the fact on page 143). There
fore, we must have Ker Py = UL = 0, if Py is to be orthogonal, By the
corollary on page 143 we then have U = V, and Py = Lly is certaiuly
orthogonal.

(8) See the fact on page 144.

(9) The second answer is not as wrong as the first, since (Z, +) would indeed
be a group, but the formulation is not acceptable. N is not unfit to
have some group structure N x N — N, but since “+” here denotes the
ordinary addition of numbers, axiom (3) is not satisfied.

(10) A 2k x2k matrix is not a k x k matrix, so the first answer must be wroug,
The statement (—1)2* = 1 in the third is only a decoy, quite irrelevant
to the question. SO(2k) # O(2k) because, for example,

-1
€ O(2k) ~ SO(2k).
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CHAPTER 9 TEST

1 2 3 4 5 6 7 8 9 10
X
X X X X
X X X X X X

(1) I f(z) = Az is to mean anything, # and f(z) must belong to the same
vector space. Look at the definition on page 151.

(2) f(—z)= Az = f(—z) = (—A)(—z) and f(z) = (—-A)z, so z and —z are
eigenvectors for —A.

(3) E) = Ker(f — AId) contains zero as well as the eigenvectors for A.

(4) (g }) (_g) = (_g), therefore (_g) is an eigenvector for the

eigenvalue A = 1.
(5) See the corollary on page 153.

(6) f(z) =Az=>z=f"1(Az)=Af""(z) = f!(z) = %z. Note that A is
in fact nonzero, otherwise f would fail to be injective and could not be
an automorphism.

(7) All three conditions imply diagonalizability (see page 153, the corollary on

page 153, and, of course, the definition of diagonalizability on page 152),
but the first two are not eguivalent to diagonalizability, as the example

f=( ):]Rs—»lR3

(8) We have only restricted F to be R or C on page 159, so as to avoid
certain technicalities with polynomials over arbitrary fields.

oo -
oo
oo o

shows.

(9) det (1_‘2)‘ _i) = (1= A)(=A)—3(~2) = A2 — A +6.

10) An easy calculation shows that v is an eigenvector of f for the cigenvalue
A, if and ouly if @~ 1(v) is an cigenveetor of ¢ for the cigenvalue X,
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CHAPTER 10 TEST

1 2 3 4 5 6 7 8 9 10
X X X X X
X X X X X
X X

(1) Endomorhpisms having the first property are called orthogonal, while
the third property imposes no conditions on f (symmetry of the inner
product).

(2) The A; are real numbers, not elements of V', therefore the first state-
ment is meaningless. For the correctness of the two others, sce Fact 1 on
page 162.

(3) The same argument as used in Fact 2 on page 162 shows that the
first two answers are both correct: from u € U and w € U*t it
follows that (f(w),u) = (w,f(u)) = 0 for a self-adjoint f, and
(Fw)yu) = (F7f(w)y F1@)) = (w, £~ ()) = 0 for an orthogonal
f- (Note that in the latter case f: V — V and f|JU : U — U arc even
isomorphisms.)

(4) For the first matrix a14 # a41, for the third aia # az:1.

(5) Because A and A are real, it follows from A(z +iy) = A= |- dy) that
Az = Az and Ay = Ay. The second answer only holds in the special case
A=0.

(6) Look at the corollary on page 167.

(7) (Pyv,w) = (Pyv, Pyw), because Pyv € U, and the vectors w and Py
have the same U-component. Hence (Pyv,w) = (v, Pyw), aud the Hrst
answer is correct; see Chapter 8, page 142.

(8) The first argument is sound, so one doesn’t really need to work out the

second. The third is quite wrong, since ( (1) }) is not symuinectric.

(9) The second answer would be correct if it were additionally assumecd that
the eigenvalues Ay,..., A, are all distinct. But without this assumption
the third step in the reeipe on page 168 is not superfluous.

10) By means of the principal axes transforination we certainly have
P'AP . AE, mud therefore A = PAEP™! = ME. The sccond an-
swor would only be true for A - 0.
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(1)

(2)

3)

(4)

(6)

(7)

We have z < z, and from z < y < z it follows that z < z, but y < z
does not follow from z < y: the symmetry requirement is not satisfied.

There are precisely two equivalence classes: the first consists of the odd
numbers, the second of the even numbers.

The sccond condition says that A and B are equivalent in the sense of
the definition on page 174; therefore, by the rank theorem the second
answer is correct. From the first condition it would follow that A and
B havc the same image, from the third that they have the same kernel,
neither being deducible from the equality of ranks.

It is true that B = 24 and that tk A = rk B = 2, but neither implies
that B = P71AP. Because det(P~!AP — AE) = det(P~!(A — AE)P) =
(det P)"! det(A — AE)det P = det(A — AE), the characteristic polyno-
mials of A and P71 AP are the same. But the characteristic polynomial
of A is (1 —A)? and that of B is (2— A)2.

The characteristic polynomial of A is Po(A) = (2—A)®, 50 A =2 is
the unique eigenvalue. Hence only the three given matrices can come
into consideration for the Jordan normal form. But the dimension of the
eigenspace Ker (A — 2E) is one, since

0 3
0

has rank 2. This must also be the case for the Jordan normal form, and
so only the third answer is correct.

(=0 S

If some Jordan block in the Jordan normal form of A € Sym(n, R) were
to have degree > 2, then A would not be diagonalizable; see page 176.
Just because of O(n) C GL(n,R) C GL(n,C), the argument is valid.

We are not going to accept the third answer, which is pretending not
to know of R C C.

Note that g(v + w) = b(v + w,v + w) = ¢(v) + 2b(v, w) + q(w).
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(8)

(9)

(10)

. . -1
If we write @y, 2g,w, instead of x,y, 2z, we liave ¢(x) = Ei.;‘=! Gijiirg,
which because of a;; = aji is the same as

3

2
Y aiz; + ) 2a57iT; .
i=1 i<

Therefore the coefficients of the squares are the matrix elements a;;, but
those of the mixed terms are (ai; + a;i) = 2a;;.

Indeed it is as the first answer says, since S and A both describe
g : V — R with respect to suitable bases, which means g 0o ® = g¢g
and g o ¥ = ¢4 for the corresponding basis isomorphisms; hence gs =
gao ¥~ o® =: g4 o P; see page 179.

If ()2)1 )?2) is the diagonal form of A after applying the principal

axes transformation, det A = A; A, therefore A has one positive and one
negative eigenvalue. From this it follows that » = s = 1 (see page 182).
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